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Modélisation et contrôle de photobioréacteurs en régime de lumière
dynamique

Résumé

Les microalgues peuvent produire de la biomasse en utilisant la lumière comme source d’énergie grâce à la
photosynthèse. La biomasse algale permet de produire efficacement des aliments pour animaux, des produits
pharmaceutiques etc. A plus long terme, les microalgues pourront être utilisées pour la production d’énergie
ou le traitement des eaux usées. La culture de ces micro-organismes est réalisée dans des photobioréacteurs
dont la forme, la taille et le mode d’utilisation varient. En outre, les microalgues sont connues pour leur
taux de croissance rapide et leur capacité à se développer dans divers environnements, ce qui en fait une
source très polyvalente. Elles absorbent le CO2, ce qui contribue à atténuer les émissions de gaz à effet de
serre, et peuvent pousser sur des terres non arables. La source de lumière peut être naturelle ou artificielle
et constitue l’un des facteurs les plus importants dont l’utilisation doit être optimisée.

Cette thèse se concentre sur les modèles mathématiques qui décrivent les effets de la lumière sur la
croissance des microalgues et explore les problèmes de contrôle liés à leur culture, en considérant les différents
phénomènes qui se produisent dans les centres de réaction de la photosynthèse. L’analyse de la dynamique
rapide de la photosynthèse permet de comprendre comment la lumière perçue par les cellules, y compris du
fait du mélange dans un photobioréacteur, peut affecter la croissance.

Lorsqu’un photobioréacteur utilise de la lumière artificielle, l’intensité de la lumière peut être définie
comme une variable de contrôle. En explorant les différentes échelles de temps des phénomènes de photoin-
hibition et de photoacclimatation, les problèmes de contrôle optimal sont étudiés dans le but de maximiser
la biomasse récoltée d’un photobioréacteur continu. Le principe du maximum de Pontryagin et les méthodes
directes d’optimisation sont utilisées pour traiter ce type de problèmes.

D’autre part, comme chaque photobioréacteur et chaque espèce de microalgues a des caractéristiques
spécifiques, le développement de modèles adaptables à différentes conditions est un défi important abordé
dans cette thèse. Pour y parvenir, des modèles hybrides qui intègrent des équations différentielles ordinaires
et des réseaux neuronaux artificiels sont proposés pour modéliser les procédés à base de microalgues. Cette
thèse se propose de fournir un cadre complet pour l’optimisation de la culture des microalgues, en s’appuyant
à la fois sur la modélisation mathématique et sur des techniques d’apprentissage automatique de pointe pour
améliorer la productivité et l’efficacité dans divers scénarios de culture. En outre, elle cherche également
à approfondir des sujets théoriques fondamentaux dans la théorie du contrôle optimal, afin de proposer et
d’analyser de nouveaux algorithmes qui peuvent être utilisés pour d’autres types de problèmes.

Mots clés: Microalgues, Systèmes dynamiques non linéaires, Contrôle Optimal, Réseaux de Neuroneaux
artificiels
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Modelling and Control of photobioreactors under dynamic light
regimes

Abstract

Microalgae can produce biomass using light as an energy source through photosynthesis. Algal biomass
has great potential for the production of food, feed, pharmaceuticals and, at longer time scale for wastewater
treatment or bioenergy production. The cultivation of these microorganisms is carried out in photobioreac-
tors which vary in shape, size, and mode of operation. Additionally, microalgae are known for their rapid
growth rates and ability to thrive in a variety of environments, making them a highly versatile source. They
absorb CO2, helping to mitigate greenhouse gas emissions, and can grow on non-arable land. The light
source can be natural or artificial, and it is one of the most important factors in the process. The objective
of this PhD is to propose strategy for optimally using light.

This thesis focused on mathematical models that describes the effects of light on the growth of microalgae
and explores control problems related to their cultivation, considering different phenomena that occurs in the
reaction centers of photosynthesis. The analysis of the fast dynamics of the photosynthesis is investigated
through modelling to understand how different patterns of light, including the mixing within a photobiore-
actor, affect the growth of the microalgae.

When a photobioreactor uses artificial light, the intensity of the light can be set as a control variable.
Models for exploring the timescales of different phenomena as photoinhibition and photoacclimation are
presented. Optimal control strategies are setup using Pontryagin’s maximum principle and direct methods,
with the objective to maximize the harvested biomass of a continuous photobioreactor.

On the other hand, as each photobioreactor and microalgae species have specific parameters, develop-
ing adaptable models for different conditions is a significant challenge addressed in this thesis. To achieve
this, hybrid models that combine ordinary differential equations and artificial neural networks are devel-
oped for modelling and controlling microalgae-based processes. This thesis aims to provide a comprehensive
framework for optimizing microalgae cultivation, leveraging both mathematical modelling and cutting-edge
machine learning techniques to enhance productivity and efficiency in various cultivation scenarios. Addi-
tionally, it also seeks to go into fundamental theoretical topics in optimal control theory, to propose and
analyze new algorithms that can address other types of problems.

Keywords: Microalgae, Non-linear Dynamical Systems, Optimal Control, Neural networks
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Chapter 1

Introduction

Microalgae and photobioreactors

Microalgae are a diverse group of photosynthetic
microorganisms found in various aquatic environments.
These unicellular microscopic organisms, invisible to the
naked eye, can perform photosynthesis, a process by
which they convert light energy (natural or artificial), car-
bon dioxide, and water into biomass, releasing oxygen as a
byproduct. Microalgae, together with cyanobacteria (also
known as blue-green algae), form the well-known phyto-
plankton group which not only produce more half of the
planet’s oxygen, but are also the basis of the ocean’s food
chain.

Microalgae and cyanobacteria have attracted consid-
erable interest for their potential applications in various

industries due to their rich biochemical composition, as they can produce a wide range of valuable
compounds, including lipids, proteins, and pigments [134]. For example, Spirulina is the most culti-
vated microalga worldwide due to the high content of proteins and many companies offer a variety
of products derived from Spirulina, such as tablets, flakes, powder, pasta, or drinks [36, 81].

Photobioreactor are specialized vessels designed to cultivate photosynthetic organisms under
controlled environmental conditions. Some of them use sunlight like the open ponds, or artificial
light in a very controlled environment. Open ponds offer a simple and cost-effective approach, but
they present a high level of contamination and other problems such as low gas-liquid mass transfer
rate [65]. Much work has focused on the improvement of open ponds [10, 122]. On the other hand,
closed systems are designed to overcome the problems associated to open ponds.

There is a large market for today’s commercially available photobioreactors. Tubular photo-
bioreactors, for example, are made of glass or plastic tubes, and their cultures are re-circulated with
a pump. The diameter of the tubes is relatively small (around 0.1 m) to provide light to all the
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Figure 1.1: A: Large production plan of Dunaliella at Hutt Lagoon, Western Australia. B: Large-
scale plant of 18 ha for Arthrospira production in California, the USA. Image from [92].

microalgae cells. The length of the tubes is, in principle, not limited in any way, but it determines
the residence time and the mixing within the photobioreactor [95].

Modelling and optimization of biomass evolution are the motivations for this work. On the
one hand, the great diversity of microalgae species and the different cultivation methods make the
modelling task a case-by-case one, meaning that each photobioreactor needs its own model. The
same is true for the optimization bioprocesses associated with microalgae.

Modelling microalgae growth

Microalgae growth is highly affected by the light in-
tensity that they receive. Lack of light reduces growth,
whereas over-exposition to strong light can damage cer-
tain proteins and slow down the photon harvesting pro-
cess. Typically, both conditions are present in photo-
bioreactors: one single cell can perceive low light in the
deepest part of the culture and suddenly, due to mixing,
go to the most illuminated part experimenting photoinhi-
bition. We do not fully understand how the exposition of
a strong light gradient in the culture affects the growth
of each individual cell, yet some mathematical models are
able to predict the production of microalgae in some con-
ditions.

In addition to the fact that microalgae face a strong
light gradient in bioreactors, they have evolved adap-
tive mechanisms to overcome photoinhibition, the so-
called photoacclimation, in which each cell can modify

the amount of pigments in order to avoid damage to the photosynthetic machinery. Both phenom-
ena have different timescales: while the photodamage and recovery processes have timescales of
minutes, photoacclimation has a timescale of days. Both phenomena affect the growth rate of the
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microalgae. Coupling two different models for different phenomena is challenging, especially if they
have different timescales.

Mathematical models are calibrated on the basis of available experiments. But the conditions
under these experiments are especial in microalgae-based processed. For example, not all bioreactors
have the same geometry and operating conditions and some of them have more than one species
of microalgae, and the resulting interactions cannot be neglected. Moreover, some mathematical
models can be very accurate in some conditions and useless in other situations. Then the list of
microalgae models is very large, and still increasing. Most of them are non-linear, then model
calibration becomes difficult. In addition, calibration must often be done with data that do not
come from dynamic regimes. Usually, one model is developed to explain a single phenomenon that
affects microalgae, and then coupled with other models. A common practice is to calibrate the new
coupled model, keeping some parameter values from the literature.

Figure 1.2: Schematic representation of different types of photobioreactors: A and E Helical tubu-
lar type photobioreactor, B and D Flat panel photobioreactor, C Column type photobioreactor.
From [133].

Optimal control problems in microalgae cultivation

In recent years, there has been a notable increase in the industrial cultivation of microalgae,
accompanied by the development of new technologies such as photobioreactors, sensors, and con-
trollers. These new technologies are capable of estimating biomass inside the photobioreactor.
When the data is recorded, mathematical models can be fitted in order to forecast the biomass
taking into account different factors, as light intensity, dilution rate, pH, nutrient concentrations,
etc. In industrial production levels, several questions are of interest in order to make the most
of our resources and constraints. For example: What is the optimal performance of the process
and how to reach it ? How should the photobioreactor be operated to maximize the production of
biomass or any compound of interest? Which operational parameters should be manipulated? Do
some biological phenomena specific to microalgae influence production?

Given a certain objective, for example, to maximize biomass production, the question is: how
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do we set our controls? The Pontryagin’s maximum principle (PMP) is a mathematical tool that
can be used to answer these questions. When a mathematical model of our system, written as a
set of ordinary differential equations, has well-defined the influence of these controls, PMP can be
applied to find the optimal control. The principle provides the necessary conditions for a control
to be optimal in the presence of constraints. However, these necessary conditions are not easy to
decipher and most of the time one must resort to a software that is able to solve an approximation of
the problem. By combining the theoretical results delivered by PMP and the numerical simulations
of some software, we can gradually discover the structure of our optimal control. Why gradually?
Discovering the secrets of an optimal control strategy is like piecing together a puzzle. At the
beginning, a few conditions can be derived from the PMP, for example, the optimal operation of
the dilution rate can take three values, zero, at its maximum value and a third value that’s unknown.
Numerical simulations can help us determine this unknown value.

Thesis organization

This manuscript focuses on modelling the growth of microalgae. Although there are several
factors that affect the growth of these microorganisms, in this work, we focused on the light factor. A
significant part of this thesis is based on the optimization of microalgae-based processes. Describing
these bioprocess using ordinary differential equations, we study the problem of maximizing the
harvested biomass using the theory of optimal control.

This thesis can be divided in three major topics:

1. The modelling of the microalgae growth under fluctuating lights.

2. The optimal control problems related to microalgae in a light field.

3. The use of artificial networks for modelling and controlling microalgae based-processes.

This thesis begins with the study of the Han model, which relates photoinhibition to microalgae
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growth. It is interesting to compute the average growth when the algae are subjected to a light
that follows a squared-wave function, as explored in Chapter 3. Generalizing this sketchy work for
more realistic light signals is natural. In Chapter 4, we study of the average growth rate for any
continuous light signal, especially for light signals extracted from Lagrangian trajectories from a
simulated raceway pond hydrodynamics using the software Freshkiss3D developed by INRIA.

Considering Han’s model, two optimal control problems were considered, whose objective is to
maximize the biomass production in a photobioreactor. In Chapter 5, we present the first problem,
which considers the fast dynamics of the photosynthesis. The second problem investigates the effect
of photoacclimation, and the results are presented in Chapter 6.

In Chapter 7 we explore the use of neuralODEs (or hybrid models) to model the growth of the
microalgae in a photobioreactor. The growth rate is estimated using neural networks, we give a
complete theory on how a neural network is trained within a dynamic system, we illustrate different
techniques to train the neural network. Then, in Chapter 8, we study how artificial neural networks
can be used to solve optimal control problems.

Motivated by the preceding chapter, in Chapter 9 we derive a shooting method to solve optimal
control problems with fixed time horizon and box constraints on the control. This chapter has no
relation with microalgae, but is a complement of the previous.
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Chapter 2

State of the art

2.1 Modelling nutrient and light effects on the growth of mi-
croalgae

The growth of microalgae (and microorganism in general) is often described using mathematical
models. Probably the most famous one is the exponential growth equation, proposed by Thomas
Robert Malthus, in his Essay on the Principle of Population (1798), where the evolution of biomass
is given by the ordinary differential equation:

d

dt
x = µx.

On the contrary to this primitive model assuming a constant growth rate µ, many factors affect µ,
among others, light, nutrients, pH, dissolved oxygen, temperature. Also, there are some specificities
among the large range of microalgal and cyanobacteria species, and often models consider a very
limited number of limiting elements (typically light and temperature). This is why there is a huge
literature for modelling the function µ [83, 37], there are different types of models, which are often
bricks that can be combined for considering: external nutrient concentration, internal nutrient
storage, light-limitation, light attenuation, photoinhibition, the effect of temperature, pH level,
carbon concentration, dissolved oxygen and many other factors.

The Monod kinetics [97] has been used for more than 70 years to model the effect of a nutrient
on the growth of microorganisms. In this model, the growth rate µ is a bounded function of the
concentration of a limiting nutrient s, defined as

µ(s) = µmax
s

s+ ks
, (2.1)

where µmax is the maximal growth rate, and ks the half saturation constant. In early models of
microalgae growth, light is treated as a limiting nutrient [141], i.e., the light intensity I is replaced
in equation (2.1).
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Figure 2.1: Schematic representation of a flat panel photobioreactor. The photobioreactor is il-
luminated only in one side. There is a gradient of light within the photobioreactor due to the
self-shading of the microalgae. The microalgae that are closer to the illuminated surface perceive
more photons than the microalgae on the opposite side.

Nutrients can also have a negative effect if the concentration is too high [7]. To model this
inhibitory effect, the Haldane description has been used, where the growth rate depends on a
nutrient s that can inhibit the growth at high concentration as follows:

µ(s) = µmax
s

s+ ks +
s2

ki

, (2.2)

where ki, µmax and ks are the constants of the model. In the same way, light can have an inhibitor
effect over the growth of microalgae, which is the so-called photoinhibition. In terms of modelling,
the same Haldane description has been used to model the inhibitory effect of light, again, changing
s by the light intensity I in the function (2.2).

Actually, it has been demonstrated by Droop [46] that representing growth rate of microalgae
and cyanobacteria by a function depending on the external nutrient concentration was inaccurate. A
more realistic representation relates growth to the total amount of the limiting element available in
the biomass. This so-called internal quota represents the intracellular concentration of the limiting
element. For example, if nitrogen is limiting, and is provided to the culture through nitrate (NO−

3 ),
the growth rate will depend on the quota q = N

C which represent the ratio of nitrogen to carbon in
the cells. The standard Droop model therefore represents growth rate by the following function:

µ(q) = µ̄

(
1− Q0

q

)
,

where the parameter µ̄ represents the theoretical growth rate at infinite quota, and Q0 is the
minimum quota.

26



2.1.1 Light gradient
Microalgae growth models are inspired by bacterial growth models. The key difference between

these two microorganisms is the light necessary for the microalgae to grow. This makes a big differ-
ence, especially since it cannot be assumed that the amount of photons is evenly distributed within
the photobioreactor. Perfect mixing assumes that there are no spatial gradients of matter within
the reactor. Most of the models assume perfect mixing, but light distribution is not homogeneous.

In a flat panel photobioreactor (Figure 2.1), light illuminates one face of the reactor. If the
light intensity is Iin, then the light at position z from the illuminated face, is given by the law of
Beer-Lambert:

I(z) = Iine
−ξz. (2.3)

Figure 2.2: From [13]. Schematic representation of the type of models of algal productivity, where
P is the rate of photosynthesis, I the light intensity, T temperature, RD rate of day-time respira-
tion, RN the rate of night-time maintenance, λ the maintenance coefficient, µ the specific rate of
photosynthesis, X cell concentration and ξ being a constant.

There are mainly three ways to deal with the light gradient within a photobioreactor [13].
According to Bechet et al. [13] growth function has been classified into three categories: Type I,
Type II or Type III:

• Type I: if the model predicts the growth rate as a function of the incident light reaching the
photobioreactor, or as a function of the average light within the photobioreactor.

• Type II: if the growth is computed as the average of local growth rates within the cultivation
without considering short light cycles.
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• Type III: if the model accounts for both light gradient and short light cycles.

Assuming that mixing is much faster than the photosynthetic processes, it means that the
cells respond to the average light intensity (Type I). Assuming that mixing is slower than the
photosynthetic processes, the growth rate corresponds to the average growth rate over the culture
depth (Type II) [19, 75]. If both timescales are intricate, the type III model is required.

2.1.2 Timescales
Biological processes in microalgae operate on a wide range of timescales, from milliseconds to

weeks, many processes are necessary to grow and divide. Damaging processes can reduce the growth
rate, and even be lethal for the cell. Microalgae have different mechanisms to re-synthesize molecules
for replacing the damaged ones. These mechanisms have different timescales, for example, there are
different photoacclimation processes operating from milliseconds to days [111]. In the next section,
we introduce the Han model, which can be used to model the fast dynamics of photosynthesis and
can be also upgraded to represent the acclimation of the microalgae to fluctuating light.

2.1.3 The Han model of photosystem II
When the light energy is absorbed by the light harvesting complex, it generates enough energy to

break up a water molecule and recover an electron, initiating a series of electron transport reactions.
These photosynthetic reactions lead to the production of ATP and NADPH. The photosynthetic
unit (PSU) is a complex of pigments and proteins coupled to a reaction center, where these reactions
take place [94]. The PSUs are both in photosystem-I (PSI) and photosystem-II (PSII).

The Han model [66] describes the effect of light intensity in the PSII and it provides a framework
for understanding the complex interactions between light intensity, photodamage, and repair pro-
cesses in microalgae. Specifically, photoinhibition is the reduction in the photosynthetic capacity
due to damages in key proteins within the PSU-II. In this model, the reaction centers of PSU-II
can take three states:

• Open state A: the reaction center is ready to harvest photons.

• Closed state B: the reaction center is processing the energy absorbed from photons.

• Inhibited state C: the center is damaged and can not harvest photons.

Photoinhibition is a dynamic balance between the rate of photodamage to PSII and the rate of
its repair. The probability of being on each state is described by the following differential equations:

Ȧ = −σIA+
B

τ
,

Ḃ = σIA− B

τ
+ krσIB,

Ċ = −krC + kdσIB,

with the condition
A+B + C = 1.

In this model, the growth rate is proportional to the state A, and at steady state, the growth rate
follows a Haldane description, given by
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Figure 2.3: After absorbing photons, reaction centers move from state A to B at a rate proportional
to σI, where σ is the effective cross section of the reaction center and I is the irradiance. The
minimal time required for an electron to transfer from water on the donor side of PSII to terminal
electron acceptors is called turnover time and denoted by τ , so that τ−1 corresponds to the rate of
the state B passing to state A. Excessive light absorption leads to photoinhibition of the PSII (C
state) at a rate kdσI and has a recovery rate kr.

µSteady State =
KσI

1 + τσI + kd
kr
τ(σI)2

.

The photodamage increases with increasing light intensity. At low light intensities, the rate of
photodamage is low, and the repair processes can keep up, preventing significant photoinhibition.
However, at high light intensities, the rate of photodamage exceeds the repair capacity, leading to
a net decrease in PSII functionality and overall photosynthetic efficiency.

2.1.4 Photoacclimation
Microalgae are able to modify the amount and the composition of certain pigments to both

adapt the flux of harvested energy to the cell need and to protect themselves against damages
resulting from an excess of energy. This is the so-called photoacclimation. An extension of the Han
model [105] can model the effect of photoacclimation based on the change of chlorophyll content.
The carbon-specific chlorophyll quota θ [gChl g

−1
C

], corresponding to the amount of chlorophyll per
unit of biomass, is described as

θ = ψ
kl

Ig + kl
q,

where Ig [µmolm−2s−1] is the so-called growth irradiance, and it represents the light irradiance at
which the cells are acclimated, q [gNm

−3] represents the carbon-specific nitrogen quota, ψ [gChlg
−1
N

]
and kI [µmolm−2s−1] are fixed parameters. The dynamic evolution of Ig is related to the light
irradiance I following the equation:

İg = δµ(I − Ig).

Other models [49, 55] propose a first-order dynamics for the amount of chlorophyll quota as

θ̇ = δ′(θ∗ − θ),
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where θ∗ is proposed as a function of the light I as

θ∗ = θmax − (θmax − θmin)
I

I + Ic
,

where θmax, θmin, Ic are constants of the model. In all the cases, photoacclimation is represented as a
graded reduction of photosynthetic pigment content in response to increased irradiance, although it
can also involve changes in pigment complement and in the electron transfer chain components [86].

2.2 Optimal control problems in microalgae-based processes
Optimal control in microalgae-based bioprocesses is an interesting intersection of biotechnology,

engineering and applied mathematics. One of the challenges in these processes lies in optimizing the
various parameters and conditions to maximize productivity and efficiency. This includes controlling
factors such as light intensity, nutrient supply, temperature, pH, and carbon dioxide concentration
(which is closely related to the pH). The goal is to determine the optimal operational strategies
that will yield the highest biomass or desired product concentration (such as lipids, carotenoids,
or proteins). Optimal control theory provides a powerful framework to address these challenges.
By formulating the process as a dynamic system, optimal control aims to identify time-dependent
(open loop) control variables that drive the system towards a desired outcome.

Different optimal problems related with microalgae have been analyzed in the literature. One
of the most common problems is the optimization of productivity in a perfectly mixed continuous
reactor. In such a reactor, called chemostat, the change of population density x can be expressed
as:

ẋ = Population growth − population loss. (2.4)

The dilution rate D, of a continuous culture corresponds to the ratio between the flow rate F , and
the volume V (often assumed to be constant). Equation (2.4) is generally written:

ẋ = µx−Dx. (2.5)

Where the net growth rate µ depends on various factors affecting the photobioreactor environment.
Light is the most studied factor for optimal control of high density photobioreactors, especially
since its availability is affected by the biomass density (self shading phenomenon).

The problem of maximizing the biomass production using natural periodic light was addressed
by Grognard et al. [63], accounting for light attenuation. The evolution of the biomass x is governed
by the following equation:

ẋ =
ν(t)x

κ+ x
−Rx−Dx,

where ν is a function that takes into account light/dark cycles and light attenuation within the
photobioreactor using the Beer-Lambert law. The constant R represents the respiration rate of the
microalgae. The dilution rate D, of a continuous culture corresponds to the ratio between the flow
rate F , and the reactor volume V . The objective function is the harvested biomass in the period
T given by ∫ T

0

D(t)V x(t)dt,

30



In this work, periodic conditions for the process operation are assumed, i.e., x(0) = x(T ).

There are other applications of optimal control theory in microalgae-based processes, for exam-
ple, in [43, 42], two distinct microalgae species are described by the following dynamic system

ṡ = (sin − s)D −
2∑
i=1

ρi(s)xi,

q̇i = ρi(s)− µi(qi)qi,

ẋi = (µi(qi)−D)xi

where i = 1, 2 represent each species, s is the total substrate concentration, sin is the input concen-
tration of the substrate, xi is the i-th species-biomass concentration, and qi is the internal quota for
the i-th species. The functions ρi quantify the rate of substrate absorption and µi are the growth
rates. The control is the dilution rate D which is assumed to be bounded and non-negative. The
objective is to minimize the time to go from the initial conditions to the target set

T = {(q1, q2, x1, x2) ∈ (0,∞)4 : x2 < εx1},

where ε > 0 is a fixed tolerance value. This problem aims to minimize the time to select two distinct
microalgae populations. This problem present some turnpike properties [44] that are analyzed using
the theory developed in [146].

Another interesting application of optimal control was developed in [87], where photoacclimation
behavior is related to an optimal control problem of resource allocation.

2.3 Neural Differential Equations
The function (2.5) in a photobioreactor depends on many factors which can be process de-

pendent. Then, for each photobioreactor, each species and each growth conditions a parametric
function µ must be proposed. There is a long list of functions µ that have been used in the last
years associated to a broad set of photobioreactor-related parameters [13, 37, 84].

As a matter of example, light has a strong effect on the growth rate. Accurately representing
the light extinction is challenging. The Beer-Lambert equation (2.3), which accounts for the re-
sulting effect of absorbance and scattering, is no more valid for very turbid medium with multiple
scattering. More recent models take into account more complex distribution of light within the
photobioreactor [77, 35, 140], but are often assuming simple reactor geometries. Accounting for
photon multi-diffusion in complex geometries is still an unsolved problem. Light induces photoac-
climation, a biased estimation of the light field will also bias the estimate of the pigment content,
and further of the growth rate. Among all the factors affecting growth, some are rarely included,
such as oxygen or the availability of micro-nutrients. This illustrates the difficulty in accurately
computing the growth function µ based on mechanistic and validated models. It results that the
maximum productivity will depend on several factors which are difficult to represent in a PBR.

To address the problem of growth function modelling, a possible solution is to replace the
function µ by a Universal Approximator that takes as inputs all the different variables of the system
and calibrate it using the available data. In this thesis, we study the implementation of artificial
neural networks (ANNs). Integrating ANNs in ordinary differential equations is a method known
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as Hybrid Modelling in chemical engineering [107, 119, 124, 99] and neural differential equations
(neuralODEs) in the machine learning community [30, 79, 102, 128]. We will use both terminology
in this thesis.

This approach has been used to model an anaerobic digester, for example, in [16], two bacteria
x1 and x2 growth consuming two different substrates s1 and s2, following the dynamic system:

ẋ1 = µ1(s1)x− 1− αDx1,

ẋ2 = µ2(s2)x2 − αDx2,

ṡ1 = −k1µ1(s1)x1 +D(s1,in − s1),

ṡ2 = −k2µ2(s2)x2 + k3µ1(s1)x1 +D(s2,in − s2),

qCH4 = k4µ2(s2)x2,

where D is the dilution rate, s1,in, s2,in are the influent concentration of the substrates s1 and s2.
The k1, k2, k3, k4 are the yield coefficients associated with the bacterial growth. qCH4 denotes the
methane flow rate, α is a parameter reflecting if the biomass is affected or not by the dilution effect.
The specific growth rates of x1 and x2 are denoted by µ1 and µ2. The growth of x1 only depends
on the substrate s1 and, similarly, the growth of x2 only depends on the substrate s2. Each growth
rate µi is replaced by an artificial network fulfilling the next hypothesis

• µ1 is a non-negative increasing function of s1, and µ1(0) = 0.

• µ2 is a non-negative function of s2 that tends toward zero for high values of s2 and µ2(0) = 0.

After training the neural networks, the growth rates µi show a behavior similar to the Monod and
Haldane functions.

In [28, 107] a general hybrid model for a stirred tank bioreactor is proposed as

ċ = KH(c)ρ−Dc+ u,

where c ∈ Rn is the vector of n concentrations, the matrix K ∈ Rn×r contains the information of
the yield of the reactions, H(c) ∈ Rr×r is the matrix of known kinetic expressions, u is a vector of
input volumetric rates (this includes volumetric feed rates and gas-liquid volumetric mass transfer
rates), and ρ is a vector of r unknown kinetic functions. The vector ρ is then replaced by a neural
network whose input is c.

The list of hybrid models in chemical and biochemical engineering is increasing [56, 29, 74], but
just few hybrid models have been proposed for modelling the dynamics of microalgae cultivation
processes [157, 38, 139]. The list of machine learning models applied to microalgae-based processes
is large [143] but for most of them, machine learning models are used for other purposes, such as the
classification of dead and living microalgae [123], classification of different microalgae species [108],
or prediction of microalgae growth rate in steady regime of the culture [106].
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Part I

Average growth rate under
fluctuating light
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Chapter 3

Theoretical growth rate of microalgae
under high/low-flashing light

This chapter reproduces [53] Published in the Journal of Mathematical Biology. The introduction
presented here differs from the published version.

Abstract
Dynamic light regimes strongly impact microalgal photosynthesis efficiency. Finding the optimal

way to supply light is then a tricky problem, especially when the growth rate is inhibited by
overexposition to light and, at the same time, there is a lack of light in the deepest part of the
culture. In this chapter, we use the Han model to study the theoretical microalgal growth rate
by applying periodically two different light intensities. Two approaches are considered depending
on the period of the light pattern. For a large light period, we demonstrate that the average
photosynthetic rate can be improved under some conditions. Moreover, we can also enhance the
growth rate at steady state as given by the PI-curve. Although, these conditions change through
the depth of a bioreactor. This theoretical improvement in the range of 10 to 15% is due to a
recovery of photoinhibited cells during the high irradiance phase. We give a minimal value of the
duty cycle for which the optimal irradiance is perceived by the algae culture under flashing light
regime.

3.1 Introduction
In this chapter, we explore the consequences of the Han model [66] for cultures where light is

the limiting factor. Han’s model describes the photosynthesis process by representing the reaction
center dynamics through three states, one of them corresponding to photoinhibition. This model
has been used by several authors who demonstrated that it can properly predict the growth rate of
cultures submitted to a periodic light/dark alternation [13, 9, 116]. Moreover, it has been coupled
with acclimation [105], and chlorophyll fluorescence models [103].
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Flashing light is often considered as a method to reduce photoinhibition and to increase the
productivity in photobioreactors. This consists of a periodic succession of light and dark phases.
There is a lot of research on the benefit of providing light through flashes [2, 50, 1, 132]. The
flashing light, however, rarely produces an enhancement on the algal production in comparison
with the constant light of the same average irradiance [3]. In this chapter, we consider a different
light regime, namely the high/low flashing light regime. The microalgae culture is considered to be
exposed to a periodic succession of high irradiance followed by lower irradiance. This light regime
is more representative of real conditions in dense cultures of microalgae, where light is absorbed
and scattered by the algae culture and cannot penetrate deeply into the liquid medium [137]. As
a consequence, cells oscillate randomly between the surface layer at high irradiance and the deeper
layers at lower irradiance [40].

The aim of this chapter is to go beyond the flashing light pattern to understand how a high/low
flashing light affects the growth rate of microalgae. To address this question, we reduce the Han
model into only one differential equation. This simplification depends on the timescale of the period
of the high/low flashing light configuration. We differentiate two cases regarding large and small
timescales. Meanwhile, we provide an approximation of the average growth rate for each case, and
compare the solutions of the simplified models with the exact solution of the system. With these
simplified models, we prove that the solution of this system, considering the high/low flashing light
configuration, converge to a periodical solution, and we study their properties.

We show that the average growth rate under a high/low flashing light regime can be greater
than the growth under constant light regime with the same average irradiance. We also prove
theoretically that for high frequencies (or short period of the light pattern) the growth rate under
the high/low flashing light regime is equal to the growth rate under the constant light regime. We
consider the local optical depth concept defined in [17] for our analysis to condense the effect of the
depth and biomass in the light attenuation.

This chapter is organized as follows. In Section 3.2, we present the growth model and the light
setting. In Section 3.3, we analyze what happen in the large period approach which will be called
Large-T model and how this case can improve the growth rate comparing to the continuous light
regime. In Section 3.4, we study the small period approach called Small-T model, and we give
an interval in which the algae culture perceives the optimal light if we consider the flashing light
configuration. Section 3.5 justifies the approximations made in the previous sections. Finally, in
Section 3.6, we test numerically the results.

3.2 Description of the model

3.2.1 Han model

In the Han model [66], reaction centers of PSII can take three states: open or reactive (state
A), closed or activated (state B) and inhibited (state C). After absorbing photons, reaction centers
move from state A to B at a rate proportional to σI, where σ is the effective cross section of the
reaction center and I is the irradiance. The minimal time required for an electron to transfer from
water on the donor side of PSII to terminal electron acceptors is called turnover time and denoted
by τ , so that τ−1 corresponds to the rate of state B passing to state A. Excessive light absorption
leads to photoinhibition of the PSII (C state) at a rate kdσI and has a recovery rate kr. Figure 3.1a
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presents the relation between these three states. The dynamics of PSIIs at the three states can be

(a) Illustration of the Han Model. (b) PI-curve when A is at steady state following
the Haldane description given by (3.4)

described by the following differential equations, which describe the proportion of each state:

dA

dt
= −IσA+

B

τ
,

dB

dt
= IσA− B

τ
+ krC − kdσIB,

dC

dt
= −krC + kdσIB,

(3.1)

and these three states satisfy:
A+B + C = 1. (3.2)

Then system (3.1) is defined in the domain {(A,B,C) ∈ [0, 1]3 : A + B + C = 1}, which is well
defined due to the fact that d

dt (A+B+C) = 0. On the other hand, growth rate µ depends entirely
on the irradiance that the algae perceived, and it is proportional to IσA:

µ := KσIA, (3.3)

where K corresponds to the growth rate coefficient.

At steady state of system (3.1), the growth rate given by the Han model, for a constant irradiance
I can be computed explicitly by

µS(I) :=
KσI

1 + τσI + kd
kr
τ(σI)2

. (3.4)

This formulation corresponds to a Haldane description of the PI-curve accounting for photoinhibi-
tion. In Figure 3.1b, we present a generic form of the PI-curve with this description. The maximum
of this function is given by

µmax :=
K

τ + 2
√

kd
kr
τ
, (3.5)
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which is achieved with the irradiance Iopt given by

Iopt :=
1

σ
√

kd
kr
τ
. (3.6)

The details of the above computation and the link between (3.4) and the Haldane description can
be found for instance in [85, Proposition 1.2.1].

Using Equation (3.2), we can eliminate B to reduce the system (3.1) into two equations:

d

dt

(
A
C

)
=

(
1 0
0 kd

)[
−
(
σI + 1

τ
1
τ

σI σI + kr
kd

)(
A
C

)
+

(
1
τ
σI

)]
, (3.7)

which can be also rewritten as

d

dt

(
A
C

)
= −M(I)

(
A
C

)
+N(I),

where
M(I) :=

(
σI + 1

τ
1
τ

kdσI kdσI + kr

)
, N(I) :=

(
1
τ

kdσI

)
. (3.8)

For every value of I ∈ R+, the matrix −M(I) is Hurwitz (see Appendix A.1.5) and invertible. Then
M−1(I)N is the only asymptotically stable equilibrium, which can be computed explicitly by(

A∗

C∗

)
:=M−1(I)N(I) =

1

1 + τσI + kd
kr
τ(σI)2

(
1

τ kdkr (σI)
2

)
,

with A∗, C∗ the steady state of A,C. Using the definition of the growth rate (3.3), one re-finds (3.4)
by multiplying A∗ with KσI.

3.2.2 Light regimes and the two simplified models
Definitions

Let us consider two light regimes, namely the constant regime and the high/low-flashing light
regime. For the constant light regime, the reactor receives a constant irradiance at the surface. For
high/low-flashing light regime, a periodic piece-wise constant irradiance (c.f. Figure 3.2) is applied
at the reactor surface. Let us denote by Imax (resp. Imin) the maximum (resp. minimum) irradiance
and by η ∈ (0, 1) the duty cycle. We can then define the average irradiance by

Iη := ηImax + (1− η)Imin. (3.9)

The reactor is assumed to be illuminated continuously with irradiance Iη for the constant light
regime, whereas in the high/low light regime, we assume that the reactor is exposed regularly
between a high irradiance Imax for ηT and a low irradiance Imin for (1− η)T . See Figure 3.2.

Depending on the scale of T , we study two cases: when T is small compared with the Han
model parameters τ , meaning that T < τ (the order of magnitude is milliseconds), we call this case
Small-T model or high frequency model, and when T is large, i.e. when T > 1/kr (the order of
magnitude is hours), we refer this case as Large-T model or low frequency model. The reduction
methodology, depending on the light signal frequency, is now detailed.
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Figure 3.2: Illustration of the two light regimes. The high/low regime (blue) in which the function
Is has a period T and switches from Imax to Imin for a time ηT and (1 − η)T respectively. The
constant light regime (red) which is considered as the weighted average between Imax and Imin.

Case I: Large-T model (low frequency model)

When light stays constant for a large enough time (we will justify later that large enough relies
on the value of 1/kr), the dynamics of A reaches the steady state much faster than C [68]. Then, it
is possible to apply a fast-slow approximation by using the perturbation theory [78]. More precisely,
we consider the slow manifold A = 1−C

1+τσI (i.e. the pseudo steady state of A) to reduce the dynamics
into one single equation on the photoinhibition state C:

dC

dt
= −(α(I) + kr)C + α(I), (3.10)

with

α(I) =
kdτ(σI)

2

1 + τσI
. (3.11)

System (3.7) has slow-fast timescales due to the factor kd. For example, Table 3.1 presents
some parameter values in the literature [61, 82], kd is on the order of 10−4. Then, the entries of the
following matrices: (

σI + 1
τ

1
τ

σI kr
kd

+ σI

)
and

(
1
τ
σI

)
have values greater than 0.1 when considering an irradiance I in the order of 1000µmolm−2s−1.
The theory of slow/fast manifolds [78] holds for autonomous systems. Although our system is
nonautonomous, we can apply this principle to the system (3.7) in the interval (0, ηT ) considering
constant light equal to Imax and then considering the system with constant light Imin in the interval
(ηT, T ) since light do not affect the timescales of the system. The periodic solution of this system
is computed in Appendix A.1.1.

Case II: Small-T model (high frequency model)

When light varies very rapidly compared to the system dynamics, the dynamics of the photoin-
hibition state C stays approximately constant [68]. Under the assumption that C is constant, we
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can then apply averaging methods [127] to simplify the system (3.7) into one equation on the open
state A:

dA

dt
= −

(
σI +

1

τ

)
A+

kr − kdσIA

τ(kdσĪ + kr)
, (3.12)

with Ī = 1
T

∫ T
0
I(t)dt and IA = 1

T

∫ T
0
I(t)A(t)dt. The details of this deduction and the solution of

the system are described in Appendix A.1.2.

3.2.3 Accounting for the light gradient
Photobioreactors are illuminated at the surface and the light is attenuated along the depth z due

to the light absorption and scattering. The generalized Beer-Lambert law is chosen for modelling
this phenomenon:

I(y) := Ise
−y. (3.13)

where y := ε(X)z, is the so-called local optical depth [17]. The vertical position is denoted by
z. The light extinction coefficient ε(X) > 0 depends on the concentration of the microalgae X.
Local optical depth (dimensionless) is a concept that integrates the attenuation of light due to
pigment absorption and scattering. At local optical depth y, the light perceived is the fraction
e−y of the irradiance at the bioreactor surface. The advantage of this formulation is that it can
integrate nonlinear effects of the extinction coefficient due to multiscattering [98]. The darkest
reactor part is characterized by a low remaining light, typically Iout

Iin
< 0.1 which corresponds to the

case y > 2.3 [19]. Some of our results hold for small values of local optical depth (meaning y < 1,
where light extinction is lower than 36% ).

Here, we assume that the algal biomass does not change at the considered timescale. From the
definition of light attenuation (3.13), we denote by IH(y) = Imaxe

−y (resp. IL(y) = Imine
−y) the

high irradiance (resp. the low irradiance) at local optical depth y.

When illuminated by a constant irradiance Iη, the irradiance perceived at local optical depth y
is given by IM (y) = Iηe

−y. By choosing Iη as (3.9), we guarantee that the continuous light regime
and the high/low flashing light regime provide the same amount of energy. Our objective is to
compare the average growth rate for these two systems.

3.2.4 Model limitations
This model does not represent all the mechanisms involved in the photosynthesis, and how other

factors such as temperature, pH or nutrients affect growth rate. It assumes that growth rate is driven
by the PSII dynamics. For the considered timescales (from mseconds to hours), the dynamics of
Calvin’s cycle, and especially through RubisCo is not considered as a limiting factor. The pigment
change as an acclimation mechanism to a varying light is also not represented. However, it has
been shown that for fast varying light signal, cells acclimate to average irradiance [34], which is
kept constant along our study.

3.2.5 Exact asymptotic solution of the Han model
For any initial condition of the Han model states (A and C), we prove in Lemma 3.2 that, for

a periodic signal of light I, the solution of (3.7) converges to the unique periodic solution. This
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property is used to focus on the asymptotic periodic solution for the two models. We define the
asymptotic exact T -averaged growth rate µ̄T by

µ̄T(y) =
1

T

∫ T

0

µ(y, t)dt, (3.14)

where µ is defined in (3.3) and A is considered as the periodic solution of (3.1). Using the definition
of M in (3.8), let us denote MH(y) = M(IH(y)), NH(y) = NH(IH(y)), ML(y) = M(IL(y)),
NL(y) = N(IL(y)).

Lemma 3.1

The system (3.7) under the periodic high/low light regime admits a unique periodic solution
(Ap, Cp).

The computations of this periodic solution are given in Appendix A.1.3.

Lemma 3.2

All solutions of (3.7) under the periodic high/low light regime converge to the periodic solution.

Proof. Let (A,C)T a solution of (3.7) under high/low light regime and (Ap, Cp)
T the periodic

solution of (3.7). Then ξ := (A,C)T − (Ap, Cp)
T is a solution of the impulsive differential equation{

ξ̇(t) = −M(t)ξ(t), for t ̸= tk,
ξ(t+k ) = ξ(tk),

where

t0 = 0,

tk =

{
tk−1 + ηT, if k is odd,
tk−1 + (1− η)T, if k is even,

is the sequence of discontinuities of the light function in the high/low regime and M is defined in
(3.8). Let us denote by ΛH ,ΛL the largest eigenvalues of the matrices MH and ML respectively.
Note that t2k = kT . Our goal is to prove that for every k ∈ N we have

∥ξ(t)∥ ≤ e−kΛηT ∥ξ(0)∥ , ∀t ∈ [t2k, t2(k+1)], (3.15)

where Λη = ηΛH + (1 − η)ΛL. Since the matrix is constant in the intervals (tk, tk+1) for every k,
we have that

ξ(t) =

{
e−tMH ξ(0), if t ∈ [t0, t1),
e−tMLe−ηTMH ξ(0), if t ∈ [t1, t2].

This implies that

∥ξ(t)∥ =

{
∥e−tMH∥∥ξ(0)∥, if t ∈ [t0, t1),
∥e−tMLe−ηTMH∥∥ξ(0)∥, if t ∈ [t1, t2],
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and ∥ξ(t)∥ ≤ ∥ξ(0)∥ for t ∈ [t0, t2]. Now, suppose that (3.15) holds for k, let us prove that this also
holds for k + 1. Let t ∈ [t2(k+1), t2(k+2)], then

ξ(t) =

{
e−tMH ξ(t2(k+1)) if t ∈ [t2(k+1), t2(k+1)+1),
e−tMLe−ηTMH ξ(t2(k+1)) if t ∈ [t2(k+1)+1, t2(k+2)].

As ξ(t2(k+1)) = e−(1−η)TMLe−ηTMH ξ(t2k), and ∥ξ(t2k)∥ ≤ e−kΛηT ∥ξ(0)∥, then

∥ξ(t2(k+1))∥ = ∥e−(1−η)TMLe−ηTMH ξ(t2k)∥
≤ e−TΛη∥ξ(t2k)∥
≤ e−(k+1)TΛη∥ξ(0)∥,

and we can conclude that

∥ξ(t)∥ =

{
∥e−tMH∥e−(k+1)TΛη∥ξ(0)∥ if t ∈ [t2(k+1), t2(k+1)+1),
∥e−tMLe−ηTMHe−(k+1)TΛη∥ξ(0)∥ if t ∈ [t2(k+1)+1, t2(k+2)).

≤ e−(k+1)TΛη∥ξ(0)∥.

Finally, as (3.15) holds, taking k → ∞ we conclude that ∥ξ(t)∥ → 0 as t→ ∞.

Solving (3.7) in periodic case and using the definition of the growth rate (3.3), it is possible to
analytically compute the exact T-average growth rate in the high/low-flashing light as

µ̄T(y) = ηµS(IH(y)) + (1− η)µS(IL(y))−
Kσ

T
δ(y, T ), (3.16)

where the function µS is defined in (3.4), δ is the first component of the vector

∆ =

[
IH(y)M−1

H (y)
(
Id−e−ηTMH(y)

)(
Id−e−(1−η)TML(y)e−ηTMH(y)

)−1 (
Id−e−(1−η)TML(y

)
−IL(y)M−1

L (y)
(
Id−e−(1−η)TML(y

)(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1 (
Id−e−ηTMH(y)

)]
·
(
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
,

(3.17)

with Id the identity matrix in R2×2. The details of the computations are given in A.1.4.

3.3 Study of Case I: Slowly varying irradiance

In this section, we present an analysis based on the growth rate calculated using the large-T
model. We show in particular that the average growth rate can be greater than the values of the
PI-curve derived from the Han model. We give the conditions to get an enhanced average growth
rate based on the local convexity of the function µS .
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3.3.1 Average growth rate and analysis
In large-T model, the growth rate can be derived from (3.3) as

µ = KσIA = (1− C)γ(I), (3.18)

with γ(I) = KσI
1+τσI and C the periodic solution of (3.10). For a given local optical depth y, the

T-average growth rate for the high/low light regime can be computed explicitly by

µ̄T(y) =
1

T

∫ T

0

µ(y, t)dt = ηµS(IH(y)) + (1− η)µS(IL(y)) +
ζ1(y, η, T )ζ2(y)

Tkr
, (3.19)

with

ζ1(y, η, T ) =

(
1− e−(αL(y)+kr)T (1−η)) (1− e−(αH(y)+kr)Tη

)
1− e−(αL(y)+kr)T (1−η)−(αH(y)+kr)Tη)

,

ζ2(y) =
( αH(y)

αH(y) + kr
− αL(y)

αL(y) + kr

)(
µS(IH(y))− µS(IL(y))

)
,

where α is defined in (3.11) and we extend the notation as αH(y) := α(IH(y)) and αL(y) :=
α(IL(y)). The details of the computations are presented in A.1.1. Let us denote by µηS(y) the
convex combination in (3.19):

µηS(y) := ηµS(IH(y)) + (1− η)µS(IL(y)). (3.20)

When T is large enough, we can approximate the T-average growth rate by (3.20). Indeed, it is
straightforward to see that 0 ≤ ζ1(y, η, T ) ≤ 1 and 0 ≤ α(I)

α(I)+kr
≤ 1, therefore, one has

∣∣µ̄T(y)− µηS(y)
∣∣ = ∣∣∣∣ζ1(y, η, T )ζ2(y)Tkr

∣∣∣∣ ≤ |µS(IH(y))− µS(IL(y))|
Tkr

≤ µmax

Tkr
,

where the last inequality is obtained by taking the maximum growth rate of the Han model given
by (3.5). This leads to the following result.

Theorem 3.1

For a large enough period T, for every local optical depth y ≥ 0 we have

lim
T→+∞

µ̄T(y) = µηS(y).

Furthermore, the convergence is uniformly in y and
∣∣µ̄T(y)− µηS(y)

∣∣ = O(1/T ).

3.3.2 Enhancement of the growth rate
Growth rate in high/low light regime can be enhanced or reduced compared to that of the

constant light regime. More precisely, this relies on the local convexity of the function µS with
respect to the irradiance I. Depending on the value of I, this can be either convex or concave. The
next lemma clarifies the critical value of the irradiance.
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Lemma 3.3

There exists an irradiance Ic, for which µS is a strictly convex function in (Ic,+∞) and strictly
concave in (0, Ic). This value only depends on the parameters (kd, kr, τ, σ), i.e.,

Ic =


2

σ
√

kd
kr
τ
cos

(
1
3 arccos

(
√
τ

2
√

kd
kr

))
if τ ≤ 4kdkr ,

2

σ
√

kd
kr
τ
cosh

(
1
3 arccosh

(
√
τ

2
√

kd
kr

))
if τ > 4kdkr .

(3.21)

The proof is given in A.2. This lemma enables us to state the next theorem, which is our main
result. In this theorem, we provide conditions to enhance the growth rate, meaning that the average
growth rate calculated in (3.19) is greater than the growth rate obtained for the continuous light
regime Iη. Also, Figure 3.5a illustrates in the curve µS the value of Ic positioned on the right of
Iopt.

Theorem 3.2

Let Ic defined by (3.21). For every couple (Imax, Imin), such that Imax > Imin > Ic, there
exists T > 0 and η ∈ (0, 1) such that

µ̄T(0) ≥ µS(Iη), (3.22)

where Iη = ηImax + (1− η)Imin.

Proof. Setting y = 0 in (3.19) gives

µ̄T(0) = ηµS(Imax) + (1− η)µS(Imin) +
ζ1(0, η, T )ζ2(0)

Tkr
.

Recall that

ζ2(0) =
( αH(0)

αH(0) + kr
− αL(0)

αL(0) + kr

)(
µS(IH(0))− µS(IL(0))

)
,

=
( α(Imax)

α(Imax) + kr
− α(Imin)

α(Imin) + kr

)(
µS(Imax)− µS(Imin)

)
.

In (Ic,+∞) the function µS is decreasing, then µS(Imax) − µS(Imin) < 0. Moreover, the function
I 7→ α(I)

α(I)+kr
is increasing, hence ζ2(0) < 0. On the other hand, one has 0 ≤ ζ1(0, η, T ) ≤ 1 and

0 ≤ α(I)
α(I)+kr

≤ 1 for I ≥ 0. All together implies that

µ̄T(0) ≥ ηµS(Imax) + (1− η)µS(Imin) +
1

Tkr
(µS(Imax)− µS(Imin)) . (3.23)
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To conclude, we have to find T such that the right-hand side of (3.23) is greater than µS(Iη) which
is equivalent to the condition

1

Tkr
≤ µS(Iη)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)
. (3.24)

Since µS(I) is convex and decreasing on interval (Ic,+∞), the right-hand side of (3.24) is always
positive. Therefore, a couple (T, η) verifying condition (3.24) will ensure the inequality (3.22). This
concludes the proof.

For Imax, Imin ∈ (Ic,+∞) and y = 0 (i.e., at the surface), one can find a period T and a duty cycle
η such that the T-average growth rate under the high/low light regime is greater than the constant
average light regime. Based on the condition (3.24), if η is near to 0 or 1 we need larger T , since
the right-hand side of the inequality approaches to zero in this case. This improvement can also be
valid for other choices of light (see Figure 3.5).

On the other hand, one can see that a condition between T and η is needed to give an interpre-
tation of this improvement in the growth rate. Assume that the condition (3.24) holds for some T
and η. Since µS(Iη) ≥ µS(Imax), then one has

1

Tkr
≤ µS(Iη)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)

≤ µS(Imax)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)

= 1− η,

or, in other words, (1 − η)T ≥ 1
kr

. The time needed for recovering a damaged reaction center is
1
kr

and, (1 − η)T represents the time that the system is exposed under the low light. Therefore,
by considering the exposed time under the low light which is larger than recovering time 1

kr
, the

average growth rate at the surface can be enhanced in the high/low light regime. Assuming T large
enough, we have the approximation

µ̄T(y) ≈ µηS(y). (3.25)

Then we can state the next theorem which will provide the optimal duty cycle η for enhancing the
growth rate.

Theorem 3.3

For large T, choosing Imax > Imin > Ic, at the top of the bioreactor, there exists η ∈ (0, 1)
which maximize the difference between the average growth rate in the high/low-flashing light
regime, leading to a T-average growth rate larger than the one in continuous light regime.

Proof. Setting y = 0. In the limit case of the large-T model, we approximate the average growth
rate with (3.25). The optimum ηopt is defined as

ηopt := argmax
η∈(0,1)

ηµS(Imax) + (1− η)µS(Imin)− µS(Iη),
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which solution is such that

d

dI
µS(Iηopt) =

µS(Imax)− µS(Imin)

Imax − Imin
, (3.26)

and the existence is ensured by the mean value theorem.

This optimal η is actually the one which is capable of achieving the maximal difference between
µ̄T(0) and µS(Iη). Moreover, (3.26) can be rewritten as

0 =

[
1 + τσIηopt

+
kd
kr
τ(σIηopt)

2

]2
µS(Imax)− µS(Imin)

Kσ(Imax − Imin)
+
kd
kr
τ(σIηopt)

2 − 1.

3.4 Study of Case II: fast varying light
In this section, we present the value of the T -average growth rate using the Small-T model,

meaning that T < τ . Recall that τ is the time during which one photon is processed in the
PSU, thus T is in the order of milliseconds. We prove that the average growth rate, in the limit,
corresponds to µS(Iη), then we provide an analysis in the flashing light regime, and we define the
optimal local optical depth in this case.

3.4.1 Average growth rate
Recall that, by definition (3.14), the T-average growth rate can be computed by

µ̄T =
1

T

∫ T

0

KσIAdt = KσIA.

Then µ̄T is computed by

µ̄T(y) =
KσkrIM (y)

(
1 + ξ1(y)ξ2(y, T )

)
kr + krτσIM (y) + kdτ

(
σIM (y)

)2
+ kdσIM (y)ξ1(y)ξ2(y, T )

, (3.27)

where

ξ1(y) =
σ
(
IH(y)− IL(y)

)2
η(1− η)

τβH(y)βL(y)
,

ξ2(y, T ) =
(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )

ηβH(y) + (1− η)βL(y)

η(1− η)βH(y)βL(y)
− 1,

βH(y) := β(IH(y)) and βL(y) := β(IL(y)). The details of the computation are given in A.1.2. Since

lim
T→0

(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )
=
η(1− η)βH(y)βL(y)

βH(y) + βL(y)
,

one has limT→0 ξ2(y, T ) = 0. This leads to the following result.
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Theorem 3.4

For rapid light alternation, one has for every local optical depth y > 0 limT→0 µ̄
T(y) =

µS(IM (y)).

In the limit, when T → 0, the growth rate of the high/low-flashing light is the same as the growth
rate at steady state of A (full light integration) by considering the irradiance Iη. In this case,
the algae perceives the average irradiance for growing and there is no possible gain in growth rate
compared to continuous light.

3.4.2 Small-T flashing light

Flashing light corresponds to the particular case of the high/low-flashing light when Imin = 0.
Based on our previous analysis, we present the local optical depth at which the algae culture
perceives the optimal irradiance for growing.

Assume that the approximation µ̄T(y) ≈ µS(Iη(y)) holds. By Theorem 3.4, the light perceived
by the algae at local optical depth y is Iη(y) = ηImaxe

−y. In this case, we can give an explicit
expression for the local optical depth at which the algae culture perceives the optimal light, and
consequently, the depth where the optimal light is perceived. This expression depends on the duty
cycle η which, in practice, can be settled and then, we can select the local optical depth in a certain
range of values. We define the optimal local optical depth as the local optical depth in which the
average growth rate achieves the maximum of the growth rate.

Lemma 3.4

Considering flashing light, let Imax the maximum irradiance provided at the top of the biore-
actor, η the duty cycle and σ, kd, kr, τ the parameters of the Han model. The optimal local
optical depth is given by

yopt = ln

(
Imaxσ

√
kd
kr
τη

)
(3.28)

Proof. The growth rate, considering flashing light and the limit case of the small-T model correspond
to

µ̄T(y) = µS(ηImaxe
−y) = µS(Imaxe

−(y−ln(η))).

Matching the value of the optimal light of the function µS given by (3.6) and the growth rate
calculated above, we obtain the equality

Imaxe
−(yopt−ln η) =

1

σ
√

kd
kr
τ
,

and isolating yopt we get the value (3.28).
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As η tends to zero, yopt can take negative values. Negative values are meaningless, the algae
culture does not perceive the optimal light in this case and all the culture is under the photo-
limited condition. Hence, the choice of the duty cycle η impacts productivity. For including the
optimal light into the culture, we have to consider the inequality

η ≥ 1

Imaxσ
√

kd
kr
τ
.

Using the definition of Iopt, this is equivalent to the condition:

η ≥ Iopt
Imax

.

In conclusion, for every value of η in the range of [Iopt/Imax, 1) the optimal light is perceived in the
culture. By setting η = Iopt/Imax, the optimal light is then perceived at the top of the culture.

Considering y = aXz where, X is the concentration of the culture, z is the depth and a is
the light attenuation constant. Then, the depth at which the culture perceives the optimal light
intensity is given by

zopt =
1

aX
ln

(
Imaxσ

√
kd
kr
τη

)
.

So, as the concentration increase through time, zopt decrease. One way to counteract this effect is
to increase the value of the duty cycle η.

3.5 Study of Case III: the intermediate case
We analyzed the large and the small-T model, then gave the limit of the T-averaged growth rate

in Theorem 3.1 and Theorem 3.4 when T → +∞ and T → 0 respectively. Meanwhile, we evaluated
the T-average growth rate without considering the simplified models given in (3.16) named as the
asymptotic exact growth rate. In this section, we show that the limits of (3.16) are the same as the
results in Theorem 3.1 and Theorem 3.4.

Proposition 3.1

The exact average growth rate (3.16) converges to µηS as T → +∞ and it also converges to
µS(IM ) when T → 0.

Proof. Let us first prove that if T → +∞, then µ̄T given by (3.16) converges to µηS . The eigenvalues
of the matrices MH and ML are positive (see Appendix A.1.5) and then, the exponential matrices

e−ηTMH(y) and e−(1−η)TML(y)

converge to the zero matrix as T → +∞ for every local optical depth y. Thus,

lim
T→+∞

∆ =
[
IH(y)M−1

H (y)− IL(y)M
−1
L (y)

] (
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
,
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where ∆ is defined in (3.17). From the exact growth rate given by (3.16), we can also conclude that

lim
T→+∞

µ̄T(y) = ηµs(IH(y)) + (1− η)µS(IL(y)) = µηS(y),

which is the result of Theorem 3.1. Now, for the other case, we have that

lim
T→0

∆

T
= η(1− η)M−1

η (y)(IH(y)ML(y)− ILMH(y))[(M−1
H (y)NH(y)−M−1

L (y)NL(y)],

where Mη(y) = ηMH(y) + (1− η)ML(y). We can manipulate this term and get that

lim
T→0

∆

T
=M−1

η

[
−IηNη + ηIHMηM

−1
H NH + (1− η)ILMηM

−1
L NL

]
(y)

= −Iη(y)M−1
η (y)Nη(y) + ηIH(y)M−1

H (y)NH(y) + (1− η)IL(y)M
−1
L (y)NL(y).

Replacing this limit in (3.16), we conclude that

lim
T→0

µ̄T(y) = µS(Iη(y)).

This corroborates the behavior of the mean of the growth rate in the large-T and small-T models.
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3.6 Illustration with simulation studies

3.6.1 Parameter settings
The Han model parameters in literature are different depending on the authors and the studied

species. Here we consider the values taken from three studies [61, 82] and present in Table 3.1.

Parameter Symbol [61] [82] Unit
Recovery

rate kr 6.8 · 10−3 4.8 · 10−4 s−1

Damage
rate kd 2.99 · 10−4 2.99 · 10−4 -

Turnover
time τ 0.25 6.8493 s

Effective
cross-section σ 0.047 0.0029 m2 µmol−1

Growth rate
coefficient K 8.7 · 10−6 3.6467 · 10−4 -

Optimal
light Iopt 202.93 166.94 µmolm−2s−1

Critical
light Ic 414.29 356.24 µmolm−2s−1

Table 3.1: Parameter values for Han Model.

In this section, we provide some numerical tests to illustrate the two approximations and the
exact solution of the Han system.

3.6.2 Quality of the approximated solution
First, we illustrate the difference between the two approximations and the exact solution. In

Figure 3.3 the solution of A and C is plotted for T = 0.5 s and T = 3600 s. For the small-T model,
0.5 s is considered. The large-T model is then a non-accurate approximation. As for T = 3600 s
we need to drop the assumption of C constant. In this case, the small-T model is far from the
real solution. We observe that A and C change between two values, these values correspond to the
steady states considering Imax and Imin.

As expected, one can see that (3.12) provides a good approximation for small period (in this
case for T = 0.5 s) and (3.10) provides a good approximation for large period (T = 3600 s). On the
other hand, the quality of the approximation depends on the time period T .

3.6.3 Connection between Case I and Case II
Here we study the connection of the average growth rate between the one obtained from the

large-T model (3.10), the small-T model (3.12) and the exact model (3.7). More precisely, we
compute the T-average growth rate at the surface µ̄T(0) by varying the period T from T = 0.01 s to
T = 36 000 s, and the results are shown in Figure 3.4a. As T → 0 the average growth rate converges
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(a) T = 0.5s (b) T = 3600s

Figure 3.3: Comparison of the two modelling approximations with the exact solution of the states
of the Han model. The state A and C of the exact solutions (3.7) (continuous yellow line), of the
small-T model (3.12) (segmented blue line) and of the large-T model (3.10) (segmented red line) are
provided for Imax = 2000µmolm−2 s−1, Imin = 300µmolm−2 s−1, η = 0.4, y = 0 and four different
values of T .

to the value µS(Iη(0), whereas µ̄T → µη(0) when T → +∞. Moreover, the inequality (3.22) holds
for T >= 174 s as shown in Figure 3.4a, which is not the case in Figure 3.4b. Note that the time
needed to process a photon (τ) and the time needed to recover a reaction center (1/kr) are also
given in Figure 3.4.

Small Period For T ∈ (0, τ ] Small-T model gives a good approximation. As the light change in
a timescale lower than the time of processing photons, in this case, the algae perceives the
average of the light (i.e, Iη at the top).

Transition Period For T ∈ (τ, 1
kr
) the small period started to fail, and consider the large-T model

is more accurate.

Large Period For T ∈ [ 1
kr
,∞) Large-T model fits. If a high light is combined with a low light,

then some damaged reaction centers can be recovered, and we can get an improvement of the
T-average growth rate compared to the continuous light regime.

3.6.4 Improvement of the growth rate

As shown in Theorem 3.2, there exists an improvement in the growth rate when the irradiance
IH and IL are greater than the value of Ic as the case presented in Figure 3.5a. Unfortunately, the
irradiance decreases when the local optical depth increases breaking the condition IH , IL ≥ Ic, and
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(a) Imax = 2000µmolm−2s−1 and Imin = 10µmolm−2s−1.

(b) Imax = 2000µmolm−2s−1 and Imin = 10µmolm−2s−1.

Figure 3.4: The exact average growth rate (3.16) (continuous yellow line), the average growth
rate of the large-T model (3.19) (segmented red line) and the average growth rate of the small-T
model (3.27) (segmented blue line). The period T is plotted in log scale. In this case η = 0.5

then, the improvement is no longer perceived. In Figure 3.5d, the T-average growth rate (black
curve) is plotted as a function of the local optical depth, and it has greater values than the PI-curve
of the Han model (blue curve). This means that the improvement perceived at the surface are
still true when going deeper in the culture, but for larger values of y the T-average growth rate is
smaller than the blue curve. Roughly speaking, this improvement is perceived in the section of the
bioreactor receiving strong irradiance that inhibits photosynthesis.

It is possible to relax the condition Imax > Imin > Ic in Theorem 3.2. For example, let us fix
Imax > Ic and Imin < Ic as is shown in Figure 3.5b, for the two different values of the duty cycle η1
and η2, the average growth rate is denoted µη1S and µη2S respectively. In this case, the average growth
rate considering the duty cycle η2 is greater than the growth rate in continuous light with the same
average light µS(Iη2), but for the duty cycle η1 the growth rate is lower than with the continuous

52



light. If we consider, for example, the parameters of [61] where Ic = 202.93 (µmolm−2s−1) (see
Table 3.1), Imax = 2000 (µmolm−2s−1), Imin = 100 (µmolm−2s−1). For η1 the growth rate
in continuous light regime is 13.7% larger than the average growth rate, and, for η2 it is 12.5%
smaller.

On the other hand, some selections for Imin can only give lower values of the T-average growth
rate comparing with the PI-curve as we can see in Figure 3.5c. In this case, every selection of η
provides a T -average growth rate lower than the PI-curve.

Figure 3.6 summarizes the behavior of the two models representing the simplifications of Case
I and Case II. The exact growth rate is plotted in the form of a polygon. We can see that, for
greater values of T , the exact growth rate coincides with the T-averaged growth rate of the large-T
model. In this case, the hypotheses of Theorem 3.2 are satisfied. The red polygon corresponds to
the surface of the bioreactor (y = 0) where the curve of the T-average growth rate of the large-T
model is greater to the T-average growth rate of the small-T model due to Theorem 3.2. Note that
in the small-T model, the average growth rate matches µS(Iη), which corresponds to the continuous
light regime with the same average irradiance. As y becomes larger, the growth rate for Case I is
lower than for the constant light regime, as shown in the green and blue polygon.

3.7 Conclusion and perspectives
We analyze the T-averaged growth rate in the high/low flashing light configuration in two

simplified cases: for large period T and small period T . In the small-T model, we can simply
approximate the T-average growth rate by considering µS(ηIH+(1−η)IL), and for the large period
T , we can approximate the T-average growth rate by considering ηµS(IH)+(1−η)µS(IL). In terms
of growth rate, there is no distinction between the constant regime with light Iη and switching the
light quickly between IH and IL in the time ηT and (1− η)T respectively. In contrast, in the large-
T model, we can improve the growth rate if we consider a low local optical depth. In this case,
combining a high inhibiting irradiance and a lower irradiance with a period greater than 1/kr (in
the range of hours) in average, the growth rate will be higher than the one considering continuous
light regime with the same average irradiance. Although, for higher local optical depth, the growth
rate is lower than the constant light regime.

Most of our computations are still valid if the acclimation is modelled as a variation of the cross-
section σ as a fixed parameter, for example, in the model of [105], σ is a function of the chlorophyll
content, consequently, the value of A varies depending on the light at which the microalgae is
acclimated. Then, in order to adapt our calculations, the parameter σ must change and be fixed
in advance. Finally, two different light regimes can be compared changing the value of σ. On the
other hand, microalgae are subjected to stochastic changes in the light regime that they perceive
due to the mixing of the bioreactor. Although, we do not consider mixing in the computations,
our calculations could be extended if a simplification of the hydrodynamic is considered. For
example, a continuously illuminated bioreactor could be divided in two sections: a thin layer close
to the illuminated surface and another layer photolimited. Both layers would be associated with a
characteristic light intensity, then, assuming we know the fraction of time that the algae spend in
each layer, the computations of the average growth rate can be used. This approach was already
considered with a similar model in [154], but considering that the irradiance in the photolimited
layer is zero.
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(a) Imax and Imin are greater than Ic. In this
configuration, for each η ∈ (0.1) we can find T
for which µS(Iη) > µS(Iη).

(b) When Imin < Ic, we can still improve the
average growth rate for some values of η. In this
case, µη1

S > µS(Iη2) and µη2
S < µS(Iη1) for η1.

(c) For some configurations, it is impossible to
find a fraction η and a period T for which µη

S >
µS(Iη).

(d) The green area represents all the possible
values for µη

S if we vary the local optical depth
and η for a given Imax and Imin. The black line
correspond to the values of µη

S for a fixed value
of η.

Figure 3.5: Illustration of Theorem 3.2, where approximation µ̄TS ≈ µηS holds for different combina-
tions of Imax, Imin and η.
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Figure 3.6: Average growth rate as a function of period T and optical depth y. Case II for small-T
model (blue curve) and in the Case I for large-T model (red curve). The continuous line correspond
to the approximation that fits the values of T . In this case, Imax = 2000µmolm−2 s−1, Imin =
500µmolm−2 s−1, η = 0.5.
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Chapter 4

Should hydrodynamics be taken into
account when calculating the growth
rate of microalgae in a
photobioreactor?

4.1 Introduction

In a photobioreactor, the zones near the light source, experience intense illumination, while
the area in the deepest layers are in the dark. In addition, the photobioreactor is intensively
mixed to avoid biomass sedimentation or spatial heterogeneity of the nutrients. It results that cells
are advected through a light gradient, so that they perceive a succession of high and low light
intensities. Photon harvesting is a dynamical process in microalgae, and the average growth rate
within a photobioreactor results from this complex interplay between photosystem dynamics and
hydrodynamics [19]. Accounting for such a complex interaction is a challenging problem, which
needs to represent accurately both the hydrodynamics within the reactor and the dynamics of
photon harvesting in response to light variations.

When a cell is advected in a photobioreactor, it perceives a continuous light signal over time.
Using the Han model [67, 66], we will study the influence of this fluctuating signal on the growth
rate. Taking into account the typical timescale of light variations, we will simplify the Han model
considering a slow-fast approximation. Then, we will compare the outcome of this simplified Han
model, with the predictions of the model at steady state. Our calculations will first be applied to
simple periodic light signals and then to realistic light patterns derived from computational fluid
dynamics simulations in a specific photobioreactors (raceway system) where mixing is carried out
by a paddle wheel.

This chapter is organized as follows: in Section 4.2 we present the basis of the Han model.
We define two strategies for computing the growth rate. Accounting for the dynamics of the
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photosystem, we use µA and assuming a static response, we use µS . We write an explicit relation
between the two functions, and we present one of the main results of this chapter in Theorem 4.1,
which establishes the relationship between the time average of the dynamic growth rate (µA) and
the static growth rate (µS). In Section 4.3.2, we study continuous periodic light signals, and show
that every solution of the Han model converges to the unique periodic solution. In Proposition 4.3
and in Theorem 4.2 we give the exact average growth rate for any continuous periodic light signal,
and we present two cases, to simulate the mixing in a photobioreactor. Finally, in Section 4.2.2
we analyze the case of the raceway pond, where we use a CFD model to simulate particles in the
photobioreactor, tracking the light perceived by each individual microalgae. We compare the two
growth rate functions, and we refine the average growth rate computation to take into account the
spatial component. We demonstrate a close relation between the hydrodynamics and the average
growth rate in Proposition 4.2.

4.2 Biological and hydrodynamic model

4.2.1 Biological model

We consider the mechanistic model of Han [66] which characterizes the photoinhibition induced
by the photodamage of the photosystem II (PSII). There are three possible states for the PSII: open
or reactive state A, closed or activated state B, and inhibited or damaged state C. The dynamics
of PSII can be described by the differential equations:

dA

dt
= −IσPA+

B

τ
,

dB

dt
= IσPA− B

τ
+ krC − kdσP IB,

dC

dt
= −krC + kdσP IB,

(4.1)

where σP (m2µmol−1) is the effective cross-section of the PSII, I (µmolm−2s−1) is the light intensity
perceived by the microalgae starting from 0, τ (s) is the minimal time required for an electron to
transfer from water on the donor side of the photosynthetic unit to the terminal electron acceptors,
which is also called the turnover time, kd (−) is the damage rate and kr (s−1) is the recovery rate
of the PSII. A,B and C represents a probability distribution of each state such that we have

A+B + C = 1. (4.2)

The algal growth rate is assumed to be proportional to the open state A and the light intensity I.
More precisely, the growth rate given by the kinetic model corresponds to

µA(I,A) := ασP IA, (4.3)

where α (−) is a constant of proportionality. At steady state, the state A of the system (4.1) tends
towards AS [19]. It corresponds exactly to a Haldane model where growth rate is a function of light,
that is

µS(I) = ασP IAS = ασP I
1

1 + τσP I +
kd
kr
τ(σP I)2

. (4.4)
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The maximum of µS is given by
µmax =

α

τ + 2
√

kd
kr
τ
,

and it is reached when the light value is

Iopt =
1

σP

√
kd
kr
τ
. (4.5)

The growth rate results from the dynamics of (4.1). As shown in [53], taking into account
relationship (4.2) and substituting it into system (4.1), we end up with two equations

dA

dt
= −

(
σP I +

1

τ

)
A− 1

τ
C +

1

τ
,

dC

dt
= ε

[
−σP IA−

(
σP I +

kr
kd

)
C + σP I

]
,

(4.6)

which has slow/fast timescales due to the presence of the factor ε = kd. In this case, we can consider
the slow manifold proposed in [78]

A =
1− C

1 + τσP I
, (4.7)

and reduce the system (4.6) to a single equation for C given by

dC

dt
= −(γ(I) + kr)C + γ(I), (4.8)

with γ(I) := kdτ(σP I)
2

1+τσP I
. In particular, the steady state of C is given by

CS :=
γ(I)

γ(I) + kr
=

kd
kr
τ(σP I)

2

1 + τσP I +
kd
kr
τ(σP I)2

.

Consequently, the steady state of A can be obtained by substituting CS into (4.7). Let us consider
0 ≤ Imin ≤ Imax. We present an estimation of the actual growth rate µA for a continuous bounded
light signal I : [0,+∞) → [Imin, Imax] as a function of the static growth rate µS . For simplicity
of notation, we write in the following µA(t) instead of µA(I(t), A(C(t), I(t))) and µS(t) instead of
µS(I(t)). We show next that the initial condition A(0) can be ignored, and also we present an
estimation of µS .

Proposition 4.1

Let I : [0,+∞) → [Imin, Imax] be a continuous bounded light signal. Assuming that A(0) = 0,
the actual growth rate µA can be written as

µA(t) = µS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+krdwds. (4.9)

And for any initial condition A(0) = A0 the associated growth rate converge to (4.9). Fur-
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thermore, the following estimations hold

µS(t)
γ(I(t)) + kr
γ(Imax) + kr

(
1− e−(γ(Imax)+kr)t

)
≤ µA(t) ≤ µS(t)

γ(I(t)) + kr
γ(Imin) + kr

. (4.10)

Proof. The general solution of (4.8) is given by

C(t) = C(0)e−
∫ t
0
γ(I(w))+krdw +

∫ t

0

γ(I(s))e−
∫ t
s
γ(I(w))+krdwds. (4.11)

Using then (4.7), A can be written as

A(A(0), t) =A(0)
1 + τσP I(0)

1 + τσP I(t)
e−
∫ t
0
γ(I(w))+krdw

+AS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+krdwds.

(4.12)

If A(0) = 0, then

A(0; t) = AS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+krdwds, (4.13)

Note that if A(0) ̸= 0, for t large enough, the first term of the right-hand side of (4.12) goes to zero
as γ(I) + kr > 0. Equation (4.9) is deduced from the definition (4.3) and (4.4). The upper bound
in (4.10) follows from the fact that γ is an increasing function of I and∫ t

0

e−
∫ t
s
γ(I(w))+krdwds ≤

∫ t

0

e−
∫ t
s
γ(Imin)+krdwds

=
1− e−(γ(Imin)+kr)t

γ(Imin) + kr

≤ 1

γ(Imin) + kr
.

For a similar reason, the lower bound is given by∫ t

0

e−
∫ t
s
γ(I(w))+krdwds ≥

∫ t

0

e−
∫ t
s
γ(Imax)+krdwds =

1− e−(γ(Imax)+kr)t

γ(Imax) + kr
.

Substituing these two bounds into (4.13) and using again the definition (4.3) and (4.4), we obtain
the estimation (4.10). Finally, if A(0) = A0 ̸= 0, the associated solution is given by (4.12), and
then

|A(A(0); t)−A(0; t)| = |A(0)|1 + τσP I(0)

1 + τσP I(t)
e−
∫ t
0
γ(I(w))+krdw,

≤ |A(0)|1 + τσP Imax

1 + τσP Imin
e−
∫ t
0
γ(I(w))+krdw,

≤ |A(0)|1 + τσP Imax

1 + τσP Imin
e−krt.

(4.14)

The right hand part of the inequality converge to zero, then A(A(0); t) converges to A(0; t).
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As proposition 4.1 holds, in the following, we will assume that the initial condition of the state
A is zero. We define the temporal average dynamic growth rate by

µA :=
1

T

∫ T

0

µA(t)dt.

In the same way, the temporal average static growth rate is defined by

µS :=
1

T

∫ T

0

µS(t)dt.

4.2.2 Computational fluid dynamic model

The water flow in a raceway pond can be simulated with Computational fluid dynamics (CFD)
which integrate the Navier-Stokes equations. Several studies have simulated the velocity field in
open ponds with CFD [109, 118]. A Lagrangian approaches were also used for assessing the mixing
efficiency in the algae culture. For example, in [4], mixing length is computed as a result of different
paddle wheel velocities.

Here, we use a 2D triangular mesh representing a real raceway of the Environmental Biotech-
nology Laboratory of INRAE Narbonne, France [73] (See Figure 4.1). The third dimension is given
by the discretization of the free surface following the model in [5]

Figure 4.1: 2D Mesh of the simulated raceway pond.

4.2.3 Hydrodynamics and cell tracking

A layer-averaged Euler and Navier Stokes model for the numerical simulation of incompressible
free surface is presented in [5]. The multi-layered model correspond to a Galerkin type approxi-
mation. The system is solved using a fixed 2D mesh of the bottom of the raceway and the layers
are defined by the water depth, giving the third dimension of the system. The incompressible and
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hydrostatic Navier-Stokes system with free surface used corresponds to

∇U = 0,

∂u
∂t

+∇x,y(u ⊗ u) +
∂uw
∂z

=
1

ρ0
∇x,yσP +

µ

ρ0

∂2u
∂z2

+ Fx,z,

∂p

∂z
= −ρ0g + Fz,

(4.15)

where U = (u, v, w)T is the velocity of the liquid, u = (u, v)T is the horizontal velocity, σ is −pId+Σ,
where Σ = µ∇x,yu is the total stress tensor, p is the pressure, g is the gravity acceleration constant,
ρ0 is the fluid density and µ is the viscosity coefficient. The fluid is assumed to be Newtonian. The
paddle wheel is modelled by the force F [15] given by

F = F
(√

(x− xwheel)2 + (z − zwheel)2ω
)2cos(θ)

0
sin(θ)

 , (4.16)

where F is a constant, θ is the angle between the vertical axis and the blade and ω = θ̇, and xwheel,
zwheel are the coordinates of the paddle wheel in the x and z axis respectively. Note that the force
does not affect the y-axis which is parallel to the central axis of the paddle wheel. This technique
demonstrated its efficiency for minimizing the computational time [15].

Lagrangian’s trajectories of several particles are reconstructed from the Eulerian description
given by Equation (4.15) denoted by (Xn)

Npar

i=1 , where Npar is the number of simulated particles.
The position of each particle Xn(t) = (xn, yn, zn)

T is computed by solving the equation

dXn(t)

dt
= U(t),

Xn(0) = (xn0, yn0, zn0)
T ,

(4.17)

where (xn0, yn0, zn0) is the initial position of the particle. We denote by Ω the domain of the
raceway. We initiate the position of the particles randomly, following a uniform distribution in the
domain Ω.

The CFD model was already validated using a Pulsed Ultrasonic Doppler Velocimetry [73].
Other similar works based in the same pond [69, 104] have considered a growth model tracking the
position of Lagrangian trajectories base in the same model eqs. (4.15) to (4.17). Figure 4.2 show
the distribution of the velocity magnitude in the raceway pond simulated and the streamlines after
10 minutes of simulations. The paddle wheel is positioned just above the red surface. Some cells (in
white) are represented together with their respective streamlines. The trajectories of the cells are
mainly horizontal in the straight sections of the raceway pond. The fluid domain along the z-axis
is delimited by the free surface denoted by η(t, x, y), then the system (4.15) is completed with the
following boundary condition:

∂η

∂t
u · ∇x,yη = 0.

For more details of the hydrodynamic model, see [5].
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Figure 4.2: Representation of the raceway and the velocity field with some particles obtained from
the CFD simulations. The height correspond to 0.3(m) and it is scaled with a factor of 5 to have
a better visualization. The paddle wheel simulated in this image works at 20 RPM (rounds per
minute).

4.2.4 Light distribution within the raceway pond
We assume that the light arrives perpendicular to the ground surface. The light reaching a cell

Xn travels a distance equal to:
η(t, xn, yn)− zn,

from the surface to the position of the cell, then the light signal In that perceives this particle is
computed with the Beer-Lambert law as

In(t) = I0e
−ξ(η(t,xn,yn)−zn), (4.18)

where ξ > 0 is a positive constant. Figure 4.3 shows the tracking of a single cell within the raceway
pond. We distinguish two areas within the photobioreactor: the photoinhibited section in light
green, where the light perceived is greater than the optimal light Iopt defined in Equation (4.5),
and the photolimited section in dark green, where the light is lower than Iopt. Also, we show the
optimal depth zopt which correspond to the depth at which the algae perceive the light Iopt given
by

zopt =
1

ξ
ln

(
I0
Iopt

)
.

When the particle goes from the photolimited area to the photoinhibited area, crossing zopt, the
difference between µS and µA is more observable. This occurs when the particle moves faster in
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the z-axis than the photoinhibition mechanism. Here, the actual growth rate µA could reach larger
values than predicted with the approximation µS . Otherwise, if the cell does not go through this
section fast enough, then µS can accurately approximate µA as explained in Section 4.31.

Figure 4.3: Actual growth rate µA and static approximation µS for a simulated trajectory in the
raceway operated at 20 RPM with an initial height of water equal to 0.3(m). The maximum value
of the function µS is denoted by µmax and the depth at which this value is reached by zopt.

4.2.5 Growth rate in the raceway pond

To estimate the actual growth rate in the raceway pond, we average the growth rate of all
simulated particles moving within the photobioreactor, then the space-time average dynamic growth
rate is defined as

µA =
1

Npar

Npar∑
n=1

µA(In), (4.19)

in the same way, we define the space-time average static growth rate as

µS =
1

Npar

Npar∑
n=1

µS(In). (4.20)

In the Eulerian description, the static growth rate µS can be computed for every point in the
domain of the raceway Ω. At each point (x, y, z) ∈ Ω, the light is computed in the same way as in
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Equation (4.18), then it is possible to define the volume average growth rate:

µΩ =
1

V (Ω)

∫
Ω

µS(I(x, y, z))dxdydz,

where V (Ω) is the volume of the raceway and the light I is now given by:

I(x, y, z) = I0e
−ξ(η(t,x,y)−z).

4.3 Formal analysis of the average growth rate

We next show the relation between µA and µS .

Theorem 4.1

Let I be a bounded continuous light signal perceived by a single cell. Assuming that A(0) = 0,
then the temporal average dynamics growth rate µA can be written as a function of the
temporal average static growth rate µS via

µA = µS + µH +O(1/T ), (4.21)

where

µH :=
1

T

∫ T

0

dµS(t)

dt
ϕ(t)dt, (4.22)

with

ϕ(t) :=

∫ t

0

e−
∫ t
s
γ(I(w))+krdwds, (4.23)

and

O(1/T ) = −µS(T )
T

∫ T

0

e−
∫ T
s
γ(I(w))+krdwds,

which goes to zero when T → +∞.

Interpretation of Theorem 4.1: In a system mainly laminar, where cells stay at a constant
depth (or are slowly advected vertically), for which the dynamical component of the growth rate
µH is negligible, the average growth rate over a sufficiently long time period can be accurately
computed using the static approximation µS based on the Haldane model. In a system with high
velocities in the direction of the light gradient, this approximation must be refined.
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Proof. Using (4.9) and integration by parts, we find∫ T

0

µA(t)dt =

∫ T

0

µS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+krdwdsdt

=

∫ T

0

∫ T

s

µS(t)(γ(I(t)) + kr)e
−
∫ t
s
γ(I(w))+krdwdtds

= −
∫ T

0

∫ T

s

µS(t)
d

dt

(
e−
∫ t
s
γ(I(w))+krdw

)
dtds

=

∫ T

0

µS(s)− µS(T )e
−
∫ T
s
γ(I(w))+krdwds

+

∫ T

0

∫ T

s

d

dt
(µS(t))e

−
∫ t
s
γ(I(w))+krdwdtds.

Dividing by T we get (4.21). The integral

ϕ(T ) =

∫ T

0

e−
∫ T
s
γ(I(w))+krdwds,

can be upper bounded by

ϕ(T ) ≤
∫ T

0

e−(γ(Imin)+kr)(T−s)ds =
1− e−(γ(Imin)+kr)T

γ(Imin) + kr
, (4.24)

and can be lower bounded by

ϕ(T ) ≥
∫ T

0

e−(γ(Imax)+kr)(T−s)ds =
1− e−(γ(Imax)+kr)T

γ(Imax) + kr
. (4.25)

This reveals the fact that O(1/T ) → 0 as T → ∞.

Note that
|O(1/T )| ≤ µmax

T

1

γ(Imin) + kr
≤ µmax

T

1

kr
.

Then, for T ≫ 1/kr, we can approximate µA with

µA ≈ µS + µH ,

where µH is defined in (4.22). The quantity 1/kr corresponds to the time needed to go from the
state C to B in the Han model, and T ≫ 1/kr means that the period T must be large enough to
incorporate the effect of the recovery.

4.3.1 A bound for the dynamic growth rate in the photobioreactor
To complete the numerical simulation, we discuss how the hydrodynamics of the raceway pond

affects the actual growth rate µA in the following proposition.

66



Proposition 4.2

The space-time average dynamic growth rate can be bounded by the average velocity in the
z-axis vz as

µA ≤ µS +
αξσP I0
kr

1

Npar

Npar∑
n=1

1

T

∫ T

0

|vz(t,Xn)|dt+
µmax

Tkr
. (4.26)

Proof. For each particle Xn, with its respective light signal In, we have

|µA(In)| ≤
1

T

∫ T

0

∣∣∣∣dµS(In(t))dt

∣∣∣∣ϕ(In(t))dt,
=

1

T

∫ T

0

∣∣∣∣dµS(In(t))dIn

dIn(t)

dt

∣∣∣∣ϕ(In(t))dt.
The inequality in Equation (4.24) still holds here, then

|µA(In)| ≤
1

T

∫ T

0

∣∣∣∣dµS(In(t))dIn

dIn(t)

dt

∣∣∣∣ (1− e−(γ(In,min+kr)t)

γ(In,min) + kr
dt,

≤ 1

T (γ(In,min) + kr)

∫ T

0

∣∣∣∣dµS(In(t))dIn

dIn(t)

dt

∣∣∣∣ dt,
≤ 1

Tkr

∫ T

0

∣∣∣∣dµS(In(t))dIn

dIn(t)

dt

∣∣∣∣ dt,
where In,min is the minimum value of In in the interval [0, T ]. Note that from the Beer-Lambert
law, we have d

dtIn(t) = −ξInvz(t,Xn), with vz the velocity in the z-axis of the raceway pond. It
follows that

|µA(In)| ≤
ξ

Tkr

∫ T

0

∣∣∣∣dµS(In(t))dIn
In(t)vz(t,Xn)

∣∣∣∣ dt.
Note that maxI≥0

d
dIµS(I) = ασP , and In(t) ≤ I0, then

|µA(In)| ≤
αξσP I0
Tkr

∫ T

0

|vz(t,Xn)| dt.

Using Equation (4.21):

µA = µS +
1

Npar

Npar∑
n=1

µH(In)−
µS(In(t))

T
ϕ(In(t)),

≤ µS +
1

Npar

Npar∑
n=1

|µH(In)|+
µS(In(t))

T
ϕ(In(t)),

≤ µS +
1

Npar

Npar∑
n=1

αξσP I0
Tkr

∫ T

0

|vz(t,Xn)|dt+
µmax

Tkr
,

which proves the inequality (4.26).
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Interpretation of Proposition 4.2: We can ignore the term µmax/T in (4.26) as T is large
enough. Then, the difference between the average growth rate µA and µS cannot be bigger than

αξσP I0
kr

|vz|,

where

|vz| =
1

Npar

Npar∑
n=1

∫ T

0

|vz(t,Xn)|dt.

Here, |vz| is an indicator of how mixed is the photobioreactor in the z-axis. Where a non-mixed
photobioreactor will have |vz| = 0, showing no difference between µS and µA. Also, the value of
ξ plays an important role, where lower values of this parameter present less variations of the light
gradient inside the reactor.

4.3.2 Periodic light signals
When the light signal is periodic, we can be more accurate in the results. Let T now be the

period of the continuous light signal I perceived by the cell, we have the following result.

Proposition 4.3

Let I a continuous periodic function, i.e., I(t+ T ) = I(t) ∀t ∈ [0,+∞). Then, every solution
of (4.8) converges to a unique periodic solution.

Proof. The periodic solution Cp is obtained by imposing Cp(T ) = Cp(0) in (4.11), and we find

Cp(0) =

∫ T
0
γ(I(s))e−

∫ T
s
γ(I(w))+krdwds

1− e−
∫ T
0
γ(I(w))+krdw

.

Let C be a solution of (4.8) and ε = C − Cp, we have

ε̇ = −(γ(I) + kr)ε.

The solution is given by
ε(t) = ε(0)e−

∫ t
0
γ(I(s))dse−krt,

which can be bounded by
|ε(t)| ≤ |ε(0)|e−(γ(Imin)+kr)t.

Then ε goes to zero as t→ ∞.

Proposition 4.4: Dynamic growth rate for periodic signal

Let us consider a continuous periodic light signal I of period T , i.e., I(T ) = I(0). Then the
actual growth rate µA associated with the only periodic solution of Cp is given by:

µA(t) = µS(t)(γ(I(t)) + kr)

[
ϕ(t) +

ϕ(T )O(T )

1−O(T )

]
, (4.27)
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where ϕ is given by (4.23) and

O(T ) = e−
∫ T
0
γ(I(w))+krdw.

Proof. From (4.12), we have

µA(T ) = µS(T )(γ(I(t)) + kr)ϕ(T ) + µA(0)
I(T )

I(0)

1 + τσP I(0)

1 + τσP I(T )
e−
∫ T
0
γ(I(w))+krdw.

As the function I is periodic, then I(T ) = I(0), and as Cp(0) = Cp(T ), the growth rate is also
periodic, then imposing µA(T ) = µA(0), we can obtain its value as:

µA(T ) = µS(T )(γ(I(t)) + kr)ϕ(T ) + µA(T )e
−
∫ T
0
γ(I(w))+krdw,

and finally

µA(T ) = µS(T )
(γ(I(t)) + kr)ϕ(T )

1− e−
∫ T
0
γ(I(w))+krdw

.

In the same way we can compute the temporal average dynamic growth rate in the periodic
case.

Theorem 4.2: Average growth rate in the periodic case

Considering a periodic light signal I of period T . The temporal average dynamic growth rate
µA is given by:

µA = µS +
1

1−O(T )

[
µH +

O(T )

T

∫ T

0

ϕ(T )− ϕ(t)dt

]
. (4.28)

Interpretation of Theorem 4.2: this theorem clarifies the results of 4.1, and better char-
acterizes the dynamical component of the growth rate µH which must be added to the static
approximation µS when the velocities along the light gradient are marked.

Proof. The proof follows the same steps as in theorem 4.1 using the dynamic growth rate computed
in the periodic case (4.27).

Note that, when T is large enough, meaning that T ≫ 1/kr, O(T ) → 0, leading again to the
same approximation in the non-periodic case, i.e., µA ≈ µS + µH .
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Characterization of the dynamical component µH as a function of the
light regime

We have already seen that the average dynamic growth rate can be approximated by µS ≈
µS +µH , and we present two numerical examples where µH +O(1/T ) goes to zero as the period of
these periodical signals goes to +∞, which means that µS becomes an accurate approximation for
longer periods. In this section, we will estimate a lower and upper bound of µH to understand its
relation with the speed of the light signal I.

Proposition 4.5

Let I : [0, T ] → [0,+∞) be a light signal of class C1, such that Imin ≤ I(t) ≤ Imax ∀t ∈ [0, T ].
Let assume that all the stationary points of the function t 7→ µS(I(t)) are isolated. If {ti}mi=0

denotes the partition of [0, T ] where, t0 = 0, tm = T , and dµS(I(ti))
dt = 0, then

−µmax

T

|I−|
γ(Imax) + kr

≤ µH ≤ µmax

T

|I+|
γ(Imin) + kr

,

where |I+| and |I−| are the cardinality of the sets:

I+ :=

{
i :

dµS(I(t))

dt
> 0 ∀t ∈ (ti, ti+i)

}
,

I− :=

{
i :

dµS(I(t))

dt
< 0 ∀t ∈ (ti, ti+i)

}
.

Proof. According to this definition, µH can be decomposed into a positive part and a negative part
as

µH = µ+
H + µ−

H ,

where

µ+
H :=

1

T

∑
i∈I+

∫ ti+1

ti

dµS(t)

dt
ϕ(t)dt, (4.29)

µ−
H :=

1

T

∑
i∈I−

∫ ti+1

ti

dµS(t)

dt
ϕ(t)dt. (4.30)
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Now, we can give an upper bound for the positive part µ+
H using (4.24)

µ+
H =

1

T

∑
i∈I+

∫ ti+1

ti

dµS(t)

dt
ϕ(t)dt,

≤ 1

T

1

γ(Imin) + kr

∑
i∈I+

∫ ti+1

ti

dµS(t)

dt
dt,

=
1

T

1

γ(Imin) + kr

∑
i∈I+

µS(ti+1)− µS(ti).

In the same way, we can give a lower bound for the negative part using (4.25):

µ−
H =

1

T

∑
i∈I−

∫ ti+1

ti

dµS(t)

dt
ϕ(t)dt,

≥ 1

T

1

γ(Imax) + kr

∑
i∈I−

∫ ti+1

ti

dµS(t)

dt
dt,

=
1

T

1

γ(Imax) + kr

∑
i∈I−

µS(ti+1)− µS(ti).

Note that µ−
H ≤ µH ≤ µ+

H , due to the sign of each term. Then, using the lower bound of µ−
H and

the upper bound of µ+
H , we find:

1

T

∑
i∈I−

µS(ti+1)− µS(ti)

γ(Imax) + kr
≤ µH ≤ 1

T

∑
i∈I+

µS(ti+1)− µS(ti)

γ(Imin) + kr
.

Then, as µS(ti+1)− µS(ti) ≤ µmax, we have

− 1

T

∑
i∈I−

µmax

γ(Imax) + kr
≤ µH ≤ 1

T

∑
i∈I+

µmax

γ(Imin) + kr
.

Interpretation of Proposition 4.5. When a particle moves inside a photobioreactor that
is constantly mixed, it will not stay in the same position and, therefore, the amount of light it
perceives cannot be constant in any interval, so the function I cannot be constant in any interval,
so the function t→7→ µS(I(t)) will only have isolated stationary points. The value of µH is bounded
by the number of times that the derivative of µS(I(t)) changes sign. If I is a periodical function as
the ones analyzed in the Section 4.3.2, the two sums∑

i∈I+

µ(ti+1)− µ(ti), and
∑
i∈I−

µ(ti+1)− µ(ti),

are independent of T . If T → +∞, then µH converges to 0.
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A lower bound of µH

If we could choose the trajectory of a microalgae, we would like to choose the one that can
maximize the value of µH . So, the question is which type of signals provide a higher value of µH .
To give and insight of this, we give a lower bound for µ+

H :

µ+
H =

1

T

∑
i∈I+

∫ ti+1

ti

dµS(I(t))

dt

∫ t

0

e−
∫ t
s
γ(I(w))+krdwdsdt

µ+
H ≥ 1

T

∑
i∈I+

∫ ti+1

ti

dµS(I(t))

dt

∫ ti

0

e−
∫ ti+1
s γ(I(w))+krdwdsdt,

µ+
H ≥ 1

T

∑
i∈I+

∫ ti+1

ti

dµS(I(t))

dt

∫ ti

0

e−(γ(Imax))+kr)(ti+1−s)dsdt,

µ+
H ≥ 1

T

∑
i∈I+

δi
γ(Imax) + kr

(µS(I(ti+1))− µS(I(ti))),

(4.31)

where
δi = e−(γ(Imax)+kr)(ti+1−ti)(1− e−(γ(Imax)+kr)ti).

Increasing the value of µ+
H , increases the value of µA. To increase the value of µ+

H , we can look
at the value of δi(µS(I(ti+1))−µS(I(ti))). The value of δi is larger when the time interval (ti+1, ti)
is small. Then, each short interval where the value µS(I(ti)) moves to a higher value µS(I(ti+1))
helps to increase the value of µ+

H , and consequently, µA.

4.4 Numerical simulations

4.4.1 Two periodic examples
For the numerical test, we chose the parameter values of the Han model from [61] as shown in

Table 4.1. To illustrate the behavior of the dynamic growth rate, and specifically to compare it

Parameter Value Unit
kr 6.8 · 10−3 s−1

kd 2.99 · 10−4 -
τ 0.25 s

σP 0.047 m2µmol−1

α 8.7 · 10−6 -

Table 4.1: Parameter values of the Han model.

with the static one, we consider two examples of periodic light signals. First, we consider the simple
periodic function for the depth of a cell

z(t) =
H0

2

(
1 + sin

(
2π

T
t

))
. (4.32)

72



The light signal, using the Beer-Lambert law, corresponds to I(t) = I0e
−ξz(t) and the static

growth rate is µS(t) = µS(I(t)). In this case, the value of µS is independent of T , by doing the
change of variable s = t/T , we have

µS =
1

T

∫ T

0

µS(I(t))dt =

∫ 1

0

ασP I0e
−ξz(s)

1 + τσP I0e−ξz(s) +
kd
kr
τ
(
σP I0e−ξz(s)

)2 ds.
In Figure 4.4a, µA is illustrated the periodic solution given by (4.27)As expected, for T large enough,
the difference µA − µS can be approximated by µH . Numerically, the term µH , is close to zero. In
fact, the difference in percentage, computed as

Difference in % = 100 · µA − µS
µS

,

is lower than 2% as illustrated in Figure 4.4b. As shown in the same figure, µA is always greater
than µS and the difference between them becomes small as T increases. When the light dynamics
becomes slower, the approximation µA ≈ µS becomes more and more excellent. This gain is not
always true, as shown in the second example.

For the second example, let us consider the function

z(t) = H0 − 4H0
e
−
(
sin

(
2πt

T

)
− 1

2

)
(
1 + e−(sin(

2πt
T )− 1

2 )
)2 , (4.33)

which has a period T . By doing the same change of variable as before, the temporal average static
growth rate is independent of T . This function describes a movement closer to the surface and does
not travel to the deepest part of the culture as in the previous example. Figure 4.5b shows the
convergence of µA to µS as T goes to ∞. The difference between µS and µA in percentage is higger
than the previous case. Also, the value of µA is always lower than the value of µS .

In both examples, µA converges to µS (see Figure 4.4a and Figure 4.5a). We can see a difference
when the value of T is lower than 1500. In this range, we can say that, a strong mixing in the first
example promotes growth, where, the second example can represent a poor mixing.

4.4.2 The raceway case
We simulate 8 different conditions by changing the velocity of the paddle wheel for a simulated

time of one hour. The initial positions of the particles (xn0, yn0, zn0) are randomly generated fol-
lowing an independent uniform distribution xn0 ∼ U[xmin,xmax], yn0 ∼ U[ymin,ymax], zn0 ∼ U[zmin,zmax],
where the volume

B = [xmin, xmax]× [ymin, ymax]× [zmin, zmax],

is such that Ω ⊂ B, then we ignore the particles outside the domain Ω of the raceway pond. Due to
this process, the simulations made have a different number of simulated particles Npar. Table 4.2
shows the number of simulated particles for each simulation and also the total time of CPU used.
The software Freshkiss3D solve the Equation (4.15) at the same time it tracks the particles solving
Equation (4.17). Experiments were run on a computer with an Intel Xeon w-2223 processor running
at 1200 MHz with a total of 15677 MB of RAM, using Fedora version 39.
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(a) Periodic solution of the actual growth rate µA (continuous red line) when the light signal is
given by the depth following the function (4.32) and the approximation with the static growth
rate (blue dashed line) for three different values of T .

(b) Actual growth rate (continuous red line) and the approximation with the average static
growth rate (dashed blue line) for different values of T . The right axis shows the percentage
difference.

Figure 4.4: Dynamic and static growth rate of the light signal taking from (4.32).

4.4.3 Correction of the cell distribution

The particles needed to compute µA and µS should be representative of the entire raceway pond,
this means that the distribution should be uniform, at least on the z-axis. At the beginning, the
uniform distribution is imposed, but after some time of simulation, due to error accumulation in
a periodic domain, the distribution of the particles change. It follows that the space-time average
dynamic growth rate is not representative anymore. To tackle this problem, more particles could
be simulated, but this solution is very CPU demanding and time-consuming. Another approach
consists in correcting the particle’s distribution at each time, to have a set of particles that perma-
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(a) The periodic solution of the dynamic growth rate µA (continuous red line) when the light
signal is given by the depth described by (4.33) and the static growth rate (blue dashed line) for
three different values of T .

(b) Average dynamic growth rate (continuous red line) and the average static growth rate (dashed
blue line) for different values of T . The right axis shows the percentage difference.

Figure 4.5: Dynamic and static growth rate of the trajectory given by (4.33).

nently represent an actual distribution. The weighted averages can then be defined as:

µ
w
A =

1

T

∫ T

0

∑Npar

n=1
µA(In(t))
h(t)∑Npar

n=1
1
h(t)

dt,

and

µ
w
S =

1

T

∫ T

0

∑Npar

n=1
µS(In(t))
h(t)∑Npar

n=1
1
h(t)

dt,

for µA and µS respectively. Here h(t) is the probability density function of the depth of the particles
at the instant t. If the free surface is perfectly flat with depth H0, we have that hn(0) = 1/H0 by
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Figure 4.6: For 8 different velocities of the paddle wheel, the estimated actual average growth rate
µ
w
A (segmented red line), and the weighted space-time static growth rate µwS (segmented blue line).

The hydrodynamics is simulated for 1 hour. The values of Npar are different for each simulation,
and they are shown in Table 4.2. The average height of the water is H0 = 0.3(m).

construction, and we recover the expression (4.19) and (4.20).

Figure 4.6 shows the computation of µΩ, µwA, and µ
w
A. When the particle number Npar is

large enough, the space-time average static growth rate defined in Equation (4.20) converges to the
volume average growth rate in the sense that

lim
Npar→∞

1

Npar

Npar∑
n=1

µS(In) = µΩ, (4.34)

when the fluid is incompressible [144]. Numerical simulations do not show a noticeable difference
in the height of the waves formed on the free surface. As, the volume average growth rate depends
only on the shape of the photobioreactor, or in the case of the raceway pond, the shape of the free
surface and the volume that it defines. Then two raceway ponds with equivalent shape lead to the
same average growth rate, which is completely determined by the incident light intensity and the
optical depth [90, Theorem 3]. In this sense, the average static growth rate µS does not take into
account the effect of the hydrodynamics. This effect can be seen in Figure 4.6, where the corrected
average have a small variation (1.1395 d−1 for 10 RPM and 1.12080 d−1 for 27.5 PRM).
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RPM Npar Total simulation time (hrs)
10 3094 714.8

12.5 3057 620.4
15 3064 742.2

17.5 3073 663.1
20 3064 779.3

22.5 3034 695.1
25 3034 810.5

27.5 3048 730.4

Table 4.2: Number of simulated particles and total CPU time simulation for each experience.

4.5 Conclusions
We present a numerical method to calculate the average growth rate in a photobioreactor,

accounting for hydrodynamics. The starting point is the Han model, which takes into account
the light history of the microalgae. This model coupled with the hydrodynamics can capture the
influence of the mixing device. To better understand the effect that mixing can have on growth, we
illustrate with two simple periodic functions; the first one increases the actual growth rate compared
to the static value, and the second one shows the opposite trend.

We implement the light harvesting model in the light field generated by the hydrodynamics of
the raceway pond. Since the computational cost is very high for simulating reactor hydrodynamics
and tracking the particles to compute the average growth rate, we present an alternative way to
compute this growth rate, correcting the distribution in the depth of the particles to have a better
representation of the raceway pond.

The computations made in the case of the raceway can be adjusted to other types of reactors.
For example, the relationship between the actual growth rate and the velocity in the z-axis of the
raceway can be transposed to other photobioreactors, depending on the distribution of light inside
the reactor. It can even be used to optimise the reactor geometry, to better benefit from this
dynamical effect.

Not all models are able to capture the effect of hydrodynamics, and extending a model to do so
it is not straightforward. In this study, we propose a way to take into account the hydrodynamics
where we conclude that a better mixing of the photobioreactor, in the raceway pond case, increases
the productivity of the photobioreactor. The answer to whether or not hydrodynamics should be
considered among the factors affecting microalgae growth has no single answer, since it will depend
on the geometry of the photobioreactor and the light distribution inside it. However, in this chapter,
we present upper and lower bounds on the growth function that may be useful in determining when
hydrodynamics should be considered.
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Part II

Optimal control problems in
photobioreactors
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Chapter 5

Optimal control of microalgae culture
accounting for photoinhibition and
light attenuation

This chapter reproduces [52] presented at the 22nd IFAC World Congress, Yokohama, Japan.
The introduction presented here differs from the published article.

Abstract
In a photobioreactor, due to the gradient of light, microalgae are successively exposed to con-

ditions of low and high (inhibiting) light. This phenomenon can be captured by the Han model,
which is a common mechanistic model of photoinhibition. Based on Han’s description, we intro-
duce a dynamic system of microalgae growth involving two control variables: the light intensity and
the dilution rate of the reactor. This model is derived from slow/fast dynamic considerations in a
chemostat system accounting for the light gradient due to absorption and scattering following the
Lambert-Beer’s law. Then, we formulate and study an optimal control problem in order to fully-
characterize the optimal light supply and dilution strategies that maximize the harvested biomass.
Our study, mainly based on Pontryagin’s maximum principle (PMP), shows that singular arcs and
turnpike-like behaviors appear in the optimal solution. In particular, we prove that the optimal
strategy maintains the biomass at a constant level along singular arcs, and we determine its static
value. The theoretical results are illustrated throughout this paper using a direct optimization
method.

5.1 Introduction
Pontryagin’s maximum principle (PMP, [114]) provides powerful tools to address the optimal

control problems encountered in biotechnology, and turns out to be highly effective in solving
optimization and control problems in photobioreactors [11, 41, 87]. In several cases, it has been
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reported that the optimal solutions associated to these OCPs often exhibit a turnpike-like behaviour
when the operation time is large enough (see, e.g., [27, 44]). Generally speaking, the turnpike feature
states that the optimal solutions approach a static behaviour or stay close to a steady-state most
of the time [146, 115]. We formulate and analyse an optimal control problem with two states: the
concentration of the microalgae culture inside a photobioreactor and the fraction of photoinhibited
photosystems of the cells. Two controls are considered: the light intensity and the dilution rate of
the bioreactor. The dynamic system is based on the reduction of the Han model presented in the
Chapters 3 and 4.

This chapter is organized as follows. In Section 5.2 we introduce the biological model describing
the evolution of the biomass in the photobioreactor. In Section 5.3, we state the optimal control
problem (OCP) of interest. In Sections 5.4-5.5, we derive some properties of the optimal solution
of the studied OCP, then we state our main result: the bioreactor must be operated at constant
biomass describing turnpike properties. Next, in Section 5.6, we determine the value of the optimal
biomass. Finally, in Section 5.7, we illustrate our results using direct optimization methods (imple-
mented in BOCOP: optimal control solver).

5.2 Mathematical model

5.2.1 The reduced Han model for photobioreactors

We consider a photobioreactor in continuous mode operation. The biomass concentration of
microalgae x (mgL−1) evolves following the equation:

ẋ = µx−Rx−Dx, (5.1)

where R (s−1) is the specific maintenance rate [21], D (s−1) is the dilution rate of the reactor
(ratio of the influent flow rate over the volume of the reactor). The growth rate µ(s−1) is derived
from the reduced Han model [53, 66, 68] as follows. Let us denote c (dimensionless) the fraction of
photosynthetic units that are damaged due to excess of light on the photobioreactor and Ix (µmol−1·
m−1 · s−1) the irradiance perceived by the culture, the dynamics of c can be derived from the Han
model as,

ċ =
kdτ(σIx)

2

1 + τσIx
(1− c)− krc. (5.2)

Here σ corresponds to the effective cross-section, τ is called turnover time (time needed to harvest
one photon), kd and kr are the damage and repair rate respectively. The growth rate is then
computed as [53],

µ =
KσIx(1− c)

1 + τσIx
. (5.3)

5.2.2 Light attenuation due to biomass

Light availability decreases in the photobioreactor due to the self-shading and the light absorp-
tion of the chlorophyll content of the microalgae. We differentiate the irradiance that is applied
to the culture, denoted by I (µmol−1 · m−1 · s−1), which can be controlled, and the irradiance
perceived by the culture Ix which affects the evolution of the state c. The perceived irradiance
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Ix (µmol−1 ·m−1 · s−1) follows the Beer-Lambert law,

Ix = Ie−ξx, (5.4)

where ξ (mg−1 ·L) is a coefficient derived from the light extinction rate and from the photobioreactor
depth.

5.3 Statement of the optimal control problem

We define the total biomass harvested over the time window [0, Tf ] by,

J[0,Tf ](D, I) =
∫ Tf

0
x(t)D(t)dt, (5.5)

where x is the solution of the equation (5.1), here the controls are the irradiance I and the dilution
rate D. The sets of admissible controls D and I are defined as,

D := {D : [0,+∞) → [0, Dmax] ; D(·) ∈ L∞
loc(R+)},

I := {I : [0,+∞) → [0, Imax] ; I(·) ∈ L∞
loc(R+)},

(5.6)

where L∞
loc(R+) is the space of locally integrable functions on every compact on R+, Dmax > 0 is

the maximum dilution rate given by the pump feeding capacity and Imax is the maximum light
intensity that can be applied.

For admissible non-negative initial conditions, we seek admissible controls, D ∈ D and I ∈ I,
over a fixed time window [0, Tf ], that maximize the harvested biomass. Thus, the optimal control
problem of interest reads as follows,

max
D∈D,
I∈I.

J[0,Tf ](D, I) =

∫ Tf

0

x(t)D(t)dt,

s.t. ẋ =
KσIx(1− c)

1 + τσIx
x−Dx−Rx,

ċ =
kdτ(σIx)

2

1 + τσIx
(1− c)− krc,

(OCP)

5.4 Necessary conditions on optimal controls

We apply the Pontryagin’s Maximum Principle (PMP), [149, 33, 71, 145]) to derive necessary
conditions satisfied by the optimal controls in (OCP). Let us denote by X = (x, c) and λ = (λx, λc)
respectively the state and adjoint variables. Then, the Hamiltonian, H(X,λ,D, I), associated
with (OCP) is defined by,

H(X,λ, λ0, D, I) = λT Ẋ + λ0xD.

We note that the Hamiltonian is linear w.r.t. the control D, then we rewrite,

H(X,λ, λ0, D, I) = Ψ(X,λ, I) + φ(X,λ)D + φ̃(X,λ), (5.7)
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where,

Ψ(X,λ, I) =
KσIx(1− c)

1 + τσIx
λxx+

kdτ(σIx)
2(1− c)

1 + τσIx
λc, (5.8)

φ(X,λ) = [−λx + λ0]x, (5.9)
φ̃(X,λ) = −Rλxx− krλcc. (5.10)

The function φ is the so-called switching function w.r.t. the control D. Since (OCP) is stated as
a maximization problem, we fix λ0 = 1, assuming that the extremals are normal. Pontryagin’s
Maximum Principle states that if (X,D, I) is optimal, then the absolutely-continuous adjoint state
λ = (λx, λc), satisfies,

λ̇x = −∂H/∂x, λ̇c = −∂H/∂c.
Therefore, it follows that,

λ̇x = λx

[
µ

(
ξx

1 + τσIx
− 1

)
+ (D +R)

]
−D + λc

kdξµτσIx(2 + τσIx)

K(1 + τσIx)
,

λ̇c = λx
KσIx

1 + τσIx
x+ λc

[
kdτ(σIx)

2

1 + τσIx
+ kr

]
.

(5.11)

In (OCP), the final conditions x(Tf ) and c(Tf ) are free. Therefore, the transversality conditions
are given by,

λx(Tf ) = 0, λc(Tf ) = 0. (5.12)

5.4.1 The PMP maximization condition
The Pontryagin’s principle states that the controls D and I satisfy, for almost all t ∈ [0, Tf ], the

maximization condition,

(D(t), I(t)) ∈ argmax
u∈[0,Dmax],
v∈[0,Imax].

H(X(t), λ(t), λ0, u, v) (5.13)

In addition, as the augmented system is autonomous, then H(X,λ, λ0, D, I) is constant along the
optimal trajectories, i.e., for almost all t ∈ [0, Tf ]:

d

dt
H(X(t), λ(t), λ0, D(t), I(t)) = 0 (5.14)

Using (5.7)-(5.10), we readily deduce (since Ψ and φ̃ do not depend on D, and φ and φ̃ do not
depend on I) that the PMP maximization condition (5.13) leads to the following result.

Proposition 5.1

Let Tf > 0 be a fixed final time horizon. Then, for almost all t ∈ [0, Tf ], we get,
i) the optimal control D(t) satisfies,

D(t) =


0, if λx > 1,

Dmax, if λx < 1,

Ds(t), if λx(t) = 1,

(5.15)
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ii) the optimal control I(t) satisfies,

I(t) =

{
Imax if λc > −λxxK

kdτσImax
x (2+τσImax

x ) ,

Is(t) otherwise,
(5.16)

where we denote Imax
x = Imaxe

−ξx, Ds is the so-called singular arc control (when its associated
switching function φ is zero), and Is is given by,

Is(t) =
−1 +

√
1− λx(t)x(t)K

λc(t)kd

τσe−ξx(t)
. (5.17)

Proof. As (5.7) holds, finding the optimal light I in (5.13) is equivalent to solve the problem for
almost every t ∈ [0, Tf ],

I(t) ∈ argmax
0≤I≤Imax

Ψ(X,λ, I), (5.18)

where Ψ is defined in (5.8). For fixed t ∈ [0, Tf ], we define the Lagrangian associated to the
problem (5.18) as,

L(I, θ) = Ψ(X,λ, I) + θ(Imax − I). (5.19)

where if (I∗, θ∗) is a saddle point of L with θ∗ ≥ 0 then I∗ is optimal for the problem (5.18). This
condition is equivalent to the KKT conditions,

∂Ψ(X,λ, I)

∂I
− θ = 0, (5.20)

θ(Imax − I) = 0, (5.21)
θ ≥ 0. (5.22)

Condition (5.20) gives,
λxxµ

1 + τσIx
+
λckdτσIxµ(2 + τσIx)

K(1 + τσIx)
− θ = 0.

As (5.22) holds, we deduce that,

λckdτµσIx(2 + τσIx)

K(1 + τσIx)
≥ − λxxµ

1 + τσIx
,

λc ≥ − λxxK

kdτσIx(2 + τσIx)
, (5.23)

where the equality holds if and only if I < Imax, and the optimal light is given by,

(1 + τσIx)
2 − 1 = −λxxK

λckd
.

As (1 + τσIx) is always positive, it follows that,

τσIx = −1 +

√
1− λxxK

λckd
. (5.24)
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On the other hand, I = Imax if and only if the inequality in (5.23) is strict due to conditions (5.21)
and (5.22). For the dilution-control, we use the same argument, since D maximizes the function,

φ(X,λ)D = (−λx + 1)D, (5.25)

and since it is linear in D, we deduce that D = 0 if −λx + 1 < 0 and D = Dmax if −λx − 1 > 0.
Next, when −λx + 1 = 0 (over a specific time interval [t1, t2], where t2 > t1), we write D(t) =
Ds(t), t ∈ [t1, t2], Ds is the singular control arc that may appear in the structure of the optimal
control D.

From Proposition 5.1, we can assert that the optimal control over [0, Tf ] for the dilution rate D can
be a concatenation of arcs Bang(0), Bang(Dmax) and Singular (not necessarily in this order). On
the other hand, the optimal control for light intensity I over [0, Tf ] can be a concatenation of arcs
Bang(Imax) and Is.

5.5 Properties of the adjoint variables and the optimal con-
trols

Proposition 5.2

The adjoint variables λx and λc are non-negative and non-positive, respectively.

Proof. Inequality (5.23) can be rewritten as

λx ≥ −λc
kdτσIx(2 + τσIx)

xK
, (5.26)

and replacing the above in the dynamics of λc given by (5.11) we get:

λ̇c ≥ −λckdτ(σIx)
2(2 + τσIx)

1 + τσIx
+ λc

[
kdτ(σIx)

2

1 + τIx
+ kr

]
,

λ̇c ≥ λc[kr − kdτ(σIx)
2].

For simplicity, let us denote ψ = kr−kdτ(σIx)2 and let be t0, t, s ∈ [0, Tf ] with t0 ≤ s ≤ t, we have:

λ̇c(s) ≥ λc(s)ψ(s),

d

ds

(
λce

−
∫ s
t0
ψ(w)dw

)
≥ 0,

λc(t)e
−
∫ t
t0
ψ(w)dw − λc(t0) ≥ 0.

This is valid for every t0 ≤ t ≤ Tf , replacing t by Tf and using the transversality condition (5.12)
we get,

0 ≥ λc(t0) ∀t ∈ [0, Tf ].

Then λc is non-positive, and by (5.26) we conclude that λx is non-negative.
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Proposition 5.3

There exists an interval [Tf − ε, Tf ] where D(t) = Dmax. If λx(Tf − ε) = 1, and let µ̄ be an
upper bound of µ satisfying µ̄ < Dmax +R, then,

ε ≥ 1

Dmax +R− µ̄
ln

(
Dmax

µ̄−R

)
. (5.27)

Proof. The existence of the time interval [Tf − ε, Tf ] is straightforward since λx is continuous,
non-negative and satisfies (5.12). Now, to prove the inequality (5.27), we substitute (5.23) in the
λx-dynamics (5.11), then we get,

λ̇x ≥ λx

[
µ

(
ξx

1 + τσIx
− 1

)
+ (D +R)

]
−D − λxξxµ

1 + τσIx
.

Denoting ϕ = −µ+D+R, let be t0, t, s ∈ [0, Tf ] with t0 ≤ s ≤ t, multiplying (5.28) by e−
∫ s
t0
ϕ(w)dw

and integrating,

d

ds

(
λx(s)e

−
∫ s
t0
ϕ(w)dw

)
≥ −D(s)e

−
∫ s
t0
ϕ(w)dw

,

λx(t)e
−
∫ t
t0
ϕ(w)dw − λx(t0) ≥ −

∫ t

t0

D(s)e
−
∫ s
t0
ϕ(w)dw

ds.

Then, we get (5.27) by evaluating t at Tf and t0 at Tf − ε.

5.5.1 An assumption over the growth rate
Function µ is continuous and non-negative in [0, Tf ], then it is bounded. We consider the

following assumption.

Hypothesis 5.1

There exists a strictly positive lower bound µ of the growth rate µ that satisfies

µ > R. (5.28)

This condition is common in photobioreactor optimization [91, 18]. Under this assumption, we
can get the value of the light I and the dilution D, in the singular arc. In the following, let us
denote [t1, t2] the interval of the singular arc.

Proposition 5.4

Under Hypothesis 5.1, I = Imax in the singular arc
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Proof. As λx = 1 in [t1, t2], λ̇x = 0 in ]t1, t2[, then in this interval, from (5.11) we get,

0 = µ

(
ξx

1 + τσIx
− 1

)
+R+ λc

kdξK

µ

[
(1 + τσIx)

2 − 1
]
,

developing this equation leads to,

λc

[
(1 + τσIx)

2 − 1
]
= −Kx

kd
+
K (1 + τσIx)

kda

[
1− R

µ

]
.

As I ≤ Imax, using (5.28) we deduce that,

λc

[(
1 + τσImaxe

−ξx)2 − 1
]
≥ λc

[
(1 + τσIx)

2 − 1
]

>
−Kx
kd

.

Replacing λx = 1, condition (5.16) is fulfilled.

Proposition 5.5

Under Hypothesis 5.1 the dilution in the singular arc satisfies,

Ds = µ−R. (5.29)

Proof. From Proposition 5.4 the light in ]t1, t2[ remains constant and equal to Imax. Then, over
]t1, t2[, we get,

H = (µ−R)x+ [(−γ + kr)c+ γ]λc, (5.30)

where,

γ =
kdτ(σI

max
x )2

1 + τσImax
x

. (5.31)

As H is constant in time, taking the derivative in (5.30) we get:

0 = µ̇x+ (µ−R)ẋ+ λ̇c[−(γ + kr)c+ γ] + λc[−γ̇c+ (γ + kr)ċ+ γ̇]. (5.32)

The derivative of µ in ]t1, t2[ is,

µ̇ = − ξµẋ

1 + τσImax
x

− µkdτ(σI
max
x )2

1 + τσImax
x

+
KσImax

x krc

1 + τσImax
x

, (5.33)

and the derivative of γ is given by,

γ̇ =
kdτξ (σI

max
x )

2
(2 + τσImax

x )

(1 + τσImax
x )2

ẋ. (5.34)

By replacing (5.33)-(5.34) in (5.32) we get,

(µ−R)(µ−R−D)x = 0,

then, as µ > R, we have that µ−R ̸= 0. Also, unless the initial condition of x is zero, x(t) ̸= 0 ∀t ∈
[0, Tf ]. Then, we conclude that D = µ−R.
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The next result is immediately deduced:

Corollary 5.1

Let us assume that a singular arc occurs in an interval [t1, t2] with t1 < t2, under Hypothesis 5.1
the biomass concentration is constant in [t1, t2].

5.6 Estimating biomass in the singular arc
We saw that biomass in the photobioreactor x and the light intensity are constant in the singular

arc, but this value must be determined. We assume that the singular arc [t1, t2] is long enough
for the state c to reach its equilibrium, this is because the equation (5.2) becomes autonomous in
[t1, t2] and c converges to the unique asymptotically stable steady state given by:

cs =
kdτ(σI

max
x )2

kr(1 + τσImax
x ) + kdτ(σImax

x )2
.

Then the growth rate µ is constant and equal to

µs =
KσImax

x

1 + τσImax
x + kd

kr
τ(σImax

x )2
. (5.35)

This is the Haldane description corresponding to the growth rate of the Han model at steady state.
This function reaches its maximum at the value

Imax
x = Iopt :=

1

σ
√

kd
kr
τ
. (5.36)

In this static condition, λc is constant, and we can find its value from (5.11),

λc = −µsx
kr

.

Replacing this value in the first equation, we get,

R

µs
= 1− ξx

kr − kdτ(σI
max
x )2

kr(1 + τσImax
x ) + kdτ(σImax

x )2
. (5.37)

We denote xs the biomass concentration satisfying (5.37). It is important to note that this value
does not depend on either Dmax or the initial conditions of X.

5.7 Direct optimization
We solve numerically the problem (OCP), with a direct method implemented in the software

BOCOP [22]. The problem is discretized by a two stage Gauss-Legendre method with 15000 time
steps, and the tolerance for the IPOPT NLP solver is set at 10−25. We consider the parameters of
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(a) Example 1. Initial biomass x(0) > xs.
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(b) Example 2. Initial biomass x(0) < xs.
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(c) Example 3. The parameters are the same as in
the Example 2, with a shorter final time Tf .

Figure 5.1: The optimal controls (in red), and the states (in blue). In the dilution plot, we also
represent µ − R (black dotted line) to illustrate the Proposition 5.5. In the light plot, we also
represent Iopt defined in (5.36), and the value of the perceived light Ix (the black dotted line). The
magenta dashed line in the biomass concentration plot corresponds to xs defined in Section 5.6.
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Table 5.1: Parameters values for the biological model.

Parameter Value UnitEx. 1 Ex. 2 Ex. 3
Tf 2 · 104 3 · 104 1.5 · 104 s
x(0) 20 10 mg · L−1

c(0) 0.5 0.15 -
K 8.70 · 10−6 -
kd 2.99 · 10−4 -
kr 6.80 · 10−3 s−1

τ 0.25 · 100 s
σ 4.70 · 10−2 m2 · µmol−1

Dmax 4.00 · 10−4 s−1

Imax 1.00 · 103 µmol · m−2s−1

R 8.00 · 10−6 s−1

ξ 0.20 mg−1 · L

the Han model from [61]. We consider three different examples with the listed parameter values in
Example 1-3.

Figure 5.1a, 5.1b and 5.1c show the simulation results. In the first example, the control structure
of the dilution rate is Bang-Singular-Bang and for the light it is Bang-Singular. The initial biomass
is higher than the concentration xs predicted in the section 5.6, then the dilution is settled at
maximum until the biomass reaches xs, subsequently, the singular arc of dilution is activated, and
the biomass xs is maintained during this period. Finally, the dilution is settled at maximum, as was
demonstrated in Proposition 5.3. On the other hand, in Figure 5.1b, the behavior of the controls
are similar, but, the initial biomass is lower than xs, then the dilution rate is zero to allow the
system to reach xs.

The curve µ−R takes negative values in the first arc (Bang(Dmax)) presented in Figure 5.1a),
this is because the initial biomass is too high leading to a lack of light in the culture and leading to
growth rate close to zero. The Hypothesis 5.1 is not fulfilled in the entire interval. But, it is in the
singular arc of dilution [t1, t2]. Actually, the results proved in Section 5.5 are still valid if we relax
the inequality (5.28) for the condition µ(t) ≥ R ∀t in the singular arc of dilution.

In the three examples presented, the average light perceived by the algae culture Ix together
with the light intensity I, it appears, coherently with Section 5.6. In example 1, Ix is lower than
the optimal light intensity Iopt, and in the singular arc of light, the value of Ix is equal to the value
of Iopt.

In Figure 5.1c we present the results for Example 3 which has the same parameters as in the
Example 2, but considering a shorter final time Tf = 1.5 · 104. In this case, the structure of the
dilution rate is Bang-Bang and the structure of the light is the same as in the Example 2. Then
existence of the singular arc for dilution is not always ensured. In this case, there is not enough time
for the biomass to reach the value estimated in Section 5.6 and let a time window for harvesting
the biomass at the end. In Proposition 5.3 we discuss the length of this time window.
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5.8 Conclusion
The singular arc for the dilution rate is key in the optimal problem (OCP). We prove that in

this arc the biomass remains constant, at a concentration independent of the value of the maximum
dilution rate and the final time for harvesting depends on the maximal dilution rate. The solution
of this equation cannot be given explicitly. It is also interesting to note that the associated light in
the singular arc of dilution is lower than the optimal light for the Han model at steady state. On
the other hand, numerical results show that, when I = Is, the optimal irradiance corresponds to
the optimum of the Han model at steady state.
Larger values of the maximum light Imax allow operating the photobioreactor at higher biomasses.
This fact is in agreement with experimental observations, for high density cultures [57], where
photoinhibition is negligible due to the self shading of the cells.
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Chapter 6

Optimal control of photobioreactor
accounting for photoinhibition and
photoacclimation

This chapter reproduces [51] presented at the 12th IFAC Symposium on Advanced Control of
Chemical Processes (ADCHEM 2024), and some unpublished results on the unperturbed optimal
control problem associated to the one studied in the original paper.

Abstract
The industrial cultivation of microalgae has increased substantially over the past two decades.

These microorganisms have the ability to adapt their photosynthetic pigments in response to the
amount of light they experience. Herein, we investigate a dynamic model that describes pigment
adaptation and its effect on microalgal productivity in a photobioreactor where light is shone onto
the surface and attenuated as it traverses the culture medium. We consider two controls – the light
irradiance and the dilution rate of the photobioreactor under continuous operation and constant
volume – and analyze strategies for maximal production of microalgal biomass using Pontryagin’s
maximum principle. We also conduct a numerical investigation of turnpike properties in this context
and discuss how self-shading within the culture could be exploited to increase productivity.

6.1 Introduction
The main focus in this chapter is on photoinhibition and photoacclimation, the combined effect

of which has not been studied extensively thus far. Photoinhibition is triggered by an excess of light
causing damage to key photosynthetic proteins, thereby affecting cell growth. Photoacclimation,
on the other hand, is a protective mechanism to mitigate photoinhibition through adjusting the
amount of cellular pigments in response to light intensity variations. These phenomena take place
on different timescales [68, 20]. An optimal control problem for maximizing the amount of biomass
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produced has already been studied in Chapter 5considering the rapid dynamics of photoinhibition
in a turbid medium where the cells are advected through a light gradient. In this chapter, the
objective is to extend this work by focusing on the slower timescales and include in the analysis
the photoacclimation dynamics. An interesting problem when both light and dilution rate can be
controlled is how to start the reactor to avoid loss of productivity due to high photoinhibition at low
initial biomass density. This phenomenon is even more marked if the culture was pre-acclimated to
low light, as it is the case for a high density inoculum in which light penetration is limited. It leads
to a new control problem that we formulate and analyse. We then show how photoacclimation
impacts the optimal strategy. This chapter is organized as follows: Section 6.2 introduces the
dynamic model describing the growth of biomass in the photobioreactor, based on a model by
[105] integrating both photoinhibition and photoacclimation. Section 6.3 formulates the optimal
control problem before conducting a formal analysis based on Pontryagin’s Maximum Principle in
Section 6.4. A numerical investigation is conducted in Section 6.6 to validate and complement the
theoretical results. Finally, Section 6.7 discusses the main insights, in particular the role played by
both timescales and the benefits of self-shading on the process productivity.

6.2 Dynamic Model Formulation
We consider a planar photobioreactor operated in continuous mode and illuminated by an arti-

ficial light perpendicular to the plan. The biomass concentration, x [gC L−1] follows the dynamics:

ẋ = µx−Rx−Dx, (6.1)

where µ [s−1] is the specific gross growth rate, R [s−1] the specific maintenance rate [21], and D
[s−1] the dilution rate of the reactor (ratio between the feed rate and the volume of the reactor).

The photobioreactor is illuminated with a light irradiance I [µmolm−2s−1]. This irradiance is
attenuated by the biomass concentration x and the amount of chlorophyll xθ, where the chlorophyll
quota θ [gChl g

−1
C

] is the amount of chlorophyll per unit of biomass. The chlorophyll content in
microalgae, and more generally their pigment composition, changes in response to variations in the
light irradiance. In the model developed by [105], the chlorophyll quota θ depends on the growth
irradiance Ig [µmolm−2s−1], which corresponds to the light at which the microalgae are acclimated:

θ(Ig) = ψ
kI

Ig + kI
, (6.2)

with parameters ψ [gChl g
−1
C

] and kI [µmolm−2s−1]. The dynamics of the growth irradiance Ig are
given by:

İg = δµ(Ī − Ig), (6.3)

where δ [–] is a scaling constant, and the specific growth rate µ depends on the average perceived
light Ī

The average light that the microalgae perceived along their advection in the reactor can be
approximated using the Beer-Lambert law as:

Ī(I, x, Ig) = I
1− e−(EC+EChlθ)xL

(EC + EChlθ)xL
, (6.4)
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where L [m] is the depth of the photobioreactor (the distance between the illuminated side and the
opposite side), EChl [g−1

Chl
m−1L] and EC [g−1

C
m−1L] are constants that account for light absorption

by the pigments and the biomass, respectively.

For simplicity, we denote

ε(x, Ig) =
1− e−(EC+EChlθ)xL

(EC + EChlθ)xL
, (6.5)

as the average attenuation factor. In particular, we have Ī = Iε.

According to the reduced Han model [66, 68, 53]:

µ(I, x, Ig) =
KσĪ

1 + τσĪ + kd
kr
τ(σĪ)2

, (6.6)

with K [−] the growth rate coefficient, σ [m2µmol−1] the effective cross-section, τ [s] the turnover
time (time needed to harvest one photon), and kd [−] and kr [s−1] the damage and repair rates,
respectively. The maximal growth rate,

µmax =
K

2
√

kd
kr
τ + τ

, (6.7)

is achieved under the following condition:

σĪ =
1√
kd
kr
τ
. (6.8)

Finally, the dependence between the effective cross-section and the chlorophyll quota is assumed to
follow a power law relationship [105]:

σ(Ig) = βθ(Ig)
κ, (6.9)

where β and κ are two constants.

6.3 Optimal Control Problem Statement
The goal is to speed up the initial reactor starting phase, or equivalently to maximize the total

biomass production over the time horizon of the reactor start-up [0, Tf ], defined as:

JTf
(D, I) =

∫ Tf

0

x(t)D(t)dt . (6.10)

The controls are the dilution rate D and the artificial irradiance I, within the following sets of
admissible controls:

D := {D : [0,+∞) → [0, Dmax] ; D(·) ∈ L∞
loc(R+)},

I := {I : [0,+∞) → [0, Imax] ; I(·) ∈ L∞
loc(R+)},

(6.11)
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where L∞
loc(R+) denotes the set of locally integrable functions on every compact set in [0,∞). In

particular, the upper bounds Dmax and Imax on the controls are assumed to be large enough to
drive biomass washout, e.g., Dmax > µmax with µmax as defined in Equation (6.7).

The resulting optimal control problem is given by:

max
D∈D,
I∈I.

Jδ =

∫ Tf

0

x(t)D(t)dt,

s.t. ẋ = µ(I, x, Ig)x−Dx−Rx,

İg = δµ(I, x, Ig)
[
Ī(I, x, Ig)− Ig

]
,

x(0), Ig(0) given.

(Pδ)

6.4 Formal Analysis
To apply Pontryagin’s maximum principle (PMP) [33, 71] to the optimal control problem (Pδ),

we define the Hamiltonian function H as:

H(x, Ig, D, I, λx, λg) := λx(µ−R−D)x+ δλgµ(Ī − Ig) + xD . (6.12)

The dynamics of the co-states λx and λg are given by:
λ̇g = −λx

∂µ

∂Ig
x− δλg

(
∂µ

∂Ig
(Ī − Ig)− µ

(
∂Ī

∂Ig
− 1

))
,

λ̇x = −λx
(
∂µ

∂x
x+ µ−R−D

)
− δλg

(
∂µ

∂x
(Ī − Ig) + µ

∂Ī

∂x

)
−D.

(6.13)

Since the terminal state values are free, the terminal co-states are given by:

λx(Tf) = λg(Tf) = 0. (6.14)

The optimal control trajectories D∗(t), I∗(t) are those maximizing the Hamiltonian function for
almost all t ∈ [0, Tf ]:

(D∗(t), I∗(t)) ∈ argmax
D∈[0,Dmax],
I∈[0,Imax].

H(x∗(t), I∗g (t), D, I, λ
∗
x(t), λ

∗
g(t)) . (6.15)

Based on condition (6.15), the dilution rate can take three different values depending on the value
of the co-state λx, as summarized in Proposition 6.1 below.

Proposition 6.1
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For almost all t ∈ [0, Tf ], the optimal control D∗ satisfies

D∗(t) =


0, if λx > 1,

Dmax, if λx < 1,

Dsing(t), if λx(t) = 1,

(6.16)

where Dsing is a singular arc.

Likewise, the optimal irradiance I∗ is a solution to the following problem almost everywhere:

I∗(t) ∈ argmax
I∈[0,Imax]

ϕ(I) := λxµx+ δλgµ(Ī − Ig). (6.17)

The KKT conditions for this problem are given by:

∂ϕ(I)

∂I
− ν = 0, (6.18)

ν(Imax − I) = 0, (6.19)
ν ≥ 0. (6.20)

In particular, the stationarity condition (6.18) expands as:

λxx
∂µ

∂Ī

∂Ī

∂I
+ δλg

∂µ

∂Ī

∂Ī

∂I
(Ī − Ig) + δλgµ

∂Ī

∂I
− ν = 0, (6.21)

and since ∂Ī
∂I ≥ 0, it follows from the dual feasibility condition (6.20) that

Ψ := λxx
∂µ

∂Ī
+ δλg

(
∂µ

∂Ī
(Ī − Ig) + µ

)
≥ 0. (6.22)

The switching function Ψ is such that I∗(t) = Imax whenever Ψ > 0. Next, we seek an expression
of I∗(t) when Ψ = 0:

λxx
∂µ

∂Ī
+ δλg

(
∂µ

∂Ī
(Ī − Ig) + µ

)
= 0. (6.23)

In the case that δλg = 0, the previous condition simplifies to:

λxx
∂µ

∂Ī
= 0, (6.24)

then dismissing the case λx = 0, the optimal solution corresponds to:

σĪ∗ =
1√
kd
kr
τ
. (6.25)

In the other case that δλg ̸= 0, the condition (6.23) can be rewritten as

∂µ

∂Ī

[
λxx+ δλg(Ī − Ig)

]
+ δλgµ = 0, (6.26)
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then replacing the definition of µ, leads to the following quadratic equation:(
λxx

δλg
− Ig

)(
1− kd

kr
τ(σĪ)2

)
+ 2Ī + τσĪ2 = 0 . (6.27)

Candidate solutions are of the form:

Ī∗ =
−1±

√
1− τσ

(
λxx
δλg

− Ig

)
+ kd

kr
τσ2

(
λxx
δλg

− Ig

)2
τσ
[
1− kd

kr
τσ
(
λxx
δλg

− Ig

)] , (6.28)

of which only the positive values are admissible.

Proposition 6.2

For almost t ∈ [0, Tf ], the optimal control I∗ satisfies

I∗(t) =

{
Imax if Ī∗ > ϵImax,
Ī∗/ϵ otherwise. (6.29)

The function Ψ, combined with the transversality conditions, is also useful to estimate the final
arc of the optimal control D∗. From the terminal condition (6.14) and by continuity of λx, there
is a time interval on which λx(t) < 1; it follows from Proposition 6.1 that D(t) = Dmax on this
interval.

To estimate the corresponding switching time Tharv, we rewrite the dynamic of the co-state λx
as

λ̇x = −Ψ
∂Ī

∂x
− λx(µ−R−D)−D, (6.30)

with Ψ as defined in (6.22) and noting the chain rule ∂µ
∂x = ∂µ

∂Ī
∂Ī
∂x . Since ∂Ī

∂x = I ∂ε∂x is non-positive
(as more biomass decreases the average light in the photobioreactor), the condition (6.22) can be
rewritten as:

λ̇x ≥ −λx(µ−R−D)−D,

≥ −λx(µmax −R−Dmax)−Dmax.
(6.31)

Multiplying both side by e(µmax−R−Dmax)(t−(Tf−Tharv)) and integrating over time gives:

λx(Tf)e
(µmax−R−Dmax)Tharv

−λx(Tf − Tharv) ≥
−Dmax(e

(µmax−R−Dmax)Tharv − 1)

µmax −R−Dmax
,

(6.32)

After replacing the transversality condition and λx(Tf − Tharv) = 1, we obtain:

µmax −R

Dmax
≥ e(µmax−R−Dmax)Tharv . (6.33)

We summarize this insight in Proposition 6.3 below.
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Proposition 6.3: Final harvest time

There exists Tharv > 0 such that D∗(t) = Dmax for all t ∈ [Tf−Tharv, Tf ]. If λx(T −Tharv) = 1,
then

Tharv ≤ 1

µmax−R−Dmax

ln

(
µmax −R

Dmax

)
.

6.5 The non-perturbed problem
The photoacclimation has a slow timescale with respect to the growth of the microalgae. The

optimal control problem (Pδ) is regular perturbed optimal control problem [45], where the pertur-
bation is δ > 0. The non-perturbed problem (P0) is defined as

max
D∈D,
I∈I.

J0 =

∫ Tf

0

x(t)D(t)dt,

s.t. ẋ = (µ(I, x, Ig(0))−R−D)x,

x(0), Ig(0) given.

(P0)

The problem (Pδ) is well posed in the sense of performance convergence [45], meaning that

lim
δ→0

max
D∈D,
I∈I.

Jδ = max
D∈D,
I∈I.

J0.

This due to the fact that the dynamics of problem (Pδ) varies continuously as a function of δ. Then,
it is interesting to look the solution of problem (P0).

The growth irradiance does not change, i.e., microalgae are not acclimating to the light. In this
case, the growth function only depends on the biomass and the light control I. Before studying the
solution of the non-perturbed problem, note that the function

Ī 7→ µ−R

has two non-negative zeros I1, I2 with I1 < I2. If Imax < I2, then it exists a unique xc > 0 such
that

µ(Imax, xc, Ig(0))−R = 0,

and also,
µ(Imax, x, Ig(0))−R < 0 ∀x ∈ (0, xc).

In this case, the biomass is so dense, that light can not compensate the specific maintenance rate
R. Then, there is no interest to study the case where x(0) ≥ xc. Under the assumption x(0) < xc,
and Imax < Ic we can fully characterize the optimal controls of the reduced problem as follows: :

Theorem 6.1

Assume that R < µmax, Imax < I2 and x(0) < xc. Let us denote xs the only positive solution
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of
xs
∂µ(Imax, xs, Ig(0))

∂x
= µ(Imax, xs, Ig(0))−R,

and let Ds defined by:
Ds = µ(Imax, xs, Ig(0))−R.

Then the optimal light control I∗ of the problem (P0) can be written as a feedback control
given by

I∗(x) = min{Imax, Ioptε
−1(x)}, (6.34)

where Iopt is defined as

Iopt =
1

σ(Ig(0))
√

kd
kr
τ
.

Finally, there are four possible forms of the optimal control D∗:

• Constant control at D = Dmax.

• Bang-Bang control with D(0) = 0 and a single switch to D = Dmax.

• Bang-Singular-Bang control with D(0) = 0 if x(0) < xs or D(0) = Dmax if x(0) > xs,
taking place first a single switch to D = Ds and a switch to D = Dmax.

• Singular-Bang control with x(0) = xs, with D = Ds and a single switch to D = Dmax.

Proof. We use the Pontryagin’s maximum principle [114], where we define the Hamiltonian of the
problem (P0) as

H = λx(µ−R−D)x+ xD, (6.35)

where the co-state λx follows the dynamics:

λ̇x = −∂H
∂x

= λx

(
D − ∂µ

∂x
x− µ+R

)
−D. (6.36)

Since the terminal state x(T ) is free, the transversality condition correspond to

λx(T ) = 0. (6.37)

The optimal controls D∗ and I∗ are those maximizing H for almost all t ∈ [0, T ], i.e.,

(D∗(t), I∗(t)) ∈ argmax
D∈[0,Dmax],
I∈[0,Imax].

H(x(t), D, I, λx(t)). (6.38)

First, let us remark that that
λx ≥ 0 ∀t ∈ [0, T ]. (6.39)

From (6.36) we have for every s ∈ (0, T ):

λ̇x(s)− λx(s)

(
D(s)− ∂µ(I(s), x(s), Ig(0))

∂x
x(s)− µ(I(s), x(s), Ig(0)) +R

)
= −D,
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denoting h(s) = D − ∂µ(I(s),x(s),Ig(0))
∂x x(s)− µ(I(s), x(s), Ig(0)) +R, we have for every s < t

d

dt

(
λxe

∫ t
s
h(τ)dτ

)
= −De

∫ t
s
h(τ)dτ .

Then, integrating from s to T :

λx(T )e
∫ T
s
h(τ)dτ − λx(s) = −

∫ T

s

De
∫ t
s
h(τ)dτdt,

and replacing the transversality condition (6.37) in the above:

λx(s) =

∫ T

s

De
∫ t
s
h(τ)dτdt.

Then, as the right hand of the equation is non-negative, λx(s) is also non-negative. Now, we can
determine the value of the optimal control I∗ noting that condition (6.38) together with (6.39) drive
to the equivalent condition:

I∗(t) ∈ argmax
0≤I≤Imax

µ(I, x, Ig(0)). (6.40)

For a given x, µ has a unique maximum in [0,+∞) at Iopt, the solution of (6.40) fulfil the condition

I∗ε(x) = Iopt,

if I∗ < Imax, otherwise I∗ = Imax, giving us the formulation (6.34). Now, For the dilution control
D, from the definition of H (6.35), it is direct that

D∗ =


0 if λx > 1

Ds if λx = 1

Dmax if λx < 1

where Ds is the so-called singular arc which is unknown. As λx is a continuous function, D∗ is
the concatenation of bang and singular arcs. Also, as (6.37) holds, the final arc is always set at
D∗ = Dmax, then if no switch occurs, meaning that λx(t) < 1∀t ∈ [0, T ], the solution is the constant
control D = Dmax.

Let us suppose the existence of a singular arc in [t1, t2], meaning that λx = 1 ∀t ∈ [t1, t2], then,
for every t ∈ (t1, t2):

0 = λ̇x = −∂µ
∂x
x− µ+R.

In this case, if µ−R = 0, ∂µ
∂Iϵ(x) = 0, then, Iε(x) = Iopt, then µmax −R = 0, which contradicts the

hypothesis µmax > R. This proves that I∗ = Imax in the singular arc. Then

0 = −∂µ(Imax, x, Ig(0))

∂x
x− µ(Imax, x, Ig(0)) +R.

Note that x is then constant, as x is the only variable in the above. We will denote its value by xs.
As x is constant in (t1, t2), then ẋ = 0, then for every t ∈ (t1, t2):

Ds = µ(Imax, xs, Ig(0))−R.
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The switching between the different arcs occurs when λx = 1, in this switching time, we have that:

λ̇x = −x∂µ(I
∗, x, Ig(0))
∂x

− µ(I∗, x, Ig(0)) +R,

λ̇x = − ∂

∂x
(x(µ(I∗, x, Ig(0))−R)),

which is non-positive for x ≤ xs and non-negative for x ≥ xs. Then, we can deduce the following:

• If x ≥ xs, no switch is possible from D = 0 to D = Dmax.

• If x ≤ xs, no switch is possible from D = Dmax to D = 0.

We have two scenarios: one where a singular arc exists, and one where it does not.

First case: There is no singular arc. As the last arc is always set at D = Dmax, one possibility is
that no switch happens, then the solution is the constant control D∗ = Dmax. Now, let us suppose
that at least one switch occurs, we want to prove that there is only one. Let us denote by ts the
last switching time, which is from D = 0 to D = Dmax, then x(ts) < xs. If another switching time
occurs before, from D = Dmax to D = 0 at time t = t′s, then x(t′s) > xs, but x(ts) > x(t′s) as ẋ > 0
in (t′s, ts), which contradicts the fact that x(ts) < xs.

Second case: There is a singular arc. We start proving that there is only possible singular
arc. Let us assume that there are two singular arcs (t1, t2) and (t3, t4) with t2 < t3. Remark that
x(t) = xs∀t ∈ (t1, t2) ∪ (t3, t4). There are two cases: a switch in t2 to D = 0 or a switch in t2 to
D = Dmax. If there is a switch to D = 0, then x > xs in (t2, t3) which means that no switch to
Dmax, and therefore x can not take the value xs in (t3, t4), on the other side, if there is a switch to
D = Dmax, then x < xs and no switch to D = 0 can occur, but in the same way, x can not take
the value xs in (t3, t4).

The last arc must be D = Dmax and it is possible to repeat the argument presented in the first
case, to prove that there is no another switch between the singular arc and the last one.

To finish the proof, let us understand what happens before the singular arc. If x(0) > xs and
D(0) = 0, then no switch can take place toDmax, then x is non-decreasing (as we assume x(0) < xc),
then is not possible to reach the value xs of the singular arc. If x(0) > xs, D(0) = Dmax, then a
switch to D = 0 before the singular arc can only occur if x > xs and, for the same reason, x is
non-decreasing and can not achieve the value of the singular arc (we use again that x(0) < xc).
Then if x(0) > xs, D(0) = Dmax. Then, there is one possible arc with D = Dmax. The case
x(0) < xs follows the same argument, and the only possible arc is D = 0. If no other arc is present
before the singular one, it must fulfil the condition x = xs.

6.6 Numerical Investigations
We solve the optimal control problem (Pδ) using the direct sequential method, as implemented

in the software BOCOP [22] with the NLP solver IPOPT [155]. Figure 6.1 displays the results of
the states and the controls with Imax = 1000 µmolm−2s−1, Dmax = 0.001 s−1, and Tf = 20.8 d
together with the corresponding model parameter values. The Bang-Singular-Bang structure is
clearly visible, where in the first arc, the dilution is set to zero to allow the microalgae to growth,
then the singular arc stabilizes the biomass to a certain value that does not depend on the initial
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Figure 6.1: Left: Numerical solution with initial conditions x(0) = 1 and Ig(0) = 200. Red lines:
optimal dilution rate and irradiance controls. Blue lines: optimal biomass concentration and growth
irradiance states. Black dotted lines: value of µ − R (D plot) and approximate feedback control
in Equation (6.45) (I plot). Vertical gray dotted lines: final harvest time Tharv. Blue dotted line:
solution of Equation (6.46). Right: Model parameter values [105].
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condition of the growth irradiance (see Figure 6.2), and finally, as it was predicted in Proposition 6.3
the dilution is set to its maximum value.

The numerical solution confirms the presence of three main arcs in the optimal dilution rate
control, as described in Proposition 6.1. First, the optimal dilution control is set to zero in order
for the biomass to grow at maximal rate, while the optimal irradiance control is chosen to minimize
the effect photoinhibition. Next, the singular arc of dilution is activated, soon after the irradiance
control has reached its maximum value Imax. The final arc is activated around t = Tf − Tharv, as
shown in Proposition 6.3, where the optimal dilution control is set at its maximum value Dmax.
We refine the insight derived form the numerical solution below, with a focus on characterizing the
optimal solution structure and approximating the optimal dilution rate along the singular arc and
the optimal irradiance during the initial growth phase.

6.6.1 Structure of the Optimal Dilution Rate

Since λx is a continuous function and according to Proposition 6.1, the optimal dilution rate
profile is necessarily a concatenation of arcs, either D∗(t) = 0, D∗(t) = Dmax, or D∗(t) = Dsing(t).
Our computational investigations suggest that the structure of the optimal dilution rate follows a
similar pattern presented in [64, Theorem 2], where structures are possible for the optimal dilution
rate:

1. Constant control with D∗(t) = Dmax;

2. Bang-Bang with D∗(t) = 0, and single switch to D∗(t) = Dmax;
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Figure 6.2: Optimal trajectories for the initial concentration x(0) = 1 g L−1 and different initial
growth irradiance Ig(0) = 1000, 600, 400, 200 µmolm−2s−1. The dotted lines represent the solution
of the Equation (6.46), which correspond to the approximation of the optimal biomass.

3. Bang-Singular-Bang with D∗(t) = 0 or D∗(t) = Dmax, a switch to D(t) = Dsing(t), followed
by a single switch to D∗(t) = Dmax.

The presence of the singular arc depends on the final time Tf , where the turnpike property appears;
while the case D∗(t) = 0 or D∗(t) = Dmax in the initial bang of the bang-singular-bang structure
depends on the initial biomass concentration [52]. The analysis of the non-perturbed problem in
the previous section supports this argument. Next, we focus on the more interesting case where Tf
is large enough to trigger the singular arc and the initial biomass concentration is small enough for
D∗(t) = 0 along the first arc. If the singular arc takes place in the interval [t1, t2], then λ̇x = 0 for
every t ∈ (t1, t2). Then, from (6.30) we have:

−Ψ
∂Ī

∂x
= µ−R. (6.41)

Recalling that ∂Ī
∂x is non-positive, and Ψ is also non-negative, we conclude that µ−R ≥ 0. Numerical

simulations show that actually, µ− R > 0, and by consequence I∗ = Imax in the singular arc. We
can always ensure that I∗ = Imax in the singular arc if we assume the existence of a strictly positive
lower bound µ on the growth rate µ that satisfies

µ > R. (6.42)

This condition is common in photobioreactor optimization [91, 18], where it is assumed that mi-
croalgae keep growing when continuously exposed to light. This condition is not easy to establish,
since it depends on the model parameters and on the choice of Imax. However, we can notice that I∗
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is not equal to Imax only if µ = R. This equation has two solutions when R < µmax, one related to
a photolimited condition and in a phoinhibited condition. If we rule out the case when this equality
occurs in photoinhibition conditions (which imposes a condition over Imax), then I∗ < Imax does
not fulfil the condition (6.15).

6.6.2 Approximate Feedback Control on Light Irradiance
The equation (6.26) can be rewritten as

λxx
∂µ

∂Ī
+ δλg

(
∂µ

∂Ī
(Ī − Ig) + µ

)
= 0. (6.43)

Since δ is relatively small, the quantity δλg itself is small enough to approximate its value to zero.
We could confirm this through numerical simulations. Consequently, the optimal average irradiance
Ī∗ can be approximated using Equation (6.25), instead of the complex expression in Equation (6.28):

Ī∗(t) ≈ 1

σ
√

kd
kr
τ
, (6.44)

whenever Ī∗(t) ≤ ϵ(x∗(t), I∗g (t))Imax. The optimal light irradiance control, therefore, can be ap-
proximated using the following closed-loop feedback control law:

Icl(x
∗(t), I∗g (t)) := min

 1

σ(I∗g (t))ϵ(x∗(t), I∗g (t))
√

kd
kr
τ
, Imax

 , (6.45)

Refer to Figure 6.1 for a comparison showing excellent agreement between the feedback control Icl
(black dotted line) and the numerically optimized I∗ (red solid line). Also note that the optimal
control in (6.29) converges pointwise to Icl as δ approaches 0.

6.6.3 Approximate Optimal Biomass Concentration
Numerical simulations show that the biomass concentration x is constant along the singular arc,

suggesting that the optimal dilution rate is adjusted to fulfil the condition Ds = µ − R. Together
with the approximation Ψ ≈ λxx

∂µ
∂Ī

for sufficiently small δ, the optimal biomass concentration
along the singular arc can then be approximated using (6.41) with λx = 1:

−x∂µ
∂x

≈ µ−R. (6.46)

This approximation matches the first-order optimality condition of the unrestricted, static problem
maxx x(µ−R) for a fixed Ig and I = Imax. Refer to Figure 6.1 for a comparison between the solution
to Equation (6.46) (dotted blue line) and the numerically optimized response x∗ (solid blue line).
Moreover, Figure 6.3 shows a plot of the net biomass productivity, defined by (µ(x, Ig) − R)x for
different biomass concentrations x and growth irradiance Ig. This phase diagram illustrates the
turnpike property, whereby a range of optimal trajectories from different initial growth irradiance
(blue solid lines) approach the maximal biomass concentration (black solid line), and ultimately
the maximal net productivity. The same trajectories are shown in Figure 6.2 where it is possible to
see that, after the initial phase initial condition dependent, the dilution rate maintains a biomass
density for which (at maximum irradiance) the average irradiance in the reactor leads to optimal
photoacclimation and maximum growth rate.
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Figure 6.3: Phase diagram of the net biomass productivity (µ(x, Ig) − R)x and turnpike-like be-
havior. Dotted black lines: dynamic trajectories of biomass concentration x and growth irradiance
Ig under the feedback control Icl. Solid black line: maximal biomass concentration in terms of the
growth irradiance Ig. Solid blue lines: selected trajectories from the initial biomass concentration
x(0) = 1 g L−1 and different initial growth irradiance Ig(0) = 1000, 600, 400, 200 µmolm−2s−1.

6.7 Discussion

6.7.1 The effect of Timescales

When considering the fast dynamics of photoinhibition [52] in the growth model, the solution of
the optimal control D follows a turnpike strategy. Here, when accounting for the slower dynamics
of photoacclimation, the turnpike property remains unchanged. Upon combining the rapid protein
damage and recovery dynamics with the gradual adaptation of pigments (photoacclimation), we can
thus anticipate consistent results. However, it is worth noting that in neither of these scenarios can
we formally establish the turnpike property, e.g. using the results in [146], due to the singularity
of the Hessian matrix ∂2H

∂D2 .

6.7.2 Exploiting Self-Shading

One of the key features of the optimal strategy identified when accounting for both photoin-
hibition and photoacclimation relies on exploiting self-shading to enhance the biomass growth by
adjusting the maximal light irradiance into the photobioreactor. Typically, a small inoculum of
microalgae is initially introduced into the photobioreactor. During the initial growth phase, the
irradiance can be carefully adjusted to ensure that the average light intensity does not trigger
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significant photoinhibition. This initial phase of the optimal strategy cannot be applied in photo-
bioreactors that use natural light, unless an external system decreases the irradiance. Throughout
this initial phase, the dilution rate remains at zero. Then, once the optimal irradiance reach its
maximum value and the optimal biomass level is attained, the dilution rate is set to keep this
biomass concentration constant until the final harvesting time is reached.

6.8 Conclusions
We studied the optimal control problem of reactor startup considering photoinhibition, light

gradient in the photobioreactor and photoacclimation dynamics, by combining a formal analysis
with a numerical investigation. The rate of photoacclimation has a dynamics considerably slower
than microalgal growth, dictated by the time-scaling constant δ ≪ 1. This timescale difference
translates into a magnitude difference in the co-states, in turn making it possible to formulate
an approximate close-loop optimal control law for the light irradiance. The optimal dilution rate
presents a more challenging behavior for deriving a feedback control law, since it depends on the
time horizon Tf . However, its value can be approximated along the singular arc, which takes the
values necessary to uphold optimal biomass levels, as it was shown in Figure 6.3, to enhance net
productivity. Once the biomass is dense enough, self-shading enables operating the photobioreactor
using the maximal irradiance to maximize biomass growth and the net productivity. This effect
was previously studied, but only in the scenario where photoinhibition is negligible due to strong
self-shading [57]. Our analysis furthermore remains valid for average irradiance taking the form
of Ī = εI, making the results transportable to other photobioreactor geometries, such as tubular
photobioreactors [96, 62].
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Part III

Neural differential equations for
microalgae modelling and control
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Chapter 7

NeuralODEs for microalgae growth
modelling

7.1 Introduction

Microalgae are commonly cultivated in photobioreactors (PBRs) using solar or artificial light.
These PBRs vary in geometry, size, hydrodynamics, light distribution, CO2 source, and mode of
operation; they can be open, like raceway ponds, or closed systems, like tubular PBRs. Various
factors affect these microorganisms’ growth; therefore, monitoring and predicting the biomass evo-
lution of a microalgae culture in a PBR is a challenging problem, and the system dynamics result
from the complex interplay between species, PBR design, and operational model. The evolution
of microalgal biomass inside a PBR can be modelled using ordinary differential equations, relying
either on kinetic.[19, 120] or data-driven models [54, 126].

The distribution of photons is not uniform inside the PBR due to the self-shading and scattering
caused by the microalgae cells; second, the light distribution is highly dependent on the photobiore-
actor’s geometry. Besides that, a mixing device is always present to ensure the nutrients are evenly
distributed, and hydrodynamics is also a factor.

A perfect mixed bioreactor is one of the most common assumptions in modelling the biomass
evolution of microorganisms such as bacteria or yeast. In the case of microalgae, the mixing affects
the number of photons that each cell perceives. As a strong irradiance gradient is present, a cell
can go from a very bright to a very dark area, affecting the growth rate. The problem is even more
tricky since microalgae adapt to their environment and can modify physiological characteristics such
as pigment quality and quantity, cell size, or other factors influencing growth and light distribution.

Kinetic models within kinetic approaches outline how microalgae respond to the growth-controlling
factor, encompassing variables such as light, temperature, and nutrients [37], neglecting many other
possible influences. Machine and Deep learning can have better prediction and fitting capabilities
than kinetic models since they can indirectly account for many effects that need to be better un-
derstood. However, machine learning models depend heavily on the quality and the number of
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data, which strongly restricts their use [157]. Hybrid modelling has been proposed to offset the
advantages of data-driven-based and kinetic modelling approaches [107]. This method incorporates
neural networks into differential equations to estimate parameters that can change in different situ-
ations. Hybrid models have better interpretability and extrapolation properties. Furthermore, they
are data efficient and do not require large datasets for training [150].

Neural Ordinary Differential Equations (NeuralODEs) [30] were introduced as a continuous
depth neural network, in which the input is continuously transformed in the vector field defined by
the Neural ODE. They are widely employed to solve problems such as image classification, physical
modelling, and continuous normalizing flows. They can learn the dynamics of a differential equation
with its trajectories without estimating the derivative from the data.

This chapter studies two models based on neuralODEs fed by the irradiance perceived by a
soft sensor and temperature, two external factors crucial in a microalgae culture. We implement a
solver based on the Runge-Kutta neural network [151, 101].

7.2 Methods

7.2.1 The general neural ODE model

We consider two types of variables: the internal variables (or state variables) x ∈ Rnx that
evolve in time following a specific ordinary differential equation and the external variables y ∈ Rny

that affect the dynamics of x.

We are interested in the evolution of the variables x, for example, the concentration of microalgal
biomass or the concentration of nutrients inside the photobioreactor. The variables y affect the
evolution of the internal variables; however, they act mainly as data, for example, the light intensity
that illuminates the photobioreactor or the temperature, which is usually controlled.

Let us consider the system:
dx(t)

dt
= fΩ(t,y(t),x(t)), (7.1)

where fΩ : [0,+∞)×Rny ×Rnx is the dynamics of the system, Ω = (θ,ω) are the parameters split
into two types, θ denotes the parameters of a neural network (weights and biases) and ω denotes
the other parameters, not included in the neural network. The parameters contained in ω have a
physical interpretation, but they are not necessarily known, meaning that they need to be tuned to
fit the model to the data; these are the physic-informed parameters.

7.2.2 The integrator cell

Recurrent neural networks (RNNs) are a class of ANN suitable for dynamic systems; they have
been used successfully to deal with dynamic systems problems [8]. In addition, RNN handles the
sequence of inputs which can be of any length. As in [148], to solve the equation (7.1), we implement
an RNN where the hidden state is the numerical solution given by a Runge-Kutta scheme [117]
which is usually called Runge-Kutta RNNs [100, 151]. Any explicit Runge-Kutta method applied
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to the equation (7.1) can be described as

xn+1 = xn +∆tn

s∑
i=1

biki,

k1 = fΩ(tn,yn,xn),

k2 = fΩ(tn + c2∆tn,yn + c2∆yn,xn + (a21k1)∆tn),

k3 = fΩ(tn + c3∆tn,yn + c3∆yn,xn + (a31k1

+ a32k2)∆tn),

...
ks = fΩ(tn + cs∆tn,yn + cs∆yn,xn + (as1k1

+ as2k2 + · · ·+ as,s−1ks−1)∆tn).

(7.2)

where (tn)n is a discretization of the time window [0, Tf ], ∆tn = tn+1 − tn, ∆yn = yn+1 − yn, s
denotes the number of stages, and the coefficients (aij)1≤j<i≤s, (bi)si=1 and (ci)

s
i=2 are fixed and

determine the method. The Runge-Kutta Neural Network is illustrated in figure 7.1.

Figure 7.1: The integrator cell corresponds to an explicit Runge-Kutta method implemented as
a recurrent neural network. The collection of all the hidden states corresponds to the numerical
solution of the equation (7.2).

7.2.3 Training the model
Let us consider the loss function

L(Ω) =

∫ Tf

0

g(x(t), x̂(t))dt,
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where Tf is the time horizon and g is a smooth function that takes into account the difference
between the predictions of the model and the data, in our case we use g = (x − x̂)2, with x̂ the
training data.

To train the parameters Ω of the model, we use a gradient-descent type algorithm with automatic
differentiation and the backpropagation algorithm [153]. We present two methods: the direct one,
where backpropagation is applied to the internal operations of the solver of the equation (7.1), and
the adjoint method, which computes the gradient of the loss function based on the Lagrangian
multipliers of the minimization problem.

7.2.4 Sensitivity equations
Given a loss function L(Ω) between the solution of equation (7.1). For the optimization (or

learning) process, it is necessary to compute the gradient:

∂L

∂Ω
=
∂L

∂x

∂x

∂Ω
,

where, assuming that the solution of (7.1) is C2, we have:

d

dt

(
∂x

∂Ω

)
=
∂fΩ
∂x

∂x

∂Ω
+
∂fΩ
∂Ω

, (7.3)

which are the so-called sensitivity equations. As the initial condition x(t = 0) is independent of the
parameters Ω, the initial condition of equation (7.3) is always zero. This equation was solved to
train early hybrid models [119, 131, 58] applied to biotechnology. In practice, these equations are
not solved directly because the number of equations is the number of parameters. As any forward
Runge-Kutta method is composed of successive evaluations of a linear combination of the function
fΩ, we can prove that the sensitivity equations are solved through backpropagation. Considering
the interpolation of the external variables y, the proof is presented in Appendix 1.

7.2.5 Direct method
Employing backpropagation in the internal operations of the solver is called Direct method,

and we resume the method in the Algorithm 1. The numerical scheme is attached to the directed
acyclic graph (DAG) used to implement automatic differentiation (AD) when the backpropagation
algorithm is called, which implies that memory usage increases. The most significant benefit of this
model is that it is easy to implement. The number of gradients ∂fΩ

∂x computed is in the order of
sNT , where NT is the number of time steps and s the order of the Runge-Kutta method. This is
not suitable if deep architectures or higher-order solvers are considered.

7.2.6 Adjoint method
The adjoint method is another way to avoid the computation of the gradients ∂x

∂Ω whose com-
plexity scales with the number of parameters of the model, i.e., the weights and the biases of the
neural network and the physical parameters. In this case, we solve a differential equation whose
dimension is equal to nx following the next result:
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Algorithm 1 Direct Method
Require: n_epochs.

for i in range(n_epochs) do
Solve forward ẋ(t) = fΩ(t,y(t),x(t)).
Compute loss L(x,Ω).
Compute ∂L

∂Ω using backpropagation.
Make gradient descent step.

end for

Proposition 7.1

Assuming that the solution x of the equation (7.1) is C2 (for example, if the dynamics fΩ is
C1). The gradient of the loss function is given by

∂L(Ω)

∂Ω
=

∫ Tf

0

λ⊺(t)
∂fΩ(t,y(t),x(t))

∂Ω
dt, (7.4)

where λ⊺ is the solution of the equation:
dλ⊺

dt
= −λ⊺ ∂fΩ

∂x
− ∂g

∂x
,

λ⊺(Tf ) = 0.
(7.5)

Proposition 7.1 allows us to compute the gradient of the loss function without backpropagation
on the integrator cell, which is expensive for higher-order methods or large time series. Based on
this proposition, the training method is resumed in Algorithm 2. For the sake of completeness, we
present this method using the Lagrangian theory [114] in B.2.

This method offers some advantages compared with direct backpropagation in the integral cell.
First, the solution x must not be computed with the directed acyclic graph (DAG) employed for
automatic differentiation (AD). Then, the gradients ∂fΩ

∂x and ∂g
∂x can be computed using AD with

the solution x detached from the DAG. This implies that the amount of gradient computed does
not scale with the order of the numerical scheme used.

One disadvantage is the accumulation of numerical discretization errors. To solve numerically
the backward equation (7.5), the starting point is the value of x(Tf ), which already has a numerical
error associated with it from solving the forward equation (7.1).

7.2.7 Description of the dataset

The microalgae Phaeodactylum tricornutum UTEX 640 was cultivated for about 60 days under
natural light in five 180L flat-panel airlift (FPA) photobioreactor from the company Subitec® [138]
in a greenhouse in Leuna, Germany, from July to September 2015 (see Figure 7.4). The temperature,
pH level, and substrate feeding of the FPA-PBRs were controlled by Siemens programmable logic

115



Algorithm 2 Adjoint Method
Require: n_epochs.

for i in range(n_epochs) do
Solve forward ẋ(t) = fΩ(t,y(t),x(t)).
Solve backward λ̇⊺ + λ⊺ ∂fΩ

∂x + ∂g
∂x = 0.

Compute ∂L(x,Ω)
∂Ω =

∫ Tf

0
λ⊺(t)∂fΩ∂Ω dt.

Make gradient descent step.
end for

Figure 7.2: Illustration of the cropping process for data augmentation. The first batch is obtained
from the first C data points; the second batch selects the C data points after a stride S starting
from the initial point; the third one corresponds to the C data points after twice S from the initial
point, and so on the following ones. The last C data points are also added. Then the sequence
is split into batches of the same length C, covering all the original time vectors. Then the small
batches are used to train the model solving equation (7.1) with the respective initial condition.

controller (PLC units). The culture was carried out in a repeated-batch manner using a modified
Mann and Myers medium [88].

Temperature and pH were maintained controlled at 20 ± 1 ◦C and 7.3 ± 0.1 , respectively.
Across all the cultivation, additional ammonium and phosphate solutions were introduced as nu-
tritional sources, and nutrients are not considered as limiting factors (nutrients do not affect the
evolution of the biomass). The online measurements were recorded every 10 minutes. A turbidity
sensor was used to measure the biomass concentration. An LI-190R Quantum sensor measured the
Photosynthetically Active Radiation (PAR), which is the light intensity. The data is illustrated in
Figure 7.3.

In a batch PBR, the reactor is filled with the nutrient media and the microorganisms are
introduced; after some time, the biomass is harvested; during this period, no nutrients are added.
In this case, the biomass inside the PBR, denoted with x, follows the growth equation.:

dx

dt
= µx, (7.6)
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Figure 7.3: Measured biomass, irradiance, and temperature for batch cultivation of Phaeodactylum
tricornutum in a flat-panel airlift photobioreactor.

7.2.8 Data augmentation and mini-batch training

Effectively training neural networks is commonly a challenging task that encounters several
problems. Mini-batch training strongly influences the optimization performance [135]. Also, data
augmentation can be a determinant for successfully training models for solving time series-related
tasks [152]. Considering the theorem of existence and uniqueness of solutions of ordinary differential
equations, the natural data augmentation technique consists of cropping the time window of the
time series. The differential equation (7.1) is solved using the new initial condition (the starting
point of the cropped sequence).

Let us consider one time-serie denoted by (ti, ŷi, x̂i)
N
i=0. We choose two numbers, the crop size

C ≤ N and the stride S. From the same time series we generate a sequence of smaller batches, all
of them with the same size C as (ti, ŷi, x̂i)C−1

i=0 , (ti, ŷi, x̂i)C+S−1
i=S , (ti, ŷi, ... , (ti, ŷi, x̂i)C+rS−1

i=rS , with
the condition C + (r + 1)S − 1 > N , where r is the number of strides of size S that we can make.
Also, we add the end of the time series, including the sequence (ti, ŷi, x̂i)

N
i=N−C−1. Eventually, it

results in a total of r + 1 mini-batches extracted from a one-time series. This process is repeated
for every time series. We illustrate the process in Figure 7.2.
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Name t0 [day] tf [day] Data points
Batch 1 5.66 25.71 2889
Batch 2 27.54 39.08 1664
Batch 3 40.15 46.36 897
Batch 4 48.01 53.51 793
Batch 5 54.34 62.39 1161

Table 7.1: Details of the dataset.

Figure 7.4: Flat panel photobioreactor where the microalgae were cultivated.

7.2.9 First model: NN as growth function

We assume that the biomass x in the photobioreactor follows the growth equation:

dx

dt
= µθ(I, T, x)x, (7.7)

where µ corresponds to the output of an artificial neural network. This is the simplest model
for microorganisms. Using the change of variable z = ln(x), we have that equation (7.7) can be
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rewritten as
dz

dt
= µθ(I, T, z).

Time integration

Prediction

Figure 7.5: Schematic representation of the model (7.7) using a neural network composed of two
hidden layers.

We use a NN with three hidden layers, five nodes each. The crop size C = 700, stride S = 100,
and batch size equal to 5. Using the Adam optimizer [80] with 3000 epochs, and the MultiStepLR
learning rate scheduler implemented in PyTorch, starting with a learning rate of 0.01, multiplied
by the coefficient γ = 0.3 in the milestones [600, 1200, 2500].
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Figure 7.6: Predictions of the Model 7.7 in black. Training set in blue, test set in green.

7.2.10 Second model: Using NNs to correct bias of kinetic model

Some parameters during cultivation can be regulated, such as temperature, which does not vary
significantly (see Figure 7.3). For the second model, we start from a kinetic one that describes the
influences of the light using a Monod-like function and the averaged irradiance inside the photo-
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bioreactor [14] assuming that the geometry is completely flat and the light penetrates perpendicular
to the surface of the PBR. This model is given by the equation:

dx

dt
= gω(I, x) =

µmax

kxbL
ln

(
I +KI

Ie−kxbL +KI

)
x−Rx, (7.8)

where R is the specific maintenance rate, µmax the maximal growth rate, KI the half saturation
rate of irradiance, L the depth of the PBR, k and b two constants for the light gradient. In this
case, ω = (µmax, k, b,KI , R) are the physical parameters of the model. These parameters are also
trained using gradient descend methods. In this case, the kinetic model is only driven by light,
which has a much greater influence than temperature on the growth rate. More details about this
model can be found in B.3. This model is trained in a first step using also a gradient descend
algorithm. Then a neural network denoted by εθ is added to the dynamics as follows:

dx

dt
= gω(I, x) + εθ(I, T, x), (7.9)

where θ represents the parameters (weights and biases) of the neural network. The objective of
this NN is to bridge the gap between the pure mechanistic model (the same equation without the
output of the NN) and the data. This process of two-step training is needed due to the difference
of scales of the gradients ∂L

∂ω and ∂L
∂θ [79].

Time integration

Prediction

Figure 7.7: Schematic representation of the model (7.8), where the neural network is turned off,
and the model (7.9), where the neural network is trained after fixing the physical parameters ω.

The NN εθ contains 2 hidden layers, each containing 5 nodes. We use the same data loader
with C = 700 and S = 100. For both training steps, we use the same learning scheduler as in the
example one but with different γ = 0.2.

7.2.11 Implementation in other libraries
In this section, we discuss how to implement the model using a well-known package in the

machine learning community. Torchdyn [113] is a library dedicated to neural differential equations,
based on the model:

dx(t)

dt
= fΩ(t,x(t)).

In our case, the data presented in Figure 7.3 is composed by 5 different batches. Each of these
batches presents different light and temperature regimes, then we have 5 different non-autonomous
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Figure 7.8: The continuous black line and the continuous red line correspond to the predictions of
the model (7.8) and model (7.9) respectively. Train set is coloured in blue and the test set in green.
The details of the error of each batch is shown in Table 7.3.

dynamics. To train the growth function µθ of the model (7.7), using the package torchdyn [113],
we define for each i = 1, .., 5, a neuralODE as

dx

dt
= µθ(I

i(t), T i(t), x(t))x(t) for t ∈ (ti0, t
i
f ), (7.10)

where Ii, T i are the functions defining the light and temperature from the instance ti0 and tif for
the i batch. We call equation (7.10) a BatchNeuralODE.

The function Ii and T i are computed interpolating the data of light and temperature over time.
All BatchNeuralODE share the same growth function µ. Then, for each batch, mini-batch training
is possible using sub-intervals of its time interval [ti0, tif ].

7.2.12 Comparison with a Support Vector Regression approach
Support Vector Regression (SVR) is a classical machine learning algorithm that can be applied

to linear and nonlinear regression problems [136]. In a previous work [156], using the same data
set, an SVR approach was used with 12-h of light history data, which correspond to 72 data points
(see Figure 7.3 and Table 7.1). The regression was carried out using a nonlinear Gaussian kernel
and a kernel scale set at 2.2. The input data underwent standardization, where each feature was
scaled using its mean and standard deviation. The training process involved one batch, while four
batches were utilized for evaluation. The growth rate µ in equation (7.6) is replaced by the SVR
model and then trained using the discrete difference of the biomass.

Our approach does not consider the previous 12 hours of light and aims to predict the growth
rate based on the actual light intensity. Additionally, while [156] incorporated various filtering
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techniques, such as Gaussian filtering. In the models presented here, there is no necessity to smooth
the data, but it can be easily integrated. The comparative analysis between the SVR approach and
the three models across different factors is presented in 7.2. Furthermore, 7.3 illustrates the varying
performance of both models across different batches and model iterations.

Factor SVR Models (7.7),(7.8) & (7.9)
Input Utilized past 12 hours of light in-

tensity data
Instant light intensity

Preprocessing Gaussian filtering technique No preprocessing
Train test ratio 1 Batch for training 3 batches for training

Table 7.2: The comparison of SVR and the hybrid model in terms of various factors

7.3 Results and Discussions

The models are compared using the root mean squared error (RMSE) between their predictions
and the real measurements from the turbidity sensor, and is calculated batch by batch as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2.

Also, we compared the error in percentage computed as

Percentage error = 100 · 1

N

N∑
i=1

|xi − x̂i|
x̂i

.

The results are resumed in Table 7.3, where the error is computed for each batch of the experi-
ment. The predictions of the first model (7.7), represented in black in Figure 7.5, have an error of
less than 1% in each batch. However, the model cannot predict negative values of the derivate at
the beginning of the first batch. It has, on average, a good performance, but from the biological
point of view, there is a phenomenon that is not that it fails to identify on its own, known as
respiration or maintenance rate. During the night, microalgae lose biomass through respiration.
This phenomenon is imposed in model (7.8) and (7.9).

The fully kinetic model (7.9) is trained successfully with the ADAM algorithm; no constraints
were imposed for the optimization process. Nevertheless, the values of the parameters ω obtained
were in the range of the literature. The model (7.9) appears after adding and training the neural
network εθ, whose predictions are represented with red lines. The error is reduced in the training
set and increases in the testing set. This overfitting can be caused by the low influence of the
temperature, which is controlled and almost constant, except for the third batch, which had a drop
in temperature on two consecutive days.

As the kinetic model does not consider temperature and the neural network does, the latter
forces the dynamics to accommodate this temperature change by improving the prediction on the
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third batch. But at the same time, as is controlled, including temperature in the model also drives
overfitting.

To compare the models presented here, a Support Vector Regression (SVR) based soft sensor
was developed to compare the performance with the Hybrid model. The RMSE and the percentage
error are reported in the Table 7.3

Model Training dataset Test dataset
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

(7.7) 0.012 0.015 0.020 0.015 0.019

RMSE
(7.8) 0.086 0.067 0.186 0.078 0.140
(7.9) 0.077 0.078 0.089 0.215 0.209
SVR 0.021 0.093 0.054 0.05 0.078
(7.7) 0.700 0.827 0.978 0.745 0.986

Percentage
(7.8) 1.345 1.146 2.896 1.258 2.087
(7.9) 1.408 1.296 1.316 3.412 3.028
SVR 1.23 1.29 1.23 1 1.02

Table 7.3: RSME and the percentage error of the models in every batch of the dataset.

7.4 Conclusions
NeuralODEs are efficient in monitoring biomass evolution inside a photobioreactor. Two mod-

els, including neural networks, were tested; the first one (7.7) represents the growth rate of the
microalgae by a neural network, and the second one (7.9) uses a neural network to correct the bias
of a kinetic model (7.8) based on the literature.

The models were implemented in the integrator cell described in Section 7.2.2, which includes
data interpolation while solving the differential equations in batch. For completeness, we present
the theory of the gradient computations. In addition, we give the directions to implement the model
using Torchdyn, the state-of-the-art library for solving neuralODEs problems.

Standard techniques for training neural networks were used as mini-batch training and imple-
menting learning rate schedulers. The mini-batch training is enabled by cropping the data from
the batches used. In the case of the model (7.9), a two-step training was used to ensure the kinetic
model’s interpretability. The accuracy is comparable with other machine learning models.

This type of models results to be suitable for the modelling of biomass evolution within a
photobioreactor due to the large amount of factors that influence the growth rate. Different and
complex photobioreactors geometries make it difficult to model microalgae growth. The method
presented here can be very useful for bioprocesses that need rapid monitoring, which is carried out
with sensors that often have to be constantly recalibrated (as for light sensors).
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Chapter 8

Solving optimal control problems
using neural differential equations

8.1 Introduction

After the development of neuralODEs [30] and PINNs [121], a new variety of models have
been emerged. These types of models are gray boxes that mix the (physic, chemical, biologic)
interpretation with the adaptive ability of artificial neural networks. While physical (chemical, or
biological) laws can be written in the form of differential equations, some parts of these equations
are not easy to identify, where artificial neural networks can act as functions that can recognize
such components by offering more interpretation than the mere use of a pure machine learning
method. This is an identification or modelling problem. But we can also use the artificial neural
networks to study optimization problems. In this chapter, we focus on the connection between
optimal control problems and neural networks. Recently, the use of neural networks to solve optimal
control problems have attracted the attention of the control community [48, 12, 31, 112], but few
papers discuss the solutions offered by neural networks when used as controls for dynamic systems.

Non-linear optimal control problems arise in various fields, including engineering, economics,
biology, etc. There are many techniques to tackle this type of problem. For example, Pontryagin’s
maximum principle (PMP) is a tool that provides necessary conditions of optimality based in
the co-states of the system. Regarding artificial neural networks in control problems, different
strategies have been proposed in the literature to solve optimal control problems with them, and
they depend on how the neural network is used. For example, an error function can contain PMP
conditions [48, 47] and then be minimized, or we can approximate the solution of the Hamilton-
Jacobi-Bellman (HJB) differential equation using a base of neural networks [32]. Another more
recent approach involves approximating the solution of HJB equation with a PINNs approach,
where the cost function contains the discretized scheme for solving the differential equations of the
HJB equations [129, 130].

Solving optimal control problems with neural networks can be classified as Parameterization
methods. Based on their popular ability of universal approximator, several results can be found
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in the literature involving neural methods [93, 128, 147]. The comparison between the solution
provided by a neural network and the actual optimal control identified with an analytic approach
such as the PMP has rarely been studied, especially when the structure of the optimal solution is
discontinuous, as in the case of singular controls.

In this chapter, we study the case where the control of the systems is replaced by an artificial
neural network, also called neural control. In this case, it is possible to establish a relation between
the PMP conditions and the training of the neural control [23]. This relationship is shown when
the gradient of the parameters of the neural control is computed via variational methods [12].

8.2 Materials and methods
We consider the following optimal control problem with free final conditions and fixed time

horizon:

min
u∈U

J[0,T ](u) =
∫ T

0

g(t, z(t),u(t))dt,

subject to ż(t) = f(t, z(t),u(t)),
z(0) = z0,

(P )

where T > 0 is fixed, z(t) ∈ Rn is the state vector with the initial condition z0 ∈ Rn, u ∈ Rm is
the control vector, f and g are assumed to be C1 from R1+n+m to Rn. U corresponds to the set of
admissible controls defined as

U = L∞
loc([0,+∞), C),

i.e., the set of locally integrable functions on every compact set in [0,∞) that take values in the
compact set C ⊂ Rm defined as

C =

m∏
j=1

[aj , bj ],

where ai, bi are the lower and upper bounds of ui.

8.2.1 Bounded neural controls

A simple way to include the box constrains is using the squashing function α in the last layer of
the architecture of the neural network [89, 142]. More precisely, let consider the feedforward neural
network defined as follows. Denote d1, ..., dL the dimensions of the layers, θ = (W1, b1, ...,Wl, bl) the
weights, and the biases, where Wl ∈ Rdl×dl and bl ∈ Rdl . To be compatible with the optimal control
problem, the input dimension is d1 = 1 and the output dimension is dL = m. Also, σl l = 1, ..., L
are the activation functions (as sigmoid, linear or ReLU) acting componentwise. The input layer
has dimension one (corresponding to the time), and the output layer has dimension m. The last
activation function is replaced by σL = α, where α is defined as:

α : Rm → Rm

θ =

 θ1
...
vm

 7→ α(θ) =

 (b1 − a1)σ(θ1) + a1
...

(bm − am)σ(θm) + am

 .
(8.1)
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Finally, a neural control uθ can be defined as:

uθ(t) = α(WLσL−1(. . .W2σ1(W1t+ b1) + b2 . . .) + bL), (8.2)

We represent this model in Figure 8.1. The box constraints are imposed in the last layer of the
architecture of the neural network, the resulting constrained control will approximate the optimal
solution of the problem:

Figure 8.1: Scheme of the neural control with a squashing activation function. The output layer,
that we call Squashing Layer is key to introduce the constraints of the optimal control problem.

When the control u is replaced by the parameterized control uθ, we obtain the Neural Optimal
Control Problem as

inf
θ∈Rp

J[0,T ](θ) =

∫ T

0

g(t, zθ(t),uθ(t))dt,

s.t.żθ(t) = f(t, zθ(t),uθ(t)),
zθ(0) = z0,

(PNN)

where Rp is the set of all possible parameters of the neural network. We cannot assure the existence
of function minimizers, that’s why we don’t write the problem as min J(θ). We will denote v ∈ Rm
the input of the squashing activation function, i.e., we write v as

v(t) =WLσL−1(. . .W2σ1(W1t+ b1) + b2 . . .) + bL

Then, we have that
vj(t) → ∞ ⇔ uθ,j(t) → bj , (8.3)

and
vj(t) → −∞ ⇔ uθ,j(t) → aj . (8.4)

Another way that can be used to bound a neural network is to clip the neural network into the
box C. We can consider a neural network vθ, with parameters θ and output dimension m, and
define the neural control ucθ as follows

[ucθ(t)]j = min(max([vθ(t)]j , aj), bj).
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Figure 8.2: Scheme of the forward pass of the model and the two types of backward pass: the
variational, solving the adjoint equation backward in time, and the direct one, where the backprop-
agation algorithm acts in the internal operations of the numerical solver.

However, the following problem exists: when the values of the neural network are larger or smaller
than the bounds of the control, the gradients of the neural control ucθ with respect to the parameters
are zero. In practice, this lead to two problems:

• The initialization of the parameters. The weights and the bias of the neural network vθ must
be set in such a way that the initial guesses are inside the box C.

• At any point of the training, a large weight (or bias) update can push the output of the neural
network vθ outside the box C. This weight (or bias) will be frozen for the next steps of the
optimization, affecting the ability to predict other values.

8.2.2 Gradient properties
Proposition 8.1

The gradient of the cost function J[0,T ](uθ) with respect to the parameters θ is such that

∂J[0,T ](θ)

∂θ
=

∫ T

0

hθ(t)
∂uθ(t)
∂θ

dt, (8.5)
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where hθ(t) is defined for every t ∈ [0, T ] as

hθ(t) = λTθ
∂f(t, zθ(t),uθ(t))

∂u
+
∂g(t, zθ(t),uθ(t))

∂u
,

with λθ being the solution of the equation λ̇Tθ = −λTθ
∂f(t, zθ(t),uθ(t))

∂z
− ∂g(t, zθ(t),uθ(t))

∂z
,

λθ(T ) = 0.
(8.6)

The details of how to derive the equation (8.6) are presented in Appendix C. If we consider the
neural control given by (8.2), the gradient uθ

∂θ is such that:

uθ,j(t)
∂θ

=
(bj − α(v)j)(α(v)j − ab)

(bj − aj)

∂vj(t)

∂θ
.

Combining with (8.3) and (8.4), we have, for every t ∈ (0, T ):

uθ,j → bj ⇒
uθ,j
∂θ

→ 0, (8.7)

and
uθ,j → aj ⇒

uθ,j
∂θ

→ 0. (8.8)

Then we have that:
uθ,j → aj ⇒ hθ(t)

∂uθ(t)
∂θ

→ 0,

and also
uθ,j → bj ⇒ hθ(t)

∂uθ(t)
∂θ

→ 0.

If there exists a sequence of parameters θk such that uθk → u∗, then

hθk(t) → 0 ∀t ∈ [0, T ],

which, by the dominated convergence theorem, it implies that

∂J[0,T ](θ
k)

∂θ
→ 0.

8.2.3 Numerical computation of the gradient
There are several ways to compute the gradient numerically. Here we make the difference

between two methods:
Direct methods: The internal operations of the numerical method to solve the ODE are tracked
in the directed graph of the automatic differentiation, then the gradient is computed using the
backpropagation algorithm [153].
Variational methods: The gradient is computed using variational methods. An adjoint equation
is solved, for example, Equation (8.6) is solved backward in time, i.e., it is solved using the solution
zθ(t) computed in the forward pass, and the final condition λθ(T ) = 0. Then the gradient is
computed using the identity (8.5).
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8.3 Numerical Examples

8.3.1 A solver for Mayer problems
In order to write a solver for any optimal control problem, we convert the Lagrange prob-

lem (PNN) into a Mayer problem (PMayer). This allows to write a simpler cost function.

min
u∈U

J[0,T ](u) = l(T ),

subject to ż(t) = f(t, z(t),u(t)),

l̇(t) = g(t, z(t),u(t)),
(z(0), l(0)) = (z0, 0)

(PMayer)

The package TorchDyn [113] is a neural differetial equations library that contains a variety of
continuous-depth models. The computation of the gradient via direct method and adjoint methods
are implemented, and they can be set using the ODEProblem class. The class OCP, described in
Listing D.3, is an example of how to solve the optimal control problem using a gradient-based
algorithm. This class needs the controlled dynamics f(t, z,u) written as a nn.Module from Torch,
the initial conditions z0, the cost function l(T ) written as a function of the last value of the state
z(T ), the final time Tf , the control uθ which is previously set as a non-trained neural control.

8.3.2 A two hidden layers neural control
We write a neural control class consisting with two hidden layers and the squashing activation

function in Listing D.1. The input of the neural control is one dimensional (corresponding to the
time dimension). The object TwoHidden is constructed to receive as an input the box constraints.
The squashing function described in Equation (8.1) corresponds to the function alpha.

8.3.3 Example 1: Simple Bang-Bang optimal control
We consider a single population x that grows exponentially at a growth rate µ, in a chemostat

with dilution rate D (ratio of the renewable rate to the reactor volume). The population evolves
following the equation

ẋ = µx−Dx,

where x denotes the concentration of microorganisms and, the harvesting rate is determined by the
dilution rate D. The biomass harvesting rate is V Dx (where V is the chemostat volume). The
total harvested population during the operation period [0, T ] corresponds to

V

∫ T

0

D(t)x(t)dt. (8.9)

As the volume V is considered as constant, the optimal problem, optimize (8.9) is equivalent to the
problem

max
D∈L∞

loc([0,T ],[0,Dmax])
J[0,T ](D) =

∫ T

0

xDdt

s.t. ẋ = (µ−D)x,

x(0) = x0,

(8.10)
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where Dmax is a positive constant. Considering a constant growth rate, the optimal control prob-
lem (8.10) has a solution given by Proposition 8.2

Proposition 8.2

The solution D∗ of the problem (8.10) is given by

D∗(t) =

{
Dmax if t > ts,

0 if t ≤ ts,
(8.11)

where
th =

ln(Dmax/µ)

Dmax − µ
; ts = T − th,

and, consequently, the optimal trajectory is given by:

x∗(t) =

{
x0e

µt if t ≥ ts

x0e
µtse−(Dmax−µ)t if t > ts

(8.12)

and the value of the cost function is:

J[0,T ](D
∗) =

x0Dmaxe
µts(1− e−(Dmax−µ)th)
Dmax − µ

. (8.13)

The proof of Proposition 8.2 is given in Appendix D.1.

Figure 8.3: Example 1. Dashed line: theoretical solution. Continuous line: the solution given by
Dw,b after 10000 iterations.

The simplest single layer neural network with a sigmoid activation function is

Dw,b(t) = Dmaxσ(wt+ b), (8.14)

where w, b ∈ R are the parameters. For any set of parameters w, b, it is possible to solve the
equation with the neural control (8.14), this solution is given in the next proposition:
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(a) The loss function J[0,T ](Dw,b). The black line
correspond to the line b = −wts.

(b) Level set of the loss function J[0,T ](Dw,b) com-
puted with Equation (8.17). The red line correspond
to the curve −b

w
= ts. The black dots represent the

parameters every 1000 steps of the training.

Figure 8.4: Example 1. Loss function J[0,T ](Dw,b) as a function of the parameters (w, b) together
with the evolution of the parameters in the training process. The training process was carried out
using the Adam optimization algorithm in 10000 epochs using a constant learning rate of 0.1

Proposition 8.3

The solution of the system {
ẋ = (µ−Dw,t)x,

x(0) = x0,
(8.15)

can be written as

xw,b(t) = x0e
µt

(
1 + ewt+b

1 + eb

)−Dmax
w

, (8.16)

and, consequently, the loss function is given by

J[0,T ](Dw,b) = x0 − x0e
µT

(
1 + ewT+b

1 + eb

)−Dmax
w

+ x0µ

∫ T

0

eµt
(
1 + ewt+b

1 + eb

)−Dmax
w

dt.

(8.17)
Furthermore, setting b = −wts, the solution xw,b converges to x∗ pointwise as w → ∞.

The proof can be found in Appendix D.2. Proposition 8.3 shows that the solution offered by the
neural control is able to approximate the solution of the optimal control (8.11). Figure 8.3 shows
the results after 10000 iterations of the method. The same order of iterations was reported for
controlling a two-dimensional system in [23, 24]. Table 8.1 shows the time needed to compute 1000
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Time steps ∆t
Euler ODE solver

Direct method Adjoint method
100 0.05 18.72 (s) 57.65 (s)
1000 0.005 3.22 (min) 9.14 (min)
10000 0.0005 50.42 (min) 1.71 (hrs)

Time steps ∆t
Runge-Kutta 4 ODE solver

Direct method Adjoint method
100 0.05 1.10 (min) 2.29 (min)
1000 0.005 13.85 (min) 22.52 (min)
10000 0.0005 2.99 (hrs) 4.07 (hrs)

Time steps ∆t
Dormand-Prince ODE solver

Direct method Adjoint method
100 0.05 2.37 (min) 7.93 (min)
1000 0.005 27.16 (min) 47.01 (min)
10000 0.0005 10.82 (hrs) 7.98 (hrs)

Table 8.1: Example 1. Computation times to solve problem (8.10). Time required to compute
1000 iterations of the Adam algorithm at constant learning rate of 0.1 for different ODE solvers
with different number of time steps considering. To compute the total time (a solution with 10000
epochs), the time should multiply by 10. The numerical tests were run on a computer with an Intel
Core i7-12700H using, 16GB RAM.

iterations of the training process with different ODE solvers, different time steps discretization
(using constant steps), and using either a direct method (autograd option) or an adjoint method
(adjoint option) to compute the gradient of the neuralODE implemented in TorchDyn. A good
solution, as the one presented in Figure 8.3, needs in the order of 10000 iterations of Adam algorithm.
In order to compare the computational time for different numerical scheme implemented in the
TorchDyn package, we only run 1000 iterations of Adam algorithm. The solution presented in
Figure 8.3 was computed using a simple Euler scheme with 100 time steps, whose computation
time is around 0.018 s per iteration and a total time of 3.12 mins.

A higher order solver takes more time, as well as increasing the number of time-steps. The
adjoint method of TorchDyn considerably increases computation time in all the cases presented in
this example. The time computation of the adjoint method is highly influenced by the way the
solution of the adjoint equation is computed within the package TorchDyn. A backward solver is not
implemented in this library, instead, to solve the backward equation, a new forward solver object
is created in every time step starting from the final value.

The chosen neural control (8.14) has two parameters, then it is possible to show the cost function
as a two-dimensional function (see Figure 8.4). The values of the trained parameters moves along
the curve Γ = {(w, b) ∈ R2 : −b/w = ts} without known explicitly the value of ts. In theory,
the gradient is never zero, but the cost function is very flat when following the curve Γ, then
optimization gets slower and slower.
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8.3.4 Example 2: the double integrator
We illustrate the use of the neural controls with the simple problem of controlling the double

integrator with minimization of the energy [26]. This problem is in dimension 2.

min x3(Tf = 5)

ẋ1(t) = x2(t),

ẋ2(t) = u(t),

ẋ3(t) =
x21 + x22

2
,

u(t) ∈ [−1, 1],

(x1(0), x2(0), x3(0)) = (0, 1, 0).

(8.18)

The Python code for the controlled system (8.18) together with the cost function, the initial con-
ditions and the bounds of the control are written in Listing D.4.

Figure 8.5: Example 2. Solutions of the neural controls compared with the solution proposed
in [26] shown as a segmented line. The neural solutions are shown as solid lines. The same neural
network is bounded in three different ways. Left: the neural network bounded with a squashing
function (8.20). Center: the neural network clipped to the bounds of the control (8.21). Right:
the neural network is bounded with a sin function (8.22).

We test three approaches to bound a neural network. Let vθ the neural network

vθ(t) =W3σ(W2(σ(W1t+ b1)b2)) + b3, (8.19)

where W1 ∈ Rh×1, b1 ∈ , W2 ∈ Rd×d, b2 ∈ Rd, W3 ∈ Rd×m, b3 ∈ Rm. In this case, the dimension
of the control is m = 1, and the bounds are a = −1, and b = 1. The neural network vθ is composed
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by two hidden layers with dimension d. For the numerical test, we choose d = 100. Based on this
neural network, we analyze the solution given by three neural controls, the first one considering the
squashing output function α described by (8.1), which is denoted by1

uθ = 2σ(vθ)− 1. (8.20)

The second neural control clips the output of the neural network vθ and it is denoted by

ucθ = min(max(vθ,−1), 1). (8.21)

The third neural control uses a sin function, and it is defined as

usinθ = sin(vθ). (8.22)

The training results of the two controls are quite different. Both are presented in Figure 8.5.
The neural control (8.20) (in continuous line), does not perfectly approximate the optimal control
(in dashed line), but a similar one is founded. On the other side, the neural control (8.21) has a
different behavior. The neural control (8.21) is far from approximating the optimal control. This
is because it has many gradients that are exactly zero. Note that the results of the second neural
control are very close to a Bang-Bang solution.

Figure 8.6: Example 2. Cost function over the iterations of the ADAM algorithm. Continuous
line: the neural control (8.20). Dash-dotted line: the neural control (8.21) Gray dashed line: the
neural control (8.22). Dotted line: the loss function reported in [26].

1Other squashing functions can be used, for example, an alternative to control (8.20) can be uθ = tanh(vθ). Some
numerical test were made with this control. As the results do not differ from the one presented with control (8.20),
they are not presented here.
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Note that the neural control bounded with the squashing function (8.20) is, somehow, guessing
the switching time, where the optimal control strategy goes from Bang(-1) to Singular control.
The mechanism by which the neural network guesses the switching time is similar to the previous
example, at least one of the parameters takes larger values.

8.3.5 Example 3: periodic harvesting of a photobioeactor
We analyze a problem of maximizing productivity in a microalgae photobioreactor, with periodic

conditions from one day to another [64]:

max
0≤u(t)≤ū

J[0,T ] =

∫ T

0

u(t)x(t)dt,

s.t. ẋ = f(x, t)− rx− ux,

x(T ) = x(0),

(8.23)

where x corresponds to the surfacic density of a microalgae population, the function f(x, t) is
the growth function. The function f depends on the light intensity impinging the surface of the
photobioreactor, denoted by I0(t). The constant r > 0 corresponds to the respiration rate. The
growth function is defined as

f(x, t) =
µ̄

a
ln

I0(t) +KI

I0(t)e−ax +KI
.

Here, a and KI are constants of the model. This problem was solved in [64] when the light function
I0(t) is given by

I0(t) =

{
Ī0 if 0 ≤ t < T̄ ,

0 if T̄ ≤ t < T.
(8.24)

The constant Ī0 is the daylight intensity and T̄ ≤ T corresponds to the duration of the day. Under
these conditions, then only three possible forms of the optimal control are allowed:

• Bang-Bang,

• Bang-Singular -Bang,

• Constant.

Notice that the neural problem (PNN) does not allow periodic conditions. In order to tackle the
problem (8.23), and to constrain periodicity, we consider a free initial condition x(0) as a parameter
x0, and a penalization is added for the difference between the initial condition x(0) and the final
state x(T ) in the cost function. The problem (8.23) is then converted to problem (8.23)

max
0≤u(t)≤ū,x0>0

G[0,T ] =

∫ T

0

u(t)x(t)dt+ λ(x(T )− x(0))2,

s.t. ẋ = f(x, t)− rx− ux,

x(0) = x0,

(8.25)

where λ > 0 is a positive hyperparameter chosen at the time of optimization. Setting λ = 100 we
solve the neural problem obtaining, after 10000 iterations of the Adam algorithm, the neural control
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shown in Figure (8.7), obtaining constant control. This control is almost constant. We compare
this solution with the one obtained from the BOCOP [22], where the total harvest reported by
BOCOP is 6.1876 and the one obtained by the neural method is about 6.4019. This does not
mean that the neural control is better than the one obtained by a classic optimization algorithm,
the problem solved by each one is, strictly speaking, different. While BOCOP’s solution is able

Figure 8.7: Example 3. I0(t) given by (8.24). The black continuous lines correspond to the
solution given by a neural control composed of two hidden layers with 20 neurons for two different
light regimes I0. The dashed line correspond to the numerical solution given by BOCOP. The
yellow continuous line correspond to the light regime.

to respect the periodicity condition perfectly, the solution given by the neural control has a small
difference between the initial value x(0) = 11.8454 and the final value of the state x(T ) = 11.8473.
BOCOP’s solution, on the other hand, returns x(0) = x(T ) = 11.1940. This gives us an error of
0.01%.

Light Signal Ph
Neural control BOCOP’s solutions

(8.24) 6.4038 6.1876
(8.26) 9.5677 9.4918

Table 8.2: Example 3. Comparison of the performance index Ph between the BOCOP’s solution
and the neural control.

This problem makes a simplification on the cycle and the amount of light that microalgae
receive. One question arises, what happens when we modify the light function? For example, we
now consider the light function:

I0(t) = max
(
0, Ī1 sin (2πt)

)
+ Ī2, (8.26)

where Ī1 and Ī2 are two constants. The neural control and the optimal control computed with
BOCOP are shown in Figure 8.8. In this case, the neural control is taking a constant value. On
the other hand, BOCOP’s solution give a more complex structure, in particular, we can observe a
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control Bang-Singular -Bang-Singular -Bang. The harvest biomass of the neural solution is about
9.6129 and the one from BOCOP is 9.4918. The initial value of x obtained with the neural method
is x(0) = 12.4892 and the final value x(T ) = 12.4440, while the initial and the final value obtained
with BOCOP are x(0) = z(T ) = 12.1771. The error of the periodic condition is around 0.3%.

To make a fairer comparison between the neural control and the optimal control, we define the
metric Ph as follows

Ph(D) =

∫ T

0

D(t)x(t)− (x(0)− x(T ))dt,

which corresponds to the harvest biomass and a penalization if the amount of final biomass x(T )
is very low with respect to initial biomass.

Figure 8.8: Example 3. I0(t) given by (8.26). The black continuous lines correspond to the
solution given by a neural control composed of two hidden layers with 20 neurons for two different
light regimes I0. The dashed line correspond to the numerical solution given by BOCOP. The
yellow continuous line correspond to the light regime.

This example serves, first, to extend the method to problems with periodic conditions and
second, to illustrate a case where the neural control does not approximate the optimal control, but
it gets a very close value of the value of the problem. The fact that the neural control has not been
able to approximate the optimal control is not surprising for two reasons:

• The optimal control reported in [64] was only 1.11% better than the optimal constant control
predicted by the neural control.

• Vanishing gradients. A similar behavior was already reported in the previous example, where
the neural control can approximate the optimal control, but this approximation is stalled by
vanishing gradients.

8.4 Conclusions
This chapter illustrates how neural networks can help in solving optimal control problems. The

key capacity to approximate different types of functions makes neural networks perfect candidates
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for solving optimal control problems. Furthermore, neural networks with sigmoid activation func-
tions are able to model a bounded control if the output layer considers a squashing function.

However, the discontinuities in the optimal controls analyzed in this chapter are a difficulty for
neural networks and their training, which need many iterations to approximate these discontinuities.
The number of iterations using the Adam algorithm is in the order of 10000 iterations that can be
computed from 3 (min) using a simple Euler scheme to 20 (min) using a more complex ODE solver
as Dormand-Prince considering 100 time steps. The high number of iterations can be compensated
with the fast computations of the gradients using automatic differentiation.

The capacity of the parametrized control to approximate the optimal solution also determines
the solver’s ability to find the solution of the optimal control problem. The simplest neural network
analyzed in the Bang-Bang example will not predict a more complex solution. But, on the other
hand, more complex architectures could drive to local optimal solutions, as the one presented in
the second example. Even when the neural control is approaching the optimal control, the learning
process may be stuck.

There are no major constraints on the neural network architecture, but the network must be
bounded to take values within the control constraints. How the neural network is defined to be
bounded is important. We have seen with an example how this affects optimal control learning.

Solving optimal control problems with neural networks is a relatively simple process that could
be of great interest in bioprocessing or other areas of engineering. The neural control may or may
not approximate the actual optimal control, but at least in the cases analyzed in this chapter, they
show great performance to optimize the objective function reaching values very close to the one
achieved by the actual optimal control.

139



140



Chapter 9

A method to solve non-linear optimal
problems via squashing
parameterization

This chapter described unpublished work. This work is not in line with microalgae, but it arises
from the previous chapter, where we use a squashing function to bound neural networks. The use
of this kind of functions inspires this chapter, where we analyze a way to solve numerically optimal
control problems.

9.1 Introduction

Optimal control problems can be partially or completely solved using the Pontryagin’s maximum
principle (PMP), the Hamilton-Jacobi-Bellman equation, or using numerical solvers based on direct
or indirect methods. When the PMP first order condition fails to unveil the value of the optimal
control, we are in the presence of a singular control. When an optimizer faces a problem with a
singular control, numerical problems arise.

In Chapter 8 we give details on how to solve optimal control problems using neural networks.
One key of the method is that the neural control must fulfil the restrictions of the problem. To do
so, we use a sigmoid function to keep the control within the box constrains, the so-called squashing
function. In this chapter, we propose a numerical method based on the squashing function to better
understand the issues of the training.
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9.2 Problem formulation and methods
Let us consider the optimal control problem without restrictions over the trajectory, with free

final conditions and fixed final time:

min
u∈U

J[0,T ](u) =
∫ T

0

g(t, z(t),u(t))dt,

subject to ż(t) = f(t, z(t),u(t)),
z(0) = z0,

(P )

where T > 0 is fixed, z(t) ∈ Rn is the state vector with the initial condition z0 ∈ Rn, u ∈ Rm is
the control vector, f and g are assumed to be C1 from R1+n+m to Rn. U corresponds to the set of
admissible controls, in this chapter we will consider

U = L∞
loc([0,+∞), C),

i.e., the set of locally integrable functions on every compact set in [0,∞) that takes values in the
compact set C ⊂ Rm defined as

C =

m∏
j=1

[aj , bj ], (9.1)

where ai, bi are the lower and upper bound of ui.

9.2.1 Approximated solution via squashing functions
We consider the family of functions uθ given by

uθ(t) =
N∑
i=1

α(θi)χINi (t)

θi ∈ Rm ∀i = 1, ..., N

(9.2)

where INi = [tNi , t
N
i+1) for i = 0, .., N − 1, and INN = [tN , tN+1], with the convention t1 = 0 and

tN+1 = T . χA correspond to the indicator function of the set A defined by

χA(t) =

{
0 if t ̸∈ A,

1 if t ∈ A.

The function α : Rm → Rm is defined as follows:

α : Rm → Rm

v =

 v1
...
vm

 7→ α(θ) =

 (b1 − a1)σ(v1) + a1
...

(bm − am)σ(vm) + am

 (9.3)

where aj , bj are the bounds of the control for each j = 1, ...,m, and σ(v) = 1/(1 + e−v) is the
sigmoid function. Note that by the construction, α(Rm) ⊂ U .
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The function α is known as a squashing function. The use of squashing functions have different
application in the literature, in particular, it was reported that their use with differential dynamic
programming techniques can effectively solve a variety of optimal control problems, even when other
solvers failed [89, 142].

The parameters θ = {θi ∈ Rm : i = 1, ..., N} of the control uθ can be seen as elements of
θ ∈ Rn×m, and θi,j will denote the j-th component of the i-th parameter θi. Also, as α(θi)j =
(bj−aj)σ(θi,j)+aj we will denote also α(θi,j) = α(θi)j to facilitate the notation. These parameters
are learnable, in the sense that for every i = 1, ..., N , j = 1, ...,m and every t ∈ [0, T ] the gradient[

∂uθ(t)
∂θi

]
j

= (bj − aj)σ(θi,j)(1− σ(θi,j))χINi (t),

is not always zero.

The cost function, is then written as a function of the parameters θ:

J[0,T ](θ) =

∫ T

0

g(t, zθ,uθ)dt.

where zθ is the solution of the controlled system{
żθ = f(t, zθ(t),uθ(t)),

zθ(0) = z0.
(9.4)

The gradient of the cost function respect to the parameters, using the method detailed in
Appendix C, is such that[

∂J[0,T ](θ)

∂θi

]
j

=
(α(θi)j − aj)(bj − α(θi)j)

(bj − aj)
·
∫ ti+1

ti

(
λTθ

∂f

∂u
+
∂g

∂u

)
j

dt, (9.5)

where λ is the solution of the adjoint equation: λ̇Tθ = −λTθ
∂f

∂z
− ∂g

∂z
,

λθ(T ) = 0.

The sigmoid function plays the role of an activation function, but as an activation of the restric-
tion over the control u, meaning that

lim
θi,j→∞

[
∂J[0,T ](θ)

∂θi

]
j

= 0,

and

lim
θi,j→−∞

[
∂J[0,T ](θ)

∂θi

]
j

= 0.

Furthermore, the following are equivalent:
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i. [
∂J[0,T ](θ)

∂θi

]
j

= 0

ii. ∫ ti+1

ti

(
λTθ

∂f(t, zθ,uθ)
∂u

+
∂g(t, zθ,uθ)

∂u

)
j

dt = 0. (9.6)

Let {Ii}Ni=1 a partition of [0, T ], we introduce the reduced problem associated to (P ) with the
parameterized control uθ defined in (9.2):

inf
θ1,...,θN∈Rm

∫ T

0

g(t, zθ(t),uθ(t))dt

s.t. żθ = f(t, zθ,uθ)
z(0) = z0.

uθ(t) =
N∑
i=1

α(θi)χIi(t).

(PNθ )

We define Val
(
PN
θ

)
the value of the problem (PNθ ) as

Val
(
PNθ
)
= inf
θ={θ1,...,θN}

{
J[0,T ](θ) : zθ solution of (9.4)

}
In the same way we denote the value of the problem (P ) as Val(P ).

9.2.2 Convergence analysis
The resulting Problem (PNθ ) can only provide a suboptimal solution, meaning that we can not

assure the existence of a set of parameters θ∗ = {θ∗i ∈ Rm : i = 1, ..., N} such that∫ T

0

g(t, zθ∗(t),uθ∗(t)) = Val
(
PN
θ

)
.

Instead, it offers an approximation of the solution of Problem (P ), when the original problem admits
a solution.

Proposition 9.1

Let us suppose that the partition {INi : i = 0, ..., N} is such that

lim
N→∞

max
i=0,...,N

|INi | = 0

where |INi | = tNi+1 − tNi is the length of the interval INi . Then

lim
N→∞

Val
(
PN
θ

)
= Val (P) .
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Proof. For the sake of simplicity, we present the proof in the case where m = 1, a1 = 0 and b1 = 1.
the proof can be adapted to a multidimensional control with any box constraints. Let ū a solution
of the Problem (P ). For every i = 1, ..., N we define

β̄i =
1

|INi |

∫ ti+1

ti

ū(t)dt.

If we set

uNβ =

N∑
i=1

βiχINi ,

then,

lim
N→∞

∫ T

0

|uNβ (t)− u∗(t)| = 0.

For every ε > 0, we define

θ̄i =


−1/ε if βi = a1,

α−1(βi) if βi ∈ (0, 1),

1/ε if βi = b1,

where α−1 is the inverse function of the function α. Note that

|uϵθ̄(t)− uNβ (t)| =

∣∣∣∣∣∣
∑

{i:αi=0}
−σ(−1/ε)χIi(t) +

∑
{i:αi=1}

(1− σ(1/ε))χIi(t)

∣∣∣∣∣∣ ,
as σ(−1/ε) = 1− σ(1/ε):

|uϵθ̄(t)− uNβ (t)| ≤ K(N)σ(1/ε),

where K(N) is the cardinality of the set {i : βi = 0 or βi = 1}. This proves that for each N , uϵ
θ̄

converges in L∞([0, T ],Rm) to uNβ as ϵ→ 0. From [59, Thorem 4.1]

lim
N→∞

J[0,T ](uNβ ) = Val (P) .

Then by the Lebesgue dominated convergence theorem

lim
N→∞

lim
ε→0

J[0,T ](uϵθ̄) = Val (P) .

9.2.3 How Gradient descent activate restrictions
We are interested in the evolution of the parameters and the value of the cost function when

we use a gradient descent like algorithm. The Gradient Descent Algorithm (GDA), for every
i = 1, ..., N , updates the value of θki recursively following:

θk+1
i = θki − lk

∂J[0,T ](θ
k)

∂θi
, (9.7)
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where lk is the so-called learning rate and θ0 is the initial guess of the parameters. We will
assume that lk is bounded from above by a positive constant. In recent years, many variations and
improvements to this algorithm have been developed to improve the performance of the optimized
models, resulting in a wide range of algorithms like Nesterov accelerated gradient, Adam, among
others [125].

Proposition 9.2

Let us consider the sequence of parameters {θki ∈ Rm : i = 1, ..., N}k∈N generated by (9.7),
and for each i = 1, ..., N , j = 1, ...,m let us denote

hi,j(θ
k) =

∫ ti+1

ti

(
λTθk

∂f(t, zθk ,uθk)
∂u

+
∂g(t, zθk ,uθk)

∂u

)
j

dt.

If θki,j converge to some θ∗i,j , then

lim
k→∞

hi,j(θ
k) = 0.

On the other hand, if hi,j(θk) do not converge to 0, we have that:

• If hi,j(θk) > 0 ∀k ∈ N, then limk→∞ θki,j = −∞, and consequently, limk→∞ α(θki )j = aj .

• If hi,j(θk) < 0 ∀k ∈ N, then limk→∞ θki,j = ∞, and consequently, limk→∞ α(θki )j = bj .

Proof. Replacing (9.5) in (9.7), we have for each i = 1, ..., N , j = 1, ...,m the following relation:

θk+1
i,j = θki,j − lk

(α(θki )j − aj)(bj − α(θki )j)

(bj − aj)
hi,j(θ

k).

If θki,j converge to some θ∗i,j , then

lim
k→∞

lk
(α(θki )j − aj)(bj − α(θki )j)

(bj − aj)
hi,j(θ

k) = 0.

As lk do not converge to 0, it follows that

lim
k→∞

hi,j(θ
k) = 0.

Then if hi,j(θk) do not converge to 0, we analyze the two cases. First case: The sequence hki,j is
non-negative and does not converge to zero. Then sequence (9.2) is bounded below by a positive
constant, i.e., there exists a ϵ > 0

hki,j > ϵ ∀k ∈ N.

Then, as aj < α(θi)j < bj , we have that

θk+1
i,j < θkni,j − lk

(α(θki )j − aj)(bj − α(θki )j)

(bj − aj)
ϵ
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then θki,j is a strictly decreasing sequence, and

lim
k→∞

θki,j = −∞,

which implies that
lim
k→∞

α(θki )j = aj ,

i.e.,, in the limit, the lower bound of the control uj = aj is activated. Second Case: The sequence
hki,j is non-positive and do not converge to zero. The argument is the same: there exists a ϵ > 0
such that

hki,j < −ϵ ∀k ∈ N,

and we can conclude as above that
lim
k→∞

α(θki )j = bj .

This illustrates that if the sequence hi,j does not converge to zero, and if it does not change
sign, then it will activate one of the restrictions via the squashing function α. Of course, a change of
sign of hi,j(θk) is possible. In the case where hi,j(θk) change the sign, by continuity of the function
hi,j , there exists a θ∗ such that hi,j(θ∗) = 0, and the gradient descent algorithm would converge to
this value θ∗ with a proper election of the learning rate.

In the next proposition, we present the relationship between the value of α(θk), the sequence
θk and the iterations of the gradient descent in the one dimensional case.

Proposition 9.3

Suppose that the function F : R → R is C1, let α : R → (a, b) the one dimensional squashing
function α(θ) = (b− a)θ + a, then the sequence θk generated by the recurrence

θk+1 = θk − lk
dF (α(θk))

dθ
, (9.8)

with θ0 ∈ R and lk > 0 ∀k ∈ N. Then

α(θk+1) = α(θk)− lk
[
α′(θk)

]2
F ′(α(θk)) + rk(θ

k+1),

where for every k ∈ N, rk : R → R is a function such that rk(v) → 0 as v → θk.

Proof. By the chain rule (9.8) can be written as

θk+1 = θk − lα′(θk)F ′(α(θk)). (9.9)

By the Taylor’s theorem,

α(θk+1) = α(θk) + α′(θk)(θk+1 − θk) + rk(θ
k+1), (9.10)

where hk(v) → 0 if v → θk. replacing (9.10) in (9.9), we get (9.3).
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Using Proposition 9.3, we have that for every k ∈ N:

α(θk+1
i )j = ri,jk (θk+1

i,j ) + α(θki )j − lk

[
(α(θki )j − aj)(bj − α(θki )j)

(bj − aj)

]2
hi,j(θ

k),

and we can make the approximation

α(θki )j ≈ α(θki )j − l̃khi,j(θ
k), (9.11)

where

l̃k = lk

[
(α(θki )j − aj)(bj − α(θki )j)

(bj − aj)

]2
,

which correspond to make a gradient descent over the values of the control.

Algorithm 3 Direct shooting method via squashing functions

Require: Discretized interval time {ti}Ni=0 of [0, T ].
Require: Number of iterations ne.
Require: θ = {θi ∈ Rm : i = 1, ..., N} ∈ RN Initial guess of the parameters.
Require: Gradient descent like algorithm GDA.

for i in ne do
Define uθ =

∑N
i=1 σ(θi)χ(ti−1,ti).

Solve forward żθ = f(t, zθ,uθ).
Solve backward λ̇⊺ + λ⊺ ∂f

∂z + ∂g
∂z = 0.

Compute gradient ∂J[0,T ](θ)

∂θ .
Update parameters θ with GDA.

end for

9.3 Numerical example: The double integrator problem
We use the Algorithm 3 to solve the double integrator problem presented in (8.18). The com-

parison between the solution given by the method is presented in Figure 9.1 together with the
cost function through the optimization process. The optimization is made with 10000 optimization
steps, using Adam’s algorithm with a constant learning rate to 0.1. The solution is notably better
than the one presented with the neural control, showed in Figure 8.5.

Now we try a more powerful optimal solver in order to compare the solution that the param-
eterized control uθ, described in Equation (9.2), can offer versus a classic parameterization. We
compare the parameterization (9.2) with the parameterization given by

uβ(t) =
N∑
i=1

βiχINi (t),

αi ∈ C ∀i = 1, ..., N.

(9.12)

The study of the convergence of this method was reported in [59].

148



Figure 9.1: Left: Comparison between the solution of the method proposed, and the solution
presented in [26]. Right: The cost function for each step as a continuous line and the optimal
value founded in [26] plotted with a dotted line.

The number of software that implement automatic differentiation, and gradient-based opti-
mizers, has increased in the last years, for example, Pytorch [110], Jax [25], Tapenade [70] and
CasADi [6]. The speed of computation is one of the major importance of these software programs.
We choose CasADi to compare the convergence speed of the algorithm using the same non-linear
optimizer. CasADi [6] is a tool to solve constrained nonlinear optimization problems that imple-
ments different optimization solvers combined with a fast automatic differentiation algorithm.

The two parameterizations are implemented in CasADi [6] to present the following test: the
two parameterization methods, the proposed here (9.2) and the classical one given by (9.12), are
used to discretize the problem (8.18) using a Runge-Kutta 4 as an integrator. The discretized
problem associated to the parameterization (9.2), compared to the problem associated to param-
eterization (9.12), is a non-constrained one. Then both problems are solved using four different
solvers, with the same stop criteria. The computational times to solve the problem for different
solvers are presented in Table 9.1, where the time to solve the discretized problem associated to the
parameterization (9.2) is higher in every case. Then, removing the constraints from the problem
and put them in the control via squashing functions does not improve the convergence time of the
algorithm nor the quality of the solution.

Another point to note about this test is that the solutions given by the algorithm FATROP
and FSQP have an erroneous value at the beginning. Instead of giving the value zero, the solver
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gives the value 1. This is explained by the fact that the gradient, when the parameterized control
uθ approximates the value of the upper (or lower) bound, the gradient of the cost function (9.5)
vanishes.

Figure 9.2 shows the solutions given by the different NLP solvers. The FATROP and the FSQP
algorithm fail to predict the initial value of the optimal control, and the IPOPT’s solution oscillate
considerably more than the other solvers. From this experience, we choose the BONMIN’s algorithm
to compare the solutions using the parameterizations (9.12) and (9.2). In Figure 9.4 we show this
comparison with N = 1000 time steps. Both solutions have problems in approximating the values
of the control in the switching time. This is to be expected when the time discretization does
not coincide exactly with the switching time, but more numerical errors can be seen when using
parameterization (9.2) at the end of the control, this could be due to the change of convexity of the
function at point zero.

Solver
BONMIN FATROP IPOPT FSQP

Squashing Method (9.2) 3.14 (s) 3.13 (s) 5.60 (s) 2.22 (s)
Restricted Method (9.12) 0.67 (s) 0.49 (s) 0.80 (s) 0.13 (s)

Table 9.1: Computation time for solving problem (8.18) using different NLP solvers implemented
in CasADi considering N = 100 time steps.

9.4 Discussion: neural controls

There is a close relationship between the method studied here, and the method studied in the
previous chapter. In Chapter 8 we study the solutions offered by neural networks using them as
controls in dynamic systems, the so-called neural controls. In both cases, the sigmoid function acts
over the parameters that must be optimized, converting the original (possible convex) optimization
problem to a non-convex one. There are two important remarks:

• The solution can oscillate when the values of the control are close to the inflection point of
the squashing problem due to the change of convexity o the sigmoid function.

• The bounds of the controls are local minima of the problem. This means that, depending on
the initialization of the initial guess of the control, the iterative algorithm may be stuck at
these minimum values.

The neural controls, then, are limited to solve optimal control problems due to the points mentioned
above.

9.5 Conclusions

In this chapter, we analyze a numerical method to approximate the solutions of optimal control
problems with box constraints. This method consists of implementing the constraints in the control
parameterization using a squashing function. We give some insight of how the activation of the box
constraints are carried out in the evolution of the parameters in a gradient descent scheme.
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(a) BONMIN Algorithm (b) FATROP Algorithm

(c) IPOPT Algorithm (d) FSQP Algorithm

Figure 9.2: Solutions of four NLP solvers using the parameterization (9.2) using a direct shooting
method.

When constraints are imposed on the parameterized control, the resulting problem is non-convex
as a function of the parameters (due to the sigmoid function). But, the problem is still convex as a
function of the value of the control, this fact allows us to establish a relation between the gradient
descent over the parameters of the control and the values that the control takes. Also, including
the box constraints allows us to use unconstrained optimization methods.

The inclusion of the restrictions in the parameterized control does not improve the speed of
convergence of the optimization algorithm, nor does it improve the quality of the solution. This
includes the method studied in the previous chapter, where we studied how to solve optimal control
problems with neural networks. In the case of neural networks, the solutions they provide are
limited to the neural network’s ability to approximate functions. For discontinuous controls such
as those studied in this thesis, the neural network solutions have a slow convergence to the optimal
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(a) BONMIN Algorithm (b) FATROP Algorithm

(c) IPOPT Algorithm (d) FSQP Algorithm

Figure 9.3: Solutions of four NLP solvers using the parameterization (9.12) using a direct shooting
method.

control precisely because they slowly approximate continuous functions where some parameters
converge to infinity.
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(a) Parameterization (9.2). The solution was
computed in 8.41 (min).

(b) Parameterization (9.12). The solution was
computed in 53.33 (s) using the BONMIN algo-
rithm from CasADi.

Figure 9.4: Solutions considering N = 1000 time steps using the BONMIN algorithm from CasADi.
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Chapter 10

Conclusion

Main contributions
In this manuscript, we explore different problems associated with the mathematical modelling

and optimization of microalgae-based processes, with a special focus on the influence of the dy-
namical light pattern received by the cells. Different mathematical tools are used to support our
developments, mainly the theory of ordinary differential equations, optimal control, and the use of
machine learning models. We have tackled three types of problems using approaches from nonlinear
control science, later hybridizing them with Artificial Intelligence methods:

• The study of average microalgae growth rate under fluctuating light.

• The solution of optimal control problems considering a photobioreactor working in continuous
mode and at constant volume.

• The inclusion of neural networks in dynamic models of photobioreactors and the use of neural
networks to solve optimal control problems.

Average growth rate under fluctuating light
The starting point of this work is a broadly used model of photosynthesis in microalgae under

dynamic light regime [67]. The three population model of Han was analysed in large and short
periods of variable light. In Chapter (3) we study the average growth rate when the microalgae
culture is subjected to a light that changes periodically between two positive values (i.e., a square
wave function). Two cases are possible: when the period of the square wave function is small with
respect to the model parameters and when the period is larger than the model parameters. In both
cases, we give an approximation of the average growth rate as a function of the parameters of the
model. Then in Chapter 4 we extend the computations for the class of continuous functions.

In Chapter 4, we analyse the average growth rate for any continuous light, and we illustrate
how mixing influences the average growth rate for simply periodic functions. Then, we discuss the
challenge of computing the growth rate in photobioreactors simulated via computational fluid dy-
namics, considering a single-phase and incompressible fluid, and we end up our analysis presenting
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the case of the raceway pond. Estimating microalgae growth tracking cells within the photobiore-
actor is difficult and computationally expensive, in particular, it is difficult to obtain an accurate
representation of all the microalgae given the size of the system. To tackle this problem, we use a
correction of the position distribution on the axis perpendicular to the base of the raceway pond. A
higher paddle wheel velocity increases growth rate in the raceway pond case. In this case, we also
present an upper bound relating the average growth rate and the average velocity on the z-axis.

Optimal control problems in photobioreactors

In a photobioreactor, due to the gradient of light, microalgae are successively exposed to con-
ditions of low and high (inhibiting) light. This fact is illustrated in Chapter 4, where we simulated
several cells moving within a raceway pond exposed to natural light. But many photobioreactors
operate in a more controlled manner, using an artificial source of light. In this case, the light func-
tion can be a control of the system. However, we have still to deal with the fact that cells evolve in
a light gradient where they are successively photo-inhibited or photo-limited.

Based on Han’s description, in Chapter 5 we introduce a dynamic system of microalgae growth
involving two control variables: the light intensity and the dilution rate of the reactor. Then, we
formulate and study an optimal control problem in order to characterize the optimal light supply and
dilution strategies that maximize the harvested biomass. Our study, mainly based on Pontryagin’s
maximum principle, shows that singular arcs and turnpike-like behaviours appear in the optimal
solution. In particular, we prove that the optimal strategy maintains the biomass at a constant
level along singular arcs, and we determine its static value. The theoretical results are illustrated
throughout this chapter using a direct optimization method implemented in BOCOP. The focus
here is the behaviour of the dilution control. The numerical solutions presented are Bang-Singular -
Bang type or Bang-Bang type for the dilution control. The last arc of the dilution control is always
settled at its maximum value, we give a lower bound for the duration of this arc. We conjecture
that the existence of the singular arc depends on whether the system has enough time to reach the
value of the singular arc (biomass concentration) and to respect the lower bound of the final arc.

In Chapter 6 we study a similar optimal control problem where light intensity and dilution
rate are again used as controls. A small modification was made in the light model to consider
the geometry of the photobioreactor. The average light is considered as an input of the growth
function that is now affected by the light at which the microalgae is acclimated, the so-called growth
irradiance. There are several similarities with the problem analysed in Chapter 5, for example, the
last arc of the optimal dilution control is equal to the upper bound of the control and the duration
of this arc is also estimated. Taking advantage of the difference between the timescale of microalgae
growth and the timescale of photoacclimation, an approximated optimal feedback control is given
for the light control. Numerical simulations show that the biomass is close to a stationary regime in
the presence of a singular arc of dilution. Using this approximation, an estimation of the biomass
in the singular arc is presented and illustrated with different initial conditions.

Neural differential equations for microalgae modelling and control

Motivated by the complexity of photobioreactor related problems, we tackle the modelling and
control of microalgae processes with machine learning approaches. In this part, we investigate
how artificial neural networks can contribute to improve the modelling and the optimization of
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microalgae.

In Chapter 7 we replace the growth rate in the microalgae dynamics by a neural network. This
neural network takes exogenous variables such as light and temperature. We establish the theoret-
ical framework for training the neural network using direct and adjoint methods. We develop an
integrator that solves ordinary differential equations and delivers the interpolation of the exogenous
variables to the model. Also, we discuss how to use classical neural network training techniques,
such as mini-batch training. To demonstrate how flexible this approach can be, two different ap-
proaches were tested. First, a neural network is developed to learn the microalgal growth rate as
a function of light and temperature. Second, a neural network is used to correct the biases from
a pre-existing kinetic model implementing a Monod function combined with the Beer-Lambert law
of light extinction. Both neural networks have light intensity and temperature as inputs. These
factors are interpolated in our solver for ordinary differential equation problems. This solver also
allows us to solve a set of equations simultaneously, enabling batch training. These methods are
compared with a regression carried out with support vector machine.

While in Chapter 7 neural networks were used to represent a missing part of the model, in
Chapter 8 they are implemented to identify the optimal control strategy of a dynamical system. We
focus on the type of problems solved in the second part of this manuscript: optimal control problems
with fixed initial conditions, fixed final time and free final condition with box constraints on the
control. First, we discuss how to define bounded neural controls, then we establish the relation
between the Pontryagin’s Maximum Principle conditions and the computation of the gradient of
the cost function with respect to the parameters of the neural network. We implement a solver
in Pytorch using a package dedicated to solve ODE problems (Torchdyn). Then we illustrate the
efficiency of our solver with three examples. The first is a simple problem where the simplest possible
neural network can approximate not only the value of the cost function but also find the optimal
control, which corresponds to a Bang-Bang control. The second example is a more challenging one.
We test a more complex structure of the neural network and fixing the neural network, we use three
different methods to bound it. In this case, using a squashing function or a sinusoidal function show
a better convergence than simply clipping the output of the neural network. However, both neural
controllers struggle for approximating the values of the optimal control near the switching time.
This is due to the limitations of neural networks to approximate discontinuous functions. The last
problem, for the production of microalgae biomass under periodic light, is a case where the neural
control does not offer a control close to the optimal control, but proposes sub-optimal strategies
leading to very close values for the harvested biomass. This demonstrates that neural controls can
be used to give sub-optimal solutions of periodic problems using a penalization method.

Finally, in Chapter 9 we use the squashing trick to bound a neural network and end up with a
method to solve any non-linear optimal control problem with box constraints on the control, free
final states and fixed final time. The control is parametrized using sigmoid functions, which allow
us to include the problem restrictions in the control. We implement the method using Pytorch and
CasADi, a fast solver for non-linear optimization problems. We show a strong connection between
the approach efficiency and the chosen squashing method to bound the neural network for control
purposes. The convergence time of our approach compared to classical parameterization are slower.
This method helps to understand why the training of the neural control in Chapter 8 requires a
large number of iterations.
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Discussion and perspectives
Modelling and controlling microalgae systems are quite difficult problems to tackle. Many fac-

tors affecting microalgae growth must be considered. In this manuscript, we analysed in depth
the influence of light on microalgae and yet this work is not sufficient to analyse the complex re-
lationship between light and an industrial culture of microalgae, for example, non-photochemical
quenching [60] was not taken into account in the models presented here. Other limiting factors must
be considered when modelling or controlling microalgae-based processes. Coupling light models with
nutrients models, for example, can change drastically the optimal operation of a photobioreactor, es-
pecially, for dilution, which highly affects the concentration of nutrients within the photobioreactor.
Furthermore, coupling light, nutrients, and hydrodynamics models makes even more challenging the
study of the system. Where hydrodynamics affect the light perceived by each individual cell, it
can also lead to nutrient concentration gradients, especially for large-scale systems. To effectively
model or control microalgae-based processes, these additional factors must be considered.

The first part of this manuscript is a lesson in how complicated it can be to model the influence
of light on microalgae growth; for example, the simulations of the hydrodynamics of the raceway
pond can take several days, which is quite computationally expensive. Furthermore, microalgae
growth can be affected by seasonal factors. Therefore, the development of adaptive techniques
to control such complex systems is a contribution to future intelligent digital twins. One of the
main contributions of this work is the use of neural networks to model the growth of microalgae.
These Neural models can be adapted to different situations and data types. Furthermore, these
models can be coupled to online sensors, creating a versatile and easy to calibrate framework.
The introduction of neural networks for modelling and control could reduce the expert manpower
required, the computational costs and finally improve the scalability of these systems, making
them more powerful for large-scale production. This applied perspective makes the research highly
transferable for the biotechnological industry, for which modelling and control is a complex and
non-standard task for engineers. Future research could explore the generalisation and scalability of
the methods developed here in different types of bioreactors and for other organisms, beyond the
configurations studied in this manuscript.

When we attempt to solve optimal control problems with neural networks, many questions still
remain unanswered, since we approach an area of research in machine learning that is relatively
new. The study of bounded neural networks and discontinuous learning is poorly documented to
date. For example, the architectures proposed in [39] were tested in Chapter 8 to solve optimal
control problems, but no significantly better results than those presented here were observed. This
could be due to the additional requirement of control bounding. More research needs to be done
to define better architectures capable of adapting to the two requirements of control problems:
boundedness and discontinuity. Finally, in this work, we focus on modelling and control with
neural networks independently; Chapter 7 is an example of a microalgae-based process modelled
with neural networks and Chapter 8 present several examples of controlling dynamical systems with
these models. Future research may reveal the properties of systems that are both modelled and
controlled by neural networks.
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Appendix A

Complement of Chapter 3

A.1 Analytical Computations

A.1.1 Case I: Large period T

For large period case, the evolution system (3.7) can be approximated by (3.10) which can be
solved explicitly for a constant irradiance I as

C(y, t) =
α(I(y))

α(I(y)) + kr
(1− e−(α(I(y))+kr)t) + e−(α(I(y))+kr)tC(y, 0), t ∈ (0, T ).

Moreover, the system is assumed to be periodic (i.e. C(y, 0) = C(y, T )). For the constant light
regime IM (y), one has C(y, t) = α(IM (y))

α(IM (y))+kr
, ∀t ∈ [0, T ]. Using (3.18), the T-average growth rate is

given by (1 − C)γ(IM (y)) = KσIM (y)

1+τσIM (y)+
kd
kr
τ(σIM (y))2

= µS(IM (y)). For the high/low light regime,

one has

C(y, t) =

{
αH(y)

αH(y)+kr
(1− e−(αH(y)+kr)t) + e−(αH(y)+kr)tC(y, 0), t ∈ (0, ηT )

αL(y)
αL(y)+kr

(1− e−(αL(y)+kr)(t−ηT )) + e−(αL(y)+kr)(t−ηT )C(y, ηT ), t ∈ (ηT, T )

Using the periodic border condition of C, one has

C(y, 0) =
αL(y)

αL(y)+kr

(
1−e−(αL(y)+kr)T (1−η)

)
+e−(αL(y)+kr)T (1−η) αH (y)

αH (y)+kr

(
1−e−(αH (y)+kr)Tη

)
1−e−(αL(y)+kr)T (1−η)−(αH (y)+kr)Tη .
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For a given local optical depth y, the T-average growth rate is given by

µ̄T(y) =
1

T

∫ T

0

µ(y, t)dt

=
1

T

( ∫ ηT

0

µ(y, t)dt+

∫ T

ηT

µ(y, t)dt
)

=η
γH(y)kr

αH(y) + kr
+ (1− η)

γL(y)kr
αL(y) + kr

+
γH(y)

T (αH(y) + kr)

(
αH(y)

αH(y) + kr
− C(y, 0)

)(
1− e−(αH(y)+kr)Tη

)
+

γL(y)

T (αL(y) + kr)

(
αL(y)

αL(y) + kr
− C(y, Tη)

)(
1− e−(αL(y)+kr)T (1−η)

)
=ηµS(IH(y)) + (1− η)µS(IL(y)) +

ζ1(y, η, T )ζ2(y)

Tkr
,

where γH(y) := γ(IH(y)) and γL(y) := γ(IL(y)).

A.1.2 Case II: Small period T

For small period case, the dynamics of C is negligible (i.e. C is a constant). Integrating (3.7)
from 0 to T gives

0 =

∫ T

0

Ċdt = −krTC − kdσC

∫ T

0

Idt+ kdσ

∫ T

0

Idt− kdσ

∫ T

0

IAdt.

Let us denote by Ī := 1
T

∫ T
0
Idt and by IA := 1

T

∫ T
0
IAdt, then one finds the constant value for C

as

C =
kdσ(Ī − IA)

kdσĪ + kr
. (A.1)

For high/low light regime, one has

A(y, t) =

{
e−βH(y)tA(0) + 1−C

τβH(y) (1− e−βH(y)t), t ∈ [0, ηT ],

e−βL(y)(t−ηT )A(ηT ) + 1−C
τβL(y) (1− e−βL(y)(t−ηT )), t ∈ [ηT, T ].

The periodicity on A gives

A(y, 0) =
e−βL(y)(1−η)T 1−C

τβH(y) (1− e−βH(y)ηT ) + 1−C
τβL(y) (1− e−βL(y)(1−η)T )

1− e−βL(y)(1−η)T−βH(y)ηT
.
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On the other hand, the average of IA can be computed by

TIA =

∫ ηT

0

IH(y)A(y, t)dt+

∫ T

ηT

IL(y)A(y, t)dt

=A(y, 0)IH(y)
1− e−βH(y)ηT

βH(y)
+ IH(y)

1− C

τβH(y)
(ηT − 1− e−βH(y)ηT

βH(y)
)

+A(y, ηT )IL(y)
1− e−βL(y)(1−η)T

βL(y)
+ IL(y)

1− C

τβL(y)

(
(1− η)T

− 1− e−βL(y)(1−η)T

βL(y)

)
=A(y, 0)IH(y)

1− e−βH(y)ηT

βH(y)
+ IH(y)

1− C

τβH(y)
(ηT − 1− e−βH(y)ηT

βH(y)
)

+
(
e−βH(y)ηTA(0) +

1− C

τβH(y)
(1− e−βH(y)ηT )

)
IL(y)

1− e−βL(y)(1−η)T

βL(y)

+ IL(y)
1− C

τβL(y)

(
(1− η)T − 1− e−βL(y)(1−η)T

βL(y)

)
=

A(y, 0)

βH(y)βL(y)

(
IH(y)βL(y)(1− e−βH(y)ηT ) + IL(y)βH(y)e−βH(y)ηT (1

− e−βL(y)(1−η)T )
)
+

1− C

τβH(y)βL(y)
(IH(y)βL(y)ηT

+ IL(y)βH(y)(1− η)T ) +
1− C

τβL(y)2βH(y)2
(
IL(y)βH(y)βL(y)(1

− e−βH(y)ηT )(1− e−βL(y)(1−η)T )− IH(y)βL(y)
2(1− e−βH(y)ηT )

− IL(y)βH(y)2(1− e−βL(y)(1−η)T )
)

=
1− C

τβL(y)2βH(y)2
1

1− e−βL(y)(1−η)T−βH(y)ηT

(
IH(y)βL(y)

2(1

− e−βH(y)ηT )2e−βL(y)(1−η)T + IL(y)βL(y)βH(y)e−βL(y)(1−η)T−βH(y)ηT (1

− e−βH(y)ηT )(1− e−βL(y)(1−η)T ) + IH(y)βL(y)βH(y)(1

− e−βH(y)ηT )(1− e−βL(y)(1−η)T ) + IL(y)βH(y)2e−βH(y)ηT (1

− e−βL(y)(1−η)T )2 + IL(y)βH(y)βL(y)(1− e−βH(y)ηT )(1

− e−βL(y)(1−η)T )(1− e−βL(y)(1−η)T−βH(y)ηT )− IH(y)βL(y)
2(1

− e−βH(y)ηT )(1− e−βL(y)(1−η)T−βH(y)ηT )− IL(y)βH(y)2(1

− e−βL(y)(1−η)T )(1− e−βL(y)(1−η)T−βH(y)ηT )
)

+
1− C

τβH(y)βL(y)
(IH(y)βL(y)ηT + IL(y)βH(y)(1− η)T ).

To simplify the notations, let us denote by a := −(σImax+
1
τ )ηT and by i := −(σImin+

1
τ )(1−η)T ,

then A(0) = 1−C
τβLβH(y)

1
1−ea+i (βLe

i(1−ea)+βL(1−ei)) and the previous computation can be written
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as (we omitted the dependence on y)

TIA =A(0)IH
1− ea

βH
+ IH

1− C

τβH
(ηT − 1− ea

βH
) + eaA(0)IL

1− ei

βL

+
1− C

τβH
(1− ea)IL

1− ei

βL
+ IL

1− C

τβL
((1− η)T − 1− ei

βL
)

=
A(0)

βHβL
(IHβH(1− ea) + ILβLe

a(1− ei)) +
1− C

τβHβL
(IHβLηT + ILβH(1− η)T )

+
1− C

τβ2
Hβ

2
L

(
ILβHβL(1− ea)(1− ei)− IHβ

2
L(1− ea)− ILβ

2
H(1− ei)

)
=

1− C

τβ2
Hβ

2
L

1

1− ea+i
(
IHβ

2
L(1− ea)2ei + ILβHβLe

a+i(1− ea)(1− ei)

+ IHβHβL(1− ea)(1− ei) + ILβ
2
He

a(1− ei)2 + ILβHβL(1− ea)(1− ei)(1− ea+i)

− IHβ
2
L(1− ea)(1− ea+i)− ILβ

2
H(1− ei)(1− ea+i)

)
+

1− C

τβHβL
(IHβLηT + ILβH(1− η)T )

=
1− C

τβ2
Hβ

2
L

1

1− ea+i
(
IHβ

2
L(1− ea)(ei − 1) + IHβ

2
L(e

a − 1)(1− ei) + IHβLβL(1− ea)(1− ei)

+ IHβLβL(1− ea)(1− ei)
)
+

1− C

τβLβL
(IHβLηT + IHβL(1− η)T )

=
1− C

τβ2
Lβ

2
L

(1− ea)(1− ei)

1− ea+i
(
IHβLβL + IHβLβL − IHβ

2
L − IHβ

2
L

)
+

1− C

τβLβL
(IHβLηT + IHβL(1− η)T )

=
1− C

τβ2
Lβ

2
L

(1− ea)(1− ei)

1− ea+i
(IHβL − IHβL)(βL − βL) +

1− C

τβLβL
(IHβLηT + IHβL(1− η)T ).

By using the definition of IH , IH , βL, βL, one has (IHβL − IHβL)(βL − βL) =
σ
τ (Imax − Imin)

2 and
IHβLηT + IHβL(1 − η)T = ( IMτ + σImaxImin)T . Replacing C by (A.1) in the previous equation
gives

TIA =
kdσIA+ kr

τβ2
Lβ

2
L(kdσIη + kr)

(
∆(y, T )

σ

τ
(Imax − Imin)

2 + (
Iη
τ

+ σImaxImin)βLβLT
)
,

where δ(y, T ) = (1−ea)(1−ei)
1−ea+i . In other words

IA =
kr

(
∆(y,T )
TβLβL

σ
τ (Imax − Imin)

2 +
Iη
τ + σImaxImin

)
τβLβL(kdσIη + kr)− kdσ

(
∆(y,T )
TβLβL

σ
τ (Imax − Imin)2 +

Iη
τ + σImaxImin

) .
We have that

Θ :=
∆(y, T )(1 + τσIη(y))

(1 + τσIH(y))(1 + τσIL(y))η(1− η)
→ 1 as T → 0,
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and we can manipulate the value IA to get

IA =

krIη
(1+τσIη)βLβLτ2

(
τ2βLβL

)
+ (Θ− 1)τσ(IL − IH)2η(1− η)

kr + kdσIη − kdσ
Iη

(1+τσ)τ2βLβL
(τ2βLβL) + (Θ− 1)τσ(IL − IH)2η(1− η)

,

and rearranging this last equality, we get

µ̄T(y) =
KσkrIM (y)

(
1 + ξ1(y)ξ2(y, T )

)
kr + krτσIM (y) + kdτ

(
σIM (y)

)2
+ kdσIM (y)ξ1(y)ξ2(y, T )

, (A.2)

where

ξ1(y) =
σ
(
IH(y)− IL(y)

)2
η(1− η)

τβH(y)βL(y)
,

ξ2(y, T ) =
(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )

ηβH(y) + (1− η)βL(y)

η(1− η)βH(y)βL(y)
− 1.

A.1.3 Proof of Lemma 3.1

We split equation (3.7) into the high/low-flashing light configuration


d
dt

(
A(y, t)
C(y, t)

)
= −MH(y)

(
A(y, t)
C(y, t)

)
+NH(y), if t < ηT,

d
dt

(
A(y, t)
C(y, t)

)
= −ML(y)

(
A(y, t)
C(y, t)

)
+NL(y), if t > ηT.

One can solve this system by using the variation of parameters method and get(
A(y, t)
C(y, t)

)
=
(
Id−e−tMH(y)

)
M−1
H (y)NH(y) + e−tMH(y)

(
A(y, 0)
C(y, 0)

)
, if t < ηT,(

A(y, t)
C(y, t)

)
=
(
Id−e−(t−ηT )ML(y)

)
M−1
L (y)NL(y) + e−(t−ηT )ML(y)

(
A(y, ηT )
C(y, ηT )

)
, if t > ηT,

where Id denotes the identity matrix in R2×2. Imposing then periodic conditions, i.e, (A(y, 0), C(y, 0)) =
(A(y, T ), C(y, T )), one can evaluate the values of (A(y, 0), C(y, 0)) and (A(y, ηT ), C(y, ηT )):

(
A(y, ηT )
C(y, ηT )

)
=
(
Id−e−ηTMH(y)

)
M−1
H (y)NH(y) + e−ηTMH(y)

(
A(y, 0)
C(y, 0)

)
, (A.3)(

A(y, 0)
C(y, 0)

)
=
(
Id−e−(1−η)TML(y)

)
M−1
L (y)NL(y) + e−(1−η)TML(y)

(
A(y, ηT )
C(y, ηT )

)
. (A.4)

165



Replacing finally (A.4) in (A.3) and vice versa, we obtain

(
A(y, ηT )
C(y, ηT )

)
=
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1

·
[(

Id−e−ηTMH(y)
)
M−1
H (y)NH(y)

+ e−ηTMH(y)
(
Id−e−(1−η)TML(y)

)
M−1
L (y)NL(y)

]
,

(A.5)

(
A(y, 0)
C(y, 0)

)
=
(
Id−e−(1−η)TML(y)e−ηTMH(y)

)−1

·
[(

Id−e−(1−η)TML(y)
)
M−1
L (y)NL(y)

+e−(1−η)TML(y)
(
Id−e−ηTMH(y)

)
M−1
H (y)NH(y)

]
.

(A.6)

The inverse matrix (Id − e−ηTMHe−(1−η)TML) exists because the matrix e−ηTMHe−(1−η)TML has
no eigenvalue equal to 1. The solution founded it is then unique.

A.1.4 Exact growth rate

To calculate the T-average of the growth rate, we calculate the integral
∫ T
0
I(y, t)(A(y, t), C(y, t))dt:∫ T

0

I(y, t)

(
A(y, t)
C(y, t)

)
dt = IH(y)

∫ ηT

0

(
A(y, t)
C(y, t)

)
dt+ IL(y)

∫ T

ηT

(
A(y, t)
C(y, t)

)
dt

= ηTIH(y)M−1
H (y)NH(y)

− IH(y)M−1
H (y)

(
Id−e−ηTMH(y)

)[
M−1
H (y)NH(y)−

(
A(y, 0)
C(y, 0)

)]
+ IL(y)(1− η)TM−1

L (y)NL(y)

− IL(y)M
−1
L (y)

(
Id−e−(1−η)TML(y)

)[
M−1
L (y)NL(y)−

(
A(y, ηT )
C(y, ηT )

)]
.

(A.7)
Using (A.5) we can compute
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M−1
L (y)NL(y)−

(
A(y, ηT )
C(y, ηT )

)
=M−1

L (y)NL(y)−
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1

·
[(

Id−e−ηTMH(y)
)
M−1
H (y)NH(y)

+ e−ηTMH(y)
(
Id−e−(1−η)TML(y)

)
M−1
L (y)NL(y)

]
=
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1

·
[
(Id−e−ηTMH(y))M−1

L (y)NL(y)− (Id−e−ηTMH(y))M−1
H (y)NH(y)

−e−ηTMH(y)(Id−e−(1−η)TMH(y))M−1
L (y)NL(y)

]
=
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1 [
M−1
L (y)NL(y)

− e−ηTMH(y)e−(1−η)TML(y)M−1
L (y)NL(y)−M−1

H (y)NH(y)

+ e−ηTMH(y)M−1
H (y)NH(y)− e−ηTMH(y)M−1

L (y)NL(y)

+e−eηTMH(y)e−(1−η)TML(y)M−1
L NL(y)

]
=
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1 [
(Id−e−ηTMH(y))M−1

L (y)NL(y)

−(Id−e−ηTMH(y))M−1
H (y)NH(y)

]
=
(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1

·

(Id−e−ηTMH(y))(M−1
L (y)NL(y)−M−1

H (y)NH(y)).

In the same way, using (A.6) we can get

M−1
H (y)NH(y)−

(
A(y, 0)
C(y, 0)

)
=
(
Id−e−(1−η)TML(y)e−ηTMH(y)

)−1

(Id−e−(1−η)TML(y))

·(M−1
H NH(y)−M−1

L NL(y)).

Replacing the above calculations on (A.7), we have∫ T

0

I(y, t)

(
A(y, t)
C(y, t)

)
= ηTIH(y)M−1

H (y)NH(y) + (1− η)TIL(y)M
−1
L (y)NL(y) + ∆, (A.8)

where

∆ =

[
IH(y)M−1

H (y)
(
Id−e−ηTMH(y)

)(
Id−e−(1−η)TML(y)e−ηTMH(y)

)−1 (
Id−e−(1−η)TML(y

)
−IL(y)M−1

L (y)
(
Id−e−(1−η)TML(y

)(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1 (
Id−e−ηTMH(y)

)]
·
(
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
.
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Finally, the average growth rate 1
T

∫ T
0
KσIAdt is proportional to the first coordinate of (A.8)

multiplied by Kσ
T . Denote δ the first coordinate of ∆ and note that

M−1
H (y)NH(y) =


kr

τkd(σIH(y))2 + τkrσIH(y) + kr
τkd(σIH(y))2

τkd(σIH(y))2 + τkrσIH(y) + kr

 , (A.9)

M−1
L (y)NL(y) =


kr

τkd(σIL(y))2 + τkrσIL(y) + kr
τkd(σIL(y))

2

τkd(σIL(y))2 + τkrσIL(y) + kr

 , (A.10)

where the first coordinate in (A.9) and (A.10) multiplied by Kσ is exactly µS(IH(y)) and µS(IL(y))
respectively. So, the T-average of the growth rate is

µ̄T(y) = ηµs(IH(y)) + (1− η)µS(IL(y))−
Kσ

T
δ(y, T ). (A.11)

A.1.5 Eigenvalues of matrix M

We will condense the analysis of the eigenvalues of MH and ML in the matrix

M(I) =

(
σI + 1

τ
1
τ

kdσI kdσI + kr

)
.

Denoting λ1 and λ2 the eigenvalues, then we have

Tr(M(I)) = λ1 + λ2 = σI +
1

τ
+ kdσI + kr, (A.12)

Det(M(I)) = λ1λ2 = kd(σI)
2 + krσI +

kr
τ
. (A.13)

From (A.13), λ1 and λ2 has the same sign, and since (A.12) holds, the two eigenvalues are positive.

A.2 Proof of Lemma 3.3

The second derivative of the function µS can be computed as

d2

dI2
µS(I) = −

2Kσ
[
τσ + kd

kr
τσ2I

(
3− kd

kr
τσ2I2

)]
(
1 + τσI + kd

kr
τ(σI)2

)3 ,

and it is zero in the point Ic which satisfies

(
kd
kr
τσ2

)2

I3c − 3
kd
kr
τσ2Ic − τσ = 0.

168



This is a depressed cubic equation, where the determinant correspond to

∆ =

(
1

kd
kr
τσ2

)4

(τσ)2 − 4

(
1

kd
kr
τσ2

)3

where if ∆ ≤ 0 all the roots are real. Note that

∆ ≤ 0 ⇐⇒ τ ≤ 4
kd
kr
.

In this case, the solutions are given by [158]:

l cos
θ

3
, l cos

θ + 2π

3
, and l cos

θ + 4π

3

where

l =
2

σ
√

kd
kr
τ
, and θ = arccos

 √
τ

2
√

kd
kr

 .

From the three possible solutions, only l cos θ3 is positive due to θ/3 ∈ (0, π/6). In the case that
∆ > 0 then the real solution can be written as [72]

l cosh

1

3
arccosh

 √
τ

2
√

kd
kr

 .
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Appendix B

Complement of Chapter 7

B.1 Sensitivity equations and the Runge-Kutta methods

Proposition 1. The sensitivity equations (7.3) are solved through backpropagation in time.

Proof. To simplify the notation, we write v = ∂x
∂Ω and we rewrite the sensitivity equation (7.3) as

dv

dt
= F (t,v),

where

F (t,v) =
∂fΩ(t,y,x)

∂x
v +

∂fΩ(t,y,x)

∂Ω
.

Setting c1 = 0 we rewrite (7.2) as

xn+1 = xn +∆tn

s∑
i=1

biki,

ki = fΩ

tn + ci∆tn,yn + ci∆yn,xn +∆tn

i−1∑
j=1

aijkj


for i = 1, .., s.

Applying ∂
∂Ω to the above we have that:

vn+1 = ∆tn

s∑
i=1

bi
∂ki
∂Ω

,
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and for i = 1, .., s:

∂ki
∂Ω

=
∂fΩ
∂Ω

tn + ci∆tn,yn + ci∆yn,xn +∆tn

i−1∑
j=1

aijkj

 ,

=
fΩ
∂x

·

vn +∆tn

i−1∑
j=1

aij
∂kj
∂Ω

+
∂fΩ
∂Ω

,

= F

tn + ci∆tn,vn +∆tn

i−1∑
j=1

aij
∂kj
∂Ω

 .

Which corresponds to the same numerical scheme for the sensitivity equations.

B.2 Proof of Propostion 7.1

Proof. Let us consider the problem:
min
Ω

L(x) =

∫ Tf

0

g(x(t))dt,

s.t.
dx(t)

dt
= fΩ(t,y(t),x(t)).

(B.1)

We define the Lagrangian of the problem as

L(x,Ω,λ) =
∫ Tf

0

g(x(t))dt+

∫ Tf

0

λ⊺(t)

(
fΩ(t,y(t),x(t))−

dx(t)

dt

)
dt.

The gradient is computed as:

∂L
∂Ω

=

∫ Tf

0

∂g

∂x

∂x

∂Ω
+ λ⊺

[
∂fΩ
∂Ω

− d

dt

(
∂x

∂Ω

)]
dt.

Integrating by parts:∫ Tf

0

λ⊺ d

dt

(
∂x

∂Ω

)
dt =

[
λ⊺(Tf )

∂x(Tf )

∂Ω
− λ⊺(0)

∂x(0)

∂Ω

]
−
∫ Tf

0

dλ⊺

dt

∂x

∂Ω
dt.

We have that ∂x(0)
∂Ω = 0, then replacing in the above:

∂L
∂Ω

=

∫ Tf

0

λ⊺ ∂fΩ
∂Ω

dt− λ⊺(Tf )
∂x(Tf )

∂Ω
+

∫ Tf

0

[
dλ⊺

dt
+ λ⊺ ∂fΩ

∂x
+
∂g

∂x

]
∂x

∂Ω
dt.

Then as x is a solution of equation (7.1) and λ a solution of equation (7.5) we get the equality (7.4).
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B.3 Monod Model
The description of the growth rate with the Monod model is formulated in equation (B.2) as a

function of the light intensity I. Beer-lambert law was used to calculate the average light intensity
as shown in the below equation (B.3). The resulting equation (B.4) was used for the kinetic model
for the biomass evolution.

µ(I) = µmax
I

I +KI
. (B.2)

The light distribution profile of the photobioreactor will be simplified. We assume that it is
equally illuminated from one side, and we ignore the complex shape of the FPA assuming that
the geometry of the PBR is a rectangular cuboid. Under these assumptions and following [76] we
compute the average growth rate in the PBR as

µavg =
µmax

L

∫ L

0

(
Ie−kx

bz

Ie−kxbz +KI

)
dz. (B.3)

A respiration term R is also considered

dx

dt
= µavgx−Rx. (B.4)

After solving the integral (B.3), we deduce the dynamic in (7.8).
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Appendix C

Optimal control problem with box
constraints

Let us consider the optimal control problem without restrictions over the trajectory, with free
final conditions and fixed final time:

min
u∈U

J[0,T ](u) =
∫ T

0

g(t, z(t),u(t))dt,

subject to ż(t) = f(t, z(t),u(t)),
z(0) = z0,

(P )

where T > 0 is fixed, z(t) ∈ Rn is the state vector with the initial condition z0 ∈ Rn, u ∈ Rm is
the control vector, f and g are assumed to be C1 from R1+n+m to Rn. U correspond to the set of
admissible controls. We will consider

U = L∞
loc([0,+∞), C),

i.e., the set of locally integrable functions on every compact set in [0,∞) that takes values in the
compact set C ⊂ Rm defined as

C =

m∏
j=1

[aj , bj ],

where ai, bi are the lower and upper bound of ui. We will assume the following

1. there exists K ∈ R such that for all u ∈ U

∥z(t)∥ ≤ K

where z is the solution of the controlled system

ż(t) = f(t, z(t),u(t))
z(0) = z0
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2. For every (t, z) ∈ R× Rn, the set

V (t, z) = {(−g(t, z,u), f(t, z,u) : u ∈ U},

is convex.

Under these two hypotheses, Problem (P ) has a solution (see, for example, [145, Theorem 6.15].

According to the Maximum Pontryagin’s Principle, if the control u∗ ∈ U is optimal in [0, T ],
then there exists an absolutely continuous vector function λ : [0, T ] → Rn called co-state or adjoint
vector and a real λ0 ≤ 0 such that

λ̇T (t) = −∂H
∂z

, (C.1)

where H is the so-called Hamiltonian defined as

H(t, z(t),λ(t), λ0,u(t)) = λT f(t, z(t),u(t)) + λ0g(t, z(t),u(t)).

As the problem is formulated with free final conditions, the transversality conditions are

λT (T ) = 0. (C.2)

The optimal control u∗, its trajectory z∗ and its respective co-state λ∗ fulfill the maximum condition:

u∗(t) ∈ argmax
v∈C

H(t, z∗(t),λ∗(t),v), (C.3)

for almost every t ∈ [0, T ]. We will assume that the solution of (P ) admits a solution where λ0 ̸= 0.
In this case, we can normalize by λ0, and reduce H to simply

H(t, z(t),λ(t),u(t)) = λT f(t, z(t),u(t)) + g(t, z(t),u(t)).

Then condition (C.3) is then replaced by

u∗(t) ∈ argmin
v∈C

H(t, z∗(t),λ∗(t),v). (C.4)

Then Equation (C.1), together with the transversality condition can be rewritten as λ̇T = −λT ∂f(t, z(t),u(t))
∂z

− ∂g(t, z(t),u(t))
∂z

,

λT (T ) = 0.

(C.5)

The first order condition of (C.4) can be written for every j = 1, ..., N as follows

u∗(t) = aj ⇐⇒ (λ∗)T
∂f(t, z∗,u∗)

∂u
+
∂g(t, z∗,u∗)

∂u∗
> 0,

u∗(t) = bj ⇐⇒ (λ∗)T
∂f(t, z∗,u∗)

∂u
+
∂g(t, z∗,u∗)

∂u∗
< 0

otherwise,

(λ∗)T
∂f(t, z∗,u∗)

∂u
+
∂g(t, z∗,u∗)

∂u∗ = 0
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C.1 Control parameterization methods
Within the optimization methods in optimal control, we can find direct and indirect methods.

In a direct method, the state z and/or the control u are approximated with a base of functions. We
will consider only an approximation of the control u, which is also called a control parameterization
method. Control u is parametrized using a specified functional form with parameters θ ∈ Rp, i.e.,
the control is a function of the parameters uθ(t) = u(θ, t). We assume that the gradients ∂u

∂θ exists.
More precisely, we assume that the function

E : Rp → U
θ 7→ uθ

is a C1 function. The associated parametrized controlled system is denoted as follows:{
żθ(t) = f(t, zθ(t),uθ(t)),
zθ(0) = z0.

(C.6)

The cost function can be computed as a function of the parameters:

J[0,T ](θ) =

∫ T

0

g(t, zθ,uθ)dt.

The gradient of the cost function J[0,T ](θ) with respect to the parameters θ can be computed with
the so-called adjoint method described in the next Proposition:

Proposition 2. The gradient of the cost function J[0,T ](uθ) with respect to the parameters θ is
given by

∂J[0,T ](θ)

∂θ
=

∫ T

0

λTθ (t)
∂f(t, zθ(t),uθ(t))

∂u
∂uθ
∂θ

dt+

∫ T

0

∂g(t, zθ,uθ)
∂u

∂uθ
∂θ

dt

where λθ is the solution of the equation λ̇Tθ = −λTθ
∂f(t, zθ(t),uθ(t))

∂z
− ∂g(t, zθ(t),uθ(t))

∂z
,

λθ(T ) = 0.
(C.7)

Proof. Let us denote D1([0, T ],Rn) the set of continuous functions in [0, T ] and differentiable in
(0, T ) that take values in Rn. We define the Lagrangian L : D1([0, T ],Rn)×D1([0, T ],Rn)×U → R
as

L(λ, z,u) =
∫ T

0

g(t, z(t),u(t)) + λT (t) (f(t, z(t),u(t))− ż(t)) dt.

Note that if ż(t) = f(t, z(t),u(t)) ∀t ∈ (0, T ), then

L = J[0,T ](u) ∀λ ∈ D1([0, T ],Rn).

In particular, considering the z = zθ the only solution of the system (C.6), the derivative of L as a
function of θ satisfies ∀λ ∈ D1([0, T ],Rn):

∂L
∂θ

=

∫ T

0

∂g

∂z
∂zθ
∂θ

+
∂g

∂u
∂uθ
∂θ

+ λT (t)

(
∂f

∂z
∂zθ
∂θ

+
∂f

∂u
∂uθ
∂θ

− d

dt

∂zθ
∂θ

)
dt.
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Integrating by parts:

∂L
∂θ

=

∫ T

0

λT (t)
∂f

∂u
∂uθ
∂θ

+
∂g

∂u
∂uθ
∂θ

dt+

∫ T

0

d

dt
λT (t)

∂zθ
∂θ

+
∂f

∂z
∂zθ
∂θ

+
∂g

∂z
∂zθ
∂θ

dt.

− λT (T )
∂z(T )
∂θ

+ λT (0)
∂z(0)
∂θ

,

=

∫ T

0

λT (t)
∂f

∂u
∂uθ
∂θ

+
∂g

∂u
∂uθ
∂θ

dt+

∫ T

0

(
d

dt
λT (t) +

∂f

∂z
+
∂g

∂z

)
∂zθ
∂θ

dt

− λT (T )
∂z(T )
∂θ

+ λT (0)
∂z(0)
∂θ

.

As the initial condition is fixed it doesn’t depend on the parameters θ, then ∂zθ(0)
∂θ = 0. Finally,

choosing λ = λθ fulfilling (C.7), then

∂L
∂θ

=

∫ T

0

λTθ
∂f

∂u
∂uθ
∂θ

+
∂g

∂u
∂uθ
∂θ

dt.

Typically, piecewise functions [59] are used to solve an approximate problem associated to (P )
that inherits the properties of the original problem. This approximate problem is a constrained
finite dimensional optimization problem that can be with different methods. In this work, we focus
on the case where the parametrized control uθ is a neural network.
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Appendix D

Complement of Chapter 8

D.1 Proof of Proposition 8.2
Proof. Let

H(x, λx, λ0, D) = Dx(1− λx) + λxµ

be the Hamiltonian of the system (8.10), the Pontryagin’s maximum principle establishes that

D(t) ∈ argmax
v∈[0,Dmax]

H(x(t), λx(t), v), a.e. t ∈ [0, T ].

λx satisfies the adjoint equation λ̇x = −∂H
∂x with the final condition λx(T ) = 0, that is:

λ̇x = −λx(µ−D)−D,

λx(T ) = 0.
(D.1)

Let us suppose that there is an open interval (t1, t2) where λx = 1 for every t ∈ (t1, t2). Then
λ̇x = 0, ∀t ∈ (t1, t2). Replacing this values in (D.1) we have that 0 = −(µ − D) − D, and
consequently µ = 0, which is not possible. Then λx can not take the value 1 in an open interval of
[0, T ]. Then, for almost all t ∈ [0, T ], the optimal control D∗ is such that

D∗ =

{
0 if λx > 1

Dmax if λx < 1

As the final condition λx(T ) = 0 < 1 the last arc is always with D∗ = Dmax. The length of this
arc can be computed in the switching point, if it exists, λx(ts) = 1, where ts is, for now, unknown.
Then for all t ∈ (ts, T )

λ̇x = −λx(µ−Dmax)−Dmax,

λ̇x + λx(µ−Dmax) = −Dmax,

d

dt

(
λxe

(µ−Dmax)t
)
= −e(µ−Dmax)tDmax,

λx(T )e
(µ−Dmax)T − λx(t) = −

∫ T

t

e(µ−Dmax)sDmaxds,

179



then,

λx(t) =
Dmax

Dmax − µ

(
1− e−(Dmax−µ)(T−t)

)
.

Then replacing t = ts we have that

ts = T − ln(Dmax/µ)

Dmax − µ
.

D.2 Proof of Proposition 8.3
Proof. Using the definition of Dw,b:

ẋ = (µ−Dw,b)x,

d

dt

(
xe−

∫ T
0

(µ−Dw,b(s))ds
)
= 0,

x(t) = x0e
∫ t
0
(µ−Dw,b(s))ds,

x(t) = x0e
µte

−Dmax
w ln

(
1+ewt+b

1+eb

)
.

Then, the cost function J[0,T ](Dw,b), can be computed as

ẋ = (µ−Dw,b)x,∫ T

0

ẋ(t)dt = µ

∫ T

0

x(t)dt−
∫ T

0

Dw,b(t)x(t)dt,

x(T )− x0 = µ

∫ T

0

x(t)dt−
∫ T

0

Dw,b(t)x(t)dt,

then, using (8.16) and the definition of J[0,T ](Dw,b), we can conclude (8.17).

Replacing b = −wts in (8.16) we get

xw,−wts(t) = x0e
µt

(
1 + ew(t−ts)

1 + e−wts

)−Dmax
w

,

= x0e
µte

−Dmax
w ln

(
1+ew(t−ts)

1+e−wts

)
.

Then, we need to study the limit

L = lim
w→+∞

−Dmax

w
ln

(
1 + ew(t−ts)

1 + e−wts

)
,

which can be calculated using the l’Hôpital’s rule:

L
l′H
= lim

w→+∞
−Dmax

(1 + e−wts)((t− ts)e
w(t−ts) + tse

−wts)

(1 + ew(t−ts))(1 + e−wts)2
,

= lim
w→+∞

−Dmax
(t− ts)e

w(t−ts) + tse
−wts

(1 + ew(t−ts))(1 + e−wts)
.
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Here we have two cases: if t− ts ≤ 0, then,

L = 0,

and if t− ts > 0, then

L = lim
w→+∞

−Dmax
(t− ts) + tse

−wts−w(t−ts)

e−w(t−ts) + e−wts−w(t−ts) + 1 + e−wts

= −Dmax(t− ts).

D.3 Implementation of a neural solver in Python
1 class TwoHidden(nn.Module):
2 def __init__(self , output_dim , bounds , dim_hidden , *args , ** kwargs) -> None:
3 super ().__init__ (*args , ** kwargs)
4 self.output_dim = output_dim
5 self.input_layer = nn.Linear(1, dim_hidden)
6 self.hidden_layer = nn.Linear(dim_hidden ,dim_hidden)
7 self.output_layer = nn.Linear(dim_hidden ,output_dim)
8 self.ac = nn.Sigmoid ()
9 self.lowerBounds = torch.tensor( [bounds[i][0] for i in range(self.

output_dim) ])
10 self.upperBounds = torch.tensor( [bounds[i][1] for i in range(self.

output_dim) ])
11 def forward(self ,t):
12 out = self.input_layer(t.view(-1))
13 out = self.ac(out)
14 out = self.hidden_layer(out)
15 out = self.ac(out)
16 out = self.output_layer(out)
17 out = self.alpha(out)
18 return out
19 def alpha(self ,v):
20 out = self.ac(v)
21 out = (self.upperBounds - self.lowerBounds)*out + self.lowerBounds
22 return out

Listing D.1: Neural controller with two hidden layers.

1 from torchdyn.core import ODEProblem
2 import torch
3 import torch.nn as nn
4 import matplotlib.pyplot as plt
5 import numpy as np
6 from tqdm import tqdm
7 from optimizers import str_to_optimizer

Listing D.2: Packages imported

1 class OCP():
2

3 def __init__(self ,
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4 dynamics ,
5 z_0 ,
6 Tf ,
7 cost ,
8 dim_u ,
9 bounds ,

10 control ,
11 solver_ode ,
12 sensitivity ,
13 N,
14 optimizer ,
15 lr):
16 self.z_0 = z_0
17 self.dim_u = dim_u
18 self.cost = cost
19 self.time = torch.linspace(0,Tf,N)
20 self.control = control
21 self.controlled_dynamics = dynamics
22 self.dynamics = ControlledSystemToNonAutonomous(dynamics ,self.control)
23 self.optimizer = str_to_optimizer(optimizer , self.control , bounds , lr = lr)
24 self.ode = ODEProblem(self.dynamics ,
25 sensitivity = sensitivity ,
26 solver = solver_ode)
27

28 def get_sol(self):
29 t_sol , z_sol = self.ode.odeint(self.z_0 , self.time)
30 return t_sol , z_sol
31

32 def solve(self ,epochs):
33 for i in tqdm(range(epochs)):
34 t_sol , z_sol = self.ode.odeint(self.z_0 , self.time)
35 z_sol_f = z_sol [-1,:]
36 cost = self.cost(z_sol_f)
37 cost.backward ()
38 self.optimizer.step()
39 self.optimizer.zero_grad ()

Listing D.3: OCP, a class for solving optimal control problems via neural networks

1 class Regulator(nn.Module):
2 def __init__(self):
3 super ().__init__ ()
4 def forward(self ,t,z,u):
5 x = z[0]
6 v = z[1]
7 l = z[2]
8 dx = v
9 dv = u

10 dl = (x**2+v**2)/2
11 return torch.cat([dx.view (1),dv.view (1),dl.view (1)])
12 cost_funtion = lambda z : z[-1]
13 initial_conditions = torch.tensor ([0. ,1. ,0.0])
14 bounds = [(-1.0, 1.0)]

Listing D.4: Controlled dynamics of the regulator problem
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