
HAL Id: tel-04780372
https://theses.hal.science/tel-04780372v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Framework de sécurité avec token pour de l’accélération
cloud FPGA multi-utilisateurs sécurisée basé

Semih Ince

To cite this version:
Semih Ince. Framework de sécurité avec token pour de l’accélération cloud FPGA multi-utilisateurs
sécurisée basé. Computer Science [cs]. Université de Bretagne occidentale - Brest, 2024. English.
�NNT : 2024BRES0020�. �tel-04780372�

https://theses.hal.science/tel-04780372v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ
DE BRETAGNE OCCIDENTALE
ÉCOLE DOCTORALE NO 644
Mathématiques et Sciences et Technologies
de l’Information et de la Communication en Bretagne Océane
Spécialité : Informatique et architecture numérique

Par

Semih INCE

TokSek : Token-based multi-tenant cloud FPGA
security framework for secure acceleration

Thèse présentée et soutenue à Nokia Lannion, le 25 mars 2024
Unité de recherche : Lab-STICC UMR 6285

Rapporteurs avant soutenance :

Russell TESSIER Professeur des Universités, Université de Amherst, Massachusetts

Alain TCHANA Professeur des Universités, ENS Lyon

Composition du Jury :

Examinateurs : Guy GOGNIAT

Lilian BOSSUET

Professeur des Universités, Université de Bretagne Sud
Maria MENDEZ REAL Maître de conférences, Université de Nantes

Dir. de thèse :

Renaud SANTORO
Julien LALLET
David ESPES

Docteur, Nokia Bell Labs
Docteur, Nokia Bell Labs
Professeur des Universités, Université de Bretagne Occidentale

Président : Professeur des Universités, Université de St-Etienne

PREFACE

First, I would like to express my sincere gratitude to two colleagues and super-
visors, Renaud Santoro and Julien Lallet, from Nokia Bell Labs. Their guidance
and supervision were invaluable in the outcome of this thesis. Their support and
invaluable insights helped me overcome the challenges encountered during the re-
search process. I am truly grateful for their commitment and willingness to invest
time and effort in my academic journey. I also extend my heartfelt thanks to Samuel
Dubus, whose trust was important in the successful completion of this work. His
encouragement and belief in my capabilities motivated me throughout my research.
I am fortunate to have had such dedicated colleagues by my side at Nokia Bell Labs,
providing valuable input and encouragement when needed.

My gratitude extends to David Espes from the University of Occidental Brittany
and Guy Gogniat from the University of South Brittany. Their collaborative spirit
and significant contributions greatly enhanced the depth and quality of this the-
sis. Their kindness and willingness to share their expertise played a crucial role in
the overall success of this research project. I am very grateful for the positive and
enriching experience of working alongside them. I want to convey my gratitude to
Lillian Bossuet and Isabel Amigo for their contribution to this research work. Their
feedback and inputs during our meetings were valuable, and I want to thank them
for ensuring everything was on track.

I would like to acknowledge the unwavering support of all my friends in Lannion
and beyond, who consistently checked in on my progress and offered words of encour-
agement. Their friendship provided a source of strength and motivation, reminding
me that I was not alone in this academic journey. Their support made a significant
impact and is sincerely appreciated.

Lastly, I want to express my deepest gratitude to my family. Their encourage-
ment and belief in my abilities have been very impactful in my academic pursuits.
Their sacrifices and constant support, especially during challenging times, have been
valuable in my accomplishments. I am profoundly grateful for their enduring com-
mitment and the support they provide.

Semih Ince, December 2023

CONTENTS

I Introduction 8

1 Context . 8

2 Objective of this thesis . 9

II State Of The Art 12

1 FPGA-based cloud . 12

1.1 FPGA-based cloud architectures 12

1.2 FPGA-based cloud acceleration systems 13

1.3 FPGA-based Cloud without a Trusted Authority 14

2 Trusted execution environments and enclaves for FPGA 16

2.1 Introduction to trusted execution environments 16

2.2 Major frameworks for trusted execution environment 17

2.3 Security vulnerabilities of trusted execution environments . . . 21

3 Authentication techniques . 24

3.1 Direct authentication . 24

3.2 Authentication involving a third party 25

4 Authentication in FPGA cloud environments 27

4.1 Bitstream authentication for FPGA cloud 28

4.2 FPGA and user authentication 29

4.3 TA-based solutions for FPGA and user authentication 31

5 FPGA architecture and multi-tenancy for cloud computing 33

5.1 Lack of efficiency in current FPGA cloud deployment 33

5.2 FPGA virtualization solutions for multi-tenant cloud computing 35

5.3 Security vulnerabilities of cloud-based multi-tenant FPGA . . 37

5.3-1 Hardware-based attacks 37

5.3-2 Mitigation for hardware-based vulnerabilities 39

5.4 Multi-tenant FPGA architecture for cloud computing 41

6 Access control mechanisms for multi-tenant FPGA clouds 48

7 Summary . 49

III Token-based multi-tenant FPGA cloud security 51

1 Modelization of the framework . 51

1.1 Threat model . 51

1.1-1 Threats outside the FPGA 52

1.1-2 Threats inside the FPGA 52

1.2 TokSek modelization . 53

2 Introduction to TokSek . 58

2.1 Authorization and token infrastructure 58

2.1-1 OAuth 2 adaptation to FPGA cloud 58

2.1-2 JSON Web Tokens for FPGA resource sharing 60

2.2 TokSek framework . 61

2.2-1 Overview . 62

2.2-2 User resource request and user certificate 64

2.2-3 Authorization code grant 66

2.2-4 Token generation and access management 66

2.3 Access delegation between two TOs without CP implication . 68

2.4 User-FPGA interactions . 71

2.4-1 User and FPGA Secure Channel 71

2.4-2 Access Control with Tokens 71

2.4-3 FPGA reconfiguration with bitstreams 72

3 Implementation and analysis of software-based TokSek 73

3.1 Implementation details . 73

3.2 Theoretical Performance . 76

3.3 Security Analysis . 77

3.4 Experimental Performances 78

3.4-1 Access token request and resource access 78

3.4-2 Third-party FPGA access delegation between users . 79

3.4-3 Bitstream reconfiguration from the embedded OS . . 79

4 Summary . 79

IV Hardware approach for TokSek 82

1 Hardware security module for token-based multi-tenant FPGA 83

1.1 Introduction of the HSM . 84

1.1-1 Entities . 85

1.1-2 Threat model . 85

1.1-3 auth_token and token_parse functions 86

1.2 Resource allocation . 87

1.2-1 Allocating the resources of ui inside the HSM 87

1.2-2 Memory allocation function 87

1.3 Access control on allocated resources 92

1.3-1 Policy verification function 92

1.3-2 Address translation function 93

1.4 The attacker perspective . 94

2 Linkguard : Zero-trust confidential channel with cloud resources . . . 95

2.1 Introduction . 95

2.2 Modelization of Linkguard . 97

2.2-1 Threat model . 97

2.3 Description of Linkguard . 97

2.3-1 Key generation using a TRNG 97

2.3-2 NIST recommendations for TRNG key generation . . 99

2.3-3 Encryption and communication 100

2.3-4 Key reception and protection 101

2.4 Practical application example for Linkguard 102

3 Shielded enclave for FPGA logic for secure acceleration 105

3.1 Shielded enclave mechanisms 105

3.1-1 Outside the FPGA 105

3.1-2 Inside The FPGA 106

3.2 Threat model . 107

3.3 Vulnerability analysis . 108

3.4 Proposed upgrade to the shielded enclave 109

4 Implementation and results . 111

4.1 Resource utilization . 112

4.1-1 HSM . 112

4.1-2 Linkguard . 113

4.1-3 Upgraded shielded enclave 114

4.2 Latency . 116

4.2-1 HSM . 116

4.2-2 Linkguard . 119

4.2-3 Upgraded shielded enclave 120

5 Summary . 121

V Conclusion 123

1 Summary . 123

2 Future works . 126

Bibliography 129

Chapter I

INTRODUCTION

1 Context

The growing demand for computing power originates from the convergence of
multiple factors. The introduction of data-intensive applications, such as machine
learning, artificial intelligence, computer vision, and big data analytics, require a
lot of computing resources. High performance computing is an important challenge
because it allows to process and obtain meaningful insights from large datasets
with great performance. Then, the evolution of technologies such as 5G, Internet of
Things (i.e., IoT), and autonomous systems requires robust computing infrastructure
to support the seamless integration and operation of these technologies.

Cloud computing is one paradigm for the provisioning and utilization of com-
puting power. It offers a scalable and on-demand computing resources that aligns
with the requirements of technologies with heavy workloads. Cloud computing mit-
igates the need for organizations to make heavy investments in dedicated hardware
infrastructure, allowing them to leverage computing resources flexibly based on their
specific needs. Through the deployment of virtualized environments and distributed
computing architectures, cloud providers optimize resource utilization and enable
users to dynamically scale their computing capabilities. This not only answers to the
growing demand for computing power but also enhances efficiency, cost-effectiveness,
and accessibility. Telecommunication standards are evolving and cloud computing
solutions are required to support heavy computing workloads. For example, in 5G
and beyond, AI/ML components are widely deployed [1]. These components require
high computing power.

There are many devices like CPUs, GPUs and Field-Programmable Gate Arrays
(i.e., FPGAs) for high performance computing but the latter especially take the up-
per hand in terms of computing power. Unlike traditional CPUs and GPUs, FPGAs
offer a unique advantage by enabling users to customize and reconfigure the hardware
at the gate-level resulting in a highly optimized acceleration for specific workloads.

8

9

This adaptability gives FPGAs an edge in scenarios where application-specific opti-
mizations are important. While CPUs excel in general-purpose computing tasks and
GPUs are efficient in parallel processing, FPGAs combine reconfigurability and su-
perior parallel computing capabilities. In fact, FPGAs have significant performance
advantages compared to CPUs and GPUs [2]. As a result, FPGA accelerators are
becoming widely deployed by major Cloud Providers (CPs) [3], [4], [5].

In a cloud context, users require privacy, confidentiality and security. Intellectual
Property (IP) and data theft must be prevented to protect cloud users’ interests.
In fact, data is becoming the most valuable asset of modern times [6]. It is used in
various fields like AI/ML to train models or track user habits. In cloud computing,
user data can be sensitive and valuable due to its origin and content. Additionally,
users develop performant and costly FPGA logic (e.g., bitstream) to reconfigure the
FPGA. For these reasons, protecting user data and logic inside a cloud environment
is crucial for the development and the adoption of FPGA cloud computing in various
technological fields.

Because a single user cannot maximize the FPGA utilization, it is more efficient
to spatially divide the FPGA logic between multiple users: this is multi-tenancy.
Thanks to the parallelization capabilities of the FPGA, multiple users can seam-
lessly benefit from FPGA acceleration. However this brings a plethora of security
challenges like user isolation and access control. In fact, users must not interfere
with each other and shared components like device memory must be separated and
access control must be enforced.

Users need a secure remote access to the FPGA resource. Then, a direct en-
crypted communication channel between users and the FPGA is necessary to have
secure communications. Once the secure remote access is established, the FPGA
logic environment must be secured against multi-tenant and FPGA logic attacks.

2 Objective of this thesis

The objective of this thesis is to provide a multi-tenant FPGA cloud security
framework called TokSek to reinforce user data confidentiality without compromising
the security requirements of CPs. Low overhead and performance impact is another
objective, as reinforced security measures should not prevent users from achieving
efficient and high performance acceleration. To provide a secure low overhead access
that supports multiple users, an adaptation of the OAuth 2 framework for FPGA
cloud is proposed. It allows users to access an FPGA using an access token. The

9

Chapter I – Introduction

latter is also used for access control enforcement inside the FPGA. Moreover, a hard-
ware security module is proposed and coupled with the token-based FPGA access
scheme to provide a secure acceleration environment inside the FPGA. This security
module is responsible to enforce security functions like token verification and access
control to shared components between tenants. To reinforce user data protection a
patented solution called Linkguard is proposed. It is a zero-trust confidential chan-
nel establishment protocol to securely communicate with an FPGA located in an
untrusted cloud environment. We then study a shielded enclave from the literature
[7] that protects the user accelerator against the untrusted modules. We propose
to upgrade the shielded module with Linkguard to address some of the identified
vulnerabilities. The outline of the chapters of this work is described below.

In Chapter II, a state of the art on FPGA, cloud and security are detailed.
Existing FPGA-based cloud solutions are described to provide a baseline for this
research and identify drawbacks in current deployments. Because security is the
principal focus of this work, mechanisms like trusted execution environments, au-
thentication and access control are analyzed in the context of FPGA cloud comput-
ing.

Chapter III introduces a novel token-based connection method for FPGAs. A
theoretical model is provided and a token-based security framework called TokSek
is presented. It allows secure connection with mutual authentication mechanisms
and low latency FPGA access. Additionally, a practical use case for telco providers
is exposed to showcase the capabilities of this framework. TokSek is implemented
on an AMD FPGA and results are presented.

Chapter IV focuses on the hardware aspect of TokSek by introducing several
modules like a hardware security module inside the FPGA logic. Compared to the
software approach from Chapter III, this approach aims to secure the FPGA logic
by providing additional security mechanisms and offer better performance by of-
floading few functions to the FPGA logic. In fact, the threat model is stricter in this
chapter because we consider that the processing system and the embedded oper-
ating system are compromised. These hardware security elements provide isolation
and security for each tenant sharing the same FPGA. A patented security solution
called Linkguard allows to establish a zero-trust confidential channel between an
FPGA module and a stakeholder within an untrusted cloud environment. All these
elements contribute to achieve a secure multi-tenant cloud FPGA environment that
protects user data confidentiality.

Chapter V summarizes this thesis and highlights key elements that are detailed in

10

11

this work. Future works and open challenges are also described to give a perspective
on future technologies that may have an impact on this work.

11

Chapter II

STATE OF THE ART

1 FPGA-based cloud

1.1 FPGA-based cloud architectures

The development of demanding applications like AI/ML, video encoding and
other domain specific algorithms lead to the development of accelerators. These ap-
plications are getting slower on general purpose CPUs. Algorithms and hardwares
need to be more efficient to meet timing and latency constraints. Specific hardwares
like GPU and FPGA are used to fulfill acceleration needs. Especially, FPGAs offer
significant advantages to accelerate various applications. They have more compu-
tational power than GPUs and CPUs on most applications [2]. FPGAs are also
reconfigurable to meet various acceleration needs with high flexibility. With the de-
velopment of cloud services, FPGAs are already deployed by cloud providers (i.e.,
CP) like AWS, Microsoft and Alibaba. Depending on the need, FPGAs are deployed
in the cloud under different architectures.

Cloud providers like AWS and Alibaba offer FaaS (FPGA as a Service) platforms.
For example, Alibaba can provide up to four FPGAs and 88 virtual CPUs in one
instance. Users get a virtual machine to access those hardwares. Cloud users can
develop and reconfigure FPGAs with their custom design. Figure 2-1 shows the
most common way of deploying an FPGA. The FPGA is tightly attached to a host
through PCIe. The host communicates with the FPGA by using APIs and commands
provided by the cloud provider. The latter has a communication and management
stack inside the FPGA to execute commands sent by the host through PCIe. This
type of connection is deployed by AWS F1 and Alibaba F3 instances [3], [5].

12

13

Figure 2-1 – Most common FPGA-based cloud architecture

1.2 FPGA-based cloud acceleration systems

Users can benefit from FPGA acceleration in three different ways. In FaaS model
like AWS F1 and Alibaba F3, users get FPGA access to implement their own accel-
erator. Users have access to a virtual work environment with tools and hardware.
With the Infrastructure as a Service (i.e., IaaS) model, users have a list of specific
accelerators. They can choose the application they want to speed up. This is the
model deployed by IBM and Microsoft Brainwawe project (neural network accelera-
tor) [8], [9], [10]. Finally, users can benefit from FPGA accelerators with systems like
Microsoft Catapult. Microsoft’s web search engine Bing is accelerated with FPGAs
but this is transparent to the user.

Microsoft Catapult aims to accelerate web search rankings using FPGA accelera-
tion [9]. In this case, FPGAs are not offered to users as FaaS platforms. In fact, users
can only take advantage of this system if they use Microsoft’s Bing search engine.
This system is totally transparent to the user. For this purpose, Microsoft opted for
a Top-of-Rack (i.e., TOR) topology. They use a 2-socket server blade including two
CPUs, one Network Interface Controler (i.e., NIC) and one FPGA for acceleration
purposes as shown in Figure 2-2. This architecture is deployed massively in parallel
to accelerate web searches. The FPGA is mainly used for acceleration in this sce-
nario. But if an FPGA is momentarily unused, it becomes a NIC and serves as a
network accelerator for the datacenter. Another example is Microsoft Brainwawe [8].
It is an FPGA-based neural network accelerator. Microsoft also uses the presented

13

Chapter II – State Of The Art

topology for this application.

Figure 2-2 – Microsoft Catapult architecture

Finally, IBM has worked on a FPGA-based cloud architecture where FPGAs are
independent from a CPU [10]. FPGAs are interconnected and attached to the data
center network with a switch. The purpose of this architecture is to accelerate specific
workloads like AI/ML and network encryption under a IaaS model. This means that
users cannot use their custom accelerator but rather ready-to-use accelerators offered
by the cloud provider.

1.3 FPGA-based Cloud without a Trusted Authority

In all solutions presented above, FPGAs are managed by the CP. The latter allo-
cates resources and establishes security. Figure 2-3 shows the high level architecture
and associated mechanisms in current cloud solutions.

Figure 2-3 – Current FPGA-based cloud mechanisms

Upon receiving a user request, the CP creates a work environment and allocates
resources. The user has access to resources through a virtualized environment. The

14

15

Figure 2-4 – AWS F1 instance usage.

CP can track FPGA usage and check for security issues. To achieve this, AWS
and Alibaba include management functions inside the FPGA [3], [5]. Due to a lack
of transparency, the CP’s privileges within the FPGA are unknown. The CP can
communicate with the FPGA. Thus, the CP can breach user privacy and access
resources allocated to a user.

Figure 2-4 shows the mechanisms used in AWS F1 instances. The virtual machine
is set up with an Amazon Machine Image provided by Amazon according to a
specification selected by the user [3]. In order to program the FPGA, the user must
load an Amazon FPGA Image (i.e., AFI) generated by AWS. The user must disclose
their IP to program the FPGA. Before generating the AFI file, AWS checks the user
IP for malicious design patterns such as power wasters and side-channel analyzers
based on ring oscillators, short circuits and long wires [11] that are further described
in Section 5.3. Under this scheme, the user and the CP distrust each other. The CP
protects its devices against damage. Although the user desires IP protection and
confidentiality, the user IP is never authenticated after the AFI file (i.e., verified
user bitstream) is produced. The user has no proof that his IP in the AFI file is
unmodified. Recent work has proven that bitstream manipulation is a possible way
to introduce hardware Trojans into designs [12]. The user also has no proof that his
IP is indeed kept secret.

In the current implementation, the user never authenticates the FPGA. He ac-
cesses a virtual machine which can access an FPGA. The lack of authentication
in this scenario can be a threat as man in the middle attacks (MitM) and FPGA
impersonation are possible. In MitM attacks, the attacker is placed between two
communicating entities, as shown in Figure 2-5. During this attack, the virtual ma-

15

Chapter II – State Of The Art

Figure 2-5 – Man-in-the-middle attack configuration.

chine sees the attacker as the FPGA and the FPGA sees the attacker as the virtual
machine. In this situation the attacker intercepts the communication data, the user
IP and the data.

Moreover, user IP confidentiality is lacking. To use a custom FPGA accelerator,
the client must send a design file to the CP [3], [13]. To address confidentiality and
isolation issues, a trusted authority (i.e., TA) can be involved as described in Section
3.2 and Section 4.3.

In this section, each presented architecture is adapted to a specific use case.
Privacy measures and security assumptions are also not the same. On one hand,
clients get full FPGA access under the FaaS model. End users reconfigure the FPGA
with their own designs. One the other hand, users can benefit from FPGA accel-
eration through a web browser without requiring any technical FPGA knowledge
with the IaaS model. In this work, focus is given on the FaaS model where users
have access to a cloud provider FPGA. After having presented the FPGA-based
cloud context, The next section focuses on Trusted Execution Environments (i.e.,
TEE) and FPGA enclaves. These solutions provide secure computation and create
isolation against the underlying system execution environment (e.g., operating sys-
tems, concurrent programs...). TEEs and enclaves are important elements to provide
secure cloud-based FPGA acceleration.

2 Trusted execution environments and enclaves
for FPGA

2.1 Introduction to trusted execution environments

TEEs are hardware-based trusted execution environments located inside CPU.
They provide data integrity, isolation and confidentiality for any code executed inside
them. An unauthorized program running outside a TEE cannot modify the data or
communicate with a program running inside a TEE. Most common TEEs are Intel
SGX [14], Arm TrustZone [15] and RISC-V Keystone [16]. These TEEs are available

16

17

for their respective processors. For example, an Arm CPU cannot take benefit from
SGX or Keystone. Each TEE solution aims for similar achievements like isolation
and integrity but they do it differently.

There are mainly two types of FPGA architecture and one of them is FPGA
SoC (i.e., System on Chip). They include a Processing System (i.e., PS) with an
embedded CPU and can have various other components like on board memory,
Graphics Processing Unit (e.g., GPU) and various interfaces (e.g., UART, USB,
CAN...). On the PS side, one can set up an embedded OS and use the board as an
embedded device by using vendor tools. The PS can execute software programs by
leveraging the CPU and the tools available in the embedded OS. Most importantly,
the PS can communicate with the other part of the SoC : the Programmable Logic
(i.e., PL). The latter is a matrix of programmable hardware resources (e.g., look-up
tables, flip-flops...) which can implement hardware functions.

The second FPGA architecture are accelerator cards that do not have a PS. Those
devices are solely constituted of programmable hardware (i.e., PL) in order to reach
low latency and high throughput acceleration. Accelerator cards are connected to a
host machine with a PCIe interface. The host machine sends commands and jobs
through the PCIe interface to accelerate a specific function that is deployed inside
the accelerator card. Those devices are often used in large scale data centers to reach
higher performance on critical workloads. The AMD Alveo series or the Intel Stratix
FPGAs are some examples of accelerator cards [17], [18].

For their FPGA SoC, Intel and AMD use Arm CPUs like the Quad Arm Cortex-
A53 for their PS [19], [17]. Consequently, Intel and AMD have TrustZone technology
enabled on their PS. Accelerator cards without a PS cannot leverage TrustZone or
SGX technology because they do not have a CPU. To benefit from a TEE, accel-
erators can implement a RISC-V CPU inside the PL to benefit from the Keystone
TEE [16], [20]. However, this aims to protect the software execution inside the RISC-
V processor and the hardware logic still remains unprotected. RISC-V is an open
standard for an ISA (i.e., Instruction Set Architecture) and many RISC-V imple-
mentations exist due to its customization capabilities [21], [22], [23].

2.2 Major frameworks for trusted execution environment

Intel Software Guard Extensions (i.e., SGX) is a hardware-based TEE that aims
to provide secure code execution and data protection. At its architectural core, SGX
introduces secure enclaves and isolated memory regions within the CPU [14], [24],

17

Chapter II – State Of The Art

[25]. Enclaves enable the execution of critical code and the handling of sensitive data
with a high degree of security and confidentiality. One notable accomplishment of
SGX is its ability to enhance software execution security and protect data integrity
and confidentiality, even if the underlying operating system or hypervisor may not
be entirely trusted [14]. The notion of hypervisor is further explained in Section
5.2. Some features of SGX are memory isolation mechanisms, encryption techniques
for enclave memory pages, and a robust remote attestation system for enclaves.
SGX ensures that code executing within its enclaves remains confidential, immune
to tampering, and secure against various threats. As a result, SGX plays a vital
role in securing applications and workloads in areas such as secure cloud computing,
confidential data processing, and secure code execution. To provide these security
achievements, SGX relies on software attestation mechanism. The latter provides
cryptographic evidence of an enclave’s identity and integrity, enabling remote par-
ties to verify the enclave’s security status. SGX also supports secure data sealing
and unsealing, allowing sensitive information to remain protected, even when stored
outside the enclave. SGX is particularly interesting for FPGA cloud computing be-
cause it uses the concept of a Trusted Authority (i.e., TA) to provide an external
remote attestation service. Later in this chapter, the benefits and shortcomings of a
TA-based solution is discussed.

Arm TrustZone is another notable hardware-based TEE. Its architecture is based
on the concept of secure and non-secure worlds, enabling the execution of sensi-
tive code and data within a fortified, isolated environment [15], [26]. The same
way as SGX, TrustZone is also providing software security and data confidential-
ity even if the underlying operating system or hypervisor is not fully trusted. This
is accomplished by robust memory isolation and peripheral protection mechanisms
[27], secure boot processes, and cryptographic hardware acceleration. TrustZone en-
sures that code running within its secure world remains confidential, impervious
to tampering, and resilient to various threats [28]. Consequently, TrustZone plays
an important role in providing the security of applications and workloads in ar-
eas such as mobile devices, embedded systems, and Internet of Things (i.e., IoT)
devices. Hardware-enforced memory separation ensures that code and data in the
secure world remain inaccessible to the non-secure world. TrustZone’s secure boot
process guarantees the integrity of the system’s boot sequence and firmware, prevent-
ing unauthorized modifications. Furthermore, cryptographic hardware acceleration
enhances the performance of cryptographic operations and secures sensitive data.
TrustZone also supports secure key storage and cryptographic operations within the
secure world, further strengthening its security. These mechanisms mitigate threats

18

19

such as unauthorized access, code injection, and data breaches while creating isola-
tion against the non-secure world.

Figure 2-6 – Arm TrustZone architecture

Keystone is an open-source TEE framework compatible with RISC-V architec-
ture [16], [20]. It provides a secure enclave for code execution and data protection
within its architectural design. Keystone enclaves have isolated memory regions to
ensure the confidentiality and integrity of sensitive code and data. One notable as-
pect of Keystone is the customization, allowing developers to use security features
of the framework for their specific use cases. The framework’s compatibility with
the RISC-V architecture enhances its accessibility, making it an option for projects
seeking a balance between security and adaptability. As a key component, Keystone
uses its Physical Memory Protection (i.e., PMP) primitive to specify protections
on memory regions of the RISC-V operating system. An unauthorized program or
master (e.g., AXI master-slave communication protocol) is unable to access specific
memory regions [20]. Another notable feature is the execution of a trusted Security
Monitor (i.e., SM) using the machine mode, establishing security boundaries without
engaging in resource management. There are three levels of privilege in Keystone :
user mode, supervisor mode, machine mode. Machine mode has the highest privi-
lege and only the SM has access to it. Enclaves in Keystone operate within dedi-
cated physical memory regions, each equipped with its own supervisor-mode runtime
(i.e., RT) component for virtual memory management and enclave-specific mecha-
nisms. This enclave architecture enables secure and independent implementation of
enclave-specific features by their runtime components, while the security monitor
oversees hardware-enforced guarantees. The enclave runtime focuses solely on essen-
tial functionalities, communicating with the security monitor, managing host inter-
actions through shared memory, and servicing the Enclave user-mode Application
(i.e., EApp).

19

Chapter II – State Of The Art

MultiZone FPGA is also an open-source and standard-based TEE specifically de-
signed for RISC-V processors [29]. This TEE offers hardware-enforced separation for
multiple secure domains, granting full control over data, programs, and peripherals
without requiring additional IP blocks or firmware modifications. It is a versatile
TEE that can create a policy-driven security environment for RISC-V, applicable to
a wide range of devices from single-core IoT to multi-core Linux applications. Key
components include the lightweight MultiZone nanoKernel, the secure inter-zone
communication infrastructure MultiZone Messenger, MultiZone Configurator for se-
cure boot firmware generation, MultiZone Secure Boot. MultiZone nanoKernel is a
lightweight kernel designed for enforcing policy-driven hardware separation of RAM,
ROM, I/O, and interrupts. This kernel establishes secure and isolated environments
between different execution zones. The MultiZone Messenger is another critical com-
ponent, serving as a communications infrastructure that facilitates secure message
exchange across zones without shared memory. The MultiZone Configurator is useful
in combining linked zone executables with policies and the nanoKernel to generate
the secure boot firmware image, allowing developers efficient configuration of zones
based on specific security requirements. Additionally, the MultiZone Secure Boot
module enhances security with a two-stage secure boot loader, employing crypto-
graphic algorithms such as SHA-256, SHA-512, and ECC to verify the integrity and
authenticity of the firmware image. These modules provide an adaptable framework,
enabling the construction of secure and isolated Trusted Execution Environments
(zones) for RISC-V applications.

Figure 2-7 – Architecture of SGX-FPGA : an extension of Intel SGX to FPGA
platforms. Green modules are trusted

Some solutions in the literature leverage the reconfigurable aspect of the FPGA
to provide a secure and isolated enclave solution for specific applications. Because
CPU-based TEEs do not provide FPGA support, researchers looked forward to
extending existing TEE frameworks to FPGAs.

SGX-FPGA is a solution that aims to extend SGX capabilities to FPGA en-

20

21

vironments [30]. This is a CPU-FPGA heterogeneous solution to bridge software
and hardware enclaves to protect the data and the computation in both worlds.
They combine the use of a SGX-enabled host CPU with an FPGA that is connected
through a PCIe interface. A CPU controller located inside the SGX enclave and
an FPGA secure monitor in the programmable logic are proposed. They are both
trusted. All EApps are connected to the CPU controller. The latter is responsible of
the PCIe interface and FPGA communication. The CPU controller is responsible of
cryptographic operations for the communications with the FPGA secure monitor.
On the PL side, the FPGA SM also does cryptographic operations and it has its
own on-board attestation. To establish isolation between the FPGA and the user
enclave, the EApp and the CPU enclave authenticate themselves with the remote
attestation server. Both of them receive a certificate for a successful authentica-
tion with the remote attestation server. Then, the EApp and the CPU enclave can
authenticate each other. To setup secure communication, they both generate and
exchange encryption keys. The CPU enclave also authenticates and exchanges keys
with the FPGA SM. The latter generates keys with a PUF (i.e., Physical Unclonable
Function) which is described in Section 4.2. There are in total two generated keys
and two authentications to establish secure communication between an EApp and
the FPGA logic. However, a drawback of this solution is the high logical resource
consumption. This design needs 175k LUT which is approximately 25% of an AMD
Virtex 7 FPGA. In a multi-tenant cloud FPGA context where multiple users share
the same accelerator device, this solution may either create congestion in the FPGA
logic or lead to a greatly reduced number of possible tenants. It is notable that
a highly congested FPGA fabric creates security vulnerabilities. Some of them are
further discussed in Section 5.3.

2.3 Security vulnerabilities of trusted execution environ-
ments

Despite aiming to provide secure execution and isolation, TEE security vulnera-
bilities exist.

For example, previous works [31], [32], [33] describe vulnerabilities found on Intel
SGX TEE. As described earlier, SGX relies on untrusted software to run trusted
enclaves. SGX is prone to passive memory mapping attacks because the enclave
page table and address Translation Look-aside Buffers (i.e., TLB) are managed by
the untrusted OS [33]. Page tables store the mapping between virtual and physical
address. With passive memory mapping attacks, the untrusted OS can identify the

21

Chapter II – State Of The Art

memory region used by an SGX enclave. However, active attacks are not possible
because page table content is encrypted and its integrity is protected.

SGX is also vulnerable to Spectre attacks. It is a micro-architecture side-channel
vulnerability based on speculative execution. The latter is an optimization technique
where the CPU executes tasks before they are needed. [32] shows that the branch
prediction of the SGX enclave can be influenced by programs outside the enclave.
By doing that, internal register and cache content can leak outside the SGX enclave,
suppressing the confidentiality promises of Intel SGX. Encryption keys and attes-
tations stored inside and SGX enclave are successfully stolen [32]. There are also a
plethora of cache attacks, like timing attacks which allow to steal enclave protected
data [34], [35], [36].

Arm TrustZone also has some vulnerabilities reported in the literature [33], [37],
[38]. Compared to Intel SGX, TrustZone does not have memory mapping vulnera-
bilities because enclave page tables are managed by the secure world and a trusted
software. Normal world and secure world separation is providing more isolation com-
pared to SGX which runs on untrusted software. However, TrustZone has the same
cache vulnerabilities of SGX [33] [37]. Additionally, Arm CPUs are used in FPGAs
and this leads to a greater attack surface. For example, AMD UltraScale+ architec-
ture is a SoC architecture using Arm CPUs. Work [37] shows that the Accelerator
Coherency port (i.e., ACP) is a vulnerability for TrustZone isolation. The ACP
port is a cache coherent AXI port used for applications where PS-PL communi-
cations are frequent. Moreover, using a hardware Trojan, authors demonstrated a
Direct Memory Access (i.e., DMA) attack, compromising isolation mechanisms and
TrustZone secure boot procedure [37], [39]. The attacker can reprogram the eFuse
and modify the encryption key and key hash that are required to configure the
FPGA logic. This can be achieved by using the ACP port that can bypass the
Xilinx Memory Protection Unit (i.e., XMPU). After the modification of the eFuse,
the attacker can load unauthorized logic into the FPGA bypassing TrustZone secure
boot. Previous work [38] also exposes vulnerabilities of Arm TrustZone in FPGA
SoC. This work takes advantage of the AXI communication to disrupt device isola-
tion. By adding intermediate modules like a FIFO in the AXI interconnect block, or
modifying response signals, an attacker can leak protected data, execute privilege
escalation or denial-of-service attacks.

Compared to SGX and TrustZone, RISC-V implementations using Keystone are
considered safer due to continuous development from the community. RISC-V imple-
mentations are studied and vulnerabilities are reported from the community. Some

22

23

RISC-V implementations get out-of-order (outdated) due to security vulnerabili-
ties or insufficient feature/performance [40]. To improve security, work [40] proposes
TEESec. It is a pre-silicon software for vulnerability discovery for TEEs. Security vul-
nerabilities of out-of-order RISC-V implementations like BOOM [41] and XiangShan
[42] are exposed. They found data and metadata leakage case in both implemen-
tations. In both implementation, enclave data leaks and Keystone secure monitor
data leaks have been found. These leaks are originating in missing PMP permission
verification for cache mechanisms (e.g., cache pre-fetcher) and Meltdown-type vul-
nerabilities [40], [43]. However, because each RISC-V is an open-standard for CPU
design, each implementation is different. Thus, security vulnerabilities and features
can be different for each implementation. RISC-V XiangShan [42] and Boom [41] do
share similar vulnerabilities but they also have their own ones. For example, Boom
[41] has residual data leakage after enclave destroy whereas XiangShan [42] is secure
in that regard.

Few mitigations exist for various TEE vulnerabilities described above. For RISC-
V and Keystone, flushing caches seems to be possible mitigations for both Boom
[41] and XiangShan [42] but this may affect performance [40]. For FPGA SoC using
an Arm CPU, mitigations exist to secure the vulnerabilities created by the AXI
ACP port. If one intends to use the ACP port to benefit from L2 cache, a specific
isolation module can be developed for the ACP [37]. This module can enforce specific
rule sets according to its configuration before communicating with the ACP port.
Additionally, work [38] proposes two software memory controllers to prevent the
use of AXI interconnect and memory interconnect modules while enforcing memory
rule sets. However for SGX, the architecture of the CPU cannot be modified to fix
security issues. Some security issues located in the CPU architecture can be fixed by
microcode patch. Microcode modification allows to change the CPU behavior and
modify the task execution. For example, SGXpectre [32] can be fixed with such a
patch. Additionally, vulnerabilities like CacheQuote [36] can be fixed by changing the
enclave service framework to support higher level of enclave provisioning mechanisms
[31]. And finally, a great number of reported attacks can be fixed using adequate
compiler optimization techniques and application design methodology [31].

The current section described existing TEE solutions and how they can contribute
to the security of FPGA-based cloud computing. In this section, TEE frameworks are
analyzed, security vulnerabilities are exposed and possible mitigations are detailed.
The following section focuses on authentication in FPGA-based cloud computing. It
is one of the most important security features for FPGA-based cloud computing. It
allows to identify acting entities (i.e., users, cloud providers), targeted devices and

23

Chapter II – State Of The Art

custom user designs. In a cloud context, authenticating users and devices allows the
cloud provider to set up authorization and access control. For the user, authentica-
tion is a proof that the work environment (e.g., the allocated resources) is genuine
and identified.

3 Authentication techniques

Authentication is a mean to verify the identity and the authenticity of objects
or subjects. Let’s consider Alice and Bob communicating over an unsecured line.
In order to mutually authenticate themselves they can have a shared secret like
a passphrase (i.e., password) and verify that each other know it. They could also
share their own identifier provided by an entity they both trust. Alice would verify
Bob’s identity provided by the trusted entity. If the trusted entity confirms that the
identity provided is valid, Alice can trust the person pretending to be Bob. They
would continue to communicate securely using public key cryptography.

In this section, various authentication techniques are detailed. Some techniques
allow users to directly authenticate each other. Other authentication mechanisms
leverage a trusted third party to authenticate users.

3.1 Direct authentication

Authentication mechanisms often involve digital signatures and hash functions.
The latter is a one way function which maps h : X −→ Y where |X| = n, |Y | = m

and n > m. It is relatively easy to compute the result with a given input. But
computing the input with a given output is extremely difficult. SHA (i.e., Secure
Hash Algorithm) is a popular hash function. In fact, a hash algorithm guarantees
integrity of data but it does not authenticate the sender/receiver [44]. There are
no shared secrets in hash functions to achieve authentication. This means that an
attacker can still construct a message with a correct hash and send it. The receiver
will see this message as valid. An attacker only needs to know which hash function is
used. As |X| > |Y | it is possible to brute force the hash algorithm. Collision attacks
[45] allow to find the same hash output with a different input using a brute force
algorithm. There are different ways to authenticate an entity. Technical details and
features of different authentication techniques are detailed below.

In order to authenticate a sender, Message Authenticated Code (i.e., MAC) al-
gorithm is one possibility. It uses a shared secret to create message digests. You can

24

25

only create authentic and valid messages if you have the shared secret. In order to au-
thenticate and verify message integrity, HMAC (keyed-Hash Message Authenticated
code) functions are optimal. HMAC is the use of MAC (Message Authenticated
Code) with a hash function. HMAC and MAC algorithms serve the same purpose.
HMAC is a specific implementation of MAC which includes a cryptographic hash
functions. Thus, HMAC has stronger security properties than a standard MAC.

Authenticated Encryption (i.e., AE) is a way to authenticate the data and the
sender. AE is a block cipher mode which provides encryption as well as integrity and
authentication of the data. Common AE algorithms are AES-CCM and AES-GCM
[46]. AE can be seen as an encrypted HMAC because it involves a shared secret,
a hash function and finally an encryption method. The most common schemes of
AE is Encrypt-then-MAC (EtM), MAC-then-Encrypt (MtE) and Encrypt-and-MAC
(E&M) [47]. Each method is slightly different from one another but they achieve
the same objective. EtM method is considered to have the highest level of security
between the three choices [48]. E&M and MtE are also secure but they require
few modifications to be strongly unforgeable [48]. AE is also tightly linked to TLS
(i.e., Transport Socket Layer) and in every application where confidentiality and
integrity is required. AE algorithms are mandatory in TLS, encryption and hash
functions are used in every communication. The choice of the algorithms depend on
the negotiation between the server and the client [49].

3.2 Authentication involving a third party

Certificates are another way to authenticate a user. Information like public keys,
name and organization are present in the certificate. Often, certificates work under
a Public Key Infrastructure (i.e., PKI) scheme. Under this scheme, a Certificate
Authority (i.e., CA) signs user certificates and generates public keys as shown in
Figure 2-8a. CAs are trusted anchors, they sign certificates to indicate that the user’s
identity is verified. Generally, there are other entities like the Registration Authority
(i.e., RA) in PKI. There are various architectures and entities for PKI systems [50],
[51]. Figure 2-8b shows a single rooted hierarchical PKI structure. A root CA (i.e.,
trust anchor) certifies multiple CA. A certificate signed by a CA can be verified
if it can be traced back to a trust anchor (i.e., root CA). This scheme is widely
used by web browsers. Holding and updating a list of root CA is enough to verify
a certificate. Nowadays, PKI is everywhere. The most notable system using PKI
is TLS. It allows to achieve authentication and secure communication over HTTP
(i.e., HyperText Transfer Protocol) [49]. Through a client-server communication,

25

Chapter II – State Of The Art

(a) Basic PKI
(b) Hierarchy PKI

Figure 2-8 – Public Key Infrastructure mechanisms

entities exchange their respective certificates for verification. This is mutual TLS
authentication and it is an optional mechanism. The certificate is signed with the
CA’s public key. To verify the certificate, a user needs to contact the CA and send
it for verification. If the certificate is valid (i.e., not revoked) the CA gives a positive
response to the user. Each entity is identified and associated to a certificate. X.509
certificates are popular in TLS. They include information like issuer name, subject
name, public key information, validity period etc. For each future communication,
the certificates can be verified to achieve authentication. Upon successful verification
under TLS 1.3, both entities proceed to communicate by creating a shared secret with
DHE (i.e., Diffie-Hellman Ephemeral) or ECDHE (i.e., Elliptic Curve Diffie-Hellman
Ephemeral). In TLS 1.2, the most common method remains RSA. In recent works
on cloud FPGA, the expression "Trusted Authority" (i.e., TA) is more common. The
role of the TA is similar to a CA. Works like [52] and [53] take advantage of a TA to
generate FPGA certificates for authentication and encryption. Isolation between the
user and the Cloud Provider (i.e., CP) is reinforced to offer better confidentiality.
Security critical functions like authentication and certification are done by the TA
instead of the CP. If a third party TA is not present in the FPGA allocation scheme,
the CP can control every security mechanism and every step of the FPGA sharing.
Hence, the CP can have access to user IP, data and allocated resource. To the best
of our knowledge, no commercial cloud provider takes advantage of a TA for cloud
FPGA services at the time of writing.

Other specific tools like SAML (Security Assertion Markup Language) and OAuth2
also exist. These are authentication and authorization tools commonly used with
HTTP environments. SAML is a framework based on XML. It allows to share iden-
tity and security information to access other domains [54]. On the one hand, SAML
allows to access multiple corporate tools and domains under one identity. On the

26

27

other hand, OAuth2 allows to make authenticated HTTP resource request [55]. As
shown in Figure 2-9, OAuth2 is a protocol involving (most of the time) four enti-
ties : a user, a Resource Owner (RO), an Authorization Server (AS) and a resource
server. The user negotiates an agreement with the RO to access its resources. The
RO specifies the scope (i.e., rules and limitations) of the resource sharing. If the user
gets the authorization from the RO, the user can ask the AS to generate an access
token. The user can use the access token with the resource server to get access to
the resources shared with him. This scheme is lightweight and practical when a user
needs to access tools quickly without successive log in. OAuth2 is much more focused
on authorization, whereas SAML is more about authentication. Authentication do
exist in OAuth2, but the solution to authenticate a user is out of the standard’s
scope and left to the developer. Later in this work, an adaptation of OAuth2 for
confidential cloud FPGA sharing is detailed [56].

Figure 2-9 – High level view of the OAUTH2 protocol

4 Authentication in FPGA cloud environments

Current cloud providers like Amazon, Alibaba and Huawei offer FPGA access
through virtual machines. Figure 2-10 shows the most common way to access an
FPGA deployed on the cloud. Users are authenticated two times to access an FPGA.
On step 1, the customer authenticates himself using his AWS account to request a
VM with FPGA access. On step 2, the CP provides a VM access to meet the user’s
hardware requirements. On step 3 the customer logs into the VM and gets his FPGA
access on step 4.

27

Chapter II – State Of The Art

4.1 Bitstream authentication for FPGA cloud

A bitstream is a configuration file produced by an FPGA development software
like AMD Vivado or Intel Quartus. To run an algorithm, a bitstream is loaded inside
the FPGA. The bitstream targets a defined configurable area and can run until
device reset or reconfiguration. Bitstream authentication is an important aspect of
IP protection in FPGAs. Users want to configure the device with their custom design
but keep their IPs private. By achieving bitstream authentication, the FPGA device
is able to verify if the bitstream comes from an authenticated source. Bitstream
integrity is also checked and any modification on the bitstream can be spotted.
Therefore, it is not possible for an attacker to configure the FPGA with a malicious
IP. It is also not possible to implement hardware Trojans in valid custom user designs
at a bitstream level.

In [46], authors propose a solution to achieve bitstream authentication, integrity
and encryption by implementing a hardware block cypher AE scheme. From an
FPGA resource point of view, block cypher algorithms like AES-CCM or AES-
GCM are much more efficient than standard AES+HMAC algorithm. Authors im-
plemented a compact AES-CCM algorithm with four times less logical resource at the
cost of three times less throughput compared to AES+HMAC algorithm. Authors of
[57] implemented AES-GCM and also compared it against AES+SHA. Their design
is 25% faster than AES+SHA and with slightly less logical resource used.

In [58], authors proposed a secure protocol for secure remote bitstream update.
They particularly aimed to prevent spoofing and replay attacks. Spoofing is the
replacement of a genuine data transfer with other data. Replay attacks are done by
catching a data transfer and replaying it anytime over the network. In their scheme,
bitstream version is controlled and only the system designer can update the active
bitstream. For authentication, the system designer, the bitstream and the FPGA
are authenticated through block cipher (i.e., AE).

Cloud providers like AWS and FPGA vendors like AMD propose FPGA bitstream
marketplaces. A user having access to an FPGA cloud service can buy a third party
IP and implement it in the resources. In [59], authors propose a solution for this
scenario. The user needs to share an FPGA identifier when buying an IP from
the software vendor. The software vendor sends the requested IP and the FPGA
identifier to the FPGA vendor. The latter is able to identify the target device using
the FPGA identifier. The FPGA vendor then encrypts the IP with the shared secret
associated to the FPGA identifier. The FPGA vendor has a database of shared secret
associated to every FPGA that they sold. Bitstream integrity and authenticity is

28

29

achieved with a keyed-hash message authentication code (HMAC). The encrypted
IP is sent back to the software vendor who verifies integrity and forwards the IP
to the user. The bitstream is bounded to a single device because of device targeted
bitstream encryption.

Bitstream authentication mechanisms often involve the FPGA and a shared se-
cret because a bitstream targets a specific device. To guarantee IP integrity and
overall security, FPGA authentication is important to ensure the authenticity of the
hardware endpoint receiving the IP because sensitive user data will be processed
inside the FPGA.

Figure 2-10 – Common FPGA access scheme

4.2 FPGA and user authentication

Authenticating the FPGA device is critical in remote FPGA computing. As users
do not have physical access to the device, they need to ensure that they are communi-
cating with the appropriate FPGA. As stated above, AE is one way to authenticate
a device. With a shared secret and a block cipher it is possible to mutually au-
thenticate the user and the FPGA to achieve message integrity altogether. Previous
works implemented a compact 32-bit AES-CCM (i.e., CBC-MAC and counter mode
encryption) [46], and a 3DES block cipher for FPGA authentication [58]. Shared
secrets or encryption keys can be implemented in secure memories and one-time
programmable memories. For SoC (System on Chip) platforms, Trusted Execution
Environment (TEE) like Arm TrustZone and Intel SGX can be used to offer secure
memory and security sensitive computation.

It is also possible to share a secret without storing anything inside a secure

29

Chapter II – State Of The Art

memory. Physical Unclonable Functions (PUF) [60] take advantage of the physical
randomness of the FPGA silicon that is unintentionally created during the manu-
facturing process of the semiconductor. This randomness mostly affects rising and
falling times of signals. As the semiconductor physical characteristics cannot be re-
produced, each FPGA device behaves differently to PUF designs. A specific input
to the PUF (i.e., a challenge) produces an associated output (i.e., a response). The
output for a given input is unique to the device. The same PUF implemented on
multiple devices will give different results. If a PUF design is characterized and
challenge-response pairs are saved, it is possible to identify deployed FPGAs re-
motely. One would have to send a challenge and read the response to validate the
FPGA authentication.

But PUF designs are also not ideal. They are especially vulnerable against ma-
chine learning and modeling attacks [61]. When enough challenge-response pairs are
collected, it is possible to predict the response for a given challenge. PUFs are also
sensitive to noisy environments. The temperature and the device voltage have a sig-
nificant impact on the PUF responses [62]. If they are not stable, the voltage can
fluctuate enough to create a Denial of Service (DoS) attack on the PUF. As a result,
authentication requests are not possible because the response for a given challenge is
not going to be reproduced as expected. As a requirement, a secure PUF-based au-
thentication protocol should be resilient against machine learning attacks and noisy
environments. Additionally, it should be resilient to brute force. The PUF response
must be long enough to make this type of attack more difficult. Depending on the
design, PUF responses only produce one or two stable fully random bits for one chal-
lenge. The method used to expand the PUF response or the authentication protocol
itself must not create new possible attacks. For example an attacker should not be
able to send challenges to a PUF design. There should be a mutual authentication
between the PUF design and the PUF user, otherwise the PUF can be used by any-
body and all the challenge-response pairs can be stolen. The mutual authentication
should not be solely based on a shared secret. Not storing a shared secret is the
biggest advantage of a PUF. If mutual authentication is based on a shared secret,
using a PUF becomes irrelevant. To protect the PUF design, the FPGA should au-
thenticate the user. Upon successful user authentication, the FPGA should allow
the PUF usage. As for now, PUFs need further research to be an actual widespread
security solution.

Other FPGA authentication techniques are also possible. Other works use certifi-
cates and PKI [52], [53]. The idea is to use public key cryptography and certificates to
communicate outside the FPGA and take advantage of the trusted authority present

30

31

in the scheme. The following section gives further details on those mechanisms.

4.3 TA-based solutions for FPGA and user authentication

A Trusted Authority (i.e., TA) is often used to create isolation between the user
and the cloud provider to reinforce confidentiality and privacy. In [52], authors
worked towards creating an FPGA enclave for cloud computing with the impli-
cation of a TA. The aim is to reinforce user IP security, authentication and privacy
in public FPGA clouds while supporting multi-tenancy. An on board key hierarchy
is also used with a Device Unique Key (i.e., DUK) as a root. The DUK is controlled
by the TA and it is deterministically generated using a PUF. In order to establish
security, the DUK is derived multiple times for different purposes (e.g., bitstream
encryption, enclave specific keys). The TA can decide to provision a new DUK and
update all the other keys derived from it. The solution for FPGA authentication
proposed here is an SGX-inspired attestation mechanism endorsed by the TA. The
latter offers services like bitstream certification and boot code authentication. In
order to provide a secure FPGA environment, security critical components like the
device unique key and bitstream loader are controlled by the TA. This way, the TA
controls the root of the key hierarchy and can update/revoke keys depending on
security threats. For enclave communication, authors decided to implement public
and private keys as well as a certificate. Keys are used to create a secure channel
between an enclave and a user, and the certificate is used to authenticate the enclave
and the running design.

In [53], the authors aimed to protect user data and bitstream from the CP using
a TA. A TA must install and manage encryption keys inside FPGAs. The FPGA is
added into a PKI, it has a public and private key to establish secure communication
with cloud users. To protect his bitstreams, the client uses the FPGA public key
to negotiate a symmetric encryption key known as the session key. The latter will
be used with an AES core to provide data confidentiality. The integrity of the data
is ensured with a SHA core. Because encryption keys are managed by the TA, the
user has a secure method to communicate with the FPGA while being isolated from
the CP. This solution has few security limitations. The user is never authenticated,
and the FPGA is indirectly authenticated with the encryption keys installed by the
TA. This means that if an attacker successfully retrieves the keys stored inside the
FPGA, the whole content of the device is compromised. This creates other attack
vectors on key renewal and distribution mechanisms. Finally, multi-tenancy is not
supported with this method.

31

Chapter II – State Of The Art

A solution to protect user data and bitstream from the CP is presented in [53].
The FPGA user is not authenticated and user-FPGA authentication never happens.
The FPGA is indirectly authenticated thanks to encryption keys deployed by the
TA.

Work [63] is another example of FPGA cloud architecture using a TA. The main
goal of this work is to provide an architecture with a faster setup time than a
full virtualization scheme (e.g., virtual machines). This solution is a secure FPGA
framework to protect the privacy and integrity of user data and IP in FPGA clouds.
Multiple security components are deployed inside the FPGA to provide a secure
environment. The TA implements accelerators for AES and SHA and other specific
IPs like Physical Unclonable Functions (i.e., PUFs). To get access to a resource, the
user gets an FPGA serial number by the CP. Then, the user sends it to the TA
to retrieve FPGA authentication credentials and a session mask which is known by
the FPGA. The user forwards the mask and his own portion of the mask that he
generated himself. The FPGA uses the mask to calculate authentication credentials
by using a modular exponentiation algorithm. Then, the results are sent to the
user for verification. If the received credentials are identical to the credentials that
the TA shared with the user, the FPGA is authenticated. The user authenticates
the FPGA by comparing the PUF output hash with the hash received by the TA.
If authentication is successful, a shared secret is established between the user and
the FPGA and a secure channel is created between the user and the FPGA. With
the secure channel and the session key, the user can securely communicate with
the FPGA and send encrypted bitstreams. However, this solution has a security
limitation. User authentication is not achieved in this scheme. In fact, only FPGA
authentication is mentioned in this work. The FPGA never authenticates the user
during the described scheme. Therefore, a malicious user can impersonate a user
and access the FPGA by stealing the FPGA authentication credentials that the
legitimate user received from the TA. The user gets FPGA access after the session
key is set-up. As a consequence, the session key is crucial for the FPGA access
security and must be kept secret. A multi-tenant mechanism is not described in
this work. The secure channel is established with an FPGA identifier and a session
mask. For security reasons, tenants cannot use the same inputs to generate a secure
channel with the FPGA.

In [64], authors are able to leverage CPUs and TEE to achieve security for an
FPGA-based cloud. They provide IP confidentiality for the user while allowing the
CP to secure its FPGA devices and cloud infrastructure with the implication of a
TA (i.e., FPGA Vendor). In fact, while the CP verifies the user IP inside a TEE,

32

33

the TA is responsible of the FPGA shell and various attestations (e.g., FPGA shell,
application). Indeed, the authors give a great emphasis on authentication. The user
needs to prove their identity to the FPGA in order to prevent user impersonations.
Then the user can authenticate the active FPGA shell. This way, the user knows
that the security elements of the device are not compromised. Lastly, the user’s
bitstream is authenticated by the FPGA and its integrity is verified. This level
of security is not only optimal but also mandatory when it comes to FPGA cloud
computing. Both the user and the cloud provider have expensive technology at stake.
Taking advantage of a TEE inside the processing system of the FPGA for design
verification has great advantages for confidentiality and security, but this can create
great latency. Especially in a multi-tenant context, the user design verification from
the TEE can be a serious bottleneck.

In this section, the emphasis is given on authentication and FPGAs in a cloud
context. There are three major elements to authenticate in that regard: the FPGA,
the bitstream, and the user. Various techniques like AE, certificates and PUF designs
are described. The advantages of a TA-based authentication scheme is also detailed.
It allows to create isolation between the user and the CP. In the next section, FPGA
hardware deployment architecture, virtualization and multi-tenancy solutions are
detailed.

5 FPGA architecture and multi-tenancy for cloud
computing

5.1 Lack of efficiency in current FPGA cloud deployment

Currently in FPGA cloud services, one FPGA is allocated to one customer. Often,
high-end devices are deployed for acceleration services. For example AWS offers
AMD Virtex UltraScale+ VU9P FPGA. This device has 1.182 million LUTs and
approximately 2.6 million flip-flops (FF). As shown in Table 2-1, authors of [65],
[66], [67] developed a neural network accelerator. For example, [65] used 131,042
LUTs and 113,581 flip-flops which corresponds to 11% LUT usage and 5% FF usage
of the FPGA deployed by AWS. Their design is much larger than [66] and [67] but
they still only used a small portion of the device. These design are implemented on
a different FPGA target than the AMD VU9P. Values in Table 2-1 may not be fully
accurate due to hardware difference. Those values are still useful to understand the
order of magnitude of FPGA-based accelerator’s resource utilization.

33

Chapter II – State Of The Art

Resource utilization of FPGA accelerators for AMD VU9P
Related work LUT FF DSP BRAM

[65] Xiao et. al 131,042 (11%) 113,581 (5%) 242 (3.5%) 4 (5%)

[66] Tsai et. al 38,899 (3%) 40,534 (1.7%) 9 (0.1%) 3 (4%)

[67] Zhou et. al 80,175 (7%) 46,140 (2%) 83 (1.2%) 0

VU9P resources 1,182,000 2,364,000 6,840 75.9

Table 2-1 – Resource utilization of 3 FPGA-based neural network accelerators

Currently, FPGA cloud services lack of resource usage efficiency [68]. FPGA
multi-tenancy is one solution to address this issue. It allows seamless sharing of
FPGA devices among multiple users. There are two types of FPGA multi-tenancy:
spatial multi-tenancy and temporal multi-tenancy. In spatial multi-tenancy, each
user has a well defined set of FPGA resources called Partially Reconfigurable Region
(PRR). As shown in Figure 2-11, users are able to deploy their acceleration solution
in their PRR independently from other users. Each tenant can use his own PRR in
any way at any time. This way FPGA usage is maximized and computing resources
are not left unused. Due to its architecture, an FPGA device can run multiple ac-
celeration functions in parallel.

Figure 2-11 – Example of spatial multi-tenancy for FPGA

Temporal multi-tenancy (i.e., time multiplexing) is another method to have mul-
tiple tenants use the same FPGA. Each user has a time slot where he can use the
FPGA. This technique does not maximize resource utilization but it allows multiple
users to utilize a single FPGA. Temporal multi-tenancy is considered to offer better
isolation compared to spatial multi-tenancy because users are not using FPGA re-

34

35

sources at the same time. This removes any possibility to exploit data leakages and
side-channel vulnerabilities [69].

To the best of our knowledge, no cloud service provider supports multi-tenancy for
FPGA. However, FPGA multi-tenancy is not a straightforward challenge. Due to the
multi-user environment, access control and user isolation are prominent challenges
[70], [71], [72], [73]. Some research in FPGA multi-tenancy aim to find an efficient
solution to share the FPGA device among users [52], [71], [74], [75], [76]. FPGA
virtualization is one crucial tool to achieve FPGA cloud multi-tenancy.

5.2 FPGA virtualization solutions for multi-tenant cloud
computing

Virtualization is an essential tool to deploy FPGA devices in the cloud with
multi-tenancy feature. It allows to create a virtual FPGA acceleration environment
by using physical resources like logic cells, interfaces and memory available on the
FPGA. Virtualization for FPGA clouds allows to deploy and manage smaller virtual
FPGA instances. Table 2-1 shows that a high-end FPGA for cloud is underutilized
with a single application/user. Typical accelerators for AI/ML like [65] only managed
to use 11% of the available LUT resources.

There are two paradigms for FPGA virtualization. One of them is full virtual-
ization. With this method, a hypervisor is used to abstract the physical hardware
to create virtual resources. It is responsible for creating, monitoring and managing
virtual FPGA instances using defined virtual resources [71], [75]. This component
can be deployed with different architecture and can be hardware or software [77].
With full virtualization, Virtual Machines (VM) are deployed and virtual resources
are allocated to them. Each deployed VM is running independently as if it has
its own physical resource. Multiple independent operating systems and workloads
can coexist on the same physical layer isolated from each other. VMware vSphere,
Microsoft Hyper-V, KVM and Xen are well-known hypervisors that offer a range
of features and capabilities, catering to different virtualization needs and enabling
efficient management of virtual machines [78], [79], [80], [81].

Another paradigm of virtualization is containerization or OS-level virtualization.
It is a newer form of virtualization that works at the operating system level. This
method allows to deploy multiple lightweight containers to share the same OS-kernel.
A container is a package of applications and their dependencies. Containers are con-
sidered more lightweight and faster compared to VMs since they do not require

35

Chapter II – State Of The Art

separate guest OS for each instance. Containerization is popular for micro-service
architectures and scalable cloud applications. Docker is the most widely used con-
tainer runtime, but other solutions like Podman and Containerd also exist [82], [83],
[84]. A container orchestration solution is deployed alongside a container runtime to
benefit from large-scale container deployment. Such a solution allows to facilitate
the management and the deployment of containers. A container orchestration can
handle the lifecycle of containers and load balancing to distribute traffic efficiently.
Security is another aspect that can be handled with a container orchestration so-
lution. Mechanisms such as access control and network policies can be managed to
safely deploy containerized applications. Other mechanisms like monitoring, scaling
and seamless rolling updates can also exist depending on the solution. Kubernetes is
the most popular container orchestration tool alongside Docker Swarm and Apache
Mesos [85], [86], [87].

Many solutions are proposed in the literature to apply virtualization principles
for multi-tenant FPGA cloud computing [68], [71], [72], [75], [88], [89], [90]. FPGA
virtualization can be approached from multiple perspectives like the analysis of vir-
tualization techniques, exploration of diverse use cases, and examination of various
execution models. In [88], FPGA virtualization is classified in three levels. The first
of them is resource level virtualization where a resource can be "configurable" or ’non-
reconfigurable". At this level, architecture and I/O virtualization are considered and
virtualization principles are applied closer to the FPGA hardware resource/archi-
tecture. FPGA overlays for architecture abstraction [91] and I/O sharing [92] are
examples of FPGA virtualization solution at this level. In [68], a full-stack FPGA
virtualization solution is proposed. The solution provides and abstraction of FPGA
architecture to decouple compilation of FPGA code from FPGA-specific resources.
Additionally, they provide virtualization for peripheral components like DRAM and
ethernet with isolation support for multi-tenant environments. Each user gets a vir-
tual machine with a virtual FPGA according to resources allocated to the user.

Node-level (i.e., FPGA level) virtualization represents the second level of virtu-
alization introduced by [88]. In this level, higher-level mechanisms such as FPGA
deployment, resource management, and orchestration are introduced. In this con-
text, FPGA hypervisors, virtual machine support, FPGA shells (i.e., static hardware
modules) and runtime systems (e.g., containers) are developed for FPGA cloud us-
age [68], [70], [71], [72], [77], [89]. For example, the solution proposed by [71] sup-
ports provisioning multi-tenant FPGAs in KVM clouds. The architecture proposes
an approach based on virtual regions as opposed to an entire FPGA. In this work,
authors introduced their own definition of multi-tenancy and elasticity within the

36

37

context of hardware/software virtualization capabilities. The KVM infrastructure is
also extended to facilitate FPGA allocation and access within KVM clouds.

Cluster-level virtualization is the third level of FPGA virtualization. A cluster is a
group of two or more FPGAs that are working together to accomplish the same task.
Cluster-level virtualization defines an architecture to connect and manage FPGA
clusters. Solutions like, project Brainwave and project Catapult [93], [8] use FPGA
clusters to deploy a neural network model across multiple FPGA. The deployment
architecture is described in Figure 2-2.

All deployment solutions presented in this chapter have security mechanisms to
provide isolation and security at the software level. In full virtualization paradigm,
VMs are providing isolation between tenants. With OS-level virtualization, user iso-
lation can be provided by setting network policy for containers. The FPGA must
also be secured at the hardware-level because users deploy hardware solutions in the
FPGA fabric. These hardware solutions may have interfaces with external memory,
shared IP modules, buses and more. In a multi-tenant context, it is utterly impor-
tant to isolate and secure the hardware execution environment with mechanisms like
authentication and access control. Existing cloud deployment solutions lack compre-
hensive support for FPGA deployment. Consequently, researchers are actively ex-
ploring and enhancing cutting-edge cloud technologies to incorporate FPGA-specific
deployment tools and mechanisms.

5.3 Security vulnerabilities of cloud-based multi-tenant FPGA

5.3-1 Hardware-based attacks

Multi-tenant FPGA cloud environments have a wide range of vulnerabilities.
However, high-level software vulnerabilities of hypervisors and other virtualization
tools are not considered in this section. Instead, this section focuses on attacks that
can be executed using FPGA logic. These attacks can be classified as side-channel
attacks, fault injection attacks and denial-of-service. These security flaws are often
created by the FPGA architecture. For example, the Power Distribution Network
(i.e., PDN) inside the FPGA is one architectural vulnerability that creates a side-
channel. These types of vulnerabilities cannot be patched or fixed after the device
manufacturing process. The PDN is responsible of powering the FPGA. In multi-
tenant use case, tenants share the same power distribution network. However, the
switching activity generated by each tenant accelerator solution adds noise into the
PDN. This leads to data leakage into the PDN. Multiple research show that by

37

Chapter II – State Of The Art

collecting power traces using Time-to-Digital Converters (i.e., TDC) it is possible
to retrieve another tenant’s encryption keys [94], [95], [96]. A TDC is a logical
circuit that can use latches or Ring Oscillators (i.e., RO) [69] to measure a signal’s
propagation delay. This allows to observe voltage fluctuations because delay and
voltage are linked. As a consequence, the TDC is used as a delay sensor to monitor
voltage fluctuation to collect power traces. By doing Correlation Power Analysis (i.e.,
CPA) it is possible to retrieve other tenant’s data. To fix this issue, one can generate
artificial switching activity to add noise into the PDN. An active fence is a type of
power waster that is placed between the victim and the attacker. Switching activity
can be generated with a RO [97] or wires [96]. However, active fences add power
consumption and resource utilization overhead. In [97], the active fence consumed
178 µW to protect an AES module that required 320 µW. This results in a 56%
increase in power consumption to protect the encryption key. Additionally, the active
fence is using 678 LUTs for [97] and 2048 LUTs for [96]. The overhead for active fences
vary according to its architecture, the partial reconfiguration region placement, and
the module that needs to be protected. However, instead of measuring signal delay to
get a read on voltage, one can create voltage fluctuations. This introduces additional
delay to signals and it can be used to execute fault injection attacks.

Power wasters are also used to perform fault injection attacks. The variation in
dynamic power consumption within FPGAs emerges from the switching capacitance
(i.e., C) of logic signals which occurs at a frequency (i.e., f) when these signals
transition between lower and higher voltage levels (i.e., V).

pdyn = V 2 · f · C (2-1)

For example, RO are used to introduce high frequency switching activity which
increases power consumption. Figure 2-12 is an example of a RO using an AND gate
and three inverters. The number of inverters must be odd to effectively oscillate.
Because the PDN is shared in a multi-tenant context, the attacker aims to create
voltage fluctuations with the goal to induce timing faults within the victim logic [98],
[99]. However, due to its frequent use in malicious designs (e.g., delay sensor, power
waster), RO are detected and prohibited by AWS [3], [100]. Prior to the deployment
of FPGA logic, AWS runs multiple Design Rule Checks (i.e., DRC) on the cloud
user’s logic design to enforce cloud security. The cloud user must send an FPGA
design netlist where all signal interconnections are verified. Prohibited design pat-
terns (e.g., combinatorial loops) and connections are searched during this process.
For example, the RO in Figure 2-12 is a combinatorial loop because it is not reached

38

39

by any clock signal and it forms a loop. Thus, this kind of FPGA logic cannot be
deployed in AWS FPGA cloud. Any FPGA logic that needs to be deployed into an
AWS cloud solution must successfully pass this verification step. Yet, researchers
found a way to bypass the AWS DRC and implement malicious FPGA logic. In [11],
various types of valid RO designs are detailed. FPGA primitives like MUX, CARRY,
DSP, and FF are used to build a RO that can successfully bypass AWS DRC. As a
consequence, [100] demonstrated the first DoS attack on AWS FPGA cloud instance.
It is also possible to execute fault injection attacks with any type of RO. RAM-jam
[101] uses the dual port RAM memory in FPGA to create short-circuits and colli-
sions by writing concurrent opposite values into the memory. This leads to increased
device temperature up to 110°C, voltage drop of 10% (maximum value) and bit-flips
in the memory. As temperature and voltage drops have a negative impact on sig-
nal delay, RAM-jam is used to inject faults into FPGA logic. Authors successfully
introduced fault into a deep neural network by creating bit-flips to neural network
weights stored in memory. Nowadays, neural networks are used for critical appli-
cations like autonomous driving and classification algorithms for disease treatment.
Such vulnerability can have tremendous consequences. Additionally, a Finite-State
Machine (i.e., FSM) is also targeted and authors were able to create a transition into
an unexpected state. They successfully attacked a password authentication FSM.

Figure 2-12 – Example of a ring oscillator using three inverters

5.3-2 Mitigation for hardware-based vulnerabilities

There are few ways to mitigate voltage and power attacks. One method is design
verification. For instance, AWS, Huawei and Alibaba have FPGA design verification
(i.e., DRC) for their cloud infrastructure [3], [5], [13], [102]. Unfortunately, their
solutions are not open-source. Each CP verifies user FPGA design by analyzing sig-
nal connection patterns to find known malicious designs. However if a pattern is
unknown to the verification tool, a malicious design can still be validated and imple-
mented in a cloud solution. FPGA design verification is a recurring pattern of identi-
fication and evasion. Some solutions in the literature have successfully validated the
design verification steps despite having implemented malicious circuits [100], [103],
[104]. Other FPGA verification solutions exist in the literature. FPGADefender [11],

39

Chapter II – State Of The Art

[100] is an open-source bitstream verification software that looks for malicious pat-
terns like short-circuits, long wires, combinatorial loops (e.g., Figure 2-12) and more.
FPGA bitstream format is not documented by FPGA vendors. Authors of [11] built
their software thanks to a prior reverse engineering work on bitstreams. According to
available information, FPGADefender is the first open-source bitstream verification
tool. Proprietary and closed-source technologies of FPGAs (e.g., bitstream format,
drivers, etc.) are slowing down the development and the adoption of such devices
in industrial application [105]. This also limits the collaborative and open-source
capabilities of this technological area.

Another method to mitigate previously mentioned attacks is runtime protection.
This type of defense is not common practice due to its complexity. Protecting the
FPGA fabric at runtime is challenging because FPGA do not have a runtime execu-
tion environment. Hence, runtime security solutions can be harsh on logical resource
consumption. This is not suitable for multi-tenant FPGA clouds because it reduces
the amount of logic that can be allocated to each tenant. Yet, the first runtime
security solution for multi-tenant FPGA clouds is described in [106]. Loopbreaker
allows to detect and stop voltage-based attacks at runtime. In this solution, a TDC
is implemented to measure voltage fluctuations inside the device. When fluctuations
cross a predetermined threshold, the malicious tenant is identified and its reconfig-
urable region is reset to a safe state. This is done with a blanking bitstream. It is
an FPGA configuration file that has no logic. It is used to reduce power consump-
tion when the deployed logic of a PRR is no longer needed. The FPGA vendor tool
already provides a blanking bitstream. When Loopbreaker detects a voltage attack,
the blanking bitstream is sent to the ICAP (i.e., Internal Configuration Access Port)
to reconfigure the malicious user’s logic region. Reconfiguration latency is critical
because the voltage attack must be stopped swiftly before creating timing faults or
FPGA crashes. Because bitstream reconfiguration latency is linear to bitstream size,
authors of [106] built a lightweight blanking bitstream by reverse engineering the
bitstream file and its commands. Their blanking bitstream is 128.2 % faster com-
pared to the blanking bitstream generated by the FPGA vendor tool. As a result,
Loopbreaker is able to stop more attacks compared to the naive approach with the
vendor blanking bitstream. This solution can prevent 100 % of FPGA crashes due to
latch-based attacks and between 60 % to 100 % of crashes due to RO-based attacks.
One drawback of this study is the absence of an identification mechanism for the
malicious tenant’s PRR. Nevertheless, such a mechanism is described in work [107].
This solution is based on an array of voltage sensor to determine the location of the
voltage attack. This is possible because logical regions closer to the attacker logic

40

41

are more affected than those farther away.

Previously described security flaws are coming from low level elements (e.g., ar-
chitecture, device voltage). There are also higher level security vulnerabilities that
can impact an FPGA cloud. Some of these flaws are access control and memory
isolation. FPGA technology and solutions are constantly evolving. Hence, some
mechanisms can become obsolete under few circumstances. This is the case with
cloud and multi-tenant environments. Memory protection mechanisms like Xilinx
Memory Protection Unit (i.e., XMPU) and Xilinx Peripheral Protection Unit (i.e.,
XPPU) exist for AMD FPGAs. These configurable module are hardwired inside the
FPGA logic. They protect different portion of the device like external memory (i.e.,
DDR), IO ports and processors. However, this kind of protection is not enough for
multi-tenant context. XMPU enforces a binary type of security: authorized or unau-
thorized to communicate. For multi-tenant FPGA, a fine-grained memory isolation
mechanism is necessary to separate each tenant’s memory. This way, tenants cannot
interfere with each others data stored in memory. Work [108] brought a solution
for this issue. A hardware extension of the XMPU is proposed where up to 16 dis-
tinct memory regions can be allocated to users. Like XMPU, an address-restricted
scheme is used where each master address needs to be explicitly allowed to commu-
nicate with a specific slave address. This solution can be seen as an access control
mechanism where users are isolate by their addresses. A user cannot make memory
operations with a memory region he is not authorized to access. Similarly, work
[109] addresses access control issues for multi-tenant FPGA use case. It allows to
safely and securely share on-chip BRAM (i.e., Block RAM). This is achieved with
a new architecture of an AXI crossbar IP including one orchestrator, a mapping
table, and arbiters for masters and slaves. The orchestrator manages the run-time
management for security configurations and arbiters provide security verification for
AXI transactions.

The deployment framework of an FPGA cloud is of the utmost importance to
benefit from a secure multi-tenant FPGA cloud acceleration. It is the backbone of
multi-tenant FPGA cloud security because all mechanisms and methods (e.g., com-
munications, isolation, reconfiguration) are defined with the cloud FPGA framework.

5.4 Multi-tenant FPGA architecture for cloud computing

In contrast to Section 4.3 where the focus was on the involvement of the TA,
in this section we focus on the mechanisms and the architecture of the FPGA to
provide a secure multi-tenant environment. There are important characteristics and

41

Chapter II – State Of The Art

metrics to offer a secure multi-tenant FPGA architecture for accelerated cloud com-
puting. It is crucial to recall that the FPGA fabric is the most valuable resource
in FPGA cloud acceleration. From an FPGA cloud user standpoint, having access
to large amount of logical resources is preferable. It offers implementation freedom
and loosens design constraints. However it is the opposite for the cloud provider:
more PRR means more users. Hence, resource consumption and cost effectiveness is
maximized. A compromise between efficiency and security must be found for both
parties. Another important aspect is the scalability of the multi-tenant architecture.
To enforce security in the FPGA, logic resources must be used. Depending on the
architecture and the requested security level, the computational overhead and the
resource consumption can vary. If the deployed solution introduces too much la-
tency, the concept of "FPGA cloud acceleration" looses its meaning. However, if the
deployed architecture addresses very few vulnerabilities, it could be harmful for the
cloud infrastructure and user security [100], [103], [104], [110].

In [52], an FPGA cloud architecture is described. This solution uses a TA to
create isolation between the user and the CP. The advantage of involving a TA in
the FPGA cloud architecture is discussed in Section 4.3. In the proposed architec-
ture, each FPGA has a certificate and it is included inside a PKI. To secure the
acceleration environment, a device master key is generated by a PUF. The master
key is unique and it is under the control of the attestation root-of-trust (i.e., TA).
The master key is derived using deterministic key derivation functions to generate
additional keys for various purposes like attestation keys, bitstream encryption keys
and enclave keys. This architecture is multi-tenant. Each tenant is placed in a PRR
called enclave. The latter is secured with public key cryptography and a certificate
to protect the user region and create isolation. One drawback of this architecture
is the extensive use of public key cryptography which can lead to increased latency
and resource consumption. Another notable limitation is the device master key gen-
erated by a PUF. The master key can be exposed to the device owner (i.e., cloud
provider) because he has means to characterize the device PUF with various attacks
documented in Section 4.2. If the CP can get the device master key, he can get all
other keys obtained by deterministic derivation method. As a consequence, the CP
can get full access to all the keys used in the device. This can cause bitstream and
user data data theft. Additionally, the TA is managing the device master key which
is a critical issue for device security. In work [52], the TA is fully trusted. If we
consider a stricter threat model, the level of exposure to the TA may be suboptimal.
Thus, it is important to define the capabilities of the TA and the risks associated
to him. The key management may be another limitation for two reasons. Firstly,

42

43

there are more than three symmetrical keys, five pairs of asymmetric keys and one
pair of asymmetric key per tenant for one FPGA device. If we consider a large scale
FPGA cloud deployment, managing these keys and certificates may be computa-
tionally costly and ineffective. The scalability of this FPGA cloud architecture is
not ideal. Secondly, there are more than five keys that are stored inside the FPGA.
Storing keys is not considered secure for FPGA clouds due to existing attacks vectors
described in the previous section.

MeetGo [111] is a multi-tenant cloud FPGA architecture that provides a trusted
execution environment for remote applications. To provide secure acceleration, the
FPGA chip manufacturer generates an asymmetric key pair for the FPGA. The
private key is embedded inside the FPGA and it is solely accessible by a hard-
ware security agent. The latter is a hardware module that stores session keys and
bitstream signatures. The ICAP is managed by the security agent to reconfigure
FPGA regions. To establish a secure channel, the remote user gets the FPGA pub-
lic key and uses it to negotiate a session key with the FPGA. This key is used to
securely communicate (e.g., send a bitstream) with the FPGA. Before FPGA recon-
figuration, the security agent decrypts the user bitstream and verifies its signature.
The bitstream must be signed by a known entity (e.g., trusted third party) to be
valid. The authors claim that the cloud user can securely embed encryption keys
(e.g., symmetrical or private keys) inside their FPGA logic because the bitstream is
sent encrypted. Embedding encryption keys into bitstreams in not a secure practice
for FPGA cloud computing. Cloud providers require user bitstream verification as
discussed in Section 5.3. This architecture is multi-tenant. Each user has a PRR for
his own user application. Users are logically isolated from each other and no com-
ponent like memory or interfaces are shared between tenants. While this is great for
security, it is at the detriment of efficiency and flexibility for the FPGA acceleration
environment.

In [112], authors developed and analyzed an FPGA resource pooling system. Their
solution allows a user to use FPGA acceleration resources in a cloud environment
with a high level of abstraction. Users can bring their own bitstreams or can use
the designs provided to meet their acceleration needs. Their paper is heavily focused
on FPGA cloud efficiency and performance. The offered performance improvement
is great, but nothing is mentioned security wise. There are few potential security
threats with the proposed scheme. If the user brings his own design, his IP is on
the one hand totally disclosed to the CP. The user has no confidentiality and this
is unsuitable for the user. On the other hand, no design integrity mechanisms are
mentioned in the paper to ensure that the user IP is delivered without being modified

43

Chapter II – State Of The Art

or compromised. And lastly, the paper does not mention any mechanism to protect
the FPGA device from the user design. Nowadays, we know that circuits like power
waster can be very harmful to FPGA devices and cause great economical damage.
Another security aspect that is not mentioned is authentication. The user never
authenticates the FPGA and has no proof that the allocated FPGA is the one he
used. This can lead to FPGA impersonation and the FPGA can be compromised.
This can cause data breaches and malicious behaviors. The fact that the user is also
not authenticated by the FPGA reinforces those security flaws. The FPGA, or a
reconfigurable region inside a device as stated in the article, lacks of isolation. A
user may be capable to access a device allocated to another user if no user-FPGA
authentication is done.

Authors of [7] have developed a shielded enclave for FPGA cloud accelerators.
As shown in Figure 2-13, the CP, the data owner (i.e., DO) and the IP vendor are
taking place in this architecture. The data owner needs acceleration and uses the
IP vendor accelerator design. The IP vendor protects the accelerator requested by
the data owner by wrapping it with a shield IP. Under this scheme, an asymmetric
shield encryption key is generated by the IP vendor. The private key is embedded
inside the shield and the public key is shared with the data owner. To create an
encrypted channel with the FPGA, a symmetric data encryption key is generated
by the data owner. Then, the data encryption key is encrypted with the shield public
key and sent to the FPGA by the data owner. The encrypted data key (i.e., load
key) is decrypted inside the shield using the embedded private key. As a result, the
shield and the data owner have a shared symmetrical data encryption key (e.g.,
AES encryption key) for future data transfers. Data integrity is also ensured with
digest algorithms (e.g., HMAC). Data protection and privacy problems in public
cloud environments are addressed by placing a shield IP between the IP vendor’s
accelerator logic and the FPGA interfaces provided by the CP. Any data going out
of the accelerator is encrypted and any data going inside the accelerator is decrypted
using the data encryption key with an AES block. The solution described in [7] also
includes a security kernel and a security processor block for attestation, bitstream
configuration and secure boot mechanisms. The final FPGA binary (i.e., bitstream)
containing the accelerator, the shield IP and the embedded private shield encryption
key is encrypted with a bitstream encryption key generated by the IP owner. It is
possible to use multiple shielded enclaves with different users which allows spatial
FPGA multi-tenancy.

44

45

Figure 2-13 – ShEF shielded enclave architecture

Table 2-2 summarizes the contributions of each work. All the presented architec-
tures successfully authenticate the FPGA by involving a TA in the authentication
scheme. However, the cloud user is never authenticated in any of the works. In
fact, the user authenticates the FPGA according to a scheme and sets up a session
keys with afterwards. This means that the necessary credentials for FPGA authen-
tication and session key setup is critical for the remote computation security. An
attacker can set up a key with the FPGA if he gets the required credentials to com-
plete the scheme. At the beginning of Section 5.4, the importance of efficiency and
multi-tenancy has been underlined. Work [53] and [63] do not support multi ten-
ancy while being scalable on a larger deployment environment and the overhead that
comes with the solution is acceptable. Work [52] and [111] do support multi-tenancy.
However, [52] heavily relies on multiple keys, key derivation and multiple certificates
per FPGA. Security-wise, this increases the attack surface due to multiple keys be-
ing deployed and used. Besides, deploying multiple certificates per FPGA (e.g., boot
signature, bitstream signature...) may impact the scalability of the architecture on a
larger scale. Work [111] has a better scalability. The FPGA only has an asymmetric
key and one symmetric session key per PRR. However from the security perspective,
the security agent knows each user session key. Thus, user data can be retrieved in
plaintext by the security agent. The user cannot verify the version or the legitimacy
of the security agent. Because the latter is responsible of the data encryption using
the session key, it can also collect user data. Hence, user and CP isolation may not
be optimal. Work [52], [53] and [63] protect the user against the CP but they are
more exposed to the TA. The concept of a trusted third party (i.e., TA) is sometimes
used to provide isolation between two stakeholders. By definition a TA is trusted.

45

Chapter II – State Of The Art

Yet, it is not acceptable to have too much exposure to a TA. This means not giving
full device control and capability to the TA. For example in [52], the TA controls
the device master key, and all certificates. As a result, the TA takes the job of the
CP. The latter becomes infrastructure and device owner and the TA turns into a
security manager role. If the amount of exposure in an architecture with a TA is
similar to the exposure in an architecture without a TA, no additional security and
isolation is provided. In fact, the exposure has only been moved from the CP to the
TA.

Comparison of multi-tenant cloud FPGA architectures
Achievements [52] [111] [7] [112] This work

FPGA Authentication ✓ ✓ ×∗ × ✓

User Authentication × × ×∗ × ✓

Multi-tenancy ✓ ✓ ✓ ✓ ✓

Scalability × ✓ ✓ ✓ ✓

User-CP isolation ✓ × ✓ × ✓

Exposure to TA + + + + + no TA +

Access control × × × × ✓

Zero-trust secure comms. × × × × ✓

Manage & share access × × × × ✓

×∗ Only uses authenticated encryption algorithm, no actual authentication
"+++" means more exposure to TA than "+"

Table 2-2 – Comparison with prior works on multi-tenant cloud FPGA architecture

The architecture presented in Chapter III uses a TA and a CP in a more balanced
way to split responsibilities and render them incapable of acting independently of
each other. This way, the architecture’s security benefits from the presence of a
TA without being too much exposed to a single entity. From an efficiency aspect,
the proposed architecture allows multiple users to use the same memory interface
securely and seamlessly. Thanks to a hardware security module (i.e., HSM) that en-

46

47

forces access control and address translation mechanisms, each user’s memory region
is isolated from each other. The HSM randomly allocates memory regions to each
tenant inside the FPGA, this allows to mitigate memory attacks like Rowhammer.
The HSM can filter memory transactions coming from user regions and determine
where the data needs to be written/read. As said earlier in this chapter, embedding
encryption keys inside the user bitstream is not a secure practice because cloud
providers have a mandatory bitstream verification procedure. The encryption can
be accessed in plaintext by the CP and lead to data theft. In this work, a patented
zero-trust secure channel establishment protocol to provide a secure communication
channel between the cloud user and the FPGA (e.g., FPGA shell and user design) is
proposed. This protocol does not require to embed sensitive encryption keys inside
the bitstream and it is totally isolated from the CP. This protocol in executed in
the HSM. This protocol is further described in Chapter III.

Additionally, the framework proposed in this manuscript uses an upgraded hard-
ware shield enclave to protect the user accelerator. Initially, the authors proposed
the shield module to protect the intellectual property of an IP vendor against the
cloud user and the CP. While the IP is protected against the user, it is not the case
for the bitstream verification procedure of the CP. With the use case proposed in
[7], the user encryption key is exposed to both the CP and the IP vendor. In fact,
the user must generate a symmetrical encryption key and encrypt it with the IP
owner’s public key. The IP owner then includes the encrypted key inside the bit-
stream. However, the IP owner has the private key associated to the public key. He
has the capability to decrypt the cloud user’s data if he intercepts communications
between the cloud user and the FPGA. The current work proposes an upgrade to the
existing shield architecture by adding the zero-trust secure channel establishment
protocol. This extra security layer helps to isolate and offer better data protection
compared to the literature.

In this section, the lack of efficiency in single-tenant FPGA and the advantages
of multi-tenancy is discussed. Further detail is given on technologies like virtual-
ization which enables FPGA multi-tenancy. Then security vulnerabilities of multi-
tenant systems are exposed and existing architectures are presented. However, multi-
tenancy is an emerging concept in the realm of FPGA cloud computing. There is
a need for enhanced security inside the FPGA because multiple users are sharing
the same hardware. The following section describes access control mechanisms for
multi-user FPGA acceleration environments. Access control is an essential security
measure to isolate users from each other while mediating shared resource access and
usage.

47

Chapter II – State Of The Art

6 Access control mechanisms for multi-tenant FPGA
clouds

Access control is an important security tool to enforce user authorization rules
set by the access manager. The cloud provider often bears the responsibility to give
authorizations users in order to limit their capabilities. A user must be authen-
ticated and identified to obtain authorization from a provider. Additionally, user
identification is also necessary to enforce access control rules. Multi-tenancy is not a
widespread mechanism in current deployments and to the best of our knowledge, no
cloud provider proposes multi-tenant FPGA. Access control is a well studied subject
for conventional systems but it is relatively new for cloud-based FPGAs. Due to
their inherent nature, FPGA cannot naively use the state-of-the-art access control
techniques developed for conventional systems. Access control mechanisms must be
extended or specifically developed for FPGA systems.

In that regard, an AXI-based access control mechanism for multi-tenant FPGA
is proposed in [113]. An AXI crossbar module manages the communication between
master and slave IPs. Authors propose to upgrade this module by adding access con-
trol, scheduling mechanisms to meet security and efficiency requirements for multi-
tenant FPGA environments. This upgraded module uses mapping tables to securely
share resources between master IPs and arbiters to enforce rules. Additionally, an
orchestrator can dynamically update access control rules enforced inside the AXI
crossbar by adding or removing authorizations given to master IPs. Arbiters located
inside the upgraded AXI crossbar module check the protocol validity, address vio-
lations and provide efficient resource sharing using mapping tables and round-robin
scheduling. This solution allows to safely share slave IPs with masters by enforcing
dynamic access control rules.

Work [114] is a higher level solution compared to the precedent work. It uses
virtualization concepts in a multi-tenant FPGA cloud to provide isolation and ef-
ficiency. In this work, a hypervisor named Optimus is described. It aims to pro-
vide virtualization for shared FPGA memory. To ensure isolation between tenants,
a hardware-based virtualization control unit configures virtual memory and IO ad-
dress offsets located inside a hardware monitor module in the FPGA PL. To interact
with FPGA DRAM, tenants use virtual addresses. The hardware monitor translates
the guest virtual addresses (used by tenants) to IO virtual addresses and sends the
requests to the host CPU. The Memory Management Unit (i.e., MMU) translates
the IO virtual address into physical address using a mapping table. To ensure tenant

48

49

memory isolation a page table slicing technique is adapted to FPGA. This directly
maps IO virtual addresses to guest virtual addresses in a contiguous way. This tech-
nique creates isolation between guest memory accesses and provides efficient DMA
addressing because each memory partition is assigned to a specific guest accelerator.
In this work, isolation and access control are achieved through virtualization and it
is seamless for the FPGA user. There are similar solution leveraging virtualization
techniques to isolate users exposed in Section 5.2 and in [115], [116], [117]. They uti-
lize virtualization methods to securely deploy FPGA accelerators in a multi-tenant
execution environment. However, these works do not address security issues located
inside the PL (e.g., hardware isolation, side-channel).

7 Summary

This chapter provides a comprehensive summary of the realm of multi-tenant
FPGA cloud computing and its associated security requirements. Current cloud-
based FPGA solutions and services are introduced in Section 1. The FPGA cloud ar-
chitectures of IBM and Intel (e.g., Brainwave and Catapult) are described. Addition-
ally, prominent cloud service providers such as Amazon, Alibaba, and Huawei are
listed, and their respective requirements are discussed. These requirements include
bitstream verification and the prohibition of certain logic design patterns (e.g., com-
binatorial loops). In Section 2, Trusted Execution Environment (i.e., TEE) envi-
ronments for FPGA are described. Technologies like Arm TrustZone, Intel SGX,
and Keystone are detailed. While each TEE employs a distinct method to create a
secure execution environment, their common goal is to achieve isolated and secure
computing in an untrusted environment. In the context of FPGA cloud comput-
ing, users seek isolation from the Central Processor (i.e., CP). Thus, TEE solutions
represent one possibility to achieve secure software execution. To enhance security
further, Section 3 discusses existing authentication techniques. Algorithms such as
HMAC and Authenticated Encryption (i.e., AE) solutions like AES-GCM allow for
message encryption while ensuring message integrity and authenticity. Unlike solu-
tions such as Public Key Infrastructure (i.e., PKI), which rely on certificates and
signatures issued by a trusted entity, these algorithms do not need a third party.
Subsequently, in Section 4, FPGA-specific use cases are explored for bitstream and
FPGA authentication. Additional FPGA-specific authentication methods using a
Physical Unclonable Function (i.e., PUF) are described. The Section 5 highlights
the shortcomings of single-tenant FPGA and describes FPGA multi-tenancy. The

49

Chapter II – State Of The Art

concept of virtualization and its application to FPGA clouds are detailed, wherein
virtualization tools establish a multi-tenant environment with isolation mechanisms.
The section also identifies hardware-based multi-tenant vulnerabilities and proposes
some mitigation techniques. The last section provides insights into FPGA access con-
trol within multi-tenant FPGA cloud environments. It is a crucial security element
for securely sharing resources among FPGA tenants.

The architecture described in the next chapter is a token-based FPGA cloud
access scheme based on OAuth 2. The latter has been adapted to share FPGA
located in a cloud environment using access tokens. As shown in Table 2-2, this
solution allows an authorized user to create and manage additional child tokens
based on his access token thanks to a TA. This framework enables flexible, efficient
and, secure remote FPGA acceleration compared to the literature.

50

Chapter III

TOKEN-BASED MULTI-TENANT FPGA
CLOUD SECURITY

This chapter proposes a framework called TokSek. It is a token-based multi-
tenant FPGA cloud security framework. To the best of our knowledge, it is the first
framework to introduce the concept of access tokens to the FPGA realm. TokSek is
an adaptation of OAuth 2 [55] to share access to FPGA devices instead of credentials
or applications. This chapter proposes a modelization of the framework in Section
1 by establishing a threat model and providing a mathematical formalization of
the mechanisms available in TokSek. Section 2 provides an introduction to TokSek
and its capabilities. It is a software implementation of a token endpoint on FPGA.
Additionally, a user to user access delegation mechanism is described and a real
world use case is detailed. The framework is implemented and analyzed in Section
3 and experimental results are exposed.

1 Modelization of the framework

1.1 Threat model

The proposal considers the following threat model. One of the attacker’s main
objective is to steal valuable Intellectual Property (i.e., IP) and data from FPGA
cloud users. Hence, the CP is considered as a potential threat because it can access
user data in current FPGA clouds. In this work, threats coming from malicious ten-
ant IP are not taken into account. In this attack family, attacker IPs are instantiated
to exploit side-channels and retrieve sensitive information. This attack vector can
be avoided with bitstream analysis. Hence malicious IPs are not a part of the threat
model. Moreover, the embedded Linux operating system described in Section 3 is
assumed to be secure. Attacks vectors on this technical solution are not considered.
In this work, the threat model is considered in two parts. First, threats outside the

51

Chapter III – Token-based multi-tenant FPGA cloud security

FPGA are detailed. Then the threats inside the FPGA are analyzed.

1.1-1 Threats outside the FPGA

The security of the protocol used to get remote FPGA access should not be
neglected. First we define the threat model outside the FPGA. Figure 3-1 illustrates
the threats coming from the outside of the FPGA cloud.

User impersonations: An attacker can impersonate a user by stealing credentials
and behaving like the victim user. The attacker tries to access the victims’ resources
and take action according to the victims authorizations. This threat can be challeng-
ing to detect, especially in the case of Man in the Middle (MitM) attack or replay
attack [58].

Data integrity: At any time, the attacker can steal the user bitstream to add
hardware Trojans [12]. User bitstream can be modified to add malicious components
to slow down, crash or get valuable information from the user design. The attacker
can also modify messages and payloads to provoke unexpected behavior and faults
in the victims computation.

Confidentiality: The attacker can intercept every communications in this protocol.
The attacker wants to obtain valuable data, IP and other information that can give
access to the allocated cloud resource.

Figure 3-1 – Outside FPGA threat

1.1-2 Threats inside the FPGA

Once a secure access to the FPGA is established, the computation environment

52

53

inside the FPGA must be secured too. Figure 3-2 shows the possible threats coming
inside the FPGA cloud.

Resource allocation: We assume that the attacker can choose and predict which
FPGA is being attributed. The attacker also has prior information on the where-
abouts of other tenants. The attacker can deploy fingerprinting methods to identify
the FPGA cloud architecture as described in [12].

Logical isolation and access control: User isolation and access control in FPGAs
is an important challenge. Due to the lack of a runtime environment (e.g., operat-
ing system) for the FPGA logic, addressing these challenges is not straightforward.
Especially in a multi-tenant context, the isolation and access control requirements
are higher. The attacker is able to exploit these weaknesses in order to gain access
to unauthorized resources like user memory and cache content [73].

Figure 3-2 – Outside FPGA threat

1.2 TokSek modelization

The proposed framework model follows the principles described below.

— Entities

The proposed authorization and access delegation framework for FPGA clouds is
running with four entities.

The CP is the owner and the manager of cloud resources. Let R be the set of
resources deployed by the CP :

∀j ∈ N/r0, ..., rj ∈ R (3-1)

Let U be the set of all users that benefit from the FPGA cloud:

53

Chapter III – Token-based multi-tenant FPGA cloud security

∀i ∈ N/u0, ..., ui ∈ U (3-2)

In this framework, the CP collaborates with the TA to share resources R with
users U . Each entity in this framework is identified by certificates. Finally, each
element of U and R have their own unique certificate.

— Property 1

Every user ui needs a signed certificate from the CP to request resources R with
the CP and receive access tokens from the TA. Let cert_sign be a function that
returns a signed certificate to the user such as:

cert_sign : cert(ui, priv_key(CP)) −→ signed_cert(ui) (3-3)

— All communications of users U with entities defined above are mutually au-
thenticated. Every entity checks the signed certificate signed_cert(ui) to ver-
ify that it is signed by the CP. Users with invalid signatures are not able to
communicate with entities present in this framework.

— Each token ti is bound to a unique signed user certificate signed_cert(ui).
The public key of the user Ui must be inside the token ti generated for him.
Hence, ti ↔ signed_cert(ui).

— Property 2

Each resource rj is associated to a secret and unique key FPGA Shared Secret
(i.e., FSS) fssj such as:

∀i, j ∈ N/ri ̸= rj ⇔ fssi ̸= fssj (3-4)

Each resource rj has its own Hardware Security Module (i.e., HSM). Moreover, each
element of rj is divided into multiple independent and reconfigurable regions rrk,j.
Using Equation 3-4 and the previous statement, R can be redefined such as:

R = {rj| rj = ⟨{rr0,j, ..., rrk,j}, hsmj, fssj⟩j, k ∈ N} (3-5)

— FSS and hsmj are under TA responsibility. Each hsmj has access to a unique
fssj that is stored inside a hardware memory enclave located inside the logic
rj. These are further described in Chapter IV.

— each fssj is generated by a TRNG inside rj independently from the CP. The
TRNG is controlled by hsmj.

54

55

Consequently, we can define the embedded resources erj possessed by rj such as:

∀rj ∈ R, ∀j, k ∈ N ∃erj ∈ rj | erj = {memory, {shrd_ip0, ..., shrd_ipk}, {rr0,j, ..., rrk,j}}
(3-6)

Inside the FPGA, resources like memory, reconfigurable regions and shared IPs
or blocks can be allocated to users ui.

— Property 3

This framework is token-based. Let T be the set of access tokens created by the
TA:

∀i ∈ N/t0, ..., ti ∈ T (3-7)

Each token ti has a set of properties defined during their construction by the TA
such as:

ti = ⟨header, payload, signature⟩| payload = ⟨signed_cert(ui), ID(rj), P erm(ui)⟩,
signature = HMAC(payload, fssj)

(3-8)

Perm(ui) represents the permissions given to user ui and it is defined such as:

∀ui ∈ U, ∀j, n, p, q ∈ N, ∀k ∈ [0, n], P erm(ui) = {eri,j,0, ..., eri,j,k} |

eri,j,k = ⟨vld_untilk, ID{rrp,j, ..., rrq,j}, mem_sizek, shrd_ipk, shrd_mem_sizek⟩,
(3-9)

Equation 3-9 defines the permissions of ui as a set containing permissions for
embedded resources eri,j,k. These permissions can be but are not limited to: token
validity period, memory size, authorization to use shared hardware IPs and shared
memory. It is important to notice that the set of reconfigurable region rrp,j, ..., rrq,j

allocated to ti is not necessarily continuous.

— When creating a token ti, the TA signs it with fssj that is also known by
resources R.

— ID(rj) identifies the resource rj and ID(rrk,j) its associated reconfigurable
region.

— ID(rrk,j) represents the targeted reconfigurable region of rj and Perm(ui)
describes the permissions given to ui. It is used inside a resource rj for the
access control applicable to ID(rrk,j).

As a consequence of Equation 3-8 and Equation 3-9, each token T gives exclusive

55

Chapter III – Token-based multi-tenant FPGA cloud security

access to reconfigurable regions rrk,j such as:

∀rrk,j ∈ rj, ∀ui, uj ∈ U, ∀ti, tj ∈ T, ∀V ∈ Perm(ui) |rrk,j ∈ V, ∀V ′ ∈ Perm(uj),
ti ̸= tj, ∃vld_until ∈ V, ∃vld_until′ ∈ V ′ =⇒ ∄rrk,j ∈ V ′| vld_until = vld_until′

(3-10)

The TA must keep track of valid tokens and prevent the CP from attributing
allocated reconfigurable regions rrk,j to user tokens. Each reconfigurable region can
be allocated to a single token.

— Property 4

Tokens T and users U can be authenticated. Let the function auth_user and
auth_token such as:

∀ti ∈ T, ∀ rj ∈ R /

auth_token(ti, rj) = true ⇐⇒ ∃fssj ∈ rj| ti(signature) = HMAC(ti(payload), fssj)
(3-11)

∀u ∈ U, ∃ signed_cert(u) |

auth_user(signed_cert(u)) = true ⇐⇒ cert_sign(cert(u)) = signed_cert(u)
(3-12)

The function auth_user is used by R, TA and CP to authenticate the users U for
secure communication, resource request and access. In this chapter, the auth_token

function is implemented in the PS. However, auth_token is implemented inside the
HSM later in Chapter IV.

— Theorem 1

Users U can utilize resources R with the access function defined such as:

∀ui ∈ U, ∀ti ∈ T, ∀rj ∈ R

access(ui, ti, rj) = true ⇐⇒ auth_user(signed_cert(ui)) = true

∧ auth_token(ti, fssj) = true ∧ signed_cert(ui) ∈ ti

∧ ID(rj) ∈ ti

(3-13)

Only the authenticated user ui can access the resource rj associated to the access
token ti. The latter is associated to signed_cert(ui) and signed with fssj by the
TA. This theorem ensures strong authentication of the user and its access token.

Attacker’s perspective
— Property 5
Let Eve be an external attacker (e.g., not the CP) that tries to use a stolen token

56

57

or a stolen certificate such as:

∀ui ∈ U, ∀rj ∈ R, ∀ti ∈ T, teve = ti, signed_cert(ueve) ̸= signed_cert(ui)∨
teve ̸= ti, signed_cert(ueve) = signed_cert(ui) ⇔ access(ueve, teve, rj) = false

(3-14)

Eve cannot steal and use tokens T thanks to Property 1. Nonetheless, let’s con-
sider that an attacker has successfully stolen a token ti regardless of the method.
Fourth property ensures that a stolen token ti cannot be utilized by a malicious
entity. In fact, each token ti is associated to a user certificate signed_cert(ui).

Eve can also steal the user certificate (both the public and private key) to access
the user resource. However, Eve also needs token ti to access the resources. Thanks
to a strong authentication proposed in this framework, Eve needs a valid token and
the associated user certificate.

— Property 6

Let’s consider an internal attacker named Mallory (e.g., the CP) that has an
interest in the data of ui. Mallory tries to access or modify the content of token ti

such as:

∀ui ∈ U, ∀ti ∈ T, ∀r ∈ R∃ ti(payloadmallory) ∈ R | ti(payloadmallory) =
{signed_cert(ui), ID(rmallory,k), P ermmallory(ui)} ∧ auth_token(t, fssmallory) = false

⇐⇒ signature = HMAC(payloadmallory, fss) ̸= HMAC(payload, fss)
(3-15)

Mallory can in fact modify the access token ti considering that she successfully
stole it despite the mutually authenticated TLS channel. However, the access token
can no longer be authenticated by the HSM because the token signature will not
match the calculated signature.

Mallory can compromise the CP to allocate the already allocated reconfigurable
regions rrk,j such as:

∀ui ∈ U, ∀ti, tj ∈ T, ∃rrk,j ∈ rj | rrk,j ∈ ti ∧ rrk,j ∈ tj (3-16)

The attack modelized by Equation 3-16 cannot be executed thanks to Equation
3-10 in Property 3. In fact, the TA keeps track of attributed reconfigurable regions
rrk,j and prevents the CP from giving access to busy reconfigurable regions.

Additionally, a compromised CP cannot generate permissions that the user did

57

Chapter III – Token-based multi-tenant FPGA cloud security

not request. The attack can be described such as:

∀ui ∈ U, ∀ti ∈ T, ∃Permrequested(ui) /∈ ti, P ermobtained(ui) ∈ tu |

Permobtained(ui) ̸= Permrequested(ui)
(3-17)

The user ui has access to the content of access token ti and can verify the per-
missions accorded to him. If ui finds that Equation 3-17 is true, the token ti can be
rejected and not used.

This section provided a modelization for the framework described in the next
section. The model formalizes the interactions between entities and provides a proof
for security features like the access token and authentication methods.

The next section introduces TokSek: a token-based framework for secure multi-
tenant cloud FPGA. The token-based authentication and authorization framework
OAuth 2 is described in Chapter II Section 3.2. The capabilities of OAuth 2 and
the high level interactions between different entities are detailed. OAuth 2 has been
adapted to cloud FPGA usage for token-based FPGA access.

2 Introduction to TokSek

2.1 Authorization and token infrastructure

2.1-1 OAuth 2 adaptation to FPGA cloud

There are four major grant types in OAuth 2. One of them is the implicit grant
that is more suitable for client-side applications where maintaining a client secret
is challenging. Instead of issuing an authorization code for an access token, the
latter is issued directly after the user authentication. However for a cloud FPGA
usage, the implicit grant is not the most secure due to the lack of authorization
code and missing extra authentication step. There are also more specific grants like
the Resource Owner Password Credentials grant (i.e., ROPC) where the trusted
clients handle sensitive user credentials. Its use is discouraged due to the lack of
security and the requirement of trust. The third type of grant is the client credential
grant where an access token can be obtained from an authorization server without
involving a resource owner. This is not suitable for FPGA cloud because the CP
must define the content of the access token and manage the resource utilization
across its infrastructure. The fourth type of grant is the authorization code grant,

58

59

it is used in TokSek.

The authorization code grant flow in OAuth 2 is a robust and secure method,
particularly adapted for applications where maintaining the confidentiality of the
client secret is crucial for security. This flow begins with the user initiating an au-
thorization request from the resource owner. Upon successful authentication, the
authorization server issues an authorization code to the client. The critical security
advantage lies in the separation of the front-end and back-end components. Unlike
some other flows, the authorization code flow ensures that the sensitive client se-
cret is never exposed or stored on the client side (e.g., browser or client device).
Instead, the client securely exchanges the authorization code for an access token.
This exchange happens with the back-end components of the authorization server
and prevents to store any secret (e.g., user credential). This separation significantly
mitigates the risk of unauthorized access and token interception, making it a pre-
ferred choice in scenarios where security is important. The use of the authorization
code acts as a single use, short-lived token that provides an additional layer of secu-
rity during the exchange process. If intercepted, it is of limited utility without the
corresponding client credentials, hence reinforcing authentication requirements.

Often, OAuth 2 is used to share HTTP resources like user credentials. The OAuth
2 protocol must be adapted for the cloud use case for several reasons. Figure 3-
3 shows the standard OAuth 2 flow and the modifications made for the TokSek
flow. In a standard web-application, the resource owner (website user) uses the
client’s website (e.g., a blog) and is willing to share information. The client then
asks for authorization for resource access (user data) and starts the access delegation
procedure. The resource owner is using a service and wants to give access to his
resources. This scheme is not valid in an FPGA-accelerated cloud use case because
it is the user that requests access to the hardware owned by the RO. In a cloud
FPGA case, the resource owner does not use a service but rather proposes a service
for other users.

59

Chapter III – Token-based multi-tenant FPGA cloud security

Figure 3-3 – Difference between standard OAuth 2 and TokSek OAuth 2

In an FPGA cloud context, the cloud provider is considered to be the resource
owner, the trusted authority is the authorization server and the FPGA is a part
of the resource server. The client requests a hardware resource with its account
information. This is the first step of authentication. Then, resources are allocated
automatically with the CP’s cloud deployment tools (e.g., orchestrator/scheduler).

Access tokens are a core part of TokSek. It is a tool to represents claims and access
cloud resources. It is also an important element to enforce access control rules inside
the FPGA.

2.1-2 JSON Web Tokens for FPGA resource sharing

The first version of TokSek aims to bring token mechanisms into the cloud FPGA
realm with a software approach. The infrastructure to use access tokens (e.g., server,
libraries, host software) is implemented on the FPGA processing system. All the
computation for token authentication and FPGA reconfiguration is executed on the
ARM CPU.

At the time of writing, no prior work shared an FPGA using tokens. There are
many advantages to use a token-based framework. In fact, a token is a lightweight
and standardized data structure that allows to efficiently communicate information.
Such a data structure is easy to produce, communicate, read and act upon it. Hence,
tokens provide low latency and lightweight solutions. For TokSek, JSON Web Token
(i.e., JWT) is used as a token framework and library [118]. JWT is an open standard
[119] for representing "claims" between two parties using tokens. The information
within a JWT is signed, providing a means of verification and trust. The signing
process can involve a secret with the HMAC algorithm or a public/private key pair
(e.g., RSA).

JWTs are commonly employed in authorization scenarios where users access au-

60

61

thorized services, and resources after logging in. They are also utilized for secure
information exchange between parties, ensuring the integrity of the claims made
within the token. It’s worth noting that while JWTs can be encrypted for added
confidentiality, the focus in many cases is on signed tokens. These signed tokens
verify the integrity of claims, and certifies the identity of the signing party.

The structure of a JWT comprises three parts such as:

token = {header, payload, signature}

The header specifies the token type (JWT) and the chosen signing algorithm, en-
coded in Base64Url format. This ensures that both token producing and consuming
parties use the same methods and algorithms. The payload holds claims about the
entity, categorized into registered, public, and private claims. The payload content
can be extended according to specific needs. Both the header and payload are then
Base64Url encoded. The final part is the signature, generated by signing the encoded
Header and payload with a secret using the specified algorithm.

2.2 TokSek framework

TokSek is the implementation of the OAuth 2 adaptation presented in Section
2.1-1 with a software-based token endpoint deployed inside the FPGA. Later in
Chapter IV, a hardware-based token endpoint for TokSek is proposed with additional
elements to enable secure and multi-tenant FPGA acceleration.

Figure 3-4 – High Level view of access delegation architecture including a trusted
authority

A high level view of the TokSek architecture is illustrated in Figure 3-4 where
the actions of each entity are shown. In this architecture, the user interacts with
the CP by requesting hardware access. Then, the CP gives a hardware allocation

61

Chapter III – Token-based multi-tenant FPGA cloud security

authorization to the TA by giving all the necessary information for the creation of an
access token. The TA is responsible of giving the access token to appropriate user.
The latter can then connect to the FPGA using the token. In this scheme, the CP is
responsible of the management aspect of the FPGA by maintaining and deploying
FPGAs. Additionally, the CP is the only entity that decides which FPGA to share
and on which conditions. The enforcement method of these mechanisms are further
described in the current section. Moreover, the TA is responsible of the security of
the cloud based FPGA by deploying the HSM and setting up encryption keys.

2.2-1 Overview

In this proposal, a TA is involved with different mechanisms and requirements
compared to the literature. In fact, the TA does not need access to the FPGA cloud
after the deployment of accelerators. As described in Figure 3-5, the TA’s involve-
ment is in the deployment phase of the accelerator which is done offline from the
rest of the framework. As shown in step 0, the TA is responsible for the certificate
deployment of the FPGA device rj. The certificate is signed by the TA and anyone
connecting to rj can verify this information to ensure the use of a legitimate rj

endorsed by the TA. To provide security to the hardware acceleration environment,
the TA is responsible of the deployment of a Hardware Security Module (i.e., HSM)
for each FPGA. The HSM can be open source since it does not contain any secret.
This hardware security module can be compared to a TEE where cryptographic
functions, random number generations and various security mechanisms are imple-
mented. Chapter IV further describes the hardware architecture of the FPGA rj

and gives details about the functionalities present in the HSM. The only time the
TA has to communicate with the FPGA is from step 0.1 to step 0.4. In fact, an
FPGA shared secret (i.e., fssj) is generated using a zero-trust online key genera-
tion protocol to establish a secure channel between an entity and a FPGA located
in the cloud. This solution is called Linkguard and it is described in Chapter IV.
This protocol is running inside the HSM located inside the FPGA fabric. The fssj

key is used by the TA to sign the FPGA connection information (e.g., access token
described later in this section) of the user. The FPGA rj must use fssj to compute
the signature of the access token to verify authenticity and integrity of the user
connection information.

After key generation, fssj is encrypted using the TA’s private key (i.e., TAPrivKey)
and a HMAC signature is computed for message integrity and authenticity. The TA
can be sure that fssj is not from a malicious entity. The TA must store one FPGA

62

63

Figure 3-5 – The deployment and token generation phase of TokSek

identifier and one fssj per rj for further use. The TA does not need to store much in-
formation about one specific FPGA and repeatedly communicate with it. During the
online phase of the framework, the TA only communicates with the cloud provider
and the cloud user. This allows to involve a trusted third party with minimal secu-
rity exposure and ensure low latency FPGA accesses. The processing time of user
data is not impacted by this framework which is a major advantage of using FPGAs
in cloud computing. Acceleration resources and software resources are independent
and do not affect each other’s performances. Additionally, the cloud user can ben-
efit from enhanced isolation against the CP while having no exposure to the TA.
The latter is not able to communicate with rj and retrieve sensitive data after the
deployment phase (e.g., fssj key initialization).

In order to get rj access, the user needs an authorization code from the TA.
In step 1 of Figure 3-5, the user authenticates with the CP. User certificate and
requested FPGA instance information are communicated to the CP. In step two and
three, the user certificate is signed by the CP and the required information about
the resource sharing is sent to the TA. These information are the user’s certificate,
the user’s access scopes (e.g., Perm(ui) ∈ ti), an identifier of the allocated FPGA
(e.g., ID(rj) and the reconfigurable region. These information are stored by the TA
on step four and the user is redirected to the TA on step five for authentication
purposes. Upon successful mutual authentication on step six between the TA and

63

Chapter III – Token-based multi-tenant FPGA cloud security

the user, the authorization code is shared with the user in step seven.

At this stage, the user can request an access token with the TA. User authenti-
cation must be achieved and the authorization code must be presented to the TA
as shown in step nine of Figure 3-5. Upon successful authentication, an access token
is generated by the TA on step 10. This access token contains the necessary infor-
mation to access rj. To manage user authorization and allocate a specific FPGA,
the CP shares information like FPGA identifier, instance identifier, and access du-
ration. Then, the TA is able to identify rj, authenticate it and use the appropriate
shared secret fssj to generate an access token with the CP’s requirement. The token
cannot be stolen and modified as shown in Section 1.2. It is encrypted and signed
with HMAC (Hash-based Message Authentication Code) thanks to a shared secret
fssj between the TA and the user allocated rj. As a result, the user ui can connect
to rj with the access token ti and use the FPGA according to rules set by the CP.
The user does not go through this protocol if his access token is valid. The user
does not need repeated authentication and resource allocation by doing these steps
thanks to the single sign-on feature. The third-party FPGA cloud access can be
permanent or temporary to withstand heavy network utilization spikes of a user.
With a low latency access delegation framework, telco services could benefit from
better flexibility, cost effectiveness and adaptability whereas cloud users could have
a high Quality of Service (i.e., QoS) FPGA cloud access.

A user cannot communicate with rj without an access token as described in
Equation 1.2 in Section 1.2. A token cannot be shared, fabricated or stolen because
the token is signed by the TA thanks to Equation 3-14. Additionally, the token is
attached to a user certificate that is signed by the CP. Only the TA can create
rj accesses. Moreover, the token owner ui is authenticated multiple times in order
to get rj access. The rules and policies set-up by the CP only apply to the token
owner. As a consequence, a user who does not have an access token cannot access
the resources allocated to another token owner. Other users will be rejected because
they do not have a valid access token to communicate with rj. All these claims are
formalized in the model presented in Section 1.2.

2.2-2 User resource request and user certificate

To request a resource from the CP, ui first sends a message to the CP’s user-agent,
as shown in step 1 of Figure 3-6. In this request message, ui includes his identifiers, his
certificate (or produces it online as stated below) and a redirection Unified Resource
Identifier (i.e., URI). These information are sent to the TA in the next step. The

64

65

URI is used by the TA to send back redirected messages to ui via the CP’s user-
agent. The URI represents a standardized addressing method crucial for uniquely
identifying and locating resources on the internet. This identifier is foundational in
web architecture, facilitating seamless resource navigation and accessibility.

There are two different scenarios for ui certification. The user ui can generate his
certificate online or offline from the protocol. Online certificate generation proceeds
as follows. Upon receiving the user resource request, the CP authenticates himself to
the TA with his certificate, requests a certificate for the user and shares it with the
user as shown in step 2 in Figure 3-6. The user certificate signed_cert(ui) is created
from the CP’s website. The user ui must interact with the web browser to create
the certificate and add randomness to the generated keys. A similar mechanism is
seen in Microsoft Azure’s key-pair generation for SSH channel protection [13].

It is also possible to create signed_cert(ui) offline from this protocol. The user
has the responsibility of generating a key-pair for himself. By doing so, the user
ui makes the resource request to the CP with his certificate. Then, the certificate
generation step is skipped and as a result the protocol is faster.

Figure 3-6 – CP introduces the user to the TA, generates and manages authorization
code. User authenticates himself with the TA and obtains his authorization code.

This framework is based on a TA to create user-CP isolation by using an access
delegation protocol. The TA has additional security sensitive tasks like rj authenti-
cation, bitstream certification and verification. Next section shows the interactions
between the entities present in our protocol to obtain the authorization code.

65

Chapter III – Token-based multi-tenant FPGA cloud security

2.2-3 Authorization code grant

During the second step in Figure 3-6, after the CP’s authentication, the user
request is accepted or declined. If the request is accepted, the TA generates the
authorization code. By using the previously provided URI, the TA redirects the CP’s
user-agent back to the user in order to authenticate him directly. By performing this
action, the CP has authenticated and introduced ui to the TA.

At this time, the TA knows signed_cert(ui) and the authorization code associ-
ated with the user’s identifiers. To obtain his authorization code, the user needs to
authenticate with the TA for the first time. A certificate-based TLS authentication
is performed [49]. If the user credentials are valid, the authentication is successful
and the TA sends an HTTP redirection code to the CP’s user-agent (HTTP code
302) alongside the user redirection URI. The user receives the authorization code
from the CP’s user-agent in the last step of Figure 3-6.

In this protocol, the authorization code cannot be used as an attack vector. In
fact, the authorization code is associated with user credentials and the URI. The
authorization code is not a secret code because the CP’s user-agent shares it through
HTTP redirection. The authorization code can be found in the user-agent history. In
case of an authorization code redirection attack, which aims to get backdoor access
to the user’s resource, a simple redirection URI check from the TA is sufficient. The
URI used when requesting the authorization code must match the URI used for the
access token generation, as explained in Section 2.2-4. Hence, a malicious ueve cannot
gain access to resources attributed to ui by intercepting the authorization code.

The role of this code is to ensure that the CP is authenticated and cannot be
impersonated. By using the CP’s user-agent to redirect the code, it can be confirmed
that the CP which authenticated himself and gave authorizations for resource allo-
cation to the TA is the same entity that communicates with ui in the protocol.

2.2-4 Token generation and access management

After receiving the redirected authorization code, ui needs to authenticate himself
again with the TA using his certificate, his authorization code and redirection URI
to request an access token from the TA. A certificate-based TLS authentication
is performed one last time to confirm user identity. This second authentication is
necessary to verify user identity.

As shown in Figure 3-7, the user needs to submit his authorization code to request

66

67

Figure 3-7 – The TA generates the access token for the user

the access token. The user needs to send the authorization code to the TA and
proceed with a mutual TLS authentication. If the user credentials are registered
and associated with the used authorization code, the TA will be able to construct a
token ti targeting rj device allocated to the user by the CP. The TA generates the
access token, signs it using a shared secret (i.e., fssj) with the FPGA and sends it
to the user on step 2. On the last step, ui sends ti to rj to make use of the allocated
resources.

Access tokens have scopes and duration of access (e.g., Perm(ui)). They are
managed by the CP and endorsed by the TA [55]. These options are requested by
the user during the first step shown in Figure 3-6. Then, the CP accepts or declines
the requested scopes and duration and notifies the TA (i.e., authorization server)
in step 2. The user ui can decline an issued token ti if the obtained Perm(ui) does
not match his requests. The access token’s content may also be extended in order
to contain information such as FPGA serial number, partially reconfigurable region
identifier and so on. This feature gives flexibility for the implementation phase as
additional mechanisms can be developed.

Using the described protocol, ui is strongly authenticated through his certificate
and his credentials with the CP and the TA. The authentication between the two
last entities is not as critical as the user authentication because they are anchors in
this protocol. Due to fssj and the TLS session between the user and the FPGA,
a secure and tokenized confidential remote access can be set up for the user. The
CP is isolated from the user computation but can still manage access scopes and
duration.

Efficiency and performance are constantly sought for accelerated computing. To
follow this path, a user to user resource sharing mechanism that doesn’t require the
CP is proposed in the next section. A practical telco use case is described to empha-
size the real-world application and relevance of this concept. This access delegation

67

Chapter III – Token-based multi-tenant FPGA cloud security

solution can be used by a Telecom Operator (i.e., TO) to share his infrastructure
with another TO. In a real use case, the latter would be a Mobile Virtual Network
Operator (i.e., MVNO). The latter is a company that provides mobile services with-
out owning the physical network infrastructure. Instead of building and maintaining
its own cell towers and spectrum, an MVNO uses the network of an existing Mobile
Network Operator (i.e., MNO). Essentially, the MVNO leases network access and
then offers its services to customers under its own name. It’s a clever way for com-
panies to enter the mobile market without the massive investment required to build
and manage a complete wireless network.

2.3 Access delegation between two TOs without CP impli-
cation

Telco architectures and systems are more and more complex. In 5G and beyond,
cloud computing is a main component of the telco system [1]. Cloud computing
solutions are deployed to offer efficient and reliable telco services. However, deploying
and managing multiple large-scale cloud infrastructure is challenging and costly. A
novel access delegation protocol is proposed to allow flexible and cost-effective telco
services. This solution allows a TO to share its third party cloud resource access
with another TO with minimal CP implication. There are at least five entities in
this protocol : CP, TA, FPGA cloud, TO1 and TO2. This brings a new business and
flexibility for TO1 who has access to third party FPGA cloud resource. This use case
is displayed in Figure 3-8. The TO has its own on-premise deployment and third-
party cloud resource access shown with a blue arrow. The access delegation protocol
allows the telco subcontractor (i.e., MVNO) to access and use the TO network as
illustrated with red arrows.

In Open Radio Access Network (O-RAN), access delegation is especially impor-
tant. Cloudification and interoperability are the key factors in 5G O-RAN. Some
function of the 5G base stations (i.e., gNB) such as the Distributed Unit (DU) or
Central Unit (CU) can be deployed in a cloud environment [120]. With the evolution
of telecommunication standards, security requirements are stronger. The interoper-
ability in 5G O-RAN introduced new security challenges. For example, the CU and
DU from two different IP providers must work together without being a threat to
the cloud architecture and to each other. A secure access to cloud resources is pro-
vided with the access delegation. As shown in Figure 3-9, a TA is involved in the
access delegation scheme. Cloud resources owned by the CP are allocated to a telco
provider thanks to the TA. Then, the TO can allow a MVNO to use its allocated

68

69

Figure 3-8 – Overview of the access delegation protocol between two TOs. The red
link represents the child token access, the blue link represents the access obtained
with the standard TokSek flow

third-party telco cloud. The MNVO has access to a telco cloud system without man-
aging and deploying hardware or software. This architecture aims to create isolation
between stakeholders to provide better security. The TA plays a key role in the
access delegation process and its importance is discussed in Chapter II.

Figure 3-9 – High Level view of access delegation architecture including a trusted
authority

Allowing an FPGA cloud user (e.g., TO) to share a subset of its allocated re-
sources can bring great efficiency. Figure 3-10 details an access delegation scheme
between two TOs. Only the first TO who gets access to the FPGA cloud can share

69

Chapter III – Token-based multi-tenant FPGA cloud security

its resources with other TOs. Let TO1 be the telco provider (i.e., MNO) who is
willing to share the allocated resources and that has completed the protocol shown
in Section 2.1-1. Let TO2 be the MVNO who will get access to TO1’s resources.

Let the function create_childtoken defined such as:

∀TO1, TO2 ∈ U, ∀tT O1, tT O1,T O2 ∈ T, ∀rj ∈ tT O1/

create_childtoken(tT O1, TO1, rj) = tT O1,T O2 |

Perm(TO2) ∈ tT O1,T O2, P erm(TO2) ≤ Perm(TO1) ∧ ∃signed_cert(TO2) ∈ tT O1,T O2
(3-18)

Equation 3-18 describes the creation rules of the child token for TO2. The latter
only needs a signed certificate from the CP. The child token can only have permis-
sions less or equal to the parent token.

Figure 3-10 – Diagram for TO to TO FPGA access sharing

In Figure 3-10, step 0 is the initial access request and authentication of TO2.
On the first step of the protocol, TO1’s own access token (i.e., parent token), TO2’s
certificate and the scope of the resource sharing are sent to the TA. TO1 can only
share resources that are allocated to it. As a consequence, TO1 can either share the
entirety or only a subset of its resources. After TO1’s authentication, the TA is able
to determine what resources are allocated to TO1 and which authorization it has.
This prevents TOs from giving authorizations over resources not allocated to them.
In this same step, TO1 determines the authorization that TO2 will get. TO1 can
restrict mechanisms like memory access or FPGA reconfiguration. TO2 cannot get
more authorizations than TO1 under any circumstance. Then, the TA will create
an access token for TO2 using the rules set by TO1 as described in Equation 3-

70

71

18. TO2’s access token (i.e., child token) contains information similar to the parent
token. The child token is also a JWT token that contains the given authorization and
the certificate of TO2. The child token is constructed the same way as parents token
and they possess properties described in Equations 3-8, 3-9, 3-10. On the second
step, the TA requires TO2 to authenticate itself in order to receive the child access
token. On step 3, TO1 redirects TO2 with an authorization code towards the TA.
On step 4, TO2 and the TA are mutually authenticated and the authorization code
is verified. The TA is able to authenticate TO2 because TO1 shared TO2’s certificate
on step 1. On the last step, TO2 receives the child token.

Thus the access delegation framework allows a TO to share third party cloud
resources (e.g., FPGA) with other TOs. A cloud telco solution deployed on a third
party CP can be shared.

While it is important to create a secure access to the FPGA resource, it is also
important to have secure interactions with the FPGA. The following section intro-
duces the mechanisms to offer a secure environment between the FPGA and the
cloud user.

2.4 User-FPGA interactions

2.4-1 User and FPGA Secure Channel

After the token issuance, the user ui contacts the FPGA rj to obtain access to the
allocated resources. A TLS session is set up for secure communication with perfect
forward secrecy between the FPGA and the user [49]. The user and the FPGA create
their shared secret with algorithms like DHE, ECDHE [49] and then use symmetric
encryption algorithms like AES-256-GCM. Once the TLS connection is established,
the user sends its token ti to be authenticated. The FPGA parses the token and
evaluates if the resources can be granted. Further communications between the user
and the FPGA will be encrypted. User privacy is greatly enhanced and isolation
from other entities is achieved.

2.4-2 Access Control with Tokens

When the entities are authenticated and the authorizations are granted, the user
can access the FPGA with the access token using the access(ui, ti, rj) function de-
fined in Section 1.2. The token needs to be authenticated by rj with the function
auth_token(ti, fssj). Actions are then taken by the FPGA to program and allocate

71

Chapter III – Token-based multi-tenant FPGA cloud security

resources inside the device. Thanks to the resource server, the CP explicitly specifies
the attributed resource information to the TA.

According to OAuth 2 protocol, token content can be extended according to
user preference [55]. In order to take advantage of this feature in a cloud FPGA
context, critical information needs to be selected. This information reinforces the
access control of the user and ensures device/infrastructure security. It is up to the
CP to decide the content of the token. In our solution, several pieces of information
must be included. This information includes the FPGA serial number and a partial
reconfiguration region (PRR) identifier in the case of multi-tenant FPGA usage.
A user identifier (e.g., signed_cert(ui)) is useful for secure communication outside
the FPGA. This information identifies the device, the user and the allocated PRR.
Additionally, bitstream identification, and signatures are stored in the token. This
aspect is further detailed in Section 2.4-3. The token must have validity timestamps
for the FPGA to take action upon token expiration. This information is necessary
to ensure that the user activity is located inside the cloud infrastructure and that
the access delegation scope is respected. The TA should be able to create an access
token with this information.

The CP’s virtualization tools track which FPGA and PRR are in use. Cloud
resource utilization is tracked by the CP and already allocated resources cannot
be overwritten and reallocated by the user. Moreover, as the token has a limited
validity, the FPGA should be able to end the connection with the user based on a
timestamp without needing the CP to take action, the FPGA must be time aware.
The access validity timestamp is available inside the token.

In the software implementation of TokSek, the only access control that is applied
is for token ownership and validity. If signed_cert(ui) is inside the token ti, the user
ui is authorized to access and communicate with the FPGA rj. All the permissions
defined inside the token such as the memory size or the access to shared IPs are
enforced by the HSM. These access control mechanisms are described in Chapter
IV.

2.4-3 FPGA reconfiguration with bitstreams

Secure bitstream reconfiguration is another important topic for user data protec-
tion inside a third-party FPGA cloud. The user IP must remain confidential against
the CP and other parties due to commercial value. Achieving IP confidentiality and
protecting the FPGA cloud against remote attacks at the same time is a critical

72

73

challenge that needs to be addressed [121], [122], [101], [123], [124], [73]. On one
hand, the CP must enforce IP verification on the user logic to protect the cloud
infrastructure against harmful design patterns. These patterns and attacks are de-
scribed in Chapter II Section 5.3. On the other hand, IP verification forces the user
IP to be fully disclosed to the verifying entity.

In order to load a bitstream into an allocated resource, the user must fulfill several
requirements. Bitstreams must be verified by the TA for malicious design patterns.
The TA verifies if the bitstream created by ui is only reconfiguring the user allocated
rri,j. If the bitstream reconfigures illegal regions of the FPGA, the verification proce-
dure fails. This verification step is sensitive for the user IP confidentiality. While, the
bitstream is still exposed to the TA in plaintext, it is protected against the CP which
is in agreement with the threat model described earlier. Then, the bitstream must
be certified with the TA signature using the shared secret key (e.g., fssj) associated
to the user allocated resource rj. The TokSek framework does not aim to provide
a novel bitstream verification technique. Instead, this solution aims to provide a
secure scheme by keeping existing verification methods used by cloud providers like
AWS and Azure [3], [4]. In fact, the TA can execute bitstream verification because
the TA has a shared secret fssj with each FPGA, the signature and the bitstream
verification can be trusted.

When the user tries to load a bitstream into his allocated PRR, the bitstream
and the bitstream signature are shared as shown in step two of Figure 3-7. At the
reception of the bitstream, the FPGA computes the signature and verifies its results
with the signature sent alongside the token in step three. If the results are the same,
the FPGA confirmed that the bitstream is certified as valid by the TA. The FPGA
can proceed to reconfigure the user PRR in the last step.

3 Implementation and analysis of software-based
TokSek

3.1 Implementation details

A Xilinx Zynq UltraScale+ MPSoC ZCU102 is targeted for this work. However,
this board is not an optimal target for multi-tenant FPGA cloud acceleration and it
is only used to demonstrate the proposed solution. Xilinx Alveo and Xilinx Versal
boards are much more efficient and capable in that regard.

73

Chapter III – Token-based multi-tenant FPGA cloud security

Figure 3-11 – High level view of the TokSek architecture

The ZCU102 has ARM cores for software execution and FPGA logic for hardware
components. To take advantage from the software environment, an embedded Linux
distribution with an OP-TEE (Open Portable - Trusted Execution Environment)
overlay is deployed. OP-TEE is a trusted execution layer which implements ARM
TrustZone technology [125]. This embedded environment brings a practical, privacy
preserving and secure software stack to FPGA devices. Figure 3-11 shows the high
level FPGA architecture. The Processing System (PS) is on the right hand side and
the FPGA fabric on the left hand side.

In this implementation, the CP and the TA are implemented in V MCP and
V MT A. The user is implemented in the device that hosts both VMs. The ZCU102
board is connected to the user device with an Ethernet cable.

On V MCP , an Apache web server is deployed and few pages are served. This
server is deployed by the resource owner (e.g. the cloud provider) as shown in Figure
3-3. A user can login and request an FPGA instance. When requesting an instance,
the web server and the user go through a mutual TLS authentication. If the user
certificate is signed by the CP, the protocol continues as described in Section 2.2.

On V MT A, another Apache web server is deployed to serve an authorization server
anchor as required in OAuth 2. The user that makes an FPGA instance request from
V MCP is redirected to V MT A to receive authorization and access tokens. The web
server of the TA also forces users to go through a mutual authentication scheme.

Inside the FPGA, a Flask web server is deployed to serve the OAuth 2 resource
server. Flask is a micro web framework for Python that is particularly known for
its lightweight nature [126]. Hence, it is a fitting choice for embedded devices with

74

75

limited resources. Flask’s modular design allows developers to choose and incorpo-
rate only the components essential for their application, optimizing efficiency. Figure
3-12 shows a high level view of implementation described above.

The philosophy of this architecture is closer to the IBM FPGA architecture where
each FPGA is independent of a host CPU [10]. Because we target an FPGA SoC,
the CPU is leveraged to execute utility functions such as bitstream reconfiguration
and to handle communications coming from the Ethernet port. Being independent
from a host CPU can remove bottlenecks coming from the management of multiple
FPGAs. An embedded CPU only manages its own computation whereas a host CPU
can manage multiple CPU in parallel. Additionally, using FPGA logic instead of a
software can diminish the attack vectors due to higher complexity to execute attacks.
However, using embedded resources to deploy a lightweight server and compute
encryption algorithms (e.g., due to TLS) can be penalizing because of performance
constraints originating in the form factor of components (e.g., CPU, memory). This
implementation will determine if the incurred computation overhead for running
a flask server inside the FPGA is viable. Nonetheless, the proposed framework can
also be implemented in a more standard host CPU+FPGA architecture that is more
common in cloud deployments.

Figure 3-12 – High level view of the TokSek deployment

In the current software approach of TokSek, the modules inside the FPGA fabric
are not considered. The primary focus in this current implementation is to access
the FPGA with an access token and reconfigure an FPGA with a verified bitstream
using fpgautils software drivers. The goal of this implementation is to determine the
performance of this framework in terms of latency inside and outside the FPGA
(e.g., CP and authorization server).

75

Chapter III – Token-based multi-tenant FPGA cloud security

3.2 Theoretical Performance

To analyze this proposal, a theoretical model for different components can be
built. All variables utilized in the equations below are described in Table 3-1. The
required time to generate the authorization code as seen in Section 2.1-1 is described
as follows:

tcode = tCP (internal) + tT A(internal)
+ tuser−CP (net. + auth.) + tuser−T A(net. + auth.) + tT A−CP (net. + auth.)

(3-19)

Internal tasks are computationally cheap. In this model, tCP (internal) is the
time required by the CP’s virtualization tools to determine available resources and
allocate them to a user. Only simple read/write operations are executed by the TA
to generate the authorization code. As a consequence, tT A(internal) is also com-
putationally cheap. tuser(auth.) and tCP (auth.) are the user and CP authentication
latencies of the mutual TLS authentication. tA−B(net.) is the cumulated network
and transport latencies between entities A and B. Assuming that communication
latencies between entities are low (i.e., small tA−B(net.)), the user can get the au-
thorization code with low latency.

Once the authentication code is received the user can request an access token.
The time required to get an access token as shown in Section 2.1-1 is described as
follows:

ttoken = tT A(internal) + tuser−T A(net. + auth.) (3-20)

ttoken should be very small because there is only a certificate-based TLS authenti-
cation of the user and the TA. After the authentication procedure, the access token
is generated by the TA. Few read and write operations are required for this oper-
ation. Every information required to create an access token is stored in the TA’s
database.

TO1 now has an access token. The access token can be used by TO1 to get FPGA
access.

taccess = tuser−F P GA(net. + auth.) + tF P GA(internal) << tcode + ttoken (3-21)

taccess is the time required to give TO1 the allocated FPGA access. First, one TLS
authentication between the user and the FPGA is needed. Then, the token verifica-

76

77

Variable Description
tcode Time spent to generate an authorization code
ttoken Time spent to generate an access token by using an authorization code
taccess Time spent to connect to the FPGA using the access token

tX(internal) Time spent for internal computations by entity X
tX−Y (net.) Network latencies between entity X and Y

tX−Y (auth.) Time spent for mutual authentication between X and Y

Table 3-1 – Description of variables used in Equations 3-19 through 3-22.

tion function auth_token (see 2.4-2) must be executed. This latency is represented
by tF P GA(internal). taccess is greatly smaller than the time required by our protocol
to generate an authorization code and an access token. taccess requires less communi-
cations, whereas tcode and ttoken include internal computing times and accumulated
communication latencies between entities present in this protocol.

Additionally, TO1 can create a child access token for TO2 as described in Section
2.3. The time required by this procedure can be described as follows.

tu2u = tT O1−T O2(net. + auth.) + tT O1−T A(net. + auth.)
+ tT O2−T A(net. + auth.) + tT A(internal)

(3-22)

tu2u represents the time required to generate a child access token for TO2 accord-
ing to Figure 3-10. Same as Equation 3-19, entities mutually authenticate each other
when starting a communication. The authentication procedures and the establish-
ment of the TLS tunnel are a major part of this latency model. In fact, tT A(internal)
is again small because it is the time to verify the received information and create
a token as described in Equation 3-20. This time, it is TO1 who authenticates and
redirects TO2 towards the TA. This duration is represented by tT O1−T O2(net.+auth.)

The following section analyzes the security of the proposed framework to under-
line how the threats described in Section 1.1 are addressed.

3.3 Security Analysis

Thanks to the theoretical model proposed in Section 1.2 and the implementation,
the following threats have been addressed.

User impersonation: Entities mutually authenticate each other before every com-
munication. A user must have certificate signed by the CP to be authenticated.
A MitM attack is heavily mitigated thanks to the mutual authentication. The CP

77

Chapter III – Token-based multi-tenant FPGA cloud security

cannot impersonate the user too. A user needs an access token to use the allocated
resource. The CP signs the user certificate but does not have the associated private
key. The CP cannot impersonate the user and access the allocated resources.

Data integrity: To protect IP integrity, user bitstreams are verified and signed by
the TA. The IP integrity is verified before IP and after TA verification. The verified
bitstream is signed by the TA to prove the bitstream validity and integrity. Inside
the FPGA, the bitstream integrity is verified before FPGA reconfiguration.

Confidentiality: To protect confidentiality, a TLS tunnel is used for every commu-
nication. User access token, data and IP are encrypted. They are decrypted inside
the FPGA and sensitive information are stored inside TEE secure memory.

Logical isolation and access control: The access token represents the authoriza-
tions of a user with the allocated resource. On the user’s first connection, authoriza-
tions are initialized by the FPGA according to the access token content. For each
user request (e.g., Read/Write operations), access control rules are enforced. FPGA
cloud users can only make requests that they are allowed to.

3.4 Experimental Performances

3.4-1 Access token request and resource access

Network latencies were not included in our testing environment to only measure
the latency of our framework. Additionally, latency is dependent on user location
and connection quality. For that reason, tA−B(net.) is not considered in the results
section. With this implementation, we measure the average computing duration for
one TLS handshake including mutual authentication. The average duration found
is 34 ms. This means 3 × 34 = 102 ms for the computation of three mutual TLS
authentication as noted in Equation 3-19. Moreover, tCP (internal) + tT A(internal)
= 183 ms. In average, the access token is given to the user in tcode +ttoken = 102+183
= 285 ms.

Then, the user connects to the FPGA with the access token. With the FPGA,
the average duration for a TLS handshake with mutual authentication is measured
to be 101 ms. The TLS handshake is nearly three times slower on the FPGA’s
PS compared to standard laptop CPU. Moreover, the internal FPGA tasks such as
access token registration and user authorization initialization last 15 ms. As a result
taccess = 101 + 15 = 116 ms without network latencies.

78

79

3.4-2 Third-party FPGA access delegation between users

After getting FPGA access, TO1 can share its resource by contacting the TA.
Required information are shared with the TA as described in Section 2.3. In Equation
3-22, tT O1−T A(auth.) and tT O1−T O2(auth.) are measured to be 45 ms including mutual
TLS authentication. Then, tT O2−T A(auth.) + tT A(internal) is measured as 52 ms. In
total, the child access token is obtained in 142 ms without network latency.

3.4-3 Bitstream reconfiguration from the embedded OS

The user can send requests to the FPGA after being initialized inside the FPGA.
FPGA logic reconfiguration is one possible request. The bitstream is sent by the user
to the FPGA. According to [127], the maximum bandwidth for FPGA reconfigura-
tion using the PCAP reconfiguration port is 500 MB/s. To reconfigure the FPGA,
the fpgautils driver is used. The FPGA is reconfigured by a 26 MB bitstream in 204
ms. As a result, the observed bandwidth for FPGA reconfiguration is 127.4 MB/s.
The same bandwidth is found in [60] by targeting a Zynq-7000 SoC. As a result,
access token generation, user-FPGA authentication and bitstream reconfiguration is
done in 503 ms with our implementation.

Moreover, the FPGA cloud environment proposed in work [44] is implemented
and some metrics are measured. They grant an FPGA access to a user and recon-
figure the FPGA with user IP (10 MB size) in 3.36s. FPGA reconfiguration time
is linearly bound to bitstream size. In the present paper, a 2.6x bigger bitstream is
used, resulting in a longer reconfiguration time. By using the linear property of the
bitstream reconfiguration time, a 10 MB bitstream is reconfigured in 78 ms. With an
internet speed of 6.3 MB/s (used in [44]), the network latency of the bitstream is ap-
proximately 1587 ms. With these constraints, FPGA access by a user and bitstream
configuration is achieved in 503+1587 = 2090 ms with our framework. Compared to
[44], the proposed framework is 1.27 s (-37.8%) faster. Table 3-2 summarizes the la-
tencies of this framework. Unfortunately, no other work propose an implementation
of a secure FPGA access scheme to achieve secure and isolated acceleration.

4 Summary

This chapter provided a description of TokSek an its capabilities. Section 1 lays
the foundation of the proposed framework by establishing a threat model and a
formalization of the framework. The threat model conveys the goals and capabilities

79

Chapter III – Token-based multi-tenant FPGA cloud security

Performance results of the proposed implementation
Achievements Computing time (ms)

Access token obtention 183 ms

FPGA access 116 ms

Child Token creation 142 ms

Bitstream configuration 204 ms

Table 3-2 – Performance Results

of the attacker that can be located inside or outside the FPGA. The formalization
describes a theoretical model that specifies the rules and methods governing the
TokSek framework. Section 2 introduces TokSek. First, the adaptation of OAuth 2
to FPGA clouds is discussed, then the token infrastructure and its strongpoints are
explained. The protocol of TokSek is described in Section 2.2. Communications and
computations of entities present in this framework are shown. Section 2.3 proposes
an extension of the OAuth 2 mechanisms by allowing an authorized user to share his
access token with another user independently from the resource owner (e.g., CP).
A telco use case with O-RAN and 5G and beyond is given as a practical example.
Results show that the token-based FPGA access solution overhead is small. In total,
a user can obtain his access token and reconfigure the FPGA with a bitstream in
503 ms without considering network latencies that would exist in a real-world use
case. One notable measure is the mutual TLS authentication between the FPGA
and the cloud user. In fact, the FPGA is three times slower than a server deployed
inside a virtual machine hosted by a standard laptop to execute a mutual TLS
authentication.

Next chapter provides a hardware-based approach for TokSek. The software com-
putation done inside the FPGA for token verification is offloaded to the FPGA logic
to provide the first ever FPGA-based token framework for OAuth 2. The objective of
this approach is to reach higher levels of QoS by reducing latency of token operations
done by the CPU. The latter can be used for other tasks that require a software
environment. Also, a hardware solution can achieve higher levels of security. In fact,
sensitive computations like token authentication and resource allocation can be done
in hardware logic independent of a CPU and the CP. Hence, the user data and sen-
sitive operations can be isolated from the CP thanks to a hardware module with
isolated memory enclaves storing crucial user information. As discussed in Chapter
II, embedded CPUs and CPUs in general have cache related vulnerabilities that can

80

81

be exploited. Being less dependent of a CPU also means that FPGA accelerators
without an embedded CPU can be secured with hardware logic. In this hardware
approach, all the computations linked to token authentication, parsing and access
control are done in the FPGA logic by the HSM. The latter is a crucial component
of TokSek that initializes and enforces access control rules set by the access token.
Linkguard is another significant hardware component of TokSek that is described
in the next chapter. It is a patented solution to establish a zero-trust confidential
channel with resources located in an untrusted cloud environment. Finally, the last
hardware component of TokSek is an upgraded version of the ShEF shield module
described in Chapter II. Linkguard is incorporated to the shield module to establish
a confidential and isolated channel between the PRR region and the cloud user.

81

Chapter IV

HARDWARE APPROACH FOR TOKSEK

This chapter proposes a more advanced hardware-based approach for TokSek. A
solution involving a Hardware Security Module (i.e., HSM) is proposed to strengthen
the security mechanisms in the FPGA fabric. The HSM serves multiple purposes.
First, in TokSek, a hardware-based OAuth 2 is proposed where token operations like
parsing and verifying are done by the HSM in the FPGA logic (i.e., resource server
in OAuth 2). The framework can benefit from faster computing speeds, stronger
isolation mechanisms towards the CP (e.g., memory enclaves) and CPU offloading
thanks to hardware logic. Second, the HSM is responsible for enforcing access con-
trol and isolating tenants sharing the same acceleration platform. The permissions
that are located inside the token must be read and applied inside the FPGA. The
HSM must initialize the user FPGA context. For example, the HSM is responsible
for memory allocation and a randomized memory allocator is proposed in Section
1.2-2. Third, the HSM serves as an access control tool for all PRR regions. When all
the access control elements are initialized in the FPGA using the access, the HSM is
ready to receive requests from PRR regions and apply access control rules. In fact,
each PRR is connected to the HSM and all requests are checked to apply access
control rules and other mechanisms like the address translator. Both of them are
described in Section 1.3. Lastly, this chapter proposes a patented zero-trust confi-
dential channel establishment solution for third-party cloud resources. This solution,
called Linkguard, is proposed as an upgrade to the ShEF shielded enclave module [7]
to provide a secure channel between the cloud user and its deployed IP. Linkguard is
also included inside the HSM to establish a shared secret with the TA. This solution
is described in Section 2. In Section 3, the shielded enclave is analyzed and vulner-
abilities are exposed. It is a hardware module aiming to protect user accelerators
inside the FPGA logic. We propose to upgrade the shielded enclave with Linkguard,
and to use it under a modified scheme to address the vulnerabilities found. In Section
4, we expose the implementation results of the hardware modules in TokSek and we
give a perspective on the results.

82

83

1 Hardware security module for token-based multi-
tenant FPGA

The HSM is a hardware security module owned by the TA and deployed inside
the FPGA logic of the CP. The HSM is responsible of essential functions to serve a
secure multi-tenant FPGA inside the cloud. Figure 4-1 shows the architecture of the
FPGA node with all of its TokSek components. There are three major components in
the FPGA architecture of TokSek: Linkguard, the HSM and the upgraded shielded
enclave. The illustrated architecture can accept multiple shielded enclaves (described
in Section 3) to propose a multi-tenant environment. These modules are connected
to the HSM, applying access control rules and ensuring isolation between entities.

In the current section, the components of the HSM are described. In this hardware
implementation of TokSek, token operations are executed by the HSM instead of
the PS. The hardware version of TokSek that is presented in this chapter is more
advanced compared to the software implementation described in Chapter III. In
fact, mechanisms like the resource manager, the policy store and the access control
functions like addr_translate and policy_check are added in this implementation
of TokSek to extend its capabilities.

Figure 4-1 – An overview on the architecture of TokSek with all its components

The components inside the HSM are developed using High Level Synthesis (i.e.,
HLS). While it is not optimized regarding resource utilization, HLS allows to develop
at faster speeds without handling the complexity of hardware development. For this
implementation of TokSek, the PS is still used to deploy the flask-based python web
server with mutual TLS authentication as described in Chapter III. Consequently,

83

Chapter IV – Hardware approach for TokSek

Figure 4-2 – Diagram of a user connecting to a target FPGA

only the auth_user function is executed in the PS with this implementation and all
token operations are offloaded in hardware logic.

The HSM is responsible of all the token operations necessary to access an FPGA rj

and its resources. In this hardware implementation, the HSM executes functions such
as: auth_token, allocate_resources and allocate_mem. The function auth_token

described in Chapter III verifies the authenticity and integrity of the access to-
ken using software code. In the hardware implementation of TokSek, the function
auth_token has been described in FPGA logic. In the current section, the functions
allocate_resources and allocate_mem are introduced. Both of these functions are
taking access tokens ti as an input and they initialize the user policy store inside
the FPGA.

Figure 4-2 shows the connection of ui to rj and displays the usage of core functions
that are executed by the HSM.

1.1 Introduction of the HSM

The HSM deployed inside the FPGA logic is enforcing crucial security mecha-
nisms to achieve a secure multi-tenant token-based acceleration environment. The
capabilities of the HSM can be formalized with the properties below. This model
uses the same naming convention as used in Chapter III.

84

85

1.1-1 Entities

User allocated reconfigurable regions rri,j are identified by a shielded enclave
shieldi,j,k that is the k-th shield of user i inside resource rj. The relationships between
shieldi,j,k and rri,j are defined such as:

∀rj ∈ R, ∀ui ∈ U, ∀ti ∈ T, ∀p ∈ N, ∀k ∈ [1,
∑

p∈|eri,j

|rr ∈ eri,j,p|]

∃shieldi,j,k ∈ rj | shieldi,j,k = {rrp,j | rrp,j ∈ eri,j}
(4-1)

The capabilities and objectives of shieldi,j,k are described in Section 3. A user
can deploy multiple shields to protect and isolate different modules inside its allo-
cated reconfigurable regions. The user must have at least one shielded enclave per
rri,j. If ui has more than one reconfigurable region, the user then has k number of
shielded enclaves as noted in Equation 4-1. The shield must be deployed in one of
the reconfigurable regions owned by ui. The shield is the only interface the user has
with the HSM as shown in Figure 4-1.

To enforce access control rules on erj, the HSM stores required user information in
a memory enclave only accessible by itself. These user information include physical
memory addresses, public or shared memory regions, access authorization for shared
IPs and owned reconfigurable regions. Let psj be the policy store of hsmj inside rj

that stores access policy information of its users. Each user policy psi,j is stored
inside the ps such as:

∀i, j ∈ N, ∀psj ∈ hsmj, psj = ps0,j, ..., psi,j ∧ psi,j = {eri,j, {mbii,0, ..., mbii,n}}
(4-2)

Each user policy psi,j is constituted with its allocated embedded resource eri,j,k

and all of the associated memory block information set {mbii,0, ..., mbii,n}. The latter
includes information like physical address, ownership, size, and memory confiden-
tiality (private or shared memory).

1.1-2 Threat model

In this threat model, we consider that the attacker can be another tenant or
the CP. Consequently, any module or interface of the FPGA can be compromised.
The HSM is considered trusted because it is deployed by the TA. However, an
attacker with CP privilege can compromise and reconfigure the legitimate HSM
with a malicious one. Because the HSM is securing the FPGA logic, we also consider

85

Chapter IV – Hardware approach for TokSek

threats inside the FPGA.

Confidentiality and access control: The attacker’s objective is to steal valuable
user data inside the FPGA trying to access victim memory region. The attacker tries
to make concurrent accesses to shared IPs to obtain the data of the victim user. The
attacker can try to impersonate the victim to access any resource allocated to him.

Integrity and denial-of-service: The attacker tries to modify the user data inside
the device memory. By modifying the victim data, the attacker aims to create denial-
of-service attacks where the victim cannot make use of his data. It is important to
note that the CP do not want to harm its own infrastructure or degrade the quality
of service of its cloud system.

1.1-3 auth_token and token_parse functions

In a software implementation, the token verification and parsing are straight-
forward because the JWT [119] token library has all the functions ready to use.
Because such a library is not available for hardware logic, the token verification has
been implemented in AMD Vitis HLS using C language. However, a JSON token
parsing function already exists in AMD HLS library but it is compared against our
implementation later in Section 4.

After the user ui is authenticated by the FPGA software thanks to its signed cer-
tificate, the token ti is sent to the HSM. In HLS, the access token is sent to the FPGA
logic using the hls:stream type. Inside the hardware, this type is implemented as
an AXI-stream protocol. The latter stands out from the AXI4 protocol, because
it’s designed for moving data in a serial way. AXI-stream uses signals like TVALID
(valid data on the bus), TREADY (receiver ready for incoming data), TDATA (ac-
tual data transmission), and TLAST (end of a packet or frame). When we compare
it to AXI4, which is good for burst transactions, AXI-stream is better at handling
streams of data. AXI4 is more complex and has more control signals for synchroniza-
tion purposes compared to AXI-stream. For example, some handshake signals like
address write handshake (AWVALID, AWREADY) and write response (BVALID,
BREADY) are used in AXI4 but not in AXI-stream. As a result, AXI-stream is less
complex and offers better latencies compared to the AXI4 protocol.

The auth_token function has three major steps. First, after receiving the token
ti, it is parsed with the token_parse function to retrieve < header, payload > data.
The token_parse function is another feature that needs to be explicitly developed in
AMD Vitis HLS. In fact, it is a JSON parser that allows to navigate around a JWT

86

87

token to search for key-value pairs. This function is used during auth_token and
allocate_resource functions to find the appropriate information to process. In this
section, each time we "search" or "retrieve" values inside the token, the token_parse

function is used. Second, the token signature is computed by the HSM using a
SHA256-based HMAC algorithm. During this process the signature is computed by
using the fssj key that is used by the TA to sign the token. Third, the computed
signature is compared with the < signature > data parsed inside ti. If both signa-
tures match, the token is verified. This verification is displayed in step four of Figure
4-2. After a successful token authentication, FPGA resource allocation happens on
step five.

1.2 Resource allocation

1.2-1 Allocating the resources of ui inside the HSM

On the first connection of ui, there are no allocated resources and access policies
set for users. After token authentication, the payload of ti must be parsed and
Perm(ui) must be retrieved to initialize user resources inside psj.

— Property 1

Let allocate_resource be the function employed by the HSM to allocate resources
for tenants inside the FPGA. It is defined such as:

∀rj ∈ R, ∀ti ∈ T

allocate_ressource(ti, rj) = true =⇒ auth_token(ti, rj) = true∧

∀k ∈ [1, |eri,j|], eri,j,k ∈ ti ∧ vld_untilk > current_date

(4-3)

The HSM allocates resources based on the user permissions Perm(ui) inside the
token payload. Embedded resources eri,j are associated to reconfigurable regions
rrk,j. The user FPGA logic can access embedded resources (e.g., shared IP or mem-
ory) by making a query to the HSM. The latter can give access to eri,j after checking
access control policies that are stored inside psi,j. Access control functions are further
described in Section 1.3.

1.2-2 Memory allocation function

— Property 2

87

Chapter IV – Hardware approach for TokSek

Let allocate_mem be an internal function of allocate_resource that randomly
allocates memory according to the user token permissions. It is defined such as:

∀ui ∈ U, ∀eri,j ∈ rj, ∀ti ∈ T,

allocate_mem(ui, ti, rj) =
|eri,j |⋃
k=1

mem_regioni,j,k | allocate_ressource(ti, rj) = true

(4-4)

And where mem_regioni,j,k is defined as:

∀ui ∈ U, ∀eri,j ∈ rj, ∀ti ∈ T, ∀m ∈ [1, |U |]
mem_regioni,j,k = {(addr_min1, addr_max1), ..., (addr_minfrag, addr_maxfrag)} ∧

size(mem_regioni,j,k) = shrd_mem_sizek + mem_sizek|

shrd_mem_sizek, mem_sizek ∈ ti ∧ ∄mem_regionm,j,k ∈ psm,j |

mem_regionm,j,k ∩ mem_regioni,j,k ̸= ∅
(4-5)

Where,
— mem_regioni,j,k is a set of address couples that represents physical memory

address blocks allocated to user ui inside resource rj. It cannot be attributed
twice. In this model we make the distinction between physical and virtual
addresses.

— Each couple in mem_regioni,j,k represents a memory block. The information
of each block is represented by the memory block information set mbii,n inside
psi,j.

— frag is the number of non-continuous memory region allocated to ui on rj. The
memory fragmentation is represented further below and described in Equation
4-6.

— The total amount of memory allocated to ui inside rj must be equal to the
total size of memory authorized inside ti.

Figure 4-3 shows an example scenario with three tenants inside an FPGA that
obtained memory allocations. The starting address of mem_regioni,j,k is randomly
selected thanks to a TRNG. The first user in green has a single block of memory
because he is the first user. Let’s assume that the random starting address of the
second user is smaller than the starting address of the first user. Consequently, the
memory region in blue must be split in two in order to be fully allocated. And for
the last user in red, an even smaller number is obtained by the TRNG. As a result
the memory region colored in red must be fitted where any free space is available.

88

89

Figure 4-3 – Example of memory occupancy with three users

Then the memory is incrementally allocated to fulfill the user memory allocation.
Determining a random starting address is useful to mitigate memory profiling at-
tacks. With a random starting address, each user memory region is concealed and a
user-specific address range cannot be targeted to retrieve data. Randomly selecting
a starting address also mitigates Rowhammer attacks. It is a security vulnerability
affecting Dynamic Random-Access Memory (i.e., DRAM) [128]. This attack exploits
the vulnerability of DRAM with repeated and rapid access to a memory row. This
type of interaction can alter adjacent memory cells due to electrical interactions be-
tween closely located cells. Consequently, "hammering" (e.g., repeatedly accessing) a
particular row in the memory, the electrical effects can cause nearby rows to change
their data. Rowhammer attacks have shown the ability to gain higher privileges on
a system, break through virtual machine boundaries, and potentially compromise
overall system security [129], [128], [130].

The allocate_mem memory function is executed inside the HSM by the resource
manager module. The latter handles the resource allocation for users inside the
FPGA. The allocated resources are noted inside the policy store psj inside the HSM.
The proposed memory allocation function aims to fill the physical memory of the
FPGA with dynamic allocation. To achieve this, the algorithm is inspired by the
paging algorithm implemented for RAM in standard computers. Upon receiving a
memory allocation request, the algorithm generates a random start address for the
user and records the memory block information mbi(i, n) in the policy store psi,j.
The allocate_mem algorithm takes the random starting address and calculates the
end address of the memory region to be allocated. The allocator finds and allocates
free memory regions until the memory size inside ti is fully reserved for ui. For each
memory region, a start address, an end address, whether it’s a private or shared
memory block with another user, and a fragmentation count number indicating
which user memory region it corresponds to are stored inside the user policy store

89

Chapter IV – Hardware approach for TokSek

psi,j. Initially the fragmentation count value (noted frag in Equation 4-4) is zero,
and with each fragmentation it increments by one. This value is crucial for locating
a specific memory block owned by a user. In Figure 4-3, user 1 has a fragmentation
count of zero whereas user 2 and user 3 have a fragmentation count of one.

The maximum number of frag count of a new memory allocation can be calcu-
lated based on the number of existing memory blocks. In the worst-case scenario, a
new memory block can be divided in fragmax fragments to fit between the existing
memory blocks according to the following equation:

fragmax = N + 2, N ≥ 0 (4-6)

Where N is the number of existing memory blocks. For example, in the worst-case
scenario where three users have already allocated memory blocks and a fourth user
needs a memory allocation after the token authentication, the new memory block
can be fragmented into five pieces maximum.

There are two representation of mbii,n inside psj: one for private memory regions
and one for shared memory regions. The sizes of these memory regions are defined in
Perm(ui). Both shared and private memory stacks are sorted by user, making them
easy to access during address translation. After determining the origin of the request
(e.g., rri,j, ui) the corresponding physical address for user ui can be easily found in
the user sorted memory stack. A third memory stack of address exists to represent
RAM usage and where each address block is sorted in ascending order. This third
memory stack is useful for the algorithm to have a representation of what is already
allocated in the RAM. It is used for allocating new memory regions. Because the
stack is address sorted, finding unused addresses inside the stack is more convenient.
The information of an allocated memory region is stored inside the policy store psi,j

to indicate the ownership of ui. This is required to apply access control policies on
memory accesses.

When adding a new memory region inside psj, the algorithm checks if it intersects
with an existing region in the third memory stack. If so, depending on the type of
intersection, the new block will either be moved or fragmented. Typically, if the
starting address of the region to be allocated is entirely overlapping an existing
block, the region to be placed is moved below the existing region. However, the new
region is fragmented if it is partially overlapping with another occupied region. The
non-overlapping region is allocated, and the overlapping region is moved further
below to find a non-overlapping region. This procedure is illustrated in Figure 4-4.

90

91

After the execution of both resource allocation functions, the user resources are
reserved and the acceleration environment is set. The allocate_resource function
initializes the user authorization inside the policy store for shared IPs and stores
other crucial information like the token timestamp. Then, the allocate_mem func-
tion allocates device memory to the user. The memory regions allocated to each user
is stored inside the policy store psj.

Figure 4-4 – Example of memory allocation procedure with fragmentation

If the user token ti is no longer valid, or if the user terminates its acceleration
environment, the resources allocated to ui are freed and blanked such as:

∀ui ∈ U, ∀eri,j,k ∈ rj, ∀ti ∈ T, ∀k ∈ [1, |eri,j|]
deallocate_user(ui, ti, rj) = true =⇒ ∀vld_untilk ∈ eri,j,k|

vld_untilk < current_date, mem_regioni,j,k = ∅ ∧ ∀rri,j ∈ eri,j,k, rri,j = ∅

(4-7)

The function deallocate_user removes user permission and blanks the previously
used resources to the value 0 if the validity time for embedded resources eri,j,k is
expired. The user reconfigurable region is reconfigured by a blanking bitstream to re-
move any remaining user logic. The user allocated memory is set to 0 to remove any
residual data. To reflect this inside the policy store psi,j, any authorization linked
to the expired eri, j, k is removed. The user ui loses all access to expired mem-
ory region, reconfigurable region and shared IP. Doing these procedures allows to
properly remove the authorizations from rj without leaking data or keeping expired
authorization.

The following section describes the method to access device resources securely
while isolating each user acceleration context inside the FPGA.

91

Chapter IV – Hardware approach for TokSek

1.3 Access control on allocated resources

In TokSek, the HSM plays a central role in the security of the multi-tenant acceler-
ation environment. The HSM enforces access control policies to isolate the resources
of tenants and secure their data. In fact, each tenant has its own FPGA logic pro-
tected by a shielded enclave. As shown in Figure 4-1, each user shield is connected to
the HSM. The tenant logic must communicate with the HSM when it needs to access
a device component like memory (e.g., private or public) or shared IP (e.g., third
party accelerator or module). The HSM applies access control rules of appropriate
users to resolve the user query and routes the user request to the corresponding
component.

1.3-1 Policy verification function

User policies must be verified when accessing the FPGA resources and making
requests.

— Property 3

Let the check_policy be the function that enforces access control rules that is defined
as:

∀ui ∈ U, ∀rri,j,k, eri,j,k ∈ rj, ∀ti ∈ T, i, j, k ∈ N

check_policy(ui, shield, ti, shrd_ip, rj) = true =⇒ ∃shieldi,j,k ∈ eri,j,k,

∃shrd_ipk ∈ eri,j,k, ∃vld_untilk ∈ eri,j,k|

shieldi,j,k = shield ∧ shrd_ip = shrd_ipk ∧ vld_untilk > current_date

(4-8)

Equation 4-8 describes the verification procedure by the HSM for ui possessing
a token ti to access a shared IP inside rj. When ui wants to send a command to
a shared IP, the access token and its permissions must be verified against the user
policy store. If ti is valid and the permissions match, check_policy returns true.

Each shieldi,j,k is associated to a token ti that can give access to shrd_ipk if the
token validity period is respected. The HSM has a dedicated communication port
for each shrd_ipk. By identifying the port on which the communication comes, the
HSM can enforce the appropriate access control policy associated to the user owning
the shrd_ipk at that time.

92

93

1.3-2 Address translation function

The use of physical addresses would be too overwhelming for the user logic be-
cause of non-continuous address regions (e.g., fragmentation) created with the mem-
ory allocator proposed in Section 1.2-2. Additionally, users do not know what ad-
dress ranges are allocated to them before using the access token for the first time as
described in Equation 4-4. Consequently, the user cannot include physical address
ranges inside the bitstream. Consequently, virtual memory addresses are leveraged
to add a layer of abstraction for users. For example, the starting addresses of both
users in Figure 4-4 are different. Thanks to the HSM and the addr_translate func-
tion, when each user request their first address (e.g.,0x01), the HSM finds the first
address associated to the specific user.

— Property 4
Reconfigurable resources rrk,j can only access the device memory through the

HSM. To add a layer of abstraction and enforce access control on memory ac-
cesses, address virtualization mechanism is leveraged. To make memory requests,
each user utilizes virtual addresses. When receiving a request, the HSM uses the
addr_translate function to translate the received virtual address into physical ad-
dress. The HSM uses the translated physical address and forwards the user memory
request to the memory interface. The addr_translate : (rrk,j, virt_addrn) → addrn

function that translates a virtual address virt_addrn according to the reconfigurable
region rrk,j can be described as follows:

∀ui, um ∈ U, ∀rj ∈ R, ∀ti ∈ T, rri,j ∈ ti, rrm,j ∈ tm, i, j, k, m ∈ N

addr_translate(shieldi,j,k, virt_addr) = addri | addri ∈ mem_region_(i, j, k),∑
virt_addri =

∑
addri ∧

∄virt_addr | addr_translate(shieldm,j,k, virt_addr) =
addr_translate(shieldi,j,k, virt_addr)

(4-9)

As opposed to the check_policy function, addr_translate is a memory request
resolution function. It allows to make the memory request to the DDR interface by
translating a virtual address to a physical address.

The following section formalizes attacker capabilities. It shows how TokSek and
especially the HSM contribute to provide a secure multi-tenant acceleration environ-
ment inside an untrusted FPGA cloud. The following properties describe practical
threats and how the proposed framework mitigates them.

93

Chapter IV – Hardware approach for TokSek

1.4 The attacker perspective

Let’s consider Eve and Bob being two tenants sharing the same FPGA rj. Eve
cannot access or modify any memory address owned by Bob.

— Property 5

∀bob, eve ∈ U, ∀rj ∈ R, ∀tbob, teve ∈ T, rrbob,j ∈ tbob, rreve,j ∈ teve,

allocate_mem(rj, teve, eve) ∩ allocate_mem(rj, tbob, bob) = ∅

=⇒ addr_translate(shieldeve,j,k, virt_addreve) /∈ mem_regionbob,j,k

(4-10)

The HSM knows that rreve,j is owned by Eve. Consequently, the addr_translate

function interprets the memory access request according to the rules set by the
HSM in psj,eve ∈ psj. Eve cannot modify the reconfigurable region rreve,j allocated
to her because PRR regions are statically defined. An FPGA user cannot decide
to implement his logic in an area where the CP did not authorize. Consequently,
Eve cannot impersonate the reconfigurable region rrbob,j because she cannot change
her location inside the FPGA. Additionally, Eve cannot obtain a memory allocation
that overlaps with Bob.

Moreover, Eve cannot specifically target the memory regions of Bob because the
first address of Bob is randomly determined by using a TRNG. Eve knows how
many tenants there are, but she cannot map the memory addresses to target a
specific region due to the address translation function. It is worth noting that Eve
also does not know her own memory regions because she uses virtual addresses to
make memory requests. The ownership of physical addresses are only known by the
HSM.

— Property 6

Any type of request made by Eve must go through the HSM to satisfy access
control policies such as check_policy(uEve, shieldeve,j,k, teve, shrd_ipk, rj) = true.
Eve cannot bypass the access control made by the HSM because ∀rrk,j there exists a
hardwired physical connection with the HSM to reach other components inside the
FPGA. There is no logical connection between any rrk,j and the device memory or
shared IP.

As a consequence, Eve cannot bypass HSM access control to modify victim data
inside the device memory.

— Property 7

94

95

Let’s assume that CPeve is the CP or has CP privileges. CPeve cannot compromise
the HSM or set up a malicious HSM due to Linkguard:

∀rj ∈ R, ∀tbob ∈ T, ∃fssCP eve ∈ hsmCP eve |

fssT A ̸= fssCP eve =⇒ decrypt(tbob, fssT A) ̸= decrypt(tbob, fssCP eve)
∧ decrypt(bitstreambob, fssT A) ̸= decrypt(bitstreambob, fssCP eve)

(4-11)

The deployment phase of the TokSek framework is described in Chapter III
Section 2.2. In fact, the earliest step of the proposed framework allows the TA
to establish a secret fssT A key (e.g., fssj through out this work). Because the user
bitstream and user token are encrypted by the TA using fssT A the malicious HSM
hsmCP eve cannot decrypt sensitive data like the user bitstream.

If we consider that fssT A and the HSM are compromised, the only element that
gets exposed is the user IP. Inside the FPGA, the user data confidentiality is still
secure thanks to the upgraded shielded enclave. In fact, with the Linkguard upgrade
on the shielded enclave, the user IP can process data and write encrypted data inside
the memory. However, because the HSM is compromised, Eve knows the physical
addresses of the user. But thanks to the shielded enclave, the data integrity can be
verified. It is important to note that an attacker such as the CP is not interested in
executing denial-of-service attacks on its own cloud infrastructure. Thus, Eve cannot
make any use of the physical memory address allocated to Bob except for observing
memory activity.

The following section describes Linkguard. It is a patented zero-trust key gen-
eration and confidential channel establishment module. Linkguard allows to set up
an encrypted confidential channel between an FPGA logic deployed in an untrusted
cloud and its owner. This module is an important element of TokSek.

2 Linkguard : Zero-trust confidential channel with
cloud resources

2.1 Introduction

In FPGA accelerated cloud computing, the cloud providers cannot be trusted
because they have physical access to the resources deployed inside the cloud infras-

95

Chapter IV – Hardware approach for TokSek

tructure. CPs can deploy malicious tools to spy on cloud users. The cloud provider
owns the hardware and the acceleration environment. This gives many privileges
over the hardware that is shared with cloud users. The cloud provider has tools to
compromise the cloud user’s data and confidentiality. The software and the solutions
deployed in the cloud infrastructure can be used to interfere with the cloud user’s
computation and operation. In FPGA, cloud user uses one or several IPs, defin-
ing user functions. The cloud user needs to establish authenticated and encrypted
communication with its IP deployed inside an FPGA-accelerated cloud environment
without exposure to third-party interfaces or software. The cloud user needs data
and IP protection from the cloud provider to protect its interests. To ensure that,
the user and the IP deployed inside the FPGA must have an authenticated and
encrypted channel. The encryption keys and algorithms must be deployed inde-
pendently from the cloud provider to ensure isolation and minimize the exposure.
Additionally, access control rules must be established and enforced to communicate
with the user IP. The cloud user must be the only entity that can access its IP. The
cloud provider must not have the capacity to modify those rules and interfere with
user acceleration session.

A cloud user cannot simply implement cryptographic functions and protect his
data. It is not secure to embed any secret (e.g., encryption key) inside the accelerator
IP because cloud providers have methods to retrieve plaintext information at various
levels (e.g., device reconfiguration, device shell, etc.). Because the CP cannot be
trusted, the cloud user must protect its interests without relying on mechanisms
provided by the CP. The cloud provider has privileges over the deployed hardware.
The FPGA shell and interfaces should be considered as a vulnerability for the user,
and security measures must take that into account. The cloud end-user must be able
to protect its data without using any third-party interface, software, or tool set up by
the cloud provider inside the FPGA. This protocol must require zero-trust towards
the CP to protect user data confidentiality and create a secure channel isolated from
the CP.

Linkguard is a patented zero-trust confidential channel establishment solution
for third-party cloud resources. It generates encryption keys using a True Random
Number Generator (i.e., TRNG) inside an FPGA accelerator located in a cloud en-
vironment without involving the cloud provider. Using a hardware-based protocol
independent from the CP, it creates isolation against other stakeholders and protects
user data inside the FPGA as shown in Figure 4-5. In fact, the cloud provider owns
the hardware, the infrastructure and is responsible of the deployment of the FPGA
cloud computing environment. The cloud provider deploys a proprietary FPGA shell

96

97

to ensure communication and interfaces for the user IP. This can harm the cloud
user’s interest by interfering in the FPGA cloud acceleration environment. By gener-
ating encryption keys inside the hardware accelerator, optimal security and isolation
is ensured. The FPGA fabric does not have an operating system or a runtime en-
vironment. Thus, software-based attack vectors are not valid in this context. The
cloud provider cannot predict and access the random key generated in the FPGA
because the cloud provider will not have interfaces with elements responsible of the
secure channel establishment.

2.2 Modelization of Linkguard

2.2-1 Threat model

In this threat model, the attacker’s objective is to break the confidentiality of the
data processed inside the FPGA. We assume that the adversary has physical access
to the FPGA and any memory that the user has access can be compromised. We
assume that the CP and the TA may be malicious. Thus, solutions, protocols and
software provided by these entities (except the HSM) may be inherently malicious.
For example, any FPGA shell or interface provided to the user IP by the CP is
considered untrusted. We assume that the shell is able to log and store communica-
tions and data belonging to the cloud user. Although the CP and the TA are both
considered malicious, they do not cooperate to compromise the cloud user’s data.
However, the adversary is not interested in Denial-of-Service (i.e., DoS) attacks and
attacks that would damage the CP infrastructure. As the FPGA is in the cloud,
we assume that the cloud environment is untrusted. Consequently, any information
that goes outside the protected IP must be encrypted to ensure data confidentiality.

2.3 Description of Linkguard

2.3-1 Key generation using a TRNG

To address issues presented in Section 2.1, an online key generation protocol using
a TRNG is proposed. Linkguard is a hardware module deployed inside the FPGA
logic to create a secure channel with other modules or entities. This present model
uses the same nomenclature as the model used in Chapter III.

— Property 1

Each hsmj inside rj possesses a trngj that can produce a fully random key.

97

Chapter IV – Hardware approach for TokSek

Figure 4-5 – Proposed online key generation protocol

This protocol is described in Figure 4-5. A TRNG is a logical circuit which exploits
the physical randomness of the semiconductor to produce random bits that cannot
be predicted. The physical randomness is originating from the silicium manufac-
turing process that cannot be controlled or replicated on purpose. The randomness
embedded inside the semi-conductor creates small temperature and delay variations
in electronic circuits. Knowing that, TRNGs leverage this irregularity to produce
random bits. Because each FPGA semi-conductor is unique, each FPGA produce
different random results for the same TRNG logic. Instead of embedding an encryp-
tion key inside a device, a TRNG can be implemented inside a cloud-based FPGA.
By doing that, no keys are exposed to the CP inside the user FPGA bitstream.

The secure key generation protocol is described in Figure 4-5. The protocol has
four blocks. The first block is the TRNG logic. In this work, a Transition Effect Ring
Oscillator-TRNG (i.e., TERO-TRNG) is implemented [131] and its architecture is
shown in Figure 4-6. This TRNG design is composed of a TERO cell, a sampling
clock and two D flip-flops. The TERO cell is a loop made of an even number of
inverters gates and any number of buffers. Inside this loop, there are two propagating
signals and one is faster than the other due to the delay difference of inverters and
buffers. The randomness created by the TERO cell feeds the first D flip-flop which
is a modulo two counter. Then the counter is sampled by the ring oscillator with the
second flip-flop where the output is the random bit.

98

99

Figure 4-6 – Architecture of a TERO-TRNG

In Linkguard, producing a random key is the first step as shown in Figure 4-5.
Generally the Linkguard procedure must be the first task after IP reconfiguration
so that a user can establish a secure communication link with his IP.

2.3-2 NIST recommendations for TRNG key generation

In step 2 of Figure 4-5, the produced TRNG key is transformed according to
the NIST recommendations [132]. In fact, a TRNG key should not be used as such.
Instead, the random output of the TRNG must feed a Deterministic Random Bit
Generator (i.e., DRBG). It’s a deterministic algorithm designed to produce a se-
quence of random bits based on an initial seed value. The necessity to use DRBGs
originates from the critical role randomness plays in various cryptographic applica-
tions. Unpredictable randomness is essential for generating secure keys and initial-
ization vectors. Unlike TRNGs, which extract randomness from physical processes,
DRBGs are deterministic, meaning that if the same initial seed is used, it will pro-
duce an identical sequence of random-looking bits. This determinism is advantageous
in cryptographic contexts, as it allows for reproducibility and consistency in generat-
ing cryptographic elements. DRBGs typically consist of an entropy source to gather
initial randomness (e.g., TRNG), a seed generation algorithm, and a pseudo-random
generator that transforms the seed into a longer sequence of bits. The periodic reseed-
ing of DRBGs helps maintain their security over time, ensuring the unpredictability
of generated output.

In our solution, 440 random bits of TRNG output are required to produce a 256
bits symmetrical key according to the NIST recommendation [132], [133]. The key
coming from the TRNG feeds a DRBG to produce the final key. In this FPGA im-
plementation of the NIST DRBG recommendation, we used the hash-based DRBG

99

Chapter IV – Hardware approach for TokSek

to create the session key. In the NIST documentation, the DRBG algorithm has two
steps to generate the final encryption key. First the DRBG_instantiate function
uses the 440 bits TRNG key to create intermediate variables like initialization vec-
tors using a hash function (e.g., SHA-256). Next, those variables are used in the
DRBG_generate function to produce the session key. After the execution of both
functions, the generated key is stored inside the user IP in step three of Figure 4-5.
The diagram shown in Figure 4-7 shows the communications and computations be-
tween the Linkguard components. Next, the encryption needs to be communicated
back to the user to set up the encrypted channel.

Figure 4-7 – Proposed online key generation protocol

2.3-3 Encryption and communication

The generated key cannot leave the Linkguard module without encryption. To
communicate the key to its owner, it must go through the FPGA interfaces, and use
the FPGA ports which are both considered unsecured. To protect the key against
these components, we embed the public key of the user inside the Linkguard module.
There is no harm in embedding a public key inside the shield because the private
key is remaining secure and is not communicated. To protect the key integrity and
confidentiality, a HMAC function is used alongside RSA encryption. The session key
is encrypted with RSA using the user public key. Then, the encrypted session key
is signed with itself. The session key is sent to the user and it is decrypted with the
associated user private key. The IP protected by Linkguard and the user are now
sharing a secret symmetrical encryption key. The data sent by the user is encrypted
with the shared key and it can only be decrypted by IPs. At this point, the cloud
provider can only log encrypted data when the user is sending and receiving data
from his IP.

100

101

2.3-4 Key reception and protection

Upon receiving the message on the last step, the user can use their private key
to decrypt the encrypted session key sent by the FPGA. Then, the cloud user must
verify the signature of the encryption key against the signature received in the
message. To verify the session key integrity, the cloud user must implement the
same HMAC algorithm that is used inside the FPGA. The signature and the session
key decryption must be executed without exposing the data and the results to the
cloud provider. If the verification is executed in a software environment inside the
cloud, enclave technologies like ARM TrustZone or Intel SGX must be used to ensure
data protection against the cloud provider. However, software enclaves still have
vulnerabilities. Hardware computing is still considered more secure thanks to the
lack of a runtime environment which reduces the attack vectors. However inside
a hardware accelerator (e.g., FPGA), the session key must be secured by keeping
the sensitive information inside the FPGA fabric without being exposed to external
interfaces.

Nonetheless, the security of the session key verification depends on the two end-
points that need to setup a confidential communication channel. In fact, the security
requirements for the verification and storage of the session key are not the same if
the computation happens inside or outside the cloud. Because the session key must
remain secret, storing it inside a cloud solution or inside the FPGA memory in plain-
text is not secure. However, storing the session key inside the FPGA logic (e.g., HSM
or user IP) is more secure than DDR or cache memory due to the logical isolation
created by the hardware environment. For these reasons, Linkguard is effective to
secure the communications between FPGA logic and external stakeholders.

In TokSek, Linkguard is used by the TA and by the user for different purposes.
In this context, the TA implements Linkguard inside the HSM to create a shared
secret (e.g., fssj) with the device rj. This allows to create access tokens ti for users
ui that are signed with fssj. As a result, the HSM is able to authenticate tokens and
establish a secure FPGA access. Additionally, the user can use Linkguard to secure
the data produced by his FPGA logic. As a consequence, the FPGA user can protect
his data and can securely store and communicate it outside the FPGA by using a
session key produced inside the FPGA logic. The use cases for the user IP and the
HSM are both described in Section 3 and 1 respectively. The next section provides
a practical use case for Linkguard and how it allows to secure telco applications.

101

Chapter IV – Hardware approach for TokSek

2.4 Practical application example for Linkguard

Cloud providers will be central component of Open RAN (O-RAN) architectures.
5G and beyond continues to evolve, enabling new network solution. O-RAN is one of
the biggest 5G evolution, expanding ecosystem of mobile phones and RAN players
in telco network market. Opening interfaces between telco network elements allows
multi-vendor interoperability. As a result, multi-vendor telco network solutions, in
different network domains (RAN, Core Network (CN)) will be built by telco op-
erators. To reach latency and performance constraints for telco O-RAN networks,
hardware accelerators (e.g., GPU, FPGA) are embedded in the different O-RAN
network elements. Hardware accelerators allow to reduce number of required CPU
cores, especially for L1 processing and compute-intensive workloads (AI/ML, cryp-
tography applications, etc.). Hardware accelerators can use different technologies,
including FPGA, ASIC and GPU. Originally embedded to accelerate AI/ML appli-
cations, FPGAs are relevant candidate execution platforms for O-RAN. Compared to
on-premises network solution, in which an operator has its private network, O-RAN
openness enables innovation acceleration. O-RAN can use shared network, including
commercial cloud environment. O-RAN brings new security challenges, which is crit-
ical in telco networks. O-RAN Security Work Group (or WG11) has been created to
ensure O-RAN system security. O-RAN WG11 security requirements are presented
in [134]. O-RAN security threat modeling and remediation analysis are highlighted
in [135]. Risk assessment from Table 7-2 in [135] presents the O-RAN risks, impact,
severity, and likelihood level. Several threats are linked to hardware accelerator usage
(Threats Id: T-AAL-01, T-AAL-02, T-VM-C-05, T-HW-01, T-HW-02).

Figure 4-8 – O-RAN hardware security architecture overview

102

103

FPGA usage in O-RAN context is similar to FPGA-cloud computing solutions.
FPGA is used in cloud environment network, sharing their resources between end-
users (operators) and evolving as a function of time (through reconfiguration). One
critical issue linked to FPGA usage in cloud context is the lack of integrity solutions
to ensure security. If different platform integrity technologies solutions exist for CPU-
based platform (e.g., Arm TrustZone, Intel SGX, RISC-V PMP), no similar solution
is proposed to protect FPGA platforms.

Linkguard addresses the data protection and confidentiality in O-RAN FPGA
accelerated cloud context. With FPGA accelerators inside cloud environment, the
end user expects security and confidentiality. To save capex and opex, O-RAN based
network will generally access accelerator capabilities through Cloud Provider (CP)
(Amazon, Microsoft, IBM. . .). As already discussed, in this scheme, security limita-
tion currently exists. CP can access exchanged data between end-user and acceler-
ator. No encryption is realized between the hardware accelerator and other entities
inside the cloud infrastructure. For example, in O-RAN, hardware accelerators are
deployed using Kubernetes or Openstack. The interfaces to hardware accelerators
are not encrypted. Applications, and the hardware accelerator manager are sending
and receiving plaintext data from the accelerators. This is not specific to O-RAN. In
public clouds such as Amazon AWS EC2 F1 and Microsoft Azure, the data coming
in and going out of the hardware accelerators are exposed. Cloud providers deploy
FPGA by developing their custom software and hardware layers. These layers can
include monitoring, management, and logging mechanisms. In Amazon AWS EC2
F1 acceleration environment, a logic FPGA shell is implemented by Amazon. The
shell implements management and application functions (e.g., PCI communication
and OpenCL API calls are handled by the shell). The shell also has master and
slave interfaces with the user acceleration logic. Because of a lack of transparency,
the whereabouts of the cloud provider are unknown. The cloud end-user does not
have any mechanism to verify the confidentiality and the security of his FPGA ac-
celeration environment. In this context, Linkguard does not need any mechanism
to verify the security of the acceleration environment. Linkguard does not need a
trusted environment to be deployed and it can be considered as a zero-trust solution.

An overview of the hardware security management in O-RAN and the Open
Cloud (i.e., O-Cloud) are detailed in Figure 4-8. O-Cloud is the open cloud en-
vironment where different modules, applications, Virtual Network Functions (i.e.,
VNF) and Containerized Network Function (i.e., CNF) are deployed [136]. In O-
RAN, trust policies for applications and VNFs are defined in the Attestation Server
(i.e., AS) by system admins. Attestations are produced for each module by the AS

103

Chapter IV – Hardware approach for TokSek

using the policies described earlier. Attestations are deployed for various modules
inside the O-Cloud. These attestations describe each module’s authorization and
capability. A management platform is present in the O-Cloud and a trust agent
is deployed. Measurements of the Root-of-trust (i.e., RoT) and virtual RoT (i.e.,
vRoT) are periodically collected. A RoT is a form of embedded trust inside the
hardware like the firmware version, hash value of software code or engraved device
keys. In O-RAN security requirements, the chain of trust must start from the hard-
ware firmware and chain of attestation must be formed with virtualization layer and
the App/VNF/CNF layers. If one layer of the attestation chain is corrupted, then
the whole system is considered untrusted and corrupted. But once a secure channel
is established using Linkguard, the communications remain secure even if the chain
of trust is broken.

In current O-RAN, if the chain of trust measurements is not valid when verified
in the attestation server, the RoT must be reestablished to secure the system. This
protects the O-Cloud against tampering and rogue behavior. One drawback in this
solution is the lack of data confidentiality between the hardware accelerator and
upper layers. The communication channels with the hardware accelerator are not
secured. Consequently, the virtualization layer and the virtual machine can retrieve
information from the hardware accelerator and the virtual resource [137]. They can
create logs and spy on the ongoing App/VNF/CNF. This can be done without
tampering the chain of trust. Hence, the measurements are not modified, and no
flags are raised by the AS. Data confidentiality of communications between the
hardware accelerator and other modules must be ensured. This security limitation
is not permissible in O-RAN network context. Linkguard is a zero-trust end-user
solution for FPGA-based cloud architecture in O-RAN context. It enables isolation
between end-user, CP, and accelerator.

Linkguard solves threats on hardware accelerators about data confidentiality and
protection in O-RAN. This solution mitigates threats IDs T-HW-01, T-HW-02, T-
HW-AAL, T-O-RAN-01, T-O-RAN-02 in [135].

This section provided a description of Linkguard and a comprehensive use case
for a practical application like O-RAN. Linkguard is a zero-trust key generation
protocol that allows to establish secure channels between two entities. This solu-
tion is particularly interesting when used to establish a secure communication link
with a resource located in an untrusted cloud environment. Because, third-party
cloud providers can be intrusive on user privacy, Linkguard is a good example of
secure communication and data protection mechanism independently from the cloud

104

105

provider. The following section introduces a shielded enclave solution that aims to
protect the user accelerator inside the FPGA against external modules. The shielded
enclave has been analyzed and security vulnerabilities are exposed. An upgrade with
Linkguard is proposed to address the security challenges of the shielded enclave. The
shield enhanced with Linkguard is an important component of TokSek that provides
IP security and data protection against malicious entities.

3 Shielded enclave for FPGA logic for secure ac-
celeration

In Chapter II, a shielded enclave for FPGA cloud accelerators, addressing data
protection in public cloud environments is presented [7]. The architecture involves
the CP, Data Owner (i.e., DO), and IP vendor. The IP vendor creates an asym-
metric shield encryption key, shared with the DO. A symmetric data encryption
key is generated by the DO for secure communication with the FPGA. The shield
IP encrypts outbound and decrypts inbound data using the AES block. Additional
security measures include digest algorithms, a security kernel, and a security pro-
cessor block. The final FPGA binary is encrypted with a bitstream encryption key.
Multiple shielded enclaves support spatial FPGA multi-tenancy.

In this section, a vulnerability analysis and an upgrade to the shielded enclave
are proposed. By adding Linkguard to this solution, the security drawbacks of the
shielded enclave are mitigated.

3.1 Shielded enclave mechanisms

3.1-1 Outside the FPGA

The scheme proposed in [15] aims to protect the confidentiality of the FPGA
IP sold to the data owner. As shown in step three of Figure 4-9, the IP vendor
negotiates a session key with the FPGA security kernel. This key is useful to establish
a secure channel between the FPGA and the IP vendor. This channel is used to
send the bitstream key (i.e., BtstrmKey) to the security kernel. The latter needs it
to reconfigure the FPGA with the encrypted bitstream.

However in this work, the user data privacy is the primary concern. To address this
issue, each shielded enclave has an asymmetric key pair noted as ShieldEncKeypub

and ShieldEncKeypriv in Figure 4-9. These keys are generated by the IP vendor and

105

Chapter IV – Hardware approach for TokSek

allow to securely communicate with a shield inside an FPGA. To protect his data,
the data owner generates a data encryption key noted DataEncKey. The latter
must be encrypted by ShieldEncKeypub and sent to the shield to be used inside the
FPGA.

Figure 4-9 – Generation of the load key

3.1-2 Inside The FPGA

In [15] the shield has two purposes: protect the IP of the IP vendor and protect the
data of the data owner. In this section, we are only interested in securing the data of
the cloud user. As shown in Figure 4-10, the shield is placed between the accelerator
and the interfaces of the FPGA that are not trusted (e.g., FPGA shell). In FPGA
cloud context, an FPGA shell is a non-reconfigurable hardware logic deployed by the
CP to provide management and monitoring functions inside the FPGA. For example,
the AWS FPGA shell described in [3], shows a management and application physical
function. A cloud user can utilize shell interfaces to access memory, use device clocks,
resets, etc.

One achievement of the shielded enclave is the I/O isolation of the user acceler-
ator against the outside. The user IP is protected by a "shield" that do not allow
malicious request to go through. This is achieved thanks to the memory engine inside
the shielded enclave. In fact, the memory engine allows to read and write encrypted
and authenticated data. When the IP (i.e., accelerator) produces data, it is sent to
the shielded enclave. Inside the memory engine, the message signature is obtained
with a Message Authentication Code (i.e., MAC). Then, the data is encrypted with
a symmetrical encryption algorithm such as AES using DataEncKey. Finally, both

106

107

Figure 4-10 – Shield overview with the proposed upgrade

the encrypted data and the signature can be stored inside the memory. To consume
data, the accelerator sends a read request through the shield for the FPGA shell for
the message and its associated signature. The message is decrypted using AES algo-
rithm and the received signature is verified inside the shield against the computed
signature. If they match, the data is authenticated, remained confidential inside the
device memory and its integrity is protected.

3.2 Threat model

Let’s consider the scheme presented in Figure 2-13 and Figure 4-9 that is used in
[7]. In this threat model, the attacker’s objective is to break the integrity and the
confidentiality of the data processed inside the FPGA. We assume that the adversary
has physical access to the FPGA and any memory that the data owner has access
can be compromised. In Figure 2-13 and Figure 4-9, red modules are untrusted. The
shield logic and the security kernel are open source and are considered trusted. The
Security Processor Block (i.e., SPB) runs the device firmware, initializes the FPGA
alongside the security kernel and holds the device root-of-trust (i.e., keys embedded
by the device manufacturer). The security of the SPB is in the CP interest because
it holds critical security elements. The SPB does not add any complexity to the
threat model, it is considered secure.

We assume that the CP and the IP vendor may be malicious. Thus, solutions,
protocols and software provided by these entities may be inherently malicious. For
example, the FPGA shell provides interfaces to the shield IP and it is deployed
by the CP. We assume that the shell is able to log and store communications and

107

Chapter IV – Hardware approach for TokSek

data belonging to the data owner. Although the CP and the IP vendor are both
considered malicious, they do not cooperate to compromise the cloud user’s data.

However, the adversary is not interested in Denial-of-Service (i.e., DoS) attacks
and attacks that would damage the CP infrastructure. Some of them are bitstream
level attacks [12], hardware Trojans [138] and multi-tenant attacks [73], [123]. These
challenges are not addressed by our solution. We believe that existing bitstream
verification tools [3], [11], [139] are already addressing this issue.

When compared to the literature, the scheme detailed in [7] is the most advanced
solution to securely benefit from FPGA cloud acceleration while supporting multi-
tenancy. However, this scheme has some security drawbacks.

The following section analyzes the vulnerabilities of the ShEF framework [7] in
order to expose its security drawbacks.

3.3 Vulnerability analysis

First, let’s consider the CP as malicious. Current CPs like Amazon AWS and
Microsoft Azure have mandatory bitstream verification [3], [4]. During this verifi-
cation, the CP is looking for malicious or harmful design patterns in the bitstream
to protect the hardware and the cloud infrastructure. As the bitstream is not en-
crypted during the verification process, the CP can find the ShieldEncKeypriv in
the bitstream which was embedded by the IP vendor. Hence, the DataEncKey can
be retrieved by the CP. The latter can decrypt the load key sent by the data owner
using the embedded ShieldEncKeypriv found during IP verification. As a conse-
quence, data transfers between the data owner and the FPGA would not be secure.
Embedding sensitive keys inside the FPGA bitstream is not a secure way to provision
keys for public FPGA clouds.

The IP vendor can also be considered malicious towards the data owner. As stated
in Chapter 3.1, the ShieldEncKeypub and ShieldEncKeypriv keys are generated by
the IP vendor. If the load key is intercepted, the IP vendor could decrypt the load
key using the ShieldEncKeypriv. To obtain the load key, the IP vendor can intercept
the communications between the FPGA and the data owner because the latter must
send the load key to the FPGA to set up the encrypted communication channel.
Additionally, the IP vendor could implement malicious logic inside the accelerator
to log data and retrieve the data encryption key that is generated by the data owner.
The BtstrmEncKey key is managed by the IP vendor, the latter is the certificate
authority for the bitstream. The IP vendor can modify the integrity of the bitstream

108

109

by adding malicious elements such as hardware Trojans [140], or other malicious cir-
cuits [121], [124] to collect information on the data owner. This operation can be
done on the initial bitstream given to the data owner but also dynamically during
runtime. Furthermore, the IP vendor can communicate with the Security Kernel (i.e.,
SK) located inside the FPGA [7]. The attestation mechanisms and the communica-
tions are handled by the SK. Any potential vulnerability on FPGA reconfiguration
would allow the IP vendor to reconfigure the FPGA by malicious bitstreams.

Using the presented scheme, the CP cannot be an IP vendor. The CP owns
the cloud infrastructure and has privileged access to its resources. If the shield
encryption key is generated by the CP, the load key of the data owner can be easily
compromised. As a consequence, the communications between the FPGA and the
data owner would not be secure. Additionally, the CP can attack the integrity of
the bitstream and implement malicious design elements in the IP requested by the
data owner. This can help to retrieve more data from the data owner.

The following section proposes an upgrade to the shielded enclave to enhance its
security.

3.4 Proposed upgrade to the shielded enclave

Linkguard is proposed to address the vulnerability of the load key explained
in Section 3.3. The data owner (i.e., cloud user) must generate encryption keys
independently of any stakeholder to guarantee data confidentiality and key security.
After the bitstream is configured inside the FPGA as described in Section 3.1, the
encryption key inside the shield must be initialized before generating any data.
Linkguard must generate a key thanks to the protocol described in Section 2 and
send the generated Shield Secret Key (i.e., SSK) to the data owner (i.e., cloud user).
After SSK verification, the shield is activated and it is able to process data. Figure
4-10 shows the upgrade brought to the shield in orange (i.e., Linkguard). Instead of
storing a DataEncKey inside the key store, we only need to store a user public key
and the generated SSK by Linkguard. Because the SSK is generated by the FPGA
and inside the shield, it is independent from the IP vendor and the CP. The data
owner can create a communication channel and use the device memory by using the
SSK.

Nevertheless, some threats still remain even after using Linkguard inside the
shielded enclave. These threats are originating from the architecture proposed in
[7]. In fact, the IP vendor tries to protect the confidentiality of his IP with various

109

Chapter IV – Hardware approach for TokSek

Figure 4-11 – All TokSek modules and their frequency

encryption techniques and protocol. Because of that, the data owner cannot know
if the IP obtained by the IP vendor is safe or if it does contain any Trojans that
can compromise his secure communication channel. This architecture requires that
the data owner blindly trusts the IP vendor. In this situation, the user data is at
stake. Nowadays, data is considered as one of the most valuable assets in the world
[6]. It is not acceptable from the data owner perspective to have no guarantee of
data confidentiality. The data owner could have valuable data like medical records,
identity and faces to run machine learning applications. Such sensitive data must be
protected to preserve the privacy of individuals or any commercial value that the
data has.

In [7], the cloud FPGA access happens between the CP, the IP vendor and the
data owner. Because this scheme does not guarantee data confidentiality for the data
owner, we upgraded and adapted the use case of the shielded enclave for TokSek to
achieve data confidentiality for the user. In TokSek, we have the CP, the TA and the
cloud user that are present inside the FPGA access scheme. In this case, the cloud
user develops the FPGA IP on his own independently from an IP vendor. However,
as the shielded enclave proposed by [7] is open-source, the cloud user is responsible
for implementing his IP with a shielded enclave that is upgraded with Linkguard.
This way, the cloud user remains independent of any stakeholder for protecting his
interests. Figure 4-11 is a high-level view of the upgraded shielded enclave and the
logic modules of TokSek. Frequency regions are also illustrated and the figure shows
that the shield and the HSM use a 214 MHz clock whereas Linkguard uses both 214
MHz and 150 MHz. The impact of having multiple frequency domains in TokSek is
further analyzed in Section 4.

The current section presented a shielded enclave solution from the literature [7].

110

111

It is a solution that aims to protect the IP vendor bitstream and the data of the
data owner. There are few security drawbacks that are identified inside the solution.
This security issue renders the data of the cloud user vulnerable to the IP vendor in
multiple ways as described in Section 3.3. Linkguard is proposed to address this issue.
By generating encryption keys inside the FPGA, the vulnerability of the user data
encryption key (e.g., load key as called in [7]) can be mitigated. By fixing this issue,
the shielded enclave combined with Linkguard is added to TokSek to protect the
data and the IP of the cloud user. The following section exposes the implementation
results of the hardware modules described in this chapter. We analyze the resource
utilization and the overall latency of each module.

4 Implementation and results

For this implementation, we used the same hardware target as the last chapter:
AMD UltraScale+ ZCU 102 MPSoC. In this section, the resource utilization and
the latency of each solution is exposed and compared with the literature.

One important aspect of this implementation is the design of some modules (e.g.,
RSA, HSM) using High-Level Synthesis (i.e., HLS) with the AMD Vitis development
software. HLS is a design methodology that allows hardware descriptions using high-
level programming languages like C, C++, or OpenCL, enabling a more abstract and
fast way to design hardware circuits for FPGAs. The AMD HLS technology aims to
accelerate the process of FPGA development by translating high-level software code
into hardware circuits. The advantages of HLS include faster design generation,
improved productivity, and the ability to leverage software developers knowledge
for hardware design. This can potentially reduce time-to-market and make FPGA
programming more accessible. However, drawbacks may include the challenge of op-
timizing complex algorithms for hardware efficiency, as automatic translation might
not always yield the most optimized hardware implementation. Additionally, HLS
tools may face limitations achieving the same level of performance as manually op-
timized hardware designs.

111

Chapter IV – Hardware approach for TokSek

4.1 Resource utilization

4.1-1 HSM

Table 4-1 shows the logical resource utilization of various HSM components. It
is important to recall that these modules are developed using high-level synthesis.
The auth_token function is the most resource consuming element of the HSM due
to the presence of cryptographic elements like a hash function (e.g., SHA-256). In
fact, the hash function alone requires 5624 LUTs and 8519 FFs which is 45% of the
LUTs and 47% of the FF usage of the auth_token module.

FPGA resources LUT FF BRAM
auth_token 12550 18077 4

token_parse 6594 10474 3

allocate_mem 4260 5119 4

addr_translate 2294 3089 1

Linkguard∗ 22426 12782 0

Total 48124 49541 12
Percentage of ZCU 102 17.6% 9% 1.3%

Table 4-1 – Logical resource utilization for the components of the HSM developed
using high-level-synthesis

We can compare the SHA-256 block developed with HLS and the one used inside
the shielded enclave described in Section 3. The shield uses a SHA-256 block for the
HMAC function. The hash function is developed using a hardware description lan-
guage (e.g., Verilog). The RTL implementation of the SHA-256 module utilizes 2144
LUTs and 2095 FFs. The HLS version of the SHA-256 algorithm utilized 2.6 times
more LUTs and 4.1 times more FFs. We can also similarly compare our token_parse

function against the AMD HLS library. In fact, there is a JSON parser inside the
AMD HLS library in AMD Vitis HLS. The latter has been implemented to be com-
pared against our parser that is developed from scratch using HLS. The JSON parser
of the AMD HLS library used 19057 LUTs 12535 FFs 22 BRAMs and 88 DSPs. This
implementation has an excessive resource usage compared to the one we propose. In
fact the parser from the library uses 2.9 times more LUTs, 1.2 times more FFs, 7.3
times more BRAMs than our parser. Additionally, our parser did not use any DSPs
whereas the parser of the AMD library used 88 DSPs. Both the SHA modules and

112

113

FPGA resources LUT FF BRAM DSP
SHA-256 RTL 2144 2095 0 0

SHA-256 HLS 5624 8519 0 0

AMD HLS JSON parser 19057 12535 22 88

Proposed HLS JSON parser 6594 10474 3 0

Table 4-2 – Comparison between RTL and HLS modules developed for the HSM

the token parsers are compared in Table 4-2.

In total, one HSM uses less than 10% of the target device LUTs and less than 7% of
the device register. The HSM is the foundation of the FPGA security and it enforces
many mechanisms like access control, resource allocation, and token authentication.

It is important to note that Linkguard resource usage is not considered in this
section because it is described in the next section.

4.1-2 Linkguard

The resource consumption of Linkguard is described in Table 4-3. The crypto-
graphic library of AMD Vitis is used to implement the RSA encryption with HLS.
When we compare the proposed RSA implementation against the literature, the
logical resource consumption achieved in Linkguard is incredibly high. In [141], an
RSA cryptosystem has been implemented using 16952 LUTs and 2058 registers.
Their implementation is using an optimized serial Montgomery modular multiplica-
tion that is developed using a Hardware Description Language (i.e., HDL). The RSA
implementation in [141] used 82% less LUTs and 98% less registers compared to our
RSA implementation using HLS. The difference of resource consumption between
our RSA implementation and [141] is high and it effectively showcases the draw-
backs of high level synthesis for FPGA logic development. Naturally, an optimized
RSA implementation is preferable to be used in Linkguard. By reducing its foot-
print, Linkguard can be more suitable for FPGA cloud multi-tenancy where logical
resources are the most valuable.

The following section gives the resource utilization for the upgraded shielded
enclave.

113

Chapter IV – Hardware approach for TokSek

Logical resource consumption for Linkguard
FPGA resources LUT FF BRAM

TRNG 231 545 0

HMAC 3062 2257 0

NIST DRBG 2181 7922 0

HLS RSA encryption 94430 97418 61

RSA [141] 16952 2058 N/A

Total w/ HLS RSA 99904 108142 61
Total w/ RSA [141] 22426 12782 0

Percentage of ZCU 102 8.2% 2.3% 6.7%

Table 4-3 – Resource consumption of the upgraded shielded enclave on the ZCU 102

4.1-3 Upgraded shielded enclave

As shown in Figure 3, the shield needs a MAC algorithm and a symmetrical
encryption algorithm. For the MAC algorithm a SHA256-based HMAC is used to
guarantee data integrity and confidentiality at the same time. For symmetrical en-
cryption, AES-256 is implemented. These two cryptographic blocks are used in an
encrypt-then-mac method scheme. This method is considered the safest option [48]
as stated in Chapter II Section 3.

The logical resource consumption of the shielded enclave using the ZCU 102 is
shown in Table 4-4. The maximum clock speed is set at 214 MHz in this imple-
mentation. The critical path of this design lies in the HMAC module. To limit the
complexity of this design and the clock tree, we did not seek to optimize to a great
extent. This design has three different clock regions: 150 MHz, 214 MHz and 1400
MHz. The slowest clock is required for the RSA encryption in Linkguard as described
in Section 2. The 214 MHz clock is the base clock of the TokSek design and it is the
limit of the HMAC module. Lastly, the fastest clock is reserved for the DDR mem-
ory. Having too many clocks increases the implementation complexity of an FPGA
design by creating multiple clock domain crossings (i.e., CDC). When signals need
to be transferred between these domains, issues such as metastability and data cor-
ruption can arise due to the mismatch in clock frequencies and phases. The purpose
of CDC is to manage and handle the challenges associated with transferring signals
between these clock domains. The existence of CDC mechanisms in FPGA design

114

115

helps ensure proper data synchronization and integrity when crossing clock bound-
aries. Each time that two modules running at different speeds must communicate,
additional logic must be created. Among these, we can find components like FIFOs
to transfer data between clock domains.

FPGA resources LUT FF BRAM
Control and interfaces 1486 1367 3

Write encryptor 5229 4468 0

Read decryptor 5234 4470 0

Linkguard∗ 22426 12782 0

Total 34375 23087 3
Percentage of ZCU 102 12.5% 4.2% 0.3%

∗ The optimized version of Linkguard with the RSA implementation described in
[141]

Table 4-4 – Resource consumption of the upgraded shielded enclave on the ZCU 102

FPGA resources LUT FF
AES-256 2167 2209

SHA-256-HMAC 3062 2257

Table 4-5 – Resource consumption of the cryptographic modules implemented inside
the shield

The logical resource consumption of the shield is reduced due to its modularity.
Achieving small overhead on logical resources is an important requirement for FPGA
acceleration solutions and it is of the utmost concern for multi-tenant FPGA clouds.
In fact, each user must implement a shielded enclave to protect his own data. The
overhead of all security solutions deployed in FPGA logic must be small enough
to leave logical resources for actual acceleration. Because each user gets a finite
amount of logical resources inside an FPGA cloud, the security mechanisms must not
prevent users from deploying acceleration solution. However, after adding Linkguard
to the shielded enclave, the resource utilization is increased. The upgraded shield
uses 12.5% of the total available LUTs and 4.2% of the registers. Such resource

115

Chapter IV – Hardware approach for TokSek

utilization is adapted for multi-tenant FPGA clouds because the overhead is low
enough to place multiple tenants per FPGA.

We can illustrate this claim with a practical example. Let’s consider three tenants
using a shielded enclave with one neural network accelerator each [66]. The resource
utilization of the neural network proposed in [66] is 38899 LUTs, 40534 FFs, 3
BRAMs. This respectively represents 14.2%, 6.8% and 0.3% of device LUTs, FFs
and BRAMs . By including the resource utilization of HSM, it is possible to securely
share the FPGA among 3 users. The total LUTs utilization of the AMD ZCU 102
MPSoC would be 3 × 14.2 + 3 × 12.5 + 9.4 = 94%. The FF utilization would be
3×6.8+3×2.3+6.7 = 34% and the BRAMs utilization would reach 3×0.3+1.3 =
2.2%. With this use case, the LUTs utilization would be nearly maximized with
three users implementing the same neural network accelerator with a shield. With
high-end FPGA devices like AMD Alveo and Intel Stratix, the resource utilization
would be lower and more tenants could share the same FPGA.

After exposing the resource utilization for the proposed framework and the pos-
sibility of secure multi-tenancy, we detail the timing aspect of TokSek components
in the next section.

4.2 Latency

4.2-1 HSM

In terms of latency, each module has been tested with various use cases to analyze
the behavior of the design. Table 4-6 shows the latencies for the auth_token function
under four different use cases like a modified token with bad integrity, a valid token,
a token signed with a wrong fssj, and a token signed with a wrong hash algorithm.
The latency of the modified token and the valid token are similar with 0.205 ms and
0.209 ms respectively. For the modified token, the content has been altered without
forging a new signature because the fssj key is kept secret by the TA. However,
on the bad fssj use case, the wrong secret key is used to sign the token and the
algorithm took 0.232 ms to refuse the validity of the token. The last test case is the
usage of a wrong hashing algorithm. In fact, when the algorithm specified in the
token header is different than the hashing algorithm used for verification, the token
signature cannot be verified. The token has been refused in 0.167 ms for this case.

After the token validation, the user policies must be initialized. The token is
parsed, the payload is retrieved and the memory is allocated. To test the memory
allocation algorithm, we start from an empty memory and we allocate 128 bits for

116

117

Hardware execution Token valid
Modified token 0.205 ms ×

Valid token 0.209 ms ✓

Bad fssj 0.232 ms ×

Wrong hashing algorithm 0.167 ms ×

Table 4-6 – Latency of the auth_token module

three users. Figure 4-12 shows the allocation process for one specific scenario. The
random start addresses are noted on the left and the memory regions are noted in
the table on the right-hand side. It is important to note that the data stored in the
table represents the memory block information mbii,n stored inside the policy store
psj.

Table 4-7 shows the latency incurred by the allocate_mem function. We observe
that the order of magnitude for the memory allocation is 10−6s. The latency is
negligible compared to the token authentication. Additionally if we take into account
the token authentication latency and the memory allocation latency, all the user
policies can be initialized in 0.211 ms for the worst case scenario according to our
measures.

Hardware execution frag count
User 1 memory allocation 1.09 µs 1

User 2 memory allocation 1.13 µs 1

User 3 memory allocation 2 µs 3

Table 4-7 – Latency of the allocate_mem module

Dynamic memory allocation is a highly discussed subject in the literature because
it can impact the overall system performance and efficiency [142], [143], [144]. The
memory allocator in TokSek uses a sliding window approach that is described in
Section 1.2-2. The focus was on achieving a compact solution to minimize the logic
usage because the memory allocator is only used once after token authentication. For
this reason we did not use any performance optimization techniques to achieve a very
low latency solution. When we compare the resource usage, our memory allocator
utilizes 4260 LUTs of the Zynq ZCU 102 whereas solution [142] use between 1415 and
2171 LUTs of the AMD Zynq 7000 SoC. Our allocator uses between two and three
times more LUTs than [142]. Moreover, their allocator has a latency of 8 × 10−8

117

Chapter IV – Hardware approach for TokSek

s whereas our allocator has a latency of 2 × 10−6 on the worst case, which is 25
times more. This difference shows that the current implementation of TokSek can
be optimized to achieve better performance results. Work [143] is another memory
allocator implemented on Zynq 7000 SoC. It used 12236 LUTs and has an allocation
latency of 1.9×10−7 s. Compared to our allocator, [143] is 10.5 times faster but it uses
2.9 times more LUTs. The proposed allocator is more efficient for resource utilization
and this is very important for a multi-tenant context. The memory allocator is only
used one time after user authentication. Hence, minimizing resource utilization is
more important than minimizing latency for our case.

Figure 4-12 – Example of memory allocation procedure with fragmentation

After memory allocation, we can observe the latency of the addr_translate func-
tion where a user ui sends a virtual address. The HSM must find in the mbi(i, n) the
corresponding physical address inside the policy store psj to fulfill the user memory
request. Table 4-8 shows the latency for the memory translation function. For each
user, we request the translation of the virtual address 0x05. We observe that the
latency for address translation has a relatively small overhead around 90 µs. If we
consider an AXI write request with 16 bursts of 64 bits of data (1 MB total) the
overhead for address translation is between 1.44 ms and 1.55 ms. This overhead
can be further minimized with optimization techniques like pipelining because the
maximum frequency of the addr_translate module is 328 MHz which is more than
the Shield-HSM communication clock that runs at 214 MHz.

When compared against other address translation mechanisms in the literature,
our solution has more latency. In [145], a memory translation module is implemented
on an Intel Stratix 4 FPGA and they compared the performances against a softcore
NIOS II CPU. As a baseline, the NIOS CPU achieves address translation in 1.9 µs
which is similar to our solution on the worst case but we are 1.9 times faster on our
best measured case. However, a Translation Look-aside Buffer (i.e., TLB) has been
implemented in [145]. It is a hardware cache that stores the recent translations of

118

119

virtual memory addresses to physical memory addresses. Their TLB has been im-
plemented using 11450 LUTs and 8303 FFs which corresponds to 5 times more LUTs
and 2.7 times more FFs than our translation unit. Yet, they achieve a translation
latency of 124 ns which is 8.1 times faster than our solution.

Hardware execution frag count
User 1 address translation 0.090 ms 1

User 2 address translation 0.095 ms 1

User 3 address translation 0.097 ms 3

Table 4-8 – Latency of the addr_translate module for the translation of the address
0x05

4.2-2 Linkguard

Table 4-9 shows the latency of individual blocks that are present in Linkguard.
The majority of the overhead comes from the TRNG and the RSA encryption. Our
RSA implementation may be excessively resource consuming but if we compare the
latency with [141], our RSA implementation with HLS is slightly faster. In [141],
the encryption latency is about 2.2 ms whereas we achieved 1.59 ms which is 22%
faster. We can also compare our TERO-TRNG implementation with [131]. In fact,
our TRNG generated 440 random bits in 5.26 ms which gives us a bitrate of 0.084
Mb/s. In [131], the TERO-TRNG is reported to have a bitrate between 0.625-1
Mb/s according to the FPGA device. The bitrate achieved in this implementation
is 7.5 times slower than [131].

Achievements Computing time (ms)
TRNG key generation 5.26 ms

NIST DRBG 648×10−6 ms

HMAC signature 1.14×10−3 ms

RSA encryption 1.59 ms

Total 6.85 ms

Table 4-9 – Timing results of Linkguard

119

Chapter IV – Hardware approach for TokSek

4.2-3 Upgraded shielded enclave

Moreover, the impact on memory bandwidth is shown in Table 4-10. We did
not reach maximum memory performance for few reasons. The memory interface
operates at 214 MHz whereas the DDR4 memory itself runs at 1200 MHz. The
acronym DDR means "Double Data Rate" because the memory samples on rising
and falling edges. Consequently, a DDR4 memory clocked at 1200 MHz is working
at double speed an it is noted at DDR4-2400. This means a DDR4-2400 memory
is capable of executing 2400 megatransfers per second. The maximum theoretical
bandwidth of a DDR memory module is calculated based on its data rate and bus
width. In this case, the data rate is 2400 megatransfers per second whereas the
shield and the memory interface have a 64-bit wide AXI bus. Mathematically, the
maximum theoretical bandwidth is expressed as:

theoretical bandwidth = 2400 × 64
8 × 103 = 19.2 GB/s (4-12)

However, the shield and the memory interface use a clock that runs at 214 MHz
due to design constraints. Consequently, this implementation cannot reach the theo-
retical maximum memory speed because the shield cannot produce data fast enough.
The maximum bandwidth that this implementation can achieve is expressed as fol-
lows:

achievable bandwidth = 214 × 64
8 × 103 = 1.7 GB/s (4-13)

There is a 5.6 times factor between the theoretical and achievable bandwidth
respectively expressed in Equation 4-12 and 4-13.

Memory speed comparison with the shield and the DDR
Read/Write Operations 6.8 Gbit/s (0.85 GB/s)

Theoretical DDR4 2400 MHz 19.2 GB/s

Table 4-10 – Memory speeds with the shield

The experimental memory bandwidth measured when using the shield is 0.85
GB/s. This result is 2 times slower than the maximum achievable bandwidth. The
reason for such a slowdown is the bottleneck inside the HMAC module that pre-
vents the design from reaching faster speeds. No optimization and implementation

120

121

techniques like pipelining and parallelism have been studied in order to reach higher
performances because it is not the objective of this study.

5 Summary

Section 1 introduced the last component of TokSek: the HSM. It is responsi-
ble for crucial security functions to ensure a secure multi-tenant FPGA environment
within the cloud. It enforces access control policies, allocates resources, and provides
isolation between entities. The HSM components are developed using High-Level
Synthesis (i.e., HLS), allowing faster development with some trade-offs in resource
utilization. The HSM introduces mechanisms such as a hardware token authentica-
tion, a hardware resource allocation by parsing a JWT access token and a dynamic
memory allocation mechanism. In fact, the latter allocates user memory according
to the user token content. The memory allocator handles fragmentation and uses
random starting address to allocate the first memory address. This helps to miti-
gate memory attacks like Rowhammer and aims to keep the user memory location
secret. Access control functions like check_policy and addr_translate enforce secu-
rity policies and translate virtual addresses into physical addresses, adding an extra
layer of abstraction. In fact, each virtual address received by a user FPGA logic
is interpreted differently thanks to the policy store psj containing memory block
information mbi(i, n).

In this chapter, Section 2 introduces Linkguard, a zero-trust key generation pro-
tocol for establishing secure communication channels, particularly within untrusted
cloud environments. It highlights the role of Linkguard in addressing privacy con-
cerns associated with third-party cloud providers. This solution uses a TRNG to gen-
erate a random seed for a DRBG that produces a session key. The latter is protected
with asymmetric cryptography and a MAC algorithm to ensure confidentiality and
integrity. Then, a practical use case for Linkguard applied to O-RAN is detailed to
show the capabilities of this solution. In fact, Linkguard addresses multiple security
vulnerabilities that are identified by the O-RAN security work group.

Section 3 describes a shielded enclave solution sourced from the literature, where
security concerns related to the protection of IP vendor bitstream and user data are
identified. The shielded enclave allows an accelerator to read and write encrypted
data while ensuring data integrity. Linkguard is proposed as a solution to mitigate
vulnerabilities through the internal generation of encryption keys within the FPGA.
When integrated into TokSek, the upgraded shielded enclave offers a comprehensive

121

Chapter IV – Hardware approach for TokSek

approach to safeguarding both data and IP in cloud environments.

Section 4 exposes the implementation results in terms of resource utilization and
latency for the HSM, Linkguard and the upgraded shielded enclave. Inside the HSM,
there are four important functions: auth_token, token_parse, allocate_mem and
addr_translate. The resource utilization of the HSM is 9.4% of device LUT and
6.7% of device FF. The implementation shows 0.211 ms of hardware execution for
token authentication, parsing and memory allocation. This is an acceptable over-
head for a one time execution that initializes the user acceleration context inside
the FPGA. Additionally, the implementation of Linkguard shows that it is possi-
ble to generate a session key securely and independently from the CP in 6.85 ms.
However, the proposed implementation of the HLS RSA module has a high logical
resource consumption, which may impact efficiency in multi-tenant scenarios. This
issue is implementation specific and rooted in HLS that offers a fast but unopti-
mized implementation. Other efficient RSA implementations exist and can be used
in another Linkguard implementation. Then the shielded enclave in [7] is analyzed
and some security vulnerabilities are exposed. The shield module aims to protect a
user accelerator inside the FPGA against malicious I/O and protect the confiden-
tiality and integrity of user data. An upgrade of the shielded enclave module with
Linkguard is proposed to address vulnerabilities. The upgraded shielded enclave is
implemented and utilizes 10.5% of device LUT and 2.3% of device FF. In terms
of memory bandwidth, a 2 times slowdown is observed compared to the achievable
memory bandwidth. This is an acceptable overhead compared to the security level
this solution brings. Some of the hardware modules in TokSek are not as optimized
as the ones from the literature. However, this work describes a complete security
framework for token-based multi-tenant FPGA cloud acceleration.

122

Chapter V

CONCLUSION

The primary objective of this thesis is to provide a secure multi-tenant FPGA
cloud framework that protects user data confidentiality and acceleration environ-
ment. The secondary objective of this thesis is to increase the scalability, to minimize
the overhead and the complexity of this framework. A good quality of service must
be provided without degrading overall system performance, security and resource
consumption. Because FPGA logic resources are valuable, the logic utilization for
architecture and security must be constrained to leave as much logic resources as
possible for acceleration purposes.

The content of the chapters in this thesis are summarized below and future works
are described.

1 Summary

Chapter II offers an overview of multi-tenant FPGA cloud computing and its
security needs. It introduces current FPGA cloud architectures for cloud computing
by IBM and Intel while discussing cloud service providers like Amazon, Alibaba,
and Huawei. The chapter explores Trusted Execution Environments (i.e., TEEs) for
FPGA, detailing technologies like Arm TrustZone, Intel SGX, and Keystone, all
aiming to create secure execution environments. Existing TEE vulnerabilities are
exposed and some mitigation techniques are described. Security is further enhanced
through authentication techniques, including HMAC and Authenticated Encryption
(i.e., AE) solutions. FPGA-specific authentication methods, such as using Physical
Unclonable Function (i.e., PUF) and using a TA are also discussed. The concept of
FPGA multi-tenancy is introduced, employing virtualization tools to establish iso-
lated environments for multiple users. The chapter addresses hardware-based vulner-
abilities in multi-tenancy and proposes mitigation techniques. Lastly, it emphasizes
the importance of FPGA access control in multi-tenant environments for secure re-
source sharing among FPGA tenants. We showed that access control mechanisms

123

Chapter V – Conclusion

are not popular in FPGA acceleration because they are only necessary for multi-
tenant environment. No cloud provider proposes multi-tenancy for FPGA clouds
at the time of writing, thus, no access control mechanisms exist for current FPGA
cloud deployments.

Chapter III dives into TokSek: a token-based multi-tenant FPGA cloud security
framework. In Section 1, we set the foundation of the framework by defining potential
threats and creating a formal set of rules for TokSek. The threat model outlines what
attackers, whether inside or outside the FPGA, might aim to do. The formalization
is a theoretical guide for TokSek mechanisms.

In Section 2, we introduce TokSek, talking about how we have adapted OAuth 2
for FPGA clouds and explaining the token system. Section 2.2 gets into the details
of the TokSek protocol, showing how different parts communicate and handle tasks.
The architecture of TokSek has four major entities, the CP, the TA, the user and
the FPGA. The user requests cloud resources from the CP. The latter needs the TA
for FPGA access token generation. The user retrieves the access token from the TA
and connects to the FPGA. For each communication, entities mutually authenticate
each other and sensitive data is signed using shared keys. The access token is one
sensitive data that is signed by the TA using a shared secret with the FPGA. Section
2.3 suggests an extension of OAuth 2, letting authorized users to share access to
their allocated resources with other users. An example involving O-RAN and 5G
technologies is detailed. In such use cases, a mobile network provider can share its
on-premise and third-party infrastructure with other network providers. Our results
indicate that using tokens for FPGA access has minimal latency. In fact, a cloud
user can obtain a token in about 183 ms and access the FPGA in 116 ms. In total,
a user can get their access token, connect and reconfigure the FPGA in 503 ms.
Compared to [63], our framework is 37.8% faster for FPGA access and bitstream
configuration. It is important to recall that the target FPGA SoC is a standalone
device in this implementation. A lightweight Flask server has been implemented
inside an embedded linux for user connection. As a result we showed that the FPGA
Arm CPU is 3x slower than a regular laptop’s virtual machine server during mutual
TLS authentication.

In Chapter IV, the hardware components of TokSek are described. In Section 1,
we introduce the last piece of TokSek: the HSM. It’s in charge of vital security tasks
to ensure a safe multi-tenant FPGA environment in the cloud. The HSM enforces
access control policies, assigns resources, and creates isolation between different en-
tities. High-Level Synthesis (HLS) is used for faster development, even though it

124

125

comes with some trade-offs in resource use. The HSM introduces mechanisms like
hardware token authentication, hardware resource allocation using a JWT access
token, and dynamic memory allocation. This allocator manages fragmentation and
keeps the first memory address secret to prevent memory attacks like Rowhammer.
Access control functions, such as check_policy and addr_translate, enforce security
policies and translate virtual addresses into physical addresses, adding an extra layer
of security. The implementation shows 0.211 ms of hardware execution for token au-
thentication and memory allocation, which is an acceptable overhead for a one-time
execution. Moreover, in Chapter III, the user would achieve a TLS handshake in 101
ms and the user would be authorized to use the FPGA in 15ms. With the hardware
implementation, the HSM initializes a user in 0.211 ms while providing access control
mechanisms. It is a huge gain in latency compared to the software approach while
providing more functions like memory allocation. Regarding resource utilization, the
lack of efficiency is also observed with the JSON parser used inside the HSM. In fact,
the JSON parser of the AMD Vitis HLS library used 2.9 times more LUTs and 7.3
times more FF compared to the HLS JSON parser proposed in this thesis.

Section 2 introduces Linkguard, a security protocol for creating safe communica-
tion channels, especially in untrusted cloud settings. It’s designed to address privacy
concerns when using third-party cloud provider resources. Linkguard allows to gen-
erate an encryption key inside the FPGA logic using a TRNG according to NIST
recommendations [132]. The generated key is encrypted by the user’s public key
with RSA encryption. The proposed implementation of Linkguard can generate an
encryption key in 6.85 ms which is a relatively small latency for a one time operation.

In Section 3, we discuss a shielded enclave solution from the literature. It tack-
les security issues related to protecting IP vendor bitstreams and user data. This
shielded enclave encrypts produced data and decrypts consumed data for the ac-
celeration IP. It also ensures data integrity with the HMAC algorithm by writing
the data and its signature on each memory operation. Linkguard is suggested to
improve vulnerabilities by generating encryption keys internally within the FPGA.
When added to TokSek, this upgraded shielded enclave is a comprehensive way to
protect both data and IP in cloud environments, with only a two times slowdown
compared to memory bandwidth.

In this thesis, previously set objectives are achieved. TokSek is a token-based
multi-tenant security framework that provides end-to-end security for FPGA cloud
users. This solution reinforces data confidentiality and provides a secure multi-tenant
FPGA environment. At the time of writing, TokSek is the first solution that provides

125

Chapter V – Conclusion

a complete hardware-based security framework with features like memory allocation
with fragmentation, address virtualization, and token-based operations. Linkguard
is another important security element of TokSek. This patented solution allows to
create isolation between the CP and the cloud user by generating encryption keys
and setting up an encrypted communication channel between the user FPGA logic
and the cloud user.

2 Future works

There are still some areas to investigate in this thesis to obtain an efficient multi-
tenant FPGA cloud framework. In fact, one of the most important aspects is the area
usage for the FPGA logic. In this thesis the HSM is developed using AMD Vitis HLS.
It allowed to build a proof of concept for this framework to show its potential and
feasibility. However, when compared to the literature, our solution uses too many
resources. By developing the HSM using hardware description languages such as
Verilog and VHDL, it is possible to obtain and optimized solution. Logical resource
usage is of the utmost importance for multi-tenant FPGA cloud because the logic
resources are used for acceleration purposes.

Another area of investigation is the deployment of TokSek in a state-of-the-art
cloud environment. In fact, current FPGA clouds can be deployed using virtualiza-
tion tools like Docker and Kubernetes as described in Chapter II Section 5.2. Figure
5-1 proposes a potential architecture of deployment using Kubernetes. On the first
step, the resource requirement of a user instance is sent to the Kubernetes master
to seek for an available FPGA device. On the second step, the FPGAs answer to
the Kubernetes master to report on resource availability. At this stage, the TokSek
framework can begin, and the CP can send resource requirements and access rules
to the TA for access token creation. The cloud user must obtain an access token
in order to proceed with step 3 and achieve mutual TLS authentication with the
authentication pod and make a deployment request. The authentication pod fetches
the user application and sends it to the HSM on step four. The user application is
verified on step five thanks to the HSM then deployed in its allocated pod on step
six. On step seven, the user application sends its access token and the bitstream
to the HSM for verification and upon successful verification with the auth_token

function, the user’s authorizations are initialized in the FPGA logic thanks to the
memory allocator and the policy store. On the same step, the user’s acceleration slot
(e.g., reconfigurable region rri,j) is reconfigured. On step nine, the user acceleration

126

127

environment is ready to use.

Figure 5-1 – Example of cloud deployment using Kubernetes

Such a deployment will allow to further experiment with the framework under
a real use case scenario to obtain more accurate experimental performance results.
Consequently, any potential bottlenecks or drawbacks can be identified and fixed.
Observing impact of the architecture is important too. In the implementation pro-
posed in this thesis, an FPGA SoC is used. According to experimental results, the
SoC CPU is 3 times slower than a general purpose CPU for mutual TLS authenti-
cation. While our current SoC architecture makes each FPGA independent from a
host, a significant amount of performance loss occurs in the functions inside the pro-
cessing system. Comparing the FPGA SoC architecture against the more standard
FPGA-host architecture is another interesting area to investigate. User application
pods shown in Figure 5-1 can be deployed inside a general purpose server but in
the context of multi-tenancy, this can be suboptimal. In fact, the FPGA can be
connected to a host CPU using a PCI interface. If all tenants communicate at the
same time with their reconfigurable region, the PCI port can be a bottleneck and
degrade system performance. With a different architecture, new security challenges
may appear. They need to be studied and addressed to provide a secure and privacy
preserving acceleration environment.

Additionally, quantum computing is one major concern for cloud security as it will
render most of the cryptosystems obsolete [146]. Asymmetric cryptography is the
most impacted technology as quantum technology will most likely break RSA-2048
by 2031 [147]. Consequently, post-quantum cryptography (e.g., fully homomorphic
encryption) must be leveraged to protect the cloud computing environment against

127

Chapter V – Conclusion

this threat [148] [149]. Current TEEs are also under the threat of quantum computing
and post-quantum TEEs must be developed to be resilient against this technology.
The threat of quantum computing must not be underestimated. Therefore, the cur-
rent security architecture and cryptosystems deployed in TokSek must be analyzed
to identify any potential vulnerabilities in order to mitigate them.

128

BIBLIOGRAPHY

[1] V. Ziegler, P. Schneider, H. Viswanathan, M. Montag, S. Kanugovi, and
A. Rezaki, “Security and trust in the 6g era,” IEEE Access, p. 1, 2021.

[2] F. Turan, S. S. Roy, and I. Verbauwhede, “Heaws: An accelerator for homomor-
phic encryption on the amazon aws fpga,” IEEE Transactions on Computers,
vol. 69, pp. 1185–1196, Aug. 2020.

[3] “Official repository of the aws ec2 fpga hardware and software development
kit.” https://github.com/aws/aws-fpga.

[4] “Microsoft azure documentation for fpga optimized virtual machine sizes,”
[5] “Alibaba fpga cloud documentation.” https://www.alibabacloud.com/

help/en/fpga-based-ecs-instance.
[6] P. G. Leonard, “Is data your most valuable asset that you never owned?,”

IRPN: Governance (Sub-Topic), 2018.
[7] M. Zhao, M. Gao, and C. Kozyrakis, “ShEF: shielded enclaves for cloud

FPGAs,” in Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
ACM, feb 2022.

[8] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin, K. Gatlin,
M. Ghandi, and D. Burger, “Serving dnns in real time at datacenter scale with
project brainwave,” IEEE Micro, vol. 38, pp. 8–20, 03 2018.

[9] A. M. Caulfield and et al., “A cloud-scale acceleration architecture,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 1–13, Dec. 2016.

[10] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey, “System
architecture for network-attached fpgas in the cloud using partial reconfigu-
ration,” in 2019 29th International Conference on Field Programmable Logic
and Applications, pp. 293–300, Aug. 2019.

[11] T. La, K. Mätas, N. Grunchevski, K. Pham, and D. Koch, “Fpgadefender:
Malicious self-oscillator scanning for xilinx ultrascale+ fpgas,” ACM

129

https://github.com/aws/aws-fpga
https://www.alibabacloud.com/help/en/fpga-based-ecs-instance
https://www.alibabacloud.com/help/en/fpga-based-ecs-instance

BIBLIOGRAPHY

Transactions on Reconfigurable Technology and Systems, vol. 13, pp. 34:1–
34:20, May 2020.

[12] R. Chakraborty, I. Saha, A. Palchaudhuri, and G. Naik, “Hardware trojan
insertion by direct modification of fpga configuration bitstream,” Design &
Test, IEEE, vol. 30, pp. 45–54, 2013.

[13] “Microsoft azure documentation for cloud fpga attestation mecha-
nism.” https://learn.microsoft.com/en-us/azure/virtual-machines/
field-programmable-gate-arrays-attestation.

[14] V. Costan and S. Devadas, “Intel sgx explained.” Cryptology ePrint Archive,
Paper 2016/086, 2016. https://eprint.iacr.org/2016/086.

[15] “Arm® trustzone technology for the armv8-m architecture.” https://
developer.arm.com/documentation/100690/0201/, 2019.

[16] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, (New York, NY, USA), Association for Computing Machinery,
2020.

[17] “Intel stratix 10 product description.” https://www.intel.com/content/
www/us/en/products/details/fpga/stratix/10.html.

[18] “Amd xilinx alveo boards.” https://www.xilinx.com/products/
boards-and-kits/alveo.html.

[19] “Amd xilinx soc platforms.” https://www.xilinx.com/products/
silicon-devices/soc.html.

[20] “Risc-v keystone enclave documentation.” https://www.xilinx.com/
products/boards-and-kits/alveo.html.

[21] “Risc-v rocket.” https://github.com/chipsalliance/rocket-chip/.
[22] “Risc-v boom.” https://github.com/riscv-boom/riscv-boom/.
[23] “Risc-v cva6.” https://github.com/openhwgroup/cva6/.
[24] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd,

and C. Rozas, “Intel® software guard extensions (intel® sgx) support for dy-
namic memory management inside an enclave,” in Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016, HASP ’16, (New
York, NY, USA), Association for Computing Machinery, 2016.

[25] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and soft-
ware model for isolated execution,” in Proceedings of the 2nd International

130

https://learn.microsoft.com/en-us/azure/virtual-machines/field-programmable-gate-arrays-attestation
https://learn.microsoft.com/en-us/azure/virtual-machines/field-programmable-gate-arrays-attestation
https://eprint.iacr.org/2016/086
https://developer.arm.com/documentation/100690/0201/
https://developer.arm.com/documentation/100690/0201/
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://github.com/chipsalliance/rocket-chip/
https://github.com/riscv-boom/riscv-boom/
https://github.com/openhwgroup/cva6/

131

Workshop on Hardware and Architectural Support for Security and Privacy,
HASP ’13, (New York, NY, USA), Association for Computing Machinery,
2013.

[26] E. M. Benhani, L. Bossuet, and A. Aubert, “The security of arm trustzone in
a fpga-based soc,” IEEE Transactions on Computers, vol. 68, no. 8, pp. 1238–
1248, 2019.

[27] Y. Ma, Q. Zhang, S. Zhao, G. Wang, X. Li, and Z. Shi, “Formal verification
of memory isolation for the trustzone-based tee,” in 2020 27th Asia-Pacific
Software Engineering Conference (APSEC), pp. 149–158, 2020.

[28] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive sur-
vey,” ACM Comput. Surv., vol. 51, jan 2019.

[29] S. Pinto and C. Garlati, “Multi zone security for arm cortex-m devices,” 02
2020.

[30] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution environment
for cpu-fpga heterogeneous architecture,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 301–306, 2021.

[31] A. Nilsson, P. K. Bideh, and J. Brorsson, “A survey of published attacks on
intel sgx,” tech. rep., CoRR, abs/2006.13598, 2020.

[32] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 142–157,
2019.

[33] M. A. Mukhtar, M. K. Bhatti, and G. Gogniat, “Architectures for security: A
comparative analysis of hardware security features in intel sgx and arm trust-
zone,” in 2019 2nd International Conference on Communication, Computing
and Digital systems (C-CODE), pp. 299–304, 2019.

[34] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom, “Cacheout:
Leaking data on intel cpus via cache evictions,” in 2021 IEEE Symposium on
Security and Privacy (SP), pp. 339–354, 2021.

[35] Z. KOU, S. Sinha, W. HE, and W. ZHANG, “Cache side-channel attacks and
defenses of the sliding window algorithm in tees,” in 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1–6, 2023.

[36] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger, A. Moghimi,
and Y. Yarom, “Cachequote: Efficiently recovering long-term secrets of sgx
epid via cache attacks,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 2, pp. 171–191, 2018.

131

BIBLIOGRAPHY

[37] M. Gross, N. Jacob, A. Zankl, et al., “Breaking trustzone memory isolation
and secure boot through malicious hardware on a modern fpga-soc,” Journal
of Cryptographic Engineering, vol. 12, pp. 181–196, 2022.

[38] E. M. Benhani, L. Bossuet, and A. Aubert, “The security of arm trustzone in
a fpga-based soc,” IEEE Transactions on Computers, vol. 68, no. 8, pp. 1238–
1248, 2019.

[39] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone memory isola-
tion through malicious hardware on a modern fpga-soc,” in Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
pp. 3–12, Association for Computing Machinery, 2019.

[40] M. Ghaniyoun, K. Barber, Y. Xiao, Y. Zhang, and R. Teodorescu, “Teesec:
Pre-silicon vulnerability discovery for trusted execution environments,” in
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, (New York, NY, USA), Association for Computing
Machinery, 2023.

[41] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The 3rd
generation berkeley out-of-order machine,” May 2020.

[42] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen, L. Gou, Y. Jin, Q. Li, X. Li, Z. Li,
J. Lin, T. Liu, Z. Liu, J. Tan, H. Wang, H. Wang, K. Wang, C. Zhang, F. Zhang,
L. Zhang, Z. Zhang, Y. Zhao, Y. Zhou, Y. Zhou, J. Zou, Y. Cai, D. Huan, Z. Li,
J. Zhao, Z. Chen, W. He, Q. Quan, X. Liu, S. Wang, K. Shi, N. Sun, and
Y. Bao, “Towards Developing High Performance RISC-V Processors Using
Agile Methodology,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1178–1199, 2022.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” 2018.

[44] M. Parelkar, “Fpga security-bitstream authentication,” technical report,
George Mason University, 2004.

[45] S. C. Ramanna and P. Sarkar, “On quantifying the resistance of concrete hash
functions to generic multicollision attacks,” IEEE Transactions on Information
Theory, vol. 57, pp. 4798–4816, July 2011.

[46] K. M. Abdellatif, R. Chotin-Avot, and H. Mehrez, “Protecting fpga bit-
streams using authenticated encryption,” in 2013 IEEE 11th International
New Circuits and Systems Conference (NEWCAS), pp. 1–4, 2013.

[47] D. Maimut and R. Reyhanitabar, “Authenticated encryption: Toward next-
generation algorithms,” IEEE Security & Privacy, vol. 12, pp. 70–72, Mar.-
Apr. 2014.

132

133

[48] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm,” J Cryptol, vol. 21,
p. 469–491, 2008.

[49] E. Rescorla, “The transport layer security (tls) protocol version 1.3,” tech.
rep., RFC 8446, August 2018.

[50] R. Perlman, “An overview of pki trust models,” IEEE Network, vol. 13, pp. 38–
43, Nov.-Dec. 1999.

[51] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas, “Internet
x.509 public key infrastructure: Certification path building,” tech. rep., RFC
4158, September 2005.

[52] H. Englund and N. Lindskog, “Secure acceleration on cloud-based fpgas –
fpga enclaves,” 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 119–122, 2020.

[53] K. Eguro and R. Venkatesan, “Fpgas for trusted cloud computing,” in
Proceedings of the 22nd International Conference on Field Programmable Logic
and Applications, pp. 63–70, 2012.

[54] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and protocols for
the oasis security assertion markup language (saml) v2.0.” OASIS Standard
saml-core-2.0-os, March 2005.

[55] D. Hardt, “The oauth 2.0 authorization framework,” tech. rep., RFC 6749,
October 2012.

[56] S. Ince, D. Espes, J. Lallet, G. Gogniat, and R. Santoro, “Oauth 2.0-based au-
thentication solution for fpga-enabled cloud computing,” in 3rd International
Workshop on Cloud, IoT and Fog Systems (and Security) - CIFS 2021 co-
located with the 14th IEEE/ACM International Conference on Utility and
Cloud Computing - UCC 2021, (University of Leicester, UK), December 6–
9 2021.

[57] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream encryption and au-
thentication with aes-gcm in dynamically reconfigurable systems,” in 2008
International Conference on Field Programmable Logic and Applications,
pp. 23–28, 2008.

[58] F. Devic, L. Torres, and B. Badrignans, “Secure protocol implementation
for remote bitstream update preventing replay attacks on fpga,” in 2010
International Conference on Field Programmable Logic and Applications,
pp. 179–182, 2010.

[59] A. Carelli, C. A. Cristofanini, A. Vallero, C. Basile, P. Prinetto, and
S. Di Carlo, “Securing bitstream integrity, confidentiality and authenticity

133

BIBLIOGRAPHY

in reconfigurable mobile heterogeneous systems,” in 2018 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6,
2018.

[60] U. Rührmair and et al., “Puf modeling attacks on simulated and silicon data,”
IEEE Transactions on Information Forensics and Security, vol. 8, pp. 1876–
1891, Nov. 2013.

[61] J. Delvaux, “Machine-learning attacks on polypufs, ob-pufs, rpufs, lhs-pufs,
and puf–fsms,” IEEE Transactions on Information Forensics and Security,
vol. 14, pp. 2043–2058, Aug. 2019.

[62] J. Delvaux, Security Analysis of PUF-Based Key Generation and Entity
Authentication. PhD thesis, PhD Thesis, 2017.

[63] M. E. S. Elrabaa, M. Al-Asli, and M. Abu-Amara, “Secure computing en-
claves using fpgas,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, pp. 593–604, March-April 2021.

[64] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and
N. Mentens, “Trusted configuration in cloud fpgas,” in 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 233–241, 2021.

[65] H. Xiao, K. Li, and M. Zhu, “Fpga-based scalable and highly concurrent convo-
lutional neural network acceleration,” in 2021 IEEE International Conference
on Power Electronics, Computer Applications (ICPECA), pp. 367–370, 2021.

[66] T.-H. Tsai, Y.-C. Ho, and M.-H. Sheu, “Implementation of fpga-based acceler-
ator for deep neural networks,” in 2019 IEEE 22nd International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 1–
4, 2019.

[67] Y. Zhou and J. Jiang, “An fpga-based accelerator implementation for deep
convolutional neural networks,” in 2015 4th International Conference on
Computer Science and Network Technology (ICCSNT), pp. 829–832, 2015.

[68] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, (New York,
NY, USA), p. 845–858, Association for Computing Machinery, 2020.

[69] M. K. Ahmed, J. Mandebi, S. K. Saha, and C. Bobda, “Multi-tenant cloud
fpga: on security,” 2022.

[70] S. Ince, D. Espes, G. Gogniat, R. Santoro, and J. Lallet, “Token-based au-
thentication and access delegation for hw-accelerated telco cloud solution,” in

134

135

2022 IEEE 11th International Conference on Cloud Networking (CloudNet),
pp. 109–117, 2022.

[71] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, “Deploying
multi-tenant fpgas within linux-based cloud infrastructure,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, dec 2021.

[72] S. Zeng, G. Dai, K. Zhong, H. Sun, G. Ge, K. Guo, Y. Wang, and H. Yang,
“Enable efficient and flexible fpga virtualization for deep learning in the
cloud,” in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’20, (New York, NY, USA), p. 317,
Association for Computing Machinery, 2020.

[73] G. Dessouky, A.-R. Sadeghi, and S. Zeitouni, “Sok: Secure fpga multi-
tenancy in the cloud: Challenges and opportunities,” in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 487–506, 2021.

[74] J. M. Mbongue, A. Shuping, P. Bhowmik, and C. Bobda, “Architecture sup-
port for fpga multi-tenancy in the cloud,” in 2020 IEEE 31st International
Conference on Application-specific Systems, Architectures and Processors
(ASAP), pp. 125–132, 2020.

[75] O. Knodel, P. Lehmann, and R. G. Spallek, “Rc3e: reconfigurable accelera-
tors in data centres and their provision by adapted service models,” in IEEE
International Conference on Cloud Computing (CLOUD), pp. 19–26, 2016.

[76] J. Lallet, A. Enrici, and A. Saffar, “Fpga-based system for the acceleration of
cloud microservices,” in 2018 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), pp. 1–5, 2018.

[77] B. Janßen, F. Korkmaz, H. Derya, M. Hübner, M. L. Ferreira, and J. C.
Ferreira, “Towards a type 0 hypervisor for dynamic reconfigurable systems,”
in 2017 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pp. 1–7, 2017.

[78] “vsphere.” https://www.vmware.com/products/vsphere.html. Accessed on
July 21, 2023.

[79] “Hyper-v.” https://learn.microsoft.com/en-us/virtualization/
hyper-v-on-windows/about/. Accessed on July 21, 2023.

[80] “Kvm.” https://www.linux-kvm.org/. Accessed on July 21, 2023.
[81] “Xen.” https://xenproject.org/. Accessed on July 21, 2023.
[82] “Docker.” https://www.docker.com/. Accessed on July 21, 2023.
[83] “Podman.” https://podman.io/. Accessed on July 21, 2023.
[84] “Containerd.” https://containerd.io/. Accessed on July 21, 2023.

135

https://www.vmware.com/products/vsphere.html
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.linux-kvm.org/
https://xenproject.org/
https://www.docker.com/
https://podman.io/
https://containerd.io/

BIBLIOGRAPHY

[85] “Kubernetes.” https://kubernetes.io/. Accessed on July 21, 2023.
[86] “Docker swarm.” https://docs.docker.com/engine/swarm/. Accessed on

July 21, 2023.
[87] “Apache mesos.” https://mesos.apache.org//. Accessed on July 21, 2023.
[88] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on fpga virtualiza-

tion,” in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), pp. 131–1317, 2018.

[89] O. Knodel, P. R. Genßler, F. Erxleben, and R. G. Spallek, “Fpgas and the
cloud – an endless tale of virtualization, elasticity and efficiency,” 2019.

[90] A. Vaishnav, K. D. Pham, J. Powell, and D. Koch, “Fos: A modular fpga op-
erating system for dynamic workloads,” ACM Trans. Reconfigurable Technol.
Syst., vol. 13, sep 2020.

[91] A. Brant and G. G. Lemieux, “Zuma: An open fpga overlay architecture,”
in 2012 IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, pp. 93–96, 2012.

[92] O. Knodel, P. Genssler, and R. Spallek, “Virtualizing reconfigurable hardware
to provide scalability in cloud architectures,” 09 2017.

[93] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. Reinhardt, A. Caulfield, E. Chung, and
D. Burger, “A configurable cloud-scale dnn processor for real-time ai,” in
Proceedings of the 45th International Symposium on Computer Architecture,
2018, ACM, June 2018.

[94] D. R. E. Gnad, V. Meyers, N. M. Dang, F. Schellenberg, A. Moradi, and
M. B. Tahoori, “Stealthy logic misuse for power analysis attacks in multi-
tenant fpgas,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1012–1015, 2021.

[95] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Mitigating electrical-level
attacks towards secure multi-tenant fpgas in the cloud,” vol. 12, aug 2019.

[96] O. Glamočanin, A. Kostić, S. Kostić, and M. Stojilović, “Active wire fences
for multitenant fpgas,” in 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), pp. 13–20, 2023.

[97] J. Krautter, D. R. Gnad, F. Schellenberg, A. Moradi, and M. B. Tahoori,
“Active fences against voltage-based side channels in multi-tenant fpgas,”
in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–8, 2019.

136

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://mesos.apache.org//

137

[98] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “Deepstrike: Remotely-guided fault
injection attacks on dnn accelerator in cloud-fpga,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC), pp. 295–300, 2021.

[99] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits for cloud
fpga attacks,” in 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL), pp. 231–235, 2020.

[100] T. La, K. Pham, J. Powell, and D. Koch, “Denial-of-service on fpga-based cloud
infrastructures — attack and defense,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2021, p. 441–464, Jul. 2021.

[101] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-jam:
Remote temperature and voltage fault attack on fpgas using memory colli-
sions,” in 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 48–55, 2019.

[102] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud fpgas: A
survey,” CoRR, vol. abs/2005.04867, 2020.

[103] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire leakage
with ring oscillators in cloud fpgas,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL), pp. 45–50, 2019.

[104] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka,
“Oscillator without a combinatorial loop and its threat to fpga in data centre,”
Electronics Letters, vol. 55, no. 11, pp. 640–642, 2019.

[105] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure, “Advanced
features and industrial applications of fpgas—a review,” IEEE Transactions
on Industrial Informatics, vol. 11, no. 4, pp. 853–864, 2015.

[106] H. Nassar, H. AlZughbi, D. R. E. Gnad, L. Bauer, M. B. Tahoori, and
J. Henkel, “Loopbreaker: Disabling interconnects to mitigate voltage-based
attacks in multi-tenant fpgas,” in 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1–9, 2021.

[107] G. Provelengios, D. Holcomb, and R. Tessier, “Mitigating voltage attacks in
multi-tenant fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 14, jul
2021.

[108] S. Donchez and X. Wang, “Memory isolation for multi-tenant data integrity
in cloud mpsoc fpgas,” in 2022 IEEE 13th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON), pp. 0515–
0521, 2022.

137

BIBLIOGRAPHY

[109] E. Karabulut, A. Awad, and A. Aysu, “Ss-axi: Secure and safe access con-
trol mechanism for multi-tenant cloud fpgas,” in 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2023.

[110] I. Giechaskiel, S. Tian, and J. Szefer, “Cross-vm covert- and side-channel at-
tacks in cloud fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 16, dec
2022.

[111] H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “Meetgo: A trusted execution
environment for remote applications on fpga,” IEEE Access, vol. 9, pp. 51313–
51324, 2021.

[112] Z. Zhu, A. X. Liu, F. Zhang, and F. Chen, “Fpga resource pooling in cloud
computing,” IEEE Transactions on Cloud Computing, vol. 9, pp. 610–626,
April-June 2021.

[113] E. Karabulut, A. Awad, and A. Aysu, “Ss-axi: Secure and safe access con-
trol mechanism for multi-tenant cloud fpgas,” in 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2023.

[114] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi, and
B. Kasikci, “A hypervisor for shared-memory fpga platforms,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, (New York,
NY, USA), p. 827–844, Association for Computing Machinery, 2020.

[115] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 845–858, 2020.

[116] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable fabric
with amorphos,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), (Carlsbad, CA), pp. 107–127, USENIX
Association, October 2018.

[117] D. Korolija, T. Roscoe, and G. Alonso, “Do os abstractions make sense
on fpgas?,” in 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 991–1010, USENIX Association, November
2020.

[118] “Json web token.” https://jwt.io/.
[119] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” RFC 7519,

Internet Engineering Task Force (IETF), 2015.
[120] “O-ran documentation.” https://docs.o-ran-sc.org/en/latest/index.

html.

138

https://jwt.io/
https://docs.o-ran-sc.org/en/latest/index.html
https://docs.o-ran-sc.org/en/latest/index.html

139

[121] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job: Remote power analysis attacks on fpgas,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1111–1116, 2018.

[122] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel attacks,” in
2018 IEEE Symposium on Security and Privacy (SP), pp. 229–244, 2018.

[123] Y. Luo, C. Gongye, S. Ren, Y. Fei, and X. Xu, “Stealthy-shutdown: Practical
remote power attacks in multi-tenant fpgas,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD), (Hartford, CT, USA), pp. 545–552,
2020.

[124] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote power side-
channel attacks on bnn accelerators in fpgas,” in 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), (Grenoble, France),
pp. 1639–1644, 2021.

[125] “Op-tee, a tee-based operating system.” https://www.op-tee.org/.
[126] M. Grinberg, “Flask: A lightweight web application framework,” 2018. https:

//palletsprojects.com/p/flask/.
[127] C. Herder, M. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable func-

tions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, pp. 1126–
1141, Aug. 2014.

[128] O. Mutlu, “The rowhammer problem and other issues we may face as mem-
ory becomes denser,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pp. 1116–1121, 2017.

[129] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar, “Jackhammer: Efficient rowhammer on heterogeneous fpga-cpu plat-
forms,” arXiv preprint arXiv:1912.11523, 2019.

[130] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting rowhammer: An experimental analysis of modern
dram devices and mitigation techniques,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp. 638–651,
2020.

[131] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A survey of
ais-20/31 compliant trng cores suitable for fpga devices,” in 2016 International
Conference on Field-Programmable Logic and Applications (FPL), pp. 1–10,
2016.

[132] E. Barker and J. Kelsey, “Nist released special publication (sp) 800-90a revision
1: Recommendation for random number generation using deterministic random
bit generators,” National Institute of Standards and Technology, June 2015.

139

https://www.op-tee.org/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/

BIBLIOGRAPHY

[133] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for
key management, part 1: General,” NIST Special Publication, pp. 51–54, 2016.

[134] O.-R. W. G. 11, “Security requirements specifications v7.0,” tech. rep., O-
RAN, 2023. Version 7.0.

[135] O.-R. W. G. 11, “O-ran security threat modeling and remediation analysis,”
tech. rep., O-RAN, Alfter, Germany, 2023. Version 6.0.

[136] O.-R. W. G. 11, “Study on security for o-cloud,” tech. rep., O-RAN, 2023.
Version 4.0.

[137] 3rd Generation Partnership Project, “3gpp tr 33.848 v0.14.0. technical spec-
ification group services and system aspects; security aspects; study on secu-
rity impacts of virtualisation (release 18),” Technical Report 33.848, Technical
Specification Group Services and System Aspects, 2023. Version 0.14.0.

[138] N. Giri and N. N. Anandakumar, “Design and analysis of hardware tro-
jan threats in reconfigurable hardware,” in 2020 International Conference
on Emerging Trends in Information Technology and Engineering (ic-ETITE),
(Vellore, India), pp. 1–5, 2020.

[139] W. Danesh, J. Banago, and M. Rahman, “Turning the table: Using bitstream
reverse engineering to detect fpga trojans,” Journal of Hardware Systems and
Security, vol. 5, pp. 237–246, 2021.

[140] R. Mukherjee and R. S. Chakraborty, “Novel hardware trojan attack on acti-
vation parameters of fpga-based dnn accelerators,” IEEE Embedded Systems
Letters, vol. 14, pp. 131–134, September 2022.

[141] B. Hanindhito, N. Ahmadi, H. Hogantara, A. Arrahmah, and T. Adiono,
“Fpga implementation of modified serial montgomery modular multiplication
for 2048-bit rsa cryptosystems,” May 2015.

[142] M. M. Sadeghi, S. Timarchi, and M. Fazlali, “High-performance memory al-
location on fpga with reduced internal fragmentation,” IEEE Access, vol. 11,
pp. 66672–66681, 2023.

[143] T. Liang, J. Zhao, L. Feng, S. Sinha, and W. Zhang, “Hi-dmm: High-
performance dynamic memory management in high-level synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2555–2566, 2018.

[144] Z. Xue and D. B. Thomas, “Sysalloc: A hardware manager for dynamic
memory allocation in heterogeneous systems,” in 2015 25th International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–7,
2015.

140

141

[145] R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero, A. Lonardo, P. S.
Paolucci, D. Rossetti, F. Simula, L. Tosoratto, and P. Vicini, “Virtual-to-
physical address translation for an fpga-based interconnect with host and
gpu remote dma capabilities,” in 2013 International Conference on Field-
Programmable Technology (FPT), pp. 58–65, 2013.

[146] M. Kaiiali, S. Sezer, and A. Khalid, “Cloud computing in the quantum era,”
in 2019 IEEE Conference on Communications and Network Security (CNS),
pp. 1–4, 2019.

[147] M. Mosca, “Cybersecurity in an era with quantum computers: Will we be
ready?,” IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

[148] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549,
no. 7671, pp. 188–194, 2017.

[149] “Preparing for post-quantum cryptography.” https://www.ncsc.gov.uk/
whitepaper/next-steps-preparing-for-post-quantum-cryptography.

141

https://www.ncsc.gov.uk/whitepaper/next-steps-preparing-for-post-quantum-cryptography
https://www.ncsc.gov.uk/whitepaper/next-steps-preparing-for-post-quantum-cryptography

PUBLICATIONS

Apart from the primary content presented in this thesis, other works have also
been published. They are listed below in a chronological order with a brief summary.

1. Semih Ince, David Espes, Guy Gogniat, Julien Lallet, and Renaud Santoro.
2022. OAuth 2.0-based authentication solution for FPGA-enabled cloud com-
puting. In Proceedings of the 14th IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC ’21). Association for Computing
Machinery, New York, NY, USA, Article 13, 1–6.
https://doi.org/10.1145/3492323.3495635

Summary: This work provided a token-based FPGA access framework by
adapting OAuth 2 to FPGA clouds. At the time of writing, no other token-
based FPGA access scheme exists. This work laid the foundation of TokSek by
providing an architecture for FPGA cloud. The described framework leverages
a trusted authority to act as a security anchor. This work gives an emphasis
on FPGA-user authentication as it is a crucial element to establish a secure
acceleration environment.

2. Semih Ince, David Espes, Guy Gogniat, Renaud Santoro and Julien Lallet,
Token-based authentication and access delegation for HW-accelerated telco
cloud solution, 2022 IEEE 11th International Conference on Cloud Networking
(CloudNet), Paris, France, 2022, pp. 109-117,
DOI: 10.1109/CloudNet55617.2022.9978865.

Summary: This work extends the TokSek framework capabilities by al-
lowing a user to share its allocated device with another user. This mechanism
is particularly applicable in telecommunication context where one network
provider wants to give network access to another provider. Additionally, ex-
perimental results of TokSek are exposed and a low latency solution is show-
cased.

3. Semih Ince, David Espes, Guy Gogniat, Renaud Santoro and Julien Lallet,
"Authentication and Confidentiality in FPGA-based Clouds" in "Security of
FPGA-Accelerated Cloud Computing Environments," J. Szefer and R. Tessier,
Eds. Springer, 1st ed., 2024, pp. 1-27, DOI: 10.1007/978-3-030-14540-0

142

143

Summary: In this book chapter, an extensive state of the art is provided
to highlight the importance of authentication in FPGA clouds. In fact, au-
thentication techniques are described and compared against the deployments
in the literature. Direct authentication and authentication with a third-party
is explained as it is a popular method in FPGA cloud literature. Various draw-
backs are identified in and some mitigation from the literature are proposed
as a solution. Then, the Toksek framework is proposed to address some of the
identified challenges.

4. Semih Ince, David Espes, Guy Gogniat, Renaud Santoro and Julien Lallet,
"Linkguard", patent registration number: 20235874,
https://patenttitietopalvelu.prh.fi/en/

Summary: Linkguard is a patented hardware-based security solution that
creates confidential channels to third-party cloud-based FPGAs without re-
lying on the cloud provider. The hardware-based protocol ensures isolation
from other stakeholders and protects user data in the FPGA.

143

LIST OF FIGURES

2-1 Most common FPGA-based cloud architecture 13

2-2 Microsoft Catapult architecture . 14

2-3 Current FPGA-based cloud mechanisms 14

2-4 AWS F1 instance usage. 15

2-5 Man-in-the-middle attack configuration. 16

2-6 Arm TrustZone architecture . 19

2-7 Architecture of SGX-FPGA : an extension of Intel SGX to FPGA
platforms. Green modules are trusted 20

2-8 Public Key Infrastructure mechanisms 26

2-9 High level view of the OAUTH2 protocol 27

2-10 Common FPGA access scheme . 29

2-11 Example of spatial multi-tenancy for FPGA 34

2-12 Example of a ring oscillator using three inverters 39

2-13 ShEF shielded enclave architecture 45

3-1 Outside FPGA threat . 52

3-2 Outside FPGA threat . 53

3-3 Difference between standard OAuth 2 and TokSek OAuth 2 60

3-4 High Level view of access delegation architecture including a trusted
authority . 61

3-5 The deployment and token generation phase of TokSek 63

3-6 CP introduces the user to the TA, generates and manages authorization
code. User authenticates himself with the TA and obtains his authorization
code. 65

3-7 The TA generates the access token for the user 67

144

145

3-8 Overview of the access delegation protocol between two TOs. The
red link represents the child token access, the blue link represents the
access obtained with the standard TokSek flow 69

3-9 High Level view of access delegation architecture including a trusted
authority . 69

3-10 Diagram for TO to TO FPGA access sharing 70

3-11 High level view of the TokSek architecture 74

3-12 High level view of the TokSek deployment 75

4-1 An overview on the architecture of TokSek with all its components . . 83

4-2 Diagram of a user connecting to a target FPGA 84

4-3 Example of memory occupancy with three users 89

4-4 Example of memory allocation procedure with fragmentation 91

4-5 Proposed online key generation protocol 98

4-6 Architecture of a TERO-TRNG . 99

4-7 Proposed online key generation protocol 100

4-8 O-RAN hardware security architecture overview 102

4-9 Generation of the load key . 106

4-10 Shield overview with the proposed upgrade 107

4-11 All TokSek modules and their frequency 110

4-12 Example of memory allocation procedure with fragmentation 118

5-1 Example of cloud deployment using Kubernetes 127

145

LIST OF TABLES

2-1 Resource utilization of 3 FPGA-based neural network accelerators . . 34

2-2 Comparison with prior works on multi-tenant cloud FPGA architecture 46

3-1 Description of variables used in Equations 3-19 through 3-22. 77

3-2 Performance Results . 80

4-1 Logical resource utilization for the components of the HSM developed
using high-level-synthesis . 112

4-2 Comparison between RTL and HLS modules developed for the HSM 113

4-3 Resource consumption of the upgraded shielded enclave on the ZCU
102 . 114

4-4 Resource consumption of the upgraded shielded enclave on the ZCU
102 . 115

4-5 Resource consumption of the cryptographic modules implemented in-
side the shield . 115

4-6 Latency of the auth_token module 117

4-7 Latency of the allocate_mem module 117

4-8 Latency of the addr_translate module for the translation of the ad-
dress 0x05 . 119

4-9 Timing results of Linkguard . 119

4-10 Memory speeds with the shield . 120

146

Titre : Framework de sécurité avec token pour de l’accélération cloud FPGA multi-utili-
sateurs sécurisée basé

Mots clés : FPGA, sécurité, cloud,

Résumé: La demande croissante en
puissance de calcul provient de la
convergence d'applications intensives en
données telles que l'apprentissage
automatique, l'intelligence artificielle et
l'analyse de big data, ainsi que de l'essor
des technologies comme la 5G, l'Internet
des objets (IoT) et les systèmes autonomes.
L'informatique en nuage offre une solution
évolutive et à la demande pour ces besoins
en calcul haute performance, permettant
aux organisations de tirer parti
d'environnements virtualisés sans avoir à
investir massivement dans des
infrastructures matérielles dédiées. Parmi
les dispositifs de calcul, les Field-
Programmable Gate Arrays (FPGAs) se
distinguent par leur reconfigurabilité et leur
capacité à accélérer efficacement des
charges de travail spécifiques, offrant des
avantages par rapport aux processeurs
(CPU) et aux unités de traitement graphique
(GPU).

Dans les environnements de cloud FPGA
multi-utilisateurs, il est crucial de garantir
la confidentialité des données, l'isolement
des utilisateurs et un accès sécurisé.
Cette thèse présente TokSek, un cadre
de sécurité pour les clouds FPGA multi-
utilisateur, visant à protéger les données
des utilisateurs tout en maintenant un
faible impact sur les performances.
TokSek étend le cadre OAuth 2 pour un
accès sécurisé aux FPGAs via une
authentification par jeton et applique le
contrôle d'accès à travers un module de
sécurité matériel. De plus, le protocole
breveté Linkguard établit un canal de
communication confidentiel basé sur une
approche de zéro confiance entre les
utilisateurs et les FPGAs dans des
environnements de cloud non sécurisés.

Title: TokSek: Token-based multi-tenant cloud FPGA security framework for secure accelera-
tion

Keywords : FPGA, security, cloud, token

Abstract: The growing demand for
computing power stems from the
convergence of data-intensive applications
like machine learning, artificial intelligence,
and big data analytics, alongside the rise of
technologies such as 5G, IoT, and
autonomous systems. Cloud computing
provides a scalable, on-demand solution for
these high-performance computing needs,
allowing organizations to leverage virtualized
environments without heavy investments in
dedicated hardware. Among computing
devices, Field-Programmable Gate Arrays
(FPGAs) stand out due to their
reconfigurability and ability to accelerate
specific workloads efficiently, offering
advantages over CPUs and GPUs

In multi-tenant FPGA cloud environments,
ensuring data confidentiality, user isolation,
and secure access is critical. This thesis
introduces TokSek, a security framework for
multi-tenant FPGA clouds aimed at protecting
user data while maintaining low performance
overhead. TokSek extends the OAuth 2
framework for secure FPGA access through
token-based authentication and enforces
access control via a hardware security module.
Additionally, the patented Linkguard protocol
establishes a zero-trust confidential
communication channel between users and
FPGAs in untrusted cloud environments.

	Temp2.pdf
	Pages from TokSek -Token-based multi-tenant Cloud FPGA security framework for secure acceleration.pdf
	theseV6.pdf
	Introduction
	Context
	Objective of this thesis

	State Of The Art
	FPGA-based cloud
	FPGA-based cloud architectures
	FPGA-based cloud acceleration systems
	FPGA-based Cloud without a Trusted Authority

	Trusted execution environments and enclaves for FPGA
	Introduction to trusted execution environments
	Major frameworks for trusted execution environment
	Security vulnerabilities of trusted execution environments

	Authentication techniques
	Direct authentication
	Authentication involving a third party

	Authentication in FPGA cloud environments
	Bitstream authentication for FPGA cloud
	FPGA and user authentication
	TA-based solutions for FPGA and user authentication

	FPGA architecture and multi-tenancy for cloud computing
	Lack of efficiency in current FPGA cloud deployment
	FPGA virtualization solutions for multi-tenant cloud computing
	Security vulnerabilities of cloud-based multi-tenant FPGA
	Hardware-based attacks
	Mitigation for hardware-based vulnerabilities

	Multi-tenant FPGA architecture for cloud computing

	Access control mechanisms for multi-tenant FPGA clouds
	Summary

	Token-based multi-tenant FPGA cloud security
	Modelization of the framework
	Threat model
	Threats outside the FPGA
	Threats inside the FPGA

	TokSek modelization

	Introduction to TokSek
	Authorization and token infrastructure
	OAuth 2 adaptation to FPGA cloud
	JSON Web Tokens for FPGA resource sharing

	TokSek framework
	Overview
	User resource request and user certificate
	Authorization code grant
	Token generation and access management

	Access delegation between two TOs without CP implication
	User-FPGA interactions
	User and FPGA Secure Channel
	Access Control with Tokens
	FPGA reconfiguration with bitstreams

	Implementation and analysis of software-based TokSek
	Implementation details
	Theoretical Performance
	Security Analysis
	Experimental Performances
	Access token request and resource access
	Third-party FPGA access delegation between users
	Bitstream reconfiguration from the embedded OS

	Summary

	Hardware approach for TokSek
	Hardware security module for token-based multi-tenant FPGA
	Introduction of the HSM
	Entities
	Threat model
	auth_token and token_parse functions

	Resource allocation
	Allocating the resources of ui inside the HSM
	Memory allocation function

	Access control on allocated resources
	Policy verification function
	Address translation function

	The attacker perspective

	Linkguard : Zero-trust confidential channel with cloud resources
	Introduction
	Modelization of Linkguard
	Threat model

	Description of Linkguard
	Key generation using a TRNG
	NIST recommendations for TRNG key generation
	Encryption and communication
	Key reception and protection

	Practical application example for Linkguard

	Shielded enclave for FPGA logic for secure acceleration
	Shielded enclave mechanisms
	Outside the FPGA
	Inside The FPGA

	Threat model
	Vulnerability analysis
	Proposed upgrade to the shielded enclave

	Implementation and results
	Resource utilization
	HSM
	Linkguard
	Upgraded shielded enclave

	Latency
	HSM
	Linkguard
	Upgraded shielded enclave

	Summary

	Conclusion
	Summary
	Future works

	Bibliography

	MathStic page de résumé.pdf

