
HAL Id: tel-04782811
https://theses.hal.science/tel-04782811v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collection, analysis and harnessing of communication
flows for cyber-attack detection.

Almamy Toure

To cite this version:
Almamy Toure. Collection, analysis and harnessing of communication flows for cyber-attack detec-
tion.. Computer Science [cs]. Université Polytechnique Hauts-de-France, 2024. English. �NNT :
2024UPHF0023�. �tel-04782811�

https://theses.hal.science/tel-04782811v1
https://hal.archives-ouvertes.fr

Université Polytechnique Hauts-de-France

INSA Hauts-de-France

Doctoral School Polytechnique Hauts-de-France (ED PHF n°635)

Laboratory of Industrial and Human Automation control Mechanical engineering
and Computer science (LAMIH – UMR CNRS 8201)

IBM Services Center France

Thesis submitted and presented for PhD graduation in
Computer Science and Application

By Almamy TOURE

On July 05, 2024 in Valenciennes

Collection, analysis and harnessing of communication
flows for cyber-attacks detection. © 2024 is licensed under Creative Commons

Attribution-NonCommercial 4.0 International.

Composition of the Jury

David Espes ReviewerProfessor, Université de Bretagne Occidentale

Florence Sedes ReviewerProfessor, Université Toulouse3 Paul Sabatier

Nathalie Mitton PresidentResearch Director, Inria Lille-Nord Europe

Frédérique Laforest ExaminerProfessor, INSA Lyon

Antoine Gallais Co-DirectorProfessor, UPHF - INSA Hauts-de-France

Thierry Delot Co-DirectorProfessor, UPHF

Youcef Imine Co-supervisorAssociate Professor, UPHF

https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1
https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1

Université Polytechnique Hauts-de-France

INSA Hauts-de-France

École Doctorale Polytechnique Hauts-de-France (ED PHF n°635)

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et
Humaines (LAMIH – UMR CNRS 8201)

IBM Services Center France

Thèse soumise et présentée pour obtenir le grade de
Docteur en Informatique et Applications

Par Almamy TOURE

Le 05 Juillet 2024 à Valenciennes

Collecte, analyse et exploitation des flux de
communication pour la détection de cyberattaques. © 2024

sous licence Creative Commons Attribution-NonCommercial 4.0 International.

Composition du jury

David Espes RapporteurProfeseur, Université de Bretagne Occidentale

Florence Sedes RapporteurProfesseure, Université Toulouse3 Paul Sabatier

Nathalie Mitton PrésidenteDirectrice de Recherche, Inria Lille-Nord Europe

Frédérique Laforest ExaminateurProfesseure, INSA Lyon

Antoine Gallais Co-DirecteurProfesseur, UPHF - INSA Hauts-de-France

Thierry Delot Co-DirecteurProfesseur, UPHF

Youcef Imine Co-EncadrantMaître de conférences, UPHF

https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1

Abstract
The increasing complexity of cyberattacks, characterized by a diversification of techniques and tactics,

an expansion of attack surfaces, and a growing interconnection of applications with the Internet, makes
network traffic management in professional environments imperative. This management has become a
crucial element in ensuring the security of exchanged data and preventing the compromise of information
systems. In this regard, the collection and analysis of communication flows and other security events play
a fundamental role for businesses across all sectors.

Within the scope of this PhD thesis, we have focused on enterprise network traffic management with
the aim of detecting cyberattacks using dynamic approaches. This management involves comprehensive
collection of communication flows, meticulous end-to-end analysis, and the utilization of these data to
differentiate between legitimate and malicious traffic. The objective is to ensure the detection of attack
scenarios, whether they are simple or complex, known or unknown, while addressing challenges related to
the encrypted and obfuscated nature of data flows.

Faced with the diversity of existing solutions, ranging from static rule-based correlation approaches to
obfuscation techniques, this thesis proposes an innovative approach based on the classification of network
flows using one-dimensional convolutional neural networks (1D-CNN). This approach builds upon the fun-
damental principles of network flows and CNN, aiming to analyze the different communication phases of a
network flow to extract generalist attributes and combine them with feature detection mechanisms unique
to CNN. This dual extraction enables a better classification of network flows.

The effectiveness of our approach has been demonstrated through its evaluation on datasets from both in-
dustrial and community contexts. Our results have shown a significant reduction in the number of attributes
used for flow classification, as well as a decrease in model execution time. Furthermore, our approach has
maintained a high level of precision while reducing the rate of false detections.

Despite the effectiveness of known network traffic classification, it does not allow for the detection of
new types of attacks. Indeed, cyber threats are constantly evolving, and zero-day attacks, which exploit
previously unknown vulnerabilities, are becoming increasingly common. To address this challenge, this
thesis proposes an innovative detection framework that combines supervised and unsupervised algorithms
for effective zero-day attack detection. The framework encompasses the entire detection process, from data
collection to anomaly identification. Traffic classification is performed using machine learning techniques,
while anomaly identification is based on silhouette score, a measure of similarity between data points.
Online learning is also integrated into the framework, enabling continuous model updates based on new
collected data. This approach ensures effective detection of zero-day attacks even in a constantly evolving
environment.

Finally, this thesis highlights a significant issue in current research regarding the datasets used to evalu-
ate machine learning and deep learning models in the field of intrusion detection. These datasets are often
outdated, do not reflect the real context of information systems, and are not tailored to the specific needs of
industrial and scientific communities.

To address this issue, this thesis proposes a synthetic data generator that creates recent datasets adapted
to the original context while ensuring the confidentiality of the original information system through
anonymization. Moreover, it is not limited in terms of attack scenarios, allowing for testing intrusion detec-
tion models in varied and realistic conditions. The synthetic data generator relies on three major techniques
to validate the generated data. Thus, this synthetic data generator enhances the relevance and reliability of
intrusion detection model evaluations, contributing to the advancement of research in this crucial domain
for information system security.

Abstract
La complexité croissante des cyberattaques, caractérisée par une diversification des techniques et tac-

tiques, une expansion des surfaces d’attaque et une interconnexion croissante d’applications avec Internet,
rendent impérative la gestion du trafic réseau en milieu professionnel. Cette gestion est devenue un élé-
ment crucial pour assurer la sécurité des données échangées et prévenir la compromission des systèmes
d’information. Dans cette optique, la collecte et l’analyse des flux de communication ainsi que d’autres
événements de sécurité jouent un rôle fondamental pour les entreprises de tous secteurs.

Dans le cadre de ce projet de recherche, nous nous sommes penchés sur la gestion du trafic réseau en
entreprise dans le but de détecter les cyberattaques en utilisant des approches dynamiques. Cette gestion
implique la collecte exhaustive des flux de communication, une analyse minutieuse de bout en bout, et
l’exploitation de ces données pour différencier le trafic légitime du trafic malveillant. Ce processus vise à
garantir la détection des scénarios d’attaques, qu’ils soient simples ou complexes, connus ou inconnus, tout
en tenant compte des défis liés à la nature chiffrée et obfusquée des flux de données.

Face à la diversité des solutions existantes, allant des approches statiques de corrélation manuelle des
règles aux techniques d’obfuscation, cette thèse propose une approche novatrice basée sur la classification
des flux réseau à l’aide de réseaux de neurones à convolution (1D-CNN). Cette approche repose sur les
principes fondamentaux des flux réseau et des CNN, visant à analyser les différentes phases de communi-
cation d’un flux réseau afin d’extraire des attributs généralistes et à les combiner avec les mécanismes de
détection de caractéristiques propres aux CNN. Cette double extraction permet une meilleure classification
des flux réseau. L’efficacité de notre approche a été démontrée à travers son évaluation sur des jeux de
données provenant du contexte industriel et de la communauté. Nos résultats ont montré une réduction
significative du nombre d’attributs utilisés pour la classification des flux, ainsi qu’une diminution du temps
d’exécution des modèles. De plus, notre approche a permis de maintenir un niveau élevé de précision tout
en réduisant le taux de fausses détections.

Malgré l’efficacité de la classification du trafic réseau connu, elle ne permet pas de détecter les nouveaux
types d’attaques. En effet, les cybermenaces évoluent constamment et les attaques zero-day, qui exploitent
des vulnérabilités encore inconnues, sont de plus en plus fréquentes. Pour faire face à ce défi, cette thèse
propose un framework de détection innovant. Ce framework combine des algorithmes supervisés et non
supervisés pour une détection efficace des attaques zero-day. Il traite l’ensemble du processus de détection,
depuis la collecte des données jusqu’à l’identification des anomalies. La classification du trafic est effectuée
en utilisant des techniques d’apprentissage automatique, tandis que l’identification des anomalies est basée
sur le score de silhouette, une mesure de la similarité entre les données. L’apprentissage en ligne est
également intégré dans le framework, permettant ainsi une mise à jour continue du modèle de détection en
fonction des nouvelles données collectées. Cette approche permet de garantir une détection efficace des
attaques zero-day, même dans un environnement en constante évolution

Enfin, cette thèse soulève un problème important dans l’état actuel de la recherche concernant les jeux
de données utilisés pour évaluer les modèles de machine learning et de deep learning dans le domaine de la
détection d’intrusion. En effet, ces jeux de données sont souvent obsolètes, ne reflètent pas le contexte réel
des systèmes d’information et ne sont pas adaptés aux besoins spécifiques des communautés industrielles
et scientifiques.

Pour répondre à cette problématique, cette thèse propose un générateur de données de synthèse qui
permet de créer des jeux de données récents et adaptés au contexte d’origine, tout en garantissant la con-
fidentialité du système d’information d’origine grâce à un processus d’anonymisation. De plus, il n’est
pas limité en termes de scénarios d’attaques, ce qui permet de tester les modèles de détection d’intrusion
dans des conditions variées et réalistes et s’appuie sur trois techniques majeures pour valider les données
générées. Ce générateur de données de synthèse permet ainsi de renforcer la pertinence et la fiabilité des
évaluations des modèles de détection d’intrusion, tout en contribuant à l’avancement de la recherche dans
ce domaine crucial pour la sécurité des systèmes d’information.

2

Acknowledgements
Je tiens à exprimer ma profonde gratitude envers le Tout-Puissant qui m’a donné la force, le courage,

l’abnégation, l’endurance et toute l’énergie nécessaires pour mener à bien ce projet et ainsi réaliser un rêve
d’enfance.

Après plus de trois années précieuses dans mon parcours personnel et professionnel, je tiens tout
d’abord à remercier les deux pères fondateurs de ce projet de recherche. A Antoine Gallais, je lui témoigne
toute ma reconnaissance pour tout depuis nos premiers échanges. Robin Giraudo, qui a été un acteur
majeur dans mon recrutement et a fortement contribué à mon évolution au sein du SOC d’IBM CIC
France, a donné son feu vert dès les premiers échanges pour initier ce projet, je lui témoigne toute ma
reconnaissance. Merci à ces deux personnes sans lesquelles ce projet n’aurait jamais existé.

Un projet de recherche implique un encadrement, un suivi et une direction. Je tiens donc à remercier du
fond du cœur mes deux directeurs de thèse, Antoine Gallais et Thierry Delot, pour le temps, la disponibilité,
les précieux conseils, le suivi et la bienveillance qu’ils m’ont apportés. À Youcef Imine, mon encadrant,
je tiens à lui exprimer mes remerciements infinis pour les échanges techniques, l’attention portée aux
moindres détails, les conseils quotidiens et la proximité permanente. À ces trois personnes, un simple
merci ne suffit pas.

Je tiens à saluer les différentes équipes et personnes avec lesquelles j’ai collaboré au sein d’IBM, tant
les équipes et collègues du SOC, qui m’ont accompagné et ont toujours répondu présents, que les autres
équipes et personnes pour leur disponibilité constante. À mes collègues de l’équipe Threat OPS qui sont
partis ou qui sont toujours là, merci pour ces moments d’échanges, de partage et ces afterworks tous les
jeudis: vous êtes les meilleurs. A Alexis Semnont, l’avoir en alternance a été d’une aide précieuse pour
l’aboutissement de ces travaux. Je le remercie et le souhaite le meilleur pour l’avenir. Pourquoi pas une
continuité de certains travaux initiés?

Je salue toute l’administration et tous mes collègues doctorants et docteurs au sein du LAMIH pour les
différents échanges, conseils et activités partagées ensemble. Vous avez été d’un soutien constant au cours
de ces trois dernières années: vous êtes au top, l’équipe du LAMIH.

Je remercie tous mes professeurs et encadrants, de l’école primaire à ces études de doctorat. Je ne
souhaite pas citer de noms de peur d’en oublier, mais je tiens à leur témoigner toute mon affection, ma
reconnaissance et mes remerciements les plus sincères. Si j’aime le monde académique et l’enseignement,
c’est en grande partie grâce à eux.

Enfin, je termine là où tout a commencé, mon entourage : mes parents, mes frères et sœurs, ma fiancée.
L’attention, l’affection et l’amour, les conseils et la présence de chacun d’entre eux m’ont donné la force et
le courage de poursuivre mes rêves et de surmonter les moments difficiles. Dédicace speciale à mon père
et ma mère qui m’ont toujours accompagné et soutenu quels que soient mes choix de vie!

"Tu sais mon fils, les voies de Dieu ne sont pas les nôtres. Retiens bien ceci : Les gagnants ne sont
pas ceux qui n’ont jamais chuté, ce sont ceux qui se relèvent à chaque fois." Ces belles paroles de M.
Claude Mabudu ont été un déclic dans ma vie!

"Dans la vie, rien n’est à craindre, tout est à comprendre.", dixit Marie Curie!

3

Contents

List of tables 6

List of figures 8

1 Introduction 11
1.1 Context . 11
1.2 Motivation and research challenges . 12
1.3 Our contributions . 13

1.3.1 Automated attack detection for known scenarios 13
1.3.2 Zero-day attack detection . 14
1.3.3 Synthetic data generation . 14
1.3.4 Impacts of contributions . 15

1.4 Outline of the manuscript . 16

2 Background of security operational in an industrial context 17
2.1 Introduction . 17
2.2 Fundamentals of network security . 17

2.2.1 Network flows - Flow collector 17
2.2.2 Events - Log source . 18
2.2.3 Framework MITRE ATT&CK 20

2.3 Attack detection and response products : IBM ecosystem 22
2.4 IBM generative AI products . 24
2.5 Conclusion . 25

3 Network security challenges & state-of-the-art 26
3.1 Introduction . 26
3.2 Major challenges . 26

3.2.1 Data privacy and integrity . 27
3.2.2 Identity and access management 27
3.2.3 Obsolescence and vulnerability management 28
3.2.4 Compliance and regulation . 29
3.2.5 Threat detection and response 29

3.3 Literature review for attack detection . 33
3.3.1 Traditional attack detection techniques 33
3.3.2 Automatic learning techniques 39
3.3.3 Zero-day detection approaches 43

3.4 Literature review for network information system data generation 46
3.4.1 Available datasets . 46
3.4.2 Synthesis data generation techniques 48

4

3.4.3 Summary . 51
3.5 Conclusion . 52

4 Automation and improvement of cyber-attacks detection via an industrial
IDS probe 53
4.1 Introduction . 53
4.2 Background . 54
4.3 Our proposal . 56

4.3.1 Our feature engineering method 56
4.3.2 Our classification model . 58

4.4 Performance evaluation . 61
4.4.1 Model performance on an industrial context: IBM dataset 61
4.4.2 A comparative analysis with the benchmarking dataset NSL-KDD 65
4.4.3 Complementary experiments with UNSW-NB15 dataset 68

4.5 Conclusion . 75

5 A framework for detecting zero-day exploits in network flows 76
5.1 Introduction . 76
5.2 Our proposal . 77

5.2.1 Data collection phase . 77
5.2.2 Supervised classification phase 79
5.2.3 Unsupervised classification phase 81
5.2.4 Correlation table phase . 82
5.2.5 Outlier detection phase . 83

5.3 Theorical analysis . 83
5.4 Performance evaluation . 87

5.4.1 Evaluation settings . 87
5.4.2 Framework phase 1: leveraging the IBM dataset 87
5.4.3 Framework phase 2: building the Target-Set 89
5.4.4 Framework phase 3: Cluster-Set building 90
5.4.5 Framework phase 4: correlation table 91
5.4.6 Framework phase 5: distance analysis for detecting zero-day . . . 92
5.4.7 Exploring the NSL-KDD dataset and conducting comparative

analysis . 94
5.5 Discussion and perspectives . 97
5.6 Conclusion . 98

6 Synthetic data generation 99
6.1 Introduction . 99
6.2 Our proposal . 100

6.2.1 Phase 1: Data collection and processing 101
6.2.2 Phase 2: Defining profiles with decision tree 101
6.2.3 Phase 3: The definition of the network hierarchy associating a

Profile with its Subnet ID . 102
6.2.4 Phase 4: Profile generation for sub-network 104
6.2.5 Phase 5: Anonymizing the generated synthetic data 104

6.3 Assessment and validation of generated data 105
6.3.1 Profiling validation technique 105
6.3.2 Statistical analysis validation technique 107

5

6.3.3 Discriminant model validation technique 108
6.4 Data extraction cases . 109

6.4.1 Case 1: Firewall events . 109
6.4.2 Case 2: Microsoft Security events 111

6.5 Conclusion and perspectives . 114

7 Conclusion, impacts and future work 116
7.1 Conclusion . 116
7.2 Impacts on the IBM ecosystem . 118

7.2.1 Detection of known attacks . 118
7.2.2 Detection of zero-day attacks . 118
7.2.3 Data generation . 119

7.3 Perspectives . 119

6

List of Tables

2.1 Various types of event logs. 19
2.2 MITRE ATT&CK Tactics, Techniques, Associated APT Groups, and

Data Sources. 21

3.1 Comparison of Zero-day Attack Detection Approaches. 45
3.2 Comparison of intrusion detection datasets with their main characteristics. 47

4.1 Features categories and related attributes. 58
4.2 Our CNN parameters. 61
4.3 Machine learning algorithms parameters. 62
4.4 IBM Dataset content validated with MITRE ATT&CK. 62
4.5 A comparison table in terms of binary classification using 2 families of

features. 63
4.6 Multi-class Classification with two families of features. 64
4.7 Multi-class Classification with all families of features. 65
4.8 The NSL-KDD dataset content. 66
4.9 Our Feature engineering on NSL-KDD dataset. 67
4.10 The evaluation results of our Model on the NSL-KDD dataset. 67
4.11 Comparison with the state of art based on NSL-KDD dataset. 68
4.12 The UNSW-NB15 dataset content. 69
4.13 Our Feature engineering on UNSW-NB15. 70
4.14 Binary Classification with LabelEncoder. 70
4.15 Binary Classification with OneHotEncoder. 71
4.16 Multi-class Classification with LabelEncoder. 73
4.17 Multi-class Classification with OneHotEncoder. 73

5.1 The classification of network flow features into different families. 79
5.2 An example of a correlation table. 82
5.3 IBM Dataset content validated with MITRE ATT&CK. 88
5.4 The multi-class classification with our CNN model. 89
5.5 Classification with boosting algorithms for zero-day 6. 90
5.6 Classification with boosting algorithms for zero-day 7. 90
5.7 Clustering scores for zero-day 6 and 7. 91
5.8 The correlation table for the evaluation data. 92
5.9 Data distribution for zero-day 6. 92
5.10 Online learning for zero-day 6. 93
5.11 Data distribution for zero-day 7. 94
5.12 Online learning for zero-day 7. 94
5.13 Classification with supervised algorithms. 95

7

5.14 Data distribution for zero-day attack Teardrop. 96
5.15 Online learning for zero-day attack Teardrop. 96
5.16 Comparing Approaches: Attack Coverage, Models, Accuracy. 97

6.1 Event Categories and Descriptions. 101
6.2 Data to anonymize. 106
6.3 Example 2 of firewall logs. 110
6.4 Classification report. 111
6.5 Example of Microsoft Security event logs. 113
6.6 Microsoft Authentication Events. 113

8

List of Figures

2.1 IBM SOC - Design. 23
2.2 IBM SOC - Reference Model. 24

3.1 SIEM Architecture proposed by Podzins et al. 31
3.2 Challenges with data collection and processing. 31

4.1 Flow definition. 54
4.2 Network Flow - Metadata. 55
4.3 Network Flow - Packet Encrypted. 55
4.4 Network Flow - Empty Payload. 56
4.5 Our proposed model. 57
4.6 Features Detector Layer. 59
4.7 Other Layers of Convolutional Neural Networks. 60
4.8 Number of epoch with accuracy and loss. 66
4.9 Binary Classification with LabelEncoder. 71
4.10 Confusion Matrix with LabelEncoder. 71
4.11 Learning Curves of Binary Classification with OneHotEncoder. 72
4.12 Confusion Matrix with OneHotEncoder. 72
4.13 Learning Curves of Multi-class Classification with LabelEncoder. 73
4.14 Confusion Matrix of Multi-class Classification with LabelEncoder. 74
4.15 Learning Curves of Multi-class Classification with OneHotEncoder. . . . 74
4.16 Confusion Matrix of Multi-class Classification with OneHotEncoder. . . . 75

5.1 Our proposed zero-day detection approach. 78
5.2 Data collection. 78
5.3 Our proposed model for data categorization. 79
5.4 Boosting technique. 81
5.5 Correlation with flow Id. 82
5.6 Determining the minimum distance (d-min) based on the cluster scores

calculated from the functions f1 and f2 for the IBM dataset. 92
5.7 Determining the minimum distance (d-min) based on the cluster scores

calculated from the functions f1 and f2 for the NSL-KDD dataset. 96

6.1 Our Model for Synthetic Data Generation. 100
6.2 Tree Structure of the firewall profiles. 110
6.3 Distribution of Event ID. 111
6.4 Distribution of Destination Port. 111
6.5 Tree Structure of the Microsoft Security Events. 112
6.6 Distribution of Event ID. 113
6.7 Distribution of Event ID and Event Process Name. 114

9

Publications

Journal articles:
• A framework for detecting zero-day exploits in network flows

Almamy Touré, Youcef Imine, Alexis Semnont, Thierry Delot and Antoine Gallais
Computer Networks
https://doi.org/10.1016/j.comnet.2024.110476

International Conference paper:
• Automated and Improved Detection of Cyber Attacks via an Industrial IDS

Probe
Almamy Touré, Youcef Imine, Thierry Delot, Antoine Gallais, Robin Giraudo and
Alexis Semnont
38th International Conference On ICT Systems Security and Privacy Protection IFIP
SEC 2023, June 14-16, 2023.
https://doi.org/10.1007/978-3-031-56326-3_14

National Conference paper:
• Automation and Improvement Detection of Cyber Attacks via an Industrial

IDS Probe
Almamy Touré, Youcef Imine, Alexis Semnont, Thierry Delot and Antoine Gallais
Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information, station
touristique du Valjoly à Eppe-Sauvage, 2024.

To be submitted:
• A Detailed Analysis of a Network Information System Synthetic Data Genera-

tor: NIS-SDG
Almamy Touré, Alexis Semnont, Youcef Imine, Thierry Delot and Antoine Gallais
The 49th IEEE Conference on Local Computer Networks (LCN) October 8-10, 2024,
Caen, Normandy, France.

10

Chapter 1

Introduction

Contents
1.1 Context . 11
1.2 Motivation and research challenges . 12
1.3 Our contributions . 13

1.3.1 Automated attack detection for known scenarios 13
1.3.2 Zero-day attack detection . 14
1.3.3 Synthetic data generation . 14
1.3.4 Impacts of contributions . 15

1.4 Outline of the manuscript . 16

1.1 Context
In the modern world, computing has become an essential element of our society,

present in all sectors of activity. Digital data has emerged as the driving force of the
economy and innovation, and its automated processing is now essential to ensure the
competitiveness and sustainability of businesses. However, this growing dependence on
computing and digital data has resulted in an exponential increase in cybersecurity risks.
Indeed, organizations in all sectors face major challenges in protecting their digital assets
and ensuring data confidentiality, integrity, and availability. On the other hand, cyberat-
tacks are becoming increasingly sophisticated and targeted, with potentially severe con-
sequences for victim organizations. In fact, the IBM 2023 Data Breach Report revealed
that the average cost of a breach reached 4.45 million dollars in 2023, marking a 15%
increase over three years [1].

Cyber threats can take many forms, ranging from denial-of-service (DoS) attacks to
phishing and ransomware attacks, zero-day vulnerabilities, and supply chain attacks. At-
tackers can exploit known or unknown vulnerabilities in defense systems to access sen-
sitive data and disrupt business operations [2, 3, 4]. In addition, the detection of these
threats poses a significant challenge and must be addressed in order to maintain a secure
information system. Another major challenge lies in the daily connection of diverse appli-
cations to the Internet and which complicates the management of network traffic within
the information system. Moreover, the obfuscation techniques bring with it a diversifi-
cation of attack techniques targeting these systems [5, 6]. In addition to applications,
the attack surface of organizations is constantly expanding with the proliferation of de-
vices connected to the information system and the adoption of new technologies such as
cloud computing and the Internet of Things (IoT). Moreover, the increasing complexity
of information systems makes it more difficult to detect and prevent cyber threats.

11

To address these challenges, organizations implement effective cybersecurity mea-
sures. Cybersecurity solutions include continuous monitoring of networks and systems,
threat detection and prevention, vulnerability management, incident response, and disas-
ter recovery. Security Operations Centers (SOC) play a key role in the implementation
and monitoring of these solutions. Indeed, a SOC offers intelligent solutions to help busi-
nesses mitigate the significant threats and risks. The main tool in a SOC is the Security
Information and Event Management (SIEM) which allows to detect attacks by provid-
ing intelligent analysis for quicker threat identification. It relies on events and logs from
various equipment (servers, databases, antivirus software, firewalls, etc.) collected for
monitoring. In addition to event logs, network activities (also known as flows, which can
be encrypted) can be collected by a dedicated probe and centralized in the SIEM tool.
However, the latter generates alerts based on pre-packaged and manually established cor-
relation rules. Once a piece of collected data matches a correlation rule, some security
alerts are provided. In addition to the SIEM, the SOC relies on Security Orchestration,
Automation, and Response (SOAR) tool to automate and accelerate the detection and
response to incidents.

1.2 Motivation and research challenges
In our context, attack detection primarily relies on manually created and updated corre-

lation rules, which are managed by expert correlation engineers. This detection approach
common to SOC, including IBM CIC France’s, can entail significant human costs. It
requires substantial engineering effort to analyze detection scenarios and establish rules
correlations among the large volumes of collected data by effectively modeling scenarios
within detection tools. Thus, there is a vast variety of rules, constantly implemented and
updated according to the evolution of attack scenarios. Monitoring tools must necessar-
ily have an up-to-date database of these rules to minimize vulnerabilities in the observed
systems. Additionally, this detection approach requires heightened vigilance to monitor
and respond to identified alert escalations.

However, several aspects limit the effectiveness of these mechanisms against current
attacks. On the one hand, these correlation rules are highly restrictive and do not allow all
desired matches to be made in the context of network flow analysis, for example (pattern
matching). It is necessary to establish the limits of these rules to better exploit these low-
level collection tools to generate offenses that will be analyzed and processed by security
analysts. On the other hand, the reduction of false positives is another major challenge
for SOC as it significantly impacts the efficiency and reliability of threat detection and
response. Indeed, false positives can result in a loss of time and resources for security
analysts who must prioritize and investigate security alerts, as well as a decrease in con-
fidence in the security detection system. Therefore, improving the accuracy of threat
detection tools is crucial to ensure a timely and effective response to real threats while
optimizing the human and technical resources allocated to attacks detection and response.

In addition to known detection scenarios, zero-day attacks are by definition unknown
and cannot be detected by traditional security systems. To address this challenge, one
approach is to use machine learning and deep learning techniques to analyze system be-
havior and detect anomalies that may indicate the presence of a zero-day attack. However,
the implementation of these techniques is complex and requires advanced skills in com-
puter security and data science. Therefore, proposing new approaches to detect zero-day
attacks is an important challenge to improve current detection and response strategies.

12

Beyond the nature of the attacks (known or zero-day), most of the collected flows are
encrypted, which reduces the amount of exploitable information from these data. Thus,
network traffic analysis of encrypted payloads is a challenge for SOC as it limits the
visibility of the content exchanged, thereby making the detection of potential threats more
difficult. To address this challenge, one approach is to rely on the metadata associated
with network flows, such as source and destination IP addresses, used ports, packet size
and frequency, etc. While this information does not allow for in-depth analysis of the
content exchanged, it can be crucial for detecting suspicious or abnormal behavior, such
as connections to IP addresses with a malicious reputation or exchanges of unusually
sized packets. The use of machine learning and artificial intelligence techniques can also
be considered to improve the accuracy and reliability of the analysis of metadata from
encrypted network flows.

Furthermore, we note that using these machine learning techniques also requires sig-
nificant volumes of data for training and evaluating models. Datasets available in the
literature are often static, limited in scenarios and scalability, and do not meet the needs
for recent synthetic data. Synthetic data generation techniques often rely on these datasets
or simulated environments, limiting their realism and ability to represent real threats.

In light of these challenges, improving security incident detection and response strate-
gies requires a proactive and dynamic approach. This entails building more precise detec-
tion scenarios, reducing human effort, automating processes through artificial intelligence
and machine learning algorithms, reducing false positive rates through appropriate mech-
anisms, reducing execution time, and detecting approaches. Finally, it is necessary to
propose a synthetic data generator to effectively evaluate the proposed attack detection
techniques.

Back in 2020, as a security analyst at IBM Security, I had the opportunity to initiate a
research collaboration with LAMIH UMR 8201, that started on February 2021. IBM is
one of the leading companies in the field of cybersecurity. It offers intelligent solutions
to assist businesses in preparing for and mitigating these significant threats and risks.
IBM has a SOC in Lille (France), which plays a crucial role in preventing, detecting and
responding to cyber threats. This thesis project aims to address some of the challenges
related to the enhanced detection and response to security incidents.

1.3 Our contributions
In this section, we introduce the various scientific contributions proposed within the

scope of this thesis in response to the challenges raised.

1.3.1 Automated attack detection for known scenarios
Given the diversity of approaches proposed for intrusion detection via IDS probes

and the tendency of existing solutions to cater to specific contexts, cross-scenario model
evaluation becomes challenging. To address this, we present an approach for detecting
and classifying malicious network flows based on the main properties of network flows
which includes:

• A standardized and scalable engineering process for extracting relevant feature
classes essential for any network flow classifier.

• A deep learning model that integrates our feature extractor with a CNN-based feature
detector to achieve high-performance classification.

13

• A comprehensive evaluation of our model on different datasets from various con-
texts, validated with the MITRE ATT&CK framework.

• A comparative analysis between our model, traditional machine learning methods,
and deep learning solutions outlined in the current literature.

Our solution outperforms existing solutions like [7, 8, 9, 10] in terms of classification
metrics and execution time.

1.3.2 Zero-day attack detection
Given the unknown nature of zero-day attacks, characterized by the absence of sig-

natures and patterns for detection, many IDS solutions leverage learning techniques to
build novel attack detection systems. However, these solutions often prioritize accu-
racy enhancement for specific attack types, overlooking the potential for multiple attack
scenarios. In response, we propose an approach for detecting zero-day attacks. There-
fore, our contributions to this zero-day detection framework, compared to existing works
[11, 12, 13, 14, 15, 16] in the field, revolve around the following key points:

• Hybridization of classification techniques: Integrating supervised and unsupervised
classification techniques is essential. The utilization of supervised classification
models such as CNN aids in categorizing known network flows, while employing
unsupervised algorithms like K-Means unveils concealed patterns in the data.

• Precision optimization through combined learning methods: The approach empha-
sizes algorithms fusion, combining the prowess of supervised CNN-based methods
with decision trees (DT), random forests (RF), K-Nearest-Neighbors (KNN) and
Naive Bayes (NB). This cross-breeding aims to maximize the detection model’s
precision, offering a more accurate and dependable insight into potential threats,
without solely focusing on hyper-parameter’s optimization.

• Correlation between supervised and unsupervised results : Creating a correlation
table between supervised classification outcomes and clusters formed by the unsu-
pervised approach aids in associating clusters with attack classes or normal flow
categories.

• Outlier-based anomaly identification for zero-day detection: Identifying outliers
within clusters formed by the K-Means algorithm and using this data to create new
potential attack classes enables proactive zero-day attack detection. This facilitates
real-time model updates through online learning, adapting the model regularly to
new data, thereby enhancing its capability to detect and respond to zero-day attacks
in real-time.

• Validation of results on two datasets: One derived from an industrial context con-
taining real flows and recent attacks, and the other from the constantly used state-of-
the-art dataset for intrusion detection and zero- day detection mechanism validation.

1.3.3 Synthetic data generation
Existing datasets proposed in the literature suffer from limited size and nature of attack

types, as well as potential biases due to their collection and lack of diversity and evolu-
tionary nature. While synthetic data generation techniques, typically relying on these
outdated datasets, may sometimes lack realism or introduce artificial biases into the gen-
erated data. We propose a synthetic data generation approach that:

14

• Ensures realistic synthetic data generation while preserving the confidentiality of the
original information system data.

• Provides reliable training data for attack detection systems, using a multi-phase so-
lution including collection, anonymization, activity profiling, and behavior analysis.

• Ensures various evaluation and validation methods of the generated data, such as
profiling, statistical analysis, and the use of discriminant models.

1.3.4 Impacts of contributions

Our first significant contribution enhances the intrusion detection and cyberattack
strategy by introducing an innovative methodology for classifying network traffic. Our
solution, grounded in a comprehensive approach, ensures optimal feature extraction by
leveraging the intrinsic properties of network flows and employing convolutional neural
networks. This method sets itself apart from traditional intrusion detection solutions that
rely on machine learning and deep learning algorithms on standard datasets. One of the
major advantages of our solution lies in reducing model execution time, made possible
by decreasing the number of attributes to be processed. Additionally, our approach
demonstrates remarkable adaptability, capable of implementation regardless of a specific
context, which is a considerable asset.
Our methodology also aims to reduce the complexity of network flow classification
models and algorithms while preserving their effectiveness. This approach is intended
to be easily integrable into any environment or information system, thereby offering
appreciable flexibility in implementation.

Our second contribution, aiming to detect zero-day attacks, stands out for its in-
novative nature and enhances existing approaches to attack detection. By employing
cross-validation of both supervised and unsupervised models, our method significantly
reduces the false detection rate. The introduction of an anomaly detection technique
based on silhouette score in clustering, validated by online learning, represents a notable
advancement in scientific literature. The proposed solution is not specific to a particular
class of attacks but rather aims to detect any anomaly in network traffic. This approach
enables the identification of new attack scenarios, thus broadening the scope of our
detection method. Lastly, the regular updating of the knowledge base renders our
model scalable and adaptable, ensuring its applicability in any information system. This
essential characteristic ensures the sustainability and continuous effectiveness of our
solution in the face of the constantly evolving cybersecurity threats.

Our third and final contribution addresses a major issue in the current scientific com-
munity. We present an innovative synthetic data generator, distinguished by its techniques
of extraction, synthesis, anonymization, and collaborative dimension in the field of intru-
sion detection. This generator can be used locally to generate data and simulate models,
or collaboratively to benefit from a wide variety of data. Our solution enables the ex-
traction of up-to-date, non-simulated real datasets that are scalable and applicable in any
information system. Furthermore, its collaborative dimension encourages the continuous
enrichment of the database with diverse attack scenarios that are representative of real-
world situations.
In summary, this contribution offers an innovative and adaptable approach to address cur-
rent challenges in synthetic data generation while fostering collaboration among various
stakeholders in the cybersecurity domain.

15

1.4 Outline of the manuscript
The structure of this thesis is outlined as follows. Chapter 2 provides an overview

of operational security within an industrial setting, delving into IBM’s array of tools de-
signed to bolster cyberattack detection and response. Chapter 3 addresses the formidable
challenges encountered in threat detection and response. Here, we conduct a comprehen-
sive examination of both traditional and contemporary approaches, identifying key issues
and obstacles associated with each. Additionally, we introduce pertinent datasets and
discuss data generation techniques prevalent in the literature.Our novel approach to au-
tomating and enhancing attack detection in industrial environments is detailed in Chapter
4. In Chapter 5, we unveil our framework tailored for the detection of zero-day attacks.
The culmination of our research journey is encapsulated in Chapter 6, where we present
our groundbreaking contribution to synthetic data generation. Chapter 7 serves as the
conclusive chapter of this thesis, wherein we offer reflections on our findings and outline
prospective avenues for future research endeavors.

16

Chapter 2

Background of security operational in
an industrial context

Contents
2.1 Introduction . 17
2.2 Fundamentals of network security . 17

2.2.1 Network flows - Flow collector . 17

2.2.2 Events - Log source . 18

2.2.3 Framework MITRE ATT&CK . 20

2.3 Attack detection and response products : IBM ecosystem 22
2.4 IBM generative AI products . 24
2.5 Conclusion . 25

2.1 Introduction
In this chapter, we provide a comprehensive overview of operational security, encom-

passing the technological tools and means employed in the industrial context for cyberat-
tack detection, specifically focusing on the solutions offered by IBM.
Initially, we delve into the fundamental principles of our research, encompassing the un-
derstanding of network flows and flow collectors, events and log sources. Furthermore,
we scrutinize the MITRE ATT&CK framework, an indispensable instrument for compre-
hending and categorizing attack tactics and techniques. Subsequently, we investigate the
cybersecurity tools employed for attack detection and response within an industrial con-
text. Lastly, we present the Artificial Intelligence tools proposed by IBM, with a focus on
their application in use case proposals, model training, and data generation.

2.2 Fundamentals of network security
In this section, we address the essential prerequisites for data collection for intrusion

detection. We particularly focus on understanding network flows and asset activity logs,
which are fundamental data types in this context.

2.2.1 Network flows - Flow collector

Network flows, representing the movement of data packets between network end-
points, play a crucial role in understanding and analyzing network behavior. Network

17

flows encapsulate the communication patterns within a network, providing valuable in-
sights into the interactions between devices, users, and services [17]. These flows are
characterized by various attributes, including source and destination IP addresses, ports,
protocols, and timestamps. Understanding the dynamics of network flows is fundamental
for detecting anomalous activities and potential security threats.
As presented by Li et al. in [18], network flows manifest in diverse forms, each furnishing
unique insights into network behavior and security posture. Common types of network
flows entail:

• NetFlow: Developed by Cisco, NetFlow furnishes information regarding IP network
traffic, encompassing source and destination IP addresses, ports, and protocols, ac-
cording to the RFC 3954. In [19], the use of NetFlow data is widely discussed for
network traffic analysis and security monitoring.

• IPFIX: IP Flow Information Export (IPFIX) constitutes an IETF standard founded
on Cisco’s NetFlow version 9 [20]. It improves NetFlow by proffering extensibility
and support for additional data types, streamlining interoperability across diverse
network equipment and vendors.

• sFlow: In the RFC 3179 [21], sFlow is a sampling-based monitoring technology that
captures network traffic data at wire speed. It offers scalable and efficient monitoring
capabilities, rendering it suitable for large-scale network environments.

• JFlow: is a flow monitoring technology developed by Juniper Networks [22]. Sim-
ilar to NetFlow and sFlow, JFlow captures data on network traffic flows. It enables
Juniper users to gain comprehensive visibility into their network traffic patterns and
security posture. Although a proprietary protocol, it is widely supported by network
monitoring tools and security solutions.

In [23], Zhou et al. discussed the importance of collecting network data via flow col-
lectors. These collectors serve as specialized systems designed to capture, aggregate, and
analyze network flow data. These collectors intercept network traffic and extract flow
information, enabling comprehensive visibility into network activities. By efficiently col-
lecting and processing flow data, organizations can gain real-time awareness of network
behavior and proactively identify suspicious or malicious activities. In [24], So-In et al.
highlighted the continuous expansion of networks and the growing need for monitoring
and analysis tools. Administrators face the critical task of not only detecting and promptly
addressing network failures, but also preemptively averting potential disruptions due to
network overload or external threats. For instance, analyzing network utilization and traf-
fic patterns can effectively uncover security vulnerabilities.

Flow collectors employ various analysis techniques to distill actionable insights from
network flow data [18]. These techniques encompass: Behavioral Analysis, Signature-
based Detection, Anomaly Detection, Machine Learning - Deep Learning Detection Tech-
niques, described in Section 3.3. Flow collectors are frequently integrated with existing
security infrastructure, encompassing IDS, IPS, and SIEM platforms.

2.2.2 Events - Log source

An event log is an electronic record of a significant activity that has occurred on a
computer system or network. These events are recorded chronologically in log files, also
known as event logs, to enable monitoring, analysis, and reverse engineering of actions
that have taken place [25]. Event logs are crucial for cybersecurity incident detection

18

and response. By monitoring event logs, it’s possible to spot suspicious activities, detect
security breaches, and respond swiftly to threats. Additionally, event logs are used for
auditing, regulatory compliance and reverse engineering of past security incidents, and
essential for forensic analysis.

The event logs can originate from various sources, such as operating systems, appli-
cations, network devices (firewalls, routers), proxies, antivirus software, security sensors,
etc. as well as any type of asset within an information system. Each log source pro-
vides specific information about system or network and application activities, and their
integration enables a holistic view of security posture and either utilizes syslog as their
default logging format or offer features enabling conversion to syslog format [26]. Sys-
log, widely adopted across log sources, provides a basic yet versatile framework for log
entry generation, storage, and transfer. It facilitates normalization of logs from diverse
sources, enabling centralized storage and analysis by a unified system. As a standard pro-
tocol, syslog efficiently delivers standardized system messages across networks, detailed
in RFCs 3164 and 3195 [27, 28].
Table 2.1 presents examples of data sources, corresponding event types and concrete ex-
amples of recorded activities.

Source Types of Events Examples of Events
Operating System System startup User "admin" login session start

User login Modification of system configuration file
File system changes

Applications Application errors Failed database connection
Access to sensitive data Unauthorized access to sensitive data

Network Intrusion attempts Port scanning detection
Network traffic flows Suspicious data transfer between machines

Firewalls Connection blocking Blocked connection attempt from suspicious IP
Security rule violations Violation of defined firewall rule

Routers Configuration changes Routing table modification
Routing events Network interface configuration change notifica-

tion
Proxies Activated content filters Blocking access to malicious website

Website access blocks Activating a filter to block suspicious outbound
traffic

Antivirus Software Virus/malware detections Quarantine of infected file
Virus definition updates Successful virus definition updates

Security Sensors Detection of abnormal activities Detection of suspicious movements within moni-
tored area

Security alerts Alert of unauthorized access attempt

Table 2.1: Various types of event logs.

Standards and regulations such as the GDPR, ISO/IEC 27001, and PCI DSS compli-
ance directives mandate the collection and analysis of event logs to ensure data protection
and computer system security [29]. The GDPR requires close monitoring of activities to
comply with data breach notification requirements. Similarly, ISO/IEC 27001 necessi-
tates continuous surveillance to detect and address security vulnerabilities. Furthermore,
PCI DSS directives mandate log analysis to detect and prevent credit card transaction-
related fraud. By adhering to these standards, organizations bolster their security posture
and effectively safeguard sensitive data against threats.

19

2.2.3 Framework MITRE ATT&CK
In the previous sections, we introduced activity logs and network flows, which can

be utilized for attack detection. In this section, we will present the MITRE ATT&CK
framework, which plays an indispensable role in the strategy for detecting these attacks.

The MITRE ATT&CK (Adversarial Tactics, Techniques & Common Knowledge)
framework is a universally accessible and continuously updated knowledge base used
to model, detect, anticipate, and mitigate cybersecurity threats based on known adversar-
ial behaviors of cybercriminals [30]. Developed by the MITRE Corporation, a nonprofit
organization, the MITRE ATT&CK framework is an indispensable reference for the pre-
vention and detection of attacks.
As presented in [31], this framework comprehensively catalogs the tactics, techniques,
and procedures (TTP) employed by cybercriminals at each phase of the cyber attack life
cycle, from initial information gathering and planning behaviors to the final execution of
the attack. The information contained within MITRE ATT&CK can guide security teams
in various aspects: accurately simulating cyber attacks to test cyber defenses; developing
more effective security policies, security controls, and incident response plans; selecting
and configuring security technologies for better detection, evasion, and mitigation of cy-
ber threats.
The Enterprise framework currently consists of 14 tactics and over 230 techniques,
including nested sub-techniques. In Table 2.2, we present the 14 tactics, along with their
associated TTPs, the Advanced Persistent Threats (APT) groups that most frequently ex-
ploit these tactics, and the required data sources.

By leveraging the collected activity logs and network flows, the MITRE ATT&CK
framework provides a structured approach for analyzing, identifying, and categorizing
potential cyberattacks.

20

Tactic TTP Examples Associated APT
Groups

Data Sources

Reconnaissance
(TA0001)

Scan IP blocks, Conduct so-
cial engineering attacks, Search
public websites

APT29, APT32,
Fancy Bear

Network event, ap-
plication logs, public
websites

Resource Devel-
opment (TA0002)

Purchase compromised infras-
tructure, Create malicious web-
sites, Steal credentials

Carbanak, FIN7,
Silence

Threat intelligence,
open-source data,
malware analysis

Initial Access
(TA0003)

Exploit software vulnerabilities,
Send malicious attachments

Sandworm,
Lazarus, Emotet

Security patches,
known vulnerabili-
ties

Execution
(TA0004)

Inject malicious code, Execute
malicious commands, Drop and
execute malware

REvil, BlackCat,
Locky

Security tools, EDR,
memory analysis

Persistence
(TA0005)

Create scheduled tasks, Modify
the registry, Add malicious code
to startup scripts

Turla, APT34,
Conficker

Windows registry,
scheduled tasks,
persistence tools

Privilege Escala-
tion (TA0006)

Exploit software vulnerabilities,
Use social engineering, Abuse
legitimate credentials

Cobalt Strike,
Mimikatz, Hydra

Privilege escalation
tools, known vulner-
abilities, malware
analysis

Defense Evasion
(TA0007)

Disable security software, Hide
malicious files and processes,
Use anti-debugging techniques

WannaCry, Not-
Petya, Ryuk

Security tools, EDR,
malware analysis

Credential Ac-
cess (TA0008)

Brute-force passwords, Steal
credentials from memory, Use
social engineering

Raccoon, IcedID,
TrickBot

Password managers,
phishing tools, mal-
ware analysis

Discovery
(TA0009)

Enumerate network shares,
Query Active Directory, Search
for sensitive files

APT41, APT28,
Winnti

Network analysis
tools, Active Direc-
tory auditing tools,
file search tools

Lateral Move-
ment (TA0010)

Pivot through compromised sys-
tems, Use remote access tools,
Exploit network vulnerabilities

Cyclops Blink,
PowerSploit,
PsExec

Network security
tools, EDR, malware
analysis

Collection
(TA0011)

Steal sensitive files, Exfiltrate
data over the network, Capture
screenshots

Cloakedhopper,
Barium, APT33

Network security
tools, EDR, network
traffic analysis

Command
and Control
(TA0012)

Communicate with a remote
server, Receiving commands
from a remote server, Sending
data to a remote server

BEACON, Sality,
Gh0st

Network security
tools, EDR, network
traffic analysis

Exfiltration
(TA0013)

Exfiltrate data over the network,
Send data to a remote server,
Upload data to a cloud storage
service

Cobalt Strike,
Dridex, Zeus

Network security
tools, EDR, network
traffic analysis

Impact (TA0014) Deny service to a system, Dis-
rupt business operations, Steal
financial data

Mirai, WannaCry,
CryptoLocker

Security tools, appli-
cation logs, incident
reports

Table 2.2: MITRE ATT&CK Tactics, Techniques, Associated APT Groups, and Data Sources.

21

2.3 Attack detection and response products : IBM

ecosystem
Cybersecurity in industrial context is a critical frontier in today’s security landscape,

tasked with protecting vital infrastructure and operational technology systems from evolv-
ing cyber threats [32].
Several solution providers offer recognized tools in the cybersecurity market, including
Checkpoint, Microsoft, Palo Alto, C, etc. In this section, we provide an in-depth exami-
nation of the key detection and response tools within our working context (IBM Security
Operation Center), where the application of our research findings will be explored.

• QRadar SIEM: IBM’s QRadar SIEM plays a pivotal role in empowering secu-
rity teams to proactively address today’s threats in real-time. Going beyond mere
threat detection and response, QRadar SIEM equips analysts with artificial intelli-
gence tools for user behavioral analysis, a robust threat correlation engine, threat
intelligence feeds, and a plethora of customizable applications for automation and
seamless integration with solutions from other vendors. QRadar operates on both
cloud-native and on-premise architectures and has consistently been positioned as
a leader in the Gartner Magic Quadrant for SIEM reports for over a decade. This
sustained leadership underscores its advanced capabilities, adaptability, and effec-
tiveness in meeting the evolving security needs of enterprises [33].

• QRadar Network Insight - NDR: IBM QRadar NDR, or Network Detection and
Response, is a solution designed to address the evolving challenges posed by so-
phisticated cyber threats in today’s network infrastructures. By integrating several
technologies (Flow Collector, QRadar Network Insights, Network Threat Analytics,
Network Packet Capture, Incident Forensics), QRadar NDR enables customization
of detection and response capabilities at the network level of information systems
[34].

QRadar NDR is capable of detecting a wide range of threats, including lateral move-
ment, data leakage, advanced threats, and compromised assets. It consolidates vari-
ous telemetry sources such as network flow data, full packet analysis, advanced ma-
chine learning-based analytics, threat intelligence, and AI-powered investigations
into a single, cohesive platform.

This solution integrates with IBM Security QRadar SIEM and IBM Security QRadar
Security Orchestration, Automation, and Response (SOAR), ensuring comprehen-
sive detection and incident response across on-premises, cloud, and hybrid environ-
ments. Thus, QRadar NDR ensures organizations rapid identification and mitigation
of threats.

• QRadar EDR: IBM Security QRadar EDR is an active defense intelligence plat-
form that automatically detects and responds to threats on endpoints. Using a behav-
ioral detection approach, QRadar EDR identifies both known and unknown threats
and monitors application abuse to detect potential security risks. It triggers alerts
based on abnormal behavior in running processes and switches to deep monitoring
mode to collect additional events, such as file and registry operations, user activi-
ties, while conserving resources. QRadar EDR operates seamlessly in disconnected

22

or offline environments and comprises endpoint agent, server, and dashboard com-
ponents. The AI-powered agent operates in both online and offline modes, safe-
guarding endpoints and telemetry data even without network connectivity. QRadar
EDR seamlessly integrates with QRadar SIEM and other SIEM products, enabling
ingestion of EDR events and alerts for comprehensive threat management [35].

• QRadar SOAR: IBM Security QRadar SOAR (Security Orchestration Automation
and Response) is an advanced solution designed to expedite security incident re-
sponse. Through intelligent automation and orchestration, it enhances SOC effi-
ciency by reducing response times and addressing skill gaps [36].

Tailored to meet the critical needs of organizations facing escalating threats, QRadar
SOAR streamlines incident management by automating repetitive tasks and guid-
ing analysts through personalized workflows. Offering an intuitive interface and
dynamic protocols, QRadar SOAR enables swift adaptation to evolving incident
conditions. Furthermore, QRadar SOAR facilitates compliance with over 180 in-
ternational regulations pertaining to privacy and data breaches, ensuring incident
response adheres to prevailing standards.

Key features include automated alert correlation and enrichment, orchestration of in-
cident responses via customizable playbooks, and seamless integration with existing
tools and technologies in the organization’s security environment.

With IBM Security QRadar SOAR, organizations can bolster their security posture,
mitigate cyberthreat risks, optimize human resource utilization, and ensure a swift
and effective response to security incidents.

Figures 2.1, 2.2 present the IBM SOC design architecture and its reference model.

Figure 2.1: IBM SOC - Design.

23

Figure 2.2: IBM SOC - Reference Model.

2.4 IBM generative AI products
In this section, we present two generative AI solutions from IBM, which can be used

for use cases in detection, incident response, and data generation:

• Watsonx.ai: is an artificial intelligence (AI) platform developed by IBM that pro-
vides a comprehensive solution for building and deploying AI models. The platform
combines traditional machine learning (ML) techniques with advanced AI model
generation capabilities powered by foundation models [37]. Watsonx.ai also offers
a variety of pre-trained models developed by IBM, open-source, and third-party, as
well as the ability to build custom models [38]. The platform stands out for its
end-to-end AI governance approach, which enables enterprises to scale and accel-
erate the impact of AI with reliable data across the business, using data wherever
it resides. This approach includes privacy and data security tools, as well as model
management features to ensure transparency, fairness, and regulatory compliance.

In terms of research, Watsonx.ai offers interesting possibilities for exploring new AI
approaches, particularly in the areas of AI model generation, transfer learning, and
federated learning. The platform also provides tools for building and customizing
performant prompts, which can be useful for researchers working on conversational
AI or natural language processing applications.

• Watsonx.data: Watsonx.data is a data storage platform developed by IBM, provid-
ing access to all data through open formats and integration with existing databases
and modern tools.
This comprehensive data storage platform enables researchers and data scientists to
easily access all their data, prepare data for advanced machine learning and gener-
ative AI use cases, and unlock new data insights through a generative AI-powered
conversational interface. Hybrid deployment options also offer flexibility to meet
organizations’ data governance and security needs [37, 39].

24

2.5 Conclusion
In this chapter, we have established the essential prerequisites for attack detection and

emphasized the importance of the MITRE ATT&CK framework for data collection and
exploitation within an information system.
We then presented security incident detection and response tools, focusing on the solu-
tions provided by IBM, which form the basis of our research. We also discussed genera-
tive artificial intelligence tools and their functioning.
In the next chapter, we will examine the major challenges businesses face in terms of
cybersecurity. We will present a state of the art on cyberattack detection and the use of
synthetic data to improve threat detection and response capabilities.

25

Chapter 3

Network security challenges &
state-of-the-art

Contents
3.1 Introduction . 26
3.2 Major challenges . 26

3.2.1 Data privacy and integrity . 27

3.2.2 Identity and access management . 27

3.2.3 Obsolescence and vulnerability management . 28

3.2.4 Compliance and regulation . 29

3.2.5 Threat detection and response . 29

3.3 Literature review for attack detection . 33
3.3.1 Traditional attack detection techniques . 33

3.3.2 Automatic learning techniques . 39

3.3.3 Zero-day detection approaches . 43

3.4 Literature review for network information system data generation 46
3.4.1 Available datasets . 46

3.4.2 Synthesis data generation techniques . 48

3.4.3 Summary . 51

3.5 Conclusion . 52

3.1 Introduction
In this chapter, we delve into the varied challenges that companies encounter in terms

of cybersecurity. Among these essential challenges, we will emphasize detection and
response to security incidents. After identifying these issues, we will review the research
and approaches proposed for detecting attacks, whether they are known or zero-day. We
will examine both traditional methods and newer approaches.

Furthermore, we will also address the datasets used to evaluate attack detection models
along with data generation techniques

3.2 Major challenges
Businesses today face critical challenges in terms of cybersecurity, due to the signifi-

cant increase in their assets. It is imperative for them to carefully examine each of these

26

assets in order to protect themselves against cyber threats aimed at paralyzing their in-
formation systems. It is with this in mind that we will present, in this section, the major
challenges they face. We will start with the preservation of confidentiality and integrity of
data, moving on to identity and access management, obsolescence and vulnerability man-
agement, as well as compliance with standards and laws in force. We will pay particular
attention to the detection and response to security incidents.

3.2.1 Data privacy and integrity

In an environment where cyber threats evolve rapidly and attackers exploit often subtle
vulnerabilities to compromise systems and networks, data privacy [40] and integrity [41]
are two interrelated aspects posing significant challenges in cybersecurity [42].
With the proliferation of information exchange across networks, preserving data privacy
has become a complex challenge. Cyber attackers deploy a plethora of techniques to
intercept data in transit, thereby compromising the confidentiality of communications.
Attacks such as data interception, packet sniffing, and network eavesdropping represent
serious threats to the confidentiality of information exchanged between legitimate users.
Additionally, data leaks resulting from poor system configurations or human errors can
also compromise data privacy, exposing organizations to considerable risks in terms of
reputation and regulatory compliance [43].
Maintaining data integrity is as crucial as preserving data privacy. Cyber attackers often
target data integrity by modifying or tampering with legitimate information to sow con-
fusion, inflict damage, or bypass security mechanisms. Attacks such as code injection,
sabotage, packet manipulation, and distributed denial-of-service (DDoS) can compromise
data integrity, undermining trust in systems and processes reliant upon it. Furthermore,
data processing errors, software bugs, and hardware failures can also lead to unauthorized
data alterations, jeopardizing the integrity of critical information [44].

In the context of our work, data privacy and integrity hold paramount importance. In-
deed, Nova et al. emphasize that the ability to identify and respond to threats largely
depends on the quality and reliability of collected and analyzed data [45]. Thus, it is im-
portant to develop methods and techniques that not only detect attacks but do so while
preserving the confidentiality of sensitive information and ensuring the integrity of ma-
nipulated data.

3.2.2 Identity and access management

In the IBM X-Force Threat Intelligence 2024 report [46, 47], the weakest links for
European organizations were identified as identities and emails, with the abuse of valid
accounts and phishing being the most common causes of attacks in Europe. Furthermore,
they note that one of the three most significant challenges for organizations based in Eu-
rope is the collection of identification information (28%).
Therefore, Identity and Access Management (IAM) represents a major challenge for busi-
nesses due to the increasing complexity of IT environments. As the number of devices,
applications, and users continues to grow, managing access to sensitive data and systems
becomes more challenging.
Cyber-attackers use a multitude of techniques to impersonate identities in order to access
sensitive data, thereby compromising the security of communications. Attacks such as
identity spoofing, based on the initial access and credential access tactics of the MITRE
matrix, pose serious threats to the security of information exchanged between legitimate
users. Moreover, information leaks resulting from inadequate system configurations or
human errors can also compromise identity and access management, exposing organiza-

27

tions to significant risks in terms of reputation and regulatory compliance.
As presented by Ghaffari et al. in [48], mechanisms such as multi-factor authenti-

cation, PKI and biometric identifiers, as well as Role-Based Access Controls (RBAC),
least privilege principles and identity federation are increasingly widespread and used by
organizations. However, these organizations face challenges such as malicious insiders,
Cool Boot attacks, weak password reset vulnerabilities, phishing and malicious redirects,
replay attacks, identity theft, cross-site request forgery, cross-site scripting, and Trojan
horse susceptibility.

With the rise of cloud computing, enterprises are increasingly adopting this technol-
ogy. In [49], Indu et al. presented identity and access management in a cloud environ-
ment as also a major challenge for organizations due to the complexity and vulnerability
of cloud computing. Challenges related to features such as multi-tenancy and third-party
managed infrastructure in a cloud environment require special attention for effective iden-
tity and access management to ensure the security of cloud data and resources.

To address these challenges, companies must adopt a comprehensive approach to IAM
that includes identity verification, access control, continuous monitoring, regulatory com-
pliance, and cloud security. This approach should also consider the use of emerging
technologies such as artificial intelligence and machine learning to improve identity and
access management capabilities. In addition, organizations should establish security poli-
cies and procedures, provide regular security awareness training to employees, and con-
duct periodic security audits to ensure the ongoing effectiveness of their IAM systems.

3.2.3 Obsolescence and vulnerability management
Industrial legacy systems and software are often vulnerable to cyberattacks due to the

absence of security patches. In fact, the rapid evolution of industrial environment where
technologies and IT infrastructures are constantly changing, the efficient management of
obsolescence and vulnerabilities has become a crucial challenge. First, this challenge
involves identifying, assessing, and addressing obsolete or vulnerable elements within
a company’s technological infrastructure. This will allow to prevent potential security
breaches and maintain optimal levels of performance and reliability [50].
Several factors contribute to the complexity of managing [51]:

• Difficulty in tracking and mapping IT assets: The rapid evolution of IT environments
can make it difficult to accurately identify and track all software and hardware assets,
as well as their end-of-life status.

• Rapid proliferation of technologies and software within a company creates a major
challenge in terms of tracking and managing obsolete versions. This can lead to
security gaps, incompatibilities, and increasing complexity in maintaining the entire
system.

• Software vulnerabilities represent potential entry points for cyberattacks, requiring
constant monitoring and proactive action to identify and correct them before they
are exploited.

• Migration and upgrade costs: Migrating to new systems or upgrading existing soft-
ware versions can represent significant financial and operational costs for organiza-
tions.

• Dependence on suppliers: The availability and cost of spare parts for obsolete hard-
ware systems can be problematic, creating a dependence on suppliers and increasing
the risks of service interruption.

28

Managing obsolescence and vulnerabilities is therefore a major challenge for the cy-
bersecurity of businesses. A proactive and structured strategy is essential to mitigate the
risks associated with end-of-life IT assets and ensure the resilience of information sys-
tems against cyberattacks. This strategy should include regular assessment of IT assets,
constant monitoring of vulnerabilities, planning for migration and upgrading of systems,
as well as effective management of relationships with suppliers [52]. By meeting these
challenges, companies can maintain their competitiveness and security in a constantly
evolving digital environment.

3.2.4 Compliance and regulation

Within a digital landscape marked by a proliferation of regulations and standards in
data protection, compliance has become a significant challenge for businesses. This
challenge entails the implementation and maintenance of data management practices that
comply with progressively stringent legal and regulatory requirements [53].

One of the biggest cost amplifiers of data breaches in 2023 was the non-compliance
with regulations [1]. Several factors contribute to the complexity of compliance manage-
ment, including the proliferation of regulations. This has been caused by several factors
[54, 55], such as:

• Complexity of regulations: Regulations can be complex and varied depending on
the geographic region, industry, and business sector of the company. It is crucial to
understand and interpret these regulations correctly to ensure that all requirements
are met.

• Data management and privacy: Data protection regulations impose strict require-
ments for the collection, storage, and processing of personal data of customers and
employees. Compliance with these regulations requires appropriate policies and se-
curity measures to protect individuals’ privacy.

• Risks of non-compliance: Companies face financial, legal, and reputational risks
in case of non-compliance with current regulations. Fines, lawsuits, and loss of
customer trust can have severe consequences for the viability and reputation of the
business.

To address these challenges, companies must establish comprehensive and integrated
compliance programs, involving close collaboration between compliance teams, legal de-
partments, IT services, and key stakeholders [56]. These programs should include regular
compliance assessments, training to raise employee awareness of legal requirements, as
well as monitoring and reporting mechanisms to ensure ongoing compliance. By adopt-
ing such a posture, companies can mitigate the risks associated with non-compliance,
strengthen their competitive position, ensure personal data protection, maintain customer
trust, and avoid financial penalties and reputational damage.

3.2.5 Threat detection and response

The detection of cyber attacks requires a systematic and rigorous collection, central-
ization, and correlation of data from various systems and networks to identify anomalies
that may indicate malicious activity.
In an interconnected digital environment where numerous access points, networks, and
data sources coexist, the ability to effectively correlate data streams becomes crucial.
Data correlation involves the fusion and the analysis of several datasets to identify pat-
terns, anomalies, and potential indicators of malicious activity. However, achieving this

29

integration and analysis seamlessly is complex and fraught with challenges [57].
In [58], various points to threats detection and response cyber are highlighted by Khan et
al.:

• The large volume and diversity of data generated by security systems pose a chal-
lenge in terms of correlation. Also, diverse data formats can create compatibility and
interoperability issues between correlation tools. The lack of context and informa-
tion on threats and vulnerabilities can limit the ability to identify potential security
incidents.

• Modern cyberattacks are often complex and multidimensional, requiring advanced
correlation techniques to detect, while traditional correlation methods may not be
sufficient to identify sophisticated attacks. Correlation tools can also generate a large
number of false alerts, overwhelming security analysts and delaying the detection of
real incidents. Furthermore, analysts tiredness can reduce their effectiveness and
ability to identify critical threats.

• Temporal correlation is necessary to identify events that may appear insignificant
when taken individually but reveal attack patterns or suspicious behavior when con-
sidered in a broader temporal context. Additionally, data correlation may raise pri-
vacy concerns, particularly when personal data is involved, and thus it requires eth-
ical and legal data collection and processing. Finally, correlation systems must be
scalable to handle variable workloads and constantly evolving environments while
maintaining high performance.

Security Information and Event Management (SIEM) systems can play a crucial role
in enhancing the correlation capabilities of security systems [59, 60]. In Figure 3.1,
we present the architecture proposed by Podzins et al. for collection from various data
sources, correlation, and detection using a SIEM tool [61].

Faced with these challenges, our research focuses on developing methodologies to
strengthen the correlation of collected data to enhance cyberattack detection and response
capabilities. By adapting data correlation techniques to the nuances of cyber threat land-
scapes, our aim is to build the resilience of digital infrastructures against malicious intru-
sions. However, attack detection faces some major issues:

1. Data processing pipeline for ML-based intrusion detection
While machine learning (ML) and deep learning (DL) techniques are widely used in
attack detection, their effectiveness is often limited by the quality and preparation of
the data used for training and evaluating the models [62]. In Figure 3.2, Maharana
et al. present a overview of the data pre-processing steps.

Firstly, effective preprocessing methods are crucial to prepare data for model train-
ing. This may include handling missing values, data normalization, noise reduction,
and variable transformation. Secondly, managing class imbalances is a common
challenge in imbalanced datasets, where one class is over-represented compared to
another. This situation can lead to misleading and biased model accuracy, requiring
techniques such as oversampling, undersampling, or synthetic data generation to
balance the classes [63]. Additionally, selecting relevant features is a crucial step to
improve model performance. Data may contain redundant, irregular, or irrelevant
features that can affect model accuracy and efficiency. Proper feature selection
can help reduce data dimensionality, improve model interpretability, and reduce

30

Figure 3.1: SIEM Architecture proposed by Podzins et al.

Figure 3.2: Challenges with data collection and processing.

31

computation time. Finally, optimizing model hyperparameters is an important step
to enhance model performance. Additionally, significant attention must be devoted
to the security and confidentiality of data used in the model training process [64].

Optimizing data processing for intrusion detection presents a major challenge. This
involves exploring best practices in data preprocessing, cleaning, and labeling, as
well as selecting the most relevant features to ensure precise outcomes during model
training. Additionally, it is essential to reduce model execution time to enhance or-
ganizational responsiveness to cyber threats. This issue represents a critical concern
for strengthening the effectiveness and reliability of intrusion detection systems.

2. Automation of attacks detection: known and zero-day
Given the fast evolution of cyber threats and their potential impact on information
systems, the effective detection of suspicious activities on computer networks is of
paramount importance. This task involves more than just recognizing previously
documented attack patterns; it also requires the ability to track and identify new
zero-day threats that exploit unknown vulnerabilities. Additionally, there are sev-
eral major challenges associated with the automation of known and zero-day at-
tack detection, including reducing the volume of alerts, addressing performance and
scalability issues, and accounting for data obfuscation techniques or the use of non-
standard protocols [65, 66].
In our examination of current solutions, we scrutinize both traditional methods and
recent advancements proposed in specialized literature on cyberattack detection.
Special emphasis is placed on automating attack detection, particularly for new at-
tacks that have never been detected (also known as zero-day attacks), with the aim of
developing advanced methodologies and tools to detect and respond to threats proac-
tively and swiftly, thereby minimizing potential harm to computer systems [67].

In this regard, various issues must be considered:

• Effectively leveraging recent advancements in the fields of artificial intelligence
(AI), machine learning, deep learning, and behavioral modeling.

• Creating systems capable of learning normal activity patterns and accurately
identifying anomalies that may indicate an ongoing attack.

• Developing robust detection techniques for zero-day attacks, which are inher-
ently challenging to identify due to their novel and unpredictable nature.

Addressing these challenges is essential for improving the reliability and security of
data management systems

3. Generating synthesis data for ML model assessment
The effectiveness and reliability of Machine Learning (ML) and Deep Learning (DL)
models largely depend on the quality and diversity of available data for their training
and evaluation [68]. However, the current datasets used pose significant limitations:
they are static, outdated, and often constrained in terms of size, diversity, and repre-
sentativeness of attack scenarios [69].
Moreover, real-world data available may also be subject to limitations, such as in-
completeness, bias, or limited availability. These factors compromise the models’
ability to generalize effectively and reliably detect new threats.

32

To address these challenges, synthetic data generation emerges as a promising solu-
tion. This approach enables the creation of artificial datasets that faithfully replicate
the characteristics of real data while providing full control over simulated scenarios
and attack types. Consequently, researchers and practitioners have access to diversi-
fied and balanced datasets to train, test, and evaluate the performance of ML models
in cyberattack detection.
Developing realistic datasets that depict authentic scenarios and evolve over time
in response to cyberattacks is imperative today [69]. The primary challenge lies in
enhancing the quality and diversity of available data for cyberattack detection, as
well as for the validation of ML and DL models.

3.3 Literature review for attack detection
In this section, we delve into the heart of attack detection techniques. As cyber threats

evolve in complexity and sophistication, it becomes imperative to understand the various
approaches used to detect and counter these attacks. We will thus explore the primary
detection paradigms, ranging from classical methods such as signature-based detection,
to more advanced approaches like anomaly detection, machine learning and deep learn-
ing. Additionally, we will address the distinction between known attacks and zero-day
attacks, emphasizing the crucial importance of developing effective strategies to confront
these emerging threats. By examining existing literature, we will highlight recent ad-
vancements, persistent gaps, and promising directions in the field of attack detection,
thereby laying the necessary groundwork for our own contribution in this ever-evolving
domain.

3.3.1 Traditional attack detection techniques
In this section, we present the classical, also known as traditional, techniques used

for intrusion detection. Three primary families are highlighted in the state-of-the-art:
signature-based, anomaly-based, and payload-based.
Signature-based approach:

Signature-based detection represents one of the earliest documented approaches in the
literature for attack detection, emerging in the 1970s in the form of Signature-Based In-
trusion Detection Systems (IDS). This method relies on creating specific signatures or
patterns corresponding to known attack patterns. These signatures are then used to ana-
lyze network traffic or system activities, searching for matches with suspicious behaviors.
Signature-based IDSs were among the first effective tools for detecting well-known at-
tacks such as Denial of Service (DoS) attacks or password compromise attempts [70].
Signature-based detection is essentially a string matching problem, meaning it continues
to search for a pattern or substring within a collection of patterns or large strings [71].
Various techniques have been proposed in the state of the art:

• Pattern matching approaches: A first variant of this approach involves comparing
signatures of suspicious packets or files with a database of known signatures. Fast
search algorithms such as the Knuth-Morris-Pratt (KMP) [72], Boyer-Moore (BM)
[73], Wu-Manber [74] and Aho-Corasick (AC) [75] algorithms are commonly used
for this purpose. These methods are effective for detecting attacks.
To enhance these algorithms for a better detection, Aldwairi et al. introduced a
novel algorithm named Exhaust, derived from the Wu-Manber algorithm. Exhaust

33

cleverly employs Bloom filters as exclusion filters to minimize costly searches in
the hash table, a bottleneck in detection systems [76, 77]. Through preprocessing
and optimized search processes, Exhaust demonstrates improved performance and
efficient resource utilization, meeting the escalating cybersecurity demands without
compromising speed or accuracy. Innovative approaches aim to optimize pattern
search processes in order to address the increase in malicious behaviors and mal-
ware. One such method, proposed in [78], develops a new pattern search algorithm
that strategically avoids positions not matching the desired pattern. Test results ex-
hibit superior performance compared to established algorithms like Aho-Corasick
and Boyer-Moore, indicating significant potential for enhancing intrusion detection
system efficiency.

Another approach, [79], proposes a hybrid solution of two models. Firstly, paral-
lelization of the Direct Matching Algorithm (PDMA) is achieved using OpenMP
technology in a multicore architecture for faster pattern searching. Then, PDMA
is applied in Network Intrusion Detection System (NIDS) engines to enhance de-
tection speed. This solution has shown a significant improvement in performance
compared to traditional sequential algorithms, with reduced processing time and im-
proved NIDS engine performance compared to the current SNORT-NIDS engine.

• Sequence analysis approaches: This method aims to detect specific patterns of
malicious activities by analyzing sequences of packets or events. Models such as
finite automata or Markov chains are used to identify malicious behaviors, enabling
the detection of attacks based on event sequences rather than specific signatures.
In a recent study [80], Papadogiannaki et al. propose an innovative solution to ad-
dress the growing challenge of intrusion detection in encrypted networks. This ap-
proach introduces a signature language that focuses on packet metadata, enabling
the detection of characteristic packet sequences of intrusions. Using pattern mining
algorithms, expressive signatures are automatically generated to identify intrusion
attempts efficiently, even in encrypted environments.

• Automatic signature generation approaches: Some signature-based detection
mechanisms have enabled the automatic generation of signatures for new patterns
or schemes. For example, in [81], a method is presented for detecting polymor-
phic worms using a graph-based classification framework for polymorphic worm
signatures, accompanied by a new signature method called Conjunction of Com-
binational Motifs (CCM). Tongaonkar et al. [82] present an automated system for
detecting new application signatures for traffic classification purposes. In this work,
the authors present a system for automatically identifying keywords of unknown
applications. In [83], a mechanism is presented for botnet C&C signature extrac-
tion. The mechanism identifies frequent strings in traffic and then ranks the frequent
strings based on traffic clustering methods.

In summary, we note that signature-based detection is a rapid and accurate method
for identifying known attack patterns by searching for matches with predefined models.
While it offers advantages in terms of speed and precision, it presents significant limita-
tions, including the risk of false positives, the frequency of updating the knowledge base,
and the difficulty in detecting new zero-day attack patterns [84]. Additionally, attack-
ers’ obfuscation techniques can bypass this detection method. Thus, while valuable for
combating known threats, signature-based detection requires improvements to address the
challenges posed by emerging and sophisticated attacks.

34

Anomaly-based approach:

Anomaly-based intrusion detection is a method that focuses on identifying non-
conforming behaviors or activity patterns within a computer system. In contrast
to signature-based approaches, which rely on recognizing patterns of known attacks,
anomaly detection seeks to pinpoint aberrant behaviors that may indicate malicious ac-
tivity. The emergence of this approach in the literature of computer security dates back
to the 1980s and 1990s, when researchers began exploring methods to detect intrusions
based on abnormal behaviors rather than specific signatures. This approach was motivated
by the growing recognition that cyber-attacks were evolving rapidly and that traditional
detection methods were limited in their ability to identify new threats. Anomaly-based
intrusion detection relies heavily on machine learning and statistical modeling to create a
knowledge base of normal behavior profiles for the users, applications, or systems. These
profiles are then used to detect significant deviations from expected behaviors, which may
indicate suspicious activity [85].
In the literature, various techniques are proposed:

• Statistical anomaly detection: This technique involves establishing a baseline of
normal behavior using statistical metrics such as mean, median, standard deviation,
or frequency distributions. Any deviation from this baseline is flagged as poten-
tially malicious. Statistical anomaly detection methods are effective in identifying
deviations from normal behavior.

In [86], Zhen et al. introduce the STP (STatistical Pattern-based feature extraction
method) for host-based anomaly detection. This innovative approach transforms sys-
tem call sequences into n-gram frequency sequences and applies a predefined set of
statistical features to construct an anomaly detection model. Experimental findings
reveal that STP outperforms other methods in terms of stability and performance,
although it does not consistently achieve the highest AUC score. Moreover, cross-
platform evaluation demonstrates STP’s effectiveness in combining samples from
different platforms, thereby enhancing anomaly detection performance. Notably,
STP stands out for its computational efficiency, offering promising insights into op-
timizing feature selection algorithms and enhancing training samples for improved
anomaly detection in diverse environments.

In [87], the Variable Type Detector (VTD) is proposed for anomaly detection in
textual computer log data. It identifies variable types within log lines, such as
chronological, static, ascending or descending, continuous, range, unique, and dis-
crete. Utilizing the Kolmogorov-Smirnov goodness of fit test, it selects variables for
anomaly detection based on data type stability. Additionally, the VTD introduces
an indicator function to reduce false positives. Evaluation using diverse datasets
shows its superiority over traditional methods like time series analysis and principal
component analysis. It enhances intrusion detection in SIEM and EDR systems and
supports UEBA. Future work includes refining assessments of continuous data types,
introducing time series data types, and deploying the VTD in real-world scenarios.

Additonnaly, in [88], Friedberg et al. propose a method for detecting Advanced
Persistent Threats (APTs) through log-line analysis. Their solution learns system’s
normal behavior to detect deviations, automatically generating a system behavior
model based on event relationships across multiple network machines. This enables
the detection of APT-related anomalies like direct accesses to database servers or
logging functionality disablement. Evaluation shows effective anomaly detection,

35

although individual anomalies may not be detected by a single rule. Approximately
40% of defined rules detect each injected anomaly, ensuring detection, despite a
relatively high false positive rate. However, logging deactivation is consistently
detected, highlighting the system’s ability to identify abnormal activities, even if not
linked to APTs. The model exhibits a high false positive rate and requires manual
intervention for deep causal analysis. Future work may involve developing a more
intelligent approach to reduce redundant hypotheses and alleviate model overload.

• Protocol anomaly detection: Protocol anomaly detection focuses on identifying de-
viations from expected network protocol specifications. It involves parsing network
traffic to detect anomalies in protocol headers, sequences, or payload structures. Pro-
tocol anomaly detection is effective in detecting novel attacks that exploit protocol
vulnerabilities.

In [89], Bao et al. introduce a packet header anomaly-based anomaly detector, an
experimental protocol for modeling network and host intrusion detection systems.
This detector analyzes the behavior of packet header field values across layers 2,
3, and 4 of the OSI network model. Named the Packet Header Anomaly Detection
(PbPHAD) system, it is designed to detect anomalous behavior in network traffic
packets, focusing on specific protocols such as UDP, TCP, and ICMP at the network
and transport layers. Its goal is to identify the degree of maliciousness based on a
set of anomalous packets detected from statistically modeled abnormal field values.
They also highlights the model’s performance on a standard evaluation dataset and
proposes the incorporation of expert rules.

In [90], a solution for detecting attacks on Wi-Fi networks is presented through a
Wireless Intrusion Detection System (WIDS). This approach relies on behavioral
analysis of anomalies, where the normal behavior of the Wi-Fi protocol is modeled
using n-grams and machine learning models to classify Wi-Fi traffic as either
normal or malicious. The system comprises two main modules: the capture module
(Sniffer), which collects Wi-Fi traffic, and the behavioral authentication module
(BAM), which analyzes this traffic by converting packets into flows, extracting
n-grams, and using machine learning models to classify flows as normal or ab-
normal. The WIDS has undergone comprehensive testing on various datasets,
demonstrating precise detection of all Wi-Fi protocol attacks, with low false positive
rates and the capability to detect even minimal footprint attacks such as Minimal
Deauthentication.

• Stateful inspection: Stateful inspection monitors and analyzes the state and con-
text of network connections to detect anomalies. It tracks the sequence of events
within a connection and compares it against expected behavior. Stateful inspection
is effective in detecting complex attacks that span multiple network sessions.

In [91], Parvat et al. propose an innovative approach for anomaly and intrusion
detection in networks, with a particular focus on packet-filtering firewalls. Their
method combines the use of Deep Packet Inspection (DPI) to identify suspicious
behaviors with the analysis of packet record attributes to enhance IDS performance.
By leveraging multi-core and multi-threading processing capabilities, this hybrid
approach ensures accurate and rapid attack detection while minimizing false alarms

36

In [92], Togay et al. present an innovative solution for detecting intrafirewall pol-
icy anomalies, focusing primarily on packet-filtering firewalls. With the increasing
number of connected devices and the growing complexity of firewall rules, policy
anomalies are becoming more common, compromising network security. The pro-
posed solution relies on a logic programming-based anomaly detection model, ac-
companied by a corresponding software tool. This framework transforms existing
firewall configurations into actionable knowledge to automatically detect anomalies,
offering an efficient and scalable solution for firewall maintenance and security. This
approach enables efficient scaling for anomaly detection, providing improved per-
formance even with large rule sets.

The anomaly-based intrusion detection approach provides a valuable alternative to
signature-based detection methods by identifying non-conforming behaviors or activity
patterns within a computer system. It is widely used in, behavioral analysis, detecting
zero-day or sophisticated attacks that evade signature-based detection. However, this ap-
proach presents some significant limitations:

– False positives: Statistical anomaly detection methods generate false positives
in dynamic environments where normal behaviors can vary significantly.

– Encryption issues: Protocol anomaly detection may be limited by encryption or
obfuscation of network traffic, making it difficult to detect attacks in such cases.

– Scalability: Stateful inspection may encounter scalability issues in high-speed
networks due to the complexity of monitoring and analyzing numerous simul-
taneous connections.

– Computational resources: Different approaches may require sophisticated algo-
rithms and significant computational resources to effectively detect malicious
activities, posing challenges in terms of performance and costs.

Payload-based detection:
Intrusion detection by payload, also known as ’payload-based detection,’ is a method

used to identify intrusion attempts by deeply analyzing the content of data packets
exchanged over a network. This method delves into the actual content of transmitted data
to detect signatures, patterns, or anomalies indicative of malicious activity.
The emergence of this approach in specialized literature stems from the growing need to
detect sophisticated attacks that may be concealed within the content of network com-
munications. Researchers have developed techniques to analyze and extract meaningful
information from payloads, leading to a variety of payload-based intrusion detection
approaches and methods:

• Content pattern analysis: This technique involves searching for specific patterns
within packet content to detect known attacks. Effective pattern matching methods
such as regular expressions or trie trees are used for this task. While precise for
detecting specific patterns, it can be evaded by signature variants or obfuscations.
In [93], an approach is proposed to address a performance issue in intrusion detec-
tion, where existing algorithms are complex and slow in handling large amounts of
data generated during system or network monitoring. Hence, Kuri et al. introduced a
pattern-matching-based intrusion detection filter. This method relies on the concept
of insertion distance, treating an attack as a sequence of events and detecting text

37

portions where all attack events appear in order within a window of k other events.
They demonstrated that the filter can rapidly identify suspicious areas in audit logs
by scanning millions of events per second, thereby reducing processing overhead
for more sophisticated algorithms. Their approach was evaluated using an analytical
model and preliminary experiments, showing its effectiveness in efficiently filtering
text while maintaining good attack detection.
In [94], an innovative solution for network intrusion detection is presented. This
solution, named C_MPM, relies on a multi-pattern matching algorithm based on
characteristic values. Unlike traditional approaches, C_MPM simplifies rule tree
construction and reduces the number of comparisons by classifying rules based on
their length and characteristic value. The algorithm performs parallel analysis of
characteristic values of text strings in the matching window, optimizing pattern de-
tection and reducing false positives. Experimental results demonstrate that C_MPM
offers better temporal performance, with an exponential decrease in processing time
as string length increases.

• Semantic analysis: This technique examines packet content at the semantic level to
detect malicious behaviors, utilizing techniques such as syntax or semantic analysis
to extract meaningful information from data. While capable of detecting sophisti-
cated attacks, it may be limited by the complexity of semantic analysis and language
variability in packets.
In [95], Wu et al. propose an aggregated flow-based inspection method to amplify
the features of malicious behavior in network traffic. They introduce a new data anal-
ysis approach for efficiently classifying network traffic by utilizing a topic model to
construct a doc-word matrix from statistical features, and then analyze latent seman-
tic information to determine whether an aggregated flow is malicious. The proposed
technique is evaluated using CIC-IDS2017, UNSW-NB15, and NSL-KDD datasets.

Similar to other traditional detection approaches, data encryption poses a major obsta-
cle to in-depth packet content analysis, thereby reducing the effectiveness of this method
in detecting attacks concealed within encrypted communications. Furthermore, the in-
creasing complexity of data transmitted over networks makes packet content analysis
challenging and prone to errors. Attackers exploit this complexity by constantly develop-
ing new techniques to circumvent detection systems, such as polymorphic attacks or data
obfuscation, thereby making payload-based detection less reliable. Additionally, the mas-
sive volume of data generated by networks presents challenges in terms of the time and
resources required for analysis, potentially leading to delays in threat detection. Lastly,
the possibility of generating false positives due to unusual legitimate behaviors under-
scores the need for payload-based detection solutions to incorporate sophisticated alert
validation and correlation mechanisms to ensure accurate detection of malicious activi-
ties while minimizing undesirable alerts.
Issues and challenges

In light of the persistent challenges encountered by traditional detection techniques
such as signature-based, anomaly-based, and payload-based methods, exploring new de-
tection mechanisms has become imperative. While these conventional approaches have
played a pivotal role in combating known threats and non-conforming behaviors, they
face significant hurdles in effectively identifying zero-day attacks, sophisticated threats,
and encrypted traffic. Challenges such as false positives, scalability constraints, and high

38

computational resource requirements underscore the need for novel detection techniques.
Thus, in order to conduct more comprehensive analyses of network traffic patterns, swiftly
identify malicious behaviors with enhanced precision, and proactively adapt to emerging
threats without relying on constant updates to signature databases or anomaly rules, vari-
ous research endeavors have embraced machine learning approaches.

3.3.2 Automatic learning techniques

The constant evolution of cyber threats demands perpetual adaptation of detection
methods. Among modern approaches, the utilization of machine learning (ML) and deep
learning (DL) has shown promising performances in early and accurate attack detection.
ML and DL-based attack detection rely on the analysis of complex mathematical models
capable of identifying patterns and anomalies within vast datasets. Essentially, this ap-
proach aims to automatically learn from training data to discriminate between normal and
malicious behaviors in testing data. ML and DL algorithms leverage techniques such as
neural networks, decision trees, and ensemble methods to accomplish this task.
Thus, machine learning algorithms enable learning from historical data and automatically
detecting patterns, anomalies, and malicious behaviors in network traffic or system activ-
ities:

Supervised learning:

These algorithms are trained on annotated data, where examples are labeled as either
normal or malicious. They learn to recognize distinctive features of attacks and can sub-
sequently detect them when encountering new examples in test data. Recent research
efforts have explored various enhancements and adaptations of these supervised methods.
Numerous studies compare the performance of different supervised machine learning al-
gorithms for intrusion detection. The following paragraphs summarize some of the key
findings in this area.

Ensemble models such as Bagging, Boosting, and Stacking appear to outperform clas-
sical models such as K Nearest Neighbors (KNN), Support Vector Machines (SVM), or
Random Forests (RF). Other works indicate higher performance with decision trees or
neural networks. In [96], Jabbar et al. introduced a classification solution using alternat-
ing DT, an algorithm that creates prediction and separation nodes. This approach, applied
to the NSL-KDD dataset, inspired further research aiming to optimize hyper-parameters
and enhance accuracy rates while exploring different algorithms. Additionally, in [97],
the authors employed the NB algorithm and its implementation with PCA on the NSL-
KDD dataset. Similarly, in [98], Koc et al. applied the Hidden NB (HNB) to the KDD
Cup 99 dataset, combining attribute independence with a binary HNB classifier to reduce
naivety.

Adversarial learning approaches increasingly challenge ML-based detection systems.
Techniques to evade ML-based attack detectors using the RF algorithm have been pro-
posed, highlighting the sensitivity of ML algorithms, particularly RF, to parameter
changes and feature order [99]. In [100], the authors conducted an analysis on the NSL-
KDD dataset, exploring the performance of ten classification algorithms. Their approach
to feature selection relies on attribute evaluators and filtering techniques. The imple-
mented algorithms included Naive Bayes, Bayes-Net, Logistic Regression, Random Tree,
Random Forest, J48, Bagging, OneR, PART, and ZERO. Among these, Random Forest
emerged as the top-performing classifier, achieving an accuracy of 99.9% with a false
alarm rate as low as 0.001. Following closely behind was Bagging, exhibiting an accu-
racy of 99.8%. Notably, the PART algorithm demonstrated a similar level of performance.

39

In [101], the authors propose a revised method that consolidates three attack cate-
gories into one through supervised learning. This approach aims to simplify the classifi-
cation procedure and enhance the accuracy of network intrusion detection. By employing
ensemble-based feature selection methods, including LightGBM, Random Forest, and
ExtraTrees, this study seeks to identify a minimal set of relevant features for network in-
trusion detection without compromising accuracy. The results of the experiment showed
that the Random Forest model achieved an accuracy of 93.3% with an F-score of 24.7.
The ExtraTrees model obtained an accuracy of 93% with an F-score of 19.1. However,
the LightGBM model achieved the highest accuracy of 95.4%, with an F-score of 61.2.

In [102], an analysis compares the effectiveness of supervised learning models SVM
and Random Forest in anticipating future developments in host-based intrusion detection
systems. Using datasets collected from various web sources, the analysis reveals that
SVM outperforms Random Forest in terms of precision (95.89% versus 94.12%). These
findings underscore the advantage of SVM methods in intrusion detection, without ob-
serving significant differences between the groups.

Ensemble models, decision trees, and Random Forest have shown promising results,
but adversarial learning approaches pose a challenge to ML-based detection systems. Fea-
ture selection methods can improve the accuracy of network intrusion detection, and SVM
methods may have an advantage in host-based intrusion detection. Other research using
DL algorithms focuses on analyzing temporal sequences and extracting distinctive pat-
terns in network traffic. These studies primarily explore the use of Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), or hybrid architectures combin-
ing these two approaches.

Deep Learning (DL) is an extension of Machine Learning (ML) principles that pro-
cesses large datasets using hidden layers for in-depth learning [103]. As with ML algo-
rithms, most attack detection approaches proposed with DL models focus on increasing
accuracy and reducing false positives. The following paragraphs discuss various studies
that have utilized DL models for attack detection.
One approach to maximize detection success is to combine supervised learning algo-
rithms with feature selection methods. In a study conducted by [104], artificial neu-
ral network (ANN) based machine learning with wrapper feature selection outperformed
support vector machine (SVM) technique in classifying network traffic. The evaluation
was conducted on the NSL-KDD dataset, employing both SVM and ANN techniques.
Similarly, in [105], Zhao et al. proposed a sequential classifier using Artificial Neural
Network (ANN) to decrease false positives over the KDD99 dataset. Another approach
is to implement a multi-layer approach for complex feature extraction to enhance ANN
efficiency in Network Intrusion Detection Systems (NIDS). However, varying accura-
cies across datasets highlight the necessity for more universally applicable solutions. For
instance, in [7], Vinayakumar et al. implemented a multi-layer approach for complex fea-
ture extraction to enhance ANN efficiency in NIDS. However, the accuracy varied across
datasets (KDDCup 99 and UNSW-NB15), highlighting the necessity for more universally
applicable solutions.

Efforts in attack detection research also encompass aspects such as reducing execution
times, preventing model overlearning, and optimizing hyper-parameters. In [106], Siva-
mohan et al. combined Random Forest (RF) algorithms with Principal Component Anal-
ysis (PCA) for feature extraction from the CICIDS2017 dataset and utilized Bi-directional
LSTM (BiLSTM) for attack detection, accelerating computations with GPUs. Similarly,
in [107], Wang et al. employed Convolutional Neural Networks (CNN) and LSTM for
spatial and temporal feature extraction, although experiencing decreased accuracy for un-

40

balanced data. Azizjon et al. used a CNN and LSTM combination to serialize TCP/IP
packets for supervised learning on the UNSW-NB15 IDS dataset, utilizing CUDA GPU
acceleration to reduce computational time [108].

In [109], the authors leverage recurrent neural networks (RNN) with long short-term
memory (LSTM) to enhance the accuracy and performance of intrusion detection systems.
Their methodology involves several steps: firstly, they test different activation functions
for LSTM cells and the number of iterations for backpropagation (BP). Subsequently,
the proposed model is evaluated on the UNSW-NB18 dataset, conducting both binary
and multiclass classifications. Experimental results show a significant increase in accu-
racy compared to existing RNN algorithms, with a maximum accuracy reaching 99.96%.
Moreover, the model exhibits efficient memory usage and requires a limited number of
iterations to achieve optimal performance. This approach also simplifies preprocessing of
network traffic data, offering high accuracy and low resource consumption.

The choice of the optimal algorithm depends on the context and datasets used. Sev-
eral studies highlight the importance of feature selection to enhance the performance of
supervised intrusion detection models. Techniques such as symmetric mutual informa-
tion, attribute evaluators and filtering, as well as correlation analysis and Chi-square, help
reduce data dimensionality and improve classification accuracy.

While supervised ML and DL offer promising solutions for intrusion detection, several
challenges need to be addressed:

– Data Imbalance: Network traffic data often exhibits an imbalance, with normal
traffic significantly outnumbering attack traffic. This imbalance can bias the
learning process and require specific techniques like oversampling or under-
sampling.

– Feature Selection: Selecting the most relevant features from network traffic data
can significantly improve model performance and efficiency.

– Evolving Attacks: Attackers constantly develop new techniques. Supervised
ML models need to be adaptable and regularly retrained with new data to main-
tain effectiveness against evolving threats.

Unsupervised learning:

Unsupervised learning algorithms are mostly used in intrusion detection to detect
anomalies in the data without the need for labeled examples. These algorithms are pre-
sented with unlabeled data and must discover underlying structures or patterns without
explicit label supervision. In intrusion detection, unsupervised learning algorithms are
particularly useful when network traffic examples lack explicit classifications as normal
or malicious.
One approach to unsupervised intrusion detection is the use of robust autoencoders
(RAE). In [110], Kotani et al. introduce an approach that leverages RAEs to segregate
training data into benign and abnormal features in an unsupervised manner. This method
is evaluated on the MAWI dataset, where it demonstrates an ability to reduce false posi-
tives and effectively detect attacks, particularly SYN port scans.

Another innovative method for detecting anomalies in network traffic using unsuper-
vised machine learning techniques is proposed in [111] by Alam et al. They develop two
models: the Pseudo-AE model, which incorporates skip connections to enhance a convo-
lutional neural network (CNN) and mimic the behavior of an autoencoder (AE), and the
more traditional CAE (Classical CNN AutoEncoder) model, consisting of an encoder and

41

a decoder for input reconstruction. These models are trained and tested on the PVAMU-
DDoS2020 dataset, showing satisfactory performance with low error rates (0.007 for the
Pseudo-AE model) and high accuracies (0.98 for the CAE model). However, the Pseudo-
AE model stands out for its simplicity and shorter training time, thus offering an effective
solution for anomaly detection in network traffic.

Unsupervised algorithms play a pivotal role in research endeavors, particularly in clus-
tering tasks. Among these, K-Means is extensively employed to categorize network traffic
data into distinct clusters based on inherent similarities [112, 113, 114, 115]. Instances of
traffic that deviate significantly from established clusters are flagged as potential anoma-
lies or intrusions. In addition, outlier detection techniques pinpoint data points that statis-
tically differ from the majority, effectively highlighting unusual network activity patterns
indicative of attacks.

Techniques such as Principal Component Analysis (PCA) have been utilized to reduce
the dimensionality of network traffic data while retaining essential information. This
facilitates efficient visualization and anomaly detection in high-dimensional datasets. In
[116] Khaoula et al. apply this technique with K-Means on the NSL-KDD dataset and
achieve an overall accuracy of 94.51%.

However, unsupervised learning for intrusion detection also presents several chal-
lenges:

– High False Positive Rates: Unsupervised methods can flag normal network be-
havior as anomalies, leading to a high number of false positives that require
further investigation.

– Difficulty in Anomaly Interpretation: Identifying the root cause of anomalies
detected by unsupervised models can be challenging due to the lack of explicit
labels associated with the anomalies.

– Tuning Sensitivity Thresholds: Setting appropriate sensitivity thresholds for
anomaly detection is crucial to balance the trade-off between false positives
and missed attacks.

Semi-supervised and hybrid techniques:
Semi-supervised learning is a technique that combines elements of supervised and

unsupervised learning. In this framework, a small amount of data is labeled, while the
majority of data remains unlabeled. This approach is used in intrusion detection to lever-
age both labeled and unlabeled data to build robust detection models. The application
of semi-supervised learning techniques in intrusion detection presents significant oppor-
tunities to enhance the accuracy of existing detection systems and to identify emerging
threats.
In the state of the art, various use cases of this approach are proposed [95, 117, 118].
For example, Zheng et al. introduce a Self-train framework for fine-grained network-
based intrusion detection using deep learning. This semi-supervised detection framework
incorporates the RI-1DCNN base model for enhanced feature extraction, an uncertainty-
based pseudo-label filtering method, and a hybrid loss function for better class separation
and more compact intra-class features [119]. Experimental results on the NSL-KDD and
CICIDS-2017 datasets demonstrate that SF-IDS significantly improves attack classifica-
tion performance, even with only 1% labeled samples, achieving accuracy rates of up to
99%.

In [120], Wang et al. propose ATSAD (Attention-Based Semi-supervised Anomaly
Detection), a semi-supervised approach to anomaly detection that builds upon the Deep

42

SAD algorithm. The key innovation of ATSAD is its use of an attention network to
focus on important features of the input data. By defining a new objective function, the
attention network and the mapping network of Deep SAD are jointly trained. Evaluations
conducted on the CSE-CIC-IDS2018 dataset show that ATSAD outperforms Deep SAD
and other methods in terms of performance and robustness. Notably, ATSAD requires
fewer labeled samples to achieve better performance, with the authors emphasizing the
reduced pollution rate of their solution to just 1%.

Other applications of semi-supervised learning are explored in the literature, particu-
larly in cloud and virtualized environments. However, despite their potential advantages,
semi-supervised learning techniques also pose significant challenges. The noise in un-
labeled data can compromise the quality of pseudo-labels and model performance, the
selection of the most appropriate semi-supervised learning model for a given context and
available data can be complex, and the interpretability of semi-supervised models may
lead to higher false detection rates compared to supervised models.

These solutions facilitate classification, the differentiation between legitimate and ma-
licious flows, and the identification of attack classes within the model. However, they do
not ensure zero-day attack detection.

3.3.3 Zero-day detection approaches

According to IBM Security, a zero-day exploit is a cyberattack vector that takes ad-
vantage of an unknown or unaddressed security flaw in computer software, hardware or
firmware. A zero-day attack is when a malicious actor uses a zero-day exploit to plant
malware, steal data or otherwise cause damage to users, organizations or systems [121].
Faced with the unknown nature of these attacks, it is essential to scrutinize appropri-
ate detection techniques. One approach to achieve is by using linear transformations to
simplify and reduce the dimensionality of data, which contributes to improved anomaly
detection sensitivity and specificity [122]. This technique can improve the sensitivity and
specificity of anomaly detection, as the extracted features can better capture differences
between normal and abnormal data. By combining linear transformation and anomaly
detection techniques with known attack signatures, it is possible to effectively detect zero-
day attacks.
One example of this approach is presented in [123], where different discriminant functions
are used to calculate the estimated probability of zero-day attacks by analyzing network
connection features. The detection of zero-day attacks is done by identifying anomalies
using a defined anomaly score and the KNN algorithm. The proposed model has been
tested on the NSL-KDD dataset.

Other research efforts have relied on auto-encoders for zero-day attack detection.
Auto-encoders are neural network architectures used for data compression, dimension-
ality reduction, and data generation [124, 125, 126]. An implication of an auto-encoder is
presented in [13]. A high recall rate and a low false negative rate have been defined with
mean square error (MSE) thresholds. Additional unsupervised techniques involve local
detection modules to aggregate detected anomalies [11]. Botnet detection approaches by
Blaise et al. focus on identifying significant changes in port usage, utilizing statistical
measures to detect anomalies over time, evaluated on two datasets: MAWI and UCSD.
In [127], the authors propose an innovative method for network intrusion detection us-
ing robust autoencoders (RAEs) in an unsupervised framework. They convert feature
vectors into images and apply unsupervised deep learning techniques, including Bidirec-
tional Generative Adversarial Networks (BiGANs), to extract meaningful features. This
approach is evaluated on four public datasets (CICIDS2017, UNSW-NB15, NSL-KDD,

43

and Bot-loT), demonstrating an accuracy improvement of up to 8.25% compared to deep
learning models applied to the original feature vectors. The results showcase the method’s
capability to reduce false positives and effectively detect attacks, while outperforming
features extracted by conventional network analysis tools.

Hybrid approaches are also proposed in the state of the art. In [128], Pu et al. introduce
an intrusion detection method that combines Sub-Space Clustering (SSC) and One Class
Support Vector Machine (OCSVM). By integrating subspace clustering techniques, SSC
forms clusters from small subspaces of the original dataset, while OCSVM, an extension
of SVM, handles unlabeled data to detect anomalies. The authors evaluated their solution
using NSL-KDD and compared it to three state-of-the-art unsupervised solutions.

To overcome the challenge of obtaining large labeled datasets, Mbona et al. have
adopted semi-supervised techniques, proposing an innovative method for detecting zero-
day attacks in networks [129]. Their approach focuses on analyzing network traffic fea-
tures to identify potential anomalies. They have also introduced the use of Benford’s law
to select significant features that differentiate normal network activities from zero-day
attacks. By employing machine learning models, particularly the one-class SVM, their
solution has yielded the best results, with a Matthews correlation coefficient of 74% and
an F1 score of 85%, for detecting zero-day network attacks.

In [130], Arun et al. harness deep learning and LSTM networks for zero-day attack
detection. Their innovative approach involves simulating and modeling zero-day attacks
by replicating unknown vulnerabilities through a sophisticated development framework.
Leveraging recurrent neural networks and gating-based filtering techniques, their method
scrutinizes abnormal behaviors to detect subtle deviations from normal patterns. These
capabilities enable the identification of zero-day attacks. The results achieved with their
DLAD (Dynamic LSTM-based Anomaly Detection) approach are promising, with a de-
tection precision reaching 98.88% and a recall of 98.78% on the NSL-KDD and CI-
CIDS2017 datasets.

Facing the diversification of approaches to detecting known and unknown attacks,
Mahdi et al. present an innovative framework in [131]. This framework, based on deep
learning (DL), is designed to be adaptable to zero-day attacks, thus addressing the chal-
lenges of detecting novelties and adapting to detected attacks. It comprises several distinct
phases: open set recognition, clustering of unknown samples, supervised labeling, and
model updating. The open set recognition phase utilizes deep classification methods to
identify unknown samples while simultaneously classifying different types of known at-
tacks. Unknown samples are then clustered, simplifying the labeling task for security ex-
perts. The optimized clustering phase aims to enhance the coherence of clusters, thereby
facilitating subsequent supervised labeling. Finally, the model is updated with newly la-
beled data, making it adaptable to emerging attacks and evolving threat landscapes. This
framework offers a promising approach for zero-day attack detection in networks.

We present in Table 3.1 a comparative analysis of various solutions from both tradi-
tional and recent state-of-the-art approaches.

44

Attack Detection
Approaches

Signature-
based

Statistical
Anomaly

Supervised
Learning

Unsupervis-ed
Learning

Hybrid

Ability to Detect
Zero-day Attacks

Low Medium Medium High High

Sensitivity to False
Positives

Medium High High Variable Variable

Complexity and Re-
source Requirement

Low Medium Medium Variable Variable

Adaptability to New
Attack Types

Low Medium Medium High High

Ease of Deployment
in Industrial Environ-
ment

High Variable Variable Variable Variable

Table 3.1: Comparison of Zero-day Attack Detection Approaches.

Summary and issues:

After conducting a comprehensive analysis of the state of the art, several crucial issues
emerge regarding data processing, enhancing attack detection through machine learning
and deep learning techniques, and the development of zero-day detection framework.

1. Data processing: Efficiently managing the massive volumes of data generated by se-
curity systems remains a major challenge. Traditional data processing architectures
have limitations in scalability and real-time data processing capacity. Moreover, the
heterogeneity of data sources complicates their integration and analysis, potentially
leading to delays in threat and attack detection.

2. Improving attack detection using ML and DL techniques: Despite advancements,
challenges persist in enhancing attack detection capabilities. Current models face
high rates of false positives or false negatives, compromising their operational ef-
fectiveness. Additionally, ensuring the adaptability of these models to emerging and
evolving attacks remains a significant issue, necessitating continuous updates to al-
gorithms and training datasets.

3. Zero-Day detection frameworks: Traditional detection methods often rely on rec-
ognizing pre-established signatures or patterns, rendering them ineffective against
unknown attacks. While progress has been made in developing behavioral detection
techniques, zero-day detection frameworks still contend with high rates of false pos-
itives, significant computational resource requirements, and the need for adaptability
to an increasingly diverse array of attack classes.

Following an in-depth exploration of traditional and contemporary attack detection
methods, particularly those based on machine learning and deep learning, we will focus
in the subsequent section on studying existing datasets in the literature and the suggested
data generation techniques.

45

3.4 Literature review for network information system

data generation
The evaluation of intrusion detection systems (IDS), particularly those based on ML

and DL methodologies, is intrinsically linked to the availability of pertinent and inclusive
datasets. These datasets serve as the cornerstone for training, validating, and assessing
the efficacy of IDS models across diverse security scenarios. This section elucidates the
pivotal role of datasets in the evaluation of IDS solutions, highlighting their significance,
utilization, and the subsequent necessity for synthetic data generation.

3.4.1 Available datasets
Intrusion detection datasets typically contain network traffic data, with features

extracted from packet headers and payloads, along with labels indicating normal or
malicious behavior. These datasets can be broadly categorized into two types: real-world
datasets and synthetic datasets. Real-world datasets are captured from actual network en-
vironments, while synthetic datasets are generated through simulations or artificial means.

In the realm of ML and DL, two primary categories of datasets are commonly en-
countered: public datasets and private datasets. Public datasets are widely available and
easily accessible, thus offering a significant convenience for research endeavors. Some
widely-used datasets for evaluating intrusion detection systems include KDD Cup 1999,
NSL-KDD, UNSW-NB15, CICIDS2017, CSE-CIC-IDS2018, AWID, ISCX, CTU-13,
DARPA 1998, and Kyoto 2006. Private datasets, while often more representative of
real-world situations, are characterized by their confidentiality and restricted access.
Their more authentic and diversified content renders them valuable resources for research,
Some privately-held datasets used for evaluating intrusion detection systems, which are
typically not accessible to the public due to sensitive or proprietary information, include
proprietary datasets of cybersecurity companies, enterprise network datasets, honeypot
datasets, and darknet datasets. Thus, while public datasets are more readily accessible,
private datasets offer superior realism but demand additional efforts for acquisition and
utilization.

The table 3.2 compares the main characteristics of the 10 public datasets presented
such as the year of creation, the number of records, the number of features, the types of
attacks represented, as well as the advantages and disadvantages of each dataset.

46

Dataset Year Records Attrib. Target Advantages Disadvantages
DARPA
[132]

1998 4,900,000 41 60 Large, variety
of attacks

Obsolete,
imbalanced,
redundancy

KDD Cup
[133]

1999 4,900,000 41 24 Large, variety
of attacks

Imbalanced, re-
dundancy, ob-
solete

Kyoto
[134]

2006 24,000,000 24 50 Very large, va-
riety of attacks,
real

Imbalanced,
fewer features

NSL-
KDD
[135]

2009 125,000 41 24 Addresses
some KDD
issues, more
realistic

Smaller, some
obsolete attacks

ISCX
[136]

2012 2,000,000 21 5 Realistic, vari-
ety of attacks

Imbalanced,
fewer features

CTU-13
[137]

2013 1,600,000 41 7 (bot-
net)

Specialized in
botnets

Imbalanced,
lack of diversity

UNSW-
NB15
[138]

2015 2,500,000 49 9 Newer attacks,
additional fea-
tures

Imbalanced,
complexity of
features

AWID
[139]

2017 17,000,000 156 4 Specialized
in wireless
networks

Limited attacks,
lack of diversity

CICIDS
[140]

2017 2,800,000 80 7 Recent, variety
of attacks, real-
istic

Imbalanced,
complexity of
features

CSE-
CIC-IDS
[140]

2018 16,000,000 80 7 Large, variety
of attacks,
realistic

Imbalanced,
complexity of
features

Table 3.2: Comparison of intrusion detection datasets with their main characteristics.

Limitations:
• Lack of diversity and realism: The available datasets may suffer from various

limitations that restrict their representativeness and relevance for evaluating intrusion
detection systems. Among these limitations are:

– Lack of diversity in attack types: Existing datasets may lack diversity in repre-
senting various types of attacks, thus neglecting the breadth of possible intrusion
scenarios in a real network environment. This lack of diversity can compro-
mise intrusion detection systems’ ability to effectively detect novel or evolving
threats.

– Lack of realism in attack scenarios: Some datasets may not accurately reflect
real-world attack scenarios, limiting their ability to simulate authentic cyber
threat conditions. A lack of realism in the data can skew the performance eval-
uations of intrusion detection systems and lead to unreliable results.

– Bias in data distribution: Datasets may exhibit biases in the distribution of data
among attack classes and normal activities, skewing the evaluation of intrusion

47

detection system performance. Biases can result in underrepresentation of rare
or novel attacks, compromising the systems’ ability to effectively detect such
threats.

• Difficulty in acquiring real-world data: Acquiring real-world data on attacks and
intrusions can be hindered by several challenges, including:

– Difficulty and cost: Collecting real-world data on attacks and intrusions can be
a challenging and costly task, requiring significant resources in terms of time,
personnel, and monitoring infrastructure.

– Privacy concerns: Real-world data on attacks and intrusions may contain sen-
sitive information about users and network activities, raising privacy concerns
and compliance issues with data protection regulations.

• Risk of overfitting: The use of limited datasets can lead to overfitting of intrusion
detection models, where the models overly adapt to the specific characteristics of the
training data and lose their ability to generalize effectively to new data. This over-
fitting can result in poor performance of intrusion detection systems when deployed
in real-world environments, where conditions may differ from those in the training
dataset.
To address the limitations of existing datasets, synthetic data generation has emerged
as a promising solution.

3.4.2 Synthesis data generation techniques

Synthetic data generation involves creating artificial datasets that mimic real-world
network traffic and attack patterns. These data are essential for enriching the limited
available datasets and for enhancing the capability of intrusion detection systems to effec-
tively identify and respond to threats. To address the major challenges associated with the
use of real-world data, synthetic data plays a crucial role in the field of intrusion detection.

First and foremost, privacy emerges as a significant concern when dealing with au-
thentic data, which may contain sensitive information about individuals or organizations.
Synthetic data, being artificially generated, offers a secure alternative that preserves pri-
vacy, as it is dissociated from real entities.
Furthermore, authentic attack data is often scarce and challenging to obtain, especially for
the latest and most sophisticated attack types. The generation of synthetic data enables the
creation of a variety of representative attack examples, thereby enhancing the capability
of intrusion detection models to identify a wide range of threats.
Another challenge in intrusion detection lies in class imbalance, where normal events are
typically far more common than attack events. Synthetic data helps address this issue by
producing additional examples of attacks, thus balancing the classes and improving the
performance of detection models.
Lastly, security threats evolve continuously, requiring up-to-date data to train and evalu-
ate intrusion detection systems. Synthetic data can be tailored to reflect new trends and
emerging attack techniques, offering greater flexibility and adaptability to changes in the
threat landscape.

Different techniques are employed in the state of the art for generating synthetic data
in intrusion detection:

48

Deep generative models:

• Generative Adversarial Networks (GAN) have emerged as a significant advance-
ment in the field of machine learning, consisting of two deep neural networks in com-
petition with each other: a generator and a discriminator. The generator produces
synthetic data examples, while the discriminator attempts to distinguish between
real and synthetic data. Through an iterative training process, the generator progres-
sively improves its ability to generate realistic data, while the discriminator refines
its discrimination capabilities. Since its introduction in 2014, GANs have been suc-
cessfully implemented in several fields, particularly in data generation [141].

Several studies have proposed different GAN-based models for generating synthetic
network traffic data. Ring et al. proposed two models, B-WGAN-GP [142] and E-
WGAN-GP [143], to generate realistic synthetic NetFlow traffic using different input
data representations from the original CIDDS-001 dataset [144]. Both models use
Wasserstein GAN with gradient penalty and the two time-scale update rule (TTUR)
to improve training stability. While the proposed models generate realistic synthetic
NetFlow traffic, the evaluation method using domain knowledge may be limited and
not take into account all possible behaviors in network traffic flows, which could
affect the validity of the results. Therefore, it would be interesting to consider other
evaluation methods to confirm the quality of the generated synthetic traffic.

In another study [145], the authors used the B-WGAN-GP model, a variant of
WGAN-GP trained to generate network traffic. The experiments used NetFlow
records from the CIDDS dataset. The results showed that classifiers performed bet-
ter when trained on synthetic data generated from longer GAN training. However,
none of the classifiers outperformed the baseline trained on the original dataset. The
results also indicated that the GAN failed to capture patterns between traffic features
and labels, but could effectively capture and replicate patterns between the features
of a NetFlow record and its class. However, when the GAN was not sufficiently
trained, the classifier’s performance was hindered by the synthetic traffic.

The PAC-GAN model proposed by the Cheng et al. generates packet-level traffic
using a convolutional neural network (CNN) GAN [146]. The packet data is en-
coded as 28 × 28 binary matrices, taking advantage of the raster data structure used
in CNN models. While PAC-GAN was evaluated by measuring the success rate and
byte error of decoded packets generated by the model, this evaluation method may
not fully capture the complexity and variability of network traffic flows. Therefore,
it would be beneficial to consider additional evaluation methods, such as comparing
the statistical properties of the generated traffic with real-world traffic, or using the
generated traffic in a network simulation to evaluate its impact on network perfor-
mance.

Dowoo et al. introduce PcapGAN, a GAN-based model for generating, augmenting,
and analyzing network traffic data [147]. The model utilizes real traffic flow packet
captures (Pcaps), extracting features and transforming them into graph (source and
destination IPs), image (time interval), and layer sequences. These sequences are
then used to create packet data for each protocol with augmented option data. The
time interval information aids in setting the start time for the first packet, reception
time for other packets, and packet sorting at each host, ultimately generating a Pcap
file [Citation17]. The evaluation shows a similarity score of 0.5 between original
and synthetic data, indicating moderate similarity. However, PcapGAN’s limitation

49

is its requirement for data to be converted into graph, image, and layer sequences
before training.

In another study [148], Lu et al. propose a method for generating SQL injection
attack samples using deep convolutional generative adversarial networks (DCGAN)
combined with genetic algorithms. This approach aims to address the problem of
insufficient SQL injection samples for training and testing AI detection models by
generating realistic and diverse fake samples. The proposed method expands the ini-
tial small number of samples and avoids overfitting of the AI models. Experimental
results show that this approach is effective in generating realistic and diverse SQL
injection attack samples, thereby improving the performance of AI detection mod-
els. The complexity of the DCGAN and genetic algorithm approach may limit its
scalability and practicality in real-world applications.

Two GAN architectures, CTGAN and Copula GAN, were presented by Anande et
al. for generating synthetic network traffic data [149]. These architectures utilized
reversible data transformations to model dependencies between network traffic fea-
tures. The authors relied on the UNSW-NB15 dataset, and network traffic features
considered in this study included continuous features such as flow duration and
packet count, as well as categorical features such as the protocol used and service
type. Experimental results demonstrated that both GAN architectures were capable
of generating synthetic data with statistically similar characteristics to real data in
approximately 85% of cases.

In conclusion, while GANs offer promising advantages for synthetic data genera-
tion, there are challenges and limitations to their use. These include the need for
more comprehensive evaluation methods, consideration of all possible behaviors
in network traffic flows, the complexity of the approach and modeling of complex
dependencies between traffic features, and the use of real, non-simulated data
as input. Nonetheless, GANs have shown great potential in generating synthetic
network traffic data, and further research is needed to address these challenges and
limitations.

• Variational Autoencoders (VAE) are generative models used in deep learning, de-
signed to learn representations of complex data and generate new data from these
representations. VAEs combine encoder and decoder techniques with probabilistic
concepts to create models that can generate realistic data. The state-of-the-art so-
lutions demonstrate the potential of VAE for generating synthetic data in network
intrusion detection [150].

In [151], Manuel et al. presents a method for generating synthetic data in the field of
intrusion detection using a Variational Generative Model (VGM) based on a Condi-
tional Variational Autoencoder (VAE). The VGM uses intrusion class labels as input,
enabling the generation of new data using only the labels without relying on specific
training samples associated with those labels. The synthetic data generated by the
VGM can be used as additional training data to improve classification results for
common machine learning classifiers. The VGM demonstrates good performance
metrics (average accuracy and F1) when several common classifiers (Random Forest,
Logistic Regression, SVM, and Multilayer Perceptron) are trained with the VGM-
generated data. The authors use the NSL-KDD dataset to train the VGM model and
explore various architectures, including different numbers of layers, nodes, regular-

50

ization, loss functions, and probability distributions for the output layer. However,
the experiments presented in this paper are based on the NSL-KDD dataset. It would
be important to verify whether the results obtained with the VGM generalize to other
intrusion detection datasets.
In a study, the authors present NeCSTGen, a network traffic generation architec-
ture based on deep learning models such as variational autoencoders (VAEs) and
recurrent neural networks (RNNs) [152]. The VAEs are used to learn the underlying
distribution of the original network traffic data and generate new data that follows
this distribution, while the RNNs are used to model the temporal dependencies in
the network traffic data and generate coherent packet sequences. Experimental re-
sults show that NeCSTGen is able to generate network traffic with statistical char-
acteristics similar to those of the original traffic data, on various types of networks
including a simulated DARPA network, a Google Home voice command capture,
and a LoraWAN network deployed in a city center.
In [153], the authors propose the Batched-VAE approach for generating balanced
data in network intrusion detection datasets. This approach uses VAEs trained
in batches to address the insufficient decoder training problem in the VAE ap-
proach. The results show that Batched-VAE provides similar classification accuracy
in terms of F1 scores, even when the imbalance ratio changes. The authors use low-
dimensional features to train a VAE for each original data sample, which enables
obtaining accurate features for generating more favorable balanced samples. How-
ever, using low-dimensional features to train a VAE for each original data sample
may not capture enough information to generate realistic balanced samples, and the
Batched-VAE approach may not be scalable for very large datasets due to the need
to train multiple VAEs in batches for each data portion.
In conclusion, VAE are a valuable tool for generating synthetic data in various fields,
including network intrusion detection. VAE have shown promising results in gener-
ating realistic data by learning complex data representations and combining encoder
and decoder techniques with probabilistic concepts. However, there are challenges
and limitations to their use, such as the need for more comprehensive evaluation
methods, the consideration of all possible behaviors in network traffic flows, the
complexity of the approach and modeling of complex dependencies between traffic
features, and the use of real, non-simulated data as input. Despite these challenges,
VAE have demonstrated great potential in generating synthetic network traffic data,
and further research is required to address these limitations and improve their per-
formance.

Rule-based models and profiling models are strategies employed to generate synthetic
data in intrusion detection by leveraging knowledge of the information system and its
characteristics. These techniques enable the creation of realistic attack scenarios and the
generation of data that accurately represents the behavior of attackers, as well as legitimate
activities.

Both models facilitate the creation of realistic attack scenarios and address issues re-
lated to privacy, scarcity of attack data, and the evolving nature of security threats.

3.4.3 Summary
We have highlighted that existing datasets often lack diversity and realism in attack

scenarios, may be biased, difficult to obtain and raise privacy concerns. Meanwhile, syn-
thetic data generation approaches such as GAN and VAE offer promising advantages, but

51

also face challenges like the need for more comprehensive evaluation methods, considera-
tion of all behaviors in network, the complexity of the approach and modeling of complex
dependencies between traffic features, and the use of real, non-simulated data as input.

3.5 Conclusion
In this chapter, we first addressed the major challenges in terms of computer network

security faced by enterprises. Subsequently, we examined state-of-the-art solutions, start-
ing with traditional intrusion detection approaches and then focusing on recent techniques
based on Machine Learning (ML) and Deep Learning (DL) algorithms. Given that these
techniques require data for validation, we also explored existing datasets used in attack
detection and synthetic data generation techniques.
Overall, our literature review enabled us to identify the following key challenges:

1. The lack of generic solutions for classification is a significant challenge. Indeed, the
diversity of applications and obfuscation techniques hampers the effectiveness of
signature-based and payload-based detection methods, leading to a high number of
false positives in anomaly detection techniques. Otherwise, existing machine learn-
ing (ML) and deep learning (DL) approaches remain tailored to specific datasets,
resulting in varying levels of accuracy and false positive rates. Furthermore, the
extraction and definition of features utilized by these algorithms heavily depend on
the targeted application case. Consequently, solutions designed for one dataset often
struggle to generalize to others, especially given the continuously evolving diversity
and complexity of cyberattacks.

2. Existing methodologies for zero-day attack detection are often inadequate. Tradi-
tional signature-based systems struggle to identify new threats lacking predefined
signatures, while new signature detection solutions have limitations in covering var-
ious attack categories. Additionally, anomaly detection techniques face challenges in
distinguishing between legitimate and malicious anomalies, often resulting in a high
rate of false positives. Moreover, ML and DL approaches primarily focus on op-
timizing hyperparameters to ensure consistent performance across diverse datasets,
often neglecting the potential for multiple attack scenarios.

3. Another major issue identified in our state-of-the-art study is the limitations asso-
ciated with evaluation datasets proposed by the community. After analyzing these
datasets, we also investigated synthetic data generation techniques. The increasing
use of ML approaches in computer security emphasizes the need for high-quality,
realistic, and scalable synthetic data. However, existing datasets often lack diversity
and realism in attack scenarios, may be biased, difficult to obtain, and raise privacy
concerns. Synthetic data generation approaches like GAN and VAE offer promis-
ing advantages but face challenges such as the need for comprehensive evaluation
methods, consideration of all behaviors in the network, complexity in modeling de-
pendencies between traffic features, and the utilization of real, non-simulated data
as input. Additionally, limited access to real-world datasets for validating proposed
methods necessitates the utilization of publicly available datasets, which may have
drawbacks in terms of size, coverage of attack types, and potential biases.

In the following chapters, we will propose approaches for the three major points men-
tioned above.

52

Chapter 4

Automation and improvement of
cyber-attacks detection via an industrial
IDS probe

Contents
4.1 Introduction . 53
4.2 Background . 54
4.3 Our proposal . 56

4.3.1 Our feature engineering method . 56
4.3.2 Our classification model . 58

4.4 Performance evaluation . 61
4.4.1 Model performance on an industrial context: IBM dataset 61
4.4.2 A comparative analysis with the benchmarking dataset NSL-KDD 65
4.4.3 Complementary experiments with UNSW-NB15 dataset 68

4.5 Conclusion . 75

4.1 Introduction
Given the diversity of approaches proposed for intrusion detection via IDS probes, an

analysis and evaluation of the feature engineering and classification techniques proposed
in the existing intrusion detection approaches is required.
In their study [62], Maharana et al. highlighted the critical importance of data preprocess-
ing and data augmentation techniques for ML and DL models. One of the most crucial
steps in data preprocessing is feature engineering, which involves extracting and selecting
the most relevant features for the models.

The literature presents different solution such as using default attributes defined based
on datasets [7, 9, 10], statistical features [86], reducing the dimensionality with PCA
[97, 116], ML and DL algorithms [8, 101] and applying feature selection techniques
(wrapper or filter method) [100, 104]. Combined with a classification algorithm for attack
detection, these solutions can be time-consuming to execute and complex. Furthermore,
their effectiveness can be limited from one dataset to another. Therefore, it is advisable to
classify network flows for the detection of cyberattacks, aiming to reduce false detection
rates and model execution time by leveraging general attributes.

In this chapter, we propose an approach to better classify network flows. Our solution
involves extracting generic attributes combined with a classification algorithm capable of

53

identifying additional patterns in the input data, thereby associating network flows with
the appropriate classes. For this purpose, we use the 1D-CNN algorithm and its feature
detector layer. We also aim to reduce the number of attributes to decrease the execution
time of the models in an industrial context.
Our solution is evaluated using different datasets: the first originating from an industrial
context, and others from the literature (NSL-KDD, UNSW-NB15), to demonstrate the
effectiveness of the model regardless of context and datasets. We highlight the attack
classes, the volume of data used, the processing applied to these data, and the classifica-
tion results, while providing a comparative study with some state-of-the-art works.

In this chapter, we first introduce a background of network flow. After that, we present
the architecture of our solution, detailing its two major phases. Subsequently, various
evaluations are proposed using data from different contexts.

4.2 Background
As illustrated in Figure 4.1 and discussed in Section 2.2.1, a network flow represents

a sequence of packets between a pair of communicating endpoints, such as Asset A and
Asset B, during a specific time interval [17]. Thus, the establishment of a network flow,
also known as a session, involves a series of steps that enable Asset A and Asset B ex-
change data. First, Asset A initiates a connection request to Asset B, using a specific
communication protocol, such as TCP or UDP. Asset B then responds with an acknowl-
edgement, establishing a logical connection between the two endpoints. Subsequently,
these two assets engage in a series of data exchanges, with Asset A sending requests and
Asset B sending responses, until the session is terminated, either explicitly by one of the
endpoints or implicitly due to a timeout or other network event.

Figure 4.1: Flow definition.

The characteristics of a network flow, including source and destination IP addresses,
source and destination ports, and communication protocols, provide critical insights into
the nature and behavior of network activity. However, raw network data can be highly
complex, noisy, and high-dimensional, with redundant and encrypted information that
can significantly impair the performance and accuracy of network activity classification
algorithms.

To address these challenge, extracting and analyzing metadata is an appropriate ap-
proach. In Figures 4.2, 4.3 and 4.4, we present a metadata (header of a flow), a header
with an empty payload, and a payload of encrypted traffic. These metadata features can

54

effectively capture the essential characteristics of network flows while reducing the com-
plexity and noise of the raw data.

Figure 4.2: Network Flow - Metadata.

Figure 4.3: Network Flow - Packet Encrypted.

55

Figure 4.4: Network Flow - Empty Payload.

4.3 Our proposal
In this section, we present our supervised learning approach for network intrusion

detection. Network activities (e.g., attempts to connect to a machine, port scanning, data
transfers) in our approach are classified based on the features of network flows. Our
approach uses CNN due to their feature detector component to achieve a fast and efficient
classification and can be applied in any network context. Thus, as we can see in the Figure
4.5 the proposed approach has two main steps:

• the first part will deal with feature engineering which will be developed in Section
4.3.1 and then will focus on the operation of convolution neural networks, in partic-
ular the feature detector and feature map proposed in this algorithm;

• the last step will highlight the classification phase of the flows for the identification
of the adequate classes to which the flows are associated, as described in Section
4.3.2.

4.3.1 Our feature engineering method

Based on the various phases of communication between the two machines presented in
Section 4.2, our feature engineering aims at finding a set of universal minimalist features
and facilitating several network flow analysis tasks. Thus, these features can be found and

56

Figure 4.5: Our proposed model.

used to classify network activity. As shown in Table 4.1, the features of any flow can be
ranged in three main categories, namely:

• Asset characteristics: This category encompasses attributes associated with the
lower layers of the OSI model (Network, Transport, and Application), including
source and destination IP addresses, port numbers, protocols used, and targeted ap-
plications. These attributes aim to characterize and identify the transmitting and re-
ceiving equipment involved in communication. Their universality lies in their prop-
erties of:

– Fundamental for packet routing: These attributes are essential for routing data
between devices on the network. They enable the identification of transmitting
and receiving devices, determine communication paths, and ensure packets are
delivered to the correct destination. Their presence is thus guaranteed in every
network flow, regardless of the context or type of communication.

– Independence from protocols and applications: Unlike some attributes that may
vary depending on the protocol or application used, attributes in Asset charac-
teristics family remain constant and immutable across all network communi-
cations. For example, a source IP address will always be a source IP address,
whether it is used for an HTTP, FTP, or DNS connection. Similarly, a specific
port number will be associated with a particular application, regardless of the
protocol used.

• Flow characteristics: This category encompasses attributes associated with the ses-
sion layer of the OSI model (layer 5), including communication duration, number of
packets exchanged, average throughput, etc. These attributes serve to characterize
the dynamics of communication between equipment, taking into account temporal
variations in data exchange. Their universality lies in their ability to:

– Independence from specific data content: They remain constant regardless of
the type of content being exchanged.

– Applicability to any network communication: Whether it involves file transfers,
video streaming, web requests, or any other form of data exchange, they are
available and identifiable.

57

• Exchanged data and rate characteristics:

This category encompasses attributes related to data exchanged between equipment,
such as packet size, amount of exchanged data, etc. These attributes aim to charac-
terize the content of communication, considering the specificities of the exchanged
data (e.g., file type, language used, etc.). They are essential for evaluating the vol-
ume of transmitted data and detecting anomalies in communication patterns.

Flow Characteristics
Flow-ID unique identifier of a network flow associated with a session includes

source and destination IP addresses, along with source and destination
port numbers, and a protocol.

Flow Type Single standard flow or supeflow (network scans A - DDOS B - Port
Scans C).

Flow-Aggregation-Count Number of session records associated with a specific flow.
Flow Direction Direction of traffic (Local Only - Local To Remote - Remote To Local).
Flow-Bias Amount of incoming or outgoing data associated with a specific flow.

(In only [100% incoming flows], Out Only [100% outgoing flows],
Mostly In [70− 99% incoming flows and 1− 30% outgoing flows],
Mostly out [70− 99% outgoing flows and 1− 30% incoming flows],
Nearly Same [31−69% incoming flows and 31−69% outgoing flows]).

Flow Duration Difference between the date and time of receiving the last packet and
the first packet.

Asset Characteristics
Source-IP IP address (Layer 3 of the OSI model) originating the flow.
Source-Port Source port of the flow.
Destination-IP IP address (Layer 3 of the OSI model) destined for the flow.
Destination-Port Destination port of the model assigned by IANA.
Protocol Protocol assigned to the network flow associated with the transport layer

of the OSI model.
Category Data low level Category
Application The application name (Layer 7 of the OSI model) assigned based on

the protocol and ports that are used for the flow, and the flow content
(LDAP, Radius, MSN, NFS, IMAP, POP, BitTorrent, RDP, SSH, ...).

Application-Group The group name for the application (Authentication, Chat, Web, Data
Transfer, Mail, ...)
Exchanged data and rate characteristics

Source-Bytes Number of bytes sent from the source host.
Destination-Bytes Number of bytes sent from the destination host.
Bit-Per-Second Number of bits sent per second.
Total Bytes Total number of bytes associated with the flow.

Table 4.1: Features categories and related attributes.

We extract features from these three categories from the network traffic generated by
the original information system. The extraction of these universal metadata useful
can reduce the processing time of a model to feed a network activity classification
algorithm Subsequently, we construct the dataset with these metadata as headers and
the values of various attributes extracted from the original traffic.

4.3.2 Our classification model

Once the dataset formed, the corresponding data are injected into a classification
algorithm for the accurate identification of attack scenarios present in the traffic. For

58

this purpose, there are different ML and DL approaches and methodologies, as we
have seen in the state of the art, most of which aim to improve the accuracy of the
model.

First, some attack categories have similar feature values, which may reduce the ef-
fectiveness of ML algorithm-based models. Moreover, we aim to apply our approach
in an industrial context with substantial data volumes. Therefore, we propose a clas-
sification based on deep learning where some features are learned during the training
phase. Hence, in our selection of deep learning approaches, we prioritized convolu-
tional neural networks (CNN) due to their unique ability to detect relevant features
in their convolution layer.

Our methodology initially relies on the extraction of a minimalist set of attributes in
a network flow (see Section 4.3.1). In a second step, the feature detection component
of the CNN is a major asset for accurate traffic classification.

As illustrated in Figure 4.6, the feature detector within the CNN allows to identify
the most significant features in the input data, which are reflected by the highest
values in the feature map. This detection operation is performed by a convolution
between the input data (dataset) and the feature detector, which generates a feature
map representative of the most relevant data for our study.

The use of CNN in our approach allows us to effectively combine minimal feature
extraction and precise pattern detection in the network flow, which significantly im-
proves the performance of our traffic classification model. Moreover, our approach
takes into account the training and execution time of the models. By using a min-
imalist feature extraction method, we reduce the dimensionality of the input data,
which in turn speeds up the training and execution time of the CNN.

Figure 4.6: Features Detector Layer.

In addition, to improve model efficiency and reduce computational cost, we are fo-
cusing on the other layers of CNN algorithm.

In our study, we use the algorithm 1D-CNN an approach based on one-dimensional
1D-CNN with specific parameters to improve the performance of our traffic classi-
fication model, without focusing too much on hyperparameters optimization, which
considerably limits the reuse of a model in another context or on other datasets.

We choose to use 64 filters in the first convolution layer of the network to extract 64
different features from the input data. This decision is based on a trade-off between

59

Figure 4.7: Other Layers of Convolutional Neural Networks.

model accuracy and computational cost. Previous studies have demonstrated that a
moderate number of filters in the first layer provides a good balance between these
two factors [154].

Next, we select a kernel-size of 3 (3x3 matrix) for the convolution layer. This ker-
nel size is chosen for the convolution layer based on its ability to detect recurring
patterns in the input data while limiting computational cost. This kernel size has
been widely used in CNN and has been shown to be effective for large-scale pattern
recognition [155].

The ReLu activation function is used in the convolution layer to add non-linearity
to the model and avoid the problem of saturation. This activation function has
been shown to accelerate the convergence of the model and improve its performance
[156].

We also use the max-pooling layer to ensure spatial invariance property and to reduce
the risk of overlearning by removing unimportant information and keeping only the
most relevant ones to generalize the model. A pool-size of two was chosen as it
is a commonly used value in CNN and has been shown to be effective in various
applications. [157].

After the pooling layer, we add a fully-connected layer with 128 units, which cor-
responds to the average number of neurons in the input and output layers while
maintaining the ReLu activation function.

For the output layer, we define the number of output neurons corresponding to the
number of targets present in each of the datasets. We rely on the cross-entropy cost
function for this network flow classification problem, with an Adam optimizer and
accuracy to measure the performance of our model. Finally, we use the Softmax
activation function to evaluate the output probabilities of each class and Sigmoid for
binary classifications.

To further improve the performance of our 1D-CNN model, we increase its depth
while considering the trade-off between model complexity, accuracy and computa-
tion time. Specifically, we can add layers to the convolution layer, the fully con-
nected layer, or both.

We define a loop that adds three convolution layers to the network, and apply max-
pooling to these new layers while maintaining the same parameters as in the first

60

Parameter Value
Convolution Layer 3 layers
Max-pooling 2 layers
Dropout 0.3
Fully Connected 2 layers
Output Layer Softmax
Optimizer Adam
Activation Function ReLu/Softmax
Epoch 200
Batch Size 3

Table 4.2: Our CNN parameters.

convolution layer. This allow us to extract more complex and higher-level features
from the input data.

However, to prevent overfitting and minimize the risk of over-training, we use
dropout regularization to randomly disable some neurons in the network during
training. This help to reduce the co-adaptation of neurons and improve the gen-
eralization of the model. In our 1D-CNN model, we set the dropout rate to 0.3,
which means that 30% of the neurons will be disabled at each training iteration.

Table 4.2 summarizes the different settings and parameters of our proposed 1D-
CNN model, including the number of layers, the number of filters, the kernel-size,
the pooling-size, the number of units in the fully connected layer, the dropout rate,
and the activation functions used in each layer.

In summary, the choice of these parameters for our 1D-CNN approach was motivated
by previous studies and considerations of accuracy, computational cost, and model
generalization. In the next section, we evaluate the performance of our model with
these parameters.

4.4 Performance evaluation
In this section, we evaluate the accuracy of our model in network flow classification.
To do so, we first apply our feature engineering coupled with our CNN-based model
on an IBM dataset extracted from a real industrial context. We compare then our
solution to four ML algorithms (see Table 4.3) in terms of binary and multi-class
classification. Since we aim to propose a general solution for network flow classifi-
cation, we show, in the second part of this section, the effectiveness of our solution
against existing solutions while considering, this time, the well known NSL-KDD
dataset that is widely used in the literature.

4.4.1 Model performance on an industrial context: IBM dataset

IBM QRadar is a security appliance that is built on Linux. QRadar allows to collect,
store and correlate logs for the detection of security incidents. To prove the effec-
tiveness of our approach, we extracted raw data from a real-time industrial context,
with an IBM proprietary IDS probe (QRadar Network Insight, QNI), which extends
QRadar by providing a detailed view of real-time network communications [158].

61

Algorithms Parameters

K-Nearest Neighbors
n_neighbors: number of targets; weights: uniform; algorithm: auto;
leaf_size: default; p:2; metric: euclidean

Naive Bayes model: GaussianNB; classes: number of targets

Decision Tree
criterion: gini; splitter: best; min_samples_split: 2; max_depth: none;
random_state: none

Random Forest
n_estimators: number of targets; criterion: gini; max_depth: none;
min_samples_split: 2; max_features: sqrt; random_state: none;

Table 4.3: Machine learning algorithms parameters.

Our dataset includes data collected in 2021, and thus recent attack chains (e.g., ex-
ploit log4Shell vulnerability). The flows used in our classification have been ex-
tracted during an interval of one week. This extraction (around 36 000 enties) con-
tains legitimate flows and non-legitimate ones that we categorize using the frame-
work MITRE ATT&CK [30]. This content is presented in Table 5.3.

Flow-class Target-ID Tactics Techniques Size (#rows)
Normal 0 - - 10.000
Large-Leakage 2 TA0010 T1567 10.000
Stealthy-leakage 1 TA0010 T1030 10.000
Web-Exploit 7 TA0002 T1204 5.000
DOS-Attack 3 TA0040 T1498 150
Indicator of Compromise Inbound 4 TA0001 T1189 500
Indicator of Compromise Outbound 5 TA0011 T1102 300
Malicious-Website 6 TA0011 T1102 15

Table 4.4: IBM Dataset content validated with MITRE ATT&CK.

Data preprocessing

At this phase, we make transformations on our raw data to allow its processing by
the learning algorithms that we used. The raw data has an average of 150 features
default and custom. However, using all these features for classification is not an op-
timal approach considering a balance between accuracy and model execution time.
Therefore, in our solution, we reduce the number of features to 14 (at most) accord-
ing to our feature engineering approach (Section 4.3.1) in addition to one target that
describes the flow class. After this extraction, all decimal entries (e.g., rate, amount
of data, source/destination port numbers) remain unchanged. On the other hand,
each byte in a field related to an IP address is converted to its hexadecimal value (ex-
cluding the dots that separate the bytes). Then, these values are concatenated which
gives us a unique value that will be converted to decimal. The fields related to "flow
direction" has at most four possible values in the raw data. Therefore, these values
are mapped into integers in the set {1, ..,4}. The fields related to "flow bias" has at
most five possible values in the raw data. Therefore, these values are mapped into
integers in the set {1, ..,5}. Finally, the type of the communication protocol used is
replaced by its corresponding number assigned by the Internet Assigned Numbers
Authority (IANA) (i.e., 6 and 17 for TCP and UDP respectively).

For this dataset, we use a distribution of 70% for the train-set and 30% for the
test-set.

62

Evaluation metrics

To determine the quality of our classification model and to evaluate its performance
against various existing learning algorithms, we used the following four popular
evaluation metrics:

Accuracy(A) = (T P+T N)
(FP+FN+T P+T N) , Precision(P) = T P

T P+FP , Recall(R) = T P
T P+FN ,

ScoreF1(F1) = 2∗ (Precision∗Recall)
(Precision+Recall)

Where, for a given flow class C: True Positive (TP) represents the number of flows
correctly classified in the given class C; True Negative (TN) represents the number
of flows correctly classified outside the class C; False Positive (FP) represents the
number of flows wrongly classified in the class C; and finally False Negative (FN)
represents the number of flows wrongly classified outside the class C.

The evaluation of binary and multi-class classification using two-feature fami-
lies

As a first step to validate our approach, we started with a binary classification which
should allow us to distinguish legitimate flows from illegitimate ones. To do so, we
first assign all legitimate flows (Normal flows in Table 4.4) to the target 0 while all
illegitimate flows will be assigned to the target 1. After that, we select ten features
in each entry in our dataset. These features correspond to two features families
among the three highlighted in section 4.3.1, namely, Flow features (the number
of records in a flow, the type of flow, the direction of the asset that initiated the
communication, the duration of the communication, the data transfer bias) and Asset
features (the source IP address, the destination IP address, the source and destination
ports, and the protocol used). This data has then been injected into our model and
the results have been compared in Table 4.5 with those of four ML algorithms (K-
Nearest Neighbors (KNN), Naive Bayesian (NB), Random Forest (RF), Decision
Tree (DT)).

Target KNN NB DT RF Our model
P R F1 P R F1 P R F1 P R F1 P R F1

0 1 1 1 1 0.99 0.99 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Accuracy 100% 99% 100% 100% 100%

Table 4.5: A comparison table in terms of binary classification using 2 families of features.

As we can see in the results of Table 4.5, our solution can indeed distinguish legiti-
mate network traffic from an abnormal one, where we notice 100% accuracy rate for
our model. The other ML algorithms also achieve good results. However, in a real
industrial context, it is also important to distinguish the nature of the attack flows
in order to take proper counter-measurements. Therefore, we present in Table 4.6 a
comparison of a multi-class classification accuracy of illegitimate flows between our
model and the above ML algorithms.
As shown in Table 4.6, we notice that our solution offers a better accuracy and a
very good precision, recall and F1 scores for all attack targets. As a reminder, the F1

63

T
KNN NB DT RF Our model

P R F1 P R F1 P R F1 P R F1 P R F1

P R F1 P R F1 P R F1 P R F1 P R F1
1 0.74 0.76 0.75 0.94 0.15 0.26 0.70 0.69 0.69 0.71 0.75 0.73 1 0.96 0.97
2 0.75 0.74 0.75 0.55 0.79 0.71 0.68 0.69 0.68 0.72 0.68 0.70 1 0.92 0.94
3 1 1 1 1 1 1 1 1 1 1 1 1 1 0.95 0.92
4 0.83 0.31 0.45 0.40 0.67 0.50 0.93 1 0.96 0.93 1 0.96 0.91 0.91 0.94
5 1 1 1 1 0.45 0.62 1 0.86 0.93 1 0.91 0.94 1 0.96 0.96
6 1 1 1 1 1 1 1 1 1 1 1 1 0.85 0.89 0.92
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Acc 88% 79% 85% 86% 92%

Table 4.6: Multi-class Classification with two families of features.

score is an arithmetic average between precision and recall, so it allows to measure
the ability of the learning algorithms to better associate flows with legitimate traffic
classes or corresponding target attacks. The first general observation is a confusion
between targets 1 and 2 by almost all ML algorithms and a better classification for
targets 3, 6 and 7 compared to the remaining targets. We note that targets 1 and
2 correspond to data leak flows including data leaks in short time intervals, and
data leaks in much longer ones. For these flow types, the same IP address can be
spotted in both scenarios, which may cause the confusion between the data in these
two classes in ML algorithms. With KNN, the F1 score is 0.75 for target 1 and 2,
and quite low, especially for target 4. In the Naive Bayesian, we notice the lowest
accuracy among all ML algorithms that we tested, which strongly impacts the F1
score which is 0.26 for target 1. A significant confusion was also found in the NB
between targets 4 and 5 (corresponding to the inbound and outbound compromise
indicator data) with F1 scores of 0.5 and 0.62 respectively. This is explained by the
fact that the flow duration in these two attack classes is relatively close, due to the
probabilistic operation of NB. The Decision Tree and Random Forest improve these
F1 scores at target 4 and 5 since when an attribute has the same approximate value
for two given classes in an internal node, these two algorithms dissociate the given
targets in the following nodes by comparing other attributes.
Our solution, which combines our feature extraction approach with the feature de-
tector proposed in CNN, solves the confusion observed in ML algorithms. Indeed,
a neural layer overlay, including the layer filtering principle, is well adapted to our
context of multi-class classification of confused output layers. Convolutional neural
networks learn the values of the weights in the same way that they learn the filters
of the convolution layer, which can allow it to distinguish between confused classes
1 and 2, and other classes (like target 4 and 5) with medium or low F1 scores which
explains the improvement of accuracy highlighted in Table 4.6.

The evaluation of multi-class classification using three-feature families

In order to investigate the impact of the third family of features (highlighted in Sec-
tion 4.3.1) on the accuracy of our model, we all the three families of characteristics.
Therefore, the number of characteristics increases from 10 to 14 features that we
use in both our model and ML algorithms to classify malicious network flows. The
results of this evaluation are presented in Table 4.7.
As we can observe in Table 4.7, an improvement of the F1 score of all targets is

64

noticed compared to the Table 4.6 in both our model and ML algorithms, with an
exception for NB. In this model, the F1 scores are more or less the same as the ones
in Table 4.6 for all targets, except for target 4 (incoming traffic related to indicators
of compromise) where a sharp decline is observed. This decreases the accuracy of
this model from 79% to 73%.
Overall, we can clearly deduce that the additional information provided by the third
family of features gives much more context and allows us to dissociate certain types
of attacks. Our solution appears as the best approach with an average F1-score of
0.96 and an overall accuracy of 94.84% which is better than the ones presented in
Table 4.6.

T KNN NB DT RF Our model
P R F1 P R F1 P R F1 P R F1 P R F1

1 0.80 0.78 0.79 0.93 0.17 0.28 0.86 0.85 0.85 0.86 0.91 0.88 1 0.95 0.96
2 0.78 0.81 0.80 0.48 0.74 0.58 0.84 0.85 0.85 0.90 0.94 0.87 0.98 0.98 0.95
3 1 1 1 1 1 1 1 1 1 1 1 1 1 0.91 0.97
4 1 0.60 0.75 0.02 0.82 0.03 1 0.95 0.97 96 0.95 0.96 0.95 0.90 0.89
5 1 1 1 1 0.44 0.62 1 0.73 0.84 0.95 0.82 0.88 1 1 1
6 1 0.67 0.80 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Acc 90% 73% 91% 92% 94.84%

Table 4.7: Multi-class Classification with all families of features.

The evaluation of epochs according to accuracy and loss values

The convergence of a model is determined by the analysis of the error rate and ac-
curacy curves. Thus, we will focus on determining the optimal number of epochs
in order to find a trade-off between the execution time of our CNN model and its
overall accuracy because one of the drawbacks of deep learning based solutions is
the execution time. In Table 4.2, we have initially defined a baseline value of two-
hundred epochs which we believe is more than enough for our model to converge.
However, we went through the early-Stopping technique to explore the possi-
bility of stopping the learning, as soon as the model starts to overlearn and thus to
reduce the execution time. To do so, we present in Figure 4.8, the accuracy and loss
in the training data (blue curve) and in the test data (orange curve) according to the
number of epochs used in our model. As we can see in Figure 4.8, from the first
to the fiftieth epoch, the accuracy increases with the number of epochs and the loss
decreases accordingly, which indicates that the model is still continuing to learn and
converges. Between the fiftieth and seventieth epochs, both metrics start to stagnate.
This stagnation continues until the 200th epoch, with some fluctuations observed in
some epochs due to confusions between some neurons.

4.4.2 A comparative analysis with the benchmarking dataset NSL-KDD

Dataset description

There have been many intrusion detection approaches proposed in the literature.
However, these approaches are evaluated with different datasets. Therefore, we
tested our model on the NSL-KDD dataset (that has been used in several works
of the literature) in order to check its efficiency and establish a fair comparison with
existing solutions that adopted the same dataset.

65

Figure 4.8: Number of epoch with accuracy and loss.

The NSL-KDD dataset [135] is an enhanced version of the KDDCup99 dataset [159]
which is a standard dataset consisting of a wide variety of simulated intrusions in a
military network environment, defined in 1998 by MIT Lincoln Labs of the U.S.
DARPA agency. NSL KDD has a KDDTrain+ set (125,973 records) divided into 22
types of attacks and normal traffic and a KDDTest+ test set (22,544 records) which
contains 14 additional attacks not included in the KDDTrain+. The set of attack
classes is divided into four main families: Denial of Service (DOS), Remote To
Local (R2L), User To Root (U2R), Probe. The content of NSL-KDD is presented in
the Table 4.8.

Flow-class Subclass Tactics Techniques Train(#rows) Test(#rows)
Normal Normal(67343) - - 67 343 9 711
DOS Back(956), Land(18), Nep-

tune(41214), Pod(201),
Smurfs(2646), Teardrop (892)

TA0040 T1498 45 927 7 458

R2L Guess-Passwd(53), ftp-
write(8), Imap(11), Phf(4),
Multihop(7), Warezmas-
ter(20), Waresclient(890),
Spy(2)

TA0001 T1133/T1199 995 2 754

U2R Buffer-overflow(30),
Loadmodule(9), Perl(3),
Rootkit(10)

TA0004 T1548 52 200

Probe Satan(3633), Lp-
sweeo(3599), Nmap(1493),
Postsweep(2931)

TA0043 T1589/T1590 11 656 2 421

Table 4.8: The NSL-KDD dataset content.

Data processing

NSL-KDD dataset provides 41 features grouped into 3 families: basic features,
traffic features to the same host and traffic features to the same service. How-
ever, the application of our feature engineering (proposed in Section 4.3.1) will
allow us to reduce the number of features used for training to the follow-
ing 12 features (excluding labels): duration, protocol-type, service,
land, src-bytes, dst-bytes, count, srv-count, same-srv-rate,
srv-diff-host-rate, flag and
wrong-fragment.

66

Feature Description
Duration Duration of the connection in seconds.
Protocol-Type Type of network protocol used (e.g., TCP, UDP, ICMP).
Service Type of service on the network (e.g., http, ftp, smtp).
Land Indicator of whether the connection is from/to the same host/port.
Src- Bytes Number of bytes transferred from source to destination.
Dst-Bytes Number of bytes transferred from destination to source.
Count Number of connections to the same host in the last two seconds.
Srv-count Connections to the same service on the same host in the last two seconds.
Same-srv-rate Rate of connections to the same service.
Srv-diff-host-rate Rate of connections to different hosts for the same service.
Wrong-fragment Number of incorrect fragments.
Flag Status and control flag of the connection.

Table 4.9: Our Feature engineering on NSL-KDD dataset.

Moreover, to reduce the impact of inconsistencies between the training and test data
in terms of targets, we chose to concatenate the two by keeping only 22 targets
common to both sets, then splitting this concatenated set at 80% for the training sets
and 20% for the test data. Then, we proceeded to a preprocessing and normalization
of the extracted data, in which all numerical values are kept unchanged while
attributes with categorical values like services and protocol-type have been mapped
to decimal values, as it has been done with IBM dataset. Finally, targets have been
labeled as follows: normal:0, DOS:1, Probe:2, R2L:3, U2R:4; and the resulting data
is injected into our model. The results of the tests of our model on the NSL-KDD
are presented in the Table 4.10.

Model application and results

Target Our model (NSL-KDD)
Precision Recall F1-score

Normal 0.99 0.99 0.99
DOS 0.99 0.99 0.99
Probe 0.97 0.97 0.97
R2L 0.94 0.79 0.86
U2R 0.50 0.13 0.21
Accuracy 98,7%

Table 4.10: The evaluation results of our Model on the NSL-KDD dataset.

Overall, as we can see in Table 4.10, our model achieves a global accuracy of 98%.
We also notice a high precision and a good F1-Score for the targets Normal, Probe
as well as DOS and to a lesser extent R2L. However, the target U2R has a low score
compared to the remaining targets. Actually, the U2R target relates to an attempt
to elevate privileges which does not correspond to the definition of network flow.
Consequently, the classification of this target cannot be based solely on the charac-
teristics of a network flow. Furthermore, the limited number of input samples for this
target in the dataset contributes to its lower performance compared to other targets
that are indeed network flows and have a significantly larger number of samples.
Moreover, based on the NSL-KDD dataset, we compare in Table 4.11 our model
with other solutions proposed in the state of the art according to the confusion matrix

67

(precision, recall, F1-score and accuracy). Note that the chosen solutions use the
following algorithms on NSL-KDD dataset: ANN [7, 104], Deep learning with ANN
(Auto-encoder)([8], Naive Bayesian [97], and RNN+LSTM, CNN [10].

Model A P R F1 Feature Engineering
Our model 0.98 0.88 0.78 0.80
Vinayakumar et
al. [7]

0.78 0.81 0.78 0.76 The default attributes available in this
dataset (NIDS).

Zhang et al. [8] 0,79 0,82 0,97 0,76 The encoder of DL auto-encoder (1N-
encoding) used to compress the less impor-
tant features and extract key features with-
out decoder.

Tauscher et al.
[9]

0,80 N/A N/A 0,78 The default attributes available in the
dataset.

Liu et al. [10] 0,78 0,78 0,78 0,75 The default attributes available in the
dataset.

Sharmila et al.
[97]

0.86 N/A N/A N/A Attribute reduction method PCA applied
on the dataset.

Prachi et al. [100] 0.99 N/A N/A N/A Wrapper + Filter Methods to feature selec-
tion.

Kazi et al. [104] 0.94 N/A N/A N/A Wrapper Method to feature selection.

Table 4.11: Comparison with the state of art based on NSL-KDD dataset.

As we can see in Table 4.11, our solution significantly enhances the results of
the existing solutions especially in terms of classification accuracy. In addition, it
reduces the preprocessing time applied to the raw data compared to some existing
solutions. For instance, in [8], the authors run a deep learning algorithm to ex-
tract the most relevant features for classification, which is a time consuming task
compared to our preprocessing phase that yet allows to achieve better classification
results. Moreover, our solution also reduces the model execution time compared to
the remaining solutions, since it uses less features for the training (12 in ours, 17 in
[104], 122 in [8], 41 in [7], [10] and [9]).

4.4.3 Complementary experiments with UNSW-NB15 dataset

Dataset description

The UNSW-NB15 dataset serves as a network traffic database designed for intrusion
detection. It was developed within the Cyber Range Lab of the Australian Centre
for Cyber Security, utilizing the IXIA PerfectStorm tool. The primary aim was to
generate normal activities alongside simulations of recent cyber attacks.This dataset
encompasses nine attack categories, along with a category dedicated to flows consid-
ered as normal. In total, it comprises 2,540,043 entries spread across four CSV files.
Furthermore, two additional pre-processed files are also provided, each containing
257,673 entries used in the training and testing sets. The significant distinction be-
tween these datasets and the CSV files we possess is that the applied pre-processing
has already removed certain features (srcip, dstip, sport, dsport, Stime,
Ltime) essential to our feature engineering. Each entry consists of 49 fields de-
tailing various network connection characteristics, including source and destination
IP addresses, ports, protocols, etc. Additionally, two fields are specifically desig-
nated for labeling (binary and multi-class). The UNSW-NB15 dataset is frequently

68

employed as a benchmark to assess the performance of intrusion detection systems
based on machine learning [138]. It also stands as a valuable resource for research
in network security and network traffic analysis.

For the implementation of our approach, we are working with the 4 unprocessed
CSV files. We acknowledge that the effectiveness of a model trained within one
infrastructure may not be transferable to another, due to factors such as IP addresses
and thresholds. However, we operate on the assumption that a model will have a
context and will be specifically associated with a given infrastructure. One field,
id, is clearly redundant as it corresponds to the entry index. Therefore, we have
44 features; 2 of them are labels (binary and multi-class), 3 are nominal, and the
remaining 39 are numeric.

Flow-class Tactics Techniques Count(#rows)
Normal - - 2218760
Generic TA0005/TA0011 T1600/T1573 215481
Exploits TA0002/TA0005/TA0042 T1203/T1211/T1587.004 44525
Fuzzers TA0042 T1498 24246
DOS TA0040 T1498 - 1499 16353
Reconnaissance TA0043 Any 13987
Analysis TA0001/TA0007 T1566/T1046 2677
Backdoor TA0042 T1488 2329
Shellcode TA0005 T1620 1511
Worms TA0001 T1078-T1133 174

Table 4.12: The UNSW-NB15 dataset content.

Data processing

The highly disparate data requires transformation into binary representations by
achieved through OneHotEncoder and LabelEncoder for object-type fields (srcip,
dstip, service, proto and state), as implemented by Tauscher et al. in [9].
A quick observation reveals that the attack cat field has only 22,215 entries,
indicating a lack of labels for all attack categories. To address this, entries where
attack cat is NaN are labeled as NORMAL. Anomalies, such as the error in the
value of the ct src ltm field, are identified.

Fields sport and dsport containing hexadecimal values and "-", have corre-
sponding entries removed, with hexadecimal values converted to base 10. Three
fields have empty or "None" values. To balance the data, only 14% of entries
with label 0 (normal) and a quarter of entries with the label Generic are re-
tained. The dataset exhibits errors such as inconsistent spaces in labels, for instance,
Shellcode, Shellcode Shellcode. Corrections, including space removal,
are applied to the CSV files. The application of our feature engineering, based on
the definition of a network flow, enables us to extract the 17 features presented in
Table 4.13, instead of the default 47 attributes

We concatenate the training and test data to ensure a random distribution of entries.
Subsequently, we perform a split of 70% for the training set and 30% for the test
set, thereby applying the model defined in Table 4.2.

69

Feature Description
srcip source IP of the traffic.
sport source port.
dstip destination IP of the traffic.
dsport destination port
proto Network protocol used for the communication.
state State of the connection.
dur Duration of the connection in seconds.
sbytes Source to destination bytes.
dbytes Destination to source bytes.
rate Data transfer rate.
sttl Source time to live.
dttl Destination time to live.
sloss Source packets retransmitted.
dloss Destination packets retransmitted.
service Type of network service.
Sload Source bits per second.
Dload Destination bits per second.
ct-srv-src Source connection count for the same service.
ct-srv-dst Number of connections observed for the same service and destination IP address.
ct-src- ltm Number of connections observed for the same source IP address.
ct-dst-ltm Number of connections observed for the same destination IP address.
attack-cat The category of the attack.
Label Binary label indicating whether the record is normal (0) or an attack (1).

Table 4.13: Our Feature engineering on UNSW-NB15.

Binary classification (with LabelEncoder and OneHotEncoder)

Both models yielded very similar results in terms of the figures derived from the
classification report. However, a more detailed analysis of the curves reveals sig-
nificant differences. When using the OneHotEncoder, our model encountered an
EarlyStop as early as the 8th iteration. The loss function failed to decrease, while the
validation performance showed a pronounced upward trend. Regarding accuracy, it
stabilized from the 3rd iteration before declining sharply by the 8th (losing 0.001,
which is five times the gain observed between the first and 7th iterations).

Similarly, our model employing the LabelEncoder stopped at the 10th epoch,
swiftly stabilizing its accuracy by the 6th epoch. We noted a significant number of
false negatives and very few false positives (5) with the LabelEncoder. Ideally, we
aim to achieve zero false positives. This outcome is particularly gratifying as, in our
context, minimizing false positives takes precedence over false negatives.

- Precision Recall F1-Score Support
Normal 1.00 0.99 0.99 47605
Attack 0.99 1.00 0.99 47842
Accuracy 0.99 95447
Macro AVG 0.99 0.99 0.99 95447
Weighted AVG 0.99 0.99 0.99 95447

Table 4.14: Binary Classification with LabelEncoder.

70

Figure 4.9: Binary Classification with LabelEncoder.

Figure 4.10: Confusion Matrix with LabelEncoder.

Target Precision Recall F1-Score Support
Normal 1.00 0.99 0.99 47605
Attack 0.99 1.00 0.99 47842
Accuracy 0.99 95447
Macro AVG 0.99 0.99 0.99 95447
Weighted AVG 0.99 0.99 0.99 95447

Table 4.15: Binary Classification with OneHotEncoder.

71

Figure 4.11: Learning Curves of Binary Classification with OneHotEncoder.

Figure 4.12: Confusion Matrix with OneHotEncoder.

Multi-class classification (with LabelEncoder and OneHotEncoder)

In the realm of multi-class classifications, initial learning stages naturally yield sig-
nificant gains in both accuracy and loss minimization for both training and validation
data. However, a stabilization in accuracy and loss occurs around the 15th epoch,
suggesting potential for further learning given the absence of early stopping crite-
ria (defined as three consecutive non-improving losses). We observe no significant
difference in accuracy between data processed with LabelEncoder and OneHotEn-
coder. Generally, F1-Scores for different labels are also very similar. Notably, the
’Normal’ and ’Generic’ labels exhibit excellent F1-Scores, followed by high scores
for ’Fuzzers’, ’Reconnaissance’, ’Exploits’, and ’Shellcode’. Conversely, ’DoS’,

72

’Analysis’, and ’Worms’ display low F1-Scores, with ’Backdoor’ being almost ab-
sent.

Target Precision Recall F1-Score Support
Normal 1.00 0.99 0.99 47605
Generic 1.00 0.97 0.99 16146
Exploits 0.61 0.92 0.74 13355
Fuzzers 0.86 0.85 0.86 7243
DoS 0.43 0.15 0.23 4973
Reconnaissance 0.90 0.66 0.76 4139
Analysis 0.49 0.16 0.24 786
Backdoor 0.35 0.02 0.03 681
Shellcode 0.76 0.75 0.75 457
Worms 0.67 0.06 0.12 62
Accuracy 0.89 95447
Macro AVG 0.71 0.55 0.57 95447
Weighted AVG 0.89 0.89 0.88 95447

Table 4.16: Multi-class Classification with LabelEncoder.

Figure 4.13: Learning Curves of Multi-class Classification with LabelEncoder.

Target Precision Recall F1-Score Support
Normal 1.00 0.99 0.99 47605
Generic 1.00 0.97 0.99 16146
Exploits 0.61 0.92 0.74 13355
Fuzzers 0.86 0.85 0.86 7243
DoS 0.43 0.15 0.23 4973
Reconnaissance 0.90 0.66 0.76 4139
Analysis 0.49 0.16 0.24 786
Backdoor 0.35 0.02 0.03 681
Shellcode 0.76 0.75 0.75 457
Worms 0.67 0.06 0.12 62
Accuracy 0.89 95447
Macro AVG 0.71 0.55 0.57 95447
Weighted AVG 0.89 0.89 0.88 95447

Table 4.17: Multi-class Classification with OneHotEncoder.

73

Figure 4.14: Confusion Matrix of Multi-class Classification with LabelEncoder.

It is important to note that the decrease in accuracy does not correlate with the num-
ber of corresponding entries, as evidenced by DoS with an F1-Score of 0.37 for
4973 predicted entries and ’Shellcode’ with 0.78 for 457 entries, despite the same
training proportion. This divergence may stem from the predefined thresholds for
DOS attacks and the selected features. The threshold defined for DOS attacks may
be reached by other attack types.

Figure 4.15: Learning Curves of Multi-class Classification with OneHotEncoder.

Regarding confusion matrices, discrepancies emerge between predictions made us-
ing LabelEncoder and OneHotEncoder. In the former case, some predictions label
attacks as ’Normal’, and labels 4, 6, 7, and 9 are rarely predicted correctly, mostly
classified as ’Normal’. Predicting ’Normal’ instead of another attack label poses a

74

Figure 4.16: Confusion Matrix of Multi-class Classification with OneHotEncoder.

greater problem as it gives no indication of an attack, unlike misclassifying as an-
other type of attack, which still categorizes it as illegitimate.

4.5 Conclusion
In this chapter, we have presented an intrusion detection solution for network flow
collectors using 1D-CNN. First, our solution presents a feature engineering for the
extraction of data features according to the definition of a network flow. The pro-
posed engineering can be used in any network flow classification, since it is based
on criteria that can be identified in any network event. Our feature extraction is
then associated with a feature detector functionality defined in CNN, which guar-
antees an accurate determination of normal network flows and a robust multi-class
classification of malicious ones. Our model has been evaluated on different con-
texts (industrial and public datasets). The first dataset has been extracted from a
real IBM industrial environment while the the two others are public: NSL-KDD and
UNSW-NB15. Both sets were validated using the MITRE ATT&CK framework, and
the results have proved that our model distinguishes normal behaviors from deviant
ones, and efficiently identifies the attack classes. Moreover, our model significantly
improves the accuracy of the classification process when it is compared to other
existing solutions of the state of the art. It also reduces the number of extracted fea-
tures and thus the execution time of the global model compared to existing solutions.
However, it does not ensure unknown attacks detection.
In the upcoming chapter, we intend to focus on zero-day vulnerability exploitation
attacks.

75

Chapter 5

A framework for detecting zero-day
exploits in network flows

Contents
5.1 Introduction . 76
5.2 Our proposal . 77

5.2.1 Data collection phase . 77
5.2.2 Supervised classification phase . 79
5.2.3 Unsupervised classification phase . 81
5.2.4 Correlation table phase . 82
5.2.5 Outlier detection phase . 83

5.3 Theorical analysis . 83
5.4 Performance evaluation . 87

5.4.1 Evaluation settings . 87
5.4.2 Framework phase 1: leveraging the IBM dataset 87
5.4.3 Framework phase 2: building the Target-Set 89
5.4.4 Framework phase 3: Cluster-Set building 90
5.4.5 Framework phase 4: correlation table . 91
5.4.6 Framework phase 5: distance analysis for detecting zero-day 92
5.4.7 Exploring the NSL-KDD dataset and conducting comparative analysis . . . 94

5.5 Discussion and perspectives . 97
5.6 Conclusion . 98

5.1 Introduction
Zero-day attacks entail the exploitation of unknown system vulnerabilities within an
information system [121]. The proposal of a zero-day attack detection solution aims
to proactively identify unknown threats that assets within an information system may
encounter.

The zero-day attack detection solutions presented in the literature mainly focus
on anomaly detection using various techniques such as linear transformations
[122, 123], statistical measures to identify significant deviations in network traffic
[11], auto-encoders [13, 127] and deep neural networks [131]. Additionally, semi-
supervised methods [129] and hybrid approaches [128] combining clustering tech-
niques and various algorithms are also proposed in the literature. Other solutions

76

rely on LSTM networks to model unknown vulnerabilities and multi-stage attacks
[130].

However, most solutions primarily focus on optimizing the proposed models, which
can result in a high false positive rate from one context to another. Moreover, some
solutions focus on detecting a specific class of attacks and are not capable of de-
tecting all types of zero-days. Finally, sophisticated attacks may evade anomaly
detection. To address these challenges, we present, in this chapter, a framework for
detecting zero-day attacks that escape current detection systems. This zero-day de-
tection method relies on enhanced identification and qualification of attacks already
cataloged in an existing database, proving crucial in identifying unknown attack pat-
terns. Our second contribution is hybrid and comprehensive, encompassing various
intrusion detection phases from data collection to detection, leveraging a combina-
tion of supervised and unsupervised algorithms along with anomaly identification
methods for real-time data feeds into a network flow collector. We evaluated our
protocol using two distinct datasets: the first extracted from a real industrial context,
referred to as the IBM dataset and the second sourced from the state-of-the-art, the
NSL-KDD. The evaluation results highlight the detection of anomalies present in
newly introduced data that were not learned by the detection system.

5.2 Our proposal
In our zero-day detection protocol, we propose a five-phases approach to address the
ever-evolving landscape of security threats related to network flows. These phases
are mainly designed to play a critical role in data collection, data classification, data
clustering, establishing correlation and detecting anomaly.

Figure 5.1 highlights the various phases of our framework outlined in Section 5.2,
from data collection to zero-day attack identification.

In our approach, we start by centralizing the network flows to be analyzed, creating
training and evaluation datasets, establishing a knowledge base of known attack sce-
narios, and continually feeding this base with new attack scenarios through anomaly
detection for the new data the system continues to receive and process. In what
follows, we describe the different phases of our protocol.

5.2.1 Data collection phase

The first phase of our framework involves the collection of data related to the net-
work traffic of the system. This phase requires a flow collector to capture packets
passing through the network and its surroundings. The diagram in Figure 5.2 illus-
trates the network flow collection options (internal and external traffic), as proposed
by IBM Security’s architecture [160].

The collector retrieves flow data from raw packets collected via monitoring and mir-
roring ports [161] such as SPAN, TAP, sessions supervising, or from external flow
sources such as NetFlow [162], sFlow [163], and jFlow [164]. The data from these
various internal and external sources are centralized in a dedicated flow collector.
Following this, we apply the feature engineering as presented in Section 4.3.1 to
reduce the input data dimensionality.

77

Figure 5.1: Our proposed zero-day detection approach.

Figure 5.2: Data collection.

78

Then, we extract multiple pieces of information from the collected data. Conse-
quently, the input-dataset consist of attributes based on the three defined fam-
ilies of characteristics needed to classify network flows. In Table 5.1, we present the
three feature families described in 4.1.

Flow Characteristics
Flow-ID Flow Type
Flow-Aggregation-Count Flow Direction
Flow-Bias Flow Duration

Asset Characteristics
Source-IP Source-Port
Destination-IP Destination-Port
Protocol Category
Application Application-Group

Data and Speed Characteristics
Source-Bytes Destination-Bytes
Bit-Per-Second Total Bytes

Table 5.1: The classification of network flow features into different families.

Once these characteristics are defined, the input-dataset is composed by iden-
tifying and selecting attack scenarios flows experienced by the information system,
along with a set of legitimate flows identified at various periods (morning activities,
business hours, evening activities, weekends, and so on). So, the input-dataset
must be representative of the various data variants collected and centralized within
the flow collector.
As depicted in Figure 5.3, these meticulously curated data fuel both supervised and
unsupervised models.

Figure 5.3: Our proposed model for data categorization.

5.2.2 Supervised classification phase

Once the input-dataset is formed, the next phase of our framework consists of
a supervised classification of network flows. This means associating each flow with
the appropriate class (legitimate flow or malicious flow).

79

We use deep learning-based classification, acquiring specific features during the
learning phase. Notably, we leverage the CNN for its feature detection capabili-
ties within the convolutional layer, alongside other DL approaches. This feature de-
tector detects the features that match the highest values of the input-dataset
in the feature map. A convolution operation is then performed between the
input-dataset and the feature detector to determine a feature map that is repre-
sentative of the relevant data. This model aims at coupling this feature map building
process with the feature engineering presented in Section 4.3.1, aiming to define a
robust method for classifying the network flows.
Thus, the feature map is injected into the CNN’s other layers (pooling, flatten-
ing and fully connected) in order to determine the output categories known as the
Target-Set:

– Target Not Associated with Incident: which describes a first category of flows
not associated with attacks (normal or legitimate traffic).

– Targets Associated with Incidents: made up of malicious activities related to
different attack scenarios.

We use a One-Dimensional CNN (1D-CNN) approach with parameters for
nb-filters filters to extract nb-filters different features on the first con-
volution layer of the network.
Once the Target-Set is defined, we move to the boosting step to decrease the
FDR (false positives, false negatives). To achieve this, the other algorithms used in-
clude DT, RF, KNN, and Bernoulli NB. In our model, DT and RF are used because
of their effectiveness in classifying nonlinear data, given the highly varied and com-
plex attack patterns of network flows. KNN enable us to define complex boundaries
using its proximity-based method, which is useful as we have a variety of normal
flows and attacks.
Finally, the NB model, based on its assumption of conditional naivety, presumes that
the features used for prediction are all independent of each other. This implies that
the presence or value of one feature does not influence the others. This notion enable
us to evaluate the relevance of the attributes proposed in the input-dataset.
Thus, the boosting technique, a set-based learning method that combines a set
of weak Learners (algorithms) into one strong learner, rely on the four other
algorithms.

An implementation of our CNN-based solution and the four other ML algorithms
gives us an initial prediction of the different categories of network flows. We rely on
the F1 score of predictions for each class. Assigning weights to these predictions
as shown in Figure 5.4, we compare the weighted F1 scores, class by class, from each
algorithm to determine an optimal prediction for each label (normal flow and attack
flow). The CNN, serving as the foundational algorithm, holds precedence (a higher
weight) over the other algorithms. The Target-Set be used to create a correlation
Table 5.2.4, which serve as the basis for analyzing the formed clusters in the phase
5.2.3 and for online learning in the phase 5.2.5. This approach avoid running the
supervised model entirely during real-time data collection and classification.
Depending on the dataset or the context, the optimal hyper-parameters may change,
so we will not focus on this aspect of model optimization. Therefore, the four models
defined in addition to the CNN are employed with the parameters commonly used.

80

Figure 5.4: Boosting technique.

After completing the supervised classification phase, we transition to the next stage,
where we employ unsupervised clustering using the robustness of the K-Means al-
gorithm. This enables the grouping of similar segments within unlabeled data, un-
veiling concealed patterns within our network data.

5.2.3 Unsupervised classification phase

In this phase, we employ an unsupervised algorithm to identify data clusters in space,
offering a visual representation of the input data. The network flows of data contain
various attack classes and have a non-hierarchical structure. The K-Means algorithm
is more suitable among unsupervised methods to address the clustering of these data
types. Our application of the K-means algorithm adopts an approach where the
final cluster centroids are defined randomly in the input-dataset. This decision
was made to explore the algorithm’s adaptability to the diverse network flow data.
Indeed, choosing a random centroid configuration ensures a more comprehensive
exploration of potential structures within the data, providing an unbiased perspective
on the network flow clustering process. Consequently, this model allow us to divide
our dataset into K distinct groups and extract patterns of malicious flows related to
attack scenarios, legitimate flows or both. The Elbow method analysis allowed us
to identify a point where the precision showed only marginal improvement with the
addition of clusters. To enhance anomaly detection and achieve a finer segmentation
of the data, we opted to double this point to attain a more detailed distribution,
thereby better capturing the data intricacies crucial for anomaly detection.
At the completion of the various implementation phases of this algorithm, the clus-
ters obtained form a set called the Cluster-Set.
There are three types of clusters built, considering that a network flow is either nor-
mal or abnormal. Thus, this flow could be positioned within one of the following
groups:

– Only Attack Flows containing only attack data.
– Only Normal Flows clusters with only legitimate flows.
– Both are made up of normal traffic and attacks.

Next, we move on to the analysis stage of the formed Cluster-Set and essential
metrics such as the intra-cluster distance a(i), the inter-cluster distance b(i), the

81

average distances d-mean, the maximum distance d-max, and most importantly,
the silhouette score S-sil. All these metrics allow us to determine the minimum
distance d-min per cluster that i belonging to a cluster should not exceed. We em-
ploy outlier distance analysis to compare this distance threshold for each cluster
d-min with the new data that the flow collector continues to receive. Indeed, the set
of point distances that exceed this d-min are termed outliers within a cluster.
Subsequently, we evaluate Data Collected in real time to identify po-
tential outliers, thus enhancing our ability to detect and respond to zero-day attacks
in real-time.
In order to analyze and correlate the Target-Set defined at the end of the super-
vised approach (phase 5.2.2) and the Cluster-Set created in the phase 5.2.3, we
create a join table of the two sets, called Correlation Table.

5.2.4 Correlation table phase

To analyze and exploit the results of unsupervised learning (K-Means), and also as-
sociate them with of the supervised approach, we create the correlation table. This
table allows us to detect which output class from the supervised approach best cor-
responds to which cluster of points from the unsupervised approach. We recall that
in our framework, each communication flow has a unique identifier, Flow-Id, as
presented in Figure 5.5. Based on the flow identifiers and associated targets of the
supervised approach, we look for the appropriate clusters. Therefore, for each net-
work flow, we identify the target of the supervised approach with the cluster number
of the unsupervised approach. Table 5.2 is an example of correlation table. This
association of target and cluster, via the Flow-Id enables us to determine the best
flow classes for the clusters and also to validate the predictions of the supervised
approach. To do this, we determine the similarity ratios between the elements of a
cluster and each target.

Figure 5.5: Correlation with flow Id.

Cluster-id Target-id
a 25% target1 + 30% target2 + 45% target3
b 5% target4 + 95% target3
c 1% target2 + 8% target0 + 91% target5
d 100% target0

Table 5.2: An example of a correlation table.

The selection of the number of clusters K is deliberate to optimize the spatial repre-
sentation of the data. Following the establishment of similarity ratios between the
points within a cluster and each defined target, it is noteworthy that each cluster tends
to be primarily associated with a single target, even though we have three types of
clusters. And each target is represented by at least one cluster. Once this correlation
table is defined, we employ outlier distance analysis to identify outliers.

82

5.2.5 Outlier detection phase

The distance measure serves to assess the proximity between new data points and
existing ones. This is crucial in our framework aimed at identifying zero-day attack
scenarios, often associated with distant points within established clusters.

Our input dataset comprises real-time data collected by the system, as presented in
Figure 5.1. In this new configuration, the Data collected in real time
is injected into the unsupervised approach without altering any hyper-parameters or
the Cluster-Set itself. This decision is driven by the need to detect anomalies
caused by abnormal distances within clusters.

To understand the data’s structure and potential classes, we leverage the correlation
table. Subsequently, we calculate the distance d(i, ol) between the position-
ing of the real-time data and the existing cluster elements for classification. As a
reminder, any data point significantly distant from others in its assigned cluster is
identified as an outlier. Determining whether to split a cluster depends on the
calculated d-min and the presence of new points as outliers with distances exceed-
ing the d-min.

Next, the online learning is applied to adapt the model to the remaining data points
that are not outliers. Indeed, a zero-day attack class does not solely consist of out-
liers. It can also encompass data that does not reach the d-min threshold in terms
of average distance. This learning approach enables our model to be regularly up-
dated as new data becomes available. In that way, it be adapted in real time to the
information provided by the information system [165]. Thus, the outliers in a clus-
ter whose distance respects the defined d-min constitute the training data for a new
attack class. The other new points in the same cluster that are not outliers are used
as evaluation data for the overall model. This last evaluation is used to match the
points of the new outlier clusters and validate the detection of zero-day attacks. To
do this, we use the same learning algorithms: CNN and the four boosting algorithms
described in Section 5.2.

We define deg-th the degradation threshold established for base models within the
context of online supervised learning. This threshold indicates the acceptable level
of performance degradation of the base models in terms of overall model accuracy.

The online learning model is retained if it remains below this degradation threshold,
ensuring its stability and efficacy. However, if the base model experiences degra-
dation beyond this threshold, it is not preserved or retained, indicating a significant
deterioration in its performance.

5.3 Theorical analysis
As we have seen in Section 5.2.5, the outlier detection in our framework is decided
based on whether the distance between the outlier and the cluster centroid exceeds
a distance d−min. This section presents a method to determine this distance on the
basis of the Silhouette score.

First, let us start by presenting some fundamental principles allowing the opti-
mization of intra-cluster coherence and inter-cluster dissimilarity in the K-means

83

clustering algorithms:

– The cluster center is the average of all the features of the points belonging to
that cluster. Let Ci be the center of cluster C, Ni be the number of points in
cluster C, and xij be the coordinates of the j-th point in cluster C:

Ci =
1
Ni

Ni

∑
j=1

xi j

– The Silhouette score which quantifies the separation of clusters.
1. For an individual data point i:

Ssil(i) =
b(i)−a(i)

max{a(i),b(i)}

Where a(i) and b(i) represent the intra-cluster distance and the inter-cluster dis-
tances respectively for a given point i.
2. For a cluster C:

S(C) =
1
|C|∑i∈C

Ssil(i)

Building upon the above definitions, we aim to ascertain the relevance of main-
taining the outlier points within a specific cluster or not. To do so, we start by
identifying the various scenarios for adding new points within a given cluster C.

– Scenario 1: The new elements added to the cluster C are very close the old
elements of the cluster in terms of distance. Therefore, they do not significantly
impact the intra-cluster and inter-cluster distances, causing, at worst, a minor
degradation of the silhouette score. In our framework, we treat this scenario as
one case where there is no evidence of detecting a new attack scenario. There-
fore, we consider these new elements either as normal traffic or as a known
attack pattern.

– Scenario 2: all the new elements, added to cluster C, are relatively far from the
old elements of the cluster. Therefore, adding these relatively distant elements
may (depending on their number) impact the intra-cluster distance, causing a
significant degradation of the silhouette score. In our framework, we consider
this degradation as an indicator of a new attack, which implies a restructuring
of these root clusters.

– Scenario 3: at least one element added to the cluster C is far from the old el-
ements in terms of distance, while others blend in with the existing elements.
This scenario is common in evolving corporate networks due to the use of vari-
ous business applications and employees not always rigorously adhering to the
Information Security Management System (ISMS). Furthermore, the exploita-
tion of zero-day vulnerabilities can also contribute to the occurrence of anoma-
lous and responsive flows in this scenario.

In what follows, we present an analysis of the distance based on scenario 3, where we
consider that we have at least one new element in the cluster that is far from the old

84

ones. Our analysis studies whether it is better to split the cluster or not if scenario 2
occurs. The results of our analysis can, however, be generalized to scenario 2, where
all the elements added to the cluster are far from the old ones.

Case 1: Maintaining the cluster is the best solution.
In the case where the addition of a new outlier element ol in the cluster C does not
imply the creation of a new cluster, we mainly observe a change in the intra-cluster
distance a(i). Therefore, by adding one element ol to the cluster, the silhouette score
is represented as follows:

S(C) =
1
|C|

|C−1|

∑
i=1

b(i)−a′(i)
max{a′(i),b(i)}

+Ssil(ol) (5.1)

with a new intra-cluster score a′(i)

a′(i) =
|C−1| ·a(i)+d(i,ol)

|C|
(5.2)

We note that |C| represents the cardinality of after adding one outlier, a(i) represents
the intra-cluster score before adding ol and d(i,ol) is the distance between an old
element i and the new element ol.

S(C) =
1
|C|2

|C−1|

∑
i=1

b(i) · (|C|)−a(i) · |C−1|
max{a′(i),b(i)}

+
d(i,ol)

max{a′(i),b(i)}
+Ssil(ol) (5.3)

From the resulting formula (5.3) above, we define the function f1(X) of the vari-
able X relative to the distance d(i,ol) and Ssil(ol). This function represents the
variation in the silhouette score of the cluster S(C).

With

max{a′(i),b(i)}= b(i) (5.4)

f 1(X) = S(C) =
1
|C|2

|C−1|

∑
i=1

b(i) · (|C|)−a(i) · |C−1|
b(i)

+
d(i,ol)
b(i)}

+Ssil(ol) (5.5)

Given (5.4), we draw X the variable in the formula (5.5), dependent on both the
distance between each point i and the identified outlier, as well as the silhouette
score of this outlier. This is how we obtain the formula (5.6).

f 1(X) = S(C) =
1
|C|2

|C−1|

∑
i=1

b(i) · (|C|)−a(i) · |C−1|
b(i)

+X (5.6)

When

max{a′(i),b(i)}= a′(i) (5.7)

85

f 1(X) = S(C) =
1
|C|2

|C−1|

∑
i=1

b(i) · (|C|)−a(i) · |C−1|
a′(i)

+
d(i,ol)

a′(i)
+Ssil(ol) (5.8)

Based on (5.7), we get the variable X in formula (5.8).

f 1(X) = S(C) =
1
|C|2

|C−1|

∑
i=1

b(i) · (|C|)−a(i) · |C−1|
a′(i)

+X (5.9)

Case 2: Cluster splitting is the best solution.
This implies that the distance of the outlier significantly affects the silhouette score
S(C). Therefore, it is necessary to create a new neighboring cluster. In the case of
cluster splitting, a variation is observable at the cluster inter-distance b(i).
Continuously, based on the silhouette score formulas presented in 5.3, we get the
silhouette score when the outlier significantly impacts the cohesion of the original
cluster.

S(C) =
1
|C|

|C|

∑
i=1

d(i)−a(i)
max{a(i),d(i,ol)}

(5.10)

In this case, with the cluster splitting into two, the inter-cluster distance of the origi-
nal cluster becomes the average distance d(i,ol) between different points ii and
the outlier. Hence, Formula 3 is obtained. Function f2(X) is defined to assess the
variation of the silhouette score in this second scenario of original cluster separation,
based on the distance d(i,ol) = X.
With

max{a(i),d(i,ol)}= d(i,ol) = X (5.11)

When the inter-distance b(i) represents the maximum between a(i) and b(i), as de-
fined in formula (5.11), it results in the following form for f2(X) presented in the
formula (5.12).

f 2(X) = S(C) =
1
|C|

|C|

∑
i=1

1− a(i)
X

(5.12)

When

max{a(i),d(i,ol)}= a(i) (5.13)

And in the case where the maximum between the intra-distance and the inter-
distance is the intra-distance a(i), as depicted in the formula (5.13), then the function
f2(X) appears as follows:

f 2(X) = S(C) =
1
|C|

|C|

∑
i=1

X
a(i)
−1 (5.14)

86

Once both functions are defined, we subsequently determine the minimum distance
from which this cluster separation is appropriate. This d-min corresponds to the
point of intersection between the two functions f1(X) and f2(X). Any distance X
greater than this intersection point is considered an outlier of the original cluster
and is used as the training basis for online learning, as described in Section 5.2.

5.4 Performance evaluation
In this section, we assess the effectiveness of our zero-day attack detection frame-
work while also emphasizing improved detection of known attacks within the col-
lected network flows, aiming to minimize the FDR. To do this, we apply the various
phases of our framework, as described in Section 5.2, to two datasets: the IBM
dataset extracted from a real industrial context and the NSL-KDD dataset from the
literature. Therefore, we identify and collect network data associated with these two
contexts. Then, we apply feature engineering coupled with the CNN-based model
to these data, and use other algorithms for the boosting technique, in order to consti-
tute the different classes of normal and attack flows. Next, we use an unsupervised
approach based on the K-Means algorithm to classify the data in space and thus de-
termine the data clusters. A correlation table is used to link classes of supervised
flows and clusters of unsupervised flows. Finally, we analyze the notion of distance
for new data injected into our framework and identify zero-day attacks to the model.
We validate this anomaly detection using an online learning process, relying on su-
pervised classification and its algorithms.

We define different evaluation cases for our framework that vary according to the
evaluation data injected.

5.4.1 Evaluation settings

Our architecture was implemented using Python within the Jupyter Notebook
environment, supported by a machine equipped with an Intel® Core™
i5-1135G7 11th generation processor and 16 GB of RAM, running
on a 64-bit Windows 11 operating system. For modeling and learning tasks,
we relied on scikit-learn for ML algorithms, NumPy and Pandas for data
manipulation, Matplotlib and Seaborn for result visualization. TensorFlow
was utilized specifically for implementing neural networks.

5.4.2 Framework phase 1: leveraging the IBM dataset

IBM QRadar is a security appliance that is built on Linux. QRadar allows for the col-
lection, storage and correlation logs for the detection of security incidents. To prove
the effectiveness of our approach, we extracted raw data from a real-time indus-
trial context, with an IBM proprietary IDS probe (QRadar Network Insight, QNI),
which extends QRadar by providing a detailed view of real-time network communi-
cations [158].

Our dataset includes data collected in 2023 and, thus, recent attack chains. The
flows used in our classification have been extracted over a period of one week.
This extraction contains legitimate flows and non-legitimate ones that we categorize
using the framework MITRE ATT&CK [30]. This content is presented in Table 5.3.

87

Flow-class Target-ID Tactic Technique Size (#rows)
Normal 0 - - 24854
Large-Leakage 1 TA0010 T1567 4253
Stealthy-leakage 1 TA0010 T1030 4254
Critical Indicator of Compromise 7 TA0001 T1189 2064
Traffic To Anonymization Service 2 TA0011 T1090 288
Traffic to a phishing domain 5 TA0001 T1566 759
High Inbound Emails from External Host 4 TA0011 T1071 481
Access to a certificate expired service 3 TA0042 T1588 305
Remote Flood (TCP) 6 TA0040 T1498 21

Table 5.3: IBM Dataset content validated with MITRE ATT&CK.

To evaluate our zero-day framework, we use two attack classes, the first with ID 6
and the second with ID 7.

For preprocessing and normalization, we perform transformations on our raw data to
facilitate its processing by the learning algorithms we employ. Firstly, we do a clean-
up by not keeping any data containing null values so as not to introduce bias into the
model. The raw data has an average of 150 features by default. However, using
all these features for classification is not an optimal approach in terms of execution
time. Therefore, in our solution, we reduce the number of features to 14 (at most)
according to our feature engineering approach (Section 4.3.1) in addition to one
target that describes the flow class.

After this extraction, all decimal entries (e.g., rate, amount of data, source / des-
tination port numbers) remain unchanged. On the other hand, each byte in a field
related to an IP address is converted to its hexadecimal value (excluding the
dots that separate the bytes). After that, these values are concatenated, which gives
us a unique value that is converted to a decimal. The field related to the flow
direction has at most four possible values in the raw data; those relating to the
flow bias have at most five possible values, and the type of communication pro-
tocol used is TCP or UDP. We use OneHotEncoder on these few non-numerical
features to create a binary vector (composed of 0s and 1s) for each possible category
or class in the categorical variable. Although the field values are now all numeri-
cal, they have very different ranges, so scaling or normalization is needed to make
the data comparable and bring them down to a common scale. We have therefore
carried out various normalizations on the data: standardization, minmax, tanh, log-
normal. The different experiments performed have shown that normalization with
Standardization allows us to obtain the best results later on, because we have better
data separation, which is very useful in our case.

To determine the quality of our classification model and to evaluate its performance
against various existing learning algorithms, we used the four popular evaluation
metrics presented in Section 4.4.1 namely Accuracy, Precision, Recall and F1−
Score.

Secondly, the silhouette score Ssil of a cluster and a set of clusters presented in
Section 5.3 is used to assess the quality of the clusters defined, to determine the
minimum distance from an outlier necessary to split a cluster, and therefore to
identify a zero-day.

88

Our input-dataset consists of eight classes. We identify attack classes that are used
to evaluate the zero-day detection capability of our framework. In the upcoming
steps, we exclude the attack class that we define as the zero-day to be detected. This
attack class represents our Data collected in real time. Thus, instead
of eight classes, the model initially processes seven classes: a first class of legitimate
flows with ID 0, and seven classes of attack flows with IDs from 1 to 7. Targets
6 and 7 represent Data collected in real time that we detect using the
framework.

5.4.3 Framework phase 2: building the Target-Set

In the initial stage of evaluating our zero-day detection framework, we begin by
forming the Target-Set. To achieve this, we apply a multi-class classification to
our dataset (Table 5.3), defined after the feature engineering, the preprocessing and
the normalization.
As a reminder, the F1 score represents an arithmetic average of precision and re-
call. It serves as a metric to measure the ability of learning algorithms to effectively
associate flows with legitimate traffic classes or their corresponding target attacks.
The input-dataset is directly fed into the CNN algorithm, which forms the
basis for detecting known attacks, as described in Phase 5.2.3 of Section 5.2 .

Target Our CNN model (zero-day 6) Our CNN model (zero-day 7)
Precision Recall F1-score Support Precision Recall F1-score Support

0 0.97 1 0.98 4491 0.99 0.99 0.99 4466
1 1.00 1.00 1.00 2798 1 1 1 2857
2 0.86 0.94 0.90 64 0.86 0.96 0.91 51
3 0 0 0 69 0.75 0.81 0.78 54
4 0.95 0.65 0.77 150 0.97 0.69 0.80 159
5 1.00 1.00 1.00 95 1 1 1 89
6 x x x 1 1 1 7
7 0.99 0.99 0.99 420 x x x x
Accuracy 98% 99%

Table 5.4: The multi-class classification with our CNN model.

As observed in Table 5.4, the CNN yields an average F1 score of 0.49 for target 3,
representing network traffic with an expired digital certificate. The low precision in
this class is attributed to the neural network’s operation, and the selected generic fea-
tures lack information about the validity or expiration of a certificate. Consequently,
the convolution layers struggle to effectively detect this attack class. A lower F1
score is noted for target 4, with an average of 0.78, indicating potential external
phishing emails. The neural networks seem to be confused between these two attack
targets. On a positive note, the results for the other targets are very promising, with
F1 scores ranging between 0.90 and 1 in both executions and an overall precision
ranging from 98% to 99%.
For effective detection of our zero-day attacks, we require improved detection of
known attacks, implying a low FDR. Indeed, given the low F1 scores of targets 3
and 4, and that of target 2, we combine the results of the CNN algorithm with four
supervised ML algorithms through a boosting technique based on the F1 score.
As observed in Tables 5.5 and 5.6, the results demonstrate that all the algorithms
have achieved exceptional performances, with 100% accuracy for DT and RF. This

89

Target DT RF BernoulliNB KNN
P R F1 P R F1 P R F1 P R F1

0 1 1 1 1 1 1 0.98 0.98 0.98 0.99 0.99 0.99
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0.98 0.97 0.98 1 1 1 0.73 1 0.84 0.94 0.98 0.96
3 1 0.99 0.99 1 0.99 0.99 0.59 0.97 0.74 0.88 0.97 0.92
4 0.98 0.99 0.98 0.99 0.97 0.98 0.91 0.13 0.23 0.89 0.82 0.85
5 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 0.95 1 0.97 0.98 0.99 0.99
Accuracy 100% 100% 97% 99%

Table 5.5: Classification with boosting algorithms for zero-day 6.

suggests the remarkable ability of the chosen models to generalize well and correctly
classify each category. Bernoulli NB exhibits slightly lower performance, with an
overall precision of 97%. This is attributed to the probabilistic nature of the algo-
rithm, which assumes conditional independence between features, an assumption
that may not fully align with the complex relationships present in the data. As for
KNN, it also displays excellent performance with an overall precision of 99%, show-
casing its ability to adapt well to the data structure by utilizing the spatial proximity
of instances.

Target DT RF BernoulliNB KNN
P R F1 P R F1 P R F1 P R F1

0 1 1 1 1 1 1 0.97 0.98 0.98 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 0.71 1 0.83 0.91 0.96 0.93
3 0.98 1 0.99 1 0.98 0.99 0.57 0.96 0.72 0.93 0.94 0.94
4 0.97 0.98 0.98 0.99 0.99 0.99 0.97 0.21 0.35 0.94 0.89 0.92
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
Acc 100% 100% 97% 99%

Table 5.6: Classification with boosting algorithms for zero-day 7.

The boosting technique aims to leverage different classification algorithms to reduce
mispredictions and capture the specificities of each class, which can vary from one
algorithm to another. Combining the results from Tables 5.4, 5.5 and 5.6, we achieve
a maximum F1 score of 1 for targets 0, 1, 2, 5, and 6, and a score of 0.99 for the
remaining targets 3 and 4. These classification results ensure a better distinction
between legitimate flows and attacks, leading to the effective detection of known
attacks with negligible FDR.

5.4.4 Framework phase 3: Cluster-Set building

In the second phase of our framework, we form the Cluster-Set. To achieve
this, we apply the unsupervised K-Means algorithm to our input-dataset, with
two executions corresponding to each zero-day attack.

For both scenarios, we obtain a cluster count of 25 using the Elbow method. The
Ssil is 0.53 when the zero-day is the Critical Indicator of Compromise

90

attack and 0.54 when the zero-day is the DOS attack. In an effort to better utilize
space and cluster learning, the cluster count is doubled from 25 to 50 in both scenar-
ios. Therefore, our final K value is 50.
In Table 5.7, we present the top 5 clusters with the highest number of entries Count.
Subsequently, we determine the intra-cluster distances a(i) and inter-cluster dis-
tances b(i), from which the silhouette score Score Sil of each cluster in our
unsupervised learning is calculated. These results highlight the data’s structure.

Top 5 Cluster - zero day 6 Top 5 Cluster - zero day 7
Cluster Score Sil a(i) b(i) Count Cluster Score Sil a(i) b(i) Count
C4 0.766 0.448 2.058 3698 C7 0.781 0.466 2.297 3740
C12 0.528 0.650 1.403 2386 C10 0.316 1.168 1.754 2543
C1 0.281 1.100 1.659 2350 C3 0.487 0.697 1.393 2484
C35 0.337 1.094 1.699 2289 C30 0.296 1.195 1.746 2441
C0 0.364 0.958 1.479 2065 C22 0.326 1.536 2.346 2263

Table 5.7: Clustering scores for zero-day 6 and 7.

The silhouette score provides an initial indication of the clustering quality. Clusters
C4 (ZD-6) and C7 (ZD-7) stand out with high scores (0.766 and 0.781, respectively),
indicating a clear separation of elements within the clusters and a distinct demarca-
tion between clusters. These results suggest a well-defined intrinsic structure within
the data.
Furthermore, the intra-cluster and inter-cluster distances provide additional insights
into the internal cohesion of clusters and their external separation. Despite having
similar silhouette scores, clusters C4 and C7 exhibit distinct characteristics. C4
(ZD-6) displays lower internal cohesion a(i) but a more pronounced external sepa-
ration b(i), while C7 (ZD-7) shows higher internal cohesion and equivalent external
separation. These nuances reflect the complexity of the underlying data structures.
The size of clusters, reflected by the number of elements they contain, is a crucial
aspect. Clusters C4 and C7 stand out not only for their metric performance, but also
due to their significant size (3698 and 3740 elements, respectively). This indicates a
strong representation of these clusters within their respective datasets. These values
per cluster subsequently allow us to calculate the maximum distance d-min from
which it is necessary to decide whether to separate a cluster or not, as defined in the
theoretical analysis (Section 5.3).

We recall that function f1(X) represents the variation in the silhouette score of the
original cluster when new elements are retained within it, while function f2(X)
describes the variation when the original cluster must be split. Figure 6 illustrates
an example of identifying the minimal distance d-min (the intersection point of the
two functions f1(X) in orange and f1(X) in blue) between clusters 31 and 40 for
zero-day 6, and clusters 12 and 32 for zero-day 7.

5.4.5 Framework phase 4: correlation table

In Table 5.8, we display the clusters in which the two evaluation data were positioned
and also the targets corresponding to these clusters.
Now, we can proceed to detect zero-day attacks by injecting new data or streams
that have never been learned by the models in the previous phases. Two classes of
attacks have been defined, and these are tested one by one.

91

Figure 5.6: Determining the minimum distance (d-min) based on the cluster scores calculated from the
functions f1 and f2 for the IBM dataset.

Data with ZD 6 Data with ZD 7
Cluster-Id Target-Id Cluster-Id Target-Id
31 0 12 4
40 1 31 1

Table 5.8: The correlation table for the evaluation data.

Zero-day 6 Cluster-ID 31 Cluster-ID 40
Before Outliers Only All data Before Outliers Only All data

Count 184 3 187 1556 18 1574
Mean 1.45 153.67 3.89 0.75 42.03 1.22
Max 4.46 170.45 170.45 2.52 87.25 87.25
d-min 1 132,6 x 0.85 3.81 x
Score Sil 0.45 x 0.44 0.45 x 0.44
Online learning YES YES

Table 5.9: Data distribution for zero-day 6.

5.4.6 Framework phase 5: distance analysis for detecting zero-day

As described in the architecture of the zero-day framework, the new data to be eval-
uated are injected into the unsupervised approach without any variation in the pa-

92

rameters of this model. Therefore, we do not modify the number of clusters or the
hyper-parameters of the K-Means algorithm.

In this phase of the framework, we analyze the placement of the new data for eval-
uation, the clusters in which they are positioned, the distance measure of these data
concerning the previous points in the target clusters, and most importantly, the vari-
ation in the silhouette score of each cluster with the addition of new points. This
variation is crucial in deciding whether to retain these elements in the cluster or
choose to split it.

Use case 1: Zero-day attack target ID 6

It involves DOS data, defined as an attack class never previously learned by our
model. Therefore, technically, this class represents a zero-day for our model. The
DOS data has been injected into the K-Means clustering, and all the points have been
placed into two different clusters: C31 and C40.

As we observe in Table 5.9, before the introduction of zero-day data, the identified
clusters (C31 and C40) had distinct characteristics, with notable differences in the
number of elements, averages, and maximum distances. C31 contained 184 ele-
ments with an average of 1.45 and a maximum distance of 4.46, while C40 had 1556
elements with an average of 0.75 and a maximum distance of 2.52. The addition of
DOS data significantly impacted the structure of the clusters. The number of ele-
ments increased for C31 (rising to 187) and C40 (reaching, 1574). Furthermore, the
values of averages and maximum distances underwent significant changes. For C31,
the average increased to 3.89 and the maximum distance to 170.45, whereas for C40,
the average rose to 1.22 and the maximum distance to 87.25. The silhouette score,
prior to the addition of zero-day data, for both clusters C31 and C40 decreased from
0.45 to 0.44.
These results suggest that the addition of zero-day data has altered the configuration
of existing clusters, increasing the dissimilarity between the newly introduced data
and the data already present.
The Online learning field, based on theoretical analysis of distance, and the variation
in silhouette score, confirms the transition to the online learning stage when its value
is set to YES. Table 5.10 showcases the results from online learning of various clas-
sification algorithms on the input-datatset, including the identified outliers
within the clusters. In these findings, the label F1 score corresponds to a split on
the zero-day data. Hence, predictions are made on zero-days that are either outliers
and the threshold value for acceptable degradation of the base models, denoted as
deg-th, has been set at 0.005.

Model DT RF KNN NB Our CNN
Normal score 1.0 1.0 0.99 0.97 0.98
Online score 0.998 0.999 0.994 0.975 0.986
Label F1 1.0 1.0 1.0 1.0 1.0
Model to kept YES YES YES YES YES

Table 5.10: Online learning for zero-day 6.

As observed in Table 5.10, all models remain below this threshold after online
training, affirming their stability and justifying the retention of all models for zero-
day attack detection. Therefore, the outliers represent zero-day flows, effectively

93

detected by our framework.

Use case 2: Zero-day attack target ID 7

For the second use case, we utilize the data from the Critical Indicator of
Compromise class as never-before-learned data and inject it into the model.

Zero-day 7 Cluster-ID 12 Cluster-ID 39
Before Outliers Only All data Before Outliers Only All data

Count 7 1 8 179 98 277
Mean 2.42 8.21 3.14 0.89 6.61 2.91
Max 2.79 8.21 8.21 6.15 7.23 7.23
d-min 1.96 6.79 x 0.99 6.37 x
Score Sil 0.44 x 0.42 0.44 x 0.42
Online learning YES YES

Table 5.11: Data distribution for zero-day 7.

As observed in Table 5.11, prior to the introduction of zero-day data, the identified
clusters (C31 and C40) displayed notable differences in the number of elements,
means, and maximum distances. C31 contained 184 elements with a mean of 1.45
and a maximum distance of 4.46, while C40 comprised 1556 elements with a mean
of 0.75 and a maximum distance of 2.52. The addition of D0S data significantly
impacted the cluster structure because the number of elements increased for C31
(rising to 187) and C40 (reaching, 1574). Moreover, both the mean and maximum
distances underwent substantial changes. For C31, the mean escalated to 3.89, and
the maximum distance surged to 170.45, while for C40, the mean rose to 1.22 and
the maximum distance reached 87.25.

Similar to the first use case, these findings suggest that the introduction of zero-day
data altered the configuration of the existing clusters, increasing the dissimilarity
between the newly introduced data and the pre-existing ones.

Model DT RF KNN NB Our CNN
Normal score 1.0 1.0 0.97 0.972 0.99
Online score 0.998 0.999 0.993 0.974 0.982
Label F1 1.0 1.0 0.96 0.72 0.96
Model to kept YES YES YES YES YES

Table 5.12: Online learning for zero-day 7.

In Table 5.12, we observe that the outliers do not lead to degradation in the base
models. This observation underscores the models’ strong ability to generalize well
to new online data, particularly zero-day instances.

5.4.7 Exploring the NSL-KDD dataset and conducting comparative analysis

A functional approach that remains independent of specific datasets, hyper-
parameters, and context serves as a reference model. Following the evaluation of
our detection framework on an industrial dataset, we intend to leverage a public
dataset to test its applicability. Our selection has been directed towards NSL-KDD
dataset [166] presented in Section 4.4.2.

94

In this dataset comprising 41 features, we apply the detailed feature engineering out-
lined in Section 4.3.1 to retain only the features: duration, protocol-type,
service, land, src-bytes, dst-bytes, count, srv-count, same-srv
rate, flag, srv-diff-host-rate, and wrong-fragment.

The NSL-KDD dataset exhibits inconsistencies primarily in data variability, where
characteristics between the training and test sets differ significantly, potentially im-
pacting model generalization. Additionally, variations in attack definitions between
training and test sets may lead to inconsistent evaluation results. Given these incon-
sistencies between the test and training data in the NSL-KDD dataset, we decide to
solely focus on the training data. From this, we exclude a few subclasses of each at-
tack family: neptune, satan, perl, spy, phf. Similar to the approach used in industrial
datasets, we chose a subclass from the DOS family as a zero-day attack, specifically
the teardrop with 892 entries. Additionally, 5000 random entries from the normal
class are included. This constitutes the input dataset. Subsequently, data normaliza-
tion is performed to proceed with the classification steps (using a 70% 30% train-test
split for supervised classification) as outlined in our framework.

Model
DT RF BernoulliNB KNN Our CNN

P R F1 P R F1 P R F1 P R F1 P R F1

macro avg 0.92 0.98 0.93 0.94 0.97 0.94 0.78 0.96 0.80 0.94 0.97 0.95 0.90 0.98 0.91
weighted avg 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Accuracy 100% 100% 98% 99% 99%

Table 5.13: Classification with supervised algorithms.

As evidenced by Table 5.13, we present the overall results of various boosting al-
gorithms and the base CNN algorithm. The results demonstrate remarkably high
accuracy for all algorithms, with scores nearing or reaching 100 in the weighted
measure. However, upon closer examination of the macro-avg and weighted-avg
measures, there are some noteworthy points to highlight. The DT displays very good
overall performance, with precision, recall, and an F1 score of 0.92, 0.98, and 0.93,
respectively, for the macro-avg measure, showcasing its strong ability to correctly
identify classes. RF shows slightly better performance than DT, with higher scores
in precision (0.94), recall (0.97), and F1 score (0.94) for the macro-avg measure.
NB exhibits slightly lower precision compared to DT and RF, with an F1 score of
0.80 for the macro-avg measure, indicating challenges in classifying certain classes.
The KNN algorithm demonstrates robust performance with F1 scores of 0.95 for the
macro-avg measure, showing a similar capability to DT but with a slight decrease
in precision. These algorithmic results further solidify those of the CNN, which
demonstrates high performance, with F1 scores of 0.99 for the macro-avg measure.

Once the Target-set for this dataset is established, we present in Table 5.14 only
the variation in metrics of the cluster impacted by the addition of zero-day elements:
C0. Our zero-day data corresponds to the teardrop subclass of the DOS family. The
data from this subclass has been placed within cluster C0, with 94 outliers identified
concerning the d-min distance of this cluster, as shown in the Figure 5.7.

In Table 5.14, we observe that the minimum outlier distance, d(i,ol), is significantly
smaller than the theoretical d-min distance of cluster C0. Additionally, the inclu-
sion of outliers within C0 notably degrades the silhouette score, decreasing from
0.651 to 0.428, considering the weight of 94 outliers.

95

Zero-day Teardrop Cluster-ID 0
Before Outliers Only All data

Count 290 94 384
Mean 1.455 7.630 2.966
Max 5.764 9.116 9.116
d-min 1.09 6,98 x
Score Sil 0.651 x 0.428
Online learning YES

Table 5.14: Data distribution for zero-day attack Teardrop.

Model DT RF KNN NB Our CNN
Normal score 1.0 1.0 0.99 0.98 0.99
Online score 0.997 0.955 0.74 0.989 0.966
Label F1 0.996 0.955 0.739 0.849 0.81
Model to kept YES YES NO YES YES

Table 5.15: Online learning for zero-day attack Teardrop.

Figure 5.7: Determining the minimum distance (d-min) based on the cluster scores calculated from the
functions f1 and f2 for the NSL-KDD dataset.

96

This degradation is further supported by the average distance within the new con-
catenated set of old elements and outliers, which increases from 1.455 to 2.966, more
than doubling. This necessitates transitioning to the phase of online learning (Online
learning = YES) to validate the detection of a new attack class that the model has
not encountered before.

Approach Evaluation
Dataset

MITRE Tactic Cov-
ered

Learning Model Model Perf.

Our framework IBM + NSL-
KDD

TA0001 - TA0002 -
TA0003 - TA0008 -
TA0010 - TA0011 -
TA0040 - TA0042

Hybrid (Su-
pervised +
Unsupervised +
Online learnning)

98.4% IBM and
96.6% NSL-
KDD

Agathe et al. [11] MAWI + UCSD TA0011 Statistical mea-
sures

78.6% MAWI
and 85.7%
UCSD

Zhou et al. [12] CIC-AWS-2018 TA0001 - TA0002 -
TA0006 - TA0011 -
TA0040

Supervised 96−100%

Hindy et al. [13] CICIDS2017 +
NSL-KDD

TA0001 - TA0004 -
TA0040 - TA0043

Unsupervised
(Auto-Encoder)

90.01 − 99.67%
CICIDS and
92.96% NSL-
KDD

Pu et al. [14] NSL-KDD TA0001 - TA0004 -
TA0040 - TA0043

Unsupervised 52−99%

Comar et al. [15] Private data from
Internet service
provider

TA0002 Hybrid (Su-
pervised +
Probabilistic
Profiling)

88,54%

Shamsul et al.
[16]

Data from CA
Technologies
VET Zoo

TA0002 Hybrid (Semi-
Supervised)

100%

Table 5.16: Comparing Approaches: Attack Coverage, Models, Accuracy.

Based on the results from Table 5.15, online learning highlights the detection of
a zero-day, as no model degrades significantly compared to the defined threshold.
However, the KNN model is not retained because the F1 score for the new zero-day
class is very low, standing at 0.739.
Therefore, having completed all the steps of our framework, we can conclude that
the teardrop class, previously defined as a zero-day, has been successfully detected
as a new class of anomalies, never previously learned by our model.
In Table 5.16, we provide a comparative analysis between the performance of our
framework and that of several state-of-the-art solutions for zero-day attack detec-
tion. We highlight key characteristics of the presented solutions, such as the utilized
datasets, specific types of targeted zero-day attacks, detection algorithms employed,
and the precision rates of the models.

5.5 Discussion and perspectives
In line with our ongoing work, several points of discussion can be explored to further
enhance the detection and response to known and zero-day threats:

97

– Online learning and continuous adaptation: pose challenges regarding the
ideal frequency of model updates to capture new threat patterns effectively with-
out overwhelming the data. Implementing mechanisms for regular and real-time
updates is crucial for maintaining the model’s relevance.

– Managing the increasing volume of data: Addressing the continuous surge
in data flow without compromising the model’s accuracy requires considering
mechanisms for data selection, processing, storage and optimizing the frame-
work’s deployment.

– Anomaly detection: Determining the threshold for segregating outliers with
appropriate clusters and handling the potentially high number of newly gener-
ated zero-day classes demands thorough exploration.

– Other case studies: Exploring additional potential scenarios, such as the pres-
ence of outliers within the training data or validation data of a new zero-day
class residing in distinct clusters, would be intriguing.

– Updating the KB: Incorporating new zero-day classes into the KB enhances
detection but raises concerns about maintaining reliability amid continuous up-
dates.
Hence, all these discussions underscore the need for future research for im-
proved detection of zero-day attacks in general and specifically for our frame-
work for detecting these attacks.

5.6 Conclusion
In this chapter, we present a novel and effective approach for detecting both known
attacks and zero-day exploits within network flows. By employing data collection
techniques, data preprocessing, and supervised learning through 1D-CNN, we suc-
cessfully identify these threats. The astute utilization of supervised algorithms such
as DT, RF, KNN and NB, coupled with a boosting method, ensures an enhanced de-
tection rate with a high detection accuracy of 98−100%. Furthermore, the incorpo-
ration of the unsupervised K-Means algorithm to extract flow patterns and generate
a correlation table provides cross-validation between supervised and unsupervised
methodologies. Our framework identifies anomalies by pinpointing outliers within
clusters and correlation tables, thereby offering a dual validation mechanism for new
data. Moreover, the validation of zero-day attacks using online learning demon-
strates the capability of our solution to identify previously unlearned attack classes.
This validation is substantiated by test cases on IBM and NSL-KDD datasets, where
malicious activities such as DOS attacks and compromise indicators were identified,
including the teardrop class within the NSL-KDD dataset. Looking ahead, we con-
template a more exhaustive exploration of diverse data sources to enhance detection
and encompass a broader spectrum of attacks and botnets. In addition, the imple-
mentation of our proposition within an industrial environment holds promise for
automating correlation rule creation, zero-day vulnerability detection, and real-time
attack mitigation.

98

Chapter 6

Synthetic data generation

Contents
6.1 Introduction . 99
6.2 Our proposal . 100

6.2.1 Phase 1: Data collection and processing 101
6.2.2 Phase 2: Defining profiles with decision tree 101
6.2.3 Phase 3: The definition of the network hierarchy associating a Profile with

its Subnet ID . 102
6.2.4 Phase 4: Profile generation for sub-network 104
6.2.5 Phase 5: Anonymizing the generated synthetic data 104

6.3 Assessment and validation of generated data 105
6.3.1 Profiling validation technique . 105
6.3.2 Statistical analysis validation technique 107
6.3.3 Discriminant model validation technique 108

6.4 Data extraction cases . 109
6.4.1 Case 1: Firewall events . 109
6.4.2 Case 2: Microsoft Security events . 111

6.5 Conclusion and perspectives . 114

6.1 Introduction
The lack of diversity and realism in available datasets [132, 135, 138, 140], biases
in data distribution, difficulty and cost of acquiring real-world data, and the risk of
overfitting are significant scientific challenges that need to be addressed to improve
the evaluation and effectiveness of intrusion detection systems. To address the lim-
itations of existing datasets, synthetic data generation has emerged as a promising
solution.
Data generation techniques using Generative Adversarial Networks (GAN) [144,
145, 146, 147] and Variational Auto-Encoders (VAE) [151, 152, 153] have been
widely employed to produce synthetic and diverse data. However, scientific chal-
lenges remain, including the need for more comprehensive evaluation methods, con-
sideration of all possible behaviors in network traffic flows, the complexity of the
approach and modeling of complex dependencies between traffic features, as well as
the use of real, non-simulated data as input.
In this chapter, we introduce a new approach to generate synthetic data using network
activities profiling. We then delve into the anonymization process of the generated

99

data, ensuring confidentiality and protection of sensitive information. We present the
validation techniques used to evaluate the quality of the generated data and compare
it to the real original data. Finally, we illustrate the practical use of these synthetic
data through data extraction cases and discuss the impacts and potential applications
in various fields.

6.2 Our proposal
In Figure 6.1, we introduce our synthetic data generation model, designed based on
real-world data without any implementation of an information system or simulation
of attack scenarios. Our Network Information System Synthetic Data Generator
NIS-SDG is composed of 5 major phases, is also applied in a real industrial context.

Figure 6.1: Our Model for Synthetic Data Generation.

100

6.2.1 Phase 1: Data collection and processing

During this phase, our primary objective is to comprehensively identify all assets
and products within the information system, regardless of their source or vendor like
operating system, network devices (routers), firewalls, applications, proxies, security
sensors, etc. This full data source identification ensures optimal data diversity and
accuracy in constructing asset profiles.

Following asset identification, we conduct a detailed analysis of data formats and
structures for each type of log source in order to define the main event categories
generated by each data source. We call these log families, the High-Level Categories
(see Table 6.1). For each category, we then identify the necessary attributes, distin-
guishing between default attributes inherent to data extracts and custom attributes
derived from specific device log investigations.

Category Description
Authentication Events related to authentication controls, group, or privilege change,

for example, log in or log out.
Access Events resulting from an attempt to access network resources, for ex-

ample, firewall accept or deny.
System Events related to system changes, software installation, or status mes-

sages.
Audit Events related to audit activity.
Application Events related to application activity.
Flow Network Activities.

Table 6.1: Event Categories and Descriptions.

Then, we collect real data over an extensive timeframe, ideally covering various
time slots (different days for instance) for all log source types that have been iden-
tified. Upon data extraction, data pre-processing is required. Firstly, we identify
attributes containing only null values and remove them from the dataframe. Addi-
tionally, columns containing only one value are reviewed, with the recorded value
noted before deletion. This approach provides efficient handling of null or unique
values during result generation, as they do not contribute to the definition of profiles
within the tree. Thus, we reduce the runtime of the algorithms.

6.2.2 Phase 2: Defining profiles with decision tree

In this phase, we employ a tree-based approach to define activity profiles covering
the different behaviors present in the information system. Each profile encapsulates
the specific end-to-end behavior of elements such as IP addresses, users, machines,
programs, data sources, or files.

First, we establish a hierarchical data structure from the multidimensional dataset
representing the logs of each data source collected in Phase 6.2.1. This structure
relies on identifying the unique values of each attribute within the data source. Using
these values, we construct a tree-like data structure where each level corresponds to
an attribute of the data source, with the leaves representing unique combinations of
attribute values.

Subsequently, we construct the tree recursively, starting with the most significant
attribute, using the algorithm 1.

101

The recursive algorithm, ConstructDict takes a Dataframe D, an attribute iden-
tifier a, the number of remaining attributes n and an integer s representing the current
stage as input. The algorithm returns a tree data structure T , where internal nodes
represent unique attribute values and leaves contain counters for attribute value com-
binations.
With multiple log sources in an information system, we have chosen to construct
profiles per log source. Thus, the identifier of a log source characterizes the first
hierarchical level of all profiles. Once a log source is selected, the data categories
within that log source form the second hierarchical level of profiles for that asset. By
continuing this process, we can identify the entire hierarchy of the various data. At
each level of the hierarchy, we create a node representing the corresponding attribute
and its unique values. Subsequently, we generate sub-nodes for each unique value
of the attribute, employing the same recursive steps for subsequent attributes.
The resulting data structure gives us a hierarchical representation of relationships
between different attributes of the data source, facilitating data analysis and ex-
ploration. It also allows for the identification of the most frequent attribute value
combinations, as well as aberrant or rare values. This approach offers an effective
method for understanding the structure and characteristics of an element’s log data
and identifying potential trends and anomalies.

Algorithm 1 ConstructDict
procedure CONSTRUCTDICT(D,a,n,s)

Retrieve the unique values U of attribute a in D.
if n = 1 then

Construct a dictionary T by associating each unique value u ∈U with a counter initialized to 1.
return T .

end if
Initialize an empty dictionary T .
for all unique values u ∈U do

Recursively call CONSTRUCTDICT with arguments:
D′ = {x ∈ D |x[a] = u}: the subset of D where the attribute a equals u.
a′ = A[s+1]: the next attribute identifier in the hierarchy.
n′ = n−1: the number of remaining attributes decremented by one.
s′ = s+1: the updated stage integer.
Associate the result with key u in T .

end for
return T .

end procedure

6.2.3 Phase 3: The definition of the network hierarchy associating a Profile
with its Subnet ID

The network hierarchy (NH) refers to an organized structure of network resources
and groups, facilitating in-depth analysis of network activity. In this phase, we asso-
ciate each IP profile with a hierarchical network identifier to generate output profiles
based on their original network segment. As a result, the generated profiles retain
consistent behaviors and activities within the information system.
The IdentityNetworkID algorithm employs an iterative approach, comparing
each IP address to predefined ranges until the most specific range is identified.
It enriches a Dataframe D by incorporating additional columns identifying network
ID, start and end ranges for both source and destination IP addresses. We consider

102

that D contains network traffic records and the DataFrame C contains network ranges
defined by CIDR notation. The IdentityNetworkID algorithm is suggested as
follow:

Algorithm 2 IdentityNetworkID
procedure IDENTITYNETWORKID(D,C)

Append columns for network IDs, start and end IP ranges.
for each record r in D do

Initialize maximum network mask and corresponding network ID, start and end IP range.
for each record c in C do

Identify the most specific network range containing the source and destination IP addresses
in r.

if network mask is greater than maximum network mask then
Update maximum network mask and corresponding network ID, start and end IP range.

end if
end for
Store the identified network ID, start and end IP range in the appropriate columns of D.

end for
end procedure

103

6.2.4 Phase 4: Profile generation for sub-network

In this phase, we conduct an exhaustive analysis of the behavior of generated pro-
files, encompassing various attributes such as IP addresses for firewall data, user-
names for system logs, file paths for process executions, etc., along with their as-
sociated values within each sub-network. This analysis involves the creation of a
mapping that correlates relevant attribute values with corresponding subsets of data.
Such an approach facilitates the grouping of data based on key attributes, thereby
aiding in data analysis and exploration. By associating attribute values with data
subsets, we can discern patterns and trends, facilitating informed decision-making
and enhancing security system performance.
With D containing N attributes, we introduce the CreateMapping algorithm,
which takes D and M as input, where M is an empty dictionary. Each key in M
represents a specific combination of attribute values, and its corresponding value is
a data subset associated with that key.

Algorithm 3 CreateMapping
procedure CREATEMAPPING(D,attributes)

Count the unique combinations of attribute values from specified attributes in D.
for all unique combination of attribute values (denoted as a key) do

Filter D to obtain the corresponding data subset S.
Associate the key with the data subset S in the dictionary M.

end for
end procedure

We then proceed to a selection of real event and its associated asset profile. Utilizing
the mapping table generated by the algorithm 3, we create a similar asset profile,
thereby generating realistic synthetic data that mirrors observed behavior patterns,
using the GenerateEvents algorithm which preserves attribute relationships as
specified in the mapping dictionary. We consider Dsyn the synthetic dataset with n
random entries based on D and M.

Algorithm 4 GenerateEvents
procedure GENERATEEVENTS(n,M)

for i = 1 to n do
Randomly select a key k from the mapping dictionary M.
Retrieve corresponding values v from M using the selected key.
Generate a single random entry using function ONE_ENTRY(k,v).
Append the generated entry to Dsyn.

end for
end procedure

Next, we compare the generated asset profile with the fundamental asset profile
based on the original tree. This step determines the feasibility of the generated events
based on observed behavior in real data.
A random IP profile within the specified range and other event-related attributes
obtained from input values is then generated by a function.

6.2.5 Phase 5: Anonymizing the generated synthetic data

In this last phase, we deal with anonymization which is a crucial step in the process-
ing and generation of sensitive data, as required by privacy and data confidentiality.

104

Indeed, some attributes may contain personally identifiable information (PII) such
as IP addresses, MAC addresses, ports, dates, usernames, sent and received data, etc.
These information must be handled with care to avoid any unauthorized disclosure
or misuse.
According to Phase 6.2.1, we identify these attributes in the source logs and pro-
ceeded with their anonymization while preserving the structure and logic of the
network. We preserve the usefulness of the data for analysis and research while
ensuring confidentiality and privacy protection. To do this, we have developed an
anonymization method for each attribute. In Table 6.2, we have compiled a list of
attributes requiring anonymization based on our study of data sources, and propose
some techniques to anonymize data.
Finally, for sent and received data, we applied a linear function to transform the
real data. We also analyzed the value intervals for reception and transmission and
generated new values in these intervals while staying close to the initial quantity.
This approach preserves the usefulness of the data for analysis while masking the
real data.

6.3 Assessment and validation of generated data
Evaluation and validation of synthetic data are essential steps to ensure that the gen-
erated data is reliable and useful for further analysis. Indeed, the generation of syn-
thetic data aims to create artificial datasets that reproduce the characteristics and
properties of real data, while preserving confidentiality and privacy of the individu-
als concerned. However, it is important to verify that the generated data is consistent
and representative of the real data, and that it does not present any bias or errors that
could affect the results of the analyses. In this section, we present three different
methods of evaluation and validation of synthetic data that we have used: profiling,
similarity measurement, and discriminant classification. These techniques allow us
to measure the quality and reliability of the generated data and to guarantee its rele-
vance for further analysis.

6.3.1 Profiling validation technique

Profile validation involves ensuring that each entry in the generated dataset corre-
sponds to the possible values defined in the dictionary of real data, except for mod-
ified fields, which are now intervals (such as IP addresses, for example). This tech-
nique guarantees that all generated data complies with authorized values, ensuring
the quality and reliability of the generated data while preserving confidentiality and
privacy.
Let D be the original dataset, Ds be the synthetic dataset, and P be the dictionary of
authorized values. Our objective is to verify that each entry in Ds corresponds to the
possible values defined in P.
We define an algotihm fcheck_dict : Ds×P→{true, f alse} that takes as input
a synthetic dataset Ds and a dictionary P and returns a boolean value indicating
whether all entries in Ds are present in P. The algorithm fcheck_dict is defined
as follows:
For each entry e in Ds:

105

Types Attributes Risk Techniques To anonymize
OSI Model Layer 3 IP Source v4, IP Des-

tination v4,
IP address leak-
age, enabling
tracking of
network commu-
nications.

Divide them into four octets and
apply a mapping that assigns an
8-bit value to each octet while
avoiding transforming a public
IP address into a private IP ad-
dress and vice versa (based on
RFC 1918 and CIDR).

OSI Model Layer 2 Source MAC, Desti-
nation MAC

MAC address
leakage, en-
abling device
identification.

Apply a map that associates
each MAC address with another
randomly generated address.

Path File Path, Parent Pro-
cess Path, Process
Path, Share Path

File system and
process structure
leakage, enabling
identification of
used applications
and files.

Maintain all default hierarchical
paths across Windows, Linux,
etc., and replace any other
identifying elements within a
path with alphanumeric generic
names.

File & process name Filename, Creator
Process Name, New
Process Name, Par-
ent Process Name,
Process Name

Disclosure of in-
formation about
used applications
and manipulated
files.

Maintain machine process
names as they are, and utilize
random file names.

Username & Domain Username, Initiator
Username, Target
Username, Initiator
User Name, Domain,
Account Domain,
Group Domain,
Target Computer
Domain, Target
User Domain, User
Domain

User identifier
and domain
leakage, enabling
identification
of users and
systems.

For unique usernames and do-
mains, employ a 15-character
alphanumeric substitution. For
email-style usernames, generate
distinct 15 character strings for
each part before and after the
"@" symbol

Asset Identifier Log Source Iden-
tifier, Machine ID,
Machine Identifier,
Destination Asset
Name, Source Asset
Name

Infrastructure
leakage, enabling
identification of
assets and data
sources.

Generate unique identifiers per
device

Timestamp Storage Date, Log
Source Date, Start
Date

Event timeline
leakage, en-
abling activity
correlation.

Increment by 24 hours to pre-
serve the information on work-
ing and non-working hours.

Mails Sender, Receiver,
Object

Email content
leakage, enabling
disclosure of pri-
vate or sensitive
information.

Generate distinct 15 character
strings for each part before and
after the ”@” symbol.

Table 6.2: Data to anonymize.

106

Algorithm 5 fcheck_dict
procedure FCHECK_DICT(e,P)

for each element x in e do
if the type of x is not a string then

continue to the next element.
end if
if x is not in P then

return false.
end if
if x is in P then

Update P to be the sub-dictionary associated with the key x, i.e., P← P[x].
end if

end for
end procedure

If all entries in Ds are present in P, return true.

The algorithm fcheck_dict ensures that all entries in the synthetic dataset Ds
comply with the authorized values defined in the dictionary P. By employing this
function, we can verify the quality and reliability of the generated synthetic data
while preserving the confidentiality and privacy of the individuals concerned.

6.3.2 Statistical analysis validation technique

To evaluate the quality of data generation, we utilized a similarity measure between
the distributions of the generated data and the real data. We chose to use the Eu-
clidean distance as the similarity metric, a commonly used measure in statistics and
machine learning. This metric allows us to compare the similarity between two dis-
tributions effectively.

To calculate the Euclidean distance between the two distributions, we first identified
the unique values in each dataset. Then, we computed the frequency distribution of
each unique value in both the real data and the generated data. Next, we calculated
the sum of the squares of the differences between the frequencies of each unique
value in the two distributions. Finally, we obtained the Euclidean distance by taking
the square root of this sum.

It is important to note that a distance of 0 would indicate that the generated data is
identical to the real data, which is not our objective. Our goal is to enrich the data
and explore the space of possibilities to improve the understanding of the network
architecture for the model.

Let U be the set of unique values in the original dataset, and V be the set of unique
values in the synthetic dataset. Let D be the frequency distribution of the unique
values in the original dataset, and S be the frequency distribution of the unique values
in the synthetic dataset.

We define an algorithm fsimilarity : D× S→ R that takes as input the fre-
quency distributions D and S and returns a similarity score between them. The algo-
rithm fsimilarity is defined as follows:

107

Algorithm 6 fsimilarity
procedure FSIMILARITY(U , V , D, S)

Initialize a similarity score, score← 0.
for each unique value u in U do

if u is also in V then
Calculate the squared difference between the frequencies of u in the original and synthetic

datasets, i.e., (D[u]−S[u])2.
Add the squared difference to the score.

end if
end for
Calculate the square root of the score.

end procedure

The algorithm fsimilarity returns a non-negative real number representing the
similarity score between the original and synthetic datasets’ distributions. A lower
score indicates a higher similarity between the distributions, while a higher score
indicates a lower similarity. By employing this function, we can quantitatively assess
the quality of the generated synthetic data and compare it to the original dataset.

In summary, we used the Euclidean distance to measure the similarity between the
distributions of the real and generated data. This similarity measure allows us to
evaluate the quality of data generation and ensure that the generated data is suffi-
ciently different from the real data to explore the space of possibilities while being
sufficiently similar to be useful for our model.

6.3.3 Discriminant model validation technique

In this final validation technique, a discriminant machine learning model is employed
to distinguish between real data and synthetically generated data. Specifically, a
decision tree is trained on a labeled dataset comprising both real and synthetic data
to predict whether a given observation is real or synthetic.

To evaluate the performance of the model, the dataset is divided into a training set
and a test set. The model is trained on the training set using the decision tree clas-
sification algorithm. Subsequently, the model’s performance is assessed on the test
set by calculating the precision score, which measures the proportion of correctly
classified observations by the model.

Let D be the original dataset and S be the synthetic dataset. We define an algo-
rithm fdiscriminant : D×S→ R that takes as input the original dataset D and
the synthetic dataset S and returns a performance score of a discriminative machine
learning model. The algorithm fdiscriminant is defined as follows:

108

Algorithm 7 fdiscriminant
procedure FDISCRIMINANT(D, S)

Concatenate the original dataset D and the synthetic dataset S into a single dataset T .
Label the entries in T with a binary target variable y where:

Entries from D are assigned the label 1 (indicating real data),
Entries from S are assigned the label 0 (indicating synthetic data).

Preprocess the dataset T by encoding categorical variables using a label encoder.
Split the preprocessed dataset T into training set Ttrain and testing set Ttest.
Train a discriminative machine learning model using the training set Ttrain.
Evaluate the performance of the trained model on the testing set Ttest using appropriate performance

metrics.
end procedure

The algorithm fdiscriminant returns a performance score indicating the ability
of the discriminative model to distinguish between real and synthetic data. A lower
score implies that the synthetic data is more similar to the original data, making it
harder for the model to differentiate between them. This suggests that the synthetic
data preserves the privacy of the original data while maintaining its utility.
This validation technique allows us to evaluate the quality of the synthetically gen-
erated data by comparing their distribution to that of the real data using a discrimi-
nant machine learning model. If the model can distinguish real data from synthetic
data with high precision, this indicates that the synthetic data is sufficiently differ-
ent from the real data to be used in applications such as generating training data for
deep learning models. Conversely, if the model fails to distinguish real data from
synthetic data, this suggests that the synthetic data is too similar to the real data and
may not be useful for improving model performance.

6.4 Data extraction cases
6.4.1 Case 1: Firewall events

For the firewall data generation, we extracted 450k entries from this information
system, ensuring comprehensive coverage across various timeframes to capture dif-
ferent types of activities on this equipment. Subsequently, we executed our approach
to generate 2000 entries with the same profiles identified in the original data. Figure
6.2 provides an example of the hierarchy of a profile linked to a specific high-level
category. Table 6.3 showcases five generated firewall data entries linked to the High
Level Category: Access. We note that the IP addresses (OSI model layer 3) are
contained in the last two fields, which represent identifiers for each subnet. As a
reminder, each identifier is associated with a dedicated network address range in
accordance with the Network Hierarchy.

1. For result validation, all generated entries are within the dictionary of possible
values and profiles

2. In Figures 6.3 and 6.4, we note that the generated data closely matches the syn-
thetic data in terms of event types and destination ports, with similarity scores
of 0.0292 for destination ports and 0.01426605 for event ID. These scores indi-
cate that the generated data is sufficiently similar to the real data to be useful,
while being different enough to explore the space of possibilities

109

Figure 6.2: Tree Structure of the firewall profiles.

Dest.
Port

Event Cate-
gory

Event
ID

Log Source
Time

Protocol Source
Port

Action Event
Name

id_src id_dest

389.0 VPN-1 &
FireWall-1

Accept Jan 30, 2024,
2:00:00 PM

tcp_ip 60991.0 Accept Firewall
Permit

436 369

53.0 VPN-1 &
FireWall-1

Decrypt Jan 30, 2024,
2:02:43 PM

udp_ip 54122.0 Decrypt Decrypt 430 369

135.0 VPN-1 &
FireWall-1

Accept Jan 30, 2024,
1:59:29 PM

tcp_ip 57054.0 Accept Firewall
Permit

369 443

443.0 VPN-1 &
FireWall-1

Accept Jan 30, 2024,
2:01:05 PM

tcp_ip 57519.0 Accept Firewall
Permit

438 397

443.0 VPN-1 &
FireWall-1

Accept Jan 30, 2024,
2:00:52 PM

tcp_ip 58082.0 Accept Firewall
Permit

305 335

Table 6.3: Example 2 of firewall logs.

3. The DT model was trained on a labeled dataset containing real (class 1) and
synthetic (class 0) data. The results of the confusion matrix showed a precision
of 0.45 for synthetic data and 0.36 for real data, indicating that 45% of synthetic
data were correctly classified as synthetic and 36% of real data as real, with
an overall accuracy of 0.42. However, the model’s performance is moderate
due to low precision for both classes and low recall for class 1, indicating that
many real data points were misclassified as synthetic. This justifies the need for
statistical analysis in terms of similarity and difference.

110

Figure 6.3: Distribution of Event ID.

Figure 6.4: Distribution of Destination Port.

Class Precision Recall F1-score Support

0 0.45 0.64 0.53 1007
1 0.36 0.20 0.26 993

Accuracy 0.42 2000
Macro avg 0.40 0.42 0.39 2000
Weighted avg 0.40 0.42 0.39 2000

Table 6.4: Classification report.

6.4.2 Case 2: Microsoft Security events

Faced with the diversity of Microsoft Security Event logs, our second log extraction
case using the NIS-SDG data generator will focus on user account authentication at-
tempts. This encompasses the High-level category of Authentication and Microsoft
events IDs such as: 4624, 4672, 4648 and 4625. We anticipate generating 4000
events corresponding to these event IDs. In Table 6.5, we present an example of
authentication data, highlighting some relevant attributes.
Figure 6.5 depicts the hierarchy of various profiles that can be generated from Mi-
crosoft Security Event logs. Initially, we identified attributes common to all high-
level categories to define the first hierarchical levels of the tree. Subsequently, addi-

111

tional attributes are progressively added based on the high-level category.

Figure 6.5: Tree Structure of the Microsoft Security Events.

1. The fcheck_dict algorithm returns the value true, validating that all gen-
erated entries are within the dictionary of possible values and profiles, similar
to the firewall events case.

2. The validation algorithm fsimilarity returns low scores for all com-
pared distributions, particularly for Event-ID and Process-Name, with scores
of 0.0186 and 0.0192 respectively. This confirms the high similarity and coher-
ence of the generated Microsoft authentication data, as shown in Figure 6.7.

3. The model’s moderate score underscores the similarity between generated and
real data, with an overall classification accuracy and recall of 0.61. Specifically,
the F1 score is 0.68 for real data (class 0) and 0.52 for syntehtic data (class
1). These scores further confirm the challenge the decision tree (DT) faces in
distinguishing between the two classes, with a better balance of precision and
recall for real data compared to the generated ones.

112

Logon
Type

Package User Initia-
tor

Machine
ID

Process
Name

ID-Src User Target Event ID Log Source
Time

3.0 NTLM VTIHnGS80p Host900 - 457 fF7uqIstCM 4624 2024-04-23
14:26:26

3.0 Kerberos VTIHnGS80p Host2 - 457 PXSYTmjIBt 4624 2024-04-23
13:53:02

3.0 NTLM VTIHnGS80p Host5 - 457 9grK454sTK 4624 2024-04-23
12:13:40

3.0 Negotiate vZYc3v2WCo Host1300 CMS.exe454 FbawQpPVUZ 4624 2024-04-23
11:48:09

NaN NaN grzT73UtAF Host115 NaN 454 TNJ5XYmb1Y 4672 2024-04-23
14:02:28

3.0 NTLM VTIHnGS80p Host93 - 457 CTy2qui1Bi 4624 2024-04-23
12:32:47

3.0 NTLM VTIHnGS80p Host831 - 457 BI3u3yN3Rx 4624 2024-04-23
14:12:28

NaN NaN grzT73UtAF Host111 NaN 454 TNJ5XYmb1Y 4672 2024-04-23
12:36:15

NaN NaN grzT73UtAF Host785 NaN 444 TNJ5XYmb1Y 4672 2024-04-23
12:14:06

NaN NaN grzT73UtAF Host27 NaN 443 TNJ5XYmb1Y 4672 2024-04-23
12:54:24

Table 6.5: Example of Microsoft Security event logs.

Figure 6.6: Distribution of Event ID.

Class Precision Recall F1-score Support

0 0.58 0.81 0.68 1990
1 0.69 0.41 0.52 1990

Accuracy 0.61 3980

Macro Avg 0.63 0.61 0.60 3980
Weighted Avg 0.63 0.61 0.60 3980

Table 6.6: Microsoft Authentication Events.

113

Figure 6.7: Distribution of Event ID and Event Process Name.

6.5 Conclusion and perspectives
The synthetic data generator proposed in this chapter aims to address a crucial need
in the cybersecurity scientific community: access to reliable, diverse, and represen-
tative datasets of the real world. Indeed, existing datasets often suffer from bias,
limitations in terms of diversity, and lack of representativeness of real environments.
Moreover, data confidentiality issues are a major obstacle to their sharing and use.
Our proposal is based on a rigorous and transparent methodology, relying on proven
technologies and recognized practices in data science. The collection and prepara-
tion of source data, anonymization of sensitive information, generation of synthetic
data that respects the structure and logic of the network, and rigorous validation of
data quality are the key steps of our approach.
The results obtained so far are promising. The tests and evaluations conducted
demonstrate the generator’s ability to produce synthetic data statistically similar
to real data, while ensuring scenario diversity, robustness to changes, and efficient
anomaly management. Moreover, sensitive data anonymization is ensured, thus re-
specting confidentiality requirements.
The synthetic data generator developed has a high potential impact on research and
applications in cybersecurity. It will enable the feeding of machine learning models
with labeled and diversified data, contributing to the improvement of the accuracy
and performance of anomaly, intrusion, and cyberattack detection solutions. In terms
of future perspectives, we plan to deploy the application’s source code, which will
allow the scientific community and companies to collaborate and enrich knowledge
in the field of cybersecurity. The use of this generator will enable the exploration of
new avenues and expand the scope of synthetic data applications.
At the same time, we are considering the development of a user interface that will
facilitate the generator’s use by a wide audience, mainly targeted at researchers,
security professionals, and students, or integrating it directly into Watsonx.data.
Finally, extending the methodology to other types of security data, such as appli-
cation logs or incident reports, will enable the generator’s impact to be extended to

114

other areas of cybersecurity. Following this methodology, the development of syn-
thetic data for a specific data type can be relatively time-consuming, especially when
numerous validation criteria are desired.

115

Chapter 7

Conclusion, impacts and future work

Contents
7.1 Conclusion . 116
7.2 Impacts on the IBM ecosystem . 118

7.2.1 Detection of known attacks . 118

7.2.2 Detection of zero-day attacks . 118

7.2.3 Data generation . 119

7.3 Perspectives . 119

7.1 Conclusion
The collection and analysis of communication flows is a reliable method for de-
tecting cyberattacks within an information system. These flows, collected via ded-
icated probes, may be encrypted. This large volume of data collected and central-
ized through a network flow collector is used by detection and response teams to
manually create and update correlation rules. These rules ensure the identification
of abnormal and deviant behaviors within an information system. However, this ap-
proach often generates high rates of false positives and its implementation is costly in
terms of time and human resources. Moreover, these teams face difficulties in proac-
tively detecting unknown attacks. Thus, SOC and response teams require dynamic
approaches to effectively detect cyberattacks of various types and characteristics in
order to respond to them promptly.

Various works in the literature address the issue of attack detection and optimization.
Traditional approaches for improving the detection strategy, based on signature de-
tection, payload detection, and anomaly detection, generate many false positives
and are limited by obfuscation techniques. Furthermore, machine learning and deep
learning algorithms are increasingly being used. However, existing solutions are
specific to each case in feature extraction, focus on optimizing hyperparameters and
model comparisons do not have the same basis.

In addition to the approaches for detecting known attacks, zero-day attack detection
solutions are proposed in the literature. The state-of-the-art in attack detection often
focuses on enhancing accuracy for specific attack types, overlooking the potential
for multiple attack scenarios.

116

Moreover, to evaluate the effectiveness of the proposed cyberattack detection meth-
ods, it is essential to generate up-to-date synthetic and anonymized data that is based
on a solid foundation of recent and non-simulated attack scenarios. Indeed, the
datasets and synthetic data generation techniques used are limited, outdated in terms
of scenarios, and based on simulated attack scenarios.

In this thesis, we propose novel approaches to optimize and strengthen security net-
work incident detection and synthetic data generation, with a particular focus on
incidents related to network traffic in the industrial context of corporate networks.
The three major contributions presented in this thesis offer significant advances in
the fields of detecting attacks related to network flows, detecting zero-day attacks,
and generating realistic and up-to-date synthetic data for effective model evaluation.

Considering the static approach of creating correlation rules via network flow col-
lectors for cyberattack detection, we leveraged machine learning and deep learning
algorithms to automate and improve the detection of attacks related to network flows.
Thus, we designed an approach based on convolutional neural networks (CNN) that
aims to identify a universal feature engineering, applicable to any network traffic
analysis context. Therefore, we defined three families of network characteristics
based on the definition of a network flow and the different steps of traffic exchange
between assets. These families include information about communicating assets,
data on the session established between these assets, and information about the speed
and data exchange rate. Moreover, the CNN’s feature detector ability to extract
deeper patterns from the data has allowed the extraction of relevant information from
the initial dataset and thus improved the classification of network flows. Therefore,
our two-step solution thus guarantees better classification of network flows without
feature engineering specific to a dataset or particular context. Our approach has been
evaluated on a dataset from our IBM work context and two public datasets (NSL-
KDD and UNSW-NB15).

After that, we addressed the issue of proactive detection of unknown attacks. In
the face of the constant increase in the number and surfaces of attacks, unknown
vulnerabilities are increasingly exploited in information systems. We have therefore
focused our efforts on this issue, as existing approaches generally target specific
attack classes to detect or optimize model precision rates. Our contribution was to
propose a zero-day attack detection framework that covers the entire chain of data
collection, processing, analysis, and classification up to the detection of an anomaly
in the classification. Our framework validates these unknown attacks using online
learning to confirm the new attack class. Our solution has also been validated on
different datasets, including an extract from our work context and the public dataset,
NSL-KDD. Our results confirm the detection of a zero-day attack class for different
use cases studied.

Finally, to address the lack of realistic and up-to-date data necessary for effective
model evaluation, we addressed the issue of synthetic data generation. After a thor-
ough study of the different types of data sources in an IS, we identified the essential
attributes to retain from a specific data payload and those containing sensitive and
critical information to anonymize. Then, by extracting a large volume of data cov-
ering all assets of a given information system and all necessary time windows, we
used decision trees to generate the different profiles available by data source, which
we stored in a database. These profiles were then analyzed to determine behaviors,
and the network architecture was also examined. Each profile was associated with

117

a specific network identifier, which allowed us to generate data based on these pro-
files associated with a network identifier. A thorough verification was carried out
on the generated data using three mechanisms: profiling, statistical analysis, and
discriminant method. Finally, we proceeded with the anonymization of the critical
fields identified at the beginning to avoid disclosing information about the original
information system.

7.2 Impacts on the IBM ecosystem

7.2.1 Detection of known attacks

For this approach, we plan to seamless integration of classification models, notably
CNN, into the user interface of the SIEM through a dedicated AI tool. Therefore,
SOC analysts, correlation engineers, and detection and response specialists can eas-
ily select models and adjust hyper-parameters. By utilizing labeled datasets, experts
can train these models based on existing correlation rules and associated data flows.
Once trained, these models are evaluated in real-time on the collected flows within
the SIEM.

The classification results, distinguishing between normal and malicious flows, are
then integrated into the SIEM interface via this dedicated application or AI tool.
Detection and response experts can intervene to optimize existing rules by analyz-
ing false positives and negatives. They adjust detection thresholds and incorporate
specific knowledge that may have caused these false detection (administrative tasks,
internal IP addresses originating from internal audits, scheduled vulnerability scans).
This feedback loop ensures the tool’s constant adaptation to new threats, thereby en-
hancing the organization’s security posture. By closely integrating supervised clas-
sification and correlation rule creation, our approach enables the rapid identification
and response to known and emerging threats.

7.2.2 Detection of zero-day attacks

Continuing the automation of detection, and with a tool to assist security analysts and
incident response experts, the zero-day detection protocol can provide significant
value in an incident detection and response tool.

The integration of the zero-day protocol into a SIEM or dedicated AI tool provides a
comprehensive solution for proactive detection of zero-day threats and dynamic cre-
ation of new correlation rules. Leveraging advanced anomaly detection techniques,
the protocol enables analysts to swiftly identify suspicious behaviors, thereby re-
ducing response time to potential attacks. Its continuous adaptation to emerging
threats ensures that correlation rules remain relevant and up-to-date, offering im-
proved visibility into network activities and faster threat detection. By facilitating
event correlation and optimizing detection accuracy through a combination of differ-
ent techniques, the protocol empowers analysts to create more precise and reliable
correlation rules, thereby reducing false positives and negatives. Validated on real-
world data, it ensures the reliability of results, enabling analysts to make confident
decisions to strengthen network security.

118

7.2.3 Data generation

Our data generator addresses a real need in the scientific community by providing a
generator of synthetic data based on carefully diversified real data.

Our generator enables the provision of datasets that constitute stable sets for learning
and verifying different models in machine learning. Moreover, through collabora-
tion, it is possible to enrich our knowledge base with known, recent attack scenarios
and incorporate them into the datasets provided by the generator. The methodology
we have adopted also guarantees easier data sharing through integrated anonymiza-
tion. Thus, we can provide datasets that meet the expectations of researchers in the
field of machine learning applied to cybersecurity and the many applications that
result from it.

By integrating our data generation mechanism into Watsonx.data, we offer a recog-
nized, reliable, and shared platform for the entire scientific and industrial community
to collect, store, clean, and transform data on a large scale. This integration enables
users to generate high-quality synthetic data for training and validating AI models
based on real and diverse data. Our integrated anonymization methodology also en-
sures the confidentiality and security of the data used to generate the synthetic data,
in addition to the basic security mechanisms provided by the Watsonx.data solution.

Furthermore, this integration would ensure better evaluation of the AI models de-
veloped, trained, and deployed via Watsonx.ai, thereby facilitating the simulation of
the security use cases proposed by this solution, such as attack detection, anomaly
detection in an IS, improvement of the performance of AI models, etc.

7.3 Perspectives
In this section, we present perspectives for continuing the initiated work and explore
additional research avenues.

Firstly, we have outlined several future research directions in zero-day exploit de-
tection. We will aim to refine our detection approach by dynamically updating
the model with previously identified zero-day attacks. This involves employing ad-
vanced techniques to analyze and integrate new information, thereby improving the
model’s accuracy and efficacy.

Moreover, once a zero-day exploit has been confirmed, we plan to extract the pat-
terns and behaviors are extracted to create new detection rules. Thus, maintaining a
dynamic, accurate model while ensuring swift detection poses several scientific chal-
lenges. One major challenge is developing efficient data structures for incremental
updates and prompt rule access. Another challenge is ensuring that the model adapts
to new data and unknown attacks without discarding prior knowledge. To address
this, we will deploy meta-learning and transfer learning algorithms to enhance the
system’s adaptability.

Therefore, to facilitate timely detection of new threats and keep defenses current, we
propose to develop a module that autonomously generates detection rules based on
the characteristics of detected zero-day attacks. This involves automatically trans-
lating attack patterns into actionable detection rules, which is another significant

119

scientific challenge. To address this challenge, we will explore Natural Language
Processing (NLP) methods for log analysis and rule generation once a new detection
scenario is confirmed.

Another promising research direction would be to aim for, we the detection of com-
plex cyber threats by developing attack detection models for multi-stage attacks.
Using Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM)
techniques.
A given attack scenario can be simple or complex. Simple attacks are characterized
by a single execution phase, whereas complex attacks are a sequence of actions
carried out over time, commonly referred to as the cyber kill chain. Leveraging
the cyber kill chain framework, we will model attack stages to identify patterns and
anomalies indicative of multi-stage attacks. LSTM enables the detection of long-
term dependencies between attack stages, enhancing the accuracy and efficiency
of our detection framework and offering better protection against advanced cyber
threats.
However, enhancing detection using RNN with LSTM poses significant challenges.
Modeling complex attack sequences is challenging due to intricate temporal de-
pendencies in multi-stage attacks. Advanced LSTM architectures like bidirectional
LSTM and attention mechanisms are necessary to capture these nuances. Real-time
detection and scalability are additional challenges. They require LSTM model
optimization for low-latency processing through techniques like model pruning and
integration with high-performance computing frameworks. Additionally, reducing
false positives and negatives is crucial, achievable through ensemble learning
methods and hybrid models.

Finally, considering the insider threats while building attack detection mechanisms
is also an interesting research direction. Indeed, unlike external attackers, insid-
ers have legitimate access to the organization’s systems and data, enabling them to
bypass traditional security measures. These attackers can learn operational models
within the information system and manipulate them to evade detection, presenting
significant challenges for maintaining robust security.
Challenges related to these insider attackers include detection evasion, bias and ma-
nipulation of models, real-time monitoring and response, behavioral analysis and
context awareness, as well as integration with existing security frameworks. Thus,
to address these challenges, research avenues include leveraging adversarial learn-
ing to identify and mitigate attempts to bias models, using behavioral and contextual
analyses to establish baselines of normal user behavior (profiling). Indeed, adversar-
ial learning to enhance the resilience of security models and the implementation of
continuous learning systems capable of adapting to new patterns of insider threats
as they emerge. We aim to enhance the detection and response capabilities against
insider threats, thereby ensuring more robust and adaptive security measures.

120

Bibliography

[1] “Ibm security report: Data breach cost 2023.” https://www.ibm.com/
fr-fr/reports/data-breach.

[2] C. Zhang, G. Wang, S. Wang, D. Zhan, and M. Yin, “Cross-domain network
attack detection enabled by heterogeneous transfer learning,” Computer Net-
works, vol. 227, p. 109692, 2023.

[3] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the age of
sophisticated cyber attacks,” Computers Security, vol. 72, pp. 212–233, 2018.

[4] Blessing Guembe, Ambrose Azeta, Sanjay Misra, Victor Chukwudi Osamor,
Luis Fernandez-Sanz, and Vera Pospelova, “The emerging threat of ai-driven
cyber attacks: A review,” Applied Artificial Intelligence, vol. 36, no. 1,
p. 2037254, 2022.

[5] P. Lin, K. Ye, Y. Hu, Y. Lin, and C.-Z. Xu, “A Novel Multimodal Deep Learn-
ing Framework for Encrypted Traffic Classification,” IEEE/ACM Transactions
on Networking, pp. 1–16, 2022.

[6] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “A review on ma-
chine learning-based approaches for Internet traffic classification,” Annals of
Telecommunications, vol. 75, no. 11, pp. 673–710, 2020.

[7] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat,
and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion De-
tection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019.

[8] C. Zhang, F. Ruan, L. Yin, X. Chen, L. Zhai, and F. Liu, “A deep learn-
ing approach for network intrusion detection based on nsl-kdd dataset,” in
2019 IEEE 13th International Conference on Anti-counterfeiting, Security,
and Identification (ASID), pp. 41–45, 2019.

[9] Z. Tauscher, Y. Jiang, K. Zhang, J. Wang, and H. Song, “Learning to detect: A
data-driven approach for network intrusion detection,” in 2021 IEEE Interna-
tional Performance, Computing, and Communications Conference (IPCCC),
pp. 1–6, 2021.

[10] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion detection of imbalanced net-
work traffic based on machine learning and deep learning,” IEEE Access,
vol. 9, pp. 7550–7563, 2021.

[11] A. Blaise, M. Bouet, V. Conan, and S. Secci, “Detection of zero-day at-
tacks: An unsupervised port-based approach,” Computer Networks, vol. 180,
p. 107391, 2020.

[12] Q. Zhou and D. Pezaros, “Evaluation of machine learning classifiers for zero-
day intrusion detection–an analysis on cic-aws-2018 dataset,” arXiv preprint
arXiv:1905.03685, 2019.

121

https://www.ibm.com/fr-fr/reports/data-breach
https://www.ibm.com/fr-fr/reports/data-breach

[13] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and X. Bellekens,
“Utilising deep learning techniques for effective zero-day attack detection,”
Electronics, vol. 9, no. 10, 2020.

[14] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised clustering-
based anomaly detection method,” Tsinghua Science and Technology, vol. 26,
no. 2, pp. 146–153, 2021.

[15] P. M. Comar, L. Liu, S. Saha, P.-N. Tan, and A. Nucci, “Combining supervised
and unsupervised learning for zero-day malware detection,” in 2013 Proceed-
ings IEEE INFOCOM, pp. 2022–2030, 2013.

[16] S. Huda, S. Miah, M. Mehedi Hassan, R. Islam, J. Yearwood, M. Alrubaian,
and A. Almogren, “Defending unknown attacks on cyber-physical systems
by semi-supervised approach and available unlabeled data,” Information Sci-
ences, vol. 379, pp. 211–228, 2017.

[17] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows,” 1988.

[18] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “A survey of network flow
applications,” Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 567–581, 2013.

[19] B. Claise, “Cisco systems netflow services export version 9,” tech. rep., 2004.

[20] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information.” RFC
7011, Sept. 2013.

[21] S. Panchen, N. McKee, and P. Phaal, “InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks.” RFC 3176, Sept.
2001.

[22] Í. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot, “Uncovering ar-
tifacts of flow measurement tools,” in Passive and Active Network Measure-
ment: 10th International Conference, PAM 2009, Seoul, Korea, April 1-3,
2009. Proceedings 10, pp. 187–196, Springer, 2009.

[23] D. Zhou, Z. Yan, Y. Fu, and Z. Yao, “A survey on network data collection,”
Journal of Network and Computer Applications, vol. 116, pp. 9–23, 2018.

[24] C. So-In, “A survey of network traffic monitoring and analysis tools,” Cse
576m computer system analysis project, Washington University in St. Louis,
2009.

[25] P. Sahoo, R. Chottray, and S. Pattnaiak, “Research issues on windows event
log,” International Journal of Computer Applications, vol. 41, no. 19, 2012.

[26] B. S. Nayak, “A practical logging solution using syslog,”

[27] C. Lonvick, “The bsd syslog protocol,” tech. rep., 2001.

[28] D. New and M. Rose, “Reliable delivery for syslog,” tech. rep., 2001.

[29] D. Sulistyowati, F. Handayani, and Y. Suryanto, “Comparative analysis and
design of cybersecurity maturity assessment methodology using nist csf, co-
bit, iso/iec 27002 and pci dss,” JOIV: International Journal on Informatics
Visualization, vol. 4, no. 4, pp. 225–230, 2020.

[30] “MITRE ATTA&CK.”

122

[31] P. Rajesh, M. Alam, M. Tahernezhadi, A. Monika, and G. Chanakya, “Analy-
sis Of Cyber Threat Detection And Emulation Using MITRE Attack Frame-
work,” in International Conference on Intelligent Data Science Technologies
and Applications (IDSTA), pp. 4–12, 2022.

[32] M. Lezzi, M. Lazoi, and A. Corallo, “Cybersecurity for industry 4.0 in the
current literature: A reference framework,” Computers in Industry, vol. 103,
pp. 97–110, 2018.

[33] S. Gupta, B. S. Chaudhari, and B. Chakrabarty, “Vulnerable network analysis
using war driving and security intelligence,” in 2016 International Conference
on Inventive Computation Technologies (ICICT), vol. 3, pp. 1–5, 2016.

[34] “Ibm product: Security qradar ndr.” https://www.ibm.com/products/qradar-
ndr.

[35] “Ibm product: Security qradar edr.” https://www.ibm.com//products/qradar-
edr.

[36] “Ibm product: Security qradar soar.” https://www.ibm.com/products/qradar-
soar.

[37] “Ibm plans to make llama 2 available within its watsonx ai and data platform,
pr newswire us, 9 august. 2023.”

[38] “Ibm product: Watsonx[.]ai.”

[39] “Ibm product: Watsonx[.]data.”

[40] F. Hou, Z. Wang, Y. Tang, and Z. Liu, “Protecting integrity and confidential-
ity for data communication,” in Proceedings. ISCC 2004. Ninth International
Symposium on Computers And Communications (IEEE Cat. No. 04TH8769),
vol. 1, pp. 357–362, IEEE, 2004.

[41] S. Duggineni, “Data integrity and risk,” Open Journal of Optimization,
vol. 12, no. 2, pp. 25–33, 2023.

[42] O. A. Fayayola, O. L. Olorunfemi, and P. O. Shoetan, “Data privacy and se-
curity in it: A review of techniques and challenges,” Computer Science & IT
Research Journal, vol. 5, no. 3, pp. 606–615, 2024.

[43] J. B. Bernabe and A. Skarmeta, “Introducing the challenges in cybersecurity
and privacy: The european research landscape,” in Challenges in Cybersecu-
rity and Privacy-the European Research Landscape, pp. 1–21, River Publish-
ers, 2022.

[44] M. Toussaint, S. Krima, and H. Panetto, “Industry 4.0 data security: a cyber-
security frameworks review,” Journal of Industrial Information Integration,
p. 100604, 2024.

[45] K. Nova, “Security and resilience in sustainable smart cities through cyber
threat intelligence,” International Journal of Information and Cybersecurity,
vol. 6, no. 1, pp. 21–42, 2022.

[46] “Ibm report - a focus on europe: X-force threat intelligence index 2024.”

[47] “Ibm report - a focus on europe: X-force threat intelligence index 2024.”

[48] F. Ghaffari, K. Gilani, E. Bertin, and N. Crespi, “Identity and access manage-
ment using distributed ledger technology: A survey,” International Journal of
Network Management, vol. 32, no. 2, p. e2180, 2022.

123

[49] I. Indu, P. R. Anand, and V. Bhaskar, “Identity and access management in
cloud environment: Mechanisms and challenges,” Engineering Science and
Technology, an International Journal, vol. 21, no. 4, pp. 574–588, 2018.

[50] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “Software
security patch management-a systematic literature review of challenges,
approaches, tools and practices,” Information and Software Technology,
vol. 144, p. 106771, 2022.

[51] V. Markkanen and T. Frantti, “Patch management planning - towards one-to-
one policy,” in 2023 10th International Conference on Dependable Systems
and Their Applications (DSA), pp. 60–69, 2023.

[52] A. A. Ganin, P. Quach, M. Panwar, Z. A. Collier, J. M. Keisler, D. Marchese,
and I. Linkov, “Multicriteria decision framework for cybersecurity risk assess-
ment and management,” Risk Analysis, vol. 40, no. 1, pp. 183–199, 2020.

[53] A. Marotta and S. Madnick, “Perspectives on the relationship between com-
pliance and cybersecurity.,” Journal of Information System Security, vol. 16,
no. 3, 2020.

[54] M. Mirtsch, “The role of conformity assessment in the digital transforma-
tion: Focusing on cybersecurity,” in EURAS Proceedings 2018-Standards for
a Smarter Future, vol. 2018, pp. 183–202, Verlagshaus Mainz GmbH Aachen,
2018.

[55] K. Stine, S. Quinn, G. Witte, and R. Gardner, “Integrating cybersecurity and
enterprise risk management (erm),” National Institute of Standards and Tech-
nology, vol. 10, 2020.

[56] A. Marotta and S. Madnick, “Convergence and divergence of regulatory com-
pliance and cybersecurity.,” Issues in Information Systems, vol. 22, no. 1,
2021.

[57] A. Ambre and N. Shekokar, “Insider threat detection using log analysis and
event correlation,” Procedia Computer Science, vol. 45, pp. 436–445, 2015.

[58] N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, W. K. Mahmoud Ali,
M. Alam, M. Shiraz, A. Gani, et al., “Big data: survey, technologies, op-
portunities, and challenges,” The scientific world journal, vol. 2014, 2014.

[59] S. Bhatt, P. K. Manadhata, and L. Zomlot, “The operational role of security in-
formation and event management systems,” IEEE security & Privacy, vol. 12,
no. 5, pp. 35–41, 2014.

[60] M. Cinque, D. Cotroneo, and A. Pecchia, “Challenges and directions in se-
curity information and event management (siem),” in 2018 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW),
pp. 95–99, IEEE, 2018.

[61] O. Podzins and A. Romanovs, “Why siem is irreplaceable in a secure it envi-
ronment?,” in 2019 Open Conference of Electrical, Electronic and Informa-
tion Sciences (eStream), pp. 1–5, IEEE, 2019.

[62] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing
and data augmentation techniques,” Global Transitions Proceedings, vol. 3,
no. 1, pp. 91–99, 2022. International Conference on Intelligent Engineering
Approach(ICIEA-2022).

124

[63] S. Gupta and A. Gupta, “Dealing with noise problem in machine learn-
ing data-sets: A systematic review,” Procedia Computer Science, vol. 161,
pp. 466–474, 2019. The Fifth Information Systems International Conference,
23-24 July 2019, Surabaya, Indonesia.

[64] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data:
Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–361, 2017.

[65] M. Conti, T. Dargahi, and A. Dehghantanha, Cyber threat intelligence: chal-
lenges and opportunities. Springer, 2018.

[66] A. A. Salih and M. B. Abdulrazzaq, “Cyber security: performance analysis
and challenges for cyber attacks detection,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 31, no. 3, pp. 1763–1775, 2023.

[67] A. A. Mughal, “The art of cybersecurity: Defense in depth strategy for robust
protection,” International Journal of Intelligent Automation and Computing,
vol. 1, no. 1, pp. 1–20, 2018.

[68] S. E. Whang and J.-G. Lee, “Data collection and quality challenges for deep
learning,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 3429–
3432, 2020.

[69] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality
challenges in deep learning: A data-centric ai perspective,” The VLDB Jour-
nal, vol. 32, no. 4, pp. 791–813, 2023.

[70] J. McHugh, “Intrusion and intrusion detection,” International Journal of In-
formation Security, vol. 1, pp. 14–35, 2001.

[71] Y.-H. Choi, M.-Y. Jung, and S.-W. Seo, “L+ 1-mwm: A fast pattern matching
algorithm for high-speed packet filtering,” in IEEE INFOCOM 2008-The 27th
Conference on Computer Communications, pp. 2288–2296, IEEE, 2008.

[72] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[73] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communi-
cations of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[74] S. Wu, U. Manber, et al., A fast algorithm for multi-pattern searching. Uni-
versity of Arizona. Department of Computer Science Tucson, AZ, 1994.

[75] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to biblio-
graphic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340,
1975.

[76] M. Aldwairi and K. Al-Khamaiseh, “Exhaust: Optimizing wu-manber pat-
tern matching for intrusion detection using bloom filters,” in 2015 2nd World
Symposium on Web Applications and Networking (WSWAN), pp. 1–6, IEEE,
2015.

[77] M. Aldwairi, K. Al-Khamaiseh, F. Alharbi, and B. Shah, “Bloom filters op-
timized wu-manber for intrusion detection,” Journal of Digital Forensics, Se-
curity and Law, vol. 11, no. 4, p. 5, 2016.

[78] I. Obeidat and M. AlZubi, “Developing a faster pattern matching algorithms
for intrusion detection system,” International Journal of Computing, vol. 18,
no. 3, pp. 278–284, 2019.

125

[79] A. Hnaif, K. M. Jaber, M. A. Alia, and M. Daghbosheh, “Parallel scalable
approximate matching algorithm for network intrusion detection systems.,”
Int. Arab J. Inf. Technol., vol. 18, no. 1, pp. 77–84, 2021.

[80] E. Papadogiannaki, G. Tsirantonakis, and S. Ioannidis, “Network intrusion
detection in encrypted traffic,” in 2022 IEEE Conference on Dependable and
Secure Computing (DSC), pp. 1–8, IEEE, 2022.

[81] B. Bayoğlu and İbrahim Soğukpınar, “Graph based signature classes for
detecting polymorphic worms via content analysis,” Computer Networks,
vol. 56, no. 2, pp. 832–844, 2012.

[82] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci, “To-
wards self adaptive network traffic classification,” Computer Communica-
tions, vol. 56, pp. 35–46, 2015.

[83] A. Zand, G. Vigna, X. Yan, and C. Kruegel, “Extracting probable command
and control signatures for detecting botnets,” in Proceedings of the 29th An-
nual ACM Symposium on Applied Computing, SAC ’14, (New York, NY,
USA), p. 1657–1662, Association for Computing Machinery, 2014.

[84] A. S. Dina and D. Manivannan, “Intrusion detection based on machine learn-
ing techniques in computer networks,” Internet of Things, vol. 16, p. 100462,
2021.

[85] R. Samrin and D. Vasumathi, “Review on anomaly based network intrusion
detection system,” in 2017 international conference on electrical, electron-
ics, communication, computer, and optimization techniques (ICEECCOT),
pp. 141–147, IEEE, 2017.

[86] Z. Liu, N. Japkowicz, R. Wang, Y. Cai, D. Tang, and X. Cai, “A statistical
pattern based feature extraction method on system call traces for anomaly
detection,” Information and Software Technology, vol. 126, p. 106348, 2020.

[87] M. Wurzenberger, G. Höld, M. Landauer, and F. Skopik, “Analysis of statisti-
cal properties of variables in log data for advanced anomaly detection in cyber
security,” Computers Security, vol. 137, p. 103631, 2024.

[88] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, “Combating advanced per-
sistent threats: From network event correlation to incident detection,” Com-
puters & Security, vol. 48, pp. 35–57, 2015.

[89] S. B. Shamsuddin and M. E. Woodward, “Modeling protocol based packet
header anomaly detector for network and host intrusion detection systems,” in
Cryptology and Network Security (F. Bao, S. Ling, T. Okamoto, H. Wang, and
C. Xing, eds.), (Berlin, Heidelberg), pp. 209–227, Springer Berlin Heidelberg,
2007.

[90] P. Satam and S. Hariri, “Wids: An anomaly based intrusion detection system
for wi-fi (ieee 802.11) protocol,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 1077–1091, 2021.

[91] T. J. Parvat and P. Chandra, “Performance improvement of deep packet in-
spection for intrusion detection,” in 2014 IEEE Global Conference on Wire-
less Computing Networking (GCWCN), pp. 224–228, 2014.

[92] C. Togay, A. Kasif, C. Catal, and B. Tekinerdogan, “A firewall policy anomaly
detection framework for reliable network security,” IEEE Transactions on Re-
liability, vol. 71, no. 1, pp. 339–347, 2022.

126

[93] J. Kuri, G. Navarro, L. Mé, and L. Heye, “A pattern matching based filter for
audit reduction and fast detection of potential intrusions,” in Recent Advances
in Intrusion Detection: Third International Workshop, RAID 2000 Toulouse,
France, October 2–4, 2000 Proceedings 3, pp. 17–27, Springer, 2000.

[94] Y. Zhou and G. Ding, “Research of multi-pattern matching algorithm based
on characteristic value,” in 2017 3rd IEEE International Conference on Com-
puter and Communications (ICCC), pp. 1657–1661, 2017.

[95] J. Wu, W. Wang, L. Huang, and F. Zhang, “Intrusion detection technique
based on flow aggregation and latent semantic analysis,” Applied Soft Com-
puting, vol. 127, p. 109375, 2022.

[96] M. A. Jabbar and S. Samreen, “intelligent network intrusion detection using
alternating decision trees,” in International Conference on Circuits, Controls,
Communications and Computing (I4C).

[97] B. S. Sharmila and R. Nagapadma, “Intrusion Detection System using Naive
Bayes algorithm,” in IEEE International WIE Conference on Electrical and
Computer Engineering (WIECON-ECE), 2019.

[98] L. Koc and A. D. Carswell, “Network Intrusion Detection Using a HNB Bi-
nary Classifier,” in 17th UKSim-AMSS International Conference on Modelling
and Simulation (UKSim), pp. 81–85, 2015.

[99] P. Owezarski, “Investigating adversarial attacks against random forest-based
network attack detection systems,” in NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–6, 2023.

[100] H. M. Prachi and P. Sharma, “Intrusion detection using machine learning and
feature selection,” International Journal of Computer Network and Informa-
tion security, vol. 11, no. 4, pp. 43–52, 2019.

[101] H. Sanusi, Z. Utic, and J. Kim, “Improving network intrusion detection using
supervised learning for feature selection,” in 2023 IEEE/ACIS 8th Interna-
tional Conference on Big Data, Cloud Computing, and Data Science (BCD),
pp. 42–48, 2023.

[102] N. H. Kumar and R. Dhanalakshmi, “A novel host based intrusion detection
system using supervised learning by comparing svm over random forest,” in
2023 Eighth International Conference on Science Technology Engineering
and Mathematics (ICONSTEM), pp. 1–4, 2023.

[103] M. Macas, C. Wu, and W. Fuertes, “A survey on deep learning for cybersecu-
rity: Progress, challenges, and opportunities,” Computer Networks, vol. 212,
p. 109032, 2022.

[104] K. A. Taher, B. Mohammed Yasin Jisan, and M. M. Rahman, “Network in-
trusion detection using supervised machine learning technique with feature
selection,” in 2019 International Conference on Robotics,Electrical and Sig-
nal Processing Techniques (ICREST), pp. 643–646, 2019.

[105] H. Zhao, Y. Feng, H. Koide, and K. Sakurai, “An ANN Based Sequential De-
tection Method for Balancing Performance Indicators of IDS,” in 7th Interna-
tional Symposium on Computing and Networking (CANDAR), pp. 239–244,
2019.

[106] S. Sivamohan, S. Sridhar, and S. Krishnaveni, “An Effective Recurrent
Neural Network (RNN) based Intrusion Detection via Bi-directional Long

127

Short-Term Memory,” in International Conference on Intelligent Technolo-
gies (CONIT), 2021.

[107] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu, “HAST-
IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural
Networks to Improve Intrusion Detection,” IEEE Access, vol. 6, pp. 1792–
1806, 2018.

[108] M. Azizjon, A. Jumabek, and W. Kim, “1D CNN based network intrusion
detection with normalization on imbalanced data,” in International Confer-
ence on Artificial Intelligence in Information and Communication (ICAIIC),
pp. 218–224, 2020.

[109] S. Amutha, K. R, S. R, and K. M, “Secure network intrusion detection sys-
tem using nid-rnn based deep learning,” in 2022 International Conference on
Advances in Computing, Communication and Applied Informatics (ACCAI),
pp. 1–5, 2022.

[110] G. Kotani and Y. Sekiya, “Unsupervised scanning behavior detection based
on distribution of network traffic features using robust autoencoders,” in
2018 IEEE International Conference on Data Mining Workshops (ICDMW),
pp. 35–38, 2018.

[111] S. Alam, Y. Alam, S. Cui, and C. M. Akujuobi, “Unsupervised network in-
trusion detection using convolutional neural networks,” in 2023 IEEE 13th
Annual Computing and Communication Workshop and Conference (CCWC),
pp. 0712–0717, 2023.

[112] J. V. Anand Sukumar, I. Pranav, M. Neetish, and J. Narayanan, “Network
intrusion detection using improved genetic k-means algorithm,” in 2018 In-
ternational Conference on Advances in Computing, Communications and In-
formatics (ICACCI), pp. 2441–2446, 2018.

[113] H. M. Tahir, A. M. Said, N. H. Osman, N. H. Zakaria, P. N. A. M. Sabri,
and N. Katuk, “Oving k-means clustering using discretization technique in
network intrusion detection system,” in 2016 3rd International Conference on
Computer and Information Sciences (ICCOINS), pp. 248–252, 2016.

[114] M. Kherbache, D. Espes, and K. Amroun, “An enhanced approach of the k-
means clustering for anomaly-based intrusion detection systems,” in 2021 In-
ternational Conference on Computing, Computational Modelling and Appli-
cations (ICCMA), pp. 78–83, 2021.

[115] R. Younisse and Q. A. Al-Haija, “An empirical study on utilizing online
k-means clustering for intrusion detection purposes,” in 2023 International
Conference on Smart Applications, Communications and Networking (Smart-
Nets), pp. 1–5, 2023.

[116] R. Khaoula and M. Mohamed, “Improving intrusion detection using pca and
k-means clustering algorithm,” in 2022 9th International Conference on Wire-
less Networks and Mobile Communications (WINCOM), pp. 1–5, 2022.

[117] S. Saheel, A. Alvi, A. R. Ani, T. Ahmed, and M. F. Uddin, “Semi-supervised,
neural network based approaches to face mask and anomaly detection in
surveillance networks,” Journal of Network and Computer Applications,
vol. 222, p. 103786, 2024.

128

[118] S. Li, Y. Cao, S. Liu, Y. Lai, Y. Zhu, and N. Ahmad, “Hda-ids: A hybrid dos
attacks intrusion detection system for iot by using semi-supervised cl-gan,”
Expert Systems with Applications, vol. 238, p. 122198, 2024.

[119] X. Zheng, S. Yang, and X. Wang, “Sf-ids: An imbalanced semi-supervised
learning framework for fine-grained intrusion detection,” in ICC 2023-IEEE
International Conference on Communications, pp. 2988–2993, IEEE, 2023.

[120] X. Wang and X. Qiu, “A novel semi-supervised anomaly detection method for
network intrusion detection,” in 2022 IEEE 22nd International Conference on
Communication Technology (ICCT), pp. 1276–1280, 2022.

[121] “Ibm security topic: What is a zero-day exploit?.”
[122] M. Mohammadi, B. Raahemi, A. Akbari, and B. Nassersharif, “Class depen-

dent feature transformation for intrusion detection systems,” in 2011 19th Ira-
nian Conference on Electrical Engineering, pp. 1–1, 2011.

[123] A. Aleroud and G. Karabatis, “Toward zero-day attack identification using
linear data transformation techniques,” in 2013 IEEE 7th International Con-
ference on Software Security and Reliability, pp. 159–168, 2013.

[124] D. Jin, J. Xie, S. Chen, J. Yang, X. Liu, and W. Wang, “Zero-day traffic identi-
fication using one-dimension convolutional neural networks and auto encoder
machine,” in 2020 IFIP Networking Conference (Networking), pp. 559–563,
2020.

[125] K. Roshan and A. Zafar, “An optimized auto-encoder based approach for de-
tecting zero-day cyber-attacks in computer network,” in 2021 5th Interna-
tional Conference on Information Systems and Computer Networks (ISCON),
pp. 1–6, 2021.

[126] B. Kızıltaş and E. Gül, “Network anomaly detection with convolutional neural
network based auto encoders,” in 2020 28th Signal Processing and Commu-
nications Applications Conference (SIU), pp. 1–4, 2020.

[127] R. Hosler, A. Sundar, X. Zou, F. Li, and T. Gao, “Unsupervised deep learning
for an image based network intrusion detection system,” in GLOBECOM 2023
- 2023 IEEE Global Communications Conference, pp. 6825–6831, 2023.

[128] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised clustering-
based anomaly detection method,” Tsinghua Science and Technology, vol. 26,
no. 2, pp. 146–153, 2020.

[129] I. Mbona and J. H. P. Eloff, “Detecting zero-day intrusion attacks using semi-
supervised machine learning approaches,” IEEE Access, vol. 10, pp. 69822–
69838, 2022.

[130] A. Arun, A. S. Nair, and A. G. Sreedevi, “Zero day attack detection and simu-
lation through deep learning techniques,” in 2024 14th International Confer-
ence on Cloud Computing, Data Science Engineering (Confluence), pp. 852–
857, 2024.

[131] M. Soltani, B. Ousat, M. Jafari Siavoshani, and A. H. Jahangir, “An adaptable
deep learning-based intrusion detection system to zero-day attacks,” Journal
of Information Security and Applications, vol. 76, p. 103516, 2023.

[132] K. K. R. Kendall, A database of computer attacks for the evaluation of in-
trusion detection systems. PhD thesis, Massachusetts Institute of Technology,
1999.

129

[133] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-based
modeling and evaluation for data mining with application to fraud and intru-
sion detection: Results from the jam project.-1999,” http://kdd. ics. uci. edu.

[134] J. Song, H. Takakura, and Y. Okabe, “Description of kyoto uni-
versity benchmark data,” Available at link: http://www. takakura.
com/Kyoto_data/BenchmarkData-Description-v5. pdf [Accessed on 15 March
2016], 2006.

[135] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of
the kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelli-
gence for Security and Defense Applications, pp. 1–6, 2009.

[136] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing
a systematic approach to generate benchmark datasets for intrusion detection,”
Computers Security, vol. 31, no. 3, pp. 357–374, 2012.

[137] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods,” Computers Security, vol. 45, pp. 100–123, 2014.

[138] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 Mili-
tary Communications and Information Systems Conference (MilCIS), pp. 1–6,
2015.

[139] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intrusion detection
in 802.11 networks: Empirical evaluation of threats and a public dataset,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 184–208, 2015.

[140] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, et al., “Toward generating a
new intrusion detection dataset and intrusion traffic characterization.,” ICISSp,
vol. 1, pp. 108–116, 2018.

[141] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neu-
ral information processing systems, vol. 27, 2014.

[142] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Creation of
flow-based data sets for intrusion detection,” Journal of Information Warfare,
vol. 16, no. 4, pp. 41–54, 2017.

[143] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “Ip2vec: Learning similar-
ities between ip addresses,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), pp. 657–666, IEEE, 2017.

[144] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based
benchmark data sets for intrusion detection,” in Proceedings of the 16th Eu-
ropean Conference on Cyber Warfare and Security (ECCWS), pp. 361–369,
ACPI South Oxfordshire, UK, 2017.

[145] P. Zingo and A. Novocin, “Can gan-generated network traffic be used to
train traffic anomaly classifiers?,” in 2020 11th IEEE Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON),
pp. 0540–0545, 2020.

[146] A. Cheng, “Pac-gan: Packet generation of network traffic using generative
adversarial networks,” in 2019 IEEE 10th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON), pp. 0728–
0734, IEEE, 2019.

130

[147] B. Dowoo, Y. Jung, and C. Choi, “Pcapgan: Packet capture file generator by
style-based generative adversarial networks,” in 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pp. 1149–
1154, IEEE, 2019.

[148] D. Lu, J. Fei, L. Liu, and Z. Li, “A gan-based method for generating sql in-
jection attack samples,” in 2022 IEEE 10th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), vol. 10, pp. 1827–
1833, 2022.

[149] S. A.-S. Tertsegha J. Anande and M. S. Leeson, “Generative adversarial net-
works for network traffic feature generation,” International Journal of Com-
puters and Applications, vol. 45, no. 4, pp. 297–305, 2023.

[150] S. Suh, D. H. Chae, H.-G. Kang, and S. Choi, “Echo-state conditional varia-
tional autoencoder for anomaly detection,” in 2016 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1015–1022, 2016.

[151] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Variational data
generative model for intrusion detection,” Knowledge and Information Sys-
tems, vol. 60, pp. 569–590, 2019.

[152] F. Meslet-Millet, S. Mouysset, and E. Chaput, “Necstgen: An approach for re-
alistic network traffic generation using deep learning,” in GLOBECOM 2022
- 2022 IEEE Global Communications Conference, pp. 3108–3113, 2022.

[153] P.-J. Chuang and P.-Y. Huang, “B-vae: a new dataset balancing approach using
batched variational autoencoders to enhance network intrusion detection,” The
Journal of Supercomputing, vol. 79, no. 12, pp. 13262–13286, 2023.

[154] H. Naseri and V. Mehrdad, “Novel cnn with investigation on accuracy by mod-
ifying stride, padding, kernel size and filter numbers,” Multimedia Tools and
Applications, vol. 82, no. 15, pp. 23673–23691, 2023.

[155] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[156] M. Maithem and G. A. Al-Sultany, “Network intrusion detection system using
deep neural networks,” in Journal of Physics: Conference Series, vol. 1804,
p. 012138, IOP Publishing, 2021.

[157] W.-F. Zheng, “Intrusion Detection Based on Convolutional Neural Network,”
in International Conference on Computer Engineering and Application (IC-
CEA), pp. 273–277, 2020.

[158] S. S. Sekharan and K. Kandasamy, “Profiling SIEM tools and correlation en-
gines for security analytics,” in International Conference on Wireless Com-
munications, Signal Processing and Networking (WiSPNET), pp. 717–721,
2017.

[159] B. Shah and B. H. Trivedi, “Reducing features of kdd cup 1999 dataset for
anomaly detection using back propagation neural network,” in 2015 Fifth In-
ternational Conference on Advanced Computing Communication Technolo-
gies, pp. 247–251, 2015.

[160] “Ibm security topic: Qradar architecture and deployment.”
[161] S. Jeong, J.-H. You, and J. W.-K. Hong, “Design and implementation of vir-

tual tap for sdn-based openstack networking,” in 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pp. 233–241, 2019.

131

[162] W. Zhenqi and W. Xinyu, “Netflow based intrusion detection system,” in
2008 International Conference on MultiMedia and Information Technology,
pp. 825–828, 2008.

[163] S. U. Rehman, W.-C. Song, and M. Kang, “Network-wide traffic visibility in
of@tein sdn testbed using sflow,” in The 16th Asia-Pacific Network Opera-
tions and Management Symposium, pp. 1–6, 2014.

[164] N. Chen and R. E. Johnson, “Jflow: Practical refactorings for flow-based par-
allelism,” in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 202–212, 2013.

[165] A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “A comparative
study on online machine learning techniques for network traffic streams anal-
ysis,” Computer Networks, vol. 207, p. 108836, 2022.

[166] N. Solekha, “Analysis of nsl-kdd dataset for classification of attacks based on
intrusion detection system using binary logistics and multinomial logistics,”
Seminar Nasional Official Statistics, vol. 2022, pp. 507–520, Nov. 2022.

132

	List of tables
	List of figures
	Introduction
	Context
	Motivation and research challenges
	Our contributions
	Automated attack detection for known scenarios
	Zero-day attack detection
	Synthetic data generation
	Impacts of contributions

	Outline of the manuscript

	Background of security operational in an industrial context
	Introduction
	Fundamentals of network security
	Network flows - Flow collector
	Events - Log source
	Framework MITRE ATT&CK

	Attack detection and response products : IBM ecosystem
	IBM generative AI products
	Conclusion

	Network security challenges & state-of-the-art
	Introduction
	Major challenges
	Data privacy and integrity
	Identity and access management
	Obsolescence and vulnerability management
	Compliance and regulation
	Threat detection and response

	Literature review for attack detection
	Traditional attack detection techniques
	Automatic learning techniques
	Zero-day detection approaches

	Literature review for network information system data generation
	Available datasets
	Synthesis data generation techniques
	Summary

	Conclusion

	Automation and improvement of cyber-attacks detection via an industrial IDS probe
	Introduction
	Background
	Our proposal
	Our feature engineering method
	Our classification model

	Performance evaluation
	Model performance on an industrial context: IBM dataset
	A comparative analysis with the benchmarking dataset NSL-KDD
	Complementary experiments with UNSW-NB15 dataset

	Conclusion

	A framework for detecting zero-day exploits in network flows
	Introduction
	Our proposal
	Data collection phase
	Supervised classification phase
	Unsupervised classification phase
	Correlation table phase
	Outlier detection phase

	Theorical analysis
	Performance evaluation
	Evaluation settings
	Framework phase 1: leveraging the IBM dataset
	Framework phase 2: building the Target-Set
	Framework phase 3: Cluster-Set building
	Framework phase 4: correlation table
	Framework phase 5: distance analysis for detecting zero-day
	Exploring the NSL-KDD dataset and conducting comparative analysis

	Discussion and perspectives
	Conclusion

	Synthetic data generation
	Introduction
	Our proposal
	Phase 1: Data collection and processing
	Phase 2: Defining profiles with decision tree
	Phase 3: The definition of the network hierarchy associating a Profile with its Subnet ID
	Phase 4: Profile generation for sub-network
	Phase 5: Anonymizing the generated synthetic data

	Assessment and validation of generated data
	Profiling validation technique
	Statistical analysis validation technique
	Discriminant model validation technique

	Data extraction cases
	Case 1: Firewall events
	Case 2: Microsoft Security events

	Conclusion and perspectives

	Conclusion, impacts and future work
	Conclusion
	 Impacts on the IBM ecosystem
	Detection of known attacks
	Detection of zero-day attacks
	Data generation

	Perspectives

