
HAL Id: tel-04784426
https://theses.hal.science/tel-04784426v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harnessing symmetries for modern deep learning
challenges : a path-lifting perspective

Antoine Gonon

To cite this version:
Antoine Gonon. Harnessing symmetries for modern deep learning challenges : a path-lifting perspec-
tive. Machine Learning [cs.LG]. Ecole normale supérieure de lyon - ENS LYON, 2024. English. �NNT :
2024ENSL0043�. �tel-04784426�

https://theses.hal.science/tel-04784426v1
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 12/11/2024, par :

Antoine GONON

Harnessing symmetries for modern deep
learning challenges: a path-lifting

perspective
Exploiter les symétries pour relever les défis modernes de l’apprentissage profond : une

perspective par le relèvement dans l’espace des chemins

Devant le jury composé de :

BACH, Francis Directeur de recherche Rapporteur
Inria, ENS

WILLETT, Rebecca Professeur Rapportrice
Université de Chicago

BLANCHARD, Gilles Professeur des universités Examinateur
Université Paris-Saclay

BRISEBARRE, Nicolas Directeur de recherche Examinateur
CNRS, ENS de Lyon

RICCIETTI, Elisa Maître de conférences Examinatrice
ENS de Lyon

ROSASCO, Lorenzo Professeur Examinateur
Université de Gênes

GRIBONVAL, Rémi Directeur de recherche Directeur de thèse
Inria, ENS de Lyon

Remerciements

Mes premiers remerciements vont tout naturellement à Rémi Gribonval, mon directeur
de thèse. Travailler avec toi a été un réel plaisir. J’ai tout de suite accroché dès mon
stage de L3, et ce n’est pas un hasard si je suis revenu frapper à ta porte deux fois par
la suite : d’abord pour obtenir tes recommandations pour un stage de M1 à l’étranger,
puis pour le duo stage de M2 et thèse. Merci pour ton accompagnement à chacune de
ces étapes, et merci pour la confiance que tu m’as accordée. C’est grâce à ta confiance
que j’ai pu pleinement m’épanouir pendant la thèse, me donnant la liberté de suivre mes
idées en sachant que j’aurais ton soutien.

J’aimerais aussi te remercier pour ta simplicité, humaine et scientifique. C’est ça qui
m’a tout de suite plu en L3 : ta capacité à ramener les choses à l’essentiel, à garder les
idées claires, et à faciliter les relations humaines. Tous ces aspects ont rendu nos échanges
particulièrement agréables. Merci pour tout.

Cette belle aventure n’aurait pas été la même sans mes deux autres encadrants de
thèse, Nicolas Brisebarre et Elisa Riccietti (merci à Rémi de vous avoir inclus dans le
processus).

Nicolas, un grand merci pour votre bienveillance et votre disponibilité. Que ce soit
pour prendre des nouvelles pendant mes déplacements ou pour m’offrir votre aide avec
générosité, même lorsque vous étiez en congés. Votre soutien a été constant. J’ai aussi
beaucoup aimé la manière dont vous avez su partager votre expérience, en me donnant
de précieux conseils qui m’auraient, sinon, souvent échappés. Je pense aussi à toutes
les fois où vous avez eu la présence d’esprit de pointer quelque chose qui était dans l’air
mais qui restait encore implicite. Cela nous a souvent permis d’avancer, en vérifiant si
Rémi, Elisa, vous et moi étions vraiment sur la même longueur d’onde. Merci pour votre
accompagnement et pour votre soutien.

Elisa, grazie un milliardo per l’energia positiva che hai portato durante tutta questa
tesi. Non tutti hanno la fortuna di avere un accento italiano che rende magica ogni con-
versazione! Hai spesso portato una ventata d’aria fresca nelle nostre riunioni, a volte
anche involontariamente, con le apparizioni a sorpresa della piccola "ispettore" in video-
conferenza, ricordandoci con umorismo l’equilibrio tra la nostra vita professionale e per-
sonale. Non posso concludere senza ringraziarti per avermi fatto scoprire la famosa pizza
a base bianca (forse dovremmo chiamarla la pizza Riccietti?), che ormai è diventata la
mia preferita! Grazie per questi momenti di condivisione e convivialità, che resteranno
tra i miei ricordi più cari.

I would like to thank the members of my defense jury, Gilles Blanchard, Lorenzo

i

Remerciements

Rosasco, Francis Bach, and Rebecca Willett, for dedicating their time and expertise to
reviewing my work. I am honored to have had the opportunity to discuss and present
my research to such a distinguished group. I am especially grateful to Francis Bach and
Rebecca Willett for agreeing to thoroughly review the manuscript.

Merci à Bruno Torresani et Bora Uçar pour leur bienveillance lors de mes comités de
suivi individuels de thèse.

J’en viens à remercier toutes les personnes que j’ai côtoyées à l’ENS : les membres
de l’équipe, les secrétaires, les enseignants-chercheurs avec qui j’ai été en contact, comme
Aurélien, les étudiants en TD. Merci à l’ensemble du personnel de l’ENS, de la personne
qui fait l’entretien aux agents de la cantine, toujours sympathiques. Je n’ai eu un que
de très bons souvenirs, et c’est grâce à tout l’éco-système de l’école. Voici quelques mots
pour ceux dont j’ai été le plus proche, dans un ordre aléatoire.

Pascal, mon seul regret est peut-être que tu ne sois pas arrivé dans l’équipe plus tôt.
Merci pour ton investissement dans chacun de nos projets communs. J’ai adoré travailler
avec toi et je garde d’excellents souvenirs de tous les moments passés dans ton bureau. À
quand une variété de piments chartreux ?

Merci à Mathurin pour tous les bons moments passés ensemble, des plus inoubliables
à La Ruisselière aux plus anodins lorsqu’on se croisait dans le couloir en se brossant les
dents. Je vais essayer d’être plus assidu aux pièces de théatre pour lesquelles j’ai pris un
ticket.

Léon, merci pour ton engagement au travail et ta bonne humeur. Merci également
pour tous ces bons moments partagés en dehors du labo. De Lion et Poisson, évidemment,
à la pièce en napolitain, le bouillon pimenté force trois – aussi immangeable qu’inoubliable
–, et même l’opéra aux accents de déjà-vu.

Clément, merci pour ta joie de vivre, tes avis mesurés et tes raisonnements à la physi-
cienne qui ont su éclairer bien des petits problèmes, où l’enjeu était davantage de les
résoudre pour être tranquille d’esprit que pour véritablement avoir la solution.

Merci à Tung, qui complète le trio des anciens doctorants Ockham qui m’ont accueilli,
et avec qui j’ai passé de très bons moments. Même si je pense que ce n’est pas loyal
d’avoir mis la barre aussi haute pour la nourriture au pot de thèse.

Merci aussi à Samir et Anthony, avec qui j’ai de très bon souvenirs, que ce soit au
restaurant, au foot, ou en mangeant les griwechs ramenés par Samir. Je n’ai que pu
regretter votre départ pour le troisième étage.

Can, tesekkür ederim pour ta bienveillance et ta gentillesse qui profitent à toute
l’équipe au quotidien. J’ai adoré échanger avec toi, et quelque part dans ma liste de
tâches reste l’apprentissage du turc – belki bir gün, kısmet!

Merci Etienne pour ton humour qui m’a fait travaillé les muscles du visage plus d’une
fois ! Et puis, je ne m’attendais pas à ressortir de la thèse avec une meilleure compréhen-
sion des notions de base en météorologie.

Guillaume, merci pour ces moments absolument mémorables, du CIRM au coin café.
Il va falloir que je m’habitue à ne plus te voir en entrant dans mon bureau.

Merci Paulo pour toutes ces anecdotes sur Lyon et la nourriture.
Merci à Marion pour m’avoir transmis les codes secrets de plusieurs recettes en patis-

serie.
Merci à Rémi V pour la bonne humeur et tous nos échanges. On avait plus de chance

de se croiser à Vienne qu’à Wien, et pourtant !

ii

Remerciements

Merci Ayoub pour tous ces bons moments. Pour n’en citer qu’un, je pense que tout le
monde se souvient de cette fameuse gaffe sur le serveur pirate. Merci aussi pour toutes
les fois où tu m’as donné des références précieuses quand je venais te consulter dans ton
bureau.

Merci à Badr pour toutes ces explications sur la F1. Même si, je suis désolé, je crois
que je fais toujours partie du grand public car j’accroche toujours à la série Netflix. Merci
aussi pour ces moments drôles. Est-ce qu’on peut partager l’addition en 8 ?

Merci aux nouveaux, Arthur, Maël et Wassim, pour tous les bons moments passés
ensemble. Je sais maintenant que si Arthur prétend être allé quelque part, même un lieu
aussi immanquable que la tour Eiffel, il faut lui demander une photo pour vérifier qu’il
ne s’est pas trompé de tour radio. Merci pour votre énergie. Vous avez ramené un vent
de fraîcheur à l’équipe.

Muchas gracias Gabriel y Clara (lo siento, Clara, pero este mensaje no será en por-
tugués. . . un idioma a la vez) por ayudarme a aprendar espanol. Gracias también por
todos estos buenos momentos, especialmente en los diferentes restaurantes. Solo me queda
la pena de que no fuimos a un restaurante brasileño. . . ¡queda pendiente!

Merci à Sibylle pour les bouffées d’oxygène lorsque tu nous rendais visite, et ces his-
toires sur ces célébrités qui nous rappelait que Lyon est bien en province. Même si ton
arrivée était aussi souvent malheureusement annonciatrice d’une deadline imminente.

Merci à Anne pour ton humour et ta bonne humeur. Il m’était presque autant agréable
d’entendre ton retour d’expériences sur des endroits qui me donnent envie (la Corse,
Cannes) que sur des endroits qui ne me donnent pas envie (je ne veux pas me mettre de
pays à dos alors je ne citerai que le TNP). C’est dire comme je garde un bon souvenir de
nos discussions !

Merci à Titouan pour ton authenticité. Je me demande si ta ténacité contre vents et
marées n’a pas été acquise en Bretagne. Est-ce que c’est le moment d’avouer que j’étais
parfois secrètement d’accord avec tes idées insensées de ne pas chercher à passer à l’échelle
? Je ne sais pas, je vais demander à ChatGPT.

En relisant les lignes ci-dessus, je me rends compte avoir en somme remercié tout le
monde pour sa positivité. Ce n’est pas par manque d’originalité : je réalise que j’ai juste
eu de la chance d’être dans un groupe avec une telle énergie. Et puis, l’autre thème
commun à tous ces remerciements est sans doute la nourriture, et pour ça, merci Lyon!

Enfin, ces remerciements ne seraient pas complets si je ne mentionnais pas les personnes
qui constituent ma grande et belle famille.

Mes amis d’enfance dans un ordre aléatoire : Gromle, Chol, Mass, Flo, Nkmk, Toto,
Piflou, Rieut.

Ma soeur.
Papa, maman.
Je vous aime.
Merci.

iii

Abstract

Neural networks have demonstrated impressive practical success, but theoretical tools
for analyzing them are often limited to simple cases that do not capture the complexity of
real-world applications. This thesis seeks to narrow this gap by making some theoretical
tools more applicable to practical scenarios.

The first focus of this work is on generalization: can a given network perform well
on previously unseen data? This thesis improves generalization guarantees based on the
path-norm and extends their applicability to ReLU networks incorporating pooling or skip
connections. By reducing the gap between theoretically analyzable networks and those
used in practice, this work provides the first empirical evaluation of these guarantees on
practical ReLU networks, such as ResNets.

The second focus is on resource optimization (time, energy, memory). This thesis in-
troduces a novel pruning method based on the path-norm, which not only retains the
accuracy of traditional magnitude pruning but also exhibits robustness to parameter
symmetries. Additionally, this work presents a new GPU matrix multiplication algo-
rithm that enhances the state-of-the-art for sparse matrices with Kronecker-structured
support, achieving gains in both time and energy. Finally, this thesis makes approxima-
tion guarantees for neural networks more concrete by establishing sufficient bit-precision
conditions to ensure that quantized networks maintain the same approximation speed as
their unconstrained real-weight counterparts.

Résumé

Les réseaux de neurones connaissent un grand succès pratique, mais les outils théoriques
pour les analyser sont encore souvent limités à des situations simples qui ne reflètent pas
toute la complexité des cas pratiques d’intérêts. Cette thèse vise à réduire cet écart en
rendant certains outils théoriques plus concrets.

Le premier axe de recherche concerne la généralisation : un réseau donné pourra-t-
il bien se comporter sur des données jamais vues auparavant? Ce travail améliore les
garanties de généralisation basées sur la norme de chemins, les rendant applicables à des
réseaux ReLU incluant du pooling ou des connexions résiduelles. En réduisant l’écart entre
les réseaux analytiquement étudiables et ceux utilisés en pratique, cette thèse permet la
première évaluation empirique de ces garanties sur des réseaux ReLU pratiques tels que
les ResNets.

Le second axe porte sur l’optimisation des ressources (temps, énergie, mémoire). Une
nouvelle méthode d’élagage des paramètres, fondée sur la norme de chemins, est proposée.
Cette approche conserve non seulement la précision de l’élagage par amplitude, tout
en étant robuste aux symétries des paramètres. Cette thèse fournit aussi un nouvel
algorithme de multiplication de matrices sur GPU qui améliore l’état de l’art pour les
matrices creuses à support de Kronecker, offrant des gains en temps et en énergie. Enfin,
ce travail rend les garanties d’approximation pour les réseaux de neurones plus concrètes en
établissant des conditions suffisantes de précision en bits pour que les réseaux quantifiés
conservent la même vitesse d’approximation que les réseaux avec des poids réels non
contraints.

Résumé des chapitres en français

Les réseaux de neurones sont abondamment utilisés aujourd’hui. Un réseau de neu-
rones est simplement une manière de décrire un certain type de fonctions en utilisant
des paramètres, tout comme un polynôme est une manière de décrire une fonction en
utilisant des coefficients. Dans le Chapitre 1, je rappelle deux grands enjeux des réseaux
de neurones auxquels je vais m’intéresser dans cette thèse.

Le premier défi est celui d’obtenir des garanties statistiques de générali-
sation. En pratique, les paramètres d’un réseau de neurones sont ajustés pour que le
réseau fasse de bonnes prédictions sur une tâche donnée. Par exemple, il peut s’agir de
prédire si une image contient un chien ou non. Dans cette thèse, je considère le cadre
de l’apprentissage supervisé, où les paramètres sont ajustés en présentant au réseau des
exemples de données et en lui indiquant la réponse attendue pour chaque exemple. Dans
le cas de la reconnaissance de chiens, on pourrait lui présenter des images avec des chiens
et des images sans chiens, et lui indiquer les réponses attendues. Une fois que le réseau
s’est suffisamment amélioré sur les exemples d’entraînement, on veut que le réseau fasse de
bonnes prédictions sur des images qu’il n’a jamais vues. C’est ce qu’on appelle la général-
isation. En pratique, il est possible de trouver de bonnes valeurs pour les paramètres qui
permettent au réseau de bien généraliser, alors que le nombre de paramètres est grand
(supérieur à 500 milliards pour Narayanan et al. [2021], par exemple) et excède souvent
le nombre de données d’entraînement disponibles, si bien qu’un réseau pourrait simple-
ment faire de bonnes prédictions sur les données d’entraînement en apprenant par cœur
les réponses attendues pour ces données [Zhang et al., 2021]. Il y a donc un véritable
enjeu à comprendre pourquoi les paramètres appris en pratique arrivent à généraliser,
alors qu’il avait aussi des possibilités d’avoir une performance similaire sur les données
d’entraînement sans pour autant généraliser [Shalev-Shwartz and Ben-David, 2014, Good-
fellow et al., 2016, Bach, 2024].

Concernant ce défi, je commence par introduire en Chapitre 2 le modèle de réseaux
que je vais analyser. Ce modèle couvre n’importe quel réseau de neurones ReLU organisé
en graphe acyclique dirigé, et contenant des ingrédients désormais classiques, tels que le
max-pooling ou les connexions résiduelles. Cela couvre en particulier beaucoup de réseaux
de neurones très utilisés en pratique, tels que les architectures ResNets, VGGs, Alexnet,
U-nets, ReLU MobileNets, et même les architectures utilisées dans les fameux AlphaGo
et AlphaZero développées par DeepMind pour jouer au Go.

Dans le Chapitre 2, j’étends à ce modèle général de réseaux de neurones une gamme
d’outils, centrée sur le relèvement dans l’espace des chemins, qui a émergé dans la lit-
térature récente pour l’analyse théorique des réseaux, mais seulement pour des modèles
simples qui ne reflètent pas la complexité des réseaux utilisés en pratique. Le défi lors de
l’extension de ces outils est de réussir à préserver leurs propriétés intéressantes, tout en
les rendant opérationnels pour des réseaux plus généraux. Je réalise une telle extension en
préservant les deux propriétés phares de ces outils : la capture des symétries des réseaux
ReLU ainsi que leur structure affine par morceaux. Ces deux propriétés ont été utilisées
de manière cruciale dans la littérature récente pour établir des garanties théoriques en
généralisation [Neyshabur et al., 2015, Barron and Klusowski, 2019], en identifiabilité
des réseaux [Bona-Pellissier et al., 2022, Stock and Gribonval, 2023], ou encore sur leur

dynamique d’entraînement [Marcotte et al., 2023], mais seulement pour des modèles sim-
ples. Grâce au travail du Chapitre 2, je vais pouvoir exploiter dans les autres chapitres
ces outils prometteurs pour des modèles bien plus généraux.

Dans le Chapitre 3, j’établis de nouvelles garanties sur le caractère Lipschitz de ces
réseaux très généraux. Le caractère Lipschitz est une propriété primordiale des réseaux,
car il renseigne sur la variation des sorties du réseau lorsque les entrées sont perturbées,
ou lorsque les paramètres du réseau sont perturbés. Les nouvelles garanties que j’établis
sont fondées sur le relèvement dans l’espace des chemins, introduit en Chapitre 2, et ont
plusieurs propriétés particulièrement intéressantes : elles sont facilement calculables, elles
sont invariantes par les symétries de remise à l’échelle et de permutation des réseaux, et
elles sont plus fines que certaines garanties classiques exprimées directement en fonction
des paramètres (avec des produits de normes de couches).

Dans le Chapitre 4, j’utilise crucialement ces nouvelles propriétés Lipschitz pour
obtenir les premières garanties de généralisation fondées sur la norme de chemins, pour des
réseaux de neurones aussi généraux que ceux mentionnés ci-dessus. La norme de chemins
est une mesure de complexité des paramètres qui a éveillé un grand intérêt dans la littéra-
ture pour tenter d’expliquer la généralisation des réseaux, car elle a plusieurs propriétés
désirables : elle est invariante par les symétries de remise à l’échelle et de permutation
des réseaux, elle est plus fine que certaines mesures de complexité classiques basées sur
des produits de normes de couches, elle est facilement calculable, et enfin elle est l’une des
meilleures mesures de complexité connue basée sur la taille des paramètres, en matière
de corrélation avec la généralisation mesurée empiriquement [Jiang et al., 2020, Dziugaite
et al., 2020]. L’extension des garanties de généralisation basées sur la norme de chemins
aux réseaux de neurones plus généraux que ceux considérés dans la littérature précédente
est donc une étape importante, qui va me permettre d’évaluer pour la première fois ce
type de garanties sur des réseaux vraiment utilisés en pratique. Cela me permettra en
Chapitre 7 d’identifier les défis restants pour obtenir, à partir de la prometteuse norme
de chemins, des garanties de généralisation plus précises. Un enjeu majeur est notam-
ment la conception de mesure de complexité qui correspondrait au comportement moyen
du réseau, plutôt qu’à son comportement pire cas, sans quoi le cadre théorique actuel
n’est pas assez fin pour expliquer la généralisation dans les cas où il y a plus de données
d’entraînement que de paramètres, et où il y a la possibilité d’apprendre par cœur les
données d’entraînement.

Le deuxième défi que je vais aborder dans cette thèse est celui de l’efficacité
des réseaux de neurones. Les réseaux de neurones sont très coûteux en ressources,
que ce soit en terme de temps de calcul, de mémoire ou d’énergie dépensée, et la tendance
actuelle est de continuer à augmenter le nombre de paramètres et le nombre de données
d’entraînements afin d’obtenir les meilleures performances possibles. Il a par exemple
été estimé que le coût de déploiement des nouveaux réseaux de neurones états de l’art
double tous les 3 à 6 mois [OpenAI, May 2018, Kaplan et al., 2020, Sastry et al., 2024].
La réduction de ces coûts est donc un enjeu majeur. Cette thèse va aborder ce problème
sous différents angles.

D’abord, j’utilise les nouvelles garanties de robustesse des réseaux à la perturbation
des paramètres établies en Chapitre 3 pour motiver la conception d’un nouvel algorithme
d’élagage des réseaux dans ce même chapitre. L’élagage consiste à mettre à zéro des
paramètres du réseau pour diminuer le nombre de paramètres qui rentrent en jeu dans les

calculs, et donc les ressources nécessaires à l’utilisation du réseau. Cet algorithme est basé
sur la norme de chemins, et je montre expérimentalement qu’il atteint les mêmes perfor-
mances que l’élagage par amplitude, une méthode couramment utilisée pour ses bonnes
performances [Frankle and Carbin, 2019]. En outre, ce nouvel algorithme a l’avantage
d’être robuste aux symétries de remise à l’échelle des paramètres, alors que je montre que
ce n’est pas le cas de la technique classique d’élagage par amplitude, dont les performances
chutent drastiquement dès lors qu’on commence à remettre à l’échelle les paramètres, et
ce, sans même chercher délibérément à réduire ses performances, seulement en remettant
à l’échelle de manière aléatoire.

Le deuxième volet de la thèse qui concerne l’efficacité des réseaux de neurones est
abordé en Chapitre 5, où je m’intéresse à l’utilisation de matrices creuses à support Kro-
necker, que j’appelle plus simplement par la suite matrices Kronecker-creuses, dans les
réseaux de neurones. Les matrices Kronecker-creuses sont des matrices contenant beau-
coup de zéros, et dont l’emplacement de ces zéros obéit à une structure particulière, définie
par un produit de Kronecker. Ces matrices ont récemment reçues de l’attention dans la
littérature car la multiplication de ces matrices a un faible coût théorique, et en pratique,
ces matrices permettent dans certaines configurations d’obtenir les mêmes performances
que les matrices denses utilisées traditionnellement, mais avec moins de paramètres. Dans
le Chapitre 5, je commence par étudier l’efficacité des implémentations existantes pour la
multiplication avec une matrice Kronecker-creuse sur GPU. Ces expériences montrent que
les implémentations actuelles passent beaucoup de temps à transférer des données entre
les différents niveaux de mémoire du GPU. Je propose alors un nouvel algorithme qui
vise à réduire les coûts liés à ces transferts de données, et je montre expérimentalement
en précision flottante que cet algorithme est non seulement plus rapide que les implémen-
tations existantes, mais qu’il permet aussi de réduire l’énergie dépensée. Je discuterai
en Chapitre 7 des perspectives pour étendre ces résultats à la précision réduite, qui est
souvent utilisée en pratique pour réduire les coûts de calculs.

Enfin, je m’intéresse à la quantification des réseaux de neurones en Chapitre 6. La
quantification consiste à remplacer les paramètres d’un réseau par des versions approchées,
en utilisant un nombre restreint de bits mémoire pour les stocker. Cette technique est
largement utilisée en pratique puisqu’elle permet de réduire les coûts de calculs et de stock-
age. Le développement de garanties sur les méthodes de quantification est un enjeu ma-
jeur puisque pour l’instant, la recherche de bonnes méthodes de quantification se fait par
essais-erreurs. Dans le Chapitre 6, j’aborde la question fondamentale de l’approximation
de fonction avec des réseaux quantifiés. Peut-on toujours approcher les mêmes fonctions
quand on décide de diminuer le nombre de bits utilisé pour représenter les paramètres
d’un réseau ? J’apporte des premiers éléments de réponse lorsque les poids sont quantifiés
au plus proche voisin sur une grille uniformément espacée, en établissant un nombre de
bits suffisant par poids pour que les réseaux puissent approcher les mêmes fonctions que
leur version avec des poids sans contraintes, et en gardant les mêmes taux polynomiaux
d’approximation dans un espace Lp. Je discute dans le Chapitre 7 de perspectives pour
la prise en compte des symétries dans la conception des méthodes de quantification, qui
pourrait permettre d’améliorer leur précision à un nombre de bits donné.

Enfin, j’aborde également dans le Chapitre 6 la question de l’existence de limites fon-
damentales à l’approximation avec des réseaux de neurones, quantifiés ou non. J’identifie
une propriété générale des familles d’approximation (réseaux de neurones, ondelettes,

polynômes, etc.) qui permet d’unifier et de généraliser une limite fondamentale bien
connue pour certaines familles : il est impossible d’approcher les fonctions d’un ensem-
ble C plus vite qu’une certaine complexité de l’ensemble C du ressort de la théorie de
l’information. Ce lien entre la théorie de l’approximation et la théorie de l’information
est rendu possible par une propriété qui était jusqu’à présent utilisée de manière im-
plicite et établie au cas par cas dans la littérature, et que j’identifie explicitement : la
vitesse polynomiale en ε à laquelle on peut recouvrir la famille considérée par des boules
de rayon ε. Ce nouveau cadre unificateur montre que l’existence de ce type de limite
fondamentale sur la vitesse d’approximation d’un ensemble C par une certaine famille
d’approximants provient d’une propriété intrinsèque à la famille d’approximants, et non
pas de son adaptation à la classe C.

Contents

1 Introduction 1
1.1 Why ReLU neural networks? . 4

1.1.1 ReLU Neural networks and their piecewise affine structure 5
1.1.2 ReLU Neural networks and their symmetries 6

1.2 Outline . 8
1.3 List of Publications . 10

2 Fundamentals of (Φ, A) 13
2.1 Layered fully-connected ReLU neural networks (LFCN) 14
2.2 Defining a comprehensive neural network model 16
2.3 Path-lifting and path-activations: formal definitions 19
2.4 Main properties of the path-lifting and path-activations 23

2.4.1 Capturing the rescaling symmetries 23
2.4.2 Capturing the piecewise affine structure 25
2.4.3 Proofs of the main properties . 26

2.5 Conclusion . 29

3 Lipschitz properties and consequence for pruning 31
3.1 Mixed path-norms and their efficient computation 32
3.2 Normalized parameters: when mixed path-norms coincide with parameter

norms . 35
3.3 Lipschitzness in x . 36

3.3.1 Main result . 37
3.3.2 Comparison with bounds directly expressed in terms of θ 39

3.4 Lipschitzness in θ . 42
3.4.1 Main Result . 43
3.4.2 Comparison with bounds directly expressed in terms of θ. 44
3.4.3 Computation of the ℓ1-path-metric in two forward-passes. 45
3.4.4 Proof of Theorem 3.4.1 . 46

3.5 A first application: pruning . 53
3.5.1 Pruning method based on the path-lifting 54
3.5.2 Experiments . 55

3.6 Conclusion . 58

4 Generalization with path-norm 61
4.1 Supervised learning, generalization bounds, Rademacher complexity 62

4.1.1 The goal is to minimize the expected risk 62

xi

CONTENTS

4.1.2 In practice: empirical risk minimization (ERM) 65
4.1.3 The Rademacher complexity bounds the performance of ERM . . . 67
4.1.4 Cases where the Rademacher complexity is too large 71

4.2 Path-norm as a complexity measure . 72
4.3 Path-norm Rademacher bounds via covering numbers 74

4.3.1 Main result . 74
4.3.2 Dudley’s integral . 75
4.3.3 Bounding covering numbers in the path-lifting space 77
4.3.4 Proof of the main result, Theorem 4.3.1 79
4.3.5 Discussion on Theorem 4.3.1 . 80

4.4 Path-norm Rademacher bounds via peeling 82
4.4.1 New contraction and peeling lemmas 82
4.4.2 Main result . 85

4.5 Conclusion . 87

5 Efficient inference with Kronecker-sparse matrices 89
5.1 Background on Kronecker-sparse matrices 92

5.1.1 Generic algorithm for Kronecker-sparse matrix multiplication 93
5.1.2 Baseline GPU implementations . 95

5.2 Memory accesses in baseline implementations 97
5.3 New CUDA kernel with reduced memory transfers 100
5.4 Benchmarking the multiplication with a Kronecker-sparse matrix 102
5.5 Broader implications for neural networks: accelerating inference 106
5.6 Conclusion . 107

6 Approximation guarantees for quantized networks 109
6.1 Approximation by quantized neural networks 110

6.1.1 Controlling the quantization error 111
6.1.2 Application to Sobolev functions 112
6.1.3 Approximation speed of quantized neural networks 113

6.2 Fundamental limits of neural network approximation 115
6.2.1 Notion of γ-encodability . 116
6.2.2 The encoding speed as a universal upper bound for approximation

speeds . 117
6.2.3 Examples of ∞-encodable approximation families 119

6.3 Conclusion . 124

7 Perspectives 127
7.1 On extending to DAG networks results for LFCNs based on the path-lifting 128

7.1.1 Identifiability . 128
7.1.2 Training dynamics . 130

7.2 On challenging the promises of path-norm-based bounds in practice 132
7.2.1 Experiments . 132
7.2.2 Open research directions provided by this thesis 134

7.3 On adapting the dominant statistical learning theory to modern practices . 138
7.3.1 On applying the Rademacher bound in practice 138
7.3.2 On subtle practical impacts of the data distribution 139

xii

CONTENTS

7.4 On extending to other settings the success of the new kernel for Kronecker-
sparse matrix multiplication . 139
7.4.1 On designing efficient Kronecker-sparse neural networks 139
7.4.2 On obtaining the same gains in half-precision 140
7.4.3 Additional challenges raised by the new kernel 141

7.5 On challenges in approximation guarantees for quantized networks 141

Bibliography 143

A Supplemental material for Chapter 2 157

B Supplemental material for Chapter 3 159
B.1 Proof of Lemma 3.2.1 . 159
B.2 Proof of Theorem 3.3.2 . 160
B.3 Comparison of the ℓ1-path-metric and ℓ∞-metric on the parameters 162

C Supplemental material for Chapter 4 167
C.1 Proof of Lemma 4.3.1 . 167
C.2 Proof of Theorem 4.3.1, with possible weight-sharing 168

C.2.1 Motivation for weight-sharing . 168
C.2.2 Formal definition of weight-sharing 170
C.2.3 Theorem 4.3.3, allowing for possible weight-sharing 173
C.2.4 Rademacher bound, allowing for possible weight-sharing 177

C.3 Relevant (and apparently new) contraction lemmas for Theorem 4.4.1 . . . 178
C.4 Peeling argument for Theorem 4.4.1 . 184
C.5 Proof of Theorem 4.4.1 . 192
C.6 The cross-entropy loss is Lipschitz continuous 194

D Supplemental material for Chapter 5 197
D.1 Related works . 197
D.2 Experiments . 197

D.2.1 Details on the experiments . 197
D.2.2 Estimating the time for memory rewritings in the bmm implementa-

tion (Section 5.2) . 199
D.2.3 Time spent in linear layers in vision transformers 199
D.2.4 Additional results in half-precision 200

D.3 Details on perfect shuffle permutations . 202
D.4 Implementations . 203

D.4.1 Details on baseline GPU implementations 203
D.4.2 Details on the kernel implementation 204

E Supplementary material for Chapter 7 209
E.1 Details on the experiments . 209

E.1.1 Details specific to Section 7.2 . 210
E.1.2 Details specific to Section 3.5 . 211

E.2 Existing evaluations of the path-norms in the literature 214

xiii

Chapter 1
Introduction

What do the tasks of recognizing cancerous cells in medical images, translating languages,
driving autonomous vehicles, composing music, and recommending personalized content
on social media have in common? They all involve extracting features from raw data. Re-
markably, artificial neural networks, or simply "neural networks", are empirically success-
ful to extract relevant features in all these different cases [LeCun et al., 2015, Goodfellow
et al., 2016].

As depicted in Figure 1.1, this success heavily relies on the availability of large datasets,
and the ever increasing availability of large-scale computing power, which makes it possible
to process such large datasets using large models.

Computing Power Large Datasets Large Models

Figure 1.1: Elements contributing to the success of neural networks.

Today, the main paradigm for improving performance is to scale everything up: more
computing power, more data, and more parameters in the models [OpenAI, May 2018,
Kaplan et al., 2020, Karpathy, 2022, Sevilla et al., 2022, Hoffmann et al., 2022, Sastry
et al., 2024, Aschenbrenner, 2024]. This approach, however, raises several issues, including
interpretability challenges and increased energy consumption. The cost of maintaining and
developing such large-scale systems is indeed doubling approximately every six months,
as shown in Figure 1.2. Moreover, a fine-grained understanding of neural networks is still
lacking, as they are predominantly viewed as big black boxes, and the bigger the box, the
better it seems to perform.

This thesis aims to better understand neural networks by developing tools that can
capture some of their key properties. This is part of a long line of research whose long-

1

Chapter 1. Introduction

Figure 1.2: Cost of machine learning doubles every 6 months [Sastry et al., 2024]

term goal is to build an understanding that is both theoretically and practically useful,
leading to more interpretable, efficient, and sustainable neural network models.

Input Image x

Neural Network
Rθ

"stop sign"

Figure 1.3: Example of a Neural Network

A neural network has parameters θ and these parameters realize a function Rθ that
maps an input (an image of a stop sign in Figure 1.3) to an output (the label "stop sign"
in Figure 1.3). In this thesis, I will be mainly interested in statistical aspects of neural
networks and in their resource efficiency.

Generalization is the main statistical property of neural networks that I will focus
on. In practice, the parameters θ of a network are adjusted during a phase called training.
The goal of the training phase is to make Rθ perform well on a set of training samples.
I will be interested in the so-called supervised learning framework, where pairs of inputs
along with their desired outputs are available for training. In the example from Figure 1.3,
we could give the network some images of road signs as inputs, and the corresponding
labels as target outputs, such as "stop sign", "speed limit", etc. The training phase aims
at adjusting the parameters θ so that the network outputs the correct label for each input
image. Once the performance on the training data is satisfactory, we may want to use this
network in a car to recognize signs on the road. Will it recognize correctly new images of
road signs that haven’t been used for training? This is the key question of generalization:
the ability of a model to extend its learned abilities from seen to unseen data.

2

Ressource efficiency aims at reducing the time, energy, and/or memory required
to use neural networks. One way to achieve this is to prune (set to zero) coordinates of
θ while preserving the prediction accuracy of the function Rθ. More generally, one can
explicitly constrain θ to be sparse (having only a few nonzero entries). Depending on the
type of sparsity, different gains in time, memory or energy can be achieved. For example,
structured sparsity is generally better suited than unstructured sparsity for achieving time
gains, since the known structure (the location of zeros) can be injected a priori into the
algorithms to optimize computations. Another way is to quantize the parameters θ, which
consists in reducing, as much as possible, the number of bits used to store each coordinate
of θ.

Informal overview of the contributions. This thesis aims at making more concrete
tools that have been identified as promising for the analysis of neural networks and for
the improvement of their efficiency. The main contributions are as follows.

• This thesis improves the generalization guarantees based on the so-called path-
norm, a proxy of the "slope" (Lipschitz constant) of ReLU neural network functions
(introduced below), and make these guarantees more widely applicable to cope with
ReLU networks that also incorporate now-standard ingredients such as so-called
pooling or skip connections. This closes the gap between the range of networks that
can be theoretically analyzed with this kind of tools and the range of networks that
are used in practice. This results in the first assessment of this kind of guarantees
for widely used networks such as so-called ResNets [He et al., 2016].

• The usefulness of the path-norm is further demonstrated by designing a new prun-
ing method that sets a given number of parameters to zero in order to compress
them. This new pruning method not only empirically retains the performance of
standard pruning methods, but it is also robust to key intrinsic symmetries of the
parameters.

• The thesis leverages structured sparsity to decrease the time, energy and mem-
ory needed to run neural networks. I investigate sparse matrices with supports
defined by Kronecker products as they have a small theoretical matrix multipli-
cation complexity and have been shown to match the accuracy of dense matrices
when used in neural networks [Dao et al., 2020, Lin et al., 2021, Chen et al., 2022,
Dao et al., 2022a]. However, their practical interest in terms of time, energy, and
memory had not been comprehensively studied so far. I address this by extensively
benchmarking existing GPU implementations for Kronecker-sparse matrix multipli-
cation and by proposing a new GPU multiplication algorithm that outperforms the
state-of-the-art.

• The thesis also aims at making the approximation guarantees of ReLU neural net-
works more concrete. While the universal approximation theorem states that neu-
ral networks with arbitrary real weights can theoretically approximate any suffi-
ciently smooth function [Leshno et al., 1993], practical networks operate with specific
floating-point constrained weights. This thesis refines and extends concrete suffi-
cient bit-precision conditions under which uniformly quantized ReLU networks

3

Chapter 1. Introduction

maintain the same approximation polynomial rates as those with unconstrained real
weights.

The rest of the introduction explains why this thesis focuses on ReLU neural networks,
and how their piecewise affine structure and symmetries are crucial to understand their
behavior.

1.1 Why ReLU neural networks?
The simplest type of neural networks corresponds to the alternate composition of affine
maps with a so-called activation function. In this thesis, I will focus on the ReLU activa-
tion function, a popular choice for many reasons that I now discuss.

Definition 1.1.1 (ReLU activation function). The ReLU activation function is defined
as

ρ(x) = max(x, 0), for x ∈ R

and is extended to vectors by applying it element-wise.

Here are some theoretical reasons to consider the ReLU activation function.

• Since the ReLU is non-polynomial, this guarantees that ReLU neural networks can
approximate any sufficiently smooth function, a result known as the universal ap-
proximation theorem, see, e.g., Leshno et al. [1993].

• The ReLU is positively homogeneous, meaning that ρ(λx) = λρ(x) for λ > 0. This
property implies the existence of symmetries. This yields interesting practical be-
haviors that can be theoretically analyzed. As an example, Emmy Noether’s famous
theorem states that every symmetry of a physical system leads to a conservation
law. Using this in the context of neural networks allows for precise predictions of
the behaviors of certain norms of the parameters θ during training [Kunin et al.,
2021, Marcotte et al., 2023].

• The functions associated with ReLU neural networks are piecewise affine functions.
Therefore, the theoretical analysis of their behavior can be done locally on each
affine part of the network. This is a key property used throughout this thesis.

Here are some practical reasons to consider the ReLU activation function.

• The ReLU is fast to compute as it only requires a comparison of the input x with
zero, while other activation functions such as the sigmoid x 7→ 1/(1 + e−x) or the
tanh x 7→ tanh(x) require more complex computations.

• The ReLU is differentiable everywhere except for x = 0, with derivative 0 or 1,
which is great in practice to avoid numerical instability when computing gradients.
This is in contrast to other activations such as the sigmoid or the tanh: they have
arbitrarily small but non-zero derivatives for large inputs x, which can lead to
vanishing gradients and slow gradient-based learning [Krizhevsky et al., 2012, Table
1].

4

1.1. Why ReLU neural networks?

• Over recent years, many state-of-the-art networks have been built around the ReLU
activation function. Below is a chronological list of models that have made sub-
stantial contributions to the field of computer vision: AlexNet [Krizhevsky et al.,
2012], VGGs [Simonyan and Zisserman, 2015], Inception Net [Szegedy et al., 2015],
ResNet [He et al., 2016], ReLU MobileNets [Howard et al., 2017] and Transformers
[Dosovitskiy et al., 2021]. The results of this thesis are applicable to all these models
as all the operations they involve are covered in this thesis, with the exception of
Transformers since it uses an operation called attention that is not covered here.
In addition to computer vision, ReLU networks have also gained attention in natu-
ral language processing (NLP). Although many recent NLP models do not predom-
inantly use the ReLU activation function, recent research suggests strong motiva-
tions to reintroduce the ReLU in current models to accelerate computations without
compromising their accuracy [Mirzadeh et al., 2024].
ReLU neural networks are also employed in reinforcement learning, such as in the
famous AlphaGo [Silver et al., 2016, 2017] and AlphaZero [Silver et al., 2018] models.

1.1.1 ReLU Neural networks and their piecewise affine struc-
ture

One of the main characteristics of ReLU neural networks activation function is their
piecewise affine structure.

The neural network function realized by a vector of parameters θ is denoted by
Rθ : Rdin → Rdout . This function maps an input x ∈ Rdin to a representation Rθ(x) ∈
Rdout . A typical situation is to train (adjust) the parameters θ on some training data
(xi, yi)n

i=1 ∈ (Rdin × Rdout)n in order to make the representation Rθ(xi) relevant for pre-
dicting yi. Depending on the values of the parameters θ, the function will learn different
representations of the data that will be more or less useful for the considered task. There-
fore, it is crucial to understand how the properties of the learned parameters θ affect the
patterns of the training data (xi, yi)i that are captured by the function Rθ.

Piecewise affine structure. For a given value of the parameters θ, the function Rθ :
Rdin 7→ Rdout is piecewise affine. This means that it partitions the input space Rdin into
(polytope) regions, and on each of these regions, the function Rθ is simply affine [Arora
et al., 2017]. This is illustrated1 in Figure 1.4.

The regions and the coefficients of the affine maps within each region, as determined
by the parameters θ, influence the data patterns captured by the function Rθ. We can
already imagine that an increase in the number of regions allows the function Rθ to
capture more diverse and complex data patterns.

Consider a simple example where the task is to discriminate between two types of
objects, such as images of stop and speed limit signs. If it is possible to divide the input
space with a hyperplane such that stop signs are on one side and speed signs are on the
other one, we can imagine a neural network that successfully identifies this partitioning of
the space. For instance, the network could output zero on one side of the hyperplane and

1Source of the illustration: https://commons.wikimedia.org/wiki/File:Piecewise_linear_
function2D.svg, made by Oleg Alexandrov.

5

https://commons.wikimedia.org/wiki/File:Piecewise_linear_function2D.svg
https://commons.wikimedia.org/wiki/File:Piecewise_linear_function2D.svg

Chapter 1. Introduction

Figure 1.4: Neural network corresponds to piecewise affine functions.

a strictly positive value on the other. The output value of the network would therefore
indicate which category the input belongs to.

Relevance of the piecewise affine structure. In a given region, the slope (magni-
tude of the affine coefficients) indicates how rapidly the network changes its output (and
consequently the decision made based on its output, for example, discriminating between
stop signs and speed limit ones). The lower the slope, the more robust the network is to
input perturbations. When the regions and slopes have been learned from training data
on which the network now performs well, a key statistical problem is to guarantee the
same performance on new similar data. If the network’s output varies little for nearby
data points because of low slopes, then the output will remain similar. Thus, the magni-
tude of the slopes can provide insight into how well the network will generalize what it
has learned from the training data to new, similar data.

In this thesis, I will define objects that encode the different regions as well as the affine
coefficients, and use them to establish robustness and generalization guarantees for neural
networks. These objects are respectively named the path-activations A and the path-lifting
Φ.

1.1.2 ReLU Neural networks and their symmetries
Besides the piecewise affine structure discussed in the previous section, neural networks
have symmetries that are also crucial to understand their behavior, as explained in this
section.

Description of the symmetries. There are transformations of the weights θ that leave
the function Rθ unchanged. These symmetries appear at the smallest level of computation
in a neural network: the neuron.

6

1.1. Why ReLU neural networks?

Consider the case of a neuron with incoming weights u1, . . . , ud and one outgoing
weight v, as shown in Figure 1.5. Given scalar inputs x1, . . . , xd, the output of the neuron
is

vρ

(
d∑

i=1
uixi

)
where ρ is a so-called activation function. A standard choice for ρ is a positively-
homogeneous function such as the ReLU function, max-pooling (ρ(x1, . . . , xn) = max(x1, . . . , xn)),
or average-pooling (ρ(x1, . . . , xn) = (∑n

i=1 xi)/n). Positive-homogeneity implies the ex-
istence of rescaling symmetries, or simply symmetries: scaling up the incoming weights
by λ > 0 and scaling down the outgoing weight by λ does not change the input-output
mapping, even though the parameters have changed. This is a transformation of the
parameters that leaves the function unchanged.

x1

xd

...

λu1

λud

1
λ
v

vρ
(∑d

i=1 uixi

)
= 1

λ
vρ(∑d

i=1 λuixi)

Figure 1.5: Symmetries arise at the neuron-level: scaling up incoming weights by λ > 0
and scaling down the outgoing weight by λ does not change the input-output mapping if
ρ is positive-homogeneous.

I denote by (θ, λ) 7→ λ⋄θ the mapping that rescales the parameters of a neural network
and say that two sets of parameters θ and λ ⋄ θ are rescaling-equivalent. Note that λ ⋄ θ is
not θ multiplied by λ: some coordinates are multiplied by λ, some others by 1/λ, as shown
in Figure 1.5. Rescaling equivalent parameters θ and λ ⋄ θ are functionally equivalent:
Rλ⋄θ = Rθ, but they can behave very differently in other aspects, such as norms, pruning,
and SGD dynamics. Due to these different behaviors, a guarantee established on ReLU
neural networks can significantly vary depending on the scaling of the parameters if this
guarantee is not invariant. Let me show two consequences of the lack of invariance
to symmetries: bounds that can be non-informative, and state-of-the-art compression
methods that can lead to very poor performance.

Consequence 1: Non-invariant bounds can be vacuous. Imagine you have a
bound that looks like

Interesting Quantity(Rθ) ⩽ C∥θ∥
where C is a constant that can depend on many things but not on θ, and where ∥ · ∥ is
some kind of norm. Since the interesting quantity only depends on the function Rθ, it is
invariant to rescaling λ 7→ λ ⋄ θ:

Interesting Quantity(Rθ) = Interesting Quantity(Rλ⋄θ)

In general, the bound is not invariant to rescaling:

∥θ∥ ≠ ∥λ ⋄ θ∥

7

Chapter 1. Introduction

and, even worse than that, this norm can be arbitrarily large when λ gets to infinity:

∥λ ⋄ θ∥ → ∞ as λ→∞,

thus the size of the bound depends on how lucky we are with the scale of the parameters
θ at hand. In particular, the bound can be vacuous if θ is not properly scaled.

A generic way to make the bound invariant would be to consider:

Interesting Quantity(Rθ) ⩽ C inf
λ
∥λ ⋄ θ∥.

However, this may not be practical as it is not obvious whether computing this infimum
is easy. One of the objectives of this thesis will be to derive bounds:

• invariant to symmetries to avoid vacuous bounds when not properly scaled,

• easy to compute,

• valid on practical networks, and

• as faithful2 as possible to the network’s behavior.

Consequence 2: the magnitude of the weights fails to characterize their im-
portance. Rescaling symmetries change the scale of the weights, without changing the
function realized by the network. This is a problem for methods that directly base their
decisions on the magnitude (absolute value) of the weights. An important example is
magnitude pruning: it consists of setting to zero the smallest weights of θ to reduce the
number of parameters. While this technique is the gold standard in many situations, I
will show that because of its lack of invariance under symmetries, it can lead to poor
performance when the parameters are not properly scaled.

Conclusion. Taking into account the symmetries is therefore crucial. The central tools
that I will use to analyze neural networks are the path-lifting Φ and the path-activations A.
Besides capturing the affine regions and the coefficients of the affine functions as mentioned
in Section 1.1.1, these objects are also invariant under the rescaling symmetries, which
will prove to be very useful in this thesis.

1.2 Outline
In this section, I provide an outline of the thesis, summarizing the main topics tackled in
each chapter and the connections between them.

Chapters 2 to 4 form a cohesive unit centered around the path-lifting and path-activations,
based on Gonon et al. [2024a,b]. The presentation and insights provided in these chapters
have evolved significantly since the original submissions. This refined perspective emerged
from taking a step back, engaging in discussions with colleagues, and further reflecting on
the results. Therefore, while the core ideas are rooted in these papers, the structure and
narrative presented here hopefully offer a clearer perspective on the contributions.

2It is desirable to manipulate quantities of θ that enjoy similar behavior as the functions Rθ: same
symmetries, correlation with important quantities of Rθ and so on.

8

1.2. Outline

Chapter 2 introduces the concepts of path-lifting and path-activations. These ob-
jects, previously considered in the literature for simple ReLU neural networks, capture
the networks’ piecewise affine structure and symmetries. The chapter begins by reviewing
the simple model of layered fully-connected networks for which these tools were already
known. Then, this chapter extends the path-lifting and path-activations to a more general
model of ReLU networks, incorporating operations like max-pooling and skip connections.
These extended tools will be shown to preserve their essential properties: : capturing the
piecewise affine structure and the symmetries of the networks. This sets the stage for
their use in neural network analysis.

Chapter 3 demonstrates that the path-lifting and path-activations allow to establish
Lipschitz bounds for ReLU networks both with respect to the input x and the parameters
θ. These bounds rely on mixed ℓq-norms of the path-lifting, called mixed path-norms, and
Chapter 3 show that these norms can be easily computed in one forward-pass of the model.
The Lipschitz property in x extends to general ReLU networks possibly with max-pooling
and skip connections (e.g., ResNets) previous results that were only known for layered
fully-connected networks. The Lipschitz bound in θ is novel and Chapter 3 already shows
a first concrete application of this bound: it is used to design a new compression method
for neural networks via pruning. This method not only achieves comparable accuracy to
standard magnitude pruning but also exhibits robustness to intrinsic parameter symme-
tries. The utility of the new Lipschitz bound in θ will further be illustrated in the context
of generalization guarantees.

Chapter 4 establishes upper bounds on the Rademacher complexity of ReLU neural
networks in terms of the path-norm. This bound, which is invariant under the symmetries
of the network and easy to compute, extends prior results established for layered fully-
connected networks to the case where there can also be max-pooling, skip-connections
etc. This bridges the gap between the networks that can be theoretically analyzed with
the path-lifting and the ones used in practice.

Chapters 5 and 6 tackle different aspects of resource efficiency, one of the main subjects
addressed in this thesis. Chapter 5 addresses the efficiency of matrix multiplication in
neural networks [Gonon et al., 2024c], while Chapter 6 focuses on the approximation
properties of quantized neural networks [Gonon et al., 2023a]. They are disconnected
from Chapters 2 to 4, as they do not involve the path-lifting and path-activations.

Chapter 5 shows that so-called Kronecker-sparse matrices can be used to accelerate
the inference of neural networks, while also reducing the memory and energy needed to
run them. Given the centrality of matrix multiplication in neural network operations,
Kronecker-sparse matrices, with their structured support, offer promising potential for
efficient implementations and sub-quadratic complexity in matrix-vector multiplications.
However, their practical benefits in terms of time and energy efficiency was unclear because
of a lack of comprehensive numerical results. To fill this gap, the chapter begins with
a comprehensive benchmark for Kronecker-sparse matrix multiplication, revealing that
significant processing time is spent on memory operations. Then, it introduces a new
CUDA kernel designed to minimize memory transfers, achieving a median speed-up of
×1.4 and energy reduction of×0.85. The chapter concludes by demonstrating the concrete
kernel’s efficacy in improving neural network inference efficiency.

Chapter 6 examines the approximation properties of quantized neural networks.
Quantizing the weights of a neural network is a crucial step in reducing the network’s

9

Chapter 1. Introduction

memory and computational requirements. However, the relationship between the number
of bits used in quantization and the expressivity of neural networks is not well understood.
This chapter establishes upper bounds on the bit-precision required by neareast-neighbour
uniform quantization to preserve the approximation rates of neural networks with uncon-
strained real weights. This chapter is based on work I completed before becoming familiar
with the concept of path-lifting. It primarily utilizes the Lipschitz property in θ to relate
the approximation error in an Lp-space of functions to the error introduced by the quan-
tization process in the parameter space. The Lipschitz property used here is not invariant
to symmetries. As demonstrated in Chapter 3, the new Lipschitz property in θ, defined
in terms of the path-lifting, is always smaller. Although I did not have the opportunity to
revisit the results of Chapter 6 in light of the path-lifting, I believe that the new Lipschitz
property in θ of Chapter 3 could improve and extend the findings of Chapter 6, making
them applicable to more general ReLU networks with max-pooling, skip-connections, and
other modern features. This is evoked in Chapter 7.

Chapter 7 summarizes the contributions and discusses the research directions opened
by this thesis. I will first discuss how my extension to general ReLU networks of the path-
lifting and path-activations could be used to extend to such general networks some existing
results on the identifiability and the training dynamics. I will also numerically challenge
the promises of path-norm-based generalization guarantees in practical situations, build-
ing upon Chapter 4 that established not only the finest generalization bound of this type
but also the most widely applicable one, including in practical situations such as a ResNet
trained on ImageNet. Thanks to that, I will identify the limits of the current theory and
propose new research directions to overcome these limitations. Finally, I will also discuss
perspectives on Chapters 5 and 6, including the design of efficient Kronecker-sparse neural
networks, and the use of symmetries in quantization schemes.

1.3 List of Publications

International Journal
• [Gonon et al., 2023a]: Approximation speed of quantized vs. unquantized ReLU

neural networks and beyond, A. Gonon, N. Brisebarre, E. Riccietti, R. Gribonval,
IEEE Transactions on Information Theory, vol. 69, no. 6, pp. 3960-3977, June
2023, doi: 10.1109/TIT.2023.3240360.

International Conference
• [Gonon et al., 2024a]: A path-norm toolkit for modern networks: consequences,

promises and challenges, A. Gonon, N. Brisebarre, E. Riccietti, R. Gribonval, ICLR
2024.

National Conference
• [Gonon et al., 2023b]: Can sparsity improve the privacy of neural networks?, A.

Gonon, L. Zheng, C. Lalanne, Q.T. Le, G. Lauga, C. Pouliquen, Gretsi (French
National Conference of Signal Processing), August 2023, Grenoble, France.

10

1.3. List of Publications

Preprint
• [Gonon et al., 2024b]: Path-metrics, pruning and generalization, A. Gonon, N.

Brisebarre, E. Riccietti, R. Gribonval, Preprint.

• [Gonon et al., 2024c]: Fast inference with Kronecker-sparse matrices, A. Gonon, L.
Zheng, P. Carrivain, Q.T. Le, Preprint.

11

Chapter 2
Fundamentals of the path-lifting and the
path-activations

This chapter is based on results in Gonon et al. [2024a,b].
In the theory of neural networks, the primary objects of study are the functions realized

by neural networks and their properties, such as their generalization error and robustness.
The so-called path-lifting and path-activations are promising concepts to theoretically

analyze these functions: they have for example been used to derive generalization guar-
antees [Neyshabur et al., 2015, Kawaguchi et al., 2017, Barron and Klusowski, 2019],
identifiability guarantees [Bona-Pellissier et al., 2022, Stock and Gribonval, 2023] and
characterizations of properties of the dynamics of training algorithms [Marcotte et al.,
2023]. This analysis is made possible thanks to the two main properties of these tools:
capturing the piecewise affine structure of the networks, and capturing their symmetries.

Yet, the definitions of the path-lifting and path-activations known before this thesis
are severely limited: they only cover simple models unable to combine in a single frame-
work standard ingredients of neural networks such as pooling layers, skip-connections,
biases, or even multi-dimensional output [Neyshabur et al., 2015, Kawaguchi et al., 2017,
Bona-Pellissier et al., 2022, Stock and Gribonval, 2023]. Thus, the promises of existing
theoretical guarantees based on these tools are currently out of reach: they cannot even
be tested on standard practical networks.

This chapter adresses the challenge of making these tools fully compatible with practical
networks. First, it formalizes a definition of the path-lifting and path-activations
adapted to very generic ReLU networks, covering any DAG architecture (in partic-
ular with skip connections), including in the presence of max/average-pooling (and even
more generally k-max-pooling, which extracts the k-th largest coordinate, recovering max-
pooling for k = 1) and/or biases. This covers a wide variety of modern networks (notably
ResNets, VGGs, U-nets, ReLU MobileNets, Inception nets, Alexnet), and recovers previ-
ously known definitions of these tools in simpler settings such as layered fully-connected
networks (LFCN). Moreover, this extension is shown to preserve the key proper-
ties of the path-lifting and path-activations, i.e., capturing the piecewise affine
structure of the networks and their symmetries.

The outline is as follows.

• Section 2.1 recalls the definition of the simple LFCNs (Definition 2.1.1) and high-

13

Chapter 2. Fundamentals of (Φ, A)

lights the mismatch with the more complex network architectures used today. This
section motivates the need for a more general model to accommodate standard
neural network ingredients such as max-pooling and skip-connections.

• Section 2.2 contains the first contribution of this chapter: the introduction of a
more general model of ReLU networks given by arbitrary directed acyclic graphs
(DAG), formalized in Definition 2.2.2, to account for max-pooling, skip-connections
and more, operations that are now standard in practical models. I proposed this
model in Gonon et al. [2024a]. It unifies and generalizes several models from the
literature, including those from Neyshabur et al. [2015], Kawaguchi et al. [2017],
DeVore et al. [2021], Bona-Pellissier et al. [2022], Stock and Gribonval [2023].

• Section 2.3 extends the path-lifting and path-activations to this more general DAG
model (Definition 2.3.3) [Gonon et al., 2024a]. Then, the challenge is to show that
these tools preserve their key properties in this more general setting.

• Section 2.4 proves that the two key properties of the path-lifting and path-activations
are preserved in this extended model: they still capture the network’s piecewise
affine structure (Theorem 2.4.2) and its symmetries (Theorem 2.4.1) [Gonon et al.,
2024a,b]. This is absolutely crucial for the theoretical and practical utility of these
tools, and will be used many times in the following chapters.

• Section 2.5 concludes this chapter by a personal interpretation of the path-lifting
as defining an intermediate space that takes some of the best of both parameter
and function spaces. This perspective, which has implicitly guided my interest in
these tools from the beginning, only became explicit to me after completing my works
[Gonon et al., 2024a,b] and discussing it with colleagues. While this section is not
formal, I still share it with the hope that it will be useful in appreciating the potential
of these objects.

2.1 Layered fully-connected ReLU neural networks
(LFCN)

The reader already familiar with LFCNs can skip this section.
This section recalls the definition of layered fully-connected ReLU neural networks

(LFCN), one of the simplest types of ReLU networks that corresponds to the alternate
composition of affine maps with the ReLU function as depicted on Figure 2.1a. This
model is simple enough to allow for theoretical analysis, and it has been the focus of
many works in the literature [Neyshabur et al., 2015, Kawaguchi et al., 2017, Barron and
Klusowski, 2019, Stock and Gribonval, 2023, Bona-Pellissier et al., 2022, Marcotte et al.,
2023]. However, this model does not capture now-standard ingredients of networks widely
used in practice such as ResNets [He et al., 2016]. This will be my motivation for the
definition of a more general class of neural networks in the next section.

Definition 2.1.1 (Layered fully-connected ReLU neural network (LFCN)). A layered
fully-connected ReLU neural network has an architecture, parameters, and these parame-
ters realize a function. These concepts are recalled below.

14

2.1. Layered fully-connected ReLU neural networks (LFCN)

A
ffi

ne

R
eL

U

A
ffi

ne

R
eL

U

A
ffi

ne

R
eL

U

A
ffi

ne

(a) Illustration of a layered fully-connected ReLU neural network (LFCN).

A
ffi

ne

M
ax

Po
ol

A
ffi

ne

R
eL

U

A
ffi

ne

R
eL

U

Av
gP

oo
l

A
ffi

ne

Skip Skip

(b) Illustration of a network with the same ingredients as a ResNet [He et al., 2016].

Figure 2.1: While LFCN is a simple model well suited for theoretical analysis, it lacks
standard ingredients used in practice such as skip connections, max-pooling, and average-
pooling.

Architecture. The architecture of a LFCN is given by an positive integer L and L+ 1
positive integers d0, . . . , dL.

Parameters. The parameters of a LFCN with architecture (L, d0, d1, d2, . . . , dL) are:

θ = (M1,M2, . . . ,ML, b1, b2, . . . , bL)

where Mℓ ∈ Rdℓ+1×dℓ are weight matrices and bℓ ∈ Rdℓ+1 are bias vectors.

Realization. The realization of a LFCN with parameters θ is the function Rθ : x ∈
Rd0 → RdL defined by:

Rθ(x) = ML ReLU(ML−1 ReLU(· · ·ReLU(M1x+ b1) · · ·) + bL−1) + bL (2.1)

where I recall (Definition 1.1.1) that ReLU(x) = max(0, x) is the ReLU activation func-
tion applied coordinate-wise.

Such a neural network is said to have L affine layers and L+ 1 layers of neurons: the
input layer of dimension d0, the output layer of dimension dL, and L− 1 hidden layers of
dimensions d1, . . . , dL−1 respectively.

I evoked in Chapter 1 that the symmetries and piecewise affine structure of the net-
works are expected to be useful to better understand their behavior. The path-lifting
and path-activations tools have been introduced in the literature to capture these proper-
ties and analyze ReLU networks, but only for LFCNs [Neyshabur et al., 2015, Kawaguchi
et al., 2017, Barron and Klusowski, 2019, Stock and Gribonval, 2023, Bona-Pellissier et al.,
2022, Marcotte et al., 2023]. However, comparing Figure 2.1a and Figure 2.1b, we see
that LFCNs do not capture networks like ResNets, widely used in practice. This calls for
defining a more general model, which is the subject of the next section.

15

Chapter 2. Fundamentals of (Φ, A)

2.2 Defining a comprehensive neural network model
As illustrated in Figure 2.1b, the compositional structure of LFCNs between successive
layers of neurons no longer holds in practical networks. Indeed, skip-connections (or-
ange blocks labeled "Skip") disrupt this layer-wise compositional flow. Figure 2.1b rather
involves a compositional structure at the neuron level: each individual neuron is con-
nected to subsequent neurons in a directed manner. This can be captured by a directed
acyclic graph (DAG) where the vertices represent neurons and the edges represent con-
nections between neurons. This is the model I propose in this section, that generalizes
and unifies several models from the literature, including those from Neyshabur et al.
[2015], Kawaguchi et al. [2017], DeVore et al. [2021], Bona-Pellissier et al. [2022], Stock
and Gribonval [2023].

Moreover, I aim to cover not only ReLU neurons but also max-pooling and average-
pooling neurons as in Figure 2.1b, since these operations are now standard in practice.
Thus, I define the model a DAG with an activation function for each neuron: ReLU,
max-pooling (and even k-max-pooling, with max-pooling corresponding to k = 1), or
the identity for average-pooling. This is illustrated in Figure 2.2. While I now need to
formalize this, I invite readers to skip the rest of this section and refer back to the details
as needed.

Let me start by defining k-max-pooling, which captures max-pooling for k = 1.

Definition 2.2.1 (k-max-pooling activation function). The k-max-pooling function k-pool(x) :=
x(k) returns the k-th largest coordinate of x ∈ Rd.

I now define the model of DAG ReLU neural network (simply called DAG network
thereafter). The reader can refer to Figure 2.2 and Figure 2.3 for illustrations of the
definition.

ReLU

Id

k-pool

Id

Id

Figure 2.2: Example of a DAG ReLU Neural Network Architecture (Definition 2.2.2).
Input neurons are in green, output neurons in red and hidden neurons in blue. Each
neuron has an activation function, except for the input neurons. By definition, the output
neurons are enforced to be identity neurons, i.e., neurons with the identity as activation
function.

Definition 2.2.2 (DAG ReLU neural network [Gonon et al., 2024a]). Consider a Directed
Acyclic Graph (DAG) G = (N,E) with edges E, and vertices N called neurons. For a
neuron v, the sets ant(v), suc(v) of antecedents and successors of v are ant(v) := {u ∈

16

2.2. Defining a comprehensive neural network model

v

u

w

bv
θ u→v

θw
→v and v(θ, x) = ρv(bv + u(θ, x)θu→v + w(θ, x)θw→v)

Figure 2.3: Detailed representation of a single neuron v (Definition 2.2.2) with antecedents
u and w, a bias bv, and an activation function ρv ∈ {ReLU, id}.

N, u → v ∈ E}, suc(v) := {u ∈ N, v → u ∈ E}. Neurons with no antecedents (resp. no
successors) are called input (resp. output) neurons, and their set is denoted Nin (resp.
Nout). Neurons in H := N \ (Nin ∪ Nout) are called hidden neurons. Input and output
dimensions are respectively din := |Nin| and dout := |Nout|.
• A DAG ReLU neural network architecture, or simply DAG network, is a

tuple (G, (ρv)v∈N\Nin) composed of a DAG G = (N,E) with attributes ρv ∈ {id,ReLU} ∪
{k-pool, k ∈ N>0} for v ∈ N \ (Nout ∪ Nin) and ρv = id for v ∈ Nout. We will again
denote the tuple (G, (ρv)v∈N\Nin) by G, and it will be clear from context whether the results
depend only on G = (N,E) or also on its attributes. Define Nρ := {v ∈ N, ρv = ρ} for an
activation ρ, and N∗-pool := ∪k∈N>0Nk-pool. A neuron in N∗-pool is called a ∗-max-pooling
neuron. For v ∈ N∗-pool, its kernel size is defined as being | ant(v)|.
• Parameters associated with this architecture are vectors1 θ ∈ RG := RE∪N\Nin. We

call bias bv := θv the coordinate associated with a neuron v (input neurons have no bias),
and denote θu→v the weight associated with an edge u → v ∈ E. We will often denote
θ→v := (θu→v)u∈ant(v) and θv→ := (θu→v)u∈suc(v).
• The pre-activation of a neuron v ∈ N \Nin is the function vpre defined as

vpre(θ, x) :=
{
bv +∑

u∈ant(v) u(θ, x)θu→v if ρv = ReLU or ρv = id,
(bv + u(θ, x)θu→v)u∈ant(v) if ρv = k-pool. (2.2)

• The realization of a neural network with parameters θ ∈ RG is the function RG
θ :

RNin → RNout (simply denoted Rθ when G is clear from the context) defined for every
input x ∈ RNin as

Rθ(x) := (v(θ, x))v∈Nout ,

where I use the same symbol v to denote a neuron v ∈ N and the associated function
v(θ, x), defined as v(θ, x) := xv for an input neuron v, and defined by induction otherwise

v(θ, x) := ρv(vpre(θ, x)). (2.3)

As promised, let me now show that the model of Definition 2.2.2 covers many ingredi-
ents widely used in practice, with the exception of the attention mechanism. Thanks to
that, many practical networks are covered by Definition 2.2.2: ResNets, VGGs, U-nets,
ReLU MobileNets, Inception nets, Alexnet etc.

• Max-pooling: set ρv = k-pool for k = 1, bv = 0 and θu→v = 1 for every u ∈ ant(v).
1For an index set I, denote RI = {(θi)i∈I , θi ∈ R}.

17

Chapter 2. Fundamentals of (Φ, A)

Motivation. This operation selects the maximum value from a set of scalar inputs,
effectively down-sampling the input representation and reducing its dimensionality
while retaining important information [LeCun et al., 1998].

• Average-pooling: set ρv = id, bv = 0 and θu→v = 1/| ant(v)| for every u ∈ ant(v).
Motivation. This operation computes the average value of a set of scalar inputs, sim-
ilarly down-sampling the input representation but by averaging, which can provide
smoother results [LeCun et al., 1998].

• Batch normalization: set ρv = id and weights accordingly. Batch normalization
layers only differ from standard affine layers by the way their parameters are updated
during training.
Motivation. A batch is a subset of the training data processed together to update
at once the parameters θ. Regrouping the training data in batches allows for par-
allel computing, hence faster training. Batch normalization is a technique used to
improve the training of deep neural networks by stabilizing the distributions of the
outputs of some operations performed in batch [Ioffe and Szegedy, 2015]. During
training, it normalizes over a batch the output of a previous operation by subtracting
the batch mean and dividing by the batch standard deviation. This normalization
is followed by a scaling and shifting operation controlled by learnable parameters.
During inference, the mean and standard deviation are fixed (learned during train-
ing) and this simply becomes a linear layer with only parameters the scaling α and
the bias β:

BatchNorm(x) = α
x− µ
σ

+ β

where µ and σ are the mean and standard deviation learned during training, and x
is the input.

• Fully-connected layer: via the DAG structure, two sets of neurons can be fully
connected by adding connections between all neurons of the first set to all neurons
of the second set.
Motivation. This ensures that LFCNs are a special case of this model.

• Convolutional layer: consider them as (doubly) circulant/Toeplitz fully con-
nected layers.
Motivation. This corresponds to fully-connected layers but with additional con-
straint on the affine map to ensure invariance to translation of the input. This is
particularly interesting to process spatial data such as images since relevant features
are often invariant to translation. Moreover, this constraint reduces the number of
parameters to learn as many coefficients of the weight matrix are the same.

• GroupSort/Top-k operator: use the DAG structure and ∗-max-pooling neurons
[Anil et al., 2019, Sander et al., 2023].
Motivation. Finding the top-k larger components of a vector, or sorting the com-
ponents can be relevant to select the most significant features from a set.

18

2.3. Path-lifting and path-activations: formal definitions

• Skip connections: via the DAG structure, the outputs of any past layers can be
added to the pre-activation of any neuron by adding connections from these layers
to the given neuron.
Motivation. These connections allow the output of a layer to be added to a subse-
quent layer, facilitating the training of deeper networks by mitigating the so-called
vanishing gradient problem He et al. [2016].

We now got a model that captures ReLU networks widely used in practice and the
challenge is now to have tools to theoretically analyze it. This is the object of the next
section.

2.3 Path-lifting and path-activations: formal defini-
tions

As discussed in Chapter 1, the symmetries and piecewise affine structure of ReLU networks
are key to understanding their behavior.

• Symmetries and non-invariant bounds. I evoked in Chapter 1 that a non-
invariant bound

Interesting Quantity(Rθ) ⩽ C∥θ∥

can be vacuous depending on the luck we have with the scaling of the parameters
θ. This is because the left-hand side is invariant under rescaling (Rθ = Rλ⋄θ for any
rescaling vector λ, the symmetries are formally defined later in Definition 2.4.1),
while the right-hand side can be arbitrarily large (∥λ ⋄ θ∥ → ∞ as ∥λ∥ → ∞). This
motivates looking for representations of the parameters Φ(θ) that are invariant to
symmetries, and to establish bounds that depend on ∥Φ(θ)∥ rather than ∥θ∥.

• Symmetries and compression. I also evoked in Chapter 1 that a gold-standard
compression method is to prune (set to zero) some weights directly based on their
magnitude. However, I will show that this method is not robust to parameters
rescaling: the accuracy of this compression method can significantly drop depending
on the scaling of the parameters. This again motivates looking for representations of
the parameters Φ(θ) that are invariant to symmetries, and to establish compression
methods that depend on Φ(θ) rather than directly on θ.

• Piecewise affine structure. Finally, Chapter 1 also discusses how the piecewise
affine structure of ReLU networks is expected to influence their expressivity (e.g.,
via the number of affine regions) or their robustness (e.g., via the Lipschitz constant
on each affine region).

This motivates the study of ReLU networks through the lens of their symmetries
and piecewise affine structure. Tools to do so have been developed in the literature, but
only for LFCNs. I now extend these tools to the general DAG network model defined
in Section 2.2. In the next sections, I will show that these extended tools preserve their
fundamental properties:

• Φ(θ) is a vector, whose entries are monomial functions of the coordinates of θ;

19

Chapter 2. Fundamentals of (Φ, A)

• A(θ, x) is a binary matrix, and is a piecewise constant function of (θ, x),
• both Φ(θ) and A(θ, x) are invariant under neuron-wise rescalings of θ that leave

invariant the function Rθ,
• the network output is a simple function of these two objects:

Rθ(x) =
〈

Φ(θ), A(θ, x)
(
x
1

)〉
(2.4)

in the scalar-valued case, and with a similar simple formula in the vector-valued case
(Equation (2.6) to come).

I will now describe in words the various objects at play before giving the formal defini-
tions. Hopefully, these informal descriptions are enough and I invite the readers to solely
focus on them, skip the formal definitions for now, and refer back to them as needed.

In the terms "path-lifting" and "path-activations", a path refers to a sequence of con-
nected neurons in the DAG that ends at an output neuron and starts at either an input
or a hidden neuron.

For parameters θ, its path-lifting Φ(θ) is a vector indexed by all the paths. Note that
even if its ambient dimension is combinatorial (number of paths), I will show that norms
of the path-lifting can be computed very efficiently. The coordinate Φp(θ) along a given
path p is the product of the weights along that path, including the bias when starting
from a hidden neuron. See Figure 2.4 for an illustration.

The path-activations capture which neurons and edges transmit information taken
into account in the network’s output or not. A ReLU neuron is said active if its output
is non-zero. An edge u → v going to a max-pooling neuron v is said active only if the
maximum comes from the neuron u. Other neurons and edges are declared always active.

Formal definitions. Let me now turn to the formal definitions of the path-lifting and
path-activations. They both rely on the definitions of the paths of a DAG G.

Definition 2.3.1 (Paths and depth in a DAG [Gonon et al., 2024a]). Consider a DAG
G = (N,E) as in Definition 2.2.2. A path of G is any sequence of neurons v0, . . . , vd such
that each vi → vi+1 is an edge in G. Such a path is denoted p = v0 → . . . → vd. This
includes paths reduced to a single neuron v ∈ N , denoted p = v. The length of a path
p = v0 → . . . → vd is length(p) = d (the number of edges). We will denote pℓ := vℓ the
ℓ-th neuron for a general ℓ ∈ {0, . . . , length(p)} and use the shorthand pend = vlength(p)
for the last neuron. The depth of the graph G is the maximum length over all of its paths.
If vd+1 ∈ suc(pend) then p → vd+1 denotes the path v0 → . . . → vd → vd+1. In the sequel,
we will often restrict to the set of paths ending at an output neuron, a set denoted by PG

(or simply P), and will often say simply path to refer to a path p ∈ P when the context
is clear.

Definition 2.3.2 (Sub-graph ending at a given neuron). Given a neuron v of a DAG
G, denote by G→v the graph deduced from G by keeping only the largest subgraph with
the same inputs as G and with v as a single output. This consists of removing all the
neurons u that cannot reach v by following the edges of G, as well as all the incoming and
outcoming edges of such neurons u. We will use the shorthand P→v := PG→v to denote
the set of paths of G→v, which correspond to the paths in G ending at v.

20

2.3. Path-lifting and path-activations: formal definitions

A(θ, x) =

0 . . . 0
0 . . . 0 ap(θ, x) 0 . . . 0 0
0 . . . 0 0

0 ...
0 0 ap′(θ, x)

0 0 ...

p

p′

v1 b

PI

PH

Nin

Figure 2.4: The coordinate of the path-lifting Φ associated with the path
p = v1 → v2 → v3 is Φp(θ) = θv1→v2θv2→v3 since it starts from an input neuron (Defini-
tion 2.3.3). While the path p′ = w1 → w2 → w3 starts from a hidden neuron (in N \(Nin∪
Nout)), so there is also the bias of w1 to take into account: Φp′(θ) = bw1θ

w1→w2θw2→w3 . As
specified in Definition 2.3.3, the columns of the path-activation matrix A are indexed by
Nin∪{b} and its rows are indexed by P = PI ∪PH , with PI the set of paths in P starting
from an input neuron, and PH the set of paths starting from a hidden neuron.

21

Chapter 2. Fundamentals of (Φ, A)

It is now time to define the path-lifting and path-activations. The reader can refer to
Figure 2.4 for an illustration.

Definition 2.3.3 (Path-lifting and path-activations). Consider a ReLU neural network
architecture G as in Definition 2.2.2 and parameters θ ∈ RG associated with G. For
p ∈ P, define2

Φp(θ) :=

length(p)∏

ℓ=1
θvℓ−1→vℓ if p0 ∈ Nin,

bp0

length(p)∏
ℓ=1

θvℓ−1→vℓ otherwise,

where an empty product is equal to 1 by convention. The path-lifting ΦG(θ) of θ is

ΦG(θ) := (Φp(θ))p∈PG .

This is often denoted Φ when the graph G is clear from the context. We will use the short-
hand Φ→v := ΦG→v to denote the path-lifting associated with G→v (Definition 2.3.2). We
will denote by ΦI(θ) (resp. ΦH(θ)) the sub-vector of Φ(θ) corresponding to the coordinates
associated with paths starting from an input (resp. hidden) neuron. Therefore, Φ(θ) is
the concatenation of ΦI(θ) and ΦH(θ).

Consider an input x of G. The activation of an edge u→ v on (θ, x) is defined to be
au→v(θ, x) := 1 when v is an identity neuron; au→v(θ, x) := 1v(θ,x)>0 when v is a ReLU
neuron; and when v is a k-max-pooling neuron, define au→v(θ, x) := 1 if the neuron u is the
first in ant(v) in lexicographic order to satisfy u(θ, x) := k-pool

(
(bv + w(θ, x)θw→v)w∈ant(v)

)
and au→v(θ, x) := 0 otherwise. The activation of a neuron v on (θ, x) is defined to be
av(θ, x) := 1 if v is an input neuron, an identity neuron, or a k-max-pooling neuron, and
av(θ, x) := 1v(θ,x)>0 if v is a ReLU neuron. We then define the activation of a path p ∈ P
with respect to input x and parameters θ as: ap(θ, x) := ap0(θ, x)∏length(p)

ℓ=1 avℓ−1→vℓ
(θ, x)

(with an empty product set to one by convention). Consider a new symbol vbias that is not
used for denoting neurons. The path-activations matrix A(θ, x) is defined as the matrix
in RP×(Nin∪{vbias}) such that for any path p ∈ P and neuron u ∈ Nin ∪ {vbias}

(A(θ, x))p,u :=
{
ap(θ, x)1p0=u if u ∈ Nin,
ap(θ, x) otherwise when u = vbias.

Positioning. Previous definitions in the literature were given for simpler models (no
k-max-pooling even for a single given k, no skip connections, no biases, one-dimensional
output and/or layered network) [Kawaguchi et al., 2017, Bona-Pellissier et al., 2022, Stock
and Gribonval, 2023]. Definition 2.3.3 extends these definitions to the general model of
Definition 2.2.2, as it recovers the previous ones in simpler settings. The main novelty
is essentially to properly define the path-activations A(θ, x) in the presence of ∗-max-
pooling neurons: when going through a k-max-pooling neuron, a path stays active only
if the previous neuron of the path is the first in lexicographic order to be the k-th largest
input of this pooling neuron.

2We do not only consider paths starting at input neurons, but also the ones starting at hidden neurons,
which will reveal to be crucial to take into account the biases.

22

2.4. Main properties of the path-lifting and path-activations

On the name "path-lifting" and "path-activations". The mapping Φ was initially
called path-embedding in Stock and Gribonval [2023] but since it is not injective [Stock
and Gribonval, 2023, Remark 2], I choose to call it path-lifting just as in Bona-Pellissier
et al. [2022]. Note however that this is not a lifting in the sense of category theory as it
does not factorize the mapping θ 7→ Rθ (for that, we should extend the mapping with the
signs θ → (sgn(θ),Φ(θ)) [Stock and Gribonval, 2023, Theorem 1]). I still choose the name
lifting for the sake of brevity. The path-activations A were called activations in Stock
and Gribonval [2023]. I choose to call them path-activations to avoid confusion with the
usual activations of the neurons.

2.4 Main properties of the path-lifting and path-activations
The challenge is now to show that the path-lifting and the path-activations extended to the
general model of Definition 2.2.2 have the same fundamental properties as in the case of
simple LFCNs: they capture in some sense the neuron-wise rescaling symmetries, as well
as the piecewise affine structure of the model. This is tackled respectively in Section 2.4.1
and Section 2.4.2.

2.4.1 Capturing the rescaling symmetries
The symmetries are transformations of the parameters θ that leave the function Rθ un-
changed. Let me introduce these transformations for a general DAG network.

Definition 2.4.1 (Neuron-wise rescaling symmetry). Consider a DAG network G as in
Definition 2.2.2. Recall that H is the set of hidden neurons (Definition 2.2.2), and RG is
the set of parameters. Consider the group RH

>0 with pointwise multiplication and neutral
element 1 the vector full of ones. The rescaling symmetries can almost be seen as a group
action of RH

>0 on RG but with a twist: the action is not commutative. We will denote3

by λ ⋄ θ the action of λ ∈ RH
>0 on θ ∈ RG and define it as the composition of several

elementary operations λv ⋄v θ for v ∈ H:

(λv ⋄v θ)→v := λvθ
→v, (λv ⋄v θ)v := λvθv, (λv ⋄v θ)v→ := 1

λv

θv→ (2.5)

Since the elementary operations ⋄v do not commute for different v’s, we have to fix a
convention to compose them. We choose the convention that the composition of the ele-
mentary operations is done in the order of the indices of the neurons in H:

λ ⋄ θ := λv|H| ⋄v|H| (. . . λv1 ⋄v1 θ) .

This convention has no impact in this thesis: the results would be the same with any other
convention.

We denote by θ ∼R θ′ the fact that there exists a λ ∈ RH
>0 such that θ′ = λ ⋄ θ. This

is an equivalence relation on RG and we say that θ and θ′ are rescaling-equivalent.
3To denote this action, I choose the symbol ⋄ rather than the more conventional one · to avoid it to

be mistaken with the scalar multiplication.

23

Chapter 2. Fundamentals of (Φ, A)

I will prove that within a rescaling-equivalence class, all the parameters θ define the
same function Rθ, path-lifting Φ(θ) and path-activations A(θ, x). In the special case where
θ has a so-called input-dead neuron v, the notion of equivalence can be relaxed to include
more parameters that still correspond to the same function Rθ, path-lifting Φ(θ), and
path-activations A(θ, x).

Definition 2.4.2 (Dead neuron). Consider a DAG network G as in Definition 2.2.2 and
parameters θ ∈ RG. A neuron v is said to be input-dead for θ if θ→v = bv = 0. We denote
by In− Dead(θ) the set of input-dead hidden neurons for θ.

Definition 2.4.3 (Weak neuron-wise rescaling symmetry). Consider a DAG network G
as in Definition 2.2.2 and parameters θ ∈ RG. Consider all the parameters θ′ that can be
reached such a θ by finite composition of the following operations in any given order:

• neuron-wise rescaling λ ⋄ θ for some λ ∈ RH
>0,

• and setting the outgoing weights θv→ arbitrarily for some v ∈ In− Dead(θ).

We say that θ and θ′ are weakly rescaling-equivalent and we denote θ ∼W R θ′.

I could also haved introduced the notion of output-dead neurons v, satisfying θv→ = 0,
and relax even more the equivalence class by allowing to set the incoming weights θ→v

arbitrarily for all output-dead neurons v. While this operation would preserve the function
Rθ and the path-lifting Φ(θ), this would not preserve the path-activations A(θ, x). Indeed,
we could have the pre-activation of an output-dead ReLU neuron strictly positive, hence
active, and then by setting to zero the incoming weights, it becomes inactive. Moreover,
we will only encounter input-dead neurons in the sequel. For these reasons, I will not
further discuss the notion of output-dead neurons.

Rescaling transformations are indeed symmetries as shown in the next lemma. The
reason for this is that the ReLU and ∗-max-pooling activation functions ρ are positively
homogeneous (ρ(λx) = λρ(x) for λ > 0).

Lemma 2.4.1. Consider a DAG network as in Definition 2.2.2. If parameters θ, θ′ are
such that θ ∼W R θ′ (Definition 2.4.3) then Rθ = Rθ′.

Proof. This is already known for rescaling-equivalent parameters in the special case of
LFCNs, see, e.g., [Stock and Gribonval, 2023]. For weakly rescaling-equivalent parameters
and general DAG networks (Definition 2.2.2), this is a direct consequence of two theorems
proved below: Theorem 2.4.1 and Theorem 2.4.2.

In the special case of LFCNs, it is also known that rescaling-equivalent parameters
have the same path-lifting and path-activations, see, e.g., [Stock and Gribonval, 2023].
As promised, the next theorem shows that our extended path-lifting and path-activations
preserve this property, even for weakly rescaling-equivalent parameters.

Theorem 2.4.1. Consider parameters θ, θ′ of a DAG network (Definition 2.2.2) such
that θ ∼W R θ′ (Definition 2.4.3). They have the same path-lifting and path-activations:
Φ(θ) = Φ(θ′) and A(θ, x) = A(θ′, x) for every x.

To avoid breaking the reading flow, the proof is postponed to Section 2.4.3.

24

2.4. Main properties of the path-lifting and path-activations

2.4.2 Capturing the piecewise affine structure
The second equally fundamental property of the path-lifting and path-activations is the
reparameterization of the model in terms of Φ and A.

Theorem 2.4.2 ([Gonon et al., 2024a]). Consider a DAG ReLU network as in Defini-
tion 2.2.2. For every neuron v, every input x and every parameters θ, it holds:

v(θ, x) =
〈

Φ→v(θ), A→v(θ, x)
(
x
1

)〉
. (2.6)

The proof is an induction on the size of the graph, and is deferred to Section 2.4.3.
In the scalar-valued case with single output neuron v, corresponding to Rθ(x) =

v(θ, x), Theorem 2.4.2 shows that we have the simple formula:

Rθ(x) =
〈

Φ(θ), A(θ, x)
(
x
1

)〉
.

In the vector-valued case, Theorem 2.4.2 says that the same formula holds for every
output neuron v by considering the sub-vector of Φ and the sub-matrix of A associated
with the maximal subgraph G→v of G ending at v. This equation is not only fundamental
to understand the structure of the function Rθ in terms of Φ and A, but also of practical
interest as it will allow us to compute (mixed) ℓq-norms of Φ(θ), called path-norms, in
only one forward-pass of the model. This is a blessing at it makes all the theoretical
bounds of this thesis easily computable in practice, despite the combinatorial dimensions
of Φ and A.

Let me now explain why Equation (2.6), reproduced below for convenience, implies
that Φ and A capture the piecewise affine structure of the function (x, θ) 7→ Rθ(x)
in x and the piecewise polynomial structure in θ.

v(θ, x) =
〈

Φ→v(θ), A→v(θ, x)
(
x
1

)〉
.

If there were no path-activations A in this equation, this would say that the output of
neuron v is an affine function of x, with the affine coefficients stored in Φ→v(θ).

Of course, ReLU neurons are not affine in x, and the matrix A restores the non-
linearity in x. It is binary and piecewise constant, meaning that we can divide the set of
(θ, x) into a finite number of regions where A is constant [Arora et al., 2017].

For a fixed θ, the set of x such that A(θ, x) is constant has boundaries defined by zeros
of affine equations, so that it is a polytope [Arora et al., 2017]. For a fixed x, the set of
θ such that A(θ, x) is constant has boundaries defined by zeros of polynomial sets as a
change of a coefficient in A is either due to a change in the sign of a ReLU neuron output
or a change in the ordering of the inputs of a k-max-pooling neuron and the result follows
from the fact that all the neuron functions are locally polynomial in the coordinates of θ
(Equation (2.6)).

On each of the region in (θ, x) where A(θ, x) is constant, Equation (2.6) says that the
output of every neuron v is affine in x, with the affine coefficients given by A(θ, x)T Φ→v(θ):
the matrix A filters the coordinates of Φ→v(θ) to select the ones relevant on the current
region.

25

Chapter 2. Fundamentals of (Φ, A)

Key properties

Parameters
θ

• parameters of the neural network (weights of the edges and the
biases of the neurons)
• directly updated when training the function Rθ

Path-lifting
Φ(θ)

• affine coefficients of the function Rθ(x) on the active region
• invariant under neuron-wise rescaling symmetries of Rθ

• polynomial in the coordinates of θ

Path-activations
A(θ, x)

• capture the regions where x 7→ Rθ(x) is affine and where θ 7→
Rθ(x) is polynomial
• invariant under neuron-wise rescaling symmetries of Rθ

• binary
• piecewise constant in (θ, x)

Function
Rθ

• piecewise affine function of x
• piecewise polynomial in the coordinates of θ
• invariant under neuron-wise rescaling symmetries of θ

Table 2.1: Properties of the objects θ,Φ(θ), A(θ, x), Rθ.

This shows that Φ and A encode the piecewise affine structure of the function Rθ:
Φ holds all the affine coefficients, and A acts as a region-aware filter that knows which
coefficients to select in each region. This will be key to analyze ReLU neural network
functions. I summarize the properties of the path-lifting and the path-activations in
Table 2.1.

Related works. [Kawaguchi et al., 2017]: Equation (2.6) is stated in the specific case
of Kawaguchi et al. [2017, Section 5.1] (as an explicit sum rather than an inner product),
without proof since the objects are not explicitly defined in Kawaguchi et al. [2017].

[Stock and Gribonval, 2023, Bona-Pellissier et al., 2022]: Corollary 3 of Stock and
Gribonval [2023] proves that Equation (2.6) holds in this specific case of fully-connected
neural networks. Definition 2.3.3 and Equation (2.6) generalize the latter to an arbitrary
DAG with ∗-max-pooling or identity neurons (allowing in particular for skip connections,
max-pooling and average-pooling).

Rest of the literature: The rest of the works I am aware of only define and consider
the norm of the path-lifting, but not the lifting itself. The most general setting is the one
of Neyshabur et al. [2015] with a general DAG, but without max or identity neurons, nor
biases. Our formal definition of the path-lifting and the path-activations makes notations
arguably lighter since Equation (2.6) is no longer written with an explicit sum over all
paths, with explicit product of weights along each path etc.

2.4.3 Proofs of the main properties
Let me start with the proof that the path-lifting and path-activations are the same for
weakly rescaling-equivalent parameters.

Proof of Theorem 2.4.1. By definition of weakly-rescaling equivalent parameters (Defi-
nition 2.4.3), it is enough to check that the path-lifting and path-activations of given
parameters θ are invariant under the two basic operations:

26

2.4. Main properties of the path-lifting and path-activations

• neuron-wise rescaling λ ⋄ θ for some λ ∈ RH
>0,

• and setting θv→ arbitrarily for a given v ∈ In− Dead(θ).
Invariance to neuron-wise rescaling. Define θ′ = λ ⋄ θ for some λ ∈ RH

>0. We
show that Φ(θ) = Φ(θ′) and A(θ, x) = A(θ′, x) for every x. We can restrict to the case
where a single hidden neuron v is rescaled by λv > 0, while all the other hidden neurons
are unchanged, i.e., λu = 1 for u ̸= v. Indeed, rescaling by a general vector λ ∈ RH

>0 is
defined as iteratively rescaling one neuron at a time (Definition 2.4.1).

Consider a path p = v0 → . . . → vd ∈ P and let me prove that the coordinate Φp(θ)
of Φ(θ) is preserved. Since vd must be an output neuron (Definition 2.3.1), v ̸= vd and
we have three cases to consider:

• Case 1: v is not in the path p. In this case, Φp(θ) depends only on the coordinates
of θ that are unaffected by the rescaling, so Φp(θ) = Φp(λ ⋄ θ) trivially.

• Case 2: v = v0. Since v0 = v /∈ Nin, we have

Φp(θ) = bv0

d∏
ℓ=1

θvℓ−1→vℓ .

Rescaling affects bv0 and θv0→v1 as follows:

Φp(λ ⋄ θ) = (λvbv)
(1
λv

θv→v1

) d∏
ℓ=2

θvℓ−1→vℓ = Φp(θ).

Here, bv is multiplied by λv and θv→v1 is divided by λv, while other weights remain
unchanged.

• Case 3: v = vℓ with 0 < ℓ < d. Among the weights appearing in Φp(θ), only the
weights θvℓ−1→vℓ and θvℓ→vℓ+1 are affected:

θvℓ−1→vℓθvℓ→vℓ+1 = (λvθ
vℓ−1→vℓ)

(1
λv

θvℓ→vℓ+1

)
.

The product is invariant under the rescaling, hence Φp(θ) = Φp(λ ⋄ θ).

Next, we show that the path-activations are preserved. Since the map (θ, x) 7→ u(θ, x)
is not impacted by the considered rescaling for u ̸= v, it is enough to check that the
activation of v is preserved, as well as the activations of the edges u→ v if v is a k-max-
pooling neuron, and v → u otherwise.

• If v is an identity neuron, av(θ, x) = 1 for every θ and x, so av(θ, x) = av(λ⋄θ, x).
The same applies to edge activations av→u(θ, x).

• If v is a ReLU neuron, av(θ, x) = 1v(θ,x)>0. Using the positive homogeneity of
the ReLU function, rescaling gives:

v(λ ⋄ θ, x) = λvv(θ, x).

Thus the activation of v is preserved:

av(λ ⋄ θ, x) = 1v(λ⋄θ,x)>0 = 1λvv(θ,x)>0 = 1v(θ,x)>0 = av(θ, x).

The same applies to the edge activations av→u(θ, x).

27

Chapter 2. Fundamentals of (Φ, A)

• If v is a k-max-pooling neuron then the result is clear for the activation of v, as it is
defined to be one irrespectively of θ and x. For the edge activation u→ v, we have
by definition au→v(θ, x) := 1 if the neuron u is the first in ant(v) in lexicographic
order to satisfy u(θ, x) := k-pool

(
(bv + w(θ, x)θw→v)w∈ant(v)

)
and au→v(θ, x) := 0

otherwise. The rescaling multiplies each argument of the k-max-pooling by λv,
preserving the ordering and hence the edge activations au→v(θ, x).

This completes the proof that both path-lifting and path-activations are preserved by the
operation λ ∈ RH

>0 7→ λ ⋄ θ. We now turn to the second operation of setting θv→ to an
arbitrary value, for a given v ∈ In− Dead(θ).

Invariance to setting θv→ arbitrarily, v ∈ In− Dead(θ). Consider v ∈ In− Dead(θ)
and θ′ = θ except that (θ′)v→ is set arbitrarily. We have θv→ = (θ′)v→ = 0 and bv = b′

v = 0
so v(θ, x) = v(θ′, x) = 0 for any x. Therefore, the activations of v and the edges u → v
are unchanged. The same holds for the edges v → w since v contributes the same to w
in both cases. The rest of the network is kept identical, so the other activations remain
unchanged, hence the invariance of the path-activations. For the path-lifting: Φp(θ) = 0 is
unchanged for all paths p going through the input-dead neuron v; Φp(θ) is also unchanged
for other paths since they only involve entries of θ that are kept identical. As a result,
Φ(θ) is also preserved.

This completes the proof that both path-lifting and path-activations are the same for
weakly rescaling-equivalent parameters.

I now prove the formula that relates the output of a neuron to the path-lifting and
path-activations.

Proof of Theorem 2.4.2. For any neuron v, recall that P→v is the set of paths ending at
neuron v (Definition 2.3.2). We want to prove

v(θ, x) =
〈

Φ→v(θ), A→v(θ, x)
(
x
1

)〉
=

∑
p∈P→v

Φp(θ)ap(θ, x)xp0 , (2.7)

where we recall that p0 denotes the first neuron of a path p (Definition 2.3.1). For paths
starting at an input neuron, xp0 is simply the corresponding coordinate of x. For other
paths, we use the convention xu := 1 for any neuron u ∈ N \Nin.

The proof of Equation (2.7) goes by induction on a topological sorting [Cormen et al.,
2009] of the neurons. We start with input neurons since by Definition 2.2.2, these are the
ones without antecedents so they are the first to appear in a topological sorting.

Consider an input neuron v. The only path in P→v is p = v. By Definition 2.3.3,
it holds Φp(θ) = 1 (empty product) and ap(θ, x) = av(θ, x) = 1. Moreover, we have
v(θ, x) = xv (Definition 2.2.2). This proves Equation (2.7) for input neurons.

Now, consider v /∈ Nin and assume that Equation (2.7) holds true for every neuron
u ∈ ant(v). We prove by cases that

v(θ, x) = av(θ, x)bv +
∑

u∈ant(v)
u(θ, x)au→v(θ, x)θu→v. (2.8)

28

2.5. Conclusion

There is no particular difficulty to prove Equation (2.8) as it just consists of carefully
unrolling the definition of v(θ, x) (Definition 2.2.2) depending on the activation function
of v. The proof is given in Appendix A for completeness.

Using the induction hypothesis on the antecedents of v, Equation (2.8) implies

v(θ, x) = av(θ, x)bv +
∑

u∈ant(v)

 ∑
p∈P→u

Φp(θ)ap(θ, x)xp0

 au→v(θ, x)θu→v.

We want to prove that this is equal to∑
p∈P→v

Φp(θ)ap(θ, x)xp0 .

A path p̃ ∈ P→v is either the path p̃ = v starting and ending at v, or it can be written
in a unique way as p̃ = p → v where p ∈ P→u is a path ending at an antecedent u of v.
For the simple path p̃ = v, it holds by definition (Definition 2.3.3): ap̃(θ, x) = av(θ, x),
Φp̃(θ) = bv and by the convention used in this proof we have xp̃0 = xv = 1 since v is not
an input neuron. This shows:

av(θ, x)bv = Φp̃(θ)ap̃(θ, x)xp̃0 .

When p̃ = p → v as above, it holds by definition: xp0 = xp̃0 , Φp̃(θ) = Φp(θ)θu→v and
ap̃(θ, x) = ap(θ, x)au→v(θ, x). It then holds:

Φp(θ)ap(θ, x)xp0au→v(θ, x)θu→v = Φp̃(θ)ap̃(θ, x)xp̃0 .

This concludes the induction and proves the result.

2.5 Conclusion
When analyzing neural networks, the primary object of interest is often the function
Rθ realized by the network. Indeed, key challenges are to control the robustness of the
function to input perturbations, to ensure that it generalizes well, etc. This is done
by controlling quantities that only make sense on the function Rθ rather than its raw
parameters θ, such as Lipschitz constants, integrals of the function (for the generalization
error), etc.

However, in practice, we often end up analyzing the parameters θ, as this is the
concrete representation that we fully observe and manipulate in practice. Therefore,
we often end up controlling quantities of interest on the functions by quantities on the
parameters. The advantage is that the parameter space is finite-dimensional, so many
quantities such as norms are easy to compute in this space, while it is not the case in
the function space (e.g., the Lipschitz constant of neural networks is NP-hard to compute
[Virmaux and Scaman, 2018]).

While controlling function properties in terms of parameter properties can be insightful
to some extent, it can also be problematic: I explained for example that the existence of
rescaling symmetries can lead to vacuous bounds in Section 1.1.2.

Therefore, it is desirable to have objects that are easier to manipulate than the func-
tions Rθ, but more faithful to the functions Rθ than the raw parameters θ. The path-lifting
Φ(θ) may offer such a possibility: it lies in an intermediate space between the parameter
space and the function space and it takes some of the best properties of both worlds:

29

Chapter 2. Fundamentals of (Φ, A)

1. it is finite-dimensional, so it is probably easier to compute quantities (e.g., norms)
on Φ(θ) than on Rθ;

2. it is also invariant under symmetries, so this space is more faithful than the param-
eter space;

3. and its relation to the function space is much nicer compared to the parameter
space: the function Rθ is locally linear in Φ(θ) against locally polynomial in θ, as
can be seen from Equation (2.6). Therefore, the relation of Rθ with Φ(θ) is expected
to be easier to analyze than the relation with θ.

This is summarized in Figure 2.5.

θ

parameter space
Φ(θ)

path-lifting space

Rθ

function space
what we end up

analyzing
what we should

analyze?
what we want to

analyze
dim<∞

invariance
relation to Rθ locally polynomial locally linear

Figure 2.5: The function Φ lifts the parameter space in an intermediate space that seems
promising for the analysis of ReLU networks.

This promising perspective on the path-lifting will be made concrete in the next chap-
ters, where I will show that the path-lifting can be used to derive Lipschitz and general-
ization bounds that are easy to compute, and at least as fine as the bounds obtained with
the same proof techniques but applied directly to the raw parameters θ.

30

Chapter 3
Lipschitz properties and consequence for
pruning

This chapter is based on results in Gonon et al. [2024a,b].
A critical aspect of understanding the behavior of neural networks is to study their

Lipschitz properties, which provide bounds on how much the network’s output Rθ(x)
can change in response to changes in its input x or parameters θ. These properties are
essential for robustness of neural networks, pruning, quantization or generalization.

This chapter establishes Lipschitz properties for general DAG networks in
terms of the path-lifting Φ(θ). While I will crucially use these properties for gen-
eralization in Chapter 4, this chapter shows already a first concrete application
of these properties: designing a new pruning method that matches so-called
magnitude pruning in terms of accuracy, while being robust to rescaling sym-
metries. Pruning is a type of technique used to reduce the size and complexity of
networks, while still preserving their accuracy in many cases of interests. Pruning is cru-
cial for deploying neural networks in resource-constrained environments, such as mobile
devices or embedded systems, where computational resources and memory are limited.

The outline is as follows.

• Section 3.1 defines so-called mixed path-norms (Definition 3.1.1), norms of the path-
lifting, that I will use to establish Lipschitz properties of neural networks [Gonon
et al., 2024a]. Despite the combinatorial ambient dimension of the path-lifting, this
section shows that these norms can be computed very easily (one forward-pass) in
Theorem 3.1.1. The latter is vital for the practical application of the theoretical
bounds derived in this thesis.

• Section 3.2 introduces the notion of normalized parameters (Definition 3.2.1), which
are roughly parameters for which mixed path-norms and standard parameter norms
coincide [Gonon et al., 2024a]. Moreover, it shows that any parameters have a weakly
rescaling-equivalent version of them that are normalized (Lemma 3.2.1). This will
be crucial to show that bounds established in terms of mixed path-norms are at
least as fine as, or finer than, the ones derived with the same techniques but applied
directly to the raw parameters [Gonon et al., 2024a,b].

• Section 3.3 extends to arbitrary DAG networks a Lipschitz bound for the function

31

Chapter 3. Lipschitz properties and consequence for pruning

x 7→ Rθ(x) in terms of mixed path-norms of Φ(θ) that was previously known only
for scalar-valued LFCN without biases [Neyshabur et al., 2015]: for every input x, x′

and parameters θ (Theorem 3.3.1) [Gonon et al., 2024a]

∥Rθ(x)−Rθ(x′)∥r ⩽ ∥Φ(θ)∥1,r∥x− x′∥∞.

These extended bounds are shown to preserve their key properties: invariance to
permutation and rescaling symmetries, ease of computation, and tightness com-
pared to the ones obtained with similar techniques but applied directly to the raw
parameters [Gonon et al., 2024a].

• Section 3.4 establishes a new Lipschitz bound for the function θ 7→ Rθ(x) in terms
of the path-lifting: for every input x and parameters θ, θ′ with θiθ

′
i ⩾ 0 for all i

(Theorem 3.4.1) [Gonon et al., 2024b]

∥Rθ(x)−Rθ′(x)∥1 ⩽ ∥Φ(θ)− Φ(θ′)∥1 max(∥x∥∞, 1).

This assumption (θiθ
′
i ⩾ 0,∀i) is in particular true in practical cases of interests, such

as when θ′ has been obtained from θ by pruning or by quantization with rounding
towards zero. Once again, this bound is shown to be invariant to permutation
and rescaling symmetries, easy to compute, and finer than the one obtained with a
similar technique but applied directly to the raw parameters [Gonon et al., 2024b].
And the proof of Theorem 3.4.1 is my favorite one of this thesis, don’t miss it.

• Section 3.5 uses the new Lipschitz bound in θ to design a compression method based
on pruning [Gonon et al., 2024b]. The new pruning method not only matches the
accuracy of standard magnitude pruning, but is also robust to rescaling symmetries.

3.1 Mixed path-norms and their efficient computa-
tion

This section introduces the norms that will appear in our Lipschitz bounds. Despite the
high ambient dimension of the path-lifting Φ(θ), these norms of Φ(θ) can be computed in
only one forward-pass of the model. This is a blessing as it allows all theoretical bounds
of this thesis to be easily computed.

Motivation. Consider a LFCN (Definition 2.1.1) with L affine layers corresponding to
functions

Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x+ b1) . . .+ bL−1) + bL,

with matrices Mℓ ∈ Rdℓ+1×dℓ , biases bℓ ∈ Rdℓ+1 for some number of neurons dℓ. The
number of parameters is

L∑
ℓ=1

dℓ+1dℓ +
L∑

ℓ=1
dℓ+1 =

L∑
ℓ=1

dℓ+1(dℓ + 1),

32

3.1. Mixed path-norms and their efficient computation

while the number of paths (Definition 2.3.1) is

L∑
ℓ=1

L+1∏
k=ℓ

dk.

In the case where dℓ = d for all ℓ, the number of parameters is of order Ld2 while the
number of paths is of order dL. This shows that the ambient dimension of Φ(θ) grows
exponentially in the number of layers, and in general, in the depth of the network, where
I recall that the depth is the maximum length of a path (Definition 2.3.1), as opposed to
the number of parameters that is linear in the depth. When analyzing the function Rθ

through the lens of the path-lifting Φ(θ), it is therefore important to ensure that at least
some quantities of Φ(θ) can be computed without ever having to explicitly compute Φ(θ)
or enumerate the paths. This is the content of the following theorem: mixed ℓq-norms of
the vector Φ(θ) can be computed in a single forward-pass, up to replacing ∗-max-pooling
activations by the identity.

Definition 3.1.1. (Mixed path-norm) For 0 < q, r ⩽ ∞, define the mixed (q, r)-path-
norm of the path-lifting Φ(θ) as

∥Φ(θ)∥q,r :=
∥∥∥(∥Φ→v(θ)∥q)v∈Nout

∥∥∥
r
. (3.1)

Definition 3.1.1 captures in particular all classical ℓq-norms as for r = q we have
∥Φ(θ)∥q,q = ∥Φ(θ)∥q. Moreover, for scalar-valued networks, all mixed path-norms are
classical ℓq-norms since Nout = {v}, ∥Φ(θ)∥q,r = ∥Φ→v(θ)∥q = ∥Φ(θ)∥q.

Theorem 3.1.1 ([Gonon et al., 2024a]). Consider an architecture G = (N,E, (ρv)v∈N\Nin)
as in Definition 2.2.2. Consider the architecture G̃ := (N,E, (ρ̃v)v∈N\Nin) where ∗-max-
pooling neurons are replaced by ones with the identity as an activation function: ρ̃v := id
if v ∈ N∗-pool and ρ̃v := ρv otherwise. Consider q ∈ (0,∞), r ∈ (0,∞] and arbitrary
parameters θ ∈ RG = RG̃. For a vector α, denote |α|q the vector deduced from α by
applying x 7→ |x|q coordinate-wise. Denote by 1 the input full of ones. It holds:

∥Φ(θ)∥q,r = ∥ |RG̃
|θ|q(1)|1/q ∥r. (3.2)

Moreover, the formula is false in general if the ∗-max-pooling neurons have not been
replaced with ones having the identity as an activation function (that is if the forward-
pass is done on G rather than G̃).

I made available at github.com/agonon/pathnorm_toolkit a code to compute path-
norms in one forward-pass, for a wide variety of models, including ResNets, VGGs etc.
The code is also easy to extend to new architectures: the user only needs to specify the
max-pooling layers (which the code will replace by layers with the identity as activation
function, as specified by Theorem 3.1.1), and the kernel sizeK of average-pooling layers, in
order to explicitly consider average-pooling neurons as ones with the identity as activation
function, and with incoming weights all equal to 1/K (as specified below Definition 2.2.2).
In particular, this code allows anyone to efficiently compute all the bounds of
this thesis.

33

github.com/agonon/pathnorm_toolkit

Chapter 3. Lipschitz properties and consequence for pruning

Figure 3.1: Example of a network where one must replace the max-pooling neuron to
compute the path-norm with a single forward-pass as in Equation (3.2).

Proof of Theorem 3.1.1. Figure 3.1 shows that Equation (3.2) is false if the ∗-max-pooling
neurons have not been replaced with ones having the identity as activation function, since
the forward-pass with input 1 yields output 1 while the ℓ1-path-norm is 2.

Let me now show that Equation (3.2) is a simple consequence of Theorem 2.4.2. By
continuity in θ of both sides of Equation (3.2), it is sufficient to prove it when every
coordinate of θ in E is nonzero. Note that by Definition 2.3.3, the path-lifting ΦG and
ΦG̃ associated respectively with G and G̃ are the same since G and G̃ have the same
underlying DAG. Denote by Φ = ΦG = ΦG̃ the common path-lifting, and by aG̃ the path-
activations associated with G̃. Denote by P→v the set of paths ending at a given neuron
v of G̃. According to Theorem 2.4.2, it holds for every output neuron v of G̃ with x = 1,
using the convention xu := 1 if u /∈ Nin

(RG̃
|θ|q(1))v =

∑
p∈P→v

Φp(|θ|q)aG̃
p (|θ|q, x)xp0 =

∑
p∈P→v

Φp(|θ|q)aG̃
p (|θ|q,1).

Since we restricted to θE with nonzero coordinates, |θE|q has positive coordinates. As
G̃ has only neurons with the ReLU or the identity as activations, it follows by a simple
induction on the neurons that u(|θ|q,1) > 0 for every neuron u of G̃. Thus, every path
p ∈ PG̃ is active, that is, aG̃

p (|θ|q,1) = 1. Since by Definition 2.3.3, Φp(|θ|q) = |Φp(θ)|q,
we obtain:

(RG̃
|θ|q(1))v =

∑
p∈P→v

|Φp(θ)|q = ∥Φ→v(θ)∥q
q.

The claim follows by the definition of the mixed path-norm (Definition 3.1.1).

Positioning. The formula given in Theorem 3.1.1 is the first of its kind to fully encom-
pass ReLU networks with biases, average/∗-max-pooling, and skip connections, such as
ResNets. An equivalent formula is stated in the specific case of layered fully-connected
ReLU networks without biases (and no pooling/skip connections) in Dziugaite et al. [2020,
Appendix C.6.5] and Jiang et al. [2020, Equations (43) and (44)] but without proof (and
only for ℓ2-path-norm instead of general mixed ℓq,r path-norm). Actually, this equiv-
alent formula turns out to be false when there are ∗-max-pooling neurons as one must
replace ∗-max-pooling neurons with ones having the identity as activation function, see
Theorem 3.1.1. Care must also be taken with average-pooling neurons that must be con-
sidered as neurons with the identity as activation function, and the incoming weights must
also be transformed with x 7→ |x|q when computing |θ|q.

At this point, we have a promising object Φ(θ) that is well suited for theoretical analysis
of the function Rθ and more faithful to the function Rθ than the raw parameters θ. I have

34

3.2. Normalized parameters: when mixed path-norms coincide with parameter norms

shown that some norms of Φ(θ) can be computed in a single forward-pass. Moreover,
there is a nice relationship between the function Rθ and Φ(θ) as shown in Theorem 2.4.2:
the function Rθ is locally linear in Φ(θ). The next challenge is to concretely use Φ(θ) to
analyze the function Rθ. I will do this in Section 3.3 by showing that mixed path-norms
can be used to bound Lipschitz constants of Rθ. For now, let me discuss how mixed
path-norms can be related to classical norms of the raw parameters θ for certain θ.

3.2 Normalized parameters: when mixed path-norms
coincide with parameter norms

To better understand how mixed path-norms ∥Φ(θ)∥q,r relate to standard mixed parameter
norms ∥θ∥q,r, I introduce the concept of normalized parameters. These are parameters
that are such that the ℓq-norms of some subvectors of Φ(θ) coincide with the ℓq-norms
of some subvectors of θ. I also show that given any parameters θ, there exists a weakly
rescaling-equivalent version of θ that is normalized. Thanks to this property, I will be able
to show that the Lipschitz bounds established in the next section in terms of mixed path-
norms are at least as fine as the standard ones based on parameter norms. The former
will correspond to infimum over all weakly rescaling-equivalent versions of the latter.

Definition 3.2.1. Consider 0 < q ⩽∞. Parameters θ are said q-normalized if

1. for every v ∈ N \ (Nout ∪Nin):

∥Φ→v(θ)∥q = ∥
(
θ→v

bv

)
∥q ∈ {0, 1},

2. in addition if this is 0 (input-dead neuron, Definition 2.4.3), it also holds θv→ = 0
(beware, this is a condition on the outgoing edges of v).

Let me now introduce Algorithm 3.2.1 that allows to find normalized parameters in
each weak (but in general not strong) rescaling-equivalence class of parameters. This
algorithm proceeds iteratively over the neurons, and for each neuron, it normalizes the
incoming weights by applying one of the two operations allowed for weakly equivalent
parameters (Definition 2.4.3). The neurons are considered in the order given by a topo-
logical sorting [Cormen et al., 2009, Section 22.4], that is an order on the neurons such
that if u→ v is an edge then u comes before v in this ordering.

Lemma 3.2.1. Consider q ∈ (0,∞]. If θ is the output of Algorithm 3.2.1 for the in-
put θ̃ then θ is q-normalized (Definition 3.2.1) and θ is weakly rescaling-equivalent to θ̃
(Definition 2.4.3).

There is no particular technical obstacle to the proof of Lemma 3.2.1, it is just a
matter of analyzing correctly the algorithm. I provide the proof in Appendix B.1.

35

Chapter 3. Lipschitz properties and consequence for pruning

Algorithm 3.2.1 Normalization of parameters for norm q ∈ (0,∞]
1: Consider a topological sorting v1, . . . , vk of the neurons
2: for v = v1, . . . , vk do
3: if v /∈ Nin ∪Nout then

4: λv ←
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

5: if λv = 0 then
6: θv→ ← 0
7: else
8:

(
θ→v

bv

)
← 1

λv

(
θ→v

bv

)
▷ normalize incoming weights and bias

9: θv→ ← λv × θv→ ▷ rescale outgoing weights to preserve the function Rθ

Positioning. In the special case of scalar-valued LFCNs, Algorithm 3.2.1 has been used
in the literature to make the ℓ1-path-norm coincide with a product of layers’s norms
[Neyshabur et al., 2015, Lemma 19][Barron and Klusowski, 2019, Theorem 1]. It turns
out that this algorithm is more general and applies to any DAG ReLU network. The first
formal description of this algorithm is given in Algorithm 3.2.1. Moreover, I identified
and isolated new concepts, normalized parameters and weak rescaling-equivalence, that
will hopefully help at better understanding the roles of the object at play, and that will
lead to more convenient notations later on when comparing mixed path-norms with norms
of the parameters.

3.3 Lipschitzness in x

An important property of neural networks is their robustness to input change: does a
small perturbation of the input x imply a large perturbation of the output Rθ(x)? For
instance, imagine that a car has learned to recognize images x of stop signs using a neural
network Rθ. If this network is robust enough to input perturbation, the car will still
recognize stop signs even if they are a little dirty or have a sticker on them.

Unfortunately, it has been widely reported that networks lack of robustness: small
magnitude input perturbations that are imperceptible to the human eye, such as adding
noise, can make the neural network make prediction errors Szegedy et al. [2014]. Even
real-world attacks have been found: a stop sign recognized by a neural network can be
misclassified as a speed limit sign by adding a small sticker on it [Eykholt et al., 2018].
The desire for robustness motivates the study of the Lipschitz constant of x 7→ Rθ(x).

Section 3.3.1 contains the main contribution of this section: a bound on the Lipschitz
constant of x 7→ Rθ(x) in terms of the mixed-norms of Φ(θ). Section 3.3.2 shows that
these bounds correspond to the infimum over all weakly rescaling-equivalent parameters
of bounds obtained with similar techniques but applied directly to the raw parameters
θ, with the infimum met at normalized parameters (Definition 3.2.1). This shows that
the bounds based on mixed path-norms are at least as fine as the ones based on norms
expressed in terms of the raw parameters, essentially thanks to the fact that the path-
lifting Φ captures the rescaling symmetries.

36

3.3. Lipschitzness in x

3.3.1 Main result
The next theorem is the main result: mixed path-norms of Φ(θ) can be used to bound
the Lipschitz constant of x 7→ Rθ(x).

Theorem 3.3.1. Consider 0 < r ⩽∞. For every parameters θ and inputs x, x′:

∥Rθ(x)−Rθ(x′)∥r ⩽ ∥Φ(θ)∥1,r∥x− x′∥∞.

Note that the ℓ∞-norm is the smallest of the ℓq-norms, so the bound of Theorem 3.3.1
also implies bounds for ∥x− x′∥q on the right-hand side.

Numerical evaluations of path-norm-based bounds are deferred to Chapter 7, after
other bounds have been introduced.

To prove Theorem 3.3.1, I will use the next lemma.

Lemma 3.3.1. Consider a matrix A ∈ {0, 1}d×p and a vector φ ∈ Rp. Assume that each
column of A has at most one non-zero entry. For every q ∈ [1,∞], it holds

∥Aφ∥q ⩽ p
q−1

q ∥φ∥q

with the convention q−1
q

= 1 for q =∞.

Proof of Lemma 3.3.1. I only treat q ∈ [1,∞), the case q = ∞ is similar. This is just a
simple worst-case analysis. The matrix A is binary with at most one non-zero entry per
column j ∈ {1, . . . , p} so we have

d∑
i=1
|Aijφj| ⩽ |φj|.

By convexity of x 7→ xq, we have for scalars xj ⩾ 0, (∑p
j=1 xj)q ⩽ pq−1∑p

j=1 x
q
j , so

∥Aφ∥q
q =

d∑
i=1
|(Aφ)i|q =

d∑
i=1

 p∑
j=1
|Aijφj|

q

⩽ pq−1
d∑

i=1

p∑
j=1
|Aijφj|q = pq−1

p∑
j=1

d∑
i=1
|Aijφj|q

⩽ pq−1
p∑

j=1
|φj|q = pq−1∥φ∥q

q.

This proves the claim.

Applying Lemma 3.3.1 to A = A(θ, x)T and φ = Φ(θ), this yields:

∥A(θ, x)T Φ(θ)∥q ⩽ |P|
q−1

q ∥Φ(θ)∥q

where |P| is the number of paths. This worst-case analysis is the primary reason for
the exclusive presence of the ℓ1-path-norm (q = 1) in bounds established in the literature
and in this thesis: it is the only choice of q that avoids a combinatorial factor |P| in the
bound, at the price of settling for the largest norm q = 1. I haven’t find this discussed in
the literature. I will discuss it in Chapter 7.

37

Chapter 3. Lipschitz properties and consequence for pruning

Proof of Theorem 3.3.1. Consider parameters θ. Consider inputs x, x′ with the same
path-activations with respect to θ: A(θ, x) = A(θ, x′). For 0 < r <∞:

∥Rθ(x)−Rθ(x′)∥r
r =

Theorem 2.4.2

∑
v∈Nout

∣∣∣∣∣
〈

Φ→v(θ), A→v(θ, x)
(
x
1

)
− A→v(θ, x′)

(
x′

1

)〉∣∣∣∣∣
r

=
A(θ,x)=A(θ,x′)

∑
v∈Nout

∣∣∣∣∣
〈

(A→v(θ, x′))T Φ→v(θ),
(
x
1

)
−
(
x′

1

)〉∣∣∣∣∣
r

⩽
Hölder

∑
v∈Nout

∥ (A→v(θ, x′))T Φ→v(θ)∥r
1 ∥x− x′∥r

∞

⩽
Lemma 3.3.1

∑
v∈Nout

∥Φ→v(θ)∥r
1∥x− x′∥r

∞

= ∥Φ(θ)∥r
1,r∥x− x′∥r

∞.

When 0 < r <∞, I just proved the claim locally on each region where the path-activations
A(θ, ·) are constant. This remains true on the boundary of these regions by continuity.
It then expands to the whole domain by triangular inequality because on any segment
joining any pair of inputs, there is a finite number of times when the region changes. The
proof can be easily adapted to r =∞.

Related works. For r = 1, we simply have ∥Φ(θ)∥1,r = ∥Φ(θ)∥1. For this specific
value of r, and in the specific case of scalar-valued LFCN without biases, the conclusion of
Theorem 3.3.1 is already mentioned in Neyshabur [2017, before Section 3.4], and proved in
Furusho [2020, Theorem 5]. Theorem 3.3.1 extends it to arbitrary DAG ReLU networks,
and to arbitrary r ∈ (0,∞]. This requires the introduction of mixed path-norms, which,
to the best of my knowledge, have not been considered before in the literature.

The Lipschitz bound of Theorem 3.3.1 is invariant to permutation and rescal-
ing symmetries. For rescalings, this follows from the fact that the path-lifting is in-
variant under rescaling symmetries (Theorem 2.4.1). Let me now address permutation
symmetries. Given a network architecture, there are usually permutations of the neurons
and corresponding parameters of θ that leave the function Rθ unchanged [Stock and Gri-
bonval, 2023]. This invariance arises because computing Rθ(x) involves computing sums
over the set of antecedents of different neurons v, and these sums remain invariant under
permutations of ant(v). For example, in LFCNs, any pair of neurons in the same layer
can be permuted without altering the network’s function.

The path-lifting Φ(θ) is covariant under such permutations because permuting neurons
results in a corresponding permutation of paths. Since the ℓq-path-norm in Theorem 3.3.1
involves sums over sets of paths, it is invariant under permutation symmetries.

Note that permutations and rescalings are provably the only symmetries of LFCNs
with L = 2 affine layers under non-degeneracy conditions1 [Stock and Gribonval, 2023,
Theorem 3].

1This assumes no "dead" neurons (neurons that never transmit anything because of zero incoming or
outgoing weights) nor "twin" neurons (neurons that perform identical functions and could be merged).

38

3.3. Lipschitzness in x

3.3.2 Comparison with bounds directly expressed in terms of θ
This section shows that the Lipschitz bound of Theorem 3.3.1 is at least as fine as the
standard one based on a product of layers’ norms in the specific case of LFCNs, and even
extend this comparison to general DAGs. This illustrates the interest of considering the
path-lifting Φ(θ) rather than the raw parameters θ.

For LFCN functions Rθ(x) = ML ReLU(ML−1 ReLU(M1x + b1) + bL−1) + bL without
biases, the standard Lipschitz bound is the product of the layers’ norms of the layers.

Lemma 3.3.2 (see e.g., Combettes and Pesquet [2020]). For a layered fully-connected
ReLU network with L affine layers, of the form

Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x+ b1) + bL−1) + bL,

it holds for every x, x′

∥Rθ(x)−Rθ(x′)∥∞ ⩽

(
L∏

ℓ=1
∥Mℓ∥1,∞

)
∥x− x′∥∞,

where ∥M∥1,∞ := maxrow of M ∥row∥1 is the operator norm of M induced by the ℓ∞-norm
on the input and output spaces.

Proof. This is well-known. I still provide a proof for L = 2, and the general case easily
follows by an induction: (highlighting in orange x and x′):

∥Rθ(x)−Rθ(x′)∥∞ = ∥M2 ReLU(M1x+ b1) + b2 −M2 ReLU(M1x
′ + b1) + b2∥∞

= ∥M2 (ReLU(M1x+ b1)− ReLU(M1x
′ + b1))∥∞

⩽ ∥M2∥1,∞ ∥ReLU(M1x+ b1)− ReLU(M1x
′ + b1)∥∞

⩽ ∥M2∥1,∞ ∥M1x+ b1 −M1x
′ + b1∥∞ ReLU is 1-Lipschitz

⩽ ∥M2∥1,∞ ∥M1 (x− x′)∥∞

⩽ ∥M2∥1,∞∥M1∥1,∞ ∥x− x′∥∞ .

This bound is not invariant under rescaling symmetries of Rθ. Because of that, this
bound can be vacuous depending on the scaling of the parameters at hand: Figure 3.2
shows an example where this product is arbitrarily large while the path-norm is equal to
zero.

It is known for scalar-valued LFCNs without biases that the ℓ1-path-norm is a smaller
Lipschitz bound as we have [Neyshabur et al., 2015, Theorem 5]

∥Φ(θ)∥1 ⩽
L∏

ℓ=1
∥Mℓ∥1,∞.

with equality if the parameters are properly rescaled.
With the new concepts of normalized parameters and weak rescaling-equivalence, we

can already provide a new perspective in this specific case of scalar-valued LFCNs without
biases: there is equality for normalized parameters, inequality in general, and since there

39

Chapter 3. Lipschitz properties and consequence for pruning

are normalized parameters in each weak rescaling-equivalence class (Lemma 3.2.1), the
result of [Neyshabur et al., 2015] can be rewritten as:

∥Φ(θ)∥1 = min
θ′=(M ′

1,...,M ′
L),

θ′∼W Rθ

L∏
ℓ=1
∥M ′

ℓ∥1,∞.

In what follows, I extend this comparison to vector-valued LFCNs with biases, and
even to general DAGs as in Definition 2.2.2 by introducing a quantity that plays the role
of the product of layers’ norms in this situation. Moreover, I also extend the comparison
to other mixed path-norms and products of layers’ norms.

From now on, I always consider q ∈ (0,∞) and r ∈ (0,∞] if not specified otherwise.

From scalar-valued to vector-valued networks: from standard to mixed ℓq-
norms. Theorem 3.3.1 shows that going from a scalar-valued network (LFCN or, more
generally a DAG) to a vector-valued network requires going from standard ℓq-norms
∥Φ(θ)∥q, as considered in Neyshabur et al. [2015], to mixed path-norms ∥Φ(θ)∥q,r, which
is, to the best of our knowledge, first introduced in Definition 3.1.1. I will compare such
mixed path-norms to products of mixed quasi-norms:

∥M∥q,∞ = max
row of M

∥row∥q.

From LFCN to DAG: extending the product of layers’ norms. There is no no-
tion of a “layer” Mℓ in a general DAG, hence the product ∏L

ℓ=1 ∥Mℓ∥q,∞ makes no sense
anymore in this general context as a general ReLU network function Rθ as in Defini-
tion 2.2.2 cannot be decomposed as a composition of affine maps and ReLU. Therefore,
I introduce a new quantity that plays the role of the product of layers’ norms for general
DAGs.

Definition 3.3.1. Consider q ∈ (0,∞). For practical purposes, we denote bv := bv when
v ∈ N \Nin, and bv := 1 if v ∈ Nin. For every path p ∈ P, consider

Π(θ, p, q) :=
length(p)∑

ℓ=0

∣∣∣bpℓ

∣∣∣q length(p)∏
k=ℓ+1

∥θ→pk∥q
q

1/q

, (3.3)

with the convention that an empty product is equal to one. For q ∈ (0,∞) and r ∈
(0,∞], define:

Πq,r(θ) :=
∥∥∥∥∥
(

max
p∈P→v

Π(θ, p, q)
)

v∈Nout

∥∥∥∥∥
r

. (3.4)

Let me show that Πq,∞ generalizes the product of layers’ norms to an arbitrary DAG.

Lemma 3.3.3. Consider q ∈ (0,∞). In a LFCN Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))
with L layers and without biases, it holds:

Πq,∞(θ) =
L∏

ℓ=1
∥Mℓ∥q,∞.

40

3.3. Lipschitzness in x

Proof. In a LFCN, all the neurons of two consecutive layers are connected, so∏L
ℓ=1 ∥Mℓ∥q,∞

is also the maximum over all paths starting from an input neuron (and ending at an output
neuron, by definition of the set of paths P) of the product of ℓq-norms:

L∏
ℓ=1
∥Mℓ∥q,∞ = max

p∈P,p0∈Nin

length(p)∏
ℓ=1

∥θ→pℓ∥q.

Since there are no biases (corresponding to γu = bu = 0 for every u /∈ Nin) we have

Π(θ, p, q) =
{ ∏length(p)

ℓ=1 ∥θ→pℓ∥q if p0 ∈ Nin,
0 otherwise.

This shows the claim:

Πq,∞(θ) = max
v∈Nout

max
p∈P→v

Π(θ, p, q) = max
p∈P

Π(θ, p, q)

= max
p∈P,p0∈Nin

length(p)∏
ℓ=1

∥θ→pℓ∥q =
length(p)∏

ℓ=1
∥Mℓ∥q,∞.

Let me now prove that the mixed path-norm is at most equal to this extended product
of layers’ norms, and that there is equality if the parameters are normalized. Since we
also know from Section 3.2 that within any weak rescaling-equivalence class, there are
normalized parameters, we will deduce that the mixed path-norm is equal to the minimum
value of the product over weakly rescaling-equivalent parameters.

Theorem 3.3.2 ([Gonon et al., 2024a]). Consider q ∈ (0,∞) and r ∈ (0,∞]. For every
DAG ReLU network (Definition 2.2.2) and every parameters θ:

∥Φ(θ)∥q,r ⩽ Πq,r(θ).

If θ is q-normalized (Definition 3.2.1) then:

∥Φ(θ)∥q,r = Πq,r(θ) =
∥∥∥∥∥∥
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

v∈Nout

∥∥∥∥∥∥
r

.

In particular, we have
∥Φ(θ)∥q,r = min

θ′∼W Rθ
Πq,r(θ′).

The proof is not particularly interesting and is deferred to Appendix B.2.
Conversely, even in the simple case of a LFCN, there is in general no constant C ⩾ 1

such that for every parameters θ:

Πq,r(θ) ⩽ C∥Φ(θ)∥q,r.

Indeed, the product of layers’ norms can be arbitrarily large while the path-norm is zero.
This is illustrated in Figure 3.2.

This section has shown that the path-lifting Φ(θ) provides a Lipschitz bound that is
often strictly smaller than the one based on the product of layers’ norms of the layers.
This is because the path-lifting is invariant under rescaling symmetries of the network,
while the product of layers’ norms is not. This will again occur in the rest of the thesis,
so I illustrated this phenomenon in Figure 3.3.

41

Chapter 3. Lipschitz properties and consequence for pruning

Figure 3.2: A network which path-norm is zero while the product of layers’ norms scales
as M2.

θ = network parameters
(weight, biases)

Measure
{

Generalization
Robustness

⩽ f(∥θ∥)
→

replace with

Φ(θ) = path-lifting

⩽ g(∥Φ(θ)∥)
"path-
norm"
based
bound

invariant under neuron-wise rescaling
sharper than ∥θ∥

Figure 3.3: Quite often, it is better to consider things in terms of Φ(θ) rather than in
terms of θ because Φ(θ) is invariant to neuron-wise rescaling symmetries of Rθ, while θ is
not.

3.4 Lipschitzness in θ

Another important challenge about neural networks is to upper bound as tightly as pos-
sible the distances between the realizations Rθ, Rθ′ with parameters θ, θ′ when evaluated
at x, in terms of a (pseudo-)distance d(θ, θ′) and a constant Cx:

∥Rθ(x)−Rθ′(x)∥1 ⩽ Cxd(θ, θ′).

Such an inequality could indeed be crucially leveraged to derive generalization bounds
[Neyshabur et al., 2018] or theoretical guarantees about compression [Gonon et al., 2023a].
Indeed, a typical way to achieve compression is to find a pruned or quantized version θ′

of θ such that Rθ′ makes similar predictions to Rθ. Since θ′ has fewer nonzero parameters
(if pruned) or fewer bits (if quantized), it can reduce the needed memory and computa-
tional resources to run the network. Whether or not the prediction Rθ′(x) made by the
compressed parameters is close to the original prediction Rθ(x) motivates the study of
the Lipschitz constant of θ 7→ Rθ(x).

Lipschitzness in θ as above is for example known with

d(θ, θ′) := ∥θ − θ′∥∞, Cx := (W∥x∥∞ + 1)WL2RL−1, (3.5)

in the case of a layered fully-connected neural networkRθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))
with L layers, maximal width W , and with weight matrices Mℓ having some operator norm
bounded by R [Gonon et al., 2023a, Theorem III.1 with p = ∞ and q = 1][Neyshabur

42

3.4. Lipschitzness in θ

et al., 2018, Berner et al., 2020]. This known bound is however not satisfying at least for
two reasons:

• it is not invariant under neuron-wise rescalings of the parameters θ that leave
unchanged its realization Rθ, leading to crude dependencies in R and L and to cases
where this bound is automatically vacuous (Section 1.1.2); and

• it only holds for simple LFCNs, but not for more practical networks that would
include pooling, skip connections, etc.

To circumvent these issues, Section 3.4.1 introduces a natural (rescaling-invariant) metric
based on the path-lifting that provides a Lipschitz property in θ. Section 3.4.2 then com-
pares this new Lipschitz bound to the standard one based on the product of layers’ norms.
Section 3.4.3 shows how to compute this new Lipschitz bound in a single forward-pass
in practical cases of interest such as quantization or pruning. Section 3.4.4 contains the
proof of the Lipschitz bound. In the next section, I will show a first concrete application
of this Lipschitz bound to compression of neural networks.

3.4.1 Main Result
For parameters θ, recall that (Definition 2.3.3) ΦI(θ) and ΦH(θ) denote the sub-vectors
of Φ(θ) corresponding to the coordinates associated with paths starting respectively from
input and hidden neurons. In particular, Φ(θ) is the concatenation of ΦI(θ) and ΦH(θ)
(Definition 2.3.3).

Theorem 3.4.1 ([Gonon et al., 2024b]). Consider a ReLU neural network as in Defini-
tion 2.2.2, with output dimension equal to one. Consider associated parameters θ, θ′. If
θiθ

′
i ⩾ 0 for every coordinate i, we have for every input x:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1. (3.6)

Moreover, for every neural network architecture, there are parameters θ ̸= θ′ and an input
x such that Equation (3.6) is an equality.

I refer the reader to the discussion after Lemma 3.3.1 to understand why this is the
ℓ1-path-norm that appears in the bound. Note that since ∥x∥∞ ⩽ ∥x∥q for any q ∈ [1,∞),
it also implies a bound for any ℓq-norm on the input x.

In the specific case of LFCNs, there is also another Lipschitz bound based on the
product of layers’ norms. I will show in Section 3.4.2 Theorem 3.4.1 is strictly finer. This
is because Theorem 3.4.1 is invariant under rescaling symmetries of the network, while
the product of layers’ norms is not.

The proof of Theorem 3.4.1 is deferred to Section 3.4.4. Don’t miss it, this is my
favorite one.

The assumption of parameters with the same sign cannot be simply removed: see
Figure 3.4 for a counterexample.

Theorem 3.4.1 is intentionally stated with scalar output to allow the reader to deduce
the result with multidimensional output using their favorite norm. The next corollary
consider classical ℓq-norms on the output, and states the bound with the simpler pseudo-
metric d(θ, θ′) := ∥Φ(θ)−Φ(θ′)∥1, called the ℓ1-path-metric, by analogy with the ℓ1-path-
norm ∥Φ(θ)∥1.

43

Chapter 3. Lipschitz properties and consequence for pruning

1 1 −1 −1

Figure 3.4: Counter-example to Theorem 3.4.1 when the parameters have opposite signs.
If the hidden neurons are ReLU neurons, the left network implements Rθ(x) = ReLU(x)
(with θ = (1 1)T) and the right network implements Rθ′(x) = −ReLU(−x) (with θ′ =
(−1 − 1)T). Equation (3.6) does not hold since there is a single path and the product
of the weights along this path is equal to one in both cases, so that Φ(θ) = Φ(θ′) = 1
while these two functions are nonzero and have disjoint supports.

Corollary 3.4.1 ([Gonon et al., 2024b]). Consider an exponent r ∈ [1,∞) and a ReLU
neural network as in Definition 2.2.2. Consider associated parameters θ, θ′. If for every
coordinate i, it holds θiθ

′
i ⩾ 0, then for every input x ∈ Rdin:

∥Rθ(x)−Rθ′(x)∥r ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1.

I will show in Section 3.4.3 that this bound can be easily computed in a single forward-
pass.

Proof of Corollary 3.4.1. By definition of the model, it holds:

∥Rθ(x)−Rθ′(x)∥q
q =

∑
v∈Nout

|v(θ, x)− v(θ′, x)|q.

Recall that Φ→v is the path-lifting associated with the sub-graph G→v (Definition 2.3.3).
By Theorem 3.4.1, it holds:

|v(θ, x)− v(θ′, x)|q ⩽ max(∥x∥q
∞, 1)∥Φ→v(θ)− Φ→v(θ′)∥q

1.

Since Φ(θ) = (Φ→v(θ))v∈Nout , this implies:

∥Rθ(x)−Rθ′(x)∥q
q ⩽ max(∥x∥q

∞, 1)∥Φ(θ)− Φ(θ′)∥q
1.

3.4.2 Comparison with bounds directly expressed in terms of θ.
In the special case of a LFCN, it is also known in the literature that for every input x and
every parameters θ, θ′ (even with different signs) of a LFCN with L affine layers and L+1
layers of neurons, N0 = Nin, . . . , NL = Nout, width W := max0⩽ℓ⩽L |Nℓ|, and each matrix
having some operator norm bounded by R ⩾ 1, it holds [Gonon et al., 2023a, Theorem
III.1 with p = q =∞ and D = ∥x∥∞][Neyshabur et al., 2018, Berner et al., 2020]:

∥Rθ(x)−Rθ′(x)∥1 ⩽ (W∥x∥∞ + 1)WL2RL−1∥θ − θ′∥∞. (3.7)

I prove in Appendix B that the ℓ1-path-metric is smaller than the following non-invariant
metric defined in terms of the raw parameters:

∥Φ(θ)− Φ(θ′)∥1 ⩽ LW 2RL−1∥θ − θ′∥∞.

This time, there is no equality for normalized parameters, as it was the case when compar-
ing mixed path-norms to product of layers’ norms. In particular, the left-hand side is not
equal to the minimum of the right-hand side over all possible weakly rescaling-equivalent

44

3.4. Lipschitzness in θ

parameters. Indeed, the right-hand side is already a worst case upper bound of a finer
quantity defined in terms of the raw parameters θ. This finer quantity is not as simple as
∥θ − θ′∥∞ so I leave it to the supplemental material of this chapter (Lemma B.3.2).

Thanks to the latter inequality, I show in Appendix B.3 that Theorem 3.4.1 implies for
any θ, θ′ (without restrictions on the signs) a slightly better bound than Equation (3.7)
as soon as the LFCN has at least L ⩾ 2 affine layers. This is the second example of the
principle illustrated in Figure 3.3: bounds based on the path-lifting Φ(θ) are often sharper
than bounds directly based on the raw parameters θ.

3.4.3 Computation of the ℓ1-path-metric in two forward-passes.
Besides its theoretical interest, the proposed pseudo-distance d(θ, θ′) = ∥Φ(θ) − Φ(θ′)∥1
also has the desirable property of being easily computable in many practical cases of
interest: when θiθ

′
i ⩾ 0 and |θ′

i| ⩽ |θi| for every coordinate i. This is satisfied if θ′ is
obtained by pruning θ since we either have θ′

i = θi for unpruned coordinates or θ′
i = 0 for

pruned coordinates. This is also satisfied by quantizing θ by rounding towards zero.

Lemma 3.4.1. Consider a ReLU neural network with DAG G. Consider the graph G̃
deduced from G but with max-pooling activations replaced by the identity. For a vector α,
denote by |α| the vector deduced from α by applying x 7→ |x| coordinate-wise, and by 1
the input full of ones. We have for every θ, θ′ such that θiθ

′
i ⩾ 0 and |θ′

i| ⩽ |θi| for every
coordinate i:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(θ)∥1 − ∥Φ(θ′)∥1 = ∥RG̃
|θ|(1)∥1 − ∥RG̃

|θ′|(1)∥1 = ∥RG̃
|θ|(1)−RG̃

|θ′|(1)∥1
(3.8)

where RG̃ denotes the forward-pass in the network with graph G̃.

For simplicity, I stated Lemma 3.4.1 under the assumption θiθ
′
i ⩾ 0 and |θ′

i| ⩽ |θi

for every coordinate i. Given the rescaling symmetries, an immediate corollary is that
the path-metrics remains computable as soon as θ and θ′ are only rescaling-equivalent to
parameters satisfying these conditions. In general, computing the path-metrics without
having to explicit the combinatorial Φ(θ) remains open. But note that it can be bounded
from below by the right-hand side of Equation (3.8), which is computable in two forward-
passes:

∥Φ(θ)− Φ(θ′)∥1 ⩾ ∥Φ(θ)∥1 − ∥Φ(θ′)∥1.

We will not use that, but let me mention that it can also be bounded from above by
first normalizing θ, θ′ and using mixed norms on the parameters, using results2 such as
Lemma C.2.2.

Proof of Lemma 3.4.1. It is heavily relies on Theorem 3.1.1. First, because θiθ
′
i ⩾ 0 for

every coordinate i, we have for every path p: Φp(θ)Φp(θ′) ⩾ 0 so that |Φp(θ)− Φp(θ′)| =
|Φp(|θ|)− Φp(|θ′|)| and:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(|θ|)− Φ(|θ′|)∥1 =
∑
p∈P
|Φp(|θ|)− Φp(|θ′|)|.

2In Lemma C.2.2, the upper-bound contains a maximum of some sum, over all paths, which is com-
binatorial. However, this maximum sum can be further bounded by the depth times the maximum over
all neurons of the term in the sum. This reduces to classical mixed (∞, q)-norms on the parameters

45

Chapter 3. Lipschitz properties and consequence for pruning

Because |θi| ⩾ |θ′
i| for every coordinate i, we have Φp(|θ|) ⩾ Φp(|θ′|) for every path p.

Therefore, we have:

∥Φ(θ)− Φ(θ′)∥1 =
∑
p∈P

Φp(|θ|)− Φp(|θ′|)

=
∑

p∈P
Φp(|θ|)

−
∑

p∈P
Φp(|θ′|)

=
∑

p∈P
|Φp(θ)|

−
∑

p∈P
|Φp(θ′)|

= ∥Φ(θ)∥1 − ∥Φ(θ′)∥1. (3.9)

According to Theorem 3.1.1, it holds for every parameters θ:

∥Φ(θ)∥1 = ∥RG̃
|θ|(1)∥1.

Therefore, we have

∥Φ(θ)− Φ(θ′)∥1 = ∥RG̃
|θ|(1)∥1 − ∥RG̃

|θ′|(1)∥1.

The latter is also equal to ∥RG̃
|θ|(1) − RG̃

|θ′|(1)∥1 because |θi| ⩾ |θ′
i| for every coordinate i

implies that for every neuron v:

vG̃(|θ|,1) ⩾ vG̃(|θ′|,1) ⩾ 0

so that

∥RG̃
|θ|(1)∥1 − ∥RG̃

|θ′|(1)∥1 =
∑

v∈Nout

|vG̃(|θ|,1)| − |vG̃(|θ′|,1)|

=
∑

v∈Nout

vG̃(|θ|,1)− vG̃(|θ′|,1)

=
∑

v∈Nout

∣∣∣vG̃(|θ|,1)− vG̃(|θ′|,1)
∣∣∣

= ∥RG̃
|θ|(1)−RG̃

|θ′|(1)∥1.

This proves the result.

3.4.4 Proof of Theorem 3.4.1
Let me now turn to the proof of Theorem 3.4.1. This is my favorite proof of this the-
sis. The goal is to control the distance between two functions Rθ and Rθ′ in terms of
the ℓ1-distance between their path-liftings Φ(θ) and Φ(θ′). What I like is that this con-
sists of relating two geometries in very different spaces (the functions live in an infinite-
dimensional vector space, while the path-liftings live in a finite-dimensional one), and this
is made possible by carefully navigating in the path-lifting space by following a trajectory
that connects Φ(θ) to Φ(θ′) and whose geometry respects the geometry in the function
space.

46

3.4. Lipschitzness in θ

Figure 3.5: Illustration of the proof of Theorem 3.4.1, see the end of Section 3.4 for an
explanation.

Proof sketch of Theorem 3.4.1 The output of a ReLU neuron in the d-th affine layer
d of a LFCN is a piecewise polynomial function of the parameters θ of degree at most d
(consequence of Equation (2.6)) [Bona-Pellissier et al., 2022, consequence of Propositions
1 and 2].

Given an input x, the proof of Theorem 3.4.1 consists in defining a trajectory t ∈
[0, 1] → θ(t) ∈ Θ (red curve in Figure 3.5) that starts at θ, ends at θ′, and with finitely
many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that the path-activations A(θ(t), x)
are constant on the open intervals t ∈ (tk, tk+1). Each breakpoint corresponds to a value
where at least one activation changes in the neighborhood of θ(t). For instance, in the
left part of Figure 3.5, the straight green line and quadratic green curve correspond to
a change of activation of a ReLU neuron (for a given input x to the network) respectively
in the first and second layer.

With such a trajectory, given the key property (2.4), each quantity |Rθ(tk)(x)−Rθ(tk+1)(x)|
can be controlled in terms of ∥Φ(θ(tk))− Φ(θ(tk+1))∥1, and if the path is “nice enough”,
then this control can be extended globally from t0 to tm.

There are two obstacles: 1) proving that there are finitely many breakpoints tk as
above (think of t 7→ tn+2 sin(1/t) that is n-times continuously differentiable but still
crosses t = 0 an infinite number of times around zero), and 2) proving that the length∑m

k=1 ∥Φ(θ(tk)) − Φ(θ(tk+1))∥1 of the broken line with vertices Φ(θ(tk)) (dashed line on
the right part of Figure 3.5) is bounded from above by ∥Φ(θ)−Φ(θ′)∥1 times a reasonable
factor. Trajectories satisfying these two properties are called “admissible” trajectories.
The first property is true as soon as the trajectory t 7→ θ(t) is smooth enough (analytic,
say). The second is true with factor one thanks to a monotonicity property of the chosen
trajectory. The core of the proof consists in exhibiting a trajectory with these properties.

47

Chapter 3. Lipschitz properties and consequence for pruning

Admissible trajectory: definition. Given any input vector x and two parameters
θ, θ′, I define an x-admissible trajectory3 betweeen θ and θ′ as any continuous map t ∈
[0, 1] 7→ θ(t) such that for every t ∈ [0, 1], the vector θ(t) corresponds to parameters
associated with the considered network architecture, with the boundary conditions θ(0) =
θ and θ(1) = θ′, and with the additional "x-admissibility property" corresponding to the
existence of finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that the path-
activations matrix (see Definition 2.3.3) t ∈ [0, 1] 7→ A(θ(t), x) is constant on each interval
(tk, tk+1) and such that for every path p of the graph, using the shorthand θk := θ(tk),
the "reverse triangle inequality" holds (which is then, of course, an equality):

m∑
k=1
|Φp(θk)− Φp(θk−1)| ⩽ |Φp(θm)− Φp(θ0)|. (3.10)

Finding an admissible trajectory is enough.

Lemma 3.4.2. Consider an input vector x and two parameters θ, θ′. If t ∈ [0, 1] 7→ θ(t)
is an x-admissible trajectory between θ and θ′ then

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1. (3.11)

Proof. In this proof, I denote by convention xu := 1 for any u that is not an input neuron.
Recall that p0 denotes the first neuron of a path p, and xp0 is the coordinate of x for
neuron p0. Theorem 2.4.2 shows that for every parameters θ and every input x, we have

Rθ(x) =
∑
p∈P

xp0ap(θ, x)Φp(θ),

so for every k ∈ {1, . . . ,m} and every tk−1 < t′ < t < tk, we get:

Rθ(t)(x)−Rθ(t′)(x) =
∑
p∈P

xp0 (ap(θ(t), x)Φp(θ(t))− ap(θ(t′), x)Φp(θ(t′))) .

Since both t and t′ belong to the same interval (tk−1, tk) and since t 7→ θ(t) is an admissible
trajectory, the path-activations ap(θ(t), x) = ap(θ(t′), x) are the same for every path p and
we get:

Rθ(t)(x)−Rθ(t′)(x) =
∑
p∈P

xp0ap(θ(t), x) (Φp(θ(t))− Φp(θ(t′))) .

Recall that the set of paths P is partitioned into the sets PI and PH of paths starting
respectively from input and hidden neurons. By the convention taken in this proof, for
p ∈ PH , it holds xp0 = 1. Thus:

Rθ(t)(x)−Rθ(t′)(x) =
∑

p∈PI

xp0ap(θ(t), x) (Φp(θ(t))− Φp(θ(t′)))

+
∑

p∈PH

ap(θ(t), x) (Φp(θ(t))− Φp(θ(t′))) .

3While the standard terminology for such a map t 7→ θ(t) is rather "path" than "trajectory", we choose
"trajectory" to avoid possible confusions with the notion of "path" of a DAG associated with a neural
network.

48

3.4. Lipschitzness in θ

Recall that a path-activation is always equal to 0 or 1 by definition, so that:∣∣∣Rθ(t)(x)−Rθ(t′)(x)
∣∣∣ ⩽ ∑

p∈PI

|xp0| |Φp(θ(t))− Φp(θ(t′))|+
∑

p∈PH

|Φp(θ(t))− Φp(θ(t′))|

⩽ ∥x∥∞∥ΦI(θ(t))− ΦI(θ(t′))∥1 + ∥ΦH(θ(t))− ΦH(θ(t′))∥1.

Considering the limits t → tk and t′ → tk−1 gives by continuity of both θ 7→ Rθ(x) and
θ 7→ Φ(θ):∣∣∣Rθk

(x)−Rθk−1(x)
∣∣∣ ⩽ ∥x∥∞∥ΦI(θk)− ΦI(θk−1)∥1 + ∥ΦH(θk)− ΦH(θk−1)∥1.

Since θ = θ0 and θ′ = θm, using the triangle inequality yields:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞

m∑
k=1
∥ΦI(θk)− ΦI(θk−1)∥1 +

m∑
k=1
∥ΦH(θk)− ΦH(θk−1)∥1. (3.12)

See Figure 3.5 for an illustration of what is happening here. By definition, since the
trajectory is x-admissible, we have by Equation (3.10)

m∑
k=1
∥ΦI(θk)− ΦI(θk−1)∥1 ⩽ ∥ΦI(θm)− ΦI(θ0)∥1 = ∥ΦI(θ′)− ΦI(θ)∥1

and
m∑

k=1
∥ΦH(θk)− ΦH(θk−1)∥1 ⩽ ∥ΦH(θm)− ΦH(θ0)∥1 = ∥ΦH(θ′)− ΦH(θ)∥1.

With Equation (3.12), this proves Equation (3.11).

Construction of an admissible trajectory. In the formal proof of Theorem 3.4.1 I
will show that it is enough to establish the result when all the coordinates of θ, θ′ are
nonzero.

Definition 3.4.1. Consider two parameters θ, θ′ with only nonzero coordinates. For every
t ∈ [0, 1] and every i, define the following trajectory4 t 7→ θ(t) between θ and θ′:

(θ(t))i = sgn(θi)|θi|1−t|θ′
i|t, (3.13)

where sgn(y) := 1y>0 − 1y<0 ∈ {−1, 0,+1} for any y ∈ R.

Observe that the trajectory in Equation (3.13) is well-defined since the coordinates
of θ and θ′ are nonzero by assumption. As proved in the next lemma, this trajectory
has indeed finitely many breakpoints where the path-activations change. This is basically
because for every coordinate i, the trajectory t ∈ [0, 1] → (θ(t))i is analytic5. As a
consequence, the set of t’s where a coordinate of the path-activations matrix A(θ(t), x)
does change can be realized as a set of zeroes of an analytic function on C, and since these
zeroes must be isolated, there could only be finitely of them in the compact [0, 1], except
when the set of zeroes is the whole [0, 1].

4This trajectory is linear in log-parameterization: for every i, the map t 7→ ln(|(θ(t))i|) is linear.
5A function f : C 7→ R is analytic on a closed subset C ⊂ R if there exists an open set C ⊂ O ⊂ R

such that f is the restriction to C of a function that is analytic on O.

49

Chapter 3. Lipschitz properties and consequence for pruning

Lemma 3.4.3. Consider n ∈ N>0 inputs X = (x1, . . . , xn) ∈ (Rdin)n. For parameters
θ, θ′ with only nonzero coordinates, consider the trajectory t ∈ [0, 1] 7→ θ(t) defined in
Equation (3.13). There exists finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such
that for every i = 1, . . . , n, the path-activations matrix t ∈ [0, 1] 7→ A(θ(t), xi) is constant
on each interval (tk, tk+1).
Proof of Lemma 3.4.3. After showing that the result for arbitrary n follows from the
result for n = 1, I establish the latter by an induction on a topological sorting of the
graph G.

Reduction to n = 1. If for every i = 1, . . . , n, we have a finite family of breakpoints
(tik)k, then the union of these families gives a finite family of breakpoints that works for
every i. It is then sufficient to prove that for a single arbitrary input x, there are finitely
many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that the path-activations matrix
t ∈ [0, 1] 7→ A(θ(t), x) remains constant on each interval (tk, tk+1).

For the rest of the proof, consider a single input x, and define for any neuron v the
property

there are finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that for every k :
the map t ∈ [tk, tk+1] 7→ v(θ(t), x) is analytic, (3.14)

and the functions t 7→ av(θ(t), x), t 7→ au→v(θ(t), x), for each u ∈ ant(v), are constant on (tk, tk+1)
Reduction to proving Property (3.14) for every neuron v. I will soon prove

that Property (3.14) holds for every neuron v. Let me explain why this is enough to reach
the desired conclusion. By the same argument as in the reduction to n = 1, the union of
the breakpoints associated to all neurons yields finitely many intervals such that, on each
interval, all functions t 7→ av(θ(t), x), v ∈ N , and au→v(θ(t), x), u ∈ ant(v), are constant.
By Definition 2.3.3 this implies that t 7→ A(θ(t), x) is constant on each corresponding
open interval.

Proof of Property (3.14) for every neuron v by induction on a topological sorting
[Cormen et al., 2009, Section 22.4] of the graph. We start with input neurons v since by
Definition 2.2.2, these are the ones without antecedents so they are the first to appear in
a topological sorting.

Initialization: Property (3.14) for input neurons. For any input neuron v, it
holds by Definition 2.2.2 v(θ, x) = xv that is constant in θ. Thus t ∈ [0, 1] 7→ v(θ(t), x) is
trivially analytic. Since v is an input neuron, it has no antecedent, and by Definition 2.3.3
we have av(θ, x) := 1. This shows that Property (3.14) holds for input neurons.

Induction: Now, consider a non-input neuron v and assume Property (3.14) to
hold for every neuron coming before v in the considered topological sorting. Since every
antecedent of v must come before v in the topological sorting, there are finitely many
breakpoints 0 = t0 < t1 < · · · < tm = 1 such that for every u ∈ ant(v) and every k, the
map t ∈ [tk, tk+1] 7→ u(θ(t), x) is analytic. We distinguish three cases depending on the
activation function of neuron v.

• Case of neurons with the identity as activation function. By Definition 2.2.2
v(θ(t), x) = bv + ∑

u∈ant(v) u(θ(t), x)θ(t)u→v and for every k it is clear that it is analytic
as it is the case for each t ∈ [tk, tk+1] 7→ u(θ(t), x) by induction, and it is also the case
for t ∈ [tk, tk+1] 7→ θ(t)u→v by definition (Equation (3.13)). Since v is a neuron with the
identity as activation function, Definition 2.3.3 implies that au→v(θ(t), x) = av(θ(t), x) = 1
for every t. This establishes Property (3.14) for v.

50

3.4. Lipschitzness in θ

• Case of a ReLU neuron. By Definition 2.2.2: v(θ, x) = ReLU(prev(θ, x))
where the pre-activation of v is prev(θ, x) := bv + ∑

u∈ant(v) u(θ, x)θu→v. Reasoning as
in the previous case, the induction hypothesis implies that for every k the function
t ∈ [tk, tk+1] 7→ prev(θ(t), x) is analytic. We distinguish two sub-cases:

– If this function is identically zero then t ∈ [tk, tk+1] 7→ v(θ(t), x) is null, so it is
analytic, and by Definition 2.3.3 au→v(θ(t), x) = av(θ(t), x) = 1v(θ,x)>0 = 0 for every
u ∈ ant(v);

– Otherwise this analytic function can only vanish a finite number of times on the
compact [tk, tk+1]: there are times tk = s0 < s1 < · · · < sn = tk+1 such that for each j,
s ∈ (sj, sj+1) 7→ prev(θ(s), x) has constant (nonzero) sign and can be extended into an
analytic function on C. For each segment (sj, sj+1) where the sign is negative, we deduce
that for every s ∈ [sj, sj+1] we have v(θ(s), x) = 0, hence by Definition 2.3.3, av(θ(s), x) =
au→v(θ(s), x) = 0 for every u ∈ ant(v); on the other segments, we have v(θ(s), x) =
prev(θ(s), x) for every s ∈ [sj, sj+1], and therefore av(θ(s), x) = au→v(θ(s), x) = 1 for
every s ∈ (sj, sj+1) and u ∈ ant(v).
Overall, on all the resulting (finitely many) segments, we obtain all the properties estab-
lishing that Property (3.14) indeed holds for v.

• Case of a K-max-pooling neuron. Recall that by Definition 2.2.2, the output
of v is the K-th largest component of prev(θ, x) = (u(θ, x)θu→v)u∈ant(v), with ties between
antecedents decided by lexicographic order. Since each t ∈ [tk, tk+1] 7→ u(θ(t), x) is
analytic, and so does t 7→ θ(t)u→v, this is also the case of each coordinate of prev(θ(t), x).

Consider any k. I am going to prove that there are finitely many breakpoints tk =
s0 < s1 < · · · < sℓ = tk+1 such that on each interval (sj, sj+1), there is an antecedent
u ∈ ant(v) such that

v(θ(s), x) = u(θ(s), x)θ(s)u→v, for every s ∈ (sj, sj+1).

By the same reasoning as above this will imply that Property (3.14) holds for v.
For any neurons u ̸= u′ ∈ ant(v), denote δu,u′(θ) := u(θ(t), x)θ(t)u→v−u′(θ(t), x)θ(t)u′→v

and let U be the set of u ∈ ant(v) such that: for each u′ ∈ ant(v), either t 7→ δu,u′(θ(t))
is not identically zero on [tk, tk+1], or u is before u′ in lexicographic order. With this
definition, for each pair u ̸= u′ ∈ U , the function t ∈ [tk, tk+1] 7→ δu,u′(θ(t), x) is
not identically zero and is analytic, so that there are only finitely many breakpoints
tk = su,u′

0 < su,u′

1 < · · · < su,u′

ℓ(u,u′) = tk+1 where it vanishes on the compact [tk, tk+1]. Con-
sidering the union over all pairs u, u′ ∈ U of these finite families of breakpoints, we get
a finite family of breakpoint tk = s0 < s1 < · · · < sℓ = tk+1 such that on each interval
(sj, sj+1), the ordering between the coordinates of prev(θ(s), x) in U is strict and stays
the same. To conclude, it is not hard to check that, by the definition of U and of ∗-max-
pooling, the output of v only depends on the coordinates of prev(θ(s), x) indexed by U .
This yields the claim and concludes the proof of Lemma 3.4.3.

For y ∈ R, recall that here sgn(y) = 1y>0 − 1y<0 ∈ {−1, 0,+1} and it is extended to
vectors by applying it coordinate-wise.

Corollary 3.4.2. Consider two parameters θ, θ′ with nonzero coordinates and such that
sgn(θ) = sgn(θ′). Then the trajectory defined in Equation (3.13) is x-admissible for every
input vector x.

51

Chapter 3. Lipschitz properties and consequence for pruning

Proof. First, the trajectory is well-defined since the coordinates are nonzero, and it satis-
fies the boundary conditions θ(0) = θ and θ(1) = θ′ since the coordinates have the same
signs.

Second, Lemma 3.4.3 proves that for every x, there are finitely many breakpoints
0 = t0 < t1 < · · · < tm = 1 such that the path-activations matrix t ∈ [0, 1] 7→ A(θ(t), x)
is constant on each interval (tk−1, tk).

It now only remains to prove that Equation (3.10) holds to prove that this is an x-
admissible trajectory. Consider a path p. For a coordinate i of the parameters, I write
i ∈ p either if i = p0 and p0 is a hidden neuron, or if i = e is an edge along the
path p. Define sgn(p) := ∏

i∈p sgn(θi) and note that sgn(p) ̸= 0 since θ has only nonzero
coordinates by assumption. Denote |θ| the vector deduced from θ by applying the absolute
value coordinate-wise. It is easy to check by definition of the path-lifting Φ that for every
t ∈ [0, 1]:

Φp(θ(t)) = sgn(p)Φp(|θ|)1−tΦp(|θ′|)t = sgn(p)Φp(|θ(t0)|)1−tΦp(|θ(tm)|)t.

Denote by a := Φp(|θ′|) = Φp(|θ(tm)|) and by b = Φp(|θ|) = Φp(|θ(t0)|). The latter
rewrites:

Φp(θ(t)) = sgn(p)atb1−t.

Thus, Equation (3.10) holds if, and only if,
m∑

k=1
| sgn(p)|

∣∣∣atkb1−tk − atk−1b1−tk−1
∣∣∣ ⩽ | sgn(p)| |a− b| .

Simplifying by sgn(p) ̸= 0, Equation (3.10) is equivalent to:
m∑

k=1

∣∣∣atkb1−tk − atk−1b1−tk−1
∣∣∣ ⩽ |a− b| .

Let me now observe that t 7→ atb1−t is monotonic and conclude. I only do so when a ⩾ b,
the other case being similar. Since by definition, we also have a and b positive, it holds
for t > t′

at−t′
⩾ bt−t′ that is equivalent to atb1−t′

⩾ atb1−t′
.

This is a telescopic sum:

m∑
k=1

∣∣∣atkb1−tk − atk−1b1−tk−1
∣∣∣ =

m∑
k=1

atkb1−tk − atk−1b1−tk−1

= atmb1−tm − at0b1−t0 = a− b = |a− b| .

This shows Equation (3.10), proving that t 7→ θ(t) is an admissible trajectory, and thus
the result.

Proof of Theorem 3.4.1. Equality case. Consider an arbitrary neural network archi-
tecture, an input neuron v0 and a path p = v0 → v1 → . . . vd. Consider θ (resp. θ′)
with only zero coordinates, except for θvℓ→vℓ+1 = a > 0 (resp. (θ′)vℓ→vℓ+1 = b > 0)
for every ℓ ∈ J0, d− 1K. Consider the input x to have only zero coordinates except for
xv0 > 0. It is easy to check that Rθ(x) = adxv0 and Rθ′(x) = bdxv0 . Since ∥x∥∞ = xv0 ,

52

3.5. A first application: pruning

∥ΦI(θ)−ΦI(θ′)∥1 = |ad− bd| and ∥ΦH(θ)−ΦH(θ′)∥1 = 0, this shows that Equation (3.6)
is an equality for these parameters.

Proof of the inequality. By continuity of both handsides of (3.6) with respect to
θ, θ′, it is enough to prove the result when all coordinates of θ, θ′ are nonzero, i.e., under
the stronger assumption that θiθ

′
i > 0 for every coordinate index i. Under this assumption,

by Corollary 3.4.2, the trajectory t 7→ θ(t) defined in Equation (3.13) is x-admissible for
every input vector x. The conclusion follows by Lemma 3.4.2.

3.5 A first application: pruning
I just showed that the path-lifting Φ(θ) provides Lipschitz bounds that hold for ReLU
networks with pooling, skip connections etc. In the special of a LFCN, these bounds are
at least af fine as standard ones derived in terms of the raw parameters thanks to the
symmetry invariance of the path-lifting.

Let me now turn to a practical application of the Lipschitz bound in θ: compression of
neural networks via pruning. In the quest to make neural networks more efficient, pruning
has emerged as a critical technique. As modern neural networks grow increasingly large
and complex, they demand significant computational resources and memory, which can
be prohibitive for deployment in real-world applications such as mobile devices, embedded
systems, and large-scale data centers. Pruning addresses this by reducing the size of the
network, which can lead to faster inference times, lower energy consumption, and reduced
storage requirements, all while maintaining or even improving the network’s accuracy
[Hoefler et al., 2021, Cheng et al., 2023].

Pruning methods typically involve pruning (setting to zero) parameters that are deemed
less important, based on certain criteria. A large number of criteria have been proposed
[Hoefler et al., 2021, Cheng et al., 2023]: some are based on the magnitude of the weights
in θ, others on the sensitivity of Rθ(xi) for a given dataset (xi)i, and still others first
or second order information on a loss score ℓ(Rθ(xi), yi) for a dataset (xi, yi)i and a loss
function ℓ that is used to measure how well Rθ(x) approximates y for a given input x and
target y. There is no single pruning method that is universally superior, and the choice
of method often depends on the specific network architecture, dataset, and task at hand.

However, one of the most widely-used techniques is magnitude pruning [Hoefler et al.,
2021, Cheng et al., 2023], which prunes weights with the smallest magnitudes. This
method, while seemingly simple, has proven remarkably effective and can scale easily to
large networks.

The relevance of magnitude pruning is underscored by the Lottery Ticket Hypothesis
[Frankle and Carbin, 2019]. This hypothesis posits that within a randomly initialized
neural network, there exists a much smaller subnetwork — a "winning ticket" — that can
be trained to achieve performance similar to the full network. Magnitude pruning drew
attention as a method to find these winning tickets: the process to find these winning
tickets typically involves training the network first, followed by magnitude pruning. This
method has been shown to produce subnetworks that train faster, require less memory,
and often generalize better, acting as a form of regularization. This shows that magnitude
pruning manages to uncover subnetworks with interesting properties.

However, magnitude pruning is not invariant to rescalings of the network parameters.
I will show that this may harm its performance in practice. This is where the path-lifting

53

Chapter 3. Lipschitz properties and consequence for pruning

Φ(θ) comes into play: I will use it to design a pruning method that is rescaling-invariant
and that is competitive to magnitude pruning.

3.5.1 Pruning method based on the path-lifting

Notion of pruned parameters. Considering a DAG network G as described in Sec-
tion 2.2, and recall the notation RG to denote the corresponding set of parameters (Def-
inition 2.2.2). By definition, a pruned version θ′ of θ ∈ RG is a "Hadamard" product
θ′ = s ⊙ θ, where s ∈ RG is a binary vector with all of its coordinates in {0, 1} and
∥s∥0 is "small". A standard pruning method consists in selecting s from a pre-trained
parameter θ typically by pruning out (setting to zero) entries of θ with magnitude below
some threshold. This is clearly not rescaling-invariant, as the ranking of the magnitude
of certain coefficients can change when applying certain rescalings.

Proposed rescaling-invariant pruning criteria Given any θ, the parameters θ and
θ′ = s ⊙ θ satisfy the assumptions of Theorem 3.4.1, hence for all input x we have
|Rθ(x)−R′

θ(x)| ⩽ ∥Φ(θ)−Φ(θ′)∥1 max(1, ∥x∥∞). Defining ∆(θ, s) := ∥Φ(θ)−Φ(s⊙ θ)∥1,
a first reasonable global pruning criterion is then to aim at solving the following problem
for a given k

min
s:∥s∥0⩽k

∆(θ, s). (3.15)

However, while (3.8) guarantees that, given s, the cost ∆(θ, s) is computed in two forward-
passes as

∆(θ, s) = ∥RG̃
|θ|(1d)∥1 − ∥RG̃

|s⊙θ|(1d)∥1

(where G̃ is the same as the original one G but with max-pooling activations replaced by
the identity), Problem (3.15) is combinatorial because the set {s : ∥s∥0 ⩽ k} has a size
that grows exponentially in k.

Instead, we can approximate the solution of Problem (3.15) by minimizing an upper-
bound of ∆(θ, s). For each individual parameter coordinate i, we will consider the cost of
setting it to zero

Φ-Cost(θ, i) := ∆(θ, si) (3.16)

where si := 1G − ei with 1G ∈ RG the vector filled with ones and ei ∈ RG the i-th
canonical vector.

Bounding ∆(θ, s) using Φ-Cost(θ, i), i ∈ G. Consider any subset I ⊆ G to be poten-
tially pruned out. When s = s(I) := 1G−1I with 1I = ∑

i∈I ei, then for any enumeration
ij, 1 ⩽ j ⩽ |I| of elements in I, denoting sj := 1G −

∑j
ℓ=1 eiℓ

= 1G − 1∪j
ℓ=1{iℓ} (and

54

3.5. A first application: pruning

s0 := 1G) we have

∆(θ, s) =
(3.8)
∥Φ(θ)∥1 − ∥Φ(s⊙ θ)∥1 =

|I|∑
j=1
∥Φ(sj−1 ⊙ θ)∥1 − ∥Φ(sj ⊙ θ)∥1 =

(3.8)

|I|∑
j=1

∆(sj−1 ⊙ θ, sj)

=
|I|∑

j=1
Φ-Cost(sj−1 ⊙ θ, ij) (3.17)

⩽
|I|∑

j=1
Φ-Cost(θ, ij). (3.18)

Φ-Pruning Method. Instead of solving the combinatorial Problem (3.15), we will min-
imize the upper-bound given in Inequality (3.18). This is achieved via simple reverse hard
thresholding:

1. compute Φ-Cost(θ, i) for all i (two forward-passes per i via Equation (3.8));

2. given the targeted sparsity k, select the set I of cardinal |G| − k containing the k
indices corresponding to the smallest values of this cost.

By Inequality (3.18) and Theorem 3.4.1, the index set I thus selected is such that
∥s(I)∥0 ⩽ k and

|Rθ(x)−Rs(I)⊙θ(x)| ⩽
(∑

i∈I

Φ-Cost(θ, i)
)
∥(x, 1)∥∞. (3.19)

To the best of our knowledge, this is the first practical network pruning method invariant
under rescaling symmetries that is endowed with guarantees on ReLU networks that
contain skip connections, max-pooling, etc. The wide range of applicability of this method
allows us to apply it to networks widely used in practice such as ResNets.

3.5.2 Experiments
To validate the approach I train a dense ResNet-18 on ImageNet-1k with standard hyper-
parameters (Appendix E.1). I prune some weights of the trained dense model with one
of the following methods (recall the definition of Φ-costs in Equation (3.16)):

• magnitude pruning (MP): pruning p% of the smallest weights in absolute value in
each convolutional and fully-connected layer,

• Φ-layerwise pruning (Φ-LP): pruning p% of the weights with the smallest Φ-costs
in each convolutional and fully-connected layer,

• Φ-global pruning (Φ-GP): global pruning of p% of the weights with the smallest
Φ-costs.

Invariance under rescaling symmetries: MP versus Φ-pruning. A key difference
between these pruning methods is that Φ-pruning is invariant to neuron-wise rescaling
symmetries in ReLU networks, while MP is not. To illustrate the consequences of this
lack of invariance, consider the following scenarios.

55

Chapter 3. Lipschitz properties and consequence for pruning

(a) Alice releasing original θ (b) Malice releasing rescaled θ

Scenario 1 (Figure 3.6a). Imagine Alice, a researcher, trains a neural network and
releases its parameters, θ. Bob, another researcher, receives these parameters and uses
magnitude pruning (MP) to prune the smallest weights before retraining the network.

Scenario 2 (Figure 3.6b). Now consider a different scenario where Malice, a malicious
actor, intervenes. Malice takes Alice’s trained network, applies a rescaling to the weights,
and then releases the rescaled parameters to Bob. Bob, unaware of the rescaling, performs
the same magnitude pruning procedure. Due to the rescaling, the magnitudes of the
weights are altered, potentially leading Bob to prune weights that are actually important
in the original network.

Figure 3.7 shows the results of such a scenario. For simplicity here I did not even
attempt to choose a rescaling in an adversarial manner, I simply applied rescaling at
random (see Appendix E.1 for details) before applying magnitude pruning. This still led
to a significant drop in accuracy for MP, demonstrating its vulnerability to rescaling, while
Φ-pruning remained unaffected due to its inherent invariance to such transformations.

0 20 40 60 80
Epoch

35

40

45

50

55

60

65

70

Te
st

 to
p-

1
ac

cu
ra

cy

Pruning 40%

Magnitude
Phi Local
Phi Global
with Random Rescale

0 20 40 60 80
Epoch

30

35

40

45

50

55

60

65

Va
lid

at
io

n
to

p-
1

ac
cu

ra
cy

Pruning 40%

Magnitude
Phi Local
Phi Global
with Random Rescale

Figure 3.7: Training Curves: Test Top-1 Accuracy (left) and Validation Top-1 Accuracy
(right) when finetuning the pruned models, with (dashed line) or without (plain line)
rescaling. The results for Φ-pruning are the same with or without rescaling, hence the
corresponding dashed line (random rescaling applied beforehand) perfectly overlaps with
the plain line (no rescaling), unlike for MP.

56

3.5. A first application: pruning

Comparing criteria and masks. The left part of Figure 3.8 shows the magnitude
(absolute value) versus the Φ-cost for each parameter index i, illustrating a positive cor-
relation between these two quantities. This leads to a high overlap in the sets of pruned
weights, as shown in Table 3.1. This suggests that the parameters obtained with SGD are
naturally balanced in some sense, given that magnitude pruning, which is not invariant
under rescaling, largely aligns with the rescaling-invariant pruning methods. The right
part of Figure 3.8 shows that this correlation is largely reduced after applying a ran-
dom rescaling as detailed in Appendix E.1. In this case, as we have seen on Figure 3.7,
magnitude pruning indeed yields quite different results compared to Φ-pruning.

Figure 3.8: Scatter plot of the magnitude of each weight, versus its Φ-cost (Equa-
tion (3.16)). Left: dense model trained with SGD. Right: same but randomly rescaled as
detailed in Appendix E.1.

Pruning level 10% 20% 40% 60% 80%
Overlap between MP and Φ-GP 70% 74% 76% 80% 86%
Overlap between MP and Φ-LP 87% 82% 90% 94% 96%

Table 3.1: Overlap between masks as a function of pruning level (percentage of pruned
out coefficients). If S1 and S2 index the weights pruned (i.e. set to zero) by methods 1
and 2, the overlap is computed as 100 × |S1 ∩ S2|/|S1|. As all methods prune the same
amount of weights we have |S1| = |S2|.

Comparing accuracies. I find that Φ-pruning methods achieve accuracies comparable
to the standard magnitude pruning method. Specifically, both methods yield the same
top-1 test accuracy at the end of training (Table 3.2), and their training curves are similar
(Figure 3.7). This is noteworthy because, in this context, the choice of the pruning mask
is crucial for achieving high accuracy, as demonstrated by the magnitude pruning method
applied to a random rescaling of the parameters, which significantly underperforms (Ta-
ble 3.2 and Figure 3.7).

57

Chapter 3. Lipschitz properties and consequence for pruning

Pruning level none 10% 20% 40% 60% 80%
MP (+ Random Rescale)

67.7%

69.0 (68.8) 69.0 (68.7) 68.8 (63.1) 68.2 (57.5) 66.5 (15.8)
Φ-LP (∗) 68.8 68.9 68.7 68.1 66.1
Φ-GP (∗) 68.6 68.8 68.6 67.9 66.0

Table 3.2: Top-1 accuracy after pruning, rewind and retrain, as a function of the pruning
level.
(∗) = results valid with as well as without rescaling, as Φ-pruning is invariant to rescaling.
MP + Random Rescale corresponds to the case where I apply a random rescaling before
applying MP (see Appendix E.1 for details).

Computation of the Φ-costs. Computationally speaking, all the Φ-costs can be com-
puted easily all at once with the formula

(Φ-Cost(θ, i))i∈G = θ ⊙∇θ∥Φ(θ)∥1

where ⊙ is product-wise multiplication. Therefore, all the costs can be computed in one
forward pass, to compute the path-norm ∥Φ(θ)∥1, and one backward pass, to compute
the gradient ∇θ∥Φ(θ)∥1. The results of the computations show (cf the vertical axis of
Figure 3.8) that the bound (3.19) is vacuous in this settings (on the order of 1026). This
will be further discussed in Chapter 7 (Section 7.2), along with leads to reduce this gap.

Overall, Φ-pruning is competitive with respect to the widespread magnitude pruning
method in terms of accuracy, is inherently invariant to rescaling symmetries, and the
emerging theory of Φ offers a promising foundation for future theoretical analysis of these
pruning methods.

It is important to highlight that these results were achieved without any tuning effort:
I used the same hyperparameters for the new Φ-pruning methods as those commonly
employed for magnitude pruning in comparable situations [Frankle et al., 2021]. For
further details, see Appendix E.1.

3.6 Conclusion
My main contribution in Chapter 3 has been to prove Lipschitz properties based on mixed
path-norms, with practical applications to pruning. These properties can be numerically
informative on the stability of the network output with respect to small perturbations
of the input or the weights. The Lipschitz property in the input x is important for
robustness matters, as it guarantees that for every parameters θ and every inputs x, x′

(Theorem 3.3.1):
∥Rθ(x)−Rθ(x′)∥r ⩽ ∥Φ(θ)∥1,r∥x− x′∥∞.

This extends to the general class of DAG ReLU networks the same property that was
known in the specific case of scalar-valued LFCNs without biases [Neyshabur et al., 2015].

The Lipschitz property in the weights θ, and based on Φ, is new and says that for
every input x and every parameters θ, θ′ with θiθ

′
i ⩾ 0 for all i (Theorem 3.4.1):

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)∥Φ(param)− Φ(θ′)∥1,

We have seen that these two Lipschitz properties have several desirable properties:

58

3.6. Conclusion

• they hold for general DAG ReLU networks, including widely used architectures such
as ResNets and VGGs,

• they are invariant to rescaling and permutation symmetries,

• they are easy to compute,

• and they are at least as fine as other standard norms based on products of layers’
norms.

Perspectives. There are many potential applications of these Lipschitz bounds. I al-
ready demonstrated a practical application of the Lipschitz bound in θ to design a pruning
method that is not only competitive with traditional magnitude pruning but also invariant
under rescaling symmetries, enhancing its robustness and efficiency. I will further show
how this bound implies generalization guarantees in the next chapter (Chapter 4). Fi-
nally, and as already mentioned, the Lipschitz bound in θ can be used to get quantization
error bounds, and I will give more details on that later, in Chapter 6 (Section 6.1.1).

Besides their theoretical interest, and practical interests for pruning, these Lipschitz
bounds would be numerically informative only if the mixed-path-norms ∥Φ(θ)∥1,r and the
ℓ1-path-metric ∥Φ(θ)− Φ(θ′)∥1 are small enough in practical cases of interests.

While I already showed in the context of pruning (Section 3.5, and in particular
Figure 3.8) that the ℓ1-path-metric can be very large, I will further challenge the concrete
promises of path-norm-based bounds in the specific context of generalization in the last
chapter (Section 7.2). This will lead in Chapter 7 to a discussion on perspectives to
improve the numerical tightness of these bounds.

59

Chapter 4
Generalization with path-norm

This chapter is based on results in Gonon et al. [2024a,b].
My car has learned to recognize stop signs on some images using a neural network Rθ.

Will it recognize stop signs on new images?
Generalization is a fundamental aspect of machine learning, ensuring that models

perform well on new, unseen data, not just the data they were trained on. In practice,
generalization is a key concern when designing and training models, as the example of
a car recognizing stop signs illustrates. In theory, generalization is a central question in
statistical learning theory, aiming at understanding the factors influencing the generaliza-
tion gap, the difference between the performance of a model on the training data and on
the unknown underlying distribution of the data.

The path-norm has emerged as a promising complexity measure to bound the gener-
alization gap of neural networks [Neyshabur et al., 2015, Kawaguchi et al., 2017, Barron
and Klusowski, 2019, Jiang et al., 2020, Dziugaite et al., 2020]: it is one of the best weight-
based measure in terms of correlation with the generalization gap, it is easy to compute,
it is tight for linear models, it is invariant to rescaling and permutation symmetries, and
it is a more faithful measure of complexity than the standard product of layers’ norms in
the case of simple LFCNs.

However, I already mentioned in Chapter 2 that the path-norm lacked versatility
before this thesis, as it was only developed for simple LFCNs. Because of this, the reach
of path-norm-based bounds has only be assessed on toy examples.

This chapter addresses this by providing the first generalization guarantees
for neural networks based on the path-norm that are valid for general DAG
networks. Our main bound is not only the most widely applicable path-norm-based
bound but also either improves or recovers all the previous ones known in simpler settings.

The outline is as follows.

• Section 4.1 recalls the setup of supervised learning, the notion of expected risk,
excess risk and generalization gap [Shalev-Shwartz and Ben-David, 2014, Goodfellow
et al., 2016, Bach, 2024]. I then recall the notion of Rademacher complexity, a
powerful and standard way to establish bounds on the excess risk and generalization
gap (Theorem 4.1.1). The reader already familiar with this can skip Section 4.1.

• Section 4.2 motivates the use of the path-norm as a complexity measure to derive
generalization guarantees for neural networks. This section contains what motivated

61

Chapter 4. Generalization with path-norm

me in the first place to work on the path-norm. If I were to present my work
chronologically, this section would come first.

• Section 4.3 proves the first bound on the Rademacher complexity (Rademacher
bound, in short) using the path-norm that is valid for general DAG networks (The-
orem 4.3.1)[Gonon et al., 2024b]. It is based on the classical Dudley’s integral and
the new Lipschitz property in θ provided by the ℓ1-path-metric (Theorem 3.4.1 in
Chapter 3). Chronologically, this is the first generalization guarantee I proved using
the path-norm in my thesis. I was happy, as this is the first path-norm-based bound
that is valid for general DAG networks. However, I was also disappointed, as it
is not as tight as the best-known bounds when applied to simpler settings such as
LFCNs. This motivated me to look for bounds that are not only widely applicable
but also tighter.

• Section 4.4 improves on the previous Rademacher bound by using another proof
technique based on a peeling argument (Theorem 4.4.1) [Gonon et al., 2024a]. This
time, this new bound either improves or recovers all the previous known ones based
on the path-norm, while being more widely applicable to general DAG networks,
rather than only LFCNs. This section is the main contribution of my thesis on
path-norm-based generalization guarantees for neural networks.

4.1 Supervised learning, generalization bounds, Rademacher
complexity

This section recalls the classical and dominant approach to statistical learning based
on the Rademacher complexity [Shalev-Shwartz and Ben-David, 2014, Goodfellow et al.,
2016, Bach, 2024]. The reader already familiar with this framework can directly go to
Section 4.2.

The main goal of machine learning is to find a function that minimizes the expected
risk [Shalev-Shwartz and Ben-David, 2014, Goodfellow et al., 2016, Bach, 2024], as recalled
in Section 4.1.1. However, this risk cannot be computed in practice. Instead, the classical
approach to supervised learning consists in minimizing an empirical approximation of the
expected risk, called the empirical risk (Section 4.1.2). The performance of the learned
function is then evaluated by looking at the generalization gap and the estimation error,
two statistical quantities recalled in this section, and that can be bounded by the standard
Rademacher complexity (Section 4.1.3).

4.1.1 The goal is to minimize the expected risk
The goal of learning is to find network’s parameters θ that minimize the so-called expected
risk

R(θ) := E(x,y)∼µℓ(Rθ(x), y),
where ℓ is a so-called loss function that measures the discrepancy between the true target
y and the prediction Rθ(x) made by the network with parameters θ on input x. The
expectation is taken over some unknown underlying distribution µ of the input-output
pairs (x, y). This has nothing specific to neural networks so we might just as well consider

62

4.1. Supervised learning, generalization bounds, Rademacher complexity

a set of functions F , and define the expected risk for a general f ∈ F . Thereafter, we
will apply this discussion to neural networks by choosing F := {Rθ, θ ∈ Θ}, the set of
functions Rθ realized by a neural network architecture with parameters θ ∈ Θ.

Definition 4.1.1 (Expected risk). The expected risk of a function f : X → Y, with
respect to a loss function ℓ : Y × Y → R and a distribution µ on X × Y, is defined as

R(f) := R(f, ℓ, µ) := expected risk(f, ℓ, µ) := E(x,y)∼µℓ(f(x), y). (4.1)

For simplicity, I will from now on always drop the dependencies on ℓ and µ, e.g.,
writing R(f) instead of R(f, ℓ, µ), as they will always be clear from the context.

While there are different naming conventions in the literature, I will follow as much
as possible the one of Bach [2024]. Note that the expected risk is also sometimes called
the generalization error or the testing error.

Two standard situations are regression and classification.

• Regression. This corresponds to real-valued targets y (Y = Rdout). For instance, x
could be the configuration of a gas system and y the energy of the system and the
function Rθ would be trained to predict the energy of a new configuration x. The
loss is often the squared error:

ℓ(y′, y) = ∥y − y′∥2
2.

• Classification. This corresponds to discrete-valued targets y (Y finite). For instance,
x could be an image and y the class/label of the object in the image ("traffic light",
"stop sign", etc.). For a classification problem with C classes, the targets y are often
encoded as one-hot vectors y ∈ {0, 1}C with a one at the index of the class and
zeros elsewhere. Instead of choosing Y = {0, 1}C , it is often considered Y = RC ,
to allow one to use the same models for regression and classification. However, for
classification, the model’s output y′ = Rθ(x) ∈ RC is taken through a so-called
softmax, an increasing function applied coordinate-wise to y′ ∈ RC to transform it
in a probability distribution over the C classes, i.e., a vector softmax(y′) ∈ [0, 1]C
that sums to one:

softmax(y′)i := exp(yi)∑C
j=1 exp(yj)

.

The loss is often the cross-entropy loss, pre-composed by the softmax: this mea-
sures the discrepancy between the true distribution y and the predicted distribution
softmax(y′):

ℓ(y′, y) = −
C∑

i=1
yi log(softmax(y′)i).

Another common loss is the zero-one loss, or top-1 accuracy loss, that measures the
number of misclassifications:

ℓ(y′, y) = 1arg max(y)̸=arg max(y′).

It is equal to zero if the prediction made by y′ is the true class, i.e., if the most
probable class arg max(y′) according to y′ corresponds to the class encoded by the
one-hot vector y, and one otherwise.

63

Chapter 4. Generalization with path-norm

Machine learning is concerned with finding a minimizer f ∗ of the expected risk over
all measurable functions[Shalev-Shwartz and Ben-David, 2014, Goodfellow et al., 2016,
Bach, 2024]:

R(f ∗) = inf
f measurable

R(f).

Definition 4.1.2 (Bayes predictor). Consider sets X and Y, a loss function ℓ : Y ×Y →
R, and a distribution µ on X ×Y. A Bayes predictor is a measurable function f ∗ : X → Y
that minimizes the expected risk:

R(f ∗) = inf
f measurable

R(f).

It can be shown that a Bayes predictors exists, is unique up to a set of measure zero,
and is defined by [Bach, 2024, Proposition 2.1]:

f ∗(x) ∈ arg min
y∈Y

Ez(ℓ(y, z)|x),

where the joint distribution (x, y) ∼ µ is conditioned to the given input value x.
• For regression with squared loss ℓ(y′, y) = ∥y−y′∥2

2, a Bayes predictor is the expected
value y given input value x

f ∗(x) = E(y|x).

• For classification with top-1 accuracy loss ℓ(y′, y) = 1arg max(y)̸=arg max(y′), a Bayes
predictor f ∗ chooses the most probable label associated with an input x

f ∗(x) = arg max
y

P(y|x).

In practice, Bayes predictors are not accessible since the underlying distribution µ is
unknown, and we can only aim at approximating one of them. A quantity of interest is
the excess risk of a given function f compared to the Bayes predictors.
Definition 4.1.3 (Excess risk). Consider sets X and Y, a loss function ℓ : Y × Y → R,
and a distribution µ on X × Y. The excess risk of a measurable function f : X → Y is
defined as the difference between the expected risk of f (Definition 4.1.1) and the expected
risk of a Bayes predictor f ∗ : X → Y (Definition 4.1.2):

excess risk(f) := R(f)−R(f ∗). (4.2)

In general, only a subset F of all measurable functions can be reached by an algorithm
that looks for an approximation f of a Bayes predictor. This leads to the definition of
the approximation error and the estimation error.
Definition 4.1.4 (Approximation error, estimation error). Consider a set F of functions
X → Y, a loss ℓ : Y × Y → R, and a distribution µ on X × Y. The approximation error
is a quantitative measure of how far are the Bayes predictors from the best function in F :

approximation error(F) := inf
f∈F

R(f)−R(f ∗). (4.3)

The estimation error is a quantitative measure of how much worse is a given f compared
to the best one in F :

estimation error(f,F) := R(f)− inf
g∈F

R(g). (4.4)

64

4.1. Supervised learning, generalization bounds, Rademacher complexity

.
With these notations, we can now decompose the excess risk as the sum of the esti-

mation error and the approximation error :

excess risk(f) = estimation error(f,F) + approximation error(mathcalF). (4.5)

In this decomposition, the approximation error is of a fundamentally different nature than
the estimation error : it depends only on the set F to which we are restricted, and not on
the function f . The estimation error is a statistical quantity as soon as f is learned from
samples of the distribution µ, as I now explain in Section 4.1.2.

4.1.2 In practice: empirical risk minimization (ERM)
Ideally, we would like to choose f ∗

F ∈ F as

f ∗
F ∈ arg min

f∈F
R(f).

However R(f) = E(x,y)∼µℓ(f(x), y) cannot be computed as the underlying distribution
µ is unknown in practice. In many cases of interest, we have access to samples S =
(xi, yi)i=1,...,n independent and identically distributed (iid) according to µ. This corre-
sponds to supervised learning, where we not only have access to inputs xi but also the
desired outputs yi [Shalev-Shwartz and Ben-David, 2014, Goodfellow et al., 2016, Bach,
2024]. The classical approach to supervised learning is to approximate R(f) by the em-
pirical risk, also called the training error :

RS(f) := training error(f, S) := 1
n

n∑
i=1

ℓ(f(xi), yi)

and to learn a function f̂(S) ∈ F by aiming at minimizing the training error (which
depends on S):

inf
f∈F

RS(f). (4.6)

Then, the function f̂(S) : X → Y is used to predict the target y ≃ f̂(S)(x) for new inputs
x. The ERM algorithm defines what is called an estimator f̂ in statistics, that we will
call the ERM estimator in the following.

Definition 4.1.5 (Estimator and its expected risk). Consider a set F of functions X → Y
and a distribution µ on X ×Y. An estimator learned from n ∈ N>0 samples is defined as
any measurable function f̂ : S ∈ (X ×Y)n 7→ f̂(S) ∈ F , and we will simply write f̂ ∈ F .

Since an estimator f̂ is is a measurable function in the training samples S, there is
for each S an associated expected risk R(f̂(S)) = E(x,y)∼µℓ(f̂(S)(x), y). Here, we need
to be a little careful since we now have two sources of randomness: S and (x, y). The
correct way to interpret the expectation E(x,y)∼µ is that it averages only over (x, y), while
S is considered to be fixed. While this informal definition is enough to understand what
follows, let me mention for readers familiar with probability theory that it is formally
defined as a conditional expectation with respect to S, where (x, y) ∼ µ is independent of
S:

R(f̂(S)) := E(x,y)∼µ

(
ℓ(f̂(S)(x), y)|S

)
. (4.7)

65

Chapter 4. Generalization with path-norm

An example of empirical risk minimization is given in Figure 4.1 for regression with
Y = R, the squared loss ℓ(y′, y) = (y′ − y)2, an underlying distribution µ on (x, y) such
that x is uniform on [0, 1] and y = sin(πx) +N (0, 0.01). The ERM estimator is searched
into the set Fd of polynomial functions of degree at most d. For the same n = 15 iid
samples S = (xi, yi)n

i=1 drawn according to µ, we see that the ERM estimator f̂(S) ∈ Fd

has very different generalization abilities depending on the degree d considered.
In the case of a polynomial of degree d = 2, the ERM estimator generalizes well to new

data: it is a pretty good approximation of the sinus function. In this case, the training
error is close to the expected risk.

In the case of a polynomial of degree d = 14, the ERM estimator does not generalize
well to new data: the degree is large enough to allow for an exact fit of the training
samples. But in order to do so, the ERM estimator oscillates a lot between the training
samples, which leads to a poor approximation of the sinus in-between the training samples.
In this case, the training error is zero, while the expected risk is very large. It is said that
the model overfit the training data [Shalev-Shwartz and Ben-David, 2014, Goodfellow
et al., 2016, Bach, 2024].

0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train error = 0.256, test error = 0.40

sin(x)
train points
test points
prediction for deg = 2

(a) Polynomial regression of degree d = 2.

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train error = 0.000, test error = 2101.14

sin(x)
train points
test points
prediction for deg = 14

(b) Polynomial regression of degree d = 14.

Figure 4.1: For these experiments, I have fixed n = 15 training samples (xi, yi) drawn at
random as described in the text, and considered squared-loss regression which consists in
minimizing ∑n

i=1(fθ(xi)−yi)2. I minimized this over different sets of polynomial functions
fθ(x) = ∑d

i=0 θix
i, corresponding to different degrees d. The left plot shows the result for

d = 2, which generalizes well to new data, while the right plot shows the result for d = 14,
which does not generalize well to new data.

In general, to gain deeper insights into the generalization of the ERM estimator f̂ , it
is standard to compare its expected risk R(f̂) (remember that this is a random variable
depending on the training samples S, see the discussion above Equation (4.7)) to two
other quantities.

• Generalization gap: comparison to the training error of the same func-
tion f̂ . Since f̂(S) minimizes the training error on S, a first natural comparison of
the expected risk R(f̂(S)) is with the training error. Let me define it for a general
function f : X → Y and a set of samples S as

generalization gap(f, S) := expected risk(f)− training error(f, S) = R(f)−RS(f).

It is small if and only if the function f performs similarly on the training set S and
the underlying distribution µ, as in Figure 4.1a. When this is the case for f := f̂(S),

66

4.1. Supervised learning, generalization bounds, Rademacher complexity

this means that using the training error on S as a proxy for the expected risk was a
posteriori a good strategy to achieve a small expected risk. A large generalization
gap is symptomatic of overfitting as in Figure 4.1b.

• Estimation error: comparison to the best function of the model.
I recall here for convenience the definition of the estimation error for a general
function f : X → Y (Definition 4.1.4):

estimation error(f) = expected risk(f)− inf
g∈F

expected risk(g).

If it is small for f = f̂(S), the ERM estimator for learn on samples S, then this
means that minimizing the training error on S was a posteriori a good strategy to
find a (near) minimizer of the expected risk in F .

Note that the generalization gap can be very well approximated in practice. Indeed, the
expected risk of f̂(S) can be approximated by taking an average over m new independent
samples (xtest

i , ytest
i) independent from the training set S,

empirical expected risk(f̂(S)) := 1
m

m∑
i=1

ℓ(f̂(S)(xtest
i), ytest

i).

This is a good approximation as soon as the empirical expected risk is highly concentrated
around its expectation1, which happens for large m [Boucheron et al., 2013, Kawaguchi
et al., 2017]. While this is very useful a posteriori to assess the performance of a network
in practice, it does not provide an explanation of why the network generalizes well or not,
hence no guidance a priori to design better models, training algorithms etc. A recurrent
goal in the literature [Shalev-Shwartz and Ben-David, 2014, Goodfellow et al., 2016, Bach,
2024] is to aim at better understanding the factors influencing the generalization gap and
the estimation error, rather than just approximating them.

In the case of polynomial regression, we could guess by running experiments as in
Figure 4.1 that good generalization arises for ERM if the ratio d/n is small, meaning that
the degree of the polynomial is smaller than the number of training samples, and overfit
arises if the ratio d/n is large. Therefore, the degree of the polynomial can serve as an
explanation of the generalization ability of the ERM estimator. In theory, it is indeed
possible to establish theoretical guarantees in this sense: the estimation error and the
generalization gap are bounded by a function of d/n. In the case of neural networks,
finding a good complexity measure that can be used to explain the generalization of
ERM is an active area of research. In this thesis, I will investigate the promises and
shortcomings of the path-norm as a complexity measure to bound the generalization gap
and the estimation error of neural networks. Let me first recall in the next section the
standard way to bound the generalization gap with Rademacher complexities.

4.1.3 The Rademacher complexity bounds the performance of
ERM

The dominant statistical approach to bound either the generalization gap or the estimation
error of a function f̂(S) ∈ F learned from n training samples S = (xi, yi)i=1,...,n is via

1While this is not important, note that I should have said "expectation conditioned to S" to be precise,
since the expected risk R(f̂(S)) is an expectation conditioned to S (Equation (4.7)).

67

Chapter 4. Generalization with path-norm

the so-called empirical Rademacher complexity of F on S [Bartlett and Mendelson, 2002,
Shalev-Shwartz and Ben-David, 2014, Bach, 2024]. It is defined as

R(F , S) := Eσ

[
sup
f∈F

1
n

n∑
i=1
⟨εi, f(xi)⟩

]
, (4.8)

where εi = (εi,j)j ∈ Rdout and the εi,j’s are iid Rademacher variables (P(εi,j = 1) =
P(εi,j = −1) = 1/2). The empirical Rademacher complexity measures the ability of
the functions in F to positively correlate with random signs. Note that the Rademacher
complexity only depends on the input samples xi and not on the target samples yi. In
the future, we will simply consider S = (xi)i=1,...,n with each xi drawn iid according to a
distribution µx (corresponding to the first marginal of the joint distribution µ on (x, y)).

Definition 4.1.6 (Rademacher complexity). Consider a set F of functions X → Rdout

and a distribution µx on X . The Rademacher complexity of F for the distribution µx is
defined as [Shalev-Shwartz and Ben-David, 2014, Bach, 2024]:

R(F , µx) := ES∼(µx)⊗nR(F , S), (4.9)

where each sample xi of S = (xi)n
i=1 is drawn iid according to µx, and where the empirical

Rademacher complexity R(F , S) has been defined in Equation (4.8).

Theorem 4.1.1 (Generalization bound via Rademacher complexity [Shalev-Shwartz and
Ben-David, 2014, Bach, 2024]). Consider F a class of functions from an input space X
to Rdout, a distribution µ on X ×Rdout, and a loss function ℓ : Rdout ×Rdout → R such that
ℓ(·, y) is L-Lipschitz for every y ∈ Rdout. Denote by µx the marginal of µ on X . For any
estimator f̂ ∈ F (Definition 4.1.5), it holds:

ESgeneralization gap(f̂(S), S) ⩽ 2
√

2L
n
R(F , µx)

ESestimation error(f̂(S), S) ⩽ 4
√

2L
n
R(F , µx).

(4.10)

where the randomness is over n training samples S = (xi, yi)i=1,...,n drawn iid according
to µ.

The bounds (4.10) hold in expectation. Classical concentration results [Boucheron
et al., 2013] can be used to deduce a bound that holds with high probability on the
choice of S, under additional mild assumptions on the loss, see, e.g.,Theorem 26.5 in
Shalev-Shwartz and Ben-David [2014].

In practice, when we observe the output f̂(S) of ERM with samples S, the choice of
F that guarantees f̂(S) ∈ F for all S is not clear. I will come back on this subtlety in
Chapter 7 (see Section 7.3.1).

Proof of Theorem 4.1.1. The proof is standard [Shalev-Shwartz and Ben-David, 2014,
Theorem 26.3][Bach, 2024, Equation (13.3)] and uses two arguments: the symmetriza-
tion property given by Shalev-Shwartz and Ben-David [2014, Theorem 26.3], and the
vector-valued contraction property given by Maurer [2016]. These are the relevant ver-
sions of very classical arguments that are widely used to reduce the problem to the

68

4.1. Supervised learning, generalization bounds, Rademacher complexity

Rademacher complexity of the model [Bach, 2024, Propositions 4.2 and 4.3][Wainwright,
2019, Equations (4.17) and (4.18)][Bartlett and Mendelson, 2002, Proof of Theorem
8][Shalev-Shwartz and Ben-David, 2014, Theorem 26.3][Ledoux and Talagrand, 1991,
Equation (4.20)].

Example 4.1.1 (Cross-entropy loss). The cross-entropy loss is the standard loss chosen
to train neural networks for classification problems. Recall that it is defined as

ℓ(y′, y) = −
C∑

i=1
yi log(softmax(y′)i), (4.11)

where
softmax(y′)i = exp(y′

i)∑C
j=1 exp(y′

j)

is the softmax function that maps the output of the network y′ ∈ RC to a probability
distribution over the C classes, and where y is a one-hot encoding of a class c, meaning
that y = (1c′=c)c′∈{1,...,dout}.

The cross-entropy loss does satisfy the assumption that ℓ(·, y) is L-Lipschitz with re-
spect to the ℓ2-norm with L =

√
2, for every possible one-hot encoding vector y of a

class c [Bartlett et al., 2017, Lemma 2.1]. Therefore, Theorem 4.1.1 applies to the
cross-entropy loss with L =

√
2. Indeed, the softmax is 1-Lipschitz, and the function

z 7→ −∑C
i=1 yi log(zi) is

√
2-Lipschitz. I provide the details for the sake of completeness

in Appendix C.6.

Example 4.1.2 (Top-1 Accuracy Loss). The top-1 accuracy loss is the standard loss
used to evaluate the performance of a function in classification problems. Recall that it is
defined as

ℓ(y′, y) = 1arg max(y)̸=arg max(y′) (4.12)

where y ∈ RC is a one-hot encoding of a class c ∈ {1, . . . , C}, meaning that y =
(1c′=c)c′∈{1,...,dout}.

The function ℓ(·, y) is not L-Lipschitz for any finite L > 0 in general. Indeed, the
top-1 accuracy loss is not continuous. Therefore, Theorem 4.1.1 does not directly apply
to the top-1 accuracy loss. It is still possible to bound it with a Rademacher complexity
but associated to another loss: the margin loss, a relaxed definition of the top-1 accuracy
loss [Bartlett et al., 2017, Lemma A.4].

I invite the readers to skip the remaining details on the margin loss, to go directly to
Section 4.1.4, and refer back later if needed.

For y′ ∈ Rdout and a one-hot encoding y ∈ Rdout of the class c, the margin M(y′, y) is
defined by

M(y′, y) := [y′]c −max
c′ ̸=c

[y′]c′ .

For γ > 0, the γ-margin-loss is defined by [Bartlett et al., 2017]

ℓγ(y′, y) =

0 if γ < M(y′, y),

1− M(y′,y)
γ

if 0 ⩽M(y′, y) ⩽ γ,

1 if M(y′, y) < 0.
(4.13)

69

Chapter 4. Generalization with path-norm

For any class c and one-hot encoding y of c, it is known that y′ ∈ Rdout 7→M(y′, y) is 2-
Lipschitz with respect to the L2-norm on y′ [Bartlett et al., 2017, Lemma A.3]. Moreover,
the function

r ∈ R 7→

0 if r < −γ,

1 + r
γ

if − γ ⩽ r ⩽ 0,
1 if r > 0.

is 1
γ
-Lipschitz. By composition, this shows that y′ ∈ Rdout 7→ ℓγ(y′, y) is 2

γ
-Lipschitz with

respect to the L2-norm so the generic Rademacher bound applies to the γ-margin-loss.
Moreover, the γ-margin-loss is a relaxation of the top-1 accuracy loss: if ℓγ(y′, y) ⩾ ℓ(y′, y)
for every y′ and one-hot encoding y. This leads to the following bound for the expected
top-1 accuracy risk.

Theorem 4.1.2 (Bound on the probability of misclassification [Bartlett et al., 2017]).
Let F be a class of functions from an input space X to Rdout. Consider µ a distribution on
X × Rdout, and S = (xi)i=1,...,n be n training samples drawn iid according to the marginal
of µ on X . We have for all estimator f̂ ∈ F and every γ > 0:

expected risk(f̂ , ℓ, µ) ⩽ expected risk(f̂ , ℓγ, µ)

In particular, using classical concentration results [Boucheron et al., 2013] and the bound
in expectation of Theorem 4.1.1 applied to ℓγ, which satisfies the Lipschitz assumption for
L = 2/γ, with probability at least 1 − δ > 0 over the choice of S ∼ µ⊗n [Bartlett et al.,
2017, Lemma 3.1]:

expected risk(f̂(S), ℓ, µ) ⩽ training error(f̂(S), ℓγ, S) + 4
√

2
nγ
R(F , µx) + 3

√
ln(2/δ)

2n .

(4.14)

Note that the result is homogeneous: scaling both f̂(S) and γ by the same scalar leaves
the losses and the Rademacher complexity unchanged.

Remark 4.1.1 (Case where f is a minimizer of the training error). In the special case
where for every S, the function f is chosen to be exactly a minimizer of the training error
on S, we even have [Shalev-Shwartz and Ben-David, 2014, Theorem 26.3]:

ESestimation error(f, S) ⩽ ESgeneralization gap(f, S) ⩽ 2
√

2L
n
R(F , µx).

because for any f ∗ ∈ F ,

expected risk(f ∗) = EStraining error(f ∗, S) ⩾ EStraining error(f, S)

and we can let f ∗ approximate the model’s oracle error to deduce the bound.

In order to bound the generalization gap or the estimation error, it is therefore enough
to bound the Rademacher complexity, as shown by Theorem 4.1.1 and Theorem 4.1.2.
Bounding the Rademacher complexity gets specific to F . Before delving into the case of
neural networks, let me mention practical cases where F and n are known to correspond
to a Rademacher complexity that is too large to be informative [Zhang et al., 2021].

70

4.1. Supervised learning, generalization bounds, Rademacher complexity

4.1.4 Cases where the Rademacher complexity is too large
The Rademacher complexity is a measure of the richness of the set F of functions com-
pared to a given number of samples n. By definition (Equation (4.9)), it is large if, in
expectation over the choice of n samples S = (xi)i=1,...,n, the set F is so rich that for any
choice of labels εi ∈ {−1, 1}dout , we can find f ∈ F that adapts to this arrangement of
labels: ⟨f(xi), εi⟩ ⩾ 0.

If the set F is fixed, one can expect the existence of a threshold N ∈ N>0 such that
the bounds are vacuous for n ⩽ N , F being too expressive for small n’s, and informative
for n ⩾ N . In practice, the training datasets are standardized, hence n is fixed. The
architectures are also standards, so the DAG network G is also fixed. Therefore, to have
a Rademacher complexity small enough to be informative, F should be taken as a subset of
the functions realized by the network G that is not too expressive compared to the number
of samples n.

If we just take F as the set of all functions realized by the network G, this set
is known to be too expressive for classical choices of n and architectures G to allow for
informative bounds [Zhang et al., 2021]. Indeed, with the same set of n inputs S = (xi)n

i=1
corresponding to images divided in C classes, Zhang et al. [2021] empirically show that
the network G can be trained to fit any set of random labels yi ∈ {1, . . . , C}, leading to
a vacuous bound if F contains all these functions.

To understand why, let me reproduce a discussion from Zhang et al. [2021] with our
notations. Denote by generalization gap(p) the generalization gap when trained on the
original data distribution modified to have a proportion p ∈ [0, 1] of random labels chosen
uniformly in the C different classes. The generalization bound B(p) := 2

√
2L

n
R(F , µx)

(Equation (4.10)) is the same for all the level of random labels since the Rademacher
complexity only depends on the input distribution. Therefore, we have B(p) = B for all
p, and we get

sup
p

generalization gap(p) ⩽ B,

where by definition,

generalization gap(p) = expected risk when trained on p% of random labels
− training error when trained on p% of random labels.

It is empirically shown in Zhang et al. [2021] that the network G can be trained to zero
training error for all p. Therefore, generalization gap(p) is just equal to the expected risk.
Zhang et al. [2021] uses this to argue that the Rademacher bound must be vacuous at
least in the case of the top-1 accuracy loss ℓ(y′, y) = 1arg max(y)=arg max(y′). Although this
argument does not formally apply to the top-1 accuracy loss, simply because the bound

sup
p∈[0,1]

generalization gap(p) ⩽ B

does not hold (the left-hand side has essentially to be corrected by a factor2), I still
2A well-known result [Bartlett et al., 2017, Lemma 3.1], that I have reproduced earlier in Theo-

rem 4.1.2, indicates that the generalization gap has essentially to be multiplied by the data margin
for the bound to hold. However, this margin is typically not large enough to compensate to make the
right-hand side informative in practice, so the conclusion of the argument of Zhang et al. [2021] still
holds.

71

Chapter 4. Generalization with path-norm

reproduce it below as this argument gives a good qualitative idea of what is going on.
Moreover, the same type of argument is expected to formally apply to other losses.

First, observe that the expected top-1 accuracy risk must be at least p(1− 1/C) since
there is a probability p of having an input with a random label, and since the label is
chosen uniformly, there is only 1/C chances of being right in this case. And since the
generalization gap is equal to the expected risk (the training error is zero), we would have
if the Rademacher bound was holding in this case

sup
p∈[0,1]

p(1− 1/C) = 1− 1/C ⩽ B.

For the top-1 accuracy loss, the bound B is informative only if B ⩽ 1, vacuous otherwise.
Therefore, Zhang et al. [2021] concludes that this bound is vacuous as soon as F contains
at least one function realized by G that fits random labels for p large enough (just C ⩾ 2
already implies B ⩾ 1/2).

This motivates to look for a smaller set F of functions realized by the network G that
is not too expressive compared to the number of samples n. A widespread idea is to look
for a complexity measure that would be large for the functions that fit random labels,
and small for the functions that do not, so we could define F as the set of functions that
have a small complexity measure. In this thesis, I have been interested in the path-norm
as a complexity measure, for reasons that I now explain.

4.2 Path-norm as a complexity measure
If I were to tell the story of my thesis chronologically, I would have placed this section
first. It was precisely by discovering the concepts in the order presented in this section
that I became interested in the path-norm initially and felt compelled to extend it to more
general networks.

The goal of many studies in generalization is to find a complexity measure that explains
the generalization ability of the ERM estimator. A typical bound on the Rademacher
complexity (Rademacher bound for short) looks like

R(F , µx) ⩽ complexity measure(F , µx)√
n

.

In this thesis, I take interest in the ℓ1-path-norm as a complexity measure for generaliza-
tion. The reasons for this are multiple.

• Path-norm measures the size of the weights, not the size of the network architecture.
For polynomial regression, Figure 4.1 shows that the degree d seems to be a good
complexity measure. It is indeed possible to establish theoretical guarantees in this
sense: the estimation error and the generalization gap are bounded by

√
d/n times

something that depends on how far µ is from a polynomial model [Bach, 2024].
For DAG neural networks (Definition 2.2.2), the equivalent would be to measure
the size of the architecture (graph size). However, it has been known for a long
time that the size of the weights is more important than the size of the network
[Bartlett, 1996, Zhang et al., 2021, Bach, 2024]. Indeed, current neural network

72

4.2. Path-norm as a complexity measure

architectures are so large compared to the current training datasets that they can
essentially fit any function on these training sets [Zhang et al., 2021]. Among these
functions, some generalize well, others poorly. Therefore, the same architecture can
lead to very different generalization abilities and its size is not relevant to explain
generalization. This motivates the use of a complexity measure that accounts for the
size of the weights [Zhang et al., 2021].

• Path-norm correlates empirically better with the generalization gap than other weight-
based complexity measures. Jiang et al. [2020] and Dziugaite et al. [2020] made large
scale experiments to compare different weight-based complexity measures for gener-
alization. They found that the path-norm is one of the measure that correlates the
more positively with the generalization gap. It even does so almost as well as an
oracle does, where the oracle has access to the true generalization gap plus a small
noise. This makes the path-norm a promising candidate for establishing theoretical
guarantees on the generalization of neural networks.

• Path-norm is invariant to symmetries (Theorem 2.4.1). I already evoked in Sec-
tion 1.1.2 that some bounds can be vacuous if they are not invariant to symmetries
of the network. This also applies to Rademacher bounds. For instance, consider the
bound

R(FΘ, µx) ⩽ complexity measure(FΘ, µx)√
n

with FΘ := {Rθ, θ ∈ Θ ⊂ RG}. The left-hand side is invariant to symmetries, since
for any rescaling vector λ ∈ RH

>0 (Definition 2.4.1), we have FΘ = Fλ⋄Θ, and the
Rademacher complexity of FΘ is the same as the Rademacher complexity of Fλ⋄Θ
since they contain the same functions (Rθ = Rλ⋄θ). However, the amplitude of the
right-hand side depends on the complexity measure. A weight-based complexity
measure is typically of the form

complexity measure(FΘ, µ) = sup
θ∈Θ

ψ(θ)

for some real-valued function ψ. If ψ(λ ⋄ θ) → ∞ as ∥λ∥ → ∞, the bound can be
vacuous depending on the scaling of the weights in Θ. If ψ(θ) is the ℓ1-path-norm
∥Φ(θ)∥1, this problem does not occur since it is invariant to symmetries (Theo-
rem 2.4.1).

• Path-norm is the infimum over weakly rescaling-equivalent parameters of the product
of the layers’ norms. A common weight-based complexity measure for LFCNs with
matrices θ = (M1, . . . ,ML) is the product of the layers’ norms ψ(θ) := ∏L

l=1 ∥Mℓ∥1,∞
[Bartlett et al., 2017, Neyshabur et al., 2018]. We already saw in Theorem 3.3.2
that the path-norm is a finer measure as it is the infimum over all weakly rescaling-
equivalent parameters of the product of the layers’ norms.

• Path-norm is easy to compute (Theorem 3.1.1). This is in contrast to other complex-
ity measures that require more complex computations, such as the spectral norm for
convolutional layers [Sedghi et al., 2019, Araujo et al., 2021, Delattre et al., 2024].

73

Chapter 4. Generalization with path-norm

Because of all these reasons, the path-norm is a promising candidate to establish
theoretical guarantees on the generalization of neural networks. It turns out that the
path-norm has already been used for this purpose in the literature, but only for simple
LFCNs [Neyshabur et al., 2015, Barron and Klusowski, 2019]. Thus, the promises of
theoretical guarantees based on the path-norm were currently out of reach before this
thesis: they could not even be tested on standard practical networks such as ResNets.
This prevented us from both understanding the reach of path-norm-based generalization
guarantees and from diagnosing their strengths and weaknesses, which is necessary to
either improve them in order to make them actually operational, if possible, or to identify
without concession the gap between theory and practice.

4.3 Path-norm Rademacher bounds via covering num-
bers

For a general set of functions F , the so-called Dudley’s inequality guarantees that the
Rademacher complexity can be bounded if we know how to control covering numbers of
F with respect to the pseudo-metric

∥f(x)− g(x)∥2

for all inputs x and all functions f, g ∈ F . For DAG networks with f = Rθ and g = Rθ′ ,
I showed how to control this in terms of the ℓ1-path-metric in Theorem 3.4.1, as soon as
θiθ

′
i ⩾ 0 for all i:

∥f(x)− g(x)∥2 ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1.

In this section, I build upon this to control covering numbers of F := {Rθ, θ ∈ Θ} without
sign assumptions (θiθ

′
i ⩾ 0) on the pairs θ, θ′ ∈ Θ. Thanks to that, I derive the first

ℓ1-path-norm-based Rademacher bound valid for general DAG networks (Theorem 4.3.1).
This bridges the gap between networks that are theoretically analyzable with path-norm
and the ones used in practice.

4.3.1 Main result
The main result of this section is the following theorem: a Rademacher bound for general
DAG networks that depends on the ℓ1-path-norm of the parameters.

Theorem 4.3.1 (Path-norm Rademacher bound via covering numbers [Gonon et al.,
2024b]). Consider a DAG network G (Definition 2.2.2) , Θ ⊂ RG and the associated
functions FΘ := {Rθ, θ ∈ Θ}. Consider n iid input samples S = (xi)i=1,...,n drawn
according to a distribution µx and denote σ = ES (∑n

i=1 max(1, ∥xi∥2
∞))1/2. Denote by

r := supθ∈Θ ∥Φ(θ)∥1. We have:

R(FΘ, µx) ⩽ 144σmax(D, dout)
√

#params× r, (4.15)

where we recall that D = maxp∈P length(p) is the depth of the graph, dout = |Nout| is the
output dimension, and #params is the number of coordinates in a given θ ∈ RG.

74

4.3. Path-norm Rademacher bounds via covering numbers

Note that #params counts all the coordinates of θ, even if some are shared, i.e., con-
strained to be equal. Weight-sharing occurs for instance for convolutional layer. For a
convolutional kernel K, the bound is counting all the coefficients in the matrix correspond-
ing to the linear transformation induced by this kernel, which contains many repetitions
of the coefficients in K. It is possible to improve Theorem 4.3.1 in the case of weight-
sharing to a bound that only counts the number of free coordinate parameters. For the
sake of simplicity, I do not consider weight-sharing in this section. There is no particular
difficulty to extend to weight-sharing, it just needs to be done properly. I include the
details for completeness in Appendix C.2.

The next section improves Theorem 4.3.1 using a different proof technique that com-
pletely removes the number of parameters from the bound. I decided to still include
Theorem 4.3.1 in this manuscript for three reasons: 1) chronologically, it was the first
Rademacher bound I proved, which then convinced me that it was indeed possible to ex-
tend the statistical analysis based on the path-norm to general DAG networks, 2) the proof
technique is different from the one I used in the next section so it provides an alternative
approach for future improvements, and 3) this proof technique explicitly demonstrates how
any Lipschitz control of θ 7→ Rθ(x) directly implies a generalization bound via covering
numbers.

The proof of Theorem 4.3.1 is given at the end of Section 4.3. Let me first intro-
duce intermediary results: the classical Dudley’s inequality that bounds the Rademacher
complexity using so-called covering numbers.

4.3.2 Dudley’s integral
Let me start by recalling the definition of covering numbers (see, e.g., Definition 5.5 in
Van Handel [2014]).

Definition 4.3.1. Consider a pseudo-metric space (F , d). Let Bt(f) be the closed ball
centered at f ∈ F of radius t > 0. A family f1, . . . , fn of points of F is called a t-covering
of (F , d) if F ⊂ ∪n

i=1Bt(fi). The covering number of (F , d) for radius t > 0, denoted
N (F , d, t), is the minimum cardinality of a t-covering of (F , d).

In the sequel, I will use the classical Dudley’s inequality Shalev-Shwartz and Ben-
David [2014], Van Handel [2014], Maurer [2016]. Since the statements in the literature
always have small variations, at least in notations, I include the proof for completeness in
Appendix C.1 that is essentially based on Corollary 5.25 in Van Handel [2014].

Lemma 4.3.1 (Corollary 5.25 in [Van Handel, 2014]). Consider a set F of measurable
functions from Rdin to Rdout. Consider a probability distribution µx on Rdin. For n iid
samples S = (xi)n

i=1 ∼ (µx)⊗n, denote f(S) = (f(xi))n
i=1 for any f ∈ F and define the

pseudo-metric dS on F by:

dS(f, g)2 := ∥f(S)− g(S)∥2
2 =

n∑
i=1
∥f(xi)− g(xi)∥2

2 . (4.16)

We have (recalling the definition of the Rademacher complexity in Equation (4.9) and
covering numbers in Definition 4.3.1)

R(F , µ) ⩽ 12ES

(∫ ∞

0

√
lnN (F , dS, t)dt

)
. (4.17)

75

Chapter 4. Generalization with path-norm

My goal is now to bound the covering numbers N (F , dS, t) in terms of the path-norm
when F = {Rθ, θ ∈ Θ} corresponds to DAG network functions. Lemma 4.3.1 shows that
it is sufficient to control each ∥Rθ(x) − Rθ′(x)∥2. Using Theorem 3.4.1, we can lift to
covering numbers of the path-lifting image Φ(Θ) with respect to the ℓ1-norm. This leads
to the next result, the main result of Section 4.3.2.

Theorem 4.3.2 (Reducing to covering numbers of (Φ(Θ), ∥ · ∥1) [Gonon et al., 2024b]).
Consider a DAG network G (Definition 2.2.2) and a set of associated parameters Θ ⊂ RG.
Denote by r = supθ∈Θ ∥Φ(θ)∥1. Consider the set of functions FΘ := {Rθ, θ ∈ Θ}, n train-
ing samples S = (xi)n

i=1 and define the pseudo metric dS(Rθ, Rθ′) := (∑n
i=1 ∥Rθ(xi)−Rθ′(xi)∥2

2)
1/2.

Define also σS = (∑n
i=1 max(1, ∥xi∥2

∞))1/2. Denote by Θ∗ the set of parameters with only
nonzero coordinates, sgn(Θ) = {sgn(θ), θ ∈ Θ∗} the associated set of sign vectors (with
sgn(x) = 1x⩾0 − 1x⩽0 ∈ {−1, 0, 1}), and for each s ∈ sgn(Θ) denote Θs = Θ ∩ {θ : θisi ⩾
0,∀i}. We have for any t > 0:

N (FΘ, dS, t) ⩽ | sgn(Θ)| max
s∈sgn(Θ)

N (Φ(Θs), ∥ · ∥1, t/σS).

Improved bound for t large enough. If t ⩾ 2σSr, we have N (FΘ, dS, t) = 1.

The number of signs in Theorem 4.3.2 is one of the reason why the number of param-
eters #params appears in the final Rademacher bound of Theorem 4.3.1. But this is not
the only reason for that, as we will see that even for fixed signs s, the covering number
of (Φ(Θs), ∥ · ∥1) that I derive below (Theorem 4.3.3) also makes #params appear in the
bound of Theorem 4.3.1. These two occurrences of #params are additive, and even if we
could improve one of them, the other one would still be there. I will point out the two
occurrences of #params in the proof of Theorem 4.3.1. Let me now turn to the proof of
Theorem 4.3.2.

Proof of Theorem 4.3.2. Recall that Θ∗ is the set of parameters with only nonzero co-
ordinates, sgn(Θ) = {sgn(θ), θ ∈ Θ∗} is the associated set of sign vectors, and for each
s ∈ sgn(Θ), Θs = Θ ∩ {θ : θisi ⩾ 0,∀i}. Therefore, FΘ = ∪s∈sgn(Θ)FΘs and the union of
t-coverings of each FΘs is a t-covering of FΘ. So for each t > 0 we have

N (FΘ, dS, t) ⩽
∑

s∈sgn(Θ)
N (FΘs , dS, t).

Theorem 3.4.1 implies (through Corollary 3.4.1) that for each s, and every θ, θ′ ∈ Θs:

dS(Rθ, Rθ′) =
(

n∑
i=1
∥Rθ(xi)−Rθ′(xi)∥2

2

)1/2

⩽ σS∥Φ(θ)− Φ(θ′)∥1,

Thus, a t-covering of (FΘs , dS) is obtained by picking an arbitrary pre-image by the path-
lifting Φ of each element in a t/σS-covering of (Φ(Θs), ∥ · ∥1), hence

N (FΘs , dS, t) ⩽ N (Φ(Θs), ∥ · ∥1, t/σS) ⩽ max
s∈sgn(Θ)

N (Φ(Θs), ∥ · ∥1, t/σS).

Putting the pieces together proves the desired result for a general t > 0.

76

4.3. Path-norm Rademacher bounds via covering numbers

Improved bound for t large enough. For any parameters θ and input x, it holds

∥Rθ(x)∥2 = ∥Rθ(x)−R0(x)∥2 ⩽
Corollary 3.4.1

max(1, ∥x∥∞)∥Φ(θ)−Φ(0)∥1 = max(1, ∥x∥∞)∥Φ(θ)∥1.

Recall that r = supθ∈Θ ∥Φ(θ)∥1. Therefore, for every θ, θ′ ∈ Θ and every input x, we have

∥Rθ(x)−Rθ′(x)∥2 ⩽ ∥Rθ(x)∥2 + ∥Rθ′(x)∥2 ⩽ 2 max(1, ∥x∥∞)r.

Since σ2
S = ∑n

i=1 max(1, ∥xi∥2
∞), we have:

dS(Rθ, Rθ′)2 =
n∑

i=1
∥Rθ(xi)−Rθ′(xi)∥2

2 ⩽ 4σ2
Sr

2.

This shows that any single Rθ ∈ FΘ is a 2σSr-covering of FΘ with respect to dS, and
concludes the proof.

As a corollary, we get a bound on the Dudley’s integral for the set of functions realized
by a general DAG network (Definition 2.2.2).

Corollary 4.3.1 ([Gonon et al., 2024b]). Consider the setup of Theorem 4.3.2. For t > 0,
define the shorthand notation

N (t) := max
s∈sgn(Θ)

N (Φ(Θs), ∥ · ∥1, t). (4.18)

We have:∫ ∞

0

√
lnN (FΘ, dS, t)dt ⩽ 2rσS

√
ln | sgn(Θ)|+ σS

∫ 2r

0

√
ln(N (u)) du. (4.19)

Proof of Corollary 4.3.1. Theorem 4.3.2 guarantees that N (FΘ, dS, t) = 1 for t ⩾ 2σSr
so we have: ∫ ∞

0

√
lnN (FΘ, dS, t)dt =

∫ 2σSr

0

√
lnN (FΘ, dS, t)dt.

I now bound the latter using the general case of Theorem 4.3.2:∫ 2σSr

0

√
lnN (FΘ, dS, t) dt ⩽

∫ 2σSr

0

√
ln (| sgn(Θ)| N (t/σS)) dt

u=t/σS= σS

∫ 2r

0

√
ln (| sgn(Θ)| N (u)) du ⩽ 2rσS

√
ln | sgn(Θ)|+ σS

∫ 2r

0

√
ln(N (u)) du.

4.3.3 Bounding covering numbers in the path-lifting space
Corollary 4.3.1 shows that in order to bound the Dudley’s integral, it is sufficient to bound
the covering numbers of each (Φ(Θs), ∥ · ∥1). Let me start by noticing that in many cases,
these covering numbers are independent on the choice of the signs s.

Lemma 4.3.2 ([Gonon et al., 2024b]). Consider the setting of Theorem 4.3.2. Denote
by 1 the vector constant equal to one and by |θ| ∈ Θ1 the vector deduced from θ ∈ Θs by
applying x 7→ |x| coordinate-wise. Consider s ∈ sgn(Θ). If the map x ∈ Θs 7→ |x| ∈ Θ1 is
one-to-one (with inverse x ∈ Θ1 7→ s⊙ x ∈ Θs), then

N (Φ(Θs), ∥ · ∥1, t) = N (Φ(Θ1), ∥ · ∥1, t).

77

Chapter 4. Generalization with path-norm

In particular, Lemma 4.3.2 applies to Θ := {θ, ∥Φ(θ)∥1 ⩽ r}.

Proof. For every θ, θ′ ∈ Θs, it is easy to check that by definition (Definition 2.3.3) ∥Φ(θ)−
Φ(θ′)∥1 = ∥Φ(|θ|)−Φ(|θ′|)∥1. This shows that under the assumptions, there is a one-to-one
correspondence between the t-coverings of (Φ(Θs), ∥ · ∥1) and of (Φ(Θ1), ∥ · ∥1).

Let me now establish bounds for the covering numbers of each (Φ(Θs), ∥ · ∥1). Using
standard bounds for covering Φ(Θ) would lead to an exponential dependence on the am-
bient dimension of Φ(Θ), which is undesirable since the number of paths is combinatorial
(as already discussed at the beginning of Section 3.1). My aim is to avoid this exponen-
tial dependence in #paths, and instead having an exponential dependence on the degrees
of freedom of Φ(Θ). Although little is known about the image Φ(Θ), it is possible to
intuitively infer its degrees of freedom: it should be equal to the number of parameters
minus the degrees of freedom associated with rescaling symmetries. Indeed, Φ(θ) is the
image of Θ, with a dimension corresponding to the number of parameters, and mapping
through Φ removes the redundancy due to rescaling symmetries. Recent findings support
this, showing that Φ(Θ) has a manifold dimension bounded by the number of parameters
[Bona-Pellissier et al., 2022, Theorem 7]. In line with this, let me now demonstrate that
the intuitive number of degrees of freedom I inferred above can indeed replace the alge-
braic ambient dimension of Φ(Θ) (the number of paths) in standard coverings. This is
the main result of Section 4.3.3.

Theorem 4.3.3 ([Gonon et al., 2024b]). Consider a DAG network G and Θ ⊂ RG.
Denote by r := supθ∈Θ ∥Φ(θ)∥1, #params the number of coordinates of any θ ∈ RG, and
by #rescalings the number of hidden neurons of G (i.e., the dimension of a rescaling
vector λ ∈ RH

>0, see Definition 2.4.1). It holds:

N (Φ(Θ), ∥ · ∥1, t) ⩽ 2#rescalings max
(

1, 24 max(D, dout)r
t

)#params−#rescalings

where we recall that D = maxp∈P length(p) is the depth of the graph and dout = |Nout| is
the output dimension.

Theorem 4.3.3 does not make any signs assumptions on the parameters. However,
we will only apply it to sets of parameters with fixed signs because of Theorem 4.3.2
that reduced the problem to bounding such covering numbers. I did not try to derive
something finer as I do not expect that taking into account the signs would lead to a large
gain in Theorem 4.3.3. Indeed, for an ℓq-ball in dimension d and radius r, fixing the signs
of the parameters reduces the volume of the ball from ∝ rd to ∝ (r/2)d. In our case, we
are not working with balls, but rather with intersections of balls with the image of the
path-lifting Φ. If we still build our intuition on balls, taking into account the fixed signs
would only replace r by r/2 in the bound of Theorem 4.3.3, only improving the constant
24 by a factor 2.

The proof of Theorem 4.3.3 relies on the comparison between the ℓ1-path-metric and
classical norms on the raw parameters, just as the ones established in Section 3.4.2 in
Chapter 3. To get the tightest possible comparison, I carefully select in the weak equiv-
alence class (Definition 2.4.3) of the ℓ1-path-metric the representation of the parameters
that is the most favorable to the covering number. This again leads to considering nor-
malized parameters (Definition 3.2.1). The proof is not of particular interest and is a

78

4.3. Path-norm Rademacher bounds via covering numbers

bit tedious so I leave it to Appendix C.2.3, where I directly prove the same result with
possible weight-sharing.

4.3.4 Proof of the main result, Theorem 4.3.1

Let me now prove the main result of Section 4.3.

Proof of Theorem 4.3.1. Consider Θ∗ the set of parameters with only nonzero coordinates,
sgn(Θ) = {sgn(θ), θ ∈ Θ∗} the associated set of sign vectors (with sgn(x) = 1x⩾0−1x⩽0 ∈
{−1, 0, 1}), and for each s ∈ sgn(Θ) denote Θs = Θ ∩ {θ : θisi ⩾ 0,∀i}. For each u > 0,
denote

N (u) := N (Φ(Θ1, ∥ · ∥1, u).

We have:

R(FΘ, µx) ⩽ 12ES

(∫ ∞

0

√
lnN (FΘ, dS, t)dt

)
Lemma 4.3.1

⩽ ES

(
2rσS

√
ln | sgn(Θ)|+ σS

∫ 2r

0

√
ln(N (u)) du

)
. Corollary 4.3.1

The number | sgn(Θ)| of signs is at most equal to 2#params. Moreover, Theorem 4.3.3
guarantees for every u > 0

N (u) = N (Φ(Θ1), ∥ · ∥1, u)

⩽ 2#rescalings max
1,

(
24 max(D, dout)r

u

)#params−#rescalings
 . (4.20)

We get

∫ 2r

0

√
ln(N (u))du =

∫ 2r

0

√√√√√ln
2#rescalings

(
24 max(D, dout)r

u

)#params−#rescalings
du

⩽ 2r
√

ln(2)#rescalings +
√

#params−#rescalings
∫ 2r

0

√√√√ln
(

24 max(D, dout)r
u

)
du.

For the last integral, do a change of variable t = u/24 max(D, dout)r to get:

∫ 2r

0

√√√√ln
(

24 max(D, dout)r
u

)
du = 24 max(D, dout)r

∫ 1/12 max(2D,dout)

0

√
ln(1/t)dt

⩽ 24 max(D, dout)r
∫ 1/12

0

√
ln(1/t)dt︸ ︷︷ ︸

⩽1/3

⩽ 8 max(D, dout)r.

79

Chapter 4. Generalization with path-norm

Putting everything together, we get:

R(FΘ, µx) ⩽ 12ES

(
2rσS

√
ln | sgn(Θ)|+ σS

∫ 2r

0

√
ln(N (u)) du

)
⩽ 12ES

(
2rσS

√
ln(2)#params + 2rσS

√
ln(2)#rescalings

+8rσS max(D, dout)
√

#params−#rescalings
)

⩽ 24σr
(√

ln(2)#params +
√

ln(2)#rescalings

+4 max(D, dout)
√

#params−#rescalings
)

⩽ 24σr
√

#params

 2
√

ln(2)︸ ︷︷ ︸
≃1.67⩽2 max(D,dout)

+4 max(D, dout)

⩽ 144σr

√
#params.

This concludes the proof. Along the way, we see in the previous inequalities that
√

#params
appears in the bound both because of the number of signs (Theorem 4.3.2) and because
of the degrees of freedom appearing in the covering bound of each (Φ(Θs), ∥ · ∥1) (Theo-
rem 4.3.3).

4.3.5 Discussion on Theorem 4.3.1
Let me discuss the main result of this section, Theorem 4.3.1, which is a bound on the
Rademacher complexity of neural networks based on path-norm.

Recall that before Theorem 4.3.1, the generalization guarantees based on the path-
norm were only established for LFCNs [Neyshabur et al., 2015, Barron and Klusowski,
2019]. Thanks to Theorem 4.3.1, we now know that the path-norm can also be used to
derive generalization guarantees for general DAG networks (Definition 2.2.2).

However, if we look at the dependencies in Theorem 4.3.1, we see that they are worse
than those obtained for LFCNs. Indeed, this can be seen by comparing in Table 4.1 the line
corresponding to [Barron and Klusowski, 2019], which does not contain any dependence
on #params, and the line corresponding to Theorem 4.3.1, which has a dependence on
#params. This suggests that the bound in Theorem 4.3.1 is not the best we could hope
for.

In the next section, I improve on Theorem 4.3.1 by extending to general DAG networks
the best known Rademacher bound, which is the one of Barron and Klusowski [2019] and
that is established in the specific case of scalar-valued LFCNs without biases (see again
Table 4.1).

80

4.3. Path-norm Rademacher bounds via covering numbers

Table 4.1: Bounds on the Rademacher complexityR(F , µx) (up to universal multiplicative
constants) for the set F := {Rθ, ∥Φ(θ)∥1 ⩽ r} associated to a DAG network G or a
LFCN. The exception is the result of Golowich et al. [2018] where LFCNs without biases
are considered, and the set F is defined via a constraint on the product of layers’ norms:
F := {Rθ, θ = (M1, . . . ,ML),∏D

d=1 ∥Mℓ∥1,∞ ⩽ R}. The distribution µx on the inputs is
arbitrary, and for n iid input samples S = (xi)i=1,...,n drawn according to µx, we denote by
σ = ES (∑n

i=1 max(1, ∥xi∥2
∞))1/2. In this table, din/dout are the input/output dimensions,

#params is the number of parameters without redundancy when there is weight-sharing,
K = maxv∈N∗-pool | ant(v)| is the maximum kernel size (see Definition 2.2.2 in the appendix)
of the ∗-max-pooling neurons, and D is the depth (maximum length of a path, which
coincides with the number of affine layers for LFCNs).

Architecture Generalization bound

[Kakade et al., 2008, Eq.
(5)] [Bach, 2024, Sec.

4.5.3]

LFCN with depth D = 1, no bias,
dout = 1 (linear regression)

r × σ
√

ln(din)

[E et al., 2022, Thm. 6]
[Bach, 2017, Proposition

7]

LFCN with D = 2, no bias, dout = 1
(two-layer network)

r × σ
√

ln(din)

[Neyshabur et al., 2015,
Corollary 7]

DAG, no bias, dout = 1 r × σ2D
√

ln(din)

[Golowich et al., 2018,
Theorem 3.2]

LFCN with arbitrary D, no bias,
dout = 1

R× σ
√
D + ln(din)

[Barron and Klusowski,
2019, Corollary 2]

LFCN with arbitrary D, no bias,
dout = 1

r × σ
√
D + ln(din)

This thesis,
Theorem 4.3.1 (and
Theorem C.2.2 for

weight-sharing)

DAG, with biases, arbitrary dout,
with ReLU, identity and
∗-max-pooling neurons

r × σmax(D, dout)
√

#params

This thesis,
Theorem 4.4.1

DAG, with biases, arbitrary dout,
with ReLU, identity and

k-max-pooling neurons for
k ∈ {k1, . . . , kP } ⊂ {1, . . . , K}

r × σ
√
D ln(PK) + ln(dindout)

81

Chapter 4. Generalization with path-norm

4.4 Path-norm Rademacher bounds via peeling
This section improves on the previous generalization bound by using a different proof
technique, inspired by the peeling technique originally given in Golowich et al. [2018] in
the case of scalar-valued layered fully-connected ReLU networks. In order to adapt it
to more practical networks, this new generalization bound relies on the following main
theoretical contributions: a new contraction lemma (to deal with max-pooling neurons)
and a new peeling argument (because the network is not layered anymore).

4.4.1 New contraction and peeling lemmas
Denote by FL the set of functions realized by a LFCN with L affine layers, with some
layer norm bounded by r. The peeling argument of Golowich et al. [2018] peels off the
network one layer at a time:

R(FL, µ) ⩽ r ×R(FL−1, µ)

and every time a layer gets peeled off, its norm r appears.
In our case, peeling off layers is impossible since the network is not assumed to be

layered, for instance because of the possible presence of skip-connections. Instead, I will
peel off neurons, as I now describe when there is a single output neuron v:

R(FΘ, µ) = ES,ε sup
θ

n∑
i=1

εiv(θ, xi)

where the εi’s are iid Rademacher variables (P(εi = 1) = P(εi = −1) = 1/2) independent
of the samples S = (xi)n

i=1 ∼ (µ)⊗n. Recall that for a DAG G = (N,E) and a neuron v ∈
N , its set of antecedents inG is defined as ant(v) = {u ∈ N, u→ v ∈ E} (Definition 2.2.2),
see Figure 4.2 for an example.

v

u1

u2

u3

Figure 4.2: A DAG with a neuron v and its antecedents u1, u2, u3.

Similarly, I will write antd(v) the set of neurons that can reach v with a path of length
at most equal to d. My aim is to peel off the network one neuron at a time to write
something like:

E sup
θ

n∑
i=1

εiv(θ, xi) ⩽ E sup
θ

max
u∈ant(v)

n∑
i=1

εiu(θ, xi)

⩽ E sup
θ

max
u∈ant2(v)

n∑
i=1

εiu(θ, xi)

⩽ . . .

82

4.4. Path-norm Rademacher bounds via peeling

Iterating this argument until reaching a maximum over input neurons u that satisfy
u(θ, xi) = xi, we will have reduced to:

E sup
θ

n∑
i=1

εixi

which is easy to bound. There are two main difficulties to overcome: 1) the presence of
∗-max-pooling neurons, and 2) the fact that the proof of [Golowich et al., 2018] makes
local complexity measures appear (that isolates the weights from one another), while I
would like the path-norm ∥Φ(θ)∥1 to appear, a global complexity measure (that takes into
account the interactions of the weights along the different paths). I now explain how to
address these two difficulties.

From ReLU to ∗-max-pooling neurons. The peeling argument of Golowich et al.
[2018] removes ReLU layers using a contraction lemma of the type

E sup
t∈T

εReLU(t) ⩽ E sup
t∈T

∑
i

εiti

This result uses that the ReLU activation function has a scalar-valued input, is 1-Lipschitz
and satisfies f(0) = 0. This is not the case for ∗-max-pooling neurons: it has a vector-
valued input. To overcome this, I proved a new contraction lemma to cope with ∗-max-
pooling neurons.

The classical contraction lemmas are of the type:

E sup
t∈T

εf(t) ⩽ E sup
t∈T

∑
i

εiti

in a situation where f is the activation function of a neuron, t is the pre-activation of the
neuron, and the epsilon variables are independent Rademacher variables. This type of
contraction result is well-known for arbitrary T when f : R 7→ R is 1-Lipschitz and satisfies
f(0) = 0 [Ledoux and Talagrand, 1991, Equation (4.20)]. I extended it to ∗-max-pooling
neurons, which fail to fall into the classical framework because of their vector-valued
input.

Lemma 4.4.1 ([Gonon et al., 2024a]). Consider a finite set W , a set T of elements
t = (t1, t2) ∈ RW ×R and a function f : RW → R. Consider also a convex non-decreasing
function F : R → R and a family of iid Rademacher variables (εj)j∈J where J will be
clear from the context. Assume that we are in one of the two following situations.

Scalar input case. (already known, [Ledoux and Talagrand, 1991]) f is 1-Lipschitz,
satisfies f(0) = 0 and has a scalar input (|W | = 1).
∗-max-pooling case. (new) There is k ∈ N>0 such that f computes the k-th largest

coordinate of its input.
Denoting t1 = (t1,w)w∈W , it holds:

E sup
t∈T

F (ε1f(t1) + t2) ⩽ E sup
t∈T

F

(∑
w

ε1,wt1,w + t2

)
.

The proof is deferred to Appendix C.3. Let me now turn to the second obstacle to
overcome, resolved with a new peeling lemma.

83

Chapter 4. Generalization with path-norm

From local to global complexity measures using the symmetries. In the peeling
argument of Golowich et al. [2018], peeling a layer make a layer’s norm r appear. The
norm of a layer can be understood as a local complexity measure: this kind of measure is
blind to how this layer takes part in the global computations made by the network. In our
case, we are going to peel off neurons, so we can again expect that this local surgery will
make a local complexity measure appear. However, we need to relate this local complexity
to the path-norm ∥Φ(θ)∥1, that can be understood as a global complexity measure since
each weight is considered as being a part of all the paths going through it, and each path
either contributes to the output or not.

In order to relate a local complexity to a global complexity, I will crucially use the
symmetries of the network. Recall Theorem 3.3.2 in Chapter 3 that shows that if we
carefully select the representation of the parameters in its weak equivalence class to be
normalized parameters, we can make the path-norm ∥Φ(θ)∥1 coincide with local complex-
ity measures. I will exploit this by first reducing to normalized parameters before peeling
off neurons. Therefore, the new peeling lemma I establish is only stated for normalized
parameters. Let me now state an informal version of this lemma, and leave the details
to the appendix (Appendix C.4, Lemma C.4.3). The lemma shows that is is possible to
peel the neurons at distance d of the output neurons, to reduce to the neurons at dis-
tance d + 1, and controls the constants that appear in the process in the specific case of
normalized parameters. The proof relies on the contraction inequality in Lemma 4.4.1.

Lemma 4.4.2. Informal version of Lemma C.4.3 [Gonon et al., 2024a].
Consider a family of independent Rademacher variables (εj)j∈J with J that will be

clear from the context. Consider a convex non-decreasing function g : R → R⩾0. Define
P := |{k ∈ N>0,∃u ∈ Nk-pool}| as the number of different types of ∗-max-pooling neurons
in G, and K := maxu∈N∗-pool | ant(u)| the maximal kernel size of the network (K := 1 if
P = 0). Assume the parameters to be 1-normalized, basically meaning that the vector of
incoming weights of each neuron has ℓ1-norm equal to one (Definition 3.2.1). It holds
(highlighting in orange the changes):

Eεg

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣

⩽ PEεg

 max
v∈Nout,

m=1,...,KM

max
u∈antd+1(v)

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣
 .

Let me explain how the peeling lemma will be used. After a few easy steps on the
Rademacher complexity:

R(FΘ, µ) = ES,ε sup
θ

n∑
i=1

εiv(θ, xi)

= ES,ε log
(

exp
(

sup
θ

n∑
i=1

εi,vv(θ, xi)
))

⩽
Jensen

ES log
(
Eε exp

(
sup

θ

n∑
i=1

εi,vv(θ, xi)
))

84

4.4. Path-norm Rademacher bounds via peeling

I will apply the peeling lemma on the last term, corresponding to g(x) = exp(x) in
Lemma 4.4.2. This is to mitigate the apparition of the additional constants P and K at
every application of Lemma 4.4.2, as they will here only appear in a logarithm, a trick
introduced in Golowich et al. [2018].

4.4.2 Main result
Thanks to the new contraction and peeling lemmas presented above, it is now possible to
improve on the Rademacher bound I established in the previous Section 4.3. While all the
other results of this thesis hold for arbitrary biases, the next theorem holds only if the ∗-
max-pooling neurons have null biases. In the model I introduced in Definition 2.2.2,
max-pooling neurons, which are widely used in practice, correspond to 1-max-pooling
neurons with null biases. Therefore, the assumption of null biases on ∗-max-pooling
neurons has no impact on the practical applicability of the result to classical max-pooling
neurons. For simplicity, I state the result when all the biases are null. I then explain how
to extend the result when neurons u /∈ N∗-pool may have bu ̸= 0 .

Theorem 4.4.1 (Path-norm Rademacher bound via peeling [Gonon et al., 2024a]). Con-
sider a DAG network G (Definition 2.2.2) with Nin ∩Nout = ∅, Θ ⊂ RG with null biases
and denote FΘ := {Rθ, θ ∈ Θ}. Denote r := supθ ∥Φ(θ)∥1, din/dout the input/output
dimensions, D the depth of G (the maximal length of a path from an input to an output),
P := |{k ∈ N>0,∃u ∈ Nk-pool}| the number of distinct types of ∗-max-pooling neurons in
G, and K := maxu∈N∗-pool | ant(u)| its maximal kernel size (K := 1 if P = 0). Consider n
random samples S = (xi)n

i=1 drawn iid according to some distribution µx on X and denote
σ :=

(
ES∼(µx)⊗n max(n,∑n

i=1 ∥xi∥2
∞)
)1/2

. We have:

R(FΘ, µx) ⩽
√

2σCr.

with (log being the natural logarithm)

C :=
(
D log((3 + 2P)K) + log

(3 + 2P
1 + P

dindout

))1/2
.

Extension to the case with nonzero biases for non ∗-max-pooling-neurons.
Any neural network with nonzero biases can be transformed into an equivalent network
(with same path-norms and same Rθ) with null biases for every v /∈ N∗-pool: add an input
neuron vbias with constant input equal to one, add edges between this input neuron and
every neuron v /∈ N∗-pool with parameter θvbias→v := bv, and set bv = 0. Thus the same
result holds with bv ̸= 0 for v /∈ N∗-pool, with din replaced by din + 1 in the definition of
C, and with an additional constant input coordinate equal to one in the definition of σ
so that σ = (ES max (n,maxu=1,...,din

∑n
i=1(xi)2

u))1/2 ⩾
√
n. The proof in Appendix C.5

is directly given for networks with nonzero biases (except ∗-max-pooling neurons), using
this construction.

Comparison with other bounds. On ImageNet, it holds 1/
√
n ⩽ σ/n ⩽ 2.6/

√
n (as

explained in the last Chapter 7, see Section 7.2). This yields a bounds that decays in
O(n−1/2) which is better than the generic O(n−1/din) generalization bound for Lipschitz

85

Chapter 4. Generalization with path-norm

functions [von Luxburg and Bousquet, 2004, Thm. 18] that suffer from the curse of dimen-
sionality. Besides its wider range of applicability, this bounds also recovers or improves
on the sharpest known ones based on the path-norm, see Table 4.1 for a comparison.

Extension of Theorem 4.4.1 to other models. Despite its applicability to a wide
range of standard modern networks, the generalization bound in Theorem 4.4.1 does not
cover networks with other activations than ReLU, identity, and ∗-max-pooling. The same
proof technique could be extended to new activations that: 1) are positively homogeneous,
so that the weights can be rescaled without changing the associated function; and 2)
satisfy a contraction lemma similar to the one established here for ReLU and max neurons
(typically requiring the activation to be Lipschitz). A plausible candidate is Leaky ReLU.
For smooth approximations of the ReLU, such as the SiLU (for Efficient Nets) and the
Hardswish (for MobileNet-V3), parts of the technical lemmas related to contraction may
extend since they are Lipschitz, but these activations are not positively homogeneous.

Improving Theorem 4.4.1. Note that Theorem 4.4.1 can be tightened: the same
bound holds without counting the neurons having the identity as activation function when
computing D. Indeed, for any neural network and parameters θ, it is possible to remove
all the neurons v ∈ Nid by adding a new edge u→ w for any u ∈ ant(v), w ∈ suc(v) with
new parameter θu→vθv→w (if this edge already exists, just add the latter to its already
existing parameter). This still realizes the same function, with the same path-norm, but
with less neurons, and thus with D possibly decreased. The proof technique would also
yield a tighter bound but not by much: the occurrences of 3 in C would be replaced by 2.

Sketch of proof for Theorem 4.4.1. The proof idea is explained below. Details are in Ap-
pendix C.5.

Already known ingredients. In the case of LFCNs no biases and scalar output,
Golowich et al. [2018] proved that it is possible to bound the Rademacher complexity with
no exponential factor in the depth, by peeling, one by one, each layer off the Rademacher
complexity. To get more specific, for a class of functions F and a function Ψ : R → R,
denote R◦Ψ(F) = EεΨ(supf∈F

∑n
i=1 εif(xi)) the Rademacher complexity of F associated

with n inputs xi and Ψ, where the εi are iid Rademacher variables (εi = 1 or −1 with
equal probability). The goal for a generalization bound is to bound this in the case Ψ(x) =
id(x) = x. In the specific case where FD is the class of functions that correspond to layered
fully-connected ReLU networks with depth D, assuming that some operator norm of each
layer d is bounded by rd, Golowich et al. [2018] basically guarantees Rad ◦Ψλ(FD) ⩽
2 Rad ◦ΨλrD

(FD−1) for every λ > 0, where Ψλ(x) = exp(λx). Compared to previous
works of Golowich et al. [2018] that were directly working with Ψ = id instead of Ψλ, the
important point is that working with Ψλ gets the 2 outside of the exponential. Iterating
over the depth D, optimizing over λ, and taking a logarithm at the end yields (by Jensen’s
inequality) a bound on Rad ◦ id(FD) with a dependence on D that grows as

√
D log(2)

instead of 2D for previous approaches [Neyshabur et al., 2015], see Table 4.1.
Novelties for general DAG ReLU networks. Compared to the setup of Golowich

et al. [2018], there are at least three difficulties to do something similar here. While I
already mentioned them above (Section 4.4.1), let me summarize them here.

86

4.5. Conclusion

First, the neurons are not organized in layers as the model can be an arbitrary DAG.
So what should be peeled off one by one? Second, the neurons are not necessarily ReLU
neurons as their activation function might be the identity (average-pooling) or ∗-max-
pooling. Finally, Golowich et al. [2018] has a local constraint on the weights of each
layer, which makes it possible to pop out the constant rd when layer d is being peeled off.
Here, the only constraint is global, since it constrains the paths of the network through
∥Φ(θ)∥1 ⩽ r. In particular, due to rescalings, the weights of a given neuron could be
arbitrarily large or small under this constraint.

The first difficulty is primarily addressed using a new peeling lemma that peels off
the neurons one at a time (an informal version of this lemma has been given above in
Lemma 4.4.2, the formal version is the appendix, see Appendix C.4). The second diffi-
culty is addressed with a new contraction lemma for ∗-max-pooling neurons (it has been
given in its simplest form in Lemma 4.4.1 above, and the full version is in appendix, see
Appendix C.3), and splitting the ReLU, k-max-pooling and neurons with the identity as
activation function in different groups before each peeling step. The number of different
groups yields a log(2) term in Golowich et al. [2018], against a log(3 + 2P) term here (P
being the number of different k’s for which k-max-pooling neurons are considered). Fi-
nally, the third obstacle is overcome by normalizing the parameters with Algorithm 3.2.1.
This type of rescaling has also been used for LFCNs in Neyshabur et al. [2015], Barron
and Klusowski [2019].

Remark 4.4.1 (Improved bound with assumptions on ∗-max-pooling neurons). In the
specific case where there is a single type of k-max-pooling neurons (P = 1), assuming that
these k-max-pooling neurons are grouped in layers, and that there are no skip connections
going over these k-max-pooling layers (satisfied by ResNets, not satisfied by U-nets), a
sharpened peeling argument can yield the same bound but with C replaced by Csharpened =
(D log(3) +M log(K) + log((din + 1)dout))1/2 with M being the number of k-max-pooling
layers (cf. Appendix C.4). The details are tedious so I only mention this result without
proof. This basically improves

√
D log(5K) into

√
D log(3) +M log(K). For Resnet152,

K = 9, D = 152 and M = 1,
√
D log(5K) ≃ 24 while

√
D log(3) +M log(K) ≃ 13.

4.5 Conclusion
Section 4.2 explained how the norm of the path-lifting is a promising complexity measure
to explain generalization properties of neural networks [Neyshabur et al., 2015, Kawaguchi
et al., 2017, Barron and Klusowski, 2019, Jiang et al., 2020, Dziugaite et al., 2020]:

• it is one of the best weight-based existing measures in terms of correlation with the
generalization gap,

• it is easy to compute,

• it is invariant to rescaling and permutation symmetries,

• and it is at least as fine as the product of layers’ norms, a complexity measure that
has widely been investigated for generalization, see, e.g., [Bartlett et al., 2017].

87

Chapter 4. Generalization with path-norm

However, I already mentioned in the introduction of Chapter 2 that the path-lifting and
its norm have been limited in the literature to simple network architectures unable to com-
bine in a single framework standard ingredients such as pooling layers, skip-connections,
biases or even multi-dimensional outputs [Neyshabur et al., 2015, Kawaguchi et al., 2017,
Barron and Klusowski, 2019, Jiang et al., 2020, Dziugaite et al., 2020].

Due to this lack of versatility, the path-norm-based bounds have only been tested for
simple LFCNs. This prevents us from both understanding the reach of the path-norm as a
complexity measure for generalization, and from diagnosing its strengths and weaknesses,
which is necessary to either improve this complexity measure in order to make it actually
operational, if possible, or to identify without concession the gap between theory and
practice.

This chapter filled this gap by establishing a path-norm-based general-
ization bound that is not only applicable for the first time to general DAG
networks, but that also recovers or improves on all previous ones known in
simpler settings (Table 4.1).

Perspectives. Thanks to that, we can now assess numerically the path-norm-based
bounds in practical situation for the first time. I will assess the promises of the path-norm
as a complexity measure for generalization by numerically evaluating the generalization
bounds on ResNets trained on ImageNet in Section 7.2. I will show that there are still
challenges ahead to improve these bounds, notably by investigating average-case measures
based on the path-lifting, instead of worst-case ones.

Chapter 7 will also be the time to further reflect on the results of this chapter. First, I
briefly mentioned after Theorem 4.1.1 that it is not clear how to strictly apply in practice
the dominant statistical approach based on the Rademacher complexity. I will elaborate
on this in Section 7.3. Second and last, I will discuss the challenge of theoretically
accounting for subtle phenomena between the training set and the generalization of the
network, which is not addressed by the path-norm-based bounds, see Section 7.3.

88

Chapter 5
Efficient inference with Kronecker-sparse
matrices

This chapter tackles resource efficiency for neural networks, one of the main subjects
addressed in this thesis. This corresponds to Gonon et al. [2024c] and it is disconnected
from the theory on the path-lifting and path-activations developed in Chapters 2 to 4.

This chapter is the result of a collaboration with two PhD students, Léon Zheng and
Quoc-Tung Le, and a research engineer, Pascal Carrivain, all of us being from the same
research team at ENS Lyon. I was interested in the potential gains associated with the
sparsity of neural networks. Léon and Tung are specialized in the sparse butterfly structure.
When I asked them about practical gains in time and energy for this kind of sparsity,
we realized that it wasn’t clear: the literature results are not comprehensive enough to
clearly identify the situations where there is a gain, and what kind of gain can be hoped
for. However, it was clear to us that there was a potential. So we set as our first goal
to benchmark existing implementations. While benchmarking, we noticed that memory
transfers in existing implementations are very expensive, so we aimed at improving that
by proposing our own CUDA implementation. This project was the opportunity for Pascal
and me to discover CUDA, which led the two of us to jointly develop our own kernel
that improved the state of the art. More details on the origin of the contributions will be
provided within the chapter.

As briefly evoked in Chapter 1, the exponential growth in computational requirements
for training state-of-the-art AI models has raised significant concerns regarding efficiency.
According to an analysis made by OpenAI [OpenAI, May 2018], the amount of computa-
tions (floating point operations per second) for the largest AI training runs doubled every
3.4 months between 2012 and 2018 (300000× increase). Since then, similar exponential
trends have been observed in various aspects of AI research such as for the state-of-the-art
model size or energy consumption [Strubell et al., 2019, Kaplan et al., 2020, Wu et al.,
2022, Narayanan et al., 2021, Bender et al., 2021, Sevilla et al., 2022, Sastry et al., 2024].
Models can have up to 1 trillion parameters [Narayanan et al., 2021, Bender et al., 2021,
Tables 1] with an associated end-to-end training estimated to 3 months using 3072 A100
GPUs1 [Narayanan et al., 2021, $Training times estimates]. The estimated CO2 emissions

1This would cost $25 million according to the Azure Pricing calculator.

89

https://azure.microsoft.com/en-us/pricing/calculator/

Chapter 5. Efficient inference with Kronecker-sparse matrices

for training2 a Transformer with 108 parameters in 2019 was equivalent to an average 20
years of American life3 [Strubell et al., 2019, Table 1]. Latest figures on Llama 3 models
correspond to 150 years of American life [Meta, 2024]. And training is by far the less ex-
pensive phase as inference is reported to represent more than 90% of the cost of machine
learning at scale according to independent reports from both NVIDIA [HPCwire, 2019]
and Amazon Web Services [Barr, 2019]. This constantly growing resource requirements
calls for designing efficient models to achieve gains in time, energy and memory.

At the very heart of neural network efficiency is the acceleration of matrix multipli-
cation on GPU, which is one of the main operations during both training and inference.
For instance, in a forward pass of a so-called vision transformer (ViT) [Dosovitskiy et al.,
2021], between 30% and 60% of the total time is spent in fully-connected layers doing
matrix multiplications (see Appendix D.2.3 for details). One key approach4 that aims to
accelerate computations is by enforcing sparsity constraints on certain weight matrices in
the model.

The Kronecker sparsity has recently emerged as a promising form of sparsity for neural
networks as it shows similar empirical accuracy to dense matrices in some settings, while
having a sub-quadratic theoretical complexity for matrix-vector multiplication [Dao et al.,
2022a]. A Kronecker-sparse matrix has a support defined by a Kronecker product Sπ =
Ia⊗1b×c⊗Id (Figure 5.2) for some tuple of integers π = (a, b, c, d), see Definition 5.1.1 [Lin
et al., 2021, Le, 2023], where In denotes the identity of size n × n, and 1n×m the matrix
full of ones of size n×m. In order to stick to the conventional notations of (a, b, c, d) for a
Kronecker sparsity pattern [Le, 2023], I drop the convention of using din and dout for the
input and output dimensions of the Kronecker-sparse matrix, and use N and M instead.
Because of that, and only in this chapter, I will use bold capital letters M for matrices to
avoid confusion with dimension integers M .

The name "Kronecker-sparse matrix" is something I introduce in this thesis as a result
of a discussion with Rémi Gribonval, one of my supervisor, and my co-authors Léon,
Tung and Pascal [Gonon et al., 2024c]. It is meant to correspond to the building blocks
of butterfly matrices [Lin et al., 2021, Le, 2023, Dao et al., 2019, Chen et al., 2022, Dao
et al., 2022a, Alizadeh-Vahid et al., 2020, Lin et al., 2021, Fu et al., 2023]. The exact
definition of butterfly matrices is still evolving in the literature [Dao et al., 2019, 2020,
Lin et al., 2021, Dao et al., 2022a, Fu et al., 2023, Le, 2023], and is not yet fully satisfying
as it is either very restrictive (e.g., only for square matrices with dyadic dimensions [Dao
et al., 2019, Alizadeh-Vahid et al., 2020]) or too expressive (e.g., it also encapsulates
dense matrices [Lin et al., 2021, Le, 2023]). However, all the definitions agree on the fact
that they are products of matrices with Kronecker constraints on their supports, hence
the name Kronecker-sparse matrices proposed here, and the particular focus on it in this
chapter.

The fact that Kronecker-sparse matrices are the most basic building block of butterfly
matrices is another motivation for studying them, as butterfly matrices are themselves
promising. For instance, approximating a matrix by a butterfly matrix can be done

2Including tuning and experiments.
3You can also click on this link to estimate your machine learning carbon impact [Lacoste et al., 2019].
4The other key approach is quantization, that is complementary to sparsity. It consists in reducing

the number of bits used to store the weights and do the computations. We will study the approximation
properties of quantized networks in Chapter 6.

90

https://mlco2.github.io/impact/

using an efficient algorithm that outperforms gradient descent5, with some guarantees
of reconstruction if the target matrix admits exactly or approximately a butterfly form
[Le et al., 2022, Zheng et al., 2023, Le, 2023]; butterfly matrices can be quantized more
efficiently than by naive rounding [Gribonval et al., 2023]; and butterfly matrices have a
nearly linear theoretical complexity for matrix-vector multiplication. The Discrete Fourier
Transform (DFT) or the Hadamard Transform are examples of linear operators with small
theoretical complexity and whose associated matrix admits a butterfly decomposition.
See Figure 5.1 for an example of the decomposition of the DFT matrix into a product of
Kronecker-sparse matrices, in dimension 16.

W = × × ×

K1 K2 K3 K4

Figure 5.1: Example of butterfly factorization W = K1 . . .KL, for L = 4. Here, the factor
Kℓ ∈ RN×N (with N = 2L) has support Sℓ = I2ℓ−1⊗12×2⊗ I2L−ℓ . This corresponds to the
butterfly factorization of the Discrete Fourier Transform matrix W, up to a permutation
of its column indices.

In practice, the goal is to reparameterize a dense fully-connected layer W as a product
of Kronecker-sparse matrices W = K1 . . .KL while having (i) at least the same accuracy
for the learning task at hand, (ii) less parameters to store, and (iii) an accelerated inference
and training phase. Previous works mostly focused on (i) and (ii) [Alizadeh-Vahid et al.,
2020, Lin et al., 2021, Chen et al., 2022, Dao et al., 2022a].

This chapter addresses the challenge of benchmarking the gains in time and
energy that can be achieved by exploiting the sparsity of the Kronecker-sparse matrices,
and better understand the strengths and weaknesses of existing implementations. We
also propose a new CUDA kernel that fuses operations to decrease the cost of
memory transfers between the different levels of GPU memory.

The outline is as follows.

• Section 5.1 introduces the framework to study Kronecker-sparse matrix multiplica-
tion, and describes baseline GPU implementations on PyTorch.

• Section 5.2 reveals an important bottleneck of existing implementations, thanks to
the new benchmark they spend up to 50% of their total runtime on GPU memory
rewriting operations (Figure 5.5). Section 5.2 aims at explaining why. Essentially,
this lack of memory efficiency is caused by the fact that existing implementations
call high-performance libraries from Python, but Python lacks routines to explicitly
control the GPU memory transfers.

5Let me detail what this means. Approximating a matrix by a butterfly matrix can be formulated as
an optimization problem where we minimize the approximation error, measured, e.g., as the distance in
Frobenius norm between the given matrix and a product of Kronecker-sparse factors. When I say that
this algorithm "outperforms gradient descent", I mean that the algorithm in question can find a butterfly
matrix not only associated with a smaller approximation error but also in less time than gradient descent.

91

Chapter 5. Efficient inference with Kronecker-sparse matrices

• Section 5.3 introduces a new CUDA kernel that fuses the operations to decrease the
cost of the transfers between the different levels of GPU memory.

• Section 5.4 benchmarks the execution time and the energy consumption of the new
kernel and the other baseline PyTorch GPU implementations, for multiplying a
batch of vectors with a Kronecker-sparse matrix. This includes implementations re-
lying on existing efficient routines for batch GEMM6, block-sparse matrix multipli-
cation and tensor contraction. The goal is to provide a benchmark easily adaptable
and useful to select the best implementation for given settings. The kernel not only
improves the speed of the computation, but also the energy efficiency, with
a median speed-up factor of ×1.4 in float-precision and a median reduction factor
of ×0.85 in energy consumption. Moreover, we clearly identify the situations where
the new kernel is advantageous: when the relative number of memory rewritings
increases, confirming the relevance of our approach to reduce memory transfers. We
also introduce a theoretical complexity associated with a Kronecker sparsity pattern
(a, b, c, d), that we show that this theoretical complexity can be used to identify a
priori the patterns that are efficient in practice. This leads to a new heuristic
to choose efficient Kronecker sparsity patterns and paves the way to new
design of efficient Kronecker-sparse neural networks.

• Section 5.5 concretely illustrates broader implications of this work: the new kernel
can be used to speed up the inference of neural networks.

The code is available at github.com/PascalCarrivain/ksmm.

5.1 Background on Kronecker-sparse matrices
We call a Kronecker-sparse matrix any matrix whose support satisfies some specific con-
straint defined in terms of Kronecker products. Let me emphasize that this Kronecker
structure is imposed only on the support, not on the values of the weights, which are free
to take any value for those that are not zero.

Definition 5.1.1 (Kronecker-sparse matrix [Le, 2023]). A Kronecker sparsity pattern
(or simply Kronecker pattern) is a tuple π := (a, b, c, d) ∈ (N>0)4. A π-Kronecker-sparse
matrix (or simply Kronecker-sparse matrix when π is clear from the context) is a matrix
K ∈ Rabd×acd satisfying support(K) ⊆ support(Sπ), where Sπ := Ia ⊗ 1b×c ⊗ Id (see
Figure 5.2) and where support(M) := {(i, j),Mi,j ̸= 0}. The set of π-Kronecker-sparse
matrices is denoted Σπ.

A π-Kronecker-sparse factor is sparse and structured. For π = (a, b, c, d), it has at most
abcd nonzero entries, which yields a sparsity ratio abcd

a2bcd2 = 1
ad

since it is of size abd× acd.
Kronecker-sparse matrices can represent a wide variety of matrices that have been used to
train neural networks, in particular so-called butterfly matrices that correspond to some
products of Kronecker-sparse matrices [Lin et al., 2021, Le, 2023, Dao et al., 2019, Chen
et al., 2022, Dao et al., 2022a, Alizadeh-Vahid et al., 2020, Lin et al., 2021, Fu et al.,
2023]. Léon and Tung, two of my co-authors, have created a table with the examples they

6GEMM stands for General Matrix Multiplication.

92

github.com/PascalCarrivain/ksmm

5.1. Background on Kronecker-sparse matrices

Figure 5.2: A π-Kronecker-sparse matrix with π = (a, b, c, d) is a block-diagonal matrix
with a blocks, where each block itself is a block matrix composed by b × c diagonal
matrices of size d × d. The colored cells correspond to the nonzeros. We color the cells
with different colors to indicate that the corresponding weights are free to take different
values. Courtesy of Tung for the figure.

know of butterfly matrices that have been tested for neural networks, and how they can be
expressed in terms of Kronecker-sparse matrices, see Table 5.1.

Table 5.1: Examples of matrices used in neural networks, which can be expressed in terms
of products of Kronecker-sparse matrices. For a matrix of the form W = K1 . . .KL,
the column "Kronecker patterns" describes the list of Kronecker sparsity patterns πℓ =
(a, b, c, d) for each Kronecker-sparse matrix Kℓ.

Matrix size Kronecker patterns
Dense M ×N (1,M,N, 1)
Low-rank M ×N (1,M, r, 1), (1, r, N, 1)
Square dyadic [Dao et al., 2019, Alizadeh-Vahid et al., 2020] N ×N with N = 2L (2ℓ−1, 2, 2, 2L−ℓ)L

ℓ=1
Kaleidoscope [Dao et al., 2022a] N ×N with N = 2L Concatenate (2ℓ−1, 2, 2, 2L−ℓ)L

ℓ=1 and (2L−ℓ, 2, 2, 2ℓ−1)L
ℓ=1

Block butterfly [Chen et al., 2022] N ×N with N = 2Lt (2ℓ−1, 2t, 2t, 2L−ℓ)L
ℓ=1

Monarch [Dao et al., 2022a, Fu et al., 2023] M ×N (1,M/p,min(M,N)/p, p), (p,min(M,N)/p,N/p, 1)
Deformable butterfly [Lin et al., 2021] M ×N with M = a1b1d1 and N = aLcLdL (aℓ, bℓ, cℓ, dℓ)L

ℓ=1 s.t. aℓcℓdℓ = aℓ+1bℓ+1dℓ+1.

5.1.1 Generic algorithm for Kronecker-sparse matrix multipli-
cation

Léon and Tung, that worked a lot on the butterfly structure during their PhD, proposed a
generic algorithm for Kronecker-sparse matrix multiplication, see Algorithm 5.1.1, and a
mathematically equivalent one in Algorithm 5.1.2. While these algorithms are described
below, let me emphasize early on that the core challenge to achieve efficiency in practice
lies not in the mathematical formulation, but in the details of the GPU implementation.
Algorithm 5.1.1 is a generalization of the one proposed by Dao et al. [2022a] for the
specific cases a = 1 or d = 1.

Before going into the details of the algorithms, let me also explain why in all this work,
the multiplication of an input X ∈ RB×N with a matrix M ∈ RM×N is systematically
written XMT (multiplication on the right) instead of MXT . Transposition is a memory
operation that is expensive in terms of time and energy, and it is better to avoid it when
possible. In a neural network with a layer M, it is possible to store MT instead of M

93

Chapter 5. Efficient inference with Kronecker-sparse matrices

once and for all, so that the multiplication XMT involves zero new transposition when
a new input X is given. This is not the case for MXT where the transposition of X is
necessary for each new input. This is why we choose to write the multiplication on the
right.

Algorithm 5.1.1 Kronecker-sparse matrix multipli-
cation
Require: π = (a, b, c, d), K ∈ Σπ, X ∈ RB×N (N :=

acd)
Ensure: Y = XK⊤ ∈ RB×M (M := abd)

1: Y← 0B×M

2: for (i, j) ∈ J0, a− 1K× J0, d− 1K do
3: col←

{
iN

a
+ j + ℓd | ℓ ∈ J0, c− 1K

}
4: row←

{
iM

a
+ j + kd | k ∈ J0, b− 1K

}
5: Y[:, row]← X[:, col]K⊤[col, row]

Algorithm 5.1.2 Mathemati-
cally equivalent formulation
Require: π,X, K̃ := P⊤KQ⊤

with K ∈ Σπ,
P := (Ia ⊗ Pb,d),
Q := (Ia ⊗Pc,d)⊤ cf. (5.1)

Ensure: Y = XK⊤ ∈ RB×M

1: X̃← XQ⊤

2: Ỹ← X̃K̃⊤

3: Y← ỸP⊤

Notations. X ∈ RB×N is the input matrix (batch size B, input dimension N). Σπ is
the set of matrices with Kronecker sparsity pattern π = (a, b, c, d) (Definition 5.1.1). 0m×n

is the m× n matrix filled with zeros. For integers a ⩽ b, Ja, bK := {a, a+ 1, . . . , b}. For a
matrix M, M[I, :] is the sub-matrix restricted to rows I, and M[I, J] is the restriction to
rows I and columns J . Matrix transposition is represented by ⊤. Matrix indices start at
zero.

Theoretical complexity. It is not hard to see that the theoretical complexity of Al-
gorithm 5.1.1, defined as the number of scalar multiplications, is Babcd, for a batch size
B and a Kronecker sparsity pattern π = (a, b, c, d).

On Algorithm 5.1.1, and the mathematically equivalent Algorithm 5.1.2. When
d = 1, the Kronecker-sparse matrix K is block-diagonal with a dense blocks (where "a" is
the "a" in the sparsity pattern π = (a, b, c, d) of K), as can be seen from Figure 5.2. In this
special case, Algorithm 5.1.1 loops over each of these a blocks. At each iteration, one block
K[row, col] is considered, for the subsets row and col from Algorithm 5.1.1, indexed by
some i ∈ J0, a − 1K. This iteration performs the multiplication between this block and
the corresponding sub-matrix of X, and accumulates the result in the output Y. The
general case d ⩾ 1 is similar: the Kronecker-sparse matrix K is, up to permuta-
tion operations, block-diagonal with ad dense blocks, and Algorithm 5.1.1 loops
over each of these dense blocks, given by K[row, col] with row and col defined in
lines 3 and 4. See Figure 5.3 for an illustration. More precisely, for any π = (a, b, c, d), the
support Sπ of the Kronecker-sparse matrix K can be permuted as follows, to reduce to the
case block-diagonal with ad dense blocks of size b× c, corresponding to π̃ = (ad, b, c, 1):

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)⊤︸ ︷︷ ︸
:=Q

= PSπ̃Q, (5.1)

94

5.1. Background on Kronecker-sparse matrices

acd abdK
K

B acd B abd

Figure 5.3: Illustration of Algorithm 5.1.1 for sparsity pattern π = (2, 3, 2, 3) and batch
size B = 8. The subsets of rows and columns (row1, col1) are associated with the values
(i, j) = (0, 1) in the “for" loop of Algorithm 5.1.1, whereas (row2, col2) are associated
with (i, j) = (1, 1). Courtesy of Léon for the figure.

where Pp,q for two integers p, q is the so-called (p, q) perfect shuffle permutation matrix
of size pq × pq [Van Loan, 2000] (see Appendix D.3 for details, courtesy of Léon and
Tung). Therefore, for any K ∈ Σπ, we have K = PK̃Q with K̃ := P⊤KQ⊤ ∈ Σπ̃

that is block-diagonal with ad dense blocks of size b × c. While Algorithm 5.1.1 loops
over each of the ad dense sub-matrices K[row, col] of K directly, many concrete imple-
mentations of Algorithm 5.1.1 presented below are based on the equivalent formulation
that directly manipulates K̃, the permuted version of K with dense diagonal blocks.
A mathematical formulation that is more faithful to these implementations based on
K̃ is given in Algorithm 5.1.2. Since K̃⊤ is directly manipulated instead of K⊤, it is
now the entry of the algorithm, and Algorithm 5.1.2 consists in three steps to compute
Y = XK⊤ = XQ⊤K̃⊤P⊤: permute the inputs with Q, multiply with K̃⊤, and repermute
with P.

5.1.2 Baseline GPU implementations
The code is available at github.com/PascalCarrivain/ksmm. We now describe con-
crete baseline GPU implementations of Algorithms 5.1.1 and 5.1.2. The relevant lines
of code are given in Appendix D.4.1 and the full code is available at github.com/
PascalCarrivain/ksmm.

bmm and bsr implementations. We consider the implementation of Algorithm 5.1.2
from Dao et al. [2022a], that we choose to call bmm since it mainly relies on batched GEMM
NVIDIA routines called through a function of the PyTorch library named torch.bmm. The
original bmm implementation from Dao et al. [2022a] only works for a pattern π = (a, b, c, d)
satisfying a = 1 or d = 1. Léon and Tung are the ones who extended bmm to the general
case.

I also developed a new implementation of Algorithm 5.1.2 that we call bsr, since it
mainly relies on the PyTorch block-sparse library called BSR. More details on how bmm
and bsr implement Algorithm 5.1.2 are given in Table 5.2.

einsum implementation. Léon and me developed another baseline, this time imple-
menting Algorithm 5.1.1. We call it einsum as it relies on tensor contractions, mainly
through the einsum routine of the Python einops library [Rogozhnikov, 2021]. It stores

95

github.com/PascalCarrivain/ksmm
github.com/PascalCarrivain/ksmm
github.com/PascalCarrivain/ksmm

Chapter 5. Efficient inference with Kronecker-sparse matrices

bmm bsr

Storage format for K̃ 3D-tensor of shape (ad, b, c) 2D-tensor of shape (abd, acd)
stored in BSR7 format

Line 1 of Algorithm 5.1.2 torch.reshape
Line 2 of Algorithm 5.1.2 torch.bmm torch.nn.functional.linear
Line 3 of Algorithm 5.1.2 torch.reshape

Table 5.2: Differences in the implementation of Algorithm 5.1.2 between bmm and bsr.

the nonzero entries of K ∈ Σπ using a 4D-tensor B_einsum of shape (a, b, c, d), in such a
way that the slice B_einsum[i, :, :, j] for (i, j) ∈ J0, a− 1K× J0, d− 1K stores the entries of
K[row, col] where row, col are defined in lines 3 and 4 of Algorithm 5.1.1. The batched
matrix multiplication operations at line 5 are then implemented using Einstein summation
between this 4D-tensor and a reshaped input tensor.

The above implementations (bmm, bsr, einsum) can be compared to the two following
generic implementations (dense and sparse) that ignore the Kronecker sparsity.

dense implementation. This ignores the sparsity of K, by storing all its entries, in-
cluding zeros, in a tensor of shape (M,N). The multiplication is done with torch.nn.functional.linear,
the default PyTorch implementation for linear layers.

sparse implementation. This exploits the sparsity of K but not its structure (recall
that the sparsity pattern is not arbitrary, but structured as Kronecker products, see
Definition 5.1.1). The nonzero entries of the factor K are saved in a tensor stored in
the Compressed Sparse Row (CSR) format, and the matrix multiplication is done with
torch.nn.functional.linear.

The two implementations dense and sparse are ones made available by PyTorch, and
we use them without further modification.

Batch-size-first vs. batch-size-last. The entries of the input X ∈ RB×N can be
stored either in a PyTorch tensor X_bsf of shape (B,N), or in a PyTorch tensor X_bsl
of shape (N,B). This impacts the memory layout of X and can drastically impact the
performance of the implementation depending on the way X is accessed. Indeed, PyTorch
makes the convention of storing all tensors in the row-major convention, meaning that
the entries of each row are stored contiguously in memory. To understand the difference

between X_bsf and X_bsl, consider the example of X =
(

1 2
3 4

)
.

In the batch-size-first layout, the tensor X_bsf will be X_bsf = torch.tensor([[1,
2], [3, 4]]), whereas in the batch-size-last layout, the tensor X_bsl corresponds to the
transpose of X since the batch-size is placed at last, so it will be X_bsl = torch.tensor([[1,
3], [2, 4]]). Since PyTorch is row-major, in the case of batch-size-first, the entries are
stored in memory in the order:

1, 2, 3, 4,

whereas in the case of batch-size-last, the entries are stored in memory in the order:

1, 3, 2, 4.

96

5.2. Memory accesses in baseline implementations

This is either storing the rows of X contiguously in memory (batch-size-first), or its
columns (batch-size-last).

When using a Kronecker-sparse matrix K to replace a dense matrix in a neural net-
work, we have the freedom to store K in the format that is most efficient for the im-
plementation. However, the input X is what is received from the previous layer, and we
have no control over its format. Similarly, the output Y is what is sent to the next layer,
and we should send it in the format expected by the next layer. Because of PyTorch’s
row-major convention, the standard is to receive and send tensors in the batch-size-first
format. However, all the implementations above can also be implemented assuming the
input and output tensors to be in the batch-size-last format. While the main point of this
chapter is to compare the implementations regardless of the memory format, we will also
study the effect of the choice between batch-size-first and batch-size-last for the input and
output tensors.

Finally, let me mention that we choose to call these two different memory layouts
by batch-size-first and batch-size-last, by analogy with the recent PyTorch optimization
"channels last" that moves the channel dimension to the last position for convolutional
layers.

5.2 Memory accesses in baseline implementations
The implementations bmm and bsr explicitly perform the P and Q permutation opera-
tions from Algorithm 5.1.2, before calling high-performance multiplication routines for
the multiplication with K̃ (line 2 in Algorithm 5.1.2). This section assesses for the first
time the cost of these permutations in practice, and is the fruit of discussions between
Léon, Pascal and me.

Importance of data transfers. GPU memory management plays a critical role in op-
timizing performance. Memory in a GPU is organized hierarchically, with global memory
being the largest and slowest, followed by shared memory, and finally registers, which are
the smallest and fastest [NVIDIA, 2024, Sec. 2.3]. By default, data resides in the global
memory of the GPU. Each thread of the GPU runs a kernel that reads data from global
memory into registers, performs register-level computations, and writes the results back
to global memory. Therefore, when operations are bottlenecked by memory accesses, it is
critical to minimize data transfers between global memory, shared memory, and registers
to obtain an efficient GPU implementation [NVIDIA, 2024, Sec. 5.3].

Data transfers in baseline implementations. In this section, we argue that the
baseline bmm, bsr and einsum implementations for Kronecker-sparse matrix multiplication
require performing several passes between global memory and registers, which can account
for a large proportion of the total runtime in practice. This suggests that there is room
for improvement in the memory accesses of these implementations.

Let us focus on bmm, as we will find it to be faster than the other baseline imple-
mentations. The data flow of bmm is illustrated in Figure 5.4. There is one pass be-
tween the global memory and the registers to perform the permutation with P (line 3

97

Chapter 5. Efficient inference with Kronecker-sparse matrices

Matrix
multiplication Permutation

Matrix
multiplicationPermutation

Global memory

Butterfly
adapted reading

Butterfly
adapted writing

Registers

ad ad

Shared memory

K_bmmX_bsf X_perm Y_perm Y_bsf Y_bsfX_bsf K_kernel

shape(ad, B, c) shape(ad, c, b)
shape(ad, c, b)shape(ad, B, b) shape(B, abd) shape(B, abd)shape(B, acd) shape(B, acd)

(B,c) (B,c)

(c,b) (c,b)

(B,b) (B,b)

Figure 5.4: Data flow between the different levels of GPU memory for the bmm implemen-
tation (Section 5.1.2) from Dao et al. [2022a] and the new kernel (Section 5.3). Made in
collaboration with Léon.

in Algorithm 5.1.2), one for the multiplication with K̃ (line 2), and another one for the
permutation with Q (line 1).

The fact that bmm has three passes between the global memory and the registers has
nothing specific to bmm. We argue that this has to be the case for any implementation that
implements the multiplications X[:, col]K⊤[col, row] (line 5 in Algorithm 5.1.1, or the
mathematically equivalent line 2 in Algorithm 5.1.2) by calling high-performance libraries
from common Python interfaces (PyTorch, Tensorflow).

Let me explain why we expect this to be the case. When calling a multiplication
routine from Python to perform a multiplication AB, this generally requires having
the entries of both matrices A and B stored contiguously in the global memory of the
GPU. Therefore, in the special case where we want to perform the multiplication X[:
, col]K⊤[col, row], both X[:, col] and K⊤[col, row] have to be stored contiguously in
global memory. Unfortunately, this is not the case for the entries of X[:, col] when
X is directly received from the previous layer of a neural network. Indeed, PyTorch’s
convention would store X ∈ RB×N in row-major as a 2D-tensor of shape either (B,N) or
(N,B) (depending if we choose to place the batch in first or last position). In these two
cases, the sub-matrix X[:, col] is not stored contiguously in memory as soon as d > 1
(the "d" of the Kronecker sparsity pattern π = (a, b, c, d)). Indeed, the indices in col are
equally spaced by d (see line 4 in Algorithm 5.1.2).

Therefore, a first pass between the global memory and the registers is required to rewrite
the entries of X[:, col] contiguously in global memory, see Figure 5.4. In the bmm imple-
mentation, this first pass corresponds to the application of the permutation matrix Q
from Algorithm 5.1.2, to the input X, as illustrated on the left of Figure 5.4. In what
follows, we call memory rewriting each operation that consists of moving one entry of
a tensor, to rewrite it somewhere else in memory.

Similarly, the result of the multiplication Y[:, row] = X[:, col]K⊤[col, row], as re-
turned by an efficient routine called from Python, will in general be stored contiguously
in global memory for each pair (row, col). But indices in row are equally spaced by d: this

98

5.2. Memory accesses in baseline implementations

requires another pass to rewrite them equally spaced by d in the final output 2D-tensor
storing all the entries of Y contiguously in memory. In the bmm implementation, this
pass corresponds to the application of the permutation matrix P from Algorithm 5.1.2,
as illustrated by the last pass of bmm in Figure 5.4. With the pass implied by the ac-
tual multiplication routine, this results in three passes between the global memory and
the registers (Figure 5.4) for any implementation that performs all the multiplications
X[:, col]K⊤[col, row] by calling high-performance libraries from common Python inter-
faces.

Estimated time for memory rewritings in bmm. We benchmark the relative time
spent on memory rewritings in bmm, which is, as we will find out later (Section 5.4), the
fastest of the baseline implementations. We find that the memory rewritings can
take up to 45% of the total runtime8. This can be seen by looking at the y-axis in
Figure 5.5 (see Appendix D.2.2 for details on the experiments). Therefore, it is crucial
to optimize the data transfers between the different levels of GPU memory to improve
current implementations. To the best of our knowledge, this is the first time that the
cost of memory rewritings in baseline implementations such as bmm is discussed in the
literature.

A proxy for the time spent on memory rewritings in the baseline implemen-
tations. As we can see from Figure 5.5, the time spent on memory rewritings (y-axis)
increases with the ratio (b+ c)/bc (x-axis). We now give a theoretical explanation for this
observation, and credit goes to Léon for suggesting this.

Consider input and output dimensions N and M , and a batch size B. We saw above
that for implementations that perform the multiplications X[:, col]K⊤[col, row] by calling
efficient routines from Python interfaces, such as bmm, all the entries of X[:, col] and
Y[:, row] must be rewritten in memory in order to store these matrices contiguously. Doing
that for all pairs (row, col) (Algorithm 5.1.1), this results in moving a total of BN +BM
different entries: each entry of the input and output tensors is moved exactly once. Let us
compare this to the total number of scalar multiplications performed when computing the
products Y[:, row] = X[:, col]K⊤[col, row] for all (row, col), which is equal to B×#nnz
(the batch-size times the number of nonzero in K). For a Kronecker-sparse matrix with
sparsity pattern π = (a, b, c, d), we have N = acd, M = abd and #nnz = abcd. Therefore,
the ratio (b+ c)/bc is precisely equal to

number of memory rewritings
number of scalar multiplications

= BN +BM

B ×#nnz = b+ c

bc
. (5.2)

This explains why the ratio (b + c)/bc is a good proxy for the relative time spent on
memory rewritings in practice, as can be seen from Figure 5.5. Let me anticipate a little
bit here and explain why this is particularly interesting to have such a proxy. Our new
kernel will reduce the cost of memory rewritings, so the Kronecker sparsity patterns with
a large value of (b + c)/(bc) will benefit the most from our new implementation. An
important consequence of this provides a heuristic to identify efficient Kronecker patterns
and therefore to help designing efficient Kronecker-sparse neural networks, as I will discuss

8Regardless of the memory layout convention, batch-size-first or batch-size-last.

99

Chapter 5. Efficient inference with Kronecker-sparse matrices

in the perspectives (Chapter 7). For instance, this ratio can be used to identify, among
all the Kronecker sparsity patterns with a given number of nonzeros, the ones for which
our new implementation is expected to be the most efficient.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

(b + c) / (bc)

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

tim
e

in
 m

em
or

y
re

wr
iti

ng
s i

n
bm

m

Figure 5.5: Estimated relative time spent on memory rewritings in bmm for the multipli-
cation with K ∈ Σπ, for several π = (a, b, c, d). We regroup patterns by their value of
(b+ c)/(bc), and plot a boxplot to summarize the corresponding measurements.

5.3 New CUDA kernel with reduced memory trans-
fers

We saw in the previous section that the baseline implementations bmm, bsr and einsum
require several passes between the global memory and the registers to perform the multi-
plication with a Kronecker-sparse matrix K, and that this can account for up to 45% of
the total runtime. We also explained that this number of passes is expected to be inher-
ent to any implementation that performs all the multiplications X[:, col]K⊤[col, row] by
calling high-performance libraries from common Python interfaces.

For this reason, we now consider going at a lower level than Python to better manage
the memory accesses. This was the occasion for Pascal and me to discover CUDA, the pro-
gramming language for NVIDIA GPUs, and to jointly develop a new kernel that performs
the multiplication with a Kronecker-sparse matrix K with reduced memory transfers. This
new kernel does only one pass between the global memory and the registers to perform
the multiplication with K, against three for the fastest baseline implementation bmm, as
illustrated in Figure 5.4. Doing only one pass is made possible by tailoring the mem-
ory accesses to the known sparsity structure of K. We directly access the sub-matrices
X[:, col] and K⊤[col, row] even if all their entries are not stored contiguously, in a way
that ensures that most of the memory accesses yet remain contiguous and efficient.

The idea is basically that as long as enough entries are stored contiguously, the associ-
ated memory accesses can be made efficient. For instance, consider two rows of a matrix.
While each individual row is stored contiguously in memory, the memory accesses can be
made efficient, even if the two rows are not stored consecutively in memory. The only
moment where we have to pay a price is if we want to access entries of the two rows at
the same time, and if these rows are far from each other in memory. This will be fine as
long as this does not happen too often.

100

5.3. New CUDA kernel with reduced memory transfers

The new kernel is the main contribution of this chapter. We will empirically show that
it is faster than the baselines in the next section (Section 5.4), and that it is particularly
efficient for Kronecker sparsity patterns with a large value of (b+ c)/(bc), as anticipated
in the previous section.

Implementation. The kernel implements Algorithm 5.1.1. It performs the multipli-
cations X[:, col]K⊤[col, row] in parallel for all the pairs (row, col), as defined in Algo-
rithm 5.1.1. To perform one of these multiplication, the kernel starts by reading into global
memory the entries in X[:, col] and K⊤[col, row], and load them into shared memory.
Then, it performs the multiplication, which involves passing the data from shared memory
to registers, performing the multiplication, and storing the result in shared memory. The
kernel then reads the result from shared memory and accumulates it in the output stored
in global memory. This is illustrated in Figure 5.4.

The main novelty of the kernel is the reading and writing phase. Their main feature
is to not require to read or write entries in contiguous ways. Let me detail the case of the
reading phase, as this is similar for the writing phase. For the reading phase, the entries of
X[:, col] are not required to be contiguous in global memory9. The kernel is aware of the
sparsity pattern (a, b, c, d), so it can explicitly compute the set of indices in col and directly
access them in global memory. These indices correspond to columns equally spaced by d
(the "d" of the Kronecker sparsity pattern π = (a, b, c, d), see Figure 5.3), so the whole
sub-matrix is not contiguous as soon as d > 1. Therefore, some consecutive memory
accesses have to be non-contiguous (when changing the column being accessed). Yet, if
the entries of a same column are stored contiguously in memory, the memory accesses
can be made efficient. The kernel is therefore particularly efficient when the columns
are stored contiguously, corresponding to the batch-size-last memory layout (recall that
batch-size-first has been defined at the end of Section 5.1.2).

However, the kernel is expected to be less efficient when these are the rows that are
stored contiguously, corresponding to the batch-size-first memory layout10. Indeed, in this
case it would be efficient to make consecutive accesses to the entries in a single row, but
the entries of X[:, col] in a same row are equally spaced by d. Therefore, we expect the
kernel to be particularly efficient for the batch-size-last memory layout, and less efficient
for the batch-size-first memory layout. This is confirmed by the benchmarks in the next
section (Section 5.4).

After the reading phase, all the entries are in shared memory. The kernel then
implements the classic tile matrix multiplication algorithm11 [Li et al., 2019, Boehm,
2022, NVIDIA, 2023a,b, 2024] to compute each product X[:, col]K⊤[col, row] for each
subsets row, col in Algorithm 5.1.1. Once these products are computed, the result is
stored contiguously in shared memory, and the kernel accumulates this result in the output
stored in global memory. For this, the kernel again has a custom writing phase from shared
to global memory, rewriting the results that are stored contiguously in shared memory, to
non-contiguous locations in global memory, because each sub-matrix Y[:, row] corresponds

9Contrasting with efficient Python multiplication routines that would require them to be contiguous.
10Unfortunately for us, batch-size-first is the default convention of PyTorch, which seems to be mainly

motivated by historical reasons. Despite this unfavorable convention for the kernel, we will see that it
still performs well in batch-size-first.

11Classical optimizations are used, as detailed in Appendix D.4.2.

101

Chapter 5. Efficient inference with Kronecker-sparse matrices

to columns of the output Y (see Figure 5.3) that are not consecutive as soon as d > 1.
This writing phase is also expected to be more efficient in the batch-size-last memory
layout, ensuring the entries of a same column of Y[:, row], and thus the write operations,
to be contiguous in memory.

Comparison with other baseline implementations. This new kernel has fewer
global memory accesses compared to the baselines einsum, bsr and bmm (Section 5.1.2),
because it only reads each coefficient of X and K once and writes the result of the
multiplication Y once, while those baseline implementations read X and Y twice and
rewrite them once (to permute them). In a sense, the kernel has fused the multiplication
and the permutation operations of the baseline implementations, avoiding for several
passes between the global memory and the registers.

Compared to the dense implementation, it also has fewer global memory accesses,
since the dense implementation additionally reads the zero entries of K and the corre-
sponding coefficients of X, while our kernel does not. Compared to the generic sparse
implementation, we have the same number of memory accesses, but the sparse imple-
mentation is agnostic to the sparsity structure of K, so it is expected to be less efficient
since the memory accesses are not tailored to the known location of the nonzero entries.

5.4 Benchmarking the multiplication with a Kronecker-
sparse matrix

We now benchmark the different implementations described so far for Kronecker-sparse
matrix multiplication. In particular, we validate numerically the benefits of the new
kernel implementation, with improved memory transfers, compared to the baselines
einsum, bsr and bmm.

Protocol. The benchmark is run in float-precision on a subset of 600 sparsity patterns
π = (a, b, c, d) in α × β × β × α, with α := {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128},
β := {48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}, such that b = c or b = 4c or c = 4b.
These patterns correspond to dimensions of Kronecker-sparse matrices K ∈ RM×N with
(M,N) = (abd, acd) in the linear layers of Transformers (up projection for b = 4c, down
projection for c = 4b, fully-connected layers for b = c) and more generally in any neural
network. We choose as batch size B = 128 × 196 = 25088, a standard effective batch
size for fully-connected layers in Vision Transformers (ViTs) [Dosovitskiy et al., 2021],
corresponding to a number of sequences per batch equal to 128, multiplied by a number
of tokens per sequence equal to 196. Credit goes to Léon for suggesting this protocol, that
we set up with Pascal.

Further details are given in Appendix D.2.1.

Implementations specialized to Kronecker sparsity improves over generic im-
plementations. The first line of Table 5.3 shows that at least one of the implementa-
tions specialized to the Kronecker structure among kernel, bmm, einsum and bsr improves
over the generic dense and sparse implementation, which do not take into account the

102

5.4. Benchmarking the multiplication with a Kronecker-sparse matrix

Table 5.3: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2
(denoted by time(algo1) < time(algo2)), and the median acceleration factor in such cases
(that is, the median ratio time of algo2

time of algo1). For each implementation, we take the minimum
time between the batch-size-first and the batch-size-last memory layout.

min time

kernel

bmm
einsum

bsr

 < min time
(

dense
sparse

)
time(bmm) < min time

einsum

bsr
dense
sparse

 time(kernel) < min time

bmm

einsum
bsr

dense
sparse

99.67% (×6.57) 92.66% (×1.37) 88.10% (×1.39)

Kronecker sparsity. The speedup increases with the matrix size M ×N of the Kronecker-
sparse matrix K, see Figure 5.6.

The baseline bmm is faster than the other baselines einsum and bsr. This is
shown in the second line of Table 5.3, where the bmm implementation improves over
min(einsum, bsr) in 93% of the tested cases. The speedup increases with the matrix
size M × N of the Kronecker-sparse matrix K, see Figure 5.7. Therefore, when com-
paring the new kernel implementation to other baselines, we will mainly focus on the
comparison between bmm and kernel.

104 105 106 107 108 109 1010

M × N

100

101

m
in

 ti
m

e(
de

ns
e,

 sp
ar

se
)

di
vi

de
d

by
m

in
 ti

m
e(

ke
rn

el
, b

m
m

, e
in

su
m

, b
sr

)

Figure 5.6: Speed-up factor of min
time(kernel, bmm, bsr, einsum) compared
to min time(dense, sparse) as a function
of the matrix size M ×N .

104 105 106 107 108 109 1010

M × N

1

0.8

0.9

2

m
in

 ti
m

e(
ei

ns
um

, b
sr

)
di

vi
de

d
by

 ti
m

e(
bm

m
)

Figure 5.7: Speed-up factor of time(bmm)
compared to min time(einsum, bsr) as a
function of the matrix size M ×N .

The new kernel implementation is faster than existing baselines. The third
row of Table 5.3 shows that kernel is faster than all other baselines in 88% of the tested
patterns. This empirically validates the benefits of the reduced memory transfer in the
kernel implementation. In the following, we provide further details on the influence of
the memory layout (batch-size-first vs. batch-size-last) on this improvement. Addition-
ally, we analyze the patterns π = (a, b, c, d) for which the kernel outperforms baseline
implementations.

103

Chapter 5. Efficient inference with Kronecker-sparse matrices

0.
01

0.
00

2

0.
00

3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

b + c
bc

1
0.9

2

3

m
in

 ti
m

e(
bm

m
, e

in
su

m
, b

sr
)

di
vi

de
d

by
 ti

m
e(

ke
rn

el
)

Figure 5.8: Time speedup factor of kernel
compared to min(bmm, einsum, bsr). For
each implementation, we take the minimum
time between the batch-size-first and batch-
size-last memory layouts. We regroup the
patterns by their value of (b + c)/(bc), and
plot a boxplot to summarize the correspond-
ing measurements.

d(b + c) / (bc)e
n
e
rg

y
(k

e
rn

e
l)

/m
in

 e
n
e
rg

y
(b

m
m

,
e
in

su
m

,
d

e
n
se

)

10 3 10 2 10 1 100
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 5.9: Energy consumed by kernel
compared to the minimum consumed by
bmm, einsum and bsr. For each imple-
mentation, we take the minimum energy
consumed between the batch-size-first and
batch-size-last memory layouts. We re-
group patterns by their value of d(b +
c)/(bc).

Impact of the memory layout. For baseline implementations, switching to batch-
size-last yields a high systematic speedup for sparse, high variability in the speedup of
bsr, and essentially no impact to negative impact for the other methods, see Figure 5.10.
The important part is that it has no impact on bmm, and since bmm is the fastest baseline
implementation (Table 5.3), switching to batch-size-last has no impact on the best of the
baseline implementations. However, it yields a systematic speedup (about ×2) for the
kernel implementation. This acceleration is expected, since the batch-size-last memory
layout allows for more efficient memory accesses in the kernel implementation, as detailed
in Section 5.3. Table 5.4 shows the percentage of patterns for which the kernel imple-
mentation improves over all baseline implementations, either in the batch-size-first or the
batch-size-last memory layout. When restricting all implementations to the batch-size-first
layout, the kernel still improves on 20% of the tested patterns despite non-contiguous
memory accesses (Section 5.3).

Table 5.4: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2
(denoted by time(algo1) < time(algo2)), and the median acceleration factor in such
cases (that is, the median ratio time of algo2

time of algo1).

time(kernel) < min time(bmm, einsum, bsr, dense, sparse)
Batch-size-first 20.0% (×1.28)
Batch-size-last 88.1% (×1.39)

104

5.4. Benchmarking the multiplication with a Kronecker-sparse matrix

kernel bmm einsum bsr dense sparse

1

10

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

Ti
m

e
ba

tc
h-

siz
e-

fir
st

 /
Ti

m
e

ba
tc

h-
siz

e-
la

st

Figure 5.10: Boxplots of the ratio time of batch-size-first
time of batch-size-last .

Analyzing the cases where kernel outperforms baselines. As seen in Section 5.3,
the kernel has an improved memory access design compared to the rest of the baselines.
Figure 5.8 confirms this experimentally: the kernel implementation becomes in-
creasingly time-efficient compared to the baseline implementations as the rel-
ative number of memory accesses increases, i.e. when the following ratio increases
(introduced in (5.2))

number of memory rewritings
number of scalar multiplications

= (b+ c)/(bc).

The kernel improves on energy efficiency. Overall, the median energy reduction
factor is ×0.85, and the new kernel improves the energy consumption in 72% of the
tested cases. The energy measurements are done with the software pyJoules. I have
assisted with the design of these experiments, and Pascal handled their execution. More
details about the measurements are in Appendix D.2.1. It demonstrates that the kernel
not only achieves higher time efficiency but also reduces energy consumption
compared to other baselines. This twofold advantage makes the kernel an effective
solution for improving both performance and sustainability.

A proxy for the energy spent on memory rewritings in the baseline implemen-
tations. Figure 5.9 shows further that the energy efficiency of the kernel increases with
the value of d(b+ c)/(bc). We now give a theoretical explanation for this. For a sparsity
pattern π = (a, b, c, d), we already discussed that the ratio (b + c)/bc, corresponding to
the relative number of memory rewritings (Equation (5.2)), is a good proxy of the relative
time spent on memory rewritings in practice. To transform it in a good proxy for the
relative energy spent on memory rewritings, I proposed to multiply this ratio by d. The
reason for this is that the integer d corresponds to the distance between the columns to be
rewritten contiguously (i.e., the columns in col from Algorithm 5.1.1). Therefore, I ex-
pect the energy spent by bmm on memory rewritings to increase with d. This is confirmed

105

Chapter 5. Efficient inference with Kronecker-sparse matrices

by the results in Figure 5.9. As I discuss in the perspectives (Chapter 7), I expect this to
be a useful heuristic to design Kronecker-sparse neural networks that are energy-efficient.

5.5 Broader implications for neural networks: accel-
erating inference

We already saw in the introduction that the inference of neural networks is represents
more than 90% of the cost of machine learning at scale [HPCwire, 2019, Barr, 2019]. We
now investigate whether replacing fully-connected layers by products of Kronecker-sparse
matrices accelerates the inference. While the same could also apply to other architectures,
we will consider so-called Vision Transformers (ViTs) [Dosovitskiy et al., 2021]. We find
that the computational cost of fully-connected layers is significant in such architectures:
depending on the size of the ViT, from 30% to 60% of the total time in a forward pass
is spent in fully-connected layers (see Appendix D.2.3 for details), courtesy of Léon for
these experiments.

Protocol. We benchmark in float-precision various components of a ViT-S/16 archi-
tecture: a linear layer with bias, an MLP with non-linear activation and/or normaliza-
tion layers, a multi-head attention module, etc. As in Dao et al. [2022a], we replace
by a product of two Kronecker-sparse matrices the weight matrices of linear layers in
feed-forward network modules, and the projection matrices for keys, queries and val-
ues in multi-head attention modules. Each product of two Kronecker-sparse matrices is
of the form K1K2 (Definition 5.1.1) with respective sparsity patterns π1, π2 given by:
(1, 192, 48, 2), (2, 48, 192, 1) for the size N × N , (1, 768, 192, 2), (6, 64, 64, 1) for the size
4N ×N , (1, 768, 192, 2), (6, 64, 64, 1) for the size 4N ×N . We focus on batch-size-first as
it is the default convention in PyTorch12. Credit goes to Léon for suggesting this protocol,
that he set up with Pascal.

Results. We denote by time(fully-connected) the inference time with dense matri-
ces (and therefore, with the standard PyTorch implementation). Table 5.5 shows that
time(kernel) < time(bmm) < time(fully-connected) over all the different submodules.
This concretely shows that using Kronecker-sparse matrices and the kernel
implementation accelerates the inference of standard neural networks.

Table 5.5: Acceleration of submodules of a ViT-S/16 using Kronecker-sparse matrices.

time(bmm)
time(fully-connected)

time(kernel)
time(fully-connected)

Linear N ×N 0.82 0.50
Feed-forward network 0.91 0.77
Multi-head attention 0.87 0.79
Block 0.90 0.78
Kronecker-sparse ViT-S/16 0.89 0.78

12The insertion of Kronecker-sparse matrices in the batch-size-last memory layout would a priori require
a careful implementation of the rest of the operations in batch-size-last, that are for now optimized in
batch-size-first in PyTorch.

106

5.6. Conclusion

5.6 Conclusion
The practical gain in time and energy using Kronecker-sparse matrices was not clear
before this thesis as there were too few reported results on the topic. This thesis aimed at
closing this gap by extensively benchmarking existing GPU implementations of Kronecker-
sparse matrix multiplication. Thanks to that, we identified that these implementations
can spend up to 50% of their time on memory rewriting operations. This led us to
propose a new CUDA kernel for Kronecker-sparse matrix multiplication that fuses some
operations to reduce the memory transfers between the different levels of GPU memory. In
float-precision, the new kernel not only accelerates Kronecker-sparse matrix
multiplication, but also decreases the energy consumption. Moreover, we provide
a simple heuristic to choose Kronecker sparsity patterns (a, b, c, d) that are particularly
efficient for this implementation.

Perspectives. The heuristics we provided to decide which Kronecker sparsity patterns
are time-efficient and energy-efficient pave the way to new research directions to design
efficient Kronecker-sparse neural networks, as I will discuss in Chapter 7 (Section 7.4.1).

I will also discuss the challenges to obtain the same gains in half-precision as the ones
we obtained with the new kernel in float-precision (Section 7.4.2).

This chapter has also demonstrated that some operations (the generic sparse matrix
multiplication of PyTorch, and the new kernel, see Figure 5.10) are particularly perfor-
mant in batch-size-last. This paves the way to revisit other common operations in neural
networks within the batch-size-last memory layout.

Finally, translating our kernel into OpenCL could enable it to run on AMD hardware
and other platforms. We also hope that our benchmark will serve as a baseline for com-
paring Kronecker-sparse implementations on other hardware, such as CPU, Intelligence
Processing Unit, FPGA, etc.

107

Chapter 6
Approximation guarantees for quantized
networks

This chapter focuses on the approximation power of neural networks, quantized or not,
based on Gonon et al. [2023a]. It is disconnected from the theory on the path-lifting and
path-activations developed in Chapters 2 to 4.

This is the first work I did during my PhD. I now have a different perspective on the
results presented here, and I will comment on them as we go along. Because of that, this
chapter is a mix of the original work and my current viewpoint. In Section 6.1, I give an
high-level overview of the first half of the contribution in Gonon et al. [2023a] based on this
new outlook. The other half of the paper Gonon et al. [2023a] is completely reproduced,
starting at Section 6.2.1, but preceded by a new introduction, in Section 6.2, reflecting my
updated perspective.

As already discussed in Chapter 1 and in the introduction of Chapter 5, the cost of
machine learning at scale grows exponentially with years, and the time, energy and mem-
ory required to train and run neural networks is becoming a bottleneck for the deployment
of AI in many applications. Besides sparsity, studied in Chapter 5, quantization is also an
important technique widely used in practice to reduce the cost of neural networks. This
is often done by decreasing the number of bits used to store the weights of the network,
and more generally, to constrain them to a finite set. For instance, going from the IEEE
standard 32-bit float-precision to the other IEEE standard 16-bit half-precision reduces
the memory footprint of a neural network by a factor of two, makes training and inference
faster, and reduces the energy consumption. However, the maximum value represented by
a 16-bit half-precision (≃ 7e5) is much smaller than the maximum value represented by a
32-bit float-precision (≃ 3e38). This can lead to loss of accuracy in the approximation of
the target function, and has therefore led to the development of alternative formats. For
instance, for large language models, the Brain Floating Point half-precision is preferred
over classical half-precision, for its wider range of values and its better empirical results
in learning problems. Despite the development of these new formats, the quest for the
best trade-off between the size of the formats and the accuracy provided by the neural
network remains a crucial question in practice, and finding the right quantization scheme
is for now a trial-and-error process. For this reason, I have been interested in investigating
what could be said in theory. I found out that all the results on the approximation power
of neural networks were based on the assumption that the weights of the network are arbi-

109

Chapter 6. Approximation guarantees for quantized networks

trary (unconstrained) real numbers, and that no result was available on the approximation
power of neural networks with quantized weights.

This chapter addresses this challenge of better understanding the approxi-
mation power of quantized neural networks, e.g., by providing sufficient number of
bits for quantized networks to have the same approximation rates as unquantized ones.
This is done by combining existing results on the approximation power of neural networks
with unconstrained real weights with new results on the quantization error of neural net-
works.

Another important question is to better understand non-trivial situations where neural
networks, quantized or not, can be expected (or not) to have better approximation prop-
erties than the best known approximation families1 such as polynomials or wavelets. This
chapter lays a framework to identify such situations. This is done by introducing
a property of the approximation family at hand, called ∞-encodability.

The outline is as follows.

• Section 6.1 gives an high-level overview of the results of Gonon et al. [2023a] on the
approximation power of quantized neural networks. A practical type of quantization
on which I will focus is quantization to the nearest-neighbour on a finite subset of
a uniform grid (see, e.g., Theorem 6.1.1).

• Section 6.2 introduces the notion of ∞-encodability (Definition 6.2.2), a property
of approximation families that I show to be useful to identify fundamental limits of
neural network approximation (Theorem 6.2.1). This property has been implicitly
used on a case-by-case basis in the literature to show that many classical approxi-
mation families share a fundamental limit in their approximation power. The new
framework I introduce unifies and generalizes these results, hopefully providing a
clearer perspective on such fundamental limits of neural network approximation.

6.1 Approximation by quantized neural networks
Given a metric d, an accuracy ε > 0 and a target function f , the problem of approximating
f with a neural network is to find a DAG architecture G (Definition 2.2.2) such that there
are parameters θ ∈ RG satisfying

d(f,Rθ) ⩽ ε.

It has been shown in the literature that there exist such G and θ for many f , d, and ε,
with explicit bounds on the size of G and the ℓq-norms of θ. These bounds have been
provided for classifier functions f in L2 [Petersen and Voigtländer, 2018], functions f in
Hölder spaces [Ohn and Kim, 2019], Sobolev spaces [Gühring et al., 2019, Gribonval et al.,
2022], and even more general Besov spaces [Suzuki, 2019, Gribonval et al., 2022].

However, these results use unconstrained real weights θ, while the parameters available
on a machine are constrained to a finite set (e.g., floats). In this section, I investigate
the effect of quantization on the approximation properties of neural networks: I call
quantization scheme any function Q : RG 7→ RG with a finite image, and I am interested in

1An approximation family is any (often non-decreasing) sequence (ΣM)M=1,2,... of subsets of a metric
space (F , d).

110

6.1. Approximation by quantized neural networks

the same question as above, but this time the goal is to have the approximation guarantee
in terms of the quantized network RQ(θ) instead of the unquantized one Rθ:

d(f,RQ(θ)) ⩽ ε.

A general quantization scheme as above corresponds to vector quantization. I will specifi-
cally focus on the special case of uniform scalar quantization, whereQ acts coordinate-wise
according to Q(θ)i = ⌊θi/η⌋ η for some step size η > 0. This is a simple and practical
quantization scheme. The goal is to provide guarantees on the approximation power of
LFCNs with quantized weights using this quantization scheme.

To derive guarantees, I will base myself on the simple triangle inequality:

d(f,RQ(θ)) ⩽ d(f,Rθ) + d(Rθ, RQ(θ)). (6.1)

Given d, ε and f , existing results can be used to find an architecture G and (unquantized)
parameters θ such that d(f,Rθ) ⩽ ε [Petersen and Voigtländer, 2018, Ohn and Kim,
2019, Gühring et al., 2019, Gribonval et al., 2022], hence controlling the first term of
Inequality (6.1). Once we have such an architecture and parameters θ, I then bound
the second term of (6.1) using the Lipschitz property of the network with respect to the
parameters θ:

d(Rθ, RQ(θ)) ⩽ d̃(θ,Q(θ))

for some metric d̃. The latter allows me to give a sufficient number of bits for the quan-
tization scheme Q to guarantee the desired accuracy ε. Below, I describe in Section 6.1.1
how I control the quantization error d(Rθ, RQ(θ)) in terms of the number of bits of the
quantization scheme Q. Combined to existing approximation results for unconstrained
real-weights networks, I can apply this to provide guarantees on the approximation power
of LFCNs with quantized weights using the simple Equation (6.1). An example of applica-
tion for Sobolev functions is given in Section 6.1.2. Section 6.1.3 concludes by establishing
a sufficient number of bits for quantized networks to have the same polynomial asymptotic
approximation rates.

6.1.1 Controlling the quantization error
Gonon et al. [2023a] controls the quantization error d(Rθ, RQ(θ)) for LFCNs using Lipschitz
bounds in θ of the same type as the one seen in Equation (3.7):

∥Rθ(x)−RQ(θ)(x)∥1 ⩽ (W∥x∥∞ + 1)WL2RL−1∥θ − θ′∥∞

where W is the width of the network, L is the number of affine layers, and R is a bound
on some operator norm of each affine layer. The first contribution of Gonon et al. [2023a]
is to generalize this type of Lipschitz property that were known in special cases [Berner
et al., 2020, Theorem 2.6][Neyshabur et al., 2018, Lemma 2] to general Lp-norms on the
function space and general operator norms on the affine layers, see Theorem III.1 in Gonon
et al. [2023a]. The details are tedious and I do not reproduce them here. I then use this
Lipschitz property to control the quantization error ∥Rθ(x)−RQ(θ)(x)∥Lp in terms of the
number of bits of the quantization scheme Q. An example of what we can get is given in
the following theorem.

111

Chapter 6. Approximation guarantees for quantized networks

Theorem 6.1.1. Consider a LFCN with L ⩾ 2 affine layers and layers of neurons being
of respective dimension N0, . . . , NL+1 (Definition 2.1.1). Denote W = maxℓ=0,...,L Nℓ the
width of the architecture. Consider the space F = L∞([−D,D]din → (Rdout , ∥·∥∞), µ) with
µ the Lebesgue measure.

Consider ε ∈ (0, 1/2) and parameters θ. Let k ⩾ 0 be the smallest integer such that
∥θ∥∞ ⩽ ε−k and max(W,L) ⩽ ε−k, i.e., k = ⌈log2 max(∥θ∥∞,W, L)
/ log2(1/ε)⌉. For every integer m ⩾ 2kL + k + 1 + log2(⌈D⌉), the weights of θ can be
rounded up to a closest point in ηZ ∩ [−ε−k, ε−k] with η := 2−m⌈log2(ε−1)⌉ ⩽ εm to obtain
Qη(θ) ∈ (ηZ)#params satisfying

∥Qη(θ)∥∞ ⩽ ε−k and ∥Rθ −RQη(θ)∥L∞ ⩽ ε.

Theorem 6.1.1 gives an explicit number of bits that ensures that uniform quantization
to the nearest neighbour yields a quantization error of at most ε. This condition improves
on Lemma VI.8 in Elbrächter et al. [2021] essentially by a factor kL in the number of bits
(in m).

However, I did that before being familiar with the path-lifting theory. Based on what we
saw in Chapters 2 to 4, it is now clear that the tightest way to exploit a Lipschitz property
expressed directly in terms of the raw parameters is often by first reducing to normalized
parameters (Definition 3.2.1). Indeed, Lipschitz properties expressed in terms of raw θ
are not invariant to rescaling symmetries, and the infimum of such a bound over the
weak equivalence class of θ is often achieved by normalizing θ (see, e.g., Theorem 3.3.2).
Therefore, it is expected that the results of Gonon et al. [2023a] can be both improved
using the path-lifting, and generalized to arbitrary DAG networks since the path-lifting
provides a Lipschitz property for any DAG network. For this reason, Section 6.1.3 only
presents the ideas of Gonon et al. [2023a], but not the proofs nor the details as they are
tedious and likely to be improved.

6.1.2 Application to Sobolev functions
I just showed how to control, in terms of the number of bits of the quantization scheme
Q, the quantization error ∥Rθ − RQη(θ)∥L∞ , i.e., the first term of the right-hand side of
Inequality (6.1):

d(f,RQ(θ)) ⩽ d(f,Rθ) + d(Rθ, RQ(θ)).

To get guarantees of approximation for quantized networks, it remains to control the first
term of the right-hand side using existing results on the approximation power of neural
networks with unconstrained real weights θ.

As an example, let’s consider the case of functions f in an L∞-Sobolev space. Given
n := (n1, . . . , nd) ∈ Nd

>0, denote by Dnf the associated weak-derivative of f , if it exists.
Consider n ∈ N>0 and denote by Wn,∞([0, 1]d) the Sobolev space of real-valued functions
on [0, 1]d that are, with all their n-weak derivatives up to order n (∥n∥1 ⩽ n), in L∞. The
norm on Wn,∞([0, 1]d) is given by:

∥f∥Wn,∞([0,1]d) := max
n:=(n1,...,nd)∈Nd

>0∑
i

ni⩽n

ess sup
x∈[0,1]d

|Dnf(x)|.

112

6.1. Approximation by quantized neural networks

Theorem 6.1.2 ([Ding et al., 2019, Thm. 2]). Let Cn,d be the unit ball of Wn,∞([0, 1]d).
There exists a constant c > 0 depending only on n and d such that for every ε ∈ (0, 1),
there exists η > 0 satisfying ln(1/η) ⩽ c ln2(1/ε) and a LFCN architecture (Defini-
tion 2.1.1) that can approximate every function f ∈ Cn,d within error ε > 0 in L∞([0, 1]d)
using weights in ηZ, with depth bounded by c ln(1/ε), a number of weights at most equal to
cε−d/n ln(1/ε), and with a total number of bits (used to store the network weights) bounded
by cε−d/n ln3(1/ε).

There is no particular difficulty so I skip the proof and invite the interested reader to
refer directly to the paper [Gonon et al., 2023a].

Theorem 6.1.2 is an application of Theorem 6.1.1, recovering a special case of Theorem
2 in Ding et al. [2019] (the other cases can be recovered by combining this special case
with Proposition 3 in Ding et al. [2019]). But the framework introduced here is more
general as we have derived a general Lipschitz property in any Lp-space, so we could
derive similar consequences not only for a function f in the unit ball of an L∞-Sobolev
space, but for every f ∈ Lp (1 ⩽ p ⩽∞) as soon as it is known how to approximate f with
unquantized ReLU networks, with explicit bounds on the growth of their depth, width and
weight’s magnitude. For instance, such bounds are known for Hölder spaces Ohn and Kim
[2019], classifier functions in L2 Petersen and Voigtländer [2018] and Besov spaces Suzuki
[2019]. The same argument also applies for networks with arbitrary Lipschitz activation
(such as the sigmoid function) for which an analog Lipschitz bound on θ 7→ Rθ can be
derived, and for which we know how to approximate "smooth" functions [Gühring et al.,
2019, Table 1].

Another interesting question is, instead of fixing an accuracy ε and deriving bounds on
the size of the architecture and the number of bits sufficient to meet this accuracy, to rather
fix a sequence Σ = (ΣM)M∈N>0 of sets of network functions with growing architectures
and growing numbers of bits2, and study the polynomial rate at which d(f,ΣM) converges
to zero as M grows. This is the object of Section 6.1.3.

6.1.3 Approximation speed of quantized neural networks
Given a subset C of a metric function space (F , d) and an approximation family Σ =
(ΣM)M∈N>0 in F , this leads to the notion of the polynomial asymptotic approximation
speed γ∗approx(C|Σ) of C by Σ [Elbrächter et al., 2021, Def. V.2, Def. VI.1], called sim-
ply approximation speed in what follows. This is the best polynomial rate at which all
functions of C are asymptotically approximated by Σ:

γ∗approx(C|Σ) := sup{γ ∈ R, sup
f∈C

inf
g∈ΣM

d(f, g) = OM→∞
(
M−γ

)
},

with the convention γ∗approx(C|Σ) = −∞ if the supremum is over an empty set.
Consider a function f ∈ Lp and a sequence of parameters (θM)M∈N>0 . Can we design

a sequence (QM) of quantization schemes such that the realizations of the networks with
quantized parameters (QM(θM))M∈N>0 approximate the function f at the same asymp-
totic polynomial rate, with M , as the unquantized parameters (θM)M∈N>0? Using the
triangle inequality ∥f − RQM (θM)∥p ⩽ ∥f − RθM

∥p + ∥RθM
− RQM (θM)∥p for each integer

2Typically ΣM ⊂ ΣM+1.

113

Chapter 6. Approximation guarantees for quantized networks

M , it is sufficient to guarantee that ∥RθM
−RQM (θM)∥p decreases at the same polynomial

asymptotic rate as ∥f −RθM
∥p. This can be done using similar controls on the quantiza-

tion error as the ones established in Section 6.1.1. I now give an informal version of the
results proved in Gonon et al. [2023a], and leave the details for the paper.

In the following result, I exhibit a sufficient number of bits per coordinate that guar-
antees that nearest-neighbour uniform quantization preserves approximation rates of ap-
proximation families defined with LFCNs (Definition 2.1.1).

Informal Theorem 6.1.1 (see Theorem V.1 in Gonon et al. [2023a]). Consider the
approximation family Σ = (ΣM)M∈N>0 in an arbitrary Lp space, such that ΣM is the set
of functions realized by LFCNs (Definition 2.1.1) with at most LM ∈ N>0 affine layers,
with parameters having at most M non-zero coordinates and with Euclidean norm bounded
by rM ⩾ 1. Denote by Lips(L,W, r) the Lipschitz constant of θ 7→ Rθ ∈ Lp on the set of
LFCNs with L affine layers, width W and parameters of Euclidean norm at most equal
to r.

For γ > 0, consider the γ-uniformly quantized sequence Q(Σ|γ) := (QM(ΣM |γ))M∈N>0,
where QM(ΣM |γ) is the set of functions realized by LFCNs as above, but with parameters
uniformly quantized using the quantization scheme QηM

(x) = ⌊x/ηM⌋ ηM for a step size
ηM = M−γLips(M,LM , rM). Then, the γ-uniformly quantized sequence Q(Σ|γ) has, on
every set C ⊂ Lp, an approximation speed which is comparable to its unquantized version
Σ:

γ∗approx(C|Q(Σ|γ)) = γ∗approx(C|Σ) if γ ⩾ γ∗approx(C|Σ),
γ∗approx(C|Q(Σ|γ)) ⩾ γ otherwise.

This theorem leads to explicit conditions on the number of bits per coordinate that
guarantee quantized LFCNs to have the same approximation speeds as unquantized ones,
see Example V.1 in Gonon et al. [2023a]. In the proof, approximation speeds are matched
by (i) taking unquantized parameters that (almost) achieve the unquantized approxima-
tion speed and (ii) quantizing these parameters with a sufficiently large number of bits in
order to preserve the approximation speed. Smarter (but computationally more challeng-
ing) quantization schemes can be envisioned, such as directly picking the best quantized
parameters to approximate the function. If the budget for the number of bits per coor-
dinate is larger than the one given in Informal Theorem 6.1.1, then even the smartest
quantization scheme will not beat approach (i) + (ii) in terms of polynomial approx-
imation speed (but it can still have better constants/log-terms etc.). Indeed, (i) + (ii)
already yields the same approximation speeds for quantized networks as unquantized ones,
and quantized networks cannot do better than unquantized ones. An open question is:
what is the minimum number of bits per coordinate needed to keep the same approx-
imation speeds? I provide a partial answer by providing an upper-bound in Informal
Theorem 6.1.1.

This concludes the presentation of the results of Gonon et al. [2023a] about the ap-
proximation speed of quantized neural networks. I now turn to another result of Gonon
et al. [2023a] about a fundamental limit of neural network approximation.

114

6.2. Fundamental limits of neural network approximation

6.2 Fundamental limits of neural network approxi-
mation

Given an approximation family Σ = (ΣM)M∈N>0 and a target set C to approximate, I am
interested in better understanding situations where it holds:

γ∗approx(C|Σ) ⩽ γ∗encod(C), (6.2)

where γ∗encod(C) is the encoding speed of C, also called Kolmogorov-Donoho complexity
[DeVore et al., 2021, Elbrächter et al., 2021]. The encoding speed is an information-
theoretic quantity that measures how much we could compress a set when encoded at
asymptotically small precision. This is done by looking at the rate at which the number
of balls needed to cover the set grows as the radius of the balls decreases. Formally,
consider the metric entropy H(C, d, ε) := log2(N(C, d, ε)) (recall the definition of covering
numbers in Definition 4.3.1). The encoding speed of C is defined as [Elbrächter et al.,
2021, Def. IV.1]:

γ∗encod(C) := sup
{
γ > 0, H(C, d, ε) = Oε→0(ε−1/γ)

}
, (6.3)

with the convention that γ∗encod(C) = 0 if the supremum is over an empty set.
Inequality (6.2) relates an approximation quantity, γ∗approx(C|Σ), to an information-

theoretic quantity γ∗encod(C). This inequality is important for several reasons.

• It is challenging to derive an upper-bound on the approximation speed.
Deriving an upper bound on the approximation speed γ∗approx(C|Σ) is in general
more challenging than deriving a lower-bound. For each function f ∈ C, a lower
bound is obtained as soon as we can exhibit one sequence of functions (gM)M∈N>0

in Σ such that d(f, gM) converges to zero at a polynomial rate. Such constructions
are well-known in many cases of interests, such as when f is smooth and ΣM is
the set of polynomials of degree M (Taylor-like approximation), or when f is in a
Sobolev space and ΣM is a set of wavelets, or when f is a polynomial and ΣM is a
set of neural networks [Gribonval et al., 2022]. However, deriving an upper bound
on the approximation speed γ∗approx(C|Σ) requires to prove that there is at least one
f such that any sequence of functions (gM)M∈N>0 in Σ cannot converge to f at a
given polynomial rate. The fact that all the sequences have to be ruled out makes
this task more challenging.

• The encoding speed is known for many C’s, see [Elbrächter et al., 2021, Table
1].

• Inequality (6.2) is often sharp as it is often an equality, see [Elbrächter et al.,
2021, Table 1].

• Inequality (6.2) is a reasonable fundamental limit to the approximation
capability of an approximation family. We will see that in order for this
inequality to not hold, this requires making very strong growth assumptions on
the sets of the approximation family Σ = (ΣM)M . This means that all reasonable
approximation families Σ must satisfy this inequality, which can be interpreted as a
fundamental limit to how well a given set C can be approximated by any (reasonable)
given approximation family Σ.

115

Chapter 6. Approximation guarantees for quantized networks

Inequality (6.2) has been established on a case-by-case basis in the literature, for in-
stance when Σ is defined with dictionaries [Elbrächter et al., 2021, Thm. V.3][Grohs,
2015, Thm. 5.24] or LFCNs (Definition 2.1.1) [Elbrächter et al., 2021, Thm. VI.4].
In Section 6.2.1, I introduce the notion of γ-encodability for approximation families Σ,
that measures how well an approximation family can be covered by balls. Section 6.2.2
shows that Inequality (6.2) can be understood as a consequence of this new notion of
γ-encodability. What I like about γ-encodability is that it is a property of Σ alone, re-
gardless of the target set C, and it implies Inequality (6.2) for all target sets C. I find
this elegant as it means that Inequality (6.2) describes a fundamental limit to the approx-
imation capability that is inherently encoded in Σ. In particular, it does not depend on
how well this approximation family is adapted to a given C. Section 6.2.3 then shows that
many approximation families are ∞-encodable, recovering in particular previous known
cases where Inequality (6.2) holds [Elbrächter et al., 2021, Thm. V.3][Grohs, 2015, Thm.
5.24][Elbrächter et al., 2021, Thm. VI.4].

6.2.1 Notion of γ-encodability
Let Σ := (ΣM)M∈N>0 be a sequence of non-empty subsets of a metric space (F , d). Con-
sider C ⊂ F and ε > 0. If γ∗approx(C|Σ) > 0, since Σ approximates C at speed γ∗approx(C|Σ),
there exists a positive integer M large enough such that every element f ∈ C can be
ε-approximated (with respect to the metric d) by an element of ΣM . Since ΣM can
be ε-covered (with respect to d) with N(ΣM , d, ε) elements, C can be 2ε-covered with
N(ΣM , d, ε) elements. Instances of this simple reasoning can be found in [Elbrächter
et al., 2021, Thm. V.3, Thm. VI.4][Grohs, 2015, Thm. 5.24][Kerkyacharian and Picard,
2004, Prop. 11]. This suggests the existence of a relation between the approximation
speed γ∗approx(C|Σ) and the encoding speed γ∗encod(C) that depends on the growth with
M of the covering numbers of ΣM .

I claim that a "reasonable" growth of the covering numbers of ΣM consists in a situation
where, for some γ > 0, the set ΣM can be M−γ-covered with "roughly" 2M log M elements.
Indeed, this covers the case where each element of ΣM can be described by M parameters
that can be stored with a number of bits per parameter that grows logarithmically in
M . For instance if ΣM is a bounded set in dimension M then it can be uniformly
quantized along each dimension with a size step of order M−γ, so that logM bits is
roughly enough to encode each of the M coordinates. This "reasonable" growth for the
covering numbers of ΣM is formalized in Definition 6.2.2, and yields the simple relation
min(γ∗approx(C|Σ), γ) ⩽ γ∗encod(C) for every set C ⊂ F , as shown in Theorem 6.2.1.

Definition 6.2.1 ((γ, h)-encoding). Consider a metric space (F , d), an arbitrary se-
quence Σ := (ΣM)M∈N>0 of (non-empty) subsets of F , and γ > 0 and h > 0. A
sequence (Σ(γ, h)M)M∈N>0 is said to be a (γ, h)-encoding of Σ if there exist constants
c1, c2 > 0 such that for every M ∈ N>0, the set Σ(γ, h)M is a c1M

−γ-covering of ΣM

(recall Definition 4.3.1, in particular Σ(γ, h)M must be a subset of ΣM) of size satisfying
log2(|Σ(γ, h)M |) ⩽ c2M

1+h.

The following definition captures a "reasonable" growth with M of the covering num-
bers of ΣM .

116

6.2. Fundamental limits of neural network approximation

Definition 6.2.2 (γ-encodable Σ in (F , d)). Let (F , d) be a metric space. Let Σ :=
(ΣM)M∈N>0 be an arbitrary sequence of (by default, non-empty) subsets of F . Consider
γ > 0. We say that Σ is γ-encodable in (F , d) if for every h > 0, there exists a (γ, h)-
encoding of Σ. We say that Σ is ∞-encodable in (F , d) if it is γ-encodable in (F , d) for
all γ > 0. When the context is clear, we will omit the mention to (F , d).

Note that if Σ is γ-encodable then it is γ′-encodable for every γ′ ⩽ γ. Several examples
of ∞-encodable sequences are given in Section 6.2.3, including classical approximation
families defined with dictionaries or LFCNs (Definition 2.1.1).

6.2.2 The encoding speed as a universal upper bound for ap-
proximation speeds

It is known that γ∗approx(C|Σ) ⩽ γ∗encod(C) for various sets C when Σ is defined with
neural networks [Elbrächter et al., 2021, Thm. VI.4] or dictionaries [Elbrächter et al.,
2021, Thm. V.3][Grohs, 2015, Thm. 5.24]. The following proposition shows that ∞-
encodability implies γ∗approx(C|Σ) ⩽ γ∗encod(C). This settles a unified and generalized
framework for the aforementioned known cases that implicitly use, one way or another,
the ∞-encodability property, as I will detail in section 6.2.3.
Theorem 6.2.1 ([Gonon et al., 2023a]). Consider (F , d) a metric space and Σ :=
(ΣM)M∈N>0 an arbitrary sequence of (non-empty) subsets of F which is γ-encodable in
(F , d), with γ ∈ (0,∞]. Then for every (non-empty) C ⊂ F :

min(γ∗approx(C|Σ), γ) ⩽ γ∗encod(C).

Proof of Theorem 6.2.1. If γ∗approx(C|Σ) ⩽ 0 then the result is trivial since we always
have γ∗encod(C) ⩾ 0. In the rest of the proof we assume γ∗approx(C|Σ) > 0. Fix 0 < γ′ <
min(γ∗approx(C|Σ), γ) and h > 0. First, Σ is γ-encodable so there exists a (γ, h)-encoding
of Σ that we denote Σ(γ, h). This means that there exist constants c′

1, c
′
2 > 0 such that for

every M ∈ N, the set Σ(γ, h)M is a c′
1M

−γ-covering of ΣM of size |Σ(γ, h)M | ⩽ 2c′
2M1+h .

Second, since 0 < γ′ < min(γ∗approx(C|Σ), γ), the definition of the approximation speed
guarantees that there exists a constant c′

3 > 0 such that for every f ∈ C and every M ∈ N,
there exists a function ΦM(f) ∈ ΣM that satisfies:

d (f,ΦM(f)) ⩽ c′
3M

−γ′
.

Since 0 < γ′ < γ, note that for every M ∈ N, it holds c′
1M

−γ + c′
3M

−γ′
⩽ (c′

1 + c′
3)M−γ′ .

Define c1 = c′
1 + c′

3 and c2 = c′
2. We deduce that for every M ∈ N, the set Σ(γ, h)M is

a c1M
−γ′-covering of C of size |Σ(γ, h)M | ⩽ 2c2M1+h . Now, for every ε > 0, the integer

Mε :=
⌈(

c1
ε

)1/γ′⌉
satisfies ε ⩾ c1M

−γ′
ε . By monotonicity of the metric entropy H(C, d, ·)

we get H(C, d, ε) ⩽ H(C, d, c1M
−γ′
ε) ⩽ c2M

1+h
ε . Note that for 0 < ε < c1, denoting by

c = (2c1/γ′

1)1+h it holds M1+h
ε ⩽

(
1 +

(
c1
ε

)1/γ′)1+h

=
(

c1
ε

)(1+h)/γ′ (
1 +

(
ε
c1

)1/γ′)1+h

⩽

cε−(1+h)/γ′ . Finally for every 0 < ε < c1, it holds

H(C, d, ε) ⩽ cε−(1+h)/γ′
,

As a direct consequence of Equation (6.3), this implies γ∗encod(C) ⩾ γ′

1+h
for every h > 0

and every 0 < γ′ < min(γ∗approx(C|Σ), γ), hence the desired result.

117

Chapter 6. Approximation guarantees for quantized networks

I derive from Theorem 6.2.1 a generic lower bound on the encoding speed of the set
of functions uniformly approximated at a given speed.

Corollary 6.2.1 ([Gonon et al., 2023a]). Let (F , d) be a metric space. Consider γ ∈
(0,∞] and Σ := (ΣM)M∈N>0 an arbitrary sequence of (non-empty) subsets of F which is
γ-encodable in (F , d). Consider α, β > 0 and Aα(F ,Σ, β) the set of all f ∈ F such that
supM⩾1 M

αd(f,ΣM) ⩽ β. This set satisfies

γ∗encod(Aα(F ,Σ, β)) ⩾ min(α, γ).

Proof. By the very definition of Aα(F ,Σ, β), it holds γ∗approx(Aα(F ,Σ, β)|Σ) ⩾ α. The-
orem 6.2.1 then gives the result.

The reader may wonder about the role of β in the above result, and whether a similar
result can be achieved with Aα(F ,Σ) := ∪β>0Aα(F ,Σ, β). While this is left open, a re-
lated discussion after Corollary 6.2.4 suggests this may not be possible without additional
assumptions on Σ.

As an immediate corollary of Theorem 6.2.1 we also obtain the following result.

Corollary 6.2.2 ([Gonon et al., 2023a]). Consider Σ := (ΣM)M∈N>0 an arbitrary sequence
of (non-empty) subsets of a metric space F and a (non-empty) set C ⊂ F . If Σ is γ-
encodable for every γ < γ∗approx(C|Σ) then:

γ∗approx(C|Σ) ⩽ γ∗encod(C).

Proof. For every γ < γ∗approx(C|Σ), since Σ is γ-encodable, we have γ = min(γ∗approx(C|Σ), γ) ⩽
γ∗encod(C) by Proposition 6.2.1. Taking the supremum of such γ, we get the inequality.

As I will show in Section 6.2.3, applying Corollary 6.2.2 to specific ∞-encodable se-
quences allows one to unify and generalize different cases where γ∗approx(C|Σ) ⩽ γ∗encod(C)
is known to hold [Elbrächter et al., 2021, Thm. V.3, Thm. VI.4][Grohs, 2015, Thm. 5.24].

Note that the quantity γ∗encod(C) is known in several cases, see [Elbrächter et al., 2021,
Table 1]. In the next section, I discuss concrete examples of ∞-encodable sequences Σ.
For such a sequence Σ and an arbitrary set C, independently of the adequation of Σ and
C, Corollary 6.2.2 automatically yields an upper bound for the approximation speed of C
by Σ.

In some situations, the converse of Corollary 6.2.2 can be established.

Theorem 6.2.2. Let C be a (non-empty) subset of a metric space (F , d) and Σ :=
(ΣM)M∈N>0 a sequence of (non-empty) subsets of F such that ΣM ⊂ C for every M
large enough. If min(γ∗approx(C|Σ), γ∗encod(C)) > 0 then the sequence Σ is γ-encodable for
each γ, 0 < γ < min(γ∗approx(C|Σ), γ∗encod(C)). In particular, if γ∗approx(C|Σ) ⩽ γ∗encod(C)
then Σ is γ-encodable for every 0 < γ < γ∗approx(C|Σ).

Proof. Fix 0 < γ < min(γ∗approx(C|Σ), γ∗encod(C)). By definition of γ∗approx(C|Σ), there
exists a constant c > 0 such that for every f ∈ C and every M ∈ N>0, there exists
gM(f) ∈ ΣM such that d(f, gM(f)) ⩽ cM−γ. Consider γ′ > 0 such that γ < γ′ <
min(γ∗approx(C|Σ), γ∗encod(C)). For M ∈ N>0, define εM := M−γ. By definition of
γ∗encod(C), there is a constant c′ > 0 such that for every ε > 0, there exists an ε-covering
Cε of C of size satisfying log2(|Cε|) ⩽ c′ε−1/γ′ . For M large enough, ΣM ⊂ C, hence for

118

6.2. Fundamental limits of neural network approximation

every such M and every f ∈ ΣM , there exists fεM
∈ CεM

such that d(f, fεM
) ⩽ εM . Us-

ing the triangle inequality, we obtain that for every M large enough and every f ∈ ΣM :
d(f, gM(fεM

)) ⩽ (1 + c)M−γ. This shows that gM(CεM
) is a (1 + c)M−γ-covering of

ΣM of size satisfying log2(|gM(CεM
)|) ⩽ c′Mγ/γ′ , with γ/γ′ < 1. This shows that Σ is

γ-encodable. The rest of the claim follows.

6.2.3 Examples of ∞-encodable approximation families
I now give several examples of ∞-encodable sequences Σ. I start with a gentle warmup,
proving that some sequences of balls (in the sense of the metric space F) of increasing
radius and dimension are ∞-encodable. Quite naturally, ∞-encodability is preserved
under some Lipschitz transformation, as shown in Theorem 6.2.3 in the specific case of
∞-encodable sequences of balls (this can be generalized to other ∞-encodable sequences,
but this is not useful here). Then, I give examples of ∞-encodable sequences in the
context of approximations with dictionaries (Theorem 6.2.4, Theorem 6.2.5), showing that
Theorem 6.2.1 unifies and generalizes Theorem V.3 in Elbrächter et al. [2021] and Theorem
5.24 in Grohs [2015]. Finally, I give an example of an∞-encodable approximation family
defined with LFCNs (Theorem 6.2.6). Once again, Theorem 6.2.1 applied to this ∞-
encodable sequence recovers a known result, see Example 6.2.1.

First examples of ∞-encodable sequences

I start with a gentle warmup, giving basic examples of ∞-encodable sequences in order
to manipulate the new notion of encodability (Definition 6.2.2). Let (F , d) be a metric
space and π be a positive function that grows at most polynomially. Let Σ := (ΣM)M∈N>0

be a sequence of sets ΣM ⊂ F that can be covered with NM = OM→∞(2Mπ(log M)) balls
(with respect to the ambient metric space) centered in ΣM of radius εM = OM→∞(M−γ).
Since OM→∞(2Mπ(log M)) = OM→∞(2M1+h) for every h > 0, it is clear from the definition
that Σ is ∞-encodable. This is trivially the case when Σ := (ΣM)M∈N>0 is a sequence of
finite sets ΣM ⊂ F with at most 2Mπ(log M) elements since each ΣM is an exact covering
of itself. Another example consists of some sequences of balls (in the sense of the metric
space F) of increasing radius and dimension as described in the next lemma.

Lemma 6.2.1 ([Gonon et al., 2023a]). Consider q ∈ [1,∞], (dM)M∈N>0 ∈ ()NN>0
>0 ,

(rM)M∈N>0 a sequence of real numbers satisfying rM ⩾ 1 and define Σ := (ΣM)M∈N>0,
with ΣM := BdM ,∥·∥q(0, rM) being the set of sequences of ℓq(N>0) bounded by rM and sup-
ported in the first dM coordinates. Then, Σ is either∞-encodable in ℓq(N>0) or it is never
γ-encodable in ℓq(N>0), whatever γ > 0 is. Moreover, it is ∞-encodable if, and only if,

dM (log2(rM) + 1) = OM→∞(M1+h), ∀h > 0.

Proof of Lemma 6.2.1. Each ΣM can be identified with the closed ball of radius rM in
dimension dM with respect to the q-th norm, so that standard bounds on covering numbers
[Wainwright, 2019, Eq. (5.9)] yield for every 0 < ε ⩽ rM :

dM log2

(
rM

ε

)
⩽ H(ΣM , ∥ · ∥q, ε) ⩽ dM log2

(3rM

ε

)
. (6.4)

119

Chapter 6. Approximation guarantees for quantized networks

For ε = M−γ(⩽ 1 ⩽ rM), we get:

dM(log2(rM) + γ log2(M))
⩽ H(ΣM , ∥ · ∥q, ε) ⩽ dM(log2(3rM) + γ log2(M)).

Everything is non-negative, so if the right hand-side is OM→∞(M1+h), for every h > 0,
then so is the left hand-side. The converse is also true since both sides only differ by
log2(3)dM = OM→∞(dM logM). The non-negativity of the quantities also implies that
the condition dM [log2(rM)+γ log2(M)] = OM→∞(M1+h), for every h > 0, does not depend
on γ. As a consequence, either Σ is ∞-encodable or it is never γ-encodable, whatever
γ > 0 is. Finally, note that for every h > 0, dM (log2(rM) + log2(M)) = OM→∞(M1+h)
if and only if dM (log2(rM) + 1) = OM→∞(M1+h). The "only if" part is clear since for
M ⩾ 2, it holds 0 ⩽ dM (log2(rM) + 1) ⩽ dM (log2(rM) + log2(M)). For the "if" part, use
that rM ⩾ 1 and the assumption to get 0 ⩽ dM ⩽ dM (log2(rM) + 1) = OM→∞(M1+h) so
that dM log2(M) = OM→∞(M1+h log2(M)) = OM→∞(M1+h).

Quite naturally, ∞-encodability can be preserved under Lipschitz maps as shown in
the following theorem. There is no particular difficulty in the proof: this is simply a
matter of relating the covering numbers of the image to the pre-image using the Lipschitz
continuity. I leave the details to the paper Gonon et al. [2023a].
Theorem 6.2.3 ([Gonon et al., 2023a]). Consider the same setting as in Lemma 6.2.1.
Consider also a sequence φ := (φM)M∈N>0 of maps φM : (ΣM , ∥ · ∥q) → (F , d) that are
Lips(φM)-Lipschitz for some constants Lips(φM) ⩾ 1. Define φ(Σ) := (φM(ΣM))M∈N>0.
Assume that for every h > 0:

dM (log2(rM) + log2(Lips(φM)) + 1) = OM→∞(M1+h). (6.5)

Then φ(Σ) is ∞-encodable.

The case of dictionaries

I now consider sequences Σ defined with dictionaries. As detailed below, results of the
literature [Grohs, 2015, Thm. 5.24][Kerkyacharian and Picard, 2004, Prop. 11] use argu-
ments that implicitly prove γ-encodability. Let me start with the case of approximation
in Banach spaces as in Kerkyacharian and Picard [2004]. I only explicit the sequence used
in Kerkyacharian and Picard [2004] which is γ-encodable and I do not delve into more
details as results of Kerkyacharian and Picard [2004] are out of scope of this chapter. A
part of the proof of [Kerkyacharian and Picard, 2004, Prop. 11] consists of implicitly
showing that some specific sequence Σq is s-encodable, for q and s as described below in
Theorem 6.2.4. In particular, the setup of Theorem 6.2.4 applies when F is the Lp space
on Rd or [0, 1]d, 1 < p < ∞, and the basis B is a compactly supported wavelet basis or
associated wavelet-tensor product basis.
Theorem 6.2.4. Let F be a Banach space with a basis B = (ei)i∈N>0 satisfying supi∈N>0 ∥ei∥F <
∞. Consider p ∈ (0,∞) and assume that B satisfies the so-called p-Telmyakov property
[Kerkyacharian and Picard, 2004, Def. 2], i.e., assume that there exists c > 0 such that
for every finite subset I of N>0 and every (ci)i∈I ∈ RI :

1
c
|I|1/p min

i∈I
|ci| ⩽ ∥

∑
i∈I

ciei∥F ⩽ c|I|1/p max
i∈I
|ci|. (6.6)

120

6.2. Fundamental limits of neural network approximation

Consider 0 < q < p. For every M ∈ N>0, define3:

Σq
M :=

{
M∑

i=1
ciei, ci ∈ R, sup

0<λ<∞
λ|{i, |ci| ⩾ λ}|1/q ⩽ 1

}
.

Define s = 1
q
− 1

p
. Then the sequence Σq := (Σq

M)M∈N>0 is s-encodable in F .

Proof of Theorem 6.2.4. FixM ∈ N and f = ∑M
i=1 ciei ∈ Σq

M . Consider 0 < λ < 1. Define
Qλ(f) := ∑M

i=1 sign(ci)
⌊

ci

λ

⌋
λei with sign(x) = 1 if x ⩾ 0, −1 otherwise. It is proven in

[Kerkyacharian and Picard, 2004, Prop. 6] that there exists a constant c(p, q) > 0 that
only depends on p and q such that:

∥f −Qλ(f)∥F ⩽ c(p, q)λ1−q/p sup
i∈N
∥ei∥F .

Moreover, it is proven in [Kerkyacharian and Picard, 2004, Lem. 4 and proof of Prop.
11] that the family (Qλ(f))f∈Σq

M
has at most 2λ−q(1−log2(λ)+log2(M)) elements. Setting ε =

λ1−q/p, and observing that λ−q = ε−1/s, this proves that the family (Qλ(f))f∈Σq
M

is a
Oε→0(ε)-covering of Σq

M of size Oε→0(2ε−1/s(log2 1/ε+log2 M)), with constants independent
of M . For every M ∈ N, using the above result with ε = M−s proves that Σq is s-
encodable.

In the case of Hilbert spaces, much more generic sequences than Σq above are in fact
∞-encodable, as I now discuss. The ∞-encodability can be used to recover [Grohs, 2015,
Thm. 5.24] (see Corollary 6.2.3), and to generalize Corollary 6.2.1 (see Corollary 6.2.4).
Let F be a Hilbert space and d be the metric associated to the norm on F . A dictionary
is, by definition [Grohs, 2015, Def. 5.19], a subset D = (φi)i∈N>0 of F indexed by a
countable set, which I assume to be N>0 without loss of generality. The dictionary D can
be used to approach elements of F by linear combinations of a growing number M of its
elements.

Theorem 6.2.5 ([Gonon et al., 2023a]). Let F be a Hilbert space. Let D = (φi)i∈N>0 be
a dictionary in F , and π : N>0 → N>0 be a function with at most polynomial growth. For
every I ⊂ N>0, define (φ̃I

i)i∈I as any orthonormalization of (φi)i∈I (for instance we may
consider the Gram-Schmidt orthonormalization). Define for every M ∈ N>0 and c > 0
(denoting [n] = {1, . . . , n} for n ∈ N>0):

Σπ
M :=

{∑
i∈I

ciφi, I ⊂ [π(M)], |I| ⩽M, (ci)i∈I ∈ RI

}
,

Σ̃π,c
M :=

{∑
i∈I

c̃iφ̃
I
i , I ⊂ [π(M)], |I| ⩽M, (c̃i)i∈I ∈ [−c, c]I

}
.

The sequence Σ̃π,c := (Σ̃π,c
M)M∈N>0 is ∞-encodable in (F , d), and for every bounded set

C ⊂ F , it holds:
γ∗approx(C|Σπ) = max

c>0
γ∗approx(C|Σ̃π,c). (6.7)

3In terms of weak-ℓq-space, the set Σq
M is simply the set of linear combinations of elements of B given

by sequences (ci)i∈N>0 in the closed unit ball of ℓq,∞(N>0) with zero coordinates outside the first M ones.

121

Chapter 6. Approximation guarantees for quantized networks

In order to prove Theorem 6.2.5, U use that the set Σ̃π,c(I) is the image of φM,I :
(c̃i)i∈I ∈ ([−c, c]I , ∥ · ∥2) 7→

∑
i∈I c̃iφ̃

I
i ∈ F , and this map is 1-Lipschitz (since (φ̃I

i)i∈I is
orthonormal). Thanks to that, I can therefore control the covering numbers of Σ̃π,c(I) by
the ones of its pre-image in ([−c, c]I , ∥ · ∥2). The rest of the proof is purely technical, and
I leave the details to the paper Gonon et al. [2023a]. As a consequence of Theorem 6.2.5,
we can recover [Grohs, 2015, Thm. 5.24] as I now describe.

Corollary 6.2.3 ([Grohs, 2015, Thm. 5.24]). Consider a Hilbert space (F , d) and C ⊂ F .
Under the assumptions of Theorem 6.2.5, the sequence Σπ = (Σπ

M)M∈N>0 satisfies for every
relatively compact4 set C:

γ∗approx(C|Σπ) ⩽ γ∗encod(C).

Actually, instead of stating the previous result with the approximation speed γ∗approx(C|Σ),
Theorem 5.24 in Grohs [2015] considers the following quantity [Grohs, 2015, Def. 5.23]:

γ∗(C|Σ) := sup{γ ∈ R,∀f ∈ C,∃c > 0,∀M ∈ N>0, d(f,ΣM) ⩽ cM−γ},

which satisfies γ∗(C|Σ) ⩾ γ∗approx(C|Σ) but generally differs from γ∗approx(C|Σ) since in the
definition of γ∗approx(C|Σ), the implicit constant c > 0 is not allowed to depend on f ∈ C.
However, when C is relatively compact (that is, its closure is compact), then c > 0 can
be chosen independently of f [Grohs, 2015, Proof of Thm 5.24] so that the two quantities
coincide. The proof of Corollary 6.2.3 that can be found below is essentially a rewriting
in the formalism of section 6.2 of the original proof of Theorem 5.24 in Grohs [2015]. The
rewriting makes explicit the use of equality (6.7) and the∞-encodability of the sequences
Σ̃π,c for c > 0, which are only implicitly used in the original proof.

Proof. Since C is relatively compact, it must be bounded so Equation (6.7) of Theo-
rem 6.2.5 holds. For every c > 0, Theorem 6.2.1 applied to Σ̃π,c of Theorem 6.2.5, which
is ∞-encodable, shows that the right hand-side of Equation (6.7) is bounded from above
by γ∗encod(C). This yields the result.

We also obtain a generic lower bound on the encoding speed of balls of approximation
spaces [DeVore and Lorentz, 1993, Sec. 7.9] (also called maxisets Kerkyacharian and
Picard [2000]) with general dictionaries.

Corollary 6.2.4. Let (F , d) be a Hilbert space. Under the assumptions of Theorem 6.2.5,
consider α, β > 0 and the set56 Aα(F ,Σπ, β) of all f ∈ F such that ∥f∥ ⩽ β and
supM⩾1 M

αd(f,ΣM) ⩽ β. This set satisfies

γ∗encod(Aα(F ,Σπ, β)) ⩾ α.

Corollary 6.2.4 cannot be generalized to Aα(F ,Σπ) := ⋃
β>0Aα(F ,Σπ, β): this set

is homogeneous (stable by multiplication by any scalar), thus it cannot be encoded at
4Recall that a set is relatively compact if its closure is compact. In particular, it must be totally

bounded, and in particular bounded.
5This is the ball of radius β of an approximation space [DeVore and Lorentz, 1993, Sec.

7.9]/maxisetKerkyacharian and Picard [2000].
6Note that compared to the set in Corollary 6.2.1, we additionally require that ∥f∥ ⩽ β so that

Aα(F , Σπ, β) is a bounded set and Equation (6.7) of Theorem 6.2.5 holds.

122

6.2. Fundamental limits of neural network approximation

any positive rate. Indeed, a positive encoding rate implies total boundedness of a set,
whereas homogeneity implies that the set cannot be totally bounded (at least under the
assumption that the metric is induced by a norm; there should, in general, be metrics
with respect to which a homogeneous set may be totally bounded).

In some situations, the converse inequality γ∗encod(Aα(F ,Σπ, β)) ⩽ α can typically be
proven by studying the existence of large enough packing sets of Aα(F ,Σπ, β), but this
falls out of the scope of this chapter. The reader can refer to [Kerkyacharian and Picard,
2004, Sec. 4] for an example.

Proof of Corollary 6.2.4. By the very definition of C := Aα(F ,Σπ, β), this is a bounded
set so Equation (6.7) of Theorem 6.2.5 holds. For every c > 0, Theorem 6.2.1 applied
to Σ̃π,c of Theorem 6.2.5, which is ∞-encodable, shows that the right hand-side of Equa-
tion (6.7) is bounded from above by γ∗encod(C), so that

γ∗encod(C) ⩾ max
c>0

γ∗approx(C|Σ̃π,c) = γ∗approx(C|Σπ).

Finally, again by definition of C := Aα(F ,Σπ, β), we have γ∗approx(C|Σπ) ⩾ α.

Note that if Σπ was γ-encodable for some γ > 0 large enough then Corollary 6.2.3
would be a special case of Corollary 6.2.2 whereas Corollary 6.2.4 would be a special case
of Corollary 6.2.1. But in this situation, Σπ has no reason to be γ-encodable, whatever
γ > 0 is (since the dictionary is arbitrary and the coefficients of the linear combinations
are not bounded). This shows that Corollary 6.2.2 and Corollary 6.2.1 actually holds more
generally for some sequences Σ that are not γ-encodable, whatever γ > 0 is, as soon as Σ
can be recovered as a limit of non-decreasing sequences Σc, c > 0, that are γ-encodable,
in the sense that for every M ∈ N>0, if 0 < c ⩽ c′ then Σc

M ⊆ Σc′
M and ΣM = ∪c>0Σc

M .

The case of ReLU networks

When Σ is defined with LFCNs (Definition 2.1.1), I now explicitly study how the prop-
erty of ∞-encodability depends on (bounds on) the neural network sparsity, depth, and
weights. In particular, Theorem 6.2.6 establishes a "simple" explicit condition under
which Theorem 6.2.1 generalizes Theorem VI.4 in Elbrächter et al. [2021] to other type
of constraints.

Theorem 6.2.6. Consider an approximation family N = (NM)M∈N>0 where NM is a set
of functions realized by LFCNs (Definition 2.1.1) with at most LM affine layers, param-
eters of Euclidean norm bounded by rM ⩾ 1 and with at most M nonzero coordinates.
Assume that for every h > 0, it holds:

LMM (1 + log2(rM)) = OM→∞(M1+h). (6.8)

Then the approximation family N defined with such LFCNs is ∞-encodable.

The proof of Theorem 6.2.6 relies on controlling the covering numbers by taking the
pre-image of the set nnclassM by param 7→ Rθ, and using that this map is Lipschitz. The
details are left to the paper Gonon et al. [2023a]. As a consequence of Theorem 6.2.6, we
can recover Theorem VI.4 in Elbrächter et al. [2021] as I now describe.

123

Chapter 6. Approximation guarantees for quantized networks

Example 6.2.1 (∞-encodable sequences of sparse neural networks - [Elbrächter et al.,
2021, Thm. VI.4]). Let π be a positive polynomial and consider, as in Definition VI.2 of
Elbrächter et al. [2021], N π

M the set of functions parameterized by a LFCN with weights’
amplitude bounded by π(M), depth bounded by π(logM) and at most M non-zero parame-
ters. Assumption (6.8) holds since this corresponds to the case where LM ⩽ π(log(M)) and
1 ⩽ rM ⩽ max(1, π(M)). Then, Theorem 6.2.6 guarantees that N π := (N π

M)M∈N>0 is ∞-
encodable. Given Theorem 6.2.1, the fact that N π is ∞-encodable gives γ∗approx(C|N π) ⩽
γ∗encod(C) for arbitrary p ∈ [1,∞] and arbitrary C ⊂ Lp. This is exactly Theorem VI.4 in
Elbrächter et al. [2021].

6.3 Conclusion
I now summarize the different contributions and discuss perspectives.

Approximation with quantized ReLU networks. I characterized the error of sim-
ple uniform quantization scheme Qη that acts coordinatewise as Qη(x) = ⌊x/η⌋ η. I
proved in Theorem 6.1.1 that it is sufficient for the number of bits per coordinate to
grow linearly with the number of layers L in order to provide ε-error in L∞([−D,D]d).
Theorem IV.2 in Gonon et al. [2023a] shows that this number of bits is necessary for
some parameters. The proof exploits a new lower-bound on the Lipschitz constant of
the parameterization of LFCNs (Definition 2.1.1) established in Theorem III.1 f Gonon
et al. [2023a]. The same theorem also shows a generic upper-bound for this Lipschitz
constant, which generalizes upper-bounds known in specific situations. As a consequence,
I gave explicit conditions on the number of bits per coordinate that guarantees quantized
LFCNs to have the same approximation speeds as unquantized ones in generic Lp spaces,
see Informal Theorem 6.1.1.

Notion of γ-encodability. I introduced in Definition 6.2.2 a new property of approxi-
mation families: being γ-encodable. As soon as Σ is γ-encodable in a metric space (F , d),
Theorem 6.2.1 shows that there is a simple relation between the approximation speed of
every set C ⊂ F and its encoding speed:

min(γ∗approx(C|Σ), γ) ⩽ γ∗encod(C). (6.9)

As seen in Section 6.2.3, several classical approximation families Σ are γ-encodable for
some γ > 0, including classical families defined with dictionaries or LFCNs. As a con-
sequence, γ-encodability lays a generic framework that unifies several situations where
Inequality (6.9) is known, such as when doing approximation with dictionaries [Grohs,
2015, Thm. 5.24][Kerkyacharian and Picard, 2004, Prop. 11] or LFCNs [Elbrächter et al.,
2021, Thm. VI.4].

Perspectives. I discuss in Chapter 7 the perspective of considering functionally equiv-
alent parameters when designing a quantization scheme. Functionally equivalent param-
eters θ, θ′ are such that Rθ = Rθ′ (or with equality only on a given dataset). Due to
the positive homogeneity of the ReLU function, we saw in Lemma 2.4.1 that there are

124

6.3. Conclusion

uncountably many equivalent parameters to θ that can be obtained by rescaling the coor-
dinates of θ (but these are not the only ones since permuting coordinates can also lead to
functionally equivalent parameters). When quantizing θ, it would be interesting to take
these equivalent parameters into account. A first work that goes in that direction is given
by Gribonval et al. [2023].

125

Chapter 7
Perspectives

In this chapter, I discuss the perspectives opened by this thesis. Let me present the
outline, where I reuse some material from the conclusions of the chapters.

• Extending to DAG networks results for LFCNs based on the path-lifting.
(Section 7.1) In this thesis, I started by extending the path-lifting and path-activations
to generic ReLU networks (Chapter 2). Thanks to that, I was able to extend and
prove new results for such general ReLU networks: Lipschitz properties (Chapter 3),
pruning strategies (Chapter 3) and generalization bounds (Chapter 4). Many more
can be envisioned for the future. Section 7.1 discusses two examples: the exten-
sion to DAG networks of existing results on identifiability [Stock and Gribonval,
2023, Bona-Pellissier et al., 2022] and on training dynamics [Marcotte et al., 2023],
currently established only for LFCNs.

• Assessing the promises of path-norm-based bounds in practice. (Sec-
tion 7.2) I have extended to generic DAG networks the path-norm-based gener-
alization bounds, which is for the first time valid for widely used networks such as
ResNets, VGGs etc. It is not time to assess the promises of the path-norm as a
complexity measure for generalization by numerically evaluating these generaliza-
tion bounds on ResNets trained on ImageNet. I do that in Section 7.2, and shed
the light on remaining challenges to improve these bounds, notably by investigating
average-case measures based on the path-lifting, instead of worst-case ones.

• Adapting the Rademacher approach to practice. (Section 7.3) I already
evoked in Chapter 4 that it is not clear how the theory based on the Rademacher
complexity, which is the dominant approach to statistical learning, can be strictly
applied to neural networks trained in practice, because of subtle quantifier issues. In
Section 7.3, I further discuss this challenge of adapting this theoretical framework
to practice. And I also discuss the challenge of theoretically accounting for subtle
phenomena between the training set and the generalization of the network.

• Capitalizing on the success of the new kernel for Kronecker-sparse ma-
trices. (Section 7.4) We have provided with our new kernel a heuristic to decide
what Kronecker sparsity pattern is efficient in practice. This paves the way to de-
sign efficient Kronecker-sparse neural networks, as discussed in Section 7.4.1. I also

127

Chapter 7. Perspectives

discuss in Section 7.4.2 the challenge of obtaining the same gains in half-precision
as the ones obtained with the new kernel in float-precision. Finally, I mention in
Section 7.4 two other challenges: exploring the extension of the kernel to other
hardwares, and exploring the potential benefit of the batch-size-last memory layout
for other operations than the multiplication with a Kronecker-sparse matrix.

• Taking into account the symmetries for quantization. (Section 7.5) I con-
clude this thesis by discussing how the symmetries, and potentially the path-lifting,
could be used both in practice and theory to design efficient quantization schemes.

7.1 On extending to DAG networks results for LFCNs
based on the path-lifting

The extended framework maintains the key properties of path-lifting and path-activations
that have proved useful in the literature and in this thesis for analyzing ReLU neural
networks. These properties include capturing the piecewise affine structure of the network
and being invariant to rescaling symmetries, which are essential for understanding and
manipulating the behavior of ReLU neural networks. Thanks to that, I was for instance
able to extend the path-norm-based generalization bounds to these general DAG networks
in Chapter 4.

In this thesis, I have extended the framework of the path-lifting and the path-activations
to general DAG networks, and thanks to that, I was for instance able to extend the path-
norm-based generalization bounds to these general DAG networks in Chapter 4. Many
other results have been established in the literature for simple LFCNs, using the path-
lifting. I expect that the general framework laid by this thesis could also be used to
extend these results to these more general networks. In this section, I discuss two exam-
ples: identifiability in Section 7.1.1 and training dynamics in Section 7.1.2.

7.1.1 Identifiability
The problem of identifiability is to recover the parameters of a neural network from a
black-box access to the network, i.e., by querying the network with inputs and observing
the outputs. This is a key challenge in the study of neural networks, with practical
implications for security, privacy, intellectual property, and understanding the behavior of
black-box models. For instance, if this was feasible we could reverse-engineer chatGPT,
recovering its parameters, and this could pose an economic threat to such commercial
models for which enormous resources have been invested in training.

There are three obvious obstructions to the identifiability of the parameters
θ of the network from the mere observation of a finite number of input/output
pairs (xi, Rθ(xi))i=1,...,n [Stock and Gribonval, 2023], all of which are due to
symmetries of the network. The first obstruction is due to rescaling symmetries: I
proved in Lemma 2.4.1 that if θ is rescaled into λ⋄θ, then they are functionally equivalent
in the sense that Rθ = Rλ⋄θ although they are distinct parameters for a general λ ∈ RH

>0.
This means that the parameters θ can only be uniquely identified from the outputs Rθ(xi)
up to rescaling symmetries. The second obstruction is due to input-dead and output-
dead neurons (Definition 2.4.2), for which we have the same kind of functional equivalence

128

7.1. On extending to DAG networks results for LFCNs based on the path-lifting

x u

v1

v2

w

θu→v1

θu→v2

θv1→w

θv2→w

bv1

bv2

Rθ(x)

Figure 7.1: Two hidden neuron network

with distinct parameters. The third obvious obstruction is due to so-called twin neurons,
for which we can redistribute the weights between them without affecting the function
Rθ. Let me give an example of twin neurons (and see Stock and Gribonval [2023] for a
formal definition). Consider a two-hidden-neurons network, corresponding to Figure 7.1
with associated function

Rθ(x) =
2∑

i=1
ReLU(xθu→vi + bvi

)θvi→w.

The neurons v1 and v2 are "twins" if θu→v1 = λθu→v2 and bv1 = λbv2 with λ > 0. In
such a situation, neurons v1 and v2 have always the same activation, and it is possible
to redistribute the weights between v1 and v2 without affecting the function Rθ. For
instance, one could divide by 2 the incoming weights and bias of v1, and multiply by 2
the ones of v2. This would result in the same function Rθ but with different parameters
θ.

Remarkably, Theorem 3 in Stock and Gribonval [2023] shows that for LFCNs, these
obvious obstructions are the only ones that prevent from the identifiability from
a finite set of inputs1. This theorem is based on the path-lifting Φ(θ) and the simple

formula Rθ(x) =
〈

Φ(θ), A(θ, x)
(
x
1

)〉
in the scalar-valued case, and more generally on

the similar formula proved in Theorem 2.4.2. Bona-Pellissier et al. [2022] further gives
practical test conditions for checking whether samples (xi)i can lead to identifiability of
θ from the outputs Rθ(xi). It is also based on the path-lifting and the path-activations.
However, both Stock and Gribonval [2023] and Bona-Pellissier et al. [2022] are limited to
simple LFCNs. I expect that the results of this thesis can be used to extend these results
to general DAG networks, as the main properties of the path-lifting and path-activations
used to establish these results are preserved in the extension. This would pave the way
for practical tests of identifiability for widely used architectures. I now explain why this
is expected to be the case.

Important properties provided by the path-lifting and path-activations for
identifiability. The path-lifting Φ(θ) complemented with the sign vectors of θ can be

1However, Theorem 3 in Stock and Gribonval [2023] is an existence theorem: there exists a finite set
of inputs xi such that the parameters θ can be uniquely identified from the outputs Rθ(xi), up to the
discussed obstructions.

129

Chapter 7. Perspectives

used as a representation of the whole rescaling equivalence class of θ [Stock and Gribonval,
2023, Theorem 1], i.e., all the parameters that can be obtained from θ by neuron-wise
rescaling symmetries (Definition 2.4.1). I even proved that Φ(θ) and Rθ are invariant
under symmetries due to input-dead neurons, and evoked (but did not prove) that this is
also the case for output-dead neurons. This means that (Φ(θ), sgn(θ)) is also expected to
be a representation of the parameters that absorbs the first two obstructions: rescaling
symmetries and dead neurons.

Moreover, the formula

Rθ(x) =
〈

Φ(θ), A(θ, x)
(
x
1

)〉

shows that if there are enough points x with different activations A(θ, x), then the vector
Φ(θ) can be uniquely identified from the output Rθ(x) [Stock and Gribonval, 2023]. This
is the logic behind Theorem 3 in Stock and Gribonval [2023]: first prove that Φ(θ) is iden-
tifiable from the outputs Rθ(xi) by choosing points xi with different activations A(θ, xi),
and then prove that θ is identifiable from Φ(θ) up to the obstructions above.

Open research directions provided by this thesis. I expect that the results from
Stock and Gribonval [2023] and Bona-Pellissier et al. [2022] could be generalized to general
DAG networks (Definition 2.2.2) by using the extended framework on path-lifting and
path-activations presented in this thesis.

7.1.2 Training dynamics
In many cases, training is done in overparameterized settings, corresponding to many more
parameters than training samples2. For example, the smallest ResNet architecture has
11.5M parameters [He et al., 2016], and ImageNet has 1.2M images. In overparameterized
settings, the optimization algorithm often reaches one of the many zero training error
solutions [Zhang et al., 2021]. However, the generalization error can be very different
between these solutions [Zhang et al., 2021]. To explain the success of neural networks,
it is believed that the training algorithm has a bias towards some of these solutions that
generalize well, called "implicit bias". A better understanding of the training dynamics is
key to understanding the implicit bias of the training algorithm.

In practice, the most usual way to train the parameters is to initialize them randomly
θ(0) = θinit, and update them using gradient descent:

θ(t+ 1) = θ(t)− η∇θL(θ(t)),

where η > 0 is a so-called learning rate and L(θ) is the training error introduced in
Section 4.1:

L(θ) = 1
n

n∑
i=1

ℓ(Rθ(xi), yi)

for a training set (xi, yi)i=1,...,n and a loss function ℓ. The trajectory t 7→ θ(t) is called the
training dynamic. Since the training error L(θ) is often non-convex in the parameters θ,
this makes the trajectory t 7→ θ(t) challenging to analyze.

2This is not the case for large language models: GPT-3 has 175B parameters and was trained on 300
Billion tokens [Chuan Li, 2021].

130

7.1. On extending to DAG networks results for LFCNs based on the path-lifting

A form of "weak" implicit bias consists of the conserved quantities of the training
dynamics: they trap the trajectory t 7→ θ(t) in a low-dimensional manifold. Emmy
Noether’s famous theorem states that every symmetry of a physical system leads to a
conservation law [Noether, 1918]. In the context of neural networks, the loss function
θ 7→ L(θ) governs the training dynamic. It has been shown that any one-parameter
transformation group that leaves the training error invariant leads to a conserved quantity
[Kunin et al., 2021, Theorem 1]. Because of the definition of the training error, we see
that if parameters θ and θ′ are functionally equivalent (Rθ = Rθ′), then L(θ) = L(θ′).
Therefore, the training error inherits from the same symmetries of the network Rθ. Thus,
the symmetries of the network Rθ lead to conserved quantities of the training dynamic.

Important properties provided by the path-lifting for training dynamics. For
simple LFCNs, Theorem 1 in Stock and Gribonval [2023] shows that the vector Φ(θ) locally
captures the neuron-wise rescaling symmetries of Rθ, meaning that for every3 θ, there is
a neighborhood Ω of θ such that for every θ′ ∈ Ω, if Φ(θ′) = Φ(θ) then θ′ can be deduced
from θ by neuron-wise rescaling symmetries (we have already mentioned that the converse
is always true, see Theorem 2.4.1). This shows that locally, Φ(θ) is a representative of
all parameters that are rescaling equivalent to θ. Therefore, it is expected that the local
image of Φ is related to the conserved quantities of the training dynamics. To go in
this direction, Theorem 2.14 of Marcotte et al. [2023] shows for one-hidden-layer LFCNs
and linear networks (corresponding to LFCNs with the ReLU replaced by the identity)
that a function h : θ ∈ Rd 7→ R is locally conserved4 around θ by the gradient flow (the
time-continuous version of the gradient descent algorithm) if and only if JΦ(θ)∇h(θ) = 0
where JΦ(θ) is the Jacobian matrix of the path-lifting Φ at θ.

This basically follows from the simple formula Rθ(x) =
〈

Φ(θ), A(θ, x)
(
x
1

)〉
in the

scalar-valued case, and more generally from the similar formula proved in Theorem 2.4.2,
in addition to the fact that the gradient flow is given by θ̇ = −∇θL(θ). Indeed, at
least informally (skipping differentiability assumptions etc.), if h is conserved then by
differentiating h(θ(t)) = h(θ(0)), we get

〈
∇h(θ(t)), θ̇(t)

〉
= 0 for every t. Denote by

S = (xi, yi)n
i=1 the training samples, and consider the function f defined by f(φ, S) =

1
n

∑n
i=1 ℓ(

〈
φ,A(θ, xi)

(
xi

1

)〉
, yi) in the scalar-valued case (the same reasoning can be done

in general using similar quantities building upon Theorem 2.4.2). We have L(θ) =
f(Φ(θ), S), and therefore ∇θℓ(θ) = JΦ(θ)T∇φf(Φ(θ), S). Since θ̇(t) = −∇θℓ(θ(t)) =
−JΦ(θ)T∇φf(Φ(θ), S) we deduce that〈

∇h(θ(t)), JΦ(θ(t))T∇φf(Φ(θ(t)), S)
〉

= 0,∀t.

This is equivalent to

⟨JΦ(θ(t))∇h(θ(t)),∇φf(Φ(θ(t)), S)⟩ = 0,∀t.
3Except for a Lebesgue negligeable set.
4Meaning: there is a neighborhood of θ such that for any initialization in this neighborhood, any

training set (xi, yi)i, the maximal solution t 7→ θ(t) given by the Cauchy-Lipschitz theorem is such that
h(θ(t)) = h(θ(0)) for any t where this maximal solution is defined. Simply said, h is conserved by the
gradient flow for any training datasets and any initialization around θ.

131

Chapter 7. Perspectives

To get Theorem 2.14 in Marcotte et al. [2023], it is sufficient to check that the span of
{∇φf(Φ(θ(t)), S), t} is the whole ambient space. Indeed, this would imply JΦ(θ(t))∇h(θ(t)) =
0 for every t. The span condition is checked at hand in Marcotte et al. [2023] for one-
hidden-layer LFCNs and linear networks, with usual loss functions.

This further allows Marcotte et al. [2023] to count the number of (linearly independent)
conserved quantities, by studying the rank of the matrix JΦ(θ). They also give a code to
explicitly compute the polynomial conserved quantities. This code explicitly manipulates
Φ(θ).

Open research directions provided by this thesis. I expect that the results of
Marcotte et al. [2023] could be further extended to general DAG networks by using the
extended framework on path-lifting and path-activations presented in this thesis. This
would pave the way to practical computations of conserved quantities for widely used
ReLU networks.

I now turn to concrete numerical evaluations of the path-norm-based bounds estab-
lished in this thesis on ResNets trained on ImageNet.

7.2 On challenging the promises of path-norm-based
bounds in practice

This thesis made available the first generalization guarantees based on the path-norm for
general DAG networks, including ResNets, VGGs, U-nets, ReLU MobileNets, Inception
nets, AlexNet, AlphaGo, and AlphaZero. This is the opportunity to assess the current
state of the gap between theory and practice, and to diagnose without concession possible
room for improvements. I released a code that allows anyone to easily experiment on
their favorite network and see if the promises of the path-norm-based bounds are held. I
recall that the code is available at github.com/agonon/pathnorm_toolkit.

As a concrete example, Section 7.2.1 demonstrates that on ResNet18 trained on Ima-
geNet: 1) the generalization bound provided by Theorem 4.4.1 can be numerically com-
puted; 2) for a (dense) ResNet18 trained in a standard way, roughly 30 orders of mag-
nitude would need to be gained for this path-norm-based bound to match practically
observed generalization gap; 3) the same bound evaluated on a sparse ResNet18 (trained
with standard sparsification techniques) is decreased by up to 13 orders of magnitude.
Section 7.2.2 will discuss promising leads to reduce this gap, in particular going beyond
worst-case measures to average-case measures based on the path-lifting.

7.2.1 Experiments
When would a generalization bound be informative? For ResNets trained on
ImageNet, the training error associated with cross-entropy is typically between 1 and 2,
and the top-1 training error is typically less than 0.30. The same orders of magnitude
apply to the empirical generalization gap. To ensure that the expected risk (either for
cross-entropy or top-1 accuracy) is of the same order as the training error, a bound on the
generalization gap should basically be of order at most 1.

132

github.com/agonon/pathnorm_toolkit

7.2. On challenging the promises of path-norm-based bounds in practice

For parameters θ learned from training data, Theorem 4.4.1 and Theorem 4.1.1 allow
us to bound the expected risk in terms of a performance measure (that depends on a free
choice of γ > 0 for the top-1 accuracy, see Theorem 4.1.2) on the training data, plus a term
depending on the Rademacher complexity, this term being bounded by 4σ

n
C×L×∥Φ(θ)∥1.

The Lipschitz constant L is
√

2 for cross-entropy, and 2/γ for the top-1 accuracy.

Evaluation of 4σ
n
C for ResNets on ImageNet. I further bound σ/n by B/

√
n, where

B ≃ 2.6 is the maximum L∞-norm of the images of ImageNet normalized for inference.
We at most lose a factor B compared to the bound directly involving σ since it also
holds σ/n ⩾ 1/

√
n by definition of σ. I train on 99% of ImageNet so that n = 1268355.

Moreover, recall that C = (D log((3 + 2P)K) + log(3+2P
1+P

(din + 1)dout))1/2. For ResNets,
P = 1 (as there are only classical max-pooling neurons, corresponding to k-max-pooling
with k = 1), the kernel size is K = 9, din = 224 × 224 × 3, dout = 1000, and the depth
is D = 2 + # basic blocks × # conv per basic block, with the different values available
in Appendix E.1. The values for 4BC/

√
n are reported in Table 7.1. Given these results

and the values of the Lipschitz constant L, on ResNet18, the bound would be informative
only when ∥Φ(θ)∥1 ≲ 10 or ∥Φ(θ)∥1/γ ≲ 10 respectively for the cross-entropy and the
top-1 accuracy.

Table 7.1: Numerical evaluations on ResNets and ImageNet1k with 2 significant digits.
Multiplying by the Lipschitz constant L of the loss and the path-norm gives the bound
in Theorem 4.4.1. The second line reports the values when the analysis is sharpened for
max-pooling neurons, see Remark 4.4.1.

ResNet 18 34 50 101 152
4√
n
CB = 0.088 0.11 0.14 0.19 0.23

4√
n
CsharpenedB = 0.060 0.072 0.082 0.11 0.13

I now compute the path-norms of trained ResNets, both dense and sparse, using the
simple formula proved in Theorem 3.1.1.

The ℓ1-path-norm of pretrained ResNets is 30 orders of magnitude too large.
Table 7.2 shows that the ℓ1-path-norm is 30 orders of magnitude too large to make the
bound informative for the cross-entropy loss. The choice of γ is discussed in Appendix E.1,
where I observe that there is no possible choice that leads to an informative bound for
top-1 accuracy in this situation.

Table 7.2: Path-norms of pretrained ResNets available on PyTorch, computed in float32.

ResNet 18 34 50 101 152
∥Φ(θ)∥1 1.3× 1030 overflow overflow overflow overflow
∥Φ(θ)∥2 2.5× 102 1.1× 102 2.0× 108 2.9× 109 8.9× 1010

∥Φ(θ)∥4 7.2×10−6 4.9×10−6 6.7×10−4 3.0×10−4 1.5×10−4

133

Chapter 7. Perspectives

Sparse ResNets can decrease the bounds by 13 orders of magnitude. I just
showed that pretrained ResNets have very large ℓ1-path-norm. Does every network with
a good test top-1 accuracy (i.e., expected risk) have such a large ℓ1-path-norm? Since
any zero in the parameters θ leads to many zero coordinates in Φ(θ), I now investigate
whether sparse versions of ResNet18 trained on ImageNet have a smaller path-norm.
Sparse networks are obtained with iterative magnitude pruning plus rewinding, with hy-
perparameters similar to the one in Frankle et al. [2021, Appendix A.3]. Results show
that the ℓ1-path-norm decreases from ≃ 1030 for the dense network to ≃ 1017 after 19
pruning iterations, basically losing between a half and one order of magnitude per prun-
ing iteration. Moreover, the test top-1 accuracy is better than with the dense network
for the first 11 pruning iterations, and after 19 iterations, the test top-1 accuracy is
still way better than what would be obtained by guessing at random, so this is still a
non-trivial matter to bound the generalization error for the last iteration. Details are
in Appendix E.1. This shows that there are indeed practically trainable networks with
much smaller ℓ1-path-norm that perform well. It remains open whether alternative train-
ing techniques, possibly with path-norm regularization, could lead to networks combining
good performance and informative generalization bounds.

Additional observations: increased depth and train size. In practice, increasing
the size of the network (that is, the number of parameters) or the number of training sam-
ples can improve generalization. I can, again, assess for the first time whether the bounds
based on path-norms follow the same trend for standard modern networks. Table 7.2
shows that path-norms of pretrained ResNets available on PyTorch roughly increase with
depth. This complements Dziugaite et al. [2020, Figure 1], which shows that for simple
LFCNs, path-norm, despite being one of the best overall weight-based measures for cor-
relating with the generalization gap, struggles the most to maintain positive correlation
with depth variation, compared to other hyperparameters (width, weight decay, etc.).
For increasing training sizes, I did not observe a clear trend for the ℓ1-path-norm, which
seems to mildly evolve with the number of epochs rather than with the train size, see
Appendix E.1 for details.

7.2.2 Open research directions provided by this thesis
Theorem 4.4.1 is the first generalization bound valid for such networks based on path-
norm. This bound recovers or beats the sharpest known ones of the same type. Its ease
of computation led in Section 7.2.1 to the first experiments on widely used networks.
However, in spite of all the reasons to consider the path-norm as a complexity measure
for generalization, we observed a gap between theory and practice of roughly 30 orders
of magnitude for a dense version of ResNet18 trained with standard tools on ImageNet.
Building on the theoretical and experimental results of this thesis, I now dress a list of
promising lines of research to close this gap.

• The most promising lead is probably to go beyond worst-case, investigat-
ing average-case complexity measures based on the path-lifting. In this
thesis, I have extended the path-lifting to general DAG networks, while ensuring that
it fulfills several of its promises that I anticipated as the result of previous works

134

7.2. On challenging the promises of path-norm-based bounds in practice

in the simple cases of LFCNs: it remains invariant to rescaling symmetries, it cap-
tures with the path-activations the piecewise structure of the network, and its mixed
norms are easy to compute. I further showed that it is indeed possible to use these
key properties to establish generalization bounds based on the path-lifting for such
general DAG networks. Remember that before this, the analyses using the path-
lifting were limited to scalar-valued LFCNs. Thanks to all this development, I was
able to challenge the current best bound based on the path-norm (Theorem 4.4.1),
and we now know that the ℓ1-path-norm is not yet the good complexity measure
to explain generalization in over-parameterized training settings, where there are
too few training samples compared to the expressivity of the network’s architecture.
In short, there are good reasons to believe that the path-lifting provides
a good representation of the parameters to analyze the generalization
properties of neural networks, but its ℓ1-norm is not the ultimate way to
measure the complexity of the network. The next exciting challenge is to find
a more refined complexity measure based on the path-lifting that would remain com-
putable, while being informative even in over-parameterized regimes. For that, the
most promising lead is probably to go beyond the worst-case measure ∥Φ(θ)∥1 and
to investigate average-case complexity measures based on the path-lifting. First, let
me detail why ∥Φ(θ)∥1 is worst-case.
The worst-case analysis of the path-activations. Let me recall the discussion
we had in Section 2.4.2 about the formula

Rθ(x) =
〈
A(θ, x)T Φ(θ),

(
x
1

)〉

for the scalar-valued case, and the similar formula in the general case (Equa-
tion (2.6)). On each of the regions in (θ, x) where the path-activations A(θ, x) are
constant, this formula says that the output of the network is affine in x, with the
affine coefficients given by A(θ, x)T Φ(θ): the matrix A filters the affine coefficients
stored in Φ(θ) to only keep the ones relevant on the current region. Conceptually,
the ℓ1-path-norm arises in the generalization bounds because of a type of control as
follows:

Rθ(x) =
Theorem 2.4.2

〈
A(θ, x)T Φ(θ),

(
x
1

)〉
⩽

Hölder
max(∥x∥∞, 1)∥A(θ, x)T Φ(θ)∥1

⩽
Lemma 3.3.1

max(∥x∥∞, 1)∥Φ(θ)∥1.

For ∥A(θ, x)T Φ(θ)∥1 ⩽ ∥Φ(θ)∥1, I used the worst-case analysis that says that all
the paths are activated simultaneously (Lemma 3.3.1). Let me go step by step
to the last inequality involving the ℓ1-path-norm to understand what is missing
in this complexity measure. Already for ∥A(θ, x)T Φ(θ)∥1, the affine coefficients
(coordinates of Φ) that are activated simultaneously but that cancel each other
are summed up in ∥A(θ, x)T Φ(θ)∥1 in absolute value. This already does not seem
desirable. For instance with an iid initialization, all these affine coefficients would
cancel each other but ∥A(θ, x)T Φ(θ)∥1 would be very large as it would sum them in

135

Chapter 7. Perspectives

absolute value. In the meantime, the generalization gap at initialization is equal to
zero since the parameters are yet independent from the training samples. This shows
that ∥A(θ, x)T Φ(θ)∥1 is not suited to explain generalization at least at initialization.
This is even worse with the ℓ1-path-norm, where this time all the paths are assumed
to be active simultaneously. While this can be the case for specific5 parameters θ and
inputs x, this is not the case in general. Therefore, we can say that in a sense, the
ℓ1-path-norm that arises from the worst pattern of path-activations correspond to a
worst-case on both the parameters and the inputs. Finally, let me also note that the
bound ∥A(θ, x)T Φ(θ)∥1 ⩽ ∥Φ(θ)∥1 completely decorrelates the parameters θ from
the inputs x, which is once again not desirable as the generalization gap precisely
depends on the relation between the parameters and the input distribution.
Going average-case. An important challenge for the future would be to replace
the ℓ1-norm ∥Φ(θ)∥1 by a more refined quantity that would:

– depend on the expected path-activations over the input distribution, and not
only on their worst-case value;

– be invariant to symmetries of the network (which is very likely if it is based on
the path-lifting and the path-activations);

– be related to Lipschitz properties of the network, and hence be a good com-
plexity measure for generalization;

– be computable in practice.

Such a complexity measure should be calibrated in simple situations where we
roughly know the generalization gap. Possible candidates for the first three points
may be derived from quantities of the type:

Ex∥A(θ, x)T Φ(θ)∥1.

For the fourth point, even if it does not seem evident to compute this exactly, it is
at least possible to envision approximation with Monte-Carlo methods. This com-
plexity measure would already be a huge step forward (keeping in mind that it still
has non-desirable aspects as discussed above). Indeed, it would replace the worst-
case analysis of the path-activations by an average-case analysis, which is likely to
be much more informative, and it would restablish the relation between the pa-
rameters and the input distribution. While I haven’t seen this type of complexity
measure proposed before in the literature, I can already note that it is related to
expected Lipschitz bounds in x for general DAG networks, as can be seen by differ-
entiating the function x 7→ Ex′∥Rθ(x)−Rθ(x′)∥1 (fixed θ), using the formula proved
in Theorem 2.4.2. Moreover, the expected ℓ1-path-norm Ex∥A(θ, x)T Φ(θ)∥1 makes
also way more sense geometrically than the ℓ1-path-norm ∥Φ(θ)∥1. The coordinates
of Φ(θ) are the affine coefficients, that can be filtered by the path-activations and
summed up to get the slopes of Rθ on the different region where Rθ is affine (The-
orem 2.4.2). Therefore, ∥Φ(θ)∥1 is the sum of all the affine coefficients in absolue
value, resulting in a worst-case uniform bound for all the regions’ slopes. However,
Ex∥A(θ, x)T Φ(θ)∥1 filters the coefficients on each region, unfortunately still sum

5For instance, consider positive parameters, positive input, and only ReLU neurons.

136

7.2. On challenging the promises of path-norm-based bounds in practice

them in absolute value, but then weights these sums by the probability of falling
into these regions. In particular, regions with high slopes but low probability of
being activated would not contribute much to the complexity measure, something
desirable to explain generalization in over-parameterized regimes where typical es-
timators have large Lipschitz constants to interpolate the training data, but only in
small regions of the input space.

• Consider other norms than the ℓ1-path-norm. Possible bounds involving the
ℓq-path-norm for q > 1 deserve a particular attention, since numerical evaluations
show that they are several orders of magnitude below the ℓ1-norm. The current
challenge is to make ℓq-path-norm arise in a non-combinatorial way. For now, the
unique presence of the ℓ1-path-norm is the result of the worst-case analysis on the
path-activations discussed above (see also Lemma 3.3.1 and below). If we do the
same worst-case analysis but with the ℓq-norm for q > 1, a constant depending
on the number of the paths shows up in front of the ℓq-path-norm. Therefore,
to find a non-combinatorial way to use the ℓq-path-norms also probably relies on
going beyond the worst-case analysis of the path-activations, and to consider an
average-case analysis. In the same vein as above, we could consider the quantity
Ex∥A(θ, x)T Φ(θ)∥q for q > 1.

• Sparsity regularization. Without changing the bound of Theorem 4.4.1, sparsity
seems promising to reduce the ℓ1-path-norm by several orders of magnitude without
changing the performance of the network.

• Take more finely into account weight-sharing into the framework. Weight-
sharing reduces the degrees of freedom of the problem. For the Rademacher bound
of Theorem 4.3.1 based on covering numbers, I proved that it was possible to ac-
count for weight-sharing by reducing a term that was dependent on the number of
parameters to the actual degrees of freedom when there is weight-sharing. While
the more refined Rademacher bound I proved in Theorem 4.4.1 got rid of this unde-
sirable term, the question remains open whether a more refined analysis complexity
measure than the path-norm could lead to sharpened analysis in the presence of
weight-sharing [Pitas et al., 2019, Galanti et al., 2023].

• Remove in the path-norm excess paths related to max-pooling neurons.
A k-max-pooling neuron with kernel size K only activates 1/K of the paths, but
the bound sums the coordinates of the path-lifting Φ related to these K paths. This
may lead to a bound K times too large in general (or even more in the presence of
multiple max-pooling layers).

Besides all these promising leads to find a better complexity measure based on the
path-lifting than its ℓ1-norm, there are also challenges concerning the general framework
of statistical learning theory, as I now discuss.

137

Chapter 7. Perspectives

7.3 On adapting the dominant statistical learning the-
ory to modern practices

Modern practices in deep learning have raised important and exciting challenges in many
fields of theory. In this section, I would like to discuss two such challenges that call for
an adaptation of the dominant statistical learning theory.

In Chapter 4, I presented the dominant approach to the statistical learning theory:
bound the estimation error and generalization gap with the Rademacher complexity
[Shalev-Shwartz and Ben-David, 2014, Goodfellow et al., 2016, Bach, 2024]. This has
proved to be a powerful tool to better understand the generalization properties of many
models of interests [Bach, 2017, 2024] and to relate various complexity measures to the
generalization gap [Neyshabur et al., 2015, Kawaguchi et al., 2017, Barron and Klusowski,
2019, Pérez and Louis, 2020, Jiang et al., 2020, Dziugaite et al., 2020].

As explained in Chapter 4, the basic block of this approach is Theorem 4.1.1. It
essentially says that for any nice enough loss function ℓ, any set F of functions and any
estimator f̂ that takes a training set S and returns f̂(S) ∈ F , the Rademacher complexity
of F bounds the generalization gap and estimation error.

The first challenge caused by practice is that it is not clear, when observing a network
f̂(S) in practice, to which function set F this result should be applied. I will discuss this
in Section 7.3.1.

The second and last challenge I would like to mention in this section is on being able
to theoretically take into account some very subtle aspects of the data distribution that
practically impact the generalization properties. I will discuss this in Section 7.3.2.

7.3.1 On applying the Rademacher bound in practice
A main obstacle to strictly apply the Rademacher bound in practice (Theo-
rem 4.1.1) is the problem of identifying the set F in which is our estimator.
In practice, we fix an algorithm (such as gradient descent with fixed so-called hyperpa-
rameters), and given n training samples S = (xi, yi)n

i=1, we run the algorithm and get
some f̂(S). This defines our estimator f̂ . However, we can only observe the output
of our estimator (i.e., algorithm) for a finite number of possible training sets S. For
the Rademacher bound, we obviously would like to know the smallest F that contains
all the possible outputs f̂(S) of our estimator f̂ : the smaller the set F , the smaller its
Rademacher complexity. Actually, even before trying to identify a small F that contains
f̂(S) for all S, it is already not clear how to identify one such F . Indeed, we only ob-
serve f̂(S) for a single S (or a finite number when training several times to do so-called
cross-validation), so without an explicit regularization at the end of the algorithm, it is
not clear to know what kind of property will have f̂(S) for general S’s.

For instance, when I evaluated the path-norm-based bound (Theorem 4.4.1) on ResNet18
training set S of ImageNet, I observed the ℓ1-path-norm of this specific f̂(S), and defined
F to be all the network functions with path-norm smaller than this specific ℓ1-path-norm.
However, there is no guarantee that for over training sets S ′, the same training algorithm
would have led to f̂(S ′) in this choice of F , as it would require f̂(S ′) to have a smaller
path-norm than the one of f̂(S). It is therefore an open challenge to adapt the statistical
learning theory to this practical setting where we only observe the output f̂(S) of the

138

7.4. On extending to other settings the success of the new kernel for Kronecker-sparse
matrix multiplication

estimator f̂ for a finite number of training sets S, and for which we have to find a set F
that contains all the possible outputs of f̂ .

7.3.2 On subtle practical impacts of the data distribution
The classical approach in statistical learning theory is to bound the expected generalization
gap or estimation error over all possible training sets S, and then deduce high-confidence
intervals for many S’s using concentration inequalities [Boucheron et al., 2013, Shalev-
Shwartz and Ben-David, 2014, Bach, 2024]. This essentially hides the belief that for
training samples S = (xi, yi)n

i=1 with n large, most of the typical samples S are likely to
lead to similar generalization properties. However, this is not always the case in practice,
and the generalization gap can be very sensitive to the choice of the training set S, even
for extremely large n. This is exemplified with large language models (LLMs) where
enormous amounts of data are used, but subtle modifications in the training set can have
a huge impact on the generalization properties of the model [Scao et al., 2022, Section
3, Table 1][Penedo et al., 2023]. For instance, small repetitions (or near duplications) of
samples in the training set can cause huge drop of the empirical risk [Hernandez et al.,
2022]. This kind of sensitivity to the training set is not yet captured by the classical
statistical learning theory, and it is an open challenge to find the good framework to do
so.

7.4 On extending to other settings the success of the
new kernel for Kronecker-sparse matrix multipli-
cation

The advances made by our new kernel for Kronecker-sparse matrix multiplication raise
several interesting and challenging questions for the future. In Section 7.4.1, I discuss how
our heuristic paves the way to new research directions to design efficient Kronecker-sparse
neural networks. In Section 7.4.2, I discuss what are the challenges to obtain the same
gains in half-precision. I also mention two additional challenges raised by the practical
use of the new kernel in Section 7.4.3.

7.4.1 On designing efficient Kronecker-sparse neural networks
In the literature, Dao et al. [2022a] are among the best reported results in terms of
accuracy when replacing dense matrices W by a product of Kronecker-sparse matrices
W = K1 . . .KL in neural networks. They use L = 2 Kronecker-sparse matrices, and
choose the sparsity patterns π1 = (a1, b1, c1, d1) and π2 = (a2, b2, c2, d2) of K1 and K2
such that the product of their supports is dense, motivated by expressivity concerns. We
followed the same protocol when making experiments in Section 5.5 to show that the new
kernel accelerates the inference of neural networks using Kronecker-sparse matrices.

However, besides the criteria of expressivity to hope for a good accuracy, the choice
of the sparsity patterns π1 and π2 is also crucial to get the best performance in time and
energy. To the best of my knowledge, we provided in Chapter 5 the first heuristic to choose
Kronecker sparsity patterns (a, b, c, d) that are particularly efficient for Kronecker-sparse

139

Chapter 7. Perspectives

matrix multiplication, with the hope that it will avoid extensive empirical search. Indeed,
we demonstrated in Chapter 5 that the new kernel is particularly efficient for Kronecker-
sparse matrices of sparsity pattern (a, b, c, d) with large ratios (b+ c)/bc and d(b+ c)/bc.
This paves the way to new research directions to design efficient Kronecker-sparse neural
networks.

Open research directions provided by this thesis. Consider the problem of choos-
ing a number of factors L, and Kronecker sparsity patterns π1, . . . , πL in order to maximize
both the accuracy and the gains in time and energy, when replacing a W by a product
of Kronecker-sparse matrices W = K1 . . .KL in neural networks. This problem is combi-
natorial given the number of patterns, and it is important to design grounded theoretical
rules to restrict the search. The expressivity criterion of Dao et al. [2022a] is a first step
to restrict the search to sparsity patterns (πℓ)L

ℓ=1 such that the product of associated
supports is dense. The new heuristic we provided in Chapter 5 is a second important
step: among the all the patterns πℓ = (aℓ, bℓ, cℓ, dℓ) satisfying the expressivity criterion,
we should now aim to maximize each ratio (bℓ + cℓ)/bℓcℓ and dℓ(bℓ + cℓ)/bℓcℓ. This raises
several questions for the future. How to maximize each of these ratios? Should we maxi-
mize them independently, or is there a trade-off between them? Is increasing the number
L of factors beneficial? Increasing L may increase the total time because of the sequential
overhead of performing each multiplication one at a time, but it may also leave more room
for choosing efficient sparsity patterns that satisfy the expressivity constraint.

I now turn to the challenge of obtaining the same gains in half-precision.

7.4.2 On obtaining the same gains in half-precision
The new kernel we proposed in Chapter 5 is particularly efficient in float-precision and
uses the data type float4 that stores 4 32-bit floating-point numbers (floats), and for which
the read-and-write operations are atomic, i.e., the four elements are read and written at
once, allowing for efficient memory access. This is only possible because the hardware
(the NVIDIA GPU) supports atomic operations on this kind of data type. In CUDA,
this data type can be conceptualized as follows (but with hardware support for atomic
operations):

1 typedef struct {
2 float x, y, z, w;
3 } float4 ;
4

5 // Example usage:
6 float4 a = {1.0f, 2.0f, 3.0f, 4.0f};

However, the gains in time and energy are not as good in half-precision (Appendix D.2.4).
This is mainly due to the absence of native support for a vectorized data type half4, similar
to float4 but for 16-bit floating-point numbers (halfs), in NVIDIA GPUs. The NVIDIA
GPUs only support half2 operations in half-precision, corresponding to vectors of 2 halfs
and for which the read-and-write operations are atomics. This means we can only read
and write at once 2 consecutive elements of the matrix, which is less efficient.

140

7.5. On challenges in approximation guarantees for quantized networks

Open research directions provided by this thesis. As long as NVIDIA does not
support half4 operations in CUDA, the challenge is to design a new kernel that is as effi-
cient in half-precision as the new kernel is in float-precision. For now, the kernel does not
rely on any opaque NVIDIA routines, and is based on simple operations such as memory
reads and writes, and explicit multiplications between the elements. This has the advan-
tage of making the kernel easy to understand and to modify. In the future, it could be
interesting to investigate the use of opaque routines in half-precision, such as TensorCores
that are able to perform matrix multiplications of small 16× 16 matrices in half-precision
with a very high throughput. However, the use of TensorCores is not straightforward as
it requires to first extract 16×16 dense sub-matrices from the Kronecker-sparse matrices,
and it is not clear how to achieve that efficiently. This is an open challenge for the future.

7.4.3 Additional challenges raised by the new kernel

I would like to conclude this section by mentioning two additional challenges raised by
the practical use of the new kernel.

First, the new kernel has been shown to be particularly performant in batch-size-
last, which corresponds to a specific assumption on the memory layout of the input and
output matrices. However, this batch-size-last version of the kernel cannot be used as
it is in PyTorch, as PyTorch does the inverse assumption on the memory layout. The
current PyTorch standard is batch-size-first, and this seems to be essentially because of
a historical reason rather than a technical one. It would be interesting to investigate the
possibility to implement other PyTorch operations in batch-size-last, to use the new kernel
also in batch-size-last, but also to see if this could lead to further gains in time and energy
for other operations. For instance, we saw that the already existing generic algorithm for
sparse matrix multiplication in Pytorch is accelerated by a factor of 7 when performed in
batch-size-last, see Section 5.4.

Second, since our kernel has been shown to improve the existing implementations on
NVIDIA GPUs, it would be interesting to see if it can also be adapted to other hardware.
For instance, the translation of our kernel into OpenCL could enable it to run on AMD
hardware and other platforms.

7.5 On challenges in approximation guarantees for
quantized networks

In this thesis, I provided new results on the approximation power of quantized networks,
i.e., networks with weights constrained to be in a finite set (e.g., floats). For instance, I
characterized the error of simple uniform quantization scheme Qη that acts coordinate-
wise as Qη(x) = ⌊x/η⌋ η in Theorem 6.1.1, where I improved the known sufficient number
of bits per coordinate for Qη to provide an ε-quantization-error in L∞([−D,D]d).

However, and as discussed in Section 6.1, I did this work before being familiar with the
path-lifting theory developed in Chapters 2 to 4. The path-lifting theory provides a new
perspective to revisit these results by taking into account the symmetries of the network.

141

Chapter 7. Perspectives

Open research directions provided by this thesis. As explained in Section 6.1, the
quantization error is controlled by the Lipschitz constant of θ 7→ Rθ(x). In Section 6.1,
I used Lipschitz bounds established in terms of the raw parameters θ, and valid only
for LFCNs. But since then, I proved in Chapter 3 new Lipschitz bounds, that are not
only more widely applicable to DAG networks but also finer (Section 3.4.2). These new
Lipschitz bounds are established in terms of the path-lifting Φ(θ), and are finer because
they are invariant to rescaling symmetries of the network. This raises several questions
for the future. Is it possible to use the path-lifting to provide tighter approximation
guarantees for quantized networks, and to extend them to general DAG networks? For
given parameters θ, remember that there are uncountably many equivalent parameters θ′

that can be obtained by rescaling the coordinates of θ and that are functionally equivalent
(Rθ = Rθ′). Is it possible to take these equivalent parameters into account when designing
a quantization scheme? A first result that goes in this direction in the specific case of
butterfly matrices is in Gribonval et al. [2023], where they aim at first reducing the
parameters to a canonical form in the rescaling equivalence class, and then quantize these
canonical parameters. I showed several times in Chapter 3 that normalized parameters
are a particular choice of equivalent parameters that are well-suited to minimize some
norms defined directly in terms of the raw parameters θ. This kind of analysis may be
useful to find a canonical form that would minimize the quantization error.

Last words. My aim in this thesis has been to make some of the promising tools from
the literature, like path-lifting, Kronecker sparsity, and approximation guarantees, more
concrete and accessible. Throughout my work, I’ve tried to stay grounded in practical
considerations, particularly when establishing theoretical results. My goal was either to
better understand practical applications or to have a direct practical impact, like designing
better algorithms.

I really enjoyed working on all these different topics, especially because they were
so varied. From exploring Kronecker sparsity and learning how GPUs work and can be
programmed with CUDA, to studying the path-lifting, which I now see as a great tool that
defines a new geometry in the path-space, with many theoretical and practical connections
to the geometry defined by neural network functions.

Looking ahead, I would be happy to continue embracing this duality between theory
and practice. I hope you enjoyed reading this thesis as much as I enjoyed writing it.
Thank you!

142

Bibliography

K. Alizadeh-Vahid, A. Prabhu, A. Farhadi, and M. Rastegari. Butterfly transform:
An efficient FFT based neural architecture design. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 12021–12030. Computer Vision Foundation / IEEE, 2020. doi:
10.1109/CVPR42600.2020.01204. URL https://openaccess.thecvf.com/content_
CVPR_2020/html/vahid_Butterfly_Transform_An_Efficient_FFT_Based_Neural_
Architecture_Design_CVPR_2020_paper.html.

C. Anil, J. Lucas, and R. B. Grosse. Sorting out Lipschitz function approximation.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 291–301. PMLR,
2019. URL http://proceedings.mlr.press/v97/anil19a.html.

A. Araujo, B. Négrevergne, Y. Chevaleyre, and J. Atif. On lipschitz regularization of
convolutional layers using toeplitz matrix theory. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 6661–
6669. AAAI Press, 2021. doi: 10.1609/AAAI.V35I8.16824. URL https://doi.org/
10.1609/aaai.v35i8.16824.

R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks
with rectified linear units. Electron. Colloquium Comput. Complex., 24:98, 2017. URL
https://eccc.weizmann.ac.il/report/2017/098.

L. Aschenbrenner. Situational awareness, the decade ahead. White paper,
2024. URL https://situational-awareness.ai/wp-content/uploads/2024/06/
situationalawareness.pdf. Accessed: June 2024.

F. Bach. Learning from first principles, 2024. URL https://www.di.ens.fr/~fbach/
ltfp_book.pdf.

F. R. Bach. Breaking the curse of dimensionality with convex neural networks. J. Mach.
Learn. Res., 18:19:1–19:53, 2017. URL http://jmlr.org/papers/v18/14-546.html.

143

https://openaccess.thecvf.com/content_CVPR_2020/html/vahid_Butterfly_Transform_An_Efficient_FFT_Based_Neural_Architecture_Design_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/vahid_Butterfly_Transform_An_Efficient_FFT_Based_Neural_Architecture_Design_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/vahid_Butterfly_Transform_An_Efficient_FFT_Based_Neural_Architecture_Design_CVPR_2020_paper.html
http://proceedings.mlr.press/v97/anil19a.html
https://doi.org/10.1609/aaai.v35i8.16824
https://doi.org/10.1609/aaai.v35i8.16824
https://eccc.weizmann.ac.il/report/2017/098
https://situational-awareness.ai/wp-content/uploads/2024/06/situationalawareness.pdf
https://situational-awareness.ai/wp-content/uploads/2024/06/situationalawareness.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf
http://jmlr.org/papers/v18/14-546.html

BIBLIOGRAPHY

J. Barr. Amazon EC2 Update – Inf1 Instances with AWS Inferentia Chips for High Perfor-
mance Cost-Effective Inferencing, 2019. URL https://aws.amazon.com/blogs/aws/
amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/.
Accessed: [April 2024].

A. R. Barron and J. M. Klusowski. Complexity, statistical risk, and metric entropy
of deep nets using total path variation. CoRR, abs/1902.00800, 2019. URL http:
//arxiv.org/abs/1902.00800.

P. L. Bartlett. For valid generalization the size of the weights is more important than
the size of the network. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances
in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5,
1996, pages 134–140. MIT Press, 1996. URL https://dl.acm.org/doi/abs/10.5555/
2998981.2999000.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res., 3:463–482, 2002. URL http://jmlr.org/
papers/v3/bartlett02a.html.

P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds
for neural networks. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wal-
lach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6240–6249, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
b22b257ad0519d4500539da3c8bcf4dd-Abstract.html.

E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of
stochastic parrots: Can language models be too big? In M. C. Elish, W. Isaac, and
R. S. Zemel, editors, FAccT ’21: 2021 ACM Conference on Fairness, Accountability,
and Transparency, Virtual Event / Toronto, Canada, March 3-10, 2021, pages 610–
623. ACM, 2021. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/
3442188.3445922.

J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error: Empirical risk
minimization over deep artificial neural networks overcomes the curse of dimensionality
in the numerical approximation of black-scholes partial differential equations. SIAM
J. Math. Data Sci., 2(3):631–657, 2020. doi: 10.1137/19M125649X. URL https:
//doi.org/10.1137/19M125649X.

S. Boehm. How to optimize a CUDA matmul kernel for cuBLAS-like performance: A
worklog, 2022. https://siboehm.com/articles/22/CUDA-MMM [Accessed: April 2024].

J. Bona-Pellissier, F. Malgouyres, and F. Bachoc. Local identifiability of deep
relu neural networks: the theory. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b0ae046e198a5e43141519868a959c74-Abstract-Conference.html.

144

https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
http://arxiv.org/abs/1902.00800
http://arxiv.org/abs/1902.00800
https://dl.acm.org/doi/abs/10.5555/2998981.2999000
https://dl.acm.org/doi/abs/10.5555/2998981.2999000
http://jmlr.org/papers/v3/bartlett02a.html
http://jmlr.org/papers/v3/bartlett02a.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1137/19M125649X
https://doi.org/10.1137/19M125649X
https://siboehm.com/articles/22/CUDA-MMM
http://papers.nips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html

BIBLIOGRAPHY

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford Uni-
versity Press, Oxford, 2013. ISBN 978-0-19-953525-5. doi: 10.1093/acprof:oso/
9780199535255.001.0001. URL https://doi-org.acces.bibliotheque-diderot.fr/
10.1093/acprof:oso/9780199535255.001.0001. A nonasymptotic theory of indepen-
dence, With a foreword by Michel Ledoux.

B. Chen, T. Dao, K. Liang, J. Yang, Z. Song, A. Rudra, and C. Ré. Pixelated butter-
fly: Simple and efficient sparse training for neural network models. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?
id=Nfl-iXa-y7R.

H. Cheng, M. Zhang, and J. Q. Shi. A survey on deep neural network pruning-taxonomy,
comparison, analysis, and recommendations. CoRR, abs/2308.06767, 2023. doi: 10.
48550/ARXIV.2308.06767. URL https://doi.org/10.48550/arXiv.2308.06767.

Chuan Li. Demystifying GPT-3. https://lambdalabs.com/blog/demystifying-gpt-3,
2021. Accessed: [April 2024].

P. L. Combettes and J. Pesquet. Lipschitz certificates for layered network structures
driven by averaged activation operators. SIAM J. Math. Data Sci., 2(2):529–557, 2020.
doi: 10.1137/19M1272780. URL https://doi.org/10.1137/19M1272780.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
3rd Edition. MIT Press, 2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.
edu/books/introduction-algorithms.

T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In K. Chaudhuri and R. Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 1517–1527. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/dao19a.html.

T. Dao, N. S. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski, A. Rudra,
and C. Ré. Kaleidoscope: An efficient, learnable representation for all structured
linear maps. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BkgrBgSYDS.

T. Dao, B. Chen, N. S. Sohoni, A. D. Desai, M. Poli, J. Grogan, A. Liu, A. Rao, A. Rudra,
and C. Ré. Monarch: Expressive structured matrices for efficient and accurate training.
In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors, In-
ternational Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 4690–
4721. PMLR, 2022a. URL https://proceedings.mlr.press/v162/dao22a.html.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022b.

145

https://doi-org.acces.bibliotheque-diderot.fr/10.1093/acprof:oso/9780199535255.001.0001
https://doi-org.acces.bibliotheque-diderot.fr/10.1093/acprof:oso/9780199535255.001.0001
https://openreview.net/forum?id=Nfl-iXa-y7R
https://openreview.net/forum?id=Nfl-iXa-y7R
https://doi.org/10.48550/arXiv.2308.06767
https://lambdalabs.com/blog/demystifying-gpt-3
https://doi.org/10.1137/19M1272780
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://proceedings.mlr.press/v97/dao19a.html
http://proceedings.mlr.press/v97/dao19a.html
https://openreview.net/forum?id=BkgrBgSYDS
https://openreview.net/forum?id=BkgrBgSYDS
https://proceedings.mlr.press/v162/dao22a.html

BIBLIOGRAPHY

B. Delattre, Q. Barthélemy, and A. Allauzen. Spectral norm of convolutional layers with
circular and zero paddings. CoRR, abs/2402.00240, 2024. doi: 10.48550/ARXIV.2402.
00240. URL https://doi.org/10.48550/arXiv.2402.00240.

R. A. DeVore and G. G. Lorentz. Constructive Approximation, volume 303 of Grundlehren
der mathematischen Wissenschaften. Springer, 1993. ISBN 978-3-540-50627-0.

R. A. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numer., 30:
327–444, 2021. doi: 10.1017/S0962492921000052. URL https://doi.org/10.1017/
S0962492921000052.

Y. Ding, J. Liu, J. Xiong, and Y. Shi. On the universal approximability and complexity
bounds of quantized relu neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=SJe9rh0cFX.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

G. K. Dziugaite. Revisiting Generalization for Deep Learning: PAC-Bayes, Flat Min-
ima, and Generative Models. PhD thesis, Department of Engineering University of
Cambridge, 2018.

G. K. Dziugaite, A. Drouin, B. Neal, N. Rajkumar, E. Caballero, L. Wang,
I. Mitliagkas, and D. M. Roy. In search of robust measures of generaliza-
tion. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html.

W. E, C. Ma, and L. Wu. The Barron space and the flow-induced function spaces for neural
network models. Constr. Approx., 55(1):369–406, 2022. ISSN 0176-4276. doi: 10.1007/
s00365-021-09549-y. URL https://doi-org.acces.bibliotheque-diderot.fr/10.
1007/s00365-021-09549-y.

D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approx-
imation theory. IEEE Trans. Inf. Theory, 67(5):2581–2623, 2021. doi: 10.1109/TIT.
2021.3062161. URL https://doi.org/10.1109/TIT.2021.3062161.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning visual clas-
sification. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 1625–1634. Computer
Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00175.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_
Physical-World_Attacks_CVPR_2018_paper.html.

146

https://doi.org/10.48550/arXiv.2402.00240
https://doi.org/10.1017/S0962492921000052
https://doi.org/10.1017/S0962492921000052
https://openreview.net/forum?id=SJe9rh0cFX
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-021-09549-y
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-021-09549-y
https://doi.org/10.1109/TIT.2021.3062161
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html

BIBLIOGRAPHY

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, train-
able neural networks. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Pruning neural networks at ini-
tialization: Why are we missing the mark? In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

D. Y. Fu, S. Arora, J. Grogan, I. Johnson, E. S. Eyuboglu, A. W. Thomas, B. Spector,
M. Poli, A. Rudra, and C. Ré. Monarch mixer: A simple sub-quadratic gemm-based
architecture. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/f498c1ce6bff52eb04febf87438dd84b-Abstract-Conference.html.

Y. Furusho. Analysis of Regularization and Optimization for Deep Learning. PhD thesis,
Nara Institute of Science and Technology, 2020.

T. Galanti, M. Xu, L. Galanti, and T. A. Poggio. Norm-based generalization bounds for
compositionally sparse neural networks. CoRR, abs/2301.12033, 2023. doi: 10.48550/
arXiv.2301.12033. URL https://doi.org/10.48550/arXiv.2301.12033.

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In S. Bubeck, V. Perchet, and P. Rigollet, editors, Conference On Learning
Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of
Machine Learning Research, pages 297–299. PMLR, 2018. URL http://proceedings.
mlr.press/v75/golowich18a.html.

A. Gonon, N. Brisebarre, R. Gribonval, and E. Riccietti. Approximation speed of quan-
tized versus unquantized relu neural networks and beyond. IEEE Trans. Inf. Theory,
69(6):3960–3977, 2023a. doi: 10.1109/TIT.2023.3240360. URL https://doi.org/10.
1109/TIT.2023.3240360.

A. Gonon, L. Zheng, C. Lalanne, Q.-T. Le, G. Lauga, and et al. Can sparsity improve
the privacy of neural networks? In GRETSI 2023 - XXIXème Colloque Francophone
de Traitement du Signal et des Images, Grenoble, France, August 2023b. URL https:
//hal.science/hal-04062317/document.

A. Gonon, N. Brisebarre, E. Riccietti, and R. Gribonval. A path-norm toolkit for modern
networks: consequences, promises and challenges. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024a. doi: 10.48550/ARXIV.2310.
01225. URL https://doi.org/10.48550/arXiv.2310.01225. Spotlight.

A. Gonon, N. Brisebarre, E. Riccietti, and R. Gribonval. Path-metrics, pruning, and
generalization. CoRR, 2024b. URL https://hal.science/hal-04584311.

147

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK
http://papers.nips.cc/paper_files/paper/2023/hash/f498c1ce6bff52eb04febf87438dd84b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f498c1ce6bff52eb04febf87438dd84b-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2301.12033
http://proceedings.mlr.press/v75/golowich18a.html
http://proceedings.mlr.press/v75/golowich18a.html
https://doi.org/10.1109/TIT.2023.3240360
https://doi.org/10.1109/TIT.2023.3240360
https://hal.science/hal-04062317/document
https://hal.science/hal-04062317/document
https://doi.org/10.48550/arXiv.2310.01225
https://hal.science/hal-04584311

BIBLIOGRAPHY

A. Gonon, L. Zheng, P. Carrivain, and Q.-T. Le. Fast inference with kronecker-sparse
matrices. CoRR, 2024c. URL https://hal.science/hal-04584450.

I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive computation
and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL http://www.
deeplearningbook.org/.

R. Gribonval, G. Kutyniok, M. Nielsen, P. Peter Petersen, and C. Schwab. Approximation
spaces of deep neural networks. Constructive Approximation, 55:259–367, 2022. doi:
10.1007/s00365-021-09543-4.

R. Gribonval, T. Mary, and E. Riccietti. Optimal quantization of rank-one matrices in
floating-point arithmetic—with applications to butterfly factorizations. preprint, 2023.
URL https://inria.hal.science/hal-04125381.

P. Grohs. Optimally sparse data representations. In Harmonic and applied analysis, Appl.
Numer. Harmon. Anal., pages 199–248. Birkhäuser/Springer, Cham, 2015.

I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep
relu neural networks in $wˆ{s, p}$ norms. CoRR, abs/1902.07896, 2019. URL http:
//arxiv.org/abs/1902.07896.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

D. Hernandez, T. B. Brown, T. Conerly, N. DasSarma, D. Drain, S. E. Showk, N. Elhage,
Z. Hatfield-Dodds, T. Henighan, T. Hume, S. Johnston, B. Mann, C. Olah, C. Olsson,
D. Amodei, N. Joseph, J. Kaplan, and S. McCandlish. Scaling laws and interpretability
of learning from repeated data. CoRR, abs/2205.10487, 2022. doi: 10.48550/ARXIV.
2205.10487. URL https://doi.org/10.48550/arXiv.2205.10487.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22:241:1–241:124, 2021. URL http://jmlr.org/papers/v22/21-0366.
html.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford,
D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland,
K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan,
E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre. Training compute-optimal large lan-
guage models. CoRR, abs/2203.15556, 2022. doi: 10.48550/ARXIV.2203.15556. URL
https://doi.org/10.48550/arXiv.2203.15556.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

148

https://hal.science/hal-04584450
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://inria.hal.science/hal-04125381
http://arxiv.org/abs/1902.07896
http://arxiv.org/abs/1902.07896
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2205.10487
http://jmlr.org/papers/v22/21-0366.html
http://jmlr.org/papers/v22/21-0366.html
https://doi.org/10.48550/arXiv.2203.15556
http://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

HPCwire. AWS Upgrades its GPU-Backed AI Infer-
ence Platform. https://www.hpcwire.com/2019/03/19/
aws-upgrades-its-gpu-backed-ai-inference-platform/, March 2019. Accessed:
[April 2024].

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In F. R. Bach and D. M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–
456. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/ioffe15.html.

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization
measures and where to find them. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=SJgIPJBFvH.

S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk
bounds, margin bounds, and regularization. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21, Pro-
ceedings of the Twenty-Second Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 793–800.
Curran Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper/2008/
hash/5b69b9cb83065d403869739ae7f0995e-Abstract.html.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models. CoRR,
abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

A. Karpathy. Deep neural nets: 33 years ago and 33 years from now (invited post). In
ICLR Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/26/
lecun1989/. https://iclr-blog-track.github.io/2022/03/26/lecun1989/.

K. Kawaguchi, L. P. Kaelbling, and Y. Bengio. Generalization in deep learning. CoRR,
abs/1710.05468, 2017. URL http://arxiv.org/abs/1710.05468.

G. Kerkyacharian and D. Picard. Thresholding algorithms, maxisets and well-
concentrated bases. Test, 9(2):283–344, 2000.

G. Kerkyacharian and D. Picard. Entropy, universal coding, approximation, and bases
properties. Constr. Approx., 20(1):1–37, 2004. ISSN 0176-4276. doi: 10.1007/
s00365-003-0556-z. URL https://doi-org.acces.bibliotheque-diderot.fr/10.
1007/s00365-003-0556-z.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

149

https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
http://proceedings.mlr.press/v37/ioffe15.html
https://openreview.net/forum?id=SJgIPJBFvH
https://proceedings.neurips.cc/paper/2008/hash/5b69b9cb83065d403869739ae7f0995e-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/5b69b9cb83065d403869739ae7f0995e-Abstract.html
https://arxiv.org/abs/2001.08361
https://iclr-blog-track.github.io/2022/03/26/lecun1989/
https://iclr-blog-track.github.io/2022/03/26/lecun1989/
http://arxiv.org/abs/1710.05468
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-003-0556-z
https://doi-org.acces.bibliotheque-diderot.fr/10.1007/s00365-003-0556-z
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

BIBLIOGRAPHY

D. Kunin, J. Sagastuy-Breña, S. Ganguli, D. L. K. Yamins, and H. Tanaka. Neural me-
chanics: Symmetry and broken conservation laws in deep learning dynamics. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=q8qLAbQBupm.

A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the carbon emissions of
machine learning. CoRR, abs/1910.09700, 2019. URL http://arxiv.org/abs/1910.
09700.

Q. Le. Algorithmic and theoretical aspects of sparse deep neural networks. (Aspects
algorithmiques et th ’eoriques des r ’eseaux de neurones profonds parcimonieux).
PhD thesis, École normale supérieure de Lyon, France, 2023. URL https://tel.
archives-ouvertes.fr/tel-04329531.

Q. Le, L. Zheng, E. Riccietti, and R. Gribonval. Fast learning of fast transforms, with
guarantees. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2022, Virtual and Singapore, 23-27 May 2022, pages 3348–3352. IEEE,
2022. doi: 10.1109/ICASSP43922.2022.9747791. URL https://doi.org/10.1109/
ICASSP43922.2022.9747791.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.
URL https://doi.org/10.1109/5.726791.

Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nat., 521(7553):436–444, 2015.
doi: 10.1038/NATURE14539. URL https://doi.org/10.1038/nature14539.

M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1991. ISBN 3-540-52013-9. doi: 10.1007/978-3-642-20212-4.
URL https://doi.org/10.1007/978-3-642-20212-4. Isoperimetry and processes.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neu-
ral Networks, 6(6):861–867, 1993. ISSN 0893-6080. doi: https://doi.org/10.1016/
S0893-6080(05)80131-5. URL https://www.sciencedirect.com/science/article/
pii/S0893608005801315.

X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li. A coordinated tiling and batching framework
for efficient GEMM on GPUs. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, 2019.

R. Lin, J. Ran, K. H. Chiu, G. Chesi, and N. Wong. Deformable butterfly:
A highly structured and sparse linear transform. In M. Ranzato, A. Beygelz-
imer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neu-
ral Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
16145–16157, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
86b122d4358357d834a87ce618a55de0-Abstract.html.

150

https://openreview.net/forum?id=q8qLAbQBupm
https://openreview.net/forum?id=q8qLAbQBupm
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
https://tel.archives-ouvertes.fr/tel-04329531
https://tel.archives-ouvertes.fr/tel-04329531
https://doi.org/10.1109/ICASSP43922.2022.9747791
https://doi.org/10.1109/ICASSP43922.2022.9747791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-20212-4
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://proceedings.neurips.cc/paper/2021/hash/86b122d4358357d834a87ce618a55de0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/86b122d4358357d834a87ce618a55de0-Abstract.html

BIBLIOGRAPHY

S. Marcotte, R. Gribonval, and G. Peyré. Abide by the law and follow the flow: Con-
servation laws for gradient flows. CoRR, abs/2307.00144, 2023. doi: 10.48550/arXiv.
2307.00144. URL https://doi.org/10.48550/arXiv.2307.00144.

A. Maurer. A vector-contraction inequality for rademacher complexities. In R. Ortner,
H. U. Simon, and S. Zilles, editors, Algorithmic Learning Theory - 27th International
Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, volume 9925 of
Lecture Notes in Computer Science, pages 3–17, 2016. doi: 10.1007/978-3-319-46379-7\
_1. URL https://doi.org/10.1007/978-3-319-46379-7_1.

Meta. Llama 3 on Hugging Face. https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct, 2024. Accessed: [May 2024].

I. Mirzadeh, K. Alizadeh, S. Mehta, C. C. D. Mundo, O. Tuzel, G. Samei, M. Rastegari,
and M. Farajtabar. Relu strikes back: Exploiting activation sparsity in large language
models. In Proceedings of the International Conference on Learning Representations
(ICLR), 2024. doi: 10.48550/ARXIV.2310.04564. URL https://doi.org/10.48550/
arXiv.2310.04564. Oral.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti, D. Vain-
brand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Za-
haria. Efficient large-scale language model training on GPU clusters using megatron-
lm. In B. R. de Supinski, M. W. Hall, and T. Gamblin, editors, International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
2021, St. Louis, Missouri, USA, November 14-19, 2021, page 58. ACM, 2021. doi:
10.1145/3458817.3476209. URL https://doi.org/10.1145/3458817.3476209.

B. Neyshabur. Implicit regularization in deep learning. CoRR, abs/1709.01953, 2017.
URL http://arxiv.org/abs/1709.01953.

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural net-
works. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of The 28th Con-
ference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, volume 40 of
JMLR Workshop and Conference Proceedings, pages 1376–1401. JMLR.org, 2015. URL
http://proceedings.mlr.press/v40/Neyshabur15.html.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring general-
ization in deep learning. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wal-
lach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5947–5956, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
10ce03a1ed01077e3e289f3e53c72813-Abstract.html.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-Bayesian approach to spectrally-
normalized margin bounds for neural networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://
openreview.net/forum?id=Skz_WfbCZ.

151

https://doi.org/10.48550/arXiv.2307.00144
https://doi.org/10.1007/978-3-319-46379-7_1
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://doi.org/10.48550/arXiv.2310.04564
https://doi.org/10.48550/arXiv.2310.04564
https://doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/1709.01953
http://proceedings.mlr.press/v40/Neyshabur15.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://openreview.net/forum?id=Skz_WfbCZ
https://openreview.net/forum?id=Skz_WfbCZ

BIBLIOGRAPHY

E. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.
URL http://eudml.org/doc/59024.

NVIDIA. Efficient GEMM in CUDA: documentation, 2023a. https://github.
com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md [Accessed: April
2024].

NVIDIA. Matrix multiplication background user’s guide, 2023b. https://docs.nvidia.
com/deeplearning/performance/dl-performance-matrix-multiplication/
index.html [Accessed: April 2024].

NVIDIA. CUDA C++ programming guide, 2024. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html [Accessed: April 2024].

I. Ohn and Y. Kim. Smooth function approximation by deep neural networks with general
activation functions. Entropy, 21(7):627, 2019. doi: 10.3390/E21070627. URL https:
//doi.org/10.3390/e21070627.

OpenAI. AI and Compute. https://openai.com/research/ai-and-compute, May
2018. Accessed: [April 2024].

G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, H. Alobeidli, A. Cappelli, B. Pan-
nier, E. Almazrouei, and J. Launay. The refinedweb dataset for falcon LLM:
outperforming curated corpora with web data only. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html.

G. V. Pérez and A. A. Louis. Generalization bounds for deep learning. CoRR,
abs/2012.04115, 2020. URL https://arxiv.org/abs/2012.04115.

P. Petersen and F. Voigtländer. Optimal approximation of piecewise smooth functions
using deep relu neural networks. Neural Networks, 108:296–330, 2018. doi: 10.1016/J.
NEUNET.2018.08.019. URL https://doi.org/10.1016/j.neunet.2018.08.019.

K. Pitas, A. Loukas, M. Davies, and P. Vandergheynst. Some limitations of norm based
generalization bounds in deep neural networks. CoRR, abs/1905.09677, 2019. URL
http://arxiv.org/abs/1905.09677.

A. Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like nota-
tion. In ICLR, 2021.

M. E. Sander, J. Puigcerver, J. Djolonga, G. Peyré, and M. Blondel. Fast, differentiable
and sparse top-k: a convex analysis perspective. In A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, editors, International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 29919–29936. PMLR, 2023. URL
https://proceedings.mlr.press/v202/sander23a.html.

152

http://eudml.org/doc/59024
https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md
https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.3390/e21070627
https://doi.org/10.3390/e21070627
https://openai.com/research/ai-and-compute
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2012.04115
https://doi.org/10.1016/j.neunet.2018.08.019
http://arxiv.org/abs/1905.09677
https://proceedings.mlr.press/v202/sander23a.html

BIBLIOGRAPHY

G. Sastry, L. Heim, H. Belfield, M. Anderljung, M. Brundage, J. Hazell, C. O’Keefe,
G. K. Hadfield, R. Ngo, K. Pilz, G. Gor, E. Bluemke, S. Shoker, J. Egan, R. F. Trager,
S. Avin, A. Weller, Y. Bengio, and D. Coyle. Computing power and the governance of
artificial intelligence. CoRR, abs/2402.08797, 2024. doi: 10.48550/ARXIV.2402.08797.
URL https://doi.org/10.48550/arXiv.2402.08797.

T. L. Scao, T. Wang, D. Hesslow, S. Bekman, M. S. Bari, S. Biderman, H. Elsahar,
N. Muennighoff, J. Phang, O. Press, C. Raffel, V. Sanh, S. Shen, L. Sutawika, J. Tae,
Z. X. Yong, J. Launay, and I. Beltagy. What language model to train if you have one
million GPU hours? In Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Findings
of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 765–782. Association for Computational
Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-EMNLP.54. URL https://doi.
org/10.18653/v1/2022.findings-emnlp.54.

H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=rJevYoA9Fm.

J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends
across three eras of machine learning. In International Joint Conference on Neural Net-
works, IJCNN 2022, Padua, Italy, July 18-23, 2022, pages 1–8. IEEE, 2022. doi:
10.1109/IJCNN55064.2022.9891914. URL https://doi.org/10.1109/IJCNN55064.
2022.9891914.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learn-
ing - From Theory to Algorithms. Cambridge University Press, 2014.
ISBN 978-1-10-705713-5. URL http://www.cambridge.org/de/academic/
subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks
and tree search. Nat., 529(7587):484–489, 2016. doi: 10.1038/NATURE16961. URL
https://doi.org/10.1038/nature16961.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without human
knowledge. Nat., 550(7676):354–359, 2017. doi: 10.1038/NATURE24270. URL https:
//doi.org/10.1038/nature24270.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A
general reinforcement learning algorithm that masters chess, shogi, and go through

153

https://doi.org/10.48550/arXiv.2402.08797
https://doi.org/10.18653/v1/2022.findings-emnlp.54
https://doi.org/10.18653/v1/2022.findings-emnlp.54
https://openreview.net/forum?id=rJevYoA9Fm
https://openreview.net/forum?id=rJevYoA9Fm
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1109/IJCNN55064.2022.9891914
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

BIBLIOGRAPHY

self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.aar6404. URL
https://www.science.org/doi/abs/10.1126/science.aar6404.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale im-
age recognition. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

P. Stock and R. Gribonval. An embedding of ReLU networks and an analysis of their
identifiability. Constr. Approx., 57(2):853–899, 2023. ISSN 0176-4276,1432-0940. doi:
10.1007/s00365-022-09578-1. URL https://doi.org/10.1007/s00365-022-09578-1.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep
learning in NLP. In A. Korhonen, D. R. Traum, and L. Màrquez, editors, Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 3645–3650.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1355. URL
https://doi.org/10.18653/v1/p19-1355.

T. Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov
spaces: optimal rate and curse of dimensionality. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=H1ebTsActm.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In Y. Bengio and Y. Le-
Cun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6199.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-
12, 2015, pages 1–9. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.7298594.
URL https://doi.org/10.1109/CVPR.2015.7298594.

R. Van Handel. Probability in high dimension. Lecture Notes (Princeton University),
2014. URL https://web.math.princeton.edu/~rvan/APC550.pdf. [Accessed: April
2024].

C. F. Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: anal-
ysis and efficient estimation. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 3839–3848, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
d54e99a6c03704e95e6965532dec148b-Abstract.html.

154

https://www.science.org/doi/abs/10.1126/science.aar6404
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/s00365-022-09578-1
https://doi.org/10.18653/v1/p19-1355
https://openreview.net/forum?id=H1ebTsActm
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/CVPR.2015.7298594
https://web.math.princeton.edu/~rvan/APC550.pdf
https://proceedings.neurips.cc/paper/2018/hash/d54e99a6c03704e95e6965532dec148b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d54e99a6c03704e95e6965532dec148b-Abstract.html

BIBLIOGRAPHY

U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz functions.
J. Mach. Learn. Res., 5:669–695, 2004. URL http://jmlr.org/papers/volume5/
luxburg04b/luxburg04b.pdf.

M. J. Wainwright. High-dimensional statistics, volume 48 of Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019.
ISBN 978-1-108-49802-9. doi: 10.1017/9781108627771. URL https://doi-org.acces.
bibliotheque-diderot.fr/10.1017/9781108627771. A non-asymptotic viewpoint.

P. Wang. Scaled dot-product attention implementation, 2024a. https://docs.nvidia.
com/deeplearning/performance/dl-performance-matrix-multiplication/
index.html [Accessed: April 2024].

P. Wang. Simple ViT implementation, 2024b. https://github.com/lucidrains/
vit-pytorch/blob/main/vit_pytorch/simple_vit.py [Accessed: April 2024].

C. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. A.
Behram, J. Huang, C. Bai, M. Gschwind, A. Gupta, M. Ott, A. Melnikov, S. Candido,
D. Brooks, G. Chauhan, B. Lee, H. S. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain,
M. Rabbat, and K. M. Hazelwood. Sustainable AI: environmental implications, chal-
lenges and opportunities. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of
Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA, USA, August 29
- September 1, 2022. mlsys.org, 2022. URL https://proceedings.mlsys.org/paper/
2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html.

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling vision transformers. In CVPR,
2022.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
(still) requires rethinking generalization. Commun. ACM, 64(3):107–115, 2021. doi:
10.1145/3446776. URL https://doi.org/10.1145/3446776.

L. Zheng, E. Riccietti, and R. Gribonval. Efficient identification of butterfly sparse matrix
factorizations. SIAM J. Math. Data Sci., 5(1):22–49, 2023. doi: 10.1137/22M1488727.
URL https://doi.org/10.1137/22m1488727.

S. Zheng, Q. Meng, H. Zhang, W. Chen, N. Yu, and T. Liu. Capacity control of ReLU neu-
ral networks by basis-path norm. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 5925–5932. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33015925. URL
https://doi.org/10.1609/aaai.v33i01.33015925.

155

http://jmlr.org/papers/volume5/luxburg04b/luxburg04b.pdf
http://jmlr.org/papers/volume5/luxburg04b/luxburg04b.pdf
https://doi-org.acces.bibliotheque-diderot.fr/10.1017/9781108627771
https://doi-org.acces.bibliotheque-diderot.fr/10.1017/9781108627771
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/simple_vit.py
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/simple_vit.py
https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html
https://doi.org/10.1145/3446776
https://doi.org/10.1137/22m1488727
https://doi.org/10.1609/aaai.v33i01.33015925

Appendix A
Supplemental material for Chapter 2

I invite the reader to skip this since it only contains technical details, included for the sake
of completeness.

Proof of Equation (2.8). My goal is to prove Equation (2.8) that I recall here for conve-
nience:

v(θ, x) = av(θ, x)bv +
∑

u∈ant(v)
u(θ, x)au→v(θ, x)θu→v.

Case of an identity neuron. If v is an identity neuron, then by Definition 2.2.2
v(θ, x) = bv +

∑
u∈ant(v)

u(θ, x)θu→v.

Moreover, by Definition 2.3.3 we have av(θ, x) = 1 and au→v(θ, x) = 1, since v is an
identity neuron, so that the previous equality can also be written as

v(θ, x) = av(θ, x)bv +
∑

u∈ant(v)
u(θ, x)au→v(θ, x)θu→v.

This shows Equation (2.8) in this case.
Case of a ReLU neuron. If v is a ReLU neuron then similarly

v(θ, x) = ReLU
bv +

∑
u∈ant(v)

u(θ, x)θu→v

 = 1v(θ,x)>0

bv +
∑

u∈ant(v)
u(θ, x)θu→v

= 1v(θ,x)>0︸ ︷︷ ︸

=av(θ,x)

bv +
∑

u∈ant(v)
u(θ, x) 1v(θ,x)>0︸ ︷︷ ︸

=au→v(θ,x)

θu→v.

This shows again Equation (2.8).
Case of a k-max-pooling neuron. When v is a k-max-pooling neuron, it holds:
v(θ, x) = k-pool

(
(bv + u(θ, x)θu→v)u∈ant(v)

)
= bv +

∑
u∈ant(v)

1u is the first to realize this k-pool︸ ︷︷ ︸
=au→v(θ,x) (Definition 2.3.3)

u(θ, x)θu→v (Definition 2.2.1)

= av(θ, x)︸ ︷︷ ︸
=1 (Definition 2.3.3)

bv +
∑

u∈ant(v)
u(θ, x)au→v(θ, x)θu→v.

This finishes proving Equation (2.8) in every case.

157

Appendix B
Supplemental material for Chapter 3

I invite readers to skip Appendix B that mostly contains technical details, included for the
sake of completeness.

• Appendix B.1 proves that Algorithm 3.2.1 produces normalized parameters that are
weakly rescaling-equivalent to the input parameters.

• Appendix B.2 shows that the mixed path-norm is equal to the minimum of the
product of layers’ norms over all weakly rescaling-equivalent parameters.

• Appendix B.3 compares the ℓ1-path-metric to the ℓ∞-metric on the parameters for
LFCNs.

B.1 Proof of Lemma 3.2.1
I now prove Lemma 3.2.1: Algorithm 3.2.1 produces normalized parameters that are
weakly rescaling-equivalent to the input parameters.

Proof of Lemma 3.2.1. Step 1. I first prove that for every v ∈ N \ (Nin ∪Nout):∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

∈ {0, 1}. (B.1)

Consider v /∈ Nin∪Nout. Right after v has been processed by the for loop of Algorithm 3.2.1
(line 2), it is clear that Equation (B.1) holds true for v. It remains to see that bv and θ→v

are not modified until the end of Algorithm 3.2.1. A bias can only be modified when this is
the turn of the corresponding neuron, so bv is untouched after the iteration corresponding
to v. And θ→v can only be modified when treating antecedents of v, but since antecedents
must be before v in any topological sorting, they cannot be processed after v. This proves

that
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

∈ {0, 1}.

Step 2. I now prove that if
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

= 0 then it also holds θv→ = 0 (outgoing

edges of v). Indeed,
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

= 0 implies λv = 0 in Algorithm 3.2.1, which implies

159

Chapter B. Supplemental material for Chapter 3

that θv→ = 0 right after rescaling (line 6) at the end of the iteration corresponding to v.
Because the next iterations can only involve multiplication of the coordinates of θv→ by
scalars, θv→ = 0 is also satisfied at the end of the algorithm. This proves the claim.

Step 3. In order to prove that θ is q-normalized, it only remains to establish that

∥Φ→v(θ)∥q = ∥
(
θ→v

bv

)
∥q. I prove this by induction on a topological sorting of the

neurons.
A useful fact for the induction is that for every v /∈ Nin:

Φ→v(θ) =
(

(Φ→u(θ)θu→v)u∈ant(v)
bv

)
(B.2)

where I recall that Φ→u(·) = 1 for input neurons u. Equation (B.2) holds because Φ→v

is the path-lifting of G→v (see Definition 2.3.2), and the only paths in G→v are p = v,
and the paths going through antecedents of v (v has antecedents since it is not an input
neuron).

Let’s now start the induction. By definition, the first neuron v /∈ Nin in a topological
sorting has only input neurons as antecedents. Therefore, Φ→u(θ) = 1 for every u ∈ ant(v).
Using Equation (B.2), we get

∥Φ→v(θ)∥q
q = |bv|q +

∑
u∈ant(v)

|θu→v|q =
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

q

.

This shows the claim for v.
Assume the result to be true for v /∈ Nin and all the neurons before v in the considered

topological order (in particular, for every u ∈ ant(u)). By Equation (B.2), we have
∥Φ→v(θ)∥q

q = |bv|q +
∑

u∈ant(v)
∥Φ→u(θ)∥q

q|θu→v|q.

The induction hypothesis guarantees that cu := ∥Φ→u(θ)∥q = ∥
(
θ→u

bu

)
∥q for every

u ∈ ant(v). By Equation (B.1), we also have cu ∈ {0, 1} for every u ∈ ant(v). When
cu = 1, it clearly holds ∥Φ→u(θ)∥q

q|θu→v|q = |θu→v|q. Otherwise, cu = 0, hence θu→ = 0 as
proved above, and we also obtain ∥Φ→u(θ)∥q

q|θu→v|q = |θu→v|q. We deduce that

∥Φ→v(θ)∥q
q = |bv|q +

∑
u∈ant(v)

|θu→v|q =
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

q

.

This concludes the induction.
Step 4. It only remains to see that θ is weakly rescaling-equivalent to θ̃. This is clear

since each iteration of the for loop of Algorithm 3.2.1 precisely applies an operation that
preserves weak rescaling-equivalence of θ.

B.2 Proof of Theorem 3.3.2
I now prove that mixed path-norms ∥Φ(θ)∥q,r coincide with the extended product of layers’
norms Πq,r(θ) when the parameters are q-normalized. I also prove that ∥Φ(θ)∥q,r ⩽ Πq,r(θ)
in general, so we will deduce using Lemma 3.2.1 that:

∥Φ(θ)∥q,r = min
θ′∼W Rθ

Πq,r(θ′).

160

B.2. Proof of Theorem 3.3.2

Proof of Theorem 3.3.2. First, when θ is q-normalized, by Definition 3.2.1 and Equa-
tion (3.1):

∥Φ(θ)∥q,r =
∥∥∥∥∥∥
∥∥∥∥∥
(
θ→v

bv

)∥∥∥∥∥
q

v∈Nout

∥∥∥∥∥∥
r

.

Let me prove by induction on a topological sorting of the neurons that for every v ∈ N :

∥Φ→v(θ)∥q ⩽ max
p∈P→v

Π(θ, p, q) (B.3)

with equality if θ is q-normalized. As a direct consequence of Equations (3.1) and (3.4),
this will prove that ∥Φ(θ)∥q,r ⩽ Πq,r(θ), with equality when θ is q-normalized, yielding all
the claimed results.

I start with v ∈ Nin since input neurons are the first to appear in a topological sorting.
In this case, the only path in P→v is p = v, for which it holds Π(θ, p, q) = |γp0| = |γv| = 1
by Definition 3.3.1. Moreover, we also have Φ→v(θ) = 1 (Definition 2.3.3). This proves
Equation (B.3) and the case of equality for input neurons even if θ is not normalized.

Now, consider v /∈ Nin and assume Equation (B.3), and the case of equality for q-
normalized parameters, to be true for every antecedent of v. In this case, we have

Φ→v(θ) =
(

(Φ→u(θ)θu→v)u∈ant(v)
bv

)
,

so it holds

∥Φ→v(θ)∥q
q = |bv|q +

∑
u∈ant(v)

∥Φ→u(θ)∥q
q|θu→v|q ⩽ |bv|q + ∥θ→v∥q

q max
u∈ant(v)

∥Φ→u(θ)∥q
q.

Using the induction hypothesis on every u ∈ ant(v) yields:

∥Φ→v(θ)∥q
q ⩽ |bv|q + ∥θ→v∥q

q max
u∈ant(v)

max
p∈P→u

(Π(θ, p, q))q

Consider u ∈ ant(v) and p ∈ P→u, and denote by p̃ = p → v the path p concatenated
with the edge u → v. By Definition 3.3.1, we have (highlighting in orange important
changes)

|bv|q + ∥θ→v∥q
q(Π(θ, p, q))q

= |bv|q︸ ︷︷ ︸
=|γv |qsince v /∈ Nin

+∥θ→v∥q
q

length(p)∑
ℓ=0

∣∣∣bpℓ

∣∣∣q length(p)∏
k=ℓ+1

∥θ→pk∥q
q

= |γ p̃end|q + ∥θ→p̃end∥q
q

length(p̃)−1∑
ℓ=0

∣∣∣bp̃ℓ

∣∣∣q length(p̃)−1∏
k=ℓ+1

∥θ→p̃k∥q
q = (Π(θ, p̃, q))q

I deduce that

∥Φ→v(θ)∥q
q ⩽ max

u∈ant(v)
max

p∈P→u
(Π(θ, p→ u, q))q = max

p̃∈P→v
(Π(θ, p̃, q))q.

This proves Equation (B.3) for v. To conclude the induction, it remains to treat the
equality case for v assuming that θ is q-normalized. Since v /∈ Nin, ant(v) ̸= ∅, and since

161

Chapter B. Supplemental material for Chapter 3

each neuron u ∈ ant(v) cannot be an output neuron, the fact that θ is q-normalized implies
by Definition 3.2.1 that ∥Φ→u(θ)∥q ∈ {0, 1}, with θu→ = 0 as soon as ∥Φ→u(θ)∥q = 0.
This implies

∥Φ→u(θ)∥q
q|θu→v|q = |θu→v|q.

As a result∑
u∈ant(v)

∥Φ→u(θ)∥q
q|θu→v|q =

∑
u∈ant(v)

|θu→v|q = ∥θ→v∥q
q = ∥θ→v∥q

q max
u∈ant(v)

∥Φ→u(θ)∥q
q.

By the induction hypothesis, we also have

max
u∈ant(v)

∥Φ→u(θ)∥q
q = max

u∈ant(v)
max

p∈P→u
(Π(θ, p, q))q.

Putting everything together yields

∥Φ→v(θ)∥q
q = |bv|q +

∑
u∈ant(v)

∥Φ→u(θ)∥q
q|θu→v|q

= |bv|q + ∥θ→v∥q
q max

u∈ant(v)
max

p∈P→u
(Π(θ, p, q))q

= max
p∈P→v

Π(θ, p, q)q.

This shows the case of equality and concludes the induction.

B.3 Comparison of the ℓ1-path-metric and ℓ∞-metric
on the parameters

Our first objective is to prove that for LFCNs, the ℓ1-path-metric is smaller than another
metric based on the raw parameters and that is used in the literature for Lipschitz bounds
in θ.
Lemma B.3.1. Consider a LFCN with L affine layers and no biases corresponding to
functions of the form

Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))

with θ = (M1, . . . ,ML) and Mℓ ∈ Rdℓ+1×dℓ. For a matrix M , denote by ∥M∥1,∞ :=
maxrow of M ∥row∥1. Define the width W := maxℓ dℓ. For θ, θ′, define R := maxℓ(∥Mℓ∥1,∞, ∥M ′

ℓ∥1,∞).
We have:

∥Φ(θ)− Φ(θ′)∥1 ⩽ LW 2RL−1∥θ − θ′∥∞. (B.4)
To prove Lemma B.3.1, I start with the following Lipschitz property of θ 7→ Φ(θ).

Lemma B.3.2. Consider q ∈ [1,∞), parameters θ and θ′, and a neuron v. Then, it
holds:
∥Φ→v(θ)− Φ→v(θ′)∥q

q

⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥q
q

(|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q max
u∈ant(pℓ)

∥Φ→u(θ′)∥q
q

)
(B.5)

with the convention that an empty sum and product are respectively equal to zero and one.

162

B.3. Comparison of the ℓ1-path-metric and ℓ∞-metric on the parameters

Note that when all the paths in P→v have the same length L, Equation (B.5) is
homogeneous: multiplying both θ and θ′ coordinate-wise by a scalar α scales both sides
of the equations by αL.

Proof. The proof of Equation (B.5) goes by induction on a topological sorting of the graph.
The first neurons of the sorting are the neurons without antecedents: input neurons.

Consider an input neuron v. There is only a single path ending at v: the path p = v.
By Definition 2.3.3, Φ→v(·) = Φv(·) = 1 (empty product) so the left hand-side is zero. On
the right-hand side, there is only a single choice for a path ending at v: this is the path
p = v that starts and ends at v. Thus D = 0, and the maximum is zero (empty sum).
This proves Equation (B.5) for input neurons.

Consider a neuron v /∈ Nin and assume that this is true for every neuron before v in
the considered topological sorting. Recall that, by definition, Φ→v is the path-lifting of
G→v (see Definition 2.3.3). The paths in G→v are p = v, and the paths going through
antecedents of v (v has antecedents since it is not an input neuron). So Φ→v(θ) =(

(Φ→u(θ)θu→v)u∈ant(v)
bv

)
and we have:

∥Φ→v(θ)− Φ→v(θ′)∥q
q

= |bv − b′
v|q +

∑
u∈ant(v)

∥Φ→u(θ)θu→v − Φ→u(θ′)(θ′)u→v∥q
q

⩽ |bv − b′
v|q +

∑
u∈ant(v)

(
∥Φ→u(θ)− Φ→u(θ′)∥q

q|θu→v|q + ∥Φ→u(θ′)∥q
q|θu→v − (θ′)u→v|q

)
⩽ |bv − b′

v|q + ∥θ→v∥q
q max

u∈ant(v)
∥Φ→u(θ)− Φ→u(θ′)∥q

q + ∥θ→v − (θ′)→v∥q
q max

u∈ant(v)
∥Φ→u(θ′)∥q

q.

Using the induction hypothesis (Equation (B.5)) on the antecedents of v and observing
that p ∈ P→v if, and only if there are u ∈ ant(v) and r ∈ P→u such that p = r → v, we
get (highlighting in blue the important changes):

∥Φ→v(θ)− Φ→v(θ)∥q
q ⩽ |bv − b′

v|q + ∥θ→v − (θ′)→v∥q
q max

u∈ant(v)
∥Φ→u(θ′)∥q

q

+∥θ→v∥q
q max

u∈ant(v)
max

r∈P→u

length(r)∑
ℓ=1

length(r)∏
k=ℓ+1

∥θ→rk∥q
q

(|brℓ
− b′

rℓ
|q + ∥θ→rℓ − (θ′)→rℓ∥q

q max
w∈ant(rℓ)

∥Φ→w(θ′)∥q
q

)
.

= |bv − b′
v|q + ∥θ→v − (θ′)→v∥q

q max
u∈ant(v)

∥Φ→u(θ′)∥q
q

+ max
p∈P→v

length(p)−1∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥q
q

(|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q max
w∈ant(pℓ)

∥Φ→w(θ′)∥q
q

)

= max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥q
q

(|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q max
w∈ant(pℓ)

∥Φ→w(θ′)∥q
q

)
.

This proves Equation (B.5) for v and concludes the induction.

Proof of Lemma B.3.1. For every neuron v, define f(v) := ℓ such that neuron v belongs
to the output neurons of matrix Mℓ. By Lemma B.3.2 with q = 1, we have for every

163

Chapter B. Supplemental material for Chapter 3

neuron v

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏

k=ℓ+1
∥θ→pk∥1︸ ︷︷ ︸

⩽∥Mf(pk)∥1,∞
⩽R

 |bpℓ

− b′
pℓ
|︸ ︷︷ ︸

=0 (no biases)

+ ∥θ→pℓ − (θ′)→pℓ∥1︸ ︷︷ ︸
⩽| ant(pℓ)|∥θ−θ′∥∞⩽W ∥θ−θ′∥∞

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1

(B.6)

⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

∥Φ→u(θ′)∥1. (B.7)

with the convention that an empty sum and product are respectively equal to zero and
one. Consider θ′ = 0. It holds ∥Φ→u(θ′)∥1 = 0 for every u /∈ Nin, and ∥Φ→u(θ′)∥1 = 1 for
input neurons u (Definition 2.3.3). Therefore, we have:

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1 = 1ant(pℓ)∩Nin ̸=∅ = 1ℓ=1 and p0∈Nin . (B.8)

Specializing Equation (B.6) to θ′ = 0 and using Equation (B.8) yields

∥Φ→v(θ)∥1 ⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

R

 ∥θ→pℓ∥1︸ ︷︷ ︸
⩽∥Mf(pℓ)∥1,∞

⩽R

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1︸ ︷︷ ︸
=1ℓ=1 and p0∈Nin

= max
p∈P→v :p0∈Nin

Rlength(p) (B.9)

Since the network is layered, every neuron u ∈ ant(pℓ) is at distance ℓ − 1 from the
input neurons so every p′ ∈ P→u is of length ℓ − 1. We deduce using Equation (B.7),
Equation (B.9) for θ′ and u:

∥Φ→v(θ)− Φ→v(θ′)∥1 ⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

max
p′∈P→u:p′

0∈Nin
Rlength(p′)

︸ ︷︷ ︸
=Rℓ−1

= W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−1

︸ ︷︷ ︸
⩽LRL−1

⩽ LWRL−1∥θ − θ′∥∞.

We get the result:

∥Φ(θ)− Φ(θ′)∥1 =
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ |Nout \Nin| · LWRL−1∥θ − θ′∥∞

⩽ LW 2RL−1∥θ − θ′∥∞.

164

B.3. Comparison of the ℓ1-path-metric and ℓ∞-metric on the parameters

Corollary B.3.1. [Gonon et al., 2023a, Theorem III.1] Consider a LFCN with L ⩾ 1
affine layers, corresponding to functions

Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))

with each Mℓ denoting a matrix, where θ = (M1, . . . ,ML) and matrices Mℓ ∈ Rdℓ+1×dℓ.
Recall that ∥M∥1,∞ is the maximum L1 norm of a row of M . Define the width W :=
maxℓ dℓ. For θ, θ′, define R := maxℓ(∥Mℓ∥1,∞, ∥M ′

ℓ∥1,∞).
Theorem 3.4.1 implies for every input x:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.

Proof. Lemma B.3.1 shows that for every θ, θ′, we have

∥Φ(θ)− Φ(θ′)∥1 ⩽ LW 2RL−1∥θ − θ′∥∞.

Using the Lipschitzness in θ proved in Corollary 3.4.1 for q = 1, we deduce that as soon
as θ, θ′ satisfy θiθ

′
i ⩾ 0 for every parameter coordinate i, then for every input x:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)LW 2RL−1∥θ − θ′∥∞. (B.10)

Now, consider general parameters θ and θ′. Define θinter to be such that for every param-
eter coordinate i:

θinter
i =

{
θ′

i if θiθ
′
i ⩾ 0,

0 otherwise.

By definition, it holds for every parameter coordinate i: θinter
i θi ⩾ 0 and θinter

i θ′
i ⩾ 0 so we

can apply Equation (B.10) to the pairs (θ, θinter) and (θinter, θ′) to get:

∥Rθ(x)−Rθ′(x)∥1 ⩽ ∥Rθ(x)−Rθinter(x)∥1 + ∥Rθinter(x)−Rθ′(x)∥1

⩽ max(∥x∥∞, 1)LW 2RL−1
(
∥θ − θinter∥∞ + ∥θinter − θ′∥∞

)
.

It remains to see that ∥θ − θinter∥∞ + ∥θinter − θ′∥∞2∥θ − θ′∥∞. Consider a parameter
coordinate i.

If θiθ
′
i ⩾ 0 then θinter

i = θ′
i and:

|θi − θ′
i| = |θi − θinter

i |+ |θinter
i − θ′

i|.

Otherwise, θinter
i = 0 and:

|θi − θ′
i| = |θi|+ |θ′

i|
= |θi − θinter

i |+ |θinter
i − θ′

i|.

This implies ∥θ− θinter∥∞ = maxi |θi− θinter
i | ⩽ maxi |θi− θinter

i |+ |θinter
i − θ′

i| = ∥θ− θ′∥∞
and similarly ∥θinter − θ′∥∞ ⩽ ∥θ − θ′∥∞. This yields the desired result:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.

165

Appendix C
Supplemental material for Chapter 4

C.1 Proof of Lemma 4.3.1
In this section, I prove the version of Dudley’s inequality that I stated in Lemma 4.3.1.
This is classical, and is included only for completeness. The proof is based on the sub-
Gaussianity of the Rademacher process and the application of the Dudley’s inequality to
this process [Van Handel, 2014, Corollary 5.25].

Proof of Lemma 4.3.1. 1st step: sub-Gaussianity.
Consider the characterization of sub-Gaussianity given in Definition 5.20 of Van Handel

[2014]: a real random process (Nt)t∈T is sub-Gaussian on the pseudo-metric space (T, d)
(recall that a pseudo-metric does not necessarily separate points, that is d(s, t) = 0 does
not imply s = t) if it is centered and if:

E (exp (λ(Nt −Ns))) ⩽ exp
(
λ2d(s, t)2

2

)
,∀λ > 0,∀s, t ∈ T.

Consider iid Rademacher variables ε = (εi,j) i=1,...,n
j=1,...,dout

independent of the samples S =
(xi)n

i=1, meaning P(εi,j = 1) = P(εi,j = −1) = 1/2. Recall the notation f(S) = (f(xi))n
i=1.

Consider the real random process N = (Nf)f∈F defined by

Nf = ⟨ε, f(S)⟩ .

By definition of the Rademacher complexity (Equation (4.9)), we have:

R(F , µx) = ES,ε

(
sup
f∈F

Nf

)
.

We now establish that conditionally on the samples S, the random process N is sub-
Gaussian on the pseudo-metric space (F , dS) (where dS is defined in Equation (4.16)).
The process is centered since E (Nf |S) = ⟨E(ε), f(S)⟩ = 0 as S and ε are independent.
Now, consider f, g ∈ F , (i, j) ∈ JnK× JdoutK and denote by di,j = f(xi)j − g(xi)j. For any
t > 0, it holds 1

2(et + e−t) ⩽ et2/2 so for every λ > 0:

E (exp (λεi,jdi,j) |S) = 1
2 (exp(λdi,j) + exp(−λdi,j)) ⩽ exp

(
λ2d2

i,j

2

)
.

167

Chapter C. Supplemental material for Chapter 4

Thus, we have

E (exp (λ(Nf −Ng)) |S) =
∏

(i,j)∈JnK×JdoutK

E (exp (λεi,jdi,j) |S) ⩽ exp
(
λ2dS(f, g)2

2

)
.

This shows the claim about the sub-Gaussianity of N .
2nd step: Dudley’s inequality.
Using Dudley’s integral inequality [Van Handel, 2014, Corollary 5.25] conditionally on

S yields almost surely:

Eε sup
f∈F

Nf ⩽ 12
∫ ∞

0

√
lnN (F , dS, t)dt

where Eε denotes the expectation conditioned on everything (here S) except ε. Putting
the steps together, we get the desired result:

R(F , µx) = ES,ε

(
sup
f∈F

Nf

)
⩽ 12ES

(∫ ∞

0

√
lnN (F , dS, t)dt

)
.

C.2 Proof of Theorem 4.3.1, with possible weight-
sharing

In this section, I prove Theorem 4.3.1, allowing for possible weight-sharing. I start by
motivating the consideration of weight-sharing, then formally introduce weight-sharing
and finally the weight-sharing version of Theorem 4.3.1.

C.2.1 Motivation for weight-sharing
When covering a set in dimension d, the covering numbers typically grow exponentially
with d. In our case, we want to cover (Φ(Θ), ∥ · ∥1). This is a set whose ambient algebraic
dimension is the number of paths, but the actual degrees of freedom must be at most the
number of parameters (dimension of Θ), which is much less in general as already discussed
at the beginning of Section 3.1. Moreover, in many practical cases of interest, Θ has often
weights that are shared, i.e., constrained to be equal. This again reduces the possible
degrees of freedom. Is it possible to bound these covering numbers exponentially in d :=
the number of free parameters, taking into account possible weight-sharing? I start with
an example that shows that this is indeed possible at least in simple situations.

Example C.2.1. Consider the model Rθ : x ∈ Rd 7→ W ReLU(W Tx) ∈ Rd with θ =
(W,W T), W = (w1 . . . wd) ∈ Rd×d, and each column wi being in Rd. In this case, there
are 2d2 coordinates in θ, but only d2 of them are free since there are two copies of W .

The path-lifting is Φ(θ) = (wi ⊗ wi)i=1,...,d ∈ Rd3 (flattened) where u⊗ v = uvT is the
tensor product of vectors u and v. Consider r > 0 and Θ = Θ(r) := {θ ∈ RG, ∥Φ(θ)∥1 ⩽

168

C.2. Proof of Theorem 4.3.1, with possible weight-sharing

r}. For parameters θ = (W,W T), its normalized version N(θ), defined as the output of
Algorithm 3.2.1 for q = 1, satisfies

N(θ) = (N(W), N(W T)),

N(W) = (w1

∥w1∥1
. . .

wd

∥wd∥1
),

N(W T) = (∥w1∥2
1
w1

∥w1∥1
. . . ∥wd∥2

1
wd

∥wd∥1
)T .

Fix the parameters θ and t ∈ (0,min(12, r)]. Consider the problem of finding θ′ such
that ∥Φ(θ) − Φ(θ′)∥1 ⩽ t. Consider a t-covering of the unit sphere in dimension d for
the ℓ1-norm of cardinal at most equal to (12/t)d−1 (see the end of Appendix C.2.3 for the
existence of such a covering). For every i = 1, . . . , d, choose ui in this covering in such a
way that ∥N(wi)− ui∥1 ⩽ t where I denote N(w) := w

∥w∥1
for any vector w. Consider also

ri =
√
⌊∥wi∥2

1/rt⌋ t. Since ∥Φ(θ)∥1 = ∑d
i=1 ∥wi∥2

1 ⩽ r, we have ∥wi∥2
1/r ⩽ 1 and there are

at most
⌊

1
t

⌋
+ 1 ⩽ 12

t
possible values for ri if we further restrict t ∈ (0,min(11, r)). Define

w′
i := riui. This results in at most (12

t
)d possible values for w′

i. Since θ′ is built from d

vectors w′
i that can be chosen independently of each other, there are at most ∏d

i=1(12
t

)d =
(12

t
)d2 choices for θ′. Since N(w′

i) = ui, it holds that ∥N(wi) − N(w′
i)∥1 ⩽ t. Moreover, we

have |r2
i − ∥wi∥2

1| ⩽ rt. We deduce that:

∥Φ(θ)−Φ(θ′)∥1 =
d∑

i=1
∥wi⊗wi−w′

i⊗w′
i∥1 =

d∑
i=1

∥∥∥∥wi∥2
1N(wi)⊗N(wi)−∥w′

i∥2
1N(w′

i)⊗N(w′
i)
∥∥∥

1

⩽
d∑

i=1

(
∥wi∥2

1∥N(wi)⊗ (N(wi)− N(w′
i))∥1 +

∥∥∥(∥wi∥2
1N(wi)− ∥w′

i∥2
1N(w′

i))⊗ N(w′
i)
∥∥∥

1

)

=
d∑

i=1

∥wi∥2
1 ∥N(wi)∥1︸ ︷︷ ︸

=1

∥N(wi)− N(w′
i)∥1 +

∥∥∥∥wi∥2
1N(wi)− ∥w′

i∥2
1N(w′

i)
∥∥∥

1
∥N(w′

i)∥1︸ ︷︷ ︸
=1

=

d∑
i=1

(
∥wi∥2

1∥N(wi)− N(w′
i)∥1 +

∥∥∥∥wi∥2
1N(wi)− ∥w′

i∥2
1N(w′

i)
∥∥∥

1

)

=
d∑

i=1

(
∥wi∥2

1∥N(wi)− N(w′
i)∥1 +

∥∥∥∥wi∥2
1N(wi)− ∥wi∥2

1N(w′
i) + ∥wi∥2

1N(w′
i)− ∥w′

i∥2
1N(w′

i)
∥∥∥

1

)

⩽
d∑

i=1

∥wi∥2
1∥N(wi)− N(w′

i)∥1 + ∥wi∥2
1∥N(wi)− N(w′

i)∥1 +
∣∣∣∥wi∥2

1 − ∥w′
i∥2

1

∣∣∣ ∥N(w′
i)∥1︸ ︷︷ ︸

=1

=
d∑

i=1

2∥wi∥2
1 ∥N(wi)− N(w′

i)∥1︸ ︷︷ ︸
⩽t

+
∣∣∣∥wi∥2

1 − ∥w′
i∥2

1

∣∣∣︸ ︷︷ ︸
⩽rt

 ⩽

(
d∑

i=1
∥wi∥2

1

)
︸ ︷︷ ︸

⩽r

2t+ drt ⩽ (d+ 2)rt.

This shows that if we replace t by t
(d+2)r , we get a t-covering of (Φ(Θ), ∥ · ∥1) of size

at most equal to
(

12(d+2)r
t

)d2

. In this situation, when t > 0 goes to zero, the
covering number essentially grows exponentially with d2, the number of free
coordinates, rather than with 2d2, the number of total coordinates.

169

Chapter C. Supplemental material for Chapter 4

x1

x2

...

xk

...

xn

y1

y2

...

yn

c1
c2
ck

c1
c2
ck

...

Figure C.1: Illustration of a convolutional circular layer with kernel size k as described in
Example C.2.2. The connections corresponding to the first row of the matrix C are drawn
as plain arrows, the ones corresponding to the second row are drawn as dashed arrows.

In the previous example, some weights are shared across successive layers of the net-
works. In contrast, most practical application share weights in the same (convolutional)
layer. In particular, a path, and therefore a coordinate of Φ(θ), cannot contain several
copies of a same weight, in contrast to the previous example. I now prove that such a
specific type of weight-sharing can be finely taken into account when bounding covering
numbers, which already covers widely used convolutional layers.

C.2.2 Formal definition of weight-sharing
I now introduce the notion of a directed regular partition of a graph, which will allow me to
formally define weight-sharing in a general setting. In short, a directed regular partition
defines sets of neurons that are not connected by edges in the graph, and that can share
biases and incoming weights as they have the same number of antecedents (incoming
weights).

Definition C.2.1. Consider a DAG G = (N,E). A partition N = ∪L
ℓ=0Nℓ of the neurons

is said to be directed if for every k ⩽ ℓ, we have E ∩ (Nℓ ×Nk) = ∅ (no edge going from
Nℓ to Nk). It is said regular if for every k < ℓ, every u, v ∈ Nℓ, it holds | ant(u) ∩Nk| =
| ant(v) ∩Nk| (same number of antecedents in Nk).

Example C.2.2. • Every DAG admits at least one directed and regular partition.
Indeed, consider any topological sorting v1, . . . , vL of the neurons. The partition
defined by Nℓ := {vℓ} for every ℓ = 1, . . . , L is both directed and regular.

170

C.2. Proof of Theorem 4.3.1, with possible weight-sharing

• Consider a graph with a single (circular) convolutional layer with kernel size k as
in Figure C.1, corresponding to a circular matrix

C =

c1 c2 · · · ck 0 . . . 0
0 c1

. . . ck
.

... 0

... ck

... . . .
.

c3
.

. . . c1 c2
c2 c3 · · · 0 0 0 c1

With N0 := {x1, . . . , xn} and N1 := {y1, . . . , yn} the sets of input and output neurons
of this layer, the partition N = N0 ∪N1 is directed and regular: by definition of the
kernel size, every u ∈ N1 satisfies | ant(u) ∩N0| = | ant(u)| = k.

• With the previous example, it is easy to see that for a neural network organized in
L + 1 layers of neurons, a directed and regular partition of the neurons is given by
N0, . . . , NL where Nℓ is the set of neurons in layer ℓ.

I now turn to our formal definition of weight-sharing: this allows for sharing biases and
incoming weights for the neurons within the same set Nℓ of a directed regular partition.

Definition C.2.2. Consider a directed regular partition N0, . . . , NL of a graph G. A set
of parameters Θ ⊂ RG associated with G is said to be weight-sharing compatible with
N0, . . . , NL if for every 0 ⩽ k < ℓ ⩽ L, every pair of neurons u, v ∈ Nℓ shares weights
and biases in the following sense:

• bu = bv,

• there exists a bijection σuv : ant(u) ∩Nk → ant(v) ∩Nk such that for every θ ∈ Θ,
every w ∈ ant(u) ∩Nk, θw→u = θσuv(w)→v.

Example C.2.3. The set of parameters corresponding to all circular matrices C as in
Example C.2.2 is weight-sharing compatible with the partition given in Example C.2.2 in
this case.

It is also possible to not have weight-sharing by considering the trivial directed regular
partition given by N0 = Nin and Ni = {vi} for i = 1, . . . , d. This defines a fully-connected
layers with input neurons Nin and output neurons v1, . . . , vd.

The extreme opposite is to make all the neurons v1, . . . , vd sharing their weights by
regrouping all of them in a single set of a directed regular partition: N0 = Nin and
N1 = {v1, . . . , vd}. This is the case of the circular convolutional layer above.

Now, consider the normalizing Algorithm 3.2.1 for q = 1. The next lemma shows that
the normalizing scalar λv(θ) for Algorithm 3.2.1 ran on θ is the same for all the neurons
in the same set Nℓ of a directed regular partition with weight-sharing.

Lemma C.2.1. Consider a set of parameters Θ ⊂ RG weight-sharing compatible with a
directed regular partition N0, . . . , NL of a DAG G. It holds:

λu(θ) = λv(θ),∀θ ∈ Θ,∀u, v ∈ Nℓ \ (Nin ∪Nout),∀ℓ ∈ J0, LK.

171

Chapter C. Supplemental material for Chapter 4

Proof. The proof is by induction on L.
Initialization. For L = 0, since the partition is directed, there is no edge going from

N0 to N0 so all neurons are input ones and the property is trivially true.
Induction. Assume this is true for L ⩾ 0 and consider the case L + 1. Since the

partition is directed, the neurons in N0, . . . , NL are normalized by Algorithm 3.2.1 in the
same way, irrespectively of whether we consider the graph G or its maximal subgraph
with neurons restricted to the sets N0, . . . , NL. This shows the desired property for every
ℓ ⩽ L. It remains to consider ℓ = L+1. Take θ ∈ Θ. We just saw that when normalizing θ
with Algorithm 3.2.1, for every k ⩽ L, all the neurons in Nk have the same normalization
scalar: denote it by λk(θ). Denote also θNk→u := (θw→u)w∈ant(u)∩Nk

. Since the partition
is directed, and since the neurons are normalized in the order of a topological sorting,
Algorithm 3.2.1 normalizes the neurons u ∈ NL+1 only after having normalized all the
ones in N0, . . . , NL. Therefore, when normalizing u ∈ NL+1, we have

λu(θ) = |bu|+
∑
k⩽L

λk(θ)∥θNk→u∥1.

Consider u, v ∈ NL+1. Since Θ is weight-sharing compatible, we have bu = bv, and
∥θNk→u∥1 = ∥θNk→v∥1. This proves that λu(θ) = λv(θ) and concludes the induction.

Since the neurons in a same Nℓ of a directed regular partition share the same weights
before normalization, and have the same normalization scalar according to Lemma C.2.1,
they must be normalized in the same way by Algorithm 3.2.1. Therefore, they have the
same values after normalization.
Corollary C.2.1. In the context of Lemma C.2.1, consider ℓ ∈ J0, LK and assume that
either Nℓ ∩ V = ∅ or that Nℓ ⊂ V for both V = Nin and Nout. For θ ∈ Θ, denote N(θ)
its normalized version, obtained as the output of Algorithm 3.2.1 on input θ. It holds for
every u, v ∈ Nℓ \Nin:

N(b)u = N(b)v,

N(θ)w→u = N(θ)σuv(w)→v,∀w ∈ ant(u).
Proof. The assumption guarantees that all neurons in Nℓ are updated in the same way
by the normalizing algorithm (Algorithm 3.2.1).

Case Nℓ ⊂ Nin. There is nothing to prove.
Case Nℓ ⊂ Nout. When u is an output neuron, bu is not modified by Algorithm 3.2.1

so N(b)u = bu. Moreover, for every w ∈ ant(u), the last time θw→u is modified is when w
is considered in Algorithm 3.2.1, so:

N(θ)w→u = λw(θ)θw→u.

It is easy to conclude using weight-sharing (Definition C.2.2) and Lemma C.2.1.
Case Nℓ∩(Nin∪Nout) = ∅. All neurons u ∈ N \(Nin∪Nout) are such that the last time

bu and θw→u (w ∈ ant(u)) are modified by Algorithm 3.2.1 is when u is being considered
in the for loop, so it holds:

N(b)u = 1
λu(θ)bu,

N(θ)w→u = 1
λu(θ)θ

w→u.

We again conclude using weight-sharing (Definition C.2.2) and Lemma C.2.1.

172

C.2. Proof of Theorem 4.3.1, with possible weight-sharing

C.2.3 Theorem 4.3.3, allowing for possible weight-sharing
I now use that weight-sharing parameters are normalized in the same way to cover the
set (Φ(Θ), ∥ · ∥1) for a weight-sharing set of parameters Θ. This is a more general version
of Theorem 4.3.3, allowing for possible weight-sharing. The case without weight-sharing
corresponds to the trivial case of a directed regular partition where every Nℓ is a singleton.

Theorem C.2.1. Consider a DAG network G (Definition 2.2.2) and a set of parameters
Θ ⊂ RG weight-sharing compatible (Definition C.2.2) with a directed regular partition
N0, . . . , NL (Definition C.2.1) of G. Assume that for V = Nin and V = Nout, each
Nℓ is either disjoint from V or is a subset of V . Assume also that Nin ∩ Nout = ∅.
Define L0 to be the unique integer in J0, LK such that NL0 ⊂ Nin and NL0+1 ∩ Nin = ∅.
For ℓ ∈ JL0, LK, denote by kℓ the common number of antecedents of all neurons in Nℓ

and define #rescalings := L − L0 and #params = ∑L
ℓ=L0(kℓ + 1). Recall that D =

maxp∈P length(p) is the depth of the graph and dout = |Nout| is the output dimension.
Denote by r := supθ∈Θ ∥Φ(θ)∥1. It holds:

N (Φ(Θ), ∥ · ∥1, t) ⩽ 2#rescalings max
(

1, 24 max(D, dout)r
t

)#params−#rescalings

where the definition of covering numbers is recalled in Definition 4.3.1.

In order to prove it, I first relate the geometry of (Φ(Θ), ∥ · ∥1) to the geometry of Θ
with more classical norms, in the special case of normalized parameters, as we already
saw that this type of relation is often the tightest for this type of parameters, see, e.g.,
Theorem 3.3.2.

Remember the definition of q-normalized parameters in Definition 3.2.1: these are

parameters θ̃ essentially such that ∥Φ→v(θ)∥q =
∥∥∥∥
(
θ̃→v

b̃v

)∥∥∥∥
q
∈ {0, 1} for every v ∈ N \

(Nout∪Nin). In this case, the Lipschitz property of θ 7→ Φ(θ) established in Lemma B.3.2
becomes much simpler.

Lemma C.2.2. Consider q ∈ [1,∞). For every q-normalized parameters θ, θ′, it holds:

∥Φ(θ)− Φ(θ′)∥q
q ⩽

∑
v∈Nout\Nin

|bv − b′
v|q + ∥θ→v − (θ′)→v∥q

q

+ min
(
∥Φ(θ)∥q

q, ∥Φ(θ′)∥q
q

)
max

p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q

)
. (C.1)

For networks used in practice, it holds Nout ∩Nin = ∅ so that Nout \Nin is just Nout,
but the previous result also covers the somewhat pathological case of DAG architectures
G where one or more input neurons are also output neurons.

Proof of Lemma C.2.2. Since Φ(θ) = (Φ→v(θ))v∈Nout
, it holds

∥Φ(θ)− Φ(θ′)∥q
q =

∑
v∈Nout

∥Φ→v(θ)− Φ→v(θ′)∥q
q.

173

Chapter C. Supplemental material for Chapter 4

By Definition 2.3.3, it holds for every input neuron v: Φ→v(·) = 1 (empty product). Thus,
the sum can be taken over v ∈ Nout \Nin:

∥Φ(θ)− Φ(θ′)∥q
q =

∑
v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥q
q.

Besides, observe that many norms appearing in Equation (B.5) are at most one for q-
normalized parameters. Indeed, for such parameters it holds for every u ∈ N \(Nin∪Nout):
∥θ→u∥q

q ⩽ 1 (Definition 3.2.1). As a consequence, for p ∈ P and any ℓ ∈ J0, length(p)− 1K
we have:

length(p)∏
k=ℓ+1

∥θ→pk∥q
q =

length(p)−1∏
k=ℓ+1

∥θ→pk∥q
q︸ ︷︷ ︸

⩽1

 ∥θ→pend∥q
q ⩽ ∥θ→pend∥q

q.

Moreover, for q-normalized parameters θ and u /∈ Nout, it also holds ∥Φ→u(θ)∥q
q ⩽ 1

(Definition 3.2.1). Thus, Lemma B.3.2 via Equation (B.5) implies for any v ∈ Nout, and
any q-normalized parameters θ and θ′:

∥Φ→v(θ)− Φ→v(θ′)∥q
q

⩽ |bv − b′
v|q + ∥θ→v − (θ′)→v∥q

q + ∥θ→v∥q
q max

p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q

)
.

Thus, we get:

∥Φ(θ)− Φ(θ′)∥q
q

=
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥q
q

⩽
∑

v∈Nout\Nin

(
|bv − b′

v|q + ∥θ→v − (θ′)→v∥q
q

)

+
∑

v∈Nout\Nin

∥θ→v∥q
q max

p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q

)
⩽

∑
v∈Nout\Nin

(
|bv − b′

v|q + ∥θ→v − (θ′)→v∥q
q

)

+
 ∑

v∈Nout\Nin

∥θ→v∥q
q

 max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q

)
.

It remains to use that ∑v∈Nout\Nin ∥θ→uv∥q
q ⩽ ∥Φ(θ)∥q

q for q-normalized parameters θ to
conclude that:

∥Φ(θ)− Φ(θ′)∥q
q ⩽

∑
v∈Nout\Nin

(
|bv − b′

v|q + ∥θ→v − (θ′)→v∥q
q

)

+ ∥Φ(θ)∥q
q max

p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′

pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥q

q

)
.

The term in blue can be replaced by min
(
∥Φ(θ)∥q

q, ∥Φ(θ′)∥q
q

)
by repeating the proof with

θ and θ′ exchanged (everything else is invariant under this exchange).

174

C.2. Proof of Theorem 4.3.1, with possible weight-sharing

We can now prove the covering bound of Theorem C.2.1.

Proof of Theorem C.2.1. For θ ∈ Θ, denote N(θ) its normalized version obtained as the
output of Algorithm 3.2.1. By Lemma 3.2.1, Φ(θ) = Φ(N(θ)) so for every θ, θ′ ∈ Θ:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(N(θ))− Φ(N(θ′))∥1.

For every neuron u ∈ N \ Nin and all parameters θ, denote by θ(u) := (bu, θ
→u). By

Lemma C.2.2 with q = 1, we have:

∥Φ(N(θ))− Φ(N(θ′))∥1

⩽
∑

v∈Nout\Nin

|N(b)v − N(b)′
v|+ ∥N(θ)→v − (N(θ′))→v∥1

+ min (∥Φ(N(θ))∥1, ∥Φ(N(θ′))∥1)︸ ︷︷ ︸
⩽r

max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|N(b)pℓ

− N(b)′
pℓ
|+ ∥N(θ)→pℓ − (N(θ′))→pℓ∥1

)
⩽

∑
v∈Nout\Nin

∥N(θ)(v)− N(θ′)(v)∥1︸ ︷︷ ︸
=:(1)

+ r max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(pℓ)− N(θ′)(pℓ)∥1︸ ︷︷ ︸
=:(2)

.

Consider L0 ∈ J0, LK such that NL0 ⊂ Nin and NL0+1 ∩ Nin = ∅. The integer L0 is well
defined since every Nℓ is either disjoint from Nin or is a subset of Nin, and at least one of
them must be disjoint since N0, . . . , NL is a partition of the neurons and Nin ∩Nout = ∅.

For every ℓ ∈ JL0, LK, consider an arbitrary vℓ ∈ Nℓ. By Corollary C.2.1, we have
N(θ)(v) = N(θ)(vℓ) for every v ∈ Nℓ, every ℓ ∈ JL0, LK and every parameters θ ∈ Θ. We
get

(1) =
L∑

ℓ=0

∑
v∈(Nout∩Nℓ)\Nin

∥N(θ)(v)− N(θ′)(v)∥1

=
L∑

ℓ=L0

|Nout ∩Nℓ|∥N(θ)(vℓ)− N(θ′)(vℓ)∥1.

Consider p ∈ P and f : J0, length(p)K 7→ J0, LK the function defined by pℓ ∈ Nf(ℓ) for
every ℓ ∈ J0, length(p)K. Once again using Corollary C.2.1, since pℓ /∈ Nin for ℓ > 0, we
have N(θ)(pℓ) = N(θ)(vf(ℓ)) for every ℓ ∈ J1, length(p)K and every parameters θ ∈ Θ. This
yields

(2) = max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(vf(ℓ))− N(θ′)(vf(ℓ))∥1.

Assume that for every ℓ ∈ J0, LK, it holds

∥N(θ)(vf(ℓ))− N(θ′)(vf(ℓ))∥1 ⩽

{
t

2dout
if ℓ = L,

t
2Dr

otherwise.

175

Chapter C. Supplemental material for Chapter 4

where I recall that dout = |Nout is the output dimension and D = maxp∈P length(p) is
the depth of the graph. This implies:

(1) =
L∑

ℓ=L0

|Nout ∩Nℓ|∥N(θ)(vℓ)− N(θ′)(vℓ)∥1 ⩽
t

2dout

L∑
ℓ=L0

|Nout ∩Nℓ| ⩽
t

2dout
.

Consider p ∈ P . Since the partition N0, . . . , NL is directed and pℓ → pℓ+1 is an edge,
we have f(k) < f(ℓ) for every k < ℓ. In particular, f(ℓ) < f(length(p)) ⩽ L for every
ℓ ∈ J1, length(p)− 1K, so we have

(2) = max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(vf(ℓ))−N(θ′)(vf(ℓ))∥1 ⩽
t

2Dr max
p∈P:pend /∈Nin

(length(p)−1) ⩽ t

2r .

Therefore, we get:

∥Φ(N(θ))− Φ(N(θ′))∥1 ⩽ (1) + r(2)

⩽
t

2 + r
t

2r = t.

For a neuron v /∈ Nin, denote N(Θ)(v) := {N(θ)(v), θ ∈ Θ}. In terms of covering numbers,
we just proved that:

N (Φ(θ), ∥ · ∥1, t) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

N (N(Θ)(vℓ), ∥ · ∥1, t/2dout)
∏

ℓ∈JL0,LK
Nℓ∩Nout=∅

N (N(Θ)(vℓ), ∥ · ∥1, t/2Dr).

We now bound the latter.
Consider v ∈ Nout \Nin. By Algorithm 3.2.1, it holds N(θ)(v) ⩽ r for every θ ∈ Θ. In

this situation, N(Θ)(v) is a subset of the closed ℓ1-ball Bkv+1(0, r), with kv := | ant(v)| (k
for kernel size) so

N (N(Θ)(v), ∥ · ∥1, t/2dout) ⩽ N (Bkv+1(0, r), ∥ · ∥1, t/4dout).

It is well known that the covering with respect to ∥ · ∥1 of the closed ball Bd ⊂ Rd with
center 0 and radius R satisfies [Wainwright, 2019, Lemma 5.7]:

N (Bd, ∥ · ∥1, t) ⩽ max
(

1, 3R
t

)d

.

Since the partition N0, . . . , NL is regular, all neurons in Nℓ have the same number of
antecedents: denote it by kℓ. We get:

∏
ℓ∈JL0,LK
Nℓ⊂Nout

N (N(Θ)(vℓ), ∥ · ∥1, t/2dout) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

max
(

1, 12doutr

t

)kℓ

.

Case v ∈ N \ (Nout ∪ Nin). For every θ ∈ Θ, Algorithm 3.2.1 guarantees that
∥N(()θ)(v)∥1 ∈ {0, 1} so N(Θ)(v) ⊂ {0} ∪ Skv with Skv the sphere of radius 1 in di-
mension kv + 1 with respect to ∥ · ∥1. We deduce that a t-covering of N(Θ)(v) is given by
the union of the null vector and a t/2-covering of the sphere Skv :

N (N(Θ)(v), ∥ · ∥1, t/2Dr) ⩽ 1 +N (Skv , ∥ · ∥1, t/4Dr).

176

C.2. Proof of Theorem 4.3.1, with possible weight-sharing

The unit sphere Sd in dimension d+ 1 satisfies

Sd = f(Bd) ∪ g(Bd)

where f(x1, . . . , xd) = (x1, . . . , xd, 1−∥x∥1) and g(x1, . . . , xd) = (x1, . . . , xd, ∥x∥1−1). For
every x, x̃ ∈ Rd:

∥f(x)− f(x̃)∥1 =
∑
i⩽d

|xi − x̃i|+ |(1− ∥x∥1)− (1− ∥x̃∥1)| ⩽ 2∥x− x̃∥1.

Thus, the union of the images of a t
2 -covering of Bd under both f and g is a t-covering of

Sd:
N (Sd, ∥ · ∥1, t) ⩽ 2N (Bd, ∥ · ∥1, t/2) ⩽ 2 max

(
1, 6
t

)d

.

We deduce that∏
ℓ∈JL0,LK

Nℓ∩Nout=∅

N (N(Θ)(vℓ), ∥ · ∥1, t/2Dr) ⩽
∏

ℓ∈JL0,LK
Nℓ∩Nout=∅

2 max
(

1, 24Dr
t

)kℓ

.

Returning to the covering of Φ(Θ), we deduce that:

N (Φ(Θ), ∥ · ∥1, t) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

max
(

1, 12doutr

t

)kℓ ∏
ℓ∈JL0,LK

Nℓ∩Nout=∅

2 max
(

1, 24Dr
t

)kℓ

.

Denote #rescalings := L−L0 and #params := ∑L
ℓ=L0(kℓ + 1). We get the desired result:

N (Φ(Θ), ∥ · ∥1, t) ⩽ 2#rescalings max
(

1, 24 max(D, dout)r
t

)#params−#rescalings

.

C.2.4 Rademacher bound, allowing for possible weight-sharing
I now prove a more general version of Theorem 4.3.1, allowing for possible weight-sharing.
The case without weight-sharing corresponds to the trivial case of a directed regular
partition where every Nℓ is a singleton.

Theorem C.2.2. Consider a DAG network G (Definition 2.2.2) and a set of parameters
Θ ⊂ RG weight-sharing compatible (Definition C.2.2) with a directed regular partition
N0, . . . , NL (Definition C.2.1) of G. Consider the associated set of functions FΘ :=
{Rθ, θ ∈ Θ}. Consider n iid input samples S = (xi)i=1,...,n drawn from a distribu-
tion µx and denote σ = ES (∑n

i=1 max(1, ∥xi∥2
∞))1/2. Denote by r := supθ∈Θ ∥Φ(θ)∥1.

Assume that for V = Nin and V = Nout, each Nℓ is either disjoint from V or is a
subset of V . Assume also that Nin ∩ Nout = ∅. Define L0 to be the unique integer
in J0, LK such that NL0 ⊂ Nin and NL0+1 ∩ Nin = ∅. For ℓ ∈ JL0, LK, denote by
kℓ := | ant(u)| = ∑

j<ℓ | ant(u) ∩ Nj| for u ∈ Nℓ, the common number of antecedents
of the neurons in Nℓ. Define nparams := ∑L

ℓ=L0(kℓ + 1).
We have:

R(FΘ, µx) ⩽ 144σmax(D, dout)
√

#params× r, (C.2)
where I recall that D = maxp∈P length(p) is the depth of the graph and dout = |Nout| is
the output dimension.

177

Chapter C. Supplemental material for Chapter 4

Proof. The proof is literally the same as the one given in the case without weight-sharing
(Section 4.3.4) but by using the new covering bound of Theorem C.2.1 instead of Theo-
rem 4.3.3, allowing for possible weight-sharing. The only difference is that the number of
parameters #params is now defined as ∑L

ℓ=L0(kℓ + 1) and #rescalings := L− L0 to take
into account the weight-sharing.

C.3 Relevant (and apparently new) contraction lem-
mas for Theorem 4.4.1

The main result is Lemma C.3.1.

Lemma C.3.1. Consider finite sets I,W,Z, and for each z ∈ Z, consider a set T z ⊂
(RW)I . We denote t = (ti)i∈I ∈ T z with ti = (ti,w)w∈W ∈ RW . Consider functions
fi,z : RW → R and a finite family ε = (εj)j∈J of independent identically distributed
Rademacher variables, with the index set J that will be clear from the context. Finally,
consider a convex and non-decreasing function g : R → R. Assume that at least one of
the following setting holds.

Setting 1: scalar input case. |W | = 1 and for every i ∈ I and z ∈ Z, fi,z is
1-Lipschitz with fi,z(0) = 0.

Setting 2: ∗-max-pooling case. For every i ∈ I and z ∈ Z, there is ki,z ∈ N>0
such that for every t ∈ T z, fi,z(t) = t(ki,z) is the ki,z-th largest coordinate of t.

Then we have:

Emax
z∈Z

sup
t∈T z

g

(∑
i∈I

εi,zfi,z(ti)
)
⩽ Emax

z∈Z
sup
t∈T z

g

 ∑
i∈I,w∈W

εi,w,zti,w

 . (C.3)

The scalar input case is a simple application of Theorem 4.12 in Ledoux and Talagrand
[1991]. Indeed, for z ∈ Z and t ∈ T z, define s(z, t) ∈ RI×Z to be the matrix with
coordinates (i, v) ∈ I × Z given by [s(z, t)]i,v = ti if v = z, 0 otherwise. Define also
fi,v = fi. Since fi,v(0) = 0, it holds:∑

i∈I

εi,zfi(ti) =
∑

i∈I,v∈Z

εi,vfi,v([s(z, t)]i,v).

If S := {s(z, t), z ∈ Z, t ∈ T z} and J := I × Z then the result claimed in the scalar case
reads

E sup
s∈S

g

∑
j∈J

εjfj(sj)
 ⩽ E sup

s∈S
g

∑
j∈J

εjsj

 .
The latter is true by Theorem 4.12 of Ledoux and Talagrand [1991]. However, I present
an additional proof below, which I employ to establish the new scenario involving ∗-
max-pooling. This alternative proof closely follows the structure of the proof outlined in
Theorem 4.12 of Ledoux and Talagrand [1991]: the beginning of the proof is the same for
the scalar case and the ∗-max-pooling case, and then the arguments become specific to
each case.

Note that Theorem 4.12 of Ledoux and Talagrand [1991] does not apply for the ∗-
max-pooling case because the ti’s are now vectors. The most related result I could find

178

C.3. Relevant (and apparently new) contraction lemmas for Theorem 4.4.1

is a vector-valued contraction inequality [Maurer, 2016] that is known in the specific case
where |Z| = 1, g is the identity, and for arbitrary 1-Lipschitz functions fi,z such that
fi,z(0) = 0 (with a different proof, and with a factor

√
2 on the right-hand side). Here,

the vector-valued case I am interested in is fi,z = ki,z-pool and g = exp, which is covered
by Lemma C.3.1. I could not find it stated elsewhere.

In the proof of Lemma C.3.1, I reduce to the simpler case where |Z| = 1 and |I| = 1
that corresponds to the next lemma. Again, the scalar input case is given by Ledoux and
Talagrand [1991, Equation (4.20)] while the ∗-max-pooling case is apparently new. This
corresponds to the contraction lemma given in Lemma 4.4.1.

Lemma C.3.2. Consider a finite set W , a set T of elements t = (t1, t2) ∈ RW ×R and a
function f : RW → R. Consider also a convex non-decreasing function F : R→ R and a
family of iid Rademacher variables (εj)j∈J where J will be clear from the context. Assume
that we are in one of the two following situations.

Scalar input case. f is 1-Lipschitz, satisfies f(0) = 0 and has a scalar input
(|W | = 1).
∗-max-pooling case. There is k ∈ N>0 such that f computes the k-th largest coor-

dinate of its input.
Denoting t1 = (t1,w)w∈W , it holds:

E sup
t∈T

F (ε1f(t1) + t2) ⩽ E sup
t∈T

F

(∑
w

ε1,wt1,w + t2

)
.

The proof of Lemma C.3.2 is postponed. I now prove Lemma C.3.1.

Proof of Lemma C.3.1. First, because of the Lipschitz assumptions on the fi’s and the
convexity of g, everything is measurable and the expectations are well defined.

I prove the result by reducing to the simpler case of Lemma C.3.2. This is inspired
by the reduction done in the proof of Ledoux and Talagrand [1991, Theorem 4.12] in the
special case of scalar ti’s (|W | = 1).

Reduce to the case |Z| = 1 by conditioning and iteration. For z ∈ Z, define

Az := sup
t∈T z

g

(∑
i∈I

εi,zfi,z(ti)
)
,

Bz := sup
t∈T z

g

 ∑
i∈I,w∈W

εi,w,zti,w

 .
Lemma C.3.3 applies since these random variables are independent. Thus, it is enough
to prove that for every c ∈ [−∞,∞):

Emax(Az, c) ⩽ Emax(Bz, c).

Define F (x) = max(g(x), c). This can be rewritten as (inverting the supremum and the
maximum)

E sup
t∈T z

F

(∑
i∈I

εi,zfi,z(ti)
)
⩽ E sup

t∈T z
F

 ∑
i∈I,w∈W

εi,w,zti,w

 . (C.4)

I just reduced to the case where there is a single z to consider, up to the price of replacing
g by F . Since g and x 7→ max(x, c) are non-decreasing and convex, so is F by composition.

179

Chapter C. Supplemental material for Chapter 4

Alternatively, note that I could also have reduced to the case |Z| = 1 by defining S :=
{s(z, t), z ∈ Z, t ∈ T z} just as it is done right after the statement of Lemma C.3.1. In
order to apply Lemma C.3.2, it remains to reduce to the case |I| = 1.

Reduce to the case |I| = 1 by conditioning and iteration. Lemma C.3.4 shows
that in order to prove Equation (C.4), it is enough to prove that for every i ∈ I and every
subset R ⊂ RW ×R, denoting r = (r1, r2) ∈ RW × R, it holds

E sup
r∈R

F (εi,zfi,z(r1) + r2) ⩽ E sup
r∈R

F

(∑
w∈W

εi,w,zr1,w + r2

)
.

I just reduced to the case |I| = 1 since one can now consider the indices i one by one. The
latter inequality is now a direct consequence of Lemma C.3.2. This proves the result.

Lemma C.3.3. Consider a finite set Z and independent families of independent real ran-
dom variables (Az)z∈Z and (Bz)z∈Z. If for every z ∈ Z and every constant c ∈ [−∞,∞),
it holds Emax(Az, c) ⩽ Emax(Bz, c), then

Emax
z∈Z

Az ⩽ Emax
z∈Z

Bz.

Proof of Lemma C.3.3. The proof is by conditioning and iteration. To prove the result,
it is enough to prove that if

Emax
z∈Z

Az ⩽ Emax
(

max
z∈Z1

Az,max
z∈Z2

Bz

)
for some partition Z1, Z2 of Z, with Z2 possibly empty for the initialization of the induc-
tion, then for every z0 ∈ Z1:

Emax
z∈Z

Az ⩽ Emax
(

max
z∈Z1\{z0}

Az, max
z∈Z2∪{z0}

Bz

)
,

with the convention that the maximum over an empty set is −∞. Indeed, the claim would
then come directly by induction on the size of Z2.

Now, consider an arbitrary partition Z1, Z2 of Z, with Z2 possibly empty, and consider
z0 ∈ Z1. It is then enough to prove that

Emax
(

max
z∈Z1

Az,max
z∈Z2

Bz

)
⩽ Emax

(
max

z∈Z1\{z0}
Az, max

z∈Z2∪{z0}
Bz

)
. (C.5)

Define the random variable C = max
(
maxz∈Z1\{z0} Az,maxz∈Z2 Bz

)
which may be equal

to −∞ when the maximum is over empty sets, and which is independent of Az0 and Bz0 .
It holds:

max
(

max
z∈Z1

Az,max
z∈Z2

Bz

)
= max (Az0 , C)

and
max

(
max

z∈Z1\{z0}
Az, max

z∈Z2∪{z0}
Bz

)
= max (Bz0 , C) .

Equation (C.5) is then equivalent to

Emax(Az0 , C) ⩽ Emax(Bz0 , C)

180

C.3. Relevant (and apparently new) contraction lemmas for Theorem 4.4.1

with C independent of Az0 and Bz0 . For a constant c ∈ [−∞,∞), denote A(c) =
Emax(Az0 , c) and B(c) = Emax(Bz0 , c). We have:

Emax(Az0 , C) = E (E (max (Az0 , C) |Az0)) law of total expectation
= EA(C) independence of C and Az0 .

and similarly Emax(Bz0 , C) = EB(C). It is then enough to prove that A(C) ⩽ B(C)
almost surely. Since C ∈ [−∞,∞), this is true by assumption. This proves the claims.

Lemma C.3.4. Consider finite sets I,W and independent families of independent real
random variables (εi)i∈I and (εi,w)i∈I,w∈W . Consider functions fi : RW → R and F :
R→ R that are continuous. Assume that for every i ∈ I and every subset R ⊂ RW × R,
denoting r = (r1, r2) ∈ R with r1 = (r1,w)w ∈ RW and r2 ∈ R the components of r, it
holds

E sup
r∈R

F (εifi(r1) + r2) ⩽ E sup
r∈R

F (
∑

w∈W

εi,wr1,w + r2).

Consider an arbitrary T ⊂ (RW)I and for t = (ti)i∈I ∈ T , denote ti,w the w-th coordinate
of ti ∈ RW . It holds:

E sup
t∈T

F (
∑
i∈I

εifi(ti)) ⩽ E sup
t∈T

F (
∑

i∈I,w∈W

εi,wti,w).

Proof of Lemma C.3.4. The continuity assumption on F and the fi’s is only used to make
all the considered suprema measurable. The proof goes by conditioning and iteration. For
any J ⊂ I, denote εJ the family that contains both (εj)j∈J and (εj,w)j∈J,w∈W . Define

hJ(t, εJ) :=
∑
j∈J

εjfj(tj),

HJ(t, εJ) :=
∑

j∈J,w∈W

εj,wtj,w,

with the convention that an empty sum is zero. To make notations lighter, if J = {j}
then I may write hj and Hj instead of hJ and HJ . I also omit to write the dependence
on εJ as soon as possible. What I want to prove is thus equivalent to

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (HI(t)).

It is enough to prove that for every partition I1, I2 of I, with I2 possibly empty, if

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (hI1(t) +HI2(t)),

then for every j ∈ I1,

E sup
t∈T

F (hI(t)) ⩽ E sup
t∈T

F (hI1\{j}(t) +HI2∪{j}(t)).

Indeed, the result would then come by induction on the size of I2. Fix an arbitrary
partition I1, I2 of I with I2 possibly empty, and j ∈ I1. It is then enough to prove that

E sup
t∈T

F (hI1(t) +HI2(t)) ⩽ E sup
t∈T

F (hI1\{j}(t) +HI2∪{j}(t)). (C.6)

181

Chapter C. Supplemental material for Chapter 4

Denote ε−j := εI\{j} and φ(t, ε−j) := hI1\{j}(t, εI1\{j}) +HI2(t, εI2)). It holds:

hI1(t) +HI2(t) = hj(t, εj) + φ(t, ε−j)

and, writing εj,· = (εj,w)w∈W :

hI1\{j}(t) +HI2∪{j}(t) = Hj(t, εj,·) + φ(t, ε−j).

Consider the measurable functions

g(εj, ε−j) := sup
t∈T

F (hj(t, εj) + φ(t, ε−j))

and
G(εj,·, ε−j) := sup

t∈T
F (Hj(t, εj,·) + φ(t, ε−j)).

Denote ∆ the ambiant space of ε−j and consider a constant δ ∈ ∆. Define ĝ(δ) = Eg(εj, δ)
and Ĝ(δ) = EG(εj,·, δ). It holds

E sup
t∈T

F (hI1(t) +HI2(t)) = Eg(εj, ε−j) by definition of g

= E (E (g(εj, ε−j)|ε−j)) law of total expectation
= Eĝ(ε−j) independence of εj and ε−j

and similarly E supt∈T F (hI1\{j}(t) + HI2∪{j}(t)) = EĜ(ε−j). Thus, Equation (C.6) is
equivalent to Eĝ(ε−j) ⩽ EĜ(ε−j). For every δ ∈ ∆, we can define R(δ) = {(tj, φ(t, δ)) ∈
RW × R, t ∈ T} and it holds

ĝ(δ) = E sup
r∈R

F (εjfj(r1) + r2)

and
Ĝ(δ) = E sup

r∈R
F (
∑
w∈
εj,wr1,w + r2).

Thus, ĝ(δ) ⩽ Ĝ(δ) for every δ ∈ ∆ by assumption. This shows the claim.

Proof of Lemma C.3.2. Recall that we want to prove

E sup
t∈T

F (ε1f(t1) + t2) ⩽ E sup
t∈T

F

(∑
w∈W

ε1,wt1,w + t2

)
. (C.7)

Scalar input case. In this case, |W | = 1, that is the inputs t1 are scalar and the
result is well-known, see Ledoux and Talagrand [1991, Equation (4.20)].

k-max-pooling case. In this case, f computes the k-th largest coordinate of its input.
Computing explicitly the expectation where the only random thing is ε1 ∈ {−1, 1}, the
left-hand side of Equation (C.7) is equal to

1
2 sup

t∈T
F (f(t1) + t2) + 1

2 sup
s∈T

F (−f(s1) + s2) .

Consider s, t ∈ T . Recall that s1, t1 ∈ RW . Denote s1,(k) the k-th largest component
of vector s1. The set {w ∈ W : s1,w ⩽ s1,(k)} has at least |W | − k + 1 elements, and

182

C.3. Relevant (and apparently new) contraction lemmas for Theorem 4.4.1

{w ∈ W : t1,(k) ⩽ t1,w} has at least k elements, so their intersection is not empty. Consider
any1 w(s, t) in this intersection. I am now going to use that both f(t1) = t1,(k) ⩽ t1,w(s,t)
and −f(s1) = −s1,(k) ⩽ −s1,w(s,t). Even if we are not going to use it, note that this implies
f(t)− f(s) ⩽ t1,w(s,t) − s1,w(s,t): we are exactly using an argument that establishes that f
is 1-Lipschitz. Since f(t1) = t1,(k) ⩽ t1,w(s,t) and F is non-decreasing, it holds:

F (f(t1) + t2) ⩽F
(
t1,w(s,t) + t2

)
=

ε centered
F

t1,w(s,t) + E

 ∑
w ̸=w(s,t)

ε1,wt1,w

+ t2

⩽

Jensen
EF

t1,w(s,t) +
∑

w ̸=w(s,t)
ε1,wt1,w + t2

 .
Moreover, −f(s1) = −s1,(k) ⩽ −s1,w(s,t) so that in a similar way:

F (−f(s1) + s2) ⩽F
(
−s1,w(s,t) + s2

)
⩽F

−s1,w(s,t) + E

 ∑
w ̸=w(s,t)

ε1,ws1,w

+ s2

⩽EF

−s1,w(s,t) +
∑

w ̸=w(s,t)
ε1,ws1,w + s2

 .
At the end, we get

1
2F (f(t1) + t2) + 1

2F (−f(s1) + s2)

⩽
1
2EF

t1,w(s,t) +
∑

w ̸=w(s,t)
ε1,wt1,w + t2

+ 1

2EF
−s1,w(s,t) +

∑
w ̸=w(s,t)

ε1,ws1,w + s2

⩽

1
2E sup

r∈T
F

r1,w(s,t) +
∑

w ̸=w(s,t)
ε1,wr1,w + r2

+ 1

2E sup
r∈T

F

−r1,w(s,t) +
∑

w ̸=w(s,t)
ε1,wr1,w + r2

= E sup

r∈T
F

ε1,w(s,t)r1,w(s,t) +
∑

w ̸=w(s,t)
ε1,wr1,w + r2

= E sup

r∈T
F

(∑
w

ε1,wr1,w + r2

)
.

The latter is independent of s, t. Taking the supremum over all s, t ∈ T yields Equa-
tion (C.7) and thus the claim.

1The choice of a specific w has no importance, unlike when defining the activations of k-max-pooling
neurons.

183

Chapter C. Supplemental material for Chapter 4

C.4 Peeling argument for Theorem 4.4.1
This section proves a new peeling argument used in the proof of Theorem 4.4.1. First, I
state a simple lemma that will be used several times.

Lemma C.4.1. Consider a vector ε ∈ Rn with iid Rademacher coordinates, meaning
that P(εi = 1) = P(εi = −1) = 1/2. Consider a function g : R → R⩾0. Consider a set
X ⊂ Rn. It holds:

Eε sup
x∈X

g

(∣∣∣∣∣
n∑

i=1
εixi

∣∣∣∣∣
)
⩽ 2Eε sup

x∈X
g

(
n∑

i=1
εixi

)
.

Proof of Lemma C.4.1. Since g ⩾ 0, it holds g(|x|) ⩽ g(x) + g(−x). Thus

Eε sup
x∈X

g

(∣∣∣∣∣
n∑

i=1
εixi

∣∣∣∣∣
)
⩽ Eε sup

x∈X
g

(
n∑

i=1
εixi

)
+ Eε sup

x∈X
g

(
n∑

i=1
(−εi)xi

)
.

Since ε is symmetric, that is −ε has the same distribution as ε, we deduce that the latter
is just 2Eε supx∈X g (∑n

i=1 εixi). This proves the claim.

Notations I now fix for all the next results of this section n vectors x1, . . . , xn ∈ Rdin ,
for some din ∈ N>0. I denote by xi,u the coordinate u of xi.

For any neural network architecture, recall that v(θ, x) is the output of neuron v for
parameters θ and input x, and antd(v) is the set of neurons u for which there exists a
path from u to v of distance d. For a set of neurons V , denote RV (θ, x) = (v(θ, x))v∈V .

Introduction to peeling This section shows that some expected sum over output
neurons v can be reduced to an expected maximum over ant(v), and iteratively over an
expected maximum over antd(v) for increasing d’s. Eventually, the maximum is only over
input neurons as soon as d is large enough. I start with the next lemma which is the
initialization of the induction over d: it peels off the output neurons v to reduce to their
antecedents ant(v).

Lemma C.4.2. Consider a neural network architecture as in Definition 2.2.2 with Nin ∩
Nout = ∅. Consider an associated set Θ of parameters θ such that ∑

v∈Nout
∥θ→v∥1 + |bv| ⩽ r.

Consider a family of independent Rademacher variables (εj)j∈J with J that will be clear
from the context. Consider a non-decreasing function g : R → R⩾0. Consider a new
neuron vbias and set by convention xvbias = 1 for every input x. It holds

Eεg

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)

⩽ Eεg

(
r max

v∈Nout
max

u∈(ant(v)∩Nin)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,vxi,u

∣∣∣∣∣
)

+ Eεg

(
r max

v∈Nout
max

u∈ant(v)\Nin
sup

θ

∣∣∣∣∣
n∑

i=1
εi,vu(θ, xi)

∣∣∣∣∣
)

where in the last term if ant(v) \ Nin = ∅, by convention maxu∈ant(v)\Nin = −∞, and
g(−∞) := 0.

184

C.4. Peeling argument for Theorem 4.4.1

Proof of Lemma C.4.2. Recall that for a set of neurons V , we denoteRV (θ, x) = (v(θ, x))v∈V .
Recall that by Definition 2.2.2, output neurons v have ρv = id so for every v ∈ Nout, θ ∈ Θ
and every input x:

v(θ, x) =
〈(

θ→v

bv

)
,

(
Rant(v)(θ, x)

1

)〉
.

Denote by vbias a new neuron that computes the constant function equal to one (vbias(θ, x) =
1), we get:

Eεg

sup
θ

∑
i=1,...,n
v∈Nout

εi,vv(θ, xi)

= Eεg

sup
θ

∑
v∈Nout

〈(
θ→v

bv

)
,

n∑
i=1

εi,v

(
Rant(v)(θ, xi)

1

)〉

⩽
Hölder

Eεg

sup
θ

 ∑
v∈Nout

∥θ→v∥1 + |bv|

︸ ︷︷ ︸

⩽r by assumption

max
v∈Nout

(∣∣∣∣∣
n∑

i=1
εi,v

∣∣∣∣∣ , max
u∈ant(v)

∣∣∣∣∣
n∑

i=1
εi,vu(θ, xi)

∣∣∣∣∣
)

⩽ Eεg

(
r max

v∈Nout
max

u∈ant(v)∪{vbias}
sup

θ

∣∣∣∣∣
n∑

i=1
εi,vu(θ, xi)

∣∣∣∣∣
)
.

Everything is non-negative so the maximum over u ∈ ant(v)∪ {vbias} is smaller than the
sum of the maxima over u ∈ (ant(v)∩Nin)∪{vbias} and u ∈ ant(v)\Nin. Note that when
u is an input neuron, it simply holds u(θ, xi) = xi,u. This proves the result.

I now show how to peel neurons to reduce the maximum over antd(v) to antd+1(v).
Later, I will repeat that until the maximum is only on input neurons. Compared to the
previous lemma, note the presence of an index m = 1, . . . ,M in the maxima. This is
because after d steps of peeling (when the maximum over u has been reduced to u ∈
antd(v)), we will have M = Kd−1 where K is the kernel size. Indeed, the number of
copies indexed by m gets multiplied by K after each peeling step. The next lemma is the
formal version of Lemma 4.4.2.

Lemma C.4.3. Consider a neural network architecture with an associated set Θ of pa-
rameters θ such that every neuron v /∈ Nout ∪ Nin satisfies ∥θ→v∥1 + |bv| ⩽ 1. Assume
that bv = 0 for every v ∈ N∗-pool. Consider a family of independent Rademacher variables
(εj)j∈J with J that will be clear from the context. Consider arbitrary M,d ∈ N and a
convex non-decreasing function g : R → R⩾0. Take a symbol vbias which does not corre-
spond to a neuron (vbias /∈ N) and set by convention xvbias = 1 for every input x. Define
P := |{k ∈ N>0, ∃u ∈ Nk-pool}| as the number of different types of ∗-max-pooling neurons
in G, and K := maxu∈N∗-pool | ant(u)| the maximal kernel size of the network (K := 1 if

185

Chapter C. Supplemental material for Chapter 4

P = 0). It holds:

Eεg

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣

⩽ (3 + 2P)Eεg

 max
v∈Nout,

m=1,...,KM

max
u∈(antd+1(v)∩Nin)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣

+ (3 + 2P)Eεg

 max
v∈Nout,

m=1,...,KM

max
u∈antd+1(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣

with similar convention as in Lemma C.4.2 for empty maxima.

Proof. Step 1: split the neurons depending on their activation function. In
the term that we want to bound from above, the neurons u ∈ antd(v) \ Nin are not
input neurons so they compute something of the form ρu(. . .) where ρu is the activation
associated with u, 1-Lipschitz, and satisfies ρu(0) = 0. The first step of the proof is to get
rid of ρu using a contraction lemma similar to Theorem 4.12 in Ledoux and Talagrand
[1991]. However, here, the function ρu depends on the neuron u, what we are taking a
maximum over so that classical contraction lemmas do not apply directly. To resolve this
first obstacle, I split the neurons according to their activation function. Below, I highlight
in orange what is important and/or the changes from one line to another. Denote Nρ the
neurons that have ρ as their associated activation function, and the term with a maximum
over all u ∈ Nρ is denoted:

e(ρ) := Eεg

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣
 ,

with the convention e(ρ) = 0 if Nρ is empty. This yields a first bound

Eεg

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣
 ⩽ e(ReLU) + e(id) +

∑
k

e(k-pool)

where the sum of the right-hand side is on all the k ∈ N>0 such that there is at least
one neuron in Nk-pool. Define E(ρ) to be the same thing as e(ρ) but without the absolute
values:

E(ρ) := Eεg

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

n∑
i=1

εi,v,mu(θ, xi)

 .
Lemma C.4.1 gets rid of the absolute values by paying a factor 2:

e(ρ) ⩽ 2E(ρ).

I now want to bound each E(ρ).
Step 2: get rid of the ∗-max-pooling and ReLU activation functions. Since

the maximal kernel size is K, any ∗-max-pooling neuron u must have at most K an-
tecedents. When a u ∈ N∗-pool has less than K antecedents, I artificially add neurons

186

C.4. Peeling argument for Theorem 4.4.1

w to ant(u) to make it of cardinal K, and I set by convention θw→u = 0. I also fix an
arbitrary order on the antecedents of u and write ant(u)w for the antecedent number w,
with Rant(u)w the function associated with this neuron. For a ReLU or ∗-max-pooling
neuron u, define the pre-activation of u to be

preu(θ, x) :=

〈(

θ→u

bu

)
,

(
Rant(u)(θ, x)

1

)〉
if u ∈ NReLU,(

bu + θant(u)w→uRant(u)w(θ, x)
)

w=1,...,k
otherwise when u ∈ N∗-pool.

where I recall that bu = 0 for u ∈ N∗-pool by assumption. I nevertheless keep bu in
the computation until the point where this assumption is apparently actually needed to
continue. Note that the pre-activation has been defined to satisfy u(θ, x) = ρu(preu(θ, x)).
When ρ is the ReLU or k-pool, we can thus rewrite E(ρ) in terms of the pre-activations:

E(ρ) = Eεg

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nρ)\Nin

sup
θ

n∑
i=1

εi,v,mρ(preu(θ, xi))

 .
Consider the finite set Z = {(v,m), v ∈ Nout,m = 1, . . . ,M} and for every z = (v,m) ∈ Z,
define T z = {(preu(θ, xi))i=1,...,n : u ∈ (antd(v) ∩ Nρ) \ Nin, θ ∈ Θ}. An element of T z

will be denoted t = (ti)n
i=1 ∈ T z ⊂ Rn if ρ = ReLU, and t = (ti)n

i=1 ∈ T z ⊂ (Rk)n with
ti = (ti,w)k

w=1 ∈ Rk if u ∈ N∗-pool. We can again rewrite E(ρ) as

E(ρ) = Eεg

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zρ(ti)
)
.

We now want to get rid of the activation function ρ with a contraction lemma. There is a
second difficulty that prevents us from directly applying classical contraction lemmas such
as Theorem 4.12 of Ledoux and Talagrand [1991]. It is the presence of a maximum over
multiple copies indexed by z ∈ Z of a supremum that depends on iid families (εi,z)i=1...n.
Indeed, Theorem 4.12 of Ledoux and Talagrand [1991] only deals with a single copy (|Z| =
1). This motivates the contraction lemma established for the occasion in Lemma C.3.1.
Once the activation functions removed, we can conclude separately for ρ = ReLU, id and
ρ = k-pool.

Step 3a: deal with ρ = k-pool via rescaling. In the case ρ = k-pool, Lemma C.3.1
shows that

Eεg

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zk-pool(ti)
)

⩽ Eεg

max
z∈Z

sup
t∈T z

∑
i=1,...,n,
w=1,...,K

εi,z,wti,w

 .
The right-hand side is equal to

Eεg

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩N∗-pool)\Nin,

θ∈Θ

∑
i=1,...,n,
w=1,...,K

εi,v,m,w(bu + θant(u)w→uRant(u)w(θ, xi))

 . (C.8)

187

Chapter C. Supplemental material for Chapter 4

I now deal with this using the assumption on the norm of incoming weights. Recalling
that bu = 0 for every u ∈ N∗-pool:

∑
i=1,...,n,
w=1,...,K

εi,v,m,w(bu︸︷︷︸
=0

+θant(u)w→uRant(u)w(θ, xi))

=
∑

w=1,...,K

θant(u)w→u

 ∑
i=1,...,n

εi,v,m,wRant(u)w(θ, xi)

⩽
Hölder

∥θ→u∥1︸ ︷︷ ︸
⩽1 by assumption

max
w=1,...,K

∣∣∣∣∣∣
∑

i=1,...,n

εi,v,m,wRant(u)w(θ, xi)
∣∣∣∣∣∣

⩽
decoupling w and ant(u)w

max
w∈ant(u)

max
w′=1,...,K

∣∣∣∣∣
n∑

i=1
εi,v,m,w′w(θ, xi)

∣∣∣∣∣ .
Note for the curious reader that this inequality is the current obstacle when the biases
are nonzero since we would end up with K|bu| + ∥θ→u∥1 and we could not anymore use
that this is ⩽ 1.

We deduce that Equation (C.8) is bounded from above by

Eεg

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩N∗-pool)\Nin,θ∈Θ

max
w∈ant(u)

max
w′=1,...,K

∣∣∣∣∣
n∑

i=1
εi,v,m,w′w(θ, xi)

∣∣∣∣∣
 .

Instead of having εi,v,m,w′ with m = 1, . . . ,M and w′ = 1, . . . , K, I re-index it as εi,v,m

with m = 1, . . . , KM . Note also that u ∈ (antd(v)∩N∗-pool) \Nin and w ∈ ant(u) implies
w ∈ antd+1(v), so considering a maximum over w ∈ antd+1(v) can only yield something
larger. Moreover, we can add a new neuron vbias that computes the constant function
equal to one (vbias(θ, x) = 1) and add vbias to the maximum over w. Implementing all
these changes, Equation (C.8) is bounded by

H := Eεg

 max
v∈Nout,

m=1,...,KM

sup
w∈antd+1(v)∪{vbias}

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1
εi,v,mw(θ, xi)

∣∣∣∣∣
 .

I now derive similar inequalities when ρ = id and ρ = ReLU.
Step 3b: deal with ρ = id,ReLU via rescaling. In the case ρ = ReLU, Lemma C.3.1

shows that

Eεg

(
max
z∈Z

sup
t∈T z

n∑
i=1

εi,zReLU(ti)
)

⩽ Eεg

max
z∈Z

sup
t∈T z

∑
i=1,...,n

εi,zti

 .
The difference with the ∗-max-pooling case is that each ti is scalar so this does not
introduce an additional index w to the Rademacher variables. The right-hand side can
be rewritten as

Eεg

 max
v∈Nout,

m=1,...,M

sup
u∈(antd(v)∩NReLU)\Nin,θ∈Θ

∑
i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉
188

C.4. Peeling argument for Theorem 4.4.1

I can only increase the latter by considering a maximum over all u ∈ antd(v), not only
the ones in NReLU. I also add absolutes values. This is then bounded by

F := Eεg

 max
v∈Nout,

m=1,...,M

sup
u∈antd(v)\Nin,θ∈Θ

∣∣∣∣∣ ∑
i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉 ∣∣∣∣∣
 .
(C.9)

This means that E(ReLU) ⩽ F . Let me also observe that e(id) ⩽ F . Indeed, recall that
by definition

e(id) = Eεg

 max
v∈Nout,

m=1,...,M

max
u∈(antd(v)∩Nid)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣
 .

I can only increase the latter by considering a maximum over all u ∈ antd(v). Moreover,

for an identity neuron u, it holds u(θ, x) =
〈(

θ→u

bu

)
,

(
Rant(u)(θ, x)

1

)〉
. This shows

that e(id) ⩽ F . It remains to bound F using that the assumption on the norm of the
parameters. Introduce a new neuron vbias that computes the constant function equal to
one: vbias(θ, x) = 1. Note that

∑
i=1,...,n

εi,v,m

〈(
θ→u

bu

)
,

(
Rant(u)(θ, xi)

1

)〉

=
〈(

θ→u

bu

)
,
∑

i=1,...,n

εi,v,m

(
Rant(u)(θ, xi)

1

)〉

⩽
Hölder

(∥θ→u∥1 + |bu|)︸ ︷︷ ︸
⩽1 by assumption

max
w∈ant(u)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mw(θ, xi)

∣∣∣∣∣ .
This shows that

F ⩽ Eεg

 max
v∈Nout,

m=1,...,M

sup
u∈antd(v)\Nin,θ∈Θ

max
w∈ant(u)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mw(θ, xi)

∣∣∣∣∣
 .

Obviously, introducing additional copies of ε to make the third index going from m = 1
to KM can only make it larger. Moreover, u ∈ antd(v) \ Nin and w ∈ ant(u) implies
w ∈ antd+1(u), so we can instead consider a maximum over w ∈ antd+1(v). This gives the
upper-bound

F ⩽ Eεg

 max
v∈Nout,

m=1,...,KM

max
w∈antd+1(v)∪{vbias}

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1
εi,v,mw(θ, xi)

∣∣∣∣∣

= H.

Step 4: putting everything together. At the end, recalling that there are at most
P different k ∈ N>0 associated with an existing k-max-pooling neuron, we get the final

189

Chapter C. Supplemental material for Chapter 4

bound

Eεg

 max
v∈Nout,

m=1,...,M

max
u∈antd(v)\Nin

sup
θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣

⩽ e(id) + e(ReLU) +
∑

k

e(k-pool)

⩽ e(id) + 2E(ReLU) + 2
∑

k

E(k-pool)

⩽ F + 2F + 2
∑

k

E(k-pool)

⩽ H + 2H + 2
∑

k

H

⩽ H + 2H + 2PH = (3 + 2P)H.

The term (3+2P)H can again be bounded by splitting the maximum over w ∈ antd+1(v)∪
{vbias} between the w’s that are input neurons, and those that are not, since everything
is non-negative. This yields the claim.

Remark C.4.1 (Improved dependencies on the kernel size). Note that in the proof of
Lemma C.4.3, the multiplication of M by K can be avoided if there are no ∗-max-pooling
neurons in antd(v). Because of skip connections, even if there is a single ∗-max-pooling
neuron in the architecture, it can be in antd(v) for many d’s. A more advanced version of
the argument is to peel only the ReLU and identity neurons, by leaving the ∗-max-pooling
neurons as they are, until we reach a set of ∗-max-pooling neurons large enough that we
decide to peel simultaneously. This would prevent the multiplication by K every time d is
increased.

I can now state the main peeling theorem, which directly result from Lemma C.4.2
and Lemma C.4.3 by induction on d. Note that these lemmas contain assumptions on
the size of the incoming weights of the different neurons. These assumptions are met
using Algorithm 3.2.1, that normalizes the parameters without changing the associated
function nor the path-norm (Lemma 3.2.1).

Theorem C.4.1. Consider a neural network architecture as in Definition 2.2.2 with
Nout ∩ Nin = ∅. Assume that bv = 0 for every v ∈ N∗-pool. Define P := |{k ∈
N>0,∃u ∈ Nk-pool}| the number of different types of ∗-max-pooling neurons in G, and
K := maxu∈N∗-pool the maximum kernel size (K := 1 by convention if P = 0). Denote by
vbias a new input neuron and define xvbias = 1 for any input x. For any set of parameters
Θ associated with the network, such that ∥Φ(θ)∥1 ⩽ r for every θ ∈ Θ, it holds for every
convex non-decreasing function g : R→ R⩾0

Eεg

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)

⩽
(3 + 2P)D

2 + 2P Eεg

r max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣
 .

190

C.4. Peeling argument for Theorem 4.4.1

Proof of Theorem C.4.1. Without loss of generality, we can replace Θ by its image under
Algorithm 3.2.1 with q = 1, as Algorithm 3.2.1 does not change the associated func-
tion Rθ nor the path-norm ∥Φ(θ)∥1 (Lemma 3.2.1) so that we still have ∥Φ(θ)∥1 ⩽ r
and the supremum over θ ∈ Θ on the left-hand side can be taken over rescaled pa-
rameters. By Lemma 3.2.1, the parameters are 1-normalized (Definition 3.2.1), so we
will be able to use Lemma C.4.2 and Lemma C.4.3. Indeed, 1-normalized parameters
θ satisfy ∑

v∈Nout ∥θ→v∥1 + |bv| = ∥Φ(θ)∥1 ⩽ r so Lemma C.4.2 applies. We also have
∥θ→v∥1+|bv| ⩽ 1 for every v /∈ Nin∪Nout, by definition of 1-normalization, so Lemma C.4.3
also applies.

By induction on d ⩾ 1, I prove that (highlighting in orange what is important)

Eεg

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)

⩽
d∑

ℓ=1
(3 + 2P)ℓ−1Eεg

r max
v∈Nout,

m=1,...,Kℓ−1

max
u∈(antℓ(v)∩Nin)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣

+ (3 + 2P)d−1Eεg

r max
v∈Nout,

m=1,...,Kd−1

max
u∈antd(v)\Nin

sup
θ∈Θ

∣∣∣∣∣
n∑

i=1
εi,v,mu(θ, xi)

∣∣∣∣∣
 ,

with the same convention as in Lemma C.4.2 for maxima over empty sets. This is true for
d = 1 by Lemma C.4.2. The induction step is verified using Lemma C.4.3. This concludes
the induction. Applying the result for d = D, and since antD(v) \Nin = ∅, we get:

Eεg

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)

⩽
D∑

d=1
(3 + 2P)d−1Eεg

r max
v∈Nout,

m=1,...,Kd−1

max
u∈(antd(v)∩Nin)∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣
 .

We can only increase the right-hand side by considering maximum over all u ∈ Nin ∪
{vbias} and by adding independent copies indexed from m = 1 to m = KD−1. Moreover,∑D

d=1(3 + 2P)d−1 = ((3 + 2P)D − 1)/(2 + 2P). This shows the final bound:

Eεg

sup
θ∈Θ

∑
i=1,...,n,
v∈Nout

εi,vv(θ, xi)

⩽
(3 + 2P)D

2 + 2P Eεg

r max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣
 .

191

Chapter C. Supplemental material for Chapter 4

C.5 Proof of Theorem 4.4.1
Proof of Theorem 4.4.1. The proof is given directly in the general case with nonzero bi-
ases on every v /∈ N∗-pool and uses an additional input neuron vbias. I highlight along
the proof where improved results can be obtained assuming zero biases, yielding The-
orem 4.4.1 as a consequence. Define the random matrices E = (εi,v)i,v ∈ Rn×dout and
R(θ, S) = (v(θ, xi))i,v ∈ Rn×dout so that ⟨E,R(θ, S)⟩ = ∑

i,v εi,v(Rθ(xi))v. By definition of
the Rademacher complexity (Equation (4.9)), we have

R(FΘ, µx) = ES,ε

(
sup

θ
⟨E,R(θ, S)⟩

)

where S = (xi)n
i=1 ∼ (µx)⊗n.

I condition on S and denote Eε the conditional expectation. For any random variable
λ(S) > 0 measurable in S, it holds

Eε

(
sup

θ
⟨E,R(θ, S)⟩

)
= 1
λ(S) log exp

(
λ(S)Eε

(
sup

θ
⟨E,R(θ, S)⟩

))

=
λ measurable in S

1
λ(S) log exp

(
Eε

(
λ(S) sup

θ
⟨E,R(θ, S)⟩

))

⩽
Jensen

1
λ(S) logEε exp

(
λ(S) sup

θ
⟨E,R(θ, S)⟩

)
.

For a deterministic s = (xi)n
i=1 ∈ (Rdin)n, denote

e(s) = Eε exp
(
λ(s) sup

θ
⟨E,R(θ, x)⟩

)
.

Since S is independent of ε, the expectation conditioned to S is simply equal to

Eε exp
(
λ(S) sup

θ
⟨E,R(θ, S)⟩

)
= e(S).

Denote r = supθ∈Θ ∥Φ(θ)∥1. For s as above, simply denote λ := λ(s). Since Nin ∩
Nout = ∅ and the biases of ∗-max-pooling neurons are null, the peeling argument given
by Theorem C.4.1 for g : t ∈ R 7→ exp(λt) guarantees:

e(s) ⩽ (3 + 2P)D

2 + 2P Eε exp

λr max
v∈Nout,

m=1,...,KD−1

max
u∈Nin∪{vbias}

∣∣∣∣∣
n∑

i=1
εi,v,mxi,u

∣∣∣∣∣
 ,

where xi,u is coordinate u of vector xi ∈ Rdin , and where vbias is an added neuron for which
I set by convention xvbias = 1 for any input x. It is easy to check that the same bound
holds true with a maximum only over u ∈ Nin (not considering vbias in the maximum)
when all biases are constrained to be null. In such a setting, all the maxu∈Nin∪{vbias} below
can be replaced by maxu∈Nin . Denote

σ(s) := max
u∈Nin∪{vbias}

(
n∑

i=1
x2

i,u

)1/2

⩾
√
n.

192

C.5. Proof of Theorem 4.4.1

Using Lemma C.5.1, it holds

Eε exp

λr max
v∈Nout,

u∈Nin∪{vbias},

m=1,...,KD−1

∣∣∣∣∣
n∑

i=1
εi,v,m(xi)u

∣∣∣∣∣
 ⩽ 2KD−1(din + 1)dout exp

(
(rλ(s)σ(s))2

2

)
.

When biases are constrained to be null, din + 1 is replaced by din. Putting everything
together, we get:

Eε

(
sup

θ
⟨E,R(θ, S)⟩

)
= e(S) ⩽

(1
λ

log(C1) + λ(S)C2(S)
)

with

C1 = 2KD−1(din + 1)dout ×
(3 + 2P)D

2 + 2P = 3 + 2P
1 + P

((3 + 2P)K)D−1(din + 1)dout

(again with din + 1 replaced by din when all biases are null) and

C2(S) = 1
2(rσ(S))2.

Choosing λ(S) =
√

log(C1)
C2(S) yields:

Eε

(
sup

θ
⟨E,R(θ, S)⟩

)
⩽ 2

√
log(C1)C2(S)

⩽
√

2σ(S)r︸ ︷︷ ︸
=2
√

C2(S)

(
log

(3 + 2P
1 + P

(din + 1)dout

)
+D log ((3 + 2P)K)

)1/2

︸ ︷︷ ︸
⩾
√

log(C1)

with din +1 replaced by din when all biases are null. Taking the expectation on both sides
over S yields Theorem 4.4.1.

The next lemma is classical [Golowich et al., 2018, Section 7.1] and is here only for
completeness.

Lemma C.5.1. For any d, k ∈ N>0 and λ > 0, it holds

Eε exp

λ max
m=1,...,k,
u=1,...,d

∣∣∣∣∣
n∑

i=1
εi,m(xi)u

∣∣∣∣∣
 ⩽ 2kd max

u=1,...,d
exp

(
λ2

2

n∑
i=1

(xi)2
u

)
.

Proof. It holds

Eε exp

λ max
m=1,...,k,
u=1,...,d

∣∣∣∣∣
n∑

i=1
εi,m(xi)u

∣∣∣∣∣
 ⩽

∑
m=1,...,k,
u=1,...,d

Eε exp
(
λ

∣∣∣∣∣
n∑

i=1
εi,m(xi)u

∣∣∣∣∣
)
.

193

Chapter C. Supplemental material for Chapter 4

For given u and m:

Eε exp
(
λ

∣∣∣∣∣
n∑

i=1
εi,m(xi)u

∣∣∣∣∣
)

⩽
Lemma C.4.1

2Eε exp
(
λ

n∑
i=1

εi,m(xi)u

)

= 2
n∏

i=1

exp (λ(xi)u) + exp (−λ(xi)u)
2 ⩽ 2 exp

(
λ2

2

n∑
i=1

(xi)2
u

)

using exp(x) + exp(−x) ⩽ 2 exp(x2/2) in the last inequality.

C.6 The cross-entropy loss is Lipschitz continuous
Theorem 4.1.1 applies to the cross-entropy loss with L =

√
2. To see this, first recall that

with C classes, the cross-entropy loss is defined as

ℓ : (x, y) ∈ RC × {0, 1}C 7→ −
dout∑
c=1

yc log
(

exp(xc)∑
d exp(xd)

)
.

Consider y ∈ {0, 1}C with exactly one nonzero coordinate and an exponent p ∈ [1,∞]
with conjugate exponent p′ (1/p+ 1/p′ = 1). For every x, x′ ∈ RC :

ℓ(x, y)− ℓ(x′, y) ⩽ 21/p′∥x− x′∥p.

Consider a class c ∈ {1, . . . , C} and take y ∈ {0, 1}C to be a one-hot encoding of c
(meaning that yc′ = 1c′=c). Consider an exponent p ∈ [1,∞] with conjugate expo-
nent p′ (1/p + 1/p′ = 1). The function f : x 7→ ℓ(x, y) = −∑c yc log

(
exp(xc)∑C

c′=1 exp(xc′)

)
=

− log
(

exp(xc)∑C

c′=1 exp(xc′)

)
is continuously differentiable so that for every x, x′ ∈ RC :

f(x)− f(x′) =
∫ 1

0
⟨∇f(tx+ (1− t)x′), x− x′⟩ dt ⩽ sup

t∈[0,1]
∥∇f(tx+ (1− t)x′)∥p∥x− x′∥p′ .

In order to differentiate f , let’s start to differentiate g(x) = exp(xc)∑C

c′=1 exp(xc′)
. Denote ∂i the

partial derivative with respect to coordinate i. For i ̸= c:

∂cg(x) = exp(xc) (∑c′ exp(xc′))− exp(xc) (exp(xc))
(∑c′ exp(xc′))2

= g(x)
∑

c′ ̸=c exp(xc′)∑
c′ exp(xc′) .

∂ig(x) = 0 (∑c′ exp(xc′))− exp(xc) (exp(xi))
(∑c′ exp(xc′))2

= g(x) − exp(xi)∑
c′ exp(xc′) .

Since f(x) = (− log ◦h)(x):

∂if(x) = −∂ig(x)
g(x)

= 1∑C
c′=1 exp(xc′)

×
{
−∑c′ ̸=c e

xc′ if i = c,
exi otherwise.

194

C.6. The cross-entropy loss is Lipschitz continuous

Thus

∥∇f(x)∥p
p =

C∑
i=1
|∂if(x)|p

=

(∑
c′ ̸=c exp(xc′)

)p
+∑

c′ ̸=c exp(xc′)p(∑C
c′=1 exp(xc′)

)p

⩽ 2

(∑
c′ ̸=c exp(xc′)

)p(∑C
c′=1 exp(xc′)

)p

⩽ 2

(∑
c′ ̸=c exp(xc′)

)p(∑
c′ ̸=c exp(xc′)

)p

= 2.

where I used in the first inequality that ∥v∥p
p ⩽ ∥v∥p

1 for any vector v. This shows that
for every x, x′ ∈ RC :

ℓ(x, y)− ℓ(x′, y) ⩽ 21/p∥x− x′∥p′ .

195

Appendix D
Supplemental material for Chapter 5

D.1 Related works
We now review the numerical results we found in the literature about time efficiency of
existing algorithms for Kronecker-sparse matrix multiplication.

It is reported in Dao et al. [2022a] that replacing dense matrices by a product of
two Kronecker-sparse matrices led to a twice faster training for image classification and
language modeling.

In Fu et al. [2023] is reported an acceleration of X 7→ W−1(U ⊙WX) where U is
some dense weight matrix, ⊙ is the element-wise multiplication, and W is the DFT matrix
(which admits a factorization in Kronecker-sparse matrices), as soon as the dimensions of
W are at least equal to 4096.

Our study is complementary to these observations: we extensively benchmark the
efficiency of the Kronecker-sparse matrix multiplication alone.

D.2 Experiments
This section provides additional details on the experiments presented in Chapter 5 and
complementary results.

D.2.1 Details on the experiments
The pytorch package version is 2.2 and pytorch-cuda is 12.1.

Matrix sizes. In all our experiments with matrices, we set the batch size to B =
128 × 196 = 25088, a very standard choice for ViTs, as this quantity corresponds to
the standard number of tokens per sequence (192) multiplied by the standard number
of sequences in a batch of inputs (128). When dealing with a batch of images in neural
networks, we choose the standard choice of batch size B = 128.

Matrix entries. The coordinates of any Kronecker-sparse matrix K ∈ Rabd×acd with
sparsity pattern (a, b, c, d) are drawn i.i.d. uniformly in [− 1√

c
, 1√

c
], corresponding to the

197

Chapter D. Supplemental material for Chapter 5

initialization used for training in Dao et al. [2022a]. The coordinates of the inputs X are
drawn i.i.d. according to a standard normal distribution N (0, 1).

Benchmarking time execution. All the experiments measuring time execution of a
Kronecker-sparse matrix multiplication algorithm (Tables 5.3 to 5.5 and D.2, Figures 5.5
to 5.8, 5.10 and D.2 to D.7) are performed on a NVIDIA A100-PCIE-40GB GPU associ-
ated with an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with 377G of memory. The
full benchmark took approximately 3 days in an isolated environment, ensuring that no
other processes were running concurrently.

Measurements are done using the PyTorch tool torch.utils.benchmark.Timer. The
medians are computed on at least 10 measurements of 10 runs. In 94.2% of the cases,
we have an interquartile range (IQR) that is at least 100 times smaller than the median
(resp. 98% for 50 times smaller, and 99.7% for 10 times smaller).

Benchmarking energy consumption. Measurements of the energy consumption (Fig-
ure 5.9) is done on a NVIDIA Tesla V100-PCIE-16GB GPU associated with an Intel(R)
Xeon(R) Silver 4215R CPU @ 3.20GHz with 754G of memory. The full benchmark took
approximately 1.5 days in an isolated environment. Measurements are made using the
pyJoules software toolkit. The medians are computed on at 10 measurements of at least
16 runs. In 96% of the cases, the IQR is at least 10 times smaller than the median, and
5 times smaller in all the cases.

Kronecker sparsity patterns benchmarked for time measurements (Section 5.4).
The considered patterns are generated by the Python code written in Figure D.1. In all
the cases, we only consider patterns (a, b, c, d) with b = c or b = 4c or c = 4d to have an
input size din and an output size dout such that din = dout or din = 4dout or dout = 4din.
This choice is motivated by the fact that fully-connected layers in ViTs satisfy have input
and output sizes satisfying these constraints.

The first "for" loop in Figure D.1 generates a wide range of patterns (a, b, c, d) with
a = 1, as this represents the simplest scenario. Indeed, the case a > 1 simply corresponds
to repeating a times the case a = 1 in parallel.

The second "for" loop in Figure D.1 generates patterns with a > 1 offering fewer choices
for d to keep the benchmark concise in terms of execution time. This loop also imposes
additional conditions on b and c (line 28 of the code) that we now explain. Many graphs
are plotted based on the ratio (b+c)/bc, as introduced in Equation (5.2). Because of that,
our goal was to include as many distinct ratios (b + c)/bc as possible while keeping the
benchmark brief. We excluded certain (b, c) values because they resulted in a ratio that
was very close to one already in the benchmark and were more computationally intensive.

Patterns benchmarked for energy measurements (Section 5.4). For the energy
measurements, the goal is to have diverse sparsity patterns (a, b, c, d) corresponding to
many different ratios d(b + c)/bc to observe the trend in Figure 5.9, while keeping the
benchmark as short as possible. We chose to consider the cartesian product of

1 a_list = [1, 4, 16, 32, 64]
2 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]

198

D.2. Experiments

3 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
4 d_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

by skipping as in Figure D.1 all the patterns with
1 (b,c) in [(1024 , 256) , (256 , 1024) , (128 , 512) , (512 , 128)

, (64 , 256) , (256 , 64)]

and also all the patterns such that
1 b != c and b != 4 * c and c != 4 * b

for the same reasons as explained above for time measurements.

Details on boxplots. In all boxplots (Figures 5.5 to 5.10 and D.2 to D.7), the orange
line corresponds to the median, the boxes to the first and third quartile and the whiskers
to the 5th and the 95th percentile. Outliers are not represented on the graph.

D.2.2 Estimating the time for memory rewritings in the bmm
implementation (Section 5.2)

Protocol. Given a Kronecker sparsity pattern π = (a, b, c, d), an associated π-Kronecker-
sparse matrix K (Definition 5.1.1) and an input X ∈ RB×acd for some batch size B, we
first measure the time ∆t to compute Y := XK⊤ using the bmm implementation. Then,
we measure the time ∆t̃ to perform only the multiplication operations Y[:, row] = X[:
, col]K⊤[col, row] in the bmm implementation (line 2 of Algorithm 5.1.2). Therefore,
the estimated relative time to perform the memory rewritings of lines 1 and 3 of Algo-
rithm 5.1.2 is simply ∆t−∆t̃

∆t
.

Results. Figure 5.5, which is replicated in the left part of Figure D.2, shows that the
relative time spent doing memory rewritings in bmm increases with the ratio (b+ c)/(bc),
in the batch-size-first memory layout. Figure D.2 shows that this is similar for both
batch-size-first and batch-size-last.

D.2.3 Time spent in linear layers in vision transformers
This section gives a numerical lower bound estimate on the time spent in fully-connected
layers in a Vision Transformer (ViT).

Results. Table D.1 shows that, for different ViTs, the fraction of computation time
solely dedicated to linear layers in feed-forward network modules varies between 31% and
53% in half-precision, and 46% and 61% in float-precision. This proportion increases with
the size of the architecture. This shows that a non-negligible amount of ViTs inference
is dedicated to fully-connected layers. Note that the time for the fully-connected linear
layers in the multi-head attention module is not included in our measurements, so our
estimate is only a lower bound on the time effectively devoted to all fully-connected layers
in transformer architectures.

199

Chapter D. Supplemental material for Chapter 5

Table D.1: Median execution times (ms) of the forward-pass in a ViT, and the forward-
pass in an MLP containing only all the linear layers involved in the feed-forward network
modules of the ViT. The latter is reported with its ratio over the first. FP16 is half-
precision, FP32 is float-precision.

Architecture fp16 (s) fp32 (s)

Complete Linear in FFNs Complete Linear in FFNs

ViT-S/16 0.014 0.0046 (31%) 0.090 0.04 (46%)
ViT-B/16 0.036 0.015 (42%) 0.30 0.16 (54%)
ViT-L/16 0.11 0.050 (46%) 1.0 0.58 (58%)
ViT-H/14 0.31 0.16 (53%) 2.6 1.6 (61%)

Details on the estimation. The transformer architecture is composed of a sequence
of transformer blocks, where each block contains a multi-head attention module and a
feed-forward network module. The feed-forward network module is an MLP with one
hidden layer of neurons, involving two fully-connected linear layers. Table D.1 reports
the time to perform sequentially all the fully-connected linear layers (without biases)
appearing in feed-forward network modules of the considered ViT. This is compared to
the total forward time of the transformer network. This is expected to yield a lower bound
since we did not measure the time spent in fully-connected linear layers in the multi-head
attention module.

Experimental settings. The architecture ViT-S/16 corresponds to the one in Zhai
et al. [2022], while the architecture ViT-B/16, ViT-L/16 and ViT-H/14 correspond to
those in Dosovitskiy et al. [2021]. Input images are of size 224 × 224. In float-precision,
the PyTorch implementation of ViT architecture are taken from Wang [2024b]. In half-
precision, the considered implementation of the transformer architecture uses FlashAtten-
tion [Dao et al., 2022b] to compute the scaled dot product attention, like in Wang [2024a].
The MLP containing only the linear layers of the feed-forward modules in the trans-
former architecture is implemented using torch.nn.Sequential and torch.nn.Linear.
Experiments are done on a single A100-40GB GPU on AMD EPYC 7742 64-Core Pro-
cessor. Measurements are done using the PyTorch tool torch.utils.benchmark.Timer
for benchmarking. The image batch size is set at 128.

D.2.4 Additional results in half-precision

For the sake of completeness we perform the benchmark described in Section 5.4 in half-
precision. The equivalent of Table 5.3, Figure 5.8, Figures 5.6, 5.7, 5.10 and D.2 in
half-precision are Table D.2, Figure D.3, Figures D.4 to D.7, respectively. Note that just
as Figure 5.8, the Figure D.3 only considers sparsity patterns for which min time(kernel,
bmm, bsr, einsum) < min time(dense, sparse). This corresponds to 87% of the tested
patterns in half-precision, cf. Table D.2.

200

D.2. Experiments

Table D.2: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2
in half-precision (denoted by time(algo1) < time(algo2)), and the median acceleration
factor in such cases (that is, the median ratio time of algo2

time of algo1). For each implementation, we
take the minimum time between the batch-size-first and the batch-size-last memory layout.
Experiments are carried in half-precision.

min time

kernel

bmm
einsum

bsr

 < min time
(

dense
sparse

)
time(bmm) < min time

einsum

bsr
dense
sparse

 time(kernel) < min time

bmm

einsum
bsr

dense
sparse

86.95% (×8.45) 83.22% (×1.83) 36.69% (×1.46)

104 105 106 107 108 109 1010

M × N

100

101

m
in

 ti
m

e(
de

ns
e,

 sp
ar

se
)

di
vi

de
d

by
m

in
 ti

m
e(

ke
rn

el
, b

m
m

, e
in

su
m

, b
sr

)

Figure D.5: Speed-up factor of min
time(kernel, bmm, bsr, einsum) compared
to min time(dense, sparse) vs. the matrix
size dout × din. Experiments are carried in
half-precision.

104 105 106 107 108 109 1010

M × N

1

0.6
0.7
0.8
0.9

2

3

4

5

m
in

 ti
m

e(
ei

ns
um

, b
sr

)
di

vi
de

d
by

 ti
m

e(
bm

m
)

Figure D.6: Speed-up factor of time(bmm)
compared to min time(einsum, bsr) vs. the
matrix size dout × din. Experiments are car-
ried in half-precision.

201

Chapter D. Supplemental material for Chapter 5

D.3 Details on perfect shuffle permutations
The goal is to prove Equation (5.1), which we recall here for convenience:

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)⊤︸ ︷︷ ︸
:=Q

= PSπ̃Q,

where the matrix Pp,q is the so-called (p, q) perfect shuffle permutation introduced below.
To prove this formula, we will use the next lemma.

Lemma D.3.1. For any positive integers b, c, d:

Pb,d
⊤(1b×c ⊗ Id)Pc,d = Id ⊗ 1b×c,

where Pp,q denotes the (p, q) perfect shuffle of r := pq [Van Loan, 2000], which is the
permutation matrix of size r × r defined as:

Pp,q :=

Ir[R0, :]
Ir[R1, :]

...
Ir[Rq−1, :]

 , (D.1)

where Ri := {i+ qj | j ∈ J0, p− 1K} for i ∈ J0, q − 1K.

Proof of Lemma D.3.1. This is a direct consequence of a more general result claiming
that the Kronecker product commutes up to some perfect shuffle permutation matrices
[Van Loan, 2000, Section 1].

We now turn to the proof of Equation (5.1).

Proof of Equation (5.1). By definition, Sπ = Ia ⊗ 1b×c ⊗ Id when π = (a, b, c, d). By
Lemma D.3.1,

Sπ = Ia ⊗ 1b×c ⊗ Id = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)
.

By the equality (AB)⊗(CD) = (A⊗C)(B⊗D) for any matrices A,B,C,D of compatible
sizes, we get the result:

Sπ = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)

= (Ia ⊗Pb,d)
(
Ia ⊗

(
(Id ⊗ 1b×c)Pc,d

⊤
))

= (Ia ⊗Pb,d)(Ia ⊗ Id ⊗ 1b×c)(Ia ⊗Pc,d
⊤)

= (Ia ⊗Pb,d)(Iad ⊗ 1b×c)(Ia ⊗Pc,d
⊤).

202

D.4. Implementations

D.4 Implementations
This section gives details on the baseline GPU implementations presented in Section 5.1.2
(Appendix D.4.1) and on the new kernel presented in Section 5.3 (Appendix D.4.2).

D.4.1 Details on baseline GPU implementations
To keep it short, we only give the code in the case of the batch-size-first memory layout
(except for dense and sparse where the codes are small). The case of batch-size-last can
simply be obtained by inverting the first and last positions in all tensor reshapings.

einsum implementation. This implementation uses tensor contractions with the high-
performance einops library. The abcd nonzero entries of the Kronecker-sparse matrix
K (Figure 5.2) are stored in a PyTorch 4D-tensor K_einsum of shape (a, b, c, d). The
implementation uses Einstein notations.

1 def kronecker_einsum (X_bsf , K_einsum):
2 X_perm = einops . rearrange (X_bsf , "... (a c d) -> ... a c d",

a=a, c=c, d=d)
3 Y_perm = einops . einsum (X_perm , K_einsum , "... a c d, a b c d

-> ... a b d")
4 Y_bsf = einops . rearrange (Y_perm , "... a b d-> ... (a b d)")
5 return Y_bsf

The second line of this code does at the same time all the matrix multiplications
Y[:, row]← X[:, col]K⊤[col, row] for all the pairs (row, col) in Algorithm 5.1.1.

bsr implementation. This is an implementation of Algorithm 5.1.2 using the high-
performance Block compressed Sparse Row (BSR) PyTorch library. The matrix K̃ is
stored as a tensor K_bsr stored in the BSR format.

1 def kronecker_bsr (X_bsf , K_bsr):
2 batch_size = X_bsf.shape [0]
3 X_perm = (
4 X_bsf.view(batch_size , a, c, d)
5 . transpose (-1, -2)
6 . reshape (batch_size , a * c * d)
7)
8 Y_perm = torch.nn. functional . linear (
9 X_perm , K_bsr

10)
11 Y_bsf = (
12 Y_perm .view(batch_size , a, d, b)
13 . transpose (-1, -2)
14 . reshape (batch_size , a * b * d)
15)
16 return Y_bsf

203

Chapter D. Supplemental material for Chapter 5

bmm implementation. This is an implementation of Algorithm 5.1.2 using the high-
performance Block compressed Sparse Row (BSR) PyTorch library. The matrix K̃ is
stored as a tensor K_bsr stored in the BSR format. This implementation using torch.bmm,
which is based on high-performance batched matrix multiplication NVIDIA routines. The
non-zero entries of K̃ are stored in a four-dimensional PyTorch tensor K_bmm of shape
(a ∗ d, b, c).

1 def kronecker_bmm (X_bsf , K_bmm):
2 batch_size = X_bsf.shape [0]
3 X_perm = (
4 X_bsf.view(batch_size , a, c, d)
5 . transpose (-1, -2)
6 . reshape (batch_size , a * d, c).
7 contiguous ().
8 transpose (0, 1)
9)

10 Y_perm = torch.empty(batch_size , a * d, b, device =x.device ,
dtype=x.dtype). transpose (0, 1)

11 Y_perm = torch.bmm(X_perm , K_bmm. transpose (-1, -2))
12 Y_bsf = (
13 Y_perm . transpose (0, 1)
14 . reshape (batch_size , a, d, b)
15 . transpose (-1, -2)
16 . reshape (batch_size , a * b * d)
17)
18 return

dense implementation. This ignores the sparsity of the Kronecker-sparse matrix K,
that is stored as a dense matrix in a 2d-tensor K_dense.

batch-size-first: torch.nn.functional.linear(X_bsf, K_dense)
batch-size-last: torch.matmul(K_dense, X_bsl)
The implementation in batch-size-first is the default PyTorch implementation of a

forward-pass of a linear layer. For batch-size-last, we had to choose an implementation
since Pytorch uses batch-size-first by default. We made our choice based on a small
benchmark of different alternatives.

sparse implementation. This exploits the sparsity of the Kronecker-sparse matrix K
but not its structure (recall that the support are not arbitrary, they are structured since
they must be expressed as Kronecker products, see Definition 5.1.1).

batch-size-first: torch.nn.functional.linear(X_bsf, K_csr)
batch-size-last: torch.matmul(K_csr, X_bsl)

D.4.2 Details on the kernel implementation
Classical optimizations that we build upon. The proposed implementation use
vectorization as soon as an operation can be vectorized. Concretely, the float4 and half2
vector types are used to mutualize read/write operations [NVIDIA, 2023b,a, 2024, Boehm,

204

D.4. Implementations

2022]. An epilogue [NVIDIA, 2023a] is also implemented to avoid writing in global memory
in a disorganized way. Indeed, after having accumulated the output in registers, each
thread has specific rows and columns of the output to write to global memory, and may
finish its computation before the others. To avoid that, the epilogue starts to write in
the shared memory, in a disorganized way, and then organize the writing from shared to
global memory. Another implemented optimization is double buffering [NVIDIA, 2023b,a,
Boehm, 2022, Li et al., 2019]: a thread block is always both computing the output of a
tile, and loading the next tile from global to shared memory. This allows us to hide some
latency that arises when loading from the global memory.

Note that as with any CUDA kernel, the constants (such as the number of threads)
need to be tailored to each specific case of use —here, each Kronecker sparsity pattern
π = (a, b, c, d)— and to each GPU.

205

Chapter D. Supplemental material for Chapter 5

1 import itertools
2

3 batch_size = 25 _088
4 size_limit = 2 _147_483_647
5

6 a_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]
7 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
8 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
9 d_list1 = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]

10 d_list2 = [4, 16, 64]
11

12 def get_patterns_benchmark ():
13 patterns_list = []
14

15 def add_pattern (a, b, c, d):
16 if batch_size * a * c * d <= size_limit and \
17 batch_size * a * b * d <= size_limit and \
18 a * b * c * d <= size_limit :
19 patterns_list . append ((a, b, c, d))
20

21 for b, c, d in itertools . product (b_list , c_list , d_list1):
22 a = 1
23 if (b == c or b == 4 * c or c == 4 * b):
24 add_pattern (a, b, c, d)
25

26 for a, b, c, d in itertools . product (a_list , b_list , c_list ,
d_list2):

27 if a != 1 and \
28 (b, c) not in [(1024 , 256) , (256 , 1024) , (128 , 512) ,

(512 , 128) , (64, 256) , (256 , 64)] and \
29 (b == c or b == 4 * c or c == 4 * b):
30 add_pattern (a, b, c, d)
31

32 return patterns_list

Figure D.1: Python code to generate the patterns benchmarked for the execution time in
the numerical experiments of Section 5.4.

206

D.4. Implementations

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

tim
e

in
 m

em
or

y
re

wr
iti

ng
s i

n
bm

m

(a) Batch-size-first (same as Figure 5.5).

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Re
la

tiv
e

tim
e

in
 m

em
or

y
re

wr
iti

ng
s i

n
bm

m

(b) Batch-size-last.

Figure D.2: Estimated relative time spent on memory rewritings in bmm for the multipli-
cation with K ∈ Σπ, for several π = (a, b, c, d). We regroup patterns by their value of
(b+ c)/(bc), and plot a boxplot to summarize the corresponding measurements.

0.
01

0.
00

2

0.
00

3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

b + c
bc

1

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

m
in

 ti
m

e(
bm

m
, e

in
su

m
, b

sr
)

di
vi

de
d

by
 ti

m
e(

ke
rn

el
)

Figure D.3: Speedup factor of kernel compared to min(bmm, einsum, bsr) in half-
precision. For each implementation, we take the minimum time between the batch-size-
first and the batch-size-last memory layout. We regroup the (a, b, c, d) patterns by their
value of (b + c)/(bc), and use a boxplot to summarize the corresponding measurements.
Experiments are carried in half-precision.

207

Chapter D. Supplemental material for Chapter 5

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

tim
e

in
 m

em
or

y
re

wr
iti

ng
s i

n
bm

m

(a) Batch-size-first.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

tim
e

in
 m

em
or

y
re

wr
iti

ng
s i

n
bm

m
(b) Batch-size-last.

Figure D.4: Estimated relative time spent on memory rewritings in bmm for the multipli-
cation with K ∈ Σπ, for several π = (a, b, c, d). We regroup patterns by their value of
(b + c)/(bc), and plot a boxplot to summarize the corresponding measurements. Experi-
ments are carried in half-precision.

kernel bmm einsum bsr dense sparse

1

10

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

Ti
m

e
ba

tc
h-

siz
e-

fir
st

 /
Ti

m
e

ba
tc

h-
siz

e-
la

st

Figure D.7: Boxplots of the ratio time of batch-size-first
time of batch-size-last in half-precision.

208

Appendix E
Supplementary material for Chapter 7

E.1 Details on the experiments
This section provides additional details on the experiments of Section 7.2 and Section 3.5.
I start by describing the general setup of the experiments, and then provide specific details
for each chapter in Appendix E.1.1 and Appendix E.1.2. Let me recall that the code is
available at github.com/agonon/pathnorm_toolkit.

Model and data. I train a dense ResNet18 [He et al., 2016] on ImageNet-1k, using
99% of the 1,281,167 images of the training set for training, the other 1% for validation.
The PyTorch code for normalization at inference is standard:

1 inference_normalization = transforms . Compose ([
2 transforms . Resize (256) ,
3 transforms . CenterCrop (224) ,
4 transforms . ToTensor (),
5 transforms . Normalize (
6 mean =[0.485 , 0.456 , 0.406] ,
7 std =[0.229 , 0.224 , 0.225]
8),
9])

Optimization. I use SGD for 90 epochs, learning rate 0.1, weight-decay 0.0001, batch
size 1024, and a multi-step scheduler where the learning rate is divided by 10 at epochs
30, 60 and 80. The epoch out of the 90 ones with maximum validation top-1 accuracy
is considered as the final epoch. Doing 90 epochs took me about 18 hours on a single
A100-40GB GPU.

Pruning. At the end of the training phase, I prune (i.e. set to zero) p% of the remaining
weights of each convolutional layer, and p

2% of the final fully connected layer for a layerwise
method. For a global pruning method, I prune the same amount of weights but globally.
I save the mask and rewind the weights to their values after the first 5 epochs of the
dense network, and train for 85 remaining epochs. Section 3.5 discusses results obtained
by applying this pruning method once, while Section 7.2 discusses results relative to a

209

github.com/agonon/pathnorm_toolkit

Chapter E. Supplementary material for Chapter 7

varying number k of iterations corresponding to Figure E.2. This exactly corresponds to
the hyperparameters and pruning algorithm of the lottery ticket literature [Frankle et al.,
2021].

E.1.1 Details specific to Section 7.2
Details for Table 7.1. I estimate B = 2.6400001 by taking the maximum of the L∞

norms of the training images normalized for inference.
For Table 7.1, I consider ResNets. They have a single max-pooling layer of kernel size

3 × 3 so that K = 9. The depth is D = 3 + # basic blocks × # conv per basic block,
where 3 accounts for the conv1 layer, the average-pooling layer, the fc layer, and the rest
accounts for all the convolutional layers in the basic blocks. Note that the average-pooling
layer can be incorporated into the next fc layer as it only contains identity neurons, see
the paragraph "Improving Theorem 4.4.1" right after Theorem 4.4.1, so we can actually
consider D = 2 + # basic blocks×# conv per basic block. Table E.1 details the relevant
values related to basic blocks.

Table E.1: Number of basic blocks, of convolutional layer per basic blocks and associated
D for ResNets [He et al., 2016, Table 1].

ResNet 18 34 50 101 152
basic blocks 8 16 33 50

conv per basic block 2 3
D 18 34 50 101 152

Pretrained ResNets. The PyTorch pretrained weights that have been selected are the
ones with the best performance: ResNetX_Weights.IMAGENET1K_V1 for ResNets 18 and 34,
and ResNetX_Weights.IMAGENET1K_V2 otherwise.

Choice of γ > 0 for Theorem 4.1.2. In Equation (4.14), note that there is a trade-off
when choosing γ > 0. Indeed, the first term of the right-hand side is non-decreasing
with γ while the second one is non-increasing. The first term is simply the proportion of
datapoints that are not correctly classified with a margin at least equal to γ. Defining the
margin of input i on parameters θ to be Rθ(Xi)Yi

−arg maxc̸=Yi
Rθ(Xi)c, this means that

the first term is (approximately) equal to q if γ = γ(q) is the q-quantile of the distribution
of the margins over the training set.

Note that since the second term in Equation (4.14) is of order 1/
√
n, it would be

desirable to choose the 1/
√
n-quantile (up to a constant) for γ. However, this is not

possible in practice as soon as the training top-1 accuracy is too large compared to 1/
√
n

(eg. on ImageNet). Indeed, if the training top-1 error is equal to e ∈ [0, 1], then at least
a proportion e of the data margins should be negative1 so that any q-quantile with q < e
is negative and cannot be considered for Theorem 4.1.2

The distribution of the margins on the training set of ImageNet can be found in
Figure E.1. The maximum training margin is roughly of size 30, which is insufficient to

1A data margin is negative if and only if it is misclassified.

210

E.1. Details on the experiments

30 20 10 0 10 20 30
0

20000

40000

60000

80000

resnet18, train top 1=0.79
resnet34, train top 1=0.85
resnet50, train top 1=0.91
resnet101, train top 1=0.94

30 20 10 0 10 20 30
0

20000

40000

60000

80000

resnet18, train top 1=0.79
resnet34, train top 1=0.85
resnet50, train top 1=0.91
resnet101, train top 1=0.94
resnet152, train top 1=0.95

Figure E.1: Distribution of the margins on the training set of ImageNet, with the pre-
trained ResNets available on PyTorch.

compensate the size of the ℓ1-path-norm of pretrained ResNets reported in Table 7.2. For
γ > 30, the first term of the right-hand side of Theorem 4.1.2 is greater than one, so that
the bound is not informative. This shows that there is no possible choice for γ > 0 that
makes the bound informative on these pretrained ResNets. Table E.2 reports a quantile
for these pretrained ResNets.

Table E.2: The q-quantile γ(q) for q = 1
3e+ 2

3 , with e being the top-1 error, on ImageNet,
of pretrained ResNets available on PyTorch.

ResNet 18 34 50 101 152
γ(q) 5.0 5.6 4.2 5.6 5.8

Details for increasing the train size. Instead of training on 99% of ImageNet (n =
1268355), I trained a ResNet18 on n/2k samples drawn at random, for 1 ⩽ k ⩽ 5. For
each given k, the results are averaged over 3 seeds. The hyperparameters are the same
as for sparse networks (except that I do not perform any pruning here): 90 epochs etc.
Results are in Figure E.3.

E.1.2 Details specific to Section 3.5
Random rescaling. Consider a pair of consecutive convolutional layers in the same
basic block of the ResNet18 architecture, for instance the ones of the first basic block:
model.layer1[0].conv1 and model.layer1[0].conv2 in PyTorch, with model being
the ResNet18. Denote by C the number of output channels of the first convolutional
layer, which is also the number of input channels of the second one. For each channel
c ∈ J1, CK, I choose uniformly at random a rescaling factor λ ∈ {1, 128, 4096} and multiply
the output channel c of the first convolutional layer by λ, and divide the input channel c
of the second convolutional layer by λ. In order to preserve the input-output relationship,
I also multiply by λ the running mean and the bias of the batch normalization layer that

211

Chapter E. Supplementary material for Chapter 7

0 20 40 60 80
Epoch

1017

1019

1021

1023

1025

1027

1029

L1
 p

at
h-

no
rm

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 20 40 60 80
Epoch

10 1

100

101

102

103

L2
 p

at
h-

no
rm

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 20 40 60 80
Epoch

10 6

10 5

L4
 p

at
h-

no
rm

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 20 40 60 80
Epoch

12

10

8

6

4

2

0

2

4

To
p

1
Ge

ne
ra

liz
at

io
n

Er
ro

r

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 20 40 60 80
Epoch

0

10

20

30

40

50

60

70

Tr
ai

n
To

p
1

Ac
cu

ra
cy

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0 20 40 60 80
Epoch

10

20

30

40

50

60

70

Te
st

 To
p

1
Ac

cu
ra

cy

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure E.2: ℓq-path-norm (q = 1, 2, 4), test top-1 accuracy, training top-1 accuracy, and
the top-1 generalization error (difference between test top-1 and train top-1) during the
training of a ResNet18 on ImageNet. The pruning iteration is indicated in legend, with 0
corresponding to the dense network. The color also indicates the degree of sparsity: from
dense (black) to extremely sparse (yellow).

212

E.1. Details on the experiments

0 20 40 60 80
Epoch

1027

1028

1029

1030

1031

L1
 p

at
h-

no
rm

1/32
1/16
1/8
1/4
1/2

0 20 40 60 80
Epoch

0

5

10

15

20

25

30

Ge
ne

ra
liz

at
io

n
er

ro
r f

or
 to

p-
1

ac
cu

ra
cy

 (%
)

1/32
1/16
1/8
1/4
1/2

0 20 40 60 80
Epoch

0.5

0.0

0.5

1.0

1.5

2.0

Ge
ne

ra
liz

at
io

n
er

ro
r f

or
 th

e
cr

os
s-

en
tro

py
 lo

ss

1/32
1/16
1/8
1/4
1/2

Figure E.3: ℓ1-path-norm, and empirical generalization errors for both the top-1 accuracy
and the cross-entropy during the training of a ResNet18 on a subset of the training
images of ImageNet. The legend indicates the size of the subset considered, e.g., 1/m
corresponds to 1/m of 99% of ImageNet, leaving the other 1% out for validation. The
color also indicates the size of the subset: from small (black) to large (yellow).

213

Chapter E. Supplementary material for Chapter 7

is in between (model.layer1[0].bn1 in the previous example). Here is an illustrative
Python code (that should be applied to the correct layer weights as described above):

1 factors = np.array ([1, 128, 4096])
2

3 out_channels1 , _, _, _ = weights_conv1 .shape
4

5 for out in range(out_channels1):
6 factor = np. random . choice (factors)
7 weights_conv1 [out , :, :, :] *= factor
8 weights_conv2 [:, out , :, :] /= factor
9 running_mean [out] *= factor

10 bias[out] *= factor

E.2 Existing evaluations of the path-norms in the lit-
erature

I could not find reported numerical values of the path-norm except for toy examples [Dz-
iugaite, 2018, Furusho, 2020, Zheng et al., 2019]. The details are given below. Remember
also that before Theorem 3.1.1, there were no known formula to compute the path-norm
on modern networks (previous formulas were false if directly extended in the presence of
max-pooling neurons).

Details on previous numerical evaluations of path-norms. In Dziugaite [2018,
Section 2.9.1] is reported numerical evaluations after 5 epochs of SGD on a one hidden
layer network trained on a binary variant of MNIST. Furusho [2020, Figure 9 and Section
3.3.1] deals with 1d regression with 5 layers and 100 width. Experiments in Zheng et al.
[2019] are on MNIST. Note that it is not clear whether the path-norm used in Zheng et al.
[2019] corresponds to the one defined in Definition 2.3.3. Indeed, the references given in
Zheng et al. [2019] for the definition of the path-norm are both Neyshabur et al. [2015]
and Neyshabur et al. [2017], but these two papers have two different definitions of the
path-norm. The one in Neyshabur et al. [2015] corresponds to the norm of the path-lifting
as defined in Definition 2.3.3 (but in simpler settings: no pooling etc.), while the one in
Neyshabur et al. [2017] corresponds to the latter divided by the margin of the estimator.

For completeness, let me also mention that it is reported in Dziugaite et al. [2020],
Jiang et al. [2020] whether the path-norm correlates with the empirical generalization
error or not, but there is no report of numerical values of the path-norm. In Neyshabur
et al. [2017] are reported the quotient of path-norms with margins, but not the path-norms
alone.

214

	Introduction
	Why ReLU neural networks?
	ReLU Neural networks and their piecewise affine structure
	ReLU Neural networks and their symmetries

	Outline
	List of Publications

	Fundamentals of (, A)
	Layered fully-connected ReLU neural networks (LFCN)
	Defining a comprehensive neural network model
	Path-lifting and path-activations: formal definitions
	Main properties of the path-lifting and path-activations
	Capturing the rescaling symmetries
	Capturing the piecewise affine structure
	Proofs of the main properties

	Conclusion

	Lipschitz properties and consequence for pruning
	Mixed path-norms and their efficient computation
	Normalized parameters: when mixed path-norms coincide with parameter norms
	Lipschitzness in x
	Main result
	Comparison with bounds directly expressed in terms of

	Lipschitzness in
	Main Result
	Comparison with bounds directly expressed in terms of .
	Computation of the 1-path-metric in two forward-passes.
	Proof of thm:LipsParam

	A first application: pruning
	Pruning method based on the path-lifting
	Experiments

	Conclusion

	Generalization with path-norm
	Supervised learning, generalization bounds, Rademacher complexity
	The goal is to minimize the expected risk
	In practice: empirical risk minimization (ERM)
	The Rademacher complexity bounds the performance of ERM
	Cases where the Rademacher complexity is too large

	Path-norm as a complexity measure
	Path-norm Rademacher bounds via covering numbers
	Main result
	Dudley's integral
	Bounding covering numbers in the path-lifting space
	Proof of the main result, thm:RademacherCovering
	Discussion on thm:RademacherCovering

	Path-norm Rademacher bounds via peeling
	New contraction and peeling lemmas
	Main result

	Conclusion

	Efficient inference with Kronecker-sparse matrices
	Background on Kronecker-sparse matrices
	Generic algorithm for Kronecker-sparse matrix multiplication
	Baseline GPU implementations

	Memory accesses in baseline implementations
	New CUDA kernel with reduced memory transfers
	Benchmarking the multiplication with a Kronecker-sparse matrix
	Broader implications for neural networks: accelerating inference
	Conclusion

	Approximation guarantees for quantized networks
	Approximation by quantized neural networks
	Controlling the quantization error
	Application to Sobolev functions
	Approximation speed of quantized neural networks

	Fundamental limits of neural network approximation
	Notion of -encodability
	The encoding speed as a universal upper bound for approximation speeds
	Examples of -encodable approximation families

	Conclusion

	Perspectives
	On extending to DAG networks results for LFCNs based on the path-lifting
	Identifiability
	Training dynamics

	On challenging the promises of path-norm-based bounds in practice
	Experiments
	Open research directions provided by this thesis

	On adapting the dominant statistical learning theory to modern practices
	On applying the Rademacher bound in practice
	On subtle practical impacts of the data distribution

	On extending to other settings the success of the new kernel for Kronecker-sparse matrix multiplication
	On designing efficient Kronecker-sparse neural networks
	On obtaining the same gains in half-precision
	Additional challenges raised by the new kernel

	On challenges in approximation guarantees for quantized networks

	Bibliography
	Supplemental material for chap:Definitions
	Supplemental material for chap:Lipschitz
	Proof of lem:AlgNormalization
	Proof of thm:Phi=MinRescalings
	Comparison of the 1-path-metric and -metric on the parameters

	Supplemental material for chap:Generalization
	Proof of lem:RademacherDudley
	Proof of thm:RademacherCovering, with possible weight-sharing
	Motivation for weight-sharing
	Formal definition of weight-sharing
	thm:CoveringNumber, allowing for possible weight-sharing
	Rademacher bound, allowing for possible weight-sharing

	Relevant (and apparently new) contraction lemmas for thm:RademacherPeeling
	Peeling argument for thm:RademacherPeeling
	Proof of thm:RademacherPeeling
	The cross-entropy loss is Lipschitz continuous

	Supplemental material for chap:Kronecker
	Related works
	Experiments
	Details on the experiments
	Estimating the time for memory rewritings in the bmm implementation (sec:memory-transfer)
	Time spent in linear layers in vision transformers
	Additional results in half-precision

	Details on perfect shuffle permutations
	Implementations
	Details on baseline GPU implementations
	Details on the kernel implementation

	Supplementary material for chap:Conclusion
	Details on the experiments
	Details specific to sec:ExperimentPathNorm
	Details specific to sec:Pruning

	Existing evaluations of the path-norms in the literature

