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4.1 Workflow presenting the approach followed in this chapter. (A) In-
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into their investor communities and patents into their patent clusters on
the investor-patents bipartite network. (G) The biadjacency matrix of the
investor community-patent cluster graph is extracted to quantitatively vi-
sualize the interaction patterns and compute network structuremetrics. (H)
Network structure metrics (connectance, nestedness, modularity) are com-
puted using the biadjacency matrix to study the topology of the network
and the properties deriving from it. . . . . . . . . . . . . . . . . . . . . . . 131

4.2 Investor communities and patent clusters. A. Pruned investor simi-
larity network. Each node corresponds to an investor, and its color corre-
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4.3 The investor community-patent cluster bipartite network. Square
nodes represent investor communities and circle nodes patent clusters. Node
sizes are a function of the node degrees. Link weights are normalized for
each investor community by the maximum edge weight of the investor
community, and the edge width shown is the logarithm of the normal-
ized weight. A brief description of investor communities is provided under
each investor community label, and a more extensive description is avail-
able in Table 4.2. Nodes were positioned following the 4 modules obtained
by the bipartite modularity algorithm, and node label colors correspond to
the module they were allocated to. Patent clusters are colored following a
manual allocation of the high-level technological field they deal with (red
for Health Care, blue for Information Technology, green for Manufacturing). 133
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the network. (A) Statistical relevance test for the nestedness ρm (red verti-
cal line) of the investor community-patent cluster network compared with
5 000 iterations of the null model (blue histogram) described in the Ap-
pendix. We see that our network is significantly more nested compared
to networks generated by the null model. (B) Statistical relevance test for
the modularity Qm (green vertical line) of the investor community-patent
cluster network compared with 5 000 iterations of the null model (blue his-
togram). We see that our network is significantly less modular compared to
networks generated by the null model. (C) Binarized representation of the
biadjacency matrix. Investor communities correspond to the rows, patent
clusters to the columns. The rows and columns are reordered by descending
marginals (sums of the value of the row or column), yielding an upper-left
packed matrix. The nested structure is displayed, with more specialist in-
vestor communities (bottom rows of the matrix) mostly interacting with a
subset of the patent clusters the generalist species (top rows of the matrix)
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4.5 Defining the network of investors and patents. Investors are repre-
sented by a blue node and their investments by a link (grey lines) to the
startup nodes (grey dots). The nodes of the startups are linked (dark grey
lines) to the patents they own represented by red nodes. By transitivity, the
investors are linked to these patents (yellow lines). The network is defined
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4.6 Complementary Cumulative Distribution Function (CCDF, in red)
of the degree distribution of the bipartite investor community-patent
cluster network. ω(k) is the degree of node k. The histogram shows the
degree distribution, and the inset heatmap shows the most likely distribu-
tion when comparing pairs of candidate distributions (P. stands for Power
Law, T. for Truncated Power Law, L. for Lognormal, S. for Stretched Expo-
nential). All non-zero values shown are statistically significant values (i.e.
p ≤ 0.05), and the cells of the matrix correspond to the value of the R pa-
rameter. Positive values mean that the row candidate degree distribution is
more likely than the column candidate degree distribution. The significance
analysis was performed using the powerlaw package [8]. . . . . . . . . . . 140

4.7 Comparison with ecological networks for the normalized modular-
ity and the connectance. Ecological networks were extracted from the
Web of Life database (https://www.web-of-life.es/), and only
networks with 20 species or more were kept for this analysis. (A) Normal-
ized modularityQ. The normalized modularity of the investor community-
patent cluster network (Qm, magenta vertical line) is compared to the nor-
malizedmodularity of ecological networks (blue histogram). (B)Connectance
C . The connectance of the investor community-patent cluster network (Cm,
magenta vertical line) is compared to the connectance of ecological net-
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4.8 Bipartite motif analysis of the investor community-patent cluster
network. Top : frequencies of bipartite network motifs found on the in-
vestor community-patent cluster network. Motif frequencies were com-
puted using the bmotif package [272]. Bottom : shape corresponding to
each motif ID (taken from [272]). Comparisons with the motif frequencies
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Summaries

Short summary

Title : Complex networks in entrepreneurial ecosystems : clustering methodologies and
topological structure

Venture capital, through choices in allocating financial capital, has become an important
driver of emerging technologies. The impact of venture capital funding on innovation has
been evidenced, and recent works have started to more specifically study the resilience
of VC-backed innovation, a matter of particular relevance in a world where crises have
become more and more frequent. Furthermore, innovation networks (modeled through
patent data) on the one hand and venture capital networks on the other have been the
subject of quantitative investigation, but there has been no endeavor to investigate the
structure of the network linking venture capital to the technologies they fund. To study
its topological structure, we perform large-scale analysis of financial, startup and patent
datasets obtained through commercial databases.

The network linking investors and patents is bipartite, with the two node classes be-
ing the investors and the patents. This network is very large and sparse (roughly 240 000
investors and 870 000 patents), making its analysis computationally difficult, and does not
take into account the fact that investors belong to distinct types and patents to technologi-
cal categories. We remediate this by regrouping homogeneous nodes in each class (clusters)
in order to create a coarser-grained view of the network, resulting in a much smaller and
denser network and facilitating the analysis by studying the behaviors of groups of similar
actors rather than individuals (network of observations at the species level rather than at
the individual level).

In the first part, we devised a novel clustering method for venture capital investors
in entrepreneurial ecosystems. We computed 5 characteristic distributions for each indi-
vidual investors based on their investments, and computed the pairwise similarity for all
investors. We then detected clusters based on the similarity graph linking all investors,
uncovering highly interpretable homogeneous investor clusters heterogeneous in size. We
showed that this approach was robust to feature decimation, yielding similar high-level
clusters when clustering only on a subset of the 5 characteristic distributions, suggesting
underlying complex investment patterns. These results provided us with insights into the
emergence of new actors of venture capital following events such as the 2008 financial crisis
or the 2013 venture frenzy.

In the second part, since patent data is mostly textual information, we presented a
topic modeling method that automatically extracts groups of thematically similar docu-
ments from a corpus of text documents. To validate it, we tested it on a smaller corpus of
documents similarly-structured to patents : scientific articles. We used natural language
processing models to automatically extract research topics from the titles and abstracts of
the articles and analyzed the results.

In the third part, we presented a study of the startup-led innovation funding ecosys-
tem. We built a bipartite network directly linking investors to patents owned by the star-
tups they fund. We leveraged the approaches previously described to cluster investor nodes
and patent nodes, creating a coarser-grained view of the network. Using structural metrics
originally developed to study bipartite ecological networks, we found this network to be

xv



topologically mutualistic, with a heterogeneous degree distribution, a high nestedness and
a low modularity. This specific structure is due to the prevalence of links between general-
ist investors and general purpose technologies i.e. technologies with a broad spectrum of
applications. This network structure implies non-linear response to crises, with the system
weakly affected by negative events affecting specialist nodes and strongly affected by neg-
ative events targeting generalist nodes.

Keywords : clustering, complex networks, complex systems, entrepreneurial ecosystems,
entrepreneurship, innovation, scientometry, startups, venture capital

Résumé succinct

Titre : Réseaux complexes dans les écosystèmes entrepreneuriaux : méthodes de partition-
nements de données et structure topologique

Le capital-risque, par ses choix d’allocation de capital financier, est devenu un moteur
important des technologies émergentes. L’impact du financement par le capital-risque sur
l’innovation et la résilience de l’innovation soutenue par le capital-risque ont été récemment
étudiés, une question particulièrement pertinente dans un monde où les crises sont de plus
en plus fréquentes. De plus, les réseaux d’innovation d’une part et les réseaux de capital-
risque d’autre part ont fait l’objet d’études quantitatives, mais la structure du réseau reliant
le capital-risque aux technologies qu’il finance n’a jamais été étudiée. Afin d’étudier sa
structure topologique, nous effectuons une analyse à grande échelle de données financières,
de startups et de brevets obtenues à partir de bases de données commerciales.

Le réseau reliant les investisseurs et les brevets est bipartite, les deux classes de noeuds
étant les investisseurs et les brevets. Ce réseau est grand et éparse, rendant son analyse com-
putationellement difficile, et ne tient pas compte du fait que les investisseurs appartiennent
à des types distincts et les brevets à des catégories technologiques. Nous y remédions en
créant des groupes de noeuds homogènes dans chaque classe (clusters) afin de créer un
réseau à plus gros grains, permettant de réduire la taille et de densifier le réseau.

Dans la première partie, nous présentons une nouvelle méthode de clustering pour
les investisseurs en capital-risque dans les écosystèmes entrepreneuriaux. Nous calcu-
lons 5 distributions caractéristiques pour chaque investisseur individuel basées sur leurs
investissements. En utilisant le graphe de similarité reliant tous les investisseurs, nous
détectons des communautés d’investisseurs homogènes hautement interprétables. Nous
montrons la robustesse de cette approche à la décimation des caractéristiques, suggérant
des schémas d’investissement complexes sous-jacents. Ces résultats permettent également
l’observation de l’émergence de nouveaux acteurs du capital-risque à la suite d’événements
spécifiques et identifiables.

Dans la deuxième partie, du fait de la nature textuelle des données de brevets que
nous souhaitons regrouper, nous présentons une méthode de topic modeling permettant
l’extraction automatique de groupes de documents thématiquement similaires à partir d’un
corpus de documents textuels. Pour la valider, nous l’appliquons à un corpus de plus petite
taille composé de documents présentant une structure similaire à celle des brevets : des
articles scientifiques. Nous utilisons des modèles de traitement du langage naturel pour ex-
traire automatiquement les thèmes de recherche à partir des titres et résumés des articles,



et analysons les résultats.
Dans la troisième partie, nous présentons une étude de l’écosystème de financement

de l’innovation menée par les startups. Nous construisons un réseau bipartite reliant di-
rectement les investisseurs aux brevets détenus par les startups qu’ils financent. Nous nous
sommes appuyés sur les approches décrites précédemment pour regrouper les noeuds des
investisseurs et les noeuds des brevets, créant ainsi un réseau à plus gros grain. En utilisant
des métriques structurelles développées à l’origine pour étudier les réseaux bipartites en
écologie, nous avons constaté que ce réseau est topologiquement mutualiste, avec une dis-
tribution des degrés hétérogène, une forte imbrication et une faible modularité. Cette struc-
ture spécifique est due à la prévalence des liens entre investisseurs généralistes et technolo-
gies génériques, c’est-à-dire des technologies ayant un large spectre d’applications. Cette
structure de réseau implique une réponse non linéaire aux crises, avec un système faible-
ment affecté par les événements délétères touchant les noeuds spécialistes et fortement
affecté par les événements négatifs ciblant les noeuds généralistes.

Mots-clés : capital-risque, clustering, écosystèmes entrepreneuriaux, entrepreneuriat, in-
novation, réseaux complexes, scientométrie, startups, systèmes complexes

Résumé substantiel

Les startups représentent aujourd’hui un moteur important d’innovation technologique,
d’emploi et de croissance économique [87]. On peut par exemple citer le succès mas-
sif récemment obtenu par BioNTech, une startup basée à Mayence, en Allemagne [208].
L’entreprise, fondée en 2008, a participé au développement des vaccins Covid-19, perme-
ttant de sauver environ six millions de vies [291]. La ville de Mayence était à l’époque
confrontée à de graves difficultés économiques, menant à un taux de chômage élevé et
une dette municipale importante. Le succès de BioNTech a donné un nouveau souffle à
l’économie locale, effaçant la dette de la ville grâce à des taxes exceptionnelles et permet-
tant une réduction des taux d’imposition, attirant ainsi d’autres entreprises dans la région
et suscitant la création d’une nouvelle génération de startups [232].

Définir précisément la notion de startup n’est pas simple [95, 245, 71]. Celle-ci est
cependant intrinsèquement liée à l’expérimentation de nouvelles activités dans desmarchés
émergents où l’évaluation du risque est complexe, couplée à la recherche d’un modèle com-
mercial industrialisable et rentable à fort potentiel de croissance1. Elle diffère donc fonda-
mentalement des entreprises traditionnelles en ce sens que, là où les entreprises classiques
optimisent un modèle commercial existant afin de maximiser les profits et de croître or-
ganiquement, les startups expérimentent plutôt différents modèles commerciaux à travers
le test de marchés potentiels, évoluant de manière itérative au cours de ce processus jusqu’à
trouver une adéquation entre leur produit et leur marché cible. La nature innovante de cette
approche s’accompagne donc d’une grande incertitude [95], avec une rentabilité souvent
atteinte plusieurs années après la création de l’entreprise. Ce mode de développement par-
ticulier se distingue ainsi des modèles traditionnels de création d’entreprise, dans lesquels
l’évaluation des risques est relativement simple et systématisée. Cette différence a de fortes
implications notamment en termes de financement des nouvelles entreprises.

1https://bpifrance-creation.fr/moment-de-vie/quest-ce-quune-startup

https://bpifrance-creation.fr/moment-de-vie/quest-ce-quune-startup


Les entreprises traditionnelles avec un modèle économique bien établi peuvent par ex-
emple être financées au travers de fonds privés ou de prêts bancaires dans un premier
temps, leur permettant ainsi d’amorcer leur activité jusqu’à ce qu’elle commence à générer
des revenus en un temps relativement court. Les startups, en revanche, doivent obtenir
un financement externe afin de financer leur croissance et leur développement pendant
plusieurs années du fait des fortes incertitudes technologiques ou de marché qui les car-
actérisent. Ce type de financement spécifique est généralement fourni par des sociétés de
capital-risque ou des particuliers qui apportent à une entreprise à haut risque et à haut ren-
dement les fonds nécessaires pour soutenir sa croissance en échange de parts de propriété
de l’entreprise. La notion d’entrepreneuriat, tout comme la notion de startup, peut ainsi
également être défini de différentes façons [96], l’un de ses principes fondamentaux étant
« la poursuite d’une opportunité au-delà des ressources contrôlées » [281]. Conformément
à cette définition, nous nous concentrons dans le cadre de cette thèse sur l’entrepreneuriat
dans le contexte de startups soutenues par le capital-risque, où les entreprises à fort poten-
tiel mobilisent des ressources extérieures par le biais de financements de capital-risque.

Dans ce contexte, des approches systèmes complexes ont été appliquées aux écosys-
tèmes entrepreneuriaux [259, 148, 212, 187], les études sur l’entrepreneuriat bénéficiant
de l’incorporation de la myriade de facteurs qui affectent les écosystèmes entrepreneuri-
aux. Cette constatation a conduit les chercheurs à essayer d’intégrer un plus large éventail
de facteurs dans leurs analyses afin de mieux comprendre les mécanismes sous-jacents à
l’entrepreneuriat (tels que les facteurs économiques, socioculturels ou psychologiques [293]).
Ces efforts, cependant, sont restés principalement théoriques ou résultent souvent d’études
sur des échantillons restreints et spécifiques, appelant à des travaux supplémentaires pour
les confronter à des données expérimentales afin de les transformer en conclusions exploita-
bles dans un contexte plus général. Des avancées dans ce sens ont récemment été réalisées,
conduisant notamment à la naissance de la Science des startups [209]. Bien qu’il ne s’agisse
pas d’une rupture radicale avec les méthodes d’analyse existantes dans la littérature en-
trepreneuriale, cela représente un changement de paradigme significatif par rapport à la
littérature économique existante, rappelant celui amorcé par la Science de la science dans
le domaine de la métascience [110] : des perspectives nouvelles avec des applications di-
rectes peuvent être obtenues en étudiant l’entrepreneuriat de manière systémique à travers
l’analyse de bases de données massives. Cette discipline requiert une méthodologie, des
concepts et des outils spécifiques basés sur des concepts théoriques inspirés de disciplines
connexes telles que l’économie, l’informatique, la gestion ou encore la psychologie cou-
plés à des analyses quantitatives à grande échelle d’ensembles de données financières, de
startups et de brevets obtenus à travers de bases de données commerciales existantes [85,
249].

Des analyses de réseaux complexes ont ainsi été appliquées à ces ensembles de données,
avec par exemple l’analyse de réseaux d’interactions entre investisseurs ou entre brevets,
mais un ensemble de réseaux liant entre elles ces différentes composantes n’ont –à notre
connaissance– jamais été étudiés, notamment le réseau reliant les investisseurs de capital-
risque aux technologies qu’ils financent. La caractérisation de la structure topologique de
ces réseaux permettrait ainsi de bénéficier des résultats obtenus dans d’autres contextes
tels que l’écologie ou d’autres systèmes socio-économiques où les liens entre la structure
du réseau et ses conséquences sur le système considéré ont été étudiés, suggérant ainsi un
ensemble de propriétés du système pour une structure donnée. L’analyse quantitative des



réseaux entrepreneuriaux présente cependant plusieurs difficultés : leur taille importante
présente des contraintes computationnelles, leur forte éparsité requiert des outils spéci-
fiques et l’analyse des données à l’état brut ne prend pas en compte l’appartenance des
noeuds individuels à des espèces d’investisseurs et de technologies définies. Pour pallier
cela, nous proposons de grouper les noeuds individuels de chaque classe en groupes ho-
mogènes (clusters) afin de créer une représentation à plus gros grain du réseau investisseurs-
brevets de taille plus faible et de densité plus importante, permettant ainsi la caractérisation
à l’échelle du réseau. Ce regroupement utilise les caractéristiques intrinsèques à la nature
des noeuds, et différentes méthodologies sont ainsi utilisées pour regrouper les investis-
seurs similaires et les brevets similaires.

Dans la première partie, nous avons conçu une nouvelle méthode de partitionnement
des investisseurs en capital-risque. Nous calculons des distributions caractéristiques pour
chaque investisseur individuel suivant ses investissements, et nous mesurons la similarité
par paire entre tous les investisseurs. Nous détectons ensuite des communautés basées sur
des relations de similarité entre investisseurs. Nous avons montré que cette méthode per-
mettait de découvrir des clusters d’investisseurs homogènes de taille hétérogène très inter-
prétables. En outre, nous avons égalementmontré que cette approche était robuste à la déci-
mation des caractéristiques lors des calculs de similarité, avec des clusters similaires obtenus
en prenant en compte l’intégralité des caractéristiques d’investisseurs ou en prenant sim-
plement en compte une partie d’entre elles. Ces résultats suggèrent l’existence de com-
portements d’investissement complexes sous-jacents, permettant ainsi l’identification de
communautés d’investisseurs spécialisées sectoriellement (par exemple dans le domaine de
la santé), géographiquement (ciblant très majoritairement certains pays tels que la Chine)
ou encore temporellement sans que ces facteurs ne soient pris en compte dans la carac-
térisation des investisseurs individuels. L’analyse de ces résultats nous a également permis
de comprendre l’émergence de nouveaux acteurs du capital-risque à la suite d’événements
spécifiques tels que la crise financière de 2008 ou la frénésie du capital-risque de 2013.
En outre, cette approche de partitionnement fournit un outil méthodologique solide pour
pallier la rareté des interactions et l’hétérogénéité des noeuds dans les réseaux de capital-
risque, représentant ainsi une étape importante dans l’étude de leur dynamique.

Dans la deuxième partie, du fait de la nature textuelle des données de brevets, nous
avons présenté une méthode de modélisation thématique qui crée automatiquement des
groupes de documents thématiquement similaires à partir d’un corpus complet. Cette
méthodologie se base sur des avancées récentes en terme d’apprentissage machine, notam-
ment en traitement automatique du langage naturel. En appliquant des modèles de langage
basés sur l’architecture Transformer spécifiquement entraînés sur des corpora en lien avec
la nature des données à traiter (par exemple littérature scientifique ou brevets dans nos cas
d’usage), il est possible d’obtenir, pour chaque document, une représentation vectorielle
rendant compte du contenu textuel de chaque document. Cette représentation vectorielle
permet ainsi d’appliquer une étape de réduction de dimensionnalité suivie d’un algorithme
de clustering basé sur la densité dans l’espace vectoriel, extrayant ainsi automatiquement
des clusters de documents traitant de thèmes similaires. Afin de valider cette méthodolo-
gie, nous l’avons testée sur un corpus de documents relativement restreint présentant une
structure similaire à celle des brevets : les articles scientifiques. Nous avons extrait un cor-
pus d’articles de journaux sur la bioinspiration et la biomimétique, un sous-ensemble de la
littérature hautement interdisciplinaire. A travers la méthode de modélisation thématique,



nous avons extrait automatiquement les sujets de recherche contenus dans l’ensemble du
corpus à partir des titres et des abstracts des articles de chacun des documents. Nous avons
caractérisé et présenté chacun des thèmes de recherche découverts automatiquement dans
chacune des sources à travers à la fois une étude manuelle et une étude quantitative, et
analysé leurs intersections entre les différentes sources. Nous avons également examiné
les tendances thématiques de publication en étudiant l’évolution du nombre d’articles dans
chacun des thèmes de recherche. Nous avons ainsi obtenu un aperçu de l’état de l’art de
la littérature sur la bioinspiration et la biomimétique, et validé la qualité de la méthode de
modélisation thématique sur un corpus de taille modérée à travers une étude manuelle et
quantitative en préparation de son application sur l’ensemble de données de brevets.

Dans la troisième partie, nous avons présenté une étude de l’écosystème du finance-
ment de l’innovation par les startups. Nous avons construit un réseau bipartite reliant
directement les investisseurs aux brevets détenus par les startups qu’ils financent. Nous
nous sommes appuyés sur les approches décrites précédemment pour détecter les com-
munautés d’investisseurs et utiliser la modélisation thématique pour regrouper les brevets,
créant ainsi une représentation du réseau à plus gros grain, réduisant sa taille, son éparsité
et augmentant l’homogénéité des noeuds. En utilisant des mesures structurelles dévelop-
pées à l’origine pour étudier les réseaux écologiques bipartites, nous avons pu caractériser
sa structure topologique et la relier à des structures communément étudiées en écologie : ce
réseau est topologiquement mutualiste, présentant une distribution des degrés hétérogène,
une forte imbrication et une faible modularité. La présence de cette structure spécifique
dans le réseau investisseur-brevets, avec notamment un réseau significativement imbriqué,
peut être expliquée par la prévalence de liens entre investisseurs généralistes et technolo-
gies à usage général, c’est-à-dire des technologies ayant un large spectre d’applications.
L’analyse des réseaux mutualistes en écologie a montré que cette classe de réseaux présente
une réponse non-linéaire aux crises (extinctions ou attritions), le système étant faiblement
affecté par les événements négatifs touchant les noeuds spécialisés et fortement affecté par
les événements négatifs ciblant les noeuds généralistes.



Introduction

Startups have become an important driver of technological innovation, employment and
economic growth [87], attempting to solve a number of today’s most challenging problems.
One recent example is the massive success achieved by BioNTech, a startup based in Mainz,
Germany [208]. The company, founded in 2008, was involved in the development of Covid-
19 vaccines, saving an estimated six million lives [291]. At a time where the city of Mainz
was faced with severe economic challenges, giving rise to unemployment and significant
municipal debt, the success of BioNTech proved to be a strong agent of change : it breathed
new life into the local economy, clearing the city’s debt through windfall taxes and enabling
a reduction of tax rates which attracted other businesses to the region and sparked the
creation of a new generation of startups [232].

Precisely defining what constitutes a startup has proven to be challenging [95, 245,
71]. The notion of startup, however, can intrinsically be linked to the experimentation of
new activities in emerging markets where assessing risk is difficult, seeking an industrial-
izable and profitable business model that allows for scalable growth2. It thus fundamentally
differs from traditional companies in that, where regular companies optimize an existing
business model in order to maximize profit and grow, startups instead experiment with
different business models through market testing, iteratively evolving in the process until
product-market fit is figured out. The innovative nature of this approach comes with high
uncertainty [95], with profitability often being achieved several years after the company has
been founded. This particular mode of development is markedly different from traditional
models of company creation where risk assessment is relatively straightforward.

This has strong implications, notably in terms of financing new activities. Traditional
companies that have an established business model can be financed by private funds or
bank loans to kick-start their business, which will be able to start generating revenue rel-
atively quickly. Startups, on the other hand, have to secure external funding to finance
their uncertain growth and development for several years. This specific type of funding
is generally provided by venture capital firms or angel investors that provide a high-risk
high-reward company with the required funds to sustain its growth in exchange for equity,
i.e. shares of ownership of the company.

Entrepreneurship can also be defined in a number of different ways [96], with one of
its central tenets being “the pursuit of opportunity beyond resources controlled” [281]. In
keeping with this definition, we will, in the course of this thesis, focus on entrepreneurship
in the context of venture-capital backed startups, where high-potential companies mobilize
outside resources through venture capital funding.

This “pursuit of opportunity beyond resources controlled” implies interactions between
startups and other relevant actors (such as investors, human capital, lawyers, academia, ad-
dressable markets and policymakers), naturally introducing the notion of “entrepreneurial
ecosystems” [278] which extends the ecological ecosystem concept to the entrepreneurial
context where interactions in a geographically-defined location (such as a regional unit)

2Translated from https://bpifrance-creation.fr/moment-de-vie/quest-ce-quune-startup
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are taken into account in order to characterize the potential of a region to foster startup-
led innovation [46].

In entrepreneurship, success is not the norm3, and cases such as the one of BioNTech
are rather few and far between. As is the case with a large number of socio-economic
systems, however, there is a strong non-linearity : a small number of young, high-growth
firms are responsible for a large share of the economic outcomes [87]. Understanding these
relatively new economic actors capable of quickly spurring significant growth and the cir-
cumstances that can help them succeed has thus attracted the attention of the scientific
community, with entrepreneurship research recently gaining considerable prominence in
leading management journals [321, 11].

This growing interest mostly comes from the economic andmanagement scientific com-
munities, but is increasingly attracting practitioners from varied disciplines. Machine learn-
ing methods, for instance [58, 114, 105], are now being used to predict startups’ future
outcomes [37], the end goal being the detection of successful ventures as early in a com-
pany’s lifecycle as possible. Even though these predictive models have achieved significant
progress and display promising results [248], there remains substantial room for improve-
ment [113] due to a fundamental characteristic of the system : entrepreneurship, as the
outcome of a large number of diverse interacting components [57], is complex [227], with
venture successes depending on a large number of intangibles [122]. This is a natural con-
sequence of the thousands of different agents (e.g. investors, startups or the human capital
that compose them) directly and indirectly interacting within entrepreneurial ecosystems.
Direct funding interactions between a company and a given investor in the investor-startup
bipartite network, for instance, can also give rise to indirect interactions such as driving in-
vestors away from competing organizations. From the investors’ point of view, improving
the performance of predictive models pertaining to entrepreneurship thus requires a finer
understanding of the complex relationships governing the environment startups evolve in.
From the public policy makers’ point of view, creating and supporting local entrepreneurial
ecosystems which have de facto become major components for economic growth requires
an understanding of the ingredients and relationships necessary for their success.

In this context, complex systems approaches have been applied to entrepreneurial ecosys-
tems [259, 148, 212, 187] but have gained relatively little traction, in particular in terms of
quantitative investigations. Entrepreneurship-related studies benefit from taking into ac-
count the myriad of factors that affect entrepreneurial ecosystem, effectively extending
the system-environment boundary. This realization has led researchers to continuously
try to incorporate a wider range of factors in their analyses in order to better understand
the drivers of entrepreneurship (such as economic, socio-cultural or psychological fac-
tors [293]). These efforts, however, have mainly been theoretical or result from studies on
small and specific samples, calling for further work that confronts them with experimental
data in order to translate them into actionable insights. Progress in this direction is being
made, recently leading to the birth of the so-called Science of Startups [209]. While it does
not represent a drastic departure from existing methods of analysis in entrepreneurship,
this represents a significant paradigm shift from the existing economic literature, reminis-

320% of new businesses fail in the first year following creation, and 50% in the five years according to the US Bureau of Labor
Statistics (https://www.bls.gov/bdm/us_age_naics_00_table7.txt)
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cent of the one pushed by the Science of Science in the field of metascience [110] : new
and powerful insights can be gained by systematically studying entrepreneurship through
massive data-based studies. This field of study requires specific methodology, concepts and
tools, drawing from and validating theoretical concepts drawn frommany other disciplines
such as economy, management or psychology leveraging the power of large-scale data.

Indeed, innovation economics argue that economic development is the result of the
diffusion of knowledge, innovation and entrepreneurship within an institutional environ-
ment of systems of innovation [78]. In this paradigm, entrepreneurship functions as an
open and complex system where the determinants of success are varied : personal factors,
government-related factors, education and training, access to finance, cultural factors and
economic factors all play a role in setting entrepreneurs up for success [322]. In a certain
way, this approach can be seen as trying to peer inside the economists’ “black box” [257]
where the process of innovation transforms the inputted resources into outputted prod-
ucts. Contrary to the – admittedly over-the-hill – view of [250], the connection between
economics and scientific and technological progress is not treated as “hopelessly obscure”,
but rather as a fundamental component of the creation process : the exogenous element of
science and technology flows into the black box, modifying the input-to-output ratio of the
system [9]. A perfect understanding of the direct and indirect dynamic interactions result-
ing from the introduction of new technologies is thus possible only when the complete set
of structural elements of the system into which new technologies are being introduced is
properly accounted for, i.e. when the structure of underlying relations connecting all com-
ponents of the system is taken into account [9]. In practice, this is only partly achievable
due to a number of technical limitations, both in terms ofmethods and access to the required
data; steps should – and have, to some extent – nevertheless be taken in that direction.

It is for instance well-known that the origin of many technological innovations devel-
oped by startups can be found in academic laboratories [226], where the process of tech-
nology transfer [313] brings technologies developed through fundamental research to ap-
plications. Indeed, the existence of fully disclosed, cutting-edge technologies represents
an externally-financed bedrock for companies to iterate upon in order to create products
that were previously out of technological reach. Disruptive waves of innovation [40] can
be traced back for centuries and tend to happen when a particular technological lock is
undone, such as portable electronics resulting from the development of lithium-ion bat-
teries [330]). Even a tool that now seems relatively trivial such as the first commercial
versions of the PageRank algorithm ubiquitously used by the general population through
the Google search engine finds its origin in a research program at Stanford University [45].
The algorithm in its applied version is the outcome of – at the time – recent research on
Web Search Engines and of decades of academic research in the fields of citation analy-
sis. This is one of the many examples of now-omnipresent products finding their origin in
academia. As [40] put it, “small, hungry organizations are good at agilely changing product
and market strategies”, making startups particularly suited to perform this task of technol-
ogy transfer : when facing the uncertainty of an ill-defined product and target market, as is
often the case in the first stages of pushing a technology from the laboratory to application,
agility and adaptability are vital and necessary skills [277].

Scientific discovery and innovation thus form a cohesive and mutually beneficial rela-
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tionship [305] : innovation through the application of these scientific advances will often
face strong challenges, and the feedback collected as innovators manage – or fail – to get
through these obstacles will feed academia with novel methods, tools and research ques-
tions, in turn leading to more potential applications. This feedback loop suggests that valu-
able insights into entrepreneurial dynamics could be gained through the analysis of scien-
tific production and its links with innovation, observable for instance through patent filings
and ownerships or human capital mobility between academia and industry. Although stud-
ies have analyzed the relationships between patents and articles [202, 150], the network of
technology transfer – modeled by the network connecting startups, patents and academic
publications – has not been subjected to direct, large-scale quantitative studies. The extent
to which startups in different sectors rely on academic production, for instance, is therefore
not well known, nor the manner in which the dynamics of academia percolate until the en-
trepreneurial sphere is reached. The study of entrepreneurship would thus benefit from a
quantitative interdisciplinary approach drawing concepts, methods and tools from a num-
ber of disciplines (such as economics, innovation, complex networks and data science) that
can yield novel and powerful insights complementary to the existing qualitative literature
on the topic.

This approach has proven fruitful in the study of other areas of economics : in eco-
nomic geography, for instance, the economic complexity approach [136] estimates the in-
novative capacity of geographical units based on their current assets. Using network-based
approaches on large product export databases, the breadth and depth of a region’s im-
plicit knowledge is quantified through its local production and characteristics related to
the products themselves. This embedded knowledge, in turn, has consequences on the re-
gion’s ability to acquire new knowledge and enter new industries, in line with Kauffman’s
adjacent possible [163], “a kind of shadow future, hovering on the edges of the present state
of things”. This characterization of the economic complexity of a region thus gives measur-
able and actionable insights 4 into how the development of specific products can bring in
new knowledge and helps estimate the possibilities and cost of bridging the gap between
the current knowhow the location possesses and new and more complex products, pro-
viding decisionmakers with information that helps match the region’s current production
capacities with the potential growth opportunities best suited for it.

In the context of entrepreneurial ecosystems, venture capital firms, which play a cru-
cial and well-defined role in fostering innovation, can provide companies with the means
to reach beyond the adjacent possible : as nascent companies developing breakthrough
technologies depend on outside financing during a large part of their early stages of re-
search and development, investors have a direct role in supporting emerging technologies.
Even though this role has recently been the subject of quantitative investigations[84, 145],
there is –to our knowledge– no explicit study of the structure of venture-backed innovation
as modeled by the network linking venture capital firms with the patents they indirectly
finance. Due to the informationally incomplete nature of investment decision-making pro-
cesses in a constantly and rapidly changing environment with relatively low legal regula-
tion [43], this network emerges in a largely self-organized manner. As pointed out by sev-
eral researchers on socio-economic systems [205, 184] and as has been extensively studied
using the complex network framework in other disciplines [199], the structural properties

4https://atlas.cid.harvard.edu/
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of a network have strong implications for the system’s robustness to exogenous events, but
this analysis has only been weakly applied in financial contexts. Given the increasing im-
portance of entrepreneurship in innovation, a better understanding of the venture-backed
innovation network’s weaknesses and strengths on a structural level is desirable. This gap
in the literature, however, is not necessarily surprising. First, the datasets allowing for
the construction and analysis of large-scale interactions in private markets are relatively
new compared to those in public markets [85], and their scale itself can prove a challenge
when applying direct analysis on the graphs resulting from the interactions they collect.
These representations give rise to specific bipartite network structures that are typically
very large and sparse with hundreds of thousands of nodes in interaction, making direct
applications of statistical methods technically challenging and sometimes sub-optimal [218]
due to the fact that structure metrics for large networks are not necessarily well-suited for
sparse representations 5.

Objectives

In the context of this thesis, we aim to take steps towards the study of entrepreneurial
ecosystems using a complex systems approach, developing appropriate tools in the process.
We address the following topics :

• building the networks : due to the availability of massive databases, large-scale inter-
action networks in entrepreneurial ecosystems can be directly studied. Some of them,
such as the investor-investor or the investor-startup networks, have been scientifi-
cally investigated for over 2 decades whereas others, such as the investor-patent net-
work, have –to our knowledge– never been studied. We propose to build the venture
capital-backed innovation funding network through financial and patent databases
in order to study its properties.

• dealing with interaction sparsity and large network size : the bipartite interaction
networks in entrepreneurship are sparse and heterogeneous due to the high number
of nodes on both sides and the comparatively low degree and high idiosyncrasies of
individual actors. Quantitative analysis of these large networks (hundreds of thou-
sands to millions of nodes) is thus difficult, both methodologically and computation-
ally. Through clustering, we can create coarser-grained representations of these net-
works in order to facilitate quantitative analysis by reducing network sparsity and
network size while still taking into account node idiosyncrasies. As domain-specific
knowledge can be injected to create specific clustering methods that expressly ac-
count for the entrepreneurial nature of the data, we develop algorithms specific to
this task.

• node class-dependent clustering : due to the different nature of the nodes and to
avoid biasing analyses of the coarse-grained networks, we endeavor to perform clus-
tering of the different node classes independently. Indeed, studying the dynamics of

5Indeed, sparse network analysis requires dedicated tools such as http://www.small-project.
eu/ that typically only handle unipartite graphs
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a coarser-grained network, for instance, where we explicitly use dynamical elements
of the origin network to perform the coarse-graining can induce biases, and should
thus be avoided as much as possible. Furthermore, the varied nature of the nodes
suggests that a one-size-fits-all clustering method is not optimal as it would under-
utilize available information. We thus develop and apply specific clustering methods
on the various node types in order to build coarser-grained networks.

• investor-patent network characterization : applying the methods developed in the
course of this thesis, we can create a coarser-grained representation of the investor-
patent network. This new representation allows for the application of metrics specif-
ically designed to characterize networks at the structural scale, and to find common
characteristics of the structure of our network with networks originating from other
disciplines. What insights are gained through this structural analysis of the venture
capital-backed innovation network ?

Outline

Chapter 1 gives a brief introduction to venture capital, complex systems and networks
and existing applications of complex network analysis to venture capital.

Chapter 2 presents a novel clustering approach specifically designed to find homoge-
neous communities of venture capital investors. The methodology of the clustering is pre-
sented, and the communities uncovered are analyzed. We show that these communities
are highly interpretable, and show that community allocation of investors is robust to fea-
ture subsampling. This feature subsampling analysis reveals communities similar to those
detected through the clustering performed with all features, suggesting the presence of
significant underlying complex investment patterns. The appearance of new investor com-
munities in the wake of significant shifts in entrepreneurial ecosystems is also observed.

Chapter 3 presents a state-of-the-art topic modeling approach and its application to a
subset of the scientific literature on biomimetism, an interdisciplinary field of research. We
automatically discover meaningful topics from a diverse collection of journals and confer-
ence proceedings, and analyze how the research themes in the different publication media
relate to each other. We finally examine the temporal evolution of the number of research
papers per research theme to determine research trends.

Chapter 4 presents an analysis of the network linking investors to the technologies
owned by the startups they fund through patent ownership. We leverage the methodolo-
gies presented in chapters 2 and 3 to create communities of investors and clusters of patents
in order to reduce the size and sparsity of the graph. We analyze the structure of the net-
work, and find it to be topologically mutualistic, sharing structural traits with mutualistic
networks in ecology. We analyze and discuss the implications of these findings on the ro-
bustness of this network to perturbations, such as economic crises.
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Chapter 1

State of the art

This section is divided into 3 parts :

• in section 1, the industry of venture capital and the related scientific literature will
be presented

• in section 2, parts of the literature on complex systems and complex networks rele-
vant to this thesis will be discussed

• in section 3, applications of complex networks to entrepreneurial ecosystems will be
detailed

In relation to the interdisciplinary nature of this thesis, relevant subsets of the scientific
production on venture capital and complex networks (and the interaction between the two)
have thus been selected in order to give the necessary context to the works presented in
this thesis.

1.1 Venture capital

1.1.1 What is venture capital ?

The role of venture capital

Startup companies often need to rely on external sources of capital in order to hold out
until their business gets off the ground and starts generating enough revenue to reach sus-
tainability. In order to obtain the necessary resources for their development through this
dangerous period of their life cycle, companies can receive backing from the venture cap-
ital (VC) industry [117]. VC firms serve as capital providers to companies that could have
trouble attracting financing from more standard institutions, such as banks [335]. Indeed,
these companies are often young, do not possess much in terms of assets, and can face
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uncertainty from a number of sources such as, just to name a few, market size estimation,
founders’ ability to properly lead the project, product-market fit or gauging existing com-
petition potentially addressing the same market. Companies trying to attract VC financing
are often high-risk, high-reward projects that sell equity shares (i.e. partial ownership) to
VC firms in exchange for the cash needed to finance its development efforts. Investors,
in addition to funding, also provide their portfolio companies with other benefits in order
to help them succeed [121, 160]: networking opportunities, connections to other portfo-
lio companies and to investment banks, advice to founders and access to service providers
(such as human resources, legal, public relations firms). VC-backed companies have thus
been shown to outperform non-VC-backed companies, not only due to sorting effects (VC
investors only selecting the most promising companies) but also due to positive treatment
effects [20, 27, 274]. The end goal for investors is to successfully exit the company by selling
their shares when the company either raises subsequent funding, gets acquired or under-
goes an Initial Public Offering (IPO), selling their shares for more than they initially bought
them.

To synthesize, venture capitalists buy a stake in an entrepreneurial team’s idea, sup-
port the entrepreneurial venture for a relatively short amount of time and exit (hopefully
successfully) with the help of an investment banker [335].

The “series” funding

Fundraising for a startup company happens in incremental steps. Note that as each com-
pany faces very specific challenges, its circumstances are different : the steps described here
are only guidelines and are by no means absolute rules. The mean number of investors and
amounts for the different funding rounds are described in Table 1.1.

In their early stages, companies will try to attract seed financing or angel investing to
start developing their projects. Investors will typically acquire 20-30% of the shares of the
company. The goal of this fundraising is to hire a few key teammembers, buy the necessary
equipment and start iterating on the product in order to develop a solid proof of concept. At
the seed stage, investors have very little information on which to judge the company : the
founders’ profile and vision, as well as uniqueness of the proposed solution, are major cri-
teria on which investors base their decisions [97]. The risk associated with this uncertainty
is higher, and seed investors tend to be actors specializing in this funding stage.

Once progress has been achieved, companies will try to raise their Series A. This is a
sizeable step-up in terms of amounts raised, and happens when a startup has demonstrated
the potential to grow and generate revenue. The company needs to have a viable business
model, and will typically use this new capital influx to undertake significant hires, facility
and equipment purchases in order to quickly grow the company. Investors will typically
acquire 20-25% of the shares of the company at this stage. The uncertainty is lower than
during the seed stage due to companies already having elements to show such as a proof
of concept, a tentative business model and potentially some revenue; investment decision
making at this stage is hybrid, based on the existing assets of the company and its potential
of growth (based on its addressed market, founders, product).
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Stage of investment Average amount (million USD) Average number of investors Number of rounds
Pre-Seed 0.46 1.89 18207
Angel 1.06 1.87 12299
Seed 1.89 2.88 64640

Series A 11.78 3.15 41048
Series B 24.86 3.74 22254
Series C 42.69 4.34 10496

Series D and above 88.72 4.74 7418

Table 1.1: Descriptive table of the mean amount raised and mean number of in-
vestors for each stage of investment. Note that the number of investors for the Angel
stage of investment is not representative of the actual number of individual angel investors,
as angels can create structures known as angel groups in order to handle their investment.
An angel group will only count as a single investor, but in reality corresponds to several
individual business angels. Values computed using data from Crunchbase.

Early-stage financing is comprised of funding rounds up to and including series A. Fi-
nancing after this stage (series B and above) is termed late-stage financing.

A company raising series B financing is past the initial startup stage. It is becoming
a mature company, and has already achieved a number of milestones in developing its
business. The investors that fund companies during a series B round are usually specialized
in late-stage funding, and acquire roughly 20% of the company. For late-stage investments,
investors will base their decisions on concrete elements related to the company [97], such
as market acceptance.

The subsequent funding rounds are completely company-specific, general guidelines
for these development stages thus tends not be done.

1.1.2 Risk management in venture capital

As venture capital is an inherently risky endeavor, a number of strategies exist in order to
mitigate the risk, but usually come at the cost of the potential reward of investments [290].

Syndication

During the funding round of a company, several investors can choose to invest together
in order to reach the target funding amount of the company [149]. This process is called
syndication, and allows investors to invest in companies when they otherwise would not
necessarily be able or willing to by injecting lower total individual amounts. Even though
the reward for each investor in the event of a syndicated deal is lower if the company suc-
ceeds down the line, the losses incurred by each investor are spread between syndicate
members in the case of the subsequent failure of the company. This reduced exposure to
risk can be desirable, as it is usually better to limit the negative impacts of a failure than to
maximize the benefits of a success [149]. Syndication also allows investors to participate in

11

www.crunchbase.com


a larger number of deals, mitigating their risk through portfolio diversification [144]. Fur-
thermore, syndication allows for stronger shared knowledge during deal selection and bet-
ter managerial advice to funded companies due to the idiosyncratic skill sets of the various
investors [144]. The benefits of syndication thus go beyondmere riskmitigation, improving
deal quality and portfolio company support [42].

During a syndicated funding round, there can be one (and seldom several) lead investor
that takes charge of the funding round. This is another way of sharing resources between
investors during a funding round : a credible lead investor (through past success or personal
connections) will be able to better convince other investors to participate in the funding
round due to the trust they place in its due diligence process and expertise in selecting
investees.

Early-stage vs. late-stage

As described in section 1.1.1, investors use different analysis criteria for potential invest-
ments depending on the maturity level of the companies. Coupled with the constraints
imposed by the large amounts of cash required to invest in late stage ventures, venture
capital firms often specialize in investment stages, either in early stage or late stage [97].

A specific type of early-stage funding model in venture financing is the accelerator
model [73]. Accelerators target cohorts of startups in their early stages of development, ex-
changing company equity against 3-to-6 months intensive development programs in order
to help companies achieve very specific objectives (for instance having a functional proof
of concept at the end of the acceleration program). Most accelerator programs also offer
key resources : small seed funding, personalized coaching from successful entrepreneurs,
networking opportunities with other entrepreneurs and specific events where companies
get the chance to pitch to investors and attract funding. The accelerator model appeared
in 2005 with the creation of Y Combinator, and its massive repeated successes (such as
Stripe, Airbnb, DoorDash, Coinbase or Dropbox1 to cite just a few) led others to replicate
the model, with over 8000 accelerators worldwide in 2020. Stage specialization was not
found to be significantly positively or negatively related to fund returns [290].

Generalists vs. specialists

Companies can be founded in a variety of sectors, each with their own specific advan-
tages and drawbacks. Hardware-based companies, for instance, will have to deal with the
challenges that accompany physical goods, such as production, storage, supply chain and
transport [116]. Biotech and medtech companies, on the other hand, are confronted to the
difficulties specific to living organism, for instance stringent regulations, biological con-
straints and long development cycles due to the regulatory and technological complex-
ity of the products [271]. Software-based companies have their own specific challenges,
where barriers-to-entry can often be comparatively lower and thus put greater emphasis

1https://stripe.com/, https://www.airbnb.com/, https://www.doordash.
com/, https://www.coinbase.com/, https://www.dropbox.com/
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on founders’ ability to execute, i.e. make the right decisions in order to grow quicker than
their competition [190].

Due to the diversity of challenges, investors can draw benefits from developing exper-
tise in specific sectors (specialization), thus increasing their ability to accurately gauge the
viability of investment opportunities and offer better assistance to their portfolio compa-
nies. As always, specialization comes at a price : if the specific favored sector of investment
sees a dearth of activity compared to the general entrepreneurial landscape, their existence
can be in peril as novel opportunities would be scant. This gives rise to a trade-off between
fund performance and risk management in terms of sectoral specialization. Sectoral port-
folio diversification is thus a lever of action in order to modulate reward as a function of
the risk [141]. Diversification in a limited number of industries was found to be positively
correlated with fund performance [290].

Geographical specificity

The entrepreneurial ecosystemnotion, which implies a systemic and geographically-constrained
view of entrepreneurship, is not new and can even be dated as far back as the 1920s [201]
under the identity of “industrial -districts”, gaining significant traction in the second half of
the 2000s [64]. Leading entrepreneurial ecosystems (such as the Silicon Valley on the West
Coast of the United States, the Boston area in the East Coast or the Greater London area
in Europe) are generally located around major cities able to attract all the key components
necessary for the creation of a vibrant entrepreneurial ecosystem [294].

Due to the existence of a strong local geographical footprint in entrepreneurship, in-
vestors, particularly during early stage investments, generally invest in local companies
in order to mitigate risk by having better access to their portfolio companies, leading to
better advising and management [275]. Indeed, information on a generally spreads locally
in social and geographical space [31], a phenomenon also found in the Venture Capital in-
dustry [275]. Access to information has strongly been linked with risk mitigation [171],
making investments in spatially distant companies inherently more risky. In order to mit-
igate this risk, investors can leverage the social structure of the venture capital market in
order to overcome the informational constraints resulting from geographical distance : in-
vestors boasting central positions in the syndication network (built through co-investments
between investment firms) can extend their access to information through social ties [275],
thus allowing them to invest globally by creating syndicates with trusted investors that
they have previously interacted with in the geographical vicinity of the targeted company.
Geographical diversification was not found to be significantly related to fund returns [290].

1.1.3 Venture capitalists’ decision criteria

Due to the numerous different facets of a venture, investors often focus on specific venture
aspects in order to drive investment decision making when selecting deals among all candi-
dates [160, 118]. Some firms focus more on the “jockey” (the management team) and others
on the “horse” (the product, technology or business model) [159]. Cross-sectional varia-

13



tions were still observed, as investors were found to focus on different aspects depending
notably on the company’s stage of development.

The horse

Business-side investors will prioritise investing in companies that they believe have high-
quality products, offering novel and superior services often backed by strong intellectual
property, and a strong fit with the market demands. Criteria of particular importance for
these investors will be product- and market-related. Investment decisions will hinge more
strongly on whether the product is proprietary or can be protected, whether it can be de-
scribed as “high tech” (with for instance links between the founding team and academia
leading to the product genesis) and whether the company has already demonstrated its
feasibility and potential value (for instance by showing a minimum viable product) [194,
173]. These investors will also tend to favor ventures targeting markets they have expertise
in, paying particular attention to market-based criteria : growth rate of the target market,
existing competition, impact of the candidate venture on the market (such as stimulation
of the existing market or creation of a new one), market-related experience of the found-
ing team [194, 173, 203]. [118] found that 37% of all firms they surveyed rated business-
related factors as the most important factor, but that these factors tended to be valued more
highly by investors assessing late-stage ventures. This is coherent with the fact that more
business- and market-related information is available for the deal screening process com-
pared to early-stage ventures where information is scarcer and will be highly susceptible
to undergo strong change.

The importance of business-related factors compared to management-related factors
was also found to be higher in health care investors compared to IT investors, with 55%
of the health care subsample selecting business-related factors as the most important com-
pared to 32% selecting team-related factors, a result once again consistent with the partic-
ular emphasis put on intellectual property and non-human capital assets in the health care
sector. Late-stage investors were also found to put significantly less emphasis on the prod-
uct compared to early-stage investors, and significantly more emphasis on the company
valuation [118]. When a company reaches the late-stage, it has typically gone through all
the necessary steps in developing a product and demonstrating its potential, which makes
the product quality less of a differenciating factor between deal opportunities : for a com-
pany to reach the late stage, a viable product is a necessary condition. Late-stage ventures
also offer more financial metrics for venture funds to analyze, and are generally closer to a
potential exit from the venture capitalist’s point of view. The valuation therefore becomes
a bigger focal point, both due to the presence of a larger number of concrete elements to
evaluate it and due to it representing a –relatively– short-term goal. This is coherent with
the observation that late-stage investors are more structured in their investment decision
making, using a larger number of metrics (2.4 on average compared to 1.8 for early-stage
investors) and making gut investment decisions more rarely [118].
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The jockey

Some investors, on the other hand, will prioritise investment in companies with what they
deem to be a strong foundation team regardless – to some extent – of market fit and product
quality, with the belief that a quality founding team will manage to steer the company
towards a relevant market and product, especially in the earlier stages of a company’s life
cycle where agility and experimentation is of particular importance [26]. These investors
will pay particular attention to the abilities of the foundation team, such as the capacity to
correctly evaluate and react to risk, tomake sustained intense effort or to present and defend
their venture in an articulate manner ( [266], for instance, found that founders displaying
high passion significantly increased investor neural engagement and thus interest in the
presented venture). The past experiences of the founding team will also be strong drivers
of investment decision making, favoring entrepreneurs that have demonstrated leadership
ability in the past and that have venture-relevant track records [194, 173]. These factors
also present the benefit of being always available for analysis at any point during the life
cycle of the venture, starting from its creation. In a low information context that requires
decision making such as pre-seed or seed stage investing, this provides the investors with
key information on which to judge a candidate deal when data is scarce [58].

Indeed, the quality of the founding team has been consistently found to be of particu-
lar importance for early-stage investors. [118], for instance, found that 53% of early-stage
investors rated the team as the single most important factor compared to 47% for the com-
plete sample and 39% for late-stage investors. [26], using a randomized field experiment
to identify startup characteristics that are most important to investors in early-stage firms,
found a strong response from the average investor to information about the founding team,
but not to the identities of lead investors or to firm traction.

The importance of the foundation team, even though more pronounced for early-stage
investors, is not unique to them. Indeed, a strong foundation team is deemed as essential for
most venture capital firms [118], independently of their specialty : [194] found that five of
the ten criteria investors most commonly rated as essential are related to the entrepreneurs
themselves (consistent with the survey responses of [118] where 47% of VC firms chose the
management team as themost essential factor). Indeed, a recent study [195] has shown that,
when performing cluster analysis on questionnaires where venture capitalists rated highly
successful and unsuccessful ventures on a number of screening and performance criteria,
3 classes of unsuccessful and 4 classes of successful ventures emerged. All 3 unsuccessful
classes had a successful pendant, with the major criteria of differentiation between the two
being a flaw in the venture team [195].

This impact of founder personality on startup success, while long known to be a major
factor of positive outcomes [146], has recently experienced significant progress due to the
availability of new methods and data allowing for the large-scale quantification and analy-
sis of founder personality traits and their entrepreneurial outcomes [112, 208]. Using public
Twitter data, both studies built startup founders’ Big Five psychological profiles and, esti-
mating the founded startups’ success, measured the impact of the personality traits on the
companies’ entrepreneurial outcomes. [112] found startup personality traits were found to
be significant across all stages of the company’s life cycle, and [208] found that startups
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demonstrating larger, personality-diverse teams showed increased likelihood of success.
This psychological analysis has also been recently applied to investors themselves [153],
with two personality traits (neuroticism and openness) standing out in terms of explanatory
power for equity investments, with high neuroticism and low openness being associated
with low equity shares i.e. the amounts and fraction of their total investments invested in
equities.

Financial characteristics

Finally, all investors look at the financial characteristics of a candidate venture. Investors
will try to target ventures that can yield a high return of investment in a relatively short
timeframe (i.e. 10 times the investment within 5-10 years [194]), and that can easily be
exited, for instance through an acquisition or an IPO [173]. These findings are congruent
with a recent study [195] that found, using factor analysis, that investors tend to screen out
ventures where there is a high risk of competitive attack or profit erosion before cash-out
and ventures where the investment is locked up for a long period of time. The financial
characteristics that investors pay attention to can also vary with the company’s stage of
development for several reasons : first, as discussed previously, early-stage companies are
surrounded with more uncertainty, with fewer financial metrics allowing for analysis. The
risk associated with investment in early-stage ventures tends to be higher than for late-
stage ventures, but so does the return on investment as shares are acquired for a lower val-
uation (Peter Thiel, for instance, made a roughly 2200x return by investing around $500k
in Facebook and selling it back for $1.1 billions). The portfolio performance of early-stage
investment firms tends to be driven by a few very successful investments due to the power
law distribution of returns in venture capital [180], leading to the creation of funds specifi-
cally targeting such high-risk high-reward ventures (termed moonshots in entrepreneurial
ecosystems)2.

1.2 Complex networks

1.2.1 What is a complex system ?

A complex system can be defined as a system composed of many components in interaction
with each other [228]. This includes both natural and socio-economic systems, ranging
from ecological ecosystems to financial systems, transportation systems, the Internet, the
brain or the Earth’s climate. Due to their high number of components and the potentially
complex nature of their interactions, their study requires specific tools and frameworks as
they are - for the most part - not analytically solvable. Complex systems often present two
very important properties :

• nonlinearity : cause and effect are disproportionate i.e. small changes in the system
can have large effects, and large changes in the system can have little to no effect

2https://medium.com/leadership-prevails/understanding-the-vc-power-law-why-fund-size-matters-in-venture-capital-returns-b3dcc2681509
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• emergence : the system as a whole exhibits macroscopic properties that its compo-
nents do not possess on their own, such as connections between neurons in the brain
giving rise to human consciousness

Furthermore, and perhaps most importantly, complex systems are thermodynamically
open [143], i.e. they are very difficult to bound : they interact with a lot of elements not
directly studied, and accurately delimiting their perimeter is an arduous task. The scope
of a complex system is thus by nature imperfectly defined, and approximations (with the
possible limitations that entails) are a necessary component of its study. Indeed, one can-
not accurately understand, for instance, the world trade network (i.e. imports and exports
between countries) without understanding transportation networks and the idiosyncracies
of the complex societies making up the various trading partners. Said societies and trans-
portation networks will, in turn, be the consequence of a number of local path dependencies
due to historical, social and political reasons that, in order to achieve holistic characteriza-
tion, would also need to be taken into account, leading to the incorporation of more and
more elements into the study of the system of origin (here, the world trade network) as
more and more interactions are accounted for. Complex systems are often represented us-
ing networks, which try to bring the very properties that make a system complex to the fore
to furnish new forms of explanation, rather than using idealization techniques to simplify
the system [244].

1.2.2 Networks

Formally, networks are described using the mathematical field of graph theory. A network
can be represented by a graph G = (V,E), defined as a set of nV vertices (or nodes) V
and a set of nE edges (or links) E where e(i, j) = {e1(i, j), ..., en(i, j)} ∈ E is the set of
edges joining vertices i, j ∈ V . Note that, with this definition, nE =

∑
i,j∈V len(e(i, j))

where len(e(i, j)) is the number of elements in set e(i, j). Vertices i and j are said to be
interacting if there exists an edge linking vertices i and j, and are said to be the endpoints
of the edge. Here, we will present network theory concepts and tools relevant for the rest
of this manuscript.

Different types of graphs

A number of different graphs exist, such as :

• unweighted vs. weighted : all edge weights (the strength of the interaction between
the nodes joined by the edge) are the same i.e. en(i, j) = 1 ∀n vs. different edge
weights are allowed i.e. en(i, j) = w with w ∈ R the weight of the interaction

• undirected vs. directed : all edges are non-directed i.e. e(i, j) = e(j, i) ∀i, j ∈ V
vs. edges connecting two given nodes are directed and can have different values i.e.
∃ i, j ∈ V | e(i, j) ̸= e(j, i)
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• regular graphs vs. multigraphs : only one edge can join two nodes i.e. e(i, j) =
{e1(i, j)} vs. multiple edges can join two nodes i.e. e(i, j) = {e1(i, j), ..., en(i, j)}

This list is, of course, but a tiny fraction of the diverse bestiary of graph classes (see for
instance [77] for a more complete overview).

Adjacency matrix

A graph G is described by its associated adjacency matrix AnV ×nV
, where Aij = 0 if no

edge connects vertices i and j and Ai,j = e(i, j) otherwise. In the case of a multigraph,
Aij =

∑N
n=1 en(i, j).

Incidence matrix

A graph G can also be described by its incidence matrix BnV ×nE
.

For undirected graphs,

Bij =

{
w if vertex vi is incident with edge ej with weight w
0 otherwise

(1.1)

For directed graphs,

Bij =


w if edge ej exits vertex vi
−w if edge ej enters vertex vi
0 otherwise

(1.2)

Note that the sign convention is arbitrary, and can be reversed for directed graphs.

Bipartite networks

A specific class of networks is the bipartite (or 2-mode) network. In a bipartite network,
nodes fall into one of two defined classes (or guilds) : the top and bottom nodes, which can
only interact with nodes of the other class (i.e. top nodes can only interact with bottom
nodes and inversely) as a consequence of the forbidden interactions in the system [120] (in-
teractions prevented by the specific traits of the nodes, such as physiological or phenologi-
cal constraints of biological species). Bipartite networks are the natural representation of a
number of natural and socio-economic systems, such as for instance plant-pollination inter-
actions [17] (where pollinators can only interact with plants), actor-movie networks [316]
(where actors are linked to the movies they acted in) or gene-pathway networks [134]
(where genes can only be linked to the specific pathways they were involved in).
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Let AnV ×nV
be the adjacency matrix of a bipartite weighted graph with nV = nt + nb

where nt is the number of top nodes and nb the number of bottom nodes. A is block-
diagonal, i.e.

AnV ×nV
=

(
0nt×nt Ãnt×nb

ÃT
nb×nt

0nb×nb

)
(1.3)

where Ã is called the biadjacency matrix of the network and ÃT denotes its transpose.

Multilayer networks

Due to the complex nature of the relationships between agents, their interactions can take
the form of distinct type. As an example, if we study a telecommunications graph where
nodes are individuals and edges are created when two nodes interact through sending each
other a message, the channel through which messages are sent can be relevant : email com-
munications might happen in a more professional setting, whereas messages sent through
social networks or Short Message Service (SMS) texts tend to happen in a more personal
setting. Explicitly discriminating between the different interaction types can thus be valu-
able, and will be modeled using a specific type of graph called the multilayer graph [168]. In
a multilayer network, nodes are fixed but several representations (layers) of the graph exist
where edges are created between the nodes depending on the interaction type i.e. one layer
of the graph could link individuals through their email interactions, another layer through
their social network interactions and a third layer through their SMS interactions.

1.2.3 Networks in ecology

Beyond the ecosystem concept, a number of network tools developed in ecological research
have also been applied to socio-economic systems [199].

Bipartite networks in ecology

Different classes of interactions between species are commonly found in ecological net-
works throughout habitats and ecosystems. These classes of interactions, amongst which
most notably competition, predation and symbiosis, have been widely studied in the ecolog-
ical literature and fall in one of two categories : positive interactions, where both species
derive benefits from the interaction, and negative interactions, where one of the interacting
species is benefited and the other is harmed.

These interactions are defined as follows :

• Competition is defined as the negative interaction between individuals vying for a
common resource present in limited supply.

• Predation is defined as the negative interaction where a predator from a given species
kills and eats a prey from the same (cannibalism) or a different species.
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• Symbiosis is defined as an interaction between two species purposefully living in
contact with each other. This interaction can be negative (parasitism), beneficial for
one species involved and neutral for the other subset (commensalism), or positive
(mutualism), with both species deriving benefits from the interaction.

The ecosystems within which these interactions take place can often be described and
modeled using a bipartite structure due to the physiological and phenological constraints
between the interacting species. An important topic of study in quantitative ecology is the
characterization of the structure of these networks (in the mathematical sense). A signifi-
cant part of bipartite network tools, both analytical and methodological, have thus histor-
ically been developed by members of this community [92]. One particular area of interest
of this literature is the study of how structural metrics at a network level are linked with
their robustness, defined as their stability in response to perturbations [199, 108, 124].

Links with economy and finance

Due to the susceptibility of economic and financial systems to crises and the far-reaching
social impacts of their disruption, practitioners of complexity have pushed for regulation
increasing their structural robustness, drawing inspiration from ecological systems due to
the desirable properties they display and the fundamental similarities they share [183, 184,
205].

Current biological systems are the product of millions of years of evolution and natural
selection, surviving through a large and varied range of challenges throughout their his-
tory. This repeated selection process has led to the current solutions that are - to a certain
extent - robust by virtue of their continued existence through continuous global and local
change [205]. These systems, when analyzed through their networks, show remarkable
universality in structure. Characterizing the structural attributes shared by these systems
and drawing inspiration from their characteristics that provide a high degree of robustness
can help design new regulatory frameworks for economic and financial systems, which
can face similar challenges. Indeed, a number of fundamental concepts are shared between
economic sciences and biological sciences, notably ecology and evolutionary biology.

One of these shared concepts is the existence of a trade-off between exploration and
exploitation [214]. Indeed, this trade-off between the exploration phase, which is the pro-
cess of searching for new optima, and the exploitation phase, which corresponds to the
implementation of the current best solutions, is a fundamental component of evolution via
natural selection, but also of the behaviours of investors, companies, and financial institu-
tions that need to find a good balance in order to generate sufficient revenue while staying
ahead of their competition. In economy and finance as in biology, finding the right balance
between exploration and exploitation will depend upon context and is done through trial
and error, trying to best navigate the variability and uncertainty caused by endogenous as
well as exogenous sources. Due to the capacity of economic agents to predict and adapt to
changing conditions, this trade-off is not a simple optimization problem. This is, of course,
not a novel finding [191] and has been one of the main arguments against Keynesian eco-
nomics [165] that ignore the ability of rational economic agents to anticipate, influence and
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optimally respond to policy changes. In a different framework, however, this issue can be
addressed : the regulators and the regulated do not interact in a vacuum, but are instead
part of a much larger ecosystem. Their strategies evolve in response to each other, as a
result of the changes they themselves generate.

Indeed, another fundamental concept shared between biological and financial systems
is that they are adaptive [188]. Evolutionary insights permit a natural alternative to the
concept of the efficient markets hypothesis which has been debated within the economic
and finance literature [295]. Rather than prices being the sole driver of investor behaviour,
markets can be considered as evolutionarily adaptive systems where the fitness function
is related to factors characterizing the local financial ecosystem, such as the makeup of
local investors, the available profit opportunities and the local socio-economic context. The
adaptive market hypothesis thus provides an explanation for why suboptimal investment
strategies may persist in a market over time, and why market conditions may change over
relatively brief periods [188].

In order to create a stable and sustainable economy, it is thus necessary to take into
account the interactions - and the resulting feedback loops - in the system when devising
regulations. Doing so in a proper, meaningful manner is, of course, a tall order, and requires
frameworks, data and tools specifically designed to deal with this complexity.

Indeed, the question of complexity is central in socio-economic systems. The continu-
ous cycles of booms, busts and financial crises are as many signs of the unsteady founda-
tion on which our economy is built, of the irrationality of investors and of the fallibility of
markets, with catastrophic consequences at a global level [100]. As is typical of complex
adaptive systems, a many individual agents collectively perform a large number of actions
in the pursuit of their self-interest, whether biological or financial, often giving rise to self-
organization and emergent phenomena with unpredictable consequences on the system as
a whole. Even though they take different forms, the main ingredients of evolution - repro-
duction, innovation, selection - also exist in economy and finance. As in biological systems,
evolutionary consequences will necessarily follow.

In spite of the high complexity of economic and financial systems, significant progress
can be made : using principles and results from complex adaptive systems with equivalent
(or higher) complexity such as those found in ecology and evolutionary biology (disciplines
which have found successful applications of complexity science [176]) can thus help with
promoting economic growth while still maintaining robustness and stability, leveraging
their similarities to socio-economic systems in mechanisms and structure.

1.2.4 Complexity, the economy and economic complexity

Even though the economy has long been thought of as complex system [142], empirical in-
vestigation in this direction has only been undertaken relatively recently, due notably to the
recent increased availability of fine-grained economic data and the computing power and
tools required for its study. Under the paradigm of complexity, the multitude of interactions
between agents in a given economic system are directly studied through the network they
give rise to rather than their aggregates (such as GDP) that are more traditionally used.
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Each agent is considered a separate entity with its own idiosyncrasies, contribution and
response to systematic change. These methodologies can thus yield results fundamentally
different from (and complementary to) those from more traditional methods in economic
sciences [213, 263].

Several forays in this direction have already been taken. In [139], the concept of relat-
edness is applied to country-product export networks in order to measure the compatibility
between a given activity and location. This compatibility gives strong insights into the po-
tential of a region to start exporting new products based on the number of related products
it already exports. Similarly, an industry will be more likely to develop in a region that
already has a number of related industries [225]. The concept of relatedness that was orig-
inally developed to study export networks has been shown to be general, yielding insights
across different spatial scales, economic activities and institutions [138].

Another application of complexity science to economic systems is the field of economic
complexity [137] that was first developed to explain the disparity in economic develop-
ment between countries. This difference is posited to be partially explained by the pres-
ence of non-tradable activities, such as specific human capital, regulation or infrastructure,
with the productivity of a country (measured through its export data) being intrinsically
linked to the diversity and availability of its capabilities as measured through the economic
complexity index [136] (ECI). One significant departure from the existing literature is that,
rather than estimating complexity from averaged indicators, the ECI is directly measured
from the production network of the geographically-embedded socio-economic system stud-
ied (such as product export, employment or innovation), escaping the need to rely on the
identification of individual factors of development and economic growth. The presence of
the combined factors, regardless of their nature, is instead directly learned from produc-
tion matrices using Singular Value Decomposition-based [169] dimensionality reduction
techniques, which present the strong advantage of being a general method applicable in a
wide variety of regions and domains where data is present without requiring any a priori
assumptions. This index has been shown to accurately capture information about the set
of capabilities available in a region and to be predictive of both future growth and of the
complexity of a country’s future exports [137].

Economic complexity is strongly linked to endogenous growth theory [255, 256], which
argues that economic growth is tied to investments in human capital, innovation and the
associated knowledge produced. Indeed, knowledge in economy holds a special role, being
neither a conventional nor a public good but instead being a non-rival, partially excludable
good [255]. In spite of these facilitating properties, spreading knowledge is difficult due to
its - almost by definition - complex nature : the acquisition of new knowledge requires a
base on which to build upon, and knowledge dissemination is both performed formally by
specific institutions (such as universities) and informally through local expertise. For these
reasons, expertise in a given region gives rise to path dependencies as new activities depend
on the existing production which determines the potential economic futures. Economic
complexity methods can in a way be seen as indirectly inferring knowledge carried in a
geographical unit by learning the combined factors from the fine-grained input data.
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1.2.5 Community detection on networks

Analysis of networks with a large number of heterogeneous nodes can be difficult, as, on the
one hand, one cannot account for each node individually but, on the other hand, network-
level measures can often be too coarse, washing away the idiosyncrasies of the individual
nodes. In spite of this heterogeneity, subgroups of nodes can still display commonalities.
In order to reduce the size of the network while still retaining its structure, one could find
a way to group similar nodes together, thus creating communities comprised of nodes, and
analyze both the constitution of these communities and the coarser-grained network re-
sulting from the interactions between these communities based on the interactions of their
members.

More formally, community detection is a task where the goal is to find an optimal par-
tition of the network nodes by maximizing a suitable objective function. The scalability
of such methods is particularly important, as network sizes can reach thousands or even
millions of nodes.

Community detection on unipartite networks

The community detection algorithm introduced in [34] has become one of the standards of
community detection on networks due to a number of desirable properties, such as being
modularity-based (i.e. directly measuring the quality of the partition), strongly scalable and
unsupervised. After an initialization where each node is allocated to its own community,
the algorithm works iteratively, with each iteration composed of two phases.

In the first phase, for each node i, its neighbors j are considered and the associated
potential gain of modularity Q if node i was placed in the community of j is computed
following eq. 1.4. Node i is then placed in the community of the neighbor that maximizes
the modularity gain if the gain is positive, and remains in its community otherwise. This is
done repeatedly and sequentially for all nodes until no further improvement of the network
modularity can be achieved.

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (1.4)

whereA is the adjacency matrix of the graph, ki =
∑

j Aij is the degree of vertex i, ci is the
community to which vertex i is allocated, δ is the Kronecker delta i.e. δ(α, β) = 1 if α = β
and 0 otherwise, and m = 1

2

∑
ij Aij . The modularity Q ∈ [−1, 1] measures the density of

links inside communities (modules) compared to links between communities.

In the second phase, a new network is built where the nodes are the communities found
during the first phase (yielding a coarser-grained view of the network of origin), and the
edges between the nodes correspond to the total weight of the edges between all nodes of
each community in the original graph. Note that self-loops are allowed in this graph and
are used to represent intra-community edges. Once this new network has been built, the
first phase of the algorithm is applied on the new network, merging communities together
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until the modularity can no longer be increased.

These two phases (local maximization of the modularity, and coarse-graining of the
graph) are applied recursively until there are no more changes in the graph, resulting in a
maximally modular partition. The algorithm is stopped, and the community allocation of
all nodes are returned.

Community detection on bipartite networks

Bipartite networks have a specific structure that must be taken into account in order to
design effective community detection algorithms. Indeed, the 2-mode topology of the net-
work adds additional constraints to the partitioning as communities must be comprised of
nodes from both modes.

Here, we will discuss LPAwb+ [21] and its variant DIRTLPAwb+ [21], an algorithm
specifically designed for community detection on bipartite networks. In the context of this
algorithm, a bipartite network can have at most F = min(nt, nb) communities as module
is comprised of both top and bottom nodes in a bipartite network (where nt and nb is the
number of top and bottom nodes as defined in section 1.2.2). The algorithm is initialized by
giving a unique community label to each node in the smallest of the two sets.

The first stage of the LPAwb+ algorithm is the label propagation stage, where top and
then bottom community labels are asynchronously updated by locally maximizing modu-
larity QW (eq. 1.5).

QW =
1

2m

nt∑
i=1

nb∑
j=1

(Ãij −
kikj
2m

)δ(ci, cj)

=
1

2m
tr(R(W̃ − Ẽ)C)

(1.5)

where tr is the trace, F the number of communities in the network, RF×nt the top label
matrix, Cnb×F the bottom label matrix. R and C are binary matrices with non-zero val-
ues indicating to which community each top and bottom node belongs; the matricial form
allows for more efficient vectorized computation.

For top node i, this can be written as choosing a new label cnewi by finding the label
maximizing the condition shown in eq. 1.6.

cnewi = argmax
g

(
nb∑
j=1

Ãijδ(g, cj)−
nb∑
j=1

kikj
2m

δ(g, cj)

)
(1.6)

The condition maximized for the bottom nodes is similar but summed over all top nodes, as
top nodes only use information about the bottom nodes to update their labels and, inversely,
bottom nodes only use information about the top nodes.

The updating rules for the top and bottom nodes are applied asynchronously, i.e. top
labels are updated, then bottom labels, then top labels, and so on until modularity as shown
in eq. 1.5 can no longer be increased.
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The second stage of the algorithm is the agglomeration stage. Much like in the unipartite
graph case outlined above, stage 1 ensures that a local modularity maximum is reached,
but does not ensure that the global maximum is found. To avoid getting stuck in a local
maximum, two communities are fused together if the fusion would result in an increase
in modularity and if there is no other community whose fusion with either of the two
communities would result in a larger modularity increase. Stages 1 and 2 are performed
until network modularity is maximized, i.e. there are no more changes to the modules.

LPAwb+ was found to get stuck in suboptimal solutions with a larger number of mod-
ules due to the nature of the algorithm [21]. To remediate this issue, an improved version of
the algorithm was designed that makes use of LPAwb+’s sensitivity to node label initializa-
tion. DIRTLPAwb+ computes LPAwb+ multiple times with different random initializations
which have an increasing number of modules, and returns the solution with the greatest
modularity score, resulting in the optimal community partition of a bipartite network.

1.3 Data-driven approaches of entrepreneurial ecosys-
tems

1.3.1 Venture capital networks

The application of complex network theory to entrepreneurial ecosystems is a growing
field, due in no small part to the greater availability of relevant data [85]. The choice of arti-
cles briefly presented here, while very far from exhaustive, aims to give a sense of the differ-
ent research directions that have been studied. Network-based analyses of entrepreneurial
ecosystems generally deal with three main themes : the impact of the reputation of venture
capital firms, prediction of companies’ future outcomes using network-based metrics, and
robustness of the entrepreneurial network to perturbations.

Syndication networks

Syndication networks are built based on the co-investment interactions during funding
rounds. Nodes represent investors, with edges linking two nodes if they took part in the
same funding round. These syndication networks represent some of the first andmost stud-
ied entrepreneurship-related networks as they represent, as [140] put it, a natural starting
point for the application of complex networks to venture capital due to several advantages :
they are easy to build (the data is public and easy to parse) and play a role in two of the main
drivers behind a VC’s performance (the deal screening and value-add process selecting the
companies and providing support).

In [140], authors study a US-based syndication network of over 3 000 investment firms
between 1980 and 1999 using centrality measures borrowed from graph theory, with the
hypothesis that better-networked venture capital firms would have higher centrality val-
ues. It was found that the more central nodes in the VC syndication network had better
performance in terms of Internal Rate of Return (rate of return on an investment) and
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in terms of exit rates amongst their portfolio companies. From the company point of
view, a well-connected lead VC firm amongst its investors significantly boosted its per-
formance, strongly raising its probability of successfully exiting or raising a subsequent
funding round.

In [186], authors study the temporal evolution of the yearly syndication network be-
tween VC institutions in the Chinese market. The temporal evolution of the influence of
VC institutions in this co-investment graph is evaluated using a k-shell (or k-core) decom-
position algorithm that allows for the discovery of higher-order network structures based
simply on node degrees. Each node has an associated temporal series of k-shell values com-
puted for each year between 1990 and 2013, where k-shell values are used as an evaluation
of the influence of investors in the syndication network. Clustering is then performed on
the time series of k-shell values, resulting in 5 distinct groups in terms of financial perfor-
mance and investment behaviors. Financial investment performance can thus be indirectly
estimated simply based on topological features of the syndication network, with the best
classification performance (corresponding to a smaller intra-group and larger inter-group
distance) achieved using k-shell decomposition rather than other network centrality mea-
surements such as degree centrality, betweenness centrality, h-index or eigenvector cen-
trality.

Company success

Recent works build startup-related networks allowing for the estimation of factors linked to
company success. Metrics are then computed on these network and are related to successful
outcomes. A prediction criterion can then be defined, which is used to compare predictions
to null models and real venture capital firms’ performance.

In [99], the characterization of the performance of VC-backed firms is approached through
the study of a bipartite network linking companies in the health sector and investors. Au-
thors restrict their analysis to the healthcare sector to homogeneize their sample (sector-
specific effects have been observed on investment patterns) and to reduce the impact of
market oscillations on the observed outcomes. Here, a successful company is defined fol-
lowing [36] but here excluding acquisitions performed by the company and adding mergers
(a successful company is defined as either having been acquired, gone public ormergedwith
another firm). The bipartite network is also a multigraph since investors can invest several
times in a single company, and accounts for the temporal dimension with links persisting
through time (i.e. the graph representation for year yf contains all links from years y ≤ yf ).
This graph is projected on the firm (two firms are linked if they receive an investment from
the same investor in a 7-year timespan) and investor (two investors are linked if they have
co-invested in a firm) layers, yielding two representations of this bipartite graph used to
compute networkmetrics of interest such as average neighbor degree, clustering coefficient
and a myriad of centralities. Funding trajectories (i.e. cumulative funding amounts raised
by a company over time) are then computed and clustered into high and low investment
regimes, and the links between values of the network metrics and allocation of a company
to the high or low investment regime are investigated. Firms’ closeness and PageRank
centralities are found to be positively significantly linked to the probability of the com-
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pany belonging to the high-regime class. The agreement between standard (IPO, acquired
or merged) and trajectory-based (high- or low-regime) success was also found to be high,
with an accuracy of 0.71 (correctly predicted samples over total number of samples), a pre-
cision of 0.57 (true positives over total number of positive predicted instances) and a recall
of 0.31 (true positives over total number of positive instances). As different centrality mea-
sures capture different aspects of the social relationships in the temporal network, their
varying importance gives insights into the important factors at different points of a ven-
ture’s life cycle : the results suggest that being connected to important and well-connected
investors is important in the early stages of the company (positive effects of the PageR-
ank centrality and investors’ average neighbor degrees increase in the early life of a firm),
whereas being in a far-reaching portfolio of investors (small clustering coefficient and high
eigenvector centrality) has a stronger impact in later stages.

In [36], the time-varying network of information and knowledge flow is approximated
using the worldwide network of human capital moving between companies. The assump-
tion is made that, as employeesmove from one company to another, the new company gains
access to the knowledge (both technical and business-related) developed in the employee’s
old firms, giving rise to a network approximating information flow between companies
and increasing the likelihood of success of companies central in this network. Startup out-
comes were then measured to link company success (as defined by the company either
acquiring another company, being acquired or undergoing an IPO) with network-related
characteristics of the companies. Using network centrality measures at an early stage to
assess the likelihood of long-term success, this knowledge transfer network was found to
hold strong predictive power for companies in the pool of open deals (firms which have
not yet received funding, been acquired or gone public). This work thus underlines the
links between centrality in the professional network and long term economic success of
companies in a knowledge-intensive industry.

Robustness

Finally, some applications of network analysis to entrepreneurial ecosystems try to assess
the robustness of these networks through the impact of extinctions of certain node classes
or the study of shock propagation through the network.

In [104, 103], the specific contributions of VC firms to the robustness and innovative
capabilities of the Silicon Valley ecosystem are studied. It is argued that the presence of VC
firms in the cluster of innovation facilitates specific interactions between companies and
other members of the innovative cluster, such as universities, large companies and labora-
tories. Innovative clusters are characterized by their capabilities to generate breakthrough
innovations, creating new industrial domains and nurturing startups that develop disrup-
tive technologies rather than incrementally improving on existing industrial sectors. By
framing the innovativeness of the Silicon Valley as an economic phenomenon embedded
in a complex network, complex network theory methods are used in order to analyze the
interactions of the numerous economic agents (such as institutions, companies, investors)
that give rise to innovation and entrepreneurship. This analysis demonstrates the various
roles of VC firms beyond simply funding startups : their selection of the most promising
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projects of the region acts as a signal to the business community, they accumulate and help
spread entrepreneurial knowledge in the innovative cluster and embed the interdependent
agents of the network (i.e. they link economic and non-economic institutions). The re-
moval of VC nodes from the network would also weaken the system as a whole due to the
specificity of the competencies they hold, as the entire system is weakened if one type of
agent is not present.

In [332], the channels propagating risk and loss in venture capital markets were stud-
ied using a multilayer network analysis in order to better understand the contagion risk
mechanism through which negative effects (such as the collapse of the dot-com bubble of
the early 2000s) propagate from the failure of specific market participants into the rest of
the system. A multilayer network was built with VC firms embedded in one layer, startups
in another, internal links between VCs in the VC layer (common capital provider, usually
limited partners) and startups in the startup layer (business reliance such as collaboration
between small companies) and external links between VCs in one layer and startups in the
other (an investor invests in a startup). All links are undirected and unweighted. Each node
also has a weight representing its cash position (amount of money owned by the agent at a
given moment in time). Once the cash position of a node reaches below a certain threshold,
this node is deactivated. Two channels of risk contagion are then defined : direct liquid-
ity shocks propagated via external links (a failed VC node, for instance, transmits a shock
to its portfolio companies which reduces the cash positions of all involved actors) and in-
direct risk contagion propagated via internal links where failure of venture capital firms
in a limited partner’s portfolio lead to capital supply shrinkage, which can in turn lead to
venture capital firm failure, and startup failure who will impact their connected business
partners. This internal failure is driven by a resilience parameter where an agent fails if
a sufficient number of its graph neighbors fail. Simulations are then run, with one agent
is selected as the initial failure node and the evolution of the graph is computed following
the two risk contagion dynamics which directly influence the cash positions of the nodes
(and thus their failure). The multilayer graph is built based on venture capital investment
data obtained from Bureau van Dijk covering the complete year 2017, and the initial failure
corresponds to the startup or venture capital firm with the highest degree of external con-
nections. When losses propagate only via external links, the system was found to remain
robust to perturbation. When both direct and indirect risk contagion channels were taken
into account, however, the whole market was found to display an abrupt transition be-
tween a stable and unstable state. Market robustness was also found to be linked both with
network connectivity (more connected networks were more robust), and to the initial dis-
tributions of cash positions (heterogeneous distributions were found to be more susceptible
to global collapse).

1.3.2 Machine learning-based prediction models

The recent availability of large datasets and algorithmic developments have also attracted
the attention of other communities, in particular with regards to the task of automatic data-
based prediction of successful startups. This spike in interest is in no small part driven by
the venture capital firms themselves in order to help solve a major problem : a surge in
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potential investment opportunities that they are not equipped to properly deal with. In-
deed, the venture capital business has limited scaling capabilities [67], with large fixed
costs for evaluating candidate ventures [118] due to the manual and empirical nature of
the traditional deal screening process. Furthermore, human investors are unable to con-
sistently make the right choices based on intuition alone due to their inherent biases [82].
Both academia [37] and venture capital professionals point to this surge of investment op-
portunities as a significant reason behind the adoption of data-driven technologies in deal
screening. This subfield of entrepreneurship-related research is not directly related to the
core topic of this thesis, but we will briefly present its general concepts given its current
relevance and methodological proximity.

General concept

Following [58], we will give a brief rundown of the steps followed when building a machine
learning based pipeline for startup prediction from the point of view of a venture capital
firm. The goal is to find common patterns in inputted startup-related data and approximate
a function(training) linking these patterns to the defined outcomes of the companies. After
training is done and given similar data on a new startup, themodel estimates the probability
of success of the new venture (prediction).

• definition of the prediction problem : due to constraints on the type of deals a fund
can participate in, the prediction problem is more complex than simply finding suc-
cessful companies using machine learning models. Indeed, compatibility between the
company and the investment thesis of the fund (such as geographical location, sector
focus, investment mandate and exit opportunities) needs to be taken into account
when assessing ventures. Compatibility can be accounted for in two main ways in
a machine learning pipeline. One can either have the model predict, given a single
venture, both its success probability and compatibility with the investor’s thesis or
first filter out all companies that do not match the investment thesis and then predict
success probabilities on the remaining sample. The second method is preferred as it
simplifies the model, increases flexibility (no re-training is required if the investment
thesis changes), and is more intuitive.

• definition of the success criteria/criterion : as discussed in the previous subsection,
the question of what constitutes success for a company is open. It is, however, nec-
essary to have a formal and measurable definition of success in order to annotate
startup outcomes to allow for model training and prediction, with the definition of
success depending on the activity of the investor (late-stage funds can be more in-
terested in success being defined as the company going public or getting acquired,
while early-stage investors can bemore interested in defining success as the company
managing to raise subsequent funding rounds).

• gathering the data : model performance is intrinsically linked to the quality of the data
it is being fed to describe companies. In gathering data, it is thus of value to obtain
data approximating information obtained from both modes. Due to constraints on
data obtainability, modality or size, choices must be made : multimodal data (i.e. data
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that comes in a mix of different types such as text, video, audio or numerical), for
instance, can have stronger predictive power but is usually harder to obtain and to
parse. This is particularly relevant as human analysis is theorized to be the result of
2 parallel modes of information processing : theintuitive and analytical modes [98],
where soft signals (such as founder personality or ability to convince an audience) are
processed through the intuitive mode and hard facts (such as financial data) through
the analytical mode. During deal screening, a VC firm evaluates candidate ventures
through both modes, with intuitive features usually being much harder to measure.
Some data (often related to the approximation of intuitive features) can prove to be
disproportionately hard to acquire ormanipulate compared to themarginal predictive
performance gain of the model.

• preprocessing the data : in order to have a balanced model that is less susceptible to
biases in the input data (such as overrepresentation of specific classes or differences
in scale between the various features), feature preprocessing is required. Further-
more, as most machine learning models only accept numerical features as inputs,
modal data that is not in a numeric format needs to be transformed into a numeri-
cal representation (using for instance embedding techniques, encoding or statistical
descriptions).

• splitting the data : it is necessary to reserve part of the data for model evaluation,
ensuring that the model correctly performs on “unknown” data. This data splitting
step can vary in complexity, with the simplest way being simply holding out a random
percentage of the total dataset (usually between 20% and 30% of the dataset), training
the model on the remainder of the data and evaluating the performance of the trained
model on the held-out data.

• choosing model architecture and training parameters : choosing the actual model can
be a tricky affair, in particular for deep-learning models where the architecture can
quickly become very complex. As the “No free lunch” theorem [325] famously states,
there is no one-size-fits-all solution to this question, and choosing the correct model
will depend on each use case, such as the prediction problem andmodality of the data.
Evaluating multiple appropriate models and choosing the best performer a posteriori
is the approach usually followed, with a bonus given to simplicity and explainability.

• evaluating the performance of the model after training : using evaluation metrics
on the sample held-out before training, it is possible to get a general appreciation of
the model performance by comparing model predictions (model-predicted outcomes)
to the ground-truth labels (actual outcomes). Several evaluation metrics are usually
used in tandem, with their selection driven by what constitutes a good model for the
use case. This model evaluation will help determine which model architecture and
training parameters should be favored, and ascertain the capability of the model to
generalize (i.e. correctly make predictions on situations not present in the training
data).

• evaluating model predictions : the high complexity (in terms of parameters) of ma-
chine learning models can lead to highly nonlinear relationships between input fea-
tures and output predictions, which makes understanding why the outputs are as
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they are very difficult. As these models are used as tools to aid decision making
during deal screening processes, the ability to explain the factors behind the final
prediction is crucial for investment professionals. The field of explaining the infer-
ence processes and final results of deep learning models is called explainable AI [327].
Understanding the relationships between input features and final outcomes is impor-
tant for several reasons. First, it increases trust in the models by allowing users to
judge if the features they consider important are reflected in the model. Second, it
enables hypotheses-mining, which consists in seeing how feature values relate to
the predicted outcomes without requiring a priori hypotheses. Third, it helps with
model troubleshooting by allowing users to analyze the relationships between fea-
tures and predictions. Two separate levels of explainability are considered relevant :
the global-level explainability, where the importance of individual features is related
to the predicted outcomes across all observations (i.e. high values for feature A are
generally linked to positive outcomes) and the instance-level explainability that pro-
vides fine-grained interpretability where, given a single observation, the impact of
each feature is shown on the predicted outcome (i.e. for a given successful outcome,
the main drivers behind the predicted value are features A and C).

• deploying the model : once a model displays satisfying performance, it has to be
deployed into production to screen real inbound deals. As humans and machine
learning models perform well in different situations (with humans being better at
evaluating outliers and machine learning models being faster, and less susceptible to
biases). Hybrid decision making models (human-in-the-loop) where the model pre-
diction and its drivers are treated as additional information about the venture which
will then be assessed by a human are usually preferred. Human oversight also allows
for performance monitoring of the level on several fronts : first, to assess that model
performance is in line with the evaluation and testing stage and second, to guard
against degradation of the model over time (due to, for instance, data drift or changes
in user context due to the evolution of the fund’s investment thesis over time).

Potential pitfalls

It has been argued that the very idea of venture capital is at odds with data-driver deal selec-
tion [37]. Indeed, on the one hand venture capital investments tend to finance novel ideas
that rarely succeed but achieve major success when they do [164] while, on the other hand,
algorithms rely on massive datasets to learn patterns from historic data. Furthermore, algo-
rithms, while not biased as humans can be in their decision making, are prone to biases in
the data : female founders have, for instance, been found to raise less funds when launching
companies in male-dominated industries [158]. These biases could be learned and repro-
duced by an algorithm taking as inputs, amongst a number of others, features pertaining to
the industry of the company and the founders’ gender. The risk of data-driven investing,
then, is two-fold : novel ideas could find themselves unable to attract financing, and past
biases could find themselves perpetuated by virtue of their presence in the dataset.

The impact of a VC firm becoming “data-driven” (defined as hiring their first data-
related employee) was studied in [37] using a worldwide investment database sourced from
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Crunchbase. This analysis is based on the backward-similarity of a startup computed as the
textual similarity between the company and all previous VC-funded companies operating
in the same industry (a high backward-similarity corresponds to a startup whose business
is similar to many others). The main findings of this article are that data-driven VCs, com-
pared to regular VC firms, deploy more capital towards backward-similar startups, signifi-
cantly increase their number of investments and assets undermanagement, are significantly
more likely to select startups that survive and receive follow-on investments and exhibit
a comparative advantage at screening backward-similar startups but show no significant
difference for other companies. Data-driven VCs, however, become significantly less likely
to invest in startups that achieve scarce major success (such as an IPO or a profitable acqui-
sition), and invest in less innovative startups as measured by the number of future patents
filed and citations obtained. The performance of data-driven VCs, however, was found to
remain similar, with data technologies potentially enabling VC firms to increase their assets
under management without harming their performance.

General conclusions

Venture capital has been considered a field of study in its own right since the end of the
20th century at the very least [65, 265], gaining traction ever since [278]. A number of
research questions such as identifying the drivers behind successful entrepreneurship or
understanding investment behaviors of venture capital firms have historically been ap-
proached through qualitative, small-scale analysis using surveys or manually collected
datasets. These studies have yielded major insights into a myriad of facets of entrepreneur-
ship, but present limitations and biases (such as western overrepresentation) due to the
relatively small sample sizes and to the nature and identity of both survey designers and
respondents. Data-based studies have in recent years gained steam due notably to the grow-
ing availability of large-scale, worldwide databases, quantitatively estimating both “soft”
and “hard” aspects of entrepreneurship and linking them with entrepreneurial outcomes.
Even though the advances in this direction have been numerous, the complex nature of
entrepreneurial ecosystems has required simplifications in how interactions are modeled,
discarding information in the process.

Indeed, even though network studies of venture capital have been a topic of interest for
over 2 decades, coinciding with the general rise in available data and interdisciplinary ap-
plications of network science, most quantitative analyses tend to ignore the bipartite nature
of interactions between venture capital and startups by either studying unipartite graphs
(such as syndication networks [140]) or collapsing the bipartite investor-startup graph into
separate unipartite graphs [99]. Studying this bipartite graph as is proves challenging due
to its size and sparsity, with tens or even hundreds of thousands of highly heterogeneous
nodes in each guild interacting with only –compared to the total size of the graph– few
other nodes. Furthermore, drawing parallels with ecological sciences, networks can be
studied at different levels of organization, such as the individual level, the species level or
at broader spatiotemporal scales. Each of those scales yields different information about
the characteristics of the item of study, with individual-based networks allowing for the
study of variations in niches among individuals, and species-based networks allowing for
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the description of the architecture of the ecological communities [129]. As investors are em-
pirically known to belong to different types, building investor species from the individual
investors to better understand the architecture of our economic communities is particu-
larly relevant in the context of this thesis. This in turn allows for the study of species-level
networks i.e. coarser-grained representations where investors are aggregated into homo-
geneous communities.
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Chapter 2

Investor clustering

This chapter is based on Carniel, T., Halloy, J., & Dalle, J. M., 2023 : A novel clustering
approach to bipartite investor-startup networks (Plos one, 18(1), e0279780).

We propose a novel similarity-based clustering approach to venture capital investors
that takes as input the bipartite graph of funding interactions between investors and star-
tups and returns clusterings of investors built upon 5 characteristic dimensions. We first
validate that investors are clustered in a meaningful manner and present methods of vi-
sualizing cluster characteristics. We further analyze the temporal dynamics at the cluster
level and observe a meaningful second-order evolution of the sectoral investment trends.
Finally, and surprisingly, we report that clusters appear stable even when running the clus-
tering algorithm with all but one of the 5 characteristic dimensions, for instance observ-
ing geography-focused clusters without taking into account the geographical dimension or
sector-focused clusters without taking into account the sectoral dimension, suggesting the
presence of significant underlying complex investment patterns.

2.1 Introduction

Within the active field of entrepreneurship research [65], quantitative analyses of the struc-
tural properties of investor-startup interactions have been conducted so far on a simplified
version of the investor-startup network, namely, on the network of investor-investor rela-
tionships, through the construction of syndication networks where two investors are linked
if they either invested jointly in a startup or have a common startup in their portfolios [128,
275, 140].

These limitations are typically manifest when trying to address and account for the
important and structural heterogeneity between investors: startup investors have marked
differences, with respect to sectoral specialization, to the average amounts invested (from
hundreds of thousands of dollars to hundreds of millions), or else to their geographical
focus, to name but a few relevant dimensions. Ignoring this heterogeneity or failing to ad-
dress it appropriately results in biased, if not misleading, conclusions, and certainly makes
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the observation and characterization of larger-scale collective phenomena with respect to
entrepreneurial ecosystems and of their temporal dynamics an impossible task. Commu-
nity detection algorithms [109, 253] have been applied to traditional syndication networks
but have either failed to incorporate explicit information about investment stages [155],
which typically results in overestimating actors who invest early in startups and are there-
fore linked to numerous subsequent investors according to syndication links, or have relied
on a semi-supervised approach [326] that relies on ex ante and partly subjective and/or
largely unavailable segmentation of investors, or else have been structurally limited by the
definition of the networks studied: [49], using a modularity-based community detection al-
gorithm, identifies communities of investors based on their interactions, but cannot do so
based on their similarity and therefore are unable to address the heterogeneity of structural
investors. Syndication networks, as one-mode projections, cannot capture the complex and
multi-layered interactions characteristic of bipartite venture networks, and therefore rele-
vant aspects of entrepreneurial ecosystems are lost.

More recent methods such as multi-view data clustering [314, 185, 328] are promising,
but are not able to deal with our specific constraints : our data is fundamentally bipartite,
with each of the views containing different types of data (numerical vs. categorical vs.
logarithmic) that are either node-based or edge-based. Specific clustering algorithms in-
corporating domain-specific knowledge to cluster similar investors through their position
and representation along the various axes of the complex bipartite multilayer multigraph
are thus necessary in order to study investment dynamics in the investor-startup network.

New analytical tools are required to take advantage of the distinctive structure of these
networks and to extract more information, associated with more complete datasets that
would allow to build both sides of the bipartite networks and the interactions between them.
Fortunately, the use of databases giving both large-scope and in-depth data on investor
and startup companies and on their interactions is now rapidly becoming standard [85]
while, following notably the ecological literature, methods for bipartite graph analysis have
recently become more and more developed and accessible [77]. In this context where both
tools andmaterials have become available, we initiate in this chapter an enriched analysis of
interactions in entrepreneurial networks and ecosystems, with a direct look at the funding
events rather than at the syndication shadow they project.

2.2 Objectives

We propose a novel, unsupervised investor clustering approach for entrepreneurial in-
vestors that mitigates some of the difficulties described earlier. It was developed both as
a direct tool to probe and characterize the typology of actors in venture capital ecosystems
and as a methodological building block with respect to the quantitative analysis of the
dynamics of entrepreneurial ecosystems. Our method is based on an unsupervised com-
munity detection algorithm using a Hellinger-based similarity measure, computed over all
pairs of investors, and accounting for 5 well-defined characteristic dimensions to describe
investors. As a consequence, the similarity between investors is easily quantifiable and
interpretable, compared to traditional clustering method based on machine learning tech-
niques - and although significant progress has been made in terms of interpretability [220].

38



The similarity graph pruning threshold is the only parameter, and the number of outputted
classes is freely determined by the clustering algorithm and is not constrained. As it hap-
pens, this method also allows for a controlled modification of the clustering parameters and
features, which results in the identification of unexpected community-level patterns that
help better understand the dynamics of the different classes of investors.

2.3 Materials and methods

2.3.1 Dataset

The dataset used for this study was extracted through the Crunchbase API on October 7th,
2020. It contains information on 1 156 085 startups (name, creation date, headquarter lo-
cation, sectors of activity), 348 020 funding events (target startup, date, investors involved,
amount, investment stage), 159 585 investors (name, creation date, investor type, investor
location) and 1 067 089 individuals (name, past and current professional experiences, level
and sectors of education, company board memberships and advisory roles). We removed
the Software sector from all startups’ sectors of activity as this tag is overly represented
(occurs in roughly 25% of startups, almost twice as frequent as the second most frequent
tag) and is relatively non-descriptive.

2.3.2 Investor-startup network

We create a temporal bipartite multigraph where top nodes are the investors, bottom nodes
are the startups and edges correspond to funding events between the investor and the
startup (see Fig. 2.1 for a schematic representation of the graph). As an investor can fund a
startup at several points in time, two nodes can be linked through several temporal edges.
We removed nodes for which the geographical information was not available and edges
where the financing event was not an investment event (grants, debt financing, etc.), and
afterwards removed isolated nodes as they do not take part in the network interactions
studied. This process resulted in a network with 65 653 top nodes, 95 329 bottom nodes
and 392 204 edges linking these two sets.

2.3.3 Hellinger distance and investor similarity

The Hellinger distance h [90] and the associated similarity θ between two normalized dis-
crete probability distributions P and Q are defined as :

h(P,Q) =
1√
2

∥∥∥√P −√Q
∥∥∥
2

(2.1)

θ(P,Q) = 1− h(P,Q) (2.2)

39



Figure 2.1: Schematic representation of the investor-startup multigraph. The red
nodes on the left represent investor nodes, the blue nodes on the right represent startup
nodes. The edges between investor node i and startup node s represent a funding interac-
tion where investor i invested in startup s at a given time. As an investor can invest in a
startup several times, multiple edges can connect two given nodes as shown on the figure.

where ||.||2 is the Euclidean (or L2) norm [170] and
√
P is the vector with elements the

square root of the elements of P . By definition, 0 ≤ h(P,Q) ≤ 1 and thus 0 ≤ θ(P,Q) ≤ 1
with θ = 0 corresponding to minimal similarity (maximal distance) and θ = 1 to maximal
similarity (minimal distance) between two distributions. The Hellinger distance is used as
the probability distributions are low-dimensional and it has been shown to be more suitable
than Minkowski distances for probability vector comparisons [179, 334, 273].

The similarity Θ between two investors i⃗a and i⃗b is then defined as follows :

Θ(i⃗a, i⃗b) =

∣∣∣∣∣
k=n∏
k=1

θ(ika, i
k
b )

∣∣∣∣∣
1/n

(2.3)

where ika is the distribution characterizing investor a along the k-th dimension and n the
total number of dimensions characterizing an investor.

2.3.4 Investor characterization

We characterize investors along n = 5 dimensions related to their investments in startups,
each of which being associatedwith a frequency distribution, chosen in order to collectively
exhaustively describe investment portfolios and therefore to allow to accurately character-
ize investors. Within the bipartite graph, these dimensions depend both on edges linking
an investor to startups (for instance the date of the investment, as several different temporal
edges can link an investor and a startup) or on the startup nodes (e.g. the geographical
location of an investment made by investor i targeting startup s will be the geographical
location of startup s). These characteristic dimensions can be measured for all investors,
are public enough so that the information is available for most transactions and are linked
to common descriptors used by practitioners of the domain to characterize investors (for
instance early-stage vs. late-stage [97], domestic vs. international [88], specialized vs. gen-
eralist [141], historical vs. emergent [93]).

• Temporal investment distribution : the frequency of investments per year of the in-
vestor (Fig. 2.2). This is an edge attribute.
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Figure 2.2: Temporal investment distribution. Temporal investment distribution of Soft-
bank Capital (A), a telecom-focused US-based venture capitalist that stopped its activity in
2017, and of Y Combinator (B), a US-based startup accelerator founded in 2005. The two
temporal patterns of actvitity are quite different between the two structures, as Softbank
Capital stops investing near the end of the period whereas Y Combinator’s activity steadily
grows throughout the whole period.

• Geographical investment distribution : the frequency of investments of the investor
in each country (an investor invests in a country if the target startup’s headquarters
are located in the country) (Fig. 2.3). This is a startup node attribute.

Figure 2.3: Geographical investment distribution. Geographical investment distribu-
tion of Softbank Capital (A), and Y Combinator (B). Only the top 4 target countries in terms
of frequency of investment are labeled. Both structures heavily target US-based ventures.

• Sectoral investment distribution : the frequency of investments of the investor in each
sector of activity (an investor counts as investing in a sector if the target startup of
the investment is labeled in this sector) (Fig. 2.4). This is a startup node attribute.

• Stage investment distribution : the frequency of investments of the investor in each
stage of the venture capital cycle (Fig. 2.5). This is an edge attribute.
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Figure 2.4: Sectoral investment distribution. Sectoral investment distribution of Soft-
bank Capital (A) and Y Combinator (B). Only the top 8 sectors of investment are labeled.
Softbank Capital shows a strong focus on IT-related ventures whereas Y Combinator shows
a wider sectoral breadth.

Figure 2.5: Stage investment distribution. Stage investment distribution of Softbank
Capital (A) and Y Combinator (B). Softbank Capital shows a strong focus in late-stage in-
vestment (most of its investments are in Series B or later) whereas Y Combinator shows a
very strong early-stage specialization (over 80% of its investments in Seed stage).

• Amount investment distribution : log-binned distribution of the funding amounts of
all investments of the investor in USD (Fig. 2.6). Logarithmic binning was used be-
cause the amounts of start-up financing rounds follow a power-law type distribu-
tion [81]. This is an edge attribute.

2.3.5 Self-difference index

For each community g and each year t in the period of study, the set of the top p sectors
kg
t = {m1,m2, ...,mp} in terms of number of investment is computed. The self-difference
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Figure 2.6: Amount investment distribution. Amount investment distribution of Soft-
bank Capital (A) and Y Combinator (B). In line with Fig. 2.5, we see that Softbank Capital in-
vests relatively high amounts (peak frequency of investment between 6million USD and 10
million USD) whereas Y Combinator invests smaller amounts in a very systematic manner
(peak frequency of investment between 80 000 USD and 200 000 USD). This is in line with
the accelerator model where accelerators invest a set amount in all ventures they decide to
support. Furthermore, Y Combinator has also developed funds such as Y Combinator Con-
tinuity dedicated to investing in its alumni companies after their initial investment. This
can be seen in the small bump in the funding amount distribution between 700 000 USD
and 10 million USD.

index d ∈ [0, 1] between years t1 and t2 for community g is defined as follows :

d(kgt1, k
g
t2) =

kgt1∆kgt2
2min(P − p, p)

(2.4)

where∆ is the symmetric difference between both sets and P is the total number of sectors.
This self-difference index ranges from 0 (identical sets) to 1 (no overlap between the top p
sectors of investment at year t1 and the top p sectors of investment at year t2). As there is
a natural inflation in terms of number of investment rounds due to an increase in venture
capital activity during the latter part of the period of study, the index takes into account
the ordering of the sectors in terms of number of investments rather than the raw number
of investments.
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2.4 Results

2.4.1 Investor Communities

Clustering

We reduce the set of top nodes (investors) worldwide to top nodes with degree d ≥ 60 in-
vestments throughout the 1998-2019 period (a low number for a professional investor over
this time frame) to ensure a sufficient number of observations for each dimension char-
acterizing an investor. Note that the same clustering results hold for a graph reduced to
investors with d ≥ 100 or more investments. This procedure results in 1014 investor nodes
in the final graph with 159 353 edges connecting them to startup nodes, isolate nodes be-
ing removed (see previous section). We compute the pairwise similarity Θ as defined in
Eq. 2.3 between all investors in our sample and then define a complete weighted similarity
graph with investors as nodes and the similarity between two investors as edge weights.
We prune the graph by retaining for each investor the 1% edges with the highest similarity,
yielding a k-nearest neighbor graph. Indeed, the k-nearest neighbor graph presents several
interesting properties for clustering applications : the resulting adjacency matrix is sparse,
it can connect nodes on different scales on the graph, and is generally less vulnerable to
unsuitable parameter choices [312]. In our case, since all investors are linked to all other
investors, this pruning procedure reduces the possible fluctuations of the community de-
tection due to weak links, thus strengthening the community information present in the
similarity graph [166, 16]. We then run the best_partition community detection algorithm
from the Python community package [34] resulting in an investor clustering with 11 differ-
ent communities.

For each of the communities, a theoretical representative investor defined as the barycen-
ter of the communities’ investors in the 5-dimensional probability space is computed: in
each dimension, the distribution of the representative investor of a given community is the
average of the distributions of all investors in the community. This representative investor
allows for a compact visualization and understanding of each community, yielding some
relevant understanding as to how the communities are formed. Fig. 2.7 for instance shows
the representative investor for community A6 and shows that investors in community A6
have an obvious China-focused geographical bias since over 84% of the cluster’s invest-
ments target China-based startups. As another example, Fig. 2.22 in the supplementary
material shows a similar sectoral focus on Health Care-related investments in community
A7, with around 27%, 30% and 26% of investments in Science and Engineering, Health Care
and Biotechnology respectively.

Fig. 2.8 shows the similarity graph pruned as described previously without (left) and
with (right) the results of the clustering superimposed on the individual nodes. In light of
these observations, we further characterize each of the resulting communities as described
in column A of Table 2.1 by analyzing the representative investors of each of the 11 com-
munities, which can be found in the supplementary material (Figures 2.15 to 2.25)), and
referring also to the identity of individual investors in the clusters (see Table 2.2 for a sam-
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Figure 2.7: Representative investor of community A6. Community A6 appears com-
prised of investors targeting China-based ventures during the second half of the 2010s with
no clear sectoral specialization. PanelA shows the representative geographical investment
distribution of community A6, panel B the distribution of the series of investment, panel
C the temporal distribution of investments, panel D the distribution of the amounts of in-
vestment and panel E shows the sectoral distribution of investment.

ple of individuals from each cluster). We observe that each community corresponds to a
strong and specific pattern: a specific geographical area of investment, a specific sector of
investment, investing at specific startup development stages, or displaying a specific tem-
poral pattern notably in relation to the 2008 financial crisis i.e. grouping investors that were
either active throughout the whole period, or that belonged to older or newer generations
of investors typically active either before or after the 2008 crisis.
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Figure 2.8: Similarity graph and community assignment. Pruned similarity graph
without (left) and with (right) community assignment of the nodes as characterized in
column A of Table 2.1. The neon yellow community corresponds to China-focused ven-
ture capital firms (A6), the dark red community to India and Japan-focused venture capital
firms(A10), the gold community to Health Care specialists (A7), the blue community (far
left) to accelerators (A2).
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Temporal evolution patterns

Based on this investor clustering, figures 2.9 and 2.10 reveal the temporal evolution of two
communities in terms of target sectors of investment over the 2010-2019 period. Com-
munity A0, composed of general investors active over the whole period studied, typically
shows a relatively slow evolution in terms of sectoral trends, with a gradual shift (Fig. 2.9)
in preferred sectors of investment towards so-called deeptech sectors (shift from sectors
such asMedia and Entertainement, Mobile towards sectors such as Science and Engineering,
Health Care). Community A7, composed of health-care focused investors, shows a very
strong dominance of Health Care-related sectors throughout the whole period (Fig. 2.10,
A), but where the top 10 sectors have significantly evolved over the 10-year period of
study (Fig. 2.10, B). A closer look at the non-health related sectors reveals a clear shift
fromManufacturing and Hardware-related investments towards Data Science and Analytics
andArtificial Intelligence-related investments, in line with the widespread adoption of these
technologies in Health Care-related sectors during recent years [317].

Figure 2.9: Temporal evolution of the investment patterns of community A0. Tem-
poral community investment patterns of the target startups’ sectoral tags for each year
aggregated at the community level. CommunityA0 is comprised of large, historical, rather
late-stage focused venture capital firms. Panel A shows for each year the ten tags that re-
ceived the most investments, panel B shows the community self-difference index described
in Eq. 2.4. We see a gradual but consequent shift in the target industries of community A0
throughout the period of study as evidenced in panel B, notably with the disappearance of
relatively low-tech sectors such as the Mobile, Apps and Advertising sectors.
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Table 2.1: Descriptive table of the communities for the different clusterings. Each
clustering is denoted by a letter and each community by a number (i.e. community B4 cor-
responds to community 4 for the clustering without the geographical dimension). The
second line in each cell denotes the community from clustering A that is most similar and
the associated similarity value. The similarity value is computed between the representa-
tive investors of said community and all communities of the complete clustering following
eq. 2.3.

Community Complete Clustering (A) Clustering Without Countries (B) Clustering Without Sectors (C)

0 General investors active whole period

General investors active whole
period
Similarity with community A0 :
0.931

General investors active whole
period
Similarity with community A0 :
0.956

1 General investors active pre-2008 crisis

General investors active pre-2008
crisis
Similarity with community A1 :
0.960

General investors active pre-2008
crisis
Similarity with community A1 :
0.96

2 Accelerators [72, 73]
Accelerators and incubators
Similarity with community A2 :
0.92

Accelerators
Similarity with community A2 :
0.915

3 Early-stage investors post-2008 crisis

Early-stage investors low
amounts post-2014
Similarity with community A3 :
0.857

Early-stage investors post-2008
crisis
Similarity with community A3 :
0.935

4 EU-focused investors

Early-stage investors low
amounts post-2008 crisis
Similarity with community A3 :
0.887

Canada-focused investors
Similarity with community A9 :
0.956

5 Late-stage investors
Late-stage investors
Similarity with community A5 :
0.882

General investors active post-
2008 crisis
Similarity with community A8 :
0.964

6 China-focused investors
China-focused investors
Similarity with community A6 :
0.954

EU-focused investors
Similarity with community A4 :
0.870

7 Health Care-focused investors
Health Care-focused investors
Similarity with community A7 :
0.988

Health Care-focused investors
Similarity with community A7 :
0.813

8 General investors active post-2008 crisis

General investors active post-
2008 crisis
Similarity with community A8 :
0.877

China-focused investors
Similarity with community A6 :
0.989

9 Canada-focused investors

"Next-generation" post-2014 gen-
eral investors
Similarity with community A8 :
0.874

Japan and India-focused investors
Similarity with community A10 :
0.978

10 Japan and India-focused investors

"Next-generation" post-2014 gen-
eral investors
Similarity with community A3 :
0.863
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Community Clustering Without Time (D) Clustering Without Series (E) Clustering Without Amounts (F)

0

General investors active whole
period
Similarity with community A8 :
0.899

General investors active whole
period
Similarity with community A0 :
0.969

General investors active whole
period
Similarity with community A0 :
0.956

1

Middle-stage investors active
whole period
Similarity with community A0 :
0.881

Early-stage investors active post-
2008 crisis
Similarity with community A3 :
0.904

General investors active pre-2008
crisis
Similarity with community A1 :
0.988

2

General investors active post-
2008 crisis
Similarity with community A8 :
0.908

UK-focused early-stage investors
Similarity with community A4 :
0.791

North America-focused incuba-
tors
Similarity with community A9 :
0.805

3

North America-focused incuba-
tors
Similarity with community A9 :
0.814

General investors active pre-2008
crisis
Similarity with community A1 :
0.976

Accelerators
Similarity with community A2 :
0.888

4
EU-focused investors
Similarity with community A4 :
0.885

EU-focused investors
Similarity with community A4 :
0.886

UK-focused early-stage investors
Similarity with community A4 :
0.791

5

Very early-stage investors active
post-2008 crisis (UK and US)
Similarity with community A2 :
0.868

"Next-generation" post-2014 gen-
eral investors
Similarity with community A8 :
0.899

EU-focused investors
Similarity with community A4 :
0.898

6

Early-stage investors active post-
2008 crisis
Similarity with community A3 :
0.949

China-focused investors
Similarity with community A6 :
0.908

General investors active post-
2008 crisis
Similarity with community A8 :
0.923

7

General investors active pre-2008
crisis
Similarity with community A1 :
0.933

Health Care-focused investors
Similarity with community A7 :
0.969

Early-stage investors active post-
2008 crisis
Similarity with community A3 :
0.901

8
Israel-focused investors
Similarity with community A0 :
0.829

Canada-focused investors
Similarity with community A9 :
0.977

"Next-generation" post-2014 gen-
eral investors
Similarity with community A3 :
0.859

9
China-focused investors
Similarity with community A6 :
0.992

Accelerators
Similarity with community A2 :
0.929

China-focused investors
Similarity with community A6 :
0.992

10
Health Care-focused investors
Similarity with community A7 :
0.990

Japan and India-focused investors
Similarity with community A10 :
0.953

Health Care-focused investors
Similarity with community A7 :
0.973

11
Japan and India-focused investors
Similarity with community A10 :
0.973

Japan and India-focused investors
Similarity with community A10 :
0.976
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Figure 2.10: Temporal evolution of the investment patterns of community A7. Tem-
poral community investment patterns of the target startups’ sectoral tags for each year ag-
gregated at the community level. Community A7 is comprised of Health Care-specialized
venture capitalists. Panel A shows for each year the ten tags that received the most invest-
ments, panel B shows the community self-difference index described in Eq. 2.4, with two
markedly different areas of coherence, before and after 2014-2015.

2.4.2 Clustering factor analysis highlights underlying investment
patterns

Since the 5 characteristic dimensions are based on domain knowledge, we ran the clustering
algorithm 5 additional times, each time using only 4 of the 5 dimensions previously defined,
computing the representative investors of all communities for each of these alternative clus-
terings in order to understand the characteristics of the new communities. Fig. 2.26 shows
the representative investor of community B6 resulting from a clustering without the geo-
graphical investment dimension. Surprisingly, the community shows a strong focus on the
Chinese startup market, with around 80% of all investments targeting China-based star-
tups although the geographical dimension was not taken into account, therefore suggesting
the existence of an underlying structure: the existence of an investment pattern according
to the 4 other investment dimensions that is actually characteristic of investors investing
mostly in China. Similarly, Fig. 2.27 shows the representative investor of communityC7 re-
sulting from a clustering without the sectoral dimension, but shows a community strongly
focused on Health Care startups (around 17%, 18% and 15% of investments in Science and
Engineering, Health Care and Biotechnology respectively) not unlike the community shown
in Fig. 2.22, even though sectors were not taken into account in this clustering.

Following these observations, we systematically investigate the bivariate distributions
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for all pairwise combinations for each alternative clustering, with the discrete bivariate
distribution f of group g at coordinates (m,n) defined as :

fg(m,n, k1, k2) =

ϵ=T∑
ϵ=1

ik1ϵ (m) ik2ϵ (n)

v=V∑
v=1

w=W∑
w=1

ϵ=T∑
ϵ=1

ik1ϵ (v) i
k2
ϵ (w)

(2.5)

where investor distribution k1 has dimension V and k2 has dimension W with group g
being comprised of T investors.

Geographical
Fig. 2.11 shows the resulting bivariate distribution for all pairs of dimensions for commu-
nity B6, here presented as heatmaps. It shows that B6 investors take part mostly in series A
investments between $10M and $20M after 2015, which could correspond to a pattern char-
acteristic of China-focused investors in our sample. For all bivariate distributions shown in
Fig. 2.11 (community B6) and Fig. 2.12 (community A6), both communities display virtu-
ally identical behaviors : most likely due to this underlying investment pattern, taking into
account the geographical dimension is not necessary to characterize this cluster despite its
very strong geographical footprint.

Sectoral
Similarly, Fig. 2.13 shows the resulting bivariate distribution for all pairs of dimensions
for community C7. It shows that C7 investors invest mainly in series B rounds between
$20M and $50M in North American ventures, which appears to be an investment pattern
for investors specialized in Health Care in our sample. Fig. 2.14 shows community A7
resulting from the complete clustering. Fig. 2.13 and Fig. 2.14 show a strong agreement in
terms of Series andAmounts of investments but still display slight differences as community
A7 has been active for a longer time than community C7. We therefore observe different
generations of Health Care-focused investors with the newer generations associated with a
wider scope of investment in terms of sectors. These new investors tend to invest in Health
Care-oriented companies with a stronger IT component in the latter part of the 2010s (see
Fig. 2.13), a pattern not found in Fig. 2.14. This suggests that the current shift in Health Care
venture funding (linked notably to the use of Artificial Intelligence solutions) could on a
global level not be the result of a shift of focus of traditional Health Care-focused investors
but rather the outcome of the emergence of a new group of investors in the domain.

Temporal
Again in a similar manner, and analyzing this time the clustering computed without the
temporal dimension, Fig. 2.28 shows the representative investor of community D7, asso-
ciated with a very specific temporal pattern of investment that appears markedly similar
to community A1 from the complete clustering (see Fig. 2.16), even though the temporal
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Figure 2.11: Cross-interaction heatmaps for community B6. This community corre-
sponds to China-focused investors. Only the top 8 sectors and the top 4 countries in terms
of frequency of investments are labeled for readability purposes.

dimension was excluded in the case of D7. This observation therefore again suggests the
existence of underlying investment patterns associated with investors. Here, historical,
older generation investors appear to have been clustered together independently of their
temporal activity, and rather on the basis of a qualitatively specific investment pattern that
differs from those of newer generation venture capital firms.
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Figure 2.12: Cross-interaction heatmaps for community A6. This community corre-
sponds to China-focused investors.
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Figure 2.13: Cross-interaction heatmaps for community C7. This community corre-
sponds to a Health Care-focused community of investors. Only the top 8 sectors in terms
of total number of investments and the top 4 countries of investment are labeled for read-
ability purposes.
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Figure 2.14: Cross-interaction heatmaps for community A7. These distributions cor-
respond to Health Care specialists.
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2.5 Conclusion

In this chapter, we approached investors through clustering methods in order to help us
and fellow researchers make a better sense of the “venture capital community”, perhaps in
the sense of advocating for the end of their analysis as that of an homogeneous community.
We thus described a novel approach to quantitatively group startup investors based only
on the characteristics of their investments, as gathered from a bipartite investor-startup
network. This clustering approach results in interpretable and homogeneous subgroups of
investors with markedly different profiles, which we hope could prove helpful for the com-
munity of researchers interested in studying venture capital communities and networks by
allowing them to differentiate among venture capitalists. In that sense, “the” venture capi-
tal community, as often referred to, might actually be composed of several venture capital
communities whose investment behaviors and in particular whose co-investment behav-
iors might considerably differ. As a consequence, we would plead for some of the literature
on venture networks to be assessed again on each of the venture communities separately,
for instance with respect to the relationship between network position and centrality and
the profitability of venture investments.

In addition, and by allowing the conditions under which investors are clustered accord-
ing to our approach to vary, notably by reducing the number of characteristic dimensions
taken into account, wewere able to observe the presence of relatively surprising underlying
and robust investment patterns characteristic of certain clusters of startup investors. For
instance, the fact that some investors specialize as Health Care specialists seems to have
consequences with respect to their other investment patterns notably in terms of funding
amounts or funding rounds : we did observe a cluster of Healh Care-focused investors even
when the sectoral dimension was not accounted for in the clustering. Similarly, the fact that
some investors focus on investments in China also results in the existence of patterns with
respect to their investment behaviors, once again in terms of funding amounts and fund-
ing rounds in particular : we indeed observed a cluster of investors focused on China even
when the geography of investments was not taken into account. From a research point of
view, these observations raise the issue of whether they would be the result of a behavioral
phenomena or rather market outcomes. More broadly, the existence of such underlying
patterns could also result in modifying how financial actors directly interpret and evaluate
opportunities, compared then to such benchmarks.

Furthermore, similar underlying investment patterns were also observed to character-
ize different generations of investors, notably in relation to the 2008 financial crisis. We
notably observed a cluster of investors mostly active before the 2008 crisis even when the
temporal distribution of their investments was not taken into account. In our sample, this
observation is particularly striking with respect to the aforementioned crisis, but we also
observed preliminary evidence of a similar phenomenon in the case of Health Care focused
investors with 2014 as a breaking point, which we can relate to the significant increase in
startup investment activity that occurred around that date. Altogether, and adding also that
the cluster of so-called accelerators (A2) also corresponds to a completely new “species” of
investors that appeared in the late 2000s, these preliminary observations might suggest a
mechanism that would evoke the notion of speciation in ecology: whenever the “financial
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environment” would change, newer “species” of investors could appear in an evolutionary
way, by seizing the newer opportunities offered by the new environment, while existing
investors might either adapt or stay locked in their previous patterns even though these
patterns might eventually not represent an adaptive advantage in a new financial environ-
ment. Rather than simply suggesting an evolutionary perspective, these observations could
also shed more light on the determinants of success for so-called “Limited Partners” [182],
i.e. investors in venture capital funds, by potentially providing a supplementary explana-
tion of why returns would differ systematically across limited partners [63]. They could
also provide limited partners and other actors in the finance community themselves with a
new understanding of the dynamics of innovation in the venture capital market.
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Cluster 0 Cluster 1 Cluster 2 Cluster 3
CRV Threshold Ventures Masschallenge Marc Cuban

Greylock Venrock Skydeck Berkeley Band of Angels
Battery Ventures Sigma Partners MIT Media Lab SV Angel
RRE Ventures Fidelity Ventures 500 Startups Scott Banister

Bain Capital Ventures H.I.G. Capital Techstars Fabrice Grinda
GGV Capital ABS Ventures Y Combinator Alexis Ohanian

Goldman Sachs Polaris Partners Kima Ventures Betaworks
Kleiner Perkins Caufield Byers Baird Capital Start-Up Chile Angelpad

Sequoia Capital Cedar Fund SOSV Kickstart Seed Fund
Benchmark Enterprise Partners Chinaccelerator Lerer Ventures

Cluster 4 Cluster 5 Cluster 6 Cluster 7
Seedcamp Tiger Global IDG Capital Partners Sofinnova Ventures

Amadeus Capital Partners Temasek Ceyuan Ventures Abingworth Management
Balderton Capital KKR SIG China Frazier Healthcare Ventures
Index Ventures T. Rowe Price Shenzhen Capital Group Sante Ventures

Partech General Atlantic Sequoia Capital China SV Life Sciences
Alven Capital Wellington Management Vertex Ventures China Orbimed Advisors

Xange Private Equity Coatue Qingsong Fund Life Sciences Partners
IDInvest Partners Iconiq Capital Zhenfund Oxford Bioscience Partners
Bayern Kapital Google Capital Baidu Lilly Ventures
Iris Capital Softbank Vision Fund Matrix Partners China Deerfield Management Company

Cluster 8 Cluster 9 Cluster 10
Silverton Partners Celtic House Venture Partners Mitsubishi UFJ Capital
First Round Capital BDC Venture Capital Mizuho Capital

Greycroft Fonds de Solidarite FTQ SMBC Venture Capital
Andreessen Horowitz Inovia Capital Omidyar Network

Ridge Ventures Relay Ventures Sequoia Capital India
GE Ventures Innovacorp East Ventures

Foundry Group Anges Quebec Mumbai Angels
Miramar Venture Partners Founderfuel Innovation Network Corp of Japan

Lux Capital Venture Alberta Nissay Capital
IA Ventures Creative Destruction Lab Itochu Technology Ventures

Table 2.2: Complete clustering: Sample investors from each community. Ten in-
vestors are manually chosen from each community to provide insights about the typology
of investors.
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Figure 2.15: Representative investor of community A0.
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Figure 2.16: Representative investor of community A1.
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Figure 2.17: Representative investor of community A2.
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Figure 2.18: Representative investor of community A3.
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Figure 2.19: Representative investor of community A4.
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Figure 2.20: Representative investor of community A5.
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Figure 2.21: Representative investor of community A6.
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Figure 2.22: Representative investor of community A7.
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Figure 2.23: Representative investor of community A8.
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Figure 2.24: Representative investor of community A9.
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Figure 2.25: Representative investor of community A10.
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Figure 2.26: Representative investor of community B6.
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Figure 2.27: Representative investor of community C7.
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Chapter 3

Automatic text-based grouping of the-
matically similar documents

Section 3.2 of this chapter is based on Carniel, T., Cazenille, L., Dalle, J. M., & Halloy, J.,
2022 : Using natural language processing to find research topics in Living Machines confer-
ences and their intersections with Bioinspiration & Biomimetics publications (Bioinspiration
& Biomimetics, 17(6), 065008).

In order to discover clusters of thematically-similar patents based on individual patent
information to study the investor-technology graph at the “species”-level, a specificmethod-
ology is required. Indeed, the ever-increasing production of scientific and technical mate-
rials, resulting in hundreds of thousands or millions of documents relevant to a given ques-
tion, comes at a price : there is too much to read. Flexible automated methods to parse and
regroup similar documents in order to help humans analyze large corpora are thus required.
Patent specifications present a formalized structure, with a number of parts that describe
the patented invention and its context through descriptive writing (such as the title and
abstract). It is then submitted to a patent office that will oversee the issuing of patent rights
to the inventors and assign the patent to a number of IPC (International Patent Classifica-
tion) classes it judges suitable. The IPC, however, is unfortunately not easily amenable to
network analysis such as ours for several reasons [284, 306, 25]. First, it is a fixed classifica-
tion that is infrequently updated even though patents are being published increasingly fast,
creating a grey area where new technologies are not accurately categorized due to the lack
of a sufficiently suitable class amongst the existing ones and making it unable to anticipate
the birth of new fields [25]. Second, a patent is a complex document that contains different
aspects such as technological descriptions or fields of application. Some patents thus exist
at the intersection of several classifications (a patent describing a recommender system for
targeted advertising, for instance, exists in both the recommender system space and the
targeted advertising space), which the IPC resolves by allowing the patent to have multi-
ple classes. This is, however, problematic when trying to quantitatively study patent data
as multi-class analysis is markedly more complex than binary analysis. Third, the patent
class taxonomy is massive with over 70 000 subgroups; a method to reduce the number of
categories is necessary in order to obtain a smaller graph so that relevant and easily inter-

73



pretable analyses can be performed. Doing so by cutting the taxonomy closer to the root
would be a potential way to proceed, but this would lose information as a patent can exist in
different branches of the taxonomy. Finally, there is some inconsistency in the classification
between different patent offices and countries [32, 62], where a patent will not necessarily
have the same classification between the different offices and examiners.

In this context, we endeavor to develop a methodology that, simply based on the tex-
tual contents of the patents, regroups them following their overarching technologies. To
do so, we draw methods from the topic modeling literature [1], a subfield in the vibrant
field of natural language processing. In this chapter, we will first present in section 3.1 the
various algorithmic bricks of the state-of-the-art topic modeling pipeline that is used and,
in section 3.2, we will validate its results when applied to a test corpus small enough to be
manually validated before applying this methodology to the much larger patent dataset in
chapter 4. The test corpus is comprised of articles and conference proceedings from the field
of bioinspiration and biomimetics, a highly interdisciplinary subset of the scientific litera-
ture. Indeed, scientific production represents a good testbed before we apply this method-
ology to patents : the documents show similar structure (title and abstract describing the
contents of the document), are relatively similar in terms of technicality of the writing and
can be retrieved easily (titles and abstracts are freely available online). The specific subfield
of bioinspiration and biomimetics, in turn, was chosen for two reasons. First, its interdisci-
plinarity means that it broaches a number of varied technical topics, similarly to our patent
database. Second, we possess some knowledge of this subfield allowing us to assess the
quality of the resulting thematic clusters, which is necessary to validate this methodology
before applying it to a larger corpus.

3.1 Topic Modeling

The analysis of a large corpus of text documents is challenging, often requiring a large
amount of human resources. Generating a simplified representation of the corpus, how-
ever, can often be useful in order to facilitate information extraction, comprehension and
analysis of the corpus. This is what topicmodeling, an unsupervisedmachine learning tech-
nique that finds the overarching themes of the documents in the corpus and creates groups
of thematically similar documents (clusters), aims to achieve. A number of techniques exist
to perform topic modeling [1], but state-of-the-art performance has been achieved on topic
modeling tasks using clustering algorithm on embedded documents [125]. Section 3.1.1
will describe the Transformer architecture, the deep learning model used to create high-
dimensional document embeddings. Section 3.1.2 will describe the UMAP algorithm used to
perform dimensionality reduction on these embeddings, i.e. create a low-dimensional rep-
resentation of the document embedding vectors. Section 3.1.3 will describe the HDBSCAN
algorithm used to extract document cluster memberships from these low-dimensional em-
beddings. Note that the dimensionality reduction step could be omitted since the clustering
algorithm can work in an arbitrarily large space, but is performed as density-based clus-
tering algorithms (such as HDBSCAN used here) tend to work better on low-dimensional
datasets.

As the field of machine learning is constantly evolving at a rapid pace, with for instance
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new model architectures or new algorithms (such as the Pairwise Controlled Manifold Ap-
proximation Projection [315] that aims to improve on the ability of UMAP to preserve both
the global and local structure of the data), the individual steps of the pipeline described
here are bound to improve, but the fundamental concepts involved in the process remain
the same.

3.1.1 Transformers

Natural Language Processing (NLP) tasks have been revolutionized following the introduc-
tion of vectorization techniques such as Word2vec [217] in 2013. Vectorization techniques
transform words and sentences into dense numerical representations called vector embed-
dings, allowing for the application of machine learning algorithms that take numerical rep-
resentations as inputs.

The most popular and best-performing model architecture in dealing with a majority of
NLP tasks is the Transformer architecture [304] of which variations gave birth to a number
of pre-trained models such as OpenAI’s Generative Pre-trained Transformers [242] (GPT)
and Google’s Bidirectional Encoder Representations from Transformers [89] (BERT).

Here, we will briefly discuss the transformer architecture and its self-attention mecha-
nism that differentiates it from previous NLP deep learning architectures such as recurrent
neural networks. The transformer architecture as described in [304] is a fairly straightfor-
ward encoder-decoder architecture, withmodified encoder and decoder stacks. Throughout
the course of this discussion, we will use "word" and "token" interchangeably for simplic-
ity’s sake as it is not central to conceptual understanding of the actions performed by the
model. To give a brief rundown of the difference, when using transformer models, a word
can be subdivided into several tokens(the word eating can be split into the its root form eat
and the suffix ##ing). This has several added benefits : it allows the model to capture the
grammatical form of a word which contains information, and allows the model to deal with
unknown words by splitting the word into known units.

Self-attention

The attention mechanism is a mechanism tasked with giving access to all elements of a se-
quence at each time step, while being selective and determining which sequence elements
are most important depending on the context. In the Transformer architecture, the atten-
tion mechanism used is a specific type of attention called self-attention. Self-attention can
be thought of as a mechanism that enhances the information content of an input embedding
by including information about the input’s context. This mechanism enables the model to
weigh the importance of different elements in an input sequence and dynamically adjust
their influence on the output. Here, we will describe the self-attention mechanism.

Given an input sequence of length T , each input word in the sequence is first embedded.
Then, each of the input words receives three different representations corresponding to the
roles it can play : the query component is used when a position in the sequence "looks"
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at others in order to gather context, the key component is used when a position in the
sequence is responding to a query’s request, and the value component is used to modulate
the amplitude of the response of the key component. This can roughly be put into plain
words as "for the queried word in the sequence, what is the most related key (word) in the
sentence to understand what the queried word is about, and how much information (value)
does it contain ?". The self-attention mechanism utilizes three weight matrices WQ, WK

andWV that are respectively used to project the inputs of the sequence into query, key and
value components. These matrices are adjusted as model parameters via backpropagation
during model training.

The query, key and value components are obtained via matrix multiplication between
theW matrices and the embedded inputs x.

q(i) = WQx(i) for i ∈ [1, T ]

k(i) = WKx(i) for i ∈ [1, T ]

v(i) = WV x(i) for i ∈ [1, T ]

(3.1)

with WQ and WK
dk×d and WV

dv×d where dk is the dimension of vectors q(i) and k(i) and
d is the size of word vector x. Index i refers to the index position in the input sequence.
For instance, the query vector associated with the third input element is given by q(3) =
WQx(3). Next, the unnormalized attention weights ω are computed using eq. 3.2 :

ωi,j = q(i)Tk(j) (3.2)

ωi,j corresponds to the unnormalized attention weight of the j-th input element for the
query associated with input element i. The normalized attention scores are then given by
eq. 3.3 :

αi,j = softmax
(

ωi,j√
dk

)
softmax(xi) =

exi∑j=k
j=0 e

xj

(3.3)

The scaling by
√
dk is used in order to ensure model convergence during training. Applying

softmax heightens high values and depresses low values, drowning out words irrelevant to
the words being attended to.

Finally, the context vector z(i) ( which is the attention-weighted version of the original
query x(i)) is computed taking all the other input elements as its context following eq. 3.4.

z(i) =
T∑

j=1

αi,jv(i) (3.4)

where v(i) is the value vector computed by multiplying the Wv matrix with the embedded
inputs x (see eq. 3.1).
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Note that in practice, the attention score computation is done using matrix multiplica-
tion as shown in eq. 3.5.

Attention(Q,K,V) = softmax(QK
T

√
dk

)V

Q = WQx
K = WKx
V = WV x

(3.5)

where Q, K and V are respectively the query, key and value matrices of the sequence.

The implementation of this self-attention mechanism is performed through a module
called multi-headed attention. This involves using h different attention heads, where a sin-
gle attention head l ∈ [1, h] is composed of the three matrices WQ

(l), WK
(l) and WV

(l) and
performs the computation of context vector z(l). We perform the computation for each of
the h attention heads yielding, for each input i, a total of h context vectors and query, key
and value matrices i.e. we have context vectors z(i)1 , z(i)2 , ..., z(i)h , and similarly matricesWQ

(1),
..., WQ

(h), WK
(1), ...,W

K
(h) and WV

(1), ...,W
V
(h). All the resulting context vectors are then con-

catenated, and multiplied by an additional weights matrixWO that was trained jointly with
the model in order to get the Z matrix that captures information from all attention heads
as shown in eq. 3.6. The intuition behind the multi-head attention mechanism is relatively
straightforward : when looking at a word in a sentence, humans pay attention to multiple
things. For instance, when attending to a verb of motion, one can pay attention to the di-
rection of the motion (where), the subject of the verb (who), or the means of locomotion
(how). A single attention head would have to focus on all these related concepts, becom-
ing silver at all trades and gold at none. Having multiple attention heads allows the model
to pay specific attention to each of these concepts. The actions of the different heads have
been shown to be interpretable and their importance quantifiable [311], with the main roles
of attention heads being positional (several heads are "tasked" with attending to a token’s
immediate neighbors), syntactic (tracking major syntactic relations in the sentence) and
dealing with rare tokens in the input sequence.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

with headl = Attention(QWQ
(l),KWK

(l),VW
V
(l))

(3.6)

where the projections are parameter matricesWQ
(l) ∈ Rdmodel×dk ,WK

(l) ∈ Rdmodel×dk ,WV
(l) ∈

Rdmodel×dv and WO ∈ Rhdv×dmodel . In the original transformer architecture, parameters are
set with h = 8 the number of parallel attention layers and dk = dv = dmodel/h = 64.

Note that the multi-headed attention mechanism is used in several different ways in the
Transformer architecture.

• 1) In the "encoder-decoder attention" layers on the decoder side, queries (Q) come
from the previous decoder layer, while keys (K) and values (V) come from the output
of the encoder. Every position in the decoder is thus able to attend over all positions
of the input sequence.
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• 2) The self-attention layers in the encoder stack, where all keys, values and queries
come from the output of the previous layer in the encoder. Each position in the
encoder can thus attend to all positions in the previous layer of the encoder.

• 3) The self-attention sub-layers in the decoder stack allow each position in the de-
coder to attend to other positions up to the current word being decoded : in order
to prevent leftward flow in the decoder, thus preserving the auto-regressive property
(i.e. future values are only predicted based on past values), all values corresponding
to illegal connections are masked out (i.e. "future" positions in the sequence) during
the computation of the softmax step in the self-attention calculation (eq. 3.5).

Positional encoding

One of the weaknesses of the model the self-attention mechanism described here is its in-
ability to take into account the order of words in the input sequence as they are all attended
to in parallel. To remediate this, a vector is added to each input embedding following a
specific pattern which can be either explicitly defined (for instance with a combination of
trigonometric functions as is done in [89]) or learned during model training. This pattern
helps the model estimate the position of each word, and thus the distance separating two
words in the input sequence.

The Transformer architecture

The architecture of the Transformer model is shown in fig. 3.1.

The encoder stack is comprised of N = 6 identical encoder layers stacked on top of
each other. An encoder layer is composed of two sub-layers (one self-attention layer and
one feed-forward neural network) tasked with encoding the input to a high-dimensional
continuous representation (usually of dimension 512 or 768) by taking into account the
context of each item in the input sequence, thus improving the quality of the dense rep-
resentation. This also helps the decoder side of the architecture focus on the appropriate
items in the input sequence during the decoding process. Each sub-layer has a residual con-
nection around it and is followed by a layer-normalization step. An input fed to an encoder
layer goes through the following steps :

• A sequence is received as input.

• Words are vector-embedded (if in the first layer of the encoder) and concatenatedwith
the vector resulting from positional encoding, resulting in positional embeddings i.e.
embedded words with information about the order of words in the input sequence
added.

• Self-Attention is computed on all words of the input sequence using dot-product at-
tention, calculating the contribution of each token to each of the other tokens.

• The attention scores of each word in the input sequence are computed, and passed
through the residual connection and normalization layers.
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Figure 3.1: The architecture of an encoder (left) and decoder (right) layer in the
Transformer model. Image taken from [304].
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• The attention matrix is then passed through a feed-forward neural network com-
posed of two linear transformations with a ReLU activation function in between as
shown in eq. 3.7, and the result is once more fed through a residual connection and
normalization layer.

FFN(x) = max(0, xP1 + b1)P2 + b2 (3.7)

The decoder stack is composed ofN = 6 identical decoder layers. The decoder is tasked
with generating text sequences for tasks such as sequence translation, query answering or
text completion. The decoder takes as input the outputs of the previous decoder layer, as
well as the outputs of the last encoder layer that contains the attention information. An
input fed through a decoder layer goes through the following steps :

• The input goes through an embedding layer and position encoding layer in order to
get positional embeddings.

• The positional embeddings are fed into the first masked multi-head attention layer
to compute the attention scores for the decoder’s input. They are then fed, as in the
encoder, to a normalization and residual connection layer.

• The decoder layer has a second multi-head attention called the encoder-decoder at-
tention that uses the encoder stack’s outputs as the keys and values and the queries
from the previous layer in the decoder. This process matches the encoder’s input to
the decoder’s input, giving the decoder access to context on the encoder’s input. The
output of this multi-headed attention is then passed through the residual connection
and normalization layer.

• The result is then passed through a feed-forward neural network, another residual
connection and normalization layer.

Finally, the output of the last decoder layer is passed through a linear layer that acts
as a classifier, transforming it into a numerical vector that is the size of the vocabulary of
the model. This vector is then fed into a softmax layer, turning it into a probability vector
where each class has probability between 0 and 1. The index of the highest probability score
corresponds to the predicted word, i.e. the next word in the generated text. The output is
then added to the list of decoder inputs, and the process is repeated until the end of the
generation is reached (for instance the number of desired tokens has been generated).

From Transformers to BERT

Two families of pre-trained Transformer models on large text datasets are commonly used.
One is the BERT encoder-only architecture [89], and the other is the GPT decoder-only
architecture [242]. In our use cases, we favored the BERT family of models : we want the
best possible embedding of our documents to perform topic modeling, a task for which
BERT models, being encoder-only, are better suited. The pre-training for BERT models is
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performed differently compared to the usual sequence-to-sequence tasks through two un-
supervised learning tasks. The first one is the "Masked Language Model", where a random
input token is masked and the model has to predict the missing input, and the second one is
the "Next Sentence Prediction", where the model is fed pairs of sentences and has to deter-
mine if the two sentences follow each other or not. The second pre-training task, in spite
of its simplicity, is particularly beneficial when performing Question Answering or Natural
Language Inference tasks, where understanding the relationship between two sentences is
of particular importance.

Themajor finding and rationale behind BERTmodels is that it is possible to create state-
of-the-art models for a variety of tasks by simply adding one additional output layer on top
of the vector embeddings generated by the pre-trained encoder-only model, thus requiring
comparatively low computational resources and time as the pre-trained model already has
a general "understanding" of language instead of training newmodels from scratch for each
task. One then simply only needs to fine-tune BERT models on the specific task at hand,
rather than performing the training from scratch on every task.

3.1.2 UMAP

The UMAP algorithm (Uniform Manifold Approximation and Projection) algorithm [211]
is a dimensionality reduction technique used to reduce the dimensionality of a dataset. Di-
mensionality reduction is a machine learning technique that is used to project data from an
n-dimensional space to an m-dimensional space, with m ≤ n while retaining as much of
the high-dimensional structure as possible in the low-dimensional space. Dimension reduc-
tion is used in multiple contexts, notably for data visualization (reducing high-dimensional
datasets to 2 or 3-dimensional datasets for graphical representation) and for pre-processing
in machine learning pipelines where the end algorithms (such as distance-based classifi-
cation) work better on low-dimensional spaces due to the curse of dimensionality [154].
The curse of dimensionality is used to refer to a number of problems arising when work-
ing with high-dimensional data, and can be partly mitigated by performing dimensionality
reduction on the data. As information is necessarily lost by reducing the dimensionality of
the problem, choosing a suitable dimensionality reduction algorithm is of the utmost im-
portance. A number of candidate algorithms exist, each with their own pros and cons, with
two of the most famous being Principal Component Analysis (PCA) [323] and t-distributed
Stochastic Neighbor Embedding (t-SNE) [193]. PCA, for instance, is non-parametric and
tends to capture the global structure at the cost of local similarities, but is strictly linear,
which is a strong limitation when dealing with complex data. t-SNE, while non-linear and
able to capture local similarities in the data, tends to do so at the cost of the global structure,
is parametric, and does not scale well with very large datasets.

UMAP endeavors to improve upon these methods by offering a non-linear, highly scal-
able algorithm able to model local structure while preserving more global structure than
t-SNE. Here, following [211], we will briefly describe how UMAP achieves this.

UMAP hinges on the assumption that the data is uniformly distributed on the manifold.
This is, of course, not the case in reality, and so the solution proposed is to assume that the
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notion of distance varies across the manifold, giving each point its local notion of distance
using Riemaniann geometry. This is done using the k-nearest neighbors of each point
to estimate its local distance function. For small k values, the fine detail structures and
variations of the Riemannian metric are thus more closely captured; for large k values,
larger regions are taken into account when computing the metrics, making them more
accurate across the manifold. UMAP thus falls in the class of k-neighbour based graph
algorithms, and works in two phases. First, a weighted k-neighbour graph is computed in
order to capture the local structure of the high-dimensional data. Then, a low-dimensional
layout of this k-neighbour graph is computed and optimized to be as structurally similar to
the high-dimensional graph as possible.

Computing the weighted k-neighbour graph

Due to the assumption that each point i in the dataset has its own local metric, we can
meaningfully measure distance, allowing us to work in a fuzzy topology where, rather
than binarily determining whether a point is in the k-nearest neighborhood of i, we can
determine how far it is from i. The pairwise similarity vj|i of point i with each of its k
approximate nearest neighbors is given in eq. 3.8 :

vj|i =

{
exp{−max(0, d(xi, xj)− ρi)/σi} if 1 ≤ j ≤ k

0 otherwise
(3.8)

with ρ and σ defined as follows :

ρi = min{d(xi, xj) | 1 ≤ j ≤ k, d(xi, xj) > 0}
k∑

j=1

exp

(
−max(0, d(xi, xj)− ρi)

σi

)
= log2(k)

(3.9)

d(xi, xj) is the distance between points i and j (not restricted to Euclidean distance, it can
take any form), ρi is the distance to the nearest neighbor of i, and σi is a normalizing factor
based on the neighborhood of i. An additional constraint is applied to ensure that each
point has at least 1 connection to another point in the dataset (introduced by the term ρi
in eq. 3.9); the fuzzy confidence thus decays in terms of distance beyond the first nearest
neighbor. This results in a directed weighted graph, where the edge weight from point i to
point j is given by vj|i and the edge weight from point j to point i is given by vi|j . Since
the nearest-neighborhoods of i and j (and thus the associated values of vj|i and vi|j) are
different i.e. the local distance metrics of each point are not guaranteed to be compatible,
symmetrization is performed following eq. 3.10.

vij = (vj|i + vi|j)− vj|ivi|j (3.10)

This merges the conflicting weights together, resulting in an undirected weighted graph
where theweight of the edge between points i and j is given by vij , which can be interpreted
as a Bernoulli variable where vij denotes the probability of existence of the edge.
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Lowering the dimension

The question, then, simply becomes how to find a lower-dimensional representation of this
weighted graph with a fuzzy topological structure as similar to the one previously deter-
mined as possible. To do so, the approach used is similar to the one described above, with
an important distinction : as the manifold we are trying to embed the data into is simply
a low-dimensional euclidean space, we can simply use the euclidean norm to measure the
distance wij between two points on this new graph, as described in eq. 3.11.

wij =
(
1 + a∥yi − yj∥2b2

)−1 (3.11)

where ∥.∥2 is the euclidean norm, and a and b are hyper-parameters.

Then, once a candidate low-dimensional representation is computed, we need to be able
to compare it to the fuzzy topological structure of the high-dimensional representation (the
low-dimensional representation can be randomly initialized but, in practice, spectral em-
bedding techniques are used to initialize it into a good state, allowing for both faster con-
vergence and for greater stability when searching for the optimal solution). Given such
a measure, finding an optimal low-dimensional representation becomes a fairly straight-
forward optimization problem and, since both vij and wij can be thought of as Bernoulli
variables, the cross-entropy loss function shown in eq. 3.12 is a suitable objective function
for this optimization problem.

CUMAP =
∑
i ̸=j

vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
(3.12)

The minimization of this function can be seen as a kind of force-directed graph lay-
out algorithm, with the first term vij log (vij/wij) providing an attractive force between
points i and j when vij is dominant and the second term (1 − vij) log

1−vij
1−wij

providing a
repulsive force between points i and j when vij is small. This optimization is performed
using a stochastic gradient descent algorithm in order to find the low-dimensional rep-
resentation minimizing the cross-entropy loss function, i.e. the low-dimensional graph
whose fuzzy topological representation matches the closest to that of the original high-
dimensional graph.

3.1.3 HDBSCAN

Hierarchical Density Based Clustering of Applications with Noise (HDBSCAN) [56] is a
density-based clustering algorithm. Clustering algorithms are unsupervised learning al-
gorithms tasked with finding distinct groups in data (clusters). Density-based clustering
algorithms are a subclass of clustering algorithms that identify distinct clusters in spatial-
ized data, based on the assumption that similar data points are in high-density areas of
the space (the clusters), and that the various clusters are separated by low-density regions.
HDBSCAN generates a density-based clustering hierarchy and flattens it, extracting only
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the most significant clusters. This is done, once the clustering hierarchy has been com-
puted, by considering the task of extracting the set of significant clusters as an optimization
problem with the objective of maximizing the overall stability of the composing clusters.

In order to do so, the HDBSCAN algorithmworks in several phases as described in [210].

Building the hierarchy of connected components

First, the minimum spanning tree of the distance-weighted graph needs to be built. The
minimum spanning tree is defined as the subset of edges of the graph that connects all
vertices together without allowing for any cycles and minimizing the total edge weight. To
begin with, points with low density are spread apart, in order to maximize the efficiency
of the single linkage algorithm used to build the minimum spanning tree. To do so, two
distances are defined : the core distance defined for a point x as the distance to its k-th
nearest neighbor and a mutual reachability distance between points a and b defined in
eq.3.13.

dmreach−k(a, b) = max (corek(a), corek(b), d(a, b)) (3.13)

with d(a, b) the metric distance between points a and b.

Dense points (i.e. with low core distance) will remain the same distance from each other,
but points with high core distance are isolated to be at least their core distance from any
other point.

A weighted graph is then built by using data point as vertices and the mutual reachabil-
ity distance of all pairs of points as edge weights. A threshold value t on the edge weights
is then set and gradually lowered, and edges with weight above that threshold are removed
from the graph. As the threshold is lowered, the graph will break into more and more
connected components, yielding a hierarchy of connected components (clusters). This is
computationally expensive for large datasets in the graph as the number of edges grows as
n2, with n being the number of vertices in the graph. To remediate that, using Prim’s algo-
rithm, the minimum spanning tree is built from the ground-up : the tree is built one edge at
a time by adding the lowest weight edge that connects the current tree to an isolated vertex.
Once this minimum spanning tree is built, the hierarchy of connected components is then
created by sorting all edges of the tree by distance in increasing order and then iterating
through, creating a new merged cluster at each step.

Condensing the hierarchy of connected components

This cluster hierarchy, however, is difficult to analyze since there are as many splits as there
are edges, and so we need to find a suitable way to obtain a set of flat clusters from this hier-
archy of clusters with variable densities. Using aminimum cluster size hyper-parameter,
the hierarchy is then traveled. For each split in the hierarchy, both sides of the split are con-
sidered as true clusters if they are above the minimum cluster size and, if one side of the
split is smaller than the minimum cluster size, only the larger cluster is considered a true
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cluster. This thus reduces the complex hierarchy to a much more manageable one that
only contains true clusters and, at the same time, adds information on cluster persistence
as a function of distance (due to splits happening as the threshold on mutual reachability
distance is lowered).

Selecting stable clusters

This persistence information allows for the quantitative selection of the clusters that persist
over large distance spans. Indeed, short-lived clusters tend to be artifacts of the process
leading to the construction of the minimum spanning tree, and are thus more likely to
be noise. To perform this distinction, a new measure λ = 1

t
is defined to consider the

persistence of clusters as a function of threshold t. Each cluster has associated values λbirth

and λdeath, respectively corresponding to the λ value when the cluster split off to become
its own cluster and to the λ value when the cluster split into smaller clusters (if applicable).
For a given cluster, each of its point p also has a λp value that corresponds to the λ value at
which the point splits from the cluster, with λbirth ≤ λp ≤ λdeath as the point either splits
from the cluster or leaves the cluster when it is split into two smaller clusters. The cluster
stability s(c) is then computed for each cluster following eq. 3.14.

s(c) =
∑
p∈c

(λp − λbirth)

sd(c) =
∑

b∈children(c)

s(b)
(3.14)

Finally, all leaf nodes (i.e. the true clusters at the lowest levels of the hierarchy) are
declared to be selected clusters. By working up through the hierarchy (the reverse topolog-
ical sort order of the graph), we compare the stability of each cluster s(c) with the stability
of its descendants (sd(c) in eq. 3.14). If s(c) < sd(c), s(c) ← sd(c) and the process con-
tinues; if s(c) > sd(c), the cluster is selected and all its descendants are unselected. This
process is repeated until the root node is reached, and the flat clustering is formed by all
selected clusters after the root node has been reached. Performing cluster allocation is then
straightforward, as all points in selected clusters are allocated to the cluster in question and
all points in non-selected clusters are considered noise points and are unlabeled.

3.2 Testing the topic modeling pipeline

The Living Machines conference is targeted at the intersection of research on new tech-
nologies inspired by the scientific investigation of biological systems (biomimetics) and
research that seeks to interface biological and artificial systems (biohybrid systems). We
seek to highlight the most exciting international research in both of these fields united by
the theme of “Living Machines". The most recent conference was dedicated to reflecting
on how the field of Living Machines has evolved over the last 10 years and how it will
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progress in the next 10 years. Leaders in the field presented their perspectives on the last
10 years of bio-inspired locomotion, bio-inspired & biomimetic soft robotics, bio-hybrid
robotics, invertebrate robotics, plant robotics and neuro-robotics. They also highlighted
the current challenges, unanswered questions and provided their predictions for the future
of these research fields. This Bioinspiration and Biomimetics special issue seeks to compile
these perspectives and provide a snapshot of the current state of the field, highlight open
questions and look ahead to the future.

The early detection of emerging scientific and technological trends has been an im-
portant topic of study [3] that is becoming more and more relevant with the exponential
growth of scientific and technological production. As the financial means and workforce
are limited, choices must be made in allocating resources towards the development of some
technologies and scientific domains at the unfortunate expense of others. The decisions
in these two domains, however, are not independent: indeed, the interplay between in-
dustrial and academic research is a well-identified and desirable phenomenon [305]. This
interaction is seen as mutually beneficial as universities can gain access to greater finan-
cial resources compared to the more traditional government grants and companies can get
access to scientific expertise in select domains. Both sides of the interaction, however, still
elude quantitative, large-scale characterization. This characterization is necessary in order
to make full use of the links between academia and industry, in particular through the early
detection of the rising trends in scientific and technological production as they start to form
and, conversely, the detection of other fields where such growth is not present but could
be thought of as desirable. So far, most endeavors in that direction were made possible
using expert opinions of select individuals. This has now become - and has in reality been
for some time - impossible. Indeed, current research in science and technology produces
a very large amount of scientific articles and patents. This booming production, however,
comes at a cost: there is too much to read. This is particularly true in an age where in-
terdisciplinary research is becoming increasingly important and requires researchers to be
aware of the state-of-the-art of various fields. Keeping track of this massive ebb and flow
is currently hardly feasible as it requires too much expertise and time. A large part of the
matter, then, becomes one of scientific surveillance: researchers need to be helped with
staying afloat in an accelerating ever-rising sea of scientific and technological production
by having access to instruments aiding in the continuous acquisition of the knowledge cru-
cial to their work [91]. As the challenges that we face are getting more and more complex,
the various tools used to tackle them also need to grow in sophistication. Modern problems
require modern solutions [167].

Here we propose to develop artificial intelligence techniques to automate scientific and
technological surveillance. This method aims to provide valuable assistance to researchers
and scientific leaders to map and analyze the state of the art and to detect emerging and
underdeveloped topics. We propose a step towards developing a method for automatic
scientific surveillance in order to automate the early detection of scientific and technical
trends.
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Figure 3.2: Composition and number of articles (with outliers filtered out) in the
merged corpus (ME). LM = “Conference on Biomimetic and Biohybrid Systems" often
referred to as Living Machines, BB = “Bioinspiration & Biomimetics", SR = “Soft Robotics".

Goals

This chapter proposes a method to provide more than a snapshot of the current state of
the field : new technologies inspired by the scientific investigation of biological systems
(biomimetics) and research that seeks to interface biological and artificial systems (biohy-
brid systems). Here, we focus on analyzing the research themes of the Living Machines
conferences (LM) by taking into account all the articles published so far. As the special
issue is published in this journal we then analyze the research themes published in this
journal also taking into account all published articles to date. We compare both research
themes sets and analyze the intersection between the Living Machines conferences (LM)
and the journal Bioinspiration & Biomimetics (BB). Finally, since soft robotics is a rather
new and emerging trend in this field we add to our study all the articles published in the
new journal Soft Robotics (SR). We again analyze the intersection between these three cor-
pora and we give a global view of the merged corpus (ME) including all the 2099 articles
published to date in the Living Machines (LM) conferences and the journals Soft Robotics
(SR) and Bioinspiration & Biomimetics (BB).

We then highlight open questions and look to the future or underrepresented topics.

3.2.1 Methodology

The method used to automatically read scientific corpora and cluster similar articles to-
gether based on their topic was presented in section 3.1. Four corpora on which analyses
will be performed are presented in this chapter :

• the Living Machines conference proceedings (LM) between 2012 and 2020 (494 arti-
cles)
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• the Bioinspiration & Biomimetics journal issues (BB) (1260 articles)

• the Soft Robotics journal issues (SR) (345 articles)

• the Merged corpus (ME) that is built by concatenating the 3 other corpora presented
above i.e. 2099 articles (Fig. 3.2).

Figure 3.2 shows the proportion of each corpus in their merged corpus.

We will briefly summarize the topic modeling pipeline applied in the context of our
academic corpora. The algorithm reads the title and abstract of each article to create a
latent representation of the topics studied in the article. Articles discussing similar topics
are located closer in the latent space. The embedding of each article is performed using
SciBERT [24], a BERT model [89] specifically trained on scientific literature.

Each token is embedded in a 768-dimensional embedding space through the applica-
tion of this model. We reduce the dimension of this space to a projected latent space of low
dimension using the UMAP algorithm [211]; the selected dimension varies following the
data-set used and is selected by manually choosing the dimension which maximizes the hu-
man interpretability of the results and minimizes the number of unlabeled articles by the
clustering algorithm presented below. This dimensionality reduction step condenses the
information and increases the performance of the HDBSCAN community detection algo-
rithm [210]. This dimensionality reduction also provides the added benefits of significantly
reducing memory requirements and subsequent computation time, which turn out to be
particularly important when working with much larger amounts of data such as complete
corpora of scientific articles. We note that the results presented are qualitatively valid for
higher dimensional UMAP projections.

The projected latent representations of all articles is used in order to filter outliers in
the corpus, i.e. articles that contain no valuable information (for instance empty abstracts
and/or titles, errata and corrigenda). To do so, the radius of the complete corpus in latent
space is computed with 2 different methods depending on the dimensionality of the pro-
jected latent space. Indeed, as convex hull algorithms run in roughlyO(nd/2) time [66] with
d the dimension of the latent space, it is suitable for lower dimensions but quickly becomes
unsuitable for higher dimensions. For dimensions 5 and lower, we compute the convex hull
of all points and measure the pairwise euclidean distance of all points on the hull which
corresponds to the radius of the corpus. For dimensions greater than 5, we simply compute
the pairwise euclidean distance of all points in the corpus and take the maximum pairwise
distance which works for relatively small corpora but is not suitable for larger corpora. Us-
ing this radius, we compute for each article its mean distance to the 5% closest articles in
the corpus using a KNNmodel and consider the article to be an outlier if that mean distance
is greater than a third of the radius; it is then removed from the corpus. As some groups
of legitimate articles can be localized relatively far away from the centroid of the corpus in
the latent space, this methodology allows to discriminate between these articles (specific
but relevant to our analysis) and true outliers.

Using this latent space projection, the HDBSCAN [210] algorithm is applied to our low-
dimensional vectorial representations to perform unsupervised clustering in latent space,
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automatically grouping items based on their main themes. HDBSCAN can consider points
of the dataset as noise; these points will be referred to as unlabeled.

To find the vocabulary specific to each cluster, we use a model called class-based TF-
IDF (c-TF-IDF) as defined in Eq. 3.15. This model consists in applying the standard TF-IDF
method [243] treating each cluster as a single document to retrieve the top n-gramswith the
highest values as computed in eq. 3.15, where our n-grams here are defined as sequences
of n adjacent words from a given text. As TF-IDF reflects how important an n-gram is to a
document in a corpus, c-TF-IDF is well-suited to our use case as it reflects how important an
n-gram is to a cluster in a collection of clusters. It is calculated with the following equation:

xw,c =
wc

Ac

× log
m
n∑

j=0

tj

(3.15)

where xw,c represents the importance of n-gram w within class c, wc the number of occur-
rences of ngram w in class c, Ac is the total number of n-grams in class c,m is the number
of documents in the sample, n is the number of different classes and tj is the frequency of
n-gram t across all classes.

We then label each of the resulting groupings by their research theme using both this
cluster-specific vocabulary and by looking at the individual articles in the various clusters.

The preprocessing and analysis scripts are written in Python 3.8, the BERT models are
provided by the Hugging Face framework [324] and their implementation is realized using
PyTorch [233].

The average similarity between clusters is computed following equations 3.16 and 3.17:

s(pk, pl) = 1− ||pk − pl||2
max
k,l

(||pk − pl||2)
(3.16)

S(ci, cj) =

ni∑
k=0

nj∑
l=0

s(pk, pl)

ninj

(3.17)

whereS(ci, ci) denotes the final similarity between clusters i and j, ni the number of articles
in cluster i, pk the latent space projection of the k−th article in cluster iwith k ∈ [0, ni] and
s(pk, pl) the euclidean similarity between articles pk and pl. Since we divide each row by
of the matrix by its maximum value, this similarity measure is asymmetrical (i.e. similarity
between cluster 1 and 2 is not the same as similarity between cluster 2 and 1). The euclidean
distance is suitable to measure similarity between two articles as we are working in a low-
dimensional version of the latent space.

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui||Vj|

(3.18)

AMI(U, V ) =
MI(U, V )− E(MI(U, V ))

⟨H(U), H(V )⟩ − E(MI(U, V ))
(3.19)
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Dataset UMAP HDBSCAN
n_components n_neighbors min_samples cluster_epsilon min_cluster_size

LM 5 3 1 0.3 25
BB 10 5 1 0.45 40
SR 5 3 1 0.7 15
ME 10 3 1 0.45 40

Table 3.1: Hyperparameters used for the UMAP and HDBSCAN algorithms for the
various datasets. Other hyperparameters of the algorithms that are not shown here use
the default values of the UMAP and HDBSCAN python packages.

where U (resp. V) is a label assignment of N items with i (resp. j) separate classes, H their
entropy, E the expected value of the mutual information between the two partitions as
defined in [309].

The hyperparameters used to get the results in this chapter are described in Table 3.1.

3.2.2 Results

We use our NLP-based method to automatically extract research themes and their trends
in all articles published in LM, BB and SR. Doing this detection and classification manually
would involve reading the title and abstract of the 2099 articles and then classifying them.
Then, when the themes are detected and classified we perform a comparison between the
3 corpora (LM, BB and SR).

Thematic clusters extraction and analysis

Figure 3.3 shows, for each corpus, individual articles in a 2-dimensional projection of the
latent space. The number of clusters varies between 7 clusters in the SR and BB corpora and
8 clusters in the LM and ME corpora (without counting the unlabeled clusters). This low-
dimensional projection retains some local structure so that two articles close in this latent
space are similar in topic; some information is however inevitably lost as we go from a
768-dimensional to a 2-dimensional vectoral representation, thus resulting in some articles
being visually far from the rest of their clusters in the 2-dimensional representations of our
corpora. Each cluster (see Fig.3.3) is then named manually by inspecting its top 5 n-grams
as computed following equation 3.15 (see Table 3.3 for the list of 1-gram and 2-grams for
each cluster) and by checking a few articles belonging to the cluster.

Words written in italics from here on will denote specific cluster topics, prefixes will
denote clusters in a given corpus and words written in bold will denote specific n-grams
(i.e. SR.5 designates cluster 3 in the Soft Robotics corpus, its articles are about Materials
and fabrication and soft material are two of its representative n-grams).

Figure 3.4 shows the proportion of each cluster in their corresponding corpus and the
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Figure 3.3: Clustering of research themes by natural language processing (NLP). The
latent representations of articles are computed using the SciBERT model and projected in a
two-dimensional space for the various corpora. The topic labels and their associated colors
are assigned after applying the HDBSCAN clustering algorithm on a 5 or 10-dimensional
projection (depending on the corpus) of the SciBERT latent representations. Dimensionality
reductions are performed with UMAP. Naming the clusters is done manually by inspecting
the n-grams and checking some articles belonging to the cluster.

Cluster -1 Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
LM Unlabeled Tactile Soft Robotics Locomotion Social Legged Locomotion Sensing Cognition Sensorimotor
BB Unlabeled Flying Sensing Soft Robotics Materials Behavior Swimming Locomotion N/A
SR Unlabeled Control and Model Bending Artificial Muscles Jamming Tactile Materials Grasping N/A
ME Unlabeled Social Learning and Sensing Bipedal Locomotion Tactile Flying Swimming Materials Soft Robotics

Table 3.2: Cluster labels for each corpus. Cluster -1 for each corpus corresponds to the
articles that were unable to be labeled by the algorithm.

associated names. We see that the Social and Cognition clusters represent roughly a quarter
of the LM corpus, and are topics that are not as prevalent in the other 2 corpora, with BB
having a small Behavior cluster (only 5% of the corpus). Locomotion-related clusters rep-
resent roughly 28% of the LM corpus (Locomotion and Legged Locomotion) and 49% of the
BB corpus (Flying, Swimming and Locomotion), whereas there is no clearly defined Locomo-
tion-related cluster in the SR corpus. The LM corpus has three clusters dedicated to Percep-
tion-related topics (Tactile, Sensing and Sensorimotor) which combined represent roughly
26% of the corpus, whereas this topic only represents 12% of the BB corpus (Sensing) and
is weakly representend in the SR corpus (5% with the Tactile cluster). Soft Robotics articles
represent 13% of the LM corpus. Manufacturing topics represent 17% of the BB corpus (Ma-
terials) and 24% of the SR corpus (Materials). A general Soft Robotics cluster represents 15%
of articles in the LM corpus and roughly 8% of articles in the BB corpus, but is not present
in the SR corpus. Indeed, as SR explicitly contains Soft Robotics-related articles, it is more
homogeneous that the LM and BB corpora and its clustering is thus more finely-grained;
this is why the clustering of the SR corpus yields specific topics such as Artificial Muscles,
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Bending, Jamming and Grasping.

This behavior can be expected as the granularity of the clusters given by our algorithm
depends on the heterogeneity of the base corpus, with homogeneous corpora yielding more
specific clusters and heterogeneous corpora yielding more general clusters (i.e. clustering
a corpus of general scientific articles will cluster articles following large domains such as
physics, social sciences, economy, etc whereas clustering a more specific domain such as
physics would yield subfields of physics i.e. condensed matter, astrophysics, biophysics,
etc). The clustering of the SR corpus, being a subfield of bioinspiration, thus yields subdo-
mains of the field of Soft Robotics rather than a more general Soft Robotics cluster as is for
instance the case with the LM corpus that deals with more varied themes.

Figure 3.4: Number and proportion of articles in each cluster for the various cor-
pora. Cluster labels are given by the authors by looking at the top words in Table 3.3 for
each cluster and then manually checking articles in each cluster.

Figure 3.5 shows a flowchart that groups and classifies the topics found according to the
basic principles for designing and building a robot. The LM and SR corpora contain mainly
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robotics while the BB corpus contains more general themes in biomimicry. It should be
noted that some robotics themes join general biomimicry issues such as the question of
materials.

Most of the SR clusters concern various research related to the actuation of robots. As
the field of soft robotics is new and based on new soft materials the question of actuation
of these new types of robots is essential. It should be noted that the majority of clusters (4
from SR, 3 from BB, 2 from LM) focus on robot actuation which remains a central theme in
robotics.

The LM corpus covers the widest range of topics concerning robot design, namely con-
trol, activation, sensing and social robotics which includes collective robotics, social inter-
actions with animals and humans.
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Figure 3.5: Architecture of all clusters ordered like a robot design. By grouping the
cluster, it shows which general theme gather the research efforts. LM.1, BB.2 and ME.7
in the “Robot" category are gathering all soft robotics in one cluster. The “Social" category
contains both human-robots interaction and collective robotics. Most clusters pertain to the
study of bio-inspired actuators. ME.1 is both related to “Cognition" and “Sensing". LM.7 is
both related to “Sensing" and “Actuation".

Research backgrounds

In the LM corpus we find eight meaningful clusters.

LM.0 (Tactile) contains articles dealing with the design of elements of the tactile system
such as [80] describing the design and higher performance of a biomimetic fingertip (finger-
print) compared with a smooth fingertip, [14] presenting the anthropomorphic design and
gripping performance of a robotic finger and [219] introducing the design and performance
of a multi-element sensory array based on the mammalian whisker sensory system.

LM.1 (Soft Robotics) contains articles in the field of Soft Robotics. Webster et al. [318]
presentAplysia Californica (a species of sea slug) and its potential as a source of actuator and
scaffold material for biohybrid robots. Follador et al.[107] present a biological investigation
of octopus suckers in order to determine specifications for the design of artificial suction
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cups. Tonazzini et al.[296] present soil penetration strategies of plant roots in order to
inspire the design of explorer robots.

LM.2 (Locomotion) contains articles dealing with general locomotion, such as [54] with
its six-limb octopus-inspired robot achieving effective locomotion through the coordination
of its various limbs, [258] presenting a mathematical model of the crawling mechanism in
larval Drosophila accounting for key anatomical features of the larva and [286] describing
the spontaneous transitions between various types of gaits using a quadruped robot model
with a head segment and a postural reflex mechanism.

LM.3 (Social) contains articles presenting social interaction involving robots. Mazzei
et al.[206] present the design and implementation of an hybrid cognitive architecture con-
trolling the reaction and facial expressions of a social humanoid robot during basic social
interaction tasks. Fernando et al.[102] present the Expressive Agents for Symbiotic Edu-
cation and Learning (EASEL) project, which is tasked with exploring and understanding
human-robot symbiotic interactions. Lazzeri et al.[178] describe the authors’ research on
the impact of appearance and behavior on the design of a believable social robot.

LM.4 (Legged Locomotion) contains articles presenting locomotion and control architec-
tures that specifically contain legs. Steele et al.[280] present the design and development of
a bio-inspired knee joint mechanism, Schneider et al.[264] present the design and test re-
sults of the hexapod robot HECTOR built using embedded, custom designed and compliant
joint drives and Szczencinski et al.[287] analyzes how central pattern generators can en-
train joints of the MantisBot to positive velocity feedback to successfully implement active
reaction during walking.

LM.5 (Sensing) contains articles dealing with the design of novel sensors and the inte-
gration of sensory data, such as [320] presenting a model for the integration of sensory
data in the design of a neural network tasked with controlling flight in a robot simulating
honeybee foraging, [41] presenting the design of a novel sensor inspired from the electric
fish in order to tackle underwater exploration of objects and [288] that describes the design
and the comparison with experimental data of a dynamical model describing the adaptive
response of sensory organs on insect legs tasked with detecting cuticular strain.

LM.6 (Cognition) contains articles describing the design of various control architectures
controlling robot behavior. Renaudo et al.[247] presents the design and results of a hybrid
control architecture tasked with a simple habit learning task based on the coordination
of model-based and model-free reinforcement learning. Terekhov et al.[289] presents the
design and performance of a block-modular neural network architecture allowing parts of
the existing network to be re-used to solve novel tasks while retaining performance on
the original task. Ognibene et al.[230] presents theoretical insights into the unveiling of
hidden information through epistemic actions and the experimental benefits of using this
actively-gathered information in order to efficiently accomplish a seek-and-reach task.

LM.7 (Sensorimotor) contains articles dealing with the integration of sensory informa-
tion into robotic behavior, such as [147] presenting a closed-loop control architecture using
visual information to control the movement of a robot which in turn generates optic flow,
[303] presenting a complete model based on the coordination of twomain classes of reflexes
in order to stabilize the human gaze and its results in performing various locomotion tasks
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and [221] presenting a control algorithm for the integration of different biological neural
models of eye movements in order to design a biologically plausible ocular neurocontroller.

In the BB corpus we find seven meaningful clusters.

BB.0 (Flying) contains articles dealing with the aerodynamics and flight of artificial fly-
ers. In [223], the authors present a humming-bird inspired micro air vehicle and the study
of its flexible wing aerodynamics. In [267], the authors present a novel fabrication process
to create highly complex centimeter-scale wings. In [237], the authors present the design
and controlled flight of an insect-like tailless micro-air vehicle.

BB.1 (Sensing) contains articles dealing with the design andmodeling of sensory organs,
such as [246] presenting a model of the lateral line of fish to investigate their behavior
when affected by external flow fields, [94] presenting novel optical design methods and
characterizations in order to study various compound eye concepts fabricated by micro-
optics technology and [216] presenting experimental methods and models in order to study
the physics of pressure difference receiving ears.

BB.2 (Soft Robotics) contains articles in the field of Soft Robotics. In [127], authors
present a survey describing the working principles, the various uses and the future chal-
lenges and opportunities of dielectric elastomer actuators as soft actuators used in the de-
sign of soft robots. In [55], the authors present the design of a novel octopus-inspired
multifunction silicon arm able to perform diverse tasks with minimum control. In [157],
the authors present a soft actuator-based annelid robot and its effectiveness in performing
effective locomotion in a large variety of unstructured environments.

BB.3 (Materials) contains articles dealing with the design and fabrication of new mate-
rials, such as [301] presenting a novel fabrication strategy to manufacture bio-inspired ma-
terials and their associated mechanisms with sufficient microstructural organization and
mechanical performance, [123] studying the performance of laser-created bio-inspired tex-
tures with specific morphologies and [297] presenting the various technologies leveraged
in order to build automatic self-healing materials.

BB.4 (Behavior) contains articles dealing with the study and design of control architec-
tures related to animal behaviors. In [236], authors present a robotic platform-controlled
fish replica simulating the courtship behavior observed in male fish and its impact on the
positional preferences of female fish. In [310], authors present an abstract mathematical
model and two decentralized control algorithms controlling autonomous flying robots in a
swarm and the experimental results on their applicability on a group of autonomous quad-
copters. In [4], authors present an overview of our knowledge of the soaring flight and
strategy of birds and the associated control strategies that have been developed for soar-
ing unmanned aerial vehicles in simulations and applications on real platforms, with an
additional control strategy for exploiting thermal updrafts.

BB.5 (Swimming) contains articles dealing with the study and design of robots for un-
derwater locomotion, such as [308] presenting the design, fabrication and performance of a
jellyfish-inspired underwater vehicle, [101] presenting a mechanically-actuated foil model
used in order to study the impact of body shape on various aspects of the swimming per-
formance and [83] presenting the undulatory swimming properties of a knifefish-inspired
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robot.

BB.6 (Locomotion) contains articles dealing with the study of various forms of loco-
motion. In [10], authors present two different jumping robots as a means of performing
locomotion across rough terrains. In [189], authors present the various modes of locomo-
tion adopted by different genus groups in multiple medias in order to lay the foundation
required to design vehicles capable of multi-modal locomotion. In [35], authors present a
model of the dynamics of human running to study running stability without explicit stabi-
lization control strategies.

In the SR corpus we find seven meaningful clusters.

SR.0 (Control and Model) contains articles dealing with theoretical modeling and con-
trol algorithms of robots, such as [222] presenting a novel model for a soft continuum ma-
nipulator based on a material model, [115] presenting a machine-learning based approach
for kinematic control of continuum manipulators capable of exhibiting adaptive behavior
and [192] presenting a theoretical approach for the modeling of a pressure-operated soft
snake robot. SR.1 (Bending) contains articles dealing with the bending subset of actuation.
In [68], authors present a method for fabrication and dynamical modeling of a novel bidi-
rectional bending soft pneumatic actuators that embeds a curvature proprioceptive sensor.
In [6], authors present an analytical model and to estimate the bending displacement of a
given of pneumatic soft actuators and its experimental validation. In [269], authors present
a novel shape memory alloy strip-based bending actuator for a soft robotic hand with an
analysis and design model of the shape memory alloy strip and its experimental validation.

SR.2 (Artificial Muscles) contains articles dealing with the design and modeling of artifi-
cial muscles, such as [131] presenting the design of a high-contraction ratio pneumatic ar-
tificial muscle using a novel actuation concept, [172] presenting an improvement on the de-
sign of thin McKibben muscles and [5] presenting the design of a novel extensor-contractor
pneumatic artificial muscle.

SR.3 (Jamming) contains articles that deal with jamming in soft robotics. In [282], au-
thors present a novel replacement for the traditionally rigid linkage between robot joints
by adding an additional capability of stiffness controllability to the links. In [331], authors
present the design and implementation of a novel approach to variable-stiffness tensegrity
structures relying on the use of variable-stiffness cables. In [69], authors present the techni-
cal and market feasibility of a prosthetic jamming terminal device prototype in a pilot study
with two upper-limb amputees and its performance compared to an existing commercial
device.

SR.4 (Tactile) contains articles dealing with the design of elements linkedwith the tactile
system such as [177] presenting a supervised machine learning approach to interpreting
human touch in soft interfaces, [231] presenting the design of a lightweight soft robotic
arm-wrist-hand system and [151] presenting the design andmanufacturing of a 3-D printed
tactile robot hand housing a soft biomimetic tactile sensor.

SR.5 (Materials) contains articles with the design and fabrication of novel materials.
In [198], authors present approaches to designing and fabricating soft fluidic elastomer
robots by studying three viable actuator morphologies. In [13], authors review the proper-
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ties and characteristics of soft ionic polymer-metal nanocomposites and their applications
in the field of soft robotics. In [252], authors present the different research efforts to de-
velop actuators and robots for different types of structures containing shape memory alloys
along with their respective strengths and weaknesses.

SR.6 (Grasping) contains articles dealing with the ability of robots to grasp items in
their environment, such as [319] presenting the design, fabrication and experimental per-
formance of a novel variable stiffness robotic gripper using soft actuating and particle jam-
ming, [162] presenting the development of an autonomous motion planning algorithm for
a soft planar grasping manipulator and [329] presenting a the design principle and experi-
mental results of a novel bioinspired robotic finger in order to address twomajor challenges
in soft pneumatic grippers.

Similarity and intersections between thematic clusters

Figure 3.6 shows the proportion of the origin corpus (LM, SR, BB) of individual articles in
each cluster in the ME corpus. We see that corpora generally deal with different topics.
Even though the ME corpus is dominated by BB in terms of number of articles, we see
that clusters ME.0 and ME.1 are mostly composed of articles from LM. ME.0 and ME.1’s
articles deal with Social and Learning and Sensing, which are themes closely related to the
Living Machines conferences. Most SR articles are found in ME.7 which is to be expected as
this cluster deals with Soft Robotics. ME.4 (Flying), ME.5 (Swimming) and ME.6 (Materials)
are almost exclusively comprised of articles from BB. ME.2 (Bipedal Locomotion) and ME.3
(Tactile) are smaller clusters comprised of articles from all 3 corpora. Most research areas
present in the individual corpora are thus still individually represented in the ME corpus
except for the very specific clusters in the SR corpus.

Figure 3.6: Proportion of articles represented by the corpus of origin (BB, LM, SR)
for each cluster of the ME corpus. The total number of articles in each cluster is given
at the bottom of each bar.

Figure 3.7 shows the cross-conference publication matrix where the proportion of au-
thors publishing in multiple corpora is computed. In order to do so, we retrieve for all
authors the list of the corpora they published in. As author names are not standardized
between the various corpora, we perform homogenization steps. Individual author names
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Figure 3.7: Cross-conference publication matrix. The number of individual authors
publishing in other corpora is measured for each corpus, and the resulting matrix is then
row-normalized, resulting in an asymmetrical matrix as the number of authors in each
dataset is different. Each row thus represents the percentage of authors for the given row
that publishes in the conferences corresponding to the columns.

are extracted and we only retain the first and last name removing middle names if present.
We then only keep the capitalized first letter of the first name and the complete last name
with the first letter capitalized (i.e. author Herbert George Wells would be named H Wells
after homogenization). This methodology unfortunately is not able to discriminate be-
tween authors that have similar names. We then increment the pairwise count of the cross-
conference publication matrix for all possible combinations in the list (e.g. if an author has
published in LR and BB, the cell corresponding to row LR and column BB will be incre-
mented by 1). Authors that published in a single corpus simply increment by a unit the
diagonal cell corresponding to the corpus. We then row-normalize the final count matrix
in order to have a proportion of authors that, for a given row, publish in other conferences,
resulting in an asymmetrical matrix. If we look at the first row, we see that roughly 9% of
authors in BB publish in LM and 10% publish in SR. 28% of LM authors publish in BB, and
11% of them publish in SR. Finally, 27% of SR authors publish in BB and roughly 10% pub-
lish in LM. We thus see that the LM and SR communities seem fairly distinct, and that BB
equally attracts members from both the other communities. Furthermore, only 69 authors
out of 4628 total individual authors published in all 3 corpora, suggesting that the overlap
between all 3 communities is small.

Figure 3.8 shows the pairwise similarity matrix in the projected latent space of the ME
corpus. Cross-cluster similarity values are computed following Eq. 3.17 for all pairs of clus-
ters and the resulting matrix is then row-normalized, yielding an asymmetrical matrix.
High matrix values denote thematically similar clusters, low matrix values denote themat-
ically dissimilar clusters.

As expected, most clusters are maximally similar to themselves and those who are not
have very high autosimilarity values (0.98 for LM.1 and BB.2, 0.99 for SR.5 and SR.6), sug-
gesting that the clustering in each of the latent spaces holds on a fundamental level even
if measured in a different latent space. We see that the upper-left block corresponding to
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similarity between SR clusters is high, with the lowest value being 0.89. This is coherent
with the fact that all articles in the SR corpus are about Soft Robotics, which is a sub-space
of our ME latent space, meaning that SR clusters are relatively close in the ME latent space.

LM.3 (Social) and LM.6 (Cognition) have specific patterns, being very similar to each
other and globally dissimilar to all other clusters, which can be expected as these topics
are virtually nonexistent in either SR and BB. This research topic and the corresponding
research community are more specific to LM conferences.

BB.0 (Flying) is fairly dissimilar to all other clusters as this topic is a very specific sub-
domain of locomotion that is quite different to the rest of the corpus. Apart from itself, it
is however most similar to BB.5 (Swimming) which can be explained as both clusters still
deal with aerodynamics-related topics.

We see that articles dealing with similar topics cross-corpora have high similarity. For
instance, LM.1 (Soft Robotics) has similarity of 0.96 with BB.2 (Soft Robotics) and BB.3 (Ma-
terials) and is fairly similar to all SR clusters, LM.2 (Locomotion) and BB.6 (Locomotion) have
a similarity of 0.99, LM.0 (Tactile) and SR.4 (Tactile) have a similarity of 1.0, BB.1 (Sensing)
has similarity 0.99 with LM.0 (Tactile) and similarity 0.97 with LM.5 (Sensing).

These results suggest that our methodology thus captures the abstract theme of the
articles and clusters them following that theme regardless of the corpus of origin.

Figure 3.9 shows the comparison of thematic intersections of ME clusters in other cor-
pora and the associated Adjusted Mutual Information (AMI) computed following eq. 3.19.
For each corpus, we compare the clustering of its articles with the clustering of the same
articles in the ME corpus.

In the top left panel of Fig. 3.9, we see that articles in LM.0 (Tactile) are mostly found in
ME.3 (Tactile). Articles in LM.3 (Social) are mostly found in ME.0 (Social). Articles in LM.1
(Soft Robotics) and LM.2 (Locomotion) are mostly found in ME.7 (Soft Robotics). Articles in
LM.5 (Sensing), LM.6 (Cognition) and LM.7 (Sensorimotor) are mostly found in ME.1 (Learn-
ing and Sensing). Articles in LM.4 (Legged Locomotion) seem to be evenly spread between
ME.4 and ME.7. These allocations are as exepected on a general level, but we can also no-
tice that someME clusters such asME.4 (Flying), ME.5 (Swimming) andME.6 (Materials) are
not represented in the LM corpus. Most unlabeled articles in the LM corpus are allocated
to ME.1.

In the middle left panel, we see that articles in BB.0 (Flying) are found in ME.4 (Fly-
ing). Articles in BB.2 (Soft Robotics) and BB.6 (Locomotion) are mostly found in ME.7 (Soft
Robotics), as was the case in the LM corpus. Articles in BB.4 (Behavior) are mostly found
in ME.1 (Learning and Sensing), and articles in BB.3 (Materials) are mostly found in ME.6
(Materials). A number of BB.1 articles (Sensing) are unlabeled, with the rest being found in
ME.1 andME.3 (Tactile). Articles in BB.5 (Swimming) are mostly found inME.5 (Swimming).
Once again, these cross-corpora allocations are as expected, with global themes being con-
served between individual corpora and the ME corpus. The unlabeled articles are spread
relatively evenly throughout the individual ME clusters.

The bottom left panel shows that almost all articles in the SR corpus are found in ME.7
(Soft Robotics), which is to be expected as all articles in the SR corpus have a Soft Robotics
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component. Most articles in SR.4 (Tactile) are found in ME.3 (Tactile). As Soft Robotics is a
dedicated cluster in the ME corpus, the SR articles are correctly clustered in the ME corpus.

Temporal evolution of research trends

Figure 3.10 shows the temporal evolution of the cluster proportions in their corresponding
corpus. For every corpus and for every year, the proportion of articles in each cluster
compared to the total number of articles published in the year is computed with the cluster
colors for each corpus corresponding to those shown in figures 3.3 and 3.4.

This temporal evolution seems to be dominated by fluctuations, and no clear discernible
pattern emerges. We can however see that cluster SR.6 (Grasping) replaces SR.5 (Materials)
in 2016 as the dominant topic in the SR corpus. SR.3 (Jamming) also emerges around 2016
and is present in all subsequent years, albeit weakly for some editions. As Soft Robotics is
still an emerging domain thus making SR the youngest corpus in our study, its lower ma-
turity might explain the emergence of new clusters representing subtopics of the domain.

ME.4 (Flying) was one of the dominant topics in the ME corpus between 2009 and 2011,
and has drawn considerably less attention in the later editions. Conversely, the Learning
and Sensing (ME.1) and Soft Robotics (ME.7) clusters have grown in importance from 2012
onward. Materials (ME.6) was one of the main topics until 2011 in our merged corpus, and
has been weakly represented since then.

Figure 3.11 shows the temporal evolution of the 1-gram and 2-gram proportion in the
ME corpus. The n-grams were taken from Table 1 in the Supplementary Information and
underwent manual curation in order to remove non-descriptive n-grams and duplicates
and to fuse singular and plural forms. The number of articles containing the n-grams is
computed for each year and divided by the total number of articles in the given year. We
see that Flying-related keywords such as flapping, wing, flight, wing kinematics or
micro air are particularly prevalent between 2009 and 2011 but become comparatively less
common afterwards. Keywords related to Soft Robotics such as soft actuators, variable
stiffness, pneumatic,materials or soft robots are becoming some of the most frequent
words from 2017 onward, showing the emergence of the field of Soft Robotics. Neural
networks and real time systems are also seeing increasing interest in recent publications,
most likely facilitated by the democratization of Artificial Intelligence. Locomotion, on
the other hand, has been a prevalent n-gram for the entirety of the period of study as one
of the pillar topics of robotics.

Figure 3.12 shows the number of occurrences of selected keywords in the ME corpus.

Future research directions

We investigate which research themes are currently underdeveloped in the studied corpora.
Namely, we want to identify which themes could become emerging and active research di-
rections in the future. Previous plenary talks [241, 207, 270] in the LM 2021 conference
already proposed several themes which could become emerging topics, mostly related to
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the notion of sustainability [28]. This particular topic is becoming increasingly popular
in Science due to the effects of climate change, resources depletion and ecological prob-
lems that already impact the world today. Another emerging theme of research would be
the development of biohybrid systems that include both natural and artificial components.
Figure 3.12 shows the number of articles of the ME corpus that include keywords related to
specific underdeveloped topics, related either to sustainability or to biohybrid approaches.
Out of 2099 articles in the corpus, we find that a lot of topics considered essential for our
future (such as sustainability, agriculture or ethics) are only weakly represented with less
than 20 articles mentioning sustainability-related keywords and less than 10 articles men-
tioning either ethics-related or agriculture-related keywords. Efficiency-related keywords,
encompassing both material efficiency and energy efficiency, are mentioned in 60 articles
whereas energy autonomy-related keywords and self healing-related keywords are men-
tioned in less than 20 articles n the merged corpus. Biohybrid systems are mentioned in 36
articles and 14 articles mention biorobotics. Other biohybrid-related keywords (ecosystem-
active robots, microorganism-robots, mixed societies or organic control) are virtually absent
from the corpus as they are mentioned six times or less.

3.2.3 Discussion

We developed a methodology to generate a state-of-the-art of the research themes in the
Living Machines conferences and associated journals (Bioinspiration & Biomimetics and
Soft Robotics). We have extracted the research trends of this field in a context of scientific
surveillance. Themethodology developed here is a first step in automating the classification
of research topics in the scientific literature. We group the research topics into clusters
and present new metrics to compare these clusters with each other and with the different
corpora considered. Finally, we identify research topics that are currently underrepresented
in this community and potential research directions.

The corpus analysis presented here aims to test and develop techniques applicable to
larger corpora containing thousands or even millions of articles. However, the scalability
remains to be tested. The choice of this limited corpus aims first to locate LM conferences
in relation to the community that publishes in Bioinspiration & Biomimetics. Second, the
choice is also guided by our knowledge of the field as experts which allows us to quickly
determine if the method produces meaningful results.

It is conceivable that text analysis algorithms could be useful for classifying articles,
writing summaries for groups of articles and identifying emerging research trends. The
results could then contribute to make the state of the art in a field. It could also allow
experts in the field to identify research work which is underdeveloped or over-represented.

Our approach could be improved in several ways.

It would also be interesting, as long as the corpora are larger, to do internal analysis of
each main cluster. This could reveal the hierarchical structure of themes within a cluster.
Our clustering approach already makes use of HDBSCAN, a hierarchical clustering algo-
rithm – however we do not currently take into account the sub-clusters it finds. Indeed, as
it is a “hard-clustering method", documents classified by HDBSCAN can only be assigned
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to one cluster at a time (as opposed to “soft clustering" methods where documents can be
assigned to several clusters). This results to a fragmentation of the dataset into a large (>
50) number of sub-clusters with possibly very redundant information, making them dif-
ficult to understand by humans. As such, our method could be improved by making use
of hierarchical soft clustering algorithms. This would allow each document to be part of
several clusters, which would be useful to accurately classify articles at the intersection of
several domains.

The quality and clarity of the clustering results obtained by our current approach heav-
ily depend on carefully chosen hyper-parameters. Indeed, there could exist several concur-
rent clustering instances of the datasets that could be relevant. However, the relevance of
each clustering instance is difficult to quantify automatically, and require the intervention
of a human expert to select the most relevant and understandable clustering instance. The
selected clustering instance may not be the one with the least amount of unclassified docu-
ments. Our approach could be improved to automatically select good hyper-parameters to
generate relevant clustering instances, and to reduce the number of unclassified documents
as much as possible.

Some part of our analysis are currently done manually and could be automated. In par-
ticular, Fig. 3.5 could have a structure generated based on a hierarchical clustering method
(cf previous paragraphs). The names of categories in Fig. 3.5 and cluster labels in Table 3.2
could be obtained automatically through a keyword generation method. It is very difficult,
even for a human expert, to select labels that accurately describe the particular themes of a
given cluster. Currently, our approach already extracts relevant keywords of each cluster,
that will be then used by the expert to select labels. Often these labels are not terms that are
not directly found by the keyword extraction method, because they describes the cluster
content at an higher level of abstraction compared to the terms used directly in the articles.
However, most keywords generation approaches [268, 126] are extractive (i.e. they find the
most relevant existing words in the studied text) rather than abstractive (i.e. they generate
new keywords that are not present in the text).

Alternatively, it may be possible to qualify the content of each cluster not just with labels
but also by small summaries of their research themes. This would be achieved through
abstractive multi-document summarization techniques [29].

Here, we focus on a limited corpus to answer an analysis between 3 types of publications
related to Living Machines. Later it will be interesting to extend this type of analysis by
searching in the literature the same themes as those found in our analysis here. To do this
type of analysis means to study a corpus composed of several thousands of articles which
becomes impossible to do manually.

Here, we only use the title of the articles and their abstract and keywords. It is clear that
it would be interesting to extend the “reading" to the body of the articles, which would open
new questions. Such process would involve additional technical difficulties: abstracts are
already condensed versions of the main text of the article, which would make them easier
to understand by the algorithms. However the main text would incorporate more details
about their research theme which could be captured by the language model to refine its
classification.
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This short analysis shows that the LM conferences are more focused on robotics and
control architectures. This also shows that the actuation aspects of robotics represent a
dominant research theme. The theme of actuation includes the largest number of clus-
ters. The originality of these conferences lies in the diversity of robotics topics covered
from a biomimetic point of view. The social aspects and in particular the human-robot re-
lations are well-represented and absent from the wider field covered by Bioinspiration &
Biomimetics and Soft Robotics. Similarly the cognitive aspects are also more present than
in Bioinspiration & Biomimetics and Soft Robotics. Surprisingly, for a community close to
the living world, the themes concerning the sustainability of technologies are still mostly
absent while ecological issues are the most pressing [130].
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Figure 3.8: Pairwise cluster similarity matrix in the latent space of the merged cor-
pus. The pairwise euclidean similarity between all clusters was computed according to
equation 3.17; the similarity is then divided by the maximum value for each row of the
matrix, making this similarity measure asymmetrical. Higher similarity measures between
two clusters correspond to thematically similar clusters. The row corresponding to a given
cluster provides information about the ranked similarity of the other clusters. The column
corresponding to a given cluster provides global information about how this cluster ranks
for each of the other clusters. The unlabeled clusters in each corpus were removed to re-
duce noise in the figure.
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Figure 3.9: Comparison of thematic intersections of ME clusters with clusters in
other corpora. Each panel represents the proportion of documents in each cluster of a
given corpus also present in each ME cluster. The cluster to which the articles belong is
indicated by the labels on the x-axis. The colored histogram represents their membership
to the other corpora identified by the colored labels above the panels. Articles initially
categorized as part of one specific cluster are analyzed to see to which ME cluster they
belong to. For instance, looking at the top left panel, we see that articles belonging to
cluster 0 in the Living Machines corpus (LM.0) are mostly found in cluster 6 of the Merged
corpus (ME.6) with the rest of them either unlabeled or belonging to clusters 2 (ME.2) and 5
(ME.5) in the Merged corpus. The Adjusted Mutual Information (AMI, eq. 3.19) score is also
provided to measure the global similarity between the clustering results compared for each
panel. Values of the AMI close to 0 correspond to random clusterings, high values of the
AMI correspond to similar clusterings. The numbers under each cluster name correspond
to the number of articles in the cluster present in both corpora.
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Figure 3.10: Temporal evolution of the proportion of articles in each theme over the
editions of the various corpora. The colors represent individual clusters and correspond
to those shown in figures 3.3 and 3.4.
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Figure 3.11: Temporal evolution of the proportion of 1 (top) and 2-grams (bottom)
in the ME corpus normalized by the total number of articles for a given year in
the corpus. Manual curation was performed to remove non-descriptive keywords (e.g.
bio-inspired or experimental results). As a reminder, the names of each cluster are as
follows : 0 = Social, 1 = Learning and Sensing, 2 = Bipedal Locomotion, 3 = Tactile, 4 = Flying,
5 = Swimming, 6 = Materials, 7 = Soft Robotics.
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Figure 3.12: Number of articles in the merged corpus containing keywords relating
tomajor themes. The themeswere selected based on Plenary Talks of the LivingMachines
2021 conference [241, 207, 270]. The list of keywords used to find articles relating to each
major theme is shown in Table 3.5.
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3.3 Appendix

Figure 3.13: Violin plots for the distribution of the number of articles in each cluster
over time.
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Table 3.3: Top n-grams for all corpora.

Cluster -1 Cluster 0 Cluster 1 Cluster 2 Cluster 3
tau income financial materials wing
law distribution stock soft flapping

growth wealth price structures flight
mf money market biomimetic control

return law economic surfaces robot

Table 3.4: 1-grams for the CO dataset.
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Major Theme Substrings
Sustainability sustainab
Efficiency energy effic, material effic, store energ, energy stor
Ethics ethic

Agriculture agricultur
Energy autonomy energy auton, energy gather, harvesting energ, energy harvest,

harvest energ, gather energ, energetically autonom
Self healing self healing
Biohybrid bio hybrid, biohybrid
Biorobotics bio robotic, biorobotic

Mixed societies animal robot, plant robot, mixed societ, robot plant, fish and
robot, robot and fish

Microorganism-robot microorganism robot, micro organism robot, robot micro
organism

Ecosystem-active robots ecosystemactive robot, ecosystem active robot, ecosystem
Organic control organic actuator, organic control

Table 3.5: Substrings used to find articles in theME corpus relating tomajor themes
as determined by Plenary Talks of the Living Machines 2021 conference.
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Figure 3.14: Temporal evolution of the proportion of 1 (top) and 2-grams (bottom)
in the LM corpus. The number of 1- and 2-grams is normalized by the total number of
articles for a given year in the conference or journal issue.
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Figure 3.15: Temporal evolution of the proportion of 1 (top) and 2-grams (bottom)
in the BB corpus. The number of 1- and 2-grams is normalized by the total number of
articles for a given year in the conference or journal issue.
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Figure 3.16: Temporal evolution of the proportion of 1 (top) and 2-grams (bottom)
in the SR corpus. The number of 1- and 2-grams is normalized by the total number of
articles for a given year in the conference or journal issue.

114



Figure 3.17: Coauthorship network with nodes colored following the cluster alloca-
tion for individual authors. An author is allocated to the cluster where he has the most
publications. To reduce the network, only a few selected author nodes are annotated. We
remove components that have less than 3 nodes in the graph to reduce visual clutter and,
for each individual component with 10 nodes or more, we label the most active author.

Figure 3.18: Automatic analysis of a control (CO) dataset. The CO dataset is made by
mixing quantitative finance articles extracted from ArXiV in July 2021 with the BB corpus.
The red and yellow points (CO.0 and CO.1) correspond to quantitative finance articles, the
light and dark green points (CO.2 and CO.3) to BB articles. The split between the two
datasets in the 2-D latent space is clear, suggesting that our algorithm is capable of correctly
discriminating between two very different scientific domains.
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To go further on keyword extraction

In this section, we will discuss an alternative method to extract the keywords most relevant
to each cluster based on their underlying concepts rather than purely on their frequency.

We first compute the c-tf-idf scores and extract a large number of relevant keywords
for each topic as previously described in this chapter (eq. 3.15). We then add an additional
processing step to remove similar keywords (e.g. attention and attentions) by sequentially
going through the keywords in descending order of c-TF-IDF score and only keeping those
that have Levenshtein similarity with all keywords of higher score lower than a threshold
(we set the threshold at 0.8) until we have the desired top k keywords.

We retrieve the top k 1-grams, 2-grams and 3-grams using the aforementioned method,
and amalgamate them before beginning the second phase of our keyword extraction algo-
rithm. All these n-grams combined together are henceforth referred to as candidate key-
words for a given cluster (note that a given n-gram can be a candidate keyword for several
clusters). As computing word embeddings is relatively slow, this first phase of reducing the
number of candidate keywords is important in order to allow for the scaling of this method
to relatively large corpora.

In the second phase, we endeavor to select a small number of most relevant and diverse
keywords from all the n-grams previously extracted. In order to do so, we first compute for
each cluster ci the global embedding pci of the cluster (Eq. 3.20) :

pci =

nci∑
k=1

e(cki )

nci

(3.20)

where nci is the number of documents in cluster i and e(cki ) is the embedding of the k-th
document in cluster i with k ∈ [1, nci ].

We refer to all n-grams selected by the following method as selected keywords. At the
beginning of this algorithm and for a given cluster, all n-grams obtained after the first phase
are thus candidate keywords and the list of selected keywords is empty. For each candidate
keyword w, we compute the similarity of its embedding e(w)with the cluster’s embedding
simcandidate(w) and the similarity of its embedding with the maximally-similar selected
keyword simselected(w) (Eq. 3.23) :

cos(a,b) =
a · b
||a|| ||b||

(3.21)

simcandidate(w) = cos(pci , e
⊺(w)) (3.22)

simselected(w) = max(cos (e(w), K̂⊺)) (3.23)

where cos(..., ...) is the cosine similarity, e(w) is the embedding vector of candidate key-
word w, K̂ is the matrix containing the embeddings of all selected keywords and max(...)
corresponds to the maximum of the resulting similarity vector (we find the selected key-
word most similar to candidate keyword w).
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We then compute the mmr (Maximal Marginal Relevance [59]) value over all candi-
date keywords following Eq. 3.24 and pick the keyword with the maximum mmr value,
which we then add to our list of selected keywords and remove from the list of candidate
keywords :

mmr(w) = (1− d)× simcandidate(w)− d× simselected(w) (3.24)

with d ∈ [0, 1] a diversity parameter to control the diversity when sequentially selecting
keywords (d = 0 corresponds to no diversity parameter, d = 1 corresponds to maximally
diverse keywords).

We repeat this process until we have the desired number n of selected keywords for
each cluster. This two-phased keyword selection method presents several advantages :

• by first performing a selection of relevant n-grams with c-TF-IDF, we greatly reduce
the number of candidate keywords (and thus the time and hardware requirements)
of the mmr phase.

• by using n-gram embeddings instead of statistical methods such as c-TF-IDF for our
keyword selection, we can explicitly add a diversity parameter and select n-grams
based on their semantic meaning rather than pure mathematical frequency.

• using embeddings yields a more diverse mixture of 1-, 2- and 3-grams compared to
just using c-TF-IDF which tends to over-represent higher order n-grams. This bias
is still present as higher order n-grams are more numerous and are structurally able
to be more descriptive than 1-grams, but is not as proeminent compared to simply
using c-TF-IDF.
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Chapter 4

Investor-patent networks as topologi-
cally mutualistic networks

This chapter is based on Carniel, T., Cazenille, L., Dalle, J. M., & Halloy, J., 2023 : Investor-
patent networks as mutualistic networks (arXiv preprint arXiv:2311.18625.).

In this chapter, we build and study the bipartite graph of venture-backed innovation
where investors are connected to patents through the patent portfolios of the startups they
finance. Leveraging the methodologies described in chapters 2 and 3, we perform cluster-
ing on both investors and patents, resulting in a coarse-grained graph representation where
investor communities are linked to technologies (clusters of thematically similar patents).
Drawing on metrics from ecology, we then characterize the structure of this graph and find
it to be topologicallymutualistic due to the prevalence of links between generalist investors,
whose portfolios are technologically diversified, and general-purpose technologies, char-
acterized by a broad spectrum of use. As a consequence, the robustness of venture-funded
technological innovation against different types of crises is affected by the high nestedness
and low modularity, with high connectance, associated with mutualistic networks.

4.1 Introduction

Due to the increased role of startups in various technological fields, from biotechnology to
artificial intelligence or quantum computing [12], venture capital has de facto become an
important driver of technological innovation [174, 103, 104, 181]. Indeed, because of their
inability to self-finance during the early years of their operations, startups need to rely on
the investments that they themselves receive from specialized investors called venture cap-
italists (VCs). In this context, the relationships between VC funding and innovation have
gradually become a topic of interest, mostly approached through patent data [224, 119, 145,
84]. This evolution has occurred in a world where crises have become more and more fre-
quent [132], increasing the need to analyze the resilience of socio-economic systems [111].
These studies have notably preliminarily shown that VC funding could be negatively im-
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pacted by local and global crises, be they financial [33], health [23] or geopolitical [175].
However, it is quite surprising that, although the VC network has been an active topic of
study for the past 15 years [140, 186], and although [104] had pioneered a complex network
approach focused on robustness, the direct interactions between VCs and the innovations
they fund, based explicitly on the patents filed [2] by the startups funded, have not been
explicitly studied, both in their own right and in relation to the robustness of the network
they constitute. This VC-patent interaction network is bipartite, with nodes of a first class
(VCs) interacting with nodes of a second class (patents) through investments in startups
that file the patents.

In this study, considering the line of analysis of financial markets suggested by [183, 184]
and echoing also the approaches that have started to directly address economic complex-
ity [136], we combine large-scale financial datasets on the rounds of VC funding received
by startups with patent data to explicitly analyze this bipartite investor-patent network
and its emergent structure. We identify clusters of investors and clusters of patents and ob-
serve that their bipartite network is topologically mutualistic, i.e. that the structure of the
network shares metric characteristics with mutualistic networks in ecology. This is due to
the prevalence of investors whose financial incentives make them diversify their portfolios
with respect to technological innovations in order to reduce the risks taken [50] and to the
existence of a large number of general-purpose technologies, i.e. technologies whose use
spreads widely across economic sectors [156].

With respect to the robustness of this network, we analyze its nestedness [17] and
modularity [21] metrics, as they have been developed by the ecology and physics liter-
ature. Nestedness measures the existence of a matryochka-like structure of interaction,
where specialist nodes interact with nodes that the generalist nodes also interact with.
Modularity estimates the propensity of nodes in a module (a set of nodes allocated to the
same group) to interact with nodes in the same module. Both metrics have been linked to
the system response to perturbations. We find the investor-patent network to be strongly
nested and weakly modular, which is consistent with its topologically mutualistic nature.
As a consequence, this network is characterized by distinct responses to different system
perturbations [292]. Crises that affect investors randomly or specialized investors tend to
have relatively little impact, due to the redundant nested structure of the network, whereas
events that target generalist investors tend to present a higher risk for related technological
innovations [51].

4.2 Objectives

We study the interactions between investors and the technologies developed by startup
companies in their portfolios. To do so, we combine financial and patent data in a network
analysis framework. We first present the methodology used to build this bipartite network.
We then analyze its topology and, using metrics developed by the literature in ecology and
physics, notably nestedness and modularity, we discuss the implications of this topology
for its robustness against crises.
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4.3 Materials and methods

Further technical and implementation details are provided in the section 4.7.

Figure 4.1 presents the approach followed in this chapter. Using financial and patent
databases, we retrieve information concerning startups, the patents they own and the in-
vestors that financed them. Investor communities are then identified using a pairwise in-
vestor similarity methodology from the literature and patent clusters are identified using
Topic Modeling methods. These aggregate-level descriptions are then used to build a bi-
partite graph linking investor communities to patent clusters by using the startups as the
bridge between the two (startups can be linked both to the patents they own and to the
investors that financed them). We then use the biadjacency matrix of the network to quan-
titatively investigate its structure through network-level structural metrics frequently used
in the ecological literature.

4.3.1 Datasets

The startup dataset used for this study was extracted through the Crunchbase1 API on
February 14, 2023. It contains information on 2 597 998 startups (name, headquarters lo-
cation, creation date, sectoral tags), 396 506 funding events (funded startup, date of the
funding round, investors involved, funding amount, investment stage), 241 489 investors
(name, creation date, investor type, headquarter location) and 1 631 627 individuals (name,
professional experiences, academic education, company board memberships and advisory
roles). We removed the Software and Other sectors from the 47 original sectoral tags as
they were found to be redundant, highly non-specific and over-represented (representing
a combined total of roughly 13% of all tags in the dataset, first and fourth tags in terms
of number of occurrences). We filtered out all companies founded before January 1st, 1998
to remove all companies that were not startups and all companies for which geographical
information was not available. Funding rounds that were not VC funding (such as debt
financing or grants) were also filtered out as they are carried by other actors than VCs.
Since we focus on the interactions between investors and technological innovation, using
companies as linking agents between both, we filtered out all companies that did not raise
funds. After applying these filters, 234 358 companies remained in our dataset.

The patent dataset also supplied byCrunchbase and IPqwery2 contains a total of 15 713 946
patents from WIPO3, USPTO4 and CIPO5 with their title, abstract, filing date, owner iden-
tification, and International Patent Classification (IPC) codes. It provides a matching with
the startup dataset that links patent owner IDs to Crunchbase company IDs, allowing us to
determine the patent portfolios of startups. We filtered out all patents filed before January
1st, 2000 and all patents that were not owned by companies from our filtered startup dataset,

1https://www.crunchbase.com
2https://ipqwery.com
3World Intellectual Property Organization
4United States Patent and Trademark Office
5Canadian Intellectual Property Office
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resulting in a final dataset of 835 763 patents.

4.3.2 Networks

To study the structure of interactions between investors and technological innovations,
we could consider a network where investors interact with technologies based on their
investments in startups and on the patents owned by startups : an investor and a patent
would simply be linked if the investor has financed the startup owning the patent. At this
level of granularity, the interactions between patents and investors are however too sparse
to study fundamental behaviors. Since individual patents are known to belong to classes or
clusters associated with different fields of technological innovation [2], and since investors
belong to different types [60], we cluster investors and patents in order to aggregate them
into coarser-grained communities.

Investor communities

We detect investor communities following the methodology described in [60]. We select
investors with 60 or more investments bringing the number of investors down to 2017 and,
for each of them, build the 5 characteristic distributions as described in [60] : temporal,
amount, geographical, series and sectoral investment distributions. We compute a simi-
larity metric between all pairs of investors to build a weighted similarity network where
all investors are linked and the edge weights correspond to the pairwise similarities. As
all nodes are linked to each other in a pairwise similarity network, the network is then
pruned to reduce link density (weak links are removed to transform our highly mixed com-
munity structure into a simpler, lowly mixed community structure [166]) in order to run a
community detection algorithm [34]. This yields c = 16 investor communities as shown
in Fig. 4.2A. The community results are in line with those presented in [60], with novel
communities emerging as the dataset used was extracted more recently. [60] have shown
that the investor communities provided by this methodology are stable with regard to per-
turbations to the characteristic distributions of individual investors, suggesting that the
underlying investor clustering is robust.

Patent clusters

We apply topic modeling to our patent dataset following themethodology described in [125,
61]. In order to thematically cluster similar patents together based on their textual abstracts,
we create vector representations (embeddings) of individual patents using the PatentS-
BERT [22] model specialized in patent modeling. Each patent is thus represented by a
768-dimensional embedding. We then create a low-dimensional representation of all em-
beddings using parametric UMAP [262]. Using these UMAP vectors in conjunction with
HDBSCAN [210], a density-based spatial clustering algorithm, we perform the clustering
of individual patents. The HDBSCAN algorithm works in two phases : first, a clustering is
performed by identifying regions of high density and grouping the points in these regions
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together and a hierarchical approach is then taken to return a flat clustering able to take
into account the variable cluster densities. As spatial density-based algorithms perform
better when the dimensionality of the data is not too high, the dimensionality reduction
step is performed to improve the performance of the HDBSCAN clustering. This process
results in p = 98 patent clusters. To characterize the patent clusters, we perform a key-
word extraction procedure for each cluster using c-TF-IDF, extracting the n-grams that are
representative of each patent cluster. Hyperparameters used for the HDBSCAN and UMAP
algorithms are provided in Table 4.1.

Investor-patent network

We allocate each startup to the patent cluster most represented in its patent portfolio. In-
vestors that did not invest in any startup that holds a patent and startups that do not own
patents are removed, resulting in 1937 investors and 12 007 startups after filtering. We then
build the weighted investor-patent network based on the funding events between investors
and startups : the weight of the edge connecting an investor community and a patent clus-
ter corresponds to the number of times members of the investor community have invested
in startups allocated to the patent cluster. The resulting weighted investor-patent network
is bipartite since it is composed of two different classes of nodes, with nodes of one class
(in our case, investor communities) being only linked to nodes of the other class (here,
patent clusters). Other examples of bipartite networks in socio-economic research include
the country-product network [137] or the country-food production network [298]. Specific
metrics have been developed to characterize bipartite networks [302] that are presented in
the following section.

4.3.3 Network metrics

Nestedness

Nestedness [17] is a structural property of networks that characterizes to what extent spe-
cialist species interact with subsets of the species generalist species interact with, meaning
that in nested networks, specialist-specialist interactions are infrequent. Mutualistic net-
works, i.e. networkswhere both species involved in an interaction have a net benefit such as
plant-pollinator or seed dispersal networks have been shown to be significantly nested [17].
Possible explanations such as system tolerance to species extinctions have been suggested
as a reason for the prevalence of nestedness in mutualistic systems [51], but the origin of
nestedness in these networks remains an open question [234]. Furthermore, the nested
architecture of networks has been shown to be positively correlated with structural ro-
bustness (studied for instance through the lens of species extinction in ecology) when it is
assumed that species with lower degree are more at risk of extinction, meaning that nested
networks are maximally robust when the least linked species (specialists) become extinct
but more fragile when the most linked species (generalists) face systematic extinction [51].
Following up on these findings, [254] have shown that maximally nested networks maxi-
mize the structural stability of mutualistic systems and that most observed networks were
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close to this optimum architecture.

Nestedness measures have been widely studied as one of the key metrics characterizing
interactions in bipartite networks. Measuring it, however, has been a topic of ongoing in-
vestigations [235, 47, 7, 299], and a number of different methods have been developed [199].
Among the latter, several nestedness metrics such as the Atmar & Patterson temperature
or the overlap and decreasing fill (NODF) [235] do not take into account the quantitative
nature of the interaction matrix, reducing it to a binary interaction matrix. Since the nature
of our data allows us to access detailed information about the frequency of interaction be-
tween nodes, we see that link weights span several orders of magnitudes and therefore opt
for the spectral radius ρ [279] metric, a nestedness measure that can handle weighted net-
works. This is of particular relevance as it has been shown that networks that were thought
to be significantly nested in binary form were found not to be nested when accounting for
interaction weights [279].

Bipartite modularity

The modularity Q of a network is a structural measure of how frequently nodes in defined
subgroups of the network (modules) interact with each other compared to their frequency
of interactions with nodes of other subgroups. The adjacency matrix of a modular network
thus presents blocks of dense interactions between nodes of a given subgroup, and few links
with nodes of other subgroups. Here, we use a modularity measure developed specifically
to take into account the bipartite nature of the network of study [21].

Connectance

The connectance of a network is defined as the number of realized links divided by the num-
ber of possible links in the network. This structural metric has been shown to be linked to
network complexity, degree distribution and network stability [239, 204]. Furthermore, in
bipartite ecological networks, the level of connectance of the network has been shown to
impact the relationship between modularity and nestedness [108], with low connectance
networks displaying a positive correlation between modularity and nestedness and net-
works with a high connectance value displaying a negative correlation between modularity
and nestedness.

4.4 Results

4.4.1 Investor communities

Starting from 2017 investors, we apply the clustering methodology described in the meth-
ods section. We obtain 16 investor communities (Fig. 4.2A) described in Table 4.2. The
communities are relatively few in number and are heterogeneous in size (the smallest one,
C.13, is comprised of 19 investors and the largest, C.04, is comprised of 239 investors). Com-
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munity C.00 is composed of investors specialized in the Health Care sector, C.01 of historic
investors that have been active relatively homogeneously throughout the whole period of
study, C.02 of generalist investors capable of investing different amounts at different stages
without displaying a strong sectoral specialization, C.03 of early-stage cryptocurrency in-
vestors that started being active around 2020, C.04 of United Kingdom (UK) and Germany
(DE)-focused investors, C.05 of late-stage and private equity (PE) investors, C.06 of early-
stage and business angels (BAs), C.07 of a specific type of very early-stage investors called
accelerators, C.08 of Canada-focused early-stage investors and incubators, C.09 of France-
focused investors with a slight preference for the Health Care sector, C.10 of China-focused
investors, C.11 of early-stage actors that started being active around 2013, C.12 of investors
that started being active in 2014 capable of investing throughout all stages of the VC cy-
cle, C.13 of Latin America (Brazil, Mexico, Colombia)-focused investors, C.14 of India and
Southeast Asia (SEA)-focused investors (India, Indonesia, Singapore), C.15 of Japan-focused
investors.

These investor communities present relatively straightforward identities, with some of
them being mainly defined by their geography of investments (C.10 and C.14), others being
defined by their sectors of investment (C.00 and C.03), others by their stage of investment
(C.05 and C.07 ), others by their temporal patterns of investment (C.01 and C.11) and others
by a combination of several dimensions (e.g. C.08 with a mix of the stage and geographi-
cal dimensions or C.09 with a mix of the sectoral and geographical dimensions). Previous
work [60] has shown these clustering results to be robust to the decimation of the charac-
teristic dimensions used to compute the similarities.

4.4.2 Patent clusters

Individual patents are grouped into clusters (Fig. 4.2B), and we extract keywords and ap-
ply labels to describe the resulting patent clusters as shown in Table 4.3. The size of the
patent clusters is strongly heterogeneous, with the smallest patent cluster containing 226
patents and the largest cluster containing 82 513 patents. Our patent clusters cover a wide
range of specific technologies, the top 5 clusters by number of patents being : cluster 53
(Pharmaceutical compositions/therapy) with 82 513 patents, cluster 41 (Wireless Communi-
cation Technology) with 51 139 patents, cluster 55 (Image Processing & Autonomous Vehicles)
with 41 507 patents, cluster 4 (Pharmaceutical Compound Therapy) with 30 981 patents and
cluster 64 (Semiconductor Device Fabrication) with 20 700 patents. Examples of other patent
clusters include cluster 12 (Seismic Survey Techniques, 322 patents), cluster 38 (Nucleic Acid
Analysis, 14 600 patents) and cluster 15 (Social Media Content, 424 patents).

Technologies can be thought of as roughly being linked to three overarching groups :
hardware-based, Health Care-related and software-based, each with its own specific chal-
lenges and constraints. Patented technologies can of course draw elements from several
of these general fields, but we manually allocated each patent cluster to one of the three
groups based on their label and keywords. We then colored the patent cluster nodes in
Fig. 4.3 following this allocation : Manufacturing in green (38 patent clusters), Information
Technology (IT) in blue (35 patent clusters), andHealth Care in red (24 patent clusters). Even
though there is some heterogeneity in the number of patent clusters in each group, all three
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groups are well-represented.

4.4.3 Investor-patent network

A bipartite network linking investor communities and patent clusters (Fig. 4.3) is built using
investor communities and patent clusters. The degree distribution of the network is highly
heterogeneous (truncated power law, Fig. 4.6) both for investor communities and patent
clusters, meaning that a small number of nodes have a large number of connections to
other nodes while most others have a low number of connections. Broad-scale networks,
which exhibit a truncated power law degree distribution, are commonly found in abiotic
and biotic systems, and are the result of finite size effects of the studied underlying network.
The tail of the distribution (nodes with high degree) by definition has few observations, and
as real processes are often bounded by the constraints of the system (in our case, a finite
number of funding events), a bounded distribution is better suited to describe the system.

The biadjacency matrix associated with the bipartite network is reordered following
the descending node degree on both investor community and patent cluster nodes (upper-
left packing) to show the nested interaction patent of the network (Fig. 4.9). Community
C.02 is the most active investor community, with a fairly diversified patent portfolio. Com-
munity C.00 is the second most active community, with a strong specialization in Health
Care-related patent clusters (clusters 53, 57, 4 and 38). On the other end of the matrix,
communities C.13 and C.03 are the least active, with C.13 showing no specific pattern and
C.03 showing IT and finance-related patent activity (clusters 26, 36, 30 and 96). The nested
interaction pattern of the network is visible, with a strong density of interaction in the
upper-left corner of the matrix and few interactions in the lower-right corner of the matrix.
We visually observe that the nested structure, when rearranging the biadjacency matrix by
descending order of degree, is imperfect in part due to the specificity of community C.00.
Indeed, since we work with quantitative rather than binary data, it boasts both a high de-
gree (high number of interactions) and a high specialization (relatively few patent clusters
with which it interacts).

4.4.4 Connectance

Themeasured connectance of our network isC = 0.72, a high value compared to ecological
bipartite networks (Fig. 4.7B). As there are in theory no forbidden interactions (interactions
that are structurally impossible in a network for physiological or phenological reasons) in
our system and as our study covers a long period of time, this high value is not surprising.
The magnitude of the connectance has strong implications on other structural network
metrics such as degree distribution, nestedness and modularity.

126



4.4.5 Modularity

Using a modularity-based community detection algorithm, we measure the modularity
value of our network and retrieve 4 modules. The measured modularity of our network
is Qm = 0.19, meaning that the network is weakly modular (modularity ranges from −1
to 1, with negative values corresponding to anti-modular networks and positive values to
modular networks). The 4 retrieved modules are shown by text color for patent cluster
nodes and investor communities in Fig. 4.3. Three of these modules show a strong techno-
logical focus (module 1 around Manufacturing, module 2 around Information Technologies
and module 3 aroundHealth Care), with the fourth one (module 0) containing a mix of tech-
nologies. A matrix-based view of the biadjacency matrix reordered by modules is shown
in Fig. 4.10. We also computed the normalized modularity Q of a number of bipartite eco-
logical networks (Fig. 4.7A) and compared it to the normalized bipartite modularity of our
networkQm. We find that our modularity is lower than most networks it was compared to,
potentially due to the different underlying nature of this socio-economic network compared
to ecological networks.

4.4.6 Relevance tests and ecological metrics

Relevance tests for the nestedness and modularity of our network are performed, and
the investor community-patent cluster network is found to be significantly more nested
(Fig. 4.4A, ρm = 5662, ρnull = 3799 ± 295, mean ± std, zρ = 6.32) and significantly less
modular (Fig. 4.4B,Qm = 0.19,Qnull = 0.61±0.02, zQ = −21) compared to the null model.
This specific network topology has strong implications on the properties of the network,
notably in terms of robustness to external perturbations such as species extinction and in
terms of species diversity. The statistically high nestedness and low modularity (compared
to the null models) of the interaction structure between investor communities and patent
clusters is in line with previous findings in the literature as nestedness and modularity have
been shown to be anticorrelated for networks with high connectance [108]. We also per-
form this analysis on a network where interactions are weighted by total funding amounts
rather than number of interactions, and, even though the ordering of investor communities
by degree is different, we find similar results (Fig. 4.11 and 4.12) in terms of nestedness and
modularity.

4.5 Discussion

We observe that the bipartite network of interactions between startup investors and the
patents in which they indirectly invest exhibits an emergent topological mutualism. This
mutualistic topology, commonly found in ecological systems, results here from the pres-
ence of many investors whose generalist nature is induced by their portfolio diversification
strategies, on one side of the network, and of general-purpose technologies with a broad
spectrum of use, on the other. On the investor side, portfolio diversification is a funda-
mental and basic idea of modern portfolio theory [200]. Investors are statistically better
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off if and when they diversify the risks they take among their investments: typically here,
by supporting startups that develop different kinds of technological innovations. On the
other side of the network, general purpose technologies [44] are technologies character-
ized by their pervasiveness because they are used as inputs by many downstream sectors:
here, by numerous startups with many different products that benefit from investments
from many different types of investors. Although we do not address here the complexity of
economies properly speaking and notably trade networks [53], this result is closely related
to the studies that have shed new light on the workings of socio-economic systems within
the framework of economic complexity, and shares with them the rationale according to
which the understanding of many societal issues implies to look at the systemic interac-
tions that produce them [136, 15]. In addition, but with a less pronounced relevance with
respect to our approach, it should also be noted that another line of investigation has also
attempted to draw parallels between the study of mutualistic systems and economic issues
by introducing economic market effects to explain the evolution and stability of mutualistic
interactions in ecological systems [229, 48].

Topologically mutualistic networks have been shown to be significantly nested [17],
a property that has been related to network robustness both for socio-economic systems
and in ecology. Both literatures concur that the observed nested structure of the bipartite
matrices describing topologically mutualistic networks contributes to their robustness and
stability [135, 199] and study the vulnerabilities of such systems, with the general conclu-
sion that a nested system reacts very differently to perturbations depending on which types
of nodes they affect.

Studies of the bipartite network of interactions between designer and contractor firms in
the New York City garment industry [260, 261], following Uzzi’s seminal work [300] on the
sources and consequences of embeddedness [122] have typically highlighted the fact that
since the nested architecture of mutualistic networks implies that nodes contribute hetero-
geneously to their vulnerability, the removal of some nodes that especially contribute to the
global nestedness of the network is consequentially associated with stronger vulnerabili-
ties. In a similar vein, [135] have studied the Boulogne-sur-Mer Fish Market, focusing on
the bipartite interactions between buyers and sellers, and studied its resistance to pertur-
bations that would affect high-degree buyers or sellers with the conclusion that the auction
part of this market was more robust. The theory of economic complexity has concurrently
associated nestedness and the dynamics of industrial ecosystems [53], notably in relation
to the resilience of economies to external shocks [133, 15].

In ecology, where the nested network structure tends to minimize competition between
species and support greater biodiversity [18], maximizing structural stability [254], pertur-
bations impacting generalist species have been shown to lead to faster species depletion at
the network level [51] by isolating specialist species due to the nested structure.

Furthermore, and with respect to the stability of nested bipartite networks, ecologi-
cal studies have further shown that nested interaction networks emerge by considering an
optimization principle aimed at maximizing species abundance [285] and that nested mu-
tualistic interactions boost equilibrium population densities and increase the resilience of
communities [283] : typically, when analyzing the short-term dynamics following a strong
population perturbation, mutualist networks are associated with an ability to replete af-
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fected communities when species numbers fall dangerously low [283].

With respect to the investor-patent network, the attrition of generalist communities
of investors should therefore be associated with a potentially severe impact on the entire
network, an impact that could put technological fields and the associated emerging tech-
nologies at risk. Perturbations targeting generalist investors such as communities C.02 (in-
vestors capable of investing different amounts at different stages without a strong sectoral
specialization) and C.06 (early-stage and business angels) stand out as the highest vulner-
abilities, which highlights the role that these investors play for the system as a whole and
for the diversity of technological fields of innovation that receive funding. In addition to
these two communities, using funding amounts to weight the bipartite network links in-
stead of the number of interactions (see Fig. 4.12), community C.05 (late-stage and private
equity investors) also stands out as the most generalist investor community in this nested
bipartite network, an observation which could be of special relevance since this community
has been subject to a decrease in activity since 2022 [240, 70, 106]. Such a perturbation, as
it affects a community crucial to the nested patent-investor network, could be expected to
have not only quantitative consequences, as is generally foreseen, but also qualitative ones,
putting fields of technological innovation at risk.

In parallel, investor communities such as C.00 (investors specialized in the Health Care
sector) and C.03 (early-stage cryptocurrency investors) act as specialist investors in the
bipartite network, whose emergence could be related to the need for specific skillsets in
these sectors: for instance, the Health Care sector (that corresponds here to module 3 in
Fig. 4.3) is well-known to be associated with very specific regulation and R&D cycles.

A relevant question here is whether the number of technological and sectoral specifici-
ties will increase in relation to the development of commonly named “deep techs”, a cate-
gory that includes medtechs, quantum computing or artificial intelligence, each of which
is associated with specific and emerging regulations. Such a phenomenon could lead to
an increased number of specialist investor communities, which would in turn increase the
modularity of the patent-investor network, a phenomenon negatively correlated with net-
work robustness as mentioned above but which could also mitigate perturbations affecting
key generalist investors. Amoremodular structure of the bipartite patent-investor network
could result in fields of technological innovations being dependent on a limited number of
investor communities for their funding, but conversely less dependent upon generalist in-
vestors.

Finally, and with respect to future research, startup databases are known to under-
represent early-stage funding rounds compared to later-stage ones due to an easier tracking
of the latter. Although we do not expect such a bias to affect the results of our study, com-
plementary analyses on reduced but more exhaustive datasets could further clarify this
issue. In addition, VC funding tends to target novel, emerging and potentially disruptive
technologies, while others are funded by a more varied panel of investments which could
also warrant more comprehensive investigations, notably innovations that spin-off from
academia in the context of its specific set of institutions and incentives [86]. Further stud-
ies could also attempt to directly assess the robustness of the investor-startup network with
respect to technological diversity [137, 333] when facing different types of crises.
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4.6 Conclusion

In this work, by leveraging large-scale financial, startup and patent datasets, we have built
a bipartite network directly linking investors and technologies. Using network metrics, we
have found this network to display an emergent topological mutualism associated with a
heterogeneous degree distribution, a significant nestedness and a significantly lower mod-
ularity compared to null models. This has relevant implications for the robustness of the
ability of startups and investors to support technological innovation when facing crises.
We notably expect the system to react differently depending on perturbations. In particu-
lar, perturbations affecting investor communities that contribute strongly to the nestedness
of the patent-investor network could have a far-reaching impact on technological innova-
tion.
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Figure 4.1: Workflow presenting the approach followed in this chapter. (A) Investor
and company information is extracted from Crunchbase. (B) Patent data from USPTO,
CIPO and WIPO is extracted and matched with the Crunchbase company information. (C)
16 investors communities are retrieved using a similarity metric between pairs of investors.
(D)The bipartite network between investors and the patents of the companies they invested
in is built. (E) NLP-based topic modeling of patents is performed on their abstracts and
98 patent clusters are retrieved. (F) The investor community-patent cluster graph is built
based on the investor-patents bipartite network by combining the results from steps (C),
(D) and (E), i.e. by aggregating investors into their investor communities and patents into
their patent clusters on the investor-patents bipartite network. (G) The biadjacency matrix
of the investor community-patent cluster graph is extracted to quantitatively visualize the
interaction patterns and compute network structuremetrics. (H)Network structuremetrics
(connectance, nestedness, modularity) are computed using the biadjacency matrix to study
the topology of the network and the properties deriving from it.
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B

Figure 4.2: Investor communities and patent clusters. A. Pruned investor similarity
network. Each node corresponds to an investor, and its color corresponds to the investor
community it is allocated to. All investors can be grouped into 16 communities that define
types of "investor species" (C.00 to C.15, presented in Fig. 4.3 and in Tab. 4.2). B. Projected
latent space (2 dimensions) of the patent data. Each point represents a patent and its color
corresponds to its cluster allocation. The clustering defines 99 clusters, 98 thematic clusters
and one unlabeled cluster. Cluster -1 (in black) corresponds to unlabeled data points.
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label Mod. 0
label Mod. 1
label Mod. 2
label Mod. 3

Manufacturing
IT
Health Care

Figure 4.3: The investor community-patent cluster bipartite network. Square nodes
represent investor communities and circle nodes patent clusters. Node sizes are a function
of the node degrees. Link weights are normalized for each investor community by themaxi-
mum edge weight of the investor community, and the edge width shown is the logarithm of
the normalized weight. A brief description of investor communities is provided under each
investor community label, and a more extensive description is available in Table 4.2. Nodes
were positioned following the 4 modules obtained by the bipartite modularity algorithm,
and node label colors correspond to the module they were allocated to. Patent clusters are
colored following a manual allocation of the high-level technological field they deal with
(red for Health Care, blue for Information Technology, green for Manufacturing).
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Figure 4.4: Statistical relevance tests for the nestedness and the modularity of the
network. (A) Statistical relevance test for the nestedness ρm (red vertical line) of the in-
vestor community-patent cluster network compared with 5 000 iterations of the null model
(blue histogram) described in the Appendix. We see that our network is significantly more
nested compared to networks generated by the null model. (B) Statistical relevance test for
the modularity Qm (green vertical line) of the investor community-patent cluster network
compared with 5 000 iterations of the null model (blue histogram). We see that our network
is significantly less modular compared to networks generated by the null model. (C) Bina-
rized representation of the biadjacency matrix. Investor communities correspond to the
rows, patent clusters to the columns. The rows and columns are reordered by descending
marginals (sums of the value of the row or column), yielding an upper-left packed matrix.
The nested structure is displayed, with more specialist investor communities (bottom rows
of the matrix) mostly interacting with a subset of the patent clusters the generalist species
(top rows of the matrix) interact with.
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4.7 Appendix

Methods

Investor-patent networks

To study the structure of investor-technology interactions, we first need to build a network
where investors interact with technologies. As startups own patent portfolios and investors
own startup portfolios through their investments, a link can be drawn between an investor
and a patent if the investor has financed the startup owning the patent (Fig. 4.5). Since
we wish to study investor-patent interactions, we filter out all patents that are not linked
to startups that have raised funds. The number of patents owned by funded startups in
our database and the number of investors, however, are large, with 835 763 patents and
113 934 individual investors remaining after filtering. This presents several problems, both
from a computation and statistical point of view: this graph is too large to apply the usual
matrix-based metrics, and the interactions between patents and investors are too sparse
to study fundamental behaviors. To remediate this, we propose to separately cluster the
investors and the patents to create coarser-grained communities, strengthening signal by
grouping similar investors together (investor communities) and similar patents together
(patent clusters).

Investors Startups
(patent allocation)

Patents

i1

i2

iNi

s1(p2)

s2(pNp)

SNs(p1)

p1

p2

pNp

Figure 4.5: Defining the network of investors and patents. Investors are represented
by a blue node and their investments by a link (grey lines) to the startup nodes (grey dots).
The nodes of the startups are linked (dark grey lines) to the patents they own represented
by red nodes. By transitivity, the investors are linked to these patents (yellow lines). The
network is defined by the set of investor nodes linked through their investments to the set
of patent nodes. This forms a possible bipartite network between investors and patents.
Ni, Ns and Np represent the number of investor, startup and patent nodes respectively.
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Patent clusters

The IPC (International Patent Classification) is unfortunately not easily amenable to net-
work analysis such as ours for several reasons [284, 306]. First, it is a fixed classification
that is infrequently updated even though patents are being published increasingly fast, cre-
ating a grey area where new technologies are not accurately categorized due to the lack
of a sufficiently suitable class amongst the existing ones. Second, a patent is a complex
document that contains different aspects such as technological descriptions or fields of ap-
plication. Some patents thus exist at the intersection of several classifications (a patent
describing a recommender system for targeted advertising, for instance, exists in both the
recommender system space and the targeted advertising space), which the IPC resolves by
allowing the patent to have multiple classes. This is, however, problematic when trying
to quantitatively study patent data as multi-class analysis is markedly more complex than
binary analysis. Third, the patent class taxonomy is massive with over 70 000 subgroups; a
method to reduce the number of categories is necessary in order to obtain a smaller graph
so that relevant and easily interpretable analyses can be performed. Doing so by cutting
the taxonomy closer to the root would be a potential way to proceed, but this would lose
information as a patent can exist in different branches of the taxonomy. Finally, there is
some inconsistency in the classification between different patent offices and countries [32,
62], where a patent will not necessarily have the same classification between the different
offices and examiners. We thus endeavor to develop a patent classification method in order
to homogenize the patent classification for our study.

We therefore apply topic modeling to our patent dataset, following the methodology
described in [125, 61]. We first concatenate the title and abstract for all patents and embed
the concatenated string using the PatentSBERT [22] which is a state-of-the-art language
model specialized in patent modeling. This results in 768-dimensional embeddings for each
patent. We then create a low-dimensional representation of all the embeddings using the
parametric UMAP algorithm [262]. This algorithm differs from regular UMAP as it trains
a neural network using a subset of the total dataset to learn the high-to-low dimensional
mapping and uses this model to reduce the dimensionality of the complete dataset. This
is necessary as the number of patents in the dataset makes it otherwise too large to use
regular UMAP. HDBSCAN [210] is then used to perform the clustering based on the UMAP
vectors of the patents. The dimensionality reduction step is performed to improve the
performance of theHDBSCAN clustering and has the added benefit of reducing thememory
requirements of the pipeline. The hyperparameters used for the algorithms are shown in
Tab. 4.1.

Parametric UMAP parameters HDBSCAN parameters
n_components n_neighbors sample_size min_samples cluster_epsilon min_cluster_size cluster_selection_method

10 3 0.3 1 0 220 “eom"

Table 4.1: Hyperparameters used for the parametric UMAP and HDBSCAN algo-
rithms.

Finally, as one cluster is much larger than the rest (over 3 times larger than the second
largest) and relatively high-level (containing all organic and Health Care-related technolo-
gies), we run the clustering algorithm on the patents in this cluster with the same param-
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eters. This process results in p = 98 patent clusters found by our process. Colors in the
related figure in the main text of the chapter (Fig. 2) were computed using the distinctipy
Python library [251].

To characterize the patent clusters, we perform a keyword extraction procedure for each
cluster. We compute, for all n-grams present in the cluster, the c-TF-IDF score as defined in
eq. 3.15 and we extract the top k n-grams in terms of the c-TF-IDF score. We then add an
additional step to remove variations of the same keyword in a given cluster (i.e. “power”
and “powers”). To do so, we compute the 3 × k top n-grams in terms of c-TF-IDF score
and iterate through the list in descending order of c-TF-IDF-score, keeping n-grams if their
Levenshtein similarity with all other selected n-grams (i.e. with higher c-TF-IDF scores) is
below 0.8 until we reach the desired number k of top distinct n-grams.

Building the investor-patent network

We apply a filter by removing all investors that are only linked to companies that do not
own patents and by removing all startups that do not own patents, yielding a bipartite
network with 1937 investors and 12 007 startups. We allocate each startup to a patent
cluster by choosing the patent cluster that is the most represented in its patent portfolio
(i.e. if a startup has 2 patents in patent cluster 0 and 5 patents in patent cluster 1, the startup
will be allocated to patent cluster 1; in the event of a tie, the startup is randomly allocated
between all tied clusters). This is done for several reasons : first, a company can own patents
that are not truly representative of its activity, with some patents being strategically filed
to block rival companies rather than to exploit the patented innovation. A patent can also
be a refiling of a patent previously detained by the company, thus artificially inflating the
number of patents a company has in a given patent cluster. Furthermore, as some startups
own a large number of patents whereas others own much fewer patents, this allows us to
focus on investment decisions made by investors without introducing a bias resulting from
startup patent portfolio sizes.

We then build an investor-patent network where, for each investment, an investor is
directly linked to a patent cluster following the patent cluster allocation of the startup that
received funding. The investor-startup (and by extension the investor-patent) network nat-
urally gives rise to a bipartite structure as funding interactions can only link startups and
investors.

We then cluster investors together following investor communities, resulting in a bipar-
tite network linking investor communities on one side with patent clusters on the other.
Colors in the related figure (Fig. 3) in the main text of the chapter were computed using the
distinctipy Python library [251].
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Network metrics

Nestedness

We use the spectral radius [279] to measure nestedness as our network has a quantitative
structure. Large dominant eigenvalues have been shown to be associatedwith highly nested
structures for both binary and quantitative matrices [279], and the spectral radius ρ (eq. 4.1)
of a weighted network is defined as the largest eigenvalue of the weighted adjacencymatrix
W of the network.

ρ(W) = max{|λ1|, ..., |λn|} (4.1)
where {|λ1|, ..., |λn|} correspond to the real part of the eigenvalues ofW.

In order to compute the spectral radius of the network studied, we compute theweighted
adjacency matrixWn×n with n = c+ p where c is the number of top nodes (investor com-
munities) and p the number of bottom nodes (patent clusters). W is block-diagonal, i.e.

W =

(
0c×c W̃c×p

W̃T
p×c 0p×p

)
(4.2)

where W̃ is called the biadjacency matrix of the network and W̃T denotes its transpose.

Bipartite modularity

Following [21], community detection on the bipartite network can be performed by finding
a configuration of node allocations into modules (sets of investor community nodes and
patent cluster nodes) maximizing bipartite modularity Q as defined in eq. 4.3.

Q =
1

M

c∑
u=1

p∑
v=1

(W̃uv −
yuzv
M

)δ(gu, gv) (4.3)

whereM is the sum of edge weights, y and z the row and column marginals of W̃, gu and
gv the community allocation of nodes u and v, and δ a Kronecker delta i.e. δ(gu, gv) = 1 if
gu = gv (nodes u and v are allocated to the same module) and δ(gu, gv) = 0 if gu ̸= gv.

As the amplitude of modularity is dependent on network parameters such as the net-
work size and fill, the maximummodularity valueQmax can be computed for each network
following eq. 4.4. We then compute, for each network, the normalized modularity Q [21]
as defined in eq. 4.5.

Qmax =
1

M
(M −

c∑
u=1

p∑
v=1

yuzv
M

)δ(gu, gv) (4.4)

Q =
Q

Qmax

(4.5)
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Connectance

The connectanceC of a network is defined as the number of realised links over the number
of potential links as shown in eq. 4.6 for a bipartite network.

C =

c∑
u=1

p∑
v=1

K(W̃uv)

c× p

K(W̃uv) =

{
1 if W̃uv ≥ 1

0 otherwise

(4.6)

Null models

Two different null models were tested to study the statistical significance of the measured
nestedness and modularity. Null model 1 consists of a random rewiring of the weighted
edges of the graph. Edges are randomly shuffled, and both ends are wired to pairs of nodes
chosen at random. A constraint is applied such that no node remains unlinked. Null model
2, following [279], keeps the interaction structure of the biadjacencymatrix while randomly
shuffling the interaction weights, thus preserving the qualitative structure of the matrix
but changing its quantitative structure. Both null models showed similar results in terms
of spectral radius and modularity values, statistical results presented in this chapter were
obtained using null model 1.
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Additional results
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Figure 4.6: Complementary Cumulative Distribution Function (CCDF, in red) of
the degree distribution of the bipartite investor community-patent cluster net-
work. ω(k) is the degree of node k. The histogram shows the degree distribution, and
the inset heatmap shows the most likely distribution when comparing pairs of candidate
distributions (P. stands for Power Law, T. for Truncated Power Law, L. for Lognormal, S. for
Stretched Exponential). All non-zero values shown are statistically significant values (i.e.
p ≤ 0.05), and the cells of the matrix correspond to the value of the R parameter. Positive
values mean that the row candidate degree distribution is more likely than the column can-
didate degree distribution. The significance analysis was performed using the powerlaw
package [8].

Figure 4.6 shows the Complementary Cumulative Distribution Function (CCDF) of the
investor-patent network (red curve), statistical comparisons between several candidate dis-
tributions (inset heatmap) and the degree distribution (bar plot). The inset heatmap shows
that the most likely distribution explaining the degree distribution is a truncated power
law, which is a power law coupled with an exponential cutoff that can be due to finite size
effects [52] induced by the limited number of investor communities and patent clusters in
our samples. Several real-world natural and socio-economic networks display truncated
power-law degree distributions [76, 30].

Panels A and B of Fig. 4.7 show two structural network metrics (normalized modu-
larity and connectance) computed for all networks with over 20 species in the Web of Life
database (histogram) and for the investor community-patent cluster network (magenta ver-
tical lines). 253 of the original 300 networks in the Web of Life remain after filtering. Panel
A shows the distribution of the normalized modularity Q. The investor community-patent
cluster network has a normalized modularity of Qm = 0.26, lower than almost all other
networks. The modularity values are normalized (see the "Modularity" section in the Ap-
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Figure 4.7: Comparison with ecological networks for the normalized modularity
and the connectance. Ecological networks were extracted from the Web of Life database
(https://www.web-of-life.es/), and only networks with 20 species or more
were kept for this analysis. (A) Normalized modularity Q. The normalized modularity of
the investor community-patent cluster network (Qm, magenta vertical line) is compared to
the normalized modularity of ecological networks (blue histogram). (B) Connectance C .
The connectance of the investor community-patent cluster network (Cm, magenta vertical
line) is compared to the connectance of ecological networks (blue histogram).

pendix) to allow comparison between networks of different topologies. Panel B shows the
distribution of the connectance. We see that most networks have a low connectance value,
with very few displaying a connectance over C = 0.5. The investor community-patent
cluster network has a connectance of Cm = 0.72, higher than all the other networks in the
database. This network can thus be said to have a high connectance in the context of the
ecological literature.

Figure 4.8 shows the frequency of bipartite motifs in the investor community-patent
cluster graph. Inferring the interaction type from the bipartite network structure has re-
cently been a topic of interest in ecological communities, notably due to the public availabil-
ity of a significant number of well-characterized bipartite ecological networks. Studies have
found that this task is not straightforward [215] and that the network-level metrics such as
nestedness or modularity might not be enough to discriminate between the different inter-
action types. Pichon et al. [238] proposed a multi-scale approach using both network-level
metrics and network motifs to better differentiate antagonistic networks from mutualistic
networks. Figure 4.8, following [238], shows the results of the bipartite motif frequency
analysis performed on the investor community-patent cluster graph. The bipartite motif
frequencies were computed using the bmotif package [272], and the square root of the mo-
tif frequency is shown for each motif ID. The bottom panel of the figure shows the shape of
each motif ID. Comparing these motif frequencies with those shown in [238] does not lead
to a strong conclusion as the motif frequencies of networks shown in [238] for the different
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interaction types and ecologies show ample variations, and do not allow us to strongly fa-
vor an interaction type over the other based on the motif structure of our network. Further
research would be needed in this direction.

Figure 4.9 shows the biadjacencymatrix of the investor community-patent cluster graph
reordered in descending order of degree for both rows and columns. Community C.02 is the
most active investor community, with a fairly diversified patent portfolio. Community C.00
is the second most active community, with a strong specialization in Health Care-related
patent clusters (clusters 53, 57, 4 and 38). On the other end of the matrix, communities C.13
and C.03 are the least active, with C.13 showing no specific pattern and C.03 showing IT and
finance-related patent activity (clusters 26, 36, 30 and 96). The nested interaction pattern
of the network is visible, with a strong density of interaction in the upper-left corner of the
matrix and a few interactions in the lower-right corner of the matrix. We visually observe
that the nested structure is imperfect, in part due to the specificity of community C.00. In-
deed, since we work with quantitative rather than binary data, it boasts both a high degree
(high number of interactions) and a high specialization (relatively few patent clusters with
which it interacts). Patent clusters with the highest degrees (top rows of the matrix) are
found to be technologies with a large number of applications (general purpose technolo-
gies), such as Pharmaceutical compositions/therapy, Image Processing & Autonomous Vehicles
or Payment & Transaction Systems. This is not surprising as some aspects of these trending
technologies see active development and applications from a wide range of actors, leading
to a larger number of patents.

Figure 4.10 shows the reordered and normalized biadjacency matrix of the investor-
patent network. Rows and columns are reordered to pack modules together (shown with
the red rectangles), and patent clusters are colored following a manual allocation between 3
potential labels (Health Care, Information Technology,Manufacturing). We see that the first
module containing communities C.00 and C.09 is strongly centered around Health Care-
related patent clusters, the second module containing communities C.02, C.03, C.05, C.06,
C.13 and C.14 is strongly centered around Information Technology-related patent clusters,
the third module containing communities C.01, C.04 and C.08 is strongly centered around
Manufacturing-related patent clusters and the fourth module has more of a mixed techno-
logical focus. These results are coherent with the identification of investor communities
shown in Tab. 4.2, with communities C.00 and C.09 showing a Health Care focus, com-
munities such as C.03 (cryptocurrency investors), C.13 and C.14 (emerging regions) being
allocated to the Information Technology-focusedmodule and historic investors such as those
of community C.01 that have been active since the beginning of our period of study (co-
inciding with the strong focus on financing hardware startups following the crash of the
dotcom bubble in the early 2000s) being allocated to the third module.
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Investor community # of investors Brief community description
C.00 110 Health Care investors
C.01 132 Historic investors
C.02 200 Generalist investors active whole period
C.03 27 Cryptocurrency investors
C.04 239 EU-focused investors (UK and DE)
C.05 102 Late-stage investors and PE
C.06 236 Early-stage and BAs
C.07 189 Accelerators
C.08 80 Canada-focused investors
C.09 71 France-focused Health Care-focused investors
C.10 122 China-focused investors
C.11 158 Early-stage post-2013 investors
C.12 201 "New-generation" post-2013 investors
C.13 19 Latin America-focused investors
C.14 78 India and SEA-focused investors
C.15 53 Japan-focused investors

Table 4.2: Description of investor communities. UK stands for United Kingdom, DE for
Germany, PE for Private Equity, BA for Business Angel, SEA for Southeast Asia. "Historic"
investors are investors that have been active for a long period of time, since the late 1990s-
early 2000s. "Generalist" investors are investors that do not display a significant sectoral
focus, investing in all types of sectors and related technologies. "Cryptocurrency" investors
are investors strongly specialized in cryptocurrencies and related financial sectors. "Late-
stage" investors focus on the later stages of VC financing (series B and onwards), typically
investing very large amounts. "Early-stage" investors focus on early stages of VC financing
(pre-seed, seed and series A), investing relatively small amounts. "Business Angels" are
individuals who invest their own money in startups, usually in early-stage rounds and low
amounts. "Accelerators" are a specific type of early-stage investors that usually operate by
selecting batches of companies for a short period, providing them with small amounts of
money and an intensive mentoring program of a fewmonths focused on developing specific
aspects of the company. "Post-2013" investors are investors that started being active (or
greatly increased their activity) around the 2013 period, where VC financing experienced
sudden and significant growth.
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patent cluster # of connections cluster label 1-grams 2-grams

0 74 Video Displaying Technology video | format | stream | frames | media video stream | video data | video
content

1 186 Location-based Wireless Technology location | wireless | positioning | mobile | satellite mobile device | mobile station |
wireless device

2 62 Cancer Treatment Therapies cancer | treating | inhibitor | combination | treatment treating cancer | methods treating |
combination therapy

3 77 Fluid Valve Assembly valve | piston | fluid | chamber | pressure valve assembly | pressure tube |
shock absorber

4 2801 Pharmaceutical Compound Therapy compounds | formula | thereof | derivatives | diseases
pharmaceutical compositions |
pharmaceutically acceptable |

compounds formula

5 1938 Power Electronics Circuit power | voltage | circuit | output | signal power supply | clock signal | input
signal

6 15 Wireless Network Technology network | wireless | access | mobile | service wireless network | network access
| wireless device

7 232 Chemical Reaction Engineering catalyst | process | gas | stream | carbon gas stream | carbon dioxide |
stream comprising

8 1104 Multimedia Streaming Services media | content | video | playback | audio media content | video content |
playback device

9 862 Speech Processing Technology audio | speech | sound | voice | microphone audio signal | audio data | speech
recognition

10 149 Pharmaceutical Formulations & Dosage pharmaceutical | formulations | composition | release | oral
pharmaceutical composition |
pharmaceutically acceptable |

dosage form

11 132 Microbial Acid Production acid | production | microorganisms | microbial | amino amino acid | method producing |
non naturally

12 60 Seismic Survey Techniques seismic | sensor | measurement | subsurface | acoustic seismic data | seismic trace |
acoustic signal

13 41 Virus, Vaccine, Antigen virus | vaccine | protein | recombinant | vectors present invention | invention
relates | nucleic acid

14 966 Online Advertising Services advertisement | advertising | ad | campaign | advertiser advertising campaign | advertising
content | web page

15 119 Social Media Content content | item | social | user | online content item | social networking |
social media

16 1 Vehicle Braking Systems brake | disc | caliper | disk | lining disc brake | brake disc | brake
caliper

17 266 Cloud Computing Services application | computing | cloud | software | service cloud computing | computing
environment | virtual machine

18 106 Augmented Reality Displays light | display | pixel | image | eye display device | light emitting |
image light

19 1247 Motor Vehicle Assembly rotor | motor | shaft | assembly | vehicle steering column | aerial vehicle |
motor vehicle

20 363 Video Compression Technology video | block | coding | prediction | picture video data | video coding | motion
vector

21 200 Agricultural Management & Yield crop | agricultural | yield | plant | field agricultural field | crop yield |
management zones

22 31 Location-based Tracking Technology location | mobile | tracking | geo | fence mobile device | tracking device |
location information

23 111 Multi-Tenant Database database | application | custom | tenant | object access permissions | multi tenant |
mechanisms methods

24 91 Network Management & Security network | traffic | service | policy | proxy communication network | network
element | network agent

25 625 Battery Electrochemistry Technology fuel | electrolyte | battery | anode | electrode fuel cell | lithium ion | active
material

26 4869 Payment & Transaction systems payment | transaction | merchant | card | account point sale | systems methods |
mobile device

27 102 Web Page Management web | page | content | tab | user web page | context menu | tabs tab

28 220 Neural Network Technology neural | training | network | input | output neural network | convolutional
neural | training neural

29 314 Ultrasound Medical Imaging ultrasound | imaging | tissue | image | ultrasonic ultrasound imaging | ultrasound
device | ultrasound data

30 1713 Identity Authentication Technology authentication | key | identity | user | server user authentication | public key |
private key

31 1204 Medical Monitoring Devices physiological | patient | monitoring | heart | blood heart rate | blood pressure | vital
signs

32 68 Software Test Platform application | software | platform | test | file live multi | multi tenant | sdk
platform

33 111 Footwear Assembly Tools tubular | upper | footwear | portion | projectile tubular element | projectile casing
| entangling projectile

34 285 Polymer Composition Formulations composition | polymer | weight | comprising | containing
composition comprising |
invention relates | present

invention

35 32 Heat Dissipation Technology heat | cooling | air | thermal | coolant heat dissipation | heat sink | heat
exchanger
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36 3542 Data Storage Systems storage | memory | cache | file | data data storage | encoded data |
dispersed storage

37 102 HVAC Climate Control temperature | hvac | thermostat | energy | setpoint energy consumption | setpoint
temperature | ambient temperature

38 2298 Nucleic Acid Analysis nucleic | sample | acid | dna | sequencing nucleic acid | methods
compositions | invention provides

39 189 Medical Neural Stimulation stimulation | nerve | tissue | electrical | electrode electrical stimulation | nerve
stimulation | peripheral nerve

40 30 Patient Support Equipment support | patient | deck | frame | foot patient support | support
apparatus | hospital bed

41 2063 Wireless Communication Technology wireless | ue | station | transmission | channel base station | wireless
communication | user equipment

42 723 Social Networking Platform social | networking | users | online | content social networking | user social |
online social

43 977 Steel Cutting/Coating steel | material | sheet | surface | coating steel sheet | method producing |
cutting edge

44 25 Light Imaging Technology light | image | imaging | lidar | sensor image sensor | light field | light
pulses

45 43 Electronic Connectors connector | electrical | electronic | plug | housing electrical connector | electronic
device | connector includes

46 280 Magnetic Sensor Devices sensor | magnetic | field | sensing | current magnetic field | magnetic sensor |
field sensor

47 890 Organic LED/Solar solar | layer | light | emitting | photovoltaic light emitting | solar cell | emitting
device

48 0 Integrated Circuit Devices circuit | transistor | voltage | integrated | semiconductor integrated circuit | semiconductor
integrated | circuit includes

49 228 3D Printing Technology printing | ink | dimensional | build | printer dimensional printing | imprint
lithonetworky | print head

50 62 Food Composition & Protein protein | food | composition | soy | product soy protein | protein solution |
food product

51 37 Solar Energy Conversion solar | photovoltaic | dc | power | inverter photovoltaic power | dc power |
solar power

52 32 Content Delivery Network cdn | content | delivery | server | origin content delivery | delivery
network | network cdn

53 10004 Pharmaceutical compositions/therapy compositions | invention | acid | cells | present present invention | invention
relates | invention provides

54 95 Web Content Management content | folder | web | collection | item collection folder | content
management | content item

55 8393 Image Processing & Autonomous Vehicles image | vehicle | object | display | camera image data | aerial vehicle |
unmanned aerial

56 1464 Cybersecurity & Threat Detection security | malware | threat | malicious | risk malware detection | security
platform | anomalies threats

57 2954 Medical Devices and Implants distal | catheter | implant | tissue | end distal end | proximal end | devices
methods

58 67 Medical Stimulation Devices stimulation | tissue | ultrasound | nerve | transcutaneous
transcutaneous stimulation |
adipose tissue | electrical

stimulation

59 386 Pharmaceutical Treatment Methods treating | treatment | administering | disease | compositions
methods treating | compositions
methods | pharmaceutically

acceptable

60 41 Fluid Management Systems flow | valve | tubular | pipe | fluid tubular element | tubular section |
flow path

61 234 Electronic Messaging Platform message | notification | messaging | user | email electronic message | agent
performance | contact information

62 175 Drug Delivery Devices needle | drug | dose | syringe | delivery delivery device | drug delivery |
piston rod

63 47 Optical Imaging and Analysis radiation | imaging | ray | detector | optical absorption data | light source |
radiation source

64 576 Semiconductor Device Fabrication semiconductor | layer | substrate | region | gate
semiconductor device |

semiconductor substrate |
dielectric layer

65 1104 Healthcare Information Systems patient | health | medical | healthcare | care health care | medical information |
patient data

66 18 Acoustic-Piezoelectric Devices piezoelectric | acoustic | resonator | idt | surface acoustic wave | piezoelectric plate |
piezoelectric element

67 94 Messaging & Collaboration message | messaging | user | chat | conversation instant messaging | user device |
electronic message

68 62 Stem Cell Research cells | stem | pluripotent | progenitor | differentiation stem cells | pluripotent stem |
progenitor cells

69 145 Gambling Games game | wager | player | gambling | entertainment entertainment game | real world |
hybrid game
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70 31 Internal Combustion Engine piston | valve | damper | crankshaft | engine connecting rod | control valve |
compression ratio

71 108 Media Content Recommendation content | item | media | user | ratings content item | media content |
content based

72 1275 Fluid & Gas Systems gas | fluid | liquid | chamber | air exhaust gas | heat exchanger |
compressed air

73 56 Touch Sensing Technology touch | sensing | capacitive | sensor | capacitance touch sensor | touch sensitive |
touch panel

74 474 Lidar Optical Technology optical | light | lidar | laser | beam light source | light beam | optical
signal

75 43 Surgical Robotics Cluster surgical | instrument | robot | tool | effector surgical instrument | end effector |
surgical tool

76 129 Biosensor Analysis Technology sample | analyte | electrode | test | biosensor working electrode | liquid sample |
flow cell

77 14 Nucleic Acid Biotechnology nucleic | rna | acid | expression | sequence nucleic acid | control elements |
promoter control

78 878 Optical Networking Technology optical | light | laser | waveguide | wavelength optical signal | optical fiber | light
source

79 27 Gaming & Accessory game | player | battle | gaming | server game content | server device |
game program

80 30 Vehicle Tire Monitoring tire | vehicle | sensor | pressure | door tire pressure | pressure sensor |
door lock

81 28 Television Program Guide television | program | guide | interactive | schedule program guide | television
program | interactive television

82 164 Semiconductor Memory Devices memory | semiconductor | layer | cell | bit memory cell | memory device |
semiconductor memory

83 540 Antibody Therapy Research antibodies | antibody | binding | anti | cd antigen binding | binding
fragments | present invention

84 127 Measurement Sensor Technology sensor | measuring | acoustic | measurement | gas gas sensor | data sheet | tank floor

85 61 Fluid Pump Devices fluid | pump | blood | gas | breast breast pump | breathing gas | piezo
air

86 4816 Search Engine Technology search | query | document | results | queries search results | search query |
search engine

87 107 Fluid Analysis Technology sample | fluid | flow | chamber | cartridge flow cell | fluid sample | analytical
instrument

88 23 Image Forming Devices toner | sheet | member | forming | roller image forming | forming apparatus
| main body

89 172 Microfluidic Devices/Systems microfluidic | fluid | sample | droplet | channel microfluidic device | microfluidic
channel | cell processing

90 99 Location Tracking Technology location | mobile | devices | geonetworkic | determination mobile device | location
information | location data

91 55 Serial Bus Protocol bus | serial | clock | signal | bit serial bus | clock signal | digital
data

92 24 Wireless Power Management power | wireless | transmit | consumption | communication power control | transmit power |
power consumption

93 49 Fluid Dispensing Devices dispensing | container | dispenser | outlet | liquid dispensing apparatus | dispensing
device | liquid medicine

94 100 User Interface Design interface | user | ui | networkical | application user interface | networkical user |
computing device

95 45 RNAi Therapy Cluster expression | compositions | gene | agents | treating compositions methods | double
stranded | invention provides

96 1380 Networking & Traffic Management network | packet | traffic | routing | node network traffic | network device |
virtual network

97 850 Telecommunication Services & Devices telephone | voice | caller | message | calls telephone number | calling party |
called party

Table 4.3: Names of the patent clusters according to their ngrams. Cluster labels were
inferred from the top 20 1-grams and top 20 2-grams. The number of connections represents
the number of connections between the patent cluster and all investor communities in the
bipartite network.
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Figure 4.8: Bipartite motif analysis of the investor community-patent cluster net-
work. Top : frequencies of bipartite network motifs found on the investor community-
patent cluster network. Motif frequencies were computed using the bmotif package [272].
Bottom : shape corresponding to each motif ID (taken from [272]). Comparisons with the
motif frequencies shown in [238] do not easily allow for the discrimination between antag-
onistic and mutualistic networks.
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Figure 4.9: Upper-left packed biadjacency matrix of the bipartite investor
community-patent cluster network. Patent clusters and their associated label corre-
spond to the rows of the matrix, investor communities to the columns. The sum of each
row and column (marginals) is computed and shown in the histograms on the top of the ma-
trix for investor communities and on the right of the matrix for patent clusters. The matrix
is then reordered (upper-left packed) by rearranging all rows and all columns by descend-
ing order of degree. Network-level structural metrics (such as nestedness, connectance and
modularity) are computed based on this biadjacency matrix.
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Figure 4.10: Community-ordered biadjacency matrix using the bipartite modu-
larity maximization algorithm. The brown rectangle outlines show the modules re-
trieved by the algorithm. patent cluster tick colors represent the general technological
field of the patent cluster (red corresponds to Health Care-related technologies, green to
Manufacturing-related technologies and blue to Information Technology-related technolo-
gies). Note that patent cluster 48 has degree 0, and thus its allocation to the first module by
the algorithm is purely random.
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Weighting the network by financial amounts

We run the same analysis on a different version of the network, where interactions between
investor communities and patent clusters are not weighted by the number of interactions
but rather by the financing amounts, i.e. the weight of the interaction between community
C.00 and patent cluster 1 corresponds to the sum of the amounts invested by investors
community C.00 in patent cluster 1. The statistical relevance of the metrics (nestedness,
modularity) is shown in Fig. 4.11, andwe see that the results obtained for the networkwhere
interactions are weighted by interaction count hold for the network where interactions
are weighted by amounts invested. This network is significantly nested (zρ = 5.31) and
significantly less modular (zQ = −6.82) than the networks generated by the null model.
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Figure 4.11: Statistical relevance tests for the nestedness and the modularity of the
network weighted by funding amounts. (A) Statistical relevance test for the nestedness
ρm (red vertical line) of the investor community-patent cluster network compared with 500
iterations of the null model (blue histogram) described in the Appendix. We see that our
network is significantly more nested compared to networks generated by the null model, as
was found in the network where only the number of interactions were studied. (B) Statis-
tical relevance test for the modularity Qm (green vertical line) of the investor community-
patent cluster network compared with 500 iterations of the null model (blue histogram).
We see that our network is significantly less modular compared to networks generated by
the null model, as was found in the network where only the number of interactions were
studied.

Figure 4.12 shows the upper-left packed biadjacency matrix of the network weighted by
funding amounts. The top patent clusters remain in roughly the same order, but investor
communities change markedly with community C.05 (late-stage investors) now being the
community with the highest degree.
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Figure 4.12: Upper-left packed biadjacency matrix of the bipartite investor
community-patent cluster network weighted by funding amounts. The sum of each
row and column (marginals) is computed and shown in the histograms on the top of the
matrix for investor communities and on the right of the matrix for patent clusters. The
matrix is then reordered (upper-left packed) by rearranging all rows and all columns by
descending order of degree. 151
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Conclusion

Summary

Chapter 2 presented a novel clustering method for venture capital investors. We com-
puted characteristic distributions for each individual investors through their investment
behavior, and computed the pairwise similarity for all investors. We then detected clus-
ters based on similarity relationships between all investors. We showed that this method
uncovered highly interpretable investor clusters, homogeneous in membership and hetero-
geneous in size. Furthermore, we showed that this approach was robust to feature decima-
tion, as the high-level clusters were similar when computing clustering taking into account
all investors characteristics or simply part of them, suggesting underlying complex invest-
ment patterns. Analysis of these results provided us with insights into the emergence of
new actors of venture capital following events such as the 2008 financial crisis or the 2013
venture frenzy. Furthermore, this clustering approach provides a strong methodological
tool to palliate the sparsity of interaction and heterogeneity of nodes in venture capital
networks, which represents a significant step in studying their large-scale structure.

Chapter 3 presented a method towards the automatic detection of research topics in a
large and complex technical domain. We assessed the validity of our analysis on a corpus
of journal articles and conference proceedings (sources) on bioinspiration and biomimetics,
a highly interdisciplinary subset of the scientific literature. We applied a natural language
processing methodology that automatically extracts research topics directly from the titles
and abstracts of the corpus. We characterized and presented each of the research themes
automatically discovered in each of the sources, and analyzed their intersections between
the different sources. We also examined research trends by studying the evolution of the
number of articles in each of the research themes. This provided a snapshot of the current
state of the bioinspiration and biomimetics literature, and validated the feasability of auto-
matic detection of specific research themes and trends in scientific production. This both
provides a validation of the methodology before applying it to patent corpora and a first
step towards the integration of scientific trends in the study of entrepreneurial dynamics.

Chapter 4 presented a study of the startup-led innovation funding ecosystem. We built
a bipartite network directly linking investors to patents owned by the startups they fund.
We leveraged the approach described in chapter 2 to perform community detection on in-
vestor nodes and use topic modeling to perform clustering on patent nodes, creating a
coarser-grained view of the network which reduces its size and sparsity and increases the
heterogeneity of the nodes. Using structural metrics originally developed to study bipartite
ecological networks, we found this network to be topologically mutualistic, with a hetero-
geneous degree distribution, a high nestedness and a lowmodularity. This specific structure
is due to the prevalence of links between generalist investors and general purpose technolo-
gies, i.e. technologies with a broad spectrum of applications. This network structure implies
non-linear response to crises, with the system weakly affected by negative events affecting
specialist nodes and strongly affected by events targeting generalist nodes.
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In the course of this thesis, we have provided novel insights using a complex net-
works approach to entrepreneurial ecosystems. We developed domain-specific methods
that helped automatically uncover investor communities based on their behaviors and char-
acteristics and automatically extract clusters from large corpora of text documents. By com-
bining these two methods, we then built and characterized the structure of the startup-led
innovation funding network.

In doing so, we have seen that explicitly taking into account the nature of the interac-
tions in the networks allowed us to apply specific methodologies particularly suited for our
research questions : investors characterized through the bipartite structure of the investor-
startup network built using publicly-available data allowed for the extraction of highly
meaningful communities, and the bipartite study of the investor-patent network permitted
the use of specific metrics (such as nestedness and bipartite modularity) that were exten-
sively linked with the robustness of the system in the literature, giving insights into its
potential strengths and vulnerabilities for identifiable classes of actors. Furthermore, the
topologically mutualistic nature of the investor community-patent cluster network places
it within the general framework of mutualistic networks, allowing us to draw from this
rich scientific literature. Careful consideration, however, must be given when doing so due
the difference in the fundamental nature of interactions : conclusions deriving from the
topological architecture can potentially be used in the study of investor-patent networks
whereas those depending on the mutualistic nature of the interactions are not necessarily
applicable.

Further avenues of research

Other types of complex networks

“There is a large element of compromise in mathematical modeling. The majority of inter-
acting systems in the real world are far too complicated to model in their entirety”6. The
systems studied here are no exception to this rule, and the data and network structures
used in this thesis were chosen based on a trade-off between availability, complexity and
estimated added value for the questions studied.

One direct improvement, given the data and hardware used in the course of these works,
could potentially lie in using more elaborate modeling tools in order to reduce the compro-
mises made, notably richer network structures, which could provide additional insights
and alternatives to some of the works presented here. For instance, investor-startup (as
modeled in chapter 2) or investor-patent (as modeled in chapter 4) relationships, rather
than being modeled as bipartite networks, could be represented as multilayer networks or
hypergraphs [77].

Multilayer networks are composed of several representations of the interacting nodes
that exist in parallel, with each representation corresponding to one mode of interaction
between the nodes. This allows for the integration of more information on the specific

6Taken from https://people.maths.bris.ac.uk/~madjl/course_text.pdf
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interactions between two nodes, rather than simply linking two nodes in interaction. Fur-
thermore, it has been found that, when a system is inherentlymultilayer, conclusions drawn
from analysis of the aggregated graph can be misleading [79]. In the case of entrepreneurial
ecosystems, multilayer representations can offer additional insights : take, for instance, the
investment portfolio of a venture capital firm. Investors can fund companies at different
stages of their lifecycle, an interaction network which would be more accurately modeled
as a multilayer graph where each layer corresponds to a different investment stage and in-
tralayer interactions to links between investors and startups if a funding round happened
at the corresponding stage. For certain phenomena such as the estimation of information
flow between investors, metrics computed on this graph, rather than on the aggregated
graph where all stages are considered equal, could thus present significant differences.

Hypergraphs are graphs where a single edge (called a hyperedge) can connect any num-
ber of vertices, rather than simply connecting dyads. In the context of venture capital
networks, as funding rounds often take the form of syndication events, these interactions
are more accurately modeled as hyperedges connecting all investors involved in a fund-
ing round with the target startup rather than creating an edge linking each investor to the
startup for the funding round. This also extends to syndication networks where the n(n−1)

2

dyads created between the n investors for each funding round (as is common in VC syn-
dication networks) are instead more accurately represented as a single hyperedge directly
connecting the n investors. The hypergraph representation is thus able to retain a larger
amount of context, yielding information about all parties involved in an interaction rather
than treating each dyadic interaction independently.

Research on these specific networks, however, is recent and there are still relatively
few algorithms specifically designed for these specific structures. being increasingly devel-
oped [196, 75, 152, 19]. As these classes of graph make less compromises when building the
representation of the underlying nature of the interactions in the venture capital network,
we can hope to gain considerable insight from their use. Their analysis is, as the moment,
fairly challenging due to the relative scarcity of available tools, but the methodological ad-
vances performed by the network science community are rapidly offering relevant tools
and can certainly provide interesting insights.

Temporal dynamics

Compared to, for instance, ecological data, socio-economic datasets such as those used here
often allow for longitudinal investigations of the phenomena studied, due to the usually
more detailed and comprehensive nature of their records. Since most interactions mod-
eled in this thesis are timestamped, we hoped to be able to study their temporal dynamics
in a number of different contexts and representations. Even though some temporal evo-
lutions were detected in our works (e.g. chapter 2), significant structural evolutions in
terms of nestedness or modularity of the investor-patent network presented in chapter 4,
for instance, could not be observed. These network dynamics have been observed in other
socio-economic networks such as micro-blogging data [38] in the form of a self-adapting
user-meme network that underwent a modular-to-nested structural transition. The rea-
son for the absence of structural evolutions, with the measured nestedness and modularity
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remaining relatively stable for the last decade, remains unclear. As the dynamics of the
investor-patent network are rather slow compared to that of micro-blogging, the period
studied might simply not be long enough to observe this transition, which could poten-
tially happen in the future or have already happened in the past. Even though the data
available goes back a number of decades, the exhaustiveness of the Crunchbase dataset be-
comes more and more questionable the further back we go in the past, as Crunchbase itself
(the data provider) was founded in July 2007. Data prior to this date was collated from a
number of sources, but is not as reliable as data following the creation of the company. An-
other candidate explanation is simpler : there is no guarantee that such a transition takes
place in the investor-patent network, which could simply turn out to be structurally stable
and remain in its measured state in the absence of significant perturbations. Studying the
temporal dynamics of the networks linking the various agents in entrepreneurial ecosys-
tems would benefit from further research leveraging data covering a longer timespan.

Collective motion

Popular assessments about herding behaviours or about investment fads and fashions are
widespread, sometimes supported by anecdotal evidence, but observing, measuring or eval-
uating how, and in what respect, the investment strategies of investors coordinate and
evolve through time is still challenging. Public financial markets have, on their part, been an
active topic of study for physicists [74, 276], but the venture ecosystem has up to now only
limitedly been subjected to scientific investigations on these matters. To put it differently,
even though new ventures have been a corner topic of the literature on entrepreneurship
for the past 20 years [65] and although investments strategies and related social processes
play a major role in structuring the dynamics of startup ecosystems, we are still mostly
missing methods and tools that would help us understand the processes affecting or gov-
erning herd behaviour in venture capital networks. This question will benefit from drawing
on knowledge from different disciplines that have already studied similar concepts applied
to different contexts [161], as the study of financial markets has benefited from the insights
of physicists on certain matters [39, 197]. Indeed, this can be thought of as an application of
collective motion [307], one of the higher-profile topics of interdisciplinary research [307].
In the course of this thesis, advances have been made to study herding behaviour in venture
markets, but much remains to be done : our novel clustering method presented in chapter 2
helps deal with the heterogeneity of individual investors and their relatively temporally
scarce activity patterns, but the space (in the mathematical sense of the word) in which to
measure their collective behaviours has – so far – eluded us.

Integrating more data

The choice during this thesis was to perform analyses on data relatively easy to obtain for
all companies and investors, using mainly public fundraising events and basic company
data that is accessible through commercial APIs without rate limits. This allows for the
study of large, representative datasets as the methods can be generalized to any number of
companies and investors as long as they are represented in the dataset. There exist data
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relevant to entrepeneurial dynamics that is much more detailed in nature such as company
valuation during funding rounds or fund performance metrics, but it is difficult to access,
being either much more expensive or private and thus accessible only for a small subset of
companies. There is no doubt, however, that unlocking this data would open the door to a
large number of studies highly valuable to entrepreneurship research, such as for instance
relating node characteristics in the investor-startup or investor-patent network to fund
performance at a large scale, or studying the impact of innovation metrics of a company
(computed through its patent portfolio) on its valuation during funding rounds.

A longitudinal study of the geographically-embedded investor-startup temporal bipar-
tite network appears as a potential candidate avenue of research. Indeed, preliminary ob-
servations have shown that even though the majority of investments take place locally,
long-distance investing remains a sizeable portion of the total number of investments. This
finding suggests a potentially richer mechanism than the common short-distance invest-
ment pattern and pleads for direct investigations of the circumstances under which in-
vestors decide to venture further away, in keeping with [275].

The examples given above remain strongly entrepreneurship-related, leveraging data
that directly concerns actors directly interacting together in entrepreneurial ecosystems
such startups and investors. One major avenue of research, however, lies in the integra-
tion of environmental characteristics in future studies of entrepreneurship. Indeed, as dis-
cussed in this thesis and in a number of research works [78], innovation does not happen
in a vacuum, and its actors are strongly influenced by the environment they are involved
with. Events such as the COVID-19 pandemic, public policies, or trends and dynamics in
academia all have significant impacts on entrepreneurial dynamics. Here, we have taken a
step towards expanding the system-environment boundary of entrepreneurial ecosystems
through the automatic characterization of the evolution of trends in academia, with the
distant goal being the study of their impact on startup-investor networks. Much, however,
remains to be done to integrate the impact of these trends – amongst many others – on
entrepreneurial ecosystems.
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Appendix A

The Crunchbase dataset

Chapters 2 and 4 are based on analyses using the Crunchbase dataset, which has recently
become a standard in data-driven studies of entrepreneurship [85]. In the context of their
API program, Crunchbase offers the possibility of directly downloading the entirety of their
data. The data is continually updated, both for new events pertaining to entrepreneurship
(e.g. new organizations being founded, organizations raising funds, individuals moving
from one organization to another, new funds being created). Furthermore, as Crunchbase
is a US-based organization, its data can potentially present biases in terms of exhaustivity
depending on the region covered. North American data, for instance, might be more readily
available due to the geographical proximity and shared English language between the data
supplier and the public communications and databases they use to build the dataset. As the
works presented here span several years, the underlying Crunchbase data can vary from
one chapter to another, due to the different dates of extraction.

The strength and weaknesses of existing commercial entrepreneurial databases have
been studied [249] with VentureSource, Pitchbook and Crunchbase emerging as the best
data providers in terms of coverage and accuracy in key dimensions related to company, fi-
nancing and founders data. How the date of extraction impacts the contents of the extracted
dataset, however, has –to our knowledge– not been studied. Here, after briefly presenting
the contents of the Crunchbase database in section A.1, section A.2 shows comparisons of
extracts of the database performed at different points in time in order to better understand
how the database itself evolved through the course of this thesis.

A.1 Contents of the dataset

Figure A.1 shows the relationships between the different datasets supplied in the Crunch-
base database used in this thesis. People work in Startups that raise funds from Investors
through Funding Rounds. Detailed information is provided for each of these datasets de-
scribing the structure or event, allowing us to link the actors in the entrepreneurial ecosys-
tems (for instance, investors can be linked with a startup through the funding round target-
ing the startup in which the investors have participated). To give an order of magnitude, the

161



Figure A.1: Structure and excerpts of the fields of the Crunchbase datasets.

Crunchbase database extracted on January the 8th, 2024 contains 3 274 470 entries in the
organizations table, 1 830 126 in the people table, 464 846 in the funding rounds table and
270 712 in the investors table. Out of the 3 274 470 organizations, roughly 10% (315 091)
have raised funds.

Using this database presents a significant difference compared to, for instance, ecolog-
ical data that is specifically gathered to answer a specific research question and where all
data is considered relevant. Here, our database covers a wide array of entrepreneurship-
related fields that do not necessarily directly relate to our studies. Relevant subsets of the
data present in the database must thus be selected to answer specific research questions.

Table A.1 shows the list of fields in each dataset and their associated data type.

A.2 Temporal evolution of the database

To better understand these differences, we will present here several aspects of the Crunch-
base dataset at the continent level extracted at 5 different points in time. The matching be-
tween countries and continents was performed automatically using the pycountry Python
library, resulting in 6 continents : Oceania (OC), South America (SA), North America (NA),
Europe (EU), Asia (AS) and Africa (AF). The datasets were extracted on the following dates :
dataset 2019 extracted on October 28th, 2019 (28-10-2019), dataset 2020 extracted on Octo-
ber 7th, 2020 (07-10-2020), dataset 2021 extracted on October 28th, 2021 (28-10-2021), dataset
2023 extracted on February 14th, 2023 (14-02-2023) and dataset 2024 extracted on January
the 8th, 2024 (08-01-2024).

A.2.1 New companies

Figure A.2 shows the temporal evolution of the number of founded companies for each of
the continents for the various extracted datasets. Several different patterns can be seen in
this figure.

First, we see that there is a first peak in the number of founded companies around 2000
observed for all continents except Africa, followed by a small decrease until 2002 and then
an increase until the peak of new companies is reached in 2015. This property is shared
between all datasets.

Second, we see that the number of new companies varies strongly between the different
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Organizations dtype People dtype Funding Rounds dtype Investors dtype
uuid string uuid string uuid string uuid string
name string name string name string name string
type string type string type string type string

permalink string permalink string permalink string permalink string
cb_url string cb_url string cb_url string cb_url string
rank int64 rank int64 rank float64 rank int64

created_at string created_at string created_at string created_at string
updated_at string updated_at string updated_at string updated_at string
legal_name string first_name string country_code string roles string

roles string last_name string state_code string domain string
domain string gender string region string country_code string

homepage_url string country_code string city string state_code string
country_code string state_code string investment_type string region string
state_code string region string announced_on string city string
region string city string raised_amount_usd float64 investor_types string
city string featured_job_organization_uuid string raised_amount float64 investment_count int64

address string featured_job_organization_name string raised_amount_currency_code string total_funding_usd float64
postal_code float64 featured_job_title string post_money_valuation_usd float64 total_funding float64

status string facebook_url string post_money_valuation float64 total_funding_currency_code float64
short_description string linkedin_url string post_money_valuation_currency_code string founded_on string
category_list string twitter_url string investor_count float64 closed_on float64

category_groups_list string logo_url string org_uuid string facebook_url string
num_funding_rounds float64 org_name string linkedin_url string
total_funding_usd float64 lead_investor_uuids string twitter_url string
total_funding float64 investors string logo_url string

total_funding_currency_code string org_permalink string
founded_on string

last_funding_on string
closed_on float64

employee_count string
email string
phone string

facebook_url string
linkedin_url string
twitter_url string
logo_url string
alias1 float64
alias2 float64
alias3 float64

primary_role string
num_exits float64

Table A.1: Descriptive table of the data supplied in the Crunchbase dataset. The
list of fields and their associated type (string, float or integer) is presented for each dataset
(Organizations, People, Funding Rounds, Investors).
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Figure A.2: Temporal evolution of the number of founded companies in each of the
continents. We count, for each year and each continent, the total number of companies
founded in the year.
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ecosystems, with North America clearly housing the highest number of company creation,
followed by Europe and Asia. Significantly less companies are being founded each year in
Oceania, South America and Africa.

Third, we see a strong a priori consolidation of the data on newly-founded companies :
if we compare the 2019 and 2024 datasets, we see that the number of new companies is
significantly higher for the 2024 dataset no matter the year and region. This phenomenon
also strongly depends on the geographical location : the relative difference in the temporal
series between dataset 2020 and dataset 2021, for instance, is much bigger for the Euro-
pean and Asian continents than for the others, suggesting a strong effort by Crunchbase in
improving their coverage of these specific regions between the two extractions.

Last, we see that there is a strong reporting lag in terms of new company creation. If
we focus, for instance, on the number of company creations in North America in 2020, we
see a stark contrast between the 2021 dataset and the 2023 dataset even though both were
extracted long after the end of the year in question.

A.2.2 New investors

Figure A.3 shows the temporal evolution of the number of new investors for each of the
continents for the various extracted datasets. An investor is considered new for a given year
if their first-ever investment in the dataset took place during that year, regardless of their
geographical location (if investor A performed their first investment in North America in
2005 and their first investment in Europe in 2007, it will be considered a new investor for
the year 2005 in North America and will not count for Europe).

Once again, we see that North America is leading in terms of number of new investors
per year, followed by Asia and Europe and then distantly by the other 3 regions. We also
see a stark increase in the number of new investors across all regions in 2021 and 2022,
much higher than all previous years in all regions except for Asia.

We see a massive difference between Asia and other regions : the number of new in-
vestors for all years has drastically increased between the 2019 and 2020 datasets, and be-
tween the 2020 and 2021 datasets. For other regions, there is relatively little difference be-
tween the various datasets except for the year of extraction. This differs significantly from
the comparison across datasets for new organizations. This difference could potentially
be a consequence of the fact that investments (and thus investors) are public information
that are typically widely communicated, and are thus well-referenced on databases such as
Crunchbase. New companies, on the other hand, often do not exist on the databases until
they reach certain milestones (such as raising funds) that can help them be referenced. The
drastic improvement in coverage of the Asian continent between the 2020 and 2021 dataset
is in line with the one seen on new companies.
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Figure A.3: Temporal evolution of the total number of new investors in each of the
continents. We count, for each year and each continent, the number of investors with
headquarters in the continent that perform their first-ever investment.
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Figure A.4: Temporal evolution of the total number of funding rounds in each of
the continents. We count, for each year and each continent, the number of venture capital
funding rounds targeting companies with headquarters in the continent, regardless of the
stage of investment.
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A.2.3 Number of investments

Figure A.4 shows the temporal evolution of the total number of funding rounds in each
continent, where a funding round is considered as taking place in a continent if the company
raising funds has headquarters in the continent.

As previously seen, North America leads in terms of number of funding rounds, fol-
lowed by Asia and Europe and once again distantly by the 3 other regions. The difference
between the various datasets is larger than for new investors, but still relatively small for
most regions except Asia. Asia, once again, sees a significant increase in investments over
time between the 2019, 2020 and 2021 datasets.

The maximum number of funding rounds is reached in 2021 for all continents. We also
see a lag in reporting of the funding rounds in the various regions, as evidenced for instance
with the year 2019 for all datasets.

A.2.4 Stages of investment

Figure A.5 shows the temporal evolution of the number of Pre-seed rounds in each conti-
nent for the various datasets, computed by counting for each year the number of rounds
labeled Pre-seed in the Crunchbase dataset that target a company with headquarters in the
continents.

North America leads in number of Pre-seed rounds, followed by Europe, Asia, South
America, Africa and Oceania. The maximum is reached after 2020 for all continents, with
almost all Pre-seed rounds raised after 2010. We also see that there is a significant increase
in the number of Pre-seed rounds between the various datasets for all years, potentially
suggesting an a posteriori re-classification of rounds as Pre-seed.

Figure A.6 shows the temporal evolution of the number of Seed funding rounds in each
continent.

NorthAmerica leads in terms of number of Seed funding rounds over the years, followed
by Europe and Asia, and then distantly by South America, Africa and Oceania.

We observe relatively little difference between the various datasets except for Asia,
which once again shows a high level of a posteriori consolidation of the funding data. The re-
porting lag is present but globally low, with for instance an increase in coverage of roughly
20% for year 2018 in North America when comparing the 2019 and 2024 datasets.

Figure A.7 shows the temporal evolution of the number of Series A funding rounds in
each continent.

North America leads in terms of number of Series A funding rounds over the years,
followed by Asia, Europe, South America, Oceania and Africa.

There is even less difference between the various datasets compared to Seed funding
rounds, except once again for the Asian continent which shows a very strong increase in
number of funding rounds between the 2019, 2020 and 2021 datasets for all years starting
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Figure A.5: Temporal evolution of the number of Pre-seed funding rounds in each
of the continents. We count, for each year and each continent, the number of Pre-seed
funding rounds targeting companies with headquarters in the continent.
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Figure A.6: Temporal evolution of the number of Seed funding rounds in each of
the continents. We count, for each year and each continent, the number of Seed funding
rounds targeting companies with headquarters in the continent.
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Figure A.7: Temporal evolution of the number of Series A funding rounds in each
of the continents. We count, for each year and each continent, the number of Series A
funding rounds targeting companies with headquarters in the continent.
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Figure A.8: Temporal evolution of the number of Series B funding rounds in each
of the continents. We count, for each year and each continent, the number of Series B
funding rounds targeting companies with headquarters in the continent.

from 2010 onwards. The high coherence between datasets suggests that information on
Series A funding is generally reliable, with most data being correctly referenced as it is
communicated. This can be due to several reasons : companies that raise Series A rounds
have usually previously raised funds and thus are more likely to already be referenced in
Crunchbase, making tracking their company news easier. Furthermore, news concerning
Series A rounds tend to be published inmore outlets than Seed rounds, reachingwider audi-
ences and thus increasing the likelihood of the information being captured in Crunchbase,
regardless of the previous status of the company in the database.

Another observation of note is that, at least in North America, Asia and Europe, Series
A funding rounds slowed down in 2008 and 2009 compared to the previous years, a pattern
that not observed for Seed funding rounds that grew monotonously until the mid-2010s.
This decrease in activity could be a consequence of the 2008 financial crisis that had a
specific negative impact on this funding stage.

Figure A.8 shows the temporal evolution of the number of Series B funding rounds in
each continent.

North America leads in number of Series B funding rounds, followed closely by Asia and
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Figure A.9: Temporal evolution of the number of Angel funding rounds in each of
the continents. We count, for each year and each continent, the number of Angel funding
rounds targeting companies with headquarters in the continent.

then more distantly by Europe, with South America, Oceania and Africa-based companies
raising few Series B funding. Apart fromAsia where a strong improvement in data coverage
is yet again observed, this effect is very weak in the other geographical regions.

Similarly to our observations for Series A rounds, we see a decrease in Series B activity
after 2007 for Asia and North America. Due to the relative sparsity of Series B rounds
around this period in all continents except North America, however, this observation could
simply result from statistical fluctuations.

Figure A.9 shows the temporal evolution of the number of angel funding rounds in each
continent.

Asia leads in terms of number of angel rounds, followed distantly by North America
and Europe, and then by South America, Oceania and Africa. The increase between various
datasets is particularly important in the Asian continent for angel rounds, with a roughly 6-
fold increase in 2015, for instance, between the 2019 and 2021 datasets. For the 2024 dataset,
the maximum in terms of number of angel rounds is observed in 2015 for Asia, Oceania,
North America and Europe, in 2021 for South America and in 2019 for Africa.
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Figure A.10: Temporal evolution of the number of private equity funding rounds
in each of the continents. We count, for each year and each continent, the number of
private equity funding rounds targeting companies with headquarters in the continent.
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Figure A.11: Temporal evolution of the mean number of investors involved in each
funding round in each of the continents. We count, for each year and each continent,
the number of investors involved in each funding round targeting companies with head-
quarters in the continent and compute the mean of the number of investors.

Figure A.10 shows the temporal evolution of the number of private equity funding
rounds in each continent.

North America leads in terms of number of private equity rounds, followed by Europe,
Asia, Africa, South America and Oceania. The increase in coverage between the various
datasets is significant and seems roughly similar in proportion for all regions, contrary to
other funding rounds where Asia experienced significant differences.

A.2.5 Mean syndication size

Figure A.11 shows the temporal evolution of the mean numbers of investors involved in
each funding round for each continent. It is computed by counting, for each dataset, the
number of investors involved in each funding round targeting companieswith headquarters
in the continent and averaging over the number of investors.

The results seem difficult to analyze in the smaller ecosystems (Oceania, South America
and Africa) for early years due to the strong fluctuations displayed. The mean number of
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Figure A.12: Temporal evolution of the median amount raised in each of the con-
tinents. We count, for each year and each continent, the amount raised in each funding
round targeting companies with headquarters in the continent and compute the median of
all amounts for the year. We only represent years for which the median value was com-
puted on at least 10 funding rounds.

investors is globally higher in North America compared to other ecosystems, followed by
Asia and Europe and then by Oceania, South America and Africa. We see that the maximum
mean number of investors is reached after 20020 for all continents, but shows little differ-
ence between the various datasets. One possible explanation could be that, even though
a significant amount of funding rounds is added between the different dataset downloads,
the information on the composition of the investor syndicates is relatively accurate, thus
yielding a stable result in the mean number of investors.

A.2.6 Median amount raised

Figure A.12 shows the temporal evolution of the median amount of fund raised for each
continent. It is computed by measuring, for each dataset, the number of investors involved
in each funding round targeting companies with headquarters in the continent and taking
the median over all amounts raised. We opted to use the median as funding round amounts
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span several orders of magnitude, which leads to strongly fluctuating mean values.

The median amount raised is generally higher in North America, followed by Asia, Eu-
rope, Oceania, South America and Africa. Two separate trends are observed : first, the
minimum median amount is reached around 2013 for all regions and all datasets except
Africa even though the total number of funding rounds grows throughout the period of
study, suggesting a growing share of early-stage funding compared to the total number
of funding rounds. Second, when comparing newer datasets (such as the 2023 or 2024
datasets) to older datasets (such as 2019 or 2020), the median amount tends to be lower (see
for instance year 2018 in Asia, North America or Europe), which suggests that the fund-
ing rounds added between the two datasets are rounds where lower amounts were raised,
and thus most likely early-stage funding rounds. This is coherent with the observations
presented for early-stage funding (Figs. A.5 and A.6) that were more subject to a posteriori
consolidation of the data coverage.

A.3 General conclusions on the dataset

We have studied several properties of the Crunchbase dataset, giving us a better view of
both its strengths and weaknesses.

First, we see that the dataset is large, with thousands of events (such as funding rounds
or company creations) taking place each year in the various continents. These events,
however, are unevenly geographically spread with the vast majority taking place in North
America, Asia and Europe.

Second, we see that there are stark contrasts in the representation of the different events
over time : there can be significant differences in the number of companies in the dataset
for a given year depending on when the dataset was accessed, no matter the year. Funding
rounds, on the other hand, tend to be less prone to this uncertainty, with the number of
funding rounds for a given year showing small variations regardless of when the data was
extracted. This holds for all continents except Asia where coverage before 2021 was much
smaller.

Third, there is a significant lag in the reporting of the data, meaning that informa-
tion temporally close to the extraction date tends to be more uncertain across regions and
datasets. Quantifying the extent of this reporting lag is difficult, as it depends on a number
of factors such as the type of data and the geographical region. For funding data, there
seems to be relatively little new information added 2 years after the date of extraction (e.g.
looking at year 2018 on Fig. A.4 in North America, we see that many new funding rounds
are added in the 2020 dataset and 2021 dataset, with comparatively few funding rounds
added in the 2023 and 2024 datasets).

Fourth, there is a massive difference in funding round data coverage raised by Asian
companies between the 2019 and 2020 datasets and other datasets, suggesting that results
pertaining to Asian ecosystems based on data extracted before 2021 could be impacted by
funding rounds being underrepresented.
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When working with real-world data, it is important, when feasible, to investigate its
limitations in order to understand the associated methodological constraints. No dataset is
perfect and the one used here is, as we have shown, no exception to the rule, in spite of
its being constantly updated and consolidated to increase the quality of its coverage. Such
analyses do not necessarily invalidate existing results, but rather provide us with context
for accurate analysis.
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