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Abstract
In an era dominated by AI, its opaque decision-making –known as the "black box" problem–
poses significant challenges, especially in critical areas like biomedical imaging where accu-
racy and trust are crucial. Our research focuses on enhancing AI interpretability in biomed-
ical applications. We have developed a framework for analyzing biomedical images that
quantifies phagocytosis in neurodegenerative diseases using time-lapse phase-contrast video
microscopy. Traditional methods often struggle with rapid cellular interactions and dis-
tinguishing cells from backgrounds, critical for studying conditions like frontotemporal de-
mentia (FTD). Our scalable, real-time framework features an explainable cell segmentation
module that simplifies deep learning algorithms, enhances interpretability, and maintains
high performance by incorporating visual explanations and by model simplification. We also
address issues in visual generative models, such as hallucinations in computational pathol-
ogy, by using a unique encoder for Hematoxylin and Eosin staining coupled with multiple
decoders. This method improves the accuracy and reliability of synthetic stain generation,
employing innovative loss functions and regularization techniques that enhance performance
and enable precise synthetic stains crucial for pathological analysis. Our methodologies have
been validated against several public benchmarks, showing top-tier performance. Notably,
our framework distinguished between mutant and control microglial cells in FTD, provid-
ing new biological insights into this unproven phenomenon. Additionally, we introduced
a cloud-based system that integrates complex models and provides real-time feedback, fa-
cilitating broader adoption and iterative improvements through pathologist insights. The
release of novel datasets, including video microscopy on microglial cell phagocytosis and a
virtual staining dataset related to pediatric Crohn’s disease, along with all source codes,
underscores our commitment to transparent open scientific collaboration and advancement.
Our research highlights the importance of interpretability in AI, advocating for technology
that integrates seamlessly with user needs and ethical standards in healthcare. Enhanced
interpretability allows researchers to better understand data and improve tool performance.
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Résumé

À une époque dominée par l’IA, son processus décisionnel opaque, connu sous le nom de
problème de la "boîte noire", pose des défis significatifs, particulièrement dans des domaines
critiques comme l’imagerie biomédicale où la précision et la confiance sont essentielles. Notre
recherche se concentre sur l’amélioration de l’interprétabilité de l’IA dans les applications
biomédicales. Nous avons développé un cadre pour l’analyse d’images biomédicales qui
quantifie la phagocytose dans les maladies neurodégénératives à l’aide de la microscopie
vidéo à contraste de phase en accéléré. Les méthodes traditionnelles ont souvent du mal
avec les interactions cellulaires rapides et la distinction des cellules par rapport aux arrière-
plans, essentielles pour étudier des conditions telles que la démence frontotemporale (DFT).
Notre cadre évolutif et en temps réel comprend un module de segmentation cellulaire ex-
plicable qui simplifie les algorithmes d’apprentissage profond, améliore l’interprétabilité et
maintient des performances élevées en incorporant des explications visuelles et par simplifi-
cations. Nous abordons également les problèmes dans les modèles génératifs visuels, tels que
les hallucinations en pathologie computationnelle, en utilisant un encodeur unique pour la
coloration Hématoxyline et Éosine couplé avec plusieurs décodeurs. Cette méthode améliore
la précision et la fiabilité de la génération de coloration synthétique, utilisant des fonctions
de perte innovantes et des techniques de régularisation qui renforcent les performances et
permettent des colorations synthétiques précises cruciales pour l’analyse pathologique. Nos
méthodologies ont été validées contre plusieurs benchmarks publics, montrant des perfor-
mances de premier ordre. Notamment, notre cadre a distingué entre les cellules microgliales
mutantes et contrôles dans la DFT, fournissant de nouveaux aperçus biologiques sur ce
phénomène non prouvé. De plus, nous avons introduit un système basé sur le cloud qui
intègre des modèles complexes et fournit des retours en temps réel, facilitant une adoption
plus large et des améliorations itératives grâce aux insights des pathologistes. La publica-
tion de nouveaux ensembles de données, incluant la microscopie vidéo sur la phagocytose
des cellules microgliales et un ensemble de données de coloration virtuelle lié à la maladie
de Crohn pédiatrique, ainsi que tous les codes sources, souligne notre engagement envers
la collaboration scientifique ouverte et transparente et l’avancement. Notre recherche met
en évidence l’importance de l’interprétabilité dans l’IA, plaidant pour une technologie qui
s’intègre de manière transparente avec les besoins des utilisateurs et les normes éthiques
dans les soins de santé. Une interprétabilité améliorée permet aux chercheurs de mieux
comprendre les données et d’améliorer les performances des outils.
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rate and reliable results for researchers working with microglial cell phagocy-
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2.2 Detailed Architectures of Deep Learning (DL) for Cell Instance
Segmentation. This figure provides a comprehensive view of the architec-
tures utilized in DL for precise cell instance segmentation. (a) It displays
the segmentation module’s architecture during the training phase, featur-
ing the application of custom loss functions, both global and local, during
backpropagation in LSTM modules to refine learning outcomes. (b) It out-
lines the detailed inference phase that incorporates U-Net-like architectures
with LSTM modules, along with a watershed algorithm, to achieve detailed
instance-level cell segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Detailed Architectures of Interpretable Deep Learning (IDL) for
Cell Instance Segmentation. This figure provides a comprehensive view
of the architectures utilized in IDL for precise cell instance segmentation.It
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(i) streamlined U-Net-like models linked to a visualization module for real-
time analysis at each time point, (ii) a time coherence module (TTCM) that
efficiently extracts cell seeds, and (iii) a watershed module that integrates all
signals for comprehensive cell separation, enhancing the interpretability and
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2.4 Quantitative performance evaluation of the CECC module, DL/IDL
cell instance segmentation module. (a) The performance and (b) exe-
cution time cost of registration methods ECC, CECC (n=1, 3, 5), and SIFT
were evaluated on 1000 randomly shifted frames (x/y±400px shift for 20482px
frame). CECC (n=5) achieved the best results with an x/y mean error of
0.008±0.004, outperforming SIFT. Our cell detection approach was evaluated
against Cellpose and Stardist on a 165-image test set, using a 5-fold cross-
validation/testing approach to compute (c) mean Intersection over Union
(mIoU): sum of IoU of the predicted cell masks divided by the ground-truth
cell count; (d) the mean execution time cost per image; (e) number of pa-
rameters for DL and IDL approaches. . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Quantitative performance evaluation of the DL/IDL cell instance
segmentation module and the phagocytic activity of microglial cells
in FTD context. (a) the accuracy (0.5 ≥ IoU ≥ 1) of our best performing
approach ’Att-Unet(XAI)’ were computed. Additionally, (b) the amount of
TDP-43 aggregates internalized per cell; (c) the number of cells in the assay:
cell count; (d) the size of the cells: mean cell area and (e) the amount of
TDP-43 internalized per cell surface unit. Statistical tests were conducted
using the Mann-Whitney-Wilcoxon test with ns (p-value ≥ 0.05), ** (p-value
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2.6 Instance-level Cell Segmentation Evaluation: Through qualitative anal-
ysis, the Attention-UNet(XAI) model demonstrates superior performance in
comparison to Cellpose and Stardist, especially in addressing the complex
shapes of cells. This underscores our model’s robust adaptability to the var-
ied morphologies of cells, positioning it as a viable contender against current
leading methods. However, it is important to note challenges persist in sce-
narios where cells form dense clusters or remain in suspension, such as the
depicted white cell cluster at the bottom right. In these cases, our model,
along with others, faces difficulties in precise segmentation, indicating the ne-
cessity for ongoing enhancements to tackle such intricate conditions effectively. 36

2.7 Progressive Learning Visualization in AttUNet Deep Learning Model
Training. This figure qualitatively illustrates the key stages in the learning
process of our UNet-based deep learning model, as depicted through mean
feature map heatmaps. These heatmaps are crucial in demonstrating the
model’s evolving focus throughout its training. Initially, at the 10 iteration
mark, the model begins to recognize cell textures, effectively distinguishing
cells from the background. By 300 iterations, it further refines its capabilities,
honing in on intracellular components and delineating cell boundaries and
nuclei. At 800 iterations, the model displays advanced recognition abilities,
identifying cells with partial visibility and precisely differentiating between
individual cells. These visualizations play a vital role in building trust with
neuroscientists by providing transparent insights (refer to Section 2.3.1) into
the model’s dynamic learning process. . . . . . . . . . . . . . . . . . . . . . 39
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2.8 Comparative Visualization of Features Learned by U-Net and Attention-
U-Net. This figure illustrates the distinct feature recognition capabilities
of U-Net versus Attention-U-Net models. The U-Net model predominantly
focuses on background features, as these textures are simpler to model com-
pared to cellular textures. This focus, however, results in a higher incidence
of false negatives due to inadequate cellular detail capture. In contrast, the
Attention-U-Net employs an attention mechanism that prioritizes the tex-
ture of cells, leading to significantly fewer false negatives. This visualization
highlights the differences in how each model processes and prioritizes im-
age features, demonstrating the enhanced specificity of Attention-U-Net in
identifying critical biological structures. . . . . . . . . . . . . . . . . . . . . 41

2.9 Evaluation of Automated Deep Learning Model Optimization Us-
ing Feature Maps: Balancing Feature Map Signal Quality and Ex-
ecution Efficiency in Unet Models. This figure delineates the compar-
ative analysis of several quantitative metrics across Unet models, including
the Mean Squared Error (MSE) of feature map signal quality relative to a
30M-parameter reference Unet model, execution time (in seconds), and GPU
memory utilization (in bytes). A composite score is derived using the for-
mula: α × time + β × memory + γ × MSE, where all metrics are min-max
normalized to range between 0 and 1. For metrics where a lower value signifies
superior performance, the normalized value is adjusted to 1 − metric value.
The coefficients used are α = 0.5, β = 0, and γ = 0.5. The red point on
the graph identifies the optimal trade-off between execution time and feature
map quality, indicating the most efficient parameter settings for the Unet
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2.10 Comparative Sensitivity Assessment of AttUnet(XAI) Across Vary-
ing Cell Quantities per Condition. This figure illustrates the outcomes
of two distinct test setups aimed at evaluating the performance of the At-
tUnet(XAI) model. On the top, results from our sensitivity analysis frame-
work are presented, where only three images per cell count were utilized for
training, validation, and testing, significantly minimizing data requirements.
On the bottom, the graph displays the model’s performance using 100 test
images per condition across 23 conditions, involving a total of 2300 images
with varying cell counts. The Mean Squared Error (MSE), where lower val-
ues indicate better performance, was calculated between the model-generated
probability maps and the corresponding ground truth binary masks. The top-
5 performing models provide practical guidelines, such as the prioritization of
annotating images with cell counts between 28 and 38 and a foreground-to-
background ratio of 31% to 47%. These results underscore the effectiveness of
our sensitivity assessment framework in pinpointing key image characteristics
that influence model performance, thereby guiding annotators towards more
strategic and efficient processes. This approach facilitates a detailed investi-
gation of the model’s behavior under controlled conditions without significant
time or computational burdens. Training the 13 distinct cell count models
required less than 30 minutes in total on a single 8GB GPU (NVIDIA RTX
2080). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Efficient data loading and normalization pipeline. This pipeline in-
cludes: (a) A detailed data loading and normalization module which extracts
two channels (aggregates and cells) directly from the microscope’s raw data
and applies both local and global normalization to standardize the data; (b)
A High Performance Computing (HPC) cluster compatible scheme that effi-
ciently scales to accommodate big datasets; (c) A quantitative comparison of
our single-CPU/multi-CPU method against the GPU-accelerated Carl Zeiss
ZEN software for processing a 76GB CZI file. To ensure a direct compari-
son, the ’Frame input & output’ times encompass both reading and writing
operations across all systems. An analysis of time allocation shows that our
method assigns 25% for reading and 75% for saving on SSDs, while on HDDs,
it allocates 76.6% for reading and 23.3% for saving. . . . . . . . . . . . . . . 46

2.12 Detailed Data Quality Workflow: (a) CECC Registration Approach:
Detailed description of the registration approach based on CECC. (b) Data
Quality Check Modules: This includes (i) a CECC-based scene shift cor-
rection module for adjusting scene shifts using CECC, (ii) a blurry frames
detection module for identifying and tagging blurry frames, and (iii) function-
ality for saving registration information and the rejected blurry frames. (c)
Overview of the Aggregates Quantification Workflow: Combines data quality
checks with segmentation and matching procedures to ensure accuracy and
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2.13 Scene cell instance segmentation and tracking. The scene instance-
level segmentation module leverages either the DL module (Fig.2.2.b) or the
IDL module (Fig.2.3) to perform scene cell instance segmentation, quantifying
cell count, area, and coordinates for each frame. This is further supported
by the scene shift correction module (Fig.2.12.b) that adjusts cell centroids,
essential for accurate tracking. A tracking algorithm, such as the Bayesian
Tracker, is then applied to these corrected features to calculate cell speed and
total movement. The integration of these modules allows for the results to be
compiled and saved in an open-source CSV format, facilitating data sharing
and analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.14 Comparative Analysis of Phagocytosis Metrics Over Time for WT
and FTD Groups: This figure offers a detailed comparison of phagocytosis-
related metrics between WT and FTD groups, capturing their dynamic differ-
ences over time. It includes a series of panels illustrating various parameters:
(a) the aggregate area consumed by cells, (b) cell count, (c) mean cell area,
(d) cell surface area consumption, (e) total cell movement, and (f) cell speed.
Through this comparative analysis, the figure facilitates a comprehensive un-
derstanding of the distinct phagocytic behaviors characterizing each group. 55

2.15 Additional quantitative results of FTD-mutant versus WT microglial
cells: On the left, the quantification of the cells’ mean speed and on the
right, the quantification of total cells movement are presented. Statistical
analysis was conducted using the Mann–Whitney–Wilcoxon test, where a
non-significant result is indicated by a p-value ≥ 0.05 (ns). . . . . . . . . . . 56

3.1 Visual-XAI-enhanced trustworthy virtual staining approach. End-
to-end virtual staining approach generating synthetic IHC stains by using a
single H&E encoder and multiple stain decoders. Quality check (QC) protocol
based on self-inspection features uses trained discriminators to consolidate
trust in the generated synthetic stains, by ensuring the alignment of the new
H&E slides with the trained distribution and by validating the quality of
the generated stained slides. Integration of cloud-based computing enhances
accessibility and adoption by enabling pathologists to efficiently process large
datasets from anywhere, while end-to-end system’s algorithms are handled in
a back-end containerized environment. . . . . . . . . . . . . . . . . . . . . . 61

3.2 Multi-Virtual Staining Outcomes Associated with Crohn’s Disease.
This figure illustrates the high-resolution WSIs of diverse synthetic stains,
generated through the application of LIHC and LH&E loss functions within
an unpaired framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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3.3 Post-Processing Effects on Stitching Artifacts and Objective evalu-
ation in Virtually Stained Slides. (a) Illustrates the enhanced outcomes
achieved through various overlap strategies employing a Hamming window,
highlighting the improved image quality and diminished artifacts. The op-
timal performance-to-time execution ratio is realized at a 60% overlap. (b)
Demonstrates typical stitching artifacts at tile borders with overlaps of 0%,
30%, and 60%, indicated by red arrows, which exemplify the abrupt color
transitions and errors near the boundaries. This figure elucidates the com-
parative analysis across performance metrics (MSE, PSNR, SSIM) in both
paired and unpaired settings, underscoring the efficacy of the post-processing
strategy in elevating the overall quality and promoting the integration of vir-
tual staining technologies within clinical practices. For reproducibility details,
refer to Section B.2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Multi-Virtual Staining Results on Kidney Slide No. 5 from the AH-
NIR Dataset. This figure demonstrates the high-quality synthetic stains
produced by our methodology, showcasing the effectiveness of our approach. 76

3.5 An Overview of the Training Mechanism for Paired Stain Synthe-
sis and Loss Function Computation in H&E ↔ Stain i Conversion.
A. This part delineates the initial training cycle, initiating with a genuine
paired H&E image XH&E , synthesizing a corresponding image in stain i de-
noted as Ŷi, and subsequently reconstructing the original H&E image X̂H&E .
This reconstruction serves to facilitate the computation of the loss function
components, as elaborated in Section 3.4.1. B. This section outlines the sec-
ond training cycle, commencing with a genuine stain i image Xi, generating
a corresponding H&E image ŶH&E , and concluding with the reconstructed
stain i image X̂i. The use of the staining mask Mi (where M̄i denotes the
complementary mask of Mi) is pivotal in computing various elements of the
loss function, further detailed in Section 3.4.1. Each panel illustrates the
model’s enhancements aimed at increasing the precision and consistency of
stain synthesis and discrimination within paired training scenarios. . . . . . 79
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3.6 An Overview of the Training Mechanism for Unpaired Stain Syn-
thesis and Loss Function Computation in H&E ↔ Stain i Conver-
sion. A. This part elucidates the initial training cycle, commencing with
an authentic H&E image XH&E , proceeding to generate a synthetic stain i

image Ŷi, and culminating with the reconstructed H&E image X̂H&E . This
progression is essential for the computation of the loss function components.
B. This part depicts the subsequent training cycle, initiating with a genuine
stain i image Xi, leading to the creation of a synthetic H&E image ŶH&E ,
and ending with the reconstructed stain i image X̂i, integrating the stain-
ing mask Mi (with M̄i representing the complementary mask of Mi). This
setup facilitates the computation of various elements of the loss function,
as detailed in Section 3.4.1. Each panel underscores the model’s strategic
modifications and refinements, designed to target and enhance underrepre-
sented activated regions, thereby ensuring more precise and consistent stain
synthesis and discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Discriminator Confidence Analysis for Anomaly Detection in H&E-
Stained Tiles Across Multiple Scanners. This figure presents the evalua-
tion of the authenticity of 47984 H&E-stained tiles derived from 2022 authen-
tic WSIs, which were stained over a 20-year period using various scanners.
Discriminator confidence maps assess the authenticity of each tile, using the
standard deviation of the map values. A histogram illustrates the accept-
able range for H&E staining authenticity, defined empirically between 3.11%
and 14.86%. Tiles falling within this range are considered highly authentic,
while those outside are flagged as outliers. Such outliers are typically either
background or significantly degraded tiles, characterized by unusually high
or low deviations in confidence levels. These results underscore the discrimi-
nator’s ability to detect and quantify tile authenticity, providing pathologists
with a crucial tool for excluding unreliable artifacts in the H&E staining
and scanning processes. This method enhances the quality control within
the multi-virtual staining pipeline, effectively minimizing potential errors in
synthetic stains and improving the reliability and accuracy of the resulting
images. For details on reproducibility, refer to Section 3.4.2. . . . . . . . . . 85
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3.8 Comparative Analysis of Original vs. Degraded H&E Stained Tiles
with Discriminator Confidence Mapping: Panels A, B, and C showcase
the analysis of H&E-stained tiles. Each panel consists of two rows; the upper
row presents the original H&E tile next to its five degraded variants, and
the lower row displays the discriminator’s confidence maps identifying areas
of perceptual inconsistencies highlighted in red. Panel A focuses on global
degradation likely stemming from chemical staining or scanning mishaps, like
imprecise staining concentrations or scanner setting errors, with the model
effectively detecting these widespread issues. Panel B illustrates local imper-
fections, possibly from staining faults or physical anomalies on the scanner
glass, with precise identification by the model. Panel C reveals artifacts
resembling water droplets, possibly sticking to slides during preparation and
causing analytical errors, where the model marks the droplet locations, draw-
ing attention to these critical areas. For further reproducibility information,
see Section 3.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Discriminator Confidence Visualization in Virtual Staining Analy-
sis. The efficacy of using discriminator confidence maps to assess both virtual
and genuine stained WSIs is depicted in this figure. It presents two sections of
tissue: one with genuine staining and another with virtual staining, wherein
an error is clearly evident. The response of the discriminator is represented
using heat maps, which highlight areas of inconsistency in red. These areas
indicate substantial deviations from the anticipated staining pattern, offering
pathologists a pixel-level confidence measure. Such visual aids are crucial for
deciding whether additional chemical staining confirmation is required and
for pinpointing areas needing detailed scrutiny. By accurately depicting er-
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pathologists in making informed decisions. Refer to Section 3.4.2 for details
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3.10 H&E Staining-Based Methods for Virtual Stain Generation in Com-
putational Histopathology during the Production Phase. Panel A in-
troduces the unified H&E encoder strategy, adapting the ComboGAN model (Anoosheh
et al., 2017) for virtual staining. This method utilizes a single encoder along
with multiple decoders to create various synthetic stains, enhancing computa-
tional efficiency and scalability (for detailed comparisons on XAI capabilities,
refer to Figure 3.1). Panel B displays the conventional methodologies akin
to CycleGAN (Goodfellow, Pouget-Abadie, et al., 2014; J. Zhu et al., 2017),
employing multiple distinct encoders and decoders for each stain type, which
increases both model complexity and computational demands. Panel C il-
lustrates the methods similar to StarGAN (Y. Choi, M. Choi, et al., 2017;
Y. Choi, Uh, et al., 2019; Lin et al., 2022; R. Zhang et al., 2022), incorporat-
ing a style encoder and a single generator capable of handling multiple stains.
Although this architecture streamlines the model, it demands significant com-
putational power and struggles to scale effectively with the increase in the
number of stains, necessitating the maintenance of a large generator even for
processing a subset of stains, which introduces inefficiencies. The approach
presented in panel A marks a notable improvement by reducing the reliance
on multiple models, thereby enabling faster and more efficient processing.
This model is capable of generating only the necessary stains and loads min-
imal components into memory, thus minimizing hardware requirements and
computational expenses in cloud-based implementations. . . . . . . . . . . . 89

3.11 Visualization of Immunohistochemical Activation and Extraction
in Stained Tissue Samples: For each biomarker, exemplified by CD8,
CD117, and CD163, the extraction workflow is delineated across a tripartite
columnar display. The initial column presents the original RGB stained tile
(Xi), followed by the central column illustrating the transformation into the
HSV color space, which isolates the distinctive chromatic signatures resultant
from antigen-antibody interactions. The terminal column exhibits the derived
binary mask (Mi), accentuated in yellow, depicting the areas of activation. . 93

3.12 Cloud-Based Multi-Virtual Staining on the Cytomine Platform: A
Proof of Concept. A.1. Showcases the user interface for selecting a H&E
WSI and setting inference parameters. A.2. Depicts the panel that moni-
tors the progress of the multi-virtual staining process, managed by a slurm
job. B. Displays synchronized views of virtually stained slides next to the
original H&E slide (upper left). This setup illustrates our implementation
of dockerized multi-virtual staining on the open-source Cytomine platform
(Marée et al., 2016). All computations occur on a backend server managed
through slurm, requiring the user only to upload the H&E slide and start the
algorithm via a web browser. The results are presented in a synchronized
view, significantly reducing user effort. . . . . . . . . . . . . . . . . . . . . . 99
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3.13 Illustration of Perfectly Paired Samples in Our Multi-Stain Pedi-
atric Crohn’s Disease Dataset. This figure highlights the meticulous
matching of WSIs from identical tissue sections, underscoring the dataset’s
significance for advancements in computational pathology. . . . . . . . . . . 101

4.1 Dice scores for the Putamen across various models. Panel A displays
results for 20 subjects from the MICCAI test set, while Panel B shows data
for 80 subjects from the HCP test set. In each panel, the segmentation used
as Ground Truth varies by column, including manual segmentation, FSL,
Freesurfer, and AssemblyNet. Panel C presents the results for an axial slice
from a single HCP subject. For more details about the training refer to
(Valabregue, Khemir, et al., 2024). . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Workflow of an AI System Enhanced with XAI Capabilities: This
figure illustrates a three-step process in deploying AI systems with explainable
artificial intelligence functionalities. Step 1 involves the use of a training
dataset for model training and explanation generation. Step 2 shows the
application of the trained AI model to new case data, generating decisions or
annotations along with explanations or justifications. Step 3 highlights the
role of the user in assessing the AI’s output. The user evaluates the decision or
annotation based on their comprehension levels, which may lead to accepting
the outcome or requesting further explanations if the initial output is deemed
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4.3 Integration of Expert Feedback in an XAI System: This diagram ex-
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expert intervention when AI-generated explanations are deemed unsatisfac-
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B.1 Evaluation protocol for virtual staining performance. Workflow dia-
gram illustrating the validation process for virtual staining techniques. The
process begins with an H&E stained whole slide image (H&E WSI), from
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B.2 Software for poll results and feedback collection of pathologist rat-
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followed by a sets of virtual stains in different conditions including the ground
truth randomly showed. Pathologist was asked to rate each image based on
the clarity and preservation of morphological details 1 "worst" 5 "best" with
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1

Introduction

In the contemporary landscape of artificial intelligence (AI), a significant evolution has
been observed, especially in its application to biomedical imaging. This domain crucially

relies on advanced AI methodologies to enhance diagnostic accuracy and treatment efficacy.
However, the widespread integration of AI in such sensitive areas is hindered by the opaque
nature of machine learning models, often termed the "black box" issue. This opacity chal-
lenges the acceptability and reliability of AI systems, as it obscures the causal pathways
through which these systems derive their conclusions.

The principal concern addressed in this thesis revolves around the opaque decision-
making processes of AI systems used in biomedical imaging. These systems, driven by
complex algorithms and deep neural networks, exhibit high performance but lack inter-
pretability. This opacity is problematic in clinical environments, where understanding the
basis of diagnostic or therapeutic decisions is crucial for trust and ethical medical practice.
Recent regulatory developments, including mandates from the General Data Protection Reg-
ulation (GDPR), underscore the urgent need for transparency in AI systems that process
personal health data, highlighting the legal and ethical imperatives for explainable AI.

This research proposes to systematically "decode" these complex AI systems, enhancing
their transparency and accountability through interpretable methodologies. The objective
is to develop a framework that not only elucidates the operational mechanics of AI models
but also embeds ethical considerations to elevate the trustworthiness and acceptance of AI
systems in biomedical contexts.

To address these challenges, the thesis will explore several cutting-edge approaches in
the realm of explainable artificial intelligence (XAI). It will assess the applicability and
effectiveness of various interpretability techniques, such as feature activation maps visual-
ization, model simplification, knowledge guided and self-inspection, specifically adapted for
deep learning models employed in biomedical imaging. This exploration will be grounded in
empirical validation against public benchmarks and will involve collaborations with medical
professionals to align AI outputs with clinical insights and needs.

Moreover, the research will investigate the dynamic between model complexity and in-
terpretability, seeking to find a balance that maintains high predictive performance without
compromising the system’s interpretability. It will also examine the impact of interpretabil-
ity enhancements on the clinical decision-making process, measuring how well medical prac-
titioners can understand, trust, and effectively use AI-assisted research/diagnostic tools.

The outcome of this thesis is expected to contribute to the field of AI in healthcare by
providing a scientifically robust and ethically sound compliant framework that enhances the
interpretability and reliability of AI systems. This will pave the way for more responsible AI
applications, ensuring that these powerful tools aid rather than obscure the critical decisions
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made in medical practice. By advancing our understanding of how AI models can be made
transparent and accountable, this work aims to foster a new era of trust and collaboration
between AI technologies and biomedical professionals.

Contributions

This thesis presents significant advancements in the field of XAI, emphasizing the integration
of explainability within AI systems to fulfill both scientific and regulatory requirements.
The primary contribution of this thesis is the demonstration that XAI not only enhances
understanding of the decision-making processes in deep learning models but also improves
model performance and control while reducing model size.

This concept is illustrated through two distinct use cases. The first case explores XAI for
cell segmentation in video microscopy, focusing on the real-time quantification of phagocy-
tosis in unstained cells, which has implications for understanding neurodegenerative diseases
such as Frontotemporal Dementia (FTD). A comprehensive, end-to-end framework is intro-
duced that is both interpretable and scalable, featuring a novel explainable cell segmentation
module that augments the interpretability of deep learning methods without compromising
performance (refer to Chapter 2).

The second use case addresses XAI for generative models in histopathology, particularly
through the development of virtual staining techniques using generative AI models (refer
to Chapter 3). These models convert Hematoxylin and Eosin (H&E) slides into multiple
outputs, thereby reducing the environmental and resource costs associated with traditional
staining methods. This approach not only enhances control over these models through
knowledge-guided training but also improves the performance and scalability of synthetic
staining. It further incorporates real-time self-inspection mechanisms as safeguards to ensure
quality and trust in critical healthcare applications.

In addition to these primary contributions, the thesis explores the state-of-the-art in
XAI, emphasizing the dual role of explainability in AI as both a vital area of scientific
inquiry and a regulatory necessity (refer to Chapter 1). It addresses the challenges in
achieving transparency, reproducibility, interpretability, and causality in AI systems, under-
scoring their importance for trust and acceptance in AI applications. The thesis also makes
further structural and conceptual contributions by structuring the state-of-the-art in XAI
and its terminology. Significant initiatives include the development of methods to mitigate
systematic bias and the proposal of a conceptual framework for XAI systems, which aims
to guide the development and evaluation of robust and accountable AI systems towards
Responsible AI.

Overall, the thesis encapsulates a series of methodological and theoretical contributions
that significantly advance the boundaries of XAI, equipping the field to address emerging
ethical, legal, and societal challenges while fostering ongoing research and practical appli-
cations in both academic and industrial contexts.
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Outline of the manuscript

The manuscript is organized into the following chapters:

• Chapter 1 provides a comprehensive overview of the current state-of-the-art and high-
light the dual role of explainability in AI, treating it as both an essential area of
scientific inquiry and a regulatory necessity. This chapter investigates the interplay
between methodological considerations and compliance with various AI regulatory
frameworks, including the GDPR and the EU AI Act. It addresses the challenges and
necessities in achieving transparency, reproducibility, interpretability, and causality in
AI systems, emphasizing their importance for trust and acceptance in AI applications.

• Chapter 2, we present a detailed methodology with a focus on XAI and open science
principles. We demonstrate the application of XAI in complex instance-segmentation
tasks through a concrete use case: the quantification of phagocytosis in video mi-
croscopy within the context of neurodegenerative diseases such as Frontotemporal
Dementia (FTD), showing that XAI facilitates a deeper understanding of the models
and achieves better performance compared to existing state-of-the-art methods.

• Chapter 3 addresses the challenges associated with generative models, such as hallu-
cinations, and proposes new training methodologies. It features a comprehensive case
study on virtual staining in digital histopathology. Through the use of XAI, improve-
ments in model performance and control are discussed, alongside innovative ways to
leverage discriminators as safeguards. This supports the development of explainable,
trustworthy, and accessible AI systems through cloud-based computation.

• In the final Chapter 4, we discuss our results and provide preliminary findings on mit-
igating pseudo-label bias, as referenced in Section 4.2.1. We also outline perspectives
for generic XAI systems and consider the ethical implications of AI deployments in
real-world scenarios, emphasizing the need for robust governance frameworks in Sec-
tion 4.2.2. Additionally, we propose future research directions toward fully responsible
AI.
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Chapter 1

Explainable Artificial Intelligence

Scientific publication and communication

Elements of the Sections 1.1, 1.2, and 1.3 are published in:

Racoceanu, D, Ounissi, M., Kergosien Y. L. "Explicabilité en Intelligence Artifi-
cielle ; vers une IA Responsable - Instanciation dans le domaine de la santé." (2024)
Techniques de l’ingenieur, 29 Feb. 2024. https://doi.org/10.51257/a-v1-h5030.

Jiménez, G., Kar, A., Ounissi, M., Ingrassia, L., Boluda, S., Delatour, B., & Racoc-
ceanu, D. Visual deep learning-based explanation for neuritic plaques segmentation
in Alzheimer’s disease using weakly annotated whole slide histopathological images.
(2022) MICCAI 2022 https://doi.org/10.1007/978-3-031-16434-7_33.

Summary

In this chapter, we examine the dual nature of explainability in artificial intelligence (AI),
presenting it as both a scientific domain and a regulatory necessity. This chapter explores
the intersection of methodological considerations and compliance requirements across var-
ious AI regulatory frameworks. We begin by analyzing the current legislative landscape,
covering the General Data Protection Regulation (GDPR), proposed new EU AI Act, and
extending to non-EU regulatory frameworks, including key recommendations from UNESCO
and OECD. This regulatory context highlights the need to integrate explainability into AI
systems to meet ethical and legal standards. Furthermore, we address the conceptual as-
pects of explainability, discussing paradoxes in transparency, challenges in reproducibility,
and the quest for interpretability and causality –factors critical to the trustworthiness and
acceptance of AI systems. We then explore various methods used to achieve explainability
in AI, including global and local approaches, model-agnostic methods, and model-specific
strategies. These techniques help illuminate the decision-making processes of complex algo-
rithms.

https://doi.org/10.51257/a-v1-h5030
https://doi.org/10.1007/978-3-031-16434-7_33
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Résumé

Dans ce chapitre, nous examinons la double nature de l’explicabilité dans l’intelligence artifi-
cielle (IA), la présentant à la fois comme un domaine de recherche scientifique et une nécessité
réglementaire. Ce chapitre explore l’intersection entre les considérations méthodologiques
et les exigences de conformité dans divers cadres réglementaires de l’IA. Nous commençons
par analyser le paysage législatif actuel, en couvrant le Règlement Général sur la Protection
des Données (RGPD), la nouvelle loi de l’UE sur l’IA, et en étendant notre analyse aux
cadres réglementaires non européens, y compris les recommandations clés de l’UNESCO et
de l’OCDE. Ce contexte réglementaire souligne la nécessité d’intégrer l’explicabilité dans
les systèmes d’IA pour répondre aux normes éthiques et légales. De plus, nous abordons
les aspects conceptuels de l’explicabilité, en discutant des paradoxes de la transparence, des
défis de la reproductibilité, et de la quête d’interprétabilité et de causalité – des facteurs
critiques pour la fiabilité et l’acceptation des systèmes d’IA. Nous explorons ensuite diverses
méthodes utilisées pour atteindre l’explicabilité dans l’IA, y compris les approches globales
et locales, les méthodes agnostiques aux modèles et les stratégies spécifiques aux modèles.
Ces techniques aident à éclairer les processus de prise de décision des algorithmes complexes.
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1.1 Explainability and Compliance in AI Regulations

The scientific community has made considerable strides in the field of artificial intelligence
(AI), which has led to the emergence of significant ethical and regulatory challenges. AI’s
remarkable capabilities and the implementation of its practical applications have raised
justified societal concerns, necessitating a regulated approach to its deployment. In response,
notable governmental initiatives in the United States (E. O. o. t. President, M. Holden,
and Smith, 2016) and France (Villani et al., 2018) have emphasized ethical considerations,
shaping new legal norms. This direction has been further supported by the formation of
a recognized research domain in AI ethics, which encompasses ethical AI (AI operating
under ethical constraints). This area has developed its own journals, learned societies, and
educational programs. Pioneering efforts such as the IEEE initiative and research from
centers in Oxford, Munich, and France’s ALLISTENE Ethics Committee focus on aligning
AI with human rights, particularly concerning equity, safety, privacy, and dignity.

One example of the ethical challenges in AI is the automated bank loan allocation,
which, as detailed in a report by the Bank of England (Philippe Bracke and Sen, 2019),
risks discriminating against certain groups if profiling based on race, ethnicity, or religion is
used. Although such personal attributes are prohibited from being recorded in computerized
files in France, other countries may not have similar restrictions, and indirect profiling using
allowed data remains a concern. AI algorithms, especially those derived from learning pro-
cedures without legal constraints, can inadvertently engage in such discrimination, raising
substantial responsibility issues for multiple stakeholders: (1) the algorithm designer, (2)
the end-user, (3) the affected individuals, (4) potential certifying authorities, and (5) the
data providers, especially if the data is not sufficiently aggregated to ensure only statistical
treatment. The roles of (6) data annotators, who often rely on (7) annotation tools and
(7bis) chosen annotation lexicons that could introduce bias, are also critical. Additionally,
(8) transfer learning can perpetuate pre-existing biases, and the complexity increases with
federated learning.

Moreover, in France, the law provides individuals harmed by automated decisions the
right to a human review, which should include explanations of the decision-making process.
This legal framework has also introduced a relatively new requirement for "explainabil-
ity" of algorithms, aiming to ensure that algorithms adhere to legal and safety constraints.
Explainability not only aids in verifying compliance but also enhances user trust and in-
forms responsible parties. Beyond merely fulfilling regulatory obligations, explainability also
holds interest for AI developers, particularly in applications involving human interaction,
such as humanoid robots for assisting dependent persons. Here, ethical considerations and
the respect for human dignity remain paramount, both from a legal and a computational
perspective.

Currently, in France, legal obligations regarding AI primarily derive from three legislative
texts, illustrating the nation’s commitment to overseeing this transformative technology
responsibly.
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1.1.1 Computing, files, and freedoms regulation

Law No. 78-17 of January 6, 19781 was initiated due to advancements in applied computer
science, particularly in data processing. It focuses primarily on managing personal data files,
which include data about individuals who can be identified either directly or indirectly when
stored in computerized databases. Since the law’s enactment, the collection of individual
data has significantly increased with the proliferation of payment terminals, web platforms,
online stores, mobile phones, and social networks. Furthermore, the ability to re-identify
individuals from their data often surpasses traditional anonymization techniques.

The law establishes the National Commission on Informatics and Liberty (Commission
Nationale de l’Informatique et des Libertés, CNIL) as the regulatory authority for personal
data. It sets forth the obligations for entities that manage computerized files, including the
requirement to declare these files and the prohibition of recording sensitive information re-
lated to an individual’s racial, ethnic, religious, political, or union affiliations. Additionally,
it clarifies the rights of individuals whose data are stored, providing them the right to be
informed, access, correct, and erase their data.

Amended by Law No. 2004-801 on August 6, 20042, regarding the protection of natural
persons concerning the processing of personal data, the legislation introduces stringent re-
strictions on the automated processing of individual data, particularly concerning artificial
intelligence. Article 10 of this law mandates that no judicial decision assessing a person’s
behavior may be based exclusively on the automated processing of personal data intended to
evaluate specific personality traits. It also stipulates that no decision that has legal effects
on a person can be based solely on automated data processing used to profile the individual
or assess certain personality aspects.

1.1.2 General Data Protection Regulation (GDPR)

The General Data Protection Regulation (GDPR3) is a European regulation that differs
from a directive, which requires transposition into the laws of each member state to be en-
forceable. Instead, the GDPR applies directly as it is published in the Official Journal of the
European Union (EU) and becomes effective simultaneously across all member states from
its date of implementation. This regulation was partly prompted by advancements in AI
and mandates that any processing of this nature should include comprehensive safeguards.
These safeguards must provide specific information to the individual concerned and grant
them rights to human intervention, to express their views, to receive explanations about
decisions made after such evaluations, and to challenge these decisions.

Additionally, to ensure processing is fair and transparent, given the specific circum-
stances and context in which personal data is handled, the data controller is required to
employ suitable mathematical or statistical procedures for profiling. They must also im-
plement adequate technical and organizational measures to correct inaccuracies in personal
data and minimize the risk of errors. It is imperative to secure personal data in a way that

1Law No. 78-17 of January 6, 1978 (France)
2Law No. 2004-801 on August 6, 2004 (France)
3The General Data Protection Regulation "GDPR" (EU)

https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000886460
https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000441676
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en
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considers the potential risks to the interests and rights of individuals, preventing discrimina-
tory effects based on racial or ethnic origin, political opinions, religion or beliefs, trade union
membership, genetic status, health status, or sexual orientation. Furthermore, automated
decision-making and profiling that involve special categories of personal data should only
be allowed under strict conditions.

1.1.3 Expanding access to available technologies ethically

The French bioethics law4, which is part of the Health Code, addresses significant medical
applications of AI. It mandates explainability for algorithms or intelligent systems involved
in decision-making that affects individuals. The law uses the term "explainability" without
providing a detailed definition, leaving the methods for achieving this quality somewhat
abstract. Article 17 specifically introduces the following key provisions:

1. Healthcare professionals using a medical device that processes data algorithmically,
trained on large datasets for preventive, diagnostic or therapeutic purposes, must
ensure that the data subject has been informed and, where appropriate, advised of
the implications of interpreting the data.

2. Health professionals must be notified about the use of such algorithmic data process-
ing. They should have access to the patient data used in this process and the results
it produces.

3. Designers of the algorithmic treatment specified above are required to ensure that its
functionality is explainable to its users.

In this context, the users in 3 are healthcare professionals who receive detailed expla-
nations about how the algorithmic processing works. They are also tasked with managing
patient information and securing informed consent.

This scenario highlights that even historical legal frameworks can be relevant in modern
contexts involving AI. Imagine a situation where an intelligent device manages patient inter-
actions directly, much like intelligent systems handle customer interactions on e-commerce
platforms. However, such an arrangement would violate the Health Code as it would con-
stitute unauthorized practice of medicine. Currently, laws explicitly prohibit the delegation
of medical duties to machines. In such instances, the liability concerns for the designers and
providers of these devices would be significant, paralleling, if not exceeding, those in the
realm of autonomous vehicles.

1.1.4 EU regulation proposal for AI act

In addition to potential enhancements to the GDPR within EU member states, legislation
pertaining to AI is also under development in the EU, the United States, and the United
Kingdom, all of which carry significant economic and strategic implications. The European
Commission has highlighted5 the critical need for the EU to lead in establishing ambitious

4Law No. 2021-1017 of August 2, 2021, on bioethics (France)
5Artificial intelligence act and amending certain union legislative acts (EU)

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043884384
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021PC0206
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new global standards. Following the Commission’s white paper titled "Artificial Intelligence
– A European approach focused on excellence and trust"6 which proposed initial regulatory
directions, a draft European regulation on AI has been released. This draft has received
detailed feedback from the European Economic and Social Committee (Directorate-General
for Communications Networks and Technology (European Commission), 2020). Further-
more, the European Parliament’s resolution from October 20, 2020, on ethical aspects of
AI, robotics, and related technologies advocates for a future regulatory framework built
upon the Union’s laws and values, emphasizing transparency, explainability, fairness, and
accountability, though the term "explainability" is mentioned only once.

1.1.5 Non-EU regulatory movement: the United States roadmap

The global movement recognizing the societal and economic importance of AI, along with
its ethical and regulatory implications, is significantly influenced by an initiative from the
United States executive branch in 2016. This initiative is marked by the publication of the
White House’s white paper "Preparing for the Future of Artificial Intelligence" (U. S. ( E. O.
o. t. President, Holdren, and M. Smith, 2016), which serves as a roadmap for AI develop-
ment in the U.S. This roadmap includes recommendations for government ministries and
agencies responsible for funding, such as creating open databases and computational plat-
forms to broaden access to AI, expanding AI education, and integrating ethics training into
AI curricula.

Instead of initially legislating based on an abstract concept like explainability, the
U.S., through the Defense Advanced Research Projects Agency (DARPA), simultaneously
launched a call for research proposals on "Explainable AI" in 2016 (Agency, 2016; Gun-
ning and Aha, 2019). This call encouraged various professional societies to develop new
guidelines and standards for best practices. Concurrently, the Institute of Electrical and
Electronics Engineers (IEEE) introduced the "Global Initiative for Ethical Considerations
in AI and Autonomous Systems" (How, 2018) and issued a call for feedback in the form of
the "Ethically Aligned Design" report (K. Shahriari and M. Shahriari, 2017). Compared
to its French and European counterparts, the U.S. approach was highly effective, using a
bottom-up strategy that deeply engaged professionals and researchers from the start. This
collaboration promptly led to the creation of applicable standards, providing a robust foun-
dation and valuable experience for potential future legislative texts.

1.1.6 UNESCO recommendations and reports, OECD directives

Numerous international organizations are actively addressing the ethical challenges pre-
sented by AI and are preparing for the advent of global regulatory frameworks. UNESCO’s
World Commission on the Ethics of Scientific Knowledge and Technology (COMEST) has
notably produced an influential report (Ethics of Scientific Knowledge and Technology,
2019), followed by a Recommendation on the Ethics of Artificial Intelligence (UNESCO,
2021). This recommendation borrows aspects of the French approach to AI ethics, with a
particular focus on explainability. It further explores this concept by linking it closely with

6White Paper on Artificial Intelligence: a European approach to excellence and trust (EU)

https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
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transparency. It clarifies that explainability in AI systems involves understanding the in-
puts, outputs, and operations of various algorithmic components, and how these contribute
to the system’s results. Thus, explainability requires that results and the processes leading
to them be transparent, making all elements clear and traceable within the given context.
Additionally, the OECD issued a directive in 2019 concerning AI (OECD, 2019), which also
advocates for transparency and explainability.
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1.2 Conceptual Landscape of Explainability

The conceptual landscape of explainability, particularly within the realm of AI, represents
a comprehensive domain at the intersection of computer science, legal regulations, and
linguistic precision, which collectively compound the challenges of elucidation.

1.2.1 Transparency paradox

AI systems are often characterized as "black boxes", a term that reflects their inherent
opacity. Although transparency is frequently advocated as a remedy (Barredo Arrieta et
al., 2020), it embodies dual meanings that can contribute to confusion. On one hand,
transparency might imply invisibility or non-interference, as in the usage, "the software
update is transparent to the user," implying that the update occurs without any noticeable
effect or requirement for intervention from the user’s side. On the other hand, it can denote
complete visibility, such as granting access to the software’s source code. This ambiguity
extends beyond semantics and poses substantial practical challenges within the scientific
community. For example, deep neural networks, despite their perceived opacity, allow full
access to all components, including structure and model weights, thus enabling replication
of results. Nevertheless, fully understanding their operations is not guaranteed and, at a
minimum, necessitates a detailed post-hoc analysis akin to reverse engineering a compiled
binary without access to the source code.

The relationship between transparency and explainability in AI systems is complex and
merits careful consideration. This analysis highlights that transparency does not necessarily
lead to explainability. A system can be transparent in its operations without providing suf-
ficient insights to explain its decision-making processes. For instance, while an XAI system
may be protected under industrial property rights and comply with regulatory frameworks
like the GDPR, it may still lack transparency (Jobin, Ienca, and Vayena, 2019).

It is critical to address the common misconception equating transparency with explain-
ability. Given its ambiguity, the term "transparency" will be excluded from discussions
pertaining to the general context of XAI in our manuscript. This will prevent confusion
and reserve the use of "transparency" solely for discussions related to academic open sci-
ence. Recognizing the fundamental distinction between these concepts is essential, as it
has significantly influenced legislative decisions opposing the mandatory disclosure of AI
algorithms. Such an approach facilitates the protection of confidentiality, consistent with
industrial property policies (Wachter, B. Mittelstadt, and Floridi, 2017). Recognizing this
distinction is crucial as it allows legislators to navigate the complexities of maintaining con-
fidentiality under industrial property law while enforcing explainability requirements—that
is, elucidating how a model processes inputs to arrive at specific decisions "the legal right
to explanation" (Selbst and Powles, 2018). Therefore, it is clear that explainability must be
recognized as an autonomous concept, crucial not only from a computer science perspective
in dealing with AI models but also as a legal imperative ("the right to explanation"). This
underscores the need for regulations that mandate clarity on how decisions are made within
AI systems, independent of their transparency status.
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1.2.2 Reproducibility

Reproducibility (Gundersen and Kjensmo, 2018; Gibney, 2022; Tsima, 2023), while desir-
able in algorithmic processes, does not inherently guarantee explainability. This is analogous
to software engineering, where replicating a bug does not necessarily elucidate its under-
lying cause. In deterministic algorithms, consistent outcomes are expected when initiated
from identical states. However, various factors contribute to non-determinism in machine
learning. These include the use of stochastic optimization algorithms—although setting the
seeds of pseudo-random number generators can achieve reproducibility—the uncontrolled
sequencing of massively parallel processors, variations in training datasets and the sequence
in which examples are presented, and potential dependencies arising from transfer learning
involving other entities.

It is crucial to distinguish between the reproducibility of the final decision algorithm,
which is typically deterministic (when the model’s weights are frozen), and the learning
process, which is inherently more complex and less predictable. Regulatory attention pri-
marily focuses on the final decision-making algorithm, emphasizing the need for the sci-
entific community to ensure its functional integrity. However, the rise of algorithms that
undergo continuous updates through perpetual learning cycles (continual/incremental learn-
ing) presents significant challenges. These systems, which adapt based on ongoing inputs
of new data, complicate efforts to maintain reproducibility and pose even greater challenges
for explainability. As models evolve without explicit retraining phases, tracking changes
and understanding the influence of new data on decision processes become increasingly dif-
ficult. This evolution highlights the need for advanced methods to ensure the reliability and
transparency of algorithms under continuous learning paradigms.

1.2.3 Interpretability

Considerable research in the field of XAI (Barredo Arrieta et al., 2020) has underscored
the importance of the term "interpretability," establishing it as a cornerstone in scholarly
discussions. Interpretability plays different roles across various contexts: in statistics, it
serves as a crucial, though often informally applied, heuristic; in machine learning literature,
as highlighted by (Doshi-Velez and B. Kim, 2017), it is defined specifically as "the ability
to explain or to present in terms comprehensible to a human." This definition not only
associates interpretability closely with explainability and comprehension but also emphasizes
its role in making intelligent systems more accessible and understandable to users.

In recent years, there has been a notable shift in the field toward favoring the term
"Explainable AI" over "Interpretable AI." This change reflects a move toward more precise
terminology, emphasizing the need for systems that can clearly articulate their processes and
decisions. Additionally, the concept of ’interpretation’ has long been established in math-
ematical logic, with foundational works by Tarski (Szczerba, 1977; Friedman, 2007) in the
mid-20th century. This concept extends to various domains such as ontologies, the semantic
web, and bioinformatics, where principles of interpretation are crucial for understanding
complex data structures and relationships.
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In our analysis of comprehension phenomena within intelligent systems, we draw upon
this broad and formal framework. We acknowledge, as is commonly accepted in legal studies,
that interpretations can vary widely and are not inherently singular. This recognition is
crucial for understanding the diverse ways in which AI systems can be interpreted and the
implications of these interpretations for both users and developers.

1.2.4 Causality

The explanation of decisions involving multiple factors or criteria can be seen as an eluci-
dation of the "causes" behind those decisions. The concept of causality has been a subject
of scholarly investigation since antiquity, with Aristotle notably identifying four types of
causes: formal, material, efficient, and final. Today, this concept spans both the human-
ities—including philosophy, history, sociology, political science, and economics—and the
natural sciences, such as physics, biology, statistics, and logic (Beebee, Hitchcock, and Men-
zies, 2009). In legal studies, causality is crucial for addressing issues of responsibility (legally
distinct from the more recent term "responsible AI"), aligning with the motivations for XAI.

Each discipline applies its own set of rules, making it essential to specify the context in
which each author operates to avoid misinterpretation. A notable example is the critique of
research on perceptrons—the precursors to neural networks—by proponents of symbolic AI,
such as Minsky and Papert (Olazaran, 1996; Minsky and Papert, 2017), who inappropriately
extrapolated the results. In the realm of statistical theories of causality, which aim to discern
causal relationships between variables—rather than mere associations—from observational
data, particularly through considerations of conditional independence, it is important to
temper the claims of Pearl and Mackenzie, 2018 regarding Bayesian Networks with critiques
from statisticians like (Dawid, 2010). Recent comprehensive works (Allen, 2020) highlight
the challenges in employing these methods, known as Graphical Models, which, according
to the Lauritzen school, are not inherently Bayesian.

Counterfactual theories of causality, which are conceptually simpler and more practical,
have gained widespread acceptance in political and legal sciences. These fields are partic-
ularly relevant to our discussion as they focus on human-centered issues. (Wachter, B. D.
Mittelstadt, and Russell, 2017) not only provide a counterfactual methodology for explaining
automated decisions to individuals but also suggest three objectives for such explanations:
(1) assisting the individual in understanding the decision, (2) guiding them through poten-
tial legal challenges to the decision, and (3) aiding them in developing strategies to adapt to
the algorithm. For example, in the case of a denied bank loan, it could be useful to inform
the individual about how much they need to adjust their spending, reduce their loan re-
quest, or decrease the frequency of overdraft occurrences. Importantly, the paper advocates
for maintaining algorithmic confidentiality while outlining legitimate demands that can be
met without exposing the "black box."

1.2.5 Trustworthiness

The pursuit of trustworthiness is often intuitively regarded as a fundamental objective in
the development of XAI models. However, equating a model’s explainability solely with
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its ability to engender trust may not fully align with established criteria for explainability
(Barredo Arrieta et al., 2020). In this context, trustworthiness can be defined as the con-
sistent reliability with which a model performs as expected in specified scenarios. While
trustworthiness is an essential quality of any XAI system, it is a misconception to assume
that all trustworthy models are inherently explainable. For instance, search engines like
Google exemplify a situation where trust and explainability diverge. Users generally trust
these algorithms to deliver relevant and high-quality results, even though their operations
remain largely opaque due to their proprietary nature (Schultheiß and Lewandowski, 2023).

Furthermore, trustworthiness is not a straightforward attribute to quantify. Unlike non-
XAI systems, where trust may primarily derive from performance, trust in an XAI system is
based on its ability to explain its decisions. This distinction is crucial, particularly in cases
where an XAI system may underperform relative to a non-XAI system but still earn trust
through its capacity to acknowledge its limitations by indicating uncertainty (e.g., stating "I
do not know"). This underscores a significant relationship between explainability and trust,
suggesting that while the presence of explainability in XAI systems implies trustworthiness,
the converse does not necessarily hold. Moreover, while the core value of an XAI system
may not rely solely on superior performance, it can still benefit from it. Therefore, an XAI
system can be trustworthy even if its performance is sub-optimal, provided it maintains
explicit explainability in its functioning.

1.2.6 XAI towards responsible AI

Advancements in AI necessitate rigorous definitions and guidelines for XAI. While there is
currently no consensus on a definitive description of XAI, several criteria or guidelines are
proposed for a system to be recognized as fully XAI-compliant. Key among these is the
integration of interactive features—whether textual, visual, symbolic, or otherwise—that
empower users (both human and autonomous systems) to request explanations of AI-derived
outcomes and conclusions. This "right to explanation" should accommodate various forms
of elucidation, such as textual, visual, and causal mechanisms, tailored to specific use cases
and tasks in a comprehensible manner. Furthermore, an XAI system must acknowledge
the limits of its knowledge by admitting uncertainties, such as stating "I do not know."
Additionally, users should have a basic understanding of the system’s construction, including
its adherence to traceability, fairness, and the balance of training data used, as well as the
explicit elements involved in deriving the results.

The concept of Responsible Artificial Intelligence (RAI), as delineated by (Trocin et
al., 2023), encompasses XAI while expanding its scope to include additional ethical and
operational considerations crucial for advancing sustainable and ethical AI technologies.
This broader framework notably includes privacy considerations, which are increasingly
critical in domains like cloud computing. For instance, RAI emphasizes implementing the
right to be forgotten, a crucial element in maintaining user trust by allowing the deletion
of personal data upon request.

Additionally, RAI addresses the dual-use potential of AI systems, referring to the risk
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that technologies initially developed for beneficial purposes could be repurposed for malev-
olent uses. A relevant example is the creation of "deepfakes," which involve generating syn-
thetic images, voices, or combined video and voice representations. To mitigate such risks,
RAI mandates the incorporation of protective mechanisms, such as digital watermarks, to
verify the origins and integrity of digital content.

Security measures are also a critical component of RAI. This includes robust encryption
of sensitive data to protect against unauthorized access and breaches, thereby preserving
the confidentiality and integrity of personal and organizational information.

Furthermore, the RAI framework considers the environmental and energy consumption
impacts of AI systems. It promotes the optimization of these systems to minimize their com-
putational footprint, addressing the urgent need to reduce the energy demands of large-scale
AI computations and mitigate their environmental impact. This focus not only enhances
the efficiency of AI applications but also aligns with broader sustainability goals.

In summary, RAI represents a holistic approach that extends beyond the technical ca-
pabilities of XAI to incorporate ethical practices, security protocols, and environmental
considerations, ensuring that AI technologies are developed and deployed in a manner that
is accountable, secure, and sustainable.

1.3 Families of Methods for Explainability

1.3.1 Components to explain

1.3.1.1 Statistical learning and heuristics for interpretability

The field of statistical learning encompasses various methodologies that extend traditional
statistical data analysis tools. Traditionally, statistics is divided into descriptive and infer-
ential branches. Inferential statistics often link hypotheses about the phenomenon under
study to explicit probabilistic models (Ghahramani, 2015), which can generate random
data similar to the observed data. By quantitatively comparing the distribution of observed
data to those generated by different models—whether known through analytical means or
numerical simulations—researchers can select an appropriate model and validate the corre-
sponding hypotheses. This methodology is widely practiced within a broad community and
provides a consensus framework for statistical interpretation (Daly and Bourke, 2008). The
relevance of explanations provided by different models can be assessed using tools under-
stood by practitioners across various experimental sciences such as medicine, biology, and
psychology.

Numerical methodologies, including simulation, Monte Carlo methods (Metropolis and
Ulam, 1949), resampling, and Bayesian approaches (Howson and Urbach, 2006; Dienes,
2014; Kruschke and Liddell, 2018), have facilitated the use of complex models and al-
lowed for the transcendence of traditional statistical approximations, such as Gaussian
assumptions. Beyond linear models like linear regression (Montgomery, Peck, and Vin-
ing, 2021) and generalized linear models (e.g., logistic regression (Kleinbaum et al., 2002;
Hosmer Jr, Lemeshow, and Sturdivant, 2013), tree-based methods for regression and clas-
sification (Breiman, 2001) have been developed. Subsequently, ensemble methods such as
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"bagging"(Breiman, 1996; Strobl, Malley, and Tutz, 2009), which stands for Bootstrap Ag-
gregation of resampled trees, and random forests—which combine the decisions of multiple
trees, often through voting—have emerged. Boosting methods like XGBoos (T. Chen et al.,
2015) further enhance these base methods. Vapnik’s statistical learning theory (V. Vapnik,
2013) is crucial for quantifying a learning system’s ability to generalize from data, particu-
larly in avoiding overfitting. From this research, support vector machines (SVMs) (Boser,
Guyon, and V. N. Vapnik, 1992; Noble, 2006) have emerged, resembling generalized linear
methods by reducing nonlinear classification problems to the separation of points using a
hyperplane.

These statistical learning methods form a common language within the community of
users and are supported by software platforms like scikit-learn (Pedregosa et al., 2011) and
libraries in the R language, which also incorporate tools for explainability, such as Shapley
values (Lundberg and Lee, 2017a). This progression of methods ranges from elementary
techniques well understood by users to more complex methods requiring greater effort to
comprehend. Researchers in statistical learning adopt explainability approaches that are
useful for tackling the inherently more challenging problems posed by deep learning. For
example, while the final decision of a decision tree is comprehensible due to its sequence of
elementary decisions, explaining a random forest’s decision involves constructing a decision
tree that approximates the forest’s decisions with high fidelity.

In addition to these methods, radiomics (Kumar et al., 2012; Yip and Aerts, 2016; Mayer-
hoefer et al., 2020) in medical imaging begins with a suite of classical image processing filters
or treatments. The outputs from these elementary filters—features—are then used as inputs
for statistical learning systems. The elementary filters, such as edge detectors (Canny, 1986;
Spontón and Cardelino, 2015) or texture analyzers (Castellano et al., 2004; Srinivasan and
Shobha, 2008), have known implications for users. Although the combinatorial final step,
which involves learning, poses an explanatory challenge, SVMs similarly require a "kernel"
of elementary analysis for optimization. In contrast, deep learning methods discussed in the
following section involve learning across all components, necessitating explanations for each
component in addition to the overall decision-making process.

1.3.1.2 Deep learning in artificial neural networks

Deep learning represents an advancement in the methodology of artificial neural networks,
building upon the foundational work of multi-layer perceptrons as proposed by (Rosenblatt,
1961) and influenced by neuro-biological modeling efforts by (Rashevsky, 1948; T. H. Abra-
ham, 2004; McCulloch and Pitts, 1943; Hebb, 2005). Initially overshadowed by symbolic
AI—refer to the previously mentioned critiques by J. Pearl (Pearl and Mackenzie, 2018;
Olazaran, 1996; Minsky and Papert, 2017)—deep learning resurfaced in the 1980s and has
demonstrated impressive results since the 2000s. For a more detailed exposition, readers
are directed to foundational texts such as (Goodfellow, Bengio, and Courville, 2016).

Each neuron within the network is defined by a function that maps a set of numerical
inputs (akin to signals received by dendrites) to a single numerical output (similar to signals
transmitted by an axon). This involves applying a non-linear function, known as an activa-
tion function, to a linear combination of inputs. The weights of these inputs and the type
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of activation function, which in contemporary practice often includes the Rectified Linear
Unit (ReLU) function defined as x 7→ max(0, x), dictate the neuron’s output.

Neurons are systematically organized into layers, mimicking the anatomical layers of the
visual system which has significantly influenced image processing research. Each layer takes
inputs from its preceding layer and feeds outputs to the subsequent one. Among various
possible configurations of inter-layer connections, two prominent types are fully connected
layers, where every possible connection to preceding outputs is formed with independent
weights, and convolutional layers, where each neuron is connected only to a local cluster
of outputs from the preceding layer using shared weights across a defined kernel. This
configuration significantly reduces the parameter space as the same weights are used by all
neurons calculating the convolution.

Convolutional layers (Lecun et al., 1998; Krizhevsky, Sutskever, and G. E. Hinton, 2012;
Ciresan, Meier, and Schmidhuber, 2012; Z. Li et al., 2021) are often designed with multiple
output channels, analogous to the three color channels in an image. This setup allows
different kernels to detect various local features, such as edges in different orientations.
As the network progresses from the input layer to deeper layers, the number of neurons
typically decreases while the number of channels increases, though this trend may reverse in
certain architectures such as in encoder-decoder models (Baldi, 2012; Ronneberger, Fischer,
and Brox, 2015). The resolution reduction across layers is achieved via max pooling, which
groups outputs into tiles, each feeding into a single neuron in the subsequent layer that
represents the maximum output value of its respective tile.

In practice, the behavior of a network can be simulated numerically to compute the
output associated with a given input, effectively calculating the network’s input-output
function. Deep learning adjusts the parameters of neurons (including their weights) to
approximate a desired network output function. This is commonly achieved using gradient-
based optimization methods (Kingma and Ba, 2014), which adjusts parameters in a manner
that minimizes the cost function—a measure of the difference between actual and desired
outputs.

Deep learning is characterized by the use of multiple layers, which necessitates specific
techniques to counteract issues like vanishing gradients. Techniques such as skip connec-
tions (K. He, X. Zhang, et al., 2015) have been developed to maintain gradient flow across
many layers.

Explaining the operation of these networks can sometimes be relatively straightforward
for certain components. A network designed for image analysis, consisting of several con-
volutional layers followed by a number of fully connected layers, mimics the computations
performed by radiomic solutions for the initial layers. In these layers, where convolution
has been imposed to enforce translational invariance, the operations often resemble those
of convolution-based image filters used in radiomic systems. The operation of subsequent
layers can be elucidated through visualizations that compare the outputs of one layer with
the input image or the previous layer, since all these layers have comparable formats, though
generally of different resolutions.

As one moves away from the input layer, explaining the network’s functionality becomes
more challenging, particularly for the fully connected layers (B. Zhou et al., 2016; Barredo
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Arrieta et al., 2020). However, seeking explanations is an integral part of research in deep
learning. For instance, akin to neurophysiology of the visual system, one can reconstruct
the receptive field of a deep neuron by identifying sub-images that, when presented as
inputs, maximize the response of the studied neuron. Recently developed methods for neural
networks, such as attention mechanisms, serve both as means to enhance performance and
as tools to facilitate the understanding of network operations. These methods allow for
a more intuitive interpretation of how neural networks process information, especially in
complex architectures.

It is important to recognize that the mathematical tools used to elucidate the functioning
of neural mimetics extend beyond merely statistical concepts, often involving approximation
theory, nonlinear dynamics, and differential geometry in high-dimensional spaces (Mhaskar,
Liao, and Poggio, 2016; Sprott, 2003; Bronstein et al., 2017). This includes, at least heuris-
tically, the use of concepts such as differentiable manifolds and their embeddings. Conse-
quently, the interpretability in the traditional statistical sense may encounter limitations
within these advanced domains. There exists a real risk of misrepresenting the inherently
inexplicable aspects of deep learning as inherently obscure by specialists from other ar-
eas of artificial intelligence. For instance, the sensitivity of a neural mimetic’s response to
minute variations in input has been cited as a reason to prefer deductive logical systems
or probabilistic systems, which do not suffer from the same issues because they maintain
clear causality between inputs and outputs7. A more detailed discussion could revisit tools
demonstrating the importance of topological stability for signs used in radiology. Such
an exploration would not only enhance our understanding of the robustness required in
medical imaging but could also provide deeper insights into the structural and functional
complexities of deep learning models.

1.3.1.3 Federated learning explainability challenges

Federated learning represents a proposed solution designed to enable multiple stakeholders,
each possessing unique datasets, to collaboratively develop a model while maintaining the
confidentiality of their respective data. This approach is particularly utilized in medical
imaging, facilitating the collaborative training of diagnostic models across different health-
care entities within a multi-centric study. Such an arrangement preserves data confidential-
ity at each entity level, as the sharing of patient data is considered unacceptably risky and
fraught with liability issues (Sheller et al., 2020).

In this model, comprehensive patient images and clinical records are not centralized
at a single location. Instead, only the essential differential data required for collaborative
learning are transmitted from each participating site, coupled with appropriate security
measures. This methodology introduces an additional layer of complexity to the challenges
of explainability and necessitates targeted research on potentially unique and anticipatory
methods. It is noteworthy that the effort to specify, often through modeling the stakeholders
before implementing a federated system, positively contributes to elucidating numerous
factors that must be considered in explainability studies.

7"La Méthode scientifique" France Culture (March 30, 2022), IA: par-delà le bien et le mal? ’accessed:08
July 2024’

https://www.radiofrance.fr/franceculture/podcasts/la-methode-scientifique/intelligence-artificielle-par-dela-le-bien-et-le-mal-7087930
https://www.radiofrance.fr/franceculture/podcasts/la-methode-scientifique/intelligence-artificielle-par-dela-le-bien-et-le-mal-7087930
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1.3.2 Global and local methods

Global methods are designed to illuminate the operational mechanisms of an intelligent sys-
tem comprehensively, encompassing all conceivable inputs. These approaches often include
an examination of the learning algorithms that underpin the system’s functionality. Such
global insights are particularly pertinent to the dynamics between the providers of intelli-
gent systems and their clients, as well as between the designers and their stakeholders. This
wide-ranging perspective facilitates a more holistic understanding of the system’s behavior
and its foundational principles.

In contrast, Local methods focus on explicating the decision-making processes of an in-
telligent system for individual instances, specifically tailored to particular inputs. Although
these methods are primarily localized, their scope typically extends to include a proximal
neighborhood within the input space, consistent with the conventional topological definition
of "local." This granularity is crucial for meeting legal mandates that require explanations
of specific decisions, implemented by the entities that operate these systems. Hence, local
methods serve a dual purpose: they provide clarity on the immediate decision-making con-
text and ensure compliance with regulatory frameworks that govern the use of intelligent
systems.

1.3.2.1 Model-agnostic (post-hoc) methods

Post-hoc explainability approaches are applied after the model has been trained, focusing
on elucidating the behavior of complex and inherently opaque models, such as deep neural
networks. These techniques serve to provide insights into the decision-making process of
models by detailing the contribution of input features, visualizing influential components,
or through model simplifications.

Feature importance methods, such as SHAP (SHapley Additive exPlanations) (Lundberg
and Lee, 2017a) and LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro,
Singh, and Guestrin, 2016), assign a quantifiable value to each feature’s contribution to
the model’s output. SHAP decomposes predictions into individual feature contributions,
offering comprehensive insights across the dataset, while LIME provides local linear approx-
imations to explain individual predictions, thus elucidating model behavior near specific
instances.

In the realm of visualization, techniques like saliency maps and gradient-weighted class
activation mapping (Grad-CAM) (Selvaraju et al., 2017; Chattopadhyay et al., 2018; Fu et
al., 2020)highlight areas of input—such as specific pixels in images or words in text—that
significantly influence model decisions. This form of visual feedback is particularly useful in
domains like computer vision and natural language processing, where it helps stakeholders
visualize what the model perceives as crucial for its decisions.

Additionally, decision tree approximations involve creating simpler, interpretable models
such as decision trees that mimic the behavior of the complex model, either on a global or
local scale. This method, although it reduces the model’s fidelity for the sake of clarity,
facilitates a more intuitive grasp of the decision-making process.
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Counterfactual explanations provide another dimension of post-hoc explainability by
suggesting minimal changes to the input that would result in a different output. This "what-
if" analysis helps users understand the model’s decision boundaries and provides actionable
insights on how to achieve desired outcomes (Wachter, B. Mittelstadt, and Russell, 2017).

Despite the utility of post-hoc explainability methods, they are not without challenges.
The fidelity of these explanations to the original model’s behavior can vary, and simplifica-
tions or approximations may not always accurately reflect the model’s complex dynamics
across all inputs. Moreover, different explanation methods might yield diverging interpre-
tations of the same model behavior, raising concerns about their reliability.

1.3.2.2 Model-specific (ex-ante) methods

Ex-ante explainability, also known as model-specific explainability, refers to the integration
of interpretability directly into the architecture of intelligent systems during the design
phase, rather than applying explanations after a model is trained.

In the ex-ante approach, the focus is on utilizing inherently interpretable models or
components that allow stakeholders to grasp the logic of decisions intuitively. Common
choices include linear models, decision trees, or rule-based systems, which are selected for
their straightforwardness. The design of such systems involves a deliberate limitation on
complexity to facilitate a more straightforward elucidation of how inputs are transformed
into outputs (not losing the causal link). This prioritization of explainability can sometimes
necessitate compromises in terms of model performance, leading to a fundamental trade-off
between model accuracy and transparency.

This trade-off is not just a theoretical concern but a practical challenge observed across
various implementations. Empirical studies suggest that simpler, more interpretable mod-
els often do not achieve the same level of predictive performance as their more complex
counterparts, such as deep neural networks, which excel in tasks requiring the modeling of
high-dimensional, nonlinear relationships. However, the imperative for ex ante explainabil-
ity is driven by the belief that in many applications, the ability to audit, verify, and trust
AI decisions outweighs the need for maximal performance (Rudin, 2019).

Recent advances in machine learning have started to challenge the notion that there
must always be a compromise between performance and explainability. Techniques such
as attention mechanisms, which provide insights into which parts of the data the model
focuses on when making decisions, and disentangled representations, which aim to separate
the underlying factors of data into distinct components that are individually interpretable,
are examples of how high-performing models can also be made accessible (J. Chen, Song,
Wainwright, et al., 2018).

Furthermore, the development of hybrid models that combine both interpretable and
complex components offers a middle ground. For instance, an ensemble approach where
simpler models handle parts of the data space while more complex models are reserved for
intricate cases can balance explainability with performance.
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Interpretable Deep Learning for Cell
Segmentation in Video Microscopy
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Figure 2.1: PhagoStat: A comprehensive end-to-end pipeline for quantifying
microglial cell phagocytosis in the context of frontotemporal dementia (FTD).
The PhagoStat pipeline is a fully operational system comprised of the following stages: (i)
efficient loading of raw data (Fig.2.11.b), (ii) applying data quality checks and quantifying
aggregates over time (Fig 2.12.c), and (iii) performing cell instance segmentation using an
interpretable deep learning (IDL) approach (Fig.2.13, which incorporates Fig.2.3). This
comprehensive pipeline streamlines the analysis process and facilitates accurate and reliable

results for researchers working with microglial cell phagocytosis data.

Scientific publication

Ounissi, M., Latouche, M. and Racoceanu, D. PhagoStat a scalable and inter-
pretable end to end framework for efficient quantification of cell phagocytosis in
neurodegenerative disease studies. Sci Rep 14, 6482 (2024). https://doi.org/10.

1038/s41598-024-56081-7

Github: https://github.com/ounissimehdi/PhagoStat
Dataset: https://zenodo.org/records/10803492

https://doi.org/10.1038/s41598-024-56081-7
https://doi.org/10.1038/s41598-024-56081-7
https://github.com/ounissimehdi/PhagoStat
https://zenodo.org/records/10803492
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Summary

This chapter presents a study on quantifying phagocytosis of dynamic, unstained cells, a
critical process in evaluating neurodegenerative diseases such as FTD. Due to the inherent
challenges of measuring rapid cell interactions and distinguishing cells from their back-
ground in phase-contrast video microscopy, we have developed an end-to-end, interpretable,
scalable, and versatile framework capable of real-time analysis of phagocytic activity. Our
proposed pipeline processes large datasets efficiently and includes a data quality verification
module to address common issues like microscope movements and frame blurring. Fur-
thermore, we introduce an explainable cell segmentation module that enhances the inter-
pretability of deep learning methods, providing a clear advantage over traditional black-box
algorithms. This module integrates two key features: visual explanation and model simpli-
fication, demonstrating that interpretability does not compromise performance. We apply
this innovative pipeline to the study of microglial cell phagocytosis in FTD, revealing that
mutant cells exhibit larger sizes and increased aggressiveness compared to controls. Our
findings are supported by statistical analyses and have been validated across several public
benchmarks, achieving state-of-the-art performance. To foster further research and facilitate
translational approaches, we provide an open-source version of our pipeline and a unique
dataset of microglial cells phagocytosis.



Chapter 2. PhagoStat: scalable and interpretable pipline 25

Résumé

Ce chapitre présente une étude sur la quantification de la phagocytose de cellules dynamiques
non colorées, un processus crucial dans l’évaluation des maladies neurodégénératives telles
que DFT. En raison des défis inhérents à la mesure des interactions cellulaires rapides et
à la distinction des cellules de leur arrière-plan en microscopie vidéo à contraste de phase
en accéléré, nous avons développé un cadre complet, interprétable, évolutif et polyvalent
capable d’analyser en temps réel l’activité phagocytaire. Notre pipeline proposé traite de
grands ensembles de données de manière efficace et inclut un module de vérification de la
qualité des données pour résoudre les problèmes courants tels que les mouvements de micro-
scope et le flou des images. De plus, nous introduisons un module de segmentation cellulaire
explicable qui améliore l’interprétabilité des méthodes d’apprentissage profond, offrant un
avantage clair sur les algorithmes traditionnels de type boîte noire. Ce module intègre deux
caractéristiques clés : l’explication visuelle et la simplification du modèle, démontrant que
l’interprétabilité ne compromet pas la performance. Nous appliquons ce pipeline innovant
à l’étude de la phagocytose des cellules microgliales dans la DFT, révélant que les cellules
mutantes présentent des tailles plus grandes et une agressivité accrue par rapport aux té-
moins. Nos résultats sont étayés par des analyses statistiques et ont été validés à travers
plusieurs benchmarks publics, atteignant une performance de pointe. Pour favoriser la
recherche ultérieure et faciliter les approches translationnelles, nous fournissons une version
open-source de notre pipeline ainsi qu’un ensemble de données unique de phagocytose des
cellules microgliales.
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2.1 Importance of Interpretability in Segmentation

Recent advances in high-throughput microscopy and computer-assisted analysis are
catalyzing transformative progress in fundamental cellular biology. This evolution,

particularly notable in automated tasks such as cell identification, counting, movement
tracking, and characteristic profiling, marks a significant departure from previously manual,
labor-intensive methodologies (J., Cooper, and Heigwer, 2017; Meijering, Dzyubachyk, and
Smal, 2012; Christoph Sommer, 2013).

The implications of these technological advancements extend profoundly across various
biological investigations, especially in exploring the dynamics and behaviors of immune cells.
The process of phagocytosis, where microglial cells engulf and degrade protein deposits
or aggregates, is of particular interest within the context of neurodegenerative diseases
(Scheiblich et al., 2021; Janda, Boi, and Carta, 2018; Gentleman, 2013; Q. Li and Haney,
2020; Q. Li and Barres, 2018; Boorboor et al., 2023). A comprehensive understanding of this
phenomenon is pivotal for unraveling the intricate mechanisms that underlie such disorders
and their progression. Consequently, the demand for precise, quantitative methodologies
to advance this field is increasing, as these methodologies provide critical insights into the
interactions between microglial cells and protein aggregates, thereby contributing to the
development of innovative therapeutic strategies for neurodegenerative conditions.

Traditional imaging processing techniques in microscopy, such as those used to detect
cells, often face challenges in accurately detecting unstained cells, measuring rapid cellular
interactions, and differentiating cells from complex backgrounds (Buggenthin F., 2013). To
overcome these challenges, cutting-edge approaches leveraging advancements in computer
vision and deep learning (DL) are necessary (Z. Liu, Jin, and al, 2021; F. Xing et al., 2018).

DL, in particular, has facilitated significant improvements in cell segmentation. Ad-
vanced models such as U-Net, Mask R-CNN, DeepLabv3+, Stardist, and Cellpose have
been widely implemented across diverse segmentation tasks (Ronneberger, Fischer, and
Brox, 2015; K. He, Gkioxari, et al., 2017; L.-C. Chen et al., 2018; Schmidt et al., 2018;
Stringer et al., 2021; Arbelle, Cohen, and Raviv, 2022). However, the "black-box" nature
of these algorithms poses substantial barriers to their clinical adoption, as transparency in
these models is crucial for building trust in their application (van der Velden et al., 2022;
Barredo Arrieta et al., 2020).

In response to these challenges and to bridge the gap in the availability of tools, we
introduce "PhagoStat", a scalable and interpretable DL-based pipeline designed for analyz-
ing phagocytosis processes. PhagoStat (illustrated in Fig. 2.1) combines the precision of
DL with the clarity of XAI, emphasizing interpretability to foster trust and facilitate wider
adoption in cell biology research. This integration enhances cellular feature extraction, pro-
viding an accessible, comprehensive tool that propels forward our understanding of dynamic
cellular processes, especially phagocytosis.
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2.2 Enhancing interpretability in deep learning
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Figure 2.2: Detailed Architectures of Deep Learning (DL) for Cell Instance
Segmentation. This figure provides a comprehensive view of the architectures utilized in
DL for precise cell instance segmentation. (a) It displays the segmentation module’s archi-
tecture during the training phase, featuring the application of custom loss functions, both
global and local, during backpropagation in LSTM modules to refine learning outcomes.
(b) It outlines the detailed inference phase that incorporates U-Net-like architectures with
LSTM modules, along with a watershed algorithm, to achieve detailed instance-level cell

segmentation.
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Figure 2.3: Detailed Architectures of Interpretable Deep Learning (IDL) for
Cell Instance Segmentation. This figure provides a comprehensive view of the archi-
tectures utilized in IDL for precise cell instance segmentation.It explains the segmentation
module, which consists of three major components: (i) streamlined U-Net-like models
linked to a visualization module for real-time analysis at each time point, (ii) a time co-
herence module (TTCM) that efficiently extracts cell seeds, and (iii) a watershed module
that integrates all signals for comprehensive cell separation, enhancing the interpretability

and accuracy of the segmentation process.

2.2.1 Black-box cellular quantification models

The segmentation of cellular instances in biological images represents an important chal-
lenge due to the complex morphologies and dynamic behaviors of cells. This task is critical
for a deeper understanding of cellular functions and interactions in various biological con-
texts. Numerous DL-based methodologies have been developed to address this challenge,
employing advanced neural network architectures to discern intricate cellular shapes and
structures (Turaga et al., 2010; Ronneberger, Fischer, and Brox, 2015; M. Bai and Urtasun,
2017; Arbelle and Riklin Raviv, 2019; Moen et al., 2019; Schmidt et al., 2018; Stringer et al.,
2021). However, most existing techniques do not harness temporal information, which is es-
sential for accurately segmenting cells that exhibit variable morphologies and high motility,
such as microglia.

To enhance the precision of instance segmentation, incorporating spatiotemporal infor-
mation has emerged as a promising strategy. By analyzing cell movement across sequential
image frames, this approach can significantly refine the segmentation accuracy (Arbelle,
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Cohen, and Raviv, 2022; Liang et al., 2022a). Temporal coherence in segmentation helps in
identification and tracking of cells over time, facilitating a more detailed understanding of
cellular dynamics and interactions (Liang et al., 2022a).

It is pertinent to note that while contemporary high-performing methods such as Track-
Mate (Ershov et al., 2022), often deployed as Fiji plugins, are suitable for lighter analytical
tasks, they fall short in handling large-scale automated analyses due to their computational
inefficiency. This limitation underscores the necessity for more robust and scalable segmen-
tation solutions.

In response to these challenges, we propose a comprehensive framework for robust cell
instance segmentation designed to effectively integrate and process extensive datasets. Our
approach consists of three integral components: (i) a cell semantic segmentation module that
generates precise semantic masks, distinguishing cells from the background; (ii) a time-series
coherence module that utilizes information on cellular movement to improve the accuracy of
instance segmentation; (iii) a post-processing step that merges semantic and instance data
to more accurately delineate cell boundaries.

To evaluate the benefits of integrating temporal data, we implemented a DL-based frame-
work utilizing variants of UNet (including UNet, AttUNet, and BioNet) (Ronneberger, Fis-
cher, and Brox, 2015; Oktay et al., 2018; Xiang et al., 2020) to carry out semantic segmen-
tation, combined with long short-term memory (LSTM) networks (Lindemann et al., 2021)
to introduce temporal coherence (as depicted in Fig. 2.2.a). Subsequent post-processing
techniques were employed to ensure distinct separation between individual cells, as shown
in Fig. 2.3.b.

Our results, illustrated in Fig. 2.4.c, indicate that the integration of DL and temporal
data (via AttUNet-LSTM and UNet-LSTM configurations) enhances performance, surpass-
ing that of leading methods like Cellpose and Stardist. However, the BioNet-LSTM config-
uration exhibited variability in performance due to its recursive architecture which tends to
over-fit the feature maps, diminishing its efficacy when paired with temporal modules.

Despite the enhanced capabilities of our DL-based approaches, they inherently lack
interpretability—a significant drawback given the increasing emphasis on understanding
model decisions in scientific applications. To address this, we embarked on a process to
enhance the interpretability of these models, aiming to demonstrate that XAI does not
compromise their effectiveness. This initiative seeks to ’whiten the black box’ of DL-only
methods, showing that it is not only feasible but also competitive with traditional methods
(DL-only, Cellpose, Stardist) in performance metrics.

2.2.2 Interpretable cellular quantification models

2.2.2.1 Visual XAI

In this work, we conducted an extensive exploration of visual explainable methodologies in
DL, as detailed in Section 1 and by the references such as (Barredo Arrieta et al., 2020;
Huff, Weisman, and Jeraj, 2021; Oktay et al., 2018). A focal point of our study was the
employment of post-hoc feature visualization techniques, notably through the utilization of
heat maps. These maps, which transition in color from red to indicate essential features, to
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blue for less critical elements, provided a robust framework for gaining insights into the DL
strategies, specifically the DL-only approach. The insights garnered from these visualiza-
tions informed potential simplifications of the process, aimed at retaining the effectiveness
of cell segmentation methods without compromising their efficiency.

Our empirical investigations included the generation of heat maps for previously unseen
images, focusing on dissecting the feature components inherent in the DL-only approach,
which integrates U-Nets with LSTM. The analysis revealed significant redundancy in the
feature maps produced by U-Nets, suggesting an over-parameterization in the default model
configuration. Conversely, the LSTM components were adept at capturing the less mobile
internal structures of cells, leveraging temporal dynamics to refine the cell boundaries, thus
facilitating enhanced segmentation.

Our method diverged from traditional approaches by optimizing the model quantitatively
rather than relying on annotated test sets, as is common with established methods such as
nnU-Net (Isensee et al., 2021) and NAS (Y. Zhu and Meijering, 2021). This quantitative
evaluation of model efficiency in the feature space is particularly advantageous in scenarios
where unbiased annotations are challenging to procure. Through meticulous monitoring
of performance metrics, we were able to fine-tune the trainable parameters of the U-Nets,
achieving a substantial reduction in model complexity as evidenced by a seven-fold decrease
in model size (documented in Fig. 2.4.e).

2.2.2.2 XAI by model simplification

In response to the insights gained from analyzing LSTM strategies, we developed an inno-
vative image processing algorithm termed the Traceable Time Coherence Module (TTCM).
This module evaluates a temporal window of cell mask predictions, assigning probabilities
to cell parts based on their motion dynamics, thereby enhancing cell segmentation through
temporal analysis similar to that of the LSTM (as detailed in Fig. 2.2.b and Fig. 2.3).

This integrative approach led to the development of more compact versions of U-Nets,
designated as U-Nets(XAI). These versions were optimized through guided visual interpre-
tation, incorporating a visual explanation module designed to enhance the trustworthiness
of the segmentation process, particularly for end users such as biologists and clinicians, by
clearly delineating the intermediate steps in mask generation (see Fig. 2.3).

Furthermore, the TTCM demonstrated several advantages over traditional LSTM-based
methods, including reduced hardware requirements and the absence of a training phase,
alongside offering adjustable parameters for the temporal window, which can be tailored to
the specific dynamics of the cellular activity being studied.

2.2.3 Feature-relevance-based automated optimization of DL models

In the quest for efficient deep learning architectures, the choice of model configuration signif-
icantly impacts both performance and computational overhead. In this work, we employed
the U-Net architecture with its default configuration as a primary reference framework. This
choice was guided by U-Net’s proven efficacy in various image segmentation tasks, where it
employs approximately 30 million trainable parameters in its canonical form.
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Our methodology hinged on employing objective metrics such as Mean Squared Error
(MSE) to evaluate the performance of the model. We initiated our experiments by gener-
ating average feature maps from a dataset devoid of annotations. Each image in this set
was processed by both the reference U-Net model and its compact variants. The latter were
designed with reduced convolutional layers yet retained the essential architectural stages
of max-pooling and up-sampling, similar to the original model. These compact models
displayed a wide range of trainable parameters, from as few as 49K to 12.5 million.

To ensure the consistency and reproducibility of our results, we maintained uniform
experimental conditions across all models. This included the use of a consistent random seed,
identical splits for training and validation datasets, and a uniform number of training epochs.
This methodical approach allowed for a controlled comparison of model performances under
standardized conditions.

During the evaluation phase, we conducted a comparative analysis using the test dataset.
This involved comparing the output feature maps from the full-sized 30 million parameter
reference model against those generated by its scaled-down counterparts. For quantitative
assessment, we employed MSE to compute an average score that reflected the fidelity of
feature representation relative to the reference model. Additionally, we monitored compu-
tational metrics such as inference times and GPU memory usage to evaluate the operational
efficiency of each model variant.

For a comprehensive visualization and assessment of these metrics, we plotted the derived
data, thereby facilitating an intuitive understanding of the trade-offs involved (refer to
Fig.2.9). The composite score, a crucial part of our evaluation, was calculated using the
following equation:

Composite Score = α · Texec + β ·Muse + γ ·QFM (2.1)

where α, β, and γ are coefficients summing to 1, with each ranging from 0 to 1.
These coefficients were used to weight the normalized values of execution time (Texec),

memory usage (Muse), and feature map signal quality (QFM) respectively. Normalization
was performed on a min-max scale to ensure that all metrics ranged between 0 and 1, with
adaptations made to reflect that lower values indicate superior performance.

Our illustrative plots not only demonstrate the non-normalized values of MSE, execution
time, and GPU memory but also the composite scores using a weighting scheme where
α = 0.5, β = 0, and γ = 0.5. The highlighted red point in these plots represents the optimal
trade-off between execution time and feature map signal quality.

In conclusion, the systematic approach adopted in this study not only identifies the
optimal model size but also achieves a balanced optimization of feature map signal quality
against execution speed. This automated framework illuminates our optimization strategy
and enables users toget model parameters to best meet their specific requirements, thereby
harmonizing model complexity, feature quality, memory efficiency, and processing time with-
out the need for annotated test data (optimization performed in the features space).
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2.2.4 Black-box versus XAI segmentation models
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Figure 2.4: Quantitative performance evaluation of the CECC module,
DL/IDL cell instance segmentation module. (a) The performance and (b) execu-
tion time cost of registration methods ECC, CECC (n=1, 3, 5), and SIFT were evaluated
on 1000 randomly shifted frames (x/y ± 400px shift for 20482px frame). CECC (n=5)
achieved the best results with an x/y mean error of 0.008 ± 0.004, outperforming SIFT.
Our cell detection approach was evaluated against Cellpose and Stardist on a 165-image
test set, using a 5-fold cross-validation/testing approach to compute (c) mean Intersection
over Union (mIoU): sum of IoU of the predicted cell masks divided by the ground-truth
cell count; (d) the mean execution time cost per image; (e) number of parameters for DL

and IDL approaches.
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Figure 2.5: Quantitative performance evaluation of the DL/IDL cell instance
segmentation module and the phagocytic activity of microglial cells in FTD con-
text. (a) the accuracy (0.5 ≥ IoU ≥ 1) of our best performing approach ’Att-Unet(XAI)’
were computed. Additionally, (b) the amount of TDP-43 aggregates internalized per cell;
(c) the number of cells in the assay: cell count; (d) the size of the cells: mean cell area
and (e) the amount of TDP-43 internalized per cell surface unit. Statistical tests were
conducted using the Mann-Whitney-Wilcoxon test with ns (p-value ≥ 0.05), ** (p-value

under 0.01), and *** (p-value under 0.001).

In this study, the central focus of our performance evaluation was the mean Intersection
over Union (mIoU), a metric obtained by calculating the IoU scores for the predicted versus
actual cell masks and subsequently averaging these scores across our dataset. This tech-
nique was systematically applied to a test set comprising 165 images, utilizing a five-fold
cross-validation. We conducted a comparative analysis with state-of-the-art segmentation
techniques, which underscored the effectiveness of both conventional deep learning-only ap-
proaches and our enhanced U-Net configurations incorporating XAI "U-Net(XAI)".

It is pertinent to mention, as depicted in Figure 2.4.d, that our evaluation extended to
the inference speeds of all models considered. For instance, the Cellpose method involves
extensive post-processing, converting vector gradient representations into labeled cell masks,
consequently exhibiting reduced performance speed relative to alternative methodologies.

Moreover, the mIoU metric provides a comprehensive means to evaluate cell detection
and segmentation quality independently of any threshold requirement. Nevertheless, it is
important to distinguish that the literature often describes average precision (AP) differ-
ently, where AP = TP+TN

TP+TN+FP+FN , with TN = 0 (Schmidt et al., 2018; Stringer et al.,
2021). We argue that this formulation essentially reflects an accuracy metric, diverging from
the conventional AP metric in object detection, which is typically defined as the area under
the precision-recall curve. Previous studies have also employed this accuracy definition to
evaluate detection quality (Schmidt et al., 2018; Stringer et al., 2021).
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Continuing with the evaluative metrics previously employed by methods such as Cell-
pose and Stardist (Stringer et al., 2021; Schmidt et al., 2018), Figure 2.5.a presents our
application of the same accuracy metric to benchmark our top-performing mIoU method
–’AttUNet(XAI)’– against state-of-the-art counterparts. By varying the IoU thresholds
and computing both mean and standard deviation across the five-fold cross-validation, our
approach demonstrated superior performance, particularly for IoU > 0.8. This result illus-
trates that our methodology not only excels in rapid and efficient instance-level cell segmen-
tation but also ensures high-quality outcomes. For a detailed quantitative and qualitative
comparison, please refer to the Table 2.1 and Figure 2.6.

We adhered to the default configurations of established methodologies (Cellpose and
Stardist) as delineated in their respective publications, employing their publicly available
source code. Notably, while Cellpose and Stardist required extensive training durations of
500 and 400 epochs respectively, our IDL approach required merely 20 epochs, and our
DL-only approach necessitated 40 epochs. This substantial reduction in training time un-
derscores the efficiency of our proposed methods.

Key insights from our findings are encapsulated as follows:

• As demonstrated in Figure 2.4.c, the integration of temporal information significantly
enhances the performance of segmentation methodologies without compromising in-
terpretability.

• Figures 2.3, 2.4.d and 2.4.e validate that enhanced interpretability (visual explana-
tion and my model simplification) can be leveraged to optimize processing speed and
diminish hardware requirements (segmentation performance and execution time).
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Figure 2.6: Instance-level Cell Segmentation Evaluation: Through qualitative
analysis, the Attention-UNet(XAI) model demonstrates superior performance in compar-
ison to Cellpose and Stardist, especially in addressing the complex shapes of cells. This
underscores our model’s robust adaptability to the varied morphologies of cells, positioning
it as a viable contender against current leading methods. However, it is important to note
challenges persist in scenarios where cells form dense clusters or remain in suspension, such
as the depicted white cell cluster at the bottom right. In these cases, our model, along
with others, faces difficulties in precise segmentation, indicating the necessity for ongoing

enhancements to tackle such intricate conditions effectively.

2.2.5 Assessing XAI segmentation generalization capability:

To effectively benchmark our approach against both contemporary and forthcoming method-
ologies in the field of computational biology, we trained and subsequently evaluated the At-
tUnet(XAI) model using the comprehensive Cell Tracking Challenge (CTC) datasets. These
include Fluo-N2DL-HeLa, Fluo-N2DH-GOWT1, DIC-C2DH-HeLa, Fluo-N2DH-SIM+, and
PhC-C2DH-U373, focusing specifically on segmentation tasks as outlined in Table 2.2. The
training regimen utilized both available sequences and their respective ground truth masks,
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following an 80-20 split for training and validation, conducted over up to 200 epochs. Eval-
uation metrics, implemented by the CTC organizers (Maška et al., 2023), included the
Normalized Acyclic Oriented Graph Matching (AOGM-D) measure (Matula et al., 2015)
for detection (DET ), the Jaccard similarity index for segmentation (SEG), and an overall
performance metric OPCSB = 0.5(DET + SEG).

The quantitative assessment by CTC organizers on hidden test datasets highlighted
that the AttUnet(XAI) model achieved a peak performance of 95% in the OPCSB metric
for PhC-C2DH-U373, with performance across the datasets ranging between 84.3% and
95%. Segmentation accuracy, denoted by the SEG metric, varied from 72.2% to 91.7%,
while detection accuracy (DET ) ranged from 88.5% to 98.3%. These outcomes, as provided
by the challenge organizers (Maška et al., 2023), underscore the model’s robust performance
in critical segmentation and detection tasks, reaffirming its utility in automated cellular
imagery analysis (as detailed in Table 2.2).

Despite the impressive benchmarks set by leading methods in the CTC, such as CALT-
US (Guerrero Peña et al., 2020), ND-US (Liang et al., 2022b), and UNSW-AU (Y. Zhu
and Meijering, 2021), their restricted availability for non-commercial, academic research
highlights the practical significance of our model. Although it does not surpass these lead-
ing methods, our model remains accessible for research and amenable to method-specific
refinements. Potential enhancements include the introduction of a third class for cell bor-
ders, dataset-specific hyperparameter adjustments (as suggested by nnU-Net "Isensee et al.,
2021"), innovative data augmentation techniques (such as random sequence reversals, ran-
dom affine, and elastic transformations detailed by NAS "Y. Zhu and Meijering, 2021"),
and the integration of manual annotations (as performed by BGU-IL "Maška et al., 2023").

Moreover, our model distinguishes itself through its efficiency, utilizing U-Net architec-
tures but at a notably reduced computational cost. The file size of our model, a mere
28.2MB, is significantly smaller—11 times less than that of nnU-Net and at least five times
smaller than that utilized by BGU-IL for 2D datasets. This compactness enables the Phago-
stat method to serve as a baseline in automated cellular imagery analysis, particularly when
considering performance relative to model size. By leveraging the AttUNet(XAI) model’s
compact computational footprint, Phagostat facilitates rapid and precise cell segmentation
analyses, ideal for workloads in hardware-constrained environments and underscoring its
broad applicability across various research scenarios.

2.2.6 Methodology limitations

In our methodology, we employ a coherence score to measure the continuity of a cell’s
visibility and tracking across successive frames in a time-lapse sequence. This score is
particularly pivotal when a cell first enters the frame at n, prompting an assessment of
its trajectory over subsequent frames within a predefined time window (until frame n +

time window). This evaluation is critical for determining the cell instance mask at frame
n. Nevertheless, the coherence score may not always accurately reflect cell dynamics due to
exceptional boundary cases:

• Cells that appear within the field of view late in the sequence—specifically after the
final frame minus the time window (last frame − time window)—might receive an
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erroneously low coherence score. To mitigate this, we extend our recording duration
by an additional 30 minutes beyond the essential 7 hours, ensuring a total of 7 hours
and 30 minutes of data to maintain a margin of safety.

• Furthermore, cells that frequently enter and exit the field of view, a phenomenon we
describe as ’field of view border kill’, may also adversely affect the coherence score.

Additionally, it’s important to recognize that dead cells, which remain stationary, might
display high coherence scores, not due to active participation in the observed processes but
due to their unchanging position. Our current methodology does not adjust the coherence
score for such immobility, a decision supported by the lack of qualitative detection of dead
cells by neurologists in our studies. However, this methodology could be adapted to include
parameters that penalize the coherence score for lack of movement. Although not essential
for our research, this refinement could enhance the accuracy of cell viability assessments in
other studies where distinguishing between live and non-viable cells is crucial.

2.3 Exploring Practical Use Cases of Explainability

2.3.1 Global explanation

2.3.1.1 Heat-map visualizations for trust-enhancement

Secondly, heatmaps are widely used in bioinformatics and neuroimaging, which means they are
familiar to our target domain experts, potentially reducing the cognitive load when interpreting the
visualizations. This is complemented by their computational efficiency, which is beneficial during
iterative development and inference.

However, we recognize the existence of advanced visualization techniques in deep learning, like
class activation mapping (CAM) methods, Grad-CAM, Grad-CAM++, and others linked to
gradient backpropagation, also dimensionality reduction like t-SNE. These are particularly suited
to classification tasks, where spatial information is lost in the fully connected layers (when
transitioning from CNN to predict classes). In contrast, our work involves a dense binary
segmentation task at the pixel level, allowing us to maintain spatial correspondence with the
input image across all network stages (max pooling and upsampling stages). This makes our
approach practical and cost-efficient for such pixel-wise tasks.

Maybe also provide a user study on how a domain expert (neuroscientists in this case)
understands the visualization and uses it to understand (and improve?) the underlying DL.

The application of heatmaps during the training of our DL model serves as a compelling case for
both elucidating the learning process of the model and fostering trust among neuroscientists.
Specifically, we've observed key developmental milestones in the model's training: at 10
iterations, the model begins to discern cell textures, distinguishing cells from the background; by
300 iterations, it focuses on intracellular elements, differentiating between cell boundaries and
nuclei; and after 800 iterations, it recognizes cells with partial visibility and accurately
differentiates between individual cells.

Input image Iteration 10 Iteration 300 Iteration 800

This progressive refinement, visualized through heatmaps, offers neuroscientists an intuitive
understanding of the model’s feature learning, resonating with their daily work and conceptual
frameworks. It not only builds confidence in DL technologies but also initiates valuable
discussions on the parallels between artificial and biological neural networks, influencing our DL
model's architecture and optimization strategies.

The heatmap visualizations have effectively served as a bridge, translating the abstract
complexity of DL into concrete, visual progressions that are more readily grasped by domain
experts. Such visual tools have proven indispensable in not only explaining the 'how' and 'why'
behind the model's decisions but also in guiding further improvements (model optimization using
feature maps) to the architecture, detailed in the methods section: ‘Automated DL model
optimization using feature maps’.

Figure 2.7: Progressive Learning Visualization in AttUNet Deep Learning
Model Training. This figure qualitatively illustrates the key stages in the learning process
of our UNet-based deep learning model, as depicted through mean feature map heatmaps.
These heatmaps are crucial in demonstrating the model’s evolving focus throughout its
training. Initially, at the 10 iteration mark, the model begins to recognize cell textures,
effectively distinguishing cells from the background. By 300 iterations, it further refines
its capabilities, honing in on intracellular components and delineating cell boundaries and
nuclei. At 800 iterations, the model displays advanced recognition abilities, identifying
cells with partial visibility and precisely differentiating between individual cells. These vi-
sualizations play a vital role in building trust with neuroscientists by providing transparent

insights (refer to Section 2.3.1) into the model’s dynamic learning process.

In the realm of neuroscience, heatmaps serve as a pivotal visualization tool, offering an
intuitive depiction of feature intensity and spatial distribution. This aligns closely with the
underlying principles of neural activity and the significance of specific features. Heatmaps
excel in presenting stark visual contrasts, which significantly enhance the ease of detecting
underlying patterns and facilitate rapid pattern recognition. Such capabilities are crucial
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in the context of neuroscience where quick and accurate interpretation of complex data is
essential.

The widespread adoption of heatmaps in bioinformatics and neuroimaging underscores
their established status within the scientific community. This familiarity likely contributes
to a reduced cognitive load for domain experts, enabling more efficient interpretation of
these visual aids. The computational efficiency of heatmaps also plays a vital role during
the iterative processes of model development and inference in research, as outlined in this
work.

Recent developments in deep learning visualization techniques, such as Class Activation
Mapping (CAM) methods (B. Zhou et al., 2016), gradient-based approaches (Selvaraju et
al., 2016; Chattopadhyay et al., 2017), and dimensionality reduction via t-SNE (Maaten and
G. Hinton, 2008), alongside feature relevance assessments using SHAP values (Lundberg and
Lee, 2017b; Lundberg, Erion, et al., 2020; Mitchell, Frank, and Holmes, 2020; Lundberg,
Nair, et al., 2018), have proven effective in classification tasks. However, these techniques
often compromise spatial information during transitions through fully connected layers. Our
research focuses on dense binary segmentation tasks where maintaining pixel-level spatial
detail is imperative. By ensuring spatial fidelity through network operations –including
max pooling and up-sampling– our methodology not only preserves spatial integrity but
also emerges as a cost-effective solution for pixel-wise precision tasks.

The application of heatmaps during the training phase of our DL model provides a vivid
illustration of the model’s learning trajectory, thus building trust among biologists and
neuroscientists. We have meticulously documented the model’s progression from its initial
stages of identifying cell textures to its advanced capabilities in recognizing intracellular
elements and individual cells, even under conditions of partial visibility (refer to Fig.2.7).
This methodical enhancement, captured through heatmaps, furnishes domain experts with
a palpable insight into the model’s feature learning process, aligning with their empirical
and theoretical frameworks.

Heatmap visualizations also serve as a crucial intermediary, simplifying the complexities
of deep learning and presenting clear, visual steps of progression that domain experts can
readily understand. These visual tools are indispensable not only for elucidating the un-
derlying logic of the model’s decisions but also for guiding subsequent improvements in the
model’s architecture, as detailed in Section 2.2.3.

Engagement with neuroscientists, facilitated by these visual tools, has refined our ap-
proach, highlighting the practical significance of heatmaps in bridging various disciplinary
perspectives. Although a formal user study is not yet performed, initial feedback indicates
that this visualization technique markedly enhances the acceptance of DL models among
biologists and neuroscientists. Future research will aim to quantify the impact of these
methodologies and integrate them into a framework that supports real-time expert feed-
back. This interactive approach will be designed to refine the training protocols of the
model and augment its decision-making capabilities in real-time applications, ensuring it
aligns with expert knowledge in specialized fields.
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Figure 2.8: Comparative Visualization of Features Learned by U-Net and
Attention-U-Net. This figure illustrates the distinct feature recognition capabilities of
U-Net versus Attention-U-Net models. The U-Net model predominantly focuses on back-
ground features, as these textures are simpler to model compared to cellular textures. This
focus, however, results in a higher incidence of false negatives due to inadequate cellular
detail capture. In contrast, the Attention-U-Net employs an attention mechanism that
prioritizes the texture of cells, leading to significantly fewer false negatives. This visualiza-
tion highlights the differences in how each model processes and prioritizes image features,
demonstrating the enhanced specificity of Attention-U-Net in identifying critical biological

structures.

2.3.1.2 Heat-map visualizations for model comparisons

We noticed intriguing insights during the feature visualization analysis of the UNet and At-
tUNet models, within the domain of cell segmentation. The standard UNet model primarily
harnesses its encoder to extract features from the background, notably at the ’bottleneck’
mid-section. This area acts as a critical juncture where the model’s architecture begins
to focus less on the background, utilizing skip connections within the decoder to enhance
foreground feature extraction for mask generation. This approach reflects a strategic simpli-
fication, favoring the modeling of foreground texture variability over a more uniform back-
ground, as the complexities of cellular textures demand more nuanced processing strategies.

In stark contrast, the AttUNet model introduces a significant modification to this learn-
ing dynamic by integrating an attention mechanism. This mechanism refines the model’s
focus, sharpening its capability to discern and prioritize cellular features more distinctly,
as evidenced by the heatmaps presented in Fig. 2.8). This nuanced focus is pivotal, as it
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highlights the AttUNet model’s enhanced ability to adapt its feature extraction processes to
emphasize biologically relevant features within the same training dataset used by the UNet
model.

This differential learning strategy between the two models not only delineates their
architectural distinctions but also underscores a critical aspect of deep learning in medical
imaging: the ability of advanced models to selectively enhance feature recognition and
extraction based on specific clinical or biological needs. Consequently, despite both models
being trained on identical datasets, the introduction of an attention mechanism within
the AttUNet allows it to achieve segmentation results that are not only comparable but
potentially more refined in terms of reducing false positives and enhancing the accuracy of
feature delineation in complex biological images.

2.3.2 Local explanation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total Parameters 1e7

1

2

3

4

5

6

7

8
×10 2 Mean features MSE

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total Parameters 1e7

2

3

4

5

6 ×10 2 Execution Time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total Parameters 1e7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×109 GPU Memory (bytes)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total Parameters 1e7

5.5

6.0

6.5

7.0

7.5

×10 1

Best Config

Composite Score

Feature maps evaluation MSE metric along with execution time and memory foot print across UNet model configurations

Figure 2.9: Evaluation of Automated Deep Learning Model Optimization Using
Feature Maps: Balancing Feature Map Signal Quality and Execution Efficiency
in Unet Models. This figure delineates the comparative analysis of several quantitative
metrics across Unet models, including the Mean Squared Error (MSE) of feature map signal
quality relative to a 30M-parameter reference Unet model, execution time (in seconds),
and GPU memory utilization (in bytes). A composite score is derived using the formula:
α × time + β × memory + γ × MSE, where all metrics are min-max normalized to range
between 0 and 1. For metrics where a lower value signifies superior performance, the
normalized value is adjusted to 1−metric value. The coefficients used are α = 0.5, β = 0,
and γ = 0.5. The red point on the graph identifies the optimal trade-off between execution
time and feature map quality, indicating the most efficient parameter settings for the Unet

model.

2.3.2.1 Model sensitivity analysis methodology for smart annotation

The findings of this research underscore the critical role of developing visualization tools
specifically tailored for direct model ablation studies, focusing on the dynamics of input
alterations and their influence on model parameters during training phases, as well as their
subsequent effects on output during testing phases. This investigative process is inher-
ently time-consuming, involving extended periods of training, validation, and visualization,
thereby posing substantial challenges in real-world applications. However, as detailed in the
Section 2.2.3 and depicted in Fig. 2.9, our proposed methodology effectively mitigates these
challenges by reducing the model size. This reduction not only enhances training efficiency
but also significantly diminishes the risk of overfitting –a pivotal concern when training
models with a limited dataset– to ensure the robustness of our findings.
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In specialized tasks such as segmentation in biological studies, the selection of appro-
priate images for annotation is a critical yet often arbitrary process, constrained by the
resources at hand. Our methodology facilitates the identification of the most advantageous
image types for model training. We validated this approach by evaluating the influence
of varying quantities of annotated cell masks on training efficacy, with a particular focus
on cell count variation. Our experimental framework employed three images per cell count
from our microglial dataset, meticulously chosen from distinct acquisitions to prevent data
leakage. We examined 13 different conditions, each with cell counts ranging from 14 to 40
per image, by training separate models for each scenario using the Attunet(XAI) architec-
ture. Remarkably, this entire training process for 13 models on a standard GPU required
less than 30 minutes, thus demonstrating the efficiency of our approach in swiftly assessing
model performance under diverse conditions.
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Figure 2.10: Comparative Sensitivity Assessment of AttUnet(XAI) Across
Varying Cell Quantities per Condition. This figure illustrates the outcomes of two
distinct test setups aimed at evaluating the performance of the AttUnet(XAI) model. On
the top, results from our sensitivity analysis framework are presented, where only three
images per cell count were utilized for training, validation, and testing, significantly min-
imizing data requirements. On the bottom, the graph displays the model’s performance
using 100 test images per condition across 23 conditions, involving a total of 2300 images
with varying cell counts. The Mean Squared Error (MSE), where lower values indicate
better performance, was calculated between the model-generated probability maps and the
corresponding ground truth binary masks. The top-5 performing models provide practical
guidelines, such as the prioritization of annotating images with cell counts between 28 and
38 and a foreground-to-background ratio of 31% to 47%. These results underscore the
effectiveness of our sensitivity assessment framework in pinpointing key image characteris-
tics that influence model performance, thereby guiding annotators towards more strategic
and efficient processes. This approach facilitates a detailed investigation of the model’s
behavior under controlled conditions without significant time or computational burdens.
Training the 13 distinct cell count models required less than 30 minutes in total on a single

8GB GPU (NVIDIA RTX 2080).

Our results offer valuable insights for annotators, as illustrated in Fig. 2.10.top, by
identifying and prioritizing specific images that significantly enhance model performance.
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Notably, the top-5 performing models revealed that images featuring cell counts between
28 and 38 with a foreground-to-background ratio of 31% to 47% yielded optimal training
results. To validate these findings, we extended our testing to encompass 2300 images, as
shown in Fig. 2.10.bottom, which substantiated the initial recommendations derived from
a considerably smaller dataset. This extensive testing emphasizes the model’s sensitivity to
particular parameters, such as cell count, and underscores the effectiveness of our method
in evaluating model behavior with minimal annotation and training inputs.

This streamlined and efficient approach for model evaluation and annotation strategy
optimization in biological segmentation tasks. By requiring minimal resources and time,
our methodology not only assists biologists in intelligent annotation but also establishes a
practical framework for exploring model behavior in controlled experimental settings. To
facilitate the application of our results, we have made the source code available in publicly
accessible notebooks on Github, complete with visualization tools for immediate analysis,
thereby simplifying the integration process across various experimental conditions.

2.4 PhagoStat pipeline components

The pipeline presented in this study is composed of several interconnected modules, each
designed to carry out specific functions (refer to Appendix A for the implementation details).

Initially, the data-efficient loading and normalization module, detailed in Section 2.4.1,
optimizes data handling and preprocessing. This module plays a role in minimizing the
computational demands, thus facilitating more efficient downstream analysis.

Subsequently, the spatiotemporal frame registration process, covered in Section 2.4.2,
includes a rigorous data quality check. Key features of this process involve correcting scene
shifts and detecting blurry frames, thereby ensuring the precision and reliability of the data
while maintaining consistent spatial and temporal alignment throughout the frames.

Furthermore, detailed in Section 2.2.2, the pipeline features modules for cellular and
aggregate quantification that enable detailed analyses of cellular properties and interac-
tions. The first of these employs instance-level interpretable segmentation techniques that
efficiently extract and analyze features from unstained cell images, allowing for detailed
observations of individual cell behavior and morphology. In parallel, the second module ap-
plies image processing techniques to segment and match aggregates from fluorescent images,
thus elucidating complex interactions between cells and aggregates and uncovering critical
biological and morphological insights.
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2.4.1 Data efficient loading and normalization
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Figure 2.11: Efficient data loading and normalization pipeline. This pipeline in-
cludes: (a) A detailed data loading and normalization module which extracts two channels
(aggregates and cells) directly from the microscope’s raw data and applies both local and
global normalization to standardize the data; (b) A High Performance Computing (HPC)
cluster compatible scheme that efficiently scales to accommodate big datasets; (c) A quan-
titative comparison of our single-CPU/multi-CPU method against the GPU-accelerated
Carl Zeiss ZEN software for processing a 76GB CZI file. To ensure a direct comparison,
the ’Frame input & output’ times encompass both reading and writing operations across
all systems. An analysis of time allocation shows that our method assigns 25% for reading
and 75% for saving on SSDs, while on HDDs, it allocates 76.6% for reading and 23.3% for

saving.
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We emphasize that our module is designed with flexibility in mind, allowing for seamless
integration with various microscopy systems rather than being tailored to any specific mi-
croscope or software. This universality is demonstrated through the implementation of
open-source packages. Comparative performance assessments reveal that our module func-
tions at least twice as efficiently as conventional proprietary software and requires only
one-eighth the hardware resources, as illustrated in Fig. 2.11.c.

Our comprehensive evaluation shows that the innovative combination of percentile nor-
malization—adapted globally for each sequence—and cumulative histogram distribution
matching—tailored locally to each image—significantly reduces data variability. This dual
normalization approach enhances the performance of our deep learning segmentation model,
leading to an improvement of up to 10% in the Dice coefficient. Additionally, we have in-
corporated this normalization strategy into the raw data readout module, exploiting its
parallel processing capabilities. This integration significantly reduces the time required for
multiple processes, namely reading, normalizing, and saving data, thereby offering a more
efficient workflow compared to traditional methods where normalization follows data read-
out, involving steps such as reading raw data, storing it in an open format, reloading it for
normalization, and subsequently saving the processed data.
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2.4.2 Data quality check and correction
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Figure 2.12: Detailed Data Quality Workflow: (a) CECC Registration Approach:
Detailed description of the registration approach based on CECC. (b) Data Quality Check
Modules: This includes (i) a CECC-based scene shift correction module for adjusting scene
shifts using CECC, (ii) a blurry frames detection module for identifying and tagging blurry
frames, and (iii) functionality for saving registration information and the rejected blurry
frames. (c) Overview of the Aggregates Quantification Workflow: Combines data quality
checks with segmentation and matching procedures to ensure accuracy and completeness.
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During our analysis of high-content video-microscopy recordings captured over extended
periods, we observed the presence of several unavoidable hardware-related acquisition faults
or artifacts. One such artifact was the unintended shaking of the microscope along the x and
y axes. These imperfections, although localized to specific frames, had a detrimental impact
on the overall sequence quality. Consequently, these artifacts can potentially compromise
the accuracy and reliability of subsequent data analysis and interpretation, underscoring
the importance of addressing such issues in a systematic manner during the data processing
stage.

In our study, we aimed to investigate how external disturbances affect the performance
of the microscope camera sensor. To this end, we recorded 20 simultaneous scenes, each
containing two channels (cells:non-fluorescent and aggregates:fluorescent), with a frequency
of 1 frame every 2 minutes, over a period of 7 hours without any interruption. During the
recording process, we estimated that the microscope camera sensor had only 6 seconds (2
min divided by 20 scenes) to cycle and stabilize along the x and y axes from frame n to
frame n+1 to capture pixel intensities and write them to a local disk.

However, external disturbances, such as mechanical vibrations, lens getting out of focus,
can cause the microscope camera sensor to deviate from its normal performance, further
reducing the time-response gap. Likely, such external disturbances occur at least once
during the 7h non-stop sessions. When this happened, it affected the quality of 1 to 10
consecutive frames.

In order to counteract the potential influence of external disturbances on our analy-
sis, we developed a registration-based module specifically designed to align and stabilize
the frames. This module effectively mitigates any potential deviations caused by external
factors, ensuring the accuracy and reliability of the subsequent data analysis.

It is important to note that in the aggregate channel, the majority of pixels belong
to the background. This predominance of low-intensity pixels (i.e., the background) in
comparison to the high-intensity pixels (i.e., the aggregate) presents a challenge when it
comes to registration (offset correction).

Given the explainable nature of our pipeline, we opted against using black-box registra-
tion approaches based on DL (Sengupta, Gupta, and Biswas, 2022). Instead, we chose to
employ the Scale-Invariant Feature Transform (SIFT) algorithm (Lindeberg, 2012) as our
registration method. SIFT is not only fully explainable and mature, but it has also become
publicly available since the expiration of its patent in March 2020. This combination of
explainability and accessibility makes SIFT an ideal choice for our pipeline.

Although the application of SIFT proved sufficient in correcting the shift, as demon-
strated in Fig. 2.4.a and in Table.2.3, we observed a statistically significant directional bias
in the shift correction. As a result, we concluded that an unbiased approach was necessary to
address the registration problem effectively. To this end, we proposed a generalized version
of the Enhanced Correlation Coefficient maximization approach (ECC) (Evangelidis and
Psarakis, 2008), which we have termed Cascade ECC (CECC), as illustrated in Fig. 2.12.a.

CECC offers an unbiased solution, ensuring consistent registration performance irrespec-
tive of the shift direction. Our approach achieved sub-pixel precision for shift margins up
to ±20% of the image size (i.e., ±400px for 2048× 2048px frames). To provide context for
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Absolute error

along x-axis along y-axis Execution time (sec)
ECC 196.02±119.34 206.93±116.50 0.92±0.72
SIFT 0.0153±0.0609 0.0228±0.1221 3.09± 0.12

Ours CECC (n=5) 0.0079 ± 0.0046 0.0081±0.0047 8.77±0.20

Table 2.3: Performance evaluation of our CECC registration method compared
to the state-of-the-art: We report the results as the mean ± standard deviation, cal-
culated over 1,000 registration tests. Independent random shifts along the x and y axes
were generated within a range of ±400 pixels for 2048× 2048 pixel images. The best met-
rics per column are bolted, and the second-best metrics are underlined. Absolute error is
calculated based on the difference between the estimated registration coordinates and the
ground truth, which are the generated shifts along the x and y axes. Registration time
cost is determined by the time taken to register a pair of images (reference and shifted).
We demonstrate that ECC is ineffective for the specified registration task, and that the
SIFT exhibits a directional bias. In contrast, our proposed CECC (n=5) is unbiased and
performs significantly better than both approaches. We conducted the evaluation using the
following hardware: a 4-core Xeon Gold 6126 CPU and 1GB RAM. For the SIFT method,

we used 2GB RAM, as 1GB was insufficient.

these results, the largest unwanted shift observed in our study was approximately 5% of the
image size. This demonstrates the robustness of CECC, which offers a 15% margin in the
context of the worst-case scenario observed. It is worth noting that there is a significant
difference in registration speed between SIFT, with an average of approximately 3 seconds
per frame, and CECC (n=5), with an average of approximately 8.7 seconds per frame (refer
to Fig. 2.4.b). This discrepancy can be attributed to the maturity and optimization of SIFT,
as compared to the proposed CECC. We anticipate that this gap will eventually be reduced
through the contributions of the open-source community.

An other issue worth mentioning when we explored the data is that the microscope
lens can get getting out of focus because of physical vibration. This introduce some blurry
frames into the scene, which unnaturally amplify the size of aggregates, thus, biasing the
phagocytic quantification.

We addressed this issue, by including a blur detection module, that uses image processing
to detect the loss of details in images. Then discard them from the stack.

To streamline the data quality check process we combining the CECC-based scene shift
correction and the blurry frames detection module (see Fig. 2.12.b).

This gives the user full traceability over the data quality, making the definition of objec-
tive criteria possible. For example, the maximum tolerated shift along either axis x and y
can not be more than 50 pixels at any frame, and the maximum tolerated blurry frames in
a given scene can not be more than 5%. The data quality check module plays a crucial role
in detecting (i.e., blurry frames), correcting (i.e., scene shift) and objectively quantifying
the severity of hardware/human errors in real-world conditions.

2.4.3 Aggregates quantification

To accurately detect and quantify aggregates in time-lapse videos, we developed a specialized
module that processes data via a sequence of steps. These steps encompass: (i) employing
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a threshold-based segmentation specifically designed for fluorescent aggregates; (ii) gener-
ating a binary mask to distinguish individual aggregates; (iii) calculating and recording the
count, surface area, and coordinates of aggregates; and (iv) quantifying phagocytized ag-
gregates through changes in surface area and coordinates. Our tests revealed that tracking
the reduction in surface area captures two crucial phenomena: the decrement observed as
a cell internalizes an aggregate piecemeal, and the coordinate shifts occurring when the
aggregate becomes sufficiently small to be engulfed by the cell. This dual measurement
approach enables accurate quantification of phagocytosis, defining complete internalization
as phagocytosis.

In this study, the presence of fluorescent aggregates was indicated by high pixel intensi-
ties, while their absence corresponded to low intensities, allowing for effective segmentation
via a simple threshold. Our experimental protocol ensured that aggregates remained sta-
tionary in the presence of cells initially, indicating that any subsequent movement was
attributable to cellular activity. Further, our imaging highlighted the dynamic interplay be-
tween microglia and fluorescent aggregates, which appeared as brightly fluorescent against a
dimmer background. During internalization, aggregates were intermittently masked by the
cell plasma membrane, creating transient, moving white shadows due to cellular motion. As
microglia degraded the aggregates, fluorescence decreased, culminating in complete darkness
when fluorescence ceased. Our analytical method effectively differentiated true fluorescence
of both static and mobile aggregates from background noise, using particle movement detec-
tion to ensure accurate and consistent identification and segmentation of non-internalized
aggregates.

The efficacy of this technique is predicated on two primary assumptions: the fluorescence
and initial immobility of aggregates in the presence of cells. Thus, observed movements of
aggregates are ascribed to cellular actions. This monitoring relies on detecting shifts in
the aggregate centroid from its original position, a strategy that may prove unreliable if
aggregates were not stationary or if the assumption of fluorescence was invalid.



52 Chapter 2. PhagoStat: scalable and interpretable pipline
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Figure 2.13: Scene cell instance segmentation and tracking. The scene instance-
level segmentation module leverages either the DL module (Fig.2.2.b) or the IDL module
(Fig.2.3) to perform scene cell instance segmentation, quantifying cell count, area, and
coordinates for each frame. This is further supported by the scene shift correction module
(Fig.2.12.b) that adjusts cell centroids, essential for accurate tracking. A tracking algo-
rithm, such as the Bayesian Tracker, is then applied to these corrected features to calculate
cell speed and total movement. The integration of these modules allows for the results to
be compiled and saved in an open-source CSV format, facilitating data sharing and anal-

ysis.

We delineate the components of our phagocytosis quantification pipeline, ’PhagoStat’, illus-
trated in Fig.2.1. The pipeline begins by automatically allocating computational resources,
utilizing a high-performance computing cluster for extensive computations as depicted in
Fig.2.11.b, or a local machine for less demanding tasks (Fig.2.11.a). Upon loading, the raw
data undergoes normalization and division into two distinct channels to separately analyze
cells and aggregates. This approach aids in correcting alignment shifts and removing any
blurred frames, thereby enhancing the accuracy of subsequent analyses (Fig.2.12.b). The
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aggregates are then meticulously segmented to quantify morphological attributes such as
area and count (Fig.2.12.c).

Parallelly, the cell data is processed through a scene instance-level segmentation module
(Fig.2.13), facilitating the extraction of cellular metrics like area and coordinates. These
metrics are crucial for tracking cellular movements and calculating dynamic parameters
such as cell speed and total displacement, as described by recent studies in cellular tracking
algorithms (Ulicna et al., 2021; Bove et al., 2017). Moreover, the pipeline generates heat
map visualizations and time-coherent data traces for enhanced interpretability (Fig.2.3).

The results from various experimental conditions are aggregated to produce a detailed
statistical report. It is pertinent to mention that the current version of our statistical module
supports analyses under two conditions. For experiments involving more conditions, the
reporting framework would require modifications to handle the additional conditions data.

Regarding the pipeline’s efficiency, it is designed to process data from 20 scenes –each
spanning 7 hours with frame pairs captured each 2 minutes–within approximately 20-30
minutes. Initially evaluated on a CPU-only cluster, the pipeline’s performance suggests a
potential reduction in processing time when utilizing GPUs, underscoring its capacity for
swift and effective data analysis.

2.5 Microglial cells phagocytosis use case

The dual role of microglial phagocytosis, which includes the clearance of protein aggregates
as well as the problematic phagocytosis of live neurons and synapses, has been extensively
studied in the context of neurodegenerative diseases such as Alzheimer’s and Parkinson’s
(Scheiblich et al., 2021; Janda, Boi, and Carta, 2018; Gentleman, 2013; Q. Li and Haney,
2020; Q. Li and Barres, 2018). In developing our assay, we specifically addressed FTD,
highlighting mutations in the genes C9ORF72 and GRN, which are prevalent in familial
forms of FTD and are known to modulate microglial functions like phagocytosis (Lui H,
2016; Lall D, 2021; Haukedal H, 2019). The accumulation of TDP-43 protein aggregates
in neurons, (Neumann M, 2006; Arai T, 2006) suggests that enhancing aggregate clearance
could be beneficial therapeutically. However, the risk of exacerbating neurodegeneration
through excessive synaptic pruning or the phagocytosis of live neurons has been shown in
cases of C9ORF72 mutations (Lall D, 2021).

Furthermore, while existing phagocytosis assays employ simple targets like latex beads or
pH-sensitive fluorescent particles, there is a significant interest in developing more sophisti-
cated assays. These assays aim to analyze microglial phagocytic activity using physiological
targets such as protein aggregates and intact neuronal networks, which is essential for iden-
tifying and developing therapeutic compounds targeting abnormal phagocytic activities.

To assess the specific phagocytic activity of both WT and FTD-mutant microglial
cells, we quantitatively evaluated the uptake of TDP-43 aggregates per cell, as depicted
in Fig. 2.5.b, which presents the ratio of aggregate area internalized to cell count. Remark-
ably, FTD-mutant cells exhibited a 70% higher rate of phagocytosis compared to their WT
counterparts, suggesting an enhanced phagocytic aggression. Despite ensuring an equal cell
count in the assays (Fig. 2.5.c), we noted a significant increase in the size of the FTD-mutant
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microglial cells (Fig. 2.5.d: mean cell area), with these cells being approximately 30% larger
than the WT cells, a novel observation in our studies. Consequently, we further analyzed
the amount of TDP-43 internalized relative to the cell surface area (Fig. 2.5.e: aggregates
ratio = area eaten/cell area), revealing that the increased cell spread might account for
the heightened phagocytic activity in FTD mutants. Importantly, there were no significant
changes in the overall mobility or movement speed of the cells, as indicated in Fig. 2.15 and
Fig. 2.14.
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Figure 2.14: Comparative Analysis of Phagocytosis Metrics Over Time for
WT and FTD Groups: This figure offers a detailed comparison of phagocytosis-related
metrics between WT and FTD groups, capturing their dynamic differences over time. It
includes a series of panels illustrating various parameters: (a) the aggregate area consumed
by cells, (b) cell count, (c) mean cell area, (d) cell surface area consumption, (e) total cell
movement, and (f) cell speed. Through this comparative analysis, the figure facilitates
a comprehensive understanding of the distinct phagocytic behaviors characterizing each

group.
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Figure 2.15: Additional quantitative results of FTD-mutant versus WT mi-
croglial cells: On the left, the quantification of the cells’ mean speed and on the right,
the quantification of total cells movement are presented. Statistical analysis was conducted
using the Mann–Whitney–Wilcoxon test, where a non-significant result is indicated by a

p-value ≥ 0.05 (ns).

Phagocytosis dataset for microglial cell

In this study, we have undertaken a detailed analysis of the phagocytosis of protein aggre-
gates by microglia within the context of FTD. FTD is a neurodegenerative disease char-
acterized by mutations in genes that regulate microglial functions, such as C9ORF72 and
GRN, which are associated with specific types of aggregates composed of the TDP-43 pro-
tein (Bright F, 2021; Neumann M, 2006; Arai T, 2006). For the purpose of this study,
we will collectively refer to these mutations as FTD mutants, as distinguishing between
C9ORF72 and GRN is not pertinent to our objectives.

The data for this study comprises acquisitions from wild-type (WT, n=5) and fron-
totemporal dementia (FTD, n=5) microglial cells during the phagocytosis process. Each
acquisition consists of 20 distinct scenes, recorded over seven hours of time-lapse video
microscopy at one frame every two minutes, capturing both cell and aggregate images in
two separate channels. Our team of biologists has meticulously generated a comprehen-
sive dataset, which has been rigorously validated by the laboratory’s ethical committee.
This dataset includes 36496 normalized cell images and 36496 aggregate images, along with
1306131 individual instance masks for cells and 1553036 for aggregates. Additionally, it
contains 36496 registered aggregates and data of the intermediate steps in tabular format,
all generated using the PhagoStat algorithm. To maintain high data quality, we applied var-
ious data quality correction techniques. The dataset offers an extensive array of biological
features, such as area, position, and speed, presented on a frame-by-frame basis to facilitate
in-depth analysis.

To further enhance the dataset’s utility, we incorporated 226 manually annotated im-
ages, which collectively contain 6430 individual cell masks (seed dataset). These images,
encompassing a variety of conditions including WT and FTD, were selected randomly from
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a broad spectrum of scenes. Initially, a polygon-based method was employed by our team
of expert biologists to annotate 61 images, a process facilitated by the use of 1. Despite
their meticulous efforts, the annotation process was slow and fraught with inconsistencies,
particularly due to the irregular shapes of the cells. To address these challenges, we devel-
oped "Point2Cell," a GUI-based annotation tool2, which markedly enhanced the efficiency
of our annotation process. This new tool not only improved the Dice score for precision
from 91.3% to 94.97%, but also reduced the average annotation time from 96.1 seconds to
14.6 seconds per image. Consequently, Point2Cell was utilized to annotate the remaining
165 images, accounting for 4694 individual cell masks, which were designated as the test set
for objective model evaluation. The initial set of 61 images, encompassing 1736 cell masks
and annotated via LabelMe, were retained for training and validation to ensure the models
were well-tuned prior to testing.

The resulting dataset comprises a robust collection of 235288 files (94GB) of ’2D +
time’ aggregate and cell images in a monolayer configuration, providing researchers with a
valuable resource for investigating various cellular and aggregate properties in their studies.

Firstly, our dataset, available at 3, serves as a comprehensive benchmark, providing a
reliable reference for researchers aiming to test the efficacy of their algorithms or techniques
against PhagoStat. This meticulously curated dataset includes data from both WT and FTD
mutant microglial cells engaged in the phagocytosis process, establishing a robust basis for
comparative analysis. Secondly, by detailing parameters such as area, position, and speed on
a frame-by-frame basis, our dataset exemplifies the capabilities of PhagoStat to thoroughly
analyze microglial phagocytosis of protein aggregates, especially pertinent in FTD contexts.
Lastly, the dataset is invaluable during the pre-training phase for those seeking to extend the
application scope of PhagoStat across different data modalities. Utilizing our dataset for
model pre-training can potentially hasten model convergence and enhance generalization
performance. To facilitate this, we employed AttUNet(XAI) and UNet(XAI) models on
subsets WT-1 to WT-3 and FTD-1 to FTD-3 for training, with subsets WT-4 and FTD-4
used for validation. Subsequent evaluations on WT-5 and FTD-5 resulted in both models
achieving a Dice score of 97.88%.

2.6 Discussion

Phagocytosis, a crucial cellular process, acts as a primary defense mechanism against dan-
ger signals and pathogens, vital for the immune system’s functionality. Within the brain,
microglial cells are exclusively responsible for phagocytosis. The importance of their phago-
cytic activity has become increasingly recognized in neurodegenerative disease research,
where neuroinflammation is implicated in disease pathology, potentially through mechanisms
such as the clearance of aggregate formations or the aberrant phagocytosis of live neurons
and synapses. Recent studies have also explored the potential of antibody-mediated clear-
ance of aggregates by phagocytic microglia as a therapeutic avenue for Alzheimer’s disease
and other dementias.

1LabelMe: polygon-based annotation tool
2Point2Cell: seed based annotation tool
3Microglial dataset

https://github.com/wkentaro/labelme
https://github.com/ounissimehdi/Point2Cell
https://zenodo.org/records/10803492
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Quantifying the phagocytosis of amorphous and highly active unstained cells presents
significant challenges, crucial for advancing our understanding of neurodegenerative diseases.
This process typically involves the use of phase-contrast time-lapse video microscopy to
capture rapid cellular interactions, although distinguishing these cells from their background
remains difficult.

Addressing these challenges, the PhagoStat framework offers a scalable, real-time anal-
ysis solution that utilizes high-performance computing clusters to efficiently process large
datasets, as demonstrated by its ability to manage 750 GB across ten CZI files in merely
97 minutes with only CPU utilization. PhagoStat’s adaptability is further evidenced by a
tripling in data retrieval speeds upon upgrading from HDD to SSD storage, signifying ongo-
ing performance improvements. Designed to process data concurrently with its acquisition,
PhagoStat enables completing analyses of 7-hour recordings within 20 minutes, synchroniz-
ing perfectly with microscope operations to ensure immediate availability of results upon
recording completion, thus optimizing workflow efficiency.

PhagoStat also emphasizes transparency and compliance with General Data Protection
Regulation (GDPR) guidelines, enhancing trust and understanding among users while en-
suring data safety and reproducibility. Such features not only support scientific integrity
but also accelerate the translation of research into practical applications.

By providing an interpretable and transparent pipeline, PhagoStat empowers a diverse
range of users—from laboratory technicians to biologists and physicians—to deepen their
understanding of the processes under study. This approach also fosters opportunities for
pipeline optimization tailored to specific needs, contributing to sustainable practices by
reducing the carbon footprint of technological operations.

The quality of data is paramount; hence, the PhagoStat pipeline includes robust data
quality checks adaptable to varying acquisition conditions. However, our current registration
method, CECC, although less biased than the commonly used SIFT method, requires further
optimization to enhance processing speed. Investigating the biases associated with the SIFT
method, particularly in landmark identification due to background dominance or geometric
similarity of aggregates, could provide valuable insights for improving our pipeline.

Our transition from a deep learning-only to an interpretable deep learning approach
has significantly reduced model size while maintaining high performance, facilitated by
an automated evaluation system for feature map integrity. This system not only optimizes
model selection but also conserves computational resources, expanding the models’ usability
across lower-specification hardware.

In this study, we employed FTD-mutants and wild-type cells to showcase our pipeline’s
utility, grouping GRN and C9ORF72 mutations under FTD-mutants for simplicity, though
acknowledging the potential biological distinctions between these mutations as an area for
future research. Our findings on the increased size and activity in mutant cells contribute
significantly to neurodegenerative disease research, with the public release of an extensive
dataset on microglial cell phagocytosis adding a valuable resource for the community.

Looking ahead, we are excited about the potential of moving into 3D spatio-temporal
analysis, which represents not just a shift in dimensionality but a leap towards a more
genuine in vivo understanding of cellular behavior. This transition introduces substantial
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computational and data management challenges, heralding a new era in methodological
computer vision and interpretable AI, crucial for advancing models of neurodegenerative
diseases like brain organoids.
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Figure 3.1: Visual-XAI-enhanced trustworthy virtual staining approach. End-
to-end virtual staining approach generating synthetic IHC stains by using a single H&E
encoder and multiple stain decoders. Quality check (QC) protocol based on self-inspection
features uses trained discriminators to consolidate trust in the generated synthetic stains,
by ensuring the alignment of the new H&E slides with the trained distribution and by
validating the quality of the generated stained slides. Integration of cloud-based computing
enhances accessibility and adoption by enabling pathologists to efficiently process large
datasets from anywhere, while end-to-end system’s algorithms are handled in a back-end

containerized environment.
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Ounissi, M., Sarbout, I., Hugot, J. P., Martinez-Vinson, C., Berrebi, D., & Raco-
ceanu, D. (2024). Scalable, Trustworthy Generative Model for Virtual Multi-Staining
from H&E Whole Slide Images. arXiv preprint.
https://arxiv.org/abs/2407.00098.

Ounissi, M., Berrebi, D., & Racoceanu, D. (2024). Patent submitted: EP
24 305 224.8: Trustworthy and Scalable Unpaired Virtual Multi-Staining.

Ounissi, M., Berrebi, D., & Racoceanu, D. (2024). Patent submitted: EP
24 305 221.4: Trustworthy and Scalable Paired Virtual Multi-Staining.

Summary

Chemical staining methods, while reliable, are time-consuming and resource-intensive, rais-
ing environmental concerns. Virtual staining offers a faster, more flexible alternative without
the physical and chemical costs. Generative AI technologies can address these challenges,
but their opaque processes complicate adoption in high-stakes healthcare decisions, espe-
cially in computational pathology. Our work introduces an innovative approach using gen-
erative models for virtual stain transformations, enhancing performance, trustworthiness,
scalability, and adaptability. A single Hematoxylin and Eosin (H&E) encoder supports mul-
tiple stain decoders, prioritizing critical regions in the latent space for precise synthetic stain
generation. Our method, tested to generate eight different stains from one H&E slide, offers
scalability by loading only necessary components during production. We integrate label-
free knowledge during training to minimize artifacts, enhancing virtual staining accuracy
in both paired and unpaired settings. To build trust, we use real-time self-inspection with
trained discriminators, providing pathologists with confidence heat-maps. Automatic qual-
ity checks on new H&E slides ensure high-quality synthetic stains. Our open-source, cloud-
based proof-of-concept system allows easy virtual staining through a browser, addressing
common hardware and software challenges and facilitating real-time feedback. Additionally,
we have curated a novel dataset of eight different paired H&E/stains related to pediatric
Crohn’s disease, providing 30 whole slide images for each stain set (480 WSIs total) to
stimulate further research in computational pathology.

https://arxiv.org/abs/2407.00098
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Résumé

Les méthodes de coloration chimique, bien que fiables, sont chronophages et consomment
beaucoup de ressources, soulevant des préoccupations environnementales. La coloration
virtuelle offre une alternative plus rapide et flexible sans les coûts physiques et chimiques.
Les technologies d’intelligence artificielle générative peuvent relever ces défis, mais leurs
processus opaques compliquent l’adoption dans les décisions de santé à enjeux élevés, no-
tamment en pathologie computationnelle. Notre travail introduit une approche innovante
utilisant des modèles génératifs pour les transformations de coloration virtuelle, améliorant
la performance, la fiabilité, l’évolutivité et l’adaptabilité. Un seul encodeur Hematoxyline et
Éosine (H&E) prend en charge plusieurs décodeurs de coloration, en donnant la priorité aux
régions critiques dans l’espace latent pour une génération précise de taches synthétiques.
Notre méthode, testée pour générer huit colorations différentes à partir d’une seule lame
H&E, offre une évolutivité en chargeant uniquement les composants nécessaires lors de la
production. Nous intégrons des connaissances sans étiquette pendant la formation pour min-
imiser les artefacts, améliorant ainsi la précision de la coloration virtuelle dans des contextes
appariés et non appariés. Pour instaurer la confiance, nous utilisons une auto-inspection
en temps réel avec des discriminateurs entraînés, fournissant aux pathologistes des cartes
de confiance. Des contrôles de qualité automatiques sur les nouvelles lames H&E garan-
tissent des colorations synthétiques de haute qualité. Notre système de preuve de concept
open-source et basé sur le cloud permet une coloration virtuelle facile via un navigateur,
en répondant aux défis matériels et logiciels courants et en facilitant les retours en temps
réel. De plus, nous avons créé un nouvel ensemble de données comprenant huit différentes
paires H&E/colorations liées à la maladie de Crohn pédiatrique, fournissant 30 images de
lames entières pour chaque ensemble de colorations (480 images au total) afin de stimuler
la recherche en pathologie computationnelle.
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3.1 Opportunities and Challenges in Virtual Staining

Hematoxylin and Eosin (H&E) staining, a cornerstone of histopathology, is globally
recognized for its cost-effectiveness and has solidified its place in routine diagnostic

protocols, including cancer grading (Saha, Chakraborty, and Racoceanu, 2018; Echle et al.,
2021). Despite its merits, H&E staining falls short in identifying specific proteins, a critical
factor for precise disease diagnosis and severity assessment.

To address this limitation, Immunohistochemical (IHC) staining has been adopted as
an effective alternative, particularly for identifying specific proteins critical for classifying
various tumor types and pinpointing the origins of metastatic tumors. This technique is
indispensable for detecting minute tumor cells that might elude standard staining procedures
and is particularly beneficial for diagnosing diseases that elude traditional biopsy cultures
and serological diagnostics (Magaki et al., 2019; Oumarou Hama et al., 2022). However, the
IHC method is resource-intensive, prone to errors, and potentially delays diagnosis, which
could be detrimental to patient care. Moreover, the chemicals used in IHC can hinder
further tissue analysis and present environmental risks (B. Bai et al., 2023).

These challenges highlight the urgent need for an automated, digital, and reliable stain-
ing process to optimize the selection of stains and enhance diagnostic accuracy. Advances in
computational pathology, especially the application of deep learning techniques, are pivotal
in this regard. These methods have successfully enabled the conversion of H&E stains to
IHC stains, improving diagnostic accuracy (B. Bai et al., 2023; Haan et al., 2021).

Both supervised and unsupervised deep learning strategies have shown promise in trans-
forming H&E to IHC stains across various organs. The supervised method, often termed
"paired", and the unsupervised method, known as "unpaired", do not necessarily require
aligned slides, which adds flexibility to the staining process (Borhani et al., 2019; Rivenson
et al., 2019; T. M. Abraham et al., 2022).

Despite the potential of these computational techniques, the adoption of deep generative
models faces skepticism due to trust issues among clinicians and pathologists, particularly
concerning their applicability in real-world scenarios. The requirement for specialized hard-
ware and software further complicates their integration into routine pathology practices.

In response to these challenges, we propose a novel computational pathology pipeline
that enhances the scalability, accuracy, trustworthiness, and utility of virtual staining tech-
niques. Our approach integrates a unified encoder with multiple stain decoders, incorporates
trust-building mechanisms through self-inspection, and utilizes advanced training methods
without the need for additional annotations. A cloud-based deployment strategy and a
unique dataset focused on pediatric Crohn’s disease further enhance the utility and appli-
cability of our pipeline in computational pathology.
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Virtual staining has emerged as a transformative approach for efficient stain transfor-
mations in WSIs. In recent years, generative adversarial networks have facilitated the gen-
eration of multiple stains, marking significant advancements in the field. Despite these
improvements, challenges persist in terms of scalability, accuracy, trustworthiness, and ac-
cessibility for clinicians (Ciompi et al., 2017; B. Bai et al., 2023). This section delves into
the literature, focusing particularly on the H&E to IHC transformation. Our aim is to
underscore the existing limitations and provide a detailed overview of the current research
landscape, thereby situating our study within the broader context of computational pathol-
ogy.

3.1.1 Advancements in stain synthesis through deep learning techniques

Computational pathology intensively investigates the capabilities of stain transformations
and synthesis. These scholarly pursuits are oriented towards the precise digital replication of
tissue slide staining utilizing paired datasets, which incorporate both H&E stains along with
corresponding WSIs in alternative stains. Several pivotal studies exemplify progress in this
area. For instance, (Haan et al., 2021) implemented a deep learning algorithm that processes
H&E tiles and concurrently produces Jones, MT, and PAS stains. Likewise, (Burlingame
et al., 2020) formulated the SHIFT method utilizing a paired pancreas dataset to transmute
H&E into virtual immunofluorescence imagery, estimating the distribution of the tumor cell
marker pan-cytokeratin. Building upon these developments, (Hong et al., 2021) employed a
paired gastric carcinomas dataset to synthesize cytokeratin staining from H&E, aiding in the
diagnosis of gastric cancer.(Xie et al., 2022) leveraged a paired prostate dataset to transform
H&E to CK8 IHC stains, a fundamental step towards reconstructing 3D segmented glands
for prostate cancer risk stratification. Additionally, (S. Liu, C. Zhu, et al., 2022) devised a
pyramid approach to generate human epidermal growth factor receptor 2 IHC stain from
H&E using a paired breast cancer dataset.

Despite these technological advancements, the methodology of paired H&E/IHC staining
presents significant challenges. (Yang et al., 2022) underscores that the staining procedures
are generally irreversible and pose logistical and technical obstacles in acquiring paired data.
Moreover, inconsistencies within one staining type can undermine the accuracy of the other,
thereby diminishing the overall diagnostic efficacy.

In response to these challenges, innovative methodologies have emerged. One such ap-
proach involves the C-DNN (Yang et al., 2022) method, which utilizes cascaded deep neural
networks to transform images from auto-fluorescence to H&E, and subsequently to PAS,
effectively bypassing the difficulty of acquiring paired data. Additionally, the utilization of
unpaired dataset configurations has been explored, notably through the CycleGAN (Good-
fellow, Pouget-Abadie, et al., 2014; J. Zhu et al., 2017), a widely adopted model. Unpaired
datasets have facilitated transformations such as those by (Levy and al., 2020) from H&E to
trichrome, and by (Mercan et al., 2020) from H&E and PHH3 stains. Further investigations
by (Lahiani et al., 2021) incorporated a perceptual embedding consistency loss in Generative
Adversarial Networks (GANs), and (S. Liu, B. Zhang, et al., 2021) generated Ki-67-stained
images from H&E-stained samples. Moreover, the MVFStain framework (R. Zhang et al.,
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2022) succeeded in converting H&E-stained images into multiple virtual functional stains
across diverse scenarios.

In the academic state-of-the-art, two predominant methodological frameworks for do-
main representation are identified. The first approach engages separate pairs of encoders,
decoders, and discriminators for each domain pairing, as illustrated by CycleGAN (J. Zhu
et al., 2017) and its derivatives. This strategy mandates the training of 3 × n models, of-
ten precipitating scalability impediments during the training phase due to the substantial
computational resources required. In contrast, methodologies such as StarGAN (Y. Choi,
M. Choi, et al., 2017; Y. Choi, Uh, et al., 2019) employ a consolidated model that includes
a mapping network, a style encoder, a generator, and a discriminator. This architecture
facilitates the generation of multiple latent domain representations, each styled as distinct
domains, thereby streamlining the training process by utilizing a single model to support
multiple transformations.

Nonetheless, these methodologies present certain limitations, particularly in specialized
applications. For instance, a pathologist requiring a specific subset of stains—namely, s out
of S potential stains derived from H&E—encounters a significant computational challenge.
They must either deploy 2× s models (an encoder and a decoder for each stain required) or
rely on an overarching model that incorporates all S stains. Both scenarios demand extensive
computational resources, consequently impeding prompt real-time responses. Moreover, the
existing virtual staining technology does not facilitate the concurrent synthesis of more than
three IHC stains in a single session, representing a notable constraint in scalability and
adaptability to the diverse demands of clinical settings.

Despite these hurdles in digital pathology, the broader domain of image processing has
witnessed appreciable advancements in addressing similar scalability concerns. For instance,
approaches such as those delineated in (Anoosheh et al., 2017), which employ a separate
encoder, decoder, and discriminator for each domain, demonstrate considerable scalability
potential. This success in other fields suggests that analogous methodologies could be
transposed to digital pathology, potentially amplifying scalability and efficacy in a domain
where these qualities are critically needed.

The progression of computational pathology has immensely benefited from diverse train-
ing strategies, loss functions, and regularization techniques. Contributions from studies such
as (Q. Liu et al., 2018; Tellez et al., 2018) have led to significant enhancements in model
performance. Yet, embedding knowledge in a self-supervised manner without depending on
additional labels remains a complex challenge.

Additionally, the contextual framework within which computational pathology operates,
particularly the selection of magnification in WSI interpretation, has attracted increasing
scrutiny. Research such as (Sirinukunwattana et al., 2016; Courtney et al., 2018; Kosaraju
et al., 2020à has underscored the pivotal role of context in augmenting the efficacy of
deep learning models in tissue characterization and cell classification. However, within
the realm of virtual staining, there exists a considerable disconnect, with methods often
reliant on arbitrary magnification scale selections. This accentuates the necessity for further
exploration in virtual staining techniques that leverage both paired and unpaired datasets,
aiming to enhance their applicability and effectiveness.
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In conclusion, the substantial impact of synthetic stains on patient outcomes necessitates
that these methods be both efficient and reliable. Concerns pertaining to their interoper-
ability and consistency remain critical areas for enhancement, which our research endeavors
to address within the existing academic milieu.

3.1.2 Advancements in cloud-enabled computational pathology

In recent years, the field of collaborative image analysis systems has experienced remarkable
advancements, with the emergence of several influential platforms that have reshaped the
domain. QuPath (Bankhead, Loughrey, and Fernández, 2017) pioneered the introduction of
web-based remote collaboration in computational pathology, enabling annotations and the
incorporation of modifiable algorithms through JavaScript and Groovy. Additionally, the
Open Reproducible Biomedical Image Toolkit (ORBIT) (Stritt, Stalder, and Vezzali, 2020)
was launched, specializing in integrating existing analysis tools for medical imaging, with
its collaborative capacities augmented by the inclusion of OMERO (Besson et al., 2019;
Linkert et al., 2010).

Although some tools exhibit limited AI capabilities, Cytomine (Marée et al., 2016) sets
itself apart with its innovative web-based interface. It was the first platform to facilitate the
display of multiple WSIs within a web environment, obviating the need for software installa-
tion. Cytomine’s platform is notably comprehensive, encompassing all essential components
for server deployment—including web servers, job concurrency management, data storage,
and a robust API. This integration renders it particularly suitable for histopathology appli-
cations.

Furthermore, the platform enhances inclusivity and reproducibility of results by support-
ing any dockerized algorithm. This feature grants authorized users access to an extensive
array of tools for collaborative medical image analysis. The platform’s design also facili-
tates job monitoring and enhances user interaction, which in turn improves collaboration
and workflow management. Due to its efficacy in promoting collaboration, efficiently man-
aging medical image data, and integrating advanced machine learning techniques, Cytomine
is increasingly favored across various applications.

To the best of our knowledge, no cloud-based open-source platform has previously in-
corporated virtual staining in a reliable manner. In response to this gap, and in alignment
with our technological advancements and research objectives, we have integrated our vir-
tual staining method into the platform as a proof of concept. This integration provides a
framework that empowers pathologists by eliminating the need for specific hardware and
software requirements. It saves time and enhances their diagnostic and research capabilities
in medical imaging analysis. This achievement is realized through a browser interface where
all complex computations are managed in the backend, streamlining the user experience.

3.1.3 Datasets in virtual staining: challenges and opportunities

In the field of computational pathology, the transformation and synthesis of stains constitute
critical areas of research that aim to enhance diagnostic precision. Numerous studies in this
domain rely on the utilization of diverse datasets, particularly paired datasets, which include
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both H&E stains and their corresponding IHC stains on the same tissue slide. For example, a
significant investigation by (Burlingame et al., 2020) harnessed a paired dataset of pancreas
tissues to develop the SHIFT method, which converts H&E images into virtual PanCK
immunofluorescence images, thus estimating the distribution of the tumor cell marker pan-
cytokeratin. Similarly, (Haan et al., 2021) used a dataset of paired tissue slides to transmute
H&E tiles into Jones, Masson’s Trichrome, and Periodic Acid–Schiff stains.

Research also extends to datasets that feature various cancer types. (Hong et al., 2021)
employed a paired dataset of gastric carcinomas to generate cytokeratin staining from H&E,
aiding in the diagnosis of gastric cancer. (Xie et al., 2022) utilized a paired prostate dataset
to transform H&E into CK8 IHC stains, with the goal of reconstructing 3D segmented glands
for prostate cancer risk stratification. Moreover, (S. Liu, C. Zhu, et al., 2022) concentrated
on producing the human epidermal growth factor receptor 2 (HER2) IHC stain from H&E
using a paired breast cancer dataset.

While paired datasets are fundamentally valuable, they are not devoid of challenges.
Given that staining procedures are generally irreversible, acquiring such data can present
technical difficulties (Yang et al., 2022). In response to these obstacles, the exploration of
unpaired datasets has commenced. For instance, (Levy and al., 2020) successfully trans-
formed H&E to trichrome using an unpaired liver dataset and modified H&E to SOX10 IHC
using a skin and lymph node dataset. Innovatively, (Lahiani et al., 2021) implemented a
perceptual embedding consistency loss in Generative Adversarial Networks (GANs), using
an unpaired liver dataset to convert H&E into FAP-CK IHC stain. Additionally, studies
like (S. Liu, B. Zhang, et al., 2021) have generated Ki-67-stained images from H&E-stained
samples using unpaired and unbalanced datasets from neuroendocrine tumors and breast
cancers. The MVFStain framework (R. Zhang et al., 2022) also stands out, transforming
H&E-stained images into various virtual functional stains for tissues including mouse lung,
breast cancer, and rabbit cardiovascular system.

Despite these advances in computational pathology, the availability of data remains
a limiting factor, particularly the paucity of high-quality public paired H&E/IHC stain
datasets. For example, although (Haan et al., 2021) publicly shared the source code of
their approach, the dataset they employed remains proprietary. Furthermore, specific do-
mains, such as pediatric Crohn’s disease at the diagnosis stage (pre-treatment), are under-
researched and offer avenues for future investigations.
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3.2 Multi-Virtual Staining: Scalability and Performance

Figure 3.2: Multi-Virtual Staining Outcomes Associated with Crohn’s Dis-
ease. This figure illustrates the high-resolution WSIs of diverse synthetic stains, generated
through the application of LIHC and LH&E loss functions within an unpaired framework.

3.2.1 Comparative analysis of unified versus individual H&E encoders

In this investigation, we endeavored to devise an advanced methodology capable of simulta-
neously generating multiple virtual stains. Current practices, as explicated in Section 3.1.1,
restrict the simultaneous production to a maximum of three stains. Motivated by a desire
to transcend these constraints, we adopted style transfer methods from frameworks such as
ComboGAN (Anoosheh et al., 2017), which is proficient in managing up to 14 disparate
art styles. This approach was tailored for histopathological contexts by integrating a novel
framework comprising a dedicated H&E encoder, generator, and discriminator. This archi-
tecture facilitates the concurrent training from H&E to multiple stains S, as depicted in
Section 3.4.1 – Figs. 3.1, 3.6, and 3.5.

Our empirical findings, delineated in Table 3.1, underscore the superiority of utilizing a
unified H&E encoder for multi-virtual staining applications. Synthetic stains derived from
this encoder consistently exceeded the performance of those from separate encoders tailored
to individual stains. We assessed the efficacy using the Mean Square Error (MSE) metric by
comparing the synthetic stains against genuine counterparts using a paired test set of H&E
samples. These comparisons demonstrate that our methodology significantly surpasses the
performance of the CycleGAN approach.

Both the unified and CycleGAN methodologies were evaluated under identical experi-
mental conditions, encompassing the same dataset, equivalent training durations, and con-
sistent architectures for the encoders, generators, and discriminators. Our approach not
only enhances computational efficiency through the utilization of a single encoder, decoder,
and discriminator across the staining process but also minimizes the number of trainable
parameters compared to the CycleGAN method (refer to Fig. 3.10). This streamlined archi-
tecture increases computational efficiency and fosters scalability by accommodating a wider
array of output stains and expediting the training phase.



70 Chapter 3. Scalable, Trustworthy Generative Model

In summary, the unified H&E encoder method surpasses alternative techniques by pro-
ducing more accurate synthetic stains and demonstrating superior computational efficiency,
thereby establishing itself as a scalable and robust solution for extensive histopathological
investigations.
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3.2.2 Context-importance

Owing to the substantial dimensions of WSIs, typically on the order of 10000 × 10000

pixels, contemporary GPUs are incapable of processing an entire slide in one pass during
the training phase. Consequently, virtual staining methodologies frequently adopt a sliding
window tiling strategy. This technique partitions the slide into smaller tiles, or patches,
which align with the operational constraints of deep learning architectures and computation
capacities (e.g. GPU memory). The commonly employed dimensions for these patches are
128×128 pixels and 256×256 pixels (R. Zhang et al., 2022; Lin et al., 2022). Implementing
this strategy necessitates meticulous selection of the magnification level for analysis (e.g.,
10×, 20×, and 40×), as it significantly influences the learning paradigm in both paired
and unpaired scenarios. Utilizing smaller patches escalates the total number of patches per
WSI, thereby raising concerns regarding the inference time, specifically the time required to
reconstruct a virtually stained slide. Addressing these technical challenges is essential not
only for enhancing performance metrics but also for understanding the practical implications
concerning inference times, a critical consideration for pathologists.

In our empirical investigations, by adopting a modular approach that obviates the need
for simultaneous loading of all model components, we successfully processed tiles of 512×512

while concurrently training on 8 stains plus H&E on a conventional 16GB GPU. This con-
figuration provides a spatial resolution at least fourfold greater than those reported in (R.
Zhang et al., 2022; Lin et al., 2022), offering enhanced flexibility and the ability to incor-
porate more contextual data within each patch. To ascertain the optimal magnification for
virtual staining, we trained our model at various magnifications, each resized to a uniform
dimension of 512 × 512 pixels for consistent image processing. The magnifications tested
included 10× (original tile size of 2048 × 2048 pixels ≈ 450.56 × 450.56µm), 20× (original
tile size of 1024× 1024 pixels ≈ 225.28× 225.28µm), and 40× (original tile size of 512× 512

pixels ≈ 112.64 × 112.64µm), under both paired and unpaired learning settings to evalu-
ate the impact of magnification on model efficacy. As depicted in Table 3.2, in the paired
settings, all magnifications provided comparable outcomes due to the direct correspondence
between the H&E-stained WSI and other stained WSIs. Our studies in unpaired settings
disclosed that lower magnifications, offering wider contextual views, significantly enhance
model performances, underscoring the importance of integrating extensive contextual infor-
mation for effective learning where direct stain correspondences are absent, thus guiding
future advancements in virtual staining technologies.

In the paired analysis, initial experiments employed a 10× magnification, correlating
to a resolution of 512 × 512 pixels (approximately 0.88µm per pixel). The original images
were further resized to 1024× 1024 pixels (0.44µm per pixel) to more effectively assess the
impact of pixel density on high-context paired training. To fully exploit the capabilities
of high-end GPUs, such as the NVIDIA A100 80GB, we additionally experimented with a
maximal image size of 1400× 1400 pixels (0.32µm per pixel) during the training phase.

Table 3.3 illustrates the scalability of our modular approach, capable of processing images
with eight stains plus H&E up to the 1400×1400 resolution. Comparative analyses presented
in Tables 3.2 and 3.3 underscore that augmenting contextual information within the images
is substantially more beneficial than merely increasing pixel density.
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3.2.3 Eliminating stitching artifacts in synthetic slides

In our comprehensive examination of existing virtual staining methods (Mercan et al., 2020;
Burlingame et al., 2020; Hong et al., 2021; S. Liu, B. Zhang, et al., 2021; Haan et al., 2021;
R. Zhang et al., 2022; Lin et al., 2022), both paired and unpaired, it is apparent that a
predominant number utilize a sliding window tiling approach during model training, as elu-
cidated in Sections 3.1.1 and 3.2.2. This prevalent training technique frequently culminates
in challenges associated with reconstructing WSIs from the resulting patches. Notably, this
can induce visible stitching artifacts, such as abrupt color transitions at tile borders and
errors adjacent to these boundaries, as demonstrated in Figure 3.3.b (0% overlap in both
settings, indicated with red arrows). These artifacts not only diminish the reliability of these
tools in the eyes of pathologists but also escalate cognitive strain and error rates during slide
evaluations. This complication is ubiquitous among all tile-based virtual staining methods,
emphasizing the imperative for a universal remediation strategy.

To address these challenges, we have devised a post-processing technique specifically
tailored for WSIs within the realm of virtual staining. Our findings suggest that the models
exhibit context sensitivity, with enhanced accuracy at the center of tiles and diminished pre-
cision near the edges. Capitalizing on this observation, our methodology involves stitching
tiles with deliberate overlap, focusing on the central regions of the tiles using a Hamming
window (Hamming, 1998; Oppenheim and Schafer, 1999) (refer to Section B.2.5), thus aug-
menting performance without necessitating additional training. This approach, illustrated
in Figure 3.3, markedly ameliorates all evaluated metrics in both paired and unpaired con-
figurations and leads to superior perceived image quality compared to the ground truth. It
is noteworthy that while our post-processing technique slightly extends processing time, it
yields a substantial improvement in the performance-to-time ratio. An optimal overlap of
60%, as depicted in the figures, achieves an optimal balance between performance enhance-
ment and execution time (>1min per 8 stains). This post-hoc processing strategy not only
effectively mitigates stitching artifacts but also enhances the overall utility of virtual stain-
ing technologies in clinical environments. By streamlining the workflow, it facilitates the
routine application of these technologies in fast-paced clinical settings, potentially expand-
ing their adoption and fostering trust among pathologists. This adjustment ensures the high
quality of the generated WSI virtual stains (refer to Figures 3.2 and 3.4) while providing
necessary spatial context and maintaining manageable processing times, thus aligning with
the requirements and dynamics of contemporary anatomopathological practice.
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Figure 3.3: Post-Processing Effects on Stitching Artifacts and Objective eval-
uation in Virtually Stained Slides. (a) Illustrates the enhanced outcomes achieved
through various overlap strategies employing a Hamming window, highlighting the im-
proved image quality and diminished artifacts. The optimal performance-to-time execu-
tion ratio is realized at a 60% overlap. (b) Demonstrates typical stitching artifacts at
tile borders with overlaps of 0%, 30%, and 60%, indicated by red arrows, which exemplify
the abrupt color transitions and errors near the boundaries. This figure elucidates the
comparative analysis across performance metrics (MSE, PSNR, SSIM) in both paired and
unpaired settings, underscoring the efficacy of the post-processing strategy in elevating the
overall quality and promoting the integration of virtual staining technologies within clinical

practices. For reproducibility details, refer to Section B.2.5.
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3.2.4 Generalizing across diverse stain types

Figure 3.4: Multi-Virtual Staining Results on Kidney Slide No. 5 from the
AHNIR Dataset. This figure demonstrates the high-quality synthetic stains produced

by our methodology, showcasing the effectiveness of our approach.

The ANHIR dataset (Borovec et al., 2020) encompasses five collections of high-resolution
human kidney tissue slides, where each collection comprises four sequential tissue slides
stained with diverse histological stains (H&E, MAS, PAS, and PASM). Despite their struc-
tural similarities, these slides are not pixel-level aligned and all exhibit magnification at
40×.

Following the experimental protocol defined in UMDST (Lin et al., 2022), four collections
(Kidney 1, Kidney 2, Kidney 3, Kidney 4) were designated as training datasets, with the
fifth collection (Kidney 5) set aside for testing purposes. In alignment with the UMDST
protocol, the H&E-stained slide from Kidney 1 was excluded due to notable color variation
relative to other collections. For computational processing, the slides were segmented into
256x256 pixel tiles, with an overlap of 192 pixels.

Our methodology involved simultaneous training using the three stains, excluding H&E,
through the utilization of four encoders, four decoders, and four discriminators. The training
regimen consisted of 150000 iterations at a constant learning rate of 2 × 10−4, followed by
an additional 150000 iterations with a linearly decreasing learning rate, culminating in
300000 iterations in total. We employed the Adam optimizer with parameters β1 = 0.5 and
β2 = 0.999, and a batch size of 1, consistent with the UMDST protocol (Lin et al., 2022).
Data augmentation was limited to random flipping and random rotation. The training was
executed on a single NVIDIA A100 80GB GPU. Loss weights were defined with λcyc = 10

and λadv = 1, and the cycle consistency losses Lcyc,i were calculated by averaging over
components from the kidney dataset every three iterations, setting Lidt = 0, Llat = 0, and
Lfwd = 0.

Evaluation on Kidney 5 was conducted as depicted in Figure 3.4, with qualitative out-
comes summarized in Table 3.4. To compare with the leading-edge, the Contrast Structure
Similarity (CSS) metric (Lin et al., 2022; L. Xing, Zeng, et al., 2017; L. Xing, Cai, et al.,
2018) was applied, as detailed in Table 3.4.

Table 3.4 demonstrates enhanced performance and generalization capabilities relative
to contemporary state-of-the-art approaches in MAS, PAS, and PASM staining techniques.
The marginal underperformance in PASM staining, relative to the benchmarks established
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by (Lin et al., 2022), can be attributed to the methodological emphasis on preserving the
histomorphological features characteristic of H&E stains. This preservation is advantageous
as it enhances the CSS metric, which quantifies the correlation between H&E and PASM
stains. Notably, PASM staining inherently diminishes certain morphological details through
its application of black coloration; consequently, our model is trained to replicate this effect,
which should be regarded as an intrinsic feature rather than a flaw. Should there be a re-
quirement to retain these histological details (yielding a less authentic PASM representation
but conserving all H&E characteristics), a forward loss strategy may be employed as de-
tailed by (Lin et al., 2022). This, however, introduces a compromise between the retention
of morphological detail and the fidelity of staining. Additionally, our methodology excels
in scalability during both the training and inference phases and distinctively incorporates
XAI features. These capabilities, absent in alternative methodologies, are particularly vital
within a clinical context.
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3.3 Multi-Virtual Staining: XAI

3.3.1 Annotation-free knowledge guided training and H&E regularization

Figure 3.5: An Overview of the Training Mechanism for Paired Stain Synthe-
sis and Loss Function Computation in H&E ↔ Stain i Conversion. A. This part
delineates the initial training cycle, initiating with a genuine paired H&E image XH&E ,
synthesizing a corresponding image in stain i denoted as Ŷi, and subsequently reconstruct-
ing the original H&E image X̂H&E . This reconstruction serves to facilitate the computation
of the loss function components, as elaborated in Section 3.4.1. B. This section outlines
the second training cycle, commencing with a genuine stain i image Xi, generating a corre-
sponding H&E image ŶH&E , and concluding with the reconstructed stain i image X̂i. The
use of the staining mask Mi (where M̄i denotes the complementary mask of Mi) is pivotal
in computing various elements of the loss function, further detailed in Section 3.4.1. Each
panel illustrates the model’s enhancements aimed at increasing the precision and consis-

tency of stain synthesis and discrimination within paired training scenarios.

To augment the reliability and trustworthiness of virtual staining techniques in histopathol-
ogy, our approach aim to enriches the training model by integrating constraints derived
from chemically stained slides. Unlike artistic style transfer applications, such as those doc-
umented in (Anoosheh et al., 2017; Y. Choi, M. Choi, et al., 2017; Y. Choi, Uh, et al., 2019),
where the domain discrepancies simplify the discriminator’s role, enhancing the pressure on
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the generator for precise image reproduction. However, the intricacies in histopathological
staining lie in the universal morphological characteristics present across various stains, with
deviations primarily manifesting in activation responses to specific proteins. This scenario
presents two primary challenges: (i) the model might underrepresent regions with activated
stains, which appear less frequently compared to non-activated regions, thereby causing in-
accuracies in stain generation where the discriminator fails to distinguish between genuine
activated areas and false negatives produced by the model; (ii) with an increase in the diver-
sity of output stains, the encoder might disproportionately favor certain stains, potentially
distorting the learning process and hindering overall performance.

To mitigate these issues, our methodology integrates LIHC loss functions that autonomously
discern stain-specific attributes (see Figure 3.11), and adaptively adjusts the loss functions
to accentuate underrepresented activated regions (refer to Section 3.4.1, Figure 3.6 and
Figure 3.5). This adjustment aims to minimize errors and reduce false staining. Initially,
stain-activated regions are identified and subsequently employed to spatially modify the loss
functions, thereby focusing more on pertinent tissue sections.

Additionally, we implement an H&E regularization, LH&E, to ensure balanced atten-
tion across diverse stains, recalibrating the model to uniformly consider all stains by back-
propagating the average error across the H&E components exclusively.

This strategic integration not only consolidates the training process but also demon-
strates scalability, as evidenced by enhanced results documented in Table 3.5. By combin-
ing LIHC with LH&E, the model’s performance in both paired and unpaired configurations
is significantly improved, ensuring consistent attention across various stains and markedly
increasing overall effectiveness.
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Figure 3.6: An Overview of the Training Mechanism for Unpaired Stain Syn-
thesis and Loss Function Computation in H&E ↔ Stain i Conversion. A. This
part elucidates the initial training cycle, commencing with an authentic H&E image XH&E ,
proceeding to generate a synthetic stain i image Ŷi, and culminating with the reconstructed
H&E image X̂H&E . This progression is essential for the computation of the loss function
components. B. This part depicts the subsequent training cycle, initiating with a genuine
stain i image Xi, leading to the creation of a synthetic H&E image ŶH&E , and ending
with the reconstructed stain i image X̂i, integrating the staining mask Mi (with M̄i repre-
senting the complementary mask of Mi). This setup facilitates the computation of various
elements of the loss function, as detailed in Section 3.4.1. Each panel underscores the
model’s strategic modifications and refinements, designed to target and enhance underrep-
resented activated regions, thereby ensuring more precise and consistent stain synthesis

and discrimination.
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3.3.2 Regularization impact on unpaired multi-virtual staining quality

Most style transfer methods emphasize the importance of regularization to enhance and
stabilize the training process. For instance, the regularization via identity mapping loss
is pivotal for retaining the color integrity in input paintings within artistic contexts, as
demonstrated by the CycleGAN framework (J. Zhu et al., 2017). Similarly, the forward
loss regularization plays a critical role in virtual staining applications by preserving mor-
phological features when transitioning from H&E staining to other types, a feature central
to the UMDST model (Lin et al., 2022). However, despite the diversity of these techniques,
comprehensive ablation studies assessing their effectiveness in virtual staining remain under-
studied.

In our study, detailed in Table 3.6, we perform an extensive ablation analysis to assess
both individual and combined impacts of various regularization techniques on virtual stain
synthesis quality. This investigation explores multiple configurations of synthesis loss func-
tions and regularization methods to determine the most effective setups. The evaluation
metrics employed, including MSE, PSNR, and SSIM, measure error, quality, and visual
similarity of the synthesized images, respectively. Our findings, presented in Table 3.6, offer
a granular analysis on how different combinations of loss functions–specifically identity loss
Lidt, latent loss Llat, and forward loss Lfwd (refer to Section 3.4.1.2)–influence key perfor-
mance indicators such as MSE, PSNR, and SSIM. Each row in the table delineates the
effects of these loss functions on the assessment metrics, providing critical insights into the
efficacy of each configuration.

Notably, applying the forward loss Lfwd alone yields superior outcomes compared to
baseline approaches that include or exclude the combination of LIHC and LH&E. The Lfwd

proves particularly efficacious in conserving the morphological attributes highlighted by the
H&E staining, vital for precise virtual staining.

Furthermore, the optimal performance is achieved when Lfwd is combined with Lidt.
This synergy not only preserves the morphological integrity of the stains but also retains
the original features of the input images, thereby ensuring high fidelity in the virtual staining
process. This finding underscores the value of integrating both forward and identity losses as
a robust approach to enhance the quality and accuracy of the synthesized stains, especially
beneficial for applications demanding high precision in unpaired virtual staining.

Conversely, incorporating latent loss Llat in the tested combinations does not positively
impact staining outcomes. In fact, setups including Llat consistently underperform across
all metrics compared to those excluding it. This observation suggests that latent loss might
disrupt the preservation of essential staining characteristics, specific to each stain, thus
rendering it less suitable for virtual staining applications where accuracy and fidelity are
paramount.
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3.3.3 Enhancing trustworthiness: self-inspection for anomaly detection

0 5 10 15 20 25 30
0

500

1000

Confidence map standard deviation [%]

co
un

t
Ti

le
 co

un
t

Figure 3.7: Discriminator Confidence Analysis for Anomaly Detection in H&E-
Stained Tiles Across Multiple Scanners. This figure presents the evaluation of the
authenticity of 47984 H&E-stained tiles derived from 2022 authentic WSIs, which were
stained over a 20-year period using various scanners. Discriminator confidence maps assess
the authenticity of each tile, using the standard deviation of the map values. A histogram
illustrates the acceptable range for H&E staining authenticity, defined empirically between
3.11% and 14.86%. Tiles falling within this range are considered highly authentic, while
those outside are flagged as outliers. Such outliers are typically either background or sig-
nificantly degraded tiles, characterized by unusually high or low deviations in confidence
levels. These results underscore the discriminator’s ability to detect and quantify tile au-
thenticity, providing pathologists with a crucial tool for excluding unreliable artifacts in the
H&E staining and scanning processes. This method enhances the quality control within the
multi-virtual staining pipeline, effectively minimizing potential errors in synthetic stains
and improving the reliability and accuracy of the resulting images. For details on repro-

ducibility, refer to Section 3.4.2.

A significant challenge in applying generative models, especially in healthcare, is their lack of
a confidence score. This limitation prompts several critical questions: How can we identify
issues in the input H&E data? What is the model’s confidence in its virtual stains? How
do we evaluate the synthetic stains’ quality and spot potential errors that could affect a
pathologist’s reliance on virtual stains or decision to seek traditional chemical stains for
confirmation?

These concerns are crucial in contexts where high-stakes decisions are made. It is imper-
ative to develop interpretable methods to ensure the reliability of these advanced generative
techniques. In this study, we employ knowledge-guided training to not only improve control
during the learning process—which has shown to enhance performance as discussed in Sec-
tion 3.3.1—but also to furnish pathologists with a narrative that they can interpret. Our
method focuses on stain masks, directing attention to medically relevant features for better
clarity than what a purely black-box model would provide.

Furthermore, we exploit the discriminator’s knowledge acquired during training—a re-
source typically discarded after training—to assess the authenticity of images. This novel
use supports the inspection of data quality and deviations from the learned distribution.
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To validate our approach, we processed H&E tiles and assessed global degradation due
to factors like incorrect stain concentration or scanner settings, as depicted in Figure 3.8.
The discriminator successfully identifies domain shifts in these images, aligning with an
anomaly detection framework by marking deviations in red (see Figure 3.8). These findings
corroborate our hypothesis that the discriminator can detect newly emerging defects in H&E
tiles.

An evaluation was conducted using 2022 authentic WSIs from a private dataset, which
included 47,984 tiles of 512x512 H&E stained tiles. Given the possibility of both local
and global anomalies, we utilized the standard deviation of the discriminator’s confidence
map as a diagnostic tool, as illustrated in Figure 3.7. This analysis not only verifies the
discriminator’s ability to identify outliers, such as artifact-laden tiles and predominantly
background tiles, but also supports the empirical establishment of a confidence interval,
specifically 3.11% < acceptable < 14.86%. This technique introduces an effective filter
to prevent the incorporation of substandard H&E images into the multi-virtual staining
process, thereby minimizing potential errors in synthetic stains and increasing the reliability
and credibility of the outcomes.

Furthermore, we applied the discriminator’s confidence maps to the generated virtual
stains to create pixel-wise confidence scores. These scores provide pathologists with crucial
insights by highlighting areas where the virtual staining diverges from the expected stain
appearance. This functionality serves as an additional verification layer in the output stage
of our pipeline and is visually depicted through heat maps in Figure 3.9. The figure con-
trasts the discriminator’s responses to identical tissue sections—one stained authentically
and the other exhibiting a staining error in the virtual WSI. Remarkably, the discrimina-
tor identifies discrepancies in staining, highlighted in red, which corresponds to the actual
differences observed between the authentic and virtual images. This approach enables the
provision of dependable confidence scores to pathologists, offering further context for eval-
uating the importance of specific regions for particular applications. It also determines the
necessity of performing a chemical stain to verify results, thereby reducing uncertainties.
By clearly marking areas of doubt in the output, this tool enhances trust in virtual stain-
ing technologies, thereby ensuring greater reliability and boosting overall confidence in the
results.
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Figure 3.8: Comparative Analysis of Original vs. Degraded H&E Stained Tiles
with Discriminator Confidence Mapping: Panels A, B, and C showcase the analysis
of H&E-stained tiles. Each panel consists of two rows; the upper row presents the original
H&E tile next to its five degraded variants, and the lower row displays the discriminator’s
confidence maps identifying areas of perceptual inconsistencies highlighted in red. Panel A
focuses on global degradation likely stemming from chemical staining or scanning mishaps,
like imprecise staining concentrations or scanner setting errors, with the model effectively
detecting these widespread issues. Panel B illustrates local imperfections, possibly from
staining faults or physical anomalies on the scanner glass, with precise identification by
the model. Panel C reveals artifacts resembling water droplets, possibly sticking to slides
during preparation and causing analytical errors, where the model marks the droplet lo-
cations, drawing attention to these critical areas. For further reproducibility information,

see Section 3.4.2.
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Figure 3.9: Discriminator Confidence Visualization in Virtual Staining Analy-
sis. The efficacy of using discriminator confidence maps to assess both virtual and genuine
stained WSIs is depicted in this figure. It presents two sections of tissue: one with genuine
staining and another with virtual staining, wherein an error is clearly evident. The response
of the discriminator is represented using heat maps, which highlight areas of inconsistency
in red. These areas indicate substantial deviations from the anticipated staining pattern,
offering pathologists a pixel-level confidence measure. Such visual aids are crucial for decid-
ing whether additional chemical staining confirmation is required and for pinpointing areas
needing detailed scrutiny. By accurately depicting errors, this tool enhances the trust in
virtual staining technologies and assists pathologists in making informed decisions. Refer

to Section 3.4.2 for details on reproducibility.

This study underscores the efficacy of incorporating discriminator confidence maps into
the digital and virtual staining workflow in pathology, as illustrated in Figure 3.1. By
enabling the identification of discrepancies and artifacts at both the input and output stages,
our methodology ensures the utilization and generation of only high-quality, reliable data.
This approach effectively addresses the pivotal concern of "garbage in, garbage out" in
medical imaging.
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Figure 3.10: H&E Staining-Based Methods for Virtual Stain Generation in
Computational Histopathology during the Production Phase. Panel A introduces
the unified H&E encoder strategy, adapting the ComboGAN model (Anoosheh et al., 2017)
for virtual staining. This method utilizes a single encoder along with multiple decoders
to create various synthetic stains, enhancing computational efficiency and scalability (for
detailed comparisons on XAI capabilities, refer to Figure 3.1). Panel B displays the con-
ventional methodologies akin to CycleGAN (Goodfellow, Pouget-Abadie, et al., 2014; J.
Zhu et al., 2017), employing multiple distinct encoders and decoders for each stain type,
which increases both model complexity and computational demands. Panel C illustrates
the methods similar to StarGAN (Y. Choi, M. Choi, et al., 2017; Y. Choi, Uh, et al., 2019;
Lin et al., 2022; R. Zhang et al., 2022), incorporating a style encoder and a single generator
capable of handling multiple stains. Although this architecture streamlines the model, it
demands significant computational power and struggles to scale effectively with the in-
crease in the number of stains, necessitating the maintenance of a large generator even for
processing a subset of stains, which introduces inefficiencies. The approach presented in
panel A marks a notable improvement by reducing the reliance on multiple models, thereby
enabling faster and more efficient processing. This model is capable of generating only the
necessary stains and loads minimal components into memory, thus minimizing hardware

requirements and computational expenses in cloud-based implementations.

Our approach combines advanced deep learning techniques with cutting-edge computational
pathology strategies. This integration aims to improve the scalability, accuracy, reliability,
and practical application of virtual stain transformations. We will detail the specific deep
learning models utilized, and the training methodologies in the subsequent sections.

As highlighted in Section 3.1.1, addressing the inherent limitations of virtual staining is
crucial. Our methodology adheres to several core principles. Central to our approach is the
development of a unified H&E encoder, designed to support multiple staining generators.
This configuration significantly enhances the H&E encoder’s ability to accurately delineate
critical morphological areas within the tissue samples. As a result, this architecture not
only enriches the latent feature representation but also mitigates the risk of overfitting by
distributing the learning task across a denser network, thereby boosting overall performance.

Our method improves performance and trust during training by utilizing computation-
ally activated regions via IHC. By integrating knowledge from stains autonomously and
focusing on specialized loss functions and regularization tailored to stain generation, we
achieve medically precise stains, enhancing the training process’s credibility.

A key aspect of our approach is the use of discriminators in production to maintain
quality across two primary dimensions. First, the discriminators perform a pixel-wise eval-
uation of the input H&E WSIs, identifying potential impurities in the data and providing
visual feedback through heatmaps using XAI techniques. Second, they generate pixel-wise
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confidence scores for the synthetic stains, which can be visualized as heatmaps using XAI
methods to further ensure quality.

We propose a compartmentalized design that offers flexibility and practicality, enhanc-
ing trustworthiness. By making different model components separable, it becomes easy to
integrate data quality check methods and visual XAI tools during production. During de-
ployment, only the necessary parts of the model need to be loaded based on a pathologist’s
specific stain requirements, eliminating the need to load the entire model. Furthermore,
if a new stain type is added to the dataset, our design allows for efficient training of this
addition alone, avoiding the need for comprehensive model retraining.

3.4.1 Architecture and training methodologies

Our study focuses on the adaptation of two significant neural network architectures, Com-
boGAN (Anoosheh et al., 2017) and CycleGAN (J. Zhu et al., 2017), for the specific task of
transforming H&E-stained histological slides into various other stain types. The architec-
tural framework of our approach encompasses crucial components such as an encoder Ei,
a generator Gi, and a discriminator Di, where i denotes the index corresponding to each
unique stain type within the set {1, . . . , S}. Our methodology is the deployment of shared
(unique) H&E-specific encoder, generator, and discriminator across all S stains, designated
as EH&E, GH&E, and DH&E respectively. This implementation is intended to enhance the
specificity and scalability of the virtual staining process (refer to Appendix B for more de-
tails about the validation and implementation).

Synthesis Training Protocol: Our training methodology is predicated on a bidirectional
cyclic framework designed to transform and reconstruct histopathological stain patterns
in tissue slides. The primary objective of this framework is to facilitate fluid conversion
between H&E stained tiles and various alternative staining modalities, while preserving
essential structural features throughout the transformations.

In the inaugural cycle, termed the "H&E cycle", the procedure initiates with an H&E-
stained tile XH&E (refer to Fig. 3.6.A). An H&E-specific encoder, designated as EH&E,
processes this tile to encode it into a latent representation ZH&E. Subsequently, this latent
vector is input into a stain-specific generator Gi, corresponding to the target stain type i,
yielding an image Ŷi that replicates the attributes of the target stain. To complete this cycle,
the resultant image is encoded by another stain-specific encoder Ei to derive a new latent
representation ẐH&E, which is then utilized by the H&E generator GH&E to regenerate an
H&E-stained tile X̂H&E. This cyclical transformation, encapsulating the transition from
H&E staining to target stain i and reconversion to H&E, is mathematically represented as
follows:

Ŷi = Gi (EH&E (XH&E)) , (3.1)

X̂H&E = GH&E

(
Ei

(
Ŷi

))
∀i ∈ {1, . . . , S} (3.2)
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In the secondary cycle, referred to as the "stain i cycle", the methodology encompasses
the reverse transformation: initiating with a tile stained by a specific type i, the objective is
to convert it into an H&E-stained representation and then revert it to its original stain (refer
to Fig. 3.6.B). The tile Xi is first subjected to an encoding process by Ei to produce a latent
representation Zi. This latent vector is subsequently transformed by the H&E generator
GH&E into ŶH&E, an H&E-stained tile, thereby translating Xi into the H&E domain. The
resultant H&E image undergoes re-encoding by EH&E, yielding a new latent representation
Ẑi. This new vector serves as the input for the generator Gi, which reconstructs the original
stained image X̂i. This cycle facilitates the bidirectional conversion between a specific stain
type and an H&E representation, encapsulated mathematically as follows:

ŶH&E = GH&E (Ei (Xi)) , (3.3)

X̂i = Gi

(
EH&E

(
ŶH&E

))
∀i ∈ {1, . . . , S} (3.4)

To optimize our model’s performance, we introduce a composite global synthesis loss,
denoted LIHC,i, to facilitate the accurate translation between H&E-stained images and tar-
get stains designated by i. This framework involves a comparative analysis between the
reconstructed image X̂i and its corresponding target image Xi for each specific stain i, as
well as between the reconstructed H&E image X̂H&E and the original H&E image XH&E.
These comparisons contribute to the estimation of the cycle-consistency loss Lcyc,i, which
measures the translational fidelity in a bidirectional context between the H&E stain and the
specific stain i.

Moreover, our architecture incorporates an adversarial loss, Ladv,i, leveraging discrimi-
nators, specifically DH&E for the H&E stain and Di for each target stain i, to evaluate the
authenticity of the generated images Ŷi and ŶH&E. These discriminators are tasked with
distinguishing real images from synthesized counterparts, thereby promoting the production
of images that closely mimic authentic stained tissue samples. Furthermore, the integra-
tion of a regularization component, Lreg,i, supports the stabilization and convergence of the
training process. The comprehensive synthesis loss for each specific stain i, among a total
of S stains, is expressed mathematically by the following equation:

LIHC,i = λcyc · Lcyc,i + λadv · Ladv,i + λreg · Lreg,i ∀i ∈ {1, ..., S} (3.5)

In this context, the parameters λcyc, λadv, and λreg serve as weighting coefficients, config-
uring the emphasis on the respective loss components within our training framework. This
methodological design fosters a flexible and robust training regime capable of accommodat-
ing a diverse array of stains, symbolically represented by S. Such a configuration enhances
the model’s capacity for generalization across a broad spectrum of staining patterns.

Discriminator Training Protocol: Our methodology incorporates two distinct categories
of discriminators; a specific discriminator for H&E stains, labeled DH&E, and individual
discriminators for each IHC stain, designated Di for the ith stain. Each discriminator is
trained using a dedicated loss function, tailored to enhance its discriminative efficacy. For
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the discriminator associated with H&E stains, DH&E, the corresponding loss function is
articulated as follows:

LDH&E = λD · (LrealH&E + LsyntheticH&E
) (3.6)

This expression consolidates the losses LrealH&E and LsyntheticH&E
, associated respec-

tively with real and synthetic H&E-stained images (see Equation (3.15)). These losses are
modulated by a scaling factor λD, which is used to evaluate the discriminator’s efficacy in
differentiating between authentic and synthetically generated H&E images.

In a parallel manner, for each specific stain discriminator Di, the loss function is devised
to gauge its capacity to distinguish between real and synthetic images corresponding to that
particular stain type, defined as follows:

LDIHC,i
= λD · (Lreal,i + Lsynthetic,i) ∀i ∈ {1, . . . , S} (3.7)

In this formulation, Lreal,i and Lsynthetic,i denote the losses incurred from real and syn-
thetic images of the ith stain, respectively (refer to Equation (3.14)). The aggregation of
these losses, modulated by a weighting factor λD, constitutes the comprehensive loss for
each discriminator. This ensures that each discriminator is effectively trained to distinguish
between authentic and synthetically generated samples of its designated stain. This struc-
tured approach is consistently applied across all S stains, empowering the discriminators to
specialize and enhance their proficiency in discerning genuine from generated images within
their respective staining domains.

3.4.1.1 Annotation-free knowledge via loss function integration

In the formulation of computational models dedicated to the synthesis of IHC slides, it has
become apparent that conventional metrics such as L1, L2, and MSE introduce substantial
limitations. The primary challenge associated with these metrics is their uniform application
across disparate regions of the slides, leading to a lack of differentiation between tissue
sections and regions highlighted by IHC staining. This issue is exacerbated by the prevalent
staining disparity on IHC slides, characterized by a dominance of IHC-negative areas, thus
highlighting the localized nature of IHC staining which is confined to a minor portion of the
slide’s total area.

To mitigate these deficiencies, our methodology employs cycle consistency loss Lcyc and
adversarial loss Ladv (J. Zhu et al., 2017; Anoosheh et al., 2017). Leveraging these advanced
losses, we introduce an innovative technique that integrates areas activated by IHC staining
into the training regime of the model for the synthesis of S stains from H&E-stained slides.
This approach enables the derivation of knowledge without reliance on annotations, while
effectively assimilating the unique properties of each stain into the training model. As
a result, our model is capable of generating features with better fidelity, enhancing the
synthesis quality significantly. By directing the synthesis process through insights specific to
each stain, our method not only improve performance but also increases the trustworthiness
and reliability of the generated images.
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Figure 3.11: Visualization of Immunohistochemical Activation and Extraction
in Stained Tissue Samples: For each biomarker, exemplified by CD8, CD117, and
CD163, the extraction workflow is delineated across a tripartite columnar display. The
initial column presents the original RGB stained tile (Xi), followed by the central column
illustrating the transformation into the HSV color space, which isolates the distinctive
chromatic signatures resultant from antigen-antibody interactions. The terminal column
exhibits the derived binary mask (Mi), accentuated in yellow, depicting the areas of acti-

vation.

To facilitate the automated delineation of a mask, designated Mi, from the ith IHC
stained image, Xi, we initiate the process by converting Xi from its native RGB color space
to the HSV color space. This transformation enhances the segregation of target regions
by leveraging their chromatic and luminance properties. Following the transformation to
the HSV space, we implement a thresholding procedure to delineate a clear mask, Mi, as
depicted in Fig.3.11. The mask Mi is subsequently utilized in the derivation of dynamic
weighting coefficients, αi and βi, which are incorporated into the formulation of the loss
function. These coefficients are mathematically expressed as follows:

αi =
N̄i

Ni + N̄i
, βi =

Ni

Ni + N̄i
(3.8)
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In this formulation, Ni denotes the aggregate pixel count within the foreground, aligning
with the IHC-activated regions, while N̄i signifies the comprehensive pixel count within the
background, or the IHC-non-activated regions, of the ith immunohistochemically stained
image. This methodology yields a refined distinction between the regions of interest and
their corresponding background, thereby enhancing the precision of subsequent analyses.

Enhancing Synthesis Training with Integrated Knowledge (cycle loss): In in-
stances where direct correspondences between H&E-stained and IHC images are absent, the
synthesis is conducted within an unpaired setting. This approach incorporates a tailored
cycle loss, denoted as Lcyc,i, which is instrumental in facilitating the synthesis process in
the absence of directly paired images. The formulation of the cycle loss for the unpaired
setting is expressed as follows:

Lcyc,i = L(X̂i, Xi) + L(X̂H&E, XH&E)

+ αi · L(Mi ⊙ X̂i,Mi ⊙Xi) + βi · L(M̄i ⊙ X̂i, M̄i ⊙Xi) ∀i ∈ {1, . . . , S}
(3.9)

This methodology rigorously delineates between IHC-activated regions (Mi) and non-
activated regions (M̄i), thereby preserving the fidelity of the synthesis process in the absence
of direct image correspondences (refer to Fig.3.6).

In contrast, under paired settings where direct correspondences between H&E and IHC
images are established, the cycle loss is strategically formulated. This ensures not only the
global fidelity of image reconstructions but also the precise replication of designated IHC-
activated regions, leveraging the available direct correspondence (refer to Fig.3.5). The
detailed equation governing the paired setting is as follows:

Lcyc,i = L(X̂i, Xi) + L(X̂H&E, XH&E)

+ αi · [L(Mi ⊙ X̂i,Mi ⊙Xi) + L(Mi ⊙ X̂H&E,Mi ⊙XH&E)]

+ βi · [L(M̄i ⊙ X̂i, M̄i ⊙Xi) + L(M̄i ⊙ X̂H&E, M̄i ⊙XH&E)] ∀i ∈ {1, . . . , S}

(3.10)

In both scenarios, dynamic weighting factors, αi and βi, are employed, which are de-
termined by the ratio of IHC-activated to non-activated regions within each image. This
calibration ensures that the training of the model prioritizes not only the overall accuracy
of the stain transformation but also the precise reproduction of regions essential for IHC
analysis. Additionally, the methodology integrates masks Mi and M̄i in the computation
of the cycle loss. This enhances the model’s ability to incorporate distinct stain character-
istics directly into its architecture, thereby facilitating the incorporation of annotation-free
knowledge. Consequently, this rigorous approach leads to the generation of high-quality,
reliable synthetic images that authentically replicate the intricacies of IHC staining.

Enhancing Synthesis Training with Integrated Knowledge (adversarial loss): In
the unpaired configuration, the adversarial loss, designated as Ladv,i, is computed by as-
sessing the authenticity of the generated images, Ŷi and ŶH&E , utilizing discriminators Di
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and DH&E correspondingly. This evaluation process is augmented by the application of the
stain mask Mi, which enables DH&E to specifically target regions activated by the IHC, as
illustrated in Fig.3.6. The adversarial loss in this unpaired setting is calculated using the
following formulation:

Ladv,i = L(Di(Ŷi), 1)

+ αi · L(Mi ⊙DH&E(ŶH&E), 1)

+ βi · L(M̄i ⊙DH&E(ŶH&E), 1) ∀i ∈ {1, . . . , S}

(3.11)

In the paired setting, the methodology aligns with that of the unpaired setting but
includes an explicit emphasis on the direct correspondence between the H&E stain and
image i, as depicted in Fig.3.5. The calculation of adversarial loss in paired configurations
accounts for this correspondence and is articulated by the subsequent equation:

Ladv,i = L(DH&E(ŶH&E), 1)

+ αi · [L(Mi ⊙DH&E(ŶH&E), 1) + L(Mi ⊙Di(Ŷi), 1)]

+ βi · [L(M̄i ⊙DH&E(ŶH&E), 1) + L(M̄i ⊙Di(Ŷi), 1)] ∀i ∈ {1, . . . , S}

(3.12)

Direct Supervision Loss (only paired setting): In the paired setting of our framework,
the synthesis loss is meticulously designed to include a variety of components, notably
the supervised loss (Lsup,i), alongside the cycle consistency loss (Lcyc,i) as referenced in
equation (3.10) and the adversarial loss (Ladv,i) as detailed in equation (3.12). Crucially,
the supervised loss establishes a direct connection between the H&E cycle and the specific
stain cycle i. It does this by evaluating the fidelity of the generated stains Ŷi and H&E
images ŶH&E against their actual counterparts (Xi and XH&E, respectively). Furthermore,
it incorporates a common mask (Mi), derived from Xi, to concentrate the loss computation
on pertinent areas of the image. This ensures that the generated images maintain both
structural and stylistic integrity in relation to the original samples. The formula for the
supervised loss is articulated as follows:

Lsup,i = L(Ŷi, Xi) + L(ŶH&E, XH&E)

+ αi · [L(Mi ⊙ Ŷi,Mi ⊙Xi) + L(Mi ⊙ ŶH&E,Mi ⊙XH&E)]

+ βi · [L(M̄i ⊙ Ŷi, M̄i ⊙Xi) + L(M̄i ⊙ ŶH&E, M̄i ⊙XH&E)] ∀i ∈ {1, . . . , S}

(3.13)

Integrating Knowledge During the Discriminator Training Phase: To optimize
the training of the Di discriminator within our model, authentic samples denoted as Xi

are utilized to generate corresponding stain masks Mi. These masks facilitate the discrim-
inator’s ability to detect subtle variations within the IHC-activated regions via the Lreali

loss function. Simultaneously, the discriminator is trained to identify synthetic images Ŷi

as non-authentic by employing the Lsynthetici loss function. The mathematical expressions
for both loss functions are specified as follows:
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Lreali = L(Di(Xi), 1) + α · L(Mi ⊙Di(Xi), 1) + β · L(M̄i ⊙Di(Xi), 1)

Lsynthetici = L(Di(Ŷi), 0)
(3.14)

Similarly, for the DH&E discriminator, the loss functions LrealH&E and LsyntheticH&E
are

formulated to assess the authenticity of H&E stained images and to identify their synthetic
analogues, respectively. The definitions of these loss functions are delineated as follows:LrealH&E = L(DH&E(XH&E), 1)

LsyntheticH&E
= L(DH&E(ŶH&E), 0)

(3.15)

3.4.1.2 Enhancing training using regularization

A Universal H&E Representation for Governing Multiple Staining Modalities:
The primary goal of our study is to design a unique H&E encoder and generator, ca-

pable of managing various staining modalities. Traditional techniques encounter significant
challenges, primarily due to the diverse demands associated with different stains during
the training phase. Notably, some stains present inherent complexities that can result in
inconsistent learning progress and potential oversight of less prevalent stains.

To mitigate these issues, we have devised a novel regularization strategy that promotes
uniform distribution of learning focus across all stains by the components of our H&E
encoder. This methodology effectively reduces bias towards any particular stain.

The regularization process is initiated by a systematic selection mechanism, where stains
are randomly chosen from a complete set, numbered from 1 to S, to ensure exhaustive
inclusion. Subsequent updates are applied to the encoder Ei and generator Gi corresponding
to each selected stain i. Concurrent updates are made to the shared H&E components (EH&E

and GH&E), guaranteeing fair representation of each stain throughout the training cycles.
Upon completing a cycle through all S stains in a randomized order, a mean synthetic loss
is calculated across the stains, as defined by the following equation:

LH&E =
1

S

S∑
i=1

LIHC,i (3.16)

The calculated loss, LH&E, serves to refine both the H&E encoder EH&E and generator
GH&E, signifying the end of one training iteration. This approach guarantees equitable at-
tention to each stain, thereby significantly improving the model’s adaptability across various
staining modalities. Consequently, this strategy leads to a more stable and scalable train-
ing process, enhancing the overall efficacy of the model in processing a diverse array of stains.

Stain Synthesis Regularization: We introduce a comprehensive methodology specifi-
cally developed for regularization in virtual staining. Our approach involves encapsulating
the entire spectrum of considerations pertinent to this process. It is based on integrating
essential knowledge derived from IHC-activated regions across the stain mask, represented
by Mi. The core of this methodology is the computation of a regularized loss, expressed as
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Lreg,i. This loss is formulated as a weighted sum incorporating three primary components:
the identity loss (Lidt,i), the latent loss (Llat,i), and the forward loss (Lfwd,i). For each stain
index i within the range {1, ..., S}, the regularized loss is defined as follows:

Lreg,i = λidt · Lidt,i + λlat · Llat,i + λfwd · Lfwd,i (3.17)

In this framework, the coefficients λidt, λlat, and λfwd are used to denote the respective
weights of each loss component in the combined regularized loss formulation.

The identity loss (Lidt) measures the discrepancy between the original and synthesized
images within the same domain. It uses the encoder and generator from an auto-encoder
configuration to ensure that the encoder captures sufficient features necessary for accurately
reproducing the input image. The application of this concept is expanded to incorporate
the stain mask Mi as follows:

Lidt,i =



L(Gi(Ei(Xi)), Xi)

+ α · L(Mi ⊙Gi(Ei(Xi)),Mi ⊙Xi)

+ β · L(M̄i ⊙Gi(Ei(Xi)), M̄i ⊙Xi) ∀i ∈ {1, . . . , S},

for stain i image Xi,

L(GH&E(EH&E(XH&E)), XH&E) for H&E image XH&E.

(3.18)
The latent loss, denoted as Llat, is designed to reduce disparities within the latent

space by capturing the variance between the latent representations and their reconstructed
counterparts. This process aligns the embeddings from both the H&E and stain i encoders.
It effectively incorporates IHC-activated regions as follows:

Llat,i =



L(Ẑi, Zi)

+ α · L(Mi ⊙ Ẑi,Mi ⊙ Zi)

+ β · L(M̄i ⊙ Ẑi, M̄i ⊙ Zi) ∀i ∈ {1, . . . , S},

for stain i embeddings Zi and Ẑi,

L(ẐH&E, ZH&E) for H&E embeddings ZH&E and ẐH&E.

(3.19)
Finally, The forward loss evaluates the divergence between the degraded versions of the

original images, represented as xi and xH&E, and their corresponding outputs, denoted ŷH&E

and ŷi. This relationship is specified as follows:

Lfwd,i =



L(ŷH&E, xi)

+ α · L(mi ⊙ ŷH&E,mi ⊙ xi)

+ β · L(m̄i ⊙ ŷH&E, m̄i ⊙ xi) ∀i ∈ {1, . . . , S},

for stain i,

L(ŷi, xH&E) for H&E.

(3.20)

By integrating three distinct loss functions—Lidt,i, Llat,i, and Lfwd,i—and capitalizing
on insights from IHC-activated regions, this regularization framework significantly enhances
the capacity for targeted adaptation to task-specific challenges. Specifically engineered
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for unpaired scenarios, this methodology markedly advances the nuanced orchestration of
associated tasks. In contrast, in paired settings, these strategies yield marginal benefits, as
the direct correlations between the H&E and S stains are already comprehensively addressed
through supervised loss functions. However, the theoretical potential for incorporating these
regularization techniques, Lreg, i, indicates a possibility for their application well beyond the
initially envisaged contexts.

3.4.2 Trust in virtual stains through self-inspection–anomaly detection

To streamline the analytical process for pathologists and diminish cognitive strain, the dual
confidence maps, Clum and Crgb, are amalgamated into a singular map through the compu-
tation of their pixel-wise minimum, resulting in Call (PatchGAN discriminator "C. Li and
Wand, 2016; Isola et al., 2016; J. Zhu et al., 2017" explicitly differentiate between synthetic
and authentic images). This unified confidence map Call undergoes normalization across a
range from 0 (denoting an anomaly) to 1 (signifying authenticity), thereby facilitating the
computation of various diagnostic metrics, as depicted in Figure 3.7. Further, the applica-
tion of a Jet-color map via OpenCV version 4.9.0 (Bradski, 2000b) transforms Call into an
8-bit unsigned integer RGB confidence map, exemplified in Figure 3.8.

This methodology yields comprehensive confidence maps that are capable of identifying
a wide spectrum of anomalies, as illustrated in Figures 3.7 and 3.8. Given the uniform appli-
cation of this discriminator architecture across different stains, the approach is universally
applicable to all staining scenarios.
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3.5 Cloud-Based Multi-Virtual Staining: Proof-of-Concept

Configuring the hardware and software for complex generative models in pathology labs is
both resource-intensive and time-consuming. It requires specific technical skills that may
not always be available in the fast-paced settings of these labs. An accessible system that
operates through a browser could significantly improve both time efficiency and user comfort.
In our study, we aim to offer a comprehensive approach to managing multi-virtual staining.
To this end, we use Cytomine (Marée et al., 2016), an open-source platform, as a proof
of concept for deploying our multi-virtual staining technique, as discussed in Section 3.1.2.
This choice facilitates the integration of advanced DL models into everyday applications,
providing clear guidelines for utilizing cloud-based, open-source platforms.

To implement this, we dockerized our multi-virtual staining method and deployed it on
the platform. This allows pathologists to execute complex algorithms directly through their
web browsers, as shown in Figure 3.12. Such integration streamlines the use of sophisticated
DL models in routine pathological analysis, thereby enhancing the accessibility and utility
of digital histopathology tools.

Figure 3.12: Cloud-Based Multi-Virtual Staining on the Cytomine Platform:
A Proof of Concept. A.1. Showcases the user interface for selecting a H&E WSI and
setting inference parameters. A.2. Depicts the panel that monitors the progress of the
multi-virtual staining process, managed by a slurm job. B. Displays synchronized views of
virtually stained slides next to the original H&E slide (upper left). This setup illustrates our
implementation of dockerized multi-virtual staining on the open-source Cytomine platform
(Marée et al., 2016). All computations occur on a backend server managed through slurm,
requiring the user only to upload the H&E slide and start the algorithm via a web browser.

The results are presented in a synchronized view, significantly reducing user effort.

We utilize the open-source platform, Cytomine Community Edition Legacy 3.1.0, to
integrate our virtual staining model into a web application. This software employs a con-
tainerized architecture through Docker, which simplifies the creation and deployment pro-
cess across various modules including applications, web UI, databases, nginx proxy, and
jobs management. The primary component for deploying deep learning applications is a
software Docker container.

Our Python-based application, which performs virtual staining, is also Dockerized. Af-
terward, it is uploaded to the software_router and converted into a Singularity image. This
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application encompasses both the virtual staining process and the functionalities to im-
port input WSI and to upload the generated virtual stains to the database. To facilitate
these tasks, we leverage the Cytomine Python API, which ensures effective communication
between the software container and the image database container.

The inputs for our Python-based application are specified in a JSON descriptor, which
is uploaded to the software container. This descriptor is subsequently transformed into a
user-friendly web interface, enabling users to select the input H&E WSI.

Upon launching the virtual staining algorithm, its execution is overseen by a job schedul-
ing system utilizing SLURM. This system initiates the corresponding Singularity image with
the specified inputs. Once the process completes, the resulting stains can be directly visu-
alized within the web user interface.

Cytomine enhances the user experience by optimizing the display of multiple instances of
aligned WSIs. This feature allows for simultaneous visualization and comparison of different
staining results, significantly improving analytical capabilities within a unified interface.
Such advancements offer substantial benefits for digital pathology and related research fields.

3.6 Pediatric Crohn’s Disease Multi-Virtual Staining Dataset

As discussed in Section 3.1.3, a significant hurdle in multi-stain data analysis is the scarcity
of publicly available datasets. For example, the dataset from De Haan et al. (2021) re-
mains unpublished (Haan et al., 2021). Moreover, the quality and alignment of paired data
are often suboptimal; typically, datasets like AHNIR (Borovec et al., 2020) are assembled
from adjacent slides, leading to imperfectly matched samples. Notably, the AHNIR kidney
dataset includes only a limited number of slides, with five slides for each stain type: H&E,
PAS, PASM, and MAS.

This problem persists across other studies as well. For instance, MVFStain (R. Zhang
et al., 2022) uses only a subset of the AHNIR dataset for lung lesions, employing one WSI for
training and another for testing. This approach is similarly applied to datasets concerning
lung lobes and breast tissues, where two WSIs are used for training and one for testing,
ensuring methodological consistency.

The challenges associated with the public availability and diversity of such data are
compounded by the significant pairing issues due to samples derived from adjacent slides.
These issues complicate the objective evaluation of computational methods and often ne-
cessitate the use of error-prone techniques like elastic registration (e.g., VALIS (Gatenbee
et al., 2023)), which are susceptible to variations in tissue characteristics.

To address these limitations, we propose the creation of a new dataset that includes
paired H&E to eight different stains, specifically focusing on pediatric Crohn’s disease.
This dataset will include 30 H&E WSIs and 30 stained WSIs across eight stains (AE1AE3,
CD117, CD15, CD163, CD3, CD8, D240, and GIEMSA), totaling 480 WSIs. Each sam-
ple will consist of perfectly matched data from identical tissue sections, as illustrated in
Figure 3.13. By offering a comprehensive collection of 480 high-quality, diverse WSIs, we
aim to set a new benchmark for methodologies in virtual staining, segmentation, detection,
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and other computational histopathology applications, thus catalyzing further research in
computational pathology.

(a) H&E ↔ CD3 (b) H&E ↔ CD8 (c) H&E ↔ GIEMSA (d) H&E ↔ CD163

(e) H&E ↔ AE1AE3 (f) H&E ↔ CD117 (g) H&E ↔ D2-40 (h) H&E ↔ CD15

Figure 3.13: Illustration of Perfectly Paired Samples in Our Multi-Stain Pedi-
atric Crohn’s Disease Dataset. This figure highlights the meticulous matching of WSIs
from identical tissue sections, underscoring the dataset’s significance for advancements in

computational pathology.

Data: This study utilizes a rigorously curated dataset critical for our research on pediatric
Crohn’s disease, acquired from Robert Debré Hospital in Paris. The dataset collection was
approved by the INSERM ethic committee (IRB3888, ref 21-761) in March 2021, adhering
to the Declaration of Helsinki principles. All patients or their legal guardians provided
written informed consent.
Population: The dataset includes pediatric patients diagnosed with Crohn’s disease based
on the ESPGHAN criteria (European Society for Paediatric Gastroenterology Hepatology
and Nutrition). These patients were monitored at Robert Debré Hospital, Paris, France for
at least one year following an initial biopsy at diagnosis. The cohort spans diagnoses from
1988 to 2019, excluding any whose slides were too degraded, resulting in 59 patients with
available slides. This population is predominantly male (69%) with an average age of 11.11
years (standard deviation 3.64).
Dataset Description: The dataset consists of 480 digital slides, evenly split among eight
paired combinations of H&E and IHC stains. Each pairing includes 30 matched sets of
an H&E slide and its corresponding IHC-stained slide, with the following markers: An-
ticytokeratin AE1/AE3 (AE1AE3), CD117 (c-Kit), CD15 (Lewis X or SSEA-1), CD163
(macrophage marker), CD3 (T-cell co-receptor), CD8 (T-cell co-receptor), Cluster D2-40
(D240), and Giemsa stain. All slides were scanned at a uniform 40x magnification, using
the same scanner, with a resolution of 0.22µm per pixel. For experimental purposes, the
slides are randomly divided into two subsets: 20% for testing and 80% for training, taking
into account the tissue coverage per slide (ensuring at least 10% tissue presence in tiles).
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3.7 Discussion

Our analysis of the current state-of-the-art in computational pathology has identified several
critical challenges. These include the inherently opaque nature of deep learning technologies
and the pervasive shortage of high-quality, publicly accessible datasets. Such limitations
are considerable barriers to integrating advanced computational tools into routine clinical
practice effectively.

To overcome these challenges, our study adopts a comprehensive strategy aimed at
improving system performance, trustworthiness, scalability, and the quality and quantity
of data. We emphasize creating user-friendly systems via secure, cloud-based platforms,
essential for seamless clinical integration.

Our developed methodology offers substantial improvements to computational pathol-
ogy. It enhances scalability by employing regularization and knowledge-guided techniques
during the training phase. Trustworthiness is bolstered through the integration of dis-
criminators that assess input quality and provide output confidence scoring. The practical
implementation of our model, showcased in an open-source, cloud-based setup for virtual
staining, indicates strong potential for real-world application.

By advancing the understanding of virtual staining, we have introduced a new dataset
consisting of 480 whole slide images. This release not only establishes a benchmark for
quantitative assessment in the field but also facilitates a variety of applications, includ-
ing segmentation and detection. Offering these resources publicly encourages the scientific
community towards conducting more reproducible research.

Looking forward, there are plans to expand this dataset to encompass a broader spectrum
of pathological conditions, which will enhance the generalizability of our model. Addition-
ally, expending to diverse interpretable deep learning architectures is anticipated to further
refine system performance.

In summary, our research has significantly advanced computational pathology by inte-
grating a unified H&E encoder, tailored loss functions, innovative regularization techniques,
and context-driven learning within a cloud-based architecture. These advancements not only
meet but surpass the current benchmarks for quality and trustworthiness in stain transfor-
mations. This progress paves the way for a more reliable, accessible, and efficient future in
computational pathology, ultimately aiming to improve clinical outcomes.
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Chapter 4

Conclusion and Future Directions

4.1 Conclusion

In conclusion, this doctoral research illustrates the pivotal dual role of XAI as both a
scientific discipline and a regulatory imperative, particularly within the context of evolving
AI legislative frameworks such as the GDPR discussed in Chapter 1. This convergence of
methodological advancements and compliance imperatives highlights the critical importance
of incorporating explainability into AI systems to meet ethical and legal standards, essential
for the trustworthiness and societal acceptance of AI technologies.

The thesis further demonstrates the application of XAI through two detailed case studies.
The first, discussed in Chapter 2, details the development of an interpretable deep learning
framework for cell segmentation in video microscopy. This framework, named PhagoStat,
specifically targets the quantification of phagocytosis in unstained, dynamic cells, crucial for
advancing our understanding of neurodegenerative diseases such as FTD. PhagoStat offers
a scalable and versatile solution capable of real-time analysis, significantly enriching our
insight into phagocytic activity. It promotes sustainable practices by tailoring the pipeline
to specific needs and reducing technological carbon footprints. Furthermore, transitioning
to interpretable models has maintained high performance while reducing model size and
conserving computational resources, thus enhancing the system’s accessibility across diverse
hardware platforms.

The second case study, presented in Chapter 3, explores the application of XAI in genera-
tive models for computational pathology. This work aims to enhance the reliability of virtual
staining techniques in histopathology. By enriching training models with constraints derived
from chemically stained slides and optimizing loss functions, the approach minimizes errors
and mitigates false staining. The innovative use of insights from a discriminator, typically
discarded post-training, facilitates robust assessments of data quality and the authenticity
of synthetic stains, providing reliable confidence scores for the produced stains.

Both applications underscore that XAI not only deepens our understanding of complex
models but also significantly enhances performance compared to traditional black-box ap-
proaches. For example, the application of XAI in video microscopy has revealed critical
insights into the behavior of FTD mutant cells, indicating their increased size and activ-
ity relative to controls. These findings underscore the potential of XAI-enhanced pipelines
to advance our understanding of both the tools and their application domains, such as
neurodegenerative diseases.
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Moreover, this work highlights the importance of addressing systemic biases in labeling,
as evidenced by biases inherent in established methods like Free-Surfer and FSL (detailed in
Section 4.2.1). Recognizing these biases is crucial, as they represent the initial link in a long
chain of causality within XAI frameworks, providing users with essential context regarding
the models’ training and limitations.

Finally, the rapid development of large foundational models and the dynamic nature
of legal and regulatory frameworks underscore the need for generic XAI methods that are
adaptable across various models and tasks. In response, this thesis proposes a conceptual
framework (detailed in Section 4.2.2) aimed at ensuring the effectiveness and ethical com-
pliance of AI systems across diverse applications, upholding the principles of responsible AI
throughout their lifecycle.
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4.2 Perspectives

Scientific publication

Elements of the Section 4.2.1 are published in:

Valabregue, R., Khemir, I., Auzias, G., Rousseau, F., & Ounissi, M. (2024).
Unraveling Systematic Biases in Brain Segmentation: Insights from Synthetic
Training. In Medical Imaging with Deep Learning.
https://openreview.net/pdf?id=B3xO0c2Q3h

Elements of the Section 4.2.2 are published in:

Racoceanu, D, Ounissi, M., Kergosien Y. L. "Explicabilité en Intelligence Artifi-
cielle ; vers une IA Responsable - Instanciation dans le domaine de la santé." (2024)
Techniques de l’ingenieur, 29 Feb. 2024. https://doi.org/10.51257/a-v1-h5030.

4.2.1 Systematic Biased Labels: MRI Brain Segmentation

In (Valabregue, Khemir, et al., 2024) we explored the implications of defining "ground
truth" labels utilized for the training and evaluation of segmentation models for brain MRI.
Access to a large volume of anatomically precise segmentation maps is critical for the devel-
opment of effective machine learning models. Recent research has introduced the concept
of using pseudo ground truths–segmentation maps derived from established techniques like
Freesurfer (Fischl, 2012; Henschel et al., 2020; Bontempi et al., 2020; Billot et al., 2023; W.
Li, W. Huang, and Zheng, 2024)–for model training. These pseudo ground truths, however,
are not devoid of errors, and the influence of such inaccuracies on model performance and
generalization has been minimally addressed in existing literature.

Intuitively, systematic errors in training labels can lead supervised learning methods to
replicate existing biases. To counteract this, improving the quality of training labels man-
ually has proven beneficial, yet this method scales poorly with increasing data volumes. In
our research, we investigate the efficacy of synthetic learning in overcoming these challenges.
Specifically, we examine whether generating images from labels can mitigate image/label
mismatches during training, thereby reducing potential biases induced by the model.

Special emphasis is placed on the selection of labeling protocols and their influence
on biases in label definitions, particularly in anatomical regions with poor contrast. We
concentrate our efforts on regions with clear contrast, which allows for direct validation of
segmentation accuracy from the data itself. As our work on bias mitigation is ongoing, we
present findings specifically related to the Putamen brain region. These results not only
demonstrate the practical applications of our research but also underscore the importance
of scrutinizing both labels and input data. We believe that careful consideration of these
elements is crucial for developing reliable systems in the realm of XAI. This attention to
detail ensures that the AI systems we develop are bias-free (over/under quantification),
addressing critical challenges in the field.

https://openreview.net/pdf?id=B3xO0c2Q3h
https://doi.org/10.51257/a-v1-h5030
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4.2.1.1 Bias Mitigation: Insights from Synthetic Training

We performed an analysis of two predominant methodologies, FreeS and FSL, which gen-
erate notably different outcomes on multiple datasets. As demonstrated in Figure 4.1, the
SynthFSL model excels on the MICCAI dataset compared to manual segmentation, achiev-
ing a DICE score comparable to AssN—even though AssN was trained on real data. In
contrast, utilizing FreeS as ground truth markedly diminishes performance across all mod-
els, particularly evident in the HCP dataset where the performance and ranking of methods
remain consistent.

Short Title

SynthFSL FSL SynthFree SynthSeg FreeS FastS AssN

A

C

B

Figure 1: Example Image

are even larger. Therefore other models perform worse when FreeS is taken as GT, except
FastS which again reproduce exactly the same biases. Training labels are also important
for the synthetic strategy, where we observed predictions closer to FreeS for SynthFree (and
SynthSeg) compared to SynthFSL. Training with wrong shape prior, will then also influence
the results.

4. Discussion and Conclusion

Having a bias prediction of structure volume may not be an issue if this bias does not
interact with the subject specific e↵et. In order to fulfill this condition one usually limits
the experiment to data acquired on a single scanner, because current methods are known to
be very sensitive to site e↵ect (i.e. di↵erent acquisition parameters). We therefore believe it
is important to limit these systematic biases. But in order to quantitatively evaluate those
biases, one needs to have manually corrected label on a few test subjects. The synthetic
training o↵ers a way to obtained less bias predictions than state-of-the-art methods, but it
is important to improve the label space.

References

3

Figure 4.1: Dice scores for the Putamen across various models. Panel A displays
results for 20 subjects from the MICCAI test set, while Panel B shows data for 80 subjects
from the HCP test set. In each panel, the segmentation used as Ground Truth varies
by column, including manual segmentation, FSL, Freesurfer, and AssemblyNet. Panel C
presents the results for an axial slice from a single HCP subject. For more details about

the training refer to (Valabregue, Khemir, et al., 2024).

Despite enhanced image contrast in the Putamen, large systematic errors are noted with
FreeS, leading to bias reproduction in models trained with these labels. Specifically, pre-
dictions from FastS closely mirror those from FreeS, perpetuating the same bias. However,
SynthFSL, although trained on synthetic data from FSL labels, yields predictions more
aligned with AssN than FSL. This outcome underscores the potential of synthetic models
to counteract inductive biases inherent in the input labels.

Nevertheless, the effectiveness of synthetic models is influenced by the label maps’ defi-
nitions used to generate training data. Predictions from SynthFree and SynthSeg align more
closely with FreeS than with SynthFSL, highlighting a dependency that may be specific to
the Putamen due to significant shape alterations caused by FreeSurfer’s systematic errors.

The challenge of quantifying and characterizing inductive bias in supervised learning
is well-documented. Designing unbiased manual annotation datasets is both difficult and
resource-intensive. Our findings advocate for the synthetic learning approach as a viable
solution to mitigate these biases. However, previous studies, such as those by (Billot et
al., 2023) and (Valabregue, Girka, et al., 2023), suggest that synthetic models generally
underperform relative to models trained on real data, as evaluated by DICE scores. This
discrepancy can be attributed in part to the systematic biases in the ground truth (GT).
When using manual GT as a reference, SynthFSL performs comparably to AssN, trained on
real data. Conversely, a notable difference in performance between SynthFree and FastFS
reflects the indirect impact of systematic bias when FreeSurfer is used as GT.
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Our research underscores the importance of refining the anatomical accuracy of labels
for synthetic image generation. While our current findings focus on the Putamen structure,
further studies are necessary to determine whether these insights extend to other anatomical
structures. Additionally, the prevalence of systematic biases—such as those introduced by
variations in imaging quality due to different acquisition settings—highlights the broader
implications for automated methods. The contemporary movement towards training seg-
mentation models on extensive multicentric datasets, using automated segmentation as GT,
must carefully consider the potential for perpetuating initial biases, as demonstrated in our
study.

4.2.2 Explainable and Responsible AI road-map

4.2.2.1 Proposal of a conceptual framework

Training data set
Annotation / classification

Decision or annotation

Explanation/
justification of decision

UserNew case data

Explanations

Explainable artificial 
intelligence (XAI)

Knowledge

Existing flows

XAI extended system flow

Lexicon/reference constraints

Unsatisfactory 
decision/explanation

Step 2 Step 3Step 1

Decision
(action)

Comprehension 
levels

Artificial 
intelligence

Explanation upon request

Interface

Figure 4.2: Workflow of an AI System Enhanced with XAI Capabilities: This
figure illustrates a three-step process in deploying AI systems with explainable artificial
intelligence functionalities. Step 1 involves the use of a training dataset for model training
and explanation generation. Step 2 shows the application of the trained AI model to new
case data, generating decisions or annotations along with explanations or justifications.
Step 3 highlights the role of the user in assessing the AI’s output. The user evaluates the
decision or annotation based on their comprehension levels, which may lead to accepting the
outcome or requesting further explanations if the initial output is deemed unsatisfactory.

In pursuit of a formalism for specifying the explanation functions of intelligent systems, we
propose several definitions (Racoceanu, Ounissi, and Kergosien, 2024): we define explanation
as the message sent by the system that needs to explain itself (the source) and received by
the requester/user (the target), possibly in response to a query (a request for explanation,
which may be more or less specified). It is advisable not to restrict the targets to humans;
other intelligent systems may also be involved.

We define understanding as a particular state change (comprehension levels) in the
target, which is considered as a finite automaton. Depending on its effects on the target, an
explanation can be more or less satisfactory: a metric to qualify it could rely on the target’s



108 Chapter 4. Conclusion and Future Directions

structure and initial state. The effect of an explanation appears to be akin to that of a
projection by its property of idempotence: if a complete understanding is achieved after a
first explanation, a second explanation no longer alters the state (refer to Figure 4.2).

The search for metrics on the quality of an explanation can draw on interrogations and
psychological methods estimating a degree of satisfaction of the target, or quantify other
aspects of the explanation: adequacy of the response to the request, the target’s level of
expertise, the existence of reference vocabularies, completeness of the response (in a sense
to be specified).

This approach could be deemed sufficient for the majority of known and documented
tasks such as segmentation or classification. Here, "sufficient" implies that the target re-
quirements are met, and no further explanation is necessary. However, there are scenarios
where an entirely automated response is not permissible by law, especially in sensitive fields
like healthcare, or when the system fails to bring the target to a satisfactory condition after
N attempts. In these cases, explanations alone may not suffice to enhance the target ’s
understanding to an acceptable level.

Under such circumstances, the shortcomings are escalated to experts–such as computer
scientists, doctors, or lawyers–who are then incorporated into the process. The initial task
for these experts is to provide explanations that are in compliance with regulations, such
as the "right to explanation." They must also validate responses to ensure they meet the
target ’s satisfaction. This expert involvement not only aids in addressing the immediate
issue but also ensures compliance with legal and ethical standards.

Furthermore, this feedback loop is crucial for the system’s continuous improvement. It
is recorded for traceability and integrated into the system through methods like continual
learning and bug fixes. This integration aids in refining the system’s ability to handle similar
issues in the future, thereby streamlining the experts’ roles to primarily validation without
the need for direct intervention. This structured approach enhances both the system’s
efficacy and its reliability in complex decision-making environments (refer to Figure 4.3).
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Figure 4.3: Integration of Expert Feedback in an XAI System: This diagram
extends the workflow shown in Figure 4.2 by introducing Step 4, which involves expert
intervention when AI-generated explanations are deemed unsatisfactory or when handling
sensitive domains such as healthcare. Experts provide a higher level of scrutiny and valida-
tion, offering a deeper explanation that aligns with regulatory requirements and enhances
system trustworthiness. This feedback is integrated back into the system to refine its future

responses and ensure compliance with ethical standards.

This framework can be considered as a responsible AI system if it consistently meets all
the criteria outlined in Section 1.2.6. It must adapt continually to comply with the dynamic
legal and regulatory frameworks that govern privacy, accountability, and fairness. These
requirements vary not only between different domains but also within each domain, tailored
to specific downstream tasks. Such an approach ensures that the AI system remains effective
and ethical across its various applications, thereby upholding the principles of responsible
AI throughout its lifecycle.

How the XAI framework can be applied to radiology (use case): Let us analyze
what explanation and understanding between humans might entail to then generalize these
to other intelligent systems. Consider a radiologist (the source) who must explain their
diagnosis of malignant breast tumor to a correspondent (the target) following a mammo-
graphic examination. The radiological report might include: "on the frontal view, poorly
defined rounded opacity with spiculated margins measuring 15mm in diameter in the up-
per outer quadrant, without architectural distortions", and later conclude with "probable
adenocarcinoma, BIRADS classification 5".

The descriptive part allows an expert to locate the lesion on the images and confirm
the diagnosis, possibly to discuss or contest it. A less experienced correspondent might
request additional explanations. To the query "where is the lesion located?" the source could
respond by annotating the center of a disc approximating the round image. Arrows might
indicate the contour, other arrows the spicules. Thus, the abstract concept of "rounded
image" is instantiated as a precisely defined disc within the image. The question of the
presence of spicules is replaced by the appreciation of the spiculated character of a segment of
the contour perfectly identified. We can say that the explanation has completely instantiated
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the abstract concepts used in the verbal description, constituting a logical interpretation
(which assigns elements of a set called the domain to variable symbols: here, the variable
"rounded mass" corresponds to a unique disc in the plane). To the question "why this type
of tumor?" the source might respond with bibliographic references ("knowledge") justifying
such a deduction from the description elements now understood, which this time, explains
a deductive reasoning within a logical formalism.
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A.1 Data efficient loading and normalization

. Most of the proprietary microscope software (biologists friendly) are working exclusively
on Windows. Therefore, data preparation required specific steps: (i) raw data was first
transferred from the microscope machine to a Windows machine; (ii) the acquisition was
converted into tagged image file format (TIFF) frames; (iii) the frames were arranged to be
compatible with the computational pipeline and iv) the resulting frames were transferred
to a high performance computing (HPC) cluster for processing. A notable challenge in this
process was the lack of transparency we found when running the software’s preprocessing
(black-box) steps (i.e., normalization, the conversion of the raw data 16bit to TIFF 8bit
frames). Besides, the rich and user-friendly visualization interface, such packages turned
out to be overly opaque, inefficient, resource-intensive and time-consuming for analyzing
big data. To overcome these drawbacks, we have adapted the ’aicspylibczi’Jamie Sherman,
2023 to develop a flexible, robust, and open-source module capable of reading and converting
proprietary raw data formats into universal image formats. Our module was tested on
converting Carl Zeiss Image (CZI) files to TIFF format, and it is compatible with Windows,
macOS, and Unix. Additionally, the module can be easily adapted to take advantage of
HPC clusters and parallelization schemes (refer to Fig.2.11.a and Fig.2.11.b).

The ’aicspylibczi’Jamie Sherman, 2023 Python package was used and extended to read
the ’CZI’ raw data file using delayed reading. This approach allowed us to read cell and
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aggregate channels image-wise without loading all the sequences to the RAM. Images were
in 16bit representation. Frame reading time can be accelerated by coupling the Python
package with multiple CPUs for parallel processing. This involves several scenes being
simultaneously read, with each scene being allocated to its own CPU. This deviates from
sequential processing, in which scenes are placed in a queue and read sequentially; (i) in the
local machine, our package can use multi-CPUs for parallelism, or (ii) in a HPC clusters that
use simple Linux utility for resource Management (SLURM), where our package launches an
array of jobs (i.e., attributing to each scene a job ID) on the same node or different nodes.

While using the same parallelism scheme, global percentile normalization is used to re-
scale the image pixels’ intensities of the whole sequence; 0.5% and 99.5% percentiles for
aggregates; 0%, 100% for cells. Aggregate and cell images were re-scaled from 16bit to 8bit
using ’img_as_ubyte’ function from the ’scikit-image’Walt et al., 2014 Python package.
Histogram matching with a normal pixel distribution as reference is used on all cell images,
and we apply it using the ’match_histograms’ function from the ’scikit-image’ Python
package. Finally, if needed, images were resized from 2048 × 2048 to 1024 × 1024, then
saved in ’TIF’ format using the ’PIL’ Python package.

A.1.1 Isolating aggregate and cell signals for precise quantification and
segmentation

In typical microscopy practices, biologists rely on default software provided with the mi-
croscope, which often merges the signals from cell instances and aggregates. This fusion
allows for visual interpretation, although it may not always suit quantitative analyses or
automated processing.

Our approach diverges by treating these channels distinctly to facilitate precise quan-
tification. Specifically, the aggregate channel, which we use to identify clusters of particles,
is marked by a unique fluorescent tag (for instance, a red chromatin signature). This en-
ables us to isolate these aggregates onto a separate grayscale image layer using fluorescence
microscopy.

Simultaneously, the non-fluorescent signal, corresponding to individual cell instances, is
captured on a different grayscale layer. This separation is crucial because it allows us to
apply specialized image processing techniques to each channel independently, enhancing the
accuracy of cell instance segmentation and aggregate quantification.

During data loading in our system, we maintain this separation. Each channel is loaded
individually, thereby preserving the integrity of the information they contain. Consequently,
this segregation of data not only simplifies the subsequent image analysis but also ensures
that any computational models or algorithms applied later can be fine-tuned to the charac-
teristics of each channel without cross-contamination of signals.

A.1.2 8-bit conversion for performance, transparency, and storage

We evaluated the impact of image bit-depth on the performance of convolutional neural
networks in segmentation tasks. The decision to employ an 8-bit conversion of images was
informed by a comprehensive ablation study. This study involved training two identical
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Unet(XAI) networks: one with 16-bit image inputs and the other with 8-bit image inputs.
The findings indicated a marginal enhancement in segmentation performance for the 8-
bit model, with mean test losses registering at 0.0802 compared to 0.0827 for the 16-bit
counterpart. These results suggested that the lower bit-depth conversion did not hinder,
and may in fact have slightly improved, model efficiency for our microglial-dataset.

We used the Fluo-N2DL-HeLa dataset, publicly available from the CTC. Notably, the
images in this dataset are inherently 16-bit, and correspondingly, the annotations were also
done in 16-bit. Our approach involved training two UNet(XAI) models, one with 16-bit
images and the other with 8-bit images. Both models were trained using identical random
seeds. We adopted a specific training methodology: we utilized the first sequence of the
dataset for training and validation, while the second sequence was reserved for testing. The
performance of each model was quantitatively assessed. For the 16 bit model: test loss =
0.1464 and Dice = 0.9642, in contrast with the 8 bit model: test loss = 0.1514 and Dice =
0.9621

We analyzed the loss of information when images are converted from 16-bit to 8-bit
format. The process began with re-scaling the intensity of 16-bit images to utilize the
full 16-bit range. Following this, we converted these images into 8-bit format. Besides,
we divide 16-bit images by 216 and 8-bit images by 28 for a direct comparison (images
between 0 and 1). Then, we measured the Mean Squared Error (MSE), Structural Similarity
Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR) between the re-scaled 16-bit and the
converted 8-bit images. This methodology provided a thorough assessment of how the image
quality and information fidelity are impacted by the conversion process. The analysis yielded
the following results: MSE = 1.3698e − 06 ± 5.5903e − 08; PSNR = 58.6368 ± 0.1747;
SSIM0.9996± 2.2954e− 05.

The results across the test loss and Dice show negligible loss (0.005 difference in the test
loss and 0,0021 difference in the Dice score), also, across MSE, PSNR and SSIM metrics
show negligible loss, thereby providing evidence that the conversion between 16-bit and 8-bit
imaging does not significantly impact the model training (at least on the microglial-dataset
and the Fluo-N2DL-HeLa dataset).

Furthermore, in collaboration with domain experts in biology and neuroscience, we rec-
ognized the necessity for a transparent analytical pipeline. Our collaborators expressed the
need for visibility into the intermediate processing stages of CZI file handling to establish
trust and ensure traceability of results. To address this request, we incorporated intermedi-
ate outputs in universally accessible formats such as GIF, TIFF, and PNG, thus enhancing
the interpretability of our pipeline.

Storage optimization also played a pivotal role in our methodology. The original mi-
croscope images were captured at a resolution of 2048x2048 pixels in 16-bit format. Given
the substantial data storage requirements, particularly when retaining all intermediate out-
puts, we implemented a strategy to resize images to 1024x1024 pixels in 8-bit format. This
approach reduced the storage per frame from approximately 4.2MB to 0.6MB, achieving
a nearly seven-fold decrease in data size. This significant reduction facilitated easier data
sharing and handling within the research community, enabling peers to download and utilize
our dataset more efficiently.
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In summary, our methodological adaptations, particularly the conversion to 8-bit image
processing, have resulted in an efficient, transparent, and storage-optimized pipeline without
sacrificing the integrity and performance of our deep learning models.

A.1.3 Quantitative performance evaluation of the readout module

The proprietary Carl Zeiss Microscopy ZEN light v3.3.89.00 software was used as a reference
for data loading and saving. This proprietary software was evaluated using a Windows 11
machine with 8 cores i7 9700K CPU, 16GB RAM, Nvidia RTX2080 GPU and Samsung 970
PRO SSD; all drivers were up-to-date. CUDA acceleration was enabled from the software
configuration panel; all parameters were left at their default values, and no tasks ran in the
background before/during the benchmark.

Our approach uses only open-source Python packages, as described and cited before.
Ubuntu 20.04LTS was used with: 8 cores, i7 9700K CPU, 16GB RAM, HDD or SSD. For
single-CPU tests, the hardware used was limited to 1 CPU using ’taskset’. The test was
monitored, and during the test, RAM usage did not exceed 1GB (while using an HDD or
SSD). For the multi-CPU test, SLURM was used to process 20 job arrays. Each one uses 1
core Xeon Gold 6126 CPU and 1GB RAM (while using HDD or SSD storage node).

All data transfers (single raw data file or frames) were performed using a 1GB/s Ethernet
port with ’FileZilla’ v3.46.3. SFTP transfer protocol was used while directly connected to
the internal institute network (no VPN used); maximum simultaneous transfers were set to
10 files (FileZilla’s upper bond).

A.1.4 Technical aspects of our data normalization strategy for large-scale
video-microscopy datasets

We initially considered the straightforward approach of loading complete CZI files into a
numpy array for processing. This method is feasible for sequences with limited data or
shorter duration, given a conventional computational setup with 16/32GB of RAM. How-
ever, this became impractical with our datasets, where individual CZI files were approx-
imately 76GB each, comprising 20 sequences captured over 7 hours with a two-minute
frame interval across two imaging channels. Standard computing resources were quickly
overwhelmed by these files, as evidenced by system performance when RAM capacity was
exceeded (refer to Fig. 2.11.c), leading to the use of SWAP space which is much slower than
RAM.

In the realm of HPC environments, even though they offer a more robust infrastructure,
the extensive size of our datasets still resulted in considerable processing delays and resource
contention. This was due to the immense memory requirements (80GB of RAM per CZI file)
which induced periods of computational idleness within the HPC’s dynamic job scheduling
system.

To circumvent these bottlenecks, we adopted a delayed data reading methodology. This
technique does not enhance the speed of normalization computation directly but rather
optimizes memory consumption. By strategically fetching only the necessary data segment
for processing—such as a single frame from a sequence—we were able to initiate 20 Slurm
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jobs (one job per sequence) in parallel, each consuming only 1GB of RAM as opposed to
the full 80GB that the entire file would require. This also enabled selective access to data,
permitting us to isolate specific frames from the imaging channel for detailed morphological
analysis.

Technical differentiation between "global" and "local" normalization is crucial in our
work. "Global" normalization refers to the standardization of intensities across the en-
tirety of each sequence, whereas "local" normalization pertains to adjustments made on a
per-frame basis within a sequence. For global normalization of the aggregate channel, we
utilize the first frame’s 0.5% and 99.5% intensity percentiles as a baseline (reducing out-
lier intensities and improving contrast), since all aggregates are present at the beginning
of the experiments (non phagocyted yet). Subsequent frames are normalized against this
reference, ensuring consistent visualization of morphological features. For the cell chan-
nel we use intensities (0% to 100% percentiles) from the first frame to adjust each frame
thereafter. Following background noise reduction, we observed a Gaussian distribution in
pixel intensities, prompting the adoption of a normal distribution model for local histogram
normalization. This method effectively enhances contrast and feature prominence without
altering the intrinsic cellular characteristics.

For the aggregate channel, only the percentile values of the first frame are loaded for
global normalization, with the rest of the sequence can be processed in parallel. Similarly,
for the cell channel, we load the first frame’s percentile values and the parameters for the
Gaussian distribution, with the rest of the sequence can be processed in parallel.

To conduct an ablation study on the impact of histogram normalization, two UNet
models were trained using the same seed dataset for training and validation. When evaluated
on the test set, the model utilizing histogram normalization demonstrated up to a 10%
improvement in the Dice coefficient, indicating its effectiveness.

In summary, our method of delayed reading, coupled with parallel processing, has been
meticulously designed to tackle the challenges presented by extensive datasets and the prac-
tical limitations of available computational resources. This detailed explanation should pro-
vide a comprehensive understanding of our data normalization methods and the technical
reasoning behind our approach.

A.2 Frame registration and correction

We applied SIFT Lindeberg, 2012 algorithm to two frames affected by the shift problem.
First, we identified the main points of interest and cross-referenced them with the next frame.
Then, the outliers were discarded to estimate the transformation matrix, thereby canceling
the shift. However, according to our performance evaluation, SIFT was sufficient to correct
the shift (see Fig. ??.a also in Table.2.3). Finally, it obtained an average error of 0.0153±
0.0609px along the x-axis, while 0.0228±0.1221px along the y-axis. Thus, SIFT proved to be
directionally biased by the shift. SIFT was tested using the ’SIFT_create’ function from the
’OpenCV’Bradski, 2000a library to compute key points and their source and target image
descriptors. The Euclidean distance (default sift error=0.7) matches points between the
two key-points descriptors. The random sample consensus (RANSAC) algorithm eliminates
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outliers (the ’RANSACRegressor’ function from the ’scikit-learn’ library). The matched
points are used to find the transformation matrix.

Our recursive scheme (in our CECC module) contemplates the intricacies and challenges
of this registration task. Initially, we employed a relatively large Gaussian kernel of size
513x513 (’getGuassianKernel’ function from OpenCV), where σ = 0.3 · ((kernel_size−
1) · 0.5− 1) + 0.8), which corresponds to a σ value of approximately 77.3. This choice was
made to retain the essential details of the aggregates while diminishing noise. Using this, we
computed an initial transformation matrix TM0 to adjust for the offset between successive
frames. Subsequently, we transitioned to a smaller Gaussian kernel, specifically 257x257,
equivalent to a σ of roughly 38.9. This finer kernel resolution introduced more granularity in
the aggregate details. With the previously estimated TM0 as a starting point, we initialized
a second registration process, leading to TM1. This new transformation matrix proved to be
more adept at countering the acquisition shift. We iteratively proceeded with this method,
progressively reducing the kernel size during each step until we reached a point where no
kernel was necessary. The final transformation matrix, TMN , was determined using ECCM
directly on the untouched frames, taking TMN−1 as its initialization.

To implement the CECC approach, we used the ECC implemented in the ’OpenCV’
v4.5.1 Python library named ’findTransformECC’. Each cascade used a different Gaussian
kernel, with 1000 max iterations or 10−4 error as a termination criterion for finding the cor-
responding transformation matrix. The last cascade computed the effective transformation
matrix.

When the transformation matrix is estimated, the ’warpAffine’ function (from the ’OpenCV’
library) is used to register the image by the computed transformation matrix.

In order to validate our registration approach, 1000 ’x’ and ’y’ shifts were randomly
generated and then saved between -400 pixels and 400 pixels (x and y shifts are independent).
For each test, we loaded the reference image (containing aggregates) and the same random
shifts, in the exact same order. We created a shifted version of the reference image using
’warpAffine’, with the loaded shifted ’x’ and ’y’. Both images (reference and shifted) are
2048 × 2048 gray-scale. Each test was submitted as a job via SLURM to a computational
cluster. For CECC, we used 4 cores Xeon Gold 6126 CPU, 1GB RAM and for SIFT 4 cores
Xeon Gold 6126 CPU, 2GB RAM (1GB RAM for SIFT is not sufficient). The execution
time is computed and reported for each registered image.

For blurry frame detection module, we computed the Laplacian of two images: image(t)
and image(t+k), where k is the step between two images (i.e., k=1 means comparing two
consecutive images). Then, the module evaluate the variance of the resulting images. Images
with no blur give high variance values, and images with blur give low variance values. This
mechanism effectively detects sudden drops in Laplacian variance values (using the relative
difference compared to a given threshold), thus detecting blurry and unusable frames (i.e.
dropped from the stack).

In order to compute the Laplacian image, we used the ’Laplacian’ function from the
’OpenCV’ Python library in 64 float representation. Variance is then computed on the
resulting image. Every two consecutive frames, the relative difference is computed, and the
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blurriness is detected if:

|1− σ2(∇2
5ft+1)

σ2(∇2
5ft)

| > εblur, where εblur ∈ [0, 1] (A.1)

with σ2 the statistical variance and ∇2
5 the five point operator Lindeberg, 1990. If the blur

is detected (i.e., εblur = 0.01), a loop is launched to check for the disappearance of the
fuzziness in the next B frames (i.e., B = 14).

When faced with long episodes of blur (many consecutive fuzzy frames), a bigger B

value is recommended. However, one usually look for low εblur values, corresponding to a
higher quality standards. This module record and save all the shift correction parameters
as the rejected blurry frames.

A.3 Aggregate segmentation and quantification

. After aggregate image normalization and data check, we used a fixed 0.5 threshold to
separate the aggregates from the background. Next, we labeled the segmented aggregates to
extract features (i.e., count, area and centroid) using the ’label’ and ’regionprops’ functions
from the ’scikit-image’ library. To consider that a given labeled aggregate is phagocytosed
by a cell, we checked every two consecutive frames if the following conditions are met: the
change in the size of the labeled aggregate (decrease by half) and its centroid movement
(0.7µm ≈ 7 pixels). Finally, all aggregates’ features for each time point are reported/saved.

A.4 Scene instance-level cell segmentation and tracking

A.4.1 DL and IDL approaches

U-Nets used four depth levels. In the down-sampling pass, for U-Net and Attention-U-Net,
each depth level had a duplication of the following sequence: 2D convolution layers (Conv2D)
with 3x3 filters, 2D batch-normalization and leakyReLU, then, 2-factor max-pooling. BiO-
Net used a duplication of the following sequence: Conv2D, 2D batch-normalization and
ReLU. This sequence is followed by Conv2D, ReLU, 2D batch-normalization and 2-factor
max-pooling. The results of each depth level are connected to the symmetrical depth of the
decoder as ’skip’ connections.

The midsection (bottleneck) for U-Net and Attention-U-Net was composed of a dupli-
cation of the sequence: Conv2D, 2D batch-normalization, leakyReLU. The BiO-Net bottle-
neck was composed of Conv2D, ReLU, 2D batch-normalization, Conv2D, ReLU, 2D batch-
normalization, 2D transposed convolution, ReLU, 2D batch-normalization.

In the up-sampling pass, each depth level used up-sampling with a scale factor of two, and
then the skip connection is concatenated differently for each model. In U-Net, it is directly
concatenated along the first dimension with two times: Conv2D, 2D batch-normalization
and leakyReLU. The Attention-U-Net passed the up-sampled signal through: Conv2D,
batch-normalization, and leakyReLU. Then, the attention module (see details Oktay et
al., 2018) processes the resulting signal and the skip connection. This result is concate-
nated with the skip connection along the first dimension and passed through the sequence:
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Conv2D, 2D batch-normalization and leakyReLU. The BiO-Net used the same U-Net de-
coder module, by only replacing leakyReLU with ReLU. In addition, batch-normalization
comes after the ReLU activation function.

For all U-Nets, the output was a single channel image (after Conv2D followed by a
sigmoid function). We used the same 2D convolution layers for the encoder and decoder.
DL U-Nets contains a (64, 128, 256, 512) sequence of layers for each depth level with a
midsection of 1024 layers. IDL U-Nets involved (24, 48, 96, 192) series of layers for each
depth level and a midsection of 384 layers. For the BiO-Net, the default 1 iteration and a
multiplier of 1.0 are used.

LSTM modules (described in Fig.??.a) were connected to the frozen U-Nets (forward-
pass only). The highest encoder depth convolution results (64x1024x1024) were concate-
nated with the prediction image (1x1024x1024) and passed to the LSTM0 when the given
frame is the first one in the chosen time-window (successions of frames), otherwise to
LSTMi.

The TTCM (presented in Fig.??.c) concatenated the probability maps from U-Nets.
These results were then normalized by the number of the time points. Seeds were finally
extracted using a high thresholding (i.e., 0.9), corresponding to selecting the pixels presented
in most of the frames of the time-window.

The visual explanation module is connected to the XAI U-Nets. Each depth level (en-
coder and decoder) output was extracted before the mean activation heat map was com-
puted along axis 1. The resulting image was scaled to match the input image dimensions
(1024x1024) using the ’resize’ function from the ’PIL’ Python library.

A.4.2 DL training phase

Building on the established conventions for U-Nets in semantic segmentation, our model
introduces a critical enhancement with the alpha factor (αi) for calculating the global loss.
This factor is dynamically computed for each training image, allowing our binary cross-
entropy loss function to adapt to the unique ratio of background to foreground pixels in
each image’s ground truth data. For a given image i, if the cellular density is low, the alpha
factor increases the weight of the cell pixel class within the loss function. Thus, the global
loss for image i is defined by incorporating the alpha factor, αi, to ensure that the loss is
representative of the actual class imbalance on a per-image basis. This approach shares con-
ceptual similarities with methodologies such as NeuRegenerate’s density multiplierBoorboor
et al., 2023, which adapts model behavior to address the tile-stitching artifacts. In NeuRe-
generate’s case, this adaptation is based on the overlap between synthetic and real inputs
in a 3D volumetric context, particularly when computing the reconstruction loss within a
generative adversarial network setting. Our alpha factor, however, is specifically tailored
for 2D image segmentation, enhancing sensitivity to the nuances of each training image,
presenting a substantial improvement in how class imbalances are addressed in the model.
Where the global loss is formulated as:

lossglobal = −1

I

I∑
i=1

[gti · log(predi) + (1− gti) · αi · log(1− predi)] (A.2)
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With αi is the ratio between the number of background and foreground pixels from the
ground truth for the i-th image, I represents the number of training images, gti the ground
truth binary mask, predi the model prediction. In order to optimize the speed, the ’PyTorch’
library is used to flatten the masks. Then the loss function is computed directly on the GPU,
and reducing the delay between the forward and the backward passes.

In a first phase of the DL training, all U-Nets were trained using 5-fold cross-validation
and testing while using: (i) lossglobal for retro-propagation (see equation A.2); (ii) Adam
optimizer; (iii) 10−4 learning rate and (iv) batch size of one. After twenty epochs, the best
model was saved for each validation fold based on its lossglobal score on the validation set,
then tested on the test set. In order to take into account the cell border and to reduce the
training time, border masks were automatically generated for the dataset in the following
manner: cell binary mask was dilated using the ’binary_dilation’ function from the ’scipy’
library for two iterations, the pixels of the original mask was subtracted (keeping only the
borders after dilation), then the border mask was dilated for 4 successive iterations (see
Fig.??.a). We defined the border loss as:

lossborder =
1

I

I∑
i=1

|predi ∩ gt_borderi|
|gt_borderi|

(A.3)

Let I represent the number of training images. For each ith image, gt_borderi is the set
of pixels constituting the automatically generated ground-truth border, while predi is the
set of pixels where the model predicts a border. If the model’s prediction, predi, does not
intersect with any of the true border pixels from gt_borderi, the intersection is empty and
thus lossborder = 0. Conversely, if every pixel in gt_borderi is also in predi, indicating a
total overlap, then lossborder = 1.

In a second phase of the DL training, the parameters of the U-Nets were frozen, in-
hibiting any back-propagation. Subsequently, the U-Nets were linked to LSTM modules
that functioned with a two-time point window at a time (LSTM0 and LSTM1), permitting
back-propagation to modify only the LSTM parameters (refer to Fig.??.a). In our training,
the loss function was a combination of equations A.2 and A.3:

total_loss = ω · lossglobal + (1− ω) · lossborder, ω ∈ [0, 0.5] (A.4)

The coefficient ω is pivotal for controlling the weightage given to the global versus the
border loss. From preliminary experimentation, ω = 0.4 was discerned to be a balanced
choice, thereby augmenting cell separation. For instance, a lower ω value of 0.1 improved
precision but slightly detracted from recall. It is noteworthy that values of ω exceeding
0.5 jeopardized cell separation, eliciting declines in both precision and recall metrics. As a
consequence, the scope of ω was confined to the interval [0, 0.5]. This value of ω not only
emphasizes cell borders—a crucial factor for our cell detection quality—but also ensures
the retention of important global features of the image, such as demarcating the foreground
from the background.

The LSTM modules were trained using the 5-fold cross-validated U-Net frozen models,
total_loss with ω = 0.4 (see equation A.4), Adam optimizer, 10−4 learning rate and a batch
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size of one. After twenty epochs, the best model was saved for each validation fold based
on its total_loss score on the validation set and then tested on the test set.

A.4.3 IDL training phase

U-Nets were trained using 5-fold cross-validation and testing, lossglobal for retro-propagation
(see equation A.2), Adam optimizer, 10−4 learning rate, batch size of one. After twenty
epochs, the best model was saved for each validation fold based on its lossglobal score on the
validation set, then tested on the test set.

A.4.4 DL/IDL inference phase

For DL we used UNets+LSTM and for IDL we used UNets+TTCM. These modules com-
bination produced time-series-based probability maps (high-values: cells, low-values: back-
ground and cell borders). Then, cell seeds (centroid coordinates) were extracted after 0.9
thresholding. Watershed method combined the probability map as a distance map, cell
centroids as seeds and the binary mask (U-Nets predictions after 0.5 thresholding) as a fore-
ground delimiter (see Fig.??.b, Fig.??.c). Moreover, the execution time evaluation (during
inference) presented in Fig.??.d was performed using the following hardware 8 cores i7
9700K CPU, 16GB RAM, Nvidia RTX2080 GPU and Samsung 970 PRO SSD.

A.4.5 Data input size to all models

Each frame was resized to 1024 x 1024 pixels before being input into the model. This deci-
sion was taken to strike a careful balance between maintaining high resolution for effective
model performance, storage scalability and ensuring computational efficiency. The original
resolution of 2048 x 2048 pixels was reduced to fit most hardware capabilities while still
preserving sufficient detail for the model’s tasks. Indeed, we did not utilize a tiling strategy
for the frames; each was processed in its entirety at the reduced size (1024 x 1024 pixels).
This approach eliminates concerns about tiling overlap and its potential implications.

A.4.6 Point2Cell annotation tool

Point2Cell integrates a pair of UNet models for distinct purposes. The first UNet model
predicts binary cell masks, while the second focuses on cell density estimation. Cell den-
sity maps are generated using the Distance-map libraryXu et al., 2016, which employs a
geodesic distance measure from a Python library to create 2D distributions around cell
centroid coordinates, or seeds. In this system, the Distance-map library uses the Euclidean
distance metric, adjusted by a linear alpha parameter, and applies it to cell centroids. These
distributions are refined using binary masks from the first UNet model, yielding accurate
cell density maps. Both UNet models are trained from scratch, with a batch size of one.
Optimization of parameters is done using the RMSprop optimizer, at a steady learning rate
of 10−4. The training employs early stopping at 10 epochs and is capped at 200 epochs.
Point2Cell also incorporates a user-interactive cell seeding feature for image annotation,
where users manually identify each cell in an image. This feature includes options like
undo, reset, and save, enhancing annotation efficiency. This manual seeding is essential for
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accurate annotations. After manual seeding, Point2Cell uses its trained models to generate
pseudo-cell masks and density maps. These, along with the user-provided cell seeds, are
processed through a watershed algorithm Beucher and Meyer, 1993; Neubert and Protzel,
2014; M. Bai and Urtasun, 2017. This method effectively isolates and labels individual
cells. In tests, Point2Cell showed greater annotation accuracy than polygon-based annota-
tion. Using 10 images from the HeLa cells dataset from CTC, it achieved a Dice score of
94.97% in just 14.6 seconds. In comparison, the polygon-based ’labelme’ tool scored 91.3%
but took much longer, at 96.1 seconds. Point2Cell’s efficiency is highlighted by its speed,
being about six times faster than ’labelme’, and its superior precision, with a 3.64% higher
Dice score. Point2Cell’s source code is publicly available on GitHub. It streamlines cell
annotation, requiring only single-click input from the user for highly precise, pixel-level cell
annotations.

A.4.7 Cell tracking

The Bayesian Tracker (btrack)Ulicna et al., 2021; Bove et al., 2017 Python library was used
to track cells over time. It used the centroid and area to form cell tracks. Only the tracks
with at least 100 min long were kept. Speed was computed at each time point (mean cell
displacement divided by time unit), quantifying speed over time, and then, mean speed over
a whole sequence was computed and reported. A similar approach was used to compute
total displacement over time and for the whole sequence.

A.5 AttUNet(XAI) and UNet(XAI) as pre-trained models

The training of our models on the full dataset for 20 epochs took approximately 30 hours
for the Att-Unet(XAI) and 20 hours for the Unet(XAI) using the Nvidia GPU: Tesla V100-
SXM2-32GB. We consider this to be quite efficient given the high input resolution (1024 x
1024 pixels) and the complexity of the task the model is designed to perform. We trained
the two models from scratch using the entire dataset so that the community will have the
possibility to use it as is on similar data or fine-tune it for similar tasks. We used 3 FTD +
3 WT experiments (around 120 sequences, 22,412 images, and 22,412 masks) for training,
1 FTD + 1 WT experiment (around 40 sequences, 7,323 images, and 7,323 masks) for
validation, and 1 FTD + 1 WT experiment (around 40 sequences, 6,761 images, and 6,761
masks).

A.6 Microglia primary culture

Microglia primary cultures were performed using newborn brains of controls (C57BL6/J),
of FTD-mutant animals (line C9orf72-/- or GrnR493X/R493X). Newborn mice brains (less
than two days old) are collected by dissection of the skull. Brains are recovered in a 50mL
Falcon and mechanically dissociated by gentle pipetting into 5mL of Hank’s Balanced Salt
Solution (HBSS Thermo Fisher Scientific 14025050). After dissociation, the resulting cell
suspension is then centrifuged at 1200rpm for 10 minutes at 4°C. The pellet is re-suspended
with culture medium containing DMEM (Thermo Fisher Scientific 31885023), supplemented
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with 10% de-complemented calf fetal serum free of endotoxins (HI FBS Thermo Fisher Scien-
tific 10082147), 1% Penicillin + Streptomycin (Thermo Fisher Scientific 15070063). The cell
suspension is cultured in flasks (75 mm2) previously coated with Poly-L-Lysine (SIGMA
P4832) for 30 minutes at 37°C (5% CO2) then washed three times with 1X Phosphate
Buffered Saline. The culture flasks are incubated at 37°C (5% CO2). Fifteen days later,
microglia are ready for harvest. Microglia are obtained by light shaking and recovery of
the culture medium in a 50mL Falcon. After centrifugation, cells are re-suspended in fresh
culture medium and plated.

A.7 Phagocytosis assay

Aggregates of recombinant human full length TAR DNA-binding protein 43 (TDP-43, Ab-
cam ab156345) were conjugated to Alexa Fluor 555 NHS Ester (ester succinimidyl, Thermo
Fisher Scientific A20009) at equimolar concentration and deposited on a 35 mm glass-
bottom dish (Ibidi, 81218-200) for 2 hours at 37◦C, 5% CO2. The dish was then washed
3 times with 1X phosphate buffered saline (PBS) and 12.5 x 105 freshly harvested primary
mouse microglia (WT, Grn KO or C9orf72 KO) were seeded on top of the fluorescent
aggregates in DMEM (Thermo Fisher Scientific 31885023), supplemented with 1% N2 sup-
plement (Thermo Fisher Scientific 17502048) and 1% Penicillin + Streptomycin (Thermo
Fisher Scientific 15070063). Within 30 minutes after seeding the culture dish was placed
in a Zeiss Axio Observer 7 video-microscope at 37◦C, 5% CO2 and video were acquired
at 63X for 7h (2048 × 2048 images with 0.103µm x 0.103µm per pixel). For the sake of
simplicity, we summarize the steps of data preparation as follows: (i) fluorescent aggregates
were deposited onto a glass bottom culture dish and incubated for two hours; (ii) the dishes
were washed three times after incubation; (iii) freshly harvested primary mouse microglia
wild type (WT) or FTD-mutants were implanted on top of the fluorescent aggregates; and
(iv) the culture dishes were placed in a video microscope 30 minutes following seeding, and
a video was recorded accordingly.

A.8 FTD-mutants versus WT cells

The results presented in Fig.??.g, Fig.??.h, Fig.??.i, Fig.??.j and Fig.2.15 were computed
in the following manner: (i) we computed the mean curves of all scenes, where we had 20
scenes maximum per acquisition, and each acquisition is (n=1) and (ii) we computed the
mean values from the curves between 0 and 200 min.

A.9 Data collection

Imaging of cells/aggregates in 2D+time was performed on a Zeiss Axio Observer 7 video-
microscope at 37°C, 5% CO2 and videos were acquired at 63X for 7h (2048× 2048 images
with 0.103µm x 0.103µm per pixel). We used the ZEN Microscope Software v2.6.76.0. We
conducted a total of 10 experiments, with 5 using wild-type (WT) cells and 5 using FTD
mutant cells. In each of these experiments, we included the cells from 6 pups. Thus, we
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analyzed cells from 30 pups for WT and another 30 pups for FTD mutant cells, totaling
60 pups across all experiments. Regarding the details provided in the Methods section,
the term "20 scenes per acquisition" corresponds to the capture of 20 distinct imaging se-
quences in each experiment. Each sequence represented 7 hours of continuous imaging using
phase-contrast video microscopy, resulting in a collection of 200 unique sequences across all
experiments (calculated as 10 experiments multiplied by 20 sequences per experiment). It
is not a multiplicative factor of the number of pups but rather the number of sequences per
experiment.

A.9.1 Laboratory animals

Mus musculus, C57BL6J, newborn mice were euthanized by decapitation as recommended
for rodents up to 10 days of age. They were sacrificed to generate the microglial primary
culture, parents were 4 to 8 months old. Mice were kept on a 12h light/dark cycle with food
and water available ad libitum. Temperature between 19 and 24°C and humidity between
45% and 65%. To do microglial primary cultures, postnatal day one mice pups of both sexes
are used and cells from all animals dissected on the same day are only pooled by genotype.
As the same occurs for all genotypes it does not impair our differential analysis.

A.9.2 Compliance with essential ARRIVE guidelines

Study design:

a) Control group: Wild type (WT) (C57BL/6JRj), FTD-mutant (line C9orf72-/- or
GrnR493X/R493X)

b) Experimental unit: Litter (each experiment was performed with cells extracted from
one litter of pups per genotype)

Sample size:

a) Six pups per experiment, resulting in a total of 60 pups for all experiments conducted
in this study.

b) Sample sizes of n=5 for WT and n=5 for FTD mutants are typical for in vivo studies.

Inclusion and exclusion criteria:

a) Experimental units with abnormally low production of microglial cells (less than 106

microglial cells per animal) were excluded.

b) No data had to be excluded as these samples were not used in the study.

c) The criteria have been thoroughly applied.

Randomization is not applicable in this study. For details on blinding, outcome mea-
sures, statistical methods, experimental animals, and experimental procedures, please refer
to the methods section. For information on the results, please refer to the results section.
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B.1 Validation protocol for virtual staining

B.1.1 Quantitative evaluation

To address the inherent limitations of patch-level evaluation in virtual staining, such as
restricted contextual information and potential inconsistencies across different tissue regions,
we developed an adapted validation protocol. Traditional metrics often fail to capture the
nuanced discrepancies that can occur across various regions of a tissue slide, leading to an
incomplete assessment of staining quality. Our protocol, by contrast, incorporates both
PSNR and SSIM to comprehensively assess the quality of WSIs. These metrics are crucial
for evaluating the fidelity and structural integrity of virtually stained images. Furthermore,
MSE metric is specifically employed to provide a quantitative assessment at the tissue pixel-
level, significantly enhancing the precision in evaluating staining accuracy.

The use of a paired dataset, where each virtual stain is directly compared to a chemically
stained ground truth counterpart (GT stain WSI), is pivotal. This pairing ensures that
each evaluation metric not only measures the error or similarity in isolation but does so
in a context that reflects true biological and clinical scenarios, ensuring the relevance and
applicability of the findings.

The refined validation protocol involves several steps. Initially, an H&E stained WSI
is processed to extract the foreground, effectively distinguishing the tissue from the back-
ground. Subsequent virtual staining algorithms synthesize the stain, producing a stain WSI
that is then compared against the ground truth stain WSI obtained from chemical staining.
This comparison is essential for assessing the virtual staining’s performance across entire

https://arxiv.org/abs/2407.00098
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slides and at the pixel level as illustrated in Figure.B.1. Through these metrics, our protocol
addresses critical gaps in existing evaluation methods and sets a clear validation of virtual
staining technologies in pathology.

Figure B.1: Evaluation protocol for virtual staining performance. Workflow
diagram illustrating the validation process for virtual staining techniques. The process
begins with an H&E stained whole slide image (H&E WSI), from which the foreground is
extracted. This image undergoes virtual staining to produce the Stain WSI, which is then
compared to the chemically stained ground truth WSI (GT stain WSI). The evaluation
metrics include PSNR and SSIM for assessing overall image quality, and MSE for pixel-wise

accuracy, indicating the effectiveness of the staining simulation.

B.1.2 Qualitative evaluation

In our study, we recognize the importance of qualitative evaluation alongside quantitative
metrics, particularly from a pathological perspective. Despite utilizing a paired dataset,
qualitative assessment remains crucial for verifying the applicability and accuracy of our
virtual staining techniques from a clinical standpoint.

In Figure.B.2, we conducted a poll involving 26 images stained with AE1AE3, where
a pathologist was shown the original H&E image alongside virtual staining results. These
included images processed through real chemical staining (ground truth) and those generated
via our paired and unpaired DL models. Pathologist was instructed to rate the images on
a scale from 1 (worst) to 5 (best) and provide feedback.

The outcomes of our study were somewhat counter-intuitive. In the assessment of 26
AE1AE3-stained images, the ground truth images, which involved actual chemical staining,
generally scored lower than those from both the paired and unpaired settings. Specifically,
the ground truth images received an average score of 2.69±1.46. In contrast, images from the
paired setting, where virtual staining was trained on paired data, scored slightly higher at
3.11± 1.63. Most notably, the unpaired setting, involving virtual staining trained without
paired data, performed the best with an average score of 3.42 ± 1.65. This suggests an
unexpected performance trend where the virtually generated stains were preferred over the
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Figure B.2: Software for poll results and feedback collection of pathologist
ratings on staining quality. We show the original H&E image at the top, followed
by a sets of virtual stains in different conditions including the ground truth randomly
showed. Pathologist was asked to rate each image based on the clarity and preservation of

morphological details 1 "worst" 5 "best" with a feedback.

actual chemical stains, indicating a discrepancy in quality perception between the traditional
and computational methods.

Upon analyzing the pathologists’ feedback, a critical observation was made, as illustrated
in Figure.B.3. It appears that a water-like blur inherent in the chemical staining process
tended to obscure the morphological details of the tissue. This issue was less pronounced
in the images from the paired and unpaired settings.

Notably, the unpaired model displayed superior preservation of morphological features.
This is likely because, during training, the model does not directly correlate the H&E images
with specific stains, allowing it to learn where to place stains effectively without replicat-
ing the blurring seen in the ground truth. Conversely, the paired model, learning from

Original H&E Ground truth Paired Unpaired

Figure B.3: Morphological detail comparison in H&E stained images. This
figure shows a closer view of the morphological features in the original H&E stain (left)
versus the ground truth, paired, and unpaired virtual stains. The comparison highlights
the impact of water-like blur in chemical stains and its reduction in virtual stains, aiding

in the qualitative assessment by pathologists.
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the blurred ground truth images, tends to reproduce similar artifacts, thus inheriting and
replicating these biases. These findings underscore that unpaired training can provide more
generalized and unbiased results. While objective metrics might suggest lower performance
compared to the paired settings, the qualitative benefits from a pathological perspective
are worth noting. The unpaired setting yields visual results that surpass the ground truth
(when there is a blur effect), offering enhanced clarity and detail that are crucial for accurate
medical diagnosis.

B.2 Reproducibility: experimental configurations

To ensure reproducibility, it is important to note that all experiments conducted in this study
utilized the same architecture for the encoder, decoder, and discriminator. The number of
parameters was aligned with those specified in Anoosheh et al., 2017 and implemented
using the PyTorch library (version 2.2.0 with CUDA v12.1 and cuDNN v8.902) Paszke et
al., 2019. All training sessions were performed using 2048x2048 tiles resized to 512x512
tiles (no overlap) from the Crohn’s dataset, as discussed in Section 3.6, in either paired or
unpaired settings. The models employed an Adam optimizer with parameters β1 = 0.5 and
β2 = 0.999, and a batch size of 6. We used only random flip and random rotation (data
augmentation strategies). Each training epoch contains 728 iterations. Each training was
conducted on a single NVIDIA A100 80GB GPU. The experimental setup is outlined below.

B.2.1 Enhanced performance and efficiency in multi-virtual staining us-
ing unified H&E encoder

In Table 3.1, we trained two different approaches—our unified method and CycleGAN (refer
to Figure 3.10)—. For CycleGAN, a separate model was trained for H&E to each of the
different stains, with a total of eight stains. This involved 16 encoders, 16 decoders, and
16 discriminators. Each model underwent 75 epochs at a fixed learning rate of 2 × 10−4,
followed by 75 decay epochs with a linearly reducing rate, totaling 150 epochs per stain (1200
epochs overall). The loss weights were set to λcyc = 10 and λadv = 1, with no regularization
as α = 0 and β = 0.

In contrast, our approach involves simultaneous training for H&E to the eight different
stains, using a total of 9 encoders, 9 decoders, and 9 discriminators. The training consists of
500 epochs at a fixed learning rate of 2×10−4, followed by 500 decay epochs with a linearly
reducing rate. The loss weights and regularization settings are identical to those used in the
CycleGAN models.

The values presented in Table 3.1 represent the mean tile-wise (no overlap) MSE for each
stain tested on the Crohn’s dataset (refer to Section 3.6). These MSE values are computed
for both approaches – our unified method and CycleGAN –, being reported in Table 3.1.
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B.2.2 Impact of incorporating IHC loss functions and H&E regulariza-
tion on stain synthesis quality

In Table 3.5, the training involved 9 encoders, 9 decoders, and 9 discriminators. The model
underwent 500 epochs at a fixed learning rate of 2×10−4, followed by 500 decay epochs with
a linearly reducing rate, summing up to a total of 1000 epochs (paired and unpaired). The
impact of incorporating different loss functions and regularization was studied, specifically:

• LH&E (✓): This regularization was applied at the end of each iteration, where the cycle
consistency losses Lcyc,i from the 8 components of the Crohn dataset were summed
and averaged. The loss weights were set as λcyc = 10 and λadv = 1, with α = 0 and
β = 0.

• LIHC (✓): For the IHC-specific loss, λcyc = 10 and λadv = 1 were maintained, and
values of α and β were computed as detailed in Section 3.4.1.1.

• Combined LH&E (✓) and LIHC (✓): Both H&E regularization and IHC loss were
applied similarly as described above, with α and β values computed according to the
method outlined in Section 3.4.1.1.

The values presented in Table 3.5 represent the MSE, PSNR abd SSIM computed at
the WSI level. These metrics are calculated for WSIs reconstructed with 0% overlap and
represent the mean values across all eight different stains of the Crohn dataset. Further
details on the validation protocol are provided in Section B.1.

B.2.3 Comparison of our model’s performance across different magnifi-
cations

In Table 3.2, we evaluated the performance under both paired and unpaired settings using
specific magnifications. This involved 9 encoders, 9 decoders, and 9 discriminators. The
model underwent 500 epochs at a fixed learning rate of 2 × 10−4, followed by 500 decay
epochs with a linearly reducing rate, summing up to a total of 1000 epochs (paired and
unpaired). The magnifications tested were:

• x10 with an original tile size of 2048x2048 pixels, which corresponds to approximately
450.56× 450.56µm,

• x20 with an original tile size of 1024x1024 pixels, approximately 225.28× 225.28µm,

• x40 with an original tile size of 512x512 pixels, approximately 112.64× 112.64µm.

All images are resized to 512x512 for training, following the configuration detailed in
Section B.2.2. This configuration employs combined loss functions LH&E and LIHC, with
parameters λcyc = 10 and λadv = 1. The performance metrics, listed in Table 3.2, include
MSE, PSNR, SSIM. These metrics are computed on WSIs reconstructed with 0% overlap
(mean values across all eight different stains of the Crohn dataset). It is important to note
that training at a magnification of x40 and testing at x10 requires resizing the synthetic x40
WSI to match the size of the x10 slide. After resizing, metrics are calculated to compare
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the ground truth slide at x10 with the resized slide. This procedure is applicable to other
magnifications as well. Further details on the validation protocol between two WSIs are
provided in Section B.1.

B.2.4 Effects of various regularization techniques on unpaired virtual
staining performance

In Table 3.6, we evaluated the performance under an unpaired setting using x10 magni-
fication (original tile size of 2048x2048 pixels, corresponding to approximately 450.56 ×
450.56µm), resized to 512x512. The first row details our approach using the configuration
described in Section B.2.1. The second row uses the same configuration, combining IHC
loss functions with H&E regularization, as referenced in Section B.2.2. For subsequent rows,
whenever a specific stain regularization is applied, the parameters λcyc = 10, λadv = 1, and
values for α and β are computed according to the method outlined in Section 3.4.1.1. Addi-
tionally, Lidt = 1, Llat = 1, or Lfwd = 1 may be applied, with detailed descriptions of each
stain regularization found in Section 3.4.1.2.

B.2.5 Hamming window-based approach for clean tile-stitching

To address the inevitable stitching artifacts encountered during the reconstruction of syn-
thetic WSIs, we applied a tailored image processing approach. Central to our methodology
was the use of a two-dimensional (2D) Hamming window Hamming, 1998; Oppenheim and
Schafer, 1999, designed to smooth the transitions between adjacent image patches and mit-
igate edge effects.

The Hamming window, traditionally used in signal processing Hamming, 1998; Oppen-
heim and Schafer, 1999 to taper the signal edges, was adapted to two dimensions to suit
the image patches. Each patch, representing a portion of the larger image, was processed
through this window to ensure a gradual transition at the borders. With an overlap > 0,
this was achieved by computing the outer product of a one-dimensional Hamming window
with itself, thus creating a symmetrical 2D window w(x, y) for a patch of size M × M is
defined as:

w(x, y) = 0.54− 0.46 cos

(
2πx

M − 1

)
·
(
0.54− 0.46 cos

(
2πy

M − 1

))
(B.1)

where x, y range from 0 to M −1. This results in a 2D Hamming window which reduces
the pixel values towards the edges of each patch. This window was then applied across
the three color channels of the image. Each image patch (across all RGB cahnnels) was
element-wise multiplied by this matrix, reducing the intensity at the peripheries and thereby
softening the boundaries between stitched patches. This operation is described by the
following equation:

Pweighted(x, y) = P (x, y) · w(x, y) (B.2)

Where P (x, y) is the original pixel value at coordinates (x, y) within the patch for a given
color channel, and w(x, y) is the value from the 2D Hamming window at these coordinates.
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Post application of the Hamming window, the weighted patches were summed to form the
complete WSI. In regions where patches overlapped, pixel values from multiple patches were
combined. To ensure uniformity, the accumulated weights of the patches were recorded and
used to normalize the pixel values in these overlapping areas. This normalization process was
crucial for maintaining consistent intensity across the WSI, preventing visual discontinuities
that could hinder the quality of the synthetically stained WSIs. This methodology can be
applied to any tile-based virtual staining approach to reconstruct a clean WSI output.

The final processed image was saved in pyramidal TIFF format, suitable for high-quality
WSI. The processing pipeline was implemented using Python, utilizing libraries such as
NumPy (Harris et al., 2020) v1.26.3 for numerical operations and PyVIPS (PyVips Library
2024) v2.2.2 for image handling, ensuring efficient memory usage and scalability.

B.3 Multi-Virtual Staining Production Phase

1. User Input: Prompt the user to select desired IHC stains from the available options.

(a) If the user provides an invalid selection, display an error message and prompt
again.

2. Data Storage: Store the user’s selections.

(a) Ensure that the storage mechanism confirms successful storage. If storage fails,
try again or provide an error notification.

3. Image Load: Load the H&E whole slide digital image labeled “K” and the H&E
discriminator.

(a) If the image or discriminator fails to load, log the error, notify the user, and
prompt for a different slide or retry.

4. Data Quality Check for the H&E “K” whole slide:

(a) Implement validation checks to ensure that calculated reliability scores are within
expected ranges. If not, log discrepancies.

(b) Predefined Threshold: If more than 5% of the image scores below a trust level of
0.9, the stain may not meet the reliability standard.

(c) Global Confidence Level: A heatmap may be produced if the average or median
reliability score of the entire image falls below 0.85.

(d) Local Variance: Areas of the image with significant score variations may suggest
model inconsistencies and should be flagged.

(e) ROI relevance and robustness: Regions like those near tumors, which are critical,
may have a stringent reliability threshold set, such as 95%.

(f) Past Error Rate: If similar tissue regions have had unreliable predictions in the
past, current predictions with analogous scores are treated as unreliable.

5. Check Results:
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(a) If the check is successful, release memory by deleting the H&E discriminator.

(b) If not:

i. Determine if the H&E “K” slide is normalized. If yes, present a heatmap/XAI
to the user. Show the user where the problem is originating from spatially in
the image using a color code (i.e., red=problem, green=OK). Give the user
the option to ignore the issue and move to step 6, end the process, move to
step 1 with H&E whole slide digital slide “K1”.

ii. If not, proceed with normalization, ensuring that any issues during this pro-
cess are caught and handled. Then move to step 4.

6. Data Transformation: Convert the H&E image into an embedding.

(a) Confirm successful transformation. If there’s an issue, log it and notify the user.

7. Embedding Storage: Save the H&E embedding.

(a) Ensure successful storage. If storage fails, try again or provide an error notifica-
tion.

8. Memory Management: Delete the H&E encoder to free up memory.

(a) Confirm successful deletion. If an issue arises, log it.

9. Decoder Load: Using the user’s selection, load the appropriate IHC stain decoders.

(a) If any decoder fails to load, log the error, notify the user, and attempt to reload.

10. Stain Generation: Produce the IHC stains from the saved embedding.

(a) Monitor for any anomalies or errors. If encountered, log them and notify the
user.

11. Decoder Deletion: Delete all activated IHC stain decoders to free up memory.

(a) Confirm successful deletion and check memory status.

12. Discriminator Load: Load discriminators for the chosen IHC stains.

(a) If a discriminator fails to load, log the error, notify the user, and attempt to
reload.

13. Quality Check for Stains: Perform a data quality check for each stain.

(a) Ensure that each check completes successfully. If an issue is detected, log it.

14. Model Deletion: Delete all active models to free up memory.

(a) Confirm successful deletion and check memory status.

15. User Feedback: Display the original H&E image, the selected IHC stains, and their
XAI visual heatmaps to the user.
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(a) Ensure that all displays load properly. If there’s a display issue, log it and attempt
to reload the visuals.

16. End or Restart: Offer the user the choice to end the program or restart with the H&E
whole slide digital image “K1”.

(a) If the user chooses to restart and there’s an issue loading “K1”, notify the user
and provide options.
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