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A B S T R A C T

Vibration and structure borne noise are generally undesirable phenomena for both
the reliability and comfort issues. Many approaches to vibration control have been
studied over the years, using various geometrical designs, damping materials, or
active control strategies. In addition, lightening mechanical structures is a major
challenge in terms of energy consumption, particularly for transport applications.

In these combined contexts, the aim of this thesis is to develop new vibration
control concepts by adapting the principle of Herschel-Quincke (HQ) filters, tra-
ditionally applied to plane acoustic waves in tubes, to the realm of elastic waves
in beams and plates. In acoustics, HQ filters exploit the principle of a phase shift
between two parallel tubes of varying lengths created from a primary tube, result-
ing in destructive interference and hence zero transmission at certain frequencies.
The attractiveness of HQ filters lies in their capacity to provide multiple trans-
mission loss peaks, presenting a viable alternative to traditional resonance-based
approaches.

This study extends this principle to bending waves by partitioning a thin beam
into two segments of equal length but different thicknesses. The resulting disparity
in bending stiffness induces the requisite phase difference, leading to wave filtering.
This approach positions HQ filters as a promising solution for vibration and
noise control applications without increasing the mass of the considered structure.
First, the HQ principle for structural dynamics is theoretically analysed through
wave based models considering non dispersive longitudinal or torsional waves
and bending waves in beams. An experimental study also demonstrates the
practical interest of this filtering technique. Then, the principle is extended to plates
structures, leading to annular filters that may surround a vibration source and so
isolate it from the rest of the plate. Third, some more sophisticated designs based
on serial, parallel or periodic arrangements of structural HQ devices are proposed
and analyzed to assess how they can optimize vibration filtering performance.





R É S U M É

Les vibrations et les bruits de structure sont généralement des phénomènes indésir-
ables pour des raisons de fiabilité et de confort. De nombreuses approches du
contrôle des vibrations ont été étudiées au fil des ans, en utilisant diverses concep-
tions géométriques, des matériaux d’amortissement ou des stratégies de contrôle
actif. En outre, l’allègement des structures mécaniques est un défi majeur en termes
de consommation d’énergie, en particulier pour les applications de transport.

Dans ces contextes combinés, l’objectif de cette thèse est de développer de
nouveaux concepts de contrôle des vibrations en adaptant le principe des filtres de
Herschel-Quincke (HQ), traditionnellement appliqué aux ondes acoustiques planes
dans les tubes, au domaine des ondes élastiques dans les poutres et les plaques. En
acoustique, les filtres HQ exploitent le principe de la différence de marche entre
deux tubes parallèles de longueurs variables créés à partir d’un tube primaire, ce
qui entraîne une interférence destructive et donc une transmission nulle à certaines
fréquences.

Cette étude étend ce principe aux ondes de flexion en divisant une poutre mince
en deux segments de longueur égale mais d’épaisseur différente. La différence de
rigidité de flexion qui en résulte induit la différence de phase requise, ce qui conduit
au filtrage des ondes. Cette approche fait des filtres HQ une solution prometteuse
pour les applications de contrôle des vibrations et du bruit sans augmenter la
masse de la structure considérée. Premièrement, le principe HQ pour la dynamique
structurelle est analysé théoriquement à travers des modèles basés sur les ondes
considérant les ondes longitudinales ou torsionnelles non dispersives et les ondes
de flexion dans les poutres. Une étude expérimentale démontre également l’intérêt
pratique de cette technique de filtrage. Ensuite, le principe est étendu aux structures
de plaques, ce qui conduit à des filtres annulaires qui peuvent entourer une source
de vibration et ainsi l’isoler du reste de la plaque. Enfin, des conceptions plus
sophistiquées basées sur des arrangements sériels, parallèles ou périodiques de
dispositifs structurels HQ sont proposées et analysées afin d’évaluer comment elles
peuvent optimiser les performances de filtrage des vibrations.
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1 .1 vibroacoustic control and filtering 2

scenarios, which can include thin-walled partitions in buildings, shipbuilding,
railway engineering, and automotive engineering, noise issues can arise from
both airborne and structure-borne sources. In a building acoustic context, for
example, airborne noise is transmitted ’directly’ into the receiver room through
solid partitions, while structural noise is characterized by sound energy dissipated
in walls and then transmitted through the resilient layer into the building structure.
The primary focus in addressing airborne and structure-borne noise issues involves
controlling noise by: 1) sound source modification, 2) control of the transmission
path and 3) modification of the receiver [1–5].

There are many possible noise control strategies that can be used to reduce the
vibration generated in solid structures such as plates, beams, etc. As shown in
Fig.1.2, the basic principles comprise the utilization of various absorbers, barriers,
dampers and isolators.

Airborne Structure borne

Noise Control

Dissipates
Sound energy Vibration energy

Reduces transmission of
Sound energy Vibration energy

Absorbers

Barriers

Dampers

Isolators

Fig. 1.2 Noise control strategies.

In general, the vibration control methods are based on various passive, active
and hybrid control strategies [6, 7]. Active methods utilize control actuators
and sensors of various configurations. Among the most common are those that
utilize piezoelectric films adhered to a vibrating structure. Hybrid treatments aim
to enhance passive damping by integrating various active control mechanisms.
This approach compensates for performance degradation due to temperature or
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frequency changes. By combining the simplicity of passive damping with the
effectiveness of active damping, these methods ensure an optimal combination of
their respective advantages [6]. However, both hybrid and active implementations
require a significant number of active elements, which can lead to high design
costs and recurring maintenance problems. These factors often limit their practical
application in industrial settings. The passive control method is simple and robust,
and this control method can be easily applied to reduce the structural vibration
without resorting to complex active control systems. So the focus of this thesis is
on passive vibration mitigation based on the Herschel-Quincke filtering effect.

For many years, passive damping techniques have effectively mitigated vibra-
tions in a diverse array of structures, from basic beams to intricate space assemblies.
Examples of these passive damping methods include: a) Free and constrained
damping layers, both types of damping are based on the use of viscoelastic material
to extract energy from the vibrating structure [6, 8], b) Damping systems with
graded properties using a graded impedance interface to reduce energy reflection
[9, 10], c) Acoustic Black Holes, lightweight system with a power-law tapered edge
and trapping zone that provides absorbing performances [10–12], d) Tuned Vibra-
tion Absorbers [13], consists of adding a reactive mass and an resilient element to
the structure to be treated. They are typically tuned to interfere with the vibrations
of the structure at the perturbation frequency. This results in a change in the fre-
quency response of the primary system and introduces another resonance into the
composite system due to the additional degree of freedom provided by the tuned
vibration absorbers [10]. e) Damping with Shape Memory Fibers/Alloys [6, 14–16],
a shape memory alloy is capable of "remember" its original configuration after
deformation when the alloy is heated above its characteristic transition temperature
and shape memory alloys belong to the class of smart or intelligent materials. This
passive mechanism and damping effect relies on embedding superelastic shape
memory fibers in the composite fabric of the vibrating structures to dissipate vibra-
tion energy, f) Microstructures of periodic architectures such as lattice structures
with unconventional mechanical material properties, can reduce noise by creating
band gaps [17–22].

The Herschel-Quincke filter can be presented as one of the passive vibration
control methods. The adaptation of Herschel-Quincke filter in this thesis aims to
address structure-borne noise by modifying the transmission path through the
isolator, i.e., using the concept of destructive interference between two traveling











1 .2 literature review herschel-quincke tubes 8

In the work of Alonso et al. [35] proposed to modify the cross-section of the
HQ branch and improve the narrow band attenuation capabilities to target tonal
noise of variable frequency, using adaptive concepts. The adaptive concepts are
based on shifting the resonance frequencies of the HQ tube by creating a smooth
constriction inside the waveguide. The effect of this constriction is to change the
mass and stiffness characteristics of the equivalent dynamic system, resulting in
a shift in the natural frequencies of the HQ tube vibrations. The first option is
to add a ball device inside a straight Herschel-Quincke tube, as shown in Fig1.7.
Rolling the ball is an easy way to vary the HQ branch profile and thus to control the

a) b)

Fig. 1.8 a) Adaptive transmission loss due to ball-in HQ tube. b) Adaptive transmis-
sion loss due to diaphragm HQ tube [35].

induced delay. It allows HQ resonances to be tuned for applications with variable
frequency tonal noise. The second option consists of using a constriction induced
by a membrane placed inside a straight Herschel-Quincke tube, whose shape can
be controlled by pressure or suction on one of its sides. Transmission losses have
been evaluated in a one-dimensional tube and such adaptive systems can enhance
the sound attenuation performance of HQ resonators, as shown in Fig.1.8.

The HQ interference can also be created and controlled actively, by using
a piezoelectric membrane inserted into the delay branch. As an example, this
configuration was studied by S. Griffin [36]. The Herschel-Quincke tube reviewed
by Selamet [28] is modified by adding a pre-stressed PVDF diaphragm to form a
spring-mass piston as illustrated in Fig.1.9. The used PVDF membrane behaves like
a piston whose equivalent parameters can be adjusted using the applied electrical
voltage, thus controlling the frequency at which attenuation occurs.
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Liner system for the reduction of noise from turbofan engines was proposed by R.
F. Hallez [37], R.A. Burdisso [38], J.P. Smith [39] and D. H. de la Riva [40]. The work
of Hallez [37] was primarily aimed toward evaluating the noise control mechanisms
involved in the HQ system and the effect of the HQ tubes on the noise radiated by
the inlet of turbofan engines. The approach consists of installing circumferential
arrays of HQ tubes in the inlet of the turbofan engine, as shown in Fig.1.11. An
analytical technique was developed to predict the impact of Herschel-Quincke
tubes on circular inlets. The results obtained from the model were compared with
experimental data obtained on two real engine intakes on which the HQ system
was applied. An impedance analysis has shown that the HQ system provides
good reduction at discrete frequencies corresponding to the resonance of the
coupled HQ tube-duct system. The dynamics of the inlet duct actually changes the
resonant behavior of the pipe itself and causes the tube resonant frequencies to shift
down. Then, noise control mechanisms were investigated by examining the modal
amplitudes of incident, reflected and transmitted modes. This allowed to show that
in the presence of the HQ system, the incident modes are not only reflected back to
the fan, but also scattered to other modes of radial and circumferential order. But
in order to obtain accurate results and avoid scattering of energy into propagating
circumferential modes, a significantly high number of modes must be included in
the calculations. And Hallez’s analytical model allows to apply Herschel-Quincke
tubes to a cylindrical duct in the presence of higher order modes in uniform flow,
as opposed to the simple case of plane waves considered in the past.

Fig. 1.11 a) Schematics of inlet multiple HQ-liner spool piece configuration [40]. b)
Picture of the TFE731 inlet configured with two arrays of HQ tubes [37].
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The problem of controlling the multiple higher-order modes in a two-dimensional
duct was studied and extended by L.A. Brady [41]. The acoustic field inside the
Herschel-Quincke tubes is assumed to consist of only plane waves, and the acoustic
field in the main duct is modeled using a higher-order mode Green’s function
technique. The model showed that Herschel-Quincke tubes are effective in reducing
both plane waves and higher-order modes. The recombination of the energy spilled
between the various modes present results in destructive interference and thus
sound attenuation.

The liner may also consists of a combination of a perforated plane and a
honeycomb, backed with a rigid plate. The assembly results in a wall that reacts
locally and induces acoustic attenuation in the aircraft jet engine. B. Poirier et al [42],
[43] have proposed adding HQ filters in this context to increase acoustic attenuation.
It is observed that the maximum efficiency of the membrane and that of the HQ
tube are not at the same frequencies. The judicious combination of the two brings
an improvement. A second arrangement consists of inserting a micro-perforated
membrane inside the wall of the HQ branch itself. This combination, studied by Z.B.
Wang et al. [44], involves vibroacoustic coupling, micro-perforation absorption and
HQ interference. The authors show that the device improves acoustic attenuation
efficiency. The authors suggest adding an acoustically transparent membrane to
cover the openings to prevent whistling in case of flow through the tube.

Herschel-Quincke tubes may also find their application in automotive engineer-
ing as a vehicle exhaust system or motor. Specific embodiments are shown and
described in the patent application publication of Daly et al [45]. As shown in
Fig.1.12, the exhaust system consists of many separate passageways which realize
passive noise cancellation. Tuning the length of these passages any target frequency
may be canceled. Using Herschel-Quincke tubes, the desired noise suppression
system can be achieved but they are still difficult to package in a vehicle due to
their size, thus the issue of applying these tubes and using them in practice is still
relevant.

Further applications of Herschel-Quincke tubes have also been studied exten-
sively, e.g., in recent works by the authors of T. Lato [46], [47], D.-Y. Kim [48] and
T. K. Papathanasiou et al. [49]. T. Lato [46] proposed a mechanism for damping
pressure pulsations by an HQ device in an industrial pipeline system. The method-
ology of using the HQ device and veryfing that it is tuned to the resonant modes of
the pipeline was performed using transmission loss measurements. The experiment
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In the first case, the impedance mismatch parameter defines the ratio between
the characteristic impedance of the HQ branches, segments (2) and (3), and the
impedance of the main waveguide, segment (1). This ratio can be written as

� =
/2 + /3

/1
, (1.2.1)

In the second case, the two HQ branches, i.e., segments (2) and (3), may have
different lengths !2, !3 or different wave numbers :2 and :3, then the interference
parameter can be defined as

⇠ =
:2!

:3!
, (1.2.2)

And the last parameter is the balance parameter, which defines the ratio between
the impedances of the two HQ branches, i.e., segments (2) and (3), as

� =
/2

/3
. (1.2.3)

Using all three of these parameters �, ⇠ and �, Shoavi demonstrated the depen-
dence of the transmission coefficient on the non-dimensional frequency when these
values are changed, as shown in Fig.1.16.

As a result, he calculated that at a certain frequency, zeros occur in the trans-
mission coefficients. The destructive interference effect generally occurs when ⇠

is approximately 1/2, causing waves traveling through the branches propagate at
different speeds, if ⇠ = 1 no destructive interference occurs, as shown in Fig.1.16b.
The impedance mismatch in the Fig.1.16a should be as large as possible in order to
keep the transmission coefficient small. Fig.1.16c shows that reducing the balance
effect reduces the bandwidth in which interference occurs. Also, the combined
effect can exist when ⇠ = 1/2, � = 1 and the transmission coefficient varies according
to different values of �, as shown in Fig.1.16d.
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a) b) 

c) d) 

Fig. 1.16 a) Transmission coefficient for various �, � = ⇠ = 1: � = 2 (solid line);
� = 3 (dashed line); � = 6 (dotted line); � = 2 (dashdotted line). b) Transmission
coefficient for various ⇠, � = � = 1: ⇠ = 0.44 (dashdotted line); ⇠ = 0.5 (solid line);
⇠ = 0.57 (dotted line); ⇠ = 1.0 (dashed line). c) Transmission coefficient for various
�, � = 1, ⇡ = 1/2: � = 1/2 (solid line); � = 2/3 (dashed line); � = 1.0 (dotted line);
� = 2 (dashdotted line). d) Transmission coefficient for various �, � = 1, ⇠ = 1/2:
� = 1/2 (dashdotted line); � = 1 (dotted line); � = 2 (dashed line); � = 3 (solid line)
[51].

1.2.3 Beams

The HQ filter can also be employed to attenuate bending waves in solid mechanical
structures such as beams. Shoavi, having previously analyzed wave propagation in
strings, conducted the initial evaluation of wave propagation in such structures.

Propagation along the beam has two main differences from its acoustic counter-
part and strings: existence of evanescent bending waves and dispersive behavior of
bending waves, i.e. velocity is frequency dependent.
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For both analyses, the continuity equations, which relate to transverse and axial
displacement and slope, and the equations of equilibrium, which relate to shear
force and moment, at each of the joints of the split sections of the beam must be
compiled.

The parameters describing the transmission problem in a split beam include
an interference parameter Eq.1.2.2 with the same HQ length, a balance parameter
Eq.1.2.3, which describes the behavior of the two HQ branches in a split beam, an
impedance mismatch parameters between the split region (segments 2 and 3) and
the main beam (segment 1), and a wave number mismatch parameter denoted as ✏.

The characteristic impedance /0 of bending waves in a beam is calculated as

/0 =
2

$
⇢�:

3

9
, 9 = 1, 2, 3, 4 (1.2.4)

The wave number mismatch ✏ parameter is [51]

✏ =
:2

:1
. (1.2.5)

By analogy with HQ filter adaptation in strings, Shoavi demonstrated the results
shown in Fig.1.18. This figure illustrates the dependence of the transmission
coefficient on the non-dimensional frequency at various parameters �, ⇠, �, ✏. The
destructive analysis of the HQ device in beams is similar to that shown in Fig.1.16,
i.e., the zeros occur in the transmission coefficient. Shoavi investigated the design
properties of a vibration isolator in a split beam. He found a suitable cross-sectional
ratio and correct length for the split beam. Small changes in �, ⇠, �, ✏ significantly
alter the phase difference of waves traveling through the two HQ branches, thereby
affecting the transmission coefficient, as shown in Fig.1.18.
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a) b) 

c) d) 

Fig. 1.18 a) Effects of various impedance mismatch values. � = � = 1, ✏ = 0.875,
� = 10 (solid line); � = 5 (dashed line); � = 1 (dotted line); � = 0.1 (dashdotted line).
b) Effects of the interference parameter ⇠: � = � = 1, ✏ = 0.875, ⇠ = 0.5 (dashdotted
line); ⇠ = 0.556 (solid line); ⇠ = 0.6 (dotted line). c) Effects of balance, ⇠ = 0.556,
� = 1, ✏ = 0.875: � = 0.3 (solid line); � = 0.35 (dashed line); � = 0.6 (dotted line);
� = 1 (dashdotted line). d) Effects of wavenumber mismatch, � = � = 1, ⇠ = 0.25,
✏ = 1 (solid line); ✏ = 0.8 (dashed line); ✏ = 0.6 (dotted line) [51].

Shoavi’s work has demonstrated that the HQ filter offers good prospects in
vibration isolation of a mechanical elastic structure such as rods and beams, and
achieving optimal vibration isolation requires meticulous design to isolate the
vibrations of one part of the structure from another in the desired frequency range.

1.3 thesis goals and plan

The main goal of this thesis is to adapt the HQ principle for elastic waves in
mechanical structures such as rods, beams and plates. Despite the significant
work of E. Shoavi, which gave a great contribution and idea to the development
of HQ analysis for elastic beams and strings, we consider this principle for elastic
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beams in the case where bending and longitudinal waves coexist simultaneously.
In particular, a theoretical model based on the Timoshenko beam theory will be
developed to achieve this goal. Then, the attenuation mechanism of the HQ device
in the resonant waveguide is studied by first numerical testing. In more detail,
we will find that there are two groups of modes of the HQ device. These are
out-of-phase and in-phase modes. An energy flux analysis will then be presented
describing the presence of standing waves that are localized in the HQ filter. And
a rather significant part of the work, is to conduct the experimental part using
the advanced measurement techniques of the 3Dvib experimental platform. All
the analyses performed will be compared with each other and will derive the
fundamental results of HQ filter.

The adaptation of such a device might be unique to cylindrical coordinates.
And the objective of this part of the work will be to integrate the HQ principle into
an elastic plate. The realization of this goal will be carried out with the basis of
Kirchhoff-Love plate theory.

The HQ device can then be combined with a periodic chain to produce stop
bands. In addition, this device can be controlled by changing the number of
traveling waves in the paths, namely by increasing the number of HQ branches
or cells. The main objectives of this simulations are to transfer the concept of HQ
filter from the problem of vibration attenuation at narrow frequency bands to wide
frequency bands.

This manuscript embodies five self-contained chapters. The current Chapter 1

provides an introduction to the work, including background, motivation and scope
of work. A summary of the remaining chapters is summarized here and briefly
illustrated in the Fig.1.19.

Chapter 2 provides a detailed analysis of the first analytical results of the filtering
properties of HQ system in rods. The longitudinal waves are considered exclusively.
Three problems are formulated to find the zero transmission frequencies at which
destructive interference takes place. Different characteristics of the phase velocities
and stiffnesses between the two HQ segments are presented to show the influence
on the zero transmission frequencies.

Chapter 3 presents the results of HQ filter in beams. The analysis based on
Timoshenko beam theory for the flexural waves. The contribution of longitudinal
waves is also taken into account. The zero transmission frequencies are calculated
by using the analytical wave model and compared with the COMSOL validation







2
H E R S C H E L - Q U I N C K E F I LT E R F O R N O N - D I S P E R S I V E E L A S T I C
WAV E S

This Chapter is focused mainly on wave propagation in rods with HQ insertion.
Analysis that can be handled in this manner include the first results on the trans-
mission properties of HQ filter for elastic waves. We will analyze two independent
types of waves that can be excited in solid HQ rods. The first group are longitudinal
waves of compression-expansion and the second group corresponds to torsional
waves.

As shown in Chapter 1, the operational principle of HQ filters is destructive
interference of waves travelling in the main and side branches of a waveguide. In
the classical case of an acoustic waveguide, these branches are filled with the same
medium, which supports propagation of non-dispersive waves. Then the only tool
to generate destructive interference is a difference in lengths of these branches.

In vibroacoustic applications, the energy transmission is associated with axial,
torsion and flexural waves. This Chapter is concerned with the suppression of
axial and torsion waves using HQ filtering effect. Although waves of these types
are non-dispersive (as acoustic ones), it is entirely possible to design a HQ filter
as a combination of two branches of different materials, see Fig.2.1. As soon as
wave speeds in segments 1 and 2 are different due to material contrast, destructive
interference of axial or torsion waves travelling in these branches emerges. Notably,
the material of segment 2 may remain the same as the host rod (shaft). For
consistency, it should be noted that the limitation to cylindrical shape of a host
rod and a HQ filter applies only for torsion waves. HQ filtering of axial waves
applies for a broader range of shapes of cross-section. However, the condition of an
absence of generation of flexural waves at the interfaces of HQ filter and the host
rod must be obeyed.
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Both groups of waves have a phase velocity $/: whose is frequency independent
and hence non-dispersive. In dealing with longitudinal and torsional vibrations,
we will assume that the rod consist of a number of regional elements shown in
Fig.2.1, where 0 and 3 segments are an unsplit regions, segment 1 represents the
outer cylindrical hollow rod, and segment 2 represents the small inner rod.

All analysis reported in this Chapter is done for plane dilatation waves in the
structure shown in 2.1. The results are fully applicable for HQ filtering of torsion
waves in shafts of a circular cross-section as soon as an axial displacement D=(G)
and an axial stiffness ⇢=�= are replaced with a rotation angle =(G) and a torsion
stiffness ⌧= �= , respectively.

To analyse the behaviour of HQ filter, we introduce three alternative formula-
tions of the wave suppression problem and demonstrate their equivalence to each
other:

• In the first formulation, we consider an infinite rod equipped with HQ filter
and introduce an incident time-harmonic wave of the unit amplitude, which
impinges on HQ filter. Hereafter, this problem will be referred to as the ‘unit
amplitude incoming wave problem’, as shown in Fig.2.2a.

• In the second formulation, we consider a semi-infinite rod with a time-
harmonic force of the unit amplitude acting at its free edge, as shown in
Fig.2.2b. Hereafter, this problem will be referred to as the ‘unit amplitude
forcing problem’.

• In the third formulation, we consider the ‘zero transmission frequency’ prob-
lem, as shown in Fig.2.2c. In its formulation, we assume the absence (i.e.,
zero amplitude) of outgoing wave in segment 3 (see Fig.2.1c) and identify
frequencies, at which it occurs.

Therefore, the frequencies at which wave propagation in segment 3 is impossible
can be found from any of these formulations. The analysis of this effect constitutes
the subject of this Chapter.
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In each segment of an infinite rod shown in Figure 2.1, time-harmonic wave
propagation at the frequency $ is governed by the Helmholtz equation :

32D=(G)
3G2

+
$2

22
=
D=(G) = 0, = = 0, 1, 2, 3 (2.2.1)

where the speed of longitudinal wave propagation is the ratio of the material’s
modulus ⇢= to its mass density ⌧= as

2= =

s
⇢=
⌧=

, (2.2.2)

Semi-infinite segments are made of the same material, so that ⇢3 = ⇢0, ⌧3 = ⌧0.
Disregarding the time-harmonic term 4�9$C , the one-dimensional solution of the
longitudinal displacement field in any point G is:

D=(G) = ⇡=4
9:38<G + ⌫=4�9:38<G , (2.2.3)

The positive and negative going waves have amplitudes ⇡= and ⌫= , as shown
in Fig.2.1b. As defined by Sommerfeld radiation condition, ⌫3 = 0. The frequency
dependent wave number :38< is defined as:

:38< =
$

2=
, (2.2.4)

The longitudinal force is:

�=(G) = ⇢=�=
3D=(G)
3G

, (2.2.5)

where the surface area of segments are �0 = �3 = �A2
0 ,�1 = �A2

0 ��A2
1 ,�2 = �A2

2 .
The continuity conditions at the interfaces are:

D0(0) = D1(0)) = D2(0), (2.2.6a)

D3(!) = D1(!) = D2(!), (2.2.6b)
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The equilibrium conditions at the interfaces are:

�0(0) = �1(0) + �2(0), (2.2.7a)

�3(!) = �1(!) + �2(!), (2.2.7b)

Subsequently, we consider a non-dimensionalization scheme , where the axial
coordinate is scaled to the radius of the ’main’ rod, G =

G38<
A0

, the non-dimensional

frequency is Ω =
$A0

20
, and other non-dimensional parameters, such as the ratio of

sound velocities �= =
20

2=
, stiffness ratio �= =

⇢=�=
⇢0�0

, scaling length L=
L38<
A0

.

The amplitudes of the six waves generated by the discontinuity are to be found
in terms of the amplitude of the incident wave ⇡0 = 1. This can be done by
satisfying the interaction conditions given in equations 2.2.6, 2.2.7. Where the vector
of unspecified complex wave amplitudes and specified incident amplitude vector
on the left side of the region 0 at the interface lead to the following relationship

Q = R ·[ , (2.2.8)

In the equation 2.2.8, R represents the dynamic matrix between the specified
amplitude vector Q and unspecified amplitude vector [

R =

26666666666664

�4�9:G1 4 9:G1 4�9:G1 0 0 0

�4�9:G1 0 0 4 9:G1 4�9:G1 0

0 4 9:G2 4�9:G2 0 0 �4 9:G2

0 0 0 4 9:G2 4�9:G2 �4 9:G2

�0 9:4
�9:G1 �1 9:4

9:G1 ��1 9:4
�9:G1 �2 9:4

9:G1 ��2 9:4
�9:G1 0

0 �1 9:4
9:G2 ��1 9:4

�9:G2 �2 9:4
9:G2 ��2 9:4

�9:G2 ��3 9:4
9:G2

37777777777775

,

and

Q) = [⇡04
9:G0 ; ⇡04

9:G0 ; 0; 0; ⇡0�0 9:4
9:G0 ; 0],

[) = [⌫0; ⇡1; ⌫1; ⇡2; ⌫3; ⇡3],
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Then the amplitudes of the reflected wave ⌫0 and the transmitted wave ⇡3 can
be found from the Equation 2.2.8 as

⌫0 =
2�1�2�1�2 · [cos(�1!Ω) cos(�2!Ω) � 1] � [�2

1�
2
1 + �2

2�
2
2 � 1] · sin(�1!Ω) sin(�2!Ω)

∆
,

(2.2.9)

⇡3 =
294�9!Ω · [�2�2 sin(�1!Ω) + �1�1 sin(�2!Ω)]

∆
, (2.2.10)

where,
∆ = 2�1�2�1�2 � 2�1�1 cos(�1!Ω)[�2�2 cos(�2!Ω] � 9 sin(�2!Ω)] + sin(�1!Ω)
[29�2�2 cos(�2!Ω) + (1 + �2

1�
2
1 + �2

2�
2
2) sin(�2!Ω)]

As was pointed out earlier, a wave is incident upon a discontinuity such as HQ
filter can be scattered. The proportion of the incident wave which is reflected at
the intersection between segments 0 and 1-2 (see Fig.2.1) is the wave amplitudes
reflection ratio R, and the proportion of the incident wave which is transmitted
at the segment 3 is transmission ratio T. Hence, the transmission and reflection
coefficient with Sommerfeld radiation condition yield the expressions

T =
⇡3

⇡0
, (2.2.11)

R =
⌫0

⇡0
, (2.2.12)

Since the incoming wave is ⇡0 = 1 and substituting the Equations 2.2.9, 2.2.10

into the Equations 2.2.11, 2.2.12, we obtain

T =
294�9!Ω · [�2�2 sin(�1!Ω) + �1�1 sin(�2!Ω)]

∆
, (2.2.13)

R =
2�1�2�1�2 · [cos(�1!Ω) cos(�2!Ω) � 1] � [�2

1�
2
1 + �2

2�
2
2 � 1] · sin(�1!Ω) sin(�2!Ω)

∆
,

(2.2.14)
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! = 20, the transmission coefficient reaches zero at a specific frequency, ensuring
full vibration isolation of the segment 3 and a complete destructive interference of
waves at G = !, see Fig.2.1. For a conservative system, a transmission coefficient
equal to zero, roots of the Equation 2.2.15, corresponds to a reflection coefficient
equal to one.

At the selected frequencies Ω, the real values of the longitudinal displacement
fields D(G) are presented in Fig.2.3b. For zero transmission frequency, the longi-
tudinal displacement is zero in the element 3, while for non-zero transmission
frequency it is not.

2.2.2 Forced problem

The forced problem can be formulated for a semi-infinite rod in the same manner
as the unit amplitude incoming wave problem. The semi-infinite rod with four
segments excited by a force of the unit amplitude �!, acting at an arbitrarily selected
endpoint G0 = 0 in segment 0 as shown in Fig.2.2b, then a propagating wave is
generated which is reflected and transmitted at the point G1 = !, segments 1 and 2,
and stops destructively due to the phase velocity difference at the point G2 = 2!,
segment 3.

The scattering parameters T and R can be determined from the continuity and
equilibrium equations from Eqs.2.2.6, 2.2.7 and the new boundary condition

�! = ⇢0�0
3D(G)
3G

, G = G0 (2.2.16)

Putting a new boundary condition 2.2.16 into Equation 2.2.8, a new system
of inhomogeneous equations with respect to the wave amplitudes in 2.2.3 can be
expressed in the form

Q⇤ = R⇤ ·[⇤
, (2.2.17)

The left-hand vector of Equation 2.2.17 is the forcing vector

Q⇤) = [0; 0; 0; 0; 0; �!; 0],
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The right-hand vector

[ ⇤) = [⇡0; ⌫0; ⇡1; ⌫1; ⇡2; ⌫3; ⇡3],

The new matrix with a new line representing the axial force and a new column
representing the generated wave ⇡0 has the form

R⇤ =

2666666666666664

�4 9:G1 �4�9:G1 4 9:G1 4�9:G1 0 0 0

�4 9:G1 �4�9:G1 0 0 4 9:G1 4�9:G1 0

0 0 4 9:G2 4�9:G2 0 0 �4 9:G2

0 0 0 0 4 9:G2 4�9:G2 �4 9:G2

��0 9:4
9:G1 �0 9:4

�9:G1 �1 9:4
9:G1 ��1 9:4

�9:G1 �2 9:4
9:G1 ��2 9:4

�9:G1 0

0 0 �1 9:4
9:G2 ��1 9:4

�9:G2 �2 9:4
9:G2 ��2 9:4

�9:G2 ��3 9:4
9:G2

��0 9:4
9:G0 �0 9:4

�9:G0 0 0 0 0 0

3777777777777775

,

The amplitude of the incoming, reflected and outgoing wave in this case becomes

⇡0 =
1

∆1
[�29�1�2�1�2 + 2�1�1 cos(�1!Ω)[9�2�2 cos(�2!Ω) + sin(�2!Ω)]

+ sin(�1!Ω)[2�2�2 cos(�2!Ω) � 9(1 + �2
1�

2
1 + �2

2�
2
2) sin(�2!Ω))] ,

(2.2.18)

⌫0 =
�29�1�2�1�2 (�1 + cos(�1!Ω) cos(�2!Ω)) + 9 (�1 + �2

1�
2
1 + �2

2�
2
2) sin(�1!Ω) sin(�2!Ω)

∆1
,

(2.2.19)

⇡3 =
94�9!Ω · [�2�2 sin(�1!Ω) + �1�1 sin(�2!Ω)]

∆2
, (2.2.20)

∆1 and ∆2, also have an explicit analytical form
∆1 = 2Ω(cos(ΩG0)(2�1�2�1�2 + �1�1 cos(�1!Ω)(�2�2�2 cos(�2!Ω)
+9 sin(�2!Ω)) + sin(�1!Ω)(9�2�2 cos(�2!Ω) + (�2

1�
2
1 + �2

2�
2
2) sin(�2!Ω)))

+(�2�2 cos(�2!Ω) sin(�1!Ω) + (�1�1 cos(�1!Ω)� 9 sin(�1!Ω)) sin(�2!Ω)) sin(ΩG0)),

and
∆2 = Ω cos(ΩG0)(2�1�2�1�2 + �1�1 cos(�1!Ω)(�2�2�2 cos(�2!Ω)
+9 sin(�2!Ω)) + sin(�1!Ω)(9�2�2 cos(�2!Ω) + (�2

1�
2
1 + �2

2�
2
2) sin(�2!Ω)))
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+Ω(�2�2 cos(�2!Ω) sin(�1!Ω) + (�1�1 cos(�1!Ω)� 9 sin(�1!Ω)) sin(�2!Ω)) sin(ΩG0)

For a rod undergoing axial force, the transmission and reflection parameters
can be determined from the Equations 2.2.11 and 2.2.12. As expected, the zero
transmission frequencies from 2.2.20 cannot be dependent upon excitation type and
they are determined from Equation 2.2.15. These frequencies of the forced problem
correspond to the frequencies shown in Fig.2.3.

2.2.3 Zero transmission frequency problem and parametric studies

In fact, the ‘zero transmission frequency’ problem is readily formulated with no
reference to excitation conditions, i.e., as an eigenvalue problem. Indeed, the
conditions ⇡3 = 0 and ⌫3 = 0 mean that D3(G) ⌘ 0. Then conditions 2.2.6b
become D1(!) = 0, D2(!) = 0. The condition 2.2.7b reduces to �1(!) + �2(!) = 0.
Finally, condition 2.2.7a gives: D1(0) = D2(0). Now we have set up a system of
four homogeneous linear algebraic equations with respect to four amplitudes
⇡1,⇡2, ⌫1, ⌫2. Equating to zero the determinant of this system yields the zero
transmission frequency equation 2.2.15.

For any root of this equation, we construct an eigenmode as a standing wave in
both segments of an HQ device, which is defined up to the undetermined wave
amplitude, say, ⇡1. Next, we employ remaining two conditions,

D0(0) = D1(0) (2.2.21a)

�0(0) = �1(0) + �2(0) (2.2.21b)

This is a system of two homogeneous linear algebraic equations with respect to
three amplitudes ⇡0,⇡1, ⌫0. For an incident wave of the unit amplitude, ⇡0 = 1,
the end result is elementary:

D0(G) = cos(ΩG) + �1�1


� cot(�1!Ω) +

cos(�2!Ω)
sin(�1!Ω)

�
sin(ΩG) (2.2.22a)

D1(G) =
sin(�1Ω(! � G))

sin(�1!Ω)
(2.2.22b)

D2(G) =
sin(�2Ω(! � G))

sin(�2!Ω)
(2.2.22c)



2 .2 analysis of the filtering properties 34

Of course, this result may be obtained by equating to zero the determinant of six
equations 2.2.6, 2.2.7 formulated for the full set of wave amplitudes ⇡0,⇡1,⇡2, ⌫0, ⌫1, ⌫2

with scaling the eigenmode with an incident wave of the unit amplitude, ⇡0 = 1.
To gain an insight into the physical mechanism of the filtering phenomenon at

zero transmission frequencies, it is helpful to notice that �1(!) = ��2(!). It means
that, at any instant of time, segments of HQ device at its right edge are loaded in
opposite directions, and the net force is zero, as well as D1(!) = 0 and D2(!) = 0.

Analysis of roots of Equation 2.2.15 is presented in Fig.2.4. The zero transmis-
sion frequency was calculated as the non-dimensional length of the HQ insertion
dependent on the non-dimensional frequency at fixed values of the ratio of sound
velocities �1 = 1.9, �2 = 0.8 and stiffness ratio �1 = 0.7, �2 = 1.2. The roots of the
zero transmission frequency equation at scaled length ! = 20 correspond exactly to
the zero peaks of the T in Fig.2.3. From Fig.2.4 it follows that the zero transmission
frequencies are controlled by changing the parameter !, namely as soon as ! in-
creases, the zeros transmission frequencies are shifted towards the low frequency
range.
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Fig. 2.4 Zero transmission frequencies as a function of non-dimensional frequency
Ω dependence on non-dimensional length. At the ratio of sound velocities �0 =
�3 = 1, �1 = 1.9, �2 = 0.8 and stiffness ratio �0 = �3 = 1, �1 = 0.7, �2 = 1.2.
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The grid lines in Fig.2.5 highlight the location of the ’focal points’ of the zero
transmission frequency. The vertical lines are defined by the condition sin(=�2Ω!) =
0, = = 1, 2, 3.... The blue horizontal lines define the relation �1 =

=�2

2
, = = 1, 2, 3...

2.2.4 The trapped mode case

As long as �1 6= �2 and, therefore, 21 6= 22, the zero transmission effect is attributed
to the destructive interference of waves travelling in parallel segments of the HQ
device. However, Equation 2.2.15 predicts the same effect for �1 = �2 = � at the
frequency Ω =

=�

�!
, = = 1, 2, 3... Then formulas 2.2.22 become not applicable, and

this case requires a more careful analysis.
Substitution Ω =

=�

�!
to 2.2.3 gives D1(G) = ⇡1 exp

⇣
9
=�G

!

⌘
+ ⌫1 exp

⇣
�9 =�G

!

⌘
,

and, as D1(!) = 0, we have ⌫1 = �⇡1, so that D1(G) = ⇡1 sin
=�G

!
. The same result is

obtained for the segment 2: D2(G) = ⇡2 sin
=�G

!
. Naturally, these are the eigenmodes

of HQ segments with fixed ends. As is well known, these localized (or trapped)
eigenmodes exist in infinite waveguides [54], [55].

For an incident wave, Equation 2.2.6a at Ω =
=�

�!
is reduced to D0(0) = ⇡0 + ⌫0 =

D1(0) = D2(0) = 0, and ⇡0 = �⌫0. It means that, in the segment 0, we have a
standing wave D0(G) = ⇡0 sin

⇣=�G
!

⌘
. Thus, the transmission coefficient is zero,

while reflection coefficient is one. However, the amplitude of transmitted wave in
the solution of the forcing problem is defined by equation 2.2.10. In this formula,
both the numerator and the denominator vanish at Ω =

=�

�!
, = = 1, 2, 3... when

�1 = �2 = �. Then the L’Hospital rule gives ⇡3 = (�1)= exp
⇣
�9 =�

�

⌘
. It means that

the transmission coefficient is one, and reflection coefficient is zero.
To resolve this non-uniqueness, we repeat solving of the incoming wave forcing

problem at Ω =
=�

�!
, = = 1, 2, 3... Equations 2.2.6a, 2.2.7a at G = 0 become

⇡1 + ⌫1 = ⇡0 + ⌫0 (2.2.23a)

⇡2 + ⌫2 = ⇡0 + ⌫0 (2.2.23b)

��1(⇡1 � ⌫1) + ��2(⇡2 � ⌫2) = ⇡0 � ⌫0 (2.2.23c)
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Equations 2.2.6b, 2.2.7b at G = ! are (the identity cos(=�) = (�1)= , = = 1, 2, 3... is
used)

⇡1 + ⌫1 = (�1)=⇡34
9=�/� (2.2.24a)

⇡2 + ⌫2 = (�1)=⇡34
9=�/� (2.2.24b)

��1(⇡1 � ⌫1) + ��2(⇡2 � ⌫2) = (�1)=⇡34
9=�/� (2.2.24c)

Left hand sides of Equation 2.2.23 and 2.2.24 are the same, and we obtain direct
relation between the amplitudes of incident (in segment 1) and transmitted (to
segment 3) waves.
From Equations 2.2.23a and 2.2.24a, it follows that

⇡0 + ⌫0 = (�1)=⇡34
9=�/� (2.2.25a)

From Equations 2.2.23c and 2.2.24c, we have

⇡0 � ⌫0 = (�1)=⇡34
9=�/� (2.2.25b)

(observe that Equations 2.2.23b and 2.2.24b, give 2.2.25a)

Solution of equations 2.2.25 gives ⌫0 = 0 and there is no wave reflection from
an HQ device. Then ⇡3 = (�1)=⇡0 exp

⇣
�9 =�

�

⌘
and the transmission coefficient

equals one. So, the reflection and transmission coefficients correspond to the full
transparency of the HQ filter at its resonant frequencies.

However, a shape of forced vibrations of components of an HQ device at these
frequencies is not uniquely defined. Indeed, the sets of equations at G = 0 and G = !
are exactly the same

⇡1 + ⌫1 = 1 (2.2.26a)

⇡2 + ⌫2 = 1 (2.2.26b)

��1(⇡1 � ⌫1) + ��2(⇡2 � ⌫2) = 1 (2.2.26c)
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Then the amplitudes of vibrations of two segments of HQ device are linked to
each other as

��1(2⇡1 � 1) + ��2(2⇡2 � 1) = 1 (2.2.27)

This relation allows arbitrarily large, resonant vibrations of HQ device with its
segments moving in anti-phase to each other (⇡1 ! 1,⇡2 ! �1) excited by an

incoming wave of the unit amplitude. Then the ratio
����
⇡0

⇡1

���� ∼
����
⇡0

⇡2

���� ! 0, and, with

this scaling, the amplitude of transmitted wave also vanishes.
In this work, we employ a standard ‘steady-state’ problem formulation. To figure

out the actual response of an HQ device in these resonant excitation conditions, the
problem should be re-formulated as a transient one in the time domain, as it has
been done in, for example,[55, 56]. Accomplishment of this challenging task lies
beyond the scope of this work.

2.3 adaptation to torsional waves

The HQ rod model for torsional waves is shown in Fig.2.1 The equation of motion
for the torsional vibration of the circular form rods is the same as the longitudi-
nal vibration of the bars discussed in one-dimensional wave equation for lateral
vibration of string Eq.2.2.1

32=(G)
3G2

+
$2

22
=
=(G) = 0, 2= =

s
⌧=
⌧=

, = = 0, 1, 2, 3 (2.3.1)

where ⌧= is the Coulomb shear modulus, respectively.
The wave number :38< is defined as:

:38< =
$

2=
, (2.3.2)

The angle of twist of the cross-section is:

=(G) = ⇡0
=4

9:38<G + ⌫0=4
�9:38<G

, (2.3.3)
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And the twisting moment takes the form

"C(G) = ⌧= �=(G)
3=
3G

, (2.3.4)

where ⌧= �=(G) is the torsional stiffness, with �=(G) =
�

32
34 denoting the polar

moment of inertia of the cross section in the case of a circular section. The continuity
and equilibrium conditions at the interface are:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0(0) = 1(0),

0(0) = 2(0),

3(!) = 1(!),

3(!) = 2(!),

"C0(0) = "C1(0) + "C2(0),

"C3(!) = "C1(!) + "C2(!).

(2.3.5)

Using the unit amplitude incoming wave problem ⇡0
0 = 1 and introducing

non-dimensional parameters: ✏= =
00

0=
and #= =

⌧= �=
⌧0�0

, the system of linear equa-

tions according to the unknown torsional amplitudes ⌫00,⇡0
1, ⌫

0
1,⇡

0
2, ⌫

0
3,⇡

0
3 can be

determined as

Z = ] · Y, (2.3.6)

where, the dynamic matrix

] =

26666666666664

�4�9:G1 4 9:G1 4�9:G1 0 0 0

�4�9:G1 0 0 4 9:G1 4�9:G1 0

0 4 9:G2 4�9:G2 0 0 �4 9:G2

0 0 0 4 9:G2 4�9:G2 �4 9:G2

#0 9:4
�9:G1 #1 9:4

9:G1 �#1 9:4
�9:G1 #2 9:4

9:G1 �#2 9:4
�9:G1 0

0 #1 9:4
9:G2 �#1 9:4

�9:G2 #2 9:4
9:G2 �#2 9:4

�9:G2 �#3 9:4
9:G2

37777777777775

,

and vectors

Z) = [⇡0
04
9:G0 ; ⇡0

04
9:G0 ; 0; 0; ⇡0

0#0 9:4
9:G0 ; 0],
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Y) = [⌫00; ⇡0
1; ⌫01; ⇡0

2; ⌫03; ⇡0
3],

From Equations 2.2.11 and 2.2.12, the transmission and reflection coefficient can
be found as

T =
⇡0

3

⇡0
0

, (2.3.7)

R =
⌫00
⇡0

0

. (2.3.8)

The frequency dependence on the transmission and reflection coefficient is
plotted for the chosen non-dimensional parameters ✏0 = ✏3 = 1, ✏1 = 0.5, ✏2 =
2.5,#0 = #3 = 1,#1 = 2.5,#2 = 0.5 and ! = 30. As a result, we can see that the
T parameter tends to zero at one particular frequency and no transmitted energy
takes place. The results are similar to the case of longitudinal waves.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0
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0.8

1

Fig. 2.6 Transmission coefficient (black solid line) and reflection coefficient (black
dash-dotted line) at the ratio of sound velocities and the stiffness ratio ✏0 = ✏3 =
1, ✏1 = 0.5, ✏2 = 2.5,#0 = #3 = 1,#1 = 2.5,#2 = 0.5.

2.4 conclusion

The HQ filter in the rod has been effectively analyzed. We found that there
are certain frequencies at which the transmission coefficient is zero. When the
transmission coefficient is zero, destructive interference occurs at the output of the
HQ device, resulting in no energy transfer.

Three problems have been formulated to find the same zero transmission
frequencies of the HQ filter in rods. These are the unit amplitude incoming waves
problem, forced problem and zero transmission frequency problem. Indeed, the
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straightforward equation of the zero transmission frequencies is defined only
through the wave velocity and the stiffness of the segments. Therefore, any HQ
waveguide system with elastic longitudinal waves, characterized by differences in
velocities and stiffnesses of the two HQ segments, can be described by this equation
without establishing force equations and continuity equations.

A parametric study was carried out for zero transmission frequencies. As a
result, the characteristic behavior of zero transmission frequency was found, where
the velocity ratio between segments 0 and 1 can take any integer values, then the
effect of trapped modes was also observed.

In addition, the zero transmission frequency problem cannot be limited in the
analysis of longitudinal waves, we can also consider this problem for other classes
of waves such as bending waves. In both analysis for longitudinal and torsion
waves has been considered the two pair of propagating waves in each sub-zone,
where they can scatter along the HQ filter, resulting in the destructive interference.
The sound speed of these waves is independent of frequency, which is not the case
for bending waves, where the speed of bending waves is frequency dependent.
The complexity of the bending wave analysis is the presence of evanescent waves.
Analyses of this difficulty will be discussed in the next Chapter 3.





3
H Q F I LT E R S F O R F L E X U R A L WAV E S I N B E A M S

The perspectives and techniques that have been developed in the previous Chapter
2 will now be applied to calculation of wave propagation in solid HQ beam. In
this case, the destructive interference does not require a length difference between
the main and the side branches made of the same material. It is achieved due to
a difference in thickness of branches, which entails a difference in flexural wave
propagation speeds. In contrast to longitudinal waves, the bending wave velocity is
frequency dependent and near-field waves are present.

3.1 models of the hq vibration filter for bending waves

3.1.1 Wave based model with coupled longitudinal and bending motions

The system shown in Fig.3.1 consists of an infinite beam of height ⌘ and width
1, which is locally divided into two thinner parallel beams of the same length !

but different thicknesses ⌘1 6= ⌘2. This difference in thickness causes interference
between the bending waves due to the contrast in bending stiffness between the
two branches, and coupling between the bending waves and the longitudinal waves
due to the non-symmetry of the thickness of the host beam.

The aim of this section is to calculate the bending wave transmission coefficient.
The wave model is developed by considering both the Timoshenko beam equa-
tion [57–61] to describe the bending motion and a wave equation to describe the
longitudinal motion [62].
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segments, as shown on Fig.3.1.)

8>>>><
>>>>:

F=(G) = �+
=4

9:11G +��
= 4

�9:11G + ⌫+
=4

�:12G + ⌫�
= 4

:12G
,

=(G) = #1�
+
=4

9:11G +#2�
�
= 4

�9:11G +#3⌫
+
=4

�:12G +#4⌫
�
= 4

:12G
,

D=(G) = ⇠+
= 4

9:0G + ⇠�
= 4

�9:0G
,

(3.1.2)

where the wavenumbers are given by

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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1
p

2

sp
�(⇢ +⌧�)$2⌧ � $

p
⌧
p

4(⇢⌧2�2 + �(⇢ �⌧�)2$2⌧

⇢⌧
p
��

,

:12 =
1
p
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�(⇢ +⌧�)$2⌧ + $

p
⌧
p

4(⇢⌧2�2 + �(⇢ �⌧�)2$2⌧

⇢⌧
p
��

,

:0 =

r
⌧

⇢
$.

(3.1.3)

The wave amplitudes �±
= , ⌫±

= , ⇠±
= are unknown at this stage. The coefficients #?

with ? = 1...4 are given by #? =
̄

F̄
=
⌧$2 � �⌧:2

?

9:?�⌧
.

8>>>>>><
>>>>>>:

"=(G) = ⇢�
3(G)
3G

,

�=(G) = �⌧(

✓
3F(G)
3G

� (G)
◆
,

!=(G) = ⇢(
3D(G)
3G

.

(3.1.4)
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At G = G0 = 0 (at the HQ input), continuity and equilibrium conditions lead to,
respectively,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F0(G0) = F1(G0),

F0(G0) = F2(G0),

0(G0) = 1(G0),

0(G0) = 2(G0),

D0(G0) = D1(G0) � C1tan(1(G0)),

D0(G0) = D2(G0) + C2tan(2(G0)),

(3.1.5)

we consider small amplitudes of vibrations, so that tan(1,2(G0)) = 1,2(G0),

8>>>><
>>>>:

"0(G0) = "1(G0) + "2(G0) + C1!1(G0) � C2!2(G0),

�0(G0) = �1(G0) + �2(G0),

!0(G0) = !1(G0) + !2(G0).

(3.1.6)

Similar equations are also considered at G = G0 + !, i.e. at the right end of the
HQ device. In these equations, the coupling between the bending and longitudinal
waves is described by the terms proportional to C1 and C2 (see Fig.3.1). In the
following, Sommerfeld conditions in beam segment 3 are assumed and lead to
��

3 = ⌫�
3 = ⇠�

3 = 0. In order to study the scattering properties of the HQ filter,
an incident propagating flexural wave of the unit amplitude is assumed in beam
segment 0 such that �+

0 = 1 and ⌫+
0 = ⇠+

0 = 0. Substitution of Eq.3.1.2 into Eq.3.1.4,
applying Eqs.3.1.5, 3.1.6 and isolating the terms depending on �+

0 at the right hand
side finally lead to a set of 18 linear equations with respect to wave amplitudes
written in matrix form

Λ = MΦ, (3.1.7)

where

Λ
) = [�+

0 ;�+
0 ;#1�

+
0 ;#1�

+
0 ;⇢�#1:1�

+
0 ;�⌧((:1 �#1)�+

0 ; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0],
(3.1.8)

and

Φ
) = [��

0 ; ⌫�
0 ;�+

1 ;��
1 ; ⌫+

1 ; ⌫�
1 ;�+

2 ;��
2 ; ⌫+

2 ; ⌫�
2 ;�+

3 ; ⌫+
3 ;⇠�

0 ;⇠+
1 ;⇠�

1 ;⇠+
2 ;⇠�

2 ;⇠+
3 ]. (3.1.9)
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The 18x18 matrix M is given in appendix A. The vector Φ
) contains the unknown

wave amplitudes that are obtained by solving Eq.3.1.7. Finally, the reflection and
transmission coefficients of the HQ filter for bending waves are given by

X =
��

0

�+
0

, Z =
�+

3

�+
0

. (3.1.10)

3.1.2 3D Finite Element model of the HQ filter

A 3D finite element model is developed using COMSOL solid mechanics software
to validate the wave-based semi-analytical model. The geometry of the simulated
systems follows Fig. 3.1 with ! = 200mm, ⌘ = 10mm, ⌘1 = 4mm, ⌘2 = 3mm and
1 = 10mm. The total length of the beam is 1000 mm. The aluminium material
parameters are considered: ⇢0 = 70GPa, ◆ = 0, ⌧ = 2700kg.m�3 and ⇡ = 0.3,
according to the definitions given after Eq.3.1.1. At the left end (x<0), a transverse
line of force is applied so that incoming bending wave is generated. At the opposite
right-hand end, a Perfectly Matched Layer (PML) is defined in order to simulate
the infinite length of the beam, as we considered earlier. To solve the problem, a
mesh of 1932 nodes is used with 3D elastic linear theory (solid mechanics package),
considering 3 elements in the thickness, 2 elements in the width and a mesh size of
5 mm along the x axis.

The coefficients R and T defined in Eq.3.1.10 are calculated from the simulated
values of the beam vibration field: the z-displacement response F(G:) is picked
out on the neutral line of the beam (H = 0 and I = 0) at 4 abscissas upstream
(G: < 0 with : = 1 to 4, where G1 = �100mm, G2 = G1�10mm, G3 = G1�30mm, G4

= G1�60mm) and downstream (G: > ! with : = 5 to 8, where G5 = !+100mm, G6

= G5+10mm, G7 = G5+30mm, G4 = G5+60mm) of the HQ filter. For each of the 8

responses, we consider a wave decomposition according to Eq.3.1.2, which leads to
the following matrix problem
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266666666666664

w(x1)
...

w(x4)
w(x5)

...
w(x8)

377777777777775

=

266666666666664

4�9:11G1 4 9:11G1 4�:12G1 4 :12G1 0 0 0 0
...

...
...

...
...

...
...

...
4�9:11G4 4 9:11G4 4�:12G4 4 :12G4 0 0 0 0

0 0 0 0 4�9:11G5 4 9:11G5 4�:12G5 4 :12G5

...
...

...
...

...
...

...
...

0 0 0 0 4�9:11G8 4 9:11G8 4�:12G8 4 :12G8
.

377777777777775

266666666666664

�+
0

...
⌫�

0

�+
3

...
⌫�

3

377777777777775
(3.1.11)

The reflection and transmission coefficients R and T, as defined in Eq.3.1.10, are
finally obtained by solving Eq.3.1.11. Fig.3.2 shows the R and T coefficients of the
HQ filter obtained both from the analytical model described in Section 3.1.1 with
(black line) or without (gray line) considering the coupling between bending and
longitudinal waves and from the finite element reference model (blue circles).

T is close to 1 over the range [0-2500]Hz except at some selected frequencies
where it displays deep drops. At these frequencies, the FEM simulated displacement
field shows a phase opposition for the bending motion in the two parallel HQ
beams, leading to a destructive interference quite similar to the one involved in the
HQ acoustic tubes (see the displacement fields at 430Hz and 1155Hz in Fig.3.2).
Outside the drops, the displacement field as the one at 1560Hz in Fig.3.2 displays
no particular phase relation between the two parallel HQ beams so that no filtering
effect is obtained.

The good agreement between the results of the coupled wave model (black line)
and the reference FEM model (blue circles) over the whole frequency range under
study shows the relevance of considering the coupling between longitudinal and
bending waves. Indeed, outside the T drops, significant discrepancies can appear
when the bending/longitudinal wave coupling is ignored in the wave model (grey
line). However, the frequency of the drops are well captured by such a purely
bending wave model, as the destructive interference effect is driven by bending
motion. As an additional comment, results shows an expected overestimation of the
T drop frequencies no matter whether the bending/longitudinal wave coupling is
considered or not. Modeling of the structure with 3D solid elements makes it more
compliant as compared with its model, which employs the plane cross-sections
assumption. This assumption is used in each of the two coupled one-dimensional
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At the zero transmission frequencies, the total energy flux and energy fluxes
in each segment of the structure vanish. It manifests formation of standing waves
and implies that the amplitude of reflected wave in the segment 0, ��

0 equals the
amplitude of incoming waves ��

0

�+
0

= 1.
The evolution of energy transmission is generic, and it is illustrated in Fig.3.3a.

The energy flux in a thick (upper) segment becomes positive as soon as the excitation
frequency exceeds the zero transmission one, whereas in a thin (lower) segment it
becomes negative. Thus, the energy circulation inside the HQ device is generated
on top of the positive net energy flux. As the excitation frequency continues to grow,
both segments begin to convey the energy in the same direction. However, at a
certain frequency, the energy flux in a thick (upper) segment becomes negative, and
circulation is recovered, but in the reversed direction. As soon as the magnitudes
of both these fluxes become equal to zero, the next zero transmission frequency
emerges.

Figs.3.3b,c,d illustrate frequency dependences of the amplitudes of travelling
waves in segments 1-3 in the ranges shadowed in Fig.3.3a. These amplitudes are
scaled by the amplitude of incoming wave �+

0 . At zero transmission frequencies,
amplitudes of the left-going and right-going waves in these segments equal each
other, and standing waves are formed. The absence of the travelling wave in
segment 3 does not mean its left end has a zero displacement. Fig.3.3e,f,g illustrates
the frequency dependence of amplitude evanescent wave B̄ at G = G0 + !. It becomes
very small at zero transmission frequencies (the scaling to �+

0 should be observed).
However, this evanescent wave does not convey energy, and vibration amplitudes
decay exponentially in segment 3.

3.2.2 Modal Analysis of an infinite beam with the HQ filter

It is a common practice to put results of harmonic analysis of a mechanical system
into the framework of its modal analysis. This section focuses on the analysis of the
local modes of an infinite beam including an HQ filter. The length of the filter is
kept the same as in the previous section. These local modes result from the resonant
behavior of the HQ filter branches. The coupling between the branches and the
host beam involves radiation into the host medium and thus induces damping of
the local modes. Eigenfrequencies and eigenshapes are obtained from the following
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condition
⇡4C[M] = 0, (3.2.2)

where M is given by Eq.3.1.7. The first 6 eigenfrequencies and eigenshapes are
shown in Fig.3.4. The eigenfrequencies 5= are complex valued due to energy leakage
from the HQ filter into the infinite host beam. A small (resp. large) imaginary part
of 5= corresponds to a small (resp. large) leakage. The damping coefficient ⇢= and
the real natural frequency 5A= in the absence of material losses are related to the
complex eigenfrequency 5= by the following relations

Re( 5=) = 5A=
p

1 � ⇢2
= , Im( 5=) = 2⇢= 5A= , (3.2.3)

The complex natural frequencies shown in Fig. 3.4a can be divided into two
groups: A first group corresponds to almost real eigenfrequencies (see 51, 53, 55).
The associated eigenshapes are almost entirely localized within the HQ filter: the
amplitude of the eigenshape oscillations is much greater inside than outside the HQ
insert (see Fig. 3.4b, left-hand column). For this set of modes, the eigenshapes are
symmetrical with respect to the center of the HQ filter. This symmetry induces a
cut-off between the fields radiated by the two HQ branches, reducing the efficiency
of radiation in the host beam. The resulting damping is quite low, and the local
mode is well confined. The second group corresponds to eigenfrequencies with
large imaginary parts, leading to substantial leakage (see 52, 54, 56) resulting in
oscillations of same range of amplitude both inside and outside the HQ insert (see
Fig. 3.4b, right column). For this set of modes, the eigenshapes are antisymmetric
toward the center of the HQ filter, which favors the radiation of the two HQ
branches into the host beam. The resulting modal damping coefficient is quite high
and the local mode is not stongly confined but clearly extends outside the HQ filter.

The modal analysis performed in this subsection demonstrates close similarity
between operational mode shapes of forced vibrations at zero transmission fre-
quencies and eigemodes of an infinite beam with HQ device. However, the purely
real zero transmission frequencies are just reasonably close to the complex-valued
eigenfrequencies. Therefore, the eigenvalue problem, which exactly corresponds to
the forcing problem considered in Section 3.1, should be formulated differently.
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analyses of location of the zero-transmission frequencies 54

zero (11th component of Φ) and leaving the amplitude of the incident wave �+
0

unspecified. Taking into account these conditions, Eq.3.1.7 can be rewritten in the
form

M0
Φ
0 = 0, (3.3.1)

where Φ
0 is obtained from Φ by replacing its 11th component by �+

0 :

Φ
0) = [��

0 ; ⌫�
0 ;�+

1 ;��
1 ; ⌫+

1 ; ⌫�
1 ;�+

2 ;��
2 ; ⌫+

2 ; ⌫�
2 ;�+

0 ; ⌫+
3 ;⇠�

0 ;⇠+
1 ;⇠�

1 ;⇠+
2 ;⇠�

2 ;⇠+
3 ].

The matrix S0 is obtained from S by replacing its 11th column by vector ⇠,
where

⇠) = [1; 1;#1;#1;⇢�#1:1;�⌧((:1 �#1); 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0].

This is the eigenfrequency, or eigenvalue problem, which corresponds to the
forcing problem solved earlier. Equation 3.3.1 has a nontrivial solution when
⇡4C["0] = 0. It provides the frequencies, at which the transmission coefficient |) |
is zero. Eigenvectors are determined up to a scaling factor. If scaling is chosen as
the amplitude of incoming wave �+

0 , then the wave coefficients obtained by solving
Eq.3.1.7 at zero transmission frequencies are recovered. In the absence of material
losses, these frequencies are purely real. As soon as material losses are taken into
account, they become complex-valued.

The location of the zero transmission frequencies depends on the physical and
geometric parameters of the HQ device. Fig.3.5a illustrates parametric studies
of performance of this device in the framework of Timoshenko beam model. In
this Figure, zero transmission frequencies correspond to poles of the function
;>610(|⇡4C["0]|). The background colours demonstrate orders of magnitude of this
function in vicinity of zero transmission frequencies. First, the influence of the
length ! in the absence of material losses is described by the trajectories of two
purely real zero transmission frequencies (marker square) introduced by varying
the length of the HQ filter from 20cm to 30cm (see the colour scale in the first
column, upper-right corner of Fig.3.5a).
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robot. Each scan is performed along a mesh grid with a step size set at 3mm. At
the end of the robot’s movement process, each intermediate scan is concatenated
to generate the complete velocity field of the beam, including the front and back
faces of the beam around the HQ filter. Although the velocity components (x, y, z)
are known through this process, only the out-of-plane z-component will undergo
post-processing.

Fig. 3.8 a) Scheme and (b) photograph of the experimental setup and zoomed view
of the HQ filter (right side)

3.4.2 Results

The experimental results are reported in Fig.3.9. A first evidence of the HQ filtering
effect is figured out when comparing the cross mobility, defined as the velocity
response at the top end divided by the force excitation at the bottom end, in cases
the HQ device is implemented (red line) or not (blue line) in the host beam (see
Fig.3.9a). In the frequency ranges where a transmission drop is expected from the
model, the mobility displays strong dips meaning that the top end is efficiently
isolated from the source. Notice that additional resonances also appears in the HQ
beam case due to reflection effects provided by the HQ at the beam mid length.
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results where the length of the PML is varied so that the reflection at the beam
ends becomes non zero. Results show that secondary dips increase while the PML
length decreases, i.e. the reflection at the ends increases. Hence, these secondary
drops appears to be identification artefacts due to stationary waves induced at the
sample beam edges.

3.5 classification of 2 parallel branch configurations

Several classes can be identified to generalize the configuration with two parallel
branches and an internal discontinuity, leading to different types of transmission
properties. A split beam with two parallel branches can be classified as presented
in the Table3.1:

• Thick symmetrical model, i.e., the height of two parallel HQ branches is the
same ⌘2 = ⌘3 and in some cases, as high as the height of the host beam
⌘2 + ⌘3  ⌘1.

• Thin symmetrical model, i.e., the height of two parallel HQ branches is the
same ⌘2 = ⌘3 and their heights are very small compared to the height of the
host beam ⌘2,3 << ⌘1.

• Thick non-symmetrical model, i.e., the height of two parallel HQ branches
is not the same ⌘2 6= ⌘3 and in some cases, as high as the height of the host
beam ⌘2 + ⌘3  ⌘1.

• Thin non-symmetric model, i.e., the height of two parallel HQ branches is not
the same ⌘2 6= ⌘3 and their heights are very small compared to the height of
the host beam ⌘2,3 << ⌘1.
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Table 3.1 Classification of two parallel branch systems: 1) thick symmetrical model,
2) thin symmetrical model, 3) thick non-symmetrical model, 4) thin non-symmetrical
model.

Fig.3.11 shows the frequency dependence of the transmission coefficient and
complex eigenfrequencies for all four classes. The transmission coefficient of the
thin and thick symmetrical model does not exhibit any dips in the transmission
coefficient, however the eigenfrequencies of these configurations are purely real,
which corresponds to the case of trapped modes, [55, 54]. For the thin and thick non-
symmetrical model, there are certain frequencies at which dips in the transmission
coefficient occur, and the complex eigenfrequencies have both a small imaginary
part, which is related to the dip in the transmission coefficient, and a large imaginary
part, which is related to the strong energy leakage.

When the contrast between the two parallel HQ heights and host beam height
is small ⌘2,3  ⌘1, the transmission coefficient is close to one, and there are a small
number of dips in the transmission coefficient and eigenfrequencies on the complex
plane. When the contrast between the two parallel HQ heights and host beam
height is large ⌘2,3 << ⌘1, the transmission coefficient is low, i.e., close to zero, and
more dips and eigenfrequencies occur.

The analysis of thin and thick non-symmetrical model, which correspond to
HQ filter in beams, shows that the thin non-symmetrical model has a strong
filtering effect in the beam than the thick non-symmetrical model, however the
balance between low transmission coefficient and high stiffness of the model should
be considered. The thin and thick symmetrical model can produce the trapped
modes, where the strong resonance will be localized in two parallel branches (see
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The energy flux analysis demonstrates the co-existence of two regimes of wave
motion. In certain frequency ranges, it is unidirectional in both segments, while
in other ranges energy fluxes are in opposite directions with the net flux always
remaining non-negative. The frequencies, which separate these ranges, are the
zero transmission frequencies. They define the formation of a standing wave in the
whole beam.

It can be seen that the zero transmission frequencies are close to the real part
of the eigenfrequencies of the HQ modes for which the two branches move in
phase opposition (symmetrical modes). The differences between these two sets of
frequencies are small and are not studied here. Instead, an alternative formulation
of the eigenvalue problem is proposed and it is proved that the zero transmission
frequencies are its eigenvalues. Respectively, the eigenvectors of this problem are
the mode shapes of forced vibrations at these frequencies. It can also be seen that
the vibration deflection shapes at zero transmission frequencies are close to the real
part of the symmetrical eigenmodes, confirming the destructive interference of the
fields radiated by the two branches.

Parametric variations including length, thickness and loss factor are performed
around a nominal configuration and show how the zero transmission and hence the
performance of the HQ filter can be controlled. A generalization of parallel branch
configurations was presented by comparing symmetrical and non-symmetrical
models with different branch heights. The results showed that the non-symmetrical
model with thin HQ branches has a better filtering effect.

On balance, this chapter has demonstrated semi-analytically, numerically and
experimentally the applicability of the HQ filtering effect to suppress propagation
of flexural waves and provided the interpretation of this effect in terms of energy
fluxes. These results constitute the novelty of the reported work.



4
H Q F I LT E R S F O R F L E X U R A L WAV E S I N P L AT E S

This chapter introduces the analysis of the 2D plate using the HQ filter. We
concentrate on physically elastic thin plates of circular shape. The previous chapters
considered models of rods, beams, where their displacements are a function of
a single coordinate, G. This section considers plates with displacements that
are functions of two polar coordinates. Then, the concept of HQ can be easily
transferred from beam theory to plate theory. Accordingly, the Kirchhoff-Love
framework of the classical (technical) plate theory is assumed to be valid. From
this, the transmission and energy flow features of HQ plates can be analyzed.

4.1 model of the hq vibration filter in a circular plate

A split plate is capable of isolating vibrations in a similar manner to the split rod or
beam. According to the principle of HQ filter, if the phase change experienced by
waves travelling along the two branches is different, strong destructive interference
takes place. We consider the HQ plate model which is described in Fig.4.1. The
model consists of an infinite elastic plate into which two co-centric annular plates
of equal radial length '2 but different thicknesses ⌘2 and ⌘3 are embedded. The
system of polar coordinates has its origin in the common centre of these two annular
inserts. The radius of an inner circular plate is '1. The conventional decay and
the Sommerfeld radiation conditions are formulated at infinity. The interfacial
condition between sections are presented in the equation 4.1.7.
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Fig. 4.1 Scheme of an HQ filter embedded into an infinite host structure, made up
of two parallel plates of the same length but different thicknesses.

Let F<(A , , C) represent the displacement in the I direction of each of the four
segments in Fig.4.1. Then the equation of motion in polar coordinates has the form
[52, 64–66]

⇡r4F<(A , , C) + ⌧⌘<
%2F<(A , , C)

%C
= 0, 0    2�,

8>>>><
>>>>:

0 < A  '1 for < = 1

'1  A  '2 for < = 2, 3

A � '2 for < = 4

(4.1.1)

where the operator r4, called the biharmonic operator

r4(...) = r2(...)r2(...) =
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◆ ✓
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%2

◆
,

(4.1.2)

The bending stiffness of the plate given by ⇡ = ⇢⌘
3
<

12(1�⇡2) , is defined in terms of
Poisson’s ratio and the plate thickness ⌘< , ⇢ is the Young’s modulus, ⌧ is the mass
density, respectively. We assume the same material whatever < = 1, 2, 3, 4.
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Assuming a time harmonic solution with frequency $ as 4�9$C , the wave number is
[67, 68]

:
4
< =

⌧⌘<$2

⇡
, (4.1.3)

The general form of the scattered field can be represented as [52, 64–66]

F=<(A , ) =
1X

==0

h
�+
=<�

(1)
= (:<A) +��

=<�
(2)
= (:<A) + ⌫+

=<�=(:<A) + ⌫�
=< =(:<A)

i
2>B(=),

(4.1.4)

where �(1)
= (:A) and �

(2)
= (:A) are called Hankel functions, �= and  = are modified

Bessel functions of the first and second kind, respectively. Connection formulas
[53, 69, 70]

�
(1)
= (:<A) = �=(:<A) + 9.=(:<A),

�
(2)
= (:<A) = �=(:<A) � 9.=(:<A)

(4.1.5)

Also, �+
=< , ��

=< , ⌫+
=< and ⌫�

=< are amplitudes to be determined, as shown in Fig.4.1.
The solution of �(1)0

= (:A),�(2)0
= (:A) and �

0
=(:A),  

0
=(:A) and the subsequent second,

third derivatives see [53, 69, 70].
The moment and shear force are related to the transverse displacement by [66, 71–
74]
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(4.1.6)

where order = corresponds to the number of nodal diameters, A is radius.
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The continuity and equilibrium conditions has

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F=1('1) = F=2('1), F=1('1) = F=3('1),

=1('1) = =2('1), =1('1) = =3('1),

F=4('2) = F=2('2), F=4('2) = F=3('2),

=4('2) = =2('2), =4('2) = =3('2),

"=1('1) = "=2('1) + "=3('1), "=4('2) = "=2('2) + "=3('2),

+=1('1) = +=2('1) ++=3('1), +=4('2) = +=2('2) ++=3('2)

(4.1.7)

where, the values of '1 and '2 are taken from the Fig.4.1.

4.2 analysis of the filtering properties of the hq plate

Solution ansatz 4.1.4 has been formulated to study propagation of free waves in
polar coordinates. When a plate is exposed to time-harmonic forcing �I(A , ), its
decomposition in angular coordinate gives

�I(A , ) =
1X

==0

�=1(A)2>B(=), (4.2.1)

Thus, both the free vibration problem and the forced vibration problem are fac-
torized into the set of sub-problems for each individual circumferential wavenumber
=, which defines how many nodal diameters the set of modes has. Then, for each
=-spectrum of waves, problem formulation becomes one-dimensional, and solution
is sought as 4.2.1

F=<(A) = �+
=<�

(1)
= (:<A) +��

=<�
(2)
= (:<A) + ⌫+

=<�=(:<A) + ⌫�
=< =(:<A), (4.2.2)

The frequencies at which the transmission coefficient is equal to zero do not
depend on the way of force application, we solve the problem of finding the zero
transmission frequency, as has been done in Chapter 2. We specify the amplitude of
outgoing wave in segment 4 as �+

=4 = 0. Thereby, we have the equations 4.2.2 for am-
plitudes in the inner plate, �+

=1,�
�
=1, ⌫

+
=1, ⌫

�
=1, the HQ segments, �+

=2,�
�
=2, ⌫

+
=2, ⌫

�
=2,

�+
=3,�

�
=3, ⌫

+
=3, ⌫

�
=3 and the semi-infinite segment 4, ⌫+

=4. The plus or minus sign in
the amplitudes determines the direction of the wave, where the positive direction
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is toward infinite space and the negative direction is toward the center of the HQ
plate and the index number below corresponds to the section number (see Fig.4.1).

In equations 4.2.2, there are 13 unknown amplitudes, and we have a overdeter-
mined system Λ = SΦ and we must lower its order. It is done by regularization of
solution. Displacement at ' = 0 must be finite, while �(1)

= ,�
(2)
= and  = are singular

at ' = 0. To remove the singularity of displacement at the origin of system of
coordinates, we express the amplitude of the evanescence wave ⌫�

=1 through the
expansion for  =(:<A) to obtain a complete closed system of unknown amplitudes.

The regularization principle implies that, for any infinitely small argument
:<A ! 0, the solution should not diverge to a singularity despite that 4.2.2 has
both the regular part �=(:<A) and singular part .=(:<A),  =(:<A). Hence, we can
combine the asymptotic formulation of the small argument of .=(:<A), �=(:<A) and
�=(:<A),  =(:<A) [53]
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Substituting Eqs.4.2.3, 4.1.5 into the amplitude decomposition of Eq.4.2.2 yields
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Since �=(:<A) is finite at A = 0, we neglect it and after balancing the terms in Eq.4.2.2,
which tend to 1, we obtain

⌫�
=< = 9

2

�

✓
�+
=< ���

=<

◆
(4.2.5)

Equation 4.2.5 can be applied for any =.
From the Eq.4.2.2 and considering wave propagation in the inner segment of a

plate, where this part of the solution tends to zero, we have
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(4.2.6)

Hence, we have 12 unknown amplitudes in the system of homogeneous linear
algebraic equations for any =

N = _W , (4.2.7)

or
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(4.2.8)

Condition of existence of its nontrivial solution defines equation for zero transmis-
sion frequency

det|_ |= 0 (4.2.9)

Fig.4.2a,d shows the solution of the frequency dependent equation 4.2.9 on the
complex plane. The parameters of the HQ plate were chosen as follows: thicknesses
⌘ = 10 mm, ⌘2 = 4 mm, ⌘3 = 3 mm, radii '1 = 200 mm, '2 = 400 mm and the HQ
plate material is aluminium, as in the HQ beam analysis. This figure presents two
cases for different =.
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the infinite plate �+
=4,�

�
=4, ⌫

+
=4. Using the boundary conditions from Eq.4.1.7 yields

N0 = _0W0
, (4.2.10)

By analogy with Eq.4.2.9, we have

det|_0|= 0 (4.2.11)

The Eq.4.2.11 gives us absolutely identical zero transmission frequency for any
parameter = as in Fig.4.2.

4.3 zero transmission frequency for different n

As demonstrated in the previous Section, magnitudes of zero transmission fre-
quencies are dependent upon the circumferential wavenumber =. In this Section,
we explore this dependence along with the dependence of zero transmission fre-
quencies upon a location of the HQ insert. Its length, material and thickness of its
components are kept the same as in Section 4.2.

The Fig.4.4 shows the effect of the circumferential wavenumber = on the zero
transmission frequency at different values of length in segment 1, i.e., at different
distances from the origin of system of coordinates to circular HQ device. It is

convenient to scale this distance by the thickness of the main plate, R1 =
'38<1

⌘
.

Fig.4.4 clearly shows that in the near field at R1 = 50 (light blue circles), the
zero transmission frequency is strongly shifted towards higher frequencies as
the circumferential wavenumber grows. However, in the far field at R1 = 500

(black circles), the zero transmission frequency shifts weakly as = changes and
these frequencies are practically the same for any =. To explain this difference
in dependence of zero transmission frequencies upon parameter =, it is sufficient
to recall the large argument asymptotic presentation of Bessel functions �= and
 = , [53] Sections 10.17.5, 10.40.10. As seen from these formulas, the leading order
term for �= features the =-dependence only in the phase and the leading order
term for  = is not dependent upon =. Therefore, if the HQ device is located at the
distance R1=50 from the origin, it is placed in the ‘near field’ zone, in which these
asymptotic expansions are not accurate, while, if the HQ device is located at the
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distance R1=500 from the origin, it is placed in the ‘far field’ zone, in which these
asymptotic expansions are valid.
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Fig. 4.4 a) Frequency dependence of the circumferential order = for the a)1st ; b) 2nd;
c) 3rd zero transmission frequency and the non-dimensional distance parameters
in segment 1, i.e., R1 = 50, 100, 200, 500.
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4.4 forced problem

This section is associated to solving the forced problem. The force of unit intensity
is applied along a circle of small radius (at the orifice) in segment 1, ' 5 = 0.01mm,
and the bending moment at the orifice remains zero. The problem formulation
is to find the following amplitudes in the inner plate �+

=1,�
�
=1, ⌫

+
=1, ⌫

�
=1, the HQ

segment �+
=2,�

�
=2, ⌫

+
=2, ⌫

�
=2, �+

=3,�
�
=3, ⌫

+
=3, ⌫

�
=3 and semi-infinite segment 4 �+

=4, ⌫
+
=4,

see Fig.4.1.
The boundary conditions for the semi-infinite HQ plate is introduced for any = as

8>><
>>:

"=1(' 5 ) = 0

+=1(' 5 ) = �I ,
(4.4.1)

Note that the frequency at which the transmission is zero is independent of the
magnitude of the force, that implies the force can take any value. Obviously, the
same holds true regarding the transmission coefficient 3.1.10.

Taking Equation 4.1.7 yields the continuity and equilibrium equations for the
forced problem. The wave decomposition is taken from Equation 4.2.2. Hence, we
arrive at the following set of equations for the unknown wave amplitudes

L = OK, (4.4.2)
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where the expression for the transmission coefficient can be found in the Equa-
tion 3.1.10.
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Finite Element model validation

The solution using this wave model has been also validated using FEM in COMSOL
solid mechanics software. For the analysis, we use the axisymmetric solid mechanic
interface and the equation of motion is formulated for the 2D cross section, where
the loads are constant around the object’s circumference. The HQ model consists
of the following elements as shown in Fig.4.1, where the radii of inner plate is
'1 = 500mm, the two HQ plates is '2 = 700mm with HQ thicknesses are ⌘2 = 4mm,
⌘3 = 3mm and total thickness ⌘ = 10mm, respectively. The plate is bounded by the
annular Perfecty Matched Layer in order to simulate the infinite outside radius.
Aluminum has been selected as the material for the HQ plate, where ⇢ = 70GPa,
⌧ = 2700:6.<�3, ⇡ = 0.3 and lossless system. The parameters of mesh took into
account 4 elements in the thickness and a mesh size of 5 mm along the A�axis.
The transmission coefficient ) is determined by the wave decomposition which is
derived from bending displacement components F, as seen in Chapter 3, Section
3.1.2.

The Fig.4.5 depicts the frequency dependence of the transmission coefficient
for the wave model of Kirchhoff plate (black line) at = = 0 and FE simulation
(dashdotted line). The transmission coefficient of Kirchhoff model tends to zero
at the same zero transmission frequencies as in Fig.4.2a. However, neglecting
transverse shear deformation of the cross-section and longitudinal waves leads to a
discrepancy with zero transmission frequencies predicted by the FE model.
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Fig. 4.5 Frequency dependence of the transmission coefficient by Kirchhoff model
(solid line) and FE simulation (dashdotted line) for = = 0.

The axisymmetric deflection fields of the HQ plate model for forced problem
shown in Fig.4.6. In both beam and plate analysis, zero transmission occurs
at particular frequencies, where for the plate these frequencies are 5 = 455Hz,
5 = 1250Hz, 5 = 2440Hz, similar to the figure Fig.4.2a. In these frequencies the two
HQ segments are in out-of-phase, resulting in standing waves in the HQ filter, the
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uniform plate were chosen to be the same as in Section 4.4. Both cases have been
calculated for different circumferential orders =. It can be seen that the largest
energy flux corresponds to = = 0 and the energy is dominantly conveyed by the
axisymmetric wave. Comparing the two results between Fig.4.7a and Fig.4.7b, the
energy flux in Fig.4.7b shows dips for any = at particular frequencies exactly at the
zero transmission frequencies marked in Fig.4.2.

When energy fluxes are found with and without the HQ filter, as shown in
Fig.4.7, then we can find how much the energy flux has been reduced by the HQ
filter. The generally recognized measure of this effect is �! (Insertion Loss), defined
as the logarithmic ratio of the energy flux transmitted by the system before the
HQ device is installed to the energy flux after it is installed [1, 3, 75]. Hence, the
Insertion Loss can be written as the logarithm on base 10 of the ratio of the sum
of the energies of the participating propagating waves for all orders = with and
without the HQ filter (reference intensity) in decibels

�! = 10;>610

P1
==0 Π1P1
==0 Π2

dB. (4.5.2)

Fig.4.8 depicts the typical Insertion Loss defined by the Eq.4.5.2. The maximum
of the peaks corresponds to the zero transmission frequency and the lowest energy
flux parameter. The negative values of Insertion Loss corresponds to the amplifi-
cation effect of the HQ filter. This indicates that the energy flux in the HQ plate
becomes larger at certain frequencies than the energy flux in the uniform plate.
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Fig. 4.8 Insertion Loss defined by the Equation 4.5.2.
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4.6 assessment of performance of hq device outside zero transmis-
sion frequencies

As has been shown in Chapters 2-3 and in Section 4.4, zero transmission frequencies
can be readily obtained with no reference to excitation conditions, i.e., as solutions
of an eigenvalue problem.

In the previous Section, an inspection of the energy flux has revealed that,
besides its complete cancellation at zero transmission frequencies, there are fre-
quency ranges in which insertion of HQ device produces an amplification effect.
To explain the mechanism of its generation, it is necessary to distinguish between
two alternative formulations of the forcing problem for a plate equipped with HQ
device.

In its simplest possible formulation, it is assumed that a time-harmonic travelling
wave of the prescribed amplitude (with the natural choice being the unit amplitude)
impinges an ‘inlet’ of HQ device. Then zero transmission frequencies are those at
which no travelling wave is launched at the ‘outlet’ of HQ device. An alternative
formulation of the forcing problem is to specify a point in the waveguide, where a
time-harmonic force of the prescribed (for simplicity, the unit) amplitude generates
the travelling wave, which impinges HQ device. As is proven in Chapter 2, the
same sets of zero transmission frequencies are obtained in these formulations, and
they are also available as solutions of the above-mentioned eigenvalue problem.
At these frequencies, a standing wave is set up, and an energy flux in the whole
waveguide is absent.

Energy fluxes obtained in the ‘unit force’ problem formulation for a plate
with and without HQ device are reproduced in Fig.4.9 at = = 0. The ‘unit wave
amplitude’ problem formulation implies that, instead of condition of the absence
of outgoing wave in segment 4, �+

04 = 0, the condition �+
01 = 1 is applied. Energy

fluxes obtained in this problem formulation for a plate with and without HQ device
are shown in Fig.4.9a. As clearly seen from these graphs, amplification effect is
impossible in the ‘unit wave amplitude’ problem formulation, but it takes place in
the ‘unit force’ formulation.
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by orifice excitation in the central segment and the Input Point Mobility determines
the energy that is pumped into the system.
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Fig. 4.10 Input Point Mobility in a uniform infinite plate (red dashed line) and in
HQ plate (black line).

The position of the excitation orifice affects the magnitude of the Insertion Loss,
as shown in Fig.4.11. The analysis was done for specified unit amplitude �+

01

problem Fig.4.11a and for the forced problem Fig.4.11b at = = 0. This excitation
source at the radius of the orifice is controlled by the distance parameter R1 in

segment 1 (see the black and blue color bar in Fig.4.11), where R1 =
'38<1

⌘
. At the

small value of R1 (black line) the Insertion Loss shifts toward the positive values
and negative dips decrease in a certain frequency range, as shown in Fig.4.11.
However, negative drops appear at low frequencies. As R1 increases, the Insertion
Loss remains unchanged in Fig.4.11a, which is not the case in Fig.4.11b, where the
Insertion Loss takes both positive and negative values at certain frequencies. The
peaks of the Insertion Losses at which destructive interference take place do not
change within the accuracy of the graph.
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'2 = 150mm. The Young’s modulus and density for the left central and right infinite
segments are ⇢4@ = 4.67GPa, ⌧4@ = 233:6.<�3 [84], and for the upper segment are
⇢1 = 70GPa, ⌧1 = 2700:6.<�3. The parameters of the lower segment ⇢2, ⌧2 can be
chosen according to the difference in wave speed between the upper and lower
segments. This difference should create a phase shift between two travelling wave,
resulting in destructive interference at the output of the infinite segment. Whereas
the wave speed in thin plate [86] is given by the expression

2⌫< =
✓

⇢<⌘
2

12(1 � ⇡2)⌧<
$2

◆1/4

, < = 1, 2 (4.7.1)

Therefore, from Equation 4.7.1, it is implied that the difference in wave speeds

between the two HQ segments 2⌫1
6= 2⌫2

can be produced by
⇢1

⌧1
6= ⇢2

⌧2
. We assume

that ⌧1 = ⌧2, then the HQ segment characteristic can be described by ⇢1 = Ψ · ⇢2,
where Ψ is a coefficient defining the contrast between the two elastic moduli of the
HQ segments.

The transmission coefficient ) was computed by the wave decomposition shown
earlier in Section 3.1.2 and 4.4.

The frequency dependence of the transmission coefficient for different values of
Ψ at = = 0 is shown in Fig.4.13. When Ψ is one, there is no destructive interference
effect and energy is transmitted. However, the dips and zero transmission frequen-
cies occur when Ψ =0.9 and when there is a small contrast between the two elastic
moduli of the HQ branches. At Ψ = 0.1 the elastic moduli contrast is larger, leading
to an increase in the number of zero transmission frequencies at which standing
waves take place as indicated by the displacement fields for frequencies 51 = 257Hz,
52 = 733Hz, 53 = 1595Hz.
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In the last section, the HQ filter in the sandwich panel was considered. The
analysis of the HQ sandwich panel showed that the filtering effect of the HQ
filter can be achieved not only by the difference in thickness between the two HQ
branches, but also by changing the characteristics of the elastic modulus or stiffness
of one of the skins. Hence, the results showed that the small contrast in elastic
moduli between the two branches leads to zero transmission frequency. The effect
of the core in the HQ zone of the sandwich panel also revealed that its elastic
modulus characteristic should be much lower than that of the two HQ branches in
order to achieve zero transmission frequencies.



5
S O P H I S T I C AT E D H Q F I LT E R S

In this chapter, we present various variations around the original HQ filter design,
in order to extend the frequency band on which the transmission coefficient is
reduced or to obtain additional zero transmission frequencies.

Following on from the Chapter 3, it is possible to modify the HQ filter by using
a multi-branch or multi-cell configuration, whereby the beam is considered to
consist of multiple regional elements and several separated paths, with the result
that each travelling wave in each path will induce destructive interference at the
output of the device. As the first examples for this analysis, serial, parallel and
mixed arrangement in a Timoshenko beam are proposed.

Next, as a continuation of Chapter 2, the configuration of a periodic HQ filter
chain for longitudinal waves will be considered to simulate the effects of the pass
band and stop bands using Floquet theory.
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5.1 multi-branch configurations

The branches of HQ filter can be arranged in many different ways. We propose to
study a few simple arrangements described in Fig.5.1, ranging from ’serial’ and
’parallel’ to ’mixed’ arrangements.
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Fig. 5.1 a) Scheme of HQ filter with a) serial arrangement, where the distance
between two HQ cells is adjusted by !� and !⌫; b) parallel arrangement; c) mixed
arrangement.

5.1.1 HQ filter with serial arrangement

The composite HQ filter with serial arrangement consists of an infinite split beam
with two single HQ filters shown in Fig.5.1a. The distance between the two single
HQ filters is controlled by the segment 3.

The analysis of such a ’multi-cell’ configuration is similar to that of HQ filter
with 2 branches in Chapter 3, except that the difference lies in the number of
studied segments, which divide the HQ device into other extra subzones.

The material characteristics of aluminum and solution of the equation of motion
3.1.1 with time convention 4�9$C remain the same as for the HQ filter with two
branches from Chapter 3. We use the Timoshenko beam theory with unit incoming
amplitude �+

0 = 1 in segment 0. Then, considering the continuity and equilibrium
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in Fig.5.2c. It implies that each subsequent single HQ filter with its inherent zero
transmission frequencies will produce additional dips in the transmission coefficient
for the serial arrangement at which destructive interference occur.

In addition, the low transmission coefficient of the mixed arrangement can be
found such that the frequency of the dip in the T coefficient of the second single HQ
filter coincides with the frequency of the first single HQ filter at which T coefficient
is equal to one.

Tunelling effect in serial arrangement of HQ filter

The changing of the length of the segment 3, called !B , can produce a tunneling
effect in which the evanescent waves in segment 3 can transmit energy and, disturb
the zero transmission frequencies. This effect is well-known in quantum mechanics.
In acoustics, it has been studied in [87, 88]. Therefore, Table.5.1 shows the tunneling
effect at the zero transmission frequency around 433Hz from Fig.5.2c when the
length of segment 3 is changed. At small length of segment 3, the transmission
coefficient close to zero, at large length, the transmission coefficient is strictly zero
due to the vanishing of ⌫+

3 .

!B 0, 5mm 5mm 100mm

|) | 8, 5 ⇥ 10�5 1, 5 ⇥ 10�5 0

Table 5.1 Magnitude of the transmission coefficient |) | of the serial arrangement
around the zero transmission frequency 433Hz for different lengths of the central
segment 3, !B .

5.1.2 HQ filter with parallel arrangement

The basic HQ filter configuration can also be extended by increasing the number
of branches in the split beam, as shown in Fig.5.1b. We consider an extended HQ
configuration consisting of an infinite split beam with three HQ branches in the
middle, where the dimensions of these branches are set as ⌘1 = 3mm, ⌘2 = 2mm
and the ancillary branch ⌘3 = 1mm with the same length !�& = 220mm, the total
thickness of the split beam is ⌘0 = ⌘4 = 10mm.

The analysis of the HQ filter with parallel arrangement is similar to the analysis
of the serial arrangement in the previous Section 5.1.1. We set a given amplitude of
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the incoming wave �+
0 = 1 in segment 0. Hence, by analogy with Section 5.1.1, the

system of linear equations 3.1.5, 3.1.6 (without considering the longitudinal wave
components) can be used in conjunction with new boundary conditions for the
ancillary branch through the ratio of displacements, rotations and forces between
each subzone 0,1,2,3,4. The continuity equations at G = 0 are then given by the form

8>><
>>:

F0(0) = F1(0) = F2(0) = F3(0),

0(0) = 1(0) = 2(0) = 3(0),
(5.1.1)

and equilibrium equations are

8>><
>>:

"0(0) = "1(0) + "2(0) + "3(0),

�0(0) = �1(0) + �2(0) + �3(0), ,
(5.1.2)

By analogy, we can compose the same equations 5.1.1, 5.1.2 at G = !�&

Combining the equations 5.1.1, 5.1.2 for all subzones 0,1,2,3,4 leads to the system
of 16 linear algebraic equations for wave amplitudes ��

0 ; ⌫�
0 . . .�

+
4 ; ⌫+

4

The transmission coefficient is now defined as the ratio of wave amplitudes �+
0

and �+
4

Z =
�+

4

�+
0

(5.1.3)

Fig.5.3a shows a comparison of the frequency dependence of the transmission
coefficients of the basic configuration of HQ filter with 2 branches (see Fig.3.1)
and the extended configuration with 3 branches, where the thicknesses of the two
branches of the basic configuration in Fig.3.1 correspond to the first two thicknesses
of HQ filter with 3 branches in Fig.5.1a as ⌘1 = 3mm, ⌘2 = 2mm, and the other
geometric and material parameters keep the same.

The extended configuration with 3 branches induces more dips in the ) co-
efficient than the configuration with 2 branches in the studied frequency range,
leading to an increase in the number of specific frequencies at which the destructive
interference effect is observed, as shown in Fig.5.3a. For example, in the frequency
range of 1950Hz to 2150Hz, a single zero transmission frequency occurs for a 2

branch configuration, whereas a 3 branch configuration generates double zero
transmission frequencies in the same frequency range.
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5.1.3 HQ filter with mixed arrangement

In this section, we propose an infinite HQ filter with mixed arrangement, where
two single HQ filters are partially overlapped, making segment 3 an auxiliary thin
branch, as shown in Fig.5.1c. This configuration can be viewed as a mixture of
serial and parallel arrangements. The solution of the transmission coefficient for
the mixed arrangement remains the same as in the previous Sections 5.1.1 and 5.1.2,
except for the continuity and equilibrium equations for each subzone of the HQ
filter.

The distance between the two single HQ filters is controlled by the coordinates
G = !� and G = !⌫, as shown in Fig.5.1c and Fig.5.5. Accordingly, we can investigate
the effect of single HQ filters on the transmission coefficient of this mixed arrange-
ment: 1) when the two single HQ filters are overlapped by symmetrically tuning
the coordinates G = !� and G = !⌫ with respect to the center coordinate of the
mixed configuration !2 and in this case, the difference between G = !⌫ and G = !�

is positive, 2) when two single HQ filters correspond to the serial arrangement
in Section 5.1.1 and in this cases, the difference between G = !⌫ and G = !� is
negative. In the former case, the coordinate G = !⌫ will be shifted to the end of HQ
filter coordinate G = !�& , and the coordinate G = !� will be symmetrically shifted
relative to center coordinate !2 to the origin of HQ filter coordinate G = 0. The
length of segment 3 is increased along with the length of the two single HQ filters.
In the second case, the coordinate G = !� and G = !⌫ will be shifted in reverse,
namely, the coordinate G = !� will be shifted to the end of HQ filter coordinate
G = !�& , and the coordinate G = !⌫ will be symmetrically shifted relative to center
coordinate !2 to the origin of HQ filter coordinate G = 0.

To summarize, we can categorize the following cases:

• If !⌫ � !� = �!�& , the configuration is a uniform beam, with no HQ filter.

• If �!�& < !⌫ � !� < 0, the configuration corresponds to a serial arrangement
with 2 single HQ filters (results of the red region in Fig.5.5).

• If 0 < !⌫ � !� < !�& , the configuration corresponds to a mixed arrangement
(results of the black region in Fig.5.5).

• If !⌫ � !� = !�& , the configuration corresponds to a parallel arrangement
with 3 HQ branches.
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Fig.5.5 shows the frequency dependences of the transmission coefficient for a
symmetrically varying difference with respect to the center coordinate !2 of the
distance between !⌫ and !�, when !⌫ � !� � 0 and !⌫ � !�  0 at thicknesses
⌘0 = 10mm, ⌘1 = 3mm, ⌘2 = 5mm, ⌘3 = 2mm, ⌘4 = 7mm, ⌘5 = 1mm and length
of HQ filter !�& = 200mm. From Fig.5.5, it follows that as the difference !⌫ � !�

LB
−

LA
< 0

LB
−

LA
> 0

∞ ∞

LA LB

0 LHQ

x

20cm

Lc

Fig. 5.5 Frequency dependences of the transmission coefficient for the mixed
arrangement at different symmetrically changing distances between !⌫ and !�
with respect to the coordinate !2 . The transmission coefficient in the red zone
corresponds to !⌫ � !� < 0 and the transmission coefficient in the black zone
corresponds to !⌫ � !� > 0.

becomes positive, the dips in the transmission coefficient, at which destructive
interference occurs, shift toward low frequencies, and when the coordinate G = !�

comes to G = 0 and G = !⌫ comes to G = !�& , i.e., !⌫ � !� = 20cm, then the zero
transmission frequency strictly correspond to the zero transmission frequencies of
the parallel arrangement, as shown in Fig.5.3. As the difference !⌫ � !� is large and
negative, e.g., !⌫ � !� = �18cm, there are no dips and the energy is transmitted in
the beam. Therefore, the length of the single HQ filters in a mixed arrangement
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must be large to ensure good filtering properties of the HQ device, and its size
should also depend on the frequency range it is targeting.

5.1.4 Experimental demonstration

This section presents the experimental study of the transmission coefficient in a
beam of 2000mm length with HQ filter consisting of three branches. The aluminum
beam with two through-holes with a length of 205mm is shown in Fig.5.6, the
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Fig. 5.6 a) Experimental set up of HQ filter with a damping layer at the end. b)
Picture of HQ filter with 3 branches and its geometrical characteristics.

dimensions of the total thickness 20mm, the thickness of the first segment 5mm,
the second segment 4mm and the third segment 3mm, and the width of the HQ
filter specimen 10mm, respectively.
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The beam was suspended vertically by strings to simulate free-free boundary
conditions and excited by an electrodynamic shaker perpendicular to the x-axis
and along the beam centerline to avoid beam torsion, similar to the 2-branch HQ
filter measurement in Chapter 3. The vibration measurements were then performed
using the 3Dvib experimental platform, as shown in Fig.3.8. Since only one plane
subjected to bending motion is scanned, it is sufficient to use one scanning laser
vibrometer head, which reduces the problem of experimental fitting.

The transmission coefficient 5.1.3 was estimated from the same pseudo-inverse
of the matrix in 3.1.11 as in Section 3.4.2.

As was mentioned in the previous sections of Chapter 3, the frequency depen-
dence of the transmission coefficient, defined by equation 3.1.10, becomes more
complicated if there is a wave reflection effect at the beam end, i.e., the transmission
coefficient is not between zero and one since several artefacts due to multiple ori-
gins are observed. Among the possible reasons, we can list the longitudinal waves
resulting from the residual curvature of the beam, heterogeneity of the material due
to the milling process, some errors in the exact locations of the measurement points,
the existence of reflections at the final end of the beam, the fact that evanescent
waves are not taken into account the computation of T (see Eq.3.1.10). Nevertheless,
even if it has some limitations, the experimental technique is able to identify the
0-transmission frequencies. To try to reduce the reflections at the end of the beam,
we chose to introduce dissipative boundary conditions [89], [62], i.e., a damping
material applied to the end of the beam to minimize the reflected wave from the
boundaries on the measured signals. In practice, we use viscoelastic layer made of
an elastomer that is attached to the end of the beam shown in 5.6a to ensure the
absorption of the energy incident upon the boundaries.

Fig.5.7 shows the experimental indentification of the transmission coefficient for
a beam with damping (red line) and without damping (blue line) at the end. 1D
model described by Timoshenko beam theory, the system of equations 5.1.1, 5.1.2,
and the transmission coefficient, determined by equation 5.1.3, of this model has
been compared with the experimental results, as shown in Fig.5.7 (black line).

The zero transmission frequencies in the experimental simulation with and
without damping correspond to the frequencies of the 1D Timoshenko model
(green circles) at 5 = 412Hz, 5 = 557Hz and 5 = 1472Hz, as shown in Fig.5.7,
but there is a discrepancy around 5 = 1060Hz due to the geometric curvature of
the beam sample, the quality of the scanning vibrometer mesh and the effect of
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The whole rod can be regarded as an assembly of indentical unit cells connected
to each other. Each of these unit cells consists of several regional elements, which
are made of different materials, similar to Fig.2.1.

To study wave propagation in an infinite periodic structure, it is sufficient to
consider a unit periodicity cell. Its choice is not unique, but the most advantageous
one is to consider a symmetric unit cell shown in Fig.5.8b.

In addition to the length ! of a HQ insert, we introduce !0, the distance between
neighbouring inserts. Then a symmetric periodicity cell of the total length !0 + ! is
located between G = �!0/2 and G = ! + !0/2.

5.2.2 Pass and stop bands in an infinite periodic structure

The solution ansatz remains defined as 2.2.1, and interfacial conditions are still
formulated as 2.2.6, 2.2.7. Now we acknowledge existence of waves travelling
in both directions in each segment, and set ⌫3 6=0. To complete the problem
formulation, we introduce periodicity conditions as
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where the propagation constant with the Bloch parameter  ⌫ is

Λ = exp(8 ⌫), (5.2.2)

Combining equation 5.2.1 with equations 2.2.6, 2.2.7, we obtain a system of
eight homogeneous linear algebraic equations with respect to the wave amplitudes
⌫= ,⇡= , = = 0,1,2,3 (see Fig.2.1), it has a nontrivial solution when its determinant
vanishes. This condition has a simple analytical form

Λ
2 + %Λ + 1 = 0, (5.2.3)

where,

% =
?1

�2�2sin(�1Ω!) + �1�1sin(�2Ω!)
sin(2Ω!0)�

?2

�2�2sin(�1Ω!) + �1�1sin(�2Ω!)
2cos(2Ω!0),
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?1 = �2�1�1�2�2

h
cos(�2Ω!)cos(�1Ω!)�1

i
+
h
1 + (�1�1)2 + (�2�2)2

i
sin(�2Ω!)sin(�1Ω!),

?2 = �2�2cos(�2Ω!)sin(�1Ω!) + �1�1sin(�2Ω!)cos(�1Ω!)

where the non-dimensional parameters are (see Chapter 2):
the frequency Ω =

$A0

20
,

the ratio of sound velocities �= =
20

2=
,

the stiffness ratio �= =
⇢=�=
⇢0�0

,

the scaled length L=
L38<
A0

.

Depending upon the sign of the discriminant %2 � 4, roots of equation 5.2.3, Λ1,2,
are either purely real or complex conjugates. The former case defines stop bands,
and the latter case, in which |Λ1 |= |Λ2 |= 1, defines pass bands. In pass bands,
the Bloch parameter  ⌫ is purely real. As expected, at the HQ zero transmission
frequencies % ! 1 and an infinitely large attenuation is attained.

The resulting characteristic shown in Fig.5.9b displays module of the eigenvalues
Λ as a function of the dimensionless frequency Ω =

$A0

20
. The dimensionless

parameters were chosen as follows: the wave speed ratio between segments 0 and
1 as �1 = 3, and segments 0 and 2 as �2 = 0.3, the ratio of material characteristics
�1 = 0.5 and �2 = 1.5, scaled length of HQ insert ! = 20 and distance !+ !0/2 = 3!/4,
respectively. This figure indicates that the periodic system with HQ filter has a pass
band for |Λ|= 1 and a stop band for |Λ| 6= 1. Accordingly, the wave is completely
blocked within the stop band.

To ensure that the zero transmission frequencies at which destructive interfer-
ence take place in HQ rod belong to the stop bands, the frequency dependence of
the transmission coefficient of the forcing problem for a single HQ insert, described
by equation 2.2.8, shown in Fig.5.9a. For 0.075 < Ω < 0.1, the zero transmission
frequencies is within the stop bands and the wave decays rapidly due to the large
value of |Λ|, as shown in 5.9b. In addition, the problem of narrowband attenuation
is reduced to broadband attenuation as the periodicity effect captures other wide
frequency ranges (stop bands).
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boundary conditions [97, 98]. This property is used to check the accuracy of the
solution of the Floquet equation 5.2.3.

The solution procedure for the eigenfrequency problem is similar to the one
outlined in Section 5.2.2. For the cell shown in Fig.5.8 these two set of conditions
are
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! +
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2

◆
= 0 (5.2.4a)
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◆
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When Class A boundary conditions replace periodicity conditions, and the
determinant of the system of eight homogeneous linear algebraic equation 2.2.6,
2.2.7, 5.2.4a with respect to the wave amplitudes ⌫= ,⇡= , n= 0, 1, 2, 3 is equaled to
zero, the eigenfrequency equation becomes
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For the Class B boundary conditions, the eigenfrequencies equation is
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The eigenfrequencies Ω= of Class A and Class B in the range 0.076 < Ω < 0.1

are presented in the Table.5.2. These eigenfrequencies coincide with the borders
between the pass and stop bands in Fig.5.9. Therefore, the solution of the Floquet
equation 5.2.3 predicts the same frequencies at the borders between pass and stop
bands as the eigenfrequencies described by the equations 5.2.5.
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Ω=

Class A 0.077 0.088 0.089 0.096

Class B 0.079 0.08 0.09 0.093

Table 5.2 Eigenfrequancies of a symmetric unit cell at the wave speed ratio between
segments 0 and 1 �1 = 3, between segments 0 and 2 �2 = 0.3, the ratio of material
characteristic between segments 0 and 1 �1 = 0.5, between segments 0 and 2 �2 = 1.5,
the scaled length ! = 20 and for the frequency range 0.076 < Ω < 0.1.

Fig.5.10a shows the eigenfrequencies of a symmetric unit cell dependence on
the wave speed ratio between segments 0 and 1, �1, when the wave speed ratio
between segments 0 and 2 is �2 = 1, and the difference in material parameters
between each segment can be set as �1 = 1.5, �2 = 0.2, the length ! = 20 and distance
! + !0/2 = 3!/4. The eigenfrequency problem of Class A and Class B is solved by
using frequency sweep. The ’grey fill’ in Fig.5.10a,b and the red dots of Class A and
Class B in Fig. 5.10b depict the location of the stop bands. The zero transmission
frequencies, which is defined by the equation 2.2.15 from Chapter 2, are also shown
in Fig.5.10a,b (green line), in order to demonstrate their link with the stop bands.

As �1 increases, the stop band shifts toward low frequencies and the size of the
width of the stop band also changes. The zero transmission frequencies lie within
the stop band around Ω = 0.025, Ω = 0.05, Ω = 0.075, Ω = 0.01 and by analogy with
Fig.2.5 we can find that for any integer values of �1 = 1, 2, 3... at �2 = 1, the zero
transmission frequency can be defined as sin(�Ω!) = 0 (see Chapter 2).

The values of |Λ|, described by the Floquet equation 5.2.3, or pass and stop bands
for different values of sound velocity between segments 0 and 1, �1, are presented in
Fig.5.10c. At � = 2.6 the stop bands which is associated with the zero transmission
frequencies is clearly defined. For any integer values �1 = 1, 2, 3... there are isolated
frequencies at which the stop band has zero width, which corresponds to the black
dashed line in 5.10c (see Fig.5.10b green dot of Class A and Class B), which is
consistent with the case of the trapped mode as discussed in Chapter 2.
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5.3 conclusion

Different HQ configurations have been considered in order to improve its efficiency.
For the bending waves, serial, parallel, and mixed arrangements were proposed.
Indeed, all these configurations offer benefits in enhancing the vibroacoustic prop-
erties of the HQ filter. The results showed that increasing the number of branches
or the number of single HQ filters can lead to an increased number of dips in the
transmission coefficient due to the effect of the auxiliary branches. For the serial
arrangement, the tunneling effect was observed in which evanescent waves can
disturb the zero transmission frequency.

The experimental demonstration of the parallel arrangement has shown that at
certain frequencies there is an effect of destructive interference at which there is no
energy transfer at the end of the beam as in the Timoshenko wave model. However,
at some frequencies there is a discrepancy with the Timoshenko wave model, which
is due to the accuracy of the experiment and the effect of the longitudinal waves.

The periodic chain for axial waves in rods showed that the periodic effect can be
enhanced by using an HQ filter. Namely, the zero transmission frequencies of the
single HQ insert coincides with the stop band boundaries of the periodic rod. The
periodic configuration with the HQ filter can transform the problem of narrowband
frequency vibration attenuation of the HQ filter into broadband frequency vibration
attenuation.



6
C O N C L U S I O N S A N D P E R S P E C T I V E S

The main objective of this thesis was to investigate the HQ filter for the attenuation
of elastic bending waves in mechanical structures such as rods, beams, and plates.
The first examples of the adaptation of such a device were applied in acoustic ducts,
where vibration mitigation occurs due to the difference in path length between
two tubes, causing destructive interference at particular frequencies. In this thesis,
by analogy with the acoustic counterpart, we have used the same destructive
interference effect in beams and plates, where the energy canceling effect at the
output of HQ device can be obtained by the difference in thickness of two parallel
HQ branches.

The thesis has been written in order to analyze in detail the application of HQ
filter for solid elastic structures, namely starting from simple cases based on the
consideration of axial waves in rods, where three typical formulations of HQ filter
analysis are proposed, to more complex cases, when bending and longitudinal
waves occur simultaneously in the HQ device. The general conclusion of this thesis
will be presented below.

6.1 conclusions

HQ filter for non-dispersive elastic waves

In this thesis, we have firstly formulated three problems to calculate the filtering
properties of HQ filter: unit amplitude incoming wave problem, forced problem
and zero transmission frequency problem. All these problems agree well and give
the same frequencies at which the destructive interference effect of HQ filter occurs.

We have derived a straightforward equation for the zero transmission frequen-
cies of axial waves in HQ rods, solely based on the wave velocity and the stiffness
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of the segments. This equation applies universally to any HQ waveguide system
involving elastic longitudinal or torsional waves, where differences in velocities and
stiffnesses between segments dictate transmission characteristics. Unlike methods
relying on force equations or continuity conditions, this approach simplifies the
analysis. Furthermore, our investigation of zero transmission frequencies extends
beyond longitudinal waves to include bending waves. This broader perspective
enhances our understanding and application of wave propagation phenomena in
diverse structural configurations.

HQ filter for flexural waves

The HQ filter has been studied for its application to bending waves in beams and
plates. At specific frequencies, the difference in bending wave speeds between
the two HQ branches can create a zero transmission effect. This phenomenon
arises from the destructive interference of these waves at the interfaces between
components of HQ device. Computations of the reflection coefficient R and trans-
mission coefficient T of the bending waves in beams and plate have been done
semi-analytically (using a wave model based on Timoshenko theory for beams and
Kirchhoff-Love theory for plate), numerically (using the finite element code in Com-
sol software package), and experimentally (using a 3D scanning laser vibrometer).

In analyzing the energy flow, we have demonstrated the coexistence of two
modes of wave motion. In certain frequency ranges, it is unidirectional in both
segments, while in other ranges energy fluxes are in opposite directions with the net
flux always remaining non-negative. The frequencies, which separate these ranges,
are the zero transmission frequencies. They define the formation of a standing
wave in the whole beam.

We have considered a link between the zero transmission frequency problem
and eigenfrequencies. The zero transmission frequencies are close to the real part
of the eigenfrequencies of the HQ modes for which the two HQ branches move in
out-of-phase.

Parametric variations have been carried out to show how the zero transmission
frequencies and hence the performance of the HQ filter can be controlled.

This dissertation also demonstrated the effectiveness of HQ filter in plates. The
analysis of the problem with zero transmission frequencies revealed the same effect
of the out-of-phase between the two HQ branches leading to standing waves as in
the beam problem. It was obtained that the dominant mode at which destructive
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interference effects occur in HQ plate is the axisymmetric oscillations for = = 0. The
energy flux analysis also confirmed this hypothesis. The Insertion Loss analysis
then revealed an amplification problem in which the energy flux in the HQ plate
becomes greater than in a uniform plate at certain frequencies. As a result, this
problem is associated with an external force acting on the centre of coordinates,
where the energy flux is directly related to how much energy has been injected. The
analysis of the HQ sandwich panel showed that the filtering effect of the HQ can
be achieved not only by the difference in thickness between the two HQ branches,
but also by changing the characteristics of the elastic modulus or stiffness of one
of the skins. Hence, the results showed that the small contrast in elastic moduli
between the two branches leads to zero transmission frequency. The effect of the
core in the HQ zone of the sandwich panel also revealed that its elastic modulus
characteristic should be much lower than that of the two HQ branches in order to
achieve zero transmission frequencies.

Various configurations of the HQ filter have been proposed to enhance its effi-
ciency, including serial, parallel, and mixed arrangements. Increasing the number of
branches or single HQ filters within these configurations can increase the number of
dips observed in the transmission coefficient, attributed to the influence of auxiliary
branches. Moreover, employing an HQ filter in a periodic chain configuration for
axial waves in rods enhances periodic effects. Specifically, the zero transmission
frequency of a single HQ insert lies at the stop band boundaries, effectively trans-
forming narrowband frequency vibration attenuation into broadband frequency
attenuation.

6.2 perspectives

This thesis addresses the problem of vibration mitigation using an HQ filter. How-
ever, a limitation arises due to the attenuation in the narrow frequency band of
the HQ filter, potentially constraining its effectiveness. To enhance the vibration
properties of HQ filters, various methods can be proposed. For instance, microstruc-
tures with periodic architectures can complement HQ filters. Additionally, as
discussed in this thesis, configuring HQ filters with a greater number of branches
can introduce more transmission dips, thereby improving isolation over a broader
bandwidth, provided that the dimensions of the branches are carefully adjusted.
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An illustrative design procedure is depicted in Fig.6.1, [99]. Utilizing a hollow
beam with numerous slender branches on the sides seems promising due to its
favorable strength-to-weight ratio and structural efficiency in achieving effective
filtering properties with HQ devices. Notably, opting for a higher number of thin
branches in a hollow beam can significantly influence the transmission coefficient
by utilizing resonance effects of each branch to create destructive interference effect
at certain frequencies.

h

LHQ

Fig. 6.1 Profile of the hollow HQ beam [99].

Optimization of the parallel configuration can also be extended and continued,
for example, branches with variable heights (’arch’) can be modeled and then its
size tuned to specific frequency regions.

Further advances in this work can be based on the analysis of a sandwich panel
with a honeycomb core and an embedded HQ filter. Due to their light weight
and high stiffness, sandwich structures are widely used in practice. However,
they can have poor acoustic properties, making HQ filters an interesting solution
for the vibration problem of sandwich panels. This optimization requires a good
understanding of the analysis of sandwich structures. The first step may involve
the use and implementation of the Mindlin plate theory, which takes into account
the effect of shear deformation. Additionally, the bending stiffness parameter of the
sandwich panel, which can be strongly frequency dependent, should be considered
in detail [100–104]. The obtained results of the HQ filter in a sandwich plate should
demonstrate the same effect of destructive interference at a certain frequency, as in
the Kirchhoff-Love plate analysis. An important aspect in the analysis of 2D plates
can also be the study of the radiation of plates with HQ filter.
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A

A.1 dynamic matrix simulation

The continuity and equilibrium equations can be written in the matrix form Φ = MΛ

where Φ and Λ are defined by Eqs.3.1.8 and 3.1.9, and where M is detailed as
follows :

M =

2666664

M1 M2 M3 M4 M5 M6

M7 M8 M9 M10 M11 M12

M13 M14 M15 M16 M17 M18

3777775

,

with

M1 =

26666666666664
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26666666666664
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