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THÈSE

Pour obtenir le grade de

Docteur de l’Université Gustave Eiffel
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ABSTRACT - Aircraft noise has emerged as a critical concern within the aviation community due to

the certification authorities increasingly stringent requirements, particularly in the realm of green aviation.

There are also constraints imposed by the community living near airports. This concern encompasses both

external and internal noise associated with the aircraft. In modern turbofan engines, notably those with an

Ultra High Bypass Ratio (UHBR), fan noise significantly contributes to overall noise levels, characterized

by both broadband and tonal noise components. Acoustic liners, designed to mitigate these components,

are crucial for effective noise absorption. To ensure their effectiveness, it is imperative to study these

liners under various flight conditions.

This work addresses the attenuation of low-frequency tonal noise using adapted acoustic liners. The

design of liners needed for targeting low frequencies must have particular geometries and cannot be based

on standard geometry acoustic liners. This means that there is a need to optimize these liners on the basis

of high-fidelity simulations. However, simulations can be computationally expensive and not always

feasible. Additionally, many numerical simulations simplify assumptions to ease calculations, which lead

to overlooking or constant holding of certain parameters. This omission fails to capture the full variability

of the system-operating conditions, leading to a partial understanding of its performance range.

The challenge lies in (i) identifying and quantifying all known sources of uncertainties and (ii)

developing a model that encompasses both known and unknown variability in operating conditions to

ensure robustness against these uncertainties. Generating an extensive database through exhaustive

exploration of design parameters via high-fidelity simulations is not practical. Thus, a robust statistical

metamodel is developed to model a parameterized aeroacoustic liner impedance as a function of frequency

and main control parameters. This metamodel is constructed using a small dataset from computationally

expensive aeroacoustic simulations, requiring the use of an adapted learning algorithm that is chosen as

Probabilistic Learning on Manifolds (PLoM).

Despite the aeroacoustic-simulation reliance on a large computational model and the introduction

of some approximations, model uncertainties are accounted for within the training dataset through a

probability model. This model is refined using dimensionless data from experiments available in open

literature. Since available data is limited, a novel statistical metamodel has been developed, offering

consistent predictions and a confidence region for the statistical metamodel of the uncertain parameterized

aeroacoustic liner impedance.

Furthermore, a statistical Artificial Neural Network (ANN)-based metamodel is introduced as another

representation, offering greater versatility. It includes a prior conditional probability model for the PCA-

based statistical reduced representation of the frequency-sampled vector of log-resistance and reactance.

This model imposes statistical constraints, presenting challenges for training the ANN-based model using

classical optimization methods. An alternative approach involves constructing a second large dataset

using conditional statistics estimated with learned realizations from PLoM.

The development of these two low-computational-cost metamodels addresses low-frequency noise

for which only a limited number of simulations were available, marking a significant step forward in the

study of aircraft noise reduction.

Keywords: Statistical metamodel; Probabilistic learning on manifolds; Neural Networks; Liner
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acoustic impedance; Small data;
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RÉSUMÉ - Le bruit des avions est devenu une préoccupation majeure au sein de la communauté

aéronautique en raison des exigences de plus en plus strictes des autorités de certification, en particulier

dans le domaine de l’aviation verte. Il existe également des contraintes imposées par la communauté

vivant à proximité des aéroports. Cette préoccupation englobe à la fois le bruit externe et interne associé à

l’avion. Dans les turboréacteurs modernes à double flux, notamment ceux dotés d’un taux de dilution

élevé (UHBR), le bruit du fan contribue de manière significative au niveau de bruit global, caractérisé

à la fois par des composantes d’un bruit large bande et de bruits tonals. Les revêtements acoustiques,

conçus pour atténuer ces bruits, sont essentiels pour une absorption efficace du bruit. Pour s’assurer de

leur efficacité, il est impératif de les étudier pour diverses configurations de vol.

Cette thèse porte sur l’atténuation du bruit tonal basse fréquence à l’aide de revêtements acoustiques

adaptés. La conception des revêtements acoustiques nécessaires adaptés aux basses fréquences doit utiliser

des géométries particulières et ne peut pas être basée sur des géométries standards. Cela signifie qu’il est

nécessaire d’optimiser ces revêtements acoustiques sur la bases de simulations numériques haute fidélité.

Cependant, les simulations peuvent être coûteuses en calcul et ne peuvent pas toujours être réalisées.

De plus, la limitation du nombre de simulations numériques conduit à limiter l’exploration de domaine

paramétrique de conception , ce qui conduit à négliger ou à maintenir constants certains paramètres. Ces

conditions ne permettent pas de capturer toute la variabilité des conditions de fonctionnement du système,

ce qui conduit à une compréhension partielle de sa plage de performances.

Le défi réside dans (i) l’identification et la quantification de toutes les sources connues d’incertitudes

et (ii) le développement d’un modèle qui englobe à la fois la variabilité connue et inconnue des conditions

d’exploitation pour garantir la robustesse face à ces incertitudes. Générer une base de données étendue

grâce à une exploration exhaustive des paramètres de conception via des simulations haute fidélité

n’est pas possible. Ainsi, un métamodèle statistique robuste est développé pour modéliser l’impédance

du revêtement aéroacoustique paramétré en fonction de la fréquence et des principaux paramètres de

conception qui sont les paramètre de contrôle. Ce métamodèle statistique est construit à l’aide d’un petit

ensemble de données issues de simulations aéroacoustiques coûteuses en termes de calcul, nécessitant

l’utilisation d’un algorithme d’apprentissage, choisi comme l’apprentissage probabiliste sur les variétés

(PloM).

Malgré le recours à la simulation aéroacoustique à l’aide d’un grand modèle numérique et l’introduction

de certaines simplifications, les incertitudes de modélisation sont prises en compte via un modèle prob-

abiliste. Ce modèle est affiné à l’aide de résultats expérimentaux issues de la littérature ouverte. Un

métamodèle statistique est développé, offrant des prédictions cohérentes et une région de confiance pour

l’impédance paramétrée du revêtement aéroacoustique en présence d’incertitudes.

De plus, un métamodèle statistique basé sur un réseau de neurones artificiels (ANN) est intro-

duit comme autre représentation. Il comprend un modèle de probabilité conditionnelle a priori d’une

représentation statistique réduite basée sur l’ACP du vecteur constitué de la log-résistance et de la réactance

échantillonnées en fréquence. Ce modèle impose des contraintes statistiques, présentant des défis pour

l’apprentissage du modèle basé sur ANN à l’aide de méthodes d’optimisation classiques. Une approche

alternative consiste à construire un deuxième grand ensemble de données en utilisant des statistiques

conditionnelles estimées avec les réalisations apprises de PLoM.
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Le développement de ces deux métamodèles à faible coût de calcul aborde le bruit basse fréquence

pour lequel seul un nombre limité de simulations était disponible, marquant une avancée significative dans

l’étude de la réduction du bruit des avions.

Mots Clés: Métamodèle statistique; Apprentissage probabiliste sur les variétés; Réseau des neurones;

Impédance des revêtements acoustiques; Petite base de données;
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Chapter 1

General Introduction

Air traffic has significantly grown over the past decade. With ever-increasing environmental concerns,

green aviation has come into prominence. In particular, aircraft noise is of significant interest to the

aviation community, whether it be the question of external or internal noise relative to the aircraft. This

has led to increasingly stringent requirements by the certification authorities. In modern turbofan engines

(UHBR - Ultra high bypass ratio), fan noise is one of the main contributors to the overall aircraft noise.

Fan noise can be characterized by broadband and tonal noise components. Acoustic liners (acoustic

treatments) can be designed to tackle both the components. Tonal noise is mainly attenuated by resonance

effects while viscous dissipation acts on both tonal and broadband noise. Noise attenuation by acoustic

treatments is tuned for the blade passing frequency (BPF), whereas dissipating as much as possible the

broadband component, by modifying the acoustic liner geometry or intrinsic properties. In order to be

effective in absorbing fan noise, acoustic liners have to be studied in their operating environment i.e. in

different flight conditions. Typically, noise attenuation is addressed during the early design phases of

engines. However, the addition of acoustic liners after the completion of engine design poses challenges

in meeting weight constraints and maintaining aircraft performance, as it increases drag within the nacelle,

thereby reducing engine efficiency. Hence, the development and integration of these acoustic liners into

the nacelle present significant challenges in themselves. In particular, addressing low-frequency tonal

noise requires acoustic liners with deep cavities, which is not feasible in practice. This need comes from

the fact that the UHBR-noise signature is in the low-frequency range. The development of complex

acoustic liners must account for optimization to the target frequency while adhering to dimensional,

weight, and placement constraints. Managing such a task, considering these constraints, is a considerable

challenge and necessitates extensive testing, simulations, and multidisciplinary optimizations that exceed

the scope of this work. In this thesis, we present the development of low-computational cost metamodels

for an acoustic liner configuration, tailored to address low-frequency tonal noise, based on a limited

number of simulations.
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Chapter 1. General Introduction

1.1 Motivations and goals

The design and eventual optimization of acoustic liners necessitates conducting numerous simulations and

experiments while varying their design parameters. Simulations can often be computationally expensive

or not readily available, primarily due to challenges with numerical convergence at specific design points.

Moreover, most numerical simulations make simplifying assumptions to facilitate calculations, resulting

in certain parameters being held constant or even disregarded in the computational model. For instance,

pressure and velocity fluctuations are typically omitted in computational fluid dynamics simulations

during initialization. As a consequence, the variability associated with such parameters is not integrated

into the computational model, leading to an incomplete understanding of the system’s full operating range

and performance. Hence, the challenge is twofold: (i) identifying and quantifying all known sources of

uncertainties and (ii) developing a model capable of incorporating all known and unknown variability in

operating conditions, thereby ensuring robustness against these uncertainties. Generating a large database

by exhaustively exploring the admissible set of design parameters, using a high-fidelity computational

model, is impractical. Therefore, there is a need for a high-fidelity but computationally efficient model

capable of accommodating model uncertainties and making repeated calls to the admissible set of design

parameters. Finally, this model should be versatile, meaning it should be easy to use by engineers with

varying levels of expertise and straightforward to integrate into design optimization loops. This is the role

that will be played by the developed statistical metamodel.

1.2 State of the art

Experiments have been carried out for identifying uncertainties related to acoustic liner impedance model

(see for instance [2, 3, 1, 4] and [5] for the notion of wall acoustic impedance). High-fidelity computational

models have also been developed for predicting the acoustic liner performances (see for instance [8, 10,

9, 6, 7, 11]). The design of acoustic liners is of prime interest and many works have been published

on this subject (see for instance [18, 14, 17, 12, 15, 13, 16]). Statistical inference such as Bayesian

approaches have recently been used for statistical inverse problems related to acoustic liner impedance

(see for instance [19, 20]). The acoustic performance of a liner depends on the quantities that are highly

related to the operating conditions, such that velocity, mean pressure, and fluid density. Any external

variation directly impacts the environment of the acoustic liners and thus the acoustic performance of the

liner system.

This requires to take into account uncertainties in the high-fidelity computational model of the liner

system. An uncertain computational model of the liner system is presented in [13], which allows for

quantifying uncertainties in aeroacoustic models of liner performance. In the absence of sufficient data, we

need to generate a large dataset of additional realizations using a probabilistic learning tool that involves

a low computational cost, such as Probabilistic Learning on Manifolds(PLoM) [21, 22, 23, 24] (see

appendix A for details). Nonparametric conditional statistics and these learned realizations can then be

used to construct a statistical metamodel [26, 25].

10



Chapter 1. General Introduction

The machine learning tools and artificial intelligence [27, 28, 29], such as the probabilistic and

statistical learning [31, 34, 32, 33, 30], are used in uncertainty quantification for problems that would

require computer resources that are not available with the most usual approaches. Thus, methods have

emerged in the field of engineering sciences, such as the learning on manifolds [21, 40, 38, 37, 39, 36,

22, 35, 41, 23] and the physics-informed probabilistic learning [43, 44, 45, 42, 46, 47]. Artificial neural

networks [51, 50, 52, 48, 49] can then be used to create a mapping of the hyperparameters, which provides

a versatile representation of the metamodel.

Open literature on experiments conducted on acoustic liners can be found in [55, 53, 54] that can be

then used to account for model uncertainties in this statistical metamodel.

1.3 Objectives of the thesis

The objectives of this thesis can be summarized as follows:

1. Development of a high-fidelity, high-computational-cost small database for an acoustic liner. This

database captures extreme values within the admissible set but may not encompass all intermediate

points in this admissible set.

2. Identification of model uncertainties through experiments and their integration into a probability

model of the acoustic liner impedance.

3. For Mach number equal to zero (M = 0) and for a limited number of design parameters, use of

Probabilistic Learning on Manifolds (PLoM) to generate a large dataset of realizations, followed by

the construction of nonparametric conditional statistics (using Gaussian Kernel Density Estimation

(GKDE)), yielding a PLoM-GKDE-based statistical metamodel.

4. For Mach number equal to zero (M = 0) and for limited number of design parameters, construction

of an Artificial Neural Network (ANNs)-based statistical metamodel, which serves as another

representation. This ANN-based statistical metamodel is the primary deliverable.

5. For positive Mach numbers (M > 0) and for a larger number of design parameters, construction of

a PLoM-GKDE-based statistical metamodel and its ANN-based representation as the ANN-based

statistical metamodel.

6. These two ANN-based statistical metamodels (M = 0 and M > 0), can also be used as generators

of realizations of the random acoustic liner impedance.

1.4 Organization of the thesis

In this thesis, the author has intentionally crafted each chapter to be self-contained, enabling them to be

read independently of one another as a deliberate stylistic choice. In Chapter 2, model uncertainties are

identified from open literature and integrated into the statistical metamodel, with the Mach number kept

11



Chapter 1. General Introduction

fixed at 0. Chapter 3 introduces another representation of the PLoM-GKDE-based statistical metamodel

developed in chapter 2, using an ANN-based statistical metamodel. Comparison of the predictions given

by these two statistical metamodels are presented. Chapter 4 focuses on simulations conducted for nonzero

Mach number, and showcases both the two statistical metamodels. In Chapter 5, additional insights for

the neural network-based model and its training process. Finally, the appendices contain mathematical

results relevant to the presented developments, followed by References.
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Chapter 2

Statistical metamodel based on a
PLoM-GKDE formulation for Mach
numbers fixed at zero

2.1 Introduction

The content of this chapter is taken from the paper [56] and is devoted to the PLoM-GKDE-based

statistical metamodel. Since this chapter is only devoted to the PLoM-GKDE-based statistical metamodel,

we will simply write ”statistical metamodel”.

2.1.1 Objectives

A liner is characterized by its acoustic absorption, which will be modeled by its (local) acoustic impedance

adapted to the low-frequency tonal noise. In this work, the liner acoustic impedance is estimated using

an aeroacoustic computational model (ACM) applied to a simplified, but representative, configuration

of the liner (see Section 2.2.2). One evaluation with such an ACM is computationally expensive and

consequently, the ACM cannot be used many times for constructing a parameterized aeroacoustic liner

impedance. This is the reason why we propose to develop a statistical metamodel of the impedance whose

parameterization is frequency ω, percentage of open area (POA), and sound pressure level (SPL). The

Mach number has been set to zero to minimize the number of parameters that need to be considered for

the metamodel. In fact, including a non-zero Mach number would require analyzing how the impedance

changes with respect to various boundary layer properties (such as friction velocity, boundary layer

thickness, local Reynolds number, bulk Mach number, and so on), which is beyond the scope of this study.

Further investigations on this topic are currently underway and will be addressed in future work. Due to

the use of a simplified configuration, it is of prime importance to take into account model uncertainties

induced by modeling errors in the construction of the impedance model. These uncertainties on the

impedance model will be introduced in the statistical metamodel of the impedance and the level of
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uncertainties will be identified with experiments. We thus propose to develop a statistical metamodel of

the parameterized acoustic liner impedance, which is robust with respect to uncertainties. The objective

of the chapter is therefore to present a useful methodology to build a robust statistical metamodel of

the acoustic liner impedance as a function of the control parameters. The property of robustness is

necessary with respect to uncertainties but also to the small amount of data available. A methodology is

thus presented to circumvent the prohibitive computational cost of building a parameterized model of

the aeroacoustic liner impedance. Such a statistical metamodel can, for example, be used to carry out a

parametric analysis of the acoustic liner impedance, to obtain its acoustic performance, and can also be

included in an optimization loop. Such possible applications are beyond the scope of the thesis.

2.1.2 Why POA is chosen as a design parameter

Let t, d, and L be the perforated plate thickness, the hole diameter, and the length from the perforated

plate to the rigid backing sheet, respectively. Parameters t, d, and L have been held constant and equal

to 1.0 mm, 0.8 mm, and 9.6 mm, respectively. It is important to note that the POA is one of the most

important parameter when considering liner design. For the range of liners considered, height L of the

cavity mainly influences the reactance, by supposing being far from the antiresonance, and has a negligible

impact on the resistance (which is mainly a function of the geometric parameters of the resistive layer).

However, it is possible to separate the reactance contribution of the cavity from that of the resistive sheet,

by subtracting the cotangent term from the reactance value obtained. This is done in Eqn. (2.3). Note that,

the results are not independent of L. We are simply observing the orifice velocity instead, at the cavity

height L. This will allow the results to be compared with those of the literature. Regarding thickness t, its

value has been set at 1.0 mm. This value is representative of what is used in the aeronautical industry. It

should also be noted that the integration constraints make the chosen thickness value a very representative

value.

2.1.3 Sources of uncertainties and variabilities, and their consideration in
the development of the metamodel

There are two types of uncertainties: the uncertainties on the model parameters called the “model-

parameter uncertainties” and the “model uncertainties” induced by the modeling errors. In addition, there

are some “variabilities” in the real system, due to manufacturing process and due to small differences

in the configurations: an experimental configuration of a complex system differs from the designed

system and is never perfectly known. When a computational model of a complex system is developed,

model-parameter uncertainties, model uncertainties, and variabilities have to be taken into account. When

experiments are available, the probability model of uncertainties has to be identified by solving a statistical

inverse problem. If information is not available for the construction of an informative probability model of

model-parameter uncertainties (that is the case for the considered problem), model-parameter uncertainties

and model uncertainties can simultaneously be taken into account using a nonparametric probability

model or the output-predictive-error method as explained in [57]. The latter consists in introducing an
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additive or multiplicative noise on the quantities of interest of the computational model and in identifying

the hyperparameters that control the probabilistic model of the noise using the experiments. It is the latter

method that is proposed in this work.

2.1.4 Proposed methodology

The novelty presented in this chapter is the development of a statistical metamodel of the acoustic liner

impedance, based on the use of a probabilistic learning tool and a small training dataset. Experimental data

is directly integrated in the proposed statistical metamodel in order to take into account model uncertainties

(see Section 2.1.1). Note that there is no direct connection between the experimental values and ACM

that is constructed independently of the experimental values. The experimental values are only used to

calibrate the level of the noise that is added in the model to take into account uncertainties. The learning

tool is the probabilistic learning on manifolds (PLoM) [21, 22, 23]. The training dataset is generated

using experimental data [55] and Lavieille’s work [8] for numerical predictions of acoustic impedance.

It should be noted that the development of the statistical metamodel is not performed by using a proper

experimental dataset because such dataset would require carrying out a complete experimental campaign

that is currently not available. In addition, it would be a challenge to be able to transfer the statistical

fluctuations from different dataset (using different experimental cases) to a given computational model.

The main limitation regarding third-party experimental datasets is that we do not have any information

about the liners manufacturing process. This makes it difficult to compare directly any experimental data

with numerical ones, unless we have quality check information on manufactured liners. For instance, it

is known that the nominal geometrical parameters and the ones that are effectively manufactured might

greatly differ (by more than 20%, depending solely on the manufacturing process). This means that any

direct comparison would be biased, unless it is made via statistical quantities. Experimental means varies

from one research/industrial institution to another and, unless we compare numerical data to experimental

ones after a careful quality check, it would be rather difficult to make a quantitative comparison of all data.

In this context, we have used the available experimental database from [55] for which the experimental

results are presented in a dimensionless form, covering a large family of liners. As explained, such a

database does not permit carrying out a direct probabilistic inference because the experimental statistical

mean values cannot be used, as it does not correspond to the case being analyzed in this chapter. Only the

experimental statistical fluctuations around the experimental statistical mean will be used to calibrate the

noise that models uncertainties. Therefore, physics-based constraints cannot be used for the learning step.

In order to circumvent this difficulty, the experimental information is integrated in the training dataset

using the output predictive error model [57].

2.1.5 Organization of the chapter

Section 2.2 deals with the definition of the aeroacoustic liner system and with the aeroacoustic computa-

tional model that is used to generate the simulated data. In Section 2.3, the experimental dimensional

data are derived from the experimental dimensionless data, extracted from the open literature. A compari-

son of the aeroacoustic computation model predictions with the dimensional experiments is presented.
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Section 2.4 is devoted to the construction of the probability model of the model uncertainties, which is cal-

ibrated using the experimental dimensional data. Then the training dataset including model uncertainties

is constructed. In Section 2.5 we present the construction of the statistical metamodel of the parameterized

random liner impedance and then introduce conditional statistics and the methodology to estimate it on

the basis of probabilistic learning. Finally, Section 2.6 deals with the presentation of the results and its

discussion.

A summary of the probabilistic learning on manifolds (PLoM) algorithm, its parameterization, and

the algebraic expressions of the conditional statistics are given in Appendices A and B.

2.2 Defining the liner system and its aeroacoustic computational model

2.2.1 Definition of the liner system

We consider a perforated liner system whose scheme is shown in Fig. 2.1. It is constituted of a perforated

plate, a rigid backing sheet, and a honeycomb constituting drainage holes. As explained above, the

parameters used to control the liner system are the POA and the SPL. We then define the control parameter

as w = (w1, w2) in which w1 is POA and w2 is SPL. The control parameter will be modeled by a

R2-valued random variable W = (W1,W2) whose prior probability distribution will allow for generating

samples of W.

2.2.2 Computation of the impedance using an aeroacoustic computational
model

The domain decomposition used for the aeroacoustic computational model is the one proposed in [8]

and is shown in Fig. 2.2. The left figure displays the scheme of elementary period d1. The central figure

shows the domain that is constituted of three subdomains: the outside domain, the resistive sheet domain,

and the resonator domain of elementary period d1. The right figure represents the reduced resonator

domain of period δ1. In the outside domain, the acoustic field is described by the sum of incident and

diffracted plane waves in order to compute sound pressure level (SPL) at the upper face of the resistive

sheet that allows an equivalent reduced impedance z acm(ω; w) = r acm(ω; w) + ι v acm(ω; w) that depends

on the frequency ω and on the control parameter w, in which ι =
√
−1, r acm(ω; w) is the resistance, and

where v acm(ω; w) is the reactance. In the reduced resonator domain, which belongs to the resistive sheet

domain, the nonlinear Navier-Stokes equations are solved in order to well capture the viscous effects and

the nonlinear phenomena at higher SPL. The period δ1 is chosen so that the corresponding POA is verified

at the resistive sheet level. Then, a bi-periodic condition is imposed. This means that any generated vortex

can cross the lateral boundaries and still be correctly taken into account. Consequently, the third domain

(see Fig. 2.2) is sufficiently wide to capture this motion. We refer the reader to the paper [8] for the details

concerning this aeroacoustic computational model. It should be noted that such a simplified aeroacoustic

model yields large computational cost for exploring the flight and design configurations. Nevertheless, it

demonstrates the interest of the proposed methodology for constructing a robust statistical metamodel.
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More complex aeroacoustic computational models can be found in [58, 59, 60]. For each value of the POA

and SPL, and for each sampled frequency ωk ∈ Cω = {ω1, . . . , ωnω}, the aeroacoustic computational

model computes r acm(ωk), v acm(ωk), and the hole-orifice velocity v acm
or (ωk). In the computational method

used, only the reduced resonator domain is meshed for Navier-Stokes computation. For the considered

liner, the mesh is made up of 41 781 vertices, 206 560 elements, and 278 514 degrees of freedom. The

mesh in the refinement zone (see Fig. 2.3) is adapted according to the POA value. For each value of

the POA and SPL, and for the seven sampled frequencies, the CPU time is 448 hours (using a 64 cores

computer). The computation has been done by Airbus using the SANUMO software [8] for nω = 7

sampled frequencies and for (POA, SPL) ∈ [0.03, 0.1]×[130, 145]. Since the resistance is very sensitive to

the values of POA, in order to not artificially increase the statistical fluctuations in the conditional statistics

that will be constructed using probabilistic learning, interval [0.03, 0.1] is split as [0.03, 0.05]∪ [0.06, 0.1],

the first one containing 3 points and the second one 5 points. More precisely, the larger the ”diameter” of

the support (domain of the values of w) of the probability measure of the control parameter w, the larger

the width of the confidence domain of the quantities of interest. Therefore, a compromise has to be made

between the choice of the points of the training dataset and its effects on the amplitude of the statistical

fluctuations of the quantities of interest, which control the width of the confidence domain. An analysis

has been conducted to find the partition that is proposed. Note that the SPL interval contain 6 points.

In this chapter, the presented analysis is performed for each POA-subinterval [aPOA, bPOA]. We therefore

consider the values of w belonging to the finite set

Cw = {wj , j = 1, . . . , nd} ⊂ Sw , wj ∈ Rnw , (2.1)

in which nw = 2 and nd = 18 for the first subinterval and nd = 30 for the second one, where

the points in Cw are considered as samples of the random variable W = (W1,W2), which belong

to the domain Sw = [aPOA, bPOA] × [130, 145] ⊂ Rnw (Sw can be viewed as the support of the prior

probability distribution of W). We now define the ACM simulation dataset related to the points of Cw. For

j ∈ {1, . . . , nd}, we introduce the vectors r acm,j = (r acm,j(ω1), . . . , r acm,j(ωnω)) ∈ Rnω and v acm,j =

(v acm,j(ω1), . . . , v acm,j(ωnω)) ∈ Rnω in which r acm,j(ωk) = r acm(ωk; wj) and v acm,j(ωk) = v acm(ωk; wj).

Finally, for j ∈ {1, . . . , Nd}, we introduce the vector q acm,j = (r acm,j , v acm,j) ∈ Rnq = Rnω × Rnω with

nq = 2nω. The points of the ACM simulation dataset {q acm,1, . . . ,q acm,nd} are the realizations of the

Rnq-valued random variable Q acm.

Figure 2.1: Scheme of a perforated liner. (Reprinted from [8] with permission of Maud Lavieille.).
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Figure 2.2: Domain decomposition of the aeroacoustic computational model.(Reprinted from [8] with
permission of Maud Lavieille.).

Figure 2.3: Mesh of reduced resonator domain of period: part with mesh refinement and with coarse
mesh.

2.3 Experimental dimensional data and comparison with ACM simula-
tions

2.3.1 Experimental dimensional data

The experimental data compiled by Panton and Goldman [55] are used to calibrate the level of uncertainties

in the constructed statistical metamodel. The experimental dimensionless impedance zexp
dimless(Ω) is

presented as a function of dimensionless orifice velocity Ω = Ωr = vor(ω; w)/
√
νω for dimensionless

resistance (see Fig. 2.4a) and Ω = Ωv = vor(ω; w)/(ω d) for dimensionless reactance (see Fig. 2.4b), in

which ω is the angular frequency, vor(ω; w) is the experimental frequency-dependent dimensional orifice

velocity that depends on control parameter w, ν is the kinematic viscosity, and d is the hole diameter.

It should be noted that Ωr and Ωv are defined using the same frequency-dependent dimensional orifice

velocity, vor(ω; w). The images shown in Fig. 2.4 are digitized and the datapoints are extracted using

Plotdigitizer software [61]. It should be noted that the resistance and reactance are not normalized in

the same way in Fig. 2.4 as described at the beginning of Section 2.3.1. Nevertheless, the rescaling

was properly performed. For each considered value of Ωr and Ωv, the mean of the closest values of

the experimental dimensionless resistance and reactance are extracted, which allows for replacing the

cloud of experimental dimensionless points into experimental dimensionless curve. In order to use these
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experimental data for constructing the statistical metamodel, these dimensionless data are transformed as

a function of dimensionless orifice velocity Ω into dimensional quantities as a function of the frequency,

ω. These dimensionless experimental data are transformed into dimensional data that are compatible with
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Figure 2.4: Dimensionless resistance (a) and reactance (b) (vertical axis) as a function of dimensionless
orifice velocity (compiled from [55] with permission Copyright 1976, Acoustical Society of America.)

the ACM simulation data. For the experimental dimensional resistance and reactance at sampling points

ωk and for given value of control parameter w, these transformations yield

rexp(ωk; w) = rexp
dimless(Ωr,k(w))×

ρ
√
νωk

c× w1
(2.2)

vexp(ωk; w) =

[(
vexp

dimless(Ωv,k(w))× 8

3π
+
t

d

)
ρωkd

c× w1

]
− cot

(
ωkL

c

)
(2.3)

in which cot is the cotangent, ωk is a sampled frequency point, ρ is the air density, c is the speed of sound,

w1 is the percentage of open area (POA), t is the perforated plate thickness, and L is length from the

perforated plate to the rigid backing sheet. The w-dependent dimensionless frequencies are such that

Ωr,k(w) = v acm
or (ωk; w)/

√
ν ωk and Ωv,k(w) = v acm

or (ωk; w)/(ωkd), in which v acm
or (ωk; w) is the orifice

velocity computed with ACM for a given ωk and w. Eqns. (2.2) and (2.3) are used for converting the

dimensionless data plotted in Fig. 2.4 to the ones used in this chapter. The dimensionless factors are the

ones proposed by Panton in [55]. These parameters happen to have a link with the Crandall model, but as

well as other models, such as Poiseuille’s, as described in [55]. The dashed curves with diamond markers

represent, in Figs. 2.5-(a) to (d), the experimental results for the resistance for the considered values of w
that is the pair (POA, SPL), and in Figs. 2.5-(e) to (h), the reactance for the same values of w.

2.3.2 Comparison of the ACM predictions with experiments

Fig. 2.5 shows the comparison between the ACM simulation dataset and the experimental dimensional

dataset for the resistance and for the reactance, for several values of w, the pair (POA, SPL). In Figs. 2.5-

(a) to (d), the solid curves with circular markers represent the computational results for the resistance

for different values of w that is the pair (POA, SPL). In Figs. 2.5-(e) to (h), the reactance is plotted

for the same values of w. In these figures, the POA and SPL values correspond to its minimum and

maximum. These comparisons show that the experimental mean is far from the ACM simulations for

the resistance whose good prediction is of prime interest. Consequently, even if the variations are of
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500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) (POA,SPL)=(0.1,145)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(e) (POA,SPL)=(0.03,130)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(f) (POA,SPL)=(0.03,145)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(g) (POA,SPL)=(0.1,130)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(h) (POA,SPL)=(0.1,145)

Figure 2.5: Resistance (figures (a) to (d)) and reactance (figures (e) to (h)) (vertical axis) as a function
of frequency (Hz) (horizontal axis), comparison of the ACM simulation data (solid curves with circular
markers) with experimental dimensional data (dashed curves with diamond markers) for several values of
w that is the pair (POA, SPL).

the same type for experiments and simulations, these experimental values cannot directly be used for

a probabilistic inference. Nevertheless, it will be assumed that the experimental statistical fluctuations

around the experimental mean is representative of the level of model uncertainties and consequently, will

be used for calibrating the level of uncertainties (see Section 2.4). It should be noted that the experiments

underestimate the resistance due to the fact that the diameter of manufactured samples tend to be larger

than the ones used for numerical simulations. As a matter of fact, the drilled holes are larger that gives a

lower resistance. Also, larger holes imply a higher reactance.

2.4 Probability model of model uncertainties and training dataset

2.4.1 Probability model of model uncertainties

As previously explained, the experimental dimensional dataset only gives consistent information about the

statistical fluctuations and not about the mean values. Consequently, a probabilistic inference (Bayesian

or likelihood methods, or learning constrained by experiments) cannot be used. Nevertheless, these

experimental dimensional data are used for calibrating an additive noise (model uncertainties) to the

ACM simulated data yielding the training dataset used by the probabilistic learning. In the proposed

construction, the noise level is controlled by a hyperparameter δexp (that will be the coefficient of variation).
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This hyperparameter has to be estimated for any value of the control parameter w, using the experimental

dimensional dataset. Consequently, conditional statistics have to be used. However, the number of these

experimental points is too small to obtain a good convergence of the estimate of δexp. We then have to

resample the probability distribution of the experimental points using PLoM followed by conditional

statistics. The steps of the construction are the following.

(i) The first step consists in using the probabilistic learning (the PLoM algorithm summarized in Ap-

pendix A) for which we have to define the random vector Xexp and its training dataset for the learning

process. For all w, we define the vectors in Rnω such that rexp(w) = (rexp(ω1; w), . . . , rexp(ωnω ; w)) and

vexp = (vexp(ω1; w), . . . , vexp(ωnω ; w)) related to the experimental dimensional resistance and reactance,

in which rexp(ωk; w) and vexp(ωk; w) are defined by Eqns. (2.2) and (2.3). Modeling the determin-

istic vector w by random variable W yields the Rnω -valued random variables Rexp = rexp(W) and

Vexp = vexp(W). Let Qexp = (Rexp,Vexp) be the Rnq-valued random variable. Let Rn = Rnq × Rnw

with n = nq + nw. Let Xexp = (Qexp,W) be the Rn-valued random variable whose independent real-

izations are xexp,j = (qexp,j ,wj), j = 1, . . . , nd with wj ∈ Cw, where qexp,j is the realization of Qexp,

which is calculated by qexp,j = (rexp(wj), vexp(wj)). The training dataset for Xexp is represented by

the matrix [xexp
d ] = [xexp,1 . . . xexp,nd ] ∈ Mn,nd . For generating nar = nd × nMC learned realizations

xexp,`
ar , ` = 1, . . . , nar of Xexp with nMC � 1, the PLoM algorithm is used. We then deduced the nar learned

realizations (qexp,`
ar ,w`

ar) = xexp,`
ar for all ` in {1, . . . , nar}. As explained in Subsection 2.2.2, the database

is split in two parts, one corresponding to nd = 18 and the other to nd = 30, referred to as D1 and

D2, respectively. After the experimental dataset has been extracted using the methodology described in

Subsection 2.3.1 a total of 18 + 30 datapoints is obtained corresponding to control parameters of the

finite set defined by Eqn. (2.1). This is not sufficient to have a good convergence of the vector-valued

hyperparameter δexp(wo) that has to be estimated using conditional statistics. Consequently, a resampling

of the probability distribution of each experimental dataset D1 and D2 has been carried out using PLoM

and adequate convergence has been obtained for nar = 20 000 and nar = 40 000, respectively.

(ii) For i in {1, . . . , nq}, the experimental conditional coefficient of variation δexp
i (wo) of the component

Qexp
i of Qexp, given W = wo in Sw, is defined by

δexp
i (wo) =

σQexp
i

(wo)

mQ
exp
i

(wo)
, (2.4)

in which mQ
exp
i

(wo) = E{Qexp
i |W = wo} and σ2

Q
exp
i

(wo) = E{(Qexp
i )2|W = wo}−m2

Q
exp
i

(wo) in which

the conditional mathematical expectation are estimated using the learned realizations {(qexp,`
ar ,w`

ar), ` =

1, . . . , nar} and the Gaussian Kernel Density Estimation (KDE) method (the integration being explicitly

calculated, see Appendix B). We introduce the vector δexp(wo) = (δexp
1 , . . . , δexp

nq ).

(iii) The random vector Q acm is transformed into a random vector Q whose components {Qi, i =

1, . . . , nq} are written as

Qi = (1 +Bi)Q
acm
i , i ∈ {1, . . . , nq} , (2.5)

in which 1 +Bi is a multiplicative random noise that allows model uncertainties to be taken into account.
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Vector Q, which represents the W-parameterized and frequency-dependent random liner impedance, will

be named the random quantity of interest (QoI). In order to construct the random variables B1, . . . , Bnq ,

we introduce a vector δ(wo) = (δ1(wo), . . . , δnq(wo)) in which δi(wo) is the coefficient of variation of

the conditional random variable 1 +Bi given W = wo. For the experiments, the parameters presenting

variability are d/∆, t/d, vor, ρ/c, and L, in which ∆ =
√
ν/ω. It is assumed that the model uncertainties

in the ACM are due to variability and uncertainties generated by the same parameters, which justifies

the use of the experiments for generating the modeling errors. It should be noted that the components

of vectors δ(wo) and δexp(wo) represent the variations with respect to frequency ω for the resistance and

reactance. We then choose for the frequency variations of δ(wo), the frequency variations of δexp(wo). If

the level of uncertainties were chosen equal for the experiments and for the model, then we would have

δ(wo) = δexp(wo). However, we are interested in performing a sensitivity analysis with respect to the

level of model uncertainties. We thus introduce a global parameter aunc ∈ [0, 1] to quantify the level of

uncertainties, and consequently, we write δ(wo) = aunc δ
exp(wo). Three values of aunc will be considered:

small uncertainties aunc = 0.2, medium uncertainties aunc = 0.5, and large uncertainties aunc = 1.0. For all

i ∈ {1, . . . , nq}, the real-valued random variable Bi is thus defined by

Bi = δi(W) 2
√

3 (Ui −
1

2
) , (2.6)

in which U1, . . . , Unq are nq independent real-valued random variable uniformly distributed on [0, 1] and

independent of W. It can then be shown that Bi is a centered random variable and that coefficient of

variation of the conditional random variable 1 +Bi given W = wo is δi(wo).

2.4.2 Training dataset including model uncertainties

To well represent the statistical fluctuations induced by model uncertainties in the training dataset, for

each realization of W we will assign Md realizations of the random variable B. Consequently, for all

i in {1, . . . , nq}, the Nd = nd ×Md realizations {{q1,m
i , . . . , qnd,mi },m = 1, . . . ,Md} of the random

variable Qi defined by Eqn. (2.5) are computed by the equation

qj,mi = (1 + bj,mi ) q acm,j
i , (2.7)

in which bj,mi is the realization of Bi defined by Eqn. (2.6) and such that

bj,mi = δi(wj) 2
√

3 (uj,mi − 1

2
) , (2.8)

in which {{u1,m
i , . . . , und,mi },m = 1, . . . ,Md} are Nd = nd ×Md independent realizations of random

variable Ui. It should be noted that for m fixed {bj,mi , j = 1, . . . , nd} are nd independent realizations of

Bi, but the realizations in the couple (j,m) are dependent. We then define the random vector X = (Q,W)

with values in Rn, in which Q is defined by Eqn. (2.5), whose (j,m)-th realization is xj,m = (qj,m,wj,m)

in which qj,m is given by Eqn. (2.7) and where wj,m = wj for all (j,m). For the probabilistic learning,

the training dataset is represented by the matrix [xd] = [x1,1 . . . xnd,1, . . . , x1,Md . . . xnd,Md ] ∈Mn,Nd .
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2.5 Construction of the statistical metamodel of the parameterized random
liner impedance

2.5.1 Random manifold associated with the parameterized random liner
impedance

The random QoI Q defined in Section 2.4.2 is written as Q = (R,V) in which R = (R1, . . . , Rnω) and

V = (V1, . . . , Vnω) are the Rnω -valued random variables representing the frequency-dependent resistance

and reactance. This Rnq-valued random variable Q can be written as Q = f(W,U) in which W is the

random control parameter with values in Rnw , U is the random uncontrolled parameter with values in

Rnu with nu = nq (see Eqn. (2.8)), and where (w,u) 7→ f(w,u) is a deterministic implicit mapping

from Rnw × Rnu into Rnq . We then define the random mapping w 7→ F(w) such that for all w in Rnw ,

F(w) = f(w,U). The graph {(F(w),w),w ∈ Sw ⊂ Rnw} defines a random manifold in Rn = Rnq×Rnw ,

in which n = nq + nw. The random variable X = (Q,W) with values in Rn is related to this random

manifold because X can also be rewritten as X = (F(W),W). In Section 2.4.2, we have constructed the

training set of X made up of Nd points xj = (qj ,wj) ∈ Rn, represented by matrix [xd] ∈Mn,Nd .

2.5.2 Statistical metamodel

Taking into account the definition of random QoI Q defined in Section 2.5.1, the objective of the statistical

metamodel of the parameterized random linear impedance is to construct the conditional probability

distribution PQ|W(dq|wo) = pQ|W(q|wo) dq of Q given W = wo for any wo in Sw ⊂ Rnw , in which pQ|W

is the conditional probability density function on Rnq given W. This conditional probability distribution

completely defines the statistical metamodel. However, we can only estimate this conditional probability

distribution using the nonparametric statistics and sufficiently large set of realizations of X = (Q,W).

Since the training dataset of X, represented by matrix [xd], is constituted of a small number Nd of

realizations, we will perform a resampling of X using a probabilistic learning on manifolds in order to

generate a large number Nar � Nd of learned realizations of X (see Section 2.5.3). The connection

between the probability density function of X = (Q,W) and the conditional probability density function

of interest is the following

pQ|W(q|wo) =
1

pW(wo)
pQ,W(q,wo) , (2.9)

in which pQ,W is the joint probability density function on Rnq × Rnw of random variables Q and W, and

where pW(wo) =
∫
Rnq pQ,W(q,wo) dq is the probability density function of W at point wo ∈ Sw.

From an engineering point of view, we are interested in deriving conditional statistics from conditional

probability distribution PQ|W, such as the conditional mean values and the conditional confidence regions.

The results presented in Section 2.6 will be the conditional mathematical expectation,

E{Q|W = wo} =

∫
Rnq

q pQ|W(q|wo) dq , (2.10)
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for any wo in Sw. We will also present the conditional confidence region of the frequency-dependent

random resistance R1, . . . , Rnω and reactance V1, . . . , Vnω . For k fixed in {1, . . . , nω}, let Qi be the

component of Q representing either resistance Rk or reactance Vk. Then the lower bound q−i and the

upper bound q+
i of the conditional confidence interval of Qi given W = Wo for a probability level pc are

defined by

q+
i : Proba{Qi ≤ q+

i |W = wo} = pc , (2.11)

q−i : Proba{Q−i ≤ q−i |W = wo} = 1− pc , (2.12)

and where the probability in Eqns. (2.11) and (2.12) are calculated with the conditional cumulative

distribution function,

Proba{Qi ≤ q∗i |W = wo} =

∫ q∗i

−∞
pQi|W(q∗i |wo) dqi , (2.13)

in which the conditional pdf pQi|W is derived from conditional pdf pQ|W by an integration on Rnq−1.

2.5.3 Generation of learned realizations to estimate the statistical meta-
model

In order to estimate the conditional statistics defined by Eqns. (2.10) to (2.13) of the statistical metamodel,

we need to generate the learned dataset constituted of a large number Nar of learned realizations (q`ar,w`
ar)

of random variable (Q,W) using the available information defined by the training dataset, represented

by matrix [xd], for which the columns are the Nd points xj ∈ Rn. As previously explained, we need a

probabilistic learning algorithm, and we propose to use the probabilistic learning on manifolds (PLoM) [21,

22, 23] for which the algorithm is summarized in the Appendix A. Once the learned realizations have

been generated, the joint probability density function pQ,W of Q and W is estimated using the multivariate

Gaussian Kernel Density Estimation method. The resulting explicit expression allows for performing exact

multiple integration with respect to coordinate vector Q. We then obtain explicit algebraic expression

for the estimate of Eqns. (2.10) to (2.13), which only depends on the learned dataset. These algebraic

expressions are given in the Appendix B.

2.6 Results and discussion

The conditional statistics defined in Section 2.5.2 are estimated using the learned dataset generated as

explained in Section 2.5.3 with the following values of the parameters: nd defined in Section 2.2.2,

Md = 15, Nd = nd ×Md, Nar = Nd × nMC with nMC = 6000, and aunc = 0.5. Two types of results are

shown.

(i) The first one is related to the conditional statistics for which the control parameter w belongs to Cw

(the training dataset is based on these values).
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(ii) For the second presented analysis, the control parameter does not belong to Cw (and consequently,

does not belong to the training dataset). Recalling that in the training dataset, the nd points represent

the values of resistance and the reactance as a function of the frequency and the control-parameters

samples. Since nd is very small, all these points have been kept to construct the training set, and it

was not possible to keep a part of these points to perform a quality assessment (or cross-validation).

So this second analysis has to be seen as predictions performed by the statistical metamodel, for

which quality can only be evaluated by coherence.

2.6.1 Predictions of the statistical metamodel for which the control param-
eter belongs to the training dataset

For several values of the control parameters (POA, SPL) that belong to the training dataset, Fig. 2.6

shows the resistance (figures (a) to (d)) and the reactance (figures (e) to (h)) as a function of frequency.

In each plot, it can be seen the curve corresponding to the ACM simulation data. On the other hand,

using the training dataset that includes model uncertainties, the curve of the learning-based conditional

mathematical expectation is plotted and the learning-based conditional confidence region for a probability

level pc = 0.98 is plotted.

(a) (POA,SPL)=(0.03,130) (b) (POA,SPL)=(0.03,145) (c) (POA,SPL)=(0.1,130) (d) (POA,SPL)=(0.1,145)

(e) (POA,SPL)=(0.03,130) (f) (POA,SPL)=(0.03,145) (g) (POA,SPL)=(0.1,130) (h) (POA,SPL)=(0.1,145)

Figure 2.6: For several values of control parameters (POA, SPL) that belong to the training dataset,
resistance (figures (a) to (d)) and reactance (figures (e) to (h)) (vertical axis) as a function of frequency
(Hz) (horizontal axis). ACM simulation data (solid curves with circular markers). Using the training set
including model uncertainties, learning-based conditional mathematical expectation (dashed curves with
diamond markers) and 98% learning-based conditional confidence region (shaded domain).
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2.6.2 Predictions of the statistical metamodel for which the control param-
eter does not belong to the training dataset

For this case, the nature of the presented results are the same as those presented in Subsection 2.6.1 but

the control parameters (POA, SPL) do not belong to the training dataset. Fig. 2.7 shows the resistance

(figures (a) to (d)) and the reactance (figures (e) to (h)) as a function of frequency.

(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

Figure 2.7: For several values of control parameters (POA, SPL) that do not belong to the training dataset,
resistance (figures (a) to (d)) and reactance (figures (e) to (h)) (vertical axis) as a function of frequency
(Hz) (horizontal axis).

2.6.3 Discussion

It can be seen that the dispersion of the resistance is larger than the reactance. This means that the resistance

is more sensitive to statistical fluctuations than the reactance. This dispersion is due to two factors. The

first one is directly correlated to the contents of the training dataset without model uncertainties (the

ACM simulation data), which contributes to the dispersion of the resistance. The second one is due to

the model uncertainties that have been included in the training dataset. The analyses performed have

shown that the contributions of the statistical fluctuations in the ACM simulation data is more dominant

than those induced by the model uncertainties. For the considered values of the control parameters the

dispersion of the reactance always stays small, while, the dispersion of the resistance strongly depends on

the control-parameters values. It should be noted that, for each given value of the control parameter, the

estimated conditional expectation of the resistance and reactance is close to the ACM simulation data.
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This proximity is due to the fact the random variable B related to the model uncertainties is centered and,

in addition, in the probabilistic learning process, the mean value corresponds to the ACM simulation data.

Finally, Fig. 2.7 related to the second analysis, shows that the predictions performed by the statistical

metamodel are coherent with respect to those shown in Fig. 2.6.

2.7 Conclusion

We have presented a methodology for constructing a robust PLoM-GKDE-based statistical metamodel

of the acoustic liner impedance as a function of the frequency and on the control parameters, the POA

and the SPL. In this work the Mach number has been chosen to be zero. It corresponds to an important

configuration that has to be studied. For positive Mach number, the frequency evolutions and the

amplitudes of the acoustic impedance are different and are analyzed in Chapter 4, using the presented

methodology and also the methodology that will be presented in Chapter 3. The presented construction

has been based on computationally expensive aeroacoustic model to generate simulated data that have

yielded a small training dataset. Therefore, a probabilistic learning process has been used, and we have

chosen the PLoM algorithm. Although the aeroacoustic simulation is conducted with a large aeroacoustic

computational model, some approximations have been introduced, generating model errors. A probability

model of these model errors has been developed to construct the training dataset. In order to calibrate the

model errors, we have used dimensionless experiments available from the open literature. In addition,

we have also introduced a sensitivity parameter to the level of model uncertainties. Despite the fact that

we have very small amount of data, we have succeeded in proposing a robust statistical metamodel that

is novel and whose predictions are consistent. This statistical framework has allowed for exhibiting a

confidence region, which gives an information about the level of uncertainties about the acoustic liner

impedance as a function of the frequency and the control parameters.
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Chapter 3

Statistical metamodel based on an ANN
formulation for Mach number fixed at zero

3.1 Introduction

The content of this chapter is taken from the paper [62] that has been submitted for publication and is

devoted to the ANN-based statistical metamodel. Since this chapter is only devoted to the ANN-based

statistical metamodel, we will often simply write ”statistical metamodel” if there is no ambiguity.

3.1.1 Objectives

The objective of this chapter is to construct a statistical metamodel for which the outputs are the frequency-

sampled impedance of the acoustic liner and the inputs are the control parameters that are the design

parameters. The statistical metamodel must have a low-computational cost to enable its usage in its design

optimization loop. In addition, the gradients of the statistical metamodel with respect to its inputs (the

control parameters) must also have a low-computational cost.

In this chapter, we construct the ANN-based statistical metamodel using a dataset, referred to as the

ACM dataset, which includes samples of control parameters and the corresponding acoustic impedance,

numerically simulated by ACM. Consequently, the dataset is small due to the prohibitive computational

cost of ACM, which prevents the construction of a large dataset.

As only the components of control parameter are inputs to the statistical metamodel, all other ACM

parameters are unobserved (thus uncontrolled) and should be treated as random latent variables. Therefore,

the acoustic liner impedance at any frequency should also be modeled as a random variable. A first novelty

contribution presented in this chapter is the methodology for constructing such a statistical metamodel

that is driven by the physics contained in the small ACM dataset.
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3.1.2 Proposed methodology

Similar to the construction presented in chapter 2, the statistical metamodel is defined by the conditional

probability distribution of the vector-valued random acoustic impedance, which is sampled in frequency,

given the control parameter. The novelty presented in this chapter is the development of an ANN-based

statistical metamodel in the following framework. The MaxEnt principle, applied with the available

information, is used to construct an informative prior model of this conditional probability distribution. It

should be noted that the hyperparameters of the probabilistic model depend on the values of the control

parameter and are modeled using fully connected feedforward neural networks yielding a statistical

ANN-based metamodel. Such a statistical metamodel is fitted on an ad hoc training dataset using the

maximum likelihood principle.

A principal component analysis (PCA) is conducted on the outputs (frequency-sampled acoustic

impedance) of the statistical metamodel. This is not only for potential statistical reduction but also

because decorrelation and centering of outputs enhance numerical conditioning, thereby facilitating the

optimization process for fitting the ANN to the training dataset. However, such a statistical decorrelation

and centering of the outputs introduce constraints on the hyperparameters of the statistical metamodel and

consequently, on the parameters the ANN. Therefore, given that these hyperparameters are modeled by

fully connected feedforward networks, some deterministic constraints must be considered, yielding the

development of constrained training algorithm for such networks. Such a constrained training algorithm is

challenging and complex when dealing with mini-batches, and might rely on techniques such as Lagrange

multipliers, penalization approaches, correction formulations, etc. We therefore present an unconstrained

formulation for the ANN that takes into account the statistical constraints arising from the PCA-based

reduction. This is achieved by generating an ad hoc training dataset using the PLoM-GKDE-based

statistical metamodel presented in Chapter 2. Finally, the statistical metamodel can be used to generate

additional realizations of the frequency-sampled acoustic impedance vector, thereby mitigating missing

data in the set of control parameters.

3.1.3 Organization of the chapter

The chapter is organized as follows. Section 3.2 briefly defines the control parameters and the ACM for

calculating the frequency-sampled vector of acoustic impedance, which is to be used for constructing

the ACM dataset (small size). Section 3.3 is dedicated to the parametric probabilistic modeling of

the conditional probability distribution of the frequency-sampled vector of acoustic impedance given

the control parameter. Section 3.4 focuses on the statistical ANN-based metamodel given the control

parameter. Section 3.5 presents a numerical example, along with a discussion of the results.

3.2 Control parameters and ACM dataset

A part of this section is duplicated from Section 2.2 in order to facilitate the reading.

In this chapter, the considered system is an acoustic liner consisting of a perforated plate, a honeycomb
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structure, and a rigid backing plate, as depicted in Fig. 2.1. The Mach number is assumed to be equal

to zero, that is relevant for the ground configuration. Incorporating non-zero Mach numbers require

additional analyses beyond the scope of this chapter. A reduced domain, as described in [8], is used for

the computational model (see Fig. 2.2). In this chapter and for sake of simplicity, the liner system is

parameterized by nw = 2 parameters (the control parameters) that are the Percentage of Open Area (POA)

and the Sound Pressure Level (SPL), represented by w = (w1, w2), where w1 corresponds to POA and

w2 to SPL.

For such a reduced domain, the frequency-dependent acoustic impedance is denoted as ω 7→
z acm(ω; w), where ω is the frequency (rad/s). Specifically, z acm(ω; w) = r acm(ω; w) + ι v acm(ω; w),

in which r acm(ω; w) represents the resistance that is positive, v acm(ω; w) the reactance that is real,

ι =
√
−1. Control parameter w belongs to an admissible set. The computational domain is centered

around the resonator, within which the Navier-Stokes equations are solved. The computational model

consists of 278 514 degrees of freedom. For given control parameter w, and for each sampled frequency

ωk = (k − 1) ∆ω with k = 1, . . . , nw where nω = 7, the ACM computes the resistance r acm(ωk; w) and

the reactance v acm(ωk; w). The Navier-Stokes equations are solved using the numerical method presented

in [8] for w = (w1, w2) ∈ [0.03, 0.1] × [130, 145]. As discussed in Chapter 2, ACM simulations are

performed for nd = 48 values w1, . . . ,wnd of w, which constitute the set Dw. These points in Dw are

considered as realizations of a random vector W whose probability density function, pW, is unknown.

The ACM dataset D acm is then defined as the set of points (wj, r acm,j, v acm,j) in Rnw×nω×nω for

j = 1, . . . , nd, in which r acm,j = (r acm(ω1; wj), . . . , r acm(ωnω ; wj)) and v acm,j = (v acm(ω1; wj), . . . ,

v acm(ωnω ; wj)). For each j = 1, . . . , nd, we introduce the 2nω-dimensional vector of frequency-sampled

impedance q acm,j = (log r acm,j , v acm,j) in which log r acm,j = (log r acm(ω1; wj), . . . , log r acm(ωnω ; wj)).

The model uncertainties are due to random latent parameters that, consequently, cannot be defined

as control parameters. In order to take into account these model uncertainties, the random vectors Q,R,

and V are introduced whose conditional probability density functions, given W = wj , are denoted by

q 7→ pQ(q|wj), pR(r|wj), and pV(v|wj). These conditional probability density functions are constructed

as explained in Chapter 2. For instance, the conditional mean value of Q given W = wj is chosen as

q acm,j for j = 1, . . . , nd; the conditional dispersion coefficient given W = wj has been identified using

experimental data. We then generate md = 15 statistically independent realizations qj,1, . . . ,qj,md from

pQ|W given W = wj . Hence, training dataset D∗acm is made up of a total of n acm = nd ×md realizations

(wj,k,qj,k) with j = 1, . . . , nd and k = 1, . . . ,md, in which wj,k is a rewriting of wj that is independent

of k (we introduce a repetition). For the sake of simplicity, all the realizations are rewritten as (wj , qj)
with j = 1, . . . , n acm.

In Chapter 2, the PLoM (Probabilistic Learning on Manifold) is carried out to learn the joint probability

density function pQ,W of random vectors Q and W using D∗acm as a training dataset. PLoM also allows

nar additional statistically independent realizations {(w`
ar, q`ar) , ` = 1, . . . , nar} to be generated, which

constitute the learned dataset D∗ar.
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3.3 Prior probabilistic model of the frequency-sampled impedance vector

In Chapter 2, the conditional probability density function pQ|W is estimated with the Gaussian Kernel

Density Estimation (GKDE) using additional realizations (generated by PLoM) of Q and W. In the context

of the construction of a statistical metamodel based on a neural network, we need to introduce an algebraic

representation of the conditional probability distribution of Q given W, depending on hyperparameters.

In this chapter we have chosen a Gaussian model for which the hyperparameters are conditional mean

value and the conditional covariance matrix of Q given W. The neural network will be used for predicting

these conditional hyperparameters. In this section, we then present the construction of the algebraic prior

probabilistic model of pQ|W. Nevertheless, since Q is in high dimension, we will introduce a statistical

reduction H of Q using a PCA. Within Section 3.3.2, the conditional hyperparameters associated with

such a prior probabilistic model are represented as functions of w. The modeling of these functions is

carried out using fully connected feedforward networks that are trained to map control parameter w onto a

corresponding set of hyperparameters of the prior probabilistic model.

3.3.1 PCA-based statistical reduction H of Q

A PCA is used to construct the statistical reduction of Q, yielding a normalized random vector H (centered

with identity covariance matrix). Random vector H is therefore written as H = [λ]−1/2 [φ]T
(
Q− q

)
, in

which q = (1/nar)
∑nar

`=1 q`ar is the empirical mean value of random vector Q, [λ] is a (m×m) diagonal

matrix, and [φ] is a (nq×m) matrix whose columns are orthonormal vectors, and are such that [CQ][φ] =

[φ][λ]. The estimate of the (nq×nq) covariance matrix of Q is [CQ] = (nar−1)−1
∑nar

`=1(q`ar−q) (q`ar−q)T .

The diagonal entries of [λ] are the m-largest eigenvalues of [CQ]. By construction, the Rm-valued random

variable H is such

E{H} = 0m , E{H⊗H} = [Im] . (3.1)

3.3.2 Prior conditional probabilistic density function of H given W

Let η 7→ pH|W(η|w) be the conditional probability density function of H given W. The prior conditional

probability density function pH|W is constructed using the MaxEnt principle (see for instance [57]) with

the following available information: (1) the support of η 7→ pH|W(η|w) is Rm, (2) the conditional mean

value and the conditional covariance matrix of H given W = w are the vector µH|W(w) and the matrix

[CH|W(w)], which are estimated using the training dataset D∗ar for each given value of w. Therefore, H
given W = w is a multivariate Gaussian random variable with mean value µH|W(w) and covariance

matrix [CH|W(w)].

For any given w in its admissible set, the estimate of hyperparameters µH|W(w) and [CH|W(w)],

constructed using GKDE from nonparametric statistics and dataset D∗ar, are written as

µH|W(w) =

∑nar
`=1 η

`
ar exp

(
− 1

2s2
(w− w`

ar)
T [CW]−1 (w− w`

ar)
)∑nar

`=1 exp
(
− 1

2s2
(w− w`

ar)
T [CW]−1 (w− w`

ar)
) , (3.2)
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[CH|W(w)] =

∑nar
`=1 η̃

`
ar(w) (η̃`ar(w))T exp

(
− 1

2s2
(w− w`

ar)
T [CW]−1 (w− w`

ar)
)∑nar

`=1 exp
(
− 1

2s2
(w− w`

ar)
T [CW]−1 (w− w`

ar)
) , (3.3)

where (1) the (nw × nw) matrix [CW] = (nar − 1)−1
∑nar

`=1(w`
ar − w) (w`

ar − w)T is the estimate of the

covariance matrix of W in which w = (1/nar)
∑nar

`=1 w`
ar is the estimate of the mean value of W; (2) for all

` = 1, . . . , nar, we have η`ar = [λ]−1/2[φ]T (q`ar − q) and η̃`ar(w) = η`ar − µH|W(w); (3) s is the Silverman

bandwidth given by

s =

{
4

nar(2 + n)

}1/(n+4)

, n = m+ nw (3.4)

Due to Eqn (3.1), µH|W(w) and [CH|W(w)] have to satisfy the following equations,

E{µH|W(W)} = 0m , (3.5)

E
{

[CH|W(W)] + µH|W(W)µH|W(W)T
}

= [Im] . (3.6)

With the proposed methodology, these two equations will automatically be satisfied.

3.3.3 Statistically independent realizations of R and V given W

For given w, let R(w) and V(w) be the Rnω -valued random variables defined in Section 3.2. For

any given w in its admissible set, N statistically independent realizations η1(w), . . . ,ηN (w) of H
given W = w are generated using the multivariate Gaussian random distribution whose mean value is

µH|W(w) and covariance matrix is [CH|W(w)]. We then deduce N statistically independent realizations

q1(w), . . . ,qN (w) of random vector Q given W = w such that, for j = 1, . . . , N , qj(w) = q +

[Φ] [λ]1/2 ηj(w). For j = 1, . . . , N , the block decomposition of vector qj(w) is written as (qjR(w), vj(w))

with qjR and vj(w) being two nω dimensional vectors. Obviously, v1(w), . . . , vN (w) are statistically

independent realizations of V(w) and the statistically independent realizations r1(w), . . . , rN (w) of R(w)

are such that qjR(w) = log(rj(w)). Note that, for given w, conditional mean vectors µR|W(w) and

µV|W(w), and the conditional covariance matrices [CR|W(w)] and [CV|W(w)] are estimated using the

statistically independent realizations rj(w), . . . , rN (w) and vj(w), . . . , vN (w). Note that vector µR|W(w)

and matrix [CR|W(w)] can also be written as

µR|W(w) = exp

(
µQR|W(w) +

1

2
diag[CQR|W(w)]

)
, (3.7)

[CR|W(w)] = exp
(
[CQR|W(w)]− 1

)
�
(
µR|W(w)µR|W(w)T

)
, (3.8)

where [A] � [B] stands for Hadamard product of matrices [A] and [B]; exp([A]) is the element-wise

exponential and diag[A] is the vector made up of the diagonal entries of a given matrix [A]. The

block decomposition of µQ|W(w) = q + [Φ] [λ]1/2µH|W(w) into nω dimensional vectors µQR|W(w) and

µV|W(w), is written as

µQ|W(w) = (µQR|W(w), µV|W(w)) . (3.9)
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The block decomposition of matrix [CQ|W(w)] = [Φ] [λ]1/2 [CH|W(w)] [λ]1/2 [Φ]T into (nω×nω) matrices

[CQR|W(w)], [C(w)], and [CV|W(w)], is written as

[CQ|W(w)] =

 [CQR|W(w)] [C(w)]

[C(w)] [CV|W(w)]

 . (3.10)

Concerning the random frequency-sampled vector V(w), vector µV|W(w) and matrix [CV|W(w)] are

directly obtained from block decomposition of vectorµQ|W(w) and matrix [CQ|W(w)] given by Eqns. (3.9)

and (3.10).

3.4 ANN-based statistical metamodel

3.4.1 Fully connected feedforward neural network

Deterministic mappings w 7→ µH|W(w) and w 7→ [CH|W(w)] may have a complex behavior, not only

because their supports are multidimensional, but also because the underlying physical process is complex.

In such a case, fully connected feedforward neural network is well adapted to represent such deterministic

mappings. We then consider a fully connected feedforward neural networkµH|W(w θ1) with parameter θ1,

which is constructed in order to model deterministic mapping w 7→ µH|W(w). However, a representation

of w 7→ [CH|W(w)] by a fully connected feedforward network is not straightforward because, for each

given w, the output has to be a positive-definite matrix. To circumvent this apparent difficulty, the matrix

logarithm of the (m×m) symmetric covariance matrix [CH|W(w)] is calculated for each given w, which

yields a (m×m) symmetric matrix [logCH|W(w)]. If all the m(m+ 1)/2 entries of the upper triangular

block of matrix [logCH|W(w)] are collected into the m(m+ 1)/2 dimensional vector ζH|W(w) then, a

fully connected feedforward network ζH|W(w θ2) with parameter θ2 is constructed for modeling the

deterministic mapping w 7→ ζH|W(w). Then, for a given w, the output of ζH|W(w; θ2) with parameter

θ2 is used in order to assemble matrix [logCH|W(w; θ2)]. Then, matrix [CH|W(w; θ2)] is calculated as

the matrix exponential of [logCH|W(w; θ2)]. We then defined as the statistical ANN-based metamodel,

the probabilistic model in Section 3.3 where µH|W(w; θ1) and [CH|W(w; θ2)] are used for modelling

µH|W(w) and [CH|W(w)]. Consequently, the statistical ANN-based model is defined as the probability

density function η 7→ pH|W(η|w; θ1, θ2) that is a multivariate Gaussian probability density function with

mean value µH|W(w; θ1) and covariance matrix [CH|W(w; θ2)].

3.4.2 ANN for regression with the learned dataset D∗ar

As it is usually the case for most regression problems, parameters θ1 and θ2 are adjusted by fitting the

ANN to a suitable training dataset. In this chapter, such fitting is carried out in minimizing with respect to

θ1 and θ2 the negative-log-likelihood L(θ1,θ2) of the ANN. Obviously, D∗acm and D acm are not suitable

as training datasets for such fitting process since their sizes are small (less than one hundred elements). It

is well known that, in the framework of ANN modeling (as well for deterministic ANN modeling), small
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training datasets yields overfitting models that are unable to predict their targets well enough for unseen

values of their inputs. On the other hand, since the size nar of learned datasetD∗ar is as large as needed, such

dataset is completely suitable as a training dataset. Using learned dataset D∗ar, the negative-log-likelihood

to be minimized is written as

L(θ1,θ2) = −
nar∑
`=1

log pH,W(η`ar, w`
ar; θ1, θ2) , (3.11)

= −
nar∑
`=1

log
(
pH|W(η`ar|w`

ar; θ1, θ2) pW(w`
ar)
)

, (3.12)

= −
nar∑
`=1

log pH|W(η`ar|w`
ar; θ1, θ2)−

nar∑
`=1

log pW(w`
ar) . (3.13)

Minimizing L(θ1,θ2) with respect to θ1 and θ2 is equivalent to minimizing the cost function J(θ1, θ2)

defined by

J(θ1, θ2) =
1

2

nar∑
`=1

log
(

det [CH|W(η`ar; θ2)]
)

+
1

2

nar∑
`=1

(
η`ar − µH|W(w`

ar; θ1)
)T

[CH|W(w`
ar; θ2)]−1

(
η`ar − µH|W(w`

ar; θ1)
)
. (3.14)

Note that such minimization should be performed under the constraints defined by Eqns. (3.5) and (3.6).

Classically, such constraints would be taken into account introducing Lagrange multipliers [63, 64, 65],

augmented Lagrangian [64, 65], penalty methods [63, 64, 65], barrier methods [65], projected gradient

methods [66] or Sequential Quadratic Programming [65]. It is not straightforward to implement such

methods in the framework of fully connected feedforward neural network training when mini-batch are

required due to constraints on RAM availability due to CPU or GPU limitations. In this chapter and

as explained in Section 3.4.3, we take advantage of the PLoM in order to fit the probabilistic model by

adjusting θ1 and θ2 such that constraints defined by Eqns. (3.5) and (3.6) are automatically satisfied.

3.4.3 ANN for regression with a learned GKDE-based estimates dataset

It should be noted that minimizing J(θ1, θ2) with respect to θ1 and θ2 under constraints defined by

Eqns. (3.5) and (3.6) is equivalent to construct the likelihood-based statistical estimators of conditional

mean and conditional covariance matrix of H given W = w. Such statistical estimators are different

from the GKDE-based statistical estimators defined by Eqns. (3.2) and (3.3). Therefore, in the context of

constructing µH|W(w; θ1) and ζH|W(w; θ2), an alternative strategy to the typical approach of minimizing

the negative-log-likelihood L(θ1,θ2) in regression problems, as presented in Section 3.4.2, is proposed.

This alternative entails generating a GKDE-based estimates dataset D∗H|W made up of pre-calculated

estimates of conditional mean and conditional covariance of H given W, using GKDE-based estimators

as defined by Eqns. (3.2) and (3.3). Then, parameters θ1 and θ2 are adjusted such that the ANN-based

statistical metamodel defined by µH|W(w; θ1) and ζH|W(w; θ2) fits dataset D∗H|W. Such a strategy

requires a very large dataset D∗ar in order to construct a large enough dataset D∗H|W using GKDE-based
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estimators. Such an adapted very large dataset D∗ar can easily be constructed by PLoM. Therefore, dataset

D∗H|W consists of ν < nar elements (µ1, ζ1), . . . , (µν , ζν) defined as follows. For all j = 1, . . . , ν,

µj =

∑nar
`=ν+1 η

`
ar exp

(
− 1

2s2
(wj

ar − w`
ar)
T [CW]−1 (wj

ar − w`
ar)
)∑nar

`=ν+1 exp
(
− 1

2s2
(wj

ar − w`
ar)
T [CW]−1 (wj

ar − w`
ar)
) , (3.15)

and the m(m + 1)/2 dimensional vector ζj collects all the entries of the upper triangular part of the

matrix logarithm [logCj ] of the matrix [Cj ], defined as

[Cj ] =

∑nar
`=ν+1 η̃

`
ar(wj

ar) (η̃`ar(wj
ar))

T exp
(
− 1

2s2
(wj

ar − w`
ar)
T [CW]−1 (wj

ar − w`
ar)
)∑nar

`=ν+1 exp
(
− 1

2s2
(wj

ar − w`
ar)
T [CW]−1 (wj

ar − w`
ar)
) . (3.16)

Note that nar − ν is the number of realizations used for the GKDE-based estimates of conditional mean

and conditional covariance of H given W = wj
ar. Hence, the least-square estimation of parameters θ1 and

θ2 is obtained as the parameters that minimize the cost function J (θ1, θ2) that is written as

J (θ1, θ2) =
1

2

 ν∑
j=1

‖µj − µH|W(wj
ar; θ1)‖2 +

ν∑
j=1

‖ζj − ζH|W(wj
ar; θ2)‖2

 , (3.17)

This optimization problem is solved using ADAM (ADAptive Moment estimation) algorithm [67] with a

learning rate γ scheduler (see Chapter 5) that adjusts the learning rate over the course of training as

γ(k) = max(γo α
(k−1)/∆, γmin) , (3.18)

where k is the epoch, γo is the initial learning rate (default value is γo = 0.001), α = 0.95 is the decay

factor, ∆ = 5 is the decay period, and γmin = 1 × 10−7 is the minimum leaning rate. For the ADAM

algorithm, the parameters are fixed as β1 = 0.9, β2 = 0.99, and ε = 1× 10−8.

3.5 Numerical applications

3.5.1 Architecture of the ANN

Concerning the architecture of the ANN, rather than constructing two multi-outputs fully connected feed-

forward networks (one for µH|W(w; θ1) and one for ζH|W(w; θ2)), we choose to construct m single out-

put fully connected feedforward networks {µH|W(w; θ1,1)}1, . . . , {µH|W(w; θ1,m)}m and d = m(m+

1)/2 single output fully connected feedforward networks {ζH|W(w; θ2,1)}1, . . . , {ζH|W(w; θ2,d)}d,
where θ1 is rewritten as θ1 = (θ1,1, . . . ,θ1,m) and θ2 is rewritten as θ2 = (θ2,1, . . . ,θ2,d). In ad-

dition, each of these parameters θi,j are fine-tuned for each POA partition introduced in Chapter 2. It

means that we have calculated one θi,j for POA in [0.03, 0.05] and another θi,j for POA in [0.06, 0.10].

The training is carried out in parallel on a cluster of 3 Tesla V100 - 32 GB GPUs. For each fully connected

feedforward network, there are four hidden layers, the number of units is 20, 250, 75 and 25 respectively.
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This architecture implies a total number of 52 628 parameters (biases and weights) for the two partitions

of POA. For the first and the fourth layer, Glorot [68] initialization is used and for the second and third

layer, He [69] initialization is used. Rectified linear unit (ReLU) activation functions is used for each of

the four hidden layers.

3.5.2 Statistical convergence analysis for the learned GKDE-based esti-
mates dataset

A statistical convergence analysis is carried out with respect to number ν (see section 3.4.3). Figure 3.1

shows the graph of nar 7→ (nar− ν+ 1)−1
∑nar

j=ν+1 ‖ [CH|W(wj
ar)] ‖2 in which ‖ · ‖ is the Frobenius norm.

The horizontal axis of Fig. 3.1 is the number nar − ν statistically independent realizations used in order to

construct the GKDE-based estimates of conditional covariance of H given W = w with ν = 60 000. It

can be shown that convergence is reached for nar − ν = 200 000, that is to say nar = 260 000.
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Figure 3.1: Statistical convergence analysis of the GKDE estimator for the conditional covariance matrix
[CH|W(w)] of H given W = w. Graph of nar 7→ (nar − ν + 1)−1

∑nar
j=ν+1 ‖ [CH|W(wj

ar)] ‖2. Horizontal
axis: nar − ν.

3.5.3 Conditional covariance matrices of R and V given W

Using the database D∗ar and conditional statistics based on GKDE estimation, the (m×m) conditional

covariance matrix [CQ|W(w)] can be calculated. The expression is not included in this chapter, but

its complete derivation can be found in Appendices A and B. Using Eqns. (3.7) to (3.10) allows for

calculating conditional covariance matrices of resistance [CR|W(w)] and reactance [CV|W(w)] for given

W = w. Furthermore, as explained in Section 3.3.3 and given models µH|W(w; θ1) and ζH|W(w; θ2),

conditional covariance matrix [CR|W(w; θ1, θ2)] (resp. [CV|W(w, θ2)]) of R(w) (resp. V(w)) can be

constructed for given W = w. The entries of matrices [CR|W(w)] and [CV|W(w)] (calculated by GKDE)

are displayed in Fig. 3.2. The entries of matrices [CR|W(w; θ1, θ2)] and [CV|W(w; θ2)] (calculated using

36



Chapter 3. Statistical metamodel based on an ANN formulation for Mach number fixed at zero

the statistical ANN-based metamodel) are displayed in Fig. 3.3. The frequency-sampled resistance is

displayed in Figs 3.2a to 3.2d and in 3.3a to 3.3d. The frequency-sampled reactance is displayed in

Figs 3.2e to 3.2h and 3.3e to 3.3h. It should be noted that the considered values of the control parameters

are indicated in each sub-figure. It can be seen that the matrices are not diagonal and that a correlation

exits between the different frequency points of the frequency-sampled impedance. It can also be seen

that GKDE-based estimate in Fig. 3.2 and statistical ANN-based metamodel estimate in Fig. 3.3 of the

covariance matrices are quantitatively the same.
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Figure 3.2: Conditional covariance matrices with GKDE-based estimation of the conditional covariance
of resistance (Figs.3.2a to 3.2d) and reactance (Figs. 3.2e to 3.2h) given four different values of w
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Figure 3.3: Conditional covariance matrices with statistical ANN-based metamodel estimation of the
conditional covariance of resistance (Figs.3.3a to 3.3d) and reactance (Figs. 3.3e to 3.3h) given four
different values of w

3.5.4 Frequency-sampled acoustic impedance using the ANN-based statis-
tical metamodel

For any value of w in its admissible set, the conditional statistics (mean values and confidence regions)

of R(w) and V(w) are estimated using the statistically independent realizations r1(w; θ1, θ2), . . . ,
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rN (w; θ1, θ2) and v1(w; θ1, θ2), . . . , vN (w; θ1, θ2) as presented in Section 3.3.3 and obtained using

µH|W(w; θ1) and ζH|W(w; θ2) as explained in Section 3.4.1.

Figures 3.4 shows 10 realizations of frequency-sampled resistances (Figs 3.4a to 3.4d) and 10

corresponding realizations of frequency-sampled reactance (the values of the control parameters are

indicated in each sub-figure). The dashed blue line (resp. the blue domain) is the conditional mean value

(resp. the conditional confidence region) of the frequency-sampled resistance (Figs. 3.4a to 3.4d) and

reactance (Figs. 3.4a to 3.4d).

(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

Figure 3.4: Random generations of frequency-sampled impedance using the ANN-based statistical
metamodel. Conditional mean value (dashed blue line) and conditional confidence region (blue region)
with a probability level Pc = 98% for the resistance ((a) to (d)) and reactance ((e) to (h)). The 10 thin
black lines represent realizations of the frequency-sampled impedance generated by the ANN-based
statistical metamodel for given w. Horizontal axis is the frequency in Hz

3.5.5 Comparison of confidence regions estimated by the PLoM-GKDE-
based statistical metamodel and the ANN-based statistical meta-
model

In this section, we focus on the comparison of the confidence regions estimated by nonparametric statistics

and the statistical ANN-based metamodel developed in this chapter. It is well known that, for convergence,

nonparametric statistical estimates require a much larger number of realizations. Figure 3.5 illustrates

the resistance (figures a to d) and reactance (panels e to h), showcasing the graphs of conditional mean

and conditional confidence regions for a given w. These are obtained using conditional statistics using

PLoM-GKDE-based statistical metamodel and are compared with the ANN-based statistical metamodel

for the frequency-sampled impedance. The blue dashed curve and the blue zone represent the conditional
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mean and pc = 98%-conditional confidence region for the ANN-based statistical metamodel. The red

dashed curve represents the conditional mean values estimated using Eqn. (2.10). For the estimation of

the conditional confidence region (refer to Eqns. (2.11) to (2.13)), the number of independent realizations

N used for the convergence of the PLoM-GKDE-based statistical estimator is varied between N = 105

to N = 108, which is indicated by red zone and a different border (as shown in the legend of Fig. 3.5).

For values close to N = 107, the conditional confidence region of the PLoM-GKDE-based statistical

metamodel given w, converges towards the predictions of the ANN-based statistical metamodel in terms

of estimating the associated uncertainty level. In order to understand why such a high value of N is

(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

N = 6×104 N = 1×105 N = 1×106 N = 1×107 N = 1×108

Figure 3.5: Convergence analysis of the conditional confidence region with a probability level Pc = 98%
of the frequency-sampled impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)). The blue
dashed curve and the blue zone represent the conditional expectation and conditional confidence regions
estimated using the ANN-based statistical metamodel of the acoustic liner impedance. The red dashed
curve represent the conditional mean values estimated using Eqn. (2.10). The red zone, with different
outlines, represents the conditional confidence regions estimated using Eqns. (2.11) to (2.13) by varying
the number of independent realizations N . Horizontal axis: Frequency in Hz.

required, figure 3.6 displays the bivariate probability density estimate of the two control parameters POA

and SPL for the two partitions of dataset (see Chapter 2). The red dots represent the initial training

dataset. The red diamonds are data points that are used for conditional statistics that are in the data rich

zone. The white diamonds are the data points used for conditional statistics in the data poor zone. The

colored contour around the red dots are the learned realizations from PLoM. The initial database was

generated in a tight grid and thus has data rich and data poor zones. As seen from the contours of the

random realizations generated by PLoM, many of the intermediate zones have very little to no learned

realizations. In these data poor zones, both the statistical metamodel and the ANN-based metamodel

39



Chapter 3. Statistical metamodel based on an ANN formulation for Mach number fixed at zero

(a) Partition 1 (b) Partition 2

Figure 3.6: The bivariate probability density estimate of POA and SPL for the two partitions of dataset.
The red dots represent the initial training dataset. The red diamonds are data points that are used for
conditional statistics that are in the data rich zone. The white diamonds are the data points used for
conditional statistics in the data poor zone. The colored contour around the red dots are the learned
realizations from PLoM.

must interpolate the results. It should be noted that these results are obtained for the standard value s

of the Silverman bandwidth defined in Eqn. 3.4. In order to improve the convergence of the confidence

region by GKDE-based estimate, and taking into account the interpolations into data poor zones of design

parameter w into the dataset D∗ar, we propose to manually adjust the value of Silverman bandwidth s in

decreasing its values at s = 0.1186 (this compensates the difference of the number of realizations between

PLoM-GKDE-based statistical metamodel and ANN-based statistical metamodel). Using this new value

of Silverman bandwidth and for given design parameters W = w corresponding to data rich zones, the

conditional mean value and the conditional confidence region with probability level Pc = 98%, of the

frequency-sampled impedance given W = w, corresponding to the ANN-based statistical metamodel, are

presented in Figs. 3.8 and are compared with results presented in Chapter 2 (PLoM-GKDE-based statistical

metamodel). Figures 3.8a to 3.8d correspond to the resistance and Figures 3.8e to 3.8h correspond to the

reactance (the values of the control parameters are indicated in each sub-figure). The red dashed line (resp.

the red domain) shows the conditional mean value (resp. the confidence region) from Chapter 2. The blue

dashed line (resp. the blue domain) shows the conditional mean value (resp. confidence region) from the

ANN-based statistical metamodel. In such data rich zones, the predictions have a relatively lower level of

uncertainty i.e. smaller confidence regions predicted. Additionally, there is a good match between the

predictions of conditional mean and conditional confidence region given w for the PLoM-GKDE-based

statistical metamodel and ANN-based statistical metamodel.

Using the new value of Silverman bandwidth and for given design parameters W = w corresponding

to data poor zones, the conditional mean value and the conditional confidence region with probability

level Pc = 98%, of the frequency-sampled impedance given W = w, corresponding to the ANN-based

statistical metamodel, are presented in Figs. 3.7 and are compared with results presented in Chapter 2

(PLoM-GKDE-based statistical metamodel). Figures 3.7a to 3.7d correspond to the resistance and Figures

3.7e to 3.7h correspond to the reactance (the values of the control parameters are indicated in each
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sub-figure). The red dashed line (resp. the red domain) shows the conditional mean value (resp. the

confidence region) from Chapter 2. The blue dashed line (resp. the blue domain) shows the conditional

mean value (resp. confidence region) from the ANN-based statistical metamodel. It can be seen that,

(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

Figure 3.7: Conditional mean values and conditional confidence region with a probability level Pc = 98%
of the frequency-sampled impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)). The red
dashed curve and the red zone represent the conditional mean values and conditional confidence intervals
estimated from Chapter 2 and the Silverman bandwidth tuned to s = 0.1186 for all the figures. The blue
dashed curve and the blue zone represent the conditional expectation and conditional confidence intervals
estimated using the ANN-based statistical metamodel of acoustic liner impedance. Horizontal axis is
frequency in Hz.

concerning the conditional mean values of the frequency-sampled impedance, there is a good match

between the ANN-based statistical metamodel presented in this chapter and the previous results presented

in Chapter 2.

Finally, from figures 3.7 and 3.8, it can be seen that the ANN-based statistical metamodel, which

has been fitted on the learned PLoM-GKDE-based estimates dataset D∗H|W (with 60 000 realizations),

shows conditional confidence region that are quantitatively the same as those calculated by GKDE-based

estimate using the learned ACM dataset D∗ar (260 000 realizations) with manually adjusted Silverman

bandwidth s to the value 0.1186.

3.6 Conclusions and perspectives

In this chapter, an ANN-based statistical metamodel of the frequency-sampled acoustic liner impedance

has been presented, for which only a small ACM data is available to fit its parameters. The control

parameters are the POA and SPL with Mach number being kept at zero. The latent (unobserved)

parameters introduce uncertainties that are taken into account by a probabilistic model introduced in
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(a) (POA,SPL)=(0.031,136) (b) (POA,SPL)=(0.049,143) (c) (POA,SPL)=(0.072,139) (d) (POA,SPL)=(0.091,131)

(e) (POA,SPL)=(0.031,136) (f) (POA,SPL)=(0.049,143) (g) (POA,SPL)=(0.072,139) (h) (POA,SPL)=(0.091,131)

Figure 3.8: Conditional mean values and conditional confidence region with a probability level Pc = 98%
of the frequency-sampled impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)). The red
dashed curve and the red zone represent the conditional mean values and conditional confidence intervals
estimated from Chapter 2 and the Silverman bandwidth fixed at s = 0.1186 for all the figures. The
blue dashed curve and the blue zone represent the conditional expectation and conditional confidence
intervals estimated using the ANN-based statistical metamodel of acoustic liner impedance. Horizontal
axis: Frequency in Hz.

Chapter 2. The construction of the statistical metamodel uses a PCA to construct a statistical reduced

representation of the frequency-sampled vector of the random log-resistance and the random reactance.

For fitting the ANN-based statistical metamodel, a big training dataset is constructed using probabilistic

learning on manifolds (PLoM). A prior conditional probability distribution of the reduced representation

given the control parameters is then constructed and assumed to be Gaussian, yielding a multivariate

log-normal distribution for the resistance and a multivariate Gaussian distribution for the reactance. The

metamodels of the hyperparameters of such conditional probabilistic model is presented as fully-connected

feedforward neural networks. As the reduced representation is modeled by a centered and normalized

random vector, some constraints have to be taken into account in the minimization of the negative-log

likelihood when fitting the parameters (biases and weights) of the neural network. The constrained problem

is transformed in an unconstrained one, requiring the construction of a second training dataset to estimate

the conditional mean vectors and conditional covariance matrices for which the learned realizations

are generated using PLoM. The novelty of this chapter lies in the methodology used to construct an

ANN-based statistical metamodel of acoustic liner impedance, which can be used as a low-computational

cost metamodel to predict the confidence interval and the mean value of the impedance given any value of

the control parameter. The gradients of the mean values and confidence regions can also easily be derived

using classical backpropagation algorithms for very cheap computational cost. In Chapter 4, this approach

is extended to non-zero Mach number.
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Chapter 4

Statistical metamodel based on neural
network for positive Mach numbers with
missing data

4.1 Introduction

In order to facilitate the reading of this chapter we have reintroduced a part of the methodology and the

formulas already given in Chapters 2 and 3.

4.1.1 Framework for positive Mach number with missing data

This chapter is devoted to the construction of the two statistical metamodels presented in Chapter 2

and 3, for the case of missing data with a small training dataset. Similar to the case of zero Mach

number, one evaluation for positive Mach number, using an ACM, is computationally expensive and

consequently, the ACM cannot be used many times for constructing the parameterized acoustic liner

impedance. Consequently, a statistical metamodel is required. Furthermore, for some values of the

design parameters the ACM might not converge for all the prescribed values of frequency ω. In this case

those values are missing in the ACM dataset and strategy has to be proposed to mitigate the missing

data, modeling the frequency as a random variable. This is the reason why we propose to develop a

PLoM-GKDE-based statistical metamodel of the acoustic impedance parameterized by its frequency

and the percentage of open area (POA) (as in Chapters 2 and 3) and additionally by the Mach number

(M ), hole diameter (d), and perforated plate thickness (t). Note that the effects of the sound pressure

level (SPL) is considered as a second-order parameter with respect to the effects of the previous ones

and consequently, will not be taken into account in the present analyses. The uncertainties induced by

modeling errors will not be taken into account because its level cannot be identified with experiments for

the following reasons: (i) impossibility to measure, in acoustic benches, detailed boundary layer profiles,

friction velocity, and other thermodynamic parameters; (ii) lack of open literature for the conditions we
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are interested in studying and experimental setup yielded unsatisfactory results.

4.1.2 Objectives

As previously, the objective of the chapter is to construct a PLoM-GKDE-based statistical metamodel and

ANN-based statistical metamodel for the framework mentioned above, in particular for additional control

parameters and the case of missing data.

4.1.3 Proposed methodology

The methodologies presented in Chapter 2 and 3 are reused. For the construction of the ANN-based

statistical metamodel, we use the PLoM-GKDE-based statistical metamodel to mitigate any missing data

within its admissible set thereby enhancing the fitting of the ANN-based statistical metamodel.

4.1.4 Organization of the chapter

The chapter is organized as follows. Section 4.2 briefly defines the control parameters and the ACM for

calculating the acoustic impedance, which is to be used for constructing the ACM dataset (small size).

Section 4.3 is dedicated to the construction of PLoM-GKDE-based statistical metamodel. Section 4.4 is

devoted to the construction of ANN-based statistical metamodel. Section 4.5 deals with the problem of

missing data presents the solution for it. It also shows the comparison of the two statistical metamodels.

4.2 Defining the liner system and ACM dataset

We consider again the perforated liner system whose scheme is shown in Fig. 2.1. The domain decompo-

sition used is shown in Fig. 2.2. The parameters used to control the liner system are POA, Mach number

(M ), perforated plate thickness (t), hole diameter (d) and frequency (ω). Then for nw = 5, we define the

Rnw-valued control parameters as w = (w1, . . . , w5), in which w1 is POA, w2 is Mach number M , w3 is

thickness t, w4 is diameter d and w5 is frequency ω. The reduced impedance is denoted as w 7→ z acm(w)

where z acm(w) = r acm(w) + ι v acm(w) that depends only on the control parameters w, and in which

ι =
√
−1, r acm(w) is the resistance, and v acm(w) is the reactance. It should be noted that impedance is not

written as z acm(ω; w) but as z acm(w) because w is not the vector of design parameters (as in Chapters 2

and 3) but it is the vector of control parameters, for which the frequency ω is a component. The compu-

tational domain is centered around the resonator, within which the Navier-Stokes equations are solved.

The computational model consists of 278 514 degrees of freedom. The ACM computes the resistance

r acm(w) and the reactance v acm(w) by solving the Navier-Stokes equations using the numerical method

presented in [8] for w = (w1, w2, w3, w4, w5) ∈ [0.02, 0.05]×[0, 0.5]×[0.5, 1]×[0.3, 0.8]×[1000, 4000].

Therefore, the values of w belongs to the finite set

Cw =
{

wj , j = 1, . . . , Nd

}
⊂ Sw, wj ∈ Rnw , (4.1)
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where nd = 343 and wj represents the points for which the ACM simulations were performed. The

points in set Cw can be considered as realizations of the random variable W and that Cw belongs to the

domain Sw ∈ Rnw , which can be considered as a support of the prior probability distribution of W, and

consequently frequency is modeled as a random variable to take into account missing data for some values

of frequency ω. For j = 1, . . . , nd, the corresponding resistance r acm,j = r acm(wj) ∈ R and reactance

v acm,j = v acm(wj) ∈ R are given, and we define the vector q acm,j = (r acm,j , v acm,j) ∈ Rnq where nq = 2.

Finally, we define the ACM dataset D acm as the set of points {(wj ,q acm,j), j = 1, . . . , nd} ∈ Rnw×nq .

Although, the level of model uncertainties cannot be experimentally identified, these uncertainties

are taken into account by considering Q = (R, V ) as a random vector whose conditional probability

density function, given W = wj , is denoted by q 7→ pQ|W(q |wj), pR|W(r |wj), and pV |W(v |wj). Note

that R and V are now scalar-valued random variables because the frequency is now considered as control

parameter (there is no frequency sampling).

By employing PLoM algorithm, we learn the joint probability density function pQ,W of the random

vectors Q and W, using D acm as the training dataset. We then generate nar additional statistically

independent realizations {(w`
ar,q`ar), ` = 1, . . . , nar} that constitutes the learned dataset Dar.

4.3 Construction of PLoM-GKDE-based statistical metamodel

As explained at the beginning of the chapter, we give again the formulas in order to help with the reading.

Considering the end of Section 4.2, random vector Q has two components, Q1 = R and Q2 = V . The

PLoM-GKDE-based statistical metamodel of the liner system is completely expressed by the conditional

probability distribution PQ|W(dq|w) = pQ|W(dq|w)dq of the random vector Q given W = w for any

w ∈ Sw ⊂ Rnw where pQ|W is the conditional probability density function on Rnq given W. As previously

explained, this conditional probability distribution can be estimated using nonparametric statistics that

require a large dataset of (Q,W) for convergence of its statistical estimate. Therefore, the learned dataset

Dar described in Section 4.2 is used. The connection between the joint probability density function of

(Q,W) and the conditional probability density function of interest is the following

pQ|W(q|w) =
1

pW(w)
pQ,W(q,w) , (4.2)

in which pQ,W is the joint probability density function on Rnq × Rnw of random variables Q and W, and

where pW(w) =
∫
Rnq pQ,W(q,w) dq is the probability density function of W at point w ∈ Sw. We are

interested in deriving conditional statistics from conditional probability distribution PQ|W, such as the

conditional mean values and the conditional confidence regions. The results presented in Section 4.3.1

will be the conditional mathematical expectation,

E{Q|W = w} =

∫
Rnq

q pQ|W(q|w) dq , (4.3)

for any w in Sw. We will also present the conditional confidence region of the random resistance R

and reactance V for given W = w. Let Qi be the component of Q representing either resistance R or
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reactance V . Then the lower bound q−i and the upper bound q+
i of the conditional confidence interval of

Qi given W = w for a probability level pc are defined by

q+
i : Proba{Qi ≤ q+

i |W = w} = pc , (4.4)

q−i : Proba{Q−i ≤ q−i |W = w} = 1− pc , (4.5)

and where the probability in Eqns. (4.4) and (4.5) are calculated with the conditional cumulative distribu-

tion function,

Proba{Qi ≤ q∗i |W = w} =

∫ q∗i

−∞
pQi|W(q∗i |w) dqi , (4.6)

in which the conditional probability density function pQi|W is derived from conditional probability density

function pQ|W by an integration on R. The complete derivation of the conditional expectation and

conditional confidence regions using the learned dataset, given any values w ∈ Sw, and their explicit

algebraic expressions can be found in Appendix B.

4.3.1 Results - PLoM-GKDE-based statistical Metamodel

(a) (POA, M)=(0.02,0.0) (b) (POA, M)=(0.02,0.3) (c) (POA, M)=(0.04,0) (d) (POA, M)=(0.04,0.3)

(e) (POA, M)=(0.02,0.0) (f) (POA, M)=(0.02,0.3) (g) (POA, M)=(0.04,0.0) (h) (POA, M)=(0.04,0.3)

Figure 4.1: Conditional mean values and conditional confidence region with a probability level Pc = 98%
of the impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)) for given w. The parameters
t = 1 and d = 0.4 are fixed for all the graphs. The red curve and the red zone represent the conditional
mean values and conditional confidence regions and the Silverman bandwidth fixed at s = 0.1641 for all
the figures. The black stars represent the points that were present in the training dataset D acm. Horizontal
axis: Frequency in Hz.

The PLoM-GKDE-based statistical metamodel is constructed using nar = 1 000 188 realizations.

In order to assess the capability of this statistical metamodel to deal with missing data (for missing
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frequencies in the ACM dataset), its predictions are compared with the values of acoustic impedance for

the control parameters in the ACM dataset. Figures 4.1 show the graphs of the conditional mean values

and conditional confidence region with a probability level Pc = 98% of the impedance, for the resistance

((a) to (d)) and reactance ((e) to (h)) for given w in the ACM dataset. The control parameters POA and

M vary (as shown in the figure) and parameters t and d are fixed in all the graphs to the values t = 1

and d = 0.4. For all the graphs the Silverman bandwidth is tuned to s = 0.1641. In the initial training

dataset D acm, the points are shown with black stars. It can be seen that the PLoM-GKDE-based statistical

metamodel is able to generalize well, even in zones for which training points are missing, with acceptable

levels of uncertainty, relative to zones where training points are present. We are now interested in knowing

the evolution of acoustic impedance with respect to other control parameters. In Figures 4.2 and 4.3,
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1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(e) d = 0.8

POA = 0.02 POA = 0.03 POA = 0.04 POA = 0.05

Figure 4.2: Conditional mean values of resistance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0 and t = 1 are fixed for all the graphs. The four different red
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.

the conditional mean values of resistance and reactance given w are plotted; Figs. (a) to (e) depict the

variation of hole diameter d between 0.3 and 0.8, in which the horizontal axis is frequency in Hz. In all

the figures, the parameters M and t are fixed to the values 0 and 1, respectively. The four different red

curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. In Figures 4.4

and 4.5, the conditional mean values of resistance and reactance given w are plotted; Figs. (a) to (e) depict

the variation of hole diameter d between 0.3 and 0.8, in which the horizontal axis is frequency in Hz. In

all the figures, the parameters M and t are fixed to the values 0.3 and 1, respectively. The four different

red curves represent different values of POA (between 0.02 and 0.04) as shown in the legend.
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Figure 4.3: Conditional mean values of reactance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0 and t = 1 are fixed for all the graphs. The four different red
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.

4.4 Construction of the ANN-based statistical metamodel

For the construction of the ANN-based statistical metamodel, the learned datasetDar is modified as follows.

Let {q`ar = (log r`ar, v
`
ar), ` = 1, . . . , nar} be the set of the learned realizations of random vector Q =

(logR, V ), whose conditional probability density function given any W = w`
ar is qar 7→ pQ|W(qar|w`

ar).

The new learned dataset is denoted as D∗ar and is composed of {(w`
ar,q`ar), ` = 1, . . . , nar}, and will be

used henceforth for the construction of the ANN-based statistical metamodel.

As explained in Chapter 3, in the context of the construction of an ANN-based statistical metamodel,

we need to introduce an algebraic representation of the conditional probability distribution of Q given W,

depending on hyperparameters. We refer the reader to Chapter 3 for all the details of the construction.

Only the architecture will be presented in the next subsection.

4.4.1 Architecture of the statistical ANN-based metamodel

As done in Chapter 3, rather than constructing two multi-outputs fully connected feedforward net-

works (one for µH|W(w; θ1) and one for ζH|W(w; θ2)), the architecture of the statistical ANN-based

metamodel is chosen as m single output fully connected feedforward networks {µH|W(w; θ1,1)}1, . . . ,
{µH|W(w; θ1,m)}m and d = m(m+ 1)/2 single output fully connected feedforward networks
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(d) d = 0.6
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(e) d = 0.8

POA = 0.02 POA = 0.03 POA = 0.04 POA = 0.05

Figure 4.4: Conditional mean values of resistance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0.3 and t = 1 are fixed for all the graphs. The four different red
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.

{ζH|W(w; θ2,1)}1, . . . , {ζH|W(w; θ2,d)}d, where θ1 is rewritten as θ1 = (θ1,1, . . . ,θ1,m) and θ2 is

rewritten as θ2 = (θ2,1, . . . ,θ2,d). The training is also carried out in parallel on a cluster of 3 Tesla V100

- 32 GB GPUs. For each fully connected feedforward network, there are seven hidden layers, the number

of units is 50, 425, 350, 250, 125, 100, and 75 respectively. This architecture implies a total number of

310 451 parameters (biases and weights). For the first and the seventh layer, Glorot [68] initialization

is used and for the layers in between them, He [69] initialization is used. Rectified linear unit (ReLU)

activation functions is used for each of the seven hidden layers.

4.4.2 Statistical convergence analysis for the learned GKDE-based esti-
mates dataset

A statistical convergence analysis is carried out with respect to number ν (see Chapter 3). Figure 4.6

shows the graph of nar 7→ (nar− ν+ 1)−1
∑nar

j=ν+1 ‖ [CH|W(wj
ar)] ‖2 in which ‖ · ‖ is the Frobenius norm.

The horizontal axis of Fig. 4.6 is the number nar − ν statistically independent realizations used in order to

construct the GKDE-based estimates of conditional covariance of H given W = w with ν = 160 000. It

can be shown that convergence is reached for nar − ν = 500 000, that is to say nar = 340 000.
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Figure 4.5: Conditional mean values of reactance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0.3 and t = 1 are fixed for all the graphs. The four different red
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.
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Figure 4.6: Statistical convergence analysis of the GKDE estimator for the conditional covariance matrix
[CH|W(w)] of H given W = w. Graph of nar 7→ (nar − ν + 1)−1

∑nar
j=ν+1 ‖ [CH|W(wj

ar)] ‖2. Horizontal
axis: nar − ν.

4.5 Results and Discussions

Figure 4.7 shows the mean values and confidence region with a probability level Pc = 98% of the

impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)), for M varying between 0.2 and 0.5.
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The parameters are: POA = 0.02, t = 0.5 and d = 0.4, that are fixed for all the graphs. The red curve

and the red zone represent the conditional mean values and conditional confidence regions for given

w, using the PLoM-GDKE-based statistical metamodel for which the Silverman bandwidth is tuned to

s = 0.1641 for all the graphs. The blue curve and the blue zone represent the conditional mean values

and conditional confidence regions for given w, using the ANN-based statistical metamodel. It can be

seen that the ANN-based statistical metamodel does not predict the results given by PLoM-GDKE-based

statistical metamodel. Upon inspection, it was found that the ACM dataset D acm, does not contain any

value of the acoustic impedance at t = 0.5 for POA = 0.02, which in-turn means that the neural networks

are unable to provide accurate predictions in these regions. This is typically a problem induced by an

imbalanced dataset (missing data of control parameters). In order to solve this, it was chosen to regenerate

(a) M = 0.2 (b) M = 0.3 (c) M = 0.4 (d) M = 0.5

(e) M = 0.2 (f) M = 0.3 (g) M = 0.4 (h) M = 0.5

Figure 4.7: Mean values and confidence region with a probability level Pc = 98% of the impedance, for
the resistance ((a) to (d)) and reactance ((e) to (h)). The parameters POA = 0.02, t = 0.5 and d = 0.4
are fixed for all the graphs. The red curve and the red zone represent the conditional mean values and
conditional confidence regions for given w, using the PLoM-GKDE-based statistical metamodel for which
the Silverman bandwidth has been tuned to s = 0.1641 for all the figures. The blue curve and the blue
zone represent the conditional mean values and conditional confidence regions for given w, using the
ANN-based statistical metamodel. Horizontal axis: Frequency in Hz.

dataset D∗H|W.

Random vector W is then modeled as a multivariate random variable, that is uniform on Sw. Since

domain Sw is a product of intervals in R, the components of random vector W are statistically independent.

Let w1, . . .wnar be nar statistically independent realizations of W. The new training dataset D∗H|W is then

made up of new samples (µ1, ζ1), . . . , (µν , ζν) for ν < nar and ν = 160 000, constructed by substituting

wj
ar and w`

ar by wj and w` in Eqns. (3.15) and (3.16). For this new training dataset D∗H|W, Fig. 4.8 shows

the conditional mean values and confidence region for given w with a probability level Pc = 98% of the

acoustic impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)), and for M varying between
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(a) M = 0.2 (b) M = 0.3 (c) M = 0.4 (d) M = 0.5

(e) M = 0.2 (f) M = 0.3 (g) M = 0.4 (h) M = 0.5

Figure 4.8: Mean values and confidence region with a probability level Pc = 98% of the impedance,
for the resistance ((a) to (d)) and reactance ((e) to (h)). The parameters POA = 0.02, t = 0.5 and
d = 0.4 are fixed for all the graphs. The red dashed curve and the red zone represent the conditional
mean values and conditional confidence regions for given w, using the PLoM-GKDE-based statistical
metamodel. The Silverman bandwidth is tuned to s = 0.1641 for all the figures. The blue curve and the
blue zone represent the conditional mean values and conditional confidence regions for given w, using the
ANN-based statistical metamodel. Horizontal axis: Frequency in Hz.

0.2 and 0.5. The parameters POA = 0.02, t = 0.5 and d = 0.4 have been fixed for all the graphs. The

red curve and the red zone represent the conditional mean values and conditional confidence regions

for given w, using the PLoM-GKDE-based statistical metamodel for the Silverman bandwidth tuned to

s = 0.1641 for all the graphs. The blue curve and the blue zone represent the conditional mean values and

conditional confidence regions for given w, using the ANN-based statistical metamodel that was trained

on the regenerated dataset D∗H|W. It can be seen that the choice of a multidimensional uniform distribution

for the control parameters solves the problem.

In order to assess the capability of the ANN-based statistical metamodel to deal with missing data

(for missing values of the control parameters in the ACM dataset), its predictions are compared with the

ACM values of the acoustic impedance for the values of the control parameters that exist in the ACM

dataset. Figure. 4.9 shows the graphs of the conditional mean values and conditional confidence regions

with a probability level Pc = 98% of the acoustic impedance, for the resistance ((a) to (d)) and reactance

((e) to (h)), for given w. For all the graphs, the control parameters POA and M vary as indicated in

Fig. 4.9, t = 1 and d = 0.4 are fixed, and the Silverman bandwidth is tuned to s = 0.1641. In the initial

training dataset D acm, the points are shown with black stars. The red (blue) curve and the red (blue)

zone represent the conditional mean values and conditional confidence regions for given w, using the

PLoM-GKDE-based statistical metamodel (the ANN-based statistical metamodel). Figures 4.10 and

4.11 shows the conditional mean values of resistance and reactance given w: For all the graphs in Figs.(a)
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(a) (POA, M)=(0.02,0.0) (b) (POA, M)=(0.02,0.3) (c) (POA, M)=(0.04,0) (d) (POA, M)=(0.04,0.3)

(e) (POA, M)=(0.02,0.0) (f) (POA, M)=(0.02,0.3) (g) (POA, M)=(0.04,0.0) (h) (POA, M)=(0.04,0.3)

Figure 4.9: Conditional mean values and conditional confidence region with a probability level Pc = 98%
of the impedance, for the resistance ((a) to (d)) and reactance ((e) to (h)) for given w. The parameters
t = 1 and d = 0.4 are fixed for all the graphs. The red curve and the red zone represent the conditional
mean values and conditional confidence regions and the Silverman bandwidth tuned to s = 0.1641 for
all the figures. The blue curve and the blue zone represent the conditional mean values and conditional
confidence regions for given w, using the ANN-based metamodel. The points in the initial training dataset
D acm are shown with black stars. Horizontal axis: Frequency in Hz.

to (e), hole diameter d is between 0.3 and 0.8, M = 0 and t = 1, and the horizontal axis is frequency in

Hz. The four different blue curves represent different values of POA (between 0.02 and 0.04) as shown in

the legend.

Similarly, Figures 4.12 and 4.13 shows the conditional mean values of resistance and reactance

given w, for the same values of the control parameters except for the Mach number that is M = 0.3. It

can be seen that, concerning the conditional mean values given w, there is a good match between the

PLoM-GKDE-based statistical metamodel and the ANN-based statistical metamodel.

4.6 Conclusions and discussions

In this chapter, an ANN-based statistical metamodel has been developed for the case of missing data

points in the small ACM dataset and for which the control parameters are POA, Mach number, plate

thickness, hole diameter and frequency. The PLoM-GKDE-based statistical metamodel is used to mitigate

missing data in the ACM dataset that allows for improved training of the ANN-based statistical metamodel.

Concerning the results obtained, the resistance and reactance behave as expected with respect to the

geometry and flow parameters:

(i) increasing POA yields a reduction of the resistance.
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Figure 4.10: Conditional mean values of resistance given w. The hole diameter d varies from ((a) to
(e)) as shown. The parameters M = 0 and t = 1 are fixed for all the graphs. The four different blue
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.

(ii) increasing the hole diameter yields a reduction of the resistance and an increase of the reactance.

(ii) increasing Mach number yields an increase of the resistance and a slight reduction of the reactance.

The novelty of this chapter lies in the methodology used to deal with a small imbalanced dataset with

missing data and also in extending the statistical metamodel and statistical ANN-based metamodel of

previous chapters to positive Mach.
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Figure 4.11: Conditional mean values of reactance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0 and t = 1 are fixed for all the graphs. The four different blue
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.
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POA = 0.02 POA = 0.03 POA = 0.04 POA = 0.05

Figure 4.12: Conditional mean values of resistance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0.3 and t = 1 are fixed for all the graphs. The four different blue
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.

55



Chapter 4. Statistical metamodel based on neural network for positive Mach numbers with missing data

1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

(a) d = 0.3

1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

(b) d = 0.4

1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

(c) d = 0.5

1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

(d) d = 0.6

1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

(e) d = 0.8

POA = 0.02 POA = 0.03 POA = 0.04 POA = 0.05

Figure 4.13: Conditional mean values of reactance given w. The hole diameter d is varied from ((a) to
(e)) as shown. The parameters M = 0.3 and t = 1 are fixed for all the graphs. The four different blue
curves represent different values of POA (between 0.02 and 0.04) as shown in the legend. Horizontal axis:
Frequency in Hz.
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Chapter 5

Supplementary insights into training
Neural Networks

In this chapter, we give supplementary insights concerning the implementation of the feedforward

networks used in Chapters 3 and 4. It concerns the network architecture, the initialization, and the training

algorithms.

5.1 Network architecture and initialization

The selection of the network architecture was guided by three primary criteria: (1) the size of the training

database, (2) the network initialization, and (3) the convergence with respect to loss minimization while

maximizing accuracy.

Concerning the architecture and in order to circumvent computationally expensive hyperparameter

optimization [49] of the neural networks, a trial-error approach is employed to achieve a satisfactory

architecture, using cross-validation, over a set of randomly chosen architecture.

Concerning the initialization of the neural network, which is important for a good convergence, the

method used consists in examining the probability density function of the output of each hidden layer. A

single forward pass, using a small subset of the training dataset, is done after initialization. The random

seed state and the number of neurons are modified, until the output of the hidden layer satisfies two

conditions: (1) it is no longer saturated at extreme values (i.e., at 0 and 1 due to the use of ReLU activation

function), and (2) the hidden layer is capable of generalizing by drawing values from a non-Gaussian

probability distribution. This step fully incorporates the first two criteria and partially addresses the third

criterion. For a network with four hidden layers, Figs. 5.1a to 5.1d show the probability density estimate

of the output of each hidden layer as a function of the layer number. It shows that the network is not

getting saturated during training (if not, we will not obtain a density, but we would have concentrated

measures close to a Dirac measure).
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Figure 5.1: For a network with four hidden layers, probability density estimate of the output of each
hidden layer as a function of the layer number ((a) to (d)).

5.2 Optimization algorithms for neural network training

For performing the training of neural networks introduced in Chapters 3 and 4, three optimization al-

gorithms for network parameters have been tested. The first two algorithms are first-order optimization

methods: ADAptive Moment estimation (ADAM) and Stochastic Gradient Descent with Momentum

(SGDM). Additionally, a second-order algorithm, the Levenberg-Marquardt algorithm with an approxi-

mated Hessian estimation, has been considered. Initially, ADAM and SGDM were not the priority due to

the large number of networks to be trained (refer to Section 3.4 of Chapter 3), requiring close monitoring

of the training the networks in order to adjust the parameters. On the other hand, the Levenberg-Marquardt

algorithm does not require any supervision but, as a drawback GPU is not used with such an algorithm.

Therefore, a stochastic formulation of the Levenberg-Marquardt algorithm (SLM) is proposed to address

GPU limitations by using minibatches. In theory, the SLM allowed for the curvature information of the

loss function to be considered, thereby reducing training time and eliminating the need for monitoring

network convergence. This is achieved through a blending factor within the SLM, enabling the network

to alternate between classic gradient descent and a Gauss-Newton algorithm. A line search algorithm

automatically updates the network and the SLM parameters, using a local gradient information. Although

in the numerical experiments, the SLM algorithms performed well, when compared with the two first-order

algorithms using dynamic learning rates or learn rate schedulers, they do not offer significant advantages.

The subsequent sections will summarize the development and implementation of the SLM, along with a

brief recap of the other two algorithms, followed by a comparison of their performance.

5.2.1 Stochastic Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm [71, 70], which alternates between Gauss-Newton algorithm

and the gradient-descent method, is an efficient approach for neural network training because second-

order optimization method use the curvature information for adapting the gradients. Unfortunately, this

method requires the estimation of a Hessian matrix, which can be computationally expensive as its

memory complexity evolves with O(n2), and is practically impossible for large databases. An algorithm
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simplification is presented to adapt LM to large database by using a stochastic Levenberg-Marquardt

algorithm, which differs from proposed SLM versions in [73, 72]. Let the loss function to be minimized

be written as

J(θ) =

ν∑
j=1

g(f(wj ;θ), y(wj)) , (5.1)

where f(wj ;θ) is a real-valued hyperparameter corresponding to the output of the network, which is either

hyperparameter {µH|W(wj ;θ)}k or {ζH|W(wj ;θ)}k defined in Section 3.5, where y(wj) corresponds

to the target for given input vector wj , which is either {µj}k or {ζj}k, and where θ is the network

parameters to be optimized for minimizing the loss function. For example, g(u, y) = (y − u)2 define the

usual least-square regression problem. The gradient of the cost function J(θ) is written as

∇θJ(θ) =

ν∑
j=1

g′(f(wj ;θ), y(wj))∇θf(wj ;θ) , (5.2)

where g′ is the partial derivative of (u, y) 7→ g(u, y) with respect to u. The first-order approximation of

θ 7→ g′(f(wj ;θ), y(wj)) at point θ0 is written as,

g′(f(wj ;θ), y(wj)) = g′(f(wj ;θ0), y(wj)) + g′′(f(wj ;θ0), y(wj))∇θf(wj ;θ0)T (θ − θ0) (5.3)

Substituting Eqn. (5.3) into (5.2) yields,

∇θJ(θ) =
ν∑
j=1

g′(f(wj ;θ0), y(wj))∇θf(wj ;θ)

+

ν∑
j=1

g′′(f(wj ;θ0), y(wj))∇θf(wj ;θ)∇θf(wj ;θ0)T (θ − θ0) (5.4)

Using the first-order approximation of θ 7→ f(wj ;θ), the equation∇θJ(θ) = 0 is rewritten as:

θ = θ0 − [H(θ0)]−1d(θ0) , (5.5)

where d(θ0) and [H(θ0)] are defined as:

d(θ0) =

ν∑
j=1

g′(f(wj ;θ0), y(wj))∇θf(wj ;θ0) = ∇θJ(θ0) , (5.6)

[H(θ0)] =
ν∑
j=1

g′′(f(wj ;θ0), y(wj))∇θf(wj ;θ0)∇θf(wj ;θ0)T , (5.7)

in which matrix [H(θ0)] is assumed to be invertible. Matrix [H(θ0)] is an approximation of the Hessian

of J(θ0), which can be written as,

[H(θ0)] = [U(θ0)][G(θ0)][U(θ0)]T , (5.8)
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where, for j, j′ = 1, . . . , ν

[G(θ0)]jj′ = g′′(f(wj ;θ0), y(wj))δjj′ , (5.9)

and

[U(θ0)] = [∇θf(w1;θ0) . . .∇θf(wν ;θ0)] . (5.10)

The iterative scheme θi+1 = θi − [H(θi)]
−1∇θJ(θi) corresponds to a Newton scheme. The iterative

Levenberg-Marquardt scheme is obtained by introducing a blending factor λi as follows

θi+1 = θi − ([H(θi)] + λi[I])−1∇θJ(θi) , λi � 1 , (5.11)

Using the Sherman-Morrison-Woodbury formula for matrix inversion, the approximation of Hessian under

the inversion can be simplified as

([H(θi)] + λi[I])−1 =
1

λi
[I]− 1

λ2
i

[U(θi)][G(θi)]

(
[Iν ] +

1

λi
[U(θi)]

T [U(θi)][G(θi)]

)−1

[U(θi)]
T ,

(5.12)

where [Iν ] is an identity matrix of size ν. Substituting Eqn. (5.12) in (5.11) we obtain

θi+1 = θi −
1

λi
∇θJ(θi)

+
1

λ2
i

[U(θi)][G(θi)]

(
[Iν ] +

1

λi
[U(θi)]

T [U(θi)][G(θi)]

)−1

[U(θi)]
T∇θJ(θi) , (5.13)

which can then be rewritten as:

θi+1 = θi −
1

λi
d(θi) +

1

λ2
i

[U(θi)][G(θi)][V (θi)]
−1[U(θi)]

Td(θi) (5.14)

where d(θi) = ∇θJ(θi) and

[V (θi)] = [Iν ] +
1

λi
[U(θi)]

T [U(θi)][G(θi)] , (5.15)

where [Iν ] is the (ν × ν) identity matrix. Therefore the final update can be written as

θi+1 = θi −
1

λi
∇θJ(θi) +

1

λ2
i

[d4(θi)] , (5.16)

where d1(θi), . . . ,d4(θi) are successively calculated as

d1(θi) = [U(θi)]
T∇θJ(θi) (5.17)

d2(θi) = [V (θi)]
−1d1(θi) (5.18)

d3(θi) = [G(θi)]d2(θi) (5.19)

d4(θi) = [U(θi)]d3(θi) (5.20)
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It should be noted that this algorithm requires the construction and the inversion of (ν × ν) full matrix

[V (θi)]. Such operations require sufficient amount of memory and consequently, due to memory limi-

tations on GPU, such a Levenberg-Marquardt algorithm is usually not implemented on GPU. In order

to circumvent such limitations, a Stochastic Levenberg-Marquardt (SLM) algorithm is implemented

by introducing mbatch minibatches of size Nbatch (Nbatch < ν) such that ν = mbatch × Nbatch, so

that there are mbatch iterations for every epoch. For each minibatch indexed by b = 1, . . . ,mbatch, the

previous developments of the Levenberg-Marquardt is implemented, with the following cost function

Jb(θ) =
∑jb,1

j=jb,0
g(f(wj ;θ), y(wj)), in which jb,0 = (b− 1)Nbatch + 1 and jb,1 = b×Nbatch. We then

use Eqns. (5.11), (5.12), (5.15) and (5.16) to (5.20) with data points wjb,0
ar , . . . ,wjb,1

ar . Consequently, for

each minibatch, the size of matrix [V (θi)] is Nbatch × Nbatch. Each minibatch is initialized with the

parameter θ∗ obtained from the previous minibatch optimization. Such parameters θ∗ are not necessarily

the minimum of Jb−1(θ∗). For each minibatch, the Levenberg-Marquardt iterations are stopped as soon

as the parameter θ is found such that Jb(θ) < Jb(θ
∗). This parameter θ is the θ∗ that is passed onto the

next minibatch. It should be noted that if we have the condition Jb(θ) < Jb−1(θ∗), then we fall into an

infinite loop.

5.2.2 ADAptive Moment estimate algorithm

Training a neural network using ADAM algorithm [67] solves for the network parameter θ update but

with an added momentum vector. It keeps an element-wise moving average of both the parameter gradient

vector ∇θJ(θ) and its element-wise squared value. We introduce

mi+1 = β1mi + (1− β1)∇θJ(θi) (5.21)

{vi+1}k = β2{vi}k + (1− β2){∇J(θi)}2k , (5.22)

where mi is the momentum vector at i-th epoch, β1 = 0.9 is a gradient decay factor, vi is the velocity

vector at i-th epoch and β2 = 0.99 is a square of the gradient decay factor. ADAM updates the network

parameters θi to θi+1 written as

{θi+1}k = {θi}k −
γi{mi}k(√
{vi}k + ε

) , (5.23)

where ε = 1 × 10−8, and a learning rate γi scheduler that adjusts the learning rate over the course of

training as

γi = max
{
γo α

(i−1)/∆, γmin
}
, (5.24)

where γo is the initial learning rate (default value is γo = 0.001), α = 0.95 is the decay factor, ∆ = 5 is

the decay period, and γmin = 1× 10−7 is the minimum leaning rate.
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5.2.3 Stochastic gradient descent with momentum algorithm

The standard gradient descent algorithm iteratively updates the network parameters (weights and biases)

θ to minimize the loss function. It achieves this by taking incremental steps, determined by the negative

gradient of the loss function, in the direction that minimizes the loss. The standard gradient-descent

algorithm processes the entire dataset in each iteration. In contrast, the stochastic gradient-descent

algorithm computes gradients ∇θJ(θ) and updates parameters using a minibatch of the training data in

each iteration. The stochastic gradient-descent algorithm may oscillate along the path of the steepest

descent towards the optimum. One approach to mitigate this oscillation [74] is to incorporate a momentum

term into the parameter update process,

θi+1 = θi − γi∇θJ(θi) + β(θi − θi−1) , (5.25)

where i is the epoch, β = 0.95 is the momentum γi is the learning rate defined by the learn rate scheduler

as,

γi = max
{ γo

1 + α(i− 1)/∆
, γmin

}
, (5.26)

where γo is the initial learning rate (default value is γo = 0.001), α = 0.1 is the decay factor, ∆ = 5 is

the decay period, and γmin = 1× 10−7 is the minimum leaning rate.

5.2.4 Comparison of the optimization algorithms

The convergence of the neural network training is evaluated using loss function minimization given by the

Eqn. (3.18) in Chapter 3 as,

J (θ1, θ2) =
1

2

 ν∑
j=1

‖µj − µH|W(wj
ar; θ1)‖2 +

ν∑
j=1

‖ζj − ζH|W(wj
ar; θ2)‖2

 . (5.27)

Similarly, the accuracy can also be evaluated using,

A(θ1, θ2) =
1

2

1

ν

ν∑
j=1

(
1− ‖µj − µH|W(wj

ar; θ1)‖
)

+
1

ν

ν∑
j=1

(
1− ‖ζj − ζH|W(wj

ar; θ2)‖
) ,

(5.28)

Figure 5.2 shows the comparison of the evolution of the (a) accuracy and (b) loss, over epochs for the

three optimization algorithms. It can be seen that ADAM optimizer is able to attain the best accuracy

and the lowest loss of the three models, followed SLM optimizer and SGDM optimizer respectively. In

Table 5.1, the average time taken per epoch for the three algorithms, is presented, in which the first column

represents the training of the networks for conditional mean vector and the second column represents the

training of the networks for conditional covariance matrix. It can be seen that ADAM optimizer is the

most efficient optimizer and was thus used for the training of the networks.
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Figure 5.2: Comparison of (a) accuracy over epoch and (b) loss over epoch. The blue curve represents
ADAM optimization, the black curve represents SGDM optimization and the red curve represents SLM
optimization.

Mean Covariance
ADAM 25.5 23.19
SGDM 25.05 24.88
SLM 47.31 56.76

Table 5.1: The table shows the average time taken in seconds for one epoch, for each of the optimizer
algorithms. The two columns shown are for the training of mean value and covariance matrix components.
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Conclusion: contributions and novelty

This thesis is devoted to the construction of a statistical metamodel of a parameterized aeroacoustic liner

impedance, that is robust with respect to uncertainties. As a matter of fact, design of acoustic liners must

account for in service variabilities related to performance of the aircraft. For this thesis we have focused

on a liner that is adapted to low-frequency tonal noise.

The first problem that has been addressed is limited availability of data points (small datasets).

High-fidelity computational models used for obtaining frequency-sampled liner acoustic impedance are

computationally expensive, limiting their feasibility for numerous evaluations across design parameters.

Nevertheless, we have used such a computationally expensive high-fidelity model, referred to as aeroa-

coustic computational model (ACM) to generate a small training dataset. We have then made use of a

learning process tool based on Probabilistic Learning on Manifolds (PLoM) to learn the a priori joint

probability distribution function of the data. From the ACM dataset, this approach allows for generating

a large database for the liner acoustic impedance, which are constituted of realizations for the control

parameters as well as the quantity of interest (QoI) that is the frequency-sampled liner impedance. For

the first part of the thesis, the control parameters have been chosen as the POA and SPL with Mach

number being kept at zero, corresponding to the ground configuration. In order to account for uncertainties

induced by the latent parameters (uncontrolled parameters), a probability model has been developed. This

has been done by modeling the QoIs as random variables for which an a priori probability distribution

has been constructed. Although the aeroacoustic simulation has been conducted with a large high-fidelity

computational model, some approximations have been introduced, generating model errors. To account for

these model errors, a probability model has been developed and directly integrated into the training dataset,

which in turn introduce the model errors into the random variables. To calibrate the model errors, we have

used dimensionless experiments available from the open literature. In addition, we have also introduced a

sensitivity parameter to the level of model uncertainties. Despite the fact that only a very small amount

of data was available, we have succeeded in proposing a robust statistical metamodel, based on the use

of a learned dataset and nonparametric conditional statistics, which is novel and whose predictions are

consistent. This statistical metamodel furnishes a confidence region, which gives an information about

the level of uncertainties about the aeroacoustic liner impedance as a function of the frequency and the

control parameters.

A statistical ANN-based metamodel of the frequency-sampled liner acoustic impedance has then been

presented. The construction of this metamodel uses a PCA to construct a statistical reduced representation

of the frequency-sampled vector of the random log-resistance and the random reactance. For fitting
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the statistical ANN-based metamodel, a big training dataset has been generated using PLoM. A prior

conditional probability distribution of the reduced representation, given the control parameters, has then

been constructed and assumed to be Gaussian, yielding a multivariate log-normal distribution for the

resistance and a multivariate Gaussian distribution for the reactance. For the ANN-based metamodels,

each hyperparameter of the conditional probabilistic model has been represented by a fully-connected

feedforward neural network. As the reduced representation has been modeled by a centered and normalized

random vector, some constraints have to be taken into account in the minimization of the negative log-

likelihood when training the parameters (biases and weights) of the neural network. The constrained

problem has been transformed in an unconstrained one, requiring the construction of a second training

dataset to estimate the conditional mean vectors and conditional covariance matrices for which the learned

realizations have been generated using PLoM. We have also presented complementary information about

the training of statistical ANN-based metamodel. For instance, a stochastic formulation of Levenberg-

Marquardt algorithm for neural network training, which is an optimization algorithm making use of

second-order gradient information, has been carried out, and its results have been compared with other

first-order gradient algorithms. This metamodel is intended to serve as an alternative representation

of the statistical metamodel, offering increased versatility and user-friendliness (from an engineering

perspective).

As a last step, we have presented the construction of the statistical metamodel and its ANN-based

representation for positive Mach number. For this step, the control parameters have been chosen as POA,

Mach number, perforated plate thickness, hole diameter, and frequency. The challenges have consisted in

constructing the statistical metamodels for small imbalanced dataset, which is further complicated by the

presence of missing data.

The main novelties of this thesis are as follows.

• We have presented a novel methodology, which is independent of the choice of the ACM (more or

less simplified) and of the choice of experiments used to estimate the level of uncertainties.

• A statistical PLoM-GKDE-based metamodel and a statistical ANN-based metamodel of liner

acoustic impedance have been developed, which can be used as low-computational cost metamodels

to predict the conditional statistical mean value and the conditional confidence region of the random

liner impedance given any value of the control parameters.

• Using the statistical ANN-based metamodel, the gradients of the mean values and the confidence

regions can also easily be derived using classical backpropagation algorithms for very cheap

computational cost, integrating into design optimization of liners.

• Concerning the presented application, the experimental data and the aeroacoustic computation

could be replaced by others.

• Finally, PLoM and nonparametric conditional statistics has been used to mitigate any imbalanced

dataset, which was further complicated by the presence of missing data.
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Appendix A

Summary of the probabilistic learning on
manifolds (PLoM) algorithm and its
parameterization

In this appendix, we summarize the PLoM algorithm in order to facilitate the reading of this thesis. The

following text is a reproduction of the one presented in [75].

The probabilistic learning is a very active domain of research for constructing surrogate models

(see, for instance [79, 77, 76, 78, 37, 36, 23]). Probabilistic learning on manifolds (PLoM) is a tool in

computational statistics, introduced in [21] and which can be viewed as a tool for scientific machine

learning. The PLoM approach has specifically been developed for the small dataset cases [21, 38,

39, 80, 22]. The method avoids the scattering of learned realizations associated with the probability

distribution in order to preserve its concentration in the neighborhood of the random manifold defined by

the parameterized computational model. This method allows for solving unsupervised and supervised

problems under uncertainty for which the training datasets are small. This situation is encountered in

many problems of physics and engineering science with expensive function evaluations. The exploration

of the admissible solution space in these situations is thus hampered by available computational resources.

Several extensions have been proposed to take into account implicit constraints induced by physics,

computational models, and measurements [44, 45, 46], to reduce the stochastic dimension using a

statistical partition approach [23], and to update the prior probability distribution by a target dataset whose

points are, for instance, experimental realizations of the system observations [47]. Consequently, PLoM

constrained by a stochastic computational model and statistical moments or samples and realizations

allows performing probabilistic learning inference and constructing predictive statistical surrogate models

for large parameterized stochastic computational models. This last capability of PLoM can also be

viewed as an alternative method to the Bayesian inference for the high dimension [84, 85, 82, 90,

87, 86, 81, 83, 89, 88] and is a complementary approach to existing methods in machine learning for

sampling distributions on manifolds under constraints (although a Bayesian inference methodology

has also been developed using the probabilistic learning on manifolds for the high dimensions [80]).

PLoM has successfully been adapted to tackle these challenges for several related problems including
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nonconvex optimization under uncertainty [95, 25, 26, 96, 94, 93, 91, 92], fracture paths in random

composites [97], ultrasonic transmission technique in cortical bone microstructures [80], updating digital

twins under uncertainties [98], updating of under observed dynamical system [99], calculation of the Sobol

indices [100], dynamic monitoring [101], and surrogate modeling of structural seismic response [102].

The PLoM approach, starts from a training set Dd made up of a relatively small number Nd of

points. It is assumed that Dd is generated with an underlying stochastic manifold related to a Rn-valued

random variable X = (Q,W), defined on a probability space (Θ, T ,P), in which Q is the quantity of

interest that is a Rnq -random variable, where W is the control parameter that is a Rnw -random variable,

and where n = nq + nw. Another Rnu- valued random variable U defined on (Θ, T ,P) can also be

considered, which is an uncontrolled parameter and/or a noise. Random variable Q is assumed to be

written as Q = f(U,W) in which the measurable mapping f is not explicitly known. The joint probability

distribution PW,U(dw, du) of W and U is assumed to be given. The non-Gaussian probability measure

PX(x) = PQ,W(dq, dw) of X = (Q,W) is concentrated in a region of Rn for which the only available

information is the cloud of the points of training set Dd. The PLoM method makes it possible to generate

the learned set Dar for X whose nMC � Nd points (learned realizations) are generated by the non-Gaussian

probability measure that is estimated using the training set. The concentration of the probability measure

is preserved thanks to the use of a diffusion-maps basis that allows to enrich the available information

from the training set. Using the learned set Dar, PLoM allows for carrying out any conditional statistics

such as w 7→ E{ξ(Q)|W = w} from Cw in Rnξ , in which ξ is a given measurable mapping from Rnq into

Rnξ , that is to say to construct statistical surrogate models (metamodels) in a probabilistic framework.

The training dataset Dd is made up of the Nd independent realizations xjd = (qjd,w
j
d) in Rn = Rnq ×Rnw

for j ∈ {1, . . . , Nd} of random variable X = (Q,W). The PLoM method allows for generating the

learned dataset Dar made up of Nar � Nd learned realizations {x`ar, ` = 1, . . . , Nar} of random vector X.

As soon as the learned dataset has been constructed, the learned realizations for Q and W can be extracted

as (q`ar,w`
ar) = x`ar for ` = 1, . . . , Nar.

(A.1) Reduced representation. The Nd independent realizations {xjd, j = 1, . . . , Nd} are represented by

the matrix [xd] = [x1
d . . . x

Nd
d ] in Mn,Nd . Let [X] = [X1, . . . ,XNd ] be the random matrix with values in

Mn,Nd , whose columns are Nd independent copies of random vector X. Using the PCA of X, random

matrix [X] is written as,

[X] = [x] + [ϕ] [µ]1/2 [H] , (A.1)

in which [H] = [H1, . . . , HNd ] is a Mν,Nd-valued random matrix, where ν ≤ n, and where [µ] is the

(ν × ν) diagonal matrix of the ν positive eigenvalues of the empirical estimate of the covariance matrix of

X. The (n× ν) matrix [ϕ] is made up of the associated eigenvectors such [ϕ]T [ϕ] = [Iν ]. The matrix [x]

in Mn,Nd has identical columns, each one being equal to the empirical estimate x ∈ Rn of the mean value

of random vector X. The columns of [H] are Nd independent copies of a random vector H with values in

Rν . The realization [ηd] = [η1
d . . .η

Nd
d ] ∈Mν,Nd of [H] is computed by [ηd] = [µ]−1/2[ϕ]T ([xd]− [x]).

The value ν is classically calculated in order that the L2- error function ν 7→ errX(ν) defined by

errX(ν) = 1−
∑ν

α=1 µα
E{‖X‖2}

, (A.2)
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be smaller than εPCA. If ν < n, then there is a statistical reduction.

(A.2) Construction of a reduced-order diffusion-maps basis. For preserving the concentration of the learned

realizations in the region in which the points of the training dataset are concentrated at, the PLoM relies on

the diffusion-maps method [103, 104]. This is an algebraic basis of vector space RNd , which is constructed

using the diffusion maps. Let [K] and [b] be the matrices such that, for all i and j in {1, . . . , Nd},
[K]ij = exp{−(4 εDM)−1‖ηid − η

j
d‖

2} and [b]ij = δij bi with bi =
∑Nd

j=1[K]ij , in which εDM > 0 is

a smoothing parameter. The eigenvalues λ1, . . . , λNd and the associated eigenvectors ψ1, . . . ,ψNd of

the right-eigenvalue problem [P]ψα = λαψ
α are such that 1 = λ1 > λ2 ≥ . . . ≥ λNd and are

computed by solving the generalized eigenvalue problem [K]ψα = λα [b]ψα with the normalization

< [b]ψα,ψβ>= δαβ . The eigenvectorψ1 associated with λ1 = 1 is a constant vector. For a given integer

κ ≥ 0, the diffusion-maps basis {g1, . . . , gα, . . . , gNd} is a vector basis of RNd defined by gα = λκαψ
α.

For a given integer m, the reduced-order diffusion-maps basis of order m is defined as the family

{g1, . . . , gm} that is represented by the matrix [gm] = [g1 . . . gm] ∈ MNd,m with gα = (gα1 , . . . , g
α
Nd

)

and [gm]`α = gα` . This basis depends on two parameters, εDM and m, which have to be identified. It is

proven in [22], that the PLoM method does not depend on κ that can therefore be chosen to 0.

We have to find the optimal value mopt ≤ Nd of m and the smallest value εopt > 0 of εDM such that

(see [23])

1 = λ1 > λ2(εopt) ' . . . ' λmopt(εopt)� λmopt+1(εopt) ≥ . . . ≥ λNd(εopt) > 0 , (A.3)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [22]) between

λmopt(εopt) and λmopt+1(εopt). A further in-depth analysis makes it possible to state the following algorithm

to estimate εopt and mopt. Let εDM 7→ Jump(εDM) be the function on ]0,+∞[ defined by

Jump(εDM) = λmopt+1(εDM)/λ2(εDM) . (A.4)

The algorithm is the following:

- set the value of m to mopt = ν + 1;

- identify the smallest possible value εopt of εDM in order that Jump(εopt) ≤ 0.1 and such that Equation (A.3)

be verified.

(A.3) Reduced-order representation of random matrices [H ] and [X ]. The diffusion-maps vectors

g1, . . . , gm ∈ RNd span a subspace of RNd that characterizes, for the optimal values mopt and εopt of m

and εDM, the local geometry structure of dataset {ηjd, j = 1, . . . , Nd}. So the PLoM method introduces

the Mν,Nd-valued random matrix [Hm] = [Zm] [gm]T with m ≤ Nd, corresponding to a data-reduction

representation of random matrix [H], in which [Zm] is a Mν,m-valued random matrix. The MCMC

generator of random matrix [Zm] belongs to the class of Hamiltonian Monte Carlo methods, is explicitly

described in [21], and is mathematically detailed in Theorem 6.3 of [22]. For generating the learned

dataset, the best probability measure of [ Hm] is obtained for m = mopt and using the previously defined

[gmopt ]. For these optimal quantities mopt and [gmopt ], the generator allows for computing nMC realizations

{[z`ar], ` = 1, . . . , nMC} of [Zmopt ] and therefore, for deducing the nMC realizations {[η`ar], ` = 1, . . . , nMC}
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of [Hmopt ]. The reshaping of matrix [η`ar] ∈Mν,Nd allows for obtaining Nar = nMC ×Nd learned realiza-

tions {η`′ar , `
′ = 1, . . . , Nar} of H. These learned realizations allow for estimating converged statistics on

H and then on X, such as pdf, moments, or conditional expectation of the type E{ξ(Q) |W = w} for w
given in Rnw and for any given vector-valued function ξ defined on Rnq .

(A.4) Criterion for quantifying the concentration of the probability measure of random matrix [Hmopt ]. For

m ≤ Nd, the concentration of the probability measure of random matrix [Hm] is defined (see [22]) by

d2
Nd

(m) = E{‖[Hm]− [ηd]‖2}/‖[ηd]‖2 . (A.5)

Let Mopt = {mopt,mopt + 1, . . . , Nd} in which mopt is the optimal value of m previously defined.

Theorem 7.8 of [22] shows that minm∈Mopt d
2
Nd

(m) ≤ 1 + mopt/(Nd − 1) < d2
Nd

(Nd), which means

that the PLoM method, for m = mopt and [gmopt ] is a better method than the usual one corresponding

to d2
Nd

(Nd) = 1 +Nd/(Nd − 1) ' 2. Using the nMC realizations {[η`ar], ` = 1, . . . , nMC} of [Hmopt ], we

have the estimate d2
Nd

(mopt) ' (1/nMC)
∑nMC

`=1{‖[η`ar]− [ηd]‖2}/‖[ηd]‖2.

(A.5) Generation of learned realizations {η`′ar , `
′ = 1, . . . , Nar} of random vector H. The MCMC generator

is detailed in [21]. Let {([Z(t)], [Y(t)]), t ∈ R+} be the unique asymptotic (for t → +∞) stationary

diffusion stochastic process with values in Mν,mopt × Mν,mopt , of the following reduced-order ISDE

(stochastic nonlinear second-order dissipative Hamiltonian dynamic system), for t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dt− 1

2
f0 [Y(t)] dt

+
√
f0 [dWwien(t)] ,

with [Z(0)] = [ηd] [a] and [Y(0)] = [N ] [a], in which

[a] = [gmopt ] ([gmopt ]
T [gmopt ])

−1 ∈MNd,mopt .

(1) [L([Z(t)])] = [L([Z(t)] [gmopt ]
T )] [a] is a random matrix with values in Mν,mopt . For all [u] =

[u1 . . . uNd ] in Mν,Nd with uj = (uj1, . . . , u
j
ν) in Rν , the matrix [L([u])] in Mν,Nd is defined, for all

k = 1, . . . , ν and for all j = 1, . . . , Nd, by

[L([u])]kj =
1

p(uj)
{∇uj p(uj)}k , (A.6)

p(uj) =
1

Nd

Nd∑
j′=1

exp{− 1

2ŝ 2
ν

‖ ŝν
sν
ηj
′ − uj‖2} ,

∇uj p(uj)=
1

ŝ 2
ν Nd

Nd∑
j′=1

(
ŝν
sν
ηj
′− uj) exp{− 1

2ŝ 2
ν

‖ ŝν
sν
ηj
′− uj‖2} ,
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in which ŝν is the modified Silverman bandwidth sν , which has been introduced in [105],

ŝν =
sν√

s2
ν + Nd−1

Nd

, sν =

{
4

Nd(2 + ν)

}1/(ν+4)

.

(2) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+} is the Mν,Nd-valued normalized Wiener

process.

(3) [N ] is the Mν,Nd-valued normalized Gaussian random matrix that is independent of process [Wwien].

(4) The free parameter f0, such that 0 < f0 < 4/ŝν , allows the dissipation term of the nonlinear second-

order dynamic system (dissipative Hamiltonian system) to be controlled in order to kill the transient part

induced by the initial conditions. A common value is f0 = 4 (note that ŝν < 1).

(5) We then have [Zmopt ] = limt→+∞ [Z(t)] in probability distribution. The Störmer-Verlet scheme is

used for solving the reduced-order ISDE, which allows for generating the learned realizations, [z1
ar], . . . ,

[znMC
ar ], and then, generating the learned realizations [η1

ar], . . . , [ηnMC
ar ] such that [η`ar] = [z`ar] [gmopt ]

T .

(6) The learned realizations {x`′ar , `
′ = 1, . . . , Nar} of random vector X are then calculated (see Eq. (A.1))

by x`′ar = x + [ϕ] [µ]1/2 η`
′

ar .

(A.6) Constraints on the second-order moments of the components of H. In general, the mean value of H
estimated using the Nar learned realizations {η`′ar , `

′ = 1, . . . , Nar}, is sufficiently close to zero. Likewise,

the estimate of the covariance matrix of H, which must be the identity matrix, is sufficiently close to a

diagonal matrix. However, sometimes the diagonal entries of the estimated covariance matrix can be

lower than 1. Normalization can be recovered by imposing constraints

{E{(Hk)
2} = 1, k = 1, . . . , ν} ,

in the algorithm presented in paragraph (v). For that, we use the method and the iterative algorithm

presented in [23] (that is based on Sections 5.5 and 5.6 of [44]). The constraints are imposed by using the

Kullback-Leibler minimum cross-entropy principle. The resulting optimization problem is formulated

using a Lagrange multiplier v = (v1, . . . , vν) associated with the constraints. The optimal solution of

the Lagrange multiplier is computed using an efficient iterative algorithm. At each iteration, the MCMC

generator detailed in paragraph A.5 is used. The constraints are rewritten as

E{h(H)} = b ,

in which the function h = (h1, . . . , hν) and the vector b = (b1, . . . , bν) are such that hk(H) = (Hk)
2

and bk = 1 for k in {1, . . . , ν}. To take into account the constraints in the algorithm of paragraph A.5,

Eq. (A.6) is replaced by the following one,

[Lλ([u])]kj =
1

p(uj)
{∇uj p(uj)}k − 2λku

j
k .
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The iteration algorithm for computing λi+1 as a function of λi is the following,

λi+1 = λi − αi[Γ′′(λi)]−1 Γ′(λi) , i ≥ 0 ,

λ0 = 0ν ,

(A.7)

in which Γ′(λi) = b− E{h(Hλi)} and [Γ′′(λi)] = [cov{h(Hλi)}] (the covariance matrix), and where

αi is a relaxation function (less than 1) that is introduced for controlling the convergence as a function of

iteration number i. For given i2 ≥ 2, for given β1 and β2 such that 0 < β1 < β2 ≤ 1, αi can be defined

by:

- for i ≤ i2, αi = β1 + (β2 − β1)(i− 1)/(i2 − 1);

- for i > i2, αi = β2.

The convergence of the iteration algorithm is controlled by the error function i 7→ err(i) defined by

err(i) = ‖b− E{h(Hλi)}‖/‖b‖ . (A.8)

At each iteration i, E{h(Hλi)} and [cov{h(Hλi)}] are estimated by using the Nar learned realizations of

Hmopt(λ
i) obtained by reshaping the learned realizations.

71



Appendix B

Algebraic expressions of the conditional
statistics

The following algebraic expressions of the conditional statistics are those presented in [95, 96]. The

conditional expectation is defined by

E{Q|W = wo} =

∫
Rnq

q pQ|W(q|wo) dq , (B.1)

while the conditional cumulative distribution function is defined by,

Proba{Qi ≤ q∗i |W = wo} =

∫ q∗i

−∞
pQi|W(q∗i |wo) dqi , (B.2)

which allows to estimate the confidence region.

Let Q̃ = (Q̃1, . . . , Q̃nq) and W̃ = (Q̃1, . . . , W̃nw) be the normalized random vector whose compo-

nents are defined by

Q̃i = (Qi − qi)/σQi , W̃k = (Wk − wk)/σWk
, (B.3)

in which q
i
, wk, and σQi , σWk

are the mean values and the standard deviations of the random variables

Qi and Wk, which are estimated with the empirical statistical estimators using the learned realizations

{(q`ar,w`
ar), ` = 1, . . . , Nar}. The Gaussian KDE estimation of the joint probability distribution of Q̃ and

W̃ is written as,

pQ̃,W̃(q̃, w̃) =
1

Nar

Nar∑
`=1

1

(
√

2πs)nq
exp(− 1

2s2
‖q̃− q̃`ar‖2)

1

(
√

2πs)nw
exp(− 1

2s2
‖w̃− w̃`

ar‖2) , (B.4)

in which s is the Silverman bandwidth given by

s =

{
4

Nar(2 + n)

}1/(n+4)

, n = nq + nw . (B.5)
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The derived algebraic expression of conditional mathematical expectation of componentQi given W = wo

is written as

E{Qi|W = wo} = q
i
+ σQi E{Q̃i|W̃ = w̃o} , w̃o,k = (wo,k − wk)/σWk

, (B.6)

E{Q̃i|W̃ = w̃o} =

∑Nar
`=1 q̃

`
ar,i × exp(− 1

2s2
‖w̃o − w̃`

ar‖2)∑Nar
`=1 exp(− 1

2s2
‖w̃o − w̃`

ar‖2)
. (B.7)

The conditional cdf FQi|W(q∗i |wo) = Proba{Qi ≤ q∗i |W = wo} is written as,

FQi|W(q∗i |wo) =

∑Nar
`=1 F̃Q`i

(q̃∗i )× exp(− 1
2s2
‖w̃o − w̃`‖2)∑Nar

`=1 exp(− 1
2s2
‖w̃o − w̃`‖2)

, q̃∗i = (q∗i − qi)/σQi , (B.8)

FQi|W(q∗i |wo) =
1

2
+

1

2
erf(

1√
2 s

(q̃∗i − q̃`ar,i)) , erf(y) =
2√
π

∫ y

0
e−t

2
dt . (B.9)
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[101] Christian Soize and André Orcesi. “Machine learning for detecting structural changes from

dynamic monitoring using the probabilistic learning on manifolds”. In: Structure and Infrastruc-

ture Engineering Journal 17.10 (2021), pp. 1418–1430. DOI: 10.1080/15732479.2020.

1811991.

[102] Kuanshi Zhong, Javier G Navarro, Sanjay Govindjee, and Gregory G Deierlein. “Surrogate mod-

eling of structural seismic response using Probabilistic Learning on Manifolds”. In: Earthquake

Engineering and Structural Dynamics Online (2023), pp. 1–22.

81

https://doi.org/10.1016/j.ijnonlinmec.2022.104023
https://doi.org/10.2514/1.J057797
https://doi.org/10.1002/nme.5632
https://doi.org/10.1016/j.jcp.2019.108930
https://doi.org/10.1016/j.mechrescom.2019.103443
https://doi.org/10.1016/j.mechrescom.2019.103443
https://doi.org/10.1002/nme.6430
https://doi.org/10.1007/s00466-023-02301-2
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020032674
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020032674
https://doi.org/10.1080/15732479.2020.1811991
https://doi.org/10.1080/15732479.2020.1811991


References

[103] R.R. Coifman and S. Lafon. “Diffusion maps”. In: Applied and Computational Harmonic Analysis

21.1 (2006), pp. 5–30. DOI: 10.1016/j.acha.2006.04.006.

[104] Stephane Lafon and Ann B Lee. “Diffusion maps and coarse-graining: A unified framework for

dimensionality reduction, graph partitioning, and data set parameterization”. In: IEEE transactions

on pattern analysis and machine intelligence 28.9 (2006), pp. 1393–1403. DOI: 10.1109/

TPAMI.2006.184.

[105] Christian Soize. “Polynomial chaos expansion of a multimodal random vector”. In: SIAM-ASA

Journal on Uncertainty Quantification 3.1 (2015), pp. 34–60. DOI: 10.1137/140968495.

[106] Hamza Boukraichi, Nissrine Akkari, Fabien Casenave, and David Ryckelynck. “A priori com-

pression of convolutional neural networks for wave simulators”. In: Engineering Applications of

Artificial Intelligence 126 (2023), p. 106973. DOI: 10.1016/j.engappai.2023.106973.

[107] A.W. Guess. “Calculation of perforated plate liner parameters from specified acoustic resistance

and reactance”. In: Journal of Sound and Vibration 40.1 (1975), pp. 119–137. DOI: 10.1016/

S0022-460X(75)80234-3.

[108] Gual J Zhong K and Govindjee S. PLoM python package. Version v1.0. 2021. URL: https:

//github.com/sanjayg0/PLoM.

[109] Christian Soize, Roger Ghanem, Cosmin Safta, Xun Huan, Zachary P. Vane, Joseph C. Oefelein,

Guilhem Lacaze, and Habib N. Najm. “Enhancing model predictability for a scramjet using

probabilistic learning on manifolds”. In: AIAA Journal 57.1 (2019), pp. 365–378. DOI: 10.

2514/1.J057069.

82

https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1109/TPAMI.2006.184
https://doi.org/10.1109/TPAMI.2006.184
https://doi.org/10.1137/140968495
https://doi.org/10.1016/j.engappai.2023.106973
https://doi.org/10.1016/S0022-460X(75)80234-3
https://doi.org/10.1016/S0022-460X(75)80234-3
https://github.com/sanjayg0/PLoM
https://github.com/sanjayg0/PLoM
https://doi.org/10.2514/1.J057069
https://doi.org/10.2514/1.J057069

	General Introduction
	Motivations and goals
	State of the art
	Objectives of the thesis
	Organization of the thesis

	Statistical metamodel based on a PLoM-GKDE formulation for Mach numbers fixed at zero
	Introduction
	Objectives
	Why POA is chosen as a design parameter
	Sources of uncertainties and variabilities, and their consideration in the development of the metamodel
	Proposed methodology
	Organization of the chapter

	Defining the liner system and its aeroacoustic computational model
	Definition of the liner system
	Computation of the impedance using an aeroacoustic computational model

	Experimental dimensional data and comparison with ACM simulations
	Experimental dimensional data
	Comparison of the ACM predictions with experiments

	Probability model of model uncertainties and training dataset
	Probability model of model uncertainties
	Training dataset including model uncertainties

	Construction of the statistical metamodel of the parameterized random liner impedance
	Random manifold associated with the parameterized random liner impedance
	Statistical metamodel
	Generation of learned realizations to estimate the statistical metamodel

	Results and discussion
	Predictions of the statistical metamodel for which the control parameter belongs to the training dataset
	Predictions of the statistical metamodel for which the control parameter does not belong to the training dataset
	Discussion

	Conclusion

	Statistical metamodel based on an ANN formulation for Mach number fixed at zero
	Introduction
	Objectives
	Proposed methodology
	Organization of the chapter

	Control parameters and ACM dataset
	Prior probabilistic model of the frequency-sampled impedance vector
	PCA-based statistical reduction H of Q
	Prior conditional probabilistic density function of H given W
	Statistically independent realizations of R and V given W

	ANN-based statistical metamodel
	Fully connected feedforward neural network
	ANN for regression with the learned dataset D*ar
	ANN for regression with a learned GKDE-based estimates dataset

	Numerical applications
	Architecture of the ANN
	Statistical convergence analysis for the learned GKDE-based estimates dataset
	Conditional covariance matrices of R and V given W
	Frequency-sampled acoustic impedance using the ANN-based statistical metamodel
	Comparison of confidence regions estimated by the PLoM-GKDE-based statistical metamodel and the ANN-based statistical metamodel

	Conclusions and perspectives

	Statistical metamodel based on neural network for positive Mach numbers with missing data
	Introduction
	Framework for positive Mach number with missing data
	Objectives
	Proposed methodology
	Organization of the chapter

	Defining the liner system and ACM dataset
	Construction of PLoM-GKDE-based statistical metamodel
	Results - PLoM-GKDE-based statistical Metamodel

	Construction of the ANN-based statistical metamodel
	Architecture of the statistical ANN-based metamodel
	Statistical convergence analysis for the learned GKDE-based estimates dataset

	Results and Discussions
	Conclusions and discussions

	Supplementary insights into training Neural Networks
	Network architecture and initialization
	Optimization algorithms for neural network training
	Stochastic Levenberg-Marquardt algorithm
	ADAptive Moment estimate algorithm
	Stochastic gradient descent with momentum algorithm
	Comparison of the optimization algorithms


	Summary of the probabilistic learning on manifolds (PLoM) algorithm and its parameterization
	Algebraic expressions of the conditional statistics
	References

