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Résumé 
Un défi majeur dans l'application de l'apprentissage profond à l'histopathologie réside dans la variation des 
colorations, à la fois inter et intra-coloration. Les modèles d'apprentissage profond entraînés sur une seule 
coloration (ou domaine) échouent souvent sur d'autres, même pour la même tâche (par exemple, la 
segmentation des glomérules rénaux). L'annotation de chaque coloration est coûteuse et chronophage, ce qui 
pousse les chercheurs à explorer des méthodes de transfert de coloration basées sur l'adaptation de domaine. 
Celles-ci visent à réaliser une segmentation multi-coloration en utilisant des annotations d'une seule coloration, 
mais sont limitées par l'introduction d'un décalage de domaine, réduisant ainsi les performances. La détection 
et la quantification de ce décalage sont essentielles. Cette thèse se concentre sur des méthodes non 
supervisées pour développer une métrique de détection du décalage et propose une approche de transfert de 
coloration pour le minimiser. Bien que ces algorithmes réduisent le besoin d'annotations, ils peuvent être 
limités pour certains tissus. Cette thèse propose donc une amélioration via l'auto-supervision. Bien que cette 
thèse se soit concentrée sur l'application de la segmentation des glomérules rénaux, les méthodes proposées 
sont conçues pour être applicables à d'autres tâches et domaines en histopathologie, y compris l'imagerie 
médicale et la vision par ordinateur. 

 

Résumé en anglais 
A key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-
stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., 
kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers 
to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation 
using labels from only one stain but are limited by the introduction of domain shift, reducing performance. 
Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to 
develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While 
multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking 
source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance 
on labelled data using self-supervision. While this thesis focused on the application of kidney glomeruli 
segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, 
including medical imaging and computer vision. 
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Abstract

The integration of artificial intelligence, particularly deep learning, with medical
imaging holds tremendous promise and potential. Automated computer-aided di-
agnostic systems, powered by deep learning, have emerged as one of the most im-
portant research area in the medical imaging domain. In such an environment,
digital histopathology is not an exception. However, a principle challenge in apply-
ing deep learning to histopathology is inter- and intra-stain variations arising from
different stainings and protocols. These variations lead to a significant drop in the
performance of a deep learning model trained for one stain (aka domain in machine
learning) when applied to other stains (even for the same task). Acquiring labels
for each stain is a time-consuming and costly process.

To overcome these challenges, researchers have turned their focus towards Cy-
cleGAN, an unpaired image-to-image translation framework, based stain transfer
methods. These are used to train multi-stain segmentation models using labelled
data for a single (source) stain while eliminating the need of labels in the target
stains. However, in accordance with the recent advances in CycleGAN, these meth-
ods face limitations, notably a drop in performance because of the introduction of
additional noise, resulting in domain shift, during stain transfer. A crucial aspect
of addressing this domain shift is the ability to detect it. Hence a key contribu-
tion of this thesis lies in exploring unsupervised approaches to propose a method
that can serve as a metric for detecting and quantifying domain shift in stain trans-
fer. Furthermore, this thesis delves into the exploration of recent advances in the
CycleGAN based unpaired image-to-image translation framework to introduce an
approach focused on minimising the domain shift in stain transfer.

While existing stain transfer based multi-stain segmentation algorithms have
demonstrated their effectiveness in eliminating the need for labels in target stains,
their applicability may prove impractical for certain tissue or tumour types that lack
substantial amounts of labelled data in the source stain. Nevertheless, histopathol-
ogy can offer a large amount of unlabelled data and so to overcome these short-
comings, this thesis proposes to use this unlabelled data to reduce the dependence
on labelled samples. It therefore introduces a novel approach that integrates visual
representation learning methods, particularly self-supervised learning, to enhance
multi-stain segmentation algorithms by reducing their reliance on labelled data for
the source stain.

In this thesis, we primarily focused on the use case of kidney glomeruli segmen-
tation across multiple stains, but the overall objective is to propose general novelties
that can be applied across multiple other related histopathology tasks and domains,
including computer vision and medical imaging.
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Chapter 1

Introduction

Artificial intelligence (AI) has rapidly evolved over the past six decades, drawing
insights from various scientific domains such as mathematical logic, statistics, com-
putational neurobiology, and computer science. The overall objective has been to
replicate the intelligence of humans in machines [ 1 ]. The early developments of
artificial intelligence were largely centred in the field of computing, facilitating com-
puters to handle increasingly complex tasks. Despite this, automation falls short
of true human intelligence, which makes the term “artificial intelligence” open to
criticism.

The transformative breakthrough in artificial intelligence emerged around 2010,
marked by the advent of revolutionary deep learning (DL) algorithms. This break-
through can be attributed to several factors [ 1 ,  2 ]: (a) significant improvements
in computational power effectively reduced the costs associated with training AI
models; (b) increased accessibility to massive amounts of labelled datasets has em-
powered AI systems to demonstrate capabilities that were once considered unimag-
inable. In today’s world, artificial intelligence has seamlessly integrated itself into
the fabric of our daily lives. From the everyday convenience of personal assistants
in our smartphones to the remarkable functionality of self-driving cars, AI has be-
come an essential and integral part of our daily routines. Among the multitude of
applications, the medical imaging domain emerges as a particularly sensitive and
compelling area of concentration, attracting significant attention from researchers
and clinical practitioners in recent times.

1.1 Motivation

The integration of artificial intelligence with medical imaging holds tremendous
promise and potential. Automated computer-aided diagnostic (CAD) systems, pow-
ered by deep learning, have emerged as one of the most important research area in
the medical imaging domain. These CAD systems empower clinicians by offering
novel perspectives and capabilities in disease diagnosis, prognosis, and treatment
planning. By thoroughly analysing and interpreting the patient’s condition, these
systems offer a level of precision and accuracy [ 3 ]. This revolution has opened the
door for remarkable artificial intelligence applications in the medical domain [ 4 ]. Nu-
merous everyday clinical tasks hold the potential to be fully automated, triggering
a staggering amount of research in this field [ 5 – 7 ].

In such an environment, digital histopathology is not an exception. Deep learn-
ing algorithms have demonstrated exceptional performance in various histopatholog-
ical tasks such as cancer detection, disease classification, and transplant assessment
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[ 8 ]. In a controlled experimental setting, these solutions have attained levels of per-
formance comparable to those of experienced pathologists [ 7 ], raising both hope and
concern about the potential replacement of many expert jobs by machines. However,
it is crucial to emphasise that these developments aim to promote the concept of
“AI-assisted human experts” rather than viewing AI as a replacement. Furthermore,
the complexity of medical tasks strongly suggests that replacing expert knowledge
and experience with a machine is highly challenging [ 9 ,  10 ]. Moreover, the medical
domain raises concerns about the responsibility for diagnoses, patient privacy, and
the potential for bias or misinterpretations in AI generated results [ 11 ,  12 ]. Con-
sequently, while AI has made significant progress in medical applications, the path
towards fully automated medical expertise remains long and complex.

In recent years, the significant growth in publications within the field of artifi-
cial intelligence, particularly deep learning methods in digital histopathology, has
been remarkable. This surge reflects an increasing interest and anticipation of the
widespread adoption of these CAD systems. However, it is crucial to acknowledge
the limitations inherent in these developments and to promote awareness about
what is reasonable to expect from this technology and its progress. In this the-
sis, we highlight the common challenges associated with digital histopathology and
deep learning based solutions. One of the biggest hurdles in developing effective
deep learning solutions stems from the significant variance introduced by the stain-
ing process (a detailed description of the staining process and potential sources
of variations inherent to this process will be presented in Section  1.2.1 ). Another
notable challenge is the availability of large, high-quality labelled data, as will be
outlined in Section  1.2.2 .

This thesis seeks to investigate existing state-of-art deep learning methods specif-
ically designed to overcome the challenges posed by staining variations. Additionally,
it critically examines the shortcomings of these methods and suggests novel mod-
ifications in response to recent advances in deep learning to enhance their overall
efficacy. Although the scarcity of high-quality labelled data in digital histopathology
poses a significant challenge for integrating cutting-edge deep learning algorithms,
digital histopathology boasts an abundance of unlabelled datasets. This abundance
creates a significant opportunity for the exploration and development of deep rep-
resentation learning methods, currently the state-of-art. These methods can be
effectively adapted in scenarios where labelled data is limited. Therefore, another
objective of this thesis is to investigate recent advances in deep visual representation
learning methods and assess their efficacy in medical imaging domain, particularly
in digital histopathology.

1.2 Digital Histopathology

Histology (originates from Greek, histos — tissue + logos — science) is the branch
of biology which studies the microscopic structures of healthy animal or human tis-
sues. Histopathology, a subdiscipline of histology, involves the microscopic study
of changes that appear in the tissue as a consequence of disease (pathology) [ 13 ].
Histopathological examination stands as the gold standard method for diagnosing
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Figure 1.1: Illustration of the routine histological examination process 
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[ 17 ].

a wide range of diseases. The whole process starts with the extraction of a tissue
sample from the body, usually through a biopsy or surgery. To facilitate microscopic
analysis, the extracted tissue undergoes a series of preparatory steps: fixation, pro-
cessing, embedding, sectioning and staining [ 14 ,  15 ], followed by scanning, which
produces a digital version of the slide, thereby giving the name “digital histopathol-
ogy 

1
 ”. The primary objective of these steps are to preserve the tissue’s structure

as much as possible, ensuring that the microscopic analysis closely mirrors the ac-
tual tissue in the body [ 16 ]. The procedural aspects of these preparatory steps are
detailed as follows:

Tissue preparation: As depicted in Figure  1.1 , the extracted tissue is promptly
fixed using fixatives, such as formalin, to prevent decay. Following fixation, the
tissue undergoes processing (such as dehydration, clearing and infiltration), and
ends with embedding (usually with paraffin). At this step, the hardened block
containing the tissue and surrounding embedding medium is placed in a microtome,
an instrument designed for sectioning [ 16 ]. The microtome extracts very thin tissue
sections (3− 10µm) which are then placed on a glass slide. Once tissue sections are
obtained, they appear colourless providing very little detail of tissue structure.

Histological staining: In order to make the tissue components visible, the stain-
ing process is performed. Staining is a crucial step in histopathological examination
as it visualises the chemical nature of the tissue and cell structures allowing for
their detailed microscopic analysis. Further details about the staining process can
be found in Section  1.2.1 .

Scanning: The stained glass slides, being physical objects, coupled with the risk
of scratches, cracks and colour fading due to prolonged exposure to light and en-
vironmental factors, necessitates careful preservation and storage to ensure their
longevity. To address these challenges, modern histopathological procedures in-
creasingly employ whole slide scanners, which digitally capture the entire glass slide.
This process, known as whole slide imaging (WSI), creates a digital representation
of the glass slide at the same level-of-detail as viewed through a light microscope

1In the rest of the thesis, the terms digital histopathology and histopathology are used equiva-
lently.

2Image of the scanner taken from  https://tmalab.jhmi.edu/scanning.html .

https://tmalab.jhmi.edu/scanning.html
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[ 18 ]. For instance, a WSI, where each pixel corresponds to a square of 0.5µm
(0.25µm) on the slide, is considered to offer an equivalent level-of-detail as observed
through a ×20 (×40) objective on a high-quality microscope [ 18 ]. This digitisation
has revolutionised the pathology practice by allowing remote examinations and col-
laborative analysis. Clinicians can now analyse slides using a personal computer
and specialised image manipulation software, regardless of their physical location.
Additionally, multiple pathologists, even those dispersed across different hospitals,
cities, or even countries, can collaborate simultaneously on the analysis of a single
WSI.

1.2.1 Staining

Staining is a chemical process crucial for introducing the contrast in tissue sections,
offering experts a detailed microscopic analysis of specific tissue components and
cells. The basic principle underlying the staining of tissue involves the formation
of chemical compounds (e.g. acidic or basic) between the dye and the tissue. This
targeted binding allows different stains to highlight different tissue components, al-
lowing pathologists to identify and detect specific patterns, such as the identification
and detection of cancer cells and their distribution. The most commonly used stain-
ings in histopathological examination are histochemical (HC) stainings, these are
used to highlight general tissue structures. These use chemicals that interact with
various tissue components, making them visible from different perspectives. Like-
wise, many other stain types have been developed to highlight specific tissue com-
ponents, such as, immunohistochemical (IHC) stainings, which are used to gather
more specific information, such as the expression of a particular protein (antigen).
The basic working principle of these stainings involves antigen-antibody binding.
To achieve this, a solution containing a special antibody is applied to the tissue, so
that the antibody binds to the cells with the targeted antigen [ 13 ]. In the following,
a brief description of the stainings used in this thesis is given:

Hematoxylin and Eosin (H&E): is a classical histochemical staining with a rich
history of clinical usage [ 19 ]. It serves to highlight various tissue components, fa-
cilitating the analysis of a wide range of organs and diseases. It contains two key
components: (a) hematoxylin, a basic dye which binds with acidic components such
as cell nuclei and eosin; (b) an acidic dye which binds with basic components such
as cell stroma or cytoplasm. This pairing results in a striking contrast between the
nuclei, which appear blue, and the cytoplasm, which turns pink in the image. Thus,
clear nuclear contrast can be achieved to reveal the distribution of cells [ 20 ]. This
staining is widely recognised as the gold standard for diagnosing various types of
cancer, and is routinely conducted in several histopathological examinations.

Jones Hematoxylin and Eosin (Jones H&E): is a histochemical silver stain-
ing that is extensively used in renal (kidney) pathology to visualise the basement
membranes in black, nuclei in blue, and the background in pink. This staining
method is particularly useful for identifying abnormalities in the glomerular base-
ment membrane.
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Periodic Acid Schiff (PAS) CD34

Figure 1.2: An example of two consecutive WSI samples of a kidney nephrectomy
stained with different stains. Each stain highlights different information about the
tissue structure but some common structures, such as glomeruli, are visible in all
stainings (some of them are marked in green circles). Source: [ 23 ].

Periodic Acid-Schiff Reaction (PAS): is a histochemical staining used for de-
tecting carbohydrate-rich structures in the tissue. This method involves exposing a
tissue section to periodic acid oxidation and subsequently staining it with Schiff’s
reagent, as outlined in [ 21 ]. It visualises carbohydrate-containing cell components
in magenta (shades of purplish pink) [ 16 ]. PAS is most commonly used to highlight
cells filled with glycogen deposits, or the glycocalyx [ 16 ]. In kidney pathology, ac-
cording to the Banff classification scheme [ 22 ], PAS staining is particularly valuable
for identifying glomerulitis, tubulitis, and tubular basement membrane destruction.

Sirius Red: is a histochemical stain that highlights connective tissue (specifically
collagen) in red, while cytoplasm in lighter violet or pink [ 16 ].

CD68: is an immunohistochemical stain which highlights the expression of a specific
protein during macrophage differentiation and activation.

CD34: is an immunohistochemical stain which highlights blood vessels, specifically
the inner layer (endothelium).

CD3: is an immunohistochemical stain (similar to CD68 in appearance), which
serves as a marker for T cells.

In histopathology, an important aspect is the analysis of multiple WSIs from the
same tissue stained with different stainings. Consecutive slices from the same biopsy
or nephrectomy are stained with different stains to enable the analysis of underlying
tissue from different perspectives. While different stains highlight different tissue
components, some general analyses can be performed across multiple stainings. For
example, in kidney pathology, glomeruli 

3
 are observable under various stains as il-

3A glomerulus is a tiny ball-like structure embedded in the nephron and serves as the kidney’s
primary filtration unit. It consists of a complex network of specialised capillaries designed for the
efficient removal of waste products and excess fluid from the blood, ensuring the maintenance of
healthy bodily functions [ 24 ].
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Figure 1.3: Illustration of intra-stain variation in PAS staining in kidney pathology.
Each image represents the glomerulus in PAS staining. Source: [ 23 ].

lustrated in Figure  1.2 . Since each staining highlights different tissue structures,
the final WSI can exhibit significant differences in appearance. Additionally, the
staining procedure itself is vulnerable to high variability due to inter-subject vari-
ations, lab specific techniques, and scanner characteristics. This can can introduce
additional differences in the visual appearance of the tissue, even when subjected to
the similar staining method. These variations can be attributed to inter-stain and
intra-stain variations, which are further explored in the following discussion.

1.2.1.1 Intra-Stain Variation

The preparation of high-quality tissue slides requires careful handling and processing
of the tissue at each of the above-mentioned tissue preparatory steps in Section  1.2 .
Variations in any of these steps can introduce artefacts [ 25 ,  26 ] that lead to intra-
stain variation. Besides these artefacts, the most prevalent sources of intra-stain
variation include disparities in raw materials, capturing pipeline changes, the quality
of the substances used or characteristics of the scanner. Figure  1.3 illustrates the
intra-stain variation in the PAS staining in kidney pathology and its impact on the
appearance of glomeruli. While such variations can be taken into account during
manual analysis by experienced pathologists with specialised training, they pose a
considerable challenge for deep learning based automated solutions.

1.2.1.2 Inter-Stain Variation

Despite representing the same anatomical structures, consecutive tissue sections can
exhibit significant visual discrepancies when subjected to different stainings, result-
ing in inter-stain variations as illustrated in Figure  1.4 . To effectively analyse and
integrate information from different stainings, it is of great importance to focus on
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H&E Jones H&E PAS

Sirius Red CD68 CD34

Figure 1.4: Different stains used in kidney pathology. Each image represents a
glomerulus and each stain provides specific information about the structure of
glomerulus.

Table 1.1: Average segmentation (F1) scores for 5 different U-Net repetitions
(trained on PAS) and applied to full test slides of different stains. Standard de-
viations are presented in parentheses.

PAS Jones H&E CD68 Sirius Red CD34
Training
Strategy

Test Stainings

Baseline
PAS

0.894
(0.021)

0.062
(0.011)

0.044
(0.098)

0.045
(0.037)

0.056
(0.090)

specific structures of interest, such as glomeruli in the context of kidney analysis.
These structures play a critical role in diagnosing pathologies like kidney allograft
rejection [  27 ]. To automate this analysis, glomeruli must be detected and/or seg-
mented in each of the consecutive tissue sections, regardless of the employed staining
method. However, these inter- and intra-stain variations introduce specific distri-
butional differences, which lead to the problem of domain shift across and between
stains. Since most deep learning algorithms are sensitive to domain shift it causes
a significant drop in the performance of state-of-art algorithms [ 28 ], as outlined in
Table  1.1 , where a deep learning model (i.e. UNet [ 29 ]) trained on PAS for the
segmentation of glomeruli structures experiences a notable decline in performance
when applied to stains other than PAS.
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1.2.1.3 Overcoming Stain Variations

While several studies [ 30 – 36 ] have been conducted to address the problem of intra-
stain variations, a few address the problem of inter-stain variations [ 27 ,  28 ,  37 ,  38 ].
A straightforward, albeit costly, solution to address these challenges involves acquir-
ing a significant number of labels for each stain, followed by the subsequent training
of distinct deep learning models tailored for each satin. However, this approach
proves highly impractical and inefficient, as it undermines the inherent efficiency
and potential generalisation capability of deep learning methods [ 23 ]. While each
separate model may adeptly learn the specific features of each stain, it would strug-
gle to generalise to other stains even for the same task or same stain collected from
other medical centres, limiting the broader applicability of deep learning methods.
Moreover, creating and training individual models for each stain can be exceedingly
complex, since each model has to be trained on labelled data for each stain. Ac-
quiring these labels is a costly and time consuming process, primarily due to the
requirement of highly specialised medical experts to label the data. This further
exacerbates the resource constraints associated with this solution.

To address these challenges, it is often preferred to acquire a sufficient amount
of labels for a single (source) stain  

4
 and to train a multi-stain segmentation model

that can potentially work across various unlabelled (target) stains, thus mitigating
the issues related to data scarcity and facilitating the learning of more generalised
features. To achieve this, the most effective method is stain transfer, which will be
detailed further in Chapter  2 .

1.2.2 Data Availability

The effectiveness of deep learning methods in various tasks is heavily dependent on
the availability of large-scale labelled datasets. Numerous studies have consistently
demonstrated that increasing the size of training datasets consistently improves the
performance of deep learning methods, often surpassing human expertise across vari-
ous scientific domains [  39 – 41 ]. In light of these remarkable achievements, substantial
advances in automating routine histopathological analysis can be anticipated.

The advent of WSI scanners has facilitated the production of vast amounts of
histopathological image data. In recent years, research papers have reported a sub-
stantial increase in dataset sizes, often by several orders of magnitude [ 42 ]. However,
not all the data produced is of sufficient quality to be directly used and requires addi-
tional data preparation efforts. Nevertheless, the most tedious task is related to the
annotation process, particularly when dealing with structures of interest that can
be either sparsely or densely distributed. For instance, structures such as glomeruli
are sparse, occupying approximately 2% of the kidney tissue area [ 43 ]. Therefore
an average kidney WSI, having a size of 100K × 80K pixels (at 40× magnifica-
tion), contains around 500 glomeruli. In contrast, cancerogenic cells can appear in
a large portion of WSIs, occupying dense areas within the image. This inherent
variability in structure distribution poses a significant challenge for annotation, as
it is time-consuming, expensive and task-specific. Additionally, annotation requires

4In this thesis, the terms “domain” and “stain” are used equivalently.
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Small Dataset 
(Labelled) 

Convolution Network  
(Fine-tuning) 

Stage #1: Self-supervised pretext task learning

Large Dataset 
(Unlabelled)

Supervisory signal
generation

Convolution Network  
(Feature Extractor) 

Transfer Learning

Stage #2: Supervised downstream task learning

Figure 1.5: Self-supervised learning workflow. (Stage #1): Self-supervised learning
involves training an auxiliary pretext task by generating its own supervisory signals
for a large pool of unlabelled data. (Stage #2): The learned representations from
the pretext task are transferred as initial weights to the specified downstream using
a very small amount of labelled data.

specialised expertise [ 44 ], making it impractical to obtain high-quality annotations
for all the data produced daily in hospitals. In addition to other important concerns
related to data privacy, these enormous collected datasets are often left aside and
not used in training supervised models.

1.3 Self-Supervised Learning

In situations where unlabelled data is readily available in large quantities and la-
belled data is limited, a promising approach is to is to leverage this unlabelled data to
enhance a model’s performance through representation, particularly self-supervised,
learning.

Self-supervised learning can be used to learn semantic features by generating
its own supervisory signals from a pool of unlabelled data, thereby eliminating the
reliance on expert annotations [  45 ]. The learned features from this self-supervision
stage can then be effectively employed in various downstream tasks where labelled
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data is scarce, as illustrated in Figure  1.5 . In essence, self-supervised learning em-
bodies the fusion of both unsupervised and supervised learning approaches. The
unsupervised aspect eliminates the need for manual labelling, while the supervised
aspect is evident in training the model using labels generated from the data itself
[ 46 ]. The self-supervised learning pipeline comprises two key stages:

• Pretext Task: The initial stage, where self-supervised learning actually oc-
curs, involves a pre-designed task that enables the model to learn meaningful
representations without relying on explicit labels, guided by its pre-designed
objective function.

• Downstream Task: Once the model has learned representations from the
pretext task, they are transferred to specific computer vision applications,
referred to as downstream tasks. These learned representations serve as ini-
tial weights for fine-tuning the specific downstream task with minimal human
annotations.

The design of a pretext task is the fundamental aspect of self-supervised learning.
Although downstream tasks may vary depending on the application, the pretext
task may remain the same. For example, a convolutional auto-encoder can be used
to learn visual representations for two different downstream tasks with different data
[ 46 ]. In recent years, a number of effective self-supervised learning approaches have
been proposed in various histopathology tasks such as identification and classifica-
tion. However, only limited attempts have been made to incorporate the advances
of self-supervised learning for histopathology segmentation. This thesis endeavours
to investigate the current research directions in self-supervised learning methods
and assess their potential impact on the segmentation of glomeruli structures across
various stains, while using minimal labelled data.

1.4 Thesis Goals and Contributions

This thesis centres on exploring robust and generalised deep learning algorithms that
exhibit stain-invariance and can function seamlessly across multiple stainings for the
same task, such as kidney glomeruli segmentation in our case. The primary goal is to
achieve this while minimising the need of expert human annotations. This research
builds upon prior works [ 23 ,  28 ,  37 ], which have introduced various multi-stain
segmentation approaches to address these challenges, while using labels solely from
one (source) stain. These prior works have explored the potential of unsupervised
generative adversarial networks (GANs), particularly the CycleGAN framework [  47 ],
renowned for its unpaired image-to-image translation approach. This framework is
employed to facilitate stain transfer for creating multi-stain segmentation models.

However, in light of recent advances in the CycleGAN [ 48 – 50 ], it will be seen
in this thesis that its effectiveness is hampered by imperceptible noise [ 49 ] (which
will be explored further in Chapter  3 ) during adversarial image-to-image transla-
tion. Therefore, it is essential to exercise appropriate caution when deploying these
methods for clinical aid. To mitigate these limitations, this thesis presents several
contributions:



1.4. Thesis Goals and Contributions 11

• A crucial aspect in addressing the domain shift in stain transfer involves the
ability to detect it. Hence, one of the key contributions of this thesis lies in
exploring unsupervised approaches to propose a metric to quantify it. Addi-
tionally, these findings reveal a strong correlation between domain shift and
the segmentation performance of translated stains. These findings therefore
pave the way for establishing a mechanism to infer the average performance of
a pre-trained model (trained on a source domain) when applied to an unseen
and unlabelled target domain.

• Using this measure, we demonstrate the sensitivity of CycleGAN towards sub-
tle architectural modifications. Although, these modifications may not neces-
sarily affect the visual quality of the resulting translations, they significantly
effect the overall performance of stain transfer based multi-stain segmentation
approaches. This holds true from both a diagnostic and application perspec-
tive – highlighting the thesis’ second contribution.

• We then propose a novel approach that minimises the addition of noise (do-
main shift) during stain transfer, thereby enhancing the performance of multi-
stain segmentation – highlighting the thesis’ third contribution.

• The fourth and last contribution of this thesis involves integrating state-of-art
deep representation learning methods, particularly self-supervised learning, to
conduct a comprehensive analysis for reducing the number of labels required
for histopathological segmentation. Additionally, this contribution strives to
improve multi-stain segmentation approaches by reducing their reliance on la-
belled data for the source stain—which to the best of our knowledge has not
been explored previously—paving the way for more cost-effective and scal-
able solutions for domain adaptation based algorithms. This contribution also
puts forth several modifications to enhance the adaptability of self-supervised
learning methods across various staining protocols, especially those that are
stain-specific and therefore limited to a single type of stain.

The research contributions outlined in this thesis have undergone rigorous training
and evaluation by using a private histopathology dataset for kidney glomeruli seg-
mentation across multiple stains. However, the primary objective of these research
contributions is to introduce general novelties that hold applicability across other
related histopathology tasks and domains, including computer vision and medical
imaging, particularly those that face similar challenges. The subsequent section will
detail the dataset used within this thesis.

1.4.1 Data

This thesis is focused on renal pathology with a particular emphasis on the segmen-
tation of glomeruli in multiple stainings. The data used in this thesis is private,
encompassing tissue samples extracted from a cohort of 10 patients who underwent
tumor nephrectomy due to renal carcinoma. The renal tissue was selected as distant
as possible from the tumors to represent largely normal renal glomeruli. However,
certain samples exhibited varying degrees of pathological modifications, such as
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Table 1.2: The Number of glomeruli present in each staining.

Staining Training Validation Test

PAS 662 588 1092
Jones H&E 621 593 1043
Sirius Red 651 579 1049

CD34 565 598 1019
CD68 526 524 1046

complete or partial displacement of functional tissue by fibrotic changes (“scerosis”)
indicating normal age-related changes or the renal effects of general cardiovascular
comorbidity (e.g. cardial arrhythmia, hypertension, arteriosclerosis). Using an au-
tomated staining tool (Ventana Benchmark Ultra), the paraffin-embedded samples
were sliced into 3µm thick sections and stained with either Jones H&E basement
membrane stain, Periodic acid-Schiff reaction (PAS), Sirius Red, in addition to two
immunohistochemistry markers, such as CD34 and CD68. An Aperio AT2 scanner
was used to capture whole slide images at 40× magnification (a resolution of 0.253
m/pixel). Pathology specialists annotated and verified all of the glomeruli in each
whole slide image by labelling them with Cytomine [ 51 ]. The whole dataset (WSIs)
was split into 4 training, 2 validation, and 4 test patients. The number of glomeruli
in each staining dataset is given in Table  1.2 .

Kidney glomeruli segmentation is framed as a two class problem: glomeruli
(pixels that belong to glomerulus), and tissue (pixels outside a glomerulus). The
training set comprised all glomeruli from a given staining’s training patients and
seven times as many tissue (i.e. non-glomeruli) patches were included to account
for the variability observed in non-glomeruli tissue. In order to remove the slide
background (non-tissue), each image underwent thresholding based on its mean
value, followed by the removal of small objects and closing holes. Throughout the
study, the level-of-detail used is 1 (corresponding to 20× magnification) with an
image patch size of 508 × 508 pixels, since glomeruli and part of the surrounding
area fit within this patch size at the level-of-detail used.

1.4.2 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter  2 provides a thorough and systematic analysis of the existing litera-
ture on stain transfer based multi-stain segmentation approaches in histopathol-
ogy. Furthermore, the chapter exposes the existing research on self-supervised
learning, both within computer vision and specifically in the context of medical
imaging, with a focus on histopathology.

• Chapter  3 thoroughly investigates the inherent shortcomings of stain transfer
and provides a comprehensive understanding of the specific scenarios in which
these stain transfer based approaches may fail. The results from these investi-
gations are published in [  52 ] and [  53 ]. Furthermore, this chapter explores the
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recent advances in deep learning to present a range of potential solutions that
can effectively address these shortcomings. The results of these findings are
currently being documented to submit in a reputable conference or journal.

• Chapter  4 investigates the current state-of-the-art research directions in self-
supervised learning methods and assess their potential impact on digital
histopathology segmentation (through the use case of glomeruli segmentation)
using limited labels. The results of this chapter are currently under review
[ 54 ].

• Chapter  5 concludes the research presented in this thesis by providing a com-
prehensive summary of the research findings and identifying promising direc-
tions for future investigation.





Chapter 2

Literature Review

Digital histopathology has emerged as a rich area of innovation in both clinical
applications and research, where deep learning algorithms have demonstrated re-
markable achievements [ 8 ]. However, a major challenge lies in the training of these
algorithms, since many state-of-the-art deep learning algorithms are data hungry
and often demand extensive amounts of labelled data. This can be difficult to col-
lect because medical datasets often require the creation of high quality annotations
by field experts [ 44 ], which is a very costly and time consuming process. These
constraints pose obstacles to the development of deep learning based automated so-
lutions. Additionally, existing datasets (with labels) often have limited reusability
due to variations in tissue preparation and staining protocols (as detailed in Chap-
ter  1 ). Since each stain highlights different tissue structures, even consecutive tissue
slides (representing identical anatomical structures) can appear very different (as
was illustrated by the glomeruli in green circles in Figure  1.2 of Chapter  1 ). These
discrepancies result in distribution differences in the feature space of each stain, as
illustrated in Figure  2.1 . The figure clearly shows how each stain occupies a distinct
part of the feature space. These distributional differences lead to the problem of
domain shift, which significantly impacts the performance of state-of-art deep learn-
ing methods, as will be explored in Chapter  3 . Therefore, it becomes necessary to
explore strategies to address such variations to effectively develop and apply deep
learning based automated solutions in digital histopathology.

To address these challenges, stain transfer — where the appearance of an image
is artificially modified after its acquisition — has emerged as the state-of-the-art
solution. This process aims to transform an image stained with stain A to look
like it had been stained with stain B, and vice-versa. An example of the result
of stain transfer is illustrated in Figure  2.2 , where a stain-B-like image is artifi-
cially generated from stain A and a stain-A-like image is artificially generated from
stain B. From a computer vision perspective, these artificially generated images
can be used to minimise the distribution disparities between stain A and stain B.
The underlying hypothesis posits that if stain transfer produces visually convincing
translations, it should be able to reduce the distribution differences (domain shift)
between different stains, thereby enhancing a model’s robustness to different stain
variations. For instance, deep learning models trained on real images from stain A
should be capable of extracting similar features and performing effectively on stain-
A-like images (translated from stain B), and vice-versa. This paves the way for the
development of various multi-stain segmentation methods, using labels from only
one (source) stain. These methods can be primarily categorised into two different
training strategies:

Stain-Specific: Training a segmentation model for a particular stain, referred to
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Figure 2.1: PaCMAP [ 55 ] visualisations of pre-trained ImageNet-based-ResNet fea-
tures extracted from 200 randomly selected patches from each stain (1000 patches
in total). Each coloured point corresponds to a patch from the respective stain.

as the source stain, for which the labels are available. This model is later applied to
various other target stains by translating them to the source stain during test time.
Further details are provided in Section  2.2.1 .

Stain-Invariant: Training a single stain-invariant segmentation model on all avail-
able stains, using labels from only one (source) stain. This stain-invariant model
can be directly applied across various other stains, including out-of-distributions
stains, without the need for translation during testing. Further details are provided
in Section  2.2.2 .

Despite the proven effectiveness of existing multi-stain segmentation methods in
eliminating the need of labels in the target stains, it is crucial to acknowledge that
these methods rely heavily on a large number of labelled data from the source stain,
which can still be challenging in the medical domain. For instance, in histopathol-
ogy, for certain tissue or tumour types, sufficient labelled datasets for the source
stain may not exist, preventing the successful training of the aforementioned ap-
proaches. However, the advent of whole slide imaging (WSI) scanners has facilitated
the production of vast amounts of unlabelled histopathological image data. As such,
unlabelled medical imaging datasets are increasing in size by several orders of mag-
nitude [ 42 ]. When unlabelled data is accessible in large quantities, it can be used in
limited annotation scenarios to enhance model performance through representation,
particularly self-supervised, learning. Following this, the remainder of this chapter
is organised as follows:

• Section  2.1 presents the concept of stain transfer and explores the current
state-of-art methods from the literature for stain transfer.

• Section  2.2 explores the current state-of-art multi-stain segmentation approaches
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Stain Transfer

Stain Transfer

Image stained with stain B

Image stained with stain A

Generated stain-A-like image

Generated stain-B-like image

Figure 2.2: The basic principle behind stain transfer where the appearance of an
image is artificially modified. In 1st row, an image with the characteristics of stain
A is artificially transformed to look like an image with the characteristics of stain B.
In 2nd row, an image with the characteristics of stain B is artificially transformed
to look like an image with the characteristics of stain A.

based on stain transfer. Furthermore, this section highlights the effectiveness
of these methods towards addressing the challenges posed by inter-stain vari-
ations.

• Section  2.3 explores cutting-edge research directions in representation learning
methods found in the literature.

• Section  2.4 identifies the existing limitations in stain transfer based solutions.
Additionally, it serves to motivate the exploration of representation learning
methods in histopathology related tasks, aiming to enhance the effectiveness
of stain transfer based multi-stain segmentation approaches when confronted
with limited labels in the source stain.

• Finally, Section  2.5 summarises the key findings and investigates the prospec-
tive research opportunities drawn in this chapter.

2.1 Stain Transfer

Stain transfer can be formulated as an image-to-image translation problem, wherein
images originally stained with stain A are translated to appear as if they had been
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stained with stain B in a realistic and plausible 

1
 manner. The primary objective is

to transform the visual characteristics of stain A to closely resemble those of stain B,
while preserving the underlying image content, as shown in Figure  2.2 . Generative
adversarial networks (GANs) [ 56 ,  57 ] have emerged as the leading approach in image-
to-image translation. The generator network learns to transform an image of stain
A to stain B in such a way that the discriminator cannot differentiate between real
stain B images and translated stain-B-like images, see Figure  2.2 (1st row), and
vice-versa. As such, stain transfer aims to minimise stain distribution differences in
image (pixel) space.

While, in recent years, a number of state-of-art unpaired image-to-image trans-
lation frameworks [ 36 ,  47 ,  58 – 67 ] have been employed for stain transfer in various
digital histopathological applications, CycleGAN [ 47 ] has emerged as a prevalent
choice. This widespread adoption can be attributed to its straightforward applica-
bility [ 68 ] and superior performance when compared to others [ 28 ,  69 ]. Furthermore,
it has shown remarkable effectiveness in several multi-stain segmentation methods
(which are explored later in this chapter).

2.1.1 CycleGAN

CycleGAN [ 47 ] is a bi-directional unpaired image-to-image translation framework
that has been widely used for stain transfer in digital histopathology [ 28 ,  36 ,  37 ,  70 –

 73 ]. The network architecture of CycleGAN is presented in Figure  2.3 , where it
contains two generators which perform translations between two stains: GAB : A→
B to translate from stain A to stain B (the output of which is termed stain-B-like)
and GBA : B → A to translate from stain B to stain A (the output of which is
termed stain-A-like); in addition to two discriminators DA and DB. The aim of DA

is to differentiate between real stain A images and translated stain-A-like images;
while DB aims to differentiate between real stain B images and translated stain-B-
like images. Given an image of a source stain s ∼ S and a target stain t ∼ T , these
networks are trained in an adversarial manner using a least-squared loss function
(Ladv), such that

Ladv(GAB, DB, GBA, DA) = Es∼A[(DA(s)− 1)2] + Et∼B[DA(GBA(t))
2]

+Et∼B[(DB(t)− 1)2] + Es∼A[DB(GAB(s))
2]. (2.1)

Additionally, the training is constrained by the cycle-consistency (Lcyc) and
identity loss (Lid) functions, such that

Lcyc(GAB, GBA) = Es∼A[∥GBA(GAB(s))− s∥1]
+ Et∼B[∥GAB(GBA(t))− t∥1], (2.2)

1In this thesis, the term “plausible” refers to the fact that a histological image, when processed
with other staining modalities without the knowledge of adjacent tissue sections and/or patient-
specific information (e.g. the underlying disease), looks visually correct to a trained expert with
regard to staining characteristics and morphological appearance of the tissue components [ 23 ].
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Figure 2.3: Overview of CycleGAN architecture for stain transfer

and

Lid(GAB, GBA) = Es∼A[∥GBA(s)− s∥1]
+ Et∼B[∥GAB(t)− t∥1]. (2.3)

Thus, the full objective function becomes

LCycleGAN(GAB, GBA, DA, DB) = Ladv(GAB, DB, GBA, DA)

+ wcycLcyc(GAB, GBA)

+ widLid(GAB, GBA), (2.4)

where wcyc and wid control the relative importance of the cycle-consistency and
identity losses, respectively.

Once trained, the CycleGAN model performs translation between source (S) and
target (T ) stains using the corresponding generators. The outcomes of CycleGAN
translations, such as S → T and T → S are shown in Figure  2.4 , where S ∈ {PAS}
and T ∈ {Jones H&E, Sirius Red, CD68, CD34}. PAS is used as the source stain
throughout this thesis as it is widely used in clinical settings, which results in a
substantial amount of readily available data and knowledge associated with this stain
compared to others. As visualised in Figure  2.4 , all translations appear plausible to
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Figure 2.4: Illustration of unpaired stain-to-stain translation using CycleGAN.

a trained pathologist  

2
 .

Additionally, Figure  2.5 demonstrates the ability of CycleGAN based stain trans-
fer to minimise stain variations (distribution discrepancies) across multiple stains.
As seen before, the dark coloured points show that each stain exhibits a unique
distribution in pixel space, and the translated stains, represented as light coloured
points, overlap them. For instance, all Target→PAS translated stains match the
distribution space of the real PAS stain, as shown in Figure  2.5(a) . Similarly, while
translating PAS to each target stain, the PAS→Target translations attempts to
match the distribution space of the real target stains, as shown in Figure  2.5(b) .

2.2 Multi-Stain Segmentation Approaches

Multi-stain segmentation involves segmenting regions of interest in differently stained
histopathological images using labels from only one (source) stain. While numerous
multi-stain segmentation approaches have been proposed in the literature, most of
them, particularly the state-of-the-art, heavily rely on stain transfer. Commonly an
unpaired image-to-image translation framework, such as CycleGAN, is used. For
instance, Gadermayr et al. [ 37 ] introduced a multi-stain segmentation method which
enables a stain-specific segmentation model (trained for the source stain) to be used
with multiple other target stains by translating them to the source stain using Cy-
cleGAN during test time. Similarly, Lo et al. [ 74 ] used CycleGAN translations to
achieve multi-stain glomeruli detection, while Wu et al. [ 75 ] advocate fine-tuning a
CycleGAN generator using a classification network for multi-stain glomeruli classi-
fication. Furthermore, Kapil et al. [ 76 ] proposed to expand the CycleGAN model

2This analysis was done in collaboration with Prof. Dr. Friedrich Feuerhake (Institute of Pathol-
ogy, Hannover Medical School, Germany; University Clinic, Freiburg, Germany).
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(a) Target→PAS (b) PAS→Target

Figure 2.5: PaCMAP [ 55 ] visualisations of pre-trained ImageNet-based-ResNet fea-
tures for real and translated patches. 200 real patches are randomly selected for each
stain (1000 patches in total). The translated patches are obtained by translating
from each target stain to source (PAS) stain, represented as Target→PAS, and from
source stain to each target stain, represented as PAS→Target. The dark coloured
points corresponds to the real patches whereas the light coloured points corresponds
to the respective translations.

with an auxiliary segmentation task, and Bouteldja et al. [ 77 ] proposed to integrate
a pre-trained segmentation network to regularise CycleGAN training.

However, all of the aforementioned traditional approaches focus on stain-specific
models (the segmentation model only works in one stain, and the target stains are
translated to match it), a recent shift has emerged towards developing stain-invariant
models to achieve multi-stain segmentation. One of the most successful lines of
research in this direction is domain adversarial training [ 78 ]. This approach aims
to extract features that are both domain-agnostic 

3
 and task-related. For instance,

Mei et al. [ 79 ] introduced a GAN based method for glomeruli segmentation across
two different stains, while Hou et al. [ 80 ] proposed enhancing adversarial training
by using two discriminators to adversarially align features across different scales.
However, a key limitation of these approaches is that the resulting feature extractor
tends to be biased towards the domains encountered during training, leading to
potential failures when applied to out-of-distribution stains.

Inspired by the success of stain transfer in generating visually plausible images,
augmentation based solutions have been proposed to learn stain-invariant models
[ 28 ,  68 ]. These approaches have demonstrated that CycleGAN based translations
can be used to augment the annotated dataset, resulting in a robust stain-invariant
model capable of working across several stains, including out-of-distribution stains.
Additionally, other approaches [ 75 ,  81 ] have employed stain transfer to integrate

3A term that refers to systems, tools, or methods that have the potential to solve problems
across multiple domains or field of applications without requiring significant modifications.
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Figure 2.6: Overview of Multi-Domain Supervised architecture.

information from multiple stains, thereby enhancing segmentation or classification
performance.

All these methods proposed in the literature demonstrate the effectiveness and
widespread application of CycleGAN based stain transfer. However, its inherent
limitations are often overlooked or rarely addressed. Therefore, this thesis aims to
thoroughly investigate the inherent shortcomings of stain transfer and provides a
comprehensive understanding of the specific scenarios in which these stain transfer
based approaches may fail. Additionally, this thesis seeks to explore recent advances
in deep learning methods to present solutions that can effectively address these
shortcomings, ultimately enhancing the performance of multi-stain segmentation
methods.

To substantiate and evaluate these objectives, we employ the use case of kidney
glomeruli segmentation across multiple stains (including PAS, Jones H&E, CD68,
Sirius Red, and CD34), while relying solely on labels from source stain (i.e. PAS).
Presently, the prevailing state-of-art approaches in the literature for this application
are Multi-Domain Supervised (MDS) [ 37 ] and the Unsupervised Domain Augmen-
tation using Generative Adversarial Networks (UDAGAN) approach [ 28 ]. These
approaches are used in this thesis as benchmarks for kidney glomeruli segmenta-
tion, allowing us to evaluate the effectiveness of our proposed contributions. The
following subsections will delve into the architectural and training details of these
multi-stain segmentation approaches.

2.2.1 MDS

Gadermayr et al. [ 37 ] proposed MDS, which results in two separate approaches,
MDS1 and MDS2. These approaches aim to generate segmentation masks for im-
ages from a domain (stain) that lacks annotations. This is achieved by using a
CycleGAN based stain transfer model to translate images from one stain to an-
other. The approach assumes that sufficient labelled data is available in the source
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Step# 1: Unpaired Image-to-Image Translation Model(s) Step# 2: Supervised Segmentation  Model

Figure 2.7: Overview of UDAGAN architecture.

stain (S), which is PAS in our case, to train a reliable segmentation network, and
unlabelled training data for a target stain (in our experiments these consist of Jones
H&E, Sirius Red, CD68, CD34). The primary objective is to generate segmenta-
tion masks for images from a target stain without having access to its labels. The
UNet [  29 ] model (see Appendix  A.1.1 for its architectural details) is employed to
train the segmentation model for the PAS stain, because of its remarkable efficacy
in segmenting biomedical images [ 82 ], specifically for glomeruli segmentation [ 83 ].
For both MDS1 and MDS2, a CycleGAN model (MS↔T

cycGAN) is trained to translate
between the source and target stains, i.e. from S → T and T → S. For each target
stain, a separate CycleGAN model must be trained to translate between the source
and each target stain.

In MDS1, as shown in Figure  2.6(a) , a segmentation model (MS
unet) is trained

using the training data from source stain and its corresponding labels. Then, the
test images from the target stain are translated to match the distribution of the
source stain, referred to as the ‘fake’ source stain (S′) using the CycleGAN model
(MT→S

cycGAN) (for an example of these translations, see 2nd row of Figure  2.4 ). Finally,
the segmentation model (MS

unet) is applied to the ‘fake’ source images, yielding the
desired segmentation masks.

In MDS2, Figure  2.6(b) , the training data from the source stain is first translated
to match the distribution of the target stain, creating ‘fake’ target stain (T ′) data
(for an example, see 3rd row of Figure  2.4 ). The segmentation model (MT

unet) is
then trained on these fake target stain images using their respective labels (from
the source stain). This model is then directly used to segment the original target
stain images, resulting in the desired segmentation masks.

2.2.2 UDAGAN

While MDS1 and MDS2 offer promising results for multi-stain segmentation, using
labels from only the source stain, they exhibit certain limitations that hinder their
broader applicability. Notably, MDS1 requires each target stain to be translated to
source stain during test time. Although MDS2 addresses this issue, it requires a
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separate segmentation model to be trained for each target stain, which is a time-
consuming and computationally expensive procedure. To address these limitations
Vasiljević et al. [ 28 ] introduced UDAGAN, which aims to combine stain augmen-
tation and adaptation to create a single stain-invariant model that can be directly
applied to multiple stains, even those that the model has not seen before (i.e. out-of-
distribution stains). Specifically, separate CycleGAN model(s) are trained to enable
the translation from the labelled source stain to all of the unlabelled target stains,
as depicted in Figure  2.7 , Step #1. These CycleGAN model(s) are then used to aug-
ment the labelled training set by randomly translating images from the source stain
to one of the target stains, Step #2. Given that the translation does not change
the overall structure of the image, as depicted in Figure  2.7 , the ground truth of
the source stain is still valid. As a result, various annotated samples of all available
stains are presented to the segmentation model during training, resulting in a single
stain-invariant model capable of segmenting various unlabelled target stains. Since
UDAGAN generalises and outperforms MDS2 [ 28 ], the latter is not evaluated in this
thesis.

2.3 Self-Supervised Learning

Despite the aforementioned advances towards reducing the need for labels in the
target stains, instead requiring them for only the source stain, their reliance on
significant amounts of labelled source data remains a challenge. This becomes par-
ticularly pronounced when dealing with specific tissue or tumour types for which an
adequate amount of labelled source data may not exist. As a result, the application
of existing multi-stain segmentation approaches may prove impractical, creating a
significant barrier to the widespread adoption of these methods. In parallel, unla-
belled medical imaging datasets are increasing in size by several orders of magnitude
[ 42 ]. For instance, in histopathology, the advent of whole slide imaging (WSI) scan-
ners has facilitated the production of vast amounts of unlabelled histopathological
image data. When unlabelled data is accessible in large quantities, it can be used in
limited annotation scenarios to enhance model performance through unsupervised
visual representation, particularly self-supervised, learning.

Self-supervised learning was first introduced in 2006 by Bengio et al. [ 111 ] but
did not become popular until the advent of end-to-end deep neural networks. It laid
the groundwork for modern self-supervised learning approaches, which have found
application in various fields, such as computer vision, medical imaging, natural lan-
guage processing, and robotics etc. This approach generates its own supervisory
signals (i.e. pseudo labels) and learns useful representations from a pool of unla-
belled data by designing a pretext task, thereby eliminating the need for additional
human-annotated labels [ 46 ]. The representations learned using the pretext task can
then be used as initial weights in different downstream tasks where the amount of
labelled data is limited. In recent years, a number of self-supervised approaches have
been introduced to learn useful representations and they can be grouped into three
categories depending on the pretext task: generative, discriminative, and multi-
tasking. A categorisation of the most representative self-supervised methods for
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Table 2.1: Categorisation of self-supervised learning approaches based on the em-
ployed pretext task.

Approach Authors Pretext task Downstream task

Computer Vision
Generative Pathak et al. [ 84 ] Image inpainting Pascal VOC classification, detec-

tion, and segmentation
Zhang et al. [ 85 ] Image colourisa-

tion
ImageNet classification, Pascal
VOC classification, detection and
segmentation

Donahue et al. [ 86 ] Bidirectional
GAN

Pascal VOC classification, detection
and segmentation

Predictive Gidaris et al. [ 87 ] Rotation predic-
tion

ImageNet classification [ 88 ], Pascal
VOC classification, detection and
segmentation [ 89 ]

Noroozi et al. [ 90 ] Jigsaw puzzle Pascal VOC detection and classifi-
cation

Doersch et al. [ 91 ] Relative patch
prediction

Pascal VOC detection

Contrastive He et al. [ 92 ] MoCo PASCAL VOC and COCO [ 93 ] de-
tection and segmentation

Chen et al. [ 94 ] SimCLR ImageNet, PASCAL VOC and
CIFAR-100 [ 95 ] classification

Grill et al. [ 96 ] BYOL ImageNet, PASCAL VOC and
CIFAR-100 classification

Medical Imaging
Generative Prakash et al. [ 97 ] Image denoising Nuclei segmentation

Ross et al. [ 98 ] Image colourisa-
tion

Surgical instruments segmentation

Chen et al. [ 45 ] Context restora-
tion

Brain tumour segmentation, Ab-
dominal multi-organ localisation

Hu et al. [  99 ] Context encoder Thyroid nodule segmentation, Liver
and Kidney segmentation

Predictive Taleb et al. [ 100 ] Jigsaw Puzzle Brain tumour segmentation, Liver
segmentation

Sahasrabudhe et al. [ 101 ] Magnification
prediction

Nuclei segmentation

Contrastive Lu et al. [ 102 ] CPC Breast cancer classification
Sowrirajan et al. [ 103 ] MoCo Tuberculosis detection
Chen et al. [ 104 ] MoCo COVID few-shot classification
Stacke et al. [ 105 ] SimCLR Histopathology image classification
Ciga et al. [ 106 ] SimCLR Histopathology image classification

and segmentation
Stacke et al. [ 105 ] BYOL Histopathology image classification
Xie et al. [ 107 ] BYOL extension Liver and Abdominal organs seg-

mentation, Kidney tumour segmen-
tation

Hybrid Yang et al. [ 108 ] CS-CO Histopathology image classification
Koohbanani et al. [ 109 ] Self-path Histopathology image classification
Dong et al. [ 110 ] Multi-task SSL Heart segmentation
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visual representation learning, organised into these three categories, is presented in
Table  2.1 . This section presents a detailed overview of these categories and the
approaches found within them.

2.3.1 Generative Self-Supervised Learning

Generative self-supervised learning aims to model the underlying data distribution
p(x) by either reconstructing the original input or by learning to generate new
samples from p(x). Auto-encoders and GANs are commonly employed to achieve
these objectives. Several such tasks have been proposed, particularly in the field of
computer vision and medical imaging, for example image denoising [ 97 ,  112 ], context
restoration [ 45 ], image colourisation [  85 ,  98 ], visual field expansion [ 113 ], and image
inpainting or context encoding [ 84 ,  99 ], etc.

Despite the success of generative self-supervised learning methods, they are often
found to be more computationally expensive and complex [ 94 ]. Additionally, these
methods may not be ideal when the goal is to learn a simple lower-dimensional
representation of the data [ 114 ]. Moreover, they have an inherent preference for
low-level features, which are not effective for discriminative downstream applications
[ 108 ]. To overcome these limitations, researchers have turned their focus towards
discriminative self-supervised learning methods.

2.3.2 Discriminative Self-Supervised Learning

Discriminative self-supervised learning methods focus on learning to distinguish be-
tween different transformations or versions of the input data. In earlier stages of
developing these methods, researchers focused more on context based (or predictive)
methods [ 115 ]. These methods aim to learn representations from unlabelled data
using a classification or regression based pretext task. Pseudo labels are generated
from the data itself and assigned to each image, e.g. by applying a specific transfor-
mation, such as rotation. The role of the self-supervised strategy is to accurately
predict these pseudo labels. It is important to carefully generate the pseudo labels to
facilitate effective feature extraction and to learn useful representations. Numerous
predictive pretext tasks, for example rotation prediction [ 87 ], jigsaw puzzle [ 90 ,  100 ],
relative patch location prediction [  91 ], and magnification prediction [ 101 ] etc. have
been designed in the field of computer vision, and medical imaging.

Although predictive self-supervised methods have demonstrated significant per-
formance achievements in the computer vision domain, their direct application for
medical imaging tasks provides only marginal improvements [ 46 ]. To overcome these
challenges, contrastive learning has emerged as a powerful discriminative approach,
gaining much attention in the field of representation learning in recent years. Its
primary objective is to learn representations by comparing pairs of input samples
rather than learning from individual samples [ 114 ]. It does this by maximising the
similarity between similar (positively-paired) samples and minimising it between
dissimilar (negatively-paired) samples. Positively-paired samples are generated by
applying a set of random augmentations to an input image, resulting in two dif-
ferent augmented views of the same image. Conversely, negatively-paired samples
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comprise all other images. The positive pairs are designed to differ but preserve the
global features of the input image. This encourages the model to focus on extract-
ing useful representations while discarding irrelevant features. Consequently, the
resulting representations tend to be highly discriminative and robust. Contrastive
self-supervised learning has been used in computer vision and medical imaging, and
is found in methods such as Contrastive Predictive Coding (CPC) [ 102 ,  116 ], Mo-
mentum Contrast (MoCo) [ 92 ,  103 ,  104 ,  117 ], A Simple Framework for Contrastive
Learning of Visual Representations (SimCLR) [ 94 ,  105 ,  106 ], and Bootstrap Your
Own Latent (BYOL) [ 96 ], etc.

2.3.3 Multi-Tasking/Hybrid Self-Supervised Learning

In recent years, there has been an increasing trend among researchers to adopt multi-
task learning approaches for self-supervised learning. These approaches integrate
multiple self-supervised methods, such as predictive, generative, and contrastive,
either individually or in a synergistic manner. This integration potentially enhances
the model’s ability to capture both low-level and high-level features, thereby reduc-
ing the limitations and biases inherent in individual self supervision tasks. Moreover,
it leads to improved performance in subsequent downstream tasks and allows mul-
tiple objectives to be addressed simultaneously. For instance, Graham et al. [ 118 ]
employed multi-tasking to enhance disease classification, and segmentation within
the same framework. Yang et al. [ 108 ] employed a combination of generative Cross-
Stain (CS) prediction and Contrastive (CO) learning tasks to propose CS-CO to
extract more robust representations. Similarly, Zhang et al. [  119 ] combine predic-
tive and contrastive self-supervision tasks in a unified framework and Koohbanani
et al. [ 109 ] proposed a self-path framework which combines multiple predictive and
generative tasks.

2.4 Discussions

This thesis makes two principal contributions: (a) it investigates the inherent limi-
tations of stain transfer-based solutions in digital histopathology, such as multi-stain
segmentation, and proposes approaches to address them; (b) it then uses these state-
of-the-art approaches in applications where only limited annotations are available
for a particular stain. Each of these aspects will be discussed in the subsequent
sections.

2.4.1 Stain Transfer

In contrast to natural images, medical images possess complex structures where even
minor details can hold significant diagnostic implications. Thus, GAN based artifi-
cial image generation and/or translation methods involve the risk of overlooking in-
formation necessary for accurate diagnosis. Furthermore, evaluating artificially gen-
erated images poses a significant challenge, particularly when assessing their plau-
sibility in clinical applications. For instance, a study performed by Xu et al. [ 120 ]
provides an interesting perspective on the differences in evaluation between medical
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experts (e.g. pathologists) and non-experts (e.g. computer vision researchers). The
study found that the medical experts were more adept at identifying errors in the
translated stains (images) compared to non-experts, who often perceived the trans-
lated stains as nearly indistinguishable from the real ones. As a result, it is suggested
that the applicability of these methods in clinical diagnosis is only limited to certain
tasks where such risks are acceptable. Particularly, these methods are more suitable
for tasks like classification, detection and/or counting of morphologically consistent
structures across multiple stains (such as glomeruli in kidney pathology) but not
recommended if the decision depends on cell positioning or presence, which could
be perturbed during the translation process.

Although GAN based image translation methods, such as CycleGAN, have been
widely adopted across various tasks, their significance towards developing multi-
stain segmentation approaches is noteworthy. Various extensions to CycleGAN have
been proposed to generate more realistic and visually plausible translated images [ 28 ,

 36 ,  37 ,  72 ,  73 ] and these studies often rely on visual outputs for comparison [  65 ,  73 ].
Nevertheless, Vasiljević et al. [ 53 ] showed that even visually plausible outputs do not
necessarily lead to good downstream task performance, therefore visual assessment
alone should not be a criterion for evaluating the quality of the translated images. In
parallel, recent studies on the adversarial nature of CycleGAN [ 48 – 50 ] have unveiled
their propensity to introduce artefacts imperceptible to humans (even to trained
experts) in the translated images (which will be demonstrated in Chapter  3 ). This
underscores the importance for developing measures for translation quality.

2.4.2 Self-Supervised Learning

As discussed earlier, when large quantities of unlabelled data are accessible, it can
be leveraged in limited annotation scenarios to enhance the performance of the un-
derlying methods through representation learning, particularly using self-supervised
learning [ 105 ,  106 ,  109 ,  121 ,  122 ]. Although numerous self-supervised learning meth-
ods have been proposed for the computer vision domain, and both the computer
vision and the medical imaging domains (such as digital histopathology) involve
the analysis of imagery data, there are significant differences between natural and
histopathological images [ 46 ]. These differences encompass various aspects, includ-
ing visual patterns, texture, lighting conditions, and scale. Notably, histopathologi-
cal images contain information at different magnification levels, whereas the impact
of scale on natural images can be largely ignored. Consequently, the direct appli-
cation of predictive pretext tasks from computer vision may not yield comparable
performance. For example, in computer vision, solving a jigsaw puzzle as a predic-
tive pretext task focuses on differentiating between tiles and their positions to learn
global semantic representations. However, objects in histopathology are smaller and
there is no specific ordering, nor orientation, among them. Therefore, solving a jig-
saw puzzle is not relevant [ 109 ]. With magnification prediction, the learned model
may only focus on size and shape features [ 108 ]. Similarly, predicting rotations does
not align well with histopathology data, as the arrangement of cells and surrounding
structures remain valid even when the image is rotated [ 106 ].

To address these aforementioned challenges, researchers have proposed several
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contrastive learning based pretext tasks. Recent findings indicate that contrastive
self-supervised learning approaches have significantly outperformed both generative
and predictive self-supervised learning methods. This trend is evident across various
domains, including computer vision [ 94 ,  96 ] and medical imaging, with particular
success in histopathology related applications [ 105 ,  106 ,  123 ]. Moreover, there is
a growing trend towards multi-task learning, which aims to integrate strength of
various pretext tasks.

Given these developments, this thesis focuses on exploring the potential of state-
of-art contrastive and hybrid self-supervised learning approaches. Our primary goal
is to significantly reduce the dependence on labelled data for a particular stain,
thereby enhancing the applicability of multi-stain segmentation approaches in ap-
plications where only limited annotations are available in the source domain. This
reduction in label requirements is of huge importance in the field of histopathol-
ogy, where the acquisition of large-scale annotated datasets is highly challenging,
time-consuming, and resource-intensive.

2.5 Conclusions

The development of deep learning solutions in digital histopathology faces signifi-
cant challenges due to the general scarcity of annotated data and variations in tissue
staining. GAN based methods, such as CycleGAN based stain transfer, have made
valuable contributions in addressing these challenges and broadening the applicabil-
ity of these techniques, notably through the development of multi-stain segmentation
approaches. However, recent studies in the literature bring forth additional chal-
lenges posed by CycleGAN. These include the addition of imperceptible noise which
causes domain shift in the translated stains, potentially impacting the final predic-
tions. Research is therefore needed in order to detect and quantify this noise to
introduce evaluation metrics for assessing the quality of stain transfer based trans-
lated images. These translation approaches can be used to train stain-invariant
segmentation models, however they still rely on large amounts of annotated data.
State-of-art approaches to self-supervised representation learning offer the potential
to reduce this need but work in the literature for digital histopathology segmentation
is lacking.





Chapter 3

Stain Transfer Limitations and
Optimisation Strategies

While artificially generated stain translations (obtained through stain transfer) vi-
sually appear realistic, recent studies [ 28 ,  124 ,  125 ] have shown the presence of
additional information (imperceptible noise) within these translations. This im-
perceptible noise introduces domain shift in the translated stains (images) [ 125 ],
potentially impacting the final predictions and thereby raising concerns about the
efficacy and deployment of multi-stain segmentation methods in clinical applications.
Consequently, there is a pressing need to develop more advanced stain transfer tech-
niques capable of effectively addressing these limitations, ultimately leading to an
enhanced performance of multi-stain segmentation approaches. Following this, the
rest of the chapter is organised as follows:

• This chapter is motivated in Section  3.1 , which explores existing stain transfer
based multi-stain segmentation approaches and investigates their efficacy to-
wards addressing inter-stain variations in kidney glomeruli segmentation across
multiple stains.

• The properties of common stain transfer approaches that are used in multi-
stain segmentation are then explored in Section  3.2 and Section  3.3 to explain
the limitations found in the first section.

• Section  3.4 presents several possible techniques to address these stain trans-
fer limitations, thus enhancing the effectiveness of multi-stain segmentation
approaches.

• Finally, Section  3.5 summarises the key findings drawn from this chapter.

3.1 Multi-Stain Segmentation Performance

In this thesis, our primary focus lies in exploring stain-specific (MDS1) and stain-
invariant (UDAGAN) based multi-stain segmentation approaches. The training de-
tails for these approaches are provided in Appendix  A.1.3 and  A.1.3 respectively.
This section delves into evaluating the efficacy of these approaches for the task of
kidney glomeruli segmentation across multiple stains using labels from only one
(source) stain. To provide a comparison, the segmentation scores of the fully super-
vised (baseline) models are shown in Table  3.1 . These baseline models are trained
for a particular stain (e.g. PAS) and applied to a separate unseen test dataset across
all stains (e.g. PAS, Jones H&E, Sirius Red, CD68, and CD34). These results reveal
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Table 3.1: A comparative analysis between different fully supervised (baseline) and
different multi-stain segmentation models. The evaluation is conducted on an in-
dependent, unseen test dataset, and the segmentation performance is measured in
terms of (F1) score. For baseline models, each (F1) score is an average over five
different UNet repetitions, whereas for multi-stain segmentation models, each (F1)
score is an average over five different UNet repetitions, each applied to three dif-
ferent CycleGAN repetitions (15 in total); standard deviations are presented in
parentheses. The highest (F1) score achieved across each stain is indicated in bold.

Models Training
Strategy

Test Stains

HC Stains IHC Stains

PAS Jones
H&E

Sirius
Red CD68 CD34

Fully
Supervised
(Baseline)

PAS 0.894
(0.021)

0.062
(0.011)

0.045
(0.037)

0.044
(0.098)

0.056
(0.090)

Jones
H&E

0.009
(0.009)

0.840
(0.029)

0.000
(0.000)

0.000
(0.000)

0.004
(0.007)

Sirius
Red

0.000
(0.000)

0.000
(0.000)

0.865
(0.019)

0.003
(0.003)

0.000
(0.000)

CD68 0.028
(0.030)

0.016
(0.036)

0.000
(0.000)

0.836
(0.031)

0.040
(0.081)

CD34 0.036
(0.025)

0.000
(0.000)

0.000
(0.000)

0.010
(0.012)

0.888
(0.015)

Multi-Stain
Segmentation

MDS1
(Target→PAS)

0.894
(0.021)

0.849
(0.017)

0.870
(0.009)

0.683
(0.043)

0.754
(0.008)

UDAGAN
(Stain-invariant)

0.901
(0.011)

0.856
(0.036)

0.873
(0.025)

0.705
(0.031)

0.799
(0.035)

that glomeruli segmentation is possible for each of the considered stains. However, it
is important to note that the features learned by the baseline models are specific to
the stain on which they are trained. Consequently, a notable decline in performance
is observed when these baseline models are applied to other stains, as shown in Ta-
ble  3.1 . These findings are also illustrated visually in Figure  3.1 , where the baseline
models trained for a particular stain struggle to segment glomeruli structures across
all other stains.

The results obtained with stain transfer based multi-stain segmentation models
(including MDS1, and UDAGAN) are also included in Table  3.1 . Given that stain
transfer is able to produce plausible translations (in accordance with the definition
provided on Page  18 ) and aims to match the distribution of a targeted stain, as
shown in Figure  2.5 of Chapter  2 , it is reasonable to expect that the baseline model
specific to that stain will be able to extract a similar set (or subset) of features in
the translated stains. For instance, the baseline model trained on PAS stain should
be able to extract similar features in Target→PAS translated stains, which is the
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Figure 3.1: Visual comparison of predicted glomeruli segmentation maps across all
stains using two different training strategies: Fully supervised (Baseline) and Multi-
stain segmentation. Baseline models are trained separately for each stain using their
corresponding labels, whereas Multi-stain models are trained using labels from only
one (source) stain, demonstrating their ability to generalise across all stains. The
input images and their corresponding ground-truths used for this visual comparison
comes from a separate unseen test dataset.
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case for MDS1. On the other hand, UDAGAN uses translations from the oppo-
site direction (i.e. PAS→Target) to augment the training data which facilitates the
learning of more general (stain-invariant) and robust features. As a result, a sig-
nificant improvement in the segmentation performance of multi-stain segmentation
models is observed, as shown in Table  3.1 (6th and 7th row). These finding are also
highlighted visually in Figure  3.1 , where both MDS1 and UDAGAN demonstrate
an ability to effectively segment glomeruli structures across all stains, even when
trained using labels from only the PAS stain. This capability sets them apart from
baseline models, which do not possess such robustness and generalisability.

While effective, the performance of multi-stain segmentation models significantly
varies across different target stains. For instance, for Histochemical (HC) stains, in-
cluding PAS, Jones H&E, and Sirius Red, these models achieve results comparable
to their respective baseline models. However, for Immunohistochemical (IHC) stains
such as CD68 and CD34, the multi-stain segmentation models struggle to match the
segmentation performance of their corresponding baseline models, despite the plau-
sible translations obtained for these stains as shown in Figure  2.4 of Chapter  2 . This
discrepancy in performance can be attributed to the distinct characteristics of each
staining protocol. For instance, PAS, Jones H&E, and Sirius Red are HC stains that
mark general tissue structures, and the translation between, for example, PAS and
Jones H&E or Sirius Red is relatively uncomplicated since they are more biologically
closer and thus the difference in their highlighted structures is not great. In contrast,
IHC stains such as CD68 and CD34 target specific markers such as macrophages
and blood vessel (endothelium). In such cases, there exists a significant difference
in the highlighted structures of CD68 and CD34 compared to PAS stain, requiring
more complicated translations [  38 ]. Given that multi-stain segmentation models are
trained using PAS stain labels, these intricacies may hamper the performance of
stain transfer based multi-stain segmentation models for CD68 and CD34.

Recent studies [ 48 – 50 ] on the adversarial nature of CycleGAN have provided
additional evidence to corroborate these findings. These studies have highlighted
that the CycleGAN model is prone to self-adversarial attacks [ 49 ].

To understand why, consider the example of PAS and CD68, where a real image
from CD68, containing macrophages at specific positions, is translated to PAS using
the GCD68→PAS generator. Since the presence of macrophages is irrelevant to the
PAS stain, the generator can ignore them. However, when reconstructing CD68 from
the translated PAS image using the GPAS→CD68 generator, the essential details such
as macrophage position and their quantity must be preserved, as shown in Figure

 3.2 , because of the cycle-consistency loss. How is it able to reconstruct these details
so precisely when this information is not present in the PAS translation? It must
instead embed additional information in the translated image to ensure accurate
reconstruction of the CD68 image. This additional information is stored in the form
of imperceptible noise.

It is our hypothesis that this noise introduces additional domain shift in the
translated images of IHC stains. This domain shift then leads to the drops in per-
formance of multi-stain segmentation models observed in Table  3.1 . An important
step towards handling this domain shift is the ability to detect and measure it. In
the subsequent section, two different methods are proposed to detect and measure
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Figure 3.2: Essential details about the position and quantity of macrophages in
CD68real are preserved in CD68reconstructed, despite not appearing in PAStranslated.

the domain shift introduced during stain transfer.

3.2 Measuring Domain Shift in Stain Transfer

Given the drop in performance caused by the imperceptible noise (domain shift), it
is important to handle this domain shift or at least to estimate when it is likely to
affect an algorithm’s performance. Therefore, this section concentrates on detecting
and quantifying domain shift during stain transfer between a source stain (PAS)
and Target→PAS translated stains. To the best of our knowledge, no such work
exists for digital histopathology, particularly for kidney glomeruli segmentation.

Two approaches for measuring domain shift are investigated in this regard: (a)
the PixelCNN [ 126 ] and (b) the Domain Shift Metric [ 127 ]. The methodology details
for each approach are outlined in the following subsection.

3.2.1 Methods

PixelCNN [ 126 ]: is a generative model designed to iteratively generate the pixels
of an image. It learns the underlying data distribution in an unsupervised manner
by quantifying the pixels of an image x as a product of conditional distributions. As
such, it learns to predict the next pixel value given (conditioned on) all previously
generated pixels. Formally, this is expressed as

pCNN(x) =
n2∏
i=1

p(xi|x1, . . . , xi−1). (3.1)

These conditional distributions are parameterised by a convolutional neural network
(CNN) and hence shared across all pixels in the image.

Song et al. [ 128 ] have shown that a PixelCNN can be used to detect adversarial
attacks in images by visualising differences in the log-likelihood distributions of real
(clean) and perturbed images. The authors trained a PixelCNN on a dataset of
clean images to estimate their underlying probability distribution. This trained
model can subsequently calculate the log-likelihood of any given image, indicating
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how well it aligns with the learned distribution of ‘clean’ images. For this purpose,
the authors used bits per dimension (BPD), a normalised measure of log-likelihood.
For an image x with resolution I × J and K channels, BPD is defined as:

BPD(x) ≜ − log pCNN(x)/(I × J ×K × log 2), (3.2)

where pCNN(x) is the probability assigned to the image by the PixelCNN model.
Using this formulation, the authors found that the perturbed images consistently
exhibited different BPD values compared to the clean images, resulting in their
distinct log-likelihood distributions.

We hypothesise that a similar approach can be used to detect the domain shift in the
translated images during stain transfer. Specifically, using a PixelCNN model, we
aim to visualise the differences in log-likelihood distributions between real PAS stain
and translated (Target→PAS) stains. To achieve this, a PixelCNN model is trained
on the real PAS stain to model its underlying data distribution (training details
are provided in Appendix  A.1.5 ). Once trained, the PixelCNN can be applied to
translated Target→PAS stains to determine whether their distributions overlap with
that of real PAS stain. We then propose to use the Wasserstein distance [ 129 ] (W)
to quantify the similarity between the two distributions (PAS and Target→PAS).
A smaller W indicates more similar distributions, thus providing a reliable measure
of domain shift.

Domain Shift Metric: The Domain Shift Metric [ 127 ] measures the difference
between two domains’ distributions, referred to herein as Domain Shift Scores or
DSS, using the feature representations of a pre-trained model. Consider a CNN
with layers {l1, . . . , lL}. Let Φ(x) = {ϕl1(x), . . . , ϕlk(x)} such that Φlk(x) ∈ {Rh×w}
denotes the filter activations at layer l and filter k. The mean value of each Φlk(x)
is calculated as

clk(x) =
1

hw

h,w∑
i,j

Φlk(x)i,j . (3.3)

Let pSclk(x) denote a distribution of clk(x) over the source stain S and pTclk(x) denotes
the same over the translated (Target→PAS) stain T , then the domain shift metric
(DSM) is defined as

DSM(pS , pT ) =
1

k

k∑
i=1

W
(
pSclk , p

T
clk

)
, (3.4)

where W is the Wasserstein distance [ 129 ] between pSclk(x) and pTclk(x), which tends
towards zero when S and T are similar.

3.2.2 Results

As was shown in Table  3.1 , MDS1 experiences a degradation in performance when
applied to translated (Target→PAS) images of stains CD68 and CD34, compared to
their respective baseline models. Building upon recent studies [ 48 – 50 ], we hypothesis
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Jones H&E→PAS CD68→PAS

Sirius Red→PAS CD34→PAS

Figure 3.3: PixelCNN based visualisation of domain shift in translated Target→PAS
stains w.r.t. real PAS train and test sets.

that this performance degradation is caused by a domain shift introduced in the
translated stains during stain transfer.

To test this hypothesis, the PAS trained PixelCNN model is first validated us-
ing the PAS training data and an unseen PAS test set, see Figure  3.3 . It is found
that, their log-likelihood distributions follow the same order of magnitudes, with
a low Wasserstein distance of 0.0879 (averaged over 5 sets of 1000 randomly sam-
pled patches), indicating low domain shift. The log-likelihood distributions of the
translated Target→PAS stains are also included in this figure and they clearly show
that there is a domain shift compared to the overlapping PAS train/test distribu-
tions. Consequently, the Wasserstein distance between PAS train and translated
Target→PAS stains is observed to be relatively large, see Table  3.2 , indicating a
significant domain shift in the translated stains.

By using the pre-trained segmentation model to extract feature representations
of the source stain (PAS), the domain shift can also be measured using the do-
main shift metric (previously seen in Equation ( 3.4 )). The respective DSS for all
translated (Target→PAS) stains are also included in Table  3.2 .
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Table 3.2: Average Wasserstein Distance and Domain Shift Scores of 5 sets of 1000
randomly sampled patches for the Target→PAS translated stains; standard devia-
tions are in parentheses.

Methods
Test Stains

PAS Jones
H&E→PAS

Sirius
Red→PAS CD68→PAS CD34→PAS

Wasserstein Distance 0.087
(0.003)

0.537
(0.012)

0.493
(0.004)

0.481
(0.006)

0.580
(0.005)

Domain Shift Scores 0.032
(0.017)

0.097
(0.008)

0.119
(0.003)

0.248
(0.002)

0.138
(0.002)

Now that we can detect and measure what appears to be the domain shift,
we investigate whether it is correlated with the full slide segmentation (F1) scores
of MDS1 

1
 (provided in Table  3.1 : 6th row). Figure  3.4 presents the scatter plots

of the DSS and the MDS1 based F1 scores for each translation, revealing a very
strong correlation of −0.9135. This strong negative correlation indicates that as the
domain shift (measured in terms of DSS) increases, the segmentation performance of
MDS1 significantly decreases. In contrast, the PixelCNN based Wasserstein distance
demonstrates a moderate correlation (based on the criteria specified by [ 130 ]) of
−0.5390 

⋆
 with the full slide segmentation scores of MDS1.

3.2.3 Discussions

Although, a correlation is observed between domain shift measured using PixelCNN
and the segmentation performance of MDS1, it is moderate in strength compared
to that observed with the DSM. The primary reason for this difference lies in the
nature of PixelCNN, which is a completely unsupervised approach and does not
use representations specifically tailored for the task to be performed (segmentation
in our case). Conversely, DSM uses feature representations from the pretrained
segmentation model to measure domain shift and therefore integrates task-specific
knowledge. As a result, DSM is more sensitive to the type of domain shifts that
affect segmentation performance. Apart for the use of the pre-trained segmentation
model in DSM, both of these approaches measure domain shift in an unsupervised
manner.

Both approaches exhibit a considerable correlation with whole slide image (WSI)
segmentation scores, even though the domain shift is calculated on a small subset of
the data. Therefore, these findings offer a way to estimate the average performance
of pretrained neural networks trained on source data and applied to unseen target
data (for the same task), without requiring any expert opinions or ground-truths.
For instance, consider a model trained on a specific task using a dataset from a

1MDS1 is a multi-stain segmentation model that allows the applicability of a segmentation
model (trained on source stain) to various other target stains by translating them to source stain.

⋆In our publication [ 52 ], an error was made in calculating the PixelCNN based correlation. The
corrected correlation value is provided here.



3.3. Is Visual Inspection Reliable? 39

Correlation between F1 and DSS Correlation between F1 and W

Figure 3.4: Correlation between segmentation (F1) scores of the whole test slides
translated to PAS and the average domain shift (measured in terms of both Domain
Shift Scores and Wasserstein Distance) of 5 sets of 1000 randomly sampled test
patches.

particular lab or hospital. To assess the model’s generalisability and robustness to
datasets from other hospitals, traditional methods often depend on expert opin-
ions or ground truth comparisons. However, in situations where ground truths are
unavailable, our findings suggest that computing the domain shift between small
samples of the two datasets can estimate the trained model’s average performance.
A minimal domain shift indicates a higher possibility of successful generalisation
of the pretrained model to the new data. This can give an indication of whether
such results should be relied upon or not. We recommend using DSM to measure
the average performance of pretrained models. PixelCNN, on the other hand, is
recommended for measuring general domain shifts between source and target data,
especially in the absence of task-specific pretrained models.

While our work primarily focused on detecting and/or measuring domain shift
introduced during stain transfer, the proposed solution is general and can be applied
to multiple other related applications within the field of computer vision and medical
imaging. In the next section, we will demonstrate one other use of these measures
in the field of digital histopathology.

3.3 Is Visual Inspection Reliable? 

2
 

In light of recent developments in stain transfer, several improvements to Cycle-
GAN have been proposed [ 36 ,  37 ,  72 ,  73 ,  131 ]. For example, Gadermayr et al. [  37 ]
suggested to replace the generator’s ResNet [  132 ] architecture with a UNet [ 29 ].

2This analysis was conducted in collaboration with Jelica Vasiljević (a former PhD student from
SDC research team, ICube).
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Building on this idea, Cai et al. [ 131 ] propose to incorporate additional downsam-
pling and upsampling layers into the UNet architecture to facilitate the learning of
higher-level semantic information. Moreover, de Bel et al. [ 31 ] proposed the addi-
tion of an extra loss function, while Cai et al. [  131 ], Zhang et al. [ 133 ] proposed to
incorporate different normalisation techniques (more details are explained later in
this section). However, due the absence of ground-truth translation targets, these
studies often rely on visual outputs for comparison [ 53 ,  65 ,  73 ]. Despite the plau-
sible visual appearance of these translations, the findings presented in Section  3.2 

indicate that visual comparison is unreliable because of the possible presence of im-
perceptible domain shift within the translations. This ultimately affects the final
predictions of a pretrained model. As a result, visual inspection can be misleading
and may not determine the difference in the quality of the resulting translations.

Beside visual inspection, several quantitative metrics have been used across var-
ious studies [ 36 ,  69 ,  131 ,  134 ] to compare different stain transfer methods. These
metrics include the Structural Similarity Index Measure (SSIM) [ 135 ], Peak Sig-
nal to Noise Ratio (PSNR) [ 136 ], and Fréchet Inception Distance (FID) [ 137 ] etc.
However, SSIM and PSNR require ground-truth translations (i.e. paired samples)
for evaluation. To fulfil this requirement, researchers have suggested using consec-
utive tissue slides stained with different stainings as ground-truths [ 36 ,  131 ]. This
approach, however, has certain limitations, including variability in tissue structure
between slides, inconsistencies in staining procedure, and challenges in slide regis-
tration (alignment). Consequently, obtaining ground-truths for stain transfer is not
straightforward. FID is capable of evaluating the quality of generated (translated)
images without requiring paired samples. Nevertheless, its applicability to medical
imaging raises concerns due to its reliance on an ImageNet based pre-trained net-
work, particularly InceptionV3 [ 138 ]. To this end, several approaches [ 139 – 141 ] have
suggested to adapt FID for medical imaging by using feature extractors pre-trained
on medical datasets. However, recent findings by Woodland et al. [ 142 ] challenge
these approaches and presented novel evidence that medical imaging based pre-
trained networks do not inherently improve FID performance and may even com-
promise its reliability. Therefore, there is a pressing need for a metric that can
accurately evaluate various stain transfer based translation methods in histopathol-
ogy without requiring paired samples, while also preserving diagnostically relevant
features when using any pretrained model.

Given that our proposed methods provide a promising strategy to measure do-
main shift during stain transfer (without relying on ground-truths), we propose that
it can be used as an evaluation metric to provide a comparison between different
stain transfer methods. Notably, this can be achieved by measuring domain shift
in their respective translated images, and the method that results in the lowest do-
main shift will be considered as the most effective in producing high quality and
meaningful translations (i.e. from Target→Source and vice-versa).

To further investigate this, we focused on the use case of employing different
normalisation techniques within the underlying architecture of CycleGAN and dif-
ferent stain transfer models are created by replacing the normalisation layers in both
the discriminators and the generators. Specifically, the original CycleGAN archi-
tecture [  47 ] uses Instance normalisation [ 143 ], which has been employed in various
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state-of-art stain transfer methods [ 28 ,  37 ,  144 ]. On the other hand, several other
studies Shrivastava et al. [ 73 ], Cai et al. [ 131 ] proposed to use Batch normalisation
[ 145 ], while Mahapatra et al. [ 146 ] proposed to use Group Normalisation [ 147 ], and
[ 133 ,  148 ] proposed to use CycleGAN without any normalisation. Further details
about these normalisation techniques are explained in the subsequent subsection.

3.3.1 Normalisation Techniques

In the case of 2D images, the features computed by a model’s layer, denoted as
f , is a 4D tensor f = (N,C,H,W ) where N denotes batch size, C is the number
of channels and H and W are spatial height and width. A normalisation layer
normalises f such that

f̂ =
f − µnorm
σnorm

, (3.5)

where µnorm and σnorm are the mean and standard deviation computed over different
axes depending on the normalisation technique used.

In the case of Batch normalisation [ 145 ], µnorm and σnorm are computed channel-
wise, along the (N,H,W ) axes, thus normalising all feature elements that share the
same channel across a batch. Layer normalisation [ 149 ], calculates µnorm and σnorm
over the (C,H,W ) axes, normalising features for each sample in a batch separately.
Instance normalisation [ 143 ] computes µnorm and σnorm across the (H,W ) axes,
thus normalising features for each sample and each channel separately. Similar to
Layer normalisation, Group normalisation [  147 ] computes µnorm and σnorm over
the (H,W ) axes, but instead of normalising over all channels, a specific number of
groups of adjacent channels is chosen. Thus, when the number of groups is equal
to 1, Group normalisation becomes Layer normalisation, and it reduces to Instance
normalisation when the number of groups is equal to the number of channels. Thus,
the number of groups is a hyperparameter of this layer. In the literature, it is usually
chosen to be a factor of 2, and herein groups of 8, 16 and 32 are tested (32 being
the maximum possible due to the minimal number of filters used in the CycleGAN
convolutional layers).

3.3.2 Experimental Settings

The above mentioned normalisation techniques, in addition to CycleGAN without
using any normalisation (referred to as None) and Layer normalisation [ 149 ], are
used to train the respective stain transfer models. Once the models are trained,
their performance in producing high quality translated images (Target→PAS in our
case) is evaluated by measuring domain shift between the real source (PAS) im-
ages and the translated (Target→PAS) images. Later, it will be examined whether
this domain shift correlates with the segmentation performance of a pre-trained
UNet (trained on PAS stain) applied to different stain translations (Target→PAS),
commonly known as MDS1 segmentation. Since MDS1 employs a task-specific seg-
mentation pretrained model, we used the DSM, presented in Equation ( 3.4 ), in this
evaluation.
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Table 3.3: Domain shift for stain transfer based Target→PAS translated images
using different normalisation techniques. Each score is an average over 5 sets of 1000
randomly sampled patches, with 5 repetitions of pre-trained models each applied to
1 repetition of CycleGAN model. The overall lowest domain shift (averaged across
all target stains) is indicated in bold.

Instance 0.097 0.119 0.248 0.138 0.150
Batch 0.749 0.560 0.796 0.472 0.644

Group8 0.158 0.194 0.247 0.215 0.203
Group16 0.139 0.214 0.226 0.197 0.194
Group32 0.127 0.147 0.264 0.155 0.173
Layer 0.154 0.148 0.309 0.170 0.196
None 0.134 0.293 0.490 0.274 0.298

Normalisation
Techniques

Test Stains

Jones
H&E→PAS

Sirius
Red→PAS CD68→PAS CD34→PAS Overall

3.3.3 Results

Table  3.3 presents the corresponding domain shift values across various stain trans-
fer models created using different normalisation techniques. These values clearly
demonstrate that Instance normalisation based stain transfer achieves the lowest
domain shift of 0.150 compared to other normalisations. Given the strong negative
correlation between DSM and the average performance of a pretrained model, as
highlighted in Section  3.2 , it is expected that the overall performance (average over
all test stains) for MDS1 segmentation using Instance normalisation will surpass
that of other normalisations. Conversely, the highest domain shift value of 0.644
is observed with Batch normalisation, indicating that it will significantly effect the
performance of the pretrained model.

Additionally, the results for MDS1 segmentation across various translated stains
obtained using different stain transfer models are provided in Table  3.4 . These re-
sults show that the Instance normalisation achieves the highest overall performance,
with an average F1 score of 0.789 across all target stains, while the lowest perfor-
mance, with an average F1 score of 0.312, is observed using Batch normalisation.
These results are consistent with the expected outcomes derived from the domain
shift values, presenting a very strong correlation of −0.9685 between domain shift
and F1 scores of MDS1 segmentation using different normalisation techniques, as
illustrated in Figure  3.5 .

To assess the visual quality, the translations (Target→PAS) produced by each
stain transfer models are provided in Figure  3.6 . Visually, these translations (except
Batch normalisation) look plausible and it certainly would not be possible to choose
which model produces better or worse performance. However, the results for MDS1
segmentation provided in Table  3.4 demonstrate significant differences in the per-
formance across different types of normalisation. This indicates that, in the absence
of ground-truths, relying solely on visual inspection to assess stain transfer model’s
performance is unreliable and may lead to inaccurate conclusions. However, our
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Table 3.4: MDS1 based segmentation (F1) scores for glomeruli segmentation across
various target stains using different normalisation based stain transfer models. The
evaluation is conducted on an independent, unseen test dataset. The F1 score is an
average over five different pre-trained segmentation models (UNet), each applied to
three different repetitions of stain transfer models (15 in total); standard deviations
are provided in parentheses. The overall highest F1 score (averaged across all target
stains) is indicated in bold.

Normalisation
Techniques

Test Stains

Jones
H&E→PAS

Sirius
Red→PAS CD68→PAS CD34→PAS Overall

Instance 0.849
(0.017)

0.870
(0.009)

0.683
(0.043)

0.754
(0.008)

0.789
(0.019)

Batch 0.339
(0.059)

0.508
(0.041)

0.002
(0.001)

0.400
(0.067)

0.312
(0.042)

Group8
0.848
(0.011)

0.810
(0.006)

0.308
(0.101)

0.628
(0.040)

0.648
(0.039)

Group16
0.849
(0.011)

0.800
(0.036)

0.486
(0.060)

0.650
(0.039)

0.694
(0.036)

Group32
0.815
(0.007)

0.807
(0.017)

0.546
(0.049)

0.737
(0.015)

0.751
(0.022)

Layer 0.816
(0.014)

0.832
(0.005)

0.167
(0.046)

0.754
(0.024)

0.642
(0.022)

None 0.770
(0.003)

0.730
(0.035)

0.250
(0.028)

0.747
(0.047)

0.624
(0.028)

proposed approach provides a reliable measure to evaluate different stain transfer
methods.

3.4 Improving Stain Transfer

As highlighted in Section  3.1 , CycleGANs can result in the addition of imperceptible
noise in the translated images. This leads to a drop in performance of multi-stain
segmentation methods, such as MDS1 and UDAGAN, particularly when they are
applied to translated immunohistochemical stains. The domain shift metrics de-
tailed in Section  3.2 have shown that this noise can be detected and measured. It
remains to be seen therefore whether this metric can be used as a loss function when
training the CycleGAN. This loss, which we call Domain Shift Loss (DSL), can act
as a novel self-guided strategy towards learning translations with minimal domain
shift, ultimately improving stain transfer and thereby enhancing the performance of
multi-stain segmentation approaches.

Moreover, several other developments [ 48 – 50 ,  150 ,  151 ] in the field of computer
vision have been introduced to address the above mentioned limitation of CycleGAN.
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Figure 3.5: Correlation between segmentation (F1) scores and the measured domain
shift for different normalisation based stain transfer models.

Specifically, Wang et al. [ 50 ] and Shao et al. [ 151 ] proposed to attenuate the cycle-
consistency constraint to reduce its potential for inducing noise in the translated
images. Conversely, Nizan et al. [  150 ] suggested to learn unpaired image-to-image
translations without relying on such constraints. Additionally, Bashkirova et al. [ 49 ]
adopted the idea from adversarial training [ 152 ] to add random Gaussian noise in the
translated images to facilitate more accurate translations. Chu et al. [ 48 ] proposed
to introduce an additional image channel in the training process to embed hidden
information (noise) separately. Although, Nizan et al. [  150 ] and Shao et al. [ 151 ]
have shown superior performance compared to other methods, they are designed for
applications involving significant geometric changes and shape deformations between
the source and the target domains, which is not our primary focus. Finally, in a
model specific to histopathology, Bouteldja et al. [ 77 ] suggest to integrate the pre-
trained segmentation model into CycleGAN to improve stain transfer.

While these developments have shown significant improvements compared to the
original CycleGAN model, they are primarily developed for computer vision applica-
tions and have never been applied to histopathology related tasks (except Bouteldja
et al. [ 77 ]). Therefore, in this section, in addition to our proposed approach of em-
ploying DSL in CycleGAN, we propose to use the methods presented by Bashkirova
et al. [ 49 ], Chu et al. [ 48 ], and Bouteldja et al. [ 77 ]. The use of these approaches
serves two purposes: first, to provide a comparative analysis with our proposed
approach of employing DSL; and second, to investigate their effectiveness for en-
hancing multi-stain segmentation approaches, which to the best of our knowledge,
have not been explored previously.
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Figure 3.6: Target stain patch translated to PAS using CycleGAN based stain trans-
fer models trained with different normalisation techniques.
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3.4.1 Methods

The original architectures, as proposed by the authors [ 48 ,  49 ,  77 ], were used herein
and are provided in Appendix  A.1.6 ,  A.1.7 , and  A.1.8 . The architectural details of
the Domain Shift Loss are follows.

3.4.1.1 CycleGAN with Domain Shift Loss

The original CycleGAN architecture is modified by integrating the DSM (defined
in Equation ( 3.4 )) as a loss (Ldsl) to minimise the impact of domain shift in the
translated images. The DSM uses a pretrained segmentation model (trained only
for the source stain), therefore, in the bidirectional framework of CycleGAN, it is
integrated only in one direction. Particularly, only images from the source stain
and translated (target→source) images are provided to the DSM to calculate the
loss (Ldsl). Additionally, inspired by the idea of Bouteldja et al. [ 77 ], Ldsl is also
calculated between images from the source stain and their respective reconstructions
and identity mapping, such that

Ldsl = Ldsl,translated + Ldsl,cyc + Ldsl,id

= Es∼AEt∼B[DSM(ps, pGBA(t)) + DSM(ps, pGBA(GAB(s))) + DSM(ps, pGBA(s))].
(3.6)

This modification results in the following CycleGAN loss function:

LCycleGAN(GAB, GBA, DA, DB) = Ladv(GAB, DB, GBA, DA)

+ wcycLcyc(GAB, GBA)

+ widLid(GAB, GBA)

+ wdslLdsl(GAB, GBA). (3.7)

This overall objective function guides the translated images to more closely align to
the source domain, thereby reducing their domain shift.

3.4.2 Experimental Setup

While training CycleGAN with Gaussian Noise (referred to as w/ Gaussian Noise),
proposed by Bashkirova et al. [ 49 ] and defined in Equation ( A.1 ), various levels of
noise were tested to identify the best value for maximising segmentation performance
across all target stains. Therefore, a separate hyperparameter study was conducted
using a range of σ values: 0.0125, 0.025, 0.05, 0.075, 0.1, 0.3., 0.5, 0.9. The results
were averaged over 1 CycleGAN and 5 UNet repetitions to select the best value
of σ. Once the best value was determined, the models were re-trained, and the
segmentation (F1) scores were evaluated on a separate unseen test set by averaging
over 3 CycleGAN and 5 UNet repetitions (15 experimental repetitions in total).
Similarly, following range of weight values, 1.0, 5.0, 10.0, were evaluated to select
the best wdsl and wseg across all target stains for CycleGANs integrating the DSL
and the Segmentation Loss proposed by [ 77 ] (see Equation ( A.3 )).
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Table 3.5: MDS1 based segmentation (F1) scores for glomeruli segmentation across
various target stains using different CycleGAN based stain transfer methods. The
evaluation is conducted on an independent, unseen test dataset. Each F1 score is
an average over 5 different UNet repetitions, each applied to 3 different CycleGAN
repetitions (15 in total), with standard deviations presented in parentheses. The
overall highest (F1) score (averaged across all target stains) is indicated in bold.

Jones H&E Sirius Red CD68 PAS PAS
Training
Strategy

Test Stains

HC Stains IHC Stains
Overall

CycleGAN 

∗
 

(baseline)
0.844
(0.026)

0.860
(0.023)

0.643
(0.031)

0.747
(0.021)

0.774
(0.025)

w/ Gaussian Noise [ 49 ] 0.865
(0.016)

0.878
(0.015)

0.669
(0.026)

0.749
(0.028)

0.790
(0.021)

w/ Self-supervision [  77 ] 0.840
(0.027)

0.866
(0.021)

0.686
(0.020)

0.753
(0.024)

0.786
(0.021)

w/ Extra-channels [ 48 ,  77 ] 0.862
(0.019)

0.871
(0.020)

0.634
(0.037)

0.669
(0.041)

0.759
(0.029)

Ours 0.849
(0.024)

0.862
(0.022)

0.694
(0.021)

0.763
(0.012)

0.792
(0.020)

3.4.3 Results

In this section, the previously mentioned CycleGAN based translation methods
are evaluated. These methods are compared not only with the original CycleGAN
(baseline) method but also with each other using the MDS1 multi-stain segmentation
approach.

Table  3.5 presents the results for MDS1 using each translation method. The
results show that, for HC stains, all methods demonstrate similar or improved seg-
mentation performance compared to the baseline method. This improvement is
more pronounced when using ‘CycleGAN with Gaussian Noise’ compared to others.
Conversely, for IHC stains, performance improvements are observed with all meth-
ods except ‘CycleGAN with Extra-channels’. Furthermore, these results show that
the performance gains are more substantial for IHC stains, particularly CD68, com-
pared to HC stains. This is because the original CycleGAN method struggles with
these stains since they are more biologically distinct from the source (PAS) stain,
which introduces more noise in the translated images, resulting in reduced baseline
performance. However, the proposed methods manage to (to some extent) alleviate
this limitation by mitigating such noise from the translated stains. Notably, the
highest overall performance (average across all target stains) is achieved using both

∗A slight difference is noted in the CycleGAN based MDS1 results reported in Table  3.5 com-
pared to those presented in Table  3.1 . This is because the experiments in Table  3.5 are implemented
using Tensorflow 2, while the experiments in Table  3.1 are implemented using the Keras framework
(which is now deprecated and has been integrated into Tensorflow 2).
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Table 3.6: Domain shift measured on Target→PAS translated images using different
CycleGAN based stain transfer methods. Each score is an averaged over 5 sets
of 1000 randomly sampled patches, with 5 repetitions of pre-trained models each
applied to 3 repetition of CycleGAN model.

Jones H&E Sirius Red CD68 CD34
Training
Strategy

Test Stains

HC Stains IHC Stains
Overall

CycleGAN
(baseline)

0.108
(0.009)

0.122
(0.020)

0.270
(0.006)

0.155
(0.005)

0.164
(0.010)

w/ Gaussian Noise [ 49 ] 0.095
(0.003)

0.118
(0.005)

0.255
(0.016)

0.139
(0.009)

0.152
(0.008)

w/ Self-supervision [  77 ] 0.109
(0.008)

0.119
(0.009)

0.279
(0.018)

0.156
(0.008)

0.166
(0.011)

w/ Extra-channels [ 48 ,  77 ] 0.128
(0.010)

0.125
(0.005)

0.279
(0.014)

0.172
(0.009)

0.176
(0.010)

Ours 0.099
(0.006)

0.117
(0.006)

0.261
(0.023)

0.146
(0.011)

0.156
(0.012)

‘CycleGAN with Gaussian Noise’ and our proposed ‘CycleGAN with DSL’.
Moreover, the domain shift (presented in Table  3.6 ) measured for each method

is consistent with the achieved segmentation performance, despite being calculated
on a very small subset of the translated stains. This indicates that methods with
minimal domain shift tend to achieve the highest performance. Specifically, ‘Cycle-
GAN with Gaussian Noise’ and our proposed ‘CycleGAN with DSL’, both showing
minimal domain shift, thereby outperforming all other methods.

3.4.4 Discussions

Although, ‘CycleGAN with Gaussian Noise’ has demonstrated superior performance
for HC stains, its efficacy is less pronounced for IHC stains compared to other meth-
ods, such as ‘CycleGAN with self-supervision’ and our proposed ‘CycleGAN with
DSL’. This discrepancy in performance can be attributed to the Gaussian noise aug-
mentation technique proposed in ‘CycleGAN with Gaussian Noise’, which is partic-
ularly more robust in handling low-amplitude perturbations [ 49 ]. Consequently, it
appears to be particularly effective for scenarios involving subtle differences, as is
the case with HC stains, which are biologically more similar to the source (PAS)
stain. Conversely, IHC stains are more biologically distinct from PAS and may in-
duce high-amplitude perturbations, which are less effectively addressed by Gaussian
noise augmentation. This observation opens up potential avenues for the research
community and could motivate further improvements to enhance this method’s ro-
bustness.

A similar discrepancy in the performance of ‘CycleGAN with Extra-channels’
has been observed. While the authors of this approach claimed that it improves
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the translation between domains involving significant biological differences (i.e. IHC
stains) and is not as beneficial when the translations are straightforward (i.e. with
HC stain), we have observed the opposite behaviour. It performs comparatively
well for HC stains but significantly reduces performance for IHC stains. We be-
lieve that this is because certain shared (common) features between the source and
target stains, which should be present in the translated images, could be placed
into the additional channel for reconstruction. For instance, when translating from
CD68→PAS, common features (i.e. macrophages) present in both PAS and CD68
stains should appear in the resulting CD68→PAS image. However, it is possible
that this approach may misinterpret these features as noise and include them in the
additional channel, especially when they must also be present in the reconstructed
CD68 image. Consequently, a pre-trained model on real PAS images, which have
seen these shared features during training, could experience a decline in performance
if they are not adequately captured in the translated CD68→PAS images.

Conversely, ‘CycleGAN with Self-supervision’ and our proposed ‘CycleGAN with
DSL’ tend to achieve a better performance for IHC stains as they use a pretrained
segmentation model (trained on the source stain) to provide guidance towards learn-
ing features in the translated images that are more closely aligned with the source
stain. In conclusion, we recommend using ‘CycleGAN with Gaussian Noise’ and
‘CycleGAN with Extra-channel’ methods when the translations are performed be-
tween biologically similar stains, and using ‘CycleGAN with Self-supervision’ and
‘CycleGAN with DSL’ when the translation are conducted between biologically dif-
ferent stains.

3.5 Conclusions

This chapter investigated the potential of existing stain transfer methods in digital
histopathology to address inter-stain variations. Notably, CycleGAN has emerged
as a standard approach for stain transfer and has been widely adopted by numerous
state-of-art methods [ 28 ,  36 ,  37 ,  70 – 73 ]. While effective, these methods are prone to
hallucinating features during stain transfer, thereby introducing additional impacts
of domain shift in the translated images, ultimately affecting the final predictions.

An important step towards handling this domain shift is the ability to detect
it. To this end, two different approaches, PixelCNN and DSM, were proposed in
this chapter. These approaches have shown a great ability to detect and/or measure
the domain shift in translated images. DSM, in particular, exhibited a very strong
correlation of −0.9135 between the full slide segmentation scores of MDS1 and the
domain shift, despite being measured on a very small subset of the data. These
findings paves the way to infer the average performance of a pre-trained model when
applied to unseen target data (for the same task) without requiring any expert
opinion or ground-truth. Although, our proposed solution primarily focused on
measuring domain shift in stain transfer, it is general and can detect any kind of
domain shift between source and target data.

Furthermore, this chapter highlighted the drawbacks of various strategies com-
monly employed to evaluate state-of-the-art stain transfer methods and presented a
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more reliable measure for this evaluation without the need of ground-truth transla-
tion targets and/or paired samples.

Finally, these findings were extended to propose a CycleGAN based stain transfer
approach that reduces the domain shift introduced within the translated stains.
This approach was shown to be effective in improving the overall segmentation
performance across all target stains.



Chapter 4

Self-Supervised Learning

The previous chapter explored the inherent limitation of introducing noise during
stain transfer and introduced different strategies for minimising such noise, result-
ing in the enhanced performance of stain transfer based multi-stain segmentation
approaches. While these methods eliminate the need of labels in the target stain, it
is crucial to recognise that these methods rely heavily on a large amount of labelled
data from the source stain. However, acquiring a sufficient amount of labelled data
for source domain 

1
 is still challenging in various medical disciplines. For instance,

in histopathology, for certain tissue or tumour types, sufficient labelled datasets
for the source stain may not be readily available. Nevertheless, recent advances in
computer vision and medical imaging have led to a significant increase in the size of
datasets (usually unlabelled) by several orders of magnitude [ 42 ]. For instance, in
histopathology, the advent of whole slide imaging (WSI) scanners has facilitated the
production of vast amounts of (unlabelled) histopathological image data. In such
situations, where unlabelled data is accessible in large quantities, it can be employed
in limited labelled scenarios to enhance model performance through unsupervised
representation learning [ 87 ].

Considering the aforementioned problems, self-supervised learning (SSL) – a
subset of unsupervised representation learning – is one of the most feasible solu-
tions and has gained huge attention in recent years. This approach generates its
own supervisory signals (i.e. pseudo labels) and learns useful representations from
a pool of unlabelled data by designing a pretext text, thereby eliminating the need
for additional human-annotated labels [ 45 ]. The representations learned using the
pretext task can then be leveraged in different downstream tasks where the amount
of labelled data is limited. Several studies have demonstrated the effectiveness of
self-supervised learning approaches in various histopathology tasks such as detection
and classification [ 102 ,  105 ,  108 ,  109 ,  113 ,  121 ,  122 ,  153 ,  154 ]. However, only limited
attempts have been made to incorporate the advances of self-supervised learning for
histopathology segmentation [ 106 ,  118 ,  155 ,  156 ], particularly multi-stain segmen-
tation.

This chapter uses three approaches to self-supervised representation learning:
SimCLR [  94 ], BYOL [ 96 ], and our proposed extension to CS-CO [ 108 ], called HR-
CS-CO. SimCLR is selected due to its widespread adoption in histopathology related
downstream tasks [ 105 ,  106 ]. While SimCLR’s performance heavily depends on aug-
mentation and the number of negative pairs, demanding huge computing resources
[ 94 ,  105 ], recent methods have shown that negative-pairs are not essential for con-
trastive learning [ 96 ,  157 ,  158 ]. One such method is BYOL [ 96 ]. Finally, to assess

1As noted in Chapter  1 , the term “stain” and “domain” are equivalent.
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the benefits of hybrid SSL strategies, a novel extension to CS-CO [ 108 ], called HR-
CS-CO is included. These representations will then be refined in several downstream
tasks to enhance the performance of single-stain and multi-stain kidney glomeruli
segmentation approaches in the presence of limited labelled data.

Following this methodology, the rest of the chapter is organised as follows:

• Section  4.1 presents the architectural and training details of the employed
self-supervised learning methods. In the context of learning representations,
SimCLR and BYOL are general methods and employ a straightforward learn-
ing approach, which makes them adaptable to a wide range of computer vision
and medical imaging domains. For instance, in histopathology, both SimCLR
and BYOL can be employed to learn representations across various staining
protocols. In contrast, CS-CO is a designed for histopathology, particularly
for H&E stained images, which makes it stain/domain specific. Therefore, in
this section, several modifications are proposed to extend CS-CO, to remove
this limitation, making it stain independent.

• Section  4.2 presents the use of the learned representations (through the afore-
mentioned self-supervised learning methods) to enhance the effectiveness of
various downstream tasks. These tasks are taken to be: single-stain histopatho-
logical segmentation using UNet [ 29 ] in the presence of limited labels for each
stain, and multi-stain histopathological segmentation using MDS1 [ 37 ] and
UDAGAN [  28 ] in the presence of limited labels for only one (source) stain.

• Section  4.3 presents an in-depth comparison of these representation learning
methods tailored for each specified downstream task. Additionally, it provides
valuable insights into the efficacy of these methods, highlighting their strengths
and weaknesses.

• Finally, Section  4.4 highlights the key findings drawn from this exploration of
self-supervised learning methods.

4.1 Methods

As mentioned earlier, this chapter focuses on three different self-supervised pretext
methods to extract the most effective and meaningful representations from a pool of
unlabelled data to improve the performance for different downstream segmentation
tasks in the presence of limited labels, as illustrated in Figure  4.1 . These methods
are SimCLR [ 94 ], BYOL [ 96 ], and a novel extension to CS-CO [ 108 ]. This exten-
sion (presented in Section  4.1.1.3 ) overcomes its stain specific formulation (it was
proposed for the H&E stain) and is called HR-CS-CO. The original architectures,
as proposed by the authors of SimCLR and BYOL, were used in this study, with
details provided in Section  4.1.1.1 and  4.1.1.2 respectively.
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Step #1: Representation Learning

Labelled Dataset 

BYOL

SimCLR

CS-CO

Pretrained 
Model(s)

Step #2: Transfer Learned Representations

Pretrained
Model(s)

UNet

Limited 
Labels

Unlabelled Dataset 

MDS1

UDAGANFully
Supervised

Moderate
Labels

Figure 4.1: Self-supervised learning workflow in histopathology. Step #1: Different
self-supervised learning methods are applied to learn representations from a large
unlabelled dataset. Step # 2: The learned representations are then refined by fine-
tuning on several splits of labelled data for a variety of downstream tasks.

4.1.1 Network Architecture Details

4.1.1.1 SimCLR

A simple framework for contrastive learning of visual representations, or SimCLR
in short [ 94 ], learns representations by maximising the agreement between two aug-
mented views of the same image via a contrastive loss in the latent space. As
illustrated in Figure  4.2 , the framework starts with a probabilistic data augmen-
tation module faug that generates two positively correlated views, xi and xj , of a
given data sample x. A set of base augmentations [ 94 ] are adopted, including ran-
dom cropping and resizing with a large scale range of (0.1-1.0), flipping, grey-scale,
Gaussian blur, and random colour distortions. Based on the findings of [ 105 ], two ad-
ditional augmentations were incorporated, grid distort and grid shuffle, which have
demonstrated their effectiveness for histopathology applications. Further details
and examples of the augmentations can be found in Appendix  B.1 . The augmented
views, xi and xj are then transformed into their corresponding representations,
hi and hj by employing a convolutional neural network (CNN) base encoder fθ,
where θ is the weight parameters. Subsequently, a projection head gθ consisting of
a multi-layer perceptron (MLP) is employed to map the extracted representations
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Augmentation Representation Projection

Figure 4.2: Overview of the SimCLR architecture inspired by [ 94 ,  106 ].

into a lower dimensional embedding space in which the contrastive loss is applied.
The MLP comprises two dense layers with ReLU activation for the first layer and
linear activation for the second layer to obtain zi = gθ(hi) and zj = gθ(hj) re-
spectively. In [ 94 ], it was observed that comparing zi and zj was more effective for
learning representations than directly comparing hi and hj . Finally, as suggested by
the authors of SimCLR, to optimise the entire network NT -Xent (the normalised
temperature-scaled cross-entropy) loss function is defined, such that

ℓi,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi, zk)/τ)
, (4.1)

where τ is the temperature parameter that weights different samples and facilitates
learning from hard negative samples and 1 is the indicator function, which outputs
1 when k ̸= i and 0 otherwise. The term sim(zi, zj) = z⊤i zj/∥zi∥∥zj∥ represents
the dot product between ℓ2 normalised zi and zj , which corresponds to the cosine
similarity. This loss function aims to maximise the agreement between positive
pairs of augmented images, while minimising it for other images in the same batch
(negative pairs). In each training step with a batchsize of 2N , each augmented
image has one positive and 2(N − 1) negative pairs.

4.1.1.2 BYOL

Bootstrap Your Own Latent Representation (BYOL) is an implicit contrastive learn-
ing approach introduced by Grill et al. [ 96 ]. Unlike other contrastive methods,
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Augmentation Representation

  

Projection Prediction

Figure 4.3: Overview of BYOL architecture inspired by [ 96 ].

BYOL does not rely on negative pairs and is more robust to the choice of aug-
mentations. The core idea of BYOL revolves around iterative bootstrapping of the
network’s output to serve as a target for an enhanced representation. To achieve
this, BYOL employs two neural networks, Online and Target, which interact and
learn from each other. As depicted in Figure  4.3 , the Online network is a trainable
network comprising a CNN based encoder fθ, an MLP based projection head gθ,
and a prediction head qθ. On the other hand, the Target network is a non-trainable
network that is randomly initialised. It has the same architecture as the Online
network, but has a different set of weight parameters ξ. The Target network pro-
vides the regression targets used to train the Online network, and its parameters
ξ are updated through an exponential moving average of the Online parameters θ.
Considering a target decay rate τ ∈ [0, 1], the following update is carried out after
each training step:

ξ ← τξ + (1− τ)θ. (4.2)

To train the BYOL network, a data augmentation module faug is used to gen-
erate two distinct augmented views xi and xj from the input image x. This module
incorporates similar augmentations as those used in SimCLR, see Appendix  B.1 .
The Online network processes the first augmented view xi and outputs a represen-
tation hθ, a projection zθ, and a prediction wθ. Similarly, the Target network outputs
a representation hξ, and a target projection zξ from the second augmented view xj .
Notably, the prediction head is solely applied to the Online network, resulting in an
asymmetric architecture between the Online and Target pipelines. Following that,
both wθ and zξ are normalised using ℓ2 norm and then fed into a mean squared
error (MSE) loss function for optimisation, such that

Lθ,ξ = ∥w̄θ − z̄ξ∥22 = 2− 2 ·
⟨wθ, zξ⟩

∥wθ∥2 · ∥zξ∥2
. (4.3)

The loss Lθ,ξ is made symmetrical by separately feeding xj to the Online network
and xi to the Target network. This allows the computation of another loss function
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L̃θ,ξ. During each training step, a stochastic optimisation step is performed to
minimise LBY OL

θ,ξ = Lθ,ξ + L̃θ,ξ with respect to θ only, while ξ remains unaffected by
applying a stop-gradient (sg), as illustrated in Figure  4.3 .

4.1.1.3 CS-CO

CS-CO [ 108 ] is a hybrid SSL method, designed particularly for Haematoxylin and
Eosin (H&E) stained histopathology images. It contains two stages: cross-stain
prediction and contrastive learning. The cross-stain prediction, which is a gener-
ative task, captures low-level general features, e.g. nuclei morphology and tissue
texture, that are valuable for histopathology analysis [ 108 ]. To facilitate this, stain-
separation [ 159 ] is applied to H&E stained images to extract the single-dye channels,
Haematoxylin (Hch) and Eosin (Ech). Afterwards, cross-stain prediction is employed
to learn the relationship between Hch and Ech, using two separate auto-encoders,
H2E and E2H, where H2E predicts Ech from Hch, and vice-versa.

Nevertheless, CS-CO has certain limitations, restricting its broader applicability.
For example, histopathological images often use different staining protocols and
reagents to highlight different tissue structures (e.g. PAS, Jones H&E, Sirius Red,
CD68, and CD34, as used in this study). The stain separation method integral
to CS-CO struggles with ImmunoHistochemical (IHC) stains [ 159 ]. Particularly, it
fails to accurately extract the individual Hch and DABch (Diaminobenzidine) from
CD68. Furthermore, in some cases, histopathological stains contain more than two
dyes, e.g. Jones H&E, where CS-CO’s stain-separation approach would yield three
separate channels—Jch (Jones), Hch, and Ech—which cannot be handled in CS-CO’s
architecture.

To address these limitations and extend the applicability of CS-CO across mul-
tiple stainings, we propose to modify its stain-separation strategy as outlined in
Figure  4.4 . Particularly, we exploit the fact that Haematoxylin is often used as
a counterstain in histopathology, and therefore exists in many stains. This was
first exploited by Lampert et al. [ 27 ] as a strategy for stain invariant segmentation.
Here, however, we use it to extract a common Haematoxylin channel, Hch, which
highlights cell nuclei, via image deconvolution [ 160 ]. The remaining information is
retained as a ‘Residual’ channel (Rch) as illustrated in Fig.  4.4 , step #1, and Fig.

 4.5 , capturing tissue structure highlighted by the other stain components, such as
glycogen, collagen, macrophages, and endothelial cells, etc, depending on the stain-
ing used. Therefore, all stain (containing Hch) can be included by modelling them
as Hch and Rch. In the rest of the chapter, we refer to this modified version of
CS-CO as HR-CS-CO.

Moving forward, in the cross-stain prediction stage, two separate auto-encoders
H2R and R2H are trained as shown in Fig.  4.4 (Step #2). H2R learns to predict Rch

from Hch, and R2H performs the inverse task. Both share the same architecture but
have different weights. For simplicity, ϕh2r and ψh2r is used to represent the encoder
and decoder for H2R (and similarly for R2H). Additionally, the combination of ϕh2r
and ϕr2h, and ψh2r and ψr2h, are denoted as the HR encoder and decoder respec-
tively. The mean square error (MSE) loss is computed to evaluate the dissimilarity
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HR Encoder HR Decoder

 

 

HR Encoder Fixed HR Decoder

Step# 3: Contrastive Learning

AugmentationStain Separation

Learned HR Encoder

Step# 4: Transfer Learned RepresentationsStep# 2: Cross-stain prediction

Step# 1: Stain separation

Figure 4.4: Overview of the proposed HR-CS-CO architecture. In Step# 1, stain-
separation is applied to separate the Hch and Rch from each each stain. In Step#
2, the cross-stain prediction is employed as a generative task, learning to predict
Hch from Rch and Rch from Hch. Lastly, in Step# 3, contrastive learning is used
as discriminative task on the augmented views of Hch and Rch to learn the final
representations. Here, the weights for ϕ and ψ are initialised to those learnt during
cross-stain prediction (i.e. Step #2), thereby combining the strength of generative
and discriminative learning.

between the real (Hch, Rch) and predicted (H∗
ch, R

∗
ch) images, such that

Lcs = (Hch −H∗
ch)

2 + (Rch −R∗
ch)

2 , (4.4)

where

R∗
ch = ψh2r(ϕh2r(Hch)) and H∗

ch = ψr2h(ϕr2h(Rch)).

Once the training of the cross-stain prediction is complete, the trained two-branched
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Figure 4.5: Visualisation of Haematoxylin (Hch) and Residual (Hch) channels ex-
tracted from each of the stains used in this study.

auto-encoder is expected to be sensitive to low-level features.
Next, contrastive learning is employed as the final step to exploit the benefits

of discriminative high level features. Motivated by Chen et al. [ 157 ], the model
is reorganised into a Siamese architecture [ 161 ], consisting of the HR encoder (ϕ),
a projection head (g), and a prediction head (q). The parameters are shared be-
tween the two branches of the Siamese architecture. Both g and q are multi-layer
perceptrons (MLP) with the same architecture. To prevent mode collapse, the HR
decoder (ψ) is retained in one branch as a non-trainable regulator. Instead of em-
ploying random initialisation, the weights for ϕ and ψ are initialised to those learnt
during cross-stain prediction (i.e. Step #2), thereby combining the strength of gen-
eral low-level and discriminative high level features.

During contrastive learning, Hch and Rch are extracted from a given input image
x to give (xh, xr). For each data sample, a data augmentation module faug is used
to generate two distinct augmented views: (x′h, x

′
r) and (x′′h, x

′′
r ). This augmenta-

tion module includes various augmentations such as flipping, random cropping and
resizing, Gaussian blur. Given that the input images are grey-scale, colour-based
augmentations are not applicable, however, drawing inspiration from [ 27 ], we incor-
porate an additional augmentation method called stain variation by using colour
deconvolution [ 162 ]. This augmentation involves modifying the intensities of Hch

and Rch using a factor α, sampled from [−0.25, 0.25], and a bias β, sampled from
[−0.05, 0.05]. These specific values were chosen as they result in realistic output, as
depicted in Figure  4.6 .

Subsequently, each augmented pair is then separately fed into the Siamese net-
work, where it is encoded by ϕh2r and ϕr2h. The resulting outputs are pooled and
concatenated to form a single vector. This vector is processed by the projection
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Figure 4.6: Stain-variation augmentation. From left to right: the process begins by
decomposing an image into its corresponding hematoxylin (Hch) and residual (Rch)
channels. Subsequently, each channel undergoes individual modification using a
random factor α and bias β. The modified versions are represented as H ′′

ch, and
R′′

ch.

head g to obtain (z′, z′′) and the prediction head q to obtain (w′, w′′). The learning
process involves minimising the symmetric loss, such that

Lco =
1

2
∥ sw′ − sz′′∥22 +

1

2
∥Ďw′′ − sz′∥22, (4.5)

where sw′, Ďw′′, sz′, and sz′′ represent the ℓ2 normalised versions of w′, w′′, z′, and
z′′, respectively. This encourages w′ to be similar to z′′ and w′′ to be similar to z′.
Prior to computing the loss, the stop-gradient (sg) operation should be applied to
z′ and z′′ which detaches them from the computational graph. During contrastive
learning, the frozen pre-trained HR decoder (ψ) continues to use the outputs of the
HR encoder (ϕ) for image reconstruction. To avoid collapse, the HR encoder must
maintain the necessary information for image reconstruction, by satisfying Equation

 4.4 . As a result, the total loss is formulated such that

Lcsco = Lcs + γLco, (4.6)

where γ represents the weight coefficient.

4.1.2 Training Setup

4.1.2.1 Dataset

The self supervised pre-training dataset includes image patches extracted from the
training and validation WSIs, as detailed in Section  1.4.1 of Chapter  1 . The image
patches are obtained in an unsupervised manner using a uniform sampling strat-
egy. To ensure a representative and balanced distribution of image samples across
different patients, 15, 000 and 1, 000 image patches were randomly sampled from
the training and validation WSIs of each stain respectively. This results in a final
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dataset of 75, 000 training patches and 5, 000 validation patches. By using such an
extensive dataset, our primary objective is to improve the learning capabilities of the
self-supervised models, thereby facilitating more accurate and robust downstream
application, particularly in situations where the availability of labelled data is very
limited.

4.1.2.2 Training Details

It is a common practice to employ a CNN-based encoder for self-supervised image
representation learning, as is the case with SimCLR and BYOL. HR-CS-CO, how-
ever, relies on a CNN-based auto-encoder. Considering the proven performance of
the UNet, particularly in the context of glomeruli segmentation [  83 ], as shown in
Chapter  3 , its encoder component was used for SimCLR and BYOL. Similarly, its
encoder and decoder components were used as the auto-encoder in HR-CS-CO. In
each of these networks, the extracted representations are subsequently projected
into a lower-dimensional space using a multi-layer perceptron (MLP). Finally, using
the self-supervised validation dataset in an unsupervised scenario, the best trained
model is selected based on the validation loss, which is then used for the downstream
applications of single-stain and multi-stain kidney glomeruli segmentation. In line
with common practice [ 105 ], the training process for the self-supervised networks
(SimCLR, BYOL, and HR-CS-CO) was performed only once due to computational
and time constraints. The training details for each approach are as follows.

SimCLR: The training setup proposed in the original paper [ 94 ] was used. For a
gradual adjustment of the learning rate, a warm-up period of 10 epochs was used,
followed by a decay using the cosine decay schedule. Recently, Stacke et al. [ 105 ] have
shown that smaller batch sizes are preferable when using SimCLR in histopathology,
particularly when dealing with few classes, since it reduces the risk of false negatives
and therefore a batch size of 256 was used. This also allowed the higher resolution
of histopathological images to be used. Following [ 105 ], we trained SimCLR for 200
epochs.

BYOL: A similar training procedure as described in the original BYOL paper [  96 ]
was used. The absence of negative samples in BYOL’s training paradigm allows
it to attain performance parity with SimCLR despite using smaller batch sizes.
Therefore, a batch size of 256 was chosen and the model was trained for 200 epochs.
Since BYOL exhibits susceptibility to poor initialisation and training collapse [ 96 ],
batch-normalisation (BN) is incorporated in the encoder to enhance the robustness
and stability of the learning process as highlighted by Richemond et al. [ 163 ].

HR-CS-CO: Since the concentration of the hematoxylin channel (Hch) can vary
between different stainings, we train separate HR-CS-CO models for each stain. This
is done in two stages: (1) referred to as cross-stain prediction, the model is trained
for 100 epochs with a batch size of 32 using the Adam optimiser (initial learning rate
of 0.001, which, based on the validation loss and a patience of 10 epochs, is reduced
by a factor of 0.1); (2) referred to as contrastive learning, the model is trained again
for 50 epochs and a batch size of 128 using the Adam optimiser (learning rate of
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Table 4.1: Training data with different percentages of labelled glomeruli for each
staining.

PAS Jones H&E CD68 Sirius Red CD34

1% 6 5 5 6 5

5% 33 31 26 32 28

10% 66 62 52 65 56

100% 662 621 526 651 565

% of Labels
Stainings

0.001 and a weight decay of 1 × 10−6). To prevent over-fitting, early stopping is
implemented at both stages.

4.2 Minimally Supervised Histopathology Segmentation

Once the self-supervised model has been trained using one of the aforementioned
pretext tasks, it can be refined by fine-tuning to a variety of downstream tasks, such
as image classification, object detection, image segmentation, etc. These down-
stream tasks are usually accomplished by supervised training and need a significant
amount of labelled data. Self-supervised pre-training proves particularly valuable
when there is limited availability of labelled data, as it enables models to learn repre-
sentations and gain meaningful insights from extensive amounts of unlabelled data.
Similarly, in this Section, pre-training serves as an initial guide to enhance the per-
formance of single-stain and multi-stain glomeruli segmentation in histopathology
images with limited labelled data.

Single-Stain Segmentation involves the segmentation of glomeruli regions from
histopathological images of each stain using their respective labels. The UNet [ 29 ]
model is often used for this task due to its proven success in segmenting biomedical
images [ 82 ], specifically for glomeruli segmentation [  83 ]. However, the UNet is a fully
supervised convolutional neural network (CNN) and relies heavily on a substantial
amount of labels in each stain. To investigate the potential of self-supervised learning
methods to enhance UNet’s performance in the presence of limited labels per stain,
we employ UNet in a self-supervised learning setting. The architectural and training
details of UNet model is provided in Appendix  A.1.1 . Additionally, to integrate
the benefits of the knowledge gained from self-supervised pre-training, the encoder
component of the UNet architecture is initialised with the weights learned during
pre-training (i.e. with SimCLR, BYOL, or HR-CS-CO).

Following Ciga et al. [ 106 ], multiple splits of the overall dataset were created, as
shown in Figure  4.1 . Each split comprises different percentages of labelled data (1%,
5%, 10%, and 100%) taken from the training patients of each stain, as presented in
Table  4.1 . Additionally, seven times more tissue (i.e. non-glomeruli) patches were
included to account for the variability observed in non-glomeruli tissue. In order to
remove the slide background (non-tissue), each image underwent thresholding based
on its mean value, followed by the removal of small objects and closing holes. Similar
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to Stacke et al. [ 105 ], patches extracted from the validation patients of each stain are
employed to select the best model based on the validation loss. The performance of
the trained models is evaluated by segmenting the full WSIs of the test patients from
each stain. The number of glomeruli present in these validation and test stainings
are: PAS - 588 (valid.), 1092 (test); Jones H&E - 590 (valid.), 1043 (test); Sirius
Red - 576 (valid.), 1049 (test); CD34 - 595 (valid.), 1019 (test); CD68 - 521 (valid.),
1046 (test).

Multi-Stain Segmentation involves the segmentation of glomeruli regions from
histopathology images of multiple target stains using the labels for only the source
stain. As detailed in Chapter  2 , current state-of-art multi-stain segmentation ap-
proaches are categorised into: (a) stain-specific methods, such as MDS1 [ 37 ]; and
(b) stain invariant methods, such as UDAGAN [ 28 ]. The architectural and train-
ing setup for both MDS1 and UDAGAN are detailed in Section  2.2.1 and Section

 2.2.2 of Chapter  2 . To assess the effectiveness of the representations learned by pre-
trained networks in the context of MDS1 and UDAGAN, we used the same splits of
labelled data as presented in Table  4.1 , but only for the PAS stain (see Table  4.1 ,
1st row), since these approaches only require labels for the source stain. The moti-
vation behind selecting PAS as the source stain is also described in Section  2.1.1 of
Chapter  2 . The principal objective of this study is to leverage the information from
the source stain (PAS) to train a model capable of accurately segmenting glomeruli
across all target stains, including Jones H&E, Sirius Red, CD68, and CD34. As a
result, this could potentially reduce the need for extensive labelling of the source
stain and eliminating the need of additional labelling required for target stains.

4.2.1 Results

In this section, the pre-trained models are evaluated for each downstream task
(UNet, MDS1, and UDAGAN) in two different settings: fixed-features and fine-
tuning. In the fixed-feature setting, the pre-trained weights are frozen to assess
the quality of the learned representations from self-supervised pre-trained models,
using the same hyperparameters as used for baseline models. When fine-tuning,
the pre-trained weights are updated. To determine the optimal hyperparameters
for fine-tuning, a separate hyperparameter study was conducted using 1%, and 5%
splits of labelled data and the performance was evaluated on the validation set for
each task and pre-training method. Five learning rate values, logarithmically spaced
between 0.0001 and 0.1, were tested. Additionally, two different settings for weight
decay were examined: one with a value of 10−4 and one without any weight decay.
The learning rate was reduced by a factor of 0.1 at the 90th percentile of train-
ing. Based on these experiments, the best hyperparameters were selected, and the
fine-tuned models were re-trained for all label splits. The F1 score is used as the
evaluation metric and the results are presented on a separate unseen test set.

Fully supervised models were trained to establish baselines for different label
splits, including 100% labels. It was found that the fine-tuned models consistently
outperform fixed-feature models, and therefore only fine-tuned results are shown
here (fixed-feature results are in  B.2 ).
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Table 4.2: A comparison of various self-supervised pre-training methods and respec-
tive baselines (randomly initialised without any pre-training) for the downstream
tasks of UNet, MDS1, and UDAGAN using various splits of labelled data. For UNet,
the labels have been used for all stains, while for MDS1 and UDAGAN, the labels for
only source (PAS) stain are used. The evaluation is conducted on an independent,
unseen test dataset using F1 score. Each F1 score is the average of five different
training repetitions (standard deviations are in parentheses). The highest F1 score
for each stain, across different label splits, is in italics, while the overall highest F1

score averaged across all stains is in bold.

PAS Jones H&E CD68 Sirius Red CD34

None (Baseline) 0.015 (0.031) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.253 (0.059) 0.054 (0.018)
SimCLR 0.673 (0.021) 0.519 (0.040) 0.407 (0.015) 0.472 (0.037) 0.652 (0.018) 0.544 (0.026)
BYOL 0.660 (0.018) 0.635 (0.055) 0.625 (0.042) 0.561 (0.044) 0.686 (0.030) 0.633 (0.038)

HR-CS-CO 0.154 (0.044) 0.188 (0.067) 0.048 (0.083) 0.337 (0.082) 0.463 (0.017) 0.238 (0.058)

None (Baseline) 0.546 (0.084) 0.593 (0.080) 0.370 (0.188) 0.707 (0.055) 0.782 (0.041) 0.600 (0.090)
SimCLR 0.852 (0.019) 0.760 (0.017) 0.599 (0.039) 0.618 (0.042) 0.802 (0.011) 0.726 (0.026)
BYOL 0.768 (0.036) 0.746 (0.076) 0.736 (0.033) 0.721 (0.051) 0.800 (0.047) 0.754 (0.049)

HR-CS-CO 0.756 (0.079) 0.628 (0.086) 0.533 (0.067) 0.406 (0.067) 0.707 (0.037) 0.606 (0.067)

None (Baseline) 0.730 (0.017) 0.792 (0.024) 0.643 (0.053) 0.788 (0.022) 0.827 (0.063) 0.756 (0.036)
SimCLR 0.867 (0.019) 0.813 (0.012) 0.690 (0.057) 0.696 (0.060) 0.838 (0.007) 0.781 (0.031)
BYOL 0.794 (0.047) 0.823 (0.054) 0.729 (0.052) 0.722 (0.044) 0.776 (0.057) 0.769 (0.051)

HR-CS-CO 0.807 (0.058) 0.748 (0.098) 0.729 (0.040) 0.711 (0.074) 0.791 (0.026) 0.757 (0.059)

None (Baseline) 0.894 (0.021) 0.840 (0.029) 0.836 (0.031) 0.865 (0.019) 0.888 (0.015) 0.865 (0.024)
SimCLR 0.884 (0.003) 0.873 (0.007) 0.840 (0.011) 0.881 (0.007) 0.867 (0.027) 0.869 (0.011)
BYOL 0.867 (0.009) 0.842 (0.035) 0.818 (0.036) 0.847 (0.012) 0.874 (0.021) 0.850 (0.022)

HR-CS-CO 0.843 (0.033) 0.855 (0.015) 0.872 (0.006) 0.842 (0.023) 0.870 (0.011) 0.856 (0.018)

None (Baseline) 0.030 (0.066) 0.024 (0.054) 0.039 (0.086) 0.036 (0.079) 0.032 (0.071)
SimCLR 0.615 (0.015) 0.403 (0.031) 0.594 (0.026) 0.614 (0.028) 0.556 (0.025)
BYOL 0.516 (0.041) 0.363 (0.027) 0.525 (0.047) 0.494 (0.031) 0.474 (0.037)

HR-CS-CO 0.326 (0.025) 0.224 (0.045) 0.359 (0.050) 0.384 (0.035) 0.323 (0.039)

None (Baseline) 0.711 (0.032) 0.526 (0.041) 0.685 (0.031) 0.613 (0.050) 0.634 (0.038)
SimCLR 0.798 (0.005) 0.534 (0.015) 0.767 (0.008) 0.729 (0.016) 0.707 (0.011)
BYOL 0.713 (0.051) 0.538 (0.047) 0.733 (0.032) 0.605 (0.061) 0.647 (0.048)

HR-CS-CO 0.760 (0.028) 0.335 (0.084) 0.773 (0.015) 0.607 (0.044) 0.619 (0.043)

None (Baseline) 0.776 (0.017) 0.575 (0.025) 0.778 (0.023) 0.656 (0.030) 0.696 (0.024)
SimCLR 0.784 (0.026) 0.541 (0.029) 0.752 (0.040) 0.722 (0.016) 0.700 (0.028)
BYOL 0.706 (0.063) 0.541 (0.060) 0.731 (0.084) 0.650 (0.043) 0.657 (0.062)

HR-CS-CO 0.771 (0.037) 0.433 (0.059) 0.804 (0.041) 0.633 (0.033) 0.660 (0.042)

None (Baseline) 0.849 (0.017) 0.683 (0.043) 0.870 (0.009) 0.754 (0.008) 0.789 (0.032)
SimCLR 0.826 (0.033) 0.638 (0.056) 0.836 (0.034) 0.712 (0.030) 0.753 (0.038)
BYOL 0.833 (0.032) 0.632 (0.042) 0.864 (0.028) 0.652 (0.066) 0.745 (0.042)

HR-CS-CO 0.863 (0.017) 0.614 (0.067) 0.878 (0.018) 0.730 (0.040) 0.771 (0.036)

None (Baseline) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
SimCLR 0.477 (0.015) 0.403 (0.025) 0.261 (0.053) 0.408 (0.010) 0.518 (0.016) 0.413 (0.024)
BYOL 0.647 (0.062) 0.504 (0.083) 0.401 (0.099) 0.513 (0.088) 0.598 (0.064) 0.533 (0.079)

None (Baseline) 0.669 (0.038) 0.498 (0.056) 0.352 (0.056) 0.618 (0.072) 0.692 (0.024) 0.566 (0.049)
SimCLR 0.719 (0.018) 0.616 (0.020) 0.524 (0.014) 0.632 (0.015) 0.716 (0.015) 0.641 (0.016)
BYOL 0.815 (0.027) 0.730 (0.071) 0.603 (0.028) 0.732 (0.028) 0.726 (0.055) 0.721 (0.042)

None (Baseline) 0.816 (0.031) 0.687 (0.014) 0.614 (0.019) 0.750 (0.069) 0.770 (0.022) 0.727 (0.031)
SimCLR 0.781 (0.013) 0.712 (0.013) 0.606 (0.015) 0.706 (0.026) 0.768 (0.012) 0.715 (0.016)
BYOL 0.834 (0.035) 0.767 (0.051) 0.654 (0.040) 0.742 (0.090) 0.781 (0.037) 0.755 (0.051)

None (Baseline) 0.901 (0.011) 0.856 (0.036) 0.705 (0.031) 0.873 (0.025) 0.799 (0.035) 0.827 (0.027)
SimCLR 0.892 (0.008) 0.866 (0.018) 0.777 (0.013) 0.888 (0.015) 0.844 (0.003) 0.853 (0.011)
BYOL 0.883 (0.019) 0.854 (0.039) 0.722 (0.051) 0.818 (0.068) 0.792 (0.036) 0.814 (0.042)

Downstream
Tasks

Label
Splits Pre-training

Test Stains
Average

UNet

1%

5%

10%

100%

MDS1

1% —

5% —

10% —

100% —

UDAGAN

1%

5%

10%

100%
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The results presented in Table  4.2 indicate that, in the majority of limited label
scenarios (1%, 5%), the fine-tuned models consistently outperformed the baselines,
while with moderate (10%) and fully labelled (100%) data, they result in similar or
better performance across all stains.

On average, in the limited label cases, which are equivalent to 5–6 (1%) and
26–33 (5%) labelled glomeruli per stain, the fine-tuned UNet models significantly
outperform the respective baseline UNet models (see last column). This outperfor-
mance is not uniform over all stains however, notably Sirius Red and CD34 with
5% labels do benefit from pre-training but not as considerably as the other stains.
For some stains, it can be observed that pre-training with 100% labels can even
outperform the baseline fully supervised models, however, the benefits are not ev-
ident when averaging over all stains. As our goal is to find a labelling level that
minimises labelling effort while maximising performance, 5% labels offers a good
balance between the two (10% giving only a small increase in performance, while
1% a considerable drop). At this level of labelling, a 11% drop in performance is
observed with BYOL pre-trained UNet in comparison to the fully (100%) supervised
model. This highlights that the number of labels required for training can be re-
duced by 95%. If SSL had not been used in this case, a 26.9% drop in performance
would have been observed (5th row, last column of Table  4.2 ).

In MDS1 multi-stain segmentation, the same pattern can be observed. Using
1% and 5% labels (but in this case only from the source, PAS, stain) results in a
considerable average performance increase over the baseline models. Focusing on 5%
labels, SimCLR pre-training enables MDS1 to achieve an average F1 score of 0.707,
which is only 8.2% lower than the 100% supervised MDS1 baseline (0.789), while
reducing the labelling requirement by 95%. Moreover, this is only 5% lower than
the best average UNet single-stain performance with pre-training, which requires
labels for all stains, whereas MDS1 requires them for only the source stain.

This trend continues in the stain invariant UDAGAN model’s results, where on
average pre-training and fine-tuning with 1% and 5% labels (again, for only the
source stain) considerably outperforms the baselines in all stains. HR-CS-CO pre-
training is not evaluated as UDAGAN is a stain-invariant single-model multi-stain
segmentation approach and HR-CS-CO is trained separately for each stain. In this
case, we observe a 10.6% performance drop when fine-tuning with 5% labels (and
pre-training with BYOL) compared to the 100% supervised baselines. If the model
had been trained in a fully supervised manner with this amount of labels, a 26.1%
drop would have been observed, thus fine-tuning is able to minimise the impact of
the lack of labels.

A visual confirmation of these findings is shown in Fig.  4.7 , in which glomeruli
segmentation maps (for models trained with 5% labels) for each stain are presented.

4.2.1.1 Omitting Validation Data

As shown above, a balance between minimising labels and maximising performance
is achieved using 5% labels. Nevertheless, when training the final models, the results
were obtained using a fully labelled validation set. Therefore, Table  4.3 evaluates
whether the validation set is necessary or whether this labelling requirement can also
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PAS Jones H&E CD68 Sirius Red CD34
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Figure 4.7: Visual comparison between predicted glomeruli segmentation maps and
real ground-truths for each test stain using fine-tuned UNet, MDS1, and UDAGAN
models (trained with 5% labels).
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Table 4.3: Downstream task performance with 5% training labels, without a valida-
tion set. UNet, 5% labels are used for all stains, MDS1 and UDAGAN, 5% labels
are used for only source, PAS, stain. The evaluation is conducted on test set. Each
F1 score is the average of five different training repetitions (standard deviations in
parentheses). Highest F1 score for each stain is in italics, overall highest F1 score
averaged across all stains is in bold.

PAS Jones H&E CD68 Sirius Red CD34

SimCLR 0.812 (0.019) 0.795 (0.034) 0.575 (0.146) 0.612 (0.066) 0.810 (0.020) 0.720 (0.057)
BYOL 0.786 (0.020) 0.839 (0.025) 0.771 (0.027) 0.788 (0.021) 0.870 (0.003) 0.810 (0.019)

HR-CS-CO 0.777 (0.032) 0.695 (0.092) 0.428 (0.086) 0.425 (0.094) 0.700 (0.060) 0.605 (0.072)

SimCLR 0.787 (0.016) 0.608 (0.015) 0.770 (0.021) 0.704 (0.022) 0.717 (0.018)
BYOL 0.813 (0.037) 0.646 (0.038) 0.823 (0.037) 0.695 (0.038) 0.744 (0.037)

HR-CS-CO 0.776 (0.013) 0.251 (0.051) 0.812 (0.007) 0.599 (0.026) 0.609 (0.024)

SimCLR 0.402 (0.193) 0.389 (0.078) 0.000 (0.000) 0.072 (0.120) 0.359 (0.260) 0.244 (0.130)
BYOL 0.850 (0.008) 0.822 (0.021) 0.650 (0.029) 0.815 (0.026) 0.771 (0.011) 0.765 (0.022)

Downstream
Tasks Pre-training

Test Stains
Average

UNet

MDS1 —

UDAGAN

be reduced. It is shown that in many cases, the performance without a validation set
outperforms that obtained when using a labelled validation set. This is explained
by the fact that in the dataset used, there is a lower domain shift (measured by
following [ 52 ]) between the train and test set distributions, which is 0.0655 (averaged
across all stains), compared to the train and validation set distributions, 0.1857.
This allows the models trained without validation data to outperform (on the test
data) those selected using the validation loss. Although, this behaviour is specific
to datasets with the above-mentioned characteristic, it only affects the difference in
performance between the two experimental settings and not the findings themselves.
Let us imagine that there were a lower domain shift between the validation and
training sets, in this case removing the validation set would only eliminate the
increase in performance observed here. It therefore does not invalidate the findings
presented herein, that the validation set can be removed to further minimise labelling
requirements.

With SimCLR and UDAGAN, however, a considerable drop in performance is
observed. This is likely because of overfitting in the absence of validation data.
The model is trained in two stages: (1) pre-training using SimCLR on original
image patches; (2) translation (using CycleGAN models) from PAS to all other
stains during fine-tuning. During the second stage, imperceptible noise caused by
the CycleGAN transfer [ 52 ] is introduced into the training patches. This causes
a domain shift between the training data and test images, reducing performance.
This is exacerbated by the absence of a validation set, which would normally prevent
overfitting to this ‘noisy’ training data. In contrast, BYOL is not affected because it
uses batch-normalisation, which helps to stabilise the training process and prevent
overfitting the noisy inputs. This can be visualised in Fig.  4.8 , where there is
a noticeable lack of class boundary between test glomeruli and negative patches
when training SimCLR-UDAGAN without a validation set, see Fig.  4.8(a) . Such
a boundary exists in the BYOL-UDAGAN representation without validation data,
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(a) (b)

(c)

Figure 4.8: Two-dimensional UMAP embeddings of the representations learned by:
(a) SimCLR and (b) BYOL based UDAGAN models, trained without a validation
set, and (c) SimCLR UDAGAN with a 5% labeled validation set. Models ran-
domly chosen, representations sampled from the penultimate convolutional layer,
100 patches per stain per class from the unseen test set. Each point is a patch from
the respective class and staining.

see Fig.  4.8(b) , and a SimCLR-UDAGAN trained with 5% validation labels, see Fig.
 4.8(c) (for comparison, this model achieves an average F1 score of 0.686, vs. 0.244
without the validation set).

4.3 Discussion

The previous section showed the effectiveness of SSL in combating a lack of labelled
segmentation data in histopathology, approaching fully-supervised performance (e.g.
with BYOL pre-training) in both single-stain UNet and multi-stain UDAGAN mod-
els (e.g. with ∼30 labels per training stain).

We can observe however that not all self-supervised learning approaches are
equal. When fewer labels are available (1% and 5%), general computer vision (CV)
approaches such as SimCLR and BYOL perform best. Even though HR-CS-CO is
specifically designed for histopathology, it only becomes competitive and/or outper-
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forms the CV approaches when provided with moderate (10%) to larger amounts of
labelled data. It is particularly successful when applied to the CD68 stain, outper-
forming even the baseline models. CD68 is an immunohistochemical stain in which
haematoxlyn highlights the main structural component and specific immune cells
are highlighted in brown. It is therefore particularly suited to an approach such as
HR-CS-CO. There are many other similar immunohistochemical stainings, and more
complicated double stainings (e.g. CD3-CD68, CD3-CD163, CD3-CD206, etc [ 164 ])
that should be suitable for such an approach (including the H&E stain CS-CO was
originally developed for). In some of the other stains used in this study (e.g. Sirius
Red), it appears that the superposition of staining components (and weak haema-
toxyln staining) prevents the haematoxlyn channel from being efficiently extracted,
limiting the effectiveness of HR-CS-CO (the difficulty of extracting this component
from Sirius Red has been previously noted in the literature [  27 ]).

The final intended tasks of the pre-trained model often dictate the type of SSL
that should be used. In UDAGAN, BYOL consistently outperforms SimCLR, es-
pecially with highly limited labels, likely due to its robustness to noise during fine-
tuning. Unlike SimCLR, which relies on negative pairs, BYOL uses only positive
samples and keeps a moving average for regularisation, making it less sensitive to
noisy (i.e. translated) data during fine-tuning [ 165 ]. Nevertheless, SimCLR out-
performs BYOL in MDS1, despite both being applied to ‘noisy’ translated stains,
notably CD68 (MDS1’s UNet is trained on the source stain’s real, noise-free, data
making it sensitive to any noise in the target→PAS data during testing [ 52 ]). It
is known that this is particularly evident in immunohistochemical stainings such
as CD68 and CD34 [ 28 ,  52 ], which is confirmed in this study where the noise de-
grades the performance of all pre-training methods equally, including downstream
segmentation.

The role of validation data was shown to strongly impact the success of fine-
tuning pre-trained models. Surprisingly, omitting a validation set greatly improved
the success of fine-tuning, reaching performance levels approaching those of fully
supervised models. This means that almost state-of-the-art performance can be
achieved while reducing labelling requirements by 95%.

Finally, the benefits of self-supervised pre-training are not just restricted to lim-
ited label situations. This study has shown that the performance of fully-supervised
stain-invariant models such as UDAGAN can be improved—pre-training the UDA-
GAN model before fully-supervised training lead to a 2.6% increase in F1 score. This
offers a new SOTA performance in stain-invariant glomeruli segmentation without
any architectural nor labelling changes.

Moving away from renal histopathology, these results are consistent with other
histopathology studies found in the literature and extend upon existing efforts to
reduce the need for extensive manual annotations. Particularly, Prakash et al. [ 97 ]
showed that for nuclei segmentation in the Broad Bioimage Benchmark Collection
dataset, a self-supervised fine-tuned UNet using only 5% labels (32 images) demon-
strated only 3% reduction in IoU score compared to a full supervised UNet. Sim-
ilarly, Punn et al. [ 166 ] reported that a self-supervised fine-tuned UNet using 20%
labels (134 images) for nuclei segmentation on the Kaggle Datascience Bowl Chal-
lenge 2018 dataset only lost 5.1% in F1 score compared to a fully supervised UNet.
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Combined with the results presented herein, these demonstrate minimal performance
degradation despite significant reductions in label requirements. The findings pre-
sented herein, however, go further. Not only do they show the benefit of integrating
pre-training into fully-supervised approaches, but also into multi-stain segmentation
strategies and removing the need for labelled validation datasets. This more than
reduces the labelling requirement to the source stain (a reduction of at least n times,
where n is the number of stains to be segmented).

This discussion has already outlined the limitations of HR-CS-CO and so it re-
mains to address SSL limitations in general. Foremost, there is a risk of introducing
false negatives when training SimCLR on datasets with few classes because mini-
batches are likely to contain several samples from one class. This can lead to a model
that fails to distinguish between semantically “similar” and “dissimilar” images, re-
ducing downstream performance. BYOL, however, overcomes this limitation by not
using negative pairs. Moreover, contrastive SSL in general relies on augmentation
to create “similar” pairs. As outlined by Garcea et al. [  167 ], medical imaging is
sensitive to augmentation since it contains subtle, easily distorted features.

4.4 Conclusions

This chapter has shown how to significantly reduce the need for labelled data (>95%)
in histopathology image segmentation. To achieve this, self-supervised pre-training
techniques— SimCLR, BYOL, and a novel histopathological SSL approach, HR-
CS-CO—were used to learn general features from unlabelled data. These features
were then fine-tuned for single stain and multi-stain segmentation tasks using UNet,
MDS1, and UDAGAN models, making them robust to training scenarios with lim-
ited labels.

These approaches demonstrated consistently superior performance compared to
their respective baselines, and were able to approach the performance of fully su-
pervised models. These findings underscore the potential and significance of in-
corporating these advanced learning techniques in histopathology. The results also
demonstrated that self-supervised learning combined with fine-tuning is most effec-
tive without a validation set, further reducing the labelling requirement. However,
some methods, such as SimCLR, are more susceptible to domain shifts and may
benefit from some labelled validation data to ensure generalisation.

Furthermore, this study advanced the recent trend in histopathology towards
creating multi-stain segmentation models by demonstrating that it is possible to
train a stain-invariant segmentation model with as few as ∼30 labelled positive
patches from one stain. This model closely matches the performance of a fully
supervised UNet trained with ∼3000 positive patches.





Chapter 5

Conclusions and Perspectives

Deep learning algorithms have shown impressive achievements across various digital
histopathology tasks such as cancer detection, disease classification, and transplant
assessment. However, a significant challenge arises in the training of these algo-
rithms, as many state-of-the-art deep learning algorithms are data hungry, often de-
manding extensive amounts of labelled data. This problem is further compounded
by variations in tissue preparation and staining protocols. Consequently, existing
datasets with annotated labels often exhibit limited reusability, even for similar
tasks. To address these variations, researchers have proposed various CycleGAN
based stain transfer methods. These methods facilitate the development of cutting-
edge multi-stain segmentation and/or classification models that can be used across
various stains without requiring the labels for each stain, as detailed in Chapter  2 .
Instead, they tend to only use the labels from a single (source) stain.

While CycleGAN based stain transfer has emerged as a standard approach for
addressing stain variation, its inherent limitations are often overlooked. It struggles
to learn appropriate mappings when translating between stain pairs with significant
differences, such as between histochemical (i.e. PAS) and immunohistochemical (i.e.
CD68/CD34) stains. This limits the use of CycleGAN in downstream tasks, since
it must include additional information (in the form of imperceptible noise) in order
to complete the transfer, which leads to domain shift in the translated stains and
this can affect the final downstream task predictions. The application that this
thesis focused on to investigate these limitations was the segmentation of glomeruli
structures in renal pathology across multiple stains, all of which have been labelled
by trained experts (pathologists) for evaluation purposes.

A crucial step towards handling this domain shift is the ability to detect and
measure it. Therefore, Chapter  3 of this thesis explored the state-of-art in unsuper-
vised deep learning techniques and proposed an approach to detect and quantify this
domain shift. While this focused on detecting domain shift introduced by CycleGAN
based stain transfer models, the proposed solution is general and can detect other
forms of domain shift. Moreover, it was shown that the proposed measures have a
strong correlation with the segmentation performance in the translated stains. Con-
sequently, these findings offer a mechanism to estimate the average performance of
deep neural networks (trained for a source domain) when applied to the same task
in unseen and unlabelled data. This measure was used to demonstrate that relying
on visual assessment, which is widely adopted in practice, is ill-advised and should
not be the sole criterion for evaluating the quality of CycleGAN based translated
images. Finally, the measure was integrated into the CycleGAN model in order to
prevent the noise from being introduced in the translated images and this was shown
to enhance multi-stain segmentation performance.
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Despite the proven effectiveness of existing stain transfer based multi-stain seg-
mentation methods in eliminating the need of labels in the target domain(s), it
should be acknowledged that these methods still rely on a large number of labelled
data from the source domain. This can be challenging in various medical disciplines,
in which the application of existing multi-stain segmentation approaches may prove
impractical, creating a barrier to their widespread adoption. Therefore, Chapter  4 of
this thesis shows that the amount of labelled source data for multi-stain histopatho-
logical segmentation can be reduced by a significant amount with little or no loss of
performance. This is achieved by integrating self-supervised representation learning
(i.e. SimCLR, BYOL, and our proposed HR-CS-CO) using large amount of unla-
belled data.

Moreover Chapter  4 several approaches to use these self-supervised learning
methods in different staining protocols. Methods such as CS-CO are stain specific,
and therefore limited to only a single type of stain (i.e. H&E). The proposed modifi-
cations, which we referred to as HR-CS-CO, not only improved its performance over
baseline models but also expanded its applicability across multiple other stains.

Bringing all the above together, it was demonstrated that the number of required
labels for histopathological segmentation can be reduced by upto 95%, allowing
multi-stain segmentation with as little as approximately ∼30 labelled glomeruli in
a single (source) stain.

In conclusion, the proposed contributions demonstrate significant efficacy in dig-
ital histopathological tasks, particularly those hindered from a scarcity of labelled
data. By enabling models to adapt and generalise effectively in scenarios with lim-
ited labels, these contributions stand to relieve medical experts from time-intensive
labelling efforts and allow them to focus more on the patient care. The proposed
contributions also have the potential to be applied across various other related ap-
plications, particularly in emerging applications, where labels are completely absent
in all domains. By adopting this approach, it becomes feasible to significantly save
time and cost by acquiring few labels for only one specific domain, rather than for
all domains. This capability not only enhances the potential integration into clini-
cal workflows but also facilitates the generalisation of deep learning models across
diverse medically related tasks.

Collectively, these advances contribute to the broader application of deep learn-
ing in medical settings, promoting more efficient, scalable, and cost-effective diag-
nostic solutions.

5.1 Perspectives

The work presented in this thesis opens up several possible research directions, some
of which are concerned with directly improving the proposed methods, while others
involve applying the developed methodology to different but related fields.

The thesis demonstrated that it is possible to segment glomeruli across multiple
stains using only a few labels from a single stain. To further substantiate these find-
ings, additional exploration should be made to confirm that the same approaches
can be used to classify, detect or segment other diagnostically relevant structures
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in digital histopathology (e.g. tubules, etc), irrespective of the staining modality.
Successful application requires that the target structures maintain consistent mor-
phology across different stains, even if the textural and colour information varies.
This approach could also extend to other medical imaging modalities, such as MRI
or CT scans, where anatomical structures of interest retain their general appear-
ance despite different imaging techniques, and to broader computer vision problems
where objects keep their general appearance despite changes in context, texture, or
colour.

The proposed advances in the CycleGAN architecture enhanced its robustness
and generalisation capabilities when used for stain transfer based multi-stain seg-
mentation models. This lays the ground for exploring several other state-of-the-art
deep learning methods that work on similar principles. Recently, diffusion based
deep learning models have been introduced for generating high quality images [ 168 ]
and are gaining significant attention in digital histopathology tasks, particularly
for stain transfer [  169 ,  170 ]. As a result, one of our future research directions is
to investigate diffusion models to further enhance the effectiveness of multi-stain
segmentation methods.

Despite the strides made by the self-supervised learning (SSL) methods in Chap-
ter  4 , our work acknowledges certain challenges. Notably, when training SimCLR
on datasets with limited class diversity, there is an increased risk of generating false
negatives. Additionally, the augmentations used in contrastive based SSL methods
are specifically designed for natural images and medical images are highly sensitive
to these augmentations [  123 ,  167 ]. To overcome these challenges, our future work
will focus on transformer based masked image modelling (MIM) [ 171 ,  172 ]. This ap-
proach represents a more robust approach to self-supervised learning because MIM
aims to learn representations by generating missing parts of an image, thereby forc-
ing the model to learn relationships between different elements within an image.
Notably, these methods do not need any additional augmentation steps and have
demonstrated great scalability and robustness.
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Appendix A

Stain Transfer

A.1 Network Architectures and Training Details

A.1.1 UNet

The UNet [ 29 ], presented in Figure  A.1 , is a highly effective CNN architecture
that has demonstrated remarkable efficacy in segmenting biomedical images [  82 ],
specifically for glomeruli segmentation [ 83 ]. It adopts an encoder-decoder structure,
forming a U-shaped network, which effectively handles both local and global infor-
mation. The encoder path, also known as the contracting path, comprises repetitive
blocks, each encompassing two consecutive 3× 3 convolutions followed by ReLU ac-
tivation and a max-pooling layer. Conversely, the decoder path, or expanding path,
gradually upsamples the feature maps using 2 × 2 transposed convolution layers.
Subsequently, the corresponding feature map from the contracting path is cropped
and concatenated with the up-sampled feature map, followed by two consecutive
3× 3 convolutions and a ReLU activation. Finally, a 1× 1 convolution is applied to
reduce the feature map to the desired number of channels (classes), generating the
segmentation map. The cropping step is necessary since pixels at the edges contains
less contextual information and therefore should be discarded.

The UNet is trained for 250 epochs (following [ 28 ]) using a batch size of 8 and
a learning rate of 0.0001. To ensure consistency, all patches are standardised to
[0, 1] and normalised by the mean and standard deviation of the training set. Five
different repetitions of the UNet model were trained for each stain and for each split
of labelled data. As cropping is performed to discard the less contextual information,
the predicted segmentation output has a size of 324×324 pixels, see Figure  A.1 for
more details. The same augmentation as suggested by Lampert et al. [ 27 ], are
applied with an independent probability of 0.5 (“on the fly”). Specifically, these
augmentations with their respective parameters are listed as follows:
elastic deformation: with parameters (σ = 10, α = 100)
affine: random rotation sampled from [0◦, 180◦], random shift sampled from [-205,
205] pixels, random magnification sampled from [0.8, 1.2], and horizontal/vertical
flip
noise: additive Gaussian noise 

1
 with σ ∈ [0, 2.55]

blur: Gaussian filter 1 with σ ∈ [0, 1]
brightness: enhance 

2
 with a factor sampled from [0.9, 1.1];

contrast: enhance 2 with a factor sampled from [0.9, 1.1];

1Using the appropriate  scikit-image functions.
2Using the appropriate  PIL functions.

https://scikit-image.org/
https://python-pillow.org/
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Figure A.1: Overview of the UNet architecture.

stain variation: by colour deconvolution [ 162 ], α sampled from [-0.25, 0.25] and β
from [-0.05, 0.05].

A.1.2 CycleGAN

To train CycleGAN, the network architecture and loss weights (wcyc = 10, wid = 5)
are taken from the original paper [ 47 ], since they produced realistic output, as can be
seen in Figure  2.4 of Chapter  2 . To deal with large patch sizes (i.e. above 256× 256
pixels), a translation network with 9 ResNet blocks is employed, as suggested by the
authors. The model is trained for 50 epochs, with a learning rate of 0.0002 using the
Adam optimiser, and a batch size of 1. Starting from the 25th epoch, the learning
rate linearly decayed to 0, and the weights for cycle-consistency (wcyc) and identity
(wid) are halved. In all experiments, the translation model from the final (50th)
epoch is used. Additionally, to reduce model oscillation, the strategy proposed by
[ 173 ] is adopted that updates the discriminator using the 50 previously generated
samples.

A.1.3 MDS1

MDS1 requires both a UNet and CycleGAN network to be trained. The UNet and
CycleGAN models are trained as described in Appendix  A.1.1 and  A.1.2 respectively.
Once the models are finished training, the trained UNet model is then applied to
‘fake’ source stains, referred herein as Target→Source, to generate the segmentation
mask for Target stain.

To account for random variations, the CycleGAN network was trained three
times for each target stain, and five repetitions of the UNet were trained for each
CycleGAN (resulting in 15 repetitions).
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A.1.4 UDAGAN

The training process of UDAGAN follows a similar approach to MDS1, incorporating
both UNet and CycleGAN networks. Specifically, the first step involves training of
a separate CycleGAN network for each target stain, enabling the translation from
Source→Target. Subsequently, a training patch is translated into randomly selected
stain (with a probability of N−1

N , where N is the number of stains) using the pre-
trained CycleGAN network(s). Thus, all available stains (including the source stain)
are presented to the network with equal probability, 1

N , forcing the network to learn
stain invariant features. The same augmentations as for the UNet are used when
training UDAGAN.

A.1.5 PixelCNN

The PixelCNN [  126 ] architecture is used to model the underlying distribution of
PAS stain. The architectural configurations are formalised as: the model employs
3 Resnet [ 132 ] blocks consisting of 5 residual layers in the encoding phase, with
2 × 2 downsampling between the ResNet blocks. In the decoding phase, the same
architecture is employed, but with upsampling layers instead of downsampling. All
residual layers utilise 160 filter maps in their convolutional layers and have a dropout
of 0.5. The overall training for one PixelCNN model took approximately 15 days on
an HPC with 4 V100 GPUs (in parallel).

Since each pixel value is conditioned on the product of all previously generated
pixels, the models were trained and evaluated on patches of size 32×32 due to GPU
memory limitations. For each stain, we extracted 1280000 train, validation, and
test patches from the corresponding patients. The model is trained for 60 epochs
with a learning rate of 0.001 and a decay rate of 0.999. The best model is saved
with the lowest bits-per-dimension score [ 174 ] on the validation set. We use 128000
patches as the validation set, extracted randomly from the validation patients. We
employed the original publicly available implementation 

3
 .

A.1.6 CycleGAN with Gaussian Noise

Bashkirova et al. [ 49 ] stated that it is impossible to separate the pure structured
noise from the translated images. Consequently, classical adversarial defence meth-
ods [ 175 – 178 ] can not be used. Nevertheless, Inspired by [ 179 ], Bashkirova et al.
[ 49 ] introduced a novel mechanism to enhance the CycleGAN model’s robustness by
adding random noise to the translated images before the reconstruction of original
image, as illustrated in Figure  A.2 . This additional noise disrupts the embedded
noisy signal in the translated image, leading to a significant increase in the recon-
struction error. As a result, the generator should start to learn the accurate image
reconstruction without relying on the embedded noise. This modification is inte-
grated into the cycle-consistency loss (defined in Equation ( 2.2 ) of Chapter  2 ), which

3
 https://github.com/openai/pixel-cnn 

https://github.com/openai/pixel-cnn
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Figure A.2: Overview of CycleGAN with Gaussian Noise for stain transfer

is modified such that

Lcyc(GAB, GBA) = Es∼A[∥GBA(GAB(s) +N (0, σ))− s∥1]
+ Et∼B[∥GAB(GBA(t) +N (0, σ)))− t∥1], (A.1)

where N (0, σ) denotes zero-mean Gaussian noise with standard deviation σ, where
σ lies within the range of [0, 1] .

A.1.7 CycleGAN with Extra-Channels

Inspired by the idea of [ 48 ], Bouteldja et al. [ 77 ] introduced another approach that
incorporates an additional-feature channel, similar to image size (i.e. 508× 508 pix-
els), into both the input and output of each generator. The input is zero-padded with
three extra channels (RGB). While translating Source→Target (and vice versa), the
output of the generator (GAB) now comprises the usual three-channel translation,
which is then propagated through the respective discriminator, alongside three ad-
ditional channels. The hope is that these additional channels will be used by the
generator to store the artificial meta-information (i.e. hidden noise) that are crucial
for its subsequent reconstruction. Thus, this approach presents an opportunity for
the generators to implicitly separate the imperceptible noise from the translations,
leading to the noise-free translations.



A.1. Network Architectures and Training Details 81

Figure A.3: Overview of CycleGAN with Self-supervision for stain transfer.

A.1.8 CycleGAN with Self-Supervision

Bouteldja et al. [ 77 ] introduced a novel approach tailored to improve the CycleGAN
architecture for specific applications, such as stain-transfer based segmentation in
histopathology, by integrating a pre-trained segmentation network. This approach
aims to optimise the hidden information (imperceptible noise) within the translated
images through semantic guidance in a self-supervised manner. The pre-trained
segmentation network is initially trained on the source domain, where labels are
readily available. Throughout training, as depicted in Figure  A.3 , only images from
the source domain, alongside their reconstructions and identity mappings, are fed
through the pre-trained segmentation network. Since the segmentation network is
pre-trained on real samples from the source domain, the segmentation output of real
images from source domain serves as ground-truth. These ground-truths are then
used as targets for self-supervision, wherein discrepancies between the network’s pre-
dictions (for reconstructed and identity images), and the ground-truth are penalised
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using a segmentation loss (Lseg), which is defined as:

Lseg = Lseg,cyc + Lseg,id

= Es∼A[∥Munet(GBA(GAB(s))−Munet(s))∥1
+ Es∼A∥Munet(GBA(s))−Munet(s))∥1] (A.2)

where Munet is a pre-trained source segmentation network. Consequently, by opti-
mising Lseg, the overall CycleGAN framework learns to better translate the features
to give consistent segmentation outputs. The overall loss function of CycleGAN
(presented in Equation ( 2.4 )) can now be formulated as:

LCycleGAN(GAB, GBA, DA, DB) = Ladv(GAB, DB, GBA, DA)

+ wcycLcyc(GAB, GBA)

+ widLid(GAB, GBA)

+ wsegLseg(GAB, GBA). (A.3)



Appendix B

Self-supervised Learning

B.1 Augmentations

Albumentations library [ 180 ] is used to apply different augmentations for the pre-
training of various self-supervised methods. Given an input image of size 508×508, a
visual example for each augmentation is provided in Figure  B.1 . Table  B.1 provides
the implementation details and specified augmentation parameters in our study.

(a) Original (b) Flip (c) Random Rotate

(d) Grayscale (e) Colour Jitter (f) Gaussian Blur

(g) Random Crop Resize (h) Grid Distort (i) Grid Shuffle

Figure B.1: Visualising different methods to augment the input data for self-
supervised learning.
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Table B.1: List of applied image augmentations including their specific parameters
and the probability of application.

Augmentation Parameters Probability

Flip - 0.5

Grayscale - 0.5

Random Rotate - 0.5

Grid Shuffle grid : (3, 3) 0.6

Gaussian Blur blur_limit : (3, 7)
sigma_limit : (0.1, 2.0) 0.5

Random Crop Resize
height : 508
width : 508

scale : (0.2, 1.0)
0.8

Grid Distort
num_steps : 9

distort_limit : 0.3
border_mode : 2.0

0.6

Colour Jitter

brightness : 0.8
contrast : 0.8

saturation : 0.8
hue : 0.2

0.8

B.2 Results with Fixed Representations

To evaluate whether self-supervised learning methods are able to learn meaning-
ful representations and generalise to downstream tasks, it is important to use a
fixed-feature setting. Therefore, in this setting, the representations learned are used
as feature vectors in the downstream tasks of UNet, MDS1, and UDAGAN and
the results are provided in Table  B.2 , evaluated across different splits of labelled
data. Since these self-supervised pre-training methods are not explicitly designed
for learning representations well-suited for the tasks of UNet, MDS1, and UDAGAN.
Consequently, fixed-feature settings exhibit a significant drop in performance when
compared to fine-tuned models (as presented in Table  4.2 ), and this is particularly
noticeable in the case of HR-CS-CO. This highlights the need for a more effective
stain separation methods beyond the classical, matrix decorrelation based approach
employed in our study. This is why, during fine-tuning, HR-CS-CO’s representa-
tion is able to better adapt to the specific characteristics of the downstream task,
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Table B.2: Performance evaluation of various self-supervised learning based UNet
methods in a fixed-feature scenario for glomeruli segmentation. The performance is
evaluated in terms of segmentation (F1) score, averaged over five different training
repetitions, with the standard deviations presented in parentheses.

PAS Jones H&E CD68 Sirius Red CD34

SimCLR 0.575 (0.043) 0.472 (0.022) 0.348 (0.073) 0.376 (0.070) 0.700 (0.032) 0.494 (0.048)
BYOL 0.478 (0.086) 0.556 (0.075) 0.190 (0.075) 0.471 (0.071) 0.688 (0.011) 0.477 (0.064)

HR-CS-CO 0.191 (0.049) 0.079 (0.039) 0.030 (0.061) 0.170 (0.070) 0.312 (0.075) 0.156 (0.059)

SimCLR 0.800 (0.009) 0.724 (0.013) 0.538 (0.087) 0.526 (0.093) 0.809 (0.004) 0.679 (0.041)
BYOL 0.734 (0.068) 0.763 (0.035) 0.435 (0.044) 0.656 (0.047) 0.745 (0.040) 0.667 (0.047)

HR-CS-CO 0.469 (0.056) 0.546 (0.020) 0.228 (0.051) 0.252 (0.054) 0.499 (0.036) 0.399 (0.043)

SimCLR 0.850 (0.005) 0.794 (0.017) 0.698 (0.033) 0.509 (0.077) 0.820 (0.019) 0.734 (0.030)
BYOL 0.785 (0.042) 0.765 (0.015) 0.600 (0.042) 0.731 (0.036) 0.789 (0.032) 0.734 (0.033)

HR-CS-CO 0.563 (0.051) 0.644 (0.011) 0.279 (0.016) 0.461 (0.083) 0.540 (0.034) 0.498 (0.039)

SimCLR 0.881 (0.006) 0.848 (0.016) 0.794 (0.011) 0.786 (0.024) 0.876 (0.009) 0.837 (0.013)
BYOL 0.878 (0.007) 0.849 (0.011) 0.781 (0.012) 0.800 (0.018) 0.867 (0.011) 0.835 (0.012)

HR-CS-CO 0.578 (0.077) 0.711 (0.009) 0.619 (0.032) 0.683 (0.028) 0.675 (0.013) 0.653 (0.032)

SimCLR 0.540 (0.045) 0.348 (0.013) 0.526 (0.034) 0.513 (0.030) 0.482 (0.031)
BYOL 0.471 (0.034) 0.329 (0.029) 0.472 (0.042) 0.466 (0.026) 0.435 (0.033)

HR-CS-CO 0.165 (0.034) 0.085 (0.043) 0.207 (0.054) 0.186 (0.051) 0.161 (0.046)

SimCLR 0.746 (0.013) 0.529 (0.012) 0.732 (0.012) 0.645 (0.021) 0.663 (0.014)
BYOL 0.702 (0.015) 0.438 (0.020) 0.657 (0.018) 0.638 (0.022) 0.609 (0.019)

HR-CS-CO 0.410 (0.014) 0.145 (0.019) 0.352 (0.014) 0.362 (0.015) 0.317 (0.015)

SimCLR 0.806 (0.017) 0.632 (0.016) 0.731 (0.015) 0.780 (0.016) 0.709 (0.026)
BYOL 0.745 (0.013) 0.612 (0.014) 0.715 (0.015) 0.729 (0.013) 0.622 (0.023)

HR-CS-CO 0.435 (0.012) 0.355 (0.017) 0.482 (0.016) 0.501 (0.014) 0.365 (0.024)

SimCLR 0.921 (0.005) 0.844 (0.010) 0.853 (0.010) 0.896 (0.010) 0.744 (0.009)
BYOL 0.896 (0.008) 0.831 (0.013) 0.843 (0.010) 0.880 (0.011) 0.742 (0.015)

HR-CS-CO 0.724 (0.011) 0.610 (0.016) 0.683 (0.015) 0.705 (0.013) 0.427 (0.037)

SimCLR 0.529 (0.038) 0.463 (0.055) 0.315 (0.078) 0.491 (0.048) 0.589 (0.043) 0.477 (0.053)
BYOL 0.534 (0.020) 0.427 (0.018) 0.281 (0.042) 0.473 (0.051) 0.560 (0.021) 0.455 (0.031)

SimCLR 0.752 (0.007) 0.664 (0.042) 0.524 (0.067) 0.689 (0.008) 0.753 (0.010) 0.677 (0.027)
BYOL 0.779 (0.023) 0.683 (0.043) 0.462 (0.047) 0.694 (0.026) 0.701 (0.044) 0.664 (0.037)

SimCLR 0.775 (0.019) 0.691 (0.045) 0.608 (0.035) 0.733 (0.026) 0.768 (0.011) 0.715 (0.027)
BYOL 0.830 (0.027) 0.743 (0.029) 0.518 (0.035) 0.728 (0.031) 0.764 (0.017) 0.717 (0.028)

SimCLR 0.835 (0.018) 0.755 (0.036) 0.637 (0.056) 0.794 (0.031) 0.772 (0.032) 0.758 (0.035)
BYOL 0.860 (0.020) 0.819 (0.022) 0.618 (0.025) 0.810 (0.022) 0.791 (0.025) 0.780 (0.023)

Downstream
Tasks

Label
Splits Pre-training

Test Stains
Average

UNet

1%

5%

10%

100%

MDS1

1% —

5% —

10% —

100% —

UDAGAN

1%

5%

10%

100%

and therefore compensate for the limitations caused by the loss of information re-
sulting from the stain separation used during training. Nonetheless, it is essential
to acknowledge that even though fixed-feature models experience a decline in per-
formance, they show improved results in comparison to baseline models, especially
when employing SimCLR and BYOL as pre-trained models. This improvement is
particularly evident when the models are subjected to limited labelled data, such as
1% and 5%. Moreover, when provided with moderate (10%) to fully (100%) labelled
data, the fixed-feature models approach the performance levels of baseline models.
This highlights the effectiveness of self-supervised learning methods in the context
of their capacity to learn meaningful representations.
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Résumé

Contexte

L’intégration de l’intelligence artificielle, en particulier du deep learning (DL), avec
l’imagerie médicale offre d’énormes promesses et potentiels. Les systèmes de diag-
nostic assisté par ordinateur (CAD) automatisés, alimentés par le deep learning,
sont devenus l’un des domaines de recherche les plus importants dans le domaine
de l’imagerie médicale. Dans un tel environnement, l’histopathologie numérique ne
fait pas exception. Cependant, un défi majeur dans l’application du deep learning
à l’histopathologie réside dans les variations inter- et intra-colorations, voir la Fig-
ure  1 , résultant de différentes colorations et protocoles. Ces variations conduisent
au problème de changement de domaine, ce qui impacte de manière significative
la performance des modèles de deep learning à la pointe de la technologie (SOTA)
entraînés pour une coloration (également appelée domaine en apprentissage automa-
tique) lorsqu’ils sont appliqués à d’autres colorations (même pour la même tâche).
Ce comportement est illustré dans le Tableau  1 (1ère ligne), où un modèle U-Net
entraîné pour la segmentation des glomérules rénaux en utilisant la coloration PAS
démontre une baisse notable de performance de segmentation lorsqu’il est appliqué
à d’autres colorations. L’acquisition d’étiquettes pour chaque coloration est un pro-
cessus chronophage et coûteux, principalement en raison de la nécessité de faire
appel à des experts médicaux hautement spécialisés pour étiqueter les données.

Pour surmonter ces défis, le transfert de coloration — où l’apparence d’une image
est modifiée artificiellement après son acquisition à l’aide d’un cadre de traduction
d’image à image non appariée basé sur CycleGAN [ 47 ] — a émergé comme la so-
lution à l’état de l’art (SOTA). Ce processus vise à transformer une image colorée

PAS Sirius Red CD68

Figure 1: Variabilité de la coloration des structures glomérulaires en histopathologie
rénale, les variations inter-colorations étant représentées par les lignes et les varia-
tions intra-coloration étant représentées par les colonnes.



Stain Transfer

Stain Transfer

Image stained with stain B
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Figure 2: Le principe de base du transfert de coloration consiste à modifier arti-
ficiellement l’apparence d’une image. Dans la 1ère ligne, une image avec les car-
actéristiques de la coloration A est artificiellement transformée pour ressembler à
une image avec les caractéristiques de la coloration B. Dans la 2ème ligne, une im-
age avec les caractéristiques de la coloration B est artificiellement transformée pour
ressembler à une image avec les caractéristiques de la coloration A.

avec la coloration A pour qu’elle ressemble à une image colorée avec la coloration B,
et vice-versa. Un exemple du résultat du transfert de coloration est illustré dans la
Figure  2 , où une image de type coloration B est artificiellement générée à partir de
la coloration A et une image de type coloration A est artificiellement générée à partir
de la coloration B. D’un point de vue vision par ordinateur, ces images générées
artificiellement peuvent être utilisées pour minimiser les disparités de distribution
(c’est-à-dire le décalage de domaine) entre la coloration A et la coloration B, amélio-
rant ainsi la robustesse d’un modèle face à différentes variations de coloration. Par
exemple, les modèles d’apprentissage profond entraînés sur des images réelles de la
coloration A devraient être capables d’extraire des caractéristiques similaires et de
fonctionner efficacement sur des images de type coloration A (traduites à partir de la
coloration B), et vice-versa. Cela ouvre la voie au développement de diverses méth-
odes de segmentation multi-colorations [  28 ,  36 ,  37 ,  70 – 73 ], utilisant des étiquettes
d’une seule (source) coloration. Ces méthodes peuvent être principalement classées
en deux stratégies d’entraînement différentes:

Spécifique au colorant : Entraînement d’un modèle de segmentation pour un
colorant particulier, appelé le colorant source, pour lequel les étiquettes sont disponibles.
Ce modèle spécifique au colorant est ensuite appliqué à divers autres colorants cibles
en les traduisant en colorant source pendant le test. La Méthode Multi-Domain Su-
pervised 1 (MDS1) [ 37 ] est actuellement la méthode SOTA dans cette stratégie
d’entraînement.

Invariant au colorant : Entraînement d’un modèle de segmentation invariant au



Table 1: Le principe de base du transfert de coloration consiste à modifier artificielle-
ment l’apparence d’une image. Dans la 1ère ligne, une image avec les caractéristiques
de la coloration A est artificiellement transformée pour ressembler à une image avec
les caractéristiques de la coloration B. Dans la 2ème ligne, une image avec les carac-
téristiques de la coloration B est artificiellement transformée pour ressembler à une
image avec les caractéristiques de la coloration A.

Training
Strategy

Test Stains

HC Stains IHC Stains

PAS Jones
H&E

Sirius
Red CD68 CD34

Baseline
PAS

0.894
(0.021)

0.062
(0.011)

0.045
(0.037)

0.044
(0.098)

0.056
(0.090)

MDS1
(Target→PAS)

0.894
(0.021)

0.849
(0.017)

0.870
(0.009)

0.683
(0.043)

0.754
(0.008)

UDAGAN
(Stain-Invariant)

0.901
(0.011)

0.856
(0.036)

0.873
(0.025)

0.705
(0.031)

0.799
(0.035)

colorant sur tous les colorants disponibles, en utilisant les étiquettes d’un seul
(source) colorant. Ce modèle invariant au colorant peut être directement appliqué
à divers autres colorants, y compris les colorants hors distribution, sans besoin de
traduction pendant le test. L’Augmentation de Domaine Non Supervisée utilisant
des Réseaux Adversariaux Génératifs (UDAGAN) [ 28 ] est actuellement la méthode
SOTA dans cette stratégie d’entraînement.

Les résultats obtenus avec les modèles de segmentation multi-teinte basés sur le
transfert de teinte (y compris MDS1 et UDAGAN) sont également présentés dans
le Tableau  1 . Étant donné que le transfert de teinte est capable de produire des
traductions plausibles 

1
 et vise à correspondre à la distribution d’une teinte ciblée,

comme le montre la Figure  2 , il est raisonnable de s’attendre à ce que le mod-
èle de base spécifique à cette teinte soit capable d’extraire un ensemble similaire
(ou un sous-ensemble) de caractéristiques dans les teintes traduites. Par exemple,
le modèle de base entraîné sur la teinte PAS devrait être capable d’extraire des
caractéristiques similaires dans les teintes traduites Target→PAS, ce qui est le cas
pour MDS1. D’autre part, UDAGAN utilise des traductions depuis la direction
opposée (c’est-à-dire PAS→Target) pour augmenter les données d’entraînement, ce
qui facilite l’apprentissage de caractéristiques plus générales (invariantes à la teinte)
et robustes. En conséquence, une amélioration significative de la performance de
segmentation des modèles de segmentation multi-teinte est observée, comme le mon-
tre le Tableau  1 (2ème et 3ème ligne), malgré un entraînement uniquement sur des

1Le terme “plausible” fait référence au fait qu’une image histologique, lorsqu’elle est traitée
avec d’autres modalités de teinture sans la connaissance des sections de tissu adjacentes et/ou des
informations spécifiques au patient (par exemple, la maladie sous-jacente), semble visuellement
correcte pour un expert formé en ce qui concerne les caractéristiques de teinture et l’apparence
morphologique des composants tissulaires [ 23 ].



étiquettes provenant de la teinte PAS.
Bien que efficaces, les méthodes de transfert de taches basées sur CycleGAN

sont susceptibles d’être vulnérables aux attaques auto-adversariales [ 48 ,  50 ,  181 ], où
des informations supplémentaires sous la forme de bruit imperceptible sont ajoutées
aux traductions de taches générées artificiellement. Ce bruit imperceptible intro-
duit un décalage de domaine dans les taches traduites (images) [ 125 ], ce qui peut
potentiellement affecter les prédictions finales des méthodes de segmentation multi-
taches, comme observé pour les taches ImmunoHistoChimiques (IHC), et suscite
donc des inquiétudes quant à l’efficacité et au déploiement des méthodes de seg-
mentation multi-taches dans les applications cliniques. Par conséquent, il est urgent
de développer des techniques de transfert de taches plus avancées capables de ré-
soudre efficacement ces limitations, conduisant ainsi à une performance améliorée
des approches de segmentation multi-taches.

Bien que ces méthodes éliminent avec succès la nécessité de labels dans les taches
cibles, il est crucial de reconnaître que ces méthodes dépendent fortement d’une
grande quantité de données étiquetées provenant de la tache source. Cependant,
obtenir une quantité suffisante de données étiquetées pour le domaine source reste
un défi dans diverses disciplines médicales. Bien que les ensembles de données
étiquetées puissent être limités, les avancées dans les technologies de vision par
ordinateur et d’imagerie médicale ont considérablement augmenté la disponibilité
des données non étiquetées. Dans de telles situations, où les données non étiquetées
sont disponibles en grandes quantités, elles peuvent être utilisées dans des scénarios
avec peu de labels pour améliorer la performance du modèle grâce à l’apprentissage
de représentations non supervisé [ 87 ].

Contributions

Cette thèse examine en profondeur et aborde les défis inhérents au transfert de
taches, en particulier l’introduction de bruit imperceptible dans les taches traduites,
ce qui entraîne le problème de décalage de domaine. Un aspect crucial pour atténuer
ce décalage de domaine est la capacité à le détecter. Ainsi, l’une des contributions
principales de cette thèse réside dans l’exploration des approches non supervisées
pour proposer une métrique permettant de le quantifier. De plus, les résultats
révèlent une forte corrélation entre le décalage de domaine et la performance de
segmentation des taches traduites. Ces éclaircissements ouvrent donc la voie à
l’établissement d’un mécanisme pour déduire la performance moyenne d’un modèle
pré-entraîné (entraîné sur un domaine source) lorsqu’il est appliqué à un domaine
cible non vu et non étiqueté. Les résultats de cette contribution sont publiés dans
[ 52 ].

En utilisant cette mesure, nous démontrons la sensibilité du transfert de tâches
basé sur CycleGAN aux modifications architecturales subtiles. Bien que ces modi-
fications puissent ne pas nécessairement affecter la qualité visuelle des traductions
résultantes, elles ont un impact significatif sur la performance globale des approches
de segmentation multi-taches basées sur le transfert de tâches. Cela est vrai à la fois
du point de vue diagnostique et appliqué, soulignant ainsi la deuxième contribution



de la thèse. Les résultats de cette contribution sont publiés dans [ 53 ].
Nous proposons ensuite une approche novatrice qui minimise l’ajout de bruit

(changement de domaine) pendant le transfert de tâches, améliorant ainsi la perfor-
mance de la segmentation multi-taches, ce qui met en avant la troisième contribution
de la thèse. Les résultats de ces travaux sont actuellement en cours de documenta-
tion pour être soumis à une conférence ou un journal réputé.

La quatrième et dernière contribution de cette thèse concerne l’intégration des
méthodes d’apprentissage de représentation à l’état de l’art, en particulier l’apprentissage
auto-supervisé (SSL), afin de réaliser une analyse complète pour réduire le nom-
bre d’étiquettes nécessaires à la segmentation histopathologique. De plus, cette
contribution cherche à améliorer les approches de segmentation multi-taches en ré-
duisant leur dépendance aux données étiquetées pour la tâche source—ce qui, à
notre connaissance, n’a pas été exploré auparavant—ouvrant la voie à des solutions
plus économiques et évolutives pour les algorithmes d’adaptation de domaine. Cette
contribution propose également plusieurs modifications pour améliorer l’adaptabilité
des méthodes SSL à travers divers protocoles de coloration, en particulier ceux qui
sont spécifiques aux tâches et donc limités à un seul type de coloration. Les résultats
de cette enquête sont actuellement en cours d’examen [ 54 ].

Méthodes et Résultats

Mesurer le Changement de Domaine dans le Transfert de Taches

Étant donné la baisse de performance causée par le bruit imperceptible (changement
de domaine) pour les colorations IHC dans le Tableau  1 , il est important de gérer ce
changement de domaine ou du moins d’estimer quand il est susceptible d’affecter la
performance d’un algorithme. Par conséquent, cette méthode est proposée pour dé-
tecter et quantifier le changement de domaine lors du transfert de teinture entre une
teinture source (PAS) et des teintures traduites Target→PAS. À notre connaissance,
aucun travail similaire n’existe pour l’histopathologie numérique, en particulier pour
la segmentation des glomérules rénaux.

Deux approches pour mesurer le changement de domaine sont examinées à cet
égard : (a) le PixelCNN [ 126 ] et (b) la Domain Shift Metric [ 127 ]. Les détails
méthodologiques pour chaque approche sont les suivants:

PixelCNN [ 126 ]: est un modèle génératif conçu pour générer de manière itéra-
tive les pixels d’une image. Il apprend la distribution sous-jacente des données de
manière non supervisée en quantifiant les pixels d’une image x comme un produit
de distributions conditionnelles. En tant que tel, il apprend à prédire la valeur du
prochain pixel étant donné (conditionnée par) tous les pixels précédemment générés.
Formellement, cela s’exprime comme suit :

pCNN(x) =

n2∏
i=1

p(xi|x1, . . . , xi−1). (1)

Ces distributions conditionnelles sont paramétrées par un réseau de neurones con-



volutifs (CNN) et donc partagées à travers tous les pixels de l’image.

Song et al. [ 128 ] ont montré qu’un PixelCNN peut être utilisé pour détecter les
attaques adversariales dans les images en visualisant les différences dans les distri-
butions de log-vraisemblance des images réelles (propres) et perturbées. Les auteurs
ont entraîné un PixelCNN sur un ensemble de données d’images propres pour es-
timer leur distribution de probabilité sous-jacente. Ce modèle entraîné peut ensuite
calculer la log-vraisemblance de toute image donnée, indiquant dans quelle mesure
elle s’aligne avec la distribution apprise des images « propres ». À cette fin, les
auteurs ont utilisé les bits par dimension (BPD), une mesure normalisée de la log-
vraisemblance. Pour une image x avec une résolution de I × J et K canaux, BPD
est défini comme suit :

BPD(x) ≜ − log pCNN(x)/(I × J ×K × log 2), (2)

où pCNN(x) est la probabilité assignée à l’image par le modèle PixelCNN. En util-
isant cette formulation, les auteurs ont constaté que les images perturbées affichaient
systématiquement des valeurs BPD différentes par rapport aux images propres, en-
traînant des distributions de log-vraisemblance distinctes.

Nous émettons l’hypothèse qu’une approche similaire peut être utilisée pour détecter
le changement de domaine dans les images traduites lors du transfert de teinture.
Plus précisément, en utilisant un modèle PixelCNN, nous visons à visualiser les
différences dans les distributions de log-vraisemblance entre la teinture PAS réelle
et les teintures traduites (Target→PAS). Pour ce faire, un modèle PixelCNN est
entraîné sur la teinture PAS réelle pour modéliser sa distribution de données sous-
jacente. Une fois entraîné, le PixelCNN peut être appliqué aux teintures traduites
Target→PAS pour déterminer si leurs distributions se chevauchent avec celle de
la teinture PAS réelle. Nous proposons ensuite d’utiliser la distance de Wasser-
stein [ 129 ] (W) pour quantifier la similarité entre les deux distributions (PAS et
Target→PAS). Une valeur W plus petite indique des distributions plus similaires,
fournissant ainsi une mesure fiable du changement de domaine.

Domain Shift Metric: La Domain Shift Metric [ 127 ] mesure la différence entre
les distributions de deux domaines, appelées ici Scores de Changement de Domaine
ou DSS, en utilisant les représentations de caractéristiques d’un modèle pré-entraîné.
Considérons un CNN avec des couches {l1, . . . , lL}. Soit Φ(x) = {ϕl1(x), . . . , ϕlk(x)}
tel que Φlk(x) ∈ {Rh×w} désigne les activations des filtres à la couche l et au filtre
k. La valeur moyenne de chaque Φlk(x) est calculée comme suit :

clk(x) =
1

hw

h,w∑
i,j

Φlk(x)i,j . (3)

Soit pSclk(x) une distribution de clk(x) sur la teinture source S et pTclk(x) la même sur
la teinture traduite (Target→PAS) T , alors la métrique de changement de domaine



Jones H&E→PAS CD68→PAS Sirius Red→PAS CD34→PAS

Figure 3: Visualisation basée sur PixelCNN du changement de domaine dans les
colorations traduites Target→PAS par rapport aux ensembles de données PAS réels
d’entraînement et de test.

(DSM) est définie comme suit :

DSM(pS , pT ) =
1

k

k∑
i=1

W
(
pSclk , p

T
clk

)
, (4)

où W est la distance de Wasserstein [ 129 ] entre pSclk(x) et pTclk(x), qui tend vers zéro
lorsque S et T sont similaires.

Résultats

Comme le montre le tableau  1 , MDS1 connaît une baisse de performance lorsqu’il est
appliqué aux images traduites (Target→PAS) de colorations IHC, telles que CD68
et CD34. En nous basant sur des études récentes [ 48 – 50 ], nous émettons l’hypothèse
que cette baisse de performance est causée par un changement de domaine introduit
dans les colorations traduites lors du transfert de coloration.

Pour tester cette hypothèse, le modèle PixelCNN entraîné sur PAS est d’abord
validé en utilisant les données d’entraînement PAS et un ensemble de test PAS non
vu, voir la Figure  3 . Il est constaté que leurs distributions de log-vraisemblance
suivent le même ordre de grandeur, avec une distance Wasserstein faible de 0.0879
(moyenne sur 5 ensembles de 1000 patches échantillonnés aléatoirement), indiquant
un faible changement de domaine. Les distributions de log-vraisemblance des col-
orations traduites Target→PAS sont également incluses dans cette figure et mon-
trent clairement qu’il y a un changement de domaine par rapport aux distribu-
tions PAS d’entraînement/test. Par conséquent, la distance Wasserstein entre PAS
d’entraînement et les colorations traduites Target→PAS est observée comme rela-
tivement grande, voir le Tableau  2 , indiquant un changement de domaine significatif
dans les colorations traduites.

En utilisant le modèle de segmentation pré-entraîné pour extraire les représen-
tations de caractéristiques de la coloration source (PAS), le changement de domaine
peut également être mesuré en utilisant la métrique de changement de domaine (vue
précédemment dans l’Équation ( 4 )). Les DSS respectifs pour toutes les colorations
traduites (Target→PAS) sont également inclus dans le Tableau  2 .



Table 2: Distance Wasserstein moyenne et scores de changement de domaine de 5 en-
sembles de 1000 patches échantillonnés aléatoirement pour les colorations traduites
Target→PAS ; les écarts types sont entre parenthèses.

Méthodes
Colorations de test

PAS Jones
H&E→PAS

Sirius
Red→PAS CD68→PAS CD34→PAS

Distance Wasserstein (W) 0.087
(0.003)

0.537
(0.012)

0.493
(0.004)

0.481
(0.006)

0.580
(0.005)

Scores de changement
de domaine (DSS)

0.032
(0.017)

0.097
(0.008)

0.119
(0.003)

0.248
(0.002)

0.138
(0.002)

Corrélation entre F1 et DSS Corrélation entre F1 et W

Figure 4: Corrélation entre les scores de segmentation (F1) des diapositives de test
traduites en PAS et le changement de domaine moyen (mesuré en termes de Scores
de Changement de Domaine et de Distance Wasserstein) de 5 ensembles de 1000
patches de test échantillonnés aléatoirement.

Maintenant que nous pouvons détecter et mesurer ce qui semble être le change-
ment de domaine, nous enquêtons sur la corrélation avec les scores de segmentation
complète (F1) de MDS1 (fournis dans le Tableau  1 : 2nd ligne). La Figure  4 présente
les graphiques de dispersion du changement de domaine (mesuré en termes de dis-
tance Wasserstein et de DSS) et des scores F1 basés sur MDS1 pour chaque traduc-
tion, révélant une corrélation très forte de −0.9135. Cette forte corrélation négative
indique que, à mesure que le changement de domaine (mesuré en termes de DSS)
augmente, la performance de segmentation de MDS1 diminue significativement. En
revanche, la distance Wasserstein basée sur PixelCNN montre une corrélation mod-
érée (selon les critères spécifiés par [ 130 ]) de −0.5390 avec les scores de segmentation
complète de MDS1.



Amélioration du Transfert de Taches

Comme indiqué ci-dessus, le transfert de taches basé sur CycleGAN peut entraîner
l’ajout de bruit imperceptible dans les taches traduites. Cela conduit à une diminu-
tion des performances des méthodes de segmentation multi-taches, telles que MDS1
et UDAGAN, notamment lorsqu’elles sont appliquées à des taches immunohistochim-
iques traduites. Comme le montre la Figure  4 , le DSM est capable de détecter et de
mesurer ce bruit de manière efficace. Il reste donc à voir si cette métrique peut être
utilisée comme fonction de perte lors de l’entraînement du transfert de taches basé
sur CycleGAN. Cette perte, que nous appelons Domain Shift Loss (DSL), peut agir
comme une stratégie auto-guidée novatrice pour apprendre des traductions avec un
décalage de domaine minimal, améliorant ainsi le transfert de taches et par con-
séquent, la performance des approches de segmentation multi-taches.

De plus, plusieurs autres développements [ 49 ,  49 ,  77 ] ont été proposés pour
répondre aux limitations du transfert de taches basé sur CycleGAN mentionnées
ci-dessus. Bien que ces développements aient montré des améliorations significa-
tives, ils sont principalement conçus pour des applications de vision par ordinateur
et n’ont jamais été appliqués aux tâches liées à l’histopathologie (à l’exception de
[ 77 ]). Par conséquent, dans cette thèse, en plus de notre approche proposée util-
isant le DSL, nous proposons d’utiliser les méthodes présentées par Bashkirova et al.
[ 49 ], Chu et al. [ 48 ], et Bouteldja et al. [ 77 ]. L’utilisation de ces approches a deux
objectifs : d’une part, fournir une analyse comparative avec notre approche pro-
posée utilisant le DSL ; et d’autre part, examiner leur efficacité pour améliorer les
approches de segmentation multi-taches, ce qui, à notre connaissance, n’a pas été
exploré précédemment.

Les architectures originales, telles que proposées par les auteurs [ 48 ,  49 ,  77 ], ont
été utilisées ici tandis que les détails architecturaux de la Domain Shift Loss sont
les suivants :

L’architecture CycleGAN originale est modifiée en intégrant le DSM (défini dans
l’Équation ( 4 )) comme perte (Ldsl) pour minimiser l’impact du décalage de domaine
dans les images traduites. Le DSM utilise un modèle de segmentation pré-entraîné
(entraîné uniquement pour la tache source), donc, dans le cadre bidirectionnel de
CycleGAN, il est intégré uniquement dans un sens. En particulier, seules les images
de la tache source et les images traduites (target→source) sont fournies au DSM
pour calculer la perte (Ldsl). De plus, inspiré par l’idée de Bouteldja et al. [ 77 ], Ldsl
est également calculé entre les images de la tache source et leurs reconstructions
respectives et le mappage d’identité, tel que

Ldsl = Ldsl,translated + Ldsl,cyc + Ldsl,id

= Es∼AEt∼B[DSM(ps, pGBA(t)) + DSM(ps, pGBA(GAB(s))) + DSM(ps, pGBA(s))].
(5)



Cette modification entraîne la fonction de perte suivante pour CycleGAN :

LCycleGAN(GAB, GBA, DA, DB) = Ladv(GAB, DB, GBA, DA)

+ wcycLcyc(GAB, GBA)

+ widLid(GAB, GBA)

+ wdslLdsl(GAB, GBA). (6)

Cette fonction objectif globale guide les images traduites pour qu’elles soient plus
proches du domaine source, réduisant ainsi leur décalage de domaine.

Résultats

Dans cette section, les méthodes de transfert de taches basées sur CycleGAN men-
tionnées précédemment sont évaluées. Ces méthodes sont comparées non seulement
à la méthode CycleGAN originale (référence), mais aussi les unes aux autres en
utilisant l’approche de segmentation multi-taches MDS1.

Le Tableau  3 présente les résultats pour MDS1 en utilisant chaque méthode
de traduction. Les résultats montrent que, pour les taches HC, toutes les méthodes
montrent des performances de segmentation similaires ou améliorées par rapport à la
méthode de base. Cette amélioration est plus prononcée lors de l’utilisation de ‘Cy-
cleGAN avec Bruit Gaussien‘ par rapport aux autres. En revanche, pour les taches
IHC, des améliorations de performance sont observées avec toutes les méthodes sauf
‘CycleGAN avec Canaux Supplémentaires‘. De plus, ces résultats montrent que
les gains de performance sont plus substantiels pour les taches IHC, en particulier
CD68, par rapport aux taches HC. Cela est dû au fait que la méthode CycleGAN
originale éprouve des difficultés avec ces taches car elles sont biologiquement plus
distinctes de la tache source (PAS), ce qui introduit plus de bruit dans les images
traduites, entraînant une performance de base réduite. Cependant, les méthodes
proposées parviennent (dans une certaine mesure) à atténuer cette limitation en ré-
duisant ce bruit des taches traduites. Notamment, la meilleure performance globale
(moyenne sur toutes les taches cibles) est obtenue en utilisant à la fois ‘CycleGAN
avec Bruit Gaussien‘ et notre ‘CycleGAN avec DSL‘ proposé.

Apprentissage Auto-Supervisé

Les méthodes précédemment proposées ont exploré la limitation inhérente de
l’introduction de bruit lors du transfert de coloration et ont introduit différentes
stratégies pour minimiser ce bruit, ce qui a abouti à une amélioration des per-
formances des approches de segmentation multi-colorations basées sur le transfert
de coloration. Bien que ces méthodes éliminent le besoin de labels dans la col-
oration cible, il est crucial de reconnaître que ces méthodes dépendent fortement

∗Une légère différence est notée dans les résultats MDS1 basés sur CycleGAN présentés dans le
Tableau  3 par rapport à ceux présentés dans le Tableau  1 . Cela est dû au fait que les expériences
du Tableau  3 sont mises en œuvre en utilisant Tensorflow 2, tandis que les expériences du Tableau

 1 sont mises en œuvre en utilisant le framework Keras (qui est désormais obsolète et a été intégré
dans Tensorflow 2).



Table 3: Scores de segmentation (F1) basés sur MDS1 pour la segmentation des
glomérules à travers diverses taches cibles en utilisant différentes méthodes de trans-
fert de taches basées sur CycleGAN. L’évaluation est réalisée sur un ensemble de
données de test indépendant et non vu. Chaque score F1 est une moyenne de 5
répétitions différentes de UNet, chacune appliquée à 3 répétitions différentes de Cy-
cleGAN (15 au total), avec les écarts-types présentés entre parenthèses. Le score
(F1) global le plus élevé (moyenne sur toutes les taches cibles) est indiqué en gras.

Jones H&E Sirius Red CD68 CD34
Stratégie

d’Entraînement

Taches Test

Taches HC Taches IHC
Global

CycleGAN 

∗
 

(référence)
0.844
(0.026)

0.860
(0.023)

0.643
(0.031)

0.747
(0.021)

0.774
(0.025)

avec Bruit Gaussien [  49 ] 0.865
(0.016)

0.878
(0.015)

0.669
(0.026)

0.749
(0.028)

0.790
(0.021)

avec Auto-supervision [ 77 ] 0.840
(0.027)

0.866
(0.021)

0.686
(0.020)

0.753
(0.024)

0.786
(0.021)

avec Canaux Supplémentaires [ 48 ,  77 ] 0.862
(0.019)

0.871
(0.020)

0.634
(0.037)

0.669
(0.041)

0.759
(0.029)

Notre Méthode 0.849
(0.024)

0.862
(0.022)

0.694
(0.021)

0.763
(0.012)

0.792
(0.020)

d’une grande quantité de données étiquetées provenant de la coloration source.
Cependant, l’acquisition d’une quantité suffisante de données étiquetées pour le
domaine source reste un défi dans diverses disciplines médicales. Par exemple, en
histopathologie, pour certains types de tissus ou de tumeurs, des ensembles de don-
nées étiquetées suffisants pour la coloration source peuvent ne pas être facilement
disponibles. Néanmoins, les avancées récentes en vision par ordinateur et en im-
agerie médicale ont conduit à une augmentation significative de la taille des en-
sembles de données (généralement non étiquetées) de plusieurs ordres de grandeur
[ 42 ]. Par exemple, en histopathologie, l’avènement des scanners d’imagerie de lames
entières (WSI) a facilité la production de vastes quantités de données d’images
histopathologiques (non étiquetées). Dans de telles situations, où les données non
étiquetées sont disponibles en grande quantité, elles peuvent être utilisées dans des
scénarios avec des données étiquetées limitées pour améliorer les performances des
modèles grâce à la représentation non supervisée, en particulier l’apprentissage auto-
supervisé [ 87 ].

L’Apprentissage Auto-Supervisé (AAS) apprend des représentations utiles à par-
tir de données non étiquetées en concevant une tâche prétexte [ 45 ], qui peut ensuite
être utilisée dans diverses tâches en aval où les données étiquetées sont limitées. En
conséquence, cette thèse se concentre sur l’utilisation des méthodes d’apprentissage
de représentation auto-supervisées SOTA les plus appropriées, telles que SimCLR
[ 94 ], BYOL [ 96 ], et une nouvelle extension à CS-CO [ 108 ]. Ces représentations
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Figure 5: Flux de travail d’apprentissage auto-supervisé en histopathologie. Étape
#1 : Différentes méthodes d’apprentissage auto-supervisé sont appliquées pour ap-
prendre des représentations à partir d’un vaste ensemble de données non étiquetées.
Étape #2 : Les représentations apprises sont ensuite affinées par un ajustement fin
sur plusieurs fractions de données étiquetées pour diverses tâches en aval.

seront ensuite affinées dans plusieurs tâches en aval pour améliorer les performances
des approches de segmentation des glomérules rénaux à coloration unique et multi-
colorations en présence de données étiquetées limitées, comme illustré dans la Figure

 5 .

Résultats

Dans cette section, les performances des modèles auto-supervisés pré-entraînés pour
l’apprentissage de représentations significatives sont évaluées pour chaque tâche en
aval, telles que la segmentation à coloration unique à l’aide de UNet, et la segmen-
tation multi-colorations à l’aide de MDS1 et UDAGAN.

Conformément à [ 106 ], plusieurs fractions de l’ensemble de données étiquetées
ont été créées, comme le montre la Figure  5 . Chaque fraction comprend différents
pourcentages de données étiquetées (1%, 5%, 10%, et 100%) provenant des patients
d’entraînement de chaque coloration, comme présenté dans le Tableau  4 .

Les modèles entièrement supervisés, ou Baseline, ont été entraînés à partir de
zéro (c’est-à-dire initialisés aléatoirement) pour établir des baselines avec différentes



Table 4: Données d’entraînement avec différents pourcentages de glomérules éti-
quetés pour chaque coloration.

PAS Jones H&E CD68 Sirius Red CD34

1% 6 5 5 6 5

5% 33 31 26 32 28

10% 66 62 52 65 56

100% 662 621 526 651 565

% of Labels
Stainings

fractions de données, y compris 100% de labels.
En moyenne, dans les cas de marquage limité, correspondant à 5–6 (1%) et 26–33

(5%) glomérules marqués par teinture, les modèles UNet affinés surpassent significa-
tivement les modèles UNet de base respectifs (voir la dernière colonne). Cependant,
cette supériorité n’est pas uniforme pour toutes les teintures ; notamment, le Sirius
Red et le CD34 avec 5% de marquages bénéficient du pré-entraînement, mais pas
de manière aussi marquée que pour les autres teintures. Pour certaines teintures, il
est possible d’observer que le pré-entraînement avec 100% de marquages peut même
surpasser les modèles entièrement supervisés de base, mais ces bénéfices ne sont pas
évidents lorsqu’on fait la moyenne sur toutes les teintures. Comme notre objectif
est de trouver un niveau de marquage qui minimise l’effort de marquage tout en
maximisant les performances, 5% de marquages offrent un bon équilibre entre les
deux (10% n’apportant qu’une petite augmentation des performances, tandis que 1%
entraîne une baisse considérable). À ce niveau de marquage, une baisse de 11% des
performances est observée avec le modèle UNet pré-entraîné avec BYOL par rapport
au modèle entièrement supervisé (100%). Cela souligne que le nombre de marquages
nécessaires pour l’entraînement peut être réduit de 95%. Si l’apprentissage auto-
supervisé n’avait pas été utilisé dans ce cas, une baisse de performance de 26,9%
aurait été observée (5e ligne, dernière colonne du tableau  5 ).

Dans la segmentation multi-teinture MDS1, le même schéma peut être observé.
Utiliser 1% et 5% de marquages (mais dans ce cas uniquement à partir de la teinture
source, PAS) entraîne une augmentation de performance moyenne considérable par
rapport aux modèles de base. En se concentrant sur 5% de marquages, le pré-
entraînement SimCLR permet à MDS1 d’atteindre un score F1 moyen de 0, 707, soit
seulement 8,2% de moins que le modèle de référence MDS1 entièrement supervisé
(0, 789), tout en réduisant l’exigence de marquage de 95%. De plus, cela n’est que
5% inférieur à la meilleure performance moyenne du modèle UNet à teinture unique
avec pré-entraînement, qui nécessite des marquages pour toutes les teintures, alors
que MDS1 ne les nécessite que pour la teinture source.

Cette tendance se poursuit dans les résultats du modèle UDAGAN invariant
aux teintures, où en moyenne, le pré-entraînement et l’affinage avec 1% et 5% de
marquages (encore une fois, uniquement pour la teinture source) surpassent con-
sidérablement les modèles de base pour toutes les teintures. Le pré-entraînement
HR-CS-CO n’est pas évalué car UDAGAN est un modèle unique de segmentation



Table 5: Une comparaison de diverses méthodes d’auto-apprentissage en pré-
entraînement et des lignes de base respectives (initialisées aléatoirement sans aucun
pré-entraînement) pour les tâches aval de UNet, MDS1 et UDAGAN utilisant dif-
férentes divisions de données annotées. Pour UNet, les annotations ont été utilisées
pour toutes les colorations, tandis que pour MDS1 et UDAGAN, seules les annota-
tions de la coloration source (PAS) ont été utilisées. L’évaluation est effectuée sur
un jeu de données de test indépendant et non vu, en utilisant le score F1. Chaque
score F1 est la moyenne de cinq répétitions d’entraînement différentes (les écarts-
types sont entre parenthèses). Le score F1 le plus élevé pour chaque coloration, à
travers différentes divisions des annotations, est en italique, tandis que le score F1
le plus élevé global, moyenné sur toutes les colorations, est en gras.

PAS Jones H&E CD68 Sirius Red CD34

None (Baseline) 0.015 (0.031) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.253 (0.059) 0.054 (0.018)
SimCLR 0.673 (0.021) 0.519 (0.040) 0.407 (0.015) 0.472 (0.037) 0.652 (0.018) 0.544 (0.026)
BYOL 0.660 (0.018) 0.635 (0.055) 0.625 (0.042) 0.561 (0.044) 0.686 (0.030) 0.633 (0.038)

HR-CS-CO 0.154 (0.044) 0.188 (0.067) 0.048 (0.083) 0.337 (0.082) 0.463 (0.017) 0.238 (0.058)

None (Baseline) 0.546 (0.084) 0.593 (0.080) 0.370 (0.188) 0.707 (0.055) 0.782 (0.041) 0.600 (0.090)
SimCLR 0.852 (0.019) 0.760 (0.017) 0.599 (0.039) 0.618 (0.042) 0.802 (0.011) 0.726 (0.026)
BYOL 0.768 (0.036) 0.746 (0.076) 0.736 (0.033) 0.721 (0.051) 0.800 (0.047) 0.754 (0.049)

HR-CS-CO 0.756 (0.079) 0.628 (0.086) 0.533 (0.067) 0.406 (0.067) 0.707 (0.037) 0.606 (0.067)

None (Baseline) 0.730 (0.017) 0.792 (0.024) 0.643 (0.053) 0.788 (0.022) 0.827 (0.063) 0.756 (0.036)
SimCLR 0.867 (0.019) 0.813 (0.012) 0.690 (0.057) 0.696 (0.060) 0.838 (0.007) 0.781 (0.031)
BYOL 0.794 (0.047) 0.823 (0.054) 0.729 (0.052) 0.722 (0.044) 0.776 (0.057) 0.769 (0.051)

HR-CS-CO 0.807 (0.058) 0.748 (0.098) 0.729 (0.040) 0.711 (0.074) 0.791 (0.026) 0.757 (0.059)

None (Baseline) 0.894 (0.021) 0.840 (0.029) 0.836 (0.031) 0.865 (0.019) 0.888 (0.015) 0.865 (0.024)
SimCLR 0.884 (0.003) 0.873 (0.007) 0.840 (0.011) 0.881 (0.007) 0.867 (0.027) 0.869 (0.011)
BYOL 0.867 (0.009) 0.842 (0.035) 0.818 (0.036) 0.847 (0.012) 0.874 (0.021) 0.850 (0.022)

HR-CS-CO 0.843 (0.033) 0.855 (0.015) 0.872 (0.006) 0.842 (0.023) 0.870 (0.011) 0.856 (0.018)

None (Baseline) 0.030 (0.066) 0.024 (0.054) 0.039 (0.086) 0.036 (0.079) 0.032 (0.071)
SimCLR 0.615 (0.015) 0.403 (0.031) 0.594 (0.026) 0.614 (0.028) 0.556 (0.025)
BYOL 0.516 (0.041) 0.363 (0.027) 0.525 (0.047) 0.494 (0.031) 0.474 (0.037)

HR-CS-CO 0.326 (0.025) 0.224 (0.045) 0.359 (0.050) 0.384 (0.035) 0.323 (0.039)

None (Baseline) 0.711 (0.032) 0.526 (0.041) 0.685 (0.031) 0.613 (0.050) 0.634 (0.038)
SimCLR 0.798 (0.005) 0.534 (0.015) 0.767 (0.008) 0.729 (0.016) 0.707 (0.011)
BYOL 0.713 (0.051) 0.538 (0.047) 0.733 (0.032) 0.605 (0.061) 0.647 (0.048)

HR-CS-CO 0.760 (0.028) 0.335 (0.084) 0.773 (0.015) 0.607 (0.044) 0.619 (0.043)

None (Baseline) 0.776 (0.017) 0.575 (0.025) 0.778 (0.023) 0.656 (0.030) 0.696 (0.024)
SimCLR 0.784 (0.026) 0.541 (0.029) 0.752 (0.040) 0.722 (0.016) 0.700 (0.028)
BYOL 0.706 (0.063) 0.541 (0.060) 0.731 (0.084) 0.650 (0.043) 0.657 (0.062)

HR-CS-CO 0.771 (0.037) 0.433 (0.059) 0.804 (0.041) 0.633 (0.033) 0.660 (0.042)

None (Baseline) 0.849 (0.017) 0.683 (0.043) 0.870 (0.009) 0.754 (0.008) 0.789 (0.032)
SimCLR 0.826 (0.033) 0.638 (0.056) 0.836 (0.034) 0.712 (0.030) 0.753 (0.038)
BYOL 0.833 (0.032) 0.632 (0.042) 0.864 (0.028) 0.652 (0.066) 0.745 (0.042)

HR-CS-CO 0.863 (0.017) 0.614 (0.067) 0.878 (0.018) 0.730 (0.040) 0.771 (0.036)

None (Baseline) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
SimCLR 0.477 (0.015) 0.403 (0.025) 0.261 (0.053) 0.408 (0.010) 0.518 (0.016) 0.413 (0.024)
BYOL 0.647 (0.062) 0.504 (0.083) 0.401 (0.099) 0.513 (0.088) 0.598 (0.064) 0.533 (0.079)

None (Baseline) 0.669 (0.038) 0.498 (0.056) 0.352 (0.056) 0.618 (0.072) 0.692 (0.024) 0.566 (0.049)
SimCLR 0.719 (0.018) 0.616 (0.020) 0.524 (0.014) 0.632 (0.015) 0.716 (0.015) 0.641 (0.016)
BYOL 0.815 (0.027) 0.730 (0.071) 0.603 (0.028) 0.732 (0.028) 0.726 (0.055) 0.721 (0.042)

None (Baseline) 0.816 (0.031) 0.687 (0.014) 0.614 (0.019) 0.750 (0.069) 0.770 (0.022) 0.727 (0.031)
SimCLR 0.781 (0.013) 0.712 (0.013) 0.606 (0.015) 0.706 (0.026) 0.768 (0.012) 0.715 (0.016)
BYOL 0.834 (0.035) 0.767 (0.051) 0.654 (0.040) 0.742 (0.090) 0.781 (0.037) 0.755 (0.051)

None (Baseline) 0.901 (0.011) 0.856 (0.036) 0.705 (0.031) 0.873 (0.025) 0.799 (0.035) 0.827 (0.027)
SimCLR 0.892 (0.008) 0.866 (0.018) 0.777 (0.013) 0.888 (0.015) 0.844 (0.003) 0.853 (0.011)
BYOL 0.883 (0.019) 0.854 (0.039) 0.722 (0.051) 0.818 (0.068) 0.792 (0.036) 0.814 (0.042)

Downstream
Tasks

Label
Splits Pre-training

Test Stains
Average

UNet

1%

5%

10%

100%

MDS1

1% —

5% —

10% —

100% —

UDAGAN

1%

5%

10%

100%



Table 6: Performance des tâches en aval avec 5% d’étiquettes d’entraînement, sans
ensemble de validation. UNet, 5% d’étiquettes sont utilisées pour toutes les tein-
tures, MDS1 et UDAGAN, 5% d’étiquettes sont utilisées uniquement pour la source,
PAS, teinture. L’évaluation est réalisée sur l’ensemble de test. Chaque score F1 est
la moyenne de cinq répétitions d’entraînement différentes (écarts types entre paren-
thèses). Le score F1 le plus élevé pour chaque teinture est en italique, et le score F1

le plus élevé en général, moyenné sur toutes les teintures, est en gras.

PAS Jones H&E CD68 Sirius Red CD34

SimCLR 0.812 (0.019) 0.795 (0.034) 0.575 (0.146) 0.612 (0.066) 0.810 (0.020) 0.720 (0.057)
BYOL 0.786 (0.020) 0.839 (0.025) 0.771 (0.027) 0.788 (0.021) 0.870 (0.003) 0.810 (0.019)

HR-CS-CO 0.777 (0.032) 0.695 (0.092) 0.428 (0.086) 0.425 (0.094) 0.700 (0.060) 0.605 (0.072)

SimCLR 0.787 (0.016) 0.608 (0.015) 0.770 (0.021) 0.704 (0.022) 0.717 (0.018)
BYOL 0.813 (0.037) 0.646 (0.038) 0.823 (0.037) 0.695 (0.038) 0.744 (0.037)

HR-CS-CO 0.776 (0.013) 0.251 (0.051) 0.812 (0.007) 0.599 (0.026) 0.609 (0.024)

SimCLR 0.402 (0.193) 0.389 (0.078) 0.000 (0.000) 0.072 (0.120) 0.359 (0.260) 0.244 (0.130)
BYOL 0.850 (0.008) 0.822 (0.021) 0.650 (0.029) 0.815 (0.026) 0.771 (0.011) 0.765 (0.022)

Downstream
Tasks Pre-training

Test Stains
Average

UNet

MDS1 —

UDAGAN

multi-teinture invariant aux teintures, tandis que HR-CS-CO est entraîné séparé-
ment pour chaque teinture. Dans ce cas, nous observons une baisse de 10,6% des
performances lors de l’affinage avec 5% de marquages (et un pré-entraînement avec
BYOL) par rapport aux modèles entièrement supervisés (100%). Si le modèle avait
été entraîné de manière entièrement supervisée avec cette quantité de marquages,
une baisse de 26,1% aurait été observée, ce qui montre que l’affinage permet de
minimiser l’impact du manque de marquages.

Omission des données de validation

Comme montré ci-dessus, un équilibre entre la minimisation des étiquettes et la
maximisation des performances est atteint en utilisant 5% d’étiquettes. Néanmoins,
lors de l’entraînement des modèles finaux, les résultats ont été obtenus en utilisant
un ensemble de validation entièrement étiqueté. Par conséquent, le tableau  6 évalue
si l’ensemble de validation est nécessaire ou si cette exigence d’étiquetage peut égale-
ment être réduite. Il est démontré que, dans de nombreux cas, les performances sans
ensemble de validation surpassent celles obtenues en utilisant un ensemble de val-
idation étiqueté. Cela s’explique par le fait que, dans le jeu de données utilisé, il
y a un moindre décalage de domaine (mesuré selon [  52 ]) entre les distributions des
ensembles d’entraînement et de test, qui est de 0.0655 (moyenne pour toutes les col-
orations), comparé aux distributions des ensembles d’entraînement et de validation,
qui est de 0.1857. Cela permet aux modèles entraînés sans données de validation
de surpasser (sur les données de test) ceux sélectionnés en utilisant la perte de val-
idation. Bien que ce comportement soit spécifique aux ensembles de données avec
cette caractéristique mentionnée, il n’affecte que la différence de performance entre
les deux paramètres expérimentaux et non les conclusions elles-mêmes. Imaginons
qu’il y ait eu un décalage de domaine plus faible entre les ensembles de validation
et d’entraînement, dans ce cas, la suppression de l’ensemble de validation n’aurait
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Figure 6: Emeddings UMAP en deux dimensions des représentations apprises par :
(a) les modèles SimCLR et (b) BYOL basés sur UDAGAN, entraînés sans ensemble
de validation, et (c) SimCLR UDAGAN avec un ensemble de validation étiqueté
à 5%. Modèles choisis au hasard, représentations échantillonnées à partir de la
couche convolutionnelle avant-dernière, 100 patchs par tache par classe à partir de
l’ensemble de test non vu. Chaque point est un patch de la classe et de la coloration
respectives

fait que supprimer l’augmentation de performance observée ici. Cela n’invalide donc
pas les conclusions présentées ici, selon lesquelles l’ensemble de validation peut être
supprimé pour réduire encore les besoins en étiquetage.

Cependant, avec SimCLR et UDAGAN, une chute considérable des performances
est observée. Cela est probablement dû à un surapprentissage en l’absence de don-
nées de validation. Le modèle est entraîné en deux étapes : (1) pré-entraînement
à l’aide de SimCLR sur des morceaux d’images d’origine ; (2) traduction (utilisant
des modèles CycleGAN) de PAS vers toutes les autres teintures lors de l’ajustement
fin. Au cours de la deuxième étape, un bruit imperceptible causé par le transfert
CycleGAN [ 52 ] est introduit dans les morceaux d’entraînement. Cela provoque un
décalage de domaine entre les données d’entraînement et les images de test, réduisant
ainsi les performances. Cela est exacerbé par l’absence d’un ensemble de validation,
qui empêcherait normalement le surapprentissage de ces données d’entraînement



“bruyantes”. En revanche, BYOL n’est pas affecté car il utilise la normalisation par
lots, ce qui aide à stabiliser le processus d’entraînement et à prévenir le surappren-
tissage des entrées bruyantes. Cela peut être visualisé dans la Fig.  6 , où il y a un
manque notable de frontières de classe entre les glomérules de test et les morceaux
négatifs lors de l’entraînement de SimCLR-UDAGAN sans ensemble de validation,
voir Fig.  6(a) . Une telle frontière existe dans la représentation BYOL-UDAGAN
sans données de validation, voir Fig.  6(b) , et dans un SimCLR-UDAGAN entraîné
avec 5% d’étiquettes de validation, voir Fig.  6(c) (pour comparaison, ce modèle
obtient un score F1 moyen de 0.686, contre 0.244 sans l’ensemble de validation).

Perspectives

Le travail présenté dans cette thèse ouvre plusieurs axes de recherche possibles,
dont certains concernent l’amélioration directe des méthodes proposées, tandis que
d’autres impliquent l’application de la méthodologie développée à des domaines
différents mais connexes.

La thèse a démontré qu’il est possible de segmenter les glomérules à travers
plusieurs colorations en utilisant seulement quelques étiquettes d’une seule col-
oration. Pour étayer davantage ces résultats, des explorations supplémentaires de-
vraient être menées pour confirmer que les mêmes approches peuvent être utilisées
pour classifier, détecter ou segmenter d’autres structures diagnostiquement perti-
nentes en histopathologie numérique (par exemple, les tubules, etc.), indépendam-
ment de la modalité de coloration. Une application réussie exige que les struc-
tures cibles maintiennent une morphologie cohérente à travers différentes colorations,
même si les informations texturales et de couleur varient. Cette approche pourrait
également s’étendre à d’autres modalités d’imagerie médicale, telles que l’IRM ou
les scanners CT, où les structures anatomiques d’intérêt conservent leur apparence
générale malgré les différentes techniques d’imagerie, ainsi qu’à des problèmes plus
larges de vision par ordinateur où les objets gardent leur apparence générale malgré
les changements de contexte, de texture ou de couleur.

Les avancées proposées dans l’architecture CycleGAN ont amélioré sa robustesse
et ses capacités de généralisation lorsqu’elle est utilisée pour des modèles de seg-
mentation multi-coloration basés sur le transfert de coloration. Cela ouvre la voie
à l’exploration de plusieurs autres méthodes d’apprentissage profond à la pointe de
la technologie qui reposent sur des principes similaires. Récemment, des modèles
d’apprentissage profond basés sur la diffusion ont été introduits pour générer des
images de haute qualité [ 168 ] et attirent une attention significative dans les tâches
d’histopathologie numérique, notamment pour le transfert de coloration [ 169 ,  170 ].
En conséquence, l’un de nos axes de recherche futurs est d’explorer les modèles
de diffusion pour améliorer encore l’efficacité des méthodes de segmentation multi-
coloration.

Malgré les progrès réalisés par les méthodes d’apprentissage auto-supervisé (SSL),
notre travail reconnaît certains défis. Notamment, lors de l’entraînement de SimCLR
sur des ensembles de données avec une diversité de classes limitée, il y a un risque
accru de générer de faux négatifs. De plus, les augmentations utilisées dans les méth-



odes SSL basées sur la contrastivité sont spécifiquement conçues pour les images
naturelles et les images médicales sont très sensibles à ces augmentations [ 123 ,  167 ].
Pour surmonter ces défis, nos travaux futurs se concentreront sur la modélisation
d’images masquées basée sur des transformateurs (MIM) [ 171 ,  172 ]. Cette approche
représente une approche plus robuste de l’apprentissage auto-supervisé car le MIM
vise à apprendre des représentations en générant les parties manquantes d’une im-
age, obligeant ainsi le modèle à apprendre les relations entre les différents éléments
d’une image. Notamment, ces méthodes n’ont pas besoin de étapes d’augmentation
supplémentaires et ont démontré une grande évolutivité et robustesse.
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