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Titre : Vers des solutions numériques bien posées et polyvalentes pour les théories tenseur-scalaires de la 

gravité avec écrantage : applications aux échelles sub-système Solaire 

Mots clés : gravitation, gravité tenseur-scalaire, méthode des éléments finis, mécanismes d’écrantage, géodésie 

spatiale, relativité générale 

Résumé : Les théories tenseur-scalaires de la gravité 

font partie des alternatives à la Relativité Générale les 

plus convaincantes, résilientes, et riches en termes de 

phénoménologie. Les modèles encore viables 

aujourd'hui reposent sur des mécanismes 

d'écrantage afin d'être compatibles avec les tests 

locaux de la gravité, tout en conservant une certaine 

pertinence physique. La recherche de ces champs 

scalaires hypothétiques dépend alors de notre 

capacité à concevoir des expériences adaptées à leur 

phénoménologie. Hélas, cette tâche est grandement 

entravée par la difficulté de modéliser suffisamment 

précisément les effets de cinquième force dans des 

configurations réalistes. En effet, cela nécessite de 

résoudre des équations aux dérivées partielles semi-

linéaires en présence de distributions de masse non-

triviales, ce pour quoi les méthodes purement 

analytiques ne sont que d'un usage limité. 

Dans cette perspective, le présent travail de thèse 

traite ce problème via le développement d'un outil 

numérique polyvalent visant à obtenir des solutions 

bien posées aux équations de Klein–Gordon non-

linéaires qui apparaissent dans de tels modèles de 

gravité modifiée. L'outil en question, nommé 

femtoscope, s'appuie sur la méthode des éléments 

finis. Celle-ci permet de représenter des géométries 

arbitrairement complexes et des problèmes multi-

échelles par le biais de raffinement locaux du 

maillage. Les non-linéarités sont quant à elles traitées 

par la méthode de Newton. 

La nouveauté majeure apportée par femtoscope est 

sa gestion des conditions aux limites 

asymptotiques — i.e. lorsque le comportement du 

champ n'est connu qu'infiniment loin des sources — 

dont la prise en compte de manière appropriée est 

souvent essentielle en vue d'obtenir des solutions 

numériques pourvues de sens physique. Pour ce 

faire, nous utilisons la méthode des éléments finis 

inversés. 

Nous nous appuyons ensuite sur femtoscope pour 

étudier la gravité tenseur-scalaire aux échelles sub-

système Solaire. En utilisant un modèle réaliste de 

la Terre, nous traitons la question relative à la 

détectabilité d'une cinquième force de type 

caméléon, au moyen de missions de géodésie 

spatiale telles que GRACE-FO. L'influence de 

l'atmosphère terrestre ainsi que la rétroaction d'un 

satellite sur le champ scalaire sont toutes deux 

prises en compte. Nous constatons que la 

cinquième force a un effet supposément mesurable 

sur la dynamique orbitale d'un point matériel, mais 

que la connaissance imparfaite de la distribution de 

masse à l'intérieur de la Terre donne lieu à des 

dégénérescences qui réduisent considérablement 

le pouvoir contraignant de ce type de mission. Ces 

dégénérescences peuvent en principe être levées 

en réalisant l'expérience à deux altitudes 

différentes. 

Enfin, nous ouvrons de nouvelles perspectives en 

explorant la possibilité de tester les théories 

tenseur-scalaires avec écrantage en se servant 

d'horloges atomiques. L'idée des expériences que 

nous décrivons est d'exploiter la contribution du 

champ scalaire sur le décalage vers le rouge 

gravitationnel, cette dernière étant absente en 

Relativité Générale. On souligne le fait que de telles 

expériences sont de nature profondément 

différente des recherches de cinquième force. 

 

 

  



 

 

 
 

Title: Towards well-posed and versatile numerical solutions of scalar-tensor theories of gravity with screening 

mechanisms: applications at sub-Solar system scales 

Keywords: gravitation, scalar-tensor gravity, finite element method, screening mechanisms, space geodesy, 

general relativity 

Abstract: Scalar-tensor theories of gravity are 

among the most compelling, resilient and 

phenomenologically-rich alternatives to General 

Relativity. Viable models make use of screening 

mechanisms in order to be consistent with local tests 

of gravity whilst still retaining physical relevance. The 

hunt for such hypothetical scalar fields therefore 

hinges on the design of sophisticated model-

dependent experiments. Alas, this task is greatly 

hampered by the difficulty of accurately modeling 

fifth force effects in realistic setups. Indeed, the latter 

requires solving semi-linear partial differential 

equations in the presence of complex matter 

distributions, for which analytical approaches are 

clearly insufficient. 

In this perspective, the present PhD work tackles this 

issue by developing a versatile numerical tool 

devoted to obtaining well-posed solutions to the 

nonlinear Klein–Gordon equations arising in such 

modified gravity models. The tool, called femtoscope, 

builds on the finite element method which allows one 

to deal with arbitrarily complex geometries and 

multi-scale problems through local mesh refinement. 

Nonlinearities, on the other hand, are handled via 

Newton’s method. 

The novelty and most important feature of 

femtoscope is its careful treatment of asymptotic 

boundary conditions — i.e. when the field's behavior 

is only known infinitely far away from the sources — 

which is often essential to obtain physically 

meaningful numerical solutions. This is achieved by 

employing the inverted finite element method. 

We then make use of femtoscope to investigate 

screened scalar-tensor gravity at sub-Solar system 

scales. Using a realistic model of the Earth, we 

address the question of the detectability of a 

putative chameleon fifth force in orbit by means of 

GRACE-FO-like space geodesy missions. The 

influence of the atmosphere as well as the 

backreaction of spacecraft on the scalar field are 

both considered. We find that, although the fifth 

force has a supposedly measurable effect on the 

dynamics of a point-like spacecraft, the imperfect 

knowledge of the mass distribution inside the Earth 

gives rise to degeneracies, which in turn severely 

limit the constraining power of such space 

missions. These degeneracies can in principle be 

lifted by performing the experiment at two 

different altitudes. 

Finally, we open up new perspectives by exploring 

the possibility of testing screened scalar-tensor 

theories with atomic clocks, exploiting the 

distinctive imprint of the scalar field on the 

gravitational redshift with respect to General 

Relativity. It is emphasized that such experiments 

are profoundly different in nature from fifth force 

searches. 

 



iv



Remerciements / Acknowledgement

Français

J’ai souvent entendu dire, avant de me lancer moi-même dans cette aventure, que la thèse représente un travail
de longue haleine, mené en solitaire. Il y a bien sûr du vrai, mais je ne peux m’en tenir ici à cette description,
car ce serait occulter la contribution de tant de personnes au succès de cette entreprise ! Dans les quelques lignes
qui suivent, j’aimerais donc prendre le temps de les remercier dûment.1

En premier lieu, je tiens à remercier chaleureusement mes directeurs de thèse, Joël Bergé et Jean-Philippe
Uzan, pour leur précieux encadrement tout au long de ces trois années. Au-delà de leur constante bienveillance,
j’ai profondément apprécié la liberté et l’autonomie dont j’ai pu disposer dans ma recherche, tout en sachant que
leurs portes m’étaient toujours ouvertes. Ce subtil équilibre n’aurait pas pu se construire sans une forme de
confiance mutuelle, et je leur suis ainsi reconnaissant de m’avoir accordé la leur.

L’évaluation par les pairs est un pilier fondamental de la démarche scientifique, aussi voudrais-je exprimer ma
gratitude à l’égard des membres de mon jury de thèse, qui ont accepté d’examiner mon travail. Je remercie tout
particulièrement Meike List et Clare Burrage d’avoir endossé le rôle plus exigeant et minutieux de rapportrices.
Merci également à Patrick Joly, mathématicien dans une assemblée majoritairement physicienne, d’avoir apporté
son regard critique sur les aspects relatifs aux mathématiques appliquées et à l’analyse numérique présents dans
ma thèse.

En plus des personnes déjà mentionnées, je tiens à exprimer ma profonde gratitude envers toutes celles
et ceux qui m’ont apporté leur aide et leurs conseils sur le plan scientifique. En particulier, merci à Manuel
Rodrigues de m’avoir prêté son expertise sans faille sur la mission microscope, à Gilles Esposito-Farèse pour les
discussions relatives au redshift en théories tenseur-scalaires et ses relectures attentives de la partie du manuscrit
correspondante, à Tahar Boulmezaoud — à l’origine de la méthode des éléments finis inversés — de m’avoir
donné de son temps, et à Clare Burrage de m’avoir aimablement accueilli à l’université de Nottingham le temps
de quelques jours. Merci également à Antoine Ait-Mehdi pour ses conseils avisés en programmation dans le
développement de femtoscope (et sans qui je ne me serais jamais lancé dans un si important code refactoring), à
Phuong-Anh Huynh pour son aide au portage de mon code sur les supercalculateurs de l’ONERA, et à Matthieu
Dellavalle d’en avoir été le tout premier bêta-testeur.

Si ma thèse a pu se dérouler avec autant de fluidité, c’est aussi grâce au concours de nombreuses personnes,
parmi lesquels Nassim Zahzam et Jérôme Perez qui ont suivi — c’est le cas de le dire — mon parcours de
jeune thésard. En particulier, j’aimerais remercier Jérôme qui, de manière tout à fait spontanée, a trouvé des
interlocuteurs à l’unité de mathématiques appliquées de l’ENSTA Paris pour répondre à mes questions au
moment où j’en ai eu besoin. Mes pensées vont aussi au secrétariat du DPHY, qui œuvre au quotidien pour
offrir aux doctorants les meilleures conditions de travail.

La thèse a aussi été pour moi l’occasion de m’essayer à l’enseignement. À cet égard, merci notamment à
Stéphanie Lizy-Destrez de m’avoir offert l’opportunité de revenir dans mon ancienne école en tant que pc-man
de méca spa’. Toutes ces excursions hors de ma zone de confort, en plus de rythmer mon quotidien de thèse —
où les jours se suivent mais ne ressemblent pas — ont été très enrichissantes, sinon gratifiantes !

Sur une note plus personnelle à présent, je voudrais dire un grand merci à mes collègues et amis d’IEA, qui
ont tous contribué, à leur manière, à ce que je me sente bien sur mon lieu de travail. Vu de l’extérieur, il est vrai
que le centre de l’ONERA Châtillon peut sembler quelque peu austère et triste, mais cela n’est qu’apparence ! La
réalité est bien différente une fois poussée la porte du bâtiment F, où la bonne humeur que j’ai tenté d’apporter
chaque jour m’a été pleinement rendue. Ayant été le seul doctorant de l’unité pendant l’essentiel de ma thèse, je
tiens à adresser une mention spéciale aux stagiaires — maintenant devenus à leur tour doctorants pour certains —
avec qui j’ai cohabité, car ils ont apporté de la vie dans un bureau bien trop vide autrement. Je n’oublierai
certainement pas les montées d’adrénaline, à 15 heures, autour du babyfoot !

À l’IAP, un grand merci à l’ensemble des doctorantes et doctorants que j’ai eu la chance de côtoyer de créer
cette ambiance si singulière, solidaire, et appréciable au quotidien. Malgré ma présence quelque peu sporadique
au 98bis boulevard Arago, je me suis senti, et ce dès le départ, pleinement intégré au groupe. Un merci tout

1La langue française a beau être d’une grande richesse, peut-être manque-t-elle de synonymes pour le mot ‘merci’. Décliné sous
toutes ses formes dans ce qui suit, c’est avec une égale sincérité que je le répète.

v



vi Remerciements / Acknowledgement

particulier à Mathieu qui a accepté, le jour de ma soutenance, la lourde responsabilité de ‘garant technique’, me
libérant ainsi un volume significatif de ram-mentale.

Je voudrais faire savoir à mes amis combien leur soutien indéfectible au cours de ces trois dernières années
me touche. Entre les matchs de volley-ball du lundi soir, les footings du mercredi entre midi et deux, les soirées
du samedi soir2 et les répets’ de musique du dimanche avec mes amis les plus métalleux (\m/) , j’ai vraiment été
comblé ! Je ne peux qu’espérer que ces amitiés, essentielles à mon équilibre de vie, perdurent encore longtemps.

Enfin, et pour conclure cette liste déjà longue, j’adresse mes remerciements les plus sincères à toute ma
famille3 pour son soutien inconditionnel sur tous les plans, pendant ma thèse bien sûr, mais surtout pendant
les vingt-quatre années qui l’ont précédée. Un merci tout particulier à mes parents qui — excusez-moi pour la
déformation professionnelle — m’ont donné les justes conditions initiales pour que j’évolue sur une trajectoire
épanouie et heureuse dans la vie. Mes derniers mots — et ils sont bien trop peu pour lui exprimer toute ma
reconnaissance — iront à Carole, devenue malgré elle experte en gravité caméléon ! Merci d’avoir été à mes
côtés dans les moments de stress, de frustration, ou de doute que j’ai pu ressentir. Merci bien plus encore d’avoir
partagé avec moi les moments de joie, d’excitation, voire d’euphorie liés à cette aventure un peu folle, mais
certainement pas solitaire, qu’a été cette thèse.

English

I have often heard, before embarking on this journey myself, that a PhD is a long and solitary haul. There is, of
course, some truth in this statement; but it actually overlooks the contribution of so many people to the success
of the endeavor! In the few paragraphs that follow, I would like to take the time to thank them all properly.

First and foremost, I warmly thank my thesis supervisors, Joël Bergé and Jean-Philippe Uzan, for their
invaluable guidance throughout these three years. Beyond their constant benevolence, I greatly appreciated the
freedom and autonomy they granted me to conduct my research work, knowing that their doors were always
open. This subtle balance could not have been achieved without a form of mutual trust, and I am grateful to
them for placing theirs in me.

Peer review is a cornerstone of the scientific process, and I want to express my gratitude to the members of
my thesis jury who agreed to review my work. I particularly thank Meike List and Clare Burrage for taking on
the more demanding role of reviewers. I also extend my thanks to Patrick Joly, a mathematician in an otherwise
predominantly physicist assembly, for bringing his critical perspective to the applied mathematics and numerical
analysis aspects of my thesis.

In addition to those mentioned, I wish to express my sincere gratitude to everyone who provided me with
scientific advice and assistance. In particular, my thanks go to Manuel Rodrigues for his invaluable expertise on
the microscope mission, to Gilles Esposito-Farèse for discussions on redshift in scalar-tensor theories and his
careful review of the corresponding section of the manuscript, to Tahar Boulmezaoud — author of the inverted
finite element method — for sharing his time with me, as well as to Clare Burrage for kindly welcoming me
at the University of Nottingham for a few days. My thanks also go to Antoine Ait-Mehdi for his enlightening
programming advice during the development of femtoscope (and without whom I may never have embarked
on such an ambitious code refactoring during my final year), to Phuong-Anh Huynh for assisting me with the
migration of my code to ONERA’s supercomputers, and to Matthieu Dellavalle for being its very first beta-tester.

If my PhD journey has been so smooth, it is also thanks to the support of numerous people, including Nassim
Zahzam and Jérôme Perez, who followed my early research career as members of my so-called “comité de suivi
de thèse". I particularly thank Jérôme, who, entirely on his own initiative, found contacts in the ENSTA Paris
applied mathematics department to answer my questions at a crucial time. My thoughts also go out to the
DPHY secretariat, whose daily efforts ensure that doctoral students have the best possible working conditions.

My PhD also gave me the opportunity to try my hand at teaching. In this regard, my thanks go to Stéphanie
Lizy-Destrez for the chance to return to my alma mater as a space mechanics pc-man. All these excursions
outside my comfort zone added rhythm to my PhD experience — where no two days where alike — and proved
both enriching and fulfilling!

On a more personal note, I want to extend my heartfelt thanks to my colleagues and friends at IEA, each
of whom, in their own way, contributed to making me feel at home in my workplace. Admittedly, from the
outside, ONERA’s Châtillon center may seem somewhat austere and dull, but this is only an illusion! The
reality is quite different once you step inside Building F, where the good cheer I tried to bring each day was
fully reciprocated. Being the only PhD student in the unit for most of my program, I want to give a special
mention to the interns — some of whom have since become doctoral students themselves — with whom I shared
my workspace, as they brought life to an otherwise far too quiet office. I will most certainly remember the
adrenaline-fueled foosball matches at 3 p.m.!

2Lorsque celles-ci ne sont pas mises à profit pour terminer l’écriture du présent manuscrit toutefois...
3Sans vouloir être exhaustif : mes parents, ma sœur, Maxime, mes grands-parents, mon oncle, mes tantes, mes cousin·es, sans

oublier les chats et les toutous !



Remerciements / Acknowledgement vii

At IAP, my thanks go to all the PhD students I had the pleasure of meeting, and who contributed to creating
such a unique, supportive, and enjoyable atmosphere. Despite my somewhat sporadic presence at 98bis Boulevard
Arago, I felt fully welcomed by the group from the outset. A special thanks to Mathieu for taking on the crucial
role of ‘technical guarantor’ on the day of my defense, thus freeing up a significant portion of my mental ram.

I want my friends to know how much their unwavering support over the past three years has meant to me.
Between Monday night volleyball games, Wednesday lunchtime runs, Saturday night gatherings4 and Sunday
band practices with my most metalhead friends (\m/), I’ve truly been fulfilled! I can only hope these friendships,
essential to my work-life balance, will continue for years to come.

Lastly, and to conclude this already lengthy list, I extend my deepest thanks to my family for their
unconditional support in all respects, not only during my PhD but also over the twenty-four years leading up to
it. A special thanks to my parents, who — pardon my professional bias — gave me the ideal initial conditions to
pursue a fulfilling and happy path in life. My final thanks — and they are far too little to convey the full extent
of my gratitude — go to Carole, who, in spite of herself, has become an expert on chameleon gravity! Thank
you for standing by me through moments of stress, frustration, or doubt. Thank you even more for sharing with
me the joy, excitement, and even euphoria of this somewhat crazy but certainly not solitary adventure that has
been my PhD.

4Except for those nights spent finishing this very manuscript...



viii Remerciements / Acknowledgement



Résumé substantiel en langue française

Contexte général de la thèse

La Relativité Générale (RG) est la théorie géométrique de la gravitation publiée par Albert Einstein en 1915 et
constitue la description actuelle de la gravitation en physique moderne. La RG est l’une des théories physiques
les plus éprouvées, puisqu’aucun des nombreux tests expérimentaux effectués depuis le début du xxème siècle n’a
pu la mettre en défaut. Ceux-ci comprennent d’abord les tests dits ‘classiques’ — la précession du périhélie de
Mercure, la déflexion de la lumière par le Soleil, le décalage vers le rouge gravitationnel — et plus généralement
tous les tests post-newtoniens de la gravité. Plus récemment, les détections directes par les interféromètres LIGO
et Virgo d’ondes gravitationnelles produites par la coalescence de systèmes binaires compacts, ainsi que l’imagerie
par l’Event Horizon Telescope de trous noirs, ont contribué à asseoir plus encore la théorie. Aujourd’hui, la RG
fait partie intégrante de la physique moderne. En particulier, elle est à la base même du modèle standard de la
cosmologie qui, à l’heure actuelle, décrit de la façon la plus satisfaisante l’histoire de l’univers dans lequel nous
vivons. Dans ce modèle, la majeure partie du contenu masse/énergie de l’espace-temps est constituée de matière
noire (∼ 27%) et d’énergie sombre (∼ 68%), dont le choix des noms renvoie directement à leur nature élusive.
Quand bien même on accepterait que 95% de l’univers nous demeure de nature inconnue, le nombre croissant de
relevés astronomiques et cosmologiques ces dernières décennies a fait émerger plusieurs tensions. Ces tensions
font référence à des observations contradictoires dans le cadre du modèle standard — lui-même reposant sur
la RG — la plus célèbre étant la tension de Hubble. Au-delà de ces anomalies de plus en plus dérangeantes,
l’apparente incompatibilité avec la mécanique quantique est un indice supplémentaire quant au fait que la RG
n’est certainement pas le fin mot sur la gravitation.

Face à ces difficultés, il semble légitime et même nécessaire de s’autoriser à étudier des modèles alternatifs à
la RG, regroupés sous la dénomination générique de ‘gravité modifiée’. Pour être jugé pertinent, tout modèle
alternatif doit non seulement rendre compte des observations qui motivent son existence (e.g. expliquer de
manière cohérente l’accélération de l’expansion de l’univers), mais aussi rester en accord avec la physique connue.
Cette entreprise est d’autant plus difficile pour les physiciens théoriciens que la RG est aujourd’hui fortement
contrainte par une myriade de tests.

Dans cette thèse, je m’intéresse aux théories tenseur-scalaires de la gravitation. Celles-ci constituent l’une
des extensions les plus naturelles et résilientes de la RG, où la gravité est décrite mathématiquement par la
combinaison d’un tenseur métrique gµν et d’un champ scalaire ϕ. Cet ajout, par rapport à la RG, d’un degré
de liberté scalaire dans le secteur gravitationnel offre un assez large spectre de phénoménologies possibles, le
champ scalaire pouvant jouer différents rôles suivant les motivations physiques sous-jacentes : de l’accélération
de l’expansion de l’univers aux candidats pour la matière noire, en passant par le paradigme d’inflation. De
plus, ces particules de spin nul et de faible masse apparaissent naturellement dans le cadre de théories plus
fondamentales, comme par exemple en théorie des cordes, dans la limite de faibles énergies.

On ne peut pas parler de théories tenseur-scalaires sans introduire la notion de cinquième force, un terme
inventé dans les années 1980 par E. Fischbach pour désigner une nouvelle force — aux côtés des quatre interactions
fondamentales connues — dont le champ scalaire est le médiateur. Du point de vue du lagrangien de la théorie,
une telle cinquième force apparaît lorsque (i) le champ scalaire est couplé de manière conforme aux champs de
matière mais demeure minimalement couplé à la métrique ; ou, de manière équivalente, lorsque (ii) le champ
scalaire est couplé à la courbure scalaire tout en restant minimalement couplé à la matière. De telles cinquièmes
forces constituent des déviations à la RG, qui sont par conséquent fortement contraintes, notamment par nos
observations à l’échelle du système Solaire et expériences de laboratoires.

Pour demeurer simultanément viables vis-à-vis des contraintes sus-mentionnées et intéressantes sur le
plan physique, les théories tenseur-scalaires doivent se doter de mécanismes d’écrantage : des non-linéarités
astucieusement introduites au niveau du lagrangien dans le but de ‘cacher’ les effets du champ scalaire aux échelles
sub-système Solaire, tout en autorisant des déviations à la RG aux échelles astrophysiques et cosmologiques, où
la gravité est bien moins contrainte. Concrètement, ces non-linéarités ont pour effet de rendre dynamique une
des propriétés du champ — comme sa masse (e.g. modèle caméléon) ou son couplage à la matière (e.g. modèle
symmetron) — de manière à réduire largement les effets de cinquième force dans les milieux suffisamment denses.
Toutefois, même dans le cadre de ces modèles avec écrantage, la cinquième force n’est jamais strictement nulle.
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x Résumé substantiel en langue française

L’empreinte du champ scalaire sur la gravité, suivant son ampleur, reste donc susceptible d’être mesurée.
Comme toujours en physique, c’est la comparaison entre les prédictions d’un modèle donné d’une part, et

des données expérimentales acquises d’autre part, qui permet de tirer des conclusions quant à la viabilité du
modèle en question. Pour mener à bien cette démarche, il est nécessaire de comprendre — qualitativement et
quantitativement — comment se comportent le champ scalaire et la cinquième force qui lui est associée. Dans
le cadre des théories tenseur-scalaires avec écrantage, cette tâche est complexe à bien des égards. D’abord,
l’importance d’une modélisation réaliste des géométries et de la distribution de matière a été soulignée à plusieurs
reprises dans des travaux antérieurs, notamment dans la thèse de Martin Pernot-Borràs. Une autre difficulté
est celle des non-linéarités : le calcul de la cinquième force passe par la résolution d’une équation aux dérivées
partielles (EDP) de Klein–Gordon semi-linéaire, ce qui limite d’autant plus l’utilisation de techniques analytiques
et d’ansätze. Ces deux considérations m’ont naturellement poussé à me tourner vers les méthodes numériques,
plus particulièrement la méthode des éléments finis (FEM). En effet, celle-ci présente l’avantage qu’elle repose
sur un maillage dont la résolution peut être adaptée localement (h-adaptivité), ce qui permet de représenter des
géométries arbitrairement complexes et de concentrer les ressources computationnelles là où elles sont le plus
nécessaires. De plus, l’utilisation complémentaire de méthodes itératives — comme la méthode de Newton —
permet d’étendre le cadre de la FEM aux problèmes non-linéaires qui nous intéressent.

La dernière difficulté majeure est relative aux conditions aux limites, dont la spécification est nécessaire pour
obtenir un problème dit bien posé. Dans de nombreux contextes physiques, on utilise des conditions de Dirichlet,
où la valeur de l’inconnue est fixée sur le bord du domaine numérique. Or dans notre cas, le comportement
du champ scalaire n’est en général connu qu’infiniment loin des sources. En d’autres termes, cela signifie que
le domaine spatial sur lequel le problème est posé n’est pas borné : on parle alors de conditions aux limites
asymptotiques. Naturellement, la mémoire d’un ordinateur étant finie, il est impossible de mailler une région
non bornée de Rn, n ∈ {1, 2, 3}. Une solution naïve consisterait à tronquer le domaine à une distance finie
et à utiliser la valeur asymptotique du champ comme condition de Dirichlet. Cela n’est malheureusement pas
satisfaisant car (i) le domaine résultant de la troncature doit alors être suffisamment grand ce qui donne lieu à
de gros systèmes linéaires à résoudre, et (ii) imposer une condition de nature asymptotique à une distance finie
peut engendrer une erreur non-négligeable — et surtout non-quantifiable aisément — sur la solution numérique.

Le premier objectif de ma thèse a été de développer un outil numérique polyvalent, basé sur la méthode
des éléments finis, pour pouvoir résoudre les EDPs qui apparaissent dans l’étude des théories tenseur-scalaires
de la gravitation avec écrantage. Cet outil est nommé femtoscope. Un soin particulier est apporté à la gestion
des conditions aux limites asymptotiques, et plus généralement au caractère bien-posé des solutions numériques
obtenues. Ces problématiques font l’objet des chapitres 2, 3 et 4. Ensuite, femtoscope est mis à profit pour
explorer des scénarios en gravité modifiée qui étaient inaccessibles jusqu’alors. Spécifiquement, on s’intéresse
dans les chapitres 4 et 5 au mouvement d’un satellite en orbite autour de la Terre dans le contexte de la gravité
caméléon comme prototype de modèle tenseur-scalaire avec écrantage. Dans le chapitre 6, on étudie la possibilité
de tester le modèle caméléon via des mesures du décalage vers le rouge gravitationnel — une idée qui n’avait pas
été envisagée dans la littérature jusqu’alors.

Dans ce qui suit, on propose un résumé de la thèse chapitre par chapitre, mettant en avant les résultats
principaux obtenus.

Chapitre 1 : théories tenseur-scalaires de la gravité

Ce premier chapitre est une introduction aux théories tenseur-scalaires de la gravité comme extension de la RG.
On se concentre sur la classe de modèles dite ‘traditionnelle’, dont l’action S peut s’écrire génériquement comme

S = SEH + Sϕ + Smat[g̃µν ] .

Dans cette expression, SEH est l’action de Einstein–Hilbert usuelle, tandis que les actions du champ scalaire et
des champs de matière, en unités naturelles pour lesquelles c = ℏ = 1, sont données respectivement par

Sϕ = −
∫

d4x
√−g

[
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
, Smat[g̃µν ] =

∫
d4x
√
−g̃Lmat

(
g̃µν , ψmat

)
.

La métrique d’Einstein gµν est liée à la métrique de Jordan g̃µν via une transformation de Weyl g̃µν = Ω2(ϕ)gµν ,
où Ω et V sont deux fonctions du champ scalaire. En particulier dans la section 1.1, on ré-établit à partir de
cette action toutes les expressions qui jouent un rôle important dans ce travail, à savoir :

– les équations de champ pour la métrique et pour le champ scalaire, ainsi que leurs limites newtoniennes ;

– les équations de la cosmologie [Eqs. (1.81–1.92)] ;

– l’équation des géodésiques, sa limite newtonienne et l’expression de la cinquième force qui en découle.
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Pour assurer une certaine cohérence et dans un objectif d’autosuffisance, la plupart de ces équations sont données
dans les représentations d’Einstein et de Jordan. Voir la Table 6.1 pour une compilation de ces équations.

La section 1.2 présente les différents mécanismes d’écrantage connus (voir la Table 1.3 pour une classification),
avec un focus sur le mécanisme caméléon, où la masse du champ scalaire varie dynamiquement selon la densité
du milieu ambiant : dans les milieux de forte densité, le champ acquiert une importante masse, limitant ainsi la
portée de la cinquième force qu’il occasionne ; tandis qu’il devient léger dans les milieux de densité plus faible.

On revient dans la section 1.3 sur la mission spatiale microscope qui, au-delà d’être le test du principe
d’équivalence faible le plus précis jamais réalisé à ce jour, a permis de contraindre toute une panoplie de modèles
alternatifs à la RG. Nous revisitons les résultats de thèse de Martin Pernot-Borràs sur la recherche de cinquième
force de type caméléon dans les données de microscope. À la lumière de ces résultats, il apparaît que la
testabilité des modèles avec écrantage dépend de façon cruciale du développement de nouveaux outils numériques
pour une modélisation réaliste de leurs caractéristiques. On établit alors dans la section 1.4 une liste des
spécifications que devra posséder un tel outil, en mettant en évidence le fait qu’aucun des codes numériques
existants ne remplit le cahier des charges. Ces principales spécifications sont récapitulées dans la Table 1.4.

Chapitre 2 : méthode des éléments finis

Les EDPs que l’on souhaite pouvoir résoudre numériquement sont (i) l’équation de Poisson qui régit le potentiel
newtonien, et (ii) les équations de Klein–Gordon semi-linéaires auxquelles obéissent e.g. les champs caméléon
et symmetron. On choisit d’utiliser la méthode des éléments finis pour résoudre ces EDPs, dont les bases sont
exposées dans ce deuxième chapitre introductif.

La section 2.1 commence avec une vue d’ensemble de la FEM, illustrée sur une EDP linéaire elliptique posée
sur un domaine Ω ⊂ Rn borné, avec conditions de Dirichlet imposées sur le bord Γ := ∂Ω. On y introduit en
particulier les concepts de formulation variationnelle, de problème bien-posé au sens de Hadamard ainsi que tous
les outils mathématiques associés : inégalité de Poincaré, inégalité de trace, espaces de Sobolev, théorème de
Lax–Milgram, etc. Une fois le cadre fonctionnel établi, on procède à la discrétisation du problème par éléments
finis qui permet sa résolution sur une machine à mémoire finie. Bien que cette thèse ne s’intéresse qu’à des
problèmes stationnaires, on inclut une discussion sur la résolution d’EDPs dépendantes en temps qui pourra
éventuellement s’avérer utile pour de futurs travaux.

Dans la section 2.2, on montre comment la FEM peut être étendue pour traiter des EDPs non-linéaires via
des méthodes itératives. Celles-ci reposent sur l’algorithme suivant :

1. linéariser l’EDP autour d’une première estimation de la solution ;

2. résoudre l’EDP linéarisée par la FEM ;

3. actualiser l’estimée à partir de la solution précédente et reprendre à l’étape 2 jusqu’à convergence.

Les méthodes de Picard et de Newton sont illustrées sur l’équation de Klein–Gordon régissant le champ caméléon.
Enfin, il est courant en physique de rencontrer des symétries continues globales (e.g. symétrie sphérique,

invariance par translation, etc.), auquel cas il est possible de réduire la dimension effective de l’EDP en jeu.
D’un point de vue numérique, la réduction de la dimension du problème est un atout non-négligeable en termes
de complexité temporelle et spatiale, c’est pourquoi j’explique dans la section 2.3 comment tirer parti de ces
symétries, lorsqu’elles existent, dans le cadre de la FEM. En particulier, je prouve le caractère bien-posé des
formulations faibles qui résultent de la réduction dimensionnelle pour les symétries sphériques et cylindriques.

Chapitre 3 : problèmes posés sur des domaines non-bornés

Pour pleinement satisfaire le cahier des charges établi au chapitre 1, on doit s’affranchir de l’hypothèse Ω borné.
Le chapitre 3 est ainsi dédié au traitement des conditions aux limites asymptotiques et constitue une synthèse
des diverses approches explorées au cours de cette thèse.

On commence dans la section 3.2 par spécifier un cadre fonctionnel adéquat aux problèmes posés sur Rn.
Suivant la forme spécifique de l’EDP en jeu, il peut être nécessaire d’avoir recours à des espaces de Sobolev à
poids pour donner un sens à la formulation faible sous-jacente, où le choix d’un poids adéquat permet d’imposer
le comportement asymptotique désiré sur la solution. On vérifie dans les deux cas d’intérêt — les équations
de Poisson et de Klein–Gordon — que le théorème de Lax–Milgram s’applique. En particulier, l’inégalité de
Poincaré, qui servait à démontrer la coercivité de la forme bilinéaire associée à la formulation faible en domaine
borné, est remplacée par une inégalité de Hardy généralisée.

Une fois le décor fonctionnel planté, on revient dans la section 3.3 à des considérations numériques davantage
pratiques. Un moyen de conserver le caractère non-borné du domaine en machine consiste à utiliser des
compactifications : des changements de coordonnées par lesquels l’image de Rn est un borné. La méthode retenue
est la suivante. On décompose d’abord le domaine Ω en un domaine intérieur borné Ωint = B(Rc) et un domaine
extérieur non-borné Ωext = Ω\ Ω̄int, où Rc > 0 et B(Rc) est la boule ouverte de rayon Rc et centrée à l’origine. Le
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domaine extérieur est ensuite inversé via la transformation de Kelvin K : Rn \{0} ∋ x 7→ (Rc/∥x∥2)x ∈ Rn \{0},
et l’on note Ω̃ext = K(Ωext). On se ramène ainsi à un problème posé sur Ω̄int ∪ Ω̃ext borné. La section 3.4 est
consacrée aux détails et subtilités associées à la discrétisation éléments finis de ce problème. Cette première
méthode est assimilable à la méthode des éléments finis inversés (ifem) introduite par T. Boulmezaoud.

Dans la section 3.5, je propose une nouvelle méthode — la méthode des éléments finis inversés alternée
(a-ifem) — s’inspirant en grande partie de la méthode ifem et d’une méthode de décomposition de domaine
proposée par Marini et Quarteroni. Enfin, on réalise dans la section 3.6 une série d’expériences numériques
visant à comparer les performances des méthodes ifem et a-ifem sur des exemples pour lesquels la solution
analytique est connue. Influence des méta-paramètres, vitesse de convergence des itérations de la méthode a-ifem,
complexité temporelle et courbes de convergence font partie, entre autres, des sujets abordés en détail à cette
occasion.

Chapitre 4 : modélisation de la gravité tenseur-scalaire avec femtoscope

Les chapitres 2 et 3 ont permis de couvrir l’ensemble des points critiques du cahier des charges dressé au
chapitre 1. Le chapitre 4 constitue le point culminant de cet effort avec l’implémentation de femtoscope, dont un
aperçu global est donné dans la section 4.1. Ce code Python, logiciel libre sous licence MIT et disponible sur la
plate-forme GitHub,5 repose sur l’ensemble des techniques numériques abordées aux chapitres précédents pour
résoudre des EDPs non-linéaires elliptiques posées sur des domaines bornés ou non de Rn, n ∈ {1, 2, 3}. Dans
sa version actuelle (09/2024), femtoscope pré-implémente :

– l’équation de Poisson (4.1) associée au potentiel newtonien ;

– l’équation de Klein–Gordon linéaire (4.2) relative au potentiel de Yukawa ;

– les équations de Klein–Gordon non-linéaires (4.4, 4.6) associées au caméléon et au symmetron respective-
ment.

L’architecture du programme, qui suit le paradigme de la programmation orientée objet, est détaillée à travers les
figures 4.3 à 4.5. En vue des applications en orbite terrestre qui font l’objet du chapitre 5, femtoscope implémente
un modèle de densité de la Terre (PREM) et de son atmosphère (US76).

La section 4.2 est dédiée à la validation du code. Plusieurs leviers sont utilisés à cette fin :

– Implémentation de tests unitaires et tests d’intégration écrits en pytest.

– Pour l’équation de Poisson, analyse de l’erreur sur le cas de l’ellipsoïde de révolution oblate pour lequel il
existe une expression analytique du potentiel newtonien [Eqs. (4.8–4.10)] — voir Fig. 4.8.

– Pour l’équation de Klein–Gordon associée au caméléon, comparaisons de la solution éléments finis aux
approximations analytiques proposées dans la littérature et au code selcie.

Enfin, la section 4.3 met femtoscope en valeur sur deux cas d’usage. La première application concerne
l’étude de la gravité caméléon en orbite terrestre, où l’on utilise les modèles de densité réalistes PREM et US76
mentionnés ci-dessus. En guise de seconde application, on s’intéresse au problème à deux corps, toujours en
gravité caméléon. En imaginant une expérience de laboratoire, je montre que l’ajout de la cinquième force a
pour effet de déplacer le point de Lagrange L1 du système par rapport au cas purement newtonien à un niveau
non-négligeable devant la taille caractéristique du système, lorsqu’au moins une des deux sphères est écrantée.
Cela constitue, au moins sur le plan théorique, un moyen de discriminer l’attraction newtonienne des effets de
cinquième force.

Soulignons que l’intérêt de disposer d’un outil comme femtoscope est double : il peut être utilisé pour traduire
les données d’une expérience en contraintes sur un certain modèle tenseur-scalaire, mais peut aussi revêtir un
rôle plus prospectif. En effet, on peut s’en servir pour évaluer la pertinence d’un dispositif expérimental donné,
ou encore pour optimiser ce dernier.

Chapitre 5 : effets de cinquième force en orbite terrestre

Le chapitre 5 fait suite à la première application de femtoscope à la gravité caméléon en orbite terrestre présentée
au chapitre précédent. L’objectif est d’évaluer quantitativement la détectabilité d’une cinquième force de type
caméléon en orbite terrestre par le biais de techniques de géodésie spatiale. Comme précédemment, on utilise les
modèles PREM et US76 pour assigner une densité à la Terre et son atmosphère respectivement. On introduit de
plus une déviation à la symétrie sphérique incarnée par une montagne, qu’on choisit axisymétrique de manière
à pouvoir réaliser nos calculs éléments finis en dimension deux et non trois. Ensuite, on utilise femtoscope
pour calculer numériquement le potentiel newtonien et le champ scalaire, qui permettent d’accéder à la gravité

5https://github.com/onera/femtoscope

https://github.com/onera/femtoscope
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standard et modifiée. Dans les régions encore viables de l’espace des paramètres du modèle caméléon, la Terre est
écrantée, ce qui signifie que seules ses couches les plus externes contribuent à la cinquième force, par opposition à
la gravité newtonienne de portée infinie. Ainsi, le champ caméléon laisse une signature distinctive sur le champ
gravitationnel terrestre, qu’on retrouve bien dans sa décomposition en harmoniques sphériques. Dès lors, la
question est de savoir si cette signature est mesurable en pratique.

Dans cette perspective, on commence par aborder la question de l’influence de l’atmosphère sur la cinquième
force. À paramètres du modèle caméléon (Λ, n) fixés, quatre régimes distincts apparaissent lorsqu’on augmente
progressivement le paramètre de couplage β : (i) pour les petites valeurs de β, l’atmosphère est totalement
transparente pour le champ scalaire, (ii) au-delà d’un certain seuil, elle agit comme un atténuateur de la cinquième
force, (iii) pour des couplages encore plus forts, toute dépendance non-radiale du champ scalaire est supprimée,
de sorte que la montagne est tout à fait invisible, et (iv) l’atmosphère elle-même finit par être écrantée.

Nous nous penchons aussi sur la question de la rétroaction d’un satellite sur le champ caméléon d’arrière-plan.
Pour la première fois, on dépasse les approximations faites dans la littérature en calculant le champ créé par
le système complet {Terre + satellite}. On montre en particulier que la transition entre les régimes écranté et
non-écranté pour le satellite s’opère sur une région très étroite de l’espace des paramètres du modèle caméléon.
Lorsque ce dernier est écranté, la cinquième force résultante est supprimée de manière extrêmement efficace.

Dans un troisième temps, on retient le scénario le plus favorable (i.e. qui maximise la cinquième force, sans
atmosphère) et on simule la dynamique d’une paire de satellites placés sur une même orbite, à l’image de la
mission de géodésie spatiale GRACE-FO. On fait l’hypothèse que les satellites ne sont pas écrantés, ce qui
permet de les traiter comme des points matériels dans le système {Terre sphérique+montagne}. Conformément
au principe de la mission GRACE-FO, on s’intéresse à la variation de la distance entre les deux satellites au
cours du temps, en gravité newtonienne d’une part et en gravité modifiée d’autre part. Contre toute attente,
l’anomalie causée par la cinquième force est non-négligeable, plusieurs ordres de grandeur supérieure à la limite
de sensibilité offerte par la technologie spatiale actuelle. Malheureusement, l’existence d’incertitudes dans le
modèle — notamment le fait que la distribution de masse à l’intérieur de la Terre demeure mal connue — réduit
considérablement le pouvoir contraignant de ce type de mission. Toutefois, ces dégénérescences peuvent en
principe être levées en réalisant l’expérience à plusieurs altitudes différentes.

Chapitre 6 : tester la gravité tenseur-scalaire avec des horloges atomiques

Dans ce sixième et dernier chapitre, j’explore la possibilité de tester les théories tenseur-scalaires au moyen
d’expériences basées sur le phénomène de décalage vers le rouge, ou redshift, gravitationnel. Contrairement
aux effets de cinquième force, qui dépendent principalement du gradient du champ scalaire, la contribution
scalaire au redshift total est essentiellement proportionnelle à la différence entre les valeurs prises par le champ
en différents points de l’espace. Ceci donne ainsi lieu à des concepts de tests reposant sur l’utilisation d’horloges
atomiques, aux antipodes des recherches de cinquième force.

Dans la section 6.1, j’obtiens l’expression théorique de la contribution scalaire au redshift total. Comme
toute théorie métrique de la gravité, les théories tenseur-scalaires satisfont à l’invariance de position locale. Pour
autant, on montre qu’il est possible de distinguer ces dernières de la RG dans des expériences basées sur le
redshift. C’est l’objet de la section 6.2 où l’on esquisse une première expérience de pensée reposant sur l’emploi
d’horloges plongées dans des milieux de densités distinctes et dont il serait possible de comparer les fréquences.
Nous passons de plus en revue l’état de l’art en matière d’horloges atomiques de manière à pouvoir calculer des
premiers ordres de grandeur sur les contraintes auxquelles on pourrait s’attendre sur le modèle caméléon via ce
type d’expériences. Cela fournit des contraintes ‘optimales’ sur le modèle caméléon qui s’avère être compétitives
avec l’état de l’art.

Ces résultats préliminaires nous encouragent à pousser plus loin le degré de réalisme d’une telle expérience
dans la section 6.3. Dans le laboratoire, des horloges atomiques suffisamment modulaires permettraient de tester
le modèle caméléon pour des couplages à la matière très grands (β ≫ 105). Toutefois, la faisabilité d’un tel
montage expérimental est discutable et l’écrantage des noyaux atomiques eux-mêmes, aux très grands couplages,
pourrait s’avérer limitant.

Le recours aux missions spatiales avec horloge atomique embarquée est envisagé pour tester le caméléon à de
plus faibles couplages, typiquement β ≤ 103. En effet, la très faible densité qui règne aux hautes orbites est
avantageux à deux égards. D’abord, cela favorise le non-écrantage du satellite, condition sine qua non pour
que l’horloge embarquée ‘voit’ la valeur du champ scalaire dans ce presque-vide. D’autre part, cela permet de
maximiser la contribution scalaire au redshift. La principale limitation identifiée dans ce concept de mission
spatiale est la précision des meilleures horloges embarquées, encore quelques ordres de grandeur trop basse pour
espérer obtenir des contraintes compétitives.
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Annexes

Le présent manuscrit comprend cinq annexes. L’annexe A est relative à l’utilisation d’unités naturelles et aux
conversions avec le système international d’unités. L’annexe B établit les connexions qu’il existe entre les théories
tenseur-scalaires d’une part, et les modèles f(R) ou la théorie de Kaluza–Klein en dimension cinq d’autre part.
Dans l’annexe C, je m’intéresse aux questions d’existence et d’unicité des solutions aux EDPs semi-linéaires
qui régissent la dynamique du champ caméléon et symmetron en régime stationnaire. Je m’appuie pour cela
sur des résultats classiques de la littérature en analyse des EDPs. Dans l’annexe D, j’examine le comportement
asymptotique de la solution radiale d’une équation de Klein–Gordon semi-linéaire où la valeur de la solution à
l’infini est imposée. En particulier, je montre que sous certaines hypothèses, la dérivée radiale de la solution tend
nécessairement vers zéro. Enfin, l’annexe E présente une technique de projection pour la résolution d’équations
différentielles ordinaires avec conservation de l’énergie. Cette technique est utilisée dans l’étude du chapitre 5,
lorsqu’on calcule la trajectoire d’un satellite en orbite en imposant la conservation de l’énergie mécanique.
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General introduction

Gravitation is by far the weakest of all four known fundamental interactions, yet it is the one whose effects are
perhaps the most appreciable in our experience of life on Earth. It is the common denominator to phenomena
as diverse as the sensation of weight, tides, or the motion of celestial bodies in the Solar system, up to the
way matter is scattered across the largest scales of the universe. A major milestone in the history of our
understanding of gravity was reached in the xviith century when Isaac Newton, upon realizing that all these
seemingly unrelated phenomena could be explained by a same force, formulated his famous law of universal
gravitation. This so-called ‘inverse-square law’ provided the first comprehensive mathematical description of
gravity as an attractive force between massive bodies, acting instantaneously in vacuum across distances. The
advent of modern physics in the early xxth century, most notably the Michelson–Morley experiment and the
discovery of the ‘anomalous’ perihelion precession of Mercury, led Albert Einstein to rethink the very concepts of
space and time, culminating in the formulation of his theory of General Relativity (GR) in 1915. GR describes
gravity not as a force but as the curvature of spacetime, itself caused by the mere presence of mass and energy,
and in this sense constitutes a genuine paradigm shift with respect to Newton’s law.

This truly groundbreaking theory was initially met with skepticism, but its acceptance grew among the scien-
tific community in the subsequent decades following its publication, as numerous observations and experiments
confirmed its predictions, one by one. Still today, GR remains our best understanding of gravity, consistently
passing all experimental tests thrown at it with flying colors. The latter include the so-called ‘classical tests’ —
namely the perihelion precession of Mercury’s orbit, the deflection of light by the Sun and the gravitational
redshift of light — and more generally all the post-Newtonian tests of gravity. More recently, the direct detections
of gravitational waves and imaging of black holes further consolidated GR. Today, it is fully integrated into the
mainstream of physics. Especially, it underlies the contemporary standard model of cosmology, which currently
constitutes the most satisfactory description of the history of the universe we live in.

Despite being one of the most tried and tested theories in all physics, GR is most certainly not the final
word on gravity. New questions always arise as science progresses along the endless road towards a deeper
understanding of the laws of nature. As far as GR is concerned, most unresolved conundra revolve around
the difficulty of marrying it with quantum mechanics and the universe’s dark sector. The latter refers to dark
matter and dark energy namely, two ingredients of unknown nature which nevertheless must be included in the
universe’s total mass-energy budget, for otherwise astronomical and cosmological observations would not be
consistent with GR. Even under the hypothesis that our universe is 95% dark,6 the standard model of cosmology
is plagued with several tensions — inconsistencies between the values of some cosmological parameters obtained
with different datasets. The so-called Hubble tension and S8 tension are perhaps the two most famous examples
of such hot topics of modern cosmology.

In face of these challenges, it seems legitimate to examine alternative models to GR — also known as modified
gravity models — which do not suffer from the aforementioned issues. Actually, even beyond the pragmatic
purpose of finding a model that will better fit our observations, exploring alternatives to GR is interesting in
itself. Not only does that help tighten the noose on possible alternative theories, it is also a good way to pin
down which physical effects are specific to GR and which are not. If two models perform equally well, Occam’s
razor can ultimately be invoked to pick the simplest one.

Now, if the study of modified gravity models is well motivated, what does it mean exactly to ‘modify’
gravity? There is not a single answer to this question — in fact, the landscape of alternative theories to GR is
so broad that it would be both futile and unenlightening to try to be exhaustive in listing them here. Because
GR works so well, most alternative models do not start from scratch but rather build on top of it, in various
manners. A convenient framework for classifying those is to relax one or several hypotheses of Lovelock’s
theorem — a mathematical result providing a set of conditions under which Einstein’s field equations are the
only viable gravitational field equations. This includes, but is not limited to, the addition of new field contents
involved in mediating the gravitational force, the addition of extra spatial dimensions or allowing the presence of
greater-than-second-derivative terms in equations of motion.

Given physical and mathematical tools we have at our disposal (field theory, action principle, differential

6Dark energy and dark matter must account for 68% and 27% of this total mass-energy budget, respectively.
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2 General introduction

geometry, etc.), we dare to say that it is relatively easy to construct a mathematically consistent gravitational
theory, on paper. It is only when one starts doing physics that the real difficulties come in. Indeed, to be deemed
relevant, any alternative model must not only fix one (or several) of the identified shortcomings of GR, but also
remain consistent with known physics at the same time. This endeavor is all the more challenging for theoretical
physicists as GR is tightly constrained by a myriad of tests by now.

One of the most natural and resilient extensions of GR are scalar-tensor theories of gravity. In this class
of models, gravity is mediated by both a rank-2 tensor field (the metric) and a scalar field. The addition of
this extra scalar degree of freedom in the gravitational sector, compared to GR, allows for a wide range of
different phenomenologies. The scalar field can indeed be made to play various roles depending on the underlying
physical motivations — from driving the universe’s accelerated expansion to dark matter candidates. Light
spin-0 particles also naturally arise in more fundamental theoretical contexts, e.g. in the low energy limit of
string theories.

One cannot introduce scalar-tensor theories of gravity without mentioning fifth forces, a term coined in the
1980s by E. Fischbach to designate an additional putative force that would extend beyond the four fundamental
interactions known in physics. As a matter of fact, when the scalar field is coupled to the matter sector (at
the level of the action),7 it automatically gives rise to a gravity-like fifth force, resulting in deviations from GR
in the predicted outcome of gravitational phenomena. This leads to a genuine theoretical deadlock: natural
couplings to matter8 would inevitably result in violations of the known bounds on the existence of fifth forces in
the Solar system or in the laboratory. In that respect, many scalar-tensor models went extinct in the second half
of the xxth century as the accuracy and precision of our tests improved, in conjunction with the development of
the powerful parameterized post-Newtonian formalism in the early 1970s.

Scalar-tensor theories were given a new lease of life with the subsequent development of screening mecha-
nisms — theoretical constructs cleverly engineered to hide (or ‘screen’) the effects of the scalar-mediated fifth
force in Earth-based and Solar system experiments, while allowing for larger deviations from GR at astrophysical
and cosmological scales (where gravity is much less constrained). In models featuring screening mechanisms, the
scalar field has to dynamically adapt its properties from one place to another — like its mass, which relates to
the fifth force range (e.g. chameleon model), or its coupling to matter (e.g. symmetron model) — in order to
evade Solar system bounds. Yet, however efficient the mechanisms, fifth forces are never totally suppressed. The
scalar field still leaves an imprint on gravity which, depending on its magnitude, may be detected.

Ultimately, it is the confrontation between the theoretical predictions of a given model on the one hand, and
experiment on the other hand, which allows conclusions to be drawn. Specifically, if the model turns out to be
inconsistent with the data, it is henceforth ruled-out. We stress that performing this kind of analysis is crucially
dependent on our ability to determine how the scalar field, together with its associated fifth force, behave in a
given experimental setup. In models featuring screening mechanisms, accessing the fifth force — which directly
derives from the scalar field itself — is partly impeded by a number of difficulties. At the level of the scalar
field equation, screening mechanisms all have in common the fact that they are enabled through nonlinearities.
Nonlinear partial differential equations (PDEs) are generally more challenging to work with than linear ones.
For one thing, analytical approaches are more restricted in scope, and solutions (provided they exist!) behave in
a somewhat less predictable way. While reasonable approximations might be obtained for simple configurations,
spherical symmetry and its cousins are a far-off dream in real experimental setups. Yet, it has been shown in
previous studies that the testability of such theories was highly dependent on the environment in which the
experiment takes place. Constraining scalar-tensor models with screening mechanisms therefore requires accurate
solutions to the PDEs at stake — simple approximations being, more often than not, unsatisfactory in this
regard.

The necessity to solve nonlinear PDEs where mass distribution — which acts as a source term — can be very
complex, calls for the use of numerical techniques. The finite element method (FEM) appears to be particularly
well suited in this regard. On the one hand, it hinges on meshes (tessellations composed of simple cells) that can
fit virtually any given geometry. On the other hand, while it is generally first taught on linear problems, its
framework can readily be extended to the realm of nonlinear problems by means of iterative techniques. To form
a well-posed problem, any given PDE must be supplemented with a set of suitable boundary conditions (as well
as initial conditions when dealing with time-dependent problems). Usually, this is done by fixing the value of
the unknown at the boundary of the simulation box. From a numerical perspective, this seemingly harmless
fact can become a major obstacle in obtaining physically meaningful solutions to the model equations. The
problem is most easily seen when trying to solve the Poisson equation governing the Newtonian potential. The
value taken by the potential in the immediate vicinity of the sources is a priori not known. Rather, we demand
that physical solutions should steadily decay to zero infinitely far away from the sources. By the same token,
the behavior of scalar fields is usually known asymptotically at best. The issue with this mere observation is
that such asymptotic boundary conditions appear to be at odds with FEM, where meshes cannot extend up to

7This is expected to be the case even if no such coupling term appears in the Lagrangian. Indeed, from a quantum mechanical
perspective, the introduction of a scalar field in the gravity sector always generates interactions between this scalar and matter fields.

8Among other things, couplings that make the scalar-tensor model at stake physically relevant in addressing GR’s shortcomings.
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infinity.

The first goal of my PhD thesis is to develop a versatile numerical tool based on FEM for solving the PDE
problems that arise in the study of scalar-tensor theories of gravity — no such tool being publicly available at its
inception. As underlined above, sometimes asymptotic conditions are the only physical property that can be
stated about the unknown fields. In this respect, the tool has to ensure these asymptotic conditions are correctly
taken into account, for otherwise the numerical solutions could turn out to be, slightly off at best, or nonphysical
at worst. Obtaining trustworthy solutions is an ongoing source of concern throughout this work.9 We shall
therefore lay emphasis on the well-posedness character of the PDE problems whe aim at tackling numerically. In
a second phase we use this numerical tool to tackle problems which, prior to this PhD work, could not be wholly
addressed. Specifically, we conduct a thorough study of the motion of spacecraft in orbit around the Earth in
the framework of the chameleon as the prototypical screening mechanism for scalar-tensor models. This allows
us to assess quantitatively the testability of such a model with space geodesy. A third objective is to analyze
the possibility of testing scalar-tensor theories with screening mechanisms via redshift measurements, which is
fundamentally different from what is done in fifth force searches.

The structure of this manuscript is as follows. Chapter 1 serves as an introduction to the physics of the
problem. Namely, we present the class of scalar-tensor theories of gravity and shed light on the various ways
in which they extend GR — both mathematically and phenomenologically. We also review the legacy of
the microscope space mission in order to comment on the relevance of space-based experiments for testing
scalar-tensor theories, which provides further insight for establishing a precise list of specifications for the
envisioned numerical tool.

Chapter 2 lays the foundations of the finite element method for solving elliptic PDE problems posed on
bounded domains, including the nonlinear case. We do not lose sight of the physical problem of interest as
FEM techniques are illustrated either with the Poisson equation governing the Newtonian potential, or with the
nonlinear Klein–Gordon equation driving the dynamics of the chameleon scalar field. The way time-dependent
problems might be eventually handled is discussed here.

Chapter 3 is a further excursion into applied mathematics. It builds on top of the previous chapter in
order to adapt the FEM framework to the case of unbounded domains, which is a necessary step for being able
to solve the physical problem of interest. Guided by both theoretical and numerical considerations, we delve
into techniques based on compactification transforms. Building on top of the so-called inverted finite element
method (ifem) and a specific domain decomposition scheme, we propose a novel method for solving elliptic PDE
problems on the whole space — the alternate inverted finite element method (a-ifem). Beyond establishing
a firm mathematical ground for both ifem and a-ifem, we conduct several numerical experiments, notably to
control their respective implementations and to study their rate of convergence.

The culmination of the first three chapters is the actual implementation of the numerical code, called
femtoscope, which is presented in Chapter 4. This Python code solves semi-linear elliptic PDEs on bounded
and unbounded domains of R3, which encompasses the physical problems of interest. Specifically, we provide a
clear overview of femtoscope: its architecture, its main features and limitations. Emphasis is laid on the points
that make it stand out from other existing numerical tools. It is then showcased on the two main examples of
interest — the Newtonian potential and the chameleon scalar field. In particular, we solve both the one-body
and two-body problems in the modified gravity setting, which sparks several physical discussions.

Chapter 5 takes the one-body problem a step further compared to what is presented in the previous chapter.
Its ultimate goal is to quantitatively assess the testability of fifth force effects in Earth orbit. To this end, we
use femtoscope in order to model chameleon gravity, solving for both the Newtonian potential and the scalar
field. In particular, numerical simulations allow us to go beyond the simplifying assumptions and modeling
traditionally found in the literature. Building on these FEM computations, we study the dynamics of satellites in
orbit around the Earth with and without the putative chameleonic force, which roughly amounts to comparing
geodesics of the Einstein-frame metric vs those of the Jordan-frame metric, respectively. Given the level of
precision achieved by recent space geodesy missions, we look whether it is possible to discriminate between the
two in the presence of model uncertainties. This whole chapter was published in Physical Review D.

Finally, Chapter 6 puts forward a novel idea for testing screened scalar-tensor models exploiting the
gravitational redshift (or equivalently, gravitational time-dilation). Building on the theoretical aspects laid out
in Chapter 1, we derive the redshift expression in the framework of scalar-tensor models and single out the
scalar contribution in the Newtonian limit. As in Chapter 5, we focus our discussion on the chameleon model.
Unlike fifth force effects, which are mainly dependent on the magnitude of the gradient of the scalar field, it
appears that the scalar contribution to the total redshift depends, for the most part, on the field’s value itself.
We then endeavor to show that precise redshift measurements could reveal the presence of the scalar field. For

9To us, this is all the more important as we are about to go to yet unexplored physical situations. For such numerical simulations
where one has only limited insights into the ‘expected’ solution, it is crucial to be able to rely on some theoretical results from the
fields of applied mathematics and PDE analysis (well-posedness, a priori error estimates, etc.).
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this purpose, we imagine a thought experiment which guides us towards more realistic experimental setups, in
the laboratory and in space. We conclude with some perspectives afterwards.
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To quote from Will’s book [1], “ Scalar-tensor theories have proven to be the most interesting, compelling and
resilient of alternatives to general relativity. ”. This first chapter is dedicated to their presentation, shedding light
on their phenomenology and the various ways in which they extend General Relativity. We also review the recent
results from the microscope space mission and use this example for discussing the relevance of space-based
experiments for testing scalar-tensor theories of gravity. In this perspective, it appears that numerical tools are
part of the answer, which motivates their development.

5
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1.1 A phenomenologically rich framework to go beyond General Rela-
tivity

The theory of General Relativity (GR) was proposed by Albert Einstein in 1915 [2] and is still our best
understanding of gravity to this day. Unlike Newton’s earlier inverse-square law, which depicted gravity as
a force acting instantaneously in vacuum across distances, GR describes gravity as the manifestation of the
curvature of spacetime caused by the presence of energy. So far, it has passed all the experimental tests thrown
at it with flying colors [3] and underlies the contemporary standard model of cosmology [4]. Does that mean
that “ there is nothing new to be discovered in physics now ” ?1 Most certainly not, not even in gravitational
physics as there remains many unsolved conundra, most notably associated with (i) the accelerated expansion
of the universe, (ii) the apparent presence of dark matter accounting for 85% of the total matter, or (iii) the
challenge of reconciling GR with quantum mechanics. Whether they take the form of tensions in observations or
originate from more theoretical grounds, these hints all point toward the same conclusion: GR is not the final
word on gravity.

Consequently, it seems reasonable to explore alternative theories of gravity. Even beyond the pragmatic
considerations laid out above, it is important to compare GR’s predictions against those of alternative models.
Not only does that help shed light on the features specific to GR, but it also contributes to the effort of narrowing
down the landscape of viable models. The history of alternative theories dates back as early as the time when
GR was being established; in that respect let us mention Nordström theories [5–7] (1912, 1913) which describe
gravity by a scalar field in flat spacetime, Kaluza–Klein theory [8–10] (1920s) which is a generalization of GR
in a 5-dimensional manifold that aims to encompass electromagnetism, and Weyl vector-metric theory [11]
(1919). Over the past century, theoretical physicists have continued to propose new models, with various raisons
d’être, which makes the field of alternative theories of gravity rich and complex. Because GR works so well,
most alternative models do not start from scratch but are rather extensions of GR, as we shall see in this
section. Irrespective of the path taken to extend Einstein’s theory of gravity, such models have a destiny with
few possible outcomes: they can end up being ruled-out by some experiments or observations, they can turn out
to be indistinguishable from GR itself or even fail to produce verifiable predictions, they can also fail to spark
interest among the scientific community and just fall into oblivion...

This PhD work is focused on scalar-tensor theories of gravity, although the word ‘focus’ is perhaps ill-chosen
insofar they constitute a very wide area of active research on their own. Indeed, scalar-tensor theories have surely
received more attention than other models owing to the fact that they are one of the most natural2 extensions of
GR, where gravity is mediated by both a rank-2 tensor field and a scalar field. Adding a new scalar degree of
freedom in the gravitational sector is a phenomenologically rich idea, as the scalar field can be made to play
different roles depending on the underlying physical motivations.

This section serves several purposes, the first one being to succinctly introduce the theory of general relativity
together with its mathematical framework. Shedding light on the modern physics challenges GR faces motivates
the introduction of scalar-tensor theories of gravity. After showing how such theories are constructed, we restrict
our description to a particular subclass of models whose phenomenology is discussed.

1.1.1 General Relativity theory and challenges

Conventions

Before diving straight into the actual matter, let us set some conventions to be used consistently throughout this
chapter. We work in natural units, for which c = 1 and ℏ = 1, where c is the speed of light and ℏ is the reduced
Planck constant. With such a choice, mass and energy have the same units, while length and time acquire the
units of reciprocal energy. Consequently, any kinematical variable (i.e. not involving any other dimensions than
M, L, T) can be expressed in powers of an arbitrarily chosen unit of energy. In this regard, we will use the
electron-volt [eV]. Furthermore, it will be convenient to use a fixed energy scale in the subsequent computations.
In this perspective, we define the reduced Planck mass

MPl =

√
ℏc
8πG

≃ 4.34× 10−9 kg ≃ 2.44× 1027 eV . (1.1)

This specific choice allows for a smoother connection between GR and physical phenomena other than gravity.
Last but not least, one may legitimately be surprised to see ℏ appearing in a purely classical context. In fact,
despite ℏ being embedded in the definition of the reduced Planck mass (and thus, in its numerical value), it is
not really there in the sense that it necessarily cancels out in all the equations to be written in this chapter.

1For some reason, this popular statement has been widely misattributed to Lord Kelvin since the 1980s.
2Here, it would certainly be overly reductive to translate ‘natural’ into ‘simple’.
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Appendix A provides further insights into the use of natural units, including practical considerations for switching
back and forth between SI units and natural units.

We employ the Einstein summation convention. Greek indices (µ, ν, ρ, σ, etc.) run from 0 to 3 while Latin
indices (i, j, k, etc.) run from 1 to 3. We further adopt the (−,+,+,+) metric signature.

The theory of general relativity

Einstein’s theory of general relativity is way more than a mere ‘update’ of Newton’s law of universal gravitation.
GR is a theory whereby gravitation is interpreted in terms of an elegant mathematical structure: the differential
geometry of curved spacetime. To a certain extent, it is profoundly different from our modern description of
other forces of nature, which are represented by quantum fields defined on spacetime. As such, spacetime is the
stage on which physics plays out, while gravity is inherent in spacetime itself. The mathematical structure of
spacetime is that of a 4-dimensional pseudo-Riemannian manifold equipped with a symmetric metric tensor
denoted gµν . This object is at the heart of the mathematical description of GR. Among its multiple roles, it
notably allows for the computation of path lengths via the line element (or equivalently, via the proper time)

ds2 = −dτ2 = gµνdx
µdxν . (1.2)

In the above, the quantities dxµ are being regarded as the components of an infinitesimal coordinate displacement
4-vector, expressed in local coordinates xµ, while τ is the proper time. In terms of units, dxµ has the dimension
of a length and is thus expressed in eV−1. Components of the metric tensor being dimensionless, the line element
and proper time [Eq. (1.2)] have units of eV−2.

From a physical point of view, GR should provide answers to, at the very least, two questions. On the one
hand, spacetime is not empty but filled with matter and energy (galaxies, dark matter halos, electromagnetic
field, etc.). GR must somehow describe how such fields evolve through spacetime. In the language of classical
mechanics, we need an equivalent of

a = −∇Φ (1.3)

for the 3-acceleration experienced by a massive test body in a gravitational potential Φ. Here ∇ denotes the
gradient operator in flat space, i.e. ∇ = (∂i)1≤i≤3 in Cartesian coordinates. Conversely, the mere presence of
matter and energy in spacetime is what causes it to be curved, which also has to be expressed mathematically.
Following the classical mechanics analogy, we need a general relativistic equivalent for the Poisson equation

∆Φ = 4πGρ , (1.4)

whereby the gravitational potential Φ is sourced by the matter density ρ. Here ∆ denotes the Laplace operator
in flat space, i.e. ∆ = δij∂i∂j in Cartesian coordinates. As it turns out, these two questions are two sides of the
same coin.

Following J. A. Wheeler famous quote,3 let us first examine how “spacetime tells matter how to move”, and
be a bit more inclusive by considering massless particles as well. The answer is given by the geodesic equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 , (1.5)

where λ parameterizes the geodesic curve xµ(λ) and Γµ
ρσ are the Christoffel symbols of the second kind, given in

terms of the metric by

Γα
µν =

1

2
gασ(∂µgνσ + ∂νgσµ − ∂σgµν) . (1.6)

Note that having the rhs of Eq. (1.5) equal to zero actually constrains λ to be an affine parameter (see e.g.
Carroll’s book [12] Chapt. 3.4 or Wald’s book [13] Chapt. 3.3). There are several ways to obtain Eq. (1.5), which
are all insightful in their own respect. From a rather geometrical point of view, a geodesic can be interpreted
either as a curve along which the tangent vector is parallel-transported, or as the timelike path that maximizes
the proper time between two timelike-separated events (see e.g. Ref. [12] Chapt. 3.3). It can also be derived in a
more physical way by invoking the equivalence principle (see e.g. Ref. [14]). Test particles — massive or massless
— travel along such curves in spacetime provided they are freely falling, i.e. not subjected to any interaction but
gravity. For massive test particles, it is possible to make the proper time τ play the role of the affine parameter,4
and the geodesic equation can be rewritten in terms of the 4-velocity uµ = dxµ/dτ as

d2uµ

dτ2
+ Γµ

ρσu
ρuσ = uα∇αu

µ = 0 , with gαβu
αuβ = −1 . (1.7)

3 “ Spacetime tells matter how to move; matter tells spacetime how to curve. ” — John Archibald Wheeler.
4For timelike geodesics, affine parameters are of the form aτ + b, a, b ∈ R.
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We have made use of the covariant derivative operator ∇α, which acts on uµ (and more generally on any vector)
as ∇αu

µ = ∂αu
µ + Γµ

αβu
β . Eq. (1.7) conveys more clearly the idea that freely falling particles move in the

direction in which their 4-velocity vector (or 4-momentum vector pµ = muµ) is pointing. Were that test particle
to be submitted to additional non-gravitational forces, the rhs of Eq. (1.7) would be non-zero. For instance,
Eq. (1.7) for a particle of charge q would read

uα∇αu
µ =

q

m
Fµ

ν

dxν

dτ
, (1.8)

where Fµν is the electromagnetic tensor. Massless particles on the other hand travel along null paths of spacetime
for which dτ = 0 which means that the proper time cannot be used as an affine parameter. Although there is no
real preferred choice for λ, it is sometimes handy to normalize it so that dxµ/dλ is equal to the 4-wavevector kµ,
in which case Eq. (1.5) becomes

dkµ

dλ
+ Γµ

ρσk
ρkσ = kα∇αk

µ = 0 , with gαβk
αkβ = 0 . (1.9)

At this stage, we have to admit that the link between Eq. (1.3) and Eq. (1.7) is still a bit obscure. It will be
made clearer when we examine the so-called Newtonian limit of the former equation.

The other side of the coin, that is how “matter tells spacetime how to curve” is the hard part of GR and
is known as the Einstein’s field equations. There are different routes that lead to them. The way Einstein
himself derived them arguably involved proceeding by trial-and-error at certain stages in the development of the
theory, but always with powerful guiding principles in mind: the equivalence principle, the principle of general
covariance (the laws of physics should appear the same to all observers), the conservation of energy. Here, we do
not go down this historical yet rather long road and make the deliberate choice to go through the Lagrangian
formulation instead. Just like for other classical field theories (in flat spacetime), we formulate the theory in
terms of an action, and derive the field’s equations by applying the principle of least action. The action of GR,
which Hilbert was the first to figure out, is

S = SEH + Smat (1.10)

where

SEH =
M2

Pl

2

∫
d4x
√−gR , (1.11a) Smat =

∫
d4x
√−gLmat

(
gµν , ψ

(i)
mat

)
. (1.11b)

Eq. (1.11a) is the Einstein–Hilbert action (without cosmological constant), featuring the determinant of the
metric tensor g = det(gµν), and the Ricci scalar R constructed from gµν . On the other hand, Eq. (1.11b) defines
the action for matter. In this expression, ψ(i)

mat denotes the matter fields (labelled by i),
√−gLmat is a Lagrange

density and Lmat alone is a scalar. Note that the latter is assumed to be independent of the derivatives of
the metric. The field’s equations are obtained by applying the stationary-action principle, i.e. by finding the
stationary points of S with respect to the metric. A fairly standard way to proceed consists in varying the action
S with respect to the inverse metric5 gµν → gµν + δgµν , yielding δS, and demanding that δS vanishes for any
δgµν . Doing so with some amount of care results in the sought equation

Rµν −
1

2
Rgµν =

1

M2
Pl

Tµν . (1.12)

In the above, Rµν is the Ricci tensor and Tµν denotes the energy-momentum tensor (also called the stress-energy
tensor), which is defined by

Tµν =
−2√−g

δSmat

δgµν
=
−2√−g

δ(
√−gLmat)

δgµν
=⇒ Tµν =

2√−g
δ(
√−gLmat)

δgµν
, (1.13)

where δSmat/δg
µν is the functional derivative of Smat with respect to gµν . This derivation can be found in e.g.

Ref. [12] Chapt. 4.3, or Ref. [15] which comes with many insightful remarks (in French).
Now that the most important equations are written out, some comments are in order. At first sight, the

Lagrangian formulation Eqs. (1.10–1.11) can seem to appear out of the blue. As elements of a response, let
us stress that R is the only independent scalar which can be constructed from no higher than second order
derivatives of the metric. As such, the action Eq. (1.10) is practically the unique way to end up with covariant,
second order equations of motion that link spacetime curvature to the mass-energy content contained in it

5The stationary points of S with respect to variations in gµν are equivalent to those with respect to variations in gµν . Nonetheless,
computations are slightly more handy when using the inverse metric.
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and respect the energy conservation for matter ∇µT
µν = 0. Once we acknowledge this, we have a powerful

formalism at our disposal with several advantages: (i) the Lagrangian is a scalar (simpler object than, say, rank-2
tensors) on which the symmetries of the theory can be easily read / imposed, and (ii) it offers a very convenient
framework for studying beyond-GR models. Aside these technical remarks, let us remind that Eq. (1.12) is the
general relativistic generalization of Poisson equation (1.4). This will also be made clearer when deriving its
Newtonian limit.

Newtonian limit

The Newtonian limit is the combination of three approximations under which GR’s equations (1.5, 1.12) boil
down to Newton’s equations (1.3, 1.4) respectively. Namely, these approximations are:

1. the gravitational field is weak, in the sense that it can be considered as a small perturbation of flat
spacetime;

2. it is unchanging with time;

3. objects are moving slowly compared to the speed of light.

Applying this set of approximations to Eqs. (1.5, 1.12) will provide valuable insights into the way GR encompasses
Newtonian physics.

Geodesic equation Let us start with the geodesic equation (1.7) for massive particles. We use a spacetime
coordinate system {xµ} where an event is specified by one time coordinate t and three spatial coordinates
x = {x1, x2, x3} with dx0 = dt. Hypothesis 3 is written mathematically as

vi ≡ dxi

dt
≪ 1 so that

dxi

dτ
≪ dt

dτ
⇐⇒ ui ≪ u0 . (1.14)

As a consequence, the geodesic equation simplifies to

d2xµ

dτ2
+ Γµ

00

(
dt

dτ

)2
= 0 . (1.15)

Hypothesis 2 means that partial derivatives of the metric with respect to the time coordinate are null, while
hypothesis 1 allows the decomposition of the metric into the Minkowski metric ηµν = diag(−1, 1, 1, 1) plus a
small perturbation as gµν = ηµν + hµν , with |hµν | ≪ 1. At first order in h, the connection component appearing
in Eq. (1.15) can be approximated as

Γµ
00 = −1

2
ηµσ∂σh00 . (1.16)

The zeroth component of Eq. (1.15) provides dt/dτ = constant. As for the three other components, we end up
with

d2xi

dt2
=

1

2
∂ih00 . (1.17)

We have finally arrived at a form that is quite reminiscent of Eq. (1.3). All that is left is to perform the
identification h00 = −2Φ.

Field equations We have shown that, provided the 00-component of the metric tensor can be written in the
form g00 = −(1 + 2Φ) with |Φ| ≪ 1, the Newtonian limit of the geodesic equation for massive particles gives
the expected form for the 3-acceleration (1.17). However, there remains to check that the field equations (1.12)
together with the three hypotheses listed above actually lead to the form g00 = −(1 + 2Φ). Before going any
further, we recast Eq. (1.12) in the so-called trace-reversed form

Rµν =
1

M2
Pl

(
Tµν −

1

2
Tgµν

)
, (1.18)

which comes from the fact that contracting both sides of Eq. (1.12) with gµν yields M2
PlR = T , where T is the

trace of the stress-energy tensor. We consider a perfect-fluid with 4-velocity uµ source of energy-momentum, for
which

Tµν = (ρ+ p)uµuν + pgµν . (1.19)

A perfect fluid is a fluid that can be entirely characterized by its rest frame energy density ρ, and isotropic
pressure p (also called the momentum density). Nevertheless, by virtue of the assumption that the fluid’s
particles are moving slowly with respect to the speed of light, pressure is negligible and the stress-energy tensor
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is well approximated by Tµν = ρ uµuν . We can do even better. If the ‘fluid’ we are considering represents some
rigid body (the particles constituting the body do not move with respect to each other) — in plain language, a
planet for instance — we can choose a coordinate system {xµ} attached to the body such that the 4-velocity
reads uµ = u0δµ0 . Now, the weak field approximation implies that ρ is already small (spacetime is almost flat).
Consequently, it is legitimate to do the zeroth-order approximation u0 = −u0 = 1, so that the only non-zero
component of the stress-energy tensor is T00 = ρ and T = g00T00 = −ρ. So far, Eq. (1.18) takes the simplified
form 2M2

PlR00 = ρ. Using hypotheses 1 and 2, the 00-component of the Ricci tensor simplifies to 2R00 = −∆h00,
where ∆ = δij∂i∂j is the usual Laplace operator in flat space. The Newtonian limit of the field equations is thus
one single equation

M2
Pl∆h00 = −ρ . (1.20)

Again, this form is highly reminiscent of Poisson equation (1.4). All we have to do is perform the identification
h00 = −2Φ, which is consistent with what we found above in the derivation of the Newtonian limit of the
geodesic equation. The spatial part of the metric boils down to gjk ∼ δjk, g0k ∼ 0.

Finally, the Newtonian limit justifies the factor M2
Pl/2 in the Einstein–Hilbert action (1.11a) and thereby

fixes the only free parameter of the theory. GR is therefore a theory with no free parameters.

FLRW cosmology

As stated in the introduction of the present section, GR underlies the standard model of cosmology. Despite being
our current best mathematical model to retrace the history of the universe, some simulations and observations
challenge its validity to a certain extent. As such, it is no wonder that many alternative models to GR attempt
at addressing these challenges — which will be explained at more length at the end of this sub-section. In order
to appreciate why a given model might be more attractive than another from a cosmologist’s point of view, it is
relevant to briefly review what GR has to tell us about cosmology.

By considering the universe’s content as a homogeneous and isotropic perfect fluid [with energy-momentum
tensor given by Eq. (1.19)] on the largest spatial scales,6 only evolving in time, GR provides the adequate
framework to compute the evolution of such a universe. Indeed, this assumption allows us to decompose spacetime
as R× Σ (referred to as a spacetime foliation), where R is the time direction and Σ is a maximally symmetric
3-dimensional manifold. It can be shown (see e.g. Ref. [12], Chapt. 8.2) that the metric on spacetime can be put
in the form

ds2 = −dt2 + a2(t)

[
dr2

1− κr2 + r2dΩ2

]
, κ ∈ {−1, 0, +1} . (1.21)

This metric is famously known as the Friedmann–Lemaître–Robertson–Walker metric, or flrw metric for short,
and is the generic metric that meets the conditions of spatial homogeneity and isotropy. Here, the time coordinate
t is called the cosmic time, and corresponds to the proper time that would be measured by clocks at rest in the
Hubble flow, i.e. at constant spatial coordinates xi. The spatial part of the metric (between square brackets)
is expressed in spherical coordinates where r is the radial coordinate while dΩ2 is the usual metric on the
two-sphere. It is weighted by the square of the so-called scale factor a(t), which is itself a function of the cosmic
time. Note that the scale factor is the only dynamical variable in the flrw metric. The proper distance between
two comoving observers evolves as d(t) = a(t)d0, where d0 refers to the proper distance at some reference time
t0. Finally, κ ∈ {−1, 0, +1} is the only discrete free parameter and maps to three distinct topologies for the
universe: negative, zero and positive curvature on Σ respectively.

Plugging the flrw metric into the field equations (1.12) yields the Friedmann equations

H2 ≡
(
ȧ

a

)2
=

ρ

3M2
Pl

− κ

a2
, (1.22a)

ä

a
= −ρ+ 3p

6M2
Pl

, (1.22b)

where H is the Hubble parameter. The conservation of energy ∇µT
µν = 0 gives the continuity equation

ρ̇+ 3H(ρ+ p) = 0 . (1.23)

Note that the latter does not constitute a new independent equation as it can be obtained from the two Friedmann
equations (1.22). For a fluid which has an equation of state p = wρ (w being a constant), this continuity equation
can be integrated and provide the insightful relation

ρ ∝ a−3(1+w) , (1.24)

which describes the dilution of the various forms of energy in an expanding universe. Non-relativistic matter has
essentially zero pressure so that wmat = 0. The equation of state for radiation can be obtained by looking at

6This is more or less the cosmological principle.
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Parameter Symbol Value Units Evidence

Radiation Ωr,0 ∼ 9× 10−5 — CMB temperature
Baryonic matter Ωb,0 ∼ 0.05 — CMB measurements
Dark matter Ωdm,0 ∼ 0.27 — CMB measurements
Curvature ΩK,0 ∼ 0 — CMB anisotropy
Vacuum Ωvac,0 or ΩΛ,0 ∼ 0.68 — Cosmic acceleration

Hubble constant H0 ∼ 70 km/s/Mpc
Cosmological constant Λ ∼ 1.1× 10−52 m−2 Cosmic acceleration

Table 1.1: Values of the main parameters of the ΛCDM model [4, 17]. They are purposely given with few
significant digits and without their associated uncertainties as these quantities depend on the cosmological survey
being used.

the specific form of the stress-energy tensor for electromagnetism (which involves the field strength Fµν) and
reads wrad = 1/3. Finally, vacuum energy — an energy density characteristic of empty space — also takes the
form of a perfect fluid, with energy-momentum tensor T (vac)

µν = −ρvacgµν and equation of state ρvac = −pvac.
This specific form of the energy-momentum tensor for vacuum energy allows one to equivalently recast the field
equations (1.12) with a cosmological constant Λ as

Rµν −
1

2
Rgµν + Λgµν =

1

M2
Pl

T̂µν . (1.25)

For the equivalence to hold, we demand that T̂µν account for all forms of energy but vacuum and set Λ = ρvac/M
2
Pl.

At the action level, the Lagrange density of the Einstein–Hilbert action Eq. (1.11a) is simply replaced by
M2

Pl

√−g(R − 2Λ)/2. When vacuum energy is accounted for in the lhs of the field equations as in Eq. (1.25),
it is common to use the term ‘cosmological constant’; whereas we employ the term ‘vacuum energy’ when it
is implicitly included in the stress-energy tensor in the rhs. At last, it is convenient to introduce the density
parameters

Ωi =
ρi

3H2M2
Pl

and ΩK = − κ

H2a2
(1.26)

for the fluids (labeled by i) and for the spatial curvature respectively. By doing so, the first Friedmann
equation (1.22a) can be rearranged as

H2 = H2
0

(
Ωr,0a

−4 +Ωmat,0a
−3 +ΩK,0a

−2 +Ωvac,0

)
with ΩK,0 = 1−

∑

i

Ωi,0 , (1.27)

where the zero subscript indicates that the quantities are taken at t = t0 which we set to ‘now’ by convention.
Eq. (1.27) is a convenient (yet idealized) way to describe the expansion history of our universe using four
independent constants — the density parameters at present time.

While a lot more could be said about flrw cosmology, we do not take our discussion much further than this
since we are now in a position to outline our current best cosmological model: the ΛCDM model. It postulates
the existence of two additional ingredients that supplement baryonic (ordinary) matter and radiation, namely
cold dark matter (abbreviated CDM) and a cosmological constant Λ which has already been introduced. From
there, turning the “Ω-knobs” in Eq. (1.26) to the right values results in a history for the scale factor that is
in fair agreement with our various observations of the sky. Most contemporary methods are consistent with
the values provided in Table 1.1. In particular, let us note that, while the global topology of the universe is
unknown, we have evidence that it is spatially flat,7 i.e. Ωc

0 ∼ 0.
The reason why the ΛCDM model has been adopted as the standard model of cosmology is at least twofold.

On the one hand, it has the ability to explain and predict a wide range of observed phenomena in the universe
(CMB fluctuations, large-scale structure formation, cosmic acceleration, etc.) using a restricted number of
parameters. This last point is worth emphasizing as one could easily construct a cosmological model with
additional ad hoc parameters. While such a model could manifestly better fit observations, that would come
at the cost of (i) further obscuring its underlying physical principles, (ii) loosing interpretability, and (iii)
introducing degeneracies, making it difficult to constrain the values of individual parameters accurately. On the
other hand, the ΛCDM model builds on top of GR which, at the risk of repeating ourselves, is one of the most
thoroughly tested theory in all physics.

7This is suggested by WMAP, BOOMERanG, or Planck data. See e.g. Ref. [16] for a review.
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A century-old theory still standing

Physicists widely regard GR as one of the most elegant theories in physics [18]. Yet, however ‘beautiful’ the
mathematics and deep ideas underlying GR may be, elegance alone is not enough make it a ‘good’ physical
theory. Among the necessary criteria to be deemed so, it must possess the ability to make testable predictions
which in turn must be accurate. Here, we provide evidence that GR actually checks the latter criterion by briefly
reviewing the most up-to-date tests. For the paragraphs to come not to be a long unordered list, GR’s tests
are grouped in four categories: axioms’ tests, parameterized post-Newtonian bounds, gravitational waves and
strong-field regime tests — with of course some unavoidable overlaps.

Axioms’ tests By axioms’ tests, we are referring to those experiments that closely examine the very foundations
of GR. As any other metric theory, GR embodies the Einstein Equivalence Principle (EEP) which has three
pillars:

1. All uncharged, freely falling test particles follow the same trajectories, once an initial position and velocity
have been prescribed — this is the Weak Equivalence Principle (WEP), also known as the universality of
free fall;

2. The outcome of any local nongravitational test experiment is independent of the velocity of the (freely
falling) apparatus — this is Local Lorentz Invariance (LLI);

3. The outcome of any local nongravitational test experiment is independent of where and when in the
universe it is performed — this is Local Position Invariance (LPI).

Put another way, the WEP states that the inertial mass mI of a given test body is equal to its gravitational
mass mG.8 Considering two test bodies labeled by the index i ∈ {1, 2}, we generally parameterize violations of
the WEP using the so-called Eötvös parameter

η1,2 ≡ 2
|a1 − a2|
|a1 + a2|

= 2

∣∣∣∣
m1

G

m1
I

− m2
G

m2
I

∣∣∣∣
(
m1

G

m1
I

+
m2

G

m2
I

)−1

, (1.28)

where ai denotes the acceleration of the body i and the expression involving masses assumes an extended
Newtonian framework. The WEP then holds if and only if ηi,j ≡ 0, for all pairs of bodies (i, j), regardless of
their mass or composition. Recent bounds on the Eötvös parameter include torsion-balance tests led by the
Eöt-Wash Group [19, 20] and Lunar laser ranging (LLR) measurements [21] which probe the free fall of the Earth
and the Moon in the Sun’s gravity field [22]. The best bound is currently held by the microscope experiment
with a precision of roughly one part in 1015 [23, 24] — this space mission is presented in more details in Sec. 1.3.

Similarly, modern experiments looking for LLI violations use the so-called ‘c2-formalism’ (c is the speed of
light here), introducing the dimensionless parameter

δ0 =
∣∣c−2 − 1

∣∣ . (1.29)

A slight violation of LLI would alter the speed of the electromagnetic interactions, leading to δ0 ̸= 0 (recall that
we work in natural units for which c = 1). However, most modern analyses now employ a different framework —
the ‘Standard Model Extension’ (SME) — which extends the possibility of LLI violations to the entire standard
model of particle physics.

Finally, tests of LPI split into two classes: gravitational redshift experiments and measurements of the
constancy of the fundamental (non-gravitational) constants. The former also conveniently relies on parameterized
violations of the form

z12 = (1 + α)∆12U with ∆12U = U2 − U1 , (1.30)

where U is the gravitational potential whose gradient is related to the acceleration of test bodies.9 The most
stringent bounds on α are set at the 10−5 level [25–27]. Such precise tests have been made possible in part by
advances in atomic clocks and frequency standards over the past few decades. As a side note, we will come back
to the parameterized form Eq. (1.30) in Chapt. 6 when we discuss redshift-based experiments in the framework
of scalar-tensor theories. To put things into perspective, the history of WEP, LLI and LPI tests, parameterized
by Eqs. (1.28–1.30), is depicted in Fig. 1.1.

The picture of axioms’ tests would not be complete without mentioning tests of the strong equivalence
principle (SEP). The SEP goes beyond the EEP in the sense that the universality of free fall is generalized to

8Actually, it would be more accurate to say that the ratio of the two masses mI/mG is the same for all test bodies — physically
measurable quantities are dimensionless ratios. But because the resulting proportionality constant can be absorbed in the the
gravitational constant G, it is legitimate to equal the two masses.

9Note that we purposely do not use Φ, the Newtonian potential given by Eqs. (1.3–1.4), in the definition of the parameter α
Eq. (1.30) as it is not a directly measurable quantity.
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Figure 1.1: Evolution of upper bounds set on WEP, LLI, and LPI violations (from left to right). Figure adapted
from Ref. [3].

extended bodies with gravitational self-energy (revision of statement 1 of the EEP above) and that it includes
gravitational experiments (revision of statements 2 and 3). The SEP can be tested by (i) looking for the
(non-)existence of the Nordtvedt effect [28–30], notably in LLR data [31], (ii) searching for time-variations of the
gravitational constant G over the course of the universe’s lifespan [21, 32, 33] or (iii) searching for variations
and anisotropies in the locally-measured value of G owing to the existence of preferred frames and preferred
locations. As a side remark, let us stress that GR, together with Nordström theory [6, 7], are the only known
field theories verifying the SEP [34], for it is incompatible with extra fields supplementing the metric (and a
fortiori fifth forces).

The parameterized post-Newtonian formalism Moving on to the tests of GR’s predictions, it would be a serious
omission not to begin by introducing the parameterized post-Newtonian (PPN) formalism — see e.g. Will’s
book [1]. This formalism applies not only to GR but nearly to any metric theory of gravity in the slow-motion,
weak-field limit. For this class of gravitational theories, no matter what their Lagrangians, “matter responds only
to the metric” [3] as highlighted by the geodesic equation (1.5), even if gµν is not the metric tensor from GR
[i.e. the one given by the field equations (1.12)]. Under these assumptions, it is possible to expand the metric
about the Minkowsky metric10 ηµν in terms of dimensionless gravitational potentials which are constructed
from the matter variables (e.g. density, coordinate velocity, pressure, etc.). In this framework, any given metric
theory is then characterized by the numerical value of the coefficients that weigh the metric potentials. In the
canonical convention fixed by Ref. [35], there are 10 potentials and ten coefficients — the latter are called PPN
parameters and are reported in Table 1.2. Once laid down, the PPN formalism provides an efficient way to test
GR, by comparing the measured values of the PPN parameters to those predicted by GR. This encompasses
all the ‘classical’ tests — deflection of light, Shapiro time delay, perihelion advance of Mercury — and other
relativistic effects involving spinning bodies (e.g. Lense–Thirring precession), the de Sitter precession and tests
of post-Newtonian conservation laws. Table 1.2 also provides current bounds on the PPN parameters. Note that,
beyond enabling us to test GR, the PPN formalism has proved to be a powerful tool to ‘kill’ alternative theories
owing to its agnostic approach with respect to gravity models. It is also worth noting that this formalism can
pinpoint SEP violations through the PPN parameters α1, α2, α3 and ξ (see Table 1.2).

Gravitational waves and strong-field regime Recently, the direct detection of gravitational waves (GW) from
the inward spiral and merger of compact objects [46], namely neutron stars and black holes, has opened a new
window for testing GR — see e.g. Refs. [47, 48] for an overview of such tests. In particular, the detection in 2017
of gravitational wave signal emitted by the merger of a binary neutron stars together with its electromagnetic
counterpart [49] puts severe constraints on a whole class of alternatives to GR (see e.g. Refs. [50–53]).

This brings us to tests of GR in the strong-field regime, since these GW detections also allow for probing the
strong-field and dynamical regimes of GR, by comparing the measured signal close to the merger phase against
numerical relativity simulations. Other tests of the strong regime include observations of binary pulsar systems
(which provided evidence for the existence of GW) [54], the direct observation of black holes with the Event
Horizon Telescope [55, 56].

10This is more or less what we did when we studied the Newtonian limit of GR, which formally corresponds to a PN expansion at
zeroth order. In contrast, the PPN-formalism is developed at the first PN order.
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Parameter Significance Effects Value in GR Constraints

γ − 1
Spatial curvature
produced by mass

Time delay,
light deflection 0 2.3× 10−5

2× 10−4
[36]
[37, 38]

β − 1
Nonlinearity in
superposition of gravity

perihelion precession
Nordtvedt effect 0 8× 10−5

2× 10−5
[39]
[40]

ξ Preferred-location effects spin precession 0 4× 10−9 [41]

α1 orbital polarization 0 4× 10−5 [42]
α2 Preferred-frame effects spin precession 0 2× 10−9 [41]
α3 self-acceleration 0 4× 10−20 [43, 44]

ζ1 — 0 2× 10−2

ζ2 Violation of conservation binary-pulsar acceleration 0 4× 10−5 [45]
ζ3 of total momentum Newton’s 3rd law 0 1× 10−8

ζ4 — 0 6× 10−3

Table 1.2: PPN parameters, their physical significance and experimental constraints.

So why modify gravity?

In the few preceding pages, we have endeavored to show that GR, despite being a century-old theory, works
extremely well: so far, it has passed all the tests thrown at it and underpins the ΛCDM model which is
in agreement with cosmological observations. So why modify gravity? Here, we expose the main physical
motivations for studying alternative models which, for the most part, fall into either one the two following
categories:

1. solution to cosmological conundra;

2. attempts to construct a quantum theory of gravity.

Cosmological motivations Let us begin with cosmology. As we have seen previously, the standard model of
cosmology ΛCDM is based upon the assumptions that the cosmological principle holds and that GR is the correct
description of gravity. While most observations are explained within this model [57], this comes at the price of
having to set Ωdm,0 = 0.27 and ΩΛ,0 = 0.68 (see Table 1.1) — that is the composition of the universe features
27% of dark matter and 68% of dark energy. The picture is rather disturbing: the universe in which we live
would contain only 5% of ordinary matter, the remaining being unknown yet necessary ingredients for the model
to hold. Indeed, we have strong evidence that the standard model of particle physics has to be supplemented by
this dark sector. On the one hand, the observed accelerated cosmic expansion hints towards the existence of a
fluid with equation of state w = −1 filling the universe. This lack of dynamics implied by a constant energy
density contrasts with our understanding of another period of acceleration in the early universe, namely inflation
[58]. On the other hand, other evidences such as galaxy clustering [59], galaxy rotation curves [60], gravitational
lensing and the CMB power spectrum point to the presence of a kind of matter that does not interact with
baryonic matter and radiation except though gravity. All such evidences are nonetheless indirect, meaning that
dark matter and dark energy are only known through their effects at astrophysical and cosmological scales, their
exact nature remains elusive.

Beyond our ignorance of this dark sector, the ΛCDM model still faces challenges. In particular, observations
of different kinds can lead to tensions when they are interpreted within that model. The most famous example is
of course the Hubble tension (also known as ‘the crisis in cosmology’), which refers to the discrepancy between
the locally measured value of H0 and its value inferred from the CMB, with the difference now reaching a
statistically significant level of around 5σ. The model is plagued with other, albeit more modest, tensions — see
e.g. Ref. [61] for a comprehensive review of those.

One way around this unpleasant truth is to boldly abandon one of the assumptions we made in the first place,
i.e. to state that GR is not the correct description of gravity. A good example of this paradigm is the mond
model (modified Newtonian dynamics) whereby phenomena usually attributed to the presence of dark matter
result from a modification of GR whose Newtonian limit differs from Newton’s inverse-square law. Another
example is given by the class of f(R) models. In these modified gravity models, the Ricci scalar R in the
Einstein–Hilbert action Eq. (1.11a) is replaced by f(R) where f is an arbitrary real function. This freedom in
the choice of f can be leveraged in attempts to explain the late time acceleration and structure formation of the
universe.
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Distinguishing between modified gravity and adding new fields Before going any further a legitimate question
may arise: what is the difference between actually modifying gravity [e.g. presumably mond or f(R) theories]
and simply adding new fields to the theory (e.g. dark matter and dark energy)? To illustrate our point, we saw
earlier when introducing FLRW cosmology that constructing a model that features cosmic acceleration could be
explained equivalently by

– adding a cosmological constant Λ in the Einstein–Hilbert action, which leads to a modification of the lhs
of the Einstein’s field equations, or

– considering ‘new’ fields in the matter sector (in this case, vacuum energy), which effectively modifies the
content of the stress-energy tensor in the rhs.

In the light of this remark, the line between modified gravity models and theories involving new forms of energy
densities may justifiably seem blurry. To draw a more rigorous, unambiguous distinction, we rely on the SEP (in
the same vein as Ref. [62]): models that violate the SEP belong to the former class while models that comply
with the SEP belong to the latter class.

Unification with quantum field theory Let us now turn to the second incentive driving the development of
alternatives to GR, namely the construction of a quantum theory of gravity. From a historical perspective,
quantum field theory has successfully managed to unify three of the four (known) fundamental interactions
in nature — the strong, weak and electromagnetic interactions — under the same umbrella that we call the
standard model of particle physics. Gravity is the only fundamental interaction that is left out of the picture,
the “black sheep that does not want to unite with the others” [63]. We could be tempted to just leave things as
they are, since both models work stunningly well in their own physical scope of applications. However, this is
not very satisfying for several reasons:

– It is more than hinted that our world is fundamentally quantum-mechanical. So from a theoretical
standpoint, the fact that GR is purely classical provides internal evidence that the theory is incomplete.
Having quantum fields evolving on a spacetime whose dynamics is classically described by the field equations
can lead to thorny questions. For instance, what is the gravitational field sourced by an object put in a
superposition of two spatially-separated states?

– Beyond this rather conceptual argument, there are actual physical situations for which GR cannot teach
us anything, specifically when solutions to the field equations yield singularities. The two well-known
examples of such singularities are black hole centers and the Big Bang. More generally, the description of
any situation involving conditions where both quantum effects and strong gravitational fields are present
would require a theory that encompasses quantum mechanics and GR (black hole thermodynamics and
Hawking radiation, quantum fluctuations in the very early universe, etc.).

Reconciling GR with quantum mechanics is thus as important as it is a challenging task. The difficulty comes
partly from the fact that the two theories are written in mathematical languages foreign to each other —
differential geometry on pseudo-Riemannian manifolds vs vectors in a Hilbert space. One important obstacle in
bridging them is the fact that GR is a non-renormalizable theory.

Ultimately, beyond all these aforementioned physical motivations for going beyond GR, there are also reasons
of a more conceptual nature to consider alternative models of gravity. Indeed, exploring other classes of models
can help identify which physical effects are specific to GR and which are not. It also tightens the noose on
possible alternatives to GR, effectively reducing the space of viable theories.

1.1.2 Addition of a scalar degree of freedom in the gravitational sector

Following this introduction to GR, we are in a position to take a closer look at the mathematical construction of
the ‘alternative theories’ that we kept mentioning elusively. In particular, and because the space of such theories
is way too vast to be covered here, we focus on scalar-tensor theories, where a new scalar field ϕ is introduced in
addition to the metric tensor gµν . Here, we provide the mathematical grounds of scalar-tensor models. Their
discussion from a physical standpoint is postponed to the next sub-section.

Lovelock’s theorem

An insightful way to build modified gravity theories is provided by Lovelock’s theorem, reported in Box A (see
Refs. [64, 65] for the original papers and Ref. [66] for the modern version of it reported here). This theorem
provides a set of assumptions under which the Einstein’s field equations are the only viable gravitational field
equations.
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Box A: Lovelock’s Theorem — Uniqueness of GR

The only possible second-order, local gravitational field equations derivable from an action
containing solely the 4D metric tensor are the Einstein’s field equations with a cosmological
constant.

This theorem is useful because it provides five ways in which GR can be modified, by relaxing its assumptions
respectively. These options are:

1. Add new field contents involved in mediating the gravitational force, i.e. new fields coupled to the metric
tensor in the Einstein–Hilbert action Eq. (1.11a) — e.g. scalar-tensor theories.

2. Consider more than four dimensions — e.g. string theory, Kaluza–Klein theory, or the inclusion of a
Gauss–Bonnet term in the action which only becomes relevant in higher dimensions.

3. Build a higher-order theory whose field equations contain greater than second-order derivatives — see e.g.
the class of dhost theories [67, 68] which are free from ghost-like instabilities.

4. Give up locality — e.g. actions containing the inverse d’Alembertian operator □−1.

5. Give up on the action principle.

Of course, this merely constitutes a convenient way of classifying modified gravity models into different categories.
Yet, this is an idealized picture as (i) there is no reason why we could not relax two or more hypotheses
simultaneously, and (ii) these paths are intertwined in the sense that a given modified gravity model might fall
into different categories depending on how it is written mathematically (see e.g. Appendix B).

In this PhD work, we follow the first path that consists in extending GR with the addition of new fields.
One can indeed supplement the Einstein–Hilbert action SEH with a scalar field ϕ (scalar-tensor theories), or a
vector field Aµ (vector-tensor theories), or another rank-2 tensor ĝαβ (bimetric theories). Some more complex
proposals even include all three ingredients together (e.g. Tensor-Vector-Scalar theories, or TeVeS for short)!
From now on, we will specialize to the class of scalar-tensor models.

Horndeski theory

Scalar-tensor theories are perhaps the simplest extensions of GR, where the metric tensor gµν is supplemented
with a new scalar degree of freedom ϕ. Indeed, scalars are arguably easier to work with than tensors of rank
greater than one (as is the case in vector-tensor or bimetric theories mentioned above). A good place to start is
to introduce the so-called class of Horndeski theory [69], which is the most general 4-dimensional scalar-tensor
theory whose Lagrangian leads to second-order equations of motion, i.e. not involving higher than second
derivatives of the metric and the scalar field.11. Its action can be put in the form

S =

∫
d4x
√−g

5∑

i=2

Li + Smat[gµν ] , (1.31)

where Smat[gµν ] is given by Eq. (1.11b) and the four scalars (Li)2≤i≤5 correspond to combinations of four
functions (Gi)2≤i≤5 of the Ricci scalar, the Einstein tensor Gµν , the scalar field ϕ and its kinetic energy
X = −gµν∂µϕ∂νϕ/2. The scalars read

L2 = G2(ϕ,X) ,

L3 = G3(ϕ,X)□ϕ ,
L4 = G4(ϕ,X)R+ ∂XG4(ϕ,X)

[
(□ϕ)2 − (∂µ∂νϕ)(∂

µ∂νϕ)
]
,

L5 = G5(ϕ,X)Gµν∂
µ∂νϕ− 1

6
∂XG5(ϕ,X)

[
(□ϕ)3 + 2(∂µ∂αϕ)(∂

α∂βϕ)(∂
β∂µϕ)− 3(∂µ∂νϕ)(∂

µ∂νϕ)□ϕ
]
.

(1.32)

The d’Alembertian is defined as □ = gµν∇µ∇ν , where ∇µ refer to the covariant derivatives.
The gravitational wave event GW170817 [49], by constraining the speed of gravitational waves to be practically

equal to the speed of light, has greatly reduced to set of viable Horndeski actions — the surviving models
featuring only L2 and L3 [52, 53].

11In that respect, dhost theories are even more general than Horndeski theories as they relax this second-order derivatives
constraint, without generating ghosts. See Fig. 1.2.
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The ‘traditional’ scalar-tensor theory subclass

In the subsequent parts, we restrict ourselves to a simpler subclass of Horndeski models. For lack of a better
name, we refer to this subclass as the ‘traditional’ scalar-tensor models, because they constitute the simplest yet
phenomenologically interesting models, and in this sense are thoroughly studied in the literature. Their action
can be put in the form

S = SEH + Sϕ + Smat[g̃µν ] , (1.33)

where SEH is still given by Eq. (1.11a) while

Sϕ = −
∫

d4x
√−g

[
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
, (1.34a) Smat[g̃µν ] =

∫
d4x
√
−g̃Lmat

(
g̃µν , ψmat

)
. (1.34b)

Here, gµν will be referred to as the ‘Einstein-frame metric’. The reason behind this designation is that the
kinetic term for the metric in Eq. (1.33) is of the Einstein–Hilbert form. Eq. (1.34a) is the action of the scalar
field with a canonical kinetic term X = gµν∂µϕ∂νϕ and potential V (ϕ). Eq. (1.34b) is the matter action which
differs from Eq. (1.11b) since the matter fields ψmat are minimally coupled to a different metric g̃µν (instead of
gµν) that is called the ‘Jordan-frame metric’. The latter is chosen to be related to the Einstein-frame metric
through the Weyl transformation

g̃µν = Ω2(ϕ)gµν , (1.35)

where Ω is called the conformal factor function. Note that Eqs. (1.33, 1.34a) imply that the scalar field has units
of eV.

At this point, it is not immediately clear that the scalar-tensor model defined by the action Eq. (1.33) actually
constitute a subclass Horndeski’s theories. That is because the former involves two metric tensors gµν and g̃µν
instead of a single one. In order to make the connection with Horndeski’s theories more transparent, we should
rewrite the ‘Einstein-frame action’ Eq. (1.33) so that only the Jordan-frame metric g̃µν appears in the action.
This is a fairly standard procedure that we outline here so that the end result does not completely come out of
the blue.

Straightforwardly, Eq. (1.35) implies that
√−g = Ω−4(ϕ)

√−g̃ and gµν = Ω2(ϕ)g̃µν . Less trivially, the Ricci
scalar transforms as (see e.g. Ref. [12] Appendix G)

R = Ω2R̃− 6g̃αβ
[
∇̃α∇̃β

(
Ω−1

)]
Ω3, (1.36)

where R̃ and ∇̃µ denotes respectively the Ricci scalar and the covariant derivatives, both constructed from the
Jordan-frame metric g̃µν . Consequently, the Einstein–Hilbert action becomes

SEH =
M2

Pl

2

∫
d4x
√−gR =

M2
Pl

2

∫
d4x
√
−g̃
{
Ω−2R̃− 6 g̃αβ Ω−1

[
∇̃α∇̃β

(
Ω−1

)]}

=
M2

Pl

2

∫
d4x
√
−g̃
{
Ω−2R̃+ 6 g̃αβ∂α

(
Ω−1

)
∂β
(
Ω−1

)}
,

(1.37)

where the last equality follows from an integration by parts and makes use of the fact that ∇̃µ(Ω
−1) = ∂µ(Ω

−1).
Similarly, we obtain for the scalar action

Sϕ = −
∫

d4x
√
−g̃
[
Ω−2

2
g̃αβ∂αϕ∂βϕ+Ω−4V (ϕ)

]
. (1.38)

At this stage, we can perform a field redefinition ϕ→ φ by making use of three functions F , U and Z, such that

F (φ) = Ω(ϕ)−2 , (1.39a)

U(φ) = Ω(ϕ)−4 V (ϕ) , (1.39b)
(
dϕ

dφ

)2
=
Z(φ)

F (φ)
+

3

2
M2

Pl

(
d lnF

dφ

)2
. (1.39c)

In particular, these definitions lead to

∂α
(
Ω−1

)
∂β
(
Ω−1

)
=
F (φ)

4

(
d lnF

dφ

)2
∂αφ∂βφ and ∂µϕ∂νϕ = ∂µφ∂νφ

(
dϕ

dφ

)2
. (1.40)
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All in all, we end up with the action

S =

∫
d4x
√
−g̃
[
M2

Pl

2
F (φ)R̃− 1

2
Z(φ)g̃µν∂µφ∂νφ− U(φ)

]
+

∫
d4x
√
−g̃Lmat

(
g̃µν , ψmat

)
. (1.41)

With Eq. (1.41), we have managed to rewrite the action of the theory using the Jordan-frame metric g̃µν (together
with its derived quantities, g̃, R̃) and scalar field φ. In contrast, its initial form Eqs. (1.33–1.34) was written in
terms of the Einstein-frame metric gµν and scalar field ϕ. A few remarks are in order:

– The action S put in the Jordan frame as Eq. (1.41) maps to the Horndeski class where L2 is the only
non-zero Lagrangian.

– From Eq. (1.39c), we see that the scalar field φ is dimensionless whereas ϕ has the dimension of an energy.

– In the Jordan frame, the special case Z = U = 0 turns off the pure scalar terms in the action (1.41).
Nonetheless, the Einstein-frame action (1.33–1.34) actually includes the conventional kinetic term (with no
potential), even if it was absent from the Jordan frame action. Therefore, the degrees of freedom of this
theory include a propagating scalar as well as the metric.

– We said earlier that matter is minimally coupled to the Jordan-frame metric. This is to be understood in
the sense that the Lagrange density

√−g̃Lmat(g̃µν , ψmat) is the simplest choice for adding matter fields to
the theory that ensures diffeomorphism covariance. In return, φ is directly coupled to the curvature scalar
in the Jordan frame.

– Following the preceding remark, matter fields “see” the Jordan-frame metric g̃µν , not the Einstein-frame
metric gµν . In the absence of other forces, matter test particles thus follow geodesics of the Jordan-frame
metric. As such, g̃µν is sometimes called the physical metric — it is the metric to which matter is universally
coupled and thus defines the lengths and times measured by material rods and clocks [70].

– In the following, we will only talk about the Einstein frame and the Jordan frame. However, it is easy
to see from the transformation that we performed [Eqs. (1.39–1.41)] that there is actually a continuum
of frames in between the two. The reason for this dichotomy is a practical one: the Einstein frame and
the Jordan frame are the special cases for which the scalar field is minimally coupled to curvature and
matter respectively — granting them a higher status with respect to other frames which are consequently
non-minimally coupled to both curvature and matter.

– Theories of the form (1.33–1.35) fall within the category of metric theories of gravity. As such, they
automatically satisfy the EEP [1].

Now that we have clearly defined the action of the theory, let us study the field equations. Namely, we derive
the equations of motion for (gµν , ϕ) in the Einstein frame, and for (g̃µν , φ) in the Jordan frame. We then see
how these field equations simplify in the Newtonian limit.

Field equations and Newtonian limit in the Einstein frame

Similarly to GR — see Sec. 1.1.1 — the field equations are obtained by varying the action in the Einstein frame
[Eq. (1.33)] with respect to gµν and ϕ.

Field equations in the Einstein frame Varying the action with respect to the inverse metric yields a modified
version of the Einstein’s field equations

Rµν −
1

2
Rgµν =

1

M2
Pl

(
Tµν + T (ϕ)

µν

)
. (1.42)

The stress-energy tensor of matter Tµν is given by

Tµν =
−2√−g

δSmat

δgµν
, (1.43)

while T (ϕ)
µν denotes the scalar field stress-energy tensor whose expression reads

T (ϕ)
µν =

−2√−g
δSϕ

δgµν
= ∂µϕ∂νϕ−

1

2
gµνg

ρσ∂ρϕ∂σϕ− gµνV (ϕ) . (1.44)
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Likewise, varying the action with respect to the scalar field yields the following Klein–Gordon equation

□ϕ ≡ gµν∇µ∇νϕ =
dV

dϕ
− d lnΩ

dϕ
T , (1.45)

where T = gµνTµν denotes the trace of the stress-energy tensor of matter. Here let us recall that the electro-
magnetic stress-energy tensor12 is traceless, and so a conformally coupled scalar field does not have a classical
coupling to photons.

Newtonian limit in the Einstein frame In order to derive the Newtonian limit of the field equations (1.42), we
proceed as we did in Sec. 1.1.1 for GR. We still assume that the Einstein-frame metric can be expanded about
the Minkowski metric as gµν = ηµν + hµν , with |hµν | ≪ 1. Moreover, gauge freedom allows us to put the metric
in the form (see e.g. Ref. [1] Chapt. 4.2.2)

ds2 = gµνdx
µdxν = (ηµν + hµν)dx

µdxν = −(1 + 2Φ)dt2 + gijdx
idxj . (1.46)

Before starting the computations, be aware that from now on, the symbol “∆” is defined as13

∆ ≡ gij∂i∂j . (1.47)

The trace-reversed form of Eq. (1.42) reads

M2
PlRµν = Tµν + T (ϕ)

µν −
1

2

(
T + T (ϕ)

)
gµν , (1.48)

where T (ϕ) is the trace of the scalar field stress-energy tensor and is given by

T (ϕ) = gµνT (ϕ)
µν = gµν∂µϕ∂νϕ−

1

2
gµνgµνg

ρσ∂ρϕ∂σϕ− gµνgµνV (ϕ) = −∂αϕ∂αϕ− 4V (ϕ) . (1.49)

We are interested in the 00-component of Eq. (1.48). The computation is the same as in GR, except we have the
additional scalar field contribution to the rhs

T (ϕ)

00 −
1

2
T (ϕ)g00 = (∂tϕ)

2 − 1

2
g00∂

αϕ∂αϕ− g00V (ϕ) +
1

2
g00∂

αϕ∂αϕ+ 2g00V (ϕ)

≃ 2g00V (ϕ) .
(1.50)

In the above computation, the kinetic term X vanishes exactly whereas partial derivatives with respect to time
are dropped because of the quasi-static approximation. We end up with the following modified Poisson equation

2M2
Pl∆Φ = ρ

[
2Ω−2(ϕ) + g00

]
+ 2g00V (ϕ) , (1.51)

where the scalar field ϕ contributes to the rhs through its potential and conformal factor. The presence of the
latter in Eq. (1.51) — and more importantly, our definition of the Einstein frame ‘density’ ρ — are explained
in Box B. It should be noted that at no point during the above derivations did we assume that the conformal
factor Ω was close to one. Once again, we refrain from making the approximation g00 ≃ −1 in Eq. (1.51) because
that would mean losing track of powers of Ω if we ever want to go to the Jordan frame from this Einstein frame
approximation.13

The Newtonian limit of the Klein–Gordon equation (1.45) is somewhat easier to derive. As a matter of fact,
the d’Alembertian □ boils down to the Laplacian ∆ = gij∂i∂j [see Eq. (1.47)] in the quasi-static limit, while the
trace of the energy-momentum tensor of matter is approximated as T ≃ −ρ (see Box B), leading to

∆ϕ =
dV

dϕ
+

d lnΩ

dϕ
ρ . (1.52)

Interestingly, the Klein–Gordon equation governing the scalar field ϕ in the Newtonian limit [Eq. (1.52)] is fully
decoupled from metric-related quantities. That means it is possible to solve it first to obtain the ϕ profile, so
that the potential Φ obeys a Poisson’s equation (1.51) with known rhs.

12This tensor is Tµν
em = 1

µ0

(
FµαF ν

α − 1
4
ηµνFαβF

αβ
)

is SI units.
13Of course, one may argue that, given the approximation we just stated, gij ≃ δij . While this is true, we keep the definition

Eq. (1.47) as is. This will prove to be crucial when we try to match the Newtonian limits in the Einstein frame vs Jordan frame
later on. Without this precaution, powers of the scale factor Ω can be lost along the way...
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Field equations and Newtonian limit in the Jordan frame

Field equations in the Jordan frame Conversely, the Jordan frame field equations are obtained by varying the
action Eq. (1.41) with respect to g̃µν and φ.

Varying the action with respect to g̃µν yields

F (φ)

(
R̃µν −

1

2
R̃g̃µν

)
=

1

M2
Pl

(
T̃µν + T̃ (φ)

µν

)
. (1.53)

In this frame, the stress-energy tensor of matter is given by

T̃µν =
−2√−g̃

δSmat

δg̃µν
, (1.54)

and T̃ (φ)
µν is a convenient notation for the scalar field contribution

T̃ (φ)
µν = Z(φ)

[
∂µφ∂νφ−

1

2
g̃µν g̃

αβ∂αφ∂βφ

]
− g̃µνU(φ) +M2

Pl

(
∇̃µ∇̃νF − g̃µν□̃F

)
. (1.55)

The equation of motion for the scalar field is obtained by varying the action with respect to φ, yielding

Z(φ)□̃φ =
dU

dφ
− M2

Pl

2

dF

dφ
R̃− 1

2

dZ

dφ
g̃αβ∂αφ∂βφ , (1.56)

where □̃ = g̃µν∇̃µ∇̃ν and ∇̃µ refers to the covariant derivatives constructed from g̃µν . It is striking that both
the metric equation (1.53) and the scalar field equation (1.56) appear significantly more complex than their
Einstein frame counterparts, Eq. (1.42) and Eq. (1.45) respectively.14 Note that the Jordan frame equations
could also have been obtained by applying the conformal transformation g̃µν = Ω2gµν together with the field’s
redefinition (1.39) directly in the Einstein frame field equations, thus bypassing the variation of the action as
we did. We lay emphasis on the fact that at the equation level, it is strictly equivalent to work with Einstein
frame quantities (gµν , ϕ) governed by Eqs. (1.42, 1.45) or with Jordan frame quantities (g̃µν , φ) governed by
Eqs. (1.53, 1.56). Of course depending on the context, one frame might turn out to be more handy than the other
to perform certain calculations, but the computation of observable quantities shall provide the same results.

Box B: Energy-momentum tensors of matter in both frames

The definitions of the stress-energy tensor of matter in the Einstein frame [Eq. (1.43)] and in
the Jordan frame [Eq. (1.54)] imply the following relations

T̃µν = Ω−2 Tµν = F Tµν , T̃µν = Ω−6 Tµν = F 3 Tµν , T̃ = Ω−4 T = F 2 T . (1.57)

For a perfect-fluid source of energy-momentum with 4-velocity ũµ, ρ̃ and p̃ as rest-frame
energy and momentum densities — in the Jordan frame —, we have

T̃µν = (ρ̃+ p̃) ũµũν + p̃g̃µν = Ω2
[
(ρ̃+ p̃)uµuν + p̃gµν

]
= Ω−2Tµν . (1.58)

Therefore, it makes sense to define (ρ, p) = Ω4(ρ̃, p̃) so that we recover the canonical form

Tµν = (ρ+ p)uµuν + pgµν . (1.59)

When going to the Newtonian limit, approximating T̃00 by ρ̃ on the one hand, and T00 by
ρ on the other hand, would be incompatible with the above definitions (which in contrast
do not rely on any approximation). Because the Jordan frame is the physical frame (i.e. ρ̃
corresponds to the measured density of the fluid), we give it preference over the Einstein
frame for computing the Newtonian limit of the energy-momentum tensor of matter. As such
Eq. (1.51) is consistent with setting T̃00 ≃ ρ̃ and T̃ ≃ −ρ̃, which readily implies T00 ≃ Ω−2ρ
and T ≃ −ρ. Of course, in practice Ω(ϕ) will always be very close to unity so that ρ ≃ ρ̃ is a
legitimate approximation at 0 PN. Footnote 2 from Ref. [71] provides further insights into the
commonly used ‘densities’ in the literature.

14This is in part due to the fact that the Einstein frame equations are meant to look like GR, for which we already have a
condensed way of writing the objects appearing in the field equations.
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Newtonian limit in the Jordan frame For the Newtonian limit, we proceed as before by putting the Jordan-frame
metric in the Newtonian gauge, i.e.

ds̃2 = g̃µνdx
µdxν = (ηµν + h̃µν)dx

µdxν = −(1 + 2Φ̃)dt2 + g̃ijdx
idxj , (1.60)

where {xµ} denotes the same set of coordinates as in Eq. (1.46) and h̃µν is a small metric perturbation i.e.
|h̃µν | ≪ 1. Likewise, we define the operator ∆̃ by

∆̃ ≡ g̃ij∂i∂j . (1.61)

As for the derivation of the Newtonian limit in the Einstein frame, we refrain from approximating g̃00 ≃ −1,
gij ≃ δij in places where one would usually do — again, the reason for this will appear clear when comparing
the Newtonian limits in both frames. We also write down the trace-reversed version of the field equations (1.53)

M2
PlF (φ)R̃µν = T̃µν + T̃ (φ)

µν −
1

2

(
T̃ + T̃ (φ)

)
g̃µν . (1.62)

Again, we consider the 00-component of this equation. Straightforwardly, the matter terms simplify to
T̃00 − T̃ g̃00/2 ≃ ρ̃(1 + g̃00/2) (see Box B). For the scalar field contribution, we have

T̃ (φ)

00 −
1

2
T̃ (φ)g̃00 = Z(φ)

[
(∂tφ)

2 − 1

2
g̃00∂

αφ∂αφ

]
− g̃00U(φ) +M2

Pl(∇̃t∂tF − g̃00□̃F )

+
1

2

[
Z(φ)∂αφ∂αφ+ 4U(φ) + 3M2

Pl□̃F
]
g̃00

≃
[
1

2
M2

Pl∆̃F + U(φ)

]
g̃00 ,

(1.63)

where we discarded the time derivatives and approximated □̃ ∼ ∆̃ [see Eq. (1.61)] in the last line (the kinetic
terms cancel exactly). We thus end up with a modified Poisson equation for the potential Φ̃

M2
Pl

[
F (φ)∆̃Φ̃− 1

2
g̃00∆̃F

]
= ρ̃

(
1 +

1

2
g̃00

)
+ g̃00U(φ) . (1.64)

On the other hand, the Klein–Gordon equation (1.56) involves the Jordan frame Ricci scalar, which is obtained
by taking the trace of Eq. (1.53)

R̃ =
−1

F (φ)M2
Pl

(
T̃ + T̃ (φ)

)
=

1

F (φ)M2
Pl

[
ρ̃+ Z(φ)g̃αβ∂αφ∂βφ+ 4U(φ) + 3M2

Pl□̃F
]
. (1.65)

As a result, the Newtonian limit of Eq. (1.56) reads

Z(φ)∆̃φ =
dU

dφ
− 1

2

d lnF

dφ

[
ρ̃+ 4U(φ) + 3M2

Pl∆̃F
]
, (1.66)

where we have discarded terms of the form ∂iφ∂jφ as they represent higher order terms. As for the scalar field
ϕ equation (1.52), the equation of motion for φ in the Newtonian limit Eq. (1.66) is decoupled from the metric
tensor g̃µν .

Comparison of the Newtonian limits

To conclude this rather computationally-involved part, it is insightful to outline the link between the Newtonian
limits in the two frames, and check whether they match as hoped. The issue with the expansions in the Newtonian
gauge [Eqs. (1.46, 1.60)] we made is that they are not equivalent, in the sense that they correspond to distinct
approximations. To see it, let us write

g̃µν = ηµν + h̃µν = Ω2gµν = Ω2(ηµν + hµν) = ηµν +
[
(Ω2 − 1)ηµν +Ω2hµν

]
. (1.67)

For the Einstein frame computations we have assumed |hµν | ≪ 1, whereas for the Jordan frame computations
we have assumed |h̃µν | ≪ 1. These two assumptions are not equivalent, precisely because we refrained from
making the approximation Ω ∼ 1 until now. The latter assumption is therefore necessary for the two expansions
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to be mathematically equivalent at first order.15 We write this down as

Ω(ϕ) = 1 + ω(ϕ) , with |ω(ϕ)| ≪ 1 . (1.68)

Moreover, we have to choose which metric is truly expanded around Minkowski, and which metric carries the
conformal factor weight, as writing

{
g̃µν = ηµν + h̃µν

gµν = (1− 2ω)(ηµν + h̃µν)
and

{
gµν = ηµν + hµν

g̃µν = (1 + 2ω)(ηµν + hµν)
(1.69)

simultaneously would inevitably lead to inconsistencies. In the light of this remark, we arbitrarily decide to pick
the second version of Eq. (1.69) for which the conformal factor weight (1 + 2ω) is placed on the Jordan-frame
metric and stick to this choice all the way through.16 Recalling that h̃00 = −2Φ̃, h00 = −2Φ [see Eqs. (1.46,
1.60)], we have

1 + 2Φ̃ = Ω2(1 + 2Φ) =⇒ ∆̃Φ̃ =
1

2
∆̃
(
Ω2
)
+ ∆̃

(
Ω2Φ

)
. (1.70)

Moreover, looking at the definitions of ∆̃ [Eq. (1.61)] and ∆ [Eq. (1.47)], we see that the two operators are
related via ∆̃ = Ω−2∆. To show that the two Newtonian limits are equivalent, we go from the Jordan frame
approximations [Eqs. (1.64, 1.66)] to the Einstein frame ones [Eqs. (1.51, 1.52)]. Using Eq. (1.70), the lhs of
Eq. (1.64) becomes

M2
Pl

[
F (φ)∆̃Φ̃− 1

2
g̃00∆̃F

]
=M2

Pl

[
1

2
Ω−4∆

(
Ω2
)
+Ω−4∆

(
Ω2Φ

)
+

1

2
∆
(
Ω−2

)]

≃M2
Pl

[
(1− 4ω)∆ω +Ω−4∆

(
Ω2Φ

)
−∆ω

]

≃M2
Pl

[
Ω−2∆Φ+ higher-order terms

]
.

(1.71)

Here, higher-order terms include {∂iϕ∂jϕ, ω∆ϕ, Φ∆ϕ, ∂iΦ ∂jϕ, . . . }.17 Likewise, the rhs boils down to

ρ̃

(
1 +

1

2
g̃00

)
+ g̃00U(φ) ≃ 1

2
ρ̃
(
1− 2ω

)
− Ω2U(φ) ≃ 1

2
Ω−2

[
ρ̃− 2Ω4U(φ)

]
(1.72)

Putting back the two sides [Eqs. (1.71, 1.72)] together, we recover Eq. (1.51) since

ρ
[
2Ω−2 + g00

]
≃ ρ
(
1− 4ω

)
≃ ρ̃ . (1.73)

We have just shown that the 00-component of Eqs. (1.48, 1.62) are equivalent in the Newtonian limit together
with the approximation Eq. (1.68).

The same goes for the scalar field equations, although one has to be extra careful about the terms that are
now negligible and the ones that must be kept. The partial derivatives of the scalar fields are considered small,
so any term of the form {∂iϕ∂jϕ, ∂iφ∂jφ} can be safely discarded. In view of this remark, we can approximate

∆̃φ = g̃ij∂i∂jφ = g̃ij∂i

(
∂jϕ

dφ

dϕ

)
= g̃ij∂i∂jϕ

dφ

dϕ
+ g̃ij∂iϕ∂jϕ

d2φ

dϕ2
≃ dφ

dϕ
∆̃ϕ , (1.74)

∆̃ω = g̃ij∂i∂jω = g̃ij∂i
[
∂jϕω

′(ϕ)
]
= g̃ijω′(ϕ)∂i∂jϕ+ g̃ij∂iϕ∂jϕω

′′(ϕ) ≃ ω′(ϕ)∆̃ϕ , (1.75)

d lnΩ

dϕ
≃ ω′(ϕ)− ω(ϕ)ω′(ϕ) . (1.76)

Note that ω′(ϕ) is a priori not small.17 The function Z(φ) may be approximated from Eq. (1.39c) as

Ω2(ϕ)Z(φ) ≃
(
dϕ

dφ

)2 [
1− 6M2

Plω
′(ϕ)2

]
. (1.77)

15This important remark is also underlined in Ref. [72], Sec. IV.
16Of course, we could have equivalently chosen the first metric formulation of Eq. (1.69) and derive the same self-consistent

conclusions.
17One may find it helpful to keep in mind the common form for the conformal factor Ω(ϕ) = exp(αϕ) (where α is just a coupling

constant), in which case ω(ϕ) ∼ αϕ.
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Figure 1.2: Inclusions in scalar-tensor theories. The left set satisfies the WEP at the Lagrangian level.

Using Eqs. (1.74, 1.76, 1.77), the lhs of Eq. (1.66) boils down to

Z(φ)∆̃φ ≃ dϕ

dφ

[
1− 6M2

Plω
′(ϕ)2

]
Ω−4∆ϕ . (1.78)

Similarly, the rhs simplifies to

dU

dφ
− 1

2

d lnF

dφ

[
ρ̃+ 4U(φ) + 3M2

Pl∆̃F
]
≃ dϕ

dφ

{
Ω−4V ′(ϕ) + ω′(ϕ)

[
Ω−4ρ− 6M2

Pl∆̃ω
]}

≃ Ω−4 dϕ

dφ

[
dV

dϕ
+

d lnΩ

dϕ
ρ− 6M2

Plω
′(ϕ)2∆ϕ

]
,

(1.79)

where we have only dropped terms of the form {ω∆ϕ}, consistently with the previous approximations (note
that the Ω−4V ′ term is recovered exactly). As hoped, putting Eqs. (1.78, 1.79) back together (multiplied by
Ω4dφ/dϕ) yields the Klein–Gordon equation (1.52) that we obtained in the Einstein frame.

These computations, despite being quite heavy, help shed light on the bridge between the Einstein frame and
the Jordan frame. Similar computations are undertaken in Refs. [71, 72], with notations different from ours and
sometimes taking alternative routes towards the end results. They were conducted here for the sake of having all
the relevant equations in a single place, in particular Eqs. (1.42, 1.45, 1.51, 1.52) for the Einstein frame, and
Eqs. (1.53, 1.56, 1.64, 1.66). Note that we have linearized the metric perturbations, but not the scalar field
perturbations, i.e. we have not made approximations of the form ϕ = ϕ0(1+ δϕ) with |δϕ| ≪ 1 or φ = φ0(1+ δφ)
with |φ| ≪ 1. As a matter of fact, these approximation are far from being valid in some scalar-tensor models
with screening mechanisms due to their crucial nonlinear effects, which will be discussed in Sec. 1.2.

The case of non-universal coupling

So far, we have considered that all matter fields ψmat couple in the same way to the scalar field ϕ, through
the conformal factor Ω(ϕ). This statement is merely the literal translation of Eq. (1.34b), the matter action of
the model we set out to study. We could however imagine a scenario in which the scalar field does not couple
universally to the matter sector. Mathematically, this is easily achieved by labeling the matter fields ψ(i)

mat and
associating each of them with a different conformal factor Ωi. In doing so, we define as many new metrics via
g̃(i)
µν = Ω2

i (ϕ)gµν , and the matter action can be decomposed into

Smat =
∑

i

∫
d4x
√
−g̃(i)L(i)

mat

(
g̃(i)

µν , ψ
(i)

mat

)
. (1.80)

As such, there is no longer one single ‘Jordan frame’. Instead, there is one preferred frame per matter field (j),
which is obtained by following the derivation in Eqs. (1.35–1.41) with Ω→ Ωi and g̃µν → g̃(i)

µν . At this point, it
is important to remark that the case of non-universal coupling straightforwardly leads to WEP violation, as
different particle species follow different geodesics in spacetime. More generally, tweaks in couplings are severely
limited because they lead to variations of the physical constants, see Ref. [73].

From a physical point, such non-universal couplings arise in a variety of theoretical models. In many string
theory models, the dilaton is a spin-0 field that couples with different strengths to different types of matter, see
e.g. Refs. [74–76]. In cosmology, one can introduce a scalar field that couples differently to ordinary matter vs
dark matter [77, 78].

1.1.3 Observational consequences and tests
In the previous sub-section, we introduced the mathematical framework of scalar-tensor theories with the focus
laid on the field equations. With these derived expressions at hand, we go back to the realm of physics with two
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applications. First, we reinvest our discussion of FLRW cosmology above and take a look at the cosmological
implications of having a scalar field alongside the metric. Second, we examine a question that has been postponed
so far: what happens to geodesics in scalar-tensor theories? Specifically, the fact that test particles follow
geodesics of the Jordan-frame metric means that the geodesic equation in the Einstein frame will no longer read
Eq. (1.5).

But before delving into these two applications, let us briefly discuss the question of the equivalence between
frames.

Equivalence between frames

In the above, we have insisted upon the fact that there was a one-to-one correspondence between the Einstein-
frame fields (gµν , ϕ) and the Jordan-frame fields (g̃µν , φ). As such, one is free to write down the action of the
theory and the field equations that follow in either of the two frames — or both, as we did for the sake of
completeness. That being said, it is possible to shift from one frame to the other at any stage of any given
computation. As we have seen however, inconsistencies may arise when one starts making approximations so as
to simplify expressions, see e.g. our derivation of the Newtonian limit of the field equations in both frames. In
that case, one has to be extra careful about how the ‘smallness’ of a given quantity translates from one frame to
the other.

As stated above, it is not uncommon to read the Jordan frame being referred to as the ‘physical frame’
in the literature. The reason for this name is that the matter part of the action is the standard one: it is
covariantly conserved ∇̃µT̃

µν = 0 and all particle physics’ properties (e.g. masses, cross sections, decay rates,
etc.) can be computed ‘as usual’, without having to care about the spacetime dependence of the scalar field φ.
In turn, the equations describing gravitational phenomena look much more complicated than in pure GR [see e.g.
Eqs. (1.53–1.55)]. In this regard, the Einstein frame looks more appealing as the absence of coupling between
the curvature R and the scalar field ϕ makes the field equations less intimidating. The price to be paid for this
apparent simplicity is that all the aforementioned particle physics’ properties become spacetime dependent, due
to their ϕ-dependence.

Yet, laws of nature do not care about which frame we pick for making our calculations. In other words, the
computation of observable quantities must somehow yield frame-independent results. This is ensured by the fact
that physical observables are always dimensionless ratios between physical quantities and the appropriate units
of measure [79] — which turns out to be a frame invariant quantity. See e.g. Refs. [80–83] for a more in-depth
discussion regarding frame-invariant observables. This ‘frame-freedom’ is a double-edged sword. On the one
side, extra care has to be taken when confronting the theory against experimental data. On the other side, this
duality not only allows one to take whatever route is the most convenient computationally speaking, but also
offers more room for physical interpretation, mixing views from the two frames.

Finally before moving on, it should be mentioned that, while this equivalence holds for classical phenomena,
it may not hold for quantum phenomena, see e.g. Refs. [84–86].

Cosmological implications

In Sec. 1.1.1, we showed how GR is underlying the standard model of cosmology, by providing some basic
elements of flrw cosmology. Here, we follow the same path for a generic scalar-tensor model given by an action
Eq. (1.33) [or Eq. (1.41) equivalently in the Jordan frame]. In particular, our aim is to show how scalar-tensor
models can provide alternatives to the cosmological constant to account for the observed cosmic acceleration
— which is perhaps the reason why these models have been so trendy in the literature since the late 1990s.
Therefore, we limit ourselves to the background evolution of the universe in the scalar-tensor framework laid out
through Eqs. (1.33–1.79). For the sake of simplicity and without loss of generality, we assume a spatially flat
universe [note that this property is frame-independent through the Weyl rescaling Eq. (1.35)].

We continue to discuss the relation between the two frames, although one has to bear in mind that experimental
data (redshift, distances, CMB temperature, etc.) have their usual interpretation in the Jordan frame.

Einstein frame and dark energy In the Einstein frame, the line element is

ds2 = −dt2 + a2(t)δijdxidxj . (1.81)

The Friedmann equations (1.22) take exactly the same form as in GR, but the scalar field contribution T (ϕ)
µν

[Eq. (1.44)] to the total energy-momentum tensor has to be taken into account through the density and pressure
terms. From the expression of the stress-energy tensor of a perfect fluid Eq. (1.19), we readily extract ρ = uµuνTµν



1.1. A phenomenologically rich framework to go beyond General Relativity 25

and 3p = (gµν + uµuν)Tµν . With the assumption that ∂iϕ = 0, we get

ρϕ = uµuνT (ϕ)
µν =

(
u0
)2
(∂tϕ)

2 +
1

2
g00(∂tϕ)

2 + V (ϕ) =
1

2
(∂tϕ)

2 + V (ϕ) , (1.82a)

pϕ =
1

3
(gµν + uµuν)T (ϕ)

µν =
1

3

[
−g00(∂tϕ)2 − 4V (ϕ) + ρϕ

]
=

1

2
(∂tϕ)

2 − V (ϕ) , (1.82b)

where we have used the fact that the ‘scalar fluid’ is at rest in comoving coordinates i.e. uµ = δµ0 , g00 = −1 and
gµνu

µuν = −1. Therefore, the scalar field behaves as a perfect fluid whose equation of state of the scalar field is
simply

wϕ =
(∂tϕ)

2 − 2V (ϕ)

(∂tϕ)2 + 2V (ϕ)
(1.83)

and the Friedmann equations are obtained by substituting ρ→ ρ+ ρϕ, p→ p+ pϕ in Eq. (1.22). Likewise, the
equation of motion for the scalar field — the Klein–Gordon equation Eq. (1.45) — becomes

∂2t ϕ+ 3H∂tϕ+
dV

dϕ
=

d lnΩ

dϕ
(3p− ρ) , (1.84)

where of course ∂2t = ∂t∂t. The continuity equation (1.23) is no longer applicable in its original form since
∇µT

µν ̸= 0 in the Einstein frame. However, it is easily recovered if we substitute ρ → ρ+ ρϕ, p → p+ pϕ as
before.

While these Einstein frame Friedmann equations are easy to work with, the usual quantities derived from
them do not correspond to the measured ones. For instance, the measured redshift z of a distant object would be

1 + z =
Ωrec

Ωem

arec
aem
̸= arec
aem

, (1.85)

where the subscript ‘em’ and ‘rec’ refer to the spacetime events of emission and reception of the light respectively.
From Eq. (1.85) we see that, if the conformal factor Ω remained nearly constant (close to unity) between these
two events, the ratio arec/aem can dominate the redshift contribution. This turns out to be the case when
the scalar field ϕ is weakly coupled to matter. Interestingly, in the limit of no coupling at all Ω(ϕ) ≡ 1 at all
times, the distinction between the two frames becomes irrelevant and our scalar-tensor model boils down to
a quintessence model (see Ref. [87]), which is completely described by the potential function V . The rhs of
Eq. (1.84) vanishes and we recover the usual dark energy tale: the scalar field tends to roll down the potential,
with the Hubble parameter H acting as a friction term. Therefore, if the potential is shallow enough, the
scalar field will roll very slowly, leading to a kinetic term (∂tϕ)

2 much smaller than the potential term V (ϕ).
Plugging this approximation into the equation of state Eq. (1.83) yields wϕ ∼ −1, which is reminiscent of the
equation of state of the cosmological constant. Actually, Friedmann equations (1.22b) show that any wϕ < −1/3
provides an accelerated expansion. Among the most studied potentials are power-law functions — specifically
the Ratra–Peebles potential [88] — of the form

V (ϕ) =
Mn+4

ϕn
, (1.86)

where M is some constant energy scale and n is generally a positive number called the slop of the potential. On
the one hand, this type of potential is appealing as the energy scale can be compatible with the one from particle
physics, meaning that the embarrassing fine-tuning issue of the cosmological constant is greatly alleviated [87].
On the other hand, we have yet to find a potential of the form (1.86) in particle physics. In contrast, the simple
example of a quadratic potential

V (ϕ) =
1

2
m2

ϕϕ
2 , (1.87)

where mϕ is called the mass of the scalar field,18 is way more conventional in quantum field theory. But while
this potential has the advantage of being ‘particle physics friendly’, the fine-tuning issue strikes back as the
field’s mass would have to be tiny in front of the familiar masses of elementary particles (by dozens of orders of
magnitude) [12].

As a side note, we recall that according to the criterion presented in Ref. [62], quintessence is not modified
gravity in the sense that the SEP is not violated.

18The reason for using the term ‘mass’ comes from the fact that, upon quantization of the field, momentum eigenstates are
collection of particles, each with a mass mϕ. At the classical level (to which we are limiting ourselves here), the mass of the field can
simply be thought of as a convenient way to characterize the dynamics of the field.



26 CHAPTER 1. Scalar-tensor theories of gravity

Jordan frame and self-acceleration In the general case, the assumption that the conformal factor temporal
evolution has negligible effects on observables does not hold. Indeed, Ω(ϕ) can a priori have any shape. In the
Jordan frame, the line element is

ds̃2 = −dt̃ 2 + ã2(t̃)δijdxidxj . (1.88)

Recalling that ds̃2 = Ω2(ϕ) ds2, we get the scaling relations

dt̃ = Ωdt and ã = Ω a (1.89)

The universe is still of the flrw type in the Jordan frame. The background equations follow from the field
equations (1.53, 1.56), reading

3M2
PlH̃

(
FH̃ + ∂t̃F

)
= ρ̃+

1

2
Z
(
∂t̃φ
)2

+ U , (1.90a)

−2M2
PlF ∂t̃H̃ = ρ̃+ p̃+ Z

(
∂t̃φ
)2

+M2
Pl

(
∂2t̃ F − H̃ ∂t̃F

)
, (1.90b)

Z
(
∂2t̃ φ+ 3H̃ ∂t̃φ

)
= 3M2

Pl

dF

dφ

(
∂t̃H̃ + 2H̃2

)
− 1

2

dZ

dφ

(
∂t̃φ
)2 − dU

dφ
, (1.90c)

where H̃ = d ln ã/dt̃. Thanks to ∇̃µT̃
µν = 0, the continuity equation takes its usual form ∂t̃ρ̃+ 3H̃(ρ̃+ p̃) = 0.

Let us take the time to discuss Eqs. (1.88–1.90). Eqs. (1.90a, 1.90b) correspond to the first and second
Friedmann equations, while Eq. (1.90c) is the scalar field equation in the flrw background. As stated above, it
is easy to derive cosmological observables from Jordan frame quantities. For example, the measured redshift
from the light emitted by a distant object is simply

1 + z =
ãrec
ãem

, (1.91)

which is consistent with Eq. (1.85) given the fact that the scale factor transforms as ã = Ω a [Eq. (1.89)]. A proper
discussion of the background evolution of the universe therefore requires to solve the coupled equations (1.90).
Such a discussion is undertaken in the illuminating paper by Esposito-Farèse and Polarski [83].

If our scalar-tensor model is to describe our universe, which we know is undergoing a phase of accelerated
expansion [89, 90], we must have d2ã/dt̃2 > 0 at the present time. Interestingly, this is not enough to fix the
sign of d2a/dt2. To give a concrete example, the case of a vanishing potential V (ϕ) ≡ 0 results in

1

a

d2a

dt2
= − 1

6M2
Pl

[
ρ+ 3p+ 2(∂tϕ)

2
]
, (1.92)

so that the universe is clearly decelerating in the Einstein frame. In the Jordan frame however, the relation
ã = Ω a [see Eq. (1.89)] prevents us from drawing that same conclusion. Whether the universe is decelerating in
the Jordan frame is a question that cannot be answered unless the conformal factor function is specified. In this
perspective, cosmologists have coined the term ‘self-acceleration’ [91–94] to designate scalar-tensor models which
simultaneously exhibit an accelerated expansion in the Jordan frame and a decelerated expansion in the Einstein
frame. A model that self-accelerates can be appealing. Indeed, the cosmic acceleration stems entirely from the
Weyl rescaling [Eq. (1.89)] and not from a putative dark energy fluid which, as discussed above, can suffer from
fine-tuning issues or non-standard potentials in particle physics.

Fifth forces

One inescapable topic when discussing scalar-tensor models is the motion of massive and massless particles.

Timelike geodesics As already said, matter test particles follow geodesics of the Jordan-frame metric g̃µν . As
such, it is straightforward to write the geodesic equation in that frame, as all we have to do is translate Eq. (1.7)
in terms of Jordan frame quantities. Denoting ũµ = dxµ/dτ̃ the 4-velocity of such a test particle in free fall, we
have

ũα∇̃αũ
µ = 0 , with g̃αβ ũ

αũβ = −1 . (1.93)

Now let us have a look at what happens in the Einstein frame. Precisely, that means finding an expression for
uα∇αu

µ, where uµ = dxµ/dτ = Ω−1ũµ so that gαβuαuβ = −1 (uµ is still tangent to the Jordan frame geodesic).
For any vector Aµ, the covariant derivatives are related through

∇αAµ = ∇̃αAµ +
(
Γ̃λ
αµ − Γλ

αµ

)
Aλ , with Γ̃λ

αµ − Γλ
αµ = Ω−1

(
δλα∂µΩ+ δλµ∂αΩ− gαµgλσ∂σΩ

)
(1.94)
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Therefore, we get

∇̃αũ
µ = g̃µν∇̃αũν

= g̃µν
[
∇αũν −

(
Γ̃λ
αν − Γλ

αν

)
ũλ

]

= Ω−2gµν
[
uν∂αΩ+ Ω∇αuν −

(
δλα∂νΩ+ δλν ∂αΩ− gανgλσ∂σΩ

)
uλ
]

= Ω−1
{
∂α(lnΩ)u

µ +∇αu
µ −

[
δλα∂ν(lnΩ) + δλν ∂α(lnΩ)− gανgλσ∂σ(lnΩ)

]
gµνuλ

}
,

where we have made use of the fact that ∇αg
µν = ∇̃αg̃

µν = 0. Finally, contracting this expression by ũα yields

ũα∇̃αũ
µ = Ω−1uα∇̃αũ

α = Ω−2
[
uα∇αu

µ +
(
gµν + uµuν

)
∂ν(lnΩ)

]
= 0 , (1.95)

where we have used the fact uλuλ = −1. What we find is that geodesics of the Jordan-frame metric do not
coincide with the Einstein-frame metric ones, since

uα∇αu
µ = − ⊥µν ∂ν(lnΩ) = − ⊥µν d lnΩ

dϕ
∂νϕ , with ⊥µν= gµν + uµuν . (1.96)

Note that the ⊥µν can be interpreted as the projector on the 3-space normal to uµ. In plain language, Eq. (1.96)
tells us that test particles do not follow geodesics of gµν (otherwise, the rhs would be zero), their trajectory being
perturbed by a term that depends on the conformal factor and the gradient of the scalar field. From the Einstein
frame perspective, everything happens as if the particles were subjected to a force along their trajectory, hence
their non-geodesic motion. This force — called the fifth force in the literature19 — can be readily expressed as

aρϕ = −d lnΩ

dϕ
⊥µρ ∂µϕ . (1.97)

It is worth mentioning that this derivation is valid for any two metric conformally related as in Eq. (1.35) and
thus does not depend at all on the action of the theory at hand (as long as the coupling remains universal).

To gain further insight into this fifth force, we proceed as in Sec. 1.1.1 and compute the Newtonian limit of the
modified geodesic equation (1.96) in the Einstein frame. Putting the metric gµν in the Newtonian gauge (1.46),
we obtain

d2xi

dt2
= −∂iΦ−

d lnΩ

dϕ
∂iϕ i.e.

d2x

dt2
= −∇Φ− d lnΩ

dϕ
∇ϕ (1.98)

We recover the acceleration due to the gravitational potential Φ, as in GR, plus the 3-force aϕ = −∇[lnΩ(ϕ)].20
For the case of an extended body of volume V and mass M rather than a point-like particle, the total fifth force
experienced by that body is obtained through the integration

aϕ =
1

M

∫

V
ρ(x)∇[lnΩ(ϕ)] dx . (1.99)

Here, it should be stressed that, while the WEP holds for point-like particles (as they do not disturb the
background field ϕ), the same cannot be said about extended test bodies. Indeed, there is no obvious reason
why the fifth force (1.99) should be the same for all bodies with matter distribution ρ(x) and scalar field profile
ϕ(x). A concrete example of such an apparent WEP violation is given later in Sec. 1.2.2.

Null geodesics It is obvious that conformal transformations leave null curves invariant, since g̃µνdxµdxν = 0
is equivalent to gµνdxµdxν = 0. Actually, we can show that they further leave null geodesics invariant. Let
kµ = dxµ/dλ be the tangent vector to a null geodesic of the Einstein-frame metric, affinely parameterized by
λ. Then kα∇αk

µ = 0, by definition. In particular kµ is a null vector, which implies that (see e.g. Ref. [13],
Appendix G)

kα∇̃αk
µ =

[
2kα∂α(lnΩ)

]
kµ .

This is the the equation of a non-affinely parameterized geodesic of the Jordan-frame metric — which ends the
proof. Note that we can further define a new affine parameter λ̃, related to λ via dλ̃ = Ω2dλ, so that

k̃α∇̃αk̃
µ = 0 , with k̃µ =

dxµ

dλ̃
= Ω−2kµ .

19The name comes from the fact it would be a new force, mediated by the scalar field, alongside the four known fundamental
interactions in nature.

20We acknowledge being rather sloppy name-wise as ‘fifth force’ should sometimes be understood as ‘fifth acceleration’, but that is
clear enough from context.



28 CHAPTER 1. Scalar-tensor theories of gravity

Given the conformal invariance of null geodesics, massless particles are not affected by the presence of the
scalar field and do not ‘feel’ any fifth force. This property can be leveraged in gravity tests that involve the bending
of light by a massive body as the lensing mass (inferred from lensing) is different from the dynamical mass
(inferred from the dynamics of other objects around that body) — see e.g. Ref. [71] for a nice discussion of this
effect.

Massless and massive scalar fields explained through two examples: Brans–Dicke theory and the
Yukawa approximation

Brans–Dicke theory This theory is considered to be the very first scalar-tensor model, proposed by Brans and
Dicke in 1962 [79, 95] (building on top of the earlier work of Jordan) as a modification of GR that respects
Mach’s principle [96]. It is the prototypical example of a massless scalar-tensor theory whose action, in the
Jordan frame, corresponds to setting

F (φ) = φ , Z(φ) =M2
Pl

ω

φ
, U(φ) = 0 , (1.100)

where ω > 0 is a constant parameter of the theory. In this theory, the scalar field φ is said to be massless
because the potential function U is set to zero. Applying the Newtonian approximation in the Jordan frame
[Eqs. (1.64, 1.66)] to this special case yields

2M2
Plφ∆̃Φ̃ =

2ω + 4

2ω + 3
ρ̃ and 2M2

Pl∆̃φ

(
ω +

3

2

)
= −ρ̃ . (1.101)

Interestingly, the scalar field obeys a linear Poisson equation (just like the gravitational potential in Newtonian
gravity). The equation for the potential Φ̃ can be interpreted as having an effective gravitational constant G∗
instead of the ‘bare’ one G embedded in M2

Pl [see Eq. (1.1)], reading

G∗(φ) =
G

φ

2ω + 4

2ω + 3
≃ G

φ0

2ω + 4

2ω + 3

(
1− δφ(x)

)
, (1.102)

where we have further made the assumption that φ can be expanded around a nonzero background φ = φ0(1+δφ)
with |δφ| ≪ 1. The background value of the scalar field φ0 can be interpreted as the value of φ today far from
the system being studied, which is therefore determined by an appropriate cosmological boundary condition21 [3,
97]. The gravitational “constant” G∗ corresponds to what one would measure in a Cavendish-like experiment
(see e.g. Refs. [98, 99] for the description of such experiments in the laboratory). In this theory, it ceases to be a
true constant for

1. the background value φ0 may change as a result of cosmic evolution (see Ref. [73] for a comprehensive
review of ‘Ġ/G’ constraints);

2. small fluctuations around this background δφ arise, meaning G∗ could also vary in space.

It is often said in the literature that GR is recovered in the limit ω →∞.22 A somewhat hand-wavy argument
to see this is the following: it is clear that the field equations (1.53) reduce to the Einstein field equations when
φ cease to be a dynamical quantity. Roughly speaking, in the limit of big ω, one finds from Eq. (1.56) □̃φ ∼ 0
which admits constants as solutions.

Actual constraints on ω are best brought out using the PPN formalism. Specifically, the γ parameter (which
is related to the bending of light by massive objects and the Shapiro time delay, see Table 1.2) can be computed
within the Brans–Dicke theory, yielding γ = (1 + ω)/(2 + ω). The Cassini–Huygens experiment puts the best
lower bound to date ω > 4× 104 [36]. To get a sense of why the PPN parameter γ can be used to put constraints
on the model at stake, it is insightful to consider light deflection measurements. On the one hand, we have
seen above that the trajectory of massless particles is not affected by the presence of the scalar field. In this
respect, the deflection angle must be proportional to the bare gravitational constant G appearing in the action
of the theory through the reduced Planck mass MPl. On the other hand, the strength of the force between
massive bodies is proportional to the effective gravitational ‘constant’ G∗ given by Eq. (1.102) and which is
measured in Cavendish-like experiments. The latter being dependent of the scalar field and the value of model’s
parameter(s), it is different from G. Therefore, the Brans–Dicke model can be tested by checking the consistency

21Indeed, it is clear that φ0 has to be specified, for otherwise Eq. (1.101) is obviously not a well-posed PDE problem! Note that
the notion of well-posedness will be discussed more in depth in Chapt. 2.

22This statement is of course not very rigorous, and giving a proper mathematical meaning involves all the subtleties associated
with the topology of functional spaces. Nonetheless, it is true that as far as Solar system experiment are concerned, the predictions
of the Brans–Dicke theory given by Eqs. (1.41, 1.100) approach those of GR as ω → ∞ (see Brans’ own historical perspective in
Refs. [100, 101]).
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of the inferred value of the gravitational constant from the deflection angle of light by a massive body and the
dynamics of other bodies around it. This test principle is relevant not only for the Brans–Dicke model but for
any massless scalar-tensor theory.

As a consequence of the large lower bound on ω, the Brans–Dicke theory as introduced here with Eq. (1.101)
is no longer of much interest as its predictions are basically those of GR.23 A relevant extension is to promote
the constant ω to a function of the scalar field ω(φ). In particular, Damour and Esposito-Farèse [102] provide
a framework for studying general massless scalar-tensor theories, which is more concisely laid out in Ref. [70]
Sec. 4.

Finally, this discussion could have equally been made in the Einstein frame, see e.g. Ref. [103].

Massive scalar field and the Yukawa potential Another example worth developing is the case of a massive scalar
field ϕ. The canonical example of a scalar field with constant mass is when the potential V is quadratic as in
Eq. (1.87), V (ϕ) = m2

ϕϕ
2/2. For the model to be fully specified, we set Ω(ϕ) = exp(βϕ/MPl) where β > 0 is

some dimensionless coupling constant. In this framework, mϕ is called the mass of the scalar field18. For a more
general potential exhibiting a minimum at ϕmin, the concept of mass can still be defined as mϕ =

√
V ′′(ϕmin).

Note that with this choice of functions V and Ω, the ‘effective mass’ defined in Box C coincides with standard
mass defined from the potential alone.

Box C: Effective potential & Effective mass of the scalar field

Looking at the field equation (1.45) for the scalar field ϕ in the Einstein frame, it is natural to
define an effective potential

Veff(ϕ) = V (ϕ)− T lnΩ , (1.103)

so that the dynamics is described by □ϕ = V ′
eff(ϕ).

The concept of the scalar field having an effective mass mϕ can be defined as long as the
effective potential exhibits a minimum at some ϕmin. In that case, one sets

m2
ϕ =

d2Veff
dϕ2

(ϕmin) . (1.104)

This barely comes from the fact that, when the field oscillates close to the minimum of its
effective potential, we have the following Taylor expansion

Veff(ϕ) ≃ Veff(ϕmin) + (ϕ− ϕmin)V
′
eff(ϕmin) +

1

2
(ϕ− ϕmin)

2V ′′
eff(ϕmin)

≃ Veff(ϕmin) +
1

2
m2

ϕ(ϕ− ϕmin)
2 ,

(1.105)

the constant Veff(ϕmin) having no effect on the dynamics, see Eq. (1.45).

Assuming |βϕ/MPl| ≪ 1 leads to ρ̃ ∼ ρ, and the scalar field equation (1.45) in the weak field, static case,
reduces to

∆ϕ = m2
ϕϕ+

β

MPl
ρ . (1.106)

This Klein–Gordon equation is linear, which greatly simplify its study. In particular, we know the free-space
Green function of the (∆−m2

ϕ) operator to be

GY (r) = −
exp(−mϕr)

4πr
so that ϕ(r) = − β

4πMPl

∫

V

e−mϕ∥r−r′∥

∥r− r′∥ ρ(r′) d3r′ (1.107)

for the field generated by an extended body of volume V. The total acceleration created by a point-particle of
mass M [i.e. ρ(r′)=Mδ(r′)] is the sum of the Newtonian acceleration and the scalar acceleration [Eq. (1.98)],
that is

dx2

dt2
= ∇

[
GM

r

(
1 + 2β2e−mϕr

)]
= −GM

r2
[
1 + 2β2(1 +mϕr)e

−mϕr
]
er . (1.108)

The presence of the scalar fifth force can thus be interpreted as a modification of the standard Newtonian
potential Φ = −GM/r from which the acceleration due to gravity is computed. This modified potential is called

23This is an example of the application of Occam’s razor; or to quote from Einstein “ It can scarcely be denied that the supreme
goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience. ” https://www.nature.com/articles/d41586-018-05004-4.

https://www.nature.com/articles/d41586-018-05004-4
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the Yukawa potential VY and reads (still for a point mass)

VY (r) = −
GM

r

(
1 + 2β2e−mϕr

)
= −GM

r

[
1 + α exp

(
− r
λ

)]
, (1.109)

where we have set α = 2β2 and λ = 1/mϕ in order to recover the canonical form of the Yukawa potential often
found in the literature — see e.g. Refs. [104–108]. We see from Eq. (1.108) that the fifth force gets exponentially
suppressed for distances r > λ. Therefore, it makes sense to refer to λ as a ‘Compton wavelength’, the typical
length scale of the interaction mediated by the scalar field.

Let us emphasize the fact that this canonical example of a massive scalar-tensor theory is of particular
importance. The phenomenology we just derived with the Yukawa potential and the associated gravitational
acceleration [Eqs. (1.108, 1.109)] is universal to all scalar-tensor models for which the scalar field has an effective
mass — see Box C. Of course, this is to be understood in a qualitative sense since Eqs. (1.108, 1.109) are
only exact for the case of a quadratic potential [Eq. (1.87)] and conformal factor Ω = βϕ/MPl. Nevertheless,
any (local) minimum of the effective potential (provided it has some) can be approximated as a quadratic
function, see Eq. (1.105), from which an effective mass can be extracted. When the scalar field is close to that
minimum, its field equation becomes well-approximated by Eq. (1.106) and the Yukawa potential is a good
approximation of the ‘total’ gravitational potential. In particular, the finite range of the fifth force is typical of
massive scalar-tensor models. In contrast, massless scalars mediate infinite-range interactions, as illustrated with
the prime example of massless Brans–Dicke theory just above.

The fact that the Yukawa approximation applies to a wide range of scalar-tensor models makes it a good
choice for parameterizing deviations from GR, as it most often captures the essence of the model at hand. In that
respect, it is useful to try and put constraints on the parameter space given by the pair of model-independent
parameters (α, λ) — see e.g. Figs. 11 & 12 from Ref. [63] — as these constraints can sometimes be mapped to
physically-motivated models with a massive scalar.

The need to hide light scalars

As already stated, scalar fields are candidates for explaining astrophysical effects associated with dark matter
[109, 110] and the apparent cosmic expansion acceleration [87]. In many of such models, the scalar field needs to
be light enough to fulfill its number one raison d’être, that is to fit observations, with masses sometimes as low
as the Hubble constant i.e. ∼ 10−33 eV [88].

This should immediately be put into perspective with our discussion of fifth forces in scalar-tensor models
just above. As a matter of fact, light scalar fields mediate long-range interactions which constitute deviations
from GR through, among other things, a modified apparent gravitational constant. This is obviously problematic
as GR is very well tested, especially at Solar system scales (see Sec. 1.1.1). The moral of the story is that, within
the framework of scalar-tensor theories, modifying gravity is a tricky game to play: we want the scalar field to
explain astrophysical conundra (dark matter or dark energy related) — which most often requires the scalar field
to be light — and, at the same time, be consistent with basically all tests of gravity. Unfortunately, these two
constraints are often incompatible and many models can be killed using the powerful PPN-formalism together
with the tight PPN bounds (see Table 1.2) — see Refs. [1, 3].

The first workaround that comes to mind is to willingly decouple the scalar field from the matter sector by
setting Ω(ϕ) ≡ 1. The coupling vanishes and so does the fifth force (recovering a quintessence model). Problem
solved? Not really since from a quantum mechanical point of view, the introduction of a scalar field in the
gravitational sector always generates a coupling between this scalar field and matter. Additionally, setting Ω ≡ 1
reduces the space of possible models (our only freedom is to specify the potential function V ), thereby lessening
the scope of phenomenologies.

1.2 Screening mechanisms

The apparent incompatibility between light scalar fields having relevant astrophysical phenomenology and the
fact that they mediate long-range fifth forces puts us in a dead-end. Fortunately, some theoretical physicists are
quite stubborn and discovered some ways out: screening mechanisms.

Screening mechanisms are theoretical constructs designed, or better said engineered, to hide or “screen” the
effects of the scalar field in Earth-based and Solar system experiments, while allowing for deviations from GR at
astrophysical and cosmological scales. In fact, some clever choices of Lagrangians can dynamically suppress fifth
forces at scales for which gravity is well-tested. As we are going to see, this can be achieved in a variety of ways,
though all screening mechanisms have in common the fact that they are enabled through nonlinearities.

In this section, we briefly review the existing mechanisms in the literature, with a focus on the chameleon
mechanism. In particular, we will see that despite being advertised as convenient ways to hide scalars in the
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laboratory and in the Solar system, scalar-tensor models equipped with screening mechanisms do nonetheless
predict deviations from GR, however small they might be.

1.2.1 A convenient classification of screening mechanisms

There is of course not a unique way to classify screening mechanisms. The way we proceed here is in the spirit
of the review Ref. [111]. One can adopt either of the two following perspectives:

1. Mathematical perspective — The focus is put on the Lagrangian of the model and the equation of motion
of the scalar field that results from it. Specifically, we look at where the nonlinearity manifests itself in the
partial differential equation (PDE). Depending on the mechanism at stake, it can appear on ϕ-terms, ∂ϕ-
terms or ∂2ϕ-terms, corresponding to semi-linear, quasi-linear and fully nonlinear PDE. This classification
of nonlinear PDEs is explained in more details in Chap. 2, Sec. 2.2.

2. Force-law perspective — The idea is to underline the physical reasons that lead to a suppression of the fifth
force in the local environment. The available levers are (i) the coupling strength of the scalar field matter,
(ii) the mass of the scalar field and (iii) its kinetic term.

These two classifications are not aligned in the sense that there is no one-to-one map between physical levers and
PDE type. We start with the screening mechanisms that can be implemented within the traditional scalar-tensor
theory subclass that we introduced in Sec. 1.1.2 and then extend the framework to Horndeski’s theories. A
summary of the discussed mechanisms can be found in Table 1.3 below.

Screening mechanisms designed from the traditional scalar-tensor theory subclass

It is natural to begin with the traditional scalar-tensor theory subclass — the one introduced in Sec. 1.1.2 and
more specifically in Eqs. (1.33–1.41) — as we already have gained insight into this model. From the Einstein
frame perspective, we only have two degrees of freedom to produce screening, namely the conformal factor
function Ω(ϕ) and the potential V (ϕ).

Weak coupling At the end of Sec.1.1.3, we suggested that suppressing the fifth force was as simple as turning
the coupling off (i.e. set Ω ≡ 1). For reasons already touched upon, it is not always desirable for the scalar
force to be universally weak. However, making this coupling environmentally weak is an idea worth keeping.
Indeed, local tests of gravity can be passed provided that the coupling becomes sufficiently small in regions
of high density (or equivalently, of high Newtonian potential). This is called the weak coupling principle and
underlies at least two screening mechanisms.

The first one is the symmetron mechanism [112, 113], for which the coupling of the scalar to matter is
proportional to the vacuum expectation value (vev) of the scalar field. The effective potential (combination of
the two functions Ω and V , see Box C) is chosen such that (i) this vev is nonzero in low-density environment,
and (ii) the Z2-symmetry ϕ→ −ϕ is restored in high-density regions, so that the field have a zero vev in such
regions and does not couple to matter. A choice of functions that produces this behavior is

Ω(ϕ) = 1 +
ϕ2

2M2
and V (ϕ) = −µ

2

2
ϕ2 +

λ

4
ϕ4 , (1.110)

where M is some high mass scale (ϕ≪M) and µ, λ are also model parameters.
The Damour–Polyakov mechanism (or least coupling principle) [74, 114], in the same vein as the symmetron,

is another density-dependent screening mechanism with

Ω(ϕ) = 1 +
1

2M
(ϕ− ϕ⋆)2 and V (ϕ) = V0 exp

(
− ϕ

MPl

)
. (1.111)

Again, M, ϕ⋆, V0 are model parameters.

Large mass The other ‘knob’ we have at our disposal is the mass of the scalar field. As we have seen in
Sec. 1.1.2, the concept of mass for a scalar field is a good indicator of the range of the interaction mediated by
that scalar field — the Compton wavelength being inversely proportional to the mass. Therefore, another way to
hide the scalar field is to make its effective mass environment-dependent: heavy in high-density environment and
light in low-density regions (as in deep space). In this way, the field would have barely detectable effects in the
Solar system while playing its intended role of a light scalar at astrophysical and cosmological scales.
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Mechanism Type of Equation Rule of thumb

Weak coupling
– Symmetron [112, 113]
– Damour–Polyakov [74, 114] □ϕ =

dV

dϕ
− d lnΩ

dϕ
T

Occurs in regions of high
Newtonian potential |Φ|Large mass

– Chameleon [115, 116, 124]

Large inertia

– Kinetic screening [117–120] □ϕ+A1∂µ

[(
∂ϕ
)2
∂µϕ

]
+A2T = 0

Occurs in regions where the
gravitational acceleration |∇Φ|
is large

– Vainshtein [121–123] 6□ϕ+B1

[(
□ϕ
)2 −

(
∂µ∂νϕ

)2]
= B2T

Occurs in regions where the
spatial curvature |∆Φ| is large

Table 1.3: Classification of the most popular screening mechanisms found in the literature — based on Ref. [111].
A1, A2, B1, B2 are model-dependent constants which are irrelevant here.

This idea is best illustrated by the chameleon mechanism, first introduced by Khoury and Weltman in
Refs. [115, 116]. In this model, the conformal factor and ‘quintessence-inspired’ potential are of the form

Ω(ϕ) = exp

(
βϕ

MPl

)
and V (ϕ) = Λ4

(
Λ

ϕ

)n
, (1.112)

where β is some coupling constant, Λ is some energy scale and n is the slope of the potential. In Sec. 1.2.2
below, we will delve further into this particular model. Besides, Appendix C deals with the well-posedness of the
nonlinear Klein–Gordon equations arising in the symmetron and chameleon models.

Large inertia

Other ‘screening phenomenologies’ can be developed in the context of more general scalar-tensor theories. As
a matter of fact, the mechanisms introduced so far were all specific cases of the action Eqs. (1.33–1.34) and
could therefore only rely on the scalar self-coupling and/or coupling to matter. Quite naturally, we get more
room for engineering screening mechanisms if we allow terms involving the derivatives of the scalar field to be
part of the Lagrangian (aside from the canonical kinetic term which is what makes the field dynamical). In this
respect, the models we are about to introduce belong to the wider class of Horndeski’s theories — see Fig. 1.2
and Eqs. (1.31–1.32). These are slightly beyond the scope of the PhD work so we do not delve into them.

Kinetic screening Kinetic screening relies on the introduction of higher powers of the kinetic termX = −gµν∂µϕ∂νϕ
in the Lagrangian on the Einstein-frame action, gathered in P (X). From a physical point of view, doing so is
well-motivated in the context of K-inflation models, K-essence models, Dirac–Born–Infeld models, etc. (see e.g.
Ref. [117]). The simplest example is P (X) = X − (X/Λ2)2, for which the force mediated by the scalar field is
suppressed in regions where the gradient of the Newtonian potential is high. See Refs. [117–120] for detailed
examples.

Vainshtein mechanism The Vainshtein mechanism [121–123] goes a step further as it requires the introduction
of second-order derivatives of the scalar field in the Lagrangian. The latter must be well-chosen to avoid having
derivatives beyond second-order in the equation of motion [which is granted in the context of Horndeski theories
given by Eqs. (1.31–1.32)]. Nonlinear effects suppress deviation from GR below the so-called Vainshtein radius
nearby massive bodies. They effectively kick in when the spatial curvature ∼ ∆Φ becomes large. In particular,
the Vainshtein mechanism can manifest itself in bimetric gravity, galileon models and massive gravity.

Of course this short review is by no means exhaustive. Other mechanisms in the framework of scalar-tensor
theories are discussed in the literature — see e.g. the pressuron [125, 126], the runaway-dilaton [127, 128] — but
they always rely on the principles set out above (weak coupling, large mass or large inertia). It is also worth
mentioning that the phenomenology of screening mechanism can be broaden once we relax the hypothesis of
having only one scalar field. For instance, Refs. [129–131] show that the nonlinear interplay between a light
axion and a dilaton can effectively screen the latter.
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1.2.2 Focus on the chameleon mechanism
The chameleon mechanism was shortly discussed above. It operates when the effective mass of the scalar field is
designed to be environment-dependent (hence the name): light in low-density regions of the universe, and heavy
in high-density regions. Here, we discuss this mechanism more in depth. It is to be noted that many articles
in the literature (including our own) refer to the chameleon as a ‘model’ rather than a ‘mechanism’. Clearly,
different combinations of conformal factor and potential functions (Ω, V ) can exhibit the chameleon screening
mechanism. Be that as it may, the way it was first showcased by Khoury and Weltman in Refs. [115, 116], with an
exponential coupling Ω and power-law potential V specified by Eq. (1.112), became to be known as the chameleon
model. For instance, let us mention that certain f(R) models can screen using the chameleon mechanism — see
Hu and Sawicki models [132] and Appendix B.1 for the mapping of f(R) theories to scalar-tensor theories.

Tutorial: how to make the effective mass environment-dependent

Following Box C, the effective mass of the scalar field is given by Eq. (1.104), where

d2Veff
dϕ2

=
d2V

dϕ2
− d2 lnΩ

dϕ2
T ≃ d2V

dϕ2
+

d2 lnΩ

dϕ2
ρ . (1.113)

The specifications are the following:

1. First of all, the effective potential should be such that a minimum actually exists (otherwise this whole
discussion is pointless). Looking at the form of Veff [Eq. (1.103)], we see that a necessary condition for this
to be true is to have V ′ × d lnΩ/dϕ < 0 on a given interval of ϕ-values. A simple choice that fulfills this
requirement is to take V ′ < 0 and d lnΩ/dϕ > 0 globally. Specifically, Ω(ϕ) = exp(βϕ/MPl) with β > 0
does the job and is quite natural from a theoretical point of view.24

2. With this specific choice of conformal factor function, Eq. (1.113) simplifies to V ′′
eff = V ′′. Therefore, the

condition that the extremum be a minimum implies that V ′′ must be positive around it. A simple way to
ensure this property is to have V ′′(ϕ) > 0 over the whole range of ϕ-values.

3. Finally, for the model to be a chameleon, the crucial part is for the effective mass to be an increasing
function of the density. The value ϕmin that minimizes the effective potential is such that

V ′
eff(ϕmin) = 0 ⇐⇒ V ′(ϕmin) = −βρ/MPl , (1.114)

highlighting the fact that ϕmin is a function of the density, and so is the mass. Taking the derivative of
(the square of) the latter with respect to ρ yields

dm2
ϕ

dρ
=

d

dρ

[
V ′′(ϕmin(ρ)

)]
= V ′′′(ϕmin(ρ)

)dϕmin

dρ
> 0 . (1.115)

The way ϕmin depends on ρ is obtained by computing the derivative of Eq. (1.114) with respect to ρ,
yielding

V ′′(ϕmin(ρ)
)dϕmin

dρ
= − β

MPl
< 0 . (1.116)

Having taken V ′′ > 0, this readily implies that ϕmin is a decreasing function of the density, and so
Eq. (1.115) provides the condition V ′′′ < 0.

In particular, the functions proposed in Eq. (1.112) can be shown to satisfy all the above conditions25 and exhibit
the chameleon mechanism when n ∈ 2Z∗

− \ {−2} ∪R∗
+, where 2Z∗

− designates the set of all strictly negative even
numbers.

This whole discussion is perhaps best summarized by Fig. 1.3 which shows how density shapes the effective
potential function for n > 0. The behavior for n ∈ 2Z∗

− \{−2} is illustrated in Ref. [71], Fig. 1. In particular, this
shows that the chameleon field has a nonzero effective mass (which is moreover density-dependent). Therefore,
the phenomenology of massive scalar fields — discussed through the example of the Yukawa potential in Sec. 1.1.3
— also applies, to some extent, to the chameleon model and can (should!) be leveraged to gain insight into its
own phenomenology.

24Writing the conformal factor function Ω as an exponential is often considered a ‘natural’ choice. Indeed, it arises in massless
Brans–Dicke theory [see Eq. (1.100)] and in other more fundamental theoretical contexts such as string theory and other higher-
dimensional theories. As an example, we show how this happens in (4+d)-dimensional Kaluza–Klein theory in Appendix B.2.
Recasting f(R) theories into scalar-tensor theories (see Appendix B.1) in the Einstein frame also yields an exponential conformal
factor.

25One should bear in mind that the conditions derived above are necessary conditions for the model to exhibit the chameleon
mechanism. We have not actually shown that they were sufficient conditions, although one can easily check that the functions V
and Ω given by Eq. (1.112) indeed produce the desired behavior.
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Figure 1.3: Sketch of the chameleon effective potential for strictly positive exponent n in a low density region
(left panel) and in a higher density region (left panel). Adapted from Ref. [71].

Equations and phenomenology of the chameleon model

In the chameleon model given by Eq. (1.112), the field’s equation (1.45) takes the following form

□ϕ = −nΛ
n+4

ϕn+1
− β

MPl
T

Eq. (1.52)
======⇒ ∆ϕ ≃ β

MPl
ρ− nΛ

n+4

ϕn+1
. (1.117)

In particular, the field’s value that minimizes the effective potential together with the effective mass can be
readily computed (see Box C) as

ϕmin(ρ) =

(
MPl

nΛn+4

βρ

) 1
n+1

, (1.118a) m2
ϕ = n(n+ 1)Λn+4

(
βρ

nMPlΛn+4

)n+2
n+1

. (1.118b)

In the quasistatic, weak field regime, the chameleon field is governed by a nonlinear Klein–Gordon equa-
tion (1.117), where the nonlinearity stems from the potential function power-law form. The equation being
nonetheless linear in the field’s derivatives, it is classified as a semi-linear PDE (see Chap. 2, Sec. 2.2). The
existence of solutions to that equation on a bounded domain with Dirichlet boundary conditions is examined in
Appendix C.1. To get a grasp on the chameleon field behavior, let us first imagine that all space is being filled
with a fluid of density ρvac. In this idealized situation, a trivial solution to Eq. (1.117) is ϕ = ϕmin(ρvac), i.e. the
constant field value that minimizes the effective potential Veff in this medium.

Things become less trivial when we study more realistic configurations for which the density varies across
space. It is convenient to start with the simple example of a homogeneous ball of density ρin immersed in the
vacuum. If the ball has an extremely large radius, one gets the intuition that deep inside that ball, the field
should go to the value that minimizes the effective potential ϕmin(ρin) as earlier. In this situation, the field is
expected to be roughly constant both very far away from the ball [where it goes to ϕmin(ρvac)] and deep inside
the ball [where it stays close to ϕmin(ρin)]. In other words, the field is attracted towards the value that minimizes
Veff in the presence of media with different densities. This picture can be altered if we start shrinking down
the ball’s size. In the limit where the radius goes to zero, the ball shall leave the field unperturbed. Therefore,
a sufficiently small ball would not be a big enough perturbation for the field to reach ϕmin(ρin). The decisive
criteria for turning this qualitative explanation into a quantitative one is given by the field’s effective mass
Eq. (1.118b). Indeed, the inverse of the effective mass mϕ is the Compton wavelength of the field λ. As seen
in our discussion of the Yukawa approximation in Sec. 1.1.3, the latter provides an estimate of the relaxation
length scale of the field when going from one medium to the other. Consequently, we have the following criteria:

– if λ(ρin) is much smaller than the ball’s radius (or more generally, the size of the object at stake) we can
expect the field to reach ϕmin(ρin) — this is the screened scenario;

– if on the other hand λ(ρin) is greater than or equal to the size of the object, ϕ will not ‘have enough space’
to reach ϕmin(ρin) — this is the unscreened scenario.

To go beyond these general remarks and gain further insight into the behavior of the chameleon field, it is
useful to analytically study the case of the perfect sphere with radius Rb. In the spherically symmetric case,
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Eq. (1.117) can be written in terms of the radial coordinate r as a mere ordinary differential equation (ODE)

∀r > 0 ,
1

r2
d

dr

(
r2

dϕ

dr

)
=

β

MPl
ρ(r)− nΛ

n+4

ϕn+1
, with ρ(r) =

{
ρin if r ≤ Rb

0 if r > Rb

(1.119)

Before embarking on any calculation, this nonlinear Klein–Gordon equation (1.119) needs to be supplemented
with relevant boundary conditions. The spherical symmetry immediately imposes ϕ′(r = 0) = 0. Far away from
the ball, the discussion above indicates that the field should relax towards the value that minimizes the effective
potential in the exterior medium (with infinite spatial extension). We therefore impose the asymptotic boundary
condition

ϕ(r) −→
r→+∞

ϕvac ≡ ϕmin(ρvac) . (1.120)

Intuitively, these two conditions are enough for the ODE (1.119) to have a unique solution.26 Many articles
dealing with this ODE further impose a vanishing gradient condition at infinity, i.e. ϕ′(r)→ 0 as r → +∞, see
e.g. Refs. [133–136]. As a matter of fact, we proved in Ref. [137] that this additional asymptotic condition is
redundant with Eq. (1.120), given the structure of the ODE at stake.27 This proof is reproduced in Appendix D.

Analytical approximations to this problem are derived in many studies (see e.g. Refs. [71, 72, 111, 115,
138–140]) and reported here. Let us denote by RTS ∈ [0, Rb[ the radius below which the field stays frozen at
ϕmin(ρin) in the screened scenario depicted above (which occurs for a sufficiently large body). There are three
distinct regions: (i) r < RTS where the field is frozen, (ii) RTS ≤ r ≤ Rb which is often called the thin shell, and
(iii) r > Rb which is the exterior of the ball. An analytical approximation might be derived by approximating
the rhs of Eq. (1.119) in each of the three regions, and then smoothly reconnecting the piece-wise solutions.

– In the first region, the field is constant ϕ = ϕmin(ρin). In the rhs of Eq. (1.119), the density term and the
ϕ−(n+1) term balance each other so that ∆ϕ ≃ 0.

– In the second region, ϕin < ϕ < ϕvac due to the hierarchy between the minima of the two effective potentials
(in the object and in the surrounding medium). Therefore, the ϕ−(n+1) term decreases while the density
term remains constant, and starts to dominate the rhs of Eq. (1.119).

– Going from the center of the ball to the exterior region, the density undergoes a jump ρin → ρvac. If
ρvac ≪ ρin, ∆ϕ ∼ 0 for r < λ(ρvac). As r becomes greater than the field’s Compton wavelength in
the exterior medium, ϕ gets closer to its asymptotic value ϕvac so that the effective potential is well-
approximated by Eq. (1.105). Therefore, the Yukawa approximation applies and the Klein–Gordon equation
boils down to ∆ϕ ≃ m2

ϕ(ρvac)(ϕ− ϕvac).

Given the above, we get

[Screened case] ϕ(r) ≃





ϕin for r < RTS ,

ϕin +
βρin
6MPl

(
r2 + 2

R3
TS

r
− 3R2

TS

)
for RTS ≤ r ≤ Rb ,

ϕvac −
(

3β

4πMPl

)(
∆R

R

)
GMb

r
e−mϕ(ρvac)(r−Rb) for r > Rb ,

(1.121)

where Mb denotes the mass of the ball and (∆R/R) is an estimate of the relative thickness of the thin shell,
called the thin shell parameter, reading

∆R

R
=

ϕvac − ϕin
6βMPl|ΦN |

≃ Rb −RTS

Rb
, with |ΦN | =

GMb

Rb
. (1.122)

Note that we have assumed (∆R/R)≪ 1 in the above expression. We observe that in the exterior domain, the
chameleon field is well-described by a Yukawa potential except its coupling constant β has been multiplied by the
thin shell parameter. As a direct consequence, the fifth force experienced by a test particle (not perturbing the
chameleon field) is similar to a Yukawa interaction [see e.g. Eq. (1.108)], but depleted by the factor (∆R/R)≪ 1
given by Eq. (1.122). Everything happens as if the scalar fifth force was sourced only by the mass contained in
the thin shell. A sketch of the radial chameleon field profile in the screened case is illustrated in the left panel of
Fig. 1.4.

26Note that for ODEs, the question of existence and uniqueness of the solution is usually addressed using the Cauchy–Lipschitz
theorem. However, Eq. (1.119) together with the boundary conditions ϕ′(0) = 0 and ϕ(r) → ϕvac as r → +∞ does not constitute a
Cauchy problem and so the theorem is not applicable in the present form.

27This statement was already claimed but unproved in Ref. [115]. Yet it turns out that the proof is not immediate.
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Figure 1.4: Radial chameleon field profiles in the presence of an homogeneous solid sphere of radius Rb and
density ρin immersed in a lower density medium ρvac. The left panel corresponds to the screened case: inside
the ball (dark blue), the field is frozen to the value that minimizes its effective potential ϕmin(ρin) everywhere
but in a thin shell beneath the surface (light blue) where it starts to depart from this equilibrium. Outside the
sphere, the chameleon’s behavior resembles that of a massive scalar field and is well-approximated with a Yukawa
exponential factor, with ϕmin(ρvac) as its asymptotic value. The right panel corresponds to the unscreened case:
here the chameleon does not have enough space to reach ϕmin(ρin) inside the ball, where it behaves more or less
like the Newtonian potential. Outside the ball, it is well-approximated by a Yukawa potential.

On the other hand, in the unscreened regime, the first region where the field used to be frozen does not exist
anymore, so that RTS = 0. Using the same arguments as for the screened case, we get

[Unscreened case] ϕ(r) ≃





ϕvac −
βρin
6MPl

(R2
b − r2) for r < Rb ,

ϕvac −
β

4πMPl

GMb

r
e−mϕ(ρvac)(r−Rb) for r ≥ Rb .

(1.123)

This situation occurs when the mass of the field inside the ball is smaller than its radius. The absence of
screening means that the ratio between the fifth force and the usual Newtonian force is roughly equal to 2β2, see
Eq. (1.108). Again, a sketch of the radial chameleon profile in the unscreened case in illustrated in the right
panel of Fig. 1.4.

Of course, there exists an intermediate case where the field reaches ϕmin(ρin) at the center of the ball but
(∆R/R) is not very small compared to one. This situation is sometimes referred to as the partially screened
regime, for which the analytical approximation (1.121) has to be slightly adapted (see e.g. Refs. [137, 138]), but
the behavior is essentially the same. In practice, it can be verified numerically — for lack of other alternatives —
that the transition from the screened regime to the unscreened regime occurs over a very narrow region of the
chameleon parameter space, see Ref. [141] Sec. IVA 2.

Finally, note that in Ref. [137] we used an analytical approximation which slightly differs from Eqs. (1.121–1.123).
The idea of simplifying the equation in different non-overlapping regions still applies, but extra care is given
when imposing the smooth connection of the field across neighboring regions — in particular RTS is obtained by
computing the real roots of a third-degree polynomial. Other analytical approximations exist for other simple
geometries including the cylinder [142], ellipsoids [143] or parallel plates [144].

Critical discussion of the asymptotic condition Eq. (1.120)

In the above, we supplemented the Klein–Gordon equation governing the chameleon field with the asymptotic
boundary condition [Eq. (1.120)] so that the problem has a unique solution (although we did not prove it
mathematically). However, while this asymptotic condition is perfectly valid for the idealized case of a body
immersed in a background medium with infinite spatial extension, our universe looks quite different from this
picture.

In reality, between the body of interest and spatial infinity, there lies stars, galaxies, dust, etc. In that sense,
the scalar field never really relaxes toward a constant value, however far away from the region of interest we go:
there is no isolated system, which is at odds with what one usually does in physics.

Yet, let us assume that we can go sufficiently far away from the studied body, where the density becomes
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homogeneous, without encountering any of the parasitic sources of density mentioned above. Demanding that
the scalar field reaches the value that minimizes its effective potential in this far out region of the universe is
also questionable. Indeed, as was the case when discussing the massless Brans–Dicke theory in Sec. 1.1.3, the
background value of the scalar field is determined by an appropriate cosmological boundary condition. In this
regard, it is shown in Ref. [145] Sec. IIID that throughout its cosmological evolution in a flrw universe, the
scalar field does not necessarily remain at the minimum of its effective potential. This means we could have

ϕ(r) −→
r→+∞

ϕ∞ ̸= ϕmin(ρvac) , with ϕ∞ < ϕmin(ρvac) (1.124)

As advocated in Ref. [145] and to be more consistent, one should solve Eq. (1.84) which governs the cosmological
evolution of the field to get a good estimate of ϕ∞ when applying the asymptotic boundary condition for
Eq. (1.117). This careful treatment is beyond the scope of the present PhD work, but had to be mentioned
nonetheless.

Physical relevance of the chameleon model

The bare potential for the chameleon model specified by Eq. (1.112) is nothing but the Ratra–Peebles potential
[88], which was already introduced in a cosmological context in Eq. (1.86). As a matter of fact, the chameleon
model was introduced as a candidate for explaining cosmic acceleration [115, 116]. However, it has been shown
that ‘chameleon-like’ models could not at the same time (i) self-accelerate the cosmic expansion (this notion is
given a meaning in Sec. 1.1.3) and (ii) ensure that the Sun (and the Milky Way) is screened, which seems like a
reasonable assumption for otherwise Solar system tests would not be satisfied — see Refs. [94, 145]. However, it
can still act as a dark energy quintessence field [87, 124] if we accept to add a cosmological constant on top of
the Ratra–Peebles potential Eq. (1.86) as

V (ϕ) = Λ4
DE +

Λn+4

ϕn
, (1.125)

where ΛDE ≃ 2.4meV is the so-called dark energy scale.28 Note that in spite of this modification of the bare
potential, our discussion of the chameleon model above remains valid as the potential only comes into play
through its derivatives. The only quantity introduced so far that depends on V (ϕ) itself is the equation of state
of the scalar field in the Einstein frame [Eq. (1.83)].

Let us stress once again that the chameleon model discussed above is just one example of realization of the
chameleon screening mechanism. The latter may be leveraged to hide scalars in other physical contexts. For
example, Refs. [146, 147] consider a ‘chameleonic’ dark matter candidate, while Ref. [148] propose to stabilize
the Higgs potential in the early universe by regarding the Higgs field as a chameleon field coupled to the inflaton
alone.

Violations of the weak equivalence principle

In practice there are two ways in which the WEP can be violated in the framework of the chameleon model.

Explicit violation The first is to have different coupling constant βi for different particle species: this is
the case of non-universal coupling which we presented in Sec. 1.1.2 through the matter action [Eq. (1.80)].
This composition dependent coupling is expected from a theoretical view point as quantum corrections would
generally produce slightly different coupling constants for different matter species. A direct consequence of this
non-universal coupling is that different particle species follow different geodesics in spacetime (and the variation
of fundamental constants [73]). From the Einstein frame perspective, they experience different fifth forces. This
first option can thus be regarded as a violation of the WEP at the microscopic level, i.e. at the level of the
Lagrangian of the theory.

Macroscopic violation The second possibility is more subtle as it applies even in the case of a universal β,
but only for extended bodies (as opposed to test particles). It relies on the fact that macroscopic objects with
different densities do not necessarily possess the same thin shell radius RTS in the screening regime. As such,
their thin shell parameter (∆R/R) given by Eq. (1.122) would be different, and so would be the fifth force they
experience. The WEP thereby strictly holds for idealized test particles, yet extended bodies do not fall in the
exact same way. This is the reason why this phenomenon is sometimes referred to as an apparent WEP violation,
see e.g. Refs. [138, 149]. Note that this violation is different from a violation of the SEP since macroscopic
bodies do not necessarily have a dominating gravitational binding energy.

28Note that ΛDE is not to be confused with the cosmological constant Λ reported in Table 1.1 (they do not even share the same
physical dimension). The given value of the dark energy scale is computed as (3Ω0,ΛH

2
0M

2
Pl)

1/4 [see Eq. (1.26)].
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Current constraints

In the above, we have seen through the example of the chameleon model that, despite screening in regions of high
Newtonian potential, the chameleon field is never completely invisible. The fifth force it mediates, no matter
how tiny it may be, is nonzero. This means we can look for it, at scales ranging from the laboratory on Earth
up to astrophysical scales.

The chameleon model, as introduced here with the functions Ω and V defined by Eq. (1.112), has three
parameters: n, β, and Λ. For any triplet of such parameters, one can compute the fifth force amplitude in a given
setup and compare the model’s prediction against measurements. If the two outcomes — the prediction and the
observation — fail to be consistent with each other, this specific triplet is ruled out.29 The chameleon model
can thereby be tested via astrophysical observations (rotation-curve observations, lensing by galaxy clusters,
redshift-space distortions, etc.) or laboratory experiments (precision atomic tests, atom interferometry, torsion
balance experiments, Casimir-force tests, precision neutron tests, levitated force sensor, etc.), see reviews by
Burrage and Sakstein [71, 150] and Ref. [151]. Currently, laboratory experiments provide the most stringent
constraints, astrophysical observations not being competitive enough. At the time of writing and to the best of
our knowledge, the current status of the chameleon parameter space can be consulted in Ref. [152], Fig. 4.

It is to be noted that the PPN formalism, discussed in Sec. 1.1.1, is not efficient for constraining the chameleon,
and more generally screened scalar-tensor theories. The procedure laid out in Ref. [1] Chapt. 5.3.2, which
shows how to derive the PPN parameters γ and β (see Table 1.2), relies on the assumption that the scalar
field can be expanded around some background as ϕ = ϕ0(1 + δϕ), with |δϕ| ≪ 1. This does not hold true
in general for theories with screening, as the nonlinearity allows δϕ ∼ O(1) in some situations — see e.g. the
examples provided throughout Chapt. 5 or Refs. [149, 153]. A derivation can nonetheless be found based on the
approximations (1.121, 1.123). In particular, bounds on the PPN parameter are satisfied for a wide range of
coupling constants β thanks to the thin shell parameter (∆R/R) that gives a small “effective” coupling constant
— see e.g. Ref. [71, 145].

1.3 Space-based tests: the legacy of the microscope space mission

In the above, we have mentioned the possibility of testing screened scalar-tensor models of gravity using Earth-
based experimental setups or astrophysical observations. Somewhere in between these two scales lies the Solar
system scale. While it is true that screening mechanisms were introduced precisely to recover GR in the Solar
system (and thereby satisfying PPN bounds, see Table 1.2), in no way does that preclude the possibility of using
spacecraft for probing gravity and getting state-of-the-art bounds.

From a historical perspective, the advent of the space era in the second half of the xxth century broadened
the landscape of gravity tests within our reach. The rapid development of interplanetary space program and
Earth observation satellites went hand in hand with the equally rapid development of the underlying technology
(such as radar ranging and accurate clocks for instance). Launched in 1976, Gravity Probe A — also known
as the Vessot–Levine experiment [25] — was the first space mission dedicated to testing gravity (through the
measurement of the gravitational redshift), whose successful outcome paved the way for other space-based
experiments: Gravity Probe B [154], lageos 1 and 2, lares 1 and 2 [155], microscope [156]...

In this section, we discuss the benefits and disadvantages of performing gravity tests in outer space, with
a focus on the microscope space mission. In particular, we review its main scientific results — which are
mainly related to the WEP, although not exclusively — and see to what extent the mission’s data can be used
to constrain screened modified gravity.

1.3.1 Testing gravity with spacecraft

Space-based experiments are particularly well-suited for testing gravity due to their ability to operate in low-
gravity environments and thanks to the precision they can achieve in measuring gravitational effects. Indeed,
space offers a very stable environment compared to that of the Earth in terms of seismic noise and thermal
stability (principally in Sun-synchronous orbit), which are known to be limiting factors when it comes to
increasing the sensitivity of Earth-based experiments.30 Additionally, although ground-based experiments,
such as those using torsion balances [19, 20, 98, 157] or atom interferometers [158], have achieved remarkable
precision, they are confined to testing gravity at small scales (∼ µm to ∼ m scales) and in the relatively strong
gravitational field of the Earth (compared to outer space). Space-based experiments, on the other hand, can
measure gravitational effects over hundreds to millions of kilometers and can operate in low-gravity environments
for extended periods of time.

29This is of course a very schematic view. In practice this must be done on a statistical basis, using the uncertainty in the
measurement.

30In this regard, it is insightful to look at how seismic isolation is performed in the gravitational wave observatory ligo.
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Beyond these fairly general considerations, space-based experiments must also be discussed from the perspec-
tive of testing screened scalar-tensor models. In both the chameleon and symmetron models discussed above, the
screening mechanism is at work in high density environments, because the scalar field acquires a large mass or
decouples from matter namely. In Earth orbit, the density of the residual atmosphere is already many orders of
magnitude smaller than at the Earth surface, neighboring ∼ 10−15 kg/m3 at 103 km altitude. In the case of the
chameleon model specifically, whether an object develops a thin shell not only depends on the objects properties
(size and density), but also on the background density. An object that exhibits a thin shell in the laboratory
here on Earth may be depleted from it in outer space, just because there the background density is very low [see
e.g. Eq. (1.122) which shows that the thin shell parameter grows with ϕvac, which itself grows as the background
density is decreased, see Eq. (1.118a)]. This leads to at least two important conclusions: (i) a Cavendish-like
experiment could measure a value for the gravitational constant G∗ on Earth but G∗(1 + 2β2) in space, and (ii)
WEP violations could arise at levels higher than what is allowed on Earth (in the case of non-universal coupling)
[115, 116, 149, 153]. Of course, there are some strong hypotheses underlying these bold statements:

1. They assume that the test bodies used to perform the experiment are screened down on Earth and
unscreened in outer space.

2. They assume that the satellite that carries the test masses is also unscreened in space.

These assumptions will be discussed in Sec. 1.3.4 and re-examined later in Chapt. 5.
To sum up, space-based experiments partially bridge the length-scale gap between laboratory tests and

astrophysical measurements. Claims such as the ones reported above in Refs. [115, 116, 149, 153] generated
interest, and perhaps sparked hope, among the community for fundamental physics space mission that were
planned in the early 2000’s. Among them, let us mention the SEE project [159, 160] which aimed, among other
things, at measuring the gravitational constant; STEP [161–163], Galileo Galilei (GG) [164] and microscope
[156] whose goals were to test the WEP at a precision of 10−18, 10−17 and 10−15 on η respectively [the Eötvös
parameter, see Sec. 1.1.1, Eq. (1.28)]. At the present date, microscope is the only one that flew. In the
following, we take a step back from the now-over microscope space mission and present the lessons drawn from
it, especially regarding the exciting claims that were made prior to launch for testing screened modified gravity.

As final remarks, it must be reminded that space inevitably leads to multiple limitations to which ground-
based experiments are usually not subject. The satellite payload is constrained not only in terms of size and
weight, but also in terms of power consumption. A space mission is hardly modular and any failure can be fatal
to its smooth operation. Last but not least, performing an experiment in space is much more expensive than
performing that same experiment in the laboratory.

1.3.2 A brief description of the microscope experiment and its result on the weak
equivalence principle

The microscope experiment, standing for “micro-Satellite à Compensation de traînée pour l’Observation
du Principe d’Équivalence” is a French space mission led by a CNES-ESA-ONERA-CNRS-OCA-DLR-ZARM
collaboration. The satellite was launched in April 2016 and collected data for more than two years, before being
decommissioned in October 2018. As mentioned above, the mission’s goal was to test one of GR’s cornerstone
— the weak equivalence principle — with a targeted precision η ≲ 10−15. The full description of the mission
together with its scientific return are provided in a special issue of Classical and Quantum Gravity, see Ref. [156].
In parallel, the raw mission data has been made available at https://cmsm-ds.onera.fr/user/microscope.

Mission design

The simplest test of the universality of free fall one can imagine is to drop objects — with different masses and
different compositions — from an altitude and check whether they hit the ground at the same instant in time.
The popular belief is that this simple thought experiment was performed by Galileo, back in the xvith century,
by dropping unequal weights of the same material from the leaning tower of Pisa. This popularized picture,
however, is by no means a good way to accurately test the universality of free fall, mainly due to air drag and
short integration time. Instead, verified sources indicate that the Italian scientist proceeded by using inclined
planes [165], which is arguably a cleverer experimental concept. The history of WEP tests, starting from the
xxth century, can be found in Fig. 1.1 (left panel).

Nonetheless, the primary thought experiment is perhaps the right starting place to think of the microscope
experiment. It extends on that idea by comparing the free fall of test masses, not dropped from a tower but in
orbit. The benefits of space are manifest: (i) atmospheric drag, despite not being quite zero, is reduced by many
orders of magnitude compared to air drag down on Earth, and (ii) the duration of free fall is virtually infinite
since the satellite follows a (perturbed) Keplerian orbit around the Earth. Monitoring the free fall of test masses
for an extended amount of time constitute a simple yet powerful way of testing the WEP. In practice, the test

https://cmsm-ds.onera.fr/user/microscope
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masses used to perform this experiment are not exactly in free fall but are instead constrained to remain in
equilibrium with respect to each other and to the satellite platform by means of electrostatic forces. This is
achieved using differential ultrasensitive electrostatic accelerometers consisting of two coaxial and concentric
hollow cylinders — the test masses — made of different materials. The electrostatic forces undergone by the
cylinders are an image of the electrostatic potentials applied on the various controlling electrodes. Therefore, if
the WEP holds, applied potentials should be such that concentric cylinders are subject to the same electrostatic
acceleration. If not, that would be a smoking gun for a violation of the universality of free fall. The accelerometers
are designed such that the measurement is most sensitive along the cylinders’ axis, hereby labeled the X-axis.
For reasons including the minimization of instrumental noise, the satellite is put into a spinning mode,31 with
angular velocity 2πfspin. By doing so, the frequency of the potential WEP violation fEP is equal to

fEP = forb + fspin , (1.126)

where forb is the satellite’s orbital frequency.
The satellite was put on a Sun-synchronous orbit at an altitude of 710 km. It was oriented so as to always

show the same face to the Sun, ensuring a good thermal stability throughout the mission. The chosen altitude
results from a trade-off. On the one hand, it is desirable to reduce atmospheric drag as much as possible by going
to higher altitudes. On the other hand, the expected WEP violation signal being proportional to the gravity
acceleration sourced by the Earth, aiming for too high altitudes is not desirable either. For the test masses to be
as close to free fall as possible — i.e. only subject to the gravitational force (Newtonian physics interpretation),
or equivalently following a timelike geodesic (GR’s interpretation) — non-gravitational perturbations have to be
counteracted. Among those, atmospheric drag is unsurprisingly the dominant perturbation, followed by Solar
radiation pressure and electromagnetic forces. The spacecraft was thus equipped with a Drag-Free and Attitude
Control System (DFACS) using cold gas thrusters to counteract these non-gravitational perturbations at the
level of tens of µN.

The payload

Outlined above, microscope’s payload (T-SAGE) inherits from ONERA’s expertise in the field of ultrasensitive
electrostatic accelerometry. T-SAGE consists of two differential accelerometers or sensor units (SU). Each SU is
composed of two concentric cylindrical test masses, each of which is partly surrounded by two electrode-bearing
gold coated silica cylinders in charge of both sensing the proof mass position and acting on it via electrostatic
forces in case it gets displaced from its equilibrium position. In this way all four test masses are controlled along
the six degrees of freedom, where as mentioned above translation along the X-axis is the most sensitive of all
and is the one used to perform the WEP test.

The two sensor units serve different purposes:

– One is called the reference sensor unit — SUREF. The two test masses composing SUREF are made of the
same material (a platinum alloy) and should, in principle, be insensitive to composition-dependent WEP
violations.

– The other one, called SUEP, is used to measure the WEP. Its two test masses are made of different
materials (a platinum alloy and a titanium alloy) that were chosen partly so as to maximize the WEP
violation from a light dilaton [74, 76].

A new upper bound on the WEP

While the mere principle of the experiment may seem straightforward enough, the actual mission design and data
analysis phase that took place subsequently are far from being simple. Speaking of the latter phase, translating
raw voltages applied to the various electrodes into an upper bound on the Eötvös parameter η requires to account
for diverse physical effects entering the stage inside microscope’s payload, and are called errors. Errors are the
answer to the question: “ what are the sources of non-null differential acceleration, aside from a true violation
of the WEP? ”. Caused by the instrument’s imperfections, they can be categorized into stochastic errors and
systematic errors.

On the one hand, systematic errors can be estimated and minimized. They include the Earth gravity gradient
together with the off-centering of the test masses, temperature variations (dominating systematics), electrical
bias, etc. See Ref. [167] for a comprehensive review of all systematic errors. Most of these systematic effects can
be estimated thanks to dedicated calibration sessions in orbit.

On the other hand, statistical error can be attributed to all sources of noise. The main ones are the electronic
noise, the thermal noise and the noise coming from the gold wire that is employed to control the electrical
potential of the test mass it is attached to. The spinning frequency of the satellite was chosen so that the total

31See Ref. [166] for a complete discussion of how spinning frequencies were chosen.
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noise is minimum at fEP [see Eq. (1.126)]. The long duration of measurement sessions, allowed by the mere
fact of being in orbit around the Earth, is such that the statistical error can be brought down to the targeted
∼ 10−15 level on the Eötvös parameter.

Final results from the microscope mission were published in 2022 [23, 24]. In particular, the result for
SUEP, the differential accelerometer with two test masses made of different materials, is

η(Ti, Pt) =
[
−1.5± 2.3 (stat)± 1.5 (syst)

]
× 10−15 , (1.127)

where the statistical error is given at 1σ. This result is consistent with η = 0 given the errors. Besides, the
reference sensor unit, SUREF, provided a null result η(Pt, Pt) = [0.0± 1.1 (stat)± 2.3 (syst)]× 10−15, showing
no sign of unaccounted systematic errors in Eq. (1.127).

1.3.3 Implications beyond the weak equivalence principle

To a certain extent, microscope is a one-number mission: a new upper bound on the Eötvös parameter, roughly
10−15 as hoped. However, despite being a substantial technical achievement, there is a lot more to be said about
the scientific return of this successful space mission, and treating it as ‘just’ a new bound on η is reductive. First,
such a tight constraint on WEP violation automatically results in constraints on alternative theories predicting
one. Moreover, the raw data might also be analyzed in the framework of models which do not directly translate
into a non-zero η. Here, we report on all these scientific results beyond the weak equivalence principle.

Constraints on Yukawa gravity

In Sec. 1.1.3, we introduced the Yukawa potential [Eq. (1.109)]. Although it was first presented in the specific
framework of scalar-tensor theories with a quadratic potential and an exponential conformal function, we
saw while discussing the chameleon model in Sec. 1.2.2 that the Yukawa potential could constitute a good
approximation for estimating the fifth force mediated by massive scalars coupled to matter. In that sense, the
Yukawa potential has a generic character and, as such, is a sensible way of parameterizing deviations from the
Newtonian inverse-square law. As a matter of fact, it is arguably the most common parameterization found in
the literature. We remind that the only two parameters for this model are a coupling constant α, representing
the strength of the deviation from Newtonian gravity, and a Compton wavelength λ representing the range of
the fifth force.

Long range Yukawa fifth force microscope becomes relevant for putting constraints as soon as one considers
a composition-dependent coupling αij , where each material is associated with a scalar dimensionless ‘Yukawa
charge’ q so that

αij = α
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In this expression, α (without subscripts) plays the role of a universal dimensionless coupling constant while µi

is the atomic mass in atomic units of the constituent element. Note that there is no single way of defining the
Yukawa charge q (since this depends on the explicit coupling of ϕ to the standard matter fields). Some works
take the material’s baryon and/or lepton numbers to play that role, see e.g. Refs. [168, 169]. Regardless of the
adopted definition for q, this composition dependent coupling can be expressed in terms of the Eötvös parameter
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in the case of microscope test masses. Equating the Yukawa charge q with the baryon number of the various
elements, one can translate the constraint on η into constraints on (α, λ). In particular, the satellite’s altitude is
such that the experiment is sensitive to a Yukawa fifth force in the range λ ∈ [∼ 105 m, +∞[. The constraints
on such a light Yukawa field can be found in Ref. [170].

Short range Yukawa fifth force Although microscope was not designed for testing putative short range
interactions, it is nonetheless possible to leverage the data acquired through characterization sessions in this
direction. Characterization sessions are dedicated to the estimation of various parameters related to the
instrument. During some of those sessions, the tests masses are subjected to a sinusoidal excitation in position
by means of electrostatic forces applied by the electrodes surrounding them. At first order, the electrostatic
force acts as a stiffness. In Ref. [171], the authors analyzed all possible classical sources of discrepancy between
the measured and expected electrostatic stiffness, before considering the observed discrepancy as the result of a
short range Yukawa fifth force. The latter also acts as a stiffness when the cylindrical test mass is displaced from
its centered position, owing to the interaction with the various parts of the apparatus. The discrepancy-budget
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can then be translated into constraints in the (α, λ)-plane. However, the constraints derived in Ref. [171] are
not competitive with the state-of-art — roughly eight orders of magnitude looser than the current best upper
bounds. This was expected as microscope was not designed for probing gravity at centimetric length scales.
Nonetheless, it does not preclude the possibility that a highly-optimized microscope-like experiment could
provide competitive constraints on short range interaction between several bodies.

Constraints on dilaton models

Massless dilaton Massless scalar-tensor models have been illustrated in Sec. 1.1.3 with the prototypical example
of the massless Brans–Dicke model [see Eqs. (1.100–1.102)]. A light dilaton scalar field interacts with the standard
model fields — it couples to the electromagnetic and gluonic tensors, and to fermion spinors — with different
coupling strengths, see Refs. [172, 173]. A result of these interactions is that the dilaton effectively couples
differently to each atom, and we are brought back to the discussion of non-universal coupling in scalar-tensor
theories we had in Sec. 1.1.2. In particular, a direct consequence of non-universal coupling is WEP violations.
Constraints on massless dilaton-like scalar field are derived from preliminary microscope results in Ref. [170].

It should also be stressed that the framework of light dilaton-like scalar fields laid out in Refs. [172, 173] is
prototypical of several ultra-light dark matter (ULDM) scenarios (see e.g. Ref. [174]). As such, microscope’s
bound on WEP violations also provide constraints on ULDM models.

Massive dilaton The idea is more or less the same as above except the dilaton scalar is massive and so the force
it mediates gets Yukawa suppressed for distances larger than ∼ 1/mϕ. Again, see Ref. [170] for the detailed
results.

Miscellaneous

Aside from the aforementioned results, microscope’s bound on η has also been used to put constraints on the
runaway dilaton model [175], local Lorentz invariance [176], and spin-1 U boson [177, 178]. In the following, we
report on the attempt made to constrain the chameleon model introduced in Sec. 1.2.2.

1.3.4 Attempts to look for a chameleon fifth force
As part of his PhD thesis, M. Pernot-Borràs studied the possibility of testing chameleon gravity with microscope
[138]. There are three ways in which the chameleon model could in principle be tested, and they need to be
clearly distinguished:

1. WEP violation due to non-universal coupling — This amounts to having different coupling constants βi
for different matter species, and thus a WEP violation at the level of the Lagrangian. The discussion of
this scenario is more or less the same as the case of the massive dilaton (see above and Ref. [170]) except
screening comes into play. This possibility has not been investigated in this thesis.

2. Apparent WEP violation — We saw earlier that, even in the universal coupling case, chameleon gravity
can feature apparent WEP violations, see Sec. 1.2.2 or Refs. [138, 149]. This phenomenon happens when
macroscopic objects develop different thin shells and therefore do not experience the same chameleon
acceleration. While microscope’s test masses could indeed play the role of such extended objects, we will
see below that this effect is unlikely to be measured by microscope

3. Chameleon stiffness — The principle is the same as testing a short range Yukawa fifth force (see above).
For small enough displacements of the test mass with respect to its centered position, the fifth force
mediated by the chameleon scalar field behaves as a stiffness. Therefore, constraints can be set on the
model parameters (n, β, Λ) by comparing the discrepancy between the measured microscope’s stiffness
and the expected stiffness when accounting for all classical known effects at stake.

In the following, we discuss in more detail the second and third ways respectively.

Apparent WEP violation

A necessary condition for apparent WEP violations (in the sense given above) to be observable is that the test
masses should be at least partially screened. Otherwise, in the unscreened regime, the chameleon field couples to
all the object’s mass and the latter therefore follows the same trajectory as a test particle located at its center of
mass would: all unscreened test masses follow the same geodesics and no WEP violation is expected. When at
least one of the two masses starts being partially screened, the chameleon accelerations they undergo have no
particular reason to be equal, resulting in an apparent WEP violation — even if the two masses share the same
composition.
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Figure 1.5: Constraints on the chameleon model for n = 1 from the microscope experiment using stiffness
measurement sessions. The test masses are labeled IS1 (internal test mass) and IS2 (external test mass), while
SUEP and SUREF denote the two sensor units presented in Sec. 1.3.2. This figure is reproduced from Ref. [179].
Note that the other constraints (colored areas) are those from 2021 [71, 150] — see Fig. 4 from Ref. [152] for
updated constraints.

Let us assume that the two concentric test masses check this first necessary condition. Of course, they are
not floating around in space but are embedded within a satellite, whose density and size cannot but affect the
chameleon field profile around the test masses. In order to get a WEP violation signal sourced by the Earth
at fEP, the satellite itself must not be screened, for otherwise the field inside the satellite becomes completely
decoupled from the outside. Criteria for determining whether or not the satellite is screened are proposed in
Refs. [116, 136]. Ref. [116] provides a criterion based on an estimate of the spacecraft Newtonian potential
[in accordance with Eq. (1.122)], whereas Ref. [136] proposes a criterion based on the Compton wavelength
of the chameleon field inside the satellite’s walls, backed up with numerical computations. Specifically, the
latter work concludes that microscope is screened in most of the relevant part of the model’s parameter space
i.e. in unconstrained regions, see Fig. 21 from Ref. [136]. This precludes the possibility of setting competitive
constraints with microscope’s WEP test. Aside, let us remark that it would be rather difficult to be in a
situation where the satellite is unscreened while the test masses are not. Here, ‘difficult’ is to be understood in
the sense that this situation would only occur in a narrow region of the parameter space, if any. Incidentally,
this crucial ‘satellite’s screening’ question is re-examined in more depth in Chapt. 5.

This possibility of an apparent WEP violation by a chameleon scalar field is not considered in Pernot-Borràs
PhD work.

Chameleon stiffness

As for the test of a short range Yukawa fifth force, one can take advantage of microscope’s technical sessions
aimed at characterizing the electrostatic stiffness of the instrument for testing the chameleon model. Again,
the principle of this test consists in computing the chameleon’s stiffness and checking whether it fits into the
discrepancy-budget between the measured stiffness and the expected one (from classical effects only, mostly
electrostatics).

This study was performed in Ref. [179] and heavily relies on two former work [136, 180] for computing the
chameleon field inside the nested cylinders and deriving the chameleon stiffness. The constraints obtained are
represented in Fig. 1.5, and turn out not to be competitive with the current state-of-art. Again, this is not
overly surprising as microscope was not designed for looking for such fifth forces, and technical sessions did
not primarily serve that purpose either. A suggested route to improve these constraints would be to increase
asymmetries in the device [138].

As a closing remark, it is to be noted that, the actual geometry of the experimental apparatus being complex
and given the techniques developed in Refs. [136, 180], a lot of simplifying assumptions were necessary to get the
results from Ref. [179]. As a matter of fact, different techniques had to be used depending of the chameleon field
regime (namely screened, deeply screened and unscreened), with associated hypotheses. In the screened regime,
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a semi-analytical 2D model could be applied while in the other regimes, 1D numerical simulations had to be
employed. All in all, this makes the computation of the field in the relatively simple setup of nested cylinders
quite complex!

1.4 The need for new numerical tools

Section 1.3.4 illustrated how microscope’s data — both collected from sessions dedicated to the WEP test and
from technical sessions aiming at characterizing the instrument — can be used to test alternative theories of
gravity. Some of these analyses provided state-of-the-art bounds on given models (mainly those that come with
a WEP violation at the Lagrangian level), some resulted in non-competitive constraints on other models (mainly
those predicting the existence of a putative short range fifth force). In the light of these results, it appeared that
the testability of models with nonlinearities at the PDE level is crucially dependent on the development of new
numerical methods for a realistic modeling of their feature. This path for future development is advocated in
several work, including Refs. [104, 138, 181]. While valuable qualitative insights can be gained using analytical
approximations, numerical computations remain essential to establish a quantitative connection with real-world
observations and experimental data.

Being able to numerically compute scalar field profiles, in the context of scalar-tensor theories exhibiting
screening mechanisms, is indeed desirable is several respects:

1. Validation of analytical approximations — As seen in Sec. 1.2.2 for the case of the chameleon model,
approximate solutions to the nonlinear Klein–Gordon equation (1.117) can be derived analytically.32
Essentially, such approximations are found by adequately simplifying the PDE in specific regions, based on
physical and mathematical intuition. It is therefore crucial to compare them against numerical solution,
not only to validate them but also to clearly identify their limits. Indeed, analytical approximations are
generally expected to be valid in a certain regime, and numerical computations can prove to be valuable
for identifying this regime’s ‘boundary’.

2. Going beyond analytical approximations — Numerical computations can be viewed as the way to free
ourselves from the limitations of analytical approximations. The latter are derived in the case of highly
symmetrical geometries (sphere, cylinder, infinite walls, etc.). In general, experimental setups are much
more complex in terms of geometry and distribution of mass within that geometry, challenging the relevance
of analytical approximations for obtaining faithful scalar field profiles. Specifically, deriving accurate
constraints on screened scalar-tensor models from a given experiment must sometimes be done on the basis
of numerical approximations, for otherwise the risk of underestimating or overestimating bounds on the
model’s parameters is present.

3. Designing new tests (prospective) — Having a numerical tool for computing fifth force effects also proves
to be useful when it comes to exploring new ways of testing the model at stake. Such a tool could indeed
help design relevant new tests, and in that sense, guide the hunt for screened scalar fields.

In this section, we begin by reviewing the existing available numerical tools and shed light on their limitations.
From there, we establish the overall specifications of the numerical tool developed in this PhD work.

1.4.1 Existing solutions and limitations

1D solver with shooting method

Static three-dimensional PDEs can be reduced to one-dimensional ODEs when one of the following symmetry
conditions applies:

– translation invariance along two axes (infinite parallel walls),

– rotational invariance along two axes (spherical symmetry),

– translation and rotational invariance along one axis (infinite cylinder).

From a numerical view point, nonlinear ODEs are easier to solve than nonlinear PDEs. There are plenty of
options to choose from in the special case of initial value problems, Runge–Kutta schemes being the most
commonly employed class of methods. However, the scalar field and its derivative values are, in general, unknown
in the numerical domain. In the spherically symmetric case, all we know is that ϕ′(r = 0) should be zero, while
the asymptotic behavior of the field is given by the asymptotic boundary condition (1.120).

32For instance, Ref. [149] compiles a great number of such approximations.
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Because asymptotic boundary conditions cannot be imposed ‘by hand’ in traditional ODE solvers, Refs. [136,
145, 182] implement a shooting method for properly accounting for the boundary condition at infinity — this
careful treatment of boundary condition is overlooked in Refs. [183, 184] and semi-analytically accounted
for in Ref. [185] by imposing an asymptotic Yukawa profile. This technique is used in the subsequent work
Ref. [179]. To the best of our knowledge, this was the only work properly accounting for the asymptotic boundary
condition (1.120) numerically prior to the present PhD work.

While this shooting method works well for cases for which the scalar field PDE boils down to an ODE, it
does not generalizes to the 2D and 3D cases. Likewise, numerical techniques for solving PDEs are drastically
different from those used to solve ODEs.

2D semi-analytical model for nested cylinders

With a view to compute the chameleon field profile inside microscope’s SUEP and SUREF (see Sec. 1.3),
Ref. [180] proposes a semi-analytical technique for solving the scalar field nonlinear Klein–Gordon equation (1.117)
in the presence of not perfectly coaxial nested cylinders. There, the three-dimensional PDE does not reduce to
an ODE but rather to a two-dimensional PDE (due to translation invariance along the infinite cylinders’ axes).
Note that the semi-analytical prescription developed in this article, based on mode decomposition, works for
small off-centering of the cylinders and is able to account for the asymptotic boundary condition (1.120) through
the nullity of the monopole at infinity.

Finite Difference codes

The finite difference method (FDM) is one commonly employed numerical technique to numerically solve PDEs
in dimension greater than or equal to two, where differential operators are approximated with finite differences.
FDM has been used in the context of screened scalar-tensor models. In a nutshell, the numerical procedure
consists in a finite difference method in which, from an initial guess, the algorithm iteratively converges towards
the correct solution — see e.g. the Appendix of Ref. [186] for a more detailed description of this algorithm
(under-relaxed Gauss-Siedel scheme). Ref. [180] obtains the chameleon field profile for the case of off-centered,
infinitely long, nested cylinders. Likewise, Ref. [187] solves the Klein–Gordon equation where ρ mimics the
density distribution in the Eöt-Wash (torsion pendulum) experiment. Ref. [186] calculates the chameleonic fifth
force in a cylindrical vacuum chamber with a source mass inside of it in the context of atom interferometry
experiments.

In all the aforementioned references, the asymptotic boundary condition (1.120) has to be abandoned. Instead,
a standard Dirichlet boundary condition33 is set at a finite distance from the examined setup, thereby assuming
that the scalar field reaches its asymptotic value not too far away from the latter. As already underlined, this
assumption is not always valid. As a matter of fact, it is plainly wrong when the Compton wavelength of
the field in the ambient medium is much larger than the typical size of the numerical domain, and imposing
ϕ∞ = ϕ(∥x∥ = +∞) at a finite distance can result in significant errors (see Chapt. 3). To get a flavor of why
this is problematic, Fig. 1.6 shows what happens to the Newtonian potential for a homogeneous solid sphere of
radius Rb when the Dirichlet boundary condition Φ(Rc) = 0 is applied at some radius Rc (colored solid curves)
instead of applying the asymptotic condition Φ(r) → 0 when r → +∞ (gray dashed line). In particular, the
bottom panel, which represent the relative error with respect to the latter benchmark, shows that even when the
truncation radius is set at Rc = 100Rb, the relative error is no better than ∼ 1%.

Additionally, let us note that FDM is usually not used for irregular computer-aided design (CAD) geometries.
Instead, the use of rectangular grids works well for rectangular or block-shaped models, which are unfortunately
not necessarily adapted to complex shapes found in any realistic experimental setup.

Finite Element codes

More recently, the finite element method (FEM) has been leveraged to compute scalar field profiles in various
models with screening. FEM is quite straightforward to apply for linear elliptic second-order PDEs, and can
be extended to the nonlinear case, although this is sometimes challenging from the perspective of numerical
convergence. Among the method’s advantages, let us stress that it can be used to model virtually any given
geometry, as complex as it may be, and can be adapted to handle time-dependent problems. Chapt. 2 is dedicated
to a more in depth presentation of FEM and covers all the aforementioned points.

A succinct review of existing FEM codes dedicated to the study of screening mechanisms arising in scalar-
tensor theories can be found in Ref. [188]. To the best of our knowledge and in line with Ref. [188], it started
being used by a research group from the University of Nottingham led by C. Burrage for studying the shape
dependence of the chameleon screening mechanism [189]. Building on top of Ref. [189], C. Briddon developed a
user-friendly code called selcie as part of his PhD work for investigating the chameleon model using FEM [190].

33The various types of boundary conditions that can be applied on the boundary of a bounded open set are discussed in Chapt. 2.
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Figure 1.6: Influence of the truncation radius Rc on the computation of the Newtonian potential of a perfect
sphere with radius Rb. The truncation radius Rc ∈ {5Rb, 10Rb, 25Rb, 100Rb} corresponds to the radius where
the Dirichlet boundary condition Φ(Rc) = 0 is applied. The top panel shows the resulting Newtonian potential
profiles, where the gray dashed curve labeled ‘benchmark’ corresponds to the solution for which Φ(r)→ 0 as
r → +∞. The bottom panel shows the relative error with respect to the benchmark solution. As intuition
suggests, the larger the truncation radius Rc, the smaller the relative error.

FEM has also been used to gain insight into the symmetron model [191, 192]. There is also the φ-enics code
which offers a one-dimensional implementation of Vainshtein models [193].

The main limitation of all existing FEM code is that computation can only be performed on bounded domains
and thus cannot account for the asymptotic boundary condition (1.120). Indeed, as we will see in the next
chapter, FEM relies on the meshing of the numerical domain and cannot — in its standard implementation —
encompass a region of infinite spatial extension. As a result, all the aforementioned work are limited to finite
simulation boxes and have to use Dirichlet or Neumann boundary conditions on the boundary of the numerical
domain. This can be justified in some situations — let us take the example of laboratory experiments performed
in vacuum chamber (e.g. atom interferometry experiments [142, 158]) for testing the chameleon model. In some
parts of the parameter space, the walls of the vacuum chamber can legitimately be considered as screened (when
they are thick and dense enough), and one can thus apply the Dirichlet boundary condition ϕ = ϕmin(ρwall) deep
inside the wall (i.e. at the boundary of the numerical domain) or a vanishing Neumann boundary condition
∂ϕ/∂n = 0 as done in Ref. [190]. However, this assumption — that the scalar field reaches the value that
minimizes the effective potential at the boundary of the simulation box — does not hold in the general case. For
instance, the simple example of an unscreened satellite in space cannot be handled that way. More generally, the
case of a dense object embedded in a less dense medium of density ρvac is problematic because there is a priori
no reason for the field to reach ϕmin(ρvac) anywhere near the dense object. This is physically well-understood by
looking at the expression for the effective mass of the scalar field [Eq. (1.118b)], which shows that the field’s
mass decreases with ρ, and can therefore be very light in low-density environment. More precisely, the Compton
wavelength in such a low density medium can be several orders of magnitude larger than the typical size of the
region of interest (where the fifth force is to be evaluated for instance). In this kind of situations, the numerical
domain is required to be very large and the simulation can therefore become computationally prohibitive.

N-body simulations in modified gravity

Modified gravity models have also been considered in the context of astrophysical N -body simulations. N -body
codes for modified gravity are usually based on standard gravity codes, see Refs. [188, 194] for reviews of
those. The scalar field profile (and hence the scalar fifth force) is usually obtained under the quasi-static
hypothesis using multigrid techniques — see e.g. Ref. [194] for a good overview of how they work building on
top of finite differences. State-of-the-art codes are ECOSMOG [195], ISIS [196] and MG-GADGET [197]. Generally
speaking, regular grids are useful for very-large-scale simulations (meteorological, seismological and astrophysical
simulations).
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Specification ODE solver
[184, 185]

1D shooting
method [136]

Semi-analytical
nested cylinders [180]

FDM / multigrid
[180, 186, 187, 194]

FEM codes
[189–193]

Asymptotic
boundary condition ✗ ✓ ✓ ✗ ✗

Complex geometries ✗ ✗ ✗ rectangular grid ✓

Spatial dimensions 1D 1D 2D 1D, 2D, 3D 1D, 2D, 3D

Coordinate system — — polar Cartesian Cartesian, cylindrical

Time-dependence ✗ ✗ ✗ ✗ ✗

Multi-scale
simulations ✗ ✗ ✗ ✓

possible through
h-adaptivity

Table 1.4: Summary of the specifications of existing numerical tools presented in Sec. 1.4.1.

Time-dependent solvers

The picture would not be complete without mentioning several work that attempt to go beyond the quasi-static
approximation. This is a path that needs to be taken if one is interested in scalar radiation (also known as
scalar waves), or in knowing whether accounting for the time dependency in the Klein–Gordon equation can
affect the efficiency of the screening mechanism. Ref. [198] studies the chameleon field profile around a radially
pulsating mass (one time dimension + one spatial dimension), although the exact numerical scheme employed is
not stated. Ref. [199] performs the first fully relativistic simulations of binary neutron stars in scalar-tensor
theories with kinetic screening (see Sec. 1.2.1) using FDM on grids with six refinement levels. To the best of
our knowledge, there is no FEM code (e.g. similar to selcie [190]) for handling the time-dependence in the
chameleon or symmetron models, for which the equation of motion is a nonlinear wave equation.

1.4.2 Outline of the tool’s overall specifications
A non-exhaustive summary of the technical specifications of existing numerical tools for studying screened
scalar-tensor gravity is provided in Table 1.4. Here, we list the features we would like to have in a numerical tool
for studying screened scalar-tensor gravity in space and take M. Pernot-Borràs’ work [138] a step further. These
desired functionalities are matched by a choice a technical specifications — Table 1.4 is useful in this respect.

The list of desired features, which will shape the development of a new numerical tool, roughly follows the
entries of Table 1.4 but are reordered in terms of priority:

– Handling of arbitrary shapes — From our discussion above in Sec. 1.4.1, it appears that handling complex
geometries is key to a realistic modeling of modified gravity in both experimental setups and Solar system /
astrophysical environments. In this regard, the finite element method is perhaps the best suited numerical
method as it is possible in principle, through finite element meshes, to represent any given geometry,
however complex it may be. Moreover, it is particularly well-suited to solve elliptic second-order PDE, a
category of PDEs under which most scalar-field equations fall. As the chosen method for our tool, FEM is
presented in its own chapter, Chapt. 2. In particular, it will be shown how one can address nonlinear PDE,
which are at the heart of screening mechanisms.

– Implementation of asymptotic boundary conditions — As stressed above, having the possibility to account
for asymptotic boundary conditions is more than desirable as it would allow us to model modified gravity
in very general cases and avoid having to make assumptions about the behavior of the scalar field within a
bounded numerical domain as done in Refs. [189–193]. The way they are handled in Ref. [136], namely by
means of a shooting method in 1D, does not generalize well to the higher dimensional case (2D and 3D).
Nor is it possible to mesh the whole unbounded domain as this would require the storage of an infinite
number of elements on a finite-memory computer. Nonetheless, standard FEM can be extended to account
for the behavior of the unknown at infinity in satisfactory ways. We delve into some of these advanced
techniques in Chapt. 3.

– Spatial dimensions — While highly symmetrical geometry allows for dimensional reduction — for instance,
only one coordinate is needed to deal with the spherically symmetric case, see our discussion at the
beginning of Sec. 1.4.1 — computations involving arbitrary shapes cannot be undertaken but in 3D. In the
light of this remark, our numerical tool should be able perform 1D and 2D simulations for cases which
enjoy a certain symmetry, and 3D simulations to accommodate for the most general geometries. Again,
FEM can be formulated in either of those three distinct dimensional cases.

– Ability to perform time-dependent simulations — In Sec. 1.2.2, we considered the time-independent version
of the nonlinear Klein–Gordon equation governing the dynamics of the chameleon field, for which the
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d’Alembertian is replaced by the Laplacian. Doing so is valid as long a the typical timescale of the field’s
dynamics is much shorter than the typical time-variation of the matter that is being modeled. The former
scales as L0/c, where L0 denotes the length scale of the problem at stake, whereas the latter scales as
L0/v, where v is the typical velocity of matter in this problem. Therefore, this condition, better known as
the quasi-static regime, holds in the non-relativistic limit. When the quasi-static approximation does not
hold, keeping the ∂2/∂t2 term of the d’Alembert operator is necessary. This turns out to be the case for all
physical phenomena involving scalar waves. Our aim being to develop a general-purpose numerical code, it
should be sufficiently flexible to implement time dependency. This is possible within the framework of
FEM, the ins and outs being discussed in Chapt. 2.

– Possibility to keep track of physical effects on a large range of scales — Tests of gravity in space involve
various length scales: from the smallest, such as microscope’s cylinders, larger ones, such as the Earth-
satellite distance (the Earth being the main source of gravity in orbit), up to the astronomical unit scale.
Therefore, the tool should be able to handle a wide range of length scales, ∼ 10−3–107 m. There are several
ways in which FEM can deal with such a wide range of length scales. The first idea that comes to mind is
to employ h-adaptivity, which consists in locally adapting the mesh size in the numerical domain: fine
in regions where fine details are present or where high gradient occurs (e.g. nearby the satellite in our
example), and coarse elsewhere. That way, computing resources are focused where most needed, thereby
avoiding the computation cost of resolving the smallest scales throughout the entire domain. Other more
advanced methods include domain decomposition techniques [200, 201].

– Implementation of several coordinate systems — For practicality of use, it is desirable to be able to conduct
numerical computation using different coordinate systems depending on the problem at stake. For instance,
the PDEs of problems enjoying invariance by rotation along an axis might be written either in polar
coordinates or cylindrical coordinates (with vanishing partial derivatives with respect to the corresponding
angle in both cases). One may be better suited than the other given a specific problem.

Given the above list, it appears that among the existing tools reported in Table 1.4, none of them meets all
our needs. This observation led us to develop a new numerical tool called femtoscope, which will be presented in
Chapt. 4. Before that, the next two chapters will lay out its mathematical foundations. Specifically, Chapt. 2
introduces the finite element method while Chapt. 3 tackles the question of dealing with PDE problems posed
on unbounded regions of Rn, n ∈ {1, 2, 3}.

Chapter summary

This chapter was dedicated to the introduction of scalar-tensor theories of gravity, one of the
most natural alternatives to General Relativity where gravity is mediated by both a rank-2
tensor field and a scalar field. While scalar fields are key players in many extensions beyond
the standard models, they must somehow comply with all the numerous tests of gravity
accumulated throughout the past decades. In particular, the fifth force they mediate must not
betray their presence in Solar system tests or laboratory experiments. We saw that this can
be achieved by means of screening mechanisms which dynamically suppress deviation from
General Relativity in classical fifth force searches, with a focus on the chameleon model.
Although space-based experiments were long-expected to provide new constraints on the
chameleon model, the legacy of the microscope mission has shown that experimental tests
of the weak equivalence principle in space are not as straightforward and groundbreaking as
initially hoped in this regard. One of the lessons learnt is that the testability of screened
scalar-tensor models is crucially dependent on the development of new numerical methods,
for a realistic modeling of their effects. In this perspective, we outlined the specifications of
a FEM-based numerical tool to be developed in this PhD work. The next chapter therefore
introduces the finite element method in more depth.
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In this chapter, we describe, in a rather concrete manner, how PDE problems posed on bounded domains can be
solved with the Finite Element Method (FEM). Starting with the linear elliptic case, we introduce the so-called
weak formulation of the problem which, under an appropriate functional framework, can be given a precise
meaning and constitutes a well-posed mathematical problem. From there, things become a little less abstract as
we discretize this weak formulation according to a mesh of the domain. This procedure results in a mere linear
system which, upon solving, yields a numerical approximation of the solution to the original PDE problem. In a
second stage, we deal with nonlinear problems and review the most commonly used techniques in the literature.
Most of them build on top of standard FEM by iteratively solving a sequence of linearized problems, which in
turn requires the definition of suitable stopping criteria. The main difficulty with such iterative techniques is to
ensure their convergence. In that respect, we provide a list of (mostly empirical) common practices that were
put into use in this PhD work in order to enhance their robustness. We also give insights into (i) dimensional
reduction of the PDE problem in the presence of global continuous symmetries, and (ii) how time-dependent
problems may be addressed in the future.

In contrast to what can be found in several FEM textbooks, the philosophy of this chapter is to expose the
very basics of FEM on the basis of examples, sometimes at the expense of mathematical rigor. In particular,
techniques to deal with nonlinear PDEs are illustrated on the nonlinear Klein–Gordon equation (1.117) arising
as the Newtonian limit of the scalar field equation in the chameleon model that we discussed in the previous
chapter. Finally, this chapter sets the stage for Chapt. 3 in which we will deal with problems posed on unbounded
domains.
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2.1 Overview of the Finite Element Method

The Finite Element Method is a general numerical method for solving PDEs together with a set of constraints
imposed on the boundary of the domain. The latter constraints are referred to as boundary conditions and have
to be specified in order to ensure the uniqueness of the solution (provided it exists). The main idea behind
FEM is to mesh a continuous spatial domain into a finite set of non-overlapping subdomains — the finite
elements — over which the problem takes a simpler form. One of the key contributions in FEM comes from the
analysis of aircraft structures back in the 1950s [202], which is why it is often associated with elasticity and
structural analysis problems in aeronautical engineering. Since then, the method has been widely adopted in
many other engineering disciplines, including heat transfer, electromagnetism, acoustics, and fluid dynamics (see
e.g. Ref. [203]).

2.1.1 Problem definition

Before diving straight into the ins and outs of FEM, it is important to recall its scope: what type of problems
can it address? To that extent, we are going to consider partial differential equations of the form

Lu = f on Ω , (2.1)

where Ω is an open connected bounded subset of Rn, n ∈ N∗ being the dimension of the problem, f : Ω→ R is a
given function, L is some linear partial differential operator and u : Ω→ R is the unknown. In this PhD work,
the PDEs we are trying to solve are all second-order equations. Under the assumption that u is of class C2(Ω),
the L operator can then be given a more explicit form

Lu = −C :HT
u + β ·∇u+ du = −

n∑

i,j=1

cij
∂2u

∂xi∂xj
+

n∑

i=1

βi
∂u

∂xi
+ du . (2.2)

In the above expression, coefficients C = (cij)1≤i,j≤n, β = (βi)1≤i≤n and d can be any given real functions of
x ∈ Ω only.1 Hu denotes the Hessian matrix of u while the colon operator ‘ : ’ represents the Frobenius inner
product (also known as the double-dot product). Due to the symmetry of second derivatives, the matrix C
can always be assumed to be symmetric without loss of generality. Alternatively, if coefficients cij are C1(Ω)
functions, it is possible to rewrite the L operator as

Lu = −div (C∇u) + b ·∇u+ du = −
n∑

i,j=1

∂

∂xi

(
cij

∂u

∂xj

)
+

n∑

i=1

bi
∂u

∂xi
+ du . (2.3)

The PDE (2.1) is said to be in the divergence form if L is given by Eq. (2.3) and in the non-divergence form if it
is given by Eq. (2.2) instead. Note that these two forms are simply related though βj = bj −

∑n
i=1 ∂xicij . We

will see that, for our discussion of FEM, the divergence form is the most natural of the two.
Second-order linear PDEs in physics usually come in three different flavors:

1. Elliptic if for all x ∈ Ω, C(x) is positive definite. This is the case, for example, of the Poisson equation
−∆u = f governing the potential in Newtonian gravity for which C ≡ In.

2. Parabolic if for all x ∈ Ω, the eigenvalues of C(x) are all strictly positive except exactly one that is zero.
The most famous example of a parabolic PDE is the heat equation ∂tu = α∆u.

3. Hyperbolic if for all x ∈ Ω, C(x) has 1 strictly negative and n−1 strictly positive eigenvalues. For instance,
the wave equation ∂ttu− c2∆u = 0 is a hyperbolic PDE.

Note that, so far, we have not assigned a specific physical role to the components of x = (x1, . . . , xn), and so
nothing prevents us from having one time dimension alongside n−1 spatial dimensions as is the case for the heat
equation or wave equation. Nonetheless, for the time being, we restrict ourselves to stationary PDE problems of
elliptic nature, for which FEM is well-suited (this idea will be revived when discussing spacetime FEM). For this
type of PDEs, each term in Eq. (2.3) can be given a physical interpretation: −div(C∇u) represents the diffusion
of u within Ω, b ·∇u is a transport term (picturing b as some velocity field), also referred to as an advection
term, and du might be interpreted as a creation/annihilation term. We defer the discussion of time-dependent
problems to Sec. 2.1.4.

1If the coefficients also depend on u and/or its partial derivatives, the partial differential operator L becomes nonlinear.



2.1. Overview of the Finite Element Method 51

−∆u = f in Ω

∇u · n = gN
on ΓN

n

u = uD

on ΓD

Figure 2.1: Poisson equation posed on some domain Ω together with Dirichlet boundary condition on ΓD (in
red) and Neumann boundary condition on ΓN (in blue). The outward normal vector n is represented by the blue
arrow.

Box D: Definition of well-posed problems (in the sense of Hadamard)

The notion of well-posedness in PDE problems was introduced by French mathematician
Jacques Hadamard [204]. A problem is said to be well-posed if all the following conditions are
met:

1. a solution exists,

2. this solution is unique,

3. the solution depends continuously on the data given in the problem.

Otherwise, it is ill-posed. The meaning of the first two points is clear. Essentially, the
last requirement reflects the fact that “small” changes in either initial conditions, boundary
conditions or parameters’ value should result in “small” changes in the solution. It is thus
particularly important for problems arising from physical applications.

For the problem Eq. (2.1) to be well-posed — see Box D —, it is necessary to supplement the PDE with
boundary conditions imposed at the border Γ of Ω. Indeed, without such additional constraints, the uniqueness
of the solution is likely not to hold, leading to an ill-posed problem. The specification of boundary conditions
generally takes different forms depending on the physical problem at stake. Here, we partition the border Γ into
Γ = ΓD ∪ ΓN and focus on the two main types:

1. Dirichlet or essential boundary conditions, for which the value of the unknown on ΓD is imposed

u = uD on ΓD , (2.4)

where uD : ΓD → R is part of the problem’s data.

2. Neumann boundary conditions, which relates to the gradient of the unknown on ΓN . Traditionally, it
consists in setting the normal derivative ∂u/∂n := ∇u · n, where n denotes the outward normal vector to
ΓN . Here however, we provide a slightly different definition by specifying the co-normal derivative

∂u

∂ν
:= (C∇u) · n = ∇u · (CTn) = gN on ΓN , (2.5)

where gN : ΓN → R is part of the problem’s data. Indeed, using this oblique derivative instead of the
usual normal derivative will make things easier when deriving the weak formulation of the problem. While
the knowledge of the normal derivative usually does not imply the knowledge of the co-normal derivative
(and vice-versa), we still refer to Eq. (2.5) as a Neumann boundary condition. Moreover, this distinction
becomes irrelevant when C ≡ In.

These two types of boundary conditions — Dirichlet and Neumann — are illustrated in Fig. 2.1 for a Poisson
equation. It should be noted that, even though they model the situations most often encountered in real problems,
there exist other types of boundary conditions.2

2We can mention three more: Robin, mixed, Cauchy and periodic boundary conditions.
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Our model second-order PDE problem finally reads

Lu = f in Ω with

{
u = uD on ΓD

∂u/∂ν = gN on ΓN
. (2.6)

2.1.2 Variational formulation

We now transform the so-called strong PDE problem (2.6) by writing it in its weak form (also known as
variational form). This step is not only the starting point of FEM, but also leads to a convenient framework for
the theoretical study of PDEs, where many concepts and properties from functional analysis can be applied.
We first show in a pragmatic way how to derive the weak formulation. Only then do we add a layer of rigor by
introducing an adequate functional framework for it to make sense.

Heuristic derivation of the weak formulation

Schematically, the weak formulation is obtained by (i) multiplying the strong PDE (2.1) by some test function
v belonging to some functional space V to be further specified, (ii) integrating over the whole space Ω, and
(iii) integrating by parts the highest derivative term. Let us illustrate this process on the model problem (2.6).
Anticipating the fact that we will have to perform an integration by parts in step (iii), we choose to write the
differential operator L in its divergence form (2.3). After completing the first two steps, we obtain the expression

−
∫

Ω

div (C∇u) v dx+

∫

Ω

(b ·∇u) v dx+

∫

Ω

duv dx =

∫

Ω

fv dx . (2.7)

Before going any further, let us clarify the role of the test function v ∈ V appearing in the above equation.
Requiring Eq. (2.7) to hold only for one given test function is not restrictive enough. Instead, we demand it to
hold true for any function v ∈ V . In that sense, Eq. (2.7) actually conceals a non-countable infinite number of
equations!3 Back to the algebra, performing an integration by parts4 in the first integral yields

∫

Ω

(C∇u) ·∇v dx−
∫

Γ

[
(C∇u) · n]v dγ +

∫

Ω

(b ·∇u) v dx+

∫

Ω

duv dx =

∫

Ω

fv dx . (2.8)

This has had two consequences worth of notice:

1. First, this has led to the appearance of a boundary term where the integral is carried over Γ which is a
lower-dimensional topological entity with respect to Ω. We can thus account for the boundary conditions
stated in Eq. (2.6) through this term. For practical reasons justified later, the test function is chosen to be
zero on ΓD (the part of the boundary where the Dirichlet boundary condition is prescribed). As a result,
there remains ∫

Γ

[
(C∇u) · n]v dγ =

∫

ΓN

gNv dγ . (2.9)

2. Eq. (2.8) only involves at most first-order derivatives of u through the gradient term while the original
strong-form PDE (2.1) was dependent on second-order derivatives. In other words, the latter strong
formulation only makes sense for at least twice-differentiable functions, yet Eq. (2.8) could be satisfied by
only-once-differentiable functions.

In order to end-up with a somewhat more canonical form, we assume V to be a vector space and define the
(bi-)linear maps

a : V × V → R

(u, v) 7→
∫

Ω

(C∇u) ·∇v dx+

∫

Ω

(b ·∇u) v dx+

∫

Ω

duv dx
(2.10)

and

l : V → R

v 7→
∫

Ω

fv dx+

∫

ΓN

gNv dγ .
(2.11)

3The function space V is indeed an uncountable set.
4Some work invoke the “divergence theorem” or the “Green’s formula”. This is just a matter of terminology.
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In this way, Eq. (2.8) can be concisely written as a(u, v) = l(v) and the weak form loosely reads

Find u such that for all v ∈ V / v ≡ 0 on ΓD , a(u, v) = l(v) . (2.12)

There are nonetheless several shortcomings with the weak formulation (2.12) that need to be clarified. First,
we have to make sure that all the above integrals actually exist. This is going to translate into conditions on the
space V , on the coefficients of the PDE C, b, d, and on the data f . Furthermore, the way Dirichlet boundary
conditions are taken into account is not clear yet. And last but not least, how do we turn Eq. (2.12) into a
well-posed problem? How can well-posedness, as defined in Box D, be checked?

The adequate functional framework: Sobolev spaces

Let us now be a little more rigorous mathematically speaking. While the discussion could be carried out within
the general framework of second-order elliptic PDEs — see Evans’ book [205], Chapt. 6 —, we narrow it down
to the case of the Poisson equation −∆u = f . Indeed, processing this example is sufficient for introducing all
the main concepts, other cases being handled in the same way but for a few technical details that are of minor
importance to us. We thus have

a(u, v) =

∫

Ω

∇u ·∇v dx and l(v) =

∫

Ω

fv dx+

∫

ΓN

gNv dγ . (2.13)

Our choice of an adequate functional space V is greatly facilitated by the Lax–Milgram theorem (reported in
Box E below), which is an extremely powerful tool for assessing the well-posedness of weak forms. Until further
notice, we assume homogeneous Dirichlet conditions on ΓD, that is uD ≡ 0. The non-homogeneous case will be
dealt with the end of this discussion.

Box E: Lax–Milgram theorem

Let V be a Hilbert space with norm ∥ · ∥V , and V ′ its dual space with norm ∥ · ∥V ′ . Let a be
a real bilinear mapping defined over V × V and l be a real linear mapping defined over V .
Assume that

1. a is continuous over V × V , i.e. there exists a constant M ≥ 0 such that for all u, v ∈ V

|a(u, v)| ≤M ∥u∥V ∥v∥V ; (2.14)

2. a is coercive over V , i.e. there exists a constant α > 0 such that ∀v ∈ V

a(v, v) ≥ α ∥v∥2V ; (2.15)

3. l is continuous over V , i.e. there exists a constant L ≥ 0 such that for all v ∈ V

|l(v)| ≤ L ∥v∥V . (2.16)

Then, there exists a unique element u ∈ V such that

a(u, v) = l(v) , ∀v ∈ V .

Additionally, the solution u depends continuously on l, i.e.

∥u∥V ≤
1

α
∥l∥V ′ , where ∥l∥V ′ := sup

v ̸=0

l(v)

∥v∥V
. (2.17)

The first idea that comes to mind is to use V = L2(Ω), the space of square-integrable functions which is
defined as

L2(Ω) :=
{
u : Ω→ R such that

∫

Ω

|u(x)|2 dx < +∞
}
. (2.18)

The reason being that, when equipped with the inner product

⟨u, v⟩L2 :=

∫

Ω

u v dx , (2.19)
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L2(Ω) forms a Hilbert space,5 which is a first step in the direction of the Lax–Milgram theorem. Moreover, it
becomes possible to give a meaning to the integral of the product of two functions by merely requiring them to
be in L2(Ω). Indeed, in view of the Cauchy–Schwarz inequality

∫

Ω

u(x) v(x) dx ≤
(∫

Ω

|u(x)|2
)1/2(∫

Ω

|v(x)|2
)1/2

= ∥u∥L2 ∥v∥L2 < +∞ , ∀u, v ∈ L2(Ω) , (2.20)

where ∥ · ∥L2 is the norm associated with the inner product ⟨·, ·⟩L2 . Therefore, it seems natural to ask for the test
function v and the rhs function f appearing in Eq. (2.13) to be in L2(Ω). Likewise, it seems reasonable to ask
for the partial derivatives of u and v to be in L2(Ω) so that the bilinear form a(·, ·) in Eq. (2.13) is well-defined.
Yet, for technical reasons not worth delving into here, one has to abandon the notion of smooth functions and
turn to distribution theory, where functions are replaced by distributions (also called generalized functions) and
partial derivatives in the usual sense are replaced by weak derivatives. Luckily, while this transition represents a
big leap conceptually speaking, most of the operations and properties that hold in the classical sense happen to
also hold in the weak sense. To that extent, we keep exactly the same notations and define the Sobolev space

H1(Ω) :=
{
u ∈ L2(Ω) such that

∂u

∂xi
∈ L2(Ω) , ∀i ∈ {1, . . . , n}

}
. (2.21)

In this definition, u is a distribution and the notation “∂u/∂xi” now refers to the weak derivative of u with
respect to the coordinate xi. This space can be equipped with a new inner product that reads

⟨u, v⟩H1 :=

∫

Ω

u v dx+

∫

Ω

∇u ·∇v dx , (2.22)

where again, “∇” is to be understood in the weak sense. One can show that H1(Ω) is a Hilbert space, and now
a(u, v) in Eq. (2.13) is well-defined for any u, v ∈ H1(Ω). The norm associated with the inner product Eq. (2.22)
can be decomposed as ∥u∥2H1 = ∥u∥2L2 + |u|2H1 , where | · |H1 defines a semi-norm in H1(Ω).6

Remark 2.1. The definition of Sobolev spaces can be generalized to any order m ∈ N:

Hm(Ω) :=
{
u ∈ L2(Ω) such that Dαu ∈ L2(Ω) , ∀|α| ≤ m

}
, (2.23)

where α = (α1, . . . , αn) is used to denote a multi-index and Dαu = (∂α1/∂xα1
1 ) . . . (∂αn/∂xαn

n )u (in the weak
sense).

We are getting closer to our objective, that is to check that Lax–Milgram theorem applies to our model
problem. Before tackling the theorem’s hypotheses, there remains to update our somewhat vague notion of
boundary conditions. The problem being that the border Γ has a zero Lebesgue measure in Rn. Therefore, the
condition “u = uD on ΓD” makes no sense whatsoever if u is sought in L2(Ω). Fortunately, there is a way around
this issue when u belongs to H1(Ω). To see it, let us consider the trace operator

γ0 : C1(Ω̄)→ C0(Γ)
v 7→ γ0v

such that ∀x ∈ Γ , (γ0v)(x) = v(x) . (2.24)

Eq. (2.24) defines a linear application from C1(Ω̄) equipped with the H1(Ω)-norm to C0(Γ) equipped with the
L2(Γ)-norm. Provided that the boundary Γ is sufficiently regular,7 the density of C1(Ω̄) in H1(Ω) allows one to
extend γ0 to a bounded linear operator from H1(Ω) to L2(Γ) — this is the trace theorem — so that

there exists a constant C > 0 such that ∀v ∈ H1(Ω) , ∥γ0v∥L2(Γ) ≤ C ∥v∥H1 . (2.25)

This concept of trace operator can be adapted to our subset ΓD ⊂ Γ (we still denote it γ0) and allows us to define

H1
0 (Ω) :=

{
u ∈ H1(Ω) such that γ0u = 0 on ΓD

}
, (2.26)

which is a Hilbert space when equipped with the norm inherited from H1(Ω). Moreover, the homogeneous
Dirichlet boundary condition is now easily satisfied just by requiring the unknown generalized function u to
itself belong to H1

0 (Ω). As for the Neumann boundary term in Eq. (2.13), it is enough to demand that gN be in

5Note that L2(Ω) plays a special role among the family of Lp(Ω) Banach spaces, p ∈ [1,∞], as it is the only one to be a Hilbert
space.

6| · |H1 is not a norm because it is not positive definite. Indeed, |u|H1 implies ∇u = 0 in L2(Ω) but not u = 0.
7Here, Ω needs to be at least a Lipschitz domain.
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L2(ΓN ) since then ∫

ΓN

gN γ0v dγ ≤ ∥gN∥L2(ΓN ) ∥v∥L2(ΓN ) < +∞ , ∀v ∈ H1
0 (Ω) . (2.27)

We now have all the tools in our hand to make use of the Lax–Milgram theorem recalled in Box E. We
have found a good candidate for the role of Hilbert space, namely H1

0 (Ω), and we are left to review the
theorem’s three hypotheses. Hypotheses 1 and 3 [Eqs. (2.14) and (2.16) respectively] are easily checked by
applying Cauchy–Schwarz inequalities in L2(Ω) and L2(ΓN ) as seen before, together with the trivial inequality
∥u∥L2 ≤ ∥u∥H1 and the (less trivial) trace inequality Eq. (2.25) respectively. The point requiring most attention
is the second one, namely the coerciveness of the bilinear form a(·, ·) defined by Eq. (2.15). Poincaré’s inequality,
reported in Box F below, comes to help in proving this last point. Indeed, it provides us with a constant C > 0
such that for all u ∈ H1

0 (Ω),

a(u, u) = |u|2H1 ≥ 1

2

(
1

C2
∥u∥2L2 + |u|2H1

)
≥ 1

2
min

(
1

C2
, 1

)
∥u∥2H1 . (2.28)

Box F: Poincaré’s inequality

Let Ω be an open connected bounded subset of Rn with a Lipschitz boundary and ΓD ⊂ Γ =: ∂Ω
with non-vanishing Lebesgue measure. There exists a constant C > 0 such that

for all u ∈ H1
0 (Ω) , ∥u∥L2 ≤ C |u|H1 . (2.29)

All assumptions of the Lax–Milgram theorem hold, and so the weak formulation

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω) , a(u, v) = l(v) (2.30)

has a unique solution, whose solution depends continuously on the problem’s data encapsulated in l(·). Eq. (2.30)
thus constitutes a well-posed problem.

While this proof sketch was dealing specifically with the Poisson equation, several results set out above can
be readily re-applied to other elliptic PDEs, e.g. Laplace equation ∆u = 0 or linear Klein–Gordon equation
−∆u−λu = 0 with λ < 0. When the coefficient matrix C does not boil down to the identy, additional conditions
are to be met. In order to preserve the coerciveness of the bilinear form a(·, ·), one usually requires the operator
L to be uniformly elliptic, i.e. there exists a constant θ > 0 such that C(x) is positive definite with smallest
eigenvalue greater than or equal to θ, almost everywhere in Ω. Also, for the integrals to continue to exist without
having to change the functional framework, it is natural to demand that the coefficients of the PDE be bounded,
i.e. cij , bi, d ∈ L∞(Ω).

Dealing with non-homogeneous boundary conditions

Now what happens if we relax the assumption that uD ≡ 0? It is tempting to slightly adapt the definition of
H1

0 (Ω) as the space of all generalized function u belonging to H1(Ω) such that γ0u = uD on ΓD. Unfortunately,
such a space is not a vector space and so the whole development carried out in the above fails. One breaks this
deadlock by decomposing the unknown into u = u0 + ũD where u0 ∈ H1

0 (Ω) and ũD ∈ H1(Ω) is constructed
so that γ0ũD = uD on ΓD. This way, u0 satisfies Eq. (2.30) where the rhs f is replaced by f̃ = f − LũD in
the linear form l(·). Back to the terminology, we see that Neumann boundary conditions appear directly in
the linear form l(·): they do not have to be imposed by hand which is why they are sometimes described as
natural. On the other hand, Dirichlet boundary conditions are essential in the sense that they are enforced as a
constraint on the function space.8

2.1.3 The Finite Element approximation

As pointed out before, the weak formulation Eq. (2.30), despite being well-posed, is an infinite-dimensional
problem. The whole point of the following is to turn it into a finite-dimensional problem, so that it can be solved
numerically on a finite-memory machine.

Discrete weak formulation

Discretizing the weak form is straightforward enough. The idea consists in approximating the infinite dimensional
space V (in which we look for the solution) by a smaller, finite dimensional space V h. Let (wi)1≤i≤N be a basis

8Additionally, note that Poincaré’s inequality (Box F) does not hold if no Dirichlet conditions are prescribed on the boundary.
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(a) 2D mesh (b) 3D mesh

Figure 2.2: Illustrations of meshes. The 2D mesh (left panel) showcases the power of mesh refinement to
approximate complex shapes. The 3D cylinder mesh (right panel) has been purposely clipped to make tetrahedral
elements apparent (shown in purple) while facet elements are depicted in blue.

of V h, where N represent its dimension. Then, any function uh ∈ V h can be decomposed equivocally as

uh =

N∑

i=1

Ui wi with U = (U1, . . . , UN )
T ∈ RN (2.31)

As a consequence, testing against all v ∈ V in the weak form Eq. (2.30) is equivalent to testing against all basis
functions of V h. Using the bilinearity of a(·, ·) and leaving Dirichlet boundary conditions aside for the moment,
the discrete weak formulation reads

Find U ∈ RN such that for all i ∈ {1, . . . , N} ,
N∑

j=1

Uj a(wj , wi) = l(wi) , (2.32)

which is nothing but a linear system of unknown U, with matrix A = (a(wj , wi))1≤i,j≤N (often called the
stiffness matrix ) and rhs vector L = (l(wi))1≤i≤N (also known as the load vector).

Eq. (2.32) is the discrete counterpart of the weak form. If the latter is well-posed, the linear system AU = L
is invertible on the sole condition that V h ⊂ V — the coercivity of a(·, ·) implying that the stiffness matrix is
positive definite.

Mesh and Pk elements

The remaining ingredient of FEM is the mesh which serves as the basis for the definition of a finite dimensional
space V h ⊂ V . As we are going to see, there is in fact a tight interplay between the discretization of space
[geometry] on the one hand, and the discretization of the function space [analysis] on the other hand.

A mesh of Ω is a tessellation composed of simple cells, such as triangles in 2D or tetrahedra in 3D.9 We
denote by T h such a collection of cells. All cells do not have to be the same shape or size, which means we
can use them to approximate virtually any given geometry — see Fig. 2.2. The boundary Γ ends up being
approximated by polytopes10 of dimension stricly less than n. The resulting elements of dimension n−1 (exactly)
are called facet elements and denoted by F . The collection of all facet elements is referred to as Σh.

For the discretization of the function space, we provide T h with N degrees of freedom, each of which being
associated with a basis function wi introduced above. In order to make this somewhat abstract notion clearer,
let us consider a simple 2D triangular mesh (as in Fig. 2.2a) where the triangles’ vertices are numbered from
1 to N . These vertices (which are of course shared between several triangles) are going to act as anchors for
the basis functions. A common choice is to demand that (i) basis functions are first-order polynomials on each
triangle (i.e. in a piecewise manner), and (ii) for all i ∈ {1, . . . , N}, wi is equal to one at the ith vertex and
equal to zero at all other vertices. These two conditions, which can be interpreted as Lagrangian interpolation

9Other types of elements exist, e.g. quadrangle elements in 2D, hexahedron, pentahedron or pyramid elements in 3D. Complex
meshes can even combine several types of elements.

10A polytope is the generalization of the notion of two-dimensional polygons to arbitrary dimensions.
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Figure 2.3: Illustration of Pk triangles for k = 1, 2, 3. The bullet points represent the dofs location for each type.
There are as many as polynomial coefficients in 2D, namely 3, 6, 10 for polynomials of degree 1, 2, 3 respectively.

basically, are enough for (wi)1≤i≤N to define a basis of the space

V h =
{
w ∈ C0

(
T h
)

such that w ∈ P1(K) , ∀K ∈ T h
}
. (2.33)

In Eq. (2.33), P1(K) denotes the space of all polynomials of degree 1 on the element K of the mesh. This
illustrates the notion of first-order Lagrange elements on a triangular mesh, or P1 elements for short.

However, the exact solution to our PDE problem is a priori more regular than piecewise polynomial functions
of degree 1. If so, the distance from the exact solution to the subspace V h defined by Eq. (2.33) might be large.
A way to remedy this issue to some extent is to employ higher-degree polynomials. In the same fashion as before,
we ask our basis functions wi to be kth-order polynomials on each triangles, be equal to one for exactly one
dof and be equal to zero for all the others. For this procedure to be well-defined, we need to add new physical
dofs on the mesh elements. Indeed, higher-degree polynomials having more coefficients, their value has to be
specified on more points for them to be completely determined. Fig. 2.3 helps visualizing how such additional
dofs are distributed on a reference triangle in practice for Pk elements, k ∈ {1, 2, 3}. We can thus generalize the
definition of V h to

V h =
{
w ∈ C0

(
T h
)

such that w ∈ Pk(K) , ∀K ∈ T h
}
, for some k ∈ N∗ . (2.34)

Finally, one can show that the finite-dimensional space V h as defined in Eq. (2.34) is indeed a subset of
the infinite-dimensional space V . As mentioned previously, this ensures the well-posedness of the arising linear
system.

Linear system assembly and solution

As highlighted by Eq. (2.32), the computation of stiffness matrix A and rhs vector L involves evaluating the
quantities a(wj , wi) and l(wi), for all (i, j) ∈ J1, NK2. In the case of the Poisson equation, they read

a(wj , wi) =

∫

Ω

∇wj ·∇wi dx l(wi) =

∫

Ω

fwi dx+

∫

ΓN

gNwi dγ

=
∑

K∈T h

∫

K

∇wj ·∇wi dx , =
∑

K∈T h

∫

K

fwi dx+
∑

F∈Σh

∫

F

gNwi dγ .

(2.35)

These integrals over cell and facet elements can be evaluated through the use of suitable quadrature rules.
Schematically, the integral of some function g over some cell element K ∈ T h is computed as

∫

K

g(x) dx ≃ |K|
Nq∑

l=1

ωl g(xl) , (2.36)

where |K| denotes the surface/volume of K, (xl)1≤l≤Nq are the Nq quadrature points and (ωl)1≤l≤Nq are weights.
In particular, the Gauss quadrature rule is implemented in most FEM codes as it allows for the exact integration
of polynomials.11

This assembly step results in a linear system AU = L that is sparse thanks to the small support of basis
functions wi. The solving stage — which dominates the time-complexity budget of FEM — is generally carried
out by direct solvers (e.g. LU and Cholesky factorizations) for relatively small problems (∼ less than one million
dofs) and by iterative solvers (e.g. conjugate gradient method) for the larger ones.

11More precisely, an m-point Gauss quadrature rule will exactly integrate a polynomial of degree 2m−1 [206].
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Dealing with Dirichlet boundary conditions

So far, we have not discussed the numerical implementation of Dirichlet boundary conditions — in fact, they
do not appear in the definition of V h in Eq. (2.34). Yet in Sec. 2.1.2, we saw that they played a key role in
making the weak form problem well-posed. Accounting for them at the level of the discrete problem is equally
important as, more often than not, they guarantee the invertibility of the matrix A. The fact that the solution
vector U is supposedly known at some dofs means that the corresponding wi functions should not have been
taken into account at the assembly stage. Here we present two techniques for dealing with non-homogeneous
Dirichlet boundary conditions. Denoting (xi)1≤i≤N the coordinates of all dofs, we need to introduce the vector

UD ∈ RN such that (UD)i =

{
uD(xi) if the ith dof belongs to Σh

D

0 otherwise
, (2.37)

where Σh
D refers to the part of Σh where Dirichlet boundary conditions are applied. For convenience, we denote

by ID the index-set of dofs belonging to Σh
D.

The first method is described in Algorithm 1. First, the rhs vector is modified in a similar fashion as we did
with the continuous weak form in Sec. 2.1.2 where l(v)← l(v)−a(ũD, v) in order to account for non-homogeneous
boundary conditions. Then, entries of A and L associated with fixed dofs are set by hand in order to account
for the fact the corresponding entries of the solution vector U are already known.

Algorithm 1 A first implementation of non-homogeneous Dirichlet boundary conditions
1: Assemble matrix A and rhs vector L
2: L← L−AUD

3: for i ∈ ID do
4: for j ∈ J1, NK do ▷ Matrix entries corresponding to fixed dofs are set to zero
5: Aij ← 0
6: Aji ← 0
7: end for
8: Aii ← 1 ▷ Diagonal coefficients are set to one to avoid matrix singularity
9: Li ← (UD)i

10: end for
11: Obtain U by solving the linear system AU = L

The method described above involves solving a linear system that is larger than necessary. This is because
the value of the solution vector is already known for all entries i ∈ ID, since it is imposed by the essential
boundary condition. Therefore from a performance point of view (linear system solving, memory space), it may
be worthwhile to keep only the “true” unknowns of the system, even if the management of indices is a little more
cumbersome. Let Nr = N − card(ID) be the reduced number of active dofs. One can construct a matrix T of
size (N ×Nr) — with zeros and ones only — that allows to go from a reduced size unknown vector to the full
unknown vector. Precisely,

U = TUr +UD , (2.38)

where Ur ∈ RNr is called the reduced unknown vector. Substituting U by its expression in Eq. (2.38) and left
multiplying by TT yields the reduced square linear system of size Nr

TTATUr = TT (L−AUD) . (2.39)

This second method is summarized by Algorithm 2.

Algorithm 2 A second implementation of non-homogeneous Dirichlet boundary conditions
1: Assemble matrix A and rhs vector L
2: Assemble the T matrix defined by Eq. (2.38)
3: Compute matrix Ã = TTAT and vector L̃ = TT (L−AUD)
4: Solve linear system ÃUr = L̃
5: Reconstruct full solution vector U with Eq. (2.38)

Error estimation

So far, we pretended that is was normal for the finite element approximation to get closer to the actual PDE
solution when (i) decreasing the typical size of cells (i.e. going from a coarse mesh to a fine mesh) and (ii)
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increasing the order of polynomial approximation. These statements, put in those terms, are not very precise,
nor are they obvious. In the following development, we consciously leave aside all the problems that have to do
with numerical calculations, e.g. badly conditioned stiffness matrix, floating-point errors, inexact quadrature
rules for the evaluation of integrals, etc. In plain language, all errors inherent in machine computation are
assumed to be zero.

We start with a clarification of the notion of error. For that, we need to introduce the Π operator, which acts
on continuous functions on the mesh T h as

Π: C0(T h)→ V h

u 7→ Πu =

N∑

i=1

u(xi)wi ,

(2.40)

where {x1, . . . ,xN} corresponds to dofs coordinates, and Πu is called the interpolation of u into the finite
element space V h. Now, if u ∈ C2(Ω) is taken to be the solution of the strong form PDE, and uh ∈ V h the
approximation obtained via FEM, u and uh are solutions to the variational problems

∀v ∈ V , a(u, v) = l(v) and ∀vh ∈ V h , a(uh, vh) = l(vh) . (2.41)

Letting α > 0 be a coercivity constant and M > 0 a continuity constant of the bilinear form a(·, ·), we get, with
the help of Eq. (2.41), that for any vh ∈ V h

α∥u− uh∥2V ≤ a(u− uh, u− uh) = a(u− uh, u) = a(u− uh, u− vh) ≤M ∥u− uh∥V ∥u− vh∥V , (2.42)

where we have used the a-orthogonality of u− uh with respect to V h. In other words,

∥u− uh∥V ≤
M

α
inf

vh∈V h
∥u− vh∥V ≤

M

α
∥u−Πu∥V . (2.43)

In this expression ∥u − uh∥V represents the finite element error and ∥u − Πu∥V represents the interpolation
error, both in V -norm. This result is known as Céa’s lemma [207], and means that the accuracy of the finite
element solution is primarly determined by how well the finite element space can approximate the exact solution
within that space (note that the constants α and M only depend on properties of the bilinear form, not on the
sub-space V h).

Céa’s lemma paves the way for further obtaining a priori12 error estimates, as the task now boils down to
knowing how the interpolation error relates to the actual solution u and the finite element space parameters. We
consider only two “macro” parameters:

1. k ∈ N∗ the polynomial approximation order appearing in Eq. (2.34).

2. h > 0, which reflects the degree of fineness of the mesh, often called the mesh size. To be more precise, we
first define

hK := diam(K) = sup
{
∥x− y∥2 , x,y ∈ K

}
and then h := max

K∈T h
hk . (2.44)

From there, a lot of useful inequalities can be derived, with varying assumptions and varying norms. In fact,
if the best approximation error goes to zero, then so does the finite element error (at the same rate) thanks
to Céa’s lemma. We report on one well-known a priori error estimate in Box G. The proof of a more general
statement is given in Brenner and Scott’s book [208], Chapt. 4. A similar estimate of the error in L2-norm can
be derived using the “Aubin–Nitsche duality argument”, under a few additional assumptions. The rule of thumb
is that, if u ∈ Hk+1(Ω), then a Galerkin approximation using degree k Lagrange finite elements converges at
O(hk) in H1-norm and at O(hk+1) in L2-norm.

12An a priori error estimate, as opposed to an a posteriori error estimate, can be obtained without having to actually compute u
or uh.
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Box G: An a priori error estimate

Let k ∈ N∗ be the order of the Lagrange elements. Suppose that u is regular enough, i.e. it
belongs to the space Hk+1(Ω) defined by Eq. (2.23). Then, there exists a positive constant C,
which does not depend on u nor h, such that

∥u− uh∥H1 ≤ C hk |u|Hk+1 . (2.45)

In this expression, |u|Hk+1 denotes the Sobolev semi-norm, which extends the definition given
for |u|H1 to

|u|Hm =


∑

|α|=k

∥Dαu∥2L2




1
2

, ∀m ∈ N∗ . (2.46)

2.1.4 Time-dependent problems in FEM

Throughout this PhD work, we assume that the various fields at stake vary slowly with respect to the characteristic
time of the phenomena being studied. This legitimates the use of the so-called quasi-static approximation.
Bluntly speaking, terms of the fields’ equation involving derivatives with respect to time are all set to zero,
resulting in simpler PDEs. Yet, performing time-dependent simulations of screened scalar fields was at some
point envisioned. For the sake of completeness, we here provide a short guide explaining how to take FEM a
step further for capturing dynamical (i.e. time-dependent) physical effects and review the most mainstream
approaches.

It is worth noting that the stationarity assumption generally alters the nature of a given PDE (elliptic,
parabolic or hyperbolic, see Sec. 2.1.1). In the case of wave-like PDEs, such as the Klein–Gordon equation (1.45)
governing the scalar field in scalar-tensor models, setting partial derivatives involving time to zero changes the
nature of the PDE from hyperbolic to elliptic. Moreover, regardless of the chosen approach, the unknown is
now time-dependent u = u(x, t). That means new extra “boundary conditions” have to be provided for the time
component, namely initial conditions.

The model problem we consider here is a linear wave-equation, reading

∂2u

∂t2
− c2∆u = f in Ω× [0, T ] , (2.47a)

u(x, t) = uD(x, t) on ΓD × [0, T ] , (2.47b)
∂u

∂n
(x, t) = gN (x, t) on ΓN × [0, T ] , (2.47c)

u(x, 0) = u0(x) in Ω , (2.47d)
∂u

∂t
(x, 0) = v0(x) in Ω , (2.47e)

for some time T > 0. In the above, Eqs. (2.47b–2.47c) represent the boundary conditions (Dirichlet and Neumann
respectively) while Eqs. (2.47d–2.47e) correspond to the initial conditions. The latter are twofold since the
PDE (2.47a) is second-order in time. In the following, we present two approaches for numerically solving
problem (2.47). In Eq. (2.47a), c need not necessarily be interpreted as the speed of light.

Finite differences for time, finite elements for space

The first approach, probably the most commonly used one, consists in combining the finite element method for
space discretization on the one hand, and the finite difference method (FDM) for time discretization on the
other hand. Because the discretization is twofold, notations need to be made slightly more precise:

– Ns is used to denote the total number of dofs, h refers to the mesh size (see Eq. 2.44) and finite element
matrices/vectors are labeled with subscripts i, j.

– Nt denotes the total number of discrete time steps, (tn)0≤n≤Nt is the sequence of points in [0, T ] such that
tn = n∆t with ∆t := T/Nt.

From the outset, one seemingly inconsequential question arises: should we (i) discretize time and then space, or
conversely (ii) discretize space first, and then time? Option (i) — referred to as Rothe method — leads to a
stationary PDE at each time step, that is then solved via FEM. With option (ii) — called the method of lines —
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we get a system of N coupled ordinary differential equations (ODEs) which can be solved with a relevant finite
difference scheme.

Actually, the difference between the two techniques is quite subtle. Indeed, one can show that they lead to
the same fully-discretized (time and space) set of equations, provided that the mesh remains the same across
all time steps. With the method of lines, we construct a mesh T h once and for all, and spatially discretize the
unknown as

uh(x, t) =

N∑

i=1

Ui(t)wi(x) , ∀(x, t) ∈ T h × [0, T ] . (2.48)

Pluging the decomposition Eq. (2.48) into the wave equation Eq. (2.47a) yields the N -dimensional ODE

MÜ(t) +AU(t) = L(t) , (2.49)

where dots refer to time derivatives. This intermediate expression is called a semi-discretized equation owing
to the fact that space has been made discrete while time still flows continuously. Then, the second-order time
derivative appearing in Eq. (2.49) is approximated through traditional finite differences. Cutting short this
discussion, we lay emphasis on the fact that this method is not particularly suited to our potential future needs.
The reason being that, with the mesh T h set in concrete, it is not possible to dynamically keep track of moving
parts in the simulation, nor is it possible to adapt the mesh refinement to the region of interest (which is likely
to travel across the numerical domain). In contrast, Rothe method can accommodate these features which is
why it is given the focus in the following.

We start with an optional step, that consists in re-writing problem (2.47) as two first-order-in-time PDEs.
This fairly common trick has the effect of reducing the number of time steps to be kept in computer’s memory,
and brings us back to the ‘canonical’ framework of first-order ODEs. Setting v := ∂tu, we get the set of equations

∂tv − c2∆u = f (2.50a)
u(x, t) = uD(x, t) (2.50b)

∂nu(x, t) = gN (x, t) (2.50c)
u(x, 0) = u0(x) (2.50d)

∂tu = v (2.50e)
v(x, t) = ∂tuD(x, t) (2.50f)

∂nv(x, t) = ∂tgN (x, t) (2.50g)
v(x, t) = v0(x) (2.50h)

in Ω× [0, T ]

on ΓD × [0, T ]

on ΓN × [0, T ]

in Ω ,

where we have added new boundary conditions (2.50f–2.50g) for the new unknown v. Following Rothe method,
we discretize Eqs. (2.50a, 2.50e) with respect to time first, using finite difference approximations. In order to
remain as general as possible, we do so by employing the θ-scheme, reading for all x ∈ Ω, n ∈ J0, Nt − 1K

un+1 − un
∆t

= θvn+1 + (1− θ)vn , (2.51a)

vn+1 − vn
∆t

= c2θ∆un+1 + c2(1− θ)∆un + θfn+1(x) + (1− θ)fn(x) . (2.51b)

In above, we use the notation fn(x) ≡ f(x, tn), and the same goes for all other functions. This scheme is
explicit only when θ = 0, which corresponds to the forward Euler scheme. It becomes implicit as soon as θ > 0.
In particular, θ = 1 corresponds to backward Euler scheme while θ = 1/2 is the well-known Crank-Nicolson
scheme. The latter has the advantage of being a second-order method, compared to Euler schemes which
constitute first-order methods. We then rearrange the terms in Eqs. (2.51a–2.51b) so as to be able to first
determine un+1, and then vn+1:

[
1− (∆t θ)2∆

]
un+1 =

[
1 + ∆t2 θ(1− θ)∆

]
un +∆tvn + θ∆t2

[
θfn+1(x) + (1− θ)fn(x)

]
, (2.52a)

vn+1 = vn +∆t
[
c2θ∆un+1 + c2(1− θ)∆un + θfn+1(x) + (1− θ)fn(x)

]
. (2.52b)

From there, we apply the finite element procedure, which has been discussed at length in Sec. 2.1.2 and 2.1.3.
Deriving the weak formulations from Eqs. (2.52a–2.52b) does not present any particular difficulty. Things become
a little trickier when turning to the finite element discretization. Indeed, we willingly allow the underlying mesh
to evolve from one time step to the next. As a result, the basis decomposition Eq. (2.48), which assumed a single
mesh for all time steps, is no longer valid. Instead, it should be made time-dependent as well, reading for all
n ∈ J0, NtK

(un)
h
(x) =

Nn
s∑

i=1

Un
i w

n
i (x) , ∀x ∈ T h

n , (2.53)

where it should be noted that the number of dofs, the basis functions, and the tessellation are indexed by n as
they are now time step-dependent. We can already see the issues ahead: the assembly of some FE terms is going
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to involve the computation of integrals of the form

∫

Ω

(vn)
h
(x)wn+1

j (x) dx =

Nn
s∑

i=1

V n
i

∫

Ω

wn
i (x)w

n+1
j (x) dx . (2.54)

The problem with these type of integrals is that wn
i and wn+1

j are not defined on the same mesh, making such
computations quite messy in appearance. One way possible around this awkwardness would be to pre-evaluate
known terms (obtained at the nth step) at the quadrature points of each cell element of T h

n+1 (see Eq. 2.36) —
which is doable in practice without too much hassle.

The only point we have not touched upon so far is the stability of the method. One can show that explicit
methods will typically exhibit a CFL13 stability condition of the form ∆t < (2h)/(cπ) — h being the mesh size
[see Eq. (2.44)], while implicit methods are generally unconditionally stable (for any step size). Either way,
accuracy cannot be expected unless ∆t < h/c. Combining these two arguments, it is reasonable in that case
to use explicit time stepping methods, as checking the accuracy condition matches the stability limit. This
is important matter in terms of computational cost since, unlike for implicit methods, explicit methods do
not require solving a linear system at each time step (set θ = 0 in Eqs. 2.52a, 2.52b), making them a cheaper
alternative.

To sum up, the method of lines with explicit time stepping is probably a good place to start implementing
a time-dependent solver. If, however, the ultimate goal is to be able to perform a dynamical simulation with
moving parts (e.g. time-dependent density distribution ρ(x, t), with back reaction from the scalar force), Rothe
method might be more suitable and worth the extra implementation-effort. An illustration of this method is
given in Fig. 2.4a. Moreover, the model problem we considered in Eq. (2.47) is that of a linear wave-equation.
In Sec. (2.2.4), we provide a short extra note on how to deal with the time-dependent nonlinear Klein–Gordon
equation.

Spacetime FEM

As highlighted in Sec. 2.1.1, we could in principle ask some component xi of the x vector to represent time, and
the discussion would remain the same. This naive observation underlies the slightly more exotic spacetime finite
element method. It treats space and time as a unified domain, allowing for the discretization of both dimensions
using finite element basis functions. The idea extending the finite element framework to time-dependent problems
by encompassing the time-dimension into the numerical domain Ω was first proposed in Refs. [209–211]. The
method has then been successfully applied to second-order hyperbolic PDEs as soon as the early 1990’s, see e.g.
Ref. [212]. Compared to traditional methods that separate spatial and temporal discretizations, spacetime FEM
can offer more efficient and accurate solutions, especially for problems with strong coupling between space and
time. Note that problems with three spatial dimensions require the use of 4-dimensional meshes. This added
layer of abstraction does not alter the roots of FEM (in the sense that all computation can still be fairly well
automated), but data visualization may require extra post-processing tools. An illustration of this method is
given in Fig. 2.4b.

2.2 Dealing with nonlinear problems

In this second section, we relax one of the first assumptions we made at the beginning of Sec. 2.1.1, namely that
the differential operator L be linear — the motivation being to be able to solve the nonlinear Klein–Gordon
equation Eq. (1.117). There are three main types of nonlinear PDEs:

1. semi-linear PDEs, for which only the highest order derivatives appear as linear terms. For the specific case
of second-order PDEs [Eqs. (2.2–2.3)], that means that the coefficient matrix C only depends on x while
the other coefficients b and d are allowed to depend on u and its partial derivatives.

2. quasi-linear PDEs, where the coefficients of the highest order derivatives terms are allowed to be functions
of lower-order derivatives. In the case of second-order PDEs, this translates to C = C(x, {∂αu}) for all the
multi-indices α satisfying |α| ≤ 1. Einstein field equations Eq. (1.12) are a concrete example of a system of
quasi-linear PDEs.

3. fully nonlinear if none of the above linearity properties hold.

We see that the Klein–Gordon equation (1.117) falls into the first category of semi-linear PDEs, which is the
form closest to linear equations.

13Courant-Friedrichs-Lewy
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(a) Combining FDM and FEM discretizations (b) Spacetime Finite Element Method

Figure 2.4: Illustration of the two proposed ways to handle time-dependent PDE problems. In order to
facilitate the understanding through visualization, the time dimension (represented by the gold vertical arrow)
is supplemented with only two spatial dimensions (represented by the red arrows). On the left-hand-side, (a)
depicts the use of FEM for space discretization while FDM is employed for time stepping. Note that this sketch
corresponds to the Rothe method as the mesh evolves from one time step to the next — allowing to keep track
of some moving region of interest where the mesh needs to be refined (adaptivity). On the right-hand-side, (b)
represents a spacetime FEM mesh. Mesh refinement is also allowed, both in space and time directions. While
time is still discretized, basis functions make it possible to retrieve the data at any given instant.

In the following, we show how all the FE frameworks laid out in the previous section can be re-invested
in the context of nonlinear PDEs. We do not deal with nonlinearities due to boundary conditions, which are
another source of nonlinearity.14

2.2.1 Iterative techniques

On the surface, the principle of iterative techniques is fairly simple:

1. linearize the PDE around some initial guess u0;

2. solve the resulting linear PDE with the techniques laid out in Sec. 2.1;

3. update the initial guess thanks to the previous solution and go back to step 2 until convergence is met.

While this is a not-so-inaccurate outline of how iterative techniques work, it shadows a great number difficulties.
As we are going to see, there is not a single way of linearizing a given PDE. What makes a good initial guess and
how to choose it accordingly? How do we actually update the solution from one iteration to the next? How do
we assess the convergence of the algorithm? How fast does it converge? More fundamentally, how do we know
for sure it is going to converge?

In order to address these questions, we decide to proceed as in Sec. 2.1. For the sake of remaining sufficiently
general, the main principles are first introduced on a generic quasi-linear PDE with essential boundary conditions
whose weak formulation is assumed to take the form15

∫

Ω

C(x, {Dαu})∇u ·∇v dx−
∫

Γ

[
(C(x, {Dαu})∇u) · n]v dγ

+

∫

Ω

b(x, {Dαu}) ·∇u v dx+

∫

Ω

d(x, {Dαu})uv dx =

∫

Ω

f(x)v dx . (2.55)

14Nonlinear boundary condition are common in structural mechanics for problems where the boundary constraints depend
explicitely on the deformation state of the system.

15The techniques introduced thereafter could also be applied to fully nonlinear PDEs to some extent. Yet, we restrict the general
discussion to weak formulations of the form Eq. (2.55) because (i) their handling does not require the introduction of additional
tools/objects and (ii) we do not go beyond semi-linear PDEs in this PhD work.
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In this expression, all coefficients are allowed to depend both on the coordinates x, and on the unknown u and
all its first-order weak derivatives, shortened to {Dαu}. It is also worth noting that the integral over Γ cannot
be taken to be zero (yet)! Indeed, the trick presented at the end of Sec. 2.1.2 to deal with non-homogeneous
Dirichlet boundary conditions cannot be applied here due to the nonlinearity of L. The ideas are first exposed
in the general case, before being applied to the semi-linear Klein–Gordon equation (1.117) which we reproduce
here (in a simplified fashion) for the sake of convenience:

α∆u = ρ− u−(n+1) on Ω ⊂ R3 . (2.56)

We denote the unknown by u (instead of ϕ) for consistency with the previous section and draw attention to the
fact that n now denotes the potential index of the chameleon model, the dimension being set to 3. Following
Sec. 2.1.2, we can derive the weak form of Eq. (2.56), for which we have

a(u, v) = α

∫

Ω

∇u ·∇v dx− α
∫

Γ

(∇u · n)v dγ −
∫

Ω

u−(n+1)v dx and l(v) = −
∫

Ω

ρ v dx . (2.57)

The issue with the weak forms (2.55, 2.57) is that they are not linear in u, and so the basis decomposition (2.31)
will fail to produce a linear system.

We start by giving a sense to what it means to linearize a nonlinear PDE with two distinct procedures,
namely Picard iterations and Newton’s method. In both cases, our starting point is Eq. (2.57). In other words,
the linearization process occurs at the stage of the continuous weak form. This is a choice that we make, as
linearizing at earlier stages (e.g. in the strong form PDE) or later stages (e.g. after discretization) may sometimes
lead to different problem formulations. Moreover, such procedures are of course not restricted to the FEM
framework and can be applied in very diverse contexts.

Picard iterations

Picard’s method — which is also known as fixed-point iteration, successive substitution or even nonlinear
Richardson iteration — is perhaps the simplest way of linearizing nonlinear PDEs put in the weak form. In
nonlinear terms, the unknown u is replaced by hand by some already known approximation u∗ of u. This
procedure is best illustrated on algebraic equations. Consider the simple example of a second-order algebraic
equation

au2 + bu+ c = 0 . (2.58)

Here, the nonlinear term can be approximated through u2 ≃ u∗u, resulting in a linear algebraic equation
au∗u + bu + c = 0. From there the algorithm is elementary: solve the linearized equation with respect to
u, set u∗ ← u and repeat. This procedure is guaranteed to converge under the assumptions of the Banach
fixed-point theorem [213]. Back to PDEs, the very same idea can be applied except that now u lives in an
infinite-dimensional space. Eq. (2.55) can be made linear in the unknown by inputting u∗ instead of u in all
coefficients, yielding

∫

Ω

C(x, {Dαu∗})∇u ·∇v dx+

∫

Ω

b(x, {Dαu∗}) ·∇u v dx+

∫

Ω

d(x, {Dαu∗})uv dx =

∫

Ω

f(x)v dx . (2.59)

Applying the same treatment to Eq. (2.57) results in

α

∫

Ω

∇u ·∇v dx−
∫

Ω

u
−(n+2)
∗ u v dx = −

∫

Ω

ρ v dx . (2.60)

Standard FEM can then be employed to solve Eqs. (2.59–2.60) whatever the known function u∗. It is important
to point out that, unlike their nonlinear counterparts, these weak forms are now exempt from boundary terms.
In fact, the linearity of Eqs. (2.59–2.60) allows for the use of null test functions v on the boundary, i.e. v|Γ ≡ 0.

Note that the above derivation of a linearized weak form may not seem quite algorithmic, in the sense
that other choices could have been made. Indeed, Picard’s method can be viewed as solving iteratively a
fixed-point problem of the form u = g(u) — where the function g is generally not unique. Back to the algebraic
equation (2.58), one can write a fixed-point scheme in either of the following forms

u = −au
2 + c

b
(2.61a) u = − c

au+ b
(2.61b)

u =

√
−bu+ c

a
(2.61c)

provided that the coefficients {a, b, c} make these expressions well-defined for u in some given interval. The
linearization u2 ≃ u∗u employed above corresponds to the fixed-point scheme given by Eq. (2.61b) while
Eq. (2.61a) is equivalent to approximating u2 ≃ u2∗. By analogy, an alternative way of linearizing the weak
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formulation of the Klein–Gordon equation (2.57) is

α

∫

Ω

∇u ·∇v dx =

∫

Ω

u
−(n+1)
∗ v dx−

∫

Ω

ρ v dx . (2.62)

Looking at the two linearized weak forms (2.60, 2.62), we can see that they correspond to different (bi)linear
forms. Most importantly, the coercivity assumption listed in the Lax–Milgram theorem (see Box E) may or may
not hold depending on the linearization process. Even worse, the coerciveness of the bilinear form defined by
the lhs of Eq. (2.60) may depend on the current iterate u∗. In comparison, the bilinear form defined by the lhs
of Eq. (2.62) is coercive for the H1-norm, under the assumptions of Sec. 2.1 (α > 0). And still, we stress that
having a well-posed linearized weak formulation at each iteration does not ensure convergence.

For the sake of completeness, let us give the discrete version of Picard iterations. At any given iteration k,
the discrete approximation uhk ∈ V h is defined according to Eq. (2.31), that is

uhk =

N∑

i=1

Uk
i wi with Uk = (Uk

1 , . . . , U
k
N )T . (2.63)

Consequently, weak formulations Eqs. (2.60, 2.62) result in a linear system reading

A
(
uhk
)
Uk+1 = L

(
uhk
)

and so Uk+1 = A
(
uhk
)−1

L
(
uhk
)
. (2.64)

Recalling that uhk only depends on Uk ∈ RN , we recover the classic form of fixed-point iterations in dimension
N , that is

Uk+1 = K(Uk) . (2.65)

A few comments are in order:

– The invertibility of matrix A(Uk) follows directly from the coerciveness of a(·, ·) assumed here. And yet,
one must bear in mind that coercivity is only a sufficient condition for invertibility.

– The final form Eq. (2.65) is the multi-dimensional counterpart of the algebraic fixed-point problem “u = g(u)”
discussed above.

– Compared to the continuous weak formulation [e.g. Eqs. (2.59, 2.60, 2.62)], the convergence of iterations
of the N -dimensional version given by Eq. (2.65) is somewhat easier to assess, at least theoretically. Given
some assumptions on the fixed-point map K, one can find several relevant convergence results in Kelley’s
book [214], Chapt. 4.

Newton iterations

Newton’s method is another way of linearizing weak form PDEs. In comparison with Picard iterations, for which
we saw that there was not a single way of proceeding, it is somewhat more algorithmic. Here, the foundations of
the method are properly laid since it ended up being used for nearly all numerical computations conducted in
this PhD work.

Newton’s method is a root finding algorithm in numerical analysis. Its starting point consists in writing
the nonlinear equation in the residual form “f(u) = 0”, which is a more general form than the fixed-point
iteration “u = g(u)” seen above. From there, the equation is linearized by approximating f(u) by its first-order
Taylor series expansion around a known guess u∗. As before, it is enlightening to start with the one-dimensional
algebraic case. Taking Eq. (2.58) as an example, we have f(u) = au2 + bu+ c and so

f(u) = f [u∗ + (u− u∗)] = f(u∗) + (u− u∗)f ′(u∗) + o(u− u∗) = u(2au∗ + b)− au2∗ + c+ o(u− u∗) . (2.66)

Then u is chosen so as to cancel this expansion up to first order, i.e.

u = u∗ −
f(u∗)
f ′(u∗)

=
au2∗ − c
2au∗ + b

, (2.67)

The solution given by Eq. (2.67) is used as the new guess u∗ ← u and so on until convergence is met. Note that
Eq. (2.67) does not correspond to any of the Picard linearizations attempted in Eq. (2.61).

The very same ideas can be applied to the case of nonlinear weak forms. This requires nonetheless adapting
several notions. First of all, f is no longer a real function but a functional instead. In the case of the Klein–Gordon
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equation, we set for v ∈ V

fv : V → R

u 7→ α

∫

Ω

∇u ·∇v dx− α
∫

Γ

(∇u · n)v dγ −
∫

Ω

u−(n+1)v dx+

∫

Ω

ρv dx .

(2.68)

The recursion formula (2.67) cannot be used directly as “f ′v” is undefined. The appropriate form of differentiation
is the Gateaux derivative. Given a direction z ∈ V , it is defined as

Jv(u, z) := lim
ϵ→0

fv(u+ ϵz)− fv(u)
ϵ

. (2.69)

Our goal being to cancel fv(u), we set δu := u− u∗ and write

fv(u) = fv(u∗ + δu) = fv(u∗) + Jv(u∗, δu) + higher order terms = 0 . (2.70)

Dropping the higher order terms, we merely end up with Jv(u∗, δu) = −fv(u∗), where u∗ ∈ V is known
and the Gateaux derivative is linear in δu. This is of course reminiscent of Eq. (2.67) when rewritten as
f ′(u∗)δu = −f(u∗).

We illustrate this procedure on fv given by Eq. (2.68), we have

fv(u+ ϵz)− fv(u) = ϵα

∫

Ω

∇z ·∇v dx− ϵα
∫

Γ

(∇z · n)v dγ −
∫

Ω

[
(u+ ϵz)−(n+1) − u−(n+1)

]
v dx (2.71)

= ϵα

∫

Ω

∇z ·∇v dx− ϵα
∫

Γ

(∇z · n)v dγ + ϵ(n+ 1)

∫

Ω

u−(n+2)zv dx+ o(ϵ) , (2.72)

so that
Jv(u, z) = α

∫

Ω

∇z ·∇v dx− α
∫

Γ

(∇z · n)v dγ + (n+ 1)

∫

Ω

u−(n+2)zv dx . (2.73)

Therefore, at the kth iteration, δuk = uk+1 − uk satisfies Jv(uk, δuk) = −fv(uk) i.e.

α

∫

Ω

∇uk+1 ·∇v dx+ (n+ 1)

∫

Ω

u
−(n+2)
k uk+1v dx = (n+ 2)

∫

Ω

u
−(n+1)
k v dx−

∫

Ω

ρv dx . (2.74)

Let us pause here and make a few remarks:

– Again, the boundary term has been dropped in Eq. (2.74) because the tests functions v are taken to be
zero on Γ when solving this sequence of linear problems.

– The linearized weak form (2.74) is different from the previous two weak forms Eqs. (2.60, 2.62) derived in
the context of Picard iterations. Note that the Newton linearization produces more terms than Picard
does.

– At this stage (continuous linearized weak form), it is equivalent to work the uk+1 or δuk as the unknown,16
since Eq. (2.74) is linear. Most importantly, this change of variable does not affect the bilinear form defined
by the lhs of Eq. (2.74), only its rhs gets modified.

– The coerciveness of the bilinear form is easy to study. From physical insights relating to the chameleon
model (see Sec. 1.2.2), we know that (i) there exists a constant ϕmax > 0 such that for any k ∈ N and for
all x ∈ Ω, uk(x) ≤ ϕmax and (ii), α > 0. Consequently, for all u ∈ V ,

α

∫

Ω

∥∇u∥2 dx+ (n+ 1)

∫

Ω

u
−(n+2)
k |u|2 dx ≥ min

(
α, (n+ 1)ϕ−(n+2)

max

)
∥u∥2H1 . (2.75)

Note that we have not made use of Poincaré’s inequality (see Box F), unlike for the Poisson problem where
it plays a crucial role in proving the coercivity of the bilinear form. It follows that Eq. (2.75) holds even in
the absence of essential boundary conditions on the boundary Γ, which is remarkable.

The next step is the discretization of Eq. (2.74), already discussed at length in Sec. 2.1.3 and when presenting
Picard’s method, which is why we skip it here. Note however that, regardless of the linearization technique
employed, we inevitably end up with terms that depend on uhk and terms that do not. Using the subscript ‘mod’

16In this respect, Ref. [190] uses the wrong terminology by stating that Eq. (2.74) corresponds to the Picard iteration while the
same equation but written out with the δuk variable corresponds to the Newton iteration.
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Figure 2.5: Illustration of Picard and Newton methods on the scalar case Eq. (2.58), with {a = 10, b = 1, c = −1}.
For the Picard iterations, we chose the fixed-point scheme given by Eq. (2.61b). In this example, Newton’s
iterations converge much faster than Picard’s iterations. Note that the two pairs of axes do not share the same
scaling.

to denote the former and ‘cst’ to denote the latter, we have, schematically,

A = Acst +Ak
mod and L = Lcst + Lk

mod . (2.76)

An optimized solver would thus only have to re-assemble the terms Ak
mod and Lk

mod from one iteration to the
next. Again, let us make closing remarks regarding Newton’s method:

– After the discretization step, the process boils down to an N -dimensional Newton’s method. Its convergence
is studied from a theoretical point of view again in Kelley’s book [214], Chapt. 4, 5. In practice, convergence
issues are commonplace. We review a number of techniques designed to help convergence in Sec. 2.2.3.

– One of the take-home messages from the theory is that, provided the initial guess U0 is not “too far away
from the root”, Newton’s method converges quadratically (that is much faster the Picard iterations, see e.g.
Fig. 2.5 for an illustration on the scalar case). A good rule of thumb is that the “less” we linearize fv, the
faster the convergence is likely to be.

– As a side remark, the distinction we draw between Picard and Newton methods is not in line with Refs. [190,
191]. The definitions given in those references thus clashes with ours.

2.2.2 Stopping criteria and inspection of the residual

A numerical iterative technique cannot go but hand in hand with stopping criteria, i.e. conditions to be checked
after each iteration to determine whether or not the procedure has converged. We consider roughly two categories
of criteria: (i) the ones based on how much the current iterate changes from one iteration to the next, and (ii)
the ones based on the residual, which is given a precise meaning thereafter. Unless specified otherwise, we use
the notation ∥ · ∥2 to refer to the two-norm in RN .

Criteria based on the stalling of the evolution of the current iterate Uk can be either

– absolute, e.g. checking the condition ∥Uk −Uk−1∥2
?
< ϵabs, or

– relative, e.g. checking the condition ∥Uk −Uk−1∥2 / ∥Uk−1∥2
?
< ϵrel .

It is even possible to combine them both as ∥Uk −Uk−1∥2
?
< ϵabs + ∥Uk−1∥2 ϵrel. The tuning of ϵrel, ϵabs is left

to the user’s appreciation (especially ϵabs as it directly linked to the characteristic scales of the problem at stake,
while ϵrel can be set to a constant value regardless of the underlying problem, e.g. ϵrel = 10−6).

These above criteria are a good way to assess the convergence part of the algorithm. What they do not do is
provide some sort of feedback on how accurate the current iterate Uk is. For this, one very important tool is the
residual. Any given nonlinear PDE can be cast into the so-called residual form, that is f(u) = 0, where f(u) is
referred to as the residual. The closer the residual f(uk) is to zero, the better the approximated solution uk.
Here however, it is not possible to perform this test as is, simply because we only have uhk =

∑
i U

k
i wi at our

disposal, which in general does not have the sufficient regularity to even be inputted in the original strong form
PDE.17 A workaround is to define a discrete residual vector Rk = F (Uk) using the non-linearized weak form

17In this regard, let us recall that using P2 Lagrange triangles only result in continuous functions (i.e. not even C1).
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Eq. (2.55):

F : RN → RN

U 7→
(

N∑

i=1

Ui

{∫

Ω

[
C(x, {Dαuh})∇wi ·∇wj + (b(x, {Dαuh}) ·∇wi)wj

+ d(x, {Dαuh})wiwj

]
dx−

∫

Γ

(
C(x, {Dαuh})∇wi · n

)
wj dγ

}
−
∫

Ω

f(x)wj dx

)

1≤j≤N

.

(2.77)

For the Klein–Gordon equation (2.56), we have the much more compact expression

Rk
j = α

N∑

i=1

Uk
i

{∫

Ω

∇wi ·∇wj dx−
∫

Γ

(∇wi · n)wj dγ

}

︸ ︷︷ ︸
=(t1)kj

−
∫

Ω

(
uhk
)−(n+1)

wj dx

︸ ︷︷ ︸
=(t2)kj

+

∫

Ω

ρ(x)wj dx

︸ ︷︷ ︸
=(t3)kj

. (2.78)

This residual vector Rk can be used in several ways to assess convergence towards the problem’s actual
solution — see Fig. 2.6 for a concrete example of such an analysis. We decide to use ∥Rk∥2 as a global monitoring
quantity. The issue is that ∥Rk∥2 is an absolute quantity, and thus needs to be compared against some reference
for it to be useful in practice — otherwise what does it mean for it to be ‘small’? To that extent, several ideas
have been considered in this work, such as

– the relative decrease for one iteration to the next (∥Rk∥2 − ∥Rk−1∥2) / ∥Rk−1∥2, or

– the improvement with respect to the initial guess, that is ∥Rk∥2 / ∥R0∥2.

The drawback from using the 2-norm of the residual vector is that local information is ineluctably lost. The
numerical approximation may end up being very accurate in some regions of the numerical domain while being
quite poor in others. This is difficult to estimate with the residual vector alone. Even if we assume a constant
relative error throughout the domain, the residual vector is allowed to vary by several orders of magnitude.
The trick we employ in this work consists in comparing (locally) the residual vector against each of the terms
that make it up. These terms are denoted by (ti)1≤i≤3 in Eq. (2.78) for the chameleon case. For a numerical
approximation to be deemed good, we demand that the residual vector be locally several orders of magnitude
smaller than the dominant term (in absolute value). This additional check can be performed “off-line”, when the
iterations are over, as post-processing. It is used in particular in Chapt. 5.

Finally, we mentioned earlier that we may encounter convergence issues when using iterative techniques. In
such situations, none of the above criteria are likely to be fulfilled. In order to ensure the termination of the
program and thus avoid falling into an infinite loop, it is common practice to additionally set up a maximum
number of iterations kmax.

2.2.3 Resolving convergence issues

Ultimately, the most critical point in iterative techniques is convergence. As mentioned above, whether the
chosen method — Picard or Newton — converges, depends on a number of factors which are not necessarily
easy to assess in actual computations. As a result, there are no miracle techniques to address convergence issues
but rather recipes and good practices, that are reported here.

Starting from a good initial guess

When solving nonlinear PDEs with iterative techniques, finding a good initial guess is crucial for a number of
reasons: prevent divergence or oscillations in the iterative process, avoid local minima/maxima [which corresponds
to the case when the Jacobian given by Eq. (2.69) is singular], reduce the computational cost by reducing the
number of iterations to be taken, and increase the robustness of the method against variations in the problem’s
data. All tricks are thus fair game.

The most convenient case is when an analytical approximation to the solution is available. That, however,
may require a fair amount of work, yielding an approximation applicable only to a restricted family of cases.
Another typical trick consists in starting by solving a simpler problem whose solution is expected to be close
to the solution of the actual, more complex, problem. A simpler problem might be a closely related linear
problem if the nonlinear term is relatively small, or a lower-dimensional one in cases where the physics almost
has symmetrical properties.
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Figure 2.6: Residual vector as a monitoring tool. Absolute value of the residual vector |Rk| at iterations
k ∈ {2, 10, 15} of the Newton method for the radial Klein–Gordon equation (2.56), expressed as a function of
r̃. A Dirichlet boundary condition is set at r̃ = 5. At r̃ = 1, the density term, which acts as a source term
for this semi-linear PDE, drops by five orders of magnitude. As a result, the residual tends to be large in
this localized region where the solution undergoes rapid variations. We observe that the pointwise residual is
uniformly decreased over the computational domain by several orders of magnitude as iterations are carried out.
Eventually, the residual starts stagnating and the algorithm terminates.

Relaxation

Sometimes, convergence issues arise because the newly computed approximation Uk+1 is “too far away” from
the previously computed one Uk. That can be mitigated through the introduction of a so-called relaxation
parameter ω ∈ ]0, 1], which allows one to take smaller steps. With this parameter at hand, the update procedure
is generalized to a mere convex combination of the previous approximation Uk and Uk+ω — the solution of the
relevant linearized problem with current guess Uk —, reading

Uk+1 ← ωUk+ω + (1− ω)Uk . (2.79)

The price to pay for this added stability to the algorithm is a potentially slower convergence.

Line search algorithm

The linear search algorithm extends the idea of using a relaxation parameter by turning the choice of its value
into an optimization problem. It thereby becomes an iteration-dependent parameter (ωk)1≤k≤kmax

. A convenient
choice is to define this sequence of relaxation parameters with respect to the residual vector as

ωk+1 = argmin
ω

∥Rk∥22 = argmin
ω

∥F
(
ωUk+ω + (1− ω)Uk

)
∥22 . (2.80)

See Fig. 2.7 to get a flavor of the meaning of Eq. (2.80) on the example of the nonlinear Klein-Gordon
problem (2.56–2.57) being discussed.

This optimization problem is easily solved by first computing the derivative with respect to ω. Using the
chain rule, we get

d

dω

[
∥F
(
ωUk+ω + (1− ω)Uk

)
∥22
]
=

d

dω

N∑

i=1

[
F
(
ωUk+ω + (1− ω)Uk

)
i

]2

= 2

N∑

i=1

F
(
ωUk+ω + (1− ω)Uk

)
i
× (Uk+ω −Uk) · JFi

(
ωUk+ω + (1− ω)Uk

)

= 2F
(
ωUk+ω + (1− ω)Uk

)
·
[
JF

(
ωUk+ω + (1− ω)Uk

)
(Uk+ω −Uk)

]
,
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Figure 2.7: Illustration of the line search process on the radial nonlinear Klein-Gordon equation (2.56). The
three panels represent the 2-norm of the residual vector Rk given by Eq. (2.78) at iteration k ∈ {4, 7, 10} of the
Newton solver as a function of the relaxation parameter ω. The line search algorithm consists in finding the
optimal parameter ωopt that minimizes the residual in the sense given by Eqs. (2.80).

where JFi
: RN → RN denotes the Jacobian of the ith component of F and JF : RN → RN × RN is the full

Jacobian matrix of F defined by Eq. (2.68). Then, we find out for which ω the derivative cancels out, that is we
solve

F
(
ωUk+ω + (1− ω)Uk

)
·
[
JF

(
ωUk+ω + (1− ω)Uk

)
(Uk+ω −Uk)

]
= 0 . (2.81)

This last step cannot be carried out analytically, and one has to rely on some root-finding algorithm. The
subsequent multiple evaluations of F together with its Jacobian matrix to determine the best ω is what makes
up the computational cost of the line search algorithm overall.

The form of Eq. (2.81) can be made explicit in the case of the Klein–Gordon equation. The vector F has
components given by Eq. (2.78) while the Jacobian matrix JF has entries

(JF )j,l(U) =
(
JFj

)
l
(U) =

∂Fj

∂Ul
(U)

= α

N∑

i=1

∂Ui

∂Ul

{∫

Ω

∇wi ·∇wj dx−
∫

Γ

(∇wj · n)wi dγ

}
−
∫

Ω

wj
∂

∂Ul

(
N∑

i=1

Uiwi

)−(n+1)

dx+
∂

∂Ul

∫

Ω

ρ(x)wj dx

= α

N∑

i=1

δli

{∫

Ω

∇wi ·∇wj dx−
∫

Γ

(∇wj · n)wi dγ

}
+ (n+ 1)

∫

Ω

(uh)−(n+2)
N∑

i=1

δliwi dx

= α

{∫

Ω

∇wi ·∇wj dx−
∫

Γ

(∇wj · n)wi dγ

}
+ (n+ 1)

∫

Ω

(uh)−(n+2)wl wj dx . (2.82)

We observe that, when using Newton’s method, most finite element matrices/vectors needed to carry out the
present computations are already available (as they were also needed for the computation of Uk+ω). What
dominate the root finding stage are thus the various scalar products and matrix-vector multiplications of
Eq. (2.81).
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Algorithm 3 Nonlinear FEM iterative techniques — summary
1: Inputs, initialization:
2: Set a value to meta-parameters ϵabs, ϵrel, kmax, ω, etc. ▷ empirical, physical insights
3: Linearize the PDE according to Picard or Newton method
4: Assemble matrix A0 = Acst +A0

mod and rhs vector L0 = Lcst + L0
mod

5: Select an initial guess U0 ▷ physical insight, solution of a simpler problem
6: for k = 0 to kmax do
7: Solve linear system AkUk+ω = Lk

8: if employ a line search algorithm then
9: Determine ωk+1 as the root of Eq. (2.81)

10: else
11: ωk+1 = ω (constant)
12: end if
13: Uk+1 ← ωk+1Uk+ω + (1− ωk+1)Uk−1

14: Criteria checks:
15: Evaluate the residual vector, evaluate the criteria introduced in Sec. 2.2.2
16: if stop is true: break
17: Compute Ak+1

mod and Lk+1
mod and Update Ak+1 ← Acst +Ak+1

mod, Lk+1 ← Lcst + Lk+1
mod

18: end for

A summary of how nonlinear problems are handled with Picard or Newton method (see Sec. 2.2.1), together
with the useful practices laid out in Sec. 2.2.2 and 2.2.3, is given in Algorithm 3.

Continuation techniques

When all the above prescriptions fail, one can resort to so-called ramping or numerical continuation techniques
[215–218]. Say Newton’s iterations fail to converge on the problem of interest (the target problem), but are
successful for solving a somewhat modified version of this problem (the entry problem) nonetheless. Very broadly
speaking, the idea of continuation techniques is to go from the entry problem to the target one, gradually,
through a sequence of sub-problems that bridge the gap.

The typical application is to progressively turn on the nonlinearity in a given PDE by weighting the nonlinear
term with a parameter that goes from 0 to 1. In our case, we regularly faced the situation where Newton’s
method would successfully converge when solving Eq. (2.56) with a given value of α = αc, but diverge for
α = αd. In that case, the continuation parameter would be α ∈ [αc, αd]. Specifically, we would create a sequence
(αi)1≤i≤M such that α1 = αc, αM = αd, and use the solution of the (i−1)th problem as the initial guess for the
ith problem — see Chapt. 5. This approach was also adapted to the density profile ρ(x), which proved to be a
valuable aid in reaching convergence for certain atmospheric profiles, see Chapt. 5.

2.2.4 A word about the time-dependent nonlinear Klein–Gordon equation
Back in Sec. 2.1.4, we provided some leads on how hyperbolic problems could be addressed numerically by
combining the finite element method (for space discretization) together with the finite difference method (for
time discretization). The toy model we used to showcase this technique was a linear wave-equation. Yet, the
Klein–Gordon equation governing the dynamics of the chameleon model is only semi-linear. Fortunately, the
concepts introduced in the present section for nonlinear problems can be readily reinvested to supplement
Sec. 2.1.4. With little regard to the actual coefficients of the chameleon field’s equation, we are interested in the
prototypical PDE

∂2u

∂t2
(x, t)− c2∆u(x, t) = ρ(x, t)− u(x, t)m , (2.83)

for some m ∈ Z−. Taking the same steps as in Sec. 2.1.4, Eqs. (2.52a–2.52b) become, for θ ∈ [0, 1] and
n ∈ J0, Nt − 1K,
[
1− (∆t θ)2∆

]
un+1 =

[
1 + ∆t2 θ(1− θ)∆

]
un +∆tvn

+ θ∆t2
[
θρn+1 + (1− θ)ρn

]
− θ∆t2

[
θun+1 + (1− θ)un

]m
,

(2.84a)

vn+1 = vn +∆t
{
c2θ∆un+1 + c2(1− θ)∆un + θρn+1 + (1− θ)ρn −

[
θun+1 + (1− θ)un

]m}
. (2.84b)

As expected, Eq. (2.84) is not linear in un+1 [Eq. (2.84) is not subject to this issue in comparison]. Forgetting
about time stepping, Eq. (2.84) is nothing but a semi-linear elliptic PDE of unknown un+1. Therefore, it is quite
possible to apply Newton’s method on its corresponding weak form, as seen in Sec. 2.2.1.
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Symmetry Name dim Remark

independent of
position

x→ x+ a
∀a ∈ R3 maximally symmetric 0 uninteresting in

stationary problems

rotations
w.r.t. two axes

x→ Rx
∀R ∈ SO(3)

spherical symmetry 1 nested spheres,
spherical coordinates

translations along
two axes (e.g. y and z)

x→ Tx
∀T ∈ Tyz

— 1 parallel infinite walls,
x-coordinate

translations & rotations
along one axis (e.g. z)

x→ Tx, x→ Rx
∀(T,R) ∈ Tz × SO(2, z)

— 1 infinite cylinder,
cylindrical coordinates

translations
along one axis (e.g. z)

x→ Tx
∀T ∈ Tz

planar symmetry 2 infinitely long objects
with constant section

rotations
w.r.t. one axis (e.g. z)

x→ Rx
∀R ∈ SO(2, z)

cylindrical symmetry 2 cylindrical coordinates
or spherical coordinates

Table 2.1: Global continuous symmetries in R3 that lead to dimensional-reduction. SO(3) denotes the special
orthogonal group in three dimension, or the 3D rotation group; SO(2, z) denotes the group of rotations with
respect to the z-axis, which is a subgroup of SO(3); Tz denotes the group of translations along the z-axis; Tyz

denotes the group of translations in the yz-plane. We give the most suitable coordinate systems to adopt in the
last column on an indicative basis.

While the numerical implementation would grow in complexity, there are no major anticipated stumbling
blocks in tackling time-dependent chameleons. Nonetheless, having to solve for a nonlinear problem at each
time step severely increases the computational cost of the method. The real challenge may thus lie in code
optimization and the implementation of high-performance computing (HPC) techniques.

2.3 Taking advantage of problem symmetries

Another important aspect to discuss is when the problem at stake exhibits a global continuous symmetry. As it
was mentioned at the beginning of Sec. 1.4.1, such symmetries allow for a dimensional reduction of the PDE
problem. This section is restricted to stationary PDE problems, with three spatial dimensions. In that respect,
Table 2.1 reports the rotational and translation symmetries in R3 that effectively lead to a reduction of the
problem’s dimension.

When taken into account in numerical computations, these continuous symmetries can drastically reduce the
complexity of the underlying FEM calculations. Going from a 3D mesh to a lower-dimensional mesh greatly
lowers the number of dofs that has to be employed for a given precision on the numerical approximation. For
instance, it was observed empirically that for an axisymmetric setup, FEM computations conducted using a 2D
mesh were roughly ∼ 500 times faster than their three-dimensional counterparts (at fixed relative error) [137].
The moral is that symmetries should be leveraged in numerical computations whenever possible.

In this section, we show how one can adapt the framework laid out in Sec. 2.1 in order to account for
the aforementioned symmetries (when relevant). In particular, this process requires abandoning Cartesian
coordinates x in favor of better suited coordinate systems in the presence of rotational symmetries. We illustrate
how this is performed in the spherically symmetric and axisymmetric cases. To stay in line with Sec. 2.1, we
consider the case of the Poisson equation in a bounded open set Ω ⊂ R3 with homogeneous Dirichlet boundary
conditions on Γ ≡ ∂Ω, reading

−∆u = f in Ω with u = 0 on Γ . (2.85)

2.3.1 Spherical symmetry

As reported in Table 2.1, a PDE problem is said to be spherically symmetric in 3D when the following properties
hold simultaneously:

1. The domain Ω is invariant under rotations, i.e. ∀R ∈ SO(3) and ∀x ∈ Ω, Rx ∈ Ω. For instance, Ω can be
a ball centered at the origin or the whole space R3. Because we work (for now) under the assumption that
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Figure 2.8: 3D spherically symmetric problems can be treated as 1D radial problems.

Ω is bounded, we assume that there exists a radius Rc such that Ω = B(Rc), the open ball of radius Rc

centered at the origin.

2. The rhs function f depends only on the distance of the coordinate x from the origin, i.e. f(x) = f(∥x∥).

3. The boundary conditions expressed on Γ (which is necessarily a sphere given the first condition) must be
invariant under rotations. Homogeneous Dirichlet conditions considered in Eq. (2.85) trivially satisfy this
condition.

The first condition expresses that the domain Ω must be spherically symmetric while the two others signify that
the problem’s data is also invariant under rotations. Ergo one looks for radial solutions to Eq. (2.85).

Simplified PDE and corresponding weak form

Dimensional reduction in this case is best brought out by rewriting the Poisson equation (2.85) in spherical
coordinates

s = (r, θ, φ) ∈ Π where Π := ]0, Rc[× ]0, π[× ]0, 2π[ . (2.86)

To be rigorous in doing so, one should define Msph the bijective mapping from Cartesian coordinates x to
spherical coordinates s, and for any v : Ω→ R, let

ṽ : Π→ R
s 7→ ṽ(s) = v

(
M−1

sph(s)
)

(2.87)

Under this change of coordinates, the Poisson PDE (2.85) thereby becomes

1

r2
∂

∂r

(
r2
∂ũ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ũ

∂θ

)
+

1

r2 sin2 θ

∂2ũ

∂φ2
= −f̃ . (2.88)

For spherically symmetric problems (see the three conditions listed above), it makes sense to look for solutions ũ
that only depend on the radial coordinate r, and so treat ũ as a function of r only, which we denote ur — see
Fig. 2.8. Likewise, f̃(r, θ, φ) boils down to fr(r). This results in the following ODE put in the divergence form

− d

dr

(
r2

dur
dr

)
= r2fr with ur(Rc) = 0 and u′r(0) = 0 , (2.89)

where the latter homogeneous Neumann boundary condition at the origin is called a compatibility condition and
is imposed to ensure that the solution is physically meaningful and smooth at r = 0.

Let us denote Wr a suitable functional space — to be specified later — for writing the weak formulation
associated with Eq. (2.89). The (bi)linear forms ar and lr for this radial problem read, for all ur, vr ∈Wr

ar(ur, vr) =

∫ Rc

0

r2 u′r v
′
rdr and lr(vr) =

∫ Rc

0

r2 fr vr dr . (2.90)

Well-posedness

To find a suitable definition for Wr, it is useful to start from a weak formulation we know to be well-posed.
As a matter of fact, we have shown in Sec. 2.1.2 that the problem “ find u ∈ H1

0

(
B(Rc)

)
such that for all

v ∈ H1
0

(
B(Rc)

)
, a(u, v) = l(v) ” — with a(·, ·) and l(·) given by Eq. (2.13) — satisfies all the assumptions of the

Lax–Milgram theorem (see Box E).
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Therefore, let

H1
r

(
B(Rc)

)
=
{
u ∈ H1

0

(
B(Rc)

)
such that for all x ∈ B(Rc) and for all R ∈ SO(3), u(x) = u(Rx)

}
. (2.91)

In plain English, H1
r is nothing but the subset of radial functions in H1

0 .

Lemma 2.1. H1
r is a closed linear subspace of H1

0 , and therefore a Hilbert space in its own right.

Proof. The only non-trivial point to show is that H1
r is closed in H1

0 for the norm ∥ · ∥H1 . Let (gn)n∈N be a
sequence of elements in H1

r that converges to g ∈ H1
0 . To show that g belongs to H1

r , let R ∈ SO(3) and define
the operator

TR : H1
0 → H1

0

v 7→ : B(Rc)→ R
x 7→ v(Rx) .

(2.92)

The goal then consists in showing that ∥g − TR(g)∥H1 = 0. We have for n ∈ N,

∥g − TR(g)∥2H1 =
∥∥(g − gn

)
−
(
TR(g)− gn

)∥∥2
H1

≤ ∥g − gn∥2H1 + ∥TR(g − gn)∥2H1 , (2.93)

where we have made use of the fact that TR(gn) = gn since gn ∈ H1
r . The fist term of Eq. (2.93) goes to zero

when n→ +∞ by definition. Moreover, TR is a linear operator and for v ∈ H1
0 ,

∥TR(v)∥2H1 =

∫

B(Rc)

|v(Rx)|2 dx+

∫

B(Rc)

∥∥∇(v(Rx)
)∥∥2 dx

=

∫

B(Rc)

|v(y)|2 |det(R)|dy +

∫

B(Rc)

∥∥RT∇v(y)
∥∥2 |det(R)|dy

= ∥v∥2H1 .

Therefore, TR is continuous and so the second term of Eq. (2.93) also goes to zero as n→ +∞, which ends the
proof.

The space H1
r is a Hilbert subspace of H1

0 . In particular, the problem “ find u ∈ H1
r such that for all v ∈ H1

r ,
a(u, v) = l(v) ” is well-posed. In fact, the assumptions of the Lax–Milgram theorem are automatically satisfied in
H1

r since the latter space inherits from the H1-norm. Looking at Eq. (2.90) motivates the definition

Wr =

{
v : ]0, Rc[→ R such that

∫ Rc

0

r2|v(r)|2 dr < +∞,
∫ Rc

0

r2|v′(r)|2 dr < +∞ and v(Rc) = 0

}
. (2.94)

We also define the inner product

⟨·, ·⟩Wr
: Wr ×Wr → R

u, v 7→
∫ Rc

0

r2
[
u(r) v(r) + u′(r) v′(r)

]
dr

(2.95)

and denote by ∥ · ∥Wr the associated norm.

Lemma 2.2. H1
r is isomorphic to Wr

Proof. Let us define the linear mapping between Wr and H1
r

Φ: Wr → H1
r

vr 7→ : B(Rc)→ R
x 7→ vr(∥x∥)/4π .

(2.96)



2.3. Taking advantage of problem symmetries 75

This map is well-defined, since for vr ∈Wr, Φ(vr) ≡ 0 on Γ and

∫

B(Rc)

|Φ(vr)(x)|2 dx =
1

4π

∫

B(Rc)

|vr(∥x∥)|2 dx =
1

4π

∫

Π

|vr(r)|2r2 sin(θ) drdθdφ =

∫ Rc

0

r2|vr(r)|2 dr < +∞ ,

∫

B(Rc)

∥∥∇(Φ(vr)
)∥∥2 dx =

1

4π

∫

B(Rc)

|v′r(∥x∥)|2 dx =

∫ Rc

0

r2|v′r(r)|2 dr < +∞ .

Moreover, it is bijective:

– injectivity — If Φ(v1) = Φ(v2), v1, v2 ∈Wr, then for all x ∈ B(Rc), v1(∥x∥) = v2(∥x∥) i.e. for all r ∈]0, Rc[,
v1(r) = v2(r). Of course, these equalities hold almost everywhere.

– surjectivity — Let n ∈ R3 with ∥n∥ = 1. For v ∈ H1
r , we can define vr : ]0, Rc[→ R such that for all

r ∈ ]0, Rc[, vr(r) = v(rn). Then vr ∈Wr and Φ(vr) = v.

Finally, the above calculations show that for vr ∈Wr,

∥Φ(vr)∥2H1 =

∫ Rc

0

r2|vr(r)|2 dr +
∫ Rc

0

r2|v′r(r)|2 dr = ∥vr∥2Wr
, (2.97)

so that Φ is indeed an isomorphism between Wr and H1
r .

Therefore, Wr inherits from the topological properties of H1
r — in particular, Wr equipped with the norm ∥ · ∥Wr

is complete. Thus, Wr equipped with the inner product ⟨· , ·⟩Wr given by Eq. (2.95) is a Hilbert space.
The last step in showing that the radial weak formulation is well-posed consists in examining the (bi)linear

forms ar(·, ·) and lr(·) given by Eq. (2.90). The continuity conditions are proved using the Cauchy–Schwarz
inequality. Here, let us remark that in the original problem, f ∈ L2

(
B(Rc)

)
. This condition translates into

∥fr∥
L2
(
]0, Rc[, r2

) :=
∫ Rc

0

r2 |fr(r)|2 dr < +∞ .

Finally, the coercivity of ar(·, ·) in Wr is obtained thanks to the coercivity of a(·, ·) in H1, since for all ur ∈Wr

we have
ar(ur, ur) = a

(
Φ(ur),Φ(ur)

)
≥ α ∥Φ(ur)∥2H1 = α ∥ur∥2Wr

, (2.98)

where α > 0 is a coercivity constant of the bilinear form a(·, ·) (see Sec. 2.1.2). Besides, the functional space
L2
(
]0, Rc[, r

2
)

is a weighted space. This notion shall be formalized in Chapt. 3.
All in all, we have shown that the weak formulation “ find ur ∈Wr such that for all vr ∈Wr, ar(ur, vr) = lr(vr) ”

is well-posed. This legitimates the use of radial FEM computations conducted at several stages in this PhD
work. Of course, this approach is generalizable to other elliptic PDEs than the Poisson equation.

2.3.2 Cylindrical symmetry
In cylindrical symmetry, the problem is invariant under rotations with respect to an axis. Without loss of
generality, we can have the z-axis play that role. We also denote by SO(2, z) the subgroup of SO(3) containing
the rotations about the z-axis. As for the spherically symmetric case discussed above, both the domain Ω and
the problem’s data must be invariant under such rotations.

Simplified PDE and corresponding weak form

Dimensional reduction is made clear when writing the PDE (2.85) in cylindrical or spherical coordinates — see
Fig. 2.9.

Cylindrical coordinates Let us denote cylindrical coordinates by c = (ρ, φ, z) and Mcyl the mapping from
Cartesian coordinates to cylindrical coordinates. The domain Ω is mapped to Ξ3D = Mcyl(Ω). Rewriting
Eq. (2.85) in cylindrical coordinates yields

1

ρ

∂

∂ρ

(
ρ
∂ũ

∂ρ

)
+

1

ρ2
∂2ũ

∂φ2
+
∂2ũ

∂z2
= −f̃ , (2.99)

where for any v : Ω→ R and for any c ∈ Ξ3D, ṽ(c) = v
(
M−1

cyl(c)
)
. Because of axisymmetry, we look for solutions

to Eq. (2.99) that do not depend on the angle φ, i.e. ∂φũ ≡ 0.18 Denoting Ξ2D a slice of Ξ3D at a fixed angle φ,
18In Cartesian coordinates, one can show that this condition translates to x ∂yu− y ∂xu ≡ 0.
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Figure 2.9: 3D axisymmetric problems can be treated as 2D problems using either cylindrical or spherical
coordinates.

the strong problem boils down to finding ucyl : Ξ2D → R such that

∂

∂ρ

(
ρ
∂ucyl
∂ρ

)
+ ρ

∂2ucyl
∂z2

= −ρfcyl . (2.100)

Denoting Wcyl a suitable functional space to be specified later, the weak formulation associated with Eq. (2.100)
involves the (bi)linear forms acyl and lcyl, reading for all ucyl, vcyl ∈Wcyl

acyl(ucyl, vcyl) =

∫

Ξ2D

ρ∇ρ,zucyl ·∇ρ,zvcyl dρdz and lρ,z(vcyl) =

∫

Ξ2D

ρfcylvcyl dρdz . (2.101)

Here, ∇ρ,z = (∂ρ, ∂z)
T . The homogeneous Dirichlet boundary condition is to be applied on Γcyl ⊂ ∂Ξ2D, where

ρ ̸= 0 (see Fig. 2.9).

Spherical coordinates Axisymmetry can also be accounted for using spherical coordinates, where partial
derivatives with respect to φ are dropped. The resulting strong form PDE problem is to find upol : Π2D → R
such that

∂

∂r

(
r2 sin θ

∂upol
∂r

)
+

∂

∂θ

(
sin θ

∂upol
∂θ

)
= −r2 sin θfpol , (2.102)

where Π2D is a slice of Π at a fixed angle φ.
DenotingWpol a suitable functional space to be specified later, the weak formulation associated with Eq. (2.102)

involves the (bi)linear forms apol and lpol, reading for all upol, vpol ∈Wpol

apol(upol, vpol) =

∫

Π2D

[(
r2 sin θ 0

0 sin θ

)
∇r,θupol

]
·∇r,θvpol drdθ ,

lpol(vpol) =

∫

Π2D

r2 sin θfpolvpol drdθ .

(2.103)

Here, ∇r,θ = (∂r, ∂θ)
T and we set A(r, θ) = diag(r2 sin θ, sin θ). The homogeneous Dirichlet boundary condition

is to be applied on Γpol ⊂ ∂Π2D, where r ̸= 0 (see Fig. 2.9).

Well-posedness

Following what we did in Sec. 2.3.1, we introduce the subspace

H1
φ(Ω) =

{
u ∈ H1

0 (Ω) such that for all x ∈ Ω and for all R ∈ SO(2, z), u(x) = u(Rx)
}
. (2.104)
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One can show, in a similar way to the proof of Lemma 2.1, that H1
φ is closed in H1

0 for the H1-norm, and is
therefore a Hilbert space.

We then define the functional spaces

Wcyl =

{
v : Ξ2D → R such that

∫

Ξ2D

ρ|v|2 dρdz <∞,
∫

Ξ2D

ρ∥∇ρ,zv∥2 dρdz <∞ and v = 0 on Γcyl

}
,

Wpol =

{
v : Π2D → R such that

∫

Π2D

r2 sin θ|v|2 drdθ <∞,
∫

Π2D

(∇r,θv)
TA(∇r,θv)drdθ <∞ and v = 0 on Γpol

}
,

and the inner products

⟨u, v⟩cyl =
∫

Ξ2D

ρ u v dρdz +

∫

Ξ2D

ρ
(∇ρ,zu

)
·
(∇ρ,zv

)
dρdz , ∀(u, v) ∈W 2

cyl

⟨u, v⟩pol =
∫

Π2D

r2 sin θ u vdrdθ +

∫

Π2D

[
A∇r,θu

]
·∇r,θv drdθ , ∀(u, v) ∈W 2

pol

(2.105)

Following the proof of Lemma 2.2, one can show that Wcyl and Wpol are isomorphic to H1
φ using the mappings

Φcyl : Wcyl → H1
φ

vcyl 7→ : Ω→ R
x 7→ vcyl

(
ρ(x), z(x)

)

and Φpol : Wpol → H1
φ

vpol 7→ : Ω→ R
x 7→ vpol

(
r(x), θ(x)

)
.

In particular, one inherits from the interesting properties of H1
φ: Wcyl, Wpol equipped with the inner prod-

ucts (2.105) are Hilbert spaces, the (bi)linear forms are all continuous, acyl and apol are coercive over Wcyl and
Wpol respectively.

All in all, the weak formulations

“ Find u ∈Wcyl such that for all v ∈Wcyl, acyl(u, v) = lcyl(v) ” ,
“ Find u ∈Wpol such that for all v ∈Wpol, apol(u, v) = lpol(v) ” ,

are both well-posed.

Chapter summary

This chapter was dedicated to the presentation of the finite element method, which was
identified as an adequate numerical method for studying scalar-tensor models with screening
mechanisms at the end of Chapt. 1. FEM is indeed well-suited for solving the second-order
elliptic PDEs that arise in such models. We showed how the method can readily be adapted
to deal with time-dependent problems and nonlinearities in the PDE — the latter point being
a common feature of screened scalar-tensor models.
However, the mathematical grounds and numerical techniques discussed in this chapter only
apply to the case where the PDE problem is formulated on a bounded domain. This translates
into the inability of standard FEM to deal with problems posed on unbounded sets, i.e. PDEs
that come with asymptotic boundary conditions, which was one the required specifications of
the numerical tool under development. In the following chapter, we study ways into which
FEM can be extended to account for those.
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One of the very first assumptions we made when presenting the finite element method in Chapt. 2 was that
the domain Ω over which the PDE is solved had to be bounded. The goal of the present chapter is to relax
this restrictive hypothesis, as several PDEs arising in the context of modified gravity theories are posed on
unbounded spatial regions. In particular, we strive to maintain the same level of mathematical rigor as in the
previous chapter in the presentation of the explored numerical techniques.
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3.1 Problem statement and state of the art

3.1.1 Motivations

PDE problems are sometimes formulated on unbounded regions of space Ω, in which case their well-posedness
generally hinges on the specification of asymptotic boundary conditions. To give an example, the latter sometimes
take the form

u(x) −→
∥x∥→+∞

u∞ ∈ R , (3.1)

although many other behaviors may be sought. This situation is of much interest to us in the context of modified
theories of gravity. For instance, the Poisson equation (1.4) governing the Newtonian potential Φ is usually
supplemented with condition that Φ decays to zero far from the sources (in the non-cosmological case). Likewise
in scalar-tensor models, the stationary Klein–Gordon equation (1.52) driving the dynamics of the scalar field ϕ
cannot always be solved on bounded domains for the lack of physical conditions prescribed at their boundary. In
such situations, one cannot but resort to using an asymptotic prescription, namely that the field goes to the
value that minimizes its effective potential at infinity [see e.g. Eq. (1.120) and refer to the discussion we had
in Sec. 1.2.2]. Therefore, imposing asymptotic boundary conditions is dictated by both the necessity to deal
with well-posed problems and the desire to obtain physically meaningful solutions. This point is illustrated on a
simple ODE toy-problem in Box H.

Box H: Asymptotic condition and uniqueness of the solution [example]

Consider the following ODE problem posed on R+

{
u′′(x)− u(x) = 0

u(0) = 1
, (3.2)

whose solutions are of the form u(x) = cex + (1− c)e−x , c ∈ R. The set of solutions can be
reduced upon specifying an asymptotic behavior:

– the only solution satisfying u(x)→ 0 as x→ +∞ is u(x) = e−x;

– there is no solution satisfying u(x)→ α ∈ R∗ as x→ +∞;

– there is an infinity of solutions satisfying u(x)→ ±∞ as x→ +∞;

– there is only one solution satisfying u(x)/ex → 1 as x→ +∞.

In particular, this example highlights the fact that, for problems posed on unbounded domains
(here R+), reducing the set of solutions to a singleton depends on the specific form of the
asymptotic boundary condition employed.

From a numerical view point however, and more specifically in the framework of FEM, enforcing asymptotic
boundary conditions is not as straightforward as imposing ‘standard’ boundary conditions (e.g. Dirichlet, see
Sec. 2.1.3). Indeed, meshing an unbounded domain would require an infinite number of elements, which obviously
cannot fit into finite-memory computers. The naive workaround for this issue is to (i) truncate the unbounded
domain Ω at a finite distance Rc > 0, i.e. Ω→ Ω ∩ B(Rc) and (ii) replace the asymptotic condition (3.1) by a
Dirichlet boundary condition u = u∞ at the boundary of the cropped domain. This procedure has several issues:

1. While the resulting boundary value problem fits into the standard FEM framework laid out in Chapt. 2,
it is only an approximation to the original unbounded problem. The exact solution of the former can
therefore be quite different from the exact solution of the latter — see Fig. 1.6 for an illustration of this
phenomenon at play on a radial Poisson equation.

2. For this ‘truncation error’ to be small, the truncation radius Rc must sufficiently large, which a priori
translates to a higher computational cost.

3. In practice, this error cannot be estimated quantitatively without additional tricks. In that sense, the
process of selecting an adequate size for the truncated domain is a blind experiment.

4. If the unbounded domain is indeed truncated to a ball, setting u = u∞ on S(Rc) = ∂B(Rc) wantonly
imposes spherical symmetry in a direct neighborhood of the boundary. This might be detrimental to
the study of problems that only slightly deviate from spherical symmetry — see Chapt. 5 for a concrete
example.
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3.1.2 The landscape of proposed solutions

In the face of the aforementioned issues, several approaches have been developed in the past decades to take
better account of asymptotic conditions than the naive truncation idea outlined above. These approaches can be
roughly divided into two categories.

The first one consists of those techniques based on the artificial truncation of the computational domain at
some finite distance. Let us mention artificial boundary conditions (see e.g. Refs. [219–224]), absorbing boundary
conditions or perfectly matched layers (see e.g. Refs. [225–227]) for wave-like equations.

The second category encompasses the techniques that manage to preserve the unbounded nature of the
domain. It includes boundary element techniques (see e.g. Refs. [228, 229]) for exterior problems, infinite
elements (see e.g. Refs. [224, 230–232]), spectral methods (see e.g. Refs. [233–236]), and techniques based on the
mapping of the unbounded domain into a bounded one. Among the latter are compactification-based techniques:
they include compactifications of the whole domain (see e.g. Refs. [237–239]) and approaches based on the
inversion of some exterior unbounded domain (see e.g. Refs. [137, 240–248]).

3.1.3 Organization of the present chapter

This chapter presents the various approaches explored during this PhD work, all of which are based on
compactification transforms — i.e. the mapping of the unbounded domain into a bounded one. While the
ideas to be outlined here are quite general and could probably be applied to a wide range of PDE problems,
there are multiple problem-dependent subtleties which prevent us from directly discussing the generic case of a
second-order elliptic PDE [see Eq. (2.3)]. Instead, we focus our attention to two specific examples which are
most relevant to this PhD work.

Example 3.1. The n-dimensional linear Klein–Gordon equation reads

−∆u+ d(x)u = f(x) in Ω = Rn . (3.3)

The Yukawa potential Eq. (1.106) obeys a linear Klein–Gordon equation with d(x) = m2
ϕ and f(x) = −βρ(x)/MPl.

Moreover, the linearized chameleon field equation at the kth iteration of the Newton method [see e.g. Eq. (2.74)]
can be recast in the form of Eq. (3.3) with

d(x) =
n+ 1

α
u
−(n+2)
k (x) and f(x) =

n+ 2

α
u
−(n+1)
k (x)− ρ(x) .

Example 3.2. The Poisson equation reads

−∆u = f(x) in Ω = Rn . (3.4)

The Newtonian potential obeys a Poisson equation [see Eq. (1.4)] with f(x) = −4πGρ(x).
Due to their relevance in the context of studying scalar-tensor theories of gravity, we have deliberately chosen
these two examples to showcase the numerical techniques involved in this chapter. In particular, the various
proofs provided thereafter sometimes rely on assumptions that would not be valid in the general case — we will
endeavor to specify when this is the case.

Let us explain in more details the way the present chapter is organized. In the same spirit as Chapt. 2, we first
start by looking for suitable functional spaces for writing the weak formulations associated with Eqs. (3.3–3.4).
Note that at this stage, the choice of such spaces is guided by the sole aim of obtaining well-posed weak problems,
not by numerical considerations. Schematically, we will specify for each problem (i) a space W , (ii) a bilinear
form a(·, ·) defined over W ×W and (iii) a linear form l(·) defined over W , such that the weak formulation

“ Find u ∈W such that for all v ∈W , a(u, v) = l(v) ”

is well-posed in the sense of Hadamard (see Box D). Only then do we start addressing the practical issue raised
in Sec. 3.1.1, namely that one cannot apply an essentially finite numerical process to an infinite domain. In that
perspective, Sec. 3.3 illustrates several approaches based on compactification transforms, whereby Ω is mapped
to a bounded domain by means of suitable coordinate transforms. This change of coordinates is to be performed
in the integrals appearing in the definition of the (bi)linear forms a(·, ·) and l(·). In Sec. 3.3.2, we single out
a particularly nice transformation — called the Kelvin inversion — which we adopt for the remainder of this
chapter. The next important step is the definition of Wh, a discrete counterpart of W . Although there is no
single way to proceed, the choice of Wh is not a blinded one but is rather guided by two conditions:

1. the inclusion Wh ⊂W (conformal approximation);
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2. the possibility of returning to the FE framework presented in Sec. 2.1.3, in particular, the possibility of
using usual polygonal meshes and Pk elements, so that one can build on top of virtually any already-existing
FEM code.

The second condition is mostly motivated by practical considerations: we do not want to resort to the internal
modifications of an existing FEM code.1 This process — which is mostly inspired by the inverted finite elements
method (ifem) introduced by T. Boulmezaoud in Ref. [242] — is thoroughly explained in Sec. 3.4. In Sec. 3.5,
we present a novel approach developed during this PhD called the alternate inverted finite elements method
(a-ifem) which builds on top of ifem and domain decomposition techniques. Finally, Sec. 3.6 is dedicated to
the presentation of results from numerical experiments we conducted: efficiency of the methods, comparison of
a-ifem against ifem, error estimates and influence of auxiliary parameters appear on the list of issues addressed.

3.2 Functional framework

Given a PDE problem, regardless of the underlying numerical technique employed, it is crucial to specify the
functional space in which we look for solutions. Back in Chapt. 2.1, we saw that the choice of a suitable Sobolev
space was key to obtaining well-posed problems in bounded domains. In particular, Dirichlet boundary conditions
— also called essential boundary conditions — are encoded in the definition of H1

0 [see Eqs. (2.21, 2.26)] and turn
out to be, indeed, essential to the derivation of Poincaré’s inequality (see Box F). When Ω = Rn, the domain has
no boundary and the concept of Dirichlet boundary conditions no longer makes sense. Instead, they have to be
replaced by asymptotic conditions (see the example discussed in Box H). In a similar way to the bounded case,
these asymptotic conditions are going to be encoded in the very definition of functional spaces.

To illustrate our point, we delve into examples 3.1 and 3.2. The latter requires the introduction of so-called
weighted Sobolev spaces, which we have already encountered Sec. 2.3 showing how to take advantage of problems’
symmetries, yet barely took the time to discuss.

3.2.1 (Why) do we need new function spaces?

The Klein–Gordon example

Let us look at example 3.1 first and consider W an abstract functional space in which all the expressions we are
about to write make sense. The weak formulation of Eq. (3.3) involves the (bi)linear forms akg(·, ·) and lkg(·),
defined for all u, v ∈W by

akg(u, v) =

∫

Rn

∇u ·∇v dx+

∫

Rn

d(x)uv dx and lkg(v) =

∫

Rn

f(x)v dx . (3.5)

For these integrals to exist, a sensible choice for W would be H1(Rn), i.e. the space of all generalized functions
such that ∫

Rn

|u(x)|2 dx < +∞ and
∫

Rn

∥∇u(x)∥2 dx < +∞ , (3.6)

which is a Hilbert space when equipped with the inner product given by Eq. (2.22) with Ω = Rn. Indeed, under
the further minimal assumptions that d ∈ L∞(Rn) and f ∈ L2(Rn), setting W = H1(Rn) is sufficient for the
(bi)linear forms given by Eq. (3.5) to be well-defined and continuous with respect to the H1-norm.2 In the
following, we shall make use of a constant d∞ ≥ d(x) for all x ∈ Rn

The only property that we have not examined yet is the coercivity of akg. In the bounded case, the Poincaré
inequality (see Box F) was key in proving the coerciveness of the bilinear form associated with the Poisson
equation. Here, if we further assume that there exists d0 > 0 such that for all x ∈ Rn, d(x) > d0, we simply no
longer need such inequality. As a matter of fact, under this additional assumption, one has

akg(u, u) =

∫

Rn

∥∇u∥2 dx+

∫

Rn

d(x)|u|2 dx ≥ min(1, d0) ∥u∥2H1 . (3.7)

Therefore, Lax–Milgram theorem applies and the problem is well-posed. Additionally, we will need the following
lemma.

Lemma 3.1. The space of test functions D(Rn) is dense in H1(Rn).

1One could imagine implementing new basis functions to comply with the condition Wh ⊂ W . This is far from being impossible
but if alternative solutions not requiring such technical tweaks exist, they shall be preferred here.

2This is indeed straightforward to prove using the Cauchy–Schwarz inequality.



3.2. Functional framework 83

The Poisson example

As done above, suppose that W is a suitable functional space for writing the weak formulation of the Poisson
problem. Then, corresponding (bi)linear forms read, for all u, v ∈W ,

ap(u, v) =

∫

Rn

∇u ·∇v dx and lp(v) =

∫

Rn

f(x)v dx . (3.8)

The Poisson example 3.2 requires a different functional framework, since H1(Rn) fails to capture the behavior
of the physical solution at infinity. Indeed, consider the case of the Newtonian potential sourced by a solid sphere
immersed in vacuum in three dimensions. Outside the sphere, the potential behaves as Φ ∼ −A/r (for some
constant A ∈ R) and so Φ does not even belong to L2(R3). Consequently, it makes no sense to look for physical
solutions in H1(R3), and new functional spaces should be used instead.

Beyond this issue, it is well-known that Poincaré’s inequality (see Box F) does not hold in Rn. Consequently,
the proof of the coercivity of the bilinear form in bounded domains cannot be adapted to the present case.

These two issues are addressed by introducing the notion of weighted Sobolev spaces, which is a generalization
of the usual Sobolev spaces [Eq. (2.23)].

3.2.2 Weighted Sobolev spaces

Definitions, properties

A few definitions are in order. First, we give a meaning to the notion of weight.
Definition 3.1. We say that a real-valued function on Ω ⊆ Rn is a weight if it is locally integrable on Ω and
strictly positive almost everywhere.
Definition 3.2. Given ω = (ω0, ω1) a pair of two weight functions, we denote by L2(Ω, ω0) the set of all functions
v : Ω→ R such that

+∞ >

∫

Ω

|v(x)|2 ω0(x) dx =: ∥v∥2L2(Ω, ω0)
;

and by Wω(Ω) the set of all functions v ∈ L2(Ω, ω0) such that for all i ∈ {1, · · · , n}

+∞ >

∫

Ω

|Dxiv(x)|2 ω1(x) dx ,

where Dxi
v denotes the weak partial derivative of v in the direction i.

The space Wω(Ω) is called a weighted Sobolev space. It can readily be equipped with the following norm [249,
250]

∥v∥Wω(Ω) :=

(∫

Ω

|v(x)|2 ω0(x) dx+

n∑

i=1

∫

Ω

|Dxi
v(x)|2 ω1(x) dx

)1/2

, (3.9)

and semi-norm

|v|Wω(Ω) :=

(∫

Ω

ω1(x) ∥∇v∥2
)1/2

. (3.10)

The weights we use in the remainder of this work are all such that for all x ∈ Ω, 0 < ωk(x) ≤ 1, k ∈ {0, 1}. The
k subscript is dropped when the two weights are chosen as equals. Let us also report a useful lemma that will be
used thereafter.
Lemma 3.2. Suppose that for k ∈ {0, 1}, ωk and ω−1

k are locally integrable functions on Ω. Then, Wω(Ω)
equipped with the norm ∥ · ∥Wω

[see Eq. (3.9)] is a uniformly convex Banach space — see e.g. Refs. [250, 251].
Provided that the weight functions satisfy the hypothesis of Lemma 3.2, Wω can be promoted to rank of

Hilbert space when equipped with the inner product

⟨·, ·⟩Wω
: Wω ×Wω → R

(u, v) 7→
∫

Ω

ω0(x)uv dx+

∫

Ω

ω1(x)∇u ·∇v dx .

(3.11)

Remark 3.1. We note that for any function v ∈Wω and for any compact set K ∈ Ω, v|K ∈ H1(K), where H1(K)
is the usual Sobolev space defined over K. In other words, the role of the weights is to specify the asymptotic
behavior of functions belonging to Wω at infinity. They have no influence on their local properties, which are
identical to those of H1.
Remark 3.2. H1(Rn) is a particular case of weighted Sobolev space for which the weights are unitary, i.e.
ω0 ≡ 1 ≡ ω1.
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Back to the Poisson problem

There is an extended literature devoted to the study of weighted Sobolev spaces for PDEs involving the Laplace
operator and defined over unbounded sets of Rn [252–257]. The weight functions employed in these references
are constructed using powers of the two functions

ρ(x) :=
√
1 + ∥x∥2 and lg(x) := ln(2 + ∥x∥2) . (3.12)

In line with Definition 3.2, the adequate weighted Sobolev space for studying the Poisson problem in Rn makes
use of ω = (ω0, ω1) with

ω0 = ρ−2 , ω1 ≡ 1 (3.13)

for the case n ∈ {1, 3}, and
ω0 = (ρ lg)−2 , ω1 ≡ 1 (3.14)

for the case n = 2 (see e.g. Refs. [252, 257]). We set W p
ω the weighted Sobolev space defined with the pair of

weights given by Eq. (3.13) or Eq. (3.14) depending on the dimension of the problem. As explained in Ref. [257],
the choice of weight exponents in the definition of W p

ω , and in particular the introduction of a logarithmic weight
lg(x) in the critical case n = 2 are dictated by the generalized Hardy inequalities [258]. Precisely, one can show
that there exists a constant C > 0 such that for all u ∈W p

ω [254, 255],

|u|2Wω
≥ C ∥u∥2L2(Rn, ω0)

, i.e.
∫

Rn

∥∇u∥2 dx ≥ C
∫

Rn

ω0(x) |u|2 dx . (3.15)

This inequality is reminiscent of the traditional Poincaré inequality (2.29), except the norms involved in Eq. (3.15)
are different. In that sense, inequalities of the form Eq. (3.15) go under the same of ‘Poincaré-type inequalities’
or ‘generalized Poincaré inequalities’.

Going back to Example 3.2, let us show that W p
ω as defined above ticks all the boxes. First, the bilinear

form ap defined over W p
ω ×W p

ω is well-defined and continuous. Moreover, it is coercive over W p
ω thanks to the

Poincaré-type inequality (3.15). Second, for the linear form lp to be well-defined, we demand that the data f be
in W ′

ω(Rn), the dual space of Wω(Rn). To be more explicit (but a little more restrictive), we can demand that

f ∈ L2
(
Rn, ω−1

0

)
, i.e.

∫

Rn

ω−1
0 (x) |f(x)|2 dx < +∞ . (3.16)

Under such an assumption, lp is well-defined and continuous on W p
ω . Therefore, Lax–Milgram theorem applies

and the problem is well-posed. Additionally, one can check that Newtonian potentials of the form Φ ∼ −A/r
(for sufficiently large r) do indeed belong to W p

ω thanks to the weight functions (ω0, ω1).

Remark 3.3. Different notations are used in the literature to refer to the spaceW p
ω with ω given by Eqs. (3.13–3.14),

such as H1
−1,0 in Ref. [242] or W 1,2

0,0 in Refs. [252, 255, 256]. In the case n = 2, it is sometimes referred to as
W 1

log, see e.g. Ref. [245].

Additionally, in the subsequent discussion, we will need the following lemma.

Lemma 3.3. The space of test functions (Rn) is dense in W p
ω , with ω given by Eqs. (3.13–3.14) — see e.g.

Refs. [252, 256].

3.2.3 A word about the integration by parts in Rn

One important aspect that has been completely overlooked in the above examples is the derivation of the weak
formulations from the strong problem. As a matter of fact, we assumed without even questioning that it was
legitimate to integrate by parts the divergence term in Rn. Precisely, we implicitly assumed that

∀u ∈ C2(Rn) ∩Wω such that ∆u ∈ L2
(
Rn, ω−1

0

)
and ∀v ∈Wω ,

∫

Rn

∆u v dx = −
∫

Rn

∇u ·∇v dx , (3.17)

where Wω denotes the adequate weighted Sobolev space for either the linear Klein–Gordon equation or the
Poisson equation. Note that this equality is sometimes referred to as Green’s formula.

In order to examine the validity of the identity (3.17), let us write the usual integration by parts formula
on a ball of radius R, which we know to be valid. For u ∈ C2(Rn) ∩Wω such that ∆u ∈ L2

(
Rn, ω−1

0

)
and for

v ∈Wω, we have ∫

B(R)

∆u v dx = −
∫

B(R)

∇u ·∇v dx+

∫

S(R)

∂u

∂n
v dγ . (3.18)

Given the spaces in which u and v live, the integrals over B(R) converge to the integrals over the whole space as
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R→ +∞. Consequently, the surface term in the rhs of Eq. (3.18) also converges as R→ +∞, and its limit has
to be zero for equality (3.17) to hold.

This last point can be proven using a classical density argument. Consider the function

F : Wω(Rn)→ R

v 7→ lim
R→+∞

∫

S(R)

∂u

∂n
v dγ .

(3.19)

Our goal is to show that F ≡ 0. In that perspective, let us note that

1. for any v ∈ D(Rn), F (v) = 0 since v is compactly supported;

2. in virtue of Lemmas 3.1 and 3.3, D(Rn) is dense in Wω(Rn).

Consequently, it is sufficient to show that the linear form F is continuous with respect to the norm ∥ · ∥Wω . Let
v ∈Wω(Rn) and R > 0, we have

∣∣∣∣∣

∫

S(R)

∂u

∂n
v dγ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

B(R)

∆u v dx

∣∣∣∣∣+
∣∣∣∣∣

∫

B(R)

∇u ·∇v dx
∣∣∣∣∣

≤ ∥∆u∥
L2
(
B(R), ω−1

0

) ∥v∥
L2
(
B(R), ω0

) + ∥∇u∥
L2
(
B(R)

) ∥∇v∥
L2
(
B(R)

)

≤ ∥∆u∥
L2
(
Rn, ω−1

0

) ∥v∥
L2
(
Rn, ω−1

0

) + |u|Wω
|v|Wω

≤
(
∥∆u∥

L2
(
Rn, ω−1

0

) + |u|Wω

)
∥v∥Wω

(3.20)

Inequality (3.20) remains true in the limit R→ +∞, so that F is indeed continuous. This ends the proof.

3.3 Approaches based on compactification transforms

Now that we have established a clear functional framework, let us return to practical considerations. As mentioned
above, a convenient way of preserving the ‘unboundedness’ of the computational domain is to compactify it by
means of an adequate mapping. In this section, we present two examples that were considered in this PhD work:

1. Compactification of the whole space using a mapping of the form x ∈ Rn 7→ x/(1 + ∥x∥).

2. Splitting the domain into an interior part and an exterior part Ω̄ = Ω̄int ∪ Ω̄ext and then applying an
inversion transform to the exterior domain Ωext. This process results in two bounded domains which have
to somehow exchange information at their shared boundary.

At the level of the weak form, we perform the corresponding change of variable in the integrals associated
with the (bi)linear forms. Doing so generally leads to the appearance of singular coefficients in the integrands.
This caveat is discussed (from a numerical perspective) in Sec. 3.3.3.

3.3.1 Compactification of the whole domain

Example of a compactification transform

Compactifying the whole space — i.e. applying a global coordinate transform to turn Rn into a bounded domain
— is perhaps the most intuitive idea one can have. This technique is very useful in physics, one of the most
famous illustration of which being Penrose diagrams, for capturing the causal relations between different points
in spacetime through a conformal treatment of infinity [259].3 It can also be leveraged in numerical simulations.
For instance, Ref. [260] solves hyperbolic equations on unbounded domains with a compactification transform
involving both time and space coordinates. Similarly, we solve a non-linear Klein–Gordon equation in Ref. [137]
using a compactification transform in spherical coordinates for an axisymmetric configuration (see Sec. 2.3.2).

In order to get a clearer representation of what a compactification of the whole space may look like, Fig. 3.1
illustrates the action of

T : Rn → Ω̂

x 7→ Rc

1 + ∥x∥x

(3.21)

3The advantage of this class of transformations is that they leave the light-like geodesics invariant for n = 4.
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Figure 3.1: Compactification of the whole space Ω = R2 by means of the T transform. The resulting domain Ω̂
is the open disk of radius Rc, with boundary Γ̂ representing spatial infinity. In Ω̂, the angles are not preserved
(T is not a conformal transformation) and the distances are altered: lines of iso-radius get squashed as one
approaches the boundary Γ̂.

on R2, for some Rc > 0. The 2D plane is complemented by a Cartesian grid and concentric circles spanning from
the origin to infinity (whose radii grow at an arithmetic rate). The latter are mapped to circles again, with Rc

as the upper limit on the biggest radius, while the former gets non-conformally distorted. The overall resulting
domain is the open disk of radius Rc.

Illustration on the Klein–Gordon problem

Following what we did in Ref. [137], let us apply the transform (3.21) to the (bi)linear forms featured in the
Klein–Gordon problem akg and lkg [see Eq. (3.5)]. Doing this in Cartesian coordinates is not handy though,
because the resulting expressions involve complicated terms. If anything, that would obscure our point. Instead,
it is much more natural to consider the use of spherical coordinates, for which the compactification only alters
the radial coordinate r as

Tr : Π∞ → ΠRc

(r, θ, φ) 7→ (η, θ, φ)

, with η =
rRc

1 + r
(3.22)

and Π∞ := ]0,+∞[× ]0, π[× ]0, 2π[ and ΠRc
:= ]0, Rc[× ]0, π[× ]0, 2π[. Under the further assumption of

spherical symmetry (see Sec. 2.3.1), this yields

akg(u, v)

4π
=

∫ +∞

0

r2(∂ru)(∂rv) dr +

∫ +∞

0

r2d(r)uv dr=

∫ Rc

0

η2

Rc
(∂ηû)(∂η v̂) dη +

∫ +∞

0

Rcη
2

(Rc − η)4
d̂(η)ûv̂ dη (3.23)

lkg(v)

4π
=

∫ +∞

0

r2f(r)v dr =

∫ Rc

0

Rcη
2

(Rc − η)4
f̂(η)v̂ dη , (3.24)

where we use the hat-notation to distinguish functions expressed in the new coordinate, e.g. for spherical
coordinates s, u(s) = û

(
Tr(s)

)
. As may have been anticipated, the compactification r → η yields coefficients

in the above integrals that are not bounded in the neighborhood of η = Rc. Put another way, the mapping is
singular on the boundary representing spatial infinity. Nonetheless, we know for a fact that these integrals are all
perfectly well-defined as long as u, v ∈ H1(R3), d ∈ L∞(R3) and f ∈ L2(Rn) — refer to Sec. 3.2.1. The difficult
part consists in finding a suitable finite-dimensional subspace of H1(R3). However, we do not delve further into
this topic at this stage as it will be covered in details in Sec. 3.4.

Finally, note that the compactification transform [Eqs. (3.21, 3.22)] discussed here is just one example
among others. For instance, one could imagine compactifying each individual coordinate separately as in, e.g.,
(x, y, z) 7→ [arctan(x), arctan(y), arctan(z)]. In such a scenario, R3 would be mapped to a finite cube instead of
a ball as was the case for the T transform (3.21). The main drawback from compactifications of the whole space
is that the geometry in the resulting bounded domain is not intuitive (see e.g. Fig. 3.1). On the one hand, there
is no denying that the T transform is a bijection, allowing one to go back and forth between the two domains
without any loss of information. On the other hand, the process of constructing suitable meshes and the whole
post-processing stage is much more cumbersome to carry out in the compactified space. This practical issue can
be circumvented by applying the compactification only to the exterior of a ball centered at the origin instead of
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Figure 3.2: Compactification of the exterior domain Ωext = Rn \ B(Rc) by means of the Kelvin inversion K. The
resulting inverted exterior domain Ω̃ext is B(Rc) \ {0}, where the closure point 0 represents spatial infinity in
the real space. Note that K is a conformal mapping so that the angles are preserved.

the whole space, as suggested in Ref. [260]. The next technique we present also avoids this issue.

3.3.2 Domain splitting and Kelvin inversion

Inversion transform

We start by partitioning the whole domain Ω into two subdomains. Let Rc > 0 be a truncation radius. We
define Ωint := Ω ∩ B(Rc) and Ωext := Ω \ Ω̄int so that (i) Ω̄ = Ω̄int ∪ Ω̄int and (ii) Ωint encapsulates the various
sources of physical interest. Rc is chosen large enough so that Rn \ B(Rc) = Ω̄ext. The resulting interface
Γ := ∂Ω̄int ∩ ∂Ω̄ext is nothing but S(Rc), the sphere of radius Rc and centered at the origin in Rn. The interior
domain Ωint is bounded, the exterior domain Ωext is not.

The exterior domain Ωext can be mapped to a bounded domain using the Kelvin inversion K, reading

K : Rn \ {0} → Rn \ {0}

x 7→ R2
c

∥x∥2x =: ξ .

(3.25)

This involution maps Ωext to Ω̃ext = K(Ωext) = B(Rc) \ {0}. The resulting bounded domain Ω̃ext is referred to
as the inverted exterior domain [261] (or fictitious domain in Refs. [242, 245, 246]). We further notice that the
boundary Γ is invariant under K, i.e. Γ̃ = K(Γ) = Γ. Fig. 3.2 illustrates the application of this inversion on
R2 \ B(Rc) fitted with a Cartesian grid and concentric circles growing at an arithmetic rate. Fig. 3.3 provides a
somewhat clearer view of the main notations associated with this inversion transform.

The generic (bi)linear forms a(·, ·) and l(·) can be split into

a = aint + aext and l = lint + lext , (3.26)

where, by virtue of Chasles’ relation, aint and lint feature integrals over Ωint, while aext and lext feature integrals
over Ωext. The next logical step consists in applying the coordinates change x 7→ K(x) = ξ in the integrals
associated with aext and lext. In that perspective, we extend the tilde notation to functions w as

∀ξ ∈ Rn \ {0} , w̃(ξ) = w
(
K−1(ξ)

)
. (3.27)

Illustration on the Klein–Gordon problem

Let us illustrate this procedure on the linear Klein–Gordon equation, Example 3.1, for which akg and lkg are
given by Eq. (3.5). For u, v ∈ H1(Rn), one has

akg,ext(u, v) =

∫

Ωext

∇u ·∇v dx+

∫

Ωext

d(x)uv dx

=

∫

Ω̃ext

(
Rc

∥ξ∥

)2(n−2)

∇̃ũ · ∇̃ṽ dξ +

∫

Ω̃ext

(
Rc

∥ξ∥

)2n
d̃(ξ) ũ ṽ dξ , (3.28)
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Figure 3.3: Kelvin inversion of the exterior domain.

and

lkg,ext(v) =

∫

Ωext

f(x)v dx =

∫

Ω̃ext

(
Rc

∥ξ∥

)2n
f̃(ξ) ṽ dξ , (3.29)

where ∇̃ = (∂ξ1 , . . . , ∂ξn)
T is the gradient operator in the new coordinate system. The change of coordinates

carried out in these integrals is detailed in Box I below.

Box I: Kelvin inversion — change of coordinates

Performing the change of coordinates x 7→ K(x) = ξ in the integrals appearing in aext and lext
requires, among other things, the computation of the Jacobian of the Kelvin inversion (3.25).
We denote by JK and JK−1 the Jacobian matrix of K and K−1 respectively. For ξ ∈ Rn \ {0},
one has

JK
(
K−1(ξ)

)
= − 1

R2
c




ξ21 −
∑

i ̸=1

ξ2i 2ξ1ξ2 . . . 2ξ1ξn

ξ22 −
∑

i ̸=2

ξ2i . . . 2ξ2ξn

SYM
.. .

...

ξ2n −
∑

i ̸=n

ξ2i




and JK−1 (ξ) =

(
Rc

∥ξ∥

)4

JK(K−1(ξ)) .

For u, v ∈ C1(Rn), one has

∇u(K−1(ξ)
)
·∇v(K−1(ξ)

)
= ∇̃ũ(ξ)T JK

(
K−1(ξ)

)
JK
(
K−1(ξ)

)T ∇̃ṽ(ξ)

=

(∥ξ∥
Rc

)4
∇̃ũ(ξ) · ∇̃ṽ(ξ) .

Finally, the volume elements dx and dξ are related through the Jacobian determinant of the
mapping, reading

dx =

(
Rc

∥ξ∥

)2n
dξ .

We notice that, as was the case for the compactification transform (3.22), the change of coordinates x 7→ ξ in
Eqs. (3.28–3.29) leads to the appearance of coefficients proportional to negative powers of ∥ξ∥ in the integrals.
From a mathematical viewpoint, the choice of an adequate functional space for u and v, H1(Rn) in this particular
case (see Sec. 3.2.1), mitigates such singularities in the neighborhood of ξ = 0. In actual FEM computations,
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these singularities are ‘killed’ by a suitable choice of discrete space Wh and associated basis functions. In
that perspective, the following section explores two ways for ensuring that the problem is numerically free of
singularities:

1. The first idea is to choose a finite-dimensional space with carefully selected basis functions. More precisely,
instead of using piecewise polynomials as in standard FEM (see Sec. 2.1.3), we weight the latter by ∥ξ∥β ,
where β ∈ R is chosen (i) large enough to cancel the singularity in the integrands, and (ii) so that the
inclusion Wh ⊂W holds. This approach is most notably leveraged in a series of articles by T. Boulmezaoud
et al. (see e.g. Refs. [242–247]) in the framework of ifem. For this reason, we will refer to this approach as
‘à la Boulmezaoud’.

2. The second idea we investigate is somehow more convoluted. Instead of working with the weak forms
featuring singular coefficients in the integrals [e.g. Eqs. (3.23, 3.24, 3.28, 3.29)], we introduce a weight ω
directly in the strong formulation of the PDE problem so as to make such singular coefficients disappear.
We will therefore refer to this second approach as the ‘explicit weight regularization technique’. It is
implemented in, e.g., Refs. [137, 240, 241, 262].

3.3.3 Dealing with arising unbounded coefficients

The two aforementioned approaches are showcased using Examples 3.1 and 3.2. Specifically:

– the weight regularization technique is applied to the linear Klein–Gordon equation (3.3), Example 3.1, for
Ω = R2;

– the Poisson problem, Example 3.2, is handled à la Boulmezaoud for Ω = R2.

For the sake of generality, the computations are conducted in an arbitrary dimension n as far as possible.
Ultimately though, we specify n = 2 to obtain explicit expressions.

First approach: à la Boulmezaoud

We illustrate this technique on the Poisson equation (3.4), Example 3.2. Paving the way for Sec. 3.4, we introduce
the hat operator acting on generalized functions w as

∀ξ ∈ Rn \ {0} , ŵ(ξ) =
(
Rc

∥ξ∥

)β
w
(
K−1(ξ)

)
=

(
Rc

∥ξ∥

)β
w̃(ξ) , (3.30)

where w̃ is given by Eq. (3.27) and β ∈ R is to be fixed subsequently. For u, v ∈W p
ω , rewriting ap,ext and lp,ext

in terms of û and v̂ reads

ap,ext(u, v) =

∫

Ω̃ext

(
Rc

∥ξ∥

)2(n−2)

∇̃ũ · ∇̃ṽ dξ

=

∫

Ω̃ext

(∥ξ∥
Rc

)2(β−n+1)
{(∥ξ∥

Rc

)2
∇̃û · ∇̃v̂ +

β

R2
c

[
û ∇̃v̂ + v̂ ∇̃û

]
· ξ +

(
β

Rc

)2
û v̂

}
dξ , (3.31)

lp,ext(v) =

∫

Ω̃ext

(
Rc

∥ξ∥

)2n
f̃(ξ) ṽ dξ =

∫

Ω̃ext

(∥ξ∥
Rc

)β−2n

f̃(ξ) v̂ dξ . (3.32)

Above all, the choice of a suitable value for β must be guided by the adopted discrete space Wh in which we
approximate functions of W p

ω . We will see in Sec. 3.4 that demanding the inclusion Wh ⊂W p
ω is the same as

demanding the convergence of the integrals (3.31–3.32).

Second approach: explicit weight regularization technique

We illustrate this technique on the linear Klein–Gordon equation (3.3), Example 3.1, for Ω = R2. It is worth
noting this technique is the same as the method of auxiliary mapping implemented in the work of Oh et al. [240,
241], except they use an exponential weight whereas we use a polynomial weight.

The weighted weak form Given a single weight ω : R2 → R∗
+ of class C1, multiplying both sides of Eq. (3.3) by

ω and rearranging the terms yields

−div
[
ω(x)∇u]+∇ω ·∇u+ ω(x)d(x)u = ω(x)f(x) , ∀x ∈ R2 . (3.33)
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1

Rc

∥ξ∥

ω̃(ξ)

Figure 3.4: Chosen weight expressed as a function of ∥ξ∥ — see Eq. (3.36).

This weighted PDE, despite being equivalent to the original one [Eq. (3.3)], has a different weak form. The
(bi)linear forms akg and lkg are indeed replaced by a∗kg and l∗kg. In particular, Eqs. (3.28–3.29) become

a∗kg,ext(u, v) =
∫

Ω̃ext

(
Rc

∥ξ∥

)2(n−2)

∇̃ũ ·
[
∇̃ṽ ω + ∇̃ω̃ ṽ

]
dξ +

∫

Ω̃ext

ω̃

(
Rc

∥ξ∥

)2n
d̃(ξ) ũ ṽ dξ , (3.34)

l∗kg,ext(v) =
∫

Ω̃ext

ω̃

(
Rc

∥ξ∥

)2n
f̃(ξ) ṽ dξ , (3.35)

for u, v in some adequate space to be specified. The weight function ω, that we introduced manu militari, should
fulfill the following properties:

1. ω(x) = 1 in Ωint [the weight has no effect in the interior domain];

2. ω̃(ξ) ∼ ∥ξ∥2n in the neighborhood of ξ = 0 [the weight removes the singularities in Eqs. (3.34–3.35)];

3. ω̃(Rc) = 1 and ∇̃ω̃(ξ) −→
∥ξ∥→Rc

0 [smooth connection at the interface between Ωint and Ωext].

We now select n = 2. In regards to the three above conditions, an admissible weight ω is a polynomial in the
variable ∥ξ∥, reading




ω̃(ξ) = − 4

R5
c

∥ξ∥5 + 5

R4
c

∥ξ∥4

∇̃ω̃(ξ) =
20

R5
c

(
Rc∥ξ∥2 − ∥ξ∥3

)
ξ

, ∀ξ ∈ Ω̃ext and ω̃(ξ) = 1 for ∥ξ∥ ≥ Rc (3.36)

in the ξ coordinate, and




ω(x) =
5R4

c∥x∥ − 4R5
c

∥x∥5

∇ω(x) = −45R
4
c∥x∥ − 5R5

c

∥x∥7 x

, ∀x ∈ Ωext and ω(x) = 1 for ∥x∥ ≤ Rc (3.37)

in the original Cartesian coordinate system. This weight function ω̃ is represented in Fig. 3.4 (red curve).

Weighted Sobolev space and well-posedness A suitable functional space is the weighted Sobolev space W kg
ω (R2),

where the weight ω is given by Eqs. (3.36–3.37) — see Sec. 3.2.2. The following two lemmas serve the purpose of
proving this statement.

Lemma 3.4. With the weight defined through Eqs. (3.36–3.37), W kg
ω (R2) is a uniformly convex Banach space.

Moreover, the space of test functions D(R2) is dense in W kg
ω (R2).

Proof. One has ω, ω−1 ∈ L1
loc(R2) so W kg

ω is a uniformly convex Banach space and D(R2) is a subset of W kg
ω —

see Lemma 3.2. The density property can be proven in a similar fashion as done in Ref. [253], that is in two
stages:



3.3. Approaches based on compactification transforms 91

1. given an element u of W kg
ω , one can construct a sequence of elements in W kg

ω with compact support that
converges to u;

2. any element of that sequence having a compact support, one can choose an element of D(R2) arbitrarily
close to it.

Let u ∈W kg
ω and ε > 0. Let φ ∈ D(R2) such that 0 ≤ φ ≤ 1, φ(x) = 1 for ∥x∥ ≤ 1, φ(x) = 0 for ∥x∥ ≥ 2 and

define
for any k ∈ N∗ , φk(x) = φ

(x
k

)
∀x ∈ R2 and uk = φku ,

so that φk and uk are compactly supported in B(2k). We then show that

lim
k→+∞

∥u− uk∥W kg
ω

= 0 .

On the one hand,
∫

R2

ω|u− uk|2 dx =

∫

k≤∥x∥≤2k

ω|u− uk|2 dx+

∫

∥x∥≥2k

ωu2 dx ≤ 2

∫

∥x∥≥k

ωu2 dx −→
k→+∞

0

where the limit is justified by the fact that u ∈W kg
ω . On the other hand, using ∇φk(x) = k−1∇φ(x/k) and the

fact that there exists a constant C > 0 such that for all x ∈ R2, ∥∇φ(x)∥2 ≤ C,
∫

R2

ω∥∇(u− uk)∥2 dx =

∫

R2

ω∥(1− φk)∇u− u∇φk∥2 dx

≤ 2

∫

R2

ω|1− φk|2∥∇u∥2 dx+ 2

∫

R2

ω|u|2∥∇φk∥2 dx

≤ 2

∫

∥x∥≥k

ω∥∇u∥2 dx+
2C

k2

∫

∥x∥≥k

ω|u|2 dx −→
k→+∞

0 ,

because again u ∈ W kg
ω . Therefore, there exists M1 ≥ 1 such that for all k ≥ M1, ∥u − uk∥W kg

ω
< ε/2. Let

k ≥ M1; uk being compactly supported, it belongs to H1(R2). D(R2) being dense in H1(R2), we can find a
sequence (Ψℓ)ℓ∈N ∈ D(R2)N such that

lim
ℓ→+∞

∥Ψℓ − uk∥H1 = 0 .

Recalling that ∀x ∈ R2, 0 < ω(x) ≤ 1, we get

lim
ℓ→+∞

∥Ψℓ − uk∥W kg
ω

= 0 , therefore, there exists M2 ∈ N∗ such that ∀ ℓ ≥M2, ∥Ψℓ − uk∥W kg
ω
< ε/2 .

To conclude, for k ≥M1 and ℓ ≥M2, we have

∥u−Ψℓ∥W kg
ω
≤ ∥u− uk∥W kg

ω
+ ∥uk −Ψℓ∥W kg

ω
< ε .

Lemma 3.5. For u, v ∈W kg
ω (R2), one has

∫

R2

[∇ω ·∇u]v dx ≤ 4

Rc
∥v∥L2(R2, ω) |u|W kg

ω
, (3.38)

where | · |W kg
ω

denotes the semi-norm in W kg
ω — see Eq. (3.10).
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Proof. Let u, v ∈W kg
ω (R2). Recalling that ω is constant in Ωint, we get

∣∣∣∣
∫

Ω

[∇ω ·∇u] v dx

∣∣∣∣ ≤
∫

Ω

∣∣ [∇ω ·∇u] v
∣∣ dx =

∫

Ωext

∣∣ [∇ω ·∇u] v
∣∣dx (triangle inequality and ω ≡ 1 in Ωint)

≤ 4

∫

Ωext

5R4
c∥x∥ − 5R5

c

∥x∥5
∣∣∣∣

x

∥x∥2 ·∇u

∣∣∣∣ |v|dx (∥x∥ ≥ Rc in Ωext)

≤ 4

∫

Ωext

ω(x)

∣∣∣∣
x

∥x∥2 ·∇u

∣∣∣∣ |v|dx (0 ≤ 5R4
c∥x∥ − 5R5

c ≤ 5R4
c∥x∥ − 4R5

c)

= 4

∫

Ωext

√
ω(x) |v|

2∑

i=1

√
ω(x)

∂u

∂xi

xi
∥x∥2 dx

≤ 4

∫

Ωext

√
ω(x) |v|

[
2∑

i=1

ω(x)

(
∂u

∂xi

)2
]1

2
[

2∑

i=1

x2i
∥x∥4

]1
2

dx (Hölder’s inequality)

≤ 4

Rc

(∫

Ωext

ω(x) v2 dx

)1
2
(∫

Ωext

ω(x) ∥∇u∥2 dx
)1

2

(Cauchy–Schwarz inequality)

Lemma 3.4 justifies the integration by parts in R2 underlying the definition of a∗kg — see Sec. 3.2.3. Lemma 3.5
is useful in several respects for further proving the well-posedness of the corresponding weak formulation. Let
u, v ∈W kg

ω , the well-defined character and continuity of a∗kg follow from inequality (3.38) as

|a∗kg(u, v)| ≤
∣∣∣∣
∫

R2

ω(x)
[∇u ·∇v]dx

∣∣∣∣+
∣∣∣∣
∫

R2

[∇ω ·∇u] v dx
∣∣∣∣+
∣∣∣∣
∫

R2

d(x)uv dx

∣∣∣∣

≤ |u|W kg
ω
|v|W kg

ω
+

4

Rc
∥v∥L2(R2, ω) |u|W kg

ω
+ d∞ ∥u∥L2(R2, ω) ∥v∥L2(R2, ω)

≤ max(1, 4/Rc, d∞) ∥u∥W kg
ω
∥v∥W kg

ω
.

The continuity of l∗kg in W kg
ω , under the assumption that f ∈ L2(R2, ω), is obtained similarly by the

Cauchy–Schwarz inequality. Ultimately, the coercivity of a∗kg over W kg
ω is examined in the following lemma.

Lemma 3.6. If Rc min(1, d0) > 2, the bilinear for a∗kg(·, ·) is coercive over W kg
ω .

Proof. Let u ∈W kg
ω . On the one hand,

∫

Ω

ω(x) ∥∇u∥2 dx+

∫

Ω

ω(x) d(x)u2 dx ≥
∫

Ω

ω(x) ∥∇u∥2 dx+ d0

∫

Ω

ω(x)u2 dx (3.39)

≥ min(1, d0) ∥u∥2W kg
ω

. (3.40)

On the other hand, inequality (3.38) together with the fact that ∀a, b ∈ R, 2ab ≤ a2 + b2 yields
∣∣∣∣
∫

Ω

[∇ω ·∇u]udx

∣∣∣∣ ≤
2

Rc
∥u∥2W kg

ω
. (3.41)

Consequently, inequalities (3.40–3.41) lead to

a∗kg(u, u) ≥
(
min(1, d0)−

2

Rc

)
∥u∥2W kg

ω
.

In particular, one can always choose Rc big enough to make the coercivity constant found in Lemma 3.6
strictly positive. All in all, we end up with the following proposition.

Proposition 3.1. Let Ω = R2 and define the weight ω : R2 → R∗
+ according to Eqs. (3.36–3.37). Suppose that

there exist two constants d0, d∞ ∈ R such that 0 < d0 ≤ d(x) ≤ d∞ for all x ∈ R2 and that f ∈ L2(R2, ω).
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Then, according to Lax–Milgram theorem (see Box E), the weak formulation

“ Find u ∈W kg
ω such that for all v ∈W kg

ω , a∗kg(u, v) = l∗kg(v) ”

has a unique solution, which depends continuously on the problem’s data.

Remark 3.4. Proposition 3.1 does not generalize easily to other PDEs. Indeed, the coercivity of the weighted
bilinear form a∗(·, ·) over W kg

ω is lost when considering, for instance, the Poisson equation (3.4) of Example 3.2,
for which

∀u, v ∈W kg
ω , a∗p(u, v) =

∫

R2

ω(x)
[∇u ·∇v] dx+

∫

R2

[∇ω ·∇u]v dx . (3.42)

In fact, it is easy to see from Eq. (3.42) that (i) a∗p(u, u) = 0 for any constant function u, and (ii) that constants
belong to W kg

ω since ω defined by Eqs. (3.36–3.37) belongs to L1(R2).4 Moreover, this procedure results in a
non-symmetric bilinear form and de facto a non-symmetric stiffness matrix, which is often not desirable in terms
of solving linear systems numerically.5

To summarize, the explicit weight regularization technique, applied to the linear Klein–Gordon equation (3.3)
in Ω = R2, results in a well-posed weak formulation. The integrals featured in the definition of the (bi)linear forms
a∗kg and l∗kg are free of singular coefficients thanks to the choice of the weight function ω given by Eqs. (3.36–3.37).
The next section shows that an adequate finite-dimensional function space can be constructed in the ‘usual’ way
— with piecewise polynomials of the variable x in Ωint and piecewise polynomials of the variable ξ in Ω̃ext.

3.4 The FE framework

In this section, in the same vein as in Sec. 2.1.3, we introduce the finite-dimensional spaces Wh
kg ⊂ W kg

ω and
Wh

p ⊂W p
ω . This requires the definitions of meshes. Most notably, the fact that the inverted exterior domain is

bounded makes it meshable with a finite number of elements, which was the primary motivation for introducing
the Kelvin inversion. The present section corresponds to the description of the ifem method [242].

3.4.1 Construction of meshes

We define the one-point compactification of Ω̃ext by Ω̃∗
ext := Ω̃ext ∪ {0ext}. We then use two polygonal meshes:

– T h
int on Ωint, which is comprised of Nint dofs;

– T̃ h
ext on Ω̃∗

ext such that 0ext belongs to the set of vertices of T̃ h
ext (but does not constitute a true degree of

freedom), which is comprised of Next dofs.

We further denote by Σh and Σ̃h the surface meshes of T h
int and T̃ h

ext respectively, constituted of (n−1)-dimensional
elements. Each of the two surface meshes are comprised of NΓ dofs. The total number of dofs is denoted Ntot

and is equal to Nint +Next −NΓ (the boundary dofs should be counted only once).

Definition 3.3. We say that the meshes T h
int and T̃ h

ext have the same trace, i.e. Σh ≡ Σ̃h, if the following two
conditions are met:

1. boundary vertices of both meshes have the same coordinates;

2. moreover, the resulting facet elements [which are (n−1)-dimensional elements] of Σh and Σ̃h have the
same connectivity.

From now on, we demand that T h
int and T̃ h

ext have the same trace Σh ≡ Σ̃h in the sense of Definition 3.3. An
example of such meshes is given in Fig. 3.5.

Remark 3.5. Note that, stricto sensu, the condition Σh ≡ Σ̃h is not enough to ensure that the method is exactly
conforming. Indeed, meshing with polygonal elements means that the boundaries Γ and Γ̃ are approximated by
(n−1)-dimensional polytopes. Unlike (n−1)-spheres, polytopes are not invariant under the Kelvin transform (3.25).
This is visible on Fig. 3.5 where the elements of Σh are actually mapped to the purple curved lines. As a
consequence, entries of the stiffness matrix and load vector associated with boundary nodes are spoiled by small
errors. We can name at least three ways around this issue:

1. Approximate Γ exactly: this could in theory be achieved by the use of e.g. higher-order curved elements,
isoparametric elements or isogeometric analysis (see e.g. Refs. [263, 264]).

4Actually, one can show that for any α ∈ [0, 1[ and C ∈ R, uα : x 7→ C∥x∥α belongs to Wkg
ω and is such that a∗p(uα, uα) ≤ 0.

5For instance, one cannot employ the conjugate gradient method in its standard form to solve non-symmetric linear systems.



94 CHAPTER 3. Problems posed on unbounded domains

Σh

•z1

•z2

•z3
•z4

•z5

•z6

•z7

•z8

•z9 •z10
•z11

•z12

•
•

•

•

•

•
•

Mesh of the interior domain T h
int

Σ̃h

•z̃1

•z̃2

•z̃3
•z̃4

•z̃5

•z̃6

•z̃7

•
z̃8

•̃
z9 •

z̃10

•z̃11

•z̃12

•

•

•

•

•

•

• 0ext

Mesh of the inversed exterior domain T h
∗

Figure 3.5: Example of meshes T h
int and T̃ h

ext. The requirements that (i) the two meshes have the same trace
Σh ≡ Σ̃h and (ii) 0ext ∈ T h

∗ are fulfilled. Note that the Kelvin inversion K does not preserve polygonal simplices,
which are actually mapped to curved lines (in purple). As a consequence, the stiffness matrix coefficients
involving (z̃i) are spoiled by a small error.

nint

+

R c

Ωint

Ωext

Γ

x

y

r

θ

Πint Πext

L

Rc0

2π

nint

(x, y) 7→ (r, θ)

Figure 3.6: Mapping of Ωint to Πint through the change of coordinates from Cartesian coordinates (x, y) to
polar coordinates (r, θ). The originally curved boundary Γ is mapped to the straight line L. See Sec. 2.3 for a
discussion on how such coordinate transforms can be leveraged in the framework of FEM.

2. Replace the Kelvin inversion by the polygonal inversion introduced in Ref. [242]. This can be achieved at
the price of a slightly more complicated numerical implementation.

3. Switch from Cartesian coordinates to a more adapted coordinate system, e.g. spherical coordinates in
n-dimensions. This has the effect of mapping Ωint and Ω̃ext into rectangles for n = 2 (see Fig. 3.6) or
a rectangular cuboid for n = 3. The resulting geometry can be approximated exactly with polygonal
elements. We use this approach in Refs. [137, 141].

We are now in a position to define the discrete functional spaces Wh
kg and Wh

p associated with the pair of meshes
(T h

int, T̃ h
ext).

3.4.2 Discrete spaces

The definition of suitable finite dimensional spaces depends on the regularization technique employed (see
Sec. 3.3.3). In both cases, we will make use of the following lemma.

Lemma 3.7. Let K be a polyhedron of dimension n with 0 as one of its vertices and u ∈ Pk(K) such that
u(0) = 0. Then, there exists CK > 0 such that

∀x ∈ K, |u(x)| ≤ CK∥x∥ . (3.43)
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Proof. The polynomial function u can be written explicitly as

u(x) =

n∑

k=1

bkxk +Q2(x) ,∀x ∈ K ,

where bk ∈ R are not all-zero and Q2 is the polynomial gathering all terms of order greater than or equal to two.
Note the absence of 0th-degree term owing to the condition u(0) = 0. It follows that

u2(x) =

(
n∑

k=1

bkxk

)2

+ 2Q2(x)

d∑

k=1

bkxk +Q2
2(x)

︸ ︷︷ ︸
:=Q3(x)

=

n∑

k=1

b2kx
2
k + 2

∑

i>j

bibjxixj +Q3(x)

≤ b2max∥x∥2 +
n(n− 1)

2
b2max∥x∥2 +Q3(x) ,

with bmax = max1≤k≤n(bk). We have used the fact that ∀i, j ̸= i, 2|xixj | ≤ x2i + x2j ≤ ∥x∥2. Q3 is a polynomial
function gathering all terms of degree at least 3. It can be written as the sum of N monomials

Q3(x) =

N∑

l=1

αlM
(3)
l (x) ,∀x ∈ K ,

where αl ∈ R and M (3)
l is a monomial of degree at least 3, with unitary coefficient. Then, for all l ∈ {1, . . . , N},

there exist indices il, jl such that we can factorize M (3)
l (x) = xilxjlM

(1)
l (x), with M

(1)
l being a monomial of

degree one. K being a compact set,

∃Bl
K > 0 such that ∀x ∈ K, |M (1)

l (x)| ≤ Bl
K .

Setting BK = max1≤l≤N (Bl
K) and αmax = max1≤l≤N (αl), we have the following inequality:

|Q3(x)| ≤
N∑

l=1

|αlM
(3)
l (x)| ≤ αmax

N∑

l=1

|xilxjl ||M
(1)
l (x)| ≤ αmaxNBK∥x∥2 ,

which concludes this proof.

Definition 3.4. For the sake of clarity, let us define the sub-domain

T̃ h
∞ :=

{
K̃ ∈ T̃ h

ext such that 0ext ∈ K̃
}
\ {0ext} , (3.44)

as well as its image by the Kelvin transform

T h
∞ := K

(
T̃ h
∞
)
=
{
K(K̃ \ {0ext}) , K̃ ∈ T̃ h

ext such that 0ext ∈ K̃
}
. (3.45)

Discrete counterpart of Wp
ω (à la Boulmezaoud)

When discussing the Poisson problem on the whole space in Sec. 3.2.2, we introduced the weighted Sobolev space

W p
ω =

{
u ∈ L2

(
R2, ω0

)
such that ∥∇u∥ ∈ L2

(
R2, ω1

)}
, (3.46)

where the pair of weights (ω0, ω1) is given by Eq. (3.14) in dimension two. For a polynomial degree k ∈ N∗, we
set the discrete spaces

Wh
p,int :=

{
u ∈ C0(Ω̄int) such that ∀K ∈ T h

int, u|K ∈ Pk(K)
}
, (3.47a)

Wh
p,ext :=

{
u ∈ C0(Ω̄ext) such that ∀K̃ ∈ T̃ h

ext, û|K̃ ∈ Pk(K̃) and û(0ext) = 0
}
, (3.47b)

Wh
p :=

{
u ∈ C0(R2) such that u|T h

int
∈Wh

p,int and u|T̃ h
ext
∈Wh

p,ext

}
. (3.47c)
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Proposition 3.2. Suppose that β > −1, then Wh
p [given by Eq. (3.47c)] is a subspace of W p

ω (defined in Sec. 3.2.2).

Proof. The only non-trivial part of this proposition is associated with the asymptotic behavior of functions
belonging to Wh

p . Specifically, the critical point is to show that

I1 =

∫

KF

ω0(x) [u(x)]
2
dx < +∞ and I2 =

∫

KF

ω1(x)∥∇u(x)∥2 dx < +∞ , ∀u ∈Wh
p and KF ∈ T h

∞ .

On the one hand, switching to the ξ coordinates and applying Lemma 3.7 to û(ξ) [see Eq. (3.30)] yields

I1 =

∫

K̃F

[
ũ(ξ)

]2
ω̃0(ξ)

(
Rc

∥ξ∥

)4
dξ =

∫

K̃F

[
û(ξ)

]2
ω̃0(ξ)

(∥ξ∥
Rc

)2(β−2)

dξ

≲
∫

K̃F

∥ξ∥2
R4

c + ∥ξ∥2
ln

(
R4

c + ∥ξ∥2
∥ξ∥2

)−2(∥ξ∥
Rc

)2(β−1)

dξ

≲
∫ Rc

0

r2β+1

ln(r)2
dr ,

where the notation a ≲ b means that there exists a constant C such that a ≤ Cb. The latter integral is convergent
if and only if β > −1.

On the other hand, to show that I2 < +∞, we recall that

∥∇u∥2 =

(∥ξ∥
Rc

)4
∥∇̃ũ∥2 , ∇̃ũ =

(∥ξ∥
Rc

)β
∇̃û+

β

Rβ
c

∥ξ∥β−2 û ξ ,
∥∥∇̃û

∥∥ ∈ L∞(Ω̃ext

)
.

Then, using Cauchy–Schwarz inequality together with Lemma 3.7, we obtain

∥∇̃ũ∥2 ≤
(∥ξ∥
Rc

)2β
∥∇̃û∥2 +

(
β

Rβ
c

)2

∥ξ∥2(β−1)|û|2 + 2
|β|
R2β

c

∥ξ∥2β−1
∥∥∇̃û

∥∥ |û| ≲ ∥ξ∥2β

Therefore, we have

I2 =

∫

K̃F

(∥ξ∥
Rc

)4
∥∇̃ũ∥2

(
Rc

∥ξ∥

)4
dξ ≲

∫ Rc

0

r2β+1 dr .

The latter integral is convergent if and only if β > −1.
Note that this proof could easily be generalized to the case of an arbitrary dimension n ∈ {1, 2, 3} and we

would have found the condition β > (n− 4)/2.

Discrete counterpart of Wkg
ω (weight regularization technique)

When discussing the Klein–Gordon problem on the whole space in Sec. 3.3.3, we introduced the weighted Sobolev
space

W kg
ω =

{
u ∈ L2

(
R2, ω

)
such that ∥∇u∥ ∈ L2

(
R2, ω

)}
, (3.48)

where the weight ω is given by Eqs. (3.36–3.37) in dimension two. For a polynomial degree k ∈ N∗, we set the
discrete spaces

Wh
kg,int :=

{
u ∈ C0(Ω̄int) such that ∀K ∈ T h

int, u|K ∈ Pk(K)
}
, (3.49a)

Wh
kg,ext :=

{
u ∈ C0(Ω̄ext) such that ∀K̃ ∈ T̃ h

ext, û|K̃ ∈ Pk(K̃) and û(0ext) = 0
}
, (3.49b)

Wh
kg :=

{
u ∈ C0(R2) such that u|T h

int
∈Wh

kg,int and u|T̃ h
ext
∈Wh

kg,ext

}
. (3.49c)

Proposition 3.3. Wh
kg [defined by Eq. (3.49c)] is a subspace of W kg

ω [defined in Sec. 3.3.3.]

Proof. Let u ∈ Wh
kg. First, let us observe that ωu2 and ω∥∇u∥2 belong to L1

loc(R2) so we only have to prove
their integrability over T h

∞ defined by Eq. (3.45). Let K̃F ∈ T̃ h
∞ ∪ {0ext} and KF be the corresponding element of
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T h
∞. Because of the nodal constraint on 0ext, ũ(0) = 0 and ũ|K̃F

∈ Pk(K̃F ). Using Lemma 3.7, we get

∀x ∈ KF , |u(x)| = |ũ(ξ)| ≤ CKF
∥ξ∥ = CKF

R2
c

∥x∥ , with ξ = K(x) .

Consequently, ∫

KF

ω(x)u(x)2 dx ≤ C2
KF
R4

c

∫

KF

|ω(x)|
∥x∥2 dx < +∞ . (3.50)

Similarly, we want an upper bound of the gradient. We have ∇u = JK(K−1(ξ))T ∇̃ũ where the matrix JK(K−1(ξ))
is the Jacobian matrix of the Kelvin inversion at point K−1(ξ) and is given in Box I. It is such that

∥JK(K−1(ξ))∥∗ =

{
ρ
[
JK
(
K−1(ξ)

)T
JK
(
K−1(ξ)

)]}1/2

∝ ∥ξ∥2

where ∥ · ∥∗ is the matrix norm induced by the Euclidean norm on Rn and ρ(M) denotes the spectral radius of a
matrix M. Therefore, there exists C > 0 such that

∀x ∈ KF , ∥∇u(x)∥ = ∥A(ξ)∇̃ũ∥ ≤ ∥A(ξ)∥∗∥∇̃ũ∥ ≤ C∥ξ∥2 ∝ ∥x∥−2

Indeed, KF is a compact set and the application : ξ ∈ KF 7→ ∥∇̃ũ∥ is continuous because ũ ∈ Pk(K̃F ). As a
result, ∫

KF

ω(x)∥∇u∥2 dx ≤ C
∫

KF

|ω(x)|
∥x∥4 dx < +∞ . (3.51)

Eqs. (3.50–3.51) show that u ∈Wh
kg.

3.4.3 Assembling of the stiffness matrix and load vector

To conclude this section on ifem, let us equip the finite-dimensional spaces Wh
p and Wh

kg with their respective
bases. Define the basis (wi)1≤i≤Ntot

satisfying

– wi ∈Wh where Wh denotes either Wh
kg or Wh

p ;

– wi(Mj) = δi,j if Mj ∈ K for some K ∈ T h
int;

– for Mj ∈ K for some K ∈ T̃ h
ext

• w̃i(Mj) = δi,j if Wh =Wh
kg,

• ŵi(Mj) = δi,j if Wh =Wh
p .

Then, the computation of the stiffness matrix and load vector is performed as explained in Sec. 2.1.3. Specifi-
cally, it requires the numerical evaluation of all individual terms a(wj , wi) and l(wi) for all pairs (i, j) ∈ J1, NtotK2,
where (a, l) = (a∗kg, l

∗
kg) for the Klein–Gordon problem and (a, l) = (ap, lp) for the Poisson problem. In the

interior domain, the basis functions are Lagrange polynomials in the x coordinate, so that the computation of
the latter two terms is achieved as in standard FEM. In the exterior domain however, basis functions w are not
Lagrange polynomials, instead

– if Wh =Wh
kg, then w̃ is a Lagrange polynomial in the ξ coordinate and so standard FEM techniques can

be used to compute integrals involving w̃;

– if Wh =Wh
p , then ŵ is a Lagrange polynomial in the ξ coordinate and so standard FEM techniques can

be used to compute the integrals involving ŵ.

Remark 3.6. Note that the piecewise polynomial function associated with the origin 0ext is not to be included
in the set of basis functions because of the nullity condition. However, for the sole purpose of computing the
stiffness matrix and load vector, it is strictly equivalent to include the latter function to the set of basis functions
and impose a zero Dirichlet boundary condition at the node 0ext. This is the approach we adopt in order to
make the numerical implementation of the method as simple as possible.
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3.5 Iterative variant: the alternate inverted finite element method

In this section, we present a novel approach which we call the alternate inverted finite elements method,
abbreviated as a-ifem. It builds on top of two existing and well-studied methods, namely:

– The inverted finite elements method (ifem), originally proposed by Boulmezaoud in Ref. [242] and put
into use in many subsequent articles [243–247]. This approach shares several common features with the
so-called method of auxiliary mapping described in the work of Oh et al. [240, 241]. The ifem has already
been discussed at length throughout Secs. 3.3 and 3.4.

– Domain decomposition methods, notably developed in the field of high performance computing (HPC),
which consist in splitting a large computational domain into smaller, more manageable sub-domains which
exchange information at their common boundaries (see e.g. Refs. [200, 201] for reviews on the topic). In
particular, the a-ifem technique draws on an iterative relaxation procedure introduced by Marini and
Quarteroni [265], which belongs to the class of domain decomposition techniques without overlap.

The a-ifem technique was first introduced in our work [137], although it was therein referred to as the
ping-pong method, owing to the iterative nature of the numerical scheme. Because it shares a common ground
with the ifem technique, several aspects of the method have already been introduced in the previous sections.
We thereby focus on the specificities of the a-ifem approach here, referring back to relevant previous points when
needed.

3.5.1 The iterative procedure
As already mentioned, the iterative algorithm we describe is essentially based on the work of Marini and
Quarteroni [265], since the vast majority of results they obtained (in a bounded scenario) are also applicable to
our case. The idea consists in splitting the original problem into two sub-problems — one over Ωint and the
other one over Ω̃ext. Transmission conditions at the interface Γ are taken into account partly in one sub-domain
and partly in the other one, without overlap. As a side note, the domain decomposition scheme we employ is
discussed in other work, see e.g. Refs. [266–268]. In Ref. [200], it is referred to as the Dirichlet / Neumann
method.

From the global problem to the split problem

In what follows, we will need the following lemma.
Lemma 3.8. Let U an open set of Rn and v ∈ L2(U). Then, v ∈ H1(U) if and only if there exists C > 0 such
that for all φ ∈ D(U), ∣∣∣∣

∫

U

v
∂φ

∂xi
dx

∣∣∣∣ ≤ C ∥φ∥L2(U) , i ∈ {1, . . . , n} . (3.52)

A good starting point for explaining how a-ifem works is to go back to Eq. (3.26), where we used Chasles’
relation on integrals to argue that

a(u, v) = l(v) ⇐⇒ aint(u, v) + aext(u, v) = lint(v) + lext(v) . (3.53)

Ultimately, we want to split this single equation — which we refer to as the global problem — into two sub-
problems, defined on Ωint and Ω̃ext respectively. Using W to denote either W p

ω (for the Poisson problem 3.2) or
W kg

ω (for the weighted Klein–Gordon problem 3.1), and the subscript k to refer to either of the two sub-domains
{‘int’, ‘ext’}, we set the additional functional spaces

Wk :=
{
v|Ωk

, v ∈W
}

, W 0
k :=

{
v ∈Wk / γkv = 0

}
and Φ :=

{
v|Γ, v ∈W

}
. (3.54)

In these definitions, γk : Wk → H1/2(Γ) is the trace operator. Remark 3.1 and the fact that Γ is bounded make
indeed γk a well-defined, continuous and surjective operator (see Ref. [269] for a rigorous definition of fractional
Sobolev spaces). In particular, we can identify H1/2(Γ) = γk(Wk) = Φ. When v belongs W , we use the notation
γ (without subscript) to refer to the trace of v on Γ.6

Proposition 3.4. Consider either the linear Klein–Gordon problem 3.1 or the Poisson problem 3.2. Let ϕ ∈ Φ
and k be a subscript used to refer to either the interior domain or the exterior domain. The problem

Find uk ∈Wk such that ∀v ∈W 0
k , ak(uk, v) = 0 and uk = ϕ on Γ

has a unique solution. Here, the bilinear form a(·, ·) refers to either a∗kg(·, ·) or ap(·, ·).
6One way of defining γ : W → H1/2(Γ) is to take γv = γintv|Ωint

, since for any v ∈ W , v|Ωint
∈ Wint.
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Proof. Cauchy–Schwarz inequality (and Lemma 3.5 in the case of a∗kg,ext) provides the continuity of ak(·, ·)
on Wk × Wk. On Ωint, there exists a constant A > 0 such that the weight functions ω0, ω1 appearing in
Eqs. (3.13–3.14), and ω given by Eqs. (3.36–3.37), are bounded between A and 1. Consequently, properties of
the space W 0

int coincide with those of the classical Sobolev space H1
0 (Ωint). In particular, one inherits the usual

Poincaré inequality, which is enough to show that the coercivity of aint over W 0
int is preserved. The coercivity of

aext over Wext on the other hand can be proved (i) in a similar fashion to the proof of Lemma 3.6 for the case
of the weighted Klein–Gordon equation, and (ii) by using a Poincaré-type inequality similar to Eq. (3.15) for
an exterior domain for the case of the Poisson equation — see e.g. Refs. [252, 256] for the derivation of such
Poincaré-like inequalities on exterior unbounded domains of Rn. Since W 0

ext ⊂ Wext, aext is also coercive over
W 0

ext. Lax–Milgram theorem concludes the proof of this proposition.

Proposition 3.4 allows us to define the following trace extension operator

Rk : Φ→Wk

ϕ 7→ Rkϕ

with ak(Rkϕ, v) = 0 ∀ v ∈W 0
k

Rkϕ(x) = ϕ(x) ∀x ∈ Γ

, (3.55)

which is well-defined according to Proposition 3.4.

Lemma 3.9. The trace extension operator Rk is linear.

Proof. Let ϕ1, ϕ2 ∈ Φ and α ∈ R. Define χ = αϕ1 + ϕ2 and w = αRk(ϕ1) + Rk(ϕ2). On the one hand, Rkχ
is the unique element of Wk such that ∀v ∈W 0

k , ak(Rkχ, v) = 0 and Rkχ = χ on Γ (by linearity of the trace).
On the other hand, u ∈Wk happens to satisfy ak(u, v) = 0 ∀v ∈W 0

k (by bilinearity of ak) and u = χ on Γ (by
linearity of the trace). Therefore, unicity implies u = Rkχ, i.e. Rk(αϕ1 + ϕ2) = αRkϕ1 +Rkϕ2.

One can then define the split problem as

Find uint ∈Wint and uext ∈Wext such that




∀v ∈W 0
int , aint(uint, v) = lint(v)

∀v ∈Wext , aext(uext, v) = lext(v)− aint(uint, Rintγextv) + lint(Rintγextv)

uint = uext on Γ

(3.56)

Lemma 3.10. u ∈ W is solution to the global problem (3.53) if and only if uint = u|Ωint
and uext = u|Ωext

are
solutions to the split problem (3.56).

Proof. ⇐= : Let uint ∈Wint, uext ∈Wext be solutions to the split problem (3.56). We set

u : Ω→ R

x 7→
{
uint(x) if x ∈ Ω̄int

uext(x) if x ∈ Ωext

.

Then u belongs to the weighted Sobolev space W since (i) ∥u∥2W = ∥uint∥2Wint
+ ∥uext∥2Wext

< +∞, and (ii) weak
derivatives of u exist on Ω thanks to the continuity condition uint = uext on Γ. Indeed, this latter point can be
seen using Lemma 3.8. For any bounded domain U ⊂ Rn that encompasses Γ, φ ∈ D(U) and i ∈ {1, . . . , n}, we
have
∣∣∣∣
∫

U

u
∂φ

∂xi
dx

∣∣∣∣ =
∣∣∣∣
∫

Uint

uint
∂φ

∂xi
dx+

∫

Uext

uext
∂φ

∂xi
dx

∣∣∣∣

=

∣∣∣∣−
∫

Uint

φ
∂uint
∂xi

dx+

∫

Γ

uintφν
i
int dγ −

∫

Uext

φ
∂uext
∂xi

dx+

∫

Γ

uextφν
i
ext dγ

∣∣∣∣

≤
∣∣∣∣
∫

Uint

φ
∂uint
∂xi

dx

∣∣∣∣+
∣∣∣∣
∫

Uext

φ
∂uext
∂xi

dx

∣∣∣∣

≤
(∥∥∥∥

∂uint
∂xi

∥∥∥∥
L2(Uint)

+

∥∥∥∥
∂uext
∂xi

∥∥∥∥
L2(Uext)

)
∥φ∥L2(U) ,

where we have set Uint = U ∩ Ωint and Uext = U ∩ Ωext. There remains to be checked that u is solution to the
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global problem (3.53). For v ∈W , we set
{
vint = v −Rintγv on Ωint

vext = v|Ωext
on Ωext

,

so that vint ∈W 0
int and vext ∈Wext. Finally, one has

a(u, v) = aint(uint, vint) + aext(uext, vext) + aint(uint, Rintγv)

= lint(vint) + lext(vext) + lint(Rintγv)

= l(v)

=⇒ : Conversely, let u ∈W be solution to the global problem. Then, the condition uint = uext on Γ is
automatically verified (almost everywhere). Let vint ∈W 0

int and v be its extension by 0 in Ωext. One can show
using Lemma 3.8 that v ∈W , so that one can write

aint(uint, vint) = a(u, v) = l(v) = lint(vint) .

Similarly, let vext ∈Wext and define v its extension by Rintγvext in Ωint. Then v ∈W and

aext(uext, vext) = a(u, v)− aint(uint, Rintγvext) = lint(Rintγvext) + lext(vext)− aint(uint, Rintγvext) ,

which ends the proof.

Taking a step back, one can see that the split problem (3.56) is nothing but a weak formulation of the set of
equations

Luint = f on Ωint (3.57a)

Luext = f on Ωext (3.57b)

uint = uext on Γ (3.57c)

∂uint
∂νint

+
∂uext
∂νext

= 0 on Γ , (3.57d)

where L denotes the differential operator of the lhs of the PDE [which we assume to be of the generic form (2.3)
for this specific discussion], and ∂/∂νint, ∂/∂νext denote the co-normal derivatives [see e.g. Eq. (2.5)]. Under
suitable regularity conditions, the split problem in its strong form (3.57) is equivalent to the global problem in
its strong form Lu = f , see e.g. Refs. [270, 271]. The transmission of the normal derivative in Eq. (3.57d) at Γ
is encoded in the term −aint(uint, Rintγvext) + lint(Rintγvext) of the weak counterpart Eq. (3.56). Indeed, let
uint ∈Wint, uext ∈Wext be solutions to problem (3.56) and further satisfying the strong split problem (3.57). On
the one hand, an integration by parts in the definition of the bilinear form aext yields

aext(uext, vext) = ⟨Luext, vext⟩ext +
∫

Γ

(C∇uext) · next vext dγ

= lext(vext) +

∫

Γ

(C∇uext) · next vext dγ , ∀vext ∈Wext .

On the other hand, an integration by parts in the split problem (3.56) yields

aext(uext, vext) = lext(vext)− ⟨Luint, Rintγvext⟩int −
∫

Γ

(C∇uint) · nintRintγvext dγ + ⟨f,Rintγvext⟩int

= lext(vext)−
∫

Γ

(C∇uint) · nint vext dγ , ∀vext ∈Wext .

Equating these two expressions for aext leads to the transmission condition in the weak form
∫

Γ

(C∇uint) · nint vext dγ +

∫

Γ

(C∇uext) · next vext dγ = 0 , ∀vext ∈Wext .

In the case of the Klein–Gordon equation (3.3) or the Poisson equation (3.4), we have C = In and the latter
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expression boils down to
∫

Γ

∂uint
∂nint

vext dγ +

∫

Γ

∂uext
∂next

vext dγ = 0 , ∀vext ∈Wext .

Remark 3.7. We showed how the transmission of the normal derivative at Γ was encoded in the term
−aint(uint, Rintγvext) + lint(Rintγvext) of Eq. (3.56). However, we could also have accounted for it through
a Neumann boundary term as

aext(uext, vext) = lext(vext)−
∫

Γ

(C∇uint) · nintvext dγ , ∀vext ∈Wext (3.58)

instead. While the two weak formulations can be obtained in an equivalent way from the strong split prob-
lem (3.57), they lead to distinct problems when turning to finite dimensional (discrete) spaces. In Sec. 3.6, we
shall see that the Neumann boundary term approach is the least efficient of the two.

From the split problem to the iterative procedure

The coupled set of equations (3.56) cannot be solved but simultaneously. In order to decouple the two sub-
problems, we define an iterative scheme. Let λ0 ∈ Φ be an initial guess of the solution on the boundary Γ. For
ℓ ≥ 1, we construct the sequences of functions (uℓint)ℓ∈N∗ ∈WN∗

int and (uℓext)ℓ∈N∗ ∈WN∗
ext which are obtained by

iteratively solving the following problems:
{
aint(u

ℓ
int, vint) = lint(vint) , ∀vint ∈W 0

int

γintu
ℓ
int = λℓ−1

(3.59a)

aext(u
ℓ
ext, vext) = lext(vext)− aint(uℓint, Rintγextvext) + ⟨f,Rintγextvext⟩int , ∀vext ∈Wext (3.59b)

λℓ = θℓγextu
ℓ
ext + (1− θℓ)λℓ−1 , (3.59c)

where (θℓ)ℓ∈N is a sequence of positive relaxation parameters introduced to ensure the convergence of this
iterative scheme. We then study the conditions under which the sequence (uℓint, u

ℓ
ext)ℓ∈N converges towards the

solution (uint, uext) of the split problem (3.56).
Definition 3.5. Using the subscript k to refer to either the interior region or the exterior one, the coercivity of
ak over Wk allows us to define the following norm over Wk

∥v∥2k := ak(v, v) , ∀v ∈Wk . (3.60)

Definition 3.6. The trace space Φ defined in Eq. (3.54) can be supplemented with the norm

|||ϕ|||2 := ∥Rintϕ∥2int , ∀ϕ ∈ Φ (3.61)

which thereby forms a Banach space.

Proof. Let us show that Φ is indeed complete for the norm ||| · |||. Let (ϕℓ)ℓ∈N ∈ ΦN be a Cauchy sequence. Using
Definition 3.6 and denoting α > 0 a coercivity constant of aint, we get for i, j ∈ N

|||ϕi − ϕj |||2 = aint
(
Rint(ϕi − ϕj), Rint(ϕi − ϕj)

)
≥ α∥Rint(ϕi − ϕj)∥2Wint

.

Using the linearity of Rint (see Lemma 3.9), we deduce that (Rintϕℓ)ℓ∈N is also a Cauchy sequence in Wint for the
norm ∥ · ∥Wint . Yet Wint, as a Banach space, is complete, which implies that the sequence (Rintϕℓ)ℓ∈N converges
to some u ∈Wint. Denoting ψ = γintu ∈ Φ and C ≥ 0 a continuity constant of aint, one has

∀ℓ ∈ N , |||ϕℓ − ψ|||2 = aint
(
Rint(ϕℓ − ψ), Rint(ϕℓ − ψ)

)
≤ C ∥Rintϕℓ −Rintψ∥2Wint

, (3.62)

where we have again used the linearity of Rint. To finish this proof, it remains to be shown that ∥Rintψ−u∥Wint = 0.
This requires the continuity of the operators Rint : Φ→Wint and γint : Wint → Φ.

1. First, the equivalence between the norms ∥ · ∥int [defined by Eq. (3.60)] and ∥ · ∥Wint
provides us with a

constant β ≥ 0 such that for any χ ∈ Φ,

∥Rintχ∥2Wint
≤ β aint(Rintχ,Rintχ) ≤ β |||χ|||2 , (3.63)

i.e. the trace extension operator Rint is continuous with respect to the relevant norms.
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2. Second, for any v ∈Wint, the definition of Rint in Eq. (3.55) lets us write

aint(Rintγintv,Rintγintv − v) = 0 i.e. aint(Rintγintv,Rintγintv) = aint(Rintγintv, v) .

Thence, we have

|||γintv|||2= aint(Rintγintv,Rintγintv) = aint(Rintγintv, v) ≤ C ∥Rintγintv∥Wint
∥v∥Wint

≤ Cβ 1
2 |||γintv||| ∥v∥Wint

,

which implies the continuity of the trace operator γint with respect to the relevant norms.

All in all, Eq. (3.62) finally implies

|||ϕℓ − ψ|||2 ≤ C
∥∥∥∥Rintϕℓ −Rint

[
γint

(
lim
j +∞

Rintϕj

)]∥∥∥∥
2

Wint

≤ C
∥∥Rintϕℓ − u

∥∥2
Wint

−→
ℓ→+∞

0 ,

so that the sequence (ϕℓ)ℓ∈N converges in Φ. In particular, the permutation of the limit sign with the composition
of Rint and γint in the above expression is legitimized by the continuity of these two operators.

Theorem 3.1. There exists a positive constant θ∗∈ ]0, 1] such that for any sequence of relaxation parameters
θmin ≤ θℓ < θ∗ (where θmin > 0) and for any initial guess λ0 ∈ Φ, the solution (uℓint, u

ℓ
ext) of the iterative

scheme (3.59) converges to the solution (uint, uext) of the split problem (3.56) in the sense of the norm defined
by Eq. (3.60).

Proof. This theorem is proven in Ref. [265] with no additional assumption. Let us nonetheless report a rough
sketch of the proof for the sake of completeness. This is done in two stages:

1. First, one shows that the convergence of the sequence (γintu
ℓ
int)ℓ∈N∗ in Φ for the norm ||| · ||| implies the

convergence of the whole sequence (uℓint, u
ℓ
ext)ℓ∈N∗ towards the solution (uint, uext) of the split problem (3.56)

for the norms ∥ · ∥Wint and ∥ · ∥Wext respectively. The proof mainly relies on (i) the equivalence between the
norm ∥ · ∥k defined via Eq. (3.60) and the norm ∥ · ∥Wk

defined by Eq. (3.9), and (ii) on the fact that Wk

equipped with the norm ∥ · ∥Wk
is complete.

2. Second, one shows that the iteration λℓ−1 ← λℓ given by Eq. (3.59c) defines a contraction over the space of
traces Φ. More precisely, there exists λ∞ ∈ Φ such that |||λ∞ − λℓ||| → 0 as ℓ→ +∞. One then concludes
with point 1.

Remark 3.8. Ref. [200] refers to this iterative scheme as the Dirichlet / Neumann method. This name comes from
the fact that one iterates between the two sub-domains by imposing the continuity of the solution on ∂Ωint with
a Dirichlet boundary condition and by imposing the continuity of the normal derivative on ∂Ωext in a weak sense.
The scheme can also be understood in terms of Poincaré-Steklov operators [200, 272]: going from Eq. (3.59a)
to Eq. (3.59b) involves a Dirichlet to Neumann operator while going from Eq. (3.59b) to Eq. (3.59c) involves
a Neumann to Dirichlet operator. As a side note, other domain decomposition techniques could probably be
employed, possibly with overlap to enhance the theoretical convergence speed of iterations.

3.5.2 The FE approximation

The FE approximation of the iterative scheme (3.59) shares many points in common with the discretization of
the ifem method laid out in Sec. 3.4. It requires nonetheless some slight adjustments, which we detail here. We
further refer to

“ Find u ∈Wh such that ∀v ∈Wh , a(u, v) = l(v) ” (3.64)

as the global discrete problem.

Additional discrete spaces

The finite-dimensional spaces of interest have been defined through Eq. (3.49) for the Klein–Gordon problem 3.1
and through Eq. (3.47) for the Poisson problem 3.2. We further define

W 0,h
kg,int :=

{
u ∈Wh

kg,int such that u = 0 on Σh
}
, (3.65)

W 0,h
p,int :=

{
u ∈Wh

p,int such that u = 0 on Σh
}
. (3.66)
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Figure 3.7: Support of extended traces by operator ρhk : Φ
h →Wh

k [Eq. (3.68)]

Thereafter, we use the generic notation W 0,h
int to refer indiscriminately to either W 0,h

kg,int or W 0,h
p,int. The same logic

applies to Wh
ext. We also need a discrete counterpart of the trace space Φ given by Eq. (3.54), namely

Φh :=
{
ϕ ∈ C0(Γ) such that ∀I ∈ Σh, ϕ|I ∈ Pk(I)

}
, (3.67)

where k designates the polynomial degree here.

From the continuous to the discrete iterative procedure

Following Ref. [265], the trace extension operator Rk appearing in the weak formulation (3.59) is replaced by
ρhk : Φ

h →Wh
k , where for ϕ ∈ Φh,

(
ρhkϕ

)
|Σh = ϕ and

(
ρhkϕ

)
|K = 0 ∀K /K ∩ Σh = ∅ . (3.68)

For a clear understanding, we illustrate the support of an extended trace on Fig. 3.7. Therefore, the discrete
version of the iterative procedure (3.59) becomes
{
aint(u

ℓ
int, vint) = lint(vint) , ∀vint ∈W 0,h

int

γintu
ℓ
int = λℓ−1

(3.69a)

aext(u
ℓ
ext, vext) = lext(vext)− aint(uℓint, ρhintγextvext) + ⟨f, ρhintγextvext⟩int , ∀vext ∈Wh

ext (3.69b)

λℓ = θℓγextu
ℓ
ext + (1− θℓ)λℓ−1 . (3.69c)

Theorem 3.2. Let uh ∈ Wh be the solution of the global problem (3.64) and set uhint = uh|Ωint
, uhext = uh|Ωext

.
There exists a positive constant θ∗ ∈]0, 1] such that for any sequence of relaxation parameters θmin ≤ θℓ < θ∗

(where θmin > 0) and for any initial guess λ0 ∈ Φh, the solution (uℓint, u
ℓ
ext) of the discrete iterative scheme (3.69)

converges to (uhint, u
h
ext) in the sense of the norm defined by Eq. (3.60).

Proof. Refer to Ref. [265] for a sketch of the proof.

Remark 3.9. Several additional points mentioned in Ref. [265] must be highlighted:

– The convergence interval for the iterative scheme (i.e. the range of the relaxation parameters θℓ) does not
depend on the mesh discretization parameter h.

– It is possible to compute an optimal relaxation parameter at each iteration at low cost, see the algorithm
described in Section 5 of Ref. [265].

For this iterative procedure to end, one must supplement the algorithm with a stopping criterion. For
instance, one can require the relative change in the solution for two consecutive iterations to be small, i.e.

∥uℓint − uℓ−1
int ∥2

∥uℓ−1
int ∥2

+
∥uℓext − uℓ−1

ext ∥2
∥uℓ−1

ext ∥2
≤ ϵ , for some ϵ ∈ R∗

+ , (3.70)
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where ∥ · ∥2 denotes the Euclidean norm in Rn for any n ∈ N∗. Equivalently, one could only restrict this criterion
to the trace of the solution on Γ, that is

∥λℓ − λℓ−1∥2
∥λℓ−1∥2

, for some ϵ ∈ R∗
+ ≤ ϵ . (3.71)

Note that in the two expressions above, we made an abuse of notation by equating the functions uint, uext and λ
with the vectors of their respective values at the meshes’ nodes.

Finally, for the sake of clarity, we provide in Fig. 3.8 a schematic view of the various problems involved in
this work and the main logical links between them. In addition, Algorithm 4 summarizes a simplified version of
the a-ifem technique.

Algorithm 4 the alternate inverted finite element method (simplified)
1: Inputs, initialization:
2: Pick an initial guess for the trace λ0 ∈ Φh

3: Choose a relaxation parameter θ ∈ ]0, 1]
4: Define a maximum number of iterations ℓmax and ϵ > 0 a parameter for the stopping criterion
5: Build the meshes T h

int and T̃ h
ext

6: Assemble iteration-independent matrices and load vectors:
7: Aint associated with the bilinear form aint(·, ·)
8: Lint associated with the linear form lint(·)
9: Aext associated with the bilinear form aext(·, ·)

10: Lext associated with the linear form lext(·)
11: ℓ← 1 and crit← ϵ+ 1
12: while ℓ ≤ ℓmax and crit ≥ ϵ do
13: Solve the problem aint(u, v) = lint(v) for all v ∈Wint with u = λℓ−1 on Γ, yielding Uℓ

int

14: Assemble Bℓ, the vector associated with −aint(uℓint, ρhintγextvext) + ⟨f, ρhintγextvext⟩int
15: Solve the linear system AextU

ℓ
ext = Lext +Bℓ, yielding Uℓ

ext

16: Set λℓ = θγextu
ℓ
ext + (1− θ)λℓ−1 and crit = ∥λℓ − λℓ−1∥2/∥λℓ−1∥2

17: ℓ← ℓ+ 1
18: end while

3.6 Numerical experiments

This section is devoted to the presentation of several numerical experiments to test both the ifem and a-ifem
methods. They are obtained with a custom Python code using the Finite Element package Sfepy [273]. The
objectives of these tests are multiple:

– check that the implementations are correct by implementing several indicators (benchmarks and errors);

– demonstrate the efficiency of the methods to solve problems posed on unbounded domains, especially
showing that only few iterations are needed to converge in the case of a-ifem;

– compare the efficiency of ifem vs a-ifem;

– study empirically what happens if one decides to implement the transmission of the flux from the exterior
domain to the interior one using an explicit Neumann boundary term as written in Eq. (3.58).

We make use of acronyms to refer to the various techniques involved:

– ifem, ‘inverted finite element method’, is the technique first introduced in Ref. [242], the only difference
being that we make use of the Kelvin inversion rather than the polygonal inversion.

– a-ifem, ‘alternate inverted finite element method’, which is the technique described in Sec. 3.5.

– a-ifemN, ‘alternate inverted finite element method with Neumann boundary term’ [Eq. (3.58)], the
alternative implementation of the transmission of the flux across Γ discussed in Remark 3.7.

– dbc, ‘true Dirichlet boundary condition’, refers to the interior problem with exact essential boundary
condition imposed on Γ.
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Figure 3.8: Overview of the various problems involved in the description of the a-ifem technique (not all logical
links are represented).
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3.6.1 Notes on the actual implementation

The implementation of these techniques was done using Sfepy [273] as our FEM engine, and gmsh [274] for the
generation of meshes.

For ifem, the assembling process described in Sec. 3.4.3 results in a single stiffness matrix of size Ntot ×Ntot

and a single load vector of size Ntot, encompassing dofs from both the interior domain Ωint and the inverted
exterior domain Ω̃ext. At the level of the code, this can be achieved relying on Sfepy’s implementation of ‘Linear
Combination Boundary Conditions’. Specifically, the ‘match_dofs’ option allows for tying together dofs from
different meshes.

In comparison, a-ifem is perhaps less cumbersome to implement on top of an existing FEM code as it does
not involve the tying of dofs from different meshes. The only detail requiring extra care is the assembling of the
load vector in the rhs of Eq. (3.69b), which we go through here. Specifically, let us denote by Bℓ the load vector
of size Next associated with the term −aint(uℓint, ρhintγextvext) + ⟨f, ρhintγextvext⟩int. Then Bℓ

j is non-zero only if
the jth dof lies on the boundary Σ̃h. For such indices j, denoting wj the corresponding basis function, one has

Bℓ
j = ⟨f, wj⟩int −

Nint∑

i=1

U ℓ
i,int aint(wi, wj) . (3.72)

In the rhs of this expression, the first term is nothing but a component of the load vector of the interior problem
while the sum corresponds to a component of the matrix-vector product AintU

ℓ
int, where (Aint)ij = aint(wj , wi)

is the stiffness matrix associated with the interior problem while Uℓ
int ∈ RNint is the interior solution vector at

iteration ℓ.

3.6.2 Protocol, metrics and validation

Errors

In order to assess the quality of the numerical approximations obtained thereafter, we define several relative
errors:

eintL2 =
∥u− uh∥L2(Ωint)

∥u∥L2(Ωint)
eextL2 =

∥u− uh∥L2(Ωext)

∥u∥L2(Ωext)
etotL2 =

∥u− uh∥L2(Ωint) + ∥u− uh∥L2(Ωext)

∥u∥L2(Ωint) + ∥u∥L2(Ωext)

eintH1 =
∥u− uh∥H1(Ωint)

∥u∥H1(Ωint)
eextH1 =

∥u− uh∥H1(Ωext)

∥u∥H1(Ωext)
etotH1 =

∥u− uh∥H1(Ωint) + ∥u− uh∥H1(Ωext)

∥u∥H1(Ωint) + ∥u∥H1(Ωext)

eintW =
∥u− uh∥W (Ωint)

∥u∥W (Ωint)
eextW =

∥u− uh∥W (Ωext)

∥u∥W (Ωext)
etotW =

∥u− uh∥W (Ωint) + ∥u− uh∥W (Ωext)

∥u∥W (Ωint) + ∥u∥W (Ωext)

, (3.73)

where u denotes the exact solution to the problem at stake and uh the numerical approximation obtained through
the finite element approximation.

Checking the implementation of the iterative method

We start by checking the implementation of the iterative algorithm for the simple case where the domain Ω is an
open bounded set of R2. In particular, we construct a rectangular domain that we divide into two squares, which
in turn play the role of the two sub-domains. The transmission conditions are imposed on the shared interface
Γ. The test problems are a Laplace equation and a Poisson equation with homogeneous Dirichlet boundary
conditions on ∂Ω.

∂Ω

Ω1 Ω2

Γ

{
∆u = 0 in Ω

u = 1 on ∂Ω
and

{
∆u = 1 in Ω

u = 0 on ∂Ω

Trivially, the solution to the Laplace problem is given by u ≡ 1, while the solution to the Poisson problem can be
approximated with standard FEM. In our test, the initial guess λ0 on Γ is set to zero. The successful numerical
implementation yielded accurate solutions with a small number of iterations.
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dbc a-ifem a-ifemN ifem dbc a-ifem a-ifemN ifem dbc a-ifem a-ifemN ifem

eL2

int 1.5e-3 1.5e-3 1.6e-3 1.5e-3 1.3e-5 1.6e-5 9.1e-5 1.6e-5 1.0e-7 7.1e-7 3.5e-5 7.1e-7
ext — 2.4e-3 1.7e-3 2.4e-3 — 6.2e-5 3.6e-4 6.2e-5 — 4.5e-6 1.1e-4 4.5e-6
tot — 1.6e-3 1.6e-3 1.6e-3 — 2.5e-5 1.4e-4 2.5e-5 — 1.6e-6 4.8e-5 1.6e-6

eH1

int 2.1e-2 2.2e-2 2.2e-2 2.2e-2 8.8e-4 8.9e-4 9.2e-4 8.9e-4 3.5e-5 3.9e-5 5.7e-4 3.9e-5
ext — 6.9e-3 2.5e-3 6.9e-3 — 4.1e-4 5.0e-4 4.1e-4 — 5.5e-5 1.5e-4 5.5e-5
tot — 2.1e-2 2.1e-2 2.1e-2 — 8.7e-4 8.9e-4 8.7e-4 — 4.0e-5 6.9e-4 4.0e-5

eW

int 2.1e-2 2.2e-2 2.2e-2 2.2e-2 8.8e-4 8.9e-4 9.2e-4 8.7e-4 3.5e-5 3.9e-5 5.7e-5 3.9e-5
ext — 9.3e-3 3.2e-3 9.3e-2 — 5.6e-4 6.3e-4 5.6e-4 — 7.5e-5 1.9e-4 7.5e-5
tot — 2.1e-2 2.1e-2 2.1e-2 — 8.8e-4 9.1e-4 8.8e-4 — 4.1e-5 6.8e-5 4.1e-5

θopt 0.5889 0.5880 0.5880
Nint 653 14 160 328 766

Next 1009 21 724 512 154

NΓ 45 270 1000

Table 3.1: Compilation of the relative errors [Eq. (3.73)] for the Klein–Gordon problem on R2, for k = 2 and
Rc = 3. Note that in this special case of weighted Sobolev space, eintW = eintH1 .

Creating the meshes

Meshes are created using the gmsh software [274] which is a two- and -three-dimensional finite element mesh
generator with a built-in CAD7 engine. Its Python API8 enhances flexibility and enables us to automate the
meshing of recurring geometries, e.g. disks. As mentioned in Sec. 3.4.1, one must enforce the condition that the
interior and exterior meshes have matching surface elements, which is achieved in practice through custom Python
routines. While gmsh implements higher-order curved elements which could be used to better approximate the
circular or spherical boundary Γ, Sfepy currently cannot handle higher-order curved elements.9 Nonetheless,
other FEM softwares enjoy built-in support of curved elements. See Remark 3.5 for a discussion of this issue.

One must also bear in mind that, in the inversed exterior domain, distances get more and more stretched as
we approach the origin. Indeed we already saw that the determinant of the Kelvin transform is (Rc/∥ξ∥)2n —
see Box H. As a consequence, we refine the mesh of Ω̃ext around the origin. In that respect, Ref. [242] provides
an estimate of the best approximation error, that is how ∥u−Πhu∥W decreases with h, where Πh is the global
interpolation operator.

Protocol

In order to remain consistent with the previous theoretical sections, we assess our iterative method a-ifem on
the linear Klein–Gordon problem 3.1 and on the Poisson problem 3.2, in two dimensions (n=2). The exact form
of the equations is selected so that the analytical solution is known. We examine convergence rates — that is
how the error decreases when one increases the number of dofs — for the various relative errors displayed in
Eq. (3.73). In order to be able to assess these convergence rates, we define a benchmark solution labeled dbc
that is obtained by solving the problem on the interior domain only with standard FEM and exact Dirichlet
boundary conditions on Σh.10 We perform the same task with the a-ifemN and ifem techniques to gain more
insight into the efficiency of the various techniques we mentioned.

We also discuss the influence of other parameters such as Rc or θ by performing targeted tests. Finally, with
a view to comment on the computational complexity of the a-ifem technique, it is crucial to determine how fast
the procedure converges. In other words, what is the typical number of iterations required to converge?

3.6.3 First example: linear Klein–Gordon equation

We solve the linear Klein–Gordon equation (3.3) on R2 with

d(x) = 1 and f(x) =
5 + ∥x∥2(∥x∥2 − 2)

(1 + ∥x∥2)3 , ∀x ∈ R2 .

7Computer-Aided Design
8Application Programming Interface.
9Sfepy implements Isogeometric Analysis (IGA) which can deal with virtually any curved geometry, but this is a departure from

standard FEM and several functionalities are not available in IGA.
10Of course, doing so is only possible here because the analytical solution is known in advance.
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Figure 3.9: Exact solution u to the Klein–Gordon problem (left, linear-scale) and local relative error defined as
|u− uh|/|u| (right, log-scale) on Ωint (first row) and on Ω̃ext (second row). The numerical approximation uh was
obtained with the iterative method a-ifem together with parameters {Rc = 3, k = 2, Ntot ≃ 3.6× 104}.

One can check that f ∈ L2(R2, ω), where ω is the weight function introduced when discussing the explicit
weight regularization technique back in Sec. 3.3.3 [Eqs. (3.36–3.37)], so that theoretical results found there hold
and we can implement the explicit weight regularization approach. The solution to that problem is given by
u(x) = 1/(1 + ∥x∥2), ∀x ∈ R2. With this specific choice for the function d, the coercivity (sufficient) condition
derived in Lemma 3.6 becomes Rc > 2. In the following, we set Rc = 3.

As a first check, we represent in Fig. 3.9 the analytical solution (left) and the local relative error (right) on
the interior domain (first row) and the inverted exterior domain (second row). Here the set of computational
parameters maintains the relative error below 10−4 in most of the numerical domains. The exact solution is
particularly well-approximated for ∥ξ∥ ≤ 1 in Ω̃ext, except at the very origin where the relative error is undefined
because ũ(ξ = 0) = 0.

In order to further assess the quality of the various numerical approximation, we report in Table 3.1 the
relative errors in the L2-, H1- and W -norms for three distinct mesh refinement settings. In addition, Fig. 3.10
shows a graphical version of these results by displaying convergence curves of the various methods implemented.
The benchmark, herein referred to as dbc, provides an approximate limit to the smallest achievable error with
the other three methods implemented in this work. Note that dbc is restricted to the interior domain. One
take-home message from this table and figure is that a-ifem and ifem perform equally-well on this test-case while
a-ifemN exhibits larger errors for almost all configurations. This latter observation may seem counter-intuitive
at first. Indeed, we stated in Remark 3.7 that the strong split problem (3.57) can lead to two equivalent weak
formulations at the stage of continuous weighted Sobolev spaces. After discretization however, it is clear that

aint(uint, ρ
h
intγvext)− ⟨f, ρhintγvext⟩int ̸=

∫

Γ

(C∇uint) · nintvext dΓ . (3.74)

For some unknown reason, this discrepancy is emphasized on the L2 relative error (in the interior domain),
while all three methods seem to perform equally well when we only pay attention to the relative error in norm
H1 (which is the same as the W -norm in the interior domain for this specific case of weighted Sobolev space).
Besides, retaining only the results of a-ifem and ifem, the convergence rates are the same as the ones exhibited
by dbc (except for the L2-error with k = 2). The offset between dbc-curves and the rest is merely due to the fact
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Figure 3.10: Convergence curves (i.e. relative error as a function of the number of degrees of freedom in Ωint) for
the unbounded Klein–Gordon problem. The first row (resp. second row) corresponds to the relative error in
L2-norm (resp. H1-norm). The left-hand column (resp. right-hand column) corresponds to first-order (resp.
second-order) triangular Lagrange elements. Note that in this case, eintH1 = eintW .
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dbc a-ifem a-ifemN ifem dbc a-ifem a-ifemN ifem dbc a-ifem a-ifemN ifem

eL2

int 7.5e-3 6.5e-2 1.6e-1 6.5e-2 3.5e-5 7.7e-4 9.0e-4 1.9e-3 5.5e-7 1.4e-4 5.6e-4 1.4e-4
ext — 2.0 4.8 2.0 — 3.3e-1 1.6e-1 3.3e-1 — 9.3e-2 3.8e-1 9.3e-2
tot — 8.0e-1 2.0 8.0e-1 — 1.4e-1 6.4e-2 1.4e-1 — 3.8e-2 1.5e-1 3.8e-2

eH1

int 6.3e-2 6.9e-2 9.3e-2 6.9e-2 1.7e-3 1.8e-3 1.8e-3 1.9e-3 1.1e-4 1.2e-4 2.7e-4 1.2e-4
ext — 1.7 4.2 1.7 — 2.9e-1 1.4e-1 2.9e-1 — 8.2e-2 3.3e-1 8.2e-2
tot — 3.8e-1 9.1e-1 3.8e-1 — 6.3e-2 2.9e-2 6.3e-2 — 1.8e-2 7.1e-2 1.8e-2

eW

int 6.1e-2 6.3e-2 7.3e-2 6.3e-2 1.7e-3 1.7e-3 1.7e-3 1.8e-3 1.1e-4 1.1e-4 1.8e-4 1.1e-4
ext — 9.5e-2 2.3e-1 9.5e-2 — 2.8e-3 1.6e-3 2.8e-3 — 2.2e-4 8.5e-4 2.2e-4
tot — 6.9e-2 9.6e-2 6.9e-2 — 1.8e-3 1.8e-3 1.9e-3 — 1.3e-4 2.8e-4 1.3e-4

θopt 0.5041 0.5074 0.5068
Nint 332 9754 147 858

Next 472 15 142 229 410

NΓ 30 200 800

Table 3.2: Compilation of the relative errors [Eq. (3.73)] for the Poisson problem on R2, for k = 2 and Rc = 2.

that dbc employs Nint dofs while the other three methods employ ∼ Nint +Next dofs.

3.6.4 Second example: Poisson equation

We solve the Poisson equation given by Eq. (3.4) on R2 with

f(x, y) = − 2

(1 + r2)4
[
a2(r4 + 2x2 − 10y2 + 1) + b2(r4 + 2y2 − 10x2 + 1)− (2ab)2(2r2 − 1)

]
∀(x, y) ∈ R2 ,

with r2 = x2 + y2 and a, b ∈ R. Unlike the previous example, this is a true 2D problem in the sense that the
equation is not purely radial (as long as a ̸= b). One can check that f ∈ W−1

log and behaves as ∼ ∥x∥−4 when
∥x∥ → +∞. The solution to that problem is given by

u(x, y) =
(bx)2 + (ay)2 − (ab)2

(1 + ∥x∥2)2 .

Thereafter, we set a = 4 and b = 1.
There remains to fix the value of the free parameter β that appears in the definition of the hat-operator given

by Eq. (3.30). With this specific choice of rhs f , one can show that f̃(ξ) is proportional to ∥ξ∥4. Consequently,
the singularity in ∥ξ∥ → 0 in Eqs. (3.31–3.32) vanishes for any β ≥ 0. We choose β = 0 which, as well as greatly
simplifying the expression of aext [Eq. (3.31)], is compliant with the condition β > −1 — that was obtained
in Proposition 3.2 — required to have Wh

ext ⊂Wext. Here there is no specific condition to fulfill for Rc and we
therefore freely choose Rc = 2.

Following the same methodology as in the previous example, we report in Table 3.2 the relative errors in the
various norms for three mesh refinement settings and display the corresponding convergence curves in Fig. 3.11.
These additional results are in line with the conclusions we drew from the previous example. Namely, a-ifem
and ifem perform equally well — the respective relative errors being equal to at least two significant digits —
while a-ifemN delivers slightly inconsistent results depending on the considered metric.

3.6.5 Testing the influence of auxiliary parameters
Here we discuss the influence of auxiliary parameters to address important questions such as the speed at which
iterations converge depending on the relaxation parameter θ or the Rc-dependence of the error. Furthermore, we
have seen in the above sections 3.6.3 and 3.6.4 that a-ifem and ifem performed equally well on the two test cases.
An interesting question to ask then is: which of the two methods has the lowest computational complexity?

Influence of Rc

The influence of Rc is assessed on the Klein–Gordon example in Sec. 3.6.3 by computing the local relative error
along a radial line for several values of Rc. The results of this study are shown in Fig. 3.12 where we varied
Rc ∈ {0.1, 0.5, 1, 2, 10, 30}. The error on the interior domain Ωint corresponds to the blue part of the curves
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Figure 3.11: Convergence curves (i.e. relative error as a function of the number of degrees of freedom in Ωint) for
the unbounded Poisson problem. The first row (resp. second row) corresponds to the relative error in L2-norm
(resp. H1-norm). The left-hand column (resp. right-hand column) corresponds to first-order (resp. second-order)
triangular Lagrange elements.
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Figure 3.12: Influence of the cutoff radius Rc on the local relative error computed as
∣∣u− uh

∣∣ /|u| on the
Helmholtz problem. Each panel represents the local relative error as a function of ∥x∥ in Ωint (blue) and ∥ξ∥ in
Ω̃ext (red), for Rc ∈ {0.1, 0.5, 1, 3, 10, 30}. The lower value of ∥ξ∥ is truncated at 0.1Rc due to the fact that
the relative error is undefined at the origin because ũ(ξ = 0) = 0. The same mesh is used for all computations,
with parameters {k = 2, Ntot ≃ 1.8× 103}.

whereas the red part corresponds to the error on the inverted exterior domain Ω̃ext. Firstly, it is worth noting
that taking Rc ≤ 2 did not make the stiffness matrix singular in this specific case and provides reasonable
numerical approximations with respect to the cases Rc > 2. It is however difficult to make qualitative comments
from these curves. Fig. 3.13 provides more synthetic results in that respect, by showing for both the Helmholtz
and Poisson problem how the error etotW varies with Rc. In both cases, and regardless of the number of DOFs
employed in the computation, it appears that Rc = 1 minimizes this error. The particularity of having a global
minimum is also brought to light in the ifem method in Ref. [242].

Influence of θ

The speed of convergence of the iterations in the context of the a-ifem method is a critical point to be examined
as this conditions the relevance of the method in practice. Various metrics can be used to determine the number
of iterations for the algorithm to converge. In Fig. 3.14, we use the relative error eintW for that purpose. Specifically,
we vary the relaxation parameter θ ∈ {0.2, 0.4, 0.6, 0.8, 1, θopt} — where θopt denotes a somewhat optimal
relaxation parameter obtained through the algorithm laid out in Ref. [265] — and look for the iteration number
beyond which the error does not evolve anymore. For the Helmholtz problem (left), selecting θ = θopt ≃ 0.5880
makes the iterative procedure converge in exactly two iterations. For the Poisson problem (right), the error does
not vary significantly beyond the third iteration for the choice θ = θopt ≃ 0.5084. As a remark, we observe that
for the Helmholtz problem (left panel of Fig. 3.14), the error at convergence is actually slightly smaller than that
of the benchmark, despite the fact that a-ifem and dbc employ the same mesh for the interior domain.

The speed of convergence of the iterations in the context of the a-ifem method is a critical point to be
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Figure 3.13: Influence of the cutoff radius Rc on etotW (the relative error in W -norm in Ωint ∪ Ωext) for both
the Helmholtz problem (left) and the Poisson problem (right). The total number of DOFs Ntot is varied in
{628, 1752, 5300}.

Figure 3.14: Influence of the relaxation parameter θ on the convergence of iterations. For both Klein–Gordon
(left) and Poisson (right) problems, we represent the relative error eintW as a function of the iteration number
for several values of θ ∈ {0.2, 0.4, 0.6, 0.8, 1, θopt}. The optimal parameter is given by θopt ≃ 0.5880 for the
Helmholtz problem and by θopt ≃ 0.5084 for the Poisson problem. The black dashed line corresponds to the error
obtained with the dbc method (benchmark). The numerical approximations were obtained with the iterative
method together with parameters {Rc = 3, k = 1, Ntot = 6325}.
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examined as this conditions the relevance of the method in practice. Various metrics can be used to determine
the number of iterations for the algorithm to converge. In Fig. 3.14, we use the relative error eintW for that
purpose. Specifically, we vary the relaxation parameter θ ∈ {0.2, 0.4, 0.6, 0.8, 1, θopt} — where θopt denotes
a somewhat optimal relaxation parameter obtained through the algorithm laid out in Ref. [265] — and look
for the iteration number beyond which the error does not evolve anymore. For the Helmholtz problem (left),
selecting θ = θopt ≃ 0.5880 makes the iterative procedure converge in exactly two iterations. For the Poisson
problem (right), the error does not vary significantly beyond the third iteration for the choice θ = θopt ≃ 0.5084.
As a remark, we observe that for the Helmholtz problem (left panel of Fig. 3.14), the error at convergence is
actually slightly smaller than that of the benchmark, despite the fact that a-ifem and dbc employ the same mesh
for the interior domain.

Comment on computational complexity: ifem vs a-ifem

The time-complexity of FEM is dominated by the linear system solving stage (source). For a generic linear
system of size N , direct methods (e.g. Gauss elimination, LU and Cholesky factorizations, etc.) typically exhibit
O(N3) time-complexity. In practice, the stiffness matrix resulting from a finite-element discretization is sparse
and often symmetric. Taking advantage of these properties can greatly speed up the resolution — and this
applies to both direct and iterative solvers.11 Because the calculation of the theoretical complexity is complicated
matter in that case, we conducted a mere empirical study on the Poisson problem and found that the time of
the solving phase was roughly proportional to N2.12 Besides, it should be recalled that not all Galerkin methods
lead to sparse linear systems. Indeed, using global or non-local basis functions — as is the case for spectral
methods [275] — typically produces dense matrices.

In the following demonstration, let us remain general by assuming a O(Nα) complexity, α > 0. On the one
hand, the linear system to be solved in ifem is of size (Nint +Next −NΓ), since in this case the boundary nodes
should be counted only once. On the other hand, completing a single iteration of the a-ifem method requires
the resolution of two linear systems: the one associated with the interior domain is of size Nint −NΓ (because
Dirichlet boundary conditions are applied on the boundary Γ) whereas the one associated with the inversed
exterior domain is of size Next. Let Oifem and Oa-ifem the time-complexities associated with the two methods,
one has

Oifem = Cls(Nint +Next −NΓ)
α ; Oa-ifem = niterCls [(Nint −NΓ)

α +Nα
ext] ,

where niter is the total number of iterations undertaken to reach convergence and Cls is a solver-dependent
constant. For a-ifem to be be competitive against ifem, one must have

Oa-ifem ≤ Oifem ⇐⇒ niter ≤
(Nint +Next −NΓ)

α

(Nint −NΓ)α +Nα
ext

.

This inequality on niter can be simplified in the case where Nint ≃ Next = N and N is large enough to neglect
the term NΓ; it becomes niter ≤ 2α−1. That number is expected to be somewhere between 2 and 4 depending on
the properties of the linear system to be solved — which in turn determines the value of α. This has to be put
into perspective with the results obtained in Fig. 3.14, where we observed that convergence is indeed reached in
less than four iterations for both the Helmholtz and Poisson problems. In other words, at least for these two
specific test cases, a-ifem exhibits comparable time-complexity to ifem. Let us further recall that, as observed in
Secs. 3.6.3 and 3.6.4, both techniques are equivalent in terms of numerical error.

Chapter summary

In this chapter, we adapted the finite element framework to the case of unbounded domains.
Guided by both theoretical and numerical considerations, we delved into techniques based on
compactification transforms, more specifically on the Kelvin inversion. In that perspective, our
main contribution was to propose a novel technique — the alternate inverted finite element
method (a-ifem) — which builds on top of the inverted finite element method and a specific
domain decomposition scheme. We established a firm mathematical ground for a-ifem and
empirically proved its relevance on test cases in two dimensions.
This excursion into applied mathematics directly serves the objective we set ourselves, that is
to be able to study scalar-tensor gravity on unbounded domains. The next chapter is dedicated
to the application of the numerical techniques discussed so far to the physical situations of
interest.

11For relatively small FEM problems, typically less than one million dofs, direct solvers are generally preferred.
12This empirical study was performed with both a direct solver (spsolve from scipy.sparse.linalg) and an iterative solver

(conjugate gradient, cg from scipy.sparse.linalg).
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In Chapter 1, we established a list of desired specifications for a numerical code dedicated to the investigation of
scalar-tensor models with screening mechanisms. The two subsequent chapters 2 and 3 elucidated how such
specifications can be fullfiled within the finite element framework. The present chapter deals with the actual
implementation of a Python code — called femtoscope — developed specifically for this PhD work. In particular,
we provide insights into the program’s architecture, its features, and present the various physical models that are
used in the studies that were conducted with it. Then, femtoscope is showcased on the two examples of interest,
namely the Poisson equation governing the Newtonian potential, and the nonlinear Klein–Gordon equation
driving the dynamics of the chameleon scalar field.

This chapter is obviously not intended to be a full user’s manual, but rather to shed light on the tool’s main
features and limitations. The code is available on GitHub at https://github.com/onera/femtoscope.

Figure 4.1: Logo of the femtoscope software. The original purpose of this numerical tool was to study the
chameleon scalar field in the context of scalar-tensor theories of gravity with screening mechanisms, see Sec. 1.2.
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Specification FDM / multigrid
[180, 186, 187, 194]

FEM codes
[189–193]

femtoscope
[137]

Asymptotic
boundary condition ✗ ✗ ✓

Complex geometries rectangular grid ✓ ✓

Spatial dimensions 1D, 2D, 3D 1D, 2D, 3D 1D, 2D, 3D

Coordinate system Cartesian only Cartesian,
cylindrical

Cartesian, cylindrical,
spherical

Time-dependence ✗ ✗ ✗a

Multi-scale simulations ✓
possible through
h-adaptivity

possible through
h-adaptivity

Table 4.1: femtoscope vs existing numerical codes in terms of specifications (see also Table 1.4).

aSee Secs. 2.1.4 and 2.2.4 for a possible implementation of time-dependent problems on top of femtoscope.

4.1 Overview of femtoscope

This first section is devoted to the presentation of the numerical Python code femtoscope. After recalling the
main reasons behind its development, we review the various physical problems that it can currently handle
and discuss the implementation itself; i.e. the overall program’s architecture. We also briefly introduce density
models that are used in subsequent studies of chameleon gravity in the Earth environment.

As a side note, the choice for the program’s name is threefold: (i) echo the microscope space mission, (ii)
contain ‘FEM’ which is the commonly adopted acronym for ‘Finite Element Method’, and (iii) contain the
Danish prefix ‘femto’ → 10−15 to convey the ideas of accuracy and precision. Fig. 4.1 is the logo of femtoscope.

4.1.1 Motivations

The need for a new numerical tool was already expressed in Sec. 1.4. Of course, several numerical codes predate
the beginning of this PhD thesis. In this respect, Sec. 1.4.1 is an attempt to take stock of all existing tools
targeting the resolution of the scalar field equations of interest. The list of desired specifications we drew up,
nevertheless, brought out the limitations of available options. In order to put things into perspective, Table 4.1
is an update of Table 1.4 where we have added a column for femtoscope. Most notably, femtoscope stands out
from other codes because of its implementation of asymptotic boundary conditions, following the techniques
thoroughly described in Chapt. 3. Setting this (crucial) feature aside, there is no denying that there are significant
overlaps between femtoscope and the selcie code [190], the latter falling into the category of ‘FEM codes’ in
Table 4.1. While the treatment of asymptotic boundary conditions could have been implemented on top of
selcie, the development on femtoscope was already on track by the time selcie was publicly released. The two
codes are compared in Sec. 4.2.2.

There are numerous advantages granted by versatile numerical tools. While analytical approximations are
valuable when it comes to getting an idea of how the scalar field behaves in a given setup, some questions cannot
be answered but through the use of numerical simulations. For instance, getting a little bit ahead of ourselves,
we demonstrate in Chapt. 5 how femtoscope allows us to tackle issues related to the screening of spacecraft
and the influence of the Earth’s atmosphere in the context of chameleon gravity. The use of FEM, which can
accommodate for virtually any distribution of matter, empowers us to study complex setups, where going from
one geometry to another is merely a matter of a few lines of code (this point is perhaps best illustrated by
Ref. [276]). In contrast, analytical prescriptions are generally derived on a case-by-case basis and restricted to
simple geometries.

Given the above, femtoscope is a powerful tool for exploring scalar-tensor models in setups and regimes that
are not accessible by any other means. Beyond easing model exploration, the interpretation of experimental
data (collected e.g. from tests of gravity) within a given scalar-tensor model can greatly benefit from such a
numerical tool when it comes to inferring accurate model constraints.

4.1.2 Physical problems and nondimensionalization of equations

Let us now turn to the physical problems that can be addressed using femtoscope. From a mathematical
viewpoint, the code was designed to handle virtually any semi-linear elliptic PDE problem posed on Ω ⊆ R3

(bounded or not). This scope encompasses, in particular:
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– the Poisson equation ∆u = f(x), which governs the Newtonian potential Φ sourced by a given matter
distribution as well as the electric potential sourced by a given charge distribution;1

– the linear Klein–Gordon equation of the form ∆u = m2u+ f(x), obeyed by the Yukawa potential (see
Sec. 1.1.3 for a derivation of this equation);

– the semi-linear Klein–Gordon equation of the form −∆u = f(x, u) where f is nonlinear in its second
variable, which includes the chameleon and symmetron field equations in the static regime.

These four physical problems (namely Poisson, Yukawa, chameleon and symmetron) are hard coded into femtoscope
due to their frequent use. This arguably may sound like a quite restrictive framework to work with. In reality,
Newton’s method, as presented in Sec. 2.2.1, not only applies to semi-linear PDEs (e.g. chameleon field equation),
but also to quasi-linear and fully-nonlinear PDEs which arise in more complex screening mechanisms, see
Table 1.3. Beside some technical details not worth mentioning here, the implementation of a new nonlinear PDE
problem in femtoscope merely boils down to entering the corresponding Newton-linearized weak form in the code.
Once translated in this general framework, the PDE problem at stake is automatically being handled as any
other nonlinear problem in femtoscope. Section 4.1.3 provides further details about the program’s architecture.

Regardless of the PDE at stake and whatever the physics it describes, it is always good practice in numerics to
work with a dimensionless version of that equation. In fact, nondimensionalization has the effect of normalizing
physical quantities, simplifying comparisons across different scenarios, and enhancing numerical stability by
removing physical constants. Additionally, depending on how this process is performed, the resulting dimensionless
equations may exhibit fewer free parameters to tune compared to their dimensional counterparts, effectively
reducing the parameter space. This is known as parameter degeneracy — several combinations of parameters
give rise to the same solution, up to a scaling factor. The detection of such degeneracies is formalized by the
so-called Buckingham π theorem [277, 278], although this dimensional analysis tool is not used in the following
cases.

In what follows, we go over each of the four aforementioned PDE problems and derive the dimensionless
form that is implemented in femtoscope. In particular, we denote by L0 and ρ0 characteristic length and density
scales respectively. Dimensionless quantities are written with a tilde (not to be confused with the tilde notation
introduced for the Kelvin inversion in Sec. 3.3.2).

Newtonian potential — Poisson equation

The Poisson equation (1.4) governing the Newtonian potential Φ is straightforward to process as the theory does
not have any free parameter. Denoting Φ0 a characteristic quantity with units m2/s2, a dimensionless version of
the Poisson equation is Φ0∆̃Φ̃/(4πGρ0L

2
0) = ρ̃, where we have set

x̃ = x/L0 , Φ̃(x̃) = Φ(x)/Φ0 , ρ̃(x̃) = ρ(x)/ρ0 .

Denoting αP the dimensionless constant 4πGρ0L
2
0/Φ0, we get ∆̃Φ̃ = αPρ̃. Therefore, the implementation of the

Poisson equation in femtoscope reads
∆u = αPρ(x) , (4.1)

where the numerical value of the dimensionless constant αP depends on the specific choice of the characteristic
scales (L0, ρ0, Φ0). We have dropped the tilde notation in Eq. (4.1).

Note that the form (4.1) is, as desired, ‘physics-agnostic’ in the sense that one could well be dealing with
non-gravitational physics, e.g. electrostatics.1 Additionally, nothing prevents us from first fixing (L0, ρ0) and
then choosing Φ0 = 4πGρ0L

2
0 which results in αP ≡ 1. While this is correct, there is no particular gain in doing

so,2 which is why femtoscope implements Eq. (4.1) as is, with a user-defined parameter αP.

Yukawa potential — linear Klein–Gordon equation

In Eq. (1.109), we denoted the Yukawa potential by VY , which encompasses both the Newtonian gravitational
potential through the term GM/r, and the non-Newtonian gravity contribution through the term α exp(−r/λ)/r.
Thence, this ‘total potential’ can be decomposed as VY = Φ+ U , where Φ is the Newtonian potential satisfying
∆Φ = 4πGρ, while U satisfies a linear Klein–Gordon equation ∆U = U/λ2 + 4παGρ. The latter PDE is the one
we are interested in solving here. Given an undetermined constant U0 with units m2/s2, the linear Klein–Gordon
equation can be expressed as

U0

L2
0

∆̃Ũ =
U0

λ2
Ũ + 4παGρ0ρ̃ .

1The application to electrostatics is deliberately mentioned here as femtoscope, in an early version prior to this PhD work, was
used to study the electrostatic stiffness of the microscope’s accelerometers.

2In particular, the choice of scales that leads to αP = 1 does not further reduce the dimension of the parameter space, since the
theory has no free parameter whatsoever!
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Figure 4.2: Parameter spaces of the Yukawa model, chameleon model (at fixed n), symmetron model (at fixed µ).
For each of these three models, the gray dashed lines correspond to iso values of the dimensionless parameters
αY , αc and αs, respectively.

Upon setting U0(α, λ) = 4παGρ0λ
2, this equation simplifies to (λ/L0)

2∆̃Ũ = Ũ + ρ̃. Therefore, the implementa-
tion of this linear PDE in femtoscope reads

αY∆u = u+ ρ , (4.2)

where αY = (λ/L0)
2 is the only dimensionless free parameter of the resulting dimensionless problem.

This example showcases the reduction of the parameter space of the theory. Indeed, we just went from two
parameters (α, λ) in the original Yukawa model, to a single dimensionless parameter αY (which happens to be
independent of α) appearing in Eq. (4.2). This proves extremely useful when it comes to exploring large regions
of the (two-dimensional) parameter space: given a solution u(αY ) to Eq. (4.2) for some fixed αY (which fixes λ),
we have access to the dimensionful U for any α through the rescaling U = U0(α, λ)u(αY ) = 4παGρ0λ

2u(αY ) —
see the left panel of Fig. 4.2. It is tempting to further use λ as our typical length scale L0, so that αY ≡ 1 and
we are left with no free parameters at all. However, having the dimensionless spatial coordinate x̃ depending
on a free parameter of the model at stake is not desirable. It is rather preferable to work with Eq. (4.2) and a
model-independent length scale L0 when exploring the (α, λ)-plane, the main reason being the same mesh (and
underlying numerical domain) can be used for all FEM computations in this endeavor.

Chameleon field — nonlinear Klein–Gordon equation

The chameleon field equation (1.117) features three model parameters (β, Λ, n) and is expressed in natural units
(see Appendix A). Setting ϕ0 = [nMPlΛ

n+4/(βρ0)]
1/(n+1) and proceeding as in the two previous examples, we

arrive at

αc∆̃ϕ̃ = ρ̃(x̃)− ϕ̃−(n+1) , with αc =

(
ΛMPl

βρ0L2
0

)(
nMPlΛ

3

βρ0

) 1
n+1

. (4.3)

Therefore, the implementation of this nonlinear Klein–Gordon equation in femtoscope reads

αc∆u = ρ− u−(n+1) . (4.4)

Once again, this particular nondimensionalization reduces the number of free parameters from three (β, Λ, n)
to two dimensionless parameters (αc, n). For a fixed exponent n, exploring the (β, Λ)-plane can be done by
solving Eq. (4.4) for various αc and adequately rescaling the resulting dimensionless solutions — see the center
panel of Fig. 4.2.

Symmetron field — nonlinear Klein–Gordon equation

The symmetron model was briefly discussed in Sec. 1.2.1. With conformal factor Ω and potential V given by
Eq. (1.110), the equation of motion for the scalar field is

∆ϕ =
( ρ

M2
− µ2

)
ϕ+ λϕ3 , (4.5)
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Figure 4.3: Simplified UML diagram of femtoscope.

where we have further made the assumption ϕ2 ≪M2. Denoting µ0 an undetermined mass scale and βs = µ/µ0,
this equation can be rewritten in terms of the dimensionless quantities

1

λϕ20L
2
0

∆̃ϕ̃ =

(
ρ0

λϕ20M
2
ρ̃− µ2

0

λϕ20
β2
s

)
ϕ̃+ ϕ̃3 .

Now, a relevant choice for the undetermined mass scale is µ0 =
√
ρ0/M , so that the dimensionless equation boils

down to (M/L0)
2∆̃ϕ̃/ρ0 = (ρ̃− β2

s )ϕ̃+ ϕ̃3. Therefore, the implementation of the symmetron field equation in
femtoscope reads

αs∆u = (ρ− β2
s )u+ u3 , with αs =

M2

ρ0L2
0

. (4.6)

Again, this nondimensionalization has reduced the number of model parameters from three (λ, M, µ) to only
two dimensionless parameters (αs, βs) — see the right panel of Fig. 4.2.

A summary of this nondimensionalization procedure is provided in Fig. 4.2. We have represented, from
left to right, the two-dimensional parameter space of the Yukawa model (α, λ), the chameleon model (Λ, β) at
fixed n, and the symmetron model (λ, M) at fixed µ. The dashed gray lines correspond to iso values of αY ,
αc and αs, respectively. In plain language, solutions to the dimensionless problems (4.2, 4.4, 4.6) allow one to
explore the parameter spaces along these iso curves. The existence and uniqueness of solutions to the nonlinear
Klein–Gordon equations (4.4, 4.6) is examined in Appendix C.

4.1.3 Program architecture

This part is a short glimpse into the inner workings of femtoscope. The program is coded in an object-oriented
fashion — in that respect Fig. 4.3 provides its simplified UML3 diagram, to show how the main classes and
modules interact with one another. The tree structure of the software is further set out in Fig. 4.4.

3Unified Modeling Language.
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∼ root
doc # documentation of the code
data # gathers all data files generated or used by femtoscope

mesh # mesh files (.vtk extension)
geo # CAD files used by gmsh (.geo extension)

model # density models (PREM & US76, Solar density)
result
tmp

femtoscope # source code of femtoscope
core # weak form representation & solvers
display # visualize FEM results
inout # mesh generation, creation of .vtk files, post-processing
misc # analytical expression, unit conversions, constants...
physics # physical problems (Poisson, Yukawa, chameleon, symmetron)
tests # unit & integration tests

images
script
tutorials # hands-on Jupyter notebooks
femtoscope.yml
README.md

Figure 4.4: Simplified femtoscope’s tree structure.

Program workflow

Nowadays, open-source finite element codes are legion. We identified the Python package Sfepy [273] as a
flexible open-source FEM library4 that meets our requirements. As the chosen FEM engine, Sfepy is the genuine
corner stone of femtoscope: the assembling of stiffness matrices and load vectors (described in Sec. 2.1.3),
the solving linear systems and the tying of dofs from different meshes, among other critical operations, are
performed through Sfepy’s internal routines which can be used as black boxes. In that respect, femtoscope builds
on top of this robust FEM engine to implement our desired features, such as a custom Newton solver to deal
with nonlinear problems, or the handling of problems posed on the whole space (see Chapt. 3). The actual
implementation of these features requires a significant number of lines of code ∼ O(104), which justifies calling
femtoscope a program in its own right rather than just a collection of scripts following the nominal use Sfepy.

For solving PDE problems from the list given in Sec. 4.1.2, femtoscope must be provided with a mesh
representing the system of interest as well as a density map ρ(x). From there, PDE problems are solved according
to the decision tree depicted in Fig. 4.5. Essentially, the philosophy is that the solving of virtually any PDE
problem can be reduced to the solving of a finite sequence of simpler PDE problems — linear and elliptic — for
which the basics of FEM laid out in Chapt. 2 apply. The steps of the femtoscope’s algorithm are (in this order):

1. If the problem is time-dependent, one can apply the techniques laid out in Secs. 2.1.4 and 2.2.4, which
results in a sequence of problems independent of the time variable. Such time stepping schemes (using
FDM) are not yet implemented in femtoscope.

2. Stationary problems fall into two categories: linear ones, and nonlinear ones. Nonlinear problems, especially
semi-linear PDEs, are handled through the use of Newton iterations, where one merely solves a sequence
of linearized problems until convergence is reached — see Sec. 2.2. Line search is available (see Sec. 2.2.3).

3. Finally, the last hurdle is when, after going through steps 1 and 2, the linear stationary problem is posed
on an unbounded domain. There, one can leverage the various techniques exposed in Chapt. 3; let us
mention ifem and a-ifem, which have been the two most used techniques throughout this PhD work.

We lay emphasis on the fact that each difficulty (time-dependence, nonlinearity, unboundedness of Ω) are thereby
decoupled from each other and treated in a specific order which makes sense implementation-wise. As for the
post-processing part, saving and inspecting the numerical solution are possible through dedicated routines.

4This code is being actively developed and maintained on GitHub: https://github.com/sfepy/sfepy. Last visited July 16th,
2024.

https://github.com/sfepy/sfepy
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Figure 4.5: Overview of femtoscope decision tree depending on the nature of the PDE problem to be solved.

Mesh generation

Meshes are created using the gmsh software [274], which has already been introduced in Sec. 3.6.2. All meshes
are created either through the Python API (for simple geometries) or by means of .geo scripts (for more
complex ones), and are saved using the legacy Visualization Toolkit format (VTK). Special care is in order when
constructing meshes for use with ifem or a-ifem. In fact, as pointed out in Sec. 3.4.1, the mesh of the interior
domain and the mesh of the inverted exterior domain must have the same trace. In 2D, this is easily achieved by
imposing the coordinates of each individual line element on the boundary. In 3D, things get more complicated
as controlling the position of triangles’ vertices on the surface boundary is not enough to satisfy Definition 3.3.
Indeed, one further has to provide a connectivity table of the surface mesh, since there is not a single way of
drawing triangles from a given collection of points in 2D.

Dimensional reduction

The techniques introduced in Sec. 2.3 for taking advantage of the continuous symmetries exhibited by some
problems are all implemented in femtoscope. In practice, this involves writing the weak form at stake in the
adequate coordinates system, i.e. for which the symmetry allows one to drop at least one coordinate. In this
perspective, Cartesian, spherical and cylindrical coordinate system are implemented in femtoscope. This process,
called dimensional reduction, should be leveraged whenever possible as it greatly reduces the computational cost
of FEM computations. Indeed, the representation of a symmetrical geometry in 3D ineluctably requires more
dofs (more finite elements) than in lower dimensions. Fig. 4.6 illustrates this very point on the example of a
cylinder, where one greatly benefits from using cylindrical coordinates in which the geometry can be described
independently of the azimuthal angle φ.

4.1.4 Implementation of physical models

For studies related to fifth force effects in the Earth environment, we need to equip ourselves with realistic
density models of both the Earth’s interior and its surrounding atmosphere.

Earth density model

The density inside the Earth is modeled using the so-called Preliminary Reference Earth Model (PREM) [279].
This radial model specifically integrates data from seismic waves recorded globally, laboratory measurements
of material properties, and theoretical calculations to provide a detailed and widely accepted representation
of Earth’s density distribution from the crust to the core. The left panel of Fig. 4.7 shows the density in
kgm−3 as a function the distance from the Earth’s center r in Earth’s radius. The discontinuities correspond
to the interface between layers with different physical properties. The data can be downloaded from http:
//ds.iris.edu/spud/earthmodel/9991844 (last visited: July 16th, 2024).

http://ds.iris.edu/spud/earthmodel/9991844
http://ds.iris.edu/spud/earthmodel/9991844
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Figure 4.6: Illustration of the mesh size reduction process when dealing with axisymmetric setups (a cylinder
here).

Figure 4.7: Density of matter inside the Earth according to the PREM model (left) and in the atmosphere
according to the US76 model (right).
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Atmospheric density models

We also use a static radial model for the Earth atmosphere — the US76 model [280] — which describes the
evolution of various physical fields with respect to altitude, including density. The latter is represented on
the right panel of Fig. 4.7. The data can be downloaded from http://www.braeunig.us/space/atmos.htm
(especially for the density between 1000 km and 36000 km altitude; last visited: July 16th, 2024).

4.1.5 Miscellaneous functionalities and possible improvements
Some additional functionalities of femtoscope are worth mentioning, starting with analytical formulas. In the
context of Newtonian gravity, we provide the exact analytical expression for the potential created by homogeneous
oblate spheroids (including the simpler case of the perfect sphere) — see Sec. 4.2.1. For more complex matter
distributions, it can be computed semi-analytically via the integral representation

Φ(x) = −G
∫

R3

ρ(x′)
∥x− x′∥ dx

′ , (4.7)

which follows from using the Green function associated with the Laplacian. The three-dimensional integral of
Eq. (4.7) can be evaluated numerically, for instance, with Scipy’s tplquad routine [281]. This semi-analytical
method, however, should be used only sparingly — e.g. for validation purposes — because it yields the potential
at a single point in space and the numerical evaluation of a triple integral is not particularly cheap. As for the
chameleon model, we implement an analytical approximation for the case of the perfect sphere immersed in a lower
density background, which is reported in Ref. [137]. Note that the latter slightly differs from Eqs. (1.121–1.123).

There are of course missing features from femtoscope, some of which have already been mentioned by now,
most notably the absence of a time-dependent solver — which is necessary for studying systems that violate
the quasi-static approximation. Speaking of which, we stress that the existing features of the program are as
decoupled as possible from each other as conveyed by Fig. 4.5, which would definitely facilitate the smooth
implementation of time-dependent problems on top of the current version of the code.

4.2 Validation of the code

Broadly speaking, code validation is the process of checking that the code is correct. In our case, we want to
ensure that femtoscope correctly solves the model equations. This statement is quite qualitative, in practice such
a validation takes different forms:

– First of all, it seems natural to ask that the PDE problem at stake is well-posed, particularly that solutions
do indeed exist, otherwise there is absolutely no meaning in trying to solve such a PDE problem numerically.
This concern, which mostly falls under the fields of PDE analysis and applied mathematics, is taken
seriously in this PhD work: Chapt. 2 and 3 deal with the well-posedness of weak formulations of elliptic
problems on bounded and unbounded domains respectively, while Appendix C focuses on the nonlinear
PDEs governing the chameleon and symmetron scalar fields.

– femtoscope hinges on Sfepy for FEM computations [273]. Despite not being a commercial software, Sfepy
is thoroughly tested and we do not question its integrity. However, femtoscope’s added features are prone
to errors in their implementation — things can go wrong at many different stages — and preventing the
apparition of bugs is all the more challenging as the code grows larger and larger. It is common practice
in software engineering to create so-called unit tests in order to test and validate the expected behavior
of individual building blocks that make up the program. In this perspective femtoscope is supplemented,
although not exhaustively, with a number of unit tests implemented using the pytest framework (see
Fig. 4.4).

– In the world of scientific computing, the computational engine of FEM is being used far outside what is
theoretically understood, especially in the realm of nonlinear problems. In this regard, error estimates and
simple problems with known solutions are vital to verification. A priori error estimates were discussed in
Sec. 2.1.3 and in Box G, whereas a posteriori error estimates employ the FEM solution itself, e.g. to plot
convergence curves (see Figs. 3.10 and 3.11). They are key to match FEM metaparameters (mesh size,
order of the Lagrange elements...) with a given error level. The production of such convergence curves
is not possible but with the knowledge of analytical solutions (or other types of benchmarks) to simple
problems.

– Comparison of numerical codes can also help to identify problems related to the implementation. In the
case of the chameleon, femtoscope was tested against selcie, revealing good agreement between the two
codes on bounded domains.

http://www.braeunig.us/space/atmos.htm
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The present section puts these various points into effect with a view to validating the implementation of both
the Poisson and chameleon problems.

4.2.1 Poisson equation

Solving the Poisson equation on a bounded domain with Dirichlet boundary conditions imposed on the domain’s
boundary is one of the simplest and most well-known applications of FEM. Solving that same PDE on the whole
space is way less common. Here, we test this important feature of femtoscope by solving the Poisson equation
governing the gravitational potential of a flat ellipsoid of revolution on R3, using the various techniques discussed
in Chapt. 3. Tests of this kind involve the interplay between many objects from different Python classes (see
Fig. 4.3) and therefore fall into the category of integration tests. Integration tests, unlike unit tests which focus
on testing individual components or modules in isolation, aim to verify interactions between these components
to ensure that they work together correctly as a cohesive system. In the following, we consider the gravitational
potential of a Maclaurin spheroid (oblate spheroid) as a first integration test.

An oblate spheroid is a volume bounded by a surface defined by the equation

x2 + y2 +
z2

1− e2 = a2 ⇐⇒ x2 + y2

a2
+
z2

c2
= 1 , (4.8)

where a is the semi-major axis and e ∈ [0, 1] is the ellipticity which is related to the semi-minor axis by
c = a

√
1− e2. The gravitational potential created by such a homogeneous body can be computed analytically —

it was found by Maclaurin in the interior of the ellipsoid [282, 283], and solutions for the whole space can be
found e.g. in Refs. [284, 285]. In particular, we use

Φ(x, y, z) = πGρ
√
1− e2

[
(x2 + y2)A1 − a2A2 + z2A3

]
(4.9)

with

A1 =
arcsin(e)− e

√
1− e2

e3
, A2 = 2

arcsin(e)

e
, A3 = 2

e−
√
1− e2 arcsin(e)
e3
√
1− e2

for the interior of the ellipsoid [283], and

Φ(α, β) = −GM
f

[
arctan

(
1

sinhα

)
+ q2(sinhα)P2(cosβ)

]
(4.10)

for the exterior, where the curvilinear coordinates (α, β), the length parameter f , the Legendre polynomial
P2 and the function q2 are given by Eqs. (7, 8, 17, 23) of Ref. [285] respectively. Note that we have taken z
as the symmetry axis, while the semi-axes a and b are aligned with the x-axis and y-axis respectively. This
analytical solution [Eqs. (4.9–4.10)] serves as a benchmark for testing the implementation of the Poisson equation
on unbounded domain in several coordinate systems — spherical, cylindrical (for which dimensional reduction
applies, see Sec. 2.3.2) and Cartesian (in 3D).

This test case is used to produce convergence curves, giving a sense of how the ‘error’ decreases as the mesh
underlying the FEM computation gets finer, for the various techniques discussed throughout Chapt. 3. This
is more or less the same exercise as what we did with Figs. 3.10 and 3.11, except here Ω = R3 and we do not
use any of the errors defined by Eq. (3.73) but a mean pointwise relative error instead. By way of illustration,
Fig. 4.8 displays such convergence curves obtained with femtoscope for spherical coordinates. The methods
showcased here — compactification of the whole space, a-ifemN and ifem — are all described in Chapt. 3. The
green curve labeled ‘dbc’ is obtained via standard FEM by setting the exact Dirichlet boundary condition on
the boundary of the interior domain. It constitutes a benchmark insofar it provides the convergence rate of
standard FEM, for which there exist several well-known a priori error estimates, some of which are reported in
Sec. 2.1.3 and in Box G. In particular, we lay emphasis on the fact that, as was observed in Figs. 3.10 and 3.11,
the convergence rate of ifem (and compactification) is similar to that of the benchmark. The slight offset of the
former with respect to the latter is merely due to the fact that the mesh of the inverted exterior domain T̃ h

ext

inescapably introduces additional dofs. Last but not least, while the mean pointwise relative error may appear
as an unconventional metric to choose,5 it is particularly relevant when it comes to selecting a suitable mesh size
given a desired level of precision.

5Most works in the literature prefer to compute the relative errors in L2- or H1-norm as they can be readily compared against
the a priori error estimates.
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Figure 4.8: Convergence curves produced using various techniques implemented in femtoscope to solve problems
posed on unbounded domains, namely (i) the compactification of the whole domain, (ii) the a-ifemN method,
and (iii) the ifem method — see Chapt. 3 and in particular the beginning of Sec. 3.6 for the acronyms. The
test problem is a Poisson equation governing the gravitational potential of a flat ellipsoid of revolution, which
is solved using spherical coordinates as described in Sec. 2.3.2. The ‘mean pointwise relative error’ (y-axis) is
computed by randomly sampling 104 points in the interior domain over which the FEM solution is compared
against the analytical one. The dbc curve (green) serves as another benchmark and is obtained by applying the
exact Dirichlet boundary condition on the boundary of the interior domain. The FE approximation order is set
to two.

4.2.2 Klein–Gordon equation

Solving Klein–Gordon equations of the form (4.4, 4.6) on unbounded domains is one of the genuine raisons
d’être of femtoscope. This type of PDE problems is the most complex to handle as one has to take care of the
nonlinearity on top of ifem or a-ifem. At the level of the code however, these two issues hardly interact as
depicted by the decision tree in Fig. 4.5. In particular, the custom Newton solver (class NonLinearSolver in
Fig. 4.3) was first tested and validated for nonlinear problems posed on bounded domains. Here, we focus on
the chameleon model [Eq. (4.4)]. The numerical solutions we obtain with femtoscope are compared against the
analytical approximation (1.121–1.123) for the homogeneous perfect sphere and against selcie.

Comparison against the analytical approximation for the perfect sphere

Our first test case is the homogeneous sphere with radius R̃b = 1. Computations conducted with femtoscope use
the ifem method together with Rc = 5. As depicted by Fig. 4.9, this process results in two solution vectors:

(a) ϕ̃int on the interior domain Ωint plotted against the radial coordinate r̃ ;

(b) ϕ̃ext on the inverted exterior domain Ω̃ext plotted against the inverted coordinate η̃ = R2
c/r̃.

Panel (c) illustrates how (ϕ̃int, ϕ̃ext) can be put back together to form the solution in the real space for an
arbitrarily large radius r̃ (25 in this case), continuity being ensured by ifem.

Fig. 4.10 shows various chameleon field profiles obtained with femtoscope (solid lines) for several values of
the dimensionless parameter αc [Eq. (4.3)], which we simply denote by α from now on. It is computed with the
characteristic scales L0 = REarth = 6371 km and ρ0 = 1kgm−3, while the model parameter n is set to one. The
top panel of this figure brings to the fore the importance of the FEM implementation on unbounded domains:

1. in the deeply screened regime (α ≲ 10−1), the field quickly reaches the value that minimizes the effective
potential in vacuum, so that truncating the numerical domain at Rc and setting the Dirichlet boundary
condition ϕ̃(Rc) = ϕ̃(r̃ → +∞) would not result in too large an error;

2. for α ≳ 1 however, the scalar field grows more slowly towards its asymptotic value so that it would not
have any physical sense to impose such a Dirichlet boundary condition at Rc in this scenario.

Still in Fig. 4.10, we represent for each α the analytical approximation in dashed lines in the top panel, while
the bottom panel depicts the relative difference of the latter with respect to the numerical solution. While there
is an overall agreement between the five pairs of profiles, the relative difference systematically rises above the



126 CHAPTER 4. Modeling gravity in scalar-tensor theories of gravity with femtoscope

Figure 4.9: Numerical solution (dimensionless) to the radial chameleon Klein–Gordon equation on R+ obtained
through ifem or a-ifem (see Chapt. 3). Panel (a) represents the solution on the interior domain Ωint = [0, Rc] ∋ r̃
(dimensionless). Panel (b) represents the solution on the inverted exterior domain Ω̃ext = [0, Rc] ∋ η̃ (dimension-
less). Panel (c) shows how the solution can be reconstructed in the real space for an arbitrarily large r̃. The
dashed lines are set at ϕ̃min = ϕ̃(r̃ = 0) and at ϕ̃∞ = ϕ̃(r̃ → +∞). Note that there is no way to guess a priori
the value of the field ϕ̃ at Rc. Imposing the Dirichlet boundary condition ϕ̃(Rc) = ϕ̃(r̃ → +∞) would have
resulted in a manifest error.

Figure 4.10: Radial profiles of the FEM chameleon field sourced by an homogeneous sphere of radius 1 and
density ρ̃in = 100 immersed in a medium of lower density ρ̃vac = 0.1, for several values of α defined through
Eqs. (4.3–4.4). On the top panel, the solid lines correspond to femtoscope’s outputs ϕ̃FEM while the dashed ones
are the associated analytical approximations ϕ̃app given by Eqs (1.121–1.123). This shows the transition between
the screened regime (α ∈ {10−2, 10−1}) and the unscreened regime (α ≥ 20). The bottom panel depicts the
relative difference between the numerical and analytical approximations.
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Residual analytical approximation Residual numerical solution

α = 10−2 2.5× 10−2 9.7× 10−8

α = 10−1 4.0× 10−2 3.6× 10−8

α = 1 6.0× 10−2 4.2× 10−6

α = 10 8.1× 10−2 6.7× 10−5

α = 20 1.1× 10−1 1.2× 10−4

Table 4.2: Euclidean norm of the residual vector (2.78) associated with the chameleon profiles displayed in
Fig. 4.10 for both the analytical approximation and femtoscope’s solution.

one-percent level. The analytical approximation is to blame for this observed discrepancy. Indeed, as emphasized
in Refs. [136, 286], Eqs. (4.3–4.4) are only valid in certain regions of the chameleon parameter space and should
not serve as a trustworthy benchmark. In this respect, Table 4.2 clearly shows that the residual of the analytical
approximation is larger by many orders of magnitude than that of the numerical solution (after convergence).
Besides, one may have noticed that there seems to be a relation between α and the size of the residual: especially,
the greater α, the bigger the residual. This relation cannot be ascribed to a poor convergence of the Newton
algorithm as the relative change of the numerical approximation between the last two iterations (in 2-norm) is
consistently below 10−14 for all α. A better explanation is linked to the fact that the residual, as defined in
this article, is an absolute quantity and not a relative one (see Appendix B from Ref. [137] for a more thorough
investigation of this question).

Comparison against selcie

The comparison against the analytical approximation (Fig. 4.10) together with the inspection of the residual
(Table 4.2) were first steps to help build confidence in femtoscope’s reliability. In the same spirit, we now conduct
a short comparison between selcie and femtoscope.6

Boundary value problems in selcie To the best of our knowledge, selcie [190] is the only alternative publicly
available code that can be used to compute the chameleon field for arbitrary density distributions. Despite
sharing many similarities with selcie, femtoscope was developed in an independent way to achieve close aims.
It is therefore all the more important to check that the outputs of the two codes coincide as no exact analytical
solution is available. With this aim in mind, we selected a set of physical parameters and computed the chameleon
field for a solid sphere with the two softwares. Unlike femtoscope, selcie cannot deal with asymptotic boundary
conditions and must therefore truncate the numerical domain at some finite distance from the origin — see
Table 4.1. The artificial border thereby created is left free of any Dirichlet boundary condition, hence the
following natural boundary condition applies

∇̃ϕ̃ · n = 0 . (4.11)

In addition to not being physically relevant in all situations — there is no reason for the field to have an
everywhere-null flux across the boundary —, such an homogeneous Neumann boundary condition should raise
concerns regarding the well-posedness of this PDE problem. Indeed, we saw in Sec. 2.1 that Dirichlet boundary
conditions were (literally) essential to making the Poisson problem well-posed. Here, coerciveness is preserved
without having to rely on the Poincaré inequality (see Box F) because of the very structure of the Newton-
linearized version of the chameleon equation, see Eqs (2.74–2.75). This situation is purely fortuitous, and does
not hold e.g. for Eq. (4.4) with n = −4.

Furthermore, selcie uses the same Newton’s algorithm as femtoscope for dealing with the nonlinearity of the
field equation (see Sec. 2.2.1). By default,7 the field is initialized with a constant value ϕ̃min, which is computed
from the maximum density ρ̃max within the numerical domain as

ϕ̃min = ρ̃
− 1

n+1
max . (4.12)

Comparison protocol Fig. 4.11 aims at comparing selcie and femtoscope on two different simulations performed
in cylindrical coordinates with dimensional reduction. Because femtoscope is not limited to bounded domains,
we solved the Klein–Gordon equation by way of two techniques:

1. Applying the Dirichlet boundary condition ϕ̃ = ϕ̃vac at the artificial border (blue crosses).

6This comparison is based on the selcie version from September 16th, 2022.
7The initial field profile (‘initial guess’) can also be user supplied since version 1.4.0.
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Figure 4.11: Comparison between selcie (black solid line) and femtoscope (i) with Dirichlet boundary condition
at the truncation radius Rc = 1 (blue crosses), and (ii) by means of the ifem technique (red dots). The
parameters used for producing this figure are {n = 2, α = 5× 10−3, Rc = 1, R̃b = 0.1, ρ̃in = 100, ρ̃vac = 0.1}
for the left panel, and {n = 1, α = 1, Rc = 1, R̃b = 0.3, ρ̃in = 100, ρ̃vac = 1} for the right panel.

2. Using the ifem method to enforce the correct asymptotic behavior of the field at infinity (red dots). We
recall once more that this is the most general approach as no particular assumptions have to be made
regarding the physical parameters of the simulation.

Left panel of Fig. 4.11 In order for selcie to produce a reasonable numerical approximation, we chose a set of
physical parameters such that:

– The ball is screened. In this manner, the field is correctly initialized deep inside the ball via Eq. (4.12).

– The field value at the truncation boundary is close to the value that minimizes the effective potential
outside the ball, denoted ϕ̃vac. As a result, the field’s gradient is expected to be small near the boundary
and Eq. (4.11) makes physical sense.

The three outputs — ‘selcie’, ‘femtoscope bounded’ and ‘femtoscope unbounded’ — almost perfectly overlap.
Indeed, the relative difference between any two of the three numerical approximations is bounded below 0.3%.
There are several potential causes to explain this sub-percentage difference:

– We did not use the same meshes for selcie and femtoscope. Yet, the quality of the FEM solution is known
to be intimately interrelated with that of the associated mesh.

– For all three outputs, the field is initialized and constrained differently (see the discussion above).

– selcie and femtoscope do not use the same linear solver on these specific simulations.

– The FE approximation order is set to one in selcie (by default) whereas we used third-order polynomials
for the computations performed with femtoscope.

Right panel of Fig. 4.11 This plot aims at showing the limits of the domain truncation approach. Here,
‘femtoscope unbounded’ (red dots) should be regarded as the benchmark as it is the only simulation that correctly
implements the asymptotic boundary condition. We can see that, as we move away from the ball (r̃ ≥ 0.3), the
three outputs start diverging:

– ‘selcie’ (black solid line) implements condition (4.11) which is why we observe [dϕ̃/dr](r̃ = 1) = 0. This is
wrong because the field should keep increasing to ϕ̃vac at infinity and results in a significant deviation from
the benchmark (relative difference up to 11 % at r̃ = 1).

– ‘femtoscope bounded’ (blue crosses) implements the Dirichlet boundary condition ϕ̃(r̃ = 1) = ϕ̃vac. This
results in a 6 % relative difference with respect to the benchmark at r̃ = 1.
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Figure 4.12: Influence of the truncation radius Rc on the relative error (not in percentage) for ‘selcie’,
‘femtoscope bounded’ and ‘femtoscope unbounded’. The simulations were performed with the set of parameters
{n = 1, α = 1, Rb = 0.3, ρin = 100, ρvac = 1} (the same as the right panel of Fig. 4.11). Here, the chosen
benchmark is { ‘femtoscope unbounded’, Rc = 3.0}.

Influence of the truncation radius Rc Finally, we complement this comparative study by addressing the question
of the influence of the size of the truncated domain on accuracy. To do so, we start from Rc = 3 and retrieve the
numerical value ϕ̃(r̃ = 0.5) using ifem: this is our benchmark. Then we decrease the truncation radius down to 1
in steps of 0.5 and compute the relative error at r̃ = 0.5 for all three outputs. The results of this experiment
are shown in Fig. 4.12. The takeaway here is that approaches based on truncation (‘selcie’ and ‘femtoscope
bounded’) become increasingly inaccurate as Rc decreases. Moreover, for an arbitrary set of parameters (β, Λ, n),
the truncation radius ensuring an acceptable level of error cannot be known in advance. One thus has to be very
cautious when using codes relying on truncation, and must have enough physical insights into how to choose
the truncation radius. As for ‘femtoscope unbounded’, the dependence between the error and Rc is much less
pronounced, except for Rcut = 1 where the relative error goes beyond 10−4. This brief investigation, although it
is merely based on a single example, further illustrates why properly dealing with boundary conditions is of key
importance.

4.3 Examples of usage

In the above, we have endeavored to show that femtoscope can be used to obtain correct results on the PDE
problems that must be solved in order to study screened scalar-tensor models of gravity. In this section, the use
of femtoscope is extended to physical cases that could not be investigated by analytical means. This includes the
study of chameleon gravity around the Earth with the realistic density models discussed in Sec. 4.1.4 and the
mutual attraction of two spherical bodies. As a side note, let us mention that femtoscope is also currently being
used in order to revisit Ref. [171] (constraining short range Yukawa deviation from Newtonian gravity using
microscope’s technical sessions aimed at estimating the electrostatic stiffness of the sensors).

4.3.1 Chameleon gravity around the Earth — radial model

We now consider a more realistic treatment of chameleon gravity in the Earth vicinity. We look for quantitative
values of the fifth force acting on test particles as predicted by the chameleon model in Earth orbit. When
relevant, the altitude is chosen to be that of the GRACE-FO satellites,8 i.e. around 500 km [287]. In order to
study the effect of the chameleonic force on test particles at such altitudes, the latter needs to be quantified.
To put things into perspective, the amplitude of the fifth force can be compared to other known physical
effects taking place in orbit around the Earth. Especially, it is meaningful to compare it against the relativistic
correction to Newtonian gravity δaGR, and to Newtonian gravity itself. At first order, this relativistic correction
reads

δaGR =
3

r3

(µEarth

c

)2
≃ 10−9aNewton (4.13)

8https://gracefo.jpl.nasa.gov/. Last visited: July 13th, 2024.

https://gracefo.jpl.nasa.gov/
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Figure 4.13: Distribution of dofs in the mesh of the ‘realistic’ radial Earth model. In the interior domain (left
side), the mesh is particularly refined around the various density jumps inside the Earth and at the transition
between the crust and the atmosphere (see Fig. 4.7). In the inverted exterior domain (right side), the mesh is
refined around the characteristic slope break at η̃ = m̃vacR

2
c/3 which can be seen on Fig. 4.9 (b). Again, the

tilde notation here is used to denote dimensionless quantities.

for a circular orbit [288], where µEarth is the Earth’s standard gravitational parameter and aNewton = µEarth/r
2.

This is already about nine orders of magnitude smaller than Newtonian attraction for typical satellite altitudes
(from low Earth orbits to the geostationary one).

Computation of the chameleon field in a realistic Earth environment

The first step is to implement a realistic model of the density inside and around the Earth as in Fig. 4.7. The
use of purely radial models allows us to conduct numerical simulations in 1D, much cheaper than their 2D or 3D
counterparts.9 The density decreases from 1.3×104 kg/m3 at the center of the Earth to barely 4.0×10−19 kg/m3

beyond the geostationary altitude, which represents a variation over nearly twenty-three orders of magnitude.
Moreover, it is subject to a three-order-of-magnitude jump at the interface between the Earth and the atmosphere.
Density being the source of the field, the mesh employed in numerical simulations has to be very fine around
such rapid variations (see Fig. 4.13), and we set the relaxation parameter to ω = 0.5 (experimentally determined
to ensure convergence). The truncation radius is set at 7REarth because the density is assumed constant beyond
this altitude. To check the relevance of such models, we computed the Newtonian potential potential with
femtoscope and found the conventional value of gravitational acceleration on Earth g, of about 9.8 ms−2.

In Fig. 4.14, we represent profiles of the chameleon field and its gradient for different values of the α parameter.
The computed dimensionless field is further normalized in such a way that it tends to 1 at infinity, while the
gradient is mapped onto [0, 1] — which allows for a better side-by-side comparison of the profiles. The α-values
are chosen so as to span over both the so-called screened regime (α ∈ {10−8, 1.5× 10−6}) and unscreened regime
(α ∈ {3.5 × 10−6, 10−5}). As can be seen on the inset, in the screened regime, the field is subject to jumps
occurring at density jumps within the Earth, before stalling when the density crosses some threshold. This is
the region where the corresponding gradient curve peaks to its highest value, before decreasing as r−2 in the
upper atmosphere and beyond. In the unscreened regime, the field does not reach the value that minimizes the
effective potential at the center of the Earth. One point worth mentioning is that, in the latter case, the field
profiles are all identical up to an affine transformation. As a consequence, the associated normalized gradients
almost perfectly overlap. A physical interpretation of this phenomenon is that in the unscreened regime, the field
is sourced by the entire mass of the Earth and there is no thin-shell effect. The overall shape of the gradient is
reminiscent of the Earth Newtonian gravity, which makes sense considering that the gravitational potential is
not subject to any screening mechanism. Finally, let us denote by αscreened ≃ 2.6× 10−6 the value at which the
transition between the two regimes occurs.10

9De facto, the Earth flattening at the poles cannot be taken into account despite being one of the major perturbing accelerations
[288]. Ref. [143] shows that ellipsoidal departures from spherical symmetry results in an enhancement of the chameleonic force.

10For n = 2, one would have αscreened ≃ 3.1× 10−3.
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Figure 4.14: Normalized chameleon radial profile (left) and gradient (right) for the realistic 1D model of the
Earth with densities depicted in Fig. 4.7. The chosen values for α are such that the Earth is either screened or
unscreened, where the transition between the two regimes occurs at α ∼ 2× 10−6 roughly.

Fifth force in orbit

Let us now proceed to a more quantitative analysis of the chameleon field effects by computing the fifth
force supposedly applied on satellite in orbit — under the assumption that the latter is unscreened.11 This
force is computed according to Eq. (1.98). The mapping (β,Λ) 7→ α not being injective (see e.g. Fig. 4.2,
center panel), it is relevant to study the shape of the iso-fifth-forces in the (β,Λ)-plane. Using the analytical
approximation (1.121–1.123) is a good starting point to get a sketch of such contour lines. Because this
approximation can only handle constant density profiles inside and outside the sphere, we separately average
the PREM and US76 models depicted in Fig. 4.7 and keep the two mean values. The result of this process is
shown in the left panel of Fig. 4.15, where we can clearly see the demarcation between the two regimes across
the line αscreened ≃ 2× 10−6. The Earth is screened (respectively unscreened) below (respectively above) this
line. Note that we obtain the same characteristic iso-force contours as in Fig. 7 from Ref. [143] [plotted in the
(log Λ,− log β)-plane].

It is striking to note that in the unscreened regime, the fifth force almost no longer depends on the energy
scale Λ. This is particularly visible on the analytical approximation. From Eq. (1.123), one has

ϕ̃′(r̃) = K(1 + m̃vacr̃) r̃
−2 exp

[
−m̃vac

(
r̃ − R̃b

)]
.

However, the vacuum density used in this study is so small (ρvac = 4.04× 10−19 kg/m3) that, at a satellite’s
altitude, mvacr ≪ 1 and thus

ϕ̃′(r̃) ∼ K/r̃2, with K ∼ ρ̃in/3α =⇒ ϕ̃′ ∝∼ Λ(n+4)/(n+1) .

The dimensionful version of the force is recovered by multiplying the dimensionless gradient by the factor
βϕ0/(MPlL0) ∝ Λ(n+1)/(n+4). Consequently, the result of this multiplication does not depend on Λ — QED.

The insights gained in the above helps us to comment on the results obtained with femtoscope and the
realistic density model. The right panel of Fig. 4.15 is the numerical counterpart of its left panel, where we
have represented the curves of equation aϕ = 10kδaGR for −2 ≤ k ≤ 1. We obtain the same characteristic
iso-fifth-forces (L-shaped), whose equations roughly reads

{
β ∼ const. for α ≥ αscreened

Λ ∼ κβ−1/5 for α < αscreened

(4.14)

for some positive constant κ. The power −1/5 can be recovered from the analytical approximation which gives
−n/(n+ 4) in the general case.

This kind of plot has to be put into perspective with the current existing constraints on the chameleon model,
see e.g. Fig. 4 from Ref. [152]. Cases for which the Earth is unscreened (i.e. α > αscreened) are excluded unless β

11We shall take a closer look at this specific assumption in Chapt. 5.



132 CHAPTER 4. Modeling gravity in scalar-tensor theories of gravity with femtoscope

Figure 4.15: Amplitude of the fifth force in orbit (altitude = 500 km) in the (β, Λ)-plane, n = 1. The left panel is
derived from the analytical approximation (1.121–1.123). Iso-aϕ values are depicted by red dashed lines, except
for the contour aϕ = δaGR which is represented in green [Eq. (4.13)]. Likewise, the right panel shows fifth force
iso-lines of the form aϕ = 10kδaGR, with k ranging from −2 to 1, obtained with femtoscope. Gray lines in the
background correspond to the iso-values of the α parameter used in the numerical computations. The screened
regime (blue shade) and the unscreened regime (purple shade) are unmistakably separated on both sides of
αscreen ≃ 2.7× 10−6.

is very small [157]. In the screened regime, it appears that the chameleon acceleration is an increasing function
of β, at fixed energy scale Λ and fixed altitude. This is true only up to a certain threshold on β, above which
the field is so coupled to matter that its dynamics become frozen, i.e. ϕ ∝ ρ−1/(n+1). This effect is discussed at
more length in Chapt. 5.

Finally, it is useful to see how the chameleonic force compares to our current description of gravity in space.
To that extent, we reproduced in Fig. 4.16 the traditional representation of satellite perturbations as a function
of the altitude (see e.g. Fig. 3.1 from Ref. [288]). It features the Newtonian gravity aNewton = µEarth/r

2 and its
relativistic correction at first order given by Eq. (4.13) as well as fifth force profiles. Yet, the two pairs (β,Λ)
which result in an unscreened Earth are already ruled-out by experiments — see e.g. Fig. 2 from Ref. [289].
Below the threshold αscreened, the freezing of the field inside the Earth means that the exterior field profile is
sourced only by the mass outside the thin-shell radius. This puts into question the validity of a purely radial
density model. Indeed, the shell sourcing the field might be so thin that it is no longer possible to make the
assumption that the Earth is spherically-symmetric. In which case, it is reasonable to expect the fifth force
to be dependent on the local landform. FEM would then be necessary to capture the aspherical shape of the
topography. Again, this issue is investigated in Chapt. 5.

Finally, a commentary has to be made with respect to the use of realistic physical quantities. Specifically, we
noticed that numerical issues can arise when density varies widely within the simulation domain. Part of the
chameleon parameter space associated with an unscreened Earth ended up inaccessible to our numerical tool as
the relative variation of the field (ϕmax − ϕmin)/ϕmax would be of order ∼ 10−14, close to machine epsilon in
double-precision floating-point format.

4.3.2 Fifth force between two spheres

So far, we have showcased femtoscope on test cases where gravity is sourced by a single body. The field profiles
thereby obtained, through their gradient, allow us to compute the geodesics of the Jordan-frame metric which test
particles follow — this is the standard approach that is used in most works relying on analytical approximation.
For an extended test body, this approximation is justified as long as it is unscreened. Now take the Moon —
the test body — in free fall around the Earth — the source body. In Newtonian gravity, the linearity of the
Poisson equation allows us to decompose the total potential as Φtot = ΦEarth +ΦMoon. This basic superposition
principle does not apply a priori to the chameleon field (or any other scalar field from scalar-tensor models
with screening) because its equation of motion is plagued with a nonlinearity. Yet, there are various interesting
physical situations involving two spherical bodies: not only the {Earth, Moon} system but essentially any two
(isolated) planetary bodies in the Solar system, a binary neutron star inspiral, or test masses in a Cavendish-like
laboratory experiment. All these relevant scenarios are hardly accessible by analytical means only, although
some approximations exist in the literature [72, 142, 149, 290, 291].

This part is not intended to be a complete study of the two-body problem in chameleon gravity, but rather a
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Figure 4.16: The chameleonic force as a perturbing acceleration for satellites. Left panel: orders of magnitude of
hypothetical fifth forces alongside known forces [Newtonian gravity and its first order relativistic correction (4.13)]
as a function of r. Right panel: the (β, Λ) values used to compute such fifth forces.

Figure 4.17: The two-body problem in chameleon gravity. The x-axis passes through the center of the two
spherical bodies of radius R1 and R2. The dashed lines indicate the boundary of each body and the use of two
shades represent the screening of the bodies (as in Fig. 1.4 where we illustrate the chameleon field profile for
screened and unscreened spheres).

demonstration of the possibilities offered by FEM-based numerical tools.

Example of computation

The notation of the problem we tackle here are reported in Fig. 4.17. The x-axis, passing through the center of
each body, is such that the problem is invariant by rotation about it. Consequently, all FEM computations can
be performed in 2D thanks to the dimensional reduction technique (see Sec. 2.3). In particular, we make use
of the cylindrical coordinate system. Moreover, the asymptotic boundary condition ϕ̃→ ϕ̃vac as ∥x̃∥ → +∞ is
handled via the ifem technique.

Fig. 4.18 shows the scalar field profile together with the magnitude of its gradient for a test case with
parameters:

– R̃1 = 1.0, x̃1 = −3/2, ρ̃1 = 102 [sphere 1] ;

– R̃2 = 0.8, x̃2 = +3/2, ρ̃2 = 5× 102 [sphere 2] ;

– ρ̃vac = 10−3, α = 0.1, n = 1 [other parameters].

The left panels of the figure show the dimensionless scalar field profile. The top panel corresponds to the full 2D
map. There, the horizontal faint dashed line is the x̃-axis, along which the solution is plotted on the bottom
panel, where the shaded areas represent the space occupied by the two spheres. In this situation, the spheres
are screened and exhibit a very thin shell. The right panels of the figure show the 2-norm of the gradient of
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Figure 4.18: Example of numerical solution to the two-body problem for the chameleon field. The two panels on the
left illustrate the value taken by the dimensionless scalar field ϕ̃ in the (x̃ỹ)-plane (top panel) and along the x̃-axis
(bottom panel). Likewise, the two panels on the right depict the magnitude of the gradient of the scalar field ∥∇̃ϕ̃∥.
Parameters: {R̃1 = 1, x̃1 = −3/2, ρ̃1 = 102, R̃2 = 0.8, x̃2 = 3/2, ρ̃2 = 5× 102, ρ̃vac = 10−3, n = 1, α = 0.1}.

the scalar field — let us recall that the fifth force amplitude is directly proportional to this quantity in the
chameleon model. Again, the top panel is the full 2D map while the bottom panel specifically represents ∂x̃ϕ̃
along the x̃-axis (one has ∂ỹϕ̃ ≡ 0 along this particular line due to cylindrical symmetry).

Shifting of equilibrium points

The interactions mediated by the Newtonian potential on the one hand, and by scalar fields on the other hand,
are both attractive. Because of this simple fact, it may be difficult to tell them apart in the context of e.g.
laboratory experiments. It is therefore relevant to look for situations which somehow disentangle Newtonian
gravity from fifth forces. This quest for experiments allowing to make fifth force effects stand out from other
known physical effects is not new. A fairly innovative concept using a charged particle in an electromagnetic
field was proposed in Ref. [292]. Likewise, Ref. [104] shows that space geodesy experiments could detect the
signature of a Yukawa fifth force by measuring the Earth’s J2 coefficient at two different altitudes. Ref. [293]
claims that non-spherical test bodies immersed in a background field will experience a net torque caused by the
scalar field, an effect which has no counterpart in Newtonian gravity. Ref. [157] describes a torsion pendulum
experiment for which the existence of a putative chameleon fifth force should create small torques while not
being sensitive to the effects of massless fields. Here, we imagine an idea for an experiment using two spheres
where a clear line can be drawn between a chameleonic fifth force and classical gravity.

Suppose that the two spheres are of equal mass M1 =M2, but with different radii R1 ̸= R2. This condition
can be expressed mathematically as

M1 =M2 ⇐⇒
(
R1

R2

)3
=
ρ2
ρ1
, (4.15)

and we denote by M this common mass. From the perspective of an uncharged test particle, the two spheres
look identical in the sense that the gravitational potential they individually source on the outside cannot be
distinguished from that of a point mass. The Newtonian acceleration undergone by such a test particle is simply

aN,tot = aN,1 + aN,2 = −GM
(
r−2
1 e1 + r−2

2 e2
)
, (4.16)

with ri the vector joining the center of the sphere i to the test particle, ri = ∥ri∥ and ei = ri/ri, i = 1, 2.
Based on the sketch provided in Fig. 4.17, the plane perpendicular to the x-axis at the origin is such that
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Figure 4.19: Gravitational acceleration along the x-axis (see Fig. 4.17) for the two-body problem with physical
parameters given by Eq. (4.3.2). The pale shaded areas correspond to the space occupied by the spheres. Left
panel: chameleonic acceleration axϕ. Center panel: Newtonian acceleration axN . Right panel: total acceleration
axϕ + axN . The small (unphysical) oscillations visible on the inset plot of the left and right panels is due to the
finite element discretization and could be mitigated through the use of a more refined mesh and/or higher order
Lagrange elements.

∥aN,1∥ = ∥aN,2∥. At the origin, we have aN,tot = 0: the point where the Newtonian attraction is canceled
coincides with the geometric center of the setup. This symmetry property does not generalize to the chameleon
when at least one of the two bodies is partially screened. This mainly follows from the qualitative discussion we
had in Sec. 1.2.2 when looking for possible violations of the WEP in chameleon gravity. Indeed, the two spheres
are susceptible to develop different thin shell parameters (∆R/R) [Eq. (1.122)] and the center of chameleon
forces might well be displaced from the origin point. Consequently, the point of equilibrium in the modified
gravity setting must not coincide with x = 0. The question then boils down to getting an estimate of this
displacement scale.

Unlike the example given in Fig. 4.18, this study requires the definition of physical quantities, with realistic
numerical values. In this respect, we select the following set of parameters

ρ1 = 2700 kgm−3 , ρ2 = 100 kgm−3 , ρvac = 0.1 kgm−3 ,

x1 = −16 cm , x2 = +16 cm , R1 = 5 cm , R2 = 15 cm , (4.17)

β = 102, Λ = ΛDE ≃ 2.4meV , n = 1 ,

which are representative of experimental systems that fit in the laboratory. The sphere 1 is roughly the density of
aluminum while the sphere 2 could be made e.g. of polyurethane foam. The Newtonian part of gravity is derived
analytically (taking advantage of the superposition principle) whereas the fifth force is accessed via femtoscope.

The results of this case study are reported in Fig. 4.19. The left panel represents the chameleon acceleration
along the x-axis, axϕ ∝ −∂xϕ. The net zero acceleration in the spheres is characteristic of the screened regime.
Most notably, the center of chameleon forces is not at the geometric center x = 0 but lies somewhere a few
centimeters to the left of the origin. The center panel corresponds to the Newtonian acceleration axN , which is
derived analytically. The condition of mass equality [Eq. (4.3.2)] is consistent with the fact that the acceleration
exactly cancels at x = 0. This means that test particles with x < 0 are attracted toward the left whereas those
with x > 0 are attracted to the right. Note that the Newtonian acceleration is of the same order of magnitude as
the chameleon acceleration, if not smaller (see Sec. 2 of Refs. [276] for additional insights into this observation;
note that we are not talking about the gravitational attraction between the two spheres here). Finally, the right
panel represents the total gravitational acceleration, which is merely the sum of the Newtonian and chameleon
contributions. As can be seen on the corresponding inset, the pristine symmetry exhibited by the Newtonian
acceleration is broken: the geometric center no longer coincides with the point where the gravitational pull of
the spheres exactly balances. This shift of the L1 Lagrange point of the system is just under 2 cm, which is
quite significant given the characteristic centimetric length scale of the setup. At the origin however, the total
acceleration is no longer zero but rather ∼ 20 nm/s2.

Now that the principle has been established and that we have a conclusive order of magnitude, the difficult
part is the actual design of an experiment that takes advantage of it. Measuring small effects (a few nm/s2

essentially) is made easier if one can benefit from long integration times in the measurement. Yet, long integration
times may turn out to be out of reach, because the point of equilibrium between the various gravitational forces
at stake is an unstable one. Moreover, the gravitational acceleration of the Earth has been completely ignored
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in this picture. Further study of these issues is left for future work. Finally, it is to be noted that this idea of
creating an asymmetry in the chameleon field profile is explored in Ref. [294] for parallel plates.

Chapter summary

In this chapter, we have introduced femtoscope as a novel numerical tool dedicated to the
study of scalar-tensor models of gravity with screening mechanisms. It implements the various
FEM-related techniques that were discussed at length in the previous two chapters, which
makes it sufficiently versatile for our needs. Indeed, the program can handle virtually any
semi-linear elliptic PDE problem posed on bounded or unbounded regions of space, provided
that the corresponding Newton-linearized weak formulation is supplied by the user. Some
specific cases of interest are already implemented — the Poisson, Yukawa, chameleon and
symmetron problems — and are ready for use.
We then showcased femtoscope on the chameleon model specifically, whose nonlinear
Klein–Gordon equation of motion restricts the use of analytical techniques to the simplest,
most symmetrical cases. In that respect, the use of FEM with non-uniform meshes frees us
from this limitation and opens the way to the realistic study of complex setups, hitherto
inaccessible. In particular, femtoscope complements the recent selcie code by further being
able to deal with asymptotic boundary conditions, making it the only publicly available code
with such features.
Although the possibilities thereby offered by femtoscope sparked many ideas, we could not
pursue them all in this thesis and had to make choices. The next chapter is a follow up to
the preliminary study of chameleon gravity in the Earth environment. Specifically, we have
underlined the fact that modeling the Earth as a sphere is no longer realistic in the screened
regime where the chameleonic force is sourced by the outer layers. It is interesting to compute
the imprint of the local relief on the chameleon field in Earth orbits and to investigate whether
or not we could discriminate between the fifth-force signature and known effects with the
current technology embedded on navigation and potential science satellites.
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This chapter follows on from the study of the chameleon model in the Earth environment begun in Sec. 4.3.1.
Its ultimate goal is to quantitatively assess the testability of fifth force effects in space. To this end, we use
femtoscope in order to model this special case of modified gravity, solving for both the Newtonian potential and
the chameleon field. In particular, numerical simulations allow us to go beyond the simplifying assumptions and
modeling traditionally found in the literature. Building on these FEM computations, we study the dynamics of
satellites in orbit around the Earth with and without the putative chameleonic force, which roughly amounts
to comparing geodesics of the Einstein-frame metric vs those of the Jordan-frame metric, respectively. Given
the level of precision achieved by recent space geodesy missions, we look whether it is possible to discriminate
between the two in the presence of model uncertainties.

Unlike for other chapters, we reproduce here our work [141], published in Physical Review D.

5.1 Introduction and Summary

One of the goal of this PhD work is to determine whether space-based experiments are well-suited for testing
gravity. This question being way too broad to be covered in its entirety here, we narrow it down to the specific
case of scalar-tensor theories of gravity with screening mechanisms, focusing on the prototypical example of
the chameleon model. In this perspective, Sec. 4.3.1 is a first step towards a realistic modeling of modified
gravity in the Earth vicinity. There, we implement a radial density model based on PREM (Earth interior) and
US76 (atmosphere) which, upon using the femtoscope code, yields solutions for the Newtonian potential and
chameleon scalar field. Regarding the latter, this preliminary study makes clear the fact that viable regions of
its parameter space (n, β, Λ) all map to a screened Earth. In such configurations, the fifth force is sourced only
by the outermost layers of the Earth, which seriously calls into question the use of radial models: locally, the
Earth’s landform is very irregular and does not look much like the surface of a sphere. Furthermore, there is no
such thing as the thin shell effect in Newtonian gravity and so the chameleon field should in principle leave a
distinctive imprint on the total gravitational field, however small it is.1 The main goal of the present article is to
quantify this ‘gravitational imprint’ and assess whether the signature of a chameleon fifth force can be extracted
from space-based gravitational measurements.

Studying the impact of the Earth’s slight deviation from spherical symmetry on chameleon gravity is a
very challenging task from a numerical perspective. On the one hand, the Earth’s rotation and self-gravity
are responsible for its equatorial bulge and flattening at the poles, giving it the overall shape of an oblate
ellipsoid [Eq. (4.8)]. This J2 effect is not taken into account in this article. On the other hand, going to smaller
scales reveals a very complex landform, featuring mountains, ridges, craters, etc. Modeling this whole variety of
topographies would result in a very complex 3D model, expensive to run FEM computations on, and yielding
results difficult to interpret physically. In the light of this remark, we implement a highly simplified model where
the Earth is represented by a sphere with a mountain on top of it. The overall shape created in this way exhibits

1By that, we mean that the total gravitational acceleration aN + aϕ is not merely (1 + εϕ)aN , for some ϵϕ > 0.
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azimuthal symmetry, which makes it possible to run relatively cheap 2D computations (see Sec. 2.3) and eases
the interpretation of results.

Nonetheless, capturing the gravitational impact of this single source of asphericity with femtoscope is nontrivial
because the mountain, given its size and mass, only represents a tiny deviation from the dominating Earth’s
monopole. Spherical coordinates are a natural choice for performing FEM computations for this specific problem.
The handling of asymptotic boundary conditions is all the more crucial here as setting homogeneous Dirichlet
boundary conditions at some finite distance from the Earth would impose spherical symmetry as we approach
such an artificial boundary. This is particularly undesirable in this study where we look for small deviations
from spherical symmetry. In this respect, we employ the ifem technique2 to impose the correct asymptotic
behavior on the unknowns (see Chapt. 3). A great deal of work is being done to ensure that femtoscope’s outputs
are actually good enough approximations to the true solutions. This is a critical part of this article as all the
subsequent physical discussions are based on these numerical solutions.

From there, we derive the multipole expansion of the chameleon field ϕ in the atmosphere-free case and
compare it against that of the Newtonian potential Φ, at a fixed altitude. Upon normalization, this side-by-side
comparison shows that the spherical harmonic coefficients of Φ and ϕ share the same distribution with respect
to the degree ℓ when the Earth is unscreened. In the screened scenario however, we observe, as was anticipated,
the emergence of a distinctive signature in the coefficients’ distribution. In terms of acceleration, the chameleon
acceleration aϕ is a bit more orthoradially-directed than the Newtonian acceleration aN . Their norm ratio
∥aϕ∥/∥aN∥ remains small though, bounded from above by ∼ 10−6 at the equivalent of LEO altitudes.

With the knowledge of the characteristics of this sought ‘chameleonic signature’ at hands, the next logical
question is: can we detect it ? Again, this is a difficult question to answer quantitatively given all the actual
physics involved in a realistic setup. Sticking to our simplified {sphere + mountain} model, we first tackle the
issue related to the influence of the atmosphere on the fifth force. To that end, we implement three different
atmospheric models — tenuous, Earth-like, dense — and reproduce the same analysis as above. Fixing (n, Λ)
and gradually increasing the coupling parameter β underlines the existence of four regimes: (i) for low values
of β, the atmosphere is transparent to the fifth force, (ii) above a certain threshold, it acts as an attenuator,
effectively reducing the chameleon acceleration, (iii) for even stronger couplings, any non-radial dependence
of the scalar field vanishes so that the mountain is plainly invisible, and (iv) the atmosphere itself eventually
becomes screened.

On another note, in practice, the measurement of the Earth gravity from space involves satellites. The
fifth force such extended objects undergo crucially depends on their thin shell parameter, and the point mass
approximation is only valid as long as they are not screened. A whole part of this article is thus dedicated to
the study of the backreaction of a spacecraft on the scalar field. For the first time, we go beyond the various
qualitative screening criteria found in the literature by computing the full solution of the {Earth + satellite}
system. We show that the transition from the unscreened to the screened regime occurs over a very narrow band
in the chameleon parameter space. In the latter regime specifically, the resulting fifth force acting on the satellite
is suppressed extremely efficiently.

We then consider a ‘best-case scenario’ with no atmosphere and follow the trajectory of a satellite — treated
as a point mass — orbiting the {sphere + mountain} system, with and without the putative chameleonic force
field. The orbit propagation code we use features a projection technique to numerically ensure the conservation
of energy, see Appendix E. In particular, we compute the resulting anomaly3 on several observables, most
notably the distance variations between two satellites following each other as in the GRACE-FO setup. The
anomaly levels we find for this idealized model are technically well within the detection range of current
onboard and ground-based space technology, which may come as a surprise at first. Yet, taking into account
model uncertainties allows for degeneracies which greatly lowers this hope. Specifically, it is possible to make
Newtonian gravity mimic the fifth force — at a given altitude — by slightly tweaking the density model of the
{sphere + mountain} system, while reasonably staying within the error bars.

Finally, we study the possibility of breaking this degeneracy by performing such a space geodesy experiment
at two (or more) different altitudes. Suppose that the chameleon field actually exists. Then, the density model of
the Earth inferred from two distinct altitudes, under the assumption of Newtonian gravity, would be inconsistent
with each other. In the final part of the article, we endeavor to quantify such a tension. Given the orders of
magnitude involved and the optimistic model underlying them, our take-home message is that space geodesy is
not likely to result in competitive constraints on the chameleon model in the near future.

5.2 Article

2In the article, this technique is referred to as ‘virtual connection of d.o.f.’.
3The term ‘anomaly’ is used to refer to the difference for a given observable between the {Newtonian gravity} case and the

{Newtonian gravity + fifth force} case.
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Scalar-tensor theories with screening mechanisms come with non-linearities that make it difficult
to study setups of complex geometry without resorting to numerical simulations. In this article, we
use the femtoscope code that we introduced in a previous work in order to compute the fifth force
arising in the chameleon model in the Earth orbit. We go beyond published works by introducing a
departure from spherical symmetry — embodied by a mountain on an otherwise spherical Earth —
as well as by implementing several atmospheric models, and quantify their combined effect on the
chameleon field. Building on the numerical results thus obtained, we address the question of the
detectability of a putative chameleon fifth force by means of space geodesy techniques and, for the
first time, quantitatively assess the back-reaction created by the screening of a satellite itself. We
find that although the fifth force has a supposedly measurable effect on the dynamics of an orbiting
spacecraft, the imprecise knowledge of the mass distribution inside the Earth greatly curtails the
constraining power of such space missions. Finally, we show how this degeneracy can be lifted when
several measurements are performed at different altitudes.

I. Introduction

Scalar fields appear in most of the extensions beyond
the standard models. Theories involving extra dimen-
sions, from Kaluza-Klein theories up to string theories in
the low energy limit, predict the existence of a light spin-
0 particle. Scalar fields are also key ingredients in cos-
mology phenomenology, in particular for the dark sector
and inflation. Coupling the scalar field to matter1 auto-
matically gives rise to a so-called fifth force, resulting in
deviations from general relativity (GR) in gravitational
phenomena. Evading the Solar system tests of GR and
laboratory experiments [79] comes at the price of intro-
ducing non-linearities in the model which enable screen-
ing mechanisms (e.g. Damour-Polyakov [13], chameleon
[40, 41], K-mouflage [5, 11], or Vainshtein [56, 73]).

Although screening mechanisms are precisely designed
to recover GR — and thus in the weak field regime,
Newtonian gravity — at Solar system scales, they leave
nonetheless a small imprint which we can attempt to
measure. Tests can be performed in a very wide range of
length scales, from laboratory experiments [14, 36, 72],
to spacecraft in orbit around the Earth [24, 25, 71] or
traveling through the Solar system [8], planetary mo-
tion [26, 80, 81], and to astrophysical tests [37, 74, 78]
(see Refs. [12, 18] and references therein for a more com-
prehensive review). Here, we are interested in the cate-
gory of space-based experiments, which have long been
expected to provide new constraints in the case of the
chameleon model [41]. Several space missions were suc-
cessfully launched in the past decades: MICROSCOPE
[6, 71] for testing the weak equivalence principle (see
Refs. [61, 62] for how constraints on the chameleon model

∗ hugo.levy@onera.fr
1 From a quantum mechanical perspective, the introduction of a
scalar field in the gravity sector always generate interactions be-
tween this scalar and matter fields [12].

could be derived from those data), Gravity Probe A and
B [28], LAGEOS 1 and 2, LARES 1 and 2 [25].

Beside these space missions specifically tailored for
fundamental physics, artificial satellites have also given
rise to space geodesy. Initially, space geodesy primar-
ily focused on measuring the Earth’s shape and size,
but technological advancements have propelled it into a
realm of unprecedented accuracy and multifaceted ap-
plications. Cutting edge instruments onboard satellites
allow for the implementation of complementary geode-
tic techniques such as laser and Doppler ranging, Global
Navigation Satellite Systems, gravimetry (e.g. GOCE,
CHAMP, GRACE-FO satellite missions), etc. The de-
termination of the Earth’s figure (mass distribution) con-
stitutes an inverse problem: given the data dobs collected
by the various satellite missions and a model describing
the laws of gravitation M with forward map FM, the
goal is to determine the model parameters p such that
the residual dobs − FM(p) is minimized (in some specific
sense, e.g. least-squares or probabilistic approaches). In
space geodesy, this inverse problem is solved with the cen-
tral assumption that the governing equation is Newton’s
law of gravity (and p would represent the distribution of
mass) [52].

The goal of the present article is to assess the perti-
nence of orbitography techniques to test screened scalar-
tensor theories, illustrated with the chameleon model,
and to characterize the best site in the Solar system to
perform such tests. This is a follow-up to our previous
article Ref. [47] where we laid the foundations in terms
of numerical simulations. There, we saw that the uncon-
strained region of the chameleon parameter space (see
Fig. 3 of Ref. [82]) corresponds to a situation where the
Earth is screened, i.e. where the chameleonic force is
sourced only by its outer layers. This mere observation
suggests that the local landform — specifically any local
deviation from spherical symmetry — can leave a sig-
nificant imprint on the chameleon profile. Consequently,
if the chameleon’s effects differ sufficiently from Newto-
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nian gravity, it should leave a distinctive signature on the
Earth’s gravity.

Mountains and craters are typical examples of as-
phericities that can be sensed through space geodesy.
Relative to the size of a planet, a mountain represents
a spiky feature. Several works bring to light the paral-
lel between chameleon (and symmetron) gravity in the
screened regime and electrostatics: the behavior of the
scalar field is roughly the same as the behavior of the elec-
trostatic potential for a perfect conductor2 [38, 57, 64].
Taking the analogy a step further, Ref. [38] mentions the
“lightning rod effect” in electromagnetism, exhibited by
needle-like conductors around which the electric field (∝
gradient of the potential) is enhanced. In the case of the
chameleon, the counterpart of the electric field would be
the fifth force (∝ gradient of the scalar field) — mak-
ing the mountain an interesting case study. Neverthe-
less as Ref. [57] underlines, while this analogy provides
valuable qualitative insights, numerical computations re-
main essential to establish a quantitative connection with
real-world observations and experimental data. In that
respect, we aim to address the long-standing question of
how much an atmosphere smooths out the mountain’s
contribution to the fifth force in space. More gener-
ally, existing work accounting for the atmosphere [34, 39–
41, 53, 76] are, in our opinion, not extensive enough: the
models are not realistic (one layer of constant density)
and conclusions are drawn on qualitative arguments that
can be misleading (see e.g. the introduction of Ref. [43]).
We shall also pay attention to the influence of a space-
craft on the background field, and evaluate how this per-
turbation impacts the overall fifth force that it experi-
ences.

The article is organized as follows. In Sec. II, we
briefly recall the main equations describing both New-
tonian and chameleon gravity, and give precise meaning
to physical models outlined above, namely the model-
ing of the mountainous planet together with its atmo-
sphere. In this setup, the total gravitational potential
is computed numerically using femtoscope, a code that
was specifically designed to solve these equations with
asymptotic boundary conditions [47]. It allows for the
computation of both the Newtonian potential and the
chameleon field in space. The numerical results are pre-
sented and discussed in Sec. III. We explore a vast region
of the chameleon parameter space and ascertain the in-
fluence of an atmosphere in several scenarios, making this
a quite comprehensive study compared to what has been
done in previous work. Finally, Sec. IV takes us back to
space geodesy as we compare the dynamics of a space-
craft with and without a fifth force acting on it as it orbits

2 Indeed, it can be shown that the equation of motion of the
chameleon field in the quasi-static Newtonian limit with thin-
shell can be well-approximated by the electrostatic potential
equation. Then, same differential equations lead to same so-
lutions.

the mountainous planet. We address the issue of being
able to discriminate between the two in the presence of
model uncertainties, and further suggest ways to break
this source of degeneracy. These analyses pave the way
to the design of orbitography experiments in the Solar
system and their subtle interpretation. We conclude in
Sec. V.

II. Model & Numerical techniques

A. General equations

1. Newtonian gravity

It is well known that, in the weak-field regime and
when the sources are moving very slowly compared to the
speed of light, GR reduces to Newtonian gravity which is
described by the Newtonian potential Φ with dimension
[L2 · T−2]. For a static configuration, we define it as

Φ(x) = −G
∫

R3

ρ(x′)
∥x− x′∥ d

3x′ , (1)

where G is the Newtonian gravitational constant and
ρ = ρ(x) is the matter density function which depends
on position x. Assuming that the weak equivalence prin-
ciple holds perfectly (Ref. [71] shows that it holds at
less than 10−15) and from a classical mechanics perspec-
tive, the gravitational acceleration undergone by a point-
like particle is simply aΦ = −∇Φ. Eq. (1) provides a
straightforward way of computing the Newtonian poten-
tial by evaluating some three-dimensional integral (see
e.g. Ref. [31]). However, it may be more convenient
from a numerical standpoint to solve the following Pois-
son’s equation

∆Φ = 4πGρ , (2)

implied by the definition of Φ. Indeed, on the one hand
one has to evaluate the integral appearing in Eq. (1) for
each point x where the Newtonian potential is sought,
whereas on the other hand solving the partial differential
equation (PDE) (2) provides an approximation of Φ over
the whole numerical domain.
Assuming that the mass density vanishes as one moves

away from the source of gravity, the gravitational acceler-
ation aΦ = −∇Φ is expected to decay to zero at infinity.
The essential boundary condition is therefore defined at
infinity and a very common choice for the constant of
integration is

Φ(x) −→
∥x∥→+∞

0 . (3)

2. Chameleon gravity

In the Newtonian limit, the chameleon field ϕ is gov-
erned by a nonlinear Klein-Gordon equation which takes
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FIG. 1. Mapping from the chameleon parameter space in the
plane n = 1 to the dimensionless parameter α appearing in
Eq. (7), where M = MPl/β. The gray lines represent the iso-
values of the α parameter covered in this study, ranging from
10−5 to 10−28. The orange horizontal dashed line corresponds
to Λ = ΛDE = 2.4× 10−3 eV, the dark energy scale.

the form

∆ϕ =
dVeff
dϕ

=
β

MPl
ρ− nΛn+4

ϕn+1
, (4)

where MPl ≡ 1/
√
8πG is the reduced Planck mass and

Veff is the so-called effective potential of the scalar field.
The model further has three parameters — β a positive
dimensionless constant which encodes the coupling of the
scalar field to matter, Λ a mass scale and n a natural
number. The 3-acceleration experienced by a point-like
particle induced by its coupling to the chameleon field is
proportional to the gradient of the scalar field and takes
the form

aϕ = − β

MPl
∇ϕ . (5)

If we assume that the density uniformly decays to some
vacuum density ρvac far away from the source, then the
chameleonic acceleration is expected to decay to zero at
infinity, just as in the Newtonian gravity case discussed
above. Equating the r.h.s. of Eq. (4) to zero and solving
for ϕ yields the following asymptotic boundary condition:

ϕ(x) −→
∥x∥→+∞

(
MPl

nΛn+4

βρvac

) 1
n+1

≡ ϕvac . (6)

In Ref. [47], we introduced femtoscope — a python
numerical tool based on the finite element method which
enables us to solve Eq. (4) on spatially unbounded do-
mains. We perform the same nondimensionalization as in

Refs. [16, 47] by introducing (i) ρ0 a characteristic den-
sity of the problem, (ii) ϕ0 ≡ (nMPlΛ

n+4/βρ0)
1/(n+1)

the expectation value of the chameleon field in an am-
bient medium of density ρ0 and (iii) L0 a characteristic
length scale of the system under study. Denoting the
new dimensionless quantities with a tilde, trivial algebra
leads to

α∆̃ϕ̃ = ρ̃− ϕ̃−(n+1) ,

with α ≡
(

MPlΛ

βL2
0ρ0

)(
nMPlΛ

3

βρ0

)1/(n+1)

.
(7)

The mapping (β,Λ) 7→ α for n = 1 is illustrated in Fig. 1.
Note that Eq. (7) now only depends on two parameters,
α and n, instead of the three initial ones, which allows for
a more efficient numerical exploration of the chameleon
parameter space3. The chameleonic acceleration (5) then
scales as

aϕ ∝ Λ
n+4
n+1 β

n
n+1 ∇̃ϕ̃ . (8)

We denote a0 the multiplicative constant appearing in
front of the dimensionless gradient, which reads

a0 [m/s
2] = (Λ [eV]× e [J/eV])

n+4
n+1

β
n

n+1

MPlL0

[
nMPl

ρ0(ℏc)3

] 1
n+1

.
(9)

In Eq. (9), physical quantities are expressed in SI units
unless specified using square brackets and e ∼ 1.6022 ×
10−19 J/eV is the conversion factor from electron-volts
to joules. As a rule of thumb, the smaller α, the more
screened the setup. All physical results issued in this
article are evaluated with L0 = R⊕ = 6371 km (the Earth
radius) and ρ0 = 1kg/m3.
The Newtonian potential and the chameleon field do

not have the same physical dimension. In order to be
able to compare these two quantities, we define a new
field

Ψ =
β

MPl
ϕ (10)

which can be expressed in m2/s2. We refer to Ψ as
the chameleon potential since it plays the same role as
Φ. The total gravitational acceleration undergone by a
point-like particle will simply be −∇(Φ + Ψ). Further-
more, the term ‘fifth-force’ will be used loosely through-
out this article. Most occurrences of it should be taken as
a synonym for ‘chameleon acceleration’, i.e. a quantity
homogeneous to an acceleration and not a force per say.
Finally, we will often refer to the ‘screened regime’ or to
the ‘thin-shell of a body’ in this article. These notions

3 Naturally, the mapping (β,Λ, n) 7→ (α, n) described above is not
bijective.
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can be given precise meanings now that we have intro-
duced the main notations. A macroscopic body is said to
be screened when the chameleon field reaches the value
that minimizes its effective potential Veff deep inside the
body. In that case, the field remains essentially frozen in
that body except in a (usually) thin surface layer, which
is referred to as the thin-shell.

B. Physical models

1. Mountains

At first order and seen from afar, planetary-mass ob-
jects have a rounded, ellipsoidal shape due to their self-
gravity and rotation. It is only when we take a closer look
at such bodies in the Solar System that smaller, more
complex features become visible: mountains, ridges,
craters, volcanoes, etc. This rich variety of topographies
results in perturbations (with respect to the spherically
symmetric case) in the gravitational field which, in the
case of the Earth, can be measured by geodetic satel-
lites. With a view to understand how 5th-forces affect
Newtonian gravity in the vicinity of these topographical
features, it is desirable to first work with a simple toy-
model. We thus consider a spherical body together with
a single, axisymmetric mountain on top of it as depicted
in Fig. 2. It is mainly described by two dimensionless
parameters:

– hm, the height of the mountain divided by the ra-
dius Rbody of the spherical body (which is unitary
on Fig. 2);

– θm, the mountain’s half-angle.

Note that these two parameters are deliberately exagger-
ated on Fig. 2 for better visualization, and are clearly
not representative of any realistic mountain in the Solar
system — see Table I. All numerical computations pre-
sented in this article were performed with hm = 10−2

and θm = 10−2 rad comparatively. The resulting setup
is itself axisymmetric which means FEM computations
can be performed in two dimensions rather than three,
greatly reducing computational complexity.

For the model to be complete, we further need to spec-
ify the density function ρ(x) inside and outside the body.
For the sake of simplicity, we assign a constant density
to the body ρbody. The body may or may not be sur-
rounded by an atmosphere. In either case, the density
outside the body depends solely on the radial distance
from the center r and always goes down to a constant
vacuum value ρvac. For all FEM computations, we set

ρ̃body =
ρbody
ρ0

= 103 and ρ̃vac =
ρvac
ρ0

= 10−15 .

Additionally, we will work most of the time with the di-
mensionless variable r̃ = r/L0, and set L0 = Rbody. The

FIG. 2. Mountain visualization and notations. The Cartesian
frame (O, x, y, z) is centered at the geometric center of the
sphere devoid of mountain. The actual mountain profile used
in numerical computations is drawn using B-splines in polar
coordinates so as to form a smooth manifold.

various fields involved in this study (chameleon poten-
tial, Newtonian potential, together with their gradient)
will be probed at fixed discrete values of r̃ for the sake
of consistency. We made the choice to show results for
r̃ ∈ {1.059, 1.111, 1.314, 4.645, 6.617}, which for the case
of the Earth corresponds roughly to peculiar orbits: the
International Space Station, MICROSCOPE, a Medium
Earth orbit, Galileo and geostationary satellites, respec-
tively.

2. Atmospheres

Some Solar system bodies are surrounded by an atmo-
spheric layer — a gas envelop held in place by the grav-
ity of the body. This slight over-density with respect to
the case with no-atmosphere is expected to have an in-
fluence on the chameleon field profile and, therefore, on
the 5th-force in space [40, 41, 53]. However, works that
take account of the atmosphere often model it as an ad-
ditional shell of matter with constant density satisfying
ρbody > ρatm > ρvac, or at best as a constant piecewise
function [34, 39, 40, 53, 76]. It is actually difficult to be
more precise than this using analytical techniques only.
Here, we go a step further by taking advantage of femto-
scope to analyze the chameleon field profile in more real-
istic atmospheric setups. To avoid confusion, the require-
ment that the atmosphere must have a thin-shell stipu-
lated in Ref. [40] only holds in the case of non-universal
coupling, wherein unacceptably large violations of the
weak equivalence principle would be observed in ground
based experiments. Here, we work on the assumption
of a universal coupling (characterized by a single dimen-
sionless constant β) and so there is no particular reason
for imposing this condition4.

4 The fact remains that, even in the case of a universal coupling,
deviations from the inverse square law can be suppressed by the
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TABLE I. List of some peculiar mountains in the Solar systema.

Site Body density [kg/m3]
Atmosphere height (base to peak)

θm [rad]
density [kg/m3] thickness [km] [km] hm

Earth
Mount Everest

2.6× 103

(Earth crust)
1.2 (sea level) ∼ 100 4.6 7.2× 10−4 ∼ 10−3

Earth
Mauna Kea

2.6× 103

(Earth crust)
1.2 (sea level) ∼ 100 10.2 1.6× 10−3 ∼ 10−2

Mars
Mons Olympus

2582
(Mars crust)

2× 10−2 (max.) ∼ 10 21.9 6.5× 10−3 ∼ 9× 10−2

Moon
Mons Huygens

2550
(Moon crust)

no atmosphere 5.5 3.2× 10−3 ∼ 6× 10−2

Io
Boösaule Montes

3500
(mean density)

< 10−6 — 18.2 10−2 ∼ 1.5× 10−2

Vesta
Rheasilvia central peak

2800
(crust estimate)

no atmosphere 25 10−2 ∼ 0.4

a Mainly based on https://en.wikipedia.org/wiki/List_of_tallest_mountains_in_the_Solar_System, last visited: August 22th, 2023

Three atmospheric density profiles are considered in
this study: Earth-like, Tenuous and Dense. The Earth-
like model is built from the 1976 version of the U.S.
Standard Atmosphere model [1], commonly known as the
US76 model5. It provides an estimate of the Earth at-
mospheric density ρUS as a continuous function of the
altitude, up to Ratm ∼ 36 × 103 km. Because we want
the minimum dimensionless density in the numerical do-
main to be exactly ρ̃vac = 10−15, we apply the following
transformation on the original data:

log ρ̃Earth-like = log ρ̃US + k
[
log ρ̃US − log(min ρ̃US)

]

with k =
log(ρ̃US/ρ̃vac)

log(max ρ̃US/min ρ̃US)

for r < Ratm, which is nothing but an affine transfor-
mation on the logarithmic densities. Beyond Ratm, we
set ρ̃Earth-like = ρ̃vac. The other two models — Tenuous
and Dense — are purely empirical in the sense that they
are not based on actual atmospheric data. Both are con-
structed via the expression

log ρ̃(r) =




A exp

[
(r −Ratm)

2

σ2

]
+B if r < Ratm

log ρ̃vac otherwise
,

where the parameters (A,B, σ) are adjusted by hand to
obtain either a very tenuous, thin atmosphere or a very
dense, thick one instead. The resulting density profiles
are depicted in Fig. 3.

atmosphere.
5 Data downloaded from http://www.braeunig.us/space/atmos.

htm, (especially for the density between 1000 km - 36000 km al-
titude). Last visited: June 1st, 2022.

FIG. 3. Atmospheric profiles investigated in this study.

C. Decomposition of scalar fields into spherical
harmonics

In geophysics and physical geodesy, the Earth grav-
itational potential is conveniently modeled as a spheri-
cal harmonics expansion [59]. Any well-behaved function
f : R3 → R may be decomposed as

f(r,n) =
+∞∑

l=0

+l∑

m=−l

flm(r)Ylm(n) , (11)

where r, n = (θ, φ) refer to spherical coordinates, Ylm is
the real spherical harmonic function of degree l and order
m (see Ref. [77] for its definition), and flm are the spher-
ical harmonic coefficients that only depend on the radial
coordinate — they are referred to as the bare coefficients
in this article. There are several normalization conven-
tions for an unequivocal definition of spherical harmonic
functions. In this study, we stick to the orthonormalized

5.2. Article 143



6

TABLE II. Notations for the spherical harmonic coefficients.

Bare coefficients Rescaled coefficients

Newtonian potential Φlm(r) yN
lm

Chameleon potential Ψlm(r) yC
lm(r)

convention for which
∫

S2

Ylm(n)Yl′m′(n) d2Ω = δll′ δmm′ , (12)

where S2 is the unit 2-sphere, dΩ is the differential sur-
face sin(θ)dθdφ and δij is the Kronecker delta function.
The notations used to refer to the spherical harmonic co-
efficients of the Newtonian potential Φ and the chameleon
potential Ψ are gathered in Table II.

1. Rescaled coefficients

The bare spherical harmonic coefficients of the Newto-
nian potential Φlm further exhibit a scaling property. Let
us denote by µbody ≡ GMbody the standard gravitational
parameter of the central body of mean radius Rbody and
mass Mbody. Then, the rescaled coefficients

yNlm =
r

µbody

(
r

Rbody

)l

Φlm(r) (13)

can be shown to be independent of r [7],6 owing to
the specific form of the Newtonian potential (1). Such
rescaled coefficients are thus universal to the body un-
der consideration. Similarly to Eq. (13), we denote by
yClm(r) the rescaled coefficients of the chameleon poten-
tial which, for their part, have no particular reason to be
independent of the radial distance. In that sense, Ref. [7]
shows the explicit dependence of such coefficients with
respect to r in the case of a Yukawa interaction.

This relation can also serve as a means of checking the
numerical results obtained for the Newtonian potential.
This test is performed in Appendix B.

2. Recovery of the coefficients

We use the software SHTools [77] to compute the
spherical harmonic coefficients of the scalar fields of in-
terest. The Python package pyshtools comes with the
routine SHGrid.expand which calculates the coefficients

6 The numerical values of µbody and Rbody could in theory be
chosen arbitrarily. However the numerical values of the rescaled
coefficients are tied to this choice.

by means of some numerical quadrature7. The only de-
tail worth mentioning is the fact that this routine out-
puts separate variables for the cosine Clm and sine Slm

coefficients (sometimes referred to as the Stokes coeffi-
cients). The conversion from (Clm, Slm) to bare coeffi-
cients is outlined in Appendix A — Eq. (A5).

D. Numerical techniques

1. Using femtoscope to solve linear and nonlinear PDEs
with asymptotic boundary conditions

As mentioned earlier, femtoscope is a ready-to-use
Python program which plays a central role in this study
as it enables us to compute both the Newtonian poten-
tial and the chameleon field by solving Eqs. (2) and (4)
respectively. It is based on the finite element method —
building on top of the open-source package Sfepy [23] —
and further implements techniques to deal with nonlin-
earities and asymptotic boundary conditions (3, 6).
The proper treatment of these asymptotic boundary

conditions is of noticeable importance in this study. In-
deed, it is tempting to simply truncate the numerical do-
main at a fixed radius and apply a homogeneous Dirichlet
boundary condition on the artificial border resulting from
that process. This procedure has several flaws:

1. For the error that arise therefrom to be small, the
domain must be sufficiently large, which translates
to higher computational cost.

2. Selecting the size of that domain is a blind exper-
iment in the sense that the dependence of the er-
ror on the truncation radius is not easily accessible
without additional tricks.

3. It wantonly imposes spherical symmetry on the so-
lution as we approach the artificial boundary. This
is particularly undesirable in this study where we
are interested in the small deviations from spher-
ical symmetry introduced by the presence of the
mountain.

This latter point is illustrated on Fig. 4 where it can
be seen that, as we approach the artificial boundary, the
truncation method (labeled ‘FEM bounded’, dash-dotted
pink line) exhibits a poor approximation.
Instead, we employ a technique based on the split-

ting of the numerical domain Ω into two subdomains
Ωint and Ωext such that Ω̄ = Ω̄int ∪ Ω̄ext. Ωint is the
bounded, interior domain, while Ωext is the unbounded,
exterior domain. An inversion transform is then applied
to Ωext, resulting in a bounded domain Ω̃ext (called the
inversed exterior domain) which can be meshed on a

7 In this study, we use a N× 2N Driscoll and Healy sampled grid.
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FIG. 4. Orthoradial profiles of the dimensionless Newto-
nian potential δΦ̃ sourced by the mountain at three differ-
ent altitudes, corresponding to r̃1 = 1.059, r̃2 = 4.645, and
r̃3 = 6.617 (top, middle and bottom panels respectively).
The black dots together with their error bar represent the
benchmark solution, obtained through the computation of
the integral Eq. (1) with scipy’s tplquad routine. The pink
dash-dotted line is obtained by solving Poisson’s equation (2)
with an homogeneous Dirichlet boundary condition applied
at r̃ = R̃c = 7 while the green solid line is the solution pro-
vided by femtoscope with asymptotic boundary condition. Fi-
nally, the gray dash-dotted line is an analytical approxima-
tion where the mountain is replaced by a point-mass, whose
location and mass were fitted to provide a good match with
respect to the benchmark: mmountain/Mbody = 2.23 × 10−7

and z/Rbody = 2.22× 10−3.

computer. There are many possible numerical implemen-
tations based on this method, see e.g. Refs. [10, 55, 58].
In this study, we make use of the so-called virtual con-
nection of DOFs described in our previous work [47].

2. Numerical challenges and verification

There are several inconspicuous challenges associated
with the numerical computation of the field profiles in the
setup described in Sec. II B. To start with, let us stress
the fact that we are looking for small deviations from
spherical symmetry, owing to the presence of a very local-
ized over-density at the pole that we here call a mountain.
Quantitatively speaking, a back-of-the-envelope calcula-
tion shows that — at a fixed altitude h — the rela-
tive variation of the Newtonian potential Φ(Rbody+h, θ)
along the latitudes with respect to its mean value at this
altitude is no larger than a few 10−6. The higher we
go, the smaller this ratio, which means our numerical
approximations have to be correct up to at least seven
significant digits to be deemed good. This mere order-of-
magnitude calculation raises an additional concern: how
do we actually check that the numerical approximations
we obtain are compliant with the required levels of pre-
cision?

The Poisson’s equation (2) governing the Newtonian
potential being linear, it is possible to apply the su-
perposition principle, where the total field is simply the
mountain’s contribution on top of a spherically symmet-
ric background: Φtot(r, θ) = δΦ(r, θ) + Φ0(r). Turning
to the chameleon field, the nonlinearity in the r.h.s. of
the Klein-Gordon equation (4) prevents us from follow-
ing the same path. Even if one were to decompose the
chameleon field as ϕtot(r, θ) = δϕ(r, θ) + ϕ0(r), the term
(ϕ0 + δϕ)−(n+1) becomes linearizable only under the as-
sumption that δϕ ≪ ϕ0 everywhere. Unfortunately, this
assumption has no reason to hold in all scenarios, owing
to the very nature of the screening mechanism. Indeed,
it is far from being valid in the case where the moun-
tain itself becomes screened, which turns out to be the
most interesting case given the current constraints on the
chameleon field [82]. For lack of a better workaround, we
abandoned perturbation-based techniques and put our
efforts into solving for the full field. It is therefore neces-
sary to compare the FEM approximation obtained with
femtoscope against some benchmark. Failing to have
an analytical solution for the Newtonian potential of a
mountain, we can still resort to the numerical integra-
tion of Eq. (1). In this respect, we use scipy’s tplquad
routine [75] to evaluate the integral with an estimated
relative error of a few 10−9. This semi-analytical ap-
proach constitutes our benchmark and is depicted by the
black dots together with their error bar in Fig. 4. Note
that while it takes only a few seconds to evaluate the
potential at a single point with this method, it is not
conceivable to construct a full map of the field in this
way. Rather, this semi-analytical computation should be
employed sparingly to assess the error of the FEM com-
putations.

In contrast, the chameleon field does not enjoy a simi-
lar integral representation which in turns means that we
cannot easily define a benchmark profile. Nonetheless,
we came up with the following strategies:
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FIG. 5. Evolution of the dimensionless chameleon profile
ϕ̃ (top) and the associated residual (bottom) after different
numbers of iterations of Newton’s method (2, 30 and 120).
These two quantities are displayed as a function of θ at fixed
altitude r̃ = 1.059. The residual becomes stationary and thus
no longer decreases after a sufficient number of iterations has
been reached.

– Select the set of FEM-related parameters (num-
ber and distribution of DOFs, order of the base
functions, etc.) so that the FEM-approximation of
the Newtonian potential matches the benchmark
and use those parameters for the FEM computa-
tion of the chameleon field. The light green curves
on Fig. 4 correspond to such FEM-approximations
(using the aforementioned ‘virtual connection of
DOFs’ method) and show that it is indeed possible
to reach a high level of accuracy as they stay within
the error bars of the benchmarks.

– It is also good practice to refer to pre-established
FEM convergence curves, which are simple charts
relating the error to the number of DOFs — see
e.g. Fig. 1 of Ref. [46]. We can then construct our
meshes in an enlightened way, ensuring they are
fine enough to meet the stated accuracy.

– Evaluate the strong residual, which can be done by
inputting the FEM approximation obtained for the

chameleon field into its equation of motion (7) —

schematically: Residual = α∆̃ϕ̃− ρ̃+ ϕ̃−(n+1). The
closer the quantity is to zero, the better the numer-
ical approximation. In order to make this criterion
more quantitative, we can monitor (i) the strong
residual’s decrease throughout the Newton’s itera-
tions (see Fig. 5) and especially how small the final
residual is compared to the initial one, and (ii) its
size relative to the size of each term in it: the final
residual should be at least a few orders of magni-
tude smaller than the dominant terms. This crite-
rion is assessed on all 2D numerical computations
of the chameleon field discussed in this article. As
an example, Fig. 17 in Appendix C demonstrates
that this criterion is indeed met on three distinct
numerical solutions, at three altitudes.

Yet, formulating criteria based on the strong residual
alone is not entirely satisfactory as it is an absolute quan-
tity. Consequently, there is a priori no simple connection
between the relative error committed on the approxima-
tion and the strong residual, since the latter quantity is
dependent on the PDE’s parameters (value of α8, den-
sity model, etc.). Computing a reduction factor, that
is by how much the strong residual has decreased over
the Newton’s iterations, is not sufficient either as it de-
pends on how well the initial guess has been chosen (see
discussion in the next paragraph). One idea to break
this deadlock is to compare our numerical approxima-
tions with the chameleon radial profile around a ball.
Indeed, the spherically symmetric case is much more un-
der control as we have analytical approximations at our
disposal (see e.g. Refs. [40, 63]) and the Klein-Gordon
equation boils down to a one-dimensional ordinary differ-
ential equation (ODE) which can be solved numerically
with a much higher density of DOFs and higher-order
finite elements. In terms of residual, the numerical so-
lutions are actually better than their analytical counter-
parts (see e.g. Tab. II from Ref. [47]), which is why we
propose to use 1D numerical solutions as a benchmark for
the spherically symmetric case. Because the addition of
a mountain on top of the spherical planet is not expected
to have a huge impact on the field’s strength outside it,
we can check that the evolution of the field along the out-
going radial direction follows that of the benchmark. We
provide a quantitative way of assessing that statement in
Appendix C, which is applied for all the numerical so-
lutions discussed in this article. Finally, the orthoradial
variations of the field at fixed altitudes seems more dif-
ficult to verify. As a rough check, we can set hm = 0
and verify that this leads to ∂θϕ ≡ 0. In practice, we
do not expect this equality to hold exactly so we rather
make sure that the amplitude maxθ ϕ(r, θ)−minθ ϕ(r, θ)

8 In particular, we observed in Ref. [47] that the 2-norm of the
strong residual was increasing with α, all other things being
equal.
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is much smaller in the case hm = 0 compared to the
case hm = 0.01. Doing this sanity check on a handful of
cases (doing it on all cases would have been too costly)
consistently shows that the two quantities differ by at
least two orders of magnitude, so that we can confidently
state that the orthoradial profiles showed later on do not
originate from numerical noise.

Ultimately, the most critical point in this FEM com-
putation is the convergence of the Newton’s iterations.
Whether or not the method converges depends on a lot
of factors. Unfortunately, there are no miracle techniques
to address convergence issues but rather recipes and good
practices which we concisely report here. Perhaps the
most important one is to start from a good initial guess,
i.e. an initial approximation that is as close as possible to
the true solution. In most cases, we use a pre-computed
1D radial profile of the field to this end. Other common
practices are to refine the meshes where the field is ex-
pected to vary quickly (large gradient) — that is near the
transition between the inside and the outside of the body,
and near the area representing spatial infinity in the in-
versed exterior domain Ω̃ext — or to tweak the relaxation
parameter [45]. Additionally in the particular case of the
chameleon field entering the so-called screened regime,
we can get rid of the region of the mesh r < Rscreened

where the field is screened (i.e. constant) and apply a
Dirichlet boundary condition at r = Rscreened. When all
the above failed, we resorted to so-called ramping [29, 30]
or numerical continuation methods [3, 45]. For example
in some cases, we would gradually vary the α parameter
from Eq. (7) from a value where the solution is known to
the desired value which is problematic convergence-wise,
using the solution at each intermediate step as an initial
guess of the next one. In spite of all these additional
tricks, some combinations of {α, atmosphere model} re-
sisted all our attempts and were thus discarded from this
study. As a closing remark, let us emphasize the fact that
we made use of many widely spread techniques in the lit-
erature for nonlinear FEM problems (see e.g. Ref. [45]
chapter 4), both for implementation and verification pur-
poses. While we are unable to quantify the relative error
made on each solution obtained in this study, we grant
them a sufficiently high level of confidence that the or-
ders of magnitude discussed hereafter are correct, leaving
the physical conclusions unchanged.

In total, we ran FEM computations for four different
density profiles outside the main body — the constant
vacuum value ρ̃vac = 10−15 as well as the three atmo-
spheric models depicted in Fig. 3 — and for log10 α ∈
{−5, . . . ,−28}. This amounts to nearly a hundred prob-
lems to solve on meshes with roughly 106 P2-triangles.
The computations were performed on an ONERA’s com-
puting platform equipped with Broadwell and Cascade
Lake nodes.

III. Modified gravity around and above a mountain

In this section, we present and analyze simulations re-
sults. We start off with the atmosphere-free case before
discussing the influence of each atmospheric models. Due
to the parameters’ degeneracy mentioned in Sec. II A 2,
we decided to fix Λ = ΛDE for all numerical results and
figures presented in the following. One can refer to Fig. 1
to get a better grasp of the (β,Λ, n) 7→ (α, n) mapping.

A. Simulation of an atmosphere-free planet

1. Gravitational potential profiles and spherical harmonics
decomposition

The total gravitational potential is the sum of the New-
tonian potential Φ and the chameleon potential Ψ as de-
fined in Sec. IIA. These are the direct results of FEM
computations, i.e. femtoscope’s outputs. As this raw
data can sometimes be noisy, we had recourse to smooth-
ing splines notably for post-process operations requiring
the evaluation of the fields outside mesh data points like
the computation of spherical harmonic coefficients using
SHTools [77]. Note that the azimuthal symmetry of our
setup imposes that the only nonzero coefficients are the
ones for which the order m is equal to zero.
In Fig. 6, we represent the potential profiles as a func-

tion of the colatitude θ — the radial coordinate be-
ing fixed at r̃ = 1.059 — (left column) and their as-
sociated spherical harmonic coefficients for degrees l ∈
{1, · · · , 100} (right column). The top row corresponds
to the specific case of the Newtonian potential while
the following four rows correspond to chameleon poten-
tials for log10 α ∈ {−4,−6,−15,−25} respectively. The
Newtonian potential Φ is by far the largest contribution
to the total potential: roughly −107 m2/s2 compared to
0.2m2/s2 for the chameleon potential in the α = 10−25

case (last row of the same figure). The variation of the
potential with respect to θ around this mean value has
the same kind of shape where both ends of the curves
have a slope that goes down to zero for symmetry rea-
sons. Note that the potential is always smaller at θ = 0
than at θ = π. This is because the mass excess that the
mountain represents is located at θ = 0, forming a deeper
potential well.

While all four potential profiles share this apparently
common trend, the spherical harmonic coefficients dis-
played on the right column reveal important differences
and two types of spectrum emerge. On the one hand,
the Newtonian potential and the chameleon potential for
α = 10−4 have a similar, monotonically decreasing spec-
trum. This is due to the fact that here, the chameleon
field is unscreened which means that all the mass of the
main body contributes to the field just like in the New-
tonian case. On the other hand, as soon as α < 10−5,
the chameleon field enters the screened regime, changing
the shape of the spectra. We recall that the smaller α,
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the more screened the setup. These spectra all have a
maximum for l > 1. This distinctive feature of screened
chameleon potentials, which could not be seen by eye on
the left-hand-side curves, is nevertheless small in front of
the Newtonian potential’s coefficients Φl0.

As α decreases, the chameleon potential mean value
increases. Indeed, we have Ψ = Kϕ̃ where K ∝
α−(n+1)/(n+2) at fixed Λ. As a result, the spherical har-
monic coefficients also get amplified as α decreases, lead-
ing to a more disturbed gravitational potential.

Fig. 18 in Appendix D further shows how the spec-
tra evolve as the altitude is increased for the Newtonian
potential and the chameleon potential (α = 10−25).

2. Newtonian gravity and fifth-forces

Once the gravitational potential is known, the actual
gravitational acceleration is easily derived by computing
its gradient. It is convenient to decompose the acceler-
ation vector a onto the unit vectors (er, eθ) (there is no
component of the acceleration on eφ due to rotational
invariance) such that

a = arer + aθeθ .

In practice, the dimensionless gradient is computed nu-
merically and then multiplied by the relevant coefficient
a0 with units m/s2 — see Eq. (9). Fig. 7 gives an
overview of both Newtonian acceleration (top panel) and
fifth-forces for log10 α ∈ {−15,−27,−28}. Specifically,
we represent the component ar (purple curve) and aθ
(crimson curve) as a function of θ while the altitude is
held fixed at r̃ = 1.059.

An important point to discuss here is the limit α →
0. On the one hand, we have seen that for chameleon
gravity, a0 is proportional to α−(n+1)/(n+2) at fixed Λ,
and consequently

a0 −→
α→0+

+∞ with constraint Λ = ΛDE .

This gives the impression that one can make the fifth-
force as large as desired simply by taking an ever-
decreasing value of α. On the other hand, we know that
in the limit α = 0, the chameleon field profile is trivially
given by ϕ̃ = ρ̃−1/(n+1) (take α = 0 in Eq. 7). Yet for
altitudes higher than the mountain’s height, our models
are such that ∂θρ̃ ≡ 0 so that ãθ is expected to vanish
for sufficiently small values of α. In front of this apparent
paradox, we raise two points:

1. Taking the limit α → 0 at fixed Λ coerces β →
+∞. Yet, a glimpse at the chameleon constraints
plot (see e.g. Fig 3 from Ref. [18]) reveals that
chameleon models with β > 1014 are ruled-out by
precision atomic tests. In our case, this corresponds
to α < 10−37, which is out of the range of α values
covered in this study.

argmax
α

value

ãr 10−24 1.47× 108

ar 10−25 1.46× 10−7 [m/s2]

ãθ 10−25 1.09× 106

aθ 10−25 1.40× 10−9 [m/s2]

∥ã∥ 10−24 4.58× 109

∥a∥ 10−25 4.50× 10−6 [m/s2]

TABLE III. Assessment of the maximum fifth-force at r̃ =
1.059

2. Another argument that does not involve referring
to current chameleon constraints can be made on
the basis of Figs. 7 and 8. On Fig. 8, we decompose
aθ into the product a0(α) times ãθ = ∂θϕ̃/r̃. The
two terms of this product both depend on α: while
a0 is simply a power law of α, ãθ clearly exhibits
the phenomenon aforementioned, namely that the
dimensionless gradient — after reaching a peak for
α = 10−25 — vanishes for α < 10−28. When mul-
tiplied together, these two quantities result in aθ
which is scattered in log-scale on the bottom panel
of this figure. We recognize the power law behavior
aθ ∝ α−n/(n+2) in the range [10−10, 10−21] where ãθ
is roughly constant, followed by a sharp decline due
to the vanishing of ãθ. This explains why on Fig. 7,
the transition from α = 10−27 to α = 10−28 com-
pletely destroys ∇Ψ. There only remains numeri-
cal noise, whose amplitude has no genuine physical
meaning.

We also conducted the same analysis as performed in
Fig. 8 for the radial component of the acceleration vec-
tor as well as for its norm (still for r̃ = 1.059). The re-
sults are reported in Table III. In terms of dimensionless
quantities, the orthoradial component ãθ is maximum for
α = 10−25 while the radial component and the norm of
the gradient are both maximized for α = 10−25. When
these quantities are expressed in units homogeneous to
an acceleration (m/s2), α = 10−25 is again the argument
that maximizes them all. This corresponds to the tradi-
tional parameters (β,Λ, n) ∼ (106,ΛDE, 1)
Besides, we can discuss the direction of the acceleration

vector by computing the ratio aθ/ar for both Newtonian
and chameleon gravity. We conclude that the Newtonian
part of the total acceleration vector is very radial, with
maxθ (aθ/ar) ≤ 3×10−5, whereas the chameleon acceler-
ation has a more significant orthoradial component since
maxθ (aθ/ar) ≤ 10−2 for log10 α = −25. The physical
interpretation for this discrepancy is that in the screened
regime, the chameleon acceleration is sourced only by a
thin outer layer of the planet which is commonly referred
to as the thin-shell [40].
Finally, one may be surprised by the fact that maxi-

mum fifth forces are obtained for values of the param-
eters (β,Λ, n) which belong to the thin-shell regime; as
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FIG. 6. Newtonian and chameleon potential profiles (left column) together with their spherical harmonic coefficients up to
degree 100 (right column) computed at r̃ = 1.059. The top row corresponds to the Newtonian case while the four remaining
rows are associated with chameleon potentials with log10 α ∈ {−4,−6,−15,−25} from top to bottom. The monopole (Φ00,
Ψ00) is deliberately excluded from the bar graphs because it is only dependent on the field’s mean value. All quantities are
expressed in m2/s2.
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FIG. 7. Gravitational field a = arer + aθeθ in Newtonian
gravity (top) and in the chameleon model for the set of pa-
rameters {α ∈ {10−15, 10−27, 10−28}, n = 1,Λ = ΛDE} at
r̃ = 1.059. The orthoradial acceleration aθ is depicted by the
red curve (left axis) while the radial acceleration ar is de-
picted by the purple curve (right axis).

this appears to contradict the usual rule of thumb that
fifth forces should be suppressed in this regime. There is
actually no contradiction, provided we clearly define the
context. Indeed, the total fifth force acting on a given
macroscopic body can be computed via the integration
of the gradient of the field on its whole volume — as
done later in Sec. IVA2 for instance. It is true that, if

FIG. 8. Study of the chameleon orthoradial acceleration
aθ = a0 × ãθ with respect to α at fixed Λ and fixed alti-
tude r̃ = 1.059. The top panel features each term separately,
ãθ in magenta dots (dimensionless) and a0 as the blue curve
(in m/s2). The bottom panel is simply the product of these
two terms aθ (in m/s2). Finally, the red vertical dotted lines
correspond to values of α for which the FEM computation
was deemed unsatisfactory (failure of Newton’s method to
converge or unacceptably large residuals).

the macroscopic object at stake has a thin-shell, the inte-
gral of the gradient of the field vanishes everywhere but
in that thin-shell, greatly reducing the overall fifth force
experienced by that body. Here however, the situation
is radically different: we are interested in the fifth force
experienced by a point-mass (which by essence, cannot
possess a thin-shell) sourced by a mountainous planet.
In this framework, we merely observe that increasing the
value of the coupling constant β in a given range, while
keeping n and Λ fixed, results in greater fifth forces. Inci-
dentally, increasing β while keeping n and Λ fixed means
decreasing α (see Fig. 1) and results in a more screened
body. This phenomenon was already observed in Figs. 14
and 15 of our previous work [47] and in Fig. 7 of Ref. [17]
for instance. This can also be understood in the frame-
work of the analytical approximation of the chameleon
fifth force for spherical objects. Taking Eq. (2.64) from
Ref. [63] reads

aϕ = 3β2∆R

R

GMball

r2
(1 +mϕ)e

−mϕ(r−Rball) .
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In this expression, ∆R/R ∝ β−1 and mϕ ∝ β
n+2

2(n+1) so
that, at fixed r > Rball, the function : β 7→ aϕ is increas-
ing on the interval ]0, β∗[ and decreasing on ]β∗,+∞[, for
a certain parameter β∗ > 0. We also see that aϕ → 0
when β → ∞, because of the exponential term. This is
exactly the phenomenology that we observe on numeri-
cal simulations: beyond a certain value of β ∼ 108 (i.e.
below a certain value of α, which is around 10−28), the
fifth force vanishes — see Figs. 7 and 8.

B. Adding an atmosphere

Here we study the influence of adding an atmosphere
to the density model. To the best of our knowledge,
only a handful of studies deal with the influence of the
atmosphere [34, 39–41, 76]. In this section, we address
simple questions: how is the fifth-force mitigated by the
presence of an atmosphere? Can the mountain still be
somehow seen in the field profile? How does all of this
depend on the atmospheric model?

Part of the answer can be unveiled by first studying a
simplified version of the setup. More precisely, we got rid
of any orthoradial dependence in the density distribution
function — which amounts to taking the mountain out
of our model to end up with a purely radial setup. This
simplification allows us to perform computationally in-
expensive 1D FEM simulations with femtoscope and still
get valuable insight into how the chameleon field behaves
in the presence of an atmosphere. We ran computations
for all atmospheric models outlined in Sec. II B 2 and for
all values of α ∈ {10−5, · · · , 10−29}. Part of this simula-
tion campaign has been compiled into Fig. 9, where the
vast range of α values explored has been boiled down to
only four distinct values for the sake of clarity and con-
ciseness. On each sub-panel, the grey dash-dotted line
is associated with the fully screened profile obtained in
the limit α = 0 which is given by ϕ̃(r̃) = ρ̃(r̃)−1/(n+1).
Contrary to the previous atmosphere-free case, where the
radial density would have been a mere Heaviside step
function, the atmospheric density function smoothly in-
terpolates between ρ̃atm(r̃ = 1) to 10−15 such that the

asymptotic profile’s gradient ∂rϕ̃(α → 0) is not identi-
cally zero.

It is only when we put these 1D chameleon profiles into
perspective with the full 2D simulation’s results that a
clear understanding of the influence of the atmosphere
emerges. Starting from α = 10−5 and gradually decreas-
ing the value of this parameter, we witness the succession
of several regimes:

1. For the larger values of α, the planet is not fully
screened, i.e. there is still a thin-shell. This can
be seen on the first column of Fig. 9 (α = 10−7)
where the chameleon kicks in (i.e. departs from

limit profile ϕ̃(α → 0)) before r̃ = 1 (which cor-
responds to the transition between the planet and
the atmosphere). This regime is particularly visible

on sub-panels a) to d). The impact of the atmo-
sphere on the fifth-force at higher altitudes is then
minor — see Tab. IV thereafter where we compare
the amplitude of the fifth-force with and without
atmosphere at r̃ ∈ {1.059, 1.314}.

2. At some point when decreasing α, the lowest part
of the atmosphere becomes screened itself. This is
especially visible on sub-panels e) to h). We pro-
vide a zoomed-in view of this very region in order
to be able to compare the fraction of the atmo-
sphere that is screened against the relative size of
the mountain h̃m = 0.01. As soon as the screened
area overflows the mountain, i.e. everything below
r̃ = 1.01 is screened, the imprint of the mountain of
the chameleon field is definitely lost at higher alti-
tudes. In other words, the orthoradial acceleration
vanishes, giving way to numerical noise. This is
why some entries of Table IV are set to N/A. When
it comes to radial component of the fifth-force, it is
hardly modified compared to the scenario without
atmosphere.

3. For even smaller values of α, the screening even-
tually reaches the probed region at high altitude.
This is particularly clear in sub-panels i) to l),
where the chameleon field profile is getting closer
to the limit profile (grey dash-dotted line). Here,
the orthoradial acceleration remains drowned in the
numerical noise while the radial acceleration is fully
dictated by the density profile. This is why in some
cases, ar can even become larger with an atmo-
sphere than without (see entries of Table IV greater
than unity).

Once we know that these three regimes exist regardless
of the specific form of the atmospheric profile (as long as
density decreases with altitude), we can start to be more
quantitative by

– specifying where the transition between each
regime occurs for the atmospheric models at stake;

– computing the attenuation factor on the fifth-force
for the different density models.

These quantitative results are reported in Table IV where
each entry is a pair (µr, µθ) defined as

µr = max
θ
awith-atm
r (r̃, θ)/max

θ
ano-atmr (r̃, θ)

µθ = max
θ
awith-atm
θ (r̃, θ)/max

θ
ano-atmθ (r̃, θ)

(14)

at a specific radial coordinate r̃. We refer to these co-
efficients as the attenuation factors, which are of course
dependent on the atmospheric model as well the altitude
at which they are computed.
The take home message from this study of atmospheric

models is that the presence of an atmosphere, as tenuous
as it may be, prevents access to the biggest fifth-force
attainable without atmosphere. Indeed, we saw earlier
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FIG. 9. Radial profiles of the chameleon field for log10 α ∈ {−7,−10,−18,−23} (columns) and for all three atmospheric models
defined in Sec. II B 2, namely Tenuous, Earth-like and Dense (rows). On each sub-panel, the grey dash-dotted line corresponds

to fully screened profile, that is obtained in the limit α = 0 and is given by ϕ̃(α→ 0) = ρ̃−1/(n+1). The radial chameleon profile
is depicted by the bi-color solid line, where the transition from the darker color to the lighter one occurs at the chosen interface
(r̃ = 7) between the interior domain and the kelvin-inversed exterior domain (see Ref. [47] for more details).

r̃ = 1.059 r̃ = 1.314

α = 10−6 α = 10−10 α = 10−15 α = 10−20 α = 10−6 α = 10−10 α = 10−15 α = 10−20

Tenuous (1.00 – 1.00) (1.00 – 0.89) (1.00 – 0.15) (1.03 – N/A) (1.00 – 0.99) (1.00 – 0.72) (1.01 – 0.11) (1.02 – N/A)

Earth-like (1.00 – 1.00) (1.00 – 0.76) (1.01 – N/A) (0.07 – N/A) (1.00 – 0.99) (1.00 – 0.61) (1.02 – N/A) (1.03 – N/A)

Dense (1.00 – 0.99)(7×10−7 – N/A) (7×10−7 – N/A) (6×10−7 – N/A) (1.00 – 0.98) (1.12 – N/A)(6×10−5 – N/A) (6×10−5 – N/A)

TABLE IV. Attenuation coefficients of the radial and orthoradial component of the chameleon acceleration with an atmosphere
compared to the atmosphere-free case. The first number of each pair corresponds to the radial part and is computed as
maxθ a

with-atm
r (r̃, θ)/maxθ a

no-atm
r (r̃, θ). Similarly, the second figure of each pair is the orthoradial attenuation factor and is

defined by maxθ a
with-atm
θ (r̃, θ)/maxθ a

no-atm
θ (r̃, θ). These attenuation factors are computed for r̃ ∈ {1.059, 1.314}.

that, around r̃ = 1.059, the fifth-force was reaching its
maximum value for α in the order of 10−25. Yet in all
three atmospheric models under study, the screening of
the atmosphere at low altitude occurs for much bigger
values of α, putting a lower threshold on the maximum
accessible fifth-force. When put into perspective with
current bounds on n = 1 chameleon theory, these re-
sults show that the largest part of the unconstrained re-
gion maps to a screened atmosphere in the LEO altitude
range. All other things remaining equal, the radial com-
ponent of the fifth force can be recovered by going higher
up in altitude, where the atmospheric density is lower.

IV. Influence on spacecraft trajectory

In this section, we shift our focus to how geodesics get
modified in the presence of a putative chameleon fifth-
force with respect to the purely Newtonian case. We
want to ascertain the effects of the fifth force in a rather
quantitative way: is the deviation from Newtonian dy-
namics large enough to be detected by current satellite
technology? Is it possible to discriminate the presence of
a fifth force from the imperfect knowledge of the model
at stake or small perturbations of the initial conditions?
When does a satellite in Low Earth Orbit (LEO) become
screened? Besides, we will refrain from commenting too
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much on secular drifts that can arise between modified
gravity and Newtonian gravity. That is because in any
realistic scenario — where many additional forces of dif-
ferent nature come into play —, it would be merely im-
possible to discriminate the fifth force from such forces.
We thus keep our analysis local, by focusing our attention
on the dynamics at the passage over the mountain.

A. Screening of the fifth force by the spacecraft

1. Existing criteria

We stress that modeling a spacecraft by a material
point (in the framework of chameleon gravity) roughly
amounts to making the hypothesis that it does not pos-
sess a thin-shell. Ref. [40] derives an analytical criterion
for a typical satellite in low Earth orbit not to have a
thin-shell (see Eq. 80 of this reference). Applying this
criterion with the density values employed in our study
(except for that of the satellite itself which is set at
8 × 103 kg/m3) leads straightforwardly to the require-
ment that β ≲ 2×102 ⇐⇒ α ≳ 3×10−20 (for Λ = ΛDE

and n = 1). The following orbit propagation results be-
ing performed with (n = 1,Λ = ΛDE, α = 10−25), the
satellite would be partially screened according to this cri-
terion and the chameleon effects would thus be smaller
than presented.

Ref. [61] derives another criterion based on numeri-
cal simulations claiming that the satellite will be fully
screened when the thickness of its walls is larger than
100λc,wall, where λc,wall refers to the Compton wave-
length in the wall. However, this criterion must be taken
with a grain of salt as it was derived for a density contrast
ρvac/ρwall = 10−3, far from a realistic setup. Still, apply-
ing this second criterion for a wall of thickness 10 cm leads
to the fact that the satellite will not have a thin-shell if
β ≲ 2× 10−2 ⇐⇒ α ≳ 4× 10−14.

2. Computation of the field with femtoscope

Although quite qualitative, these two criteria provide
us with a comprehension of how the parameters in our
model affect the screening of the satellite. For instance,
increasing the overall density of the satellite (other things
being equal) results in more screening. Ideally, one would
compute the scalar field profile sourced by the Earth and
the spacecraft all at once — which would avoid having
to rely on such criteria and provide a definitive answer.
The problem then becomes a numerical one, because the
simulation should accommodate a thousand-kilometer-
size object (a planet) together with a meter-size object
(a satellite). We create a mesh using the Gmsh software
[33] that captures both scales (whose ratio is equal or less
than 10−6) thanks to h-adaptivity — a technique that
adjusts the mesh resolution by refining or coarsening el-
ements to focus computational resources where they are

most needed. The setup is as follows: we place a cylindri-
cal object centered at coordinates (x̃Sat, z̃Sat) = (0, 1.1)
whose axis is aligned with the z-axis (Fig. 2). The diam-
eter and height of the cylinder are set equal to LSat and
we denote by ρSat its density. In order to get an order of
magnitude of a satellite mean density, we take the exam-
ple of a CubeSat9 whose density is around ∼ 103 kg/m3.
We then compute the chameleon field map in the (x, z)-
plane for various combinations of ρSat, LSat and α. The
global acceleration undergone by the cylindrical satellite
atotcham is obtained by integrating the gradient of the scalar
field over its whole volume. Under the assumption that
the satellite is made of a material of constant density, one
gets

atotcham = − 1

V

∫

V

∇ΨdV = − β

VMPl

∫

V

∇ϕdV , (15)

where V = πL3
Sat/4 is the volume of the cylinder. Now

because the setup admits Oxz and Oyz as planes of sym-
metry, atotz = acham · ez is the only non-zero compo-
nent of the acceleration vector. Setting xmax = LSat/2,
z± = zSat ± LSat/2, the calculation thus simplifies to

atotz = − 1

V

∫ 2π

0

∫ xmax

0

∫ z+

z−

x∂zΨdz dxdθ

=

(
2

LSat

)3 ∫ xmax

0

x [Ψ(x, z−)−Ψ(x, z+)] dx .

(16)

The resulting 1D integral can easily be computed using
any numerical integration routine.
Fig. 10 shows the chameleon potential Ψ (top row)

together with the elementary acceleration az = −∂zΨ
(bottom row) along the axis of the cylinder that passes
through the Earth. On panel a), we recognize the cus-
tomary chameleon field profile of a screened ball, per-
turbed nearby z = 1.1R⊕ by the presence of the satellite.
When we zoom-in, we see the potential well imputed to
the satellite in panel b). This localized variation of the
chameleon field results in a large gradient in absolute
value (bigger than anywhere else in the numerical do-
main). However big the field’s gradient may be, looking
at panel d) with naked eyes could lead us to believe that
it is an odd function with respect to z = zSat. If that
turned out to be the case, then performing the integra-
tion (15) would result in a net zero acceleration and the
satellite’s trajectory would coincide with GR geodesic (in
the absence of any non-gravitational perturbation).
We tackle this issue by computing atotz using Eq. (16)

for several physical parameters (ρSat, LSat) and several
chameleon parameters α. From there, the whole ques-
tion is to determine how the total chameleon accelera-
tion undergone by the satellite compares against that of a

9 CubeSats have a form factor of 10 cm cubes and have a mass of
no more than 2 kg.
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FIG. 10. Chameleon potential Ψ (top row) and acceleration az (bottom row) along the z-axis. The panels b) and d) are
a zoomed version around zSat = 1.1R⊕ of panels a) and c) respectively. The parameters used to produce this figure are:
ρ⊕ = 103 kg/m3, ρvac = 10−15 kg/m3, ρSat = 103 kg/m3, LSat = 2× 10−6 R⊕ ∼ 12.7m, zSat = 1.1R⊕ ∼ 7× 103 km, α = 10−15,
n = 1, β = 0.24, Λ = ΛDE. On panels b) and d), the dotted line is centered at z = zSat while the dashed lines represent the
extent of the satellite.

Case 1 — benchmark(
ρSat = 103 kg/m3, LSat = 2× 10−6 R⊕

) Case 2 — denser(
ρSat = 104 kg/m3, LSat = 2× 10−6 R⊕

) Case 3 — smaller(
ρSat = 103 kg/m3, LSat = 5× 10−7 R⊕

)

α 10−14 10−15 10−16 10−14 10−15 10−16 10−14 10−15 10−16

∣∣atot
z

∣∣ 7.25 × 10−12 1.56 × 10−11 ∼ 0 7.25 × 10−12 ∼ 0 ∼ 0 7.25 × 10−12 1.56 × 10−11 3.36 × 10−11

|az| 7.25 × 10−12 1.56 × 10−11 3.37 × 10−11 7.25 × 10−12 1.56 × 10−11 3.37 × 10−11 7.25 × 10−12 1.56 × 10−11 3.37 × 10−11

TABLE V. Total chameleon acceleration undergone by a satellite (extended object)
∣∣atot

z

∣∣ compared to that of a point-like

particle |az|. The accelerations are expressed in m/s2. Each of the three cases corresponds to three different satellites: Case
1 is a benchmark, Case 2 represents a 10 times denser satellite, Case 3 represents a 4 times smaller satellite. As long as the
satellite is not screened,

∣∣atot
z

∣∣ ≃ |az|. When the satellite is screened (which occurs at a different α depending on the satellite’s

characteristics),
∣∣atot

z

∣∣ drops down to nearly zero. Note that Fig. 10 corresponds to Case 1 with α = 10−15.

point-like particle not affecting the background field. The
results set out in Table V provide some answers. We con-
sider three cases which correspond to three satellites with
distinct characteristics, namely different length scale and
density. For each case, we vary α ∈ {10−14, 10−15, 10−16}
and compute the total chameleon acceleration undergone
by the satellite (extended object) |atotz | and that of a
point-like particle |az|. Surprisingly, the outcome of this
experiment is binary:

– When the satellite is unscreened — that is when the
scalar field does not reach the value that minimizes
the effective potential inside the cylinder ϕSat —we
find that the total chameleon acceleration it under-
goes is equal to that of a test particle placed at zSat.
This is a remarkable fact, which we did not antic-

ipate by simply looking at Eq. (16) and we thus
provide an attempt to explain this phenomenon in
Appendix E. In other words, the satellite feels the
fifth force sourced by the Earth as if it did not per-
turb the field at all. Consequently, it behaves as a
point-like particle and will follow the geodesics of
the Jordan frame metric g̃µν = exp (2βϕ/MPl) gµν ,
where gµν refers to the Einstein frame metric.

– When the satellite is screened, the integral of the
field’s gradient over the volume occupied by the
satellite vanishes almost completely — essentially
because there, the gradient is null. The satellite
only feels the Newtonian part of the gravitational
force and thus follows the geodesics of the Einstein
frame metric gµν .
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Of course, there actually exists an intermediate case
where the satellite would only be partially screened, i.e.
where the field would indeed reach ϕSat deep inside the
cylinder while still having some space to vary in its out-
ermost regions. In this specific case, the ratio |atotz | / |az|
lies somewhere between 0 and 1. However, the results
reported in Table V suggest that the transition from the
unscreened case and the fully screened case does not cover
a wide region of the chameleon parameter space. Indeed,
taking the Case 1 as an example, the transition occurs
between α = 10−15 and α = 10−16 — refer to Fig. 1 to
get a better idea of the narrowness of this region in the
chameleon parameter space.

3. Discussion

We can check that the reported results are in accor-
dance with the qualitative predictions made by the first
two criteria discussed earlier. They both predict that
increasing the density and/or the length of the satellite
should make it more likely to be screened. This is in
agreement with our findings: (i) going from Case 1 to
Case 2 shows the effect of an increase by one order of
magnitude of the satellite’s density, (ii) going from Case
3 to Case 1 illustrates the effect of increasing the satel-
lite’s overall size. A follow-up question is whether it is
possible to find a distribution of mass inside the satellite
ρSat(x, z) such that |atotz | > |az|. The simple tests we
performed so far — for instance, setting different den-
sities for the upper and lower halves of the satellite —
all resulted in |atotz | ≤ |az|. The question remains open.
Additionally, dealing with an extended object means that
new rotational degrees of liberty can enter the scene and
it would be interesting to look at similar optimization
process in order to find the maximum torque (note that
Refs. [38, 57] mention this effect and highlight the fact
that it can stand out from Newtonian gravity).

Although the satellite model implemented in this sec-
tion is very simple, this study shows that it is possible
for a realistic satellite not to be screened in parts of the
chameleon parameter space. This has implications for
space-based tests of gravity. For instance, in chameleon
models where the scalar field does not couple universally
to all matter fields, violations of the weak equivalence
principle are not necessarily suppressed by the satellite
walls or the experimental setup (as opposed to what was
claimed in Ref. [62]). Another example (which holds for
a universal coupling constant β) is that of an accelerom-
eter with a screened test mass onboard an unscreened
satellite: the accelerometer would measure a force akin
to a bias.

B. Orbital dynamics of an artificial satellite

Sec. IVA made it clear that in practice, a satel-
lite orbiting some planetary body in the framework of

chameleon gravity cannot be treated as a point-like par-
ticle in the entire parameter space. We have highlighted
that there is a narrow transition zone beyond which the
satellite becomes fully screened and the net fifth force
acting on it vanishes almost completely. In what follows
however, we make the assumption that we can treat the
satellite as a point-like particle. This is justified by at
least two reasons:

1. This is a valid approximation in parts of the pa-
rameter space (see Table V).

2. One can always, at least at the thought experiment
stage, make the satellite smaller or less dense so
that is it not subject to screening.

That being said, in all the orbit propagation results pre-
sented in the following, we choose the chameleon param-
eters that produce the strongest fifth force at r̃ = 1.059
(which represents an altitude of approximately 376 km)
in the absence of atmosphere: (n = 1, Λ = ΛDE, β =
1.1× 106). Notice that this point of the parameter space
is already constrained by atom interferometry, see e.g.
Ref. [19].
Suppose a point-like particle is placed in a gravita-

tional potential U . The equations of motion in spherical
coordinates are

r̈ − r
(
θ̇2 + φ̇2 sin2 θ

)
= −∂rU

r

(
θ̈ + 2

ṙ

r
θ̇ − φ̇ sin θ cos θ

)
= −1

r
∂θU

r sin θ

(
φ̈+ 2

cos θ

sin θ
θ̇φ̇+ 2

ṙ

r
φ̇

)
= − 1

r sin θ
∂φU

, (17)

where dots refer to time derivatives. The massic energy
is given by

E =
1

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+ U (18)

and it is conserved along the trajectory, i.e. Ė ≡ 0.
Our setup being axisymmetric, we can get rid of the φ-
dependence. Then, note that Eq. (17) implies that the

angular momentum L ≡ r2θ̇ satisfies

L̇ = −∂θU . (19)

The problem at stake is a perturbed Kepler problem
(the mountain and fifth force contributions are small
compared to the central force), whose total gravitational
potential U can therefore be decomposed into

U = −µ/r + δU ,

where µ ≡ GMbody is the standard gravitational param-
eter of the main body (note that µ does not encompass
the mass contained in the mountain itself). The pertur-
bation δU is the sum of the Newtonian potential of the
mountain δΦ and the chameleon potential Ψ of the whole
system. With this in mind, it is also more appropriate to
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decompose the motion into a Keplerian part — that we
assume to be circular — and a perturbed part, reading

r = a+ δr θ = θ0 + ωt+ δθ

ṙ = δ̇r θ̇ = ω + δ̇θ

r̈ = δ̈r θ̈ = δ̈θ

L = L0 + δL L̇ = ˙δL

. (20)

In the above, a is the radius of the circular orbit and ω
is the Keplerian pulsation, satisfying ω2 = µ/a3. L0 is
the initial angular momentum with L2

0 = µa and θ0 is
the initial co-latitude for a Keplerian motion. This lets
us rewrite the equations of motion (17) as

δ̈r = L2/r3−∂rU , δ̇θ = L/r2−ω , ˙δL = −∂θU ; (21)

while the energy conservation reads

(δ̇r)2 + (L/r)2 + 2U − 2E = 0 . (22)

Note that at the 0th-order, Eq. (22) boils down to the
usual energy conservation in a circular Keplerian orbit

(aθ̇)2 − 2µ

a
− 2E = 0 .

C. Numerical integration with energy conservation

The state vector that we wish to propagate over time
is X = (δr, δ̇r, δθ, δL) ∈ R4. It is governed by the or-

dinary differential equation (ODE) Ẋ = F (t,X), where
F : R×R4 → R4 is given by Eq. (21). Note that while en-
ergy conservation (22) is derivable from the ODE itself,
there is no a priori reason for it to hold on the numerical
approximation. For one thing, the energy might fluc-
tuate on short time scales depending on the numerical
integrator employed, leading to an increase or decrease
over longer time scales. Additionally, the r.h.s. of ODE
(21) is obtained through FEM computation and is hence
noisy, meaning that even so-called energy-preserving in-
tegrators would exhibit the energy-drift phenomenon.

Appending the energy conservation (22) to the ODE
defines an over-determined differential-algebraic system
of equations (DAE). One convenient way to preserve first
integrals such as energy conservation when numerically
integrating dynamical systems is to resort to projection
techniques. The idea behind this class of techniques is to
slightly perturb the state after each solver’s step so that
the energy remains constant. This technique is described
in Ref. [35]. As for the implementation, one can easily
modify any existing general purpose ODE solver to per-
form this projection. We provide a minimally modified
version of scipy’s Runge-Kutta solvers that was used for
the numerical integration as supplementary material.

The simulations presented below are performed at
r̃ = 1.059, which corresponds to an altitude of roughly
376 km. The Newtonian potential and its gradient are

evaluated using the point-mass approximation intro-
duced in Sec. IID 2 as it is hardly distinguishable from
the semi-analytical solution. As for the chameleon field,
we have the freedom to select an operating point in the
parameter space. We choose (n = 1,Λ = ΛDE, α =
10−25, β = 1.1 × 106) which we have identified as the
point that concurrently results in the strongest fifth force
and the greatest field’s strength (in the atmosphere-free
scenario, see Sec. IIIA). The experiment performed in
Sec. IVA indicates that any medium to large size satel-
lite would presumably be screened in this case. Con-
sequently, the point-like approximation we adopt can
be understood as a best case scenario, i.e. an upper
bound on the maximum fifth force. Indeed, escaping the
screened regime comes at the prize of restricting the al-
lowed range of parameter α to α > αscreened, which lim-
its the maximum fifth force — see Sec. III A. In terms
of initial conditions, the point-like particle is set in a
Keplerian motion so that the initial state vector reads
X(t = 0) = 0 ∈ R4, with θ0 = π.

D. Results and discussion

Here we present and discuss the orbit propagation re-
sults. For the sake of clarity and concision, we denote by
XNew and XCham the state vectors in the purely New-
tonian case and in the modified gravity (i.e. the sum of
chameleon and Newtonian gravity) respectively.

1. Results of the simulations

The evolution with respect to time of the main quan-
tities of interest are presented in Fig. 11. The time
spans 10 hours which encompasses roughly three full or-
bits. The first row of this figure shows how, in a purely
Newtonian setting, the presence of the mountain breaks
the Keplerian, circular motion. Some elements, such as
δL are very correlated to the passage of the point-mass
above the mountain (denoted by the vertical light-gray
dashed lines on each panel). The angular momentum
is indeed roughly constant along the trajectory, except
nearby θ ∼ 0 where it peaks very sharply (L0 being
negative, this corresponds to an increase in the absolute
value of L). On the other hand, some other elements
are irreversibly imprinted by the mountain after the first
passage above it, see e.g. δr, δ̇r or δθ, leaving traces on
the longer term. The physical intuition for this is that,
although the gravity field is symmetric with respect to
θ = 0, the dynamics is not. Indeed, in the (θ > 0)-plane,

the system acquires non-zero velocity δ̇θ which leads δθ to
slowly drift away from zero initial state. Right after the
passage of the mountain — that is when θ becomes neg-
ative — the mountain’s gravity acts as a restoring force,
which has the immediate effect of slowing down δθ. But
it is already too late: in the meantime, the altitude has
been disturbed (δr ̸= 0) and θ continues on its run (at
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FIG. 11. Orbit propagation over three Keplerian periods. The first row shows the evolution of the state vector XNew =

(δrNew, δ̇r
New

, δθNew, δLNew) and δ̇θ
New

with respect to time, where the dynamics is purely Newtonian. The second row lays

emphasis on the orbital dynamics in modified gravity by showing XCham −XNew and δ̇θ
Cham − δ̇θ

New
. The vertical light-gray

dashed lines correspond to the instants at which the point-like particle passes over the mountain, at θ = 0, in the purely
Newtonian case.

an increased ω + δ̇θ pace), so that the restoring force at
−θ∗ < 0 is not equal to the force that disturbed the Ke-
plerian motion at θ∗. Once the symmetry is broken, the
orbit can no longer be circular — it has a non-zero oscu-
lating eccentricity — which is why (δr, δ̇r, δθ, δ̇θ) exhibit
an oscillatory behavior at approximately the Keplerian
frequency. We dedicate Appendix F to prove this point
in a more rigorous way.

In the second row of Fig. 11, we illustrate what we call
the anomaly XCham−XNew, that is simply the difference
between the geodesic in modified gravity and in Newto-
nian gravity — for the same set of initial conditions. Sur-
prisingly, apart from δθCham − δθNew which undergoes a
steady decline, the other elements of the anomaly seem
to be periodic and remain around zero. In Fig. 12, we
show the slow drift of the distance anomaly between the
two trajectories, that is ∥rCham − rNew∥. This steady in-
crease of the distance has a mean slope of ∼ 2m/h, but
the rate of increase is maximized at each passage of the
point-mass above the mountain where it exceed 4m/h.

All these orders of magnitude relating to the anomaly
should be put into perspective with the current level of
precision with which we are able to determine a satellite’s
position and other orbital elements. This process goes
under the name ‘Precise Orbit Determination’ (POD)
and involves analyzing various observational data, often
obtained from ground-based tracking stations or satellite-
based instruments — see e.g. Refs. [49, 67, 68] for the
implementation of these techniques and the reachable
orders of magnitude in terms of precision. One of the
main space geodetic techniques is Satellite Laser Ranging
(SLR) which measures the time it takes for a laser beam
to travel from the ground station to a retro-reflector
on the satellite and back again, providing unambiguous
range measurements to millimeter precision [4, 60]. This

FIG. 12. Distance anomaly as a function of time. The various
passages above the mountain, depicted by the vertical light-
gray dashed lines, correspond to the most rapid increase in
this distance.

technique is also placed at the service of fundamental
physics; in this respect let us mention the recent launch
of the LARES 2 satellite [25] to test GR.

Therefore, with no uncertainty on the model and initial
conditions, the anomaly caused by the fifth force is of
the order of a meter (see the leftmost column of Fig. 11),
which is around three orders of magnitude larger than the
best attainable precision. At this stage of the discussion,
it would seem easy to detect the fifth force.
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2. The GRACE-FO scenario

The GRACE-FO10 mission, currently in operation,
aims at monitoring the Earth’s gravitational field. It uses
a pair of satellites flying on the same orbital path, ap-
proximately 220 km apart. As they orbit the Earth, the
spacecraft are affected by the uneven gravity field caused
by the uneven distribution of mass inside the planet —
e.g. the presence of a mountain, which produces a slightly
stronger gravitational pull. As a result, the distance be-
tween the two satellites varies continuously over time.
This distance variation is measured down to the micron
level thanks to a microwave ranging system11 [44]. Ul-
timately, the changes in the distance between the satel-
lites are used to monitor the time variations of the Earth
gravity field due to mass changes (ice melting, droughts,
floods, etc.).

Given the extreme level of precision GRACE-FO is
able to reach in terms of ranging, we investigate whether
or not fifth force effects would end up being in its sen-
sitivity range. To do so, we simulate a pair of satel-
lites following each other by duplicating the trajectory
and shifting it in time by a few minutes, mimicking the
real mission configuration. We can then reconstruct the
change in inter-spacecraft distance with respect to time
d(t). An example of such a curve is given in Fig. 13 (red
solid line or salmon dashed line, the two being indistin-
guishable by eye), where roughly three orbits have been
completed. The passage above the mountain can easily
be spotted on the curve by the little spikes they spawn.
They can be understood fairly intuitively: approaching
the mountain’s latitude, the leading satellite starts feel-
ing a slightly stronger gravity relative to the trailing one
and is pulled slightly ahead, increasing the distance be-
tween the two satellites. When the first satellite has even-
tually passed on the other side of the mountain (that is
θ < 0), it is slowed down while the trailing satellite is
accelerating, resulting in a decrease in the inter-satellite
distance overall. Long after the occurrence of this short-
term event, this distance continues to vary in sinusoidal
fashion. This is due to the fact that, as discussed above
and brought to light in Fig. 11, the orbit is no longer
circular after the passage of the mountain and therefore
the velocity varies along an orbit.

The difference between the modified gravity case dCham

and the Newtonian case dNew can hardly be seen on
those curves. It is depicted by the solid blue line on
Fig. 13 (again called the ‘anomaly’). Choosing the same
set of initial conditions for both models ensures that the
anomaly is null at time t = 0. The anomaly exhibits
three maxima — at a level of a few centimeters — cor-

10 Gravity Recovery and Climate Experiment Follow-On.
11 GRACE-FO also employs laser-ranging interferometry for a more

accurate inter-satellite ranging which can improve the separation
distance measurement by a factor of more than 20 relative to the
GRACE mission [2].

FIG. 13. Left y-axis: inter-spacecraft distance with respect
to time in Newtonian gravity (solid red line) and in modified
gravity (dashed salmon line). Right y-axis: the blue curve
corresponds to the anomaly, that is the difference between the
two models. The initial time-delay between the two satellites
is set to 100 seconds.

responding to the passage of the pair of satellites above
the mountain.
In view of these results, we may believe that

chameleon-like fifth forces should be detectable with our
current space technology as the anomaly is ∼ 104 times
larger than the sensitivity threshold of GRACE-FO. That
would be true under the (unrealistic) assumptions that:

1. the initial conditions are perfectly known, that is
there is no uncertainty in our initial state X0 prior
to the propagation;

2. the density model of the main body (the Earth) is
perfectly known.

Neither of the two hypotheses can be fulfilled in practice.
In the two forthcoming sections, we tackle these points
and strongly mitigate our previous statement in regard
to fifth force detectability in space.

3. Perturbation of initial conditions

Here, we investigate whether a slight modification of
the initial state vector X0 ← X0 + δX0 could account
for the anomaly that we unveiled in Fig. 13. For that
purpose, we employ a Nelder-Mead optimizer where our
objective function is

g : R4 → R+

δX0 7→ ∥dCham(t,X0)− dNew(t,X0 + δX0)∥2 ,
(23)
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where ∥ · ∥2 is the two-norm in R4 and t = [t0, t1, . . . , tN ]
is the discrete time vector with tN ∼ 10 h and N = 104.
We find an optimum at

δXopt
0 =



−6.04× 10−1 m
+6.16× 10−7 m/s
−7.49× 10−7 rad
+1.98× 103 m2/s


 , (24)

with a residual smaller than 5mm12. This is an ex-
tremely good fit given the characteristic length of the
problem (several hundred kilometers). The conclusion to
be drawn from this is clear: on this specific inter-satellite
distance tracking example, an extra chameleonic acceler-
ation cannot be distinguished from a small perturbation
of the initial state vector. A brief analysis indicates that
the parameter that has the biggest weight in Eq. (24)
is δr0. Now the question is how this small perturbation
compares to the precision with which we have access to
the initial state. As discussed previously in Sec. IVD1,
it turns out that the initial radial distance r0 could in
principle be determined with at most centimetric preci-
sion which is smaller than the 60 cm perturbation found
in Eq. (24). Although this does not constitute a rig-
orous proof, this brief study tends to indicate that the
‘unknown initial state’ hypothesis can be ruled out.

4. Perturbation of the mass distribution

Nonetheless, the knowledge of initial conditions is not
the only potential source of degeneracy. Indeed, the mass
distribution inside the main body — the very source
of gravity — is perhaps the most important degree of
freedom to have knowledge of. In that perspective, can
the fifth force effects on a satellite be interpreted in the
framework of Newtonian gravity as a slightly altered den-
sity model? In order to answer that question, we continue
in the same spirit as in Sec. IVD3 by constructing an op-
timization problem. We saw earlier on, notably in Fig. 4,
that the Newtonian potential of the mountain could very
well be approximated by a point-mass. We can thus try
and perturb the density model — and consequently the
Newtonian potential — by adding a point-mass some-
where along the z-axis (see Fig. 2), as we do not wish to
break the azimuthal symmetry. This simple model has
only two parameters:

– m∗ the mass of the point-mass;

– z∗ the z coordinate of the point-mass.

12 The last entry of vector δXopt
0 in Eq. 24 corresponds to the

perturbation in the initial angular momentum and may attract
attention due to the fact it is orders of magnitude bigger than the
other entries. To provide a benchmark, the unperturbed initial
angular momentum is L0 ≃ 2.2× 1010 m2/s.

r̃ = 1.059 r̃ = 1.111

m̃r̃
∗ 6.6× 10−6 1.8× 10−6

z̃r̃∗ 1.03 1.06

f(mr̃
∗, z

r̃
∗)/f(0, 1) 3.1× 10−2 5.6× 10−2

∥∂θ(Φ∗ −Ψ)∥L2/∥∂θ(Φ∗ +Ψ)∥L2 0.14 0.22

∥∂r(Φ∗ −Ψ)∥L2/∥∂r(Φ∗ +Ψ)∥L2 0.07 0.08

TABLE VI. Best fit parameters of the approximation of the
chameleon acceleration by a point-mass in Newtonian gravity.

The goal is then to find the pair (m∗, z∗) for which Newto-
nian gravity best mimics the modified gravity case. Pre-
cisely, our objective function is

f : R2 → R+

(m∗, z∗) 7→
∫ π

0

(∂θΦ∗ − ∂θΨ)
2
dθ

+

∫ π

0

(∂rΦ∗ − ∂rΨ)
2
dθ

(25)

where Φ∗ is the Newtonian potential created by the extra
point-mass and the integral is carried out at fixed r̃. We
denote by (mr̃

∗, z
r̃
∗) the pair that minimizes the function

f at radius r̃. Using ∥ · ∥L2 to denote the L2-norm over
the space of square-integrable function on [0, π], one can
rewrite

f(m∗, z∗) = ∥∂θ(Φ∗ −Ψ)∥2L2 + ∥∂r(Φ∗ −Ψ)∥2L2 .

Basically, we aim at approximating both the radial
and orthoradial parts of the chameleon acceleration at
the same time. This optimization problem being low-
dimensional, we can dispense with a sophisticated opti-
mization algorithm and do a full exploration of the pa-
rameter space instead (see Fig. 14). Note that our point-
mass model cannot reproduce the chameleon monopole
(which is, in other words, a constant radial acceleration
offset). Therefore, we removed it by hand before pro-
ceeding to the optimization phase. This offset is tiny:
∼ 1.4 × 10−7 m/s2 which corresponds to relative change
of the mean density of the main body of only ∼ 9×10−8.
In comparison, let us mention that the Earth mass is
known with a relative uncertainty of 10−4.
The results for r̃ ∈ {1.059, 1.111} are reported in Ta-

ble VI, where m̃r̃
∗ = mr̃

∗/Mmountain and z̃r̃∗ = zr̃∗/Rbody.
To further assert the quality of the fit in quantitative

terms, we compute the ratio f(m∗, z∗)/f(0, 1) (where
{m∗ = 0, z∗ = 0} corresponds to flat profiles) as well
as relative errors in L2-norm. Several comments must
be made:

– With only a simplistic model (i.e. a single point-
mass has been added to the pre-existing model,
contributing to the global Newtonian potential), we
manage to approximate the fifth-force profile at a
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FIG. 14. a) Contour plot of the objective function (in log
scale) in the (m∗, z∗)-plane

a. b) Contour plot of the anomaly
in the (m∗, z∗)-plane. The white cross and blue circle are
located at the objective function’s minimum when r̃ = 1.059
and r̃ = 1.111 respectively. The area left in plain white is not
physically accessible as it corresponds to a ‘negative extra
mass’ in vacuum. Warning: looking at the anomaly (bottom
panel), one might expect the special case m∗ = 0 to reduce
to the case displayed on Fig. 13 and exhibit an anomaly of a
few centimeters. The difference lies in the fact that here, the
chameleon radial acceleration offset is artificially reproduced
by slightly increasing the main body’s mass.

a Note that negative mass (which would correspond to an
extrusion for z̃∗ < 1 + hm) cannot represent the chameleon
acceleration as well as positive mass.

given altitude with remarkable accuracy (see the
various figures in Table VI).

– This approximation is good enough to almost re-
produce the dynamics of the satellite’s orbit over
the mountain. In fact, we can repeat for instance
the same exercise as we did in Fig. 13 and compute
the so-called anomaly, i.e. the difference between
the “modified gravity without extra mass” case and
the “Newtonian gravity with extra mass” case. We
find it to be no greater than 15µm. This is more
than a thousand times smaller than the anomaly

computed in Fig. 13. This invites us to moderate
the statements made earlier, since we are approach-
ing here the precision limits of the GRACE-FO’s
LRI system.

– The objection could be made that the characteris-
tics of the point-mass associated with the best fit
do not correspond to any physical reality. Indeed,
taking the second column of Table VI with entries
(m̃∗ = 6.6 × 10−6, z̃∗ = 1.03) suggests that there
would be a ∼ 2 × 1012 kg mass at an altitude of
186 km (or equivalently, 123 km above the moun-
tain’s top) — which is obviously absurd! Never-
theless, it can be seen on the top panel of Fig. 14
— which represents the cost function (25) in the
(m∗, z∗)-plane — that lowering a bit z∗ from the
optimum (depicted by the white cross) while main-
taining m∗ constant has only a slight effect on the
cost function. For this reason, the dynamics is not
much affected by a shift of z∗ towards the planet.
As a matter of fact, setting z∗ = 1 (i.e. bring-
ing the extra mass at the planet’s surface) leads
to an anomaly bounded below 40µm. The bottom
panel of that same figure is intended to illustrate
this phenomenon, and the strong correlation be-
tween the cost function and the anomaly is visible
to the naked eye.

We can even place this extra mass at the same loca-
tion as the point-mass Newtonian approximation of the
mountain itself (see caption of Fig. 4) without any ma-
jor change in the dynamics. This can therefore be in-
terpreted as slightly increasing the mountain’s density,
by roughly 10−3 %. Such a slight deviation could equiv-
alently be attributed to the fact that the gravitational
constant G is only known with some certainty with four
significant digits [48, 69].
These orders of magnitude on the density must be put

into perspective with our current knowledge of the Earth
inner density, with all the attendant uncertainties. De-
spite advancements in geophysical techniques, our knowl-
edge of mass distribution is still imperfect, for simple
reasons:

1. The planet’s interior is out of reach. As a matter of
fact, the deepest human-made hole ever dug is only
12.3 km deep (less than 0.2 % of the Earth radius).

2. The density is not uniform (even at fixed depth),
which means extrapolation is not a valid proce-
dure unless strong assumptions are made about the
Earth’s composition and structure.

3. As it happens, we also have to rely on indirect
measurements, ranging from gravitational anoma-
lies and magnetic anomalies [21, 32, 83] to seismic
analysis [20, 27, 50]. All these techniques are in
turn limited in both resolution and accuracy.

On this latter point, we stress that one should be careful
when trying to put constraints on a given modified grav-
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ity model, using a model of the Earth that comes from
gravitational measurements in the first place. Indeed,
the inversion of a gravity map into, say, a density map
is model dependent (and unless contraindicated, would
have been performed in a Newtonian framework). See
Ref. [7], where this topic is discussed at length. In this
regard, let us mention a recent work [42] that proposes
to use the preliminary reference Earth model (PREM)
[27], which is a radial seismic model, to constrain some
alternative theories to GR.

5. Breaking the degeneracy

We have seen with two simple examples that drawing a
distinction between a fifth force and model uncertainties
(of different natures) is no easy task. These uncertainties
spearhead degeneracies, which we partially address here.

In Sec. IVD3, we provided the relevant orders of mag-
nitude of the perturbation of a satellite initial state vec-
tor necessary to alone mimic a fifth force influence. The
perturbation on the initial altitude was then put in com-
parison against the available level of precision for LEO
satellites. It turned out POD techniques are good enough
to the relatively large perturbation found in Eq. (24). Yet
one must bear in mind that this was done on a very spe-
cific test-case and the conclusion may not generalize to
others.

In Sec. IVD4, we looked at how to distinguish a
chameleon acceleration on top of Newtonian dynamics
from a slight change of the density model in a purely
Newtonian framework. We showed that it was possible to
imperceptibly tweak the mass distribution in the moun-
tain and in the planet to reproduce the chameleon ac-
celeration profile at a given altitude (see Table VI). This
naturally raises the question of whether such a fit works
at different altitudes, or rather how well. Elements of
response can be found in Table VI and Fig. 14. The first
rows of Table VI bring out the fact that inferring the
mountain’s characteristics at two orbital radii leads to
two clashing physical realities: strikingly, the extra mass
inferred at r̃ = 1.059 is almost 4 times greater than it
appears at r̃ = 1.111. In order to sharpen the analysis,
we represent in Fig. 14 by a white cross and a blue circle
the cost function’s minimum at r̃ = 1.059 and r̃ = 1.111
respectively, while the contour plots are performed for
r̃ = 1.059. Following the notations introduced above,
(m1.059

∗ , z1.059∗ ) and (m1.111
∗ , z1.111∗ ) are coordinates of the

white cross and the blue circle respectively. Similarly,
f1.059 and f1.111 refer to the cost functions at the two al-
titudes. At (m1.111

∗ , z1.111∗ ), we see that the cost function
f1.059 is much above its minimum and, in turn, corre-
sponds to a large anomaly. Quantitatively speaking, we
have

f1.059(m
1.111
∗ , z1.111∗ )

f1.059(m1.059∗ , z1.059∗ )
≃ 7.8× 102 ,

which is a big ratio and reflects that (m1.111
∗ , z1.111∗ ) does

not produce a good fit of the chameleon acceleration pro-
file at r̃ = 1.059. On the other hand, changing our per-
spective to f1.111, we have

f1.111(m
1.059
∗ , z1.059∗ )

f1.111(m1.111∗ , z1.111∗ )
≃ 13 ,

meaning that (m1.059
∗ , z1.059∗ ) is better tolerated by f1.111

and f1.059 than (m1.111
∗ , z1.111∗ ).

Fig. 15 provide more visual insights into these tensions.
As in panel b) of Fig. 14, we computed the anomaly as
a function of the pair (m∗, z∗), in a scenario where the
two GRACE-FO-like satellites orbit at r̃ = 1.059 (asso-
ciated with blue colors) and in another scenario where
they orbit at r̃ = 1.111 (associated with orange colors).
On panel a), we display two contours corresponding to
anomaly thresholds of 3 × 10−6 m and 7 × 10−6 m, for
both altitudes. The less the blue contours overlap with
the orange ones, the greater the tension. Panels b) and c)
complement the figure by representing the anomaly along
the dotted lines visible on panel a) which pass through
the minimal anomaly for each altitude. Ideally, the per-
formances showcased by the GRACE-FO laser-link tech-
nology would allow for an exclusion of any (m∗, z∗) pair
mapping to an anomaly greater than a micrometer, re-
vealing the incompatibility between the two density mod-
els.
In conclusion of this section, the use of different al-

titudes in the analysis is a first step toward breaking
the degeneracy. This idea was already put forward in
Ref. [7] where the authors study the impact of a Yukawa
potential on the spherical harmonic coefficients of the
Earth. Precisely, the rescaled coefficients ylm (introduced
in Sec. II C 1) become dependent on the altitude meaning
for instance that measurements of the J2 zonal term at
GOCE and GRACE altitudes could provide a test of the
model13. On the whole, the difficulty lies in being able
to find a set of several physical measures that would be
in tension one with another when adding a fifth force to
the play:

– The greater the tension, the tighter the potential
constraints on the modified gravity model.

– The more measurements we have, the greater the
likelihood of ending-up with a significant tension.

We tried to bring out such a tension with the GRACE-
FO setup deployed at two different altitudes (see Table VI
and Fig. 14). Nevertheless, this does not look practical
in actual experiments. Even though we manage to create
a small tension in the anomaly, one must bear in mind
that our fitting model consisting of a single point-mass
remains overly simplistic. More complex (and viable)
density models may relieve this tension very well. In

13 Note that this would also be true for the chameleon model as
yClm depends on the radial coordinate r.
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FIG. 15. Tensions in the inferred mountain’s characteristics. The blue elements refer to the altitude h1 = 376 km (r̃ = 1.059)
and the orange elements refer to the altitude h2 = 707 km (r̃ = 1.111). The anomaly observed in the inter-satellite distance at h1

(resp. h2) is best explained in the framework of Newtonian gravity by an extra point-mass with characteristics (m1.059
∗ , z1.059∗ )

(resp. (m1.111
∗ , z1.111∗ )) depicted by the black cross (resp. gray circle) in panel a)a, which minimizes the anomaly down to

1.3× 10−6 m (resp. 2.6× 10−7 m). In panel a), the darker contours map to an anomaly below 3× 10−6 m while the lighter ones
map to an anomaly below 7× 10−6 m. The gray shaded area is not physically accessible as it corresponds to a ‘negative extra
mass’ in vacuum. Panel b) (resp. c)) represent the anomaly along m̃∗ at z̃r̃∗ (resp. z̃∗ at m̃r̃

∗). The anomaly peaks (maxima)
visible on panel c) correspond to the horizontal feature seen previously in Fig. 14-b) around z̃∗ = 1.06.

a Note that the pairs (mr̃
∗, z

r̃
∗) are different from the ones reported in Table VI for two reasons: (i) here, we minimize the anomaly in the

inter-satellite distance between the “modified gravity without extra mass” case and the “Newtonian gravity with extra mass” case,
which is different from minimizing the objective function f given by Eq. (25); and (ii) we allowed ourselves to modify the initial
inter-satellite distance for the two considered altitudes in order to better showcase the tension.

short, the ultimate goal of constraining the chameleon
model with space-based geodesy is impeded by:

– the uncertainty on the source of gravity, that is the
density model;

– the uncertainty on the measurements themselves;

– all the other forces acting on a satellite, ranging
from atmospheric drag and solar radiation pressure,
to third-body perturbation, which also come with
error bars in our models. Note that these perturb-
ing forces are also a nuisance for geodesy, hence the
use of accelerometers on board satellites [22, 70].

In Appendix G, we further look at orbital periods at
two different altitudes and compute their difference, in a
Newtonian framework and in a modified gravity frame-
work.

V. Discussion and conclusion

Effect of a mountain

This article investigated the testability of chameleon
gravity by space geodesy experiments, with a focus on
the influence of the local landform and the atmosphere.
The motivations were twofold. First, viable regions of the
chameleon parameter space all map to a screened Earth,
that is only a thin-shell contributes to the fifth force.
Therefore, it seemed important to study departures from
spherical symmetry, hereby embodied by a mountain.
Second, while published works sometimes account for the
atmosphere in their study, the models implemented are
simplistic (often one layer of constant density) and the
determination of whether it has a thin-shell is based on
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rather qualitative arguments. Addressing such questions
is not possible by means of analytical techniques alone
due to the complexity of the physical models we wished
to study, and to the nonlinear nature of the chameleon
equation of motion. We thus resorted to numerical sim-
ulations — performed with the code femtoscope — to
conduct this work.

We obtained the chameleon contribution to the total
gravitational potential of a mountainous planet, scanning
through an extended region of the parameter space. As
already pointed out in Ref. [47], the unscreened regime
shares similarities with pure Newtonian gravity in that,
in both cases, the fields are sourced by the entire mass
of the main body. Consequently, the chameleon poten-
tial in the unscreened regime is roughly the same as
the Newtonian potential up to an affine transform (and
the same goes for the accelerations). As we enter the
screened regime however, the multipole expansion of the
chameleon field starts to depart from that of the Newto-
nian potential, revealing a distinct signature. In terms
of acceleration, the chameleon acceleration vector is a
bit more directed towards the mountain compared to the
Newtonian acceleration. Their norm ratio remains small
though, bounded from above by ∼ 10−6 at the equivalent
of LEO altitudes in the atmosphere-free case14.

Effect of an atmosphere

Based on our study of three distinct atmospheric den-
sity profiles, we found that the addition of an extra layer
of air surrounding the main body can mitigate the ef-
fect of the fifth force. We showed that there exists a
threshold on the value of the parameter α. Above this
threshold, the atmosphere acts as an attenuator, effec-
tively reducing the chameleon acceleration by a certain
amount compared to the case without atmosphere. Be-
low this cutoff, the effect of the atmosphere is more dras-
tic: any non-radial dependence of the scalar field vanishes
— the mountain is plainly invisible. For even smaller val-
ues of α, the atmosphere itself becomes screened, and the
chameleon field is thereupon fully determined by the at-
mospheric density profile. As we saw, it is even possible
in this case to enhance the radial fifth force at given al-
titude with respect to the atmosphere-free case. This
study represents a step forward with respect to previous
work discussing the influence of the atmosphere. More-
over, this clearly gives the edge to bodies devoid of at-

14 It is insightful to compare this ratio with the ratio of the So-
lar radiation pressure over the Newtonian acceleration, which
is around 10−8 [51]. Despite being so tiny, the Solar radiation
pressure perturbing acceleration, when integrated over many or-
bits, is enough to cause significant drifts of orbital elements [54].
What makes the chameleon acceleration difficult to distinguish
from the Newtonian acceleration is the fact that they are both
sourced by the same body.

mosphere when it comes to select a Solar System site for
testing this screened scalar-tensor model.

Space geodesy experiments

Our knowledge of the geopotential comes to a large
extent from spaceborne geodesy. From this standpoint,
we thus investigated whether constraints could be put
on modified gravity models using satellites in orbit. For
that purpose, we performed orbit propagations, with and
without the putative fifth force, and studied the resulting
anomaly15 on several observables (such as the variations
of the distance between two satellites following each other
as in the GRACE and GRACE-FO setups). While the
anomalies we find are technically well within the detec-
tion range of current on-board and ground-based space-
technology, we showed that uncertainties in the model
for the distribution of matter are large enough to allow
for degeneracies.
We laid emphasis on the fact that one way to distin-

guish a chameleon acceleration from a slight change of
the Earth density model in a purely Newtonian frame-
work is to rely on experiments performed at (at least)
two different altitudes. Indeed, in the regime where the
Earth (or any other planetary body) is screened, the
chameleon acceleration does not decrease as r−2 like the
Newtonian acceleration (this is particularly stressed in
Refs. [7, 66]). If the chameleon field actually exists, then
inferring density models under the assumption of Newto-
nian gravity at several altitudes should result in tensions
between those models. Of course, these tensions should
be accounted for in a probabilistic way, which is beyond
the scope of this article. Conversely, if it were not for
all the other perturbing forces that greatly complexify
the model, this method could be used to put constraints
on the chameleon model, and more generally on massive
scalar-tensor theories.

Back-reaction of a satellite on the scalar field

We also took into account the back-reaction of an ob-
ject as small as a satellite in orbit on the scalar field.
For the first time, we went beyond the various approx-
imations found in the literature and computed the full
solution of the {Earth + Satellite} system using femto-
scope. This involves taking advantage of the h-adaptivity
technique granted by FEM. We could then compute the
overall fifth force acting on an object with a simple ge-
ometry and characteristics close to that of a real space-
craft (length-scale and density). Surprisingly, as long as

15 The term ‘anomaly’ is used to refer to the difference for a
given observable between the {Newtonian gravity} case and the
{Newtonian gravity + fifth force} case.

5.2. Article 163



26

the satellite is not screened and despite the background
field being disturbed, the global chameleon acceleration
undergone by the satellite is the same as the one a point-
particle (not disturbing the background field) would ex-
perience. We provide mathematical insights into why this
is the case in Appendix E. In the screened regime how-
ever, the net fifth force vanishes to zero. The transition
between those two regimes occurs over a narrow band in
the chameleon parameter space.

Outlook

While we focused on fifth force searches, other venues
exist to test scalar-tensor theories. For instance, in
any such theory involving a conformal coupling of the
scalar field ϕ to matter fields in the Einstein frame, the
gravitational redshift effect has a ϕ-dependence (see e.g.
Ref. [40] for the chameleon’s contribution to this effect).
We will take a deeper look at this effect in an upcom-
ing article. Most importantly, we will tackle the question
of what is actually measurable, and with which precision.
As a complement to fifth force searches where we look for
dynamical effects whose amplitude depends inherently
of the field’s gradient, gravitational redshift (or equiva-
lently, gravitational time-dilation) can be measured in a
static configuration and is sensitive to the field’s strength.
Whether clocks are put into orbit (as envisaged in the
ACES mission [65]) or left on Earth, they have become
so precise16 that their constraining power (i.e. the pos-
sibility to use this technology to rule out modified grav-
ity models) has to be quantified. The bound given in
Ref. [40] has to be revisited, given two decades elapsed
since the writing of this article.
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A. Conversion of cosine and sine coefficients to
bare coefficients

Let f : S2 → R be a real-valued function on the unit
sphere and L ∈ N∗ a maximum spherical harmonic de-
gree. The truncated spherical harmonic expansion, which
defines an approximation ftrunc ≃ f , may be written as

ftrunc(n) =
L∑

m=0

L∑

l=m

[
ClmP̄lm(cos θ) cos(mφ)

+ SlmP̄lm(cos θ) sin(mφ)
] (A1)

with n = (θ, φ) and P̄lm the normalized associated
Legendre functions17 which relate to their unnormalized
counterparts Plm via

P̄lm(x) =

√
(2− δm0)(2l + 1)

4π

(l −m)!

(l +m)!
Plm(x) . (A2)

We want to convert the cosine and sine coefficients
(Clm, Slm) into the bare coefficients flm that appear in
the usual expansion

ftrunc(n) =
L∑

l=0

+l∑

m=−l

flmYlm(n) . (A3)

In order to express (Clm, Slm) as a function of flm, we
start from Eq. (A3) and interchange the order of sum-
mations over l and m to obtain

16 High-precision clocks, such as optical lattice clocks, currently
achieve astonishing levels of accuracy with a fractional frequency
uncertainty of approximately 10−19 to 10−20 [9, 15].

17 In this respect, the definition of normalized associated Legendre
functions is consistent with the definition of orthonormalized

spherical harmonic functions. See Table 1 from Ref. [77].
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ftrunc(n) =
L∑

l=0

+l∑

m=−l

flmYlm(n)

=
L∑

l=0

[
+l∑

m=0

flmP̄lm(cos θ) cos(mφ) +
−l∑

m=−l

flmP̄l|m|(cos θ) sin(|m|φ)
]

=
L∑

l=0

[
+l∑

m=0

flmP̄lm(cos θ) cos(mφ) +
+l∑

m′=1

fl,−m′ P̄lm′(cos θ) sin(m′φ)

]

=

L∑

l=0

[
+l∑

m=0

ClmP̄lm(cos θ) cos(mφ) +

+l∑

m=0

SlmP̄lm(cos θ) sin(mφ)

]

=

L∑

m=0

L∑

l=m

[
ClmP̄lm(cos θ) cos(mφ) + SlmP̄lm(cos θ) sin(mφ)

]
.

(A4)

The above computation is consistent if we set

Clm = flm if m ≥ 0 ,

Slm =

{
0 if m = 0

fl,−m if m ≥ 1
.

(A5)

B. Verification of the scaling relation for the
spherical harmonic coefficients of the

Newtonian potential

The Newtonian potential defined by Eq. (1) is special
in that its bare spherical harmonic coefficients Φlm(r) can
be rescaled according to Eq. (13) which yields altitude-
independent coefficients. We denote these rescaled co-
efficients yNlm. This peculiar property can be used as
an additional means of test ascertaining the quality of
our numerical approximations. Indeed, from our numer-
ical Φ(r, θ) maps of the Newtonian potential, we can
compute the rescaled coefficients yNl0 at several altitudes
and check whether or not they actually depend on the
altitude. Fig. 16 shows the result of this process for
r̃ ∈ {1.059, 1.111, 1.314} and l ∈ {1, · · · , 10}. At first
sight, the scaling relation seems consistent with the nu-
merical data at low degree. It is however more difficult
to verify it at higher altitude and for higher degrees as
the rescaling process involves multiplying the bare coef-
ficients by r̃l+1 which quickly blows up to infinity. The
bare coefficients being themselves plagued with numer-
ical errors — they are derived from spherical harmonic
decomposition algorithm on top of FEM computations —
we clearly do not expect this relation to perfectly hold in
this regime.

1 2 3 4 5 6 7 8 9 10

l (degree)

10−7

2× 10−7

3× 10−7

4× 10−7 yNl0 (r̃ = 1.059)

yNl0 (r̃ = 1.111)

yNl0 (r̃ = 1.314)

FIG. 16. Verification of the scaling relation between bare
spherical harmonic coefficients Φl0(r̃) and dimensionless coef-
ficients yN

l0 (r̃) obtained numerically. The rescaled coefficients
should in principle be independent of the altitude at which
they are computed.

C. Additional checks on 2D numerical
computations

In this Appendix, we present two additional checks
that were performed on all FEM computations of the
chameleon field done in this article. We mainly elabo-
rate on the ideas introduced in Sec. IID 2.
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1. Check of the radial evolution of the chameleon
field

The {Earth + mountain} system constitutes a small
departure from spherical symmetry. Therefore, the be-
havior of the chameleon field in the outgoing radial di-
rection should be close to that of the {Earth} system,
which in turn is spherically symmetrical, and so purely
radial. From a numerical viewpoint, such radial profiles
are much easier to obtain than a less symmetrical case.
Indeed in the former case, the Klein-Gordon equation (7)
boils down to a simple ODE

α
d

dr̃

(
r̃2

dϕ̃

dr̃

)
= r̃2ρ̃− r̃2ϕ̃−(n+1) , (C1)

where numerical resources (density of DOFs, order of the
finite elements) can be increased without blowing up the
time complexity of the algorithm. As a result, we can
obtain benchmark solutions at relatively low cost, for all
the cases discussed in this study treated as purely radial
(i.e. without mountain, all other physical parameters

being equal). We denote ϕ̃1D(r̃) such benchmarks, and

ϕ̃2D(r̃, θ) the 2D field profiles presented throughout the
article. We then implement the following metric:

for r̃ > 1 + hm, Γr̃ =

min
θ∈[0,π]

∣∣∣ϕ̃1D(r̃)− ϕ̃2D(r̃, θ)
∣∣∣

∣∣∣ϕ̃1D(r̃)
∣∣∣

. (C2)

Note that this metric has the advantage of being rel-
ative, as opposed to the absolute criteria discussed in
Sec. IID 2.

Tab. VII includes Γr̃ for radial coordinates r̃ ∈
{1.059, 1.111, 1.314, 4.645, 6.617} and for all (α, atmo-
spheric scenario) pairs considered in this work. Although
there is no physical motivation for having Γr̃ ≡ 0 system-
atically, the fact that it remains below one part in a thou-
sand in the vast majority of cases reflects the good agree-
ment between the radial benchmark and ϕ̃2D. By way of
comparison, applying the same metric on the Newtonian
potential yields Γr̃ ∼ 10−7. Evaluating this metric at
different altitudes is also a way to make sure that none
of the 2D solutions behaves unexpectedly in the radial
direction.

2. Check of the strong residual amplitude with
respect to each term

As mentioned in Sec. IID 2, the strong residual alone
does not provide much insight into how good the numer-
ical approximation is at the end of Newton’s iterations.
However, it is meaningful to compare locally the size of
the residual against the size of each term in it, namely

∣∣∣α∆̃ϕ̃
∣∣∣ , |ρ̃| ,

∣∣∣ϕ̃−(n+1)
∣∣∣ . (C3)

A numerical approximation deemed acceptable must be
such that the residual should be at least a few orders of
magnitude smaller than the dominant term in (C3).
This criterion was assessed for five specific values of

r̃ ∈ {1.059, 1.111, 1.314, 4.645, 6.617} on all numerical ap-
proximations discussed in this study. In Fig. 17, we show
several examples of scatter plots that allowed us to do
this monitoring. Each sub-panel corresponds to a given
altitude and a given (α, atmospheric scenario) pair —
both randomly chosen —, and depicts the absolute value
of the residual (black dots) vs terms appearing in (C3)
(pastel-colored squares) as functions of θ. We see that
the residual remains well-below the dominant term in
absolute values.

D. Spherical harmonic coefficients at different
altitudes

For the sake of comprehensiveness, we provide his-
tograms of the spherical harmonic coefficients of both
the Newtonian potential Φ and the chameleon potential
Ψ (up to degree l = 200) at three altitudes in Fig. 18
(see Sec. III A 1 in the main text). The specific shapes
of both potential decompositions hold at all three alti-
tudes, although they get squashed toward lower degrees
the higher we go. The oscillations that we observe at
high degrees for r̃ ∈ {1.111, 1.314} are not deemed phys-
ical but can be rather attributed to numerical noise.

E. Further insights into the fifth force experienced
by an unscreened satellite

In Sec. IVA, we computed the total chameleon accel-
eration undergone by a satellite in orbit. We found that,
as long as the satellite was not screened, the resulting
force (computed numerically by integrating the gradient
of the scalar field over the whole volume occupied by
the satellite) was equal to that acting on an equal mass
point-like particle. In other words, the back-reaction of
the satellite on the scalar field, in the unscreened regime,
is such that there is no self-force perturbing the Jordan
frame geodesics. In this Appendix, we provide an expla-
nation for this phenomenon observed through numerical
simulations, based on several approximations that can be
justified in the {Earth + Satellite} system.

1. The case of Newtonian gravity

Given two massive bodies labeled by the subscripts
i ∈ {1, 2}, the total gravitational force acting on the
second body is

F2 = −
∫

V2

∇ΦN (x) dm(x) .
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α r̃ = 1.059 r̃ = 1.111 r̃ = 1.314 r̃ = 4.645 r̃ = 6.617

N
o
-A

tm
o
sp
h
er
e

10−4 0 0 0 8.7× 10−7 8.0× 10−7

10−5 0 0 0 7.9× 10−7 7.4× 10−7

10−6 2.6× 10−3 1.4× 10−3 5.0× 10−4 4.2× 10−5 2.7× 10−5

10−10 0 0 0 2.5× 10−6 1.7× 10−6

10−11 6.9× 10−6 1.7× 10−6 1.7× 10−6 1.7× 10−6 1.7× 10−6

10−12 6.9× 10−6 6.9× 10−6 6.9× 10−6 6.8× 10−6 6.9× 10−6

10−14 3.9× 10−5 3.9× 10−5 3.9× 10−5 3.8× 10−5 3.8× 10−5

10−15 1.5× 10−5 1.4× 10−5 1.4× 10−5 1.3× 10−5 1.3× 10−5

10−16 1.3× 10−5 7.5× 10−6 3.3× 10−6 9.7× 10−7 9.0× 10−7

10−18 1.7× 10−4 1.9× 10−4 2.1× 10−4 2.0× 10−4 2.0× 10−4

10−20 0 0 1.1× 10−4 9.0× 10−6 5.1× 10−6

10−21 0 0 5.1× 10−5 2.9× 10−6 1.3× 10−6

10−23 0 0 1.7× 10−5 5.7× 10−9 4.5× 10−9

10−24 0 0 1.1× 10−6 4.8× 10−10 4.3× 10−10

10−25 0 0 0 4.5× 10−11 4.9× 10−11

10−26 0 0 1.1× 10−12 4.7× 10−12 4.7× 10−12

10−27 0 0 0 4.0× 10−13 5.8× 10−13

10−28 5.7× 10−14 0 0 2.8× 10−14 4.3× 10−14

T
en

u
o
u
s

10−6 4.5× 10−6 4.3× 10−6 4.1× 10−6 4.0× 10−6 3.6× 10−6

10−10 4.7× 10−6 4.7× 10−6 4.7× 10−6 4.8× 10−6 4.4× 10−6

10−11 0 0 0 6.5× 10−6 6.2× 10−6

10−12 1.7× 10−3 9.4× 10−4 3.4× 10−4 4.0× 10−5 3.0× 10−5

10−14 1.0× 10−3 5.7× 10−4 2.4× 10−4 6.0× 10−5 5.4× 10−5

10−15 2.4× 10−4 1.5× 10−4 7.4× 10−5 2.6× 10−5 2.3× 10−5

10−17 1.9× 10−5 1.3× 10−5 8.4× 10−6 5.3× 10−6 4.7× 10−6

10−20 1.9× 10−6 2.0× 10−6 2.1× 10−6 2.5× 10−6 2.3× 10−6

E
a
rt
h
-l
ik
e

10−5 7.5× 10−6 6.9× 10−6 5.7× 10−6 4.3× 10−6 3.9× 10−6

10−6 4.5× 10−6 4.3× 10−6 4.1× 10−6 4.0× 10−6 3.6× 10−6

10−8 2.6× 10−3 1.4× 10−3 5.0× 10−4 4.7× 10−5 3.1× 10−5

10−10 3.8× 10−7 2.8× 10−6 4.3× 10−6 4.7× 10−6 4.4× 10−6

10−12 1.1× 10−2 6.2× 10−3 2.2× 10−3 2.2× 10−4 1.5× 10−5

10−14 2.5× 10−3 1.4× 10−3 5.5× 10−4 8.8× 10−5 7.2× 10−5

10−15 4.9× 10−5 3.6× 10−5 2.5× 10−5 1.9× 10−5 1.9× 10−5

10−17 1.1× 10−5 8.3× 10−6 6.7× 10−6 5.7× 10−6 5.3× 10−6

10−20 0 9.7× 10−7 2.1× 10−6 2.4× 10−6 2.2× 10−6

10−23 0 7.7× 10−5 1.7× 10−5 7.3× 10−4 1.4× 10−3

D
en

se

10−6 4.3× 10−6 4.3× 10−6 4.1× 10−6 4.0× 10−6 3.6× 10−6

10−8 1.9× 10−5 1.1× 10−5 5.9× 10−6 4.1× 10−6 3.7× 10−6

10−10 0 0 4.8× 10−2 3.2× 10−3 2.1× 10−3

10−15 0 0 0 2.8× 10−5 2.7× 10−5

10−18 0 0 0 3.3× 10−6 2.9× 10−6

10−20 0 0 0 1.7× 10−6 1.6× 10−6

10−21 0 0 0 5.3× 10−7 6.3× 10−7

10−25 0 0 0 0 0

TABLE VII. Metric Γr̃ for r̃ ∈ {1.059, 1.111, 1.314, 4.645, 6.617} and for all (α, atmospheric scenario) pairs considered in this
work.
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FIG. 17. Representation of the strong residual (black circles) and the various terms of the dimensionless Klein-Gordon equation
(7) (pastel-colored squares) in absolute values as a function of θ ∈ [0, π]. Each column corresponds to a given radial coordinate
r̃ ∈ {1.059, 1.314, 4.645} whereas each row corresponds to a given pair (α, atmospheric scenario). In all cases, the absolute value
of the strong residual remains at least several orders of magnitude below the dominant term of the Klein-Gordon equation,
which is in line with the criterion set out in Sec. IID 2. The splitting of the curves associated with each term is due to the fact
that we use second-order finite elements.

FIG. 18. Spherical harmonic coefficients of the Newtonian potential (top row) and of the chameleon potential for α = 10−25

(bottom row). The spectra are computed at three different altitudes, namely r̃ ∈ {1.059, 1.111, 1.314}.
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In the above expression, V2 is the volume occupied by the
body 2 and ΦN is the total Newtonian potential created
by the two bodies. Thanks to the linearity of the Pois-
son equation governing the Newtonian potential, one can
apply the superposition principle ΦN = Φ1 + Φ2, where
Φi is the potential sourced by the body i alone. The ∇
operator and the integral being linear, we get

F2 = −
∫

V2

∇Φ1(x) dm(x)−
∫

V2

∇Φ2(x) dm(x) .

Physically speaking, the first integral represents the force
exerted by 1 on 2 while the second integral is the force
exerted by 2 on 2, which must be zero according to New-
ton’s third law. This can be mathematically proven fairly
easily given that

Φ2(x) = −G
∫

V2

dm(x′)
∥x− x′∥

and ∇ (
∥x− x′∥−1

)
= − x− x′

∥x− x′∥3 .

We thus get
∫

V2

∇Φ2(x) dm(x) = G

∫

V2

(∫

V2

x− x′

∥x− x′∥3 dm(x′)

)
dm(x)

=
G

2

∫

V2

∫

V2

x− x′

∥x− x′∥3 dm(x′) dm(x)

− G

2

∫

V2

∫

V2

x′ − x

∥x′ − x∥3 dm(x) dm(x′)

= 0

In conclusion, despite disturbing the overall Newtonian
potential, the body 2 experiences the force sourced by the
body 1 only. Furthermore, if the body 2 is small enough
that ∇Φ1 is approximately constant over V2, we recover
the point-mass approximation, i.e. F2 ≃ −m2∇Φ1(x2).

2. The case of the chameleon field in the
unscreened regime

The above demonstration relies mainly on the superpo-
sition principle, which is lost in the case of the chameleon
field because of the nonlinear nature of the Klein-Gordon
equation governing the scalar field Eq. (4). Nonetheless,
let ϕtot := ϕ⊕ + δϕ be the chameleon field of the {Earth
+ Satellite} system, where ϕ⊕ is the background field of
the Earth alone. Working with the dimensionless version
of the Klein-Gordon equation (7), we have by definition




α∆ϕtot = (ρ⊕ + ρSat + ρvac) (x)− ϕ−(n+1)

tot

α∆ϕ⊕ = (ρ⊕ + ρvac) (x)− ϕ−(n+1)
⊕

.

In the unscreened case, δϕ can indeed represent a small
perturbation with respect to the background field ϕ⊕ —

see e.g. the case illustrated in Fig. 10. Then, the nonlin-
ear term can be approximated as

ϕ
−(n+1)
tot ≃ ϕ−(n+1)

⊕ − (n+ 1)ϕ
−(n+2)
⊕ δϕ ,

so that

α∆δϕ ≃ ρSat(x) + (n+ 1)ϕ
−(n+1)
⊕

δϕ

ϕ⊕
. (E1)

The r.h.s. of Eq. (E1) can be further simplified if we
assume that, at the satellite’s altitude, ϕ⊕ is close to
its asymptotic value in vacuum, that is ϕ⊕(xSat) ∼
ρ−1/(n+1). Then we have, depending on whether x ∈
VSat,

– Inside the satellite: ρSat(x) ̸= 0 and so

ϕ
−(n+2)
⊕ δϕ

ρSat(x)
∼ δϕ

ϕ⊕

ρvac
ρSat

≪ 1 .

Consequently, Eq. (E1) can be legitimately approx-
imated by a Poisson equation inside the satellite.

– Outside the satellite: ρSat(x) = 0. We still have
δϕ/ϕn+2

⊕ ≪ 1 and δϕ→ 0 as one moves away from

the satellite (while ϕ
−(n+2)
⊕ remains bounded) so

that we essentially recover a Laplace equation.

In brief, we showed that, under some assumptions,
δϕ obeys a Poisson equation inside the satellite, and a
Laplace equation outside the satellite. The Newtonian
potential sourced by the satellite (denoted by Φ2 in the
previous discussion) is governed by the same partial dif-
ferential equation. Yet, same equations have the same
solutions, which means that δϕ has a role similar to Φ2.
Therefore, following the demonstration made in the case
of the Newtonian potential above, we get

F5th

Sat = −
β

MPl

∫

VSat

∇ϕtot dm(x)

≃ − β

MPl

∫

VSat

∇ϕ⊕ dm(x) ,

(E2)

QED.

F. Mathematical proof of the absence of symmetry
in the orbital dynamics

Context & Notations. In Sec. IVD, we have seen on
simulation results that, although the gravity field is ex-
actly symmetric with respect to the line θ = 0, the dy-
namics of a point-mass in orbit is not. Let us translate
this statement into mathematical terms. Let {X∗(t) , t >
0} be a trajectory in phase space that is a solution of the

ODE of interest, i.e. ∀t > 0, Ẋ∗(t) = F (t,X∗(t)). At
some point, the particle will pass over the mountain so
that we can define tm, the time at which θ(tm) = 0 for the
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FIG. 19. Visual support for the proof.

first time. Demanding that the trajectory is symmetric
with respect to θ = 0 actually means

∀t ∈ [0, tm] , X∗(t) = X∗(2tm − t) . (F1)

The state vector X∗(t) has components

X∗(t) =
[
δr(t), δ̇r(t), δθ(t), δL(t)

]

= [x1(t), x2(t), x3(t), x4(t)] .

We furthermore recall that the vector field F : (s,Y) ∈
R× R4 7→ (F1, F2, F3, F4) ∈ R4 is given by

F1 = y2

F2 =
(L0 + y4)

2

(a+ y1)3
+ g(a+ y1, θ0 + ωs+ y3)

F3 =
L0 + y4
(a+ y1)2

− ω

F4 = h(a+ y1, θ0 + ωs+ y3) .

(F2)

In the above, functions g and h refer to the gravita-
tional potential partial derivatives −∂rU and −∂θU re-
spectively.

Theorem. The perturbed Keplerian problem with
vector field (F2) is not symmetric on both sides of the
mountain in the general case.

Proof by contradiction. Let us suppose that (F1)
holds and derive a (necessary) condition on function g
and h. Because x1 is continuous, there exists tp ∈ [0, tm[
such that x1 is monotonous over [tp, tm]. Letting tq =
2tm − tp, x1 is also monotonous over [tm, tq] due to the
symmetry (F1). We further set

{
A = x1(tp) = x1(tq)

B = x1(tm)
.

Notations introduced so far are shown in Fig. 19. Let us
assume for now that A ̸= B so that x1 is actually strictly

monotonous over [tp, tm] and [tm, tq] respectively. Then
V := [min(A,B),max(A,B)] is not a degenerate interval
and we can define

xp1 : [tp, tm]→ V

t 7→ x1(t)

xq1 : [tm, tq]→ V

t 7→ x1(t)

together with their respective inverse

zp1 : V → [tp, tm]

u 7→ zp1(u)

zq1 : V → [tm, tq]

u 7→ zq1(u)

.

We will make use of the following property on the inverse
functions

∀u ∈ V , zp1(u) = 2tm − zq1(u) . (F3)

Indeed, for u ∈ V , there exist two unique times tα ∈
[tp, tm] and tβ ∈ [tm, tq] such that u = xp1(tα) = xq1(tβ).
Reciprocally, tα = zp1(u) and tβ = zq1(u). Then

zp1(u) = zp1(x
q
1(tβ)) = zp1(x1(tβ)) = zq1(x1(2tm − tβ))

= zp1(x
p
1(2tm − tβ)) = 2tm − tβ

= 2tm − zq1(u) .

We then compute the integral

I :=

∫ tq

tp

dx1
ds

(s)x2(s) ds

by two different ways. On the one hand,

I =

∫ tq

tp

∣∣∣∣
dx1
ds

(s)

∣∣∣∣
2

ds (F4)

because ẋ1(s) = x2(s) along the trajectory. On the other
hand,

I =

∫ tm

tp

dx1
ds

(s)x2(s) ds+

∫ tq

tm

dx1
ds

(s)x2(s) ds ,

from which we can make the changes of variable u =
xp1(s) in the first integral and u = xq1(s) in the second
one, yielding

I =

∫ B

A

x2(z
p
1(u)) du+

∫ A

B

x2(z
q
1(u)) du

=

∫ B

A

x2(z
p
1(u)) du+

∫ A

B

x2(2tm − zp1(u)) du

= 0 because of symmetry (F1).

From Eq. (F4), we immediately deduce that ẋ1 ≡ 0 on
[tp, tq]. The fact that x1 is constant contradicts our pre-
vious assumption that A ̸= B. Therefore, A has to be
equal to B. Put in perspective with the fact that x1 is
monotonous on [tp, tm] and on [tm, tq], we have
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r x1 is constant over [tp, tq]. Let H be this constant
and define the radial distance R := a+H.r ẋ2 ≡ 0 on [tp, tq] as well.

The final stage of this demonstration follows from the
specific form of the vector field F . Let s ∈ [tp, tq]. For
convenience, we recall that θ = θ0 + ωs + x3(s) and we
denote by ∂1, ∂2 the partial derivatives of a two-variable
function with respect to the first and second variable re-
spectively. Taking the derivative with respect to s in the

second equation of the ODE system ˙X∗(s) = F (s,X∗(s))
yields

d

ds
{ẋ2(s)} =

d

ds

{
[L0 + x4(s)]

2

R3
+ g(R, θ)

}
= 0

⇐⇒ 2ẋ4(s)
L0 + x4(s)

R3
+ [ω + ẋ3(s)] ∂2g(R, θ) = 0 .

In this last equation, we can substitute ẋ4 and ẋ3 by the
r.h.s. of the ODE, yielding

[L0 + x4(s)] [2h(R, θ) +R∂2g(R, θ)] = 0 . (F5)

The total angular momentum L(s) = L0 + x4(s) =

R2θ̇(s) cannot be zero, because otherwise the point-
mass would be frozen it time. Moreover, the interval
J := {θ0 + ωs+ x3(s) , s ∈ [tp, tq]} is not a singleton be-
cause again, the point-mass cannot remain frozen in time.
Therefore, Eq. (F5) leads straightforwardly to

∀θ ∈ J , 2h(R, θ) +R∂2g(R, θ) = 0 . (F6)

Replacing functions g and h by their definition in relation
to the gravitational potential U , we arrive at the final
conclusion that ∀θ ∈ J :

∂θ [2U(R, θ) +R∂rU(R, θ)] = 0

i.e. 2U(R, θ) +R∂rU(R, θ) = Cst
(F7)

Condition (F7) is very restrictive on the form of admis-
sible gravitational potentials and one can check that the
potential of the {sphere + mountain} system that we
have been using throughout this article does not satisfy
this criterion.

Conclusion. We found a necessary condition on the
gravitational potential (F7) for the dynamics of a point-
mass in orbit to be symmetric with respect to θ = 0.
As a remark, the potential created by a perfect sphere
trivially satisfies the criterion.

G. Orbital periods

In classical central force problems, the period T of a
satellite in circular orbit around a planet can be expressed
as a function of the distance r to the planet’s center and
the acceleration a it undergoes: T = 2π

√
r/a. A direct

consequence of this formula is that the addition of the
chameleon acceleration to the Newtonian one will slightly
modify the orbital period. In Sec. IVD5, we laid empha-
sis on the fact that the use of different altitudes was one
possible way of circumventing the issue of model uncer-
tainties. We can thus examine the difference in orbital
period for the two gravity models, namely

∆TNew = 2π

(√
R⊕ + h1
aNew(r1)

−
√
R⊕ + h2
aNew(r2)

)
,

∆T cham = 2π

(√
R⊕ + h1

(aNew + acham)(r1)

−
√

R⊕ + h2
(aNew + acham)(r2)

)
,

with r = R⊕ + h and aNew(r1) = µ⊕/r2.

Fig. 20 illustrates the difference D = ∆TNew−∆T cham

(expressed in seconds) in the (h1, h2)-plane, for several
values of the parameter α. Equivalently, one can param-
eterize deviation from Newtonian gravity as ∆TNew =
∆T cham(1 + ϵ). Then we have ϵ = ∆TNewD. In order to
remain consistent with the rest of this article, we have
fixed Λ = ΛDE and n = 1. The setup being spherically
symmetric, the numerical computation of the chameleon
fifth force can be performed with 1D finite elements. We
can see that the orbital period anomaly D can be greater
than 10−5 s. This effect scales linearly with the num-
ber of completed orbits: after 100 000 orbits, one can
expect the anomaly to be of the order of a second —
which would take approximately 20 years for a satellite
orbiting 1000 km above the Earth surface (ignoring all
the perturbing forces otherwise present in a realistic sce-
nario).
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[23] Cimrman, R., Lukeš, V. and Rohan, E. Multiscale fi-
nite element calculations in python using sfepy. Ad-
vances in Computational Mathematics, 45(4):1897–1921,

172 CHAPTER 5. Fifth force effects in Earth orbit



35

Aug 2019.
[24] Ciufolini, I. et al. A test of general relativity using

the lares and lageos satellites and a grace earth grav-
ity model. The European Physical Journal C, 76(3):120,
Mar 2016.

[25] Ciufolini, I. et al. The lares 2 satellite, general relativity
and fundamental physics. The European Physical Journal
C, 83(1):87, Jan 2023.

[26] Dvali, G., Gruzinov, A. and Zaldarriaga, M. The accel-
erated universe and the moon. Phys. Rev. D, 68:024012,
Jul 2003.

[27] Dziewonski, A.M. and Anderson, D.L. Preliminary ref-
erence earth model. Physics of the Earth and Planetary
Interiors, 25(4):297–356, 1981.

[28] Everitt, C.W.F. et al. Gravity probe b: Final results of
a space experiment to test general relativity. Phys. Rev.
Lett., 106:221101, May 2011.

[29] Frei, W. Load ramping of nonlinear problems. comsol
Blog, Nov 2013. Accessed: May 26th, 2023.

[30] Frei, W. Nonlinearity ramping for improving convergence
of nonlinear problems. comsol Blog, Dec 2013. Accessed:
May 26th, 2023.

[31] Fukushima, T. Numerical computation of gravitational
field for general axisymmetric objects. Monthly Notices
of the Royal Astronomical Society, 462(2):2138–2176, 07
2016.

[32] Gabriel, G. et al. Anomalies of the Earth’s total magnetic
field in Germany – the first complete homogenous data
set reveals new opportunities for multiscale geoscientific
studies. Geophysical Journal International, 184(3):1113–
1118, 03 2011.

[33] Geuzaine, C. and Remacle, J.F. Gmsh: A 3-d finite
element mesh generator with built-in pre- and post-
processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009.

[34] Gu, J.A. and Lin, W.T. Solar-system constraints on f(r)
chameleon gravity, 2011.

[35] Hairer, E., Wanner, G. and Lubich, C. Conservation of
First Integrals and Methods on Manifolds, pages 97–142.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[36] Jaffe, M. et al. Testing sub-gravitational forces on atoms
from a miniature in-vacuum source mass. Nature Physics,
13(10):938–942, Oct 2017.

[37] Jain, B., Vikram, V. and Sakstein, J. Astrophysical tests
of modified gravity: Constraints from distance indica-
tors in the nearby universe. The Astrophysical Journal,
779(1):39, nov 2013.

[38] Jones-Smith, K. and Ferrer, F. Detecting chameleon dark
energy via an electrostatic analogy. Phys. Rev. Lett.,
108:221101, May 2012.

[39] Katsuragawa, T. et al. Gravitational waves in f(r) grav-
ity: Scalar waves and the chameleon mechanism. Phys.
Rev. D, 99:124050, Jun 2019.

[40] Khoury, J. and Weltman, A. Chameleon cosmology.
Phys. Rev. D, 69:044026, Feb 2004.

[41] Khoury, J. and Weltman, A. Chameleon fields: Awaiting
surprises for tests of gravity in space. Phys. Rev. Lett.,
93:171104, Oct 2004.

[42] Kozak, A. and Wojnar, A. Earthquakes as probing tools
for gravity theories, 2023.

[43] Kraiselburd, L. et al. Equivalence principle in chameleon
models. Phys. Rev. D, 97:104044, May 2018.

[44] Landerer, F.W. et al. Extending the global mass change
data record: Grace follow-on instrument and science data

performance. Geophysical Research Letters, 47(12), 2020.
[45] Langtangen, H.P. Computational Partial Differential

Equations. Springer Berlin Heidelberg, 2003.
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Chapter summary

We delved into the possibility of taking advantage of current space geodesy missions to provide
constraints on scalar-tensor theories of gravity with screening mechanism. Focusing on the
chameleon model, we shed new light on two long-standing issues, namely the influence of
the atmosphere on the fifth force experienced by a spacecraft and the backreaction of the
latter on the scalar field, and considered a deviation from spherical symmetry through the
implementation of a true to scale mountain. Simulating the dynamics of the GRACE-FO
pair of satellites which are assumed to be unscreened, we show that the anomaly brought
about by the scalar fifth force is comfortably within the range of sensitivity offered by current
space-born technology. However, the existence of uncertainties in the model, most notably the
fact that the distribution of matter within the Earth is poorly known, greatly mitigates the
constraining power of such tests. We explore one way around this deadlock which consists in
performing the same experiment at different altitudes.
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This last chapter further develops the idea put forward in the outlook section of our work [141], namely the
potential possibility to test scalar-tensor theories of gravity by means of redshift experiments. Building on the
theoretical aspects laid out in Chapt. 1, we derive the redshift expression in the framework of scalar-tensor
models and single out the scalar contribution in the Newtonian limit. As in Chapt. 5, we focus our discussion on
the chameleon model. Unlike fifth force effects, which are mainly dependent on the magnitude of the gradient
of the scalar field, it appears that the scalar contribution to the total redshift depends, for the most part, on
the field’s value itself. We then endeavor to show that precise redshift measurements could reveal the presence
of the scalar field. For this purpose, we imagine a thought experiment which guides us towards more realistic
experimental setups, in the laboratory and in space.
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Table 6.1: Compilation of the relevant field equations from Sec. 1.1.2. The Jordan-frame metric is conformally
related to the Einstein-frame metric through g̃µν = Ω2(ϕ)gµν . The tensors T (ϕ)

µν and T̃ (φ)
µν are given by Eq. (1.44)

and Eq. (1.55) respectively. We set ⊥µν= gµν +uµuν . We have assumed that the conformal function Ω is close to
unity, i.e. Ω(ϕ) = 1 + ω(ϕ) with |ω(ϕ)| ≪ 1 [otherwise the Newtonian limits in the Einstein and Jordan frames
would not be consistent with one another, see Eqs. (1.67–1.68) and the associated discussion].

6.1 Gravitational redshift in scalar-tensor theories

One of the most conspicuous features of scalar-tensor theories of gravity, as presented in Sec. 1.1, are fifth forces.
In theories with screening mechanisms (see Sec. 1.2), fifth forces can be greatly mitigated to pass existing tests
of gravity without compromising the very raisons d’être of such theories (e.g., explain cosmic acceleration).
Over the past two decades or so, a major research effort has been carried out to find new ways of constraining
screened scalar-tensor models, almost exclusively relying on fifth force effects in the case of the chameleon — see
e.g. the review articles [71, 151]. There, the 3-acceleration experienced by a test particle, owing to the presence
of the scalar field only, is given by

aϕ = −∇[lnΩ(ϕ)] = − β

MPl
∇ϕ (6.1)

in the Newtonian limit, see Sec. 1.1.3. This expression explicitly states the proportionality between the fifth
force and the field’s gradient. Consequently, experimental designs looking for such fifth forces generally try
to make the field’s gradient as large as possible [276], or look for ways to disentangle it from the Newtonian
gravitational attraction [157, 292–294], through ingenious mass distributions.

Nonetheless, there are other physical effects studied in the literature that can be leveraged for testing this
model aside from fifth force searches, notably:

– scalar radiation, in pulsating stars [182, 198, 295] or in compact binary systems [296, 297];

– interaction with photons , when one considers a non-zero coupling between the scalar field and photons [298,
299], but this is out of the scope of the framework laid out in Sec. 1.1.2.

Here, we want to assess whether gravitational redshift (or equivalently, gravitational time-dilation) can
constitute yet another venue for testing screened scalar-tensor theories. This idea is not new. Ref. [300]
establishes a rigorous derivation of the anomalous redshift arising from vector and scalar fields non-minimally
coupled to matter in the Einstein frame. The seminal article on the chameleon model [115] mentions in Sec. viii
the possibility of deriving constraints from the Vessot–Levine bound [25]. There, the authors perform a few
order-of-magnitude computations to argue that chameleons comfortably satisfy this bound. Ref. [125] also
underlines the fact that scalar-tensor theories predict a measured redshift different from that given in GR.

This section aims at deriving, under very general assumptions, the correct expression of the redshift in
scalar-tensor theories. Emphasis is laid on measurable quantities — in that respect, the expression thereby
obtained is put into perspective with the usual form of parameterized redshift violations, see Eq. (1.30). Finally,
we show that the chameleon model could be quite sensitive to redshift tests in some specific cases, precisely
because of their inherent nonlinear character. In this endeavor, we frequently need to refer to equations that were
derived back in Chapt. 1. For the sake of convenience, the relevant equations have been reproduced in Table 6.1.
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Figure 6.1: Notations associated with the redshift definition on a spacetime diagram. The solid black line labeled
xµem (resp. xµrec) is the worldline of the emitter (resp. receiver), parametrized by the proper time τ̃em (resp.
τ̃rec) and with 4-velocity (ũµ)em (resp. (ũµ)rec). (k̃µ)em (resp. (k̃µ)rec) denotes the photon 4-wave-vector at the
emission event (resp. reception event). The dashed line corresponds to the photon’s null geodesic between the
two events.

6.1.1 Derivation of the redshift expression in scalar-tensor theories

Here we derive the redshift expression in the framework of scalar-tensor theories given by the action (1.33–1.34).
One observer, the emitter, sends a photon to another observer, the receiver. The gravitational redshift, denoted
by z, is defined as

z =
Eem

Erec
− 1 , (6.16)

where Eem (resp. Erec) denotes the energy of the photon measured by the emitter (resp. by the receiver).
The physical metric to be used in the subsequent calculations of these energies is the Jordan-frame metric g̃µν .
Indeed, it is the metric to which matter is universally coupled [see Eq. (1.11b)] and thus defines the lengths and
times measured by material rods and clocks — see Refs. [70, 300] or the discussions we had back in Sec. 1.1.
Consequently, we have

Eem

Erec
=

ℏ(ũµk̃µ)em
ℏ(ũµk̃µ)rec

, (6.17)

where (ũµ)em (resp. (ũµ)rec) denotes the 4-velocity of the emitter (resp. receiver) and k̃µ represents the null
tangent vector of a geodesic joining the emission and reception events [where the affine parameter is normalized
so that k̃µ coincides with the 4-wavevector, see Eq. (1.9)]. These quantities are defined in the Jordan frame, and
normalized such that

g̃µν ũ
µũν = −1 and g̃µν k̃

µk̃ν = 0 . (6.18)

For the sake of clarity, notations are illustrated on a spacetime diagram in Fig. 6.1.
Let us now make some additional assumptions:

– The spatial coordinates of the emitter on the one hand, and those of the receiver on the other hand, remain
fixed throughout this experiment.

– The metric g̃µν is stationary, meaning that it does not depend upon the x0 coordinate, i.e. ∂0g̃µν = 0.
Consequently, the scalar field ϕ will also be assumed stationary.

As a direct consequence, the relation g̃µν ũµũν = −1 leads to ũ0 = 1/
√−g̃00 (since ũi = 0). Moreover, the fact

that the metric is taken stationary implies that there exists a timelike Killing vector ξ̃ = (1, 0, 0, 0) associated
with the time translation symmetry. Denoting λ̃ the affine parameter of the photon geodesic, mathematical



178 CHAPTER 6. Testing screened scalar-tensor theories with clocks

properties of Killing vectors (see e.g. Ref. [301]) let us write

d

dλ̃

(
ξ̃µk̃µ

)
=

d

dλ̃

(
ξ̃µk̃

µ
)
= 0 =⇒ d

dλ̃

(
k̃0
)
= 0 . (6.19)

Thus,
(
k̃0
)
em

=
(
k̃0
)
rec

and we eventually get

1 + z =

√
(g̃00)rec
(g̃00)em

=
Ωrec

Ωem

√
(g00)rec
(g00)em

. (6.20)

This formula sheds light on the dependence of the redshift on the scalar field ϕ. On the one hand, the Einstein-
frame metric coefficient g00 intricately depends on ϕ through Eq. (6.2). Taking the Newtonian limit of this
equation helps clarify this dependence — Eq. (6.10) indeed shows that the potential Φ = −(g00 + 1)/2 obeys a
modified Poisson equation where the scalar potential V (ϕ) is part of the source term alongside ρ. On the other
hand, the presence of the conformal factor Ω is somewhat easier to interpret as it is merely a function of the
scalar field [see Eqs. (1.110–1.112) for concrete examples of such functions]. Therefore, z is a measurable quantity
that (a priori) depends on the field’s amplitude at the emission and reception spacetime events. In Sec. 6.1.3, we
shall expand Eq. (6.20) in the framework of the chameleon model and study the corresponding Newtonian limit.

As a side note, the above derivation of the redshift formula (6.20) in scalar-tensor theories also applies to the
cosmological setting.1 In particular, we retrieve Eq. (1.85) giving the redshift of a distant object in the sky (in
scalar-tensor gravity). Therefore, the two following statements hold simultaneously:

1. Null geodesics are invariant under conformal transformations in a four-dimensional spacetime. Thus,
light-like geodesics of the Jordan-frame metric g̃µν coincide with those of the Einstein-frame metric gµν
and massless particles, such as photons, do not ‘feel’ any force from the scalar field.

2. The amount by which light emitted from distant objects gets redshifted (through the expansion of the
universe) when it eventually gets to us depends explicitly on the scalar field and its cosmological evolution.

This source of confusion had to be clarified. For instance, authors of Ref. [302] use the wrong formula
1 + z = arec/aem in their study of the cosmological gravitational redshift in clusters of galaxies in the symmetron
and Hu–Sawicky f(R) models.2

6.1.2 Link with observable quantities

Parameterized redshift tests

Experiments that measure the gravitational frequency shift of light usually introduce a dimensionless parameter
γ to quantify deviations from what is predicted by GR.3 As such, γ is defined as

z12 = (1 + γ)∆12U, (6.21)

where, for two locations, ∆12U = U2 − U1. As mentioned in Sec. 1.1.1, testing the consistency of γ with 0 is
a test of LPI — which is of course embedded in GR, but not exclusively. Current upper bounds on |γ| are
around 10−5 (see Sec. 6.2.1 thereafter). In Eq. (6.21), U is either referred to as “the Newtonian potential” [115,
303], or as the “gravitational potential” [26, 27, 304–306]. The bothering issue with this designation is that it is
unclear how one should actually define and measure it. Along the lines of Will’s book [1], we define U as the
“gravitational potential whose gradient is related to the test-body acceleration”, i.e. in the Newtonian limit,

a = −∇U . (6.22)

Acceleration ∇U and redshift z can be measured with accelerometers and clocks respectively, and

∆12U =

∫

C
a · dl , ∀ C joining points 1 and 2 . (6.23)

1One may rightly object that the flrw metric (1.25) is not stationary and so the redshift derivation we just conducted does not
apply. Nevertheless, this stationarity assumption is stronger than needed. It is in fact sufficient to note that ∂η is a conformal
Killing vector on the flrw spacetime manifold, that is tangent to the world lines of the source and of the observer (comoving with
the Hubble flow), so that Eq. (6.19) still applies. Here, η denotes the conformal time which is related to the coordinate time through
dt = a(t)dη and a is the scale factor. See e.g. Ref. [301] for more insights into these mathematical considerations.

2There are several factors which cause the measured gravitational redshift to be different from GR’s prediction in this setup. In
particular, fifth force effects result in different matter distribution within clusters compared to GR, which in turn alters the redshift.
This is precisely the aspect that is being studied in Ref. [302], which is different in nature from the physical effect central to the
present chapter.

3This parameter is often denoted by α in the literature. However, we use γ here in order to avoid confusion with the dimensionless
parameter appearing in the dimensionless version of the chameleon Klein–Gordon equation (4.3).
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Hence, definitions (6.21–6.23) are a check of the consistency between clock comparisons and acceleration
measurements. If the separation between point 1 and point 2 is relatively small compared to the characteristic
length scale of U-variations, Eq. (6.23) can be simplified to ∆12U = g · r12, where g is the gravitational field
and r12 is the vector joining the two positions.4 If LPI holds, then γ = 0. In particular γGR = 0 (at the first
post-Newtonian order).

Newtonian limit in the Jordan frame

Let us now show that scalar-tensor theories that fall into the class of models introduced in Sec. 1.1.2 (the
so-called ‘traditional’ class) also verify γST = 0. In the Newtonian limit, the Jordan-frame metric can be put in
the form (6.9) with |Φ̃| ≪ 1. Substituting this definition in Eq. (6.20) yields, at first order,

z =

√
1 + 2Φ̃2

1 + 2Φ̃1

− 1 ≃ Φ̃2 − Φ̃1 = ∆12Φ̃ , (6.24)

where we have further re-labeled by 1 and 2 the emission and reception events respectively. There only remains
to check that U ≡ Φ̃. This is done by looking at the geodesic equation in the Newtonian limit in the case of a
stationary metric. The derivation of the latter follows from Eqs. (1.14–1.17), and we end up with

d2xi

dt2
≃ −∂iΦ̃ =⇒ U = Φ̃ =⇒ γST = 0 . (6.25)

A few remarks are in order. First, the Jordan frame scalar field φ does not appear explicitly Eqs. (6.9, 6.25).
However, recall that the potential Φ̃ is obtained through the field equations (6.11, 6.13), which of course depend
on the scalar field. In other words, Φ̃ cannot be considered as the “Newtonian potential” in the sense that
it does not obey the usual Poisson’s equation in the static regime. Instead, Eqs. (6.11, 6.13) remain coupled
second-order partial differential equations. Second, finding γST = 0 should not come as a surprise at all. Indeed,
conformally coupled scalar-tensor models belong to the wider class of metric theories, which all satisfy the three
pillars of the EEP — namely the WEP, LLI and LPI (see Fig. 1.1). One may however raise the objection that
there is no point in trying to use redshift measurements to constrain scalar-tensor gravity, since in particular the
latter satisfies LPI and is thus consistent with all bounds on the parameter γ. In the face of this argument, we
stress that it is not because a given theory satisfies LPI that it cannot be distinguished from GR in redshift
experiments. This point will be made irrefutable in Sec. 6.2.2.

Newtonian limit in the Einstein frame

Similarly, we derive the Newtonian limit of the redshift expression (6.20) in the Einstein frame. For the Newtonian
approximations in both frames to be consistent with one another, we need to further assume that the conformal
function Ω is close to unity, see Sec. 1.1.2. We write this down as

Ω(ϕ) = 1 + ω(ϕ) , with |ω(ϕ)| ≪ 1 . (6.26)

On the other hand, the Einstein-frame metric is put in the Newtonian gauge (6.8) with |Φ| ≪ 1. Note that these
assumptions allows for the identification Φ̃ ≃ Φ+ ω(ϕ). We then immediately obtain

z = ∆12

[
Φ+ ω(ϕ)

]
. (6.27)

The Newtonian limit of the geodesic equation in the Einstein frame is

d2x

dt2
= −∇Φ−∇[lnΩ(ϕ)] ≃ −∇[Φ+ ω(ϕ)

]
,

and so we recover the fact that U = Φ+ ω(ϕ) and γST = 0, as expected. Φ and ϕ are solutions to Eq. (6.10) and
Eq. (6.12) respectively.

Again, let us make some remarks:

– The definition of the densities ρ̃ and ρ is explained in Box B. Here, assumption (6.26) allows us to
approximate ρ̃ ≃ ρ, terms of the form ρω(ϕ) being considered as higher order terms in the field equations.

– All subsequent computations can be conducted in the Einstein frame. Essentially, in order to be able to
discuss the redshift, we will have to solve the modified Poisson equation (6.10) and the Klein–Gordon
equation (6.12). In particular, the latter does not depend on Φ and should thus be solved first, yielding ϕ.

4This approximation is performed for laboratory experiments on Earth, see e.g. Refs. [305, 307].
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Only then can we tackle the modified Poisson equation, because the source term V (ϕ) is fully determined
after completion of the first step.

6.1.3 Focus on the chameleon model

We now focus on the chameleon model with n > 0, given by the functions

Ω(ϕ) = exp

(
βϕ

MPl

)
and V (ϕ) = Λ4

(
Λ

ϕ

)n
. (6.28)

In the study of fifth force effects, the bare potential function V could be defined up to an additive constant since
it only played a role through its derivatives in computations. Things are different here since V (ϕ) appears as is
in Eq. (6.10). As long as ϕ≪MPl/β, assumption (6.26) holds and we get ω(ϕ) = βϕ/MPl. To avoid constantly
having to refer to Chapt. 1, we recall that the scalar field obeys a nonlinear Klein–Gordon equation

∆ϕ =
β

MPl
ρ− nΛ

n+4

ϕn+1
.

Moreover, the field’s value that minimizes the effective potential together with the effective mass are given by

ϕmin(ρ) =

(
MPl

nΛn+4

βρ

) 1
n+1

and m2
ϕ(ρ) = n(n+ 1)Λn+4

(
βρ

nMPlΛn+4

)n+2
n+1

. (6.29)

The effective Compton wavelength λϕ is related to the effective mass through λϕ = m−1
ϕ .

For this specific scalar-tensor model, the redshift expression (6.27) becomes

z = ∆12

[
Φ+

βϕ

MPl

]
. (6.30)

There, it is already interesting to note that, unlike the chameleonic force which is proportional to the gradient of
the scalar field ∇ϕ, part of the chameleon contribution to the total redshift is proportional to ∆12ϕ = ϕ2 − ϕ1.
This mere observation has important consequences in terms of choice of experimental designs when it comes to
constraining such a model. Maximizing ∥∇ϕ∥ is undeniably not the same thing as maximizing ∆12ϕ.5 The more
intricate ϕ-dependence through Φ shall be examined in more details in Sec. 6.2.2.

For the scalar field to leave a measurable imprint on the total redshift (6.30), the scalar field must be able
to vary significantly from one place to another. In that respect, the chameleon field specifically may actually
be a very good candidate. Indeed, Eq. (6.29) highlights the fact that ϕmin(ρ) ∝ 1/ρ1/(n+1). In particular,
ϕmin(ρ)→ +∞ as ρ→ 0. Moreover, we have seen in Sec. 1.2.2 that, deep inside a medium of constant density
ρ, ϕ ∼ ϕmin(ρ) provided this medium occupies a large enough spatial region. All in all, this means that the
chameleon field value should grow to very large values in vast-enough, low-density environments.

6.2 Thought experiment and orders of magnitude

So far, we have derived the redshift formula in scalar-tensor theories and showed its dependence on the scalar
field. However, we have yet to show how to translate redshift measurements into actual constraints on the
scalar-tensor model at stake. Following on from the previous section, this discussion is illustrated with the
example of the chameleon field again. After briefly reviewing the current state of the art in atomic clocks, we
propose a thought experiment, underlying more realistic experimental designs, for testing chameleon gravity.

6.2.1 State of the art in atomic clocks

Measuring the gravitational redshift effect on Earth is best achieved by atomic clocks. Indeed, these devices
represent the pinnacle of precision timekeeping, playing a critical role in fundamental physics experiments and
underlying the definition of the second in the International System of Units. They rely on the ultra-stable
oscillations of atoms to measure time with unparalleled accuracy. Among the most advanced types are optical
lattice clocks which probe the hyperfine transitions of trapped ions or atoms with laser light. They achieve
relative frequency precisions of 10−18 and below [308–312], down to 7.6× 10−21 [313].

These levels of instabilities and inaccuracies open the way to stringent tests of GR, notably by putting
upper bounds on parametrized tests of gravitational redshift (see Secs. 1.1.1 and 6.1.2). In space, comparing
the frequency of hydrogen masers onboard Galileo satellites with eccentric orbits have produced the strongest

5The mean value theorem nonetheless establishes a link between these two quantities.
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Figure 6.2: A redshift thought experiment with the chameleon model.

limits on deviations from the expected redshift — at the 10−5 level on γ defined by Eq. (6.21) [26, 27].6 The
ACES mission [303], to be launched in 2025, aims at improving that bound by one order of magnitude. On
Earth, 18-digit-precision frequency comparison between optical lattice clocks produces nearly as tight bounds on
this test [304] (see Ref. [307] for future prospects). Aside from testing LPI, atomic clocks underlie the field of
relativistic geodesy as they can probe the geopotential at the sub-centimeter scale, see e.g. Refs. [309, 313–315].

The orders of magnitude mentioned in the above paragraphs will serve as benchmarks when we discuss
redshift-based tests of the chameleon model, namely in Secs. 6.2.2 and 6.3. Specifically, we will assess how these
precision levels translate into constraints in the parameter space of the model.

6.2.2 A first Gedankenexperiment

Here, we imagine a toy experiment to prove the point we made in Sec. 6.1.2, namely that it is possible to
distinguish a scalar-tensor theory complying with LPI from GR by means of redshift measurements.

Setup a)

Let us start with a basic setup where space is divided into two regions separated by a plane. Region 1 is filled
with a fluid of density ρ1 while region 2 is filled with another fluid of density ρ2. In such a configuration, the
chameleon field is expected to vary significantly nearby the transition between the two regions, and relax to
ϕmin(ρi) ≡ ϕi in the ith region, i ∈ {1, 2}. This configuration is depicted in the left-hand panel of Fig. 6.2, for
ρ1 ≫ ρ2. Suppose that we supplement this basic setup with two clocks, one in each of the two regions, placed
sufficiently far away from the median plane so that the field does not vary much anymore. Put another way,
clock 1 is immersed in a region of space where ϕ = ϕ1 while clock 2 is immersed in a region of space where
ϕ = ϕ2. We further assume, for now, that the clocks are perfect in the sense that they do not perturb the scalar
field profile at all.

In this scenario, the two clocks will tick at different frequencies, and the relative frequency shift is given by

f1 − f2
f2

=
dτ̃2
dτ̃1
− 1 = z =

Ω2

Ω1

√
(g00)2
(g00)1

− 1 ≃ ∆12

(
Φ+

βϕ

MPl

)
, (6.31)

where τ̃i denotes the proper time experienced by the ith clock. As discussed above, the scalar field has two
contributions in this expression: an explicit one, with the βϕ/MPl term, and a hidden one, with the Φ term
through Eq. (6.10). These two contributions are first discussed analytically. On the one hand, since the scalar
field is given by Eq. (6.29) at the clocks’ position (by hypothesis), we have

∆12

(
βϕ

MPl

)
=

[(
β

MPl

)n
nΛn+4

] 1
n+1

∆12

(
ρ−

1
n+1

)
. (6.32)

Eq. (6.32) encapsulates the central idea of this thought experiment. Indeed, it is easy to see that the scalar field
contribution can virtually be made as large as one desires in the limit ρ2 → 0 (for any fixed density ρ1). On the
other hand, it is somewhat harder to get an analytical estimate of the scalar field contribution to the potential
Φ. Worse, the left panel of Fig. 6.2 depicts two infinite half-spaces of constant density each, so that Eq. (6.10)
boils down to

2M2
Pl Φ

′′(x) =

{
ρ1 − 2V

(
ϕ(x)

)
if x < 0 ,

ρ2 − 2V
(
ϕ(x)

)
if x > 0 .

The lack of obvious physical boundary conditions in this case makes this ODE problem ill-posed.
6Note that this new bound is approximately one order of magnitude lower than the Vessot-Levine experiment [25].
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Setup b)

In order to circumvent this thorny issue, we consider a slightly more realistic experimental design where the two
clocks are put into separate boxes filled with materials of density ρ1 and ρ2 (in an otherwise vacuum medium),
as shown in the right panel of Fig. 6.2. Provided that the boxes are big enough for the field to reach ϕmin in
their interior, the previously exposed qualitative arguments of this thought experiment shall remain valid. Back
to the estimation of Φ, the linearity of Eq. (6.10) allows us to decompose this potential as Φ = ΦN + δΦV , where
ΦN and δΦV are solutions to

2M2
Pl ∆ΦN = ρ and M2

Pl ∆δΦV = −V (ϕ) , (6.33)

respectively. By doing so, we can rewrite the total redshift z as z = zN + zϕ with

zN = ∆12ΦN and zϕ = ∆12

(
βϕ

MPl

)
+∆12δΦV . (6.34)

This decomposition is convenient for physical interpretation because it separates the contribution of the chameleon
field from that of the Newtonian potential ΦN . Yet, we crucially need an estimate of ∆12δΦV for comparison
against the contribution given by Eq. (6.32). To this end, let us make the simplifying assumptions that (i)
the boxes are spherical with radius Rbox and (ii) the boxes are screened and exhibit a thin-shell of negligible
thickness — i.e. the scalar field sits at ϕmin in most of the spherical boxes. Then, using Green’s function for the
Laplacian at the geometrical center of the boxes yields

ΦN = −
(
Rbox

2MPl

)2
ρi and δΦV =

1

2

(
Rbox

MPl

)2
V
(
ϕmin(ρi)

)
, i ∈ {1, 2} . (6.35)

With these approximations at hands, we get

zN = −
(
Rbox

2MPl

)2
∆12ρ , (6.36)

zϕ =M
− n

n+1

Pl (nβnΛn+4)
1

n+1∆12

(
ρ−

1
n+1

)
+
R2

box

2
M

− 3n+2
n+1
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)
. (6.37)

Recalling that MPl ≃ 2.4× 1027 eV in natural units, we can safely assume that the contribution (6.32) is the
dominant term in zϕ.7 Consequently, the ∆12δΦV term is not retained in our subsequent analysis. Besides, the
Newtonian contribution zN to the total redshift is not expected to be overwhelmingly larger than zϕ, as (i) it is
weighted by M−2

Pl , and (ii) the ∆12ρ term cannot be made as large as ∆12ρ
−1/(n+1) can be.8

Now, we have not yet explained how this kind of experiment could be translated into constraints on the
chameleon model. Here is a proposal of a well-posed experiment:

1. We start with the two boxes filled with the same higher density material ρ1. At first, there is no reason for
the clocks to be synchronized as they could be at slightly different altitudes within the geopotential,9 so
we adjust their relative height so that z ≡ 0.

2. Then using pumps, we replace ρ1 by ρ2 (with ρ2 ≪ ρ1) in one of the two boxes.

3. The frequency shift between the two clocks is measured again, without moving the boxes. In pure GR,
the removed mass from the box affects the redshift through its Newtonian potential, which can readily
be estimated. In scalar-tensor gravity, one has to further take into account the scalar field contribution
zϕ ∝ ∆12ϕ. The measured redshift together with its uncertainty can be used to put upper bounds on |zϕ|,
which in turn constrains the underlying scalar-tensor model.

We stress the importance of precisely defining a protocol — altitudes, for instance, cannot be assumed to be
known.

Optimal constraints

Given the above computations and discussion, we shall approximate the scalar contribution to the total redshift
by Eq. (6.32), or put more simply β∆12ϕmin/MPl. We consider three pairs of ‘materials’ to fill the boxes depicted

7This has also been numerically verified by computing the two contributions of Eq. (6.37) for the (ρ1, ρ2) pairs that we consider
thereafter.

8The densest materials we can find on Earth have density that do not exceed a few 104 kg/m3. Conversely, we are able to achieve
high vacuum levels in vacuum chambers.

9As a side note, nowadays we are able to resolve the gravitational potential of the Earth at the millimeter scale [313].
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Material designation Density (kg/m3) Density (eV4)

Lead 11.4× 103 4.9× 1019

Water 103 4.3× 1018

Air 1.225 5.3× 1015

UHV 10−10 4.3× 105

XHV 10−15 4.3
IPM 10−20 4.3× 10−5

Table 6.2: Typical materials together with their densities (in kg/m3 and in eV4) considered in Sec. 6.2.2. ‘UHV’
and ‘XHV’ stand for ultra-high vacuum and extremely-high vacuum, and can be produced in the laboratory using
sophisticated vacuum chambers. ‘IPM’ stands for interplanetary medium and represents the thinly scattered
matter that exists between the planets and other large bodies of the Solar system. To put Fig. 4.7 into perspective,
the density at the geostationary altitude is roughly ∼ O(10−19 kg/m3).

Figure 6.3: Expected redshift from the chameleon field contribution Eq. (6.32) for different pairs of materials.
The chosen densities are reported in Table 6.2. ‘UHV’ stands for ultra-high vacuum and corresponds to the
vacuum level reachable in vacuum cavities while ‘IPM’ stands for interplanetary medium. The orange and red
dashed lines correspond to iso-redshifts at levels εrel = 10−15 and εrel = 10−20 respectively. The gray dotted line
corresponds to λc(ρ2) = 1m, where ρ2 refers to the density of the less dense material of each pair: the Compton
wavelength is larger (resp. smaller) than 1 meter above (resp. below) this line. The x-axis is M/MPl ≡ 1/β to
be in line with the exclusion plots found in the literature, see e.g. Refs. [71, 150–152].

in the right panel of Fig. 6.2: (Water / Air), (Lead / UHV) and (Air / IPM). Here ‘UHV’ stands for ultra-high
vacuum and corresponds to a vacuum level reachable in vacuum chambers, while ‘IPM’ stands for interplanetary
medium [316]. The associated densities are reported in Table 6.2, in SI units (kg/m3) and in natural units (eV4).

In Fig. 6.3, we represent the scalar field contribution to the redshift, zϕ, in the (β−1, Λ)-plane10 (n = 1) for
the three aforementioned pairs of materials. The bounds on (β, Λ) are chosen large enough for the redshift to
cover many orders of magnitudes, ranging from ∼ 1 to 10−40. To put Sec. 6.2.1 into perspective, we depict by
orange and red dashed lines the iso-redshift levels at εrel = 10−15 and εrel = 10−20 respectively, which correspond
to achievable relative precisions with current atomic clocks on Earth. As it can be guessed from Eq. (6.32), these
iso-levels map to straight lines in the parameter space with log-scaled axes. Unsurprisingly, the more precise the
atomic clock is, the smaller the measurable redshift and so the tighter the potential constraints on the chameleon
parameter space. Additionally, it is worth noting that high density materials (water, lead) on the one hand,
and low density materials (UHV, IPM) on the other hand, do not play symmetrical roles at all. Because of the
dependence ϕmin ∝ ρ−1/(n+1), the lower-density material has more weight on the redshift. In plain language,
lowering ρ2 by one order of magnitude at fixed ρ1 results in an increase of the redshift much greater than if we
were to increase ρ1 by one order of magnitude at fixed ρ2. As a matter of fact, replacing the (Air / IPM) pair by
(Lead / IPM) would not have any visible effect on the right panel of Fig. 6.3.

To a certain extent, these order-of-magnitude forecasts justify the present study since it appears we can
gain at least several orders of magnitude with respect to current constraints from laboratory experiments (see
Fig. 4 from Ref. [152]). They can be considered as optimal constraints because for any two densities (ρ1, ρ2),
|ϕmin(ρ2)− ϕmin(ρ1)| represents an upper bound for ∆12ϕ. Overall, the potential constraints outlined in Fig. 6.3
remain overly optimistic for several reasons:

10Most references in the literature do indeed use M = MPl/β in place of β in their exclusion plots, see e.g. Ref. [152].
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1. they rely on the best atomic clocks ever built, which may not be well-suited for the experimental design
one ends up choosing, which is all the more true if one thinks of space-borne experiments;

2. we have assumed vacuum levels hardly reachable on Earth (especially the IPM density, see Table 6.2);

3. we have assumed that the boxes were large enough in size for the scalar field to reach ϕmin at their center;

4. we have assumed that the atomic clock itself does not perturb the scalar field profile inside the box, which
is not realistic.

The main goal of the remainder of this study is to take these points into account, and see whether some
experimental design could realistically produce competitive constraints on the chameleon model. Specifically,
points 2 and 3 are discussed next, while points 1 and 4 shall be addressed in Sec. 6.3.2 and Sec. 6.3.1 respectively,
partly through numerical simulations.

Going to vacuum

Let us first comment the limit ρ2 → 0. Assuming that the chameleon field is indeed able to track the minimum of
its effective potential, the scalar contribution to the redshift tends to infinity. In the face of this rather unphysical
outcome, we have to take a closer look at the various assumptions that led to it.

First, no vacuum is truly perfect, thus the limit ρ2 → 0 should be replaced by ρ2 → ρ∗ > 0. In the
laboratory, vacuum is primarily measured by its absolute pressure, which can be translated into a density
provided that other parameters (such as temperature or chemical composition) have been determined. Vacuum
tubes typically have ∼ 108 particles per cm3, while cryopumped MBE11 chambers can go down to densities as
low as ∼ 105 particles per cm3.12 Outer space gets even closer to ‘true’ vacuum. Far enough from the Earth, at
the altitude of geostationary satellites, the density of residual atmosphere neighbors 4× 10−19 kg/m3. Density
keeps decreasing as we go to interplanetary space (∼ 11 molecules per cm3), interstellar space (∼ 1 particle per
cm3), and eventually intergalactic space (∼ 10−6 particle per cm3) [316, 317]. The latter is the closest physical
approximation of a perfect vacuum, with a density of ∼ 10−27 kg/m3 assuming particles the mass of hydrogen.
Ultimately, even if every matter particle could somehow be removed from a given volume, quantum fluctuations
ensure that the energy contained in it is never quite zero, and so the chameleon does not diverge to +∞.

Two remarks have to be made regarding the above:

1. Speaking of matter density on inter-galactic scales, the background value of the scalar field should match
that predicted by its cosmological evolution. The latter can actually be smaller than ϕmin(ρvac), see
Eq. (1.124) and the corresponding discussion there.

2. Considering such rarefied environments (e.g. few thousands of particles per cubic meter) raises the question
of the legitimacy of averaging the density. Loosely speaking, does the chameleon field ‘perceive’ a collection
of isolated N particles in the same way as a homogeneous medium? To our knowledge, the only work that
examine this problem is Ref. [153]. There, the authors find, on the basis of analytical approximations, that
the macroscopic Compton wavelength ⟨λϕ⟩ of the chameleon inside a screened body that is itself made of
individual particles is

⟨λϕ⟩ = max
(
m−1

ϕ

(
⟨ρ⟩
)
, m−1

crit

)
,

where ⟨ρ⟩ denotes the average density of the body at stake while mcrit is a quantity depending solely
on its microscopic properties and n. However, no insight is provided regarding the mean value of the
chameleon field. This question could be investigated in more details numerically with femtoscope by
using a representative volume element as the simulation box, with periodic boundary conditions. Such an
investigation is left for future work.

Second, we have to verify that the expansion of the conformal factor around 1 [Eq. (6.26)], which we have
assumed in the derivation of the Newtonian limits of the redshift, holds. Since the maximum value of the
chameleon field is given by ϕmin(ρmin) [see Eq. (6.29)], where ρmin denotes the minimum density in the spatial
region of interest, the condition ϕ≪MPl/β translates to

ρmin ≫ nΛn+4

(
β

MPl

)n
. (6.38)

This condition is easily met for the (β, Λ) ranges and material density considered in Fig. 6.3 — except in the top
left corner of the parameter space (β = 1018, Λ = 10 eV) for which the rhs of Eq. (6.38) reaches ∼ 10−20 kg/m3,

11Molecular-beam epitaxy.
12Assuming air with an average molar mass of 29 g/mol, this corresponds to densities of 5× 10−12 kg/m3 for the vacuum tube

and 5× 10−15 kg/m3 for the cryopumped MBE chamber. This is in line with Ref. [142] which assumes a density of 10−14 kg/m3

inside a vacuum chamber.
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which corresponds to the IPM density. This zone of the parameter space is already well-constrained and thus
not very relevant anyway. Finally, it should be reminded that this approximation was primarily performed for
expanding the ratio of conformal factors Ωrec/Ωem in Eq. (6.20). Without this approximation and all other
things being equal, the successive implications

ρ2 → 0 =⇒ ϕmin(ρ2)→ +∞ =⇒ Ω2

Ω1
→ +∞

remain true.

Constraints with finite-size boxes

A more debatable hypothesis is the one which states that the scalar field indeed reaches ϕmin at the center of
the box — as depicted in the right panel of Fig. 6.2. It is well-known that this situation does not arise when an
object is unscreened. One relevant quantity to qualitatively assess whether the box is screened (as desired) or
not is the Compton wavelength

λϕ(ρ) = m−1
ϕ (ρ) =

√
1

n(n+ 1)Λn+4

(
MPl

nΛn+4

βρ

)n+2
n+1

. (6.39)

Typically, we would expect the box to have a radius at least a few Compton wavelengths in size, so that our
assumption is fulfilled.13 Yet, as ρ2 → 0, λϕ(ρ2) → +∞, meaning that the chameleon field would not have
enough space to reach ϕmin(ρ2) within any finite-size box. In Fig. 6.3, we have represented in silver dotted lines
the iso Compton wavelength λϕ(ρ2) = 1m in the (β−1, Λ)-plane, where ρ2 refers to the density of the less dense
material of each pair. Above (resp. below) this line, λϕ(ρ2) > 1m (resp. λϕ(ρ2) < 1m). We chose to show the
one meter reference as it corresponds to the typical size of objects found in the laboratory. As ρ2 decreases from
ρair to ρuhv and to ρipm, the portion of the parameter space for which the Compton wavelength is smaller than
1m shrinks to the bottom-left corner. In other words, there is a trade-off to be made between (i) maximizing zϕ
on the one hand, and (ii) making sure that the experiment is sensitive to a wide enough area of the parameter
space on the other hand. The former condition is an incentive to aim for the best possible level of vacuum for ρ2,
while the latter condition requires the two boxes to be sufficiently dense for otherwise the field will not reach
ϕmin at their center.

We thus need to revise the forecasts presented in Fig. 6.3 by accounting for the fact that the boxes containing
the atomic clocks are finite in size. The best solution we found to this constrained optimization problem is to
make ρ2 vary continuously, and combine all the resulting constraints together. By doing so, we can derive the
best constraints for the relevant β- and Λ-ranges. These weaker (but more realistic) forecasts for laboratory
experiments are obtained by solving the algebraic system

{
λϕ(ρ2) = Rbox = 1m

β∆12(ϕmin)/MPl = εrel
, (6.40)

for (β, Λ), where εrel ∈ {10−15, 10−20} denotes the atomic clock relative precision. The resulting bounds, which
turn out to be straight lines in log space, are shown in Fig. 6.4. These revised bounds exhibit a steeper slope,
meaning that high-M (or equivalently, low-β) regions are more difficult to constrain than what Fig. 6.3 suggested.

6.3 Towards more realistic experimental designs

In the previous section, we imagined an idealized setup whereby atomic clocks are placed in different chameleon
field backgrounds, which is achieved by adjusting the density of the medium in which they are immersed. The
scalar field contribution zϕ to the total redshift between the two clocks is dominated by ∆12(βϕ/MPl), while the
Newtonian contribution zN = ∆12ΦN can readily be estimated (by calculation) since the mass content inside
each box is assumed to be well-controlled. Using rough orders of magnitude, we evaluated the constraining
power of such an experiment on the chameleon model.

The most controversial assumption we still have not discussed is the backreaction of the atomic clocks
themselves on the scalar field profile. So far, we considered that the clocks were somehow ‘transparent’ to the
gravitational fields (scalar and metric in the Einstein frame), in the sense that the former would not significantly
perturb background values of the latter. In GR, this is most likely true as the geopotential is overwhelmingly

13Of course, the Compton wavelength alone is not sufficient to determine whether an object is screened or not. The density of
the background medium in which it is embedded must also be taken into account — remark that the thin shell parameter (1.122)
depends on ϕmin(ρbackground), or see e.g. Ref. [149] for a more accurate screening criterion.
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Figure 6.4: Expected constraints on the chameleon from redshift measurements for εrel ∈ {10−15, 10−20}. This
corresponds to revised bounds on parameters (M, Λ) compared to what is presented in Fig. 6.3 by accounting
for the finite box sizes (1m).

dominant over, say, laboratory-scale objects — this is because gravity is mediated by a massless spin-two particle.
In chameleon gravity however, the nonlinearity and mass-changing properties of the scalar field mean that the
atomic clocks can be screened in the setup described above. This issue is of the utmost importance as it is an
experiment killer: in this scenario, the interior of the clocks, where atoms are being ‘interrogated’, becomes
completely decoupled from the exterior, and therefore insensitive to the actual material filling the rest of the box.
In that case, zϕ is expected to be essentially zero, meaning that the experiment cannot probe for the chameleon
field.

In this section, we go a step further by taking these considerations into account. First, we examine more
closely the implications of adding macroscopic atomic clocks to the model. We propose a more realistic redshift
experiment in the laboratory that could be relevant for probing chameleons very strongly coupled to matter
(β ≳ 105). Secondly, we revive the idea of space-based experiments as they could be sensitive to chameleons
with gravitational strength coupling (β ≲ 10).

6.3.1 Laboratory experiment [very high coupling]
Following on from Sec. 6.2.2, we study what happens to the forecasts outlined in Figs. 6.3 and 6.4.

Why the Gedankenexperiment does not work

An atomic clock relies on the interaction between two electron states in a given atom and some electromagnetic
radiation. A group of atoms (e.g. cesium-133, rubidium-87 or strontium-88) is prepared in one energy state before
being subjected to some monochromatic electromagnetic radiation, whose frequency is adjusted to match the
targeted transition between the two energy states. Achieving this usually requires a whole apparatus, including
a quartz crystal oscillator (in the case of microwave clocks), a frequency synthesizer, an atomic interrogation
chamber, etc. The most precise clocks are therefore quite large objects in the laboratory,14 where the meter is a
good characteristic length scale. Nonetheless, the past two decades have witnessed the development of chip-scale
atomic clocks, a few centimeters in size and demonstrating a fractional frequency instability of one part in 1013

[318].
However small the actual clocks used in our gedankenexperiment, they involve materials that are just too

dense and too thick for it to be viable. Without going into too much details regarding the way an atomic
clock is put together, it is conservative to assume that the average density of the apparatus is of the order of
ρwater = 103 kg/m3, with walls of thickness greater than 1mm (even for the smaller chip-scale atomic clocks). In
that respect, Fig. 6.5 provides insights into the various Compton wavelengths of the chameleon field involved in
this experimental setup for the parameters (M, Λ, n=1). First, we saw with Fig. 6.3 that the lower density
material has to be such that ρ2 ≲ ρuhv for the experiment to yield interesting forecasts constraint-wise. At the

14Early on, they even used to be the size of an entire room!
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Figure 6.5: The problem of Compton wavelengths. In the chameleon parameter space (M, Λ, n=1), the two
dashed lines represent the set of parameters that result in a one-meter Compton wavelength in the UHV and
XHV vacua [see Eq. (6.39) and Table 6.2]. The orange shaded area maps to sub-millimeter Compton wavelength
in water — ρwater = 103 kg/m3 is representative of the typical density of materials found in the laboratory
(including that of atomic clocks).

same time, the constraint of the scalar field reaching ϕmin(ρi), i ∈ {1, 2} in finite-size boxes (∼ 1m) considerably
restricts the region of the parameter space that can actually be probed. The two dashed lines in Fig. 6.5 represent
the set of parameters that result in a one-meter Compton wavelength for the UHV and XHV vacua, while the
orange area maps to λϕ(ρwater) < 1mm. An admissible region of the parameter space for the experiment to
work would have to satisfy:

1. yield a Compton wavelength in the clock’s walls greater than their thickness, i.e. outside the orange shaded
area;

2. ensure that there is enough space in the box for the field to reach the value that minimizes the effective
potential, i.e. below the dashed lines.

Unfortunately, the intersection of these two regions is empty. In the region where condition 2 holds, the clock is
expected to be deeply screened, thereby jeopardizing the whole concept of the thought experiment. The lessons
drawn from this first experimental concept will nevertheless prove to be useful for the following.

Alternative experimental design

There may be nonetheless ways to benefit from atomic clocks, if one agrees to modify the experimental setup
initially envisioned. In Sec. 6.2.2, we insisted on the need for high vacuum levels — the less dense, the better —
for probing yet-unconstrained regions of the chameleon parameter space. As it turns out, atomic clocks also
require such ultra-high vacuum environments to operate in optimal conditions. Indeed, this reduces background
gas collisions in the atomic interrogation chamber (where the atoms interact with the electromagnetic radiation),
the latter being detrimental to frequency stability. This is true for both cesium / rubidium fountain clocks and
for optical lattice clocks.

The idea is the following. We suppose that the science chamber is big enough for the chameleon field to
reach ϕmin where the interrogated atoms sit. In order to modulate the scalar field they perceive, we cannot just
increase the density inside the chamber as the atomic clock cannot operate correctly but in vacuum. Instead, we
could imagine shrinking the chamber’s size in order to bring its walls closer to atoms. The walls being dense and
screened, this would effectively lower the chameleon field the atoms experience.

There are several shortcomings in this picture. A redshift measurement is a relative comparison between two
frequencies, so we would need two clocks as before. One way to single out zϕ would be (i) to start with two
identical clocks with a ‘large’ vacuum chamber, (ii) synchronize them by adjusting their relative height, and
(iii) somehow shrink one clock’s vacuum chamber and see how this affects the redshift. Having moving parts in
a vacuum chamber, however, seems unfeasible. Actually, this is not needed. Since the regime we are probing
here corresponds to high couplings of the scalar field to matter, any object with density ∼ 103 kg/m3 will be
screened inside the vacuum chamber. Therefore, it is sufficient to bring such an object close enough to the atoms
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being interrogated to significantly alter the chameleon field they experience, all other things remaining equal.
Below the dashed line λϕ(ρuhv) = 1m in Fig. 6.5, even an aluminum foil (which has a thickness of ∼ 0.2mm)
would be comfortably more than enough to screen the field. The closer the foil is to the atoms, the better. The
material of the foil to be chosen, as well as the minimum distance at which it can be placed without disturbing
the measurement is beyond the scope of this chapter.

Orders of magnitude obtained from numerical computations

In order to get an estimate of the part of the parameter space that can be probed with this idea of using a thin
foil, we conduct 1D radial numerical computations with femtoscope in three stages:

1. We compute the scalar field profile assuming a spherical vacuum chamber of radius Rvc. Its walls are taken
thick enough to be screened, so that the exterior environment has no influence whatsoever on the interior
scalar field profile.

2. We then add the foil to the numerical domain, modeled as a spherical shell of density ρwater = 103 kg/m3,
thickness 1mm and radius Rfoil, centered at the atoms’ location. Note that the thickness parameter is
not very relevant here since λϕ(ρwater) is smaller than the micrometer scale in the region λϕ(ρuhv) < Rvc

probed here.

3. Finally, we estimate zϕ as β|ϕwith foil − ϕwithout foil|/MPl.

Of course, in reality putting a spherical shell around the atoms is absurd since it would block the electromagnetic
radiation with which they have to interact. Nonetheless, this is deemed a good enough first approximation and
allows for a relatively cheap numerical exploration of the full parameter space (since simulations are conducted
in 1D).

The results of this simple study are presented in Fig. 6.6. As in Fig. 6.3, we represent the scalar field
contribution to the total redshift, zϕ, for four different sets of the relevant parameters, namely Rvc, Rfoil and the
density inside the vacuum chamber (UHV or XHV). The iso-redshift contours, at 10−15 (orange dashed line)
and 10−20 (red dashed line), exhibit a typical ‘V’ shape in the (M, Λ)-plane with log-scaled axes:

– left branch of the ‘V’ — In the lower left corner of each panel, the redshift suddenly drops to a very low
level. This is due to fact that below a certain value of the α parameter [Eq. (4.3)], the Compton wavelength
of the field in vacuum becomes smaller than Rfoil. As a result, the scalar field value at the atoms’ location
is the same with and without the foil, hence the vanishing redshift.

– right branch of the ‘V’ — This is more or less the same behavior as the one exhibited in Figs. 6.3 and 6.4,
although the interpretation is slightly different. As we increase α [Eq. (4.3)], the Compton wavelength
increases in the vacuum chamber. In either of the two configurations, the field has not enough space to
reach ϕmin(ρvac) at its center, but takes nonetheless a higher value in the absence of the foil.

The sweet spot is the bottom of the ‘V’, that is when ϕwithout foil = ϕmin(ρvac) but ϕwith foil ≪ ϕmin(ρvac) — the
foil playing its role in lowering the scalar field nearby the atoms. From the several sets of parameters tested (not
all represented in Fig. 6.6), it appears that the best forecasts are obtained when the following three rules of thumb
are met: (i) large vacuum chamber to give the field enough space to reach its highest value, (ii) high vacuum
level for maximizing the latter, (iii) bringing the foil as close as possible to the atoms (without perturbing the
measurement, which constitutes an open question).

Finally, it should be noted that the presence of the foil will also have an impact on the Newtonian potential,
which in turn affects the total redshift through Eq. (6.34). The Newtonian potential at the center of a spherical
shell of radius Rfoil, thickness e≪ Rfoil, and volumic density ρfoil is simply

ΦN, foil ≃ −4πeGρfoilRfoil .

For all four cases considered in Fig. 6.6, the contribution of ΦN, foil is many orders of magnitude below the
sensitivity of the best atomic clocks, and one can thus ignore this term.

Challenges

We need to cast a critical eye on this setup idea. First, we have eluded the question of how to actually compare
the scalar field value with and without the screened foil. One way to proceed, for instance, is to use a multiplexed
optical lattice clock as in Refs. [314, 319], where two clouds of atoms are spatially separated in the same
lattice and interrogated simultaneously by a shared clock laser and read-out in parallel. After performing a
reference measurement of the gravitational redshift exactly as described in those references, the foil is added to
surround only one of the two clouds of atoms and the measurement is repeated. The comparison of this second
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Figure 6.6: Expected redshift from the chameleon field contribution zϕ for three different sets of parameters —
the size of the vacuum chamber, the distance from the atoms to the foil and the vacuum density (UHV or XHV,
see Table 6.2) — in the chameleon parameter space (n=1). The orange and red dashed lines correspond to
the iso-redshift at εrel = 10−15 and εrel = 10−20 respectively. The white triangular mask in the top right corner
of each panel correspond to a region of the parameter space where the foil is no longer screened (see Fig. 6.5),
which was not probed in the numerical computations. Below the diagonal dotted line, strontium-84 atoms are
screened [see Eq. (6.41)].
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measurement against the reference one is then used to assert the consistency of the data within the chameleon
model. Although such an experiment is more realistic than the first thought experiment exposed in Sec. 6.2.2, it
remains overly simplistic and might turn out to be unfeasible in practice. Addressing the corresponding technical
issues is beyond the scope of this chapter.

Moreover, we have assumed throughout this discussion that the clouds of atoms do not perturb the chameleon
field inside the vacuum chamber. We examine this hypothesis now. To this end, we employ the following quite
common criterion, which states that a spherical body of density ρi and radius Ri immersed in a background
chameleon field ϕbg will be screened if

ρiR
2
i > 3

MPl

β
ϕbg ⇐⇒ α <

ρ̃iR̃
2
i

3ϕ̃bg
, (6.41)

where α is the dimensionless parameter given by Eq. (4.3) and the tilde notation is used to denote the associated
dimensionless quantities. We evaluated the latter criterion in our numerical computations for the 84Sr isotope,
which is notably used in optical lattice redshift experiments [314, 319]. In this regard, the dotted line in each
panel of Fig. 6.6 is where the transition from the unscreened to the the screened regime occurs in the parameter
space.15 More precisely, the nucleus of the strontium atoms is expected to have a thin shell below that line. For
all forecasts assuming ρxhv inside the vacuum chamber, the aforementioned ‘sweet spot’ falls into regime where
the atoms are screened. Further work is required to assess the consequences of this phenomenon on the actual
energy transition probed by redshift measurements. Such questions are also the topic of Ref. [320–322] and the
Appendix E of Ref. [142].

6.3.2 Going to space [gravitational strength coupling]
The above considerations showed that laboratory-based redshift experiments are at best sensitive to very strongly
coupled scalar fields. Specifically, they are completely blind to the region β ≲ 103, which turns out to the
least constrained by experiments [71, 152]. Given the above, we identify two main reasons for these limitations.
On the one hand, we saw with the orders of magnitude laid out in Fig. 6.3 that for Λ ≲ 10−3 eV, the range
β ∈ [10−1, 105] is only accessible in very low density environments. Yet, current vacuum technology has its limits.
For instance, it does not allow us to reach the density levels found in the interplanetary medium. Nevertheless,
laboratory experiments come with the constraint of size. If we want to dictate the chameleon field value in two
nearby regions of space, it has to be very dynamical and to closely follow density variations — this requires the
field to be strongly coupled. The downside is that most laboratory objects end up being screened, including the
atomic clocks themselves.

On the screening of satellites

Going to space could precisely resolve these two limitations at once. Take a satellite in orbit around the Earth
with an onboard atomic clock. Depending on its altitude, the background chameleon field in which it is immersed
can be very high — see notably Chapt. 5. For instance, at geostationary altitude, the density is close to the
‘IPM’ value tabulated in Table 6.2 and the scalar neighbors ϕmin(ρipm) (see e.g. Fig. 4.14).

The sine qua non condition for hoping to use atomic clocks in space for constraining the chameleon model is
that the spacecraft must be unscreened. Otherwise, the onboard clock will not see ϕ ∼ ϕmin(ρipm) but rather
ϕ ∼ 0, and will therefore experience time as in GR. The assessment of whether a spacecraft orbiting the Earth
is screened has been discussed several times in the literature — see e.g. Refs. [115, 136, 149]. The key point
that is usually stressed is that objects which possess thin shells down on Earth may loose them when they are
taken into space. This can be seen by referring to the approximate screening criterion (6.41): the low density
environment offered by space, together with the large distance with respect to the Earth’s surface, result in a
higher background value for the scalar field ϕbg, which in turn means that the criterion is less easily satisfied.
In Ref. [141] (Chapt. 5), we went beyond this qualitative criterion by computing the full chameleon field of
the {Earth + satellite} system (without atmosphere though) using femtoscope for various satellite’s density and
size in LEO. This showed, in line with the aforementioned qualitative argument, that a spacecraft could be
unscreened in relevant parts of the parameter space — namely for sufficiently large values of α (which, at fixed
Λ, means small enough values of β).

Here however, we are interested in going to higher altitudes, farther away from the Earth’s atmosphere where
the vacuum is more pristine. In order to check whether a satellite is screened or not at such high altitudes, we use
femtoscope to solve the Klein–Gordon equation governing the chameleon field of a ball immersed in a background
medium of density ρbg ∈ {10−12 kg/m3, 10−20 kg/m3}. Spherical symmetry allows for rapid radial computations,
with the correct asymptotic boundary condition enabled. Specifically, we look for the value of the dimensionless
parameter αscreened below which the ball is screened (by dichotomy). Table 6.3 compiles such values for several

15Note that this is in line with what is shown in Fig. 1 of Ref. [142] for cesium and lithium atoms.
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Satellite Mass Equivalent
radius

Mean
density

αscreened

ρbg=10−12 kg/m3

αscreened

ρbg=10−20 kg/m3

CubeSat 1 kg 6.2 cm 103 kg/m3 2× 10−6 2× 10−10

microscope 330 kg 82 cm 1.4× 102 kg/m3 5× 10−5 5× 10−9

Galileo 675 kg 95 cm 1.9× 102 kg/m3 9× 10−5 9× 10−9

HST 1.1× 104 kg 5.6m 15 kg/m3 3× 10−4 3× 10−8

Table 6.3: Screening of satellites in space. Determination of αscreened for two typical background densities
ρbg ∈ {10−12 kg/m3, 10−20 kg/m3} via 1D radial simulations performed with femtoscope. The equivalent radius
is computed such that a sphere of that radius would have the same volume as the actual satellite at stake.
‘Galileo’ designate a satellite of the GNSS constellation of the same name, and ‘HST’ is the acronym of the
Hubble Space Telescope. We set L0 = 1m, ρ0 = 1kg/m3, n = 1. Note that these specific characteristic scales
lead to different α values compared to Fig. 4.15 or the study conducted in Chapt. 5 where we used L0 = REarth.

Figure 6.7: Mapping from the chameleon parameter space (M, Λ, n=1) to the dimensionless α parameter given
by Eq. (4.3), which controls the behavior of the field up to a scaling. The iso lines α ∈ {2× 10−10, 3× 10−4} are
highlighted by the black and gray dashed lines respectively. They correspond to the minimum and maximum
αscreened values reported in Table 6.3.

satellites which are characterized by their mass and dimensions. Whatever the actual shape of the satellite at
stake, we model it as a ball of equivalent density. We consider two background densities: ρbg = 10−12 kg/m3

corresponds to the density found at an altitude of roughly 400 km, while ρbg = 10−20 kg/m3 is the density
representative of the IPM. The data obeys the scaling relation αscreened ∝∼ ρ̃R̃2, as expected from Eq. (6.41).
Nonetheless, we lay emphasis that this short study, despite being numerical, remains a crude approximation:
in reality the atmospheric density varies non-isotropically away from the satellite, and the proximity to Earth
(which is deeply screened in the range of parameters considered in Table 6.3) further complicates the picture.
Fig. 9 in Chapt. 5 clearly shows that, depending on both the actual atmospheric model and the altitude, the
scalar field value can be either greater or lower than the value that minimizes the effective potential.

Fig. 6.7 further helps to get a sense of what are the corresponding actual chameleon parameters (β, Λ) that
map to the various values of αscreened tabulated in Table 6.3. Specifically, we isolated only the minimum and
maximum values from this table and plotted the associated iso α lines (all other values fall within the narrow
region delimited by these two lines). This must be put in perspective with Fig. 6.3, especially its left side panel,
where we represented the theoretical upper bound on zϕ.

Redshift measurements in space and ideas

Best possible constraints How does this translate into constraints on the chameleon model? While obtaining
bounds from redshift measurements requires specifying an actual experiment, we can readily derive the best
possible constraints by comparing zϕ to ϵrel. The scalar field redshift contribution zϕ is maximal for an unscreened
satellite orbiting the Earth from a very high altitude (geostationary and beyond), where the ambient density is
the lowest (more or less representative of the interplanetary medium, see Table 6.2). In that case, an atomic clock
onboard such a spacecraft would experience the very high value of the scalar field, which would be slightly lower
but nonetheless close to ϕmin(ρipm). Comparing time as measured by this onboard clock against a ground-based
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Figure 6.8: Compilation of the forecasts coming from the redshift experiments — in the laboratory and in space
— on the chameleon parameter space with state-of-the-art constraints (adapted from Fig. 4 of Ref. [152]). The
laboratory constraints (‘V’-shaped) are those from Fig. 6.6 with parameters {Rvc=50 cm, Rfoil=1 cm, XHV}
(top right panel). The region below the dotted gray line is where 84Sr nucleus starts to become screened and is
thus, a priori, inaccessible to the atomic clock experiment described in Sec. 6.3.1. The shaded red area in the
top right corner corresponds to the best possible constraints that could be set with a space-based experiment,
regardless of the actual underlying mission concept. In this best case, highly optimistic scenario — small
satellite beyond the geostationary altitude carrying a state-of-the-art atomic clock with a relative precision at
εrel = 10−20 — one could access an unconstrained region of the chameleon parameter space, for gravitational
strength couplings.

reference one (or alternatively, one onboard a screened satellite orbiting at lower altitudes where the atmospheric
density is several orders of magnitude higher than ρipm) yields zϕ ∼ βϕmin(ρipm)/MPl. Such a value then
constitutes a theoretical upper bound on zϕ in any realistic, well-defined experiment. In this perspective, Fig. 6.8
shows the associated best possible constraints in the chameleon parameter space for εrel ∈ {10−15, 10−20} (red
shaded area), together with the current constraints from other experiments (adapted from Fig. 4 of Ref. [152]).
In particular, it is interesting to notice that space-based redshift measurements could open a new window for
testing chameleons coupled to matter with gravitational strength — for β ≲ 103.

Note that redshift measurements involving satellites mean that we can no longer assume that the emitter
and the receiver are not moving in relation to each other. Consequently, an additional Doppler term from
special relativity must be added to the redshift formula (6.20). This Doppler effect can be larger than the ‘pure
gravitational redshift’ one — this is the case, for instance, for the ACES mission [303] where the overall rate of
the clock on-board the ISS will be slower than a static ground one. This further complicates the data analysis
process.

Thoughts on an actual mission design In this penultimate paragraph, we very briefly speculate on the actual
feasibility of such space missions. First, we lay emphasis on the fact that clocks suitable for flying in space are
not nearly as good as the best optical clocks engineered in the laboratory (given all the constraints inherent to
space-flight). For instance, passive hydrogen masers onboard Galileo satellites exhibit O(10−14) stability levels
at averaging times of ∼ 1000 s, which is roughly one order of magnitude better than the cesium clocks onboard
glonass satellites. The ACES mission, to be launched in 2025, will put a cold atom cesium clock (PHARAO)
in the International Space Station, targeting a O(10−16) precision [303].

Given these orders of magnitude, it appears that space-borne atomic clocks are not mature enough yet
to probe still unexplored regions of the chameleon parameter space — see Fig. 6.8. Provided that they will
continue to improve by a few orders of magnitude in the future, one could draw from past proposal for testing
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the gravitational redshift effect in space [25–27, 306]. In particular, highly elliptical orbits are good candidates
for such tests in several respects. Regardless of the model being tested, an elliptic orbit induces a periodic
modulation of the gravitational redshift [323]. In chameleon gravity, one could imagine having the science payload
screened at the perigee, where the atmosphere is still thick enough, yet unscreened at the apogee, where density
drops below 10−19 kg/m3. In this regard, the RadioAstron space mission has the orbital characteristics that we
seek, with a perigee at 500 km above the Earth’s surface, where the atmospheric density is roughly 10−12 kg/m3,
and very high apogee at an altitude of 350 000 km, where density is that of the interplanetary medium. As
reported in Table 6.3 and Fig. 6.7, there is a band in the parameter space for which a spacecraft would possess a
thin shell at the perigee but would be unscreened at the apogee. This would leave a chameleon-modulated signal
in the redshift data.

Closing remarks While Fig. 6.8 optimistically summarizes this whole section, in practice, putting competitive
constraints on the chameleon model via redshift measurements appears to be currently out of reach. Whether
the experiments are conducted in the laboratory or in outer space, the greatly idealized bounds we derived have
no chance to hold in a realistic scenario.

Additionally, we focused on the very specific case of the chameleon model with exponent n = 1. Because
ϕmin(ρ) ∝ ρ−1/(n+1), models with n < 0 do not exhibit the crucial property that ϕmin(ρ)→ +∞ as ρ→ 0, on
which the whole idea developed in this chapter holds. In the symmetron model [see e.g. Eqs. (1.110, 4.5)], the
scalar field has a non-zero vev in very low density environments, reading

ϕmin(ρ) = ±
µ√
λ

√
1− ρ

µ2M2
≃ ± µ√

λ
=⇒ Ω(ϕmin) ≃ 1 +

µ2

2λM2
.

In this model, the dimensionless parameter λ can be very low (values considered in the literature go down to
λ ≲ 10−60), while log10 µ is generally taken between −3 and +3 and log10(M/GeV) between −10 and +20. A
rough order-of-magnitude computation seems to indicate that redshift experiments could yield interesting bounds
on this model. The careful analysis of this question is left for future work.

Chapter summary

This chapter clarified, in theoretical terms, the predicted outcome of redshift measurements in
the framework of scalar-tensor theories of gravity. Despite satisfying LPI, such theories can
nonetheless be distinguished from GR in redshift experiments. Focusing on the chameleon
model with positive exponent, we are able to single out the scalar field contribution to the total
redshift (in the Newtonian limit), which beyond improving readability, allows us to imagine a
first gedankenexperiment involving atomic clocks and aimed at either detecting or constraining
the model at stake. The orders of magnitude derived from this idealized yet well-defined
experiment are translated into constraints in the parameter space of the chameleon, given the
current state of the art in atomic clock technology. It appears that these ‘optimal’ theoretical
constraints are competitive with current bounds, which is why we go a step further and assess
whether they hold in a more realistic scenario. In the laboratory, modular atomic clocks
could be sensitive to chameleons very strongly coupled to matter (β ≫ 105), although (i)
the feasibility of the setup we describe is quite uncertain and (ii) the screening of individual
atomic nuclei beyond a certain threshold mitigates our forecasts. In space, the very low-density
environment found in high-altitude orbits allows spacecraft to be unscreened in some regions
of the parameter space — most notably for gravitational strength couplings. However, the
clocks onboard satellites cannot be as precise as their ground-based counterparts, due to the
constraints inherent to space-flight. We find that the current level of precision exhibited by the
best clocks in space is still a few orders of magnitude too low to yield interesting constraints.
Finally, while we focused on the chameleon model, the idea of using redshift measurements to
test modified gravity could potentially be applied to other scalar-tensor theories with screening
mechanisms. In particular, the symmetron is expected to be also quite sensitive to the kind of
experiments we described in this chapter, the full study of which is left for future work.
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Conclusion and prospects

Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.

Sherlock Holmes

Unveiling the true nature of gravity is a vast research effort that requires the harmonious integration of
theoretical insights on the one hand, and experimental data on the other hand. For this program to move forward,
it is of the utmost importance to establish quantitative contact between abstract physical models and actual
observations. Precisely, making the most of the constraining power of the latter requires accurate modeling of
both standard gravity (GR) and alternative theories. This PhD work is part of this overall perspective.

In particular, I focused on scalar-tensor theories of gravity — where the gravitational interaction is mediated
by both a rank-2 tensor field and a scalar field — as they arguably constitute one of the most compelling,
resilient, and phenomenologically-rich alternatives to GR. In this framework, physically-relevant models can
remain viable — notwithstanding the stringent bounds on allowed deviations from GR at the Solar system scale
and below — by means of screening mechanisms. The latter have attracted a great deal of attention over the
past two decades or so, initially advocating for space-based tests of gravity. Subsequently, the recent attempt to
set constraints on the chameleon model using data from the microscope space mission mitigated these earlier
speculations. Most importantly, one key takeaway from this study is that the testability of such screened fifth
forces is crucially dependent on the development of new numerical tools for a realistic modeling of their features.

This PhD work aims at filling this gap, namely to obtain well-posed and versatile numerical solutions of
scalar-tensor theories with screening mechanisms. The foreseen benefits of which are twofold. On the one hand,
such a numerical tool allows for the translation of experimental data into constraints on modified gravity models
in a reliable and accurate way. On the other hand and at earlier stages, it can also prove very useful, if not
indispensable, for assessing the relevance of envisioned experimental setups, or for gaining insights into physical
scenarios that could not be explored beforehand. In this regard, this thesis further aims at addressing open
questions in connection with the ability of space-based mission to efficiently constrain screened scalar fifth forces.

This research work brings out three main results which can be summarized as follows.

The first phase of this work was devoted to the development of femtoscope,16 a Python code relying on
the finite element method for solving the semi-linear partial differential equations that arise in scalar-tensor
models with screening mechanisms. The use of non-uniform meshes allows one to deal with arbitrarily complex
geometries and multi-scale problems, notably through h-adaptivity. Nonlinear PDEs arising e.g. in the chameleon
or symmetron models are handled via Newton’s method by iteratively solving a sequence of linearized problems.
Notably, the Newton-linearized Klein–Gordon equation associated with the chameleon field as well as the Poisson
equation, on a bounded domain Ω ⊂ R3, both have a unique weak solution in the usual Sobolev space H1(Ω)
when supplemented with Dirichlet boundary conditions. The software also allows for dimensional reduction when
the sought solution enjoys a particular continuous symmetry, which greatly alleviate the resulting computational
burden compared to solving the full 3D problem. This is made possible through the implementation of the
underlying weak formulations not only in Cartesian coordinates, but also in spherical and cylindrical coordinates.
Specifically, we prove that the well-posedness of the latter is implied by the well-posedness of the former.

There remains the issue of asymptotic boundary conditions (Ω unbounded), which naturally arise in the
context of scalar-tensor gravity when the value taken by the scalar field of interest is not known anywhere near
the matter sources, but infinitely far away from them. For the two aforementioned problems, the asymptotic
behavior is imposed by looking for weak solutions in adequate weighted Sobolev spaces, for which Lax–Milgram
hypotheses apply. Unbounded domains cannot be meshed as in standard FEM, which is why we explored several
techniques based on compactification transforms. In particular, we successfully leveraged the Kelvin inversion by
implementing the inverted finite element method (ifem) in femtoscope. Moreover, building on top of ifem and a
specific domain decomposition scheme, we proposed a novel method for solving elliptic PDEs on the whole space,

16Open-source code publicly available at https://github.com/onera/femtoscope.
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which we call the alternate inverted finite element method (a-ifem).

In a second phase, we made use of femtoscope in order to quantitatively assess the testability of a chameleonic
fifth force in Earth orbit by means of space geodesy techniques. The PREM and US76 models are used to assign
densities to the Earth’s interior and atmosphere respectively, and we introduce a small deviation from spherical
symmetry embodied by a true-to-scale mountain. Then, solving for the Newtonian potential and the chameleon
field gives us access, upon computing their gradient, to both standard and modified gravity. In viable regions of
the chameleon parameter space, the Earth is screened, which means that the corresponding fifth force is sourced
only by its outermost layers, at odds with the inverse-square law. In this modified gravity setting and in the
absence of atmosphere, the chameleon therefore leaves a distinctive signature on the Earth’s overall gravitational
potential, as brought to the fore by its multipolar expansion.

In order to assess whether this signature can be detected, we first tackled the issue related to the influence
of the atmosphere on the fifth force. Fixing the parameters (Λ, n) and gradually increasing the coupling β
brings out four regimes: (i) for low values of β, the atmosphere is transparent to the fifth force, (ii) above a
certain threshold, it acts as an attenuator, effectively reducing the chameleon acceleration, (iii) for even stronger
couplings, any non-radial dependence of the scalar field vanishes so that the mountain is plainly invisible, and
(iv) the atmosphere itself eventually becomes screened.

We also addressed the question of the backreaction of an object as small as a satellite on the background
chameleon field. For the first time, we went beyond the various approximations found in the literature by
computing the full {Earth+ satellite} system. We showed that the transition from the unscreened to the screened
regime occurs over a very narrow band in the chameleon parameter space. In the latter regime, the resulting
fifth force acting on the satellite is suppressed extremely efficiently.

Finally, we selected a ‘best-case scenario’, with no atmosphere, and simulated the dynamics of the GRACE-FO
pair of satellites, treated as point masses, in the {sphere + mountain} system, with and without the putative
chameleonic force. We showed that the anomaly brought about by the scalar fifth force is well above the
sensitivity range offered by current space-borne technology. However, the existence of uncertainties in the
model, most notably the fact that the distribution of matter within the Earth is poorly known, greatly mitigates
the constraining power of such tests. This degeneracy can in principle be lifted by performing this kind of
space geodesy experiment at more than one altitude. However, given the orders of magnitude involved and
the optimistic model underlying them, the take-home message is that space geodesy is not likely to result in
competitive constraints on the chameleon model in the near future.

In a third and final phase, we explored the possibility of testing screened scalar-tensor theories by means of
redshift experiments, which are radically different in nature from fifth force searches. We derived the expression
of the measured redshift in this context and isolated the scalar field contribution in the Newtonian limit.
Despite satisfying local position invariance, such theories can nonetheless be distinguished from GR in redshift
experiments. Focusing on the chameleon model, we derived the optimal bounds that could be put on the
model’s parameters given the state of the art in atomic clock technology, which turned out to be competitive
with current bounds by several orders of magnitude. We then considered more realistic scenarios. In the
laboratory, we find that modular atomic clocks could be sensitive to chameleons very strongly coupled to matter,
although (i) the feasibility of the setup we describe is quite uncertain and (ii) the screening of individual
atomic nuclei beyond a certain threshold mitigates our forecasts. In space, the very low-density environment
found in high-altitude orbits allows spacecraft to be unscreened in some regions of the parameter space — most
notably for gravitational strength couplings. However, the clocks onboard satellites cannot be as precise as
their ground-based counterparts, due to the constraints inherent to space-flight. As a result, we found that the
current level of precision exhibited by the best clocks in space is still a few orders of magnitude too low to yield
interesting constraints. Be it as it may, it is not inconceivable that the desired levels of precision will be achieved
in the future given the recent progress made in the field of optical clocks.

This PhD work has implications that go beyond the main results synthesized above. First of all, we lay
emphasis on the fact that, while it has been used primarily to study scalar-tensor theories of gravity, femtoscope
is a general-purpose Python software based on FEM for solving nonlinear elliptic PDEs on unbounded domains.
To the best of our knowledge, there are no other publicly available codes with this set of specifications. Its
versatility means that it can readily be utilized to study completely different physics whose governing equations
fit into this framework. This includes, but is far from being limited to, Laplace equation for the electrostatic
potential in free space around perfect conductors, stationary states to nonlinear heat or wave equations that
take the generic form −∆u = f(x, u) in an infinite media, the elliptic sine-Gordon equation on the whole space
which appears in the study of surfaces of constant negative curvature, or the quasi-linear p-Laplacian equation
arising in non-Newtonian fluid dynamics in the whole space.

The femtoscope software could also prove useful in the design of microscope-2, the envisioned successor the
microscope space mission that will aim to reach a 10−17 precision on the Eötvös parameter for the WEP test.
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In this context, femtoscope could be an elementary building block of a larger, more comprehensive end-to-end
simulator of all the physics taking place in the instrument onboard the satellite, including putative WEP-violating
fifth forces stemming e.g. from scalar-tensor models with non-universal couplings.

Still on the subject of fundamental physics experiments in space, our conclusions from Chapts. 4 and 5
overlap with those that were drawn from the previous study on the testability of the chameleon model with
microscope. Particularly, our results confirm, in the light of more comprehensive numerical computations, that
the latter turns out to be screened at LEO orbits — where the atmosphere is still relatively dense compared
to the interplanetary medium — for the largest part of yet unconstrained regions of the parameter space. To
be clear, this greatly reduces the hope of detecting WEP violations stemming from a non-universally coupled
chameleon to matter with microscope-like experiment.

Another important implication of this research work is the potential of redshift-based experiments to compet-
itively constrain scalar-tensor models with screening mechanisms. To the best of our knowledge, the possibility
of leveraging this effect (exhibited by all metric theories) has not yet been considered in the literature, and opens
the way to more discussions with experimental physicists to assess the feasibility of the ideas laid out in this
Chapt. 6. Regarding space-based tests however, one should not expect the soon-to-be-launched ACES mission to
be able to put constraints on the chameleon through its measurement of gravitational redshift, mainly due to
the fact that the ISS is screened for still relevant model parameters.

Several areas of development can be foreseen to extend this research work. Regarding femtoscope, we have
mentioned several times in this manuscript the possibility to extend its scope to time-dependent problems. While
the way this can be achieved in the finite element framework has been explained in detail in Chapt. 2, this
feature has yet to be implemented on top of the current version of the software. Qualitatively, the validity of
the quasi-static assumption hinges on the comparison of two time scales. On the one hand, the chameleon field
adapts to changes in the density distribution ρ with a characteristic time τ1 ∼ λϕ(ρ) (in natural units), while on
the other hand, the moving objects under study exhibit a time scale τ2 ∼ L0/v, where L0 and v are typical length
scale and velocity. For most situations, τ1 ≪ τ2, but when this ceases to be the case, time-dependent simulations
become necessary to obtain physically meaningful results. This would represent a further challenge in terms of
computational cost — at each time step, one has to solve a nonlinear problem which in turn translates to solving
a sequence of linear problems (see Fig. 4.5) — and would thus most likely require to leverage high-performance
computing techniques.

In Chapt. 4, we only scratched the surface of the two-body problem in the framework of chameleon gravity.
For one thing, the draft study we presented on the shifting of equilibrium points with respect to Newtonian
gravity should be further expanded to include experimental insights, the lack of which currently prevents us from
setting out a well-defined experiment. In an astrophysical context, the study of binary neutron star inspirals
is a priori within our reach, since the weak field and quasi-static regimes do apply in this phase preceding the
merger. Given the scalar field profiles computed with femtoscope for a given range of distances between the two
compact bodies, one could address the question of the influence of the scalar field on the lifetime of such binary
systems and compare it against GR’s prediction.

Besides, our preliminary study on redshift-based tests of scalar-tensor theories of gravity with screening
mechanisms was illustrated only on the chameleon model with positive exponent (n>0) due to its ability to
reach very high values in low-density media. We noticed that the symmetron field also exhibits very large vevs
in vacuum in some parts of its parameter space. A work similar to what has been done in Chapt. 6 but for
the symmetron is necessary to further assess the possibility of putting constraints on this model with atomic
clocks. As as additional remark, we stress that the validity of treating screened scalar-tensor theories of gravity
as effective field theories is not guaranteed at the particle physics level. The extent to which this could impact
the discussions undertaken in Chapt. 6 remains to be estimated.

As closing words, scalar-tensor theories of gravity acquired a new lease on life with the introduction of
screening mechanisms. While the latter were engineered precisely to escape from our grasp, a global research
effort has been at play for the past decades to try and rule-out ever widening regions of their respective parameter
spaces. Taking a step back, it is quite amazing to look at the great variety of tests that have been proposed as
attempts to ‘outsmart’ the scalars in this game of hide-and-seek. This research work was not intended to analyze
real data, so there was no question of imposing new constraints on these models. Instead, we have provided new
numerical means — which have the potential to benefit a broad spectrum of scientific communities — to help and
guide this effort. Indeed, we have reached a stage where making further progress calls for elaborate numerical
modeling. The versatility of femtoscope makes it a tool of choice for probing gravity in a wide range of physical
contexts: from the laboratory (e.g. atom interferometry or torsion pendulum experiments), to space-based
missions [e.g. microscope(-2)] and scenarios involving astrophysical objects (e.g. binary neutron star systems).
Even gravitational physics happening at different scales can be encompassed through h-adaptivity. In that sense,
my research work has opened new exciting avenues for gaining valuable insights into alternative theories of
gravity.
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Taking another step back, scalar-tensor theories are one way of extending GR among many others. Looking
at the whole zoo of modified gravity models may justifiably be overwhelming, and one may feel lost amidst it.
However, in the absence of deeper and more profound guiding principles, testing all possibilities and ruling them
out one by one becomes an essential strategy for forging ahead in our understanding of gravity.



AppendixA
Natural units

Natural units have been introduced and briefly discussed in Chapt. 1. This Appendix provide a more thorough
review of this widely used convention in theoretical physics — especially in quantum field theory and particle
physics. Choosing to translate the equations of GR (or alternative theories) from SI units to natural units might
seem a bit superfluous. After all, the physics is already there. Yet, this has a genuine added value in several
respects. Beyond making equations slightly simpler by removing occurrences of c and ℏ, the use of natural units
allows for a more direct comparison of scales. Indeed, all kinematical quantities can be expressed in powers
of electron-volt. Moreover, if we think of GR or scalar-tensor theories as field theories, it becomes easier to
appreciate the connection between such gravitational theories and, say, particle physics.

However, employing natural units comes at the cost of loosing dimensional clarity. Unlike with SI units,
physical quantities are expressed without reference to their dimensions (such as meter for length, kilogram for
mass and second for time), which makes it more difficult to keep track of the physical meaning of quantities.
This Appendix aims at laying out the algorithm for switching from SI unit to natural unit, and vice-versa. It is
then showcased on the equations arising in scalar-tensor theories written throughout this manuscript.

A.1 Conversion between SI units and natural units

A.1.1 Definition of natural units

The speed of light c and the reduced Planck constant ℏ = h/2π are fundamental constants in physics, whose
values in SI units are c = 299 792 458m s−1 and 2πℏ = 6.626 070 15× 10−34 kgm2 s−1. Natural units are defined
as the system of units in which c and ℏ are equal to one. The most sensible way to look at this definition is to
regard energy E, velocity V and angular momentum A as new base quantities, rather than length L, mass M
and time T. Any kinematical variable can be equivalently expressed in both base quantities since





V = LT−1

E = ML2 T−2

A = ML2 T−1

⇐⇒





M = EV−2

L = AVE−1

T = AE−1

. (A.1)

This is illustrated heuristically in Fig. A.1. Note that using energy as our new base quantity is somewhat
arbitrary as we could e.g. have chosen mass to assume this role.

Now let us look at a few examples. In the original base quantities, a force has dimension MLT−2 with SI units
kgm s−2. In the new base quantities, it has dimension E2 A−1 V−1 with units eV2 (unit of c)−1 (unit of ℏ)−1.
In practice, we do not bother writing “(unit of c)” or “(unit of ℏ)”. Therefore, a force may be expressed in eV2.
Likewise, a mass can be expressed in eV, a length or a time in eV−1 and an energy density in eV4.

At this point, several remarks are in order. First, using the electron-volt as our energy unit is a choice —
any other unit of energy would do the job. Second, the consequence of these choices is that any kinematical
physical quantity can be expressed in eVα, for some relevant exponent α depending on the original SI units
of the quantity at stake. This remaining ‘uncollapsed’ dimension still allows one to perform basic dimensional
analysis. Third, it is no surprise that the equations of the gravity models studied in this PhD work involve the
gravitational constant G (rather than ℏ). A perfectly sensible choice is to set c = G = 1 (leaving out of the
picture the Planck constant), which results in so-called geometrized units (e.g. used in the ‘bible’ of GR [324]).
However, going further and setting c = ℏ = G = 1 would result in a purely natural system of units which has all
of its dimensions collapsed. Leaving herewith no dimensional quantities is typically a bad idea as it would imply
the definitive abandon of dimensional analysis, which has proven to be a powerful tool in physics!

199



200 APPENDIX A. Natural units

Figure A.1: Heuristic illustration of SI units vs natural units. For the record, the ‘new’ international system of
units (2018) fixes the numerical value of c and ℏ to those provided in Eq. (A.2).

A.1.2 Conversion algorithm

Consider a kinematical variable X with SI units kgα mβ sγ , with numerical value x in this system of units. Given
Eq. (A.1), X can be expressed in eVα−β−γ , with a different numerical value χ. Of course, what we would like to
know is the conversion factor to go from x to χ. This conversion factor involves powers of the numbers

C = 299 792 458 , H = 6.626 070 15× 10−34 , E = 1.602 176 634× 10−19 (A.2)

(intentionally written without their usual accompanying units), reading

x

χ
= Hβ+γ Cβ−2α Eα−β−γ (A.3)

We also set the dimensionful quantity e = E J/eV. Table A.1 compiles the conversion factor x/χ for various
physical entities that are often encountered in gravitational physics. To go from natural units to SI units:
multiply by the conversion factor. To go from SI units to natural units: divide by the conversion factor.

A.2 Dimensional analysis

Let us perform the dimensional analysis of the Einstein’s field equations (1.12) and show that, as claimed at the
beginning of Sec. 1.1.1, the numerical value of the reduced Planck constant ℏ does not really appear. For the
record, the field’s equations, in natural units, read

M2
Pl

[
Rµν −

1

2
Rgµν

]
= Tµν . (A.4)

The homogeneity of such expression is readily checked: M2
Pl as units of eV2 and so does Rµν , R, while the

energy-momentum tensor Tµν is expressed in eV4.
In order to go back to SI units, we can apply the rules set out above in Sec. A.1.2 and use the conversion

Table A.1. In particular

Variable SI Unit Natural Unit x/χ factor

mass kg eV E C−2

length m eV−1 HC E−1

time s eV−1 HE−1

energy kgm2 s−2 eV E
velocity ms−1 1 C
gravitational potential m2 s−2 1 C2
matter density kgm−3 eV4 H−3 C−5 E4
acceleration ms−2 eV H−1 C E

Table A.1: Conversion form (SI units ←→ natural units) for various physical quantities encountered in gravita-
tional physics.
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– M2
Pl can be converted back to kg2 through the factor C−4E2;

– Rµν and R can be converted back to m−2 through the factor (HC)−2E2;

– Tµν can be converted back to kgm−1 s−2 through the factor H−3C−3E4.

Therefore, multiplying both sides of Eq. (A.4) by e4(ℏc)−3 results in the SI-units version of the Einstein’s field
equations, reading

c4

8πG

(
Rµν −

1

2
Rgµν

)
= Tµν , (A.5)

for which it is clear that the numerical value of ℏ does not play any role.
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AppendixB
Mapping of f (R) and extra-dimensional theories
to scalar-tensor models

B.1 f(R) theory

In f(R) models, the Ricci scalar R in the Einstein–Hilbert action (1.11b) is replaced by f(R), i.e.

S =
M2

Pl

2

∫
d4x
√−gf(R) + Smat[gµν ] , (B.1)

where f designates an arbitrary real function. It turns out that such theories can be recast in the framework of
scalar-tensor theories. This can be shown in three steps:

1. Define χ(xµ) a dynamical scalar field such that f(R) = f(χ)− f ′(χ)(R− χ).

2. The variation of the action (B.1) with respect to χ yields f ′′(χ)(R − χ) ≡ 0. If f is chosen such that
f ′′(χ(xµ)) ̸= 0 for all spacetime coordinates xµ but a set of negligible measure, this implies χ ≡ R. Note
that δSmat/δχ = 0.

3. We can then define a new scalar field φ(xµ) = −f ′(χ(xµ)) so that the action (B.1) now reads

S =
M2

Pl

2

∫
d4x
√−g

{
φR−

[
φχ(φ)− f

(
χ(φ)

)]}
+ Smat[gµν ] . (B.2)

This corresponds to the action of a scalar-tensor model in the Jordan frame [Eq. (1.41)] where

F (φ) = φ , Z(φ) = 0 , U(φ) =
M2

Pl

2

[
φχ(φ)− f

(
χ(φ)

)]
.

This is a well-known procedure, see e.g. Refs. [325, 326]

B.2 Extra-dimensional Kaluza–Klein theory

This discussion of how theories with extra dimension can be made to look like traditional scalar-tensor theories
is based on Ref. [327].

We consider Kaluza–Klein theories for which a (4 + d)-dimensional spacetime is equipped with a metric Gab

and a set of coordinates {Xa}0≤a≤d+3. We assume that the line element can be put in the following form

ds2 = GabdX
adXb = gµν(x)dx

µdxν + b2(x)γij(y)dy
idyj . (B.3)

In this splitting of the metric Gab, we introduced

– {xµ} a set of coordinates in the 4-dimensional spacetime together with a metric on that manifold gµν
which depends only on these coordinates;

– {yi} a set of coordinates in the d-dimensional manifold (which is assumed to be maximally symmetric for
the sake of simplicity) and equipped with the metric γij which depends only on the latter coordinates;
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– b(x) a scale factor.

The action of the theory under consideration is

S =
1

16πG4+d

∫
d4+dX

√
−GR[Gab] +

∫
d4+dX

√
−GLmat , (B.4)

where G is the determinant of the metric Gab, R[Gab] is the Ricci scalar constructed from this metric and G4+d

is a constant of the theory.
The idea is then to recover a 4-dimensional theory by integrating out the extra d dimensions in the action (B.4).

To do so, we rely on the fact that
√
−G = bd

√−g√γ and R[Gab] = R[gµν ] + b−2R[γij ]− 2db−1gµρ∇µ∇ρb− d(d−1)b−2gµσ∇µb∇σb , (B.5)

where ∇µ denotes the usual covariant derivative constructed from the metric gµν . Newton’s constant G4 is
obtained through

G4 =
G4+d

V , where V =

∫
ddy
√
γ (B.6)

is the volume of the extra-dimensional space when b ≡ 1. We set M2
Pl = 1/8πG4. Using Eqs. (B.5, B.6), the

integration over the extra dimensions in the action yields

S =
1

16πG4+d

∫
d4x
√−gbd

∫
ddy
√
γ
(
R[Gab] + Lmat

)

=
M2

Pl

2

∫
d4x
√−gbd−2

{
b2R[gµν ] + d(d−1)gµν∇µb∇νb+ d(d−1)κ

}
+

∫
d4x
√−gVbdLmat . (B.7)

In the above, we have set R[γij ] = d(d−1)κ (remember that the extra d-dimensional manifold is taken to
maximally symmetric). We start to see a resemblance with the framework of scalar-tensor theories exposed in
Chapt. 1, Sec. 1.1.2, where the scale factor b plays the role of a scalar field. It can be shown (see Ref. [327]) that
the changes of variables

β(x) = ln b , g∗µν = edβgµν , ϕ =

√
d(d+ 2)

2
MPlβ (B.8)

lead to the action

S =

∫
d4x
√−g∗

{
M2

Pl

2
R∗ −

1

2
gµν∗ ∇∗

µϕ∇∗
νϕ+

κ

2M2
Pl

d(d−1) exp
(
−
√

2(d+2)

d

ϕ

MPl

)}

+

∫
d4x
√−g∗V exp

(
−
√

2(d+2)

d

ϕ

MPl

)
Lmat ,

(B.9)

where quantities with a star ∗ are derived from the metric g∗µν . Eq. (B.9) makes it clear that the original action
S given by Eq. (B.4) can be put (under some assumptions) in the form of a traditional scalar-tensor model with
non-trivial potential and conformal factor function. This scalar field ϕ is usually referred to as the dilaton or the
radion. It is related to the size of the extra-dimensional manifold.



AppendixC
On the existence of solutions to semi-linear PDEs

This appendix is dedicated to the mathematical study of the nonlinear PDEs that are discussed throughout this
manuscript, in particular the chameleon and symmetron field equations. On the basis of known results in the
field of semi-linear PDE analysis, we strive to provide answers to the two key questions:

1. Do the field equations at stake have solutions?

2. If so, are they unique?

The existence and uniqueness of solutions to semi-linear PDE problems is the subject of an entire field of research
which dates back to the early xxth century, with significant contributions notably from Hadamard and Fréchet.
Today, we have a whole arsenal of more or less sophisticated techniques at our disposal to tackle these questions:
maximum principles [205], the method of sub- and super-solutions [328], variational methods and critical point
theory [329, 330], including minimax procedures [331], the mountain pass and saddle point theorems [332, 333],
etc.

The starting point of this analysis of well-posedness are the dimensionless equations (4.4, 4.6), which can
both be cast into the generic form

−α∆u = f(x, u) in Ω ⊆ R3 , α > 0 . (C.1)

Unfortunately, there is no single ‘great theorem’ straightforwardly applicable to the generic case (C.1), but rather
a plethora of results scattered across research articles, which are restricted to specific forms of the rhs function
f(x, u) together with precise sets of assumptions. The aim of the present appendix is to pinpoint, when possible,
the theorems that apply to the cases of interest and verify that their assumptions hold.

C.1 Chameleon field equation

In the case of the chameleon model, the rhs function featured in Eq. (C.1) reads f(x, s) = s−m − ρ(x) for some
m ∈ Z and 0 ≤ ρ(x) ≤ ρmax. We first study the case of chameleon models with positive exponents, i.e. m > 1.
As for the negative exponent case, we only focus on the m = −3 example. Refer to Sec. 1.2.2 for a summary of
admissible exponents in the framework of the chameleon model.

C.1.1 Positive exponent, bounded domain
The theorem we leverage here was first proven in Refs. [334, 335]. In particular, it provides us with the existence
and uniqueness of a classical solution to our boundary value problem. It is to be noted that having m > 1 results
in f(x, s)→ +∞ as s→ 0+. Problems of this form go under the name of singular semi-linear elliptic problems
and are the subject of a whole strand of literature [334–338]. In particular, we shall seek positive solutions to
such a problem.

Let m > 1 and Ω be a bounded open connected subset of R3, whose boundary Γ = Ω̄ \ Ω is assumed to be a
surface of class C2,γ for some γ∈ ]0, 1[.1 Define the rhs

f : Ω̄× ]0, +∞[→ R
x, s 7→ s−m − ρ(x) ,

(C.2)

1The precise meaning of a C2,γ boundary is given in Ref. [339], page 6. Note that this condition is satisfied if Ω = B(R) for some
R > 0.
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where ρ : Ω̄→ R+ is assumed to be Lipschitz continuous.

Theorem C.1. Given uD ∈ C2,γ(Γ) with uD(x) > 0 for all x ∈ Γ, the PDE problem
{
−α∆u(x) = f(x, s) for x ∈ Ω

u(x) = uD(x) for x ∈ Γ
(C.3)

has a unique classical positive solution u ∈ C2,β(Ω̄), for some β∈ ]0, γ[.

Proof. The proof of this theorem is a direct consequence of theorems 2.1 and 4.3 from Ref. [335]. The existence
part requires verification of hypotheses H1), H2)’ and H3) laid out in this work, which all relate to the function
f defined by Eq. (C.2).

H1) For any x, y ∈ Ω̄ and s, r ∈ R∗
+, we have |f(x, s)− f(y, r)| ≤ |s−m − r−m|+ |ρ(x)− ρ(y)|. The fact that

the function ρ is Lipschitz continuous on Ω̄ and that the real function : R∗
+ ∋ t 7→ t−m is locally Lipschitz

continuous imply the Hölder continuity of f on each compact subset of Ω̄× R∗
+.

H2)’ Trivially, s−1|f(x, s)| → 0 as s → +∞ uniformly for x ∈ Ω̄. Moreover, there exist constants β > 0 and
A > 0 such that f(x, s) ≥ β for all x ∈ Ω̄ and all s ∈ ]0, A[. Indeed, one can simply take β = 1 and
A = (1 + ρmax)

−1/m, so that

f(x, s) = s−m − ρ(x) ≥ A−m − ρmax = 1 .

H3) Let r > 0 and x ∈ Ω̄. For p > q ≥ r, f(x, p) − f(x, q) = p−m − q−m ≤ 0. Moreover, the mean value
theorem yields ∣∣∣∣

p−m − q−m

p− q

∣∣∣∣ ≤ mr−(m+1) =:M(r) ,

so that −M(r)(p− q) ≤ f(x, p)− f(x, q) ≤ 0.

Ref. [337] provides a uniqueness criterion, which is automatically satisfied given that : R∗
+ ∋ s 7→ f(x, s) is

non-increasing for each x ∈ Ω.

C.1.2 Negative exponent, bounded domain

In the case m = −3 (which corresponds to n = −4 with the conventions of Sec. 1.2.2), the PDE problem reads
{
−α∆u(x) = u3(x)− ρ(x) for x ∈ Ω

u(x) = uD(x) for x ∈ Γ
. (C.4)

This type of PDE problem falls into the category of super-linear elliptic problems with perturbed symmetry,2
for which most mathematical results concern the existence and uniqueness of weak solutions. They principally
involve techniques related to the calculus of variations and critical point theory — see e.g. Refs. [329, 330,
340–342]; in particular Theorem C.1 does not apply in this case. Ref. [343] reviews a number of known results
regarding super-linear elliptic problems. Specifically, the problem

−∆u = |u|p−2u+ h(x) , u ∈ H1
0 (Ω)

has infinitely many solutions provided that h ∈ L2(Ω) and 2 < p < (2N − 2)/(N − 2), where N ≥ 3 is the
dimension of the problem — p < 4 in the three-dimensional case [344]. Noting that u3 = |u|4−2u, we see that
this result does not cover problem (C.4). On top of that, the result from Ref. [344], as the vast majority of
results found in the literature [329, 343], only applies to the case of homogeneous Dirichlet boundary conditions,
i.e. uD ≡ 0. In the case of linear PDEs, we showed in Sec.2.1.2 how non-homogeneous case can be reduced
to homogeneous conditions. This procedure cannot be readily transposed to the nonlinear case, where other
techniques must be employed [340, 345]. In particular, Ref. [340] devised a new approach for dealing with
problems of the form −∆u = |u|p−2u+ h(x) with u = uD on Γ which only applies to p < 2N/(N − 1), i.e. p < 3
for the case N = 3 we are interested in. These are, to the best of our knowledge, the state-of-the-art results the
closest to, but unfortunately not including, problem (C.4).

2Specifically, this perturbation from symmetry can be attributed to the presence of the rhs function h and non-homogeneous
Dirichlet boundary conditions on Γ.
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C.1.3 The case Ω = R3

In this PhD work, we are also interested in the unbounded case where Ω = R3. In that respect, some works deal
with the case of singular / super-linear elliptic PDEs posed on the whole space, see e.g. Refs. [329, 342, 346,
347]. However, we did not find any result relevant to the two forms of PDE dealt with in Secs. C.1.1 and C.1.2.

C.2 Symmetron field equation

In the case of the symmetron model, the rhs function featured in Eq. (C.1) reads f(x, s) = [β2 − ρ(x)]s− s3, for
some constant β ∈ R. Here, it is interesting to note the ‘s3’ term in this definition of f has switched sign with
respect to chameleon case discussed in Sec. C.1.2. This makes the study of the corresponding PDE tremendously
simpler, as we shall see in the following. Specifically, we tackle the question of well-posedness using well-known
variational methods, which are exposed in the first two chapters of Ref. [329].

C.2.1 Bounded domain

Let Ω be an open bounded subset of R3. The PDE problem we are interested in is
{
−α∆u+ q(x)u = −u3 for x ∈ Ω

u(x) = uD(x) for x ∈ Γ
, (C.5)

where q(x) = [ρ(x)− β2] and the boundary data uD ∈ H1/2(Γ) is assumed to be bounded. As mentioned above,
all the results presented in Ref. [329] are restricted to the homogeneous case uD ≡ 0. From Sec. 2.1.2, we know
that the linear boundary value problem

{
∆u = 0 for x ∈ Ω

u(x) = uD(x) for x ∈ Γ
(C.6)

has a unique weak solution in H1(Ω), that we denote by u∗. Therefore, the study of problem (C.5) is equivalent
to the study of {

−α∆u+ q(x)u = (u+ u∗)3 + h(x) in Ω

u ≡ 0 on Γ
, (C.7)

where h := −qu∗ ∈ L2(Ω) [since q ∈ L∞(Ω) and u∗ ∈ H1(Ω) ⊂ L2(Ω)].
From there, one can define the functional

I : H1
0 (Ω)→ R

u 7→ I(u) =
α

2

∫

Ω

∥∇u∥2 dx+
1

2

∫

Ω

q(x)u2 dx+
1

4

∫

Ω

(u+ u∗)
4 dx−

∫

Ω

h(x)udx .

(C.8)

Such a functional, often called the energy functional, is well-defined since q ∈ L∞(Ω), h ∈ L2(Ω), and the
Sobolev embedding theorem guarantees that (u + u∗) ∈ H1(Ω) ⊆ L4(Ω). It can further be shown that I is
Fréchet-differentiable on H1

0 (Ω) — see Examples 1.3.17 and 1.3.20 from Ref. [329] — and its differential at
u ∈ H1

0 (Ω) reads

I ′(u)v = α

∫

Ω

∇u ·∇v dx+

∫

Ω

q(x)uv dx+

∫

Ω

(u+ u∗)
3v dx−

∫

Ω

h(x)v dx , v ∈ H1
0 (Ω) (C.9)

Here, one must realize that u ∈ H1
0 (Ω) is a weak solution of the PDE problem (C.7) if and only if it is a critical

point of the energy functional (C.8), i.e. I ′(u)v = 0 for all v ∈ H1
0 (Ω). It follows therefrom that studying the

existence and uniqueness of weak solutions of the initial problem (C.5) can be addressed by concentrating on the
properties of the functional I given by Eq. (C.8).

Usually, the existence of critical points of the energy functional is established by proving that (i) I is coercive,
and (ii) I is weakly lower semi-continuous on H1

0 (Ω) so that the infimum of I is attained. However, we can do
better here thanks to the following theorem.

Theorem C.2. Let λ1 be the smallest eigenvalue of the operator −α∆ + q(x) under homogeneous Dirichlet
boundary conditions. If λ1 is strictly positive, then the energy functional I defined by Eq. (C.8) has a unique
critical point, i.e. the PDE problem (C.5) has a unique weak solution in H1

0 (Ω).

Proof. The proof is based on the two following assertions:
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1. I is a continuous coercive functional;

2. I is strictly convex.

Then, by virtue of Theorems 1.5.6 and 1.5.8 from Ref. [329], I has exactly one minimum point (which is thus
global). I being Fréchet-differentiable, this minimum is the only critical point in H1

0 (Ω).
1. Since λ1 > 0, the quantity

(u | v) := α

∫

Ω

∇u ·∇v dx+

∫

Ω

q(x)uv dx , u, v ∈ H1
0 (Ω)

defines a scalar product on H1
0 (Ω), which induces a norm that is equivalent to the usual H1-norm. In particular,

there exists a constant C > 0 such that for all u ∈ H1
0 (Ω),

I(u) ≥ C ∥u∥2H1 +
1

4

∫

Ω

(u+ u∗)
4 dx−

∫

Ω

h(x)udx

≥ C ∥u∥2H1 − ∥h∥L2 ∥u∥H1 , (C.10)

where we have used the Cauchy–Schwarz inequality and the fact that ∥u∥L2 ≤ ∥u∥H1 . The latter inequality
shows that the energy functional is coercive, i.e. for every sequence (uk)k∈N ∈

(
H1

0 (Ω)
)N, ∥uk∥H1 → +∞ implies

I(uk)→ +∞ (as k → +∞).
2. To show that I is strictly convex, let u, v ∈ H1

0 (Ω) and compute

(
I ′(u)− I ′(v)

)
(u− v) = α

∫

Ω

∇u ·∇(u− v) dx+

∫

Ω

q(x)u(u− v) dx+

∫

Ω

(u+ u∗)
3(u− v) dx−

∫

Ω

h(x)(u− v) dx

− α
∫

Ω

∇v ·∇(u− v) dx+

∫

Ω

q(x)v(u− v) dx+

∫

Ω

(v + u∗)
3(u− v) dx−

∫

Ω

h(x)(u− v) dx

=
(
(u− v) | (u− v)

)
+

∫

Ω

(u− v)
[
(u+ u∗)

3 − (v + u∗)
3
]
dx .

For arbitrary real numbers a, b, c, we have

(a− b)
[
(a+ c)3 − (b+ c)3

]
= (a− b)2

[
(a+ c)2 + (b+ c)2 + (a+ c)(b+ c)

]
≥ 0 ,

since for any x, y ∈ R, x2 + y2 ≥ xy. This proves that
(
I ′(u) − I ′(v)

)
(u − v) ≥ C ∥u − v∥2H1 , where C is

same strictly positive constant as in Eq. (C.10). Ergo, I is strictly coercive, see e.g. Proposition 1.5.10 from
Ref. [329].

C.2.2 Discussion of the case Ω = R3

When Ω is equal to the whole space R3, Theorem C.2 does not apply directly. In particular, the definition
domain of the functional I has to be replaced by some adequate space of (generalized) functions defined on R3.
The specification of such a functional space is to be done according to physical insights into the symmetron
model. For instance, assuming that the density becomes homogeneous in all directions far away from the system
of interest, i.e. ρ(x) → ρ∞ as ∥x∥ → +∞, one can expect the scalar field to stabilize towards some constant
value u∞ at spatial infinity. From the symmetron PDE, we get

u∞
[(
ρ∞ − β2

)
+ u2∞

]
= 0 ⇐⇒

{
u∞ = 0 , or
u2∞ = β2 − ρ∞ .

The case u∞ = 0 is perhaps the simplest to discuss. Indeed, this special case makes it possible to look for
weak solutions to the symmetron PDE in H1(R3). The energy functional I [Eq. (C.8)] is to be replaced by

J : H1(R3)→ R

u 7→ J(u) =
α

2

∫

R3

∥∇u∥2 dx+
1

2

∫

R3

q(x)u2 dx+
1

4

∫

R3

u4 dx−
∫

R3

h(x)udx ,

which is well-defined given the embedding H1(R3) ↪→ Lq(R3) for every q ∈ [2, 6]. Furthermore, it is still
Fréchet-differentiable (see e.g. Example 1.3.21 from Ref. [329]). Following the same steps as in Sec. C.2.1, one
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can show that J has a single critical point in H1(R3), i.e. the problem associated with the symmetron model
posed on the whole space has a unique weak solution in H1(R3) that uniformly decays to zero at spatial infinity.

However, the scenario in which u∞ = 0 is not always the most physically-relevant one, especially if ρ∞ is to
be interpreted as a vacuum density (i.e. ρ∞ ∼ 0). To understand why, one should examine the symmetron field
effective potential Veff (see Box C) which, in its dimensionless form, reads

Veff(u) =
1

2

[
ρ(x)− β2

]
u2 +

1

4
u4 .

A sketch of this Z2-symmetric effective potential is provided e.g. in Ref. [71], Fig. 2. In particular, the coefficient
of the quadratic term, [ρ(x)− β2]/2 can be either positive or negative depending on the ambient density. In
particular, it becomes negative in low density environment, where ρ < β2, giving rise to a so-called symmetry
breaking transition where the field can roll into one of the two minima ±

√
β2 − ρ. The scalar field is no longer

trapped at zero, which has become a local maximum and thus constitutes an unstable point of equilibrium. In
light of this physical insights, it is clear u(x)→ 0 as ∥x∥ → +∞ is not a suitable asymptotic boundary condition
for the symmetron field when ρ∞ < β2 and one should instead consider u2∞ = β2 − ρ∞. This leads to several
issues:

– First, the aforementioned symmetry breaking transition can lead to the formation of so-called domain
walls, which are the interface between adjoining regions of space where the scalar field has picked different
vacuum expectation values (vevs) — positive in some regions and negative in some others. Consequently,
there is no reason why the field should relax towards the same vev in all directions.

– Given that the scalar field does not go to zero at spatial infinity, it makes no sense to look for weak solutions
in H1(R3), and other functional spaces should be considered instead. In this respect, the weighted Sobolev
spaces introduced in Chapt. 3 are good candidates.

– The fact that q(x) can become negative for large ∥x∥ threatens the coercivity of the energy functional.

Addressing all these points is beyond the scope of this appendix.
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AppendixD
Mathematical proof of the vanishing gradient

Consider the following radial ODE problem

∀r > 0 ,∆rϕ = ρ(r)− ϕ−(n+1) with





ϕ′(r = 0) = 0

ρ(r) −→
r→+∞

ρvac

ϕ(r) −→
r→+∞

ϕvac

, (D.1)

where ∆r refers to the radial part of the Laplacian expressed in spherical coordinates in 3 dimensions

∆rf =
1

r2
d

dr

(
r2

df

dr

)
=

d2f

dr2
+

2

r

df

dr
, for any f ∈ C2(R+, R) (D.2)

and
ϕvac = (ρvac)

− 1
n+1 . (D.3)

The asymptotic values of ρ and ϕ are such that the rhs of the ODE (D.1) vanishes at infinity, which readily
implies that ∆rϕ→ 0 as r →∞. The goal of this appendix is to show that the solution of Eq. (D.1) — provided
it exists and is unique — is such that

ϕ′(r) −→
r→+∞

0 , (D.4)

i.e. the radial gradient also vanishes at infinity.

D.1 Proof that ϕ′′(r)→ 0 as r → +∞

The asymptotic condition on the radial part of the Laplacian [Eq. (D.2)] may be reformulated as:

there exists a function ϵ : R∗
+ → R such that





ϕ′′(r) +
2

r
ϕ′(r) = ϵ(r)

ϵ(r) −→
r→+∞

0
. (D.5)

The above is nothing but a second-order linear ordinary differential equation (ODE) which can be solved via
the method of variation of parameters. The general solution of the homogeneous equation can be expressed
as −A/r +B, with A,B ∈ R. Then a particular solution of the inhomogeneous equation is sought in the form
ϕ(r) = −A(r)/r +B(r), with A and B two real functions satisfying the system

{
−A′(r)/r +B′(r) = 0

A′(r)/r2 + 0 = ϵ(r)
⇐⇒

{
A′(r) = r2ϵ(r)

B′(r) = rϵ(r)
. (D.6)

Therefore, a particular solution of the ODE on R∗
+ is

ϕ(r) = −1

r

∫ r

1

s2ϵ(s) ds+

∫ r

1

sϵ(s) ds . (D.7)
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The general solution then reads

ϕ(r) = −1

r

[∫ r

1

s2ϵ(s) ds+A

]
+

∫ r

1

sϵ(s) ds+B , A,B ∈ R . (D.8)

From there, we can compute the second order derivative as

ϕ′′(r) = − 2

r3

[∫ r

1

s2ϵ(s) ds+A

]
+ ϵ(r) (D.9)

and the proof boils down to showing that

1

r3

∫ r

1

s2ϵ(s) ds −→
r→+∞

0 . (D.10)

Let δ > 0, ϵ(r) −→
r→+∞

0 hence there exists Rδ > 0 such that for all r ≥ Rδ, |ϵ(r)| < δ. Let us introduce

M := max
s∈[1,+∞[

|ϵ(s)| and R∗ :=
RδM

δ
. (D.11)

For r ≥ max(R∗, Rδ) =: Rm, we get:

|I(r)| :=
∣∣∣∣∣
1

r3

∫ r

1

s2ϵ(s) ds

∣∣∣∣∣ =
∣∣∣∣∣
1

r

∫ r

1

(s
r

)2

︸ ︷︷ ︸
≤1

ϵ(s) ds

∣∣∣∣∣ ≤
1

r

∫ r

1

|ϵ(s)|ds

≤ 1

r

∫ Rδ

1

|ϵ(s)|ds+ 1

r

∫ r

Rδ

|ϵ(s)|ds

≤ 1

r

∫ Rδ

1

max
s∈[1,Rδ]

|ϵ(s)|ds+ 1

r

∫ r

Rδ

δ ds

≤ Rδ − 1

r
max

s∈[1,Rδ]
|ϵ(s)|+ r −Rδ

r
δ

≤ RδM

r
+ δ ≤ RδM

R∗
+ δ ≤ δ + δ ≤ 2δ . (D.12)

We have shown that ∀δ > 0 , ∃Rm > 0 / ∀r > Rm , |I(r)| ≤ δ, which is the exact definition of I(r) −→
r→+∞

0 and
concludes the first part of the proof.

D.2 Proof that ϕ′(r)→ 0 as r → +∞
Let f ∈ C2(R+,R) be such that

{
f has a limit l as x approaches +∞
f ′′ goes to 0 as x approaches +∞ . (D.13)

These two hypotheses can be rewritten in a more mathematical formalism as

[f ′′ goes to 0] ∀ϵ > 0 , ∃M ∈ R+ / ∀x ≥M , |f ′′(x)| ≤ ϵ , (D.14)

[f goes to l] ∀ϵ > 0 , ∃M ∈ R+ / ∀x ≥M , |f(x)− l| ≤ ϵ . (D.15)

The fact that f converges allows us to write a third proposition that slightly differs from (D.15)

[f converges] ∀ϵ > 0 , ∃M ∈ R+ / ∀x1, x2 ≥M , |f(x1)− f(x2)| ≤ ϵ . (D.16)

Strategy: We develop a proof by contradiction. To that end, let us suppose that f ′ does not go to 0 at +∞, that
is

∃δ > 0 / ∀A ∈ R+ , ∃x ≥ A / |f ′(x)| > δ . (D.17)
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Property (D.17) provides us with δ > 0. Even if it means redefining f ← −f , one can get rid of the absolute
value in (D.17) so that

∀A ∈ R+ , ∃x ≥ A / f ′(x) > δ . (D.18)

Note that this potential change of sign does not change in any way the asymptotic behavior of f ′ and f ′′. From
here, the proof follows the subsequent steps.

1. f ′ reaches δ for arbitrarily large x.

More precisely, let us demonstrate that ∀A > 0 , ∃x ≥ A / f ′(x) = δ. Let A > 0, according to (D.18), there
exists xm ≥ A such that f ′(xm) > δ. We employ reductio ad absurdum, assuming that for all x ≥ xm, f ′(x) ̸= δ.
Because f ′ is continuous over R+, this implies that ∀x ≥ xm, f ′(x) > δ. This statement is in contradiction with
the convergence of f . Indeed, let ϵ > 0 and get M ∈ R+ given by property (D.16). We set

x1 := max(xm,M) and x2 := x1 +
2

δ
ϵ . (D.19)

On the one hand,
|f(x1)− f(x2)| ≤ ϵ because x1, x2 ≥M , (D.20)

and on the other hand, ∀x ∈ [x1, x2], f
′(x) ≥ δ so that the mean value inequality gives

∫ x2

x1

f ′(x) dx ≥
∫ x2

x1

δ dx thus |f(x1)− f(x2)| ≥ f(x2)− f(x1) ≥ δ|x2 − x1| = δ
2

δ
ϵ = 2ϵ > 0 . (D.21)

The contradiction is now clear.

2. f ′ reaches δ/2 for arbitrarily large x.

Using the exact sames arguments as above, one proves that ∀A > 0 , ∃x ≥ A / f ′(x) = δ/2. Before going any
further, we define two sets:

Eδ := {x ∈ R+ such that f ′(x) = δ} and Eδ/2 :=

{
x ∈ R+ such that f ′(x) =

δ

2

}
. (D.22)

We have just shown that these two sets are infinite and that they contain arbitrarily large values of x.

3. Construction of the interval sequence (In)n∈N.

The aim of this part is to show that f ′-values stay between δ/2 and δ on arbitrarily large intervals. To that
extent, we construct a sequence of disjoint intervals (In)n∈N such that f ′ falls between δ/2 and δ on each In:

– For I0, we set x0,δ in Eδ and x0,δ/2 in Eδ/2 such that x0,δ < x0,δ/2 and ∀x ∈ [x0,δ, x0,δ/2], f
′(x) ∈ [δ/2, δ].

– For I1, we choose x1,δ in Eδ∩]x0,δ +∞] and x1,δ/2 in Eδ/2∩]x0,δ/2 +∞] such that x1,δ < x1,δ/2 and
∀x ∈ [x1,δ, x1,δ/2], f

′(x) ∈ [δ/2, δ]. By construction, I1 and I0 are indeed disjoints.

– For I2, we choose x2,δ in Eδ∩]x1,δ +∞] and x2,δ/2 in Eδ/2∩]x1,δ/2 +∞] such that ...

– etc.

This construction is illustrated on Fig. D.1. We now demonstrate that

∀X,A > 0,∃I ∈ (In)n∈N such that

{
inf(I) ≥ X
|I| ≥ A . (D.23)

Let X,A > 0 and set ϵ = A−1. We make use of the fact that f ′′ goes to 0 by applying property (D.14) for
ϵδ/2 > 0. Let us denote M ≥ 0 the constant provided with this property and set R := max(X,M). According
to what has been shown in the previous point, one can choose an element I = [a, b] of the sequence (In)n∈N such
that I ⊂ [R,+∞[. The hypotheses of the mean value inequality are verified, namely:

– f ′ is continuous over [a, b];

– f ′ is differentiable over ]a, b[;

– for all x ∈]a, b[, f ′′(x) ≤ ϵδ/2 (since x ≥M);
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Figure D.1: Construction of the (In)n∈N sequence.

so that ∣∣∣∣
f ′(b)− f ′(a)

b− a

∣∣∣∣ ≤
δ

2
ϵ . (D.24)

Yet, by definition of I, f ′(a) = δ, f ′(b) = δ/2 and (b− a) = |I|. The above inequality therefore boils down to

δ − δ
2

|I| ≤
δ

2
ϵ ⇐⇒ 1

|I| ≤ ϵ ⇐⇒ |I| ≥ A , (D.25)

which concludes the proof.

4. Contradiction.

Finally, we use the convergence of f to bring out a contradiction. Let ϵ > 0 and M ≥ 0 the constant associated
to property (D.16). According to the previous point, there exists I ∈ (In)n∈N such that




I ⊂ [M,+∞[

|I| ≥ 4

δ
ϵ

. (D.26)

Let us denote [a, b] := I. On the one hand, the convergence of f provides the inequality

|f(b)− f(a)| ≤ ϵ because a, b ≥M , (D.27)

and on the other hand, ∀x ∈ [a, b], f ′(x) ≥ δ/2 so that the mean value inequality gives

∫ b

a

f ′(x) dx ≥
∫ b

a

δ

2
dx hence |f(b)− f(a)| ≥ f(b)− f(a) ≥ δ

2
|I| ≥ δ

2

4

δ
ϵ = 2ϵ > 0 . (D.28)

The contradiction is clear. Q.E.D.



AppendixE
Solving ordinary differential equation with
projection on constraint space

In Chapt. 5, we solved the ODE system governing the dynamics of a spacecraft whose orbit lies in a plane, where
the conservation of energy was numerically enforced through the use of a projection technique. This appendix is
devoted to the presentation of such a technique and provides an example of implementation in Python. It is
mainly based on Refs. [348, 349].

E.1 Statement of the problem

Differential Algebraic Equations (DAE) are a generalization of Ordinary Differential Equations (ODE). Schemat-
ically, one has

ẏ = f(t, y) for and ODE, and g(t, y, ẏ) = 0 for a DAE,

where f : R × Rn → Rn and g : R × Rn × Rn → Rm, with m,n ∈ N∗. DAE arise in physics when we want
to account for conservation laws, in which case the traditional equations of dynamics (which are generally
second-order differential equations) are supplemented with one or several algebraic equations. Take for example
the spring-mass system. The dynamics boil down to the familiar harmonic oscillator equation





mẍ = kx

x(t = 0) = x0

ẋ(t = 0) = v0

(E.1)

The mechanical energy is conserved along the trajectory of the mass, that is

E =
1

2

(
mẋ2 + kx2

)
= Cst .

Of course, energy conservation can be derived from Eq. (E.1) by multiplying both sides of the equation by ẋ and
integrating. The energy of a conservative system is an example of a first integral. The two formulations are
equivalent.

Yet, from a numerical perspective, there is no reason for our favorite ODE solver to preserve energy
conservation when solving the ODE (E.1). In some applications, we could be interested in ensuring that the
energy of the system remains constant over long periods of time (e.g. in celestial mechanics). In fact, most of the
time, doing nothing particular to ensure this condition will result in either a steady increase of the energy over
time or a dissipation, both phenomena originating from the discrete numerical scheme employed (see Fig. E.1,
left column). We thus may be tempted to solve both problems at once, that is

{
mẍ = kx

1
2

(
mẋ2 + kx2

)
− E0 = 0

with

{
x(t = 0) = x0

ẋ(t = 0) = v0
. (E.2)

This is an example of an over-determined DAE. Indeed, setting y = (x, ẋ), we can recast this system in the form
described above g(t, y, ẏ) = 0 with g : R× R2 × R2 → R3: we have two degrees of freedom and three equations
to satisfy...
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Figure E.1: Numerical solution of the spring-mass system for (x0, v0) = (0, 1) (first row) together with the
relative variation of the energy (E(t)− E0)/E0 (second row). The left column represents results obtained with
the traditional RK45 method, available with scipy.integrate.solve_ivp. The right column is obtained by
modifying that same routine to enable the projection of the state onto the constraint manifold at each time step.
Despite the graphs of x(t) looking similar to the naked eye, the energy is not preserved with the RK45 scheme
(numerical dissipation) whereas the projection technique allows the energy to remain constant to within 2 parts
in 1016 (basically, what numerical precision allows).

E.2 Imposing constraints through projection

Projection is a straight forward way to preserve a given first integral. Formally, the constraint can be thought of
as a manifold M = {y ∈ Rn , I(y) = 0}, where I : Rn → R. Projection is going to be applied at the end of each
discrete time step of the arbitrary numerical scheme employed. Let us denote by yk the numerical approximation
at time tk. Going from yk to yk+1 takes two steps:

1. Use the set of ODE ẏ = f(t, y) and some numerical solver (e.g. RK4) to compute an approximation ỹk+1

at time tk+1.

2. Project ỹk+1 onto the constraint sub-manifold M using some projector P : Rn → Rn to be defined, giving
yk+1 = P (ỹk+1).

For the first step, there is nothing particular to be discussed as numerical solvers are widely available across
all languages. In Python, one can use scipy.integrate.solve_ivp which implements few classics such as
RK45, Radau, BDF, etc. When it comes to the projection itself, there seem to be really few publicly available
codes, in spite of the wide range of potential applications. We thus dedicate the remainder of this note to the
computation of a well-suited projector and its implementation in an existing solver.

E.2.1 Projection techniques

Orthogonal projection

The first idea that comes to mind is to compute y ∈M such that it minimizes the quantity ∥y − ỹ∥2 (∥ · ∥ is the
2-norm in Rn here). This is equivalent to introducing a Lagrange multiplier λ ∈ R such that

{
y = ỹ + λ∇I(y)
I(y) = 0

. (E.3)

We commonly refer to this projector P : ỹ 7→ y as the orthogonal projector, because we are looking for the nearest
point on M that satisfies the constraint. However, problem (E.3) is implicit which makes it difficult to solve at
low computational cost.
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Oblique projection

Oblique projection relaxes the constraint of finding the nearest point on the sub-manifold M. Instead, we look
for a projector that will give us a small enough deviation δy := P (ỹ)− ỹ with respect to the size of the solver’s
step ỹk+1 − yk. A natural way to achieve this is to approximate the gradient of I at point y in (E.3) by the
gradient of I at point ỹ. That is we look for λ ∈ R such that

{
y = ỹ + λ∇I(ỹ)
I(y) = 0

. (E.4)

This projection technique, because it is slightly different from the orthogonal projection presented above, is
referred to as an oblique projection. The problem is no longer implicit. Indeed, we can substitute the first
equation of (E.4) into the second, yielding I(ỹ + λ∇I(ỹ)) = 0, which is a nonlinear equation in λ. It can be
solved with some root finding algorithm.

It is possible to go one step further. Letting Is : λ ∈ R 7→ I(ỹ + λ∇I(ỹ)) ∈ R, we have an explicit form for
the derivative of Is:

d

dλ
Is(λ) = ∇I(y) · ∇I(ỹ) , with y = ỹ + λ∇I(ỹ) .

This is a valuable expression as it lets us employ the Newton method as our root finding algorithm, converging
very quickly towards the actual root (at most two iterations were needed for the spring-mass system, see Fig. E.1).

E.2.2 Implementation
As we saw above, the projection technique is minimally intrusive as it only requires to change the state vector
after the solver’s step. This means that it can be plugged virtually on top of any general purpose ODE
solver. We have successfully implemented the oblique projection by redefining the Runge–Kutta solver at
scipy.integrate._ivp.rk.

solver’s step ỹk+1 − yk. A natural way to achieve this is to approximate the gradient of I at point y in (3)
by the gradient of I at point ỹ. That is we look for λ ∈ R such that{

y = ỹ + λ∇I(ỹ)

I(y) = 0
. (4)

This projection technique, because it is slightly different from the orthogonal projection presented above, is
referred to as an oblique projection. The problem is no longer implicit. Indeed, we can substitute the first
equation of (4) into the second, yielding I(ỹ + λ∇I(ỹ)) = 0, which is a nonlinear equation in λ. It can be
solved with some root finding algorithm.

It is possible to go one step further. Letting Is : λ ∈ R 7→ I(ỹ + λ∇I(ỹ)) ∈ R, we have an explicit form
for the derivative of Is:

d

dλ
Is(λ) = ∇I(y) · ∇I(ỹ) , with y = ỹ + λ∇I(ỹ) .

This is a valuable expression as it lets us employ the Newton method as our root finding algorithm, converging
very quickly towards the actual root (at most two iterations were needed for the spring-mass system, see
Fig. 1).

2.2 Implementation

As we saw above, the projection technique is minimally intrusive as it only requires to change the state
vector after the solver’s step. This means that it can be plugged virtually on top of any general purpose
ODE solver. We have successfully implemented the oblique projection by redefining the Runge-Kutta solver
at scipy.integrate. ivp.rk.

def cons_proj(fun , t, y, cons , grad_cons):

"""

Project the current state ‘y‘ onto the constraint manifold using an oblique

projection technique.

Parameters

----------

fun : callable

Right -hand side of the system.

t : float

Current time.

y : ndarray , shape (n,)

Current state.

cons : callable

Function defining the constraint I(t, X) = 0.

grad_cons : callable

Function defining the gradient of the constraint function at a given

position X, i.e. $\nabla_{X} I$.

Returns

-------

y_new : ndarray , shape (n,)

Solution at t + h computed with a higher accuracy.

f_new : ndarray , shape (n,)

Derivative ‘‘fun(t + h, y_new) ‘‘.

"""

y_lbd = lambda lbd : y + lbd * grad_cons(t, y)

cons_lbd = lambda lbd : cons(t, y_lbd(lbd))

cons_lbd_prime = lambda lbd : np.dot(grad_cons(t, y_lbd(lbd)), grad_cons(t, y))

sol = root_scalar(cons_lbd , x0=0, fprime=cons_lbd_prime , method=’newton ’)

lbd = sol.root

y_new = y_lbd(lbd)

f_new = fun(t, y_new)

return y_new , f_new

3
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class RungeKuttaProj(OdeSolver):

r"""

Modified class for explicit Runge -Kutta methods. This portion of code

originate from ‘scipy.integrate._ivp.rk‘ and has been modified to allow for

a projection of the current state onto some constraint manifold.

New arguments:

--------------

cons : callable

Function defining the constraint I(t, X) = 0.

grad_cons : callable

Function defining the gradient of the constraint function at a given

position X, i.e. $\nabla_{X} I$.
"""

# ============================

# Skipping untouched code ...

# ============================

def __init__(self , fun , t0, y0, t_bound ,

max_step=np.inf , rtol=1e-3, atol=1e-6, vectorized=False ,

first_step=None , ** extraneous):

super().__init__(fun , t0, y0, t_bound , vectorized ,

support_complex=True)

cons = extraneous.get(’cons’, None)

grad_cons = extraneous.get(’grad_cons ’, None)

if (cons is None) or (grad_cons is None):

raise ValueError(

"User must provide functions ‘cons ‘ and ‘grad_cons ‘!")

self.cons = cons

self.grad_cons = grad_cons

# ...

def _step_impl(self):

t = self.t

y = self.y

step_accepted = False

# ...

while not step_accepted:

t_new = t + h

# ...

# After the step is accepted , we project the state onto the

# constraint ’s manifold

y_new , f_new = cons_proj(self.fun , t_new , y_new , self.cons , self.grad_cons)

# ...
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The full code, together with an example script demonstrating its use on the spring-mass system, are available as
supplementary material of Ref. [141].
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