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École doctorale n◦576, particules hadrons énergie et noyau:
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Dominique THERS Examinateur
Professeur de 1ière classe, Subatech, IMT Atlantique
Theopisti DAFNI Examinatrice
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Résumé: La recherche de la désintégration
double bêta sans neutrino (0νββ) est cruciale
pour faire progresser notre compréhension
de la physique et explorer la physique
au-delà du modèle standard. Cepen-
dant, cette recherche est incroyablement
difficile en raison de l’extrême rareté de
la désintégration, qui nécessite une in-
terprétation approfondie et une dépendance
aux contraintes expérimentales et aux modèles
nucléaires théoriques. L’expérience PandaX-
III est dédiée à la recherche de 0νββ dans
136Xe. Il s’agit d’une chambre de projec-
tion temporelle (TPC) gazeuse à haute pres-
sion équipée de détecteurs Micromegas. Ce
choix a été fait pour maximiser la capacité de
détection des traces de particules et minimiser
les fluctuations statistiques dans la résolution
en énergie. L’un des principaux défis de
la recherche d’événements 0νββ est la dis-
crimination entre le signal et les événements
de bruit de fond, qui contaminent la région
d’intérêt (ROI). Le système de lecture par
pistes des détecteurs Micromegas (une com-
binaison de 52 détecteurs forme un plan de
lecture) permet la reconstruction 2D précise
des trajectoires d’ionisation avec les informa-
tions de charge et de temps. Cela permet
d’étudier l’énergie et la topologie des trajec-
toires d’électrons et, en conséquence, de dis-
tinguer le signal du bruit de fond. Pour
réduire la diffusion latérale et obtenir des
traces reconstruites plus fines, nous ajoutons
un gaz quencher de 1% de triméthylamine
(TMA) au gaz 136Xeenrichi à 90%. La
résolution en énergie actuelle de l’expérience
PandaX-III est de 3% pour l’énergie de 2457
keV de la désintégration de 136Xe 0νββ et
devrait être améliorée à 1%. Cependant,
plusieurs facteurs peuvent dégrader cette
résolution en énergie, tels que la présence de
canaux morts, les inhomogénéités de gain dans
les détecteurs Micromegas ou l’attachement

des électrons dans la TPC. Ce travail de
doctorat présente une étude de l’impact des
canaux manquants sur les reconstructions
d’énergie et de topologie dans l’expérience
PandaX-III. Les résultats de la détermination
de la charge du blob n’offrent pas la possi-
bilité souhaitée de reconstituer la partie de
son énergie qui aurait été perdue en raison
des canaux manquants dans XZ à partir des
projections YZ des traces d’événements re-
construites et vice versa. Cependant, l’étude
a montré qu’il est possible d’utiliser des al-
gorithmes d’apprentissage automatique pour
atténuer l’impact des canaux manquants sur
la reconstruction de l’énergie et de la topolo-
gie. Un modèle de réseau neuronal convolutif
(CNN) a été développé pour prédire l’énergie
réelle des électrons à partir des données
simulées collectées par les Micromegas avec
des canaux manquants. Les résultats fin-
aux montrent que le modèle CNN prédit
l’énergie réelle des événements enregistrés par
les Micromegas avec des canaux manquants
avec une grande efficacité. Nous observons
une amélioration de l’efficacité de détection
du signal de Monte Carlo dans la ROI, qui
passe de 69% à 89% après l’application du
modèle CNN, par rapport à l’approche di-
recte consistant à additionner les amplitudes
des signaux provenant des Micromegas dont
les canaux sont manquants. Un autre modèle
CNN a également été utilisé pour classer les
événements à deux électrons des événements
à un seul électron dans les données de Monte
Carlo affectées par des canaux manquants. Le
modèle est capable, en présence de canaux
manquants, de rejeter 99% des événements de
bruit de fond tout en conservant une efficacité
de 26% pour les signaux 0νββ dans la ROI.
Les résultats de ce travail sont prometteurs
et ouvrent la voie à d’autres études visant à
améliorer la résolution en énergie et le rejet du
bruit de fond dans l’expérience PandaX-III.
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Abstract: The search for neutrinoless
double-beta decay (0νββ) is crucial for ad-
vancing our understanding of physics and ex-
ploring physics beyond the Standard Model.
However, this pursuit is incredibly challenging
due to the decay’s extreme rarity, requiring
profound interpretation and reliance on ex-
perimental constraints and theoretical nuclear
models. The PandaX-III experiment is dedi-
cated to the search for 0νββ in 136Xe. It is a
high-pressure gaseous Time Projection Cham-
ber (TPC) with Micromegas detectors. This
design choice is made to maximize the particle
track detection and discrimination 0νββ sig-
nal vs. gamma background capabilities. One
of the main challenges of the 0νββ search
is the discrimination between the signal and
background events, which contaminate the re-
gion of interest (ROI). The strip readout sys-
tem of the Micromegas detectors (a combina-
tion of 52 of them form a readout plane) al-
lows for the precise 2D reconstruction of the
ionization tracks together with the charge and
time information. This allows for studying
the electron tracks’ energy and topology and
ultimately discriminating the signal from the
background. To reduce the lateral diffusion
and get thinner reconstructed tracks, we add
a 1% trimethylamine (TMA) quencher to the
136Xegas enriched to 90%. The current energy
resolution of the PandaX-III experiment is 3%
for the 2457 keV energy of the 136Xe 0νββ de-
cay, envisioned to be improved to 1%. How-
ever, several factors can degrade the energy
resolution, such as the presence of dead chan-
nels, gain inhomogeneities in the Micromegas
detectors, or electron attachment in the TPC.

This Ph.D work presents a study on the im-
pact of missing channels on the energy and
topology reconstructions in the PandaX-III
experiment. The results of the Blob charge de-
termination do not provide the desired possi-
bility of reconstituting the part of the blob en-
ergy that would have been lost due to missing
channels in XZ from YZ projections of recon-
structed event tracks and vice versa. However,
the study gave insight into employing machine
learning (ML) algorithms to mitigate the im-
pact of missing channels on energy and topol-
ogy reconstructions. A Convolutional Neural
Network (CNN) model was developed to pre-
dict the true energy of the electrons from the
simulated data collected by the Micromegas
with missing channels. The final results show
that the CNN model predicts the true energy
of the events recorded by the Micromegas with
missing channels with a good energy resolu-
tion. We observe an improvement in the de-
tection efficiency of the Monte Carlo 0νββ sig-
nal in the ROI from 69% to 89% after applying
the CNN model, in comparison to the direct
approach of directly summing amplitudes of
the signals from the Micromegas with miss-
ing channels. Another CNN model was also
used to classify the two-electron events from
the single-electron events in the Monte Carlo
data affected by missing channels. The model
is capable of rejecting 99% of the background
events while maintaining a 26% efficiency for
the 0νββ signal in the ROI. The results of this
work are promising and pave the way for fur-
ther studies to improve the energy resolution
and background rejection in the PandaX-III
experiment.
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plot for the residual between EP and ÊP with respect to EP. The presence of
the artifacts is reduced in comparison to the previous model results for the
primary energies (Fig. 5.16a). . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.22 Skip connection introduced in the MultiResNet architecture. Here an output
from the first convolutional block is used as an input for the skip connection
convolutional block. The output of the skip connection is then added to the
output of the second convolutional block. Further propagation of the data
through the model is unchanged: the summed output is flattened and passed
through the fully connected layers. . . . . . . . . . . . . . . . . . . . . . . . 111

5.23 MultiResNet model evaluation. Trained on the 300k dataset with global
normalization of input images. (a) Correlation plot for the residual between
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and Ẑ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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Résumé étendu en français

Les neutrinos, d’abord hypothétisés par Wolfgang Pauli en 1930, restent l’une des par-
ticules les plus énigmatiques du Modèle Standard de la physique des particules. Ils sont
électriquement neutres, interagissent faiblement. Ils ont une masse (très faible), comme en
témoignent les oscillations de saveur des neutrinos - un phénomène où les neutrinos oscillent
entre différents états de saveur (électron, muon, tau) lorsqu’ils se déplacent dans l’espace.
Nous obtenons, à partir des expériences d’oscillation, des informations sur les masses des
différents états de masse qui nous laissent deux possibilités pour les hiérarchies de masse:
Normale (NH, m1 < m2 < m3) et Inversée (IH, m3 < m1 < m2). On peut noter que dans
ces conditions, l’échelle de masse absolue reste indéterminée et qu’il en va de même pour
l’indice de l’état de masse de plus faible masse. Une autre question qui reste ouverte est la
nature du neutrino, s’ils sont des particules de Dirac ou de Majorana. Par conséquent, nous
sommes incités à explorer les propriétés des neutrinos de manière approfondie.

Les neutrinos sont produits dans divers processus, comprenant, entre autres, les réactions
nucléaires dans le Soleil, les réacteurs nucléaires et les interactions des rayons cosmiques avec
l’atmosphère terrestre. Malgré leur abondance, les neutrinos sont difficiles à étudier en raison
de leur faible interaction avec la matière. L’une des méthodes les plus prometteuses pour
comprendre les propriétés des neutrinos est la détection de la double désintégration bêta
sans émission de neutrinos (0νββ). Ce processus nucléaire hypothétique n’est possible que
si les neutrinos sont leurs propres antiparticules (particules de Majorana). De plus, si elle
est observée, la désintégration 0νββ pourrait fournir des informations sur l’échelle de masse
absolue des neutrinos. Dans le Modèle Standard, la double désintégration bêta avec émission
de deux neutrinos (2νββ) est autorisée et extrêmement rare, avec des demi-vies observées
dépassant 1019 ans. La valeur de Qββ c’est-à-dire l’énergie libérée lors de la désintégration,
est partagée entre les particules chargées et neutres. Par conséquent, le spectre énergétique
mesuré est continu, similaire à celui de la désintégration β.
D’un autre côté, la 0νββ implique l’émission de seulement deux électrons et aucun neutrino,
ce qui entrâıne un pic à la valeur Qββ dans le spectre énergétique. La mise en évidence de
ce pic serait une preuve directe de la nature Majorana des neutrinos. La demi-vie de la
0νββ est estimée à plus de 1025 ans, et pour l’observer, il serait nécessaire d’avoir une
exposition très sensible (masse × temps), une réjection efficace des bruits de fond et une
bonne résolution énergétique.

Cette thèse est dédiée à l’expérience PandaX-III, qui vise à rechercher la double désintégration
bêta sans émission de neutrinos (0νββ) dans le 136Xe. On utilise une chambre à projection
temporelle (TPC) à haute pression remplie de gaz de xénon enrichi et d’un gaz quencher
de 1% de triméthylamine (TMA). Le 136Xe est un gaz noble avec une grande abondance
naturelle, ce qui en fait un bon candidat pour les recherches de 0νββ, avec la possibilité de
dimensionner une expérience à une grande masse. La valeur Qββ du 136Xe est de 2457 keV,
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ce qui est relativement faible par rapport à d’autres isotopes utilisés dans les recherches
de 0νββ. La région d’intérêt (ROI), que nous définissons autour de la valeur Qββ pour
rechercher le signal de 0νββ, est plus susceptible d’être contaminée par le bruit de fond
gamma provenant de la radioactivité naturelle.

Pour détecter l’ensemble de l’ionisation et mesurer l’énergie des électrons, l’expérience
PandaX-III utilise des modules Micromegas (MM). Les spécificités du MM pour le traçage
nous permettent de détecter des traces de particules chargées afin d’utiliser la topologie
de l’événement pour discriminer le bruit de fond gamma. Dans le contexte de PandaX-
III, la lecture des MM est constituée de pixels avec un pas de 3 mm, interconnectés en
canaux dans deux directions orthogonales. Chaque module possède 128 canaux, 64 dans les
directions X et 64 dans les directions Y. Ainsi, une telle configuration de lecture fournit des
projections XZ et YZ des traces. Les informations sur la topologie des traces permettent de
distinguer le signal 0νββ des événements de bruit de fond. Un exemple serait la présence
de deux charges Blob (correspondant au pic de Bragg de chacune des traces d’électrons)
pour le signal 0νββ, tandis que les événements de bruit de fond n’auraient qu’une seule
charge Blob. L’expérience vise à atteindre une résolution énergétique de 3% à 2457 keV,
avec des efforts pour améliorer cette résolution à 1%. Cependant, plusieurs facteurs peuvent
dégrader la résolution énergétique. L’effet d’attachement des électrons dans le gaz entrâıne
une perte de dépôt d’énergie, tandis que les inhomogénéités du gain de lecture dans le
MM peuvent entrâıner une dégradation de la résolution énergétique. De plus, en raison de
défauts de construction ou de courants sombres élevés, certains canaux du MM peuvent
être déconnectés, ce qui peut entrâıner une perte d’informations sur les traces et le dépôt
d’énergie, entrâınant une dégradation de la résolution énergétique et, par conséquent, de
la sensibilité de détection de 0νββ. Cette thèse se concentre sur l’analyse de ce dernier
problème et le développement de différentes approches pour atténuer (ou être robuste face)
aux effets des canaux manquants dans les modules Micromegas.

Dans le cadre de l’expérience PandaX-III, la perte de trois canaux par module Mi-
cromegas (MM) (52 MM sur le plan de lecture) est le maximum acceptable. Les modules
avec plus de trois canaux manquants avant l’assemblage du plan de lecture ne sont pas
utilisés dans l’expérience. Cependant, même trois canaux manquants par MM peuvent
entrâıner une perte de 22% du dépôt d’énergie total. Cette perte peut avoir un impact
significatif sur la résolution en énergie. De plus, plusieurs canaux manquants consécutifs
peuvent conduire à une perte d’informations sur la topologie des traces, ce qui est crucial
pour le rejet du bruit de fond. La reconstruction de l’énergie et le rejet du bruit de fond
peuvent être gravement affectés si un dépôt de charge Blob est perdu en raison des canaux
manquants. Ainsi, la première partie de cette thèse est consacrée à l’étude analytique de
la reconstruction des charges Blob manquantes sur l’une des projections de traces. Elle
est suivie par une approche plus générale utilisant l’apprentissage automatique pour la re-
construction de l’énergie des événements dégradés par les canaux manquants. La dernière
partie de la thèse est dédiée à l’approche de l’apprentissage automatique pour la discrimi-
nation entre le signal 0νββ et les événements de bruit de fond, basée sur les informations
de topologie des traces en présence de canaux manquants.

Topologie des traces d’électrons et analyse des charges Blob

Cette partie de la thèse présente l’étude de la corrélation énergétique des charges Blob entre
les projections XZ et YZ des traces issues de la simulation Monte-Carlo des événements
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0νββ dans l’expérience PandaX-III. La première partie de cette étude a été réalisée avec le
logiciel REST, où le processus TRestFindTrackBlobsProcess a été utilisé pour identifier les
charges Blob aux deux extrémités de chaque projection de trace. La corrélation énergétique
des charges Blob s’est avérée faible et dépendante du paramètre de rayon de la charge Blob.
Par conséquent, un autre processus a été développé pour mieux déterminer les charges
Blob et améliorer la corrélation entre les deux projections. Ce processus se concentre sur
l’identification du hit (objet dans REST représentant une amplitude à un instant donné
sur chaque canal) sur les projections avec le dépôt d’énergie maximal dans la trace et
l’accumulation des dépôts d’énergie des hits dans un rayon défini autour de ce hit pour
déterminer la charge Blob. Cependant, cette méthode est limitée par sa dépendance au hit
le plus énergétique, qui ne correspond pas toujours au véritable pic de Bragg de la trace
d’électron.

Pour résoudre ce problème, la seconde approche prend en compte tous les hits de la trace
et calcule le dépôt d’énergie total dans un rayon sphérique défini autour de chaque hit. Le
hit dont la sphère environnante a le dépôt d’énergie maximal est sélectionné comme centre
de charge Blob. Les hits utilisés pour la détermination de la charge Blob sont ensuite exclus,
et le processus est répété pour les hits restants.

Les deux méthodes ont été affinées en recalculant les coordonnées de la charge Blob
en utilisant le barycentre, ce qui permet d’obtenir une distribution d’énergie plus précise
en considérant le centre de masse des hits à l’intérieur du rayon de la charge Blob. Cet
ajustement vise à réduire la dispersion des énergies des charges Blob observée dans les
méthodes précédentes.

L’étude explore également le rayon optimal de la charge Blob et le seuil de dépôt d’énergie
pour les hits de trace, en reconnaissant la sensibilité de ces paramètres pour l’identification
correcte des charges Blob. Une simulation détaillée utilisant l’outil Geant4 a été réalisée
pour analyser la propagation des électrons dans un mélange gazeux dans les conditions de
l’expérience PandaX-III. Cette simulation est utilisée pour déterminer à quel endroit le long
de la trace les électrons entrent dans la phase de charge Blob, caractérisée par un dépôt
d’énergie accru.

L’analyse montre que des diffusions multiples significatives affectent la trace même avant
que l’électron n’atteigne le pic de Bragg, compliquant ainsi l’identification des charges Blob.
Malgré cela, les résultats suggèrent que les charges Blob émergent généralement dans les 20
derniers mm de la trace de propagation de l’électron, avec des énergies attendues variant de
200 à 300 keV. L’approche directe pour reconstruire les charges Blob perdues ou les corréler
avec la torsion de la trace est moins réussie que prévu, ce qui souligne l’importance d’étudier
les techniques d’apprentissage automatique pour les travaux futurs.

Approche et Méthodologie en Apprentissage Automatique

L’objectif principal de la thèse est le développement d’une méthode basée sur l’apprentissage
automatique (ML) pour atténuer les effets des canaux manquants dans les détecteurs Mi-
cromegas. Dans cette partie du travail, nous nous concentrons sur l’application des réseaux
de neurones convolutifs (CNN) pour reconstruire l’énergie primaire des événements de par-
ticules dans une chambre à projection temporelle (TPC) dans des conditions où chaque
module MM contient trois canaux manquants. L’objectif crucial est d’améliorer la précision
de la reconstruction énergétique en utilisant la topologie de la trace et les amplitudes des
signaux. L’étude explore le potentiel des CNN pour prédire l’énergie primaire à partir de
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données simulées, démontrant l’efficacité de cette approche pour traiter des schémas de
données complexes et des conditions difficiles.

Nous commençons par utiliser un modèle simplifié, "toyCNN", pour évaluer le potentiel
des CNN à prédire l’énergie primaire à partir de données simulées. Par convention, une
combinaison de couches convolutives, d’activation ReLU et de couches de regroupement est
appelée un bloc convolutif. Ce modèle contient deux blocs convolutifs, suivis d’une couche
entièrement connectée et d’un seul nœud de sortie pour la prédiction de l’énergie. Cette
étude initiale exclut les pathologies complexes du détecteur pour simplifier le problème, en
se concentrant sur des événements avec un seul électron. Les données d’entrée, représentant
la topologie de la trace, sont normalisées pour faciliter un apprentissage efficace du modèle
CNN. Le "toyCNN" démontre la capacité d’approximatif de l’énergie primaire, bien que
limité, notamment dans les régions avec peu de données d’entrâınement.

En s’appuyant sur ces résultats, nous explorons diverses techniques de normalisation et
optimisations de modèle. Un modèle plus sophistiqué, "MultiCNN", est introduit, lequel
gère l’apprentissage multitâche en prédisant à la fois les énergies primaire et détectée. Ce
modèle incorpore des couches entièrement connectées supplémentaires pour mieux capturer
les caractéristiques sous-jacentes des événements. L’étude montre des résultats prometteurs,
avec le modèle réussissant à prédire l’énergie primaire sur une large gamme d’énergies, même
en présence de défis de données significatifs. Le modèle MultiCNN montre une efficacité de
prédiction de 79% et un RMS de 71 keV pour les résidus entre les énergies primaires prédites
et réelles.

Un modèle MultiCNN, avec des couches séparées pour des sorties distinctes, a été testé
mais a encore montré un décalage moyen notable dans les prédictions. Pour remédier à cela,
une architecture semblable à un réseau résiduel (ResNet) a été introduite, incorporant des
connexions de contournement pour maintenir le flux de gradient et améliorer l’apprentissage
de la représentation. Un nouveau modèle appelé MultiResNet a été développé, comprenant
trois blocs convolutifs (sans couches de regroupement incluses), une connexion de con-
tournement entre le deuxième bloc convolutif et la couche d’aplatissement, et une couche
entièrement connectée pour chaque sortie. Ce modèle MultiResNet réduit considérablement
le RMS des résidus à 62 keV et améliore l’efficacité à 84%.

Pour améliorer davantage la robustesse du modèle, différentes fonctions de perte telles
que Huber et LogCosH ont été explorées pour atténuer l’impact des valeurs aberrantes, qui
faussent souvent les résultats. Finalement, la fonction de perte LogCosH, combinée avec
l’optimiseur AdamW, a été choisie pour sa stabilité et sa sensibilité réduite aux valeurs
aberrantes. Cette configuration a conduit au développement du modèle Multi3ResNet, qui
comprend trois blocs convolutifs avec des couches de regroupement moyennes incluses pour
mieux capturer et conserver les caractéristiques essentielles des données d’entrée. Le modèle
dispose maintenant de deux couches entièrement connectées pour chaque sortie. De plus, le
modèle Multi3ResNet est entrâıné pour prédire la coordonnée Z du dépôt d’énergie primaire,
laquelle est inconnue lors de l’acquisition des données. La prédiction de la coordonnée Z est
intéressante pour le rejet de bruit de fond, car elle permet d’appliquer une réjection spatiale
aux événements de bruit de fond qui ont été générés par des rayons gamma provenant
par exemple du plan de lecture. L’entrâınement sur un grand ensemble de données (300
000 points de données) montre la performance du modèle, avec une efficacité de prédiction
de 89% pour les énergies primaires et un RMS amélioré de 54 keV. Cependant, des défis
ont persisté lors de l’application du modèle à des données avec deux électrons primaires

22
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(événements 2e), soulignant la sensibilité du modèle à la topologie des données. L’étude
se termine par un entrâınement supplémentaire du modèle sur un ensemble combiné 1e+2e
avec une évaluation supplémentaire sur le sous-ensemble 1e+2e et l’ensemble de données
0νββ , où le modèle maintient une haute efficacité et précision, marquant une amélioration
significative par rapport aux méthodes précédentes et augmentant la sensibilité potentielle
dans les recherches 0νββ. L’efficacité de prédiction 0νββ au sein de la ROI est augmentée
de 69% à 90% par rapport à la somme directe des amplitudes de signal, avec un RMS
des résidus réduit à 54 keV. De plus, le modèle prédit la coordonnée Z du dépôt d’énergie
primaire, maintenant un petit RMS pour le résidu entre la coordonnée Z prédite et vraie de
6,4 cm pour les événements 0νββ , en maintenant une performance similaire pour l’ensemble
de données 1e+2e.

Analyse de Classification des Événements

Dans la dernière partie de cette thèse, l’accent est mis sur la classification des événements
de particules plutôt que sur la reconstruction de l’énergie à l’aide des modèles de réseaux
de neurones convolutifs (CNN). L’objectif est désormais de mieux discriminer entre les
différents types d’événements. La partie précédente a démontré l’efficacité des modèles
CNN pour la reconstruction de l’énergie des particules. Cependant, l’objectif actuel est
de distinguer les événements à 1 électron des événements à 2 électrons, en particulier pour
traiter la contamination élevée de bruit de fond dans la région d’intérêt (ROI) de l’expérience
PandaX-III.

Un modèle CNN est utilisé pour cette tâche de classification, en tirant parti des car-
actéristiques topologiques des traces de particules. Cette approche contraste avec une
méthode précédente de Javier Galan, qui utilisait une extraction de caractéristiques an-
alytiques pour réduire significativement la contamination de fond, bien que avec une effi-
cacité de signal limitée. L’approche de Hao Qiao utilisait un CNN pour distinguer entre les
événements de 0νββ et les événements de fond à haute énergie, obtenant des mesures de per-
formance notables. Le travail actuel vise à améliorer ces méthodes en affinant l’architecture
du modèle et la préparation des données.

La préparation des données pour le modèle de classification reflète celle du modèle de
reconstruction de l’énergie, avec une attention particulière à l’équilibrage du jeu de données
entre les événements à 1 électron et à 2 électrons. Cela est crucial car les caractéristiques
topologiques des traces, qui sont liées aux énergies des particules, doivent être représentées
avec précision pour éviter les biais. Les données simulées provenant de REST sont utilisées,
avec des spectres d’énergie allant de 30 keV à 4 MeV. Le jeu de données est équilibré avec
environ 50% de chaque type d’événement, y compris les événements à faible énergie, pour
garantir un apprentissage complet.

Le modèle de classification, nommé Class3ResNet, utilise une architecture modifiée par
rapport au modèle de reconstruction de l’énergie précédent. Il comprend trois blocs con-
volutifs, une connexion de contournement intégrant des blocs convolutifs supplémentaires, et
trois couches entièrement connectées optimisées par l’Optimisation Bayésienne. L’entrâınement
du modèle implique un grand jeu de données (1,2 million de points de données) divisé en plus
petits lots pour gérer les contraintes de mémoire GPU, et le réglage des hyperparamètres
est effectué à l’aide de la bibliothèque Hyperopt.

Un accomplissement significatif est la capacité du modèle CNN à classifier les événements
à deux électrons par rapport aux événements à un électron avec une grande précision. Le
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modèle, Class3ResNet, atteint une précision de classification de 92%, avec une Efficacité
du Signal de 31,7% et une Efficacité de Rejet du Fond de 99% pour distinguer entre les
événements à 1 électron et à 2 électrons. Le modèle montre une dégradation de l’Efficacité
du Signal pour les événements dans la ROI sur le jeu de données 1e+2e, atteignant 26%
pour la même Efficacité de Rejet du Fond. De plus, on observe que le modèle donne une
Efficacité du Signal de 20% pour les événements 0νββ. Certaines limitations sont observées,
en particulier avec les événements impliquant des électrons à faible énergie, ce qui rend leur
classification précise plus difficile.

Les résultats suggèrent que bien que le modèle soit performant dans l’ensemble, il existe
des nuances dans la classification des événements liées aux niveaux d’énergie, ce qui im-
pacte l’efficacité de détection du signal pour différents types d’événements. Cela souligne la
nécessité d’un raffinement continu pour équilibrer la détection des signaux avec le rejet du
fond dans les applications futures.

Perspectives et conclusion

La thèse se conclut par une discussion des implications des résultats et des pistes de tra-
vail futures. Bien que prometteurs, les modèles de ML actuels nécessitent une valida-
tion supplémentaire avec des données réelles provenant de l’expérience PandaX-III. Les
recherches futures pourraient intégrer des données provenant de plusieurs modules Mi-
cromegas et traiter d’autres sources de dégradation des données, telles que les inhomogénéités
du gain de lecture. L’affinement des modèles CNN avec un ensemble de données d’entrâınement
plus diversifié pourrait améliorer la robustesse et la précision des reconstructions d’énergie
et des classifications d’événements.

Nous démontrons la faisabilité et le potentiel de l’utilisation de techniques avancées
de ML, spécifiquement des CNN, pour aborder des problèmes complexes en physique des
particules expérimentale. Les méthodes développées améliorent significativement la recon-
struction d’énergie et la classification des événements pour les recherches de 0νββ dans
l’expérience PandaX-III, ouvrant la voie à des mesures plus sensibles et plus précises dans
les expériences futures. Le travail souligne l’importance des approches interdisciplinaires,
combinant la physique et l’apprentissage automatique, pour relever les défis des configura-
tions expérimentales modernes.
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Neutrinos, whose existence was first postulated by Wolfgang Pauli in 1930, are one of the
most mysterious particles in the Standard Model of particle physics. They are electrically
neutral, weakly interacting, and have a very small mass. We know that neutrinos have mass
from the observation of neutrino flavor oscillations. This phenomenon occurs when neutrinos
produced in one flavor state (electron, muon, or tau) change into another flavor state as
they propagate through space. The problem is that the Standard Model of particle physics
assumes that neutrinos are massless particles. Therefore, the study of neutrino properties is
crucial for understanding the fundamental laws of nature, expanding our knowledge of the
universe, and answering some of the most profound questions in physics.

Neutrinos are produced in a variety of processes, such as nuclear reactions in the Sun,
nuclear reactors, and cosmic rays interacting with the Earth’s atmosphere. Neutrinos are
also produced in the Earth’s interior and emitted by radioactive elements decay. It makes
them an omnipresent particle in the universe, and they are the most abundant particles
after photons. However, due to their properties, it is not easy to characterize them. A lot of
fundamental questions about neutrinos remain unanswered, such as the absolute neutrino
mass scale, the nature of neutrinos (whether they are Dirac or Majorana particles), the
origin of the matter-antimatter asymmetry in the universe, etc. To answer the former
questions, we need to measure the neutrino mass scale, and the most sensitive method to do
this is the study of neutrinoless double beta decay (0νββ). This process is a hypothetical
nuclear decay in which two neutrons in a nucleus simultaneously decay into two protons,
two electrons without neutrino emission. A two neutrino double beta decay (2νββ) is an
allowed process in the Standard Model, and it is the rarest nuclear decay ever observed with
a half-life greater than 1019 years. To observe 0νββ, whose half-life is expected to be greater
than 1025 years, we need to conduct highly precise measurements using increasingly large
experimental setups and more effective background noise rejection techniques.

This thesis is dedicated to studying the 0νββ in the PandaX-III experiment. The aim
of this experiment is to search for 0νββ in 136Xe using a high-pressure gaseous time pro-
jection chamber (TPC) filled with enriched Xenon gas. The 0νββ is identified by detecting
the energy deposited by the electrons emitted in the TPC. Micromegas detectors, which are
capable of measuring the position and energy of the electron tracks, are used in the experi-
ment. The PandaX-III experiment is expected to have a 3% energy resolution for 2457 keV
energy of the 136Xe 0νββ decay, with an ongoing effort to improve it to 1%. However, the
energy resolution can be degraded by several factors, either pertaining to the micromegas
detectors, such as disconnected channels or gain inhomogeneities, or to the working of the
TPC itself, such as electron attachment. The main goal of this thesis is to develop a method,
based on Machine Learning (ML), to hinder these factors. In the work presented here, I will
focus on missing channels. Nevertheless, the method developed can be generalized to also
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tackle any of the aforementioned degradation factors. Furthermore, I will extend my ML
approach to address the problem of rejecting background events mimicking the signature of
the 0νββ signal.

In the first chapter, the neutrinoless double beta decay is introduced, and the importance
of the study of this process is discussed. The second chapter presents different experimental
techniques used to search for 0νββ, and the PandaX-III experiment is described in detail.
The effect of missing channels on the energy and topology reconstructions is also discussed.
The third chapter is dedicated to the analysis of the electron track topology in the PandaX-
III experiment context from Monte Carlo simulations. In this chapter, attention is paid
to the determination of the Blob charge of an electron track - one of the most essential
characteristics of the track. The Blob charge is related to the Bragg peak of the electron
track and is used in the discrimination of the background events from the 0νββ signal. The
Blob charge may not be correctly measured if there are missing channels. Thus, knowing
the Blob charge is crucial for energy reconstruction and particle identification. In the fourth
chapter, the Machine Learning algorithms are introduced with a focus on the Convolutional
Neural Networks (CNN) that are used in this work. The fifth chapter presents the method
developed to reconstruct the true energy of the electrons from the simulated data collected
by the Micromegas with missing channels. A detailed methodology of CNN implementation
is presented, and the results of the model predictions are discussed. Finally, in the last
chapter, a CNN model is used to classify the two-electron events vs the single-electron
events from the Monte Carlo data affected by the missing channels.
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Chapter 1

Neutrinoless Double Beta Decay: An
Overview

. . . I shall face a battle I know not,
I shall ride a road I know not. . .

— The Epic of Gilgamesh
∼2000 BC
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1.1 Introduction

Neutrinoless double beta decay (0νββ) represents a theoretical decay mechanism in which
two neutrons within a nucleus transform into two protons, emitting two electrons without
neutrinos. This process, if observed, would provide direct evidence that neutrinos are Majo-
rana particles, i.e. fermions that are their own antiparticles. Importantly, 0νββ also defies
the conservation of lepton numbers, as the emitted electrons are unaccompanied by their
corresponding electron anti-neutrinos.

The existence of Majorana neutrinos has the potential to unlock key insights into ex-
plaining the intriguing matter-antimatter asymmetry observed in our universe. However,
it’s important to note that the physical phenomenon of 0νββ lies beyond the scope of the
Standard Model (SM) of particle physics, which currently governs the behavior of subatomic
particles.

While double beta decay processes involving the emission of two electron anti-neutrinos
have been observed in several isotopes, the elusive 0νββ process remains a subject of on-
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going investigation. To delve into the most recent and comprehensive compilation of both
theoretical and experimental struggles in this field, readers are encouraged to explore review
articles, such as [1].

1.2 Theoretical Background

1.2.1 Neutrinos

Where it all began?
In 1930, Wolfgang Pauli introduced the concept of neutrinos as a mean to explain the

continuous energy distribution of electron observed in beta decay. In the process of decay,
alongside the emission of electrons, the atomic nucleus releases an electrically neutral particle
- difficult to detect - that carries away a random portion of the energy. At first Pauli called
this particle a neutron, but later Enrico Fermi proposed to name this particle "neutrino"
(Italian: Little neutral one) at the Solvay Physics Conference in 1933 [2]. Therefore, the
basic model of beta decay was established:

n → p+ e− + ν̄e (1.1)

In 1937, Ettore Majorana, a student of Fermi, postulated the intriguing idea that neutri-
nos could potentially be their own antiparticles [3], which would be referred to as Majorana
fermions. In 1939, based on Majorana’s theory, W. Furry proposed the hypothesis of neu-
trinoless double-beta decay [4]. Double-beta decay, a second-order process of beta decay,
entails the simultaneous emission of two electrons and two anti-electron neutrinos. If the
neutrino indeed behaves as its own antiparticle, there exists a probability that the two neu-
trinos annihilate each other during the decay process. Such scenario results in the absence
of emitted neutrinos, which is referred to as neutrinoless double-beta decay.

An observation of muons in cosmic rays in 1936 by Carl Anderson and Seth Neddermeyer
revealed the existence of a new generation of leptons [5]. The discovery of muon decay
followed in 1941, with the initial measurement of its decay spectrum occurring in 1948. It
was discovered that the energy spectrum of the decay product electrons was also a continuous
spectrum, prompting the introduction of the second-generation neutrinos known as muon
neutrinos.

In terms of experiments, from 1942 onward, people mastered the technology of man-
ufacturing reactors capable of generating substantial quantities of neutrinos (antielectron
neutrinos) with MeV energies. Such technological progress became an important prerequi-
site for the direct detection of neutrinos. Bruno Pontecorvo was the first to propose the idea
of detecting neutrinos in 1946 involving the absorption of neutrinos by 37Cl, leading to the
production of 37Ar, which decays producing Auger electrons. The notation of this process is
as follows: νe+37Cl →37 Ar+ e−. Generally, in the early 1950s, researchers conducted a se-
ries of experiments based on this idea to try to find neutrinos, yet they were unsuccessful [6].
The problem was that the neutrinos emitted by the reactors were antielectron neutrinos,
while the 37Cl experiment could only detect electron neutrinos. At the time, there was no
distinction between the two types of neutrinos.

Despite the initial setbacks, the idea of detecting neutrinos was not abandoned. Clyde
Cowan and Frederick Reines proposed a new experiment, called "Project Poltergeist" which
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employs anti-beta decay to detect antielectron neutrinos emitted from the reactor [7]. The
anti-beta decay process ν̄e+p → n+e+ involves a proton capturing an antielectron neutrino,
resulting in the production of a neutron and a positron. The positron annihilates with an
electron, producing two gamma rays with an energy of 0.511 MeV each that work as a marker
of the neutrino capture. The experimental setup featured a structure consisting of two tanks
of 100 liters of water each, sandwiched between three layers of scintillator, as one can see
on Fig. 1.1(left). The setup was placed near the reactor core at a distance of around 20
meters, which simplified the detection process. It must be noted that cadmium chloride was
added to the water in order to absorb neutrons. The Cadmium-108 in the solution absorbs
neutrons, transforming into Cadmium-109, which decays by emitting gamma rays, detected
by scintillators: 108Cd + n →109m Cd →109 Cd + 2γ as seen on Fig. 1.1(right). Detecting

Figure 1.1: Left: Experimental setup used by Reines and Cowan to detect neutrinos. Right:
Example of a signal event, with the detection of two back-to-back gammas from the positron
annihilation and of several other gammas from the neutron capture. Adapted from [8].

the neutron absorption signal, which is delayed by several microseconds with respect to the
positron annihilation, further helps the identification of the neutrino. Finally, they observed
different signal rates under the operating conditions of turning the reactor on/off, with a
ratio of more than 5 times, proving the existence of neutrinos.

1.2.2 Neutrino Oscillations and Neutrino Masses

In 1957, Bruno Pontecorvo proposed the idea of neutrino oscillations [9], which was later
developed by Ziro Maki, Masami Nakagawa and Shoichi Sakata in 1962 [10]. The theory of
neutrino oscillations is based on the assumption that neutrinos have non-zero masses. This
proposition by Pontecorvo later provided a basis to explain the solar neutrino problem.

The Homestake experiment, conducted by Raymond Davis Jr. in 1968, was the first
experiment to measure the flux of electron neutrinos originating from the Sun’s core. The
experiment was based on the detection of neutrinos via the inverse beta decay process:
νe +

37 Cl →37 Ar+ e−. Surprisingly, the measured value fell between one third and one half
of the anticipated value by the Standard Solar Model (SSM) [11]. This discrepancy between
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the measured and predicted values gave rise to a persistent challenge known as the "Solar
Neutrino Problem". This enigma persisted for approximately three decades, during which
thorough investigations scrutinized both the experiment and the solar model for potential
issues, yet none were uncovered. Eventually, it was discerned that both the experiment and
the model were fundamentally accurate, and that the discrepancy arose from the fact that
neutrinos exhibit greater complexity than initially assumed.

In the case that the three neutrino flavors (νe, νµ, ντ ) have non-zero masses, different
from each other, the neutrino flavor oscillation is allowed. Therefore, neutrinos produced
in the Sun’s core as electron neutrinos can oscillate into undetectable flavors during their
passage to Earth. With this in mind, many experiments were conducted to measure the
flux of neutrinos from the Sun, including the Kamiokande experiment in 1987 [12], the
GALLEX experiment in 1991 [13], the Super-Kamiokande experiment in 1996 [14] and the
SNO experiment in 2000 [15]. Takaaki Kajita of Super-Kamiokande and A.B. McDonald
of SNO were awarded the Nobel Prize in Physics in 2015 for the discovery of neutrino
oscillations [16].

Neutrino flavor oscillation requires that the mass eigenstates of neutrinos are not flavor
eigenstates. Since a neutrino is always produced in a flavor eigenstate, this flavor eigenstate
wave function will be a mixture of the 3 mass eigenstates. The mixing of eigenstates is
described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [10, 17], denoted as U .
In the absence of CP violation and no Majorana neutrinos, the transformation relationship
between the two eigenstates is expressed as follows:νe

νµ
ντ

 = U

ν1
ν2
ν3

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

 = (1.2)

=

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

ν1
ν2
ν3

 (1.3)

where c and s are the abbreviations of cosΘ and sinΘ respectively; 12, 13 and 23 respectively
represent three mixing angles: Θ12, Θ12 and Θ23.

Let’s assume that neutrinos propagate in vacuum with a propagation distance L and
energy E. As it propagates, it decomposes into three mass eigenstates, each oscillating in
the form of a plane wave. Therefore, the transition probability of the neutrino flavor α to
the neutrino flavor β is expressed as follows:

P (να → νβ) =

∣∣∣∣∣
3∑

i=1

U∗
αiUβie

−i
m2

i L

2E

∣∣∣∣∣
2

(1.4)

where Uαi is the element of the PMNS matrix, mi is the mass of the i-th mass eigenstate.
The absolute values of mass eigenstates are currently unknown; however, the mass-squared
differences between them are known. The difference between m1 and m2 can be derived from
the solar neutrino oscillation experiments, yielding a minuscule value. Similarly, the differ-
ence between m2 and m3 is obtained from the atmospheric neutrino oscillation experiments,
resulting in a significantly larger value [18].
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The mass-squared differences between the three mass eigenstates are expressed as follows:

∆m2
12 = m2

2 −m2
1 = (7.53± 0.18)× 10−5 eV2 (1.5)

∆|m2
32| ≡ |m2

3 −m2
2| ≈ |m2

31| = (2.44± 0.06)× 10−3 eV2 (1.6)

Two potential configurations exist for the three mass eigenstates: (m1 < m2 << m3), called
Normal Hierarchy (NH) ordering; and (m3 << m1 < m2), referred to as the Inverted
Hierarchy (IH) ordering, as illustrated in Fig. 1.2. In the NH, the two lightest mass
eigenstates have a small mass difference, around 10 meV, with the third eigenstate being
approximately 50 meV heavier. In the IH the lightest mass eigenstate is followed by a pair of
higher mass eigenstates that are about 50 meV heavier, with the mass difference within the
pair being roughly 10 meV. The specific mass ordering of neutrinos remains undetermined,
although recent experiments lean toward a Normal Hierarchy [19].

Figure 1.2: The normal and inverted hierarchies, along with the present status of masses and their
mixing as obtained from the experiments on solar, atmospheric, reactor and accelerator neutri-
nos [20].

1.2.3 Majorana Neutrinos

To explain the origin of neutrino masses, the Standard Model (SM) of particle physics must
be extended. One method is to introduce a new right-handed neutrino field through the
Higgs mechanism, which is referred to as the seesaw mechanism, allowing the neutrino to
a Dirac mass. Unfortunately, this approach has flaws. On one hand, we never observed
right-handed neutrinos, and on the other hand, it is hard to explain the remarkably small
mass of neutrinos as well as why the coupling constant is small (on the order of 10−12) [21]
compared to other elementary particles that interact with the Higgs field. An extension
of the theory involving the right-handed neutrino field is the incorporation of the Majo-
rana property. Assuming that both the left and right-handed neutrino fields adhere to the
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Majorana equation, they can couple with their respective charge conjugate fields, leading
to the acquisition of Majorana masses. Notably, this Majorana mass is distinct from the
earlier discussed Dirac mass. The actual neutrino mass results from the superposition of
the Majorana mass and the Dirac mass.

It’s noteworthy that the assertion "neutrinos are their own antiparticles" doesn’t contra-
dict the earlier statement that "the Cl-37 experiment and the anti-beta decay experiment
can only detect neutrinos and antineutrinos, respectively." What these two experiments ac-
tually differentiate is the left-handed helicity state and the right-handed helicity state of
neutrinos. The default two-component theory of the Standard Model categorizes them as
positive and negative neutrinos. However, introducing Majorana’s model allows these two
helicity states to originate from the same particle. In reality, a small fraction of neutrinos
of opposite helicity state may be entangled in the neutrino beam [22]. Assuming a reactor
releases a batch of neutrinos, the mixing ratio of their left and right-hand fields, as per the
Dirac equation under the small mass approximation, is m/E, where m is the neutrino mass
(below the eV level) and the energy E is in the MeV range. The proportion of anomalous
helical states can be computed as m/E2, roughly on the order of 10−12 [23]. If the anomalous
helical state of reactor neutrinos is observed through experiments like 37Cl to confirm that
neutrinos are Majorana particles, the occurrence of an event might take nearly 10 million
years, making it nearly impossible [24].

1.2.4 Neutrinoless Double Beta Decay

1.2.4.1 Decay image

The most effective method for evidencing Majorana neutrinos is through the exploration of
neutrinoless double-beta decay. Neutrinoless double-beta decay represents a unique instance
within the broader category of double-beta decay. Double-beta decay is a second-order
process stemming from general beta decay. In beta decay, a neutron within the nucleus
transforms into a proton, resulting in the transformation of the nucleus from (A, Z) to (A,
Z+1). This reaction necessitates the release of energy, making it imperative for the binding
energy of the final-state atomic nucleus to be lower and more stable than the initial state,
thus facilitating beta decay. The imbalance between the binding energies of the initial and
final nuclei is referred to as the Q value.

Within the nucleus, the intrinsic spin of protons and neutrons causes them to form pairs
with opposite spin directions. Consequently, nuclei comprising an even number of neutrons
or protons exhibit greater stability compared to those with an odd number. The quintessence
of stability is an atomic nucleus featuring an even number of neutrons and protons, with
all nucleons paired. For such even-even nuclei, general beta decay would transform them
into odd-odd nuclei, leading to an increase in binding energy, rendering it an improbable
process, as depicted in Fig. 1.3. In reality, these nuclei can only undergo double-beta decay,
transitioning two nuclear charges at a time, namely:

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e (1.7)

Double-beta decay was first discovered on 82Se nuclei [25]. Discovered in over a dozen
even-even nuclei, neutrinoless double-beta decay exhibits a half-life in the range of 1019 to
1021 years. If neutrinos are Majorana particles, there exists the possibility of neutrinoless
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Figure 1.3: Double beta decay route map of 136Xe. Since the Z+1 nucleus has a greater binding
energy, it can only directly decay into the Z+2 nucleus, that is, 136Ba. Sourced from [23].

double-beta decay based on the process of double beta decay, as illustrated in Fig. 1.4. In
this scenario, the two neutrinos annihilate each other, resulting in no neutrino emission in
the final state, represented by:

(A,Z) → (A,Z + 2) + 2e− (1.8)

In this scenario, as there are no neutrinos to carry away energy, the two electrons will

Figure 1.4: Left: Feynman diagram of double beta decay. Right: Feynman diagram for neutrinoless
double-beta decay (light neutrino exchange). Sourced from [23].

bear almost all the decay energy (given the much greater mass of the daughter nucleus
in comparison to two electrons, the nuclear recoil energy is negligible, i.e., for 136Xe the
nuclear recoil energy of 136Ba daughter nucleus is of the factor of dozens of eV), generating
monoenergetic peaks near the Q value in the energy spectrum. Given this characteristic,
experiments can be designed to detect double-beta decay in various nuclides, searching
for single-energy peaks at the end of the continuum spectrum. This approach allows the
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identification of cases involving neutrinoless double-beta decay, as depicted in Fig. 1.5.
In comparison to double-beta decay involving neutrinos, neutrinoless double-beta decay

Figure 1.5: Diagram illustrating the energy spectrum of neutrinoless double-beta decay. The hori-
zontal axis represents energy of electrons in keV, while the vertical axis denotes count in arbitrary
units. Neutrino double-beta decay continuum is depicted in black, and a neutrinoless monoener-
getic peak is highlighted in red. Relative sizes have been adjusted for clarity. It’s worth noting
that this peak exhibits some broadening due to two main factors: 1. The atomic nucleus carries a
small amount of recoil energy, contributing to intrinsic broadening of electron energy. 2. Practical
limitations in detector energy resolution. The nuclide featured in the diagram is 136Xe, showcasing
a monoenergetic peak situated near the Q value of 2458 keV.

features fewer final particles, resulting in a larger phase space factor. This characteristic
helps compensate for the low probability associated with the m/E term. When Wendell
Furry initially introduced the concept of neutrinoless double-beta decay in 1939, he posited
that the majority of double beta decays were neutrinoless. However, we now understand that
the decay rate is suppressed due to the necessity of matching the helicity of the neutrino [23].
While numerous double-beta decay cases involving neutrinos have been observed, there is
still no evidence of neutrinoless double-beta decays.

1.2.4.2 Half-life time computation and Effective Majorana Mass

A notable characteristic of the 0νββ process lies in its unique ability to probe the absolute
scale of neutrino masses. If we neglect the contributions from lepton-number violating
mechanisms other than the νe − ν̄e exchange of Fig. 1.4, the 0νββ rate is intricately linked
to a parameter known as the squared effective Majorana neutrino mass, denoted as ⟨mββ⟩.
This relationship is expressed as follows [26]:

1

T 0ν
1/2

= G0ν |M0ν |2 ⟨mββ⟩2 (1.9)
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In this context, T 0ν
1/2 is the decay half-life, G0ν is the phase space factor and M0ν is the

nuclear matrix element. These latter factors are derived from nuclear theory and exhibit
notable variations depending on the specific theoretical models. The effective neutrino mass
⟨mββ⟩ is a combination of the neutrino mass eigenvalues, mk, with the neutrino mixing
matrix, Uαk:

⟨mββ⟩ =

∣∣∣∣∣∑
k

U2
ekmk

∣∣∣∣∣
=
∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13e

2iλ2 +m3s
2
13e

2i(λ3−δ)
∣∣ (1.10)

Here, cij = cos θij and sij = sin θij, where θij are the mixing angles (or oscillation parame-
ters), λi are the Majorana phases, and δ is the Dirac phase. We should mention that the
matrix used differs from that of Eq. 1.3 by the phase δ, which accounts for CP violation,
and the phases λi required by the Majorana nature of the neutrino.

Therefore, the value of ⟨mββ⟩ is subject to variation based on the two potential scenarios
for the neutrino mass hierarchy: the NH and the IH illustrated in Fig. 1.2. Fig. 1.6, shows
the permissible ranges of ⟨mββ⟩ plotted against the lightest neutrino mass in these two
scenarios.

Cosmological considerations provide reasonable constraints, suggesting that the mass of
the lightest neutrino, denoted as mlightest, should not exceed 50 meV. Consequently, in the
IH case ⟨mββ⟩ is between 15 and 55 meV and in the NH case ⟨mββ⟩ remains below 15 meV.
However, some authors (e.g. [27]) disregard cosmological constraints, on the ground that
they are model-dependent and affected by large uncertainties.

Exploring the domain of ⟨mββ⟩ down to 15 meV requires a sensitivity to half-lifetime
exceeding approximately 1027 years. Fig. 1.7 presents an evaluation of the requirements in
various models, illustrating the dependence on the mass number A of the isotope [26].

Isotope Daughter Qββ Natural T 2νββ
1/2

Nuclei (keV) Ab. (%) (yr)
48Ca 48Ti 4267.98(32) 0.187(21) (6.4+0.7

−0.6(st)
+1.2
−0.9(sys))× 1019

76Ge 76Se 2039.061(7) 7.75(12) (1.926± 0.94)× 1021
82Se 82Kr 2997.9(3) 8.82(15) (8.60± 0.03(st)+0.19

−0.13(sys))× 1019
96Zr 96Mo 3356.097(86) 2.80(2) (2.35±0.14(st)±0.16(sys))×1019
100Mo 100Ru 3034.40(17) 9.744(65) (7.12+0.18

−0.14(st)± 0.10(sys))× 1018
116Cd 116Sn 2813.50(13) 7.512(54) (2.63+0.11

−0.12)× 1019
130Te 130Xe 2527.518(13) 34.08(62) (7.71+0.08

−0.06(st)
+0.12
−0.15(sys))× 1020

136Xe 136Ba 2457.83(37) 8.857(72) (2.165± 0.016(st)± 0.059(sys))×
1021

150Nd 150Sm 3371.38(20) 5.638(28) (9.34± 0.22(st)+0.62
−0.60(sys))× 1018

Table 1.1: Current target isotopes in prominent 0νββ-decay experiments along with their
respective characteristics: Daughter Nuclei, Qββ, Natural Abundance, and 2νββ-decay half-
life values. The provided 2νββ-decay half-life values represent the utmost precision found
in the literature. Adapted from [1].

While it is conventional to express the physics capabilities of 0νββ searches in terms of
⟨mββ⟩, it is crucial to understand that this approach only reflects part of the 0νββ landscape.
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Figure 1.6: Predictions on ⟨mββ⟩ as a function of the lightest neutrino mass, considering both the
NH and the IH. The bands arise from our lack of knowledge on the phase parameters (see Eq. 1.10).
The shaded regions represent the 3σ regions resulting from the propagation of uncertainties related
to oscillation parameters. This figure is sourced from Reference [28].

There are other lepton-number violating processes that can be envisioned once the principle
of lepton-number violation is acknowledged [1]. In the case that some of these turn out to
be sizable, a detection of 0νββ decay would no longer be proportional to ⟨mββ⟩. Yet, in
any case, it remains that a detection immediately would imply that neutrinos are Majorana
particles [29].

Double beta decay is present in 35 isotopes, but only a few of them are considered for
0νββ studies, taking into account factors such as endpoint (Qββ-value ≥ 2 MeV), natural
abundance, and potential enrichment. Some isotopes are particularly advantageous because
they can serve as both source and detector for 0νββ decay, i.e., 76Ge, 130Te, and 136Xe.
This dual role enhances the sensitivity of the experiment by maximizing the interaction
probability and simplifying the experimental setup. Fig. 1.7 lists several prominent isotopes
used in 0νββ decay searches. In 0νββ decay, the combined energy of the two emitted
electrons is fixed at a specific value known as the Qββ-value, representing the mass difference
between the mother and daughter nuclei (Tab. 1.1). The experimental identification of
a distinct peak at the 2νββ endpoint serves as the signature for 0νββ, as illustrated in
Fig. 1.5. The region centered around the Qββ-value is termed the Region Of Interest
(ROI). Achieving excellent energy resolution and minimizing background noise are crucial.
For an experiment characterized by exposure time (t), detector target mass (M), isotopic
abundance (a) of the relevant isotope in the detector target mass, atomic number (A),
detection efficiency (ε), energy window of interest (∆E) defined by the full width at half
maximum (FWHM) resolution of the detector, and background level (b) normalized by
time, mass, and energy, the expected number of background events over the experiment’s
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Figure 1.7: Distribution of decay half-lives, scaled by the square of the unknown parameter ⟨mββ⟩
for 0νββ candidates as a function of mass number A. All the plotted results are obtained according
to Eq. 1.9, using various nuclear models for the matrix element. Black circles, black bars - the shell
model (SM), green squares - the interacting boson model (IBM-2), red bars, orange times signs,
and magenta crosses - different versions of the quasiparticle random phase approximation (QRPA),
and energy density functional theory (EDF), relativistic - downside cyan triangles, non-relativistic
- blue triangles. Adapted from Ref. [26]. There exists a tendency for smaller decay half-lives in
favor of the isotopes 96Zr, 100Mo, 118Cd.
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lifetime is given by Nb = b·∆E ·M ·t. One must note that depending on the background level,
the experiment’s sensitivity to 0νββ decay may differ. Thus, two cases are then possible for
the experiment’s sensitivity to 0νββ half-lifetime:

NB < 1 ’zero background’ ⇒ T 0ν
1/2 ∝

a · ε
A

M · t

NB ≫ 1 ⇒ T 0ν
1/2 ∝

a · ε
A

√
M · t
b ·∆E

(1.11)

1.3 Conclusion

The discovery of neutrinoless double-beta decay would represent a significant milestone in
the field of neutrino physics, providing a direct confirmation of neutrinos as Majorana par-
ticles. The observation of this decay would also provide valuable insights into the absolute
scale of neutrino masses, complementing the information obtained from neutrino oscillation
experiments. The search for neutrinoless double-beta decay is a challenging task, requiring
the development of sophisticated experimental techniques to achieve the necessary sensitiv-
ity. The successful detection of neutrinoless double-beta decay would have profound impli-
cations for our understanding of the fundamental properties of neutrinos and the nature of
the universe.
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Chapter 2

Neutrinoless Double-Beta Decay
Experimental Setup

Якщо ти втомився, пам’ятай заради чого.
(Ukrainian: If you are tired, remember what purpose it is for.)

— Pavlo Petrychenko
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2.1 Introduction

Searching neutrinoless double-beta decay is a tricky task requiring a sophisticated exper-
imental setup. To detect such rare events with half-lives expected to exceed 1025 years,
the experimental setup must be highly efficient, with low background noise, preferably zero
background, and high energy resolution.
There are a lot of experiments worldwide that are trying to tackle this problem using
different isotopes and detection methods. This chapter introduces different experimental
approaches, giving particular attention to the use of 136Xe as a source and the detection
medium for double-beta decay. 136Xe is used in many experiments due to its high natural
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Figure 2.1: Different experimental approaches for neutrinoless double beta decay.

abundance, Q-value, and possible use in gas and liquid detectors, providing easy scalabil-
ity. In PandaX collaboration, xenon is used mainly for the dark matter search [30][31][32],
and the PandaX-III experiment is designed to explore the Majorana nature of neutrinos by
searching for neutrinoless double-beta decay [33].
The PandaX-III collaboration is composed of several institutes such as the Shanghai Jiao
Tong University (SJTU), the University of Science and Technology of China (USTC), the
University of Zaragoza, and the Commissariat à l’Energie Atomique et aux Energies Al-
ternatives (CEA) in France through the laboratory of the Institute of Research on the
Fundamental Laws of the Universe (IRFU). The PandaX-III experiment is a high-pressure
gaseous 136Xe time projection chamber (TPC) [34] detector with Micromegas readout within
the Chinese Jinping Underground Laboratory (CJPL). This section will explain the readout
system, data acquisition, and data preprocessing, followed by a discussion of the experi-
ment’s limitations and problematics. It is important to understand the challenges of the
experimental setup that will be tackled in the latter chapters.

2.2 Different Experimental Approaches

In general, most rare event experiments (e.g. dark matter searches, neutrinoless double beta
decay, etc.) use methods to detect light signals, electrical signals, or heat signals, individ-
ually or in combination. Globally recognized neutrinoless double-beta decay experiments
employing these three detection methods are marked in Fig.2.1. As mentioned in the previ-
ous chapter, the beneficial isotopes that are commonly used for these kinds of experiments
are 76Ge in semiconductor detectors, 130Te and 100Mo in crystal detectors, and 136Xe in
gas/liquid detectors.
Let us briefly introduce the experiments related to these isotopes.

2.2.1 Experiments related to 76Ge

Because of its excellent properties, germanium is widely used in the semiconductor indus-
try to make detectors. It has high energy resolution and reliability and responds quickly.
The industry has effective methods to purify 76Ge, so detectors made from it have very low
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background noise. It makes 76Ge a promising material for neutrinoless double beta decay
experiments. However, one drawback is that the phase space factor for 76Ge is relatively
small. This means experiments using it may need to measure a higher half-life. Also, it is
challenging to scale up individual detectors because of how 76Ge crystals grow, so they are
often arranged in arrays, which limits how much the experiment can grow.
Globally leading experiments involving 76Ge include GERDA and the Majorana Demon-
strator, led by Germany and the U.S., respectively. These experiments have collaborated to
form LEGEND, a global initiative to advance the next generation of Ge-based neutrinoless
double beta decay detectors. What follows is a brief introduction detailing the peculiarities
of these experiments.

• GERDA [35]: Located at the Gran Sasso Underground Laboratory (LNGS), GERDA
experiment [36] uses high-purity Ge detectors to explore neutrinoless double beta
decay. Starting in 2015 with 17.7 kg of 76Ge the experiment expanded to 44.2 kg by
2019, accumulating an exposure of 127.2 kg-year. Utilizing effective waveform-event
selection and boasting an outstanding energy resolution, GERDA observed zero counts
in the region of interest, establishing a half-life limit of 1.8× 1026 years.

• Majorana Demonstrator [37]: stationary at the Sanford Underground Research Facility
(SURF), it employs high-purity Ge detectors arranged in a tombstone configuration.
Starting data acquisition in 2015, it achieved an exposure of 51.7 kg-year. Leveraging
waveform-event analysis, the experiment set a lower limit on the half-life of 2.7× 1025

years [38].

• LEGEND [39]: Formed in 2017, it aims to develop the next generation of Ge-based
neutrinoless double beta decay experiments. The LEGEND-200 experiment, initiated
with an exposure of 200 kg-year, began commissioning in 2022. With plans to operate
for five years, achieving an exposure of 1 tonne-year, LEGEND-200 could potentially
reach a sensitivity level of 1027 years. The ultimate goal is the LEGEND-1000 experi-
ment, targeting an exposure of 10 tonne-year with the potential to achieve a sensitivity
level of 1028 years. As of now, LEGEND-1000 is in the preliminary research phase,
with operations dependent on external conditions.

2.2.2 Experiments related to 130Te

The Tellurium-130 (130Te) isotope, with its natural abundance of 34.08%, emerges as a
favorable candidate for neutrinoless double-beta decay experiments due to its abundant
availability, eliminating the need for enrichment and lowering experimental costs. However,
it emits gamma rays during decay, posing challenges in shielding to maintain low background
noise, which is critical for achieving the desired sensitivity. Two prominent experiments
exploring 130Te are SNO+ and CUORE.

• SNO+ [40][41]: Located in Canada’s SNOLAB underground laboratory, SNO+ ex-
tends the original SNO solar neutrino detector’s capabilities to investigate neutrino-
less double-beta decay in 130Te. The experiment repurposes existing infrastructure,
including a 12-meter diameter acrylic sphere, a large water tank, and over 9000 pho-
tomultiplier tubes. By submerging the acrylic sphere filled with liquid scintillator
containing 3.9 tonnes of 130Te into the water tank, it aims to capture scintillation
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light signals produced by neutrinoless double-beta decay events. With an anticipated
sensitivity of 2.1 × 1026 years over a five-year exposure period, SNO+ aims to boost
this sensitivity to 1× 1027 years in future phases.

• CUORE [42]: Operating at the Gran Sasso Underground Laboratory (LNGS), CUORE
employs 130Te within tellurium dioxide crystals held at extremely low temperatures
for detecting neutrinoless double-beta decay. Each crystal, cut and polished into
5× 5× 5× cm3 cubes, houses highly sensitive Neutron Transmutation Doped (NTD)
semiconductor temperature sensors. CUORE has evolved from two prototype phases,
CUORICINO and CUORE-0, to a scale of 204 kg of effective nucleons. Despite active
data collection since 2017 and an accumulated exposure of 1 tonne-year, CUORE has
yet to observe any signal of neutrinoless double-beta decay, setting a stringent lower
limit on the half-life at 2.2× 1025 years [43]. Its next-generation experiment, CUPID,
aims to achieve "zero background" by integrating light signal collection for particle
identification based on low-temperature crystal calorimeters.

2.2.3 Experiments related to 100Mo

A descendant of the CUORE experiment, CUPID-Mo (CUORE Upgrade with Particle IDen-
tification in Molybdenum) [44] is a neutrinoless double-beta decay experiment that consists
of Li2MoO4 scintillating bolometers containing the nucleus of interest, 100Mo. Each bolo-
metric crystal has a Germanium light detector to improve particle identification capabilities.
During the period between 2019 and 2020, CUPID-Mo collected a total exposure of 2.71 kg-
year of Li2MoO4, yielding significant physics and technical outcomes. Notably, it achieved
the most stringent worldwide constraint on the neutrinoless double beta decay half-life of
Mo-100, setting a limit of 1.8× 1024 years. This translates to limits on the effective Majo-
rana neutrino mass ranging from 280 to 490 meV. Ongoing analysis may also unveil other
important insights into various hypothetical exotic processes. Advancements in background
suppression techniques, cryogenic readout, and physics searches beyond 0νββ are moving
toward the next phase of the CUPID-1T experiment, which aims to achieve a sensitivity of
1027 years on the half-life of Mo-100 [45].

2.2.4 Experiments related to 136Xe

The 136Xe isotope is a versatile candidate for neutrinoless double-beta decay experiments. It
can be used in gas and liquid detectors, providing easy scalability. The isotope’s relatively
high natural abundance of 8.85% and large Q-value of 2457.83 keV make it an attractive
choice for neutrinoless double-beta decay experiments. A forefront candidates in the search
for neutrinoless double-beta decay using 136Xe are the KamLAND-Zen, EXO, NEXT, and
PandaX-III experiments.

• KamLAND-Zen 800 [46]: The KamLAND-Zen 800 experiment, located in the Kamioka
Observatory, Japan, employs 2-type of liquid scintillator: 1000 tons of pure liquid scin-
tillator and 745 kg Xe-loaded liquid scintillator with 91% enrichment. The most recent
results from the KamLAND-Zen 800 experiment have set a lower limit for the 0νββ
half-life of 2.3× 1026 years at 90% confidence level, corresponding to upper limits on
the effective Majorana mass of 36-156 meV.
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• NEXT [47]: NEXT stands for Neutrino Experiment with a Xenon TPC, housed at
the Canfranc Underground Laboratory (LSC) in Spain. It operates, as the name sug-
gests, a high-pressure 136Xe gas time projection chamber (TPC) to explore neutrinoless
double-beta decay to with a pixelized tracking plane and a calorimetric plane. The
NEXT-White detector (a predecessor of the NEXT-100) with 3.5 kg of enriched 136Xe
has showed an energy resolution below 1% FWHM at the Q-value of the decay, and
allowed to set a lower half-life limit of 1.3× 1024 years at 90% confidence level. This
corresponds to an upper limit on the effective Majorana mass of 48-207 meV. The
NEXT-100 experiment with 100kg of 136Xe serves as a stepping stone towards larger-
scale experiments, aiding in technical validation and background model verification.
Given the elusive nature of neutrinoless double-beta decay, NEXT explores two ap-
proaches for enhanced sensitivity: NEXT-HD, which scales up NEXT-100’s mass and
design changes, and NEXT-Bold, incorporating a barium tagging technique. Barium
tagging in NEXT-Bold involves detecting the presence of a single barium ion produced
during neutrinoless double-beta decay events. This technique aims to confirm the oc-
currence of such events with high specificity, significantly reducing background noise
and enhancing the experiment’s sensitivity [48].

• EXO [49, 50]: A U.S.-based experiment, EXO-200, was designed to explore neutrino-
less double-beta decay using a TPC with 80% enriched 200 kg liquid 136Xe. A wire
grid collected 2D location data together with the energy deposition of the events.
The scintillating light on the other hand provided an aid in reconstructing the event’s
3D location and enhancing energy measurement. The final results from the whole
EXO-200 dataset that was collected between 2011 and 2014 in the first phase of the
experiment, and between 2016 and 2018 in the second phase, conclude with a half-life
limit of 3.5× 1025 years and an effective Majorana mass limit of 93-286 meV. A tonne
scale experiment, nEXO, is currently under extensive R&D and design phase, aiming
to achieve a sensitivity beyond 1028 years on the half-life of 136Xe [51].

In the Tab.2.1, we summarize the experiments described above with the expected neu-
trinoless double-beta decay half-life and effective Majorana mass limits. The PandaX-III

Nuclide Experiment Update year Half-life (years) ⟨mββ⟩(meV)
76Ge GERDA 2020[35] > 1.8× 1026 < (79− 180)
76Ge Majorana Demonstrator 2022[38] > 2.7× 1025 < (70− 207)
76Ge LEGEND-200 2022[39] potentially > 1027 -
130Te CUORE 2022[43] > 2.2× 1025 < (90− 305)
130Te SNO+ 2021[41] > 2.1× 1026 < (50− 200)
100Mo CUPID-Mo 2022[44] > 1.8× 1024 < (280− 490)
136Xe KamLAND-Zen 2022[46] > 2.3× 1026 < (36− 156)
136Xe EXO-200 2019[50] > 3.5× 1025 < (93− 286)
136Xe NEXT 2023[47] > 1.3× 1024 < (48− 207)

Table 2.1: Representative experiments of each nuclide and the neutrinoless double-beta
decay half-life and effective Majorana mass limits.

experiment employs 136Xe as the source and detection medium for neutrinoless double-beta

43



Chapter 2. Neutrinoless Double-Beta Decay Experimental Setup

Figure 2.2: Background model and data from the EXO-200 experiment. The 0νββ signal peak
(purple, visible on the Phase I plot) is covered by the background events from 238U and 232Th
decay chains. Plot adapted from [50].

decay. With the current constraints and the half-life limits of different experiments in mind,
the next section provides a detailed explanation of the PandaX-III experiment.

2.3 PandaX-III Experiment

The experiment uses a high-pressure gaseous TPC with a Micromegas readout. One of
the main differences between the PandaX-III design and the experiments introduced above
is a neglect of the scintillation light signal. In fact, the scintillation is suppressed by the
quencher gas, and the experiment only reads out the electrical signal from the Micromegas
array on top of the TPC. This design choice is made to maximize the particle track detection
capability and minimize the statistical fluctuations in the energy resolution. The PandaX-
III detector design is expected to have a 3% energy resolution at the Q-value of the 0νββ
decay with an R&D goal of 1% energy resolution. The experiment is currently in finalization
of the R&D and in the building phases and aims to achieve a sensitivity of 1026 years on the
half-life of 136Xe. In using 136Xe as the source and detection medium for 0νββ detection,
we must understand that Qββ of 136Xe lies in the range of natural background gamma rays.
Therefore, the ROI for the 0νββ search, defined by the detector’s energy resolution, will
have a high probability of being contaminated by background events, coming from the 238U
and 232Th decay chains, which are the most abundant isotopes in the detector materials.
Fig. 2.2 shows the data and the best background model fit from the EXO-200 full dataset
analysis. The expected peak for the 0νββ signal is covered by the background events from
the 214Bi and 208Tl decays.
A topological signature of the events is needed to suppress the background events. In the

case of the PandaX-III experiment, the Micromegas array plays a crucial role in providing
this information.
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Figure 2.3: Comparison of the m.w.e and relative excavated volume for different underground
laboratories. The Jinping Underground Laboratory is the deepest laboratory in the world with a
6720 m.w.e shielding. Plot adapted from [53].

2.3.1 Jinping Underground Laboratory

The selection of the laboratory is of paramount importance in conducting low-noise experi-
ments. This choice has significant implications for the ambient background noise to which
the experiment will be subjected. The PandaX-III experiment is located in the Jinping
Underground Laboratory (CJPL). It is situated in Sichuan Province, China, alongside a
hydroelectric dam carved into the Jinping Mountains, which utilizes the Yalong River.
This laboratory has advantages for conducting a low-background experiment, located 2400
meters beneath the Jinping mountains. The laboratory configuration allows it to achieve
a cosmic radiation rate of 1 muon/week/m2 thanks to the natural attenuation of the over-
lying rock [52]. This makes the CJPL laboratory the deepest laboratory in the world with
a 6720-meter water equivalent (m.w.e) shielding [33][53]. The comparison of m.w.e and
relative excavated volume for different underground laboratories is shown in Fig. 2.3.

Furthermore, the laboratory is situated in a layer of marble, a rock naturally lower in
radionuclides such as 232Th and 238U, whose decay chains are problematic in managing
experiment background noise. These characteristics make the Jinping Underground Labo-
ratory one of the best-shielded laboratories in the world against external radiation, making
it ideal for conducting a low-background experiment like PandaX-III.

2.3.2 High pressure Gaseous Xenon TPC Detector

The PandaX-III setup, depicted in Fig. 2.4, features a high-pressure gaseous TPC as its
central component. This TPC includes a charge readout plane positioned at the top, a
cathode at the bottom, and an electric field shaping cage between them. An electric field
of 1 kV/cm is applied across the TPC, ensuring the drift of ionized electrons towards the
charge readout plane. A high-pressure stainless steel container with a volume of 6.3 cubic
meters featuring a lower tank and an upper flange. The whole vessel weighs around 5 tons
and stands at a height of approximately 2300 mm and a diameter of 2100 mm. Suspended
from the top flat flange of a stainless steel pressure vessel, the charge readout plane oper-
ates within a maximum pressure of 10 bar, while the vessel can withstand a pressure of 13
bar. The PandaX-III collaboration aims towards a 1-ton scale experiment, with the cur-
rent setup serving as a prototype for future large-scale experiments requiring five of these
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Figure 2.4: PandaX-III high pressure vessel design cross-section. A lower tank and an upper
flange, fabricated through welding of cylindrical body, flange discs, and ellipsoidal heads. The
cylindrical body has a 12 mm wall thickness, 2000 mm inner diameter, and stands about 1100
mm tall. Ellipsoidal head has an 18 mm wall thickness and a 2000 mm inner diameter. Flange
discs, connecting the lower tank and the upper flange - 2180 mm in diameter and 164 mm thick.
Weighing around 5 tons, the entire container is approximately 2300 mm tall. The lower tank
includes four side flanges for various purposes, while the upper flange has 12 flanges for signal
readout and 2 smaller flanges for air circulation. The field cage is built out of acrylic barrel, with
an inner diameter of 1.6 meters and a height of 1.2 meters. The strip-shaped flexible PCBs form
shaping rings interconnected by resistors, totaling 119 GΩ resistance. Sourced from [56].

TPCs. Currently, the TPC contains 140 kg of 90% enriched 136Xe gas in the active volume
inside the electric field cage. Introducing a trimethylamine (TMA) quencher we increase the
ionization ratio of the medium, reducing the light yield [54]. In PandaX-III, this enhances
the intrinsic energy resolution by providing more primary electrons and minimizing statis-
tical fluctuations while also improving track reconstruction accuracy by reducing electron
diffusion during drift [55]. Therefore, the total mixture is a 10 bar Xenon(99%):TMA(1%)
[52][33]. Due to TMA’s corrosive nature, the detector’s design avoids materials susceptible
to corrosion, like rubber. Optical signal output is significantly reduced by quenchers, leading
to the decision in PandaX-III only to read out the electrical signal using the Micromegas
array atop the TPC to maximize track detection capability.
The PandaX-III detector’s field cage, shown in Fig. 2.4, uses acrylic structures and flexible
PCBs to maintain a uniform electric field. This design is cost-effective and helps control
background levels while providing strong high-voltage performance. The cylindrical acrylic
structure has flexible PCBs on the inner wall, acting as shaping rings to create a uniform
electric field across an active volume of 1370 mm in length and 1696 mm in diameter. The
flexible PCB, made of Kapton (polyimide) and thin copper layers, helps manage background
due to its clean nature and low copper content. The Kapton film’s insulation and acrylic’s
properties prevent sharp discharges, improving high-voltage stability.

The PandaX-III detector remains at SJTU for testing and operation and has not yet
been relocated to the Jinping underground facility for low-background experiments.
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(a)
(b)

Figure 2.5: (a) General Micromegas readout plane design. The Micromegas module (MM) consists
of a metal mesh layer, a Kapton layer, and readout strips. Within a narrow gap between the metal
mesh layer and the Kapton layer, electrons undergo amplification via a powerful electric field.
Embedded within this gap are readout strips, which capture the charges. Adapted from [58]. (b)
Micromegas readout strips visualization. The readout strips are squared copper pads connected in
strip channels, 64 in X and 64 in Y directions.

2.3.3 Micromegas Readout plane

In PandaX-III, the Micromegas (Micro-Mesh Gaseous Structure) technique, a proven method
for Micro Pattern Gas Detection (MPGD) [57], is utilized for charge measurement. A Mi-
cromegas module (MM) comprises a metal mesh layer, a Kapton layer, and readout strips
(Fig. 2.5a). In our case, the readout strips are composed of square copper pads on a PCB.
Each pad is around 2 mm × 2 mm in size, resulting in a 3 mm pitch. The pads are con-
nected in strip channels, 64 in X and 64 in Y directions, to form a strip readout configuration
visualized in Fig. 2.5b.

A MM has a flat surface that incorporates a micromesh structure aimed at electron col-
lection. Below this micromesh is a thin amplification zone where a robust (much stronger
than the drift field, typically 50 times) electric field operates. Electrons gathered by the
microgrid experience avalanche amplification within this region before being directed to-
ward the bottom anode. Employing Micromegas for readout in gas detectors offers superior
granularity and energy resolution compared to conventional multi-wire chambers. Each MM
employed covers an active area of approximately 200 mm × 200 mm, featuring a total of 64
readout strips in both horizontal and vertical orientations.
Micromegas detectors, specifically Bulk Micromegas, were developed to strengthen the am-
plification areas of detectors and make large-scale production easier [59, 60]. They combined
the anode, tracks, and microgrid into one structure. The metal microgrid is stretched over a
frame above the readout tracks, maintaining a thin space for amplification. Earlier models
faced issues with the grid’s alignment, which was solved by integrating the grid into resin
posts for stability.
Bulk Micromegas detectors can be made using standard circuit printing methods, making
large-scale production cost-effective. However, they sometimes have inconsistencies in am-
plification space, affecting energy resolution. Microbulk Micromegas [60], an improvement
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over Bulk Micromegas, aims for better homogeneity in the amplification space while us-
ing less material. These detectors are constructed using a fixed-thickness polyimide layer
onto which two 5 µm copper layers are deposited. The lower copper layer is the detector’s
anode, while the upper layer forms the microgrid. The final manufacturing step involves
chemically etching micrometer-sized holes, approximately 70 µm, which serve as the ampli-
fication mechanism. Unlike Bulk Micromegas, whose amplification space is a planar surface,
Microbulk Micromegas confine the amplification space within an array of micrometer-sized
holes. Precise control over layer thicknesses and the substrate’s full grid support ensures
theoretically excellent homogeneity in Microbulk Micromegas detectors. By selecting mate-
rials suitable for radiopure experiments, it is possible to achieve detectors less than 100 µm
thick, with low mass budgets, high radiopurity, and excellent homogeneity while retaining
the primary advantages of Bulk Micromegas detectors. The schematics of the Microbulk
Micromegas production process are shown in Fig. 2.6a.
Another technology employed in the PandaX-III experiment is the Thermal Bonding Mi-
cromegas (TBMM) [61, 62]. The thermal bonding process is a new technology developed by
the USTC in recent years. It employs a heat-press bonding method to directly adhere flex-
ible PCB induction electrodes to a thicker metal substrate, followed by an insulating layer,
the germanium resistive layer, the amplification region, and the mesh (Fig. 2.6b). This tech-
nology possesses advantages such as stability, simplicity in processing, and environmental
friendliness, making it the chosen technology for PandaX-III. However, the process requires
further optimization to improve the uniformity of the amplification region and the energy
resolution. It is essential to mention that compared to the Microbulk Micromegas design,
the TBMMs do not possess an additional copper rim encircling the active area of the mesh.
In Microbulk Micromegas, the inverted polarity is applied to this rim to deflect the ioniza-
tion electrons that can drift to the rim away toward the mesh, preventing them from falling
into the dead zone of the detector. Therefore, the absence of the rim in the TBMM design
may lead to a degradation of the detection efficiency. Both Microbulk and TBMMs are
shown in Fig. 2.6c and Fig. 2.6d respectively.
The Micromegas readout electrodes used in PandaX-III are square copper pads on a PCB.

They are connected in strip channels, 64 in X and 64 in Y directions, to form a strip readout
configuration. Such readout configuration allows for reconstructing particle trajectories in
the XZ and YZ projections, providing a two detectors in one feature. Each strip is 3 mm
wide, yielding a spatial resolution of 3 mm/

√
12 ≈ 0.9 mm. The Micromegas’ amplification

gap measures 100 µm.
To efficiently cover the readout circular plane with a diameter of 1.6 m, MMs are arranged
in a rectangular array. Each module is mounted on a specially designed aluminum support
frame to ensure flatness and stability. Illustrated in Fig. 2.7, 52 MMs are organized from
front to back in 8 rows, with quantities per row being 4, 6, 8, 8, 8, 8, 6, and 4 modules,
respectively, corresponding to one or two DN80 flanges above for signal extraction. Based
on the distance from Micromegas, each signal feedthrough flange traverses and bonds with
different lengths of flexible PCB extension lines (the tails of the MMs).
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(a) (b)

(c)
(d)

Figure 2.6: Micromegas production process. (a) MicroBulk Micromegas production process.
Sourced from [60]. (b) Thermal Bonding Micromegas production process. Adapted from [62].
(c) MicroBulk Micromegas tested at CEA Saclay. Sourced from internal communication. (d)
Finished Thermal Bonding Micromegas. The Thermal Bonding Micromegas are employed in the
PandaX-III experiment. Sourced from internal communication.
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(a) (b)

Figure 2.7: 52 Micromegas arrangement and design on the readout plane suspension frame.
Adapted from [63].

2.3.4 Signal reading and processing

2.3.4.1 DAQ system

The data acquisition (DAQ) chain comprises front-end electronics, back-end electronics,
and software. In PandaX-III, the front-end electronics (FEC) [64], also known as Front
End Cards, utilize ASIC for Generic Electronic system for TPCs (AGET) chips [65]. Each
AGET chip manages signals from 64 readout channels, offering a sampling frequency of up
to 100 MHz, a dynamic range from 120 fC to 10 pC, which is adjustable for each channel,
and a peaking time ranging from 50 ns to 1 µs. Each channel primarily includes a charge-
sensitive preamplifier, an analog filter (shaper), a discriminator for multiplicity building, and
a 512-sample analog memory. Therefore, in the readout phase, the AGET chip digitizes the
signals from each channel storing the data in a 512-sample buffer. Each FEC accommodates
4 AGET chips. Special efforts have been made to minimize the radioactivity of the FEC
boards during fabrication by replacing the FR-4 epoxy laminate material with radio-pure
Kapton in the PCB.
Digitized signals are transmitted via optical fibers to the back-end electronics known as
TDCM (The Trigger and Data Concentrator Module), developed by IRFU (CEA) for var-
ious experiments. TDCM acts as a trigger distributor and a data aggregator for 32 FEC
modules. Additionally, it provides a reference clock and handles the electronics’ slow control.
The DAQ software, built on the Midas framework, communicates with TDCM via Ether-
net, establishing interactive interfaces for controlling and monitoring the data acquisition
process.

2.3.4.2 Data processing

The REST (Rare Event Searches Toolkit) [66][67] Framework is mainly written in C++, and
it is fully integrated with ROOT I/O interface. REST was born as a collaborative software
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(a) (b)

Figure 2.8: Pulses collected on each triggered strip (a) and projected tracks corresponding to
XZ and YZ projections (b) of a cosmic-ray muon event detected. The color scale represents the
amplitudes of the pulses. Adapted from [56].

effort to provide common tools for the acquisition, simulation, and data analysis of gaseous
TPCs. The data processing pipeline in PandaX-III involves several steps, including signal
processing, event reconstruction, and data analysis. The signal processing stage comprises
pedestal subtraction, noise filtering, and pulse shape analysis. Pedestal subtraction is per-
formed to eliminate the baseline noise from the signal, while noise filtering aims to reduce
the noise level. Pulse shape analysis is conducted to extract the signal’s pulse height and
time information. An example of the reconstructed signal of the detected cosmic-ray muon
in the PandaX-III TPC prototype is shown in Fig. 2.8.
Aside from signal processing, REST offers tools for simulating events in the TPC geome-

try. This includes utilizing the Geant4 [68] and Garfield++ [69] packages. The simulation
enables the creation of primary particles, particle propagation within the detector, ioniza-
tion processes, particle diffusion, simulation of the detector’s response, gas amplification,
signal shaping, digitization, etc. A Decay0 [70][71] extension enables us to conduct a Monte
Carlo simulation for the generation of nuclear decays within the framework of double beta
decay. In the context of my study, a datafile with the energy and angular distributions for
electrons of the 0νββ of 136Xe is generated using Decay0. This pregenerated datafile is then
used as an input for Geant4 package to simulate the 0νββ events in the gas volume of the
PandaX-III TPC.

The track reconstruction stage involves track reconstruction, energy calibration, clus-
terization of the pulses, track topology reconstruction, and analysis. Fig. 2.9a shows the
simulated 0νββ signal pulses after the detector response simulation. After track processing,
corresponding XZ and YZ track projections are shown in Fig. 2.9b. The black dots repre-
sent the amplitude of the pulses, corresponding to each strip at a given time bin (also called
hits). The red and green circles represent clustered hits with a radius proportional to the
sum of the amplitudes of the hits. The black lines represent the reconstructed tracks that
can be used to perform the event selection.
Thus, REST provides a comprehensive set of tools for the data processing pipeline in
PandaX-III, from signal processing to event reconstruction and analysis, allowing collab-
oration to perform a wide range of studies on the data collected from the experiment. A
more detailed description of the REST framework can be found in Appendix A.
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(a) (b)

Figure 2.9: Simulated 0νββ signal pulses after the detector response simulation (a) and correspond-
ing XZ and YZ track projections after track processing (b).

Figure 2.10: Gain inhomogeneities in the amplification region in one of the TBMMs. The color
scale represents the gain of the amplification region. Sourced from [62].

2.4 Limitations and Problematics

Several factors can affect the data quality and the experiment’s sensitivity to the signal
of interest in a real-world experiment. Some limitations and problematics that can affect
the PandaX-III experiment include gain inhomogeneities in the amplification region of the
Micromegas, gaps between detectors, missing channels, etc.
The gain inhomogeneities in the amplification region of the Micromegas can lead to signal
amplitude variations, affecting the detector’s energy resolution. While the Thermal Bonding
Micromegas technology shows promise in providing a stable amplification region for most
of the detectors, the gain inhomogeneities are still present and will require additional cali-
bration to correct for them (Fig. 2.10).

As mentioned in this chapter, the TBMM technology does not possess the copper rim
around the active area of the mesh. With the current design, the gap between detectors
(approximately 3 mm wide) can lead to a loss of the ionized electrons that can drift towards
the gap, reducing the detection efficiency of the detector. This problem optimization is
currently under study.
In addition, some channels in the Micromegas detectors of the PandaX-III TPC may en-
counter issues. These problems could arise from manufacturing flaws, handling during in-
stallation or maintenance, and the aging of the detectors, all of which are influential factors.
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Figure 2.11: Hit map from a calibration run showing a missing channel in the Microbulk Mi-
cromegas. We can observe one channel with no signal on the X axis and four channels with no
signal on the Y axis. The color scale represents the hit rate for each position on the MM.

If a channel is cut or if there is a substantial leakage current, it could render the inactive
channel, causing the loss of all signals associated with it. An example of a missing channel
in the Micromegas is shown on the hit map from a calibration run in Fig. 2.11.
My study will be focused on the missing channels problem in the Microbulk Micromegas

detectors, as the Thermal Bonding Micromegas technology is still under development.
To understand the potential impact of missing channels on the event energy reconstruc-
tion, we simulate the decay events in the PandaX-III TPC using the REST framework.
From here, the amplification gain on the micromegas is ideal and thus uniform across all
channels. First, we simulate the 0νββ decay events with a readout plane configuration of
52 MMs without missing channels. Then, we simulate the same events with 1, 2, and 3
randomly missing channels at each MM. We define our ROI based on the energy resolution
of the PandaX-III detector, which is ∼3% FWHM at 2458 keV (which is the Q-value of
the Double Beta decay for 136Xe). The energy resolution in terms of standard deviation
translates in σ = 0.03 × 2458 keV/

√
8ln(2) ≈ 31.3 keV. The ROI is defined as 3σ around

the Q-value, which gives an energy range of [2364, 2552] keV. In Fig. 2.12, we compare the
energy spectra of the 0νββ decay events with and without missing channels. The three
missing channels is a conservative estimate of the number of channels that could be lost in
the Micromegas detectors. The results show that the missing channels can affect the detec-
tor’s energy resolution, leading to a broadening of the energy spectrum. At three missing
channels per module, more than 20% of the events fall outside the ROI. This can lead to a
loss of sensitivity to the signal of interest.
Additional attention should be paid to the condition when several channels are missing con-
secutively. In such a case, the more significant part of the track could be misreconstructed.
This leads not only to the wrong energy reconstruction but also to the wrong topology re-
construction: the event track projection might be reconstructed as several separate tracks.
Such an instance is demonstrated in Fig. 2.13. In his doctoral work [72], Benjamin Manier
analyzed the impact of missing channels in the Microbulk Micromegas detectors on the en-
ergy resolution of the PandaX-III experiment. He also proposed an interpolation method to
correct the energy loss due to the missing channels and the track topology reconstruction
algorithm to mitigate the effect of the missing channels on the track reconstruction. The
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Figure 2.12: Comparison of the energy spectra of the 0νββ decay events with and without missing
channels. ROI defined as 3σ around the Q-value of the decay (∼3% FWHM): [2364, 2552] keV

Figure 2.13: (a) NDBD event track simulated and reconstructed in REST software without missing
channels. (b) Same NDBD event track simulated and reconstructed in REST software with missing
channels. The area of the missing channels is highlighted in purple dashed rectangle on both plots.
We can see that the missing channels lead to the separation of the track into two parts on the XZ
projection. Thus, resulting in the misleading event track reconstruction - such topology information
is useless for the analysis. On the YZ projection we can also observe that the black line representing
the track has a connection at the end of the track to the point roughly in the middle of the track.
This is due to the fact that the REST algorithm sometimes may have flaws that need to be
calibrated.
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interpolation method did not significantly improve the energy reconstruction of the events
with missing channels. However, the track topology reconnection algorithm showed promis-
ing results. 71% of the events with up to 5 missing channels were effectively reconnected.

2.5 Conclusion

The PandaX-III experiment is a next-generation neutrinoless double beta decay experiment
that aims to search for the neutrinoless double beta decay of 136Xe. The experiment em-
ploys a high-pressure gaseous TPC with a Micromegas readout plane. The Micromegas
technology provides a high granularity readout of the ionization signal in the TPC, offering
superior energy resolution compared to conventional multi-wire chambers. The PandaX-III
experiment is currently under construction at SJTU, and the TBMM development is being
finalized at USTC and SJTU. The experiment is expected to be operational in the near
future and should provide valuable data on the neutrinoless double beta decay of 136Xe,
contributing to the search for new physics beyond the Standard Model.
The missing channels in the Micromegas detectors can affect the efficiency of the experiment,
leading to a loss of sensitivity to the signal of interest. The track topology reconstruction
can also be affected by the missing channels, leading to the misidentification of the event and
affecting the background rejection. The problem of missing channels should be addressed to
ensure the optimal performance of the PandaX-III experiment. In the next chapters, I will
present methods to correct for the energy loss due to the missing channels on Micromegas.
While the next chapter is focused on the track topology study, the later chapters will be
dedicated to the energy reconstruction study with Machine Learning algorithms employed
to correct for the energy loss due to the missing channels.
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Chapter 3

Topology of the Electron Tracks
(Geant4)

Remember that REST is made by physicists for physicists,
who are supposed to toil and suffer till they become experts.

— Rest-for-physics software welcome message

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Low Energy Electrons in Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Updated Blob Charge Identification Process . . . . . . . . . . . . . . 62
3.3 Electron Propagation Topology . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Introduction

The PandaX-III experiment aims to search for 0νββ decay of 136Xe. Electrons generated in
the active TPC volume by gammas from the decay chains of 238U and 232Th with an energy
equal to or above the Qββ value constitute the largest background source. They produce
long tracks and a reconstructed energy that can fall into our ROI. Nevertheless, some of
their characteristics, which can be put under the broad category of topological parameters,
allow us to discriminate them against ββ events. The PandaX-III collaboration reported
on the work done along this line in a 2020 article [73]. Several topological parameters
were considered. The most effective is the so-called blob charge, i.e. the region of high
energy density showing up at end-of-track, corresponding to the Bragg peak. The Bragg
phenomenon also generates an end-of-track twist. ββ events have two blobs and twists, one
for each of the two electrons, whereas γ events have only one, except in the rare case of pair
creation. γ events also have, on average, a more significant number of secondary tracks and
a longer track length.

Cuts on these parameters were optimized on a radio-purity model of the TPC. The
results are presented in Section 6.1. They may seem sufficient. However, they suffer from two
deficiencies. Firstly, they were obtained while independently treating topological parameters
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(such as blob and twist) as well as track projections (XZ and YZ). They, hence, do not take
full advantage of the information contained in the event. Secondly, they were obtained with
perfectly working Micromegas. At the same time, we may have to deal with situations
such as those described in Section 2.4 where some channels are missing, or the gain is
inhomogeneous over the sensitive area. This former problem was addressed by Benjamin
Manier in his thesis [72], with limited success. All these considerations led us to investigate
the topology of electron tracks propagating in the TPC more carefully.
One line of investigation concerns correlations between blob and twist, as well as between

Figure 3.1: 0νββ decay event simulated and reconstructed in REST. One of the blobs is falling
on a missing channel (highlighted in purple) in the XZ projection. The corresponding undetected
energy could be reconstituted by exploiting the correlation between XZ and YZ so that the overall
energy is reconstructed within the ROI.

XZ and YZ. It, in fact, addresses not only the first of the two deficiencies mentioned supra
but also the second one. Indeed, if we are in a situation where channels are missing, we may
want to take advantage of the correlations to reconstitute the missing information. Such a
situation is illustrated in Fig. 3.1. But we will also try to characterize blob and twist per se.

In this chapter, to investigate the topology of the electron events in the gas, we will use,
in addition to REST, the Geant4 Monte Carlo simulation toolkit.

3.2 Low Energy Electrons in Gas

First, let us consider that we have an electron and proton beams with energies 6 MeV and 110
MeV respectively, as we can see in the example from the depth dose curves for radiotherapy
(Fig. 3.2). The ionization process dominates the proton beam energy deposition. One can
clearly distinguish a proton Bragg peak position at a certain depth (on the plot, it is ∼90
mm), which can be calculated from the Bethe-Bloch formula [74].
On the contrary, the energy deposition of the electrons is dominated by the bremsstrahlung
process (particularly at energies above 10 MeV) and Multiple Coulomb scattering (MCS).
The bremsstrahlung process is the photon radiation of an electron when it interacts with
the Coulomb field of the nucleus. At the same time, MCS is the electron scattering on the
nucleus’s Coulomb field.
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Figure 3.2: Comparison of relative depth dose distributions of protons and electrons in case of a
single field. 110 MeV protons Bragg peak and 6 MeV electrons in water. Adapted from [75].

The energy deposition distribution of electron beams is generally smooth, decreasing
monotonically with depth and lacking a distinct peak. Similar to protons, electrons expe-
rience a gradual energy loss primarily due to Coulomb collisions with atomic electrons. As
electrons lose energy, their rate of energy deposition increases—a phenomenon crucial for the
manifestation of a Bragg peak. However, this process differs significantly between electrons
and protons due to the differing energy and momentum scales at which various interactions
occur.

A key distinction arises from the much lighter mass of electrons compared to protons,
which makes them more susceptible to the Coulomb field of the nucleus. This leads to a
greater degree of scattering, which significantly alters their trajectory. For protons, which
are much heavier, scattering occurs at smaller angles, allowing them to follow a relatively
straight path. In contrast, electrons, due to their lighter mass, can scatter at large angles,
rapidly losing memory of their initial direction. This scattering process, where the multiple
scattering RMS angle is inversely proportional to the particle’s momentum, leads to what
is known as the "Blob" effect. This effect occurs at the same momentum scale for both
electrons and protons but is more pronounced for electrons because of their lower mass and
higher interaction cross-section.

Regarding energy loss, the Bethe-Bloch formula indicates that the rate of energy depo-
sition (dE/dx) is inversely proportional to the square of the particle’s velocity (∼ 1/β2).
This implies that for a non-relativistic particles, the energy loss rate increases sharply. The
result is the formation of a Bragg peak, which, for protons, occurs in the sub-GeV range,
and for electrons, in the sub-MeV range.

In the context of the PandaX-III experiment, however, we are primarily concerned with
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lower-energy electrons, with the energy spectrum of events lying below 5 MeV and the ROI
for the 0νββ decay signal around 2.5 MeV. At these energies, ionization dominates the
energy deposition of electrons in the gas. Electrons "Blob" early in their trajectory due
to significant scattering, and they only exhibit a Bragg peak towards the very end of their
path. This behavior contrasts with protons, which typically manifest a Bragg peak before
they have a chance to "Blob."

As was mentioned in the introduction to this chapter, the consecutively missing channels
can lead to the loss of the Bragg peak from the track reconstruction (at least on one of
the projections). Whether we can reconstruct the lost Bragg peak from the remaining
information about the event arises. More precisely, the question is: Can we approximate
the Bragg peak on one of the projections (e.g XZ projection), knowing the deposited energy
on another one (e.g. YZ projection), as visualized in Fig. 3.3? To begin with, a rough

Figure 3.3: Visualization of the Bragg peak approximation on the XZ projection, knowing the
deposited energy on the YZ projection.

estimation of the Blob charges (corresponding to the Bragg peaks) correlation was done using
a process present in the REST software, dedicated explicitly to the Blob charge identification
[66][67]. The process is executed independently after completing the track reconstruction in
the two 2D projections, XZ and YZ. It searches for blobs at both ends of the reconstructed 2D
tracks. Two parameters condition this process, set by the user: the fraction of track hits to
consider (parameter HitsToCheck) and the blob charge radius (parameter BlobRadius). The
most energetic hit within HitsToCheck determines the center of a circle of radius BlobRadius
within which all hits are considered to calculate the total energy, as their sum, and the
coordinates, as their barycenter, of the blob. Following the process terminology, the first
Blob is the one closer to the anode (and correspondingly, the second Blob is the one further
away from the anode).
With such a rough estimation of the Blob charge coordinates and energy depositions, we
simulated 104 NDBD events inside the PandaX-III 140 kg Xe 1%TMA TPC setup in REST
software. The HitsToCheck was chosen to be 20%, and the Blob charge radius was 10 mm.
From the absolute difference between the Z coordinates of the Blob charges on the XZ and
YZ projections, as presented in Fig. 3.4, we can observe that around 35% of the events have
Blob charges with the absolute difference in Z coordinates higher than 5 mm. Furthermore,
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Figure 3.4: Absolute difference between the Z coordinates of the Blob charges on the XZ and YZ
projections.

looking at the correlation maps of Z coordinates on the XZ and YZ projections for the first
and second Blob charges, as presented in Fig. 3.5, we notice a nice correlation along the first
diagonal, but also a strange structure in the shape of a kite in the upper right corner. This
structure comes from tracks reaching the anode plane at Z = 600 mm before the electron
comes to a stop. For these, the outcome of the blob-finding becomes meaningless: it often
turns out to sit close to Z = 600 mm (since this is where the track ends) at times becoming
arbitrary.
Let us have a look at the events for which the following condition is satisfied: The Blob

Figure 3.5: (left) Correlation map of the Z coordinates of the first Blob charge on the XZ and YZ
projections. (right) Correlation map of the Z coordinates of the second Blob charge on the XZ and
YZ projections.

charge Z coordinates on the XZ and YZ projections must be within 5 mm from each other.
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(a) (b)

Figure 3.6: Energy correlation maps for the first and second Blob charges on the XZ and YZ
projections. The Blob charge radius is 15 mm. The Blob charge Z coordinates on the XZ and YZ
projections are within 5 mm from each other.

Plotting the energy correlation maps for the first and second Blob charges on the XZ and
YZ projections (where the radius for the Blob charges was selected 15 mm), as presented
in Fig. 3.6, even with the selection criteria, the correlation is not obvious at all. Even if
we see peaks on the correlation maps around the 300 keV points for the first and second
Blob charges on the XZ and YZ projections, the dispersion is large enough to prevent any
conclusion.
What if we try to identify the Blob charge more precisely?

The idea is to rely not only on the first and last hits of the track, but try to locate the
Blob charge coordinates on the whole track length. Therefore the Blob charge identification
process needs to be modified.

3.2.1 Updated Blob Charge Identification Process

In order to identify the Blob charge coordinates more precisely, the Blob charge identifica-
tion process was modified. First of all, instead of relying on the first and last hit groups of
the track, now we parse through all the track hits. Remembering that the number of hits
per raw event can reach up two thousands, in order to reduce the computation expenses, we
set a threshold on energy per hit. Now, let’s talk about the main principle behind the Blob
charge identification process.

3.2.1.1 Primary Blob charge identification principle based on the Maximum
Energy Deposition hits

After selecting the track hits that are being considered for the Blob charge identification, we
select the hit with the maximum energy deposition. This hit is considered to be the center
of the Blob charge. The energy depositions of the track hits within the Blob charge radius
are accumulated and considered to be the energy deposition of the Blob charge. The track
hits that were used for the Blob charge identification are being removed from the list of the
track hits, and the left-out track hits are being considered as a tail of the track. The Blob
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charge identification process is repeated for the tail until the tail is empty.
At the end of the process, we have a list of the Blob charges, with their coordinates and
energy depositions for XZ and YZ projections. The Blob charges are sorted by their Z co-
ordinates so that the first Blob charge is the one with the Z coordinate closer to the anode
of the TPC (readout plane, which is located at a distance of 600 mm on the Z axis), the
second Blob charge - respectively, with the Z coordinate further away from the anode. At
this point, we can select the true Blob charges by applying the criteria to the Z coordinates
of the Blob charges. Selecting the Blob charges with the Z coordinates within a defined
range from each other, we can obtain the list of the true Blob charges.
The Blob charge identification process is illustrated in Fig. 3.7. However, with such a pro-
cess, we still rely on the most energetic hit, which might not directly correspond to the
Bragg peak of the electron track. Thus, another slightly different approach was introduced.

3.2.1.2 Blob charge identification principle based on the most energetic sphere
of the defined radius

Similarly to the previous approach, we select the track hits that pass the energy deposition
threshold. Then, for each of the selected hits, we accumulate the energy depositions of the
track hits within the Blob charge radius. Comparing the energy depositions of the spheres,
we select the sphere with the maximum energy deposition and consider the coordinates
of the sphere center to be the Blob charge coordinates. Again, the track hits inside the
sphere are being removed from the list of the track hits, and the left-out track hits are being
considered as a tail of the track. This process is repeated for the tail until the tail is empty.
The identification process is illustrated in Fig. 3.8.

Now, we can identify all the potential Blob charges on the track length with these two
approaches. One must consider that we may encounter events with unequal numbers of
the Blob charges on the XZ and YZ projections, thus containing the False Blob charges.
This may happen when the track has a kink; therefore, on one of the projections, the kink is
identified correctly, while on the other, the kink is identified as the Blob charge. An example
of such an event is presented in Fig. 3.9.
To avoid such cases, we apply the criteria on the Z coordinates of the Blob charges coor-

dinates for both projections. The Blob charges with the Z coordinates within the defined
range from each other are considered to be the true Blob charges. However, now we became
sensitive to the Blob charge radius (Fig. 3.10), and the threshold for the energy deposition of
the track hits (Fig. 3.11). In addition to that, we can observe the presence of a tail/artifact
on the Energy correlation maps for Blob charges on the XZ and YZ projections passed the
selection criteria (Fig. 3.10, Fig. 3.11), that lays in between 0 keV point and the most intense
correlation point on the map.
Now, comparing the energy correlation maps for the Blob charges, we notice that by in-

creasing the energy threshold for the track hits and the Blob charge radius, we can reduce
the number of Blob charges in the tail on the energy correlation maps for both approaches.
However, one thing stays unchanged: the broad distribution of the Blob charge energies.
In an attempt to reduce the dispersion of the Blob charge energies, each of the Blob charge
identification approaches was adjusted.
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(a) (b)

(c) (d)

Figure 3.7: Step-by-step illustration of the Blob charge identification process on XZ projection for
the NDBD event. (a) All the track hits on the XZ projection. (b) Selection of the track hits after
the threshold for the energy deposition. (c) Found the most energetic hit, which coordinates are
considered to be the Blob charge coordinates. The energy depositions of the track hits, within
the Blob charge radius, are accumulated. (d) The track hits are separated into two groups: Blob
charge hits and the tail hits.
The process is repeated sequentially for the tail hits, until the tail is empty.
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(a) (b)

(c) (d)

Figure 3.8: Step-by-step illustration of the Blob charge identification process on XZ projection
for the NDBD event. (a) Selected track hits on the XZ projection above the energy deposition
threshold. (b) For each of the selected hits, we accumulate the energy depositions of the track hits,
within the Blob charge radius. (c) Comparing the energy depositions of the spheres, we select the
sphere with the maximum energy deposition and consider the coordinates of the sphere center to
be the Blob charge coordinates. (d) The track hits inside the sphere are being removed from the
list of the track hits and the leftout track hits are being considered as a tail of the track.
Again the process is repeated sequentially for the tail hits, until the tail is empty.
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Figure 3.9: Example of the event with the kink in the track. The kink is identified as the Blob
charge.

3.2.1.3 Identification of the Blob charge Barycenter

After finding each Blob charge for the Maximum Energy Deposition hits and the Most
Energetic Sphere approaches, we calculate the Barycenter of all the track hits within, now
considered the Blob charge coordinates. After that, we recalculate the energy deposition
of the Blob charge, accumulating the energy depositions of the track hits within the Blob
charge radius, centered at the Barycenter (3.12).
After applying the Blob charge coordinates and Energy recalculation using the Barycenter

approach, we can observe the higher concentration of the Blob charge energies around
the concentration point on the correlation maps for both approaches (Fig. 3.13). For
smaller Blob charge radius (R = 10 mm), the difference is more significant if we com-
pare Fig. 3.13(low row) and Fig. 3.10(low row). Nevertheless, the dispersion of the Blob
charge energies is still significant and sensitive to the Blob charge radius and the energy
threshold for the track hits definition.
Table 3.1 presents the results corresponding to the average of the mean energies of the Blob
charges for the XZ and YZ projections, obtained using the Maximum Energy Deposition
hits and the Most Energetic Sphere approaches (directly and after applying the Barycenter
recalculation), for different Blob charge radii and energy thresholds.

Suppose that the threshold is technically an arbitrary parameter, and it has already
been seen that increasing the threshold reduces the dispersion of the Blob charge energies.
In that case, we can leave it as one degree of freedom and optimize the Blob charge radius
instead.
The question now is: What is the optimal Blob charge radius?
To answer this question, we need to understand the topology of the electron propagation
track inside the gas volume. The electron behavior inside the gas is case-sensitive, depending
on the initial energy of the electron, the gas mixture, the pressure, the electric field, etc. In
addition to that, the readout system, which in turn defines the spatial resolution of the track
hits, detects the ionization electrons produced on the trajectory of the primary electrons that
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(a) R = 15 mm, thr = 25 keV.
Maximal energy deposition hits ap-
proach.

(b) R = 15 mm, thr = 25 keV.
Maximal energy sphere approach.

(c) R = 10 mm, thr = 25 keV.
Maximal energy deposition hits ap-
proach.

(d) R = 10 mm, thr = 25 keV.
Maximal energy sphere approach.

Figure 3.10: Comparison of the energy correlation maps for the Blob charges on the XZ and
YZ projections. (a) and (c) - Energy correlation maps for the Blob charges on the XZ and YZ
projections, where obtained using the maximum energy deposition hits. (b) and (d) - Energy
correlation maps for the Blob charges on the XZ and YZ projections, where obtained using the
most energetic sphere of the defined radius. The energy threshold for the track hits is 25 keV. The
Blob charge radius is 15 mm for (a) and (b) and 10 mm for (c) and (d).
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(a) R = 15 mm, thr = 25 keV.
Maximal energy deposition hits ap-
proach.

(b) R = 15 mm, thr = 25 keV.
Maximal energy sphere approach.

(c) R = 15 mm, thr = 40 keV.
Maximal energy deposition hits ap-
proach.

(d) R = 15 mm, thr = 40 keV.
Maximal energy sphere approach.

Figure 3.11: Comparison of the energy correlation maps for the Blob charges on the XZ and
YZ projections. (a) and (c) - Energy correlation maps for the Blob charges on the XZ and YZ
projections, where obtained using the maximum energy deposition hits. (b) and (d) - Energy
correlation maps for the Blob charges on the XZ and YZ projections, where obtained using the
most energetic sphere of the defined radius. The Blob charge radius is 15 mm. The energy threshold
for the track hits is 25 keV for (a) and (b) and 40 keV for (c) and (d).
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max Hit, (keV) max Sph., (keV)
R Thr Direct Bary. Direct Bary.(mm) (keV)

8

15 165.4 193.5 185.35 200.55
20 185.4 212 205 218.6
25 201.3 226.6 220.05 232.45
30 214 237.85 231.4 243.25
35 224 246.7 239.45 251.4
40 231.45 253.55 245.55 257.35

10

15 196.55 230.6 220.8 240.2
20 217.6 249.75 240.8 258.1
25 234.25 264.6 255.4 271.7
30 247.25 276.3 266.8 282.5
35 257.3 285.2 274.65 290.3
40 265.2 291.85 280.75 296.55

15

15 262.4 316.1 292.45 327.65
20 282.7 334 310.25 342.7
25 299.3 347.9 323.8 354.7
30 312.1 358.75 333.65 364.15
35 321.75 366.9 340.4 370.85
40 329.35 373.5 345.95 376.85

Table 3.1: Results from the updated Blob charge identification process. The average of
the mean energies of the Blob charges for the XZ and YZ projections, obtained using the
Maximum Energy Deposition hits and the Most Energetic Sphere approaches (directly and
after applying the Barycenter recalculation). The table shows the results for different Blob
charge radii R and energy thresholds for the track hits definition.
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(a) (b)

Figure 3.12: Visualization of the Barycenter approach for the Blob charge identification. After
calculation of the Barycenter of the track hits within the Blob charge (a), the energy depositions
of the track hits, within the Blob charge radius, centered at the Barycenter, are accumulated and
now those considered to be the energy deposition of the Blob charge (b).

propagate through the gas before being registered by Micromegas. Therefore, the electron
propagation topology should be analyzed in the context of the PandaX-III experiment.

3.3 Electron Propagation Topology

The electron propagation topology was studied using Monte Carlo simulation employing
the Geant4 toolkit. The main idea behind the study is to understand at which point of the
propagation track the electron enters the Blob charge stage. In other words, in which spatial
boundaries does the electron experience the increase of the energy deposition and enter the
Bragg peak mode, and how can it be associated with the appearance of a Blob charge?
To begin with, the study was simplified by considering only one electron propagation through
the gas volume. The gas mixture was defined in accordance with the experimental design:
140 kg of Xe with 1% of TMA. The pressure was set to be 10 bars. The electric field was
not included in the simulation, as the propagation of the primary electrons from ionization
to the readout plane is not the main focus of the study. With this in mind, the geometry
of the TPC was simplified to the gas volume of a cylindrical shape, with the dimensions
1000 mm x 1000 mm x 1000 mm. The gas volume is assigned as a Logical Volume of
the simulation. The electron was generated at the center of the gas volume with an initial
kinetic energy of 2.4 MeV. The particle source origin was restricted to the central point of
the gas volume. However, the angular distribution of the electron was set to be isotropic.
Such particle source configuration ensures that the electron, propagating through the gas
volume, will not reach its boundaries.
To study the electron’s energy deposition, we set a high MaxStep limit of 450 mm for the
Logical Volume. This parameter sets the upper limit on the integration step size employed by
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(a) R = 15 mm, thr = 25 keV.
Barycenter recalculation for Maximal
energy deposition approach.

(b) R = 15 mm, thr = 25 keV.
Barycenter recalculation for Maximal
energy sphere approach.

(c) R = 10 mm, thr = 25 keV.
Barycenter recalculation for Maximal
energy deposition approach.

(d) R = 10 mm, thr = 25 keV.
Barycenter recalculation for Maximal
energy sphere approach.

Figure 3.13: Comparison of the energy correlation maps for the Blob charges on the XZ and
YZ projections after applying the Barycenter calculation for the Blob charge identification for
both Maximum energy deposition and Maximum energy sphere approaches. (a) and (c) - Energy
correlation maps for the Blob charges on the XZ and YZ projections, where obtained using the
maximum energy deposition hits. (b) and (d) - Energy correlation maps for the Blob charges on
the XZ and YZ projections, where obtained using the most energetic sphere of the defined radius.
The energy threshold for the track hits is 25 keV. The Blob charge radius is 15 mm for (a) and (b)
and 10 mm for (c) and (d).
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Geant4 for approximating particle interactions, meaning that the energy deposition inside
the Logical Volume is forced by Geant4 if there are no interactions with the gas. Increasing
the MaxStep limit, we rely instead on the physics simulation limitations applied to the elec-
tron propagation. A physics list in Geant4 is responsible for defining the physical processes
in the simulation. It specifies which particles are included in the simulation, as well as the
models used to describe their interactions with matter. The physics list also controls the
energy range over which the simulation is valid. A physics list for the simulation of ionizing
electrons is the G4EmStandardPhysics list, which was used in the study with the following
production energy cuts:

• MinEnergy = 100 eV

• MaxEnergy = 1 GeV

Production cuts are used to determine whether a particle can produce secondary particles
in a given material. If the energy is within the production cuts range, the engine will allow
the particle to produce secondary particles. Thus, we expect that secondary particles will
be produced until the electron reaches the energy of 100 eV.
Additionally, specific electromagnetic processes necessitate a threshold to prevent infrared
divergence, ensuring that no secondary particles are generated below a certain energy
level. Gammas, electrons, and positrons necessitate a production threshold to adhere to
this requirement. This threshold is specified as a distance or range cut-off and is in-
ternally converted to energy based on the characteristics of individual materials. The
range cut-offs for gammas, electrons, and positrons are set to 10 µm. The problem, how-
ever, is that the G4EmStandardPhysics list is not designed to simulate low-energy inter-
actions with high precision. Therefore, the G4EmStandardPhysics was extended with the
G4EmExtraPhysics list that extends the capabilities of the standard electromagnetic physics
list G4EmStandardPhysics to include additional processes that are important for simulating
a wider range of physical phenomena. G4EmExtraPhysics is typically used for applications
that require more accurate and realistic simulations of electromagnetic interactions. We
made sure that atomic de-excitation effects were included in the simulation by turning on
such processes as:

• Fluorescence physical process - the process of emission of characteristic X-rays by
atoms in excited states, following the de-excitation of inner shell electrons.

• Auger electron emission process - the process of emission of Auger electrons by atoms
in excited states, after the de-excitation of inner shell electrons.

• PIXE process - the process of emission of protons by atoms in excited states, after the
de-excitation of inner shell electrons.

After setting the environment for the simulation, let’s look at the values, which we are
interested in.
At each interaction point (step) of the electron with the gas atoms, we collect following
observables:

• Ekin - kinetic energy of the electron before the interaction

• Edep - energy deposition of the electron at the interaction point
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• Eloss - energy deposition of the electron at the interaction point plus the kinetic energy
of the produced secondary particle

• Step length of the electron - the distance between the interaction points

• Deposition point coordinates - coordinates of the interaction point

• θ angle - angle between the electron momentum vectors before and after the interaction
point, θ = arccos

p⃗init·p⃗fin
|p⃗init||p⃗fin|

• Secondary particle type produced at the interaction point

• Ekin secondary - kinetic energy of the secondary particle

In case the secondary particle is not gamma, but e- that has kinetic energy lower than the
threshold of 100 keV, we do not consider the secondary particle as produced and sum its
kinetic energy to the Edep.
Knowing the starting point of the electron propagation and the coordinates of the interaction
points, we can calculate the variable Ln, which is the distance between each interaction point
n and the end of the electron propagation track. The end of the electron propagation track
is defined as the point where the electron kinetic energy is below the threshold of 100 eV.
The total number of interaction points is N , where the beginning of the electron propagation
track is n = 1, and the end is n = N . The visualization of the electron propagation track is
presented in Fig. 3.14.
After simulating and processing 106 events, the following distribution for Eloss, normalized

by the number of events, with respect to the L was obtained (Fig. 3.15). Energy loss
increases drastically at the distance L of 5 mm to the end of the electron propagation track.
This is the point where the electron enters the Bragg peak mode.

On the other hand, we compute the electron Stopping power dE/dx numerically as the
division of the Eloss by the Step length for each interaction point. The dE/dx distribution
with respect to the Ekin shows the rapid increase of the stopping power after the electron
kinetic energy reaches the value of 100 keV (see Fig. 3.16). Yet, this is only in accordance
with the losses of the primary electron energy (see Fig. 3.15).

Finally, if we look at the distribution of angle θ to the L (Fig. 3.17), we can observe that
for L smaller than 20 mm, the electron enters a regime where θ covers the whole angular do-
main. In this regime, the electron is undergoing heavy multiple scattering. This is expected,
as the electron is supposed to have low kinetic energy near the end of the track. However,
the multiple scattering begins much earlier than the electron enters the Bragg peak mode,
distorting the definition of the Blob charge. Thus, the effect of the multiple scattering is
significant and should be considered.
The study in the context of the PandaX-III experiment shows that the Blob charge iden-

tification is sensitive to the scattering angle of the electron. A much more detailed study of
the electron propagation topology is required.

However, from the rough estimation of the θ angle distribution, the Blob charge could
be identified in the last 20 mm of the electron propagation track. If we define the Blob
charge radius to be 10 mm, we can expect that the Blob charge would contain energy in the
range of 200 - 300 keV, as can be seen from the results in Table 3.1. A better determination
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Figure 3.14: Visualization of the electron propagation track in Geant4. At each interaction point,
the particle kinetic energy, energy deposition, step length, θ angle, kinetic energy of the secondary
particle and it’s type are being collected. The distance L to the end of the electron propagation
track is calculated as well.

Figure 3.15: Energy loss of the electron, normalized by the number of electron events, with respect
to the distance to the end of the electron propagation track. The rapid increase of the energy loss
of the electron is observed at the distance of 5 mm to the end of the electron propagation track.
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Figure 3.16: Stopping power of the electron with respect to the electron kinetic energy.

Figure 3.17: Angle θ between the electron momentum vectors before and after the interaction point,
with respect to the distance to the end of the electron propagation track.
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of the energy threshold for the track hits is required to reduce the dispersion of the Blob
charge energies. Nevertheless, in the context of 0νββ events, if one of the Blob charges is
lost due to the dead channels, this would result in the 8-12% energy loss of the event. Such
events would fall from the ROI defined for the PandaX-III experiment and be considered
background events.

3.4 Conclusions

The results presented in the chapter are not as conclusive as we were hoping for in the
introduction. The possibility that the part of the blob energy that would have been lost
due to missing channels in XZ could be directly reconstituted from YZ and vice versa was
not confirmed. The ideas around the correlation between twist and blob did not come to
fruition either.

Yet several observations have been made that are important for the last part of this
thesis, dedicated to Machine Learning (ML). Firstly, the very lack of success of the direct
approaches investigated here is yet another incentive to turn to ML. Secondly, we have seen
that the onset of twist is much earlier than that of blob. Which means that a large fraction
of the track topology contains information about the track energy content. Which is in turn
promising for the ML approaches, which are to deal with the whole trajectory and not only
its ends.

Last, we have understood the importance of the extra physics processes enabled by the
G4EmExtraPhysics physics list for the correct simulation of our events.
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Chapter 4

Introduction to Machine Learning and
Neural Networks

Sapiens dominabitur astris
(Latin: the wise man shall master the stars)

— Claudius Ptolemy
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4.1 Introduction

What is Intelligence?
Intelligence can be characterized as the capacity to acquire knowledge and employ effective
strategies to address challenges and attain objectives, adapted to the circumstances in a
dynamic and unpredictable environment.
In 1955, John McCarthy, a computer scientist and esteemed Stanford Professor, coined the
term "artificial intelligence" (AI)[76]. He described AI as "the science and engineering of
making intelligent machines." This introduced a new focus on machines resembling humans
in their cognitive behaviors to some extent. McCarthy, widely recognized as the father of
AI, organized the famous Dartmouth conference in the summer of 1956, which is widely
considered to be the official birthdate of AI.
In 1959, Arthur Samuel, a pioneer in the field of AI, defined a term Machine Learning (ML)
as a "field of study that gives computers the ability to learn without being explicitly pro-
grammed" [77]. Today, we can expand the definition of ML as a field of computer science
and a part of AI that uses statistical techniques to give computer systems the ability to
"learn" (i.e., progressively improve performance on a specific task) without being explicitly
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programmed. From the 1950s to the 1980s, the development of ML has brought forth al-
gorithms such as the perceptron [78], the nearest neighbor [79], and the decision trees [80].
However, the low-level single-layer algorithmic models could not solve complex problems
while being computationally limited by the hardware of the time [81].
With the development of more complex architectures, including the Convolutional Neural
Networks and Recurrent Neural Networks [82], application of backpropagation algorithm
[83] to the training of the neural networks, increase of computational power, and the avail-
ability of vast datasets, the ML field has experienced a renaissance. It has become a powerful
tool in various scientific disciplines.
Nowadays, ML is employed in a range of computing tasks where designing and programming
explicit algorithms with good performance is difficult or unfeasible; example applications
include email filtering, detection of network intruders or malicious insiders working towards
a data breach, optical character recognition (OCR), learning to rank (LTR), and computer
vision.
In the last decade, ML methods have complemented statistical analysis in physics, which
experienced a data revolution. In particle physics, ML methods have been widely used for
multiple purposes, such as beam dynamics studies [84], event selection [85], event processing
[86], background rejection [87], particle identification [88], and many others. Indeed, it has
been shown that ML methods can outperform traditional analysis techniques in many cases,
and with the development of new algorithms, the gap is expected to widen.
However, applying machine learning methods requires careful consideration, as incorrect
modeling choices or assumptions may lead to misleading or incorrect conclusions [89]. Con-
sidering the data limitations and potential algorithmic risks, one must interpret ML models
cautiously to draw accurate and meaningful reasoning. However, let us start with the basics.

4.2 Principles of Machine Learning

The primary objective of machine learning (ML) is to recognize valuable patterns within
data. In physics, ML finds application in addressing complex problems associated with
vast datasets [89]. As an example, in experiments conducted at the Large Hadron Collider
(LHC) at CERN, where the collisions of protons or ions at various points along the circular
collider result in the generation of tens of thousands of petabytes yearly. The abundance of
collisions makes distinguishing between significant and insignificant data samples essential.
ML methods, in this context, play a pivotal role in the discrimination of background from
the signal and contributing to the exploration of novel fundamental physics [90].
Machine learning (ML) can be categorized into three primary groups: a) supervised learn-
ing , b) unsupervised learning , and c) reinforcement learning . In supervised learn-
ing , the model learns from labeled data to make predictions or classifications [91]. Unsu-
pervised learning , on the other hand, uncovers patterns and structures within unlabeled
data [92]. Finally, reinforcement learning is centered on an agent learning optimal be-
haviors through interactions with an environment and receiving rewards [93].
It is the Supervised Machine Learning approach that is being used in my PhD project; thus,
the introduction of ML techniques will be focused primarily on it.
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4.2.1 Loss and Metrics in Supervised Learning

Supervised learning entails instructing a model to conduct a specific task using a provided
set of examples, the inputs [92]. Initially, the input dataset is divided into two distinct
sub-sets for training and testing. The training dataset is utilized to train an ML algo-
rithm (during the so-called training phase), allowing it to discern patterns within the data.
Subsequently, the trained algorithm is employed to predict new observations on the test
dataset. The dataset comprises a collection of examples represented by vectors {xi, yi},
where i = 1, 2, ..., n. Here, xi denotes the set of attributes for the ith example, and yi is the
target variable intended for prediction, which may be a singular value or a vector.
If the target variable y is a continuous set of values (y ∈ R), the problem is called a regres-
sion problem. A simple example could be the prediction of the mass of a particle (target
variable yi), where the attributes xi may be the measured momenta of its decay product
and the hits in the detection system.
On the contrary, when y represents a discrete number of classes or labels (y ∈ {C1, C2, ..., Ck},
where Cj is a class), it is called a classification problem. As an example, let us consider
the particle identification problem. The attributes xi may be the measured energy, momen-
tum, and the number of hits in the detector, while the target variable yi may be the particle
type.
Machine learning algorithms strive to establish a model that can be expressed as f that
effectively maps input attributes xi to the target values yi. This can be denoted as:

y ⇔ ŷ = f(x, ω) + ϵ, (4.1)

where ŷ is the value predicted by the model, ω represents the model’s parameters (also de-
noted as weights and biases), and ϵ is the random error term (⟨ϵ⟩ = 0 and ⟨ϵiϵj⟩ = 0 where
i, j = {0, 1, 2, ..., n} and n is a number of elements in the training dataset). The function de-
noted as f(x, ω) can be considered as the data-generating function, and a primitive example
of one could be the linear function f(x, ω) = ω1x + ω0 used in the simple linear regression
fit, depicted in Fig. 4.1. Here, ω1 is the weight (the slope of the line), and ω0 is the bias
(the intercept of the line). Considering this, the primary objective of the ML algorithm is

Figure 4.1: Example of the linear regression fit.

to estimate the parameter set ω. This estimation enables accurate predictions of the target
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variable y for new data points to the best possible extent. In order to achieve this, one
must have a mathematical expression that quantifies the model’s performance and guides
the fine-tuning of the model’s parameters. Therefore, we can define the Loss function as
a function that quantifies the difference between the predicted value ŷ and the actual (true)
value y in the training dataset. We denote the loss function as L(y, ŷ), a function of the
model’s parameters ω. The mean loss of the predictor on the training set is referred to as
the Cost function or Empirical risk in decision theory [94]:

C(ω) =
1

n

n∑
i=1

L(yi, ŷi(ω)). (4.2)

For the regression problems, the most common loss functions are the mean squared error
(MSE) and mean absolute error (MAE) [94]. The MSE is defined as:

CMSE(ω) =
1

n

n∑
i=1

(yi − ŷi(ω))
2, (4.3)

while the MAE is defined as:

CMAE(ω) =
1

n

n∑
i=1

|yi − ŷi(ω)|. (4.4)

For classification tasks, the selection of cost functions depends on the particular algorithm
and objective at hand. Outputs of a classifier network are usually represented as prob-
abilities of the input belonging to a particular class. These probabilities can be checked
against some threshold for the classification to yield a yes-or-no answer. Common examples
encompass the 0-1 loss function and cross-entropy loss [94]. The 0-1 loss function measures
the misclassification rate within the training set. The cost function returns the fraction of
misclassified training samples:

C0−1(ω) =
1

n

n∑
i=1

I(yi ̸= ŷi(ω)), where I(yi ̸= ŷi(ω)) =

{
1, if ŷi(ω) ̸= yi
0, otherwise. (4.5)

Similarly, the cross-entropy loss function measures the performance of a classification model
whose output is a probability value between 0 and 1. It increases as the predicted probability
diverges from the actual target label. The cost function for the binary classification is defined
as:

CCE(ω) = − 1

n

n∑
i=1

m∑
j=1

yij log ŷij(ω), (4.6)

where m is the number of classes.
When the number of classes is only equal to two, the cross-entropy loss function is referred
to as the binary cross-entropy loss function and the 4.6 is simplified to:

CCE2(ω) = − 1

n

n∑
i=1

[yi log ŷi(ω) + (1− yi) log(1− ŷi(ω))] . (4.7)

Apart from the loss function, which provides an insight into the model’s performance, the
metrics are also used to evaluate the model’s performance. The metrics are the functions
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that quantify the model’s performance while not influencing its training - they do not affect
the model’s parameters. The metrics are used to evaluate the model’s performance on the
validation or test dataset.

The choice of the metrics depends on the particular problem and the model’s objective.
A valuable metric for classification problems is the receiver operating characteristic (ROC)
curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR)
at various thresholds[95]. An ideal classifier would have a TPR of 1 and an FPR of 0,
resulting in a curve near the upper left corner. The Area Under the ROC Curve (AUC-
ROC) measures the model’s ability to distinguish between classes; a higher AUC indicates
better performance. One can see an example of the ROC curve in Fig. 4.2.

Another common metric used in classification problems is accuracy , which is defined

Figure 4.2: Example of the ROC curve. The dashed line represents the random classifier, while
solid lines represent different classifiers. The most effective classifier is the blue one, which has the
largest AUC-ROC closer to 1. Adapted from [96].

as the ratio of the number of correct predictions to the total number of predictions. The
accuracy metric is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.8)

To optimize the performance of the network, we have to minimize the cost function. This
is the primary objective of the training process:

ω∗ = argminω C(ω) = argminω

1

n

n∑
i=1

L(yi, ŷi(ω)). (4.9)

The training process is an iterative process that aims to find the optimal set of parameters
ω∗ that minimizes the cost function. Multiple algorithms can be used to achieve this. Their
effectiveness depends on the particular characteristics of the problem [97]. Such algorithms
rely on different concepts [92], such as probability theory (e.g., naive Bayes and logistic
regression), decision theory (e.g., decision trees), information theory (e.g., neural networks),
optimization theory (e.g., support vector machines) and ensemble methods (e.g., random
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(a) Node with a single input. (b) Node with multiple inputs.

Figure 4.3: Node definition, where xi are the inputs, ωji are the weights, ωj0 is the bias term, and
yj =

∑n=3
i ωjixi + ωj0 is the output from the node.

forests).
To not encumber the reader with the details regarding all the algorithms, I will focus on
the ones that is used in my PhD project - the neural networks .

4.2.2 Neural Networks and Deep Neural Networks

Neural Networks (NN) are a class of machine learning algorithms that are inspired by
the biological neural networks that constitute animal brains. Such systems learn to perform
tasks by considering examples without being programmed with task-specific rules. Precisely,
they are a set of algorithms, modeled loosely after the human brain, that are designed to
recognize patterns and were found to be efficient in solving nonlinear problems.
The term’s modern usage often refers to artificial neural networks, which are composed of
artificial neurons or nodes. Thus, the term neural network is synonymous with Artificial
neural network (ANN). The most common type of ANN is the Feedforward neural
network (FNN), where the information flows in only one direction - forward - from the
input nodes to the output nodes. Let us look closer at the NN description, using the FNN
as an example.
The node is the key element of the NN. It is a mathematical function that receives one
or a set of inputs, performs a transformation on them, and produces a single output. A
transformation performed by the node might be a simple linear transformation, such as
a weighted sum of inputs plus a bias term like is depicted in Fig. 4.3a for a single input
and in Fig. 4.3b for three inputs. Further on, the bias term will be omitted from the node
visualization for the sake of simplicity.
We can see that Fig. 4.3b represents a linear operation on the inputs. Thus, this one node
already depicts a simple linear model. Fig. 4.4 encapsulates this model architecture, where
the row of blue nodes represents only inputs and is called the input layer and the yellow
node represents the output layer . If we add an additional layer between the input and
output layers, we will get the hidden layer . For the hidden layer, the nodes can take the
previous layer’s outputs as inputs and perform a transformation on them, having unique
weights and biases. Fig. 4.5 depicts a linear model with a single hidden layer, with the
corresponding nodes having an orange color. At this point, it is worth mentioning that the
layers in the neural network for which the nodes connected to all the nodes in the previous
layer are called fully connected layers or dense layers . If we look at the output this
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Figure 4.4: Linear model with a single node.

Figure 4.5: Linear model with a single hidden layer.
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model architecture produces, we can see that it is still a linear function of the inputs:

y1 =
∑
k

ω1kh
(1)
k + ω10 =

∑
k

ω1k

(∑
i

ω
(1)
ki xi + ω

(1)
k0

)
+ ω10 (4.10)

=
∑
i
k

ω1kω
(1)
ki xi +

∑
k

ω1kω
(1)
k0 + ω10, (4.11)

We may add additional hidden layers to the model and change the number of nodes, but
the output will still be a linear sum of the inputs. This sum won’t effectively model the
non-linear dependencies in the data.
So, we need to introduce the non-linearity to the model. This can be done by applying a non-
linear activation function to the node (Fig. 4.6), after the transformation is performed on
the inputs by the hidden layer’s nodes. Now, as the non-linearity is introduced, it’s obvious

Figure 4.6: Linear model with a single node and an activation function.

that the output of the model is no longer a linear function of the inputs:

y1 =
∑
k

ω1ka
(1)
k + ω10 =

∑
k

ω1kAh
(1)
k + ω10 (4.12)

=
∑
k

ω1kA

(∑
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ω
(1)
ki xi + ω

(1)
k0

)
+ ω10, (4.13)

where A is an activation function. Now, with the activation function, we can add more layers
to impact the model’s output more. Applying non-linearities on top of non-linearities, we
can model more complex functions to map very complicated relationships between the inputs
and the outputs. We can generalize the Feedforward NN with a set of layers l = 1, 2, ..., L
as a combination of the linear transformation and the activation function:

ŷ = f(x, ω) = a(L)
(
ω(L)a(L−1)(...a(1)(ω(1)x+ ω

(1)
0 )...)

)
= a(L)

(
h(L)(...a(1)(h(1)(x))...)

)
.

(4.14)

where indices are omitted, but ω(l) represents the weights and biases ω
(l)
ij applied to input

j of the neuron i in the layer l, a(l) is the activation function applied to the output of the
layer l, and h(l) is the transformation performed by the layer l.
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One must pay particular attention to the choice of activation function, as it may signifi-
cantly impact the model’s performance. However, this will be discussed later. For now, the
basic building blocks of the neural network are defined, and we can proceed deeper into the
ML types.
The main focus of the last part of my PhD project is related to the Deep Neural Networks
(DNN). DNNs are a class of ANNs with more than one hidden layer between the input and
output layers. DNNs have been widely used in such areas as computer vision, speech recogni-
tion, natural language processing, etc. [98]. These networks can learn sparse representations
of data and are capable of discovering intricate structures within high-dimensional datasets.

4.2.2.1 Gradient Descent and Backpropagation

As we have already discussed, the loss function is determined by parameters ω of the model,
the inputs and expected outputs, see Eq. 4.2. To find the optimal set of parameters ω∗ that
minimizes the cost function, as in Eq. 4.9, we may quickly run into the problem of the high-
dimensional space of the parameters. The optimization problem becomes more complex as
the number of parameters increases, which can rise to the order of several millions in the
case of the DNNs.
However, instead of fitting the model’s parameters by hand, we can use the numerical
optimization algorithms through a large number of evaluations, aiming to develop a NN
that performs well on unseen data. This is why the training of the NNs requires a large
number of data.
The most common and, in the meantime, the most efficient optimization algorithm to solve
the optimization problem is the Gradient Descent . The gradient descent algorithm begins
by calculating the gradient of the loss function at a specific input point. During this process,
the network’s inputs and expected outputs remain constant while the gradient is computed
for each trainable weight. As the gradient represents the direction of maximum change in
the function, we can use this gradient information to adjust the weights in the direction of
the steepest descent, gradually bringing the network closer to the minimum value of the loss
function. Following the t-th training step, each weight can be updated as follows:

ω(t) = ω(t−1) − α
1

n
∇C(ω(t−1))

= ω(t−1) − α
1

n

∂C(ω(t−1))

∂ω
,

(4.15)

where ω(t) is the set of weights at the iteration t, α is the learning rate that controls the
step size of the gradient descent and is a hyperparameter that needs to be tuned to decrease
or increase the importance of the update following the direction opposite to the gradient.
The gradient with respect to a given weight ωij at a given iteration t for a given layer l is
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calculated using the chain rule, taking into account equation 4.14:
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(4.16)

where a′(l)(h(l)) is the derivative of the activation function with respect to the output h(l) =

ω(l)a(l−1)+ω
(l)
0 of the hidden layer l, and a(l) is the output after application of the activation

function at a layer l. The layer L corresponds to the output of the network, thus a(L)(h(L)) =
ŷ.
To not calculate the gradient for each weight in the network by hand, the backpropagation
algorithm is used [83]. The backpropagation algorithm improves the efficiency of the
gradient descent: we can calculate the outputs and the derivatives for each layer when
evaluating the loss function and then store them to extract the gradient of the cost function
with respect to a specific weight by using matrix multiplication:

∂C

∂ω(L)
=

∂C

∂ŷ

da(L)(h(L))

dh(L)

∂h(L)

∂ωl
ij

= δ(L)h(L−1),

∂C

∂ω(L−1)
= δ(L)ω(L)a′(L−1)(h(L−1))h(L−2)

= δ(L−1)h(L−2),

...

∂C

∂ω(l)
= δ(l)h(l−1).

(4.17)

The δ(l) is called an error term for the layer l. We can see that first, we calculate the last
layer L, then propagate the error backward through the network for each previous layer. It
is worth mentioning that the backpropagation algorithm, which includes gradient-based op-
timizations, requires the activation and loss functions to be differentiable. A more detailed
explanation of the backpropagation algorithm on the example of the simple neural network
is provided in the Appendix B.
It is important to mention that the cost function is computed on the whole training dataset
in the basic gradient descent algorithm (also called batch gradient descent). Here, the
batch refers to the total number of training examples used in a single iteration of the gradient
descent algorithm. There are other types of gradient descent algorithms, such as Stochas-
tic Gradient Descent (SGD), where the cost function is calculated on a single training
element; thus batch size is equal to one, and Mini-batch Gradient Descent (MBGD),
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where the cost function is calculated on a subset of elements in the training dataset, there-
fore batch size is greater than one and less than the total number of training examples.
Thus, MBGD compromises the two previous computationally resource and time-consuming
algorithms.
Whatever gradient descent algorithm type is used, the cost function is calculated iteratively
for each batch of data until all the training samples are used. This is called an epoch .
The number of epochs is another hyperparameter that we can define. We want to stop the
training process when the cost function converges to the minimum value, but in practice,
achieving it is not always possible. Thus, the number of epochs is usually set to a large
number, and the training process is stopped when the cost function stops decreasing.
Certain optimizers incorporate a momentum term into the weight update process, capturing
information about gradients from previous training steps. One such example is the Adam
optimizer [99], widely recognized for its strong performance across various training scenar-
ios. An Adam optimizer with decoupled weight decay regularization, or AdamW [100],
introduces weight decay regularization to the Adam optimizer. Weight decay regularization
is important because it helps prevent overfitting by penalizing large weights in the model,
thereby encouraging simpler, more generalizable solutions. Unlike traditional methods that
modify the weight updates directly, AdamW decouples the weight decay from the gradient
update step, applying it separately. This leads to more stable and efficient training, espe-
cially in deep learning models, by maintaining the advantages of adaptive learning rates
while effectively controlling model complexity.

4.2.2.2 More on activation functions

When we employ the backpropagation algorithm to train the NN via Eq. 4.17, we see that
the model weights will not be updated if the derivative of the activation function equals
zero. In this case, the model stops learning, and the weights are frozen. It can also happen
not only when the derivative of the activation function is zero but also when it is too close
to zero - by using the backpropagation and multiplying the derivatives of layer l by the
gradients computed for the layer l + 1, the gradients are exponentially decreasing. The
weights for the layers closer to the input are updated by small values. This effect is called
the vanishing gradient problem .
Contrary to that, the exploding gradient problem occurs when the gradients are too
large, causing the model to diverge [101].
The most common activation functions are categorized into three groups: ridge functions ,
radial functions , and fold functions .
• Ridge functions are multivariate functions acting on the linear combinations of the in-
puts. The most common examples of the ridge functions are Rectified Linear Unit (ReLU)
[102] function (A(x) = max(0, ax + b)) and Logistic (sigmoid) function (A(x) = (1 +
e−(ax+b))−1).
ReLU functions take as input a real number and output a number in the range [0,∞). It
is continuous but not differentiable at x = 0 (C0). Sigmoid functions take real numbers as
input and output in the range [0, 1]. Apart from being continuous, they are also infinitely
differentiable (C∞). Sigmoid function (and similar ones) is usually used in classification
problems to model the probability of an input belonging to a specific class.
• Radial functions or Radial Basis Functions (RBF) [103] constitute a distinct class of
functions that are used in RBF networks, showing a particular efficiency as universal approx-
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imators. Such functions are not used in my thesis project, yet they are worth mentioning,
and one of the examples is the Gaussian Error Linear Unit (GELU) function (A(x) = xΦ(x),
where Φ(x) is the cumulative distribution function of the standard normal distribution).
• Fold functions are most commonly used for pooling in the convolutional neural networks
that will be described later on and in the output layers of multiclass classification networks.
These activation functions involve aggregating over the inputs, such as computing the mean,
minimum, or maximum. In multiclass classification, softmax activation is frequently em-
ployed. The softmax function takes as input a vector z of K real numbers and normalizes it
into a probability distribution consisting of K probabilities proportional to the exponentials
of the input numbers:

A(z)j =
ezj∑K
k=1 e

zk
for j = 1, ..., K and z = (z1, ..., zK) ∈ RK . (4.18)

One should remember that an activation function A is considered saturating if lim|x|→∞ |∇A(x)| =
0, if not - it is called nonsaturating function. Activation functions like ReLU, falling under
the category of nonsaturating functions, may offer advantages over saturating ones, such as
mitigating the vanishing gradient problem in networks with many layers.

4.2.2.3 DNN training problems and optimizations

The DNNs are powerful tools for solving complex problems but are not without challenges.
One of the most common issues is the overtraining . The overtraining occurs from the
bias-variance trade-off when training a model.
The bias of an algorithm reflects its ability to produce outputs closely aligned with the
target values. At the same time, variance indicates its ability to maintain consistency in
results even when the input is subject to slight variations caused by noise. This challenge
is a common concern in optimization procedures, as achieving low bias and low variance si-
multaneously is often challenging and constrained by the available data. Typically, striking
a balance involves finding a middle ground between a network capable of learning general
patterns from the training dataset but achieving lower overall performance (underfitting)
and a network that performs exceptionally well on the training data but struggles with
unseen data (overfitting). This trade-off is influenced by the frequency with which the
network encounters the training data, with networks typically experiencing underfitting at
the start of training and overfitting after extensive training epochs.
We can monitor the overtraining by splitting the dataset into a training and a validation
sets. The training set is used to train the model, while the validation set is used to evaluate
the model periodically, e.g. after each epoch. This allows us to monitor when the model
starts overtraining. An example of the overfitting on the training/validation loss plot is
shown in Fig. 4.7. By monitoring the loss and validation loss, we can stop the training
process when the validation loss starts increasing, indicating that the model is overtraining.
This technique is called early stopping . From Fig. 4.7, we can see that the model starts
overtraining after around the 15th epoch.
Additional techniques can be used to prevent overtraining instead of early stopping. Many
approaches focus on constraining the complexity of the network by narrowing the range of
potential weight values, preventing them from reaching excessively high values. This con-
straint can be implemented in various ways, such as by introducing weight regularization
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Figure 4.7: Overfitting on the training/validation loss plot. In an ideal scenario, both the training
and validation loss curves should go down as the model learns. The training loss should eventually
flatten out, indicating the model has learned the training data. The validation loss, representing
performance on new data, should also decrease but ideally stay close to the training loss, showing
the model is learning generally applicable patterns and not just memorizing the training data. In
this example, the model starts overtraining after the 500th epoch, where the validation loss starts
increasing. Sourced from [104].

or dropout . Weight regularization involves adding a penalty term to the loss function that
discourages the network from assigning excessively high weights to the model parameters.
This penalty term is typically proportional to the L1 (sum of the absolute values of the
weights ∥ω∥1 =

∑n
i |ωi|) or L2 (sum of the squares of the weights ∥ω∥2 =

∑n
i ω

2
i ) norm of

the weight vector. Dropout, however, involves randomly setting a fraction of the network’s
weights to zero during training, effectively reducing the network’s complexity and preventing
overtraining [105].

4.3 Convolutional Neural Networks

A subset of the DNNs called Convolutional Neural Networks (CNNs) aims to extract
high-level insights from structured arrays of data, such as images, text, time series, and other
formats. The first CNN architecture with its training using the backpropagation algorithm
across all layers was proposed by LeCun et al. in 1989 [106]. Typically, CNNs are based
on the alternations of the convolutional layers , pooling layers , and fully connected
layers .
• Convolutional layers as one can deduce from the name, perform the convolution opera-
tion on the input data. Convolution is a linear operation, and thus, each convolutional layer
is followed by the activation function. The neurons in the convolutional layer are connected
to only a subset of adjacent neurons from the previous layer rather than all of them. This
enables the layer to learn features that may appear multiple times and anywhere within
the input. Each neuron in the layer shares the same set of weights, akin to a small kernel
(also called filter) convoluted across patches of input and then shifted to cover the entire
image, as presented in Fig. 4.8. These filters learn to extract various features, resulting
in multiple feature maps that indicate the presence or absence of specific features within
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the input. The kernel is usually initialized with random values and is updated during the
training process.
• Pooling layers are used to capture the dominant features of each feature map while
reducing the spatial dimensions of the input. It is achieved by examining patches of the
input feature maps and summarizing them with a single value. Typically, this summary is
either the average or the maximum value within the patch. Without pooling layers, feature
maps generated by convolutional layers would closely match the input size, causing the net-
work to focus on specific input regions to identify features. However, the relative position
of features is often more critical than their absolute position. Therefore, downsampling is
applied after each convolutional layer to address this issue. Pooling layers are characterized
by their fixed functionality and lack of trainable parameters.
Fig. 4.9 shows the simple CNN architecture, where the convolutional layer is followed by the

Figure 4.8: 2D-convolution operation. A kernel is convoluted with the input image, producing a
feature map. A convolutional layer usually consists of multiple kernels, each producing a separate
feature map. The values in the kernel are trainable parameters. Sourced from [107]

activation function, and the pooling layer is followed by the flatten layer , which converts
the 2D-array into a 1D-array, and finally the fully connected layer. Combining convolutional
and pooling layers in CNNs provides robustness against issues like vanishing and exploding
gradients, thanks to weight sharing, which effectively acts as regularization. Additionally,
through successive applications of convolutions, CNNs learn to extract high-level features
and capture correlations between them.
Another variation of the CNNs is the Residual Neural Networks (ResNets) [108] [109].
ResNets are designed to address the vanishing gradient problem by introducing skip con-
nections that allow the network to skip one or more layers. This enables the network
to learn residual functions, which are the differences between the input and output of a
layer. By learning residual functions, the network can focus on the residual information,
making it easier to optimize the training process, because learning residuals is often easier
than learning unreferenced functions. An example of a ResNet-like architecture with one
skip connection is shown in Fig. 4.10, where the output of the first convolutional block
is bypassed through a separate convolutional block and added to the output of the third
convolutional block from the main path.

The CNNs are widely used in the field of particle physics for event processing [110],
background rejection [111], and particle identification [112]. In the context of the PandaX-
III experiment, where the collected signals may be interpreted as images and, in fact, during
the post-processing of the data, converted into the 2D projections of the 3D event topology,
the CNNs can be used to extract valuable information.
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32 12
8

Conv1

64 64

Conv2
Flatten

12
8

FC1

Figure 4.9: Simple Feedforward CNN architecture. To the left is an example of an input image
with the size of 128× 128× 1. The image is passed through the convolutional layer (yellow) with
32 kernels, followed by the activation function (orange) and the pooling layer (red), which reduces
the spatial dimensions of the input by a factor of 2. This combination of layers is called a Conv1
block and outputs 32 feature maps of size 64 × 64. The next block, Conv2, has 64 kernels and
outputs 64 feature maps of size 32 × 32. The flattened layer (purple) reshapes the 2D array into
a 1D array, which is then passed to the fully connected layer (light green) with 128 neurons and
further applications of the activation function (dark green).
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Figure 4.10: ResNet architecture with one skip connection. A skip connection clones the output
of the first convolutional block and performs an additional convolutional operation on it together
with pooling. The output of the skip connection is added to the output of the third convolutional
block. Further operations are the same as in the example of the CNN (Fig. 4.9).
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4.4 Conclusion

This chapter introduces the basics of machine learning algorithms, with the main focus on
training the DNNs (CNNs in particular). With CNNs, we can extract complex information
from the array of data that could be used for a vast variety of problems, including the
particle physics problems. The CNNs were previously tested on the PandaX-III simulated
data, for example, to reconstruct the initial Z vertex position of the event inside the TPC
[113] and to discriminate between the signal and background events [114]. While showing
promising results, none of the attempts addressed the problem of missing channels that may
appear on the Micromegas Modules. In the next chapter, I will introduce the regression
problem of the correct total energy reconstruction corresponding to the images of the 2D
signal projections degraded by missing channels. Additionally, the reconstruction of the Z
vertex position in parallel with the total energy reconstruction will be addressed as well.
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Regression problems

Я iз надiй будую човен, i вже немовби наяву
З тобою, нiжний, срiбномовен, по морю радостi пливу.

(Ukrainian: I am building a boat out of hopes, and as if in a dream
I am with you, gentle, softly spoken, I am sailing on the sea of joy.)

— Vasyl Symonenko
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5.1 Introduction

The reader is now expected to have a basic understanding of CNN, regression, and classi-
fication problems. The main goal of this chapter is the application of CNN to reconstruct
the primary energy from the track topology. This approach is particularly suited to the
case where the direct reconstruction, i.e. summing all recorded amplitudes, is impaired by
missing channels. We will thus focus on this case. This regression problem can be treated
in the context of Supervised Learning, see Section 4.2.1.

The energy quantity that we are interested in is the energy of the particle, or particles
in the case of 0νββ, at the origin of the event before they begin to lose energy in the
propagation through the gas. For the 0νββ, this energy should correspond to Qββ, with
which we want to show the existence of that mode of decay. A general notation for the
initial energy is EP - primary energy. We have access to its true value in MC.

In addition to the primary energy, which remains our goal, we also try to teach our
networks other characteristics of the event, viz. the would-be detected energy and the Z
ordinate. The former is defined as the total energy reaching the anode plane that an ideal
readout would record. It is an intermediate step in the conversion of the primary energy into
recorded signals by the experimental apparatus. As such, we expect it to help the networks
learn how to disentangle, among topology features, what is due to the primary event and its
processing by the TPC from what is due to a partially deficient readout. The Z ordinate,
defined e.g., defined as the distance of the primary vertex to the readout plane, can play a
similar role. In addition, it is an exciting quantity in itself that can be used to reject those
events close to the anode plane that are affected by the radioactive contamination of the
Micromegas.

In this chapter (as well as in the next one), we consider a wide range of primary energy,
extending well outside the ROI (defined in Section 2.4 as [2364, 2552] keV range). Due
to the limitations (finite resolution, undetected bremsstrahlung) and deficiencies (missing
channels, inhomogeneities) of the experimental apparatus, interesting events (those native
in the ROI) and uninteresting ones can end up with similar direct energy reconstruction.
In order to restore the correct primary energy in each case, the network needs to identify
features that pertain to ROI events and events at higher and lower energy. The features
that we have in mind are e.g. length, twist, or density fluctuations. As a whole, they
constitute what we will call the "track-topology". Quantitatively, the track-topology can
be equated to the set of all recorded amplitudes. An event is then the union of two objects:
the track-topology and the sum of amplitudes. In addition, with this wide energy range, we
deport possible edge effects away from the sensitive region of the ROI.

This chapter is organized as follows. The first section is dedicated to the preliminary
study of a CNN toy-model. The next section explains the data cleaning procedure, which
is applied to the dataset, in order to provide the model with the most relevant data. The
following section is dedicated to the architecture development of the CNN model, and the
manipulations that are applied to the input data and the labels. The last section is dedicated
to the final model architecture, and the results on the model’s performance.
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5.2 Definitions and preliminary study

As mentioned in the introduction, the primary energy is the energy of the particle, or
particles, at the event’s origin. For example, in the case of the 0νββ, the primary energy
corresponds to Qββ. We generalize the notation of the primary energy as EP. Likewise, the
detected energy, the total energy reaching the anode plain, is denoted as ED. Finally, the Z
ordinate of the track’s vertex is denoted as Z0.
The values predicted by the model are marked with a hat, viz. ÊP, ÊD, Ẑ0.

To begin with, we set a goal to explore the competence of CNN models to extract
information from the track topology. We do this on a setup as simple as possible, viz. on
events with only one electron. A toy model defined as toyCNN is used for this purpose.
Therefore, no pathologies connected with the detector defects, such as the missing channels,
are considered in this preliminary study.
The project’s general goal is to make a model that can generalize well on the large energy
range of the events and not only on the events localized in the region of interest (ROI). Of
course, the events in ROI for 0νββ are of the most significant interest to us. However, we
want to be able to reconstruct the correct energy of all the events that would be present
during the real data acquisition. This is important, primarily because the interesting events
for us, such as 0νββ events, could end up having the detected energy far outside the ROI,
due to the detection deficiencies (e.g., missing channels, resolution of the detector, etc.) and
vice versa, the background events could end up having the detected energy inside the ROI,
due to the same reasons. With this in mind, in this exercise (as well as in the rest of the
chapter), a wide range of EP of the electron track events is considered. We prepare the
data with REST, generating electron events in the gas volume of the TPC with the angular
distribution uniformly distributed over the phase space of the TPC. For this preliminary
study, the energy range of [1, 3] MeV is selected.

In the current study, a simplification of the input data is made: only the events registered
by one Micromegas Module are used, letting aside the cases where several (as there might
be up to four) modules are involved in the track event registration. This simplification was
made in order to reduce the complexity of the input data and to avoid, for the time being,
the issue of the gap between the modules. This simplification was initially intended to be
temporary but was never removed due to a lack of time. The issue should be addressed in
future studies.

With such simplification, the conversion of the signals from the Micromegas Modules
to the 2D images is relatively straightforward. Each electronics channel of the Micromegas
module provides a time series of ADC counts with 512 bins. The channels with IDs from 0
to 63 correspond to the X projection and produce a 64× 512 array, while the channels with
IDs from 64 to 127 correspond to the Y projection and produce an equivalent array. By
rebinning the time-series to 128 bins and concatenating the X and Y projections, we obtain
a 128× 128 array, which contains the track-topology as well the sum of amplitudes, in a 2D
image that we will use as input to the CNN model.

Now, we can compare the EP and ED distributions of the simulated events before
(Fig. 5.2a) and after (Fig. 5.2b) applying the "one Micromegas Module selection." The
initial number of events, equal to 41k, is reduced to 20k. We can see a trend in the new
energy spectrum of the newly selected events, where higher energies are less frequent, as
such events are much more likely to be longer and, therefore, be registered by more than
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Figure 5.1: Example of an input image (128× 128) without missing channels. The left part of the
image corresponds to the XZ projection of the track, and the right part - to the YZ projection.
The amplitude of the pixels is the ADC count, divided by amplification factor. The sum of all
amplitudes is the total deposited energy of the track event.

one Micromegas Module.
As for the toyCNN, no missing channels are simulated on the readout plane, leaving the

task of the CNN rather simple - to be able to properly predict the energy of the track event,
given the 2D images of the track topology, which fully contain the information about the
energy deposition along the track.
It is important to remember that the CNN model training relies on the gradient descent
algorithm for optimization, which updates the model’s weights by the magnitude of the
gradient of the loss function. Therefore, the normalization of the input data (features) and
the labels are crucial for the model’s training in order to avoid the vanishing or exploding
gradients [101]. The input data images are normalized to the range [0,1] by dividing by the
maximum amplitude of the input images among all inputs. The labels are normalized by
the maximum energy of the events.
The toyCNN contains two convolutional blocks, each containing a convolutional layer, an
activation layer, and a max pooling layer. The convolutional layers have 32 and 64 filters,
respectively. The activation layers are of the ReLU type. The convolutional blocks are
followed by a flattening layer and one hidden fully connected layer with 16 neurons, ac-
companied by a ReLU activation layer, before the output. The output layer contains one
neuron, which outputs ÊP for the track event. The architecture of the toyCNN is depicted
in Fig. 5.3, and a detailed description is given in Table 5.1.

75% of the data are used for training, and the remaining 25% for testing. The model is
trained for 50 epochs with a batch size of 256. The model predictions ÊP obtained on the
test dataset are shown in Fig 5.4a. We can see that the model has flaws, partially due to
the lack of training data in the high-energy region. It also cannot correctly predict events
with low energies. Nevertheless, looking at the correlation plot in Fig. 5.4b, we can see that
the model’s predictions are promising, and the model is able to predict the energy of the
track event to some extent. The study is promising enough to employ CNN further for the
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5.2. Definitions and preliminary study

(a) (b)

Figure 5.2: EP and ED distributions before, (a), and after, (b), the "one Micromegas Module
selection".
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Figure 5.3: Preliminary toyCNN architecture. The input to the network is a 2D image of the track
XZ and YZ projections. No missing channels are used. The output is the EP of the event.
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Layer (type) Output Shape Attribute Np

Input (batchSize, 128, 128, 1) 0
Conv2D (batchSize, 128, 128, 32) 3× 3, 32 320
Activation (batchSize, 128, 128, 32) 0
MaxPooling2D (batchSize, 64, 64, 32) 2× 2 0
Conv2D (batchSize, 64, 64, 64) 3× 3, 64 18496
Activation (batchSize, 64, 64, 64) 0
MaxPooling2D (batchSize, 32, 32, 64) 2× 2 0
Flatten (batchSize, 65536) 0
Dense (batchSize, 16) 1048592
Activation (batchSize, 16) 0
Dense (batchSize, 1) 17

Table 5.1: Preliminary toyCNN. Attribute for convolutional layers stands for the kernel
shape and the number of kernels, while for pooling layers it is kernel shape. Np is the
number of parameters in the layer. For the convolutional layers, Np is calculated as (F * F *
C * K) + (K bias), where F is the kernel size, C is the number of channels in the input, and
K is the number of kernels. For the dense layers, Np is calculated as (N * M) + (M bias),
where N is the number of neurons in the previous layer and M is the number of neurons
in the current layer. The input to the network is a 2D image of the track. The model is
trained to predict the primary energy EP.

energy reconstruction of tracks with missing channels.

5.3 Data cleaning

A possible explanation for the fact mentioned in Section 5.2 that predictions become worse at
the highest edge of the energy range lies in the non-uniform distribution of EP, see Fig. 5.2.
The rationale is that features belonging to higher energies will have a lesser weight. It is
reasonable to make the distribution more uniform to cure this problem. This is done by
increasing the statistics of the events in the high-energy region, which are less frequent and
are more likely to be registered by more than one Micromegas Module, and decreasing the
statistics of the events in the low-energy region. With such data, the model is supposed to
learn the energy deposition patterns along the track without being case-biased.

Additionally, some electrons can partially escape the active area of the detector. For
example, they can emit a gamma via bremsstrahlung, which can travel a long distance
before being converted. In principle, these cases should be taken into account. But, for
the time being, we decided to simplify them. In order to do so, we consider the residual
distribution between primary and detected energy and cut away all that is beyond the
3σ range of this residual distribution (Fig. 5.5). The whole dataset prepared for further
trainings has 80k of events in total and the corresponding EP and ED distributions are
shown in Fig. 5.6.
Now, after applying such data cleaning procedure, let’s proceed to the model training.
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5.3. Data cleaning

(a) (b)

Figure 5.4: (a) Comparison of the true value (EP) and predicted value (ÊP) of the Primary Energy.
(b) Correlation plot of ÊP vs. EP.

Figure 5.5: Residual distribution between ED and EP. The 3σ range determines the events that
are considered for the training.
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Figure 5.6: EP and ED flat distribution.

5.4 Training the toyCNN on cleaned data

The model architecture does not change for the new training session. However, some ad-
justments have been made to the input data and the labels. First, next to the global
normalization used so far, we introduce a local normalization . The global normaliza-
tion is done by dividing the amplitudes of the input images by the maximum amplitude
of the input images among all events. The local normalization is instead done by dividing
the amplitudes of the input images by the maximum amplitude for each event. One should
keep in mind that this data is simulated without missing channels on Micromegas yet. The
labels are normalized by the maximum energy of all the events, as before.
To evaluate its performance on the new dataset, toyCNN is trained separately to predict ED

and EP with global normalization. It is then also trained on EP with local normalization.
Now, the dataset is divided into 50% for the training, 25% for the validation, and 25% for
the testing.

5.4.1 Global normalization of the input data images

5.4.1.1 Detected energies as labels

We start with the detected energy ED. This quantity is not interesting in itself, but in so
far as it is much simpler, it can serve as a reference for the exercise on ED that comes next.
MeanSquaredError is used as a loss function, and Stochastic Gradient Descend is used as
an optimizer.
For a batch size of 256, the model is trained for 100 epochs. The training and validation
loss curves are shown in Fig. 5.7. The loss decreases with the number of epochs, and from
the similar trend of the training and validation loss, we can conclude that the model is
indeed generalizing well on the unseen data. The validation loss does not experience any
fluctuations either, which could have indicated the overfitting of the model.

If we look at the correlation plot between ED and ÊD in Fig. 5.8, we can see the dis-
tribution is now much more homogeneous and well clustered around the diagonal. On the
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Figure 5.7: Train and validation loss for the toyCNN training with ED considered as labels for the
cleaned 80k dataset.

other hand, there is a slight deviation from the diagonal around 2000 keV. This artifact is
better visible on the residual correlation plot (Fig. 5.9a). We observe an incorrect predic-
tion of the energies lower than 2000 keV. But, we see that overall, the residuals follow a
Gaussian distribution in Fig. 5.9b, with mean and RMS equal to -0.8 keV and 63.5 keV, re-
spectively. Despite the deviations on the correlation plot, we see that the model can predict
the Detected energies with a good performance.

Figure 5.8: Correlation plot between ED and ÊD from the toyCNN evaluation on the cleaned 80k
dataset. Global normalization of the input images.

5.4.1.2 Primary energies as labels

Now, the model is trained to predict EP instead. The training-validation loss plot shows
(Fig. 5.10) that despite the appearance of the fluctuations on the validation loss, the model
is still converging. Thus it is supposed to have a good performance on the unseen data.
Nevertheless, the prediction results are similar to those of the previous training. The corre-
lation plot between EP and ÊP also has an artifact around the 2000 keV (Fig. 5.11a), but
the residual distribution itself follows a Gaussian distribution with mean and RMS equal to
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(a) (b)

Figure 5.9: Evaluation of the toyCNN trained on the cleaned 80k dataset. Global normalization
of the input images. (a) Correlation plot for the residual between ED and ÊD with respect to true
labels - ED in this training session. (b) Residual distribution between ED and ÊD.

Figure 5.10: Train and validation loss for the toyCNN training with EP as labels from the cleaned
dataset. Global normalization of the input data events is applied.
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(a) (b)

Figure 5.11: Evaluation of the toyCNN trained on the cleaned 80k dataset. Global normalization
of the input images. (a) Correlation plot for the residual between EP and ÊP with respect to EP.
(b) Residual distribution between EP and ÊP.

14.9 keV and 65.2 keV, respectively as could be seen in Fig. 5.11b. And this is particularly
interesting, as the toyCNN is able to predict the primary energies with as good a resolution
as it does for the detected energy.

5.4.2 Local normalization of the input images with EP as labels

In addition to the previous study in section 5.4.1, an additional test is conducted with
a local normalization of the input images. In this way, the input images are normalized
independently. Thus, topological information about the track is preserved while amplitudes
are blurred. With this normalization, each input becomes independent and provides only
the topological information about the energy deposition along the track.

Figure 5.12: Train and validation loss for the toyCNN training with EP as labels. Input data events
are normalized independently - local normalization.

As we reduce the amount of information in the input data, it is expected that the model’s
performance will degrade. And indeed, the correlation plot for the residual between the EP

and ÊP has a larger deviation from the zero baseline. The residual distribution itself is
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(a) (b)

Figure 5.13: Evaluation of the toyCNN trained on the cleaned 80k dataset with local normalization
of the input images. (a) Correlation plot for the residual between the EP and ÊP with respect to
the EP. (b) Residual distribution between the EP and ÊP.

wider, with mean and RMS equal to -31.8 keV and 103.6 keV, respectively as could be seen
on the Fig. 5.13b and Fig. 5.13a. Despite such degradation, the model is still able to predict
EP energies with a rather good resolution. One should stress out that this prediction is
obtained only from the topological information of the track. Again, this provides more
evidence that the CNN application for energy reconstruction is a promising approach.

5.5 Model adjustments and improvements, data augmen-
tation

The toy model provided a valuable insight into the CNN model’s performance on the energy
reconstruction from the track topology. However, none of the results concerned the missing
channels problem and overall the model’s performance obviously is asking for improvements.

5.5.1 Missing channels introduction and expanded dataset

Now, the time to introduce the missing channels on the readout plane is ripe. For the current
studies, the missing channels are introduced randomly on each Micromegas Module out of
52 on the readout plane. The number of missing channels is chosen to be 3 out of 128 per
module (∼ 2% of all channels), as it was estimated to be the borderline case for the module
usage. If the number of the missing channels is greater than 3, the module is considered
to be out of order and is not used. Therefore, 52 combinations of the missing channels
are generated, and the input data images are adjusted accordingly. The input data images
are of a size of 128 × 128, and columns corresponding to missing channels are set to zero.
In Fig. 5.14a an example of the input image with missing channels is shown. In order to
explicitly provide the model with information about the missing channels, additional mask
images are introduced. The mask images are the same shape as the inputs, and columns
corresponding to the missing channels are set to ones (Fig. 5.14b).

The mask arrays are then concatenated with the input arrays, and the resulting 2 ×
128× 128 arrays are used as inputs to the CNN model as it is visualized in Fig. 5.14c. The
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(a) (b)

(c)

Figure 5.14: (a) Example of the input array with missing channels. (b) Example of the missing
channels map, corresponding to the input array. (c) Concatenated map and input arrays, of a
[2, 128, 128] size.
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model is now adjusted to accept the 2× 128× 128 arrays as inputs.
In addition, an energy range for EP of the events is expanded to [500, 3500] keV to

introduce more low and high-energy events to the model. All the data preparation is the
same as for the previous dataset. For a better generalization of the model, the dataset now
contains 300k events, 50% of which are used for the training, 25% for the validation, and
25% for the testing. Ultimately, all the prediction results are evaluated on the test dataset.

5.5.2 Two-output model

A study of the toyCNN was conducted on the cleaned dataset with the missing channels
introduced. The model was trained to predict only ED energies with the global normalization
of the input images. The results yield an RMS of 67.7 keV for the residual between ED and
ÊDand overall performance of the model shown a potential for further improvements. The
results of the study were summarized and demonstrated on the 7th International Conference
on Micro Pattern Gaseous Detectors 2022 [115].

Let us proceed to the model modification. Another fully connected hidden layer is added
to the model, and now the two of them have 128 and 64 neurons, respectively. In addition
to that, the new model has two outputs, corresponding to EP and ED. The justification
for adding ED as a prediction has been outlined in the introduction. In this case, we
move to a multitask learning approach, where the model learns to predict multiple variables
simultaneously. This can lead to better performance on each individual task by exploiting
the shared information.
As the model is now adjusted to have two outputs, the loss function is adjusted to be a sum
of the losses for the two outputs. Choosing the proper loss function becomes more critical.
The updated architecture of the CNN model is depicted in Fig. 5.15, which is now called
MultiCNN . The precise model description is given in Table 5.2.
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Figure 5.15: MultiCNN architecture, with two outputs.

The model is trained on the new 300k dataset, with input images normalized globally.
After consecutive training sessions with the hyperparameters manual tuning, the Stochastic
Gradient Descend with the learning rate of 2 10−2 is employed. The MSE is used as a loss
function. The final MultiCNN model configuration is trained for 100 epochs with a batch
size of 256.
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Layer (type) Output Shape Attribute Np

Input (batchSize, 128, 128, 2) 0
Conv2D (batchSize, 128, 128, 32) 3× 3, 32 1632
Activation (batchSize, 128, 128, 32) 0
MaxPooling2D (batchSize, 64, 64, 32) 2× 2 0
Conv2D (batchSize, 64, 64, 64) 3× 3, 64 18496
Activation (batchSize, 64, 64, 64) 0
MaxPooling2D (batchSize, 32, 32, 64) 2× 2 0
Flatten (batchSize, 65536) 0
Dense (batchSize, 128) 8388736
Activation (batchSize, 128) 0
Dense (batchSize, 64) 8256
Activation (batchSize, 64) 0
Dense (batchSize, 1) 65
Dense (batchSize, 1) 65

Table 5.2: MultiCNN with two outputs. Attribute for convolutional layers stands for the
kernel shape and the number of kernels, while for pooling layers it is kernel shape. Np stands
for the number of parameters in the layer.

(a) (b)

Figure 5.16: MultiCNN evaluation. Trained on the 300k dataset with global normalization of input
images. (a) Correlation plot for the residual between EP and ÊP. (b) Residual distribution between
EP and ÊP.
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From now on, the model predicts two outputs: the primary and detected energies. For
the former, the correlation plot is shown in Fig. 5.16b. It lies around zero. The problem
is that the distribution is much more dispersed for higher energies than those lower than
1500 keV. But, we no longer observe the artifact around 2000 keV. Yet, on each end of
the correlation plot, deviations from the zero baseline are visible (Fig. 5.16a). These new
deviations contribute to the skewness of the residual distribution in Fig. 5.16b. Roughly
fitting the distribution with a Gaussian, we obtain the mean and standard deviation equal
to -19.4 keV and 70.9 keV, respectively.
Additionally, we determine an estimator of the efficiency with which our prediction is able
to collect events into the ROI. For this, we select a very narrow slice of EP around Qββ,
of width ±15 MeV, which emulates 0νββ events. Moreover, we determine the fraction of
it staying within the ROI of ±85 MeV. The value found for the efficiency, viz. 79%, is
reported in Fig. 5.17, which shows the distributions of ÊP for the selected events. Note that
our efficiency estimator is only indicative here, given that it only imperfectly emulates the
0νββ events, which consist of two electrons and not one.

Figure 5.17: ÊPdistribution in the ROI from MultiCNN. The efficiency of events’ prediction in ROI
is 79%.

For comparison, the results for ED values are also presented. From the correlation plot,
we see that the dispersion of the residual is less pronounced in comparison to EP, although
still present for higher energies (Fig. 5.18a). Similarly, the artifacts at each end of the energy
range are present, which contributes to the skewness of the residual distribution (Fig. 5.18b).
The standard deviation that comes from the Gaussian fit is 61.1 keV.

This model yields fairly good results, taking into account the complexity of the data
and the task to reconstruct the primary energies from the tracks containing the missing
channels. The results for the primary energies is still quite far from the desired resolution.
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(a) (b)

Figure 5.18: MultiCNN evaluation. Trained on the 300k dataset with global normalization of input
images. (a) Correlation plot for the residual between ED and ÊD. (b) Residual distribution between
ED and ÊD.

Figure 5.19: MultiCNN evaluation. ÊD distribution corresponding to EP in the ±15 MeV band at
Qββ .
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5.5.3 Separation of the two outputs

In a trial and error approach, a CNN with separate hidden layers for the two outputs is
tested as visually presented in Fig. 5.20. Now the appearance of the artifacts is reduced
(Fig. 5.21), but an overall shift of the residual distribution is observed.

Figure 5.20: Two outputs separation in the MultiCNN model.

5.5.4 Skip connections. Residual learning

After multiple attempts to improve the MultiCNN performance, an approach using the
Residual Network-like architecture (introduced in Section 4.3) is tested. We add a skip
connection to the model, allowing the original input to be directly transmitted to down-
stream layers. This ensures that the gradient can flow directly through the skip connection,
bypassing the complex transformations within the block. In the context of ResNets, skip
connections add the element-wise sum of the input to a residual block and the output of
that block. This ensures that the later layers still have access to the original information
and can learn more complex representations based on it [108][109].
A modified version of the MultiCNN model with skip connection, containing a convolution
block + pooling layer is present in Fig. 5.22, called MultiResNet . We omit the detailed
description of the model, as it is similar to the previous ones, and the training process. The
best results for the primary energies are presented in the next section.

5.5.4.1 MultiResNet model evaluation results

The correlation plot for the residual between true and predicted primary energies is mostly
flat while being offset with respect to the zero baseline on average (Fig. 5.23a). The dis-
persion of the residual is less pronounced than in the previous MultiCNN model. From the
Gaussian fit of the residual distribution, we see that the mean shifts by around 30 keV, while
we experience a decrease in the standard deviation to around 60 keV. The EP prediction is
the most important for this study, and the plots for the ED predictions are not provided.

110



5.5. Model adjustments and improvements, data augmentation

Figure 5.21: From the MultiCNN model with separated outputs evaluation. Correlation plot for
the residual between EP and ÊP with respect to EP. The presence of the artifacts is reduced in
comparison to the previous model results for the primary energies (Fig. 5.16a).

Figure 5.22: Skip connection introduced in the MultiResNet architecture. Here an output from
the first convolutional block is used as an input for the skip connection convolutional block. The
output of the skip connection is then added to the output of the second convolutional block.
Further propagation of the data through the model is unchanged: the summed output is flattened
and passed through the fully connected layers.
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(a) (b)

Figure 5.23: MultiResNet model evaluation. Trained on the 300k dataset with global normalization
of input images. (a) Correlation plot for the residual between EP and ÊP with respect to EP. (b)
Residual distribution between EP and ÊP.

(a) (b)

Figure 5.24: Efficiency of the events’ prediction in the ROI for the MultiResNet model. (a) ÊP in
ROI. The efficiency of events’ prediction in the ROI is 84%. (b) Efficiency estimation for the direct
sum of amplitudes from images with missing channels(Detection efficiency is 69%). In this way we
can compare the improvement the model brings to the energy reconstruction.

However, we should note that the residual between ED and ÊD is also improved compared
to the previous results. The sigma is around 50 keV.

Even more importantly, the efficiency of the events’ prediction in the ROI is 84% as
presented in Fig. 5.24a, which is a great achievement. Thus, we can conclude the effectiveness
of the MultiResNet model. The problem, however, is that we still observe a mean shift in
the residual distribution for ÊP, and the standard deviation is relatively high. At this stage,
we decide to use another loss function to improve the model’s performance.

5.5.5 Different loss functions

The loss function is a crucial part of the model training. The choice of the loss function can
significantly affect the model’s performance, particularly for multitask learning.
From Fig. 5.23a and Fig. 5.23b, we observe the presence of outliers in the residual distribu-
tion. The outliers are the predicted events that deviate significantly from the true values.

112
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There are several reasons for the presence of outliers, such as the noise in the data, the
model’s inability to capture the complex patterns in the data, the model’s overfitting, etc.
We are not immune to the presence of non-trivial and non-linear patterns in the data input
and the model’s inability to capture them. The outliers can significantly affect the per-
formance of the model, and the squared error loss is sensitive to the outliers, which could
explain the mean shift in the residual distribution. MSE gives a much higher penalty to
outliers compared to smaller errors. A single outlier can significantly skew the overall loss
value and potentially mislead the optimization process during training. To address this
issue, we can try different loss functions less sensitive to the outliers. The Huber loss and
the LogCosH loss are two such loss functions that are more robust choices when dealing
with outliers in the data [116].

5.5.5.1 Huber loss try

The Huber loss is a loss function less sensitive to outliers in the data than the squared error
loss. It transitions from a quadratic function (similar to the MSE) for small errors to a
linear function for larger errors. This reduces the penalty for outliers, allowing the model to
focus on learning from the majority of the data that does not contain outliers. The Huber
loss combines the squared error loss and the absolute error loss.

It is defined in Eq. 5.1:

Lδ(y, f(x)) =

{
1
2
(y − f(x))2 for |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2
δ) otherwise (5.1)

where y is the true value, f(x) is the predicted value, and δ is a hyperparameter that
determines the threshold for the absolute error loss.
There were several attempts to train the model with the Huber loss, which were far from
perfect. The mean shift in the residual distribution is still present, however, varying with
the δ value.

5.5.5.2 LogCosH loss try

Again, as the Huber loss, the LogCosH loss is less sensitive to outliers in the data than the
squared error loss. Moreover, the LogCosH is twice differentiable everywhere [116], unlike
Huber loss (differentiable only once), which is beneficial for the optimization process during
training using Adam / AdamW algorithms (see Section 4.2.2.1).

The LogCosH loss is defined in Eq. 5.2:

LLogCosH(y, f(x)) = log(cosh(f(x)− y)) (5.2)

where y is the true value, and f(x) is the predicted value.
The LogCosH loss is a smooth approximation of the Huber loss at δ = 1 as presented in
Fig. 5.25. Considering that the AdamW optimizer is employed at the later stages of the
project in order to improve the model’s performance, the LogCosH loss is chosen as the
main loss function for the model training.
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Figure 5.25: Comparison of the MSE (Squared Error), MAE (Absolute Error), LogCosH loss and
Huber loss for δ = 1&5 functions. X-axis represents "error" of prediction, while Y-axis represents
the loss value. Sourced from CS4780/CS5780: Machine Learning [FALL 2015] course at Cornell
University.

5.6 Final model

After the multiple optimizations and adjustments applied to the model itself and the training
process in general, the final architecture and the training algorithm are chosen.
The final model, Multi3ResNet, could be described as follows: it contains three convolutional
blocks with an equal amount of filters in each block, 64 to be precise. The kernel size is 3×3
for each convolutional layer. As before, the activation function is the Rectified Linear Unit
(ReLU) applied on each convolutional layer. Then, the Average Pooling layer is applied with
a 2× 2 kernel. It is changed from the Max Pooling layer, with the idea of preserving more
information from the input data during the propagation through the network. The skip
connection that passes the information from the first convolutional block goes through an
additional Average Pooling layer with 4×4 kernel and then is concatenated with the output
of the third convolutional block. After the concatenation, the Flatten layer is applied,
followed by the three separate fully connected blocks for each output. Each of these blocks
contains two fully connected hidden layers with 64 and 16 neurons, respectively, which is
concluded with the output layer. The ReLU activation function is applied on the first fully
connected layer. The outputs from the first two fully connected blocks are the familiar EP

and ED, while the output from the third one is considered to be the initial Z position of the
track, Z0. It is added to the network as it should not disturb the energy prediction, which
will be discussed later in the chapter.
The optimization algorithm is the AdamW optimizer, with the learning rate of 2. 10−2, and
the loss function is the LogCosH loss. The data statistics are expanded up to 300k data
points for the training in order to improve the model’s performance. The model is now
trained for 100 epochs with a batch size of 128.
The model architecture is depicted in Fig. 5.26 followed by precise description of the layers
structure in the Table 5.3.
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Layer (type) Output Shape Attribute Np

Input (batchSize, 128, 128, 2) 0
Conv2D (batchSize, 128, 128, 64) 5× 5, 64 3264
Activation (batchSize, 128, 128, 64) 0
AveragePooling2D (batchSize, 64, 64, 64) 2× 2 0
Skip_AveragePooling2D (batchSize, 16, 16, 64) 4× 4 0
Conv2D (batchSize, 64, 64, 64) 3× 3, 64 18496
Activation (batchSize, 64, 64, 64) 0
AveragePooling2D (batchSize, 32, 32, 64) 2× 2 0
Conv2D (batchSize, 32, 32, 64) 3× 3, 64 18496
Activation (batchSize, 32, 32, 64) 0
AveragePooling2D (batchSize, 16, 16, 64) 2× 2 0
Sum (batchSize, 16, 16, 64) 0
Flatten (batchSize, 16384) 0
Dense (batchSize, 64) 8388736
Activation (batchSize, 64) 0
Dense (batchSize, 16) 1040
Dense (batchSize, 1) 17
Dense (batchSize, 64) 8388736
Activation (batchSize, 64) 0
Dense (batchSize, 16) 1040
Dense (batchSize, 1) 17
Dense (batchSize, 64) 8388736
Activation (batchSize, 64) 0
Dense (batchSize, 16) 1040
Dense (batchSize, 1) 17

Table 5.3: Multi3ResNet architecture. Attribute for convolutional layers stands for the
kernel shape and the number of kernels, while for pooling layers it is kernel shape. Np

stands for the number of parameters in the layer. The Skip_AveragePooling2D layer is the
additional Average Pooling layer that is applied to the skip connection.
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Figure 5.26: Multi3ResNet architecture. Color scheme: yellow - convolutional layers with 64 filters
each, orange - ReLu activation function, red - Average Pooling layers with 2 × 2 kernel (separate
skipPool Average Pooling layer with 4×4 kernel), purple - flatten layer, light green - fully connected
layers, dark green - ReLU activation function.

(a) (b)

Figure 5.27: Multi3ResNet evaluation. Trained on the 300k dataset with global normalization of
input images. (a) Correlation plot for the residual between EP and ÊP with respect to EP. (b)
Residual distribution between EP and ÊP.

5.6.1 Primary energy prediction evaluation

The model is evaluated on the 72k dataset, containing the 1e data. The results obtained for
the primary energy prediction show an improvement. From the Fig. 5.27a and Fig. 5.27b
we observe that the mean shift is close to negligible. The standard deviation that comes
from the Gaussian fit is about 50 keV. The efficiency of the events’ prediction in the ROI is
89%, as one can see in Fig. 5.28. It is the best result so far for the model trained on the 1e
dataset with [500, 3500] keV range for EP.

Now, it is necessary to evaluate the model on the two-electron data which is of our main
interest in this study.
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Figure 5.28: Efficiency of the events’ prediction in the ROI for the Multi3ResNet model. ÊP in
ROI. The efficiency of events’ prediction in the ROI is 89%.

Figure 5.29: The energy distributions corresponding to the primary energies of each of the electrons
in the dataset containing 2e events. The dataset is used only for evaluation purposes.

5.6.2 Primary energy prediction evaluation on the 2e dataset

A dataset containing events that emulate Double Beta events is generated to evaluate the
model. The principle to generate the dataset is the same as for the 1e dataset but with the
addition of a second electron. Both electrons are considered the primary particles with the
same vertex position. The goal is to introduce the topological features corresponding to 2e
events and to evaluate the model’s performance on such data. To produce the 2e dataset,
the 1st electron follows the same distribution as the 1e dataset, and the 2nd electron is
added with energy in a flat range of 500-1500 keV before the "one MM module" selection.
The reader could observe the distributions corresponding to the primary energies of each of
the electrons after applied cuts and the total energy distribution in Fig. 5.29. We also note
that the dataset contains ∼300k events in total.

From the evaluation of the Multi3ResNet on the 2e dataset, the results for EP prediction
are completely different from those of the 1e dataset. They are shown in Fig. 5.30a and
Fig. 5.30b. The correlation between ÊP and EP is very bad, and consequently, the residual
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(a) (b)

Figure 5.30: Multi3ResNet trained on the 1e dataset. Plots represent the evaluation on the 2e
dataset. (a) Correlation plot for the residual between EP and ÊP with respect to EP. (b) Residual
distribution between EP and ÊP.

distribution is not Gaussian at all. However, one would likely expect such results, as the
model was not trained to generalize the data containing multiple primary particles, and as
previously mentioned, the CNN model is sensitive to the topological features of the data.
Thus, it is mandatory to train the model on a dataset containing 1e and 2e events.

5.6.3 Additional Multi3ResNet training on the 1e+2e dataset

Finally, to address the issue of the model’s performance on the 2e dataset, a dataset contain-
ing the 1e and 2e events is generated. It is essential to mention that for the current study,
the 2e events energy spectrum differs from the 1e events energy spectrum. Comparing them
in Fig. 5.31, one can see that the 2e energy spectrum is not flat and has a larger range of
primary energies. In this dataset, the number of 1e events is almost equal to the number of
2e events, ∼300k each, totaling 600k events. The data representation must be adjusted for
further studies. However, the current focus is on the model’s performance, which is trained
on the present dataset.

The training procedure is repeated with this 1e+2e dataset, using the same hyperpa-
rameters and the same architecture as before. Nevertheless, now 80% of the dataset is used
for training, and validation and testing datasets contain 10% of the data each. After 100
training epochs, the model is evaluated on the test dataset containing the 1e and 2e events.
The results for the Primary energies are shown in Fig. 5.32a and Fig. 5.32b. For the energies
in the range higher than 1 MeV, there is a dispersion in the correlation between EP and
ÊP. The lack of 1e events in the primary energy distribution higher than 3.5 MeV is also
noticeable.
Nevertheless, even with the dispersion, the residual distribution between EP and ÊP shows
that the mean value is close to zero point from the Gaussian fit, while the standard devi-
ation is about 60 keV (Fig. 5.32b). Such results are pretty close to the results for the 1e
dataset. Moreover, the efficiency of the events’ prediction in the ROI is 89%, as one can see
in Fig. 5.33, which confirms the model’s performance.
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Figure 5.31: 1e and 2e energy spectra in the combined 1e+2e dataset. The 1e energy spectrum is
flat, while the 2e energy spectrum is a sum of two primary energies, depicted in Fig. 5.29.

(a) (b)

Figure 5.32: Multi3ResNet trained on 1e+2e dataset evaluation. (a) Correlation plot for the
residual between EP and ÊP with respect to EP. (b) Residual distribution between EP and ÊP.

Figure 5.33: Efficiency of the events’ prediction in the ROI for the Multi3ResNet trained on 1e+2e
dataset. ÊP in ROI. The efficiency of events’ prediction in the ROI is 89%.
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5.6.4 Evaluation on the 0nbb dataset

After confirming the model’s performance on the 1e+2e dataset, the model is evaluated on
a 0νββ dataset. ∼250k 0νββ events of the Xe136 are generated within REST (as can be
recalled from Section 2.3.4.2) for the evaluation of the model.
All the EP for the 0νββ events are at 2.46 MeV. Therefore, the correlation between EP and
ÊP is not informative. The residual distribution between EP and ÊP is shifted, however.
From the fit, we observe the mean shift from the zero point of ∼ 30 keV, while the standard
deviation is again about 60 keV (Fig. 5.34).

Figure 5.34: Residual distribution between EP and ÊP from the Multi3ResNet model evaluation
on the 0νββ dataset. The model is trained on the 1e+2e dataset.

The efficiency of the events’ prediction in the ROI is 90% from Fig. 5.35a. By comparing
the results obtained with the Multi3ResNet model with the direct extraction of event energy
from the amplitudes of the signals, we can see that the efficiency of the events’ prediction in
the ROI increased from 69% to 90% (Fig. 5.35b). 20% increase in the prediction efficiency
is a significant improvement and should improve the sensitivity of the 0νββ search.

Additionally, the model’s performance is evaluated on the 1e+2e and 0νββ decay datasets,
unaffected by the missing channels. Current results show that the RMS on the residual dis-
tribution between EP and ÊP is reduced compared to the data evaluation with missing
channels. The RMS for the 1e+2e and 0νββ datasets are 44 keV and 43 keV, respectively
(residual distribution between EP and ÊP is presented in Fig. 5.36a). However, the mean
shift is increased significantly up to ∼ 100 keV for both datasets. This shift is responsible for
degrading the events’ prediction efficiency in the ROI to 33% in both cases. In case of shift
correction, the efficiency increases to 96%, which can be observed in Fig. 5.36b showcasing
the ÊP in the ROI for 0νββ events.
Such a significant shift in the mean value of the residual distribution for EP and ÊP requires
further investigation. It may be related to the model’s biasing towards the data with missing
channels.

5.7 Z position prediction

Determining the Z0 is an additional task for the model, and it is based on the diffusion
of charge in the detector, which correlates with the distance from the interaction point.
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(a) (b)

Figure 5.35: Efficiency of the events’ prediction in the ROI for the Multi3ResNet trained on 1e+2e
dataset. (a) ÊP of the 0νββ events. Efficiency of events’ prediction in the ROI is 90%. (b)
Efficiency of the direct extraction from the sum of amplitudes.

(a) (b)

Figure 5.36: Multi3ResNet evaluation results on the 0νββ dataset without missing channels. (a)
Residual distribution between EP and ÊP. (b) ÊP with the mean shift correction. The efficiency
of events’ prediction in the ROI is 33% and 96% for the uncorrected and corrected mean shift,
respectively.
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(a) (b)

Figure 5.37: Ẑ0 evaluation for the Multi3ResNet model trained on the 1e dataset. (a) Correlation
plot for the residual between Z0 and Ẑ0 with respect to Z0. (b) Residual distribution between Z0

and Ẑ0.

It’s important to note that predicting the Z position does not impact the primary and
detected energy predictions, as it depends on the track’s topological characteristics and is
less influenced by any missing channels.

5.7.1 Evaluation of the model trained on the 1e dataset

The Multi3ResNet model trained on the 1e data (see Section 5.6) is first evaluated on the
1e dataset (containing 72k events) and later on the 2e dataset (of ∼300k events). In these
simulated datasets, the detector response and the gas configuration at the detector are
the same and proximate to the real PandaX-III experiment conditions. For the 1e dataset
evaluation, the correlation plot for the residual between Z0 and Ẑ0 coordinates shows that
for the Z0 in the range from 200 to 1000 mm, the values are mostly correlated with the
Z0, as one can see in Fig. 5.37a. The problem is that the correlation is not perfect for the
events closer to the anode (Z0 less than 200 mm) and to the cathode (Z0 greater than 1000
mm), and there is a structure in the residual vs. Z0 correlation at the edges. Nevertheless,
the residual distribution between Z0 and Ẑ0 shows that the mean shift is close to negligible,
while the crude Gaussian fit provides a standard deviation of about 70 mm, as one can see
in Fig. 5.37b.
Even though the model is trained only on the 1e data, the Z prediction on the 2e data shows
the same pattern. The residual distribution for Z0 and Ẑ0 coordinates have the same mean
shift and the standard deviation of 70-75 mm (Fig. 5.38b).
Such results provide evidence that the model is capable of learning the topological features
of the data related to the Z position and is unaffected by the number of primary particles
present in the event.

5.7.2 Evaluation of the model trained on the 1e+2e dataset

Here, results for Ẑ0 evaluation for the Multi3ResNet model trained on the 1e+2e dataset
are present (recalling Section 5.6.3). As for the EP prediction, the model is evaluated first
on the testing dataset containing combined 1e and 2e events and later on the 0νββ dataset.
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(a) (b)

Figure 5.38: Ẑ0 evaluation for the Multi3ResNet model trained on the 1e dataset. Evaluation on
the 2e dataset. (a) Correlation plot for the residual between Z0 coordinate and Ẑ0 coordinate with
respect to Z0. (b) Residual distribution between Z0 and Ẑ0.

(a) (b)

Figure 5.39: Ẑ0 evaluation for the Multi3ResNet model trained on the 1e+2e dataset. Evaluation
on the 1e+2e testing dataset. (a) Correlation plot for the residual between Z0 and Ẑ0 with respect
to Z0. (b) Residual distribution between Z0 and Ẑ0.

For the former evaluation, we do not observe a significant difference in the results for the Ẑ0

compared to the results obtained for the 1e dataset. The correlation plot for the residual
between Z0 and Ẑ0 in Fig. 5.39a follows the same pattern as in the case of the 1e dataset
(Fig. 5.37a). Fig. 5.39b shows a slight improvement in the standard deviation of the residual
distribution, which is about 65 mm.
When we do the prediction on the 0νββ data, the results are, as expected, similar to the
1e+2e prediction, as one can see in Fig. 5.40a and Fig. 5.40b. The residual distribution is
shifted by the mean value of about 10 mm, while the standard deviation is still close to 65
mm.

As it was addressed in Section 5.6.4, the model’s performance is also evaluated on the
1e+2e and 0νββ decay datasets without missing channels. The mean value of the residual
distribution between Z0 and Ẑ0 for both datasets possesses a slight shift of ∼ 30 mm, while
the standard deviation stays at the level of 65 mm.

Previously, Li et al. [113] have shown that the VGGZ0net model was capable of predict-
ing the Z position with the standard deviation of 110 mm for the Monte Carlo simulated
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(a) (b)

Figure 5.40: Ẑ0 evaluation for the Multi3ResNet model trained on the 1e+2e dataset. Evaluation
on the 0νββ dataset. (a) Correlation plot for the residual between Z0 and Ẑ0 with respect to Z0.
(b) Residual distribution between Z0 and Ẑ0.

0νββ events in the PandaX-III experiment setup. In that study, the electron attachment
effect was considered, which is different from the present study. However, the results still
show promising performance of the Multi3ResNet model, given the fact that the presence
of missing channels degrades input data.

5.8 Summary

The most prominent results of this study of the regression problem of the primary energies
reconstruction from the images of the track topologies with missing channels are collected
in Table 5.4. The table shows a gradual improvement of the CNN approach, starting from
the simple toyCNN model test, through the MultiCNN and MultiResNet models for which
the data with missing channels is introduced, to the final Multi3ResNet model. The latter,
being trained on the 1e+2e dataset, is thoroughly evaluated, including on the 0νββ events,
and shows very good performance with efficiencies of 89%-90%.

In addition, the Multi3ResNet model is evaluated on the Z0 coordinates prediction. From
the final results, the standard deviation of the residual distribution is around 65 mm for
the 1e+2e and 61 mm for the 0νββ datasets. The prediction of Z0 is not affected by the
topological features of the data and the presence of multiple primary particles in the event.

5.9 Conclusions

Implementing a CNN model for the primary energy prediction (together with the Z ini-
tial coordinate) from the track images with missing channels is, in fact, possible. The
Multi3ResNet model provides a 20% increase in the efficiency of the events’ prediction in
the ROI for the 0νββ events, compared to the direct extraction of the event energy from
the sum of amplitudes. Indeed, it would be necessary to evaluate the model based on the
data available from the PandaX-III experiment to confirm its performance. An example of
that might be the calibration data from the detector. On the other hand, the model must
be trained on the proper configuration of the missing channels of the detector readout in
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Model Full dataset Test fraction [%] Efficiency σ [keV]
toyCNN (perfect MMs) 1e (80k) 25 - 65

MultiCNN 1e (300k) 20 79% 71
MultiResNet 1e (300k) 20 84% 62

Multi3ResNet

1e (300k) 20 89% 54
1e+2e (600k) 10 89% 60

0νββ (250k) eval. - 90% 56
0νββ w/o miss. - 33% 43

Table 5.4: Comparison of the model’s performance in predicting the primary energies and.
The training datasets and the test fractions for the model evaluation are provided. The last
two columns correspond to the efficiency of the events’ prediction in the ROI and the stan-
dard deviation of the residual distribution between the true and predicted primary energies.
The toyCNN was trained and evaluated only on the perfect readout configuration without
missing channels in this study. The table also includes the evaluation of the Multi3ResNet
model on the 0νββ dataset with and without missing channels. The drop in the efficiency
of the events’ prediction for the 0νββ dataset without missing channels is due to the mean
shift in the residual distribution between EP and ÊP which has to be investigated.

order to be relevant for the experiment.
The Multi3ResNet model evaluation on the data without missing channels shows a mean
shift in the residual distribution between EP and ÊP which hints at the model’s biasing to-
wards the degraded data. This issue requires an additional study on the simulated data with
the readout modules configuration where the number of missing channels ranges from 0 to 3.

In further studies, which are not covered in my work, the consideration of the events
detected by the multiple Micromegas modules and the implementation of the inhomogeneity
of the readout gain, in general, should be taken into account.

Regarding the Z position prediction, the Multi3ResNet model is capable of predicting
the Z initial coordinates with a promising standard deviation on the residual distribution
between true and predicted Z coordinates. Compared to the Li et al. [113] study, the
Multi3ResNet model outperforms the VGGZ0net model in the Z position prediction. How-
ever, these results should be taken with caution, as the electron capture effect was not
implemented in my study’s Monte Carlo simulation of the data.

In the next chapter, I will discuss the classification problem, which tackles the identifi-
cation of the 2e events and the background 1e events. The Multi3ResNet architecture will
be used as an example of the model for the classification problem.
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Chapter 6

Classification Problems

. . . What should we have ready at hand in a situation like this?
The knowledge of what is mine and what is not mine,

what I can and cannot do.
— Epictetus, ∼108 AD
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6.1 Introduction

What is the motivation for this chapter?
In the previous chapter, we discussed how CNN models can be used for the energy recon-
struction task, which is a regression problem. The latest trained model showed a good
performance reconstructing the energy of the detected particles, based on it’s topology. The
core objective for the model was to reconstruct energy corresponding to the track topologies
with missing channels. The model was supposed to be indifferent to the origins of the events:
whether they are 1-electron background events coming from the 208Tl or 214Bi decays, 2-
electron background events from two neutrino double beta decay of 136Xe, or signal events
from the 0νββ of 136Xe. Now, we are interested in discrimination of the background events,
from the ROI in particular, where we are expecting a high background contamination, which
reduces the sensitivity of the PandaX-III experiment for the 0νββ detection.
A similar CNN architecture model is employed to resolve this classification problem of
discrimination between 2-electron and 1-electron events, learning features related to the
topological properties of the tracks. After data and model optimization, the best model is
selected based on the performance metrics.
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(a) (b)

Figure 6.1: Results taken from [73] study on the event discrimination. Plots show the energy
distribution of the 0νββ (a) and high-energy background (b) events before and after track, Q,
twist, and length cutoffs. Such approach reduces the background contamination in the ROI by the
factor of ∼100, while keeping the 0νββ signal efficiency at 17.5%.

Previously, Javier Galan with his collaborators proposed a method to use the topological
features of the tracks to do the necessary background discrimination [73]. The track features
like track energy ratio, end-track energies (Blob charge), end-track twist, and track length
were extracted from the tracks, corresponding to the 0νββ and high-energy background
events expected to contaminate the ROI. After applying the feature cuts, the background
event contamination in the ROI was reduced by the factor of ∼100, while keeping the 0νββ
signal efficiency at 17.5% that could be visible on Fig. 6.1.

Instead of using an analytical approach, a CNN model is employed to classify the events
in my approach, that is discussed in the next section.
Previously, Hao Qiao with his collaborators used a CNN model to discriminate between
0νββ and high-energy background events in [114]. The model showed a good performance
with 99.4% background rejection efficiency at 47.5% signal efficiency. The approach that
is proposed in this chapter differs in the model’s architecture and the data preparation.
Without further ado, let me introduce the CNN model approach for the classification of
1-electron and 2-electron events.

6.2 CNN approach for the classification of 1e/2e events

6.2.1 Data Preparation

In the previous chapter 5, we used 2D images of raw events as input to the network. Even
more, the implementation is easier. It requires minimal signal processing in comparison to
the analytical approach [73].
The data preparation for the classification model is exactly the same as for the energy recon-
struction model, however, there is a particular attention to the 2-electron data events. The
topological features of the tracks are proportional to the particle energies, and we should
not neglect the potential bias which could appear in case of misrepresentation of events in
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certain energy ranges, as it was in the previous chapter.
In order to obtain a balanced datasets for the 1-electron and 2-electron events, the energy
spectra of both types of events must have the same energy range and the same flat distribu-
tion (Fig. 6.2). Therefore, for the 2-electron events, each of the two electrons is simulated
in Geant4 from the same spatial vertex with isotropic angular distribution, and the sum of
the primary energies of the two electrons follows a flat distribution. The energy range now
is extended to be from 30 keV to 4 MeV, and the total number of entries in the training
dataset is 1.2 106, with ∼50% of the 1-electron events and ∼50% of the 2-electron events.
The choice to include the low energy events is motivated by the desire to expose the NN
model to these events. Missing channels could carry important parts of the information of
the event, thus the total sum of the signal amplitudes degrades, yet the topological features
of the tracks are still present and could be learned by the model. Thus, the model must
distinguish low and high energy events. Indeed, it is hard to distinguish the 1-electron
and 2-electron events around 30 keV energy, but such low energy events are present in the
datasets for both types of events in order not to introduce a selection bias to the model.

Figure 6.2: Primary energy spectrum of the 1-electron and 2-electron events in the combined 1e+2e
dataset. Distribution of primary energies is flat for both types of events and lays in the [30 keV,
4 MeV] energy range. The number of entries in the dataset is 1.2 106 equally distributed between
the 1-electron and 2-electron events.

As an example, one can see the comparison of the 1-electron and 2-electron events having
similar primary energies ∼2.4 MeV in Fig. 6.3.
As before, a concatenated 2D array of a track event with the map of the missing channels

of a total shape of (128, 128, 2) is used as input data for the CNN model. We opted for
a 2-output configuration, in order to be prepared for more complex setups where we would
have had more than two possible outcomes. However, we haven’t pursued the idea, for lack
of time. Here, with only two possible outcomes, viz. signal and background, a 1-output
configuration would have worked fine. For the labels, a one-hot encoding is used, where the
1-electron event is represented as [0, 1] and the 2-electron event as [1, 0]. The chaise of such
labeling is due to the loss function selection which is described in the further sections.
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(a) Primary = 2423.860107 (b) Primary = 2430.210938

Figure 6.3: Comparison of the 1-electron (a) and 2-electron (b) events input images with similar
primary energies ∼2.4 MeV. The 2-electron event is more complex in terms of the track topology,
visibly has a Blob charge at each end of the track, and the track length is significantly shorter than
the 1-electron event.

6.2.2 Model Architecture description

The model’s architecture used for classification has a similar structure as the final model
used for the energy reconstruction task, with some modifications. After a sequence of model
optimizations, the best architecture is selected, which we would call Class3ResNet . It
consists of three consecutive convolutional blocks with an average pooling layer after each
block. After the first convolutional block, a skip connection is added containing another
convolutional block. The features from the main path and the skip connection are concate-
nated before flattening the output and passing it through a set of dense layers. Each of the
convolutional layers and dense layers is followed by a ReLU activation function. The final
output layer contains two outputs without an activation function, as Class3ResNet is trained
using the categorical cross-entropy loss function. The architecture of the Class3ResNet is
shown in Fig. 6.4 followed by the description of each layer in the Table 6.1.
A categorical cross-entropy loss function in a general case is used for the classification tasks,

where the output is a probability distribution over the classes, as it was already introduced
in Section 4.2.1. The loss function measures the difference between the predicted probability
distribution and the true probability distribution:

L(ŷ, y) = {l1, ..., lN}⊤, li = −wyilog
exp(ŷi,yi)∑C
c=1 exp(ŷi,c)

, (6.1)

where ŷ is the predicted probability distribution, y is the true probability distribution, wyi

is the weight of the class yi, and C is the number of classes and N is the number of samples
in the dataset/mini-batch.
During the training process, the value of the loss is averaged over the mini-batches, so the
loss value is not directly comparable between different batch sizes:

L =
1

N

N∑
i=1

L(ŷi, yi). (6.2)

130



6.2. CNN approach for the classification of 1e/2e events

Layer (type) Output Shape Attribute Np

Input (batchSize, 128, 128, 2) 0
Conv2D (batchSize, 128, 128, 32) 3× 3, 32 608
Activation (batchSize, 128, 128, 32) 0
AveragePooling2D (batchSize, 32, 32, 32) 4× 4 0
Skip_Conv2D (batchSize, 32, 32, 128) 3×3, 128 36992
Skip_Activation (batchSize, 32, 32, 128) 0
Skip_AveragePooling2D (batchSize, 2, 2, 128) 16× 16 0
Conv2D (batchSize, 32, 32, 64) 3× 3, 64 18496
Activation (batchSize, 32, 32, 64) 0
AveragePooling2D (batchSize, 8, 8, 64) 4× 4 0
Conv2D (batchSize, 8, 8, 128) 3×3, 128 73856
Activation (batchSize, 8, 8, 128) 0
AveragePooling2D (batchSize, 2, 2, 128) 4× 4 0
Sum (batchSize, 2, 2, 128) 0
Flatten (batchSize, 512) 0
Dense (batchSize, 128) 65664
Activation (batchSize, 128) 0
Dense (batchSize, 64) 8256
Activation (batchSize, 64) 0
Dense (batchSize, 16) 1040
Activation (batchSize, 16) 0
Dense (batchSize, 2) 34

Table 6.1: Classification model layer description. Attribute for convolutional layers stands
for the kernel shape and the number of kernels, while for pooling layers it is kernel shape.
Np is the number of parameters in the layer. For the convolutional layers, Np is calculated
as (F * F * C * K) + (K bias), where F is the kernel size, C is the number of channels in
the input, and K is the number of kernels. For the dense layers, Np is calculated as (N * M)
+ (M bias), where N is the number of neurons in the previous layer and M is the number
of neurons in the current layer.
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Figure 6.4: Class3ResNet model visualization. The color scheme is the same as in the previous
chapter with yellow representing the convolutional layers, orange - ReLU activation functions, red -
average pooling layers, purple - flattening layer, green - dense layers with following ReLU activation
functions marked as dark green. A skip connection is added after the first average pooling layer,
which contains another convolutional block with average pooling layer. The output from the main
path and the skip connection is concatenated before flattening the output and passing it through
a set of dense layers. The final output layer contains two outputs for the classification task.

Such loss function provides a way to quantify the discrepancy between the model’s predicted
class probabilities and the true class labels.

6.2.3 Hyperparameter Tuning and Training Process

After increasing the dataset size to 1.2 106 entries, the training of the model and the cor-
responding optimization of the hyperparameters required a significant amount of computa-
tional resources.
Hyperparameter tuning [117][118] is an iterative process that involves:

• Defining a Search Space: This specifies the range of possible values for each hyperpa-
rameter.

• Choosing an Evaluation Metric: This metric determines how well the model performs
on unseen data. Common metrics include accuracy, precision, recall, F1-score, or loss
function.

• Selecting a Search Technique: There are various search techniques available:

– Grid Search: Evaluates all possible combinations of hyperparameter values within
the defined search space. This can be time consuming for models with many
hyperparameters.

– Random Search: Samples random combinations from the search space, offering
a more efficient alternative to grid search for large spaces.

– Bayesian Optimization: Uses a probabilistic model to prioritize promising hyper-
parameter configurations based on past evaluations, making it particularly useful
for expensive-to-evaluate models.
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• Training and Evaluating Models : For each hyperparameter combination, the model is
trained on a training set and evaluated on a validation set. The performance metric
is recorded.

• Selecting the Best Hyperparameters : Based on the evaluation metrics, the hyperpa-
rameter combination that yields the best performance on the validation set is chosen.

Using the Bayesian Optimization technique, we obtain more subtle hyperparameters ad-
justments, which are not possible with the Grid Search or Random Search techniques. The
Bayesian Optimization technique is particularly useful for models with a large number of
hyperparameters, as it can efficiently explore the search space and find the optimal hyper-
parameter values.
The hyperparameter optimization process is conducted using the Hyperopt library in Python,
which provides a flexible and efficient framework for hyperparameter tuning. The algorithm
used for the optimization is the Tree-structured Parzen Estimator (TPE), which is a sequen-
tial model-based optimization algorithm that uses a probabilistic model to guide the search
for the best hyperparameters. The TPE algorithm balances exploration and exploitation to
efficiently search the hyperparameter space and find the optimal settings. More information
about the algorithm can be found in [119].
The hyperparameters that are optimized include the learning rate, L2 regularization strength,
average pooling kernel, and the number of output neurons in the first two dense layers. The
hyperparameter tuning process is conducted over 20 iterations with each iteration

a budget of 100 evaluations. AdamW optimizer is used with a batch size of 128 both
for the hyperparameter tuning and the later training process. The dataset for the hyper-
parameter tuning is reduced to 8% of the total dataset to speed up the process. The best
hyperparameters are selected based on the validation accuracy metric and they are shown
in Table 6.2.
As you can see, the hyperparameter tuning process is used to optimize the model’s architec-

Hyperparameter Value
Learning Rate 0.0012

L2 Regularization Strength 0.0011
Average Pooling Kernel 4× 4
Dense Layer 1 Neurons 128
Dense Layer 2 Neurons 64

Table 6.2: Best hyperparameters obtained from the hyperparameter tuning process. For
the main branch of the model, the average pooling kernel is 4× 4. For the skip connection,
the average pooling kernel is 16× 16 to match the dimensions of the output from the main
branch before concatenation.

ture as well as the learning process. The validation accuracy for the best hyperparameters
is 0.90.
After the hyperparameter tuning process, the model is trained on the full dataset using the
best hyperparameters. Whole dataset is split into training and validation sets with a ratio
of 90:10, while separate datasets are generated for the testing. It was observed that training
the model on the full dataset overflows the memory of the GPU. Therefore, the training
dataset was split into 10 smaller datasets. The model is trained on each dataset separately,
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(a) (b)

Figure 6.5: Loss curve (a) and accuracy curve (b) for the classification model during the training
process. The model is trained consecutively on 10 smaller datasets of the full training dataset.
Training iteration on each subset consists of 100 epochs. We observe a rapid overfitting of the
model closer to the end of each training iteration, however, the model’s performance improves over
time. The model’s weights from the third epoch of the last training iteration are selected as the
final model and used for evaluation on the testing set.

and the weights are saved after each training iteration. The weights are then loaded into
the model for the next training iteration. This process is repeated until the model has been
trained on the full dataset. Each training iteration consists of 100 epochs.
The training process is monitored using the loss curve and the accuracy metric shown in
Fig. 6.5a and Fig. 6.5b.
From the accuracy curve, we can see that despite the rapid overfitting of the model closer to

the end of each training iteration, the model’s performance improves over time. We choose
the model’s weights from the third epoch of the last training iteration for the evaluation on
the testing set. For this epoch the model’s accuracy on the validation and training sets are
the closest, reaching a value of 0.89.
Now, the model is ready for evaluation on the testing set.

6.3 Results from the Classification Model

To evaluate the performance of the classification model on unseen data a separate dataset
is generated for the testing, containing 7.4 104 entries for equal number of 1-electron and
2-electron events. The energy range and distribution of the events in the testing dataset
are the same as for the training dataset. By convention, this dataset is called the 1e2e_test
dataset.
The model with the selected best parameters on the 1e2e_test dataset achieved an accuracy
of 0.90. The sigmoid function (see Section 4.2.2.2) is used to convert the model’s output
to the probability of the 2-electron event shown in Fig.6.6a. The Signal distribution in red
extends well into the low probability region, so that whatever threshold we opt for to cut
on probability, we have a sizable set of false negatives. The background distribution in blue
extends even more massively into the high probability region, so that in order to reject false
positives this time, we have to opt for a high threshold for the cut on probability.
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(a) (b)

Figure 6.6: (a) Probability distributions for the 1-electron and 2-electron events from the
Class3ResNet in the 1e2e_test dataset. We observe a high contamination of the False Positives
classified as 2-electron events. (b) ROC curve for the classification model. The AUC value is 0.9572.

Another important metric to evaluate the model’s performance is the Receiver Operating
Characteristic (ROC) curve, which provides a visual representation of the trade-off between
true positives and false positives (see Section 4.2.1). The ROC curve for the classification
model is shown in Fig. 6.6b compared to the random classifier line. The AUC value for
the model is 0.9572, indicating that the model performs reasonably well in distinguishing
between the 1-electron and 2-electron events.
In addition we plot a Signal Efficiency and Background Rejection efficiency curves with

respect to the threshold value. The Signal Efficiency is defined as the ratio of the number
of TP to the total number of 2-electron events, while the Background Rejection Efficiency
is defined as the ratio of the number of TN to the total number of 1-electron events. The
Signal Efficiency and Background Rejection Efficiency curves are shown in Fig. 6.7a. The
Signal Efficiency curve shows how well the model is able to identify the 2-electron events,
while the Background Rejection Efficiency curve shows how well the model is able to reject
the 1-electron events. The Signal Efficiency and Background Rejection Efficiency curves
intersect at a threshold value of 0.6, for which we reduce the background contamination
by a factor of ∼10, while keeping 89% of signal events. Selecting the Background rejection
efficiency at 99% we can achieve the Signal Efficiency at 31.7% for the whole dataset. The
Signal Efficiency vs Background Rejection Efficiency curve in Fig. 6.7b provides another
view of the efficiency vs. purity trade-off. It is important to note that the optimal threshold
value may vary depending on the specific requirements of the experiment. Our main interest
is to maintain a high Signal Efficiency while reducing the background contamination by a
factor of 100 in the ROI of the 0νββ signal events (defined in Section 2.4 as [2364, 2552]
keV range). We select one and two electron events for which the primary energy is in this
range and apply the model to classify them.
From the probability distributions of the 1-electron and 2-electron events in the ROI, we
can observe a high contamination of FP events among the 1-electron events (Fig. 6.8a). The
ROC curve for the events in the ROI gives similar results to the ROC curve for the whole
dataset, with an AUC value of 0.9679 as one can see in Fig. 6.8b.
On the Signal Efficiency and Background Rejection Efficiency curves for the events in ROI,

we can see that there is a slight degradation in the model’s performance to discriminate 1-
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(a) (b)

Figure 6.7: (a) Signal Efficiency and Background Rejection Efficiency curves for the Class3ResNet
model as a function of the probability threshold value. (b) The Background Rejection Efficiency
vs Signal Efficiency curve for Class3ResNet evaluation on the 1e2e_test dataset.

(a) (b)

Figure 6.8: (a) Probability distributions for the 1-electron and 2-electron events from the
Class3ResNet in the 1e2e_test dataset selected in the ROI. The high contamination of the False
Positives classified as 2-electron events is still visible. (b) ROC curve for the classification model.
The AUC value is 0.9679.
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(a) (b)

Figure 6.9: (a) Signal Efficiency and Background Rejection Efficiency curves for the Class3ResNet
model as a function of the probability threshold value. For events selected in the ROI. (b) The
Background Rejection Efficiency vs Signal Efficiency curve for Class3ResNet evaluation on the
1e2e_test dataset for events selected in the ROI.

electron and 2-electron events closer to the threshold value of 1 (Fig. 6.9a). A probability
threshold corresponding to the background rejection efficiency of 99% is 0.95, correspond-
ing to a signal selection efficiency of 26%. The Signal Efficiency vs Background Rejection
Efficiency curve for the events in the ROI is shown in Fig. 6.9b.
The model’s performance to discriminate 1-electron and 2-electron events in ROI is visual-

ized in Fig. 6.10, where the distributions of before and after application of the model’s rejec-
tion are shown for the primary energies of the 2-electron events (Fig. 6.10a) and 1-electron
events (Fig. 6.10b). The plots below show the total sum of the degraded by missing chan-
nels signal amplitudes for the 2-electron and 1-electron events on Fig. 6.10c and Fig. 6.10d
respectively. The sum of the degraded amplitudes correspond to the input images that are
fed to the model, therefore the model is able to learn the topological features of the tracks
even in the presence of missing channels.
An 80k dataset is generated for the 0νββ events to evaluate the model’s Signal efficiency.

Considering the same probability threshold of 0.95, the model’s Signal Efficiency is reduced
to 20% for the 0νββ events. The corresponding plots for the primary energy and the total
sum of the degraded amplitudes distributions are shown in Fig. 6.11.
In order to understand such a behaviour of the model, we check the energy of the weakest

electron, i.e. the one with the lowest energy, out of two electrons in 2-electron events dataset
before and after the model’s discrimination (Fig. 6.12a). For the events that contain one
of the electrons with primary energy below 100 keV, the model is not able to select them
as signals. This is expected as such events from the topological point of view are similar
to the background events. The CNN model shows the highest Signal Efficiency of 33% for
the 2-electron events with the lowest primary energy for one of the electrons at 600 keV.
After that, we observe a decrease in efficiency up to ∼10% for the 2-electron events which
have the highest primary energy for one of the electrons at 2 MeV. This is the energy range
where the two of the electrons have similar high primary energies therefore the topology of
the whole event must possess prominent features of the 2-electron event, thus easily distin-
guishable from the background events. However, in the dataset, the presence of such events
is dramatically low, which gave an availability bias to the model.
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(a) (b)

(c) (d)

Figure 6.10: Energy distributions of the events selected in the ROI before (blue) and after (red)
the model’s rejection at the threshold value of 0.95 that corresponds to the Background Rejection
Efficiency of 99% and Signal Efficiency of 26%. (a) Primary energy distribution for the 2-electron
events. (b) Primary energy distribution for the 1-electron events. (c) Total sum of the degraded
amplitudes for the 2-electron events. (d) Total sum of the degraded amplitudes for the 1-electron
events.

(a) (b)

Figure 6.11: Energy distributions of the events selected in the ROI before (blue) and after (red)
the model’s rejection at the threshold value of 0.95 that corresponds to the Background Rejection
Efficiency of 99% and Signal Efficiency of 20%. (a) Primary energy distribution for the 0νββ events.
(b) Total sum of the degraded amplitudes for the 0νββ events.
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The same analysis is performed for the 0νββ events dataset, which is shown in Fig. 6.12b.
The 0νββ events show a similar behaviour: for the events with one of the electrons having
the primary energy below 200 keV, the model doesn’t recognize them as signals. Closer to
higher primary energies of the electrons, the model’s Signal Efficiency increases up to ∼25%
where it remains flat.

The Signal Efficiency and Background Rejection Efficiency are summarized in the Ta-
ble 6.3.

Dataset Signal Efficiency Background Rejection Efficiency
1e2e_test 31.7% 99%

1e2e_test_ROI 26% 99%
0νββ 20% 99%

Table 6.3: Signal Efficiency and Background Rejection Efficiency for the 1e2e_test,
1e2e_test_ROI, and 0νββ datasets.

In 2018, Hao et al. [114] proposed a method to discriminate between the 0νββ events
and the high-energy background events coming from the 238U decay chain using the CNN
model. The input data came from the postprocessing of the MC simulation of the PandaX-
III detector. The readout plane is considered ideal without any missing channels. The final
results have shown that the model is able to achieve a Signal Efficiency of 47.5% for the
0νββ events with a Background Rejection Efficiency of 99.4% which is shown in Fig. 6.13.
Indeed, the current model shows a lower Signal Efficiency for the 0νββ events, however,

the model is trained and evaluated on the data with the missing channels, which is more
realistic compared to the ideal case. The model’s performance can be further improved by
providing more uniform training data with the higher statistics.

6.4 Conclusions

In this chapter, we have presented a CNN model for the classification of the 1-electron and
2-electron events in the PandaX-III detector. The model is trained on the simulated data
with the missing channels and is able to achieve an accuracy of 0.92 on the unseen data. The
model’s performance is evaluated using the ROC curve, Signal Efficiency, and Background
Rejection Efficiency metrics. The model is able to distinguish between the 1-electron and
2-electron events with an AUC value of 0.9572. The Signal Efficiency and Background Re-
jection Efficiency curves showed that the model can achieve a Signal Efficiency of 31.7% for
the 1e2e_test dataset with a Background Rejection Efficiency of 99%. For the events in the
ROI, the model’s performance is slightly degraded, with a Signal Efficiency of 26% and a
Background Rejection Efficiency of 99%. For the 0νββ events, the model’s Signal Efficiency
is reduced to 20% with a Background Rejection Efficiency of 99%. The model’s performance
is compared to the results obtained by Hao et al. [114], who achieved a Signal Efficiency of
47.5% for the 0νββ events with a Background Rejection Efficiency of 99.4%. The current
model shows a lower Signal Efficiency for the 0νββ events, however, the model is trained
and evaluated on the data with the missing channels, which is more realistic compared to
the ideal case. The model’s performance can be further improved by providing more uniform

139



Chapter 6. Classification Problems

(a)

(b)

Figure 6.12: Plots represent primary energy of the weakest electron in the 2-electron events for the
1e2e_test dataset (a) and the 0νββ dataset (b). The blue line shows the primary energy before
the model’s discrimination, while the red histogram shows what is left after the model’s rejection.
Below each plot, the ratio of the accepted events with respect to the weakest electron’s primary
energy is shown.
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Figure 6.13: The reconstructed energy spectra of signal and backgrounds before and after the
optimal cut for the 0νββ events(left) and background events from 214Bi decay(right) from the
work of Hao et al. [114].

training data with the higher statistics.
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Chapter 7

Summary and Conclusions

This thesis presents 0νββ studies in the context of the PandaX-III experiment. The experi-
ment’s success hinges on achieving optimal performance from its Micromegas modules. Here,
missing channels within these modules can significantly impact efficiency, leading to a loss
of sensitivity to the 0νββ signal. Furthermore, track topology reconstruction can be com-
promised, hindering event identification and background rejection. In this work, results of
the Blob charge determination from Monte Carlo simulations are presented, together with a
Machine Learning approach, specifically employing Convolutional Neural Networks (CNNs),
to rectify the energy loss induced by missing channels in the PandaX-III Micromegas detec-
tors. Finally, an analysis of the CNN model to classify signal events from the background
is presented.

Although there are no conclusive results on the Blob charge determination, each indi-
vidual Blob charge contains 8-12% of the 0νββ track event from 136Xe. Therefore, if the
Blob charge is lost from the event reconstruction due to consecutively missing channels, the
energy resolution of the event will be degraded. For now, the hypothesis that the energy
lost due to missing channels in one projection (XZ) could be directly reconstructed from
another projection (YZ) was not confirmed. Similarly, ideas around the correlation between
twist and blob yielded different results. However, this initial exploration yielded valuable
insights that paved the way for the successful application of ML methods in subsequent
studies.

The results of the CNN model implementation demonstrated the remarkable potential
for mitigating the effects of missing channels in the PandaX-III Micromegas detectors. The
Multi3ResNet CNN model that was developed to predict the true energy of electrons from
images of the tracks degraded by missing channels exhibits a remarkable increase from 69%
to 90% in event prediction efficiency within the Region of Interest (ROI) for 0νββ events,
compared to the conventional approach of directly summing amplitudes. This significant
improvement underscores the power of CNNs in extracting complex information from in-
tricate data patterns, ultimately leading to more accurate energy reconstructions. While
these results are promising, further validation using real data from the PandaX-III experi-
ment, such as calibration data, is crucial to confirm the model’s performance under realistic
conditions.

Another significant achievement is the CNN model’s ability to classify two-electron
events from single-electron events in Monte Carlo data affected by missing channels. The
Class3ResNet CNN model, which architecture is based on the Multi3ResNet model, was
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made to classify the two-electron (2e) events from the single-electron (1e) events. The 2e
signature is crucial for identifying 0νββ decay, while 1e events are a significant background
source. The Multi3ResNet model effectively distinguishes between these event types, achiev-
ing an accuracy of 92%. Key metrics further validate this model’s performance: it has a
Signal Efficiency of 31.7% and a Background Rejection Efficiency of 99% for the 1e+2e
dataset. Even within the ROI, it maintains a Signal Efficiency of 26% for the same Back-
ground Rejection Efficiency. Although the model shows a lower Signal Efficiency for 0νββ
events compared to previous studies by Hao et al. [114], it is important to note that this
model is trained on data with missing channels, making it more representative of real-world
conditions.

Future studies could incorporate events detected by multiple Micromegas modules, as in
this work, a selection of events detected by a single module was used. This approach could
improve the model’s performance by providing more comprehensive data for training. A
multi-module event selection would also allow for the study of the gaps between modules,
which could also impact the energy resolution. Additionally, we need to consider the inho-
mogeneities in the readout gain across the detector readout plane. Future improvements
could be achieved by using a more uniform training dataset with better statistical coverage.

These refinements hold the potential to push the boundaries of performance even fur-
ther.
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Appendix A

PandaX-III Data Analysis Software
Framework—REST
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A.1 Introduction

PandaX-III’s data analysis software relies on the Rare Event Search Toolkit (REST) frame-
work [66]. Originally developed to meet the specific data processing requirements of the
PandaX-III experiment, the software has undergone refinement in terms of stability, gener-
ality, and extensibility through extensive use and version updates. The REST repository is
hosted on GitHub [67] and has been utilized in analyses for multiple experimental groups
[73], [120], [121], [122].
REST is strategically designed to provide an integrated framework for low-background parti-
cle physics experiments, encompassing various software functionalities such as data reading,
waveform analysis, response simulation, geometry processing, particle identification, statisti-
cal plotting, and more. It is developed as a secondary modification based on the widely used
ROOT [123], [124] software framework in particle physics, integrating common simulation
packages like Geant4 [125], Garfield++ [126], and database interfaces such as PostgreSQL
and MySQL. Furthermore, REST itself offers electronic response simulation, commercial
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Figure A.1: The entire data processing workflow, from simulation to reconstruction, in the context
of studying algorithms for neutrinoless double-beta decay, sourced from [66].

electronics unpacking tools like CoBo-AsAd, FEMINOS, USTC DCM, original waveform
analysis, and particle trajectory reconstruction.
REST, employing configuration files, achieves the integration of the mentioned functional-
ities in a modular and procedural manner, representing the core of the framework. Each
module (i.e., C++ class) implements specific functionalities and stores related configura-
tion parameters, enhancing traceability for each run. The connectivity between modules is
established through the pipeline of "events" serving as data carriers. In REST, all function-
alities are regarded as the configuration process of the modules themselves or the processing
of events. For instance, the functionality of database reading is executed during the initial-
ization process of the run information module, while the electronic unpacking functionality
is implemented in the event processing module for specific zero-input instances.

A.2 Application scenarios

A.2.1 Data processing

Data processing is the foundational functionality of REST, allowing for the effortless addi-
tion or removal of processing modules by reading the configuration file. Fig. A.5 illustrates
the entire process, from simulation to reconstruction, in the context of studying algorithms
for neutrinoless double-beta decay. The rectangular boxes represent various processing
modules, all of which, with the exception of the last step, are executed within the REST
framework. The elliptical boxes on the right denote the types of events circulating in the
processing, while the diamond-shaped boxes on the left represent additional input metadata.
If the steps for detector response were replaced with the actual steps for reading physical
data, the subsequent processing methods would remain unchanged. In this manner, REST
achieves seamless integration between simulated and experimental data.
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Figure A.2: REST browser interface. (right) Visualization of a specific instance in the waveform
instance stage. (left) Visualization of the instance with added channel range plotting conditions.
The images are from [66], where the data is from a run of the TREX [127] prototype detector.

A.2.2 Data visualization

REST offers three essential tools: the feature plotter (AnalysisPlot), metadata plotter
(MetadataPlot), and event browser. The event browser, utilizing the graphical user in-
terface (GUI) of ROOT, provides a drawing window with a control panel for visualizing
individual events. Users can observe specific events by ID or storage index, encompassing
all data types at each processing stage of the event. Furthermore, the event browser fa-
cilitates the input of specific plotting conditions and adjustments to the drawing range, as
illustrated in Fig. A.2.
The feature plotter serves as a statistical tool for all events. By reading the corresponding
configuration file, it can generate a histogram of a specific feature for all events in the file
and supports input from multiple files. When plotting histograms from multiple files on the
same canvas, it offers an intuitive comparison of differences between runs.

A.2.3 Simulation program: restG4

restG4 functions as a Monte Carlo simulation application within the Geant4 and REST
framework, acting as the leader of the entire simulation processing pipeline. It incorporates
the metadata concept, allowing for the direct interpretation of configuration files. This
user-friendly approach streamlines the construction of Geant4 simulation tasks without the
need for extensive coding. In restG4, geometry information is imported via GDML geome-
try files, while particle sources and physics lists are brought in through configuration files.
The concept of sensitive volumes is introduced to record particle information within speci-
fied volumes. Additionally, restG4 provides visualization features for geometry models and
particle trajectories, facilitating the examination of simulation issues. Fig. A.3 presents an
example simulation.
The simulation outcomes generated by restG4 manifest as a series of events, capturing raw

information about interactions between particles and the sensitive medium of the detector.
This information encompasses position, time, deposited energy, particle type, parent par-
ticle type, interaction type, and more. Subsequently, these events are integrated into the
ensuing data processing pipeline for further analysis.
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Figure A.3: Employing restG4 for simulating the initial energy deposition results in the detector.
Left: Schematic representation of the Baby-IAXO detector’s geometry [128]. Right: Depiction of
energy deposition from a neutron event in the detector, with white lines illustrating a sequence of
secondary particles. Image sourced from [66].

A.3 Development logic

REST is crafted using the C++ programming language and is constructed upon the ROOT
software framework. The comprehensive software package encompasses various library files
and executable files. The core library file, serving as the bedrock of the software, furnishes all
the base classes of the software framework and orchestrates the calling logic between them.
Other libraries’ classes inherit from those in the core library, adapting their interfaces and
delivering specific functionalities. External software packages like Geant4 are seamlessly
incorporated into REST as functional libraries, offering users a range of choices. At the
topmost level of the software, two executable files invoke the respective libraries to execute
the software.
The majority of classes within REST inherit from the TObject class in ROOT, granting
them direct compatibility for storage in files or retrieval from files. These classes adhere to
the Taligent standard for naming conventions, commencing with "TRest." For the sake of
simplicity, this text will omit the "TRest" keyword, representing "TRestEvent" as "Event."

A.3.1 Key classes

The following introduces three crucial classes within the core library, essential for later
discussions on the specific logic of the software framework:

• Event Class: This class serves as the foundational type for storing diverse event data.
It defines essential details about an event, such as timestamp, event ID, associated
run ID, labels, etc. Subclasses derived from this class are tasked with storing specific
event data. For instance, the RawSignalEvent class retains waveform data for each
channel as member variables in corresponding arrays.
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Figure A.4: Schematic diagram of the contents of a REST file. Items in red font are mandatory.
Image is from [66].

• Metadata Class: The Metadata class is fundamental in REST for storing data be-
yond event data. It provides an interface for reading configuration files and outlines
standard initialization processes. Various specific metadata is stored by subclasses de-
rived from this class. Metadata classes, in conjunction with event classes, are stored in
files, offering supplementary information about the detector, including readout module
layout, gas information, etc. This aids users in comprehending the file contents better.
Additionally, certain classes responsible for specific functions, such as managing and
launching analysis scripts, possess configuration information worthy of preservation
and are thus considered metadata, falling under the metadata class.

• EventProcess Class: The EventProcess class stands out as a distinctive type of
metadata class. Subclasses derived from this class can execute data processing tasks.
They accept input from specific event classes, execute designated data analysis al-
gorithms alongside detector information from metadata classes, generate a series of
features (observables) as analysis outcomes, and ultimately return the same or differ-
ent event classes. Configuration information for analysis algorithms is preserved as
metadata.

A.3.2 Data structures

REST files adhere to the ROOT file format with a standardized data organization. They
consistently encompass a Run metadata class and an AnalysisTree (inspired by the ROOT
TTree concept). The former captures details such as run ID, start and end times, and
descriptive text, forming the file header. The latter systematically documents the char-
acteristics of each instance, constituting the file content. These instances are stored in a
separate tree, and if the conservation of disk space is a concern, there’s an option to omit
saving this segment of the data. Additionally, all metadata classes and data processing
classes utilized during runtime are archived in the file. Finally, certain data processing
classes generate supplementary analysis result images in fundamental ROOT formats like
TH1D, TGraph, which are incorporated into the file. Fig. A.4 provides an illustration of
the standardized data structure of REST.
Having the instance data alongside metadata is crucial for providing meaningful context

to the instance data. For example, comprehending the significance of various points in
a waveform necessitates information about the electronics’ sampling rate, dynamic range,
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and other specifics. REST files ensure this traceability. When saving physical results, it
systematically and synchronously records various aspects of the detector’s operation and
program configuration as metadata. This renders the file a genuine physical record. When
reading the file, it can appropriately extract this metadata, implying the logical notion of
"reproducing a certain physical run." The encapsulated metadata classes are convenient for
reuse. For users, the additional information in the file offers convenience for subsequent
reference.

A.3.3 Running process

The REST framework offers a modular data processing pipeline known as the analysis chain.
A sequence of data processing classes is connected end-to-end, facilitating the passage of
instance data and structuring the pipeline. Users can customize this pipeline for diverse
analysis purposes by configuring and adding/removing data processing classes in the chain
through a configuration file. The input instances can be sourced from binary files acquired
by the DAQ system or from REST files. The necessary metadata for processing is supplied
by the Run metadata class.
The ProcessRunner class is responsible for managing and writing the output instances and
features to files. Additionally, this class handles the initialization and invocation of the
various data processing classes in the analysis chain. The completion of one analysis in the
chain is represented by a single instance moving from input to output. Processing the entire
dataset involves dealing with all instances in a run.
The analysis chain in REST follows a logically one-dimensional, one-way process. Each data
processing class is designed to handle the input of one instance class and produce the out-
put of another instance class. Subsequent data processing classes are unable to access data
from earlier stages. The instance class at each stage provides comprehensive data tailored
for the current stage’s analysis. For instance, during the processing stage of the waveform
instance class, analyses such as integration and saturation are conducted on sampled wave-
form information. In the hit point instance class (HitsEvent) stage, spatial clustering and
drift diffusion analyses are performed on three-dimensional spatial coordinate information.
Although the two instance classes correspond to the same input instance with identical
instance ID information, they possess different data storage structures. Specific data pro-
cessing classes can be utilized to transform between instance classes, thereby connecting
analyses from distinct stages.
Analyses conducted by data processing classes, such as waveform integration, yield features
referred to as characteristics. Unlike instance data, features generated at different points in
the analysis chain are not passed along; instead, they accumulate. Once all data processing
classes complete their tasks, the features and output instances are saved. The features are
documented in a dedicated feature tree in REST, while the output instances are recorded
in another tree. The feature tree, a ROOT TTree subclass, encompasses various branch
variables. Users can add a value directly as a branch without the need to manually set the
branch addresses, allowing for simplicity of use.
During the actual data processing run, REST employs a multi-threading engine to enhance
processing speed. The main thread clones the analysis chain into multiple copies, distribut-
ing them among an equal number of subthreads. It then assigns the input instances to the
subthreads for processing and subsequently gathers the processing results, including output
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Figure A.5: A schematic representation illustrating the flow of event data within a REST processing
chain. The run object is initialized, providing access to specific metadata or event data present
in the input REST file, along with any additional objects outlined through RML. Subsequently,
the data undergoes processing via the implementation within the process runner object. Various
event types (A, B, C, D) refer to distinct implementations for specific events. The resulting output
REST file consolidates all metadata information accessible to the chain, including any pre-existing
data, featuring the transformed output for the specific event and the updated analysis tree. Image
is from [66].

instances and corresponding features, writing them back to the file in a sequential manner.
This approach achieves multi-threading. The complete data processing workflow is illus-
trated in Fig. A.5.
REST establishes a connection between detector data and simulated data by standardizing

the instance processing flow. Detector data is encapsulated by the corresponding instance
class and undergoes processes like waveform compression, position reconstruction, clustering,
and particle trajectory recognition. Simultaneously, Monte Carlo-generated data, encapsu-
lated into the same instance class using an appropriate electronic simulation program, can
undergo the same physical analysis processes. This advantage facilitates the development
of diverse algorithms, their debugging using simulated data, and direct application to the
physical data analysis of the detector.

A.3.4 Configuration file - RML

REST’s configuration files utilize the RML extension and are structured based on the exten-
sible markup language (XML). It extends XML concepts and introduces several keywords,
offering additional parsing capabilities for units and expressions, along with functionality
for variable substitution. The newly introduced keywords by RML take effect during the
file parsing process:

• if: An if -tagged XML element unveils its internal child elements when the specified
condition is met.

• for: A for-tagged XML element iterates, revealing its internal child elements once per
iteration.
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• parameter: A parameter-tagged XML element is equivalent to the attribute of its
parent element.

• variable: A variable-tagged XML element can substitute the corresponding XML
keyword marked with $ and may be influenced by system environment variables.

• constant: A constant-tagged XML element can replace the corresponding XML
keyword and is not affected by system environment variables.

• globals: A globals-tagged XML element reveals its internal child elements to all
other elements containing child elements.

REST’s architectural design establishes a direct linkage between XML elements within con-
figuration files and metadata classes within the program. Each XML element in the file
corresponds to a specific metadata class in the program, mirroring the nesting relationships
of XML elements to the calling relationships among various classes in the program. For
instance, the runner class takes on the responsibility of initializing and invoking diverse
data processing classes within the analysis chain. In the RML format, XML elements rep-
resenting various data processing classes are encapsulated within the XML element of the
runner class, thus becoming its child elements. This strategic design enhances the logical
flow and extensibility of the configuration file.
To streamline the initialization process, REST introduces a naming convention that aligns
configuration file parameters with member variables of metadata classes, forging a direct
connection between their names. Each parameter in the configuration file corresponds to
a member variable in the metadata class. Capitalizing on this convention and leveraging
reflective capabilities inherited from the base class, metadata classes can autonomously lo-
cate parameters corresponding to their member variables in the configuration file during
initialization. This approach eliminates the need for manual coding, effectively reducing the
user’s workload.
In handling numerical parameters, REST adopts a standardized unit system. The con-
figuration file parser adeptly distinguishes between the numerical and unit components of
parameters. If the unit part is expressed in non-standard units, the numerical aspect is
scaled to a value in standard units. For instance, if a time is specified as 5 ns in the config-
uration file and REST’s standard unit for time is µs, the value is automatically converted
to 0.005. Unlike general programming practices where variables are typically pure numbers,
requiring explicit declaration of units, REST’s automatic initialization and standard unit
system assume default standard units for all variables. This preemptively avoids confusion
arising from inconsistent units across different fields, contributing to a more seamless and
error-resistant user experience.

A.3.5 Main functions

REST encompasses two distinct primary functionalities, each encapsulated within a separate
executable:

• restManager: This executable is responsible for parsing the configuration file and
executing tasks specified in its content, with a primary focus on data processing. The
flexibility inherent in the configuration file allows a singular restManager instance to

152



A.4. Processing chain for PandaX-III experiment

Figure A.6: REST program execution framework. The two primary executables, restManager and
restRoot, are highlighted in red. The rest-config shell script is highlighted in blue. Image is from
[66].

undertake a diverse array of tasks, ranging from data processing and event browsing
to plotting and saving.

• restRoot: In contrast, this executable is designed to open data files, load file meta-
data, and provide users with a ROOT-based command-line environment. It offers a
platform for manual analysis projects, empowering users with a direct and interactive
interface for their analytical endeavors.

To streamline invocation procedures, ’restManager’ incorporates dedicated task aliases for
common operations. Essentially, these aliases function as additional executable identi-
fiers, though the underlying executable remains ’restManager’. As an illustration, the
alias "restViewEvents" is equivalent to the command "restManagerViewEvents." Moreover,
REST includes a shell script called ’rest-config’, which, when supplied with specific input
parameters, furnishes users with essential information about the REST program. This in-
formation encompasses details such as the installation location, the list of library files, the
version, and more, facilitating user scrutiny. Fig. A.6 provides an overview of the compre-
hensive program execution framework.

A.4 Processing chain for PandaX-III experiment

The main construction blocks and principles of the REST framework have been explained
up to this point. This section will delve into the specifics of the processing chain for the
PandaX-III experiment employed in this thesis’s data simulation.

The Monte Carlo simulation program restG4, introduced in Section A.2.3, is used to
generate the initial energy deposition results in the detector’s gas medium. The simulation is
based on the first PandaX-III module setup, described in Chapter 2, stored in the Geometry
Description Markup Language (GDML) format. The volume of the detector is filled with
140 kg of 90% enriched 136Xe gas with 1% TMA. We are setting the particle production from
the gas volume with isotropic angular distribution. For the 1-electron and 2-electron studies,
the initial kinetic energies are set with appropriate ranges. In contrast, for the 0νββ study,
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the kinetic energies for both electrons are retrieved from the kinematics produced with the
Decay0 event generator [70, 71] integrated into the restG4.

The modular design of REST ensures that, throughout the manipulation process, data
are encoded within a specific structure, named with the prefix TRest and the suffix Event.
Simulation chains are constructed by employing processes that operate on these structures
and others that transform one structure into another. This approach allows creating complex
analysis chains from basic building blocks, each defined by its function and the data structure
it handles. In the processing chain that simulated the detector response in the form of
signals, the following structures are used:

• TRestDetectorHitsEvent: This structure is used to define an arbitrary number
of energy deposits, commonly called hits, defined by their position in space (x, y,
z), their energy E, and their time coordinate t. It is important to note that this
structure is naturally recursive because it is possible to have a TRestDetectorHitsEvent
that contains a set of hits, which are themselves sets of hits. This feature allows for
grouping hits that are close to each other.

• TRestGeant4Event: This structure is used as an extension of TRestHitsEvent. It
adds additional information related to the Geant4 simulations that generated these
hits, such as the physical process that caused the hit.

• TRestDetectorSignalEvent: This structure contains the time signal of each read-
out channel of the detector plane. It is an extension of TRestRawSignalEvent which
is a container for the time raw signal data with fixed length (e.g., the number of time
samples of the DAQ system).

The output of the restG4 simulation produces TRestGeant4Event objects that encapsulate
the energy deposition of a charged particle propagation inside the gas volume. It is passed
through the processing chain to simulate the detector’s response to the energy depositions
to produce the signal output:

• TRestGeant4ToDetectorHitsProcess: This process is responsible for converting
the TRestGeant4Event objects into TRestDetectorHitsEvent objects. It leaves only
the information about the energy deposition hits in the gas volume, discarding the
information about the physical process that caused the hit.

• TRestDetectorElectronDiffusionProcess: This process simulates the diffusion of
electrons in the chamber, causing a temporal and spatial broadening of the signal
based on the z coordinate of the signal. Here, the response of the Xenon+TMA (1%)
mixture at 10 bars with a drift field of 1 kV/cm is applied.

• TRestDetectorHitsSmearingProcess: This process simulates the smearing of the
signal due to the finite resolution of the detector. It allows the energy resolution of
each event to be adjusted directly. For this study, the detector response is calibrated
to 3% FWHM at an energy of 2457.83 keV.

• TRestDetectorHitsToSignalProcess: This process converts hits into signals by
projecting these hits onto the detection plane. Each hit is assigned a readout channel
using its (x, y) position by applying the channel positions contained in TRestReadout

154



A.4. Processing chain for PandaX-III experiment

metadata. The TRestReadout metadata contains the positions of the Micromegas
modules (and corresponding channels) in the readout plane. In the PandaX-III con-
text, the readout plane is configured with 52 Micromegas modules, each with 128
channels, described in Section 2.3.3. The z coordinate is used in conjunction with the
hit’s energy to create the signal. The properties of the gas where the electron drifts
are utilized through the TRestGas class, which interfaces REST with Garfield++ [69].
Garfield++ provides the properties of the gas mixture based on calculations performed
with Magboltz.

• TRestDetectorSignalToRawSignalProcess: This process transforms a TRestDe-
tectorSignalEvent into a TRestRawSignalEvent. The TRestDetectorSignalEvent con-
tains signal data built with arbitrary times and their corresponding values (time,
data). The data inside a TRestRawSignal loses precision on the time definition, and
it is just a data array with a fixed number of data bins. The number of bins and the
bin width depend on the DAQ system used in the experiment. In PandaX-III, the
AGET system is used, which has a 512 time sample window and for this study, a 200
ns time bin width is used. In this thesis project, the first-time deposit found in the
event corresponds to the bin 0 of the raw signal. An additional trigger delay shift of
50 bins is added to the raw signal to emulate the trigger delay of the AGET system.

• TRestRawSignalAddFullNoiseProcess: This process is an extension of the TRe-
stRawSignalAddNoiseProcess that adds white noise to the raw signal in the TRe-
stRawSignalEvent and is present in the default REST framework. The noise is gen-
erated based on the noise model of the AGET system, which includes the noise of
the preamplifier, the noise of the amplifier, and the noise of the ADC. The noise is
added to the signal in the time domain. TRestRawSignalAddFullNoiseProcess extends
this process by adding the noise to all the channels of the corresponding Micromegas
detectors whose channels registered a signal.

• TRestRawSignalShapingProcess: This process allows the convolution of the raw
signal with the shaping function. In this project, we use the Gaussian shaping function
with a 1 µs peaking time that corresponds to the AGET system.

The output of the processing chain is a TRestRawSignalEvent object that contains the signal
data for each channel of the readout plane. The signal data is stored as a time series with
a fixed number of time samples. The signal data is then stored in a ROOT file for further
analysis.

A process called TRestRawSignalDataCollectionProcess was created specifically for the
raw signal data collection that is used in the Machine Learning analysis present in Chapter
5 and 6. This process does not modify the raw signal data, but it collects the signal
amplitudes corresponding to the time samples from each channel of the readout plane and
stores them in a 2D array. The signals from the X and Y planes are stored in separate
arrays. These arrays are then concatenated into a single array used as an input for the
Machine Learning algorithms. The TRestRawSignalDataCollectionProcess process stores
the TRestRawSignalEvent object in the ROOT file so that the raw signal data can be used
by REST later on, and creates a separate .csv file with the Machine Learning input data.

The TRestRawSignalEvent object is then can be used to reconstruct XZ and YZ projec-
tions of the initial electron track in the detector within the REST framework. This is done by
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applying the track reconstruction pipeline involving the following processes: TRestRawZero-
SuppresionProcess, TRestDetectorSignalToHitsProcess, TRestDetectorHitsToTrackFastPro-
cess, TRestTrackReductionProcess, TRestTrackPathMinimizationProcess, TRestTrackRecon-
nectionProcess. These processes are not described in details, as the raw signal simulated
data is of the main interest in this thesis project. However, the TRestTrackBlobAnalysis-
Process is used at the final stage of the processing chain to perform the blob charge analysis
on the reconstructed tracks in Chapter 3.

After the TRestTrackReconnectionProcess has naturally identified the track endpoints,
this process records the coordinates or positions of these endpoints in the analysis tree. This
process searches for the region with the highest density within the last 20% of the track
length, which is then used as the blob position. The blob charge is calculated by summing
the charge within a radius R around the blob position. The blob charge is then stored in
the analysis tree.
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Backpropagation algorithm on a simple
neural network

The DNNs are usually trained using the backpropagation algorithm [83]. The backpropa-
gation algorithm, or backward propagation of errors, is an algorithm for supervised learning
of the neural networks that uses Gradient Descent . It is an optimization algorithm used
to minimize the function. In ML for multi-layered feedforward networks it uses the chain
rule to iteratively compute gradients of the cost function C(ω) with respect to the NN’s
weights and biases ω, as gradients indicate the direction of the steepest ascent of the cost
function. At each iteration of gradient descent the weights and biases are being updated,
according to the learning rate α:

ω(t) = ω(t−1) − α
∂C(ωt−1)

∂ω
, (B.1)

where ω(t) is the set of weights and biases at the iteration t and learning rate α is a hyper-
parameter that controls the step size of the gradient descent.
To understand the backpropagation algorithm, let’s look at the model with two hidden lay-
ers with the activation functions A(l), where l is the hidden layer index (Fig. B.1). The

Figure B.1: Linear model with two hidden layers.

input layer denoted as vector xi of a size of n × 1, where n is the number of nodes in the
input layer, which equals three. The inputs could be scalars, vectors, or even tensors. We

157



Appendix B. Backpropagation algorithm on a simple neural network

can write a generalized expression for the output of a hidden layer l as:

h
(l)
k =

∑
i

ω
(l)
ki a

(l−1)
i + ω

(l)
k0 , (B.2)

where a
(l−1)
i is the output of the previous layer (for the first hidden layer l = 1 the a

(l−1)
i

is just an input layer xi), ω
(l)
ki are the weights matrix of the hidden layer l, having size of

m×n, where m is the number of nodes in the hidden layer l, which in this case equals three,
and n is the number of nodes in the previous layer, which is also three, and ω

(l)
k0 is the bias

vector of the hidden layer l, having size of m× 1.
The output of the layer l with the activation function A(l) is simply:

a
(l)
k = A(l)h

(l)
k = A(l)

(∑
i

ω
(l)
ki a

(l−1)
i + ω

(l)
k0

)
. (B.3)

And finally the output of the network is:

ys

∣∣∣∣
s=1

=

(∑
k

ωska
(l)
k + ωs0

)∣∣∣∣
s=1, l=2

, (B.4)

which is exactly the same as the Eq. B.2, if we considered the output layer as the hidden
layer l = 3, so we can convert the Eq. B.4 in order to generalize the further calculations:

ys

∣∣∣∣
s=1

= h(l)
s

∣∣∣∣
s=1, l=3

=

(∑
k

ω
(l)
ska

(l−1)
k + ω

(l)
s0

)∣∣∣∣
s=1, l=3

. (B.5)

These equations above form the forward propagation of the neural network. After the
forward propagation is performed, the output of the network ys is compared to the target
value y and the error is calculated with the cost function C(ω) = C(y, ys(ω)). The gradient
of a cost function with respect to weights ω

(l)
ij for the layer l:

∂C

∂ω
(l)
ij

=
∂C

∂h
(l)
j

∂h
(l)
j

∂ω
(l)
ij

, (B.6)

and taking into account the definition of the h
(l)
j from the Eq. B.2:

∂C

∂ω
(l)
ij

=
∂C

∂h
(l)
j

a
(l−1)
i . (B.7)

Similarly, the gradient of a cost function with respect to biases ω
(l)
0j :

∂C

∂ω
(l)
0j

=
∂C

∂h
(l)
j

∂h
(l)
j

∂ω
(l)
0j

=
∂C

∂h
(l)
j

. (B.8)

The common first term for Eq. B.7 and Eq. B.8 is the local gradient δ(l)j , which is also called
the error term :

δ
(l)
j =

∂C

∂h
(l)
j

, (B.9)
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that can be calculated knowing the cost function C itself.
Now, we can write the gradient of a cost function with respect to weights ω

(l)
ij and biases

ω
(l)
0j as:

∂C

∂ω
(l)
ij

= δ
(l)
j a

(l−1)
i , (B.10)

∂C

∂ω
(l)
0j

= δ
(l)
j . (B.11)

Therefore, remembering the Eq. B.1, for the iteration t + 1 of the gradient descent, the
weights and biases are updated as:

ω
(l)
ij = ω

(l)
ij − αδ

(l)
j a

(l−1)
i , (B.12)

ω
(l)
0j = ω

(l)
0j − αδ

(l)
j . (B.13)

Now, we can write the error term δ
(l)
j for the hidden layer l using the chain rule:

δ
(l)
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∂h
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j
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The partial derivative ∂h
(l+1)
k

∂h
(l)
j

can be calculated using the Eq. B.2:
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The partial derivative ∂a
(l)
j

∂h
(l)
j

can be calculated using the Eq. B.3:
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The partial derivative A(l)′ is the derivative of the activation function A(l) and is called the
activation function derivative . For the ReLU activation function A(l)(x) = max(0, x),
the derivative is A(l)′(x) = 1 for x > 0 and A(l)′(x) = 0 for x < 0. For the sigmoid activation
function A(l)(x) = (1 + e−x)−1, the derivative is A(l)′(x) = A(l)(x)(1−A(l)(x)).
Now, we can write the error term δ

(l)
j for the hidden layer l using the Eq. B.15 and Eq. B.16:

δ
(l)
j =

∑
k

δ
(l+1)
k ω

(l+1)
kj A(l)′

(∑
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ω
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(l)
j0

)
. (B.17)

The Eq. B.17 is the backpropagation equation , which is used to calculate the error term
δ
(l)
j for the hidden layer l using the error term δ

(l+1)
k for the hidden layer l + 1.
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