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Abstract
A combustion front can propagate in the form of two distinct waves: deflagrations,

subsonic flames controlled by diffusion processes, and detonations, supersonic waves
producing an intense overpressure that can have catastrophic effects. This thesis aims to
motivate new approaches to deal with the complex phenomenon of the initiation of gaseous
detonations, which represents a physical problem of great interest in different scientific
and technological fields from explosion safety to astrophysics, including propulsion.

Based on fundamental principles, mathematical models were developed to describe two
primary process of detonation initiation: direct initiation and deflagration-to-detonation
transition. A combination of asymptotic and numerical methods was used to analyze the
interaction of gas dynamics with the internal structure of the premixed reactive waves.
First, the critical dynamics of direct initiation of detonations was studied in the asymptotic
limit of small heat release. Analytical and numerical results of this study exhibit similar
behaviors to those found in the opposite limit of large Mach number, which underlines
the relevance of the small heat release limit. Regarding the critical conditions for direct
initiation, the results highlight the critical role of the sonic condition in the transition
towards a self-sustained detonation regime. The front curvature is then essential to define
critical initiation criteria, since the nonlinear effect of the propagation velocity on the
detonation thickness prevents the sonic condition from being reached when the front
curvature exceeds a critical value. Secondly, a simplified one-dimensional model for the
tip of elongated flames propagating along thin tubes was studied. In this model, flame
acceleration is only driven by the expansion of the combustion products and the thermal
sensitivity of the rate of combustion reactions. The feedback between both mechanisms
generates criticality conditions defined by a maximum flame elongation, beyond which
there is no steady solution. Numerical simulations illustrate a flame acceleration runaway
mechanism when the critical flame elongation is exceeded. Consequently, the onset
of the detonation occurs within the internal structure of the flame when, upon the
strong acceleration, the dissipation mechanisms become significant enough to trigger the
formation of a shock wave.

The findings reported in this work provide insights into detonation initiation phenomena
that in a context of energy decarbonization may be relevant both to ensure the safe use of
alternative fuels, such as hydrogen, and to develop a new generation of more efficient
combustion engines.

Key words: detonation theory, direct initiation, deflagration-to-detonation transition,
asymptotic methods, numerical integration





Résumé
Un front de combustion peut se propager sous la forme de deux ondes distinctes :

les déflagrations, flammes subsoniques contrôlées par des processus de diffusion, et les
détonations, ondes supersoniques produisant une surpression intense qui peut avoir des
effets catastrophiques. Cette thèse vise à motiver de nouvelles approches pour traiter le
phénomène complexe de l’initiation des détonations gazeuses, qui représente un problème
physique d’un grand intérêt dans différents domaines scientifiques et technologiques tels
que la sécurité des explosions et l’astrophysique, y compris la propulsion.

Sur la base des principes fondamentaux, des modèles mathématiques ont été développés
pour décrire les deux principaux processus d’initiation des détonations : l’initiation directe
et la transition déflagration-détonation. Une combinaison de méthodes asymptotiques
et numériques a été utilisée pour analyser l’interaction de la dynamique des gaz avec la
structure interne des ondes réactives prémélangées. Tout d’abord, la dynamique critique
de l’initiation directe des détonations a été étudiée dans la limite asymptotique d’un faible
dégagement de chaleur. Les résultats analytiques et numériques de cette étude montrent
des comportements similaires à ceux trouvés dans la limite opposée d’un grand nombre
de Mach, ce qui souligne la pertinence de la limite d’un faible dégagement de chaleur. En
ce qui concerne les conditions critiques pour l’initiation directe, les résultats mettent en
évidence le rôle critique de la condition sonique pour former une onde de détonation auto-
entretenue. La courbure du front est alors essentielle pour définir les critères d’initiation
critiques, puisque l’effet non linéaire de la vitesse de propagation sur l’épaisseur de la
détonation empêche la condition sonique d’être atteinte lorsque la courbure du front
dépasse une valeur critique. Deuxièmement, un modèle unidimensionnel simplifié pour
la pointe des flammes allongées se propageant le long de tubes minces a été étudié. Dans
ce modèle, l’accélération de la flamme est uniquement due à l’expansion des produits de
combustion et à la sensibilité thermique de la vitesse des réactions de combustion. La
rétroaction entre les deux mécanismes génère des conditions de criticité définies par une
élongation maximale de la flamme au-delà de laquelle il n’y a pas de solution stationnaire.
Les simulations numériques illustrent un mécanisme d’emballement de l’accélération de
la flamme lorsque l’allongement critique de la flamme est dépassé. Par conséquent, la
détonation se produit dans la structure interne de la flamme lorsque, suite à une forte
accélération, les mécanismes de dissipation deviennent suffisamment importants pour
déclencher la formation d’une onde de choc.

Dans le contexte de la décarbonisation de l’énergie, les résultats rapportés dans ce
travail donnent un aperçu des phénomènes d’initiation de la détonation qui peuvent
être pertinents à la fois pour assurer l’utilisation sûre de carburants alternatifs, tels que
l’hydrogène, et pour développer une nouvelle génération de moteurs à combustion plus
efficaces.
Mots clés : théorie des détonations, allumage direct, transition déflagration-détonation,
méthodes asymptotiques, intégration numérique





Resumen
Un frente de combustión puede propagarse en forma de dos ondas distintas: deflagra-

ciones, llamas subsónicas controladas por procesos de difusión, y detonaciones, ondas
supersónicas que producen una intensa sobrepresión que puede tener efectos catastróficos.
Esta tesis pretende motivar nuevas aproximaciones para tratar el complejo fenómeno de
la iniciación de detonaciones gaseosas, que representa un problema físico de gran interés
en diferentes campos científicos y tecnológicos desde la seguridad frente a explosiones
hasta la astrofísica pasando por la propulsión.

Basándose en principios fundamentales, se desarrollaron modelos matemáticos para
describir dos procesos principales de iniciación de la detonación: la iniciación directa
y la transición de deflagración a detonación. Se utilizó una combinación de métodos
asintóticos y numéricos para analizar la interacción de la dinámica del gas con la estructura
interna de las ondas reactivas premezcladas. En primer lugar, se estudió la dinámica
crítica de la iniciación directa de las detonaciones en el límite asintótico de pequeña
liberación de calor. Los resultados analíticos y numéricos de este estudio muestran
comportamientos similares a los encontrados en el límite opuesto de gran número de
Mach, lo que subraya la relevancia del límite de pequeña liberación de calor. En cuanto a
las condiciones críticas para la iniciación directa, los resultados destacan el papel crítico
de la condición sónica para formar una onda de detonación autosostenida. La curvatura
del frente es entonces esencial para definir los criterios críticos de iniciación, ya que
el efecto no lineal de la velocidad de propagación sobre el espesor de la detonación
impide que se alcance la condición sónica cuando la curvatura del frente supera un valor
crítico. En segundo lugar, se estudió un modelo unidimensional simplificado para la
punta de llamas alargadas que se propagan a lo largo de tubos delgados. En este modelo,
la aceleración de la llama está impulsada únicamente por la expansión de los productos
de combustión y la sensibilidad térmica de la velocidad de las reacciones de combustión.
La retroalimentación entre ambos mecanismos genera condiciones de criticidad definidas
por una elongación máxima de la llama más allá de la cual no hay solución estacionaria.
Las simulaciones numéricas ilustran un mecanismo de aceleración de la llama fuera de
control cuando se supera el alargamiento crítico de la llama. En consecuencia, el inicio de
la detonación se produce dentro de la estructura interna de la llama cuando, tras la fuerte
aceleración, los mecanismos de disipación se vuelven lo suficientemente significativos
como para desencadenar la formación de una onda de choque.

En el contexto de la descarbonización de la energía, los hallazgos presentados en este
trabajo aportan conocimientos sobre los fenómenos de iniciación de la detonación que
pueden ser relevantes tanto para garantizar el uso seguro de combustibles alternativos,
como el hidrógeno, como para desarrollar una nueva generación de motores de combustión
más eficientes.
Palabras clave: teoría de la detonación, iniciación directa, transición de deflagración a
detonación, métodos asíntoticos, integración numérica





Contents

Affidavit ii

Acknowledgements vi

List of Publications and Participation in Conferences ix

Abstract x

Resumé xi

Resumen xiii

List of Figures xxi

List of Tables xxv

Nomenclature xxvi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 One-dimensional compressible flow and premixed combustion waves 11
2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 One-dimensional compressible flow . . . . . . . . . . . . . . . . . . . 15

2.2.1 Unsteady compressible waves . . . . . . . . . . . . . . . . . . 15

xvii



Contents

2.2.2 Shock waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Strong blast wave . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Premixed combustion waves . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Deflagrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Direct initiation of critical detonations in the small heat release asymptotic
limit 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Detonation model near the self-sustained regime in the small heat release

limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 General equations . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Physical insights from steady planar detonations . . . . . . . . 52
3.2.3 Small heat release asymptotic limit . . . . . . . . . . . . . . . 57
3.2.4 Chemical-kinetics model . . . . . . . . . . . . . . . . . . . . . 62

3.3 Dynamics of the combustion products behind a detonation . . . . . . . 67
3.3.1 Self-similar solution behind a CJ wave . . . . . . . . . . . . . . 68
3.3.2 Overdriven decaying detonation . . . . . . . . . . . . . . . . . 70
3.3.3 Transitory regime in curved waves . . . . . . . . . . . . . . . . 73

3.4 Direct initiation of a detonation . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Overdriven regimes . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 Discussion of the critical dynamics . . . . . . . . . . . . . . . 86

3.5 Quasi-steady approximation . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.1 Steady internal structure of self-sustained detonations . . . . . . 91
3.5.2 Steady internal structure of overdriven waves . . . . . . . . . . 94

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Deflagration-to-detonation transition at the tip of a flame in thin tubes 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Elongated flame tip model . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Steady planar flame . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.3 One-dimensional model at the flame tip . . . . . . . . . . . . . 114

4.3 Double-discontinuity model . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.1 Self-similar solutions . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Isentropic compression waves . . . . . . . . . . . . . . . . . . 122

4.4 Internal flame structure . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Steady flame propagation . . . . . . . . . . . . . . . . . . . . . 132
4.4.3 Slow flame elongation . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xviii



Contents

5 Conclusions and perspectives 151
5.1 Direct Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2 Deflagration-to-Detonation Transition . . . . . . . . . . . . . . . . . . 155

5.2.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159

xix





List of Figures

1.1 Laffitte’s streak photography of detonation direct initiation and Bal-
lossier’s schlieren photographs of deflagration-to-detonation transition . 3

1.2 Bach et al. schlieren photographs showing subcritical and critical initiation
of gaseous detonations. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Photographs of the consequences of the Buncefield accident in 2005 . . 6
1.4 Photograph of the Type Ia supernova SN 1994D . . . . . . . . . . . . . 7

2.1 Shock formation ahead an accelerating piston . . . . . . . . . . . . . . 18
2.2 Locus of the singularity in the compression wave as a function of the

piston velocity law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Hugoniot adiabatic curve and Michelson-Rayleigh line . . . . . . . . . 22
2.4 Rankine-Hugoniot jump relations in an inert shock wave as a function of

the Mach number Mu for different values of the heat capacity ratio γ. . . 23
2.5 Rankine-Hugoniot jump relations (dotted black line) and linearised

Rankine-Hugoniot jump relations (solid red line) for weak shock waves
Mu ´ 1 ! 1 in polytropic diatomic gases γ “ 1.4. . . . . . . . . . . . . 24

2.6 Internal structure of a weak shock waveMu ´ 1 ! 1 propagating towards
the right (i.e., the upstream gas is at x Ñ 8 and the shocked gas is at
x Ñ ´8) for a diatomic gas γ “ 1.4. . . . . . . . . . . . . . . . . . . 25

2.7 Physical variables distribution in the strong blast wave solution . . . . . 28
2.8 Rankine-Hugoniot curves and Michelson-Rayleigh lines for detonations

and deflagrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 ZND detonation structure . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Partially reacted Hugoniot curves and Michelson-Rayleigh lines illus-

trating the fluid particle path throughout the ZND detonation structure. . 37
2.11 Physical variables distribution behind a strong CJ detonation . . . . . . 39

xxi



List of Figures

3.1 Trajectories propagation velocity vs. front radius with different source
energies obtained through numerical simulation . . . . . . . . . . . . . 45

3.2 Pressure p and velocity v profiles at different time instants t around
transition to CJ detonation tc in the infinitely fast reaction rate limit . . . 47

3.3 Temperature and density profiles at the internal structure of a steady
planar detonation for different values of γ. . . . . . . . . . . . . . . . . 53

3.4 Pressure and relative flow velocity profiles at the internal structure of a
steady planar detonation for different values of γ. . . . . . . . . . . . . 54

3.5 Characteristic lines in the internal structure of a steady planar detonation 56
3.6 Detonation structure of a CJ wave with a simplified three-step chemical-

kinetics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Reduced heat release distribution ωpξq as a function of the propagation

velocity 9ατ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 Flow velocity profile of combustion products behind a CJ detonation . . 70
3.9 Transitory flow velocity at the front behind a decaying detonation wave . 73
3.10 Transitory flow velocity profile of combustion products behind a planar

detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11 Transitory flow velocity profile of combustion products behind a cylin-

drical detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.12 Transitory flow velocity profile of combustion products behind a spherical

detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.13 Initial solution for the overdriven regime of a stable spherical detonation 81
3.14 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a stable

spherical detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.15 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a stable

cylindrical detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.16 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a stable

cylindrical detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.17 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a weakly

unstable spherical detonation . . . . . . . . . . . . . . . . . . . . . . . 84
3.18 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a weakly

unstable spherical detonation . . . . . . . . . . . . . . . . . . . . . . . 84
3.19 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a strongly

unstable spherical detonation . . . . . . . . . . . . . . . . . . . . . . . 85
3.20 Trajectories “propagation velocity 9ατ vs. front radius r̃f” for a stable

spherical detonation with lower crossover . . . . . . . . . . . . . . . . 86
3.21 Slowdown mechanism in successful initiation . . . . . . . . . . . . . . 88
3.22 Slowdown mechanism in detonation failure . . . . . . . . . . . . . . . 89
3.23 Comparison between the numerical results considering the internal

detonation structure and the self-similar solution for the flow of products
behind a discontinuous CJ detonation . . . . . . . . . . . . . . . . . . 91

3.24 Flow velocity profile of a CJ detonation . . . . . . . . . . . . . . . . . 92
3.25 Steady-state detonation waves in curved geometries . . . . . . . . . . . 96

xxii



List of Figures

3.26 Comparison of the numerical results with the quasi-steady approximations 97

4.1 Internal flame structure in the asymptotic limit of large activation energy
and for a finite activation energy . . . . . . . . . . . . . . . . . . . . . 110

4.2 Scheme of the elongated flame model . . . . . . . . . . . . . . . . . . 117
4.3 Curve of self-similar solutions for a shock/flame system . . . . . . . . . 121
4.4 Curve of solutions for a shock/isentropoc wave/flame system . . . . . . 123
4.5 Profiles of the physical variables at the initialization of the numerical

integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.6 Evolution towards the self-similar solution of the profiles of the physical

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.7 Self-similar profiles for different values of burned gases backflow . . . . 137
4.8 Temporal evolution of the flame position and absolute flame propagation

speed for different values of the backflow of burned gases . . . . . . . . 138
4.9 Comparison of the relationships between velocites and elongation pa-

rameter obtained by the double-discontinuity model and the parametric
study of the internal flame structure . . . . . . . . . . . . . . . . . . . 139

4.10 Phyisical variables profiles during a quasi-steady evolution of the elon-
gation parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.11 Physical variable profiles in the flame internal structure during a quasi-
steady evolution of the elongation parameter . . . . . . . . . . . . . . . 142

4.12 Flame velocities with a time-dependent elongation parameter . . . . . . 143
4.13 Absolute flame velocity with a time-dependent elongation parameter

increasing at different paces . . . . . . . . . . . . . . . . . . . . . . . . 144
4.14 Physical variable profiles in the flame internal structure at the onset of

the detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.15 Physical variable profiles in the flame internal structure at the onset of

the detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.16 Absolute flame felocity with a time-dependent elongation parameter

during the onset of the detonation . . . . . . . . . . . . . . . . . . . . 148

5.1 Numerical analysis of the quasi-steady approximation . . . . . . . . . . 153
5.2 Flow velocity profile at τs when the sonic point reaches the exit of the

reaction zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xxiii





List of Tables

3.1 Characteristic lines behind the leading shock of a detonation . . . . . . 55
3.2 Sonic regimes behind the leading shock of a detonation . . . . . . . . . 57
3.3 Simplified three step kinetic scheme of Clavin and Denet (2018) . . . . 65

4.1 Thermochemical parameters employed in the numerical study of the
internal flame structure . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xxv





Nomenclature

Acronyms

1D One-dimensional

CJ Chapman-Jouguet regime

CT Clavin & Tofaili elongated flame model

DDT Deflagration-to-Detonation Transition

DI Direct Initiation

DJ Deshaies & Joulin theoretical analysis

DL Darius-Landau hydrodynamic instability

DNS Direct Numerical Simulation

ODE Oblique Detonation Engine

PDE Pulsed Detonation Engine

RDE Rotating Detonation Engine

RH Rankine-Hugoniot jump conditions

ZFK Zeldovich-Frank Kamenetskii asymptotic analysis

ZND Zeldovich-Neumann-Döring detonation internal structure

Constants

kB Boltzmann constant 1.380 649 ¨ 10´23 J{K

xxvii

https://physics.nist.gov/cgi-bin/cuu/Value?k


Nomenclature

NA Avogadro constant 6.022 140 76 ¨ 1023mol

R Universal gas constant, R “ NAkB 8.314 462 618 J{molK

Dimensionless Numbers

Le Lewis number

Pr Prandtl number

Re Reynolds number

Greek letters

β Zeldovich number, β ”
Ea

kBTb

Tb ´ To
Tb

9ατ First order dimensionless propagation velocity of the leading shock in the small

heat release limit, 9ατ ”
D ´ DoCJ

auϵ

ϵ Small parameter in the small heat release asymptotic expansion, ϵ ”

c

qm
cpTu

γ Specific heat ratio, γ ”
cp
cv

λ Thermal conductivity

µ First order dimensionless flow velocity in the small heat release limit, µ ”

au ´ pDoCJ
´ uq

auϵ

ν Kinematic viscosity or momentum diffusivity, ν “ µ{ρ

ω Reaction rate

π First order dimensionless pressure in the small heat release limit, π ”
1

γϵ
ln

ˆ

p

pu

˙

τ Non dimensional time coordinate, τ ”
t

tr
ϵ

ξ Non dimensional spatial coordinate, ξ ”
r ´ rfptq

autr

Latin letters

ρ Density

b̃ Thermal sensitivity, b̃ “
Tu
Ub

dUb

dTu

xxviii

https://physics.nist.gov/cgi-bin/cuu/Value?na
https://physics.nist.gov/cgi-bin/cuu/Value?eqr


Nomenclature

a Sound speed

b Reduced activation energy, b “ 2 pγ ´ 1q ϵ
Ea

kBTu

C Characteristic line

cp Specific heat capacity at constant pressure

cv Specific heat capacity at constant volume

D Molecular diffusivity

d Shock thickness

DT Thermal diffusivity, DT “
λ

ρcp

E Total energy

e Internal thermal energy

Ea Activation energy

I Riemann invariant

j Geometrical parameter for cartesian j “ 0, cylindrical j “ 1, and spherical j “ 2
coordinates.

l Mean free path

lf Flame characteristic length

li Induction layer characteristic length

lr Reactive layer characteristic length

M Mach number

p Pressure

qm Heat release per unit of mass

r Radius or distance to the origin

rf Front radius

t Time

u Gas velocity

uf Flame velocity in the laboratory reference frame

xxix



Nomenclature

V Self-similar solution

v Specific volume

x Distance to the front

z Self-similar variable

D Combustion wave velocity relative to the upstream flow

P Normalised pressure, P “
γ ` 1

2γ

ˆ

p

pu
´ 1

˙

Q Normalised heat of reaction, Q “
γ ` 1

2

qm
cpTu

V Normalised specific volume, V “
γ ` 2

2

ˆ

ρu
ρ

´ 1

˙

Superscripts and subscripts

0 Leading edge of the core of stagnant gases

b Burned state

ext External flow

f Front

i Initial value

N Neumann state

o Unperturbed state

s Shock wave

tr Transitory flow

u Unburned state

xxx



CHAPTER1

Introduction

The energy released by a spark in a reactive medium can initiate the propagation
of a reactive wave converting the reactants into combustion products. The internal
chemical energy stored in the chemical bonds of the reactants that is not involved in the
recombination of the products is released in the form of heat. Significant changes in the
thermodynamics and gas dynamics states occur across the combustion wave under the
effect of this additional energy. The gradients created across the wave lead to physical
and chemical processes that drive the self-propagation of the combustion wave.

The propagation of a combustion front in premixed reactive mixtures exhibits two
distinct modes: deflagration and detonation. In the deflagration regime, the combustion
wave advances a few meters per second with the velocity of a laminar flame (Williams,
1985). Alternatively, the combustion wave may accelerate leading to turbulent flames
with velocities of hundred of meters per second (Poinsot and Veynante, 2005). In contrast,
the reactive wave in the detonation regime propagates at supersonic velocities of about
thousands of meters per second, resulting in an overpressure of around twenty times the
atmospheric pressure (Lee, 2008). The wide range of propagation velocities exhibited
by such premixed reactive waves implies the existence of a variety of propagation
mechanisms.

The propagation of a laminar deflagration is governed by the molecular diffusion of
heat and mass from the reaction zone to the unburned mixture, while the propagation
of a detonation depends on the adiabatic shock compression of the reactive mixture.
In order to sustain a detonation at such a high speed, the compressive and dissipative
heating must be large enough to initialize the reactions of combustion which are frozen
at ambient temperatures. Detonation is defined as a combustion sustained shock wave
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with a significant pressure and density rise across the wave (Fickett and Davis, 2000).
The salient feature of detonation waves is the coupled motion of a shock wave with the
reaction zone behind it.

The growing number of accidental explosions in coal mines during the latter half of the
19th century motivated the first systematic study of the detonations by Berthelot and Vieille
(Manson, 1987). Subsequent investigations by Mallard and Le Chatelier demonstrated
that the two propagation regimes, deflagration and detonation, could be observed in the
same reactive mixture. This observation suggested that the propagation mechanisms could
be controlled by the gas dynamics and not by the intrinsic thermochemical properties of
the mixture.

The earliest theory of detonation waves is the classical Chapman-Jouguet (CJ) theory
(Chapman, 1899; Jouguet, 1905). This theory allows to compute overall characteristics of
a steady detonation such as the jump relations across the wave or the detonation velocities
observed experimentally. The CJ theory is based on thermodynamic equilibrium and does
not require to investigate the kinetics of the chemical interactions since the detonation
is considered as a discontinuity. Hence, it cannot predict the rate-dependent detonation
parameters such as the detonation thickness, the critical tube diameter or the critical
initiation energy. One of the main results of the CJ theory, is that the flow left behind by
a self-sustained detonation is sonic relative to the wave.

Another important contribution to the theory of detonations is the Zeldovich-von
Neumann-Döring (ZND) theory (Zeldovich, 1940; von Neumann, 1942; Döring, 1943).
This theory considers a one-dimensional steady structure for detonation waves, which
consists of a normal shock wave followed by an inviscid induction zone and subsequently
by a reaction zone. The reaction zone ends at the CJ or sonic plane, where the predicted
equilibrium states correspond to those determined by the CJ theory. Although the
one-dimensional ZND structure is rarely observed experimentally due to its intrinsic
longitudinal instability, it provides a characteristic length scale for the detonation wave
and a qualitative description of its structure.

Beside these classic theories, numerous theoretical (Clavin and Searby, 2016), ex-
perimental (Lee, 2008), and computational research (Oran and Boris, 2005) have been
conducted over the past decades to further investigate different aspects of gaseous
detonations. However, no satisfactory theory has been developed that can accurately
predict certain dynamic parameters of gaseous explosions from fundamental principles
based on the thermo-chemical properties of a reactive mixture. For instance, it remains
unclear what minimum energy is required for the initiation of a detonation, or under
which conditions a detonation wave may persist through the passage of a small opening
into a large reservoir. Furthermore, it is not possible to determine a priori whether it is
possible to detonate a given mixture, nor can it be ascertained under which conditions a
deflagration can undergo an acceleration leading to the transition to an explosive regime.

Among the open questions regarding the understanding of detonation phenomena, the
process of initiation of a detonation is one of the main concerns when considering the
safe use of highly reactive mixtures and control of detonations waves. The processes
followed during the initiation of a self-propagating detonation have been categorized into
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Figure 1.1: (a) Streak photography of the detonation direct initiation process taken by Laffitte
(1925). A strong blast wave was ignited through a mercury charge at the center of a balloon filled
with a hydrogen-oxygen mixture. (b) Successive schlieren photographs of the deflagration-to-
detonation transition taken by Ballossier (2021). A deflagration wave propagating in a 10mm
channel filled with a hydrogen-oxygen mixture abruptly turns into a detonation in the time span of
6 µs between photographs.

two distinct categories: Direct Initiation (DI) and Deflagration-to-Detonation Transition
(DDT). The former involves a fast transition from a decaying blast wave to a self-sustained
detonation, while the latter involves a slower transition from a deflagration to a detonation.

Direct Initiation

Direct Initiation is the process of formation of a detonation in open space without
undergoing a predetonation stage of flame acceleration. The conditions required for the
onset of the detonation are created directly in the decay of a strong blast wave generated by
a powerful concentrated energy source. The feasibility of initiating a detonation in open
space was not clear in the early days of detonation research until the first experimental
evidences were obtained by Laffitte (1925) under the direction of M. Le Chatelier. Using
a powerful igniter with a mercury charge, Laffitte succeeded in initiating a spherical
detonation in the center of a spherical glass balloon, as revealed by the streak photographs
(see Figure 1.1a). The photographs showed the apparent instantaneous formation of the
detonation without the noticeable predetonation period observed in previous experiments.
Nevertheless, Laffitte already noted that a remarkably large amount of energy had to be
released initially for a direct initiation to occur.

A later experimental study of the direct initiation of spherical detonations by Bach
et al. (1969) identified three distinct regimes as a function of the initiation energy:

i) Subcritical energy regime: When the initiation energy is below the critical value,
the reaction front progressively decouples from the leading shock, leading to the
rapid deceleration of the shock wave into an acoustic wave. The notable decoupling
between the expansion wave and the reactive shell is illustrated by Figure 1.2a.
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(a) Subcritical regime (b) Critical regime

Figure 1.2: Schlieren photographs of direct initiation of a detonation of an stoichiometric acetylene-
oxygen mixture. Reprinted from Bach et al., 1969.

ii) Critical energy regime: For initiation energies close to the critical value, it is
observed that the distance between the shock wave and the peak of reactivity
initially increases. However, the decoupling stops when the reaction front is a
few millimetres behind the shock. The shock and reaction front then propagate
steadily, with instabilities developing over time and the reaction front accelerating
towards the shock wave. Eventually, this re-acceleration leads to the formation of a
self-sustained detonation wave. Figure 1.2b illustrates the asymmetric recoupling
of both waves in the critical initiation regime.

iii) Supercritical energy regime: When the initiation energy is greater than the critical
value, no decoupling between the shock and the reaction front is observed. The
overdriven spherical detonation gradually decays towards the theoretical CJ velocity
and then propagates at constant velocity.

The study of Bach et al. (1969) provided valuable insight into the direct initiation of
spherical detonations and particularly into the critical regime.

Deflagration-to-Detonation Transition

In contrast to the Direct Initiation, the Deflagration-to-Detonation Transition starts with
the ignition of the combustible mixture by a low energy source that generates a slowly
propagating flame. Under appropriate conditions, the flame accelerates and undergoes a
transition to detonation. During DDT, the propagation mechanism of the combustion
wave shifts from molecular diffusion and convective transport to autoignition by adiabatic
shock compression. In the final phase of DDT, the flame is observed to propagate at
velocities approaching the speed of sound for a certain period of time and, eventually,
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the abrupt onset of a detonation wave occurs (see Figure 1.1b). The systematic study of
Urtiew et al. (1966) using pioneering experimental techniques was a milestone that made
it possible to visualize with detail the DDT phenomenon.

The two modes of initiation are typically explained by differentiating between two
distinct phases. In the case of DI, an initial phase of rapid decay of the blast wave leads
to a phase of transition from an overdriven detonation into a CJ detonation regime. The
DDT is characterized by an initial phase of flame acceleration that culminates in the
sudden onset of an overdriven detonation, which subsequently relaxes to a CJ detonation.
Thus, both initiation modes differ mainly in their initial phases. The final phase which
culminates with the formation of a self-sustained CJ detonation is seemingly similar in
both modes and has been suggested to be universal for DI and DDT (Lee and Higgins,
1999).

This study will look into the transition from an overdriven regime to a CJ detonation in
the context of DI, and flame acceleration and onset of a strong detonation in the context
of DDT. Particularly, the study will focus on the interplay of gas dynamics with simplified
models of chemical kinetics.

1.1 Motivation
The destructive potential as well as the energetic interest of the rapid release of chemical
energy has motivated extensive research on detonations across a wide range of scientific
and technological fields such as explosion safety, detonative propulsion and astrophysics.
In the context of explosion safety, the increasing interest in hydrogen as a means
decarbonizing the energy sector demands a thorough understanding of the underlying
physics of detonations to ensure the safe operation of hydrogen-based industrial processes
and the storage of this fuel (Ng and Lee, 2008). The theoretical potential of detonation-
based engines to provide higher efficiency and wider operating regimes over traditional
engines with a simpler mechanical design (Wolański, 2013) attracts attention from the
aerospace and military sectors, which promote the introduction and development of novel
designs. Understanding the dynamics of detonation waves is essential for the operation of
such engines, so improved detonation control models are fundamental to their development.
Additionally, the similarities of terrestrial detonations with astrophysical events, such
as some supernovae, have attracted the interest of astronomers and astrophysicists in
detonation phenomena (Röpke and Hillebrandt, 2005).

Explosion safety

In the field of explosion safety, the formation of a detonation represents the worst possible
accident (Oran et al., 2020) (see Figure 1.3). Understanding the mechanism that govern
the initiation of detonations is crucial to ensure the safe operation of industrial processes
and the protection of passengers on vehicles powered by combustion engines. Particularly,
the growing popularity of hydrogen as a clean energy carrier or diluent of traditional
fuels to reduce the carbon footprint of the energy and transportation sectors represents
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Figure 1.3: Photographs of the aftermath of the 2005 Buncefield accident. A thorough investigation
determined that a deflagration-to-detonation transition was the mechanism behind the intense
explosion of the vapour cloud originated from a leak in one of the fuel tanks (Johnson, 2010;
Chamberlain et al., 2019).

a major risk (Crabtree et al., 2004; Chaumeix et al., 2007). But even when hydrogen
is not used directly as a fuel, it can still form spontaneously in severe nuclear accidents
(Yanez et al., 2015; Grosseuvres et al., 2019), or by decomposition of products from the
semi-conductor industry or nuclear waste storage Mével et al. (2009) and Mével et al.
(2015).

The flammability, buoyancy, and permeability of hydrogen mixtures raise concerns
about their safe use (Boivin et al., 2022). The wide flammability limits of hydrogen
(Cheikhravat et al., 2012; Sánchez and Williams, 2014), its tendency to propagate in the
fast flame regime (Ciccarelli et al., 2019), or detonative regime (Zitoun et al., 1995; Mével
et al., 2016), the embrittlement of materials exposed to hydrogen (Oriani, 1978) and
unexpected flame propagation regimes in ultra-lean conditions (Veiga-López et al., 2020)
pose new safety challenges compared to traditional fuels. Better insights on detonation
phenomena can then be used to design safer equipment and develop effective prevention
strategies.

Detonative propulsion

Detonative propulsion is concerned with the design of propulsion systems that rely
on the rapid combustion of a reactive mixture in a detonation to produce high-speed
thrust. Detonations represent an ideal combustion process for such systems, as they allow
for highly efficient energy transfer and can produce high pressures and temperatures.
Different implementations of detonative engines include Pulse Detonation Engines (PDE),
Rotating Detonation Engines (RDE), and Oblique Detonation Wave Engines (ODWE)
engines. PDEs operate by sequentially generating detonation in a combustion chamber
(Roy et al., 2004). The momentum produced in the detonation is then directed into a
nozzle to produce thrust. RDEs are a more recent innovation that generate a rotating
detonation wave in an annular chamber, allowing for a continuous thrust output (Rankin
et al., 2017). ODWEs (also known as shcramjet for shock-induced combustion ramjet),
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Figure 1.4: Photograph of the Type Ia supernova SN 1994D (Treffers et al., 1994) taken by the
Hubble Space Telescope. The supernova at the lower left exhibits a brightness comparable to that
of the entire galaxy NGC 4526.

on the other hand, rely on the geometry of the air inlet to generate supersonic combustion
waves (Urzay, 2018).

The control of the detonation waves is crucial in the design of such propulsion systems.
For instance, a better understanding of the deflagration-to-detonation transition can be
employed to optimize the combustion chamber of a PDE (Sorin et al., 2006). The
fundamental analysis of the transmission of a detonation wave from a straight channel to
a curved chamber, as occurs within an RDE, is a subject of current research (Melguizo-
Gavilanes et al., 2021b). Assessing the impact of non-uniformities of the incoming flow
on detonations (Huete et al., 2013; Boulal et al., 2016; Cuadra et al., 2020) is an ongoing
research topic. These examples show that the development of detonation-based propulsive
systems still requires a deeper understanding of detonation fundamental aspects.

Astrophysics

In astrophysics, the mechanism underlying type Ia thermonuclear supernova (see Fig-
ure 1.4) represents an open topic of discussion without a widely accepted explanation
(Mazzali et al., 2007; Pomeau et al., 2014). A unified mechanism is thought to govern
both unconfined DDT in terrestrial detonations and type Ia supernovae (Poludnenko et al.,
2019; Gordon et al., 2021). For instance, Charignon and Chièze (2013) and Charignon
(2013) proposed a new mechanism for DDT based on the formation of shock waves by
amplification of acoustic waves passing through regions of steep density gradients in the
context of thermonuclear supernovae. Understanding the mechanism behind these stellar
explosions is essential for developing accurate models of these phenomena, which are
used to measure interstellar distances and are therefore fundamental to our understanding
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of the universe.
The study of the initiation mechanisms of detonations is motivated by its relevance

to various scientific and technological fields. Contemporary research on flame and
detonation dynamics is mainly based on numerical simulations that attempt to reproduce
all known physics in a quest to recreate virtual experiments. Such simulations must
accurately describe the strongly transient behaviors that characterize the initiation and
propagation of detonation waves to be relevant. From the smallest time and length
scales imposed by the detailed chemical kinetics to the large scales that characterize
supersonic flows have to be included in the simulations. Therefore, the cost of the
simulations required to define safety regulations, design and optimize reliable systems,
and gain an in-depth understanding of natural phenomena becomes prohibitive even with
state-of-the-art computational capabilities.

The onset and large-scale dynamics of detonation waves is strongly influenced by the
internal structure of the wave, whose scales are significantly smaller. The predictive
capabilities of numerical simulations have so far been limited. Therefore, new theoretical
models of detonation dynamics based on insights into the behavior of the internal structure
of these waves are needed to guide numerical simulations or even suggest alternative
experimental studies.

1.2 Aims and Objectives
The ultimate goal of this thesis is to propose new approaches to deal with the complex
phenomenon of detonation ignition, either to minimise its likelihood, to improve the
control and operation of detonation-based engines, or to better understand the underlying
physics which could shed light in the understanding of other complex phenomena such as
the explosions of stars. In order to achieve this goal, a common approach in combustion
science of systematic reduction of the complexity to retain exclusively the fundamental
mechanisms responsible for the phenomena will be followed. The analysis will aim to
eliminate all mechanisms that may introduce quantitative corrections but are not essential
to the problem of detonation ignition at hand. By focusing on the essential mechanisms,
the thesis aims to develop a deeper understanding of detonation ignition phenomena.

The distinct behavior exhibited by the direct initiation of detonations and the
deflagration-to-detonation transition suggest that they are likely driven by fundamentally
different mechanisms. As such, both processes will be studied independently in this
thesis and eventual similarities will be discussed.

An enlightening step in the understanding of direct initiation was taken decades ago by
inspecting the curvature effects under the overly restrictive assumption of the quasi-steady
approximation. An objective of this thesis will then be to inspect the effects of curvature
during direct initiation of detonations removing this hypothesis. The asymptotic limit of
small heat release, which has proven useful in the study of the longitudinal instability
of detonations, could ease this endeavor. Hopefully, the detonation dynamics during
the process of direct initiation can also benefit from a better comprehension in the
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aforementioned asymptotic limit. In particular, this thesis has the objective to elucidate
the physical mechanism behind the rich dynamics observed in the critical regime of
initiation in the asymptotic limit of small heat release.

Besides, recent experiments and multidimensional simulations have suggested that
deflagration-to-detonation transition may occur in laminar flames. The elimination of
the complexities of turbulence, which is still a research topic in itself, facilitates the
theoretical study of DDT on the basis of fundamental principles. A flame acceleration
runaway mechanism due to the thermal feedback from the gas dynamics that may be
relevant in laminar flames propagating in thin tubes will be examined. The objective of
this study is to investigate the onset of a detonation in the internal structure of the flame
under the acceleration induced by the thermal feedback and by the increment of flame
surface area.

1.3 Methodology
Detonation initiation phenomena involve the interplay of numerous physico-chemical
processes such as molecular transport, gas compressibility, fluid mechanics and chemical
interactions. In order to reduce such complexity and validate the pertinence of the
simplifications performed, advanced theoretical and analytical tools will be combined
with well-established numerical techniques to address the challenging aspects of the
mathematical description of detonation dynamics. A differentiating element of the
methodological approach will be the attention paid to the gas dynamics in the internal
structure of the combustion waves. In the conventional approach, the internal structure is
modeled or simply considered as a discontinuity, since its scale is much smaller than that
of the rest of the physics of the problem. However, small modifications of the internal
structure of the reactive fronts are expected to have major consequences on the overall
dynamics of the reactive fronts.

Mathematical modeling will be used to develop analytical descriptions of the detonation
and flame dynamics, which can then be used to investigate the underlying physics of the
process. It involves creating a mathematical representation of the reactive wave under
study, based on empirical data, physical laws, or theoretical assumptions, which can then
be used to simulate, analyze or predict the behavior of the reactive wave under different
conditions. While mathematical models are not expected to reproduce an exact copy of
the system, they capture the essential features of the system and can be used to study the
underlying physics of the process. In this thesis, the classical mathematical modeling of
premixed reactive waves will be followed and asymptotic and numerical methods will be
applied to these models to gain a deeper understanding of the fundamental mechanisms
controlling detonation initiation.

Asymptotic methods will be used to analyze the leading order mechanisms controlling
the detonation dynamics. Asymptotic methods include mathematical techniques used to
study the behavior of a function, equation, or system as a certain parameter or variable
approaches a limiting value, such as infinity or zero (Bender and Orszag, 1999). The
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1 Introduction

term asymptotic refers to the behavior of a function as it approaches a limit or an infinite
value, rather than its actual value at a specific point. Asymptotic methods are widely
used in many areas of science and engineering, such as physics, chemistry, biology, and
economics. Some common asymptotic methods include: perturbation methods, matched
asymptotic expansions and multiple-scale analysis.

Numerical methods are mathematical techniques used to solve problems that cannot
be solved using exact methods (Hirsch, 2007). These problems often involve complex
mathematical equations or models that are difficult or impossible to solve analytically.
Using numerical methods is it possible to approximate the solution with specified error
bounds to such problems following a series of mathematical computations or algorithms.
These methods are widely used to solve problems in many different areas of science
and engineering. Some common examples of numerical methods include: root finding
methods (such as the Newton-Raphson method), interpolation methods (such as the
Lagrange interpolation method), numerical integration (such as the Simpson’s rule),
differentiation methods (such as finite difference methods) and numerical optimization
methods (such as the gradient descent method).

1.4 Document Structure
The structure of this thesis manuscript is organized in five different chapters. The intro-
ductory Chapter 1 sets the stage for the study. This chapter explains the significance the
detonation initiation phenomenon and its relevance to a range of disciplines, highlighting
the reasons why this area of research is important. It also provides the background to the
study, outlining the motivations, objectives and the methodology used.

Thereafter, the Chapter 2 will review some fundamental concepts of the one-dimensional
compressible flow and premixed combustion waves theory. The purpose of this chapter is
to summarize the underlying principles used in the following chapters from the classical
theories of compressible flow and premixed combustion.

The Chapters 3 and 4 will each focus on a specific research topic related to a particular
process of detonation initiation. Chapter 3 will delve into the critical dynamics of
detonation initiation, presenting a literature review an detailing the methodology used in
the research. It will then present and discuss the results of the research. Chapter 4 will
similarly explore the deflagration to detonation transition in thin smooth tubes, providing
a literature review, methodology, results and analysis.

Finally, the concluding Chapter 5 of the thesis will summarize the main findings of
the research conducted in the previous chapters. It will discuss the conclusions obtained
regarding the objectives and motivations of the study. Additionally, it will highlight
the limitations of the study and suggest directions for future research in initiation of
detonations.
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CHAPTER2

One-dimensional compressible flow and
premixed combustion waves

In this chapter, some aspects of the classical theories of one-dimensional compressible
flow and premixed combustion waves are reviewed. The scope is limited to the classical
problems and concepts that will be referred to in the following chapters. Some general
considerations of the study of reactive gaseous flows is provided in the first section. Then,
in the following section, the theory of one-dimensional flows in compressible gases,
including the description and formation of compression and shock waves is discussed.
Finally, in the last section, the gas dynamic theory of premixed reactive waves is reviewed
with attention to the internal structure and propagation regimes of deflagrations and
detonations.

2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 One-dimensional compressible flow . . . . . . . . . . . . . . . . . . . 15

2.2.1 Unsteady compressible waves . . . . . . . . . . . . . . . . . . 15
2.2.2 Shock waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Strong blast wave . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Premixed combustion waves . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Deflagrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2 One-dimensional compressible flow and premixed combustion waves

2.1 General considerations

Combustion is a mass and energy conversion process during which part of the energy
stored in the chemical bonds between atoms is released and transformed into thermal
energy. A substance, called fuel, reacts with an oxidant, usually the oxygen in the air,
to form products such as carbon dioxide and water, which contain a chemical bond
energy lower than the sum of the chemical energy contained in the reactants. The
detailed description of the reaction mechanism that transform the initial reactants into the
final products includes numerous elementary reactions between numerous intermediate
chemical elements that evolve over a wide range of time scales. These chemical
transformations modify the physical properties of the mixture, such as temperature and
density, which in turn affect the rate of chemical reactions. In addition, the physical
disturbances are propagated at different velocities beyond the scope of the chemical
interactions and interact with the surroundings. As a result, the combustion of gaseous
mixtures is realized as a complex process involving interactions between gas dynamics
and chemistry over a wide range of time scales.

The global reaction of combustion is irreversible, highly exothermic and has a high
activation energy. The combination of these characteristics causes combustion to
propagate in a reactive medium as a reactive front. Due to the large activation energy
that characterizes the reaction of combustion, an out-of-equilibrium reactive mixture can
remain in a metastable state. In this state, combustion reactions proceed so slowly that
the energy perturbations generated by the completion of a reaction are dissipated before
triggering new combustion reactions. However, upon a large localized energy deposition,
termed ignition, the combustion reaction may be fast enough for the released energy to
initiate combustion reactions in the surroundings. Combustion then propagates as a front
trough which the out-of-equilibrium reactive mixture turns into a less energetic steady
state releasing the energy required to ignite the unburned mixture ahead of it.

The complex interplay of chemical reactions involved in the combustion process is
generally reduced in the theoretical study of combustion to a single chemical reaction.
In order to retain the autocatalytic thermal character of combustion, the rate of this
overall reaction is modeled with an Arrhenius law with a large activation energy. The
temperature-dependent characteristic reaction rate can then be written as

1

trpT q
“ B exp

ˆ

´
Ea

kBT

˙

(2.1)

where Ea is the activation energy of the reaction that can be interpreted as the thermal
sensitivity of the reaction, kB is the Boltzmann constant that serves as conversion factor
between the temperature of the mixture and its energy stored in the form of thermal
agitation, and B is a prefactor accommodating the time units. Due to the large activation
energy, the characteristic times of the chemical-kinetics of the overall combustion
reaction are typically much longer than the characteristic relaxation times for the local
thermodynamic equilibrium of a gas volume. Therefore, combustion processes in gaseous
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2.1 General considerations

mixtures can be described by the equations of conservation of continuous media with
additional reactive terms that account for the heat release as well as consumption and
production of chemical species.

Conservation equations

The fundamental equations that describe the phenomena of gaseous combustion are the
equations of continuum mechanics. A volume of reactive gases can be considered as a
continuum medium when the characteristic time of evolution of the varying conditions is
much larger than the thermodynamic relaxation time. The relaxation time decreases with
the size of the gas volume under consideration. Considering a volume containing a few
molecules, the relaxation time will be of the order of the collision time between them.
Therefore, the collision time sets a lower limit to the characteristic evolution time for
which the local thermodynamic equilibrium is valid. The spatial limit in turn is given by
the mean free path between particles, so that gas volumes with a characteristic length
significantly larger than the mean free path can be analyzed under the local thermodynamic
equilibrium simplification. Under this approximation, the thermodynamics laws are
valid locally and the evolution is governed by conservation equations in which the
molecular transport can be accounted for through transport coefficients. The chemical
transformation occurring in a small fraction of collisions between molecules due to
high activation energy appear as independent source or sink terms in the conservation
equations.

The local balance of total mass is given by the conservation equation, also known as
continuity equation,

Bρ

Bt
` ∇¨ pρuq “ 0 (2.2)

where ρ is the mass density and u is the flow field. Introducing the Lagrangian or
material derivative D{Dt ” B{Bt ` u ¨ ∇, the continuity equation can be written in the
Lagrangian formulation

1

ρ

Dρ

Dt
“ ´∇¨u. (2.3)

The mass of each chemical species is conserved unless it is consumed or produced by
chemical reactions. Introducing the mass fraction of a species i as Yi “ ρi{ρ “ CiWi{ρ,
where Ci “ Ni{V is the concentration and Wi is the molecular weight of the species i,
the partial density of each species is ρi “ ρYi. The conservation equation for the species
i is

ρ
DYi
Dt

“ ρ

ˆ

BYi
Bt

` u ¨ ∇Yi

˙

“ ´∇¨ pρYiViq ` ρωi (2.4)

where Vi “ ui ´ u denotes the diffusion velocity and ωi the chemical production of
species i. The diffusive flux includes the molecular diffusion of each species i in the rest
of the species of the mixture, the thermophoresis (or Soret effect) related to temperature
gradients, the barodiffusion related to pressure gradients and the selective impact of mass
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2 One-dimensional compressible flow and premixed combustion waves

forces. For simplicity, in combustion problems only the effect of the Fick’s law

ρYiVi “ ´ρDi∇Yi (2.5)

is considered. This approximation is accurate under ordinary flame conditions in diluted
mixtures where one species is in abundance and Di denotes the diffusion coefficient of
the species i in the abundant species.

The conservation of momentum takes the general form

ρ
Du

Dt
“ ρ

ˆ

Bu

Bt
` u ¨ ∇u

˙

“ ∇¨σ ` ρf , (2.6)

where f denotes the body forces, such as gravity, and the stress tensor for Newtonian
fluids is given by

σ “ ´pI ` η
”

p∇uq ` p∇uq
T

ı

`

ˆ

κ ´
2

3
η

˙

p∇¨uq I (2.7)

where p is the thermodynamic pressure, η is the shear viscosity and κ is the bulk viscosity.

The total specific energy

E “ eT `
|u|2

2
(2.8)

that accounts for the specific thermal energy eT and the specific kinetic energy |u|2{2
is a conserved scalar. The balance of the total energy given by the energy fluxes, the
potential energy of the body forces and the heat released by the combustion reactions can
be written in the form a energy conservation equation

ρ
DE

Dt
“ ρ

ˆ

BE

Bt
` u ¨ ∇E

˙

“ ´∇¨ q ` ∇¨ pσ ¨ uq ` ρf ¨ u ` ρqm,jωj (2.9)

where q is the heat flux and qm,j is the heat release per unit mass of a reaction j with
a rate of reaction ωj . The heat flux includes the heat transfer by conduction due to
temperature gradients and due to mass concentration effect, known as Dufour effect that is
the reciprocal phenomenon of the Soret effect. For simplicity, the heat flux it is assumed
to satisfy the Fouriers’s law

q “ ´λ∇T (2.10)

where λ is the thermal conductivity of the mixture.

The set of mass, species, momentum and energy conservation equations (2.2), (2.4),
(2.6) and (2.9) together with the constitutive equations presented here (2.5), (2.7) and (2.10)
is often referred as reactive compressible Navier-Stokes equations. When molecular
transport effects such as viscous effects, heat conduction and body forces are neglected,

14



2.2 One-dimensional compressible flow

the resulting set of equations is known as reactive Euler equations

Bρ

Bt
` ∇¨pρuq “ 0, ρ

DY

Dt
“ ω, (2.11)

ρ
Du

Dt
“ ´∇ p, ρ

Ds

Dt
“
qm
T
ω, (2.12)

where the energy conservation equation is replaced by the entropy conservation equation
which is defined as

Tds “ deT ´
p

ρ2
dρ. (2.13)

2.2 One-dimensional compressible flow

Before turning attention to the effects of the combustion reactions that drive detonations,
it is useful to study the motion of compressible fluids moving at velocities that may
eventually be close or greater than the speed of sound. Waves produced in this regime
with finite velocities cannot be studied by means of the linear acoustic theory. In
an inert homogeneous mixture without significant velocity and temperature gradients,
molecular transport phenomena can be neglected. Under these conditions, all sources of
entropy are removed from the problem simplifying the analysis. The isentropic flow of
compressible fluids admits an exhaustive mathematical treatment when the state of the
gas depends exclusively on time and a single Cartesian coordinate as can be found in
multiple references (Courant and Friedrichs, 1948; Landau and Lifshitz, 1987; Anderson,
2003).

The Euler equations (2.11) and (2.12), that govern the motion of isentropic flows, can
be written for a one-dimensional geometry as

Bρ

Bt
`

Bρu

Br
“ ´

jρu

r
, (2.14)

ρ
Bu

Bt
` ρu

Bu

Br
“ ´

Bp

Br
, (2.15)

Bs

Bt
` u

Bs

Br
“ 0, (2.16)

where j “ 0 corresponds to the Cartesian geometry studied in this section.

2.2.1 Unsteady compressible waves

The flow described by the evolution of an initially uniform gas through the conservation
equations (2.14) to (2.16) is called simple wave. Such waves form when a piston moves
in a tube filled with gas. When the piston moves out of the tube, a rarefaction wave is
formed in which the gases expand, while a compression wave is formed when the piston
moves towards the gases in the tube.
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2 One-dimensional compressible flow and premixed combustion waves

The mathematical analysis of the problem gets simpler by introducing the dependent
variable

a2 “

ˆ

Bp

Bρ

˙

s

(2.17)

which corresponds to the square of the sound speed. This is the speed of propagation
of pressure perturbations propagate relative to the flow. Since the entropy is being
assumed to be initially uniform in the flow, it will remain constant and homogeneous
throughout the domain as described by equation (2.16). Therefore, the density derivatives
of the equation (2.14) can be replaced by pressure derivatives using (2.17) as dp “ a2dρ.
Multiplying the resulting equation by a{ρ gives

1

ρa

Bp

Bt
`

u

ρa

Bp

Br
` a

Bu

Br
“ 0. (2.18)

Adding and subtracting this equation from (2.15) divided by ρ results in the two equations

Bu

Bt
` pu ˘ aq

Bu

Br
˘

1

ρa

„

Bp

Bt
` pu ˘ aq

Bp

Br

ȷ

“ 0. (2.19)

which together with (2.16) are equivalent to the original system. This form of the
equations shows the existence of three curves in the r ´ t plane

C˘ : dr “ pu ˘ aq dt, and C0 : dr “ u dt, (2.20)

known as characteristics curves, along which the corresponding quantities

I˘ “

ż

C˘

du ˘

ż

C˘

dp

ρa
, and I0 “

ż

C0

ds, (2.21)

known as Riemann invariants, are conserved. For a polytropic gas a2 “ γp{ρ, the
conservation of the invariants I˘ along a path C˘ passing through a point where the
flow moves with velocity uo and the sound speed is ao, gives the following relationship
between the local sound speed and the flow velocity

a

ao
“ 1 ˘

γ ´ 1

2

u ´ uo
ao

. (2.22)

Applying the equation of state for ideal gases and the relationships for isentropic processes,
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2.2 One-dimensional compressible flow

the relations

T

To
“

ˆ

1 ˘
γ ´ 1

2

u ´ uo
ao

˙2

, (2.23)

ρ

ρo
“

ˆ

1 ˘
γ ´ 1

2

u ´ uo
ao

˙2{pγ´1q

, (2.24)

p

po
“

ˆ

1 ˘
γ ´ 1

2

u ´ uo
ao

˙2γ{pγ´1q

, (2.25)

between the thermodynamic variables and the flow velocity that hold in compression and
rarefaction waves are obtained.

Shock wave formation

The nonlinearity of the Euler equations leads to the formation of singularities in their
solutions, such as shock waves. The position and instant at which a singularity appears in
the solutions can be taken as a rough prediction of the instant and position at which a
shock wave is formed. The problem of the formation of a shock wave due to the motion
of a piston accelerated by a known law was proposed and solved by Landau and Lifshitz
(1987). Their solution is reviewed and discussed below.

Consider a piston that starts advancing at t “ 0 in an infinite tube filled with gas at rest.
The piston accelerates with a velocity given by the law upptq “ drp{dt “ αtn where
the prefactor α ą 0 is constant and positive, so that the piston moves in the positive
direction r, and the exponent n ě 1 is positive describing a monotonically non-decreasing
acceleration. Ahead of the piston, the invariant (2.21) is conserved along the trajectory
defined by (2.20), which integrating can be written as

r “ t pu ` aq ` fpuq, (2.26)

where fpuq is an arbitrary function of the flow velocity. Introducing the relation for the
sound speed as a function of the flow velocity (2.22), the trajectory writes

r “ t

ˆ

ao `
γ ` 1

2
u

˙

` fpuq. (2.27)

Setting the origin of coordinates at the initial position of the piston rppt “ 0q “ 0, the
position of the piston is obtained by integration of its velocity to give rpptq “ αtn`1{pn`1q.
The boundary condition on the piston r “ rp, where the gas has to flow at the same speed
as the piston u “ up determines the function fpuq “ rpptq ´ t rao ` pγ ` 1q{2upptqs.
By setting t as a parameter τ , the flow velocity profile upr, tq in the compression wave
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2 One-dimensional compressible flow and premixed combustion waves
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Figure 2.1: Shock formation ahead of an accelerating piston whose velocity is given by the law
up “ αtn with (a) n “ 1, and (b) n “ 2. The velocity profiles given by the solution of Landau
and Lifshitz (1987) (2.28) are plotted at different time instants. The thick vertical lines indicate
the position of the piston.

generated ahead of the piston can be expressed by the parametric formulae
$

&

%

u “ ατn,

r “
α

n ` 1
τn`1 ` pt ´ τq

ˆ

ao `
γ ` 1

2
ατn

˙

.
(2.28)

The evolution of the flow velocity profile for two values of the exponent n are represented
in Figure 2.1. It is observed that after a certain instant, the solution of the Euler equation
becomes multi-valued, i.e., the same position has two solutions for the velocity. This is
clearly not a realistic solution that has been obtained passing through a singularity of
the Euler equations that can be interpreted as the formation of a shock wave. In fact, as
will be seen below, the entropy increases through a shock wave. Therefore, the solution
obtained here within the isentropic assumption ceases to be valid when a shock wave is
formed.

In the framework of the Euler equations, the formation of a shock wave corresponds
to the formation of a singularity in its solutions. The exact instant of time ts and the
position rs of the singularity can be obtained through the mathematical analysis of the
velocity distribution given by (2.28). The singularity appears in the velocity gradient
which becomes locally infinite, thus, the derivative pBr{Buqts cancels out

ˆ

Br

Bu

˙

ts

“ ´
ao

αnτn´1
`
γ ` 1

2
ts ´

γ ` 1

2

1

n

ˆ

n `
γ ´ 1

γ ` 1

˙

τs “ 0. (2.29)

At the same instant, the solution becomes multi-valued, therefore an inflection point
appears where the second derivative pB2r{Bu2qts also cancels out.

ˆ

B2r

Bu2

˙

ts

“
γ ` 1

2
pn ´ 1q tsτ

´1
s ´

γ ` 1

2

ˆ

n `
γ ´ 1

γ ` 1

˙

“ 0 (2.30)
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2.2 One-dimensional compressible flow

Solving the system of equations (2.29) and (2.30), the instant of formation of the
singularity

ts “

«

2

γ ` 1

ao
α

ˆ

1

n ´ 1

ˆ

γ ´ 1

γ ` 1
` n

˙˙n´1
ff1{n

(2.31)

and the corresponding value of the parameter τs are obtained. The time instant ts
determines when the solution of the Euler equations ceases to be valid. The dissipative
mechanisms are expected to play a role before ts leading to the formation of a shock wave
where the entropy increases and the inviscid flow equations are no longer valid.

Using the solutions for ts and τs it is also possible to know the exact position of the
singularity through (2.28), which after some algebra can be written as

rs “ aots

»

–1 ´
pn ´ 1q

2

pn ` 1q

´

γ´1
γ`1

` n
¯

fi

fl . (2.32)

This expression shows that for n “ 1, the singularity is formed at the leading edge of
the compression wave ro propagating with the initial sound speed, roptq “ aot. For
n ą 1, the singularity appears at an intermediate position between the leading edge of
the compression wave and the piston. The distance relative to the piston at which the
singularity forms with respect to the distance to the piston form the leading edge of the
compression wave as a function of the exponent of the piston velocity law is represented
in Figure 2.2. The larger the exponent n, the closer to the piston the singularity occurs,
however, both positions only approach each other asymptotically. That is, under this
velocity law and for exponents greater than or equal to unity n ě 1, the shock wave is
never formed strictly on the piston. For n ă 1, the singularity is formed in the piston at
the initial instant since the acceleration of the piston is also singular at that instant. The
complete solution to this problem can be found in Landau and Lifshitz (1987).

2.2.2 Shock waves

As it has been shown above, in the absence of dissipative or external damping mechanisms
the propagation of compression waves leads ultimately to the formation of a singularity.
This singularity, characterized by an infinite velocity gradient, is solved when the role of
the dissipative mechanisms in the thin regions with large velocity gradients is considered.
These regions of strong gradients where the inviscid theory of one-dimensional flow is not
valid correspond to what are generally termed shock waves. Fortunately, the irreversible
processes controlled by the dissipative mechanisms only occur in narrow zones of the
order of the mean free path, while outside of these transition zones the inviscid flow
approximation of the Euler equations remains accurate (Courant and Friedrichs, 1948).
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Figure 2.2: Relative position of formation of the singularity in the compression wave xs{xo “

prs ´ rpptsqq{pro ´ rpptsqq as a function of the exponent n of the piston velocity law up “ αtn

for different values of the heat capacity ratio γ.

Rankine-Hugoniot jump conditions

At scales larger than the mean free path, shock waves can be simply described as
supersonic discontinuities. Integration of the conservation equations of mass (2.2),
momentum (2.6), and energy (2.9) provides the jump relationships on both sides of
the discontinuity without describing the irreversible processes in detail. Considering a
plane shock wave propagating at constant velocity, the conservative form of the steady
equations (2.2), (2.6) and (2.9) is written as

d
dx

rρ pD ´ uqs “ 0, (2.33)

d
dx

„

ρ pD ´ uq
2

` p ´ µ
du

dx

ȷ

“ 0, (2.34)

d
dx

«

ρ pD ´ uq

˜

h `
pD ´ uq

2

2

¸

´ λ
dT

dx
´ µ pu ´ Dq

du

dx

ff

“ 0, (2.35)

where x “ r ´ rfptq is the direction of propagation in the system of coordinates
attached to the shock wave propagating with velocity D ” drf{dt in the reference
frame where flow ahead of the shock is at rest, and h denotes de enthalpy of the gas
dh “ deT ` d pp{ρq “ cpdT .

Integrating the equation of mass conservation from the upstream state, denoted by u at
surface of discontinuity ahead of the wave, to the Neumann state, denoted by N , at the
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2.2 One-dimensional compressible flow

post-shock discontinuity surface, results in the conservation of the mass flow rate

m ” ρuD “ ρ pD ´ uNq . (2.36)

Similarly, integration of the momentum equation and the energy equation, introducing
the mass flow rate, leads to

pu `
m2

ρu
“ pN `

m2

ρN
(2.37)

and

hu `

ˆ

m

2ρu

˙2

“ hN `

ˆ

m

2ρN

˙2

, (2.38)

where the upstream and Neumann states are assumed to be uniform, so that the terms of
heat conduction and momentum transport vanish at the limits of integration. Eliminating
the mass flow rate with the help of (2.37) gives the Hugoniot relation

hu ´ hN `
1

2

ˆ

1

ρu
´

1

ρN

˙

ppN ´ puq “ 0. (2.39)

For a polytropic gas characterized by the equation of state of ideal gases and constant
specific heats

p “
γ ´ 1

γ
cpρT, h “ cpT “

γ

γ ´ 1

p

ρ
, (2.40)

the Hugoniot relation (2.39) becomes

γ

γ ´ 1

ˆ

pu
ρu

´
pN
ρN

˙

`
1

2

ˆ

1

ρu
´

1

ρN

˙

ppN ´ puq “ 0. (2.41)

Introducing the normalized pressure and density proposed by Clavin and Searby (2016)

P ”
γ ` 1

2γ

ˆ

p

pu
´ 1

˙

, V ”
γ ` 1

2

ˆ

ρu
ρ

´ 1

˙

, (2.42)

the Hugoniot relation for polytropic gases (2.41) reduces to an hyperbola in the P ´ V
plane independent of the heat capacity ratio γ

pP ` 1q pV ` 1q “ 1. (2.43)

Introducing the same notation, the momentum conservation equation (2.37) writes as

P “ ´M2
uV , (2.44)

which describes the linear relationship between the normalized pressure and density
trough the mass flow rate written as the Mach number of the shock Mu “ D{au, known
as Michelson-Rayleigh line. For physically meaningful (not imaginary) Mach numbers of
the shock wave, the slope of the Michelson-Rayleigh line is always negative. Therefore,
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2 One-dimensional compressible flow and premixed combustion waves

for the half plane defined by PV ą 0, the RH relations have no solution.
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Figure 2.3: Hugoniot adiabatic curve (in black) and Michelson-Rayleigh line (in blue) for different
values of the Mach number Mu. The red curve represents the Hugoniot curve that departs from
the Neumann state for a heat capacity ratio of γ “ 1.4.

The Hugoniot curve (2.43) and the Michelson-Rayleigh line are represented in Figure 2.3
in the P ´ V plane. Both curves intersect at the initial condition that corresponds to
the trivial solution P “ V “ 0 of the system of equations (2.43) and (2.44) and at a
compressed state known as Neumann state PN “ M2

u ´ 1 “ ´M2
uVN. The slope of the

Michelson-Rayleigh line steepens with the shock wave Mach number leading to greater
compression levels. It is also important to note that the Hugoniot curve depends on the
initial state. The red line in Figure 2.3 corresponds to the Hugoniot curve taking the
Neumann state as the initial condition, which also passes through its corresponding initial
state though it follows a different path.

The non-trivial root of the system of equations (2.43) and (2.44) corresponds to the
Neumann state that is yielded by the Rankine-Hugoniot relations for a polytropic gas

ρu
ρN

“
D ´ uN

D “
pγ ´ 1qM2

u ` 2

pγ ` 1qM2
u

(2.45)

pN
pu

“
2γM2

u ´ pγ ´ 1q

γ ` 1
(2.46)

TN
Tu

“
r2γM2

u ´ pγ ´ 1qsrpγ ´ 1qM2
u ` 2s

pγ ` 1q2M2
u

(2.47)

M2
N “

D ´ uN
aN

“
pγ ´ 1qM2

u ` 2

2γM2
u ´ pγ ´ 1q

(2.48)

which are represented in Figure 2.4 for a range of shock wave Mach numbers and
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Figure 2.4: Rankine-Hugoniot jump relations in an inert shock wave as a function of the Mach
number Mu for different values of the heat capacity ratio γ.

typical heat capacity ratio values. It is observed that the density jump through a shock
wave tends to a limiting value for large Mach numbers given by the heat capacity ratio
Mu Ñ 8 : ρu{ρN « pγ`1q{pγ´1q. The downstream Mach number relative to the shock
wave is always less than unity, which means that through a shock wave a supersonic flow
becomes a subsonic flow. Recalling that the square of the Mach number represents the
ratio of macroscopic kinetic energy to internal thermal energy M2 “ u2{ppγ ´ 1qcpT q a
shock wave can then be interpreted as a natural mechanism responsible for the conversion
of the excess of macroscopic kinetic energy of a gas flow into internal energy. The
post-shock Mach number also shows a limiting value for intense shock waves in terms of
the heat capacity ratio Mu Ñ 8 :MN « pγ ´ 1q{2γ.

Weak shock wave

The extreme case of a shock wave whose intensity is infinitesimally small serves as an
instructive example for the understanding of the shock wave phenomenon. This limit,
known as weak shock wave, applies when the Mach number of the wave approaches unity,
that is, the propagation velocity of the weak shock approaches the sound speed.

The jump relations across a weak shock wave represent small variations of the physical
properties compared with the initial state of the gas. They are determined by the linearised
RH jump relations, which are obtained as series expansions of the general RH relations
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Figure 2.5: Rankine-Hugoniot jump relations (dotted black line) and linearised Rankine-Hugoniot
jump relations (solid red line) for weak shock waves Mu ´ 1 ! 1 in polytropic diatomic gases
γ “ 1.4.

(2.45) to (2.48)

ρu
ρN

“
D ´ uN

D “ 1 ´
4

γ ` 1
pMu ´ 1q ` O

“

pMu ´ 1q
2
‰

(2.49)

pN
pu

“ 1 `
4γ

γ ` 1
pMu ´ 1q ` O

“

pMu ´ 1q
2
‰

(2.50)

TN
Tu

“ 1 `
4pγ ´ 1q

γ ` 1
pMu ´ 1q ` O

“

pMu ´ 1q
2
‰

(2.51)

MN “ 1 ´ pMu ´ 1q ` O
“

pMu ´ 1q
2
‰

. (2.52)

These linearised RH jump relations are represented and compared with the general jump
relations in Figure 2.5. It is noteworthy that the temperature relation shows a wide range
of validity with a relative error below 5% for shock waves as intense as Mu “ 2 and the
relative flow velocity behind the shock is equal to the local sound speed D ´ uN « aN to
leading order.

The weak shock wave limit also provides a suitable framework for the study of its
internal structure through the macroscopic conservation equations. The dissipative
mechanisms control the internal structure of a shock wave. In ordinary shock waves,
these mechanisms are relevant in a length scale of the order of the mean free path. The
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2.2 One-dimensional compressible flow

internal structure of the shock wave is then out of equilibrium and must be studied using
Boltzmann’s equation. However, as the supersonic shock velocity decreases, not only
do the jumps through the shock decrease, but also the thickness increases. Indeed, in
the weak shock wave limit, the ratio of shock thickness to mean free path diverges. For
a weak shock propagating slightly above the speed of sound, the thickness becomes
macroscopic, thus, the local equilibrium approximation becomes valid and the fluid
mechanics equations can be used to describe the detonation structure. The problem is
reduced to solving a one-dimensional steady transonic flow between the initial state and
the shocked gas.

Rayleigh (1910) showed that viscosity played as essential a role as heat conduction
in the structure of a shock wave. The internal structure of a weak shock wave is then
described by the conservation equations (2.33) to (2.35). A perturbation analysis up
to the second order of the weak shock wave limit Mu ´ 1 ! 1, reduces this system
of second order differential equations to a first order differential equation (Clavin and
Searby, 2016). The solution obtained after integration provides to the profiles shown
in Figure 2.6. The physical variables evolve from the initial state to the Neumann state
given by the linearised RH relations (2.49) to (2.52) in a distance with respect to the
mean free path l that diverges as the shock Mach number goes to unity. The entropy jump
throughout the shock wave is a positive quantity of the third order of the approximation.
Therefore, the weak shock wave limit also serves to provide insight into the transition
from an isentropic compression wave to a weak shock wave.

(γ − 1) + Pr

Mu − 1

0− (γ − 1) + Pr

Mu − 1

x/l

4 (Mu − 1)

γ + 1

0

1− ρu

ρ
=
u

D
p

pu
− 1

T

Tu
− 1

Figure 2.6: Internal structure of a weak shock wave Mu ´ 1 ! 1 propagating towards the right
(i.e., the upstream gas is at x Ñ 8 and the shocked gas is at x Ñ ´8) for a diatomic gas γ “ 1.4.
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2 One-dimensional compressible flow and premixed combustion waves

2.2.3 Strong blast wave

A shock wave that propagates away from its source and the flow field it leaves behind is
known as blast wave. Blast waves are generally formed when a large amount of energy is
released during a short period of time in a concentrated location. The propagation of an
ideal strong blast wave was first independently described by Sedov (1946) and Taylor
(1941). Initially, the motion of the blast wave is determined by the size and distribution
of the energy release. Once the radius of the blast and the time elapsed are large enough
compared with the spatial and temporal scales that characterize the energy source, the
shock motion becomes independent of the initial conditions.

The instantaneous release of a concentrated large amount of energy E0 (energy per
unit length in line sources and energy per unit surface in planar surfaces) leads to the
formation of a strong shock wave characterized by a large Mach number Mu " 1. The
pressure jump along such a wave is as large as the square of the Mach number

Mu " 1 :
pN
pu

«
2γ

γ ` 1
M2

u . (2.53)

Therefore, the initial pressure pu is negligible compared with the pressure behind the
shock wave pN. On the contrary, the density reaches a limiting value in the strong shock
wave limit

Mu " 1 :
ρN
ρu

«
γ ` 1

γ ´ 1
. (2.54)

The relevant parameters of the problem then include the initial density of the surrounding
fluid ρu (which is assumed to be uniform) and the total energy released at the concen-
trated source E0. A dimensionless combination can be formed using these problem
parameters and two independent variables of time t and radial coordinate r that writes as
ρur

j`3{pE0 t
2q.

Based on this dimensional analysis, Sedov and Taylor anticipated that the position of
the shock wave follows the evolution given by

rfptq “ S

ˆ

E0 t
2

ρu

˙1{pj`3q

(2.55)

where S is a function of the ratio of heat capacity γ and the geometrical parameter j
whose value can be obtained integrating the energy equation. This prediction of the blast
radius as a function of time showed excellent agreement with the evolution of the blast
wave extracted from the photographic records of the first atomic explosion in New Mexico
(Taylor, 1950b). Furthermore, Taylor was able to approximate with good accuracy the
total amount of energy released during the explosion from these results.

The density, pressure, temperature and velocity fields behind the shock wave are
governed by the Euler equations. Since the blast radius, which is the only spatial scale of
the problem, follows a direct relation with the temporal scale, the strong blast problem
admits a self-similar solution.
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2.2 One-dimensional compressible flow

Defining the non-dimensional functions

fpξq “
ppr, tq

ρuDptq2
, ψpξq “

ρpr, tq

ρu
and ϕpξq “

upr, tq

Dptq
, (2.56)

of the self-similar variable ξ ” r{rfptq, where Dptq ” drf{dt " au is the propagation
velocity of the shock wave, the Euler equations (2.14), (2.15) and (2.18) rewrite as

pϕ ´ ξqψ1
` ψϕ1

`
jϕψ

ξ
“ 0 (2.57)

pϕ ´ ξqϕ1
` χϕ `

1

ψ
f 1

“ 0 (2.58)

pϕ ´ ξqf 1
` 2χf ` γfϕ1

`
γjϕf

ξ
“ 0, (2.59)

where the parameter χ “ rfD1{D2 has been introduced. For this problem to have a self-
similar solution, the system of equations (2.57) to (2.59) must be explicitly independent
of time (or front radius). Therefore, the parameter χ must be constant

χ “ rf
D1

D2
“

plnDq
1

pln rfq
1 “ const.. (2.60)

After integration, the law for the velocity of propagation of the front D “ krχf is obtained,
which according to (2.55) determines value of the parameter through the geometry of the
problem as χ “ ´pj ` 1q{2.

The mathematical problem defined by the ordinary differential equations (2.57) to (2.59),
the boundary conditions at the front ξ “ 1 given by the RH relations for strong shock
waves

Mu " 1 : fp1q “
pN
ρuD2

«
2

γ ` 1
(2.61)

ψp1q “
ρN
ρu

«
γ ` 1

γ ´ 1
(2.62)

ϕp1q “
uN
D «

2

γ ` 1
, (2.63)

and the rear boundary condition ϕp0q “ 0 that imposes the velocity at the origin to vanish
due to symmetry, has an exact solution whose analytical closed form can be found in
Landau and Lifshitz (1987). Alternatively, the problem can be integrated numerically to
obtain the solution shown in Figure 2.7.

The blast wave solution is characterized by the concentration of most of the mass of
compressed fluid near the shock wave and a nearly linear velocity profile. An almost
empty region of extremely hot gases is observed around the origin of the explosion. The
flow velocity evolves in a quasi-linearly from the Neumann velocity imposed by the shock
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Figure 2.7: (a) Density, (b) velocity, (c) pressure and (d) temperature fields in a strong planar
(j “ 0), cylindrical (j “ 1) and spherical (j “ 2) blast wave for a diatomic gas γ “ 1.4 in the
solution of Taylor (1941) and Sedov (1946).
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2.3 Premixed combustion waves

wave to zero at the origin. The flow divergence due to the curvature of the cylindrical
and spherical waves introduces only quantitative corrections in the flow field behind the
shock wave that further narrow the region where most of the mass is concentrated.

2.3 Premixed combustion waves
The theoretical study of combustion waves is generally divided into premixed flames and
diffusion, or non-premixed, flames. This categorization is based on the limiting element
for the combustion reaction. The study of premixed flames encompasses situations in
which fuel and oxidants are perfectly mixed at molecular level, but the thermal agitation
of the mixture is not sufficient to initiate the combustion. On the other hand, in diffusion
flames the reactants are initially isolated, but the initial conditions allow combustion
reactions to start as soon as the reactants are brought into contact. However, it is important
to note that this is just a theoretical distinction and under more realistic conditions, such
as those found for lifted flames (Liñán et al., 2015), both combustion regimes are indeed
intertwined. The present work is limited to combustion fronts propagating in a reactive
mixture which is generally the case of interest for accidental flames.

A local increment of the thermal agitation in a reactive mixture ignites a combustion
wave which will propagate away from the source transforming reactants into combustion
products. Two distinct propagating regimes for these combustion waves are generally
identified. Deflagrations waves propagate at slow subsonic velocities of the order of a
few centimeters per second UL « 0.1 ´ 1m{s. Whereas detonation waves are supersonic
reactive waves that can cover distances of some kilometers in a second D « 1000m{s.
The fast propagation of a detonation leads to a strong increase in pressure that can be tens
of times higher than the initial pressure ∆p{p « 30, causing significant material damage
in its path. In contrast, a deflagration is an expansion wave through which the pressure
decreases slightly ∆p{p « ´10´5 due to its low velocity.

Such a difference in the propagation speed of both waves is justified by different
propagation mechanisms. The slow propagation of deflagration waves is controlled by
diffusion mechanisms. The heat released in the chemical reactions of combustion is
transferred by conduction towards the fresh mixture of reactive gases. The fresh gases are
then heated accelerating the rate of the chemical interactions which are initially frozen.
When the chemical reaction takes place, the heat released is in turned transferred forward
resulting in a self-propagating wave. This propagation regime is then limited by the
random motion of hot particles towards fresh gas zone where the thermal agitation is
transmitted to the cold particles through successive collisions giving rise to heat diffusion.
Detonations, on the other hand, propagate due to compressibility effects. The ignition
of the combustion reactions is triggered by the adiabatic compression of a shock wave
leading the detonation front. A reaction zone where heat release occurs after an induction
time follows the shock wave. For the detonation wave to persist, the shock wave and
the reaction zone must remain coupled, with the shock wave providing the appropriate
thermodynamic conditions for a rapid heat release and the reaction zone providing the
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2 One-dimensional compressible flow and premixed combustion waves

thrust required by the shock wave.

Reactive Rankine-Hugoniot jump conditions

A first step in the understanding of these reactive waves can be done by considering them
as reactive discontinuities and looking at the initial and final state of the gas passing
through them. These approach led to the theory of Chapman (1899) and Jouguet (1905)
(CJ) of detonations. As in the study of shock waves, the jump relations between the initial
state of the reactive mixture and the state of the burned gases behind the reactive front
can be obtained by integrating the conservation equations (2.33) to (2.35) along the front.
For a reactive front, however, it is necessary to include the heat of reaction in the energy
conservation equation (2.35), which is rewritten as

d
dx

«

ρ pu ´ Dq

˜

h `
pu ´ Dq

2

2

¸

´ λ
dT
dx

´ µ pu ´ Dq
du
dx

` ρ pu ´ Dq qmp1 ´ Y q

ff

“ 0,

(2.64)
where qm is the heat of reaction per unit mass of the mixture and Y is the progress
variable of the reaction which is equal to zero in the fresh mixture and one in the burned
mixture. Integrating from the uniform mixture of reactive gases to the uniform state of
burned gases, denoted by b, results in

hu `

ˆ

m

2ρu

˙2

` qm “ hb `

ˆ

m

2ρb

˙2

(2.65)

which eliminating the mass flow rate through (2.37), gives the reactive Hugoniot relation

hb ´ hu `
1

2

ˆ

1

ρb
´

1

ρu

˙

ppb ´ puq “ qm, (2.66)

that for polytropic gases (2.40) can be written in terms of density and pressure

γ

γ ´ 1

ˆ

pb
ρb

´
pu
ρu

˙

`
1

2

ˆ

1

ρb
´

1

ρu

˙

ppb ´ puq “ qm. (2.67)

Introducing the normalized heat of reaction proposed by Clavin and Searby (2016)

Q ”
γ ` 1

2

qm
cpTu

, (2.68)

the reactive Hugoniot relation for polytropic gases corresponds to an hyperbola in the
P ´ V plane

pP ` 1qpV ` 1q “ Q ` 1. (2.69)

that lies above the inert Hugoniot curve for exothermic reactive mixtures Q ą 0.
Combining this relation with the still valid Michelson-Rayleigh line (2.44) provides with
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Figure 2.8: Hugoniot curves and Michelson-Rayleigh lines for (a) detonations and (b) deflagrations.
Black curve corresponds to inert Hugoniot curve and red curve to reactive Hugoniot for a
normalized heat of reaction Q “ 5. Michelson-Rayleigh lines are traced in blue for different
values of the Mach number Mu with respect to the Chapman-Jouguet regime MuCJ .

the jump relations across a reactive discontinuity

Pb “ ´M2
uVb “

M2
u ´ 1

2

«

1 ˘

d

1 ´
4QM2

u

pM2
u ´ 1q

2

ff

(2.70)

which presents a marginal solution when the discriminant of the square root cancels out,
i.e., 4QM2

u “ pM2
u ´ 1q2. Solving for the Mach number of the reactive front provides

the propagating regime of this marginal solution, known as Chapman-Jouguet regime, in
terms of the heat of reaction

MuCJ
“

?
Q ` 1 ˘

?
Q. (2.71)

The possible solutions for steady reactive waves are then restricted to fronts that propagate
faster than M`

uCJ
“

?
Q ` 1 `

?
Q or slower than M´

uCJ
“

?
Q ` 1 ´

?
Q with the

intermediate values corresponding to imaginary solutions of (2.70) without physical
meaning.

The Hugoniot curves and some representative Michelson-Rayleigh lines are represented
in Figure 2.8 in order to illustrate the different solutions. For Mu ě M`

uCJ
“

?
Q ` 1 `

?
Q, density and pressure are larger behind the reactive wave and the solutions obtained

correspond to detonation waves. In particular, when Mu ą M`
uCJ

two solutions are
obtained which are typically referred as strong (point S) and weak (point W ) detonations.
In the Chapman-Jouguet regime Mu “ M`

uCJ
, both solutions collapse to the marginal

solution. On the contrary, for Mu ď M´
uCJ

, the gas undergoes and expansion process that
corresponds to a deflagration. Similarly, deflagration waves exhibit two solutions when
Mu ă M´

uCJ
known as strong and weak deflagrations, which collapse to the marginal

solution for Mu “ M´
uCJ

. As it will be shown below, the Chapman-Jouguet regime
corresponds to the propagation velocity of self-sustained detonation waves. While the
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2 One-dimensional compressible flow and premixed combustion waves

Chapman-Jouguet regime is not relevant for ordinary deflagrations. This substantial
difference is due to the different propagation mechanisms governing each wave.

The range of propagation velocities limited by both Chapman-Jouguet velocities
M´

uCJ
ă Mu ă M`

uCJ
has no solution. Therefore, a continuous transition from a self-

accelerating deflagration wave to a detonation wave through quasi-steady intermediate
solutions is prohibited by the CJ theory. The transition from a deflagration to a detonation
has to pass through an unsteady solution of the reactive fronts (Courant and Friedrichs,
1948).

The pressure and density relationships between the burned gas state and the fresh
reactive mixture can be expressed in terms of the propagation velocity Mu and the CJ
regime MuCJ

(or, equivalently, the heat of reaction Q) from the solution (2.70) known as
reactive Rankine-Hugoniot jump conditions

ρu
ρb

“
D ´ ub

D “
pγ ´ 1qM2

u ` 2

pγ ` 1qM2
u

`
M2

u ´ 1

pγ ` 1qM2
u

»

–1 ˘

d

1 ´

ˆ

MuCJ
´ M´1

uCJ

Mu ´ M´1
u

˙2
fi

fl

(2.72)

pb
pu

“
2γM2

u ´ pγ ´ 1q

γ ` 1
´
γ pM2

u ´ 1q

γ ` 1

»

–1 ˘

d

1 ´

ˆ

MuCJ
´ M´1

uCJ

Mu ´ M´1
u

˙2
fi

fl

(2.73)

which for Q “ 0, or MuCJ
“ 1, yield consistently the RH relations across an inert shock

wave (2.45) and (2.46).
In the Chapman-Jouguet regime, the discriminant of the square root vanishes leading

to a unique solution

Mu “ MuCJ
“

a

Q ` 1 ˘
a

Q :
ρu
ρbCJ

“
DCJ ´ ubCJ

DCJ

“
γM2

uCJ
` 1

pγ ` 1qM2
uCJ

(2.74)

pbCJ

pu
“
γM2

uCJ
` 1

γ ` 1
(2.75)

abCJ

auCJ

“
γM2

uCJ
` 1

pγ ` 1qMuCJ

. (2.76)

Algebraic manipulations of the equations (2.74) and (2.76) show that the burned gas flow
velocity relative to the front equals the local sound speedMbCJ

“ pDCJ ´ ubCJ
q {abCJ

“ 1
in the CJ regime. Therefore, the CJ wave corresponds to the propagation regime that
imposes the sonic condition behind the detonation. It is also interesting to note that the
sonic condition applies equally to detonations as to deflagrations in the CJ regime.

The CJ theory that considers the reactive front as a discontinuity provides the jump
conditions as well as information regarding the space of solutions of a reactive front.
However, it is required to consider the internal structure of the front in order to discriminate
which solutions are relevant, as well as to decipher the propagation mechanisms. In the
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2.3 Premixed combustion waves

following, the salient features of the two propagation regimes concerning the internal
structure of the reactive fronts as well as the propagation will be introduced.

2.3.1 Deflagrations

A deflagration is a subsonic flame front that propagates through a mixture of fuel and
oxidizer. According to the CJ theory, deflagrations corresponds to the solutions for reactive
fronts that lie on the lower part of the Hugoniot curve. That is, deflagrations propagate
always at subsonic speeds Mu ă 1. Indeed, under ordinary conditions, deflagrations
generally propagate at markedly subsonic velocities Mu ! 1. The Euler equation (2.12)
shows that since pressure is roughly equal to the product of the density with the square
of the sound speed p « ρa2, relative changes in pressure δp{p « ρuδu « uδu{a2

are of the order of the Mach number squared δp{p « M2. For the slow velocities at
which deflagrations propagate M ! 1, the pressure variations are negligible δp{p ! 1.
Therefore, the analysis of deflagration waves can be performed under the quasi-isobaric
approximation.

Quasi-isobaric approximation

In the quasi-isobaric approximation, heat conduction must increase the temperature of
the fresh gases where the chemical reactions are frozen. Therefore, the Euler equations
(2.11) and (2.12) cannot describe the structure of a flame. It is necessary to recover
the molecular transport terms included in the reactive Navier Stokes equations (2.2),
(2.4), (2.6) and (2.9). In the coordinate system attached to the flame x “ r ´ rfptq
that propagates at constant velocity D “ drf{dt, the conservation equations under the
quasi-isobaric approximation are written as

d

dx
rρ pD ´ uqs “ 0 (2.77)

dp

dx
“ 0 (2.78)

d
dx

rρ pD ´ uq cpT s “
d
dx

ˆ

λ
dT
dx

˙

` ρqmω (2.79)

d
dx

rρ pD ´ uqY s “
d
dx

ˆ

ρD
dY
dx

˙

` ρω, (2.80)

where not only the pressure is constant but also kinetic energy variation vanishes. The
quasi-isobaric assumption simplifies the analysis of the flame propagation of a flame
since it allows to decouple the conservation of energy from the hydrodynamic problem.
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The thermal propagation of a flame gets reduced the thermodiffusive problem

ρ pD ´ uq cp
dT
dx

“
d
dx

ˆ

λ
dT
dx

˙

` ρqmω (2.81)

ρ pD ´ uq
dY
dx

“
d
dx

ˆ

ρD
dY
dx

˙

` ρω. (2.82)

for which the propagation velocity of the flame is obtained as an eigenvalue of the
solution.

Large activation energy asymptotic limit

In the large activation energy asymptotic limit studied by Zeldovich and Frank-Kamenetskii
(1938), the thermodiffusive problem (2.81) and (2.82) can be further simplified. When an
infinitely large activation energy is considered, the combustion reaction are concentrated
in an infinitesimally thin layer. Therefore, a scale separation can be applied to the problem
so that outside the infinitesimally thin reactive layer the reactive term is negligible,
whereas in the reactive layer the convection-induced temperature gradient is negligible.
Thanks to the separation of scales, both problems can be solved independently. The
coupling of the solutions provides the eigenvalue of the problem which determines the
propagation velocity of the flame in terms of thermo-chemical properties of the reactive
mixture. In particular, the burning velocity of the planar flame Ub9

?
Dω is determined

by the diffusive properties of the mixture and the reaction rate.

Flame structure

The qualitative description of the flame structure in the asymptotic limit of high activation
energy is preserved when the thermodiffusive (2.81) and (2.82) problem is integrated
numerically for finite values of the activation energy. A preheat region is observed in
which the reactive mixture of fresh gases is heated by conduction from the hotter reactive
layer. Nevertheless, the chemical reaction are frozen in the preheat region so no heat
release occurs. The combustion reactions take place within a much thinner layer than the
preheat region.

In conclusion, the mechanism of propagation of deflagrations is the thermal conduction
driven by the molecular heat transport. Furthermore, the heat flux is limited by the rate
of heat release which, due to the activation energy of the combustion reactions, is much
lower than the collision frequency between molecules. Therefore, the propagation of a
deflagration must be well below the sound speed. Hence, only the weak deflagration
solution of the CJ theory can be explained by this mechanism. The lack of interest
of the marginal CJ solution for deflagrations can also be justified by this propagation
mechanism. The CJ regime implies the sonic condition behind the flame according to
which the flame propagates at the sound speed relative to the burned gases. For this to be
possible, the reaction rate would have to be close to the collision frequency. In such a
situation, a metastable equilibrium is not justified for the reactive gas mixture, which
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2.3 Premixed combustion waves

would be completely out of equilibrium and would react until completion without the
need for a deflagration wave.

2.3.2 Detonations

Detonations are supersonic exothermic fronts that propagate on a reactive mixture. The
systematic study of detonations was initiated independently by Berthelot and Vieille
(1881) and Mallard and Le Chatelier (1881) because of the growing concern about
accidental explosions in coal mines resulting in loss of life and property damages in
the late 19th century. In contrast to deflagrations, detonations propagate at supersonic
speed with a large pressure variation leading to significant mechanical impact. In the CJ
theory, the detonations thus correspond to the solutions obtained at the higher part of the
Hugoniot curve for supersonic regimes Mu ą 1.

ZND structure

A one-dimensional model to describe the internal structure of a steady detonation wave
was proposed independently by Zeldovich (1940), von Neumann (1942), and Döring
(1943) although it had been conjectured previously by Mikhel’son (1893) and Vieille
(1900). This structure, known as ZND structure after its authors, consists of a leading
shock wave followed by an induction zone and a reaction zone. The fresh mixture of
reactive gases in a metastable equilibrium state (i.e., chemically frozen) is compressed
as it crosses the leading shock wave. The physical transformations experienced by the
gaseous mixture during its passage through the shock wave unsettles the metastable
equilibrium and initiates the combustion reactions that transform the reactive mixture
into less energetic products. However, chemical transformations take an induction time
to finalize that is longer than the collision time. Therefore, a scale separation is again
possible.

In the leading shock wave, dissipation mechanisms transform the excess macroscopic
kinetic energy into thermal energy by slowing down the gases in the sock wave reference
frame and increasing their pressure and temperature. The thickness of the shock wave d
is comparable to the mean free path l which corresponds to the distance travelled by a
gas molecule moving at the sound speed during the time between collisions l “ atcoll.

The induction reactions required for heat release take place on a much larger scale. The
induction time of the heat release is related to the collision time through an Arrhenius
law tr{tcoll « exppEa{pkBT qq with a large activation energy Ea{ pkBT q " 1. The
flow velocity behind the shock wave is of the order of the sound speed. Hence, the
length of the induction zone li « atr is much larger than the shock wave thickness
li{d « exppEa{pkBT q " 1. Furthermore, the shock wave can be considered inert with
little error.

The relevance of molecular transport effects in the induction zone can be assessed
through the Reynolds number. Based on the kinetic gas theory, the molecular transport
coefficients, such as the kinematic viscosity, are comparable to the square of the sound

35



2 One-dimensional compressible flow and premixed combustion waves

speed multiplied by the collision time ν “ a2tcoll. Using the estimate for the induction
zone length aforementioned, the Reynolds number characterizing the induction zone is
much larger than unity Reli “ lia{ν « tr{tcoll " 1. Therefore, diffusive effects can be
neglected in first approximation in the induction zone.

According to these considerations, the induction zone is described by the reactive Euler
equations (2.11) and (2.12). The conservative form of the Euler equations for a steady
plane detonation in the reference frame of the leading shock x “ r ´ rfptq propagating
with velocity D “ drf{dt are written as

d
dx

rρ pD ´ uqs “ 0, (2.83)

d
dx

“

ρ pD ´ uq
2

` p
‰

“ 0, (2.84)

d
dx

«

ρ pu ´ Dq

˜

h `
pu ´ Dq

2

2

¸

` ρ pu ´ Dq qmp1 ´ Y q

ff

“ 0, (2.85)

d
dx

rρ pD ´ uqY s “ ρω, (2.86)

where Y is a reaction progress variable which is Y “ 0 for the initial mixture of fresh
gases and Y “ 1 after complete combustion. This reaction progress variable can be
interpreted as the reduced mass fraction of the combustion products. Integration of this
system of equations from the boundary conditions given by the Neumann state (2.45)
to (2.47) behind the shock wave for a given reaction rate ω provides with the internal
structure of the detonation.

An example of the ZND structure for a CJ detonation whose reaction rate is given by

ωpT, Y q “ p1 ´ Y qB exp

ˆ

´
Ea

kBT

˙

(2.87)

has been numerically integrated and the results are represented in Figure 2.9. The
induction zone for x{li ă 0 is characterized by a region where the evolution of the
physical variables is negligible followed by a reaction zone where most of the heat is
released. A pronounced evolution of the physical variables is observed at the end of
the induction zone. Along the induction zone, an expansion process takes place where
the gases are slowed down so that at the end of the reaction zone the flow is sonic with
respect to the leading shock wave. That is, the ZND structure connects the initial state of
the mixture with the sonic condition of the CJ regime.

The internal structure of the detonation described by the ZND model can also be
represented on the P´V plane. Since diffusive effects are neglected in the induction zone,
the integration of the conservation equations in the induction zone from the Neumann
state is equivalent to the integration from the initial conditions to a partially reacted state.
Such partially reacted Hugoniot curves correspond to

pP ` 1qpV ` 1q “ YQ ` 1 (2.88)
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Figure 2.9: Structure of a CJ detonation according to Zeldovich (1940), von Neumann (1942), and
Döring (1943). The reactive wave propagating towards the right (i.e., the initial fresh mixture is at
x ą 0 and the detonation structure at x ď 0 with x “ 0 being the position of the leading shock).
The thermo-chemical properties of the mixture are determined by the heat capacity ratio γ “ 1.4,
the reduced heat release Q “ 5 and the reduced activation energy βN “ Ea{pkBTNq “ 15.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

V

0

10

20

30

40

P

CJ

N

u

Overdriven

Chapman-Jouguet
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and have been represented in Figure 2.10. As it passes through the shock wave, the
reactive mixture passes from the initial state, labelled with u, to the Neumann state,
labelled N . From the Neumann state behind the shock wave, the progress of the reaction
results in an expansion which in the P ´ V plane is represented as a descent down the
MR line towards the successive partial Hugoniot curves.

Gas flow behind a steady CJ detonation

The existence of Chapman-Jouguet detonations depends on whether a transient solution
for the unsteady expansion of the detonation products can be found to match the
steady boundary conditions of the detonation front (Taylor, 1950a). The dynamics of the
combustion products behind planar and spherical detonation waves was first independently
studied by Zeldovich (1942) and Taylor (1950a).

As in the strong blast wave problem (see Section 2.2.3), the unique spatial scale of
the problem given by the radius of the detonation is directly related to time through the
propagation velocity of the front. Therefore, the problem of a gas flow behind a CJ wave
also lacks of scales and a self-similar solution can be sought.

The dynamics of the gas flow behind a CJ detonation can be studied using the same
non-dimensional functions as in the blast wave problem and the self-similar independent
variable ξ ” r{rfptq that transform the Euler equations (2.14), (2.15) and (2.18) into the
system of ordinary equations (2.57) to (2.59). However, in this case, since the detonation
front propagates at constant CJ velocity, the entropy generated by the front is constant
and therefore the entire gas flow behind the front is homentropic. The last equation (2.59)
can then be simply replaced by the isentropic relationship and the constant propagation
speed causes the parameter χ to vanish. In addition, a new non-dimensional function for
the sound speed is introduced βpξq2 “ a2{D2 “ γf{ψ to replace the function ψ.

The mathematical problem is composed by the ordinary differential equations

ϕ1
“

jϕβ2

ξ
“

pϕ ´ ξq
2

´ β2
‰ (2.89)

β1
“ ´

β pγ ´ 1q

´

ϕ1 `
jϕ
ξ

¯

2 pϕ ´ ξq
, (2.90)

the boundary conditions at the front ξ “ 1 given by the reactive RH relationships for a
strong Chapman-Jouguet detonation

MuCJ
" 1 : ϕp1q “

ubCJ

D «
1

γ ` 1
(2.91)

βp1q “
abCJ

D «
γ

γ ` 1
(2.92)

and the rear boundary condition ϕp0q “ 0 that imposes the velocity to vanish at the origin
to conserve the symmetry of the problem.
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Figure 2.11: (a) Density, (b) velocity, (c) pressure and (d) sound speed fields in planar (j “ 0),
cylindrical (j “ 1) and spherical (j “ 2) geometry behind a strong CJ detonation wave for a
diatomic gas γ “ 1.4 in the solution of Zeldovich (1942) and Taylor (1950a).
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For planar detonations, the non-trivial solution is obtained by cancelling the denomina-
tor of (2.89), so that a linear profile is obtained that links the conditions behind the front
with a growing core of gases at rest (ϕ “ 0) at ξ “ 1{2 where β “ 1{2. In cylindrical
and spherical geometries, the system of equations (2.89) and (2.90) must be integrated
numerically from the boundary conditions (2.91) and (2.92). However, using these
boundary conditions in the front, the denominator of (2.89) cancels out and the derivative
ϕ1 diverges due to the curvature effect. Therefore, it is not possible to start the numerical
integration strictly from the front. A series expansion near the front 1 ´ ξ ! 1 must be
performed to obtain valid boundary conditions to initialize the numerical integration
from a position slightly inside the expansion wave as explained in detail in (Lee, 2016).
The solutions obtained for the profiles of the physical variables behind planar, cylindrical
and spherical detonations are represented in Figure 2.11.

The rarefaction wave that develops behind a strong Chapman-Jouguet detonation is
characterized by a core of stagnant gases growing from the origin. This core of stagnant
gases propagates at the velocity of the local sound speed which is roughly half of the
leading shock velocity in the strong detonation limit. A linear profile connects the
boundary conditions on the front with the state on the core of stagnant gases in planar
geometries. In contrast, in cylindrical and spherical geometries, the sonic condition
behind the CJ wave results in an infinite gradient. Taylor (1950a) justified this singularity
by stating that it resulted from the approximation of the detonation wave as a discontinuity.
This approximation would not be valid when the detonation radius is comparable to its
thickness. Yet given the large activation energy required to initiate a detonation, with
such a small radius the detonation will be highly overdriven. It can also be seen that all
the variables are distributed similarly in the rarefaction wave, differing only in the scale
and boundary values. This is so since the entropy is uniform throughout the rarefaction
wave and, thus, the state of the gas is defined by a single state variable.

To conclude, the propagation mechanism of detonations is the compressive heating
produced by the leading shock wave. Since the flow behind a shock wave is always
subsonic with respect to it, a shock wave can be damped by the rear conditions. Therefore,
the CJ propagation velocity of the shock wave results in the conditions for which after
expansion in the induction zone, the flow is sonic with respect to the shock wave, isolating
it from disturbances coming from behind. Unlike deflagrations, detonation propagation
is a purely gas-dynamic problem. Hence, its propagation velocity can be assessed by a
global integration of the reactive front without considering its internal structure. Strong
detonations can form when an external support such as a piston pushes the reactive front
from behind so that there are no rear disturbances that may dampen the shock wave.
Conversely, there is no steady structure that can connect the initial state with the solution
for a weak detonation wave. Since the shock wave is the only steady solution for a
compression wave, the weak solution requires the heat to be released within the thickness
of the shock wave. As in the case of strong deflagrations, this requires that the reaction
rate be comparable to the collision frequency. If that were the case, the initial mixture
would be in a fully out of equilibrium state and the combustion would proceed without
the need for the leading shock wave of the combustion front.
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CHAPTER3

Direct initiation of critical detonations in the
small heat release asymptotic limit

This chapter presents a study on the critical dynamics of direct initiation of gaseous
detonations in the small heat release asymptotic limit, considering unsteadiness, curvature
effects, and the evolution of the rear rarefaction wave. The study employs a nonlinear
hyperbolic equation, derived from the Euler equations, describing the slow detonation
dynamics governing the overall evolution of the detonation. The study identifies the
slowdown that occurs as the sonic point approaches the inner detonation structure as the
key mechanism controlling the critical dynamics. The quasi-steady approximation is
revisited, incorporating the insights gained from the study of the rarefaction wave and
compared with the numerical results.
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3.1 Introduction
Direct initiation is the process of formation of a detonation in open space without
undergoing a predetonation stage of flame acceleration. The conditions required for the
onset of the detonation are created directly in the decay of a strong blast wave generated
by a powerful concentrated energy source. This process is sometimes referred to as being
instantaneous in comparison to the deflagration-to-detonation transition, which requires
a previous phase of flame acceleration to reach the necessary conditions for detonation.

As a detonation is essentially a shock wave sustained by the release of chemical
energy in its wake, it is reasonable to assume that direct initiation requires the creation
of a strong shock of sufficient duration by the ignition device. Following the works of
Laffitte, various experimental procedures have been established for the direct initiation of
a detonation utilizing different energy sources (see Lee (2008) and references therein). It
has been observed that the onset of a detonation is consistent across the various energy
sources used. The decay of the initial inert blast wave is dependent on the amount of
ignition energy as described by the self-similar solutions of Sedov (1946) and Taylor
(1950a). Hence, the direct initiation phenomenon can be accurately described as the
instantaneous deposition of a substantial quantity of energy at an ideally concentrated
point, line, or plane (Knystautas and Lee, 1976).

Zeldovich criterion

Nearly a century since the first experimental observation of the direct initiation of spherical
detonations by Laffitte (1925), the large amount of energy required to successfully initiate
a detonation without a preceding stage of flame acceleration continues to be a subject
of intense research in the scientific community (Knystautas and Lee, 1976; Lee, 1977;
Lee et al., 1978; Knystautas et al., 1979; Clarke et al., 1986; Carnasciali et al., 1991;
He and Clavin, 1994; Zitoun et al., 1995; He, 1996; Lee and Higgins, 1999; Eckett
et al., 2000; Radulescu et al., 2000; Ng and Lee, 2003; Kamenskihs et al., 2010;
Zhang et al., 2011, 2012; Shen and Parsani, 2017). The critical energy required for
the direct initiation process was systematically investigated by Zeldovich et al. (1956).
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An initial energy threshold was found below which the detonation wave fails to reach
the self-sustained regime. In a first attempt to explain this high energy requirement,
Zeldovich et al. suggested that the time taken for the initial blast wave to reach the
self-sustained detonation regime should be larger than the reaction time. According to
this criterion, the reactive wave should propagate faster than in the self-sustained regime
as its front expands beyond a critical radius, which is on the order of the detonation
thickness. However, experimental results by Lee et al. (1966) indicated that the Zeldovich
criterion significantly underestimated the initiation energy. A critical radius greater than
the detonation thickness below which the blast fails to initiate a self-sustained detonation
have been consistently identified experimentally (Lee, 1977, 1984).

Detonation-wave model

Pioneering numerical simulations of direct initiation of detonations by concentrated
sources were conducted by Korobeinikov (1971) in the infinitely fast reaction limit. The
resulting reactive front, which becomes a discontinuity, was called “detonation-wave
model” by Korobeinikov. In this limit, the thickness of the detonation is much smaller than
its radius, and the detonation wave can be treated as a supersonic reactive discontinuity
that satisfies the reactive jump conditions.

Experimental measurements of the critical radius supported the validity of the discon-
tinuous approximation, as it was found to be much larger than the detonation thickness,
However, the discontinuous wave approximation neglects modifications to the internal
structure of the detonation through the jump conditions. As a result, there is no critical en-
ergy under the discontinuous approximation. Regardless of the initially deposited amount
of energy, the overdriven detonation created by the blast wave relaxes systematically to
the self-sustained regime.

Critical curvature model (CC)

A successful theory for direct initiation should provide an analytic expression from which
the critical energy can be determined based on fundamental mixture properties. He
and Clavin (1994) proposed such a theory considering the modification of the internal
structure of a steady self-sustained detonation due to its curvature. The quasi-steady
analysis of He and Clavin (1994) for curved self-sustained detonations was performed
in the limits of large Mach number and large activation energy using the square-wave
model. The square-wave model assumes that the totality of the chemical energy is
released instantaneously after an induction time. In the limit of large activation energy,
the induction time is governed by an Arrhenius law with a strong thermal sensitivity,
resulting in a proportional increase of the detonation thickness which amplifies the impact
of the curvature on the reactive wave.

This analysis led to a nonlinear relation between the propagation velocity of a curved
self-sustained detonation and the front radius. The corresponding curve propagation
velocity versus front radius presents a turning point for a critical front radius interpreted
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as a quasi-steady curvature-induced quenching. There is no quasi-steady solution for a
spherical self-sustained wave with a radius smaller than the critical one, which is larger
than the detonation thickness essentially due to the large activation energy.

The critical energy predicted by this theory was in agreement with the experimental
results in order of magnitude. However, the quasi-steady analysis is not entirely
satisfactory, even though the numerical simulations of He and Clavin (1994) (one-step
model) and He (1996) (detailed scheme for the combustion of hydrogen-oxygen mixtures)
are in satisfactory agreement with the critical radius, at least concerning its order of
magnitude.

Despite the agreement in the order of magnitude of the critical radius, the unsteady
effects play a significant role near criticality. For instance, critical regimes of initiation
characterized by a quasi-quenching of the detonation with a propagation velocity de-
creasing well below the self-sustained regime followed by a sudden re-ignition cannot be
explained on the basis of a quasi-steady approximation.

Internal structure unsteadiness

Lee and Higgins (1999) discussed in an exhaustive review on direct initiation of gaseous
detonations several successful semi-empirical theories used to estimate the critical energy
required for initiation, emphasizing the importance of unsteadiness in the critical regime.
According to their analysis, no criterion based solely on curvature effects could capture
the essential mechanism of initiation in the critical regime. The SWACER (Shock Wave
Amplification by Coherent Energy Release) mechanism, proposed by Lee et al. (1978)
in the context of photochemical initiation of gaseous detonations, was given particular
attention. This mechanism suggests that the detonation wave re-acceleration, following
the quasi-steady period in the critical regime, occurs because the chemical energy release
is synchronized with the propagation of a pressure pulse within the supersonic reactive
wave. The review also highlighted numerical simulations of the Euler equations by
Mazaheri (1997) with a single-step kinetics, which encountered difficulties in obtaining
a well-defined value of critical initiation energy. In a single-step chemistry model the
mixture always reacts to completion, so that, in the absence of losses, the initiation
of a detonation always results in a successful ignition after a sufficiently long time.
When a re-acceleration of the front occurred from very slow propagating regimes close
to the acoustic regime, a reignition by shock waves was observed. This observation
might suggest that the final stages of DDT and direct initiation would be universal if the
chemistry allowed for it.

Critical decay rate model (CDR)

The importance of unsteadiness in the critical regime was further emphasized by Eckett
et al. (2000). Numerical simulations of the spherical direct initiation served as a basis
for their study (see, for instance, Figure 3.1). The post-processing of the numerical
results showed that the unsteady terms of the equation viewed by fluid particles in the
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Figure 3.1: Trajectories propagation velocity vs. front radius with different source energies
obtained through numerical simulations of the reactive Euler equations for flows with spherical
symmetry. Reprinted from Eckett et al. (2000).

subcritical regime were larger than the curvature term. Based on this observation, the
authors concluded that unsteadiness in the induction zone resulting from the wave front
deceleration was the primary failure mechanism of a detonation. The quasi-steady
assumption proposed by He and Clavin (1994) was deemed to be inappropriate for direct
initiation and a critical decay rate model was proposed. The critical decay rate model was
based on an analysis of the unsteady one-dimensional reaction-zone structure, relying on
an appropriate reaction mechanism given by the mixtures and the overdriven detonation
wave decay model proposed by Korobeinikov (1971).

A recent study by Weng et al. (2021) compared the predictions from the CC model of
He and Clavin (1994) and the CDR model of Eckett et al. (2000). The comparison is
made possible applying to both models the wave decay law given by the Sedov (1946) &
Taylor (1941) self-similar solution. This study shows that the ratio of the critical initiation
energy predicted by the CC and the CDR model is actually much lower than the ratio
obtained using different wave decay laws. The critical initiation energy predicted by both
models differs from the experimental results by a factor 10—102.

The authors of the study also noted that the critical initiation energy predicted by the
CC model was consistently larger than the prediction of the CDR model. This tendency
is attributed to the fact that the critical conditions of the critical decay rate model can be
reached more easily than those of the critical curvature model.
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Curvature-unsteadiness model

A general theory of detonation waves considering both curvature and unsteadiness was
developed later by Kasimov and Stewart (2005). They derived a dynamical law governing
the shock evolution in the asymptotic limit of weakly curved slowly varying detonation
waves. The resulting evolution equation exhibited successful detonation initiation and
failure, and a steady propagation velocity vs. front radius curve with a turning point,
similar to that of He and Clavin (1994). By integrating backwards the evolution equation
from a detonation failure solution just below the unstable branch they determined the
ignition separatrix curve, which separates solutions with initial conditions that lead to
ignition from those that lead to failure. However, this curvature-unsteadiness model still
over-predicted the critical initiation energy. The authors noted that this over-prediction
of the critical initiation energy seems to to be a general feature of critical curvature
models that define criticality based on the turning point of the quasi-steady curve. They
suggested that the actual onset of unsteady self-sustained detonation at radii much below
the quasi-steady critical radius may explain this discrepancy. A similar analysis of the
critical curvature conditions for detonation considering the slow dynamics was performed
by Vidal (2009) for non-uniform initial temperature and composition distributions.

Near front flow upon onset of the self-sustained regime

More recently, Liñán et al. (2012) reconsidered the discontinuous detonation model in
the context of direct initiation with a finite rate of initial energy release. This study
provided new insights into the transition from the strong blast wave solution (Taylor, 1941;
Sedov, 1946) to the products dynamics solution behind an intense spherical CJ detonation
(Zeldovich, 1942; Taylor, 1950a). At early times, the flow includes a neatly defined core
of very hot expanding gas, similar to the flow resulting from a concentrated external heat
source in inert mixtures (Kurdyumov et al., 2003). The contact surface delimiting this
almost empty region acts as a piston that drives the overdriven detonation. As energy
deposition ceases, an expansion wave develops behind the overdriven detonation, which
reduces its velocity towards the CJ regime. The curvature of the geometry introduces
an additional flow divergence effect that causes the transition to the CJ regime to occur
within a finite time. The authors conducted a thorough analysis of the flow structure
near the detonation front during the transition to the CJ regime (see Figure 3.2). A
Burgers-like equation was included to describe the transonic flow field after the transition
for planar waves.

Detonation analog

A Burgers’ equation with a forcing term, which captures many of the behavior of
detonations in gaseous reactive mixtures was presented by Kasimov et al. (2013). This
model exhibits steady wave solutions, instability of the steady solutions and the onset of
chaos. The detonation model is similar to the Fickett’s simple analog for detonations
(Fickett, 1985), which could not reproduce the observed unstable behavior of detonations
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Figure 3.2: Pressure p and velocity v profiles at different time instants t around transition to CJ
detonation tc in the infinitely fast reaction rate limit. Reprinted from Liñán et al. (2012)

until it was extended by Radulescu and Tang (2011). Further extensions of this model
considered generic losses, such as curvature and friction (Faria and Kasimov, 2015), and
cellular structures in multidimensional detonations (Faria et al., 2015).

Small heat release asymptotic limit

A series of works were presented by Clavin and Denet (2018), Clavin (2019), and
Clavin and Denet (2020) on the small heat release limit coupled with the Newtonian
approximation, providing with a systematic framework for studying the two-time-scales
problem of detonation dynamics near the self-sustained regime. The decay of planar
overdriven detonations to the self-sustained regime has been described analytically in
Clavin and Denet (2018), where the problem was reduced to an integral equation for the
velocity of the leading shock. The direct initiation of spherical detonations is studied in
Clavin and Denet (2020) in the same asymptotic limit, investigating successful initiation
far from the critical radius and neglecting the small gradient of the burnt-gas flow. They
demonstrated that, near the self-sustained regime, the outwards-running compressible
mode is the main contributor to the inner structure unsteadiness, controlling the delayed
response of the detonation structure to the burnt-gas flow. The time-dependent velocity
of the leading shock of the curved detonation is obtained equivalently as the solution of
an integral equation investigated for stable and weakly unstable detonations.

Critical dynamics of gaseous detonations

The purpose of the present study is to further explore the impact of unsteadiness combined
with the curvature effects. There are two distinct unsteady effects. One is a result of
the driving mechanism of the detonation decay, specifically the rarefaction wave in the
burnt gas behind the detonation front. The other is the intrinsic dynamics of the inner
detonation structure that controls the response to fluctuations in the boundary conditions.
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

The complexity of the complete problem rules out the possibility of obtaining general
analytical solutions. Not only the dynamics of the inner structure present a significant
challenge but also the rarefaction wave depends on the dynamics of the detonation decay.
Furthermore, separating the inner structure from the inert rarefaction wave in spherical
geometry is a difficult task.

The characteristic time of evolution of the blast wave, according to the Sedov-Taylor
self-similar solution, is of the order of the blast radius divided by the propagation velocity,
which is larger than the transit time of a fluid particle through the detonation structure by
a factor of the detonation radius to the detonation thickness in the vicinity of criticality.
This does not guarantee the accuracy of a quasi-steady approximation, as the response
time of the inner structure is also larger than the transit time.

The cumulative effect of feedback loops that control the inner dynamics can be
summarized as follows. Disturbances introduced at the leading shock by velocity
variations propagates inwards towards the burnt gas with two modes, an inward-running
acoustic mode and an entropy wave. The modification of heat release rate that results
from this perturbation affects the flow and, in turn, the leading shock velocity after
a time delay associated with the outward-running acoustic mode. When approaching
the self-sustained detonation regime, the flow near the end of heat release becomes
nearly sonic, and the delay of the outward-running mode is larger than those associated
with the inward-running modes, including the entropy wave. At the fist order of a
multiple-time-scale analysis, the leading order terms of the downstream-running modes
can be considered instantaneous, and the long time dynamics are primarily controlled by
the slow upstream-running mode.

The key unsteady mechanism during direct initiation when approaching the self-
sustained detonation regime is the time delay for transferring the rarefaction-wave-induced
deceleration to the leading shock. Due to the nearly sonic flow at the exit of the internal
detonation structure, the delay increases and diverges at the self-sustained detonation
velocity, producing a significant unsteady effect on the dynamics. This topic has not yet
been addressed in the context of the direct initiation process, and the present work aims
to address this gap through an asymptotic analysis that reduces the problem to a single
nonlinear hyperbolic equation.

The current study focuses exclusively on the end of the detonation decay, with a
particular emphasis on the critical regime. The dynamics during a supercritical initiation
have been analysed in the same framework previously by Clavin and Denet (2020).

Structure of the chapter

The remaining sections of this chapter, which contains the study of the direct initiation
of gaseous detonations in the small heat release limit, are structured as follows: Sec-
tion 3.2 presents the detonation model utilized in the analysis, derived from the general
conservation equations; Section 3.3 examines the rarefaction wave behind a detonation
considered as a discontinuity; Section 3.4 investigates the dynamics near criticality, taking
into account modifications to the inner structure; Section 3.5 revisits the quasi-steady
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3.2 Detonation model near the self-sustained regime in the small heat release limit

approximation of the internal structure using the solution obtained for the rarefaction
wave behind an overdriven detonation; and finally, conclusions and future perspectives
are summarized in Section 3.6.

3.2 Detonation model near the self-sustained regime in
the small heat release limit

The dynamics of direct initiation of a gaseous detonation are studied utilizing the model
of Clavin and Williams (2002) including curvature effects and extending its application
to the rarefaction wave that follows the detonation. The model proposed by Clavin
and Williams adopts the classical ZND detonation structure that consists of an inert
leading shock followed by an inviscid reaction layer. It describes the dynamics of gaseous
detonations in mixtures with a heat of reaction that is significantly lower than thermal
enthalpy of the unperturbed reactive mixture. This model is applicable in detonations
propagating at velocities sufficiently close to the Chapman-Jouguet regime.

In this section, the extended model is derived from the general conservation equations
taking into account physical insights obtained from steady planar detonations. Addition-
ally, a simplified chemical-kinetics model suitable for describing the direct initiation of
detonations in small heat release mixtures is introduced.

3.2.1 General equations

The analysis of the direct initiation of a detonation requires investigating the interaction
between a detonation wave propagating trough a reactive mixture at rest and a rarefaction
wave developed between the supersonic reactive wave and a core of stagnant gases at the
locus of energy deposition. The internal structure of the detonation is bounded by an inert
shock wave, as in the ZND detonation model, and the exit of the reaction zone where the
reactive mixture has been fully consumed. The leading shock wave compresses and heats
the reactive mixture to the Neumann state given by the Rankine-Hugoniot jump relations.
The compressed flow velocity relative to the shock wave is nearly sonic, resulting in a
convective flux that is significantly faster than the transport by diffusion. The flow is then
accurately described by the macroscopic laws of conservation, neglecting viscous effects,
heat conduction, and molecular diffusion, known as Euler equations including reactive
terms that account for the release of chemical heat and the progress of the chemical
reactions. This inviscid flow condition persists in the near-front rarefaction wave, which
can be analysed by extending the application of the Euler equations into the flow at
chemical equilibrium.

Reactive one-dimensional Euler equations

The dimensional form of the reactive Euler equations in one-dimensional symmetrical
geometry (i.e. u1 “ pu1, 0, 0q, ∇u1 “ pBu1{Br1, 0, 0q, ∇¨u1 “ Bu1{Br1 ` ju1{r1) is
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

written as
ˆ

Bρ1

Bt1
` u1 Bρ

1

Br1

˙

` ρ1 Bu
1

Br1
“ ´j

ρ1u1

r1
,

ˆ

Bu1

Bt1
` u1 Bu

1

Br1

˙

`
1

ρ1

Bp1

Br1
“ 0, (3.1)

ˆ

Bs1

Bt1
` u1 Bs

1

Br1

˙

“
q1
m

T 1
ω1,

ˆ

BY

Bt1
` u1 BY

Br1

˙

“ ω1, (3.2)

where t1 and r1 are the independent variables of time and space, ρ1, p1, u1 and Y are
respectively the density, the pressure, the radial velocity in the laboratory reference frame
(where gas ahead the detonation is at rest), and the reaction progress variable (Y “ 0
in the initial mixture and Y “ 1 in the burned gas), γ ” c1

p{c1
v is the ratio of specific

heat and q1
m is the chemical heat release per unit mass of the mixture, t1rN is the reaction

time at the Neumann state of the CJ wave, ω1 is the heat release rate, and j corresponds
respectively to planar (j “ 0), cylindrical (j “ 1) and spherical (j “ 2) geometries.

The first two equations (3.1) constitute the fluid mechanics problem ensuring the
conservation of mass and momentum respectively. Energy conservation is assured by
the first equation in (3.2) which is written in terms of the entropy defined by the Gibbs’
relation for a polytropic gas as T 1ds1 “ de1

T ` p1dv1. This form of the equation highlights
the fact that heat release is the only source of entropy, with viscous dissipation, heat
conduction and molecular diffusion being negligible behind the leading the shock wave.
The last equation in (3.2) corresponds to a simplified notation for the progress Y of an
arbitrary model for the chemical kinetics of the combustion processes. In compressible
flows, the fluid mechanics problem is coupled to the conservation of energy through the
equation of state which for ideal gases is

p1
“ pγ ´ 1qc1

v ρ
1T 1, a12

“ pγ ´ 1qc1
p T

1, γ ”
c1
p

c1
v

“ const.. (3.3)

The gas flow in a detonation wave is conveniently studied in the moving coordinate
system attached to the leading shock wave. The radial position of the leading shock wave
r1
fpt

1q advances with velocity D1 ” dr1
f{dt

1 through a reactive mixture initially at rest. In
the coordinate system of the leading shock wave

x1
” r1

´ rf
1
pt1q,

B

Br1
Ñ

B

Bx1
,

B

Bt1
Ñ

B

Bt1
´ D1 B

Bx1
, (3.4)

the conservation laws are written as

Dρ1

Dt1
` ρ1 Bu1

Bx1
“ ´j

ρ1u1

x1 ` r1
f

,
Du1

Dt1
`

1

ρ1

Bp1

Bx1
“ 0, (3.5)

Ds1

Dt1
“
q1
m

T 1
ω1,

DY

Dt1
“ ω1, (3.6)
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with the introduction of the differential operator

D

Dt1
”

B

Bt1
´ pD1

´ u1
q

B

Bx1
. (3.7)

Replacing T 1 for ρ1 through the ideal gas law (3.3) and adding the continuity equation
(3.5) divided by ρ1, the entropy equation (3.6) can be written in terms of p1 and u1 as

1

γp1

Dp1

Dt1
`

Bu1

Bx1
“

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
f

. (3.8)

Mass and momentum conservation equations (3.5) can then be replaced by its hyperbolic
form for u1 and p1 when the equation for conservation of momentum (3.5) divided by
a1 “ γp1{pa1ρ1q is added to (3.8)

1

γp1

D`p1

Dt1
`

1

a1

D`u1

Dt1
“

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q
. (3.9)

and subtracted
1

γp1

D´p1

Dt1
´

1

a1

D´u1

Dt1
“

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q
. (3.10)

where the differential operators

D`

Dt1
“

B

Bt1
` pa1

´ D1
` u1

q
B

Bx1
and

D´

Dt1
“

B

Bt1
´ pa1

` D1
´ u1

q
B

Bx1
(3.11)

have been introduced.

When the reaction rate in terms of the thermodynamic variables ω1 “ ω1pT 1, Y q is
known, the hyperbolic equations of the hydrodynamic problem (3.9) and (3.10) and the
two conservation equations of the reactive problem (3.2) together with the ideal gas law
(3.3) form a closed set of equations for ρ1, p1, u1, T 1 and Y .

Rankine-Hugoniot boundary conditions

The Neumann state of the gas behind the leading shock wave is determined by the
propagation velocity D1 of the wave and the initial state of the unperturbed gas stream.
Focusing on the initiation conditions, the unperturbed gas ahead of the leading shock is
considered homogeneous and chemically frozen, so the boundary conditions at the front
are given by the Rankine-Hugoniot jump relations as a function of the leading shock
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

wave Mach number Mu ” D1{a1
u

x1
“ 0 :

ρ1
u

ρ1
“

D1 ´ u1

D1
“

pγ ´ 1qM2
u ` 2

pγ ` 1qM2
u

, (3.12)

p1

p1
u

“
2γM2

u ´ pγ ´ 1q

γ ` 1
, (3.13)

T 1

T 1
u

“
r2γM2

u ´ pγ ´ 1qsrpγ ´ 1qM2
u ` 2s

pγ ` 1q
2M2

u

, (3.14)

where the subscript u denotes the upstream reactive mixture at rest. Since the gas is
assumed to be chemically frozen while flowing through the shock wave, the boundary
condition for the progress variable is

x1
“ 0 : Y “ Yu. (3.15)

3.2.2 Physical insights from steady planar detonations

The unsteady one-dimensional problem described by the Euler equations in a reactive
mixture is still too complex for a general analytical solution. Further simplifications
derived from physical insights into planar steady detonations are still required to decipher
the fundamental mechanisms involved in the detonation direct initiation. Two properties
of steady planar detonations used to simplify the problem are presented and analysed in
the following. The first concerns the identification and balance of the heating mechanisms
experienced by a fluid particle as it passes through the detonation structure and the
second consists of identifying and exploiting the existence of two different time scales
that characterise the unsteady dynamics of a detonation wave. The two aforementioned
characteristics will be used to simplify the problem at hand. This simplification involve
ignoring negligible effects and limiting the scope of the study on specific conditions that
highlight the relevant physics underlying the direct initiation phenomenon.

Heating mechanisms in a detonation wave

Using the definition of entropy for a polytropic gas in the form

ds1
“ c1

p

dT 1

T 1
´ c1

p

γ ´ 1

γ

dp1

p1
, (3.16)

the entropy equation (3.6) can be rewritten to describe the relative temperature evolution
of a fluid particle

1

T 1

DT 1

Dt1
“
γ ´ 1

γ

1

p1

Dp1

Dt1
`

q1
m

c1
pT

1
ω1. (3.17)

The two physical mechanisms responsible for temperature changes in inviscid compressible
reactive flows are highlighted in this form of the equation. On the one hand, the temperature
of a gas decreases due to adiabatic compressional cooling during expansion. On the other

52



3.2 Detonation model near the self-sustained regime in the small heat release limit

hand, the heat released from combustion increases temperature of the gas. An order of
magnitude estimate of the right hand side terms of equation (3.17) yields the approximate
contribution of each mechanism to relative temperature variations. During the reaction
time, adiabatic compressional effects for unit relative pressure variations are of order
pγ ´ 1q{γ, while the release of reaction heat accounts for q1

m{pc1
pT

1
uq.

In ordinary reactive mixtures, the heat capacity ratio γ, which governs the relationship
between relative changes in pressure and temperature, varies between 1.3 and 1.4. The
profiles of the physical variables in the inner structure of an ordinary steady planar
detonation are represented in Figures 3.3 and 3.4 for γ “ 1.3, 1.4 and the limit γ Ñ 1. It
can be observed that changes in γ, even in the limit γ Ñ 1, do not affect qualitatively
the evolution of the physical variables and the largest quantitative difference found in
the burnt temperature value is below a 15%. This is justified by the fact that ordinary
detonations are characterized by the dominant balance

γ ´ 1

γ
!

q1
m

c1
pT

1
u

. (3.18)

Specifically, although compressive heating is an essential heating mechanism within the
shock wave, leading to a drastic reduction of the induction time, its impact is negligible
behind the shock wave compared to the heat released by the chemical reaction.
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Figure 3.3: Temperature and density profiles at the internal structure of a steady planar detonation
for different values of γ with q1

m{pc1
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1
uq “ 1, βN “ 40, Mu “ 1.01MuCJ (weakly overdriven).

Two time-scale nature of detonation waves

The method of characteristics, a common approach for solving hyperbolic partial
differential equations, can be employed to identify the travelling waves that govern
the dynamics of the unsteady flow. The analysis of the characteristic waves provides
insights about the timescales involved in the problem. The pair of equations (3.9)
and (3.10) establishes a relationship between the propagation of pressure and flow
velocity perturbations to the rate of heat release and flow curvature. These equations are
the extension of the simple wave equations to reacting gases in divergent geometries.
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The specific paths satisfying the equation

dx1
“ pa ´ D1

` u1
qdt1 (3.19)

are called outward-running characteristic lines C`. Along these lines, the evolution of
pressure changes dp1 “ pBp1{Bt1qdt1 ` pBp1{Bx1qdx1 is constrained to

dp1
“

„

Bp1

Bt1
` pa1

´ D1
` u1

q
Bp1

Bx1

ȷ

dt1. (3.20)

and, similarly, for the velocity du1 “ pBu1{Bt1qdt1 ` pBu1{Bx1qdx1,

du1
“

„

Bu1

Bt1
` pa1

´ D1
` u1

q
Bu1

Bx1

ȷ

dt1, (3.21)

Substituting (3.20) and (3.21) into (3.9), the compatibility equation

dp1

γp1
`

du1

a1
“

„

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q

ȷ

dt1 (3.22)

that holds along the characteristic line C` is obtained. Likewise, the inward characteristic
lines C´ can be depicted from (3.10). The trajectory of these characteristic lines is

dx1
“ ´pa ` D1

´ u1
qdt1 (3.23)

and the corresponding compatibility equation is

dp1

γp1
´

du1

a1
“

„

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q

ȷ

dt1 (3.24)

Integrating (3.22) along the outward characteristic line C`, the transported acoustic
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perturbation evolves on time as
ż

dp1

γp1
`

ż

du1

a1
“

ż
„

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q

ȷ

dt1 (along a C` characteristic) (3.25)

while evolution of acoustic perturbations along the inward characteristic line C´ is
obtained by integration of (3.24)
ż

dp1

γp1
´

ż

du1

a1
“

ż
„

q1
m

c1
pT

1
ω1

´ j
u1

x1 ` r1
fpt

1q

ȷ

dt1 (along a C´ characteristic). (3.26)

Considering only small perturbations, the transported scalars (left-hand side of equations
(3.22) and (3.24)) can be written as J` ” δp1{pγp1q `δu1{a1 and J´ ” δp1{pγp1q ´δu1{a1.
These scalars correspond in fact to the Riemann invariants for simple waves. However,
in this case, the scalars are not conserved due to the flow divergence introduced by the
curvature of the geometry and the release of reaction heat.

In this context, fluid particle paths can be interpreted as a third type of characteristic
lines C0 described by

dx1
“ ´pD1

´ u1
qdt1. (3.27)

Along these lines, the set of compatibility equations obtained from the entropy and
reaction progress conservation equations (3.6) describe the evolution of ds1 and dY as

ds1
“

q1
m

c1
pT

1
ω1 dt1 and dY “ ω1 dt1. (3.28)

Integration of these equations along the particle path C0

s1
pt1q “ s1

pt10q `

ż t1

t1
0

q1
m

c1
pT

1
ω1 dt1 (along the particle path C0)

Y pt1q “ Y pt10q `

ż t1

t1
0

ω1 dt1 (along the particle path C0)

provides the time evolution of the entropy and the reaction progress variable of a fluid
particle crossing the reactive flow.

Characteristic line Propagated small perturbations Propagating velocity

C` J` “ δp1{pγp1q ` δu1{a1 V 1
` “ a1 ´ D1 ` u1

C´ J´ “ δp1{pγp1q ´ δu1{a1 V 1
´ “ ´ a1 ´ D1 ` u1

C0 δs1 and δY V 1
0 “ ´D1 ` u1

Table 3.1: Characteristic lines behind the leading shock of a detonation
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The method of characteristics shows that the unsteady dynamics of the inner structure of
the detonation and the rarefaction wave are controlled by three travelling waves summarised
in Table 3.1. These waves propagate flow perturbations along the characteristics lines C`,
C´ and C0 with an associated velocity of V 1

`, V 1
´ and V 1

0 , respectively. Figure 3.5 shows
the characteristic lines of an illustrative planar detonation that propagates at constant
velocity.
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Figure 3.5: Characteristic lines in the internal structure of a steady planar detonation with a
one-step Arrhenius law for q1

m{pc1
pT

1
uq “ 5, βN “ 10, Mu “ 1.01MuCJ (weakly overdriven).

The characteristic lines issued from the shock wave and the exit of the reaction zone are highlighted
with thicker line.

In the shock wave frame of reference, the flow velocity behind a shock wave is always
subsonic D1 ´ u1

N ă a1
N. Near the shock wave, the outward-running characteristic wave

C` propagates the perturbations from the inner structure towards the front while the
inward-running characteristic modes C´ and C0 propagate front perturbations through
the inner structure. However, since the velocity of the fluid particle u1 decreases from
the Neumann velocity u1

N ą D1 ´ a1
N ą 0 to zero at the core of stagnant gases, there

exists a point in the flow where the outward propagating velocity changes it sign (see
Table 3.2). This is a sonic point (or sonic surface in a three-dimensional geometry) where
the flow speed with respect to the shock is equal to the local sound speed. Beyond this
point the so-called outward propagating waves actually propagate inward. Consequently,
the flow between the front and the sonic point is isolated from perturbations coming from
beyond the sonic point. Moreover, in the vicinity of the sonic point, the flow is transonic.
Given that the outward propagation velocity V 1

` tends to zero at the sonic point, outward
perturbations propagate much slower than the inward perturbations. Hence, two different
time scales characterise the propagation of perturbations in opposite directions around
the sonic point.

The relaxation of an overdriven detonation towards the steady self-sustained regime
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Fluid particle
velocity

Relative fluid
particle velocity

Outward waves
velocity

Shock wave u1
N ą 0 D1 ´ u1

N ă a1
N V 1

` ą 0
Subsonic region u1 P pu1

s, u
1
Nq D1 ´ u1 ă a V 1

` ą 0
Sonic point u1

s “ D1 ´ a1
s D1 ´ u1

s “ a1
s V 1

` “ 0
Supersonic region u1 P p0, u1

sq D1 ´ u1 ą a V 1
` ă 0

Stagnant gases u1 “ 0 D1 ą a0 V 1
` ă 0

Table 3.2: Sonic regimes behind the leading shock of a detonation

must be controlled by the largest timescale. Therefore, the two-time scale nature of
the detonation allows to simplify the relaxation of the overdriven regime towards the
self-sustained regime by considering front perturbations to propagate instantaneously
through the detonation structure and focusing the attention on the outward running waves.
Unfortunately, the quasi-transonic regime leading to the clear distinction of two time
scales does not apply to the entire induction zone of ordinary detonations. In order
to extend rigorously the quasi-transonic regime to the entire detonation structure, the
analysis must be narrowed down to an appropriate limit of study.

3.2.3 Small heat release asymptotic limit

The two-timescale nature of the detonation dynamics is enlightened in the asymptotic
limit of small heat release. The small parameter ϵ which introduces a hierarchy of
problems corresponding to the different timescales is defined as the square root of the
reaction heat to unperturbed gas enthalpy ratio

ϵ ”

d

q1
m

c1
pT

1
u

! 1. (3.29)

In order to preserve the ordering of heating mechanisms in the inner structure of
a detonation, the small heat release limit needs to be coupled with the Newtonian
approximation

γ ´ 1 ! ϵ (3.30)

which establishes that adiabatic compressional effects on temperature are less important
than those produced by the release of reaction heat.

In the Newtonian approximation, the effect of the compressive heating on the relative
temperature evolution of a fluid particle (3.17) at the reaction timescale t1rN simplifies to

t1rN
T 1
u

DT 1

Dt1
“

q1
m

c1
pT

1
u

t1rNω
1
` O

`

ϵ2
˘

“ O
`

ϵ2
˘

. (3.31)
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Since the pressure dependence is eliminated from the temperature evolution equation, the
unsteady effects of the flow only enter into the reactive problem through the temperature
jump at the shock wave. Recalling equation (3.6), the reaction progress variable of a fluid
particle is also unaffected by the unsteady flow dynamics. Therefore, assuming that the
reaction rate is depends only on temperature and reaction progress variableω1 “ ω1pT 1, Y q,
the reactive problem gets partially decoupled from the unsteady hydrodynamic problem.
In other words, the temperature and reaction progress variable distribution are exclusively
determined by the temperature jump produced at the leading shock wave.

Furthermore, the relative temperature changes of a fluid particle at the timescale of
the reaction rate in the Newtonian approximation (3.31) are of the order of the heat
of reaction to upstream gas enthalpy ratio which in the small heat release limit (3.29)
becomes a second order term. Equivalently, the changes in the sound speed, which in
the ideal gas model is proportional to the square root of the temperature a1 9

?
T 1 are

second order terms. Neglecting second order terms, the technical difficulty introduced by
the modification of the sound speed trough the detonation wave is avoided and both the
temperature and the sound speed become constant

T 1
« T 1

u and a1
« a1

u. (3.32)

A Taylor development of the Mach number of a detonation wave in the Chapman-
Jouguet regime for small values of heat release shows that the corresponding detonation
structure is led by a weak shock wave

MuCJ
“

D1

CJ

a1
“ 1 ` ϵ ` O

`

ϵ2
˘

. (3.33)

Following the same procedure, the fluid particle velocity behind the weak shock wave
reads

u1
NCJ

a1
“ 2ϵ ` O

`

ϵ2
˘

. (3.34)

Therefore, the characteristics velocities with respect to the sound behind the weak shock
wave become

V 1
`

a1
“ ϵ ` O

`

ϵ2
˘

, (3.35)

V 1
´

a1
“ ´2 ` ϵ ` O

`

ϵ2
˘

and (3.36)

V 1
0

a1
“ ´1 ` ϵ ` O

`

ϵ2
˘

. (3.37)

In a steady detonation, the fluid particle velocity u1 decreases monotonically from its value
behind the shock to zero at the core of stagnant gases. Hence, the propagation velocity of
the outward acoustic wave with respect to the sound is an order ϵ quantity V 1

`{a1 “ O pϵq,
while both the inward acoustic propagation velocity V 1

´{a1 “ Op1q and the fluid particle
velocity with respect to the shock V 1

0{a1 “ O p1q are order unity quantities. This means
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3.2 Detonation model near the self-sustained regime in the small heat release limit

that acoustic perturbations propagating towards the front travel through the detonation on
a larger timescale than those propagating in the opposite sense. In conclusion, a larger
timescale must be considered to study the transport of J` along C`, during which the
transport of J´, δT 1 and δY through the characteristics C´ and C0 is instantaneous.

An order of magnitude estimate of the curvature term can also be extracted from the
conditions behind the shock. Anticipating that the rarefaction wave is smaller than the
detonation radius ∆r1{r1

f “ O pϵq, the curvature radius along the rarefaction wave can be
considered constant and equal to the radius at the front. Then, for a fluid velocity of the
order of the sound speed u “ u1{a1 “ Op1q, curvature is a first order term u{rf “ O pϵq
of the approximation. The transit time of the inward acoustic waves V´ “ V 1

´{a1 “ Op1q

through the detonation is ∆r{V´ “ O pϵq a first order term. Therefore, the curvature
effect on the inward acoustic wave, estimated as the product of the curvature term by the
transit time, is actually a second order term ϵ2 of the approximation.

Given that the two terms on the right hand side of (3.10) are second order terms ϵ2 of
the small heat release approximation, their effect is negligible and J´ is conserved to first
order

1

γp1

D´p1

Dt1
´

1

a1

D´u1

Dt1
“ O

`

ϵ2
˘

. (3.38)

Hence, the relation δp1{pγp1q “ u1{a1 holds throughout the entire domain. The long time
flow dynamics is thus controlled by the slow characteristic wave C` whose governing
equation (3.9) simplifies using (3.38) to

1

a1

„

Bu1

Bt1
` pa1

´ D1
` u1

q
Bu1

Bx1

ȷ

“
1

2

q1
m

c1
pT

1
ω1

´
j

2

u1

x1 ` r1
fpt

1q
. (3.39)

This first order quasilinear hyperbolic equation modified by a reaction and a curvature
term constitutes the basis of the study of the direct initiation phenomenon near criticality.
A straightforward mathematical development that reduces the Euler equations to a simple
equation of this type is presented in the following subsection.

Lastly, it may be questionable whether it is still correct to consider the leading shock
wave as a discontinuity compared to the reaction layer in the weak shock limit. The
thickness of a shock a1

ut
1
coll{pMu ´ 1q increases as the Mach number gets close to unity.

However, it will remain thinner than the reaction layer as long as the ratio between the
reaction time and the collision time is sufficiently large pMu ´ 1qt1rN{t1coll " 1. That is,
the leading shock can be considered as a discontinuity as long as the small heat release
limit remains bounded by the limit of large activation energy limit t1rN{t1coll " 1.

Nondimensional quantities and the slow timescale

The formal application of the asymptotic analysis requires to nondimensionalize the
coordinates of time and space based on the characteristic scales of the problem. A natural
time scale of the detonation dynamics is given by time required for a complete combustion
at the Neumann temperature of a CJ detonation, denoted as t1rN “ 1{ω1

`

T 1
NCJ

˘

. As the
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

velocity of a fluid particle relative to the leading shock is of the same order as the sound
speed, an appropriate length scale for the detonation thickness can be determined by
taking into account the distance covered by a fluid particle during the aforementioned
time scale, which is expressed as l1 “ a1

ut
1
rN

. Thus, the nondimensional spatial and time
coordinates can be defined as follows

τr ”
t1

t1rN
and ξ ”

x1

a1
ut

1
rN

. (3.40)

In the small heat release limit, where the parameter ϵ is much smaller than unity, it is
expected that the deviation of the physical variables from the Neumann state of a CJ wave
will be of order ϵ. Hence, the dimensionless variables can be expressed as follows

D1

CJ
´ u1

a1
u

“ 1 ´ µ ϵ,
D1 ´ D1

CJ

a1
u

“ 9ατ ϵ, and ln
p1

p1
u

“ γπ ϵ, (3.41)

where µ, 9ατ and π are the dimensionless quantities of order unity for flow velocity,
propagation velocity of the leading shock and pressure, respectively. However, temperature
changes in the small heat release coupled with the Newtonian approximation are second
order terms, according to equation (3.31). As a result, the dimensionless temperature
writes

T 1

T 1
u

“ 1 ` θϵ2. (3.42)

where θ is the dimensionless quantity of order unity that accounts for temperature
modifications. Thus, it is important to note that the sound speed, which for ideal gases is
proportional to the square root of temperature, remains constant up to the second order
of the approximation.

a1

a1
u

“
?
1 ` θϵ2 “ 1 `

θ

2
ϵ2 ` O

`

ϵ3
˘

. (3.43)

Within the new set of coordinates and dependent variables, the differential operators
(3.7) and (3.11) become after multiplication by t1rN

t1rN
D

Dt1
“

B

Bτr
´ r1 ´ pµ ´ 9ατ q ϵs

B

Bξ
, (3.44)

t1rN
D`

Dt1
“

B

Bτr
` pµ ´ 9ατ q ϵ

B

Bξ
and (3.45)

t1rN
D´

Dt1
“

B

Bτr
´ r2 ` pµ ` 9ατ q ϵs

B

Bξ
. (3.46)

The current problem exhibits the presence of two distinct time scales. The propagation
velocities governing the operators (3.44) and (3.46) are of order unity, while inward-
running perturbations (3.45) propagate at a velocity of order ϵ. As the slow scale
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3.2 Detonation model near the self-sustained regime in the small heat release limit

t1rN{ϵ ultimately determines the overall dynamics of the detonation, the appropriate time
coordinate is defined as

τ ”
t1

t1rN{ϵ
“ τr ϵ. (3.47)

Flow curvature in critical detonations

Previous experimental and numerical studies have consistently demonstrated that the
critical front radius is much larger than the detonation thickness (Lee, 1977). Accordingly,
the scope of this study is limited to weakly curved detonations, where the detonation
thickness is smaller than the front radius by a factor of ϵ. The dimensionless front radius
of order unity is expressed as

r̃f ”
r1
f

a1
ut

1
rN

ϵ. (3.48)

Within theses scales, the radius of curvature along the detonation thickness remains
constant, with corrections of order ϵ

r1

a1
ut

1
rN

{ϵ
“
x1 ` r1

f

a1
ut

1
rN

{ϵ
“ r̃f ` ξ ϵ. (3.49)

The temporal evolution of the front radius is governed by the front velocity, as expressed
by dr1

f{dt
1 “ D1. Integration of the front velocity from the initial front radius r̃fi at τ “ 0

in the reduced variables shows that for τ “ O p1{ϵq the front radius grows linearly with
time

r̃fpτq “ r̃fi `

ż τ

0

Mu dτ
1

“ r̃fi `

ż τ

0

r1 ` p1 ` 9ατ qϵs dτ 1
“ r̃fi ` τ ` O pϵτq . (3.50)

Hyperbolic equation

In the reduced variables, the leading order problem that arises from the set of conservation
equations (3.6), (3.9) and (3.10) is written as follows

„

B

Bτ
` pµ ´ 9ατ q

B

Bξ

ȷ

pπ ` µq “ ω ´ j
1 ` µ

r̃f
(3.51)

B

Bξ
pπ ´ µq “ 0 (3.52)

Bθ

Bξ
“

BY

Bξ
“ ´ω (3.53)

with the boundary conditions given by equations (3.12) to (3.15) as

ξ “ 0 : µ “ 1 ` 2 9ατ , π “ 2 ` 2 9ατ , θ “ 0, Y “ 0. (3.54)
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

The reactive problem is reduced to the differential equation (3.53) where ω ” ω1t1rN
denotes a dimensionless reaction rate of order unity. The temperature profile θpξq

and progress variable profile Y pξq at a given time τ can be obtained by integrating a
specific chemical-kinetics model from the boundary conditions at the shock (3.54) if
the chemical-kinetics rate depends only on the temperature and the progress variable
ω “ ωpθ, Y q. Solving this reactive problem results in the determination of the reaction
rate distribution, represented by ω “ ωpξ, τq, which is required to solve the flow dynamics
problem. The flow dynamics problem is simplified to a pair of equations given in (3.51)
and (3.52). Equation (3.52) describes the propagation of front perturbations towards
the reactive zone, and can be integrated from the boundary condition at the front (3.54).
This integration results in the relation π ´ µ “ 1 which holds throughout the detonation
thickness. Subsequently, the slow dynamics of the detonation are governed by equation
(3.51), which takes the form

Bµ

Bτ
` pµ ´ 9ατ q

Bµ

Bξ
“
ω

2
´
j

2

1 ` µ

r̃f
(3.55)

ξ “ 0 : µ “ 1 ` 2 9ατ . (3.56)

This partial differential equation constitutes the basis for the study of the critical dynamics
of direct initiation of detonations in the small heat release limit. It should be noted that
this equation describing the first order of the formal application of the asymptotic limit is
in fact analogous to the equation obtained in the previous subsection for the dynamics of
the slow characteristic wave (3.39).

3.2.4 Chemical-kinetics model

The internal structure of a detonation involves intricate chemical transformations that
occur during global combustion reactions. A three-step chemical-kinetics model retains
the fundamental aspects of these transformations that are relevant to detonation waves
and provides a more accurate representation of the chemical processes involved in real
detonation structures compared the conventional one-step model. This model simplifies
the complex chemical interactions among the various elements involved in the combustion
process to three fundamental reactions: chain initiation, chain branching, and chain
breaking.

The chain initiation reaction models the slow decomposition of reactants into free
radicals. These reactions play a fundamental role in gaseous detonations, while in the
propagation of flames, on the other hand, they are less relevant. In the absence of diffusion
mechanisms, the initiation reactions are the only source of highly reactive radicals and
hence regulate the induction time that characterizes the detonation structure. However
in propagating flames, the rate of radical production by chain initiation mechanisms is
negligible compared to the diffusive flux of radicals from more reactive regions.

As the concentration of reactive radicals increases, the chain branching reactions
trigger further radical production, thereby adding a chemical runaway to the thermal
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3.2 Detonation model near the self-sustained regime in the small heat release limit

runaway that characterizes combustion reactions. Finally, the reactive radicals undergo
transformation into stable products via chain breaking reactions releasing heat.

Three-step simplified kinetic scheme

The simplified three-step kinetic scheme proposed by Clavin and Denet (2018) is adopted
in the current study. This model further simplifies the three-step model by limiting its
application to the flow behind a shock wave while retaining the essential features of the
detonation structure. Letting R stand for the initial reactants and X for the intermediate
radicals, the chain initiation reactions are represented as

R
ω

ÝÝÑ X ωI “ kICR, (3.57)

where the small constant kI provides the ratio of the global reaction time to the chain
initiation reaction time. The temperature dependence has been removed for simplicity,
limiting the validity of the model to sufficiently strong shock waves so that, at the Neumann
temperature, the induction time is finite The chain-branching elementary reactions are
modelled as autocatalytic reactions that are highly dependent on the temperature through
a large activation energy β and an Arrhenius pre-exponential factor kBr

R ` X
ω

ÝÝÑ 2X ωBr “ kBrCRCXe
βθ. (3.58)

Finally, the chain-breaking reactions are represented as fast exothermal reactions trans-
forming the radicals into stable products P at a rate with respect to the global reaction
rate given by the constant kR with a zero activation energy

X
ω

ÝÝÑ P ωR “ kRCX. (3.59)

Steady-state heat release rate distribution in a CJ wave

The overall reaction rate used in the construction of the detonation model refers to the
rate of heat release. Therefore, the steady-state overall reaction rate corresponds to the
rate of exothermic chain-breaking reactions of the three step model ω

CJ
pξq “ ωRpξq.

The steady-state distribution of heat release rate is thus the solution of the initial value
problem

dCR

dξ
“ ωI ` ωBr “ kICR ` kBrCRCXe

βθ (3.60)

dCX

dξ
“ ´ωI ´ ωBr ` ωR “ ´kICR ´ kBrCRCXe

βθ
` kRCX (3.61)

dθ

dξ
“

dCP

dξ
“ ´ωR “ ´kRCX (3.62)

ξ “ 0 : CR “ 1 CX “ 0 CP “ 0 θ “ 0. (3.63)
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

This model, which takes into account only irreversible reactions, guarantees that chemical
reactions always reach an equilibrium state thus satisfying the boundary condition

ξ “ ξb : CR “ 0 CX “ 0 CP “ 1 θ “ 1. (3.64)

where ξb denotes the end of the reaction zone, i.e. the spatial coordinate at which
equilibrium is reached. Integration of the system of equations (3.60) to (3.62) from the
initial condition (3.63) using the chemical-kinetics parameters summarised in Table 3.3
yields the reaction rates distribution shown in Figure 3.6. The typical structure of a
real detonation is recognized: a large induction layer with negligible release of heat
from ξ “ 0 to ξ « 0.4, a highly reactive layer due to the rapid radical production by
chain-branching reactions, and a relaxation tail where all radicals are finally consumed.
Furthermore, the example shown in Figure 3.6 satisfies the scaling considerations for the
time and spatial reduced coordinates

ξ ď ξb
CJ

“ ´1 : ω
CJ

pξq “ 0 and
ż 0

ξb

ω
CJ

pξq dξ “ 1. (3.65)
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Figure 3.6: Detonation structure of a CJ wave using the three-step chemical-kinetics model of
Clavin and Denet (2018): reaction rates in black lines and species concentration in coloured lines.

Heat release rate distribution in unsteady waves

For unsteady detonation waves with propagation velocities close enough to the CJ
velocity 9ατ “ Op1q, the instantaneous distribution of the heat release rate ωpξ, τq is
governed by the induction length as it was shown by Clavin and He (1996) through
numerical computations based on a detailed chemical-kinetics scheme for H2 –O2
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3.2 Detonation model near the self-sustained regime in the small heat release limit

Reaction k β

Chain initiation R ÝÝÑ X 8.5 ¨ 10´3 0
Chain branching R + X ÝÝÑ 2 X 12.5 5
Chain breaking X ÝÝÑ P 12.5 0

Table 3.3: Simplified three step kinetic scheme of Clavin and Denet (2018)

mixtures. Therefore, the instantaneous distribution of reaction rate is nicely approximated
by scaling the steady-state heat release distribution according to the instantaneous
induction length lipτq

ωpξ, τq “
liCJ

lipτq
ω

CJ

ˆ

liCJ

lipτq
ξ

˙

. (3.66)

For simplicity, the induction length is considered to scale just according to the strong
dependence on the Neumann temperature

li
CJ

lipTN
q

“ exp

„

Ea

kBTN,CJ

ˆ

1 ´
T

N,CJ

T
N

˙ȷ

(3.67)

where Ea is the activation energy of the Arrhenius law controlling the variation of
the induction length with the Neumann temperature. Since combustion reactions are
characterised by a large activation energy is a large parameter, small temperature variations
in the Neumann state must be considered when multiplied by the activation energy even
though they are higher order terms neglected in the rest of the analysis. The Neumann
temperature dependence on the propagation velocity 9ατ is described by the Rankine-
Hugoniot jump condition, which in the small heat release limit coupled to the Newtonian
approximation writes as

T
N

Tu
“ 1 ` 2pγ ´ 1qp1 ` 9ατ qϵ ` O

`

ϵ2
˘

. (3.68)

Retaining just the leading order terms, the induction length ratio dependence on the
deviation from the CJ propagation velocity 9ατ becomes

li
CJ

lip 9ατ q
“ eb 9ατ , (3.69)

where a reduced thermal sensitivity of order unity b ” 2pγ ´ 1qϵEa{pkBTuq “ Op1q has
been introduced.

The instantaneous distribution of heat release considering the rescaling with the
induction length distance is then described by the equation

ωpξ, 9ατ q “ eb 9ατω
CJ

`

eb 9ατ ξ
˘

. (3.70)
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

Examples of the heat release distributions according to this law are shown in Figure 3.7
for several values of the product b 9ατ .
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ξ

0

2

4

6

ω

CJ detonation, ωCJ

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

bα̇τ

Figure 3.7: Distributions of heat release rate provided by equation (3.70) for a steady heat release
rate ωCJ (thick line) obtained by the simplified three-step chemical-kinetics model of Clavin and
Denet (2018) for several values of propagation velocity 9ατ .

According to this scaling law (3.70), the end of the reaction zone of the unsteady waves
lies on ξbpτq “ ´e´b 9ατ , describing a substantial increase of the reaction wave thickness
(see Figure 3.7) when the velocity decreases below the CJ velocity 9ατ ă 0. However, the
variation of 9ατ is intrinsically bounded from below 9ατ ě ´1, since the model is limited
to supersonic waves D{a ą 1. Therefore, for reduced temperature sensitivities close
to unity, the induction length in the acoustic limit continues to be of the same order of
magnitude as in the CJ wave. While on the contrary, ordinary mixtures are known to
exhibit a cross-over temperature for which recombination reactions become faster than
chain-branching reactions so that the rate of heat release vanishes before reaching the
acoustic regime. In fact, this explains why actual detonations are typically observed only
for gaseous mixtures with a large enough chemical heat release. The chemical-kinetics
quenching can be introduced by multiplying the scaling law by a Heaviside function
such that the reaction rate freeze when the front propagation velocity decreases below a
crossover value 9ατc

ωpξ, 9ατ q “ Hp 9ατ ´ 9ατcq e
b 9ατω

CJ

`

eb 9ατ ξ
˘

. (3.71)

For hydrogen-oxygen mixtures, the typical Neumann temperature of a CJ wave is
around T

NCJ
« 2000K, while the strong increase of induction time is observed at

temperatures of Tc « 1000K (Sánchez and Williams, 2014), which is approximately half
of the Neumann temperature in the CJ regime. It is reasonable then to establish a value
of 9ατc “ 1{2 for the propagation velocity at which the crossover temperature is reached.
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3.3 Dynamics of the combustion products behind a detonation

Nonetheless, the sensitivity of the results to this parameter will be evaluated.

3.3 Dynamics of the combustion products behind a
detonation

In the study of the flow of combustion products behind a detonation, the detonation can be
considered as a discontinuity when the length scale of the flow is significantly larger than
the thickness of the detonation. This is true when the detonation radius is greater than
the detonation thickness, as it is expected to occur for the critical conditions of initiation.
However, the discontinuous model neglects small modifications in the inner structure of
the detonation, which are key in the critical dynamics of gaseous detonations. In contrast,
the analysis of the unsteady flow of combustion products behind a discontinuity will
prove to be a useful preliminary step. This analysis provides with the external solution
for the dynamics of the internal structure of the detonation, thereby yielding valuable
insight into the study of the detonation initiation.

The derivation of the simplified detonation model, represented by equations (3.55)
and (3.56), is based on approximations that remain accurate in the flow of combustion
products behind the detonation. However, the characteristic length of the flow of burnt
gases is much larger than the detonation thickness. The relevant spatial scale in the
dynamics of the combustion products is determined by the length of the rarefaction wave,
while the reference time scale continues to be the time taken for an outward wave to
traverse the length of the rarefaction wave.

The length of the rarefaction wave, denoted as |ξ0|, it is determined by the distance
between the leading edge of the core of stagnant gases r0 and the front rf . The front
radius evolves as drf{dt “ D, while the leading edge of the core of stagnant gases moves
at the local sound speed dr0{dt “ a. The time evolution of the rarefaction wave thickness
on the slow timescale of the detonation is given by

dξ0
dτ

“ ´p1 ` 9ατ q ` O pϵq (3.72)

As the front radius evolves at the reaction timescale, the initial size of the rarefaction
wave is considered to be an order ϵ smaller than the initial front radius |ξ0i| “ rfiϵ{pautrq,
and this length scale is used to study the combustion products behind a detonation as
a discontinuity. The characteristic timescale of the problem is still the time required
for an outward propagating wave to cover the spatial domain, so it must also be scaled
accordingly. The following transformation is then applied to the independent coordinates

ξ̃ ”
ξ

|ξ0i|
“
r ´ rfptq

rfi ´ r0i
and τ̃ ”

τ

|ξ0i|
“

t

prfi ´ r0iq{pauϵq
. (3.73)

The dynamics of combustion products are governed by a simplified version of the
equations (3.55) and (3.56) in which the reactive term has been removed since it is
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

assumed that the detonation products are in chemical equilibrium

Bµext

Bτ̃
`

`

µext
´ 9ατ

˘ Bµext

Bξ̃
“ ´

j

2

1 ` µext

1 ` τ̃
. (3.74)

The boundary condition at the front corresponds to the burnt state behind the detonation
wave, which is determined by the reactive RH jump conditions

ξ̃ “ 0 : µext
“

a

2 9ατ . (3.75)

Another boundary condition can be defined at the core of stagnant gases, where the flow
velocity must decrease to zero

ξ̃ “ ξ̃0pτ̃q : µext
“ ´1. (3.76)

3.3.1 Self-similar solution behind a CJ wave

A CJ detonation propagates with constant velocity (i.e. 9ατ “ 0), resulting in a linear
growth of the length of the rarefaction wave with time. A problem like this is said to
lack a characteristic length scale and therefore admit a solution of self-similarity. This
observation was made by Zeldovich (1942) and Taylor (1950b) in their investigation of the
dynamics of combustion products in the limit of large Mach number (see Section 2.3.2).
The same condition applies to the opposite limit of small heat release. The ratio of
the spatial coordinate ξ̃ to the rarefaction wave length, which for a CJ wave is given by
|ξ̃0pτ̃q| “ 1 ` τ̃ , provides the self-similar variable of the problem

z ”
ξ̃

1 ` τ̃
“

ξ

|ξ0pτq|
,

B

Bξ̃
Ñ

1

1 ` τ̃

d

dz
,

B

Bτ̃
Ñ ´

z

1 ` τ̃

d

dz
. (3.77)

The flow of combustion products behind a steady CJ detonation has a self-similar solution
V “ V pzq “ 1 ` µextpξ, τq which can be written in terms of the self-similar variable
The introduction of the self-similar variable transforms the partial differential equation
(3.74) into an ordinary differential equation

pV ´ 1 ´ zq
dV

dz
“ ´

j

2
V. (3.78)

with boundary conditions
z “ 0 : V “ 1, (3.79)

z “ ´1 : V “ 0. (3.80)

For planar geometry j “ 0, the only solution satisfying both boundary conditions is a
linear distribution

V0pzq “ 1 ` z (3.81)

Cylindrical and spherical geometries (j “ 1, 2) require dividing by V 1`2{j to obtain the
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3.3 Dynamics of the combustion products behind a detonation

equation
1

V
2{j
j

dVj
dz

`
d

dz

˜

j

2

z ` 1

V
2{j
j

¸

“ 0 (3.82)

whose exact differential form writes differently according to the value of j. In cylindrical
geometry j “ 1, the corresponding exact differential is

d

dz

ˆ

1

2

z ` 1

V 2
1

´
1

V1

˙

“ 0. (3.83)

Integrating from the boundary condition (3.79) and retaining the solution satisfying the
boundary condition (3.80) increasing function, the self-similar solution is described by
the expression

V1pzq “ 1 ´
?

´z (3.84)

Finally, for spherical geometries j “ 2, the exact differential takes the form

d

dz

ˆ

lnV2 `
z ` 1

V2

˙

“ 0. (3.85)

Integrating from the boundary condition (3.79) the following transcendental equation is
obtained

V2 lnV2 ´ V2 ` 1 ` z “ 0. (3.86)

whose roots describe the velocity distribution and automatically satisfies the boundary
condition (3.80).

The small heat release limit solutions solutions corresponding to each geometry are
depicted in Figure 3.8. Similar to the solutions derived by Zeldovich (1942) and Taylor
(1950a) in the opposite limit of large Mach number MuCJ

" 1 (see Figure 2.11), the
solutions of (3.78) for cylindrical and spherical detonation in the limit of small heat
release are singular on the front where the flow gradient becomes infinite. This singular
behavior can be verified by introducing the solutions (3.84) and (3.86) in equation (3.78)
and examining the limit at the front, i.e. z Ñ 0´ and V Ñ 1´,

j “ 1 : lim
zÑ0´

dV

dz
“ lim

zÑ0´
´
1

2

1 ´
?

´z

´
?

´z ´ z
“ 8,

j “ 2 : lim
V Ñ1´

dV

dz
“ lim

V Ñ1´
´

1

lnV
“ 8.

The gradient at the inner boundary, however, remains finite with the spherical rarefaction
wave being tangent to the core of stagnant gas

j “ 1 : lim
zÑ´1`

dV

dz
“ lim

zÑ´1`
´
1

2

1 ´
?

´z

´
?

´z ´ z
“

1

2
,
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Figure 3.8: Self-similar solution of (3.78) for the flow of combustion products behind a small heat
release CJ detonation in planar, cylindrical and spherical geometry (j “ 0, 1 and 2 respectively).
The reduced flow V “ 1 ` µext “ u{ϵa is plotted in the self-similar variable z “ ξ̃{p1 ` τ̃q “

ξ{|ξ0pτq| “ pr ´ rfptqq{prfptq ´ r0ptqq.

j “ 2 : lim
V Ñ0`

dV

dz
“ lim

V Ñ0`
´

1

lnV
“ 0.

In conclusion, the spherical rarefaction wave behind a CJ detonation sustained by
a small heat release is qualitatively similar to the self-similar solution for large Mach
number (see Figure 2.11). The differences are only quantitative with the extension of the
rarefaction wave being smaller than the detonation radius by a factor M

CJ
´ 1 ! 1 in the

small heat release limit, while it is roughly equal to half of the detonation radius in the
large Mach number limit.

3.3.2 Overdriven decaying detonation

Unlike the steady CJ wave, the rarefaction wave developed in the decay of an overdriven
detonation cannot be expected to be self-similar, as the rarefaction wave length and the
propagation velocity may evolve independently. The decay of an overdriven detonation
in the discontinuous model is conveniently studied in the coordinate system attached to
the leading edge of the core of gases at rest ξ̃0. The transformation to this coordinate
system is achieved through the change of variable

η̃ “ ξ̃ ´ ξ̃0pτ̃q,
B

Bτ̃
Ñ

B

Bτ̃
´

dξ̃0
dτ̃

B

Bη̃
and

B

Bξ̃
“

B

Bη̃
.

The spatial coordinate of the core of stagnant gases at any given time ξ̃0pτ̃q is obtained by
integration of the time evolution (3.72) denoting by ξ0i the initial position at time τ̃ “ 0.
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3.3 Dynamics of the combustion products behind a detonation

In this coordinate system, the propagation velocity 9ατ dependence disappears from the
governing equation (3.74) which becomes

Bµext

Bτ̃
`

`

µext
` 1

˘ Bµext

Bη̃
“ ´

j

2

1 ` µext

1 ` τ̃
(3.87)

and the boundary condition of zero flow velocity at the core of stagnant gases (3.76) is
rewritten as

η̃ “ 0 : µext
pη̃, τ̃q “ ´1. (3.88)

The initial solution is characterised by the initial flow velocity at the front µext
fi so that an

initial condition can be defined as

τ̃ “ 0 : µext
pξ̃ “ 0, τ̃q “ µext

fi . (3.89)

Anticipating the decay of the overdriven detonation with time and the boundary
condition at the core of stagnant gases, a solution to this differential equation is searched
in the form

µext
pη̃, τ̃q “

Xpη̃q

Tpτ̃q
´ 1

so denoting the derivatives X1 “ dX{dη̃ and 9T “ dT{dτ̃ , equation (3.87) becomes

´
X

T2
9T `

X

T

X1

T
“ ´

j

2

1

1 ` τ̃

X

T
.

After multiplication by T2{X the partial differential equation can be written in separated
variables form so that both sides of the equality can be set to a fixed constant k obtaining
a set of two ordinary differential equations

X1
“ k and 9T “

j

2

1

1 ` τ̃
T ` k. (3.90)

The spatial dependence described by the first equation is obtained straightforward leading
to a uniform gradient

Xpη̃q “ kη̃

On the other hand, functional time dependence requires the integration of the second
differential equation specific to each geometry. In planar geometry j “ 0, time integration
is straightforward resulting in a linear time decay

T0pτ̃q “ kτ̃ ` Ti0

with a constant of integration Ti0 whose value can be rewritten in terms of the initial
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

condition (3.89) to provide

µext
0 pξ̃, τ̃q “

ξ̃ ´ ξ̃0pτ̃q

θi ` τ̃
´ 1. (3.91)

where the parameter θi ” ´ξ̃0i{ p1 ` µext
fi q represents the initial conditions.

For a cylindrically symmetric geometry j “ 1, the time decay is given by the functional
dependence

T1pτ̃q “ 2kp1 ` τ̃q ` Ti1
a

2p1 ` τ̃q

which results in the following expression for the velocity distribution after introducing
the initial front flow velocity

µext
1 pξ̃, τ̃q “

ξ̃ ´ ξ̃0pτ̃q
?
1 ` τ̃

“

θi ` 2
`?

1 ` τ̃ ´ 1
˘‰ ´ 1 (3.92)

The flow of burnt gases behind a spherical detonation j “ 2 decays according to

T2pτ̃q “ kp1 ` τ̃q lnp1 ` τ̃q ` T2ip1 ` τ̃q (3.93)

providing the following expression for the velocity distribution

µext
2 pξ̃, τ̃q “

ξ̃ ´ ξ̃0pτ̃q

p1 ` τ̃q rθi ` ln p1 ` τ̃qs
´ 1. (3.94)

The flow velocity at the front of planar, cylindrical and spherical waves corresponds to
the flow velocity obtained for ξ̃ “ 0

µext
0,f pτ̃q ” µext

0 pξ̃ “ 0, τ̃q “
´ξ̃0pτ̃q

θi ` τ̃
´ 1 (3.95)

µext
1,f pτ̃q ” µext

1 pξ̃ “ 0, τ̃q “
´ξ̃0pτ̃q

?
1 ` τ̃

“

θi ` 2
`?

1 ` τ̃ ´ 1
˘‰ ´ 1 (3.96)

µext
2,f pτ̃q ” µext

2 pξ̃ “ 0, τ̃q “
´ξ̃0pτ̃q

p1 ` τ̃q rθi ` ln p1 ` τ̃qs
´ 1 (3.97)

which are represented in Figure 3.9 for the same initial profile corresponding to a slightly
overdriven wave. Here, it is observed that the flow velocity decays towards the sonic
condition µextpξ̃s, τ̃q “ 9ατ pτ̃q at the front which in the discontinuous model, according
to the boundary condition (3.75), corresponds to µext

f “ 0. In planar geometry, the sonic
condition for the detonation as a discontinuity is only reached asymptotically in the long
time limit. In contrast, in cylindrical and spherical geometries, the flow velocity crosses
and continues to decrease after the sonic condition.

To conclude, in the rarefaction wave behind slightly overdriven detonations the flow
velocity decreases linearly from its value at the front given by the reactive RH jump
conditions to zero at a core of stagnant gases advancing at the sound speed. The rate of
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Figure 3.9: Flow velocity at the front behind a decaying detonation wave treated as a discontinuity
for planar, cylindrical and spherical geometries j “ 0, 1 and 2 respectively. The initial solution is
determined by the parameters µext

fi “ 0.2 and ξ̃0i “ ´1.

decay of this linear profile depends on the geometry of the detonation wave. In planar
waves, the flow velocity at the front decays asymptotically towards the sonic condition.
The curved waves decay faster and the sonic condition at the front is quickly reached
and overcome. Actually, once the sonic condition reaches the front, the rarefaction wave
cannot continue to slow down the detonation as shown here. This solution was obtained
by integrating from the core of stagnant gas and is not valid around the front when the
sonic condition prevents the propagation of C` waves towards the front. A transitory
solution shall appear in this situation to match the rarefaction wave behind an overdriven
detonation with the self-similar solution behind a CJ wave.

3.3.3 Transitory regime in curved waves

The rarefaction wave behind the CJ wave and behind the overdriven decaying detonation
wave are presented in the previous sections. Whereas the decay of planar detonations
terminates in the self-similar solution for CJ waves, the way the rarefaction wave in
curved geometries behind an overdriven detonation reaches the self-similar solution
corresponding to the CJ wave requires more attention. This transition, described in this
section in the small heat release limit, is similar to the transition described by Liñán et al.
(2012) in the opposite limit MuCJ

" 1.
The flow velocity behind the decaying detonation and the CJ wave vanish at the leading

edge of the spherical core of stagnant gas. But, in curved geometries, the flow gradient is
uniform and finite in the first case, while it is infinite at the detonation front in the second
case. For planar detonations, the overdriven detonation decays asymptotically to the
self-similar solution that has no singularity at the front, i.e., the sonic condition is reached
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

in the long time limit τ̃t,0 Ñ 8. While in cylindrical and spherical detonations the sonic
condition which is initially located at a finite distance from the front reaches it at a finite
time τ̃t due to the curvature damping effect. The transition time τ̃t is determined by the
time instant when the flow velocity at the front reaches the sonic condition µext

f pτ̃tq “ 0
which leads to a quadratic and a transcendental equation in the cylindrical and spherical
cases respectively. However, in the limit of small overdrive µext

fi ! 1, both relations
are simplified and the transit time is determined by the initial flow velocity at the front
independently of the initial thickness of the rarefaction wave in the cylindrical τ̃t,1 « 2µext

fi

and spherical τ̃t,2 « µext
fi case.

Within the framework of the discontinuous model, the velocity of the burnt gas relative
to the lead shock cannot become smaller than the sound speed on the detonation front.
According to the boundary condition (3.75), neither 9ατ nor µext

f can take negative values.
At the transit time τ̃ “ τ̃t, both variables must simultaneously reach zero and maintain
this value for all subsequent periods. Therefore, the slowdown of µext

f stops suddenly at
τ̃t. A sudden stop of the detonation decay is thus produced at τ̃t on the detonation front,
introducing a weak discontinuity in the solution which propagates inwards separating the
two rarefaction wave solutions. The flow gradient on the detonation front, which is finite
for τ̃ ď τ̃t, becomes abruptly infinite at τ̃ “ τ̃t and stays infinite afterwards as in the
self-similar solution. Recalling that no boundary condition is used on the front to derive
the flow behind a decaying detonation, this flow is still solution of the rarefaction wave
for τ̃ ą τ̃t far from the detonation front. The transitory flow matching the linear profiles
(3.92) and (3.94) to the self-similar solutions (3.84) and (3.86), denoted µext,trpξ̃, τ̃q in
the following, is solution of (3.74) for a flow velocity at the front kept equal to its CJ
value after τ̃t

τ̃ ě τ̃t :
Bµext,tr

Bτ̃
` µext,trBµext,tr

Bξ̃
“ ´

j

2

1 ` µext,tr

1 ` τ̃
, ξ̃ “ 0 : µext,tr

“ 0.

The singular perturbation which is generated instantaneously at τ̃ “ τ̃t on the front is
propagated inwards by the last outward wave C˚

` that reached the front. Since 9ατ “ 0 for
τ̃ ą τ̃t, the outward wave (which actually propagates inward behind the sonic condition)
propagates with velocity

dξ̃C˚
`

dτ̃
“ µext

C˚
`

pτ̃q.

where µext
C˚

`

pτ̃q “ µextpξC˚
`

pτ̃q, τ̃q is the flow velocity on the characteristic line. Along
this characteristic line, the governing equation (3.74) for τ̃ ą τ̃t rewrites as

ξ “ ξC˚
`

pτ̃q :
dµext

C˚
`

dτ̃
“ ´

j

2

1 ` µext
C˚

`

1 ` τ̃

and can be integrated from τ̃ “ τ̃t : µ
ext
C˚

`

“ 0 to determine the flow velocity transported
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by this characteristic

τ̃ ě τ̃t : µext
C˚

`
pτ̃q “

ˆ

1 ` τ̃t
1 ` τ̃

˙j{2

´ 1.

The integration of the characteristic velocity from ξ̃C˚
`

pτ̃ “ τ̃tq “ 0 provides an analytical
description of the characteristic curve. The characteristic curve that separates the
overdriven rarefaction wave from the CJ self-similar solution in cylindrical geometry
writes

τ̃ ě τ̃t : ξ̃C˚
`,1

pτ̃q “ 2
a

p1 ` τ̃tqp1 ` τ̃q ´ 2 ´ τ̃ ´ τ̃t

“ p2 ` τ̃tqp
?
1 ` τ̃ ´ 1q ´ τ̃ ` O

`

τ̃ 2t
˘

.
(3.98)

while in spherical geometry is

τ̃ ě τ̃t : ξ̃C˚
`,2

pτ̃q “ p1 ` τ̃tq ln

ˆ

1 ` τ̃

1 ` τ̃t

˙

´ pτ̃ ´ τ̃tq

“ p1 ` τ̃tq lnp1 ` τ̃q ´ τ̃ ` O
`

τ̃ 2t
˘

.

(3.99)

These theoretical results are compared with the numerical solution of the general
problem for the dynamics of combustion products. The governing equation (3.74) is
integrated numerically with the upwind differencing scheme. A forward finite difference
scheme is used to approximate the temporal derivative while the spatial derivative is
approximated with a backward difference scheme when the local advection velocity
µext ´ 9ατ is positive or with a forward difference scheme otherwise. Thus, this method
naturally deals with the sonic condition at the front. Initially, the sonic condition lies
at a finite distance from the front so that the local advection velocity points outside the
numerical domain at both boundaries and no numerical boundary conditions are required.
The detonation propagation velocity 9ατ is computed through the boundary condition
(3.75) from the flow velocity at the front. When the sonic condition, defined by a zero
advection velocity, reaches the front, the advection term vanishes and the flow velocity at
the front is constrained by the boundary condition (3.75) to non-negative values.

Examples of the numerical results obtained with the solution of the flow behind
an overdriven decaying detonation initially defined by the parameters µext

fi “ 0.5 and
ξ0i “ ´1 are shown in Figures 3.10 to 3.12. In the planar geometry (Figure 3.10, the
transitory flow approaches asymptotically the self-similar CJ solution following the decay
predicted for the straight velocity profiles. The examples for cylindrical and spherical
geometries (Figures 3.11 and 3.12) show the transitory flow composed by the self-similar
solution between the front and the last characteristic C˚

` and the straight profiles down to
the core of gases at rest at the opposite side.

In conclusion, it has been observed that the dynamics of planar and curved detonations
exhibit two distinct behaviours. In the absence of the curvature damping mechanism,
detonation waves approach the CJ regime, which is described by the self-similar solution
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Figure 3.10: Flow velocity profile obtained by numerical integration of (3.74) and (3.75) with
j “ 0 at different time steps ∆τ̃ “ 1 from the initial profile at τ̃ “ 0 (black) to τ̃ “ 3 (blue)
describing the evolution of the transitory flow µext,tr “ uptrq{pϵaq ´ 1 behind a planar wave
initialized as a straight line with µext

fi “ 0.5 and ξ̃0i “ ´1. (a) Results presented in the self-similar
variable obtained by reducing the dimensionless distance to the front with the thickness of the
rarefaction wave z ” ξ̃{p1` τ̃q and compared with the self-similar solution (3.81) in thick dashed
red line. (b) Results plotted in the reduced spatial variable and compared with the straight profiles
(3.91) in dotted line.

(3.81). This solution is reached asymptotically in the long time limit, as described by
equation (3.91). The planar waves do not exhibit any critical conditions that might impede
the successful initiation of a detonation.

In contrast, curvature-induced damping drives curved detonations abruptly towards the
CJ regime, which is characterized by the sonic condition. At this point, the rarefaction
wave can no longer penetrate the internal structure of the detonation, and a disturbance
is propagated inward by the characteristic ξ̃C˚

`
. This disturbance divides the transitory

solution into two parts. The flow ahead of the leading edge of this disturbance, where
ξ̃ ą ξ̃C˚

`
pτ̃q, is described by the self-similar solution of the rarefaction wave behind

a CJ wave with an infinite slope at the front (equations (3.84) and (3.86)). The flow
corresponding to ξ̃ ď ξC˚

`
pτ̃q is described by a linear profile that represents the rarefaction

wave behind a decaying overdriven detonation with a uniform slope decreasing to zero
(equations (3.92) and (3.94)). During the transitory regime, it is noted that the flow
velocity at the front cannot decrease below the that of the CJ regime.

As noted by Korobeinikov (1971), the discontinuous model is unable to provide a
critical initiation condition. However, as put forth by Taylor (1950a) “it is unlikely that
the radial rate of change of velocity becoming infinite would be true in a real explosive
where the time of reaction is not zero”. This observation suggests that the identification
of critical conditions requires an examination of the internal structure of the detonation.
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Figure 3.11: Flow velocity profile obtained by numerical integration of (3.74) and (3.75) with
j “ 1 at different time steps ∆τ̃ “ 1 from the initial profile τ̃ “ 0 (black) to τ̃ “ 3 (blue)
describing the evolution of the transitory flow µext,tr “ uptrq{pϵaq ´ 1 behind a cylindrical
wave initialized as a straight line with µext

fi “ 0.5 and ξ̃0i “ ´1. The position of the critical
characteristic ξ̃C˚

`,1
as predicted by (3.98) is indicated with empty circles. (a) Results presented

in the self-similar variable z ” ξ̃{p1 ` τ̃q obtained by reducing the dimensionless distance to the
front with the thickness of the rarefaction wave and compared with the self-similar solution (3.84)
in thick dashed red line. (b) Results plotted in the reduced spatial variable and compared with the
straight profiles (3.92) in dotted line.
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Figure 3.12: Flow velocity profile obtained by numerical integration of (3.74) and (3.75) with j “ 2
at different time steps ∆τ̃ “ 1 from the initial profile τ̃ “ 0 (black) to τ̃ “ 3 (blue) describing
the evolution of the transitory flow µext,tr “ uptrq{pϵaq ´ 1 behind a spherical wave initialized
as a straight line with µext

fi “ 0.5 and ξ̃0i “ ´1. The position of the critical characteristic ξ̃C˚
`,1

as predicted by (3.99) is indicated with empty circles. (a) Results presented in the self-similar
variable z ” ξ̃{p1 ` τ̃q obtained by reducing the dimensionless distance to the front with the
thickness of the rarefaction wave and compared with the self-similar solution (3.86) in dashed red
line. (b) Results plotted in the reduced spatial variable and compared with the straight profiles
(3.94) in dotted line.
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3.4 Direct initiation of a detonation

The direct initiation of a detonation in the discontinuous model is characterised by a
sudden transition from an overdriven regime to a CJ detonation. However, this behavior
does not correspond to what is observed in experimental studies and numerical simulations.
This abrupt transition leads to the formation of a singularity at the front with an infinite
velocity gradient just behind the discontinuous detonation. In order to gain a better
understanding of the origin of this singularity, it is necessary to examine the internal
structure of the detonation. Hence, this section will examine the critical dynamics of
detonation initiation in the limit of small heat release when modifications to the internal
structure are taken into account.

When attention is focused on the internal structure ξ “ O p1q, the time-dependent
velocity of the lead shock 9ατ pτq is obtained as an eigenfunction of the system (3.55)
and (3.56) that requires an additional boundary condition at the exit of the reaction
zone µbpτq “ µpξb, τq. In contrast to (Clavin and Denet, 2020), where, considering the
burnt-gas flow as uniform, the decelerating flow µbpτq was imposed, the solution of
(3.55) and (3.56) will be matched now with the non-uniform flow of the rarefaction wave
µextpξ, τq, solution to the external problem (3.74) to (3.76). In overdriven regimes, this
external flow field is given by the analytical expressions (3.91), (3.92) and (3.94).

3.4.1 Overdriven regimes

In an overdriven detonation, the burnt gas flow at the exit of the reaction zone is subsonic
relative to the lead shock µpξb, τq ą 9ατ . The sonic point, where µpξspτq, τq “ 9ατ pτq, is
located within the rarefaction flow, behind the internal structure of the combustion wave.
The larger the overdrive factor, defined as µextpξb, τq ´ 9ατ pτq, is the larger is the distance
between the sonic point and the exit of the reaction zone. The characteristic C` is inward
running behind the sonic point, while it is outward running ahead the sonic point. Under
these conditions, the characteristic C` cannot propagate perturbations from the internal
structure of the combustion wave towards the rarefaction flow in the burnt gas, which is
still described by (3.94)

ξ ď ξb : µpξ, τq “ µext
pξ, τq “

ξ ´ ξ0i ` τ r1 ` Y pτqs

r̃f pτq

”

´ξ0i
1`µext

fi
` ln

´

r̃f pτq

r̃fi

¯ı ´ 1 (3.100)

where Y pτq ” 1
τ

ş0

τ
9ατ pτ 1qdτ 1.

The external flow µextpξ, τq decreases linearly with the radius, regardless of the time-
dependent velocity of the front 9ατ pτq from its value at the front to zero. The dependence
of µextpτq on the past of the unknown solution 9ατ pτq through the integral Y pτq comes
from the increase of the thickness of the rarefaction wave with the time. To summarize,
for overdriven regimes, the boundary condition in the burnt gas to apply to the system
(3.55) and (3.56) is (3.100).
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Introducing the decomposition

µpξ, τq “ µext
pξ, τq ` µ̂pξ, τq

and subtracting (3.74) from (3.55)

τ ď τs :
Bµ̂

Bτ
` pµ̂ ´ 9ατ q

Bµ̂

Bξ
“
ω

2
´
µ̂

r̃f
´

B

Bξ

`

µextµ̂
˘

(3.101)

the dynamics of the lead shock 9ατ pτq during the decay of a combustion wave in the
overdriven regime corresponds to the eigenfunction of (3.101) subject to the boundary
conditions

ξ “ 0 : µ̂ “ 1 ` 2 9ατ pτq ´ µext
fpτq (3.102)

ξ ď ξb “ ´e´b 9ατ pτq : µ̂ “ 0 (3.103)

where µextpξ, τq is given by (3.100) and τs denotes the time at which the reaches for the
first time the exit of the reaction zone.

Typically, an increase in ξs is observed when 9ατ pτq decreases, so that the sonic point
approaches the end of the reaction ξb. Once the sonic point crosses the exit of the
reaction zone τ “ τs, the overdriven propagation regime is no longer valid, and the
external flow which is solution of (3.74) is perturbed by the reactive transonic flow. For
τ ą τs, the boundary conditions (3.102) and (3.103) are no longer applicable, and the
rarefaction wave can no longer be accurately represented by the analytical expression
(3.100) everywhere in the burnt gas. In essence, shortly after τs, the rarefaction flow
behind the end of the reaction is perturbed by the heat released in the region bounded by
the end of the reaction zone and the sonic point. However, as in the discontinuous model,
the solution is recovered downstream until the arrival of the disturbance carried by the
characteristic C`.

3.4.2 Numerical integration

In order to study the dynamics for τ ě τs, it is necessary to perform a numerical analysis
of (3.55) and (3.56) with an initial condition at τ “ τs obtained from the solution of the
eigenvalue problem (3.101) to (3.103).

Numerical method

The numerical integration was performed by utilizing a splitting strategy that follows the
algorithm

µn`1
“ S p∆tqC p∆tqµn

where the superscript n represents the time step number. The algorithm proceeds first
integrating the convective term, then the obtained solution is used to integrate both
the curvature and the reactive terms. The convective operator C corresponds to the
application of the high-resolution central scheme presented in Kurganov and Tadmor,
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2000 for nonlinear conservation laws to the hyperbolic equation

Bµ

Bτ
` pµ ´ 9ατ q

Bµ

Bξ
“ 0.

At the boundaries of the numerical domain, a first-order upwind scheme is employed
to approximate the spatial derivatives. This approach utilizes the direction of the local
advection velocity, represented by µ ´ 9ατ . At the front, where the flow is subsonic
relative to the lead shock µ ´ 9ατ ą 0, a backward difference scheme is utilized. On the
other hand, at the end of the domain on the origin side, where the flow is supersonic
relative to the front µ ´ 9ατ ă 0, a forward difference scheme is employed. The reactive
and curvature operator S refers to the integration of the following equation

Bµ

Bτ
“
ω

2
´

1 ` µ

r̃f

using a 2nd order Runge-Kutta explicit method. At the end of every time step, the value of
the propagation velocity 9ατ is updated from the solution through the boundary condition
(3.56).

Initial conditions

In a real initiation process, the initial trajectory of the lead shock is determined by the
strong blast wave that is generated at the origin due to a nearly instantaneous release of
energy. According to the self-similar solution of Sedov (1946) and Taylor (1950b) (see
Section 2.2.3), this strong blast wave depends only on the amount of energy deposited. A
detailed discussion about the effects of finite deposition times can be found in the work
of Liñán et al. (2012). This initial stage corresponds to a high Mach number, which is
beyond the scope of the asymptotic analysis for small heat release.

The critical condition of initiation is investigated here through a parametric study of
the initial conditions given by (3.100). Three parameters of order unity are involved at
τ “ 0: the initial radius r̃fi, the initial thickness of the rarefaction wave |ξ0i|, and the
initial flow velocity at the front µext

fi . The initial propagation velocity 9ατ,i is related to the
initial flow velocity through the boundary condition (3.56). This study focused on weakly
overdriven detonations with an initial velocity close to that of the CJ regime 9ατ,i “ 0.5
and an initial extension of the rarefaction wave much larger than the detonation thickness
|ξ0i| “ 10, as in real initiation processes close to criticality.

The numerical integration of (3.55) and (3.56) is initialized at τ “ 0 by igniting the
exothermal reaction in the inert flow (3.100)

τ “ 0 : µpξq “ µfi ´
1 ` µfi

ξ0i
ξ

This initial conditions lead quickly, on a time scale shorter than unity, to formation of the
overdriven detonation structure previously described.
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Figure 3.13: Initial solution obtained by numerical integration of (3.55) and (3.56) for a stable
spherical detonation with b “ 1, j “ 2 and 9ατ “ ´0.5 during the overdriven regime. (a) Flow
velocity profiles at different time steps ∆τ “ 0.6 from the initial solution at τ “ 0 (black) to
τ “ 3 (blue). The full points indicate the exit of the reaction zone ξb and the empty circles are
the sonic points relative to the leading shock ξs. The discontinuous lines represent the analytical
solution (3.100) for the external flow µext of overdriven detonations neglecting the integral Y pτq

showing excellent agreement behind the exit of the reaction zone. (b) Temporal evolution of the
propagation velocity 9ατ pτq. The dashed black line represents the decay of an inert blast wave.

An example of numerical results obtained for a stable spherical detonation with b “ 1
and j “ 2 is shown in Figure 3.13. The flow velocity profiles obtained by numerical
integration of (3.55) and (3.56) during the overdriven regime (see Figure 3.13a), before
the sonic point ξs reaches the exit of the reaction zone ξb at τs, are found to be in great
agreement with the analytical solution given by (3.100) even when the integral term
Y pτq is neglected. The ignition of the exothermal reaction in the initially inert flow is
observed at τ “ 0.25 in Figure 3.13b. Afterwards, the wave decay proceeds at a slower
rate compared to the blast wave, due to the expansion occurring within the reaction zone.
This methodology is followed to obtain the initial conditions in the subsequent parametric
analysis.

Parametric study

A numerical investigation of the solutions of the solutions of (3.55) and (3.56) for
spherical detonations j “ 2 was carried out through a parametric study under varying
initial front radii r̃fi and reduced activation energies b. The chemical-kinetics rate ω
follows the scaling law (3.71) of the simplified three-step kinetic scheme of Clavin and
Denet (2018) whose instability threshold was identified to be bc “ 1.27. For the purpose
of the analysis, a reduced activation energy of b “ 1 was selected as the base case
representing a stable detonation and was compared to b “ 2 and b “ 3 which correspond
to weakly unstable detonations and b “ 5 which represents an unstable detonation.

The parametric study was extended to cylindrical and planar cases for completeness.
However, as anticipated in the framework of the discontinuous model, the dynamics of the
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Figure 3.14: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a stable spherical detonation with b “ 1, j “ 2 and 9ατ,c “ ´0.5.
The failure occurs for a small initial radius r̃fi ă 0.8 due to chemical-kinetics quenching.

cylindrical wave only exhibit quantitative differences with respect to the spherical wave
due to the less pronounced effect of curvature. The parametric study in the planar case
was limited to the reduced activation energy as the initial front radius is not a parameter
of the problem. Additionally, the impact of the crossover propagation velocity 9ατ,c below
which the reaction is quenched was evaluated by taking 9ατ,c “ ´0.5 as the reference case
compared to 9ατ,c “ ´0.8.

The results of the parametric study are presented as the trajectories in the plane 9ατ ´ r̃f .
These trajectories correspond to different initial radius r̃fi, while the initial velocity is
kept fixed 9ατ,i “ 0.5 as the initial thickness of the rarefaction wave which is 10 times
larger than the detonation thickness |ξ0i| “ 10.

Successful initiation and detonation failure for a stable case b “ 1 are depicted in
Figure 3.14 and Figure 3.15 for spherical and cylindrical waves, respectively. The results
for cylindrical waves are qualitatively similar to those of spherical waves, albeit with a
lesser impact of curvature on the wave dynamics.

In the absence of curvature, the initial front radius is not a parameter of the problem,
and therefore the parametric study of the planar wave j “ 0 is exclusively based on the
reduced activation energies b. The planar detonation decays asymptotically towards the
CJ regime as in the discontinuous model. The decay of plane gaseous detonations in
the limit of small heat release has been thoroughly examined previously in Clavin and
Denet (2018). This study highlights the intrinsic instability of the inner structure for
high activation energy values. Recently, Tofaili et al. (2021) and Tofaili (2022) validated
the asymptotic analysis of planar detonations stability by comparing it with numerical
simulations based on the one-dimensional reactive Euler equations using high-order
numerical methods.
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Figure 3.15: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a stable cylindrical detonation with b “ 1, j “ 1 and
9ατ,c “ ´0.5. The failure occurs for a small initial radius r̃fi ă 0.06 due to chemical-kinetics
quenching.
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Figure 3.16: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a planar detonation for different values of b.

83



3 Direct initiation of critical detonations in the small heat release asymptotic limit

0 5 10 15 20 25

r̃f

−1.0

−0.5

0.0

0.5

α̇τ

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6

r̃fi

Figure 3.17: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a weakly unstable spherical detonation with b “ 2, j “ 2
and 9ατ,c “ ´0.5. The failure occurs for a small initial radius r̃fi ă 1.6 due to chemical-kinetics
quenching.

0 5 10 15 20 25 30 35 40

r̃f

−1.0

−0.5

0.0

0.5

α̇τ

0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1 5.7 6.3 6.9

r̃fi

Figure 3.18: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a weakly unstable spherical detonation with b “ 3, j “ 2
and 9ατ,c “ ´0.5. The failure occurs for a small initial radius r̃fi ă 3.6 due to chemical-kinetics
quenching.
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Figure 3.19: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a strongly unstable spherical detonation with b “ 5, j “ 2 and
9ατ,c “ ´0.5.

In Figures 3.17 and 3.18, two weakly unstable detonations with b “ 2 and b “ 3 are
presented, respectively. The results for these weakly unstable detonations are consistent
with those of stable detonations, except for a nonlinear oscillation superimposed on
the trajectories. Additionally, a slight overshoot in the critical trajectories is observed,
with the wave initially reaccelerating more strongly than those that are further from the
critical regime. This behavior is also observed in the numerical simulations based on
the one-dimensional reactive Euler equations reported by He and Clavin (1994), Eckett
et al. (2000), and Ng and Lee (2003), although the intensity of the behavior is more
pronounced in their findings.

The results for a strongly unstable detonation with b “ 5 are shown in Figure 3.19
and exhibit much more complex dynamics. The large oscillations caused by the large
activation energy are coupled with curvature effects giving rise to chaotic trajectories
in the plan of propagation velocity versus radius of the front. The initiation of strongly
unstable detonations constitutes a challenging problem that is left for future works. It is
worth noting, however, that there is also a bifurcation in the long time dynamics, with
both successful initiation of the detonation and detonation failures.

For moderate values of b, detonation failure is produced by the chemical-kinetics
quenching. This is clearly shown by decreasing the lower bound 9ατ,c associated with
the chemical-kinetics quenching. For example, considering the case where b “ 1 and
9ατ,c “ ´0.8, a successful initiation is observed in Figure 3.20 for r̃fi “ 0.5 which
corresponds to a detonation failure for 9ατ,c “ ´0.5 in Figure 3.14.
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Figure 3.20: Trajectories “propagation velocity 9ατ vs. front radius r̃f” obtained trough numerical
integration of (3.55) and (3.56) for a stable detonation with b “ 1, j “ 2 and 9ατ,c “ ´0.8.
The trajectory corresponding to r̃fi “ 0.1 describes a failure of initiation 9ατ pτq Ñ ´1 and
that corresponding to r̃fi “ 0.3 is a successful initiation characterised by sudden detonation
accelerations resulting from the formation of shock waves in the induction zone, as explained in
the text.

3.4.3 Discussion of the critical dynamics

The dynamics of a detonation are greatly influenced by changes to its inner structure.
In contrast to the discontinuous model, detonation failure occurs when the detonation
velocity decreases below the CJ velocity at a too small radius (yet larger than the detonation
thickness). During the successful initiation of a steady detonation, the CJ velocity is not
reached abruptly as in the discontinuous model. In this section, the critical dynamics of
detonation initiation observed in the “propagation velocity vs. radius” trajectories will be
analyzed and discussed.

Slowdown mechanism of overdriven waves

Consider initial conditions for which the propagation velocity crosses the CJ velocity
9ατ pτtq “ 0 with a radius small enough and an overdrive factor large enough so that the
flow at the exit of the reaction zone continues to be subsonic well below the CJ velocity.
Under this conditions, the sonic point ξs lies on the external flow, which is described by
(3.100), where the flow velocity µext equals the propagating velocity 9ατ

τ ă τs : ξspτq “ ξ0pτq ` r̃f pτq p1 ` 9ατ pτqq

„

θi ` ln

ˆ

r̃f pτq

r̃fi

˙ȷ

. (3.104)
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Unfortunately, the trajectory of the sonic point ξspτq is strongly dependent on the
instantaneous propagation velocity 9ατ pτq which is determined by the eigenvalue problem
(3.101) to (3.103) that must be solved numerically. Nevertheless, the direction of motion
of the sonic point can be evaluated by examining the time derivative of its trajectory
(3.104) which writes

τ ă τs :
dξs
dτ

“

„

θi ` ln

ˆ

r̃f
r̃fi

˙ȷ ˆ

1 ` 9ατ ` r̃f
d 9ατ

dτ

˙

.

The first factor in brackets within the time derivative of the sonic point trajectory is always
positive since θi, which represents the initial solution parameter, and the logarithmic
function of an argument larger than unity are positive. The sign of the second factor
depends on the relative values of the propagation velocity 9ατ and its time derivative
d 9ατ{dτ . The sonic point inside the rarefaction flow of burnt gas behind an overdriven
detonation moves towards the reaction zone when the detonation decay |d 9ατ{dτ | is not
too large, more precisely when the decay of 1 ` 9ατ is smaller than the damping rate by
curvature

τ ă τs :
dξs
dτ

ą 0 Ø
1

1 ` 9ατ

d 9ατ

dτ
ă

1

r̃f
.

The exit of the reaction zone ξb moves in the opposite direction when 9ατ decreases

1

|ξb|

dξb
dτ

“ b
d 9ατ

dτ
.

Consequently, the overdrive factor µextpξb, τq ´ 9ατ pτq also decreases. As a result, the
sonic point may catch the exit of the internal structure of the reaction wave at a later time.

The curvature term present in the right-hand side of (3.55) and the burnt-gas flow
at the exit of the reaction zone influences the internal structure of the reaction wave.
These two mechanisms exhibit opposing effect on the dynamics of the leading shock, as
shown by the following rough arguments. Considering a constant flow at the exit of the
reaction zone, the solution of (3.55) and (3.56) describes the dynamics of an overdriven
wave which is isolated from the external flow. In the context of direct initiation, if the
velocity 9ατ is well below the CJ velocity, namely if 9ατ is negative and not small, the
flow velocity µpξ, τq within the internal structure of the combustion wave will be out of
equilibrium. In such scenario, the nonlinear relaxation towards equilibrium is expected
to result in an increase of 9ατ , specially if the overdrive factor is small, as the equilibrium
state would correspond to 9ατ “ 0. Hence, the decay of 9ατ should be linked to the
rarefaction-wave-induced flow at the exit of the reaction zone µextpξb, τq. The response
of the inner structure in adjusting the propagation velocity 9ατ is delayed by the transit
time of the characteristics C` leaving the end of the reaction ξb at time τ to reach the
point ξC`

pτ, τ 1q ą ξb at a later time τ 1 ą τ . With the exception of the integral term
Y pτq, which can be neglected in (3.100), the decay of the velocity 9ατ pτq of an overdriven
wave can be considered to be controlled by the decreasing rate of the rarefaction flow
µext pξb, τq, but with the time delay ∆t`p0, τq introduced by the characteristics C` as
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Figure 3.21: Results of the numerical integration of (3.55) and (3.56) for a stable spherical
detonation (b “ 1, j “ 2) for 9ατ,c “ ´0.5 and r̃fi “ 0.9 illustrating the slowdown mechanism
in a successful initiation. The full points indicate the exit of the reaction zone ξb and the empty
circles are the sonic points relative to the lead shock. (a) Profiles of the reduced flow velocity at
different time steps ∆τ “ 1 from the initial solution at τ “ 0 (black) to τ “ 6 (blue). (b) End of
reaction ξb and sonic point ξs trajectories with respect to the leading shock in black solid and
dotted line, respectively. The trajectory 9ατ pr̃f q is plotted in grey line with the horizontal line
indicating the chemical-kinetics quenching in dashed line. The grey dashed line represents the
trajectory of the inert blast wave.

they travel from the exit of the reaction zone to the leading shock.
The validity of this description of the detonation dynamics extends until a time τs

at which the sonic point catches the exit of the inner structure. As the sonic condition
approaches the end of the reaction, the time delay ∆t`p0, τq increases strongly. A
slowdown of the velocity decay d 9ατ{dτ should occur then when the sonic point approaches
the end of the reaction, due to the time delay of the response becoming notably greater
than the characteristic time of the forcing term responsible for the decay, specifically
the inverse of the decreasing rate of the rarefaction flow µextpξ, τq. Consequently, the
derivative d 9ατ{dτ approaches zero for 9ατ ă 0 resulting in the observed local minimum,
and the decay rate of the propagation velocity is arrested.

In the case where the propagation velocity is greater than the lower bound 9ατ,c

corresponding to the chemical-kinetics quenching, this scenario occurs when the sonic
point traverses the exit of the reaction zone. At this instant, the internal structure becomes
isolated from the rarefaction wave and its associated damping rate.

In other words, the driving mechanism behind the decay is deactivated. As previously
mentioned, the flow inside the internal detonation structure being out of equilibrium, a
non-linear relaxation process towards the steady CJ regime starts, resulting in an increase
of the velocity 9ατ after τs and ultimately leading to a successful initiation.

The slowdown mechanism, leading to a minimum of propagation velocity well below
the CJ velocity 9ατ ă 0 when the sonic point ξs approaches the end of the reaction ξb
is clearly observed in Figure 3.21. The minimum propagation velocity 9ατ “ ´0.49
is reached for r̃f “ 4.26. During the subsequent re-acceleration of the propagation
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Figure 3.22: Results of the numerical integration of (3.55) and (3.56) for a stable spherical
detonation (b “ 1, j “ 2) for 9ατ,c “ ´0.5 and r̃fi “ 0.7 illustrating the slowdown mechanism in
a detonation failure. The full points indicate the exit of the reaction zone ξb and the empty circles
are the sonic points relative to the lead shock. (a) Profiles of the reduced flow velocity at different
time steps ∆τ “ 1 from the initial solution at τ “ 0 (black) to τ “ 6 (blue). (b) End of reaction
ξb and sonic point ξs trajectories with respect to the leading shock in black solid and dotted line,
respectively. The trajectory 9ατ pr̃f q is plotted in grey line with the horizontal line indicating the
chemical-kinetics quenching in dashed line. The grey dashed line represents the trajectory of the
inert blast wave.

velocity 9ατ pτq for r̃f ą 4.26, the position of the sonic point remains close to the end of
the reaction, as in the solution of a steady and weakly curved self-sustained detonation
with large activation energy. Notice that the minimum of propagation velocity 9ατ pτq

occurs when the sonic point catches the exit of the internal structure of the reaction wave.
This means that the external damping rate is balanced by the internal re-acceleration
mechanism when the sonic condition is satisfied µpξb, τq “ 9ατ pτsq.

The same mechanism is illustrated in Figure 3.22 in the case of a detonation failure. In
this case, the decay in the propagation velocity induced by the external flow decreases
as the sonic point gets closer to the end of the reaction, leading to a slowdown of the
front trajectory with respect to the inert case. However, the propagation velocity drops
below the chemical-kinetics quenching propagation velocity limit 9ατ,c “ ´0.5 before
the sonic point reaches the internal structure of the detonation, causing the reaction to
freeze. At this point, there is no longer a stable self-sustained regime and the internal
re-acceleration mechanism disappears, leading to the decay of the leading shock towards
the acoustic regime.

To summarize, if the propagation velocity decreases below the leading shock prop-
agation velocity which is necessary to heat the reactive mixture up to the crossover
temperature before the sonic condition, then the initiation process is hindered.
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Shock wave formation in the internal structure

In the induction zone, where the heat release is negligible, the curvature term on the right
hand side of (3.55) makes the unsteady flow profile gradient negative near the leading
shock. This leads to a velocity profile with a maximum value in the inner structure of the
reaction wave, as illustrated in Figure 3.21a. A similar peak in pressure was observed in
numerical simulations using the one-dimensional reactive Euler equations by Ng and Lee
(2003), which they proposed to be the driving mechanism behind the re-acceleration of
the wave and the initiation of detonation in the critical regime.

A negative gradient of flow velocity in the direction of propagation enables the
formation of shock waves within the induction zone. This has been observed in the
numerical solutions of (3.55) and (3.56) obtained for a low bound of the chemical-kinetics
quenching 9ατ,c when the minimum of the trajectories 9ατ pτq is close to this threshold. This
occurs when the initial radius is small enough, for example on the trajectory corresponding
to r̃fi “ 0.3 in Figure 3.20.

The physical relevance of a detonation propagating so close to the acoustic regime
9ατ « ´1 is questionable, as it corresponds to a cross-over temperature for the chemical-
kinetics quenching that is close to the initial temperature. Mazaheri (1997) has also
observed the formation of shocks during the re-acceleration of a detonation in numerical
simulations of the one-dimensional reactive Euler equations for a one-step kinetic rate
law. Lee and Higgins attributed this phenomenon to the simplicity of the single-step rate
model, which lacks a crossover between chain-branching and chain-breaking reactions.

Indeed, this issue is also present with the scaling law for the three-step kinetics rate
model when there is no crossover temperature or when it is too low. As such, further
analysis is necessary to confirm the physical significance of the reignition by shock waves
formed within the internal structure of the detonation.

Infinite gradient of the self-similar solution

The numerical results of successful initiation also serve to clarify the doubts raised due
to the infinite gradient in the flow velocity at the front of a spherical rarefaction wave
behind a CJ detonation (see Section 2.3.2). A first indication is given by the instantaneous
profiles of the burnt-gas flow behind the reaction zone in Figure 3.21b after τ “ 3. Once
the sonic point reaches and stays close to the end of the reaction zone, the rarefaction wave
and the detonation internal structure get decoupled due to the sonic condition. While the
rarefaction wave continues to be dampened by the curvature, the internal structure of
the detonation re-accelerates towards the CJ regime, resulting in an increase in the flow
velocity gradient at the sonic point and a narrowing of the reaction zone. The gradient at
the front becomes infinite at the scale of the rarefaction wave, whose length increases
linearly over time. When the numerical results for the reduced flow velocity are plotted
in the self-similar variable (3.77), they approach asymptotically the self-similar solution
(3.86) in the long time limit, as shown in Figure 3.23.
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Figure 3.23: Flow velocity profile at different time steps ∆τ “ 10 from the initial profile at τ “ 0
(black) to τ “ 100 (blue) compared to the self-similar solution for the spherical rarefaction flow
behind a CJ detonation considered as a discontinuity. The reduced flow profiles µpξ, τq obtained
numerically for a stable spherical detonation with b “ 1, j “ 2 and 9ατ,c “ ´0.5 are plotted in
the self-similar coordinate z “ ξ{|ξ0| “ pr ´ rfq { prf ´ r0q. The dashed red line represents the
self-similar solution (3.86).

3.5 Quasi-steady approximation
The internal structure of a detonation can be effectively described through the quasi-
steady approximation when the response time of the wave is significantly shorter than
the characteristic time of evolution of the boundary conditions. The study of He and
Clavin (1994) revealed that, under the quasi-steady approximation, the flow divergence
due to the curvature causes the emergence of a critical radius below which there is no
steady solution for a detonation. This critical radius has been established in the small
heat release limit (Clavin, 2019; Clavin and Denet, 2020). The critical radius appears as
a turning point in the quasi-steady solutions, where the rate of change of the detonation
propagation velocity is actually infinite. Therefore, the critical dynamics near the critical
radius cannot be accurately described by the quasi-steady approximation. However, the
quasi-steady approximation remains useful for the understanding of the dynamics of
detonation initiation. It anticipates the existence of the critical radius, below which there
is no steady solution for a detonation, and provides the steady solution for weakly curved
detonations far enough from the critical point.

3.5.1 Steady internal structure of self-sustained detonations

The steady-state solution of the internal structure of the detonation corresponds to the
solution of (3.55) and (3.56) when the unsteady term becomes negligible compared with
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Figure 3.24: Flow velocity profile, in black line, in the internal structure of a CJ detonation for
the simplified three-step kinetics rate model of Clavin and Denet (2018) whose corresponding
reaction rate is represented in dotted red line.

the rest of the terms in the equation

Bµ

Bτ
“ ´

`

µ ´ 9ατ

˘ Bµ

Bξ
`
ω

2
`
j

2

1 ` µ

r̃f
« 0 (3.105)

ξ “ 0 : µ “ 1 ` 2 9ατ . (3.106)

CJ detonation waves

In planar geometry, the self-sustained detonation regime is the so-called CJ regime and
the internal structure of the detonation is described by

µ
CJ

Bµ
CJ

Bξ
“
ω

CJ

2
. (3.107)

where the curvature term has been removed j “ 0 and 9ατCJ
“ 0 by definition. Integrating

from the Neumann state at the front µpξ “ 0q “ 1, as given by (3.106), the flow velocity
profile is given by µ

CJ
pξq “

b

1 ´
ş0

ξ
ω

CJ
pξ1qdξ1. The velocity profile obtained for the

simplified three-step kinetics rate of Clavin and Denet (2018) is represented in Figure 3.24.

Steady curved self-sustained waves

The steady-state solutions for weakly curved self-sustained waves in the small heat release
limit has been extensively studied in a series of works by Clavin (2019), Clavin and
Denet (2020), and Clavin et al. (2021a). The propagation velocity 9ατCJ

of weakly curved
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self-sustained detonations for a given front radius r̃f is obtained through integration of
(3.105) within the internal structure of the detonation.

As illustrated in Figure 3.21, the sonic point in self-sustained detonations is consistently
located close to the end of the reaction zone. Therefore, the difference between ξsCJ

and
ξbCJ

has limited effect on the analysis. Neglecting this difference is all the more justified
since the heat released in the region delimited by these points is negligible given the long
tail of the reaction rate distribution. Consequently, as discussed in detail in Clavin and
Denet (2020), the sonic condition can be considered to hold at the end of the reaction
zone

ξ “ ξs « ξb : µ “ 9ατ . (3.108)

Integration of (3.105) from ξb to ξ “ 0, using the boundary conditions (3.106)
and (3.108), yields

1

2

`

1 ` 9ατ

˘2
“

1

2
´
j

2

1

r̃f

ż 0

ξb

r1 ` µ pξqsdξ (3.109)

recalling that by definition
ş0

ξb
ωpξqdξ “ 1. The term on the left-hand side of the

equation quantifies the amount of advection required in the internal structure to sustain
the propagation of the detonation with a velocity 9ατCJ

. The unity quantity on the
right-hand sound accounts for the expansion of the combustion products, which push
the wave forward. The second term on the right-hand side appears due to the additional
advection required to propagate the front with a curved internal structure. It is clear
that the expansion of the combustion products suffices to propagate a CJ wave with its
corresponding velocity 9ατCJ

“ 0. However, for curved detonations, the expansion of the
combustion products must also balance the flow divergence introduced by the curved
geometry, resulting in a slower propagation velocity 9ατ ă 9ατCJ

“ 0.

The non-linear relationship between the propagation velocity 9ατ and the front radius
r̃f is given by the following expression where the variable of integration has been scaled
with the thickness of the reaction zone |ξb| “ e´b 9ατ

9ατ `
9ατ

2

2
“ ´

j

2

e´b 9ατ

r̃f

„

1 `

ż 0

´1

µ
´

e´b 9ατ ξ
¯

dξ
ȷ

. (3.110)

The difficulty in determining the value of the integral of the flow velocity profile in a
curved wave can be addressed by focusing on propagation regimes that are close enough
to the CJ regime 9ατ ! 1, such that the flow velocity profile µpξq can be approximated
by the velocity profile of the CJ wave µCJpξq. Under this approximation, the non-linear
relation (3.110) can be simplified to

9ατ ! 1 : 9ατ « ´
j

2

e´b 9ατ

r̃f
λ (3.111)
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3 Direct initiation of critical detonations in the small heat release asymptotic limit

where λ is a constant of order unity defined as

λ ” 1 `

ż 0

´1

µ
CJ

pξqdξ. (3.112)

Introducing the notation

x ”
2

j

r̃f
λb

and y ” b 9ατ (3.113)

for the front radius and the propagation velocity, respectively, the non-linear relationship
is given by the transcendental equation free from parameter

y ! 1{b : y “ ´
e´y

x
. (3.114)

The roots of equation (3.114), represented in Figure 3.25, exhibit a turning point at
y˚ “ ´1 and x˚ “ e, similarly to the opposite limit of large Mach number He and
Clavin (1994). For front radii below the critical value r̃f ă r̃f

˚ “ eλbj{2, there is no
steady-state solution for a curved detonation wave. Above the critical radius, the roots of
the equation provide the nonlinear relationship between the steady propagation velocity
9ατ and the front radius r̃f with two branches of solutions. As mentioned above, the
curved self-sustained detonations propagate slower than the CJ velocity 9ατ ă 9ατCJ

“ 0.
The solutions on the upper branch approach the CJ regime 9ατ Ñ 0 as the radius increases
x Ñ 8 (i.e. the curvature fades away) while the solutions from the lower branch keep
decelerating as the curvature vanishes. While the behavior of the upper branch allows
the coupling between the curved solution and the CJ solution, the behavior of the lower
branch lacks physical significance. Additionally, the lower branch solutions are unstable,
since any infinitesimal acceleration of the wave will cause a reacceleration towards the
upper branch.

It should be noted that the nonlinear relationship (3.114) is derived under the assumption
that the propagation velocity is close to the CJ velocity 9ατ ! 1. Therefore, the validity of
this relationship near the turning point 9α

˚

τCJ
„ ´1{b is limited to still larger activation

energies b " 1.

3.5.2 Steady internal structure of overdriven waves

In this subsection, the quasi-steady approximation of the internal structure is revisited
considering an overdriven wave with a burned gas flow given by the external solution
developed in Section 3.3. The quasi-steady approximation for such a wave corresponds
to the solution of (3.101) to (3.103) when the unsteady term is negligible with respect to
the rest of the terms in the equation

Bµ̂

Bτ
“ ´

`

µ̂ ´ 9ατ

˘ Bµ̂

Bξ
`
ω

2
´
µ̂

r̃f
´

B

Bξ

“

µext
pτqµ̂

‰

« 0 (3.115)
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3.5 Quasi-steady approximation

ξ “ 0 : µ̂ “ 1 ` 2 9ατ ´ µext
fpτq (3.116)

ξ “ ξb : µ̂ “ 0 (3.117)

Integrating equation (3.115) from the end of the reaction zone (3.116) to the leading
shock (3.117) results in an implicit relationship between the propagation velocity and the
front radius 9ατ pr̃fq involving the solution of the velocity profile in the internal structure
µ̂pξq

9ατ ` µext
f 9ατ “ ´

j

2

1

r̃f

ż 0

ξb

µ̂pξqdξ `
pµext

f q
2

2
(3.118)

For propagation velocities that are close enough to the CJ regime 9ατ ! 1, a closed
equation linking the propagation velocity 9ατ and the front radius r̃f through the external
flow velocity solution µext

f can be derived by replacing the velocity profile µ̂pξq with the
velocity profile of the CJ solution µCJpeb 9ατ ξq

9ατ ! 1 : 9ατ

`

1 ` µext
f

˘

« ´
j

2

e´b 9ατ

r̃f
pλ ´ 1q `

pµext
f q

2

2
(3.119)

By utilizing the notation introduced in (3.113), the nonlinear relationship between the
front radius r̃f and the propagation velocity 9ατ for an overdriven wave with a burnt-gas
flow µext

f is expressed by the following transcendental equation

9ατ ! 1 : y
`

1 ` µext
f

˘

“ ´
λ ´ 1

λ

e´y

x
`
b pµext

f q
2

2
(3.120)

The roots of equation (3.120) are plotted in Figure 3.25 for various values of the burnt-gas
flow µext

f . These relationships also exhibit a turning point, similar to that observed for
the relationship (3.114), although it is slightly shifted. For µext

f “ 0, the turning point
lies on y˚ “ ´1 and x˚ “ epλ´ 1q{λ. Consequently, a small correction is made to the
critical front radius r̃f˚ “ ejpλ ´ 1qb{2, which still corresponds to a non-dimensional
front radius r̃f{b of order unity.

Examples of the trajectories propagation velocity 9ατ versus front radius r̃f obtained
from numerical integration of (3.55) and (3.56) are presented in Figure 3.26 and compared
to the solutions obtained for the quasi-steady approximation. In all cases, it is observed that
the successfully initiated detonations follow the solution of the quasi-steady approximation
for self-sustained waves in curved geometries. The minimum of propagation velocity
in all trajectories is also located in the region bounded by the steady-state curve for
self-sustained detonations and that of overdriven waves with a critical value of the
burnt-gas flow µext

f “ 0.
In conclusion, the quasi-steady approximation cannot describe accurately the critical

dynamics of direct initiation of spherical detonations. However, it does provide valuable
insight as it gives an approximate location for the critical radius below which there is
no solution for a self-sustained detonation. The quasi-steady approximation has been
revisited for overdriven detonations with a specified burnt-gas flow. In this case, the
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Figure 3.25: Steady-state detonation waves in curved geometries in terms of the variables y ” b 9ατ

and x “ r̃f{pbλj{2q. The blue line in the plot represents the roots of (3.114), which depict
the relationship between the front radius and the propagation velocity of self-sustained curved
detonation waves in steady-state. A turning point can be observed at (x˚, y˚). The roots of
(3.120), which depict the relationship between the front radius and the propagation velocity
of overdriven waves in steady-state, are plotted in dashed lines, ranging from black to red, for
different values of the burnt-gas flow µext

f . The solid black line corresponds to the critical value
of burnt-gas flow in the discontinuous model µext

f “ 0.
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Figure 3.26: Comparison of the trajectories propagation velocity vs. front radius obtained
by numerical integration of (3.55) and (3.56) with the nonlinear relationships of steady-state
detonation waves. The green solid line represents the roots of (3.114) for self-sustained detonation
waves in steady state while the dashed solid line represents the roots of (3.120) for overdriven
waves with a burnt-gas flow µext

f “ 0. (a) Spherical stable detonation wave. (b) Cylindrical stable
detonation wave. (c-d) Spherical weakly unstable detonation waves. (e-f) Spherical detonation
waves with a low chemical-quenching limit.
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critical radius becomes slightly smaller, but retains the same order of magnitude. The
critical radius of steady overdriven detonations is obtained for a dimensionless front
radius r̃f{b of order unity

rf
˚

autrN
“
j

2

b

ϵ
e

ż 0

´1

µCJ pξq dξ. (3.121)

The numerical results represented as trajectories in the propagation velocity versus
front radius plane show a minimum in the propagation velocity. This local extreme of
the detonation velocity lies within the limits given by the quasi-steady solutions for a
self-sustained wave and an overdriven wave. In the long time limit, these trajectories
also exhibit good agreement with the steady-state solutions for self-sustained detonation
waves in curved geometries.

3.6 Summary
The direct initiation process, through which a self-sustained detonation is generated in the
decay of a initially inert blast wave, has been investigated in the limit of small heat release
coupled with the Newtonian approximation, with a particular focus on the critical regime.
The detonation model derived from general conservation equations in this limit has been
used to investigate the dynamics of the combustion products behind a supersonic reactive
discontinuity, the dynamics of a detonation when considering its internal structure, and
the steady-state solutions.

First, analytical expressions have been found for the rarefaction wave behind an
infinitesimally thin detonation in both the self-sustained regime and the decaying
overdriven regime. The transitory regime from the overdriven to the self-sustained
regime has been described in terms of the propagation of a weak discontinuity along
the corresponding characteristic curve that separates the two solutions. Both regimes
described by analytical expressions, as well as the transitory regime, have been verified
by comparing them with results obtained by numerical integration.

Then, the problem of direct initiation has been investigated considering the internal
structure of the detonation by numerical methods. The analysis of the numerical results
for the critical dynamics has helped to clarify the slowdown observed prior to the onset
of self-sustained detonation. The slowdown is shown to be related to the setting of the
sonic condition in the internal structure of the detonation.

Finally, new analytical expressions of the quasi-steady approximation have been
provided for the establishment of the sonic condition in the overdriven decaying regime.
The numerical results that take into account the internal structure of the detonation have
been compared with these new quasi-steady solutions as well as with the quasi-steady
solutions determined in previous works for the self-sustained detonations in the small
heat release limit.

98



CHAPTER4

Deflagration-to-detonation transition at the tip
of a flame in thin tubes

This chapter examines a one-dimensional flame model that reproduces the runaway
mechanism for Deflagration-to-Detonation Transition in elongated flames propagating
throughout thin tubes. This flame acceleration mechanism is driven by the thermal
feedback of compression waves on the flame speed and flame surface area increase due
to the interaction of the flame with the tube walls. The nonlinear relationship between
the flame velocity and the elongation parameter are investigated through the double-
discontinuity model where the precursor shock wave and the flame are considered to be
infinitesimally thin. Two different relations are obtained for a steady and a quasi-steady
regime with a uniform flow and an isentropic compression wave between discontinuities,
respectively. These relationships are compared with numerical results obtained through
integration of the Navier-Stokes equations. The results demonstrate that the double
feedback loop of the elongated flame model can cause a flame acceleration runaway
within a finite time with the potential to initiate the formation of a strong shock wave that
triggers the onset of a detonation.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Elongated flame tip model . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Steady planar flame . . . . . . . . . . . . . . . . . . . . . . . . 106
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4.1 Introduction
The Deflagration-to-Detonation Transition (DDT) is a poorly understood phenomenon in
combustion that has been studied for over a century. Since the pioneering experiments
of Urtiew et al. (1966), numerous efforts have been devoted to the investigation of this
phenomenon and continues to be so, as attested by a number of recent of reviews by Oran
and Gamezo (2007), Dorofeev (2011), and Oran (2015). Despite this amount of research,
the fundamental mechanisms of DDT, through which a subsonic reaction-diffusion flame
abruptly turns into a supersonic reaction wave, has not yet been agreed upon. Various
forms of DDT have been observed in experiments suggesting different mechanisms (see
Lee (2008) and Clavin and Searby (2016) and references therein), rendering challenging
the quest of an universal mechanism

A first attempt at proposing an universal mechanism was made by Shelkin (1940)
(Zeldovich et al., 1985) related to the development of a turbulent flow due to the non-slip
condition on the tube walls along which the flame propagates. When a flame propagates
from the closed end of a tube, the expansion of the combustion products induces a flow in
the fresh gases. The friction of this flow with the tubes generates a velocity gradient that
bends the flame surface increasing the propagation velocity. When the Reynolds number
characterizing the induced flow is sufficiently large, the flow becomes turbulent and a
positive feedback mechanism can develop. The turbulence of the fresh gases wrinkles
the flame front increasing the propagation velocity and in turn increasing the turbulence
intensity.

The plausible explanation of DDT from Shelkin spread among the scientific community
the view that flame acceleration is impossible without turbulence. For this reason, the
theoretical study of DDT was precluded by the study of turbulent combustion, which is a
key problem in combustion science (Clavin, 1985; Ronney, 1995; Veynante and Vervisch,
2002). Even if the difficulties of combustion are forgotten, turbulence itself remains a
matter of controversy even in the simplest configurations (Pomeau and Manneville, 1980;
Hof et al., 2004). Therefore, the explanation of Shchelkin never materialized in a theory
for DDT capable of describing the process in detail and predicting its occurrence.

The Darius-Landau (DL) hydrodynamic instability, which causes an amplification of
the perturbations of a planar flame to be further amplified due to the density jump through
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the flame, was later proposed as a mechanism for flame acceleration (Darrieus, 1938;
Landau, 1944). The corrugation of the flame introduced by this instability increases
the surface area of the flame which accelerate its propagation velocity. However, recent
studies of the DL instability for realistic values of expansion through the flame show that
the acceleration induced by this instability in narrow tubes is too short and too weak to
initiate a detonation (Bychkov and Liberman, 2000).

A different mechanism for DDT based on the friction-induced adiabatic compression
has been discussed in (Brailovsky and Sivashinsky, 2000; Kagan and Sivashinsky, 2008;
Brailovsky et al., 2012). Under sufficient friction, the fresh gases undergo a process
of adiabatic compression which increases its temperature. This mechanism, termed
hydraulic resistance, has been extensively studied through one-dimensional models.

Recent experiments (Wu et al., 2007; Kuznetsov et al., 2010; Liberman et al.,
2010; Wu and Wang, 2011; Ballossier et al., 2021; Melguizo-Gavilanes et al., 2021a;
Bykov et al., 2022) and multidimensional direct numerical simulations (Liberman et al.,
2010; Melguizo-Gavilanes et al., 2021a; Liu et al., 2022) have contributed to a more
comprehensive understanding of DDT. The results presented by these studies support
the idea that turbulence has a supplementary role in flame acceleration (Kagan and
Sivashinsky, 2003; Ott et al., 2003). It is observed that the onset of the detonation is a
localized phenomenon, occurring within or close to the internal flame structure, and that
DDT can occur in the absence of turbulence.

A simple one-dimensional model leading to the runaway mechanism of DDT has been
recently proposed and examined (Clavin and Tofaili, 2021; Clavin and Champion, 2022;
Clavin, 2022; Tofaili, 2022) whose critical conditions correspond with the experimental
and numerical observations of Kuznetsov et al. (2010), Liberman et al. (2010), and Ivanov
et al. (2011). This model builds on an earlier theoretical study by Deshaies and Joulin
(1989) who derived the self-similar solutions of the double-discontinuity model using
the weak shock approximation and a high thermal sensitivity of the laminar flame speed,
along with the introduction of a folding parameter to account for the flame acceleration
resulting from surface wrinkling. They showed that due to the thermal feedback of the
lead shock on the flame speed, self-similar solutions no longer exist above a critical
value of the folding parameter. Similarly, Clavin and Tofaili (2021) and Tofaili (2022)
(CT) have established a novel one-dimensional (1D) model for elongated flames, where
the folding parameter is replaced by an elongation parameter. An additional feedback
mechanism is introduced through the piston effect of a back-flow of burned gas towards
the tip of the elongated flame, which is caused by the expansion of the combustion
products from the flame skirt and is therefore proportional to the burning velocity. The
self-similar solutions neglect the dynamics of the compression waves between the flame
and the leading shock assuming the flow in between remains uniform. In the vicinity of
the critical point, where the flame acceleration diverges, the uniform flow approximation
cannot be valid due to the rapid emission of compression waves. Nonetheless, the CT
model is also suitable for investigating the unsteady compression waves that lead similarly
to a finite-time singularity (Clavin, 2022).

The goal of this study is to explore the impact of the backflow of burned gases
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introduced by the CT model on the unsteady internal flame structure through numerical
integration within the framework of the DDT. This chapter presents the numerical results
obtained for the CT model considering chemical-kinetics of a one-step reaction model
with a rate governed by an Arrhenius law. A 1D unsteady flow of perfect gas has been
simulated with the boundary conditions imposed by the CT model through the numerical
integration of the reactive compressible Navier-Stokes (NS) equations.

Structure of the chapter

The subsequent sections of this chapter investigate the deflagration-to-detonation transition
occurring at the tip of elongated flames propagating in laminar regime along thin tubes.
The structure of this sections is as follows: Section 4.2 presents the one-dimensional
flame model utilized in this study. Section 4.3 examines the external flow generated by
the interaction between a flame propagating in a semi-closed tube and the leading shock
wave, when both waves are considered as a discontinuity. Section 4.4 extends the analysis
by numerically integrating the conservation equations in the internal structure of the
flame. Finally, the conclusions and future perspectives of the study are summarized in
Section 4.5.

4.2 Elongated flame tip model
The dynamics of the transition from a deflagration to a detonation are investigated
utilizing the model of Clavin and Tofaili (2021) to study the consequences of the flame
self-acceleration at the tip of elongated flames propagating in narrow channels. The
model proposed by Clavin and Tofaili considers the propagation of a one-dimensional
laminar flame, which undergoes an acceleration as a consequence of the development
of a backflow of the combustion products from the flame skirt adjacent to the channel
wall. This backflow acts as a piston behind the flame tip. In the framework of this model,
mechanisms such as hydraulic resistance and heat losses to the walls are assumed to
play a less significant role at the centerline of the channel, along which the flame tip
propagates.

In this section, the mathematical formulation that will be used in the study is presented,
along with a description of the proposed model. Additionally, certain simplifying
assumptions related to the thermochemical aspects of the problem are introduced. These
assumptions serve to reduce the complexity of the problem, allowing a careful examination
of the gas dynamics aspects.

4.2.1 Governing equations

The analysis of the deflagration-to-detonation transition requires investigating the interplay
between a premixed flame and compressible waves such as shock waves or unsteady
compression waves. The internal structure of a flame consists of a thin reactive layer
where chemical reactions of combustion occur, and a preheating zone where heat is
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transported by diffusion ahead of the reactive layer. The heat of reaction is released in
the reactive layer, and a portion of this heat is transferred through conduction to the fresh
mixture, which subsequently reacts and propagates the flame. Although the propagating
velocity resulting from this mechanism is markedly subsonic, compressible effects are
retained in order to explore their interaction with the flame. The unsteady propagation
of a one-dimensional flame is then described by the mass, momentum, and energy
conservation laws known as Navier-Stokes equations supplemented with conservation
equations for the different chemical species (Williams, 1985).

Reactive one-dimensional Navier-Stokes equations

This study considers the application of the reactive Navier-Stokes equations in a one-
dimensional rectangular geometry, where the velocity vector is u1 “ pu1, 0, 0q, the
gradient operator ∇u1 “ pBu1{Br1, 0, 0q, and the divergence operator ∇¨u1 “ Bu1{Br1.
In dimensional units, these equations can be written as follows

Bρ1

Bt1
`

Bpρ1u1q

Br1
“ 0, (4.1)

ρ1

ˆ

Bu1

Bt1
` u1 Bu

1

Br1

˙

`
Bp1

Br1
“

B

Br1

ˆ

µ1 Bu
1

Br1

˙

, (4.2)

ρ1

ˆ

BE 1

Bt1
` u1 BE

1

Br1

˙

`
Bpp1u1q

Br1
Br1

“

ˆ

λ1 BT

Br1

˙

`
B

Br1

ˆ

µ1u1 Bu
1

Br1

˙

` ρ1q1
mω

1, (4.3)

ρ1

ˆ

BY

Bt1
` u1 BY

Br1

˙

“
B

Br1

ˆ

ρ1D1 BY

Br1

˙

` ρ1ω1. (4.4)

Equations (4.1) and (4.2) represent the conservation of mass and momentum, respectively,
for Newtonian fluids. The third equation (4.3) describes the conservation of total specific
energy E 1, which is defined as the sum of internal thermal specific energy and specific
kinetic energy of the gas E 1 “ e1

T ` u12{2. Equation (4.4) represents the conservation of
a product of the combustion, while it can also be written for a reactant by changing the
sign ahead of the reaction rate.

For compressible flows, the conservation of energy is coupled with the fluid mechanics
problem through an equation of state. For ideal gases, this equation of state can be
expressed as

p1
“ pγ ´ 1qc1

vρ
1T 1 (4.5)

where γ ” c1
p{c1

v is the ratio of specific heat capacities.
The primary goal of this study is to examine the fundamental physical mechanisms

that govern the internal structure of the flame. In order to achieve this objective, the
thermophysical properties of the mixture, including viscosity µ1, thermal conductivity
λ1, and the specific heat capacities at constant pressure c1

p and constant volume c1
v, are

assumed to be constant
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Conservative form

Numerical methods employed for gas dynamics problems involving of shock waves
are typically designed to solve purely conservative equations. The set of conservation
equations (4.1) to (4.4) can be expressed in a conservative form where only the non
conservative terms related to the effects of molecular collisions remain on the left-hand
side with the right-hand side representing a purely conservative problem. This can be
accomplished by subtracting the continuity equation (4.1) multiplied by the corresponding
transported quantity from the equations (4.2) to (4.4), resulting in

Bpρ1u1q

Bt1
`

Bpρ1u12q

Br1
`

Bp1

Br1
“ µ1 B

2u1

Br12
, (4.6)

Bpρ1E 1q

Bt1
`

Bpρ1E 1u1q

Br1
`

Bpp1u1q

Br1
“ λ1 B

2T 1

Br12
`

B

Br1

ˆ

µ1u1 Bu
1

Br1

˙

` ρ1q1
mω

1, (4.7)

Bpρ1Y q

Bt1
`

B pρ1Y u1q

Br1
“ ρ1D1 B

2Y

Br12
` ρ1ω1. (4.8)

This approach facilitates the use of numerical methods that preserve conservation
properties of the equations, enabling more accurate and physically meaningful solutions
to be obtained.

Chemical-kinetics model

The set of conservation equations (4.1) and (4.6) to (4.8), in which the constitutive relations
for the viscous stresses, heat and molecular transfer have already been incorporated,
together with the ideal gas law (4.5) form a closed set of equations for ρ1, p1, u1, T 1 and Y
when a reaction rate is defined in terms of the thermodynamic variables ω1 “ ω1pT 1, Y 1q.
In an effort to simplify the problem and retain only its fundamental aspects, the simplest
description of the chemical interactions underlying the overall reaction is employed.
These interactions are modelled as a single, irreversible exothermic reaction, represented
as

νR
ω

ÝÝÑ νP (4.9)

where an inelastic collision between ν molecules of a single reactant R gives rise to ν
molecules of a less energetic product P, releasing the energy difference as heat. The
reaction rate is controlled by a law of mass action that is proportional to the product of
reactant concentrations, which, in this simple model, corresponds to the power ν of the
reactant concentration CR. The rate of product generation in this simplified model can be
then expressed mathematically as

1

C 1
P,b

dC 1
P

dt1
“

˜

C 1
R

C 1
P,b

¸ν
1

t1r
. (4.10)
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where C 1
P,b represents the concentration of the products in the burned mixture at

equilibrium and is introduced for the nondimensionalization of the equation. The rate
of chemical transformations resulting from inelastic collisions, denoted by 1{t1r, is only
a small fraction of the rate of elastic collisions 1{t1coll which can be described by an
Arrhenius law

1

t1r
“

1

t1coll
B exp

ˆ

´
E 1

a

kB
1T 1

˙

. (4.11)

where E 1
a is the activation energy, which is much larger than the thermal agitation

in the burnt gas, kB
1 is the Boltzmann constant, which relates the average kinetic

energy of the particles to the thermodynamic temperature, B is the dimensionless
pre-exponential factor, and 1{t1coll is the frequency of elastic collision. The exponential
term in the equation accounts for the fraction of reactant molecules that possess enough
thermal energy to overcome the activation energy barrier, as determined by the Maxwell-
Boltzmann distribution. The value of this part term from zero, when all molecules lack
sufficient energy to undergo chemical transformation, to one in the ideal but impossible
situation where all molecules possess enough energy to react upon collision. The
pre-exponential factor B represents the fraction of energetic collisions that result in a
chemical transformation. The molecular-level intricacies of chemical transformations,
such as the steric hindrance, can restrict the fraction of energetic collisions that result in
successful reactions, leading to a value of B smaller than unity. The definition of the
molecular concentration C 1

i ” N 1
i {V

1 where N 1
i denotes the number of molecules in a

volume V , is used to determine the mass fraction of a species i, which is nondimensional
by definition, given by Yi “ C 1

iW
1
i {ρ

1. The rate of product mass fraction increase is
expressed as

ω1
“

dY

dt1
“ p1 ´ Y q

ν B

t1coll
exp

ˆ

´
Ea

kBT

˙

. (4.12)

This is the minimal model that demonstrates the role of thermal feedback in flame
propagation.

Initial conditions

When examining the mechanism that can drive the Deflagration-to-Detonation Transition
under controlled laboratory conditions within a tube, the reactive gas mixture is considered
to be initially motionless, chemically frozen and homogeneous. Specifically, the boundary
conditions far ahead of the flame are

x Ñ 8 : ρ1
“ ρ1

o, u “ 0, p1
“ p1

o, T 1
“ T 1

o, Y “ 0 (4.13)
dρ1

dx1
“

du1

dx1
“

dp1

dx1
“

dT 1

dx1
“

dY

dx
“ 0. (4.14)

Here, ρ1
o, p1

o and T 1
o denote the unperturbed density, pressure and temperature, respectively
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4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

4.2.2 Steady planar flame

The internal structure of a steady flame is conveniently studied in the moving coordinate
system attached to an arbitrary position moving with the reactive wave rf , such as the
position of maximum reaction rate or the position of an isovalue in the reactant mass
fraction for instance. The position of the front r1

fpt
1q advances with a velocity denoted

u1
f ” dr1

f{dt
1 through a reactive mixture initially at rest. In the coordinate system of the

wave
x1

“ r1
´ r1

fptq,
B

Br1
Ñ

B

Bx1
,

B

Bt1
Ñ

B

Bt1
´ u1

f

B

Bx1
(4.15)

the conservation equations (4.1) and (4.6) to (4.8) are written as

Bρ1

Bt1
´

Bm1

Bx1
“ 0, (4.16)

Bpρ1u1q

Bt1
´

B pm1u1q

Bx1
`

Bp1

Bx1
“ µ1 B

2u1

Bx12
, (4.17)

Bpρ1E 1q

Bt1
´

B pm1E 1q

Bx1
`

B pp1u1q

Bx1
“ λ1 B

2T 1

Bx12
` µ1 B

Bx1

ˆ

u1 Bu
1

Bx1

˙

` ρ1q1
mω

1, (4.18)

Bpρ1Y q

Bt1
´

B pm1Y q

Bx1
“ ρ1D1 B

2Y

Bx12
` ρ1ω1. (4.19)

where m1 ” ρ1pu1
f ´ u1q “ ρ1U 1 denotes the mass flux trough the wave and U 1 is the

velocity of the flame with respect to the flow.
When considering the internal structure of a flame that is propagating in a steady

regime, the various terms in the conservation equations (4.16) to (4.19) must balance
each other, resulting in the elimination of unsteady terms. As a result, the steady internal
structure of the flame can be described by the following system of equations

dm1

dx1
“ 0, (4.20)

d pm1u1q

dx1
´

dp1

dx1
` µ1 d

2u1

dx12
“ 0, (4.21)

d pm1E 1q

dx1
´

d pp1u1q

dx1
` λ1 d

2T 1

dx12
` µ1 d

dx1

ˆ

u1 du1

dx1

˙

` ρ1q1
mω

1
“ 0, (4.22)

d pm1Y q

dx1
` ρ1D1 d

2Y

dx12
` ρ1ω1

“ 0. (4.23)

where the first equation, which represents mass conservation, indicates that the mass flux
through a steady deflagration wave remains constant, m1 “ const..

Isobaric approximation

The thermal propagation of a flame relies on the molecular transport of heat from the
burned gases to the fresh mixture. This results in the propagation velocity of the flame
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4.2 Elongated flame tip model

being significantly slower than the sound speed, which is related to the mean velocity of
the molecules. Therefore, the low Mach number limit provides an accurate approximation
to describe the internal structure of the flame. To the leading order of the low Mach
number limit, the velocity gradient is not large enough to produce a significant pressure
gradient. Thus, the equation for the conservation of momentum simplifies to a constant
pressure equation, establishing that pressure remains constant throughout the internal
structure of the flame

Ub

ab
! 1 :

dp1

dx1
“ 0. (4.24)

Similarly, pressure and kinetic energy variations in the energy conservation equation
are negligible when compared with the heat released during combustion. Therefore,
the total energy conservation equation can be written in the form of a equation for the
conservation of thermal enthalpy without dissipative terms

Ub

ab
! 1 : m1c1

p

dT 1

dx1
`

d

dx1

ˆ

λ1dT
1

dx1

˙

` ρ1q1
mω

1
“ 0 (4.25)

A enthalpy conservation equation, which is independent of the reaction rate can be
obtained by subtracting equation (4.23) multiplied by the reaction heat per unit mass q1

m

from the thermal enthalpy conservation equation (4.25)

m1
d

`

c1
pT

1 ´ q1
mY

˘

dx1
`

d

dx1

ˆ

λ1dT
1

dx1
´ ρ1D1q1

m

dY

dx1

˙

“ 0. (4.26)

Integrating this equation from the boundary condition given by the state of the fresh
gases far away from the flame

x Ñ 8 : T 1
“ T 1

o, Y “ 0,
dT 1

dx1
“

dY

dx1
“ 0 (4.27)

to the boundary condition given by the state of the burned gases far from the flame, where
the gas mixture is expected to be in equilibrium

x Ñ ´8 : T 1
“ T 1

b, Y “ 1,
dT 1

dx1
“

dY

dx1
“ 0, (4.28)

provides a relation between the adiabatic flame temperature T 1
b and the initial temperature

of the fresh mixture T 1
o in terms of heat per unit mass q1

m which is written as

T 1
b “ T 1

o `
q1
m

c1
p

. (4.29)

After determining the burned gas temperature in terms of the mixture properties, a
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4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

normalized temperature can be defined as

θ ”
T 1 ´ T 1

o

T 1
b ´ T 1

o

“
T 1
b ´ T 1

o

q1
m{c1

p

(4.30)

allowing to remove the parameter of heat per unit mass from the equations.
Replacing the thermal conductivity λ1 by the thermal diffusivity D1

T “ λ1{
`

ρ1c1
p

˘

and
introducing the dimensionless Lewis number

Le ”
D1

T

D1
, (4.31)

which accounts for the considered constant relationship between the thermal diffusivity
and the molecular diffusivity, the internal structure of a isobaric flame is described by a
pair of convective-diffusion equations with a strongly nonlinear reaction term

m1 dθ

dx1
` ρ1D1

T

d2θ

dx12
` ρ1ω1

“ 0, (4.32)

m1dY

dx1
` ρ1D

1
T

Le

d2Y

dx12
` ρ1ω1

“ 0. (4.33)

with the boundary conditions

x1
Ñ `8 : θ “ 0, Y “ 0,

dθ

dx1
“

dY

dx1
“ 0 (4.34)

x1
Ñ ´8 : θ “ 1, Y “ 1,

dθ

dx1
“

dY

dx1
“ 0 (4.35)

Under the isobaric approximation p19ρ1T 1 “ const., the reaction rate can be expressed
in terms of the normalized temperature θ and the product mass fraction Y as

ω1
pθ, Y q “

1

t1rb

p1 ´ Y q
ν

r1 ´ p1 ´ θqqm{pcpTbqs
ν exp

„

´β p1 ´ θq

1 ´ p1 ´ θqqm{pcpTbq

ȷ

(4.36)

where the dimensionless pre-exponential factor B is assumed to follow the relation-
ship BDT{tcoll “ const., based on the kinetic theory of gases (Huang, 1987). The
characteristic reaction time t1rb is determined as the reaction rate at the burned gas
temperature

1

t1rb
“

B

t1coll
exp

ˆ

´
Ea

kBTb

˙

. (4.37)

The Zeldovich dimensionless number

β ”
Ea

kBTb

qm
cpTb

, (4.38)

which accounts for the thermal sensitivity, is introduced in the expression of the reaction

108



4.2 Elongated flame tip model

rate
The problem at hand is not well-posed mathematically, as the reaction rate does not

vanish in the fresh gases. This is a documented difficulty in the literature as the “cold
boundary difficulty”. However, this is only a formal problem that arises due to the
idealization of an infinite domain and the nature of the Arrhenius law. The reaction rate
does not vanish at a far distance from the heat source, regardless how low the temperature
is. In other words, the reactive mixture is out of equilibrium even in the far field region.

When the reactive mixture is supplied at a finite location, or when a cut-off temperature
is introduced by multiplying the reaction rate by a Heaviside function HpT 1 ´ T 1

i q where
T 1
i is the ignition temperature, the cold boundary difficulty is no longer present. However,

the introduction of an ignition temperature T 1
i implies the introduction of an additional

parameter that cannot be interpreted as an intrinsic property of the mixture.
In the large activation energy asymptotic limit, discussed next, the reaction rate at T 1

u

becomes vanishingly small, and hence it can be safely neglected without introducing any
significant error. For the reaction to occur, the mixture needs to be at a temperature that is
close to the adiabatic flame temperature T 1

b, which is essentially the ignition temperature.

Large activation energy asymptotic analysis

In 1938, Zeldovich and Frank-Kamenetskii (ZFK) performed an asymptotic analysis
of the thermal flame propagation in the limit of large activation energy β Ñ 8. This
analysis was further extended to the first order of the asymptotic approximation by
Bush and Fendell (1970). However, for the purposes of this study, the leading order
solution of Zeldovich and Frank-Kamenetskii is adopted. In particular, the development
of the solution described in Clavin and Searby (2016) is reviewed below to introduce
the description of the internal flame structure and the temperature-sensitive propagation
velocity on which the subsequent analysis is based.

In the limit of large activation energy, chemical reactions take place within an
infinitesimally thin layer, which allows to consider a separation of spatial scales. On a
large scale, the reactive term is constrained to a discontinuity surface and the rest of the
domain is referred to as the external solution. In the external solution, convective effects
are balanced by diffusive effects that transport the heat of reaction by conduction and mix
the fresh and burned gases. On the small scale of the reactive zone, convective effects are
negligible compared to diffusive effects, which evacuate heat and combustion products.

When β is large, the reaction rate given by (4.36) is only significant where the
normalized temperature θ is close to unity. Therefore, the reactive layer is characterized
by the magnitude relationship 1´θ “ O p1{βq. For β " 1, the exponent on the Arrhenius
law makes the reaction term negligible as soon as θ is considerably below unity. This
simplifies the expression for the reaction rate, given by

β " 1 : ω “ p1 ´ Y q
νe´βp1´θq. (4.39)

As a result, the reaction remains confined to a vanishingly thin boundary layer.
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Figure 4.1: Reduced temperature and reaction rate profiles at the internal structure of a steady
flame for Le “ 1 obtained analytically (4.47) in the asymptotic limit of large activation energy
β Ñ 8 (discontinuous line) and numerically for β “ 10 and ν “ 2 (solid line).

The flame structure under these conditions can be divided into three distinct regions
(see Figure 4.1): (i) a preheat zone, where the temperature and reactant mass fraction
evolve solely due to diffusive transport without any chemical reactions; (ii) a hot and
uniform region of burned gases in thermodynamic equilibrium; and (iii) a narrow reactive
layer, located at the interface of the preheat zone and the region of burned gases, where
high temperature triggers the chemical reaction, leading to the release of the heat of
combustion and complete consumption of the reactants.

The characteristic spatial scale of the preheat zone l1f , where the diffusive transport is
balanced by convective transport, is obtained by dimensional analysis of the convective-
diffusion equation for temperature (4.43) to give

l1f “
ρ1D1

T

m1
“
D1

Tb

U 1
b

“
D1

Tu

U 1
u

(4.40)

where
U 1
b “ u1

f ´ u1
b and U 1

u “ u1
f ´ u1

u (4.41)

denote the velocity of the flame with respect to the flow of burned gases and fresh gases,
respectively.

Reducing the problem with this spatial scale and the time scale given by the flame
transit time t1f “ l1f{U

1
b required for a particle moving with velocity U 1

b to cover the
distance l1f which are written as

x ”
x1

l1f
and t ”

t1

t1t
(4.42)
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The steady propagation of isobaric flames is described by the dimensionless set of
equations

dθ

dx
`

d2θ

dx2
`
ρω

τrb
“ 0, (4.43)

dY

dx
`

1

Le

d2Y

dx2
`
ρω

τrb
“ 0. (4.44)

where the reaction rate has been reduced by the characteristic reaction time ω “ ω1t1rb
and τrb ” trb{tf denotes the ratio of the reaction timescale to the transit time of the flame.
The description of the steady propagation of isobaric flames is obtained as the solution of
this non-linear eigenvalue problem that determines the temperature θ and reactant mass
fraction distribution Y and the timescales ratio τrb that plays the role of an eigenvalue.

Outside the thin reactive layer, the system of equations given by (4.43) and (4.44)
reduces to a system of second-order linear equations with constant coefficients

d

dx

ˆ

θ `
dθ

dx

˙

“ 0, (4.45)

d

dx

ˆ

Y `
1

Le

dY

dx

˙

“ 0. (4.46)

which can be easily integrated from the conditions of the fresh mixture far from the flame,
as specified by (4.34), to give

dθ

dx
pxq “ ´θpxq,

1

Le

dY

dx
pxq “ ´Y pxq, θpxq “ e´x, and Y pxq “ e´Lex,

(4.47)
where the interface with the thin reaction layer, where θ “ Y “ 1, has been arbitrarily
located at the origin of the coordinate system without loss of generality.

Equation (4.47) describes the preheat zone, where a non-reacting gas is heated by
thermal conduction from the heat released in the reaction layer and is diluted by molecular
diffusion with the products of combustion from the reactive layer. In the preheat zone,
the convective fluxes of thermal energy and reactants are everywhere balanced by the
corresponding diffusive fluxes.

In the limit of large activation energy, the difference between the normalized temperature
and unity must be small, on the order of the inverse of the Zeldovich number 1 ´ θ “

O p1{βq, for the reactive term to be non-negligible. The thin region where this relationship
holds, with a thickness denoted by lr, is the reactive layer. Introducing the reduced spatial
coordinate of order unity within the reactive layer ξ ” x1{l1r and the reduced temperature
Θ ” βp1 ´ θq of order unity on this region, the system of equations given by (4.43)
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and (4.44) is written as

lf
lr

1

β

dΘ

dξ
`

ˆ

lf
lr

˙2
1

β

d2Θ

dξ2
´
ρω

τrb
“ 0, (4.48)

lf
lr

dY

dξ
`

ˆ

lf
lr

˙2
1

Le

d2Y

dξ2
`
ρω

τrb
“ 0. (4.49)

Anticipating that the reactive layer is much thinner than the preheat zone lr{lf ! 1, a
comparison of the orders of magnitude of the terms in (4.48) and (4.49) shows that
the convective term is negligible compared with the diffusive term in the reactive layer.
Therefore, the reactive layer is described to leading order by the system of equations

lr
lf

! 1 :

ˆ

lf
lr

˙2
1

β

d2Θ

dξ2
´
ρω

τrb
« 0, (4.50)

ˆ

lf
lr

˙2
1

Le

d2Y

dx2
`
ρω

τrb
« 0. (4.51)

Adding both equations and dividing by the square of the length scales ratio, the following
differential equation independent of the rate of reaction is obtained

d2

dx2

ˆ

Θ

β
`
Y

Le

˙

“ 0. (4.52)

Integration from the hot and uniform region of burned gases in equilibrium where
dΘ{dξ “ dY {dξ “ Θ “ 0 and Y “ 1 yields the relation between the reduced
temperature and the product mass fraction within the reactive layer

d

dξ

ˆ

Θ

β
`
Y

Le

˙

“ 0 and
Θ

β
`
Y

Le
“

1

Le
, (4.53)

which can be used to remove the mass fraction dependence from the reactive term (4.39)

ωpΘq “
Leν

βν
Θνe´Θ (4.54)

and reduce the problem (4.50) and (4.51) to a single second order ordinary equation of
thermal energy conservation

ˆ

lf
lr

˙2
1

β

d2Θ

dξ2
“

1

τrb

Leν

βν
Θνe´Θ. (4.55)
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After multiplying by dΘ{dξ

1

2β

ˆ

lf
lr

˙2
d

dξ

«

ˆ

dΘ

dξ

˙2
ff

“
1

τrb

Leν

βν
Θνe´ΘdΘ

dξ
, (4.56)

both sides of the equality can be spatially integrated from the uniform burned gas side
ξ “ 0, where dΘ{dξ “ Θ “ 0, to the preheat zone ξ Ñ 8 where Θ Ñ 8 to give

1

2β

ˆ

lf
lr

˙2
dΘ

dξ

ˇ

ˇ

ˇ

ˇ

2

ξÑ8

“
1

τrb

Leν

βν

ż 8

0

Θνe´ΘdΘ. (4.57)

The integral of the left-hand side term is equivalent to the gamma function Γpν ` 1q “
ş8

0
Θνe´ΘdΘ, which returns the factorial ν!when ν is an integer. The reduced temperature

gradient in the region of overlap with the external solution is therefore given by

1

β

lf
lr

dΘ

dξ

ˇ

ˇ

ˇ

ˇ

ξÑ8

“

d

1

τrb

2ν!Leν

βν`1
. (4.58)

The solution to the eigenvalue problem τrb can be obtained through asymptotic matching
of the preheat zone with the reactive layer. Precisely, by equating the temperature gradient
at the interface with the reactive layer located at x “ 0 of the solution for the preheat
zone (4.47) with the temperature gradient in the reactive layer in the region of overlap
as given by equation (4.58), in comparable spatial and temperature units, leads to the
expression for the eigenvalue

1

τrb
“

βν`1

2ν!Leν
. (4.59)

Having determined the timescale ratio τrb, an estimation of the order of magnitude
estimate of the ratio between the thickness of the reactive layer and the preheat zone for
the reactive term to be balanced by the diffusive term (4.50) can be obtained as

lr
lf

“

?
2ν!

β
(4.60)

which is asymptotically bounded by 1{β up to a constant factor. Consequently, the initial
assumption that the reactive layer is significantly thinner than the preheat zone in the
large activation energy limit is justified. This also implies that the convective effects can
be neglected in comparison to diffusive effects in the reactive layer to leading order.

An additional key finding arising from this analysis relevant to the study of the DDT is
the dependence of the flame velocity on the properties of the mixture. The expression for
the laminar flame velocity in terms of mixture properties can be obtained by utilizing the
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transit time t1f , which was defined using the flame velocity. This expression is given as

U 1
L ” U 1

b “

d

2ν!Leν

βν`1

D1
Tb

t1rb
(4.61)

showing the strong temperature dependence of the flame velocity through the characteristic
reaction time t1rb (4.37), which exhibits an exponential reduction with the adiabatic
temperature T 1

b.
Furthermore, the kinetic theory of gases Huang (1987) can provide a rough approxi-

mation of the flame velocity with respect to the sound speed. According to this theory,
the square of the sound speed is approximately equal to the thermal diffusivity multiplied
by the collision frequency a12 « D1

T{t1coll. The flame speed to sound speed ratio can then
be approximated as

U 1
b

a1
b

«

d

2ν!Leν

βν`1

t1coll
t1rb

! 1. (4.62)

This relation shows that due to the large activation energy that characterizes combustion
processes, tcoll{trb ! 1, a thermal propagating flame is accurately described by the
isobaric approximation for the low Mach number limit U 1

b{a1
b ! 1.

4.2.3 One-dimensional model at the flame tip

The propagation of an elongated flame from the closed end of a thin tube is studied
using a one-dimensional model. Curvature effects at the tip of the elongated flame are
disregarded, and the acceleration of flame propagation is assumed to result solely from the
increase in flame surface area. Inspired by the study of Clanet and Searby (1996) on the
formation of tulip flames, the expansion of the burned gases in the flame skirt is modelled
in a one-dimensional geometry introducing a mass production term in the burned gas
region. This mass production term generates a backflow of burned gases towards the
flame tip, which acts as a piston, pushing the flame from behind and increasing the
absolute velocity of flame propagation.

Nondimensional equations

This study is performed with the scaling obtained from the ZFK asymptotic analysis
for the external solution of a flame propagating in an initially unperturbed mixture
with density ρ1

o, temperature T 1
o, and pressure p1

o. The dimensionless spatial and time
coordinates of order unity within the flame internal structure are defined as

r ”
r1

l1fo
and t ”

t1

t1fo
, (4.63)

where l1fo “ D1
Tbo{U 1

bo is the characteristic length scale of the preheat zone, D1
Tbo is the

thermal diffusivity at the adiabatic flame temperature T 1
bo “ T 1

o ` q1
m{ pcpq, U 1

bo is the
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velocity of the flame with respect to the burned gases propagating in a mixture initially
at temperature T 1

o, and t1fo “ l1fo{U
1
bo is the corresponding transit time. The physical

quantities of density, flow velocity, temperature, pressure and total energy are made
dimensionless using the burned state of a gas mixture that is initially unperturbed as a
reference. Specifically, the dimensionless variables defined as

ρ ”
ρ1

ρ1
bo

, u ”
u1

U 1
bo

, T ”
T 1

T 1
bo

, p ”
p1

p1
o

, E ”
E 1

c1
pTbo

(4.64)

where ρ1
bo “ ρ1

oT
1
o{T

1
bo is the density of the burned gas after an isobaric expansion, and

p1
o is the unperturbed pressure which remains constant in the isobaric approximation.

Furthermore, the heat of reaction per unit mass is made dimensionless using the enthalpy
of the burned gas q “ q1

m{c1
pT

1
bo.

The dynamics of the unsteady propagation of the one-dimensional flame tip are studied
by means of the reactive Navier-Stokes equations for compressible flows, which in the
introduced dimensionless form are written as follows

Bρ

Bt
`

B pρuq

Br
“ 0, (4.65)

Bpρuq

Bt
`

B pρu2q

Br
`

1

γM2
bo

Bp

Br
“ Pr

B2u

Br2
, (4.66)

BpρEq

Bt
`

B pρuEq

Br
`
γ ´ 1

γ

B ppuq

Br
“

B2T

Br2
` M2

boPrpγ ´ 1q
B

Br

ˆ

u
Bu

Br

˙

`
1

τrb
ρqω, (4.67)

BpρY q

Bt
`

B pρY uq

Br
“

1

Le

B2Y

Br2
´

1

τrb
ρω (4.68)

where τrb is the ratio of flame transit time to characteristic reaction time, which was
determined based on the thermochemical parameters of the mixture through the ZFK
asymptotic analysis (Section 4.2.2)

1

τrb
“

βν`1

2ν!Leν
. (4.69)

As in the analysis of a steady flame, the thermophysical properties of kinematic viscosity
µ, thermal conductivity λ1, specific heat at constant pressure c1

p and constant volume c1
v

are assumed to be constant. The equation of state for ideal gases in the chosen dimensional
form is expressed as

p “ ρT, (4.70)

and the total energy, comprising the internal thermal energy and the macroscopic kinetic
energy, is written as

E “
1

γ
T ` M2

bopγ ´ 1q
u2

2
, (4.71)
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where Mbo ” Ubo{abo ! 1 represents the Mach number of a flame propagating in an
unperturbed mixture with respect to the burned gases which and as shown by (4.62) is a
thermochemical parameter of the mixture much smaller than unity.

The dimensionless reaction rate for a single-step reaction (4.12) of order ν can be
expressed as

ω “
ω1

1{t1rb
“ ρν p1 ´ Y q

ν exp

„

Ea

kBTbo

ˆ

1 ´
1

T

˙ȷ

. (4.72)

In addition to the previously introduced Zeldovich number (4.38) and Lewis number
(4.31), the dimensionless Prandtl number appears in the conservation equations when the
isobaric approximation is not applied. It measures the ratio of momentum diffusivity to
thermal diffusivity

Pr ”
µ1

ρ1D1
T

, (4.73)

and is assumed to be constant throughout the analysis.

Backflow of burned gases

Considering a flame that moves along a tube with no-slip conditions on the walls, the
flame surface interacts with the tube walls, causing the flame front to curve and elongate
in the direction of propagation. The stability of a flame front with a convex shape towards
the fresh mixture ahead of it is discussed in Zeldovich et al. (1980). The combustion
process taking place at the flame skirt, which propagates almost parallel to the tube walls,
induces a flow of gases that cannot be pushed radially outward due to the presence of the
tube walls. The induced gas flow results in a backflow of burned gases towards the flame
tip. This backflow is the main driving force for the apparent acceleration of the flame
front.

In their experimental investigation of the tulip flame formation mechanism, Clanet
and Searby (1996) proposed a simple geometrical model for the propagation of an
elongated flame in a semi-closed tube, which produced results in close agreement with
their experimental observations. During the initial stages of flame propagation, the
initially hemispherical front of a flame ignited at the center of the closed end approaches
the cylindrical walls of the tube. The walls block the outward running component of the
induced flow, and the expansion of the combustion products results in an extension of
the flame along the axis of the tube. The flame front adopts a cylindrical shape with a
hemispherical cap increasing the flame surface area near the walls and, therefore, the
production rate of burned gas. This configuration leads to an exponential acceleration of
the velocity of the flame tip, as observed in the experimental results, until the flame skirt
reaches the tube walls.

Similarly, Clavin and Tofaili (2021) proposed a self-acceleration mechanism for their
one-dimensional model for elongated flames, which is produced by the piston-like effect
of a backflow of burned gas towards the flame tip. Neglecting the curvature effect, the
tip of the flame front is considered a planar wave perpendicular to the axis, studied in
one-dimensional geometry. The region of burned gases is delimited by the closed end at
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Figure 4.2: (a) Scheme of the self-accelerating elongated flame model of Clavin and Tofaili
(2021). The streamlines are represented by light black lines with arrows, while the flame surface is
depicted by the thick red line, with the flame skirt highlighted in light blue. (b) One-dimensional
model at the tip of the flame with the absolute flow velocities in black and the flame velocities
with respect to the flow in blue.

r “ 0, the flame skirt corresponding to the flame surface close to the wall tubes, and the
flame tip at r “ rf (as shown in Figure 4.2). The expansion of the combustion products
from the flame skirt in the one-dimensional geometry is modeled as a mass production
term per unit of volume along the flame length L. Considering the flame skirt as a
cylindrical surface as done in Clanet and Searby (1996), the mass production term is
expressed as

9m “

$

&

%

2
ρbUb

R
if ´ L ă r ´ rf ă 0

0 otherwise.
(4.74)

When compressible and unsteady effects in the region delimited by the flame surface
are neglected, integration of the mass conservation equation from the closed end r “ 0,
where the gases are at rest upr “ 0q “ 0, to the tip of the flame r “ rf , where the gases
move with a velocity denoted upr “ rfq “ ub,

ż rf

0

d pρuq

dr
dr “

ż rf

0

9m dr, (4.75)

yields a backflow of burned gas that impinges on the flame tip from behind

r “ r´
f : uprq “ ub “ SUb, (4.76)

which is proportional to an elongation parameter S and the flame burning speed Ub. The
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4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

elongation parameter is defined as the ratio S ” 2L{R for a strictly cylindrical flame
skirt, where the prefactor 2 may change for slightly different flame surface geometries
while the flame length L to tube radius R ratio is the relevant functional dependence
of the backflow. This backflow of gases drives the flame acceleration in the model of
Clavin and Tofaili (2021) for elongated flames, R{L ! 1. A similar flow field has also
been observed in the two-dimensional numerical simulations of Akkerman et al. (2006)
for accelerating flames in cylindrical tubes with the no-slip condition at the walls, as
well as in the experimental investigation of tulip flame formation utilizing Particle Image
Velocimetry by Ponizy et al. (2014).

Comparison with the Sigma model

The self-accelerating flame model based on a backflow of burned gases that pushes
the flame as a piston differs significantly from the widely used Sigma model in one-
dimensional simulations to reproduce the flame acceleration due to the flame surface
growth (Kagan and Sivashinsky, 2003; Kagan et al., 2015; Kagan and Sivashinsky, 2017;
Koksharov et al., 2018; Gordon et al., 2020a,b, 2021; Koksharov et al., 2021; Bykov
et al., 2022). Both models employ a controlling parameter, Σ in the Sigma model and S
in the backflow-based model, which provides a quantitative measure of the ratio of flame
surface to tube section normal to the propagation direction.

However, the subtle yet crucial difference between these parameters lies in their impact
on the flame velocity. In the Sigma model, Σ is employed to amplify the reaction rate
resulting in a greater burning velocity Ub “ ΣUL with respect to the laminar flame
velocity UL. On the other hand, the S parameter in the backflow-based model introduces
a backflow of burned gases that impinges on the flame tip, causing it to propagate faster
ub “ SUL by advection of the flow. Nonetheless, the burning velocity of the flame itself
in the backflow-based model remains determined by the unmodified thermochemical
properties of the mixture.

As a result of this difference, numerical studies based on the Σ model rely on an
amplification of the reaction rate to model the flame acceleration. In contrast, the backflow
model imposes a flow velocity behind the flame without modifying the mixture properties.
Namely, the burning velocity is only modified by the temperature of the reactive mixture
through the strong temperature-sensitive reaction rate.

4.3 Double-discontinuity model
The propagation of a flame propagating through a reactive mixture induces a movement
of the surrounding gas. This motion is triggered by the difference in flow velocity on
both sides of the flame, which is generated to satisfy the conservation of mass, taking
into account the lower density of the hotter burned gases compared to the fresh gases at
the same pressure. If the intensity of this motion is strong enough to overcome damping
effects of hydraulic resistance or viscosity, it can lead to the formation of shock waves.
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4.3 Double-discontinuity model

Unlike detonation waves, this shock waves have no relation to the combustion process
and solely serve to meet the boundary conditions.

For instance, in the case of a combustion wave propagating from the close end of a
tube, the velocity of the fresh mixture moving ahead of the flame relative to the burned
gases is determined by the density jump at the flame and mass conservation. At the
close end of the tube, the gas velocity must vanish. Consequently, the gas ahead of the
flame must move relative to the tube at a constant velocity determined by the velocity
jump at the flame. However, in the forward part of the tube, far enough from the flame,
the gas is initially at rest. This condition can be satisfied by the presence of a shock
wave, in which the gas velocity changes discontinuously from the velocity ahead of the
flame to zero. This shock wave moves faster than the speed of sound, while the flame is
markedly subsonic. Therefore, the distance between the flame and the shock wave grows
at a rate given by the difference in velocity between the shock wave and the flame, which
is significantly larger than the flame speed.

The external flow resulting from the interaction of flame with the shock wave has a
characteristic length considerably greater than the flame thickness and, by extension,
much greater than the shock wave thickness, which is on the order of the mean free path.
As a result, both waves can be considered as discontinuities when analyzing the flow
that arises from their interaction. The flame is an isobaric reactive discontinuity where
conservation of mass and momentum must hold, and the increase of energy can just come
from the heat released during the combustion process. On the contrary, the shock wave is
a supersonic inert discontinuity.

Flame as a discontinuity

Considering the flame as a reactive discontinuity in quasi-steady state for a characteristic
evolution time much larger than the transit time, mass conservation imposes the relation

ρuUu “ ρbUb (4.77)

between the density ρ and the velocities of the flame with respect to the flow of gases U
ahead and behind the flame, denoted respectively by the subscript u and b. The velocity
of the reactive discontinuity uf can be defined in terms of the velocities ahead or behind
the flame, resulting in the relationship

uf “ uu ` Uu “ ub ` Ub (4.78)

where the flow velocity behind the flame ub in the elongated flame tip model is imposed
by the backflow of burned gases (4.76).

Under the low Mach number approximation, the flame behaves as an isobaric disconti-
nuity, with the pressure remaining constant. This provides a relationship between the
density and temperature at both sides of the flame

p “ ρuTu “ ρbTb. (4.79)
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4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

Neglecting heat losses, the conservation of thermal enthalpy results in a relationship for
the burned gases temperature and the temperature ahead of the flame in terms of the heat
of reaction and the temperature ahead of the flame

Tb “ Tu ` q. (4.80)

According to the asymptotic analysis of thermal flame performed by Zeldovich and
Frank-Kamenetskii (1938) on thermal flame propagation in the limit of large activation
energy β Ñ 8, the laminar burning velocity is highly sensitive to temperature. In
Section 4.2.2, it was shown that for a ν-th order simple-step chemical-kinetics model
with a reaction rate governed by an Arrhenius law (4.72), the laminar flame velocity
depends on the burned gas temperature as follows

Ub pTbq “
U 1
bpT 1

bq

U 1
bpT 1

boq
“ T ν`1

b exp

„

Ea

2kBTbo

ˆ

1 ´
1

Tb

˙ȷ

(4.81)

where the activation energy Ea and the heat of reaction qm have been considered constant.

Shock wave

The conservation relations of Rankine-Hugoniot express the jump conditions that relate
the unperturbed gas state (denoted by the subscript o) and the Neumann state behind the
shock wave (denoted by the subscript N), in terms of the Mach number of the leading
shock Mo ” us{ao. Specifically, the flow velocity in the direction of propagation of the
discontinuity is given by

u
N

ao
“

2

γ ` 1

ˆ

Mo ´
1

Mo

˙

(4.82)

and the temperature jump is given by

T
N

To
“

r2γM2
o ´ pγ ´ 1qs rpγ ´ 1qM2

o ` 2s

pγ ` 1q
2M2

o

. (4.83)

4.3.1 Self-similar solutions

In the context of a steady regime of flame propagation, the flow between the flame and the
shock is uniform and the gas found by the reactive discontinuity is at the Neumann state
left behind by the shock wave. The uniformity of the flow is mathematically expressed as

u
N

“ uu and T
N

“ Tu. (4.84)

Under these conditions, the jump conditions on the flame (4.77), (4.79) to (4.81) and (4.86)
and shock (4.82) and (4.83), as well as the relation for the backflow of burned gases (4.76),
form a closed set of equations which can be solved for a particular set of thermochemical
mixture properties, including γ, q, β, ν, and Mbo, in terms of the leading shock Mach
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Figure 4.3: Self-similar solutions; steady flame velocity to sound speed ratio uf{ao as a function
of the flame elongation parameter S in the double- discontinuity model for the thermochemical
properties γ “ 1.4, q “ 7{8, β “ 10, ν “ 2 and Mbo “ 2 ¨ 10´4.

number Mo. Thus, the external flow can be described by a self-similar solution, in which
all quantities ρ, T , p, and u are piecewise constant, and the distances between the close
end wall, the flame, and the leading shock wave grow linearly with time.

For instance, a reactive mixture with a heat capacity ratio γ “ 1.4, a dimensionless heat
of reaction q “ 0.875, a Zeldovich number β “ 10, a flame Mach numberMbo “ 2 ¨10´2,
and a leading shock of intensity Mo “ 2 can be considered. Under these conditions,
the temperature jump on the shock is TN{To “ 1.69 as given by (4.83). The burned gas
temperature when the unburned gas temperature corresponds to the Neumann temperature
(4.84) given by (4.80) is Tb “ 1.09, and the laminar flame velocity at this temperature,
as determined by (4.81), is Ub “ 1.85, and by mass conservation the flame velocity
with respect to the fresh gases is Uu “ 0.36. The flow velocity ahead of the flame
corresponding to the Neumann state for a shock wave of Mo “ 2 is determined by (4.82)
to be uN{ao “ 1.25. Using (4.86), the velocity of the flow behind the flame is found to be
ub “ 19.7. The ratio of the backflow to laminar flame velocity then yields an elongation
parameter S “ 10.63, and the corresponding absolute flame velocity uf “ 21.6, which
gives a flame velocity with respect to the initial sound speed of uf{ao “ 1.22.

Considering the leading shock Mach number Mo as a parameter, the non-linear
relationship between the flame velocity and the elongation parameter of the flame
tip model can be established, as shown in Figure 4.3 for the specific example of
thermochemical mixture properties under consideration. The curve, obtained for the
self-similar solutions of the double-discontinuity model within the framework of the
elongated flame tip, reveals the existence of a critical elongation parameter S˚ beyond
which no steady solution exists. This critical value is determined by a turning point
in the curve of steady solutions, where the monotonically increasing behaviour of the
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4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

elongation parameter with the flame velocity shifts to a decreasing function, passing
through a point of infinite flame acceleration for the critical elongation value.

Deshaies and Joulin (1989) derived an analytical expression for the self-similar solutions
of their model under the weak shock wave approximation Mo ! 1, which revealed the
existence of a limiting folding value for flames propagating at constant velocity. Although
this approximation is not quantitatively precise since the lead shock at the turning point
is not weak, it provides insights into the nature and functional dependence of the critical
conditions. Clavin and Tofaili (2021) demonstrated the appearance of a turning point in
the self-similar solutions for the model of elongated flames at hand using a graphical
method based on the tangency of two functions of the leading shock Mach number, under
the approximation pγ ´ 1q{p2γM2

o q ! 1. The critical conditions obtained following
their procedure compared favorably with the experimental and numerical findings of
Kuznetsov et al. (2010) and Liberman et al. (2010) on the deflagration-to-detonation
transition in highly reactive mixtures.

4.3.2 Isentropic compression waves

The self-similar description of the external flow assumes uniformity in the flow between
the flame and the shock wave, neglecting the dynamics of the compression waves emitted
by the flame front. These compression waves travel at a speed given by the sum of
the flow velocity and the local sound speed, significantly exceeding that of the flame.
As such, the uniform flow assumption remains valid during the initial stage of flame
acceleration when the evolution of the flame velocity is slow, allowing sufficient time
for the compression waves to travel towards the shock wave, which in turn returns the
corresponding acoustic and entropy waves. However, as the flame length continues to
increase, the flame accelerates at a faster and faster rate, and the uniformity assumption
gradually loses its accuracy. At a certain point, prior to reaching the critical conditions,
the acceleration of the flame becomes too rapid, and the flow between the flame and the
shock wave can solely be accurately represented by the presence of unsteady compression
waves.

Once unsteady compression waves are considered in the double-discontinuity model,
the temperature and flow velocity relations between the Neumann state and the flame
must be found to replace the uniform flow conditions (4.84). For simplicity, the scope of
the study is limited to compression waves that do not reach the leading shock wave. The
shock wave propagates then at constant velocity, so the entropy production does not vary
with time. Neglecting, the dissipation mechanisms between the shock wave and the flame,
as is customary in the study of compressible flows, the flow is said to be homentropic.
That is, the entropy in the flow between the shock and the flame is uniform.

Algebraic manipulation of the Euler equations for isentropic flows leads to the Riemann
invariants I˘ “ u˘ 2a{pγ ´ 1q. These quantities are conserved along the characteristics
lines defined by C˘ : dx{dt “ u ˘ a. The downstream running invariant I´ is
determined by the Neumann state behind the steady shock wave I´ “ u

N
´ 2a

N
{pγ ´ 1q.

Conservation of the Riemann invariant provides with the relationship between the flow
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Figure 4.4: Flame velocity to sound speed ratio uf{ao as a function of the flame elongation
parameter S in the double-discontinuity model with an isentropic compression wave between
the flame and the leading shock for the thermochemical properties γ “ 1.4, q “ 7{8, β “ 10,
ν “ 2 and Mbo “ 2 ¨ 10´2 for different values of the leading shock Mach number Mo. The full
points indicate the self-similar solution for the given leading shock Mach number. The empty
circle highlights the turning point of the double-discontinuity solution including an isentropic
compression wave. The horizontal dotted line represents the critical flame velocity given by
(4.92).

velocity and sound speed at the Neumann state and ahead of the flame u
N

´2a
N

{pγ´1q “

uu ´ 2au{pγ ´ 1q. Recalling that for ideal gases, the sound speed is proportional to the
square root of the temperature, the conservation of the Riemann invariant can be also
written as

Tu
T

N

“

„

1 `
γ ´ 1

2

u
N

a
N

ˆ

uu
u

N

´ 1

˙ȷ2

. (4.85)

This expression provides the relationship between the temperature ahead of the flame and
behind the shock wave, which can be used to replace the uniform flow conditions (4.84).

Including this isentropic relation to link the set of jump conditions on the flame (4.77),
(4.79) to (4.81) and (4.86) with those of the shock wave (4.82) and (4.83), and the relation
for the backflow of burned gases (4.76), a new non-linear relationship is obtained for a
given set of thermochemical properties, including γ, q, β, ν andMbo, and a given leading
shock Mach number Mo. Considering, in this case, the velocity of the flow ahead of the
flame uu as a parameter, the non-linear relationship between the flame velocity and the
elongation parameter for the double-discontinuity model with an isentropic compression
wave evolving between both discontinuities is established. This relationship is depicted in
Figure 4.4 for the thermochemical properties under consideration and for a set of values
of the leading shock Mach number in the range 1.4 ´ 3.0

The curve of solutions for the double-discontinuity model that incorporates an isentropic
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compression waves between the leading shock wave and the flame exhibits a similar
turning point as the that observed for the self-similar solutions for certain values of the
leading shock Mach number Mo. The critical flame propagation velocity uf{a˚

o at which
the turning point appears is independent of the intensity of the leading shock wave, while
the critical elongation parameter S found at the turning point decreases as the intensity
of the leading shock wave increases. For the self-similar solutions corresponding to a
flame velocity uf that exceeds the observed critical value, the curve representing the
nonlinear relationship no longer displays a turning point, and the elongation parameter
monotonically decreases as the flame velocity increases.

Universal critical flame speed

The complex system of nonlinear equations (4.76), (4.77), (4.79) to (4.83), (4.85)
and (4.86) can be simplified under certain assumptions that apply at the critical condition
in order to obtain an analytical expression for the critical flame velocity. Since the turning
point is typically found for an elongation parameter larger than unity, the flame at this
turning point is mainly propagated by the adjective effect of the backflow. Therefore, the
flame velocity is approximately equal to the velocity of the backflow and the burning
velocity is negligible compared to the backflow, resulting in both sides of the flame
having approximately equal flow velocities

S " 1 : uf « uu « ub “ SUb. (4.86)

In order to express the burning velocity as a function of the temperature ahead of the
flame, an approximation for small variations of the burned temperature is presented as
follows

Tb ´ 1 ! 1 : 1 ´
1

Tb
“

ˆ

Tu
To

´ 1

˙

To
Tbo

r1 ´ pTb ´ 1qs
´1

«

ˆ

Tu
To

´ 1

˙

To
Tbo

(4.87)

where To{Tbo represents the ratio of the fresh gas temperature to adiabatic temperature,
which can be expressed in terms of the heat of reaction as To{Tbo “ 1 ´ q. By utilizing
the expression for the sensitivity of burning velocity to temperature (4.81) without the
prefactor, whose impact is negligible for large activation energy, with the burned gas
temperature expressed in term of temperature variation ahead of the flame (4.87), the
flame velocity approximation (4.86) yields the following expression

S " 1 and Tb ´ 1 ! 1 : uf « S exp

„

Ea

2kBTbo

To
Tbo

ˆ

Tu
To

´ 1

˙ȷ

(4.88)

For simplicity, the temperature variation ahead of the flame is written for an isentropic
compression wave between the flame and a vanishingly weak shock wave, such that
u

N
« 0 and T

N
« To, which results in the simplification of the isentropic relation (4.85)
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to

Mo ! 1 :
Tu
T

N

«
Tu
To

“

ˆ

1 `
γ ´ 1

2

uf
ao

˙2

(4.89)

Under these approximations, the nonlinear relationship between the flame velocity and
the elongation parameter can be written in a closed form as

S " 1, Tb ´1 ! 1 and Mo ! 1 : uf « S exp

«

b
γ ´ 1

ao
uf ` b

ˆ

γ ´ 1

2ao
uf

˙2
ff

, (4.90)

where a parameter of thermal sensitivity b ” Tu{Ub dUb{dTu “ Ea{p2kBTboqTo{Tbo
has been introduced to simplify the notation. By taking the derivatives at both sides of
this equation

S

uf

duf
dS

“

«

1 ´ b
γ ´ 1

ao
uf ´ 2b

ˆ

γ ´ 1

2ao

˙2

u2f

ff´1

, (4.91)

it can be observed that the change in flame velocity with respect to the evolution of the
elongation parameter diverges at a certain value of flame velocity, where the denominator
of the right-hand side of equation (4.91) goes to zero. This condition leads to a quadratic
equation for the flame velocity whose positive root yields

u˚
f

ao
“

1

γ ´ 1

˜

c

1 ` 4
kBTbo
Ea

Tbo
To

´ 1

¸

. (4.92)

For the set of thermochemical parameters under consideration, this expression results in
a critical flame velocity of u˚

f {ao “ 2.37, which is in close agreement with the velocity
at the turning point for the different curves in Figure 4.4.

A first-order expansion of the square root of (4.92) results in a more meaningful
analytical expression

β Ñ 8 :
u˚
f

ao
“

1

γ ´ 1
loomoon

piq

2kBTbo
Ea

loomoon

piiq

Tbo
To

loomoon

piiiq

`O
ˆ

1

β

˙

(4.93)

which corresponds to the universal critical flame speed proposed by Clavin (2022). This
analytical expressions allows for the identification of the dependence of the critical
velocity on three distinct factors: (i) temperature sensitivity of the gaseous medium to
pressure changes; (ii) laminar burning speed sensitivity to temperature; (iii) burned gas
temperature sensitivity to fresh mixture temperature ahead of the flame.

Some conclusions can be drawn from this analysis. First, in the Newtonian approx-
imation γ Ñ 1 which neglects compressive heating, there is no critical velocity. The
runaway mechanism for DDT requires that the temperature ahead of the gas increases
due to the piston-like effect of the flame front. A highly temperature sensitive reactive
mixture characterized by a large activation energy will reach the critical conditions at a
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slower velocity. In a reactive mixture with a large heat of reaction, the relative increment
in burned gas temperature for a increment in the reactive mixture temperature are smaller,
leading to a larger critical flame velocity.

The difference between both expressions (4.92) and (4.93) arises from the fact that
the squared term in the isentropic heating (4.89) has been retained in (4.92), providing a
more accurate approximation when the critical flame velocity u˚

f is close or even larger
than the unperturbed sound speed ao. Therefore, when the critical flame velocity is well
below the unperturbed sound speed uf{ao ! 1, both expressions yield similar results. It
is important to note that the difference between the two expressions represents only a
quantitative correction for large critical flame velocities Thus, the conclusions drawn for
(4.93) are expected to be equally valid for (4.92).

Double-feedback mechanism and turning point

The theoretical analysis of Deshaies and Joulin (1989) revealed that the thermal feedback
of a compression wave on the velocity of the flame front leads to a singularity in flame
acceleration within a finite time. This finite-time singularity is identified as a turning
point in the curve of steady-state solutions for a system composed of a flame and a shock
wave. The feedback loop operates as follows: an acceleration of the flame front results
in the emission of compression waves in order to satisfy the boundary conditions; the
compression waves slightly heat up the reactive mixture, causing an increase of the
burning velocity. This feedback loop eventually leads to a critical flame velocity above
which the flame accelerates limitlessly.

The backflow of burned gases in the elongated flame model of Clavin and Tofaili
(2021) introduces an additional feedback mechanism, which bring forward the advent
of critical conditions with respect to that obtained by Deshaies and Joulin (1989). The
additional feedback mechanism works as follows: an increase in flame burning causes
a larger production of burned gases in the flame skirt, which subsequently expand and
generates a greater backflow of burned gases towards the flame tip. As a result, the
new boundary conditions imposed behind the flame reinforce the induced flow ahead
of the flame. The flow induced by the backflow of burned gases also contributes to the
compressive heating of the reactive mixture, which fuels both feedback mechanisms.

Considering the steady-state flame elongation as a function of the absolute flame
propagation velocity, the turning point corresponds to a local maximum in the elongation
parameter. The derivative of the elongation parameter with respect to the flame velocity
for steady solutions then becomes zero at the turning point

S “ S˚ :
1

S

dS

duf
“ 0 (4.94)

By the definition of the elongation parameter S “ ub{Ub, its derivative is zero when
the relative increment of the backflow of burned gases δub{ub is equal to the relative
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increment of the burning velocity δUb{Ub

S “ S˚ :
1

S

dS

duf
“ 0 “

1

ub

dub
duf

´
1

Ub

dUb

duf
Ø

1

ub

dub
duf

“
1

Ub

dUb

duf
. (4.95)

The turning point then indicates the conditions from which the most important cause of
flame acceleration alternates. In the lower branch of the steady-state curve, the flame
accelerates mainly due to the increase in backflow which simultaneously induces a smaller
relative increment in the burning velocity. On the other hand, along the upper branch a
relative increment in the backflow leads to a larger augmentation of the relative burning
velocity. Therefore, the least further increase of elongation in a flame propagating at
the critical velocity given by (4.92) leads to self-acceleration, or acceleration runaway,
of the flame tip. In the framework of the steady solutions, this acceleration runaway
corresponds to the singularity shown by the equation (4.91) according to which the flame
acceleration diverges at the turning point of the steady solutions.

This divergence in flame acceleration leads to the spontaneous formation of a shock
wave at the flame front that is a good candidate for blowing out the internal flame structure
producing the abrupt transition of the flame to a detonation. The formation of a shock
wave within the flame front considered as a discontinuity was validated trough numerical
simulations in Clavin and Tofaili (2021).

4.4 Internal flame structure

The jump conditions applied on the reactive discontinuity representing the flame in the
double-discontinuity model are valid only for steady flames. Therefore, the validity of
the model is limited to a characteristic time of evolution of the boundary conditions that
is much greater than the transit time. In the case of a rapid acceleration of the flame front,
such as that expected around the turning point, the description of the flame under the
steady approximation is problematic. To address this difficulty, it is necessary to consider
the internal flame structure.

In this section, a numerical integration of the unsteady conservation equations (4.1)
to (4.4) that describe the internal flame structure is presented. In particular, the reactive
mixture considered is characterized by the thermochemical parameters summarized
in Table 4.1 is presented. The numerical method used to integrate the governing
equations is described in the first subsection. Then, the numerical results obtained
for the steady propagation of a flame subject to a fixed backflow of burned gases are
compared with the self-similar solutions of the double-discontinuity model. Finally, the
slow evolution of the elongation parameter is simulated and compared with the solutions
for the double-discontinuity model containing an isentropic compression wave.
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Pr Le γ q β ν Mbo

0.7 1.0 1.4 0.875 10 2 2 ¨ 10´2

Table 4.1: Thermochemical parameters employed in the numerical study of the internal flame
structure

4.4.1 Numerical method

The conservation equations (4.1) to (4.4) can be written as a non-linear system of
hyperbolic conservation laws with an additional dissipation flux and a source term

Bw

Bt
`

BF pwq

Br
“

B2D pwq

Br2
` S pwq (4.96)

with

w “

¨

˚

˚

˝

ρ
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˛

‹

‹

‚
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¨

˚

˚

˚

˚

˚

˚

˚

˝

ρu

ρu2 `
1

γM2
bo

p

ρEu `
γ ´ 1

γ
pu

ρY u

˛

‹

‹

‹

‹

‹

‹

‹

‚

, D pwq “

¨

˚

˚

˚

˚

˝

0
Pru
T
1

Le
Y

˛

‹

‹

‹

‹

‚

, (4.97)

and

S pwq “

¨

˚

˚

˚

˚

˝

0
0

ρqω ` M2
bo pγ ´ 1qPr

B

Br

ˆ

u
Bu

Br

˙

ρω

˛

‹

‹

‹

‹

‚

, (4.98)

where w is the vector of conserved quantities, F pwq is the vector of convective fluxes,
D pwq is the vector of diffusive fluxes, and S pwq is a vector of source terms from the
combustion reactions and viscous dissipation.

Strang splitting

A splitting approach is employed which divides the time interval ∆t into two subproblems:
advection and reaction-diffusion. This model has been shown to provide exact solutions
for certain model inhomogeneous partial differential equations and is considered a viable
approach for more general problems (Toro, 2009). Furthermore, an important advantage
of splitting schemes is the ability to use optimal schemes for each subproblem. For
instance, a solver for nonlinear hyperbolic equations can be used to solve the homogeneous
problem, while an implicit scheme can be used to solve the reaction-diffusion problem.
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4.4 Internal flame structure

In particular, a Strang splitting approach is followed, which has been proven to be
second order Strang (1968). The algorithm is defined as follows

wn`1
“ D p∆t{2qC p∆tqD p∆t{2q

pwn
q (4.99)

where the superscript wn denotes the solution at the time step t “ tn, D is the convective
operator, and D is the reaction-diffusion operator. The algorithm first integrates the
diffusion-reaction problem for half a time step. The resulting solution is then used to
integrate the conductive term. And, finally, the second half of the diffusion-reaction
problem is integrated on the solution.

The same spatiotemporal discretization is applied to both subproblems. The maximum
mesh grid size ∆x is dictated by the reaction-diffusion problem to ensure that a sufficient
number of mesh points are located within the reactive layer, which is the smallest
relevant spatial scale of the problem. The time step, on the other hand, is constrained
by the stability Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928). For
compressible flows, the CFL condition is given by

CFL “ max p|u| ` aq
∆t

∆x
ď 1 (4.100)

where a conservative value of CFL “ 0.9 is used throughout the computations in this
section.

Convective subproblem

The convective subproblem corresponds to the initial value problem given by

Bw

Bt
`

BF pwq

Br
“ 0 (4.101)

with the initial condition
w pr, tnq “ w̄n`1{2. (4.102)

This problem requires evolving the solution w̄n`1{2 at time t “ tn to the new value w̃n`1

at t “ tn`1 “ tn ` ∆t using the convective operator C .

The convective operator C is based on the high-resolution central solver for nonlinear
conservation laws of Kurganov and Tadmor (2000), which employs a central difference
approximation given by

dwj

dt
“ ´

Hj`1{2ptq ´ Hj´1{2ptq

∆xi
. (4.103)

129



4 Deflagration-to-detonation transition at the tip of a flame in thin tubes

The numerical flux Hptq is defined by

Hj`1{2ptq “

F
´

w`

j`1{2ptq
¯

` F
´

w´

j`1{2ptq
¯

2
´
aj`1{2ptq

2

”

w`

j`1{2ptq ´ w´

j`1{2ptq
ı

,

(4.104)
with the intermediate values given by

w`

j`1{2 “ wj`1ptq ´
∆x

2
pwxqj`1 ptq and w´

j`1{2 “ wj`1ptq `
∆x

2
pwxqj ptq.

(4.105)
The approximate derivatives are computed through the least dissipative minmod-like
limiter, as shown in

pwxqj “ minmod
´

2
wj ´ wj´1

∆x
,
wj`1 ´ wj´1

2∆x
, 2

wj`1 ´ wj

∆x

¯

. (4.106)

For second-order methods, such as the one proposed by Kurganov and Tadmor (2000),
the application of boundary conditions follows the same fundamental approach as the
Godunov method (Toro, 2009). Specifically, for a computational domain r0, Ls discretized
by J cells Ij , so that the cells j “ 1, . . . , J lie within the computational domain, the
boundary conditions are expected to provide the numerical fluxes H´1{2, H1{2, HJ`1{2

and HJ`3{2 required to update the extreme cells I1, I2, IJ´1 and IJ . These numerical
fluxes may be directly prescribed by the boundary conditions or obtained by prescribing
fictitious data values in the fictitious cells adjacent to the extreme cells. The fictitious
cells are denoted by j “ ´1 and j “ 0 for the left boundary at x “ 0, and by j “ J ` 1
and j “ J ` 2 for the right boundary at x “ L. In this way, boundary Riemann problems
are solved, and the corresponding fluxes are computed following the approach used for
the interior cells.

Two types of boundary conditions are utilized in this problem: reflective boundary
conditions are applied on the left side to account for the piston-like effect of the backflow
of burned gases, and transmissive boundary conditions are applied on right side of the
domain. For a reflective solid boundary at x “ 0 moving with velocity uwall, the reflective
boundary conditions for the Euler equations are applied as

ρn0 “ ρn1 , un0 “ ´un1 ` 2uwall, pn0 “ pn1 ,
ρn´1 “ ρn2 , u´1

0 “ ´un2 ` 2uwall, pn´1 “ pn2 .
(4.107)

The transmissive or transparent boundary conditions at x “ L are given by

wn
J`1 “ wn

J , and wn
J`2 “ wn

J´1, (4.108)

where w may be the vector of conserved or primitive variables.
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Reaction-diffusion subproblem

The reaction-diffusion subproblem corresponds to the initial value problem given by

Bw

Bt
“

B2D pwq

Br2
` S pwq (4.109)

whose first integration begins from the initial condition

w pr, tnq “ wn. (4.110)

This integration evolves the solution wn at time t “ tn to the new value w̄n`1{2 at
t “ tn`1{2 “ tn ` ∆t{2. The second integration begins from the initial condition

w
`

r, tn`1{2
˘

“ w̃n`1. (4.111)

to evolve the solution w̃n`1 at time t “ tn`1{2 to the new valuewn`1 at t “ tn`1 “ tn`∆t.

Utilizing the first equation of (4.109), which indicates that the density remains constant
during the reaction-diffusion problem, and subtracting the momentum conservation
equation multiplied by u from the total energy conservation equation to obtain a equation
for the conservation of thermal energy, the system of equations (4.109) can be rewritten
as

Bu

Bt
“

Pr

ρ

B2u

Br2
, (4.112)

BT

Bt
“
γ

ρ

B2T

Br2
` M2

boPr pγ ´ 1q
γ

ρ

ˆ

Bu

Br

˙2

` γ
q

τrb
ω, (4.113)

BY

Bt
“

1

ρLe

B2Y

Br2
`

1

τrb
ω (4.114)

Considering an explicit time integration of the source terms from the dissipative and
reactive effects such that their values are directly computed from the initial condition, the
three equations in (4.114) become three decoupled diffusion equations with a constant
source term, which can be solved independently.

The solution of the archetypal diffusion equation with a source term

Bϕ

Bt
“ α

B2ϕ

Br2
` σ (4.115)

can be approximated through a unconditionally stable implicit scheme based on the
temporal backward finite difference and spatially centered finite differences as

ϕn`1
j ´ ϕn

j

∆t
“ αn

j

ϕn`1
j´1 ´ 2ϕn`1

j ` ϕn`1
j`1

∆r2
` σn

j (4.116)
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leading to the tridiagonal system of linear equations

αn
j

∆t

∆r2
ϕn`1
j´1 ´

ˆ

1 ` 2αn
j

∆t

∆r2

˙

ϕn`1
j ` αn

j

∆t

∆r2
ϕn`1
j`1 “ ´ϕn

j ´ ∆t σn
j (4.117)

which is efficiently solved by the Thomas algorithm (Hirsch, 2007).
In the resolution of the reaction-diffusion problem, identical boundary conditions

are imposed on both boundaries of the domain. These boundaries are assumed to be
adiabatic, thereby preventing diffusive fluxes from entering or leaving the computational
domain. To achieve this, Neumann boundary conditions with a zero spatial gradient are
enforced at the boundaries. This is done by modifying the first and last equations of the
system (4.117). Specifically, the first equation is modified as follows

´

ˆ

1 ` 2αn
1

∆t

∆r2

˙

ϕn`1
1 ` 2αn

1

∆t

∆r2
ϕn`1
2 “ ´ϕn

1 ´ ∆t σn
1 , (4.118)

and the last equation is modified as

2αn
J

∆t

∆r2
ϕn`1
J´1 ´

ˆ

1 ` 2αn
J

∆t

∆r2

˙

ϕn`1
J “ ´ϕn

J ´ ∆t σn
J . (4.119)

4.4.2 Steady flame propagation

The influence of the backflow of burned gases in the propagation of a steady flame
is analysed below when the internal flame structure is considered. For this purpose,
a parametric study has been conducted by numerically integrating the conservation
equations (4.65) to (4.68) for different values of the backflow of burned gases ub in the
range 0 ´ 30.

Initial conditions

In order to accelerate the convergence towards a steady solution, the simulation is
initialized considering the solution of the double-discontinuity model and the external
flow obtained from the ZFK asymptotic analysis. The initial profiles are divided into three
zones: a region of burned gases for r ă rf , the preheat zone of the flame rf ă r ă rs,
and the unperturbed region ahead of the leading shock wave r ą rs. The temperature and
product mass concentration profiles ahead of the leading shock are set to the initial values
of the unperturbed reactive mixture, while those behind the shock wave are computed
from the analytical solution obtained in the ZFK analysis (4.47), using the corresponding
Neumann state behind the shock and the scaled flame length

lf “
l1f
l1fo

“
D1

Tb

D1
Tbo

U 1
bo

U 1
b

“
1

ρbUb

. (4.120)
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The initial temperature and mass concentration profiles are given by the following
piecewise functions

t “ 0 : T prq “

$

’

’

’

&

’

’

’

%

T
N

` q if r ă rf ,

T
N

` q exp

ˆ

´
r ´ rf
lf

˙

if rf ă r ă rs,

1 ´ q if r ą rs,

(4.121)

Y prq “

$

’

’

’

&

’

’

’

%

1 if r ă rf ,

exp

ˆ

´Le
r ´ rf
lf

˙

if rf ă r ă rs,

0 if r ą rs.

(4.122)

where rf “ lf corresponds to the initial length of the burned gas region, which is set to
be equal to the flame thickness, and rs “ 6 lf is the initial position of the leading shock,
which is placed at a distance of five times the flame thickness from the reactive front.
The initial pressure profile is defined as a piecewise constant function that satisfies the
Rankine-Hugoniot relation at the shock wave

t “ 0 : pprq “

#

p
N

if r ă rs,

1 if r ą rs.
(4.123)

The density profile is obtained by dividing the previously defined pressure profile by the
temperature profile, according to the equation of state (4.70),

t “ 0 : ρprq “
pprq

T prq
. (4.124)

The velocity profile is defined piecewise to satisfy the conservation of mass in the internal
flame structure and to ensure that the flow ahead of the shock wave is at rest

t “ 0 :

$

&

%

ub `

„

1 ´
ρ prfq

ρprq

ȷ

Ub if r ă rs

0 if r ą rs.
(4.125)

Figure 4.5 presents an example of the results obtained for the initialization of a steady
flame with a fixed backflow of ub “ 5. It is observed that the initial oscillations resulting
from the presence of a jump discontinuity at the shock wave and a gradient discontinuity
in the reaction zone are smoothed out in a time period shorter than the transit time of
the flame t ă 1 leading to a stable solution. A steady regime is reached which will
be compared with the solutions obtained in the framework of the double-discontinuity
model.
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Figure 4.5: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass fraction,
(f) reaction rate profiles at evenly distributed time steps ∆t “ 0.1 from the initial conditions
t “ 0 (black) to t “ 1 (blue) with a burned gas backflow of ub “ 5 for the set of thermochemical
parameters summarized in Table 4.1.
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Self-similar solutions

The numerical integration of the governing equations (4.65) to (4.68) successfully
replicates the self-similar description of the external flow. The profiles of the physical
variables at various time steps, for a backflow of burned gases of ub “ 20, are represented
in Figure 4.6 in the self-similar coordinate obtained by diving the dimensionless spatial
coordinate by the time coordinate. In this regime, a flame transit time is sufficient to show
the convergence towards the self-similar structure of the flow. The self-similar structure
is clearly identifiable as the simulation progresses, and the distance between the leading
shock and the flame becomes large enough to consider both waves as discontinuities.
The shock wave is represented by the jump discontinuity on the right of the figure at
r{t “ 34.9, where density, velocity, temperature and pressure increase according to the
Rankine-Hugoniot jump conditions. Meanwhile, the mass concentration of the products
remains unchanged, as no chemical transformations take place in the shock wave. The
discontinuity located approximately in the middle of the plot at r{t “ 22.0 corresponds
to the flame internal structure, where the temperature increases due to the heat release,
causing the density decreases in an isobaric process, and all the reactants are transformed
into products.

It is important to note that after a certain time, specifically when the initial position
becomes irrelevant, the positions of the different fronts on the self-similar coordinate
represent the velocity of propagation of each front in units of the burning speed in
the initial mixture r{t “ r1{pt1U 1

boq. That is, the flame-driven shock wave propagates
approximately 35 times faster than the flame speed in an unperturbed medium and the
absolute propagation velocity of the flame is roughly 22 times faster than its typical speed
when a backflow of ub “ 20 is applied behind the flame. This increase in the absolute
propagation speed is the result of the combination of the advection by the backflow of
burned gases and the thermal propagation speed of the flame which is increased under
the effect of the thermal feedback from the shock wave.

Parametric study

A parametric investigation has been carried out to examine the effect of varying the
backflow of burned gases ub. The results of the study in the long time limit t “ 10,
are represented in Figure 4.7, which depict the self-similar profiles obtained from the
parametric analysis. In these figures, it is observed the increase in intensity of the leading
shock wave and the flame acceleration as the backflow of burned gases increases.

The flame elongation parameters S of the corresponding one-dimensional solution
obtained by numerical integration have been computed by tracking the position of the
flame. The temporal evolution of the flame positions, defined as the location of the
isovalue in product mass concentration Y “ 0.98, are represented in Figure 4.8a for
different backflow values. The constant slope in the trajectories of the flame position
confirms the steady propagation of the flame. A faster flame velocity is also evident
for larger values of the backflow given the steeper slope of the flame trajectories. The
velocity of the flame is determined numerically as the time derivative of the flame position,
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Figure 4.6: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass fraction,
and (f) reaction rate profiles at different time steps ∆t “ 0.1 from the initial conditions t “ 0
(black) to t “ 1 (blue) in self-similar coordinate with a burned gas backflow of ub “ 20 resulting
in an elongation parameter of S “ 10.44. The thermochemical properties of the flame are
characterized by the parameters summarized in Table 4.1.
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Figure 4.7: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass fraction,
and (f) reaction rate profiles in the self-similar coordinate at t “ 10 for different values of the
burned gases backflow ∆ub “ 5 from ub “ 0 (black) to ub “ 30 (red). The thermochemical
properties of the mixture are characterized by the parameters summarized in Table 4.1.
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Figure 4.8: (a) Temporal evolution of the flame position, defined as the computational point
with a product mass concentration isovalue of Y “ 0.98 for different values of the backflow of
burned gases. (b) Temporal evolution of the absolute flame propagation velocity determined by
numerically differentiating with respect to time its position for different values of the backflow of
burned gases.

calculated using a second-order central difference approximation, which is depicted in
Figure 4.8b. The different simulations, characterized by distinct values of backflow of
burned gases, reach a steady regime within less than a transit time.

Once the absolute velocity of the flame uf is established for a given backflow ub, the
burning speed, which represents the velocity of the flame relative to the burned gases, can
be obtained by subtracting the backflow of burned gases from the absolute flame velocity.
The numerical results for the burning speed as a function of the varying backflow are
represented in Figure 4.9a, along with the relationship between the velocities obtained
from the double-discontinuity model in Section 4.3.1, demonstrating good agreement.

Similarly, the absolute flame velocity is depicted in Figure 4.9b as a function of the
elongation parameter S “ ub{Ub and compared with the nonlinear relationship obtained
from the double-discontinuity model. The resulting elongation parameter also exhibits a
turning point, indicating that there exists a critical flame length beyond which there is no
steady solution for the tip of an elongated flame.

4.4.3 Slow flame elongation

The results of the numerical simulation of the internal structure of the flame for a slow
flame elongation are presented in this subsection. The complex dynamics in the flame
skirt involving boundary layer effects combined with compressible and reactive effects
are not studied here. Instead, the evolution of the flame envelope is characterized by the
monotonic growth of the flame elongation parameter. The flame surface it is assumed to
evolve on a timescale much larger than its characteristic time given by the transit time of
a particle through the flame thickness. The flame elongation increases linearly in time,
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Figure 4.9: Numerical results of the parametric study for the backflow of burned gases considering
the internal flame structure (colored circles) compared with the double-discontinuity model (black
line). The parametric study covers the range from ub “ 0 (black) to ub “ 30 (red). (a) Burning
velocity Ub with respect to the backflow of burned gases ub (b) Absolute flame propagating
velocity to sound speed ratio uf{ao as a function of the flame elongation parameter S.

with a characteristic time t1S that is significantly larger than the flame transit time

Sptq “ S0p1 ` εtq, (4.126)

where ε “ t1f{t
1
S represents the small, but finite, ratio of timescales, and S0 is the flame

elongation parameter at time t “ 0.
The numerical integration of the governing equations (4.65) to (4.68) is performed

within the boundary conditions imposed by the backflow of burned gases from the
elongated flame model and evolving the flame elongation in time according to the
equation (4.126). The burning velocity Ub “ UZFKpT bpTuqq, which determines the
backflow of burned gases as follows from (4.76), is computed as the steady-state burning
velocity which was derived from the ZFK analysis in (4.81). The unburned gas temperature
Tu, defined as the temperature at the grid point where the product mass concentration is
of Y “ 10´4

r “ ru : Y prq “ 10´4, and T prq “ Tu, (4.127)

is used in the computation of the backflow of burned gases applied at the exit of the
reaction zone

r “ rf : uprq “ ub “ SptqUb “ SptqUZFK

`

T b pTuq
˘

“ Sptq pTu ` qqν`1 exp

„

Ea

kBTbo

ˆ

1 ´
1

Tu ` q

˙ȷ

. (4.128)

In the context of a compression wave propagating from the burned gases towards the
fresh mixture, heating up the gas, the burning velocity obtained from this expression can
be interpreted as the burning velocity at the flame tip, taking into account a short time
delay corresponding to the time required by a fluid particle at the position ru to reach the
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reactive zone.
The boundary conditions corresponding to the burned gases boundary condition at the

exit of the reaction zone are applied to the numerical domain by following the flame. At
the beginning of each time step, it is checked if the product mass concentration exceeds a
threshold value of Y “ 0.98. If this is the case, the grid point closest to the numerical
boundary is removed, and the boundary condition is applied at the subsequent mesh point.
The size of the numerical domain is kept constant, and the removal of a grid point on
the burned size is compensated by the adding a mesh point on the unburned side with
the same conserved variables as the neighboring grid point. This approach allows the
numerical domain to follow the flame and correctly apply the boundary conditions at the
exit of the reaction zone.

The initial conditions for the simulation are obtained from the numerical solutions of
the propagation of a steady flame. The initial profiles of the conserved variables in the
internal flame structure corresponds to the initial profiles in the same regime of backflow
while the leading shock wave is removed from the numerical domain filling the domain
between the shock wave and the fresh boundary with a constant profile.

Flame acceleration

An example of the numerical results obtained for the set thermochemical parameters
summarized in Table 4.1, the initial conditions corresponding to a backflow ub “ 20
and a flame elongation evolution characterized by the timescale ratio ε “ 5 ¨ 10´2 is
presented in Figures 4.10 to 4.12 during the phase of flame acceleration. The evolution
of the physical variables across the numerical domain is depicted in Figure 4.10 in a fixed
coordinate system, which corresponds to the close-end tube or laboratory reference frame
At the large scale of the problem defined by the compression wave, the flame appears as a
discontinuity, where the temperature and the mass concentration of products increase
sharply, while the pressure remains constant, and the absolute flow velocity decreases
due to the conservation of mass throughout the flame. The propagation of the leading
edge of the compression wave is observed ahead of the flame. As demonstrated by Clavin
and Tofaili (2021), when the flame elongation evolves at a slow enough rate, a shock
wave does not form in the compression wave before reaching the acceleration runaway.

Figure 4.11 displays the internal structure of the flame during the quasi-steady evolution
in a coordinate system that is attached to the flame. The figure shows a smooth transition
from the unburned to the burned states of the physical variables within the internal
flame structure is observed. Despite being imperceptible in the temperature profiles, the
temperature increase due to compressive heating progressively accelerates the flame up
to a acceleration runaway, owing to the strong temperature sensitivity. This increase in
temperature has a more noticeable impact on the thickness of the flame, which abruptly
shrinks at the acceleration runaway. This sudden reduction of the flame thickness poses a
significant challenge for numerical integration methods based on the discretization of the
spatial domain.

In Figure 4.12, the flame velocity is represented in the reference frame of the tube and
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Figure 4.10: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass
fraction, and (f) reaction rate profiles in the fixed coordinate system during the quasi-steady flame
acceleration. The simulation is initialized with the internal flame structure of the steady solution
for a fixed backflow of burned gases ub “ 20 (see Figure 4.6) at t “ 0. The profiles shown evolve
from t “ 0 (black) to t “ 2.95 (blue) in time steps of ∆t “ 0.295 and they are represented in
the fixed coordinate system of the tube with the origin at the initial position of the flame. The
time-dependent flame elongation follows the law (4.126) with ε “ 5 ¨ 10´2 and S0 “ 10.44.
The thermochemical properties of the flame are characterized by the parameters summarized in
Table 4.1.
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Figure 4.11: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass fraction,
and (f) reaction rate profiles in the flame-attached coordinate system during the quasi-steady flame
acceleration. The simulation is initialized with the internal flame structure of the steady solution
for a fixed backflow of burned gases ub “ 20 (see Figure 4.6) at t “ 0. The profiles shown evolve
from t “ 0 (black) to t “ 2.95 (blue) in time steps of ∆t “ 0.295 and they are represented in the
flame attached coordinate system x “ r ´ rfptq with rfptq defined as the position of the product
mass fraction isovalue Y “ 0.98. The time-dependent flame elongation follows the law (4.126)
with ε “ 5 ¨ 10´2 and S0 “ 10.44. The thermochemical properties of the flame are characterized
by the parameters summarized in Table 4.1.
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Figure 4.12: (a) Flame propagating velocity to sound speed ratio uf{ao as a function of the flame
elongation parameter S which evolves following (4.126) with S0 “ 10.44 and ε “ 5 ¨ 10´2.
Black line: double discontinuity model with an isentropic compression wave. Blue line: flame
propagating velocity to sound speed ratio obtained by numerical integration. (b) Flame velocity
relative to the flow of burned gases with respect to the local sound speed. The colored circles in
both figures correspond to the time steps for the profiles in Figures 4.10 and 4.11.

relative to the burned gases. The trajectory of the absolute flame velocity divided by the
unperturbed sound speed against the elongation parameter is compared in Figure 4.12a
with the relationship obtained for the double discontinuity model with an isentropic
compression wave. Initially, the trajectory of the absolute flame velocity vs. elongation
parameter closely follows the curve of the double-discontinuity model. However, as the
flame velocity approaches the turning point, the flame acceleration increases, leading
to a slight deviation of the trajectory of the flame velocity from the curve of double-
discontinuity solutions. While in the double-discontinuity model, the reactive layer is
infinitesimally thin and adapts instantaneously to the new boundary conditions, in the
numerical integration of the conservation equations the thickness of the reactive layer
is small but finite, causing a finite delay in the answer of the flame velocity. Once the
turning point of the solutions of the double-discontinuity model is surpassed, the flame
eventually undergoes an abrupt acceleration, leading to a flame acceleration runaway,
which corresponds to the finite time singularity in the steady solutions anticipated by
Clavin (2022). The temporal evolution of the flame velocity relative to the burned gases
with respect to the local sound speed is depicted in Figure 4.12b. Despite the increase
in flame velocity relative to the burned gases increases due to the temperature rise, it
remains markedly subsonic, even at the divergence of the flame acceleration. Thus, the
acceleration runaway occurs well before the Chapman-Jouguet marginal solution for
reactive waves, characterized by the sonic condition, is reached.

Influence of the timescale ratio

To investigate the factors underlying the departure of the flame velocity trajectory from
the turning point, a parametric investigation has been conducted by varying the timescale
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Figure 4.13: Flame propagating velocity to sound speed ratio as a function of the elongation
parameter which evolves following (4.126) with S0 “ 10.44 and different timescale ratios in the
range ε “ 0.05 (red) to ε “ 1.0 (black).

ratio ε. This parameter governs the evolution of the elongation parameter in relation to
the flame transit time, as defined in (4.126). The results of this analysis are presented
in Figure 4.12. It is observed that a higher rate of growth of the elongation parameter
corresponds to an increased critical flame elongation value. Conversely, a lower growth
rate of the elongation parameter leads to the critical value approaching the turning point
of the curve of solutions for the double-discontinuity model. A similar behaviour is
observed in the dynamic saddle-node bifurcations, where a breaking time exists above
which the stable steady state disappear, although a time delay must elapse before reaching
a point of no return where the irreversible critical transition occurs (Peters et al., 2012; Li
et al., 2019). An investigation of the influence of the flame unsteadiness on the dynamics
around the turning point in the framework of the saddle-node bifurcations has been
recently conducted by Clavin (2023).

Onset of the detonation

The internal structure of the flame during the acceleration runaway leading to the onset of
the detonation is depicted in Figure 4.14, where the evolution of the flame is illustrated.
Additionally, the propagation of the front in the fixed coordinate system of the tube is
presented in Figure 4.15 . As the simulation progressed from t “ 2.985 to t “ 2.990,
the flame continues to accelerate and its internal structure becoming increasingly thin.
However, between t “ 2.990 and t “ 2.991, a sudden transition in the propagating
regime is observed. The flame preheat region, where the fresh mixture is gradually heated
by conduction, disappears and the physical variables evolve rapidly within a few grid
points from the upstream state to a state of higher temperature and pressure in chemical
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equilibrium. This sharp transition can be interpreted as a discontinuity in which the
mixture undergoes simultaneous compression and combustion, as in a discontinuous
detonation.

It is worth mentioning that during the numerical integration, only the results obtained
every ∆t “ 0.001 are stored and included in these figures. However, the CFL stability
condition imposes a much finer time resolution, reaching values as small as ∆t “ 1 ¨10´6

during the simulation. Therefore, the profiles shown for t “ 2.991 are not direct results
of integrating the conservation equations at t “ 2.990, but rather a large number of
computational steps have taken place in between.

The transition from diffusion-controlled propagation of the flame to detonation might
be explained as follows. During the acceleration runaway, as the flame experiences strong
acceleration and its internal structure shrinks, the velocity gradient within the internal
flame structure steepens, causing dissipation mechanisms that are negligible at ordinary
flame velocities to become significant. These dissipation mechanisms eventually result in
the formation of a strong shock wave within the internal structure of the flame, which
rapidly increases the temperature and further accelerates the reaction rate. The reactants
get consumed in a vanishingly thin reactive layer, causing the position of the isovalue
Y “ 10´4, where the temperature is measured to calculate the backflow of burned gases,
to be swept out by the reactive supersonic wave. Due to the supersonic nature of the
wave, the heat released within the reactive layer cannot propagate ahead, causing the
temperature at the isovalue to be determined exclusively by the upstream conditions,
which become isolated from what happens behind the supersonic wave. As a result, the
temperature at the isovalue does not increase further due to the effect of the compression
wave, but is instead propagated into regions of fresher reactive mixture, leading to a
slowdown in the backflow of burned gases. However, once the reactive supersonic wave
is established it continues to propagate without the piston-like effect of the burned gas
backflow.

The evolution of the velocity of the front with respect to the sound speed is plotted in
Figure 4.16, with the time instants corresponding to the profiles in Figures 4.14 and 4.15
indicated by colored full points. The onset of the detonation coincides with the maximum
velocity of the front. It is worth to remember that the data included in the figures does not
include every time step of the simulation but just the stored solutions. Consequently, the
peak velocity of the flame at the moment of shock formation may actually be significantly
higher than the maximum shown in the figure.

The maximum flame velocity included in these results corresponds to the first sample
stored following the regime transition. Upon the transition, the flame velocity experiences
a slowdown for two reasons. On the one hand, once the front becomes supersonic it
advances faster than the compression waves emitted by the flame and then it overtakes the
compression waves causing the velocity of the flow ahead of it to decrease, reducing the
absolute flame velocity due to the advection of the flow. On the other hand, for the same
reason, the temperature of the flow ahead of the supersonic wave decreases, resulting in a
reduction of the stable propagation velocity of the supersonic reactive wave.

Once the supersonic wave reaches the head of the compression wave, temperature and
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Figure 4.14: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass
fraction, and (f) reaction rate profiles in the flame-attached coordinate system during the fast
flame acceleration, onset of detonation and relaxation to CJ regime. The profiles shown evolve
from t “ 2.985 to t “ 2.995 in time steps of ∆t “ 0.001 with the onset of the detonation
taking place between t “ 2.990 (blue) and t “ 2.991 (red), and they are represented in the
flame-attached coordinate system x “ r ´ rfptq with rfptq defined as the position of the product
mass fraction isovalue Y “ 0.98. The thermochemical properties of the flame are characterized
by the parameters summarized in Table 4.1.
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Figure 4.15: (a) Density, (b) flow velocity, (c) pressure, (d) temperature, (e) product mass fraction,
and (f) reaction rate profiles in the fixed coordinate system of the tube during the fast flame
acceleration, onset of the detonation and relaxation to CJ regime. The profiles shown evolve from
t “ 2.985 to t “ 2.995 in time steps of ∆t “ 0.001 with the onset of the detonation taking place
between t “ 2.990 (blue) and t “ 2.991 (red), and they are represented in the fixed coordinate
system of the tube with the origin being located at the initial position of the flame at t “ 0.
The thermochemical properties of the flame are characterized by the parameters summarized in
Table 4.1.
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Figure 4.16: Flame propagating velocity to initial sound speed ratio as a function of the elongation
parameter S (bottom axis) and time t (top axis). The colored circles in both figures correspond to
the time steps for the profiles in Figures 4.14 and 4.15. The horizontal dotted line corresponds to
the propagation velocity of a CJ detonation with respect to the initial sound speed considering the
induced flow ahead of the wave as given by (4.129).

flow velocity ahead of it become uniform, leading to a constant propagation velocity.
This constant absolute is actually equal to the CJ detonation velocity, augmented by the
velocity of the flow ahead of the wave induced by the leading shock. In the notation
followed in this chapter, this velocity is given by the expression
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whose result is represented by the dotted horizontal line in Figure 4.16.

4.5 Summary
The Deflagration-to-Detonation Transition, characterized by the sudden transformation
of a diffusion-controlled flame into a supersonic reactive have, in elongated flames propa-
gating along thin tubes has been studied through a one-dimensional model representing
the flame tip. The key element of this model is the backflow of burned gases from the
flame skirt that drives initially the flame acceleration acting as a piston that pushes the
reactive wave forward.

A double-discontinuity model, in which both the flame and the flame-driven shock
wave were treated as discontinuities, has been investigated. Numerical solutions for
the non-linear relationship between the flame velocity and the controlling elongation
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parameter have been obtained in two different situations. In the first scenario, the
backflow of burned gases remains constant and the flow between the flame and the shock
is assumed uniform. In the second case, the backflow increases leading to the formation
of compression waves ahead of the flame which do not reach the leading shock wave,
so the flow between the flame and the shock remains isentropic. It has been illustrated
that both situations exhibit a turning point where the acceleration of the flame becomes
infinite.

Next, the internal flame structure of the flame has been considered in the study
through the numerical integration of the reactive compressible conservation equations.
The numerical results obtained for a constant backflow have been compared with the
solution obtained from the double-discontinuity model showing satisfactory agreement
and validating the existence of a turning point in the velocity ratio characterizing the
elongation parameter. The results have also served to illustrate the self-similar nature of
the external to the reactive and supersonic waves and to provide initial conditions for a
time-dependent simulation. Finally, the evolution of the flame has been simulated by
controlling the backflow of burned gases corresponding to a slowly increasing elongation
parameter. The simulations results show that the relationship between the flame velocity
and the elongation parameter initially follows the solutions of the double-discontinuity
model. Near the turning point, the flame speed versus flame elongation trajectory moves
away from the double-discontinuity solution, yet a strong acceleration is still observed
after a short delay. Finally, during the strong acceleration, there is a rapid transition in the
propagation regime. The reactive wave then relaxes to the corresponding CJ detonation
regime.
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CHAPTER5

Conclusions and perspectives

In this chapter, the key findings and insights gained from the study the direct initiation
of gaseous detonations in the small heat release asymptotic limit and the deflagration-
to-detonation transition at the tip of elongated flames propagating along thin tubes are
brought together. This chapter not only provides a summary of the research but also
a discussion of the significance of the findings. Furthermore, this chapter outlines the
limitations of the study and suggests possible directions for future research. Overall, this
chapter concludes the thesis and highlights the contributions made to the understanding
of the initiation of gaseous detonations.

5.1 Direct Initiation
In the small heat release limit coupled with the Newtonian approximation, the problem
of the long time dynamics of the detonation initiation is reduced to a single hyperbolic
equation. This asymptotic limit highlights the two-time-scale nature of the problem,
which is also a characteristic of real detonations since the regime at the exit of the
reaction zone is nearly sonic. The simplification is made possible since, in the limit of
small heat release, the Mach number of the flow relative to the leading shock is close
to unity throughout the detonation structure and the technical difficulty of the sound
speed variation is avoided. In real detonations near the CJ regime, the nearly sonic
condition is satisfied at the end of the reaction zone, but not close to the leading shock.
The small heat release limit extends this condition to the entire internal structure of the
detonation. Besides, the sound speed only changes slightly with temperature under the
typical conditions found in detonations. The definition of the precise sonic plane, where
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the flow speed relative to the leading shock equals the local sound speed, may pose a
greater challenge in real detonations. However, due to the weaker spatial change in sound
speed compared to the flow speed, a small region where the flow speed with respect to
the shock is significantly close to the local sound speed will still exist. Therefore, the
fundamental physical mechanisms in detonations close to the CJ regime are retained in
the asymptotic approximation.

Concerning the evolution of the leading shock propagating velocity in direct initiation,
the limit of small heat release introduces differences that are mainly quantitative. The
asymptotic limit yields analytical expressions for both the rarefaction flow in the
discontinuous model of detonation and the combustion waves whose internal structure is
in steady-state. Remarkably, these asymptotic solutions exhibit the same characteristic
properties as those found in the opposite limit of large Mach number of propagation,
reinforcing the relevance of the limit of small heat release in enhancing our understanding
of detonation dynamics.

The analysis of the dynamics of the detonation considering the internal structure reveals
that the evolution of the sonic plane inside the rarefaction wave is the key element of the
overall dynamics. The time delay of the response of the detonation internal structure
to the burnt-gas flow results in a slowdown mechanism when the sonic point, originally
located in the burnt-gas away from the reaction wave in overdriven regimes, moves closer
to the exit of the reaction zone. This mechanism explains the dynamics of the trajectories
“propagation velocity vs. front radius” observed in direct numerical simulations for critical
conditions of initiation. The detonation velocity drops below the CJ velocity and reaches
a minimum associated with the onset of the sonic condition. This deceleration phase
is followed by a re-acceleration back to the CJ regime, corresponding to an isolated
combustion wave whose internal structure is out of equilibrium. During this nonlinear
relaxation, the sonic point remains within the internal structure of the combustion wave,
near the end of the reaction zone. Failure occurs if the deceleration of the detonation
wave is so significant that the chemical-kinetics quenching takes place in the overdriven
regime before the sonic point reaches the end of the reaction zone. The likelihood of
failure increases as the radius at which the overdriven detonation velocity first crosses the
CJ velocity decreases. Furthermore, this analysis clarifies how the self-similar solution
for the rarefaction wave behind a CJ wave is reached in the long-time limit, showing a
behaviour similar to the discontinuous model.

The detailed analysis of the critical dynamics has been limited to spherical geometries.
Results from the discontinuous model and the leading shock trajectories considering
the internal structure indicate that planar overdriven waves approach asymptotically
the CJ regime in the long-time limit without exhibiting a critical condition or singular
dynamics. With the physical mechanisms retained in this study the initiation of planar
detonations with reduced activation energies of order unity are consistently successful.
The longitudinal instability observed for larger values of activation energy has been
extensively explored in the previous literature (see, for instance, Clavin and Williams
(2002) and Tofaili et al. (2021)). Regarding cylindrical waves, the discontinuous model
and the trajectories of the leading shock considering the internal structure reveal that the
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Figure 5.1: Analysis of the numerical results through numerical integration of (3.105). (a) The red
line represents the evolution of the deviation from the steady-state solution obtained by integration
of (3.105) using the analytical approximations that lead to (3.114) in solid line and through
numerical integration of the results in dotted line. The black line represents the evolution of the
time derivative of the propagation velocity :ατ ” d 9ατ {dτ obtained numerically. (b) Term by term
integration of (3.105) on the numerical results through analytical approximation in solid line and
numerical integration in dotted line.

dynamics are qualitatively similar to those of spherical waves. The only distinction is
quantitative, with the curvature effect of cylindrical waves being halved for equivalent
front radii in spherical geometry. As a result, the curvature-induced decay is slower in
cylindrical detonations and the predicted curvature-induced quenching is expected to
occur at a radius that is half the critical radius for spherical detonations. The dynamics
of the sonic point within the rarefaction wave plays similarly a essential role in both
geometries.

5.1.1 Future work

A successful theory for direct initiation should provide an analytic expression that allows
to compute the critical initiation energy based on the properties of the reactive mixture. In
the small heat release limit, the steady-state curves obtained for an overdriven regime and
a self-sustained regime provide an estimate of the critical radius at which the detonation
should not decrease below the chemical-kinetics quenching velocity. A preliminary
analysis of the numerical results (as illustrated in Figure 5.1) can help to elucidate the
discrepancy found between the critical radius and the quasi-steady regime observed at
the onset of the sonic condition.

The integration of the quasi-steady description of a self-sustained wave (3.105) on
the internal structure using the numerical results reveals that a steady state is well
established at the minimum of propagation velocity (as shown in Figure 5.1a). However,
the approximations used to derive the analytic expression fail to predict a steady state
solution in the corresponding front radius. An analysis of each term in the integration of
(3.105) shows that the advection term is well approximated as the sonic point approaches
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Figure 5.2: Flow velocity profile at τs when the sonic point reaches the exit of the reaction zone

the exit of the reaction zone and the discrepancy is negligible around the steady state.
The integration of the reaction term is straightforward due to the scaling law, thus
the numerical results match precisely the analytical value. On the other hand, the
approximation of curvature term yields a value that is twice the result obtained from the
numerical calculations.

Examining the velocity profile at the onset of the sonic condition sheds light on the
source of this discrepancy (as depicted in Figure 5.2a). In the overdriven regime, before
the sonic condition isolates the internal structure of the detonation from the external
rarefaction flow, the flow velocity at the exit of the reaction zone is well below the flow
velocity at the exit of the reaction zone of the planar CJ wave. The difference between the
CJ wave and the actual velocity profile at the onset of the sonic condition is quantified by
the red area in Figure 5.2a.

An improvement of this approximation could be achieved by adding the burnt-gas flow
velocity µext

f to the velocity profile of the CJ wave leading to a reduction in the error as
shown in Figure 5.2b. This approximation may be useful in predicting the critical front
radius at which the sonic condition is reached. However, it is important to note that this
approximation will not be valid once the sonic point enters the reaction zone and the
internal detonation structure becomes isolated from the external flow.

Moreover, the analysis of the critical dynamics has been restricted to a reduced
activation energy of order unity due to the challenges in examining strongly unstable
detonations in the limit of small heat release using a scaling law for the chemical kinetics,
as pointed out by Clavin and Denet (2020). This approach, unfortunately, prevents
the investigation of the curvature-induced quenching, which is predicted through a
quasi-steady approximation for a large activation energy for a single-step kinetics rate
law without cross-over temperature.

It is noteworthy that the radius at which the sonic condition is satisfied at the exit of a
reaction zone in the overdriven regime is of the same order of magnitude as the critical
radius for steady-state self-sustained waves. Future research will aim to explore the
potential relationship between these two conditions and provide more accurate prediction
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for the detonation radius where the sonic condition is verified. This will require the use
of unsteady reaction rates different from the scaling law used in the present analysis.

Additionally, efforts will be made to improve the asymptotic analysis in the limit of
small heat release in order to provide a more accurate quantitative analysis in relation to
actual detonations. Furthermore, the phenomenon of shock wave re-ignition, observed
when the propagation velocity approaches the acoustic regime yet the chemical kinetics
continue to release heat of combustion deserves further investigation.

5.2 Deflagration-to-Detonation Transition
The one-dimensional model for elongated flames propagating from the closed end of a
tube proposed by Clavin and Tofaili (2021) provides a relationship between the flame
elongation and the flow that advects the flame from the burned gases side. Considering
the flame as a discontinuity, the relationship between the flame elongation and the
absolute flame velocity behind a flame-driven shock wave is determined by a closed set
of nonlinear equations. The flame speed sensitivity to temperature introduces a thermal
feedback loop between the leading shock and the flame speed. Furthermore, the backflow
of burned gases that advects the flame in the Clavin and Tofaili (2021) model introduces
an additional feedback loop between the burning velocity and the induced flow ahead of
the flame. These two feedback effects combined give rise to a turning point in the steady
solutions. For a set of thermochemical parameters characteristic of hydrogen-oxygen
mixtures, the turning point corresponds to an absolute flame speed close to the speed of
sound in the initial mixture. The turning point defines a critical flame elongation. Beyond
this critical value, the double-discontinuity model has no solution.

The thermal feedback of the leading shock wave on the flame speed is the cause of
the turning point in the steady solutions as was first recognized by Deshaies and Joulin
(1989) using a somewhat different one-dimensional model. As Deshaies and Joulin
stated, the existence of a turning point “follows from the faster-than-linear increase with
reaction temperature of the local laminar burning velocity”. At the beginning of the flame
acceleration process, the increase in burning velocity due to the increase in temperature
induced by the compressive heating is negligible. However, given the exponential nature
of the sensitivity with temperature, the relative increase in burning velocity eventually
becomes equal to the relative increase in the advection flow of burned gases. It is then
that the flame elongation parameter that links both velocities reaches a maximum value.
Beyond this critical condition, a slight further increase in flame speed requires reducing
the flame elongation to reach a stable solution.

The critical condition appears whether the flow between the flame and the leading
shock is uniform, or whether the development of an isentropic compression wave between
a steady leading shock wave and the flame is considered. Both scenarios correspond to
two limiting cases between which the actual conditions are found. The compression wave
issued from the flame actually develops at the same time as the shock wave accelerates
and is therefore not isentropic. The critical flame elongation conditions in the second
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scenario vary with the intensity of the leading shock. The critical flame elongation
decreases with the intensity of the precursor shock as it was mathematically formulated
by Clavin (2022). The absolute flame velocity at critical conditions however is universal
for a given reactive mixture.

An analytical expression for the critical flame velocity considering an isentropic
compression has been obtained. This expression yields a value of critical velocity that is
in reasonable good agreement with the critical speed defined by the turning point obtained
numerically. Simplifying the expression for a critical flame velocity significantly lower
than the sound speed, the analytic expression given by Clavin (2022) is recovered.

A more precise study of the critical conditions would have to consider the entropy
increase in the compression wave when the shock wave is accelerate. However, this
situation would correspond to an intermediate case between the uniform flow approach
where the compression occurs within the shock wave and the consideration of an isentropic
compression wave ahead of the flame. Therefore, the critical conditions in the more
realistic conditions can be expected to lie between the critical condition defined for both
situations.

The numerical study of the flame internal structure shows that when the flame elongation
exceeds the critical value for a sufficient amount of time to allow the flame to adjust
to the new conditions, the flame undergoes an abrupt violent acceleration. This strong
acceleration corresponds to the singularity of the acceleration obtained in the solutions
for a steady flame. During the strong acceleration, the flame thickness also shrinks
abruptly, so that the velocity gradient within the internal flame structure becomes large
enough for dissipative effects to become important. Dissipation mechanisms transform
the macroscopic kinetic energy of the flow into internal thermal energy where steep
velocity gradients develop. It can then be said that a shock wave develops within the
internal flame structure. The temperature then rises rapidly and abruptly also due to the
dissipation of kinetic energy. Under these conditions, autoignition of the reactive gases
occurs and the onset of the detonation occurs.

As the detonation front propagates from the flame tip towards the tube walls, it blows
away the flame envelope and the model of a backflow of burned gases from the flame
skirt is no longer justified. However, once the strong detonation is initiated, it relaxes
to the Chapman-Jouguet regime. In this regime, the detonation is isolated from the
downstream conditions and the backflow of burned gases does not affect its propagation.
The supersonic detonation wave catches the compression waves previously emitted by
the flame. The reactive mixture through which the detonation propagates becomes less
and less hot, resulting in a slowing of the propagation velocity. Once the detonation wave
passes the leading edge of the compression wave, the reactive front propagates along a
uniform flow with constant velocity. Thereafter, the propagation velocity coincides with
the sum of the Chapman-Jouguet velocity and the flow velocity that advects the front.

The Deflagration-to-Detonation process concludes when the detonation wave reaches
the precursor shock wave. In this study, the precursor shock wave has not been included
in the simulations with a time-dependent flame elongation in order to reduce the
computational cost. Therefore, a complete description of the process through which a
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deflagration wave becomes a single detonation wave propagating in a uniform medium
also requires the study of a detonation wave that catches form behind a shock wave.

In a strict sense, the relevance of numerical simulations based on the integration of
the Navier-Stokes conservation equations during the onset of the detonation must be
questioned. The formation of a shock wave involves spatiotemporal scales corresponding
to the mean free path and the elastic collision frequency, where the continuum and
local equilibrium assumptions are no longer accurate. Thus, the numerical results
presented cannot provide an accurate description of the process of detonation onset due
to the formation of a strong shock wave within the internal flame structure. Within the
framework of the Navier-Stokes equations, it can only be concluded that the thermal
feedback of the compression waves on the flame speed enhanced by the piston effect
of a backflow of burned gases, leads to the finite-time singularity analyzed in Clavin
(2022), which is likely to result in the formation of a shock wave at the flame tip. If true,
this conjecture would mean that the condition S ą S˚ is sufficient for the onset of a
detonation in the DDT process, and that the predetonation time should be close to the
time needed by the flame elongation to exceed its critical value.

5.2.1 Future work

During the acceleration runaway, the burning velocity attains values that are comparable
to the local sound speed. This calls into question the hypothesis that unsteadiness and
compressibility are negligible in the region of burned gases, as previously assumed when
deriving the expression for the flow burned gases impinging the flame tip ub (4.76).

For instance, the analysis of the transient effects by Deshaies and Joulin (1989) was
focused on the acoustic dynamics within the burned gas region. Deshaies and Joulin
derived an evolution equation that accounts for the delay in the flame response to the
boundary condition imposed at the closed end of the tube. The numerical solution to
this equation revealed a ladder-like behavior in flame velocity, which aligns more closely
with experimental observations.

The transient dynamics of the acoustic waves within the burned gas region, which
is delimited by the point of contact of the flame with the tube and the flame tip, could
be incorporated into the double-discontinuity model by introducing a time-delay in the
backflow of burned gases. This time delay corresponds to the transit time of acoustic
waves along the flame length, which is determined by the ratio of flame length to sound
speed in the burned gases. A comprehensive analysis of the implications of such delay is
currently under revision (Clavin, 2023).

The numerical study of the internal structure of the flame by integrating the full set
of conservation equations can be performed including the burned gas region. In this
way, the dynamics of the burned gases enclosed between the closed end of the tube
and the flame envelope could be included in the study. This would also eliminate the
approximation of constant density in this region. The integration domain would then be
limited on the burned gas side by the closed end of the tube which imposes the condition
of zero velocity. The increase of the flame surface would be considered in the numerical
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integration by adding the mass production rate corresponding to the burned gases in the
flame skirt (4.74) to the mass conservation equation. The continuity equation would then
be expressed as

Bρ

Bt
`

B pρuq

Br
“ 9m, (5.1)

where 9m is the mass production rate per volume unit given by (4.74).
Such simulation would include the unsteady and compressible gas dynamics in the

region of burned gases. During the initial phase of slow flame acceleration, the acoustic
time is much shorter than the characteristic time of flame acceleration so that the steady
approximation for the burned gases is accurate. A similar backflow towards the reactive
zone should be observed in this phase. Near the turning point however the acoustic and
flame acceleration characteristic times could become comparable and the results may
differ. Results obtained in such a study would help to confirm whether the backflow of
burned gases is sufficient to reach the conditions that can promote the formation of a
shock wave within the flame structure.

The main difficulty anticipated for this numerical study lies on the large domain that
must be considered due to the large flame propagation speed around the critical point.
More elaborate numerical integration strategies, such as adaptive mesh refinement or
code parallelization, may be required to obtain results in a reasonable time.

Another aspect that has not been addressed in this study and is expected to play an
important role in the DDT is related to the chemical-kinetics of the reactive mixture. The
reaction rate has been modeled with a single Arrhenius-type law that describes well the
thermal runaway that characterizes in general the reactions of combustion. However, it is
known that the dominant elementary reactions for flames are typically not the same in
detonations. In flames, which propagate at subsonic velocities over the reactive mixture,
the diffusion of reactive radicals can contribute to the overall reaction mechanism, whereas
in detonations this diffusion flux is limited by the supersonic character of the wave.
Temperatures in the reactive zone are also higher in detonation than in deflagration, which
modifies the balance of dominant elementary reactions. Therefore, the chemical-kinetics
model should also consider a transition as a function of the front propagation conditions
to include a more realistic description of combustion reactions.
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