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Introduction

The first purpose of this thesis is to introduce and study a notion of singular Riemannian
foliations which is adapted to the module definition of a singular foliation. Finding a
commonly accepted definition of singular foliations was a longstanding debate since the
1960s [L18]. This debate ended with the definition proposed by Androulidakis and
Skandalis [AS09]. They defined singular foliations as follows: 1

Definition 1.1. A singular foliation on M is defined as a C∞(M)-submodule F of the
module of compactly supported vector fields on M , which is locally finitely generated and
closed with respect to the Lie bracket of vector fields.

This definition induces a decomposition of M into injectively immersed submanifolds
called leaves [H62], thus yielding singular foliations in the more traditional sense (see,
e.g., [L18]). But the association is not one-to-one: several singular foliations give rise
to the same leaf decomposition. However, in the case where all the leaves have the
same dimension, the relation is one-to-one and Definition 1.1 becomes equivalent to the
usual notion of a regular foliation. Examples of singular foliations are induced on the
underlying manifold by, e.g., Poisson manifolds, Lie algebroids, and Lie ∞-algebroids.

Now let us add a Riemannian structure g to the above setting. Inspired by [KS16, KS19],
but stripping off unnecessary data from the definitions given there, we propose:

Definition 1.2. A singular Riemannian foliation on a Riemannian manifold (M, g) is
defined as a singular foliation F on (M, g) such that for every vector field X ∈ F we
have:

LXg ∈ Ω1(M) ⊙ g♭(F) , (1)

where g♭ : X(M) → Ω1(M), X 7→ g(X, ·) is the standard musical isomorphism and ⊙
stands for the symmetric tensor product.

With this definition, every geodesic perpendicular to one leaf turns out to stay perpen-
dicular to all the leaves it meets, thus yielding singular Riemannian foliations in the

1. A singular foliation can be equivalently defined as an involutive and locally finitely generated
subsheaf of the sheaf of smooth vector fields on M closed under multiplication by C∞(M) [LGLS20]
(see also [GZ19]). This has the advantage that one can replace C∞(M) by an arbitrary sheaf of rings
O on M .
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more traditional sense [M98]. The converse is not always true: 2 A singular Rieman-
nian foliation in the sense of Molino is not always a singular Riemannian foliation. For
a regular foliation, Definition 1.2 becomes equivalent to the usual notion of a (regu-
lar) Riemannian foliation ([H58], [R59]). Examples of singular Riemannian foliations are
given by isometric Lie group actions on Riemannian manifolds and, more generally, orbit
decompositions induced by Riemannian groupoids [dHF18].

Our notion of singular Riemannian foliations behaves well under the pullback operation
of [AS09]. This permits us to provide a definition of Morita equivalence between sin-
gular Riemannian foliations. It implies Hausdorff Morita equivalence for the underlying
singular foliations, as defined in [GZ19]. In the fore-cited work it is shown that the leaf
spaces of Hausdorff Morita equivalent singular foliations are homeomorphic. Here we
will establish:

Theorem A. Let (N1, g1,F1) and (N2, g2,F2) be Morita equivalent singular Riemannian
foliations. Then their leaf spaces are isometric as pseudo-metric spaces.

A second purpose of this thesis is to introduce the category of I-Poisson manifolds IPois.
For its objects, the intention is to generalize coisotropic submanifolds (see, e.g., [MR86])
to the singular setting. For simplicity of the presentation, in the Introduction we provide
the definition of objects for the subcategory of semi-strict I-Poisson manifolds ssIPois
of IPois, which are constructed simply out of Poisson manifolds: 3

Definition 1.3. A semi-strict I-Poisson manifold is a triple (P, {·, ·} , I) where I is
a subsheaf of smooth functions on a Poisson manifold (P, {·, ·}) which is closed under
multiplication by smooth functions, locally finitely generated, and for every open subset
U ⊂ P , I(U) ⊂ C∞(U) is a Poisson subalgebra, i.e.

{I(U), I(U)} ⊂ I(U) .

To describe dynamics, one needs a compatible Hamiltonian, i.e. a function H ∈ N(I)
where

N(I) := {f ∈ C∞(P ) : {f |U , I(U)} ⊂ I(U) for every open subset U} .

We then call (P, {·, ·} , I, H) a (semi-strict) dynamical I-Poisson manifold and the cor-
responding category (ss)dynIPois.

The property that a singular foliation is locally finitely generated is crucial for the exis-
tence of the induced leaf decomposition. Similarly, the condition “locally finitely gener-
ated” in Definition 1.3 is essential for showing that the flow of any H ∈ N(I), if complete,
preserves the sheaf I (see Proposition 4.28 for the precise statement).

Definition 1.4. A smooth map φ : P1 → P2 between (P1, {·, ·}1 , I1) and (P2, {·, ·}2 , I2)
is a morphism of (semi-strict) I-Poisson manifolds, iff the two obvious conditions
φ∗ (I2(P2)) ⊂ I1(P1) and φ∗N(I2) ⊂ N(I1) are complemented by

{φ∗f, φ∗g}1 − φ∗{f, g}2 ∈ I1(P1) ∀f, g ∈ N(I2). (2)

For dynamical I-Poisson manifolds we add the condition φ∗H2 −H1 ∈ I1.
2. In the real analytic setting, we will provide such a counterexample in the third chapter of this

thesis (cf. also Question below).
3. For the complete version see Definitions 4.13, 4.30, and 4.32 below. The more general notion

permits to cover also examples such as Hamiltonian quasi-Poisson manifolds [AKSM02], see Example
4.17.
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These are also the morphisms of the general category, when “semi-strict” in the parenthe-
sis is dropped. With this notion of morphisms, the category Pois of Poisson manifolds is
a full subcategory of (ss)IPois for the choice of the zero ideal. In general, however, the
morphisms between (semi-strict) I-Poisson manifolds are not necessarily Poisson maps
between the underlying Poisson manifolds—an important feature in several applications.

The condition (2) is optimal to ensure that φ∗ decends to a Poisson morphism on the
level of reductions: In fact, every (semi-strict) I-Poisson manifold (P, {·, ·} , I) induces a
Poisson algebra structure on N(I)/I(P ). In the case of coisotropic reductions [MR86],
this algebra coincides with the algebra of smooth functions on the reduced Poisson
manifold. The algebraic formulation here is, however, also applicable in the general
context of I-Poisson manifolds, where, e.g., the vanishing set of the ideal I(P) does not
need to be a submanifold anymore. The conditions in Definition 1.4 ensure that there is
a canonical contravariant functor F from (ss)IPois to PoisAlg, the category of Poisson
algebras.

The third purpose of this manuscript is to bring the two aforementioned subjects to-
gether and, in particular, to use I-Poisson geometry so as to learn more about singular
(Riemannian) foliations.

Starting from a singular foliation (M,F) and viewing every vector field in F as a smooth
function on T ∗M , we construct a semi-strict I-Poisson manifold (T ∗M, {·, ·}T ∗M , IF).
Moreover, every metric g on M defines a compatible Hamiltonian (making the semi-strict
I-Poisson manifold dynamical) if and only if the metric satisfies condition (1). Thus there
is a canonical map from singular (Riemannian) foliations to the objects of ssIPois and
ssdynIPois, respectively. As we will see, this construction is not only conceptually
illuminating, it also has technical advantages: we will use it to find elegant proofs of
several properties of singular (Riemannian) foliations, like to show, e.g., that Definition
1.2 automatically induces a singular Riemannian foliation in the sense of [M98].

To complete the above map on objects to a functor, one would need a proper definition
of the categories SF and SRF of singular (Riemannian) foliations. Surprisingly, already
for singular foliations, in the literature there is not yet any satisfactory proposal for
what a morphism between general singular foliations should be. However, the situation
changes if one restricts to submersions and Riemannian submersions in the case of singu-
lar foliations and singular Riemannian foliations, respectively, because in these cases the
previously mentioned pullback operations are defined. For example, a Riemannian sub-
mersion π : (N, h)→ (M, g) between two singular Riemannian foliations (N, h,FN) and
(M, g,FM) which satisfies π−1FM = FN should definitely be considered as a morphism.
Let us call SF0 and SRF0 the two (sub)categories with such restricted morphisms. In
this paper we show in particular:

Theorem B. There are canonical functors Ψ: SF0 → IPois and Φ: SRF0 → dynIPois.

As a side result, we will find that for FM = 0, Φ(π) becomes an ordinary Poisson map
if and only if the horizontal distribution (ker dπ)⊥ is integrable—correcting [BWY21],
where this map has been considered as well, but claimed to always be Poisson.

Composing the functor Ψ, evaluated on a singular foliation (M,F), with the functor
F : IPois→ PoisAlg, we obtain the (reduced) Poisson algebraA(F) := N(IF)/IF(T ∗M).
This algebra provides an invariant of Hausdorff Morita equivalence, since we will prove:
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Theorem C. Let (M1,F1) and (M1,F1) be Hausdorff Morita equivalent singular folia-
tions. Then the reduced Poisson algebras A(F1) and A(F2) are isomorphic.

The final purpose of this thesis is to study the exceptional example of the singular
octonionic Hopf foliation, constructed upon the octonionic Hopf fibration on S15 ⊂
O2 ∼= R16. Hopf fibrations associated to the complex numbers and quaternions are well-
known examples in differential geometry and mathematical physics [H31, U03]. Due to
the difficulties arising by the lack of associativity in the algebra of octonions O, the
octonionic Hopf fibration is less studied in the literature. However, it has remarkable
properties due to the nature of the octonions [OPPV13, BC21]. In the context of this
thesis, the study of this example was motivated by the following question:

Question: Let (M, g,F) be a triple inducing a leaf decomposition which is a singular
Riemannian foliation in the sense of Molino [M98]. Is it possible to find a singular
Riemannian foliation (M, g,F ′) in the sense of Definition 1.2 which has the same leaf
decomposition as (M, g,F)?
The singular octonionic Hopf foliation introduced in Section 8 will be seen to provide a
counterexample to this in the real analytic setting. For the smooth setting, this is still
an open problem. Let us remark in parenthesis that the likewise question if every leaf
decomposition called a singular foliation in the traditional sense can be obtained as the
leaf decomposition of a singular foliation in the sense of Definition 1.1 is still an open
problem as well.

The singular octonionic Hopf leaf decomposition LOH is defined using the octonionic
lines in O2 ∼= R16 defined as [GWZ86, OPPV13]

lm :=
{
(x,m·x) ∈ O2 : x ∈ O

}
. (3)

for every m ∈ O, called the slope of the line, together with the octonionic line of slope
∞

l∞ :=
{
(0, x) ∈ O2 : x ∈ O

}
.

Definition 1.5. The singular Hopf leaf decomposition of O2 is defined as the family of
the leaves

Lm,r := lm ∩ S(r) ∀m ∈ O,
L∞,r := l∞ ∩ S(r) , (4)

together with the origin in O2. Here, S(r) := {(x, y) ∈ D2 : ∥x∥2 + ∥y∥2 = r2} is the
sphere of radius r > 0 in D2.

The leaf decomposition LOH is known to be locally non-homogeneous, i.e. there is no
isometric Lie group action, even locally, generating the leaves of LOH as its orbits [MR19,
GWZ86, L93].

A central starting point of our discussion is the following lemma, characterizing the vector
fields tangent to the leaves in LOH : A vector field

(
u
v

)
∈ X(O2) with u, v ∈ C∞(O2,O)

is tangent to the leaves of LOH , if and only if

u·y + x·v = 0 & (5)
⟨x, u⟩ = ⟨y, v⟩ = 0 (6)
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for all (x, y) ∈ O2 ∼= R16. This characterization is an essential tool in the study of
LOH , and provides the ingredient for the computational part of the thesis, done using
Eisenbaud’s Macaulay2 4. In Section 8, we use this lemma to provide an alternative
proof for the non-homogeneity of LOH . Moreover, we improve the classic result of non-
homogeneity for LOH as follows:

Theorem D. Let F0 be any singular foliation on O2 having LOH as its leaf decompo-
sition. Then (O2,F0) is not Hausdorff Morita equivalent to any singular foliation F on
some Riemannian manifold (M, g), whose leaf decompoistion is locally given by orbits of
some isometic Lie group action.

The non-homogeneity of LOH gives the non-existence of an isometric Lie group action
around the origin in (R16, gst) which induces LOH . Moreover, there is, more generally,
also no known (unconstrained) Lie group action around the origin generating these leaves.

In Section 7 we provide a Lie groupoid G ⇒ O2. Its construction is based on considering
the rescaling function λ : O2 ×O2 → R defined by the formula

λ(F,G, x, y) =
√
1 + 2

(
⟨x, F ⟩+ ⟨y,G⟩+ ⟨x·y, F ·G⟩

)
+ ∥x∥2 ∥F∥2 + ∥y∥2 ∥G∥2 , (7)

for all (F,G) and (x, y) ∈ O2.

Definition 1.6. The Lie groupoid G ⇒ O2 is given by the following data:
— The manifold of arrows G is an open subset of O2 ×O2 given by

G := O2 ×O2 \ C

where C = {(F,G, x, y) ∈ O2 ×O2 : λ(F,G, x, y) = 0}.
— For every arrow g = (F,G, x, y) ∈ G, the source and the target maps are given

by:

s(g) = (x, y) ,

t(g) =
1

λ(g)

(
x+ ∥x∥2 F + (x·y)·G , y + ∥y∥2G+ (y ·x)·F

)
.

— The product m(g′, g) ≡ g′ ·g for a pair of composible arrows g′ = (F ′, G′, x,′ , y′)
and g = (F,G, x, y) is given by

g′ ·g := (F + λ(g)·F ′, G+ λ(g)·G′, x, y) .

— The unit map u: O2 → G is given by associating the arrow 1(x,y) := (0, 0, x, y) to
every object (x, y) ∈ O2.

— The inverse i : G → G applied to an arrow g = (F,G, x, y) gives g−1 ≡ i(g) by
means of

g−1 = (−F/λ(g),−G/λ(g), t(g)) .

Theorem E. The orbits of the Lie groupoid G ⇒ O2 are precisely the leaves in LOH .

4. macaulay2.com
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In the same section, we then differentiate this Lie groupoid to a Lie algebroid. It consists
of the trivial vector bundle E0 = O2 over O2 and the anchor map ρ : E0 → TO2 ∼= O2

given by

ρ
(
u
v

)
=

(
∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x
∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y

)
. (8)

The Lie bracket evaluated on constant global sections
(
u
v

)
,
(
u′

v′
)
∈ Γ(E0) is defined by

[

(
u
v

)
,

(
u′

v′

)
] = (⟨x, u⟩+ ⟨y, v⟩)

(
u′

v′

)
− (⟨x, u′⟩+ ⟨y, v′⟩)

(
u
v

)
. (9)

This Lie algebroid realizes LOH as leaf decomposition induced by a singular foliation
FOH in the sense of Definition 1.1. This singular foliation turns out to be maximal
among all singular foliations with the same leaf decomposition. More precisely, utilizing
Equations (5) and (6), together with computations done using Macaulay2 in Appendix
2, prove the following result: The singular octonionic Hopf foliation FOH is generated
by all vector fields tangent to the leaves of LOH .

As mentioned before, the singular foliation FOH gives an answer to our question, in the
real analytic setting. More precisely, since the octonionic Hopf fibration is known to
be a regular Riemannian foliation [GWZ86], using Molino’s homothetic transformation
lemma [M98] we observe that the triple (O2, ds2,FOH) induces a singular Riemannian
foliation in the sense of Molino. However, in the real analytic setting we prove the
following result:

Theorem F. Let F be any singular foliation on the real analytic Riemannian manifold
(O2, ds2) having LOH as its leaf decomposition. Then the triple (O2, ds2,F) induces
a singular Riemannian foliation in the sense of Molino[M98], but not in the sense of
Definition 1.2.

Finally, we complete the study of FOH by extending the Lie algebroid (E0, [·, ·], ρ) to
a universal Lie 3-algebroid. The universal Lie ∞-algebroid of a singular foliations is
introduced in [LGLS20]. Lie ∞-algebroids, first appeared in [V10] as higher analoguous
of Lie algebroids, are defined as a positively graded vector bundle E =

⊕
i≥0E−i over

a manifold M , together with a family of graded skew-symmetric and multilinear maps
lk : ∧k Γ(E) → Γ(E) of degree 2 − k, called k-brackets and an anchor ρ : E0 → TM .
The barckets and the anchor are required to satisfy some compatibility conditions. In
[LGLS20], it is proven that for a foliated manifold (M,F), upon the existence of a ge-
omtric resolution, one can associate a Lie ∞-algebroid to the singular foliation, called
a universal Lie ∞-algebroid of F . This association turns out to be unique up to ho-
motopy, and leads to invariants of singular foliations. However, this association is not
constructive, and different singular foliations may need different techniques to compute
the universal Lie ∞-algebroid. For example, for linear foliations obtained by the ac-
tions of some subgroups of the general linear group, the construction of the associated
universal Lie ∞-algebroids is explained in [S23].

To construct a universal Lie 3-algebroid of FOH , in the first step, we use an exact sequence
found via Macaulay2 in Appendix 2. This leads to finding a geometric resolution for
the foliated manifold (O2,FOH). There, we have E0 := O2, E−1 := R⊕O⊕ R , and

xiv



E−2 := R . We have Ei = 0 for i ≥ 3. The anchor map ρ : E0 → TO2 ∼= O2 and
the 2-bracket restricted to sections of degree zero, coincide with the anchor and the Lie

bracket of the Lie algebroid (E0, [·, ·], ρ). The 1-bracket on global sections
(µ
a
ν

)
∈ Γ(E−1)

and t ∈ Γ(E−2) is given by

d(1)

µa
ν

 :=

(
µx+ a·y
νy + a·x

)
,

d(2)(t) :=

−∥y∥2t(x·y)t
−∥x∥2t

 ,

and the 2-bracket on other sections is defined as

[

(
u
v

)
,

µa
ν

] :=

 −2⟨y, a·u⟩+ 2⟨y, v⟩µ
x·(u·a) + (a·v)·y − µ(x·v)− ν(u·y)

−2⟨x, a·v⟩+ 2⟨x, u⟩ν

 ,

[

(
u
v

)
, t] := 2(⟨x, u⟩+ ⟨y, v⟩)t ,

[

µa
ν

 ,

µ′

a′

ν ′

] := 4⟨a, a′⟩ − 2µν ′ − 2µ′ν . (10)

The other brackets are set to be zero.

In Proposition 10.10 we prove that these data define a Lie 3-algebroid, which is in
addition minimal at the origin, i.e. all the 1-brackets vanish at the origin. Using the
results of [LGLS20], we prove:

Theorem G. The Lie algebroid (E0, [·, ·], ρ) and similarly the Lie groupoid G ⇒ O2 have
the minimal dimension among Lie algebroids and Lie groupoids over O2 which induce
the singular foliation FOH .

The structure of this thesis is as follows :

Section 2 contains a short review of the definitions and main properties of singular
foliations related to the goal of this manuscript, in particular the notion of Hausdorff
Morita equivalence of singular foliations.

In Section 3 we introduce singular Riemannian foliations and study some of their proper-
ties. We show (in Theorem 3.6 below) that every finitely generated singular Riemannian
foliation admits an almost Lie algebroid structure with connection to turn the singular
Riemannian foliation into an almost Killing Lie algebroid [KS19]. We define Morita
equivalence of singular Riemannian foliations, show that it defines an equivalence rela-
tion, and prove Theorem A.

Section 4 introduces the category IPois, the reduction functor F to PoisAlg, and pro-
vides several examples and properties of I-Poisson manifolds.

In Section 5 we show how singular foliations and singular Riemannian foliations give rise
to particular I-Poisson and dynamical I-Poisson manifolds, respectively.
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In Section 5.4 we prove Theorems B and C.

In Section 6, we provide a self-contained background on the normed division algebras
and their properties. In particular, for the case of octonions, we mention many identities
which turn out to be useful in calculations, in the absence of the associativity. We
conclude the section by introducing the singular Hopf leaf decomposition associated to
each of the four normed division algebras R,C,H and O.

In Section 7, we explain the construction of the Lie groupoid which induces the singu-
lar octonionic Hopf leaf decomposition as its orbits. We then differentiate it to a Lie
algebroid of rank 16, realizing LOH as the leaf decomposition of a singular foliation.

Section 8 is devoted to the study of FOH . Non-homogeneity and maximality of FOH are
explained as well.

In Section 9, we study FOH as a singular Riemannian foliation in the sense of Molino
[M98] and in our sense. We explain how this example distinguishes the two definitions
in the real analytic setting.

In Section 10, finally after recalling the Universal Lie ∞-algebroid of singular foliations,
we construct the Universal Lie 3-algebroid of (O2,FOH), and prove the minimality of the
rank for the Lie algebroid (E0, [·, ·], ρ), and correspondingly for the Lie groupoid G ⇒ O2.

The definition of almost Killing Lie algebroids as well as part of the proof of Theorem
3.6 (in the form of Proposition 1.5) are deferred to Appendix 1. The computations done
via Eisenbaud’s Macaulay2 are explained in Appendix 2.

xvi



Singular Riemannian foliations

As a well-studied branch of differential geometry, regular foliations are defined as smooth
decompositions of manifolds into connected and injectively immersed submanifolds of a
same dimension k called leaves [MM10]. Using the Frobenius theorem [F77], they can
be equivalently defined as involutive k-dimensional smooth distributions on manifolds.
In the case of regular foliations, Riemannian foliations have been studied in differential
geometry since the 1950s (see for example [H58] and [R59]). They are defined as regular
foliations on Riemannian manifolds with the property that every geodesic perpendicular
to one leaf stays perpendicular to all the leaves it meets.

If we let the dimension of the leaves to vary, a smooth singular leaf decomposition could
not be equivalently characterized with as certain involutive submodules of vector fields.
However, the second definition [AS09], contains more information than a leaf decom-
position. For singular foliations as singular leaf decompositions, definition of singular
Riemannian foliations in the traditional setting was introduced by Molino [M98], by re-
quiring the above property of geodesics for the now possibly singular leaf decomposition.
Examples of such foliations are given by isometric Lie group actions on Riemannian
manifolds and, more generally, orbit decompositions induced by Riemannian groupoids
[dHF18]. But, for the more recent definition of singular foliations by [AS09], using the
same property for the induced leaf decomposition seems inadequate due to the additional
information carried by singular foliations.

In this chapter, we present a new definition of singular Riemannian foliations which
also depends on the choice of the underlying singular foliation. We use a compatibility
condition which first appeared in the study of gauge theory for standard sigma models
[KS16] and was used in the definition of Killing Cartan Lie algebroids. Every singular
Riemannian foliation in this sense turns out to have a leaf decomposition that is a singular
Riemannian foliation in the sense of Molino [M98]. The converse is not always true. For
regular foliations, on the other hand, the two notions coincide.
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2 Background on singular foliations

In what follows, M is assumed to be a smooth manifold and Xc(M) denotes the C∞(M)-
module of compactly supported vector fields on M . For more details and examples of
singular foliations see [AS09, LGLS20] or [LGLR22].

2.1 Basic definitions and examples

Definition 2.1. A C∞(M)-submodule F ⊂ Xc(M) is said to be locally finitely generated
if, for every point q ∈ M , there exists an open neighborhood U ⊂ M containing q
such that the submodule ι−1

U (F) := {X|U : X ∈ F , supp(X) ⊂ U} of Xc(U) is finitely
generated. This means that there exist finitely many vector fields X1, . . . , XN ⊂ X(U)
such that

ι−1
U (F) = ⟨X1, . . . , XN⟩C∞

c (U) . (11)

Remark 2.2. Note that the generators of ι−1
U (F) in Definition 2.1 are not required to be

compactly supported. This allows for more flexibility in constructing singular foliations
on M .

Example 2.3. Let M = R. Then the C∞(R)-module Xc(R) is globally generated by the
single vector field d

dx
. On the other hand, the C∞(R)-submodule of compactly supported

vector fields which vanish on R− is not locally finitely generated around 0.

Definition 2.4. A singular foliation on M is defined as C∞(M)-submodule F of Xc(M)
which is locally finitely generated and closed with respect to the Lie bracket of vector
fields. The pair (M,F) is then called a foliated manifold.

For every foliated manifold (M,F) the leaf Lq passing through q ∈ M is given by the
set of points which can be joined to q by the flows of finitely many vector fields in F .

Theorem 2.5 ([H62]). Let (M,F) be a foliated manifold. Then for every point q ∈M ,
the subset Lq is an injectively immersed submanifold of M .

The space of leaves of (M,F), i.e. the quotient space obtained form the equivalence
relation of belonging to the same leaf, is denoted by M/F .

Let Lq be the leaf passing through the point q ∈M in a foliated manifold (M,F). Then,
by definition of the leaves, TqLq can be identified with {X|q : X ∈ F} ⊂ TqM , which
motivates:

Definition 2.6. For every point q ∈M in a foliated manifold (M,F), the tangent of F
at q is defined as

Fq := {X|q : X ∈ F} ⊂ TqM .

If q 7→ dim(Fq) is constant on M , we obtain regular foliations as particular singular
ones. In this case, by the Frobenius theorem [F77], there is a one-to-one correspondence
between the leaf decomposition of the foliation and the module of vector fields generating
it. This is no more the case if the singular foliation is non-regular; there always exist
different modules generating the same leaf decomposition then (for an example, see
Example 2.9 below). Note also that in the non-regular case all the vector fields tangent
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to the leaves of a given singular foliation do not necessarily define a singular foliation
anymore: the module of Example 2.3, despite not being a singular foliation since not
finitely generated, induces a leaf decomposition, which can be obtained also by an honest
singular foliation with the single generator χ d

dx
. Here χ ∈ C∞(R) can be chosen, e.g.,

as the function

χ(x) =

{
exp(−1

x2 ) x > 0

0 x ≤ 0
· (12)

Remark 2.7. The function M → N given by q 7→ dim(Fq) is lower semi-continuous.
As a result, the subset U ⊂ M of the continuity set of dim(Fq) is open and dense, and
ι−1
U (F) induces a regular foliation over each connected component of U [AS09].

The following example shows the importance of being locally finitely generated:

Example 2.8. On M = R2, consider the module G generated by the vector fields ∂x
and X (x)∂y, where χ is the function defined in (12), together with all their multiple
commutator Lie brackets. Then, by construction, G is closed under the Lie bracket.
However, it is not locally finitely generated as a C∞(M)-module since with each derivative
on X we obtain a new, independent coefficient in front of ∂y. As a consequence, we loose
the well-behavedness of a leaf-decomposition: although every two points in R2 can be
connected by a sequence of flows of vector fields in G (so that, in this sense, there would
be only one leaf that is R2 itself), the tangent of G at every point in the left half-plane is
only one-dimensional.

As mentioned above, Definition 2.4 contains more information than a well-behaved de-
composition of M into leaves:

Example 2.9. Consider M = R and fix some k ∈ N. Then the vector fields vanishing at
least to order k at the origin form a singular foliation Fk. While the leaf decomposition
is the same for all k, one has Fk+1 ⊊ Fk.

To capture some of this additional information contained in the definition of a singular
foliation, we extract some more data from the module F by the following definition of
[AS09].

Definition 2.10. Let (M,F) be a foliated manifold. For every point q ∈ M , the fiber
of F at q is defined as:

Fq := F/Iq ·F
where Iq := {f ∈ C∞(M) : f(q) = 0} is the vanishing ideal of q in C∞(M).

Remark 2.11. The function M → N sending q → dim(Fq) is upper semi-continuous,
and dim(Fq) gives the minimal number of vector fields locally generating F around q ∈M
[AS09].

Note that for every point q ∈ M the evaluation map evq : Fq → Fq, [X] → X|q is a
homomorphism of vector spaces and induces the following short exact sequence:

0→ ker(evq) ↪−→ Fq
evq−−→ Fq → 0 . (13)

here [X] denotes the equivalence class of the vector field X ∈ F .

It is not difficult to see that the Lie bracket on F induces a Lie bracket on the finite-
dimensional vector space ker(evq) ⊂ Fq.
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Definition 2.12. The vector space gFq := ker(evq) together with the bracket inherited by
Fq defines the isotropy Lie algebra of F at q.

In the case of regular foliations, the map evq : Fq → Fq is a vector space isomorphism
and gFq = 0. So one can say that the isotropy Lie algebra gFq characterizes in part the
singularity of F at q ∈M .

In Example 2.9 all fibers and isotropy Lie algebras at the origin are isomorphic. This
changes, if we increase the dimension of M :

Example 2.13. Let M = Rn, n ≥ 2, and let F be the singular foliation generated by
vector fields vanishing at the origin at least of order k ∈ N. There are always only two
leaves M\ {0} and {0}, but the fiber at the origin has different dimensions for different
choices of k, dimF0 =

(
k+n−1
n−1

)
.

2.2 Hausdorff Morita equivalence

Definition 2.14 ([AS09, GZ19]). Let f : N → M be a smooth map and let F be a
singular foliation on M . Then f is said to be transverse to F , if for every q ∈ M one
has

dqf(TqN) + Ff(q) = Tf(q)M .

Example 2.15. If S ⊂M is transverse to the leaves of a foliated manifold (M,F), then
the inclusion map ιS : S ↪−→M is transverse to F .

Example 2.16. A submersion π : N → M is transverse to every singular foliation on
M .

Proposition 2.17 ([AS09]). Let (M,F) be a foliated manifold and let f : N →M be a
smooth map transverse to F . Then the C∞(N)-module f−1F generated by vector fields
on N projectable to F is a singular foliation on N .

Here, a vector field V ∈ X(N) is called projectable to F , if there exists a vector field
X ∈ F such that for every point q ∈ N we have:

dqf(V |q) = X|f(q) .

Definition 2.18 ([GZ19]). Two foliated manifolds (M1,F1) and (M2,F2) are Hausdorff
Morita equivalent if there exists a smooth manifold N and surjective submersions with
connected fibers πi : N →Mi, i = 1, 2 such that:

π−1
1 F1 = π−1

2 F2 .

In this case we write (M1,F1) ∼ME (M2,F2).

It is shown in [GZ19] that the singular foliations underlying Morita equivalent Lie alge-
broids [G01] or Morita equivalent Poisson manifolds [X91] are Hausdorff Morita equiva-
lent. Also the Morita equivalence of regular foliations [M98] is a special case. Hausdorff
Morita equivalence defines an equivalence relation on foliated manifolds—something that
holds true for Poisson manifolds only upon restriction to those integrating to a symplec-
tic groupoid. The main fact about Hausdorff Morita equivalent foliated manifolds is
that they have Morita equivalent holonomy groupoids (as open topological groupoids)
defined in [AS09].
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Theorem 2.19 ([GZ19]). Let (M1,F1) and (M2,F2) be foliated manifolds which are
Hausdorff Morita equivalent by means of (N, π1, π2). Then:
(i) The map sending the leaf passing through q ∈ M1 to the leaf of F2 containing
π2(π

−1
1 (q)) is a homeomorphism between the leaf spaces. It preserves the codimension

of leaves and the property of being an embedded leaf.
(ii) Let q1 ∈ N1 and q2 ∈ N2 be points in corresponding leaves. Choose transversal slices
Sq1 at q1 and Sq2 at q2. Then the foliated manifolds (Sq1 , ι

−1
Sq1
F1) and (Sq2 , ι

−1
Sq2
F2) are

diffeomorphic and the isotropy Lie algebras gF1
q1

and gF2
q2

are isomorphic.

Example 2.20. For smooth, connected manifolds M and N , (M,Xc(M)) and (N,Xc(N))
are always Hausdorff Morita equivalent. On the other hand, (M, 0) and (N, 0) are Haus-
dorff Morita equivalent only if M and N are diffeomorphic.

Example 2.21. Let (M1,F1) and (M2,F2) be isomorphic foliated manifolds, i.e. there
exists a diffeomorphism Φ: M1 →M2 satisfying Φ∗(F1) = F2. Then we have (M1,F1) ∼ME

(M2,F2) by choosing N =M1, π1 = IdM1 and π2 = Φ in Definition 2.18.
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3 Module singular Riemannian foliations

In what follows, (M, g) denotes a Riemannian manifold. We begin by recalling the first
approach to defining singular Riemannian foliations, following [M98]. Then, we introduce
a second approach that considers additional information carried by a singular foliation.
We examine its properties and also explore Morita equivalence for both approaches.

3.1 Approaches for defining singular Riemannian foliations

The first approach to define singular Riemannian foliation, due to Molino [M98], requires
compatibility between the Riemannian metric and the leaf decomposition of the singular
foliation. To distinguish it from the second approach, we add the suffix ’geometric’ before
singular Riemannian foliation.

Definition 3.1. Let F be a singular foliation on (M, g). We call the triple (M, g,F)
a geometric singular Riemannian foliation, if every geodesic orthogonal to a leaf at one
point is orthogonal to all the leaves it meets.

In this text, we focus mainly on the following definition of singular Riemannian foliations,
streamlining the one given in [KS19] 5 :

Definition 3.2. Let F be a singular foliation on (M, g). We call the triple (M, g,F) a
module singular Riemannian foliation, if for every vector field X ∈ F we have:

LXg ∈ Ω1(M) ⊙ g♭(F). (14)

Here ⊙ stands for the symmetric tensor product and g♭ is the map on sections induced by
the musical isomorphism g♭ : TM → T ∗M , (q, v) 7→ gq(v, ·). Let (g♭)−1 : Ω1(M)→ X (M)
denote the corresponding inverse map and g−1 ∈ Γ(S2TM) the 2-tensor inducing it.
Then, by means of LX(g♭)

−1 = −(g♭)−1 ◦ (LXg♭) ◦ (g♭)−1, we can express the defining
property of a module singular Riemannian foliation also in the following form

Lemma 3.3. The triple (M, g,F) is a module singular Riemannian foliation if and only
if

LXg
−1 ∈ X(M)⊙F

for every vector field X ∈ F .

As a consequence of the following lemma and proposition, it is enough to check Equation
(14) locally for a family of generators:

Lemma 3.4. Let (M,F) be a foliated manifold such that F = ⟨X1, . . . , XN⟩C∞
c (M) for

some positive integer N . Then the triple (M, g,F) is a module singular Riemannian
foliation if and only if there exist ωb

a ∈ Ω1(M) for a, b = 1, . . . , N such that

LXag =
N∑
b=1

ωb
a ⊙ g♭(Xb) .

5. For the relation of module singular Riemannian foliations with the notion defined in [KS19] see
Appendix 1 as well as Theorem 3.6 below.
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Proof. First assume that (M, g,F) is a module singular Riemannian foliation. Choose a
partition of unity {ρi}∞i=1 subbordinate to a locally finite cover {Ui}∞i=1 of M . For every
a = 1, . . . , N we have

LXag =
∞∑
i=1

ρiLXag =
∞∑
i=1

(LρiXag − (dρi) ⊙ g♭(Xa))

=
∞∑
i=1

(
N∑
b=1

ηbi,a ⊙ g♭(Xb)− (dρi) ⊙ g♭(Xa)

)

=
N∑
b=1

ωb
a ⊙ g♭(Xb) ,

for some 1-forms ηbi,a onM and ωb
a :=

∑∞
i=1 η

b
i,a−δbadρi. For the converse, letX be a vector

field in F . By assumption, there exist f 1, . . . , fN ∈ C∞
c (M) such that X =

∑N
a=1 f

aXa.
It follows that

LXg =
N∑
a=1

LfaXag =
N∑
a=1

faLXag + (dfa) ⊙ g♭(Xa)

=
N∑
a=1

ωb
a ⊙ g♭(f

aXb) + (dfa) ⊙ g♭(Xa) ∈ Ω1(M) ⊙ g♭(F),

An important property of the definition of a geometric singular Riemannian foliation is
that the defining condition is local. This is less trivial in the case of module singular
Riemannian foliations.

Proposition 3.5. The triple (M, g,F) is a module singular Riemannian foliation if and
only if for every point q ∈ M there exist an open neighborhood U ⊂ M around q such
that (U, gU , ι−1

U F) is a module singular Riemannian foliation, where gU is the restriction
to U of g.

Proof. If (M, g,F) is a module singular Riemannian foliation, then restricting both
sides of Equation (14) to any open subset U ∈M implies that (U, gU , ι−1

U F) is a module
singular Riemannian foliation. It remains to prove the converse. Choose a partition of
unity {ρi}∞i=1 subbordinate to a locally finite cover {Ui}∞i=1 of M , with open subsets Ui

small enough such that ι−1
Ui
F = ⟨Xi,1, . . . , Xi,Ni

⟩C∞
c (Ua)

for some positive integer Ni and
vector fields Xi,1, . . . , Xi,Ni

∈ X(Ui). Then for every vector field X ∈ F ,

X =
∞∑
i=1

ρiX .

Moreover, for every positive integer i, there exist functions f i,1, ..., f i,Ni ∈ C∞
c (Ui) such

that

ρiX =

Ni∑
a=1

f i,aXi,a ,
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and consequently

X =
∞∑
i=1

Ni∑
a=1

f i,aXi,a .

This together with Lemma 3.4 now permit us to prove that (M, g,F) is a module singular
Riemannian foliation:

LXg =
∞∑
i=1

Ni∑
a=1

f i,aLXi,a
gUi

+ (df i,a) ⊙ (g)♭(Xi,a) ,

which proves LXg ∈ Ω1(M) ⊙ g♭(F) since X is compactly supported and only finitely
many f i,a are nonzero on supp(X).

Every finitely generated singular foliation is image of the anchor map of an almost Lie
algebroid [LGLS20] (see Appendix 1). For module singular Riemannian foliations, one
has furthermore:

Theorem 3.6.
— For every module singular Riemannian foliation (M, g,F) with F finitely gen-

erated, there exists an almost Lie algebroid (A, ρ, [·, ·]A) over M equipped with a
connection ∇ : Γ(A)→ Γ(T ∗M ⊗ A) such that F := ρ(Γc(A)) and

A∇g = 0, (15)

where A∇ is the A-connection induced by ∇, see Equation (100) in Appendix 1.
— Let (A, ρ, [·, ·]A) be an almost Lie algebroid over a Riemannian manifold (M, g),

such that the triple (M, g,F := ρ(Γc(A))) is a module singular Riemannian foli-
ation. Then there exists a connection ∇ on A such that (15) holds true.

Proof. The proof of the first part of the Theorem can be performed by a straightforward
adaptation of the proof of Proposition 1.5 in the Appendix. In particular, the almost
Lie algebroid A then can be chosen to be trivial, A =M ×Rr, where r is the number of
generators of F .
We prove the second part of the Theorem, where now one is given a particular, not
necessarily trivial almost Lie algebroid A inducing F , as follows: There exists a vector
bundle V → M such that (Ã := A ⊕ V ) → M is a trivial vector bundle of rank N .
Consequently there exist sections e1, . . . , eN ∈ Γ(A) and v1, . . . , vN ∈ Γ(V ) such that
e1 + v1, . . . , eN + vN is a global frame for Ã. Now we define the almost Lie algebroid
(Ã, ρ̃, [·, ·]Ã), where the bracket and the anchor map are the trivial prolongation of [·, ·]A
and ρ to Ã (since in an almost Lie algebroid one does not need to satisfy the Jacobi
identity for the bracket, this extension does not pose any problems here). By assump-
tion ρ̃(Γc(Ã)) = ρ(Γc(A)) defines a module singular Riemannian foliation on (M, g).
According to Lemma 3.4, this is equivalent to the existence of 1-forms ωb

a ∈ Ω1(M) such
that

LXag =
N∑
b=1

ωb
a ⊙ ιXb

g ∀ a = 1, . . . , N . (16)

Here Xa := ρ̃(ea + va) = ρ(ea). Now define a connection ∇̃ on Ã by

∇̃(ea + va) =
N∑
b=1

ωb
a ⊗ (eb + vb) ,
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which induces a connection on A as follows: Let s ∈ Γ(A) ⊂ Γ(Ã), then

∇Xs := PrA ◦ (∇̃Xs) ∀X ∈ X(M) ,

where PrA : Ã→ A is the projection to the first component. In particular, for every ea,
there exist unique functions f b

a ∈ C∞(M) for b = 1, . . . , N such that ea =
∑N

b=1 f
b
a(eb+vb)

and we have

∇Xea = PrA ◦ (∇̃X(
N∑
b=1

f b
a(eb + vb))) =

N∑
b=1

X(f b
a)eb +

N∑
b,c=1

(f b
aιXω

c
b)ec .

Now for every vector field X ∈ X(M), we have:

2g (ρ (∇Xea) , X) = 2g

(
ρ

(
N∑
b=1

X(f b
a)eb +

N∑
b,c=1

(f b
aιXω

c
b)ec

)
, X

)

= 2
N∑
b=1

f b
a((

N∑
c=1

(ιXω
c
b) g (Xc, X)) + 2

N∑
b=1

X(f b
a)g(Xb, X)

=
N∑
b=1

f b
a

(
N∑
b=1

ωc
b ⊙ ιXcg

)
(X,X) +

N∑
b=1

(df b
a ⊙ ιXb

g)(X,X)

=
N∑
b=1

(
f b
aLXb

g + df b
a ⊙ ιXb

g
)
(X,X)

= (LXag) (X,X) ,

and, by Lemma 1.4 in the Appendix below, the statement then follows.

So locally one can define singular foliations also as an equivalence class of almost Lie
algebroids and module singular Riemannian foliations as an equivalence class of almost
Lie algebroids over a Riemannian base with an appropriately compatible connection.
(For some related cohomology see also [HS22]).

3.2 Comparison between the two approaches

Using the language of almost Lie algebroids, the following proposition is Theorem 7 in
[KS19]. It will be proven in an alternative, more direct way in the present manuscript,
using the techniques of I-Poisson geometry:

Proposition 3.7. Every module singular Riemannian foliation is a geometric singular
Riemannian foliation.

Note that the converse is not true, at least not for every choice of the module F :

Example 3.8. Consider F = ⟨(x2+y2)(x∂y−y∂x)⟩C∞
c (R2) on M = R2 equipped with the

standard metric gst. The leaves are circles centered at the origin, which is a geometric
singular Riemannian foliation, but it does not satisfy Equation (14). More precisely, for
V := (x2 + y2)(x∂y − y∂x), a simple calculation implies that

LV gst = 4

[
xdx+ ydy

x2 + y2

]
⊙ (gst)♭(V ),

on R2 \ (0, 0). Evidently, the 1-form xdx+ydy
x2+y2

fails to have a smooth extension to the
origin.
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Despite the fact that the singular foliation introduced in Example 3.8 does not define
a module singular Riemannian foliation on R2, it is possible to find a module singular
Riemannian foliation with the same leaf decomposition. In fact, the singular foliation
F0 generated by the vector field V0 = x∂y − y∂x is a Killing vector field for the standard
metric gst, and Equation (19) is obviously satisfied.

Question: Let (M, g,F) be a geometric singular Riemannian foliation. Is it possible to
find a module singular Riemannian foliation (M, g,F ′), having the same leaf decompo-
sition as (M, g,F)?
For the smooth setting, this is still an open problem. A counterexample for the polyno-
mial or analytic setting is the singular octonionic Hopf foliation, introduced in Section
8.

For singular foliations there is a pullback under maps transverse to the singular foliation,
see Definition 2.17 and the text following it. To adapt this to the context of singular
Riemannian foliations, we consider the following:

Definition 3.9. Let π : (N, h) → (M, g) be a smooth submersion between Riemannian
manifolds. It is called a Riemannian submersion if, for every q ∈ N , the restriction
dqπ : Hq → Tπ(q)M of dqπ to Hq = (ker dqπ)

⊥g ⊂ TqN is an isometry. The smooth
distribution H = (Hq)q∈N of rank dim(M) is called the horizontal distribution of π.

Lemma 3.10. Let π : (N, h) → (M, g) be a Riemannian submersion and (M,F) a
singular foliation. Then the pullback singular foliation can be generated as follows

π−1F = ⟨FH + Γ (ker dπ)⟩C∞
c (N) , (17)

where FH is the horizontal lift of F .

Proof. By definition 2.17 the inclusion ⟨FH+Γ (ker dπ)⟩C∞
c (N) ⊂ π−1F is evident. Now

let W be a projectable vector field on N projecting to F , i.e. there exists a vector field
X ∈ F such that dqπ(W |q) = X|π(q). On the other hand, if we decompose W into its
horizontal part WH and its vertical part WV , we have dqπ(WH |q) = X|π(q), which gives
XH = V H. This means that generators of π−1F belongs to FH+Γ (ker dπ), consequently
π−1F = ⟨FH + Γ (ker dπ)⟩C∞

c (N).

Proposition 3.11. Let π : (N, h)→ (M, g) be a Riemannian submersion and let (M, g,F)
be a module singular Riemannian foliation. Then (N, h, π−1F) is a module singular
Riemannian foliation as well. The same statement holds true for geometric singular
Riemannian foliations.

Proposition 3.11 will be proven in Section 5.4 below. As a consequence, and by the fact
that (regular) Riemannian foliations are locally modeled on Riemannian submersions
[M98], we obtain:

Proposition 3.12. Let (M,F) be a regular foliation on a Riemannian manifold (M, g).
Then (M, g,F) is a geometric singular Riemannian foliation if and only if it is a module
singular Riemannian foliation.

Example 3.13. Let G be a Lie group acting by isometries on (M, g). Then after Lemma
3.4 the C∞(M)-submodule F ⊂ Xc(M) generated by fundamental vector fields is a module
singular Riemannian foliation on (M, g), since every fundamental vector field X is a
Killing vector field: LXg = 0.
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Example 3.14. The proof of Theorem 1 in [KS19] shows that the geometric singular
Riemannian foliation induced on the manifold of objects of a Riemannian groupoid—as
defined in [dHF18]—is a module singular Riemannian foliation.

3.3 Morita equivalence of singular Riemannian foliations

Definition 3.15. Two module singular Riemannian foliations (M1, g1,F1) and (M2, g2,F2)
are Morita equivalent if there exists a Riemannian manifold (N, h) together with two sur-
jective Riemannian submersions with connected fibers πi : (N, h) → (Mi, gi) for i = 1, 2
such that

π−1
1 F1 = π−1

2 F2

and we write (N1, g1,F1) ∼ME (N2, g2,F2).

Remark 3.16. This notion of Morita equivalence can be defined for geometric singular
Riemannian foliations as well as for module ones. Consequently, if two module singular
Riemannian foliations are Morita equivalent then they are also Morita equivalent as
geometric singular Riemannian foliations. Moreover, if we forget about Riemannian
metrics, we obtain Hausdorff Morita equivalent foliated manifolds.

While for Hausdorff Morita equivalence of singular foliations transitivity of the equiva-
lence relation is relatively easy to show, this is more involved in case of the additional
Riemannian structure due to the presence of the metric.

Proposition 3.17. The Morita equivalence of module singular Riemannian foliations
defines an equivalence relation.

Proof. Reflexivity is evident from the definition and for the self-equivalence the identity
map defines a Morita equivalence between a module singular Riemannian foliation and it-
self. Now we prove the transitivity as follows: Assume that (M1, g1,F1) ∼ME (M2, g2,F2)
given by πi : (U, gU) → (Mi, gi) for i = 1, 2 and (M2, g2,F2) ∼ME (M3, g3,F3) given by
ηi : (W, gW )→ (Mi, gi) for i = 2, 3. Now consider the smooth manifold U π2×η2W defined
as

U π2×η2 W := {(u,w) ∈ U ×W | π2(u) = η2(w) ∈M2}

with canonical projections pU : U π2×η2 W → U and pW : U π2×η2 W → W . Note that
the tangent space at (u,w) ∈ U π2×η2 W is given by

T(u,w)(U π2×η2 W ) = {(X, Y ) ∈ TuU × TwW | duπ2(X) = dwη2(Y )}

since every smooth curve on U π2×η2 W can be expressed as (γU , γW ) where γU and γW
are smooth curves on U and W , respectively, such that π2(γU) = η2(γW ). We now define
a Riemannian metric g on U π2×η2 W as follows: 6

g((X1, Y1), (X2, Y2)) := gU(X1, X2) + gW (Y1, Y2)− g2(duπ2(X1), duπ2(X2)) (18)

where (Xi, Yi) ∈ T(u,w)(U π2×η2 W ) for i = 1, 2, and note that duπU(X1) = dwηW (Yi) for
i = 1, 2. It is clearly smooth and symmetric. In addition we have

g((X, Y ), (X, Y )) = ∥X∥2 + ∥Y ∥2 − ∥duπ2(X)∥2 = ∥X∥2 + ∥Y ∥2 − ∥dwη2(Y )∥2 ≥ 0

6. We were informed that this idea has been used already in [W83] and [dHF18].
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for every (X, Y ) ∈ T(u,w)(U π2×η2 W ) since πU and ηW are Riemannian submersions, and
it is zero if and only if both X and Y are zero vectors. Hence (U π2×η2 W, g) defines a
Riemannian manifold. Now we claim that the projections pU and pW are Riemannian
submersions. We have

ker(d(u,w)pU) = {(0, Y ) ∈ TuU × TwW | dwη2(Y ) = 0} ,

so its orthogonal complement is given by

H(u,w) =
{
(X, Y ) ∈ T(u,w)(U π2×η2 W ) | gW (Y, Z) = 0 ∀Z ∈ ker(dwη2)

}
.

Using the fact that ηW is a Riemannian submersion, for every two vectors (X1, Y1) and
(X2, Y2) in H(u,w) we have:

g((X1, Y1), (X2, Y2)) = gU(X1, X2) + gW (dwη2(Y1), dwη2(Y2))− g2(dwη2(Y1), dwη2(Y2))

= gU(X1, X2) = gU(d(u,w)pU(X1, Y1), d(u,w)pU(X2, Y2))

which proves that pU is a Riemannian submersion. It has connected fibers since for every
u ∈ U , we have p−1

U (u) = {u} × η−1
2 (π2(u)), which is connected. Similarly it is shown

that pW is a Riemannian submersion with connected fibers. These two Riemannian
submersions are surjective by construction. So the Riemannian manifold (U π2×η2 W, g)
and the surjective Riemannian submersions with connected fibers π1 ◦ pU and π2 ◦ pW

define a Morita equivalence between (N1, g1,F1) and (N3, g3,F3). This completes the
proof.

Although the leaf space of a singular Riemannian foliation may not be topologically
well-behaved, it inherits a pseudo-metric space structure from the Riemannian metric.
Following [PPT10], for every two leaves L1 and L2 of a SRF (M, g,F), the distance
between them is defined by

dM/F(L1, L2) := inf

{
N∑
i=1

Lg(γi)

}
.

Here the infimum is taken over all discrete paths (γ1, · · · , γN) joining L1 and L2, i.e. a
family of piecewise smooth curves γ1, · · · , γN : [0, 1] → M for some positive integer N ,
such that γ1(0) ∈ L1, γN(1) ∈ L2 and γi(1) and γi+1(0) belong to the same leaf for each
i = 1, · · · , n− 1.

As a corollary of Remark 3.16 and Theorem 2.19, there exists a homeomorphism between
the leaf spaces of Morita equivalent module singular Riemannian foliations. The following
theorem is the Riemannian counterpart of part (i) of Theorem 2.19:

Theorem 3.18. Let (N1, g1,F1) and (N2, g2,F2) be Morita equivalent module singu-
lar Riemannian foliations. Then the homeomorphism between the leaf spaces given in
Theorem 2.19 is distance preserving.

Proof. Assume that (M1, g1,F1) ∼ME (M2, g2,F2) is given by πi : (N, h) → (Mi, gi)
for i = 1, 2. Let L1 and L′

1 be two leaves in (M1, g1,F1) and let L2 and L′
2 be their

corresponding leaves in (M2, g2,F2). Consider a discrete path (γ1, · · · , γn) joining L1

and L′
1. By lifting each γi into finitely many piecewise smooth horizontal paths, one

12



obtains a discrete path (η1, . . . , ηn′) for some n′ ≥ n on n joining π−1
1 (L1) and π−1

1 (L′
1)

with the same length as (γ1, · · · , γn)—since the lifts are horizontal with respect to the
Riemannian submersion π1. Since π2 is a Riemannian submersion, (π2(η1), · · · , π2(ηn′))
is a discrete path joining L2 and L′

2 with a length which is smaller than or equal to the
length of (γ1, · · · , γn)—since the lifts are not necessarily horizontal with respect to π2.
Consequently

dM1/F1(L1, L
′
1) ≥ dM2/F2(L2, L

′
2).

Similarly dM2/F2(L2, L
′
2) ≥ dM1/F1(L1, L

′
1), which implies dM1/F1(L1, L

′
1) = dM1/F2(L2, L

′
2).

This proves the statement.

To define a category SRF of module singular Riemannian foliations one needs to specify
their morphisms. We are not going to do this in the present manuscript. But since any
good notion of such morphisms should include Riemannian submersions which satisfy
that the pullback of the singular foliation on the base agrees with the singular foliation
on the total space, we define the following full subcategory SRF0 :

Definition 3.19. The category SRF0 has module singular Riemannian foliations as its
objects and Riemannian submersions π : (N, h,FN) → (M, g,FM) satisfying π−1FM =
FN as its morphisms.

3.4 Singular foliations as sheaves

One can equivalently define singular foliations as an involutive and locally finitely gen-
erated subsheaf of the sheaf of vector fields X. This definition is equivalent to Definition
2.4 in the smooth setting, but it offers advantages when working with sheaves of polyno-
mial, real analytic, or holomorphic functions (See [LGLS20] or [GZ19]). Notably, since
these sheaves of rings are Noetherian, the condition of being locally finitely generated
is automatically satisfied and can therefore be omitted. We observe that the definition
of module singular Riemannian foliations can be directly adapted to the definition of
singular foliations as sheaves.

In what follows, M is a smooth or real analytic manifold, or an affine variey. For
every open subset U ⊂ M , let O : U 7→ O(U) be the sheaf of smooth, real analytic or
polynomial functions. We denote by X(U) the O(U)-module of vector fields on U and
the sheaf of vector fields by X : U 7→ X(U).

Definition 3.20. A sheaf F : U 7→ F(U) of O-modules on M is called locally finitely
generated, if for every point q ∈ M , there exists a neighborhood U containing q and
finitely many sections X1, . . . , XN ∈ F(U), such that for every open subset V ⊂ U we
have

F(V ) = ⟨X1|V , . . . , XN |V ⟩O(V )

Definition 3.21. A singular foliations on an O-manifold M is a subsheaf F ⊂ X of
the sheaf of vector fields, which is locally finitely generated and involutive, i.e. the O(U)-
module of vector fields F(U) is closed under the Lie bracket of vector fields. The pair
(M,F) is referred to as a foliated manifold.

Theorem 2.5 stays valid and implies the partition of the foliated manifold (M,F) into
leaves. Moreover, except the pullback operation, all definitions and properties mentioned
in Section 2 can be similarly defined and verified for Definition 3.21 of singular foliations.
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Remark 3.22. The two definitions coincide in the smooth setting. More precisely, if
O is the sheaf of smooth functions on the smooth manifolds M , there is a one-to-one
correspondence between locally finitely generated subsheaves of the sheaf of vector fields
and the C∞(M)-submodules of the compactly supported vector fields [GZ19].

Definition 3.2 of module singular Riemannian foliation, can be directly adapted to Defi-
nition 3.21 of singular foliations, as follows:

Definition 3.23. Let F be a singular foliation on the Riemannian manifold (M, g). The
triple (M, g,F) defines a module singular Riemannian foliation, if for every open subset
U ⊂M and X ∈ F(U) we have

LXg ∈ Ω1(M)⊙ g♭(F(U)) . (19)

Here, ⊙ stands for the symmetric inner product of 1-forms and g♭ : TM → T ∗M is the
musical isomorphism given by (q, v) 7→ gq(v, ·) for all (q, v) ∈ TM .

In particular, for an open subset U with finitely many generators X1, . . . , XN ∈ F(U),
Equation (19) is satisfied if and only if there exist 1-forms ωb

a ∈ Ω1(U) such that

LXag = ωb
a ⊙ g(Xb, ·) . (20)

Remark 3.24. As a consequence of Proposition 3.5, Definition 3.23 is equivalent to
Definition 3.2 in the smooth setting.
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I-Poisson geometry

The idea of defining I-Poisson manifolds arises from an algebraic perspective on the
coisotropic reduction of Poisson manifolds [MR86]. Generalizing the well-known exam-
ple of the symplectic reduction [MW74], coisotropic reduction is defined for a Poisson
manifold together with a closed submanifold whose annihilating functions form an ideal
closed with respect to the Poisson bracket. This ensures that the Hamiltonian flows of
functions in this ideal decompose the coisotropic submanifold into leaves. Under certain
regularity conditions, the leaf space inherits a Poisson structure.

In differential geometry and mathematical physics, the regularity conditions for applying
the coisotropic reduction are not always satisfied, as shown in examples of this chapter.
To study examples with singularities and emphasize the algebraic aspects of the reduc-
tion, useful ideas have been developed in [SW83, AGJ90] and more recently in [DEW19].

In this chapter, we introduce I-Poisson manifolds in their most general sense. We will
clarify the relation and the differences between this definition and the aforementioned
notions. In addition, we define the category IPois bply introducing the morphisms of I-
Poisson manifolds as a natural relaxation of Poisson maps. At the end of this chapter, we
utilize this framework to study singular (Riemannian) foliations and prove some results.
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4 I-Poisson manifolds

4.1 Background on Poisson manifolds

We start by recalling the necessary definitions and examples from Poisson geometry. See
[dSW99, LGPV13, CFM21] for a more detailed introduction to Poisson geometry

Definition 4.1. A Poisson manifold (P, {·, ·}) consists of a smooth manifold P and an
R-bilinear Lie bracket {·, ·} : C∞(P )× C∞(P )→ C∞(P ) satisfying the Leibniz rule

{f, gh} = g {f, h}+ {f, h}h

for every f, g, h ∈ C∞(P ).

The Leibniz rule implies that for every function f ∈ C∞(P ), {f, ·} and {·, f} are deriva-
tions of C∞(P ), or equivalently vector fields in X(P ). This implies that there exists a
bivector field Π ∈ X2(P ) = Γ(Λ2(TM)) such that for every two functions f, g ∈ C∞(P )
we have:

{f, g} = Π(df, dg) .

Remark 4.2. The Jacobi identity for {·, ·} is equivalent to [Π,Π] = 0, where [·, ·] is
the Schouten–Nijenhuis bracket on multi-vector fields X•. The vector field Xf = {f, ·} =
Π(df, ·) is called the Hamiltonian vector field of the function f . Functions with vanishing
Hamiltonian vector fields are called Casimir functions.

Remark 4.3. A Poisson algebra is an associative algebra over some field k equipped
with a Lie bracket {·, ·}, where the Leibniz rule gives the compatibility condition between
these two products on A. The triple (C∞(P ), ·, {·, ·}) where · stands for the pointwise
product of functions is an example of Poisson algebras.

Example 4.4. Let M = R2n for some positive integer n ∈ N and choose local coordinates
(q1, . . . , qn, p1, . . . , pn). Then the bracket {·, ·} defined by

{f, g} :=
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
) (21)

for every f, g ∈ C∞(M) defines the standard Poisson bracket on M .

Example 4.5. More generally, every symplectic manifold (M,ω) defines a Poisson man-
ifold with the bracket {·, ·} defined by

{f, g} := −ω(Xf , Xg)

for every f, g ∈ C∞(M), where Xf and Xg are Hamiltonian vector fields of f and g
satisfying ιXf

ω = df and ιXgω = dg. In particular the cotangent bundle of a smooth
manifold is a Poisson manifold, with the Poisson bracket given by Equation 21 in Dar-
boux’s coordinates.
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One can show that the assignment f 7→ Xf defines a morphism of Lie algebras. This
proves the following definition:

Proposition 4.6. Let FΠ ⊂ X(P ) be the C∞(P )-submodule of the vector fields generated
by all Hamiltonian vector fields. Then (P,FΠ) is defines a singular foliation, called the
symplectic foliation.

Example 4.7. Let g be a finite dimensional Lie algebra with Lie bracket [·, ·]. For every
smooth function f ∈ C∞(g∗) and every element ξ ∈ g∗, the linear map dξf : Tξg

∗ ∼= g∗ →
R is naturally identified with an element dξf ∈ g. Then g∗ is a Poisson manifold with
the Lie-Poisson bracket

{f, g} (ξ) := ⟨ξ, [dξf, dξg]⟩

for every two functions f, g ∈ C∞(g∗) and ξ ∈ g∗. The Jacobi identity holds by the Jacobi
identity of the Lie bracket [·, ·], and the Leibniz rule is a consequence of the Leibniz rule
for the differential d. In this example, the symplectic foliation has the coadjoDarboux’sint
orbits in g∗ as its leaves.

Definition 4.8. A smooth map π : (P1, {·, ·}1)→ (P2, {·, ·}2) is called a Poisson map if
for every two functions f, g ∈ C∞(P2) we have:

{π∗f, π∗g}1 = π∗ {f, g}2 . (22)

The following example in [GZ19] reveals the relation of Morita equivalence of Poisson
manifolds and Hausdorff Morita equivalence of singular foliations.

Example 4.9 ([GZ19]). Poisson manifolds (N1,Π1) and (N2,Π2) are Morita equivalent
[X91] if there exist a symplectic manifold (U, ω) and surjective submersions φi : U →
Ni for i = 1, 2, which are Poisson and anti-Poisson maps respectively, and such that
ker(dφ1)u and ker(dφ2)u are symplectic orthogonal subspaces of TuU for all u ∈ U . Let
F1 and F2 be the symplectic foliations generated by Hamiltonian vector fields on N1 and
N2 respectively. Assume that (N1,Π1) and (N2,Π2) are Morita equivalent, then we have
the following descriptions of Γ(ker(dφ1)) and Γ(ker(dφ2)) :

Γ(ker(dφ1)) = ⟨
{
Xφ∗

2g
: g ∈ C∞(N2)

}
⟩C∞(U)

Γ(ker(dφ2)) = ⟨
{
Xφ∗

1g
: g ∈ C∞(N1)

}
⟩C∞(U)

where Xf : = Π#(df) stands for the Hamiltonian vector field of the function f . Conse-
quently

φ−1
i (Fi) = ⟨

{
Xφ∗

i g
: g ∈ C∞(Ni)

}
+ Γ(ker(dφi))⟩C∞(U)

for i = 1, 2. It follows that

φ−1
1 (F1) = ⟨

{
Xφ∗

1g
: g ∈ C∞(N1)

}
+
{
Xφ∗

2g
: g ∈ C∞(N2)

}
⟩C∞(U) = φ−1

2 (F2)

which proves Corollary 2.24 in [GZ19]: If two Poisson manifolds are Morita equivalent,
then their symplectic foliations are Hausdorff Morita equivalent.
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Remark 4.10. The above notion of Morita equivalence for Poisson manifolds defines
an equivalence relation on the family of integrable Poisson manifolds [X91], i.e. Poisson
manifolds having a complete symplectic realization or, equivalently, such that their Lie
algebroids defined over their cotangent bundles integrate to Lie groupoids. If one drops
the integrability condition, one has problems already with the self-equivalence.

4.2 Definitions and examples

Definition 4.11. A subsheaf I of a sheaf of rings O on a manifold P is called locally
finitely generated if for every q ∈ P there exist an open neighborhood U ⊂ P containing
q and finitely many sections g1, ..., gN ∈ O(U) such that I(V ) = ⟨g1|V , ..., gN |V ⟩O(V ) for
every open subset V ⊂ U .

Remark 4.12. In this text, we mostly work with O being the sheaf of smooth func-
tions, but one may equally consider sheaves of polynomial, real analytic or holomorphic
functions for the appropriate choice of P .

Definition 4.13. An I-Poisson manifold is a triple (P, {·, ·} , I) where I is a locally
finitely generated subsheaf of smooth functions on P , such that for every open subset
U ⊂ P we have

1. I(U) is a C∞(U)-module,
2. I(U) is closed under the bracket,
3. {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} ∈ I(P ) , ∀ f, g, h ∈ N(I) ,

where N(I) := {f ∈ C∞(P ) : {f |U , I(U)} ⊂ I(U) for every open subset U}.
We call {·, ·} the I-Poisson bracket and N(I) the I-Poisson normalizer.

Example 4.14. Every Poisson manifold (P, {·, ·}) is canonically an I-Poisson manifold
for I generated by the zero function.

Example 4.15. Let (P, {·, ·}) be a Poisson manifold and I = ⟨f1, . . . , fN⟩C∞(P ) be a
finitely generated ideal of C∞(P ) which is a Poisson subalgebra. Then the sheaf I defined
by

U 7→ I(U) := ⟨f1|U , . . . , fN |U⟩C∞(U)

defines an I-Poisson manifold.

Example 4.16. Let (P, {·, ·}) be a Poisson manifold and C ⊂ P an embedded coisotropic
submanifold. Then the triple (P, {·, ·} , IC) where IC(U) := {f ∈ C∞(U) : f |C∩U ≡ 0}
for every open subset U ⊂ P defines an I-Poisson manifold. Note that in this example,
IC is in general not finitely generated, only locally so.

Example 4.17. Let (P, {·, ·},Φ) be a Hamiltonian quasi-Poisson manifold [AKSM02]: P
is a G-manifold for a compact Lie group G, {·, ·} :

∧2C∞(P )→ C∞(P ) is an R-bilinear
bracket satisfying the Leibniz rule, such that

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = ϕP (df, dg, dh) ∀f, g, h ∈ C∞(P ) (23)

where ϕP ∈ X3(P ) is a 3-vector field induced by the cartan 3-tensor ϕ ∈
∧3 g, and

Φ: P → G a G-equivariant map satisfying the moment map condition

{Φ∗f, ·} = 1
2
Φ∗((eLa + eRa ) · f)(ea)P ∀f ∈ C∞(G) , (24)
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where (ea) is a basis for g, eLa , eRa ∈ X(G) are the left-invariant and and right-invariant
vector fields associated to ea respectively, and (ea)P ∈ X(P ) is the fundamental vector
field induced by ea.
Let P∗ be the open subset of P on which G acts freely. Fix a conjugacy class C ⊂ G and
let I ⊂ C∞(P ) to be defined as the vanishing ideal of C∗ := Φ−1(C)∩P∗. Now the triple
(P∗, {·, ·}, I) defines an I-Poisson manifold: In Definition 4.13, Condition 1 is clear and
Condition 2 is a consequence of the moment map condition and G-equivariance of Φ. It
remains to show that Condition 3 is satisfied: The moment map condition gives

N (I) = {f ∈ C∞(P ) : f |C∗ ∈ C∞(C∗)
G} ,

which implies that for f, g, h ∈ N (I), the function ϕP (df, dg, dh) vanishes on C∗ since
ϕP |C∗ ∈ X3(C∗).

Under some conditions, a reduction process applied to Examples 4.16 and 4.17 results
in reduced Poisson manifolds :

Example 4.18. In Example 4.16, the Hamiltonian vector fields of functions in IC are
tangent to C and they are closed under the Lie bracket, hence defining a singular foliation
on C. If this singular foliation is regular and the quotient map π : C → Cred to the leaf
space Cred is a smooth submersion, then Cred inherits a Poisson bracket {·, ·}red such that
π∗ {f, g}red = {F,G} |C, where F and G are smooth functions on P satisfying F |C = π∗f
and G|C = π∗g. This process is called the coisotropic reduction [MR86].

Example 4.19. In Example 4.17, Theorem 6.1 in [AKSM02] implies that the quotient
Cred := C∗/G inherits a Poisson bracket {·, ·}red.
Remark 4.20. The notion of an I-Poisson manifold is motivated by generalizing Ex-
amples 4.16 and 4.17 and their reductions to a potentially singular setting, where the
quotient Cred does not need to exist as a manifold and the reduction is performed alge-
braically.

As a consequence of Conditions 2 and 3 of Definition 4, the quotient N(I)/I(P ) forms
a Poisson algebra. This motivates the following definition:

Definition 4.21. The reduced Poisson algebra of the I-Poisson manifold (P, {·, ·} , I)
is defined to be the Poisson algebra R(I) := N(I)/I(P ).
Remark 4.22. This is a straightforward generalization of the set of Dirac observables
[D50]. The algebra R(I) also appears in [SW83] as an algebraic method of reducing
Hamiltonian G-spaces with singular moment maps.

Example 4.23. If Cred in Example 4.18 is smooth, then R(IC) is isomorphic to the
Poisson algebra C∞(Cred). Similarly, in Example 4.19, the Poisson algebra of functions
on Cred is isomorphic to the Poisson algebra R(I).
Example 4.24. Let G be a connected Lie group acting on a Poisson manifold (P, {·, ·})
by Poisson diffeomorphisms with a G-equivariant moment µ : P → g∗. Following [SW83],
the subsheaf I ⊂ C∞ generated by smooth functions ⟨µ, g⟩ is a Poisson subalgebra and
one has

R(I) ∼= (C∞(P )/I)G .
Moreover, if G is compact, then Proposition 5.12 in [AGJ90] states that

R(I) ∼= C∞(P )G/IG .
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Example 4.25. Let P = T ∗Rn, n > 1, with coordinates (q1, . . . , qn, p1, . . . , pn) and
I ⊂ C∞ the subsheaf generated by the n(n−1)/2 functions qipj− qjpi for 1 ≤ i < j ≤ n.
This is a special case of Example 4.24 for the diagonal action of G = SO(n) on T ∗Rn.
We have

R(I) ∼= W∞(D) ,

where D ⊂ R3 is defined by

D :=
{
(x1, x2, x3) ∈ R3 |x21 + x22 = x23 and x3 ≥ 0

}
and W∞(D) stands for the smooth functions on D in the sense of Whitney, i.e. the
restriction of C∞(R3) to D. For more details and proofs see Theorem 5.6 and Example
5.11(a) of [AGJ90].

The Poisson bracket on W∞(D) can be understood as follows: Identify R3 with the
Poisson manifold so(2, 1)∗ and, simultaneously, with 2+1 dimensional Minkowski space.
The symplectic leaves of so(2, 1)∗ then consist of spacelike vectors of a fixed Minkowski
norm (one-sheeted hyperboloids), null vectors decompose into the origin, the forward light
cone, and the backward light cone as three distinct leaves, and finally timelike vectors
of a fixed norm yield two leaves each (two-sheeted hyperboloids). Then restriction to
D corresponds precisely to restricting to the forward lightcone and the origin in this
Minkowski space. This bracket does not depend on the extension of a function on D to
the ambient space since D is the collection of (two) symplectic leaves.

Remark 4.26. If in the previous example one restricts to the polynomial functions, such
that I ⊂ R[q1, . . . , qn, p1, . . . , pn], one finds

R(I) ∼= S•(so(2, 1)) /⟨x21 + x22 − x23⟩ ,

i.e. the polynomial functions on so(2, 1)∗ modulo the ideal generated by the quadratic
Casimir. So one looses the restriction x3 ≥ 0 that one finds in the smooth setting.

4.3 Dynamical I-Poisson manifolds

Definition 4.27. A dynamical I-Poisson manifold denoted by (P, {·, ·} , I, H) consists of
an I-Poisson manifold (P, {·, ·} , I) and a Hamiltonian function H ∈ N(I). Its reduction
is defined to be the pair (R(I), [H]) where [H] ∈ R(I) is the equivalence class of H.

The following proposition reveals one of the main properties of dynamical I-Poisson
manifolds.

Proposition 4.28. Let (P, {·, ·} , I, H) be a dynamical I-Poisson manifold. Then the
Hamiltonian flow of H locally preserves I, i.e. for every q0 ∈ P there exists an open
neighborhood U ⊂ P around q0 such that Φt

H |U is defined for t ∈ (−ϵ, ϵ) and

(Φt
H)

∗ I(Φt
H(U)) = I(U) . (25)

In the case that the Hamiltonian vector field XH is complete, this implies that, for all
t ∈ R, one has (Φt

H)
∗ I ◦ Φt

H = I and, in particular, that the ideal I(P ) is preserved,

(Φt
H)

∗ I(P ) = I(P ) .
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Proof. Choose an open neighborhood W ⊂ P around q0 where I(W ) is generated by
finitely many functions g1, . . . , gN for some positive integer N . Then by the existence and
uniqueness theorem for ODEs there exist an open subset U ⊂ W containing q0 and an
interval (−ϵ, ϵ), ϵ > 0, such that Φt

H |U is defined for t ∈ (−ϵ, ϵ). By the definition of the I-
Poisson normalizer in Definition 4.13, there exist functions λba ∈ C∞(U), a, b = 1, . . . , N ,
such that:

{H, ga} =
N∑
b=1

λba gb .

Using this equation, we obtain:

d
dt
((Φt

H)
∗ga) = (Φt

H)
∗ {H, ga} =

N∑
b=1

((Φt
H)

∗λba)((Φ
t
H)

∗ga) . (26)

Now, let Xp(t) ∈ RN be a column vector with a-th component equal to ga ◦ Φt
H(p) for

a = 1, . . . , N and let Ap(t) be the N by N matrix (λba ◦Φt
H(p))

N
a,b=1. Equation (26) then

transforms into the following family of non-autonomous linear ODEs

d
dt
Xp(t) = Ap(t)Xp(t) . (27)

This equation and its initial conditions depend smoothly on p ∈ U . It is standard
knowledge that solutions to (27) take the form:

Xp(t) = Ψp(t)Xp(0) . (28)

Here Ψp(t) = (ψb
a(t, p))

N
a,b=1 is the fundamental matrix of the ODE, satisfying Ψp(0) = IN

and

d
dt
Ψp(t) = Ap(t)Ψp(t) .

Ψp(t) is sometimes also called the (time-) ordered exponential of Ap(t).

Since Ap(t) andXp(0) depend smoothly on p, the components of the fundamental matrix,
ψb
a(t, p), depend smoothly on p as well. Now, Equation (28) can be written as

(Φt
H)

∗ga(p) =
N∑
b=1

ψb
a(t, p)gb(p) ,

which implies the inclusion (Φt
H)

∗ I(Φt
H(U)) ⊂ I(U).

To prove equality, we first observe that the inclusion yields also (Φ−t
H )∗ I(U) ⊂ I(Φt

H(U))
for every t ∈ (−ϵ, ϵ). Thus, for every f ∈ I(U), one has (Φ−t

H )∗f ∈ I(Φt
H(U)). But on

the other hand, we have the obvious identity

f = (Φt
H)

∗ ((Φ−t
H )∗f

)
,

and therefore f ∈ (Φt
H)

∗ I(Φt
H(U)).

The following example shows that the condition of being locally finitely generated in the
definition of I-Poisson manifolds is crucial for Proposition 4.28 to hold true:
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Example 4.29. Consider the Poisson manifold M = T ∗R ∼= R2 with coordinates (q, p)
and standard Poisson bracket

{f, g} = ∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
.

Let I be the subsheaf of C∞ vanishing on {q < 0} ⊂ M , which is not locally finitely
generated around every point on the p-axis, but still closed under the Poisson bracket.
Then the coordinate function p is an element of N(I) since Xp = ∂

∂q
preserves I. But

the Hamiltonian flow of Xp is given by Φt
Xp
(q, p) = (q + t, p), which evidently does not

preserve I if t > 0.

4.4 The categories IPois and dynIPois

In order to define the category of I-Poisson manifolds, we introduce a notion of mor-
phisms and show that they can be composed:

Definition 4.30. Let φ : (P1, {·, ·}1 , I1)→ (P2, {·, ·}2 , I2) be a smooth map between two
I-Poisson manifolds. We call it an I-Poisson map if the following three conditions are
satisfied:

φ∗(I2(P2)) ⊂ I1(P1) , (29)
φ∗N(I2) ⊂ N(I1) , (30)

{φ∗f, φ∗g}1 − φ∗{f, g}2 ∈ I1(P1) ∀f, g ∈ N(I2) . (31)

For dynamical I-Poisson manifolds we add the condition φ∗H2 −H1 ∈ I1.

Proposition 4.31. The composition of two I-Poisson maps is an I-Poisson map.

Proof. Consider the following I-Poisson maps :

φ : (P1, {·, ·}1 , I1) → (P2, {·, ·}2 , I2)
ψ : (P2, {·, ·}2 , I2) → (P3, {·, ·}3 , I3) .

Equations (29) and (30) for ψ ◦φ follow directly from those equations for ψ and φ. It is
thus enough to verify Equation (31) for the composition. For all f, g ∈ N(I3) we have :

{f ◦ ψ ◦ φ, g ◦ ψ ◦ φ}1 − {f, g}3 ◦ ψ ◦ φ
= {(f ◦ ψ) ◦ φ, (g ◦ ψ) ◦ φ}1 − {f ◦ ψ, g ◦ ψ}2 ◦ φ
+ ({f ◦ ψ, g ◦ ψ}2 − {f, g}3 ◦ ψ) ◦ φ
∈ I1(P1) + φ∗I2(P2) ⊂ I1(P1) ,

where we used Equations (29) and (31) for φ and Equations (30) and (31) for ψ in
the last line of the proof. A similar computation shows that morphisms of dynamical
I-Poisson manifolds can be composed as well.

Definition 4.32. The category IPois and dynIPois consist of I-Poisson manifolds
together with I-Poisson maps and dynamical I-Poisson manifolds together with dynam-
ical I-Poisson maps, respectively. By requiring the I-Poisson bracket to be a Poisson
bracket, we obtain a subcategory which we call (dynamical) semi-strict I-Poisson mani-
folds ssIPois (ssdynIPois). Similarly, the category sIPois (sdynIPois) of strict (dy-
namical) I-Poisson manifolds is defined by requiring that the I-Poisson bracket is a
Poisson bracket and that the morphisms are Poisson maps.
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Remark 4.33. While ssIPois is a full subcategory of IPois, sIPois is not.

Remark 4.34. The three conditions in Definition 4.30 are the minimal conditions for
the map φ∗ to induce a morphism of Poisson algebras φ̃ : R(I2)→ R(I1). In particular,
we obtain a functor F from IPois op to PoisAlg, the category of Poisson algebras. We
call F the reduction functor.

Remark 4.35. Viewing Poisson manifolds (P, {·, ·}) as I-Poisson manifolds (P, {·, ·} , 0),
I-Poisson maps are precisely Poisson maps. This identifies the category of Poisson man-
ifolds Pois with a full subcategory of sIPois.

Remark 4.36. There is a functor from IPois to C3Alg, the category of coisotropic
triples of algebras as introduced in [DEW19]. On the level of objects, one assoicates the
triple (C∞(P ), N(I), I(P )) to every I-Poisson manifold (P, {·, ·} , I), while a morphism
φ in our sense gives rise to a morphism φ∗ in C3Alg due to the first two defining
conditions (29) and (30).
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5 Singular (Riemannian) foliations through I-Poisson
manifolds

5.1 Vector fields as functions on the cotangent bundle

Let M be a smooth manifold. We denote by C∞
k (T ∗M) ⊂ C∞(T ∗M) the algebra of

homogeneous polynomials of degree k in the fiber coordinates of T ∗M with coefficients
in C∞(M). Every vector field X ∈ X(M) defines an element X ∈ C∞

1 (T ∗M) on the
cotangent bundle of M , defined as

X(q, p) = ⟨p,X|q⟩

for every (q, p) ∈ T ∗M , where q ∈ M and p ∈ T ∗
qM and ⟨·, ·⟩ denotes the canonical

pairing. This construction can be naturally extended to the sections of Γ(Sk(TM)) to
obtain elements in Ck(T

∗M).

Lemma 5.1. Let X, Y ∈ X(M) be two vector fields on M . Then{
X,Y

}
T ∗M

= [X, Y ], (32)

where {·, ·}T ∗M is the canonical Poisson bracket on T ∗M and [·, ·] is the Lie bracket of
vector fields on M .

Proof. Let (q1, ..., qn) be a local coordinate system on M , and (q1, ..., qn, p1, ..., pn) the
corresponding canonical local coordinates on T ∗M . In this coordinate system X and Y
can be written as X =

∑n
i=1X

ipi and Y =
∑n

i=1 Y
ipi, where X i, Y i are the components

of V,W in the above coordinate system. The following calculation proves the lemma:

{
X,Y

}
T ∗M

=
n∑

i=1

(
n∑

j=1

Xj ∂Y i

∂qj
− Y j ∂Xi

∂qj
)pi =

n∑
i=1

[X, Y ]ipi = [X, Y ] .

Lemma 5.1 and the Leibniz rule for the Lie derivative of tensor fields imply:

Corollary 5.2. Let S be an element of Γ(Sk(TM)) for some k ≥ 0, and S be its
corresponding element in C∞

k (T ∗M). Then for every vector field X ∈ X(M) we have:{
X,S

}
T ∗M

= LXS . (33)

5.2 Singular foliations and I-Poisson manifolds

Now let (M,F) be a foliated manifold. Define a C∞(T ∗M)-submodule JF ⊂ C∞
c (T ∗M)

by
JF := ⟨X : X ∈ F⟩C∞

c (T ∗M) .

Note that the generators of JF are not required to be compactly supported on T ∗M .

Then we define the sub-presheaf IF of the sheaf of smooth functions on T ∗M by

IF(U) := {f ∈ C∞(U) : ρf ∈ JF ∀ ρ ∈ C∞
c (U)} (34)

for every open subset U ⊂ T ∗M .
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Proposition 5.3. The presehaf IF defined in Equation (34) is a subsheaf of the sheaf
of smooth functions on T ∗M .

Proof. The locality of IF is evident, since IF is a sub-presheaf of the sheaf of smooth
functions on T ∗M . To verify the gluing property, let {Ui}∞i=1 be an arbitrary open cover
of T ∗M and let f ∈ C∞(T ∗M) be such that f |Ui

∈ IF(Ui) for every positive integer i. We
prove that f ∈ IF(T ∗M) as follows : it is enough to show that for every ρ ∈ C∞

c (T ∗M),
we have ρf ∈ JF . Since supp(ρ) is compact, it can be covered by finitely many open
subsets Ui1 , . . . , UiN in {Ui}∞i=1. Choose a partition of unity σ0, σi1 , . . . , σiN subordinate
to the open cover {U0 := T ∗M \ supp(ρ), Ui1 , . . . , UiN} of T ∗M and write

ρf =
N∑
k=1

ρσikf |Uik
.

The latter implies that ρf ∈ JF , since by definition of IF(Uik), for each k = 1, . . . , N
we have ρσikf |Uik

∈ JF .

We prove that the sheaf IF satisfies the properties of Definition 4.13, in the following
lemmas :

Lemma 5.4. For every open subset U ⊂ T ∗M we have

{IF(U), IF(U)}T ∗M ⊂ IF(U)

Proof. Let f, g ∈ IF(U). It is enough to show that for every ρ ∈ C∞
c (U) we have

ρ {f, g} ⊂ JF . Choose a compactly supported function σ ∈ C∞
c (U) such that σ|supp(ρ) ≡

1. One obtains

ρ {f, g}T ∗M = {σf, ρg}T ∗M − {σf, ρ}T ∗M g − ρf {σ, g}T ∗M ∈ JF ,

since the first term belongs to JF by Lemma 5.1, the second term is inside JF by
Definition of IF(U), and the last term vanishes identically. Consequently {f, g}T ∗M ∈
IF(U).

Lemma 5.5. Let U ⊂ M be an open subset such that ι−1
U F = ⟨X1, . . . , XN⟩C∞

c (U) for
finitely many vector fields X1, . . . , XN ∈ X(U). Then

IF(V ) = ⟨X1|V , . . . , XN |V ⟩C∞(V ) ,

for every open subset V ⊂ T ∗U .

Proof. We first prove that ⟨X1|V , . . . , XN |V ⟩C∞(V ) ⊂ IF(V ). Let
∑N

a=1 λ
aXa|V be an

element of ⟨X1|V , . . . , XN |V ⟩C∞(V ) and take an arbitrary ρ ∈ C∞
c (V ). By choosing a

compactly supported function h ∈ C∞
c (U) such that h|supp(ρ) ≡ 1 (when viewing h as an

element of C∞
0 (T ∗U)), we have

ρ

N∑
a=1

λaXa|V =
N∑
a=1

ρλahXa ∈ JF ,

since ρλa ∈ C∞
c (V ) and hXa ∈ F for all a = 1, . . . , N . To prove equality, let f ∈ IF(V ).

Choose a partition of unity {ρi}∞i=1 subordinate to a locally finite cover {Vi}∞i=1 of V . Since
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for every i we have ρif ∈ JF and V ⊂ T ∗U , there exist functions λ1i , . . . , λNi ∈ C∞
c (T ∗U)

such that

ρif =
N∑
a=1

λai |VXa|V .

This implies

f =
∞∑
i=1

ρif =
∞∑
i=1

N∑
a=1

λai |VXa|V

=
N∑
a=1

(
∞∑
i=1

λai |V

)
Xa|V ,

which completes the proof.

Corollary 5.6. Let (M,F) be a foliated manifold. Then the triple (T ∗M, {·, ·}T ∗M , IF)
is an I-Poisson manifold.

5.3 Singular Riemannian foliations and dynamical I-Poisson man-
ifolds

For every Riemannian manifold (M, g), its cotangent bundle T ∗M carries a natural
Hamiltonian function Hg:

Hg(q, p) =
1
2
⟨p, g−1

♭ (p)⟩

for every (q, p) ∈ T ∗M , where g♭ : TqM → T ∗
qM is the musical isomorphism v 7→ g(v, ·).

In local Darboux coordinates this becomes Hg(q
1, ..., qn, p1, ..., pn) = 1

2

∑n
i,j=1 g

ijpipj
where the matrix (gij) is the inverse to the matrix of the Riemannian metric (gij) in
the coordinates (q1, ..., qn). Equivalently, we can define also Hg using the isomorphism
Γ(S2(TM)) ∼= C∞

2 (T ∗M), under which it becomes identified with g−1 :=
∑n

i,j=1 g
ij ∂i ⊙

∂j, i.e. Hg =
1
2
g−1.

The following fact aboutHg is standard knowledge, which we still prove for completeness.

Proposition 5.7. The Hamiltonian flow of Hg is the image of the geodesic flow under
the musical isomorphism, i.e. for every geodesic γ : (−ϵ, ϵ) → M and every t ∈ (−ϵ, ϵ),
we have

Φt
Hg
(γ(0), g(γ̇(0), ·)) = (γ(t), g(γ̇(t), ·)) .

Proof. Assume that (q1, . . . , qn) is a normal coordinate system centered at q ∈ M , i.e.
gij(q) = δij and ∂kgij(q) = 0 for i, j, k = 1, . . . , n. For every p ∈ T ∗

qM we have

XHg(q, p) =
n∑

i=1

pi
∂

∂qi
|q .

Let γ : (−ϵ, ϵ) → M be a geodesic passing through q at t = 0; in particular, q̈i(0) = 0.
Then ((γ(t), g(γ̇(t), ·)) is a curve on T ∗M passing through (q, p) = ((γ(0), g(γ̇(0)), ·) at
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t = 0; in local coordinates, ((γ(t), g(γ̇(t)), ·) = (q1(t), . . . , qn(t), p1(t), . . . , pn(t)) where
pi(t) =

∑n
j=1 gij(q(t))q̇

j(t). Then, since ṗi(0) = 0, we have

d
dt
|t=0((γ(t), g(γ̇(t), ·)) =

n∑
i=1

q̇i(0)
∂

∂qi
|q .

On the other hand, q̇i(0) = g(γ̇(0), ∂
∂qi
|q) = pi(0), which indeed gives

XHg(q, p) =
d
dt
|t=0((γ(t), g(γ̇(t), ·)) .

Lemma 5.8. Let (M,F) be a foliated manifold. We have

N(IF) = {f ∈ C∞(T ∗M) : {f,JF}T ∗M ⊂ JF} .

Proof. The inclusion N(IF) ⊂ {f ∈ C∞(T ∗M) : {f,JF}T ∗M ⊂ JF} is satisfied by Def-
inition 4.13 and the fact that JF is equal to the set of compactly supported elements in
IF(T ∗M). Now let f ∈ C∞(T ∗M) be such that {f,JF}T ∗M ⊂ JF . Let U ⊂ T ∗M be an
open subset and g ∈ IF(U). For every ρ ∈ C∞

c (U) we have

ρ {f |U , g}T ∗M = {f, ρg}T ∗M − {f, ρ}T ∗M g ∈ JF ,

since ρg ∈ JF and {f, ρ}T ∗M is compactly supported in U . The definition of IF(U) then
implies that {f |U , IF(U)}T ∗M ⊂ IF(U). Since U is arbitrary, we obtain f ∈ N(IF).
Now we can state an equivalent definition of module singular Riemannian foliations
through I-Poisson geometry.

Proposition 5.9. A singular foliation F on a Riemannian manifold (M, g) defines a
module singular Riemannian foliation, if and only if

Hg ∈ N(IF) . (35)

Proof. Assume that (M, g,F) is a module singular Riemannian foliation. By Lemma
3.3, for every X ∈ F we have

LXg
−1 ∈ X(M)⊙F .

Using the isomorphism Γ(S2(TM)) ∼= C∞
2 (T ∗M) and Corollary 5.2, we obtain{

X,Hg

}
T ∗M

= 1
2
LXg−1 ∈ X(M) ⊙ F ,

which together with the Leibniz rule imply {JF , Hg}T ∗M ⊂ JF . Lemma 5.8 then implies
that Hg ∈ N(IF). Conversely assume that Hg ∈ N(IF). After Proposition 3.5 we can
assume that F = ⟨X1, . . . , XN⟩C∞

c (M). Using Lemma 5.5, Hg ∈ N(IF) implies that for
every a = 1, . . . , N there exist functions f 1

a , . . . , f
N
a ∈ C∞(T ∗M) such that

1
2
LXag

−1 =
{
Xa, Hg

}
=

N∑
b=1

f b
aXb , (36)
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where we used Corollary 5.2 for the first equality. Locally, for each a and b, consider
the first-order Taylor approximation of f b

a(q, p) with respect to the fiber coordinates {pi}
around (q, 0)

f b
a(q, p) = f b

a(q, 0) + λba(q, p) + o(∥p∥) (37)

where λba(q, p) is linear in fiber coordinates. Equations (36) and (37) then imply that

{
Xa, Hg

}
−

N∑
b=1

λbaXb =
N∑
b=1

[
f b
a(q, 0) + o(∥p∥)

]
Xb .

The left-hand side of the last equation is quadratic in fiber-coordinates, while the righ-
hand side is not. This implies that both sides are identically zero. Consequently

{
Xa, Hg

}
=

N∑
b=1

λbaXb ,

for some λba ∈ C∞
1 (T ∗M). Lemma 3.4 then implies that LXg

−1 ∈ X(M)⊙F .

Now we are able to present the proof of Proposition 3.7.

Proof. [Proposition 3.7] Let (M, g,F) be a module singular Riemannian foliation. As
the statement is local, we can assume that F is finitely generated, i.e. there exist vector
fields X1, ..., XN ∈ X(M) for some positive integer N , such that F = ⟨X1, ..., XN⟩C∞

c (M).
By Lemma 5.5, IF is generated by functions X1, ..., XN . By Proposition 5.9, for every
a = 1, . . . , N there exist functions λ1a, . . . , λNa ∈ C∞

1 (T ∗M) such that

{
Hg, Xa

}
=

N∑
b=1

λbaXb .

Assume that γ : (−ϵ, ϵ) → M is a geodesic such that γ̇(0) ⊥ Fγ(0), i.e. the geodesic
is orthogonal to the leaf at t = 0. Then the ideal IF(T ∗M) vanishes at (q0, p0) =
(γ(0), g(γ̇(0), .)) ∈ T ∗M . Since Φt

Hg
(q0) is defined for −ϵ < t < ϵ, for every r < ϵ there

exists an open neighborhood U ⊂M of q0 such that Φt
Hg

is defined for t ∈ (−r, r) on U .
According to Proposition 5.7,

g(γ̇(t), Xa(γ(t))) = Xa(γ(t), gγ(t)(γ̇(t), .))

= Xa ◦ Φt
Hg
|U(γ(0), gγ(0)(γ̇(0), .))

= Φt
Hg
|∗UXa(q0, p0)

for a = 1, . . . , N . But now, according to Proposition 4.28, the function (Φt
Hg
|U)∗

(
Xa|Φt

Hg
(U)

)
is an element in IF(U) for t ∈ (−r, r). This means that for t in this interval, γ̇(t) ⊥ Fγ(t).
As r < ϵ is arbitrary, the proof is complete.

5.4 The functor Φ and reduction

At the end of Section 3 we introduced the category SRF0 and in Section 4 we intro-
duced the category of I-Poisson manifolds IPois. In this section we will provide a
functor from the first to the second category, by sending a module singular Rieman-
nian foliation (M, g,F) to the I-Poisson manifold (T ∗M, {·, ·} , IF) and every surjective
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Riemannian submersion π : (M1, g1) → (M2, g2) to the bundle map φπ := (g2)♭ ◦ dπ ◦
(g2)

−1
♭ : (T ∗M1, {·, ·}1) → (T ∗M2, {·, ·}2), see Theorem 5.18 below. φπ is precisely the

map making the following diagram commute:

TM1

TM2

T ∗M1

T ∗M2

dπ

(g2)♭

(g1)♭

φπ

The map φπ is not a Poisson map in general: 7

Example 5.10. Let π : R3 → R2 be the projection (x, y, z) 7→ (x, y) in the canonical
coordinates. Equipping R3 and R2 with the following metric tensors

g3 : = dx⊗ dx+ (1 + x2)dy ⊗ dy − xdy ⊗ dz − xdz ⊗ dy + dz ⊗ dz and
g2 : = dx⊗ dx+ dy ⊗ dy ,

respectively, turns π into a Riemannian submersion. Here (x, y) denote the coordinates
on R2. In the induced coordinates (x, y, px, py) and (x, y, z, px, py, pz) on T ∗R2 and T ∗R3,
respectively, the map φπ is given by

φπ(x, y, z, px, py, pz) = (x, y, px, py + xpz).

This is not a Poisson map, since {φ∗
πpx, φ

∗
πpy} = {px, py + xpz} = pz ̸= 0.

In the last example the obstruction for φπ to be a Poisson map is that the horizontal
distribution of the Riemannian submersion π, which is generated by vector fields ∂

∂x
and

∂
∂y

+ x ∂
∂z

, is not integrable; the corresponding connection has curvature.

The map φπ still preserves the Poisson bracket up to some ideal of functions Iker dπ:

Definition 5.11. Let π : M1 → M2 be a submersion. The subsheaf of smooth functions
Iker dπ on T ∗M1 is defined as the corresponding sheaf IF for the regular foliation F :=
Γc(ker dπ).

When there is no ambiguity, for simplicity, we denote the ideal Iker dπ(T ∗M1) by Iker dπ.

Remark 5.12. It is not difficult to see that for every open subset U ⊂ T ∗M , The
ideal Iker dπ(U) is the vanishing ideal of the submanifold Ann(ker dπ) ∩ U ⊂ U . Here
Ann(ker dπ) stands for the annihilator of the subbundle ker dπ ⊂ TM1. Moreover, since
Ann(ker dπ) is an embedded submanifold, we have:

C := {(q, p) ∈ T ∗M1 : f(q, p) = 0 ∀f ∈ Iker dπ} ≡ Ann(ker dπ) . (38)

Lemma 5.13. Let π : (M1, g1)→ (M2, g2) be a Riemannian submersion. Then for every
f, g ∈ C∞(T ∗M2):

{f ◦ φπ, g ◦ φπ}1 − {f, g}2 ◦ φπ ∈ Iker dπ (39)
{f ◦ φπ, Iker dπ}1 ⊂ Iker dπ . (40)

7. In contrast to what is claimed in [BWY21].
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Proof. Choose local Darboux coordinates (qi2, p2i ) on T ∗M2 and (qi1, q
α
1 , p

1
i , p

1
α) on T ∗M1,

such that qi2◦π = qi1 (this is possible since π is assumed to be a submersion). In particular,
Ikerdπ is generated by the momenta p1α. Now note that at every point q ∈M1,

dqπ(
∂
∂qi1
|q) = ∂

∂qi2
|π(q) ,

since for every function f ∈ C∞(M2)

dqπ(
∂
∂qi1
|q) · f = ∂(f◦π)

∂qi1
(q) = ∂f

∂qj2
(π(q))

∂(qj2◦π)
∂qi1

(q) = ∂f
∂qi2

(π(q)) .

In particular, since φπ is a bundle map, we have

qi1 = qi2 ◦ φπ . (41)

Next we prove that upon restriction to the vanishing submanifold C of Ikerdπ,

C = {(q, p) ∈ T ∗M1 : f(q, p) = 0 ∀f ∈ Iker dπ} ≡ Ann(ker dπ) , (42)

one has p1i = p2i ◦ φπ. Indeed, let (q, p) be a point in T ∗M1 and X = (g1)
−1
♭ (p). Then

p1i (q, p) = p( ∂
∂qi1
|q) = g1(X,

∂
∂qi1
|q) = g1(X, (

∂
∂qi1
|q)H) + g1(X, (

∂
∂qi1
|q)V )

where ( ∂
∂qi1
|q)H and ( ∂

∂qi1
|q)V are the horizontal and vertical parts of the vector ∂

∂qi1
|q with

respect to g1, respectively. Using that π is a Riemannian submersion and that there
exist functions Aα such that ( ∂

∂qi1
|q)V =

∑
αAα(q)

∂
∂qα1
|q, this implies:

p1i (q, p) = g2(dqπ(X), ∂
∂qi2
|π(q)) +

∑
α

g1(X,Aα(q)
∂

∂qα1
|q) .

Consequently, by definition of φπ,

p1i (q, p) = p2i ◦ φπ(q, p) +
∑
α

Aα(q)p
1
α(q, p)

and thus
p1i |C =

(
p2i ◦ φπ

)
|C . (43)

Now for every f ∈ C∞(T ∗M2), we have:

∂(f◦φπ)

∂qi1
(q, p) = ∂f

∂qj2
(φπ(q, p))

∂(qj2◦φπ)

∂qi1
(q, p) + ∂f

∂p2j
(φπ(q, p))

∂(p2j◦φπ)

∂qi1
(q, p) . (44)

Since ∂
∂qi1
|C is tangent to C, for every point (q, p) ∈ C, we may use Equation (43) to

transform Equation (44) into:

∂(f◦φπ)

∂qi1
(q, p) = ∂f

∂qj2
(φπ(q, p))

∂qj1
∂qi1

(q, p) + ∂f
∂p2j

(φπ(q, p))
∂p1j
∂qi1

(q, p) (45)

= ∂f
∂qi2

(φπ(q, p)) .

In a similar way, using the chain rule and that ∂
∂p1i
|C and ∂

∂qα1
|C are tangent to C, for every

function f ∈ C∞(T ∗M2) and every (q, p) ∈ C, one finds
∂(f◦φπ)

∂p1i
(q, p) = ∂f

∂p2i
(φπ(q, p)) , (46)

∂(f◦φπ)
∂qα1

(q, p) = 0 . (47)
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For every two functions f, g ∈ C∞(T ∗M2), upon restriction to |C we have:

{f ◦ φπ), g ◦ φπ}1 |C =
∑
i

(
∂(f◦φπ)

∂p1i

∂(g◦φπ)

∂qi1
− ∂(g◦φπ)

∂p1i

∂(f◦φπ)

∂qi1

)
|C

+
∑
α

(
∂(f◦φπ)

∂p1α

∂(g◦φπ)
∂qα1

− ∂(g◦φπ)
∂p1α

∂(f◦φπ)
∂qα1

)
|C

=
∑
i

(
∂(f◦φπ)

∂p1i

∂(g◦φπ)

∂qi1
− ∂(g◦φπ)

∂p1i

∂(f◦φπ)

∂qi1

)
|C

=
∑
i

(
∂f
∂p2i
◦ φπ

)
|C
(

∂g
∂qi2
◦ φπ

)
|C −

(
∂g
∂p2i
◦ φπ

)
|C
(

∂f
∂qi2
◦ φπ

)
|C

= {f, g}2 ◦ φπ|C
Here in the first equality we used just the definition of the Poisson bracket, in the
second one we used Equation (47), thereafter Equations (45) and (46), and finally again
the definition of the bracket. Note that every function on T ∗M1 vanishing on C is an
element of Iker dπ, which proves Equation (39).

Equation (47) implies Equation (40) as well, since Iker dπ is locally generated by coordi-
nate functions pα for α = 1, . . . , k, and we have

{pα, f ◦ φπ}1 |C = ∂(f◦φπ)
∂qα1

|C = 0 .

which gives {f ◦ φπ, pα}1 ∈ Iker dπ.
Corollary 5.14. The restriction φπ|C : C → T ∗M2 is a surjective submersion. It coin-
cides with the projection to the leaf space for the coisotropic reduction of C ⊂ T ∗M1.

Proof. Choosing the same local coordinates as in the proof of Lemma 5.13, (qi1, qα1 , p1i )
give local coordinates for C and Equations (41) and (43) ensure that φπ (q

i
1, q

α
1 , p

1
i ) =

(qi1, p
1
i ).

To study the obstruction for φπ to be a Poisson map, we first prove the following lemma
which describes the horizontal distribution in terms of the map φπ:

Lemma 5.15. Let π : (N, h) → (M, g) be a Riemannian submersion and let X be a
vector field on M . Then the horizontal lift of X is given by a vector field V on N
satisfying

V = (φπ)
∗X , (48)

which is an element in C∞
1 (T ∗N).

Proof. Define V ∈ X(N) by V := (φπ)
∗(X) ∈ C∞

1 (T ∗M). Using Corollary 5.2 and
Lemma 5.13 for every function f ∈ C∞(M), we have

V · π∗f =
{
V , π∗f

}
=
{
(φπ)

∗X, π∗f
}

=
{
(φπ)

∗X, (φπ)
∗f
}
= (φπ)

∗ {X, f}
= π∗(X · f) ,

which means that V is projectable and projects to X. In addition, for every vertical
vector v ∈ ker dqπ and i = 1, . . . , n we have

h(v, V |q) = V (h♭(v)) = (φπ)
∗X(h♭(v))

= X(φπ ◦ h♭(v)) = X(g♭ ◦ dqπ(v))

= 0 ,

31



showing that V is the horizontal lift of X.

The following identifies the obstruction for φπ to be a Poisson map:

Proposition 5.16. Let π : (N, h)→ (M, g) be a Riemannian submersion. Then the map
φπ := g♭ ◦ dπ ◦ h−1

♭ is a Poisson map if and only if the horizontal distribution H ⊂ TM
of π is integrable.

Proof. Let {fi}ni=1 be a local orthonormal frame around a point q ∈ M and {ei}ni=1

their horizontal lifts. By Lemma 5.15 we have ei = (φπ)
∗fi for i = 1, . . . , n. If φπ is a

Poisson map, the family of functions (φπ)
∗(fi) ∈ C∞

1 (T ∗N) is closed under the Poisson
bracket, and consequently the horizontal distribution locally generated by vector fields
ei is integrable. This proves the if part of the proposition.

Conversely assume that H is integrable. It is enough to check the condition of being
a Poisson map on smooth functions in C∞

0 (T ∗M)
⊕

C∞
1 (T ∗M) only. First, for every

f, g ∈ C∞
0 (T ∗M) we have {f ◦ φπ, g ◦ φπ}T ∗N = {f, g}T ∗M = 0. Second, for every

X ∈ C∞
1 (T ∗M) and f ∈ C∞

0 (T ∗M) we have{
X ◦ φπ, f ◦ φπ

}
T ∗N

= XH · (f ◦ φπ)

= (X · f) ◦ φπ

=
{
X, f

}
T ∗M
◦ φπ .

Finally, by Lemma 5.15 and integrability of H, for every X,Y ∈ C∞
1 (T ∗M) one obtains{

X ◦ φπ, Y ◦ φπ

}
T ∗N

= [XH , Y H ]

= [X, Y ]H

= [X, Y ] ◦ φπ

=
{
X,Y

}
T ∗M
◦ φπ .

Lemma 5.17. Let π : (N, h)→ (M, g) be a Riemannian submersion. Then

Hh −Hg ◦ φπ ∈ Iker dπ .

Proof. It is enough to show that the left-hand side vanishes on C, defined in Equation
(38). For every (q, p) ∈ C, we have

Hh(q, p) = 1
2

〈
p, (h♭)

−1(p)
〉
= 1

2

〈
p, [(h♭)

−1(p)]H
〉

= 1
2
h((h♭)

−1(p), [(h♭)
−1(p)]H)

= 1
2
h([(h♭)

−1(p)]H , [(h♭)
−1(p)]H)

= 1
2
g(dqπ ◦ (h♭)−1(p), dqπ ◦ (h♭)−1(p))

= 1
2

〈
φπ(p), (g♭)

−1(φπ(p))
〉

= Hg ◦ φπ(q, p) .
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Now we are able to prove the well-behavedness of module singular Riemannian foliations
under Riemannian submersions.

Proof. [Proposition 3.11] Let (M, g,F) be a module singular Riemannian foliation
and π : (N, h)→ (M, g) a Riemannian submersion. By Lemma 3.10

FN = ⟨FH
M + Γ (ker dπ)⟩C∞

c (N) (49)

where FH
M consists of horizontal lifts of vector fields in FN . By Lemma 5.15 we have

JFN
=
〈
(φπ)

∗FM + Iker dπ
〉
C∞

c (T ∗N)
,

where FM :=
{
X : X ∈ FM

}
. Finally, it remains to check Hg ∈ N(Iπ−1F). By Lemma

5.8 it is enough to verify the following:{
Hg, (φπ)

∗FM + Iker dπ
}

=
{
Hg −Hh ◦ φπ, (φπ)

∗FM

}
+
{
Hh ◦ φπ, (φπ)

∗FM

}
+ {Hg −Hh ◦ φπ, Iker dπ}+ {Hh ◦ φπ, Iker dπ}
⊂ (φπ)

∗FM + Iker dπ .

Here we used Lemmas 5.13 and 5.17 to prove the inclusion.

The following theorem is the main result of this section:

Theorem 5.18. The map sending every module singular Riemannian foliation (M, g,F)
to the corresponding dynamical I-Poisson manifold (T ∗M, {·, ·}T ∗M , IF , Hg) and every
morphism π of singular Riemannian foliations within SRF0 to the map φπ defines a
functor Φ: SRF0 → dynIPois.

Proof. It is enough to show that Φ preserves the morphisms. A morphism π within SRF0

is a Riemannian submersion π : (N, h,FN) → (M, g,FM) such that FN = π−1 (FM).
Similar to the previous proof we have

JFN
=
〈
(φπ)

∗FM + Iker dπ
〉
C∞

c (T ∗N)

and therefore the pullback (φπ)
∗IFM

(T ∗M) and Iker dπ lie inside IFN
(T ∗N). By Lemma

5.13, for every f ∈ N(IFM
) we have{

f ◦ φπ, (φπ)
∗FM + Iker dπ

}
T ∗N

⊂
{
f,FM

}
T ∗M
◦ φπ + {f ◦ φπ, Iker dπ}T ∗N + Iker dπ

⊂ (φπ)
∗FM + Iker dπ

which implies that {f ◦ φπ,JFN
}T ∗N ⊂ JFN

, and consequently (φπ)
∗N(IFM

) lies inside
N(IFN

). Using Lemma 5.13 again, for every f, g ∈ N(IFM
)

{f ◦ φπ, g ◦ φπ}T ∗N − {f, g}T ∗M ◦ φπ ∈ Iker dπ ⊂ IFN
(T ∗N) .

These together with Lemma 5.17 complete the proof.

Theorem 5.19. Let (M1,F1) and (M1,F1) be Hausdorff Morita equivalent singular
foliations. Then the Poisson algebras R (IF1) and R (IF2) are isomorphic.

Here R (IFi
) ≡ N(IFi

)/IFi
(T ∗Mi), i = 1, 2, see Definition 4.21.

The proof of this theorem will be a consequence of the following two lemmas.
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Lemma 5.20. Let π : (N, h) → (M, g) be a surjective Riemannian submersion with
connected fibers and F be a singular foliation on M . If f ◦ φπ ∈ Iπ−1F(T

∗N) for some
f ∈ C∞(T ∗M), then f ∈ IF(T ∗M).

Proof. We first demonstrate that the result holds true for finitely generated singular
foliations. Let F = ⟨X1, . . . , XN⟩C∞

c (M) and let Y1, . . . , YK ∈ X(N) be generators of the
regular foliation Γc(ker dπ) for some positive integers N and K. Lemma 3.10 implies that
π−1F = ⟨XH

1 , . . . , X
H
N , Y1, . . . , YK⟩C∞

c (N). Consequently, for every open subset V ⊂ T ∗N ,
we obtain

Iπ−1F(V ) = ⟨X1 ◦ φπ|V , . . . , XN ◦ φπ|V , Y1|V , . . . , YK |V ⟩C∞(V ) , (50)

where we used Lemmas 5.15 and 5.5.

Let us assume for a moment that there exists a global section s : T ∗M → C for the surjec-
tive submersion φπ|C : C → T ∗M (see Corollary 5.14). Since f ◦φπ ∈ Iπ−1F(T

∗N), Equa-
tion (50) implies that there exist smooth functions λ1, . . . , λN , η1, . . . , ηK ∈ C∞(T ∗N)
such that

f ◦ φπ =
N∑
a=1

λa ·
(
Xa ◦ φπ

)
+

K∑
b=1

ηb · Yb . (51)

Since φπ ◦ s ◦ φπ = φπ and Yb|C = 0, composing both sides of Equation (51) by s ◦ φπ

gives

f ◦ φπ = f ◦ φπ ◦ s ◦ φπ =
N∑
a=1

(λa ◦ s ◦ φπ) ·
(
Xa ◦ φπ ◦ s ◦ φπ

)
=

(
N∑
a=1

(λa ◦ s) ·Xa

)
◦ φπ .

This implies that f =
∑N

a=1 (λ
a ◦ s) ·Xa ∈ IF(T ∗M), since φπ is surjective.

If a global section does not exist, we can choose an open covering {Ui}∞i=1 of T ∗M such
that for every positive integer i there exists a local section si : Ui → C. Using the same
argument as for the global case, we may show that f |Ui

∈ IF(Ui) for each i. Since IF is
a sheaf on T ∗M , we have f ∈ IF(T ∗M).

For the general case, choose an open covering {Ui}∞i=1 of M such that for every positive
integer i the pullback ι−1

Ui
F is finitely generated. The finitely generated case discussed

before then implies that f |T ∗Ui
∈ IF(T ∗Ui) for every i, and since IF is a sheaf, we obtain

f ∈ IF(T ∗M).

Lemma 5.21. Let π : (N, h) → (M, g) be a surjective Riemannian submersion with
connected fibers and F be a finitely generated singular foliation on M . Then for every
F ∈ N(Iπ−1F), there exists some f ∈ C∞(T ∗M) such that F − f ◦ φπ ∈ Iπ−1F(T

∗N).

Proof. We proceed as in the beginning of the proof of Lemma 5.20, establishing Equation
(50) and assuming first again that there is a global section s : T ∗M → C = Ann(ker dπ)
for the surjection φπ|C : C → T ∗M . Define, in addition, f := F ◦ s ∈ C∞(T ∗M).
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We now will prove that for every x ∈ T ∗M , there exists an open neighborhood Vx ⊂ T ∗N
such that (F − f ◦ φπ)|Vx ∈ Iπ−1F(Vx). Since Iπ−1F is a sheaf, this implies the desired
F − f ◦ φπ ∈ Iπ−1F(T

∗N). The proof is divided into the following three cases:

Case 1. [x ̸∈ C]: We choose an open subset Vx ⊂ T ∗N such that Vx ∩ C = ϕ. Let
ρ ∈ C∞(T ∗N) with supp(ρ) ⊂ T ∗N \C and ρ|Vx

≡ 1. Then since ρ · (F −f ◦φπ) vanishes
on C, we obtain

(F − f ◦ φπ)|Vx = ρ · (F − f ◦ φπ)|Vx ∈ Iker dπ(Vx) ⊂ Iπ−1F(Vx) .

Case 2. [x ∈ s(T ∗M) ⊂ C]: Choose local coordinates (qi, qα) centered at the base-point
of x and (qiM) on N and M , respectively, were i ∈ {1, . . . ,m := dimM} and α ∈ {m +
1, . . . , n := dimN}, which are compatible with the submersion π, i.e. π(qi, qα) = (qi).
Let (qi, qα, pi, pα) be the corresponding Darboux coordinates on some open neighborhood
Vx ⊂ T ∗N centered at x. As a consequence, in particular φπ(q

i, qα, pi, 0) = (qi, pi) (see
Corollary 5.14) and Iker dπ(Vx) = ⟨pα⟩C∞(Vx). For simplicity also assume that, in these
local coordinates, s ◦ φπ(q

i, qα, pi, 0) = (qi, 0, pi, 0). Then, for every arbitrary point
(qi0, q

α
0 , p

0
i , 0) in Vx ∩ C, we have

(F − f ◦ φπ)(q
i
0, q

α
0 , p

0
i , 0) = F (qi0, q

α
0 , p

0
i , 0)− F (qi0, 0, p0i , 0)

=

∫ 1

0

d
dt
F (qi0, tq

α
0 , p

0
i , 0) dt

=

∫ 1

0

(∑
β

{
qβ0 pβ, F

}
T ∗N

)
(qi0, tq

α
0 , p

0
i , 0) dt

=

∫ 1

0

(∑
β

qβ0 {pβ, F}T ∗N

)
(qi0, tq

α
0 , p

0
i , 0) dt . (52)

Since F ∈ N(Iπ−1F), for every β there exist smooth functions λ1β, . . . , λNβ , η1β, . . . , ηKβ ∈
C∞(Vx) such that {pβ, F}T ∗N =

∑
a λ

a
β · (Xa ◦φπ|Vx)+

∑
b η

b
β · (Yb|Vx). Implementing this

into Equation (52) gives

(F − f ◦ φπ)(q
i
0, q

α
0 , p

0
i , 0)

=

∫ 1

0

(∑
β

qβ0

(∑
a

λaβ · (Xa ◦ φπ|Vx)

))
(qi0, tq

α
0 , p

0
i , 0) dt

=
∑
a

(
Λa · (Xa ◦ φπ|Vx)

)
(qi0, q

α
0 , p

0
i , 0) (53)

where Λa ∈ C∞(Vx) is defined as

Λa(qi, qα, pi, pα) :=

∫ 1

0

(∑
β

qβλaβ

)
(qi, tqα, pi, pα) dt .

Equation (53) implies that (F − f ◦ φπ) −
∑

a Λ
a · (Xa ◦ φπ|Vx) vanishes on Vx ∩ C and

consequently this difference is an element of Iker dπ(Vx). Since
∑

a Λ
a · (Xa ◦ φπ|Vx) ∈

Iπ−1F(Vx) we obtain
(F − f ◦ φπ)|Vx ∈ Iπ−1F(Vx) .
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Case 3. [x ∈ C\s(T ∗M)]: Define x0 = s◦φπ(x). Since x and x0 belong to the same fiber
of φπ|C, there exist compactly supported functions h1, . . . , hl ∈ Iker dπ for some positive
integer l such that their Hamiltonian flows connect x0 to x, i.e.

x = Φ1
hl
◦ . . . ◦ Φ1

h1
(x0) .

Then the global section s′ := Φ1
hl
◦ . . . ◦ Φ1

h1
◦ s passes through the point x. After Case

2 for the function f ′ := F ◦ s′, there exists an open neighborhood Vx around x such that
(F − f ′ ◦ φπ)|Vx ∈ Iπ−1F(Vx). It remains to show that (f ′ − f) ◦ φπ ∈ Iπ−1F(T

∗N). For
arbitrary y ∈ C, defining Φt

h0
:= IdT ∗N and y0 = s ◦ φπ(y) gives

(f ′ − f) ◦ φπ(y) = (F ◦ s′ − F ◦ s) ◦ φπ(y)

=
l∑

i=1

(F ◦ Φ1
hi
◦ . . . ◦ Φ1

h0
− F ◦ Φ1

hi−1
◦ . . . ◦ Φ1

h0
)(y0)

=
l∑

i=1

∫ 1

0

d
dt
F ◦ Φt

hi
◦ Φ1

hi−1
◦ . . . ◦ Φ1

h0
(y0) dt

=
l∑

i=1

∫ 1

0

{hi, F}T ∗N ◦ Φ
t
hi
◦ Φ1

hi−1
◦ . . . ◦ Φ1

h0
(y0) dt . (54)

Since F ∈ N(Iπ−1F), for every i there exist smooth functions λ1i , . . . , λNi , η1i , . . . , ηKi ∈
C∞(T ∗N) such that {hi, F}T ∗N =

∑
a λ

a
i ·(Xa◦φπ)+

∑
b η

b
i ·(Yb). Implementing this into

Equation (54), making use of the fact that the flows of the his preserve C, and noting
that the Ybs vanish on C, this gives

(f ′ − f) ◦ φπ(y)

=
l∑

i=1

∫ 1

0

(∑
a

λai · (Xa ◦ φπ)

)
◦ Φt

hi
◦ Φ1

hi−1
◦ . . . ◦ Φ1

h1
(y0) dt

=
∑
a

Λa(y) · (Xa ◦ φπ(y)) . (55)

Here we defined Λa ∈ C∞(T ∗N) by

Λa(z) :=
l∑

i=1

∫ 1

0

λai ◦ Φt
hi
◦ Φ1

hi−1
◦ . . . ◦ Φ1

h1
◦ s ◦ φπ(z) dt ∀ z ∈ T ∗N .

Equation (55) implies that (f ′ − f) ◦ φπ −
∑

a Λ
a(y) · (Xa ◦ φπ(y)) vanishes on C and,

equivalently, it thus belongs to Iker dπ and since
∑

a Λ
a · (Xa ◦ φπ) ∈ Iπ−1F(T

∗N). This
gives (f ′ − f) ◦ φπ ∈ Iπ−1F(T

∗N), which completes the proof in Case 3.

If a global section does not exist, we can choose a locally finite open covering {Ui}∞i=1

of T ∗M with a partition of unity {ρi}∞i=1 subordinate to it, such that for every positive
integer i there exists a local section si : Ui → C. Similar to the global case, we can show
that for fi := F ◦ si ∈ C∞(Ui), we have F |φ−1

π (Ui)
− f ◦ φπ|φ−1

π (Ui)
∈ Iπ−1F(φ

−1
π (Ui)).

Defining f :=
∑∞

i=1 ρifi, we claim that F − f ◦ φπ ∈ Iπ−1F(T
∗N). This is equivalent to

showing that for every σ ∈ C∞
c (T ∗N) we have σ · (F − f ◦φπ) ∈ Jπ−1F . Since supp(σ) is

compact, it can be covered by finitely many open subsets φ−1
π (Ui1), . . . , φ

−1
π (Uin) of the
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covering {φ−1
π (Ui)}∞i=1. This gives

σ · (F − f ◦ φπ) =
∞∑
i=1

σ · (ρi ◦ φπ) · (F − f ◦ φπ) (56)

=
n∑

a=1

σ · (ρia ◦ φπ) · (F |φ−1
π (Uia )

− fia ◦ φπ|φ−1
π (Uia )

)

∈ Jπ−1F ,

since σ · (ρia ◦ φπ) ∈ C∞
c (φ−1

π (Uia)). This completes the proof.

Proof. [Theorem 5.19] It is enough to show that for every surjective submersion
π : N → M with connected fibers over a foliated manifold (M,F), the Poisson alge-
bras R (IF) and R (Iπ−1F) are isomorphic.

To do so, we first choose Riemannian metrics gM and gN such that π becomes a Rie-
mannian submersion. This can be done as follows: choose a Riemannian metric gM on
M , a fiber metric g⊥ on ker dπ ⊂ TN , and a subbundle H ⊂ TN complementary to
ker dπ; one then declares these two subbundles to be orthogonal to one another and
defines gN = (π∗gM)|H + g⊥.

Injectivity of φ̃π is a direct consequence of Lemma (5.20). It remains to prove that φ̃π is
surjective. It follows from showing that, for every F ∈ N(Iπ−1F), there exists f ∈ N(IF)
such that F − f ◦ φπ ∈ Iπ−1F(T

∗N). To do so we choose an open covering {Ui}∞i=1 of
M such that, for every positive integer i, the pullback ι−1

Ui
F is finitely generated. Let

{Va}∞a=1 be a locally finite refinement of the covering {T ∗Ui)}∞i=1 of T ∗M and let {ρa}∞a=1

be a partition of unity subordinate to {Va}∞a=1. Lemma 5.21 then implies that for every
a there exists fa ∈ C∞(Va) such that F |φ−1

π (Va)
− fa ◦ φπ|φ−1

π (Va)
∈ Iπ−1F(φ

−1
π (Va)).

Using the same argument as in the proof of Lemma 5.21 (see Equation (56)), for f :=∑∞
a=1 ρafa we have F − f ◦ φπ ∈ Iπ−1F(T

∗N). To complete the proof, we show that
f ∈ N(IF) as follows: Since f ◦ φπ ∈ N(Iπ−1F), Equation (39) of Lemma 5.13 implies
that {f,JF}T ∗M ◦φπ ⊂ φ∗

πJF ⊂ Iπ−1F(T
∗N). As a consequence of Lemma 5.20 we have

{f,JF}T ∗M ⊂ JF , which together with Lemma 5.8 gives f ∈ N(IF).
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The octonionic Hopf singular foliation

The singular leaf decomposition LOH of R16 ∼= O2 induced by the Hopf construction
for octonions O [MR19] is not locally induced by any isometric Lie group action, has
no known Lie group action generating it. In this chapter we construct a Lie groupoid
G ⇒ O2 whose orbits coincide with LOH . Its Lie algebroid E0 = Lie(G) is of the form
O4 → O2 with polynomial structure functions. Its sheaf of sections induces a singular
foliation FOH := ρ(Γ(E0)) on O2, which we call the singular octonionic Hopf foliation.
FOH is shown to be maximal among all singular foliations F generating LOH—in the
polynomial, the real analytic, as well as in the smooth setting.

We extend E0 to a Lie 3-algebroid, which is a minimal length representative of the
universal Lie ∞−algebroid of the singular octonionic Hopf foliation. This permits to
prove that E0 is the minimal rank Lie algebroid and that G the lowest dimensional Lie
groupoid which generate FOH .

The leaf decomposition LOH is one of the few known examples of a singular Riemannian
foliation in the sense of Molino which cannot be generated by local isometries (local non-
homogeneity). We improve this result by showing that any smooth singular foliation F
inducing LOH cannot be even Hausdorff Morita equivalent to a singular foliation FM on
a Riemannian manifold (M, g) generated by local isometries. Furthermore, we show that
there is no real analytic singular foliation F generating LOH which turns (R16, gst,F)
into a module singular Riemannian foliation.
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6 Normed division algebras and Hopf fibrations

Throughout this section, we cover the basic definitions and properties of normed division
algebras, particularly focusing on the non-associative case of octonions. We recall the
Hopf fibrations associated with these algebras and construct the corresponding singular
Hopf leaf decompositions. For a detailed introduction to the algebra of octonions, we
refer to [B02].

6.1 Basic properties of normed division algebras

Definition 6.1. A normed division algebra is a (finite-dimensional) Euclidean vector
space (D, ⟨·, ·⟩) equipped with the structure of a unital R-algebra satisfying

∥a·b∥ = ∥a∥·∥b∥ (57)

for all a, b ∈ D, where the norm is the one induced by the inner product.

Since (57) implies a·b = 0 can be satisfied only if a = 0 or b = 0, this is a division algebra,
as suggested by the name. The existence of a unit element 1 implies the embedding
ι : R→ D, α 7→ α1. The orthogonal projections of an element a ∈ D to im(ι) and im(ι)⊥

permit us to define the real part and the imaginary part of a, respectively: Re(a) = ⟨a, 1⟩1
and Im(a) = a−Re(a) and to generalize complex conjugation by means of the involution:

a := Re(a)− Im(a) . (58)

Theorem 6.2 ([H98]). Every normed division algebra is isomorphic to one of the follow-
ing four: The real numbers R, the complex numbers C, the quaternions H, the octonions
O.

They can be obtained successively by the Cayley-Dickson construction starting from
the real numbers, doubling the dimension in each step. In the process one looses in
the first step that all elements are real, in the second step commutativity, and in the
last step associativity. Continuing Cayley-Dickson further then violates Equation (57).
While non-associative, the octonions are still an alternative algebra, i.e. the associator
[a, b, c] = a·(b·c)− (a·b)·c is skew-symmetric for all a, b, c ∈ O. This implies in particular

a·(b·a) = (a·b)·a , (59)

which, for this reason, we will simply write as a·b·a henceforth.
In addition, the real components of the arguments of the associator do not contribute.
Thus one has, for example, [a, b, c] = −[b, a, c], which, when written out, gives

a·(b·c) + b·(a·c) = (a·b)·c+ (b·a)·c . (60)

This equation yields several ones that we will use in this chapter and which we will derive
from it now.

As a direct consequence of the Cayley-Dickson construction, we have a·b = b ·a for all
a, b ∈ O as well as

a·a = a·a = ∥a∥2 , (61)
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where the embedding ι is understood on the right-hand side. Replacing a by a + b in
Equation (61) then recovers the standard inner product by the formula.

⟨a, b⟩ = 1
2
(a·b+ b·a) = Re(a·b) . (62)

This in particular implies that Equation (60) can be rewritten as

a·(b·c) + b·(a·c) = 2⟨a, b⟩·c . (63)

Equation (61) implies that every a ̸= 0 has an inverse a−1 = a/∥a∥2. If we replace b and
c in Equation (63) by a and b, respectively, we obtain a·(a·b) = ∥a∥2·b, which, for a ̸= 0,
implies

a·(a−1 ·b) = b , (64)
(b·a−1)·a = b , (65)

where the second equation follows from the first one by conjugation.

Polarization of Equation (57) leads to

⟨a·b, a·c⟩ = ∥a∥2⟨b, c⟩ = ⟨b·a, c·a⟩ , (66)

which yields the frequently used equations (for a ̸= 0, replace c by a−1 · c and by c · a−1,
respectively):

⟨a·b, c⟩ = ⟨b, a·c⟩ , (67)
⟨b·a, c⟩ = ⟨b, c·a⟩ . (68)

Replacing c by a in Equation (63), we obtain the conjugation formula

a·b·a = 2⟨a, b⟩a− ∥a∥2b . (69)

Finally, these equations imply the well-known Moufang identities: for every a, b, c ∈ O
we have

(a·b)·(c·a) = a·(b·c)·a , (70)
a·(b·(a·c)) = (a·b·a)·c , (71)
((a·b)·c)·b = a·(b·c·b) . (72)

Let us illustrate this for Equation (70): Using Equations (63) and (65), we have

(a·b)·(c·a) = 2⟨a·b, c⟩·a− c·((b·a)·a)
= 2⟨a, (b·c)⟩·a− ∥a∥2 ·(b·c)
= a·(b·c)·a ,

where we used Equation (63) once more to obtain the last equality.

41



6.2 Hopf fibrations

The Hopf fibration can be constructed for each of the four normed division algebras
R,C,H, and O. [GWZ86] As explained in this subsection, there is a significant difference
between the first three and the octonions, due to the lack of associativity for the latter.

We start by describing the construction for the case of associative normed divisions
algebras. Here A stands for R,C or H. Associativity implies that the set of units
U = {u ∈ A : ∥u∥2 = 1} in A forms a Lie group. As multiplication by elements of norm
one preserves the norm of every element in A, we can consider the right Lie group action
of U on the unit sphere S ⊂ A2, defined by

(a, b)·u := (a·u, b·u) (73)

for every (a, b) ∈ A2 and u ∈ U . This action is free. It is proper as well since both U and
S are compact manifolds. Consequently, the right Lie group action S × U → S defines
a principal U -bundle. Table 1 below provides an overview of the three corresponding
bundles.

A Structure group Total space Base manifold
R Z/2Z ∼= S0 S1 S1

C U(1) ∼= S1 S3 S2

H SU(2) ∼= S3 S7 S4

Table 1 –

Remark 6.3. If we replace the right action in the construction of Hopf fibrations by a
left action, we obtain the same fibrations for the cases of A = R,C. However, due to
non-commutativity, the case of A = H will have a different fibration. Although we again
obtain a fibration of S7 into 3-spheres, these fibers are not identically the same as the
fibers in the construction by the right action described above. To confirm this, note that
in our description for any point (a′, b′) on the fiber passing through (a, b) ∈ S7 ⊂ H2, we
have b′ ·a′ = b·a, which is not true in the other description.

Due to the lack of associativity, the set of unit octonions S7 ⊂ O does not form a Lie
group. Consequently, right multiplication by unit octonions is not a Lie group action
and may fail to construct the octonionic Hopf fibration. To see the disadvantages of
such a construction, it is useful to introduce the following more explicit description of
octonions:

Definition 6.4. The algebra O of octonions is generated by an orthonormal basis e0 ≡ 1
and {ei}7i=1, where e0 is chosen to be the unit and the multiplication among the remaining
basis elements can be defined by

ei ·ej = −δij1 + ϵijkek, i, j = 1, ..., 7 . (74)

Here δij is the Kronecker delta, and ϵijk is a completely anti-symmetric tensor with value
1 when ijk ∈ {123, 145, 176, 246, 257, 347, 365} and 0 for all other triples.
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In particular, Definition 6.4 identifies the underlying vector space of O with R8, where
the identification is given by a =

∑7
i=0 aiei 7→ (a0, a1, . . . , a7). When this identification

is understood, by abuse of notation, we write a = (a0, a1, . . . , a7) = (ai)
7
i=0.

Now for every (x, y) ∈ S15 ⊂ O2 consider the 7-sphere defined as

S7
(x,y) := {(x·u, y ·u) : u ∈ O , ∥u∥ = 1} ⊂ S15 ⊂ O2 .

If right multiplication by octonions of norm 1 induces an honest fibration, for every point
(x′, y′) ∈ S7

(x,y), we should have S7
(x′,y′) = S7

(x,y). Equivalently, for every (x, y) ∈ S15 ⊂ O2

and every two unit octonions u1 and u2, there should exist a unique unit octonion u3
such that

(x·u1)·u2 = x · u3 , (75)
(y ·u1)·u2 = y · u3 . (76)

But it is not difficult to find an example violating this necessary condition: If we choose
(x, y) = (e1/

√
2, e2/

√
2), u1 = e5 and u2 = e4, in Equation (75) we find the unique

solution u3 = −e1, but the unique solution for Equation (76) turns out to be u3 = e1.
Consequently, right multiplication by unit octonions does not fibrate S15 into 7-spheres.
In particular, it does not induce the octonionic Hopf fibration.

6.3 Singular Hopf leaf decomposition

Since the usual construction fails for the octonionic Hopf fibration, we describe the
construction of Hopf fibrations using D-lines, which can also be used in the case of
octonions.

Definition 6.5. Let D be a normed division algebra. For every m ∈ D, the D-line in D2

with slope m is defined as

lm :=
{
(x,m·x) ∈ D2 : x ∈ D

}
. (77)

One also defines D-line with slope ∞:

l∞ :=
{
(0, x) ∈ D2 : x ∈ D

}
.

Definition 6.6. Let D be a normed division algebra. The singular Hopf leaf decompo-
sition of D2 is defined as

Lm,r := lm ∩ S(r) ∀m ∈ D,
L∞,r := l∞ ∩ S(r) , (78)

together with the origin in D2. Here, S(r) := {(x, y) ∈ D2 : ∥x∥2 + ∥y∥2 = r2} is the
sphere of radius r > 0 in D2.

The Hopf fibration associated to any of the normed division algebras D = R,C,H, and
O can be defined as the partition of the unit sphere S(1) ⊂ D2 into the leaves Lm,1, for
all m ∈ D, and the leaf L∞,1.

Remark 6.7. It can be easily verified that the definition of Hopf fibrations using A-lines
conincides with the fibrations described in Table 1. Note that in the case of quaternions,
if one prefers to work with left action, the definition of H-lines should be modified as

lm :=
{
(x, x·m) ∈ H2 : x ∈ H

}
(79)

for the two fibrations to coincide.
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7 The Lie groupoid and its induced Lie algebroid

In this section, we describe the constrution of a Lie groupoid G ⇒ O2 which has LOH as
its orbits. The corresponding Lie algebroid is computed using the right-invariant vector
fields.

7.1 The Lie groupoid

A prominent role in its construction of the Lie groupoid will be played by the following
function:

Definition 7.1. The (octonionic) rescaling function λ : O2 × O2 → R is defined by the
following formula:

λ(F,G, x, y) =
√
1 + 2

(
⟨x, F ⟩+ ⟨y,G⟩+ ⟨x·y, F ·G⟩

)
+ ∥x∥2 ∥F∥2 + ∥y∥2 ∥G∥2 . (80)

We refer to F = (F i)
7
i=0,G = (Gi)

7
i=0 as arrow coordinates and to x = (xi)

7
i=0,y = (yi)

7
i=0

as object coordinates.

The following lemma ensures that the radicand in Definition 7.1 is non-negative. Con-
sequently, the rescaling function λ is defined throughout O2 ×O2.

Lemma 7.2. For all (F,G, x, y) ∈ O2 ×O2, one has

∥x∥2
[
1 + 2

(
⟨x, F ⟩+ ⟨y,G⟩+ ⟨x·y, F ·G⟩

)
+ ∥x∥2 ∥F∥2 + ∥y∥2 ∥G∥2

]
= ∥x+ ∥x∥2 F + (x · y) ·G∥2

Proof. We first expand the right-hand side of the identity:

∥x+ ∥x∥2 F + (x·y)·G∥2 =
〈
x+ ∥x∥2 F + (x·y)·G, x+ ∥x∥2 F + (x·y)·G

〉
=

= ∥x∥2 + 2∥x∥2
(
⟨x, F ⟩+ ⟨x, (x·y)·G⟩+ ⟨(x·y)·G,F ⟩

)
+ ∥x∥4 ∥F∥2 + ∥x∥2 ∥y∥2 ∥G∥2 .

The result then follows by noting that ⟨(x·y)·G,F ⟩) = ⟨x·y, F ·G⟩ due to Equation (68)
and that ⟨x, (x·y)·G⟩ = ⟨y,G⟩ as a consequence of Equations (67) and (65). ■

Theorem 7.3. The following data define a Lie groupoid G ⇒ O2, whose orbits coincide
with the singular octonionic Hopf leaf decomposition LOH .

— The manifold of arrows G is an open subset of O2 ×O2 given by

G := O2 ×O2 \ C

where C = {(F,G, x, y) ∈ O2 ×O2 : λ(F,G, x, y) = 0}.
— For every arrow g = (F,G, x, y) ∈ G, the source map s : G → O2 and the target

map t : G → O2 are given by:

s(g) = (x, y) ,

t(g) =
1

λ(g)

(
x+ ∥x∥2 F + (x·y)·G , y + ∥y∥2G+ (y ·x)·F

)
.
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— The multiplication map m: G(2) := {(g′, g) ∈ G × G : s(g′) = t(g)} → G , is defined
as follows: The product m(g′, g) ≡ g′ ·g of composable arrows g′ = (F ′, G′, x,′ , y′)
and g = (F,G, x, y) is given by

g′ ·g := (F + λ(g)·F ′, G+ λ(g)·G′, x, y) .

— The unit map u: O2 → G is given by associating the arrow 1(x,y) := (0, 0, x, y) to
every object (x, y) ∈ O2.

— The inverse i : G → G applied to an arrow g = (F,G, x, y) gives g−1 ≡ i(g) by
means of

g−1 = (−F/λ(g),−G/λ(g), t(g)) .

We first establish some identities for the structure maps of G in the following lemmas,
which will be used in the proof of the theorem.

Lemma 7.4. For every arrow g ∈ G, both s(g) and t(g) belong to the same octonionic
line.

Proof. If x = 0, both s(g) and t(g) belong to the octonionic line l∞. If x is non-zero,
put m = y·x−1. Then evidently s(g) = (x, y) ∈ lm. To show that also t(g) belongs to lm,
we first show that (∥x∥2F, (y ·x)·F ) and ((x·y)·G, ∥y∥2G) belong to the octonionic line
lm:

((y ·x)·F )·(∥x∥2F )−1 = ((y ·x)·F )· (∥x∥2F )
∥x∥4 ·∥F∥2

= (y · x

∥x∥2
)· ∥F∥

2

∥F∥2
= y ·x−1

and

(∥y∥2G)·((x·y)·G)−1 = (∥y∥2G)· G·(y ·x)
∥x∥2∥y∥2∥G∥2

=
∥G∥2

∥G∥2
·(y · y

∥x∥2
) = y ·x−1 .

As lm is a vector space, we obtain that also t(g) ∈ lm. ■

Corollary 7.5. For every arrow g = (F,G, x, y) ∈ G with t(g) = (x′, y′), we have

y ·x = y′ ·x′ .

Lemma 7.6. For composable arrows (g′, g) ∈ G(2) the map λ is multiplicative, i.e. it
satisfies λ(g′ · g) = λ(g′) ·λ(g).

Proof. Using Lemma 7.2 and Corollary 7.5, we have

λ(g′)·λ(g) = ∥x
′ + ∥x′∥2F ′ + (x′ ·y′)·G′∥

∥x′∥
·λ(g)

=
∥λ(g)·x′ + ∥x∥2λ(g)·F ′ + (x·y)·λ(g)·G′∥

∥x∥

=
∥(x+ ∥x∥2F + (x·y)·G) + ∥x∥2λ(g)·F ′ + (x·y)·λ(g)·G′∥

∥x∥

=
∥x+ ∥x∥2 · (F + λ(g)·F ′) + (x·y)·(G+ λ(g)·G′)∥

∥x∥
= λ(F + λ(g)·F ′, G+ λ(g)·G, x, y) = λ(g′ ·g)

■
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Lemma 7.7. The multiplication map m: G(2) → G is associative.

Proof. Consider the arrows g′′, g′, g ∈ G, such that s(g′′) = t(g′′) and s(g′) = t(g). Using
Lemma 7.6, we have

g′′ ·(g′ ·g) = g′′ ·(F + λ(g)·F ′, G+ λ(g)·G′, x, y)

= (F + λ(g)·F ′ + λ(g′.g)·F ′′, G+ λ(g)·G′ + λ(g′ ·g)·G′′, x, y)

= (F + λ(g)·F ′ + λ(g)·λ(g′)·F ′′, G+ λ(g)·G′ + λ(g)·λ(g′)·G′′, x, y)

= (F ′ + λ(g′)·F ′′, G′ + λ(g′)·G′′, x′, y′)·g
= (g′′ ·g′)·g .

■

Lemma 7.8. For composable arrows (g′, g) ∈ G(2), we have t(g′· g) = t(g′) and s(g′·g) =
s(g).

Proof. Let g′ = (F ′, g′, x′, y′) and g = (F,G, x, y) with (x′, y′) = t(F,G, x, y). Lemma
7.6 together with Corollary 7.5 and ∥x′∥ = ∥x∥ and ∥y′∥ = ∥y∥ imply that

t(g′ ·g) = t(F + λ(g)·F ′, G+ λ(g)·G, x, y)

=
1

λ(g′)·λ(g)
(
x+ ∥x∥2 (F + λ(g)·F ′) + (x·y)·(G+ λ(g)·G′) , y + ∥y∥2G+ (y ·x)·F

)
=

1

λ(g′)

(
x′ + ∥x′∥2F ′ + (x′ ·y′)·G′ , y′ + ∥y′∥2G′ + (y ·x)·F ′) = t(g′) .

The second identity is obvious from the definition. ■

Lemma 7.9. For every arrow g ∈ G, one has g−1 ·g = 1s(g). In addition, t ◦ i = s.

Proof. For every arrow g = (F,G, x, y) g−1 ·g = (0, 0, x, y) = 1(x,y) is evident by the
definition. Lemma 7.8 implies, moreover, that t ◦ i(g) = t(g−1 ·g) = t(1(x,y)) = s(g) ■

Corollary 7.10. For every arrow g = (F,G, x, y), the composition g·g−1 is defined and
equal to 1t(g).

Proof. The composability of two arrows is a direct consequence of Lemma 7.9. For
g ·g−1 = (0, 0, t(g)) = 1t(g) use that λ(g−1) = 1

λ(g)
by Lemma 7.6. ■

Proof of Theorem 7.3. It is clear that G is a smooth manifold and the maps s, t, i
and u are smooth. In addition, Lemmas 7.7, 7.8 and 7.9 imply that the structure maps
satisfy the compatibility conditions in the definition of a groupoid.

The source map is obviously a surjective submersion. The target map is a surjection as
well, cf. Lemma 7.9. In order to prove that the target map t is also a submersion, it is
sufficient to show that for every arrow g ∈ G, there is a local section passing through
it. Let g = (F0, G0, x0, y0) ∈ G and consider its inverse arrow g−1 = (F,G, x1, y1).
There exists an open neighborhood U ⊂ O2 with (F,G, x, y) ∈ G for all (x, y) ∈ U .
We now define a smooth map σ : U → G by means of σ(x, y) := i(F,G, x, y). We have
σ(x1, y1) = g and

t ◦ σ(x, y) = t ◦ i(F,G, x, y) = s(F,G, x, y) = (x, y) , (81)
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where we used Lemma 7.9 to obtain the last equality. This implies that σ is a local
section passing through g, and consequently, t is a submersion. As a result, G(2) is a
smooth manifold and the multiplication map m is smooth. This completes the proof
that G ⇒ O2 is a Lie groupoid.

It remains to prove that the orbits of G ⇒ O2 coincide with the leaves in LOH . According
to Lemma 7.2 one has ∥t(g)∥ = ∥s(g)∥ for all g ∈ G. Together with Lemma 7.4 this
implies that the orbits of G are included in the leaves of LOH . In addition, for every
(x,m·x) ∈ Lm,r, we consider the arrow

gm,r = (
x− 1

∥x∥
, 0, ∥x∥,m·∥x∥) ∈ G

which satisfies s(gm,r) = (∥x∥,m·∥x∥) and

t(gm,r) =
1

λ(gm,r)
(∥x∥+ ∥x∥·(x− 1),m·∥x∥+m·∥x∥·(x− 1))

= ∥x∥
λ(gm,r)

·(x,m·x) = (x,m·x) .

The last equality holds since

λ(gm,r) =

√
1 + 2⟨∥x∥, x− 1

∥x∥
⟩+ ∥x∥2∥x− 1∥2

∥x∥2

=
√

1 + 2⟨1, x− 1⟩+ ∥x− 1∥2

=
√
∥1 + (x− 1)∥2 = ∥x∥ .

Similarly for (0, y) ∈ L∞,r: The source of g = (0, y−1
∥y∥,0,∥y∥ is (0, ∥y∥) while its target is

(0, y). Consequently, all points in a leaf of LOH can be joined to a single point of the
same leaf by an arrow in G ⇒ O2. ■

The same construction can be applied for any of the normed division algebras D, i.e.
also for A ∈ {R,C,H}. In the latter cases it then yields a Lie groupoid GA ⇒ A2 for
which the orbits give precisely the leaves of the singular Hopf foliation associated to
the respective associative division algebra A. The dimension of GA equals to 4 dim(A),
i.e. 4, 8, and 16, respectively. This is significantly bigger than the ones found for the
corresponding action Lie groupoids A2 ⋊ UA ⇒ A2, where UA = {u ∈ A : ∥u∥ = 1}
denotes the group of unitary elements found in the first colomn of Table 1; these Lie
groupoids have dimensions 2, 5, and 11, respectively. This is in contrast to G = GO
whose dimension 32 turns out to be minimal (see Theorem 10.11 below). The relation of
the Lie groupoids GA with the corresponding action groupoids is clarified in the following
proposition.

Proposition 7.11. Let A2 ⋊ UA ⇒ A2 be the action groupoid for the diagonal right
action of unitary elements UA on A2. Then the smooth map φ : GA → A2 ⋊ UA given by

φ(F,G, x, y) :=

(
(x, y),

1 + x · F + y ·G
∥1 + x · F + y ·G∥

)
,

defines a Lie groupoid morphism covering the identity on A2.
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Proof. First we observe that the rescaling function λ : A2×A2 → R, defined by Equation
(80), simplifies drastically in the case when the division algebra is associative: For every
g = (F,G, x, y) ∈ GA we have

λ(g) =
∥x+ ∥x∥2F + x·y ·G∥

∥x∥
=
∥x·(1 + x·F + y ·G)∥

∥x∥
= ∥1 + x·F + y ·G∥ .

Similarly, for the target map one now finds:

t(g) =
1

λ(g)

(
x+ ∥x∥2F + x·y ·G, y + ∥y2∥G+ y ·y ·F

)
=

1

λ(g)
(x·(1 + x·F + y ·G), y ·(1 + x·F + y ·G)) = (x, y)· 1 + x·F + y ·G

∥1 + x·F + y ·G∥
,

which is evidently equal to the target of φ(g) in the action groupoid.

To prove that φ is a morphism of Lie groupoids, it remains to show that it also preserves
the multiplication: Let g′ = (F ′, G′, x′, y′) and g = (F,G, x, y) be arrows such that
(x′, y′) = t(g). On the one hand, we have

φ(g′)·φ(g) =
(
(x′, y′),

1 + x′ ·F ′ + y′ ·G′

λ(g′)

)
·
(
(x, y),

1 + x·F + y ·G
λ(g)

)
=

(
(x, y),

(1 + x·F + y ·G)·(1 + x′ ·F ′ + y′ ·G′)

λ(g)·λ(g′)

)
and, on the other hand,

φ(g′ ·g) =
(
(x, y),

1 + x·(F + λ(g)·F ′) + y ·(G+ λ(g)·G′)

λ(g′ ·g)

)
.

Using Lemma 7.6, to establish φ(g′ ·g) = φ(g′)·φ(g) it suffices to show that

(1 + x·F + y ·G)·(1 + x′ ·F ′ + y′ ·G′) = 1 + x·(F + λ(g)·F ′) + y ·(G+ λ(g)·G′)

or, equivalently, that

(1 + x·F + y ·G)·(x′ ·F ′ + y′ ·G′) = λ(g)·(x·F ′ + y ·G′) .

But as (1 + x · F + y · G)−1 = (1 + x · F + y ·G)/λ(g)2, the latter equation becomes
equivalent to

(x′ ·F ′ + y′ ·G′) =

(
1 + x·F + y ·G

λ(g)

)
·(x·F ′ + y ·G′) ,

which holds true since

(x′, y′) =

(
x·
(
1 + x·F + y ·G

λ(g)

)
, y ·
(
1 + x·F + y ·G

λ(g)

))
.

■
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7.2 The induced Lie algebroid

We differentiate the Lie groupoid G ⇒ O2 introduced in the previous subsection so as to
obtain a corresponding Lie algebroid. We follow the conventions of [CFM21]. In what
follows, for every vector space V and smooth manifold M , we denote the corresponding
trivial vector bundle by V .

Proposition 7.12. The Lie algebroid associated to the Lie groupoid G ⇒ O2 is given by
— The trivial vector bundle E0 = O2 over O2.

— The anchor map ρ : E0 → TO2 ∼= O2:

ρ
(
u
v

)
=

(
∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x
∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y

)
, (82)

for every
(
u
v

)
∈ E0 based at (x, y) ∈ O2.

— The Lie bracket evaluated on constant global sections
(
u
v

)
,
(
u′

v′
)
∈ Γ(E0):

[

(
u
v

)
,

(
u′

v′

)
] = (⟨x, u⟩+ ⟨y, v⟩)

(
u′

v′

)
− (⟨x, u′⟩+ ⟨y, v′⟩)

(
u
v

)
. (83)

Proof. The vector bundle E0 can be identified with ker ds|u(O2) ⊂ G|u(O2). As s : G → O2

is projection to the second component of G ⊂ O2 ×O2, E0 is the trivial, rank 16 vector
bundle O2 ≡ O2 ×O2. Assuming that the trivialization is given by the constant global
frame ∂

∂F i and ∂
∂Gi for i = 0, 1, . . . , 7, we may identify every vector field

⟨u, ∂F ⟩+ ⟨v, ∂G⟩ :=
7∑

i=0

(
ui ∂

∂F i + vi ∂
∂Gi

)
∈ Γ(E0) (84)

with
(
u
v

)
∈ Γ(O2), where u and v can be thought of as O-valued functions on O2.

To evaluate the anchor map ρ : E0 → TO2 ∼= O2, it suffices to compute ρ
(
ei
0

)
and

ρ
(
0
ei

)
: Let us represent the vector ∂

∂F i

∣∣∣
1(x,y)

as the velocity vector of the smooth curve

g(τ) : τ → (τ ·ei, 0, x, y) ∈ s−1(x, y), for which we have g(0) = 1(x,y) and ġ(0) = ∂
∂F i

∣∣∣
1(x,y)

.

On this curve, the rescaling function is given by

λ(g(τ)) =
√

1 + 2τ⟨x, ei⟩+ τ 2∥x∥2

which implies that

d

dτ

(
λ(g(τ))

)∣∣∣
τ=0

= xi . (85)
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For every i = 0, . . . , 7 we can compute ρ
(
ei
0

)
as

ρ

(
ei
0

)
= dt( ∂

∂F i ) =
d

dτ

∣∣∣
τ=0

t(g(τ))

=
d

dτ

∣∣∣
τ=0

[
1

λ(g(τ))

(
x+ τ∥x∥2ei
y + τ(y ·x)·ei

)]
= −xi

(
x
y

)
+

(
∥x∥2ei
(y ·x)·ei

)
=

(
∥x∥2ei − xi x
(y ·x)·ei − xi y

)
.

ρ
(
0
ei

)
can be computed in a similar way. Equation (82) then follows from the C∞(O2)-

linearity of ρ.

Given the anchor map, it is sufficient to specify the Lie algebroid bracket [·, ·] : Γ(E0) ∧
Γ(E0) → Γ(E0) on constant sections: We first compute the Lie bracket of the right-
invariant vector fields induced by ∂

∂F i

∣∣∣
u(O2)

and ∂
∂Gi

∣∣∣
u(O2)

on G. Let g = (F,G, x, y) ∈ G
be an arrow with t(g) = (x′, y′). Consider the curve g(τ) : τ 7→ (τei, 0, x

′, y′) which
satisfies g(0) = 1(x′,y′) and ġ(0) = ∂

∂F i

∣∣∣
1(x′,y′)

.

The right-invariant vector field
(

∂
∂F i

)R ∈ X(G) induced by ∂
∂F i

∣∣∣
u(O2)

is given by

∂
∂F i

R
(g) =

d

dτ

∣∣∣
τ=0

[g(τ)·g] = d

dτ

∣∣∣
τ=0

(F + τλ(g)·ei, G, x, y)

= λ(g) ∂
∂F i

∣∣∣
g

and similarly

∂
∂Gi

R
(g) = λ(g) ∂

∂Gi

∣∣∣
g
.

To calculate commutators of the above vector fields, we need to compute for example( (
∂

∂F i

)R · λ)(1(x,y)),
a calculation we performed already in Equation (85). This implies in particular

[ ∂
∂F i

R
, ∂
∂F j

R
]
∣∣∣
1(x,y)

= xi ∂
∂F j

R
∣∣∣
1(x,y)

− xj ∂
∂F i

R
∣∣∣
1(x,y)

= xi ∂
∂F j

∣∣∣
1(x,y)

− xj ∂
∂F i

∣∣∣
1(x,y)

.

In a similar fashion, one obtains

[ ∂
∂F i

R
, ∂
∂Gj

R
]
∣∣∣
1(x,y)

= xi ∂
∂Gj

∣∣∣
1(x,y)

− yj ∂
∂F i

∣∣∣
1(x,y)

[ ∂
∂Gi

R
, ∂
∂Gj

R
]
∣∣∣
1(x,y)

= yi ∂
∂Gj

∣∣∣
1(x,y)

− yj ∂
∂Gi

∣∣∣
1(x,y)

.

Equation (83) now follows by R-linearity of the bracket. ■
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8 The singular octonionic Hopf foliation

The Lie algebroid introduced in the previous section realizes LOH as the leaf decompo-
sition of a singular foliation on O2 ∼= R16. It provides the setting in which we will prove
our result on the non-homogeneity of the singular octonionic Hopf foliation, see Theorem
8.9 below.

8.1 The singular foliation and non-homogeneity

Definition 8.1. The C∞(O2)-module FOH generated by elements of ρ(E0) for the Lie
algebroid given in Proposition 7.12 defines a singular foliation on O2, referred to as the
singular octonionic Hopf foliation.

We can characterize vector fields tangent to the leaves in FOH as solutions of a system
of functional equations. Throughout this section, every vector field

⟨u, ∂
∂x
⟩+ ⟨v, ∂

∂y
⟩ =

7∑
i=1

(ui∂xi + vi∂yi)

is identified with
(
u
v

)
∈ Γ(O2), where u and v can be thought of as O-valued functions

on O2.

Lemma 8.2. A vector field
(
u
v

)
∈ X(O2) is tangent to the leaves of LOH , if and only if

u·y + x·v = 0 , (86)
⟨x, u⟩ = ⟨y, v⟩ = 0 . (87)

for all (x, y) ∈ O2 ∼= R16.

Proof. Assume that
(
u
v

)
is tangent to all the leaves in LOH . For x = 0, the vector field(

u
v

)
being tangent to the octonionic line l∞ gives u = 0, implying Equation (86). As

the vector field is also tangent to the spheres S(r) for every r ≥ 0 and ⟨x, u⟩ = 0, one
obtains Equation (87).

For (x, y) = (x0, y0) with x0 ̸= 0, consider the integral curve γ : R→ O2 of the vector field(
u
v

)
satisfying γ(0) = (x0, y0). Writing γ(t) = (x(t), y(t)), one has (x(0), y(0)) = (x0, y0),

ẋ(t) = u(x(t), y(t)), and ẏ(t) = v(x(t), y(t)). The curve γ is contained in the octonionic
line lm with m = y0 ·x−1

0 . This implies that m = y(t) ·x(t)−1 for all t. Consequently,
y(t) = m·x(t), and differentiation with respect to t gives v(x(t), y(t)) = m·u(x(t), y(t)).
Evaluation at t = 0 yields

(y ·x−1)·u = v . (88)

Taking the inner product of both sides with y and using the identities (67) and (64), we
have

⟨y, v⟩ = ⟨y, (y ·x−1)·u⟩ = 1
∥x∥2 ⟨(x·y)·y, u⟩ =

∥y∥2
∥x∥2 ⟨x, u⟩ (89)
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Since, in addition, ⟨x, u⟩+ ⟨y, v⟩(1+ ∥y∥2
∥x∥2 )⟨x, u⟩ = 0 by

(
u
v

)
being tangent to the spheres

S15(r), Equation (87) follows.

Multiplying both sides of Eq. (88) by x−1 from the right and using the third Moufang
identity(72), we obtain

y ·(x−1 ·u·x−1) = v ·x−1 .

Multiplying both sides by ∥x∥4 and using Equation (69) imply that

∥x∥2v ·x̄ = y ·(x·u·x) = y ·(2⟨x̄, ū⟩x̄− ∥x∥2ū) = −∥x∥2y ·u ,
which gives v ·x̄ = −y ·ū or, by conjugation, to Eq. (86).

Conversely, assume that
(
u
v

)
satisfies Equations (86) and (87). These equation together

with Equation (69) and the third Moufang identity (72) imply Equation (88), by following
the above calculation from back to front. Now, consider some integral curve γ(t) =
(x(t), y(t)). Since ẋ(t) = u(x(t), y(t)) and ẏ(t) = v(x(t), y(t)), Equation (87) implies
that ∥x(t)∥2 and ∥y(t)∥2 are constant in t. As a first consequence, if γ passes through
the origin it must be a constant curve, and if it intersects L∞,r, it stays in L∞,r. If
x(t0) ̸= 0 for some t0, then one has x(t) ̸= 0 for all t. Differentiation with respect to t of
the equation (y(t)·x(t)−1)·x(t) = y(t) gives

0 = (y(t)·x(t)−1)·ẋ(t)− ẏ(t) +
[
d

dt
(y(t)·x(t)−1)

]
·x(t) =

[
d

dt
(y(t)·x(t)−1)

]
·x(t) , (90)

where we used Equation (88) in the last equality. Since x(t) ̸= 0, this implies that
y(t)·x(t)−1 equals to a constant m ∈ O and in particular γ(t) = (x(t),m·x(t)) lies in the
octonionic line lm for all t. In addition, Equation (87) ensures that it lies in some leaf of
LOH .
We have shown that, if the integral curve γ intersects a leaf in LOH , it stays in that leaf.
As a result, the vector field

(
u
v

)
is tangent to the leaves of LOH . ■

Proposition 8.3. The singular octonionic Hopf foliation FOH is generated by all vector
fields tangent to the leaves of LOH .

Proof. Using the exact sequence described in Appendix 2 for the case of C∞(M)-
modules, kernel of the map J: Γ(O2)→ Γ(R⊕O⊕ R) given by

J

(
u
v

)
=

 ⟨x, u⟩
u·y + x·v
⟨y, v⟩


is generated by the image of the anchor ρ : Γ(E0)→ X(O2) ∼= Γ(O2). Lemma 8.2 implies
the result. ■

This characterization of the vector fields tangent to the leaves in LOH , together with the
non-associativity of octonions, gives rise to the following important lemma:

Lemma 8.4. Let
(
u
v

)
∈ X(O2) be a vector field with u, v ∈ C∞(O2,O) linear in coordi-

nates xi and yi. If
(
u
v

)
is tangent to LOH , then u = v ≡ 0.
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Proof. We prove the statement by contradiction. Assume that X is a non-zero linear
vector field on O2 ∼= R16, tangent to the the leaves of LOH . Equation (86) then implies
that u is forced to be independent of y and v be independent of x. Consequently, there are
R-linear maps A,B : O → O such that u(x, y) = Ax and v(x, y) = By. Now, Equation
(86) and (87) can be rewritten as

(Ax)·ȳ + x·(By) = 0 , (91)
⟨Ax, x⟩ = 0 . (92)

Choosing y = 1 in Equation (91) gives

Ax = −x·(B1) ,

which together with Equation (92) imply that B1 is an imaginary element of O. Putting
x = 1 in the last equation we obtain A1 = B1. Similarly, with x = 1 in Equation (91),
we obtain By = −y ·(A1). Denoting −(A1) = −(B1) ∈ Im(O) by c, we have shown

Ax = x·c , By = y ·c .

This turns Equation (91) into

(x·c)·ȳ = x·(c·ȳ) ,

which must hold true for all x and y. But this is possible if and only if c ∈ Re(O). Since
we already showed that c is purely imaginary, this implies that c = 0, and consequently
that u = v = 0, which is in contradiction with our assumption. ■

Definition 8.5. Let F be a singular foliation on a Riemannian manifold.
— F is called homogeneous if there exists a Lie group of isometries G ⊂ Isom(M, g),

such that the leaves of F are generated as the orbits of the action.
— F is called locally homogeneous if for every point q ∈ M , there exists an open

subset U such that ι−1
U F is homogeneous on (U, gU).

Otherwise, F is called (locally) non-homogeneous.

Since the fundamental vector fields of isometries of (Rn, gst) which leave the origin fixed
are always linear, we have the following immediate corollary of Lemma 8.4:

Corollary 8.6. The singular foliation FOH on O2 ∼= R16, equipped with the standard
Riemannian metric, is both non-homogeneous and locally non-homogeneous at the origin.

Remark 8.7. Corollary 8.6 can be used also as an alternative proof of the classical
result that the octonionic Hopf fibration of S15 is non-homogeneous, which was shown in
[L93] by examining all isometric Lie group actions on R16, and (implicitly) [GWZ86] by
different methods.

Remark 8.8. The local non-homogeneity of the singular leaf decomposition LOH around
the origin has been discussed in [MR19].

Finally, we improve the previous classical results, and show that local non-homogeneity
does not hold even up to Hausdorff Morita equivalence.

53



Theorem 8.9. Let F0 be any singular foliation on O2 having LOH as its leaf decom-
position. Then (O2,F0) is not Hausdorff Morita equivalent to any locally homogeneous
singular foliation F on some Riemannian manifold (M, g).

Proof. Assume that (O2,F0) ∼ME (M,F) for some locally homogeneous singular foli-
ation F on a Riemannian manifold (M, g). Using the first part of Theorem 2.19, the
origin in O2, as the zero-dimensional leaf of F0, corresponds to a leaf LF

q ⊂ M of F for
some q ∈M . Denote the orthogonal complement of TqLF

q in TqM by νq := (TqL
F
q )

⊥. We
define the slice Sq ⊂ M at q ∈ LF

q as the image of the exponential map expq : ν
ϵ
q → M ,

where νϵq stands for the vectors of length smaller than some ϵ > 0, chosen small enough
such that νϵq lies inside the domain of definition of expq.

The singular foliation ι−1
Sq
F (see Example 2.15 and Proposition 2.17) is generated by

vector fields in F tangent to the slice Sq. The second part of Theorem 2.19 then implies
that the foliated manifold (Sq, ι

−1
Sq
F) is isomorphic to a neighborhood of the origin in the

foliated manifold (O2,F0). In particular, (Sq, ι
−1
Sq
F) has a single leaf of dimension 0 and

all the other leaves are diffeomorphic to 7-spheres.

On the other hand, by assumption there exists an open subset U ⊂ M containing q,
such that ι−1

Sq
F is induced by a Lie group G ⊂ Isom(U, gU), acting on U by isometries.

Assuming that ϵ is chosen small enough to have Sq = expq(ν
ϵ
q) ⊂ U , we claim that the

stabilizer Hq of G at q acts orthogonally on Sq and determines a singular foliation F ′.
More precisely, since Hq acts on Sq by isometries and for every h ∈ Hq ⊂ G, we have

h·expq(v) = expq(dqLh(v)) ,

we can define the left Lie group action Hq × νϵq → νϵq by the mapping (h, v)→ dqLh(v).
Note that Hq acts linearly and since

g(dqLh(v), dqLh(v)) = L∗
hg(v, v) = g(v, v) ,

it preserves the norm. Consequently, it defines an orthogonal left Lie group action on
O2. But according to [L93], an orthogonal Lie group action on (R16, gst) cannot induce
7- dimensional leaves. This contradicts what we found above. ■
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9 LOH and singular Riemannian foliations

9.1 FOH, a counterexample

Question: Let (M, g,F) be a geometric singular Riemannian foliation. Is it possible to
find a module singular Riemannian foliation (M, g,F ′), having the same leaf decompo-
sition as (M, g,F)?
Here, we claim that for O being the sheaf of real analytic functions on a real analytic
manifold, the singular octonionic Hopf foliation provides a counterexample.

Consider O2 as a real analytic manifold, equipped with the standard Riemannian metric
gst. The restriction of FOH to S15 ⊂ O2 induces the octonionic Hopf fibration, which is
known to be a regular Riemannian foliation. M98’s homothetic transformation lemma
[M98] then implies that (O2, gst,FOH) itself defines a geometric singular Riemannian
foliation.

Theorem 9.1. Let F be any singular foliation on the real analytic Riemannian manifold
(O2, gst), having LOH as its leaf decomposition. Then the geometric singular Riemannian
foliation (O2, gst,F) is not a module singular Riemannian foliation.

Proof. Let (O2, gst,F) be a module singular Riemannian foliation on the real analytic
manifold O2, with LOH as its leaf decomposition, and consider the vector field X ∈ F .
The Taylor expansion around the origin gives homogeneous polynomials Pk(x, y) and
Qk(x, y) of degree k, such that

X(x, y) = ⟨Pk(x, y),
∂

∂x
⟩+ ⟨Qk(x, y),

∂

∂y
⟩ .

Denote the homogeneous part of degree k in X by Xk. Since X is tangent to the leaves
in LOH , we have X(0, 0) = 0 which translates into

P0(0, 0) = Q0(x, y) ≡ 0 .

In addition, Equation (86) implies that

∞∑
k=1

Pk(x, y)·y + x·Qk(x, y) = 0

and in particular

⟨P1(x, y),
∂

∂x
⟩+ ⟨Q1(x, y),

∂

∂y
⟩ = 0 .

Similarly, we can show that the linear vector field X1 satisfies Equation (87), and Lemma
8.2 implies that it is tangent to the leaves of LOH . But according to Lemma 8.4, there
is no there is no non-zero linear vector field tangent to the leaves in LOH , showing that
X0 = X1 = 0. Consequently we have X =

∑∞
k=2Xk

As a direct consequence of the result above, every element in the space Ω1(O2)⊙(gst)♭(F)
vanishes at least quadratically at the origin.

In the other hand, we have
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LXgst =
∞∑
k=2

LXk
gst .

For k = 2, the homogeneous part LX2gst is a symmetric 2-tensor of degree 1 in x and
y. This term cannot be an element of Ω1(O2)⊙ (gst)♭(F), and X2 is not a Killing vector
field, consequently we obtain X2 = 0.

Recursively, we can prove that Xk = 0 for all k, which implies X = 0. This completes
the proof. ■
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10 Universal Lie ∞-algebroid of FOH

In [LGLS20], it is proven that for every singular foliation which admits a geometric
resolution, one can associate a Lie ∞-algebroid inducing it. (The necessary notions will
be recalled in Section 10.1). This association turns out to be unique up to homotopy
and leads to invariants of the singular foliation. In Section 10.2, we construct a Lie
3-algebroid that represents the universal Lie ∞-algebroid of FOH . This Lie 3-algebroid
will be used then in to prove that G ⇒ O2 has the minimal dimension among all Lie
groupoids having LOH as their orbits.

10.1 Lie ∞-algebroids of singular foliations

In what follows, M is a smooth or real analytic manifold, or an affine variety over K = R
or C, whose sheaf of functions is denoted by O. For every vector bundle F → M , the
space of sections Γ(F ) is viewed as a sheaf of O-modules.

Definition 10.1. A (split) Lie∞-algebroid (E, (lk)k≥1, ρ) consists of a positively-graded
vector bundle E =

⊕
i≥0E−i over a manifold M , equipped with:

1. A family of graded skew-symmetric and multilinear maps lk : ∧k Γ(E) → Γ(E) of
degree 2− k, called k-brackets, for all integers k ≥ 1,

2. A vector bundle morphism ρ : E0 → TM , called the anchor.

These must satisfy the following conditions:
— For k ̸= 2, the k-brackets lk are O-linear,
— The 2-bracket l2 is O-linear, except when at least one of the entries is of degree

zero: for sections x ∈ Γ(E0), y ∈ Γ(E), and f ∈ O, the 2-bracket satisfies

l2(x, fy) = f l2(x, y) + (ρ(x) · f) y;

— For every x ∈ Γ(E−1), one has ρ(l1(x)) = 0;
— The k-brackets satisfy the higher Jacobi identities: for every positive integer n

and sections x1, . . . , xn ∈ Γ(E),

n∑
i=1

(−1)i(n−i)
∑

σ∈Un(i,n−i)

ϵ(σ)ln−i+1(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0,

where Un(i, n−i) stands for the set of (i, n−i)-unshuffles, and ϵ(σ) is the signature
of the permutation σ given by

xσ(1) ∧ . . . ∧ xσ(n) = ϵ(σ)x1 ∧ . . . ∧ xn.

A Lie n-algebroid is a Lie ∞-algebroid with E−i = 0 for i ≥ n.

The O-linearity of lk with k ̸= 2 implies that for these k we have lk : ∧k E → E. (We do
not distinguish between the vector bundle morphisms and the induced map on sections).
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Example 10.2. A Lie ∞-algebroid (E, (lk)k≥1, ρ) with lk = 0 for all k ≥ 3 is called a
dg-Lie algebroid. Denoting the 1-bracket by d and the 2-bracket by [·, ·], the higher Jacobi
identities become:

d ◦ d = 0, (93)

d[x, y] = [dx, y] + (−1)|x|[x, dy], (94)

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0, (95)

for all homogeneous sections x, y, and z. Here, |x| denotes the degree of the homogeneous
section x.

In a Lie ∞-algebroid, writing d(i) := l1|E−i
, the higher Jacobi identities implies that the

sequence

· · · E−3 E−2 E−1 E0 TMd(3) d(2) d(1) ρ

is a chain complex, called the linear part of the Lie ∞-algebroid.

Definition 10.3. Let F be a singular foliation on M . A geometric resolution of F is a
chain complex

· · · E−3 E−2 E−1 E0 TMd(3) d(2) d(1) ρ

with ρ(Γ(E0)) = F , such that for every open subset U ⊂M the chain complex

· · · ΓU(E−3) ΓU(E−2) ΓU(E−1) ΓU(E0) F(U) 0d(3) d(2) d(1) ρ

is an exact sequence of O(U)-modules. The geometric resolution (E, d, ρ) is said to be
minimal at q ∈M , if d(i)

q : E−i|q → E(i−1)|q vanishes for all i ≥ 1.

Lemma 10.4 ([LGLS20]). Let F be a singular foliation on an O-manifold M .
For O being the sheaf of smooth functions on M , geometric resolutions F are in one-
to-one correspondence with resolutions of the O-module F by locally finitely generated
projectvice O-modules.
For O being the sheaf of polynomial or real analytic functions on M , geometric resolutions
are in one-to-one correspondence with resolutions of F by finitely generated free O-
modules.

The flatness theorems of Malgrange [T68] imply the following proposition on the transi-
tion between different choices of O on Rn in the study of geometric resolutions.

Proposition 10.5 ([LGLR22]). Let F be a singular foliation on the affine variety Rn.
A geometric resolution of F for O being the sheaf of polynomial functions, is also a
geometric resolution for O being the sheaf of smooth functions.

Definition 10.6. Let F be a singular foliation on M . A universal Lie ∞-algebroid of
F is a Lie ∞-algebroid (E, (lk)k≥1, ρ), such that its linear part is a geometric resolution
of F . If E−i = 0 for i ≥ n, it is called a universal Lie n-algebroid.
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As it is clear from Definition 10.6, for a singular foliation to be induced by a universal
Lie ∞-algebroid, it is required to admit a geometric resolution. There are examples
of singular foliations which do not admit a geometric resolution, see Example 3.38 in
[LGLS20]. However, if O is the sheaf of polynomial or real analytic functions, Hilbert’s
syzygy theorem ensures the existence of a geometric resolution in a neighborhood of
every point.

Theorem 10.7 ([LGLS20]). Let F be a singular foliation on M , admitting a geometric
resolution (E, d, ρ). There exist a universal Lie∞-algebroid, having (E, d, ρ) as its linear
part.

Such a universal Lie ∞-algebroid is unique up to some precise notion of homotopies; for
details on this and about why it is universal, see [LGLS20].

Let us recall that for a foliated manifold (M,F) the minimal number of locally generating
vector fields for F around q ∈M is equal to the dimension of the fiber Fq.

Proposition 10.8 ([LGLS20]). Let (E, (lk)k≥1, ρ) be a universal Lie ∞-algebroid of a
singular foliation F on M . If the linear part (E, l1, ρ) is minimal at q ∈ M , then
rank(E0) = dim(Fq) =: r. In particular, the rank of every Lie algebroid inducing F in a
neighborhood of q is at least r.

10.2 The universal Lie 3-algebroid of of FOH

We start the construction of the Lie 3-algbroid by choosing a geometric resolution for
FOH . Let us first view FOH as a sheaf of O-modules over the affine variety O2 ∼= R16,
where O is the sheaf of polynomials functions. This is possible since FOH is generated
by polynomial vector fields. In this setting, according to Lemma 10.4, it suffices to find
a free resolution of the module FOH . This can be done using Eisenbaud’s Macaulay2, as
explained in Appendix 2. The result is as follows:

The graded vector bundle of the geometric resolution is given by the trivial vector bundles
E0, E−1 and E−2 over O2, where

E0 := O2, E−1 := R⊕O⊕ R, E−2 := R .

The vector bundle morphisms ρ, d(1) and d(2) in the sequence

0 E−2 E−1 E0 TO2 ∼= O2d(2) d(1) ρ (96)

are given by the following evaluations on the constant global sections
(
u
v

)
∈ Γ(E0),
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µa
ν

 ∈ Γ(E−1) and t ∈ Γ(E−2):

ρ

(
u
v

)
:=

(
∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x
∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y

)
,

d(1)

µa
ν

 :=

(
µx+ a·y
νy + a·x

)
, (97)

d(2)(t) :=

−∥y∥2t(x·y)t
−∥x∥2t

 .

Lemma 10.9. The triple (E =⊕2
i=0E−i, d, ρ) is a geometric resolution of FOH on the

smooth manifold O2 ∼= R16. Moreover, this geometric resolution is minimal at the origin.

Proof. Since (E=⊕2
i=0E−i, d, ρ) is a geometric resolution of FOH as a sheaf of modules

over the ring of polynomials, Proposition 10.5 implies that it is also a geometric resolution
for FOH when O is the sheaf of smooth functions on Rn. Clearly, both d(1) and d(2) vanish
at the origin, showing that the geometric resolution is minimal at this point. ■

We construct a degree 2-bracket [·, ·] : Γ(E) ∧ Γ(E)→ Γ(E) of degree 0 as follows:

[

(
u
v

)
,

(
u′

v′

)
] := (⟨x, u⟩+ ⟨y, v⟩)

(
u′

v′

)
− (⟨x, u′⟩+ ⟨y, v′⟩)

(
u
v

)
,

[

(
u
v

)
,

µa
ν

] :=

 −2⟨y, a·u⟩+ 2⟨y, v⟩µ
x·(u·a) + (a·v)·y − µ(x·v)− ν(u·y)

−2⟨x, a·v⟩+ 2⟨x, u⟩ν

 ,

[

(
u
v

)
, t] := 2(⟨x, u⟩+ ⟨y, v⟩)t ,

[

µa
ν

 ,

µ′

a′

ν ′

] := 4⟨a, a′⟩ − 2µν ′ − 2µ′ν , (98)

and extend it to all sections of E using Leibniz rule. We define lk = 0 for all k ≥ 3.

Proposition 10.10. The triple (E, (lk)k≥1, ρ) defines a Lie 3-algebroid. It is a universal
Lie 3-algebroid of FOH , whose linear part is a geometric resolution minimal at the origin.

Proof. Since lk = 0 for k ≥ 3, we have to show that (E, (lk)k≥1, ρ) is a dg-Lie algebroid.
Note that as (E, d, ρ) is a geometric resolution, we have ρ ◦ d = 0 and d ◦ d = 0. It
suffices to verify Equations (94) and (95) in Example (10.2).

Step 1. Verifying Equation (94): For constant global sections
(
u
v

)
∈ Γ(E0) and(µ

a
ν

)
∈ Γ(E−1), we have
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d(1)([

(
u
v

)
,

µa
ν

]) = d(1)

 −2⟨y, a·u⟩+ 2⟨y, v⟩µ
x·(u·a) + (a·v)·y − µ(x·v)− ν(u·y)

−2⟨x, a·v⟩+ 2⟨x, u⟩ν


=

(
−2⟨y, a·u⟩x+ 2⟨y, v⟩µx+ (x·(u·a))·y + ∥y∥2a·v − µ(x·v)·y − ν∥y∥2u
−2⟨x, a·v⟩y + 2⟨x, u⟩νy + (y ·(v ·a))·x+ ∥x∥2a·u− ν(y ·u)·x− µ∥x∥2v

)
=

(
−(x·y)·(a·u) + ∥y∥2a·v + µ(x·y)·v − ν∥y∥2u
−(y ·x)·(a·v) + ∥x∥2a·u+ ν(y ·x)·u− µ∥x∥2v

)
,

where we used Equation (63) to obtain the second equality, and

[

(
u
v

)
, d(1)

µa
ν

] = [

(
u
v

)
,

(
µx+ a·y
νy + a·x

)
]

=

(
µ(∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x) + a·(∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y)
ν(∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y) + a·(∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x)

)
+ (⟨x, u⟩+ ⟨y, v⟩)

(
µx+ a·y
νy + a·x

)
− (⟨x, µx+ a·y⟩+ ⟨y, νy + a·x⟩)

(
u
v

)
.

After cancellations and using Equations (67) and (68) in the last term, it becomes equal
to

=

(
a·((y ·x)·u) + ∥y∥2a·v + µ(x·y)·v − ν∥y∥2u
−a·((x·y)·v) + ∥x∥2a·u+ ν(y ·x)·u− µ∥x∥2v

)
− 2⟨a, x·y⟩

(
u
v

)
,

which together with Equation (63) gives

d(1)([

(
u
v

)
,

µa
ν

]) = [

(
u
v

)
, d(1)

µa
ν

] .

For global constant sections
(
u
v

)
∈ Γ(E0) and t ∈ Γ(E−2) one has

d(2)([

(
u
v

)
, t]) = 2(⟨x, u⟩+ ⟨y, v⟩)d(t)(t) = 2(⟨x, u⟩+ ⟨y, v⟩)

−∥y∥2t(x·y)t
−∥x∥2t

 .

On the other hand, since by Lemma 7.4 and Corollary 7.5 the functions ∥x∥2, ∥y∥2 and
x·y are constant along orbits of G ⇒ O2, we have

ρ

(
u
v

)
·

−∥y∥2t(x·y)t
−∥x∥2t

 =

0
0
0

 ,

which gives

[

(
u
v

)
, d(2)t] = [

(
u
v

)
,

−∥y∥2t(x·y)t
−∥x∥2t

]

=

 −2⟨y, (y ·x)·u⟩t− 2∥y∥2⟨y, v⟩t
x·(u·(x·y))t+ ((x·y)·v)·yt+ ∥y∥2x·vt+ ∥x∥2u·yt

−2⟨x, (x·y)·v⟩t− 2∥x∥2⟨x, u⟩t
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Using Equation (67), the first and the third components become 2(⟨x, u⟩+⟨y, v⟩)(−∥y∥2t)
and 2(⟨x, u⟩+ ⟨y, v⟩)(−∥x∥2t), respectively. After Moufang identities (71) and (72), and
using Equation (63), the second component equals 2(⟨x, u⟩ + ⟨y, v⟩)((x · y)t). These
together give

d(2)([

(
u
v

)
, t]) = [

(
u
v

)
, d(2)t] .

Finally, for constant global sections
(µ
a
ν

)
,

(
µ′

a′

ν ′

)
∈ Γ(E−1) one has

d(2)([

µa
ν

 ,

µ′

a′

ν ′

]) = d(2)(4⟨a, a′⟩ − µν ′ − µ′ν) =

−2∥y∥2(2⟨a, a′⟩ − µν ′ − µ′ν)
2(x·y)(2⟨a, a′⟩ − µν ′ − µ′ν)
−2∥x∥2(2⟨a, a′⟩ − µν ′ − µ′ν)

 .

On the other hand, one has

[d(1)

µ
a
ν

 ,

µ′

a′

ν ′

]− [

µ
a
ν

 , d(1)

µ′

a′

ν ′

]

= [d(1)

µ
a
ν

 ,

µ′

a′

ν ′

] + {

µ
a
ν

←→
µ′

a′

ν ′

} = [

(
µx+ a·y
νy + a·x

)
,

µ′

a′

ν ′

] + {

µ
a
ν

←→
µ′

a′

ν ′

}
=

 −2⟨y, a′ ·(µx+ a·y)⟩+ 2⟨y, νy + a·x⟩µ′

x·((µx+ y ·a)·a′) + (a′ ·(νy + a·x))·y − µ′(x·(νy + x·a))− ν ′((µx+ a·y)·y)
−2⟨x, a′ ·(νy + a·x)⟩+ 2⟨x, µx+ a·y⟩ν ′


+ {

µ
a
ν

←→
µ′

a′

ν ′

}
=

 −2∥y∥2(⟨a, a′⟩ − µ′ν) + 2⟨a, x·y⟩µ′ − 2⟨a′, x·y⟩µ
(µ∥x∥2 + ν∥y∥2)a′ − (µ′∥x∥2 + ν ′∥y∥2)a+ x·((y ·a)·a′) + (a′ ·(a·x))·y − (x·y)(µν ′ + µ′ν)

−2∥x∥2(⟨a, a′⟩ − µν ′) + 2⟨a, x·y⟩ν ′ − 2⟨a′, x·y⟩µ′


+ {

µ
a
ν

←→
µ′

a′

ν ′

}
=

 −2∥y∥2(2⟨a, a′⟩ − µν ′ − µ′ν)

x·((y ·a)·a′ + (y ·a′)·a) + (a·(a′ ·x) + a′ ·(a·x))·y − (x·y)(µν ′ + µ′ν)
−2∥x∥2(⟨a, a′⟩ − µν ′ − µ′ν)

 ,

where {
(µ
a
ν

)
←→

(
µ′

a′

ν ′

)
} stands for the terms obtained by switching of the sections.

Equation (63) then implies

d(2)([

µa
ν

 ,

µ′

a′

ν ′

]) = [d(1)

µa
ν

 ,

µ′

a′

ν ′

]− [

µa
ν

 , d(1)

µ′

a′

ν ′

] .

The other cases are obvious for degree reasons.

Step 2. Verifying Equation (95): Similar to approach of the first step, we proceed
by verifying Equation (95) for some particular choices of constant global sections. For
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all the other choices, the Jacobiator vanishes for degree reasons.

Since restriction to E0 coincides with the Lie algebroid of G ⇒ O2, for three sections of
degree 0, the Jacobi identity is already satisfied.

For constant global sections
(
u
v

)
,
(
u′

v′
)
∈ Γ(E0) and

(µ
a
ν

)
∈ Γ(E−1), we claim that

[

(
u
v

)
, [

(
u′

v′

)
,

µa
ν

]]− [

(
u′

v′

)
, [

(
u
v

)
,

µa
ν

]]− [[

(
u
v

)
,

(
u′

v′

)
],

µa
ν

] =

0
0
0

 . (99)

We proceed by showing that each component of the result vanishes. Note that

[

(
u
v

)
, [

(
u′

v′

)
,

µa
ν

]] = [

(
u
v

)
,

 −2⟨y, a·u′⟩+ 2⟨y, v′⟩µ
x·(u′ ·a) + (a·v′)·y − µ(x·v′)− ν(u′ ·y)

−2⟨x, a·v′⟩+ 2⟨x, u′⟩ν

] ,

and

[[

(
u
v

)
,

(
u′

v′

)
],

µa
ν

] = [(⟨x, u⟩+ ⟨y, v⟩)
(
u′

v′

)
− (⟨x, u′⟩+ ⟨y, v′⟩)

(
u
v

)
,

µa
ν

]

= (⟨x, u⟩+ ⟨y, v⟩)

 −2⟨y, a·u′⟩+ 2⟨y, v′⟩µ
x·(u′ ·a) + (a·v′)·y − µ(x·v′)− ν(u′ ·y)

−2⟨x, a·v′⟩+ 2⟨x, u′⟩ν


− {
(
u
v

)
←→
(
u′

v′

)
} .

The first component of the left-hand side of Equation (99) then decomposes into

=− 2⟨∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y, a·u′⟩+ 2⟨∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y, v′⟩µ
− 2⟨y, ((a·u′)·x+ y ·(v′ ·a)− µ(v′ ·x)− ν(y ·u′))·u⟩+ 2⟨y, v⟩(−2⟨y, a·u′⟩+ 2⟨y, v′⟩µ)
− (⟨x, u⟩+ ⟨y, v⟩)(−2⟨y, a·u′⟩+ 2⟨y, v′⟩µ)

− {
(
u
v

)
←→
(
u′

v′

)
} .

Straightforward cancellations then turn it into

=− 2⟨∥y∥2v + (y ·x)·u, a·u′⟩+ 2⟨(y ·x)·u, v′⟩µ
− 2⟨y, ((a·u′)·x+ y ·(v′ ·a)− µ(v′ ·x)− ν(y ·u′))·u⟩
+ 4⟨x, u⟩(⟨y, a·u′⟩ − ⟨y, v′⟩µ)

− {
(
u
v

)
←→
(
u′

v′

)
} ,

which vanishes after the following consequences of Equations (63), (67) and (68):

⟨(y ·x)·u, v′⟩ = ⟨−(y ·u)·x+ 2⟨x, u⟩y, v′⟩ = −⟨y, (v′ ·x)·u⟩+ 2⟨x, u⟩⟨y, v′⟩ ,
⟨y, ((a·u′)·x)·u⟩ = ⟨(y ·u)·x, a·u′⟩ = ⟨−(y ·x)·u+ 2⟨x, u⟩y, a·u′⟩ ,
⟨y, (y ·(v′ ·a))·u⟩ = ⟨∥y∥2v′, a·u⟩ ,
⟨y, (y ·u)·u′⟩ = ∥y∥2⟨u, u′⟩ = ⟨y, (y ·u′)·u⟩ .
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The third component vanishes in a similar way. Finally, the second component equals to

= (∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x)·(u′ ·a) + (a·v′)·(∥y∥2v + u·(x·y)− (⟨x, u⟩+ ⟨y, v⟩)y)
− µ((∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x))·v′)− ν(u′ ·(∥y∥2v + u·(x·y)− (⟨x, u⟩+ ⟨y, v⟩)y))
+ x·(u·(x·(u′ ·a) + (a·v′)·y − µ(x·v′)− ν(u′ ·y))) + ((x·(u′ ·a) + (a·v′)·y − µ(x·v′)− ν(u′ ·y)))·v)·y
− (−2⟨y, a·u′⟩+ 2⟨y, v′⟩µ)·(x·v)− (−2⟨x, a·v′⟩+ 2⟨x, u′⟩ν)·(u·y)
− (⟨x, u⟩+ ⟨y, v⟩)·(x·(u′ ·a) + (a·v′)·y − µ(x·v′)− ν(u′ ·y))

− {
(
u
v

)
←→
(
u′

v′

)
} ,

which can be rewritten as

= µ(−∥x∥2u·v′ − ((x·y)·v)·v′ − (x·u·x)·v′ − ((x·v′)·v)·y − 2⟨y, v′⟩x·v + 2⟨x, u⟩x·v′ + 2⟨y, v⟩x·v′)
+ ν(−∥y∥u′ ·v − u′ ·(u·(x·y))− x·(u·(u′ ·y))− u′ ·(y ·v ·y)− 2⟨x, u′⟩u·y + 2⟨x, u⟩u′ ·y + 2⟨y, v⟩u′ ·y)
+ (∥x∥2u+ x·u·x)·(u′ ·a) + (a·v′)·(∥y∥2v + y ·v ·y) + ((x·y)·v)·(u′ ·a) + (a·v′)·(u·(x·y))
+ x·(u·((a·v′)·y)) + ((x·(u′ ·a))·v)·y + 2⟨y, a·u′⟩)x·v + 2⟨x, a·v′⟩u·y
− 2(⟨x, u⟩+ ⟨y, v⟩)x·(u′ ·a)− 2(⟨x, u⟩+ ⟨y, v⟩)(a·v′)·y

− {
(
u
v

)
←→
(
u′

v′

)
} .

Here, the coefficient of µ vanishes as a result of the following identities, concluded from
Equation (63):

∥x∥2u·v′ + (x·u·x)·v′ = 2⟨x, u⟩x·v′ ,
((x·y)·v)·v′ = 2⟨y, v⟩x·v′ − 2⟨y, v′⟩x·v + ((x·v)·v′)·y .

The coefficient of ν vanishes in a similar way. Using the identities ∥x∥2u+x·u·x = 2⟨x, u⟩x
and ∥y∥2v + y ·v ·y = 2⟨y, v⟩y, the remaining terms simplify into

= ((x·y)·v)·(u′ ·a) + (a·v′)·(u·(x·y))
+ x·(u·((a·v′)·y)) + ((x·(u′ ·a))·v)·y + 2⟨y, a·u′⟩)x·v + 2⟨x, a·v′⟩u·y
− 2⟨y, v⟩x·(u′ ·a)− 2⟨x, u⟩(a·v′)·y

− {
(
u
v

)
←→
(
u′

v′

)
} .

Again, iterative use of Equation (63) gives

((x·y)·v)·(u′ ·a) = 2⟨y, v⟩x·(u′ ·a)− 2⟨y, a·u′⟩x·v + 2⟨u′, a·v⟩x·y − ((x·(u′ ·a))·v)·y ,
(a·v′)·(u·(x·y)) = 2⟨x, u⟩(a·v′)·y − 2⟨x, a·v′⟩u·y + 2⟨u, a·v′⟩x·y − x·(u·((a·v′)·y)) ,

which implies that the second component vanishes as well, and Equation (99) is verified.
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For global constant sections
(
u
v

)
,
(
u′

v′
)
∈ Γ(E0) and t ∈ Γ(E−2), we have

[

(
u
v

)
, [

(
u′

v′

)
, t]]− [

(
u′

v′

)
, [

(
u
v

)
, t]]− [[

(
u
v

)
,

(
u′

v′

)
], t]

= [

(
u
v

)
, 2(⟨x, u′⟩+ ⟨y, v′⟩)t]− [(⟨x, u⟩+ ⟨y, v⟩)

(
u′

v′

)
, t]− {

(
u
v

)
←→
(
u′

v′

)
}

= 2(⟨∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x, u′⟩+ ⟨∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y, v′⟩)t
+ 4(⟨x, u⟩+ ⟨y, v⟩)(⟨x, u′⟩+ ⟨y, v′⟩)t− 2(⟨x, u⟩+ ⟨y, v⟩)(⟨x, u′⟩+ ⟨y, v′⟩)t

− {
(
u
v

)
←→
(
u′

v′

)
} = 0

which vanishes due to the following consequences of Equation (67):

⟨(x·y)·v, u′⟩ = ⟨(y ·x)·u′, v⟩ ,
⟨(x·y)·v′, u⟩ = ⟨(y ·x)·u, v′⟩ .

Finally, for the constant global sections
(
u
v

)
∈ Γ(E0) and

(µ
a
ν

)
,

(
µ′

a′

ν ′

)
∈ Γ(E−1) we have

[

(
u
v

)
, [

µa
ν

 ,

µ′

a′

ν ′

]]− [

µa
ν

 , [

(
u
v

)
,

µ′

a′

ν ′

]]− [

µ′

a′

ν ′

 [

(
u
v

)
,

µa
ν

]]

= [

(
u
v

)
, µν ′ − ⟨a, a′⟩]− [

µa
ν

 ,

 −2⟨y, a′ ·u⟩+ 2⟨y, v⟩µ′

x·(u·a′) + (a′ ·v)·y − µ(x·v)− ν ′(u·y)
−2⟨x, a′ ·v⟩+ 2⟨x, u⟩ν ′

]

+ {

µa
ν

←→
µ′

a′

ν ′

}
= 2(⟨x, u⟩+ ⟨y, v⟩)(µν ′ − ⟨a, a′⟩)− 2µ(−⟨x, a′ ·v⟩+ ⟨x, u⟩ν ′)
− 2ν(−⟨y, a′ ·u⟩+ ⟨y, v⟩µ′) + 2⟨a, x·(u·a′) + (a′ ·v)·y − µ′(x·v)− ν ′(u·y)⟩

+ {

µa
ν

←→
µ′

a′

ν ′

} ,
which simplifies into

= −2(⟨x, u⟩+ ⟨y, v⟩)⟨a, a′⟩+ 2⟨y, v⟩(µν ′ − µ′ν) + 2⟨a, x·(u·a′) + (a′ ·v)·y⟩
+ 2(µ⟨x, a′ ·v⟩+ ν⟨y, a′ ·u⟩ − µ′⟨x, a·v⟩ − ν ′⟨y, a·u⟩)

+ {

µa
ν

←→
µ′

a′

ν ′

} .
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By anti-symmetry, the second and the fourth terms of the expression cancel with the

corresponding terms in {
(µ
a
ν

)
←→

(
µ′

a′

ν ′

)
}. The remaining terms can be written as

= 2⟨a, x·(u·a′) + u·(x·a′)− 2⟨x, u⟩a′⟩+ 2⟨a, (a′ ·y)·v + (a′ ·v)·y − 2⟨y, v⟩a′⟩ = 0

which vanishes as a result of Equation (63).
■

Theorem 10.11. The Lie algebroid (E0, [·, ·], ρ) and correspondingly the Lie groupoid
G ⇒ O2 have the minimal dimension among Lie algebroids and Lie groupoids over O2,
with FOH as their orbits.

Proof. Since the universal Lie 3-algebroid of FOH introduced in Proposition 10.10 is
minimal at the origin, and rank(E0) = 16, Proposition 10.8 implies that every such Lie
algebroid is of dimension at least 16. As a consequence, since O2 is a 16-dimensional
manifold, every Lie groupoid inducing FOH has a manifold of arrows with dimension at
least 32. ■
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Appendix

1 Almost Killing Lie algebroids
In the appendix we recall the notion of almost Killing Lie algebroids as defined previously
in [KS19] and provide their relation to module singular Riemannian foliations defined in
this paper. (See, in particular, Proposition 1.5 below, but also Theorem 3.6 in the main
text).

Definition 1.1. A vector bundle A → M equipped with a vector bundle morphism
ρ : A→ TM covering the identity is called an anchored bundle. Let (A, ρ) be an anchored
bundle equipped with a skew-symmetric bracket [·, ·]A on Γ(A). The triple (A, ρ, [·, ·]A)
is called an almost Lie algebroid if the induced map ρ : Γ(A) → X(M) preserves the
brackets, and the Leibniz rule is satisfied:

[s, fs′]A = (ρ(s) · f) s′ + f [s, s′]A .

Definition 1.2. Let (A, ρ) be an anchored bundle over M and E →M a vector bundle
over the same base. An A-connection on E is a C∞(M)-linear map A∇ from Γ(A) to
HomR(Γ(E),Γ(E))) satisfying

A∇s(fe) = (ρ(s) · f) e+ fA∇se ,

for every f ∈ C∞(M), e ∈ Γ(E) and s ∈ Γ(A).

An anchored bundle (A, ρ) together with an ordinary connection on A, ∇ : Γ(A) →
Γ(T ∗M ⊗ A), defines an A-connection A∇ on TM by:

A∇sX := Lρ(s)X + ρ(∇Xs) , (100)

valid for every s ∈ Γ(A) and X ∈ X(M). Note that by assuming the Leibniz rule and the
commutativity of A∇s with contractions, these derivations can be extended to arbitrary
tensor powers of TM and T ∗M .

Definition 1.3. Let (A, ρ, [·, ·]A) be an almost Lie algebroid over a Riemannian manifold
(M, g) and ∇ : Γ(A) → Γ(T ∗M ⊗ A) a connection on A. Then (A,∇) and (M, g) are
called compatible if

A∇g = 0 ,

where the A-connection A∇ is defined by Equation (100). The triple (A,∇, g) is called
a Killing almost Lie algebroid over M .
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Lemma 1.4. Let (A, ρ) be an anchored vector bundle over a Riemannian manifold
(M, g), and let ∇ be an ordinary connection on A. The triple (A,∇, g) satisfies A∇g = 0
if and only if for every X, Y ∈ X(M) and s ∈ Γ(A) we have

(Lρ(s)g)(X, Y ) = g(ρ(∇Xs), Y ) + g(X, ρ(∇Y s)) .

Proof. By Equation (100), for every vector field X ∈ X(M)

(A∇sg)(X,X) = A∇s(g(X,X))− 2g(A∇sX,X)

= (Lρ(s)g)(X,X)− 2g(ρ(∇Xs), X) .

Consequently, A∇g = 0 if and only if

(Lρ(s)g)(X,X) = 2g(ρ(∇Xs), X) .

Proposition 1.5. Let (M,F) be a singular foliation on a Riemannian manifold (M, g).
Then the triple (M, g,F) is a module singular Riemannian foliation if and only if it
is locally generated by Killing almost Lie algebroids, i.e. ∀q ∈ M , there exist an open
neighborhood U ∈ M containing q and a Killing almost Lie algebroid (AU ,∇, gU) over
(U, gU) such that ρ (Γc(AU)) = ι−1

U F .

Proof. Assume that (M, g,F) is a module singular Riemannian foliation and q ∈ M .
Then there exists an open neighborhood U ∈M containing q such that ι−1

U F is generated
by finitely many vector fields V1, . . . , VN ∈ X(U) for some positive integer U . By involu-
tivity of ι−1

U F , the trivial vector bundle AU of rank N with a frame e1, . . . , eN ∈ Γ(AU)
together with the anchor map ρ : AU → TM , ea 7→ Va for a = 1, . . . , N , can be equipped
with an almost Lie algebroid structure. By Lemma 3.4 there exist 1-forms ωb

a ∈ Ω1(U)
such that

LVag =
N∑
b=1

ωb
a ⊙ ιVb

g ∀a, b = 1, . . . , N .

Now if we define ∇ea =
∑N

b=1 ω
b
a ⊗ eb, for every X, Y ∈ X(U), we have

(Lρ(ea)g)(X, Y ) = (LVag)(X, Y )

=
N∑
b=1

(
(ιXω

b
a)g(Vb, Y ) + (ιY ω

b
a)g(X, Vb)

)
= g

(
ρ

(
N∑
b=1

ιXω
b
aeb

)
, Y

)
+ g

(
X, ρ

(
N∑
b=1

ιY ω
b
aeb

))
= g(ρ(∇Xea), Y ) + g(X, ρ(∇Y ea)) .

Consequently, by Lemma 1.4, (AU ,∇U , gU) is a Killing almost Lie algebroid and we
have ρ(Γc(AU)) = ι−1

U F . Conversely, Assume that (M,F) is locally generated by Killing
almost Lie algebroids. Let q ∈ M , and take a neighborhood U ∈ M containing q with
a Killing almost Lie algebroid (AU ,∇, gU) over (U, gU) such that ρ(Γc(AU)) = ι−1

U F . By
choosing U small enough, we can assume that AU is trivial and there is a global frame
e1, ..., eN ∈ Γ(AU). Then there exist 1-forms ωb

a ∈ Ω1(U) such that

∇ea =
N∑
b=1

ωb
a ⊗ eb ∀a, b = 1, . . . , N .
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With Va := ρ(ea) for a, b = 1, . . . , N , by Lemma 1.4, for every X, Y ∈ X(U) one has

(LVag)(X, Y ) =
N∑
b=1

(
(ιXω

b
a)g(Vb, Y ) + (ιY ω

b
a)g(X, Vb)

)
=

(
N∑
b=1

ωb
a ⊙ ιVb

g

)
(X, Y ) .

This implies, using Lemma 3.4 and Proposition 3.5, that (M, g,F) is a module singular
Riemannian foliation.
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2 Computations with Macaulay2

In this appendix, we use Eisenbud’s Macaulay2 to construct a short exact sequence of O-
modules, where O stands for the sheaf of smooth, polynomial, or real analytic functions
on O2 ∼= R16. This exact sequence will be used in Section 8.1 to prove the maximality
of FOH , and in Section 10.2 to construct a universal Lie 3-algebroid for FOH . This can
be done as follows: In Macaulay2Web, first specify the ring of polynomial functions on
R16 by entering the following code in the first line:

R = QQ[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7,
y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7]

Then, considering the characterizing equations of Lemma 8.2 for vector fields tangent to
the leaves in LOH , we construct the morphism of O-modules J: Γ(O2)→ Γ(R⊕O⊕ R)
given by

J

(
u
v

)
=

 ⟨x, u⟩
u·y + x·v
⟨y, v⟩


whose kernel gives the desired O-module of vector fields tangent to LOH . In Macaulay2
one can use the following code to specify this morphism as a matrix, which is a result of
considering the octonion multiplication as a product on R8:

F = image matrix {{ x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 },

{ y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7,
x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7},

{-y_1, y_0, -y_3, y_2, -y_5, y_4, y_7, -y_6,
x_1, -x_0, x_3, -x_2, x_5, -x_4, -x_7, x_6},

{-y_2, y_3, y_0, -y_1, -y_6, -y_7, y_4, y_5,
x_2, -x_3, -x_0, x_1, x_6, x_7, -x_4, -x_5},

{-y_3, -y_2, y_1, y_0, -y_7, y_6, -y_5, y_4,
x_3, x_2, -x_1, -x_0, x_7, -x_6, x_5, -x_4},

{-y_4, y_5, y_6, y_7, y_0, -y_1, -y_2, -y_3,
x_4, -x_5, -x_6, -x_7, -x_0, x_1, x_2, x_3},

{-y_5, -y_4, y_7, -y_6, y_1, y_0, y_3, -y_2,
x_5, x_4, -x_7, x_6, -x_1, -x_0, -x_3, x_2},

{-y_6, -y_7, -y_4, y_5, y_2, -y_3, y_0, y_1,
x_6, x_7, x_4, -x_5, -x_2, x_3, -x_0, -x_1},

{-y_7, y_6, -y_5, -y_4, y_3, y_2, -y_1, y_0,
x_7, -x_6, x_5, x_4, -x_3, -x_2, x_1, -x_0},

{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7}}

This map can be completed to an exact sequence, using the code

resolution minimalPresentation F
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Finally, to view the matrices associated with the differential, use the codes

o3.dd_1

,

o3.dd_2

and

o3.dd_2

This exact sequence can be translated back to the framework of octonions as follows

0 Γ(E−2) Γ(E−1) Γ(E0) Γ(O2) Γ(R⊕O⊕ R)d(2) d(1) ρ J

(101)
where

E0 := O2, E−1 := R⊕O⊕ R, E−2 := R .

and for global sections
(
u
v

)
∈ Γ(E0),

µa
ν

 ∈ Γ(E−1) and t ∈ Γ(E−2):

ρ

(
u
v

)
:=

(
∥x∥2u+ (x·y)·v − (⟨x, u⟩+ ⟨y, v⟩)x
∥y∥2v + (y ·x)·u− (⟨x, u⟩+ ⟨y, v⟩)y

)
,

d(1)

µa
ν

 :=

(
µx+ a·y
νy + a·x

)
, (102)

d(2)(t) :=

−∥y∥2t(x·y)t
−∥x∥2t

 .

Finally, using Malgrange’s flatness theorem, this remains exact as a sequence of modules
over real analytic or smooth functions.
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List of Notations

1(x,y) Unit arrow for the object (x, y)

Fq Fiber of F at q ∈M
IG Set of G-invariant elements in I
O Sheaf of rings of polynomial, real analytic or smooth functions

dqf Differential of f at q ∈M
ιS Inclusion map of S ⊂M

R(I) Reduced Poisson algebra of an I-Poisson manifold

gFq Isotropy Lie algebra of F at q ∈M
Xc Module of compactly supported vector fields

⊙ Symmetric tensor product

X A vector field X viewed as a function on the cotangent bundle

Φt
H Hamiltonian flow of a function H

V Trivial vector bundle with a vector space V as fibers

evq Evaluation at q ∈M
Fq Tangent of the singular foliation F at q ∈M
g♭ Musical isomorphism (q, v) 7→ gq(v, ·)
gU Restriction of the Riemannian metric g to U ⊂M

Lq Leaf passing through q ∈M
S(r) Sphere of radius r

V ⊥g orthogonal complement of V with respect to g

W∞ Set of smooth functions in the sense of Whitney

X|q Evaluation of the vector field X at a point q ∈M
XH Horizontal lift of the vector field X
A∇ A-connection induced by an ordinary connection on A
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Index

A-connection, 67
G-equivariance, 19
G-manifold, 18
D-line, 43
I-Poisson bracket, 18
I-Poisson manifold, 18
I-Poisson normalizer, 18
Iker dπ, 29
(dynamical) semi-strict I-Poisson manifolds,

22
(octonionic) rescaling function, 44
IPois, 22
dynIPois, 22
sIPois, 22
sdynIPois, 22
ssIPois, 22
ssdynIPois, 22

almost Lie algebroid, 67
anchored bundle, 67
annihilating functions, 15
arrow coordinates, 44

bivector field, 16

cartan 3-tensor, 18
Casimir functions, 16
category, 15
coisotropic reduction, 19
coisotropic triples of algebras, 23

Darboux’s coordinates, 16
derivation, 16
dg-Lie algebroid, 58
differential geometry, 1
Dirac observables, 19
discrete paths, 12

distributions, 1
dynamical I-Poisson manifold, 20

fiber of F , 3
foliated manifold, 2
Frobenius theorem, 2
fundamental matrix, 21
fundamental vector field, 19

gauge theory, 1
geodesic, 6
geometric resolution, 57
geometric resolution of F , 58
geometric singular Riemannian foliation, 6

Hamiltonian G-spaces, 19
Hamiltonian quasi-Poisson manifold, 18
Hamiltonian vector field, 16
Hausdorff Morita equivalent, 4
higher Jacobi identities, 57
holomorphic, 13
holonomy groupoid, 4
homogeneous, 53
Hopf fibration, 42
horizontal distribution, 10

imaginary part, 40
injectively immersed, 2
involutive, 1
isotropy Lie algebra of F , 4

Jacobi identity, 16

Killing almost Lie algebroid, 67
Killing Cartan Lie algebroids, 1
Killing vector field, 10

leaves, 1
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Leibniz rule, 16
Lie ∞-algebroid, 57
Lie algebroid, 4
Lie bracket, 2
Lie group, 18
Lie groupoid, 39
linear part, 58
locally finitely generated, 2, 13, 18
locally homogeneous, 53
lower semi-continuous, 3

minimal at q ∈M , 58
Minkowski space, 20
module singular Riemannian foliation, 6, 14
moment map condition, 18
Morita equivalent, 11, 17
multi-vector fields, 16
musical isomorphism, 6

Noetherian, 13
non-autonomous linear ODE, 21
normed division algebra, 40

object coordinates, 44
octonionic Hopf fibration, 53
ordered exponential, 21

Poisson algebra, 16
Poisson bracket, 15
Poisson diffeomorphisms, 19
Poisson manifold, 16
Poisson manifolds, 4
Poisson map, 17
Poisson subalgebra, 18
polynomial, 13
principal bundle, 42
projectable to F , 4
pullback, 10

real analytic, 13
real part, 40
reduced Poisson algebra, 19
reduced Poisson manifolds, 19
regular foliations, 1, 2
Riemannian foliations, 1
Riemannian groupoid, 1
Riemannian submersion, 10
rings, 13

Schouten–Nijenhuis bracket, 16

sheaf, 13
short exact sequence, 3
sigma models, 1
singular foliation, 2, 51
singular Hopf leaf decomposition, 43
singular leaf decomposition, 1
singular moment maps, 19
singular octonionic Hopf foliation, 39, 51
singular Riemannian foliations, 6
space of leaves, 2
strict (dynamical) I-Poisson manifolds, 22
subsheaf, 13
symplectic foliation, 17
symplectic groupoid, 4
symplectic manifold, 16

tangent of F , 2
transverse to F , 4

universal Lie ∞-algebroid of F , 58
upper semi-continuous, 3

79



Feuilletages singuliers en géométrie différentielle

Résumé. Les feuilletages singuliers sont définis comme certains sous-modules de
champs vectoriels, dont les flots décomposent la variété en feuilles injectivement immer-
gées de dimensions potentiellement différentes. En présence d’une métrique riemannienne,
la recherche de compatibilité entre les feuilles et la structure riemannienne conduit à la
notion de feuilletages riemanniens singuliers géométriques, tels que décrits par Molino.
Ici, nous adoptons une approche différente pour adapter la notion de feuilletages rieman-
niens singuliers afin de capturer les riches propriétés algébriques du feuilletage singulier.
Notre concept interagit naturellement avec la géométrie de Poisson et motive la défini-
tion des variétés I-Poisson comme une relaxation de la catégorie des variétés de Poisson.
Nous comparons les feuilletages riemanniens singuliers dans notre sens et celui de Molino,
montrant que notre notion est plus restrictive et se distingue par l’exemple du feuille-
tage singulier octonionique de Hopf. Construit sur la fibration de Hopf octonionique, le
feuilletage singulier octonionique de Hopf illustre un feuilletage singulier localement non
homogène, c’est-à-dire qu’il ne peut pas être généré par des isométries locales. Cependant,
nous construisons un groupoïde de Lie induisant ce feuilletage singulier et un algébroïde
de Lie universel, démontrant la minimalité de la dimension pour le groupoïde de Lie.

Mots-clés : Feuilletages singuliers, Géométrie différentielle, Théorie de Lie, Géométrie
de Poisson

Singular foliations in differential geometry

Abstract. Singular foliations are defined as certain submodules of vector fields, whose
flows decompose the manifold into injectively immersed leaves of possibly different di-
mensions. In the presence of a Riemannian metric, seeking compatibility between the
leaves and the Riemannian structure leads to the notion of geometric singular Rieman-
nian foliations, as described by Molino. Here, we adopt a different approach to adapt the
notion of singular Riemannian foliations to capture the rich algebraic properties of the
singular foliation. Our notion naturally interacts with Poisson geometry and motivates
the definition of I-Poisson manifolds as a relaxation of the category of Poisson manifolds.
We compare singular Riemannian foliations in our sense and Molino’s, showing that our
notion is more restrictive and distinguishable by the example of the singular octonionic
Hopf foliation. Constructed upon the octonionic Hopf fibration, the singular octonionic
Hopf foliation exemplifies a locally non-homogeneous singular foliation, i.e., it cannot
be generated by local isometries. However, we construct a Lie groupoid inducing this
singular foliation and a universal Lie infinity algebroid, demonstrating the minimality of
the dimension for the Lie groupoid.

Keywords: Singular foliations, Differential geometry, Lie theory, Poisson geometry

Image de couverture : Généré par DALL-E 3, basé sur le contenu du texte.
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