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Abstract

A strict nearly Kéahler manifold is an almost Hermitian manifold for which the
covariant derivative of the almost complex structure is non-degenerate and skew
symmetric. Strict nearly Kéhler manifolds are quite rare. In six dimensions,
there are only four homogeneous strict nearly Kihler manifolds : S¢, §3 x 3,
CP3 and F(C3?). In the pseudo-Riemannian setting, there are six analogues. We
consider SL(2,R) x SL(2,R), the analogue of S* x S3.

We first study the strict nearly Kéhler structure of SL(2,R) x SL(2,R).
The metric and almost complex structure are both induced from a pseudo-
Riemannian submersion SL(2,R) x SL(2,R) x SL(2,R) — SL(2,R) x SL(2,R).
We give an expression for the full isometry group.

In this space we study different types of submanifolds, such as surfaces,
Lagrangian submanifolds and hypersurfaces. We divide Lagrangian submanifolds
into four different types, which depend on their behavior with respect to an
almost product structure.

We classify all totally geodesic and extrinsically homogeneous Lagrangian
submanifolds. Moreover, we study totally geodesic surfaces and hypersurfaces
with constant sectional curvature.






Beknopte samenvatting

Een strikte nagenoeg-Kéahlervariéteit is een bijna-Hermitische variéteit waarvoor
de covariante afgeleide van de bijna-complexe structuur niet-ontaard en scheef-
symmetrisch is. Dergelijke variéteiten zijn vrij zeldzaam. In dimensie zes
zijn er slechts vier homogene strikte nagenoeg-Kéhlervariéteiten: S¢, §3 x S§3
CP3 en F(C3). In de pseudo-Riemannse setting bestaan er zes analogen. We
beschouwen SL(2,R) x SL(2,R), analoog aan S* x S3.

We bestuderen eerst de strikte nagenoeg-Kéhlerstructuur van SL(2, R) x SL(2, R).
De metriek en bijna-complexe structuur zijn beide geinduceerd door een pseudo-
Riemannse submersie SL(2, R) x SL(2,R) x SL(2,R) — SL(2,R) x SL(2,R). We
geven een uitdrukking voor de volledige isometriegroep.

In deze ruimte bestuderen we verschillende soorten deelvariéteiten, zoals opper-
vlakken, Lagrangiaanse deelvariéteiten en hyperoppervlakken. Lagrangiaanse
deelvariéteiten verdelen we in vier verschillende types, afhankelijk van hun
gedrag ten opzichte van een bijna-productstructuur.

We classificeren alle totaal geodetische en extrinsiek homogene Lagrangiaanse
deelvariéteiten. Bovendien bestuderen we totaal geodetische oppervlakken en
hyperoppervlakken met constante sectionele kromming.






Résumeé

Le but de cette these est d’élargir la compréhension de la variété presque
kdhlerienne SL(2,R) x SL(2,R) et de ses sous-variétés. Les variétés presque
kéhleriennes sont une relaxation riemannienne de la définition de variété Kahler :
une variété presque hermitienne (M, g, J) est presque kihlerienne si la dérivée
covariante de la structure presque complexe est antisymétrique. De plus, afin
d’éviter une éventuelle intersection avec les variétés de Kéhler, nous exigeons
que VJ soit non dégénéré, ce que nous appelons une variété stricte presque
Kahler.

Les sous-variétés presque kdhleriennes sont 'une des seize classes de variétés
presque hermitiennes classées par Gray et Hervella dans [27]. Selon Gray, la classe
la plus intéressante, les variétés presque kéhleriennes, possédent de nombreuses
propriétés intéressantes. Par exemple, d’'un point de vue physique, ce sont les
seules variétés a six dimensions & admettre un spineur Killing [23, 28]. De
plus, les variétés strictes presque kdhleriennes sont intéressantes en géométrie
multiplectique car elles sont 2-plectiques [37].

Ils possédent également de nombreuses propriétés de division utiles. A savoir,
étant donné une variété presque kahlerienne M, il existe une variété presque
kéhlerienne stricte M7 et une variété de Kéahler Ms telle que M = My x Ms.

Dans les dimensions deux et quatre, variétés presque kéahleriennes sont
automatiquement variétés de Kéahler. Par conséquent, nous trouvons les plus
petits exemples intéressants de variétés presque kdhlerienne en dimension six.
En dimension huit, Gray [26] a prouvé qu’'une variété presque kihlerienne est
toujours de Kéhler ou le produit d’une variété presque kahlerienne stricte a six
dimensions avec une surface de Kéhler. En dimension dix, Nagy [41] a prouvé
qu’une variété presque Kéhler est soit Kédhler, un produit d’une variété Kéhler
stricte a six dimensions avec une variété Kahler a quatre dimensions, soit une
variété Kahler stricte, qu’il a classée comme espaces de twisteurs au-dessus de
variétés Kéhler-quaternioniques avec constante d’Einstein positive.
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Nagy a également apporté d’importantes contributions sur les propriétés de
division des variétés strictes presque kéhleriennes.

Theorem 1 (Nagy [41]). Soit M une variété simplement connexe, compléte,
stricte, presque kdhlerienne. Il s’agit alors d’un produit riemannien dont les
facteurs appartiennent d l'une des classes suivantes :

1. variétés a six dimensions presque kdhleriennes,

2. variétés homogénes presque kahleriennes (satisfaisant certaines condi-
tions),

3. espaces de twisteurs sur espaces Kdhler-quaternioniques avec constante
d’Einstein positive.

Nous voyons donc que les variétés presque kéahleriennes & six dimensions
constituent une base importante pour le cas de dimension supérieure.

Conjecturé depuis longtemps par Gray, Butruille a classé toutes les variétés
homogenes a six dimensions proches de Kéhler en quatre exemples.

Theorem 2 (Butruille [10]). Soit M une variété homogéne simplement connexe
stricte presque kahlerienne. Alors il est isométrique d

— 8% =G,/SU(@3),

— §% x §% = SU(2) x SU(2) x SU(2)/ASU(2),
— CP? =5p(2)/Sp(1)U(1),

— F(C?) = SU®)/U(1) x U(1).

Notez que 'hypothese d’étre homogene est importante. Pendant de nombreuses
années, on a cru qu’il existait des variétés non homogenes presque kahleriennes,
mais il n’existait pas d’exemples explicites de variétés completes. Podesta et
Spiro ont étudié les actions de cohomogénéité-un sur des variétés presque
Kahler dans [46] et [47] et ils ont construit des variétés presque kihleriennes
inhomogenes mais incomplétes. Enfin, en 2017, Foscolo et Haskins [22] ont
construit les premiers exemples de variétés complétes non homogenes a six
dimensions presque kéhleriennes : S® et S® x S? portent des structures presque
kéhleriennes qui ne sont pas homogenes mais qui ont une cohomogénéité. De
plus, ils ont conjecturé que CP? ne porte que la structure homogeéne presque
kéhlerienne.

Dans un contexte pseudo-riemannien, aucun théoreme de classification n’est
connu. Cependant, en utilisant un type de dualité similaire & celui utilisé pour
les espaces symétriques non compacts, Kath [32] et Schéfer [48] ont construit
plusieurs analogues pseudo-riemanniens des quatre espaces du théoréme 2 (
voir Figure 1). Dans [1], les auteurs prétendent avoir un exemple d’une variété
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pseudo-riemannienne homogene a six dimensions, presque kéhlerienne, qui n’est
pas un dual d’une variété riemannienne.

5% x §° 8¢ cp? F(C?)
SOt (2,3) SU(2,1)
T T(DxU()
SO (4, SL(3,
SL(2,R) x SL(2,R) S§ L ﬁ N ﬁ%@)

FIGURE 1 — Les duaux pseudo-riemanniens des variétés homogenes a six
dimensions presque kahlerienne.

Ici, S§ est la pseudo-sphere & lintérieur de R}, de description homogene
Ga2)/SU(2,1), et R* - SO(2) désigne le groupe (R* x SO(2))/Zy. La variété
presque kéhlerienne SL(2, R) x SL(2,R) a une description homogene SL(2,R) x
SL(2,R) x SL(2,R)/ASL(2,R). Dans cette thése, nous nous concentrerons sur
ce dernier espace.

La théorie des sous-variétés est une généralisation a plusieurs dimensions de
I’étude des surfaces dans R3. Autrement dit, il s’agit de I’étude des immersions
isométriques et de la manieére dont les invariants intrinseques et extrinseques
sont liés les uns aux autres. En géométrie presque hermitienne, on s’intéresse
également a la facon dont la structure presque complexe de 1’espace ambiant
agit sur les espaces tangents de la sous-variété. Si la structure presque complexe
mappe le fibré tangent dans le fibré normal, nous disons que la sous-variété
est totalement réelle. De plus, si la dimension de la sous-variété est maximale,
c’est-a-dire la moitié de la dimension de ’espace ambiant, la sous-variété est
lagrangienne.

En géométrie symplectique, une sous-variété lagrangienne d’une variété
symplectique (M,w) est une sous-variété telle que w s’annule partout et sa
dimension est égale a %dim(M ). Dans la géométrie de Kéhler, w est la forme
de Kahler g(J-, ), ce qui fait coincider les deux définitions de la sous-variété
lagrangienne.

Les sous-variétés lagrangiennes sont particulierement intéressantes en géométrie
presque kédhlerienne : toute sous-variété lagrangienne d’une variété presque
Kahler stricte a six dimensions est automatiquement minimale.

Le principal outil pour étudier les sous-variétés dans cette these est une structure
presque produit P sur le variété presque kédhlerienne SL(2,R) x SL(2,R). Défini
explicitement comme ’échange des vecteurs tangents de chaque facteur de
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SL(2,R) x SL(2,R), nous pouvons considérer cette structure comme le tenseur
qui détermine la relation entre la métrique du produit et la métrique presque
Kihler. Analogue a S x S3 [40], il n’existe que trois structures de presque
produits différentes sur SL(2, R) x SL(2, R) satisfaisant des équations spécifiques.
Nous utilisons cette propriété pour montrer que le groupe G d’isométries de
la variété presque kéhlerienne SL(2,R) x SL(2,R) qui préservent la structure
presque complexe J a 12 composantes connexes différentes.

Theorem 3. Le groupe d’isométrie de la variété pseudo-presque kdhlerienne
SL(2,R) x SL(2,R) est le produit semi-direct (SL(2,R) x SL(2,R) x SL(2,R)) x
(Zg X Sg), ot S3 est le groupe symétrique d’ordre 6.

Maintenant, étant donné que nous souhaitons étudier les sous-variétés qui ont
une relation particuliere avec la structure presque complexe, nous définirons
la congruence jusqu’au groupe G. Autrement dit, deux sous-variétés sont
congruentes si et seulement s’il existe une isométrie dans G qui correspond
I'une a l'autre.

Les sous-variétés des S? x S? presque kéhleriennes ont été largement étudiées
par de nombreux auteurs. Une notion importante de fonctions d’angle a été
introduite dans [20] et [57]. A savoir, la structure presque produit P induit trois
fonctions 61, 05 et 63, qui codent des informations extrinseques substantielles.
Dans [57], les auteurs ont également classé toutes les sous-variétés lagrangiennes
totalement géodésiques des S? x S? presque kihleriennes :

Theorem 4 (Dioos, Hu, Vrancken, Wang and Zhang). Une sous-variété
lagrangienne totalement géodésique de S® x S? est congrue d éventuellement un
sous-ensemble ouvert de l'un des exemples suivants :

1 f1:S? = $3 xSt uwr (u,u),
2. f2: S = §* x $?:us (u, —iui),

ou i est le quaternion unité.

Les sous-variétés lagrangiennes totalement géodésiques ont des fonctions d’angle
constantes et au moins deux d’entre elles sont égales modulo 7. Dans [57], les
auteurs ont en fait donné six exemples différents, mais en utilisant les isométries
de S? x S? décrites dans [40] nous pouvons réduire la liste a seulement deux.

Dans [6] les auteurs ont classé toutes les sous-variétés lagrangiennes avec des
fonctions a angle constant. Ce faisant, ils ont également classé toutes les sous-
variétés lagrangiennes extrinsequement homogenes :

Theorem 5 (Bektas, Moruz, Van der Veken and Vrancken). Une sous-variété
lagrangienne extrinséquement homogéne H - (1,1) de S® x S® avec H sous-groupe
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de Lie de S® x S® x S3 est conforme a un sous-ensemble ouvert de 'un des
exemples suivants,

1. f1:S* > $* xS uws (u,u), avee H = SU(2),

2. f2:8% = S$3 xS uws (u, —iui), avec H = SU(2),

3. f3: RP? = §3 x S3 :uws (—juju—?, —iuiu=?), avec H = SU(2),

4o far T2 = S3 x §%: (u,v,w) = (etle™ K e¥e™vk) gquec H = T3,
ot i, j, k sont les quaternions unitaires, et T> = S' x S! x S'. Dans tous les cas,
Uisotropie H y 1y est triviale, sauf pour la sous-variété fs3, ou l'isotropie est Zs.

Les cartes fi et fo sont totalement géodésiques. Toutes les cartes a l'exception
de f5 sont des immersions de formes spatiales ou la premiere est une sphere
de courbure sectionnelle constante %, la troisieme est un espace projectif de
courbure sectionnelle constante % et le dernier est un tore plat.

En relachant ’hypothése & un seul angle constant, dans [7] les auteurs ont
construit des sous-variétés lagrangiennes dans S* x S & partir de surfaces
minimales dans S? :

Theorem 6 (Bektas, Moruz, Van der Veken, Vrancken). Soit f = (p,q): M —
S? x S? une immersion lagrangienne dans le variété presque kihlerienne S® x S3.
Supposons que dp n’ait nulle part un rang mazimal. Alors p(M) C S® est une
surface minimale de S>.

Inversement, si p : ¥ — S? est une surface minimale de S3, il existe une
immersion lagrangienne f: M — S x S? satisfaisant f = (p,q) pour certaine
application q: M — S3.

L’objectif principal de cette these est I’étude des sous-variétés lagrangiennes. Le
but est d’essayer de reproduire les idées trouvées dans [6], [7], [19], [20], [57] en
introduisant la notion de fonctions angulaires, qui sont déterminées par 1'action
du tenseur P sur la sous-variété. La restriction de P sur T'M se divise en quatre
types différents, également connus dans la littérature sous le nom de types de
Petrov. Nous étudions toujours chaque type séparément, et nous montrons qu’il
existe des sous-variétés lagrangiennes de chaque type.

Le premier probléme que nous abordons est ’étude de sous-variétés lagrangiennes
totalement géodésiques. Nous montrons que, a congruence pres, il en existe
trois différents : un espace anti-de Sitter et deux espaces anti-de Sitter avec
des métriques de type Berger, I'un étiré dans une direction spatiale et 'autre
dans une direction temporelle. Contrairement & S? x S?, nous obtenons une
sous-variété supplémentaire, qui découle de la nature pseudo-riemannienne de
SL(2,R) x SL(2,R).
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Theorem 7. Toute sous-variété lagrangienne totalement géodésique de la variété
pseudo-presque kahlerienne SL(2,R) x SL(2,R) est congrue a l’image de l’une
des cartes suivantes, éventuellement limitée a un sous-ensemble ouvert :

(1) f: SL(2,R) = SL(2,R) x SL(2,R): u — (Ida, u),
2) f:SL(2,R) — SL(2,R) x SL(2,R): u > (u, iui),
£1SL(2,R) = SL(2,R) x SL(2,R): u — (u, —kuk),

ou Idy est la matrice d’identité, et i, k sont les coquaternions.

A Uinverse, les cartes (1), (2) et (3) sont des immersions lagrangiennes
totalement géodésiques.

Nous avons étendu ce résultat a 1’étude de sous-variétés lagrangiennes
extrinséquement homogenes. Dans SL(2,R) x SL(2,R) nous avons constaté
qu’en plus des cinq analogues (les trois totalement géodésiques, PSL(2,R) et
R2 x S'), nous obtenons trois exemples exotiques, ot 'un est une famille
d’immersions.

Theorem 8. Soit f : (M, g) — SL(2,R) x SL(2,R) une immersion lagrangienne
extrinséquement homogéne dans le pseudo-presque kdihlerienne SL(2,R) x
SL(2,R). Alors f(M) est congru d un sous-ensemble ouvert de l’image de

lun des plongements suivants, dont l’image est Uorbite de (Id2,1ds) par H C
Iso,(SL(2,R) x SL(2,R)) -

(M, 9) f H Remarques
tot. géodésique
(SL(2,R), %(, )) u— (u,u) SL(2,R) W 3
=2
(SL(2,R), g, ) u > (u, tui) SL(2,R) tot. géodésique
(SL(2,R), g,;.-) u > (u, —kuk) SL(2,R)  tot. géodésique
(PSL(2,R), 2(,))  [u] — (fuiu™', juju=) SL(2,R) K =-2

(u, v, w) =
R3/Z . . R2 x S! K=0
1/ (evze—uk’ewje—uk)
(R3,§) . Rix, R? K=-32
R %, R2
3 P1 _ _3
(R®/Hx, gx) I 0 K =-3

(R3, §) 7 R x,,, R




RESUME xiii

ot H agit sur f(M) toujours avec une isotropie triviale sauf pour PSL(2,R),
ot il agit avec une isotropie Zo. Ici K est la courbure sectionnelle de f(M) et
1, j, k sont les matrices

. (1 0 . (01 po (01
=lo 1) I7\1 o) “\-1 o)

De plus, {,) est la métrique donnée dans (2.2), g et g, sont des métriques
de type Berger, étirées respectivement dans une direction spatiale et temporelle ;
g, L et @, sont donnés dans l'exemple 21; gx, fx, Hx et ¢1 sont donnés dans
lexemple 22; g, 5 et po sont donnés dans ’exemple 23.

A Uinverse, les cartes répertoriées dans le tableau ci-dessus sont des sous-
variétés lagrangiennes extrinséquement homogénes de SL(2,R) x SL(2,R). De
plus, toutes les immersions ne sont pas congruentes les unes auzr autres, y
compris les différentes immersions de la famille f».

Le théoreme 8 montre également qu’il existe des sous-variétés lagrangiennes
pour chaque type des types de Petrov sauf pour le type IV. Dans [7] les auteurs
montrent une maniere de construire une sous-variété lagrangienne a partir d’une
sous-variété minimale de S3. Nous utilisons la méme méthode pour montrer
qu’il existe une sous-variété lagrangienne de type IV.

Theorem 9. Soit p : ¥ — SL(2,R) une surface minimale de (SL(2,R), (,)),
ot (,) est la métrique lorentzienne donnée dans (2.2). Soit w une solution
de ’équation cosh-Gordon avec w < log % Supposons que {u,v} soient des

coordonnées nulles avec (%, 6%) =e¥ et a(%, tpartderu) = O’(%, 3%) =-1

ot o est la composante de la deuxieme forme fondamentale dans la direction de
Punité normale §. Ensuite la distribution sur SL(2,R) x SL(2,R) s’étend sur

(pai, qB:) avee dp(:) = pau, dp(Z) = pas, as =0 et

1 e v 1 _
b1 = §a1 — 7@2 - Zwue “aq X oo
e v 1 e “w,
52:Ta1+5062+ 1 ap X Qg

3
B3 = —\/ge_woq X Qg

est intégrable et la variété intégrale est une sous-variété lagrangienne de type
1V.

Nous étudions également des surfaces de SL(2,R) x SL(2,R). C’est-a-dire
ces immersions pseudo-riemanniennes f : ¥ — SL(2,R) x SL(2,R) ou X est
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une variété (pseudo-)riemannienne bidimensionnelle. En particulier, nous nous
intéressons aux surfaces totalement géodésiques, ces surfaces dont les géodésiques
sont aussi des géodésiques de SL(2,R) x SL(2,R).

Dans lanalogue riemannien S* x S§* de SL(2,R) x SL(2,R), des surfaces
totalement géodésiques ont été étudiées dans [9] et [19]. Dans [9] les auteurs
ont classé jusqu’a congruence toutes les surfaces presque complexes totalement
géodésiques. Les surfaces presque complexes, également appelées J-holomorphes,
sont les surfaces telles que la structure presque complexe J préserve 'espace
tangent.

Theorem 10 (Bolton, Dioos, Dillen, Vrancken). Toute surface presque compleze
totalement géodésique de S® x S? est congrue & un sous-ensemble ouvert de l'une
des immersions suivantes :

1. S%(3) - S* x S* : x> $(1 — 3z, 1+ 3z),

2. T2 — S x §%: (s,t) = (e, eth),
o i est le quaternion unité. A linverse, les immersions listées ci-dessus sont
des surfaces totalement géodésiques presque complezes.

Dans [19] Pauteur a classé des surfaces totalement géodésiques totalement réelles
de S? x S3. Cest-a-dire les surfaces sur lesquelles J mappe Iespace tangent
dans ’espace normal.

Theorem 11 (Dioos). Toute surface totalement géodésique totalement réelle

de S? x S? est congruente d un sous-ensemble ouvert de l'immersion suivante :
— S%(3) =S¥ x S¥ru s (1(u),1)

ot ¢ est Uimmersion totalement géodésique de S? dans S®. A Uinverse,

ltmmersion ci-dessus est une surface totalement géodésique totalement réelle.

Ghandour et Vrancken [25] ont classé toutes les surfaces totalement géodésiques
presque complexes, nous nous concentrons donc sur les surfaces totalement
réelles.

Theorem 12 (Ghandour, Vrancken). Toute surface totalement géodésique
presque complexe de la variété pseudo-presque kahlerienne SL(2,R) x SL(2,R)

\

est congrue a un sous-ensemble ouvert de l’image de l'une des immersions
suivantes :

1. H*(—3) = SL(2,R) x SL(2,R) : z — 1(Idy —v/3z,1d2 +v/32),
2. T? — SL(2,R) x SL(2,R) : (s,t) > (et*, e%),
3. R? — SL(2,R) x SL(2,R) : (s,t) > (e, e%%),

ot © et k sont les coquaternions.
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Nous obtenons un résultat de classification pour des surfaces totalement
géodésiques totalement réelles de SL(2,R) x SL(2,R).

Theorem 13. Une surface totalement géodésique totalement réelle de SL(2,R) x
SL(2,R) est congruente d un sous-ensemble ouvert de l’image de l'une des
immersions suivantes :

(1) fl: Hg(_%) — SL(QaR) X SL(QaR) p— (pa Id2);

(2) fa: Hf(—%) — SL(2,R) x SL(2,R) : p — (p,Ida),
A Uinverse, les immersions listées ci-dessus sont des immersions totalement
réelles totalement géodésiques.

De plus, nous avons étudié les hypersurfaces de SL(2,R) x SL(2,R), plus
spécifiquement les hypersurfaces a courbure sectionnelle constante. Dans le cadre
d’un travail en cours destiné & toutes les variétés presque Kéhler a six dimensions,
nous montrons qu’il n’existe pas d’hypersurfaces de SL(2,R) x SL(2,R) a
courbure sectionnelle constante.

Etant donné une variété riemannienne n-dimensionnelle (M, g), on entend par
hypersurface de M une sous-variété de dimension n — 1. Les hypersurfaces de
variétés presque kéhleriennes a six dimensions ont été largement étudiées. Par
exemple, Loubeau et Deschamps [18] ont montré qu’il n’y a pas d’hypersurfaces
totalement géodésiques ou totalement ombilicales dans CP3 et F(C3). Cela est
également vrai pour S* x §? (voir par exemple [31]), donc la seule variété a six
dimensions presque kahlerienne avec une hypersurface totalement géodésique est
la sphere S6. Cela n’est pas surprenant, compte tenu du résultat de Nikolayevsky
[43], qui affirme qu’une variété homogeéne avec une hypersurface totalement
géodésique doit étre un produit déformé de R™ avec une variété homogene,
une produit torsadé de R avec une variété homogene, ou produit riemannien
d’une forme spatiale avec un espace homogene. Nous montrons qu’il n’existe
pas d’hypersurfaces a courbure sectionnelle constante dans SL(2,R) x SL(2,R)
au moyen d’une version raffinée de ’équation de Codazzi.

Theorem 14. Il n’y a pas d’hypersurfaces dans la variété pseudo-presque
kdhlerienne SL(2,R) x SL(2,R) avec une courbure sectionnelle constante.

La structure de la theése est la suivante. Dans le chapitre 1, nous donnons
quelques préliminaires nécessaires a la suite de la these. Dans le chapitre 2,
nous introduisons la structure presque Kéahler de SL(2,R) x SL(2,R) et nous
fournissons une expression pour le groupe d’isométrie. Au chapitre 3, nous
étudions les sous-variétés lagrangiennes. Nous les divisons en quatre types, et
nous classons toutes les sous-variétés lagrangiennes totalement géodésiques
et extrinsequement homogenes. De plus, nous montrons que chaque type
posséde au moins une sous-variété lagrangienne sous-jacente. Dans le chapitre 4,



XVi RESUME

nous classons toutes les surfaces totalement géodésiques totalement réelles de
SL(2,R) x SL(2,R). Enfin, au chapitre 5, nous montrons qu’il n’existe pas
d’hypersurfaces a courbure sectionnelle constante.
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Introduction (anglais)

The aim of this thesis is to broaden the understanding of the nearly Kéhler
SL(2,R) x SL(2,R) and its submanifolds. Nearly Kéhler manifolds are a
Riemannian relaxation of the definition of a K&hler manifold: an almost
Hermitian manifold (M, g, J) is nearly Kéhler if the covariant derivative of
the almost complex structure is skew-symmetric. Moreover, to avoid a possible
intersection with Kéhler manifolds, we require the condition on M of VJ
being non-degenerate, which we call strict nearly Kéhler. The nearly Kéhler
SL(2,R) x SL(2,R) is the pseudo-Riemannian dual of S* x S, one of the only
four six-dimensional homogeneous strict nearly Kéhler manifolds, classified by
Butruille [10].

Submanifold theory is a generalization to higher dimensions of the study of
surfaces in R3. That is, it is the study of isometric immersions and how the
intrinsic and extrinsic invariants relate to each other. In almost Hermitian
geometry, we are also interested in how the almost complex structure of the
ambient space acts on the tangent spaces of the submanifold. If the almost
complex structure maps the tangent bundle into the normal bundle, we say that
the submanifold is totally real. Moreover, if the dimension of the submanifold
is maximal, i.e. half of the dimension of the ambient space, the submanifold is
Lagrangian. This definition agrees with the notion of Lagrangian submanifold
in symplectic geometry, since the Kéhler form ¢(J-,-) vanishes everywhere on
the submanifold.

Lagrangian submanifolds arise mostly from Hamiltonian mechanics. By Arnold—
Liouville theorem, a level set of a function of an integrable system is a
Lagrangian submanifold. Moreover, if the submanifold is compact the is a
torus. Further, Weinstein—Darboux theorem states that if a submanifold is
Lagrangian with respect to two different symplectic forms, then the manifolds
are symplectomorphic in a neighborhood around the submanifold.

Lagrangian submanifolds are particularly interesting in nearly Kéhler geometry:
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any Lagrangian submanifold of a six-dimensional strict nearly K&hler manifold
is automatically minimal. Moreover, Lagrangian submanifolds are special
Lagrangian [4]. That is, the real part of the Kéhler form coincides with the
volume form.

The main tool for studying submanifolds in this thesis is an almost product
structure P on the nearly Kéhler SL(2,R) x SL(2,R). Defined explicitly by
swapping tangent vectors of each factor of SL(2,R) x SL(2,R), we can think of
this structure as the tensor that determines the relation between the product
metric and the nearly Kéhler metric of SL(2,R) x SL(2,R). Analogous to
S x §? [40], there exist only three different almost product structures on
SL(2,R) x SL(2,R) satisfying some specific equations. We use this property to
show that the group G of isometries of the nearly Kéhler SL(2, R) x SL(2,R) that
preserve the almost complex structure J has 12 different connected components.
Now, given that we are interested in studying submanifolds that have a special
relation with the almost complex structure we will define congruency up to the
group G. That is, two submanifolds are congruent if and only if there exists an
isometry in G that maps one into the other.

The main focus is on the study of Lagrangian submanifolds. Following the
steps for S3 x S§? in [57] and [20], we introduce the notion of angle functions,
which are determined by the action of the tensor P on the submanifold. The
restriction of P onto T'M divides into four different types, also known in the
literature as Petrov types. We always study each type separately, and we show
that there exist Lagrangian submanifolds of each type.

The first problem we address is the study of totally geodesic Lagrangian
submanifolds. We show that, up to congruence, there are three different ones:
an anti-de Sitter space and two anti-de Sitter spaces with Berger-like metrics,
one stretched in a spacelike direction and the other in a time-like direction.
In contrast with S? x S?, we get an extra submanifold, which arises from the
pseudo-Riemannian nature of SL(2,R) x SL(2,R). We extended this result to
the study of extrinsically homogeneous Lagrangian submanifolds. For S? x S?
(see [6]) there are four extrinsically homogeneous Lagrangian submanifolds: the
two totally geodesic ones, an RP? with constant sectional curvature, and a flat
three-torus. In SL(2,R) x SL(2,R) we found that besides the five analogues
(the three totally geodesic ones, PSL(2,R) and R? x S!), we get three exotic
examples, where one is a family of immersions.

We also study totally geodesic surfaces of SL(2,R) x SL(2,R). Ghandour and
Vrancken [25] classified all almost complex totally geodesic surfaces, therefore
we focus on totally real surfaces. We provide a classification result, where we

show that there are only two examples: H?(—32) and Hf(—3).



Further, we study hypersurfaces of SL(2, R) x SL(2, R), more specifically constant
sectional curvature hypersurfaces. As part of an ongoing work intended for all six-
dimensional nearly Kahler manifolds, we show that there exist no hypersurfaces
of SL(2,R) x SL(2,R) with constant sectional curvature.

The layout of the thesis is as follows. In Chapter 1, we give some preliminaries
necessary for the rest of the thesis. In Chapter 2, we introduce the nearly Kéhler
structure of SL(2,R) x SL(2,R) and we provide an expression for the isometry
group. In Chapter 3, we study Lagrangian submanifolds. We divide them into
four types, and we classify all totally geodesic and extrinsically homogeneous
Lagrangian submanifolds. Moreover, we show that each type has at least one
underlying Lagrangian submanifold. In Chapter 4, we classify all totally real
totally geodesic surfaces of SL(2,R) x SL(2,R). Finally, in Chapter 5, we show
that there are no hypersurfaces with constant sectional curvature.






Chapter 1

Preliminaries

In this chapter we present the basic concepts of differential, Riemannian and
Hermitian geometry. Further, we introduce the reader to nearly Kéhler geometry
and we provide some homogeneous examples.

1.1 Smooth manifolds

We can think of a differential manifold as a continuous set of parameters with
some relations between them.

Definition 1. A topological space M is said to be locally Euclidean of
dimension n if for each point p € M there exists an open neighborhood U,
around p and a homeomorphism ¢,: U, = ¢,(U,) C R™ such that ¢,(U,) is
an open subset of R™. The pairs (Up, ¢,) are called coordinate charts.

Definition 2. A C*-atlas of a locally Euclidean space M is a collection of
charts A = {(Uq, ¥a) tacr such that:
1. A is an open covering of M: M = U,eU,.
2. The charts are compatible: For all o, 8 € I such that U, = U, NUpg # 0,
the map g o gp;1|Ua/j : 0a(Uag) = 0p(Uqp) is C°.

Definition 3. A n-dimensional differentiable manifold is a Hausdorff,
second countable locally Euclidean space M of dimension n with a maximal
C*>-atlas A, in the sense that if A’ is another C*°-atlas such that A4 C A’ then
A=A
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Figure 1.1 — The compatibility of charts

Remark 1. We will often refer to an n-dimensional differentiable manifold as a
n-manifold, a n-smooth manifold, a manifold M™, etc.

Example 1. Let S™ be the n-dimensional sphere. That is, the subset of R*+!
S = {a e R : ||z = 1},

where ||-|| is the standard Euclidean norm. We denote by p; and ps the north
and south poles, respectively. The maps ¢;: U; — R™, where U; = S" \ p; and
i =1,2 given by

oi@) = (Feiym - 7w )

define a C*-atlas. Taking the maximal atlas that contains it we get a
differentiable structure on S™.

Definition 4. Let (M, A) be a differentiable manifold. A function f: M — R
is said to be differentiable at p € M there exist a coordinate chart (U, ¢)
in A with p € U such that foe™t: p(U) C R® — R is C* at p. A function
f: M — R is said to be differentiable or smooth if it is differentiable at every
point p € M.

Definition 5. Given two smooth manifolds M"™ and N"™ and amap f: M — N
we said that f is differentiable at p € M if there exist coordinate charts
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(U, ) and (V,4) around p and f(p) respectively, such that f(U) C V and
o foptiplU)C R™ — (V) C R” is differentiable. As before, if f is
differentiable for all p € M then it is said to be differentiable, or smooth.

Definition 6. Let M™ be a smooth manifold and let p € M. We define C*>(p)
as the set of all smooth functions defined on open neighborhoods around p.

Given two smooth functions f and g on C*(p) defined in U and V respectively,
we may define the sum f+¢g: UNV = Ras (f +¢)(p) = f(p) + g(p). In the
same way we define fg and \f, where A € R.

Definition 7. A tangent vector to M at p is a map v: C*°(p) — R such that
L v(f+g) =v(f) +v(g) and v(Af) = Av(f), where A € R,

2. v(fg) = v(f)g(p) + f(p)v(g).

Remark 2. The set T, M of all tangent vectors to an n-manifold M at a point p
forms a n-dimensional vector space, called the tangent space at p.

Given a coordinate chart (U, ¢ = (z1,22,...,2,)) on a manifold M™, a point

p € U we define the tangent vectors B%i’p by

0
61‘1'

0

fop™h.
»(p)

P
These tangent vectors are linearly independent and form a basis of T,M.

o= .9
Moreover, if v =}, a; 5

then a; = v(x;).
p

Ifv: I — M, I CR,isacurve in a manifold M, we define its velocity at t, € T

as
" 0
/ — E !
v (to) = ri(to) oz,

i=1

)
(o)
where r; = z; oy. Moreover, for any tangent vector v € T, M there exists a
curve v: I — M such that v(0) = p and ~+/(0) = v.

Example 2. Let V be a n-dimensional real vector space. As it is homeomorphic
to R™ it is clearly a differentiable manifold. We can identify the tangent space
at a point p € V with V itself, via the isomorphism

Definition 8. Given smooth manifolds M™ and N™ and a smooth map
F: M — N the differential of I at p is the linear map df,: T,M — Tp,) N
defined by dF,(v)(f) = v(f o F), where f € C>(F(p)).
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Example 3. Given a smooth manifold M™, the set TM = UpepT), M possesses
a canonical smooth structure, of dimension 2n. We call TM the tangent bundle
of M.

Definition 9. Let M™ and N™ be smooth manifolds. A map f: M — N is
called a(n):

— Immersion if df, is injective for all p € M. If moreover, M C N and the
inclusion is an immersion we say that M is an immersed submanifold

of N.

— Embedding if f is an immersion such that M is homeomorphic to f(M),
where f(M) carries the induced topology.

— Submersion if df, is surjective for all p € M.
Definition 10. Let M™ be a smooth manifold and let U be an open subset of
M. A smooth vector field on U is a smooth map X: U — T'M such that

X, = X(p) € T,M for all p € U. Given a function f: U — R we define the
function X (f): U = Ras X(f)(q) = Xq(f).

Remark 3. Given a smooth vector field X on a manifold M, we can write it
locally as X, = >, a;(p) %‘ ,where p € U and (U, (x4, ..., 2y)) is a coordinate
“lp

chart, and a;: U — R are smooth functions.

The set of all smooth vector fields on a manifold M is denoted by X(M).

Definition 11. Let X be a smooth vector field on a manifold M. A curve
v: I CR — M is said to be an integral curve of X if v'(t) = X, ) for all ¢.

Example 4. Let H be the quaternion algebra. That is, R* with the non-
commutative product given by the following table:

1 i j k
11 i j k
ili -1 k —j
il -k -1 i
k|k j -i -1

where 1, i, j, and k are the canonical basis of R*.

As mentioned in Example 1, the 3-sphere S? ¢ R* = H is a smooth manifold.
We define vector fields on S? by

Xi(p) =pi, Xa(p) =pj, X3(p) = pk.
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It can be easily proven that these vector fields are smooth, as the multiplication
by a fixed quaternion is smooth.

The integral curves for X7, X and X3 through a point p are respectively given
by

pell : = p(1cost + isint),
pedt : = p(lcost + jsint),
peX! = p(1cost + ksint).

Definition 12. Given X,Y € X(M), the set of all smooth vector fields in
M, we define their Lie bracket as the smooth vector field [X,Y] given by

(X, Y]p(f) = Xp(Y(f)) = Yp(X(f)), with f € C=(p).
Proposition 1. Let (U, (x1,...,2,)) be a coordinate chart of a manifold M.
Let X,Y,Z € X(M) and let f be a smooth function on M. Then,
8(21’81 =0 foralli and j.
XY+Z] [X,Y}—&-[Y,Z],
X, [Y]=X(N)Y + fIX,Y],
5. (X, [V, Z]| + [V, [Z, X]] + [Z,[X, Y]] =0
The last property is known as the Jacobi identity.

1]
2. [X,
3. |
4- 1

Definition 13. A set of vector fields on a manifold M is called a frame if at
each point p it is a basis of the tangent space T,,M.

Proposition 2. Given a frame {X1,...,X,} on a manifold M that satisfies
[Xi, X;] = 0 for all i,j = 17 ...,n, there exists a coordinate chart
(U, (z1,...,2yn)) such that X; = 8 - for alli=1,.

1.2 Riemannian manifolds

Definition 14. A Riemannian manifold is a pair (M, g) where M is a smooth
manifold and g assigns to each point p an inner product g, in T, M, which varies
smoothly from point to point. The map ¢ is know as the Riemannian metric
of M, or simply as the metric. Alternatively, if g, is indefinite we say that the
pair (M, g) is a pseudo-Riemannian manifold.

Definition 15. A map ¢: (M™,¢1) — (N", g2) between Riemannian manifolds
is said to be an isometry if it is a diffeomorphism and preserves the metric:
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92(dpX,dpY ) = g1(X,Y) for all X, Y € X(M). If there exists such a map, then
we say that (M, g1) and (N, g2) are isometric.

Proposition 3. Let p,1: M — N be isometries, where M and N are connected
(pseudo- ) Riemannian manifolds. Suppose that there exists a point p € M such
that ¢(p) = ¥(p) and dy, coincides with di, in T,M. Then ¢ =1 everywhere.

Example 5. The canonical Riemannian metric on the n-dimensional Euclidean
space R" is defined by identifying T, R™ with R™ and adding the usual inner
product (,) on R™.

Example 6. In Example 1 we defined the n-dimensional sphere embedded in
R™. The tangent space at a point p is given by {p}* C R™. The restriction
of the inner product of R™ to {p}+ induces a Riemannian metric on S”. This
metric is know as the round metric.

Example 7. Consider the half space {(x1,...,2,) : 1 > 0} C R™ with the

metric 1
9 0 )\ _g§.. —
g (Bxi’ Ba:j) - 51] .’L'%

This Riemannian manifold is called hyperbolic space of dimension n.

Remark 4. Given a curve 7v: [a,b] — M in a Riemannian manifold (M, g) we
may define the length of v by

b
L(y) = / N CICRAOL

Hence, a Riemannian metric defines a distance on M:

d(p,q) = inf{L() : v joins p and ¢}
The topology induced by d coincides with the original topology on M.
Definition 16. A linear connection is a map V: X(M) x X(M) — X(M),
(X,Y) — VxY that satisfies the following properties:
1. It is C*°-linear in the first factor: Vyx4vZ = fVxZ + Vy Z.
2. Tt is R-linear on the second factor: Vx(AY + Z) = AVxY + VxZ.

3. It satisfies the Leibniz rule on the second factor: VxfY = X(f)Y +
fVxY.

This definition can be extended to tensors, that is C* multilinear maps defined
for all T}, M such vary smoothly from point to point. Namely, given a (p, ¢)-tensor

T: X(M)®...X(M) > X(M)®...0 X(M)

p times q times
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we define the covariant derivative of T with respect to Y € X(M) as the
(p, q)-tensor given by

p
(VyT)(X1,.. ., Xp) = Vy(T(X1,. 0, X)) = D T(X1,..., Vy Xiroo Xp).
=1

Given a Riemannian manifold (M, g) there exists a unique linear connection
which is:

1. symmetric, i.e. VxY — Vy X = [X,Y],

2. metric compatible, i.e. X(g(Y,2)) =g(VxY,Z)+g(Y,VxZ).

Definition 17. The unique connection defined above is called the Levi-Civita
connection associated to g.

Although there is no general explicit formula for this connection, we may
compute it by means of the so-called Koszul formula:

oV, 2) = 5 (X(o(¥, 2)) + ¥ (92, X)) ~ Z((X,Y))

— (X, 1Y, 2) + (¥, [Z. X)) + 9(2. X, Y))).

where X,Y, Z € X(M).

Definition 18. A vector field X along a curve « in a (pseudo-)Riemannian
manifold is said to be parallel along « if V., X = 0, where V is the Levi-Civita
connection.

Note that to define a parallel vector field we do not need a metric, therefore we
may define parallelity for any linear connection. If the connection is compatible
with the metric then parallel vector fields have constant length.

Definition 19. A curve 7 is called a geodesic if its velocity is a parallel vector
field along v: Vv = 0.

Lemma 1. Let M be a smooth manifold with a linear connection V (not
necessarily torsion-free or metric compatible). Given p € M and X € T,M
there exist a unique mazximal geodesic yx such that yx(0) = p and v%(0) = X.

Here maximality refers to the domain of the geodesic.

Definition 20. Given a point p in a smooth manifold with a linear connection,
we define the exponential map exp,: U C T,M — M by

eXp(X) = ’VX(l)v
where U is the subset of T, M where vx(1) is defined.
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Lemma 2. Let M be a smooth manifold with a linear connection. Given
p € M, there exist neighborhoods U and V of p and 0 € T, M, respectively, such
that exp,: V — U is a diffeomorphism. Such neighborhood U of p is called a
normal neighborhood.

An important consequence for a manifold M to carry a Riemannian metric g is
that the metric induces a distance on M. To be more precise, given a curve
v: [a,b] = M we can measure its length by

b
L(y) = / NCICRAOL

Consequently, we can define a distance d between two points p,q € M:
d(p,q) = igf{L(v) : 7y joins p and q}.

This distance induces a topology on M, which coincides with the topology of
smooth manifold. This is not true for pseudo-Riemannian, wince we cannot
deduce a natural distance from it.

Theorem 15 (Hopf-Rinow). Let M be a Riemannian manifold. Then the
following are equivalent:

1. (M,d) is complete as topological metric space. That is, all the Cauchy
sequences converge.

2. M is geodesically complete, that is geodesics are defined for allt € R.
3. The exponential map is defined in all TyM for all p.
4. Closed and bounded subsets of M are compact.

Definition 21. Given a (pseudo-)Riemannian manifold (M, g) the curvature
tensor R is defined by

R(X,Y)Z =VxVyZ —VyVxZ —Vxy]Z.

The curvature tensor is sometimes written as R(X,Y, Z, W) = g(R(X,Y)Z,W).
We will only use it in the next proposition.
Proposition 4. The curvature tensor R of a Riemannian manifold satisfies:
1. R(X,Y,Z,W)+ R(Y,X,Z,W) =0,
2. RIX,)Y,Z, W)+ R(X,Y,W,Z) =0,
3. RX,Y,Z,W)—-R(Z W, X,Y)=0,
4. RIX,)Y,Z W)+ RY,Z, X, W) + R(Z,X,Y,W) = 0. (First Bianchi
identity)
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Definition 22. Given a (pseudo)-Riemannian manifold (M, g), we define the
sectional curvature K of a non-degenerate plane II C T, M by

_ gp(Rp(Xa Y)Y, X)
B = R X)gp (YY) — (X, V)2

where X, and Y, form a basis of II.

Theorem 16 (Schur’s Lemma). Let M be a Riemannian manifold such that
K,(II) = k(p) for all planes II C T,M and a smooth function k. Then k is
constant.

Complete Riemannian manifolds with constant sectional curvature are known
as space forms. In Example 5, Example 6 and Example 7 we defined the three
different space forms, up to a rescaling. Next, we define the pseudo-Riemannian
space forms.

Example 8 (Pseudo-Riemannian space forms). The pseudo-Euclidean space
R} is defined as the manifold R™ with the pseudo-Riemannian metric (z,y); =
—T1Y1 — ... — TRYk + To41Yzt1 + ... + TnYn. The manifold R} has constant
sectional curvature equal to zero, and when k = 1 it is known as Minkowski
space. If kK = 0, we have the usual Euclidean space.

Now consider the pseudo-Riemannian sphere S}~!(c) of curvature ¢ > 0 as the
pseudo-Riemannian submanifold of R} given by

SpHe) = {z e R} : (z,2) = i1,

It has positive constant sectional curvature c. If £ = 0 it is the usual Riemannian
sphere and if k = 1 is called the de Sitter space.

The pseudo-hyperbolic space H,?:ll (¢) of curvature ¢ < 0 is the pseudo-
Riemannian submanifold of R} given by

HyZ) () = {w €RY « (w,2)r = ¢ }.
If kK =1 the it is the usual hyperbolic space and if £ = 2 it is called the anti-de
Sitter space.

We denote by S}~! and H}'~ their respective universal covers.

Theorem 17 (Killing-Hopf). Let M™ be a complete, simply connected
Riemannian manifold with constant sectional curvature c. Then it is isometric
to either H™(c), R™ or S"(c).

Theorem 18 (O'Neill). Let M™ be a complete, simply connected Lorentzian
manifold with constant sectional curvature c. Then it is isometric to either
H}(c), R} or St(c).
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Remark 5. Contrary to the Riemannian case, pseudo-Riemannian metrics do
not induce distances on the underlying manifold. Hence, there is no canonical
choice of distance to define completeness. Thus, in Theorem 18 complete means
geodesically complete, i.e. geodesics are defined for all ¢ € R.

We finish this section with a result for linear connections that can be found in
[53].

Let M and M’ smooth manifolds of dimension n with linear connections and
let p € M and p’ € M’. Choose a linear isomorphism ¢: T,M — T, M’.
Choose open convex neighborhoods V and V' = (V) of 0 € T,M and 0 €
T,y M, respectively. Let U = exp, (V) and U’ = exp, (V). There exists a
diffeomorphism f: U — U’ such that the diagram

vV 2,V
lexp,, lexpp, (1.1)

v

commutes. Moreover, for every ¢ € U, we have linear isomorphisms ¢,: T, M —
Tf(qM' such that the diagram

T,M —2— T,y M’

L b

T,M —2 Tpy M

commutes, where 7 and 7’ are the parallel transports along geodesics passing
through p and p’, respectively.

Theorem 19 (Local version of Cartan-Ambrose-Hicks theorem). Let M and
M’ be smooth manifolds of dimension n, equipped with linear connections. Let
R, R and T, T' their respective curvature and torsion tensors. Let p € M,
p' € M’ and let U and U’ be normal neighborhoods around p and p’, respectively.
Suppose that for every g € U the linear isomorphism o, maps Rq into R}(q)
and Ty, into T}(q), i.e.

0R(X,Y)Z = R' (X, 04Y )pqZ, 0T (X,Y) =T (X, 05Y).

Then f: U — U’ is an affine diffeomorphism (i.e. connection-preserving) and
dfy: TyM — Ty M’ coincides with pq.

Corollary 1. Let (M,g) and (M',g') be (pseudo-)Riemannian manifolds and
let R and R’ be their respective curvature tensors, associated to the Levi-Civita
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connection. Let pe M, p' € M', U, U’ normal neighborhoods around p and p’
respectively, and p: T,M — T,y M’ be a linear isometry.

Suppose that for every ¢ € U, and for every ui,...,us € TyM it holds
9(R(ur,uz)uz, ua)g = g' (R (uy, us)ug, ul) f(q),

where f is the diffeomorphism given in (1.1), u. = 7'(p(t71(w;))), T and 7" are
the parallel transports along the geodesics that join p with q and p’ with f(q),
respectively. Then f is a local isometry between M and M’.

1.3 Lie groups

Definition 23. A Lie group is a group G with a smooth structure, such that
the multiplication m: G x G — G, (g, h) — gh and inverse i: G — G, g+ g~ !
are smooth.

Definition 24. A Lie algebra is a vector space g together with a bilinear
operation [,]: g x g — g called the Lie bracket. Such operation must satisfy
the following properties:

1. [X,Y]=-[Y, X],
2. (X, [V, Z)) + Y, 12, X]] + [Z,[X, Y]] 0.
forall X,Y,Z € g.

Definition 25. An isomorphism of Lie groups G and H is a group
isomorphism ®: G — H such that it is differentiable. On the other hand,
an isomorphism of Lie algebras g and § is a vector space isomorphism
@: g — b such that p[X, Y] = [pX, ¢Y]y, where X,Y € g.

Although the definitions of Lie group and Lie algebra seem to be unrelated,
any Lie group has an associated Lie algebra and any Lie algebra has a simply
connected associated Lie group.

Definition 26. Let G be a Lie group and denote by Ly,: G — Gand Ry: G — G
the left and right multiplications by g, respectively. A left-invariant vector
field on G is a vector X such that (dLy), Xy, = Xgp. Similarly we can define
right-invariant vector fields.

We denote by Lie(G) the set of all left-invariant vector fields on G. With
the Lie bracket [,] of smooth vector fields, Lie(G) and [,] form a Lie algebra.
Denote the identity of G by e. Then the map that sends X — X, is a vector
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space isomorphism between Lie(G) and T.G. Hence, we can copy a Lie algebra
structure to T,.G.

Associating a Lie group to a given Lie algebra is a more difficult task than
the other way around. Many Lie groups can have the same associated Lie
algebra, as for instance SO(n), O(n) and Spin(n), or R and S*. Thus, adding
the condition of being simply connected, we obtain what is known as Lie’s third
theorem.

Theorem 20 (Lie’s third theorem). Given a Lie algebra g there exists a unique
(up to isomorphism) simply connected Lie group G such that Lie(G) = g.

The sum of two Lie algebras g and b denoted by g & b is the Lie algebra with
Lie bracket given by [X; + Y1, Xo + Y3] = [X1, Xo]q + [Y1, Y2]y. Because of the
overlap in notation, we will clarify whether we are talking of sum of Lie algebras
or sum of vector spaces.

Definition 27. A Lie subalgebra of a Lie algebra g is a vector subspace
invariant by the Lie bracket. An ideal of g is a vector subspace a such that
[X,Y]caforall X caand Y € g.

As before, Lie subgroups and Lie subalgebras are tightly linked.

Proposition 5. Given a Lie group G with Lie algebra g, for each Lie subalgebra
b of g there exists a unique connected Lie subgroup H of G with Lie algebra b.

Definition 28. A Lie algebra g is abelian if [X,Y] =0 for all X, Y € g. A
Lie algebra is said to be simple if does not contain any proper ideals. If it does
not contain any proper abelian ideals is known as semisimple Lie algebra.
Proposition 6. Let g be a Lie algebra. The following are equivalent:

1. g is semisimple,

2. g is a direct sum of simple Lie algebras,

8. The Killing form of g is non-degenerate,

where the Killing form is the quadratic form given by
B(X,Y) = tr(Z = [X,[Y, Z))). (1.2)

Definition 29. A reductive Lie algebra is a Lie algebra g such that for every
ideal a there exists another ideal b such that g = a @ b, as sum of Lie algebras.

We denote by 3(g) the center of a Lie algebra g, i.e. 3(g) ={X €g:[X,Y] =
0, for all Y € g}. The center of a Lie algebra is an abelian ideal.
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The lower central series of a Lie algebra g is given by gr+1 = [gk, g]. If there
exists a k € N such that gy = 0 then we say that g is nilpotent. The upper
central series of g is given by ghFt! = [gF, g¥]. If there exists a k € N such that
g* = 0 then we say that g is solvable.

Proposition 7. A Lie algebra g is reductive if and only if g = 3(g) @ [g, g] as a
sum of Lie algebras, with [g,g] semisimple.

Therefore, we can interpret reductive Lie algebras as a generalization of
semisimple Lie algebras, since any reductive Lie algebra is the sum of an
abelian Lie algebra and a collection of simple Lie algebras.

The exponential map

Given a morphism of Lie groups, its differential at the identity element is a
morphism of Lie algebras. Moreover, the converse is true if we require simply
connectedness.

Theorem 21 (Lie’s second theorem). Let G be a simply connected Lie group
with Lie algebra g and let H be a Lie group with Lie algebra by. Suppose that
there exists a morphism of Lie algebras ¢: g — . Then there exists a morphism
of Lie groups ®: G — H such that do® coincides with ¢, where e is the identity
element of G.

A monoparametric subgroup of a Lie group G is a morphism v: (R, +) — G.
Let X € g be an element of the Lie algebra of G. The Lie subalgebra Span{ X}
is an abelian subalgebra, therefore by Lie’s second theorem we obtain that there
exists an associated monoparametric subgroup vx of G such that 7% (0) = X.

We define the exponential map exp: g — G by
exp(X) = vx(1).

In general the exponential map is not surjective. For instance, exp: s[(2,R) —

SL(2,R) is not surjective, as the element is not on its image. This

0 -1
is also related to the fact that SL(2,R) with the Killing form as Lorentzian
metric is not geodesically connected.

Actions of Lie groups

Definition 30. Let G be a Lie group and M a smooth manifold. An action
of G on M is a smooth map ¢: G x M — M : (g,p) — ¢ - p such that
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1. e-p=nyp,
2. 92 (91-p) = (9291) - P,
where e is the identity element of G.

The action is transitive if for any arbitrary pair of points p, ¢ in M there exists
an element g € G such that g -p =g¢.

The orbit of an element p € M by an action of a group G on M is the set
G-p={g9g-peM:geG}.

The isotropy subgroup of p € M (also known as the stabilizer) is the subgroup
of GG given by

Gp={9€G:g9-p=p}.
Remark 6. Given an action of a Lie group on a smooth manifold M, the isotropy
group of a point is a closed subgroup (and therefore a Lie subgroup of G) and
the orbits are immersed submanifolds of M. The orbit G - p of a point p € M
is diffeomorphic to G/G,, the set of all cosets.

Remark 7. Given a Riemannian manifold, the set of all its isometries is a Lie
group with the composition as group law.

Definition 31. A homogeneous Riemannian manifold is a Riemannian
manifold M whose isometry group acts transitively on M.

Example 9. The orthogonal group O(n) acts by isometries on R™. The orbit
of any unit-length element of R™ is the unit sphere S*~!. The stabilizer of each
point in the sphere is isomorphic to O(n — 1) therefore, S*~! = O(n)/O(n — 1).

Similarly, n-hyperbolic spaces are orbits of the action of SO(n — 1,1) on RY.
Thus H"~' = SO(n — 1,1)/0O(n — 1).

Bianchi classification

In the late 19th century, Bianchi managed to classify all three-dimensional real
Lie algebras in 11 classes, up to isomorphism. Most of them are a semidirect
products R x R%. Namely, their simply connected associated Lie group is R x R?
with the group law (¢,u) - (s,v) = (t + s, ¢(s)u + v), where p: R — Aut(R?).
All such groups can also be expressed as a group of 3x3 matrices, where the
elements are of the form
< p(s) | v >
0 1)

We give the classification below, and eq, e, e3 denotes a basis of each Lie algebra.
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— Type L. The Lie algebra is abelian. That is [eq, ea] = [e1, e3] = [e2,e3] = 0.
The associated Lie group is R3.

— Type II. Known as the Heisenberg Lie algebra, this is the nilpotent Lie
algebra with the bracket given by [e1, es] = es, [e1,e3] = [e2,e3] = 0. The
associated Lie group is the Heisenberg group, often denoted by Nils. It is
the the semidirect product R x R? with

= (g 3)-

— Type III. The Lie algebra is given by the relations [eq, es] = [e1,e3] =0
and [eg, e3] = ep. The Lie group is R x R? with

w= (9 0). ey

— Type IV. The Lie algebra is given by the relations [e, es] = 0, [es, e1] = €3
and [e3, es] = e; + ez. The Lie group is R x R? with

as as

e = (). e\ op.

— Type V. The Lie algebra is defined by the relations [e1, es] = 0, [e5,e1] = €3
and [e3, es] = ep. The Lie group is R x R? with

)= (9 ). @eR\)

— Type VI. The Lie algebra is defined by the relations [e;, ea] = 0, [es,e1] =
e1 and [e3, ea] = cez, c € R\ {0}. The Lie group is R x R? with

e’ 0

o) = (% gos)s (@ERV(O.

— Type VIj. The Lie algebra is defined by the relations [e1, ea] = 0, [e3, e1] =
e and [ez, 3] = €. The Lie group is R x R? with

e 0

o= (5 o) @erion,

— Type VII. This is an infinite family. They are the Lie algebra of the
semidirect product R x R? where ¢’(0) has complex non-real non-imaginary
eigenvalues.
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— Type VIIp. The Lie algebra is defined by the relations [e1,e3] = 0,
[e1,e3] = e2 and [es,es] = e1. The Lie group is the connected group of
isometries of R?, given by R x R? with

(o) = ( cos s sins>.

—sins coss

— Type VIIIL. The Lie algebra is s[(2,R). It has the relations [ej, e2] = 2es,
[e1, e3] = 2e5 and [e3, e2] = 2e1. The Lie group is the universal cover of
SL(2,R), the 2 by 2 matrices of determinant 1.

— Type IX. The Lie algebra su(2). It has the relations [e,es] = 2es,
[es, e1] = 2eq and [eq, e3] = 2e;. The Lie group is SU(2), the group of all
2 by 2 complex unitary matrices of determinant 1. It is also isomorphic
to the 3-sphere, seen as the set of all unit quaternions.

Note that all Lie algebras from type II to type VIl are solvable. Type VIII and
IX are the only ones that are simple. The exponential map of all Lie algebras
is surjective except for type VIII.

1.4 Submanifold theory

Although the study of submanifolds is not exclusive to Riemannian geometry,
we think of submanifold theory as the study of Riemannian immersions. That
is, an immersion f: (M, g) — (N, g) such that §((df)X, (df)Y) = g(X,Y), for
all X|Y € X(M).

A Riemannian immersion f: (M, g) — (V, §) determines an orthogonal splitting
of the tangent bundle of the target space: TN = (df)(TM) @ T M+, which we
will call the tangent part and the normal part.

Denote by V and V the Levi-Civita connections on M and N associated to g and
g, respectively. Given two vector fields X,Y on M, we can split V4 x (df)Y
into a tangent and a normal part:

Vianx (df)Y = (df)VxY + h(X,Y).

This equation is known as the Gauss formula, and h is a symmetric, normal
tensor called the second fundamental form of M.

If instead we take a normal vector field ¢ € T(T' M=) and a tangent vector field
X € X(M) we get )
Vianx§ = —Se(df) X + Vx&.

This is know as the Weingarten formula and V< is a connection
VL T(TM) x T(TM*) — T(TM™) called the normal connection. On the
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other hand, S¢ is linear operator symmetric with respect to g. Moreover, the
shape operator associated to &, is linear on £ and satisfies

9(Se(df) X, (df)Y) = g(h(X,Y),§).

Remark 8. As the immersion f preserves g, we will not make a difference
between g and §. Also, we will omit writing f onwards.

Denote by R the normal curvature tensor, that is the tensor given by
RE(X,Y)§ = VEVEE - VEVEE - Vi i€,

We also write (Vxh)(Y, Z) = VEh(Y, Z) — h(VxY, Z) — W(Y,Vx Z).

Let R and R be the curvature tensors of N and M respectively. Then R splits
into a tangent part and a normal part, which yields the soOcalled Gauss, Codazzi
and Ricci equations.

1. Gauss equation: (R(X,Y)Z)" = R(X,Y)Z — Shev,2yX + Shx,2)Y .
2. Codazzi equation: (R(X,Y)Z)+ = (Vxh)(Y,Z) — (Vyh)(X, Z).
3. Ricei equation: g(R(X,Y)¢,n) = g(R(X,Y)E,m) — g([Se, Sy X, Y).

Here, X, Y and Z are vector fields on M and & and 7 are normal vector fields.

These equations set the basis of submanifold theory. Namely, since any
Riemannian immersion must satisfy them, they are the basic necessary conditions
for a existence-and-uniqueness-of-submanifolds type of result.

The most classical result in this area, is the so-called Bonnet theorem [21]. It
states that given h and g in R? satisfying the Gauss and Codazzi equations,
there exists a unique (up to congruence) surface of R? with metric g and second
fundamental form h. Note that, since the codimension is only one, the Ricci
equation becomes trivial.

A similar result [15] can be obtained when the ambient space is a simply
connected space form, even for the pseudo-Riemannian case. Note that for
submanifolds of space forms, the Gauss and Codazzi equations can be written
"intrinsically"'. That is, since the left-hand side only depends on the metric of
the submanifold, the equations can be written only in terms of tensors defined
on the submanifold. For this reason, when the ambient space becomes less
symmetric the fundamental equations are not sufficient anymore to guarantee
the existence (and uniqueness) of a submanifold.

Nonetheless, in [16] Daniel provided sufficient and necessary conditions for the
existence and uniqueness of a hypersurface in S™ x R or H™ x R. Separately,
Kowalczyk [33] and Lira, Tojeiro and Vitério [36] generalized this result for
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submanifolds of a product of two space forms. Also, Piccione and Tausk [45]
worked on this problem for homogeneous manifolds.

There does not exist (to the knowledge of the author) a similar result in nearly
Kahler theory. Hence, we study submanifolds with strong properties in order
to compensate for the lack of the sufficient conditions for the existence of
submanifolds.

Definition 32. A totally geodesic submanifold of a (pseudo-)Riemannian
manifold M is a submanifold such that its geodesics are also geodesics of M.
Equivalently, a submanifold is totally geodesic if the second fundamental form
vanishes everywhere.

Definition 33. The mean curvature field H on a (pseudo-)Riemannian
submanifold M is defined as the trace of the second fundamental form. Namely,

1 n
H=— h(E;, E;),
n;n (E;, E;)

where {E;}; is an orthogonal frame on M™ and n; = g(E;, E;) = £1.
If H vanishes everywhere we say that M is a minimal submanifold.

Definition 34. A submanifold M of a (pseudo-)Riemannian manifold is said
to be totally umbilical if h(X,Y) = g(X,Y)H for all X,Y € X(M).

Definition 35. Let G be a connected Lie group acting on a (pseudo-)
Riemannian manifold M by isometries. Orbits of points p € M by G are
called extrinsically homogeneous submanifolds (also known as equivariant
submanifolds).

1.5 Almost Hermitian manifolds

In the same way as we defined a smooth manifold, we could define a “holomorphic
manifold”. That is, a topological space with coordinate charts mapping into C"
and with holomorphic transitions.

Definition 36. Let M be a smooth manifold. A holomorphic atlas is a set
{(Ua, ¢a) tacr of open subsets U, € M and charts ¢o: Uy = 9o(U,) C C”
such that the transition maps pg o p 't pa(Us N Us) — pp(Uy N Up) are
holomorphic. Such coordinate charts are called holomorphic charts.

Definition 37. A complex manifold M of dimension n is a smooth manifold
of dimension 2n equipped with a maximal holomorphic atlas.
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Definition 38. Given a complex manifold M, a holomorphic function is a
function f: M — C such that fop.': ¢(U,) — C is holomorphic, for all charts

(Ua, Pa)-

Analogous to the definition of smooth functions and smooth maps, we may
define holomorphic functions and holomorphic maps. Two complex manifolds
are called biholomorphic if there exist a holomorphic homeomorphism whose
inverse is also holomorphic.

Example 10 (Complex torus). A complex torus is defined as the quotient
C"/T where I’ = @?21Z0j, a discrete subgroup of C". Since C"/T" and C™ are
locally homeomorphic we can easily define charts into C*. Two complex tori
C™/I'y and C™ /T’y are biholomorphic if and only if I'; and I'y are isomorphic.

In general, even-dimensional spheres are not complex manifolds. However, any
complex projective space can be seen as a complex manifold.

Example 11 (Complex projective space (for more information see [39])). We
define the complex projective space as

CP" = (C™*' —{0})/~,
where x ~ y if there exists A € C such that z = \y.
We define the open subsets U; in CP™ as

Then we define the holomorphic charts ¢;: U; — C™ by

€1 Ti—1 Ti41 Ty
(pl([i]): ( "‘777“'7)

)
€T €T, €Z; ZT;

Now we generalize the notion of the complex unit 7 € C to a tensor on a complex
manifold. Take a holomorphic chart (U, ¢ = (1 + iy1, T2 + iy, ..., Ty, + iYn))
on a complex manifold M and define Jy: TU — TU : % — a%- and 8%_ —

—6%. We see that (Jy), is independent of U, thus we can define a tensor

J: TM — TM. This tensor satisfies J?> = —Id and is known as the complex
structure on M.

We can generalize the concept of complex manifold to an even-dimensional
smooth manifold that admits such a tensor J. These manifolds are called almost
complex manifolds. In general, an almost complex manifold is not necessarily a
complex manifold. Such is the case of the sphere S which we see below.
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Example 12. We define the octonion algebra O as R® with the non-associative
operation given by the following table:

. 1 e1 es es ey es €6 er
1 1 e1 es es eq es €6 e7
€1 €1 -1 €4 (rd —€9 (& —e€5 —€3
ey | ea —eqy —1 es e1 —es3 er —eg
€3 €3 —er —E€;5 -1 €g €9 —€4 €1
€q €4 €9 —€1 —€g -1 er €3 —€x5
es | es —eg es —ey —e7 —1 e1 ey
€g €6 €5 —e7 €4 —e€3 —€1 -1 €9
er | er es €g —e1 es —e4 —e9 —1

The set of all imaginary octonions Im(Q) carries a natural cross product defined

asa X 3= %(aﬁ—ﬂa).

Consider S immersed in R” = Im(Q) and define the almost complex structure
J on S¢ by
Jp(X) =px X.

The sphere S with J is not a complex manifold and this can be proven using
Theorem 22. It is still an open problem to determine wether S® can be endowed
with a complex structure or not.

Example 13. Every even-dimensional Lie group G2" is parallelizable. That is,
the tangent bundle is trivial:

TG = G x R?™.

Hence we can define an almost complex structure J by J,v = (p, [v) where

0 Id
I_<Id 0)'

Moreover, any endomorphism .J of the Lie algebra Lie(G) that satisfies J2 = — Id
induces an almost complex structure on G.

Definition 39. An almost complex structure on a smooth manifold M?2" is
said to be integrable if M admits the structure of a complex manifold and the
associated complex structure coincides with J.

Remark 9. By applying the determinant to the equation J? = —Id we can
easily see that any smooth manifold admitting an almost complex structure is
necessarily even-dimensional.
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Knowing wether a manifold admits a holomorphic atlas or not may be a hard
task, but given an almost complex structure there is an easy criterion to
determine if it is integrable or not.

Theorem 22 (Newlander-Nirenberg). Let (M,J) be an almost complex
manifold. Then J is integrable if and only if Ny = 0, where N is the Nijenhuis
tensor associated to J defined by

N, (X,Y) =[JX,JY] - [X,Y] - J([JX,Y] + [X, JY)).

Definition 40. Let M?" be a smooth manifold with an almost complex
structure J and a Riemannian metric g. Then M is an almost Hermitian
manifold if ¢(JX,JY) = ¢g(X,Y) for all X,Y € X(M). In that case, the
differential two-form given by w(X,Y) = ¢(JX,Y) is known as the K&hler
form.

Definition 41. An almost Hermitian manifold (M, g, J) is said to be Kéhler
if J is integrable and w is closed.

From this definition we can see that Kéhler geometry, the study of Kéhler
manifolds, is the intersection of three important areas of differential geometry:
Riemannian geometry, complex geometry, and symplectic geometry. We
understand by symplectic manifolds those manifolds that admit a closed, non-
degenerate two-form which is globally defined.

Theorem 23. An almost Hermitian manifold (M, g, J) is Kahler if and only if
VJ =0.

The covariant derivative of the Kahler form satisfies (Vxw)(Y,Z) =
9((VxJ)Y, Z). Notice that from the previous theorem it follows that a manifold
is Kéahler if and only if w is parallel.

Hervella and Gray studied almost Hermitian manifolds to a great extent. In [27],
they divided almost Hermitian manifolds into 16 different classes. These came
from combining four different properties that a tensor o« € TM* @ TM* @ T M*
may satisfy:

1. a(X,X,)Y)=0for all X,Y € X(M),

2. (XY, 2)+aY, Z, X))+ a(Z,X,Y)=0for all X|Y,Z € X(M),
3. a(X,Y,Z) —a(JX,JY,Z) =a(Z)=0for all X,Y,Z € X(M),
4. of

X.Y.2) = ~ g (1X.Y)(2) — 9(X. Z)a(Y)

—9(X,JY)a(JZ) + g(X, I Z)a(I Z))

for all X,Y,Z € X(M),



26 PRELIMINARIES

where o = ), a(E;, E;, Z) and {E;} is an arbitrary orthonormal frame. Notice
that

n

Vw(Z) =Y Vw(Ei, E;, 2) =Y g((VE,J)Ei, Z) = bw(Z)
i=1 i=1
where 6 is the codifferential operator.
Denote by W; the space of all (3,0) tensors that satisfy the property ¢ above,

for ¢ = 1,2,3,4. Then the covariant derivative of the K&hler form of any almost
Hermitian manifold lies in W =W, @ Wy @ W3 @ Wy

Now we define classes of manifolds which are associated to subspaces of W. We
denote by U the class of almost Hermitian manifolds for which the covariant
derivative of w lies in a subspace U C W. The class associated to the subspace
{0} € W consists of those manifolds for which the covariant derivative of the
Kahler form is zero. As we have seen before, these are the Kahler manifolds.

The class W, consists of those almost Hermitian manifolds M such that
0=Vxw(X,Y)=g(VxJ)X,Y) for all X,Y € X(M),

which is equivalent to (VxJ)X = 0 for all X € X(M). These manifolds are
known as nearly Kahler manifolds.

The class Ws consists of those almost Hermitian manifolds that satisfy

0= &, (Vxw)(Y.2) = du(X.Y. 2),

which is equivalent to have a closed Kéhler form. These are know as almost
Kéahler manifolds.

The class Wy @& W, is known as the class of quasi-Kahler manifolds and it is
equal to the class of those manifolds that satisfy

(Vxw)(Y, Z) + (Vyxw)(JY, Z) = 0.
The class Wy @ Wy @ W is the class of semi-Kéhler (or balanced) manifolds,
and it is equal to the class of those manifolds that satisfy dw = 0.

It is immediate that nearly Kéhler and almost Ké&hler manifolds are quasi-
Kéhler, and quasi-Kéhler manifolds are semi-Ké&hler. Moreover, a manifold that
is nearly Kéhler and almost Kéhler, is Ké&hler.

Examples

Example 14 (Almost Kéhler). Finding an example of an almost Kahler
manifold which is not Kéhler was a big challenge. In [51] it is shown that the
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Semi-Kéhler

Quasi-Kéahler

Figure 1.2 — The inclusion of some classes of almost Hermitian manifolds.

tangent bundle of any Riemannian manifold admits an almost K&hler structure.
It is Kéhler if and only if the base manifold is flat.

Example 15 (Hypersurfaces of R7 [27]). Similarly to the almost complex
structure defined on S® we may define an almost complex structure on a
hypersurface of R7.

Let M% be a submanifold of R” and let £ be the unit normal vector field, that is
(&, =1and (X,£) =0 for all X € X(M). Then we define the almost complex
structure J on M as

J(X) =€ x X,

where x is the cross product in R” defined in Example 12.

Note that if M = S® then ¢ = p. Moreover, S® is the only hypersurface of R”
that is nearly Kahler but not Kéahler.

Let V be a three-dimensional vector subspace of R” that is closed under the
cross product and let ¥ C V be a surface. Then M = ¥ x R? is semi-Kéhler.
Moreover, if ¥ is a minimal surface then J is integrable. Thus, if ¥ is flat then
M is Kahler. If instead ¥ is isometric to a sphere then M is quasi-Kéhler but
not almost Kéhler nor nearly Kéahler.
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1.6 Nearly Kahler manifolds

First known as almost Tachibana spaces, the first notion of nearly Ké&hler
manifold was introduced by Tachibana in [50]. Later on, Gray coined the term
nearly Kéhler as we know it today.

Definition 42. A nearly Kihler manifold is an almost Hermitian manifold
(M, g,J) such that VJ is skew symmetric, where V is the Levi-Civita connection
associated to g.

Although the nearly Kéhler condition is point-wise, it has topological
implications, for instance having even first Betti number [54].

Note that the Riemannian products of nearly Kéhler and Kéhler manifolds
are nearly Kéhler manifolds as well. Thus, the notion of strict nearly Kéhler
excludes the cases when you can extract a Kéhler factor from a nearly Kéhler
manifold.

Definition 43. A nearly Kéhler manifold M is said to be strict if VxJ #Z 0
for all X € X(M).

Gray showed that nearly Kahler manifolds split into strict nearly Kéhler and
Kéhler manifolds.

Proposition 8 (Gray [26]). Given a nearly Kihler manifold M there exists
a strict nearly Kdhler manifold My and a Kdahler manifold My such that M =
M1 X Mg.

Next, we present some general properties of the covariant derivative of the
almost complex structure.

Proposition 9. Let (M,g,J) be a nearly Kihler manifold. Then the tensor
G = VJ satisfies the following:

1. GX,JY)+JG(X,)Y)=G(JX,Y)+ JG(X,Y) =0,

2. G(JX,JY)+ G(X,Y) =0,

3. 9(G(X,Y),Z2)+¢9(G(X,2),Y) =0,

4. 9(G(X,Y),JZ) + g(G(X, Z),JY) = 0.

By checking with a basis, we can easily see that two- and four-dimensional nearly
Kéhler manifolds are automatically Kahler. Furthermore, eight-dimensional
nearly Kéhler manifolds are either Ké&hler or the product of a strict nearly
Kéhler six-manifold and a Ké&hler surface.
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Proposition 10 (Gray [26]). There do not exist strict nearly Kaihler manifolds
of dimension 8.

It is worth to note that there is a confusion in the literature regarding the
definition of strict nearly Kéahler manifold. In some sources strict nearly Kahler
manifolds are defined as being non-Kéhler. This ambiguity originates from the
fact that this is true in six dimensions:

Proposition 11. A nearly Kihler manifold of dimension 6 is strict nearly
Kdhler if and only if it is not Kdhler.

In principle this result is a direct corollary of Proposition 8, but we provide a
proof here where we can see the obstruction of strictness more clearly.

Proof. Let M be a nearly Kéhler manifold of dimension 6. It is immediate that
if M is strict it is not Kéahler.

Suppose now that M is not Kédhler but there exists a smooth vector field Z on
M such that VzJ = 0. Since M is not Kéhler, there exist X,Y € X(M) such
that (VxJ)Y # 0. Moreover, the nearly Kéhler condition allows us to assume
that {X,JX,Y,JY,Z, JZ} is an orthonormal frame on M. We have

(VxJ)Y = g((VxJ)Y, X)X + g(VxJ)Y, JX)JX
+g(Vx )Y, Y)Y +g(VxJ)Y,JY)JY
+9(Vx )Y, 2)Z + g(VxJ)Y,JZ)J Z.
From the properties in Proposition 9 it follows that
(Vx )Y =g(VxJ)Y,2)Z + g((Vx )Y, JZ)]Z
= —g(VxZ,Y)Z - g(VxJ)Z,JY)IZ
=g(Vz)X,Y)Z+g(V2J)X,JY)]Z
=0

which is a contradiction. O

Six-dimensional strict nearly Kéhler manifolds are always Einstein, that is,
the Ricci tensor is a multiple of the Riemannian metric. These manifolds are
interesting from a physics point of view since, for instance, they are the only
ones to admit a Killing spinor [23, 28]. Moreover, nearly Kahler manifolds
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are exactly those six-dimensional manifolds for which their seven-dimensional
cone has holonomy Gs [5]. Furthermore, strict nearly Kéhler manifolds are
interesting in multiplectic geometry as they are 2-plectic [37].

Nearly Kéhler manifolds are also related to the so-called quaternionic Kéhler
manifolds. A quaternionic Ké&hler manifold is a Riemannian manifold of
dimension 4n such that its holonomy is a subgroup of (Sp(n) x Sp(1))/Zs.
This definition might seem arbitrary, but it is quite natural after learning
Berger’s holonomy theorem.

Theorem 24 (Berger [8]). Let M be a simply connected irreducible and non-
locally symmetric Riemannian manifold. Then the holonomy group of M is
either SO(n) or one of the following exceptional holonomies:

1. U(n),

SU(n),

Sp(n),

(Sp(n) x Sp(1))/Zs,
Spin(7),

Gs.

S G Co e

Recall that a symmetric space is Riemannian manifold such that for every
point p there exists a local isometry ¢, such that ¢,(p) = p and (dy,), = —1Id.

Quaternionic Kdhler manifolds are a generalization of hyperkahler manifolds
with non-flat Ricci curvature. Hence, quaternionic K&hler manifolds admit
a fiber bundle where the fibers are two-spheres, arising from the possible
quaternionic structures we can find on them. These S?-bundles are known as
twistor spaces, and they have a close link with nearly K&hler geometry.

Quaternionic Kéhler manifolds are automatically Einstein, and when the
Einstein constant is positive and they are geodesically complete, they are
called positive quaternionic Kéhler.

Theorem 25 (Nagy [42]). Let M be a 10-dimensional complete nearly Kéihler
manifold. Then it is isometric to either a product of a strict nearly Kdihler
siz-manifold with a Kdhler surface or a twistor space over an eight-dimensional
positive quaternionic Kdhler manifold.

There exist only 3 eight-dimensional positive quaternionic spaces, the symmetric
spaces HP2, Gry(C*) and G2/SO(4). Their twistor spaces are listed in [34],
thus all the 10-dimensional strict nearly K&hler manifolds are classified.

A quaternionic Kéhler manifold which is also a symmetric space is called a
Wolf space. Salamon and LeBrun conjectured that every positive quaternionic
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Kéhler manifold is a symmetric space, but so far it has only been proven for
dimensions 4 and 8.

Theorem 26 (Nagy [41]). Let M be a simply connected, complete strict nearly
Kihler manifold. Then it is a Riemannian product whose factors are in one of
the following classes:

1. siz-dimensional nearly Kdahler manifolds,
2. homogeneous nearly Kihler manifolds (satisfying certain conditions),

3. twistor spaces over positive quaternionic Kdihler spaces.

The conditions that homogeneous nearly Kahler manifolds satisfy in Theorem 26
are quite involved, and they are not relevant for this thesis. In dimension six, it
was believed for many years that there were only four homogeneous examples,
but the proof did not come until 2005.

Theorem 27 (Butruille [10]). Let M be a homogeneous simply connected strict
nearly Kdhler manifold. Then it is isometric to either S®, the nearly Kdihler
S3 x S3, the nearly Kihler CP3 or the nearly Kdihler F(C3).

Note that the hypothesis of being homogeneous is important. The existence of
non-homogeneous nearly Kéhler manifolds was conjectured long ago. Podesta
and Spiro studied cohomogeneity-one actions on nearly Kéhler manifolds in
[46] and [47] and they constructed inhomogeneous but non-complete nearly
Kéhler manifolds. Finally in 2017, Foscolo and Haskins [22] constructed the first
examples of complete non-homogeneous six-dimensional nearly Kéhler manifolds:
S% and S? x S? carry nearly Kéhler structures which are not homogenous but
have cohomogeneity one. Moreover they conjectured that CP? only carries the
homogeneous nearly Kéhler structure.

The nearly Kihler S°

For more information about S® we refer the reader to [24].

The nearly Kihler structure of S® was defined in Example 12. In Example 9 we
saw that S = O(7)/0(6). However, certain isometries in O(7) do not preserve
the almost complex structure. Namely, elements ¢ € O(7) do not necessarily
satisfy dg o J = +J o dyp. From the definition of the cross product in R” we
can see that the elements from O(7) that preserve J are those who preserve the
octonion product. The set of automorphisms of O is the smallest exceptional
Lie group and it is denoted by G. This group acts transitively on S® with
isotropy SU(3). Hence,

G

8= SUB)’
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The nearly Kihler S? x §?

For more information about S? x S* we refer the reader to [40].

Take S* C H =2 R* the set of all unit-length quaternions. The tangent space at
a point p € S? is given by T,S® = {pa : a € Im(H)}. We define a Riemannian
metric on S? x S by

9 ((000,8), (7,09)) = 5 ((pes ) + (a5, 09) = 3 ((pe, o) + (aB,7)).

We also define an almost complex structure J on S? x S? compatible with g:

J(porgB) = %(p(% ), q(8 - 2a)).

One can check that (S3 xS3,g,J ) is a nearly Kéhler manifold.

The group S x S3 x S? acts transitively by isometries on S® x S* as follows:
(a,b,¢) - (p,q) = (apc™",bgc™").

Hence S? x S? is a homogeneous manifold described as

S3xS3xS3

3., Q3 _
S° x §° = ASE ,

where AS? = {(a,a,a) : a € S*}.

The nearly Kihler CP3

For more information about CP? we refer the reader to [35].
We denote the Kéhler metric and complex structure by ¢, and J,, respectively.

Now we define the so-called Hopf fibration. Let 7: S7 — CP3 be the submersion
given by m(p) = [p]. The vertical distribution associated to 7 is the distribution
on S7 given by V = {v € X(S”) : dn(v) = 0}. This gives rise to the horizontal
distribution, that is % = V*.

Thinking of S7 as the immersed sphere in H x H = R®, we can define three
distinguished vector fields:

Yi(p,q) = (pi,qi), Ya(p,q) = (pi,dj), Y3(p,q) = (pk, k),

where i,j,k are the unit quaternions. The vertical distribution V on S7 is
spanned by Y;. We split ‘H as

H =D, & Dy,
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where 251 and ?2 are two- and four—di{nensional clistributions respectively on
S” defined by D; = Span{Ys, Y3} and Dy = (V @ D;)*.

Denoting D; = dr(D;) we obtain
TCP? = dn(H) = D1 © D.

We define the nearly Kihler structure (CP3,g,.J) by

9o on Dy, —J, on Dy,
g= and J =
2g, on Dy, Jo on Dy.

The Lie group Sp(2) acts on S” C H2. This action descends to the nearly Kéhler
CP3, where it acts transitively with isotropy group SU(2) x U(1). Therefore

Sp(2)

Cﬁ:swmxum'

The nearly Kahler F(C?)

For more information about the flag manifold we refer the reader to [18].

The manifold of full flags in C? is defined as the set of chains (V7, V) of complex
vector subspaces Vi C Vo C C3, where dimc(V;) = 1 and dimg¢ (V) = 2.

It is a well known fact that complex flag manifolds admit a Kéhler structure (see
for instance [29]), which we denote by (F(C?), g, J,). There exists a submersion
onto CP? given by
L F(C3) — CP?
(Span{e}, V) > lal.

Defining V = {v € X(F(C?)) : dr(v) = 0} and H = V+ with respect to g,, we
obtain a nearly Kihler structure (F(C3), g, J) given by

1 _
= 590 onV, and J— J, onV,
9o on H7 Jo on H.

The action of SU(3) on C? extends to a transitive action by isometries on F(C?)
with isotropy group U(1) x U(1). Therefore,

SU(3)

Fw%:Umem'
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Pseudo-Riemannian nearly Kdahler manifolds and 7T-duality

Next we define the notion of T-duality, which allows us to obtain analogues of
homogeneous spaces, preserving important structures.

Let g be a Lie algebra and h a Lie subalgebra of g. Let m be an ad(h)-
invariant complement of b, i.e. g =h @ m and ad(X)(Y) = [X,Y] € m for
all X € hand Y € m. Let T be a Lie automorphism such that 72 = Id and
T(h) = b, T(m) = m. Denote by g, and g_ the eigenspaces of T associated
to 1 and —1, respectively. Then we have g = g4 & g, sum of vector spaces.
Moreover, g4 is a Lie subalgebra of g, [g+,9-] C g—, and [g—,g-] C g+. The
automorphism T preserving ) and m is equivalent to h = (hNgy) e (hNg-)
andm=(mNgy)d(mNg_).

Define the Lie algebra g’ = g, @ ig_. That is, the vector space gy ® g_ with
Lie bracket given by

Similarly, define b’ and m’ by
h'=(hNgs)di(hNg-), m =(mNgy)di(mNg-_).
The Lie algebra g’ is a real form of gc, i.e. g ® C = gc.

Let G, H, G’ and H' be Lie groups associated to the Lie algebras g, b, g’ and §’.
We say that the homogeneous spaces G/H and G’'/H' are T-duals. This way,
Kath [32] and Schéfer [48] constructed T-duals of each one of the six-dimensional
homogeneous nearly Kéhler spaces, which are pseudo-Riemannian nearly Kéhler
manifolds:

S3 x §3 S6 CP3 F((C3)
SO™(2,3) SU(2,1)
U(1,1) U(1)xU(1)
SOT (4,1 SL(3,R
SL(2,R) x SL(2,R)  S§ o RO

Here, S§ is the pseudo-sphere inside R}, with homogeneous description
G2)/SU(2,1), and R* - SO(2) denotes the group (R* x SO(2))/Zz. The
nearly Kéhler manifold SL(2,R) x SL(2,R) has homogeneous description
SL(2,R) x SL(2,R) x SL(2,R)/ASL(2,R). We will focus on this last space
in the rest of the chapters.



Chapter 2

The nearly Kahler
SL(2,R) x SL(2,R)

In this chapter we present the nearly Kéhler structure of SL(2,R) x SL(2,R).
Moreover, we provide an expression for its isometry group (see Theorem 28).
The contents of this chapter can also be found in [2], [3] and [25].

2.1 The group SL(2,R)

Let SL(2,R) be the Lie group defined as SL(2,R) = {a € M(2,R) : det(a) = 1}.
The associated Lie algebra is given by

sI(2,R) = {X € M(2,R) : Tr(X) = 0}

This is a three-dimensional non-compact simple Lie algebra which is spanned
by the so-called split-quaternions

O R S O

with Lie brackets

Moreover, they satisfy &2 = j2 = —k* = —ijk = Id,.

35
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Given a matrix a in M (2,R), we denote by adj(a) the adjugate matrix, i.e.

e =)
w oz —w =z
Define in M (2,R) the inner product given by

(2,9) = = tr(adj(e)y). (22

Thus, we see that SL(2,R) = {a € M(2,R) : (a,a) = —1}. Moreover, we deduce
that
T.SL(2,R) = a* = {ac : a € 51(2,R)}.

The inner product (,) defines a pseudo-Riemannian metric on M (2,R) of
signature (2,2). The submanifold SL(2,R) — M(2,R) inherits a pseudo-
Riemannian metric of signature (1,2). More explicitly, the frame {X1, X2, X3}
given by

Xi(a) =ai, Xz(a)=aj, Xs(a)=ak, (2.3)

satisfies
(X1, X1) = (X9, Xo) = —(X3,X3) =1
and (X;, X;) =0 for i # j.
Remark 10. Since M (2,R) with this metric is isometric to Rj, the manifold

SL(2,R) is isometric to the anti-de Sitter space H$(—1). Namely, the map
§: H3(—1) — SL(2,R) given by

To—Tg T1—X
§(zo, x1, 22, 23) = ( 2o 3) ) (2.4)

xl+2x3 o+ To

is an isometry.

The adjugate matrix has the same role as the conjugate of a quaternion for the
structure of S, as we can see in the following result.
Proposition 12. Let a,b € SL(2,R) and «, 5 € sl(2,R). Then,
1. adj(a) = a1,
2. adj(ab) = adj(b) adj(a),
3. adj(a) = —a,
4. {a,a) = —det(a),
5. {aa,aB) = (aa, fa) = (a, B),
Remark 11. Although we always write the inverse matrix for elements of SL(2, R),

in computations either by hand or using software it is always recommendable
to use the adjugate matrix, as it reduces considerably the computational cost.
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There is a natural bilinear operation x in sl(2,R), defined by

axfB= %(aﬁ—ﬁa).

This operation is a Lorentzian cross-product, that is, a bilinear operation that
satisfies

(1) axpf=-Bxa,

(2) (axB,7)=(Bx7,a) =(yxap),

(3) (ax B,a) ={(axB,p) =0,

(4) {ax B,ax B) =—{a,a)(B,B) + (a, B)2.

Note that the third property actually follows from the first and second one.
This cross product also satisfies

af=axp+{(a,f)Ids. (2.5)

The metric (,) on SL(2,R) is a multiple of the Killing form, the quadratic form
for Lie groups given in 1.2, hence is a bi-invariant metric. As a consequence, the
Riemannian exponential map coincides with the Lie group exponential map.

Proposition 13. The geodesics of SL(2,R) are given by t — pe!®, where
a € sl(2,R) and p € SL(2,R).

2.2 The nearly Kahler structure of SL(2,R) x
SL(2,R)

In the previous chapter we mentioned that SL(2,R) x SL(2,R) is constructed
by means of T-duality. In this section we will make that construction more
explicit.

Recall that the nearly Kéhler S* x S is the homogeneous space G/H =
SU(Q)XASgé?%)XSU(Q). Then, g = su(2) @ su(2) @ su(2) as a sum of Lie algebras,
the Lie subalgebra = Asu(2) = {(X, X, X) : X € su(2)} and the vector space
m = su(2) ®su(2) @ {0}. Take the involutive Lie automorphism 7" of g given by

T(X,Y,Z)=(-X' -Y' -Z").
The eigenspaces g+ and g_ are
g+ = Span{(k7 07 0)7 (Oa ka 0)7 (07 Oa k)}a

g- = Span{(i, 0, 0)7 (.]7 0, 0)7 (07 i?O)v (O’j7 0)7 (0’ 0, i)’ (Oa O,j)},
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where i, j and k are the matrices in su(2) given by

N N NSO B

It is easy to see that T preserves h and m. The Lie algebra g’ = g4 @ ig_ with
the Lie bracket in (1.3) is isomorphic to sl(2,R) @ s[(2,R) @ s[(2,R), as a sum
of Lie algebras. Therefore S x S? and SL(2,R) x SL(2,R) are T-duals.

The tangent space of SL(2,R) x SL(2,R) at a point (p, q) is
Tip,q)(SL(2,R) x SL(2,R)) = {(pa, ¢B) : a, B € sl(2,R)}.

Let SL(2,R) x SL(2,R) x SL(2,R) be the pseudo-Riemannian product with
the product metric that arises from the one in (2.2). Now take 7: SL(2,R) x
SL(2,R) x SL(2,R) — SL(2,R) x SL(2,R) the submersion given by

m(a,b,c) = (ac™t b h). (2.7)

Let g be the metric on SL(2,R) x SL(2,R) such that 7 is a pseudo-Riemannian
submersion. More explicitly,

2 1
9((pa, aB), (p,49)) = 5((pex, 49), (07, 4B)) — 3((pB, q0), (p7,48)),  (2:8)
where (,) is the product metric. It follows that SL(2,R) x SL(2,R) x SL(2,R)
acts transitively by isometries on (SL(2,R) x SL(2,R), g), therefore

_ SL(2,R) x SL(2,R) x SL(2,R)

SL(2,R) x SL(2,R) ASL(2 R)g)

We may also define the metric g from a Hermitian point of view. Take 6 €
Aut(SL(2,R) x SL(2,R) x SL(2,R)) the automorphism of order three given by

6(a,b,c) = (b,c,a).
Note that
0=20>-1d

= (0, —1d)(0? + 6, +1d)

and that (0, — Id) only vanishes for vertical vector fields of the submersion
given in (2.7). Hence, if we evaluate (2.2) with a horizontal vector field we
obtain that on the set of horizontal vector fields H,

0=02+6,+1d

L s (2.9)
= (0. + 310 +  1d.
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Then, the tensor %9* + % Id is an almost complex structure on H, which we
can identify with T'(SL(2,R) x SL(2,R)).

Explicitly, we take the almost complex structure J on SL(2,R) x SL(2,R) given
by

J(par,qB) = %@a(a ~28),¢(2a — B). (2.10)

The product metric (,) on SL(2,R) x SL(2,R) is not compatible with J, i.e.
(SL(2,R) x SL(2,R), (,)) is not an almost Hermitian manifold. However, we
may construct a new metric from (,) that is compatible with J:

1 1
g(X,Y)= {(X.Y) + 1(JX,JY).

Proposition 14. The manifold (SL(2,R) x SL(2,R),¢’,J) is an almost
Hermitian manifold. Moreover, g and g’ coincide.

We define the {Uy, Us, Us, V1, Va2, V3} as the frame on SL(2,R) x SL(2,R) by

Ui(p,q) = (Xi(p),0), Vi(p,q) = (0, X:(q)).

where the vector fields X; are given in (2.3). The components of the metric in
this frame are

51‘]' for ¢ = 1,2,
52’]’ for ¢ = 3,

9(Us, Uj) = g(Vi, V) :{

WIN WIN

and
—16;; fori=1,2
g(UuVj):{ 3 ot s

géij for i = 3.

The Lie brackets of vector fields of the frame are
Us, U] = =2eimiUr, Ui, Vi] = —2eim Vi,  [Vi, Vil = 0,
where n; = 1if i = 1,2, n3 = —1 and €5, is the Levi-Civita symbol:

1 if (4,4, k) is an even permutation of (1,2,3),
gijk =4 —1 if (¢,7,k) is an odd permutation of (1,2,3),
0 all other cases.
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Lemma 3. The Levi-Civita connection V of SL(2,R) x SL(2,R) associated
to g is given by

@Uin = _EijknkUka
Vv, Vi = —eiuni Vi,

Vi,V = Eijk%k(Uk - Vi),

@Vin = Eijk%c(vk — Uk).

Moreover, the covariant derivative of J is given by

~ 2
(Vu, )U; = 3\/§€ijwk(Uk +2V3),
~ 2
(Vv J)V; = _37\/§5ijk77k<2Uk + Vi),
- ) 2
(Vu, )V = (Vy, J)U; = ﬁf%‘jknk(Uk — Vi).

From the previous lemma we can deduce that (SL(2,R) x SL(2,R), g, J) is a
nearly Kéhler manifold. As such, it satisfies all properties given in Proposition
9. In what follows, we denote by G the covariant derivative of J.

Lemma 4 (Ghandour, Vrancken [25]). The tensor G satisfies
1. (VxG)(V,2) = =3(9(X, 2)IY = 9(X,Y)JZ ~ (Y, Z)X),

2. g(G(X,Y),G(Z.W)) = =3 (9(X, 2)g(Y. W) — (X, W)g(Y. Z)

+9(JX. 2)g(IW,Y) = g(JX, W)g(JZ.Y)).

3. G(X,G(Z,W)) = g(g(X, 2)\W — g(X,W)Z + g(JX, Z)JW

—g(JX, W)JZ).

An explicit expression for the tensor G is given in [25]:

G((aca, bB), (ay,b0)) = %(a(—a Xy—axd+yxB+28x7),
(2.11)

b(—2a><fy+ax5—7><ﬁ+ﬁ><6)>,
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where a,b € SL(2,R) and «, 8,7, d € sl(2,R). We introduce the tensor P given
by
P(pa, qB) = (pB, qar), (2.12)

where (pa,qB) € T4 (SL(2,R) x SL(2,R)). This tensor plays an important
role in the structure of SL(2,R) x SL(2,R), as we will see later.

Lemma 5. The tensor P is an almost product structure. Namely, P satisfies
P?’=1d, g(PX,PY)=g(X,Y).

Moreover, it satisfies the following conditions:
1. ¢(PX,Y) =g(X,PY),
2. PJ=-JP,
3. G(PX,PY)+ PG(X,Y) =0,

4. (VxP)Y = %(JG(X, PY) + JPG(X, Y)).

Proof. That P is a almost product structure as well as 1 and 2 follow from a
straightforward computation. Property 3 follows From the expression of G in
(2.11). By checking with a basis, we can prove 4. O

We denote by R the curvature tensor of the nearly Kéhler connection V. It is
explicitly given by the following formula

R(X,Y)Z = =3 (9(Y, 2)X = g(X, 2)Y )

- %(g(JY, 2)JX — g(JX, 2)JY — 2g(JX, Y)JZ)
(2.13)

- §<g(PY, Z)PX — g(PX,Z)PY

+ g(JPY, Z)JPX — g(JPX, Z)JPY).

The following proposition is stated in [40] for S* x S, but the proof also works
for SL(2,R) x SL(2, R).

Proposition 15. Let P’ be an almost product structure that satisfies 1, 2 and
3 of Lemma 5 and Equation (2.13), then

P =cosTP +sinTJP

for T € {0, %”, 4{} Conversely, such tensors are almost product structures and
satisfy 1, 2 and 3 of Lemma 5 and Equation (2.13). Moreover, Property 4 of
Lemma & is trivially satisfied by P’.
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2.2.1 The relation between the product structure and the
nearly Kahler structure

Any (pseudo-)Riemannian product carries a canonical product structure:

Moreover, this product structure is parallel with respect to the Levi-Civita
connection associated to the product metric.

In our setting, there is an explicit relation between the nearly Kéhler metric g
and the product metric {, ):

(X,Y) =2¢(X,Y) + g(X, PY). (2.15)
The almost product structures @ and P on SL(2,R) x SL(2,R) are related by

1
QX = —%(2PJX — JX). (2.16)

The Levi-Civita connection VE~ associated to the product metric (,) on
SL(2,R) x SL(2,R) is related to V by

VEY = VxY + %(JG(X, PY) + JG(Y, PX)). (2.17)

The product manifold (SL(2,R) x SL(2,R), (,)) is isometrically immersed in
M(2,R) x M(2,R) = R§, thus we can use the Gauss formula to find a relation
between V¥ and the Euclidean connection D of R§. That is, at any point
(a,b) € SL(2,R) x SL(2,R) we have

DxY =VEY + P (X,Y),

where h¥ is the second fundamental form. Since the normal space at (a, b) of
the immersion is spanned by (a,b) and (—a,b) we have that

<DXY7 (avb)> <DXYa (_a" b)>
((a,b), (a,b)) ((=a,b),(—a,b))

Finally, using that Dx(a,b) = X, Dx(—a,b) = QX and the compatibility of D
with (,), we obtain that

RE(X,Y) = (a,b) + (—a,b).

DxY =VEY + %(X, Y)(a,b) + %(QX, Y)(—a,b). (2.18)
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2.2.2 The isometry group

The connected component of the identity of the isometry group of SL(2,R) x
SL(2,R) is

Iso,(SL(2,R) x SL(2,R)) = SL(2,R) x SL(2,R) x SL(2,R),
where an element ¢, ) acts on a point (p, q) by dap.e)(p,q) = (apc=t, bgc™1).

The isometries ¢(q 4, preserve P and J, in the sense that do(p.c) 0 J =
J odpp,ey and dd ey © P = P odpp.e These isometries are not the
only ones that satisfy these properties. Given three matrices a, b and ¢ with
determinant —1, the map (p,q) — (apc=!,bgec™!) is also an isometry that
preserves J and P.

Denote by SL*(2,R) the group of all matrices in M(2,R) with determinant
+1. We can write any matrix of SL¥(2,R) as i*a, where 7 is the matrix given
n (2.1), k € {0,1} and a € SL(2,R). Thus, we have

(SL(2,R) x SL(2,R) x SL(2,R)) x Z3 C Iso(SL(2,R) x SL(2,R)).

Permutations of elements of SL(2,R) x SL(2,R) x SL(2,R) also give rise to
isometries of the pseudo-nearly Kéhler SL(2,R) x SL(2,R):

@0,0(pa q) = (p7 Q)» ‘1’1,0(2% q) = (Q»P)a
\:[107271'/3(p7 Q) = (pq717q71)7 \111,271'/3(p7 q) = (qfl’qul)’ (219)
Vo,an3(pi0) = (ap™" 07 "), Ui ans(pi0) = (0~ ap ™).

Except for Uy, these isometries are not included in SL(2,R) x SL(2,R) x
SL(2,R). Moreover, each one of these is in a different connected component of
Iso(SL(2,R) x SL(2,R)) and satisfies

Jod¥,,=(-1)"d¥, o, Pod¥,,=d¥, o (cosTP +sinTJP).

Later on, we prove that these are all the isometries of the nearly Kéahler
SL(2,R) x SL(2,R).

A key result in the classification of Riemannian homogeneous nearly Kéahler
manifolds by Butruille [10] is the existence of a unique nearly Kéhler structure
on S? x S3. Consequently, the almost complex structure on S? x S3 is unique
up to sign.

However, in [48] it is shown that SL(2,R) x SL(2, R) has a unique left-invariant
nearly Kéhler structure, which does not necessarily imply that J is unique up
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to sign. Therefore, by isometry group of the pseudo-nearly Kahler SL(2,R) x
SL(2,R) we mean the set of all diffeomorphisms preserving the almost Hermitian
structure. That is, those isometries F of (SL(2,R) x SL(2,R), g) that preserve
J,le Fod = £JF..

The following lemma is a well known result.

Lemma 6. Let {a1,aq,a3} and {f1, B2, 3} be bases of sI(2,R). If (v, o) =
(Bi, Bj) for all i, j € {1,2,3}, then there exists a matriz ¢ in SL*(2,R) such
that cae™ = B;. In other words, SLE(2,R)/Zy is isomorphic to SO(2 1).

With this lemma and Proposition 15 we prove the following statement.

Theorem 28. The isometry group of the pseudo-nearly Kdhler SL(2,R) X
SL(2,R) is the semi-direct product (SL(2, R) x SL(2, R) x SL(2,R)) x (Z3 x S3),
where S3 is the symmetric group of order 6 generated by {V1 0, V1 473}

Proof. We already know that the given group is included in Iso(SL(2,R) x
SL(2,R)). Here we show the opposite inclusion.

Let F be an isometry of the pseudo-nearly Kéhler SL(2,R) x SL(2,R). That
means, there exists a ko € {0, 1} satisfying

FoJ = (=) JF,.

As F,P(F~1), is an almost product structure satisfying 1, 2 and 3 in Lemma 5
and Equation (2.13), Proposition 15 implies that

F.P(F 1), =cosToP +sin7yJ P,

for some 7y € {0, 2;, 43“} By taking the composition F o W, 1y, We may
assume that F preserves P and J. Let (po, o) € SL(2,R) x SL(2,R) such that
F(Ids,1d2) = (po,qo). Then by taking the composition F o Dyt g1 1dy) WE

may also assume that F(Idg,Ids) = (Idg, Idg).
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Let a € sl(2,R). Then we write Fi (14, 14,)(@,0) = (8,7). Since F preserves P
we know that Fi (14, 14,)(0, @) = (7, 8). We compute

1
Fa(idy,1ds)d (@, 0) = %]:*(Idz,ldg)(aa 20)

= % +(1ds,1dz) (@, 0) + %f*(ldg,ldg)(ov 2a)
1 2
- %(6 29,26 +7).

On the other hand, as F preserves J, we have that Fi (14, 14,)/ (e, 0) equals

‘]‘7:* (Idz,Idz) (a? 0) = J(ﬁ? 7)
_ 1
V3

Therefore, we obtain that v = 0. Moreover, since F is an isometry, we deduce

that F, maps a set {(aq,0), (a2,0),(as3,0)} to a set {(51,0), (B2,0),(B3,0)}
such that (a;, ;) = (B, 55)-

Now, using Lemma 6, we may compose F with an isometry of SL(2,R) x
SL(2,R) x SL(2,R) x Zy to assume that Fi (1q,,14,)(®,0) = (,0) for all a €
5[(2,R). Since F preserves P, we have
Fa(1dg,1d2) (@ B) = Fi(1ds,1d5) (@, 0) + Fi(1d,,1d5) (0, B)
= (@,0) + P(8,0)

= (o, B).

Since by Proposition 3 isometries are determined by a point and the differential
at that point, the argument above shows that 7! is in (SL(2,R) x SL(2,R) x
SL(2,R)) X (ZQ X Sg), hence F also belongs to this group. O

An element (a,b,c, ¥, k) acts on a point (p,q) by

(a7 b,c, k, \Ij) ’ (p7 Q) =WVo ¢ik(a,b,c) (p7 q) (220)
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The isometry group is a semidirect product since for the action in (2.20) to be
a Lie group action, the group law has to be

(a1,b1,c¢1,k1, U)o (as, b, ca, ko, ¥s)
= (o2(a1,b1,¢1) - (az,b2,¢2), ¥y 0 Vo, ky + k2)

where o5 is the permutation of (1,2,3) in S3 associated to Us.

Note that in the literature there is no similar expression of the isometry group
for the Riemannian analogue. The same proof can be done for S? x S3, obtaining

Iso(S? x §*) = (SU(2) x SU(2) x SU(2)) x Ss.



Chapter 3

Lagrangian submanifolds of
SL(2,R) x SL(2,R)

This chapter is based on a collaboration with Joeri Van der Veken [3], the
preprint by the author [2], and an unpublished work by the author.

Introduction

Given an almost Hermitian manifold (M, g, J) there are two distinguished types
of submanifolds: Those for which the almost complex structure J preserves
the tangent space and those for which the almost complex structure maps
the tangent space into the normal space. The former kind are called almost
complex submanifolds, and the latter are known as totally real submanifolds.
If the dimension of a totally real submanifold is maximal, we say that it is
a Lagrangian submanifold. We can see that the dimension of a Lagrangian
submanifold is always half of the dimension of the ambient space.

In symplectic geometry, a Lagrangian submanifold of a symplectic manifold
(M,w) is a submanifold such that w vanishes everywhere and its dimension is
equal to %dim(]V[ ). In Kéhler geometry w is the Kéhler form g(J-, ), making
both definitions of Lagrangian submanifold coincide.

The submanifolds of the nearly Kahler S? x S* have been widely studied by
many authors. An important notion of angle functions was introduced in [20]
and [57]. Namely, the almost product structure P induces three functions 61,

a7
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02 and 03, which encode substantial extrinsic information. In [57] the authors

also classified all totally geodesic Lagrangian submanifolds of the nearly Kahler
S? x S3:

Theorem 29 (Dioos, Hu, Vrancken, Wang and Zhang). A totally geodesic
Lagrangian submanifold of S x S? is congruent to an open subset of one of the
following examples:

1 f1:S? =S xSt uws (u,u),
2. f2: S = §*x $?:us (u, —iui),

where 1 is the unit quaternion given in (2.6).

Totally geodesic Lagrangian submanifolds have constant angle functions and
at least two of them are equal modulo 7. In [57] the authors actually gave six
different examples, but using the isometries of S* x S? described in [40] we can
reduce the list to just two.

In [6] the authors classified all Lagrangian submanifolds with constant angle
functions. By doing so, they also classified all extrinsically homogeneous
Lagrangian submanifolds:

Theorem 30 (Bektas, Moruz, Van der Veken and Vrancken). An estrinsically
homogeneous Lagrangian submanifold H - (1,1) of S* x S is congruent to an
open subset of one of the following examples,

1. f1:S* =5 S xS uws (u,u), with H = SU(2),
2. fo:S? = S$*x S$?:uws (u, —iui), with H = SU(2),
3. f3: RP? - §% x $* : us (—juju=?, —iuiut), with H = SU(2),
4. f1: T3 = S3xS3: (u,v,w) > (eMe K eWe~wk) with H = T3,
where i, j, k are the unit quaternions given in (2.6), and T3 =S* x St x S. In

all cases the isotropy H(y 1) is trivial, except for the submanifold f3, where the
isotropy 1S Zs.

From Theorem 29 we know that the maps f; and fy are totally geodesic. All
maps except for fo are immersions of space forms where the first is a sphere
of constant sectional curvature %7 the third is a projective space of constant
sectional curvature % and the last one is a flat torus.

By relaxing the hypothesis to just one angle being constant, in [7] the authors
constructed Lagrangian submanifolds in S? x S® from minimal surfaces in S:

Theorem 31 (Bektas, Moruz, Van der Veken, Vrancken). Let f = (p,q): M —
S? x S§? be a Lagrangian immersion into the nearly Kihler S® x S®. Suppose that
dp has nowhere mazimal rank. Then p(M) C S* is a minimal surface of S3.
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Conversely, if p: ¥ — S? is a minimal surface of S®, there exists a Lagrangian
immersion f: M — S® x S® satisfying f = (p,q) for some map q: M — S3.

In this chapter we obtain similar results for the nearly Kahler SL(2, R) x SL(2, R).
In Section 3.1 we divide Lagrangian submanifolds into four types, which depend
on their behavior with respect to the almost product structure P. In Section 3.2
we classify all totally geodesic Lagrangian submanifolds of SL(2,R) x SL(2, R).
In Section 3.3 we classify all extrinsically homogeneous Lagrangian submanifolds
of SL(2,R) x SL(2,R). Finally, in Section 3.4 we construct an example of a
Lagrangian submanifold of type IV of Lemma 11.

We begin by stating some facts about Lagrangian submanifolds of nearly Kahler
manifolds, which can be found in [48].

Proposition 16. Let M be a Lagrangian submanifold of a (pseudo-)nearly
Kaihler manifold N, and let h and S be the second fundamental form and shape
operator, respectively. Then, M satisfies the following properties:

1. 9(G(X,Y),Z) =0, i.e. G(X,Y) is normal for all X,Y € X(M),

2. g(M(X,Y),JZ) = g(h(X,Z),JY), i.e. the tensor g(h(-,-),J) is totally

symmetric,

3. G(X,Y)=VxJY — JVxY,

4. SyxY =—-Jh(X,Y),
where G = VJ. Moreover, if N is siz-dimensional then M is orientable and
minimal.

3.1 The angle functions

Determining the curvature tensor of submanifolds is key while studying the
intrinsic information of the immersion. However, as we can see in the expression
for R in Equation (2.13), we first need to know how the almost product structure
P behaves in the tangent space of the submanifold.

Given a Lagrangian submanifold M of SL(2,R) x SL(2, R), the restriction of P
to TM can be written as P|lry = A+ JB, where A, B: TM — TM are the
tangent and normal parts of P.

Lemma 7. The tensors A and B on a Lagrangian submanifold M of SL(2,R) x
SL(2,R) are symmetric with respect to g, they commute with each other and
satisfy A% + B% =1d.
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Proof. Let X and Y be tangent vectors fields on M. Using that P is symmetric
with respect to g and that it anticommutes with J, we compute

g(PX,Y) = g(AX + JBX,Y) = g(AX,Y),
and on the other hand
g(X,PY)=g(X,AY + JBY) = g(X, AY ),

thus A is symmetric. In a similar way, with the equation g(PX,JY) =
9(X,PJY) = —g(X, JPY), we deduce that B is symmetric as well.

Now, using that P? = Id we compute

X = P?X = P(AX +JBX) = PAX — JPBX
= A’X + JBAX — J(ABX + JB?*X)

= (A*+ B*)X + J(BA - AB)X.
O

Given a Lagrangian submanifold of SL(2,R) x SL(2,R), the Gauss and Codazzi
equations in Section 1.4 give us expressions for the tangent and normal parts
of the curvature tensor R, in terms of the curvature tensor R and second
fundamental form H of M. In this setting these equations become:

R(X7Y)Z = —%(g(Y, Z)X —g(X, Z)Y)
— %(g(AY, Z)AX — g(AX, Z)AY + g(BY, Z)BX (3.1)

— 9(BX,Z)BY) — Sh(x,2)Y + Shv.2) X,

(Vxh)(Y,Z) = (Vyh)(X,Z) = —2(g(AY, Z)JBX — g(AX,Z)JBY
3.2
—g(BY,2)JAX + g(BX, Z)JAY). 2

In a Riemannian setting, Lemma 7 would imply that A and B are both
simultaneously diagonalizable, but this is no longer the case in a pseudo-
Riemannian setting. Therefore, we state the following lemma, which holds for
operators A and B on vector spaces.

A basis {eq, ez, e3} of R} is said to be A;-orthonormal if the matrix of inner
products is given by A;, where

-1 00 010 1 0 0
Ar=|0 1 0|, Ay=[1 0 0|, Az;=]0 -1 0
0 0 1 00 1 0 0 1
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A positive oriented frame on a Lorentzian manifold M is said to be a A;-
orthonormal frame if it is a A;-orthonormal basis at each point.

A part of the following lemma can be found in [38].

Lemma 8. Let A and B be two commuting symmetric operators with respect
to a Lorentzian metric on a three-dimensional vector space V. Then A and B
must take one of the following forms, with respect to a A;-orthonormal basis.

A 000 pr 0 0
A= 0 /\2 0 5 B= 0 125) 0 5 with Al = A1, (33)
0 0 )\3 0 0 13
A 000 p1 o p2 0
A= 0 A1 0 ’ B = —H2 M1 0 ) with AZ = Ala H2 7é 07
0 0 )\2 0 0 M3
(3.4)
A0 O w € 0
A=10 X 0], B=|0 w 0], with A; = Ag, (3.5)
0 0 X 0 0 o
A0 O nw 0 1
A=10 X 0], B=[0 u 0], with A; = Ag, (3.6)
0 0 X 0 1 pu
Aroe 0 w b ¢
A= 0 )\1 0 y B = 0 M1 0 y with Az = AQ, C)\l = C)\Q,
0 0 Ao 0 c 2
(3.7)
A0 1 nw b ¢
A=10 X 0], B=|0 u 0], with A; = Ag, (3.8)
0 1 X 0 ¢ u
a B0 v 46 0
A=|-8 o 0|, B=|—-d v 0], withA;=A;, B#0, (3.9
0 0 X 0 0 w
with € = £1.

From [44] we know that the matrix A has four possible forms. The proof of
Lemma 8 follows from considering the four forms of A and an easy computation,
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by imposing to A and B the conditions of being symmetric with respect to the
metric, and applying a linear isometry to the basis if necessary.

Lemma 9. Let A and B be two symmetric operators with respect to a Lorentzian
metric on a three-dimensional vector space V. Assume that they commute and
that A2 + B? =1d. Then A and B must take one of the following forms, with
respect to a A;-orthonormal basis.

cos 260, 0 0 sin 264 0 0
1. A= 0 cos 205 0 , B= 0 sin 265 0 ,
0 0 cos 203 0 0 sin 2603

with A; = A and 01792,03 S [0,7’(’).

cosh A 0 0 0 sinh A 0
2. A= 0 cosh A 0 , B = | —sinh A 0 0 ,
0 0 cos 260 0 0 sin 26

with Al = Al, A € R and 0 € [077'().

er 0 0 0 e O
8. A=[0 & 0], B=|0 0 0],
0 0 e 0 0 O
with A; = As and g1, € {*1,1}.
cos 260 € 0
4. A= 0 cos 264 0 ,
0 0 cos 205
sin 20, 77(02;5?51 ;‘;j 261) c
B = 0 sin 264 0 )
0 c sin 20,

with Ai:AQ, 01,02 € [077'(), 01 750,7('/2, e==l1and c € R. IfC?éO,

then cos 20, = cos 2605 and sin 20; = — sin 26,.
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— ¢ 0 0 ¢t V2
5. A=|0 - 0], B=|0o 0o o0 |,
0 0 -—¢ 0 vV2 0

with A; = Ag, e =+1 and t € R.

cos 260 0 1
6. A= 0 cos 26 0 ,
0 1 cos 20
sin20 —(csc20)3/2  —cot 20
B = 0 sin 260 0 ,
0 — cot 26 sin 260

with A; = Ag, and 6 # 0, 7/2.

s cos 201 T 0
7. A= —x s cos 204 0 ,
0 0 cos 205
ssin 264 Y 0
B = —y ssin 26, 0 ,
0 0 sin 260,

with A; = Ag, s =+/1+22+y2, 2 #£0, ysin20; = —x cos 26,
and 601,602 € [0, 7).

Proof. Lemma 8 provides us with seven different forms A and B can take. We
analyze the equation A2 + B? =1d on each type of matrix separately.

Type 1 (3.3): Computing A? + B? = Id in (3.3) immediately yields Case 1 of
Lemma 9.

Type 2 (3.4): Tt follows from A2 + B2 = Id that py = 0, A2 — p3 = 1 and
A3 + u3 = 1. Hence, we get Case 2 of Lemma 9.

Type 3 (3.5): Case § is immediate from computing A? + B? = Id, as we obtain
that 1 = 0. It follows that A = +1 and that pus = 0. This is Case & of
Lemma 9.

Type 4 (3.6): We easily see that under no conditions A% + B? can be equal to
the identity in this case.
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Type 5 (3.7): Computing A% + B? =1d in (3.7) yields the equations

M+l =1, (3.10)

A3+ 3 =1, (3.11)

261 + 20y + % =0, (3.12)
c(pr + p2) = 0. (3.13)

Suppose ¢ # 0. Then because of Equation (3.13) and c¢A\; = cAy we have
that Ay = A2 and p1 = —po. If g = 0 then (3.10) and (3.12) imply that
A1 = Ay = —¢ and ¢ = /2, which is Case 5 of Lemma 9. If instead p; # 0, by
Equation (3.10) we can write Ay = cos26; and p; = sin 264, then by (3.12) we
have b = —(c? + 2e cos 201) /(2 sin 26, ), which leave us with Case 4 of Lemma 9.

Now suppose that ¢ = 0. If g3 = 0 then we get a contradiction from equations
(3.10) and (3.12). Therefore u; must be different from zero, and from (3.10),
(3.11) and (3.12) we get that Ay = cos2601, Ay = cos20s, p1 = sin26y, ps =
sin 205 and b = —e cot 26,1, which is again Case 4 of Lemma 9.

Type 6 (3.8): Computing A% + B? = Id yields

N =1, (3.14)
Ateu=0, (3.15)
2bp+c*+1=0. (3.16)

From (3.14) and (3.15) we easily see that p # 0, thus ¢ = —A/u. By replacing
this in (3.16) we get that b = —1/(2u3). Finally by (3.14) we have that
A =cos20, p=sin26, c = —cot 20 and b = —csc(29)3/2, which is Case 6 in
Lemma 9.

Type 7 (3.9): Again, we compute A% + B? =1d in (3.9), from which follows

=B+t -8 =1, (3.17)
aB+~6 =0, (3.18)
M 49?2 =1 (3.19)

We can transform (3.17) into

2 2
« Y _
(m) *(m) b
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thus we obtain that a = /1 + 82+ 62cosf and v = /1 + 82 + §2sin6 for

some 6. Equation (3.18) becomes /1 + 52 4 62(8 cos @ + dsinf) = 0, hence we

can conclude that § = — (3 cot 6 since if sinf = 0 then 8 = 0, which contradicts
the last condition of (3.9). Renaming z = §, y = 0 and s = /1 + 22 + y2 we
obtain Case 7 of Lemma 9. O

Remark 12. In [38], only the case ¢ =1 is treated in equations (3.5) and (3.7).
However, the case € = —1 is essentially different, as there is no change of basis
preserving the metric that can take one case into the other.

Now, fixing a point p € M we know that there exists a basis of T,M as in
Lemma 9. There exists an open dense subset of M such that at each point we
can extend this basis locally to a A;-orthonormal smooth frame {F;, Ey, E3}
on M.

To see this, take p in M such that A and B take one of the forms of Lemma 9 and
the eigenvalues have maximal multiplicity. The coefficients of the characteristic
polynomial of A and B are smooth since both are smooth tensors. On the
other hand, the roots of a polynomial of grade 3 can always be written in a
smooth combination of the coefficients. Hence, the roots are always smooth and
therefore most of the functions involved in Lemma 9. The functions z, y and s
in type 7 of Lemma 9 can be written in terms of the eigenvalues, therefore they
are smooth as well. It follows that 6 is smooth too.

We can apply the same argument as in Lemma 1.2 in [49] and extend the basis
to a frame on an open subset where the multiplicities of the eigenvalues are
constant. Moreover, we assume that outside of subset the multiplicities are
different. Now take the complement of the closure of this open subset. We
obtain an open subset where we can apply this process again. After iterating
we obtain an open dense subset where we can always extend the frame locally.

Finally, by using that the expression for A is smooth and therefore the frame is
smooth, we conclude that the functions ¢ and ¢ in types 4 and 5 are smooth
since the frame is smooth and the tensor B is smooth.

Recall from the first equation of Proposition 16 it follows that G(X,Y) is a
normal vector to M for any tangent vectors X, Y on M. Let {E, Ea2, E3} be
a Aj-orthonormal frame of the tangent space of M. By Proposition 9 and
Lemma 4 we get JG(E;, Ey) = 5\/gEl with ¢ = +1 depending on A;, as the
following table shows.
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Ay Ay As
JG(E1, E») 2p, 2p, 2p,
JG(E1,E3) | —/2Ey | —\/2E1 | \/2Es (3.20)
JG(Es, E3) | —/2E: 2p, 2p,

Lemma 10. Let M be a Lagrangian submanifold of SL(2,R) x SL(2,R) and
P the almost product structure given in (2.12). Assume that A and B are
such that Plyy = A+ JB. Let F be an isometry of SL(2,R) x SL(2,R). Then

A= F.(cosTA+ (—1)"sinTB)F,

B = F.(—sinTA+ (—1)"cos7B)F, !
where T and k are such that dF o P = (cosTP +sin7JP) odF and dF o J =
(=) odF.

Proof. We know from Section 2.2.2 that there exists such numbers x and 7 as
in the last statement of the proposition. Let F,. X € X(F(M)). On the one
hand we have that

F.PX = F.(AX) + F.(JBX)
= F.(AX) + (-1)"JF.(BX),
and on the other hand
FiPX = (cosTP +sinTJP)F. X

= cosT(AF, X + JBF,X) +sintJ(AF.X + JBF.X).

Since F commutes with J (up to sign), the Lagrangian condition is preserved.
Therefore, after comparing tangent and normal parts; we obtain

F.AX = (cos TA —sin TB),RX,

(-1)"F.BX = (sinTA + cos 7B)F. X.
Equivalently;
AF. X = F.(cosTAX + (—1)"sinTBX),

BF.X = F.(—sinTAX 4 (=1)% cos TBX).
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With this information we can state a stronger version of Lemma 9.

Lemma 11. Let M be a Lagrangian submanifold of SL(2,R) x SL(2,R) and P
the almost product structure given in (2.12). Then there exists a Lagrangian
submanifold N congruent to M such that the restriction of P to N can be
written as P|ly = A+ JB, where A,B : TN — TN must have one of the
following forms, with respect to a A;-orthonormal frame {Ey, Fa, Es}.

cos 20 0 0 sin 264 0 0
L. A= 0 cos 265 0 , B= 0 sin 2605 0 ,
0 0 cos 205 0 0 sin 205

with Al = Al and 91 + 92 + 93 = 0 modulo .

cos 261 1 0 sin26; — cot 26, 0
II. A= 0 cos 2601 0 , B= 0 sin 264 0 ,
0 0 cos 205 0 0 sin 265

with A; = Ay, 261 + 62 = 0 modulo 7 and 6; # 0, 7/2.

1 V3 -4 1
-3 0 1 2 33 V3
m. A={o0 -1 o], B=+fo0 ¥ o],
o 1 -1 1 3
2 0 73 5
with Al = AQ.
coshcos26;  sinhsin s 0
IV. A= | —sinhysinfy cosh cos26; 0 ,
0 0 cos 20,
coshsin26;  sinh ) cos 6y 0
B = | —sinhcosfy coshsin 26, 0 ,
0 0 sin 265

with A; = Ag, 2601 + 03 = 0 modulo 7, 6 # 0,7 and ¥ # 0.

The functions #; and 1 are called the angle functions. Since the type
is invariant under congruent transformations, we say that a Lagrangian
submanifold M is of type I (or sometimes diagonalizable type), II, IIT or
IV. Likewise, if M is of type i we say that A and B take type i form on M.

Proof. The next equation follows from applying P to (3.20), using Lemma 5:

PE; = —aJPG(E,, E,) = a.JG(PE,, PE}), (3.21)
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where o can be either \/g or —\/g, depending on which case of (3.20) we are in.

For Case 1, Case 2 and Case 7 of Lemma 9 the triple (i, j, k) is a permutation
of (1,2,3). For cases 3 to 6 of Lemma 9 this is not true anymore, and i is
equal either to j or to k. We consider the seven cases of Lemma 9 applied to
Equation (3.21), one by one.

Case 1. Using a similar procedure as in [20], we get 61 + 02 + 63 = 0 modulo 7.

Case 2. Taking i =3, j =1 and k =2 in (3.21) and looking at the component
of JE3 we conclude that § = 0. Now we apply to M the isometry V4. /3 given

in (2.19). The tensor P restricted to Wy, 31(M) can be written as A + JB,

where
A:—lAﬂ—@B, B:é
2 2 2

This is Case IV of Lemma 11 with ) = 0, = 7.

1
A+:B.
T3

Case 3. Withi=1, j=1and k =3 in (3.21) we obtain &y = 1. As there is no
possible change of basis that can transform €3 into 1, we apply either Wy, /31
or ¥y, /31 to M, depending on its value. Proceeding in the same way as in the
previous case, we restrict P to the image of the isometry. After a change of
basis, we get Case II of Lemma 11, with ¢; =6 = % ifex =1 and 01 = 0 = %’T
if €9 = —1.

Case 4. Taking i =1, j=1and k=1 in (3.21) yields
cos 201 = cos2(01 + 6), sin 26; = —sin2(6; + 62).
Thus,
cos 2(261 + 03) = cos 267 cos2(01 + 02) — sin 267 sin 2(01 + 62)

= cos?2(01 + 05) + sin? 2(6; + 63)
=1.

Then 260; + 02 = 0 mod 7. Looking at the component of F5 in (3.21) when
taking ¢ = 2, j = 2 and k£ = 3 we obtain csin26; = 0, therefore ¢ = 0 as
sin 201 7é 0.

If e = 1, we have Case II of Lemma 11.

If e = —1, we would like to transform it into 1. We apply either Wy, /3 or
Wyr/3,1 to M and restrict P to the image. The component Ayyis 14 /3 cot 26,
or 1 — v/3cot 26;. These two values cannot be negative at the same time, thus

we can always choose one to be positive. After a change of basis, we get Case
IT of Lemma 11.
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Case 5. On the left hand side of (3.21) we have PE; = —FE; and on the right
hand side we have

—¢§Kw%hpag:—¢;mw4%—ﬂg:Eh

which is a contradiction. Therefore, there is no Lagrangian submanifold with
such a frame.

Case 6. Taking the component of E3 on both sides of (3.21) with i =2, j = 2
and k = 3 yields —2cos20 = 1. Hence § = % or 0 = %77. That is

1 V3 _ 4 1

-3 0 1 2 3v3 V3
A=(0 -3 0], B=£[0 ¥ o0
0 1 -1 1 V3

2 0 7 5

Case 7. Taking i =1, j =2 and k = 3 in (3.21) gives us
cos 261 = cos2(01 + 62),
sin 207 = —sin 2(6; + 62).

Therefore as in the previous cases we have cos2(260; + 62) = 1. We take i = 2,
j=1and k=3 in (3.21) and we look at the components of F1, JE;:

r = —2cos 203 + ysin 20,,
(3.22)
y = xsin 205 + y cos 205.

Note that the equations in (3.22) can be written as the equation Rv = v where

v = (x,y)" and

_ [cos(m—26;)  sin(m — 269)

o (SiH(TF —260) —cos(m — 292)> '
Hence, v is an eigenvector of the matrix R associated to the eigenvalue 1.
Now, R is a reflection in the plane with respect to the straight line s —
s(cos(Z — 62),sin(Z — 62))" = s(sin b, cos 6)", therefore v lies in that subspace.
So z = sinhsinfy, y = sinh cosfy for some @ € R different from zero.

Finally, replacing « and y in the matrices of Case 7 of Lemma 9 yields what we
desired. O

3.1.1 The tensor VP

Let M be a Lagrangian submanifold of SL(2,R) x SL(2,R) and let {E1, Es, E3}
be a frame given by Lemma 11. As the normal space is spanned by
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{JE;,JEy, JEs}, we may define functions wfj and hfj by Vg, E; =3, wijk
and h(E;, E;) = >, hfjJEk. From Property 2 of Proposition 16 and the
compatibility of the connection with the metric, we obtain the following
symmetries.

First, for frames {E;} associated to A; and As we have
Spwh = —djwly,  hE = hk = 6;0h,
where
3 = g(E;, E;).
This implies that wfj =0foralls,j=1,23.

If the frame is associated to Ay we get

k 7 k k _ 17
where 2 =1, 1 =2 and 3 = 3. As before, we have that w =0. Also, if j =1,
k;:2orj:2,k:1thenwfj=O.

We recall the expression for the covariant derivative of the tensor P, previously
given in Lemma 5:

(VxP)Y = %(JG(X, PY) + JPG(X, Y)). (3.23)

This equation is useful since it gives conditions on the components hfj and wfj
As it depends on P, we are forced to divide between the four cases of Lemma

11.

Lagrangian submanifolds of diagonalizable type

Lemma 12. Let M be a Lagrangian submanifold of the pseudo-nearly Kahler
SL(2,R) x SL(2,R). Suppose that A and B take type I form in Lemma 11
with respect to a Ay-orthonormal frame {Ey, Eo, E3}. Except for hi,, all the
components of the second fundamental form are given by the derivatives of the
angle functions 01,65 and 03:

Ei(0;) = —6:0;h%;, (3.24)
where 6; = g(E;, E;). Also

hfj cos(8; — Ox) = (%Jksfj — wf) sin(6; — 6), (3.25)

J

forj #k.



THE ANGLE FUNCTIONS 61

Proof. Taking X = E; and Y = E5 in (3.23) and comparing the components in
Ey, FEy, Es, JE1, JE; and JFEj3 yields the following six equations

(h3y cos(fy — 62) + wiy sin(f1 — 62)) sin(6y + 62) = 0,
(h?, cos(0; — B2) + wi, sin(0; — 63)) cos(fy + 62) = 0,
(hyy — E1(62)) sin(262) = 0,
(h3y — F1(62)) cos(264) = 0,
(h3, cos(6 — 03) + (7% + wiy) sin(fy — 3)) sin(fy + 63) = 0,
(h3, cos(6 — 603) + (7% + w3y sin(y — 63)) cos(fz + 63) = 0.
Since sine and cosine never vanish at the same time (3.24) and (3.25) hold for

i =1 and j = 2. The other equations follow in a similar way, by choosing
different X and Y in (3.23). O

Lagrangian submanifolds of type Il

The covariant derivative of P in Equation (3.23) yields the following lemma for
type II Lagrangian submanifolds.

Lemma 13. Let M be a Lagrangian submanifold of the pseudo-nearly Kihler
SL(2,R) x SL(2,R). Suppose that A and B are of type II in Lemma 11 with
respect to a Ag-orthonormal frame {E1, Es, Es}. Then h(Ey, E1) = 0. Moreover,
the derivatives of the angles are given by

Ey(61) = —hy, =0, Ey(61) = —h3s, Es(61) = —hi,y
(3.26)
Ey(02) = —his, E5(02) = —hgs, E3(02) = —h3;.
Furthermore,
hé:s = _thza h§3 = _th =0, hgg = _Qh:{’? (3-27>

Proof. Computing Equation (3.23) with X = FE5, Y = F; and looking at the
components of Ey and JFEs we obtain

hi, sin20; =0, hijcos26; = 0.

Since sine and cosine never vanish at the same time we get that hl; = 0. Same
can be done computing Equation (3.23) with X = F1, Y = E; and X = Ejs,
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Y = E; and looking in the directions of Ey and JFEs , obtaining h?, = h$; = 0.
Looking in the direction of F; and JFE; of the same equations, we obtain the
derivatives of the function 6. We derive E;(62) by computing Equation (3.23)
with X = E; and Y = Ej.

We obtain the last statement either from Proposition 16, or from (3.26) and
the fact that 26, + 65 = 0. O

Lagrangian submanifolds of type Il

For Lagrangian submanifolds of type III, Equation (3.23) gives expressions for
all functions wfj, given in the following lemma.

Lemma 14. Let M be a Lagrangian submanifold of the pseudo-nearly Kihler
SL(2,R) x SL(2,R). Suppose that A and B take type III form in Lemma 11 with
respect to a Ag-orthonormal frame {E1, Ea, Es}. Then we have h(E1, E1) =0
and

3 _ 1 _,3 _, 2 _
hiy = wiy = wip = wjz =0,

3 _ V2 + (=1)"13h3,

o‘} b
12 2\/§
wl = ﬂ+ (*1)k+112h32
31 2\/§ )
L V24 (=1)F6h3,
21 9/3 ’ (3.28)
Lo _ (S1)R(h3, — 3h3y)
22 \/g )
1 (=1)FT(4h3, — 3h3,)
W3z = )
2V/3
W3 = (=1)¥*1(9h3y — 8h3, + 6h3,)
22 6\/§ 9

where (—1)* with k € {0,1} the sign of B in Lemma 11.

Proof. From computing Equation (3.23) with X = F;, Y = F;,i=1,2,3 and
looking at the components in the direction of JFEj5 it follows that h(E7, Eq1) = 0.
Now, if we compute Equation (3.23) with X = E;, Y = F;, X =FE; Y = E5 in
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the direction of E1 and JFE, respectively we get hi, = w?; = 0. The rest of the
equations are obtained in the same way. O

Lagrangian submanifolds of type IV

Let M be a Lagrangian submanifold of SL(2,R) x SL(2,R) of type IV in
Lemma 11. From this Lemma we know that 26, + 65 = 0 modulo 7. Thus, we
write 0o = km — 20; where k = 0,1. Suppose that k = 1. The tensors A, B on
the image of M by the isometry W1 given in (2.19), corresponds to the case
with angle functions 61, >, —¢ and k£ = 0.

Contrary to type II Lagrangian submanifolds, here it is necessary to distinguish
between £ = 0 and k£ = 1, since both 6; and 265 appear in the expressions for
A and B.

From Proposition 16 we may assume that
héS = h%z - hlﬁ
for i = 1,2,3. Now, from Equation (3.23) we obtain the next lemma.

Lemma 15. Let M be a Lagrangian submanifold of the pseudo-nearly Kihler
SL(2,R) x SL(2,R). Suppose that A and B take type IV form in Lemma 11
with respect to a Agz-orthonormal frame {E1, Eo, Es}. Then the derivatives of
the angle functions are given by:

h3s — hi h?, — h3 B3, — B3
Ei(0,) = M, Es(6,) = u’ Es(6,) = M’
2 2 2 (3.29)
Bi(¢) =2h3;, Eo(¥) = —2h},, Es(¢) = —2h%,.
Moreover, we have the following expressions for the functions wfj :

1
wi) = 5(11%1 + hjy) coth 1,

1
Wy = _§(h%1 + hi,) coth 1, (3.30)

1, . ] 1
w%z = Q(h‘fl =+ h§2) COth’I?[} — %
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Also,
= h$, sin 66, + h3, sinh ¢
1 cos60; —coshyp

. hiysin 661 — h¥y sinh¢) 1
12 cos(661) — cosh ¢ V6’
B h3, sin 661 — h3, sinh 1
2 cos60; — coshvp '

(3.31)
3= h$, sin 661 + hi, sinh 1) 1
= cos 60, — cosh ¢ V6’

L (hl, — hd;)sin660; + (h2, — hi,)sinh)
3 cos 601 — cosh ) ’

Wi = (hiy — h3,)sin 661 — (hjy — hi;) sinhep
33 cos 601 — cosh ¢ '

Proof. From computing (Vg, P)E; and looking at the components in the
direction of Fs and JFE5 we get the equation

cos20;  sin 26, cosh ) (E1(v) — 2h3) —0
—sin26; cos 26, —sinh¢) (2E1(61) + hiy —hdy) )

From (Vg,P)E> and (V g, P)E3 we derive the rest of the equations in Equation
(3.29) in a similar way.

Having Equation (3.29) we look at the rest of the components of (V g, P)E; and
we obtain the expressions in (3.30).

By computing (Vg,P)E; with ¢ # j we come to linear equations which
yield (3.31).

O

3.2 Totally geodesic Lagrangian submanifolds

In this section we classify totally geodesic Lagrangian submanifolds of SL(2, R) x
SL(2,R). The classification can also be found in [3].

Theorem 32. Any totally geodesic Lagrangian submanifold of the pseudo-nearly
Kaihler SL(2,R) x SL(2,R) is congruent to the image of one of the following
maps, possibly restricted to an open subset:
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where 1ds is the identity matriz, and i, k are the matrices given in (2.1).

Conversely, the maps (1), (2) and (3) are totally geodesic Lagrangian
1MmMersions.

The layout of this section is as follows. In Subsection 3.2.1 we present some
examples of totally geodesic Lagrangian submanifolds of SL(2,R) x SL(2,R).
Subsections 3.2.2 and 3.2.3 address the existence of totally geodesic Lagrangian
submanifolds of diagonalizable type and of the rest of the types in Lemma 11,
respectively. In Subsection 3.2.4 we prove Theorem 32.

In [57], the authors stated that any totally geodesic Lagrangian submanifold of
S? x S3 is congruent to an immersion of a list of 6 examples. This classification
can be simplified, using isometries equivalent to the ones given in (2.19). This
way, the list is reduced to just two examples, similar to immersions (1) and (2)
of Theorem 32. Hence, immersion (3) is a new example, which arises from the
pseudo-Riemannian nature of SL(2,R) x SL(2,R).

We can understand the geometry of the immersions of Theorem 32 via the
identification of SL(2,R) with the anti-de Sitter space H;(—1); namely via the
map

30 4 . ) To— T2 T3 —T1
Hl( 1) C RQ — SL(2,R) : ($07.T1,{,C2,$3) — <$3 +z o+ $2> s
which is an isometry between H;(—1) and SL(2,R) with the metric introduced
in Equation (2.2). Here, R denotes R* equipped with the indefinite inner
product
(z,y) = —z0Yo — T1Y1 + T2y2 + T3Y3,

and the three-dimensional anti-de Sitter space with constant sectional curvature
¢ < 0 is defined as H}(c) = {x € R*: (z,2) = 1/c}.

Note that the three immersions of Theorem 32 induce essentially different
Riemannian structures on SL(2,R). The first immersion induces a metric with
constant sectional curvature, that is homothetic to the standard metric. The
second immersion turns SL(2,R) into an anti-de Sitter space with a Berger-like
metric stretched in a spacelike direction, and the third immersion turns it again
into an anti-de Sitter space with a Berger-like metric, but now stretched in
a timelike direction. These metrics have been studied more generally in [11]
and [12].
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3.2.1 Examples of totally geodesic Lagrangian submanifolds

We proceed by giving three examples of totally geodesic Lagrangian submanifolds
of the nearly Kahler SL(2,R) x SL(2,R).

Recall the frame {X7, X2, X3} on SL(2,R) given in (2.3), that is
Xi(a) =ai, Xa(a)=aj, Xs(a)=ak, (3.32)

for which
<X17X1> == <X2aX2> == 7<X37X3> = 17

where (,) is the metric given in (2.2). Then {X3, X2, X1} is a Aj-orthonormal
frame on SL(2,R).

Example 16. Consider the immersion of SL(2,R) into SL(2,R) x SL(2,R)
given by
f:SL(2,R) — SL(2,R) x SL(2,R): u + (Ida, u).

We have
df (X1(u)) = (O?Ui>(1d2,u)7
df(XQ(u)) = (Ovuj)(ldg,u)v

df (Xs(u)) = (0, uk)1d,,u)-

Then we compute
Pdf (Xi1(u)) = (2,0)1dy,u)
Pdf(XQ(u)) = (j70)(1d2,u)a

Pdf(X3(u)) = (k,0)1d,u)

and
Jdf (X, (u) = —%(%m)adg,w,
Jdf(Xa(u) = f%@j,uj)(mz,u),
Jdf (X)) = ——= (2, uk) 10,0

V3
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From this, it immediately follows that g(df(X;(w)), Jdf(X;(u))) = 0 for all
i,j = 1,2,3. Therefore f is a Lagrangian immersion. Moreover, we notice that

Pdf(X;(u)) = —3df (Xi(u)) — L2 Tdf (X (u)),

hence f is of diagonalizable type and the angle functions are constant and all
are equal to %77.

In Lemma 3 we compute @Xin for i,j =1,2,3, and we see that it is always
tangent. Hence, the submanifold is totally geodesic.

Example 17. Consider the immersion of SL(2,R) into SL(2,R) x SL(2,R)
given by
f:SL(2,R) = SL(2,R) x SL(2,R): u > (u, tui).

Recall that the split quaternions %, j and k anticommute. Then we may compute
df (X1(w)) = (ud, tuit) y jus) = (wi, T08) (4 5us),
df (Xa(u)) = (uf, tugt) (u,ius) = (W, TWi(=F)) (u,iui);
df (X3(u)) = (uk, tuki)(y jus) = (uk, iui(—k)) (i)

By the definition of J in (2.10) we get
1 Lo
de(Xl (U)) - ﬁ(fuu luzl)(u,iui)v

Jdf (Xo(u)) = V/3(ug, #uif) (u,iui),
Jdf (X3(u)) = V3(uk, tuik) (u,iui)-

Hence, we can easily compute g(df (X;(w)), Jdf (X;(u))) = 0 for 4,j = 1,2, 3,
therefore f is a Lagrangian immersion. Moreover, we have

Pdf(X1(u)) = (ui, tuii) i) = df (X1(u)),
Pdf (X3(u)) = (—uk, iuik)(u,iui) = —df (X3(u)).

To obtain a Aj-orthonormal frame we have to reorder the vectors X; to
{X3, X2, X1}. Consequently, the immersion f is of diagonalizable type with
constant angle functions (01, 02,03) = (3, 5,0).

In order to prove that f is totally geodesic, we compute VxY for X, Y tangent
vector fields and we see that the result is tangent to the submanifold.
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We only compute V x, X, since the rest of the cases are similar. From Equations
(2.11), (2.17) and (2.18) we obtain

1

Vx,Xo = Dx,Dx, f — 5

(X1, Xo) f — %<QX1;X2>QJC
- %JO (Id+P)G(X1,PX2)
= (wég, —iuif) — g {(ui, iuid), (uf, —iuig) (u, iui)

<(_Uia iUii)? (’U/j, _iUij)>(_u7 iUi)

J o (Id +P)G((ut, tuii), (—uj, tuij))

= N

— df(Xs) — %J o (Id +P)G((ui, iuid), (—uj, iuij))

12

3v3

= df(Xs) + Sf(Xs).

= df (X3) — ——J (uk, iuik)

Example 18. Consider the immersion of SL(2,R) into SL(2,R) x SL(2,R)
given by
f:SL(2,R) — SL(2,R) x SL(2,R): uw + (u, —kuk).

The minus sign is added such that f(Idy) = (Idg, Ids).

We have
df (X1 (w) = (us, —kuik)(u,—kury = (ui, —kuk(—%)) (u,— kuk)
df (Xa(u)) = (uf, —kujk)w,—kur) = (uj, —kuk(=37)) (u,—kuk),
df (X3(u)) = (uk, —kukk)(y, —kuk)-

By definition of J in (2.10) we obtain

Jdf (X1 () = V3(ui, —kuki) (y, _ k).

Jdf (Xa(u)) = V3(ug, —kukj) (u,—kuk),

de(X3(u)) (_ukv _kUkk)(u,—kuk)'

b
VB
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Hence we can easily compute g(df (X;(u)), Jdf (X;(v))) = 0 for ¢,j = 1,2, 3,
therefore f is a Lagrangian immersion. Moreover we have that

Pdf (X1 (u)) = (—ui, —kuki)y,—gur) = —df (X1(u)),
Pdf(XQ(u)) = (—Uj, _kUkJ)(u,—kuk) = _df(XZ(u))v
Pdf (X3(u)) = (uk, —kukk) @y, —rury = df (X3(u)).

Again, since the Aj-orthonormal frame is {X3, Xo, X7}, the immersion is of

diagonalizable type and the angle functions are constant and equal to (0, 3, 7).

In order to prove that f is totally geodesic, we compute VxY for X, Y tangent
vector fields and we see that the result is tangent to the submanifold.

We only compute \V4 x, X2, since the rest of the cases are similar. From Equations
(2.11), (2.17) and (2.18) we obtain

Vx,X2=Dx,Dx,f — %<X1,X2>f - %<QX17X2>QJc
— %J o (Id+P)G(X1, PX>)
= (i, —huk(~3)) — 5 (i, ~kuk(~4)), (ug, ~kuk(~3))) (s, ~kuk)

<(—U’L, _kUk(_i))a (ujv _kUk(_J))>(_u> _kUk)

N~ N

J o (Id+P)G((ut, —kuk(—1)), (—uj, —kukj))
=df(X3) — %J o (Id4+P)G((ut, —kuk(—1)), (—uj, —kukj))

= df(Xs).

Remark 13. The immersion f : SL(2,R) — SL(2,R) x SL(2,R) given by f :
u > (u, juj) is a Lagrangian immersion congruent to Example 17. Indeed, take
the isometry of SL(2,R) x SL(2,R) given by ¢ : (p,q) — (cpc, —cqce), where ¢
is the matrix in SL(2,R) given by ¢4*. This matrix satisfies that cj = ic and
jc = —ct. Hence

¢ o f(u) = (cuc, —cjujc) = (v, ivi),

where v = cuc.
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3.2.2 Lagrangian submanifolds of diagonalizable type

Proposition 17. Let M be a Lagrangian submanifold of the pseudo-nearly
Kdahler SL(2,R) x SL(2,R) of diagonalizable type. If the angle functions 0; are
constant and h3, = 0, then M is totally geodesic. Conversely, if the submanifold
is totally geodesic then the angles are constant.

Proof. By Lemma 12, if the angle functions are constant then hzl =0 for all
i,j = 1,2,3. Using the symmetries of hfj we conclude that the submanifold is
totally geodesic. The converse is immediate by Lemma 12. O

Now notice that
—0uEr(h};) + 8:Ei(h};) = 610:0; E(Ei(6;)) — 6:610; E;(Er(6;))
= 0x0i0; [ Bk, E4](0;)

= 040:0;(Vi, Ei — Vg, Ep)(6;)
(3.33)

= 01,00, Z(wfm — win) Ei(8)
]

= 60 Z Si(wh, — wh)h

Proposition 18. Let M be a Lagrangian submanifold of the pseudo-nearly
Kaihler SL(2,R) x SL(2,R) of diagonalizable type. If two angles are equal modulo
w, then M is totally geodesic.

Proof. We assume that 6; = 63 mod 7. From (3. 24) we get —hb, = hi, and
h? =0, for all i. Thus hl; = h3; = hl, = h3, = h3, = 0. By Proposition 16
the submanifold M is minimal, then —ht; + hiy + hiy = 0 for i = 1,2,3.
Hence, hi; and h3; also vanish. The remaining components are related by
h3, = —h3, and h3; = 2h3$,. Taking i = 2,j = 1,k = 1 in (3.33) we obtain
0 = (w3, —w?y)h3,. Computing both sides of the Codazzi equation in (3.2) with
X = El,Y:EQ,Z:EQ yields

0= h?l(\/g* 3wly + wy).

Suppose h3; # 0. Then wj, = w3, = % and hence by (3.25) we have 0 =
(— f f)sm(el 63), so 01 = 03 mod m. By (3.24) we have that h$, =

—h3; = 0, which is a contradiction. Thus, h%; must be zero and therefore the
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submanifold is totally geodesic. The proof is similar (up to signs) for a different
choice of the pair of angles. O

Lemma 16. Let f : M — SL(2,R) x SL(2,R) be a Lagrangian immersion
into the pseudo-nearly Kahler SL(2,R) x SL(2,R), and assume that M is of
diagonalizable type with Ay-orthonormal frame {E1, E2, E3}. Let 01,04,03 be
their respective angle functions. Then the Lagrangian immersions Wig o f,
Uy 4rs3 © f, where Wy . are the isometries given in (2.19), are also of
diagonalizable type and their respective angle functions are

oD = —0;, 0P = g — 0,

Proof. The proofs of Theorem 3 and Theorem 4 of [6] can be replicated for this
case, taking the adjugate matrix instead of the conjugate of a quaternion. [

Lemma 17. Consider a totally geodesic Lagrangian submanifold of diagonal-
izable type of the pseudo-nearly Kdihler SL(2,R) x SL(2,R). After a possible
permutation of the angles, we have one of the following:

1. (201,2604,203) = (4F, 4%, 47,

2. (291,2927293) = (0,7‘1’,7‘(),
3. (201,2927203) = (7T,7T,0).

Proof. Taking X = E;, Y = E; and Z = E; in the Codazzi equation yields
sin(2(6; — 0;)) = 0, thus all pairs of angles 26; and 26; are equal up to a multiple
of w. This, together with the fact that the sum of the angles is equal to zero
modulo 27, implies that 66; = 0 modulo 7 for all . Therefore, replacing Fs
with E3 and F3 with —FE5 if necessary, we obtain the following possibilities.

(1) (261,26,205) = (%, 57, %), (2) (201,260,,203) = (3F, 2%, %),
(3) (291729%293):(0 O) (4) (29172927293) (0,7’(’,77),
(5) (201,205,203) = (m,,0), (6) (201,2602,203) = (5, %, 4F),
(7) (201,205,205) = (4., 5. 5), (8) (201,20,,205) = (3,55, %),
(9) (29132927203):(%7% 2%)

Suppose that M is a Lagrangian submanifold of diagonalizable type with angles
as in (3). Then by Lemma 16, applying the isometry ¥y 4, /3 in (2.19) produces
a congruent Lagrangian submanifold with angles as in (1). We can apply a
similar argument to see that cases (2), (3), (6), (7), (8) and (9) are congruent
to one of the cases (1), (4) or (5). Hence we may restrict our attention to the
latter cases. Notice that in cases (4) and (5) we cannot do a permutation with
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F) since, unlike F5 and Fs, this vector is timelike. Later on we will prove that
these cases are not isometric. O

In Section 3.2.1 we proved that the immersions in Theorem 32 are Lagrangian
and totally geodesic. To complete the proof of this theorem, it remains to be
shown that any totally geodesic Lagrangian immersion is locally congruent to
one of the Examples 16-18, depending on the possible angle functions in Lemma
17. This is what we prove in the upcoming propositions.

Proposition 19. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kahler SL(2,R) x SL(2,R) of diagonalizable type. Assume that
(201,205, 205) = (%, 4%, 2%). Then M is locally congruent to the submanifold
SL(2,R) — SL(2,R) x SL(2,R): u + (Ida, u).

Proof. As M is of type I in Lemma 11, we have that A = —% Id and B = —?

are multiples of the identity we have that PX = —%X — ?JX for any vector
field X tangent to M. It follows immediately that QX = X where @ is the
almost product structure given in (2.16). Using the Gauss equation we can
compute the curvature tensor of M and also the sectional curvature, which is
equal to —%. Then M is locally isometric to SL(2,R) equipped with the metric
290, where go is the metric defined in (2.2). Now write f = (p,q). By the
definition of @, we have that

(dp(v),0) = 5(df (v) — Qdf (v)) =0, (0,dq(v)) = 3(df (v) + Qdf (v)) = df (v),

with v € TSL(2,R). Hence p should be a constant matrix in SL(2,R). The
previous equation also implies that dq is a linear isomorphism, then ¢ is a local
diffeomorphism. Therefore, we may assume that ¢(u) is actually equal to u.
Applying an isometry of SL(2,R) x SL(2,R) we may assume that p is equal to
1d,. O

The immersion in Example 17 is the immersion of SL(2,R) with a Berger-like
metric, stretched in the spacelike direction. We can construct such a metric by
taking on SL(2,R) the frame {X7, X5, X3} given in (3.32), and the metric g,
given by

g (X Y) = £ ((07) + (42 - )X Xy, X))

where £ > 0 and 7 are constants and (,) is the metric on SL(2,R) given in (2.2).
It follows from a straightforward computation that

(X1, Xo] =2X3, [X1,X3]=2X,, [Xo, X3]=—2X;.
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We take the vector fields
By =YXy, By=YEX, and By = £X), (3.34)

which form a Aj-orthonormal frame on SL(2, R) with respect to the metric g .
We denote the Levi-Civita connection associated to g\, by V. It follows from

the Koszul formula that VEEi = 0 and that

VEIEQZ—TE:% vngngEh
~ ~ ~ K .~
VglEg =71k, VESEI = (T - Z)EQ’
~ ~ ~ K . ~
ngEl = 7'15‘37 VESEQ = (T - E)El

The following result is a corollary of Theorem 19.

Proposition 20. Let (M™,g) and (N",q) be pseudo-Riemannian manifolds
with Levi- Cz'm'ta connections V and @, respectively. Suppose that there exist
constants CW i,J,k € 1,...,n such that for allp € M and p' € N there exist
pseudo-orthonormal frames {E1, ..., E,} around P, {Fl, R 3 around p’ with

the same signatures such that VEiE S By, Vr, F Soiy i Fy. Then
there exists a local isometry that maps a neighborhood ofp into a nezgthThood
of p and maps {E;} to {F;}.

Proof. Let p € N and p' € N, and let p: T,N — T, N be the linear
isomorphism given by ¢((E;),) = (F;),. Let U be a normal neighborhood
around p and let f be the diffeomorphism given in (1.1). Let ¢ € U and
denote by F;(t) and F;(t) the parallel transports of (F;), and (F;), along the
geodesics v and 7 that join p with ¢ and p’ with f(q), respectively. Note that

7'(0) = (v'(0))-

We write

Z a;(t)Ej, v (t) = Z b;(t)F;
0= H0E, RO =Y 0F
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with a;, bj, % and yj smooth functions that satisfy a;(0) = b;(0), 2%(0) =

y3(0) = 85, for all 4,5 = 1,...,n. We compute
0= V%V'(t) = Z Si(a;(1)Bj + GOV a5 E
j
=Y G (O)E; + a;(t)ar(t)ch, B
.kl

This is a first order system of differential equations, with initial conditions
a;(0). By doing the same computation for 5" we show that the functions b; are
solutions of the same system, and therefore a;(t) = b;(t). We apply the same
reasoning for E; and F}, obtaining 2k (t) = yi(t).

Now we compare R with ﬁ, the curvature tensors of M and N respectively.

9(R(E;, Ej)Ex, E)) = > alalakalg(R(Ea, Eg)E,, Es)

a,B,k,0
6 ) S <
= Z 77535 xﬁx x&(cﬂﬁ as waicﬂs - CSH(CZB - CEOZ))
«a,B,k,0,8

where s = g(Ejs, Es). On the other hand computing §(R(F;, F))Fy, Fy) yields
the same result. Therefore, by Corollary 1, f is a local isometry.

Finally, we write E; =) j f;Ej, where i“; are the entries of the inverse of the

matrix (2%);;. We can also see that F; = 3 E;F] Then, by Theorem 19 we
have

.

df,(E ZI'TO(,OOT EN'Z-):Z@F]:
J
O

We will use this proposition to show that cases (2) and (3) of Lemma 17 are
locally SL(2,R) with Berger-like metrics.

Proposition 21. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kahler SL(2,R) x SL(2,R), of diagonalizable type. Assume that
(201,204,205) = (7, 7,0). Then M is congruent to possibly an open subset of
the submanifold SL(2,R) — SL(2,R) x SL(2,R): u — (u, tug).

Proof. Let {E1, E2, E3} be a Aj-orthonormal frame such that JG(Fy, Eq) =
\/%Eg and A and B take the form of type I in Lemma 11 with (261, 265,203) =
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(m,m,0). Thus
PE, = _Eh PE; = —E27 PE5; = Ej3. (335)

From Lemma 12 we obtain that wgg, =0 for i, j = 1,2,3 with the exceptions of
i=1,j=2and =2, 5 =1. We also get

From the equation of Gauss in (3.1) we obtain the following equations:

1
Bx(udy) — Eah) + (s + 72 ) wh =0,

1
Es(wgy) — Bs(wiy) + <W§2 + \/6> wi =0, (3.36)

2 5
By (w3) — Ba(wt)) — \/gw:%z — (wi)? + (wz2)? + 3= 0.
Define the 1-form w by

5
w(Ey) = —wi), w(B) =-wy, w(Es)=uws+ 7

Using (3.36) we can prove that w is closed. Hence there exists a local function
o such that dy = w. Now define the new frame

Fy = cosh pFEy +sinhp,  Fy = sinh pFs + cosh ¢ E3, F5; = —FE;.

This new frame is still Aj-orthonormal which satisfies (3.35) and JG(Fy, Fz) =
\/%Fg. We have

1 1
VpEFi=0 Vi = —%FS, Vi3 = %F%
1 1
Vb = %F:a, Vg, Iy =0, Vg, 3= %Fh
5 5
VF3F1:_%F27 VFSFQZ_%Fl, VFSFSZO.

By Proposition 20 we have that M is locally isometric to SL(2,R) with a
Berger-like metric stretched in the spacelike direction with 7 =

Sl
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Now using (2.17) we may write

1 3
E E E
VF1F1=0, VFlFQZ—%Fg, VFlF?):\/;F27
VEF = 1F VE R, = VE Fy = 3F
w1 = ks, 2 =0, Rt =4[5, (3.37)

3 3
Ve = —\/;Fg, Vi = —\/;Fl, Vi F5=0.

where V¥ is the Levi-Civita connection associated to the product metric. We
can identify the frame {F;}; on SL(2,R) with the frame given in (3.34), i.e.,

1 1 3
Fl=-—X3, Fy= EXQ, F3 = \/;Xl. (3.38)

Now writing the immersion f = (p,q) and df (F;) = Dp, f = (pai, qB;), where
a;, B; are matrices in s[(2,R), we obtain

B1=—o1, fPo=-—a, fP3=as. (3.39)
because of Equation (3.35).

It follows from (2.15) that «; are mutually orthogonal and their lengths are

given by
L ey
27 3, &3 _2

From the properties of the Lorentzian cross product we deduce that

1 3 3
aq XOZQZE%ag, Qg X (i3 = —¢€ 50&1, a3 X ¢ =€ 50&2,

where ¢ = +1. We compute

—<O£1,Oz1> = <042,Ck2> =

Dp, D, f = (pa; X aj + (i, aj)p + pFi(ay), aBi x B + (Bs, Bi)a + qFi(B;)),

where
F(a) = F({a, 4))i + F((e, §))j — F({a, k) k.

Applying (2.18) it follows that

VEF; = (poi x aj + pFy(ey), aBi x B + qFi(B;)).
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Comparing the above equation with (3.37) and recalling that F;(p, q¢) = (pai, ¢5;)
we obtain

Fi(a1) =0, Fy(ap) = %(1 +e)as, Filaq) = —\/g(l + ¢€)ag,
Fi(az) = —L=(1+c)as, Falaz) =0, Fi(as) = —/3(1 + ),

%(1 + E)Oéh Fg(ag) =0.

o

Fi(as) = /31 +)aa,  Falos) =
Making use of (3.38) yields

Xg(Oél) = 0, XQ(al) = 13(]. + E)ag, Xl(al) = —\/g(]. +€)O[2,

Sl

X3(042) = — (1 + 6)0&3, XQ(O[Q) = 0, Xl(OéQ) = 7(1 + 6)0&1,

L
X3(a3) = V3(1 +e)as, Xa(az) = V3(1+e)ar, Xi(az)=0.

We can write the same equations for 3;. Taking into account (3.39), we conclude
€ must be equal to —1. Therefore «; is constant for all 7. Hence, there exists an
isometry on SL(2, R), namely conjugation by a matrix ¢ in SL*(2,R), such that

ap = ickcf1 g = ic'071 a3 = \/§<:z'c1
1 — \/§ ) 2 — \/i J ) 3 — D) .

We have that all totally geodesic Lagrangian submanifolds with angle functions
(m, 7, 0) satisfy this differential equation. Suppose that f(Id) = (p,, ¢o), choosing
an isometry (p,q) — (p;'p,q, *q) we may assume that f(Id2) = (Ida,Ids). We
obtain that the unique solution of the system D, f = (pas, ¢f3;) is p(u) = cuc™!,
q(u) = ciuic™!. Taking an isometry on the pseudo-nearly Kéhler SL(2,R) x
SL(2,R), given in Theorem 28, we see that f is congruent to (u, tuz). O

The third example of a totally geodesic immersion is locally isometric to SL(2, R)
with a Berger-like metric, which is stretched in the direction of a timelike
component. We can construct such a metric by taking on SL(2,R) the frame
{X1, X2, X3} given in (3.32), and the metric g, given by

g (X.Y) = £ ((X.Y) 4 (1 42)(X, Xa) (V. Xa))

where k, 7 are constants and (,) is the metric on SL(2,R) given in (2.2). It
follows from a straightforward computation that

(X1, Xo] =2X3, [X1,X3] =2X,, [Xo, X3] =—-2X,.
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We take the vector fields
By = £ X3, By = X, (3.40)

and Ey = @Xl, which form a pseudo-orthonormal frame on SL(2,R) with
respect to the metric g. We denote V™ as the Levi-Civita connection associated
to g. It follows from the Koszul formula that Vz E; = 0 and that

_ = K\ £ - ~
VE1E2:(T_§)E3’ VE2E3:7'E1,
_ = K ~ _ oA ~
VE1E3 = (E — T)EQ, VE3E1 = —TEQ,
VE2E1 = 7'E~’37 VE,?’EQ = —TEl.

Proposition 22. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kahler SL(2,R)xSL(2,R). Assume that (261,202,203) = (w,m,0).
Then M s locally isometric to the submanifold SL(2,R) — SL(2,R) X
SL(2,R): u + (u, —kuk).

Proof. Let {E1, Eo, E3} be a Aj-orthonormal frame such that JG(E, Ey) =
\/%Eg and A and B take the form of type I in Lemma 11 with (261, 265, 203) =
(0,7, 7). Thus

PE, = E,, PEy—= —FE,, PEs= —FEs. (3.41)
From Lemma 12 we obtain that wfl =0 for,j =1,2,3. We also get

1 1
W1 = —— = 3 =

,  Wig = .
Ve TG
From the Gauss Equation (3.1) we obtain the following equations:

1
Er(why) — Balwy) + (w " ﬁ) W2y =0,

1Y .
) wi, =0, (3.42)

By () — Ba(why) + (w + o

2 )
Euluy) + Bo) — 2l — () — (o + 2 =0
Define the 1-form w by

3 5

W(EL) = —wiy + —=, w(Ey) = —wly, w(E3)=w.
( 1) 12 \/6 (2) 22 (3) 33
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Using (3.42) we can prove that w is closed. Hence there exists a local function
o such that dyp = w. Now define the new frame

Fy=—-Fy, Fy=—cospFEy;—sinpks, F5 =sinpFEy — cos pFs.
This new frame is still Aj-orthonormal which satisfies (3.41) and JG(Fy, F3) =

\/%Fg. We have

Vi FL =0 vFngz—%Fg, vFIng%FQ,

Vi, = F, Vi Fy =0, Vi Fs =
V6 V6

VP = ———F, Vi Fy = — =P, Vi Fy = 0.

V6 V6

By Proposition 20 we have that M is locally isometric to SL(2,R) with a

Berger-like metric stretched in the timelike direction with 7 = \}6 and kK = 2.
Now using (2.17) we may write
E E 3 E 3
VF1F1:0, VF1F2:7 §F3, VF1F3: §F27
VEF = /2F Vi =0 VER = Lp 3.43
'l — 537 2 — Y, Fy 3*% 1 ( )

3 1
Vi = —\EFQ, VEF = —%Fl, Vi F3=0.

where V¥ is the Levi-Civita connection associated to the product metric. We
can identify the frame {F;}; on SL(2,R) with the frame given in (3.40), i.e.,

3 1 1
F:\/>X, Fr=—X, Fy=-—X. 3.44
1 2 3 2 \/§ 2 3 \/§ 1 ( )

Now writing the immersion f = (p,q) and df (F;) = Dp, f = (pai, qB;), where
a;, B; are matrices in s((2, R), we obtain

fr=ai, fr=-—a, f3=-—as. (3.45)
because of Equation (3.41).

It follows from (2.15) that «; are mutually orthogonal and their lengths are
given by

3 1
<0é1,041> = —5, <a2,a2> = <043,043> = 9
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Thus we can write the Lorentzian cross products as

3 1 3
(051 XO[2:€\/70[3 g X i3 = —€—=01 a3 X (] = €/ Q9
2 ) \/6 ) 2 )

where ¢ = +1. We compute

Dp, D, [ = (pa; x aj + (i, aj)p + pFi(ay), aBi x B + (Bs, Bi)a + qFi(3;)),

therefore applying (2.18) it follows that
VEF; = (poi x aj + pFi(ay), aBi x B + qFi(B;)).

Comparing the above equation with (3.43) we obtain

Fi(a1) =0, Fy(on) = \/g(l +e)az, Fs(ar) = —\/g(l + €)as,
Fi(az) = —\/g(l +e)as, Fa(az) =0, F3(az) = —%(1 +e)aq,

Fl(ag) = \/%(14-5)0(2, Fg(ag) = %(1-{-6)0&17 F3(053) =0.
Making use of (3.44) yields
X3(Oél) = 0, XQ(C)[1> = \/5(1 + 6)0&3, Xl(al) = 7\/5(1 +€)Ot3,

Xg(ag) = (1 + E)Ckgn X2(a2) = 0, Xl(ag) = —%(1 + E)Ckh

Xs(az) = —(1+¢e)az, Xo(az) = H(1+e)ar, Xiaz)=0.

We can write the same equations for ;. Taking into account (3.45), we conclude
€ must be equal to —1. Therefore «; is constant for all ¢. Hence, there exist an
isometry of SL(2, R), namely conjugation by a matrix ¢ in SL* (2,R), such that

o) = \/gckc_l Qg = ic'c‘1 Qg = icic‘1

1 — 2 ’ 2 = \/5 J ) 3 = \/§ .
By applying an isometry of SL(2,R) x SL(2,R) we may assume that f(Ids) =
(Idg, Ids). We obtain that the unique solution of the system Dp, f = (pa, qf5;)
is p(u) = cuc™!, q(u) = —ckukc™!. As the map (p,q) — (cpc!,cqc™t) is an
isometry for all ¢ € SL¥(2,R) we obtain that f is congruent to (p(u), g(u)). O

3.2.3 Lagrangian submanifolds of the non-diagonalizable types

In this subsection we show that there do not exist totally geodesic Lagrangian
submanifolds in types II, III and IV of Lemma 11.
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Lemma 18. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kihler SL(2,R) x SL(2,R) corresponding to type I1 of Lemma 11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) x SL(2,R) associated to type II of Lemma 11. The left hand side of
the Codazzi equation in (3.2) for a totally geodesic submanifold is always zero.
Computing the right hand side for X = E;, Y = E5 and Z = E, yields

4
~3 (sin 267 4 cos 20, cot 260, )J Ey

which cannot be zero, therefore a contradiction. O

Lemma 19. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kahler SL(2,R) x SL(2,R) corresponding to type 111 of Lemma
11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) x SL(2,R) associated to type III of Lemma 11. As in the previous
lemma, the left hand side of the Codazzi equation is zero. The component
in the direction of JE; of the right hand side of the Codazzi equation with

X=F.,Y=EFEy,Z=Eyis :I:%7 which is a contradiction. O

Lemma 20. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kahler SL(2,R) x SL(2,R) corresponding to type IV of Lemma
11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) x SL(2,R) associated to type IV of Lemma 11. The left hand side of
the Codazzi equation is always zero for totally geodesic submanifolds and the
right hand side of the Codazzi equation for X = E1,Y = FEy, Z = Es is

% sinh(2¢) cos(20; + 63)J E,

which is not zero since 1) must be different from zero and 26, + 65 is equal to
zero modulo 7. O

3.2.4 Proof of the Theorem 32

Proof of Theorem 32. In Examples 16, 17 and 18 we showed that the three
immersions of Theorem 32 are totally geodesic and Lagrangian.
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Let M be a totally geodesic Lagrangian submanifold of the pseudo-nearly
Kéhler SL(2,R) x SL(2,R). By Lemma 11, there are four cases to consider. In
Lemmas 18, 19 and 20 we proved that there are no totally geodesic Lagrangian
submanifolds in types II, III and IV of Lemma 11.

In Lemma 17 we have seen that any totally geodesic Lagrangian submanifold

of SL(2,R) x SL(2,R) of diagonalizable type is congruent to a submanifold
with angle functions (4{, %”, %’T), (m,m,0) or (0,7, 7). In Proposition 19, we
showed that all totally geodesic Lagrangian submanifolds with angle functions
(4?”, %’T, %’T) are locally congruent. The totally geodesic Lagrangian submanifolds
with angle functions (0,7, 7) or (m, 7, 0) are classified up to congruence by

Propositions 21 and 22. O
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3.3 Extrinsically homogeneous Lagrangian submani-
folds

In this section we study and provide a classification result of extrinsically
homogeneous Lagrangian submanifolds of the pseudo-nearly Kéahler SL(2,R) x
SL(2,R). Recall that a submanifold M is said to be extrinsically homogeneous
if there exists a Lie subgroup H of SL(2,R) x SL(2,R) x SL(2,R) such that
M = H - (p,q). Note that we can choose (p,q) to be (Ida,Ids) since conjugated
subgroups have congruent orbits through different points. Namely, if g is an
isometry in SL(2,R) x SL(2,R) x SL(2,R) that maps (p,q) to (Ids,Ids), we
have
9(H - (p,a)) = gHg " - (9- (p,q)) = gHg ™" - (Ida,1d).

Theorem 33. Let f : (M,g) — SL(2,R) x SL(2,R) be an extrinsically
homogeneous Lagrangian immersion into the pseudo-nearly Kahler SL(2,R) x
SL(2,R). Then f(M) is congruent to an open subset of the image of one
of the following embeddings, whose image is the orbit of (Ids,1ds) by H C
Tso,(SL(2,R) x SL(2,R)):

(M, g) / H Remarks
Totall desi
(SL(2,R), 2(,)) u (u,u) SLR)
-2
(SL(2,R), g, ) u > (u, tui) SL(2,R) Totally geodesic
(SL(2,R), g,.-) u > (u, —kuk) SL(2,R) Totally geodesic
(PSL(2,R), 5(.))  [u] = (wdu™" juju") SL(2,R) K=-3
(u,v,w) =
R?/Z (evie—uk ew]'e—uk) R? x S! K=0
(R3,§) L Rx, R? K=-3
R x,, R?2
(R3/H}x, g») Ix % =-3
A
(R37§) J R [><<P2 R2

where H acts on f(M) always with trivial isotropy except for PSL(2,R), where
it acts with isotropy Zs. Here K is the sectional curvature of f(M) and i, j, k
are the matrices

i-(5 %) =) = (8 o)
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Furthermore, (,) is the metric given in (2.2), g\ and g, . are Berger-like
metrics stretched in a spacelike and timelike direction, respectively; g, v and p,
are given in Example 21; gx, fx, Hx and @1 are given in Example 22; G, j and
o are given in Example 23.

Conversely, the maps listed in the table above are extrinsically homogeneous
Lagrangian submanifolds of SL(2,R) x SL(2,R). Moreover, all immersions are
not congruent to each other, including the different immersions of the family f.

In Subsection 3.3.1 we study the frame {E;};—1, 3 introduced in Lemma 11 for
extrinsically homogeneous submanifolds. In Subsections 3.3.2, 3.3.3 and 3.3.4
we classify the extrinsically homogeneous Lagrangian submanifolds of types I, 11
and III respectively. In Subsection 3.3.5 we show that there are no extrinsically
homogeneous Lagrangian submanifolds of type IV. Finally, in Subsection 3.3.6
we prove Theorem 33.

3.3.1 The uniqueness of the frames

In this subsection we first prove that for each case of Lemma 11 there is
a unique frame {E;}; with respect to which P takes that particular shape
on an extrinsically homogeneous Lagrangian submanifold. Consequently, the
associated angle functions, hfj and wfj are constant. Afterwards, we describe
the examples given in Theorem 33 and provide a classification for each type of
Lagrangian submanifold.

We consider each case of Lemma 11 separately.

Lagrangian submanifolds of type |

It is straightforward to check that for type I Lagrangian submanifolds the frame
{E1, E3, E5} is unique if and only if the functions 6; are all different modulo
m. Later on, we will see that if two of them are equal, the submanifold is
totally geodesic. Hence, now we focus on the case where all angles are different
modulo 7.

Proposition 23. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kihler SL(2,R) x SL(2,R). Suppose that {E1, Es, E5}
is the unique Aq-orthonormal frame such that A and B take type I form in
Lemma 11. Then the functions 6;, hfj and wlkj are constant.

Proof. We have to show that ¢;, = 0;, for any two points p and ¢ in M. By
hypothesis there is a Lie subgroup H of SL(2,R) x SL(2,R) x SL(2,R) such
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that H acts transitively on M. Therefore, there exists an isometry ¢ € H such
that ¢(p) = q. We have that

PpEip = COS ZGiPEZ-p + sin 29ipJpEip

In Subsection 2.2.2 we saw that isometries in SL(2,R) x SL(2,R) x SL(2,R)
preserve P and J. Thus, we apply ¢ to both sides:

Pq(b*Eip = ¢*PpEip = ¢*(COS 29ipEip + sin 29ipJpEip)
= c08 20;, 0« Eip, + sin 20;, 0. Jp i,
= €08 20,4 ;) + sin 20, 4 By

Since {E;}; is the unique frame with respect to which A and B are diagonal,
we have ¢.E;, = E;, and 0;, = 0;,.

It follows from ¢(M) = M that ¢ preserves V and h. Thus using a similar
argument, we get that wy; and hf; are constant. O

Lagrangian submanifolds of type Il

Proposition 24. Let M be an extrinsically homogeneous Lagrangian sub-
manifold of the pseudo-nearly Kihler SL(2,R) x SL(2,R). Suppose that A
and B take the type II form in Lemma 11 with respect to a As-orthonormal
frame {Ey,Eq, Es}. If 01 # 05 modulo m then the frame is unique up to
stgns. If instead 61 = 605 there is a unique frame, up to signs, such that
hby = g(h(E2, Es), JE3) = 0. In both cases, the functions 0;, h; and wf; are
constant.

Proof. The last statement follows from the uniqueness (even if it is up to sign)
of the frame as in the proof of Proposition 23.

Suppose that #; # 6> and that {El, Es,, Eg} is a frame on M such that
PEl = cos 2§1E1 + sin 251 JE'l,
PEQ = El + cos 2§1E2 — cot 251 JEl + sin 251 JEQ
PE'g = cos 2§2E3 + sin 2§2JE3.
Hence, at any point of M the eigenvalues of A and B are {cos 261, cos 2605} and

{sin 26y, sin 205}, respectively. Moreover, the associated eigenvectors are the
same. The eigenspace associated to cos 26, and sin 26 is lightlike and the one
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associated to cos 20y and sin 205 is spacelike therefore 0~1 = f; and 0~2 = 0y
modulo 7. As the eigenvectors E3 and F5 are both unit length, we derive that
Es = +E5. Slmllarly, we get E, = ¢F; for ¢ € R and therefore Fy = ¢~ 1F,.
Computing AF, we produce

~ 1 1 ~ -
AFE; = *(El + cos 291E2> = 7E1 + cos 201 Eo
& C

thus ¢ = 1. Since {E;} also has to satisfy the relations in (3.20) we obtain
Es — B,

Suppose now that 5 = ; modulo 7. This means that the eigenspace associated
to cos 26, is two-dimensional. Therefore any linear isometry that preserves the
eigenspace preserves the form of A and B. Let T be the linear isometry defined
by TE; = E;. After some computations we obtain that 7" has the form

t2
€ —€5 t
T=10 € 0],
0 —et 1

for e = &1 and some ¢ € R.

Computing h(Fy, E) and using Lemma 13 yields hl, = hl, — 2th3, and h3, =
h3,. Suppose that h3, = 0, then the Gauss equation (3.1) with X = E,,Y =
E;,Z = E5 implies 1/6 = 3/2, a contradiction. Then we can choose t =
hiy/(2h3,), thus hd, = 0. In the same way, we can obtain that it is the unique
(up to sign) frame with this condition. As before, we conclude that wfj and hfj
are constant for this frame. O

Lagrangian submanifolds of type Il

Proposition 25. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kihler SL(2,R) x SL(2,R). Suppose that A and B take
type III form in Lemma 11 with respect to a Ag-orthogonal frame {Ey, Es, Es}.
Then the frame is unique and the functions 6;, hfj and wfj are constant.

Proof. Suppose that {E;}; is another Aj-orthonormal frame with respect to
which A and B take type III form in Lemma 11. We denote by T the linear
isometry given by TE; = E;. We write



EXTRINSICALLY HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS 87

First notice that F; spans the unique eigenspace of A and B, thus ty; =
ts; = 0. Computing g(TE;,TEy) we furnish ¢99t;; = 1. In the same way,
computing g(TE1,TE3) and g(TEs,TEs) we come to to3 = 0 and {33 = ¢ =
+1. Computing ATE,; = —%TEg + TFE3 we get that t13 = t30 and t1; = €.
Computing g(Es, E3) and g(Fs, Es) we obtain t13 = 0 and ¢;2 = 0. By asking

JG(TE, TEsy) = \/gTEg we see that & = 1.

As in the previous propositions, the last statement follows from the uniqueness
of the frame. O

Lagrangian submanifolds of type IV

Proposition 26. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kahler SL(2,R) x SL(2,R). Suppose that A and B take
type IV form in Lemma 11 with respect to Ag-orthonormal frame {Ey, F5, E5}.
Then the frame is unique and the functions 0;, 1, hf] and wfj are constant.

Proof. In order to simplify the proof we write A and B as

a f 0 v o0 0
A=|—-0 « 0 , B=|-0 ~ 0 ,
0 0 cos26q 0 0 sin26,

with respect to {E;};.

Suppose there exists a Az-orthonormal frame {E\, Ey, F5} and functions @&, 3,
4, 6 and f5 such that A and B take the form

a B 0 S 0
A=1|-8 a 0~ , B=|-6 # 0~ ,
0 0 cos20q 0 0 sin26,

with respect to {E;};.

Since cos 20> and sin 26 are the only eigenvalues of A and B, 05 = 05 modulo
7 and B3 = ¢E3 with e = +£1. We denote by T the linear isometry defined by
TE; = E;. Given that {El} is an Ag-orthonormal frame, we may assume that
Fy and E5 do not have components in the direction of E3. Hence, we can write

T as
cosht sinht 0

T = | sinht cosht 0],
0 0 €



88 LAGRANGIAN SUBMANIFOLDS OF SL(2,R) x SL(2,R)

with ¢t € R. Requiring ATE, = (&TE, — BTE,) and ATE, = (BTE, + GTE>)
we obtain

acosht + Bsinht = @cosht — Bsinht,
—Bcosht+ asinht = —Bcosht+ @sinht,
Bcosht+ asinht = Bcosht + @sinht,
acosht — Bsinht = @cosht + Bsinht.
Combining these equations we get
(¢ — @) cosht =0,
(B —pB)cosht =0,

therefore & = a and f = 3. We may use the same argument to deduce that
0 =9 and 4 = . We compute again ATE; = (&TE; — ST E>) and we derive

t = 0. From JG(E17E2) = \/gEN’g it follows that ¢ = 1.

In a similar way as in the proofs of propositions 23-25 we obtain that «, £,

v and ¢ are constant. Computing § and % we obtain that 1, ; and 05 are
constant as well. Finally using the uniqueness of the frame we get that hfj and
k

w;; are constant. O

3.3.2 Extrinsically homogeneous Lagrangian submanifolds of
type |

In the previous section we saw a characterization of totally geodesic Lagrangian
submanifolds of type I:

Proposition 18. Let M be a Lagrangian submanifold of SL(2,R) x SL(2,R)
of type I in Lemma 11. If two angles are equal modulo 7, then M is totally
geodesic.

Moreover, in Theorem 32 all the totally geodesic Lagrangian submanifolds are
classified up to congruence, which we rewrite to fit better in this section.

Theorem 32. Let f : (M,g9) — SL(2,R) x SL(2,R) be a totally geodesic
Lagrangian submanifold of the pseudo-nearly Kihler SL(2,R) x SL(2,R). Then
f(M) is congruent to an open subset of the following extrinsically homogeneous
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Lagrangian embeddings:

(M, g) f H
(SL(2,R), %(,}) u > (u,u) {(u,u,Ids2) : u € SL(2,R)}
(SL(2,R),g;,)  uw— (u,dui) {(u, tui, Ids) : u € SL(2,R)}
(SL(2,R), 9,,) u (u,—kuk) {(u, —kuk,I1dz) : u € SL(2,R)}

where H acts transitively on M with null isotropy, and g,';T, 9y~ are Berger-like
metrics on SL(2,R) stretched in spacelike and timelike directions, respectively.

This theorem implies that any Lagrangian submanifold of type I with two equal
angle functions modulo 7 is extrinsically homogeneous. Therefore, to complete
the classification of extrinsically homogeneous Lagrangian submanifolds we
assume that the submanifold is not totally geodesic and that all angle functions
are different modulo 7.

Proposition 27. Let M be a non-totally geodesic extrinsically homogeneous
Lagrangian submanifold of the pseudo-nearly Kahler SL(2,R) x SL(2,R) of type 1.
Let 0;, i = 1,2,3 be the angle functions associated to the Ai-orthonormal frame
with respect ot which A and B are diagonal. Then (01,02, 03) is a permutation of
(0,7/3,2m/3) and the manifold M has constant sectional curvature. Moreover,

the sectional curvature is either equal to 0 or to —%.

Proof. Lagrangian submanifolds of type I are essentially an analogue of
Lagrangian submanifolds of S® x S?. In [6] the authors proved for S3 x S? that the
angle functions of non-totally geodesic Lagrangian submanifolds are constant and

a permutation of (0, F, %%). The same argument works for SL(2,R) x SL(2,R).

By Lemma 10 we may assume that (61, 6s,63) = (0,7/3,27/3). From Lemma
12 we know that all the functions hfj are equal to zero, except for h3,, which

from Proposition 23 we know is constant. Then the Codazzi equation (3.2)
with X = By, Y = E,, Z = E, yields that h3, is either equal to ﬁ or to
—%. Both cases imply that the sectional curvature is constant. In the former
case the sectional curvature is equal to —% and in the latter case the sectional

curvature is equal to 0. O

Example 19. Let f : SL(2,R) — SL(2, R)xSL(2, R) be the isometric immersion
given by u + (fuiu~!, juju~?t) and let {X;, X, X3} be the frame on SL(2,R)
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given in (2.3). We may compute

df (X1) = (0, jugu™" (—2uiu™")),
df (Xo) = (duiu™' (—2uju="),0),

df (X3) = (fuiu"'(—2uku™1), juju' (—2uku™1)).
It follows from the definition of J in (2.10) that

Jdf (X1) = %(iuiu*(4m'u*1),juju*1(2m'u*1)),
Jdf (X)) = %(iuiu‘l(—2uju_1),juju_1(—4uju_1)),
Jdf (X3) = %(iuiuil(2uku71),juju71(72uk:u71)).

We can easily check that f is a Lagrangian immersion by computing
g(Jdf (X;),df(X;)) =0 for ¢,j = 1,2,3. Moreover, we have

V3

2

df (X2) + ?de(X%

Pdf(X,) = (fuiu™ (—2usu™"),0) = f%df(Xl) Jdf (Xy),

Pdf (X5) = (0, juju™" (—2uju™)) = _%

Pdf(X3) = (duiu™' (—2uku™1), juju=' (—2uku™1)) = df (X3).

(_
Let H be the subgroup of Iso,(SL(2,R) x SL(2,R)) given by {(iut,juj,u) :
w € SL(2,R)} = SL(2,R). Then f(SL(2,R)) = H - (Idy,Id3). Notice that
H acts on f(SL(2,R)) with isotropy Z. Hence, the embedding PSL(2,R) —
SL(2,R) x SL(2,R) : [u] + (dudu~!, juju~?t) is congruent to f.

Proposition 28. Any extrinsically homogeneous non-totally geodesic La-
grangian submanifold of the pseudo-nearly Kdhler SL(2,R) x SL(2,R) of
type I with h3, = ﬁ is congruent to an open subset of the image of

PSL(2,R) — SL(2,R) x SL(2,R) : [u] ~ (dutu=", juju?t).

Proof. Let f: M — SL(2,R) x SL(2,R) be a non-totally geodesic extrinsically
homogeneous Lagrangian immersion of type 1. Let {Ey, E2, F3} be the frame on

M such that JG(FE1, Es) = \/gEg with angle functions given by (01,69, 603) =
(0,7/3,2m/3). Moreover, assume that hi, = g(h(Ey, E2), E3) = 2%5 We have

PE\=E\, PEy=-1E+JE, PE;=-iE;— LJE;
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Hence, according to Equation (2.16), we have

QE, = V3JE1, QE;=-E;, QE;=E;. (3.46)

From Proposition 27 it follows that M has constant sectional curvature —%.

Thus M is locally isometric to (SL(2,R), 3(,)) (see [44]), where (,) is the metric
given in (2.2). Then we may identify

E; = \/§X37 Ey = \/%Xz, Es = \/%le

where {X7, X2, X3} is the frame on SL(2,R) given in (2.3). Now we write the
immersion f(u) = (p(u), q(«)) and df (E;)y = (Dg, f)u = (p(u)os(u), q(u)Bi(u))
where a;(u), B;(u) € sl(2,R). By Equation (3.46) we have oy = 81, f2 = 0 and
a3 = 0. We know from (2.17) that VE Ey = Vi Ey = Vi E3 =0 and

Vi, F2=VE Es =0,

ngEl = - %E?) = _\/g(o7q53)7
Vi, Bs = —%\/g(El +QE) = —\/g(O,Qa1)7 (3.47)

Ve B =4/3

|
N
sl
[ )
Il
=
=
Q
»
=

VE B = 1\/38 - @B) = (e, 0).

Throughout this proof, we will denote by (, )« the product metric associated
to the metric (,) on SL(2,R) given in (2.2). By Equation 2.15 Ey, E2, E3 are
orthogonal with respect to the product metric (, )« and their lengths are

(Br,Er)x = =3, (B, Ey)x = (E3,E3)y = 3.

This implies that
(ag,a1) = *%7 (a2, a2) = (B3, B3) = §2 (3.48)
On the one hand, Equation (2.18) yields
D, Dp, | = Vi, Ej + 3(Ei Bj)(p,0) + 3(Ei, QE;) (—=p, q),

and on the other hand, by Equation (2.5), we obtain

Dg, Dg, f = (paia; + pEi(cy), aBiB; + qEi(B;))

= (p(os X aj) + (s, a;)p + pEi(ey),

q(Bi x B5) + (Bi, Bi)a + qEi(B;))-



02 LAGRANGIAN SUBMANIFOLDS OF SL(2,R) x SL(2, R)

Therefore
Vi, E; = (poy x o + pEi(a;), aBi X B + aEi(8))),

where E;(«) = da(E;) thinking of « as a map from SL(2, R) into s[(2,R). Hence,

using (3.47) we obtain
Q1 X Qg = —\/5537
and also

Ei(ay) =0, \/>ﬁ37 Es(ay) \/7042,
= \/%53, Es(ag) =0, Es(az) = \/%0417

Say, E(fs) = —\/gau E3(B3) =0
In terms of the vector fields X; this translates into the following differential
equations:
Xi(on) =202,  Xa(a1) =203,  Xz(a1) =0,
X1(ag) = 2an, Xo(a) =0, X3(ag) = 203, (3.49)

X1(83) =0, Xo(B3) = —20u, X3(B3) = —2as.

From (3.48) and Lemma 6 we know that there exists ¢ € SL*(2,R) such that

a1(Idy) = —\/gckcfl, az(Idy) = —\/gcjcfl, B3(Idg) = —\/gcicfl. (3.50)

Therefore, as the solution of the system (3.49) with initial conditions (3.50) is
unique, we have that

ar(u) = 7\/%6,(”%71071’ as(u) = f\/gujuflcfl, Ba(u) = f\/gcuiuflcfl.

We can check easily that they satisfy the equations in (3.49). By the homogeneity
of SL(2,R) x SL(2,R) we can take initial conditions f(Id2) = (Ida,Ids).
Applying the isometry of SL(2,R) x SL(2,R) given by (p,q) — (ecpc™t, cqc™1)
we may assume that

ay(u) = —\/guku_17 as(u) = —\/guju_l, Bs(u) = —\/gcuiu_l.

Then, the immersion f = (p,q) given by p = duiu™!, ¢ = juju™! is the
unique solution of the differential equation Dg,p = poy, Dg,q = qB;, with
i=1,2,3. O
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Example 20. Let H be the Lie subgroup of SL(2,R) x SL(2,R) x SL(2,R)
given by

H={(e"" e e ) :v,w € R, uec0,2m)} 2 R* x S*.
The subgroup H acts transitively on the submanifold f : R3/Z — SL(2,R) x
SL(2,R) given by . _
flu,v,w) = (e”e‘“k,ew’e_“k).
Moreover, the isotropy of H is trivial.

The derivatives of f are given by
fu = (—eVie vk E, —ewigmukp),
fo = (eVle~ukeukie—uk ()
fuw = (0, ere_“ke“kje_“k).

Applying the almost complex structure yields the following expressions:

1 . .
qu —_ 7(6“16_1”6]6, _ew]e—ukk)7
V3
1 . .
va _ 7(61)167Uk6u’c7:67uk,26”67uk€U’ki67Uk),
V3
1 . .
wa —_ %(—261”]6_1“66“’“]-6_”,6, —e“’]e_“ke“kje_“k).

We can easily check that

9(J fus fo) = 9(J fu, fw) = 9(J fo, fu) =0,

which shows that this submanifold is Lagrangian. After applying the tensor P
we obtain

Pfu _ (76vi67ukk, 76wj67Ukk) — fuy

B 1 3
P, = (anw]eivucBUkieiuk) = _va + g‘]fva

, 1 3
wa — (ewje—ukeukje—ukjo) = _ifw _ gjfw

Thus, f is a flat, extrinsically homogeneous Lagrangian submanifold of SL(2, R)x
SL(2,R) of type I with constant angles (61,62,605) = (0, %, 2F).
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Proposition 29. Any extrinsically homogeneous non-totally geodesic La-
grangian submanifold of type I of the nearly Kahler SL(2,R) x SL(2,R) with
h3y = —\% is congruent to an open subset of the image of the Lagrangian

embedding f : R3/7Z — SL(2,R) x SL(2,R) given by
flu,v,w) = (e“'e*“k, ew"e*“k) .

Proof. Notice first that all the coefficients of the connection and second
fundamental form vanish except for h3y = g(h(Ey, Es), JE3) = —L. We

also know that the angle functions are given by (61, 02,0s) = (0, %, Z1). So we
can find a local frame such that JG(E1, E3) = \/7E3 and
PE, = E\, PEy=-1E,+¥3JE, PE3=-1E;— 3JE,.
From the relation between @ and P in (2.16) it follows that
QE1 =V3JE), QFE»=-E, QE;=E;. (3.51)

Using that h/; = 0, h3, = —% and Equation (3.25), we deduce that [E;, E;] =0

for i,7 = 1,2,3. Then we write By = f,, Fs = f,, B3 = f,, for u,v,w local
coordinates. Thus, Equation (3.51) implies that

Pw =0, qv =0, qu = Pu- (3'52)

Moreover, we have VJ]ZJH fu= V]I?v fo = VJIZJw fw=0and
vﬁfv:vﬁfu— \/7fw_ qun

vifw:v?wfu— \/7fv_ me

vﬁfw = v?wfv = 0.

From the relation between the Euclidean metric with the nearly Kéhler metric
in (2.15) we know that f,, f,, fi, are also orthogonal with respect to the induced
Euclidean product metric. Furthermore, their inner products are given by

<fU7fu>:737 <fv7fv>:<fw7fw>:%-

Furthermore,

<fu7qu>:Ov <fanfy>:0, <fu,wa>:07
(o, QFu) =0, {fo,QF) = =3, {fu, Qfu) =3
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Thus, using (3.52) we get that p,, p, and ¢, are orthogonal and

<pu>pu> = _%7 <pvapv> = <pwapw> = % (353>

From the expression for the Euclidean connection D of R§ given in Equation
(2.18) we obtain

Fuu= =31, fuo = =32 — 25T Fu

fuw:% %fv_%vaa fvv:%f_%Qfa

fvwzoa fww:%f—’_%Qf
Hence we produce differential equations for p and g:
Puu = 7%1’7 DPovv = %pa Puv = \/gpqil%ua
(3.54)
Quu = 7%‘17 Guw = %‘L Quw = 7\/§qp71pv-
By applying an isometry of the type (p,q) — (ap,bq) we may assume that

p(0) = Idz, ¢(0) = Id;. Now, because of Equation (3.53), there exists a matrix
¢ € SL*(2,R) such that

pul0) = \J3cke ™, po(0) = \f3cic ™, u(0) = \[3cke™ qu(0) = \/3eje .

Applying the isometry (p,q) — (cpc™t, cge™t) we obtain that any solution of

the system (3.54) is congruent to the map

\/gvi 7\/guk \/gwj 7\/§uk
flu,v,w)=|e e e e

Then, changing the coordinates by u — \/gu, v — \/gu and w — \/gw, we

get the map (u,v,w) > (eVie~uk ewie=uk), O

3.3.3 Extrinsically homogeneous Lagrangian submanifolds of
type Il

Proposition 30. Let M be an extrinsically homogeneous Lagrangian subman-
ifold of the pseudo-nearly Kaihler SL(2,R) x SL(2,R). Suppose that A and
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B take type II form in Lemma 11 with respect to a Ag-orthonormal frame
{E1, E3,E3}. Then 01 = 03 = w/3 modulo w. Also, all the components of the
second fundamental form and of the connection are equal to zero except for h3,,
Wiy, Wiy, wiy and wi,. There are only two possibilities for the value of these
constants:

3 _ V2 3 3 3 _ 3 1 _ 2 _
1. h22**77 Wi2 *\E: W21**\/;a w3z =0, w33 =0,

3 _ 2V2 3 _ /3 3 _ /3 1 _ /3
2. h22*73a wu*\@» Wa1 =1/ 3> W31*\£~

Moreover, in both cases the sectional curvature is constant and equal to —%.

Proof. As indicated in Proposition 24, we have to distinguish between two cases:
when 6; = 63 and when 61 # 6,.

Suppose first that 6; # 5. By Proposition 24 both angles and the functions hfj,

wfj are constant. It follows from computing the Codazzi equation (3.2) with

X = FE3,Y = Ey and Z = Ej3 that sin(2(6; — 62)) = 0, hence 6; and 65 are
equal modulo 7/2. Recall that for type II submanifolds sin 26, is different from
zero, 201 + 03 = 0 modulo 7 and the angles are different modulo 7. Therefore
0, = %, 0, = %” or 6 = %”, 0y = % From Lemma 10 we know that these
two cases are congruent via the isometry ¥, given in (2.19). It follows from
Equation (3.23) that

1 1 V3 1
1 3 2 3 3 1 3
Wi =wi =w33 =0, Wy =———%, Wih=—7, W3 =-—hyp+—.
11 11 33 21 NG 127 %5 31 g 22T %
Computing the Codazzi equation (3.2) with X = F3, Y = E3, Z = FE3 and
X =FE, Y =FE,5, Z = E5 we obtain
4 - 3h3, (3h3; + V2)
3V3

which is a contradiction.

=0, 8vV3-3V6hl, =0,

Suppose now that #; = 63 modulo 7. Using that 26, 4+ #; = 0 modulo 7 we
deduce 0; = 6y = 7/3 or 2w/3. By Lemma 10 we know that these cases are
congruent via the isometry ¥g ;1 given in (2.19). Thus, we only consider the
cases where 0; = 0, = /3.

By Lemma 13 we have h3, = h3, = 0. Moreover, by Proposition 24 we may
assume that hi, = 0 and that all the functions hfj, wfj are constant. Hence,
from Equation (3.23) we obtain

1 _ 3 _ 2 _ 2 _
Wi = Wiy = Wiy = wig = 0.
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We also get

EERN

wi = V3h3, — G w3 = 7@2 + NG

Thus computing the Codazzi equation with X = F5, Y = F5 and Z = E5 yields
wis = 0. Moreover, we obtain

—9(h35)? + 3V2h3, +4 = 0.
V2

Hence h3, = —5% or h3y = ¥
If h3y = —% then the Codazzi equation with X = F, Y = Fs and Z = Ey

implies w3y = f\/g. Also we obtain w3, = 0.

If instead h3, = % we obtain w$, = \/g A straightforward computation

shows that both cases have constant sectional curvature equal to —%. O
Now we exhibit two examples of extrinsically homogeneous Lagrangian
submanifolds of type II in Lemma 11.

Example 21. Let R %, R? be the Bianchi group of type V with group law
given by
(t,u) - (s,v) = (t+ s, p0(8)u+v)

where ¢o: R — Aut(R?) is given by

wols)= (T %)

Let § be the right invariant metric such that its components with respect to

the frame of right invariant vector fields {%, e’zta%l, e*2t8¥22} are given by
8
3 0 0
0 -2 0
3
0 0 3

In fact, this Lorentzian manifold is simply connected, geodesically complete and
it has constant sectional curvature equal to —%. Hence, by Theorem 18 it is

isometric to H f’(—%) the universal cover of the anti-de Sitter space.
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Now let h be the Lie subalgebra of sl(2,R) & sl(2,R) @ sl(2,R) spanned by
{e1, ea,e3} where
€1 = (i7 _7:7 _i)7

(F6-#.56+80.0).

€2

o= (w0 m).

where %, j and k are given in (2.1). The Lie algebra b is a Bianchi Lie algebra
of type V with brackets

le1,e2] = —2e9, [e1,e3] = —2e3, [ea,e3] =0.

Note that the exponential map of a Bianchi Lie algebra of type V is surjective,
then the Lie subgroup of SL(2,R) x SL(2,R) x SL(2,R) associated with b is
equal to exp(h). Therefore R x,, R? is the universal cover of exp(h). Moreover,
the map

(w,u,v) — exp(we; + ue®w csch(w)eg + ve“w csch(w)es)

~

defined at w = 0 as exp(ues + ves), is a group isomorphism, thus expbh
R X ,, R2. One can check that the immersion ¢ : R x,y R? — SL(2,R) x SL(2, R)
given by

t(w,u,v) = exp(wey + ue”w csch(w)es + vew csch(w)es) - (Ids,Idz)  (3.55)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame given by

—2w —2w 1 _ —2w 1 _—2w 3
Ey=—e by — € by, Ly = 3€ by — 3€ Ly, E3:\/;Lw7

is a Ag-orthonormal frame with respect to which A and B take type II form in

Lemma 11, with angle functions ¢ = 6 = %.

Example 22. Let R x, R? be the Bianchi group of type III with group law
(t,u) - (s,0) = (t+ s, 01(8)u+v)

where ¢ : R — Aut(R?) is given by
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Let g be the right invariant metric on R x,, R? such that its components with

respect to the frame of right invariant vector fields {%, 62’58%1, 8%2} are given

by

2

2.0 0

o0 1 |,
2(A=1)

0 1 =5

where A is an arbitrary real number. As in Example 21, this Lorentzian
manifold is simply connected, geodesically complete and it has constant sectional
curvature equal to —3. Therefore it is isometric to H}(—3).

Let h be the Lie subalgebra of s[(2, R) ®sl(2, R) $sl(2, R) spanned by {e1,e2,e3}
where

€1 = (i7070>7
€2 = (%(j_i_ k)70a0)7
es = (0, =2 j + L2k, =252 + 252 k).

where 4, j, k are given in (2.1). The Lie algebra b is a Bianchi Lie algebra of
type III with brackets

[61, 62] = 262, [61, 63] = 0, [62, 63] = O

Note that the exponential map of a Bianchi Lie algebra of type III is surjective,
then the Lie subgroup of SL(2,R) x SL(2,R) x SL(2,R) associated with b is
equal to exp(h). Therefore R x,, R? is the universal cover of exp(h). The map
éx: R xy,, R? — exp(h) given by

—w

- e2 + veg
sinh w

o (u, v, w) = exp (wel + e

with %< Z extended to 1 when w = 0, is a surjective homomorphism with

sinh

Z  when \ = ﬁ, m > n > 0 integers,

Hy =ker(¢y) = { {0} otherwise.

One can check that the map f: (R x,, R?)/Hy — SL(2,R) x SL(2,R) given
by

Hlu,v,w) = ¢y (u, v, w) - (Ida, Ids),
is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame {E, Eo, E3} given by

1—A

Er=e*(f\)u, Fo= Tezw(fx)u + (Ao, E3= \/g(fx)w
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is a Ag-orthonormal frame with respect to which A and B take type II form in
Lemma 11 with 6; = 65 = g

Remark 14. For any pair A1, A2 the subgroups ¢y, (R x,, R?) of SL(2,R) x
SL(2,R) x SL(2,R) are non-conjugate. That is, there does not exist an
automorphism of SL(2, R) x SL(2, R) x SL(2, R) preserving the isotropy subgroup
ASL(2,R) that maps ¢y, (R x,, R?) into ¢y, (R x,, R?). This can be easily
seen since conjugations by elements of SL¥(2,R) preserve the indefinite inner
product of s[(2,R) given in (2.2).

Proposition 31. Let f: M — SL(2,R) x SL(2,R) be an extrinsically
homogeneous Lagrangian submanifold of the pseudo-nearly Kdahler SL(2,R) x
SL(2,R). Suppose that A and B take type II form in Lemma 11 with respect
to a Ag-orthonormal frame {E1, Es, Es}. Then M is congruent to an open
subset of either the image of the immersion in Example 21, or the image of the
immersion in Example 22.

Proof. Because of Proposition 30 we may assume that §; = 6, = %7& Moreover,
we divide in two cases.

Suppose that w,kj and hfj satisfy (1) in Proposition 30. We take the frame
{pE1, pE2, E3} where p is a non-vanishing smooth function and solution of

Eip) = Ba(p) =0, Exp) = \/3p. (3.56)
It is easy to check that p indeed exists and that

[pEv, pEs] = [pEy, B3] = [pE», Es] = 0.
Hence, there exist local coordinates u, v, w such that pF; = f,, pEs = f, and

§’U)
E5 = f,, and hence p(w) = e\/g . It follows from the relation between @ and
P given in (2.16) that

2

\/?:quv wa:_fw~

Qfu=—fur Qhi=—2fu~fu+

Writing f = (p, q) yields

Gu=0qw="0, ¢ =73 "pu (3.57)
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Using the relation between the nearly Kihler connection V and the product
connection VZ given in (2.17) we obtain

VE fu =0, VE o= —\/307fur

VE fu =1/ VE fu= /30 fu

VE fo= /20w VE fu = 2 fut[2f0 = L5 (3:59)
VE fu=/3hu VE fu =0,

E _ 1 3 1
VE fo= e fut /2= S fu

Now we compute

<fu7fu>:07 <fv7fv>:p2v <fw7fw>:%7
(3.59)
<fu7fv> = %an <fu7fw> =0, <fv7fw> =0,
and
<fanfu> =0, <fanfw> =0, <fv7wa> =0,
(3.60)

<fanfv>:_%p27 <fanfU>:_p27 <fw7wa> :_%7

where (,) is the product metric associated to the metric on SL(2,R) given in
(2.2). In particular, we have

(Pu, Pu) = 0, (Popo) = 0%, (Pw,Pw) = 3
(3.61)

(Pu, Do) = %p2a (PusPw) =0, (Pv,Pw) = 0.
Here, (,) is the metric on SL(2,R) given in (2.2).

To compute the second derivatives of f, we use the expression for the Euclidean
connection of R} in (2.18). Plugging (3.58), (3.59) and (3.60) into (2.18) we
obtain

fuu =0, .fuv = _\/gpz.fw + %p2f - %PQQf,
fuw =3 foo = =307 Fu + 3521 — 35°Q1,

fvw:%fu+\/§fu—%qu, fww:%f—%Qf.
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Looking at each component of f we obtain differential equations for p and g¢:

Puu = 0, Puv = _\/§p2pw + %P2p7 Puw = \/gpua

Pow = \/gpm Pov = *\/gpzpw + pzp, Puww = %p, Gvo = 0.
(3.62)
The other derivatives of ¢ are zero because of (3.57).

Applying an isometry of the type (p,q) — (ap,bq), we may assume initial
conditions (p(0),¢(0)) = (Idg,Ids). Then from (3.61) and (3.57) it follows that
there exists ¢ € SL¥(2,R) such that

o) =c( g 5 )t mo=c( ]

Pw(0) = \/§c< é _01 ) ¢ qu(0) = c< 8

Applying the isometry (p,q) — (cpc™t, cge™!) we obtain that any solution of
(3.62) is congruent to an open subset of the immersion f = (p, q) where

V3w eViv (u + 2) 12
p(“?”?w) = \/5 \/5 9 3 _\/5 ) Q(U) = 0 ? .
3eVzPy evVa2¥ (v + 3uv) +e"VaY

O wlo O wl=
N——— N—
Q‘ o

— »L

Finally, taking the change of coordinates w — 2\/210, U — —%(u + v) and
v — 2(u—v) we get the immersion in (3.55).
Now suppose that wf; and hf; satisfy (2) in Proposition 30. In this case, w3, is

constant. We define the constant A as w3, = \/g (1—N).

Take the frame { pEq, f%wSQEl + Eo, Eg}, where p is a non-vanishing smooth

function and solution of
Ei(p) = E2(p) =0,  Es(p) = —V6Es.

Using Proposition 30 we can easily check that this is a coordinate frame. We
call this frame {fy, fv, fw}. First we notice that p = e~V6w_ We obtain from
Equation (2.16) that

qu:_fua va:_%fu_fv+f%pjfua wa:_fw~

We deduce
Gu=quw=0, =550 Du (3.63)
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Equation (2.17) gives us the following expressions

VE;qu:(), vEufv:\/gpfwa
vav:_ gfw+\/§wa7 Vufw:— ifu,
Vi, fu=0, VY fu =211, - \/gfmt\%zpjfu.

From Equation (2.15) it follows
<fu>fu>:0a <fuafv>:7p <fu7fw>207
<f1)7f'u> = )\7 <fv;fw> = a <fw7fw> = %

and

(JurQfu) =0, (fus Q)= =%, (fusQfu) =0,
(fo, Qfv) = =A, (fo,Qfw) =0, <fw»wa>:_%‘

In particular, we have

<puapu> = 0; <pvapv> = )\7 <pw7pw> = %7
(3.64)
(PusPo) = 505 (PurPw) =0, (Pu,puw) = 0.
We may use Equation (2.18) to compute
2 1 1
fuu =0, Foo ==\ 3fw + V2 fu + 52 = 5AQF,

fww:%f*%Qfa fuw—\/gfua

3 3 3
fow = 2 lfu \/>fv+\fp=]fu7 fuv\/gpfw+4pféfo-

Hence we obtain

Puu = 0, Puv = \/gp w + %Pl% Puw = —\/gpu,
Do = AD, Pow = %\/%Apu - \/gpu, Pww = %pa

(3.65)
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Applying an isometry of the type (p,q) — (ap,bq) we may assume that p(0) =
Id; and ¢(0) = Ids. From (3.64) and (3.63) it follows that there exists a matrix
¢ € SL*(2R) such that

o =c( g 5 ) mo=c(

Pw(0) = Zc((l) _01 >cl, QU(O)C<8

Applying the isometry (p, q) — (cpc™t, cqc™t) of SL(2,R) x SL(2,R) we obtain
that any solution of (3.65) is congruent to the solution with ¢ = Id,. After the

. _\J3 . .
change of coordinates w — \/gw, u — ue \/;“’, we obtain that such solution

S win Sl
SN— "
Q‘ o

- L

is the immersion f) in Example 22. O

3.3.4 Extrinsically homogeneous Lagrangian submanifolds of
type 1l

Example 23. Let R x,,, R? be the Bianchi group of type VI with the group
law
(t,u) - (s,0) = (t+5,02(s)u+v)

where po: R — Aut(R?) is given by

= (% 2

Let g be the right invariant metric such that its components with respect to

the frame of right invariant vector fields {%, 6_2758%1, et%} are given by

7
o 2 I

2 2 128
38\/;9

[\
o
oo

Wl m

Wl
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Now let h be the Lie subalgebra of sl(2,R) & sl(2,R) @ sl(2,R) spanned by
{e1, ea,e3} where

o= (i (or2v@) o= (23 e (313 D)o
oo () (e
~di+d (1-3v6)5+13 (3v6-1) k)

o2 = <0, JE L+ Q%k,o>,

es=(5(2+3v6) i~ 2 (7+2v6) 5+ 2 (37+6V6) k0,65 + 6k)

The Lie algebra b is a Bianchi Lie algebra of type VI with brackets
[e1,e2] = —2e2, [e1,e3] =e3, [ez,e3] =0.

Note that the exponential map of a Bianchi Lie algebra of type VI is surjective,
then the Lie subgroup of SL(2,R) x SL(2,R) x SL(2,R) associated with b is
equal to exp(h). Therefore R x, R? is the universal cover of exp(h). Moreover,
the map defined as

2uev VW
(v, u, w) — exp| ve; + 3 162 + o1

and as exp(2uey + wes) when v = 0, is a group isomorphism. Thus exp(h) =
R x,, R2. One can check that the immersion j : R x,, R? — SL(2, R) x SL(2, R)

given by

2uevy VW
= - (Ids, I
J(u, v, w) = exp (Uel t w2t oo 1€3> (Idz, Id2)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame given by

3 1 Te 2V 3
Efezvu, Ey=—"9,, E3=——3,+V6jy— -€"Ju0.

is a As-orthonormal frame with respect to which A and B take type III form
from Lemma 11.
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Proposition 32. Let M be an extrinsically homogeneous Lagrangian subman-
ifold of SL(2,R) x SL(2,R). Suppose that A and B take type III form from
Lemma 11 with respect to a Ag-orthonormal frame {Ey, Eo, Es3}. Then M is
congruent to an open subset of the submanifold given in Example 23.

Proof. By Lemma 10 we may apply the isometry Uy 1 in (2.19) and assume that
the sign of B is —1. Proposition 25 implies that the components of the second
fundamental form and of the connection associated to Fy, Fs and Fs3 are all

constant. From the Codazzi equation (3.2) with X = Eq,Y = FE5 and Z = Es

we have h3, = % Then, computing the Codazzi equation with X = FEj3,

Y = Fy and Z = E5 we obtain

1 13 5 52

hyy = ———=, Ry = 222
22 ].8\/5 22 9

We define the frame {pEl,EQ, pfl/Q(ﬁEl +V6E, + %Eg)} where p is a

non-vanishing smooth function that satisfies

Ev(p) =0, Ea(p) =1/2p. Es(p) = —2V6p.

From (3.28) we can check that p indeed exists and that the defined frame is

a coordinate frame. We write said frame as {fu, fv, fw}. Hence p = eViv,
Equation (2.16) yields

qu = fU7

va 3fv+2\/7fw_ qu 4\/§va+2\/%wa;

—3/2 312 5
wa: \/7fv+5fw_ f _12\/7va+4\/§wa
3v2 P

If we denote f = (p,q) then the first equation implies that p, = 0. From the
second and third equations we obtain

- - 13qu + 72pg
w=pg | = —4g +2\/7 w |, Pw= 1<4w— .
Pv =1q ( VPa Pw = Pq q WL
(3.66)
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The relation between the connection V¥ associated to the product metric and
the nearly Kéhler connection V given in Equation (2.17) yields

V§ fu=0,

VE fo= =195t = 3V6p Lo+ 30" fu + J5T fu,

VE fu = =25 u = 18V5f, +3VB0fu +\ /2T fu,

Vi fo= i fut o = B fu = 555 T fu = 5V2T £y +24/3p fu,

V‘fE'vfw:ngIS/qu—’—;l fv_%fu}_ﬁf 3/2qu_7\/>va 2wa7

E _ 126 10 12f
Vfwfw_gfpzfu o fv_ﬁfw_:;fp Jfu— va+6\/>t]fw

From the relation between the product metric and the nearly Kahler metric in
Equation (2.15) it follows

<fu7fu>:07 <fv=fv>:07 <fw=fw>:%7
(3.67)
Guf) =30 (fudu) =32 (forfu) = 32,
and
<fanfu>:0a <f'anfv>:_§a (fvafw>:_%7
(3.68)
<fu;va> = %p7 <fanfw> = 3\/3777 (fv>wa> = _%'
In particular we have
(qu, qu) =0, (qv; qv) = _%a (qw, qw) =0,
(3.69)

<Qu7q1)> = %p7 <Qanw> =3 3?/)7 <Qme> = _W
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Now we compute

fuw = _ﬁfu —3\/6pr +3P3/2fw + %qu + %f—’_ BTPQf’

fuw =~ 2% fu — 18\/5fu + 3V6pfu + /2T + 31301 + 3y /%1,

Joo = 48%pfu+%fv fw qu—5fva+2fwa—%Qf7

fvwzgfsiié/z u+%fv_447\/36fw_6\fp3/2jfu 7\[va+ 2Jf'w

+16 2p'f 16\/7Qf’

fuw = 52 fu+ 288, - g, — g, 1228460/,
+27-2Qf.
Hence ¢ satisfies
Guu = 0,
quw =0,

Guo = ( o (4260, + 20 ) — 5v/6a. )
Guw = 4f (6p (fq —12¢, +2\qu) _ 17%) , (3.70)

oo = 864 (323\fqu — 72 (8q —17V6q, + 13\qu)) ,

o = ﬁ (289% —6p (17%6(1 — 204q, + 30\/@%)) ,
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and p satisfies

2 1
vo — FP — 19 -1 w T+ 72 -1 v)
p 3P 18\/6p( pq g ppa ' qv)
1 ~ _
Pow = 5575 (4p (\/ép — 6pg 1qy) — Tpq 1qu) , (3.71)
0
1

Puw (36p (p —2V6bpg g, + \/ﬁpq“qw) — 17x/5pq*1qu) :

= 5,7
After applying an isometry of the type (p,q) — (ap,bq), we may assume that
p(0) = Ids and ¢(0) = Id2. From (3.66) and (3.69) it follows that there exists a
matrix ¢ € SLE(2, R) such that

(e}
o O
S——
e |
—

Qu)(o)c<3 %

(A (-17+6v0) ~ 3% -
qv(0)0< (233 - 12V6) L (1726,6) )C k

By applying the isometry (p,q) — (cpc™!, cqc™!) we obtain that any solution

of the system of differential equations given in (3.70) and (3.71) is congruent to
the solution with ¢ = Id,. This solution is the map given in Example 23 after

: v 3 1 /3
the change of coordinates v — e U \/;u, w — Z\/;w' O

3.3.5 Extrinsically homogeneous Lagrangian submanifolds of
type IV

Proposition 33. There are no extrinsically homogeneous Lagrangian submani-
folds of the pseudo-nearly Kihler SL(2,R) x SL(2,R) of type IV in Lemma 11.
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Proof. Let M be an extrinsically homogeneous Lagrangian submanifold of the
pseudo-nearly Kéhler SL(2,R) x SL(2,R). Suppose that A and B take type IV
form with respect to a Az-orthonormal frame {Ey, F5, E5}. Then by Proposition
26 the functions 1, 61, 6o, hfj and wfj are constant. Thus by Lemma 15 the
functions hfj are all zero except for h$,. Recall that we can write 0 = —26;.
Computing the Codazzi equation (3.2) with X = E3, Y = E, Z = E; and
X = El, Y = EQ, Z = EQ yields

1
(h3,)? = g(coship — cos 661 ) cosh 1, (3.72)

and

\/gh% _ 4sinh(tp) (— cos 661 coshtp + 3(hi;)? + cosh®(y)) .
3

3(cos 601 — cosh 1)) (3.73)

Plugging (3.72) into (3.73) gives

2
h3, = 2\/;sinh 2.

Comparing both values of (h3;)? we derive cos 60; = 9 cosh 1) — 8 cosh 31). Then
writing the Codazzi equation (3.2) with X = F1, Y = FE3 and Z = E5 we
obtain sinh 2¢) = 0. This is a contradiction since by Lemma 11, v is different
from zero. O

3.3.6 Proof of Theorem 33

Proof of Theorem 33. By Lemma 11 we separate the argument into four cases.

In Section 3.2 we showed that any totally geodesic submanifold is of type I
and is congruent to one of the first three examples given in Theorem 33. By
Proposition 27, Proposition 28 and Proposition 29, any non-totally geodesic
extrinsically homogeneous Lagrangian submanifold of type I is congruent to
either Example 20 or to Example 19.

Proposition 31 implies that any extrinsically homogeneous Lagrangian
submanifold of type II is congruent to an open subset of either the image
of the immersion in Example 21 or the image of the immersion in Example 22.

Proposition 32 states that any extrinsically homogeneous Lagrangian submani-
fold of type III is congruent to the one given in Example 23.

Proposition 33 shows that there are no extrinsically homogeneous Lagrangian
submanifolds of type IV.
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Except for the first, sixth and seventh examples in Theorem 33, all the
submanifolds are not isometric and therefore not congruent. Hence, it only
remains to distinguish between the aforementioned cases.

First, the first submanifold in Theorem 33 is the first example of Theorem 32,
therefore the only one of these three that is totally geodesic. The sixth
submanifold is the immersion ¢ given in Example 21 and the seventh one
is the family of immersions f) given in Example 22.

Suppose that ¢ is congruent to f) for some A. That means, there exists a
isometry F of SL(2,R) x SL(2,R) that maps one into the other. Suppose that
F € SL(2,R) x SL(2,R) x SL(2,R) x Zy. These isometries preserve P and J,
hence A and B have the same shape with respect to {E;}; and with respect to
{F+E;};. Hence,

V2

e g(h(Es, Es), JEs)

= g(]:*h(EQ,EQ),f*JEg)

= g(h(f*EQ, f*Ez), J]:*Eg)

which is a contradiction.

In Theorem 28 we showed that the isometry group of SL(2,R) x SL(2,R) is a
semidirect product of S3 with SL(2,R) x SL(2,R) x SL(2,R) x Zy. Therefore,
to complete the proof we can assume that F € Ss, i.e. F = ¥, . for some
k€ {0,1}, 7 € {0, %’T, %’r} Moreover, we can assume that 7 # 0, since otherwise
F preserves P, and therefore we may use the same argument as before, up to
sign. From Lemma 10 it follows that P restricted to F(M) takes the shape

A+ JB, where
A =cosTA+ (—1)"sin7B,
B=—sinTA+ (—1)"cosTB.

For 7 # 0 these matrices have a different form than A and B, as it can be
seen in Lemma 9. Therefore, there does not exist such a As-orthonormal frame
{E;}; such that A and B take type II form in Lemma 11 on F (M), which is a

contradiction.

Similar arguments can be used to distinguish between fy, and fy, for Ay # Ag,
by considering the function w3, = \/g (1 — )) instead of h3,. O
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3.4 An example of a type IV Lagrangian submani-
fold

In Lemma 11 we defined four types of Lagrangian submanifolds. So far we have
only seen examples of type I, II and III, so it is natural to ask if there exist
Lagrangian submanifolds of type IV at all.

In this section, following the construction for S* x S3 given in [7], we construct
an example of a type IV Lagrangian submanifold.

Theorem 34. Let p : ¥ — SL(2,R) be a minimal surface of (SL(2,R), (,)),
where (,) is the Lorentzian metric given in (2.2). Let w be a solution of the
cosh-Gordon equation with w < log % Suppose that {u,v} are null coordinates

with <%, %) = e and a(%, %) = a(%, 0%) = —1 where o is the component

of the second fundamental form in the direction of the unit normal £. Then the
distribution on SL(2,R) x SL(2,R) spanned by (pa;, qf;) with dp(a%) = paq,
dp(%) = pas, az =0 and

B1= o1 — ——ao — —wye Yo X ag

—w

1 e “w,
o=yt gty

—\/ z€ O] X«
212

is integrable and the integral manifold is a Lagrangian submanifold of type IV
in Lemma 11 with tanh(%) =e¥ and 6, = 0y = 27 /3.

Bs

In order to prove this, we need first to introduce some theory about minimal
submanifolds of SL(2,R) = H{(—1).

3.4.1 Time-like minimal surfaces of SL(2,R)

Given a two-dimensional pseudo-Riemannian manifold ¥ (which we will call
a timelike surface), a null coordinate frame is a set of coordinates {u,v} on X

such that (8%, %> = e¥ and <%, %> = (8%, %) = 0, where w is a function
on .

For such coordinates, the Levi-Civita connection V on X becomes

o _ o o __ o _ o _ 2]
Vog,=wugy,, Voag, =Voz =0, Vag =wg. (3.74)
ou ou ov ov
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For the existence of null coordinates on surfaces see [52]. Here we give a stronger
version of the existence result for minimal surfaces in H{(—1).

Lemma 21. Given a minimal surface ¥ of the three-dimensional anti-de
Sitter space H3(—1), there exist local null coordinates {u,v} on ¥ that satisfy

0(8‘1, Bu) =0 and one of the following:

1. o(Z,2)==+1,0(2,2)=+1,
2. U(Bu’au)_o J(Bv’av) +1,
3. U(%’ %) = U<8(9v’ 81)) = 0
where o is the component of the second fundamental form in the direction of
the unit normal.

Proof. Let {e1,e2} be a local null frame on ¥ such that (e;,e2) = 1. Let V be
the Levi-Civita connection on ¥ associated to (,). Then
Ve, e1 =aer, Ve e = —aez, Vege1 = —ber, Vg,ea = bey,

for some real functions a,b. To find null coordinates {u,v} on ¥ we take
arbitrary non-zero functions A\i, A2 on ¥ and we compute

[)\161, )\262] = )\161()\2)62 — )\262()\1)61 + )\1)\2b61 — )\1)\2&62.

Hence {A\1e1, Aaea} is a null coordinate frame if and only if
€1 ()\2) = CL)\Q, 62()\1) = b)\l (375)

We show that (3.75) always has a solution by constructing it explicitly.

Let £ be the unit normal vector field on ¥ and let ¢ be the component of the
second fundamental form h of the surface in the direction of £. Since ¥ is
minimal we have o(e, ez) = 0. Call & = o(e1,e1) and 8 = o(ez, e2). We divide
in three different cases: when both « and 3 are different from zero, exactly one
of them is zero, and both are zero.

Case 1: « and B are both different from zero.

We can take a change of basis such that « = +/. Namely, take the new frame
{€1,é2} on ¥ given by & = puej, é; = ieg where p2a = :l:%ﬁ and pu is a
non-vanishing function. Then o(é1,é1) = +o(éa, é2).

As the ambient manifold is a space form, the Codazzi equation (see Section 1.4)
becomes Vh(es,e1,e1) = Vh(er,ea,e1) and Vh(er,ea, e2) = Vh(es, e1,e2). It
follows

e1(a) = —2aq, es(a) = —2ba. (3.76)
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Since we are working in a neighborhood where a # 0, the functions \y = Ay =

3
||~ 2 are smooth. From (3.76) it follows that A; and A2 are solutions of (3.75).

We call 3% = \ieq, 3% = MXgep. Since we assume that a« = 5 we have
O’(%, 8%) = :l:a(a%, %). Using (3.74) we compute the Codazzi equation and
we obtain that 0(8%, 3%) is constant. Finally after rescaling the coordinates we

get 1 in Lemma 21.
Case 2. =0, 8 #0.

Again, by changing the basis {e1, e2} we may assume that « = 0,8 = £1. From
the Codazzi equation Vh(ey, e, e2) = Vh(ea,e1,ez) it follows that 0 = e1(8) =
—2af3. Hence a = 0. By computing [e, e2](f) we know that there exists a
solution of the system of differential equations

el(f) =1,
{ez(f) - (370

Taking Ay a constant and A; a solution of (3.77) we get a solution of (3.75).
Calling 2 = A\je; and 2 = Ages it follows that o(:2, 2) =0, o(Z,2) =
+A3. After a rescaling we see that -2 and 2 satisfy 2 in Lemma 21.

Case 8: o= =0.

If o = 3 =0 then ¥ is a time-like totally geodesic surface of H;{(—1). Hence ¥
is isometric to the two-dimensional anti-de Sitter space H?(—1), which admits
null coordinates. This is 3 in Lemma 21. U

Proposition 34. Letp: ¥ — H3(—1) be a minimal time-like surface of H3(—1).
Let {u,v} be null coordinates on ¥ and let o = J(%, %)’ 8= O’(%, %) where
o is the component of the second fundamental form of ¥ in the direction of the
unit normal £. Then the function w defined by (%7 9 ) = €¥ satisfies one of

ov
the following:
1. wyy = 2coshw when a = § = —1, (cosh-Gordon equation)
2. wyy = 2sinhw when —a = § = —1, (sinh-Gordon equation)

3. wyp = €¥ when a =0 or f=0. (Liouville equation)
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Proof. Writing the Gauss and Weingarten formulas for the immersion ¥ —
H}(—1) — R} yields

Duu = WuPu + &,

Pou = Puv = ewp’

Pov = WyPy + ﬁga (378)
&u = —ae Yy,
Ev = 7ﬁeiwpu~

Therefore

Puuv = (wuv - aﬁe_w)pu + avf + Wuew% Puvu = wuewp + ewpu

Hence w satisfies
Wyy = € + afie™™. (3.79)

From Lemma 21 and taking —& as the unit normal if necessary, we obtain either
a=p=-1l,a=-pF=-1,a=0,=—-1lora==0. O

3.4.2 The projection of a Lagrangian submanifold

Proposition 35. Let f: M — SL(2,R) x SL(2,R) be a Lagrangian submanifold
of the pseudo-nearly Kihler SL(2,R) xSL(2,R) of type IV in Lemma 11. Suppose
that f = (p,q) and that dp has nowhere mazimal rank. Then p(M) C SL(2,R)
is a time-like minimal surface, where SL(2,R) carries the metric given in (2.2).

Proof. Let M be a Lagrangian submanifold of SL(2, R) xSL(2, R). By hypothesis
A and B are of IV in Lemma 11 with respect to a Ag-orthonormal frame
{E1, E3, E5}. Let X be a non-zero vector field on M such that dp(X) = 0.
Then

Y(X) = (0,d4(X)) = 5(QF(X) + df(X)), (350)

where @ is the tensor defined in (2.14). From (2.16) it follows that equation
(3.80) becomes
/3

PX = le — —3JX.
2 2
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By assuming X to be a unit vector we conclude that X = +F3 and that
0, =0y = 2% Hence the tangent space of p(M) is spanned by v1 = dp(F1) and
vy = dp(E3). Writing dp(E;) = 3(E; — QE;) yields the non-zero vector fields

. inh? (% .
e (¥ sinh(v) Si (2) sinh(v))
v1 = —sinh (2)E1+ 23 Ez—l—i\/g JEl—l-i2 JE>,

; : sinh? (¥
vy = _51;}\1/(;) E, — sinh? (;p) By — Sm};w) JE, + \/5(2) JEs.

It follows from a straightforward computation that
(v1,v1) =1 — cosh(v),
(v1,v2) =0,
(v2,v2) = cosh(¢)) — 1.

By Lemma 11, the function v is different from zero. Therefore p(M) is a
non-degenerate time-like surface of SL(2,R).

It is easy to check that & = %Eg + %JE;; lies in the first factor of SL(2,R) x
SL(2,R) and that it is a unit normal vector field to p(M).

Denote by o the component of the second fundamental form of p(M) in the
direction of . Then

sinh(v))

olvr,v1) = V2h3, —
(v1,v1) 1 7

U(Ulv 7)2) = \/ih?%

sinh(v))
5

Since the mean curvature vector field H is given by

o(va,v2) = V2h; —

H = (—o(vi,v1) + o(v2,v2))&,

the surface is minimal. O

Note that by taking the frame {F;, —Es, F53} in Lemma 11 we may assume that
the function 1 is positive.
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Consider the map P: p(M) — SO(2,2) given by

V1 V2
P(x) = (p<x) Veosh(®)—1  y/cosh($)—1 5) .
The differential of P is given by dP = PQ where () is given by
0 —y/cosh(¢)) — 1 m
cosh(¢)) — 1 m 0
—csch(y)hiym + esch(y)h? s

\/W Up _(\/g—k esch(y)h3;)ns

(\/ih:h—% sinh(¢))m+v2hi;n2
\/csch(w)—l

veosh(y) — 1 ny 0

—csch(vp)hlym + csch(y)h2 e (V2h}, — Z= sinh(¥))m +v2h;n2

0

_(\/g + CSCh(Q/’)h%)??B \/CSCh(’LZ})fl
0 ‘[h12771+(\[h 773S1nh('¢1))'[72
\/Cbch(w) 1
\fh?2771+(\fh 51nh(1/;))172 0
\/csch(qp) 1

where 771( ) - 51]

In [7] the authors study three different cases: when p(M) is not totally geodesic
in S and P is an immersion, when p(M) is totally geodesic in S?, and when p(M)
is not totally geodesic in S* and P is not an immersion. Due to complications
that the first two cases present for type IV Lagrangian submanifolds, in this
section we will only consider the last case.

Suppose that P is not an immersion. Then the component of N3 in Q must

vanish. That is
2
hn = —\/;sinh(w).

From the Codazzi equation we obtain that hj, = 0. Moreover, we get
EB(hh) = E3(h%1) =0,
and also

Er(h1y) = —E2(h)),
0 = coth(¢)) — 3(hi;)? coth(¢)) + 3(h3;)? coth(¢)) + csch(v)

— cosh(2¢) esch(vp) — cosh(3v) csch()) — Ey(h1y) — FEa(hiy).
(3.81)
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Note that the Lie brackets of the vector fields Fy, Fo, F3 are

[Ev, B2] = hiy coth($) E1 + hi; coth(y) Bz — \/2(2 cosh(¢) + 1) Es,
[Er,E5] =0
[E27 E3] =0.

Then, we take the frame {X;, X5, X3} given by

R SR S0
LT V2B sinh(v) | V2VBSnh(g) © 2¢/3sinhi(y)
| | Bl — b2, (3.82)
Xy = FEy + FEs,
V2V/34/sinh(¢) ﬁ%\/sinh(w) 2\/>smh2()

X; = Fs.

Using (3.81) we may check that [X;, Xs] = [X1, X3] = [X3, X3] = 0. Thus,
there exist coordinates {u, v,t} such that

From (3.29) we get expressions for the derivatives of ¢:

V2(hiy + hi))

wu = - %m s
g — V2B, )

V/34/sinh (1)) '
P = 0.

Hence, we express hi; and h?, in terms of 1/ and its derivatives:

_ V/3y/sinh(¢) (¥u +wv
h11 = 272

f\/smh V) (Yy — Yu)
hll - 2\/‘

(3.83)
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Plugging in these values in (3.82) we obtain

. ! u csch ()

R 0yt o Y10 Jy e o MW
v p 1 g Pecsch(y) (3.84)

X2 = \/i\‘yg\/sinh(z/))El * \/E{l/gw/sinh(w)EQ 26 Es,

X3 = FE;s.

Writing dp = %(Id —(@Q) we obtain

dp(2) = _ sinh(¢) — V3 cosh(z)) + \/gE _ sinh(y) + V3 cosh(y) — /3
P ou 24/233/4, /sinh(v)) ! 24/233/4, /sinh(v))

2
B V/3sinh(¢)) + cosh(v) — 1JE —v/3sinh () + cosh(v)) — 1JE
24/233/4, /sinh(v)) ! 24/233/4, /sinh(3)) >

dp(2) = _ sinh(¢) + V3 cosh () — \/gE sinh(v)) — v/3 cosh(z)) + \/§E
oy 24/233/4, /sinh(v)) ! 24/233/4, /sinh(v))

—/3sinh(¢)) + cosh(z)) — 1JE V/3sinh (1)) + cosh(v)) — 1JE
24/233/4, /sinh(v)) ' 24/233/4, /sinh(v)) >

Comparing the equation we obtained for minimal surfaces in H3, on the
one hand we have (dp(X1),dp(X2)) = % tanh (%) and on the other hand
<dp(%),dp(8%)> = e¥. Hence

e¥ = %tanh <1§) .

W
~ sinh(v)’ Y sinh(z)’

With a straightforward computation we can check that

Then

Vgudp(au) = Wudp(au) -,

ngdp(av) = w,dp(dv) — &.
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Now we write the frame {F;, Es, F3} in terms of the coordinate frame:

B, = V3 \S/i;h(z/’) (_8% 4 8% X CSCh(z/))Q(://Jg + ) %)7

o o, SCh@)(=tut ) o (3.85)
+Z+ N 2),

Ey =

|
S
—
Q
g
Q
<

Es=2.

3.4.3 The reverse construction

In this subsection we construct a Lagrangian submanifold of SL(2,R) x SL(2, R)
of type IV in Lemma 11 starting from a minimal surface in SL(2,R). We begin
by stating and proving a standard result in differential equations, adapted to
our setting.

Lemma 22. Let 31, B2 and B3 be matrices in s1(2,R) that depend on variables
u, v and t. If

B 9B
8U - au - Qﬂl X 627
OB 9B

_ — 3.86
% ou 281 X B, (3.86)
0Bz OB
ot - v - 252 X 637

then the system of partial differential equations

dq dq dq
—_— — —_— 3-87
ou qﬁlv v qﬁQ’ ot Qﬁ37 ( )

has a solution in SL(2,R) with initial condition ¢(0,0,0) = Ids.

Proof. Define the matrix B; € M(4,R) by

Thinking of ¢ as a vector in R*, we write g—g = ¢f; as the linear ordinary

differential equation % = Bjq. This differential equation always has a solution,
and the set of all solutions forms a four-dimensional vector space. Hence, we
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write ¢ = C'y where the columns of C form a basis of said vector space. The
matrix C depends on u, v, t and y depends only on v and t. We differentiate ¢
with respect to v and we get
0 oC 0
q _ o

Bl =5, =3,V %,

It follows that

9y 1 8£

Then, if C~1 (BQC — %—g) does not depend on u, we can repeat the process
for v and ¢, and therefore find a solution. Note that g—g = B;1C and that
2071 =012 C)C~t. We compute

o ( . _,0C oc 1 _,0B, ., 0C
— B,C—-C'—)=-—" B et By—
8u(c 20 -C 61}) ou 20+0C 0uc+c > du
_octtec o
ou v Qudv
B
= —C7'BiCC™'ByC + c-198:
ou
10C

+C'ByBC+ CT B CC™ 3
v

oB oC
_o (2L i
o (Grewmy)

B B
— o (=B +2P2 L g~ 9B ¢
ou ov

Using the first equation of (3.86) we obtain that the last term of the equation
above equals to zero. Repeating the process we see that (3.87) has a solution.
Moreover, by requiring ¢(0,0,0) = Ids, we see that (g, ¢q) is constant and equal
to —1. O

Proof of Theorem 34. Let p: ¥ — SL(2,R) be a minimal surface of SL(2,R)
on which we take coordinates u and v such that (2, 2) = e, (&, 2) =
(2,2 = 0. Also we take o(2,2) = o(&,2) = —1 where o is the
component of the second fundamental form in the direction of a unit normal €.

Let w be the solution of w,, = 2 cosh(w) with w < ln(%). Denote %p = pay,
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%p = pay and let By, B2, and B3 be the matrices in sl(2,R) given by

1 e 1
B = 201~ 502 — w0 X o,
e v 1 e Yw,
ﬁ227a1+§a2+ 1 ap X ag,

3
63 = —\/ge‘”al X Q.

We use the identities
a1 X (a1 X ag) = —eYay,
(a1 X ag) X ag = —e“ g,
—W
§=e “pay X ag,
— —Ww
A1,y = Wy — € “p X (g,
2, = —Q1 X Qg,
(a1 X ag)y = e“ay + ag + wya X g,
Q1y = Q1 X (g,
—W
A2, = WyQig — € a1 X g,
(1 X 2)y = a1 — e¥ag + wyay X g,

to check that By, B2 and B3 satisfy (3.86). Therefore, there exists a submanifold
f: M — SL(2,R) x SL(2,R) of the nearly Kdhler SL(2,R) x SL(2,R) with
=)

Using the definition of the pseudo-nearly Kéhler metric g in (2.8) and of the
almost complex structure (2.10), it follows from a straightforward computation
that f is a Lagrangian immersion.

Take the Ag-orthonormal frame on {E;} on M defined as
Ei(q) = qBr, Ei(p) = pén,
Ex(q) = qB2, Ei(p) = pao, (3.88)

E3(q) = qfBs, Ei(p) = pas,
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where d&;, B; are the matrices in sl(2,R) given by

o \/gew/2 \/gew/2
Y e v A P i
_ \/gew/2 \/gew/Q
G e i I g PR
and
1 . 1 1 1
=—=V3e 2 (e - 1) —« +f\/§e2e“’+17(x,
=" ( =t ( ) e
By = lx/ge_% (e +1) éal +-V3Be % (¥ — 1) ! 2
2 V1 — 3e2v 2 1—3ex 7

8 3
53 = \/ge“’al X 9.

We write the restriction of the almost product structure P to M as A+ JB,
where A, B: TM — TM. Then A and B are of type IV in Lemma 11 with
respect to {Eq, Eo, E3}, with 6; = 03 = 23” and 9 a positive function which

satisfies ) v
e¥ = —tanh| — |.
75t ()



Chapter 4

Totally geodesic surfaces of
SL(2,R) x SL(2,R)

This chapter is based on unpublished joint work with K. Dekimpe. As such, it
can also be found in his PhD thesis [17].

Introduction

In this chapter we study pseudo-Riemannian surfaces of SL(2,R) x SL(2,R).
That is, those pseudo-Riemannian immersions f : ¥ — SL(2,R) x SL(2,R)
where X is a 2-dimensional (pseudo-)Riemannian manifold. In particular, we
are interested in totally geodesic surfaces, those surfaces whose geodesics are
also geodesics of SL(2,R) x SL(2,R).

In the Riemannian analogue S? x S* of SL(2,R) x SL(2,R), totally geodesic
surfaces were studied in [9] and [19]. In [9] the authors classified up to congruence
all totally geodesic almost complex surfaces. Almost complex surfaces, also
known as J-holomorphic, are those surfaces such that the almost complex
structure J preserves the tangent space.

Theorem 35 (Bolton, Dillen, Dioos, Vrancken). Any totally geodesic almost
complex surface of S® x S is congruent to an open subset of one of the following
TMMersions:

1. S2(3) = $* x S* 1z (1 — V3, 1+ V3a),
2. T? = S3 x S3: (s,t) = (e, e'),

124
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where i, is the unit quaternion. Conversely, the immersions listed above are
totally geodesic almost complex surfaces.

In [19] the author classified totally geodesic totally real surfaces of S* x S3.
That is, those surfaces where J maps the tangent space into the normal space.

Theorem 36 (Dioos). Any totally geodesic totally real surface of S x S is
congruent to an open subset of the following immersion:

Sz(%) = S xS ue ((u),1)

where 1 is the totally geodesic immersion of S? into S3. Conversely, the
immersion above is a totally geodesic totally real surface.

On the other hand, surfaces of SL(2,R) x SL(2,R) have just started to be
studied. Ghandour and Vrancken [25] classified all almost complex surfaces
totally geodesic of the pseudo-nearly Kéhler SL(2,R) x SL(2,R).

Theorem 37 (Ghandour, Vrancken). Any almost complex totally geodesic
surface of the pseudo-nearly Kihler SL(2,R) x SL(2,R) is congruent to an open
subset of the image of one of the following immersions:

1. H*(—3) — SL(2,R) x SL(2,R) : 2 — 1(Idy —v/3z,1d> +v/32),
2. T2 — SL(2,R) x SL(2,R) : (s,t) > (e'k esk),
3. R? — SL(2,R) x SL(2,R) : (s,t) + (e, e%%),

where 1 is the matriz given in (2.1).

We focus on the study of totally real surfaces in the nearly Kédhler manifold
(SL(2,R) x SL(2,R), J,g). These surfaces are characterized by the property
that the almost complex structure J maps tangent spaces of the surface into
normal spaces. In this section, we present some examples of totally real surfaces
in the nearly Kéhler manifold by investigating semi-Riemannian surfaces within
Lagrangian submanifolds of this ambient space. Subsequently, in Section 4.1,
our attention is directed towards the analysis of totally geodesic totally real
surfaces. We demonstrate that the examples presented in this section are
essentially the only possible surfaces of this kind.

We recall Theorem 32 given in Chapter 3.

Theorem 32. Let M be an totally geodesic Lagrangian immersion in the
nearly Kahler (SL(2,R) x SL(2,R), g). Then it is locally congruent to one of
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the following immersions:
Fy : SL(2,R) — SL(2,R) x SL(2,R) : p — (p, p);
Fy : SL(2,R) = SL(2,R) x SL(2,R) : p — (p, —kpk);
F3 : SL(2,R) — SL(2,R) x SL(2,R) : p > (p, ipi);

where i and k are part of the split quaternions, defined in (2.1).

The immersion F; induces a metric tensor g; on SL(2,R), defined as g1 = % (,),

where (, ) represents the standard semi-Euclidean metric on SL(2,R). The

isometry §, as defined in Equation (2.4), establishes that (SL(2,R), ¢1) is locally
3

isometric to the semi-Riemannian space form H3 (—3).

We now utilize these immersions to present examples of totally geodesic and
totally real surfaces in the nearly Kéhler SL(2,R) x SL(2,R).

From its definition we see that the totally geodesic property is transitive.
Namely, given two totally geodesic immersions fi: L — M and fo: M — N the
immersion foo fi: L — N is totally geodesic. Then, totally geodesic surfaces of
totally geodesic Lagrangian submanifolds of SL(2, R) x SL(2,R) are totally real.

The subsequent proposition provides a classification for the totally geodesic
submanifolds of the semi-Riemannian space form H(c).

Proposition 35 ([13]). Every totally geodesic semi-Riemannian submanifold
of dimension k in a semi-Riemannian hyperbolic space H!(c) is congruent to
an open part of a semi-hyperbolic k-subspace Hf(c) of H?(c), defined as

Htk(c) ={(z1,...,2t4+1,0,. .., Ts41, ..., Tk+1,0,...,0) € H}(c)},
with k <n and 0 <t <s.

This proposition demonstrates that every spacelike totally geodesic surface in
H3}(c) is congruent to an open part of the semi-hyperbolic two-space HZ(c).
Similarly, every Lorentzian totally geodesic surface in H3(c) is congruent to
an open part of the semi-hyperbolic two-space HZ(c). Utilizing the isometry §
allows us to establish that every spacelike or Lorentzian totally geodesic surface

n (SL(2,R), 2(,)) is locally congruent to an open portion of F(HZ(—2)) or
S (H 7 (—7)) Consequently, we obtain the following examples of totally geodesic
totally real surfaces in the nearly Kéhler manifold SL(2,R) x SL(2,R), when
considering the classification of totally geodesic Lagrangian submanifolds of this
space, as presented in Theorem 32.

Example 24. The following immersions are totally geodesic totally real surfaces
in the nearly Kéahler (SL(2,R) x SL(2,R), g):
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Finally, we obtain the following classification result, which is direct consequence
of Theorem 40 and Theorem 41.

Theorem 39. Let X be a (non-degenerate) totally geodesic totally real surface of
SL(2,R) xSL(2,R). Then it is congruent to an open subset of the image of either
the immersion 1 or the immersion 2 in Example 24. Conversely, the immersions
in Ezample 24 are totally real totally geodesic surfaces of SL(2,R) x SL(2,R).

The structure of this chapter is as follows: In Section 4.1 we provide some
general theory for totally real surfaces of SL(2,R) x SL(2,R). In Section 4.2 we
study spacelike surfaces of SL(2, R) x SL(2,R) and we provide a classification of
totally geodesic totally real spacelike surfaces in Theorem 40. In Section 4.3 we
study Lorentzian surfaces of SL(2,R) x SL(2,R) and we provide a classification
of totally geodesic totally real Lorentzian surfaces in Theorem 41.

4.1 Totally real surfaces

In this section, our aim is to provide some general theory of totally real surfaces
of SL(2,R) x SL(2,R) that we will use to conclude in a classification result in
the following sections. A significant consequence of a surface being totally real
is that it can only be either spacelike or Lorentzian, since it cannot be negative
definite. This fact becomes evident later in this section as we proceed with
constructing a local frame on the surface.

Let ¥ denote a totally real surface in the nearly Kahler SL(2,R) x SL(2,R).
We begin our analysis by defining the distribution D given by

D =T+ JTS + G(TS x TY) + JG(TS x T). (4.1)

In the case of totally real surfaces, it is important to note that the dimension of
D is at least four. Consequently, considering a local semi-orthonormal frame
{U,V?} on the surface ¥, it immediately follows that the set {U,V,JU, JV}
consists of linearly independent vector fields since X is totally real. Additionally,
from the properties of the tensor G as outlined in Proposition 9, we can deduce
that the vector fields G(U, V) and JG(U, V') are both linearly independent from
the aforementioned set. Thus, the dimension of the distribution D is at least
six, and as SL(2,R) x SL(2,R) is a six-dimensional manifold, its dimension is
precisely six.
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This means that the set of vector fields

forms a local frame for SL(2,R) x SL(2,R) when restricted to the surface X.
This implies that the almost product structure P, defined in Equation (2.12),
restricted to the surface Y, can be described in terms of the frame G as follows:

PU =a U + a3V +a3JU 4+ as JV + CL5G(U, V) + a6JG(U, V), (43)
PV =bU + b3V + b3JU + by JV + b5sG(U, V) + b JG(U, V), (4.4)
where aq,...,ag,b1,...,bg are smooth functions on the surface X.

Now, we aim to define the almost product structure P on the frame G. By using
the fact that J and P anti-commute, we can straightforwardly find expressions
for PJU and PJV. However, the expressions for PG(U,V) and PJG(U,V)
are more intricate. Applying Lemma 4 and Lemma 5, we observe that these
expressions depend on the restriction of the nearly Kéahler metric g to the
surface 3.

As the nearly Kéhler manifold (SL(2,R) x SL(2,R), g) is a six-dimensional semi-
Riemannian manifold of index 2, the surface ¥ can be spacelike, Lorentzian, or
negative definite. However, the case where the totally real surface X is negative
definite can be excluded because the almost complex structure J is compatible
with the nearly Kéhler metric g. Indeed, suppose that the surface ¥ is negative
definite with a semi-orthonormal frame {U, V'}. The compatibility condition
then implies that

gU,U)=g(V,V)=g(JU,JU) = g(JV,JV) = -1,

which is not possible for four linearly independent vector fields on a six-
dimensional manifold with index 2. Thus the surface X is either spacelike
or Lorentzian and these cases are treated separately in Sections 4.2 and 4.3.

Remark 15. We define a new symmetric operator denoted as P> on the surface
Y., which is the restriction of the almost product structure operator P and
projection to the tangent bundle 7%. Notably, this restriction ensures that
the operator P¥ itself remains symmetric and it is a tensor on the surface.
Consider a semi-orthonormal frame {E, E2} defined on X, where the following
conditions hold:

g(Er, Er) =1, g(Eq, Es) = —1, g(E1, Es) =0.
We can express the operator P> relative to this frame as follows:

P™:TS - T : X v g(PX, E1)Ey — g(PX, Ey)Es.
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It is worth remarking that this description of the operator is applicable to any
frame, including lightlike frames. To achieve this, one can simply rephrase the
new frame using the frame {Ej, E5}. The operator P* plays a crucial role
in the analysis of totally geodesic totally real surfaces in the nearly Kéhler
SL(2,R) x SL(2,R), as shown in the subsequent sections.

4.2 Spacelike surfaces

We now focus on the case of spacelike totally real surfaces in the nearly Kéhler
manifold SL(2,R) x SL(2, R), which are totally geodesic, and present a complete
classification in Theorem 40. Before proving this theorem, we establish some
important results concerning the nearly Kéahler connection V, Lemma 23, and
the sectional curvature of the surface ¥. These results provide the necessary
background for the subsequent proof of the classification theorem.

Let us thus assume that the surface X is spacelike. In this case, the tangent
frame {U,V} on X satisfies

g(U,U)=g(V,V) =1

The compatibility of the almost complex structure J and the properties of
the tensor G on the nearly Kéhler manifold SL(2,R) x SL(2,R), as depicted
in Lemma 4, allow us to express the metric g with respect to the frame G as
follows:

1000 0 O
0100 0 0
0010 0 0
0001 0 0
0000 -2 0
0000 0 -2

Remark 16. It is worth noting that as the operator P> is symmetric it is always
diagonalizable on the spacelike surface . This property allows us to choose
the spacelike frame {U, V'} in such a way that

PE(U) = a U, PE(V) =0V,

for smooth functions aq, by on 3. Consequently, Equations (4.3)-(4.4) imply
that the functions as and by can be set to zero, and we have

g(PU,V) = g(U,PV) =0.
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The following lemma demonstrates how the nearly Kdhler connection V on the
totally geodesic surface ¥ can be constructed with respect to the frame G.

Lemma 23. The nearly Kdhler connection V on a spacelike, totally geodesic
totally real surface ¥, with respect to the frame G defined in Equation (4.2), is
constructed as follows:

VU = AV, VyU = —BY,
VoV = —AU, VvV = BY,
VyJU = AJV, VyJU = —BJV — G(U, V),

VyJV = —AJU +G(U,V), VyJV = BJU,
2 2
VuG(U.V) = IV, VyG(U.V) = —3JU.

VuJG(U,V) =0, Vy JG(U,V) =0,

where A and B are smooth functions on 3.

Proof. Recall that the tensor field G was defined as G(X,Y) = (VxJ)Y for
all vector fields X,Y € X(SL(2,R) x SL(2,R)). Using this expression together
with Lemma 4 then immediately proves the expression for the nearly Kéhler
connection V with respect to the frame G. O

Note that these expressions depend on the causal character of the surface ¥, as
the tensor field VG is expressed in terms of the nearly Kéhler metric g. As %
is a totally geodesic surface, the Gauss and Codazzi equations in Section 1.4
show that

(R(U,V)U)" = R(U,V)U (RU,V)V)T = R(U,V)V,
(RU,V)U)* =0 (R(U,V)V)* =0.

where R is the Riemann curvature tensor of ¥ and R the Riemann curvature
tensor of the ambient space SL(2,R) x SL(2,R). On the other hand we have
that one can relate the Riemann tensor of ¥ with the sectional curvature K at
each point p € ¥ through Definition 22:

RU,V)U = K(p)(g(V,U)U — g(U,U)V) = —=K(p)V,

R(U,V)V = K(p)(g(V,V)U —g(U,V)V) = K(p)U.
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Combining the Gauss and Codazzi equations with the previous formulas thus
yields

RU VU = -K(p)V, R(U,V)V = K(p)U.

Equation (2.13) gives an explicit formula for the Riemann tensor of the nearly
Kahler SL(2,R) x SL(2,R), thus one has the following relation for the sectional
curvature K at each point p € 3:

5

—K(p)V:E

1 2
V= 59(JV.U)JU = 2(9(PV.U)PU — g(PUU)FV)
2
= 3(9(JPV,U)JPU = g(JPU,U)JPV),
) 1 2
K(p)U ==cU+ 59(JU V)V = 2(g(PV,V)PU = g(PU,V)PV)

2
= 3(9(JPV.V)JPU = g(JPU,V)JPV).

These formulas are for general spacelike totally geodesic surfaces, so after using
that ¥ is totally real and that the frame {U, V'} was chosen in such a way that
g(U, PV) = 0, the previous formulas reduce to

2
~K(p)V = gv +3(9(PUUPY — g(JPV,U)JPU + g(JPU.U)JPV),

(4.5)
K(p)U = —%U - ;(g(PV, VYPU + g(JPV.V)JPU — g(JPU,V)JPV).
(4.6)

We can now classify all spacelike totally geodesic totally real surfaces in the
nearly Kéhler SL(2,R) x SL(2,R).

Theorem 40. Let ¥ be a spacelike totally geodesic totally real surface in
the nearly Kdihler (SL(2,R) x SL(2,R), J,g). Then it is locally congruent to
immersion fi1 of Example 24.

Proof. By assuming that X is spacelike, we can define the almost product
structure P on the entire frame G by utilizing the anti-commutation between P
and J, as well as the relationship between P and the tensor G as presented in
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Lemma 5. This yields the following expressions:

PU = a1U + a3JU + agJV + asG(U, V) + agJG(U, V),
PV = bV 4+ b3 JU + by JV + b5sG(U, V) + b JG(U, V),

PJU = a3U + a4V — a1 JU + agG(U, V) - (15JG(U, V),

PJV = bsU + bsV — by JV + b6G(U, V) — b5 JG(U, V),
2 2
PG(U, V) = —g(a5b2 — agbs + a4b6)U — g(%bg + a1bs — a3b6)V

2
+ (a(;bz + a5b4 - (L4b5)JU + g(—ag,bg + a3b5 + ale)JV

Wl N

- (a1b2 + asbs — a3b4)G(U, V) + (a3b2 + a1b4)JG(U, V),

2 2
PJGU,V) = g(aﬁbz + asby — aqbs)U + g(—ag)bs + azbs + a1b6)V

2 2
+ g(a5b2 - agb4 + a4b6)JU + g(aﬁbg + a1b5 — a3b6)JV

+ (CL3b2 + a1b4)G(U, V) + (a1b2 + agbs — agb4)JG(U, V),

where once again we used that the vector field PU is orthogonal to V. We now
use the involutive, compatibility and symmetric properties of the almost product
structure P, together with Equations (4.5)-(4.6) to determine conditions for
the functions aq,...,a6,b2...,bs. Lemma 5 shows an expression for the tensor
field VP in terms of the almost complex structure J and the tensor G:

1
PVxY =VxPY — o (JG(X,PY) + JPG(X.,Y)), (4.7)

for all vector fields X,Y € X(SL(2,R) x SL(2,R)). This equation provides
a refinement, together with Lemma 23, of the conditions on the functions
al,...,a6,b1...b6.

The symmetry condition of the almost product structure P immediately yields
a4y = b3.

Using this equality in Equations (4.5)-(4.6) then shows that the following
conditions must hold:

a4 = O, b2a4 = O7 (48)
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where one can distinguish two cases, i.e. when a4 is not equal to zero or when
a4 is equal to zero and we treat these cases separately in the following sections.

The function a4 is not equal to zero.

As the function a4 is not equal to zero, one immediately has from Equation
(4.8) that the functions a; and by are both zero. Equations (4.5)-(4.6) then
show that

asag = azbs, agas = aszbs, agby = asbs, asbs = asbs.
Computing g(PU, PJV) = g(U, JV) and plugging in {U, G(U, V) }, {V,G(U,V)},
{V,G(U,V)} and {V,JG(U,V)} in 1 in Lemma 5, complements the above
conditions with the following relations:

agbs = asbe, bs = asas — azbs, a5 = agbs — asbe,

ag = a4b5 — a5b47 b6 = a40a5 — a3b5.

Note that a direct consequence of P being involutive is that not all functions
ai,...,ag nor all functions by, ...,bg can be simultaneously zero. Keeping this
remark in mind, Table 4.1 then shows that there is only one possible solution
for this system of equations.

Table 4.1 — Possible solutions when a4 = b3 # 0 and X is spacelike.

’ Case 1 ‘ b6:b5:b2:a6:a5:a1:0‘

Let us further analyze this case by examining the compatibility condition in
Lemma 5. Plugging in {U, V'} in the equation, allows us to obtain

az = —by,

while computing P?U = U yields a3 + b3 = 1. Therefore, there exists a smooth
function ¢ on the surface ¥ such that

a4 = cos¢, by =sing.

These conditions satisfy the symmetry, compatibility, and involutive conditions
of the almost product structure P.
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Now, according to Lemma 23 and substituting {X, Y} with {U, V} in equation
(4.7), we find that the previous equation simplifies to

AsinpJU — AcospJV = —(A+U(¢))sinpJU + (A+ U(¢)) cos pJV

sin ¢
2
which leads to a contradiction as the term involving JG(U, V) is never zero.

Hence, we can conclude that there are no spacelike totally geodesic totally real
surfaces for which the function a4 is nonzero.

1
+ GWU, V) + §JG(U7 V),

The function a4 is equal to zero.

Let us now consider the case when the function a4 is equal to zero. From
Equations (4.5)-(4.6), we can immediately deduce the following conditions:

agby = aiby, arbs = —azbg, asbs = aybs,

asby = —agby, agby = asby.

Computing g(PU, PV) — g(U, V) and plugging in {U, G(U,V)}, {U, JG(U,V)},
{V,G(U,V)} and {V,JG(U,V)} in I in Lemma 5, yields additional conditions:

asbs = —agbg, agbs = asbe, (b2 — 1)as = agba,

(by +1)ag = —asbs, (a1 —1)bs = azbs, (a1 + 1)bg = —azbs.

The solutions to these equations, considering the conditions derived from
Equations (4.5)-(4.6), can be obtained by excluding cases where all functions

ai,...,ag or by,...,bg are zero. This leads to the two cases as presented in
Table 4.2.

Table 4.2 — Possible solutions when a4 = b3 = 0 and X is spacelike.

Case 2 | bg = bs = ag = a5 =0, b47é0anda1=“2752

Case 3 b6:b5:b4:a6:a5:a3:0,b27é0

We now distinguish between these two cases.

*Case 2. By applying the conditions obtained in this case, a straightforward
calculation reveals that P?V = V yields the equation b3 + b3 = 1. Thus, we
can consider a smooth function ¢ on the surface ¥ such that

by =cos¢, by =sinao.
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Computing g(PU, PU) — g(U,U) = 0 yields a3 = sin? ¢, leading us to consider
two different cases:

az3 =sing, ap =cos¢ and a3 = —sing, a; = — cos ¢.

It is worth noting that in both cases, the compatibility, symmetry, and involutive
conditions of the almost product structure P are satisfied. Equations (4.5)- (4 6)
now show that the sectional Curvature K of ¥ has a constant value of —5 1f
a3z = sin ¢ and a constant value of —= 1f a3z = —sin ¢.

*The function az is equal to sin ¢. According to Lemma 23 and plugging in
{X,Y} with {U,V} in Equation (4.7), we have

U(¢)sin gV — U(¢) cos pJV = 1(sm 2¢ —sin)G(U, V)

+ %(COS 2¢ — cos ) JG(U, V),

which holds only when the angle ¢ is a constant, taking values from the set
{O, 23“, 4?“ (up to an integer multiple of 27). Since we assumed in this case
that by is not zero, we find that the angle ¢ must be either { or 4?”. A
straightforward calculation demonstrates that Equation (4.7) is always satisfied
on the surface ¥ for these constant values of ¢. Consequently, our almost
product structure P is well-defined on 3. Furthermore, Equations (4.5)-(4.6)
show that the sectional curvature K of ¥ has a constant value of —% for both

values of the constant angle function ¢.

*The function az is equal to —sin¢. In this case combining Lemma 23 with
Equation (4.7), where we once again substitute {X,Y} with {U, V'}, yields

2A cos U + 2Asin ¢JU = U(¢) sin ¢V — U(¢) cos pJV

— %(sin ¢ —sin2¢)G(U,V)

1
+ i(COS o+ cos20)JG(U, V).
Note that this expression can only be valid when the function A is zero and
angle function ¢ has the constant value 7, which would imply that the function
b4 is equal to zero. This is thus a contradiction.

*Case 3. In this case one finds, after a substitution of {X,Y} with {U,U}
and {V,V} in the compatibility condition in Lemma 5, that the functions a;
and by have to satisfy
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which results in four distinct cases. Equations (4.5)-(4.6) then reveal that
the sectional curvature of ¥ has a constant value of f% ifag =by =1 orif
a1 = by = —1, while it has a constant value of —% in the other two cases. We can
analyze these four cases simultaneously by combining Lemma 23 together with

Equation (4.7). Substituting the vector fields {X, Y} with {U, U} {U,V}{V,U}
and {V,V} gives rise to the following equations:

1
AbQV = AalV, AalU = AbQU — 5((11 — 1)b2JG(U, V),

1
BalU:BbQU, Bb2V:Ba1V+§(b2—1)a1JG(U, V),

which indicates that the almost product structure P is only well defined on the
surface X when both functions a; and b; are equal to the constant value 1.

The table below now presents all the possibilities for the almost product structure
P with respect to the frame G on the spacelike surface X.

Table 4.3 — Almost product structure on the spacelike surface 3.

Almost product structure P | Sectional curvature K

PU=U 3

Case A PV =V -5

PU=-1U+BJU s

Case B 1 73 -5
PV = -5V +52JV
PU=-iU -2 JU

Case C f \;3 f%

Once again, we treat the cases separately and conduct a more detailed analysis of
the vector fields U and V' on the surface X. Specifically, at the identity element
(Id,Id) of SL(2,R) x SL(2,R), the vector fields U and V can be expressed as
(a, B) and (v, 0), respectively. Here, a, 3,7, d are elements of the Lie algebra
sbR, and the expression for the almost product structure P imposes certain
conditions on these matrices.

*Case A. In this case the vector fields U and V are both eigenvector fields
with eigenvalue 1 of the almost product structure P. The expression for P,
as defined in Equation (2.12), now immediately shows that one should have
that & = 8 and v = 4§, thus at the identity one has U = («, ) and V = (7, 7).
We now determine the length of the matrices a and -, with respect to the
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semi-Euclidean metric (, ), as Equation (2.15) shows that

(o,0) = 5 (U U) = 5 (20(U,0) + (U, PU)) =

)

(1) = 5 (V.V) = 5(20(V.V) + (V. PV) =

3

NwWw N w

where U and V are spacelike unit normal vector fields with respect to the nearly
Kéhler metric g. After applying an isometry of the ambient space one can take

a—\/gi —\/g'
- 27 Y= 2.77

with ¢ and j the split-quaternions defined in Equation (2.1). Since the surface
¥ is assumed to be totally geodesic, we can deduce from the expressions of the
vector fields U and V at the identity that it must lie in the first Lagrangian
immersion of Theorem 32. This implies that ¥ is locally congruent to the
spacelike totally geodesic totally real surface f; in Example 24.

*Case B. From the definition of the almost complex structure J, defined in
Equation (2.10), one has that the almost product structure P in this case yields

(5704):(_Baa_5)7 (57’7):(_577_5)

which shows that both 8 and § are the zero matrix and that at the identity
one has U = (a,0) and V = (v,0). An analogous calculation as in the
previous case shows that (a, a) = (v,v) = 3. Thus after applying an isometry
of SL(2,R) x SL(2,R) one can fix a and 7 as

a=v3i, ~y=v3j

Applying the isometry ¥y 4,3 of SL(2,R) x SL(2,R) given in (2.19), we obtain
that X is locally congruent to the immersion in Case A.

*Case C. From the definition of the almost complex structure J, defined in
Equation (2.10), one has that the almost product structure P in this case yields

(ﬂva):(ﬁ_av_a)’ (&7):(5_’77_7)

which shows that both « and ~y are the zero matrix. An analogous calculation
as in the previous case shows that (3, 8) = (§,0) = 3. Thus after applying an
isometry of SL(2,R) x SL(2,RR) one can fix 5 and ¢ as

B=V31i 6=+3j

Applying the isometry g o, /3 of SL(2,R) x SL(2,R) given in (2.19), we obtain
that ¥ is locally congruent to the immersion in Case A.

O
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4.3 Lorentzian surfaces

We now consider the case where the totally geodesic totally real surface X is
Lorentzian. One can then take a local semi-orthonormal frame {U,V} on ¥
that satisfies

g, U)=1, g(V,V)=-L (4.9)

The compatibility of the almost complex structure J and the properties of the
tensor G on the nearly Kéhler SL(2,R) x SL(2,R), as shown in Lemma 4, allow
us to express the nearly Kédhler metric g with respect to the frame G as

1 0 0 0 00
0 -1 0 0 0 0
00 1 0 0 0
00 0 -1 0 0
00 0 0 20
00 0 0 0 2

Note that the symmetric operator P>, defined in Remark 15, is not always
diagonalizable on the Lorentzian surface ¥. Therefore, we state a result similar
to 9, which can be found in [44].

Lemma 24. Let V be a two-dimensional Lorentzian vector space and A be a
symmetric linear endomorphism. Then there exists a basis {e1,e2} of V with
inner products given by the matrixz A;, with respect to which A takes the one of
the following forms:

) (A0 (-1 0
Type I A_<0 )\2>7 A1_<0 )7

—_

IO VIR (01

Type II: A= (6 )\1> ,  Ag= (1 O) , (4.10)
] (o B (-1 0

Type III: A= <—ﬁ a> , A= ( 0 1> ,

with A\, o, B € R and e = 1.

It is worth remarking that there exists a third possibility for symmetric operators
of Lorentz spaces of dimension greater than or equal to three. In Proposition
36, we demonstrate that if 3 is a Lorentzian totally geodesic totally real surface,
then P> must be of type I. Thus P* is always diagonalizable, which is similar
to the spacelike case in Section 4.2.



LORENTZIAN SURFACES 139

We first consider the following lemma, which is the Lorentzian analogue of
Lemma 23. Its proof follows a similar line of reasoning and can therefore be
omitted.

Lemma 25. The nearly Kdihler connection V on a Lorentzian, totally geodesic
totally real surface 3, with respect to the frame G defined in Equation (4.2), is
constructed as follows:

VyU = AV, Vv U = BV,
VuV = AU, VvV = BV,
VuJU = AJV, VyJU = BJV — G(U,V),

VulJV =AJU+GU, V), VyJV =BJU,

2 2
VuG(U.V) = 2TV, Vv G(U.V) = 3JU,

VuJG(U,V) =0, VyJG(U,V) =0,

where A and B are smooth functions on 3.

We again focus on the form of the almost product structure P when restricted to
the surface and obtain conditions for the functions ay,...,aq,b1,...,bg, defined
in Equations (4.3)-(4.4). Before classifying all the totally geodesic totally real
surfaces in the nearly Kahler SL(2,R) x SL(2,R) we first show that the operator
P% on such a surface has to be of type I.

Proposition 36. Let X be a Lorentzian totally geodesic totally real surface
in the nearly Kihler (SL(2,R) x SL(2,R),J,g). The symmetric operator P>,
defined in Remark 15 is then of type I in Lemma 2/.

Remark 17. We prove this theorem by demonstrating that the operator P>
cannot be of type II or type I11. These two cases are analyzed separately and
it is shown that they both lead to contradictions.

The operator P~ is of type I

Lemma 24 then shows that one can choose null vector fields U, V on the surface
3 satisfying

g(UvU):g(‘N/a‘N/):Oa 9(07‘7):17
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such that the operator P> satisfies
PE(U)=a,U+¢eV, PEV)=a,V,

for a smooth function a; on X. The almost product structure P can then, using
Equations (4.3)-(4.4), be expressed with respect to the frame {U,V } as follows:

PU = a U 4 €V + asJU + ay JV + asG(U, V) + ag JG(U, V),

PV = a\V 4 b3 JU + by JV + bsG(U, V) + bg JG(U, V).

We have thus imposed the conditions a; = bs, as = €, and by = 0. With these
conditions, we can now define the almost product structure P on the frame
G, which is similar to the frame G defined in Equation (4.2), but now using
the null vector fields U and V. It is important to note that the expressions
for P, with respect to the frame G, are not identical to the expressions found
when the surface X is spacelike, as they depend on the induced metric on the
surface. In this proof, we omit writing out these expressions as the construction
is completely analogous. As ¥ is a totally geodesic totally real surface, one can
again use the Gauss and Codazzi equations in Section 1.4 to find a Lorentzian
analogue of Equations (4.5)-(4.6), yielding in this case

K(p)U = -2U — Z(g(PV,U)PU — g(PU,U)PV) (4.11)

_K(p)V = %f/ - %(g(PV, V\PU — g(PU, V) PV) (4.12)
— g(g(JPV, V)JPU — g(JPU,V)JPV).

We now follow a similar approach as in the proof of Theorem 40, where we
classified all spacelike totally real surfaces, which are totally geodesic. Plugging
the vector fields {U i V} in the symmetry condition of P immediately yields the
condition ag = by. Equation (4.11) then implies that the function bs vanishes
everywhere, thus b3 = 0. Replacing {X,Y} with {U ,J f/} in the compatibility
condition of P leads to the following equations:

2
a3 4 b2 + g(a5b5 +aghs) =1, b2+ b2 =0.

From these equations, we can deduce that b5 = bg = 0. Furthermore, there
exists a smooth function ¢ on the surface 3 such that

a; =cos¢, by =sing.
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Applying these conditions in Equation (4.11) then yields
a4COSP =e€sing, ascosp = —agsing, agcosP = assin .

The first equation shows that cos ¢ is never zero, so we can define the function
a4 as ag = etan ¢. The last two equations imply that the only possibility for
these equations to hold is when a5 = ag = 0. We can conclude this part of the
proof by considering the compatibility condition of P with g, where we plug in
{U, JV}, resulting in the condition

secop =0,

which can clearly never be satisfied. Thus the operator P¥ can never be of
type I1.

The operator P> is of type II]

In this case Lemma 24 shows that one can choose the semi-orthonormal frame
{U,V}, Equation 4.9, in such a way that

PE(U) =a1U + a3V, PE(V) = —asU + a1V,
with a1, as smooth functions on the surface ¥ and as nowhere vanishing.

The almost product structure P can now, using Equations (4.3)-(4.4), be
described with respect to the frame {U,V'} as follows:

PU = a1 U + asV 4+ a3JU + CL5G(U, V) + agJG(U, V),
PV = —asU + a1V + by JV + bsG(U, V) + be JG(U, V).

We have thus imposed the conditions a; = by, and as = —by. With these
conditions, we can now define the almost product structure P on the frame G,
defined in Equation (4.2). Once again, the expressions for P with respect to the
frame G is not identical to the expressions found when the surface X is spacelike,
as they depend on the induced metric on the surface. We do not explicitly state
these expressions as the construction in this case is completely similar.

As ¥ is a totally geodesic totally real surface, one can again use the Gauss
and Codazzi equations given in Section 1.4 to find a Lorentzian analogue of
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Equations (4.5)-(4.6), yielding in this case

2

_K(p)V = gv ~ 2PV, U) ~ g(PUU)PV) (4.13)

- %(g(JPV, U)JPU — g(JPU,U)JPV),
~K(p)U = %U - %(g(PV, V)PU — g(PU,V)PV) (4.14)

- %(g(JPV, V)JPU — g(JPU,V)JPV).

Plugging in {U, V'} in the symmetry condition of P with the vector fields shows
that aqy = —b3. Equations (4.13)-(4.14) then yield the following conditions:

203 — A1Q4 = 0, aiq (a3 — b4) = 0, a1y = a2b4.

This system of equations has its potential solutions listed in the table below, as
the function as was assumed to never be zero. A distinction is made between
these three cases.

Table 4.4 — Possible solutions when P* is of type II1.

Case (a) | ag =by, ag #0 and a1 = %
Case (b) a1 =a3="bs=0
Case (c) a3 =as1=bys =0

*Case (a). In this scenario, it is possible to consider the existence of a
continuous function o on ¥ such that the following relationships hold: a; = aas
and a3 = aay. Plugging in {U, JV'} in the compatibility condition of P with
the metric g yields the relation agbs = asbg. Thus there exists a function 8 such
that bs = fas and bg = fag. Equations (4.13)-(4.14) then imply the following
conditions:

(agas + asa6)(1+ af) =0, (agas + asap)(a — ), (4.15)

(agas — azag)(1 +aB) =0, (agas — asag)(a — B). (4.16)

The only way in which this system of equations can be satisfied is when
as = ag = 0, as the function ay is never zero. Applying the involutive condition
of P on the vector field U then results in

(a5 +a3)a =0, (a3+ai)(-1+a)=1,
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which is clearly a contradiction.

*Case (b). Equations (4.13)-(4.14) in this case give rise to the following
equations:

a2a5 = —aG40g, a2bs = asbs, asbs = —asbs, asae = asas.

The only possible solution, when taking into account the non-vanishing of the
function as, is when the functions as, ag, bs and bg are all zero. The involutive
condition of P on the vector field U then yields

2 2
5 + ay = 717
again resulting in a contradiction.

*Case (c). Equations (4.13)-(4.14) in this case imply the following conditions:
azas = —aibs, agbs = aras, asas = —aibs, axbs = aias.

Once again the only possible solution is when the functions as, ag, b5 and bg are
all zero. Finally applying the involutive condition of P on the vector field U
results in

2 _ 2 _
ay =ay—1, aaz =0,

which is once again a contradiction, as the function as is assumed to be non-
vanishing.

Thus the operator P> cannot be of type I1I, thereby concluding the proof of
the proposition.

Type | surfaces

We can now classify all Lorentzian totally geodesic totally real surfaces in the
nearly Kéhler SL(2,R) x SL(2,R).

Theorem 41. Let X be a Lorentzian totally geodesic totally real surface in
the nearly Kdihler (SL(2,R) x SL(2,R), J,g). Then it is locally congruent to
immersion fo of Example 24.

Proof. Proposition 36 immediately shows that the operator P* in this case
has to be of type I in Lemma 24. This lemma shows that one can choose the
semi-orthonormal frame {U, V'}, defined in Equation (4.9), in such a way that

PE(U) =a U, PE(V) =0V,
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for smooth functions a1, by on the surface ¥, implying that P~ is diagonalizable.
In this case one can describe the almost product structure P, using Equations
(4.3)-(4.4), as follows:

PU = a1U + a3JU + asG(U, V) + ag JG(U, V),
PV = bV + by JV + bsG(U, V) + b JG(U, V).

We have thus imposed the conditions as = b; = 0, which are exactly the same
as in Section 4.2, where ¥ was assumed to be spacelike. Now, with these
conditions in place, we can proceed to define the almost product structure P on
the frame G as defined in Equation (4.2). However, once again the expressions
for P with respect to the frame G are not identical to those found when the
surface ¥ is spacelike. Although we do not explicitly state these expressions, the
construction follows a similar approach as before. The Lorentzian analogue of
Equations (4.5)-(4.6), when P~ is of type I, can straightforwardly be calculated
to yield:

2
CK(p)V =2V + 3 @(PUU)PV —g(JPV.U)JPU +g(JPU.U)JPV),

6
(4.17)

_K(p)U = %U - g(g(PM VYPU + g(JPV,V)JPU — g(JPU,V)JPV).
(4.18)

We now follow a similar approach as in Section 4.2 to derive conditions for
the functions aq,...,as,b1,...,b6. By plugging in {U,V} in the symmetry
condition of P for the almost product structure P, we obtain the immediate
condition:

a4 = —bg.

Next, combining this condition with Equations (4.17)-(4.18) leads to the
following results:

a1ay4 = O, b2a4 =0.

This implies that we can once again distinguish between the case where the
function a4 is zero and the case where it does not vanish.

The function a4 is not equal to zero.

When the function a4 is not zero, one immediately has from the previous
equation that the functions a; and by are both zero. Equations (4.17)-(4.18) in
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this case straightforwardly show that
asag = agbs, asas = —azbs, agbs = asbs, asby = asbs.

We can plug in {U, JV} in the compatibility condition of P with the metric g and
{U,GU,V)}{U, JGU,V)}{V,G(U,V)} and {V, JG(U,V)} in the symmetry
condition of P to obtain

agbs = asbg, as = asbg — agbs, ag= asbs — asby,
bs,= —aszbs — asbs, beg = —azbs — asas.

Table 4.5 shows that there is only one possible solution for these equations, if
one uses the extra condition that not all functions a4, ..., ag nor all functions
b1,...,bg can vanish.

Table 4.5 — Possible solutions when a4 = b3 # 0 and X is Lorentzian.

’ Casel"b6:b5:a6:a5:()

Notice that these conditions are exactly the same as those in the spacelike case,
as shown in Table 4.1. Now, we further analyze this solution by determining
the possible values of the functions as, a4, b3, by. Starting with the compatibility
condition of P with g, we find that a3 = —bs. Additionally, plugging in {U, U}
in this equation yields b2 — a2 = 1. Consequently, we can define a smooth
function ¢ on the surface ¥ to express the functions as follows:

by = cosh¢, a4 = sinh ¢.

These conditions then ensure that the compatibility, symmetry and involutive
conditions of the almost product structure P are always satisfied on the surface
Y. Equations (4.17)-(4.18) also show that ¥ has constant sectional curvature
with value f%. The nearly Kéhler connection, restricted to the surface X, is
described by Lemma 25 and shows, together with substituting {X,Y} with
{U,V} in Equation (4.7), that

3cosh ¢

U(¢) cosh ¢JU + 2sinh (A + U(¢))JV = 5 G(U,V)

1
+5JGU,V)

This is clearly a contradiction, as the term containing JG(U, V) is never zero.
As a result, there exist no Lorentzian, totally geodesic totally real surfaces in
the nearly Kéhler manifold SL(2,R) x SL(2,RR) where the function a4 does not
vanish.
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The function a4 is equal to zero.

In this case the function a4 is exactly zero, which results in Equations (4.17)-
(4.18) yielding the following conditions:

arby = azby, a1bs = —azbs,
arbg = azbs, asby = —agbs, asby = agbs.

Plugging in {U,V} and {U, JV} in the compatibility condition of P with the
metric g shows that

asbs = —agbs  asbs = agbs,

while plugging in {U, G(U,V)}{U, JG(U,V)} {V,G(U,V)} and {V, JG(U,V)}

in the symmetry condition of P gives rise to the additional equations:
(b2 — 1)0,5 = a6b4, (b2 + 1)(16 = 7&51)4,
(a1 - 1)b5 = asbg (Cl,l + l)bﬁ = —asbs.

Solving these equations, while again considering the additional condition that
the functions aq, ..., ag or ba, . ..bg cannot all be simultaneously be zero, results
in the following table.

Table 4.6 — Possible solutions when a4 = b3 = 0 and X is Lorentzian.

Case 2’ | bg =bs =ag =a5 =0,by #0 and a; = al?)’fz

Case 3’ | bg=bs =by=ag=as5=a3=0and by #0

We separate our analysis of these two cases.

*Case 2. Replacing {V,V} in the compatibility condition of P in this case,
shows that b3 + b3 = 1. This implies that one can consider a smooth function ¢
on the surface ¥ such that

by =cos¢, by =sinao.

Applying the involutive condition of P on the vector field U shows that a3 =
sin? ¢, thus one gets two distinct cases for the functions a; and as, given by

a; =cos¢, az =sin¢g, and a; = —cos¢, az = — sin ¢.
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The compatibility, symmetry and involutive conditions of the almost product
structure P on the surface ¥ are now again satisfied in both cases, while the
sectional curvature K of the surface ¥ has a constant value of —% if az = sin¢
and a constant value of —% if a3 = —sin ¢. A distinction is made between these
two cases.

*The function as is equal to sin¢. Lemma 25 and Equation (4.7) now show
that

—U(@)sinpV + U(¢) cos pJV = %(sin(b +sin2¢)G(U, V)

+ %(cos 2¢ — cos p)JG(U, V),

Similar to Section 4.2, when ¥ was spacelike, we can make a corresponding
argument for the case where a4 is zero. In this scenario, the angle function ¢
should be a constant function, and its possible values are in the set {2?”, %’T ,
with angles again determined up to an integer multiple of 27. Additionally,
Equation (4.7) is always satisfied on the surface ¥ for these values of ¢. As
a result, for these particular values of ¢, the almost product structure P is
well-defined on the nearly Kahler manifold SL(2, R) x SL(2,R) when restricted

to the totally real, totally geodesic surface X.

*The function as is equal to —sin¢. Substituting once again {X,Y} with
{U,V} in Equation (4.7) yields

Acos U + Asin pJU = U(¢) sin oV — U(¢p) cos pJV
+ —(sin2¢ — sin $)G(U, V)

+ —(cos ¢ + cos2¢)JG(U, V).

N = =

One can immediately see that this can only be satisfied when the function A
is zero and the angle function ¢ is a constant function with value an integer
multiple of 7, yielding a contradiction as this would make the function b4 vanish.

*Case 3. Plugging in {U,U} and {V,V} in the compatibility condition of P
with g then straightforwardly yields

a; = :l:l, b2 = :l:l,

trivially satisfying the compatibility, symmetry and involutive conditions of the
almost product structure P on the surface 3. Equations (4.17)-(4.18) then shows
that the sectional curvature K of ¥ has a constant value of —% if ag =by = %1
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and a constant value of f% in the other two cases. It is possible to analyze these
four cases simultaneously, by combining Lemma 25 together with Equation
(4.7), as substituting the vector fields {X,Y} with {U,U},{U,V},{V,U} and
{V,V} gives rise to the following equations:

1
AbQV = AalV, AalU = Ab2U - 5(@1 - ].)bQJG(U, V),

1
BaleBbgU, BbQV:Ba1V+§(1—b2)a1JG(U, V)

These equations are only satisfied if a; = by = 1, thus only then is the almost
product structure P well-defined on the totally geodesic, totally real surface X.
These conditions make it a surface with constant sectional curvature K = —%.
The following table now finally yields all the possibilities for the almost product
structure P with respect to the frame G on the Lorentzian surface X, which is
identical to Table 4.3, where ¥ was assumed to be spacelike.

Table 4.7 — Almost product structure on the Lorentzian surface 3.

Almost product structure P | Sectional curvature K

PU=U 3

Case A PV —V -3

PU=—1U+2JU .

Case B ] 7 -3
PV = -3V +%52JV

PU=-iU - JU s

Case C 1 73 -5

We once again analyze the vector fields U and V' at the identity element (Id, Id)
of SL(2,R) x SL(2,R) and write U = («, 8) and V = (7, d) at this point, with
a, B,7,6 € sloR.

*Case A’ One can immediately see, as in Section 4.2 | that the matrices
«, 8,7 and ¢ satisfy a = 8 and v = §, which means that at the identity we have
U = (a,a) and V = (v,7). The lengths of the matrices with respect to the
semi-Euclidean metric (, ) are then determined as

o) =3, () =3
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Thus after applying an isometry of the nearly Kéhler SL(2,R) x SL(2,R) one

can fix o and ~ as
3 3
= —1 = —k
“ \[2” 7 \/g ’

with ¢ and j the split-quaternions defined in Equation (2.1). Because the surface
) is assumed to be totally geodesic, one can deduce from the expressions of the
vector fields U and V at the identity that it must lie in the first Lagrangian
immersion of Theorem 32. Thus the surface X is locally congruent to the
Lorentzian totally geodesic totally real immersion f; in Example 24.

*Case B’ In this case, as in Section 4.2, one has that 8 = § = 0 and the
expressions U = («,0) and V = (v,0) hold at the identity (Ids,Ids). The
lengths of the matrices with respect to the semi-Euclidean metric {, ) are then
determined as

<a>a> =3, <77’7> = -3,

which means that applying an isometry of SL(2,R) x SL(2,R) allows us to fix
a and v as

a=+3i, v=+3k.

Applying the isometry ¥y 4, /3 of SL(2,R) x SL(2,R) we see that this surface is
mapped into the surface of *Case A’.

*Case C’. Analogous to the spacelike surfaces in Section 4.2, one immediately
has that @« = v = 0 and the expressions U = (0,8) and V = (0,4§) hold
at the identity (Id2,Ids). The lengths of the matrices with respect to the
semi-Euclidean metric (, ) are then determined as

(8,8) =3, (6,0) =3,

which means that applying an isometry of SL(2,R) x SL(2,R) allows us to fix
B and ¢ as

B=+3i, §=3k

Using a similar reasoning as in the previous case, one can deduce that the
surface ¥ in this case also has to be locally congruent to the Lorentzian totally
geodesic totally real immersion f5 given in Example 24.

Therefore we can conclude the proof of the theorem. O






Chapter 5

Hypersurfaces of
SL(2,R) x SL(2,R)

This work is based on an unpublished work with my colleagues K. Dekimpe
and M. D’haene.

5.1 Introduction

Given a n-dimensional Riemannian manifold (M,g), we understand by a
hypersurface of M a submanifold of dimension n — 1.

Hypersurfaces of six-dimensional nearly Kéahler manifolds have been widely
studied. For instance, Loubeau and Deschamps [18] showed that there are no
totally geodesic or totally umbilical hypersurfaces in CP? and F(C?). This is
also true for S? x S? (see for instance [31]), so the only six-dimensional nearly
Kihler manifold with a totally geodesic hypersurface is the sphere S°. This does
not come as a surprise, taking into account the result by Nikolayevsky [43], who
states that a homogeneous manifold with a totally geodesic hypersurface must
be a warped product of R™ with a homogeneous manifold, a twisted product
of R with a homogeneous manifold, or the Riemannian product of a space form
with a homogeneous space.

In this chapter, we show that there are no constant sectional curvature
hypersurfaces in SL(2, R) x SL(2,R) through means of a refined version of the
Gauss equation. First, in Section 5.2, we show a general result for hypersurfaces.
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Then, we distinguish between two cases, when the vector field P¢, with & the
unit normal vector field, depends linearly on & and J¢, and when it does not.
We use the result of Section 5.2 to prove that in both cases the shape operator
has a special form. Then in Section 5.5 we show the following result.

Theorem 42. There are no hypersurfaces in the pseudo-nearly Kdhler
SL(2,R) x SL(2,R) with constant sectional curvature.

5.2 The main equation

Lemma 26. Let M be a hypersurface of a (pseudo)-Riemannian manifold N
of dimension at least three, and let R, R be their respective curvature tensors.
Then

(8, IR Y)ZSW) = & g(R(X,Y)Z,SW). (5.1)

sy

where S is the shape operator associated to the immersion of M into N, and
& is the cyclic sum over X, Y and W. Moreover, if M has constant

IR

sectional curvature the right hand side vanishes.

Proof. By taking the cyclic sum over the Gauss equation in Section 1.4 we
obtain 5.1. Moreover, if M has constant sectional curvature then R(X,Y)Z =
c(g(Y,2)X — g(X, 2)Y). Plugging in this expression in the right hand side of
5.1 we see that it vanishes everywhere.

O
Analogously to previous chapters, we approach the study of constant sectional

curvature hypersurfaces by dividing them depending on the behavior of the
almost product structure P on the tangent space of the hypersurface.

Let £ be the e-unit normal vector field to the hypersurface M, ie. g(£,§) =€ =
+1. The vector field P{ might or might not be contained in the span of £ and
JE. We treat these cases separately.

5.3 The vector field P¢ is independent of £ and J¢

Define the vector field X on M by

X = P¢ —eg(Pg,§)§ — eg(P¢, JE) JS.
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Suppose that P¢, J¢ and £ are linearly independent. Then
F={J§,X, JX G X),JGE X))}
is a frame on M. We define the functions 6; and 65 on M by
00 =g(Pg,&), 02 =g(P¢, JE). (5:2)
Then by lemmas 4 and 5, F' is an orthogonal frame with
9(J&, JE) =&, g(X, X) =e(1 -0 - 63),

9(G(E X), (6, X)) = —3 (1~ 6} — 63).

Note that the linear independency of P¢, &, and J¢ is equivalent to 6% + 03 # 1.
It follows from lemmas 4 and 5 that P takes the shape

5(91 692 (1 — 9% — 9%) 0 0 0
892 —691 0 —(1 — 9% — 9%) 0 0
1 0 *601 592 0 0
0 -1 592 591 0 0
0 0 0 0 1 0
0 0 0 0 0 -1

with respect to the frame {&, F'}.
To simplify notation, we denote
Ey=J¢, Ey=X, Ei=JX E;=G(EX), Eg=JGEX). (5.3)

Then, we write
where h is the second fundamental form.
Proposition 37. Let M be a hypersurface of the pseud-nearly Kahler SL(2,R) x

SL(2,R) with constant sectional curvature. Suppose that 02 + 03 # 1, where 61,
Oy are the functions given in (5.2). Then M is totally umbilical.

Proof. By Lemma 26 the right hand side of (5.1) vanishes. Then, by taking
X = EQ, Y = Eg, Z = E5,E6 and W = E4,E5 in (26) we obtain

hos = hog =0,  h3qy = —el2h24.

Similarly, taking X = EQ,E5, Y = EG, Z = EQ,E4,E5 and W = EQ,Eg,E4
yields
h3y = haz = hsg =0,  hge = hss.
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Plugging in these values in (5.1) with X = Ey, Y = E3,E;, Z = E5 and
W = Ej5, Eg we produce

h3e = —2e01hys,  hgs = —2e01hys,  hag = 2e02h4s5.
From computing (5.1) with X = Ey, F5, Y = E5, Z = E3, Ey and W = Ej it

follows
hay =0,  hss = —Z2ehss.

Moreover, taking X = E5, Y = Eg, Z = FE5, Eg and W = E3, E4 we get
hss = hag = hao(1 — 07 — 03) = hao(1 — 05 — 63).
Finally, by plugging in all these values in (5.1) with X = Ey, Y = E,, Z =
FEs, E3, By, W = E5, Eg we obtain
his(405 —1) =0,  has(1 — 01 (86105 +¢)) =0,  has(1+826:63) =0,
which imply hys = 0.
Therefore, the second fundamental form satisfies h(X,Y) = ehoog(X, V)¢, O

5.4 The vector field P¢ is not independent of £ and
JE

Suppose now that P¢ € Span{¢, J¢} := D. The tensor P preserves D and
its orthogonal complement. Let U and V be eigenvectors of P|p associated
to 1, with g(U,U) = —¢ and ¢(V,V) = 1. Then JU and JV are eigenvectors
associated to —1. By computing g(P¢, P€) we obtain 62 + 03 = 1. Hence we
can write 61 = cos#, 05 = sin 6.

Again, to simplify notation, we write

Ey=J¢, E3=U, E =V, Es=JU Ez=.JV, (5.4)

and h(EZ, Ej) = h”g
Proposition 38. Let M be a hypersurface of the pseudo-nearly Kdhler
SL(2,R) x SL(2,R) with constant sectional curvature, and let £ be the normal

vector field with g(€,€) = & = £1. Suppose that 62 + 03 = 1 where 01 and 0
are given in (5.2). Then the shape operator S satisfies

0 0 0 0
hss 0 0 0
0 —€h33 0 0 s
0 0 hss 0
0 0 0 —6]133

OOOO@
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with respect to the frame {E;}; on M given in (5.4).

Proof. By Lemma 26 the shape operator S satisfies

8, I(RXY)ZSW) =0, (5.5)

where R is the curvature tensor of SL(2,R) x SL(2,R).

Plugging in X = Es, Y = E3,Fg, Z = E4, E5,Eg and W = Ey, E5 in (5.5) we
obtain h23 = h24 = h25 = h26 =0.

BytakingX:E5,Y:Eg,Z:Eg,W:E4 andX:Eg,Y:EG,Z:E5,
W = E5 in (5.5) we obtain hgg = 3hys and hgg = %h45, hence hsg = hys = 0.
In a similar way we obtain hgy = hsg = 0, hss = hgg = 0.

Now plug in {X,Y, Z, W} in (5.5) as all permutations of { E3, E4, E5, Eg}. Then
hay = —ehss, hss = has and heg = —chas. Cl

5.5 Proof of Theorem 42

Proof of Theorem 42. Let M be a hypersurface of the pseudo-nearly Kéhler
SL(2,R) x SL(2,R) with constant sectional curvature c. Let £ the normal vector
field with ¢g(§,&) = e = £1.

We divide in two cases, when P¢ depends linearly on ¢ and J¢ and when it
does not. Recall that this is equivalent to #7 + 62 being equal to or different
from 1, where 6, = g(P&, &) and 0 = g(P¢&, JE).

Suppose that 02 + 62 # 1. Then by Proposition 37, M is a totally umbilical
hypersurface. The equation of Gauss given in Chapter 1, Section 1.4 can be
written as

c(g(Y, 2)g(X, W) — g(X, Z)g(Y,W)) = g((R(X,Y)Z),W)
+g(h(Y, Z), h(X,W)) (5.6)
- g(h(X, Z)’ h(yv W))

Plugging in X = Fs, Y = E5, Z = E3 and W = Ej in (5.6) where {E;}; is the
frame given in (5.3) yields #? + 63 = 1, which is a contradiction.

Now suppose that 02 + 63 = 1. By taking X = E5, Y = E4, Z = E3 and
W = Eg in (5.6) where {E;}; is the frame given in (5.4) gives /2 = 0, also a
contradiction. O



Conclusion

Overview

We started by presenting the pseudo-Riemannian nearly Kéhler structure of
SL(2,R) x SL(2,R) as the T-dual of the nearly Kéhler S* x S3. Then, we
provided an expression of the isometry group, as a tool for classification of
submanifolds up to congruency. Later, we studied Lagrangian submanifolds
and we divided them into four types. We considered each type separately and
we classified all totally geodesic and extrinsically homogeneous Lagrangian
submanifolds.

We found that there are three examples of totally geodesics Lagrangian
submanifolds, which corresponds to the Riemannian case, but with one
extra example. On the contrary, there were exotic examples of extrinsically
homogeneous Lagrangian submanifolds.  Besides the analogues of the
submanifolds in the Riemannian case, we found three extra examples, where
one is actually a family of immersions.

We classified all totally real and totally geodesic surfaces, finding a hyperbolic
plane and anti-de Sitter plane, immersed in one of the Lagrangian submanifolds.
Also, we showed that there are no hypersurfaces with constant sectional
curvature.

Results that were not included

Besides the work included in this thesis, I also have some results I decided to
exclude for various reasons.

The construction in Section 3.4 for a type IV Lagrangian submanifold, was done
for all types. During the first year of my PhD, looking for explicit examples of
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all the types in Lemma 11, I followed the construction given in [7] for S* x S3.

For type I Lagrangian submanifolds, the results are practically the same than for
S? x S3, with the exception that we have to consider different cases depending
on the index of the surface in SL(2,R). I did not include this result since it did
not add any value to the thesis.

For type II Lagrangian submanifolds, there are two cases to consider, since the
projection to the first factor is either a minimal Lorentzian surface in SL(2,R)
or a null curve in SL(2,R) with special properties. I did not add this result
since some cases lead to a dead end.

For type III Lagrangian submanifolds, the projection to one of the factors is
always a degenerate surface. Hence, I did not include it since the computations
were cumbersome and did not produce result.

Besides SL(2, R) x SL(2, R), I also studied submanifolds of other spaces. Chapter
5 is part of an ongoing work with K. Dekimpe and M. D’haene. We saw
that besides SL(2,R) x SL(2,R), there are no constant sectional curvature
hypersurfaces in CP? and S3 xS3. The aim is to prove this for all six-dimensional
homogeneous nearly Kihler manifolds (besides S®). During my stay in China
in May 2024, I worked with M. D’haene, X. Chen, Z. Hu and L. Vrancken on
totally geodesic almost complex surfaces of the analogue of the flag manifold
SL(3,R)/R* - SO(2). The result is not included due to time constraints.

Future research

The obvious next step is to prove that a totally geodesic surface of SL(2,R) x
SL(2,R) is either almost complex or totally real. This poses an extra difficulty,
since we have to consider an extra function: the angle that the almost complex
structure J forms with the tangent space.

As mentioned before, finishing the classification of hypersurfaces with constant
sectional curvature of nearly Kéhler manifolds comes in the near future.

There are many results in S? x S? that can be translated to SL(2, R) x SL(2,R).
For instance, Z. Yao, Z. Hu and X. Zhang studied hypersurfaces of S3 x S? to a
great extent (see [30, 31, 55, 56]). Particularly interested in Hopf hypersurfaces,
they found a family of immersions of §? x 3 — S§3 x §3. It is clear that
in SL(2,R) x SL(2,R) we will find at least two families: H? x SL(2,R) —
SL(2,R) x SL(2,R) and H? x SL(2,R) — SL(2,R) x SL(2,R). It would be
interesting to know if there exist more examples.
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Also, there is close to no research done in the pseudo-Riemannian nearly Kéhler
six-manifolds. Vrancken and Cwiklinski studied totally geodesic surfaces of
one of the analogues of the flag manifold in [14]. As mentioned before, totally
geodesic surfaces in the other analogue were considered by the author, X. Chen,
M. D’haene, Z. Hu and L. Vrancken. In S§ and the analogues of CP? there are
no results yet.
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