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Abstract

A strict nearly Kähler manifold is an almost Hermitian manifold for which the
covariant derivative of the almost complex structure is non-degenerate and skew
symmetric. Strict nearly Kähler manifolds are quite rare. In six dimensions,
there are only four homogeneous strict nearly Kähler manifolds : S6, S3 × S3,
CP 3 and F (C3). In the pseudo-Riemannian setting, there are six analogues. We
consider SL(2,R) × SL(2,R), the analogue of S3 × S3.

We first study the strict nearly Kähler structure of SL(2,R) × SL(2,R).
The metric and almost complex structure are both induced from a pseudo-
Riemannian submersion SL(2,R) × SL(2,R) × SL(2,R) → SL(2,R) × SL(2,R).
We give an expression for the full isometry group.

In this space we study different types of submanifolds, such as surfaces,
Lagrangian submanifolds and hypersurfaces. We divide Lagrangian submanifolds
into four different types, which depend on their behavior with respect to an
almost product structure.

We classify all totally geodesic and extrinsically homogeneous Lagrangian
submanifolds. Moreover, we study totally geodesic surfaces and hypersurfaces
with constant sectional curvature.
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Beknopte samenvatting

Een strikte nagenoeg-Kählervariëteit is een bijna-Hermitische variëteit waarvoor
de covariante afgeleide van de bijna-complexe structuur niet-ontaard en scheef-
symmetrisch is. Dergelijke variëteiten zijn vrij zeldzaam. In dimensie zes
zijn er slechts vier homogene strikte nagenoeg-Kählervariëteiten: S6, S3 × S3,
CP 3 en F (C3). In de pseudo-Riemannse setting bestaan er zes analogen. We
beschouwen SL(2,R) × SL(2,R), analoog aan S3 × S3.

We bestuderen eerst de strikte nagenoeg-Kählerstructuur van SL(2,R)×SL(2,R).
De metriek en bijna-complexe structuur zijn beide geïnduceerd door een pseudo-
Riemannse submersie SL(2,R)×SL(2,R)×SL(2,R) → SL(2,R)×SL(2,R). We
geven een uitdrukking voor de volledige isometriegroep.

In deze ruimte bestuderen we verschillende soorten deelvariëteiten, zoals opper-
vlakken, Lagrangiaanse deelvariëteiten en hyperoppervlakken. Lagrangiaanse
deelvariëteiten verdelen we in vier verschillende types, afhankelijk van hun
gedrag ten opzichte van een bijna-productstructuur.

We classificeren alle totaal geodetische en extrinsiek homogene Lagrangiaanse
deelvariëteiten. Bovendien bestuderen we totaal geodetische oppervlakken en
hyperoppervlakken met constante sectionele kromming.
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Résumé

Le but de cette thèse est d’élargir la compréhension de la variété presque
kählerienne SL(2,R) × SL(2,R) et de ses sous-variétés. Les variétés presque
kähleriennes sont une relaxation riemannienne de la définition de variété Kähler :
une variété presque hermitienne (M, g, J) est presque kählerienne si la dérivée
covariante de la structure presque complexe est antisymétrique. De plus, afin
d’éviter une éventuelle intersection avec les variétés de Kähler, nous exigeons
que ∇J soit non dégénéré, ce que nous appelons une variété stricte presque
Kähler.

Les sous-variétés presque kähleriennes sont l’une des seize classes de variétés
presque hermitiennes classées par Gray et Hervella dans [27]. Selon Gray, la classe
la plus intéressante, les variétés presque kähleriennes, possèdent de nombreuses
propriétés intéressantes. Par exemple, d’un point de vue physique, ce sont les
seules variétés à six dimensions à admettre un spineur Killing [23, 28]. De
plus, les variétés strictes presque kähleriennes sont intéressantes en géométrie
multiplectique car elles sont 2-plectiques [37].

Ils possèdent également de nombreuses propriétés de division utiles. À savoir,
étant donné une variété presque kählerienne M , il existe une variété presque
kählerienne stricte M1 et une variété de Kähler M2 telle que M = M1 ×M2.

Dans les dimensions deux et quatre, variétés presque kähleriennes sont
automatiquement variétés de Kähler. Par conséquent, nous trouvons les plus
petits exemples intéressants de variétés presque kählerienne en dimension six.
En dimension huit, Gray [26] a prouvé qu’une variété presque kählerienne est
toujours de Kähler ou le produit d’une variété presque kählerienne stricte à six
dimensions avec une surface de Kähler. En dimension dix, Nagy [41] a prouvé
qu’une variété presque Kähler est soit Kähler, un produit d’une variété Kähler
stricte à six dimensions avec une variété Kähler à quatre dimensions, soit une
variété Kähler stricte, qu’il a classée comme espaces de twisteurs au-dessus de
variétés Kähler-quaternioniques avec constante d’Einstein positive.

vii
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Nagy a également apporté d’importantes contributions sur les propriétés de
division des variétés strictes presque kähleriennes.

Theorem 1 (Nagy [41]). Soit M une variété simplement connexe, complète,
stricte, presque kählerienne. Il s’agit alors d’un produit riemannien dont les
facteurs appartiennent à l’une des classes suivantes :

1. variétés à six dimensions presque kähleriennes,
2. variétés homogènes presque kähleriennes (satisfaisant certaines condi-

tions),
3. espaces de twisteurs sur espaces Kähler-quaternioniques avec constante

d’Einstein positive.

Nous voyons donc que les variétés presque kähleriennes à six dimensions
constituent une base importante pour le cas de dimension supérieure.

Conjecturé depuis longtemps par Gray, Butruille a classé toutes les variétés
homogènes à six dimensions proches de Kähler en quatre exemples.

Theorem 2 (Butruille [10]). Soit M une variété homogène simplement connexe
stricte presque kählerienne. Alors il est isométrique à

— S6 = G2/SU(3),
— S3 × S3 = SU(2) × SU(2) × SU(2)/∆SU(2),
— CP 3 = Sp(2)/Sp(1)U(1),
— F (C3) = SU(3)/U(1) × U(1).

Notez que l’hypothèse d’être homogène est importante. Pendant de nombreuses
années, on a cru qu’il existait des variétés non homogènes presque kähleriennes,
mais il n’existait pas d’exemples explicites de variétés complètes. Podestà et
Spiro ont étudié les actions de cohomogénéité-un sur des variétés presque
Kähler dans [46] et [47] et ils ont construit des variétés presque kähleriennes
inhomogènes mais incomplètes. Enfin, en 2017, Foscolo et Haskins [22] ont
construit les premiers exemples de variétés complètes non homogènes à six
dimensions presque kähleriennes : S6 et S3 × S3 portent des structures presque
kähleriennes qui ne sont pas homogènes mais qui ont une cohomogénéité. De
plus, ils ont conjecturé que CP 3 ne porte que la structure homogène presque
kählerienne.

Dans un contexte pseudo-riemannien, aucun théorème de classification n’est
connu. Cependant, en utilisant un type de dualité similaire à celui utilisé pour
les espaces symétriques non compacts, Kath [32] et Schäfer [48] ont construit
plusieurs analogues pseudo-riemanniens des quatre espaces du théorème 2 (
voir Figure 1). Dans [1], les auteurs prétendent avoir un exemple d’une variété
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pseudo-riemannienne homogène à six dimensions, presque kählerienne, qui n’est
pas un dual d’une variété riemannienne.

S3 × S3 S6 CP 3 F (C3)

SO+(2,3)
U(1,1)

SU(2,1)
U(1)×U(1)

SL(2,R) × SL(2,R) S6
4

SO+(4,1)
U(2)

SL(3,R)
R∗·SO(2)

Figure 1 – Les duaux pseudo-riemanniens des variétés homogènes à six
dimensions presque kählerienne.

Ici, S6
4 est la pseudo-sphère à l’intérieur de R7

4, de description homogène
G2(2)/SU(2, 1), et R∗ · SO(2) désigne le groupe (R∗ × SO(2))/Z2. La variété
presque kählerienne SL(2,R) × SL(2,R) a une description homogène SL(2,R) ×
SL(2,R) × SL(2,R)/∆SL(2,R). Dans cette thèse, nous nous concentrerons sur
ce dernier espace.

La théorie des sous-variétés est une généralisation à plusieurs dimensions de
l’étude des surfaces dans R3. Autrement dit, il s’agit de l’étude des immersions
isométriques et de la manière dont les invariants intrinsèques et extrinsèques
sont liés les uns aux autres. En géométrie presque hermitienne, on s’intéresse
également à la façon dont la structure presque complexe de l’espace ambiant
agit sur les espaces tangents de la sous-variété. Si la structure presque complexe
mappe le fibré tangent dans le fibré normal, nous disons que la sous-variété
est totalement réelle. De plus, si la dimension de la sous-variété est maximale,
c’est-à-dire la moitié de la dimension de l’espace ambiant, la sous-variété est
lagrangienne.

En géométrie symplectique, une sous-variété lagrangienne d’une variété
symplectique (M,ω) est une sous-variété telle que ω s’annule partout et sa
dimension est égale à 1

2 dim(M). Dans la géométrie de Kähler, ω est la forme
de Kähler g(J ·, ·), ce qui fait coïncider les deux définitions de la sous-variété
lagrangienne.

Les sous-variétés lagrangiennes sont particulièrement intéressantes en géométrie
presque kählerienne : toute sous-variété lagrangienne d’une variété presque
Kähler stricte à six dimensions est automatiquement minimale.

Le principal outil pour étudier les sous-variétés dans cette thèse est une structure
presque produit P sur le variété presque kählerienne SL(2,R) × SL(2,R). Défini
explicitement comme l’échange des vecteurs tangents de chaque facteur de
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SL(2,R) × SL(2,R), nous pouvons considérer cette structure comme le tenseur
qui détermine la relation entre la métrique du produit et la métrique presque
Kähler. Analogue à S3 × S3 [40], il n’existe que trois structures de presque
produits différentes sur SL(2,R)×SL(2,R) satisfaisant des équations spécifiques.
Nous utilisons cette propriété pour montrer que le groupe G d’isométries de
la variété presque kählerienne SL(2,R) × SL(2,R) qui préservent la structure
presque complexe J a 12 composantes connexes différentes.

Theorem 3. Le groupe d’isométrie de la variété pseudo-presque kählerienne
SL(2,R) × SL(2,R) est le produit semi-direct

(
SL(2,R) × SL(2,R) × SL(2,R)

)
⋊(

Z2 × S3
)
, où S3 est le groupe symétrique d’ordre 6.

Maintenant, étant donné que nous souhaitons étudier les sous-variétés qui ont
une relation particulière avec la structure presque complexe, nous définirons
la congruence jusqu’au groupe G. Autrement dit, deux sous-variétés sont
congruentes si et seulement s’il existe une isométrie dans G qui correspond
l’une à l’autre.

Les sous-variétés des S3 × S3 presque kähleriennes ont été largement étudiées
par de nombreux auteurs. Une notion importante de fonctions d’angle a été
introduite dans [20] et [57]. À savoir, la structure presque produit P induit trois
fonctions θ1, θ2 et θ3, qui codent des informations extrinsèques substantielles.
Dans [57], les auteurs ont également classé toutes les sous-variétés lagrangiennes
totalement géodésiques des S3 × S3 presque kähleriennes :

Theorem 4 (Dioos, Hu, Vrancken, Wang and Zhang). Une sous-variété
lagrangienne totalement géodésique de S3 × S3 est congrue à éventuellement un
sous-ensemble ouvert de l’un des exemples suivants :

1. f1 : S3 → S3 × S3 : u 7→ (u, u),
2. f2 : S3 → S3 × S3 : u 7→ (u,−iui),

où i est le quaternion unité.

Les sous-variétés lagrangiennes totalement géodésiques ont des fonctions d’angle
constantes et au moins deux d’entre elles sont égales modulo π. Dans [57], les
auteurs ont en fait donné six exemples différents, mais en utilisant les isométries
de S3 × S3 décrites dans [40] nous pouvons réduire la liste à seulement deux.

Dans [6] les auteurs ont classé toutes les sous-variétés lagrangiennes avec des
fonctions à angle constant. Ce faisant, ils ont également classé toutes les sous-
variétés lagrangiennes extrinsèquement homogènes :

Theorem 5 (Bektas, Moruz, Van der Veken and Vrancken). Une sous-variété
lagrangienne extrinsèquement homogène H · (1, 1) de S3 ×S3 avec H sous-groupe
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de Lie de S3 × S3 × S3 est conforme à un sous-ensemble ouvert de l’un des
exemples suivants,

1. f1 : S3 → S3 × S3 : u 7→ (u, u), avec H = SU(2),
2. f2 : S3 → S3 × S3 : u 7→ (u,−iui), avec H = SU(2),
3. f3 : RP 3 → S3 × S3 : u 7→ (−juju−1,−iuiu−1), avec H = SU(2),
4. f4 : T3 → S3 × S3 : (u, v, w) 7→ (euie−wk, evje−wk), avec H = T3,

où i, j, k sont les quaternions unitaires, et T3 = S1 ×S1 ×S1. Dans tous les cas,
l’isotropie H(1,1) est triviale, sauf pour la sous-variété f3, où l’isotropie est Z2.

Les cartes f1 et f2 sont totalement géodésiques. Toutes les cartes à l’exception
de f2 sont des immersions de formes spatiales où la première est une sphère
de courbure sectionnelle constante 3

2 , la troisième est un espace projectif de
courbure sectionnelle constante 3

8 et le dernier est un tore plat.

En relâchant l’hypothèse à un seul angle constant, dans [7] les auteurs ont
construit des sous-variétés lagrangiennes dans S3 × S3 à partir de surfaces
minimales dans S3 :

Theorem 6 (Bektas, Moruz, Van der Veken, Vrancken). Soit f = (p, q) : M →
S3 ×S3 une immersion lagrangienne dans le variété presque kählerienne S3 ×S3.
Supposons que dp n’ait nulle part un rang maximal. Alors p(M) ⊂ S3 est une
surface minimale de S3.

Inversement, si p : Σ → S3 est une surface minimale de S3, il existe une
immersion lagrangienne f : M → S3 × S3 satisfaisant f = (p, q) pour certaine
application q : M → S3.

L’objectif principal de cette thèse est l’étude des sous-variétés lagrangiennes. Le
but est d’essayer de reproduire les idées trouvées dans [6], [7], [19], [20], [57] en
introduisant la notion de fonctions angulaires, qui sont déterminées par l’action
du tenseur P sur la sous-variété. La restriction de P sur TM se divise en quatre
types différents, également connus dans la littérature sous le nom de types de
Petrov. Nous étudions toujours chaque type séparément, et nous montrons qu’il
existe des sous-variétés lagrangiennes de chaque type.

Le premier problème que nous abordons est l’étude de sous-variétés lagrangiennes
totalement géodésiques. Nous montrons que, à congruence près, il en existe
trois différents : un espace anti-de Sitter et deux espaces anti-de Sitter avec
des métriques de type Berger, l’un étiré dans une direction spatiale et l’autre
dans une direction temporelle. Contrairement à S3 × S3, nous obtenons une
sous-variété supplémentaire, qui découle de la nature pseudo-riemannienne de
SL(2,R) × SL(2,R).
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Theorem 7. Toute sous-variété lagrangienne totalement géodésique de la variété
pseudo-presque kählerienne SL(2,R) × SL(2,R) est congrue à l’image de l’une
des cartes suivantes, éventuellement limitée à un sous-ensemble ouvert :

(1) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (Id2, u),
(2) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u, iui),
(3) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u,−kuk),

où Id2 est la matrice d’identité, et i, k sont les coquaternions.

A l’inverse, les cartes (1), (2) et (3) sont des immersions lagrangiennes
totalement géodésiques.

Nous avons étendu ce résultat à l’étude de sous-variétés lagrangiennes
extrinsèquement homogènes. Dans SL(2,R) × SL(2,R) nous avons constaté
qu’en plus des cinq analogues (les trois totalement géodésiques, PSL(2,R) et
R2 × S1), nous obtenons trois exemples exotiques, où l’un est une famille
d’immersions.

Theorem 8. Soit f : (M, g) → SL(2,R)×SL(2,R) une immersion lagrangienne
extrinsèquement homogène dans le pseudo-presque kählerienne SL(2,R) ×
SL(2,R). Alors f(M) est congru à un sous-ensemble ouvert de l’image de
l’un des plongements suivants, dont l’image est l’orbite de (Id2, Id2) par H ⊂
Isoo(SL(2,R) × SL(2,R)) :

(M, g) f H Remarques

(SL(2,R), 2
3 ⟨, ⟩) u 7→ (u, u) SL(2,R)

tot. géodésique
K = − 3

2

(SL(2,R), g+
κ,τ ) u 7→ (u, iui) SL(2,R) tot. géodésique

(SL(2,R), g−
κ,τ ) u 7→ (u,−kuk) SL(2,R) tot. géodésique

(PSL(2,R), 8
3 ⟨, ⟩) [u] 7→ (iuiu−1, juju−1) SL(2,R) K = − 3

8

R3
1/Z

(u, v, w) 7→
(evie−uk, ewje−uk)

R2 × S1 K = 0

(R3, ĝ) ι R⋉φo R2 K = − 3
2

(R3/Hλ, gλ) fλ
R⋉φ1 R2

Hλ

K = − 3
2

(R3, g̃) ȷ R⋉φ2 R2
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où H agit sur f(M) toujours avec une isotropie triviale sauf pour PSL(2,R),
où il agit avec une isotropie Z2. Ici K est la courbure sectionnelle de f(M) et
i, j, k sont les matrices

i =
(

1 0
0 −1

)
, j =

(
0 1
1 0

)
, k =

(
0 1

−1 0

)
.

De plus, ⟨, ⟩ est la métrique donnée dans (2.2), g+
κ,τ et g−

κ,τ sont des métriques
de type Berger, étirées respectivement dans une direction spatiale et temporelle ;
ĝ, ι et φo sont donnés dans l’exemple 21 ; gλ, fλ, Hλ et φ1 sont donnés dans
l’exemple 22 ; g̃, ȷ et φ2 sont donnés dans l’exemple 23.

À l’inverse, les cartes répertoriées dans le tableau ci-dessus sont des sous-
variétés lagrangiennes extrinsèquement homogènes de SL(2,R) × SL(2,R). De
plus, toutes les immersions ne sont pas congruentes les unes aux autres, y
compris les différentes immersions de la famille fλ.

Le théorème 8 montre également qu’il existe des sous-variétés lagrangiennes
pour chaque type des types de Petrov sauf pour le type IV. Dans [7] les auteurs
montrent une manière de construire une sous-variété lagrangienne à partir d’une
sous-variété minimale de S3. Nous utilisons la même méthode pour montrer
qu’il existe une sous-variété lagrangienne de type IV.

Theorem 9. Soit p : Σ → SL(2,R) une surface minimale de (SL(2,R), ⟨, ⟩),
où ⟨, ⟩ est la métrique lorentzienne donnée dans (2.2). Soit ω une solution
de l’équation cosh-Gordon avec ω < log 1√

3 . Supposons que {u, v} soient des
coordonnées nulles avec ⟨ ∂

∂u ,
∂
∂v ⟩ = eω et σ( ∂

∂u , tpartderu) = σ( ∂∂v ,
∂
∂v ) = −1

où σ est la composante de la deuxième forme fondamentale dans la direction de
l’unité normale ξ. Ensuite la distribution sur SL(2,R) × SL(2,R) s’étend sur
(pαi, qβi) avec dp( ∂

∂u ) = pα1, dp( ∂∂v ) = pα2, α3 = 0 et

β1 = 1
2α1 − e−ω

2 α2 − 1
4ωue

−ωα1 × α2

β2 = e−ω

2 α1 + 1
2α2 + e−ωωv

4 α1 × α2

β3 = −
√

3
2e

−ωα1 × α2

est intégrable et la variété intégrale est une sous-variété lagrangienne de type
IV.

Nous étudions également des surfaces de SL(2,R) × SL(2,R). C’est-à-dire
ces immersions pseudo-riemanniennes f : Σ → SL(2,R) × SL(2,R) où Σ est
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une variété (pseudo-)riemannienne bidimensionnelle. En particulier, nous nous
intéressons aux surfaces totalement géodésiques, ces surfaces dont les géodésiques
sont aussi des géodésiques de SL(2,R) × SL(2,R).

Dans l’analogue riemannien S3 × S3 de SL(2,R) × SL(2,R), des surfaces
totalement géodésiques ont été étudiées dans [9] et [19]. Dans [9] les auteurs
ont classé jusqu’à congruence toutes les surfaces presque complexes totalement
géodésiques. Les surfaces presque complexes, également appelées J-holomorphes,
sont les surfaces telles que la structure presque complexe J préserve l’espace
tangent.

Theorem 10 (Bolton, Dioos, Dillen, Vrancken). Toute surface presque complexe
totalement géodésique de S3 ×S3 est congrue à un sous-ensemble ouvert de l’une
des immersions suivantes :

1. S2( 2
3 ) → S3 × S3 : x 7→ 1

2 (1 −
√

3x, 1 +
√

3x),
2. T2 → S3 × S3 : (s, t) 7→ (esi, eti),

où i est le quaternion unité. A l’inverse, les immersions listées ci-dessus sont
des surfaces totalement géodésiques presque complexes.

Dans [19] l’auteur a classé des surfaces totalement géodésiques totalement réelles
de S3 × S3. C’est-à-dire les surfaces sur lesquelles J mappe l’espace tangent
dans l’espace normal.

Theorem 11 (Dioos). Toute surface totalement géodésique totalement réelle
de S3 × S3 est congruente à un sous-ensemble ouvert de l’immersion suivante :

— S2( 2
3 ) → S3 × S3 : u 7→ (ι(u), 1)

où ι est l’immersion totalement géodésique de S2 dans S3. A l’inverse,
l’immersion ci-dessus est une surface totalement géodésique totalement réelle.

Ghandour et Vrancken [25] ont classé toutes les surfaces totalement géodésiques
presque complexes, nous nous concentrons donc sur les surfaces totalement
réelles.

Theorem 12 (Ghandour, Vrancken). Toute surface totalement géodésique
presque complexe de la variété pseudo-presque kählerienne SL(2,R) × SL(2,R)
est congrue à un sous-ensemble ouvert de l’image de l’une des immersions
suivantes :

1. H2(− 3
2 ) → SL(2,R) × SL(2,R) : x 7→ 1

2 (Id2 −
√

3x, Id2 +
√

3x),
2. T2 → SL(2,R) × SL(2,R) : (s, t) 7→ (etk, esk),
3. R2 → SL(2,R) × SL(2,R) : (s, t) 7→ (eti, esi),

où i et k sont les coquaternions.
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Nous obtenons un résultat de classification pour des surfaces totalement
géodésiques totalement réelles de SL(2,R) × SL(2,R).

Theorem 13. Une surface totalement géodésique totalement réelle de SL(2,R)×
SL(2,R) est congruente à un sous-ensemble ouvert de l’image de l’une des
immersions suivantes :

(1) f1 : H2
0 (− 3

2 ) → SL(2,R) × SL(2,R) : p → (p, Id2),
(2) f2 : H2

1 (− 3
2 ) → SL(2,R) × SL(2,R) : p → (p, Id2),

A l’inverse, les immersions listées ci-dessus sont des immersions totalement
réelles totalement géodésiques.

De plus, nous avons étudié les hypersurfaces de SL(2,R) × SL(2,R), plus
spécifiquement les hypersurfaces à courbure sectionnelle constante. Dans le cadre
d’un travail en cours destiné à toutes les variétés presque Kähler à six dimensions,
nous montrons qu’il n’existe pas d’hypersurfaces de SL(2,R) × SL(2,R) à
courbure sectionnelle constante.

Étant donné une variété riemannienne n-dimensionnelle (M, g), on entend par
hypersurface de M une sous-variété de dimension n− 1. Les hypersurfaces de
variétés presque kähleriennes à six dimensions ont été largement étudiées. Par
exemple, Loubeau et Deschamps [18] ont montré qu’il n’y a pas d’hypersurfaces
totalement géodésiques ou totalement ombilicales dans CP 3 et F (C3). Cela est
également vrai pour S3 × S3 (voir par exemple [31]), donc la seule variété à six
dimensions presque kählerienne avec une hypersurface totalement géodésique est
la sphère S6. Cela n’est pas surprenant, compte tenu du résultat de Nikolayevsky
[43], qui affirme qu’une variété homogène avec une hypersurface totalement
géodésique doit être un produit déformé de Rn avec une variété homogène,
une produit torsadé de R avec une variété homogène, ou produit riemannien
d’une forme spatiale avec un espace homogène. Nous montrons qu’il n’existe
pas d’hypersurfaces à courbure sectionnelle constante dans SL(2,R) × SL(2,R)
au moyen d’une version raffinée de l’équation de Codazzi.

Theorem 14. Il n’y a pas d’hypersurfaces dans la variété pseudo-presque
kählerienne SL(2,R) × SL(2,R) avec une courbure sectionnelle constante.

La structure de la thèse est la suivante. Dans le chapitre 1, nous donnons
quelques préliminaires nécessaires à la suite de la thèse. Dans le chapitre 2,
nous introduisons la structure presque Kähler de SL(2,R) × SL(2,R) et nous
fournissons une expression pour le groupe d’isométrie. Au chapitre 3, nous
étudions les sous-variétés lagrangiennes. Nous les divisons en quatre types, et
nous classons toutes les sous-variétés lagrangiennes totalement géodésiques
et extrinsèquement homogènes. De plus, nous montrons que chaque type
possède au moins une sous-variété lagrangienne sous-jacente. Dans le chapitre 4,
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nous classons toutes les surfaces totalement géodésiques totalement réelles de
SL(2,R) × SL(2,R). Enfin, au chapitre 5, nous montrons qu’il n’existe pas
d’hypersurfaces à courbure sectionnelle constante.
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Introduction (anglais)

The aim of this thesis is to broaden the understanding of the nearly Kähler
SL(2,R) × SL(2,R) and its submanifolds. Nearly Kähler manifolds are a
Riemannian relaxation of the definition of a Kähler manifold: an almost
Hermitian manifold (M, g, J) is nearly Kähler if the covariant derivative of
the almost complex structure is skew-symmetric. Moreover, to avoid a possible
intersection with Kähler manifolds, we require the condition on M of ∇J
being non-degenerate, which we call strict nearly Kähler. The nearly Kähler
SL(2,R) × SL(2,R) is the pseudo-Riemannian dual of S3 × S3, one of the only
four six-dimensional homogeneous strict nearly Kähler manifolds, classified by
Butruille [10].

Submanifold theory is a generalization to higher dimensions of the study of
surfaces in R3. That is, it is the study of isometric immersions and how the
intrinsic and extrinsic invariants relate to each other. In almost Hermitian
geometry, we are also interested in how the almost complex structure of the
ambient space acts on the tangent spaces of the submanifold. If the almost
complex structure maps the tangent bundle into the normal bundle, we say that
the submanifold is totally real. Moreover, if the dimension of the submanifold
is maximal, i.e. half of the dimension of the ambient space, the submanifold is
Lagrangian. This definition agrees with the notion of Lagrangian submanifold
in symplectic geometry, since the Kähler form g(J ·, ·) vanishes everywhere on
the submanifold.

Lagrangian submanifolds arise mostly from Hamiltonian mechanics. By Arnold–
Liouville theorem, a level set of a function of an integrable system is a
Lagrangian submanifold. Moreover, if the submanifold is compact the is a
torus. Further, Weinstein–Darboux theorem states that if a submanifold is
Lagrangian with respect to two different symplectic forms, then the manifolds
are symplectomorphic in a neighborhood around the submanifold.

Lagrangian submanifolds are particularly interesting in nearly Kähler geometry:

1
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any Lagrangian submanifold of a six-dimensional strict nearly Kähler manifold
is automatically minimal. Moreover, Lagrangian submanifolds are special
Lagrangian [4]. That is, the real part of the Kähler form coincides with the
volume form.

The main tool for studying submanifolds in this thesis is an almost product
structure P on the nearly Kähler SL(2,R) × SL(2,R). Defined explicitly by
swapping tangent vectors of each factor of SL(2,R) × SL(2,R), we can think of
this structure as the tensor that determines the relation between the product
metric and the nearly Kähler metric of SL(2,R) × SL(2,R). Analogous to
S3 × S3 [40], there exist only three different almost product structures on
SL(2,R) × SL(2,R) satisfying some specific equations. We use this property to
show that the group G of isometries of the nearly Kähler SL(2,R)×SL(2,R) that
preserve the almost complex structure J has 12 different connected components.
Now, given that we are interested in studying submanifolds that have a special
relation with the almost complex structure we will define congruency up to the
group G. That is, two submanifolds are congruent if and only if there exists an
isometry in G that maps one into the other.

The main focus is on the study of Lagrangian submanifolds. Following the
steps for S3 × S3 in [57] and [20], we introduce the notion of angle functions,
which are determined by the action of the tensor P on the submanifold. The
restriction of P onto TM divides into four different types, also known in the
literature as Petrov types. We always study each type separately, and we show
that there exist Lagrangian submanifolds of each type.

The first problem we address is the study of totally geodesic Lagrangian
submanifolds. We show that, up to congruence, there are three different ones:
an anti-de Sitter space and two anti-de Sitter spaces with Berger-like metrics,
one stretched in a spacelike direction and the other in a time-like direction.
In contrast with S3 × S3, we get an extra submanifold, which arises from the
pseudo-Riemannian nature of SL(2,R) × SL(2,R). We extended this result to
the study of extrinsically homogeneous Lagrangian submanifolds. For S3 × S3

(see [6]) there are four extrinsically homogeneous Lagrangian submanifolds: the
two totally geodesic ones, an RP 3 with constant sectional curvature, and a flat
three-torus. In SL(2,R) × SL(2,R) we found that besides the five analogues
(the three totally geodesic ones, PSL(2,R) and R2 × S1), we get three exotic
examples, where one is a family of immersions.

We also study totally geodesic surfaces of SL(2,R) × SL(2,R). Ghandour and
Vrancken [25] classified all almost complex totally geodesic surfaces, therefore
we focus on totally real surfaces. We provide a classification result, where we
show that there are only two examples: H2(− 3

2 ) and H2
1 (− 3

2 ).
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Further, we study hypersurfaces of SL(2,R)×SL(2,R), more specifically constant
sectional curvature hypersurfaces. As part of an ongoing work intended for all six-
dimensional nearly Kähler manifolds, we show that there exist no hypersurfaces
of SL(2,R) × SL(2,R) with constant sectional curvature.

The layout of the thesis is as follows. In Chapter 1, we give some preliminaries
necessary for the rest of the thesis. In Chapter 2, we introduce the nearly Kähler
structure of SL(2,R) × SL(2,R) and we provide an expression for the isometry
group. In Chapter 3, we study Lagrangian submanifolds. We divide them into
four types, and we classify all totally geodesic and extrinsically homogeneous
Lagrangian submanifolds. Moreover, we show that each type has at least one
underlying Lagrangian submanifold. In Chapter 4, we classify all totally real
totally geodesic surfaces of SL(2,R) × SL(2,R). Finally, in Chapter 5, we show
that there are no hypersurfaces with constant sectional curvature.





Chapter 1

Preliminaries

In this chapter we present the basic concepts of differential, Riemannian and
Hermitian geometry. Further, we introduce the reader to nearly Kähler geometry
and we provide some homogeneous examples.

1.1 Smooth manifolds

We can think of a differential manifold as a continuous set of parameters with
some relations between them.

Definition 1. A topological space M is said to be locally Euclidean of
dimension n if for each point p ∈ M there exists an open neighborhood Up
around p and a homeomorphism φp : Up → φp(Up) ⊂ Rn such that φp(Up) is
an open subset of Rn. The pairs (Up, φp) are called coordinate charts.

Definition 2. A C∞-atlas of a locally Euclidean space M is a collection of
charts A = {(Uα, φα)}α∈I such that:

1. A is an open covering of M : M = ∪α∈IUα.
2. The charts are compatible: For all α, β ∈ I such that Uαβ = Uα ∩Uβ ̸= ∅,

the map φβ ◦ φ−1
α

∣∣
Uαβ

: φα(Uαβ) → φβ(Uαβ) is C∞.

Definition 3. A n-dimensional differentiable manifold is a Hausdorff,
second countable locally Euclidean space M of dimension n with a maximal
C∞-atlas A, in the sense that if A′ is another C∞-atlas such that A ⊂ A′ then
A = A′.

5
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Rn Rn

φα
φβ

Uα

Uβ

Uα ∩ Uβ

φβ(Uα ∩ Uβ)

φα(Uα ∩ Uβ)

φβ ◦ φ−1
α

Figure 1.1 – The compatibility of charts

Remark 1. We will often refer to an n-dimensional differentiable manifold as a
n-manifold, a n-smooth manifold, a manifold Mn, etc.

Example 1. Let Sn be the n-dimensional sphere. That is, the subset of Rn+1

Sn = {x ∈ Rn : ∥x∥ = 1},

where ∥·∥ is the standard Euclidean norm. We denote by p1 and p2 the north
and south poles, respectively. The maps φi : Ui → Rn, where Ui = Sn \ pi and
i = 1, 2 given by

φi(x) =
(

x1
1+(−1)ix0

, . . . , xn

1+(−1)ix0

)
define a C∞-atlas. Taking the maximal atlas that contains it we get a
differentiable structure on Sn.

Definition 4. Let (M,A) be a differentiable manifold. A function f : M → R
is said to be differentiable at p ∈ M there exist a coordinate chart (U,φ)
in A with p ∈ U such that f ◦ φ−1 : φ(U) ⊂ Rn → R is C∞ at p. A function
f : M → R is said to be differentiable or smooth if it is differentiable at every
point p ∈ M .

Definition 5. Given two smooth manifolds Mm and Nn and a map f : M → N
we said that f is differentiable at p ∈ M if there exist coordinate charts
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(U,φ) and (V, ψ) around p and f(p) respectively, such that f(U) ⊂ V and
ψ ◦ f ◦ φ−1 : φ(U) ⊂ Rm → ψ(V ) ⊂ Rn is differentiable. As before, if f is
differentiable for all p ∈ M then it is said to be differentiable, or smooth.

Definition 6. Let Mn be a smooth manifold and let p ∈ M . We define C∞(p)
as the set of all smooth functions defined on open neighborhoods around p.

Given two smooth functions f and g on C∞(p) defined in U and V respectively,
we may define the sum f + g : U ∩ V → R as (f + g)(p) = f(p) + g(p). In the
same way we define fg and λf , where λ ∈ R.

Definition 7. A tangent vector to M at p is a map v : C∞(p) → R such that
1. v(f + g) = v(f) + v(g) and v(λf) = λv(f), where λ ∈ R,
2. v(fg) = v(f)g(p) + f(p)v(g).

Remark 2. The set TpM of all tangent vectors to an n-manifold M at a point p
forms a n-dimensional vector space, called the tangent space at p.

Given a coordinate chart (U,φ = (x1, x2, . . . , xn)) on a manifold Mn, a point
p ∈ U we define the tangent vectors ∂

∂xi

∣∣∣
p

by

∂

∂xi

∣∣∣∣
p

(f) = ∂

∂xi

∣∣∣∣
φ(p)

f ◦ φ−1.

These tangent vectors are linearly independent and form a basis of TpM .
Moreover, if v =

∑
i ai

∂
∂xi

∣∣∣
p

then ai = v(xi).

If γ : I → M , I ⊂ R, is a curve in a manifold M , we define its velocity at to ∈ I
as

γ′(to) =
n∑
i=1

r′
i(to)

∂

∂xi

∣∣∣∣
γ(to)

,

where ri = xi ◦ γ. Moreover, for any tangent vector v ∈ TpM there exists a
curve γ : I → M such that γ(0) = p and γ′(0) = v.

Example 2. Let V be a n-dimensional real vector space. As it is homeomorphic
to Rn it is clearly a differentiable manifold. We can identify the tangent space
at a point p ∈ V with V itself, via the isomorphism

v 7→ ∂

∂t

∣∣∣∣
t=0

(p+ tv).

Definition 8. Given smooth manifolds Mm and Nn and a smooth map
F : M → N the differential of F at p is the linear map dfp : TpM → TF (p)N
defined by dFp(v)(f) = v(f ◦ F ), where f ∈ C∞(F (p)).
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Example 3. Given a smooth manifold Mn, the set TM = ∪p∈MTpM possesses
a canonical smooth structure, of dimension 2n. We call TM the tangent bundle
of M .

Definition 9. Let Mm and Nn be smooth manifolds. A map f : M → N is
called a(n):

— Immersion if dfp is injective for all p ∈ M . If moreover, M ⊂ N and the
inclusion is an immersion we say that M is an immersed submanifold
of N .

— Embedding if f is an immersion such that M is homeomorphic to f(M),
where f(M) carries the induced topology.

— Submersion if dfp is surjective for all p ∈ M .

Definition 10. Let Mn be a smooth manifold and let U be an open subset of
M . A smooth vector field on U is a smooth map X : U → TM such that
Xp = X(p) ∈ TpM for all p ∈ U . Given a function f : U → R we define the
function X(f) : U → R as X(f)(q) = Xq(f).

Remark 3. Given a smooth vector field X on a manifold M , we can write it
locally as Xp =

∑
i ai(p)

∂
∂xi

∣∣∣
p
, where p ∈ U and (U, (x1, . . . , xn)) is a coordinate

chart, and ai : U → R are smooth functions.

The set of all smooth vector fields on a manifold M is denoted by X(M).

Definition 11. Let X be a smooth vector field on a manifold M . A curve
γ : I ⊂ R → M is said to be an integral curve of X if γ′(t) = Xγ(t) for all t.

Example 4. Let H be the quaternion algebra. That is, R4 with the non-
commutative product given by the following table:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

where 1, i, j, and k are the canonical basis of R4.

As mentioned in Example 1, the 3-sphere S3 ⊂ R4 ∼= H is a smooth manifold.
We define vector fields on S3 by

X1(p) = pi, X2(p) = pj, X3(p) = pk.
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It can be easily proven that these vector fields are smooth, as the multiplication
by a fixed quaternion is smooth.

The integral curves for X1, X2 and X3 through a point p are respectively given
by

peit : = p(1 cos t+ i sin t),

pejt : = p(1 cos t+ j sin t),

pekt : = p(1 cos t+ k sin t).

Definition 12. Given X,Y ∈ X(M), the set of all smooth vector fields in
M , we define their Lie bracket as the smooth vector field [X,Y ] given by
[X,Y ]p(f) = Xp(Y (f)) − Yp(X(f)), with f ∈ C∞(p).

Proposition 1. Let (U, (x1, . . . , xn)) be a coordinate chart of a manifold M .
Let X,Y, Z ∈ X(M) and let f be a smooth function on M . Then,

1. [ ∂
∂xi

, ∂
∂xj

] = 0 for all i and j.
2. [X,Y ] = −[Y,X],
3. [X,Y + Z] = [X,Y ] + [Y, Z],
4. [X, fY ] = X(f)Y + f [X,Y ],
5. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last property is known as the Jacobi identity.

Definition 13. A set of vector fields on a manifold M is called a frame if at
each point p it is a basis of the tangent space TpM .

Proposition 2. Given a frame {X1, . . . , Xn} on a manifold M that satisfies
[Xi, Xj ] = 0 for all i, j = 1, . . . , n, there exists a coordinate chart
(U, (x1, . . . , xn)) such that Xi = ∂

∂xi
for all i = 1, . . . , n.

1.2 Riemannian manifolds

Definition 14. A Riemannian manifold is a pair (M, g) where M is a smooth
manifold and g assigns to each point p an inner product gp in TpM , which varies
smoothly from point to point. The map g is know as the Riemannian metric
of M , or simply as the metric. Alternatively, if gp is indefinite we say that the
pair (M, g) is a pseudo-Riemannian manifold.

Definition 15. A map ϕ : (Mn, g1) → (Nn, g2) between Riemannian manifolds
is said to be an isometry if it is a diffeomorphism and preserves the metric:
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g2(dϕX, dϕY ) = g1(X,Y ) for all X,Y ∈ X(M). If there exists such a map, then
we say that (M, g1) and (N, g2) are isometric.

Proposition 3. Let φ,ψ : M → N be isometries, where M and N are connected
(pseudo-)Riemannian manifolds. Suppose that there exists a point p ∈ M such
that φ(p) = ψ(p) and dφp coincides with dψp in TpM . Then φ = ψ everywhere.

Example 5. The canonical Riemannian metric on the n-dimensional Euclidean
space Rn is defined by identifying TxRn with Rn and adding the usual inner
product ⟨, ⟩ on Rn.

Example 6. In Example 1 we defined the n-dimensional sphere embedded in
Rn. The tangent space at a point p is given by {p}⊥ ⊂ Rn. The restriction
of the inner product of Rn to {p}⊥ induces a Riemannian metric on Sn. This
metric is know as the round metric.

Example 7. Consider the half space {(x1, . . . , xn) : x1 > 0} ⊂ Rn with the
metric

g
(

∂
∂xi

, ∂
∂xj

)
= δij

1
x2

1
.

This Riemannian manifold is called hyperbolic space of dimension n.

Remark 4. Given a curve γ : [a, b] → M in a Riemannian manifold (M, g) we
may define the length of γ by

L(γ) =
∫ b

a

√
g(γ′(t), γ′(t))dt.

Hence, a Riemannian metric defines a distance on M :

d(p, q) = inf{L(γ) : γ joins p and q}

The topology induced by d coincides with the original topology on M .

Definition 16. A linear connection is a map ∇ : X(M) × X(M) → X(M),
(X,Y ) 7→ ∇XY that satisfies the following properties:

1. It is C∞-linear in the first factor: ∇fX+Y Z = f∇XZ + ∇Y Z.
2. It is R-linear on the second factor: ∇X(λY + Z) = λ∇XY + ∇XZ.
3. It satisfies the Leibniz rule on the second factor: ∇XfY = X(f)Y +
f∇XY .

This definition can be extended to tensors, that is C∞ multilinear maps defined
for all TpM such vary smoothly from point to point. Namely, given a (p, q)-tensor

T : X(M) ⊗ . . .⊗ X(M)︸ ︷︷ ︸
p times

→ X(M) ⊗ . . .⊗ X(M)︸ ︷︷ ︸
q times
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we define the covariant derivative of T with respect to Y ∈ X(M) as the
(p, q)-tensor given by

(∇Y T )(X1, . . . , Xp) = ∇Y (T (X1, . . . , Xp)) −
p∑
i=1

T (X1, . . . ,∇YXi, . . . , Xp).

Given a Riemannian manifold (M, g) there exists a unique linear connection
which is:

1. symmetric, i.e. ∇XY − ∇YX = [X,Y ],
2. metric compatible, i.e. X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ).

Definition 17. The unique connection defined above is called the Levi-Civita
connection associated to g.

Although there is no general explicit formula for this connection, we may
compute it by means of the so-called Koszul formula:

g(∇XY, Z) = 1
2

(
X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])
)
,

where X,Y, Z ∈ X(M).

Definition 18. A vector field X along a curve γ in a (pseudo-)Riemannian
manifold is said to be parallel along γ if ∇γ′X = 0, where ∇ is the Levi-Civita
connection.

Note that to define a parallel vector field we do not need a metric, therefore we
may define parallelity for any linear connection. If the connection is compatible
with the metric then parallel vector fields have constant length.

Definition 19. A curve γ is called a geodesic if its velocity is a parallel vector
field along γ: ∇γ′γ′ = 0.

Lemma 1. Let M be a smooth manifold with a linear connection ∇ (not
necessarily torsion-free or metric compatible). Given p ∈ M and X ∈ TpM
there exist a unique maximal geodesic γX such that γX(0) = p and γ′

X(0) = X.

Here maximality refers to the domain of the geodesic.

Definition 20. Given a point p in a smooth manifold with a linear connection,
we define the exponential map expp : U ⊂ TpM → M by

exp(X) = γX(1),

where U is the subset of TpM where γX(1) is defined.
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Lemma 2. Let M be a smooth manifold with a linear connection. Given
p ∈ M , there exist neighborhoods U and V of p and 0 ∈ TpM , respectively, such
that expp : V → U is a diffeomorphism. Such neighborhood U of p is called a
normal neighborhood.

An important consequence for a manifold M to carry a Riemannian metric g is
that the metric induces a distance on M . To be more precise, given a curve
γ : [a, b] → M we can measure its length by

L(γ) =
∫ b

a

√
g(γ′(t), γ′(t))dt.

Consequently, we can define a distance d between two points p, q ∈ M :

d(p, q) = inf
γ

{L(γ) : γ joins p and q}.

This distance induces a topology on M , which coincides with the topology of
smooth manifold. This is not true for pseudo-Riemannian, wince we cannot
deduce a natural distance from it.

Theorem 15 (Hopf-Rinow). Let M be a Riemannian manifold. Then the
following are equivalent:

1. (M,d) is complete as topological metric space. That is, all the Cauchy
sequences converge.

2. M is geodesically complete, that is geodesics are defined for all t ∈ R.
3. The exponential map is defined in all TpM for all p.
4. Closed and bounded subsets of M are compact.

Definition 21. Given a (pseudo-)Riemannian manifold (M, g) the curvature
tensor R is defined by

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.

The curvature tensor is sometimes written as R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
We will only use it in the next proposition.

Proposition 4. The curvature tensor R of a Riemannian manifold satisfies:
1. R(X,Y, Z,W ) +R(Y,X,Z,W ) = 0,
2. R(X,Y, Z,W ) +R(X,Y,W,Z) = 0,
3. R(X,Y, Z,W ) −R(Z,W,X, Y ) = 0,
4. R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Z,X, Y,W ) = 0. (First Bianchi

identity)
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Definition 22. Given a (pseudo)-Riemannian manifold (M, g), we define the
sectional curvature K of a non-degenerate plane Π ⊂ TpM by

Kp(Π) = gp(Rp(X,Y )Y,X)
gp(X,X)gp(Y, Y ) − gp(X,Y )2

where Xp and Yp form a basis of Π.

Theorem 16 (Schur’s Lemma). Let M be a Riemannian manifold such that
Kp(Π) = κ(p) for all planes Π ⊂ TpM and a smooth function κ. Then κ is
constant.

Complete Riemannian manifolds with constant sectional curvature are known
as space forms. In Example 5, Example 6 and Example 7 we defined the three
different space forms, up to a rescaling. Next, we define the pseudo-Riemannian
space forms.

Example 8 (Pseudo-Riemannian space forms). The pseudo-Euclidean space
Rnk is defined as the manifold Rn with the pseudo-Riemannian metric ⟨x, y⟩k =
−x1y1 − . . . − xkyk + xx+1yx+1 + . . . + xnyn. The manifold Rnk has constant
sectional curvature equal to zero, and when k = 1 it is known as Minkowski
space. If k = 0, we have the usual Euclidean space.

Now consider the pseudo-Riemannian sphere Sn−1
k (c) of curvature c > 0 as the

pseudo-Riemannian submanifold of Rnk given by

Sn−1
k (c) =

{
x ∈ Rnk : ⟨x, x⟩k = 1

c

}
.

It has positive constant sectional curvature c. If k = 0 it is the usual Riemannian
sphere and if k = 1 is called the de Sitter space.

The pseudo-hyperbolic space Hn−1
k−1 (c) of curvature c < 0 is the pseudo-

Riemannian submanifold of Rnk given by

Hn−1
k−1 (c) =

{
x ∈ Rnk : ⟨x, x⟩k = 1

c

}
.

If k = 1 the it is the usual hyperbolic space and if k = 2 it is called the anti-de
Sitter space.

We denote by S̃n−1
k and H̃n−1

k−1 their respective universal covers.

Theorem 17 (Killing-Hopf). Let Mn be a complete, simply connected
Riemannian manifold with constant sectional curvature c. Then it is isometric
to either Hn(c), Rn or Sn(c).

Theorem 18 (O’Neill). Let Mn be a complete, simply connected Lorentzian
manifold with constant sectional curvature c. Then it is isometric to either
H̃n

1 (c), Rn1 or S̃n1 (c).
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Remark 5. Contrary to the Riemannian case, pseudo-Riemannian metrics do
not induce distances on the underlying manifold. Hence, there is no canonical
choice of distance to define completeness. Thus, in Theorem 18 complete means
geodesically complete, i.e. geodesics are defined for all t ∈ R.

We finish this section with a result for linear connections that can be found in
[53].

Let M and M ′ smooth manifolds of dimension n with linear connections and
let p ∈ M and p′ ∈ M ′. Choose a linear isomorphism φ : TpM → Tp′M ′.
Choose open convex neighborhoods V and V ′ = φ(V ) of 0 ∈ TpM and 0 ∈
Tp′M ′, respectively. Let U = expp(V ) and U ′ = expp′(V ′). There exists a
diffeomorphism f : U → U ′ such that the diagram

V V ′

U U ′

expp

φ

expp′

f

(1.1)

commutes. Moreover, for every q ∈ U , we have linear isomorphisms φq : TqM →
Tf(q)M

′ such that the diagram

TpM Tp′M ′

TqM Tf(q)M
′

τ

φ

τ ′

φq

commutes, where τ and τ ′ are the parallel transports along geodesics passing
through p and p′, respectively.

Theorem 19 (Local version of Cartan-Ambrose-Hicks theorem). Let M and
M ′ be smooth manifolds of dimension n, equipped with linear connections. Let
R, R′ and T , T ′ their respective curvature and torsion tensors. Let p ∈ M ,
p′ ∈ M ′ and let U and U ′ be normal neighborhoods around p and p′, respectively.
Suppose that for every q ∈ U the linear isomorphism φq maps Rq into R′

f(q)
and Tq into T ′

f(q), i.e.

φqR(X,Y )Z = R′(φqX,φqY )φqZ, φqT (X,Y ) = T ′(φqX,φqY ).

Then f : U → U ′ is an affine diffeomorphism (i.e. connection-preserving) and
dfq : TqM → Tf(q)M

′ coincides with φq.

Corollary 1. Let (M, g) and (M ′, g′) be (pseudo-)Riemannian manifolds and
let R and R′ be their respective curvature tensors, associated to the Levi-Civita
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connection. Let p ∈ M , p′ ∈ M ′, U , U ′ normal neighborhoods around p and p′

respectively, and φ : TpM → Tp′M ′ be a linear isometry.

Suppose that for every q ∈ U , and for every u1, . . . , u4 ∈ TqM it holds

g(R(u1, u2)u3, u4)q = g′(R′(u′
1, u

′
2)u′

3, u
′
4)f(q),

where f is the diffeomorphism given in (1.1), u′
i = τ ′(φ(τ−1(ui))), τ and τ ′ are

the parallel transports along the geodesics that join p with q and p′ with f(q),
respectively. Then f is a local isometry between M and M ′.

1.3 Lie groups

Definition 23. A Lie group is a group G with a smooth structure, such that
the multiplication m : G×G → G, (g, h) 7→ gh and inverse i : G → G, g 7→ g−1

are smooth.

Definition 24. A Lie algebra is a vector space g together with a bilinear
operation [, ] : g × g → g called the Lie bracket. Such operation must satisfy
the following properties:

1. [X,Y ] = −[Y,X],
2. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

for all X,Y, Z ∈ g.

Definition 25. An isomorphism of Lie groups G and H is a group
isomorphism Φ: G → H such that it is differentiable. On the other hand,
an isomorphism of Lie algebras g and h is a vector space isomorphism
φ : g → h such that φ[X,Y ]g = [φX,φY ]h, where X,Y ∈ g.

Although the definitions of Lie group and Lie algebra seem to be unrelated,
any Lie group has an associated Lie algebra and any Lie algebra has a simply
connected associated Lie group.

Definition 26. Let G be a Lie group and denote by Lg : G → G and Rg : G → G
the left and right multiplications by g, respectively. A left-invariant vector
field on G is a vector X such that (dLg)hXh = Xgh. Similarly we can define
right-invariant vector fields.

We denote by Lie(G) the set of all left-invariant vector fields on G. With
the Lie bracket [, ] of smooth vector fields, Lie(G) and [, ] form a Lie algebra.
Denote the identity of G by e. Then the map that sends X 7→ Xe is a vector
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space isomorphism between Lie(G) and TeG. Hence, we can copy a Lie algebra
structure to TeG.

Associating a Lie group to a given Lie algebra is a more difficult task than
the other way around. Many Lie groups can have the same associated Lie
algebra, as for instance SO(n), O(n) and Spin(n), or R and S1. Thus, adding
the condition of being simply connected, we obtain what is known as Lie’s third
theorem.

Theorem 20 (Lie’s third theorem). Given a Lie algebra g there exists a unique
(up to isomorphism) simply connected Lie group G such that Lie(G) = g.

The sum of two Lie algebras g and h denoted by g ⊕ h is the Lie algebra with
Lie bracket given by [X1 + Y1, X2 + Y2] = [X1, X2]g + [Y1, Y2]h. Because of the
overlap in notation, we will clarify whether we are talking of sum of Lie algebras
or sum of vector spaces.

Definition 27. A Lie subalgebra of a Lie algebra g is a vector subspace
invariant by the Lie bracket. An ideal of g is a vector subspace a such that
[X,Y ] ∈ a for all X ∈ a and Y ∈ g.

As before, Lie subgroups and Lie subalgebras are tightly linked.

Proposition 5. Given a Lie group G with Lie algebra g, for each Lie subalgebra
h of g there exists a unique connected Lie subgroup H of G with Lie algebra h.

Definition 28. A Lie algebra g is abelian if [X,Y ] = 0 for all X,Y ∈ g. A
Lie algebra is said to be simple if does not contain any proper ideals. If it does
not contain any proper abelian ideals is known as semisimple Lie algebra.

Proposition 6. Let g be a Lie algebra. The following are equivalent:
1. g is semisimple,
2. g is a direct sum of simple Lie algebras,
3. The Killing form of g is non-degenerate,

where the Killing form is the quadratic form given by

B(X,Y ) = tr(Z 7→ [X, [Y,Z]]). (1.2)

Definition 29. A reductive Lie algebra is a Lie algebra g such that for every
ideal a there exists another ideal b such that g = a ⊕ b, as sum of Lie algebras.

We denote by z(g) the center of a Lie algebra g, i.e. z(g) = {X ∈ g : [X,Y ] =
0, for all Y ∈ g}. The center of a Lie algebra is an abelian ideal.
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The lower central series of a Lie algebra g is given by gk+1 = [gk, g]. If there
exists a k ∈ N such that gk = 0 then we say that g is nilpotent. The upper
central series of g is given by gk+1 = [gk, gk]. If there exists a k ∈ N such that
gk = 0 then we say that g is solvable.

Proposition 7. A Lie algebra g is reductive if and only if g = z(g) ⊕ [g, g] as a
sum of Lie algebras, with [g, g] semisimple.

Therefore, we can interpret reductive Lie algebras as a generalization of
semisimple Lie algebras, since any reductive Lie algebra is the sum of an
abelian Lie algebra and a collection of simple Lie algebras.

The exponential map

Given a morphism of Lie groups, its differential at the identity element is a
morphism of Lie algebras. Moreover, the converse is true if we require simply
connectedness.

Theorem 21 (Lie’s second theorem). Let G be a simply connected Lie group
with Lie algebra g and let H be a Lie group with Lie algebra h. Suppose that
there exists a morphism of Lie algebras φ : g → h. Then there exists a morphism
of Lie groups Φ: G → H such that deΦ coincides with φ, where e is the identity
element of G.

A monoparametric subgroup of a Lie group G is a morphism γ : (R,+) → G.
Let X ∈ g be an element of the Lie algebra of G. The Lie subalgebra Span{X}
is an abelian subalgebra, therefore by Lie’s second theorem we obtain that there
exists an associated monoparametric subgroup γX of G such that γ′

X(0) = X.

We define the exponential map exp: g → G by

exp(X) = γX(1).

In general the exponential map is not surjective. For instance, exp: sl(2,R) →

SL(2,R) is not surjective, as the element
(

−1 1
0 −1

)
is not on its image. This

is also related to the fact that SL(2,R) with the Killing form as Lorentzian
metric is not geodesically connected.

Actions of Lie groups

Definition 30. Let G be a Lie group and M a smooth manifold. An action
of G on M is a smooth map ϕ : G×M → M : (g, p) 7→ g · p such that
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1. e · p = p,
2. g2 · (g1 · p) = (g2g1) · p,

where e is the identity element of G.

The action is transitive if for any arbitrary pair of points p, q in M there exists
an element g ∈ G such that g · p = q.

The orbit of an element p ∈ M by an action of a group G on M is the set

G · p = {g · p ∈ M : g ∈ G}.

The isotropy subgroup of p ∈ M (also known as the stabilizer) is the subgroup
of G given by

Gp = {g ∈ G : g · p = p}.
Remark 6. Given an action of a Lie group on a smooth manifold M , the isotropy
group of a point is a closed subgroup (and therefore a Lie subgroup of G) and
the orbits are immersed submanifolds of M . The orbit G · p of a point p ∈ M
is diffeomorphic to G/Gp the set of all cosets.
Remark 7. Given a Riemannian manifold, the set of all its isometries is a Lie
group with the composition as group law.

Definition 31. A homogeneous Riemannian manifold is a Riemannian
manifold M whose isometry group acts transitively on M .

Example 9. The orthogonal group O(n) acts by isometries on Rn. The orbit
of any unit-length element of Rn is the unit sphere Sn−1. The stabilizer of each
point in the sphere is isomorphic to O(n− 1) therefore, Sn−1 ∼= O(n)/O(n− 1).

Similarly, n-hyperbolic spaces are orbits of the action of SO(n − 1, 1) on Rn1 .
Thus Hn−1 = SO(n− 1, 1)/O(n− 1).

Bianchi classification

In the late 19th century, Bianchi managed to classify all three-dimensional real
Lie algebras in 11 classes, up to isomorphism. Most of them are a semidirect
products R⋉R2. Namely, their simply connected associated Lie group is R×R2

with the group law (t, u) · (s, v) = (t + s, φ(s)u + v), where φ : R → Aut(R2).
All such groups can also be expressed as a group of 3×3 matrices, where the
elements are of the form (

φ(s) v
0 1

)
.

We give the classification below, and e1, e2, e3 denotes a basis of each Lie algebra.
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— Type I. The Lie algebra is abelian. That is [e1, e2] = [e1, e3] = [e2, e3] = 0.
The associated Lie group is R3.

— Type II. Known as the Heisenberg Lie algebra, this is the nilpotent Lie
algebra with the bracket given by [e1, e2] = e3, [e1, e3] = [e2, e3] = 0. The
associated Lie group is the Heisenberg group, often denoted by Nil3. It is
the the semidirect product R⋉ R2 with

φ(s) =
(

1 s
0 1

)
.

— Type III. The Lie algebra is given by the relations [e1, e2] = [e1, e3] = 0
and [e2, e3] = e2. The Lie group is R⋉ R2 with

φ(s) =
(
eas 0
0 1

)
, (a ∈ R \ {0})

— Type IV. The Lie algebra is given by the relations [e1, e2] = 0, [e3, e1] = e1
and [e3, e2] = e1 + e2. The Lie group is R⋉ R2 with

φ(s) =
(
eas eass
0 eas

)
, (a ∈ R \ {0}).

— Type V. The Lie algebra is defined by the relations [e1, e2] = 0, [e3, e1] = e1
and [e3, e2] = e2. The Lie group is R⋉ R2 with

φ(s) =
(
eas 0
0 eas

)
, (a ∈ R \ {0}).

— Type VI. The Lie algebra is defined by the relations [e1, e2] = 0, [e3, e1] =
e1 and [e3, e2] = ce2, c ∈ R \ {0}. The Lie group is R⋉ R2 with

φ(s) =
(
eas 0
0 eacs

)
, (a ∈ R \ {0}).

— Type VI0. The Lie algebra is defined by the relations [e1, e2] = 0, [e3, e1] =
e1 and [e2, e3] = e2. The Lie group is R⋉ R2 with

φ(s) =
(
eas 0
0 e−as

)
, (a ∈ R \ {0}).

— Type VII. This is an infinite family. They are the Lie algebra of the
semidirect product R⋉R2 where φ′(0) has complex non-real non-imaginary
eigenvalues.
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— Type VII0. The Lie algebra is defined by the relations [e1, e2] = 0,
[e1, e3] = e2 and [e3, e2] = e1. The Lie group is the connected group of
isometries of R2, given by R⋉ R2 with

φ(s) =
(

cos s sin s
− sin s cos s

)
.

— Type VIII. The Lie algebra is sl(2,R). It has the relations [e1, e2] = 2e3,
[e1, e3] = 2e2 and [e3, e2] = 2e1. The Lie group is the universal cover of
SL(2,R), the 2 by 2 matrices of determinant 1.

— Type IX. The Lie algebra su(2). It has the relations [e1, e2] = 2e3,
[e3, e1] = 2e2 and [e2, e3] = 2e1. The Lie group is SU(2), the group of all
2 by 2 complex unitary matrices of determinant 1. It is also isomorphic
to the 3-sphere, seen as the set of all unit quaternions.

Note that all Lie algebras from type II to type VII0 are solvable. Type VIII and
IX are the only ones that are simple. The exponential map of all Lie algebras
is surjective except for type VIII.

1.4 Submanifold theory

Although the study of submanifolds is not exclusive to Riemannian geometry,
we think of submanifold theory as the study of Riemannian immersions. That
is, an immersion f : (M, g) → (N, g̃) such that g̃((df)X, (df)Y ) = g(X,Y ), for
all X,Y ∈ X(M).

A Riemannian immersion f : (M, g) → (N, g̃) determines an orthogonal splitting
of the tangent bundle of the target space: TN = (df)(TM) ⊕ TM⊥, which we
will call the tangent part and the normal part.

Denote by ∇ and ∇̃ the Levi-Civita connections on M and N associated to g and
g̃, respectively. Given two vector fields X,Y on M , we can split ∇̃(df)X(df)Y
into a tangent and a normal part:

∇̃(df)X(df)Y = (df)∇XY + h(X,Y ).

This equation is known as the Gauss formula, and h is a symmetric, normal
tensor called the second fundamental form of M .

If instead we take a normal vector field ξ ∈ Γ(TM⊥) and a tangent vector field
X ∈ X(M) we get

∇̃(df)Xξ = −Sξ(df)X + ∇⊥
Xξ.

This is know as the Weingarten formula and ∇⊥ is a connection
∇⊥ : Γ(TM) × Γ(TM⊥) → Γ(TM⊥) called the normal connection. On the
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other hand, Sξ is linear operator symmetric with respect to g̃. Moreover, the
shape operator associated to ξ, is linear on ξ and satisfies

g̃(Sξ(df)X, (df)Y ) = g̃(h(X,Y ), ξ).

Remark 8. As the immersion f preserves g, we will not make a difference
between g and g̃. Also, we will omit writing f onwards.

Denote by R⊥ the normal curvature tensor, that is the tensor given by

R⊥(X,Y )ξ = ∇⊥
X∇⊥

Y ξ − ∇⊥
Y ∇⊥

Xξ − ∇⊥
[X,Y ]ξ.

We also write (∇Xh)(Y, Z) = ∇⊥
Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).

Let R̃ and R be the curvature tensors of N and M respectively. Then R̃ splits
into a tangent part and a normal part, which yields the so0called Gauss, Codazzi
and Ricci equations.

1. Gauss equation: (R̃(X,Y )Z)⊤ = R(X,Y )Z − Sh(Y,Z)X + Sh(X,Z)Y .
2. Codazzi equation: (R̃(X,Y )Z)⊥ = (∇Xh)(Y,Z) − (∇Y h)(X,Z).
3. Ricci equation: g(R̃(X,Y )ξ, η) = g(R⊥(X,Y )ξ, η) − g([Sξ, Sη]X,Y ).

Here, X, Y and Z are vector fields on M and ξ and η are normal vector fields.

These equations set the basis of submanifold theory. Namely, since any
Riemannian immersion must satisfy them, they are the basic necessary conditions
for a existence-and-uniqueness-of-submanifolds type of result.

The most classical result in this area, is the so-called Bonnet theorem [21]. It
states that given h and g in R3 satisfying the Gauss and Codazzi equations,
there exists a unique (up to congruence) surface of R3 with metric g and second
fundamental form h. Note that, since the codimension is only one, the Ricci
equation becomes trivial.

A similar result [15] can be obtained when the ambient space is a simply
connected space form, even for the pseudo-Riemannian case. Note that for
submanifolds of space forms, the Gauss and Codazzi equations can be written
"intrinsically". That is, since the left-hand side only depends on the metric of
the submanifold, the equations can be written only in terms of tensors defined
on the submanifold. For this reason, when the ambient space becomes less
symmetric the fundamental equations are not sufficient anymore to guarantee
the existence (and uniqueness) of a submanifold.

Nonetheless, in [16] Daniel provided sufficient and necessary conditions for the
existence and uniqueness of a hypersurface in Sn × R or Hn × R. Separately,
Kowalczyk [33] and Lira, Tojeiro and Vitório [36] generalized this result for
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submanifolds of a product of two space forms. Also, Piccione and Tausk [45]
worked on this problem for homogeneous manifolds.

There does not exist (to the knowledge of the author) a similar result in nearly
Kähler theory. Hence, we study submanifolds with strong properties in order
to compensate for the lack of the sufficient conditions for the existence of
submanifolds.

Definition 32. A totally geodesic submanifold of a (pseudo-)Riemannian
manifold M is a submanifold such that its geodesics are also geodesics of M .
Equivalently, a submanifold is totally geodesic if the second fundamental form
vanishes everywhere.

Definition 33. The mean curvature field H on a (pseudo-)Riemannian
submanifold M is defined as the trace of the second fundamental form. Namely,

H = 1
n

n∑
i=1

ηih(Ei, Ei),

where {Ei}i is an orthogonal frame on Mn and ηi = g(Ei, Ei) = ±1.

If H vanishes everywhere we say that M is a minimal submanifold.

Definition 34. A submanifold M of a (pseudo-)Riemannian manifold is said
to be totally umbilical if h(X,Y ) = g(X,Y )H for all X,Y ∈ X(M).

Definition 35. Let G be a connected Lie group acting on a (pseudo-)
Riemannian manifold M by isometries. Orbits of points p ∈ M by G are
called extrinsically homogeneous submanifolds (also known as equivariant
submanifolds).

1.5 Almost Hermitian manifolds

In the same way as we defined a smooth manifold, we could define a “holomorphic
manifold”. That is, a topological space with coordinate charts mapping into Cn
and with holomorphic transitions.

Definition 36. Let M be a smooth manifold. A holomorphic atlas is a set
{(Uα, φα)}α∈I of open subsets Uα ⊆ M and charts φα : Uα → φα(Uα) ⊆ Cn
such that the transition maps φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) are
holomorphic. Such coordinate charts are called holomorphic charts.

Definition 37. A complex manifold M of dimension n is a smooth manifold
of dimension 2n equipped with a maximal holomorphic atlas.
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Definition 38. Given a complex manifold M , a holomorphic function is a
function f : M → C such that f ◦φ−1

α : φ(Uα) → C is holomorphic, for all charts
(Uα, φα).

Analogous to the definition of smooth functions and smooth maps, we may
define holomorphic functions and holomorphic maps. Two complex manifolds
are called biholomorphic if there exist a holomorphic homeomorphism whose
inverse is also holomorphic.

Example 10 (Complex torus). A complex torus is defined as the quotient
Cn/Γ where Γ = ⊕2n

j=1Zvj , a discrete subgroup of Cn. Since Cn/Γ and Cn are
locally homeomorphic we can easily define charts into Cn. Two complex tori
Cn/Γ1 and Cn/Γ2 are biholomorphic if and only if Γ1 and Γ2 are isomorphic.

In general, even-dimensional spheres are not complex manifolds. However, any
complex projective space can be seen as a complex manifold.

Example 11 (Complex projective space (for more information see [39])). We
define the complex projective space as

CPn = (Cn+1 − {0})/∼,

where x ∼ y if there exists λ ∈ C such that x = λy.

We define the open subsets Ũi in CPn as

Ũi = {[x] ∈ CPn : xi ̸= 0}.

Then we define the holomorphic charts φi : Ũi → Cn by

φi([x]) =
(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

Now we generalize the notion of the complex unit i ∈ C to a tensor on a complex
manifold. Take a holomorphic chart (U,φ = (x1 + iy1, x2 + iy2, . . . , xn + iyn))
on a complex manifold M and define JU : TU → TU : ∂

∂xi
7→ ∂

∂yi
and ∂

∂yi
7→

− ∂
∂xi

. We see that (JU )p is independent of U , thus we can define a tensor
J : TM → TM . This tensor satisfies J2 = − Id and is known as the complex
structure on M .

We can generalize the concept of complex manifold to an even-dimensional
smooth manifold that admits such a tensor J . These manifolds are called almost
complex manifolds. In general, an almost complex manifold is not necessarily a
complex manifold. Such is the case of the sphere S6, which we see below.
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Example 12. We define the octonion algebra O as R8 with the non-associative
operation given by the following table:

• 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

The set of all imaginary octonions Im(O) carries a natural cross product defined
as α× β = 1

2 (αβ − βα).

Consider S6 immersed in R7 ∼= Im(O) and define the almost complex structure
J on S6 by

Jp(X) = p×X.

The sphere S6 with J is not a complex manifold and this can be proven using
Theorem 22. It is still an open problem to determine wether S6 can be endowed
with a complex structure or not.

Example 13. Every even-dimensional Lie group G2n is parallelizable. That is,
the tangent bundle is trivial:

TG = G× R2n.

Hence we can define an almost complex structure J by Jpv = (p, Iv) where

I =
(

0 Id
− Id 0

)
.

Moreover, any endomorphism J of the Lie algebra Lie(G) that satisfies J2 = − Id
induces an almost complex structure on G.

Definition 39. An almost complex structure on a smooth manifold M2n is
said to be integrable if M admits the structure of a complex manifold and the
associated complex structure coincides with J .

Remark 9. By applying the determinant to the equation J2 = − Id we can
easily see that any smooth manifold admitting an almost complex structure is
necessarily even-dimensional.
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Knowing wether a manifold admits a holomorphic atlas or not may be a hard
task, but given an almost complex structure there is an easy criterion to
determine if it is integrable or not.

Theorem 22 (Newlander-Nirenberg). Let (M,J) be an almost complex
manifold. Then J is integrable if and only if NJ ≡ 0, where NJ is the Nijenhuis
tensor associated to J defined by

NJ(X,Y ) = [JX, JY ] − [X,Y ] − J([JX, Y ] + [X, JY ]).

Definition 40. Let M2n be a smooth manifold with an almost complex
structure J and a Riemannian metric g. Then M is an almost Hermitian
manifold if g(JX, JY ) = g(X,Y ) for all X,Y ∈ X(M). In that case, the
differential two-form given by ω(X,Y ) = g(JX, Y ) is known as the Kähler
form.

Definition 41. An almost Hermitian manifold (M, g, J) is said to be Kähler
if J is integrable and ω is closed.

From this definition we can see that Kähler geometry, the study of Kähler
manifolds, is the intersection of three important areas of differential geometry:
Riemannian geometry, complex geometry, and symplectic geometry. We
understand by symplectic manifolds those manifolds that admit a closed, non-
degenerate two-form which is globally defined.

Theorem 23. An almost Hermitian manifold (M, g, J) is Kähler if and only if
∇J ≡ 0.

The covariant derivative of the Kähler form satisfies (∇Xω)(Y, Z) =
g((∇XJ)Y, Z). Notice that from the previous theorem it follows that a manifold
is Kähler if and only if ω is parallel.

Hervella and Gray studied almost Hermitian manifolds to a great extent. In [27],
they divided almost Hermitian manifolds into 16 different classes. These came
from combining four different properties that a tensor α ∈ TM∗ ⊗TM∗ ⊗TM∗

may satisfy:
1. α(X,X, Y ) = 0 for all X,Y ∈ X(M),
2. α(X,Y, Z) + α(Y,Z,X) + α(Z,X, Y ) = 0 for all X,Y, Z ∈ X(M),
3. α(X,Y, Z) − α(JX, JY, Z) = ᾱ(Z) = 0 for all X,Y, Z ∈ X(M),

4. α(X,Y, Z) = − 1
2(n− 1)

(
g(X,Y )ᾱ(Z) − g(X,Z)ᾱ(Y )

− g(X, JY )ᾱ(JZ) + g(X, JZ)ᾱ(JZ)
)

for all X,Y, Z ∈ X(M),
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where ᾱ =
∑
i α(Ei, Ei, Z) and {Ei} is an arbitrary orthonormal frame. Notice

that

∇ω(Z) =
n∑
i=1

∇ω(Ei, Ei, Z) =
n∑
i=1

g((∇EiJ)Ei, Z) = δω(Z)

where δ is the codifferential operator.

Denote by Wi the space of all (3, 0) tensors that satisfy the property i above,
for i = 1, 2, 3, 4. Then the covariant derivative of the Kähler form of any almost
Hermitian manifold lies in W = W1 ⊕W2 ⊕W3 ⊕W4.

Now we define classes of manifolds which are associated to subspaces of W . We
denote by U the class of almost Hermitian manifolds for which the covariant
derivative of ω lies in a subspace U ⊂ W . The class associated to the subspace
{0} ⊂ W consists of those manifolds for which the covariant derivative of the
Kähler form is zero. As we have seen before, these are the Kähler manifolds.

The class W1 consists of those almost Hermitian manifolds M such that

0 = ∇Xω(X,Y ) = g((∇XJ)X,Y ) for all X,Y ∈ X(M),

which is equivalent to (∇XJ)X = 0 for all X ∈ X(M). These manifolds are
known as nearly Kähler manifolds.

The class W2 consists of those almost Hermitian manifolds that satisfy

0 = S
X,Y,Z

(∇Xω)(Y,Z) = dω(X,Y, Z),

which is equivalent to have a closed Kähler form. These are know as almost
Kähler manifolds.

The class W1 ⊕ W2 is known as the class of quasi-Kähler manifolds and it is
equal to the class of those manifolds that satisfy

(∇Xω)(Y,Z) + (∇JXω)(JY, Z) = 0.

The class W1 ⊕ W2 ⊕ W3 is the class of semi-Kähler (or balanced) manifolds,
and it is equal to the class of those manifolds that satisfy δω = 0.

It is immediate that nearly Kähler and almost Kähler manifolds are quasi-
Kähler, and quasi-Kähler manifolds are semi-Kähler. Moreover, a manifold that
is nearly Kähler and almost Kähler, is Kähler.

Examples

Example 14 (Almost Kähler). Finding an example of an almost Kähler
manifold which is not Kähler was a big challenge. In [51] it is shown that the
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Figure 1.2 – The inclusion of some classes of almost Hermitian manifolds.

tangent bundle of any Riemannian manifold admits an almost Kähler structure.
It is Kähler if and only if the base manifold is flat.

Example 15 (Hypersurfaces of R7 [27]). Similarly to the almost complex
structure defined on S6 we may define an almost complex structure on a
hypersurface of R7.

Let M6 be a submanifold of R7 and let ξ be the unit normal vector field, that is
⟨ξ, ξ⟩ = 1 and ⟨X, ξ⟩ = 0 for all X ∈ X(M). Then we define the almost complex
structure J on M as

J(X) = ξ ×X,

where × is the cross product in R7 defined in Example 12.

Note that if M = S6 then ξ = p. Moreover, S6 is the only hypersurface of R7

that is nearly Kähler but not Kähler.

Let V be a three-dimensional vector subspace of R7 that is closed under the
cross product and let Σ ⊂ V be a surface. Then M = Σ × R4 is semi-Kähler.
Moreover, if Σ is a minimal surface then J is integrable. Thus, if Σ is flat then
M is Kähler. If instead Σ is isometric to a sphere then M is quasi-Kähler but
not almost Kähler nor nearly Kähler.
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1.6 Nearly Kähler manifolds

First known as almost Tachibana spaces, the first notion of nearly Kähler
manifold was introduced by Tachibana in [50]. Later on, Gray coined the term
nearly Kähler as we know it today.

Definition 42. A nearly Kähler manifold is an almost Hermitian manifold
(M, g, J) such that ∇J is skew symmetric, where ∇ is the Levi-Civita connection
associated to g.

Although the nearly Kähler condition is point-wise, it has topological
implications, for instance having even first Betti number [54].

Note that the Riemannian products of nearly Kähler and Kähler manifolds
are nearly Kähler manifolds as well. Thus, the notion of strict nearly Kähler
excludes the cases when you can extract a Kähler factor from a nearly Kähler
manifold.

Definition 43. A nearly Kähler manifold M is said to be strict if ∇XJ ̸≡ 0
for all X ∈ X(M).

Gray showed that nearly Kähler manifolds split into strict nearly Kähler and
Kähler manifolds.

Proposition 8 (Gray [26]). Given a nearly Kähler manifold M there exists
a strict nearly Kähler manifold M1 and a Kähler manifold M2 such that M ∼=
M1 ×M2.

Next, we present some general properties of the covariant derivative of the
almost complex structure.

Proposition 9. Let (M, g, J) be a nearly Kähler manifold. Then the tensor
G = ∇J satisfies the following:

1. G(X, JY ) + JG(X,Y ) = G(JX, Y ) + JG(X,Y ) = 0,
2. G(JX, JY ) +G(X,Y ) = 0,
3. g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0,
4. g(G(X,Y ), JZ) + g(G(X,Z), JY ) = 0.

By checking with a basis, we can easily see that two- and four-dimensional nearly
Kähler manifolds are automatically Kähler. Furthermore, eight-dimensional
nearly Kähler manifolds are either Kähler or the product of a strict nearly
Kähler six-manifold and a Kähler surface.
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Proposition 10 (Gray [26]). There do not exist strict nearly Kähler manifolds
of dimension 8.

It is worth to note that there is a confusion in the literature regarding the
definition of strict nearly Kähler manifold. In some sources strict nearly Kähler
manifolds are defined as being non-Kähler. This ambiguity originates from the
fact that this is true in six dimensions:

Proposition 11. A nearly Kähler manifold of dimension 6 is strict nearly
Kähler if and only if it is not Kähler.

In principle this result is a direct corollary of Proposition 8, but we provide a
proof here where we can see the obstruction of strictness more clearly.

Proof. Let M be a nearly Kähler manifold of dimension 6. It is immediate that
if M is strict it is not Kähler.

Suppose now that M is not Kähler but there exists a smooth vector field Z on
M such that ∇ZJ ≡ 0. Since M is not Kähler, there exist X,Y ∈ X(M) such
that (∇XJ)Y ̸= 0. Moreover, the nearly Kähler condition allows us to assume
that {X, JX, Y, JY, Z, JZ} is an orthonormal frame on M . We have

(∇XJ)Y = g((∇XJ)Y,X)X + g((∇XJ)Y, JX)JX

+ g((∇XJ)Y, Y )Y + g((∇XJ)Y, JY )JY

+ g((∇XJ)Y,Z)Z + g((∇XJ)Y, JZ)JZ.

From the properties in Proposition 9 it follows that

(∇XJ)Y = g((∇XJ)Y,Z)Z + g((∇XJ)Y, JZ)JZ

= −g((∇XJ)Z, Y )Z − g((∇XJ)Z, JY )JZ

= g((∇ZJ)X,Y )Z + g((∇ZJ)X, JY )JZ

= 0

which is a contradiction.

Six-dimensional strict nearly Kähler manifolds are always Einstein, that is,
the Ricci tensor is a multiple of the Riemannian metric. These manifolds are
interesting from a physics point of view since, for instance, they are the only
ones to admit a Killing spinor [23, 28]. Moreover, nearly Kähler manifolds
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are exactly those six-dimensional manifolds for which their seven-dimensional
cone has holonomy G2 [5]. Furthermore, strict nearly Kähler manifolds are
interesting in multiplectic geometry as they are 2-plectic [37].

Nearly Kähler manifolds are also related to the so-called quaternionic Kähler
manifolds. A quaternionic Kähler manifold is a Riemannian manifold of
dimension 4n such that its holonomy is a subgroup of (Sp(n) × Sp(1))/Z2.
This definition might seem arbitrary, but it is quite natural after learning
Berger’s holonomy theorem.

Theorem 24 (Berger [8]). Let M be a simply connected irreducible and non-
locally symmetric Riemannian manifold. Then the holonomy group of M is
either SO(n) or one of the following exceptional holonomies:

1. U(n),
2. SU(n),
3. Sp(n),
4. (Sp(n) × Sp(1))/Z2,
5. Spin(7),
6. G2.

Recall that a symmetric space is Riemannian manifold such that for every
point p there exists a local isometry φp such that φp(p) = p and (dφp)p = − Id.

Quaternionic Kähler manifolds are a generalization of hyperkähler manifolds
with non-flat Ricci curvature. Hence, quaternionic Kähler manifolds admit
a fiber bundle where the fibers are two-spheres, arising from the possible
quaternionic structures we can find on them. These S2-bundles are known as
twistor spaces, and they have a close link with nearly Kähler geometry.

Quaternionic Kähler manifolds are automatically Einstein, and when the
Einstein constant is positive and they are geodesically complete, they are
called positive quaternionic Kähler.

Theorem 25 (Nagy [42]). Let M be a 10-dimensional complete nearly Kähler
manifold. Then it is isometric to either a product of a strict nearly Kähler
six-manifold with a Kähler surface or a twistor space over an eight-dimensional
positive quaternionic Kähler manifold.

There exist only 3 eight-dimensional positive quaternionic spaces, the symmetric
spaces HP 2, Gr2(C4) and G2/SO(4). Their twistor spaces are listed in [34],
thus all the 10-dimensional strict nearly Kähler manifolds are classified.

A quaternionic Kähler manifold which is also a symmetric space is called a
Wolf space. Salamon and LeBrun conjectured that every positive quaternionic
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Kähler manifold is a symmetric space, but so far it has only been proven for
dimensions 4 and 8.

Theorem 26 (Nagy [41]). Let M be a simply connected, complete strict nearly
Kähler manifold. Then it is a Riemannian product whose factors are in one of
the following classes:

1. six-dimensional nearly Kähler manifolds,
2. homogeneous nearly Kähler manifolds (satisfying certain conditions),
3. twistor spaces over positive quaternionic Kähler spaces.

The conditions that homogeneous nearly Kähler manifolds satisfy in Theorem 26
are quite involved, and they are not relevant for this thesis. In dimension six, it
was believed for many years that there were only four homogeneous examples,
but the proof did not come until 2005.

Theorem 27 (Butruille [10]). Let M be a homogeneous simply connected strict
nearly Kähler manifold. Then it is isometric to either S6, the nearly Kähler
S3 × S3, the nearly Kähler CP 3 or the nearly Kähler F (C3).

Note that the hypothesis of being homogeneous is important. The existence of
non-homogeneous nearly Kähler manifolds was conjectured long ago. Podestà
and Spiro studied cohomogeneity-one actions on nearly Kähler manifolds in
[46] and [47] and they constructed inhomogeneous but non-complete nearly
Kähler manifolds. Finally in 2017, Foscolo and Haskins [22] constructed the first
examples of complete non-homogeneous six-dimensional nearly Kähler manifolds:
S6 and S3 × S3 carry nearly Kähler structures which are not homogenous but
have cohomogeneity one. Moreover they conjectured that CP 3 only carries the
homogeneous nearly Kähler structure.

The nearly Kähler S6

For more information about S6 we refer the reader to [24].

The nearly Kähler structure of S6 was defined in Example 12. In Example 9 we
saw that S6 = O(7)/O(6). However, certain isometries in O(7) do not preserve
the almost complex structure. Namely, elements φ ∈ O(7) do not necessarily
satisfy dφ ◦ J = ±J ◦ dφ. From the definition of the cross product in R7 we
can see that the elements from O(7) that preserve J are those who preserve the
octonion product. The set of automorphisms of O is the smallest exceptional
Lie group and it is denoted by G2. This group acts transitively on S6 with
isotropy SU(3). Hence,

S6 = G2

SU(3) .
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The nearly Kähler S3 × S3

For more information about S3 × S3 we refer the reader to [40].

Take S3 ⊂ H ∼= R4 the set of all unit-length quaternions. The tangent space at
a point p ∈ S3 is given by TpS3 = {pα : α ∈ Im(H)}. We define a Riemannian
metric on S3 × S3 by

g ((pα, qβ), (pγ, qδ)) = 4
3 (⟨pα, pγ⟩ + ⟨qβ, qδ⟩) − 2

3 (⟨pα, pδ⟩ + ⟨qβ, qγ⟩) .

We also define an almost complex structure J on S3 × S3 compatible with g:

J(pα, qβ) = 1√
3

(p(2β − α), q(β − 2α)).

One can check that
(
S3 × S3, g, J

)
is a nearly Kähler manifold.

The group S3 × S3 × S3 acts transitively by isometries on S3 × S3 as follows:

(a, b, c) · (p, q) = (apc−1, bqc−1).

Hence S3 × S3 is a homogeneous manifold described as

S3 × S3 = S3 × S3 × S3

∆S3 ,

where ∆S3 = {(a, a, a) : a ∈ S3}.

The nearly Kähler CP 3

For more information about CP 3 we refer the reader to [35].

We denote the Kähler metric and complex structure by go and Jo, respectively.

Now we define the so-called Hopf fibration. Let π : S7 → CP 3 be the submersion
given by π(p) = [p]. The vertical distribution associated to π is the distribution
on S7 given by V = {v ∈ X(S7) : dπ(v) = 0}. This gives rise to the horizontal
distribution, that is H = V⊥.

Thinking of S7 as the immersed sphere in H × H ∼= R8, we can define three
distinguished vector fields:

Y1(p, q) = (pi, qi), Y2(p, q) = (pj, qj), Y3(p, q) = (pk, qk),

where i, j,k are the unit quaternions. The vertical distribution V on S7 is
spanned by Y1. We split H as

H = D̃1 ⊕ D̃2,
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where D̃1 and D̃2 are two- and four-dimensional distributions respectively on
S7 defined by D̃1 = Span{Y2, Y3} and D̃2 = (V ⊕ D̃1)⊥.

Denoting Di = dπ(D̃i) we obtain

TCP 3 = dπ(H) = D1 ⊕ D2.

We define the nearly Kähler structure (CP 3, g, J) by

g =
{
go on D2,

2go on D4,
and J =

{
−Jo on D2,

Jo on D4.

The Lie group Sp(2) acts on S7 ⊂ H2. This action descends to the nearly Kähler
CP 3, where it acts transitively with isotropy group SU(2) × U(1). Therefore

CP 3 = Sp(2)
SU(2) × U(1) .

The nearly Kähler F (C3)

For more information about the flag manifold we refer the reader to [18].

The manifold of full flags in C3 is defined as the set of chains (V1, V2) of complex
vector subspaces V1 ⊂ V2 ⊂ C3, where dimC(V1) = 1 and dimC(V2) = 2.

It is a well known fact that complex flag manifolds admit a Kähler structure (see
for instance [29]), which we denote by (F (C3), go, Jo). There exists a submersion
onto CP 2 given by

π : F (C3) −→ CP 2

(Span{x}, V2) 7→ [x].

Defining V = {v ∈ X(F (C3)) : dπ(v) = 0} and H = V⊥ with respect to go, we
obtain a nearly Kähler structure (F (C3), g, J) given by

g =
{

1
2go on V,
go on H,

and J =
{

−Jo on V,
Jo on H.

The action of SU(3) on C3 extends to a transitive action by isometries on F (C3)
with isotropy group U(1) × U(1). Therefore,

F (C3) = SU(3)
U(1) × U(1) .
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Pseudo-Riemannian nearly Kähler manifolds and T -duality

Next we define the notion of T -duality, which allows us to obtain analogues of
homogeneous spaces, preserving important structures.

Let g be a Lie algebra and h a Lie subalgebra of g. Let m be an ad(h)-
invariant complement of h, i.e. g = h ⊕ m and ad(X)(Y ) = [X,Y ] ∈ m for
all X ∈ h and Y ∈ m. Let T be a Lie automorphism such that T 2 = Id and
T (h) = h, T (m) = m. Denote by g+ and g− the eigenspaces of T associated
to 1 and −1, respectively. Then we have g = g+ ⊕ g−, sum of vector spaces.
Moreover, g+ is a Lie subalgebra of g, [g+, g−] ⊂ g−, and [g−, g−] ⊂ g+. The
automorphism T preserving h and m is equivalent to h = (h ∩ g+) ⊕ (h ∩ g−)
and m = (m ∩ g+) ⊕ (m ∩ g−).

Define the Lie algebra g′ = g+ ⊕ ig−. That is, the vector space g+ ⊕ g− with
Lie bracket given by

[(X,Y ), (Z,W )] = ([X,Z] − [Y,W ], [Y,Z] + [X,W ]). (1.3)

Similarly, define h′ and m′ by

h′ = (h ∩ g+) ⊕ i(h ∩ g−), m′ = (m ∩ g+) ⊕ i(m ∩ g−).

The Lie algebra g′ is a real form of gC, i.e. g′ ⊗ C = gC.

Let G, H, G′ and H ′ be Lie groups associated to the Lie algebras g, h, g′ and h′.
We say that the homogeneous spaces G/H and G′/H ′ are T -duals. This way,
Kath [32] and Schäfer [48] constructed T -duals of each one of the six-dimensional
homogeneous nearly Kähler spaces, which are pseudo-Riemannian nearly Kähler
manifolds:

S3 × S3 S6 CP 3 F (C3)

SO+(2,3)
U(1,1)

SU(2,1)
U(1)×U(1)

SL(2,R) × SL(2,R) S6
4

SO+(4,1)
U(2)

SL(3,R)
R∗·SO(2)

Here, S6
4 is the pseudo-sphere inside R7

4, with homogeneous description
G2(2)/SU(2, 1), and R∗ · SO(2) denotes the group (R∗ × SO(2))/Z2. The
nearly Kähler manifold SL(2,R) × SL(2,R) has homogeneous description
SL(2,R) × SL(2,R) × SL(2,R)/∆SL(2,R). We will focus on this last space
in the rest of the chapters.



Chapter 2

The nearly Kähler
SL(2,R) × SL(2,R)

In this chapter we present the nearly Kähler structure of SL(2,R) × SL(2,R).
Moreover, we provide an expression for its isometry group (see Theorem 28).
The contents of this chapter can also be found in [2], [3] and [25].

2.1 The group SL(2,R)

Let SL(2,R) be the Lie group defined as SL(2,R) = {a ∈ M(2,R) : det(a) = 1}.
The associated Lie algebra is given by

sl(2,R) = {X ∈ M(2,R) : Tr(X) = 0}

This is a three-dimensional non-compact simple Lie algebra which is spanned
by the so-called split-quaternions

i =
(

1 0
0 −1

)
, j =

(
0 1
1 0

)
, k =

(
0 1

−1 0

)
, (2.1)

with Lie brackets

[i, j] = 2k, [i, k] = 2j, [j, k] = −2i.

Moreover, they satisfy i2 = j2 = −k2 = −ijk = Id2.

35
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Given a matrix a in M(2,R), we denote by adj(a) the adjugate matrix, i.e.

adj
(
x y
w z

)
=
(
z −y

−w x

)
.

Define in M(2,R) the inner product given by

⟨x, y⟩ = −1
2 tr(adj(x)y). (2.2)

Thus, we see that SL(2,R) = {a ∈ M(2,R) : ⟨a, a⟩ = −1}. Moreover, we deduce
that

TaSL(2,R) = a⊥ = {aα : α ∈ sl(2,R)}.
The inner product ⟨, ⟩ defines a pseudo-Riemannian metric on M(2,R) of
signature (2, 2). The submanifold SL(2,R) ↪→ M(2,R) inherits a pseudo-
Riemannian metric of signature (1, 2). More explicitly, the frame {X1, X2, X3}
given by

X1(a) = ai, X2(a) = aj, X3(a) = ak, (2.3)

satisfies
⟨X1, X1⟩ = ⟨X2, X2⟩ = −⟨X3, X3⟩ = 1

and ⟨Xi, Xj⟩ = 0 for i ̸= j.
Remark 10. Since M(2,R) with this metric is isometric to R4

2, the manifold
SL(2,R) is isometric to the anti-de Sitter space H3

1 (−1). Namely, the map
F : H3

1 (−1) → SL(2,R) given by

F(x0, x1, x2, x3) =
(
x2 − x0 x1 − x3
x1 + x3 x0 + x2

)
, (2.4)

is an isometry.

The adjugate matrix has the same role as the conjugate of a quaternion for the
structure of S3, as we can see in the following result.

Proposition 12. Let a, b ∈ SL(2,R) and α, β ∈ sl(2,R). Then,
1. adj(a) = a−1,
2. adj(ab) = adj(b) adj(a),
3. adj(α) = −α,
4. ⟨a, a⟩ = − det(a),
5. ⟨aα, aβ⟩ = ⟨αa, βa⟩ = ⟨α, β⟩,

Remark 11. Although we always write the inverse matrix for elements of SL(2,R),
in computations either by hand or using software it is always recommendable
to use the adjugate matrix, as it reduces considerably the computational cost.
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There is a natural bilinear operation × in sl(2,R), defined by

α× β = 1
2(αβ − βα).

This operation is a Lorentzian cross-product, that is, a bilinear operation that
satisfies

(1) α× β = −β × α,
(2) ⟨α× β, γ⟩ = ⟨β × γ, α⟩ = ⟨γ × α, β⟩,
(3) ⟨α× β, α⟩ = ⟨α× β, β⟩ = 0,
(4) ⟨α× β, α× β⟩ = −⟨α, α⟩⟨β, β⟩ + ⟨α, β⟩2.

Note that the third property actually follows from the first and second one.
This cross product also satisfies

αβ = α× β + ⟨α, β⟩ Id2 . (2.5)

The metric ⟨, ⟩ on SL(2,R) is a multiple of the Killing form, the quadratic form
for Lie groups given in 1.2, hence is a bi-invariant metric. As a consequence, the
Riemannian exponential map coincides with the Lie group exponential map.

Proposition 13. The geodesics of SL(2,R) are given by t 7→ petα, where
α ∈ sl(2,R) and p ∈ SL(2,R).

2.2 The nearly Kähler structure of SL(2,R) ×
SL(2,R)

In the previous chapter we mentioned that SL(2,R) × SL(2,R) is constructed
by means of T -duality. In this section we will make that construction more
explicit.

Recall that the nearly Kähler S3 × S3 is the homogeneous space G/H =
SU(2)×SU(2)×SU(2)

∆SU(2) . Then, g = su(2) ⊕ su(2) ⊕ su(2) as a sum of Lie algebras,
the Lie subalgebra h = ∆su(2) = {(X,X,X) : X ∈ su(2)} and the vector space
m = su(2) ⊕ su(2) ⊕ {0}. Take the involutive Lie automorphism T of g given by

T (X,Y, Z) = (−Xt,−Y t,−Zt).

The eigenspaces g+ and g− are

g+ = Span{(k, 0, 0), (0,k, 0), (0, 0,k)},

g− = Span{(i, 0, 0), (j, 0, 0), (0, i, 0), (0, j, 0), (0, 0, i), (0, 0, j)},
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where i, j and k are the matrices in su(2) given by

i =
(

−i 0
0 i

)
, j =

(
0 i
i 0

)
, k =

(
0 1

−1 0

)
. (2.6)

It is easy to see that T preserves h and m. The Lie algebra g′ = g+ ⊕ ig− with
the Lie bracket in (1.3) is isomorphic to sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R), as a sum
of Lie algebras. Therefore S3 × S3 and SL(2,R) × SL(2,R) are T -duals.

The tangent space of SL(2,R) × SL(2,R) at a point (p, q) is

T(p,q)(SL(2,R) × SL(2,R)) = {(pα, qβ) : α, β ∈ sl(2,R)}.

Let SL(2,R) × SL(2,R) × SL(2,R) be the pseudo-Riemannian product with
the product metric that arises from the one in (2.2). Now take π : SL(2,R) ×
SL(2,R) × SL(2,R) → SL(2,R) × SL(2,R) the submersion given by

π(a, b, c) = (ac−1, bc−1). (2.7)

Let g be the metric on SL(2,R) × SL(2,R) such that π is a pseudo-Riemannian
submersion. More explicitly,

g((pα, qβ), (pγ, qδ)) = 2
3 ⟨(pα, qδ), (pγ, qβ)⟩ − 1

3 ⟨(pβ, qα), (pγ, qδ)⟩, (2.8)

where ⟨, ⟩ is the product metric. It follows that SL(2,R) × SL(2,R) × SL(2,R)
acts transitively by isometries on (SL(2,R) × SL(2,R), g), therefore

SL(2,R) × SL(2,R) = SL(2,R) × SL(2,R) × SL(2,R)
∆SL(2,R) .

We may also define the metric g from a Hermitian point of view. Take θ ∈
Aut(SL(2,R) × SL(2,R) × SL(2,R)) the automorphism of order three given by

θ(a, b, c) = (b, c, a).

Note that
0 = θ3

∗ − Id

= (θ∗ − Id)(θ2
∗ + θ∗ + Id)

and that (θ∗ − Id) only vanishes for vertical vector fields of the submersion π
given in (2.7). Hence, if we evaluate (2.2) with a horizontal vector field we
obtain that on the set of horizontal vector fields H,

0 = θ2
∗ + θ∗ + Id

= (θ∗ + 1
2 Id)2 + 3

4 Id .
(2.9)
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Then, the tensor 2√
3θ∗ + 1√

3 Id is an almost complex structure on H, which we
can identify with T (SL(2,R) × SL(2,R)).

Explicitly, we take the almost complex structure J on SL(2,R) × SL(2,R) given
by

J(pα, qβ) = 1√
3

(p(α− 2β), q(2α− β)). (2.10)

The product metric ⟨, ⟩ on SL(2,R) × SL(2,R) is not compatible with J , i.e.
(SL(2,R) × SL(2,R), ⟨, ⟩) is not an almost Hermitian manifold. However, we
may construct a new metric from ⟨, ⟩ that is compatible with J :

g′(X,Y ) = 1
4 ⟨X,Y ⟩ + 1

4 ⟨JX, JY ⟩.

Proposition 14. The manifold (SL(2,R) × SL(2,R), g′, J) is an almost
Hermitian manifold. Moreover, g and g′ coincide.

We define the {U1, U2, U3, V1, V2, V3} as the frame on SL(2,R) × SL(2,R) by

Ui(p, q) = (Xi(p), 0), Vi(p, q) = (0, Xi(q)),

where the vector fields Xi are given in (2.3). The components of the metric in
this frame are

g(Ui, Uj) = g(Vi, Vj) =
{

2
3δij for i = 1, 2,

− 2
3δij for i = 3,

and

g(Ui, Vj) =
{

− 1
3δij for i = 1, 2,
1
3δij for i = 3.

The Lie brackets of vector fields of the frame are

[Ui, Uj ] = −2εijkηkUk, [Ui, Vj ] = −2εijkηkVk, [Vi, Vk] = 0,

where ηi = 1 if i = 1, 2, η3 = −1 and εijk is the Levi-Civita symbol:

εijk =


1 if (i, j, k) is an even permutation of (1,2,3),
−1 if (i, j, k) is an odd permutation of (1,2,3),
0 all other cases.
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Lemma 3. The Levi-Civita connection ∇̃ of SL(2,R) × SL(2,R) associated
to g is given by

∇̃Ui
Uj = −εijkηkUk,

∇̃Vi
Vj = −εijkηkVk,

∇̃Ui
Vj = εijk

ηk
3 (Uk − Vk),

∇̃Vi
Uj = εijk

ηk
3 (Vk − Uk).

Moreover, the covariant derivative of J is given by

(∇̃Ui
J)Uj = 2

3
√

3
εijkηk(Uk + 2Vk),

(∇̃Vi
J)Vj = − 2

3
√

3
εijkηk(2Uk + Vk),

(∇̃UiJ)Vj = (∇̃ViJ)Uj = 2
3
√

3
εijkηk(Uk − Vk).

From the previous lemma we can deduce that (SL(2,R) × SL(2,R), g, J) is a
nearly Kähler manifold. As such, it satisfies all properties given in Proposition
9. In what follows, we denote by G the covariant derivative of J .

Lemma 4 (Ghandour, Vrancken [25]). The tensor G satisfies

1. (∇XG)(Y,Z) = − 2
3

(
g(X,Z)JY − g(X,Y )JZ − g(JY, Z)X

)
,

2. g(G(X,Y ), G(Z,W )) = − 2
3

(
g(X,Z)g(Y,W ) − g(X,W )g(Y, Z)

+ g(JX,Z)g(JW, Y ) − g(JX,W )g(JZ, Y )
)
,

3. G(X,G(Z,W )) = 2
3

(
g(X,Z)W − g(X,W )Z + g(JX,Z)JW

− g(JX,W )JZ
)
.

An explicit expression for the tensor G is given in [25]:

G((aα, bβ), (aγ, bδ)) = 2
3
√

3

(
a(−α× γ − α× δ + γ × β + 2β × δ),

b(−2α× γ + α× δ − γ × β + β × δ)
)
,

(2.11)
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where a, b ∈ SL(2,R) and α, β, γ, δ ∈ sl(2,R). We introduce the tensor P given
by

P (pα, qβ) = (pβ, qα), (2.12)
where (pα, qβ) ∈ T(p,q)(SL(2,R) × SL(2,R)). This tensor plays an important
role in the structure of SL(2,R) × SL(2,R), as we will see later.

Lemma 5. The tensor P is an almost product structure. Namely, P satisfies

P 2 = Id, g(PX,PY ) = g(X,Y ).

Moreover, it satisfies the following conditions:
1. g(PX, Y ) = g(X,PY ),
2. PJ = −JP ,
3. G(PX,PY ) + PG(X,Y ) = 0,

4. (∇̃XP )Y = 1
2

(
JG(X,PY ) + JPG(X,Y )

)
.

Proof. That P is a almost product structure as well as 1 and 2 follow from a
straightforward computation. Property 3 follows From the expression of G in
(2.11). By checking with a basis, we can prove 4.

We denote by R̃ the curvature tensor of the nearly Kähler connection ∇̃. It is
explicitly given by the following formula

R̃(X,Y )Z = − 5
6

(
g(Y, Z)X − g(X,Z)Y

)
− 1

6

(
g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

)
− 2

3

(
g(PY,Z)PX − g(PX,Z)PY

+ g(JPY,Z)JPX − g(JPX,Z)JPY
)
.

(2.13)

The following proposition is stated in [40] for S3 × S3, but the proof also works
for SL(2,R) × SL(2,R).

Proposition 15. Let P ′ be an almost product structure that satisfies 1, 2 and
3 of Lemma 5 and Equation (2.13), then

P ′ = cos τP + sin τJP

for τ ∈ {0, 2π
3 ,

4π
3 }. Conversely, such tensors are almost product structures and

satisfy 1, 2 and 3 of Lemma 5 and Equation (2.13). Moreover, Property 4 of
Lemma 5 is trivially satisfied by P ′.
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2.2.1 The relation between the product structure and the
nearly Kähler structure

Any (pseudo-)Riemannian product carries a canonical product structure:

Q(X,Y ) = (−X,Y ). (2.14)

Moreover, this product structure is parallel with respect to the Levi-Civita
connection associated to the product metric.

In our setting, there is an explicit relation between the nearly Kähler metric g
and the product metric ⟨, ⟩:

⟨X,Y ⟩ = 2g(X,Y ) + g(X,PY ). (2.15)

The almost product structures Q and P on SL(2,R) × SL(2,R) are related by

QX = − 1√
3

(2PJX − JX). (2.16)

The Levi-Civita connection ∇E associated to the product metric ⟨, ⟩ on
SL(2,R) × SL(2,R) is related to ∇̃ by

∇E
XY = ∇̃XY + 1

2

(
JG(X,PY ) + JG(Y, PX)

)
. (2.17)

The product manifold (SL(2,R) × SL(2,R), ⟨, ⟩) is isometrically immersed in
M(2,R) ×M(2,R) ∼= R8

4, thus we can use the Gauss formula to find a relation
between ∇E and the Euclidean connection D of R8

4. That is, at any point
(a, b) ∈ SL(2,R) × SL(2,R) we have

DXY = ∇E
XY + hE(X,Y ),

where hE is the second fundamental form. Since the normal space at (a, b) of
the immersion is spanned by (a, b) and (−a, b) we have that

hE(X,Y ) = ⟨DXY, (a, b)⟩
⟨(a, b), (a, b)⟩ (a, b) + ⟨DXY, (−a, b)⟩

⟨(−a, b), (−a, b)⟩ (−a, b).

Finally, using that DX(a, b) = X, DX(−a, b) = QX and the compatibility of D
with ⟨, ⟩, we obtain that

DXY = ∇E
XY + 1

2 ⟨X,Y ⟩(a, b) + 1
2 ⟨QX,Y ⟩(−a, b). (2.18)
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2.2.2 The isometry group

The connected component of the identity of the isometry group of SL(2,R) ×
SL(2,R) is

Isoo(SL(2,R) × SL(2,R)) = SL(2,R) × SL(2,R) × SL(2,R),

where an element ϕ(a,b,c) acts on a point (p, q) by ϕ(a,b,c)(p, q) = (apc−1, bqc−1).

The isometries ϕ(a,b,c) preserve P and J , in the sense that dϕ(a,b,c) ◦ J =
J ◦ dϕ(a,b,c) and dϕ(a,b,c) ◦ P = P ◦ dϕ(a,b,c). These isometries are not the
only ones that satisfy these properties. Given three matrices a, b and c with
determinant −1, the map (p, q) 7→ (apc−1, bqc−1) is also an isometry that
preserves J and P .

Denote by SL±(2,R) the group of all matrices in M(2,R) with determinant
±1. We can write any matrix of SL±(2,R) as ika, where i is the matrix given
in (2.1), k ∈ {0, 1} and a ∈ SL(2,R). Thus, we have

(SL(2,R) × SL(2,R) × SL(2,R)) ⋊ Z2 ⊂ Iso(SL(2,R) × SL(2,R)).

Permutations of elements of SL(2,R) × SL(2,R) × SL(2,R) also give rise to
isometries of the pseudo-nearly Kähler SL(2,R) × SL(2,R):

Ψ0,0(p, q) = (p, q), Ψ1,0(p, q) = (q, p),

Ψ0,2π/3(p, q) = (pq−1, q−1), Ψ1,2π/3(p, q) = (q−1, pq−1),

Ψ0,4π/3(p, q) = (qp−1, p−1), Ψ1,4π/3(p, q) = (p−1, qp−1).

(2.19)

Except for Ψ0,0, these isometries are not included in SL(2,R) × SL(2,R) ×
SL(2,R). Moreover, each one of these is in a different connected component of
Iso(SL(2,R) × SL(2,R)) and satisfies

J ◦ dΨκ,τ = (−1)κdΨκ,τ ◦ J, P ◦ dΨκ,τ = dΨκ,τ ◦ (cos τP + sin τJP ).

Later on, we prove that these are all the isometries of the nearly Kähler
SL(2,R) × SL(2,R).

A key result in the classification of Riemannian homogeneous nearly Kähler
manifolds by Butruille [10] is the existence of a unique nearly Kähler structure
on S3 × S3. Consequently, the almost complex structure on S3 × S3 is unique
up to sign.

However, in [48] it is shown that SL(2,R) × SL(2,R) has a unique left-invariant
nearly Kähler structure, which does not necessarily imply that J is unique up
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to sign. Therefore, by isometry group of the pseudo-nearly Kähler SL(2,R) ×
SL(2,R) we mean the set of all diffeomorphisms preserving the almost Hermitian
structure. That is, those isometries F of (SL(2,R) × SL(2,R), g) that preserve
J , i.e. F∗J = ±JF∗.

The following lemma is a well known result.

Lemma 6. Let {α1, α2, α3} and {β1, β2, β3} be bases of sl(2,R). If ⟨αi, αj⟩ =
⟨βi, βj⟩ for all i, j ∈ {1, 2, 3}, then there exists a matrix c in SL±(2,R) such
that cαic−1 = βi. In other words, SL±(2,R)/Z2 is isomorphic to SO(2, 1).

With this lemma and Proposition 15 we prove the following statement.

Theorem 28. The isometry group of the pseudo-nearly Kähler SL(2,R) ×
SL(2,R) is the semi-direct product

(
SL(2,R) × SL(2,R) × SL(2,R)

)
⋊
(
Z2 ×S3

)
,

where S3 is the symmetric group of order 6 generated by {Ψ1,0,Ψ1,4π/3}.

Proof. We already know that the given group is included in Iso(SL(2,R) ×
SL(2,R)). Here we show the opposite inclusion.

Let F be an isometry of the pseudo-nearly Kähler SL(2,R) × SL(2,R). That
means, there exists a κ0 ∈ {0, 1} satisfying

F∗J = (−1)κ0JF∗.

As F∗P (F−1)∗ is an almost product structure satisfying 1, 2 and 3 in Lemma 5
and Equation (2.13), Proposition 15 implies that

F∗P (F−1)∗ = cos τ0P + sin τ0JP,

for some τ0 ∈ {0, 2π
3 ,

4π
3 }. By taking the composition F ◦ Ψκ0,(−1)κ0τ0 we may

assume that F preserves P and J . Let (po, qo) ∈ SL(2,R) × SL(2,R) such that
F(Id2, Id2) = (po, qo). Then by taking the composition F ◦ ϕ(p−1

o ,q−1
o ,Id2) we

may also assume that F(Id2, Id2) = (Id2, Id2).
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Let α ∈ sl(2,R). Then we write F∗(Id2,Id2)(α, 0) = (β, γ). Since F preserves P
we know that F∗(Id2,Id2)(0, α) = (γ, β). We compute

F∗(Id2,Id2)J(α, 0) = 1√
3

F∗(Id2,Id2)(α, 2α)

= 1√
3

F∗(Id2,Id2)(α, 0) + 1√
3

F∗(Id2,Id2)(0, 2α)

= 1√
3

(β, γ) + 2√
3

(γ, β)

= 1√
3

(β + 2γ, 2β + γ).

On the other hand, as F preserves J , we have that F∗(Id2,Id2)J(α, 0) equals

JF∗(Id2,Id2)(α, 0) = J(β, γ)

= 1√
3

(β − 2γ, 2β − γ).

Therefore, we obtain that γ = 0. Moreover, since F is an isometry, we deduce
that F∗ maps a set {(α1, 0), (α2, 0), (α3, 0)} to a set {(β1, 0), (β2, 0), (β3, 0)}
such that ⟨αi, αj⟩ = ⟨βi, βj⟩.

Now, using Lemma 6, we may compose F with an isometry of SL(2,R) ×
SL(2,R) × SL(2,R) ⋊ Z2 to assume that F∗(Id2,Id2)(α, 0) = (α, 0) for all α ∈
sl(2,R). Since F preserves P , we have

F∗(Id2,Id2)(α, β) = F∗(Id2,Id2)(α, 0) + F∗(Id2,Id2)(0, β)

= (α, 0) + P (β, 0)

= (α, β).

Since by Proposition 3 isometries are determined by a point and the differential
at that point, the argument above shows that F−1 is in

(
SL(2,R) × SL(2,R) ×

SL(2,R)
)
⋊
(
Z2 × S3

)
, hence F also belongs to this group.

An element (a, b, c,Ψ, k) acts on a point (p, q) by

(a, b, c, k,Ψ) · (p, q) = Ψ ◦ ϕik(a,b,c)(p, q). (2.20)



46 THE NEARLY KÄHLER SL(2,R) × SL(2,R)

The isometry group is a semidirect product since for the action in (2.20) to be
a Lie group action, the group law has to be

(a1, b1, c1, k1,Ψ1) ◦ (a2, b2, c2, k2,Ψ2)

= (σ2(a1, b1, c1) · (a2, b2, c2),Ψ1 ◦ Ψ2, k1 + k2)

where σ2 is the permutation of (1, 2, 3) in S3 associated to Ψ2.

Note that in the literature there is no similar expression of the isometry group
for the Riemannian analogue. The same proof can be done for S3 ×S3, obtaining

Iso(S3 × S3) = (SU(2) × SU(2) × SU(2)) ⋊ S3.



Chapter 3

Lagrangian submanifolds of
SL(2,R) × SL(2,R)

This chapter is based on a collaboration with Joeri Van der Veken [3], the
preprint by the author [2], and an unpublished work by the author.

Introduction

Given an almost Hermitian manifold (M, g, J) there are two distinguished types
of submanifolds: Those for which the almost complex structure J preserves
the tangent space and those for which the almost complex structure maps
the tangent space into the normal space. The former kind are called almost
complex submanifolds, and the latter are known as totally real submanifolds.
If the dimension of a totally real submanifold is maximal, we say that it is
a Lagrangian submanifold. We can see that the dimension of a Lagrangian
submanifold is always half of the dimension of the ambient space.

In symplectic geometry, a Lagrangian submanifold of a symplectic manifold
(M,ω) is a submanifold such that ω vanishes everywhere and its dimension is
equal to 1

2 dim(M). In Kähler geometry ω is the Kähler form g(J ·, ·), making
both definitions of Lagrangian submanifold coincide.

The submanifolds of the nearly Kähler S3 × S3 have been widely studied by
many authors. An important notion of angle functions was introduced in [20]
and [57]. Namely, the almost product structure P induces three functions θ1,

47
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θ2 and θ3, which encode substantial extrinsic information. In [57] the authors
also classified all totally geodesic Lagrangian submanifolds of the nearly Kähler
S3 × S3:

Theorem 29 (Dioos, Hu, Vrancken, Wang and Zhang). A totally geodesic
Lagrangian submanifold of S3 × S3 is congruent to an open subset of one of the
following examples:

1. f1 : S3 → S3 × S3 : u 7→ (u, u),
2. f2 : S3 → S3 × S3 : u 7→ (u,−iui),

where i is the unit quaternion given in (2.6).

Totally geodesic Lagrangian submanifolds have constant angle functions and
at least two of them are equal modulo π. In [57] the authors actually gave six
different examples, but using the isometries of S3 × S3 described in [40] we can
reduce the list to just two.

In [6] the authors classified all Lagrangian submanifolds with constant angle
functions. By doing so, they also classified all extrinsically homogeneous
Lagrangian submanifolds:

Theorem 30 (Bektas, Moruz, Van der Veken and Vrancken). An extrinsically
homogeneous Lagrangian submanifold H · (1, 1) of S3 × S3 is congruent to an
open subset of one of the following examples,

1. f1 : S3 → S3 × S3 : u 7→ (u, u), with H = SU(2),
2. f2 : S3 → S3 × S3 : u 7→ (u,−iui), with H = SU(2),
3. f3 : RP 3 → S3 × S3 : u 7→ (−juju−1,−iuiu−1), with H = SU(2),
4. f4 : T3 → S3 × S3 : (u, v, w) 7→ (euie−wk, evje−wk), with H = T3,

where i, j, k are the unit quaternions given in (2.6), and T3 = S1 × S1 × S1. In
all cases the isotropy H(1,1) is trivial, except for the submanifold f3, where the
isotropy is Z2.

From Theorem 29 we know that the maps f1 and f2 are totally geodesic. All
maps except for f2 are immersions of space forms where the first is a sphere
of constant sectional curvature 3

2 , the third is a projective space of constant
sectional curvature 3

8 and the last one is a flat torus.

By relaxing the hypothesis to just one angle being constant, in [7] the authors
constructed Lagrangian submanifolds in S3 × S3 from minimal surfaces in S3:

Theorem 31 (Bektas, Moruz, Van der Veken, Vrancken). Let f = (p, q) : M →
S3 ×S3 be a Lagrangian immersion into the nearly Kähler S3 ×S3. Suppose that
dp has nowhere maximal rank. Then p(M) ⊂ S3 is a minimal surface of S3.
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Conversely, if p : Σ → S3 is a minimal surface of S3, there exists a Lagrangian
immersion f : M → S3 × S3 satisfying f = (p, q) for some map q : M → S3.

In this chapter we obtain similar results for the nearly Kähler SL(2,R)×SL(2,R).
In Section 3.1 we divide Lagrangian submanifolds into four types, which depend
on their behavior with respect to the almost product structure P . In Section 3.2
we classify all totally geodesic Lagrangian submanifolds of SL(2,R) × SL(2,R).
In Section 3.3 we classify all extrinsically homogeneous Lagrangian submanifolds
of SL(2,R) × SL(2,R). Finally, in Section 3.4 we construct an example of a
Lagrangian submanifold of type IV of Lemma 11.

We begin by stating some facts about Lagrangian submanifolds of nearly Kähler
manifolds, which can be found in [48].

Proposition 16. Let M be a Lagrangian submanifold of a (pseudo-)nearly
Kähler manifold N , and let h and S be the second fundamental form and shape
operator, respectively. Then, M satisfies the following properties:

1. g(G(X,Y ), Z) = 0, i.e. G(X,Y ) is normal for all X,Y ∈ X(M),
2. g(h(X,Y ), JZ) = g(h(X,Z), JY ), i.e. the tensor g(h(·, ·), J ·) is totally

symmetric,
3. G(X,Y ) = ∇⊥

XJY − J∇XY ,
4. SJXY = −Jh(X,Y ),

where G = ∇J . Moreover, if N is six-dimensional then M is orientable and
minimal.

3.1 The angle functions

Determining the curvature tensor of submanifolds is key while studying the
intrinsic information of the immersion. However, as we can see in the expression
for R̃ in Equation (2.13), we first need to know how the almost product structure
P behaves in the tangent space of the submanifold.

Given a Lagrangian submanifold M of SL(2,R) × SL(2,R), the restriction of P
to TM can be written as P |TM = A + JB, where A,B : TM → TM are the
tangent and normal parts of P .

Lemma 7. The tensors A and B on a Lagrangian submanifold M of SL(2,R)×
SL(2,R) are symmetric with respect to g, they commute with each other and
satisfy A2 +B2 = Id.
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Proof. Let X and Y be tangent vectors fields on M . Using that P is symmetric
with respect to g and that it anticommutes with J , we compute

g(PX, Y ) = g(AX + JBX, Y ) = g(AX,Y ),

and on the other hand

g(X,PY ) = g(X,AY + JBY ) = g(X,AY ),

thus A is symmetric. In a similar way, with the equation g(PX, JY ) =
g(X,PJY ) = −g(X, JPY ), we deduce that B is symmetric as well.

Now, using that P 2 = Id we compute

X = P 2X = P (AX + JBX) = PAX − JPBX

= A2X + JBAX − J(ABX + JB2X)

= (A2 +B2)X + J(BA−AB)X.

Given a Lagrangian submanifold of SL(2,R) × SL(2,R), the Gauss and Codazzi
equations in Section 1.4 give us expressions for the tangent and normal parts
of the curvature tensor R̃, in terms of the curvature tensor R and second
fundamental form H of M . In this setting these equations become:

R(X,Y )Z = − 5
6
(
g(Y,Z)X − g(X,Z)Y

)
− 2

3
(
g(AY,Z)AX − g(AX,Z)AY + g(BY,Z)BX

− g(BX,Z)BY
)

− Sh(X,Z)Y + Sh(Y,Z)X,

(3.1)

(∇Xh)(Y, Z) − (∇Y h)(X,Z) = − 2
3
(
g(AY,Z)JBX − g(AX,Z)JBY

− g(BY,Z)JAX + g(BX,Z)JAY
)
.

(3.2)

In a Riemannian setting, Lemma 7 would imply that A and B are both
simultaneously diagonalizable, but this is no longer the case in a pseudo-
Riemannian setting. Therefore, we state the following lemma, which holds for
operators A and B on vector spaces.

A basis {e1, e2, e3} of R3
1 is said to be ∆i-orthonormal if the matrix of inner

products is given by ∆i, where

∆1 =

−1 0 0
0 1 0
0 0 1

 , ∆2 =

0 1 0
1 0 0
0 0 1

 , ∆3 =

1 0 0
0 −1 0
0 0 1

 .
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A positive oriented frame on a Lorentzian manifold M is said to be a ∆i-
orthonormal frame if it is a ∆i-orthonormal basis at each point.

A part of the following lemma can be found in [38].

Lemma 8. Let A and B be two commuting symmetric operators with respect
to a Lorentzian metric on a three-dimensional vector space V . Then A and B
must take one of the following forms, with respect to a ∆i-orthonormal basis.

A =

λ1 0 0
0 λ2 0
0 0 λ3

 , B =

µ1 0 0
0 µ2 0
0 0 µ3

 , with ∆i = ∆1, (3.3)

A =

λ1 0 0
0 λ1 0
0 0 λ2

 , B =

 µ1 µ2 0
−µ2 µ1 0

0 0 µ3

 , with ∆i = ∆1, µ2 ̸= 0,

(3.4)

A =

λ 0 0
0 λ 0
0 0 λ

 , B =

µ1 ε 0
0 µ1 0
0 0 µ2

 , with ∆i = ∆2, (3.5)

A =

λ 0 0
0 λ 0
0 0 λ

 , B =

µ 0 1
0 µ 0
0 1 µ

 , with ∆i = ∆2, (3.6)

A =

λ1 ε 0
0 λ1 0
0 0 λ2

 , B =

µ1 b c
0 µ1 0
0 c µ2

 , with ∆i = ∆2, cλ1 = cλ2,

(3.7)

A =

λ 0 1
0 λ 0
0 1 λ

 , B =

µ b c
0 µ 0
0 c µ

 , with ∆i = ∆2, (3.8)

A =

 α β 0
−β α 0
0 0 λ

 , B =

 γ δ 0
−δ γ 0
0 0 µ

 , with ∆i = ∆3, β ̸= 0, (3.9)

with ε = ±1.

From [44] we know that the matrix A has four possible forms. The proof of
Lemma 8 follows from considering the four forms of A and an easy computation,
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by imposing to A and B the conditions of being symmetric with respect to the
metric, and applying a linear isometry to the basis if necessary.

Lemma 9. Let A and B be two symmetric operators with respect to a Lorentzian
metric on a three-dimensional vector space V . Assume that they commute and
that A2 +B2 = Id. Then A and B must take one of the following forms, with
respect to a ∆i-orthonormal basis.

1 . A =

cos 2θ1 0 0
0 cos 2θ2 0
0 0 cos 2θ3

, B =

sin 2θ1 0 0
0 sin 2θ2 0
0 0 sin 2θ3

,

with ∆i = ∆1 and θ1, θ2, θ3 ∈ [0, π).

2 . A =

coshλ 0 0
0 coshλ 0
0 0 cos 2θ

, B =

 0 sinhλ 0
− sinhλ 0 0

0 0 sin 2θ

,

with ∆i = ∆1, λ ∈ R and θ ∈ [0, π).

3 . A =

ε1 0 0
0 ε1 0
0 0 ε1

, B =

0 ε2 0
0 0 0
0 0 0

,

with ∆i = ∆2 and ε1, ε2 ∈ {−1, 1}.

4 . A =

cos 2θ1 ε 0
0 cos 2θ1 0
0 0 cos 2θ2

,

B =

sin 2θ1
−(c2+2ε cos 2θ1)

2 sin 2θ1
c

0 sin 2θ1 0
0 c sin 2θ2

,

with ∆i = ∆2, θ1, θ2 ∈ [0, π), θ1 ̸= 0, π/2, ε = ±1 and c ∈ R. If c ̸= 0,
then cos 2θ1 = cos 2θ2 and sin 2θ1 = − sin 2θ2.
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5 . A =

−ε ε 0
0 −ε 0
0 0 −ε

, B =

0 t
√

2
0 0 0
0

√
2 0

,

with ∆i = ∆2, ε = ±1 and t ∈ R.

6 . A =

cos 2θ 0 1
0 cos 2θ 0
0 1 cos 2θ

,

B =

sin 2θ −(csc 2θ)3/2 − cot 2θ
0 sin 2θ 0
0 − cot 2θ sin 2θ

,

with ∆i = ∆2, and θ ̸= 0, π/2.

7 . A =

s cos 2θ1 x 0
−x s cos 2θ1 0
0 0 cos 2θ2

,

B =

s sin 2θ1 y 0
−y s sin 2θ1 0
0 0 sin 2θ2

,

with ∆i = ∆3, s =
√

1 + x2 + y2, x ̸= 0, y sin 2θ1 = −x cos 2θ1

and θ1, θ2 ∈ [0, π).

Proof. Lemma 8 provides us with seven different forms A and B can take. We
analyze the equation A2 +B2 = Id on each type of matrix separately.

Type 1 (3.3): Computing A2 +B2 = Id in (3.3) immediately yields Case 1 of
Lemma 9.

Type 2 (3.4): It follows from A2 + B2 = Id that µ1 = 0, λ2
1 − µ2

2 = 1 and
λ2

2 + µ2
3 = 1. Hence, we get Case 2 of Lemma 9.

Type 3 (3.5): Case 3 is immediate from computing A2 +B2 = Id, as we obtain
that µ1 = 0. It follows that λ = ±1 and that µ2 = 0. This is Case 3 of
Lemma 9.

Type 4 (3.6): We easily see that under no conditions A2 +B2 can be equal to
the identity in this case.
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Type 5 (3.7): Computing A2 +B2 = Id in (3.7) yields the equations

λ2
1 + µ2

1 = 1, (3.10)

λ2
2 + µ2

2 = 1, (3.11)

2ελ1 + 2bµ1 + c2 = 0, (3.12)

c(µ1 + µ2) = 0. (3.13)

Suppose c ̸= 0. Then because of Equation (3.13) and cλ1 = cλ2 we have
that λ1 = λ2 and µ1 = −µ2. If µ1 = 0 then (3.10) and (3.12) imply that
λ1 = λ2 = −ε and c =

√
2, which is Case 5 of Lemma 9. If instead µ1 ̸= 0, by

Equation (3.10) we can write λ1 = cos 2θ1 and µ1 = sin 2θ1, then by (3.12) we
have b = −(c2 + 2ε cos 2θ1)/(2 sin 2θ1), which leave us with Case 4 of Lemma 9.

Now suppose that c = 0. If µ1 = 0 then we get a contradiction from equations
(3.10) and (3.12). Therefore µ1 must be different from zero, and from (3.10),
(3.11) and (3.12) we get that λ1 = cos 2θ1, λ2 = cos 2θ2, µ1 = sin 2θ1, µ2 =
sin 2θ2 and b = −ε cot 2θ1, which is again Case 4 of Lemma 9.

Type 6 (3.8): Computing A2 +B2 = Id yields

λ2 + µ2 = 1, (3.14)

λ+ cµ = 0, (3.15)

2bµ+ c2 + 1 = 0. (3.16)

From (3.14) and (3.15) we easily see that µ ≠ 0, thus c = −λ/µ. By replacing
this in (3.16) we get that b = −1/(2µ3). Finally by (3.14) we have that
λ = cos 2θ, µ = sin 2θ, c = − cot 2θ and b = − csc(2θ)3

/2, which is Case 6 in
Lemma 9.

Type 7 (3.9): Again, we compute A2 +B2 = Id in (3.9), from which follows

α2 − β2 + γ2 − δ2 = 1, (3.17)

αβ + γδ = 0, (3.18)

λ2 + γ2 = 1. (3.19)

We can transform (3.17) into(
α√

1 + β2 + δ2

)2

+
(

γ√
1 + β2 + δ2

)2

= 1,
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thus we obtain that α =
√

1 + β2 + δ2 cos θ and γ =
√

1 + β2 + δ2 sin θ for
some θ. Equation (3.18) becomes

√
1 + β2 + δ2(β cos θ + δ sin θ) = 0, hence we

can conclude that δ = −β cot θ since if sin θ = 0 then β = 0, which contradicts
the last condition of (3.9). Renaming x = β, y = δ and s =

√
1 + x2 + y2 we

obtain Case 7 of Lemma 9.

Remark 12. In [38], only the case ε = 1 is treated in equations (3.5) and (3.7).
However, the case ε = −1 is essentially different, as there is no change of basis
preserving the metric that can take one case into the other.

Now, fixing a point p ∈ M we know that there exists a basis of TpM as in
Lemma 9. There exists an open dense subset of M such that at each point we
can extend this basis locally to a ∆i-orthonormal smooth frame {E1, E2, E3}
on M .

To see this, take p in M such that A and B take one of the forms of Lemma 9 and
the eigenvalues have maximal multiplicity. The coefficients of the characteristic
polynomial of A and B are smooth since both are smooth tensors. On the
other hand, the roots of a polynomial of grade 3 can always be written in a
smooth combination of the coefficients. Hence, the roots are always smooth and
therefore most of the functions involved in Lemma 9. The functions x, y and s
in type 7 of Lemma 9 can be written in terms of the eigenvalues, therefore they
are smooth as well. It follows that θ1 is smooth too.

We can apply the same argument as in Lemma 1.2 in [49] and extend the basis
to a frame on an open subset where the multiplicities of the eigenvalues are
constant. Moreover, we assume that outside of subset the multiplicities are
different. Now take the complement of the closure of this open subset. We
obtain an open subset where we can apply this process again. After iterating
we obtain an open dense subset where we can always extend the frame locally.

Finally, by using that the expression for A is smooth and therefore the frame is
smooth, we conclude that the functions c and t in types 4 and 5 are smooth
since the frame is smooth and the tensor B is smooth.

Recall from the first equation of Proposition 16 it follows that G(X,Y ) is a
normal vector to M for any tangent vectors X,Y on M . Let {E1, E2, E3} be
a ∆i-orthonormal frame of the tangent space of M . By Proposition 9 and
Lemma 4 we get JG(Ej , Ek) = ε

√
2
3El with ε = ±1 depending on ∆i, as the

following table shows.
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∆1 ∆2 ∆3

JG(E1, E2)
√

2
3E3

√
2
3E3

√
2
3E3

JG(E1, E3) −
√

2
3E2 −

√
2
3E1

√
2
3E2

JG(E2, E3) −
√

2
3E1

√
2
3E2

√
2
3E1

(3.20)

Lemma 10. Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) and
P the almost product structure given in (2.12). Assume that A and B are
such that P |M = A+ JB. Let F be an isometry of SL(2,R) × SL(2,R). Then
P |F(M) = Ã+ JB̃ with

Ã = F∗(cos τA+ (−1)κ sin τB)F−1
∗

B̃ = F∗(− sin τA+ (−1)κ cos τB)F−1
∗

where τ and κ are such that dF ◦ P = (cos τP + sin τJP ) ◦ dF and dF ◦ J =
(−1)κ ◦ dF .

Proof. We know from Section 2.2.2 that there exists such numbers κ and τ as
in the last statement of the proposition. Let F∗X ∈ X(F(M)). On the one
hand we have that

F∗PX = F∗(AX) + F∗(JBX)

= F∗(AX) + (−1)κJF∗(BX),

and on the other hand
F∗PX = (cos τP + sin τJP )F∗X

= cos τ(ÃF∗X + JB̃F∗X) + sin τJ(ÃF∗X + JB̃F∗X).

Since F commutes with J (up to sign), the Lagrangian condition is preserved.
Therefore, after comparing tangent and normal parts; we obtain

F∗AX = (cos τÃ− sin τB̃)F∗X,

(−1)κF∗BX = (sin τÃ+ cos τB̃)F∗X.

Equivalently;

ÃF∗X = F∗(cos τAX + (−1)κ sin τBX),

B̃F∗X = F∗(− sin τAX + (−1)κ cos τBX).
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With this information we can state a stronger version of Lemma 9.

Lemma 11. Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) and P
the almost product structure given in (2.12). Then there exists a Lagrangian
submanifold N congruent to M such that the restriction of P to N can be
written as P |N = A + JB, where A,B : TN → TN must have one of the
following forms, with respect to a ∆i-orthonormal frame {E1, E2, E3}.

I. A =

cos 2θ1 0 0
0 cos 2θ2 0
0 0 cos 2θ3

, B =

sin 2θ1 0 0
0 sin 2θ2 0
0 0 sin 2θ3

,

with ∆i = ∆1 and θ1 + θ2 + θ3 = 0 modulo π.

II. A =

cos 2θ1 1 0
0 cos 2θ1 0
0 0 cos 2θ2

, B =

sin 2θ1 − cot 2θ1 0
0 sin 2θ1 0
0 0 sin 2θ2

,

with ∆i = ∆2, 2θ1 + θ2 = 0 modulo π and θ1 ̸= 0, π/2.

III. A =

− 1
2 0 1

0 − 1
2 0

0 1 − 1
2

, B = ±


√

3
2

−4
3

√
3

1√
3

0
√

3
2 0

0 1√
3

√
3

2

,

with ∆i = ∆2.

IV. A =

coshψ cos 2θ1 sinhψ sin θ2 0
− sinhψ sin θ2 coshψ cos 2θ1 0

0 0 cos 2θ2

,

B =

 coshψ sin 2θ1 sinhψ cos θ2 0
− sinhψ cos θ2 coshψ sin 2θ1 0

0 0 sin 2θ2

,

with ∆i = ∆3, 2θ1 + θ2 = 0 modulo π, θ2 ̸= 0, π and ψ ̸= 0.

The functions θi and ψ are called the angle functions. Since the type
is invariant under congruent transformations, we say that a Lagrangian
submanifold M is of type I (or sometimes diagonalizable type), II, III or
IV. Likewise, if M is of type i we say that A and B take type i form on M .

Proof. The next equation follows from applying P to (3.20), using Lemma 5:

PEi = −αJPG(Ej , Ek) = αJG(PEj , PEk), (3.21)
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where α can be either
√

3
2 or −

√
3
2 , depending on which case of (3.20) we are in.

For Case 1 , Case 2 and Case 7 of Lemma 9 the triple (i, j, k) is a permutation
of (1, 2, 3). For cases 3 to 6 of Lemma 9 this is not true anymore, and i is
equal either to j or to k. We consider the seven cases of Lemma 9 applied to
Equation (3.21), one by one.

Case 1 . Using a similar procedure as in [20], we get θ1 + θ2 + θ3 = 0 modulo π.

Case 2 . Taking i = 3, j = 1 and k = 2 in (3.21) and looking at the component
of JE3 we conclude that θ = 0. Now we apply to M the isometry Ψ4π/3,1 given
in (2.19). The tensor P restricted to Ψ4π/3,1(M) can be written as Ã + JB̃,
where

Ã = −1
2A+

√
3

2 B, B̃ =
√

3
2 A+ 1

2B.

This is Case IV of Lemma 11 with θ1 = θ2 = π
3 .

Case 3 . With i = 1, j = 1 and k = 3 in (3.21) we obtain ε1 = 1. As there is no
possible change of basis that can transform ε2 into 1, we apply either Ψ2π/3,1
or Ψ4π/3,1 to M , depending on its value. Proceeding in the same way as in the
previous case, we restrict P to the image of the isometry. After a change of
basis, we get Case II of Lemma 11, with θ1 = θ2 = π

3 if ε2 = 1 and θ1 = θ2 = 2π
3

if ε2 = −1.

Case 4 . Taking i = 1, j = 1 and k = 1 in (3.21) yields

cos 2θ1 = cos 2(θ1 + θ2), sin 2θ1 = − sin 2(θ1 + θ2).

Thus,

cos 2(2θ1 + θ2) = cos 2θ1 cos 2(θ1 + θ2) − sin 2θ1 sin 2(θ1 + θ2)

= cos2 2(θ1 + θ2) + sin2 2(θ1 + θ2)

= 1.

Then 2θ1 + θ2 = 0 mod π. Looking at the component of E3 in (3.21) when
taking i = 2, j = 2 and k = 3 we obtain c sin 2θ1 = 0, therefore c = 0 as
sin 2θ1 ̸= 0.

If ε = 1, we have Case II of Lemma 11.

If ε = −1, we would like to transform it into 1. We apply either Ψ2π/3,0 or
Ψ2π/3,1 to M and restrict P to the image. The component Ã12 is 1 +

√
3 cot 2θ1

or 1 −
√

3 cot 2θ1. These two values cannot be negative at the same time, thus
we can always choose one to be positive. After a change of basis, we get Case
II of Lemma 11.
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Case 5 . On the left hand side of (3.21) we have PE1 = −E1 and on the right
hand side we have

−
√

3
2JG(PE1, PE3) = −

√
3
2JG(−E1,−E3) = E1,

which is a contradiction. Therefore, there is no Lagrangian submanifold with
such a frame.

Case 6 . Taking the component of E3 on both sides of (3.21) with i = 2, j = 2
and k = 3 yields −2 cos 2θ = 1. Hence θ = π

3 or θ = 2
3π. That is

A =

− 1
2 0 1

0 − 1
2 0

0 1 − 1
2

 , B = ±


√

3
2 − 4

3
√

3
1√
3

0
√

3
2 0

0 1√
3

√
3

2

 .

Case 7 . Taking i = 1, j = 2 and k = 3 in (3.21) gives us

cos 2θ1 = cos 2(θ1 + θ2),

sin 2θ1 = − sin 2(θ1 + θ2).

Therefore as in the previous cases we have cos 2(2θ1 + θ2) = 1. We take i = 2,
j = 1 and k = 3 in (3.21) and we look at the components of E1, JE1:

x = −x cos 2θ2 + y sin 2θ2,

y = x sin 2θ2 + y cos 2θ2.
(3.22)

Note that the equations in (3.22) can be written as the equation Rv = v where
v = (x, y)t and

R =
(

cos(π − 2θ2) sin(π − 2θ2)
sin(π − 2θ2) − cos(π − 2θ2)

)
.

Hence, v is an eigenvector of the matrix R associated to the eigenvalue 1.
Now, R is a reflection in the plane with respect to the straight line s 7→
s(cos

(
π
2 − θ2

)
, sin

(
π
2 − θ2

)
)t = s(sin θ2, cos θ2)t, therefore v lies in that subspace.

So x = sinhψ sin θ2, y = sinhψ cos θ2 for some ψ ∈ R different from zero.
Finally, replacing x and y in the matrices of Case 7 of Lemma 9 yields what we
desired.

3.1.1 The tensor ∇P

Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) and let {E1, E2, E3}
be a frame given by Lemma 11. As the normal space is spanned by
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{JE1, JE2, JE3}, we may define functions ωkij and hkij by ∇Ei
Ej =

∑
k ω

k
ijEk

and h(Ei, Ej) =
∑
k h

k
ijJEk. From Property 2 of Proposition 16 and the

compatibility of the connection with the metric, we obtain the following
symmetries.

First, for frames {Ei} associated to ∆1 and ∆3 we have

δkω
k
ij = −δjωjik, hkij = hkji = δjδkh

j
ik,

where
δi = g(Ei, Ei).

This implies that ωjij = 0 for all i, j = 1, 2, 3.

If the frame is associated to ∆2 we get

ωkij = −ωĵ
îk
, hkij = hkji = ĥj

îk

where 2̂ = 1, 1̂ = 2 and 3̂ = 3. As before, we have that ω3
i3 = 0. Also, if j = 1,

k = 2 or j = 2, k = 1 then ωkij = 0.

We recall the expression for the covariant derivative of the tensor P , previously
given in Lemma 5:

(∇̃XP )Y = 1
2

(
JG(X,PY ) + JPG(X,Y )

)
. (3.23)

This equation is useful since it gives conditions on the components hkij and ωkij .
As it depends on P , we are forced to divide between the four cases of Lemma
11.

Lagrangian submanifolds of diagonalizable type

Lemma 12. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler
SL(2,R) × SL(2,R). Suppose that A and B take type I form in Lemma 11
with respect to a ∆1-orthonormal frame {E1, E2, E3}. Except for h3

12, all the
components of the second fundamental form are given by the derivatives of the
angle functions θ1, θ2 and θ3:

Ei(θj) = −δiδjhijj , (3.24)

where δi = g(Ei, Ei). Also

hkij cos(θj − θk) = ( 1√
6δkε

k
ij − ωkij) sin(θj − θk), (3.25)

for j ̸= k.
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Proof. Taking X = E1 and Y = E2 in (3.23) and comparing the components in
E1, E2, E3, JE1, JE2 and JE3 yields the following six equations

(h2
11 cos(θ1 − θ2) + ω2

11 sin(θ1 − θ2)) sin(θ1 + θ2) = 0,

(h2
11 cos(θ1 − θ2) + ω2

11 sin(θ1 − θ2)) cos(θ1 + θ2) = 0,

(h1
22 − E1(θ2)) sin(2θ2) = 0,

(h1
22 − E1(θ2)) cos(2θ2) = 0,

(h3
12 cos(θ2 − θ3) + (− 1√

6 + ω3
12) sin(θ2 − θ3)) sin(θ2 + θ3) = 0,

(h3
12 cos(θ2 − θ3) + (− 1√

6 + ω3
12) sin(θ2 − θ3)) cos(θ2 + θ3) = 0.

Since sine and cosine never vanish at the same time (3.24) and (3.25) hold for
i = 1 and j = 2. The other equations follow in a similar way, by choosing
different X and Y in (3.23).

Lagrangian submanifolds of type II

The covariant derivative of P in Equation (3.23) yields the following lemma for
type II Lagrangian submanifolds.

Lemma 13. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler
SL(2,R) × SL(2,R). Suppose that A and B are of type II in Lemma 11 with
respect to a ∆2-orthonormal frame {E1, E2, E3}. Then h(E1, E1) = 0. Moreover,
the derivatives of the angles are given by

E1(θ1) = −h1
11 = 0, E2(θ1) = −h2

22, E3(θ1) = −h3
12

E1(θ2) = −h2
33, E2(θ2) = −h1

33, E3(θ2) = −h3
33.

(3.26)

Furthermore,

h1
33 = −2h2

22, h2
33 = −2h1

11 = 0, h3
33 = −2h3

12. (3.27)

Proof. Computing Equation (3.23) with X = E2, Y = E1 and looking at the
components of E2 and JE2 we obtain

h1
11 sin 2θ1 = 0, h1

11 cos 2θ1 = 0.

Since sine and cosine never vanish at the same time we get that h1
11 = 0. Same

can be done computing Equation (3.23) with X = E1, Y = E1 and X = E3,
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Y = E1 and looking in the directions of E2 and JE2 , obtaining h2
11 = h3

11 = 0.
Looking in the direction of E1 and JE1 of the same equations, we obtain the
derivatives of the function θ1. We derive Ei(θ2) by computing Equation (3.23)
with X = Ei and Y = E3.

We obtain the last statement either from Proposition 16, or from (3.26) and
the fact that 2θ1 + θ2 = 0.

Lagrangian submanifolds of type III

For Lagrangian submanifolds of type III, Equation (3.23) gives expressions for
all functions ωkij , given in the following lemma.

Lemma 14. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler
SL(2,R)×SL(2,R). Suppose that A and B take type III form in Lemma 11 with
respect to a ∆2-orthonormal frame {E1, E2, E3}. Then we have h(E1, E1) = 0
and

h3
12 = ω1

11 = ω3
11 = ω2

33 = 0,

ω3
12 =

√
2 + (−1)k+13h2

22

2
√

3
,

ω1
31 =

√
2 + (−1)k+112h2

22

2
√

3
,

ω3
21 = −

√
2 + (−1)k6h2

22

2
√

3
,

ω2
22 = (−1)k(h2

22 − 3h3
22)√

3
,

ω1
33 = (−1)k+1(4h2

22 − 3h3
22)

2
√

3
,

ω3
22 = (−1)k+1(9h1

22 − 8h2
22 + 6h3

22)
6
√

3
,

(3.28)

where (−1)k with k ∈ {0, 1} the sign of B in Lemma 11.

Proof. From computing Equation (3.23) with X = Ei, Y = E1, i = 1, 2, 3 and
looking at the components in the direction of JE2 it follows that h(E1, E1) = 0.
Now, if we compute Equation (3.23) with X = Ei, Y = E1, X = E2 Y = E3 in
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the direction of E1 and JE2 respectively we get h3
12 = ω3

11 = 0. The rest of the
equations are obtained in the same way.

Lagrangian submanifolds of type IV

Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) of type IV in
Lemma 11. From this Lemma we know that 2θ1 + θ2 = 0 modulo π. Thus, we
write θ2 = kπ − 2θ1 where k = 0, 1. Suppose that k = 1. The tensors A, B on
the image of M by the isometry Ψ0,1 given in (2.19), corresponds to the case
with angle functions θ1, θ2, −ψ and k = 0.

Contrary to type II Lagrangian submanifolds, here it is necessary to distinguish
between k = 0 and k = 1, since both θ2 and 2θ2 appear in the expressions for
A and B.

From Proposition 16 we may assume that

hi33 = hi22 − hi11

for i = 1, 2, 3. Now, from Equation (3.23) we obtain the next lemma.

Lemma 15. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler
SL(2,R) × SL(2,R). Suppose that A and B take type IV form in Lemma 11
with respect to a ∆3-orthonormal frame {E1, E2, E3}. Then the derivatives of
the angle functions are given by:

E1(θ1) = h1
22 − h1

11
2 , E2(θ1) = h2

11 − h2
22

2 , E3(θ1) = h3
22 − h3

11
2 ,

E1(ψ) = 2h2
11, E2(ψ) = −2h1

22, E3(ψ) = −2h3
12.

(3.29)

Moreover, we have the following expressions for the functions ωkij:

ω2
11 = 1

2(h1
11 + h1

22) cothψ,

ω1
22 = −1

2(h2
11 + h2

22) cothψ,

ω1
32 = 1

2(h3
11 + h3

22) cothψ − 1√
6
.

(3.30)
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Also,

ω3
11 = h3

11 sin 6θ1 + h3
12 sinhψ

cos 6θ1 − coshψ ,

ω3
12 = h3

12 sin 6θ1 − h3
11 sinhψ

cos(6θ1) − coshψ + 1√
6
,

ω3
22 = h3

22 sin 6θ1 − h3
12 sinhψ

cos 6θ1 − coshψ ,

ω3
21 = h3

12 sin 6θ1 + h3
22 sinhψ

cos 6θ1 − coshψ − 1√
6
,

ω1
33 = (h1

11 − h1
22) sin 6θ1 + (h2

22 − h1
11) sinhψ

cos 6θ1 − coshψ ,

ω2
33 = (h2

11 − h2
22) sin 6θ1 − (h1

22 − h1
11) sinhψ

cos 6θ1 − coshψ .

(3.31)

Proof. From computing (∇E1P )E1 and looking at the components in the
direction of E2 and JE2 we get the equation(

cos 2θ1 sin 2θ1
− sin 2θ1 cos 2θ1

)(
coshψ

(
E1(ψ) − 2h2

11
)

− sinhψ
(
2E1(θ1) + h1

11 − h1
22
) ) = 0.

From (∇E2P )E2 and (∇E3P )E3 we derive the rest of the equations in Equation
(3.29) in a similar way.

Having Equation (3.29) we look at the rest of the components of (∇Ei
P )Ei and

we obtain the expressions in (3.30).

By computing (∇Ei
P )Ej with i ̸= j we come to linear equations which

yield (3.31).

3.2 Totally geodesic Lagrangian submanifolds

In this section we classify totally geodesic Lagrangian submanifolds of SL(2,R)×
SL(2,R). The classification can also be found in [3].
Theorem 32. Any totally geodesic Lagrangian submanifold of the pseudo-nearly
Kähler SL(2,R) × SL(2,R) is congruent to the image of one of the following
maps, possibly restricted to an open subset:
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(1) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (Id2, u),
(2) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u, iui),
(3) f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u,−kuk),

where Id2 is the identity matrix, and i, k are the matrices given in (2.1).

Conversely, the maps (1), (2) and (3) are totally geodesic Lagrangian
immersions.

The layout of this section is as follows. In Subsection 3.2.1 we present some
examples of totally geodesic Lagrangian submanifolds of SL(2,R) × SL(2,R).
Subsections 3.2.2 and 3.2.3 address the existence of totally geodesic Lagrangian
submanifolds of diagonalizable type and of the rest of the types in Lemma 11,
respectively. In Subsection 3.2.4 we prove Theorem 32.

In [57], the authors stated that any totally geodesic Lagrangian submanifold of
S3 × S3 is congruent to an immersion of a list of 6 examples. This classification
can be simplified, using isometries equivalent to the ones given in (2.19). This
way, the list is reduced to just two examples, similar to immersions (1) and (2)
of Theorem 32. Hence, immersion (3) is a new example, which arises from the
pseudo-Riemannian nature of SL(2,R) × SL(2,R).

We can understand the geometry of the immersions of Theorem 32 via the
identification of SL(2,R) with the anti-de Sitter space H3

1 (−1); namely via the
map

H3
1 (−1) ⊂ R4

2 → SL(2,R) : (x0, x1, x2, x3) 7→
(
x0 − x2 x3 − x1
x3 + x1 x0 + x2

)
,

which is an isometry between H3
1 (−1) and SL(2,R) with the metric introduced

in Equation (2.2). Here, R4
2 denotes R4 equipped with the indefinite inner

product
⟨x, y⟩ = −x0y0 − x1y1 + x2y2 + x3y3,

and the three-dimensional anti-de Sitter space with constant sectional curvature
c < 0 is defined as H3

1 (c) = {x ∈ R4 : ⟨x, x⟩ = 1/c}.

Note that the three immersions of Theorem 32 induce essentially different
Riemannian structures on SL(2,R). The first immersion induces a metric with
constant sectional curvature, that is homothetic to the standard metric. The
second immersion turns SL(2,R) into an anti-de Sitter space with a Berger-like
metric stretched in a spacelike direction, and the third immersion turns it again
into an anti-de Sitter space with a Berger-like metric, but now stretched in
a timelike direction. These metrics have been studied more generally in [11]
and [12].
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3.2.1 Examples of totally geodesic Lagrangian submanifolds

We proceed by giving three examples of totally geodesic Lagrangian submanifolds
of the nearly Kähler SL(2,R) × SL(2,R).

Recall the frame {X1, X2, X3} on SL(2,R) given in (2.3), that is

X1(a) = ai, X2(a) = aj, X3(a) = ak, (3.32)

for which
⟨X1, X1⟩ = ⟨X2, X2⟩ = −⟨X3, X3⟩ = 1,

where ⟨, ⟩ is the metric given in (2.2). Then {X3, X2, X1} is a ∆1-orthonormal
frame on SL(2,R).

Example 16. Consider the immersion of SL(2,R) into SL(2,R) × SL(2,R)
given by

f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (Id2, u).

We have

df(X1(u)) = (0, ui)(Id2,u),

df(X2(u)) = (0, uj)(Id2,u),

df(X3(u)) = (0, uk)(Id2,u).

Then we compute

Pdf(X1(u)) = (i, 0)(Id2,u),

Pdf(X2(u)) = (j, 0)(Id2,u),

Pdf(X3(u)) = (k, 0)(Id2,u),

and

Jdf(X1(u)) = − 1√
3

(2i, ui)(Id2,u),

Jdf(X2(u)) = − 1√
3

(2j, uj)(Id2,u),

Jdf(X3(u)) = − 1√
3

(2k, uk)(Id2,u).
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From this, it immediately follows that g(df(Xi(u)), Jdf(Xj(u))) = 0 for all
i, j = 1, 2, 3. Therefore f is a Lagrangian immersion. Moreover, we notice that

Pdf(Xi(u)) = − 1
2df(Xi(u)) −

√
3

2 Jdf(Xi(u)),

hence f is of diagonalizable type and the angle functions are constant and all
are equal to 2

3π.

In Lemma 3 we compute ∇̃Xi
Xj for i, j = 1, 2, 3, and we see that it is always

tangent. Hence, the submanifold is totally geodesic.

Example 17. Consider the immersion of SL(2,R) into SL(2,R) × SL(2,R)
given by

f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u, iui).

Recall that the split quaternions i, j and k anticommute. Then we may compute

df(X1(u)) = (ui, iuii)(u,iui) = (ui, iuii)(u,iui),

df(X2(u)) = (uj, iuji)(u,iui) = (uj, iui(−j))(u,iui),

df(X3(u)) = (uk, iuki)(u,iui) = (uk, iui(−k))(u,iui).

By the definition of J in (2.10) we get

Jdf(X1(u)) = 1√
3

(−ui, iuii)(u,iui),

Jdf(X2(u)) =
√

3(uj, iuij)(u,iui),

Jdf(X3(u)) =
√

3(uk, iuik)(u,iui).

Hence, we can easily compute g(df(Xi(u)), Jdf(Xj(u))) = 0 for i, j = 1, 2, 3,
therefore f is a Lagrangian immersion. Moreover, we have

Pdf(X1(u)) = (ui, iuii)(u,iui) = df(X1(u)),

Pdf(X2(u)) = (−uj, iuij)(u,iui) = −df(X2(u)),

Pdf(X3(u)) = (−uk, iuik)(u,iui) = −df(X3(u)).

To obtain a ∆1-orthonormal frame we have to reorder the vectors Xi to
{X3, X2, X1}. Consequently, the immersion f is of diagonalizable type with
constant angle functions (θ1, θ2, θ3) = (π2 ,

π
2 , 0).

In order to prove that f is totally geodesic, we compute ∇̃XY for X, Y tangent
vector fields and we see that the result is tangent to the submanifold.
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We only compute ∇̃X1X2, since the rest of the cases are similar. From Equations
(2.11), (2.17) and (2.18) we obtain

∇̃X1X2 = DX1DX2f − 1
2 ⟨X1, X2⟩f − 1

2 ⟨QX1, X2⟩Qf

− 1
2J ◦ (Id +P )G(X1, PX2)

= (uij,−iuij) − 1
2 ⟨(ui, iuii), (uj,−iuij)⟩(u, iui)

− 1
2 ⟨(−ui, iuii), (uj,−iuij)⟩(−u, iui)

− 1
2J ◦ (Id +P )G((ui, iuii), (−uj, iuij))

= df(X3) − 1
2J ◦ (Id +P )G((ui, iuii), (−uj, iuij))

= df(X3) − 12
3
√

3
J(uk, iuik)

= df(X3) + 4
3df(X3).

Example 18. Consider the immersion of SL(2,R) into SL(2,R) × SL(2,R)
given by

f : SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u,−kuk).

The minus sign is added such that f(Id2) = (Id2, Id2).

We have

df(X1(u)) = (ui,−kuik)(u,−kuk) = (ui,−kuk(−i))(u,−kuk),

df(X2(u)) = (uj,−kujk)(u,−kuk) = (uj,−kuk(−j))(u,−kuk),

df(X3(u)) = (uk,−kukk)(u,−kuk).

By definition of J in (2.10) we obtain

Jdf(X1(u)) =
√

3(ui,−kuki)(u,−kuk),

Jdf(X2(u)) =
√

3(uj,−kukj)(u,−kuk),

Jdf(X3(u)) = 1√
3

(−uk,−kukk)(u,−kuk).
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Hence we can easily compute g(df(Xi(u)), Jdf(Xj(u))) = 0 for i, j = 1, 2, 3,
therefore f is a Lagrangian immersion. Moreover we have that

Pdf(X1(u)) = (−ui,−kuki)(u,−kuk) = −df(X1(u)),

Pdf(X2(u)) = (−uj,−kukj)(u,−kuk) = −df(X2(u)),

Pdf(X3(u)) = (uk,−kukk)(u,−kuk) = df(X3(u)).

Again, since the ∆1-orthonormal frame is {X3, X2, X1}, the immersion is of
diagonalizable type and the angle functions are constant and equal to (0, π2 ,

π
2 ).

In order to prove that f is totally geodesic, we compute ∇̃XY for X, Y tangent
vector fields and we see that the result is tangent to the submanifold.

We only compute ∇̃X1X2, since the rest of the cases are similar. From Equations
(2.11), (2.17) and (2.18) we obtain

∇̃X1X2 = DX1DX2f − 1
2 ⟨X1, X2⟩f − 1

2 ⟨QX1, X2⟩Qf

− 1
2J ◦ (Id +P )G(X1, PX2)

= (uij,−kuk(−j)) − 1
2 ⟨(ui,−kuk(−i)), (uj,−kuk(−j))⟩(u,−kuk)

− 1
2 ⟨(−ui,−kuk(−i)), (uj,−kuk(−j))⟩(−u,−kuk)

− 1
2J ◦ (Id +P )G((ui,−kuk(−i)), (−uj,−kukj))

= df(X3) − 1
2J ◦ (Id +P )G((ui,−kuk(−i)), (−uj,−kukj))

= df(X3).

Remark 13. The immersion f : SL(2,R) → SL(2,R) × SL(2,R) given by f :
u 7→ (u, juj) is a Lagrangian immersion congruent to Example 17. Indeed, take
the isometry of SL(2,R) × SL(2,R) given by ϕ : (p, q) 7→ (cpc,−cqc), where c
is the matrix in SL(2,R) given by e

π
4 k . This matrix satisfies that cj = ic and

jc = −ci. Hence
ϕ ◦ f(u) = (cuc,−cjujc) = (v, ivi),

where v = cuc.
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3.2.2 Lagrangian submanifolds of diagonalizable type

Proposition 17. Let M be a Lagrangian submanifold of the pseudo-nearly
Kähler SL(2,R) × SL(2,R) of diagonalizable type. If the angle functions θi are
constant and h3

12 = 0, then M is totally geodesic. Conversely, if the submanifold
is totally geodesic then the angles are constant.

Proof. By Lemma 12, if the angle functions are constant then hjii = 0 for all
i, j = 1, 2, 3. Using the symmetries of hkij we conclude that the submanifold is
totally geodesic. The converse is immediate by Lemma 12.

Now notice that

−δkEk(hijj) + δiEi(hkjj) = δkδiδjEk(Ei(θj)) − δiδkδjEi(Ek(θj))

= δkδiδj [Ek, Ei](θj)

= δkδiδj(∇Ek
Ei − ∇EiEk)(θj)

= δkδiδj
∑
l

(ωlki − ωlik)El(θj)

= δkδi
∑
l

δl(ωlik − ωlki)hljj .

(3.33)

Proposition 18. Let M be a Lagrangian submanifold of the pseudo-nearly
Kähler SL(2,R)×SL(2,R) of diagonalizable type. If two angles are equal modulo
π, then M is totally geodesic.

Proof. We assume that θ1 = θ2 mod π. From (3.24) we get −hi22 = hi11 and
h2
i1 = 0, for all i. Thus h1

11 = h2
11 = h1

22 = h2
22 = h3

12 = 0. By Proposition 16
the submanifold M is minimal, then −hi11 + hi22 + hi33 = 0 for i = 1, 2, 3.
Hence, h1

33 and h2
33 also vanish. The remaining components are related by

h3
11 = −h3

22 and h3
33 = 2h3

11. Taking i = 2, j = 1, k = 1 in (3.33) we obtain
0 = (ω3

21 −ω3
12)h3

11. Computing both sides of the Codazzi equation in (3.2) with
X = E1, Y = E2, Z = E2 yields

0 = h3
11(
√

2
3 − 3ω3

12 + ω3
21).

Suppose h3
11 ̸= 0. Then ω3

12 = ω3
21 = 1√

6 and hence by (3.25) we have 0 =
(− 1√

6 − 1√
6 ) sin(θ1 − θ3), so θ1 = θ3 mod π. By (3.24) we have that h3

11 =
−h3

33 = 0, which is a contradiction. Thus, h3
11 must be zero and therefore the
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submanifold is totally geodesic. The proof is similar (up to signs) for a different
choice of the pair of angles.

Lemma 16. Let f : M → SL(2,R) × SL(2,R) be a Lagrangian immersion
into the pseudo-nearly Kähler SL(2,R) × SL(2,R), and assume that M is of
diagonalizable type with ∆1-orthonormal frame {E1, E2, E3}. Let θ1, θ2, θ3 be
their respective angle functions. Then the Lagrangian immersions Ψ1,0 ◦ f ,
Ψ1,4π/3 ◦ f , where Ψκ,τ are the isometries given in (2.19), are also of
diagonalizable type and their respective angle functions are

θ
(1)
i = π − θi, θ

(2)
i = π

3 − θi.

Proof. The proofs of Theorem 3 and Theorem 4 of [6] can be replicated for this
case, taking the adjugate matrix instead of the conjugate of a quaternion.

Lemma 17. Consider a totally geodesic Lagrangian submanifold of diagonal-
izable type of the pseudo-nearly Kähler SL(2,R) × SL(2,R). After a possible
permutation of the angles, we have one of the following:

1. (2θ1, 2θ2, 2θ3) = ( 4π
3 ,

4π
3 ,

4π
3 ),

2. (2θ1, 2θ2, 2θ3) = (0, π, π),
3. (2θ1, 2θ2, 2θ3) = (π, π, 0).

Proof. Taking X = Ei, Y = Ej and Z = Ej in the Codazzi equation yields
sin(2(θi − θj)) = 0, thus all pairs of angles 2θi and 2θj are equal up to a multiple
of π. This, together with the fact that the sum of the angles is equal to zero
modulo 2π, implies that 6θi = 0 modulo π for all i. Therefore, replacing E2
with E3 and E3 with −E2 if necessary, we obtain the following possibilities.

(2θ1, 2θ2, 2θ3) = ( 4π
3 ,

4π
3 ,

4π
3 ),(1) (2θ1, 2θ2, 2θ3) = ( 2π

3 ,
2π
3 ,

2π
3 ),(2)

(2θ1, 2θ2, 2θ3) = (0, 0, 0),(3) (2θ1, 2θ2, 2θ3) = (0, π, π),(4)
(2θ1, 2θ2, 2θ3) = (π, π, 0),(5) (2θ1, 2θ2, 2θ3) = (π3 ,

π
3 ,

4π
3 ),(6)

(2θ1, 2θ2, 2θ3) = ( 4π
3 ,

π
3 ,

π
3 ),(7) (2θ1, 2θ2, 2θ3) = ( 2π

3 ,
5π
3 ,

5π
3 ),(8)

(2θ1, 2θ2, 2θ3) = ( 5π
3 ,

5π
3 ,

2π
3 ).(9)

Suppose that M is a Lagrangian submanifold of diagonalizable type with angles
as in (3). Then by Lemma 16, applying the isometry Ψ1,4π/3 in (2.19) produces
a congruent Lagrangian submanifold with angles as in (1). We can apply a
similar argument to see that cases (2), (3), (6), (7), (8) and (9) are congruent
to one of the cases (1), (4) or (5). Hence we may restrict our attention to the
latter cases. Notice that in cases (4) and (5) we cannot do a permutation with
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E1 since, unlike E2 and E3, this vector is timelike. Later on we will prove that
these cases are not isometric.

In Section 3.2.1 we proved that the immersions in Theorem 32 are Lagrangian
and totally geodesic. To complete the proof of this theorem, it remains to be
shown that any totally geodesic Lagrangian immersion is locally congruent to
one of the Examples 16-18, depending on the possible angle functions in Lemma
17. This is what we prove in the upcoming propositions.

Proposition 19. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kähler SL(2,R) × SL(2,R) of diagonalizable type. Assume that
(2θ1, 2θ2, 2θ3) = ( 4π

3 ,
4π
3 ,

4π
3 ). Then M is locally congruent to the submanifold

SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (Id2, u).

Proof. As M is of type I in Lemma 11, we have that A = − 1
2 Id and B = −

√
3

2
are multiples of the identity we have that PX = − 1

2X −
√

3
2 JX for any vector

field X tangent to M . It follows immediately that QX = X where Q is the
almost product structure given in (2.16). Using the Gauss equation we can
compute the curvature tensor of M and also the sectional curvature, which is
equal to − 3

2 . Then M is locally isometric to SL(2,R) equipped with the metric
2
3g0, where g0 is the metric defined in (2.2). Now write f = (p, q). By the
definition of Q, we have that

(dp(v), 0) = 1
2 (df(v) −Qdf(v)) = 0, (0, dq(v)) = 1

2 (df(v) +Qdf(v)) = df(v),

with v ∈ TSL(2,R). Hence p should be a constant matrix in SL(2,R). The
previous equation also implies that dq is a linear isomorphism, then q is a local
diffeomorphism. Therefore, we may assume that q(u) is actually equal to u.
Applying an isometry of SL(2,R) × SL(2,R) we may assume that p is equal to
Id2.

The immersion in Example 17 is the immersion of SL(2,R) with a Berger-like
metric, stretched in the spacelike direction. We can construct such a metric by
taking on SL(2,R) the frame {X1, X2, X3} given in (3.32), and the metric g+

κ,τ

given by

g+
κ,τ (X,Y ) = 4

κ

(
⟨X,Y ⟩ + ( 4τ2

κ − 1)⟨X,X1⟩⟨Y,X1⟩
)
,

where κ > 0 and τ are constants and ⟨, ⟩ is the metric on SL(2,R) given in (2.2).
It follows from a straightforward computation that

[X1, X2] = 2X3, [X1, X3] = 2X2, [X2, X3] = −2X1.
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We take the vector fields

Ẽ1 =
√
κ

2 X3, Ẽ2 =
√
κ

2 X2 and Ẽ3 = κ
4τX1, (3.34)

which form a ∆1-orthonormal frame on SL(2,R) with respect to the metric g+.
We denote the Levi-Civita connection associated to g+

κ,τ by ∇+. It follows from
the Koszul formula that ∇+

Ẽi
Ẽi = 0 and that

∇+
Ẽ1
Ẽ2 = −τẼ3, ∇+

Ẽ2
Ẽ3 = τẼ1,

∇+
Ẽ1
Ẽ3 = τẼ2, ∇+

Ẽ3
Ẽ1 = (τ − κ

2τ )Ẽ2,

∇+
Ẽ2
Ẽ1 = τẼ3, ∇+

Ẽ3
Ẽ2 = (τ − κ

2τ )Ẽ1.

The following result is a corollary of Theorem 19.

Proposition 20. Let (Mn, g) and (Nn, ĝ) be pseudo-Riemannian manifolds
with Levi-Civita connections ∇ and ∇̂, respectively. Suppose that there exist
constants ckij, i, j, k ∈ 1, . . . , n such that for all p ∈ M and p′ ∈ N there exist
pseudo-orthonormal frames {E1, . . . , En} around p, {F1, . . . , Fn} around p′ with
the same signatures such that ∇Ei

Ej =
∑n
i=1 c

k
ijEk, ∇̂Fi

Fj =
∑n
i=1 c

k
ijFk. Then

there exists a local isometry that maps a neighborhood of p into a neighborhood
of p̃ and maps {Ei} to {Fi}.

Proof. Let p ∈ N and p′ ∈ Ñ , and let φ : TpN → Tp′Ñ be the linear
isomorphism given by φ((Ei)p) = (Fi)p′ . Let U be a normal neighborhood
around p and let f be the diffeomorphism given in (1.1). Let q ∈ U and
denote by Ẽi(t) and F̃i(t) the parallel transports of (Ei)p and (Fi)p′ along the
geodesics γ and γ̂ that join p with q and p′ with f(q), respectively. Note that
γ̂′(0) = φ(γ′(0)).

We write

γ′(t) =
∑
j

aj(t)Ej , γ̂′(t) =
∑
j

bj(t)Fj ,

Ẽi(t) =
∑
j

xij(t)Ej , F̃i(t) =
∑
j

yij(t)Fj ,
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with aj , bj , xij and yij smooth functions that satisfy aj(0) = bj(0), xij(0) =
yij(0) = δij , for all i, j = 1, . . . , n. We compute

0 = ∇ ∂
∂t

γ′(t) =
∑
j

∂
∂t (aj(t))Ej + aj(t)∇∑

k
ak(t)Ek

Ej

=
∑
j,k,l

∂
∂t (aj(t))Ej + aj(t)ak(t)clkjEl.

This is a first order system of differential equations, with initial conditions
ai(0). By doing the same computation for γ̂′ we show that the functions bj are
solutions of the same system, and therefore aj(t) = bj(t). We apply the same
reasoning for Ẽi and F̃i, obtaining xij(t) = yij(t).

Now we compare R with R̂, the curvature tensors of M and N respectively.

g(R(Ẽi, Ẽj)Ẽk, Ẽl) =
∑

α,β,κ,δ

xiαx
j
βx

k
κx

l
δg(R(Eα, Eβ)Eκ, Eδ)

=
∑

α,β,κ,δ,s

ηδx
i
αx

j
βx

k
κx

l
δ(csβκcδαs − csακc

δ
βs − cδsκ(csαβ − csβα))

where ηδ = g(Eδ, Eδ). On the other hand computing ĝ(R̂(F̃i, F̃j)F̃k, F̃l) yields
the same result. Therefore, by Corollary 1, f is a local isometry.

Finally, we write Ei =
∑
j x̄

i
jẼj , where x̄ij are the entries of the inverse of the

matrix (xij)ij . We can also see that Fi =
∑
j x̄

i
jF̃j . Then, by Theorem 19 we

have

dfq(Ei) =
∑
j

x̄ijτ
′ ◦ φ ◦ τ−1(Ẽi) =

∑
j

x̄ijF̃j = Fi.

We will use this proposition to show that cases (2) and (3) of Lemma 17 are
locally SL(2,R) with Berger-like metrics.

Proposition 21. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kähler SL(2,R) × SL(2,R), of diagonalizable type. Assume that
(2θ1, 2θ2, 2θ3) = (π, π, 0). Then M is congruent to possibly an open subset of
the submanifold SL(2,R) → SL(2,R) × SL(2,R) : u 7→ (u, iui).

Proof. Let {E1, E2, E3} be a ∆1-orthonormal frame such that JG(E1, E2) =√
2
3E3 and A and B take the form of type I in Lemma 11 with (2θ1, 2θ2, 2θ3) =



TOTALLY GEODESIC LAGRANGIAN SUBMANIFOLDS 75

(π, π, 0). Thus

PE1 = −E1, PE2 = −E2, PE3 = E3. (3.35)

From Lemma 12 we obtain that ωji3 = 0 for i, j = 1, 2, 3 with the exceptions of
i = 1, j = 2 and i = 2, j = 1. We also get

ω3
12 = 1√

6
, ω3

21 = − 1√
6
.

From the equation of Gauss in (3.1) we obtain the following equations:

E1(ω1
32) − E3(ω2

11) +
(
ω1

32 + 1√
6

)
ω1

22 = 0,

E2(ω1
32) − E3(ω2

11) +
(
ω1

32 + 1√
6

)
ω2

11 = 0,

E1(ω1
22) − E2(ω2

11) −
√

2
3ω

1
32 − (ω2

11)2 + (ω1
22)2 + 5

3 = 0.

(3.36)

Define the 1-form ω by

ω(E1) = −ω2
11, ω(E2) = −ω1

22, ω(E3) = ω1
32 + 5√

6
.

Using (3.36) we can prove that ω is closed. Hence there exists a local function
φ such that dφ = ω. Now define the new frame

F1 = coshφE1 + sinhφ, F2 = sinhφE2 + coshφE3, F3 = −E3.

This new frame is still ∆1-orthonormal which satisfies (3.35) and JG(F1, F2) =√
2
3F3. We have

∇F1F1 = 0 ∇F1F2 = − 1√
6
F3, ∇F1F3 = 1√

6
F2,

∇F2F1 = 1√
6
F3, ∇F2F2 = 0, ∇F2F3 = 1√

6
F1,

∇F3F1 = − 5√
6
F2, ∇F3F2 = − 5√

6
F1, ∇F3F3 = 0.

By Proposition 20 we have that M is locally isometric to SL(2,R) with a
Berger-like metric stretched in the spacelike direction with τ = 1√

6 and κ = 2.
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Now using (2.17) we may write

∇E
F1
F1 = 0, ∇E

F1
F2 = − 1√

6
F3, ∇E

F1
F3 =

√
3
2F2,

∇E
F2
F1 = 1√

6
F3, ∇E

F2
F2 = 0, ∇E

F2
F3 =

√
3
2F1, (3.37)

∇E
F3
F1 = −

√
3
2F2, ∇E

F3
F2 = −

√
3
2F1, ∇E

F3
F3 = 0.

where ∇E is the Levi-Civita connection associated to the product metric. We
can identify the frame {Fi}i on SL(2,R) with the frame given in (3.34), i.e.,

F1 = 1√
2
X3, F2 = 1√

2
X2, F3 =

√
3
2X1. (3.38)

Now writing the immersion f = (p, q) and df(Fi) = DFi
f = (pαi, qβi), where

αi, βi are matrices in sl(2,R), we obtain

β1 = −α1, β2 = −α2, β3 = α3. (3.39)

because of Equation (3.35).

It follows from (2.15) that αi are mutually orthogonal and their lengths are
given by

−⟨α1, α1⟩ = ⟨α2, α2⟩ = 1
2 , ⟨α3, α3⟩ = 3

2 .

From the properties of the Lorentzian cross product we deduce that

α1 × α2 = ε
1√
6
α3, α2 × α3 = −ε

√
3
2α1, α3 × α1 = ε

√
3
2α2,

where ε = ±1. We compute

DFi
DFj

f = (pαi × αj + ⟨αi, αj⟩p+ pFi(αj), qβi × βj + ⟨βi, βj⟩q + qFi(βj)),

where
F (α) = F (⟨α, i⟩)i + F (⟨α, j⟩)j − F (⟨α, k⟩)k.

Applying (2.18) it follows that

∇E
Fi
Fj = (pαi × αj + pFi(αj), qβi × βj + qFi(βj)).



TOTALLY GEODESIC LAGRANGIAN SUBMANIFOLDS 77

Comparing the above equation with (3.37) and recalling that Fi(p, q) = (pαi, qβi)
we obtain

F1(α1) = 0, F2(α1) = 1√
6 (1 + ε)α3, F3(α1) = −

√
3
2 (1 + ε)α2,

F1(α2) = − 1√
6 (1 + ε)α3, F2(α2) = 0, F3(α2) = −

√
3
2 (1 + ε)α1,

F1(α3) =
√

3
2 (1 + ε)α2, F2(α3) =

√
3
2 (1 + ε)α1, F3(α3) = 0.

Making use of (3.38) yields

X3(α1) = 0, X2(α1) = 1√
3 (1 + ε)α3, X1(α1) = −

√
3(1 + ε)α2,

X3(α2) = − 1√
3 (1 + ε)α3, X2(α2) = 0, X1(α2) = −(1 + ε)α1,

X3(α3) =
√

3(1 + ε)α2, X2(α3) =
√

3(1 + ε)α1, X1(α3) = 0.

We can write the same equations for βi. Taking into account (3.39), we conclude
ε must be equal to −1. Therefore αi is constant for all i. Hence, there exists an
isometry on SL(2,R), namely conjugation by a matrix c in SL±(2,R), such that

α1 = 1√
2
ckc−1, α2 = 1√

2
cjc−1, α3 =

√
3
2cic

−1.

We have that all totally geodesic Lagrangian submanifolds with angle functions
(π, π, 0) satisfy this differential equation. Suppose that f(Id) = (po, qo), choosing
an isometry (p, q) 7→ (p−1

o p, q−1
o q) we may assume that f(Id2) = (Id2, Id2). We

obtain that the unique solution of the system DFi
f = (pαi, qβi) is p(u) = cuc−1,

q(u) = ciuic−1. Taking an isometry on the pseudo-nearly Kähler SL(2,R) ×
SL(2,R), given in Theorem 28, we see that f is congruent to (u, iui).

The third example of a totally geodesic immersion is locally isometric to SL(2,R)
with a Berger-like metric, which is stretched in the direction of a timelike
component. We can construct such a metric by taking on SL(2,R) the frame
{X1, X2, X3} given in (3.32), and the metric g−

κ,τ given by

g−
κ,τ (X,Y ) = 4

κ

(
⟨X,Y ⟩ + (1 − 4τ2

κ )⟨X,X3⟩⟨Y,X3⟩
)
,

where κ, τ are constants and ⟨, ⟩ is the metric on SL(2,R) given in (2.2). It
follows from a straightforward computation that

[X1, X2] = 2X3, [X1, X3] = 2X2, [X2, X3] = −2X1.
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We take the vector fields

Ẽ1 = κ
4τX3, Ẽ2 =

√
κ

2 X2 (3.40)

and Ẽ3 =
√
κ

2 X1, which form a pseudo-orthonormal frame on SL(2,R) with
respect to the metric g̃. We denote ∇− as the Levi-Civita connection associated
to g̃. It follows from the Koszul formula that ∇−

Ẽi
Ẽi = 0 and that

∇−
Ẽ1
Ẽ2 = (τ − κ

2τ )Ẽ3, ∇−
Ẽ2
Ẽ3 = τẼ1,

∇−
Ẽ1
Ẽ3 = ( κ2τ − τ)Ẽ2, ∇−

Ẽ3
Ẽ1 = −τẼ2,

∇−
Ẽ2
Ẽ1 = τẼ3, ∇−

Ẽ3
Ẽ2 = −τẼ1.

Proposition 22. Let M be a totally geodesic Lagrangian submanifold of the
pseudo-nearly Kähler SL(2,R)×SL(2,R). Assume that (2θ1, 2θ2, 2θ3) = (π, π, 0).
Then M is locally isometric to the submanifold SL(2,R) → SL(2,R) ×
SL(2,R) : u 7→ (u,−kuk).

Proof. Let {E1, E2, E3} be a ∆1-orthonormal frame such that JG(E1, E2) =√
2
3E3 and A and B take the form of type I in Lemma 11 with (2θ1, 2θ2, 2θ3) =

(0, π, π). Thus

PE1 = E1, PE2 = −E2, PE3 = −E3. (3.41)

From Lemma 12 we obtain that ωji1 = 0 for i, j = 1, 2, 3. We also get

ω3
21 = − 1√

6
, ω1

32 = 1√
6
.

From the Gauss Equation (3.1) we obtain the following equations:

E1(ω3
22) − E2(ω3

12) +
(
ω3

12 + 1√
6

)
ω2

33 = 0,

−E1(ω2
33) − E3(ω3

12) +
(
ω3

12 + 1√
6

)
ω3

22 = 0,

E2(ω2
33) + E3(ω3

22) −
√

2
3ω

3
12 − (ω3

22)2 − (ω2
33)2 + 5

3 = 0.

(3.42)

Define the 1-form ω by

ω(E1) = −ω3
12 + 5√

6
, ω(E2) = −ω3

22, ω(E3) = ω2
33.
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Using (3.42) we can prove that ω is closed. Hence there exists a local function
φ such that dφ = ω. Now define the new frame

F1 = −E1, F2 = − cosφE2 − sinφE3, F3 = sinφE2 − cosφE3.

This new frame is still ∆1-orthonormal which satisfies (3.41) and JG(F1, F2) =√
2
3F3. We have

∇F1F1 = 0 ∇F1F2 = − 5√
6
F3, ∇F1F3 = 5√

6
F2,

∇F2F1 = 1√
6
F3, ∇F2F2 = 0, ∇F2F3 = 1√

6
F1,

∇F3F1 = − 1√
6
F2, ∇F3F2 = − 1√

6
F1, ∇F3F3 = 0.

By Proposition 20 we have that M is locally isometric to SL(2,R) with a
Berger-like metric stretched in the timelike direction with τ = 1√

6 and κ = 2.
Now using (2.17) we may write

∇E
F1
F1 = 0, ∇E

F1
F2 = −

√
3
2F3, ∇E

F1
F3 =

√
3
2F2,

∇E
F2
F1 =

√
3
2F3, ∇E

F2
F2 = 0, ∇E

F2
F3 = 1√

6
F1, (3.43)

∇E
F3
F1 = −

√
3
2F2, ∇E

F3
F2 = − 1√

6
F1, ∇E

F3
F3 = 0.

where ∇E is the Levi-Civita connection associated to the product metric. We
can identify the frame {Fi}i on SL(2,R) with the frame given in (3.40), i.e.,

F1 =
√

3
2X3, F2 = 1√

2
X2, F3 = 1√

2
X1. (3.44)

Now writing the immersion f = (p, q) and df(Fi) = DFi
f = (pαi, qβi), where

αi, βi are matrices in sl(2,R), we obtain

β1 = α1, β2 = −α2, β3 = −α3. (3.45)

because of Equation (3.41).

It follows from (2.15) that αi are mutually orthogonal and their lengths are
given by

⟨α1, α1⟩ = −3
2 , ⟨α2, α2⟩ = ⟨α3, α3⟩ = 1

2 .
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Thus we can write the Lorentzian cross products as

α1 × α2 = ε

√
3
2α3, α2 × α3 = −ε 1√

6
α1, α3 × α1 = ε

√
3
2α2,

where ε = ±1. We compute

DFiDFjf = (pαi × αj + ⟨αi, αj⟩p+ pFi(αj), qβi × βj + ⟨βi, βj⟩q + qFi(βj)),

therefore applying (2.18) it follows that

∇E
Fi
Fj = (pαi × αj + pFi(αj), qβi × βj + qFi(βj)).

Comparing the above equation with (3.43) we obtain

F1(α1) = 0, F2(α1) =
√

3
2 (1 + ε)α3, F3(α1) = −

√
3
2 (1 + ε)α3,

F1(α2) = −
√

3
2 (1 + ε)α3, F2(α2) = 0, F3(α2) = − 1√

6 (1 + ε)α1,

F1(α3) =
√

3
2 (1 + ε)α2, F2(α3) = 1√

6 (1 + ε)α1, F3(α3) = 0.

Making use of (3.44) yields

X3(α1) = 0, X2(α1) =
√

3(1 + ε)α3, X1(α1) = −
√

3(1 + ε)α3,

X3(α2) = (1 + ε)α3, X2(α2) = 0, X1(α2) = − 1√
3 (1 + ε)α1,

X3(α3) = −(1 + ε)α2, X2(α3) = 1√
3 (1 + ε)α1, X1(α3) = 0.

We can write the same equations for βi. Taking into account (3.45), we conclude
ε must be equal to −1. Therefore αi is constant for all i. Hence, there exist an
isometry of SL(2,R), namely conjugation by a matrix c in SL±(2,R), such that

α1 =
√

3
2ckc

−1, α2 = 1√
2
cjc−1, α3 = 1√

2
cic−1.

By applying an isometry of SL(2,R) × SL(2,R) we may assume that f(Id2) =
(Id2, Id2). We obtain that the unique solution of the system DFi

f = (pαi, qβi)
is p(u) = cuc−1, q(u) = −ckukc−1. As the map (p, q) 7→ (cpc−1, cqc−1) is an
isometry for all c ∈ SL±(2,R) we obtain that f is congruent to (p(u), q(u)).

3.2.3 Lagrangian submanifolds of the non-diagonalizable types

In this subsection we show that there do not exist totally geodesic Lagrangian
submanifolds in types II, III and IV of Lemma 11.
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Lemma 18. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kähler SL(2,R) × SL(2,R) corresponding to type II of Lemma 11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) × SL(2,R) associated to type II of Lemma 11. The left hand side of
the Codazzi equation in (3.2) for a totally geodesic submanifold is always zero.
Computing the right hand side for X = E1, Y = E2 and Z = E2 yields

−4
3(sin 2θ1 + cos 2θ1 cot 2θ1)JE1

which cannot be zero, therefore a contradiction.

Lemma 19. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kähler SL(2,R) × SL(2,R) corresponding to type III of Lemma
11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) × SL(2,R) associated to type III of Lemma 11. As in the previous
lemma, the left hand side of the Codazzi equation is zero. The component
in the direction of JE1 of the right hand side of the Codazzi equation with
X = E1, Y = E2, Z = E2 is ± 8

9
√

3 , which is a contradiction.

Lemma 20. There are no totally geodesic Lagrangian immersions into the
pseudo-nearly Kähler SL(2,R) × SL(2,R) corresponding to type IV of Lemma
11.

Proof. Suppose that M is a totally geodesic Lagrangian submanifold of
SL(2,R) × SL(2,R) associated to type IV of Lemma 11. The left hand side of
the Codazzi equation is always zero for totally geodesic submanifolds and the
right hand side of the Codazzi equation for X = E1, Y = E2, Z = E2 is

2
3 sinh(2ψ) cos(2θ1 + θ2)JE2

which is not zero since ψ must be different from zero and 2θ1 + θ2 is equal to
zero modulo π.

3.2.4 Proof of the Theorem 32

Proof of Theorem 32. In Examples 16, 17 and 18 we showed that the three
immersions of Theorem 32 are totally geodesic and Lagrangian.
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Let M be a totally geodesic Lagrangian submanifold of the pseudo-nearly
Kähler SL(2,R) × SL(2,R). By Lemma 11, there are four cases to consider. In
Lemmas 18, 19 and 20 we proved that there are no totally geodesic Lagrangian
submanifolds in types II, III and IV of Lemma 11.

In Lemma 17 we have seen that any totally geodesic Lagrangian submanifold
of SL(2,R) × SL(2,R) of diagonalizable type is congruent to a submanifold
with angle functions ( 4π

3 ,
4π
3 ,

4π
3 ), (π, π, 0) or (0, π, π). In Proposition 19, we

showed that all totally geodesic Lagrangian submanifolds with angle functions
( 4π

3 ,
4π
3 ,

4π
3 ) are locally congruent. The totally geodesic Lagrangian submanifolds

with angle functions (0, π, π) or (π, π, 0) are classified up to congruence by
Propositions 21 and 22.



EXTRINSICALLY HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS 83

3.3 Extrinsically homogeneous Lagrangian submani-
folds

In this section we study and provide a classification result of extrinsically
homogeneous Lagrangian submanifolds of the pseudo-nearly Kähler SL(2,R) ×
SL(2,R). Recall that a submanifold M is said to be extrinsically homogeneous
if there exists a Lie subgroup H of SL(2,R) × SL(2,R) × SL(2,R) such that
M = H · (p, q). Note that we can choose (p, q) to be (Id2, Id2) since conjugated
subgroups have congruent orbits through different points. Namely, if g is an
isometry in SL(2,R) × SL(2,R) × SL(2,R) that maps (p, q) to (Id2, Id2), we
have

g(H · (p, q)) = gHg−1 · (g · (p, q)) = gHg−1 · (Id2, Id2).

Theorem 33. Let f : (M, g) → SL(2,R) × SL(2,R) be an extrinsically
homogeneous Lagrangian immersion into the pseudo-nearly Kähler SL(2,R) ×
SL(2,R). Then f(M) is congruent to an open subset of the image of one
of the following embeddings, whose image is the orbit of (Id2, Id2) by H ⊂
Isoo(SL(2,R) × SL(2,R)):

(M, g) f H Remarks

(SL(2,R), 2
3 ⟨, ⟩) u 7→ (u, u) SL(2,R)

Totally geodesic
K = − 3

2

(SL(2,R), g+
κ,τ ) u 7→ (u, iui) SL(2,R) Totally geodesic

(SL(2,R), g−
κ,τ ) u 7→ (u,−kuk) SL(2,R) Totally geodesic

(PSL(2,R), 8
3 ⟨, ⟩) [u] 7→ (iuiu−1, juju−1) SL(2,R) K = − 3

8

R3
1/Z

(u, v, w) 7→
(evie−uk, ewje−uk)

R2 × S1 K = 0

(R3, ĝ) ι R⋉φo R2 K = − 3
2

(R3/Hλ, gλ) fλ
R⋉φ1 R2

Hλ

K = − 3
2

(R3, g̃) ȷ R⋉φ2 R2

where H acts on f(M) always with trivial isotropy except for PSL(2,R), where
it acts with isotropy Z2. Here K is the sectional curvature of f(M) and i, j, k
are the matrices

i =
(

1 0
0 −1

)
, j =

(
0 1
1 0

)
, k =

(
0 1

−1 0

)
.
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Furthermore, ⟨, ⟩ is the metric given in (2.2), g+
κ,τ and g−

κ,τ are Berger-like
metrics stretched in a spacelike and timelike direction, respectively; ĝ, ι and φo
are given in Example 21; gλ, fλ, Hλ and φ1 are given in Example 22; g̃, ȷ and
φ2 are given in Example 23.

Conversely, the maps listed in the table above are extrinsically homogeneous
Lagrangian submanifolds of SL(2,R) × SL(2,R). Moreover, all immersions are
not congruent to each other, including the different immersions of the family fλ.

In Subsection 3.3.1 we study the frame {Ei}i=1,...,3 introduced in Lemma 11 for
extrinsically homogeneous submanifolds. In Subsections 3.3.2, 3.3.3 and 3.3.4
we classify the extrinsically homogeneous Lagrangian submanifolds of types I, II
and III respectively. In Subsection 3.3.5 we show that there are no extrinsically
homogeneous Lagrangian submanifolds of type IV. Finally, in Subsection 3.3.6
we prove Theorem 33.

3.3.1 The uniqueness of the frames

In this subsection we first prove that for each case of Lemma 11 there is
a unique frame {Ei}i with respect to which P takes that particular shape
on an extrinsically homogeneous Lagrangian submanifold. Consequently, the
associated angle functions, hkij and ωkij are constant. Afterwards, we describe
the examples given in Theorem 33 and provide a classification for each type of
Lagrangian submanifold.

We consider each case of Lemma 11 separately.

Lagrangian submanifolds of type I

It is straightforward to check that for type I Lagrangian submanifolds the frame
{E1, E2, E3} is unique if and only if the functions θi are all different modulo
π. Later on, we will see that if two of them are equal, the submanifold is
totally geodesic. Hence, now we focus on the case where all angles are different
modulo π.

Proposition 23. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Suppose that {E1, E2, E3}
is the unique ∆1-orthonormal frame such that A and B take type I form in
Lemma 11. Then the functions θi, hkij and ωkij are constant.

Proof. We have to show that θip = θiq for any two points p and q in M . By
hypothesis there is a Lie subgroup H of SL(2,R) × SL(2,R) × SL(2,R) such
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that H acts transitively on M . Therefore, there exists an isometry ϕ ∈ H such
that ϕ(p) = q. We have that

PpEip = cos 2θipEip + sin 2θipJpEip

In Subsection 2.2.2 we saw that isometries in SL(2,R) × SL(2,R) × SL(2,R)
preserve P and J . Thus, we apply ϕ to both sides:

Pqϕ∗Eip = ϕ∗PpEip = ϕ∗(cos 2θipEip + sin 2θipJpEip)

= cos 2θipϕ∗Eip + sin 2θipϕ∗JpEip

= cos 2θipϕ∗Eip + sin 2θipJqϕ∗Eip

Since {Ei}i is the unique frame with respect to which A and B are diagonal,
we have ϕ∗Eip = Eiq and θiq = θip.

It follows from ϕ(M) = M that ϕ preserves ∇ and h. Thus using a similar
argument we get that ωkij and hkij are constant.

Lagrangian submanifolds of type II

Proposition 24. Let M be an extrinsically homogeneous Lagrangian sub-
manifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Suppose that A
and B take the type II form in Lemma 11 with respect to a ∆2-orthonormal
frame {E1, E2, E3}. If θ1 ̸= θ2 modulo π then the frame is unique up to
signs. If instead θ1 = θ2 there is a unique frame, up to signs, such that
h1

22 = g(h(E2, E2), JE2) = 0. In both cases, the functions θi, hkij and ωkij are
constant.

Proof. The last statement follows from the uniqueness (even if it is up to sign)
of the frame as in the proof of Proposition 23.

Suppose that θ1 ̸= θ2 and that {Ẽ1, Ẽ2, Ẽ3} is a frame on M such that

PẼ1 = cos 2θ̃1Ẽ1 + sin 2θ̃1JẼ1,

P Ẽ2 = Ẽ1 + cos 2θ̃1Ẽ2 − cot 2θ̃1JẼ1 + sin 2θ̃1JẼ2

PẼ3 = cos 2θ̃2Ẽ3 + sin 2θ̃2JẼ3.

Hence, at any point of M the eigenvalues of A and B are {cos 2θ1, cos 2θ2} and
{sin 2θ1, sin 2θ2}, respectively. Moreover, the associated eigenvectors are the
same. The eigenspace associated to cos 2θ1 and sin 2θ1 is lightlike and the one
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associated to cos 2θ2 and sin 2θ2 is spacelike, therefore θ̃1 = θ1 and θ̃2 = θ2
modulo π. As the eigenvectors E3 and Ẽ3 are both unit length, we derive that
Ẽ3 = ±E3. Similarly, we get Ẽ1 = cE1 for c ∈ R and therefore Ẽ2 = c−1E2.
Computing AẼ2 we produce

AẼ2 = 1
c

(E1 + cos 2θ1E2) = 1
c2 Ẽ1 + cos 2θ1Ẽ2

thus c2 = 1. Since {Ẽi} also has to satisfy the relations in (3.20) we obtain
Ẽ3 = E3.

Suppose now that θ2 = θ1 modulo π. This means that the eigenspace associated
to cos 2θ1 is two-dimensional. Therefore any linear isometry that preserves the
eigenspace preserves the form of A and B. Let T be the linear isometry defined
by TEi = Ẽi. After some computations we obtain that T has the form

T =

ε −ε t
2

2 t
0 ε 0
0 −εt 1

 ,

for ε = ±1 and some t ∈ R.

Computing h(Ẽ2, Ẽ2) and using Lemma 13 yields h̃1
22 = h1

22 − 2th3
22 and h̃3

22 =
h3

22. Suppose that h3
22 = 0, then the Gauss equation (3.1) with X = E2, Y =

E3, Z = E3 implies 1/6 = 3/2, a contradiction. Then we can choose t =
h1

22/(2h3
22), thus h̃1

22 = 0. In the same way, we can obtain that it is the unique
(up to sign) frame with this condition. As before, we conclude that ωkij and hkij
are constant for this frame.

Lagrangian submanifolds of type III

Proposition 25. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kähler SL(2,R)×SL(2,R). Suppose that A and B take
type III form in Lemma 11 with respect to a ∆2-orthogonal frame {E1, E2, E3}.
Then the frame is unique and the functions θi, hkij and ωkij are constant.

Proof. Suppose that {Ẽi}i is another ∆2-orthonormal frame with respect to
which A and B take type III form in Lemma 11. We denote by T the linear
isometry given by TEi = Ẽi. We write

T =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 .
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First notice that E1 spans the unique eigenspace of A and B, thus t21 =
t31 = 0. Computing g(TE1, TE2) we furnish t22t11 = 1. In the same way,
computing g(TE1, TE3) and g(TE3, TE3) we come to t23 = 0 and t33 = ε =
±1. Computing ATE2 = − 1

2TE2 + TE3 we get that t13 = t32 and t11 = ε.
Computing g(E2, E3) and g(E2, E2) we obtain t13 = 0 and t12 = 0. By asking
JG(TE1, TE2) =

√
2
3TE3 we see that ε = 1.

As in the previous propositions, the last statement follows from the uniqueness
of the frame.

Lagrangian submanifolds of type IV

Proposition 26. Let M be an extrinsically homogeneous Lagrangian submani-
fold of the pseudo-nearly Kähler SL(2,R)×SL(2,R). Suppose that A and B take
type IV form in Lemma 11 with respect to ∆3-orthonormal frame {E1, E2, E3}.
Then the frame is unique and the functions θi, ψ, hkij and ωkij are constant.

Proof. In order to simplify the proof we write A and B as

A =

 α β 0
−β α 0
0 0 cos 2θ2

 , B =

 γ δ 0
−δ γ 0
0 0 sin 2θ2

 ,

with respect to {Ei}i.

Suppose there exists a ∆3-orthonormal frame {Ẽ1, Ẽ2, Ẽ3} and functions α̃, β̃,
γ̃, δ̃ and θ̃2 such that A and B take the form

A =

 α̃ β̃ 0
−β̃ α̃ 0
0 0 cos 2θ̃2

 , B =

 γ̃ δ̃ 0
−δ̃ γ̃ 0
0 0 sin 2θ̃2

 ,

with respect to {Ẽi}i.

Since cos 2θ2 and sin 2θ2 are the only eigenvalues of A and B, θ̃2 = θ2 modulo
π and Ẽ3 = εE3 with ε = ±1. We denote by T the linear isometry defined by
TEi = Ẽi. Given that {Ẽi} is an ∆3-orthonormal frame, we may assume that
Ẽ1 and Ẽ2 do not have components in the direction of E3. Hence, we can write
T as

T =

cosh t sinh t 0
sinh t cosh t 0

0 0 ε

 ,
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with t ∈ R. Requiring ATE1 = (α̃TE1 − β̃TE2) and ATE2 = (β̃TE1 + α̃TE2)
we obtain

α cosh t+ β sinh t = α̃ cosh t− β̃ sinh t,

−β cosh t+ α sinh t = −β̃ cosh t+ α̃ sinh t,

β cosh t+ α sinh t = β̃ cosh t+ α̃ sinh t,

α cosh t− β sinh t = α̃ cosh t+ β̃ sinh t.

Combining these equations we get

(α− α̃) cosh t = 0,

(β − β̃) cosh t = 0,

therefore α̃ = α and β̃ = β. We may use the same argument to deduce that
δ̃ = δ and γ̃ = γ. We compute again ATE1 = (α̃TE1 − β̃TE2) and we derive
t = 0. From JG(Ẽ1, Ẽ2) =

√
2
3 Ẽ3 it follows that ε = 1.

In a similar way as in the proofs of propositions 23-25 we obtain that α, β,
γ and δ are constant. Computing α

δ and α
β we obtain that ψ, θ1 and θ2 are

constant as well. Finally using the uniqueness of the frame we get that hkij and
ωkij are constant.

3.3.2 Extrinsically homogeneous Lagrangian submanifolds of
type I

In the previous section we saw a characterization of totally geodesic Lagrangian
submanifolds of type I:

Proposition 18. Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R)
of type I in Lemma 11. If two angles are equal modulo π, then M is totally
geodesic.

Moreover, in Theorem 32 all the totally geodesic Lagrangian submanifolds are
classified up to congruence, which we rewrite to fit better in this section.

Theorem 32. Let f : (M, g) → SL(2,R) × SL(2,R) be a totally geodesic
Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Then
f(M) is congruent to an open subset of the following extrinsically homogeneous
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Lagrangian embeddings:

(M, g) f H

(SL(2,R), 2
3 ⟨, ⟩) u 7→ (u, u) {(u, u, Id2) : u ∈ SL(2,R)}

(SL(2,R), g+
κ,τ ) u 7→ (u, iui) {(u, iui, Id2) : u ∈ SL(2,R)}

(SL(2,R), g−
κ,τ ) u 7→ (u,−kuk) {(u,−kuk, Id2) : u ∈ SL(2,R)}

where H acts transitively on M with null isotropy, and g+
κ,τ , g−

κ,τ are Berger-like
metrics on SL(2,R) stretched in spacelike and timelike directions, respectively.

This theorem implies that any Lagrangian submanifold of type I with two equal
angle functions modulo π is extrinsically homogeneous. Therefore, to complete
the classification of extrinsically homogeneous Lagrangian submanifolds we
assume that the submanifold is not totally geodesic and that all angle functions
are different modulo π.

Proposition 27. Let M be a non-totally geodesic extrinsically homogeneous
Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R)×SL(2,R) of type I.
Let θi, i = 1, 2, 3 be the angle functions associated to the ∆1-orthonormal frame
with respect ot which A and B are diagonal. Then (θ1, θ2, θ3) is a permutation of
(0, π/3, 2π/3) and the manifold M has constant sectional curvature. Moreover,
the sectional curvature is either equal to 0 or to − 3

8 .

Proof. Lagrangian submanifolds of type I are essentially an analogue of
Lagrangian submanifolds of S3×S3. In [6] the authors proved for S3×S3 that the
angle functions of non-totally geodesic Lagrangian submanifolds are constant and
a permutation of (0, π3 ,

2π
3 ). The same argument works for SL(2,R) × SL(2,R).

By Lemma 10 we may assume that (θ1, θ2, θ3) = (0, π/3, 2π/3). From Lemma
12 we know that all the functions hkij are equal to zero, except for h3

12, which
from Proposition 23 we know is constant. Then the Codazzi equation (3.2)
with X = E1, Y = E2, Z = E2 yields that h3

12 is either equal to 1
2

√
2 or to

− 1√
2 . Both cases imply that the sectional curvature is constant. In the former

case the sectional curvature is equal to − 3
8 and in the latter case the sectional

curvature is equal to 0.

Example 19. Let f : SL(2,R) → SL(2,R)×SL(2,R) be the isometric immersion
given by u 7→ (iuiu−1, juju−1) and let {X1, X2, X3} be the frame on SL(2,R)
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given in (2.3). We may compute

df(X1) = (0, juju−1(−2uiu−1)),

df(X2) = (iuiu−1(−2uju−1), 0),

df(X3) = (iuiu−1(−2uku−1), juju−1(−2uku−1)).

It follows from the definition of J in (2.10) that

Jdf(X1) = 1√
3

(iuiu−1(4uiu−1), juju−1(2uiu−1)),

Jdf(X2) = 1√
3

(iuiu−1(−2uju−1), juju−1(−4uju−1)),

Jdf(X3) = 1√
3

(iuiu−1(2uku−1), juju−1(−2uku−1)).

We can easily check that f is a Lagrangian immersion by computing
g(Jdf(Xi), df(Xj)) = 0 for i, j = 1, 2, 3. Moreover, we have

Pdf(X1) = (iuiu−1(−2uiu−1), 0) = −1
2df(X1) −

√
3

2 Jdf(X1),

Pdf(X2) = (0, juju−1(−2uju−1)) = −1
2df(X2) +

√
3

2 Jdf(X2),

Pdf(X3) = (iuiu−1(−2uku−1), juju−1(−2uku−1)) = df(X3).

Let H be the subgroup of Isoo(SL(2,R) × SL(2,R)) given by {(iui, juj, u) :
u ∈ SL(2,R)} ∼= SL(2,R). Then f(SL(2,R)) = H · (Id2, Id2). Notice that
H acts on f(SL(2,R)) with isotropy Z2. Hence, the embedding PSL(2,R) →
SL(2,R) × SL(2,R) : [u] 7→ (iuiu−1, juju−1) is congruent to f .

Proposition 28. Any extrinsically homogeneous non-totally geodesic La-
grangian submanifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R) of
type I with h3

12 = 1
2

√
2 is congruent to an open subset of the image of

PSL(2,R) → SL(2,R) × SL(2,R) : [u] 7→ (iuiu−1, juju−1).

Proof. Let f : M → SL(2,R) × SL(2,R) be a non-totally geodesic extrinsically
homogeneous Lagrangian immersion of type I. Let {E1, E2, E3} be the frame on
M such that JG(E1, E2) =

√
2
3E3 with angle functions given by (θ1, θ2, θ3) =

(0, π/3, 2π/3). Moreover, assume that h3
12 = g(h(E1, E2), E3) = 1

2
√

2 . We have

PE1 = E1, PE2 = − 1
2E2 +

√
3

2 JE2, PE3 = − 1
2E3 −

√
3

2 JE3.
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Hence, according to Equation (2.16), we have

QE1 =
√

3JE1, QE2 = −E2, QE3 = E3. (3.46)

From Proposition 27 it follows that M has constant sectional curvature − 3
8 .

Thus M is locally isometric to (SL(2,R), 8
3 ⟨, ⟩) (see [44]), where ⟨, ⟩ is the metric

given in (2.2). Then we may identify

E1 =
√

3
8X3, E2 =

√
3
8X2, E3 =

√
3
8X1,

where {X1, X2, X3} is the frame on SL(2,R) given in (2.3). Now we write the
immersion f(u) = (p(u), q(u)) and df(Ei)u = (DEi

f)u = (p(u)αi(u), q(u)βi(u))
where αi(u), βi(u) ∈ sl(2,R). By Equation (3.46) we have α1 = β1, β2 = 0 and
α3 = 0. We know from (2.17) that ∇E

E1
E1 = ∇E

E2
E2 = ∇E

E3
E3 = 0 and

∇E
E1
E2 = ∇E

E1
E3 = 0,

∇E
E2
E1 = −

√
3
2E3 = −

√
3
2 (0, qβ3),

∇E
E2
E3 = − 1

2

√
3
2 (E1 +QE1) = −

√
3
2 (0, qα1),

∇E
E3
E1 =

√
3
2E2 =

√
3
2 (pα2, 0),

∇E
E3
E2 = 1

2

√
3
2 (E1 −QE1) =

√
3
2 (pα1, 0).

(3.47)

Throughout this proof, we will denote by ⟨, ⟩× the product metric associated
to the metric ⟨, ⟩ on SL(2,R) given in (2.2). By Equation 2.15 E1, E2, E3 are
orthogonal with respect to the product metric ⟨, ⟩× and their lengths are

⟨E1, E1⟩× = −3, ⟨E2, E2⟩× = ⟨E3, E3⟩× = 3
2 .

This implies that

⟨α1, α1⟩ = − 3
2 , ⟨α2, α2⟩ = ⟨β3, β3⟩ = 3

. 2 (3.48)

On the one hand, Equation (2.18) yields

DEiDEjf = ∇E
Ei
Ej + 1

2 ⟨Ei, Ej⟩(p, q) + 1
2 ⟨Ei, QEj⟩(−p, q),

and on the other hand, by Equation (2.5), we obtain

DEi
DEj

f = (pαiαj + pEi(αj), qβiβj + qEi(βj))

= (p(αi × αj) + ⟨αi, αj⟩p+ pEi(αj),

q(βi × βj) + ⟨βi, βj⟩q + qEi(βj)).
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Therefore

∇E
Ei
Ej = (pαi × αj + pEi(αj), qβi × βj + qEi(βj)),

where Ei(α) = dα(Ei) thinking of α as a map from SL(2,R) into sl(2,R). Hence,
using (3.47) we obtain

α1 × α2 = −
√

3
2β3,

and also

E1(α1) = 0, E2(α1) = −
√

3
2β3, E3(α1) =

√
3
2α2,

E1(α2) =
√

3
2β3, E2(α2) = 0, E3(α2) =

√
3
2α1,

E1(β3) = −
√

3
2α2, E2(β3) = −

√
3
2α1, E3(β3) = 0.

In terms of the vector fields Xi this translates into the following differential
equations:

X1(α1) = 2α2, X2(α1) = −2β3, X3(α1) = 0,

X1(α2) = 2α1, X2(α2) = 0, X3(α2) = 2β3,

X1(β3) = 0, X2(β3) = −2α1, X3(β3) = −2α2.

(3.49)

From (3.48) and Lemma 6 we know that there exists c ∈ SL±(2,R) such that

α1(Id2) = −
√

3
2ckc

−1, α2(Id2) = −
√

3
2cjc

−1, β3(Id2) = −
√

3
2cic

−1. (3.50)

Therefore, as the solution of the system (3.49) with initial conditions (3.50) is
unique, we have that

α1(u) = −
√

3
2cuku−1c−1, α2(u) = −

√
3
2uju−1c−1, β3(u) = −

√
3
2cuiu−1c−1.

We can check easily that they satisfy the equations in (3.49). By the homogeneity
of SL(2,R) × SL(2,R) we can take initial conditions f(Id2) = (Id2, Id2).
Applying the isometry of SL(2,R) × SL(2,R) given by (p, q) 7→ (cpc−1, cqc−1)
we may assume that

α1(u) = −
√

3
2uku−1, α2(u) = −

√
3
2uju−1, β3(u) = −

√
3
2cuiu−1.

Then, the immersion f = (p, q) given by p = iuiu−1, q = juju−1 is the
unique solution of the differential equation DEip = pαi, DEiq = qβi, with
i = 1, 2, 3.
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Example 20. Let H be the Lie subgroup of SL(2,R) × SL(2,R) × SL(2,R)
given by

H = {(evi , ewj , euk) : v, w ∈ R, u ∈ [0, 2π)} ∼= R2 × S1.

The subgroup H acts transitively on the submanifold f : R3
1/Z → SL(2,R) ×

SL(2,R) given by
f(u, v, w) = (evie−uk , ewje−uk).

Moreover, the isotropy of H is trivial.

The derivatives of f are given by

fu = (−evie−ukk,−ewje−ukk),

fv = (evie−ukeukie−uk , 0),

fw = (0, ewje−ukeukje−uk).

Applying the almost complex structure yields the following expressions:

Jfu = 1√
3

(evie−ukk,−ewje−ukk),

Jfv = 1√
3

(evie−ukeukie−uk , 2evie−ukeukie−uk),

Jfw = 1√
3

(−2ewje−ukeukje−uk ,−ewje−ukeukje−uk).

We can easily check that

g(Jfu, fv) = g(Jfu, fw) = g(Jfv, fw) = 0,

which shows that this submanifold is Lagrangian. After applying the tensor P
we obtain

Pfu = (−evie−ukk,−ewje−ukk) = fu,

Pfv = (0, ewje−ukeukie−uk) = −1
2fv +

√
3

2 Jfv,

Pfw = (ewje−ukeukje−uk , 0) = −1
2fw −

√
3

2 Jfw.

Thus, f is a flat, extrinsically homogeneous Lagrangian submanifold of SL(2,R)×
SL(2,R) of type I with constant angles (θ1, θ2, θ3) = (0, π3 ,

2π
3 ).
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Proposition 29. Any extrinsically homogeneous non-totally geodesic La-
grangian submanifold of type I of the nearly Kähler SL(2,R) × SL(2,R) with
h3

12 = − 1√
2 is congruent to an open subset of the image of the Lagrangian

embedding f : R3
1/Z → SL(2,R) × SL(2,R) given by

f(u, v, w) =
(
evie−uk, ewje−uk) .

Proof. Notice first that all the coefficients of the connection and second
fundamental form vanish except for h3

12 = g(h(E1, E2), JE3) = − 1√
2 . We

also know that the angle functions are given by (θ1, θ2, θ3) = (0, π3 ,
2π
3 ). So we

can find a local frame such that JG(E1, E3) =
√

2
3E3 and

PE1 = E1, PE2 = − 1
2E2 +

√
3

2 JE2, PE3 = − 1
2E3 −

√
3

2 JE3.

From the relation between Q and P in (2.16) it follows that

QE1 =
√

3JE1, QE2 = −E2, QE3 = E3. (3.51)

Using that hjii = 0, h3
12 = − 1√

2 and Equation (3.25), we deduce that [Ei, Ej ] = 0
for i, j = 1, 2, 3. Then we write E1 = fu, E2 = fv, E3 = fw for u, v, w local
coordinates. Thus, Equation (3.51) implies that

pw = 0, qv = 0, qu = pu. (3.52)

Moreover, we have ∇E
fu
fu = ∇E

fv
fv = ∇E

fw
fw = 0 and

∇E
fu
fv = ∇E

fv
fu = − 1

2

√
3
2fw − 3

2
√

2Jfw,

∇E
fu
fw = ∇E

fw
fu = 1

2

√
3
2fv − 3

2
√

2Jfv,

∇E
fv
fw = ∇E

fw
fv = 0.

From the relation between the Euclidean metric with the nearly Kähler metric
in (2.15) we know that fu, fv, fw are also orthogonal with respect to the induced
Euclidean product metric. Furthermore, their inner products are given by

⟨fu, fu⟩ = −3, ⟨fv, fv⟩ = ⟨fw, fw⟩ = 3
2 .

Furthermore,

⟨fu, Qfu⟩ = 0, ⟨fu, Qfv⟩ = 0, ⟨fu, Qfw⟩ = 0,

⟨fv, Qfw⟩ = 0, ⟨fv, Qfv⟩ = − 3
2 , ⟨fw, Qfw⟩ = 3

2 .
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Thus, using (3.52) we get that pu, pv and qw are orthogonal and

⟨pu, pu⟩ = − 3
2 , ⟨pv, pv⟩ = ⟨pw, pw⟩ = 3

2 . (3.53)

From the expression for the Euclidean connection D of R8
4 given in Equation

(2.18) we obtain

fuu = − 3
2f, fuv = − 1

2

√
3
2fw − 3

2
√

2Jfw,

fuw = 1
2

√
3
2fv − 3

2
√

2Jfv, fvv = 3
4f − 3

4Qf,

fvw = 0, fww = 3
4f + 3

4Qf.

Hence we produce differential equations for p and q:

puu = − 3
2p, pvv = 3

2p, puv =
√

3
2pq

−1qw,

quu = − 3
2q, qww = 3

2q, quw = −
√

3
2qp

−1pv.

(3.54)

By applying an isometry of the type (p, q) 7→ (ap, bq) we may assume that
p(0) = Id2, q(0) = Id2. Now, because of Equation (3.53), there exists a matrix
c ∈ SL±(2,R) such that

pu(0) =
√

3
2ckc

−1, pv(0) =
√

3
2cic

−1, qu(0) =
√

3
2ckc

−1, qw(0) =
√

3
2cjc

−1.

Applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution of
the system (3.54) is congruent to the map

f(u, v, w) =

e
√

3
2 vi
e

−
√

3
2uk

, e

√
3
2wj

e
−
√

3
2uk


Then, changing the coordinates by u →

√
2
3u, v →

√
2
3v and w →

√
2
3w, we

get the map (u, v, w) 7→ (evie−uk , ewje−uk).

3.3.3 Extrinsically homogeneous Lagrangian submanifolds of
type II

Proposition 30. Let M be an extrinsically homogeneous Lagrangian subman-
ifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Suppose that A and
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B take type II form in Lemma 11 with respect to a ∆2-orthonormal frame
{E1, E3, E3}. Then θ1 = θ2 = π/3 modulo π. Also, all the components of the
second fundamental form and of the connection are equal to zero except for h3

22,
ω3

12, ω3
21, ω1

31 and ω3
22. There are only two possibilities for the value of these

constants:
1. h3

22 = −
√

2
3 , ω3

12 = −
√

3
2 , ω3

21 = −
√

3
2 , ω1

31 = 0, ω2
33 = 0,

2. h3
22 = 2

√
2

3 , ω3
12 =

√
3
2 , ω3

21 =
√

3
2 , ω1

31 =
√

3
2 .

Moreover, in both cases the sectional curvature is constant and equal to − 3
2 .

Proof. As indicated in Proposition 24, we have to distinguish between two cases:
when θ1 = θ2 and when θ1 ̸= θ2.

Suppose first that θ1 ≠ θ2. By Proposition 24 both angles and the functions hkij ,
ωkij are constant. It follows from computing the Codazzi equation (3.2) with
X = E3, Y = E2 and Z = E3 that sin(2(θ1 − θ2)) = 0, hence θ1 and θ2 are
equal modulo π/2. Recall that for type II submanifolds sin 2θ1 is different from
zero, 2θ1 + θ2 = 0 modulo π and the angles are different modulo π. Therefore
θ1 = π

6 , θ2 = 2π
3 or θ1 = 5π

6 , θ2 = π
3 . From Lemma 10 we know that these

two cases are congruent via the isometry Ψ0,1 given in (2.19). It follows from
Equation (3.23) that

ω1
11 = ω3

11 = ω2
33 = 0, ω3

21 = − 1√
6
, ω3

12 = 1√
6
, ω1

31 =
√

3
2 h3

22 + 1√
6
.

Computing the Codazzi equation (3.2) with X = E3, Y = E2, Z = E3 and
X = E1, Y = E2, Z = E2 we obtain

4 − 3h3
22
(
3h3

22 +
√

2
)

3
√

3
= 0, 8

√
3 − 3

√
6h3

22 = 0,

which is a contradiction.

Suppose now that θ1 = θ2 modulo π. Using that 2θ1 + θ2 = 0 modulo π we
deduce θ1 = θ2 = π/3 or 2π/3. By Lemma 10 we know that these cases are
congruent via the isometry Ψ0,1 given in (2.19). Thus, we only consider the
cases where θ1 = θ2 = π/3.

By Lemma 13 we have h2
22 = h3

12 = 0. Moreover, by Proposition 24 we may
assume that h1

22 = 0 and that all the functions hkij , ωkij are constant. Hence,
from Equation (3.23) we obtain

ω1
11 = ω3

11 = ω2
22 = ω2

33 = 0.
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We also get

ω3
21 =

√
3h3

22 − 1√
6
, ω1

31 =
√

3
2 h3

22 + 1√
6
.

Thus computing the Codazzi equation with X = E3, Y = E2 and Z = E2 yields
ω1

33 = 0. Moreover, we obtain

−9(h3
22)2 + 3

√
2h3

22 + 4 = 0.

Hence h3
22 = −

√
2

3 or h3
22 = 2

√
2

3 .

If h3
22 = −

√
2

3 then the Codazzi equation with X = E1, Y = E2 and Z = E2

implies ω3
12 = −

√
3
2 . Also we obtain ω3

22 = 0.

If instead h3
22 = 2

√
2

3 we obtain ω3
12 =

√
3
2 . A straightforward computation

shows that both cases have constant sectional curvature equal to − 3
2 .

Now we exhibit two examples of extrinsically homogeneous Lagrangian
submanifolds of type II in Lemma 11.

Example 21. Let R ⋉φ0 R2 be the Bianchi group of type V with group law
given by

(t, u) · (s, v) = (t+ s, φ0(s)u+ v)

where φ0 : R → Aut(R2) is given by

φ0(s) =
(
e−2s 0

0 e−2s

)
.

Let ĝ be the right invariant metric such that its components with respect to
the frame of right invariant vector fields

{
∂
∂t , e

−2t ∂
∂u1

, e−2t ∂
∂u2

}
are given by 8

3 0 0
0 − 3

2 0
0 0 3

2

 .

In fact, this Lorentzian manifold is simply connected, geodesically complete and
it has constant sectional curvature equal to − 3

2 . Hence, by Theorem 18 it is
isometric to H̃3

1 (− 3
2 ), the universal cover of the anti-de Sitter space.
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Now let h be the Lie subalgebra of sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) spanned by
{e1, e2, e3} where

e1 =
(

i,−i,−i
)
,

e2 =
(

9
4(j − k), 1

2(j + k), 0
)
,

e3 =
(

9
4(−j + k), 0, 1

2(j + k)
)
,

where i, j and k are given in (2.1). The Lie algebra h is a Bianchi Lie algebra
of type V with brackets

[e1, e2] = −2e2, [e1, e3] = −2e3, [e2, e3] = 0.

Note that the exponential map of a Bianchi Lie algebra of type V is surjective,
then the Lie subgroup of SL(2,R) × SL(2,R) × SL(2,R) associated with h is
equal to exp(h). Therefore R⋉φ0 R2 is the universal cover of exp(h). Moreover,
the map

(w, u, v) 7→ exp(we1 + ueww csch(w)e2 + veww csch(w)e3)

defined at w = 0 as exp(ue2 + ve3), is a group isomorphism, thus exp h ∼=
R⋉φ0 R2. One can check that the immersion ι : R⋉φ0 R2 → SL(2,R)×SL(2,R)
given by

ι(w, u, v) = exp(we1 + ueww csch(w)e2 + veww csch(w)e3) · (Id2, Id2) (3.55)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame given by

E1 = −e−2wιu − e−2wιv, E2 = 1
3e

−2wιu − 1
3e

−2wιv, E3 =
√

3
8 ιw,

is a ∆2-orthonormal frame with respect to which A and B take type II form in
Lemma 11, with angle functions θ1 = θ2 = π

3 .

Example 22. Let R⋉φ1 R2 be the Bianchi group of type III with group law

(t, u) · (s, v) = (t+ s, φ1(s)u+ v)

where φ1 : R → Aut(R2) is given by

φ1(s) =
(
e2s 0
0 1

)
.



EXTRINSICALLY HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS 99

Let gλ be the right invariant metric on R⋉φ1 R2 such that its components with
respect to the frame of right invariant vector fields

{
∂
∂t , e

2t ∂
∂u1

, ∂
∂u2

}
are given

by  2
3 0 0
0 0 1
0 1 2(λ−1)

3

 ,

where λ is an arbitrary real number. As in Example 21, this Lorentzian
manifold is simply connected, geodesically complete and it has constant sectional
curvature equal to − 3

2 . Therefore it is isometric to H̃3
1 (− 3

2 ).

Let h be the Lie subalgebra of sl(2,R)⊕sl(2,R)⊕sl(2,R) spanned by {e1, e2, e3}
where

e1 = (i, 0, 0),

e2 = ( 1
2 (j + k), 0, 0),

e3 = (0,−λ+7
6 j + 11−λ

6 k,−λ+9
6 j + 9−λ

6 k).

where i, j, k are given in (2.1). The Lie algebra h is a Bianchi Lie algebra of
type III with brackets

[e1, e2] = 2e2, [e1, e3] = 0, [e2, e3] = 0.

Note that the exponential map of a Bianchi Lie algebra of type III is surjective,
then the Lie subgroup of SL(2,R) × SL(2,R) × SL(2,R) associated with h is
equal to exp(h). Therefore R⋉φ1 R2 is the universal cover of exp(h). The map
ϕλ : R⋉φ1 R2 → exp(h) given by

ϕλ(u, v, w) = exp
(
we1 + uwe−w

sinhw e2 + ve3

)
with we−w

sinhw extended to 1 when w = 0, is a surjective homomorphism with

Hλ = ker(ϕλ) ∼=
{

Z when λ = 2n2

n2−m2 , m > n > 0 integers,
{0} otherwise.

One can check that the map fλ : (R⋉φ1 R2)/Hλ → SL(2,R) × SL(2,R) given
by

fλ(u, v, w) = ϕλ(u, v, w) · (Id2, Id2),
is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame {E1, E2, E3} given by

E1 = e2w(fλ)u, E2 = 1 − λ

3 e2w(fλ)u + (fλ)v, E3 =
√

3
2(fλ)w,
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is a ∆2-orthonormal frame with respect to which A and B take type II form in
Lemma 11 with θ1 = θ2 = π

3 .

Remark 14. For any pair λ1, λ2 the subgroups ϕλi(R ⋉φ1 R2) of SL(2,R) ×
SL(2,R) × SL(2,R) are non-conjugate. That is, there does not exist an
automorphism of SL(2,R)×SL(2,R)×SL(2,R) preserving the isotropy subgroup
∆SL(2,R) that maps ϕλ1(R ⋉φ1 R2) into ϕλ2(R ⋉φ1 R2). This can be easily
seen since conjugations by elements of SL±(2,R) preserve the indefinite inner
product of sl(2,R) given in (2.2).

Proposition 31. Let f : M → SL(2,R) × SL(2,R) be an extrinsically
homogeneous Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R) ×
SL(2,R). Suppose that A and B take type II form in Lemma 11 with respect
to a ∆2-orthonormal frame {E1, E2, E3}. Then M is congruent to an open
subset of either the image of the immersion in Example 21, or the image of the
immersion in Example 22.

Proof. Because of Proposition 30 we may assume that θ1 = θ2 = 2
3π. Moreover,

we divide in two cases.

Suppose that ωkij and hkij satisfy (1) in Proposition 30. We take the frame
{ρE1, ρE2, E3} where ρ is a non-vanishing smooth function and solution of

E1(ρ) = E2(ρ) = 0, E3(ρ) =
√

3
2ρ. (3.56)

It is easy to check that ρ indeed exists and that

[ρE1, ρE2] = [ρE1, E3] = [ρE2, E3] = 0.

Hence, there exist local coordinates u, v, w such that ρE1 = fu, ρE2 = fv and

E3 = fw and hence ρ(w) = e

√
3
2w. It follows from the relation between Q and

P given in (2.16) that

Qfu = −fu, Qfv = −2
3fu − fv + 2√

3
Jfu, Qfw = −fw.

Writing f = (p, q) yields

qu = qw = 0, qv = 2
3qp

−1pu. (3.57)
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Using the relation between the nearly Kähler connection ∇̃ and the product
connection ∇E given in (2.17) we obtain

∇E
fu
fu = 0, ∇E

fu
fv = −

√
3
2ρ

2fw,

∇E
fu
fw =

√
3
2fu, ∇E

fv
fu = −

√
3
2ρ

2fw,

∇E
fv
fv = −

√
2
3ρ

2fw, ∇E
fv
fw = 1√

6fu +
√

3
2fv − 1√

2Jfu,

∇E
fw
fu =

√
3
2fu, ∇E

fw
fw = 0,

∇E
fw
fv = 1√

6fu +
√

3
2fv − 1√

2Jfu.

(3.58)

Now we compute

⟨fu, fu⟩ = 0, ⟨fv, fv⟩ = ρ2, ⟨fw, fw⟩ = 3
2 ,

⟨fu, fv⟩ = 3
2ρ

2, ⟨fu, fw⟩ = 0, ⟨fv, fw⟩ = 0,
(3.59)

and
⟨fu, Qfu⟩ = 0, ⟨fu, Qfw⟩ = 0, ⟨fv, Qfw⟩ = 0,

⟨fu, Qfv⟩ = − 3
2ρ

2, ⟨fv, Qfv⟩ = −ρ2, ⟨fw, Qfw⟩ = − 3
2 ,

(3.60)

where ⟨, ⟩ is the product metric associated to the metric on SL(2,R) given in
(2.2). In particular, we have

⟨pu, pu⟩ = 0, ⟨pv, pv⟩ = ρ2, ⟨pw, pw⟩ = 3
2

⟨pu, pv⟩ = 3
2ρ

2, ⟨pu, pw⟩ = 0, ⟨pv, pw⟩ = 0.
(3.61)

Here, ⟨, ⟩ is the metric on SL(2,R) given in (2.2).

To compute the second derivatives of f , we use the expression for the Euclidean
connection of R8

4 in (2.18). Plugging (3.58), (3.59) and (3.60) into (2.18) we
obtain

fuu = 0, fuv = −
√

3
2ρ

2fw + 3
4ρ

2f − 3
4ρ

2Qf,

fuw =
√

3
2fu, fvv = −

√
2
3ρ

2fw + 1
2ρ

2f − 1
2ρ

2Qf,

fvw = 1√
6fu +

√
3
2fv − 1√

2Jfu, fww = 3
4f − 3

4Qf.
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Looking at each component of f we obtain differential equations for p and q:

puu = 0, puv = −
√

3
2ρ

2pw + 3
2ρ

2p, puw =
√

3
2pu,

pvw =
√

3
2pv, pvv = −

√
2
3ρ

2pw + ρ2p, pww = 3
2p, qvv = 0.

(3.62)
The other derivatives of q are zero because of (3.57).

Applying an isometry of the type (p, q) 7→ (ap, bq), we may assume initial
conditions (p(0), q(0)) = (Id2, Id2). Then from (3.61) and (3.57) it follows that
there exists c ∈ SL±(2,R) such that

pu(0) = c

(
0 1
0 0

)
c−1, pv(0) = c

(
0 1

3
3 0

)
c−1,

pw(0) =
√

3
2c
(

1 0
0 −1

)
c−1, qv(0) = c

(
0 2

3
0 0

)
c−1.

Applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution of
(3.62) is congruent to an open subset of the immersion f = (p, q) where

p(u, v, w) =
(

e
√

3
2w e

√
3
2w
(
u+ v

3
)

3e
√

3
2wv e

√
3
2w
(
v2 + 3uv

)
+ e−

√
3
2w

)
, q(v) =

(
1 2v

3
0 1

)
.

Finally, taking the change of coordinates w → 2
√

2
3w, u → − 1

2 (u + v) and
v → 3

2 (u− v) we get the immersion in (3.55).

Now suppose that ωkij and hkij satisfy (2) in Proposition 30. In this case, ω3
22 is

constant. We define the constant λ as ω3
22 =

√
2
3 (1 − λ).

Take the frame
{
ρE1,− 1√

6ω
3
22E1 + E2, E3

}
, where ρ is a non-vanishing smooth

function and solution of

E1(ρ) = E2(ρ) = 0, E3(ρ) = −
√

6E3.

Using Proposition 30 we can easily check that this is a coordinate frame. We
call this frame {fu, fv, fw}. First we notice that ρ = e−

√
6w. We obtain from

Equation (2.16) that

Qfu = −fu, Qfv = − 2
3ρfu − fv + 2√

3ρJfu, Qfw = −fw.

We deduce
qu = qw = 0, qv = 2

3ρqp
−1pu. (3.63)
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Equation (2.17) gives us the following expressions

∇E
fu
fu = 0, ∇E

fu
fv =

√
3
2ρfw,

∇E
fv
fv = −

√
2
3fw +

√
2Jfw, ∇E

fu
fw = −

√
3
2fu,

∇E
fw
fw = 0, ∇E

fv
fw = 2λ−1√

6ρ fu −
√

3
2fv + 1√

2ρJfu.

From Equation (2.15) it follows

⟨fu, fu⟩ = 0, ⟨fu, fv⟩ = 3ρ
2 , ⟨fu, fw⟩ = 0,

⟨fv, fv⟩ = λ, ⟨fv, fw⟩ = 0, ⟨fw, fw⟩ = 3
2 .

and
⟨fu, Qfu⟩ = 0, ⟨fu, Qfv⟩ = − 3ρ

2 , ⟨fu, Qfw⟩ = 0,

⟨fv, Qfv⟩ = −λ, ⟨fv, Qfw⟩ = 0, ⟨fw, Qfw⟩ = − 3
2 .

In particular, we have

⟨pu, pu⟩ = 0, ⟨pv, pv⟩ = λ, ⟨pw, pw⟩ = 3
2 ,

⟨pu, pv⟩ = 3
2ρ, ⟨pu, pw⟩ = 0, ⟨pv, pw⟩ = 0.

(3.64)

We may use Equation (2.18) to compute

fuu = 0, fvv = −
√

2
3fw +

√
2Jfw + 1

2λf − 1
2λQf,

fww = 3
4f − 3

4Qf, fuw = −
√

3
2fu,

fvw = 2λ−1√
6ρ fu −

√
3
2fv + 1√

2ρJfu, fuv =
√

3
2ρfw + 3ρ

4 f − 3ρ
4 Qf.

Hence we obtain

puu = 0, puv =
√

3
2ρpw + 3

2ρp, puw = −
√

3
2pu,

pvv = λp, pvw = 1
ρ

√
2
3λpu −

√
3
2pv, pww = 3

2p,

qvv = 2
√

2
3qp

−1pw.

(3.65)
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Applying an isometry of the type (p, q) 7→ (ap, bq) we may assume that p(0) =
Id2 and q(0) = Id2. From (3.64) and (3.63) it follows that there exists a matrix
c ∈ SL±(2R) such that

pu(0) = c

(
0 1
0 0

)
c−1, pv(0) = c

(
0 λ

3
3 0

)
c−1,

pw(0) =
√

3
2c
(

1 0
0 −1

)
c−1, qv(0) = c

(
0 2

3
0 0

)
c−1.

Applying the isometry (p, q) 7→ (cpc−1, cqc−1) of SL(2,R) × SL(2,R) we obtain
that any solution of (3.65) is congruent to the solution with c = Id2. After the
change of coordinates w →

√
3
2w, u → ue−

√
3
2w, we obtain that such solution

is the immersion fλ in Example 22.

3.3.4 Extrinsically homogeneous Lagrangian submanifolds of
type III

Example 23. Let R⋉φ2 R2 be the Bianchi group of type VI with the group
law

(t, u) · (s, v) = (t+ s, φ2(s)u+ v)

where φ2 : R → Aut(R2) is given by

φ2(s) =
(
e−2s 0

0 es

)
.

Let g̃ be the right invariant metric such that its components with respect to
the frame of right invariant vector fields

{
∂
∂t , e

−2t ∂
∂u1

, et ∂
∂u2

}
are given by

0 2 7
3

√
2
3

2 0 8
√

2
3

7
3

√
2
3 8

√
2
3

128
9

 .
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Now let h be the Lie subalgebra of sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) spanned by
{e1, e2, e3} where

e1 =
(

1
18

(
27 + 2

√
6
)

i −
(

2
√

2
3 + 3

4

)
j +

(
8
3

√
2
3 + 3

4

)
k,

−
(

1 + 17
12

√
6

)
i + 1

96

(
48 − 17

√
6
)

j −
(

1
2 + 85

48
√

6

)
k,

− 1
2 i + 1

4

(
1 − 3

√
6
)

j + 1
4

(
3
√

6 − 1
)

k
)
,

e2 =
(

0,
√

2
3 i + 1

2

√
3
2 j + 5

2
√

6 k, 0
)
,

e3 =
(

8
9

(
2 + 3

√
6
)

i − 2
3

(
7 + 2

√
6
)

j + 2
9

(
37 + 6

√
6
)

k, 0,−6j + 6k
)
.

The Lie algebra h is a Bianchi Lie algebra of type VI with brackets

[e1, e2] = −2e2, [e1, e3] = e3, [e2, e3] = 0.

Note that the exponential map of a Bianchi Lie algebra of type VI is surjective,
then the Lie subgroup of SL(2,R) × SL(2,R) × SL(2,R) associated with h is
equal to exp(h). Therefore R⋉φ2 R2 is the universal cover of exp(h). Moreover,
the map defined as

(v, u, w) 7→ exp
(
ve1 + 2ue2vv

e2v − 1e2 + vw

ev − 1e3

)
and as exp(2ue2 + we3) when v = 0, is a group isomorphism. Thus exp(h) ∼=
R⋉φ2 R2. One can check that the immersion ȷ : R⋉φ2 R2 → SL(2,R)×SL(2,R)
given by

ȷ(u, v, w) = exp
(
ve1 + 2ue2vv

e2v − 1e2 + vw

ev − 1e3

)
· (Id2, Id2)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The
frame given by

E1 = −
√

3
2e

−2vȷu, E2 = − 1√
6
ȷv, E3 = 7e−2v

4
√

6
ȷu +

√
6ȷv − 3

4e
vȷw.

is a ∆2-orthonormal frame with respect to which A and B take type III form
from Lemma 11.
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Proposition 32. Let M be an extrinsically homogeneous Lagrangian subman-
ifold of SL(2,R) × SL(2,R). Suppose that A and B take type III form from
Lemma 11 with respect to a ∆2-orthonormal frame {E1, E2, E3}. Then M is
congruent to an open subset of the submanifold given in Example 23.

Proof. By Lemma 10 we may apply the isometry Ψ0,1 in (2.19) and assume that
the sign of B is −1. Proposition 25 implies that the components of the second
fundamental form and of the connection associated to E1, E2 and E3 are all
constant. From the Codazzi equation (3.2) with X = E1, Y = E2 and Z = E2

we have h2
22 = 2

√
2

3 . Then, computing the Codazzi equation with X = E3,
Y = E2 and Z = E2 we obtain

h1
22 = − 13

18
√

2
, h3

22 = 5
√

2
9 .

We define the frame
{
ρE1, E2, ρ

−1/2( 7
12

√
6E1 +

√
6E2 + 1√

6E3)
}

where ρ is a
non-vanishing smooth function that satisfies

E1(ρ) = 0, E2(ρ) =
√

2
3ρ, E3(ρ) = −2

√
6ρ.

From (3.28) we can check that ρ indeed exists and that the defined frame is
a coordinate frame. We write said frame as {fu, fv, fw}. Hence ρ = e

√
2
3 v.

Equation (2.16) yields

Qfu = fu,

Qfv = − 23
18ρfu − 3fv + 2

√
2ρ
3 fw − 7

6
√

3ρ
Jfu − 4

√
3Jfv + 2

√
2ρJfw,

Qfw = −7ρ−3/2
√

6
fu − 4

√
6
ρ
fv + 5fw − 5ρ−3/2

3
√

2
Jfu − 12

√
2
ρ
Jfv + 4

√
3Jfw.

If we denote f = (p, q) then the first equation implies that pu = 0. From the
second and third equations we obtain

pv = pq−1

(
−5qu

6ρ − 4qv + 2
√

2
3

√
ρqw

)
, pw = pq−1

(
4qw − 13qu + 72ρqv

3
√

6ρ3/2

)
.

(3.66)
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The relation between the connection ∇E associated to the product metric and
the nearly Kähler connection ∇̃ given in Equation (2.17) yields

∇E
fu
fu = 0,

∇E
fu
fv = − 11

4
√

6fu − 3
√

6ρfv + 3ρ3/2fw + 1√
2Jfu,

∇E
fu
fw = − 13

4√
ρfu − 18√

ρfv + 3
√

6ρfw +
√

3
ρJfu,

∇E
fv
fv = 49

48
√

6ρfu + 29
2

√
6fv − 7√

ρ

4 fw − 17
9

√
2ρJfu − 5

√
2Jfv + 2

√
3ρJfw,

∇E
fv
fw = 91

96ρ3/2 fu + 53
4√
ρfv − 43

4
√

6fw − 25
6

√
3ρ3/2 Jfu − 7

√
3
ρJfv + 9√

2Jfw,

∇E
fw
fw = 19

3
√

6ρ2 fu + 12
√

6
ρ fv − 10√

ρfw − 17
3

√
2ρ2 Jfu − 12

√
2

ρ Jfv + 6
√

3
ρJfw.

From the relation between the product metric and the nearly Kähler metric in
Equation (2.15) it follows

⟨fu, fu⟩ = 0, ⟨fv, fv⟩ = 0, ⟨fw, fw⟩ = 4
ρ ,

⟨fu, fv⟩ = 3
2ρ, ⟨fu, fw⟩ = 3

√
3ρ
2 , ⟨fv, fw⟩ = 5

8

√
3

2ρ ,

(3.67)

and

⟨fu, Qfu⟩ = 0, ⟨fv, Qfv⟩ = − 4
3 , ⟨fw, Qfw⟩ = − 4

ρ ,

⟨fu, Qfv⟩ = 3
2ρ, ⟨fu, Qfw⟩ = 3

√
3ρ
2 , ⟨fv, Qfw⟩ = − 49

8
√

6ρ .

(3.68)

In particular we have

⟨qu, qu⟩ = 0, ⟨qv, qv⟩ = − 2
3 , ⟨qw, qw⟩ = 0,

⟨qu, qv⟩ = 3
2ρ, ⟨qu, qw⟩ = 3

√
3ρ
2 , ⟨qv, qw⟩ = − 17

8
√

6ρ .

(3.69)
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Now we compute

fuu = 0,

fuv = − 11
4

√
6fu − 3

√
6ρfv + 3ρ3/2fw + 1√

2Jfu + 3ρ
4 f + 3ρ

4 Qf,

fuw = − 13
4√
ρfu − 18√

ρfv + 3
√

6ρfw +
√

3
ρJfu + 3

2

√
3
2
√
ρf + 3

2

√
3ρ
2 Qf,

fvv = 49
48

√
6ρfu + 29

2
√

6fv − 7√
ρ

4 fw − 17
9

√
2ρJfu − 5

√
2Jfv + 2

√
3ρJfw − 2

3Qf,

fvw = 91
96ρ3/2 fu + 53

4√
ρfv − 43

4
√

6fw − 25
6

√
3ρ3/2 Jfu − 7

√
3
ρJfv + 9√

2Jfw

+ 5
16

√
3

2ρf − 49
16

√
6ρQf,

fww = 19
3

√
6ρ2 fu + 12

√
6

ρ fv − 10√
ρfw − 17

3
√

2ρ2 Jfu − 12
√

2
ρ Jfv + 6

√
3
ρJfw

+ 2
ρf − 2

ρQf.

Hence q satisfies

quu = 0,

qww = 0,

quv = 1
8

(
12ρ

(
q − 2

√
6qv + 2√

ρqw

)
− 5

√
6qu
)
,

quw = 1
4√

ρ

(
6ρ
(√

6q − 12qv + 2
√

6ρqw
)

− 17qu
)
,

qvv = 1
864ρ

(
323

√
6qu − 72ρ

(
8q − 17

√
6qv + 13√

ρqw

))
,

qvw = 1
288ρ3/2

(
289qu − 6ρ

(
17

√
6q − 204qv + 30

√
6ρqw

))
,

(3.70)
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and p satisfies

pvv = 2
3p− 1

18
√

6ρ
(
19pq−1qu + 72ρpq−1qv

)
,

pvw = 1
6ρ3/2

(
4ρ
(√

6p− 6pq−1qv

)
− 7pq−1qu

)
,

pww = 1
9ρ2

(
36ρ

(
p− 2

√
6pq−1qv + √

ρpq−1qw

)
− 17

√
6pq−1qu

)
.

(3.71)

After applying an isometry of the type (p, q) 7→ (ap, bq), we may assume that
p(0) = Id2 and q(0) = Id2. From (3.66) and (3.69) it follows that there exists a
matrix c ∈ SL±(2,R) such that

qu(0) = c

(
1 2

− 1
2 −1

)
c−1,

qw(0) = c

(
0 0

3
√

3
2 0

)
c−1,

qv(0) = c

( 1
72
(
−17 + 6

√
6
)

− 17
36

1
144
(
233 − 12

√
6
) 1

72
(
17 − 6

√
6
) ) c−1,

pv(0) = c

 1
9 −

√
2
3

2
9√

2
3 − 1

18

√
2
3 − 1

9

 c−1,

pw(0) = c

 −2 + 2
9
√

6 4
3

√
2
3

2 − 1
3

√
2
3 2 − 2

9
√

6

 c−1.

By applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution
of the system of differential equations given in (3.70) and (3.71) is congruent to
the solution with c = Id2. This solution is the map given in Example 23 after
the change of coordinates v → v√

6 , u →
√

3
2u, w → 1

4

√
3
2w.

3.3.5 Extrinsically homogeneous Lagrangian submanifolds of
type IV

Proposition 33. There are no extrinsically homogeneous Lagrangian submani-
folds of the pseudo-nearly Kähler SL(2,R) × SL(2,R) of type IV in Lemma 11.



110 LAGRANGIAN SUBMANIFOLDS OF SL(2,R) × SL(2,R)

Proof. Let M be an extrinsically homogeneous Lagrangian submanifold of the
pseudo-nearly Kähler SL(2,R) × SL(2,R). Suppose that A and B take type IV
form with respect to a ∆3-orthonormal frame {E1, E2, E3}. Then by Proposition
26 the functions ψ, θ1, θ2, hkij and ωkij are constant. Thus by Lemma 15 the
functions hkij are all zero except for h3

11. Recall that we can write θ2 = −2θ1.
Computing the Codazzi equation (3.2) with X = E3, Y = E1, Z = E1 and
X = E1, Y = E2, Z = E2 yields

(h3
11)2 = 1

3(coshψ − cos 6θ1) coshψ, (3.72)

and √
2
3h

3
11 =

4 sinh(ψ)
(
− cos 6θ1 coshψ + 3(h3

11)2 + cosh2(ψ)
)

3(cos 6θ1 − coshψ) . (3.73)

Plugging (3.72) into (3.73) gives

h3
11 = −2

√
2
3 sinh 2ψ.

Comparing both values of (h3
11)2 we derive cos 6θ1 = 9 coshψ− 8 cosh 3ψ. Then

writing the Codazzi equation (3.2) with X = E1, Y = E3 and Z = E2 we
obtain sinh 2ψ = 0. This is a contradiction since by Lemma 11, ψ is different
from zero.

3.3.6 Proof of Theorem 33

Proof of Theorem 33. By Lemma 11 we separate the argument into four cases.

In Section 3.2 we showed that any totally geodesic submanifold is of type I
and is congruent to one of the first three examples given in Theorem 33. By
Proposition 27, Proposition 28 and Proposition 29, any non-totally geodesic
extrinsically homogeneous Lagrangian submanifold of type I is congruent to
either Example 20 or to Example 19.

Proposition 31 implies that any extrinsically homogeneous Lagrangian
submanifold of type II is congruent to an open subset of either the image
of the immersion in Example 21 or the image of the immersion in Example 22.

Proposition 32 states that any extrinsically homogeneous Lagrangian submani-
fold of type III is congruent to the one given in Example 23.

Proposition 33 shows that there are no extrinsically homogeneous Lagrangian
submanifolds of type IV.
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Except for the first, sixth and seventh examples in Theorem 33, all the
submanifolds are not isometric and therefore not congruent. Hence, it only
remains to distinguish between the aforementioned cases.

First, the first submanifold in Theorem 33 is the first example of Theorem 32,
therefore the only one of these three that is totally geodesic. The sixth
submanifold is the immersion ı given in Example 21 and the seventh one
is the family of immersions fλ given in Example 22.

Suppose that ι is congruent to fλ for some λ. That means, there exists a
isometry F of SL(2,R) × SL(2,R) that maps one into the other. Suppose that
F ∈ SL(2,R) × SL(2,R) × SL(2,R) ⋊ Z2. These isometries preserve P and J ,
hence A and B have the same shape with respect to {Ei}i and with respect to
{F∗Ei}i. Hence,

−
√

2
3 = g(h(E2, E2), JE3)

= g(F∗h(E2, E2),F∗JE3)

= g(h(F∗E2,F∗E2), JF∗E3)

= 2
√

2
3 ,

which is a contradiction.

In Theorem 28 we showed that the isometry group of SL(2,R) × SL(2,R) is a
semidirect product of S3 with SL(2,R) × SL(2,R) × SL(2,R) ⋊ Z2. Therefore,
to complete the proof we can assume that F ∈ S3, i.e. F = Ψκ,τ for some
κ ∈ {0, 1}, τ ∈ {0, 2π

3 ,
4π
3 }. Moreover, we can assume that τ ̸= 0, since otherwise

F preserves P , and therefore we may use the same argument as before, up to
sign. From Lemma 10 it follows that P restricted to F(M) takes the shape
Ã+ JB̃, where

Ã = cos τA+ (−1)κ sin τB,

B̃ = − sin τA+ (−1)κ cos τB.

For τ ̸= 0 these matrices have a different form than A and B, as it can be
seen in Lemma 9. Therefore, there does not exist such a ∆2-orthonormal frame
{Ei}i such that A and B take type II form in Lemma 11 on F(M), which is a
contradiction.

Similar arguments can be used to distinguish between fλ1 and fλ2 for λ1 ̸= λ2,
by considering the function ω2

33 =
√

2
3 (1 − λ) instead of h3

22.
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3.4 An example of a type IV Lagrangian submani-
fold

In Lemma 11 we defined four types of Lagrangian submanifolds. So far we have
only seen examples of type I, II and III, so it is natural to ask if there exist
Lagrangian submanifolds of type IV at all.

In this section, following the construction for S3 × S3 given in [7], we construct
an example of a type IV Lagrangian submanifold.

Theorem 34. Let p : Σ → SL(2,R) be a minimal surface of (SL(2,R), ⟨, ⟩),
where ⟨, ⟩ is the Lorentzian metric given in (2.2). Let ω be a solution of the
cosh-Gordon equation with ω < log 1√

3 . Suppose that {u, v} are null coordinates
with ⟨ ∂

∂u ,
∂
∂v ⟩ = eω and σ( ∂

∂u ,
∂
∂u ) = σ( ∂∂v ,

∂
∂v ) = −1 where σ is the component

of the second fundamental form in the direction of the unit normal ξ. Then the
distribution on SL(2,R) × SL(2,R) spanned by (pαi, qβi) with dp( ∂

∂u ) = pα1,
dp( ∂∂v ) = pα2, α3 = 0 and

β1 = 1
2α1 − e−ω

2 α2 − 1
4ωue

−ωα1 × α2

β2 = e−ω

2 α1 + 1
2α2 + e−ωωv

4 α1 × α2

β3 = −
√

3
2e

−ωα1 × α2

is integrable and the integral manifold is a Lagrangian submanifold of type IV
in Lemma 11 with tanh

(
ψ
2

)
= eω and θ1 = θ2 = 2π/3.

In order to prove this, we need first to introduce some theory about minimal
submanifolds of SL(2,R) = H3

1 (−1).

3.4.1 Time-like minimal surfaces of SL(2,R)

Given a two-dimensional pseudo-Riemannian manifold Σ (which we will call
a timelike surface), a null coordinate frame is a set of coordinates {u, v} on Σ
such that ⟨ ∂

∂u ,
∂
∂v ⟩ = eω and ⟨ ∂

∂u ,
∂
∂u ⟩ = ⟨ ∂∂v ,

∂
∂v ⟩ = 0, where ω is a function

on Σ.

For such coordinates, the Levi-Civita connection ∇ on Σ becomes

∇ ∂
∂u

∂
∂u = ωu

∂
∂u , ∇ ∂

∂u

∂
∂v = ∇ ∂

∂v

∂
∂u = 0, ∇ ∂

∂v

∂
∂v = ωv

∂
∂v . (3.74)
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For the existence of null coordinates on surfaces see [52]. Here we give a stronger
version of the existence result for minimal surfaces in H3

1 (−1).

Lemma 21. Given a minimal surface Σ of the three-dimensional anti-de
Sitter space H3

1 (−1), there exist local null coordinates {u, v} on Σ that satisfy
σ( ∂

∂u ,
∂
∂v ) = 0 and one of the following:

1. σ( ∂
∂u ,

∂
∂u ) = ±1, σ( ∂∂v ,

∂
∂v ) = ±1,

2. σ( ∂
∂u ,

∂
∂u ) = 0, σ( ∂∂v ,

∂
∂v ) = ±1,

3. σ( ∂
∂u ,

∂
∂u ) = σ( ∂∂v ,

∂
∂v ) = 0,

where σ is the component of the second fundamental form in the direction of
the unit normal.

Proof. Let {e1, e2} be a local null frame on Σ such that ⟨e1, e2⟩ = 1. Let ∇ be
the Levi-Civita connection on Σ associated to ⟨, ⟩. Then

∇e1e1 = ae1, ∇e1e2 = −ae2, ∇e2e1 = −be1, ∇e2e2 = be2,

for some real functions a, b. To find null coordinates {u, v} on Σ we take
arbitrary non-zero functions λ1, λ2 on Σ and we compute

[λ1e1, λ2e2] = λ1e1(λ2)e2 − λ2e2(λ1)e1 + λ1λ2be1 − λ1λ2ae2.

Hence {λ1e1, λ2e2} is a null coordinate frame if and only if

e1(λ2) = aλ2, e2(λ1) = bλ1. (3.75)

We show that (3.75) always has a solution by constructing it explicitly.

Let ξ be the unit normal vector field on Σ and let σ be the component of the
second fundamental form h of the surface in the direction of ξ. Since Σ is
minimal we have σ(e1, e2) = 0. Call α = σ(e1, e1) and β = σ(e2, e2). We divide
in three different cases: when both α and β are different from zero, exactly one
of them is zero, and both are zero.

Case 1: α and β are both different from zero.

We can take a change of basis such that α = ±β. Namely, take the new frame
{ẽ1, ẽ2} on Σ given by ẽ1 = µe1, ẽ2 = 1

µe2 where µ2α = ± 1
µ2 β and µ is a

non-vanishing function. Then σ(ẽ1, ẽ1) = ±σ(ẽ2, ẽ2).

As the ambient manifold is a space form, the Codazzi equation (see Section 1.4)
becomes ∇h(e2, e1, e1) = ∇h(e1, e2, e1) and ∇h(e1, e2, e2) = ∇h(e2, e1, e2). It
follows

e1(α) = −2aα, e2(α) = −2bα. (3.76)



114 LAGRANGIAN SUBMANIFOLDS OF SL(2,R) × SL(2,R)

Since we are working in a neighborhood where α ≠ 0, the functions λ1 = λ2 =
|α|−

3
2 are smooth. From (3.76) it follows that λ1 and λ2 are solutions of (3.75).

We call ∂
∂u = λ1e1, ∂

∂v = λ2e2. Since we assume that α = ±β we have
σ( ∂

∂u ,
∂
∂u ) = ±σ( ∂∂v ,

∂
∂v ). Using (3.74) we compute the Codazzi equation and

we obtain that σ( ∂
∂u ,

∂
∂u ) is constant. Finally after rescaling the coordinates we

get 1 in Lemma 21.

Case 2. α = 0, β ̸= 0.

Again, by changing the basis {e1, e2} we may assume that α = 0, β = ±1. From
the Codazzi equation ∇h(e1, e2, e2) = ∇h(e2, e1, e2) it follows that 0 = e1(β) =
−2aβ. Hence a = 0. By computing [e1, e2](f) we know that there exists a
solution of the system of differential equations{

e1(f) = f,

e2(f) = bf.
(3.77)

Taking λ2 a constant and λ1 a solution of (3.77) we get a solution of (3.75).

Calling ∂
∂u = λ1e1 and ∂

∂v = λ2e2 it follows that σ( ∂
∂u ,

∂
∂u ) = 0, σ( ∂∂v ,

∂
∂v ) =

±λ2
2. After a rescaling we see that ∂

∂u and ∂
∂v satisfy 2 in Lemma 21.

Case 3: α = β = 0.

If α = β = 0 then Σ is a time-like totally geodesic surface of H3
1 (−1). Hence Σ

is isometric to the two-dimensional anti-de Sitter space H2
1 (−1), which admits

null coordinates. This is 3 in Lemma 21.

Proposition 34. Let p : Σ → H3
1 (−1) be a minimal time-like surface of H3

1 (−1).
Let {u, v} be null coordinates on Σ and let α = σ( ∂

∂u ,
∂
∂u ), β = σ( ∂∂v ,

∂
∂v ) where

σ is the component of the second fundamental form of Σ in the direction of the
unit normal ξ. Then the function ω defined by ⟨ ∂

∂u ,
∂
∂v ⟩ = eω satisfies one of

the following:
1. ωuv = 2 coshω when α = β = −1, (cosh-Gordon equation)
2. ωuv = 2 sinhω when −α = β = −1, (sinh-Gordon equation)
3. ωuv = eω when α = 0 or β = 0. (Liouville equation)
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Proof. Writing the Gauss and Weingarten formulas for the immersion Σ →
H3

1 (−1) → R4
2 yields

puu = ωupu + αξ,

pvu = puv = eωp,

pvv = ωvpv + βξ,

ξu = −αe−ωpv,

ξv = −βe−ωpu.

(3.78)

Therefore

puuv = (ωuv − αβe−ω)pu + αvξ + ωue
ωp, puvu = ωue

ωp+ eωpu

Hence ω satisfies

ωuv = eω + αβe−ω. (3.79)

From Lemma 21 and taking −ξ as the unit normal if necessary, we obtain either
α = β = −1, α = −β = −1, α = 0, β = −1 or α = β = 0.

3.4.2 The projection of a Lagrangian submanifold

Proposition 35. Let f : M → SL(2,R)×SL(2,R) be a Lagrangian submanifold
of the pseudo-nearly Kähler SL(2,R)×SL(2,R) of type IV in Lemma 11. Suppose
that f = (p, q) and that dp has nowhere maximal rank. Then p(M) ⊂ SL(2,R)
is a time-like minimal surface, where SL(2,R) carries the metric given in (2.2).

Proof. LetM be a Lagrangian submanifold of SL(2,R)×SL(2,R). By hypothesis
A and B are of IV in Lemma 11 with respect to a ∆3-orthonormal frame
{E1, E2, E3}. Let X be a non-zero vector field on M such that dp(X) = 0.
Then

df(X) = (0, dq(X)) = 1
2(Qdf(X) + df(X)), (3.80)

where Q is the tensor defined in (2.14). From (2.16) it follows that equation
(3.80) becomes

PX = −1
2X −

√
3

2 JX.
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By assuming X to be a unit vector we conclude that X = ±E3 and that
θ1 = θ2 = 2π

3 . Hence the tangent space of p(M) is spanned by v1 = dp(E1) and
v2 = dp(E2). Writing dp(Ei) = 1

2 (Ei −QEi) yields the non-zero vector fields

v1 = − sinh2
(
ψ

2

)
E1 + sinh(ψ)

2
√

3
E2 +

sinh2
(
ψ
2

)
√

3
JE1 + sinh(ψ)

2 JE2,

v2 = − sinh(ψ)
2
√

3
E1 − sinh2

(
ψ

2

)
E2 − sinh(ψ)

2 JE1 +
sinh2

(
ψ
2

)
√

3
JE2.

It follows from a straightforward computation that

⟨v1, v1⟩ = 1 − cosh(ψ),

⟨v1, v2⟩ = 0,

⟨v2, v2⟩ = cosh(ψ) − 1.

By Lemma 11, the function ψ is different from zero. Therefore p(M) is a
non-degenerate time-like surface of SL(2,R).

It is easy to check that ξ = 1√
6E3 + 1√

2JE3 lies in the first factor of SL(2,R) ×
SL(2,R) and that it is a unit normal vector field to p(M).

Denote by σ the component of the second fundamental form of p(M) in the
direction of ξ. Then

σ(v1, v1) =
√

2h3
11 − sinh(ψ)√

3
,

σ(v1, v2) =
√

2h3
12,

σ(v2, v2) =
√

2h3
11 − sinh(ψ)√

3
.

Since the mean curvature vector field H is given by

H =
(

− σ(v1, v1) + σ(v2, v2)
)
ξ,

the surface is minimal.

Note that by taking the frame {E1,−E2, E3} in Lemma 11 we may assume that
the function ψ is positive.
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Consider the map P̃ : p(M) → SO(2, 2) given by

P̃(x) =
(
p(x) v1√

cosh(ψ)−1
v2√

cosh(ψ)−1
ξ
)
.

The differential of P̃ is given by dP̃ = P̃Ω̃ where Ω̃ is given by

0 −
√

cosh(ψ) − 1 η1√
cosh(ψ) − 1 η1 0√
cosh(ψ) − 1 η2

− csch(ψ)h1
11η1 + csch(ψ)h2

11η2

−(
√

2
3 + csch(ψ)h3

11)η3

0
(
√

2h3
11− 1√

3
sinh(ψ))η1+

√
2h3

12η2√
csch(ψ)−1√

cosh(ψ) − 1 η2 0
− csch(ψ)h1

11η1 + csch(ψ)h2
11η2

−(
√

2
3 + csch(ψ)h3

11)η3

(
√

2h3
11− 1√

3
sinh(ψ))η1+

√
2h3

12η2√
csch(ψ)−1

0 −
√

2h3
12η1+(

√
2h3

11− 1√
3

sinh(ψ))η2√
csch(ψ)−1√

2h3
12η1+(

√
2h3

11− 1√
3

sinh(ψ))η2√
csch(ψ)−1

0


where ηi(Ej) = δij .

In [7] the authors study three different cases: when p(M) is not totally geodesic
in S3 and P̃ is an immersion, when p(M) is totally geodesic in S3, and when p(M)
is not totally geodesic in S3 and P̃ is not an immersion. Due to complications
that the first two cases present for type IV Lagrangian submanifolds, in this
section we will only consider the last case.

Suppose that P̃ is not an immersion. Then the component of η3 in Ω̃ must
vanish. That is

h3
11 = −

√
2
3 sinh(ψ).

From the Codazzi equation we obtain that h3
12 = 0. Moreover, we get

E3(h1
11) = E3(h2

11) = 0,

and also

E1(h1
11) = −E2(h2

11),

0 = coth(ψ) − 3(h1
11)2 coth(ψ) + 3(h2

11)2 coth(ψ) + csch(ψ)

− cosh(2ψ) csch(ψ) − cosh(3ψ) csch(ψ) − E1(h2
11) − E2(h1

11).
(3.81)
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Note that the Lie brackets of the vector fields E1, E2, E3 are

[E1, E2] = h1
11 coth(ψ)E1 + h2

11 coth(ψ)E2 −
√

2
3(2 cosh(ψ) + 1)E3,

[E1, E3] = 0,

[E2, E3] = 0.

Then, we take the frame {X1, X2, X3} given by

X1 = − 1√
2 4

√
3
√

sinh(ψ)
E1 + 1√

2 4
√

3
√

sinh(ψ)
E2 − h1

11 + h2
11

2 4
√

33 sinh
3
2 (ψ)

E3,

X2 = 1√
2 4

√
3
√

sinh(ψ)
E1 + 1√

2 4
√

3
√

sinh(ψ)
E2 + h1

11 − h2
11

2 4
√

33 sinh
3
2 (ψ)

E3,

X3 = E3.

(3.82)

Using (3.81) we may check that [X1, X2] = [X1, X3] = [X2, X3] = 0. Thus,
there exist coordinates {u, v, t} such that

X1 = ∂
∂u , X2 = ∂

∂v , X3 = ∂
∂t .

From (3.29) we get expressions for the derivatives of ψ:

ψu = −
√

2(h1
11 + h2

11)
4
√

3
√

sinh(ψ)
,

ψv = −
√

2(h1
11 − h2

11)
4
√

3
√

sinh(ψ)
,

ψt = 0.

Hence, we express h1
11 and h2

11 in terms of ψ and its derivatives:

h1
11 = −

4
√

3
√

sinh(ψ)(ψu + ψv)
2
√

2
,

h2
11 =

4
√

3
√

sinh(ψ)(ψv − ψu)
2
√

2
.

(3.83)
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Plugging in these values in (3.82) we obtain

X1 = − 1√
2 4

√
3
√

sinh(ψ)
E1 + 1√

2 4
√

3
√

sinh(ψ)
E2 + ψu csch(ψ)

2
√

6
E3,

X2 = 1√
2 4

√
3
√

sinh(ψ)
E1 + 1√

2 4
√

3
√

sinh(ψ)
E2 − ψv csch(ψ)

2
√

6
E3,

X3 = E3.

(3.84)

Writing dp = 1
2 (Id −Q) we obtain

dp( ∂
∂u ) = − sinh(ψ) −

√
3 cosh(ψ) +

√
3

2
√

233/4
√

sinh(ψ)
E1 − sinh(ψ) +

√
3 cosh(ψ) −

√
3

2
√

233/4
√

sinh(ψ)
E2

−
√

3 sinh(ψ) + cosh(ψ) − 1
2
√

233/4
√

sinh(ψ)
JE1 + −

√
3 sinh(ψ) + cosh(ψ) − 1
2
√

233/4
√

sinh(ψ)
JE2,

dp( ∂∂v ) = − sinh(ψ) +
√

3 cosh(ψ) −
√

3
2
√

233/4
√

sinh(ψ)
E1 + sinh(ψ) −

√
3 cosh(ψ) +

√
3

2
√

233/4
√

sinh(ψ)
E2

+ −
√

3 sinh(ψ) + cosh(ψ) − 1
2
√

233/4
√

sinh(ψ)
JE1 +

√
3 sinh(ψ) + cosh(ψ) − 1

2
√

233/4
√

sinh(ψ)
JE2.

Comparing the equation we obtained for minimal surfaces in H3
1 , on the

one hand we have ⟨dp(X1), dp(X2)⟩ = 1√
3 tanh

(
ψ
2

)
and on the other hand

⟨dp( ∂
∂u ), dp( ∂∂v )⟩ = eω. Hence

eω = 1√
3

tanh
(
ψ

2

)
.

Then
ωu = ψu

sinh(ψ) , ωv = ψv
sinh(ψ) .

With a straightforward computation we can check that

∇E
∂udp(∂u) = ωudp(∂u) − ξ,

∇E
∂vdp(∂v) = ωvdp(∂v) − ξ.
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Now we write the frame {E1, E2, E3} in terms of the coordinate frame:

E1 =
4
√

3
√

sinh(ψ)√
2

(− ∂
∂u + ∂

∂v + csch(ψ)(ψu + ψv)
2
√

6
∂
∂t ),

E2 =
4
√

3
√

sinh(ψ)√
2

( ∂
∂u + ∂

∂v + csch(ψ)(−ψu + ψv)
2
√

6
∂
∂t ),

E3 = ∂
∂t .

(3.85)

3.4.3 The reverse construction

In this subsection we construct a Lagrangian submanifold of SL(2,R) × SL(2,R)
of type IV in Lemma 11 starting from a minimal surface in SL(2,R). We begin
by stating and proving a standard result in differential equations, adapted to
our setting.

Lemma 22. Let β1, β2 and β3 be matrices in sl(2,R) that depend on variables
u, v and t. If

∂β1

∂v
− ∂β2

∂u
= 2β1 × β2,

∂β1

∂t
− ∂β3

∂u
= 2β1 × β3,

∂β2

∂t
− ∂β3

∂v
= 2β2 × β3,

(3.86)

then the system of partial differential equations

∂q

∂u
= qβ1,

∂q

∂v
= qβ2,

∂q

∂t
= qβ3, (3.87)

has a solution in SL(2,R) with initial condition q(0, 0, 0) = Id2.

Proof. Define the matrix Bi ∈ M(4,R) by

Bi =
(
β⊺
i 0
0 β⊺

i

)
.

Thinking of q as a vector in R4, we write ∂q
∂u = qβ1 as the linear ordinary

differential equation ∂q
∂u = B1q. This differential equation always has a solution,

and the set of all solutions forms a four-dimensional vector space. Hence, we
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write q = Cy where the columns of C form a basis of said vector space. The
matrix C depends on u, v, t and y depends only on v and t. We differentiate q
with respect to v and we get

B2Cy = ∂q

∂v
= ∂C

∂v
y + C

∂y

∂v
.

It follows that
∂y

∂v
= C−1

(
B2C − ∂C

∂v

)
y.

Then, if C−1 (B2C − ∂C
∂v

)
does not depend on u, we can repeat the process

for v and t, and therefore find a solution. Note that ∂C
∂u = B1C and that

∂
∂uC

−1 = −C−1( ∂
∂uC)C−1. We compute

∂

∂u

(
C−1B2C − C−1 ∂C

∂v

)
= ∂C

∂u

−1
B2C + C−1 ∂B2

∂u
C + C−1B2

∂C

∂u

− ∂C

∂u

−1 ∂C

∂v
− C−1 ∂

2C

∂u∂v

= −C−1B1CC
−1B2C + C−1 ∂B2

∂u
C

+ C−1B2B1C + C−1B1CC
−1 ∂C

∂v

− C−1
(
∂B1

∂v
C +B1

∂C

∂v

)

= C−1
(

−B1B2 + ∂B2

∂u
+B2B1 − ∂B1

∂v

)
C.

Using the first equation of (3.86) we obtain that the last term of the equation
above equals to zero. Repeating the process we see that (3.87) has a solution.
Moreover, by requiring q(0, 0, 0) = Id2, we see that ⟨q, q⟩ is constant and equal
to −1.

Proof of Theorem 34. Let p : Σ → SL(2,R) be a minimal surface of SL(2,R)
on which we take coordinates u and v such that ⟨ ∂

∂u ,
∂
∂v ⟩ = eω, ⟨ ∂

∂u ,
∂
∂u ⟩ =

⟨ ∂∂v ,
∂
∂v ⟩ = 0. Also we take σ( ∂

∂u ,
∂
∂u ) = σ( ∂∂v ,

∂
∂v ) = −1 where σ is the

component of the second fundamental form in the direction of a unit normal ξ.
Let ω be the solution of ωuv = 2 cosh(ω) with ω < ln

(
1√
3

)
. Denote ∂

∂up = pα1,
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∂
∂vp = pα2 and let β1, β2, and β3 be the matrices in sl(2,R) given by

β1 = 1
2α1 − e−ω

2 α2 − 1
4ωue

−ωα1 × α2,

β2 = e−ω

2 α1 + 1
2α2 + e−ωωv

4 α1 × α2,

β3 = −
√

3
2e

−ωα1 × α2.

We use the identities

α1 × (α1 × α2) = −eωα1,

(α1 × α2) × α2 = −eωα2,

ξ = e−ωpα1 × α2,

α1u = ωuα1 − e−ωα1 × α2,

α2u = −α1 × α2,

(α1 × α2)u = eωα1 + α2 + ωuα1 × α2,

α1v = α1 × α2,

α2v = ωvα2 − e−ωα1 × α2,

(α1 × α2)v = α1 − eωα2 + ωvα1 × α2,

to check that β1, β2 and β3 satisfy (3.86). Therefore, there exists a submanifold
f : M → SL(2,R) × SL(2,R) of the nearly Kähler SL(2,R) × SL(2,R) with
f = (p, q).

Using the definition of the pseudo-nearly Kähler metric g in (2.8) and of the
almost complex structure (2.10), it follows from a straightforward computation
that f is a Lagrangian immersion.

Take the ∆3-orthonormal frame on {Ei} on M defined as

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E1(p) = pα̃2,

E3(q) = qβ̃3, E1(p) = pα̃3,

(3.88)
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where α̃i, β̃i are the matrices in sl(2,R) given by

α̃1 = −
√

3eω/2
√

1 − 3e2ω
α1 +

√
3eω/2

√
1 − 3e2ω

α2,

α̃2 =
√

3eω/2
√

1 − 3e2ω
α1 +

√
3eω/2

√
1 − 3e2ω

α2.

and

β̃1 = −1
2

√
3e− ω

2 (eω − 1) 1√
1 − 3e2ω

α1 + 1
2

√
3e− ω

2 (eω + 1) 1√
1 − 3e2ω

α2,

β̃2 = 1
2

√
3e− ω

2 (eω + 1) 1√
1 − 3e2ω

α1 + 1
2

√
3e− ω

2 (eω − 1) 1√
1 − 3e2ω

α2,

β̃3 = −
√

3
2e

−ωα1 × α2.

We write the restriction of the almost product structure P to M as A+ JB,
where A,B : TM → TM . Then A and B are of type IV in Lemma 11 with
respect to {E1, E2, E3}, with θ1 = θ2 = 2π

3 and ψ a positive function which
satisfies

eω = 1√
3

tanh
(
ψ

2

)
.



Chapter 4

Totally geodesic surfaces of
SL(2,R) × SL(2,R)

This chapter is based on unpublished joint work with K. Dekimpe. As such, it
can also be found in his PhD thesis [17].

Introduction

In this chapter we study pseudo-Riemannian surfaces of SL(2,R) × SL(2,R).
That is, those pseudo-Riemannian immersions f : Σ → SL(2,R) × SL(2,R)
where Σ is a 2-dimensional (pseudo-)Riemannian manifold. In particular, we
are interested in totally geodesic surfaces, those surfaces whose geodesics are
also geodesics of SL(2,R) × SL(2,R).

In the Riemannian analogue S3 × S3 of SL(2,R) × SL(2,R), totally geodesic
surfaces were studied in [9] and [19]. In [9] the authors classified up to congruence
all totally geodesic almost complex surfaces. Almost complex surfaces, also
known as J-holomorphic, are those surfaces such that the almost complex
structure J preserves the tangent space.

Theorem 35 (Bolton, Dillen, Dioos, Vrancken). Any totally geodesic almost
complex surface of S3 ×S3 is congruent to an open subset of one of the following
immersions:

1. S2( 2
3 ) → S3 × S3 : x 7→ 1

2 (1 −
√

3x, 1 +
√

3x),
2. T2 → S3 × S3 : (s, t) 7→ (esi, eti),

124
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where i, is the unit quaternion. Conversely, the immersions listed above are
totally geodesic almost complex surfaces.

In [19] the author classified totally geodesic totally real surfaces of S3 × S3.
That is, those surfaces where J maps the tangent space into the normal space.

Theorem 36 (Dioos). Any totally geodesic totally real surface of S3 × S3 is
congruent to an open subset of the following immersion:

S2( 2
3 ) → S3 × S3 : u 7→ (ι(u), 1)

where ι is the totally geodesic immersion of S2 into S3. Conversely, the
immersion above is a totally geodesic totally real surface.

On the other hand, surfaces of SL(2,R) × SL(2,R) have just started to be
studied. Ghandour and Vrancken [25] classified all almost complex surfaces
totally geodesic of the pseudo-nearly Kähler SL(2,R) × SL(2,R).

Theorem 37 (Ghandour, Vrancken). Any almost complex totally geodesic
surface of the pseudo-nearly Kähler SL(2,R) × SL(2,R) is congruent to an open
subset of the image of one of the following immersions:

1. H2(− 3
2 ) → SL(2,R) × SL(2,R) : x 7→ 1

2 (Id2 −
√

3x, Id2 +
√

3x),
2. T2 → SL(2,R) × SL(2,R) : (s, t) 7→ (etk, esk),
3. R2 → SL(2,R) × SL(2,R) : (s, t) 7→ (eti, esi),

where i is the matrix given in (2.1).

We focus on the study of totally real surfaces in the nearly Kähler manifold
(SL(2,R) × SL(2,R), J, g). These surfaces are characterized by the property
that the almost complex structure J maps tangent spaces of the surface into
normal spaces. In this section, we present some examples of totally real surfaces
in the nearly Kähler manifold by investigating semi-Riemannian surfaces within
Lagrangian submanifolds of this ambient space. Subsequently, in Section 4.1,
our attention is directed towards the analysis of totally geodesic totally real
surfaces. We demonstrate that the examples presented in this section are
essentially the only possible surfaces of this kind.

We recall Theorem 32 given in Chapter 3.

Theorem 32. Let M be an totally geodesic Lagrangian immersion in the
nearly Kähler (SL(2,R) × SL(2,R), g). Then it is locally congruent to one of
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the following immersions:

F1 : SL(2,R) → SL(2,R) × SL(2,R) : p 7→ (p, p);

F2 : SL(2,R) → SL(2,R) × SL(2,R) : p 7→ (p,−kpk);

F3 : SL(2,R) → SL(2,R) × SL(2,R) : p 7→ (p, ipi);

where i and k are part of the split quaternions, defined in (2.1).

The immersion F1 induces a metric tensor g1 on SL(2,R), defined as g1 = 2
3 ⟨ , ⟩,

where ⟨ , ⟩ represents the standard semi-Euclidean metric on SL(2,R). The
isometry F, as defined in Equation (2.4), establishes that (SL(2,R), g1) is locally
isometric to the semi-Riemannian space form H3

1
(
− 3

2
)
.

We now utilize these immersions to present examples of totally geodesic and
totally real surfaces in the nearly Kähler SL(2,R) × SL(2,R).

From its definition we see that the totally geodesic property is transitive.
Namely, given two totally geodesic immersions f1 : L → M and f2 : M → N the
immersion f2 ◦ f1 : L → N is totally geodesic. Then, totally geodesic surfaces of
totally geodesic Lagrangian submanifolds of SL(2,R) × SL(2,R) are totally real.

The subsequent proposition provides a classification for the totally geodesic
submanifolds of the semi-Riemannian space form Hn

s (c).

Proposition 35 ([13]). Every totally geodesic semi-Riemannian submanifold
of dimension k in a semi-Riemannian hyperbolic space Hn

s (c) is congruent to
an open part of a semi-hyperbolic k-subspace Hk

t (c) of Hn
s (c), defined as

Hk
t (c) = {(x1, . . . , xt+1, 0, . . . , xs+1, . . . , xk+1, 0, . . . , 0) ∈ Hn

s (c)} ,

with k < n and 0 ≤ t ≤ s.

This proposition demonstrates that every spacelike totally geodesic surface in
H3

1 (c) is congruent to an open part of the semi-hyperbolic two-space H2
0 (c).

Similarly, every Lorentzian totally geodesic surface in H3
1 (c) is congruent to

an open part of the semi-hyperbolic two-space H2
1 (c). Utilizing the isometry F

allows us to establish that every spacelike or Lorentzian totally geodesic surface
in (SL(2,R), 2

3 ⟨, ⟩) is locally congruent to an open portion of F(H2
0 (− 3

2 )) or
F(H2

1 (− 3
2 )). Consequently, we obtain the following examples of totally geodesic

totally real surfaces in the nearly Kähler manifold SL(2,R) × SL(2,R), when
considering the classification of totally geodesic Lagrangian submanifolds of this
space, as presented in Theorem 32.

Example 24. The following immersions are totally geodesic totally real surfaces
in the nearly Kähler (SL(2,R) × SL(2,R), g):
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1. f1 : F(H2
0 (− 3

2 )) → SL(2,R) × SL(2,R) : p → (p, Id2),
2. f2 : F(H2

1 (− 3
2 )) → SL(2,R) × SL(2,R) : p → (p, Id2),

Finally, we obtain the following classification result, which is direct consequence
of Theorem 40 and Theorem 41.

Theorem 39. Let Σ be a (non-degenerate) totally geodesic totally real surface of
SL(2,R)×SL(2,R). Then it is congruent to an open subset of the image of either
the immersion 1 or the immersion 2 in Example 24. Conversely, the immersions
in Example 24 are totally real totally geodesic surfaces of SL(2,R) × SL(2,R).

The structure of this chapter is as follows: In Section 4.1 we provide some
general theory for totally real surfaces of SL(2,R) × SL(2,R). In Section 4.2 we
study spacelike surfaces of SL(2,R) × SL(2,R) and we provide a classification of
totally geodesic totally real spacelike surfaces in Theorem 40. In Section 4.3 we
study Lorentzian surfaces of SL(2,R) × SL(2,R) and we provide a classification
of totally geodesic totally real Lorentzian surfaces in Theorem 41.

4.1 Totally real surfaces

In this section, our aim is to provide some general theory of totally real surfaces
of SL(2,R) × SL(2,R) that we will use to conclude in a classification result in
the following sections. A significant consequence of a surface being totally real
is that it can only be either spacelike or Lorentzian, since it cannot be negative
definite. This fact becomes evident later in this section as we proceed with
constructing a local frame on the surface.

Let Σ denote a totally real surface in the nearly Kähler SL(2,R) × SL(2,R).
We begin our analysis by defining the distribution D given by

D = TΣ + JTΣ +G(TΣ × TΣ) + JG(TΣ × TΣ). (4.1)

In the case of totally real surfaces, it is important to note that the dimension of
D is at least four. Consequently, considering a local semi-orthonormal frame
{U, V } on the surface Σ, it immediately follows that the set {U, V, JU, JV }
consists of linearly independent vector fields since Σ is totally real. Additionally,
from the properties of the tensor G as outlined in Proposition 9, we can deduce
that the vector fields G(U, V ) and JG(U, V ) are both linearly independent from
the aforementioned set. Thus, the dimension of the distribution D is at least
six, and as SL(2,R) × SL(2,R) is a six-dimensional manifold, its dimension is
precisely six.



128 TOTALLY GEODESIC SURFACES OF SL(2,R) × SL(2,R)

This means that the set of vector fields

G = {U, V, JU, JV,G(U, V ), JG(U, V )} , (4.2)

forms a local frame for SL(2,R) × SL(2,R) when restricted to the surface Σ.
This implies that the almost product structure P , defined in Equation (2.12),
restricted to the surface Σ, can be described in terms of the frame G as follows:

PU = a1U + a2V + a3JU + a4JV + a5G(U, V ) + a6JG(U, V ), (4.3)

PV = b1U + b2V + b3JU + b4JV + b5G(U, V ) + b6JG(U, V ), (4.4)

where a1, . . . , a6, b1, . . . , b6 are smooth functions on the surface Σ.

Now, we aim to define the almost product structure P on the frame G. By using
the fact that J and P anti-commute, we can straightforwardly find expressions
for PJU and PJV . However, the expressions for PG(U, V ) and PJG(U, V )
are more intricate. Applying Lemma 4 and Lemma 5, we observe that these
expressions depend on the restriction of the nearly Kähler metric g to the
surface Σ.

As the nearly Kähler manifold (SL(2,R) × SL(2,R), g) is a six-dimensional semi-
Riemannian manifold of index 2, the surface Σ can be spacelike, Lorentzian, or
negative definite. However, the case where the totally real surface Σ is negative
definite can be excluded because the almost complex structure J is compatible
with the nearly Kähler metric g. Indeed, suppose that the surface Σ is negative
definite with a semi-orthonormal frame {U, V }. The compatibility condition
then implies that

g(U,U) = g(V, V ) = g(JU, JU) = g(JV, JV ) = −1,

which is not possible for four linearly independent vector fields on a six-
dimensional manifold with index 2. Thus the surface Σ is either spacelike
or Lorentzian and these cases are treated separately in Sections 4.2 and 4.3.
Remark 15. We define a new symmetric operator denoted as PΣ on the surface
Σ, which is the restriction of the almost product structure operator P and
projection to the tangent bundle TΣ. Notably, this restriction ensures that
the operator PΣ itself remains symmetric and it is a tensor on the surface.
Consider a semi-orthonormal frame {E1, E2} defined on Σ, where the following
conditions hold:

g(E1, E1) = 1, g(E2, E2) = −1, g(E1, E2) = 0.

We can express the operator PΣ relative to this frame as follows:

PΣ : TΣ → TΣ : X 7→ g(PX,E1)E1 − g(PX,E2)E2.
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It is worth remarking that this description of the operator is applicable to any
frame, including lightlike frames. To achieve this, one can simply rephrase the
new frame using the frame {E1, E2}. The operator PΣ plays a crucial role
in the analysis of totally geodesic totally real surfaces in the nearly Kähler
SL(2,R) × SL(2,R), as shown in the subsequent sections.

4.2 Spacelike surfaces

We now focus on the case of spacelike totally real surfaces in the nearly Kähler
manifold SL(2,R)×SL(2,R), which are totally geodesic, and present a complete
classification in Theorem 40. Before proving this theorem, we establish some
important results concerning the nearly Kähler connection ∇, Lemma 23, and
the sectional curvature of the surface Σ. These results provide the necessary
background for the subsequent proof of the classification theorem.

Let us thus assume that the surface Σ is spacelike. In this case, the tangent
frame {U, V } on Σ satisfies

g(U,U) = g(V, V ) = 1.

The compatibility of the almost complex structure J and the properties of
the tensor G on the nearly Kähler manifold SL(2,R) × SL(2,R), as depicted
in Lemma 4, allow us to express the metric g with respect to the frame G as
follows: 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 − 2

3 0
0 0 0 0 0 − 2

3

 .

Remark 16. It is worth noting that as the operator PΣ is symmetric it is always
diagonalizable on the spacelike surface Σ. This property allows us to choose
the spacelike frame {U, V } in such a way that

PΣ(U) = a1U, PΣ(V ) = b2V,

for smooth functions a1, b2 on Σ. Consequently, Equations (4.3)-(4.4) imply
that the functions a2 and b1 can be set to zero, and we have

g(PU, V ) = g(U,PV ) = 0.
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The following lemma demonstrates how the nearly Kähler connection ∇ on the
totally geodesic surface Σ can be constructed with respect to the frame G.

Lemma 23. The nearly Kähler connection ∇ on a spacelike, totally geodesic
totally real surface Σ, with respect to the frame G defined in Equation (4.2), is
constructed as follows:

∇UU = AV, ∇V U = −BV,

∇UV = −AU, ∇V V = BV,

∇UJU = AJV, ∇V JU = −BJV −G(U, V ),

∇UJV = −AJU +G(U, V ), ∇V JV = BJU,

∇UG(U, V ) = 2
3JV, ∇VG(U, V ) = −2

3JU,

∇UJG(U, V ) = 0, ∇V JG(U, V ) = 0,

where A and B are smooth functions on Σ.

Proof. Recall that the tensor field G was defined as G(X,Y ) = (∇XJ)Y for
all vector fields X,Y ∈ X(SL(2,R) × SL(2,R)). Using this expression together
with Lemma 4 then immediately proves the expression for the nearly Kähler
connection ∇ with respect to the frame G.

Note that these expressions depend on the causal character of the surface Σ, as
the tensor field ∇G is expressed in terms of the nearly Kähler metric g. As Σ
is a totally geodesic surface, the Gauss and Codazzi equations in Section 1.4
show that

(R̃(U, V )U)T = R(U, V )U (R̃(U, V )V )T = R(U, V )V,

(R̃(U, V )U)⊥ = 0 (R̃(U, V )V )⊥ = 0.

where R is the Riemann curvature tensor of Σ and R̃ the Riemann curvature
tensor of the ambient space SL(2,R) × SL(2,R). On the other hand we have
that one can relate the Riemann tensor of Σ with the sectional curvature K at
each point p ∈ Σ through Definition 22:

R(U, V )U = K(p)(g(V,U)U − g(U,U)V ) = −K(p)V,

R(U, V )V = K(p)(g(V, V )U − g(U, V )V ) = K(p)U.
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Combining the Gauss and Codazzi equations with the previous formulas thus
yields

R̃(U, V )U = −K(p)V, R̃(U, V )V = K(p)U.

Equation (2.13) gives an explicit formula for the Riemann tensor of the nearly
Kähler SL(2,R) × SL(2,R), thus one has the following relation for the sectional
curvature K at each point p ∈ Σ:

−K(p)V = 5
6V − 1

2g(JV, U)JU − 2
3(g(PV,U)PU − g(PU,U)PV )

− 2
3(g(JPV,U)JPU − g(JPU,U)JPV ),

K(p)U = −5
6U + 1

2g(JU, V )JV − 2
3(g(PV, V )PU − g(PU, V )PV )

− 2
3(g(JPV, V )JPU − g(JPU, V )JPV ).

These formulas are for general spacelike totally geodesic surfaces, so after using
that Σ is totally real and that the frame {U, V } was chosen in such a way that
g(U,PV ) = 0, the previous formulas reduce to

−K(p)V = 5
6V + 2

3(g(PU,U)PV − g(JPV,U)JPU + g(JPU,U)JPV ),
(4.5)

K(p)U = −5
6U − 2

3(g(PV, V )PU + g(JPV, V )JPU − g(JPU, V )JPV ).
(4.6)

We can now classify all spacelike totally geodesic totally real surfaces in the
nearly Kähler SL(2,R) × SL(2,R).

Theorem 40. Let Σ be a spacelike totally geodesic totally real surface in
the nearly Kähler (SL(2,R) × SL(2,R), J, g). Then it is locally congruent to
immersion f1 of Example 24.

Proof. By assuming that Σ is spacelike, we can define the almost product
structure P on the entire frame G by utilizing the anti-commutation between P
and J , as well as the relationship between P and the tensor G as presented in
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Lemma 5. This yields the following expressions:

PU = a1U + a3JU + a4JV + a5G(U, V ) + a6JG(U, V ),

PV = b2V + b3JU + b4JV + b5G(U, V ) + b6JG(U, V ),

PJU = a3U + a4V − a1JU + a6G(U, V ) − a5JG(U, V ),

PJV = b3U + b4V − b2JV + b6G(U, V ) − b5JG(U, V ),

PG(U, V ) = −2
3(a5b2 − a6b4 + a4b6)U − 2

3(a6b3 + a1b5 − a3b6)V

+ 2
3(a6b2 + a5b4 − a4b5)JU + 2

3(−a5b3 + a3b5 + a1b6)JV

− (a1b2 + a4b3 − a3b4)G(U, V ) + (a3b2 + a1b4)JG(U, V ),

PJG(U, V ) = 2
3(a6b2 + a5b4 − a4b5)U + 2

3(−a5b3 + a3b5 + a1b6)V

+ 2
3(a5b2 − a6b4 + a4b6)JU + 2

3(a6b3 + a1b5 − a3b6)JV

+ (a3b2 + a1b4)G(U, V ) + (a1b2 + a4b3 − a3b4)JG(U, V ),

where once again we used that the vector field PU is orthogonal to V . We now
use the involutive, compatibility and symmetric properties of the almost product
structure P , together with Equations (4.5)-(4.6) to determine conditions for
the functions a1, . . . , a6, b2 . . . , b6. Lemma 5 shows an expression for the tensor
field ∇P in terms of the almost complex structure J and the tensor G:

P∇XY = ∇XPY − 1
2 (JG(X,PY ) + JPG(X,Y )) , (4.7)

for all vector fields X,Y ∈ X(SL(2,R) × SL(2,R)). This equation provides
a refinement, together with Lemma 23, of the conditions on the functions
a1, . . . , a6, b1 . . . b6.

The symmetry condition of the almost product structure P immediately yields

a4 = b3.

Using this equality in Equations (4.5)-(4.6) then shows that the following
conditions must hold:

a1a4 = 0, b2a4 = 0, (4.8)
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where one can distinguish two cases, i.e. when a4 is not equal to zero or when
a4 is equal to zero and we treat these cases separately in the following sections.

The function a4 is not equal to zero.

As the function a4 is not equal to zero, one immediately has from Equation
(4.8) that the functions a1 and b2 are both zero. Equations (4.5)-(4.6) then
show that

a4a6 = a3b6, a4a5 = a3b5, a6b4 = a4b6, a4b5 = a5b4.

Computing g(PU,PJV ) = g(U, JV ) and plugging in {U,G(U, V )}, {V,G(U, V )},
{V,G(U, V )} and {V, JG(U, V )} in 1 in Lemma 5, complements the above
conditions with the following relations:

a6b5 = a5b6, b5 = a4a6 − a3b6, a5 = a6b4 − a4b6,

a6 = a4b5 − a5b4, b6 = a4a5 − a3b5.

Note that a direct consequence of P being involutive is that not all functions
a1, . . . , a6 nor all functions b1, . . . , b6 can be simultaneously zero. Keeping this
remark in mind, Table 4.1 then shows that there is only one possible solution
for this system of equations.

Table 4.1 – Possible solutions when a4 = b3 ̸= 0 and Σ is spacelike.
Case 1 b6 = b5 = b2 = a6 = a5 = a1 = 0

Let us further analyze this case by examining the compatibility condition in
Lemma 5. Plugging in {U, V } in the equation, allows us to obtain

a3 = −b4,

while computing P 2U = U yields a2
4 + b2

4 = 1. Therefore, there exists a smooth
function ϕ on the surface Σ such that

a4 = cosϕ, b4 = sinϕ.

These conditions satisfy the symmetry, compatibility, and involutive conditions
of the almost product structure P .
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Now, according to Lemma 23 and substituting {X,Y } with {U, V } in equation
(4.7), we find that the previous equation simplifies to

A sinϕJU −A cosϕJV = −(A+ U(ϕ)) sinϕJU + (A+ U(ϕ)) cosϕJV

+ sinϕ
2 G(U, V ) + 1

2JG(U, V ),

which leads to a contradiction as the term involving JG(U, V ) is never zero.
Hence, we can conclude that there are no spacelike totally geodesic totally real
surfaces for which the function a4 is nonzero.

The function a4 is equal to zero.

Let us now consider the case when the function a4 is equal to zero. From
Equations (4.5)-(4.6), we can immediately deduce the following conditions:

a3b2 = a1b4, a1b5 = −a3b6, a3b5 = a1b6,

a5b2 = −a6b4, a6b2 = a5b4.

Computing g(PU,PV ) − g(U, V ) and plugging in {U,G(U, V )}, {U, JG(U, V )},
{V,G(U, V )} and {V, JG(U, V )} in 1 in Lemma 5, yields additional conditions:

a5b5 = −a6b6, a6b5 = a5b6, (b2 − 1)a5 = a6b4,

(b2 + 1)a6 = −a5b4, (a1 − 1)b5 = a3b6, (a1 + 1)b6 = −a3b5.

The solutions to these equations, considering the conditions derived from
Equations (4.5)-(4.6), can be obtained by excluding cases where all functions
a1, . . . , a6 or b1, . . . , b6 are zero. This leads to the two cases as presented in
Table 4.2.

Table 4.2 – Possible solutions when a4 = b3 = 0 and Σ is spacelike.
Case 2 b6 = b5 = a6 = a5 = 0, b4 ̸= 0 and a1 = a3b2

b4

Case 3 b6 = b5 = b4 = a6 = a5 = a3 = 0, b2 ̸= 0

We now distinguish between these two cases.

*Case 2. By applying the conditions obtained in this case, a straightforward
calculation reveals that P 2V = V yields the equation b2

2 + b2
4 = 1. Thus, we

can consider a smooth function ϕ on the surface Σ such that

b2 = cosϕ, b4 = sinϕ.
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Computing g(PU,PU) − g(U,U) = 0 yields a2
3 = sin2 ϕ, leading us to consider

two different cases:

a3 = sinϕ, a1 = cosϕ and a3 = − sinϕ, a1 = − cosϕ.

It is worth noting that in both cases, the compatibility, symmetry, and involutive
conditions of the almost product structure P are satisfied. Equations (4.5)-(4.6)
now show that the sectional curvature K of Σ has a constant value of − 3

2 if
a3 = sinϕ and a constant value of − 1

6 if a3 = − sinϕ.

*The function a3 is equal to sinϕ. According to Lemma 23 and plugging in
{X,Y } with {U, V } in Equation (4.7), we have

U(ϕ) sinϕV − U(ϕ) cosϕJV = 1
2(sin 2ϕ− sinϕ)G(U, V )

+ 1
2(cos 2ϕ− cosϕ)JG(U, V ),

which holds only when the angle ϕ is a constant, taking values from the set{
0, 2π

3 ,
4π
3
}

(up to an integer multiple of 2π). Since we assumed in this case
that b4 is not zero, we find that the angle ϕ must be either 2π

3 or 4π
3 . A

straightforward calculation demonstrates that Equation (4.7) is always satisfied
on the surface Σ for these constant values of ϕ. Consequently, our almost
product structure P is well-defined on Σ. Furthermore, Equations (4.5)-(4.6)
show that the sectional curvature K of Σ has a constant value of − 3

2 for both
values of the constant angle function ϕ.

*The function a3 is equal to − sinϕ. In this case combining Lemma 23 with
Equation (4.7), where we once again substitute {X,Y } with {U, V }, yields

2A cosϕU + 2A sinϕJU = U(ϕ) sinϕV − U(ϕ) cosϕJV

− 1
2(sinϕ− sin 2ϕ)G(U, V )

+ 1
2(cosϕ+ cos 2ϕ)JG(U, V ).

Note that this expression can only be valid when the function A is zero and
angle function ϕ has the constant value π, which would imply that the function
b4 is equal to zero. This is thus a contradiction.

*Case 3. In this case one finds, after a substitution of {X,Y } with {U,U}
and {V, V } in the compatibility condition in Lemma 5, that the functions a1
and b2 have to satisfy

a2
1 = 1, b2

2 = 1,
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which results in four distinct cases. Equations (4.5)-(4.6) then reveal that
the sectional curvature of Σ has a constant value of − 3

2 if a1 = b2 = 1 or if
a1 = b2 = −1, while it has a constant value of − 1

6 in the other two cases. We can
analyze these four cases simultaneously by combining Lemma 23 together with
Equation (4.7). Substituting the vector fields {X,Y } with {U,U},{U, V },{V,U}
and {V, V } gives rise to the following equations:

Ab2V = Aa1V, Aa1U = Ab2U − 1
2(a1 − 1)b2JG(U, V ),

Ba1U = Bb2U, Bb2V = Ba1V + 1
2(b2 − 1)a1JG(U, V ),

which indicates that the almost product structure P is only well defined on the
surface Σ when both functions a1 and b1 are equal to the constant value 1.

The table below now presents all the possibilities for the almost product structure
P with respect to the frame G on the spacelike surface Σ.

Table 4.3 – Almost product structure on the spacelike surface Σ.
Almost product structure P Sectional curvature K

Case A PU = U
PV = V

− 3
2

Case B
PU = − 1

2U +
√

3
2 JU

PV = − 1
2V +

√
3

2 JV
− 3

2

Case C
PU = − 1

2U −
√

3
2 JU

PV = − 1
2V −

√
3

2 JV
− 3

2

Once again, we treat the cases separately and conduct a more detailed analysis of
the vector fields U and V on the surface Σ. Specifically, at the identity element
(Id, Id) of SL(2,R) × SL(2,R), the vector fields U and V can be expressed as
(α, β) and (γ, δ), respectively. Here, α, β, γ, δ are elements of the Lie algebra
sl2R, and the expression for the almost product structure P imposes certain
conditions on these matrices.

*Case A. In this case the vector fields U and V are both eigenvector fields
with eigenvalue 1 of the almost product structure P . The expression for P ,
as defined in Equation (2.12), now immediately shows that one should have
that α = β and γ = δ, thus at the identity one has U = (α, α) and V = (γ, γ).
We now determine the length of the matrices α and γ, with respect to the
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semi-Euclidean metric ⟨ , ⟩, as Equation (2.15) shows that

⟨α, α⟩ = 1
2 ⟨U,U⟩ = 1

2(2g(U,U) + g(U,PU)) = 3
2 ,

⟨γ, γ⟩ = 1
2 ⟨V, V ⟩ = 1

2(2g(V, V ) + g(V, PV )) = 3
2 ,

where U and V are spacelike unit normal vector fields with respect to the nearly
Kähler metric g. After applying an isometry of the ambient space one can take

α =
√

3
2 i, γ =

√
3
2 j,

with i and j the split-quaternions defined in Equation (2.1). Since the surface
Σ is assumed to be totally geodesic, we can deduce from the expressions of the
vector fields U and V at the identity that it must lie in the first Lagrangian
immersion of Theorem 32. This implies that Σ is locally congruent to the
spacelike totally geodesic totally real surface f1 in Example 24.

*Case B. From the definition of the almost complex structure J , defined in
Equation (2.10), one has that the almost product structure P in this case yields

(β, α) = (−β, α− β), (δ, γ) = (−δ, γ − δ)

which shows that both β and δ are the zero matrix and that at the identity
one has U = (α, 0) and V = (γ, 0). An analogous calculation as in the
previous case shows that ⟨α, α⟩ = ⟨γ, γ⟩ = 3. Thus after applying an isometry
of SL(2,R) × SL(2,R) one can fix α and γ as

α =
√

3 i, γ =
√

3 j.

Applying the isometry Ψ1,4π/3 of SL(2,R) × SL(2,R) given in (2.19), we obtain
that Σ is locally congruent to the immersion in Case A.

*Case C. From the definition of the almost complex structure J , defined in
Equation (2.10), one has that the almost product structure P in this case yields

(β, α) = (β − α,−α), (δ, γ) = (δ − γ,−γ)

which shows that both α and γ are the zero matrix. An analogous calculation
as in the previous case shows that ⟨β, β⟩ = ⟨δ, δ⟩ = 3. Thus after applying an
isometry of SL(2,R) × SL(2,R) one can fix β and δ as

β =
√

3 i, δ =
√

3 j.

Applying the isometry Ψ0,2π/3 of SL(2,R) × SL(2,R) given in (2.19), we obtain
that Σ is locally congruent to the immersion in Case A.
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4.3 Lorentzian surfaces

We now consider the case where the totally geodesic totally real surface Σ is
Lorentzian. One can then take a local semi-orthonormal frame {U, V } on Σ
that satisfies

g(U,U) = 1, g(V, V ) = −1. (4.9)

The compatibility of the almost complex structure J and the properties of the
tensor G on the nearly Kähler SL(2,R) × SL(2,R), as shown in Lemma 4, allow
us to express the nearly Kähler metric g with respect to the frame G as

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 2

3 0
0 0 0 0 0 2

3

 .

Note that the symmetric operator PΣ, defined in Remark 15, is not always
diagonalizable on the Lorentzian surface Σ. Therefore, we state a result similar
to 9, which can be found in [44].

Lemma 24. Let V be a two-dimensional Lorentzian vector space and A be a
symmetric linear endomorphism. Then there exists a basis {e1, e2} of V with
inner products given by the matrix ∆i, with respect to which A takes the one of
the following forms:

Type I: A =
(
λ1 0
0 λ2

)
, ∆1 =

(
−1 0
0 1

)
,

Type II: A =
(
λ1 0
ε λ1

)
, ∆2 =

(
0 1
1 0

)
,

Type III: A =
(
α β

−β α

)
, ∆1 =

(
−1 0
0 1

)
,

(4.10)

with λi, α, β ∈ R and ε = ±1.

It is worth remarking that there exists a third possibility for symmetric operators
of Lorentz spaces of dimension greater than or equal to three. In Proposition
36, we demonstrate that if Σ is a Lorentzian totally geodesic totally real surface,
then PΣ must be of type I. Thus PΣ is always diagonalizable, which is similar
to the spacelike case in Section 4.2.
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We first consider the following lemma, which is the Lorentzian analogue of
Lemma 23. Its proof follows a similar line of reasoning and can therefore be
omitted.

Lemma 25. The nearly Kähler connection ∇ on a Lorentzian, totally geodesic
totally real surface Σ, with respect to the frame G defined in Equation (4.2), is
constructed as follows:

∇UU = AV, ∇V U = BV,

∇UV = AU, ∇V V = BV,

∇UJU = AJV, ∇V JU = BJV −G(U, V ),

∇UJV = AJU +G(U, V ), ∇V JV = BJU,

∇UG(U, V ) = 2
3JV, ∇VG(U, V ) = 2

3JU,

∇UJG(U, V ) = 0, ∇V JG(U, V ) = 0,

where A and B are smooth functions on Σ.

We again focus on the form of the almost product structure P when restricted to
the surface and obtain conditions for the functions a1, . . . , a6, b1, . . . , b6, defined
in Equations (4.3)-(4.4). Before classifying all the totally geodesic totally real
surfaces in the nearly Kähler SL(2,R)×SL(2,R) we first show that the operator
PΣ on such a surface has to be of type I.

Proposition 36. Let Σ be a Lorentzian totally geodesic totally real surface
in the nearly Kähler (SL(2,R) × SL(2,R), J, g). The symmetric operator PΣ,
defined in Remark 15 is then of type I in Lemma 24.

Remark 17. We prove this theorem by demonstrating that the operator PΣ

cannot be of type II or type III. These two cases are analyzed separately and
it is shown that they both lead to contradictions.

The operator PΣ is of type II

Lemma 24 then shows that one can choose null vector fields Ũ , Ṽ on the surface
Σ satisfying

g(Ũ , Ũ) = g(Ṽ , Ṽ ) = 0, g(Ũ , Ṽ ) = 1,
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such that the operator PΣ satisfies

PΣ(Ũ) = a1Ũ + εṼ , PΣ(Ṽ ) = a1Ṽ ,

for a smooth function a1 on Σ. The almost product structure P can then, using
Equations (4.3)-(4.4), be expressed with respect to the frame

{
Ũ , Ṽ

}
as follows:

PŨ = a1Ũ + εṼ + a3JŨ + a4JṼ + a5G(Ũ , Ṽ ) + a6JG(Ũ , Ṽ ),

P Ṽ = a1Ṽ + b3JŨ + b4JṼ + b5G(Ũ , Ṽ ) + b6JG(Ũ , Ṽ ).

We have thus imposed the conditions a1 = b2, a2 = ε, and b1 = 0. With these
conditions, we can now define the almost product structure P on the frame
G̃, which is similar to the frame G defined in Equation (4.2), but now using
the null vector fields Ũ and Ṽ . It is important to note that the expressions
for P , with respect to the frame G̃, are not identical to the expressions found
when the surface Σ is spacelike, as they depend on the induced metric on the
surface. In this proof, we omit writing out these expressions as the construction
is completely analogous. As Σ is a totally geodesic totally real surface, one can
again use the Gauss and Codazzi equations in Section 1.4 to find a Lorentzian
analogue of Equations (4.5)-(4.6), yielding in this case

K(p)Ũ = −5
6 Ũ − 2

3(g(PṼ , Ũ)PŨ − g(PŨ, Ũ)PṼ ) (4.11)

− 2
3(g(JP Ṽ , Ũ)JPŨ − g(JPŨ, Ũ)JP Ṽ ),

−K(p)Ṽ = 5
6 Ṽ − 2

3(g(PṼ , Ṽ )PŨ − g(PŨ, Ṽ )PṼ ) (4.12)

− 2
3(g(JP Ṽ , Ṽ )JPŨ − g(JPŨ, Ṽ )JP Ṽ ).

We now follow a similar approach as in the proof of Theorem 40, where we
classified all spacelike totally real surfaces, which are totally geodesic. Plugging
the vector fields

{
Ũ , JṼ

}
in the symmetry condition of P immediately yields the

condition a3 = b4. Equation (4.11) then implies that the function b3 vanishes
everywhere, thus b3 = 0. Replacing {X,Y } with

{
Ũ , JṼ

}
in the compatibility

condition of P leads to the following equations:

a2
1 + b2

4 + 2
3(a5b5 + a6b6) = 1, b2

5 + b2
6 = 0.

From these equations, we can deduce that b5 = b6 = 0. Furthermore, there
exists a smooth function ϕ on the surface Σ such that

a1 = cosϕ, b4 = sinϕ.
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Applying these conditions in Equation (4.11) then yields

a4 cosϕ = ε sinϕ, a5 cosϕ = −a6 sinϕ, a6 cosϕ = a5 sinϕ.

The first equation shows that cosϕ is never zero, so we can define the function
a4 as a4 = ε tanϕ. The last two equations imply that the only possibility for
these equations to hold is when a5 = a6 = 0. We can conclude this part of the
proof by considering the compatibility condition of P with g, where we plug in{
Ũ , JṼ

}
, resulting in the condition

secϕ = 0,

which can clearly never be satisfied. Thus the operator PΣ can never be of
type II.

The operator PΣ is of type III

In this case Lemma 24 shows that one can choose the semi-orthonormal frame
{U, V }, Equation 4.9, in such a way that

PΣ(U) = a1U + a2V, PΣ(V ) = −a2U + a1V,

with a1, a2 smooth functions on the surface Σ and a2 nowhere vanishing.

The almost product structure P can now, using Equations (4.3)-(4.4), be
described with respect to the frame {U, V } as follows:

PU = a1U + a2V + a3JU + a5G(U, V ) + a6JG(U, V ),

PV = −a2U + a1V + b4JV + b5G(U, V ) + b6JG(U, V ).

We have thus imposed the conditions a1 = b2, and a2 = −b2. With these
conditions, we can now define the almost product structure P on the frame G,
defined in Equation (4.2). Once again, the expressions for P with respect to the
frame G is not identical to the expressions found when the surface Σ is spacelike,
as they depend on the induced metric on the surface. We do not explicitly state
these expressions as the construction in this case is completely similar.

As Σ is a totally geodesic totally real surface, one can again use the Gauss
and Codazzi equations given in Section 1.4 to find a Lorentzian analogue of
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Equations (4.5)-(4.6), yielding in this case

−K(p)V = 5
6V − 2

3(g(PV,U) − g(PU,U)PV ) (4.13)

− 2
3(g(JPV,U)JPU − g(JPU,U)JPV ),

−K(p)U = 5
6U − 2

3(g(PV, V )PU − g(PU, V )PV ) (4.14)

− 2
3(g(JPV, V )JPU − g(JPU, V )JPV ).

Plugging in {U, V } in the symmetry condition of P with the vector fields shows
that a4 = −b3. Equations (4.13)-(4.14) then yield the following conditions:

a2a3 = a1a4 = 0, a1(a3 − b4) = 0, a1a4 = a2b4.

This system of equations has its potential solutions listed in the table below, as
the function a2 was assumed to never be zero. A distinction is made between
these three cases.

Table 4.4 – Possible solutions when PΣ is of type III.

Case (a) a3 = b4, a4 ̸= 0 and a1 = a2b4
a4

Case (b) a1 = a3 = b4 = 0
Case (c) a3 = a4 = b4 = 0

*Case (a). In this scenario, it is possible to consider the existence of a
continuous function α on Σ such that the following relationships hold: a1 = αa2
and a3 = αa4. Plugging in {U, JV } in the compatibility condition of P with
the metric g yields the relation a6b5 = a5b6. Thus there exists a function β such
that b5 = βa5 and b6 = βa6. Equations (4.13)-(4.14) then imply the following
conditions:

(a2a5 + a4a6)(1 + αβ) = 0, (a2a5 + a4a6)(α− β), (4.15)

(a4a5 − a2a6)(1 + αβ) = 0, (a4a5 − a2a6)(α− β). (4.16)

The only way in which this system of equations can be satisfied is when
a5 = a6 = 0, as the function a2 is never zero. Applying the involutive condition
of P on the vector field U then results in

(a2
2 + a2

4)α = 0, (a2
2 + a2

4)(−1 + α2) = 1,
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which is clearly a contradiction.

*Case (b). Equations (4.13)-(4.14) in this case give rise to the following
equations:

a2a5 = −a4a6, a2b6 = a4b5, a2b5 = −a4b5, a2a6 = a4a5.

The only possible solution, when taking into account the non-vanishing of the
function a2, is when the functions a5, a6, b5 and b6 are all zero. The involutive
condition of P on the vector field U then yields

a2
2 + a2

4 = −1,

again resulting in a contradiction.

*Case (c). Equations (4.13)-(4.14) in this case imply the following conditions:

a2a5 = −a1b5, a2b5 = a1a5, a2a6 = −a1b6, a2b6 = a1a6.

Once again the only possible solution is when the functions a5, a6, b5 and b6 are
all zero. Finally applying the involutive condition of P on the vector field U
results in

a2
2 = a2

1 − 1, a1a2 = 0,

which is once again a contradiction, as the function a2 is assumed to be non-
vanishing.

Thus the operator PΣ cannot be of type III, thereby concluding the proof of
the proposition.

Type I surfaces

We can now classify all Lorentzian totally geodesic totally real surfaces in the
nearly Kähler SL(2,R) × SL(2,R).

Theorem 41. Let Σ be a Lorentzian totally geodesic totally real surface in
the nearly Kähler (SL(2,R) × SL(2,R), J, g). Then it is locally congruent to
immersion f2 of Example 24.

Proof. Proposition 36 immediately shows that the operator PΣ in this case
has to be of type I in Lemma 24. This lemma shows that one can choose the
semi-orthonormal frame {U, V }, defined in Equation (4.9), in such a way that

PΣ(U) = a1U, PΣ(V ) = b2V,
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for smooth functions a1, b2 on the surface Σ, implying that PΣ is diagonalizable.
In this case one can describe the almost product structure P , using Equations
(4.3)-(4.4), as follows:

PU = a1U + a3JU + a5G(U, V ) + a6JG(U, V ),

PV = b2V + b4JV + b5G(U, V ) + b6JG(U, V ).

We have thus imposed the conditions a2 = b1 = 0, which are exactly the same
as in Section 4.2, where Σ was assumed to be spacelike. Now, with these
conditions in place, we can proceed to define the almost product structure P on
the frame G as defined in Equation (4.2). However, once again the expressions
for P with respect to the frame G are not identical to those found when the
surface Σ is spacelike. Although we do not explicitly state these expressions, the
construction follows a similar approach as before. The Lorentzian analogue of
Equations (4.5)-(4.6), when PΣ is of type I, can straightforwardly be calculated
to yield:

−K(p)V = 5
6V + 2

3(g(PU,U)PV − g(JPV,U)JPU + g(JPU,U)JPV ),
(4.17)

−K(p)U = 5
6U − 2

3(g(PV, V )PU + g(JPV, V )JPU − g(JPU, V )JPV ).
(4.18)

We now follow a similar approach as in Section 4.2 to derive conditions for
the functions a1, . . . , a6, b1, . . . , b6. By plugging in {U, V } in the symmetry
condition of P for the almost product structure P , we obtain the immediate
condition:

a4 = −b3.

Next, combining this condition with Equations (4.17)-(4.18) leads to the
following results:

a1a4 = 0, b2a4 = 0.

This implies that we can once again distinguish between the case where the
function a4 is zero and the case where it does not vanish.

The function a4 is not equal to zero.

When the function a4 is not zero, one immediately has from the previous
equation that the functions a1 and b2 are both zero. Equations (4.17)-(4.18) in
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this case straightforwardly show that

a4a6 = a3b6, a4a5 = −a3b5, a6b4 = a4b6, a5b4 = a4b5.

We can plug in {U, JV } in the compatibility condition of P with the metric g and
{U,G(U, V )},{U, JG(U, V )},{V,G(U, V )} and {V, JG(U, V )} in the symmetry
condition of P to obtain

a6b5 = a5b6, a5 = a4b6 − a6b4, a6= a4b5 − a5b4,

b5,= −a3b6 − a4b6, b6 = −a3b5 − a4a5.

Table 4.5 shows that there is only one possible solution for these equations, if
one uses the extra condition that not all functions a1, . . . , a6 nor all functions
b1, . . . , b6 can vanish.

Table 4.5 – Possible solutions when a4 = b3 ̸= 0 and Σ is Lorentzian.

Case 1’ b6 = b5 = a6 = a5 = 0

Notice that these conditions are exactly the same as those in the spacelike case,
as shown in Table 4.1. Now, we further analyze this solution by determining
the possible values of the functions a3, a4, b3, b4. Starting with the compatibility
condition of P with g, we find that a3 = −b4. Additionally, plugging in {U,U}
in this equation yields b2

4 − a2
4 = 1. Consequently, we can define a smooth

function ϕ on the surface Σ to express the functions as follows:

b4 = coshϕ, a4 = sinhϕ.

These conditions then ensure that the compatibility, symmetry and involutive
conditions of the almost product structure P are always satisfied on the surface
Σ. Equations (4.17)-(4.18) also show that Σ has constant sectional curvature
with value − 1

6 . The nearly Kähler connection, restricted to the surface Σ, is
described by Lemma 25 and shows, together with substituting {X,Y } with
{U, V } in Equation (4.7), that

U(ϕ) coshϕJU + 2 sinhϕ(A+ U(ϕ))JV = −3 coshϕ
2 G(U, V )

+ 1
2JG(U, V )

This is clearly a contradiction, as the term containing JG(U, V ) is never zero.
As a result, there exist no Lorentzian, totally geodesic totally real surfaces in
the nearly Kähler manifold SL(2,R) × SL(2,R) where the function a4 does not
vanish.
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The function a4 is equal to zero.

In this case the function a4 is exactly zero, which results in Equations (4.17)-
(4.18) yielding the following conditions:

a1b4 = a3b2, a1b5 = −a3b6,

a1b6 = a3b5, a5b2 = −a6b4, a5b4 = a6b2.

Plugging in {U, V } and {U, JV } in the compatibility condition of P with the
metric g shows that

a5b5 = −a6b6 a5b6 = a6b5,

while plugging in {U,G(U, V )},{U, JG(U, V )},{V,G(U, V )} and {V, JG(U, V )}
in the symmetry condition of P gives rise to the additional equations:

(b2 − 1)a5 = a6b4, (b2 + 1)a6 = −a5b4,

(a1 − 1)b5 = a3b6 (a1 + 1)b6 = −a3b5.

Solving these equations, while again considering the additional condition that
the functions a1, . . . , a6 or b2, . . . b6 cannot all be simultaneously be zero, results
in the following table.

Table 4.6 – Possible solutions when a4 = b3 = 0 and Σ is Lorentzian.

Case 2’ b6 = b5 = a6 = a5 = 0, b4 ̸= 0 and a1 = a3b2
b4

Case 3’ b6 = b5 = b4 = a6 = a5 = a3 = 0 and b2 ̸= 0

We separate our analysis of these two cases.

*Case 2’. Replacing {V, V } in the compatibility condition of P in this case,
shows that b2

2 + b2
4 = 1. This implies that one can consider a smooth function ϕ

on the surface Σ such that

b2 = cosϕ, b4 = sinϕ.

Applying the involutive condition of P on the vector field U shows that a2
3 =

sin2 ϕ, thus one gets two distinct cases for the functions a1 and a3, given by

a1 = cosϕ, a3 = sinϕ, and a1 = − cosϕ, a3 = − sinϕ.



LORENTZIAN SURFACES 147

The compatibility, symmetry and involutive conditions of the almost product
structure P on the surface Σ are now again satisfied in both cases, while the
sectional curvature K of the surface Σ has a constant value of − 3

2 if a3 = sinϕ
and a constant value of − 1

6 if a3 = − sinϕ. A distinction is made between these
two cases.

*The function a3 is equal to sinϕ. Lemma 25 and Equation (4.7) now show
that

−U(ϕ) sinϕV + U(ϕ) cosϕJV = 1
2(sinϕ+ sin 2ϕ)G(U, V )

+ 1
2(cos 2ϕ− cosϕ)JG(U, V ),

Similar to Section 4.2, when Σ was spacelike, we can make a corresponding
argument for the case where a4 is zero. In this scenario, the angle function ϕ
should be a constant function, and its possible values are in the set

{ 2π
3 ,

4π
3
}

,
with angles again determined up to an integer multiple of 2π. Additionally,
Equation (4.7) is always satisfied on the surface Σ for these values of ϕ. As
a result, for these particular values of ϕ, the almost product structure P is
well-defined on the nearly Kähler manifold SL(2,R) × SL(2,R) when restricted
to the totally real, totally geodesic surface Σ.

*The function a3 is equal to − sinϕ. Substituting once again {X,Y } with
{U, V } in Equation (4.7) yields

A cosϕU +A sinϕJU = U(ϕ) sinϕV − U(ϕ) cosϕJV

+ 1
4(sin 2ϕ− sinϕ)G(U, V )

+ 1
2(cosϕ+ cos 2ϕ)JG(U, V ).

One can immediately see that this can only be satisfied when the function A
is zero and the angle function ϕ is a constant function with value an integer
multiple of π, yielding a contradiction as this would make the function b4 vanish.

*Case 3’. Plugging in {U,U} and {V, V } in the compatibility condition of P
with g then straightforwardly yields

a1 = ±1, b2 = ±1,

trivially satisfying the compatibility, symmetry and involutive conditions of the
almost product structure P on the surface Σ. Equations (4.17)-(4.18) then shows
that the sectional curvature K of Σ has a constant value of − 3

2 if a1 = b2 = ±1
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and a constant value of − 1
6 in the other two cases. It is possible to analyze these

four cases simultaneously, by combining Lemma 25 together with Equation
(4.7), as substituting the vector fields {X,Y } with {U,U},{U, V },{V,U} and
{V, V } gives rise to the following equations:

Ab2V = Aa1V, Aa1U = Ab2U − 1
2(a1 − 1)b2JG(U, V ),

Ba1U = Bb2U, Bb2V = Ba1V + 1
2(1 − b2)a1JG(U, V ).

These equations are only satisfied if a1 = b2 = 1, thus only then is the almost
product structure P well-defined on the totally geodesic, totally real surface Σ.
These conditions make it a surface with constant sectional curvature K = − 3

2 .

The following table now finally yields all the possibilities for the almost product
structure P with respect to the frame G on the Lorentzian surface Σ, which is
identical to Table 4.3, where Σ was assumed to be spacelike.

Table 4.7 – Almost product structure on the Lorentzian surface Σ.

Almost product structure P Sectional curvature K

Case A PU = U
PV = V

− 3
2

Case B
PU = − 1

2U +
√

3
2 JU

PV = − 1
2V +

√
3

2 JV
− 3

2

Case C
PU = − 1

2U −
√

3
2 JU

PV = − 1
2V −

√
3

2 JV
− 3

2

We once again analyze the vector fields U and V at the identity element (Id, Id)
of SL(2,R) × SL(2,R) and write U = (α, β) and V = (γ, δ) at this point, with
α, β, γ, δ ∈ sl2R.

*Case A’. One can immediately see, as in Section 4.2 , that the matrices
α, β, γ and δ satisfy α = β and γ = δ, which means that at the identity we have
U = (α, α) and V = (γ, γ). The lengths of the matrices with respect to the
semi-Euclidean metric ⟨ , ⟩ are then determined as

⟨α, α⟩ = 3
2 , ⟨γ, γ⟩ = −3

2 .



LORENTZIAN SURFACES 149

Thus after applying an isometry of the nearly Kähler SL(2,R) × SL(2,R) one
can fix α and γ as

α =
√

3
2 i, γ =

√
3
2k,

with i and j the split-quaternions defined in Equation (2.1). Because the surface
Σ is assumed to be totally geodesic, one can deduce from the expressions of the
vector fields U and V at the identity that it must lie in the first Lagrangian
immersion of Theorem 32. Thus the surface Σ is locally congruent to the
Lorentzian totally geodesic totally real immersion f2 in Example 24.

*Case B’. In this case, as in Section 4.2, one has that β = δ = 0 and the
expressions U = (α, 0) and V = (γ, 0) hold at the identity (Id2, Id2). The
lengths of the matrices with respect to the semi-Euclidean metric ⟨ , ⟩ are then
determined as

⟨α, α⟩ = 3, ⟨γ, γ⟩ = −3,

which means that applying an isometry of SL(2,R) × SL(2,R) allows us to fix
α and γ as

α =
√

3i, γ =
√

3k.

Applying the isometry Ψ1,4π/3 of SL(2,R) × SL(2,R) we see that this surface is
mapped into the surface of *Case A’.

*Case C’. Analogous to the spacelike surfaces in Section 4.2, one immediately
has that α = γ = 0 and the expressions U = (0, β) and V = (0, δ) hold
at the identity (Id2, Id2). The lengths of the matrices with respect to the
semi-Euclidean metric ⟨ , ⟩ are then determined as

⟨β, β⟩ = 3, ⟨δ, δ⟩ = −3,

which means that applying an isometry of SL(2,R) × SL(2,R) allows us to fix
β and δ as

β =
√

3i, δ =
√

3k.

Using a similar reasoning as in the previous case, one can deduce that the
surface Σ in this case also has to be locally congruent to the Lorentzian totally
geodesic totally real immersion f2 given in Example 24.

Therefore we can conclude the proof of the theorem.





Chapter 5

Hypersurfaces of
SL(2,R) × SL(2,R)

This work is based on an unpublished work with my colleagues K. Dekimpe
and M. D’haene.

5.1 Introduction

Given a n-dimensional Riemannian manifold (M, g), we understand by a
hypersurface of M a submanifold of dimension n− 1.

Hypersurfaces of six-dimensional nearly Kähler manifolds have been widely
studied. For instance, Loubeau and Deschamps [18] showed that there are no
totally geodesic or totally umbilical hypersurfaces in CP 3 and F (C3). This is
also true for S3 × S3 (see for instance [31]), so the only six-dimensional nearly
Kähler manifold with a totally geodesic hypersurface is the sphere S6. This does
not come as a surprise, taking into account the result by Nikolayevsky [43], who
states that a homogeneous manifold with a totally geodesic hypersurface must
be a warped product of Rn with a homogeneous manifold, a twisted product
of R with a homogeneous manifold, or the Riemannian product of a space form
with a homogeneous space.

In this chapter, we show that there are no constant sectional curvature
hypersurfaces in SL(2,R) × SL(2,R) through means of a refined version of the
Gauss equation. First, in Section 5.2, we show a general result for hypersurfaces.
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Then, we distinguish between two cases, when the vector field Pξ, with ξ the
unit normal vector field, depends linearly on ξ and Jξ, and when it does not.
We use the result of Section 5.2 to prove that in both cases the shape operator
has a special form. Then in Section 5.5 we show the following result.

Theorem 42. There are no hypersurfaces in the pseudo-nearly Kähler
SL(2,R) × SL(2,R) with constant sectional curvature.

5.2 The main equation

Lemma 26. Let M be a hypersurface of a (pseudo)-Riemannian manifold N
of dimension at least three, and let R, R̃ be their respective curvature tensors.
Then

S
X,Y,W

g(R̃(X,Y )Z, SW ) = S
X,Y,W

g(R(X,Y )Z, SW ). (5.1)

where S is the shape operator associated to the immersion of M into N , and
S

X,Y,W
is the cyclic sum over X, Y and W . Moreover, if M has constant

sectional curvature the right hand side vanishes.

Proof. By taking the cyclic sum over the Gauss equation in Section 1.4 we
obtain 5.1. Moreover, if M has constant sectional curvature then R(X,Y )Z =
c(g(Y, Z)X − g(X,Z)Y ). Plugging in this expression in the right hand side of
5.1 we see that it vanishes everywhere.

Analogously to previous chapters, we approach the study of constant sectional
curvature hypersurfaces by dividing them depending on the behavior of the
almost product structure P on the tangent space of the hypersurface.

Let ξ be the ε-unit normal vector field to the hypersurface M , i.e. g(ξ, ξ) = ε =
±1. The vector field Pξ might or might not be contained in the span of ξ and
Jξ. We treat these cases separately.

5.3 The vector field Pξ is independent of ξ and Jξ

Define the vector field X on M by

X = Pξ − εg(Pξ, ξ)ξ − εg(Pξ, Jξ)Jξ.
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Suppose that Pξ, Jξ and ξ are linearly independent. Then

F = {Jξ,X, JX,G(ξ,X), JG(ξ,X)}

is a frame on M . We define the functions θ1 and θ2 on M by

θ1 = g(Pξ, ξ), θ2 = g(Pξ, Jξ). (5.2)

Then by lemmas 4 and 5, F is an orthogonal frame with

g(Jξ, Jξ) = ε, g(X,X) = ε(1 − θ2
1 − θ2

2),

g(G(ξ,X), G(ξ,X)) = −2
3(1 − θ2

1 − θ2
2).

Note that the linear independency of Pξ, ξ, and Jξ is equivalent to θ2
1 + θ2

2 ̸= 1.
It follows from lemmas 4 and 5 that P takes the shape

εθ1 εθ2 (1 − θ2
1 − θ2

2) 0 0 0
εθ2 −εθ1 0 −(1 − θ2

1 − θ2
2) 0 0

1 0 −εθ1 εθ2 0 0
0 −1 εθ2 εθ1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


with respect to the frame {ξ, F}.

To simplify notation, we denote

E2 = Jξ, E3 = X, E4 = JX E5 = G(ξ,X), E6 = JG(ξ,X). (5.3)

Then, we write
h(Ei, Ej) = hijξ,

where h is the second fundamental form.

Proposition 37. Let M be a hypersurface of the pseud-nearly Kähler SL(2,R)×
SL(2,R) with constant sectional curvature. Suppose that θ2

1 + θ2
2 ≠ 1, where θ1,

θ2 are the functions given in (5.2). Then M is totally umbilical.

Proof. By Lemma 26 the right hand side of (5.1) vanishes. Then, by taking
X = E2, Y = E3, Z = E5, E6 and W = E4, E5 in (26) we obtain

h25 = h26 = 0, h34 = −εθ2h24.

Similarly, taking X = E2, E5, Y = E6, Z = E2, E4, E5 and W = E2, E3, E4
yields

h34 = h23 = h56 = 0, h66 = h55.
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Plugging in these values in (5.1) with X = E2, Y = E3, E4, Z = E3 and
W = E5, E6 we produce

h36 = −2εθ1h45, h35 = −2εθ1h46, h46 = 2εθ2h45.

From computing (5.1) with X = E2, E3, Y = E5, Z = E3, E4 and W = E6 it
follows

h24 = 0, h55 = − 2
3εh33.

Moreover, taking X = E2, Y = E6, Z = E5, E6 and W = E3, E4 we get

h33 = h44 = h22(1 − θ2
1 − θ2

2) = h22(1 − θ2
1 − θ2

2).

Finally, by plugging in all these values in (5.1) with X = E2, Y = E4, Z =
E2, E3, E4, W = E5, E6 we obtain

h45(4θ2
2 − 1) = 0, h45(1 − θ1

(
8θ1θ

2
2 + ε

)
) = 0, h45(1 + 8εθ1θ

2
2) = 0,

which imply h45 = 0.

Therefore, the second fundamental form satisfies h(X,Y ) = εh22g(X,Y )ξ.

5.4 The vector field Pξ is not independent of ξ and
Jξ

Suppose now that Pξ ∈ Span{ξ, Jξ} := D. The tensor P preserves D and
its orthogonal complement. Let U and V be eigenvectors of P |D associated
to 1, with g(U,U) = −ε and g(V, V ) = 1. Then JU and JV are eigenvectors
associated to −1. By computing g(Pξ, Pξ) we obtain θ2

1 + θ2
2 = 1. Hence we

can write θ1 = cos θ, θ2 = sin θ.

Again, to simplify notation, we write

E2 = Jξ, E3 = U, E4 = V, E5 = JU, E6 = JV, (5.4)

and h(Ei, Ej) = hijξ.
Proposition 38. Let M be a hypersurface of the pseudo-nearly Kähler
SL(2,R) × SL(2,R) with constant sectional curvature, and let ξ be the normal
vector field with g(ξ, ξ) = ε = ±1. Suppose that θ2

1 + θ2
2 = 1 where θ1 and θ2

are given in (5.2). Then the shape operator S satisfies

S =


h22 0 0 0 0
0 h33 0 0 0
0 0 −εh33 0 0
0 0 0 h33 0
0 0 0 0 −εh33

 ,
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with respect to the frame {Ei}i on M given in (5.4).

Proof. By Lemma 26 the shape operator S satisfies

S
X,Y,W

g(R̃(X,Y )Z, SW ) = 0, (5.5)

where R̃ is the curvature tensor of SL(2,R) × SL(2,R).

Plugging in X = E2, Y = E3, E6, Z = E4, E5, E6 and W = E4, E5 in (5.5) we
obtain h23 = h24 = h25 = h26 = 0.

By taking X = E5, Y = E3, Z = E3, W = E4 and X = E3, Y = E6, Z = E5,
W = E5 in (5.5) we obtain h36 = 3h45 and h36 = 1

3h45, hence h36 = h45 = 0.
In a similar way we obtain h34 = h56 = 0, h35 = h46 = 0.

Now plug in {X,Y, Z,W} in (5.5) as all permutations of {E3, E4, E5, E6}. Then
h44 = −εh33, h55 = h33 and h66 = −εh33.

5.5 Proof of Theorem 42

Proof of Theorem 42. Let M be a hypersurface of the pseudo-nearly Kähler
SL(2,R)×SL(2,R) with constant sectional curvature c. Let ξ the normal vector
field with g(ξ, ξ) = ε = ±1.

We divide in two cases, when Pξ depends linearly on ξ and Jξ and when it
does not. Recall that this is equivalent to θ2

1 + θ2
2 being equal to or different

from 1, where θ1 = g(Pξ, ξ) and θ2 = g(Pξ, Jξ).

Suppose that θ2
1 + θ2

2 ̸= 1. Then by Proposition 37, M is a totally umbilical
hypersurface. The equation of Gauss given in Chapter 1, Section 1.4 can be
written as

c (g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )) = g((R̃(X,Y )Z),W )

+ g(h(Y, Z), h(X,W ))

− g(h(X,Z), h(Y,W )).

(5.6)

Plugging in X = E6, Y = E5, Z = E3 and W = E4 in (5.6) where {Ei}i is the
frame given in (5.3) yields θ2

1 + θ2
2 = 1, which is a contradiction.

Now suppose that θ2
1 + θ2

2 = 1. By taking X = E5, Y = E4, Z = E3 and
W = E6 in (5.6) where {Ei}i is the frame given in (5.4) gives ε/2 = 0, also a
contradiction.



Conclusion

Overview

We started by presenting the pseudo-Riemannian nearly Kähler structure of
SL(2,R) × SL(2,R) as the T -dual of the nearly Kähler S3 × S3. Then, we
provided an expression of the isometry group, as a tool for classification of
submanifolds up to congruency. Later, we studied Lagrangian submanifolds
and we divided them into four types. We considered each type separately and
we classified all totally geodesic and extrinsically homogeneous Lagrangian
submanifolds.

We found that there are three examples of totally geodesics Lagrangian
submanifolds, which corresponds to the Riemannian case, but with one
extra example. On the contrary, there were exotic examples of extrinsically
homogeneous Lagrangian submanifolds. Besides the analogues of the
submanifolds in the Riemannian case, we found three extra examples, where
one is actually a family of immersions.

We classified all totally real and totally geodesic surfaces, finding a hyperbolic
plane and anti-de Sitter plane, immersed in one of the Lagrangian submanifolds.
Also, we showed that there are no hypersurfaces with constant sectional
curvature.

Results that were not included

Besides the work included in this thesis, I also have some results I decided to
exclude for various reasons.

The construction in Section 3.4 for a type IV Lagrangian submanifold, was done
for all types. During the first year of my PhD, looking for explicit examples of

156



157

all the types in Lemma 11, I followed the construction given in [7] for S3 × S3.

For type I Lagrangian submanifolds, the results are practically the same than for
S3 × S3, with the exception that we have to consider different cases depending
on the index of the surface in SL(2,R). I did not include this result since it did
not add any value to the thesis.

For type II Lagrangian submanifolds, there are two cases to consider, since the
projection to the first factor is either a minimal Lorentzian surface in SL(2,R)
or a null curve in SL(2,R) with special properties. I did not add this result
since some cases lead to a dead end.

For type III Lagrangian submanifolds, the projection to one of the factors is
always a degenerate surface. Hence, I did not include it since the computations
were cumbersome and did not produce result.

Besides SL(2,R)×SL(2,R), I also studied submanifolds of other spaces. Chapter
5 is part of an ongoing work with K. Dekimpe and M. D’haene. We saw
that besides SL(2,R) × SL(2,R), there are no constant sectional curvature
hypersurfaces in CP 3 and S3×S3. The aim is to prove this for all six-dimensional
homogeneous nearly Kähler manifolds (besides S6). During my stay in China
in May 2024, I worked with M. D’haene, X. Chen, Z. Hu and L. Vrancken on
totally geodesic almost complex surfaces of the analogue of the flag manifold
SL(3,R)/R∗ · SO(2). The result is not included due to time constraints.

Future research

The obvious next step is to prove that a totally geodesic surface of SL(2,R) ×
SL(2,R) is either almost complex or totally real. This poses an extra difficulty,
since we have to consider an extra function: the angle that the almost complex
structure J forms with the tangent space.

As mentioned before, finishing the classification of hypersurfaces with constant
sectional curvature of nearly Kähler manifolds comes in the near future.

There are many results in S3 × S3 that can be translated to SL(2,R) × SL(2,R).
For instance, Z. Yao, Z. Hu and X. Zhang studied hypersurfaces of S3 × S3 to a
great extent (see [30, 31, 55, 56]). Particularly interested in Hopf hypersurfaces,
they found a family of immersions of S2 × S3 → S3 × S3. It is clear that
in SL(2,R) × SL(2,R) we will find at least two families: H2 × SL(2,R) →
SL(2,R) × SL(2,R) and H2

1 × SL(2,R) → SL(2,R) × SL(2,R). It would be
interesting to know if there exist more examples.
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Also, there is close to no research done in the pseudo-Riemannian nearly Kähler
six-manifolds. Vrancken and Cwiklinski studied totally geodesic surfaces of
one of the analogues of the flag manifold in [14]. As mentioned before, totally
geodesic surfaces in the other analogue were considered by the author, X. Chen,
M. D’haene, Z. Hu and L. Vrancken. In S6

4 and the analogues of CP 3 there are
no results yet.
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