
HAL Id: tel-04791080
https://theses.hal.science/tel-04791080v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calculs numériques et modèles : études de cas pour les
disques durs en physique statistique et pour

l’apprentissage profond
Botao Li

To cite this version:
Botao Li. Calculs numériques et modèles : études de cas pour les disques durs en physique statistique
et pour l’apprentissage profond. Physics [physics]. Université Paris sciences et lettres, 2022. English.
�NNT : 2022UPSLE081�. �tel-04791080�

https://theses.hal.science/tel-04791080v1
https://hal.archives-ouvertes.fr

Préparée à l’École normale supérieure
LPENS

Computation and models: Case studies for hard
disks in statistical physics and for deep learning

Soutenue par
Botao LI
Le 14 décembre 2022

École doctorale nº 564
Physique en Île-de-France

Spécialité
Physique

Composition du jury :

Michael Engel
FAU Erlangen-Nürnberg Rapporteur

Ralf Everaers
ENS de Lyon Examinateur

Jan Kierfeld
TU Dortmund Rapporteur

Werner Krauth
ENS Directeur de thèse

Rodolphe Vuilleumier
ENS Président du jury

Zorana Zeravcic
ESPCI Paris Examinatrice

Contents

ContentsContents ii

AcknowledgementAcknowledgement iiiiii

1 Introduction1 Introduction 11
1.1 Multithreaded event-chain Monte Carlo with local times1.1 Multithreaded event-chain Monte Carlo with local times 33
1.2 Sparse hard-disk packings and local Markov chains1.2 Sparse hard-disk packings and local Markov chains 55
1.3 Hard-disk computer simulations—a historic perspective1.3 Hard-disk computer simulations—a historic perspective 77
1.4 Simplified models and optimization algorithms in deep learning1.4 Simplified models and optimization algorithms in deep learning 88

2 Hard disks in statistical physics2 Hard disks in statistical physics 1313
2.1 Hard-disk model2.1 Hard-disk model . 1313

2.1.1 Definition of hard-disk model2.1.1 Definition of hard-disk model . 1313
2.1.2 Properties of hard-disk model2.1.2 Properties of hard-disk model . 1818

2.2 Sparse packings2.2 Sparse packings . 2222
2.2.1 Definition2.2.1 Definition . 2323
2.2.2 Properties of Böröczky packings2.2.2 Properties of Böröczky packings . 2323

3 Algorithms3 Algorithms 2929
3.1 Markov-chain Monte Carlo: the basics3.1 Markov-chain Monte Carlo: the basics . 2929

3.1.1 Introduction to Markov chains3.1.1 Introduction to Markov chains . 3030
3.1.2 Convergence of Markov chains3.1.2 Convergence of Markov chains . 3131

3.2 Sampling algorithms3.2 Sampling algorithms . 3333
3.2.1 Metropolis algorithm and its massive parallelization3.2.1 Metropolis algorithm and its massive parallelization 3333
3.2.2 Event-chain Monte Carlo algorithms3.2.2 Event-chain Monte Carlo algorithms . 3434
3.2.3 Multithreaded ECMC3.2.3 Multithreaded ECMC . 3838
3.2.4 Molecular Dynamics3.2.4 Molecular Dynamics . 3939

3.3 Algorithm performance3.3 Algorithm performance . 3939
3.3.1 Escaping performance3.3.1 Escaping performance . 4141
3.3.2 Coarsening performance3.3.2 Coarsening performance . 4343

4 Observables4 Observables 4545
4.1 Overview of observables4.1 Overview of observables . 4545
4.2 Distributions4.2 Distributions . 4646

4.2.1 Position distribution4.2.1 Position distribution . 4747
4.2.2 Pair-correlation functions4.2.2 Pair-correlation functions . 4949

i

ii CONTENTS

4.3 Pressure4.3 Pressure . 5050
4.3.1 Definitions of pressure4.3.1 Definitions of pressure . 5151
4.3.2 Pressure estimators4.3.2 Pressure estimators . 5353

4.4 Orientational order of hard disks4.4 Orientational order of hard disks . 6262

5 Implementation of algorithms5 Implementation of algorithms 6565
5.1 Formal verification5.1 Formal verification . 6565

5.1.1 Sequential Consistency5.1.1 Sequential Consistency . 6666
5.1.2 Example: Sequential consistency of multithreaded ECMC5.1.2 Example: Sequential consistency of multithreaded ECMC 6666

5.2 Performance of computer programs5.2 Performance of computer programs . 7171

6 Statistical analysis6 Statistical analysis 7575
6.1 Distribution comparison6.1 Distribution comparison . 7575
6.2 Confidence interval of correlated sequences6.2 Confidence interval of correlated sequences . 7777

7 Interpreting simulations7 Interpreting simulations 7979
7.1 Functions of pressure and global orientational order7.1 Functions of pressure and global orientational order 8080

7.1.1 The sequence of global orientational order Ψ67.1.1 The sequence of global orientational order Ψ6 8181
7.1.2 Correlation between pressure and global orientational order7.1.2 Correlation between pressure and global orientational order 8282
7.1.3 Window average of pressure7.1.3 Window average of pressure . 8383

7.2 Previous results7.2 Previous results . 8484

BibliographyBibliography 8787

PublicationsPublications 9999

Acknowledgement

First and foremost, I would like to express my sincere gratitude to Prof. Werner Krauth, my
supervisor, for allowingme to carry outmydoctoral study, guidingme throughmy research,
and providing all kinds of support. I also would like to thank Prof. Thierry Mora for being
my mentor. I thank Prof. Félix Werner for being my tutor and chatting with me frequently
during the Covid time. I thank Prof. Michael Engel, Prof. Jan Kierfeld, Prof. Ralf Everaers,
Prof. Rodolphe Vuilleumier, and Dr. Zorana Zeravcic for evaluating this work, especially
Prof. Michael Engel and Prof. Jan Kierfeld for being my reporter.

My sincere thanks go to all my collaborators. I thank Prof. Anthony C. Maggs for the
stimulating discussion and for providing me with computational resources during my doc-
toral study. I thank Dr. Liang Qin for the helpful discussion that allows me to start my re-
search. I thank Philipp Höllmer for our discussion regarding sparse packings of hard disks
and non-reversible Markov-chain Monte Carlo algorithms and for all the technical advice.
I thank Dr. Yoshihiko Nishikawa for the discussion regarding GPU programming, state-of-
the-art hard-disk pressure computation, and data analysis. I thank Dr. Etienne Bernard for
generously sharing his fine-tuned program with us. I thank Prof. Synge Todo for the dis-
cussion of parallelizing the event-chain Monte Carlo algorithm. I thank Dr. Ze Lei for the
discussion on the same topic. I also would like to thank Nicolas Noirault and Louis Carillo
for the beautiful initial works during their internships that later turned into publications. I
thank Dr. Riccardo Rossi and Dr. Fedor Šimkovic for sharing their idea of Many Configu-
rations Markov Chain Monte Carlo. I thank Ziyin Liu for introducing me to the research of
theoretical machine learning and initializing two interesting research projects. I also thank
James B. Simon, Dr. Xiangming Meng, and Prof. Masahito Ueda for their contribution to
these projects. It is a pleasure working with them.

I thank all the people that instructed or helped me in the past years; Prof. Yifu Cai and
Prof. Yi Mao for introducing me to the research when I was an undergraduate at the univer-
sity of science and technology of China; Dr. Yifan Chen for introducing me to the graduate
opportunities in France and for all the advice for a newcomer to France; Prof. Stephane
Munier and Prof. Pascal Paganini for allowing me to finish my high-energy physics mas-
ter program at Ecole Polytechnique with a statistical physics project; Prof. Emilian Dudas,
Prof. Christoph Kopper, Prof. François Gelis, Prof. Alain Aspect, Prof. Kirone Mallick, and
many other professors for providing fascinating lectures during my master; Prof. Naomichi
Hatano for guiding me in my very first research project in statistical physics and taking care
of me during my visit in Japan; and of course Prof. Werner Krauth for his lectures on statis-
tical physics, and Dr. Valentina Ros for the tutorial session after the lecture.

Iwould like to sincerely thankProf. Jean-Marc Berroir, director of "Laboratoire de Physique
de l’Ecole normale supérieure", especially for his help for my Ph.D. project. I thank Prof. Ly-

iii

iv ACKNOWLEDGEMENT

déric Bocquet equally for his essential help. I thank Prof. Jean-François Allemand and Prof.
Frédéric Chevy, the two successive directors of the doctoral school, for their support that
is beyond their duty. I thank administrative staff, in particular Olga Hodges, Hawa Traore,
Christine Chambon, Laura Baron-Ledez, Fouzia Bouzid at the administration at ENS, and
Mélanie Neguiral, Lucille Amard at CNRS for walking me through complicated administra-
tive procedures. I equally thank the technical staff, in particular Yann Colin, for taking care
of all problems I encountered regarding the internet andmy computer. I cannot imagine my
life in the department without your help.

In the second year of my Ph.D., I had the chance to teach at Université Paris Cité. I
would like to thank Prof. Francesca Carosella for giving me this chance and my colleagues:
Prof. Paolo Galatola, Prof. Yann Rasera, Prof. Giuliano Orso, Paul Jeammet, Prof. Renaud
Belmont, and Thomas Richardson, for their guidance, help, and collaboration.

I would like to thank everyone that accompanied me during my Ph.D. Members of my
group locate all around theworld, and I enjoy their short and precious stay and,more impor-
tantly, their constant digital presence. I thank (for a second time) Prof. Werner Krauth, Prof.
Anthony C. Maggs, Dr. Liang Qin, Dr. Philipp Höllmer, Dr. Yoshihiko Nishikawa, Dr. Ze
Lei, Nicolas Noirault, Louis Carillo, and Shanglun Feng for sharing opinions and anecdotes
about everything. I am grateful that I have friends with whom I can discuss both physics
and life: Ziyin Liu, my friend since high school, provided me with crucial advice for almost
every aspect of my life; Peng Cheng, my friend since undergraduate andmy flatmate during
my master, shared his insight into movies and news; Jiming Wu explained me the topic he
is interested in physics, and his insight into foods; Jiaxin Qiao and Yi Zhang gave me a lot
of practical advice. I would like to thank everyone that has shared the office with me: Dr.
Liang Qin, who toured me around ENS when I first arrived; Shanglun Feng, who brought
me the latest news about the university where I did my undergraduate; Alwin Philippe,
who has a keen interest in different cultures; Gauthier Mukerjee, who decorated our office.
Also, I would like to thank Dr. Jiaxin Qiao, Dr. Cathelijne ter Burg, Arnaud Bigué, Dr. An-
toine Bourget, and Dr. Anxo Farina-Biasi. I also want to thank all the Ph.D. students and
postdocs that I chatted with during the Ph.D. and postdoc meetings, in particular, Mariia
Legenkaia. I also would like to thank my friends, in particular Rui Pang, Yifan Zhao, Huan
Wu, Hanyuan Peng, and Shuyang Li, for all the support I received during my daily life. I
would like to sincerely thank my parents for their support throughout my studies.

Last but not least, I thankProf. WernerKrauth, PhilippHöllmer, Dr. YoshihikoNishikawa,
Prof. Anthony C. Maggs, and Ziyin Liu for reading my thesis. Especially, I thank Prof.
Werner Krauth for the time and energy that he spent in rereading this manuscript and on
the procedure of my defense.

Chapter 1

Introduction

Physics describes the structure of matter and the interactions between the fundamental con-
stituents of the observable universe [1919] using mathematical language [77]. Specifically, the
physical world is represented through mathematical models that are constructed consid-
ering both the resemblance of reality and the insight into nature. Very often, models are
constructed to explain a given phenomenon, but are then used to predict other phenomena
in the physical world. However, mathematical models of physical reality can be very dif-
ficult to ”solve” and even only to ”understand”. To explain what we refer to as a solution,
Onsager famously derived the expression for the partition function of the two-dimensional
Ising model, thereby granting access to quantities related to the equilibrium phase transi-
tion [9595]. The fact that such a phase transition must exist had already been proven (that
is, ”understood”) by Peierls using an indirect argument [9898]. In physics, models can be ex-
actly solved in the above sense only in exceptional circumstances [99], and it may be even
very difficult to arrive at a certain level of understanding. In this thesis, we examine the role
of computation (in particular, stochastic computation) to arrive at a level of understanding
that approaches the solution of models.

Stochastic computation dates back to 1777, when the French naturalist Buffon imagined
the needle-throwing experiment in order to estimate the value of the number π [6262]. Still,
it was the invention of the computer that marks the practical beginning of stochastic com-
putation in the Sciences,1 in shape of Monte Carlo methods that date back to the 1940s [8585].
Markov-chain Monte Carlo (MCMC) and molecular dynamics (MD), the numerical solu-
tion of Newton’s equations on the computer, originated in the 1950s. Both methods rely
on the concept of sampling. In this context, the use of the computer creates a number of
problems. First, programs are complicated. Although a program can be formally verified,
the vast majority of programs is not. Traditionally, the implementation detail of programs is
also not public. In this thesis, we have been directly in contact with both problems. On the
one hand, we have formally verified amultithreaded programwhose behavior is erratic. On
the other hand, we have led a consistent effort to publish our computer programs alongside
our publications.

Second, there is randomness in stochastic computation. On a deterministic machine,
creating true randomness is fundamentally impossible. This has posed a serious problem

1Computers may also produce symbolic output, as for example in computer algebra [126126]. However, this
mere extension of analytical derivations is not the focus of this thesis.

1

2 CHAPTER 1. INTRODUCTION

decades ago [6161], but is considered less relevant now. Still, the output of the program re-
mains fundamentally stochastic and hard to interpret. In this thesis, we have worked on the
analysis of stochastic outputs from the programs. The randomness in Markov-chain Monte
Carlo and molecular dynamics changes over time, and the correctness of the output is guar-
anteed only in the infinite-time limit. This is a fundamental and complicated problemwhich
we are also in direct contact with in this thesis.

In this thesis, we study the computation for the hard-disk model, perceived by us as an
example of sampling-based computation in general. From our experience, we break down
this computation (for the hard-disk model but we believe also in general) into multiple as-
pects with a stair-case structure as shown in Fig. 1.11.1. The first level is the sampling algo-
rithm, represented by a Markov-chain Monte Carlo or a molecular-dynamics algorithm. Al-
gorithms feature vastly differing convergence times after which their sample outputs can be
used. In this thesis, we have investigated various Markov-chain Monte Carlo algorithms
and the molecular-dynamics algorithm for sampling hard-disk configurations. We have
contributed to the algorithms by developing a multithreaded Markov-chain Monte Carlo
algorithm. Also, we have studied a fundamental aspect of the algorithms, namely their
convergence time, in specific circumstances. The second level is that of the observable. In
the hard-disk model, one of the simplest observable is the pressure. We have contributed
to a better understanding of the pressure by deriving various pressure estimators from its
definition and reviewing the historical pressure computations. The third level is the im-
plementation. The implementation is to produce computer programs for algorithms. In
this thesis, we have implemented the Markov-chain Monte Carlo algorithms in Python, Go,
C++, and CUDA. The programs run on a variety of hardware, including singlethread CPU,
multithread shared memory CPU of both x86 and ARM architecture, and GPUs that al-
low for massive parallelization. We have formally verified our parallel implementation of
a Markov-chain Monte Carlo in difficult circumstances by mapping the program onto an
absorbing Markov chain. The fourth level in Fig. 1.11.1 is the statistical analysis of the output
of the program. As an example, computing error bars for pressure estimates is difficult due
to the correlation in the output. The final level is the interpretation of results of the statis-
tical analysis, that is, to give meaning to the numbers and to draw conclusions relevant for
physics. The phase behavior of the hard-disk model is itself complicated, and its behavior
varies with respect to system sizes. Even if all of the previous steps are performed correctly,
wrong qualitative conclusions can be drawn if the result of the computations is not correctly
interpreted.

Not all computation problems require exactness as in the hard-disk model. Oftentimes,
an efficient approximation can be useful. The structural convergence problem of the protein,
a long-standing problem for thermodynamic or kinetic simulation of protein physics [1818],
has recently been tackled by AlphaFold [5454]. AlphaFold is a model based on an artificial
neural network that predicts the structure of the protein, and is an example of deep learn-
ing, a subject that we have also studied during the thesis. Artificial neural networks can
approximate any function [4747], and the use of multiple-layer neural network is generally
referred to as ”deep learning”. Unlike sampling algorithms that only consist of explicit op-
erations, the artificial neural network is a black box. Furthermore, the mechanism behind
the performance of neural network is not well understood. This motivates our analysis sim-
plified deep-learning models and optimization algorithms from a theoretical perspective in
this thesis.

1.1 MULTITHREADED EVENT-CHAIN MONTE CARLO WITH LOCAL TIMES 3

In the remainder of this introductory chapter, we summarize and motivate the five pub-
lications that have originated in this thesis. In the subsequent chapters, we synthesize the
contents in the publications according to the stair-case structure.2 In chapter 2chapter 2, we provide
an introduction to the hard-disk model from both a kinematic and a statistical-physics point
of view. Moreover, we introduce sparse packings of hard disks, which play a crucial role
in understanding and benchmarking the sampling algorithms. In chapter 3chapter 3, we survey the
hard-disk sampling algorithms, and discuss the correctness criteria of Markov-chain Monte
Carlo algorithms, that is, the balance conditions, the irreducibility and the aperiodicity. We
also describe our multithreaded sampling algorithm, published in [7171]. Furthermore, we
study the convergence time of the algorithms and their relation to sparse packings. The
relevant results are published in [4646]. In chapter 4chapter 4, we introduce the observables for the
hard-disk model. Notably, we describe the derivation of different hard-disk pressure esti-
mators, published in [7070]. In chapter 5chapter 5, we discuss the implementation of algorithms. Par-
ticularly, we consider the formal verification and software tests for the computer programs
and present the current state of the performance of programs. In chapter 6chapter 6, we list the sta-
tistical analyses involved in the pressure computation of hard-disk model. In chapter 7chapter 7, we
interpret the outputs of the pressure computation from the computation point of view. We
also discuss the historic results, and their interpretation in their epoch and today. The rele-
vant content is the subject of the manuscript [7070].

Sampling
Algorithm

Observable

Implementation

Statistical
Analysis

Interpretation

Chapter 3 Chapter 4 Chapter 5
Chapter 6
Chapter 7

Fig. 1.1 The stair-case structure of sampling-based computations for the hard-disk model,
and the correspondence between the steps and chapters.

1.1 Multithreaded event-chain Monte Carlo with local times

In this subsection, wemotivate and summarize our first publicationour first publication, which presents the first
multithreaded (parallel) program for the event-chain Monte Carlo algorithm.

The history of the hard-disk model dates back to Daniel Bernoulli [1313], and computer
calculations have been performed since the 1950s [8484]. As will be discussed throughout

2The publications are attached at the end of the thesis. Hyperlinks throughout the text connect the text to
relevant contents in the attached publications in order to avoid duplication.

4 CHAPTER 1. INTRODUCTION

Fig. 1.2 Hard-disk pressure computations. (a) The original equation of state computed
by Alder and Wainwright in 1962, figure taken from [22]. (b) The hard-disk model at high
density, demonstrating a rather ordered structure. (c) The hard-disk model at low density,
having a disordered look compared with the high-density one. (d) The comparison of Alder
and Wainwright’s original result with the modern reproduction of the same computation.
(Figure from [7070].)

this thesis, the model has the simplest possible short-range interactions: no two disks can
overlap (see chapter 2chapter 2 for a discussion). Whendisks are not overlapping, they are equivalent
to ideal gas particles. Snapshots of the hard-disk model are shown in Fig. 1.21.2(b)(c).

Although the interaction between individual hard disks is easy to understand, the hard-
disk model shows complicated collective behavior and, most interestingly, two phase transi-
tions. Even today, our understanding of these phase transitions relies heavily on simulations,
and no qualitative results corresponding to Onsager’s and Peierls’s work in the Ising model
has been produced. We believe that progress in our understanding of the hard-disk model
will continue to depend on the further development of algorithms.

The simulation of the hard disks is done by three algorithms, the event-chain Monte
Carlo algorithm [1111], massively parallel Monte Carlo algorithms [55], and modern event-
driven molecular dynamics [4949]. Both the massively parallel Monte Carlo algorithm and
event-chain Monte Carlo algorithm outperform the Metropolis algorithm, the first Markov-
chain Monte Carlo algorithm for sampling hard-disk configurations, by orders of magni-

1.2 SPARSE HARD-DISK PACKINGS AND LOCAL MARKOV CHAINS 5

tudes. The massively parallel Monte Carlo algorithm benefit from massively parallel hard-
ware, while the event-chainMonteCarlo algorithmbenefits from the efficiency of eachmove.

Similar to molecular-dynamics calculations of hard disks, the event-chain Monte Carlo
algorithm is event-driven. The parallelization of event-driven molecular dynamics is noto-
riously hard since the causality can be easily broken. An event-driven algorithm computes
the position of the disks at each collision, and the times between collisions are in general
different. As a consequence, a given disk can be ahead of the other disks in time, and its col-
lisions are computed using the out-of-date trajectories of the other disks. The event-driven
molecular-dynamics algorithm has not been successfully parallelized. In contrast, we were
able to show in [7171], that the event-chainMonte Carlo algorithm can be consistently and effi-
ciently parallelized, using an inherently different approach than previous attempts based on
domain decomposition [5656, 5757]. Here, [5757] proposed the key insight: "The primary obstacle
in parallelizing event-chain Monte Carlo consists in preserving the correct causal relations
between subsequent chains." In [7171], we resolve the causality issue by introducing a ”local
time” for each disk and a ”horizon condition” that is checked for each potential collision.
Checking the horizon condition is computational possible even for large systems, since the
number of potential collisions is less than three for each moving disk. The details of the
algorithm are discussed in chapter 3chapter 3.

Besides the algorithmic problem, the parallelization of event-chain Monte Carlo algo-
rithm is technically challenging because of the computer architecture. Our algorithm has
to be implemented on a multithreaded shared-memory machine. Multiple independent
computers work in the very same system in memory. These ”independent computers” are
referred to as threads, each of which moves a disk. Multiple moving disks may collide with
the same disks, and multiple threads may access the same place in memory. Having mul-
tiple threads writing into the same place in memory, referred to as data racing, must be
avoided. In computer programs, this problem is commonly solved by locks—a thread locks
some memory location, thus forbidding writing to this place by other threads. However,
the implementation of locks greatly hurts the performance of the program. In [7171], we have
solved the data racing problemwhilemaintaining a superior performance by using lock-free
programming featuring atomic operations [1414].

Furthermore, multithreaded computer programs are difficult to validate. Each of the
threads runs at its own pace, and the order of operations on different threads cannot be
controlled. This creates a type of ”implementation randomness” that is different from the
randomness in the stochastic computation. The correct output of the program has to be
irrelevant to the implementation randomness. We rigorously prove the correctness of our
program by formal verification using the framework of sequential consistency proposed by
Lamport [6565]. This is an example of how the issues related to the ”implementation” level in
the stair-case can be resolved (see Fig. 1.11.1).

1.2 Sparse hard-disk packings and local Markov chains

In this subsection, we motivate and summarize our second publicationour second publication, which presents the
sparse packing of hard disks and their relation to theMarkov-chainMonte Carlo algorithms.

The optimal packing of hard disks in 2D is a triangular lattice of packing fraction π
2
√
3
,

in which not a single disk can be moved. At low density, there are less-known jammed

6 CHAPTER 1. INTRODUCTION

configurations in which no infinitesimal single-disk moves are allowed. One exemplary
sparse packing of hard disks is the Böröczky packing, constructed first by Böröczky [1616]
and later also discussed by Kahle [5555]. In the Böröczky packing, each disk is blocked by at
least three of its neighbors. The Böröczky packing is only locally stable and not collectively
stable, as collective moves of the disks can break it. In [4646], we proposed it as a model for
creating a bottleneck in Markov-chain Monte Carlo algorithms.

...

t=0 t > tesc

t →∞

Fig. 1.3 Escaping the ε-relaxed Böröczky configuration with ε = 10−10. The initial con-
figuration is a Böröczky packing with disks shrunk by a factor of 1 − ε. After tesc, a disk
breaks free, but the structuremay still be intact. In the limit t→∞, the structure originated
from Böröczky packing is broken, and typical configurations are sampled. For the variants
of event-chain Monte Carlo algorithms, tesc has different scalings. The time it takes to es-
cape the ε-relaxed Böröczky configuration serves as an indicator of the performance of the
algorithm.

In [4646], we start simulation of the Metropolis algorithm, as well as the (straight) event-
chainMonte Carlo algorithm, and its reflective [1111], forward [8787], andNewtonian [6060] vari-
ants from ε-relaxed Böröczky configurations, the Böröczky packing after shrinking the disk

1.3 HARD-DISK COMPUTER SIMULATIONS—A HISTORIC PERSPECTIVE 7

radii by 1−ε. We thenmeasure the tesc, the number of steps it takes for a single disk to escape
the structure is measured. As ε approaches 0, the escape time tesc of different Markov-chain
Monte Carlo algorithms diverges with different scalings with respect to ε. In the limit of
t → ∞, the structure originated from Böröczky packing disappears completely. Fig. 1.31.3
shows how the structure disassembles. The ε-relaxed Böröczky configuration can be seen
as a bottleneck of the sampling algorithm, and it serves as a benchmark of the algorithms, a
useful tool in the first level of the stair-case (see Fig. 1.11.1).

Although no event-chain Monte Carlo algorithm can escape the (non-relaxed)Böröczky
packing, in [4646] we discuss why this is not relevant for the practical use of the algorithms.
The infinite escape time indicates infinite pressure, which is not the case of interest in physics.
Escaping the Böröczky packing is impossible in an NV T simulation, but relatively easy
in an NPT simulation [6262, 128128]. Also, the sample space of the hard-disk model is high-
dimensional, and its connectivity is likely not affected by Böröczky packings.

1.3 Hard-disk computer simulations—a historic perspective

In this subsection, we motivate and summarize our third publicationour third publication, which discusses the
computation of pressure in the hard-disk model.

Pressure is a priori a simple (that is, unambiguous) observable that has been computed
since the 1950s. In fact, Metropolis et al. calculated the pressure using a MCMC algorithm
and a polynomial extrapolation [8484]. Several years later, Alder and Wainwright computed
pressure in event-driven molecular dynamics simulations using the collision rate [22]. After
these first results, pressure was computed for larger and larger systems [1010, 2929, 5050, 5151, 7878,
102102, 135135]. Astonishingly, despite new results appearing, the values of the pressure (that
is, of the equation of state) long remained contradictory. The discussion of the physical
properties of the hard-disk model concentrated on the behavior of correlation functions,
but in the absence of converged pressures, they were themselves biased.

In this thesis, we try to solve the pressure-computation problem from multiple perspec-
tives. We have derived pressure estimators from the two definitions of pressure. These exact
estimators coincide even for finite systems. They are then used to compute the pressure to
high precision. We also trial the statistical analysis of computing the error bar of pressure.
By using state-of-the-art sampling algorithms, exact estimator formulas, and a reliable sta-
tistical analysis, we compute the pressure to more than five digits, which can be used as a
reference for potential future works.

Our high-precision results are published together with the digitized historic results in
an open-source program, and can be compared visually by plotting a synopsis figure. Our
database contains the pressure values and their error bars taken from the literature [22, 1010, 2929,
5151, 5252, 7878, 8484, 102102, 135135]. Some of the historic computations are reproduced, and the modern
reproduction is compared with the original results. The results are presented in [7070]. This
paper addresses two aspects of the stair-case structure in Fig. 1.11.1, namely the observable and
the statistical analysis. We succeeded in obtaining, after decades, reliable five-digit precision
estimates of the pressure. We believe our estimates can last decades, just like the works by
Onsager and Peierls for the Ising model, although, of course, this cannot be mathematically
proven.

8 CHAPTER 1. INTRODUCTION

1.4 Simplified models and optimization algorithms in deep learn-
ing

In this subsection, we motivate and summarize our works related to deep learning, con-
tained in the fourth publicationfourth publication and the fifth publicationfifth publication. In particular, in the fourth publicationfourth publication,
we study the stochastic gradient descent algorithm in simple and fine-tuned models, and in
the fifth publicationfifth publication we find the exact expression for the minima of the loss function of a
general deep linear network. Either the fourth publicationfourth publication or the fifth publicationfifth publication has its
own context and has appendices containing all the detailed discussion. Unlike the publi-
cations studying the hard-disk computation, their contents are not discussed separately in
this thesis.

Deep learning allows for computational models that are composed of multiple process-
ing layers to learn representations of data with multiple levels of abstraction [6868], which
finds its use in various fields, as for example in natural language processing [1515, 2222, 125125],
computer vision [3232, 6464], and optimal control [8989, 9090]. Deep learning is also implemented
for the problems used to be solved by simulations (Alphafold [5454] as discussed previously).
The generative models are designed with sampling problems in mind [113113], serving the
same purpose as theMarkov-chainMonte Carlo algorithms. However, not all computational
tasks require exactness. Also, the importance sampling technique, widely used in MCMC,
benefits from deep learning. A deep learning model can approximate the probability distri-
bution of the proposed move and boost the performance of the MCMC algorithm [3838, 9292].
There are a large number of models in deep learning [6868, 110110]. In this thesis, we analyze
deep learning in restrictive settings, limiting ourselves to the prediction problem using a
fully connected neural network. Nevertheless, we believe that the conclusion of our studies
apply to deep learning in general.

The fully connected neural network of Fig. 1.41.4 has a simple structure compared to other
models. The model can be divided into multiple layers, whose output is the input of the
next layer. Nodes in any layer connect to all nodes in the previous and next layer. Each
connection is associatedwith a parameter. The first layer is the input, represented by a (high-
dimensional) vector inwhich each component is viewed as a node. The value at each node of
the input layer is determined by first summing over all of the values at the connected nodes
in the previous layer, each multiplied by the parameter associated with the connection, then
inputting the result of the sum into an (usually non-linear) activation function. The final
layer is the output layer, and the in-between layers are referred to as hidden layers. The
number of layer is referred to as depth, and the number of nodes in a layer is referred to as
the width of that layer.

We study deep learning in the settings of a prediction problem, one of the simplest prob-
lems that can be solved by deep learning. The prediction problem is presented as following:
given a collection of pairs consisting of a vector input and a scalar output as training data,
predict the output of an input absent in the training data. This problem is solved by tuning
the parameters in the neural network such that the relation between the input and output in
the training data is approximated by the neural network. The neural network is a universal
approximator [2323, 4747]. A deep neural network approximately describes any relation. The
parameters are tuned byminimizing the difference between the predicted output computed
from the input vector and the output in the training data, expressed by the mean square
error. Finding the optimal parameter, referred to as training in the context of machine learn-

1.4 SIMPLIFIED MODELS AND OPTIMIZATION ALGORITHMS IN DEEP LEARNING 9

Fig. 1.4 A visualization of the structure of a fully connected deep neural network. The
each arrow corresponds to a weight. The arrow comes out of a node carries the value of
the node multiplied by the weight. Multiple arrow going into a node indicates the value
of the node depends on the sum of all of the values carried by the arrows. The value of
the node is given by the activation function using the sum as input. We study the min-
ima of the loss function of this model when the activation function is linear. (Figure from
https://www.ibm.com/cloud/learn/neural-networkshttps://www.ibm.com/cloud/learn/neural-networks.)

ing, is thus an optimization problem of minimizing the mean square error, referred to as the
training loss in the same context. Usually the sum of squared parameters are added into the
loss function to prevent the parameters from growing indefinitely, and this term is referred
to as regularization. The performance of a trained network is evaluated by how accurate
the prediction is, which is expressed as the least square error evaluated in the test data, a
data set that shares no data point with the training data. The neural network may learn the
undesired relation unique to the training data, resulting in small training loss but large test
loss. Such neural networks, or such parameters in the neural network, are referred to as
being unable to generalize.

The loss function, due to its complicated dependence on the parameters, has a large num-
ber ofmaxima andminima [5858, 116116, 123123]. The loss function is thus referred to as a landscape.
An example of a loss landscape is shown in Fig. 1.51.5. The optimal choice of the parameters
must lie in one of theminima. However, it is believed that the weights in different minima of
similar loss value do not describe the relation between input and output equallywell. Practi-
cal observation shows that when the training loss already reaches its minimum, continuing
to train improves generalization [9393]. Thus, finding the optimal parameters requires asking
the question of which minimum generalizes the best.

Identifying the best minimum is not the end of the story. In practice, reaching the best

https://www.ibm.com/cloud/learn/neural-networks

10 CHAPTER 1. INTRODUCTION

Lo
ss

 f
u
n
ct

io
n

Parameter

Fig. 1.5 A visualization of the loss function (landscape) of neural networks. The loss
function has a large number of local maxima, local minima, and saddle points. The goal of
training in deep learning is finding a minimum that generalizes well. This is a complicated
optimization problem. Some of the local minima in the landscape generalize badly and are
not desired. Also, the optimization algorithm may converge to a local maximum in fine
tuned cases. (Figure from [7272].)

minimum is not an easy task. In deep learning, the optimization is based on gradient cal-
culation. In the gradient descent algorithm (GD), the parameters are updated by moving
along the gradient in each iteration. The size of the displacement is controlled by a pa-
rameter called the learning rate. In the more popular stochastic gradient descent algorithm
(SGD) [108108, 109109], the gradient is calculated using a fraction sampled from all the training
data, and can be perceived as a noisy gradient. The convergence of SGD requires the learning
rate to decrease gradually [111111]. To further boost the performance, one can take advantage
of the stochastic gradient calculated in previous iterations and use an adaptive learning rate,
resulting in the Adam [5959] and AMSGrad [105105] method. Regardless of which minimum is
the best, the optimization algorithmmust be able to escape local maxima and saddle points.
Escaping a saddle point and a local maximum is guaranteed, only with assumptions for the
loss function and noise in SGD [8383, 9999, 118118].

The neural network is usually considered a black box. The dimensionality of the input is
generally huge, and the model is too complicated, rendering it impossible to interpret how
the output depends on the input. The loss function lives in a high-dimensional space, and
the gradient is a high-dimensional vector. The training data contains noise, leading to ran-
dom training loss. Thus, understanding a realistic model is almost impossible. In response
to this problem, we propose artificial data sets and simplified models whose behavior re-
mains controlled. We study the loss landscape and behavior of optimization algorithms.

Firstly, we try to understand the loss landscape of a deep neural network. The simplified
model we have chosen is a deep linear network [2121] with dropout [115115] and regularization.
The deep linear network has the same structure as a deep neural network, but all activa-
tion functions are linear. We have found the closed-form expression for the minima in the
training loss of the deep linear network. We first find the minima of the loss function for a
two-layer linear network. The expression of theminimum is found by identifying the redun-

1.4 SIMPLIFIED MODELS AND OPTIMIZATION ALGORITHMS IN DEEP LEARNING 11

dant degree of freedom in the parameters in a loss function without regularization, which
is also known as gauge symmetry in the context of physics. The regularization term then
enforces gauge fixing and reduces the effective dimension of the parameters to 1. This so-
lution implies that when increasing the strength of the regularization, the global minimum
approaches the origin gradually, and stays there if the regularization strength is larger than
a specific value calculated from the training data. This process is similar to a continuous
phase transition [6666]. Then, the expression of the minima is generalized to an arbitrarily
deep linear network by induction. From the solution we draw the conclusion that the origin
can be a local minimum, and initializing the weights near the origin may not be a good idea
in deep learning.

We also study the optimization algorithms, notably the SGD, also referred to as the
Robbins-Monroe algorithm [108108, 109109]. Understanding SGD is believed to be a crucial step
in deep learning [44, 1717, 2626, 3434, 3737, 3939, 7373, 9191, 123123, 124124, 132132, 133133, 134134, 136136]. It is generally
difficult not only because the landscape is complicated, but also that the noise is state-
dependent [134134]. A large number of prior works studied how SGD escapes saddle point,
but they take place in a restricted setting [3636, 8383, 9999, 118118]. To better understand SGD, we
test these results in models containing one or two parameters and having an erratic loss
function. In particular, we explicitly examine the behavior of SGD in a one-dimensional
problem with a non-convex loss function containing two local minima and a local maxi-
mum. We model the fluctuation in SGD as a multiplicative noise [4444]. We allow the SGD
noise to vanish at the local maximum, which is not allowed in relevant works to our knowl-
edge [3636, 8383, 9999, 118118]. Also, we assume that the learning rate of SGD is constant. Our simple
setting allows us to calculate analytical how the SGD behaves. We also study the same prob-
lem in the continuous-time limit by solving a Fokker-Planck equation [103103] to cross-check
with our discrete-time results.

In our setting, we have observed that the SGD could converge to a local maximumwhen
two of the crucial assumptions are broken: we assume that the noise is allowed to vanish,
and the learning rate is kept constant. Our observation confirms the established results [3636,
8383, 9999, 118118], emphasizing the condition needed for SGD to escape a saddle point or a local
maximum. TheAdam andAMDGrad are examined numerically, and they can also converge
to a local maximum. We also test SGD against the opinion that SGD has good generalization
because it prefers a flat minimum, and that the flat minima generalizes better than sharp
ones [4242, 7474, 8181, 9191, 112112, 124124, 131131]. We show both analytically and numerically that the SGD,
with specific noise, can converge to a sharp minimum. Throughout our investigation of
SGD, we notice that the noise in SGD is no less important than the loss function.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Hard disks in statistical physics

The hard-disk model is one of the simplest models in physics. It has a simple interaction
and is specified, in the thermodynamic limit, by a single parameter, namely the density.
Although the interaction of hard disks is repulsive, an effective attractive entropy-driven
short-range force emerges from depletion [6262].

There are only a few analytical results for the hard-disk model. The model is rigorously
fluid at low density, and the virial expansion, which is proven to converge, is good enough
to describe the model [4141, 6767]. The crystalline order is formed at the close packing [3333].
Such order does not exist at any density lower than the fully-packed density as it is bro-
ken by large-scale fluctuations [106106, 107107]. At intermediate density, especially at the transi-
tion density, nothing holds rigorously even though insightful phase-transition scenarios are
proposed [4040]. Computation thus serves as the principal tool for investigating the hard-disk
model.

In this chapter, we introduce to the hard-disk model. In section 2.12.1, we define the model
and give an overview of its properties. In section 2.22.2, we describe sparse packings of hard
disks, that is, non-fully-packed hard-disk configurations forbidding infinitesimal moves of
independent disks. This chapter follows closely the introductory section IIintroductory section II in the attached
publication 3 [7070], and the introductory section 2introductory section 2 in the attached publication 2 [4646]. These
publications then go on to discuss, on the one hand, pressure computation in detail, and on
the other hand, benchmark Markov-chain Monte Carlo algorithms using the configurations
derived from the sparse packing, which are also discussed in the chapter 4chapter 4 and chapter 3chapter 3 in
this thesis.

2.1 Hard-disk model

In this section, we introduce the interaction and statistical ensembles of the hard-diskmodel.
Then, we discuss its physical properties in statistical physics.

2.1.1 Definition of hard-disk model

The hard-disk model consists ofN classical impenetrable two-dimensional disks of radius σ
in a box of sidesLx,Ly andvolumeofV = LxLy, eitherwith hardwalls or periodic boundary
conditions. The disk i is described by the coordinates of its center xi = (xi, yi), where i =

13

14 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

1, 2, 3, ..., N is the index of the disk. The disks are hard, in the sense that their interaction is
characterized by a hard-core potential. Each disk carries a velocity vi if necessary.

2.1.1.1 Hard-disk dynamics

In the hard-disk model, each disk is described by two parameters: its massm and radius σ.
The mass of each disk is located at the very center of the disk such that the momentum of a
disk is carried by its center. The interaction between the disks is described by the hard-core
potential, taking the form

V (r) =

{
∞, r ≤ 2σ;

0, r > 2σ,
(2.1)

where r denotes the distance between disk centers. The disks have no rotational degree of
freedom.

When there are no collisions between the disks, they all move in straight lines according
to

xi = xi,c + vi(t− tC), (2.2)

where t is the time, tC is the time of the last collision, and xi,C is the position of the disk
i at time t = tC . Collisions take place when the two disks are in contact with each other,
namely |xi − xj | = 2σ. The velocities of disks involved in collisions are updated according
toNewtonian dynamics.1 Let (i, j) be the pair of disks at collision. It is convenient to express
their velocities in the center-of-mass frame before collision as [6262]{

v−i = v‖ + v⊥;

v−j = −v‖ − v⊥.
(2.3)

Define∆xmin
ij = xi−xj to be the vector connecting two disks at contact. Then, v‖ is the com-

ponent of the velocity of disk i aligning with ∆xmin
ij , while v⊥ is the other component per-

pendicular to ∆xmin
ij . The transferred momentum between disk i and j is m|∆v⊥pair|, where

|∆v⊥pair| = 2|v⊥|. The velocities after the collision in the center-of-mass frame are [6262]{
v+
i = v‖ − v⊥;

v+
j = −v‖ + v⊥.

(2.4)

A pair collision is illustrated in Fig. 2.12.1(a).
The disks can collide with the walls in a box with hard walls. Analogous to the pair

collision, let n be the direction perpendicular to the wall involved in the collision. For a disk-
wall collision involving disk i, the sign of the component of vi in the direction of collision is
inverted at the collision, namely v−i · n = −v+

i · n. A wall collision is shown in Fig. 2.12.1(b).
The rules of the velocity update presented here also appear in molecular dynamics and
Newtonian event-chain Monte Carlo algorithm, as further discussed in chapter 3chapter 3.

1We assume that only two disks are involved in the collision, as the probability of observing multiple-disk
collision is zero.

2.1 HARD-DISK MODEL 15

a) b)

Fig. 2.1 Illustrations of hard-disk collisions. The velocities of the disks are updated ac-
cording to Newton’s laws. The configurations in this figure are taken from an event-driven
molecular dynamics run. In event-driven molecular dynamics, only the configurations at
collisions are computed. (a) A collision between a pair of disks. (b) A collision between a
disk and the wall.

16 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

2.1.1.2 Statistical ensembles for the hard-disk model

Like the Ising model [4848], the hard-disk model can be described by its configurations and
their probability distribution. Each configuration is a 2N -dimensional vector of positions of
disks

x = (x1,x2, ...,xN). (2.5)

In the hard-disk model, the total potential energy U , being the sum of the potential (2.12.1)
between all pairs of hard disks, takes the form of

U(x) =

{
∞, if there are overlaps;
0, if there is no overlap,

(2.6)

where an overlap between disk i and j is present if |xi−xj | < 2σ. We adopt the convention of
setting the Boltzmann constant to 1. The statistical weight of the configurations is specified
by the Boltzmann weight µ(x) = exp (−βU(x)), where β = 1/T > 0 is the inverse temper-
ature. The weight of a configuration containing overlap is zero, and all configurations free
of overlap have the same probability weight, that is, configurations with Θ(x) = 1, where
Θ(x) is the member function of the set of legal configurations:

Θ(x) =

{
1, ∀(i, j), |xi − xj | > 2σ

0, otherwise.
(2.7)

The sample space, i.e. the space of configurations such that Θ(x) = 1, depends on the
boundary conditions. For a non-periodic box with hard walls, disks cannot overlap with the
walls. In a periodic system, the box is equivalent to a torus. The sample space for a non-
periodic system is Ωnon-periodic = supp[Θ] ∩ [σ, Lx − σ]N × [σ, Ly − σ]N , and, for a system
implementing the periodic boundary condition, it isΩperiodic = supp[Θ]∩ [0, Lx]N× [0, Ly]N .
In a non-periodic box with hard walls, the partition function is defined such that

Znon-periodic(V, σ) =

∫
Ωbox

dµ(x). (2.8)

For periodic boundary conditions, the partition function is defined as

Zperiodic(V, σ) =

∫
Ωperiodic

dµ(x). (2.9)

In principle, the partition function depends on the number of disks N , the disk radius σ,
and the box geometry (Lx, Ly). As will be shown in section 2.1.2.32.1.2.3, the aspect ratio α =
(Lx :Ly) is not a relevant parameter in the thermodynamic limit N →∞. Furthermore, the
system can be rescaled, and σ can be set to 1

2 . In this case, the parameters of the model are
further reduced to N and V . The hard-disk model is uniquely determined when N and V
are specified. As will be discussed in section 2.1.2.12.1.2.1, the temperature T is not relevant for
the hard-disk model. However, conventionally, this ensemble is still referred to as theNV T
ensemble.

The free energy F of the hard-disk model is

F = −T log(Z). (2.10)

2.1 HARD-DISK MODEL 17

The pressure, namely the response to changing volume V , is calculated as

βP = −∂F
∂V

. (2.11)

The pressure will be further discussed in section 4.34.3, especially the different ways to change
the volume in a finite system. Alternatively, one can treat the pressure P as the control
parameter and the volume V as the response of changing P . Such an ensemble is referred
to as the NPT ensemble. Although specific algorithms exist for hard-disk simulations in
the NPT ensemble [6262, 127127, 129129], simulations in the NPT ensemble are less efficient than
inNV T ensemble. TheNPT ensemble resolves problems posed by the sparse packings, as
they corresponds to effectively infinite-pressure configurations (discussed in section 2.22.2).
A detailed discussion about the Böröczky packing and the NPT ensemble can be found in
section 4.2.2section 4.2.2 in the attached publication 2 [4646].

For large system sizes, the physical properties of the hard-diskmodel (as for any statistical-
physics model with short-range interactions) are independent of N , and the volume V is
the only relevant parameter. By rescaling, systems of σ = 1

2 and different volumes can be
mapped to systems of the same volume and different σ, that is, systems of different density.
The volume is equivalent to the density of the system. The volume (density) has four equiv-
alent expressions. The first is the ratio of the volume and fully-packed (minimal) volume
V0 = 2

√
3N . The second is the covering density η, that is, the area (volume) occupied by the

disks compared to the area (volume) of the box. Third is the reduced density ρ, the number
N of disks of radius 1

2 divided by the volume and, finally, the inverse normalized density
ν/(2σ)2 with ν = (2σ)2/ρ. Useful relations between these quantities are as follows:

V

V0
=

π

2
√
3

1

η
=

2√
3

ν

(2σ)2
≥ 1

η =
π

2
√
3

V0
V

=
N

V
πσ2 ≤ 0.907

ν

(2σ)2
=

√
3

2

V

V0
=
π

4

1

η
=

1

ρ
≥ 0.866

ρ = η
4

π
=
V0
V0

2√
3
=

(2σ)2

ν
≤ 1.155.

(2.12)

The historic pressure computations use a variety of units for the volume (density). We
provide a program that allows comparing directly the data in various units, presented in
appendix B.1appendix B.1 in the attached publication 3 [7070].

In circumstances when velocities of hard disks have to be considered, for example in
molecular dynamics, the hard-disk model is represented by the positions of hard disks to-
gether with their velocities, expressed by a tuple (x,v), where

v = (v1, ...,vN). (2.13)

is a 2N dimensional vector. As the velocity has its own space and probability distribu-
tion, the statistical ensemble of the hard-disk model contains a velocity space, and param-
eters N and V no longer fully determine the ensemble. In the NV T ensemble, the velocity
space is R2N , and the probability distribution for the velocities is the Maxwell distribution

18 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

pMarwell(v) ∝ exp
(
−1

2βm|v|2
)
. In the NV E ensemble, in which the total energy E of the

system is specified instead of the temperature T , the velocity is constrained on an energy
shell defined by relation

E =
1

2
m|v|2, (2.14)

and the probability density is the same for all configurations. There are ensembles that have
even more constraints. For example, in the NV EMR ensemble of systems with periodic
boundary conditions, the totalmomentumM and the center-of-mass positionR is specified.
Thus, the velocity space in the NV EMR ensemble is defined by the following conditions:∑

i

vix = Mx/m, (2.15)∑
i

viy = My/m, (2.16)

E =
1

2
m|v|2. (2.17)

Event-drivenmolecular dynamics with periodic boundary condition andwithout a thermo-
stat takes place in this ensemble [130130]. Due to the additional conservation, the distribution
for the velocity of a single disk differs in different ensembles, as will be discussed in sec-
tion 2.1.2.12.1.2.1. Also, as will be discussed in chapter 4chapter 4, the choice of the ensemble modifies the
pressure and its estimators, but only in finite systems with periodic boundary conditions.
As this thesis mainly concerns the Markov-chain Monte Carlo algorithm, the velocity in the
hard-disk model is ignored in this thesis unless stated explicitly.

2.1.2 Properties of hard-disk model

The hard-disk model has many distinct properties. For example, the temperature can be
factored out by the rescaling of time in the hard-diskmodel; the analytical distribution of the
velocity is known; the phase-transition is driven by the depletion interaction; the aspect ratio
plays an important role in finite systems, etc. This subsection, following closely section IIsection II in
the attached publication 3 [7070], introduces to these properties.

2.1.2.1 Basic properties

Rescaling all disk velocities by a factor α, the entire trajectory of hard-disk dynamics trans-
forms as

{x1(t), . . . ,xN (t)} vi→αvi∀i−−−−−−→ {x1(
t
α), . . . ,xN (

t
α)}. (2.18)

The transformed trajectory is still the old one, but with a rescaled time. Since we are in-
terested in the equilibrium properties of the hard-disk model, the time is irrelevant, which
in turn indicates that the velocity is not relevant. Consequently, the hard-disk model is not
sensitive to temperature. This property of hard-sphere models was already remarked by
Daniel Bernoulli [1313].

A fast disk collidesmore frequentlywithwalls than a slow one. The probability distribu-
tion of the velocity perpendicular to a wall v⊥wall at wall collisions is biased by a factor |v⊥wall|
with respect to the Maxwell distribution (for N →∞):

p(|v⊥wall|) ∝ |v⊥wall| exp
(
−βm(v⊥wall)

2/2
)
, (2.19)

2.1 HARD-DISK MODEL 19

which has been described through the ”Maxwell boundary condition” (see [6262, Sect. 2.3.1]).
For finite N , the distribution of the velocity perpendicular to a wall is derived from the
surface element on the hypersphere of radius R =

√
v21 + · · ·+ v2n (with R2 = 2N/(mβ)) in

the NV E ensemble. Following the detailed derivation in II.A.1II.A.1 in the attached publication
3 [7070], one obtains 〈

1

|v⊥wall|

〉
=

√
π

R

Γ (N + 1
2)

Γ (N)

N→∞−→
√
πmβ

2
, (2.20a)

〈
|v⊥wall|

〉
=
R
√
π

2N

Γ (N + 1
2)

Γ (N)

N→∞−→
√

π

2mβ
, (2.20b)

where in the limit of N → ∞ the ratio of the Γ functions approaches
√
N) in the NV T

ensemble.
The relative perpendicular velocities ∆v⊥pair is the component of the relative velocity

vi−vj perpendicular to the interface separating the disks i and j at their collision. A similar
expression to (2.202.20) can also be derived for the probability distribution of relative perpen-
dicular velocity |∆v⊥pair|. The positions are not correlated to the velocities, so the distribution
of the velocities for the disks at a pair collision is exactly the same as for all the disks. The
interface separating the disks at a collision can be viewed as a fictive wall, and the pair col-
lision of the disks can be viewed as a collision with it. The isotropic velocity distribution
guarantees that collisions with a fictive wall facing any direction is the same as the wall col-
lision in the x or y direction, allowing one to rotate the coordinate system such that the x-axis
after rotation is aligned with the line connecting the centers of the disks. We introduce the
transformation

v = (..., vi,x, ..., vj,x, ...)→ v′ = (..., (vi,x + vj,x)/
√
2, ..., (vi,x − vj,x)/

√
2, ...). (2.21)

This transformation amounts to reparameterizing the velocity of two colliding disks using
their relative velocity and their center-of-mass velocity. The probability weight of veloci-
ties is a function of E = 1

2m
∑

i |vi|2, and the transformation (2.212.21) leaves E unchanged.
Thus, pMaxwell(v) = pMaxwell(v

′), as the Jacobian of the transformation is 1. Thus, 〈∆v⊥pair〉 =√
2
〈
|v⊥wall|

〉
, since calculating 〈∆v⊥pair〉/

√
2 =

〈
(vi,x − vj,x)/

√
2
〉
follows exactly the same pro-

cedure as deriving 〈|v⊥wall|〉. The same idea also applies for 〈1/∆v⊥pair〉, and the mean values
related to the relative perpendicular velocity is found by inserting a factor of

√
2 into (2.202.20):

〈
1

|∆v⊥pair|

〉
=

√
2π

R

Γ (N + 1
2)

Γ (N)

N→∞−→
√
πmβ, (2.22a)

〈
|∆v⊥pair|

〉
=
R
√
π√

2N

Γ (N + 1
2)

Γ (N)

N→∞−→
√

π

mβ
. (2.22b)

Equation (2.222.22) is used in chapter 4chapter 4 to derive the pressure estimators.
In the NV E ensemble, the distribution of v⊥wall has a probability density function pv⊥wall

such that
pv⊥wall

(v⊥wall) ∝ v⊥wall(1− v⊥wall
2
)
2N−3

2 , (2.23)

20 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

And consequently, the distribution function of 1/v⊥wall is given by

p1/v⊥wall
(x) ∝ 1

x3

(
1− 1

x2

) 2N−3
2

, (2.24)

where x = 1/v⊥wall possesses a diverging variance. As will be discussed in chapter 4chapter 4, some
pressure estimators of molecular dynamics suffer from a diverging variance. In practice,
they are substituted by equivalent estimators with finite variance after integrating over ve-
locities.

2.1.2.2 Hard-disk thermodynamics and phase transition

In the hard-diskmodel, the Boltzmannweights are the same for all configurations, and disks
not in contact do not directly sense each other. In consequence, the two possible fluid phases
(namely the gas and the liquid) are confounded. A ”depletion” interaction [66, 6262] between
disks nevertheless arises from the presence of other disks, effectively driving phase tran-
sitions. The three phases of the hard-disk model are solid (with long-range orientational
correlations and an algebraic decay of positional correlations), hexatic (with algebraic de-
cay of orientational correlation and exponential decay of positional correlation), and fluid
(with all correlation functions exponentially decaying). The hexatic and solid phases have
only been identified through numerical simulations. The system must be large enough to
distinguish the hexatic and the solid phase.

In statistical mechanics, a homogeneous system is described by an equation of state—
a quantity as a function of another. For the hard-disk model, they are conventionally the
volume and the pressure. In theNV T ensemble, for a system possessing a first-order phase
transition, the system may not be homogeneous for some volume. Two phases may coexist,
separated by an interface with its own interface free energy.

The phase transition between the fluid and the hexatic phase in the hard-disk model is
a first-order phase transition. In a periodic two-dimensional box for finite N , on increas-
ing the density, a first-order phase transition first creates a bubble of the denser phase in
the less dense phase (for hard disks: a hexatic bubble inside the fluid). An extra ”Laplace”
pressure is required to stabilize this bubble, rendering the overall pressure non-monotonous
with V [8080]. At larger density, the bubble of the minority phase grows to the size that is
comparable to the rest of the system. The two phases arrange themselves such that there is
a stripe winding around the periodic box. In this regime, the length of the two interfaces
and thus the interface free energy do not change with V , so that the pressure remains ap-
proximately constant. Finally, for even larger density, a bubble of the fluid phase is formed
in the surrounding hexatic phase (see Fig. 2.22.2). The phase coexistence through the first-
order transition is specific to the NV T ensemble as certain specific volumes V/V0 do not
correspond to densities η = (N/V)πσ2 of a homogenous stable phase for N → ∞. Phase
coexistence is absent in theNPT ensemble, and V/V0 is discontinuous at the transition. The
NPT ensemble thus has a simpler physical picture. However, when sampling in the NPT
ensemble, exploring possible volumes is slow, rendering the NPT simulation less efficient
than the NV T ones.

The phase coexistence and the non-monotonous equation of state are genuine equilib-
rium features at finite N . Moreover, the spatially inhomogeneous phase-separated equi-

2.1 HARD-DISK MODEL 21

librium state is reached from homogeneous initial configurations through a slow coarsen-
ing process, whose dynamics depends on the sampling algorithm. As will be discussed in
chapter 3chapter 3, this process can benchmark the sampling algorithms.

A (Phase I)

B (Phase II)

2
3

4

5

Finite N

1

1

2

3

4

5

Fig. 2.2 First-order phase transition in theNV T ensemble. (a) Free energy with increas-
ing second derivative and a monotonously decreasing pressure. (b) Free energy with—
for the infinite system—metastable branches starting at volumes V1 and V2, and a non-
monotonous equilibrium pressure P for finite N . (c) Sequence of five regimes in a finite
two-dimensional periodic box, with pure, ”bubble” and ”stripe” phases. (Figure from [7070],
see also [1212].)

2.1.2.3 Aspect ratio and N

For the hard diskmodel, it is easy to see that the aspect ratio plays an essential role in physics
for a small N . As shown in Fig. 2.32.3, for the same V and N = 72, the disks align as a perfect
crystal in the box with aspect ratio α = (9 : 8

√
3/2), but not in the box with aspect ratio

α=(1 :
√
3/2). As a consequence, at density extremely close to being fully packed, the box

with aspect ratio α=(9:8
√
3/2) can still host valid configurations, while in a boxwith aspect

ratio α = (1 :
√
3/2) no configuration is allowed. This is an example of the boundary free

energy in a finite system, whose share in total free energy vanishes in the thermodynamic
limit.

In a perfect crystal, the hard disks are on a triangular lattice. Conventionally, the straight
lines made up of Nx disks are aligned along the x direction, each of which is referred to as
a row. The number of rows is then referred to as Ny, and N = NxNy. For a box hosting a
fully packed configuration, the aspect ratio of the box is calculated by

α = (Nx : Ny

√
3/2). (2.25)

In the fully packed configuration, the parallelogram consisting of two rows appears repeat-
edly. Thus, Ny must be an even number in order to comply with the periodic boundary

22 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

Lx

Ly

0 Lx

Ly

0
0
0

Fig. 2.3 Packings for N = 72 disks for different aspect ratios α. (a) Periodic box with
α = (1 :

√
3/2), with conjectured optimal packing. (b)Periodic box with α = (9 : 8

√
3/2)

at the close-packing density η = π/(2
√
3). (Figure from [7070].)

conditions.
As will be discussed in section 7.1.17.1.1, a square box is preferred over the rectangular one.

However, the square box does not host closed-packed configurations for small N . The idea
value of N is obtained by finding a decomposition of N = NxNy such that α = (Nx :
Ny

√
3/2) is close to (1 : 1). This is equivalent of finding a rational approximation of

√
3/2 ≈

0.866. The candidates are 6/7 = 0.8571, 7/8 = 0.875, 13/15 = 0.8667, 84/97 = 0.8660,
Since each disk in a row takes up 2σ and each row takes up

√
3σ, in a square box, the num-

ber of rows has to be the larger than the number of disks per row, and it has to be even.
The possible choices of (Nx, Ny) are limited to (12, 14), (14, 16), (26, 30), (168, 194), If the
upper limit of N is 500, the best choice is then Nx = 14, Ny = 16. Indeed, Metropolis et al.
chose N = 14× 16 = 224 for computations in a square box.

2.2 Sparse packings

In this section, we introduce to sparse hard-disk packings discovered byBöröczky in 1964 [1616].
They forbid any infinitesimal move of any individual disk and are conceptually and practi-
cally interesting in the context of the ergodicity of the sampling algorithms. In this section,
we provide a general introduction to these packings and describe their construction, the
consequences of their existence on the structure of sample space, and the collective moves
that can break these configurations. The content in this section closely follows section 2section 2 in
the attached publication 2 [4646]. Böröczky packings are closely related to fundamental as-
pects of Markov-chain Monte Carlo algorithms. The Böröczky packing, and the ε-relaxed
Böröczky configuration that are derived from Böröczky packings, can be viewed as bottle-
necks of the sampling algorithms. In particular, the ε-relaxed Böröczky configuration serves
as a benchmark of the sampling algorithm and will be discussed in chapter 3chapter 3. The behav-
ior of the Markov-chain Monte Carlo algorithms in the ε-relaxed Böröczky configuration
provides insight into how the algorithms perform in the case of difficult situations in more
complicated models.

2.2 SPARSE PACKINGS 23

2.2.1 Definition

In the present section, we discuss Böröczky packings ofN disks of radius σ = 1 in a periodic
square box of sides L. The simulation box ranges from −L/2 to L/2 in both the x and the
y direction. A Böröczky packing is locally stable, and each of its N disks is blocked, at a
distance 2σ, by at least three other disks (taking into account periodic boundary conditions),
with the contacts not all in the same half-plane. The opening angle of a disk i, the largest
angle formed by the contacts to its neighbors, is then always smaller than π. In this thesis,
we are interested in ECMC algorithms which move a single disk at a time in a continuous
manner. Clearly, a locally stable packing cannot be escaped from through the infinitesimal
single-disk moves of ECMC.

In a nutshell, Böröczky packings consist in cores and branches (as visible in Fig. 2.42.4).
Böröczky packings can exist for different cores, and they depend on a bounding curve (more
precisely: a convex polygonal chain) which encloses the branches, and which can be chosen
more or less freely.

2.2.1.1 Construction of Böröczky packings

In the central simulation box, a finite-N Böröczky packing is built on a central core placed
around (0,0) (see the section 2.1.1section 2.1.1 in the attached publication 2 [4646] for a discussion of
cores). Such cores were for example proposed in the original work by Böröczky [1616] and by
Kahle [5555]. The positions of the disks in the core are considered constants and specified di-
rectly. This core connects to four periodic copies of the core centered at (L,0), (0, L), (−L,0),
and (0,−L) by branches that have k separate layers (see section 2.1.2section 2.1.2 in the attached publica-
tion 2 [4646] for a detailed discussion of branches). The Böröczky packing is then constructed
by completing the branches layer by layer. A Böröczky packing shares the symmetries of
the central simulation box. Thus, only constructing the upper half of the right branches (the
framed region in Fig. 2.42.4) is required. The other halves of the branches are constructed us-
ing symmetry. Depending on the y coordinate, the disks in the right upper half branch are
labeled as A, B, and C disks. The positions of A disks are specified by a convex polygonal
chain A, possibly controlled by a parameter and found by trial and error. The position of
B and C disks are determined iteratively. The position of each B disk is determined so that
it is in contact with the A disk in its layer and the C disk in the previous layer, while the
position of each C disk is determined so that it lies on the axis of symmetry and in contact
with the B disk in the previous layer. The bounding curve is determined so that the branch
approaches a crystal in the case of an infinite system and is able to join in the branch from the
neighboring image system in other cases. For an infinite system, cores with different shapes,
as for example that of a triangle, yield Böröczky packings in other geometries (see [1616, 5555]
and [9696, Section 9.3]).

2.2.2 Properties of Böröczky packings

The local stability of Böröczky packings only relies on the fact that allA disks lie on a largely
arbitrary convex polygonal chain A [1616]. The choice of A influences the qualitative prop-
erties of the packing. Although Böröczky packings are a big threat to ECMC algorithms,
its dimensionality is is lower than that of sample space, and it is conjectured that they do
not separate sample space into individual parts. Besides, if multiple disks move collectively,

24 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

(b)

−L
2 L

2

L

2

(a)

−L
2
−L

2

L

2

(c)

A
g

g1

g2

g3

g<2
A1 Ak

(d)

Core disk

A disk

B disk

C disk

Fig. 2.4 Hard-disk Böröczky packings, composed of a core and of four branches with k = 5
layers, with contact graphs and highlighted opening angles. (a) Packing with the Böröczky
core [1616]. (b) Packing with the Kahle core [5555]. (c) Detail of a branch. (d) Convex
polygonal chainA, and referential horizontal lines g<2 , g2, and g3 for creating the polygonal
chain. (Figure from [4646].)

2.2 SPARSE PACKINGS 25

the Böröczky packing can be escaped. This is guaranteed by having fewer constraints than
degrees of freedom. The escapemodes can be found by performing a singular-value decom-
position on the matrix representing the contacting disks. The existence of escape modes
indicates that the collective-move local algorithms, such as molecular dynamics, may es-
cape Böröczky packings. (The discussion of cluster Markov-chain Monte Carlo algorithms
is beyond the scope of this thesis and hence not considered.) Nevertheless, the local moves
in some Markov-chain Monte Carlo algorithms are arranged to achieve effective collective
moves. This is observed by running the sampling algorithms on a Böröczky packing with
slightly shrunk disks, introduced as ε-relaxed Böröczky configuration.

2.2.2.1 Contact graphs: local and collective stability

The contact graph of a Böröczky packing connects any two disks whose pair distance equals
2 (including periodic boundary conditions, see Fig. 2.42.4). In a Böröczky packing with k ≥
1 layers, the number N of disks and the number of contacts Ncontact can be expressed as
functions of k:

N Ncontact
Böröczky core 20k + 12 32k + 20
Kahle core 20k − 4 32k + 4

. (2.26)

Thus, for all values of k ≥ 1,N−1 < Ncontact < 2N−2, indicating that the contact graph is not
able to fix every degree of freedom in the system. This implies that collective displacements
can escape from a Böröczky packing, which is thus not collectively stable [5555]. However, the
contacts efficiently block unidimensional moves. The consequence of this will be discussed
in chapter 3chapter 3.

2.2.2.2 Dimension of the space of Böröczky packings

As discussed in section 2.2.3section 2.2.3 in the attached publication 2 [4646], the Böröczky packing may
exist for any density at large enoughN . The dimension of space B of locally stable packings
ofN disks in a given box is lower than that of sample space. As discussed in section 2.2.2.12.2.2.1,
the contacts in a Böröczky packing are described by a contact graph. Each independent
edge in the contact graph decreases the dimensionality of Böröczky packings by one. In
addition there is only a finite number (at most NN) of contact graphs for a given N . Any
configuration having disks in contact has infinite pressure. As the expectation of pressure is
finite (except for the densest packing), the set of packings (and the configurations containing
packings) must be of lower dimension. As the dimension of B, for large N , is much lower
than that of Ω, we conjecture Ω \ B to be connected for a given η below the densest packing
at large enough N although, in our understanding, this is proven only for a much lower
density η ∼ 1/

√
N (see [88, 2525]).

2.2.2.3 Escape modes

When all disks i, at positions xi, are moved to xi + ∆i, the squared distance between two
disks in contact changes from |xi − xj |2 to

|xi +∆i − (xj +∆j)|2 = |xi − xj |2 + 2(xi − xj) · (∆i −∆j)︸ ︷︷ ︸
first-order variation

+|∆i −∆j |2. (2.27)

26 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

We are interested in displacements that have vanishing first-order variations, as these dis-
placements do not introduce overlaps. For such displacements, in general ∆i 6= ∆j . A
vanishing first-order variation indicates that the squared distance between disk i and j is
increased by |∆i −∆j |2, and the contact is lost. The first-order variation in eq. (2.272.27) can
be written as a product of twice a sparse ”escape matrix”Mesc of dimensionsNcontacts× 2N
with a 2N -dimensional vector∆ = {∆x

1 , ∆
y
1, ∆

x
2 , ∆

y
2, . . .}. Each row ofMesc corresponds to

a contact. The row r corresponding to the contact between i and j has four non-zero entries

Mesc
r,2i−1 = xi − xj ,

Mesc
r,2i = yi − yj ,

Mesc
r,2j−1 = −(xi − xj),

Mesc
r,2j = −(yi − yj).

(2.28)

The escape modes are found by solving

Mesc∆ = 0 (2.29)

using singular-value decomposition. Equation (2.292.29) allows factoring out the infinitesimal
amplitude of the displacements ∆ and expressing the escape modes as the directions of
the small displacements. For the k = 5 Böröczky packing with the Kahle core, we find 28
vanishing singular values. It follows from eq. (2.262.26) that, because of 28 = 2N −Ncontact, all
contacts are linearly independent. The 28 modes are ranked by the cost function:

L =
∑
i,j

(∆i −∆j)
2, (2.30)

where the sum is over all contact pairs i and j. This function, acting on the 2N displacements
∆, measures the non-uniformity of a deformation. The resulting two lowest eigenmodes
(with zero eigenvalue) of eq. (2.302.30) are due to the translational invariance in the periodic
box. Other low-lying eigenmodes give smooth large-scale deformations which collectively
escape the contact constraints (see Fig. 2.52.5). There are also escape modes that have positive
first-order variations. Finding such modes amounts to solving a difficult linear program-
ming problem. The escape modes point in the directions of going through the ”wall” of
locally stable packings in the sample space, suggesting that the locally stable packings do
not block the sample space.

2.2.2.4 ε-relaxed Böröczky configurations

An ε-relaxed Böröczky configuration is obtained by shrinking the disks in a Böröczky pack-
ing by a factor of 1−ε. Fig. 2.62.6 shows an example of a ε-relaxed Böröczky configuration. One
can also consider randomly displacedwithin a circle neighborhood of radius εσ. As we have
seen in section 2.2.2.32.2.2.3, collective moves can escape the Böröczky packing. On the contrary,
local Markov-chainMonte Carlo algorithmsmove one disk at a time, andmay be completely
blocked by the Böröczkypacking. However, subsequentmoves in the local algorithms can be
arranged into collective moves. We formalize this arrangement by the ε-relaxed Böröczky
configuration, as in practice individual moves accumulate only if there is space between
the disks. The ε-relaxed Böröczky configurations can be used as a benchmark of the sam-
pling algorithms and serve as a heuristic. It is discussed in the attached publication 2attached publication 2 and

2.2 SPARSE PACKINGS 27

Fig. 2.5 Two orthogonal modes (represented as red arrows) out of the 28-dimensional
space of all collective escape modes ∆ for the k = 5 Böröczky packing with the Kahle core.
Lines are drawn between pairs of disks which are in contact. (Figure from [4646].)

28 CHAPTER 2. HARD DISKS IN STATISTICAL PHYSICS

Fig. 2.6 (a) Contact graph for an isolated Böröczky core. (b) Constraint graph (to be
introduced in section 3.2.23.2.2) of an ε-relaxed Böröczky core with ε = 0.25. (Figure from
[4646].)

in chapter 3chapter 3 that, in terms of escaping a ε-relaxed Böröczky configuration, the forward and
Newtonian event-chainMonte Carlo algorithm outperform the straight variant qualitatively.
The superior performance of the forward and Newtonian variant is recreated in more com-
plicated systems [4545].

Chapter 3

Algorithms

The Boltzmann distribution of hard disks in the sample spaces described in chapter 2chapter 2 can
be sampled by algorithms implementing Markov-chain Monte Carlo [55, 1111, 6060, 7171, 8484, 8787]
or, equivalently, from the Newtonian evolution implemented in molecular dynamics [11,
7575, 104104]. Although both classes of methods were introduced decades ago for the hard-
disk model, the development of algorithms and of software implementing them has never
stopped. In this chapter, we thus introduce and analyze the algorithms that sample the con-
figurations in the hard-disk model, in particular, the event-chain Monte Carlo algorithms
that we use and contribute to throughout this thesis.

We first discuss the aspects of the Markov chain related to computation, most impor-
tantly, the ergodic theorem that guarantees the convergence of the estimators introduced in
chapter 4chapter 4. Then we discuss the sampling algorithms, notably the event-chain Monte Carlo
algorithms implementing a non-reversible Markov chain. On the one hand, we discuss our
work on the parallelization of the software implementation of event-chainMonte Carlo vari-
ants which, for a multithreaded algorithm, is far from trivial. The full solution to the par-
allelization problem we provide in the attached publication 1attached publication 1 involves both an algorithmic
aspect and an implementation aspect. In this chapter, only the algorithmic aspect is dis-
cussed. The algorithm is made practical by the techniques introduced in chapter 5chapter 5. On the
other hand, we discuss the dynamics of the Markov-chain Monte Carlo algorithm when es-
caping an ε-relaxed Böröczky configuration, introduced in chapter 2chapter 2, and its scaling theory.
This discussion follows closely the discussion in the section 3section 3 in the attached publication
2 [4646].

3.1 Markov-chain Monte Carlo: the basics

At low density η ∝ 1/N , a configuration can be sampled by placing N disks in the box
randomly and keeping the non-overlapping configuration. This procedure is referred to as
direct sampling. These algorithms have recently been generalized for a small constant den-
sity in the N → ∞ limit [121121]. At density η > 0.3, the rejection rate of these approaches
become too high, and practically no configuration can be sampled [6262]. The remedy for
this is to design algorithms modifying the existing configuration incrementally, referred to
as Markov-chain Monte Carlo algorithms. The Markov-chain Monte Carlo algorithm gener-
ates samples from the stationary distribution [6969]. For hard disks, the samples are the con-

29

30 CHAPTER 3. ALGORITHMS

figurations, and the stationary distribution corresponds to the uniform weight discussed in
chapter 2chapter 2. A correct sampling process requires the global-balance condition, irreducibility,
and aperiodicity. If a Markov chain is irreducible, a unique stationarymeasure exists, which
is the limit of the time-dependent measure if the Markov chain is also aperiodic.

Two convergences are important in the Markov-chain Monte Carlo. The first one is the
convergence of distribution. At the beginning of the Markov chain, the distribution that a
Markov chain samples is not the stationary distribution. The sampled distribution converges
to the stationary distribution gradually, and this process is referred to as mixing. Mixing
implies that the initial results produced by the sampling algorithms have to be thrown away.
Usually, the result of computation is expressed as a numerical estimation of an interested
quantity in physics. This quantity, denoted by O, is formulated as a function of the hard-
disk configuration (more discussion on this topic in chapter 4chapter 4). The second convergence is
expressed in the form of the ergodic theorem for an irreducible Markov chain: the running
average ofO evaluated on the sampled configuration converges to the expectation ofO. This
theorem indicates that long enoughMarkov-chainMonte Carlo computations give unbiased
results. Although the sample space for the hard-disk model contains an infinite number of
configurations, only theMarkov chain in a finite sample space is discussed in this subsection
for simplicity. Also, the discussion is restricted to discrete-time Markov chains. As will be
discussed in section 3.2.23.2.2, the continuous-time algorithm can be viewed as the limit of a
discrete-time Markov chain.

3.1.1 Introduction to Markov chains

A Markov chain is a stochastic process in which the outcome of a step is only related to
the outcome of the previous step. Denote the Markov chain as a sequence of random vari-
ables X0, X1, ..., for an arbitrary finite sample space Ω, the transition matrix is a matrix of
conditional probabilities:

P (x, y) = P (Xt+1 = y|Xt = x), (3.1)

where x, y ∈ Ω are samples. P (x, y) is the probability of choosing sample y when the out-
come of the previous step is x. All of the entries of P are positive and∑

y∈Ω
P (x, y) = 1, (3.2)

which is referred to as the stochasticity of matrix P . Since the Markov chain has no mem-
ory of the outcome before the previous step, the transition matrix, together with the initial
condition, encodes all its information. Let the distribution of Xt be πt, a vector labeled by
all possible states in Ω, the distribution πt is obtained by repeatedly applying transitions to
the initial distribution π0:

πt = π0P
t. (3.3)

An aperiodic and irreducible Markov chain can visit the whole sample space. Define

T (x) = {t ≥ 1, P t(x, x) > 0}, (3.4)

which is the least possible time of revisiting a state in the sample space. The period of the
Markov chain is defined as the greatest common divisor of T (x), ∀x ∈ Ω. If the period of the

3.1 MARKOV-CHAIN MONTE CARLO: THE BASICS 31

Markov chain is 1, then the Markov chain is aperiodic. For a Markov chain, if ∃t such that
∀x, y ∈ Ω, P t(x, y) > 0, then the Markov chain is called irreducible. Irreducibility indicates
that all states can be reached starting from an arbitrary state.

For each Markov chain, if the measure π satisfies

π = Pπ, (3.5)

it is referred to as the stationary measure. As its name indicates, the stationary measure is
invariant after transitions. The stationary measure is the Boltzmann measure introduced in
chapter 2chapter 2, and equation (3.53.5) is referred to as the global-balance condition.

Practically, all commonly used Monte Carlo algorithms satisfy the detailed-balance con-
dition, a stronger condition than the global-balance condition. The detailed-balance condi-
tion is expressed as

π(x)P (x, y) = π(y)P (y, x). (3.6)

Summing the expression of the detailed-balance condition over x ∈ Ω yields the global-
balance condition: ∑

x∈Ω
π(x)P (x, y) =

∑
x∈Ω

π(y)P (y, x) (3.7)

πP = π. (3.8)

The right-hand side of the second equality makes use of the stochasticity. Define the prob-
ability flow going from state x to state y as π(x)P (x, y). The detailed-balance condition
implies that the probability flow going from x to y is the same as the inverse probability
flow going from y to x. Thus, when the direction of time is reversed, a Markov chain that
satisfies the detailed-balance condition is still the same Markov chain, thus referred to as a
reversible Markov chain. Checking the detailed-balance condition requires considering the
transition between two states, while checking the global-balance condition requires exam-
ining all the states. Thus, verifying the detailed-balance condition is easier than verifying
the global-balance condition. A Markov chain that breaks the detailed-balance condition
is referred to as a non-reversible Markov chain. In simple models, non-reversible Markov
chains accelerate sampling by turning the diffusive dynamics of reversible Markov chains
into ballistic dynamics [1010, 1111, 8686]. The event-chain Monte Carlo algorithms discussed in
section 3.2.23.2.2 are non-reversible.

3.1.2 Convergence of Markov chains

The correctness of Markov-chain Monte Carlo algorithms is guaranteed essentially by two
theorems: the convergence theorem and the ergodic theorem. The convergence theorem
states that the distribution πt converges exponentially to the stationary distribution if the
Markov chain is irreducible and aperiodic. Converging to the stationary distribution is re-
ferred to as mixing, and the time it takes to mix a Markov chain is referred to as the mixing
time. The ergodic theorem expresses that the running average of an observable converges
to its expectation when the run is long enough.

32 CHAPTER 3. ALGORITHMS

3.1.2.1 Convergence theorem

The difference between two distributions π and π′ can be quantified inmanyways. One way
commonly used in the mathematical literature is the total-variance distance, defined as

||π − π′||TV =
1

2

∑
x∈Ω
|π(x)− π′(x)|. (3.9)

For a Markov chain that starts from a single state, for example x0, the probability weights of
the states at the time t is denoted as∑

x∈Ω
δ(x− x0)P t(x, y) := P t(x0, ·). (3.10)

The convergence theorem bounds the total-variance distance of the stationary distribution
and the sampled distribution at time t [6969]:

Theorem 1 For an irreducible and aperiodic Markov chain P with stationary distribution π, there
exist a constant α < 1 and C > 0 such that

max
x0∈Ω

||π − P t(x0, ·)||TV ≤ Cαt. (3.11)

The convergence theorem states that, for an irreducible and aperiodic Markov chain, even
if starting from the worst initial configuration, the difference between πt and the stationary
distribution decays exponentially with respect to t. The mixing time is defined as

tmix = min

{
t : max

x0∈Ω
||π − P t(x0, ·)||TV ≤ ε

}
, (3.12)

where ε is an arbitrary positive number less than 1/2. Configurations sampled before the
mixing time are not guaranteed to be sampled from the stationary distribution. In the prac-
tical cases that we will discuss in section 3.33.3, the mixing time can be as long as ten years and
is an important aspect regarding the performance of the algorithm.

The convergence theorem states that, for a long enoughMarkov chain, samples are prac-
tically identically distributed. However, it is not a statement regarding the independence of
the samples. The configurations sampled from the uniform distribution have strong corre-
lations in general, leading to difficulties in statistical analysis [114114], which we will discuss
in chapter 6chapter 6.

3.1.2.2 Ergodic theorem

LetO(x) be a real-valued function define in the sample spaceΩ. The ergodic theorem states
that [6969]

Theorem 2 For an irreducible Markov chain, for any initial distribution π0,

Pπ0

{
lim
T→∞

T−1∑
t=0

O(Xt) =
∑
x∈Ω

π(x)O(x)

}
= 1. (3.13)

3.2 SAMPLING ALGORITHMS 33

In chapter 4chapter 4, we introduce O(x) formally as an observable. The ergodic theorem states that,
if the Markov-chain Monte Carlo algorithm runs long enough, the time average over the
sampled configurations converges to the ensemble average. It implies that even though the
hard-disk computation features randomness, the asymptotic behavior of the result is con-
trolled. The ergodic theorem is a statement about a single run. It is not applicable to the
average of runs. The ergodic theorem generalizes trivially to complex-valued functions.

In practice, the running average may not include sample at every step. For a Markov
chain X ′t in the same sample space as Xt with transition matrix P ′ satisfying

P = P ′∆t, (3.14)

where P is the transition matrix of the Markov chain Xt in (3.133.13), the sample obtained at
each step for Xt is equivalent to the sample obtained every ∆t steps for X ′t. The expression
(3.133.13) can be written alternatively as

Pπ0

{
lim
T→∞

T−1∑
i=0

O(X ′i∆t) =
∑
x∈Ω

π(x)O(x)

}
= 1. (3.15)

Equation (3.153.15) implies that, if an observable is calculated every time interval∆t, its running
average still converges to its expectation. We referred to the time at which the observable
are calculated as t = t0, t1, ..., tnsample−1. This notation is particularly useful when discussing
legacy methods of sampling a finite number of hard-disk configurations.

3.2 Sampling algorithms

AMarkov-chain Monte Carlo algorithm generates a series of hard-disk configurations x(t),
labeled by the Markov-chain steps t = 0, 1, ..., T − 1 or continuous MCMC time introduced
in section 3.2.23.2.2. Any Markov-chain Monte Carlo algorithm simply has to satisfy the global-
balance condition of (3.53.5) and be irreducible. This implies that there is normally an enor-
mous degrees of freedom for the choice of the correct transitionmatrices, ofwhich, naturally,
we can discuss only a few. The transition matrix not only governs the evolution of probabil-
ity measures, but it also represents the algorithm which specifies how one sample evolves
into the next one. In this section, we introduce to the sampling algorithms used during this
thesis, in particular, the multithreaded event-chain Monte Carlo algorithm we have devel-
oped and presented in the attached publication 1attached publication 1. We also discuss the performance of local
sequential Markov-chain Monte Carlo algorithms for hard disks, and propose their scaling
theory, presented in section 3section 3 in the attached publication 2 [4646].

3.2.1 Metropolis algorithm and its massive parallelization

The earliest Markov-chain Monte Carlo algorithm is the Metropolis algorithm [8484]. At each
iteration of the algorithm, a random disk i is sampled from a uniform distribution among
1, ..., N . Then, amove δxi is proposed. The probability distribution Pδ(δx, δy) of δxi satisfies

Pδ(δx, δy) = Pδ(−δx,−δy). (3.16)

If the proposed move does not introduce any overlap with other disks or the wall (if any),
the new configuration is kept, otherwise, the move is rejected, and the old configuration

34 CHAPTER 3. ALGORITHMS

at the beginning of the iteration is sampled again. In general, there is no constraint on the
probability distribution of the proposed move other than (3.163.16). However, the proposed
move in practice is usually small so that the rejection rate is kept low. In practice, the dis-
placement δxi can be, for example, a random vector aligned with êx or êy (cross move set)
or in a square centered at the origin (square move set).

Running the Metropolis algorithm in parallel amounts to moving multiple disks at the
same time. It is possible that independent moves of disks do not introduce any overlap,
while two of the moved disks overlap with each other. Such overlaps are avoided by con-
straining the position of the moved disk. The resulting algorithm is the Massively Parallel
Monte Carlo algorithm (MPMC), running on graphical processing units (GPUs), first pro-
posed by Engel et al. [55]. It uses a four-color checkerboard of rectangular cells whose sides
are larger than 2σ, aligned with the x and y axes, compatible with the periodic boundary
conditions.1 The distance between two disks in different cells of the same color is always
larger than 2σ, and moving two disks in different cells simultaneously never introduces
overlap between them. TheMPMC algorithm samples one of the four colors, and then inde-
pendently updates disks in all corresponding cells using the Metropolis algorithm with the
additional constraint that disks cannot leave their cells (see Fig. 3.13.1). After a certain time,
the color is resampled, and the checkerboard is reinitialized, which is necessary for the al-
gorithm to be irreducible. Each cell can be viewed as a non-periodic box. MPMC satisfies
the detailed-balance condition, as it is based on the Metropolis algorithm.

Fig. 3.1 Four-color checkerboard decomposition in a periodic box, with cells larger than
2σ. If the green color is chosen, highlighted disks may move, but cannot leave their cells.
Disks in different green cells do not communicate. The checkerboard allows massive paral-
lelization. (Figure from [7070].)

3.2.2 Event-chain Monte Carlo algorithms

The event-chain Monte Carlo (ECMC) algorithm is proposed in [1111]. It is a continuous-
time event-driven sampling algorithm described by an non-reversible lifted Markov chain.

1The MPMC usually treats the large-N case in a periodic box. We do not consider smallN and non-periodic
systems for MPMC.

3.2 SAMPLING ALGORITHMS 35

Except for parallelized ECMC, only one disk moves at a time. The moving disk is referred
to as ”active”. It moves in a straight line, while the other disks are at rest and referred to
as ”static”. The index of the active disk and its velocity are updated at collisions. At each
transition in terms of the Markov chain, the active disk moves by an infinitesimal amount.
The discrete Markov-chain steps are mapped onto continuous MCMC time, with two steps
separated by an infinitesimal time interval. For a finite period ofMCMC time, the active disk
moves a finite distance. The number of sampled configurations is infinite and proportional
to the interval of MCMC time. The infinite number of configurations are only conceptual,
and only configurations at collisions are computed.2 In each step, the system changes from
a configuration at collision to the configuration at the next collision. The ECMC algorithm
samples the lifted configurations space [6363], which is a product of the sample space of hard-
disk configurationsΩ, and the space of lifting variables. The latter are usually the index and
the velocity of the active disk. The detailed-balance condition is broken in ECMC, and there
are no rejections. Depending on the choice of lifting variables and the rule of updating the
velocities in collision, there are multiple variants of ECMC, namely straight, reflective [1111],
forward [8787], andNewtonian [6060]. Themoves in ECMC algorithms are deterministic, while
the lifting variables are resampled after a MCMC time interval. The time interval between
two resamplings is referred to as chain time (or chain length). It is shown that the random-
ness at resampling is essential for the ECMC algorithms [4545]. The Böröczky packings block
ECMCmoves. However, as discussed in section 4.2.1section 4.2.1 in the attached publication 2 [4646], the
ECMC algorithms can still be used in practice.

3.2.2.1 Straight ECMC

Straight ECMC [1111] is one of the first proposed ECMC algorithms, and it is one of the pri-
mary methods for hard-disk pressure computations [1010, 2929, 7070]. The lifted configuration in
straight ECMC is (x, a,d), where a denotes the index of the active disk, and d is a unit vector
denoting the direction of themove, conventionally taking values from {êx, êy} for a periodic
box and {±êx,±êy} for a non-periodic box. As the velocity is of unit norm, the MCMC time
in the straight ECMC is equivalent to the distance covered by the active disk. The active disk
moves along the direction d in a straight line until the collision takes place. For a collision
between the active disk a = i and another disk j, the velocity remains the same, and the ac-
tive disk becomes j after the collision. In the non-periodic box, when the active disk collides
with the wall, its direction d is updated such that the component perpendicular to the wall
changes sign.

The straight ECMC satisfies the global-balance condition. For systems with low density,
the active disk may not be able to find any collision partner, and it can go through the pe-
riodic box repeatedly, resulting in periodicity that is practically resolved by resampling. At
the phase-transition density, such periodic behaviors are not observed. Configurations with
strong symmetries, for example perfectly aligned disks, can also invoke periodicity even at
high density. In practice, this can be avoided by randomly displacing the perfectly aligned
disks by a tiny amount. It can also be avoided by making the chain length random. The
active disk moves in both x and y direction so that both the x and y components of the disk
positions are updated to achieve irreducibility.

2As discussed in chapter 4chapter 4, these conceptual configurations contribute to the computation of pressure. We
label these conceptual configurations by Markov-chain steps t = 0, 1, ..., T − 1.

36 CHAPTER 3. ALGORITHMS

Straight ECMC is prone to gridlock. In a gridlock, the active-disk label loops through a
subset of N disks being in contact. The active disk get updated all the time, but there is no
displacement. As a consequence, the MCMC time remains the same during the gridlock.
As the resampling of the active disk and velocity takes place at specific MCMC time, it will
never take place to resolve the gridlock. The gridlock may happen in a number of config-
urations in straight ECMC, for example, for any configuration that has a ring of contacting
diskswinding around the periodic box. Gridlocks are also observed for straight ECMC from
tightly packed initial configurations [120120, Section 4.2.3]. We have further observed that the
gridlock occasionally appears when the straight ECMC starts from a ε-relaxed Böröczky
configuration in our arbitrarily precise implementation (see Appendix A.3Appendix A.3 in the attached
publication 2 [4646]). However, according to our experience, gridlock does not appear in the
practical usage of the straight ECMC.

The straight ECMC can be formulated in terms of a constraint graph [5757, 7171], a Verlet
list [117117] that remains unchanged forever if the active disk moves in only êx or êy. For
a given initial condition and velocity d = êx, arrows [i→ j] of the constraint graph Gêx
represent possible collision between disk i and disk j [5757]. When scheduling collisions,
only the disks pointed by the arrows are considered. Each disk has at most three arrows
(see an example in Fig. 3.23.2(a)). These arrows are found by identifying the nearest disk in
the x direction for the disks in three lanes, defined as intervals of the relative position in
the y direction. In the resulting constraint graph, referred to as G(3), every disk has three
disks that it can potentially collide with. As the three potential collision partners may block
each other, the number of arrows corresponding to potential collisions is less than three. As
demonstrated in Fig. 3.23.2(a), there are even non-local arrows. According to experiment, the
number of genuine collision arrows for each disk is on average approximately 2.1 at a density
around η = 0.7 (see Fig. 3.23.2(c)). The redundant arrows can be removed (see Fig. 3.23.2(b)),
but inmost cases the performance gain by having less arrow is smaller than the performance
loss by pruning the redundant arrows. In practice, the straight ECMC requires the direction
of the active disk to be changed after a rather small number of collisions [5757]. Thus, the
constraint graphs have to be recomputed frequently. A cell system can be implemented in
place of the constraint graph.

The straight ECMC can be parallelized, thanks to the restrictive direction of displace-
ments and the small number of potential collision partners. The parallel version of straight
ECMC is presented in section 3.2.33.2.3

3.2.2.2 Reflective ECMC

The reflective ECMC [1111] was proposed together with straight ECMC. The lifted variables
are an index of the active disk and a unit vector of arbitrary direction, serving as the velocity
of the active disk. At the collision, the velocity is reflectedwith respect to the line connecting
the center of the two involved disks. Let the velocity of the active disk be v and the jth disk
be hit by the active disk i. Denote the vector connecting two disks at collision as rij = xj−xi.
The new velocity v′ after the collision is

v′ = −v +
rij
2σ2

rij · v. (3.17)

The reflective ECMC is proven to satisfy the global-balance condition. Resampling is needed
after every fixed period of MCMC time. Similar to the straight variant, the reflective ECMC

3.2 SAMPLING ALGORITHMS 37

a b() () ()c

Fig. 3.2 ECMC constraint graphs for aN = 2562 system. (a): G(3) for this configuration
(detail), with highlighted non-local arrows. (b): Constraint graph after pruning. (c):
Number of solicited arrows found in a long cell-based ECMC run. The constraint graph
serves not only as a neighbor list but also as the key to enforcing causality in multithreaded
ECMC. (Figure from [7171].)

is vulnerable to gridlock.

3.2.2.3 Forward ECMC

The forward ECMC [8787] has the same lifting variables as the reflective ECMC. The only dif-
ference between the forward ECMC and reflective ECMC is how the velocity is updated at
the disk collisions. The component orthogonal to the line connecting the disks at contact is
uniformly sampled between 0 and 1, and its sign is chosen to preserve the overall direction
of the velocity before the collision. Its parallel component is determined such that the ve-
locity is of unit norm. The sign of the parallel component remains unchanged. Let u be a
randomnumber sampled from a uniform distribution in (0, 1). Denoting n as the unit vector
perpendicular to the line connecting two disks at collision, namely 1

2σ (rij,y,−rij,x), using the
same notations as in the discussion of the reflective ECMC, the velocity after collision v′ is
calculated such that

v′ = sgn(r · v)
√
1− u2 rij

2σ
− sgn(n · v)un (3.18)

The forward ECMC is proven to satisfy the global-balance condition. There is no proof
that the resampling can be waived for the forward ECMC, despite that it is the only ECMC
algorithm possessing per-event randomness. The per-event randomness prevents gridlocks
in forward ECMC.

3.2.2.4 Newtonian ECMC

In Newtonian ECMC [6060], each disk has a velocity which is, however, for the static disks
only a label, and does not always correspond to a change of position with time. There is
only one active disk, moving according to its own velocity. At a collision, the velocities of
two colliding disks are updated as in Newtonian dynamics, discussed in chapter 2chapter 2. As there
is only one disk moving, the slow disk is allowed to collide with a faster disk moving in the

38 CHAPTER 3. ALGORITHMS

same direction, leading to impossible collisions in realistic Newtonian dynamics. Resam-
pling all of the velocities and the active disk is required in fixed intervals of MCMC time.
Besides that, it suffers from frequent gridlocks when the initial configuration is a ε-relaxed
Böröczky configuration with small ε.

3.2.3 Multithreaded ECMC

In the attached publication 1attached publication 1, we have parallelized the straight ECMC, resulting in the mul-
tithreaded ECMC algorithm. The first step of parallelizing the straight ECMC is to allow
multiple active disks. In multithreaded ECMC, each lifted configuration contains the hard-
disk configuration, the direction of all the active disks, and a setA of cardinalityNA contain-
ing indices of the active disk. In the continuous-time description of multithreaded ECMC,
all of the active disks move with the same velocity, and there is no collision between two
active disks. This is why we choose to begin the parallelization of ECMC algorithms from
the straight variant. When there is a collision between an active disk and a static disk, the
velocity is updated as in the straight ECMC. Similar to straight ECMC, the MCMC time
is the distance covered by each of the active disks, which is referred to as the global time.
The continuous-time process is referred to as the Continuous Process with Global TimeContinuous Process with Global Time in
the attached publication 1 [7171], and shown in Fig. 3.33.3(a). We have proven that this process
satisfies the global-balance condition.

Each of the active disks is associated with a thread, and the computation on each thread
is independent.3 All the threads access the same system, in the sense that a thread can ”see”
the displacements on all other threads. The independent moves on multiple threads should
process exactly the same collisions as in the Continuous Process with Global Time. This
requires the disks to be moved according to a specific order. In straight ECMC, the ECMC
time is equivalent to the distance covered by the active disk. However, in the multithreaded
ECMC, the active disks move independently, and there is no longer a well-defined time in
the system and across all threads. Each active disk has its own time. The position of active
disks are asynchronized, and an active disk being advanced in time can hit a static disk
which is supposed to collide with another active disk, breaking the order specified by the
continuous process with global time, and creating issues regarding causality. To solve this
problem, we assign a time to each of the disks, active or not, as the local time—the MCMC
time at the last moment when it is active. Let the disk i be an active disk, j be a potential
collision partner of disk i, and τij be the MCMC time it takes for disk i to hit disk j. The
horizon condition is defined as

ti + τij > tj , (3.19)

where ti and tj are the local times of disk i and j respectively. If the horizon condition is
violated by any potential collision partners (specified in the constraint graph), this collision
breaks causality. If the causality is preserved throughout the run, the outcome of the mul-
tithreaded process is identical to the outcome of the continuous process with global time.
The multithreaded ECMC is thus described as the following process: all of the active disks
move independently. The velocity and active disk are updated as in straight ECMC at each
collision. The horizon condition is checked before each collision. If there is no violation of

3There can be multiple active disks on a thread. However, for simplicity, we always assume a thread is in
charge of a single active disk in the discussion of algorithms.

3.3 ALGORITHM PERFORMANCE 39

the horizon condition until the end of the run, all the output during the run is kept. Other-
wise, no output is recorded, and the run restart from the initial configuration. This process is
shown in Fig. 3.33.3(b). To keep the horizon-violation rate low, each chain in themultithreaded
ECMC is further broken by breakpoints. The time between two breakpoints is short, and the
multithreaded ECMC evolves the system from a breakpoint to the next one repeatedly. The
detailed discussion of the multithreaded ECMC can be found in section 2section 2 in the attached
publication 1 [7171].

The continuous processwith global time satisfies the global-balance condition. Thus, the
multithreaded ECMC algorithm with local time also satisfies the global balance condition.
The practical irreducibility and aperiodicity (when locally sparse packings are ignored) of
the multithreaded ECMC is inherited from the straight ECMC. In terms of parallelization,
we prefer the straight ECMC over the other variants mainly for two reasons. The first is
that the active disk never collides in the continuous process with global time. In straight
ECMC, the active disk moves in a single direction with the same velocity, while in other
variants, the active disk moves in arbitrary directions. We believe that there can be velocity-
update schemes that respect the global balance and allow collisions between active disks.
However, such a scheme has not been implemented. The second reason is the existence of
the constraint graph in the straight ECMC. The horizon condition requires comparing the
local time of the active and its possible neighbor. In straight ECMC, there are at most three
neighbors to be checked at each collision. However, the other variants require scanning the
whole system, leading to a O(N) complexity for each event at least if implemented naively.

3.2.4 Molecular Dynamics

The most intuitive sampling algorithm is to reproduce the hard-disk Newtonian dynamics.
This process is referred to as molecular dynamics (MD) [11]. For the hard-disk model, MD
can be implemented event-driven. The positions of the disks at the next collision, either
between the disks or between a disk and a wall, is computed. The velocities are updated
at collisions by the law of Newtonian dynamics. In practice, MD can be used for either
simulating realistic hard-disk trajectories or generating hard-disk configurations.

EDMD is, in its nature, asynchronized, rendering parallelization non-trivial. There is
currently no valid parallel implementation of EDMD, though a number of parallelization
schemeswere proposed [7676]. Although themultithreadedECMCand the EDMDare similar
in nature, the parallelization of ECMC is successful, because the number of moving disks is
of O(1), significantly smaller than N in EDMD.

3.3 Algorithm performance

In this section, we discuss the algorithm performance, measured by the number of iteration
in an algorithm to finish a specific task, of Markov-chain Monte Carlo algorithms. We are
interested in two tasks: escaping from an ε-relaxed Böröczky configuration and decoupling
from the initial (dis)order in a large hard-disk system. The former task highlights the benefit
of having a larger move set and no intrinsic scale in the reflective, forward, and Newtonian
variants of ECMC,while the latter task demonstrates the overwhelming speedup introduced
by the straight ECMC compared to the Metropolis algorithm. All the Markov-chain Monte

40 CHAPTER 3. ALGORITHMS

Fig. 3.3 Examples trajectories related tomultithreaded ECMC in a system containing four
disks, of which two are active. The black triangle on the disks implies that the disk is active.
The number on each disk is its local time. (a) A demonstrative trajectory of the continuous
process with local time, presented in an event-driven way. Although the MCMC time is
well- defined for this process, the times on each disk are their local time. (b) A demonstrative
trajectory of the multithreaded ECMC. There is no violation of horizon condition, and the
final configurations of (a) and (b) are the same. (Figure from [7171].)

3.3 ALGORITHM PERFORMANCE 41

Carlo algorithms that we discuss here differ only in some details, but their performance can
be drastically different.

3.3.1 Escaping performance

The Böröczky packing blocks the local Markov-chain Monte Carlo algorithms completely,
and it is also difficult to break the Böröczky packing structure in ε-relaxed Böröczky config-
urations. Clearly, if a sampling algorithm is trapped in a Böröczky packing, the distribution
of sampled configurations is different from the stationary distribution. The iterations it takes
to escape an ε-relaxed Böröczky configuration thus provides a lower bound of the mixing
time.4 We run the sampling algorithms using an ε-relaxed Böröczky configuration as the
initial configuration.

Define the maximum nearest-neighbor distance

d(t) = max
i

[
min
j(6=i)
|xij(t)|

]
, (3.20)

where |xij(t)| = |xj(t)− xi(t)| is the distance between disks i and j (possibly corrected for
periodic boundary conditions). The maximum nearest-neighbor distance implies how far
the loosest disk is away from the packing. When the maximum nearest-neighbor distance
is large enough, at least one disk has broken free. The packing will be completely broken
consequently. The t in (3.203.20) is the number of iterations, i.e. the number of proposed moves
in the Metropolis algorithm and the number of events in the ECMC algorithms. We define
the escape time tesc, an integer, as the time t at which d(t) has increased by ten percent:

tesc = t : d(t) > 2.2σ, (3.21)

More detailed discussion of escape time can be found in section 3.2.1section 3.2.1 in the attached publi-
cation 2 [4646].

As the distances between disks are small in the ε-relaxed Böröczky configuration, the re-
quired total displacement for escaping an ε-relaxed Böröczky configuration is small. In prac-
tice, the Newtonian ECMC, reflective ECMC, and forward ECMC do not require frequent
resampling, and their chain length can be viewed as infinite compared to the total displace-
ment. As the number of constraints in the Böröczky packing is larger than N , the single-
direction moves in straight ECMC are not efficient for the escape from ε-relaxed Böröczky
configurations. The direction in straight ECMC has to change frequently, introducing an in-
trinsic length τchain, the MCMC time of each chain, into the algorithm. Also, the Metropolis
algorithm has to propose small moves to keep the rejection rate low. The length scale δ of
the proposedmove is the intrinsic length scale in theMetropolis algorithm. We numerically
measure the escape time tesc of these algorithms for a wide range of their intrinsic parame-
ters and for small relaxation parameters ε (see Fig. 3.43.4, for the escape times from ε-relaxed
Böröczky configurations). The escape time is a ”V ”-shaped function with respect to the
intrinsic scale. We have proposed a scaling theory for this. To escape ε-relaxed Böröczky
configurations, the accumulated displacement has to be large enough, which favors large δ
or τchain. In the meantime, only moves on the scales ε are helpful, which favors small δ or

4In section 3.1.2.23.1.2.2, the mixing time is defined in Markov-chain steps. However, it is convenient to measure
the mixing time in the number of events in an event-driven algorithm or in computer time during benchmarks.

42 CHAPTER 3. ALGORITHMS

τchain. The ”V ”-shaped function is a result of the competition of the two requirements. The
scaling of optimal intrinsic scale is achieved when the two requirement are equally strong.
The detailed discussion of the intrinsic scale can be found in section 3.2.2section 3.2.2 in the attached
publication 2 [4646]. When inserting the scaling of the optimal intrinsic scale, the scaling of
escape time is

tesc ∼


ε−1 (Metropolis—square),
ε−2/3 (Metropolis—cross),
ε−2/3 (straight ECMC),

(for optimal δmin, τmin
chain). (3.22)

10−4 10−3 10−2 10−1

range δ

102

104

106

108

1010

1012

es
ca

p
e

ti
m

e
t e

sc
(t

ri
a
ls

)

103
104
105

106

107

108

109

δmin

1010

tesc
∼ δ/ε

tesc ∼
δ −

2

δc

1/ε(a)

10−4 10−3 10−2 10−1 100

chain time τchain

102

104

106

108

1010

es
ca

p
e

ti
m

e
t e

sc
(e

v
en

ts
)

103

104
105

106

107

108

109

1010

τmin
chain

tesc ∼
τ −

2chain

tesc
∼ τchain

/ε
1/ε(b)

Fig. 3.4 Median escape times from the k = 5 ε-relaxed Böröczky configuration(N = 96
disks) for different ε. (a) tesc (in proposed moves) vs. range δ for the Metropolis algorithm
with the cross-shaped displacement set. (b) tesc (in events) vs. chain time τchain for straight
ECMC. Error bars are smaller than the marker sizes (Figure from [4646].)

The forward, reflective, and Newtonian variants of ECMC have no intrinsic scale when
escaping an ε-relaxed Böröczky configuration. Without an intrinsic parameter, the effective
free path between events may thus be adaptive. The free path is initially on the scale ε, but
then grows on average by a constant factor at each event, reaching a scale ε′ > ε after a
time (that is, after a number of events) that scales as ∼ ln(ε′/ε). The scale ε′ at which the
algorithms break free is independent of the initial scale ε. The theory of the effective free
path is confirmed by computation. The detailed discussion on the effective free path can be
found in section 3.2.3section 3.2.3 in the attached publication 2 [4646]. The theory of effective free path
predicts a logarithmic scaling of the escape time (measured in events):

tesc ∼ ln(1/ε) (reflective, forward, and Newtonian ECMC). (3.23)

The numerical scaling of escape time is shown in Fig. 3.53.5. The scaling of the escape
time indicates that, for specific initial configurations, the reflective, forward, andNewtonian
ECMC have a large advantage compared to the straight ECMC, leading us to conjecture that
the local Markov-chain Monte Carlo algorithms can have vastly different behaviors. The
straight ECMC benefits from quick computation for each event and parallelization, which
are the consequence of its unidirectional move. However, the scaling of escape time shows
that the unidirectional move and intrinsic scale can be harmful in specific circumstances.
Thus, the comparison of performance among all ECMC variants has no ultimate verdict.

3.3 ALGORITHM PERFORMANCE 43

105 1010 1015 1020 1025 1030

relaxation parameter 1/ε

104

106

108

1010

es
ca

p
e

ti
m

e
t e

sc
(t

ri
a
ls

o
r

ev
en

ts
)

(a)

t e
sc
∼
ε
−

2
/
3

t e
sc
∼

1
/
ε

tesc ∼ ln(1/ε)

105 1015 1025

0

105

2×105

105 1010 1015 1020 1025 1030

relaxation parameter 1/ε

(b)

t e
sc
∼
ε
−

2
/
3

t e
sc
∼

1
/
ε

tesc ∼ ln(1/ε)

Metrop.:

square

cross

ECMC:

straight

reflective

forward

Newtonian

Fig. 3.5 Median escape time tesc from k = 5 ε-relaxed Böröczky configurations with
different cores for local MCMC algorithms (where applicable: with optimized intrinsic pa-
rameters). (a) tesc (Kahle core, N = 96 disks) for the Metropolis algorithm and straight
ECMC. Inset: log–lin plots suggesting logarithmic scaling for the forward, reflective, and
Newtonian ECMC. (b) tesc for the Böröczky core (N = 112 disks). Error bars are smaller
than the marker sizes. (Figure from [4646].)

3.3.2 Coarsening performance

For large N and at density η ∼ 0.708, the hard-disk model at equilibrium is at coexistence
of the liquid and hexatic phases. However, generating a configuration at coexistence is hard
because of the phenomenon of coarsening. The initial configuration is usually a perfect
crystal, or a disordered configuration obtained by the simulated annealing algorithm [7777]
for the hard disk model. It is thus interesting to see how long does it takes to reach the
mixture from either an ordered phase or an disordered phase. The phase of the system is
described by its global orientational order Ψ6 that will be introduced in detail in section 4.44.4.
For a perfect crystal |Ψ6| = 1, and for a disordered configuration |Ψ6| = 0.

Also, the coarsening provides a bound for the mixing time. At density η = 0.708, the
typical configuration has |Ψ6| ∼ 0.45. If the value of |Ψ6| during a run stays at roughly 0 or 1,
theMarkov chain is not mixed, as the distribution is biased significantly towards disordered
or ordered configurations.

The Ψ6 as a function of number of sweeps for density η = 0.708 and η = 0.718 is shown in
Fig. 3.63.6. For each setup, there is a run starting from the crystal initial configuration and a run
starting from a disordered configuration. Comparing the result given by Metropolis algo-
rithms (or MPMC) and by straight ECMC, one concludes that reaching the target |Ψ6| takes
roughly 103 more sweeps for the Metropolis algorithm and MPMC than the straight ECMC
for both densities. Therefore, in the range of density of interest, in terms of the number of
proposed moves (events), the straight ECMC is 103 faster than the Metropolis algorithm,
although their implementation only differ in some apparently minor details.

44 CHAPTER 3. ALGORITHMS

Li 2022

Li 2022

Li 2022

Li 2022

Fig. 3.6 The |Ψ6| as a function of number of sweeps for density (a) η = 0.708 and (b)
η = 0.718, starting with an crystal or an disordered configuration. The data is obtained
using MPMC and straight ECMC. In terms of number of sweeps, the ECMC is 103 times
faster than the MPMC. (Figure from [7070].)

Chapter 4

Observables

Understanding the hard-disk model requires more than just obtaining the samples x in Ω,
namely the calculation of functions of the samples (what in mathematics are called ”statis-
tics”). The analysis of the model also requires computing quantities such as the distribution
of hard disks, the pressure, and the orientational order. These quantities are referred to
as observables which themselves have probability distributions. In the large-N limit, these
distributions become sharply peaked. Examples for functions of the data are distribution
functions, free energies, pressures, correlation functions, and are characterized by their ex-
pectation values. We are thus naturally interested in the estimators of expectation values
even for finite systems, and will simply call them ”estimators”. In this chapter, we introduce
the definition of observables and the corresponding estimators we have used in this thesis.

This chapter starts with the definition of observables, followed by discussions regarding
specific observables. In particular, we introduce to the position distributions of the hard
disks, whose computation is described in detail in Appendix A.1Appendix A.1 in the attached publica-
tion 3 [7070]. We then discuss the two definitions of pressure and derive pressure estimators,
that is, estimators of their expectation value verified by computations with unprecedented
precision in the attached publication 3attached publication 3. These observables avoid extrapolation and are not
sensitive to the choice of statistical ensemble. We also discuss the orientational order of hard
disks, an order parameter of the hard-diskmodel which correlates to pressure in a finite sys-
tem.

4.1 Overview of observables

Here we introduce the general ideas and notations regarding the observable and corre-
sponding estimator. Also, we show that the ergodic theorem of the Markov chain guar-
antees that the estimator of an observable converges to its expectation value. An observable
is a complex-valued function of hard-disk configurations defined in the sample space

O : Ω → C. (4.1)

The expectation of an observable is

〈O〉 =
∫
Ω
O(x)π(x)dx, (4.2)

45

46 CHAPTER 4. OBSERVABLES

where π(x) is the probability density function of configuration x. The probability distribu-
tion ofO depends on parameters of themodel, and so does its expectation. Given a sequence
of samples {x(t), t = 0, 1, ..., T − 1}1, the estimator of the expectation is the observable eval-
uated and averaged in this sequence, namely

Ô =
1

T

∑
x′∈{x(t),t=0,1,...,T−1}

O(x′) =
1

T

T−1∑
t=0

O(x(t)). (4.3)

The ECMC algorithms and molecular dynamics are continuous methods and sample un-
countable numbers of configurations. (The sampled configurations are as much as the real
numbers.) In these algorithms, the estimator can be written in the forms not compatible to
(4.34.3). However, the derivation of these estimators still originates from (4.34.3) and requires
discretizing the continuous process. The probability density function in (4.24.2) disappears
in (4.34.3), since the sequence {x(t), t = 0, 1, ..., T − 1} is sampled from the stationary distri-
bution π(x) of the Markov chain. By the ergodic theorem of Markov chains, presented in
section 3.1.23.1.2, the running average of an observable O converges to its expectation 〈O〉. Al-
though the expectation is not the only aspect of an observable, it is the most important one.
Interesting properties such as equation of state and orientational order can both be formu-
lated as expectations. Also, in the thermodynamic limitN →∞, the probability measure of
an observable concentrates around its expectation value, which in turn carries all informa-
tion. Besides, we are not only interested in the estimation of expectation values. As will be
discussed in section 4.44.4, the expectation of the global orientational order is known. In this
case, the sequence {O(x(t)), t = 0, 1, ..., T − 1} be used as a diagnostic tool for ergodicity, as
will be discussed in chapter 7chapter 7.

4.2 Distributions

Distributions (of disk positions) are observables, and can either be represented by the prob-
ability density function or the cumulative distribution function. They are easy to evaluate
compared to the pressure and the orientational order. They show the preferred position in
the box, and are involved both in the computation of pressure (discussed in section 4.34.3) and
in the validation of sampling algorithms (discussed in chapter 6chapter 6). The position can refer to
either the absolute position in the box or the relative position with respect to another disk.
The distributions of the two possible choices of position are the position distribution and
pair-correlation function, respectively. We will show that the histogram of the distributions
of positions can be defined as an observable as formulated in section 4.14.1. The histogram,
with the help of extrapolation, can be used to approximate the continuous probability den-
sity function. As will be discussed in section 4.34.3, the probability density can be computed
without binning and extrapolation in the continuous sampling method such as ECMC. In
the attached publication 3attached publication 3, we use the method involving binning only for cross validation.
Nevertheless, the continuous-time methods are limiting cases of vanishing bin size and infi-
nite sampled configurations. In this section, we introduce the finite bin-size case to provide
a general picture.

1Sometimes, configurations are sampled after every sampled interval at t = t0, t1, ..., tnsample−1, instead of at
each step in the Markov chain t = 0, 1, ..., T − 1.

4.2 DISTRIBUTIONS 47

4.2.1 Position distribution

The position distribution refers to the two-dimensional probability density function of the
position xi = (xi, yi) of a single disk i = 1, 2, ..., N . As all disks are identical, the distribu-
tions of all disks are the same. Usually, the position distribution is used in a non-periodic
box. In a periodic box, the position distribution is uniform due to the translational invari-
ance.2 The position distribution can be integrated in the x or y direction and yields the
marginal position distribution in either y or x direction, respectively. The aspect ratio other
than one leads to different marginal position distributions in the x and y direction. For sim-
plicity, we set the direction to x for the unidirectional discussion. In practical computations,
the position distribution is expressed by a histogram, and sometimeswith the help of a curve
fitting the histogram.

4.2.1.1 Overview of hard-disk position distribution

Here, we discuss the generals aspects of the position distribution, providing background
for the discussion of pressure estimators in section 4.34.3 and sampling algorithm compari-
son in chapter 6chapter 6. The position distribution is expressed by π(1)(x) (equivalently π(1)(x, y))
such that the probability of having a single disk in a small region [x, x+ dx]× [y, y + dy] is
π(1)(x, y)dxdy. π(1)(x, y) is a probability density function, meaning that it is positive every-
where in [0, Lx]× [0, Ly], and ∫ Lx

0

∫ Ly

0
π(1)(x, y)dxdy = 1. (4.4)

Function π(1)(x, y) is discretized by dividing the box into bins. Let nb be the number
of bins in both x and y direction. A mesh of spacing ∆x = Lx/nb in the x direction and
∆y = Ly/nb in the y direction split the box into n2b bins. Denote the bin [(i − 1)∆x, i∆x] ×
[(j − 1)∆y, j∆y], i, j = 1, 2, ..., nb, as the bin (i, j), the probability of having a disk in the bin
(i, j) is

Probij =
∫ i∆x

(i−1)∆x

∫ j∆y

(j−1)∆y
π(1)(x, y)dxdy. (4.5)

The corresponding observable is

pij(x) =
N∑
k=1

Θij(xk)/N, (4.6)

where the bin member function

Θij(xk) =

{
1, (i− 1)∆x < xk < i∆x and (j − 1)∆y < yk < j∆y;

0, otherwise.
(4.7)

It is readily checked that the expectation of pij is Probij . For n sampled configurations, the
estimator for the observable pij is

p̂ij =
nij

Nnsample
, (4.8)

2In MD, if the center-of-mass frame is chosen, the position distribution is not uniform.

48 CHAPTER 4. OBSERVABLES

where nsample denotes the total number of sampled configurations, and nij denotes the total
number of disks among all the sampled configurations that appear in the bin (i, j). Clearly,
p̂ij is an unbiased estimator of Probij [119119]. The nsample is conventionally a finite number.
However, we will show that nsample can be as much as T , the total number of transitions in
the Markov chain that diverges in a continuous-time sampling algorithm.

The marginal probability density function is obtained by integrating π(1)(xi) over one
direction

π(1)x(x) =

∫ Ly

0
π(1)(x, y)dy. (4.9)

Similarly, it is discretized by dividing the interval [0, Lx] into nb bins, each of size ∆x =
Lx/nb. The probability of having a disk in the bin i, namely [(i− 1)∆x, i∆x], is

Probx,i =
∫ i∆x

(i−1)∆x
π(1)x(x)dx. (4.10)

The associated observable is

px,i(x) =

N∑
k=1

Θx,i(xk)/N, (4.11)

where

Θx,i(xk) =

{
1, (i− 1)∆x < xk < i∆x;

0, otherwise.
(4.12)

The corresponding estimator is
p̂x,i =

ni
Nnsample

, (4.13)

where ni denotes the total number of disks that appears in the bin i in all sampled config-
urations. The value of π(1)x (x) in the bin i is approximated by p̂x,i/∆x. To obtain a better
approximation, one can approximate the value of π(1)x ((i− 1/2)∆x) by p̂x,i/∆x, and obtain
the value of π(1)x(x) at other points by fitting using the values at (i− 1/2)∆x.

The probability density function scales implicitly as O(1/V), as integrating this func-
tion over the whole box yields one. Consequently, the marginal probability density function
scales implicitly asO(1/Lx). It is convenient to define the rescaled probability density func-
tion that removes the scaling. Let

ρ(xi) = V π(1)(xi), (4.14)

and
ρx(x) = Lxπ

(1)
x(x). (4.15)

The rescaled probability density function ρ(x) normalizes to V , and the rescaled marginal
probability density function normalizes to Lx. The rescaled probability density functions
appear in the pressure computation discussed in section 4.34.3.

The marginal position distribution can also be described by the cumulative distribution
function, defined as

Π(1)(x) =

∫ x

−∞
π(1)x(x

′)dx′. (4.16)

4.2 DISTRIBUTIONS 49

The cumulative distribution function needs no discretization. Define an observable

Π(x;x) =

∑N
i=1 I[0,x](xi)

N
, (4.17)

where I is the indicator function [119119]. The expectation of this observable is Π(1)(x). The
corresponding estimator is the empirical distribution function, defined as

Π̂(x) =

∑nsample−1
k=0

∑N
i=1 I[0,x](xi(tk))

nsampleN
, (4.18)

The asymptotic behavior of the empirical distribution function is constrained by the DKW
inequality [2727, 7979]. The empirical distribution always interpolates between 0 and 1, thus
free of scaling with respect to V (Lx). The empirical distribution is used when comparing
two sampling algorithms (discussed in detail in chapter 6chapter 6).

4.2.1.2 Extrapolation of hard-disk position distribution

Here, we discuss how the precise estimation of the rescaled probability density function is
performed at x = σ and x = Lx − σ, where the probability density function is no longer
continuous and reaches zero for a non-periodic box. These estimations are obtained by ex-
trapolation, conventionally using a fourth-order polynomial [2929]. In practice, the extrapo-
lation is only performed in the neighborhood of x ' σ and x / Lx − σ. The histogram is
built for disks whose distances to the wall are less than 0.1σ. The interval of 0.1σ is further
divided into 100 bins to build the histogram. In order to use the sampled configurations
efficiently, disks near both walls at x = 0 and x = Lx are taken into account. The number
of disks in the bin (0.1σ, 0.101σ) is the number of disks whose distance between either of
the walls falls in the interval of (0.1σ, 0.101σ). Although the histogram is built for only a
small fraction of all sampled distances, the probability of having a disk in each of the bins
is obtained by normalizing the histogram by dividing a factor of 2Nnsample. The probability
density function is obtained by further dividing the normalized histogram by the bin size,
and the 100 values obtained from the 100 bins, each associated to each center of the bins, are
fitted by a fourth-order polynomial. In the attached publication 3attached publication 3, we use an estimator of
the pressure which relies on the density at the wall, and that we develop an estimator that
requires absolutely no binning. This method is essentially having a bin of vanishing size
at x = σ, and the discussion of normalization in this section inspires the derivation of the
estimator.

4.2.2 Pair-correlation functions

The rescaled probability density function of the relative position between two arbitrary disks
is referred to as the pair-correlation function. Similar to the position distribution, it also
appears in pressure computations.

Define the 2D pair-correlation function as g(r) = V ĝ(r) so that
∫
g(x, y)dxdy = V , where

ĝ(r) = ĝ(x, y) is the probability density function such that, for a disk located at (x0, y0), the
probability of finding a disk at [x0 + x, x0 + x + dx] × [y0 + y, y0 + y + dy] is ĝ(x, y)dxdy.
Similar to the position distribution, g(r) can be approximated by a histogram, which we do
not elaborate on.

50 CHAPTER 4. OBSERVABLES

The probability of finding a pair of disks whose distance is smaller than r is

G(r) =
1

V

∫ r

0

∫ 2π

0
g(r′)r′dθdr′. (4.19)

The pair-correlation function g(r) satisfies

G(r) =
1

V

∫ r

0

∫ 2π

0
g(r′)r′dθdr′ =

2π

V

∫ r

0
g(r′)r′dr′, (4.20)

leading to the definition of the radial pair-correlation function

g(r) =
V

2πr

dG(r)

dr
. (4.21)

The relation (4.214.21) is howpractically g(r) is obtained. Let the bin size be∆r. The probability
of finding a pair of disks having a distance falling in the bin i, namely [(i − 1)∆r, i∆r], is
Probr,i = G(i∆r)−G ((i− 1)∆r). Define an observable

pr,i(x) =
2
∑N

i=1

∑N
j=i+1 I[(i−1)∆r,i∆r](|xi − xj |)

N(N − 1)
. (4.22)

The expectation of this observable is Probr,i, and the corresponding estimator is

p̂r,i =
2
∑nsample−1

k=0

∑N
i=1

∑N
j=i+1 I[(i−1)∆r,i∆r](|xi(tk)− xj(tk)|)
nsampleN(N − 1)

. (4.23)

The value of g(r) at r = (i− 1/2)∆r is approximated by V p̂r,i
2π(i−1/2)∆r , and the values at other

points are approximated by a polynomial fit.
The value of g(r)when two disks are at contact, namely g(2σ), appears in pressure com-

putation. It is approximated by extrapolating g(r) computed from the histogramof distances
in the neighborhood of r ' 2σ. Conventionally, the histogram is built only using disks with
distances less than 2.1σ andwith bin size 0.001σ. The number of disks in each bin is counted,
then divided by nsampleN(N − 1)πri/V , where ri is the distance at the center of each bin.
Then, the value of g(2σ) is obtained by extrapolating the histogram using a fourth-order
polynomial. The pressure estimator depending on g(2σ) has been first used by Metropolis
et al. and remains as a primary method of obtaining pressure in hard-disk Markov-chain
Monte Carlo computation for a long time. In the attached publication 3attached publication 3, we have developed
an estimator of the pressure which relies on the pair-correlation function. Combined with
the continuous sampling methods, the extrapolation and binning can be avoided, thanks to
the infinite number of sampled configurations.

4.3 Pressure

In this section, we present the definitions of pressure for hard disks in a box, which can
be periodic or have hard walls. Also, we derive the estimators for pressure by removing
a piece of the box in various ways. Depending on the sampling algorithm, some of the
estimators reduce into simple formulas. Although pressure is estimated for decades, we
still manage to find new formulas that rely on the continuous-time nature of ECMC and
molecular dynamics.

4.3 PRESSURE 51

4.3.1 Definitions of pressure

Pressure can be either a quantity in mechanics or statistical physics. Depending on the con-
text, pressure has two different definitions. However, in a non-periodic box, the different
definitions of pressure lead to the same estimator of pressure and are equivalent. For a box
of general aspect ratio, the pressures in the x direction and the y direction are different. The
direction-free pressure is defined as the average of the two.

4.3.1.1 Kinematic definition

For the hard-disk model, the pressure is the force exerted per unit length by the hard disks
on the wall. Since the collision is elastic and the disks are rigid, the force during the collision
diverges. However, we will show that the time average of the force is finite. For a hard disk
i traveling toward a wall located at Lx with velocity vi,x, according to Newton’s second law,
the force, expressed as a function of time, is

F (t) = −2mvi,x(t)

dt
= −2mvi,xδ(t− tc), (4.24)

where tc denotes the time of the collision. Instead of writing force as a delta function, it is
possible to express (4.244.24) by the integral form of Newton’s second law, namely

− 2mvi,x =

∫ tc+ε

tc−ε
F (t)dt, (4.25)

where ε is a small time interval guarantees that there is only one collision between [tc−ε, tc+
ε]. Summing over all of the collisions on the wall, one obtains

− 2m
∑

w:(i,+êx)

vi,x =

∫ t′

0
F (t)dt. (4.26)

wherew : (i,+êx)denote the collision of disk iwith thewall in the xdirectionwhen traveling
towards the wall at Lx, and t′ is the total time of counting collisions. We are interested in
the pressure at equilibrium, which remains as a constant over time and can be measured
in experiments. The pressure in the x direction Px = −FLy is thus treated as a constant.3
Inserting (4.264.26) and expressing the force by its time average, one obtains an expression of
the pressure Px:

Px =
2m

t′Ly

∑
w:(i,+êx)

vi,x. (4.27)

For a square system, due to the symmetry of flipping the system with respect to the line
y = x, one has Px = Py. In general, Px 6= Py. Also, this definition of pressure requires that
there are walls in the system. Thus, it is not applicable to the periodic systems.

3The force exerted by the disk on the wall has a different sign than the force exerted by the wall on the disks.

52 CHAPTER 4. OBSERVABLES

4.3.1.2 Statistical-mechanics definition

In statistical mechanics, the pressure is defined as the response of Helmholtz free energy to
the change of the volume, namely

βP =
∂ lnZ

∂V
, (4.28)

also written as

βP = lim
∆V→0

1− Z(V−∆V)
Z(V)

∆V
. (4.29)

This expression has the following interpretation: pressure is the fractional change of the
partition function when removing a small piece of the system divided by the size of the
small piece. Removing a small piece of the system naturally introduces a transform of the
configuration. As the volume of the system change, some configurations are eliminated due
to either overlap or having disks in the removed piece, leading to changes in free energy.
However, there are various ways of removing the small piece, and we will demonstrate that
how to reduce the volume is relevant for the value of the pressure. The detail of changing
volume will be discussed in detail in section 4.3.24.3.2. Some possible ways of changing the
volume is sketched in Fig. 4.14.1.

For hard disks, the temperature is not relevant and the energy of all allowed configu-
rations are the same. So the partition function simply measures the ”number” of config-
urations. And 1 − Z(V−∆V)

Z(V) has a straightforward interpretation, that is, the fraction of
configurations that become invalid after removing a small piece of the system. Define an
observable

P ∗∆V (x) =

{
1

β∆V , configuration x is eliminated after the volume reduction;
0, configuration x remains valid after the volume reduction.

(4.30)

Fig. 4.1 Volume reductions for a non-periodic Lx × Ly box. (a) Reducing V from the
corners eliminates no samples, for sufficiently large σ. (b) Taking out a horizontal wall
rift to estimate the wall density ηy(Ly − σ) and the pressure Py. (c) Taking out a vertical
rift to estimate Px. (d) Homothetic reduction of the box. Clearly, the pressure obtained as
demonstrated in (a) is zero. (Figure from [7171].)

4.3 PRESSURE 53

It is readily verified that the expectation of P ∗∆V is P after taking the limit of ∆V → 0.
The pressure estimator is thus

βP̂ = lim
∆V→0

∑T−1
t=0 βP

∗
∆V (x(t))

T
. (4.31)

The derivation of the pressure estimator relies on choosing a volume-reduction procedure
and identifying configurations to be eliminated. The trajectory x(t) of the sampling algo-
rithm also plays a role in the derivation.

We have shown that, for a non-periodic box, certain ways of changing the volume lead
to the equivalence between the statistical-mechanics pressure and the kinematic pressure.

4.3.2 Pressure estimators

In the present subsection, we reduce the volume by removing rifts, averaging over rifts, and
uniformly shrinking the box and derive corresponding pressure estimators. We also derive
pressure estimators by considering the momentum exchange with the wall and through
the virial formula. Both derivations yield the same pressure estimator, indicating that the
pressure is well-defined, and the discrepancies in the historic pressure computation are un-
related to the difference in the pressure definitions. The pressure estimators derived in this
section are then used for high-precision pressure computations.

4.3.2.1 Wall rifts

Reducing the volume by rifts is first discussed in [8888]. In this section, we discuss the straight-
forward alternative derivationwe provide in the attached publication 3attached publication 3. Removingwall rifts
is not the most efficient way of reducing the volume, but the equivalence of two definitions
of pressure is shown via the wall-rifts pressure estimator.

Wall rifts refer to removing one slice at the boundary of a non-periodic box, as shown
in Fig. 4.14.1(b). In an Lx × Ly box, the volume may be reduced through a vertical ”rift”
[0, ε]× [0, Ly] with disk positions transforming as:

{x, y} →
{
∅ if x < σ + ε

{x− ε, y} if x ≥ σ + ε,
(4.32)

where ”∅”means that the disk is eliminated. Tomotivate themuchmore evolved estima-
tors that we discussed in detail in attached publication 3attached publication 3, we start with the naive ”binning”
approach discussed in section 4.2.14.2.1. The pressure can be estimated for finite ε from a finite
number of samples, but then requires an extrapolation towards ε → 0. According to sec-
tion 4.3.1.24.3.1.2, one can calculate pressure by finding the probability of being eliminated. This
probability is approximated by the histogram, and the probability of eliminating a configu-
ration by removing a rift is obtained by building a histogram of bin size ε → 0 and finding
the probability of being in the bin located at x = σ or x = Lx − σ. The result, as a func-
tion of ε, is summarized in Table 4.14.1. As ε→ 0, the pressure approaches the reference value
10.7963 shown in Table ITable I in the attached publication 3 [7070]. The discrepancy is due to having
multiple disks in the wall rift.

54 CHAPTER 4. OBSERVABLES

ε βP

0.1 6.968543(3)
0.01 10.3242(2)
0.001 10.7676(6)

Table 4.1 – Thermodynamic pressure estimations for four disks of radius σ = 0.15 in a non-
periodic square box of sides 1 using wall rift at Lx − ε of width ε. The error bar is obtained
from 10 independent runs starting from the same initial configuration. As ε → 0, the pres-
sure approaches the reference value shown in Table ITable I in the attached publication 3 [7070],
which is obtained with the same settings and which is obtained without binning.

Following the derivation in the limit of ε→ 0 in section III.C.1section III.C.1 in the attached publication
3 [7070], one obtains the wall-rift pressure estimator, expressed in the rescaled probability
density function:

β

[
P̂x
P̂y

]
=
N

V

[
ρx(Lx − σ)
ρy(Ly − σ)

]
. (4.33)

The boundary value of the rescaled line densities is obtained following the procedure dis-
cussed in section 4.2.14.2.1.

In EDMD and ECMC, the extrapolation can be avoided because of the infinite number of
samples produced in a given run-time interval τsim. The sampling algorithms are described
by Markov chains in the limit that the displacement of the active disk (or all disks in molec-
ular dynamics) at each step |dxi| = vidt is infinitesimal. For a run-time interval τsim, the
number of steps, also the number of configurations that can be sampled, is

nτsim = lim
dt→0

τsim
dt
∝ τsim. (4.34)

In a continuous sampling algorithm, the time plays the role of the number of sampled
configurations. For a distance interval ∆x, and for one of the moving disks at constant
velocity v, the number of sampled configurations is

n∆x = lim
dt→0

∆x

vdt
∝ ∆x

v
. (4.35)

For convenience, the unit of configuration count is set to 1/dt, and the number of sampled
configurations is τsim during τsim, and ∆x/v for displacement∆x.

In EDMD, the rescaled line densities of eq. (4.334.33) can be computed, without extrapola-
tion, by calculating the time spent by a disk when it is in the rift (the detailed discussion
about the rift and wall collision in molecular dynamics can be found in section III.C.1section III.C.1 in the

4.3 PRESSURE 55

attached publication 3 [7070]). The resulting EDMD wall-rift estimator takes the form of:

βP̂x =
1

2Lyτsim

∑
w:(i,±êx)

2

|v⊥(i)|
(4.36a)

=

〈
2

|v⊥wall|

〉 n̂±êx
wall︷ ︸︸ ︷

1

2Lyτsim

∑
w:(i,±êx)

1 (4.36b)

=
2
√
π√∑
v2i

Γ (N + 1
2)

Γ (N)
n̂±êxwall (4.36c)

N→∞−→
√

2πβmn̂±êxwall . (4.36d)

The sum in eq. (4.36a4.36a) goes over the wall collisions w of all disks i in ±êx direction, and
n̂±êxwall is the wall-collision rate per vertical unit line element. Each wall collision is an indi-
cation of sampling configurations that have at least a disk close to the wall. The number of
configurations having a disk in a fictive bin located at x = σ is proportional to the inverse
of its velocity in the x direction. In eq. (4.36a4.36a), 2/|v⊥wall| has an infinite variance. According
to the velocity distribution (2.202.20), 2/|v⊥wall| has a power-law tail of exponent −3. However,
with the analytical expression of the velocity distribution in section 2.1.2.12.1.2.1, this divergence is
avoided by finding the expectation of 2/|v⊥wall| and turning the sum into collision counting.
The pressure estimator of eq. (4.36c4.36c) can also be derived as a kinematic pressure estimator
through the momentum transfer with the walls (see section 4.3.2.44.3.2.4). Thermodynamic and
kinematic pressures thus agree already at finite N .

The same argument applies to straight ECMC (see section III.C.1section III.C.1 in the attached publi-
cation 3 [7070] for a detailed derivation). ECMC only detects the presence of the active disk
in the wall rifts, and a configuration to be eliminated is detected with a probability biased
by a factor of 1/N . This bias is corrected by multiplying the right-hand side of eq. (4.36a4.36a)
by N , resulting in the ECMC wall-rift estimator:

βP̂x =
N

2Lyτsim

∑
w:(a,±êx)

2

|v⊥wall|
= 2Nn̂±êxwall (4.37)

The same bias-correcting factor also applies to the reflective, forward, Newtonian vari-
ant of ECMC. The derivation of the contribution at each wall collision in these variants is
identical to the derivation of EDMD, and the bias-correction factor N is still needed. The
pressure estimator for the reflective, forward, and Newtonian ECMC is

βP̂x =
N

2Lyτsim

∑
w:(i,±êx)

2

|v⊥wall|
. (4.38)

The derivation of (4.384.38) uses exactly the same idea as the derivation of (4.36a4.36a). The num-
ber of the eliminated configurations after the transform is proportional to the inverse of the
active disk’s velocity in the x direction. The distribution of velocity for the three variants at
the wall is not known, and there is no further derivation rooted from eq. (4.384.38). Numeri-
cal experiment shows that the distribution of 2/|v⊥wall| has a power-law tail of exponent −3,

56 CHAPTER 4. OBSERVABLES

thus a diverging variance. Although a diverging variance may result in persisting bias in
stochastic computation [6262], we have not observed such bias.

4.3.2.2 Rift averages

Fig. 4.2 Vertical rift [xr, xr + ε] × [0, Ly]. (a): Lx × Ly box with vertical rift of width
ε at position xr. (b): Transformed sample, which is eliminated because of a pair overlap.
(Figure from [7070].)

In an Lx × Ly box, the volume may be reduced through a vertical rift inside the box
[xr, xr + ε]× [0, Ly] with disk positions transforming as:

{x, y} →


{x, y} if x < xr

∅ if xr ≤ x < xr + ε

{x− ε, y} if x ≥ xr + ε.

(4.39)

The pressure should not depend on where the rift is removed. Thus, the pressures obtained
by removing a rift at any possible xr ∈ [0, Lx] are the same. Averaging these pressures
yields the same pressure as each of them, and, the average uses sampled configurations
more efficiently. The wall rift can eliminate a configuration only if there is a disk close to the
wall (for finite ε) or awall collision (for ε→ 0). Similarly, the pressure estimator obtained by
removing a random rift considers configurations possessing two disks close enough to each
other at the rift or has a disk in the rift (for finite ε). To use the sampled configurations more
efficiently, one can remove the rift at every possible place and average the corresponding
pressure estimators. In this way, as long as a configuration have two disks close to each
other, it contributes to the pressure estimator. The resulting estimator is the rift-average
pressure estimator.

The eliminated configurations having disks in the rift (demonstrated in Fig. 4.34.3) lead to
the ideal-gas contribution to the pressure estimator:

βP̂
ideal gas
x =

εN

Lx

1

εLy
=
N

V
. (4.40)

This term is always in the rift-average pressure estimator, even if the radius of the disk is
zero.

4.3 PRESSURE 57

Fig. 4.3 Having a disk in the rift [xr, xr+ε]×[0, Ly]. In the limit of σ → 0, configurations
can only be eliminated in this way. The contribution of these configurations to pressure is
thus identical to the ideal gas pressure. (a): Lx × Ly box with vertical rift of width ε
at position xr and a disk whose center is in the rift. (b): Transformed sample, which is
eliminated because of a missing disk.

Fig. 4.4 Two disks that are close to each other. When in contact, the distance between
the disks in the x direction is ∆xmin

ij . Displacing one of the disks in the x direction such
that removing a rift of width ε between the disks leads to contact, the distance between the
centers of the disks is 2σ +

∆xmin
ij

2σ ε at precision O(ε).

Furthermore, the configuration is eliminated if the transformed configuration contains
overlaps, indicated by disk collisions in the limit ε→ 0. The overlap contribution of pressure
is derived considering the sample shown in Fig. 4.24.2. When the distance in the x direction
is ∆xmin

ij + ε, where ∆xmin
ij is the x-separation at contact, the distance between center of the

disks is approximately 2σ +
∆xmin

ij

2σ ε. This is due to (demonstrated in Fig. 4.44.4)

(∆xmin
ij +ε)2+4σ2−(∆xmin

ij)2 = 4σ2+2ε∆xmin
ij +ε2 =

(
2σ +

∆xmin
ij

2σ
ε

)2

+

(
1−

(∆xmin
ij)2

4σ2

)
ε2,

(4.41)
indicating the distance to be 2σ +

∆xmin
ij

2σ ε at precision O(ε). If there are disks i and j whose
distance is less than 2σ + ε∆xmin

ij /(2σ), the configuration is eliminated. Let the relative ve-
locity between two disks at collision be ∆vpair, and its component on the line connecting

58 CHAPTER 4. OBSERVABLES

the disk centers at collision be ∆v⊥pair. The time spent in to-be-eliminated configurations is
(2/|∆v⊥pair|)[ε∆xmin

ij /(2σ)]. The factor 2 is due to that the two disks at collisions approach
each other before the collision and leave each other after it. The configurations sampled
during approaching contributes (1/|∆v⊥pair|)[ε∆xmin

ij /(2σ)] to the pressure estimator, and so
does configurations sampled during leaving in EDMD. The probability of having a rift be-
tween two disks is bounded by ∆xmin

ij /Lx and (∆xmin
ij + ε)/Lx. Taking the limit ε → 0,

only configurations having two disks colliding with each other contribute to the pressure
estimator for an amount of

|∆xmin
ij |2
2σ

2

∆v⊥pair
. (4.42)

Following the derivation in section III.C.1section III.C.1 in the attached publication 3 [7070], one obtains the
EDMD rift-average estimator for Px:

βP̂x =
N

V
+

1

V τsim

∑
p:(ij)

|∆xmin
ij |2
2σ

〈
2

∆v⊥pair

〉
+

∑
w:(i,±êx)

〈
2σ

|v⊥wall|

〉 , (4.43)

and for P = (Px + Py)/2:

βP̂ =
N

V
+

σ

V τsim

∑
p:(ij)

〈
2

∆v⊥pair

〉
+

∑
w:(i,±êx,±êy)

〈
1

|v⊥wall|

〉 . (4.44)

In a non-periodic box, using the velocity distribution eqs (2.202.20) and (2.222.22), the EDMD rift-
average estimator takes the form of

βP̂ =
N

V
+

σ
√
π√∑
v2i V

Γ (N + 1
2)

Γ (N)
(n
±êx±êy
wall +

√
2npair) (4.45a)

N→∞−→ N

V

(
1 +

σ
√
πmβ

N
npair

)
, (4.45b)

where n±êx±êywall is the wall-collision rate, the number of all wall collisions per time interval,
and similarly for the pair-collision rate npair. In theN →∞ limit of eq. (4.45b4.45b), wall collision
play no role.

Rift-average pressure estimators for ECMC detect wall and pair collisions with biases
(see eq. (4.374.37)), that must again be corrected, namely by a factor N for each wall event and
by a factor N/2 for each pair event. The latter is because a lifted sample of N disks to be
eliminated is detected only if either i or j are active (see Fig. 4.54.5c). The factor N/2 also has
an alternative interpretation. There are N(N − 1)/2 pairs of disks that can be close to each
other, but only 1(N − 1) can be detected as only a single active disk is moving. The factor is
thusN(N −1)/2 divided by 1(N −1), yieldingN/2. Taking into account the bias-correction
factors, the straight-ECMC rift-average estimator is obtained:

βP̂x =
N

V
+

N

V τsim

∑
p:(ij)

∆xmin
ij +

∑
w:(i±êx)

2σ

 . (4.46)

4.3 PRESSURE 59

1
2

3 4

1
2

3 4

12

Fig. 4.5 ECMC rift estimators. (a): The ECMCwall-rift estimator only detects rift over-
laps of the active disk, explaining the factor N in eq. (4.374.37), that is absent in eq. (4.36a4.36a).
(b): A pair of disks (i,j) leading to the elimination of the sample is detected only if ei-
ther i or j are active, explaining a factor N/2 entering eq. (4.464.46). (c): Illustration of the
x-separation at contact∆xmin

ij (also relevant for EDMD). (Figure from [7171].)

The details and alternative forms of this estimator can be found in section III.C.1section III.C.1 in the at-
tached publication 3 [7070]. In a periodic box, the wall collision terms in (4.464.46) is dropped,
leading to

βP̂x =
N

V
+

N

V τsim

∑
p:(ij)

∆xmin
ij . (4.47)

In practice, P̂x is computed when the active disk moves in êx, and P̂y is computed when the
active disk moves in êy. The original rift formula proposed in [8888] is the same as (4.474.47), and
is has beenmuch used. In the attached publication 3attached publication 3, we put its derivation onto a firm basis.
As will be shown, there are also a number of generalizations that we are able to derive. In
our practical calculations, the formula (4.474.47) can also be used even for simulation algorithms
that produce discrete sets of samples. This is done by running tiny-chain-length straight
ECMC in sampled configurations.

For multithreaded ECMC, as there are multiple active disks, the contact ofNA(N −NA)

pairs of disks are detectable. The bias-correcting factor thus becomes N(N−1)
2NA(N−NA) , leading to

the pressure estimator in multithreaded ECMC:

βP̂x =
N

V
+

N(N − 1)

[NA(N −NA)]V τsim

∑
p:(ij)

∆xmin
ij . (4.48)

We have derived the pressure formula of reflective, forward, andNewtonian ECMC, dis-
cussed in chapter 3chapter 3, also by calculating the time spent in the rift. Each collision contributes

|∆xmin
ij |

2σ

(
1

∆v⊥in
+

1

∆v⊥out

)
=
|∆xmin

ij |
2σ

(
1

|v⊥in|
+

1

|v⊥out|

)
(4.49)

to the pressure estimator, where v⊥in and v⊥out denote the velocity of the active disk when the
active disk approaches its collision partner and the new active disk leaves the stopped active

60 CHAPTER 4. OBSERVABLES

disk, respectively. Here, the relative velocity is substituted by the absolute value of velocity,
since, in ECMC, one of the disks in collision is always at rest. The configurations sampled
when the old active disk approaches the target disk contribute the term proportional to
1/|v⊥in|, and the ones sampled when the new active disks leaving the stopped active disk
contribute the term proportional to 1/|v⊥out|. As in (4.464.46), there is a factorN/2 to correct the
bias for disk collision. The contribution at the wall is identical to EDMD when there is a
collision at the wall. Summing over all the contributions, one finds

βP̂x =
N

V
+

N

V τsim

∑
p:(ij)

|∆xmin
ij |2
4σ

〈
1

|v⊥in|
+

1

|v⊥out|

〉
+

∑
w:(i,±êx)

〈
2σ

|v⊥wall|

〉 . (4.50)

The distribution of velocity at collision is unknown, so this formula cannot be further re-
duced. Computation shows that the distribution of 1/|v⊥in| and 1/|v⊥out| has a power-law tail
of scaling −3, indicating a diverging variance.

4.3.2.3 Homothetic volume reductions

Besides by rifts, the volume V of an Lx × Ly box can be reduced by a homothetic transfor-
mation, where the box and all positions xi are homogeneously scaled by a factor 1− εα < 1,
while the disk radii σ remain unchanged. The transformation of the box corresponds to
simultaneous removing horizontal and vertical rifts of equal rift volume, but the disk posi-
tions then transform inhomogeneously, as in eq. (4.394.39).

A homothetic volume reduction yields the pressure βP = β(Px + Py)/2, rather than Px
or Py. It may be performed in two steps. In a first step (from (σ, V) to (σ′,V), see Fig. 4.64.6),
the box and the xi are unchanged, but the disks are swollen by a factor 1/(1− εα), possibly
eliminating samples. In a second step, all lengths are rescaled by 1 − εα, so that the radii
return to σ. This second step (from (σ′, V) to (σ, V ′)) is rejection-free, and its reduction of
sample-space volume, with Z(σ,V ′) = (V ′/V)NZ(σ′, V), constitutes the ideal-gas term of
the pressure.

Fig. 4.6 A homothetic volume reduction performed through a swelling of disks followed
by a uniform reduction of all lengths (box, positions, radii). (Figure from [7070].)

In the two-stage transitionZ(σ, V)→ Z(σ′, V)→ Z(σ, V ′), the two-step procedure turns

4.3 PRESSURE 61

eq. (4.294.29) into

βP
V ′→V
=

log [Z(σ, V)]− log [Z(σ, V ′)]
V − V ′

=
N

V
+

1

V − V ′
Z(σ, V)− Z(σ′, V)

Z(σ, V)
.

(4.51)

The final term again divides the elimination probability of a sample by the change of volume
(see also [33, 2020, 2424, 3030]).

The pair-elimination probability is related to the pair-correlation function, and the wall-
elimination probability is related to the rescaled line density. Following the derivation in
section III.C.2section III.C.2 in the attached publication 3 [7070], the pressure estimator is obtained:

βP̂ =
N

V
+
N

V

[
2π

(N − 1)σ2

V
g(2σ) + σ

ρx(σ)

Lx
+ σ

ρy(σ)

Ly

]
(4.52a)

N→∞−→ N

V
[1 + 2ηg(2σ)] . (4.52b)

Eq. (4.52b4.52b) has long been used for estimating pressures in MCMC [8484].
EDMD and ECMC can estimate the pressure without extrapolations of the pair correla-

tion functions and the wall densities by tracking the time during which close pairs exist, or a
disk is close to the wall. This simply reproduces eqs (4.444.44) and (4.454.45) for EDMD. The corre-
sponding homothetic pressure estimators for all variants of ECMC are readily derived, but
they have diverging variances. Besides, as the active disk cannot detect the wall in the y di-
rectionwhilemoving in the x direction in straight ECMC, the homothetic pressure estimator
in straight ECMC can only be applied to a periodic box.

4.3.2.4 Kinematic pressure estimators

The kinematic pressure estimators, implemented in EDMD, is derived based on the realistic
dynamics of hard disks. A wall estimator is derived following the kinematic definition of
pressure:

P̂x =
1

2Lyτsim

∑
w:(i,±êx)

2m|v⊥wall| (4.53a)

= 2m
〈
|v⊥wall|

〉
n̂±êxwall (4.53b)

=
mR
√
π

N

Γ (N + 1
2)

Γ (N)
n̂±êxwall , (4.53c)

N→∞−→
√
2πβmn̂±êxwall , (4.53d)

where in eq. (4.53c4.53c), we used the analytical expectation of velocity eq. (2.20b2.20b). At finite N ,
the estimator eq. (4.53c4.53c) is identical to the wall-rift pressure estimator of eq. (4.36c4.36c) derived
from the thermodynamic definition of pressure. Thus, different definitions of pressure lead
to the same estimator and the same numerical result.

An alternative estimator can be derived from the virial function

Gx = m

N∑
i=1

xivi,x, (4.54)

62 CHAPTER 4. OBSERVABLES

which is strictly bounded during molecular dynamics. The time average of its time deriva-
tive is thus bounded by |Gx|/t′, which is zero in the limit that the run time t′ → ∞. Thus,
we have 〈

d

dt
Gx

〉
= m

〈
N∑
i=1

(xiv̇i,x + v2i,x)

〉
= 0. (4.55)

The derivation of velocity can be expressed in terms of the momentum exchange, thus as-
sociated to collisions. The exact expression of each terms in (4.554.55) is obtained by track-
ing the momentum exchange at collisions. Following the detailed derivation discussed in
section III.C.3section III.C.3 in the attached publication 3 [7070], a kinematic EDMD pressure estimator is
derived from (4.554.55)

βP̂x =
N

V
+

β

V τsim

∑
w:(i,±êx)

〈
2σ|v⊥wall|

〉
+
∑
p:(ij)

(∆xmin
ij)2

4σ2

〈
2σ∆v⊥pair

〉
. (4.56)

The pressure is introduced into (4.554.55) by relating the pressure to wall collision using (4.534.53).
Inserting the velocity distribution eqs (2.202.20) and (2.222.22), this kinematic estimator becomes
equivalent to the thermodynamic rift-average estimator of eq. (4.434.43).

The distribution of velocity plays a crucial role in the molecular dynamics, in partic-
ular, in the pressure calculation using kinematic pressure estimators. As discussed in sec-
tion 3.2.43.2.4, themolecular dynamics samples aNV EMR ensemble for a system implementing
a periodic box. In this case, an extra factor of N−1N appears in the pressure estimator, leading
to an expression of

βP̂x =
N

V
+
N − 1

N

∑
p:(ij)

(∆xmin
ij)2

4σ2

〈
2σ∆v⊥pair

〉
. (4.57)

This formula is obtained in [3131] and [130130] using two different methods. The high precision
computation in a four-disk system numerically confirms this formula. The factor (N −1)/N
vanishes in the thermodynamics limit, and the relative correction introduced by this factor
is lower than 10−6 for N = 10242. So, for large systems, this factor can be ignored.

4.4 Orientational order of hard disks

The orientational order is recognized as an important aspect of physics in two-dimensional
systems [8282]. It reflects the position of a disk relative to its neighbors, namely the orienta-
tion of the line connecting a disk and its neighbor. The orientational order parameter was
originally defined for triangular lattice in [4040] as

ψ6 = e6iφ, (4.58)

where φ is the angle of the line connecting an atom and its nearest neighbor relative to êx.
The factor 6 is due to the symmetry of rotating π/3 of the triangular lattice. The orientation
between 0 and π/3 is mapped onto [0, 2π] by the factor 6. As the fully packed configuration
in the hard-disk model is arranged as a triangular lattice, the idea of orientational order is
also applicable to the hard-disk model. The orientational order is a crucial observable for

4.4 ORIENTATIONAL ORDER OF HARD DISKS 63

hard-disk phase transition, as the hexatic phase is characterized by the algebraic decay of
the orientational order.

For the hard disk model, the orientation order for each disk is defined as

ψ6(l) =
1

nbr(l)

nbr(l)∑
j=1

e6iφlj , (4.59)

where nbr is the number of neighbors in the Voronoi diagram of disk l, and φlj is the angle
of the line connecting disk l and its jth neighbor relative to êx. This local orientational order
can be used as a visual confirmation of the phase coexistence [1010]. The global orientation is
defined as the average of the local orientational order over all disks, namely

Ψ6 =
1

N

∑
l

ψ6(l). (4.60)

Ψ6 itself is defined in the form of an observable. Its estimator is the average of Ψ6 over all
sampled configurations. In a fluid, the system has no orientational order, and 〈|Ψ6|〉 is close
to 0. For a fully packed configuration possessing perfect orientational order, 〈|Ψ6|〉 = 1.

For a hard-disk ensemble, the probability density function of the configurations in the
sample space can be translated to a probability density function of orientational order in the
complex plane. The probability density possesses symmetries, inherited from the symme-
tries of the configurations. In a box with an arbitrary aspect ratio, flipping a configuration
with respect to the x axis or y axis yields another configuration. As a consequence, any Ψ6
and its complex conjugate have the same statistical weight, and the expectation of Ψ6 must
be on the real axis. In a square box, rotating a configuration by π/2 yields another config-
uration. The configuration containing hexagons pointing in êx is referred to as a ”base”
configuration, while the configuration containing hexagons pointing in êy is referred to as a
tip configuration. A typical base configuration and a typical tip configuration are shown in
Fig. 4.74.7. As a consequence, any Ψ6 has the same statistical weight as Ψ6 × eiπ. The complex
plane is thus divided into four partitions, specified by π

2 i < argΨ6 <
π
2 (i + 1), i = 0, 1, 2, 3.

The probability distribution of Ψ6 in each of the regions can be obtained from the probability
distribution in another region by rotation and reflection. Due to both symmetries, the ex-
pectation of global orientation is zero in a square box. Having a known expectation allows
one to use the global orientation as a probe for the convergence of the Markov chain (see
section 7.1.17.1.1).

The local orientational order is calculated following its definition by finding the angle
of the line connecting a disk and its neighbors in the Voronoi diagram. In practice, the
neighboring disks in the Voronoi diagram are found by Delaunay tessellation.

64 CHAPTER 4. OBSERVABLES

a) b)

Fig. 4.7 Two typical configurations for N = 224, η = 0.71, with red line highlighting
the typical hexagons. (a) A typical base configuration whose Ψ6 = 0.70 − 0.01i. (b) A
typical tip configuration whose Ψ6 = −0.73 + 0.01i.

Chapter 5

Implementation of algorithms

Sampling algorithms and estimators (the first two steps in the stair-case structure of Fig. 1.11.1)
are implemented in computer programs. The implementation process itself is complicated
and merits separate attention. As an example, the velocity of a given disk after collisions in
forward ECMC can be expressed as a single formula containing a random number. How-
ever, in the computer program, the random number is generated from a complicated pro-
cedure that features arithmetic and logical operations. The use of random numbers has
become so common that one hardly realizes that it depends on amultitude of logicical oper-
ations. The gap between the abstract algorithm and its implementation is more apparent in
our multithreaded ECMC introduced in chapter 3chapter 3, in which we have implemented lock-free
programming that may introduce random infrequent wrong results that are practically un-
detectable. Furthermore, The implementation problems posed by GPU programming stem
from data parallelization, and are very different from the task parallelism in multithreaded
ECMC. The problem regarding the multithreaded ECMC is solved by describing our imple-
mentation in the sequential consistency andmapping our implementation onto an absorbing
Markov chain. So, in summary, an algorithm leads to an implementation, and again leads
to an abstract algorithm, whose behavior can be proven.

In this chapter, we first present the formal verification of the computer programs, es-
pecially the sequential consistency we have used to verify our multithreaded ECMC pro-
gram in C++. Our absorbing-Markov-chain analysis in the attached publication 1attached publication 1 is also
discussed, serving as a case study of formal verification. We further discuss the perfor-
mance of the implementation of sampling algorithms, especially the dependence of the per-
formance of multithreaded ECMC on the hardware. The present chapter follows closely the
section 2.3, 3.2, 3.3section 2.3, 3.2, 3.3 in the attached publication 1 [7171].

5.1 Formal verification

In multithreaded ECMC, both the position and the local time of an active disk are updated
at collisions. However, today’s computer architecture allows for only a single operation at
a time on a single thread. Therefore, the specific order of updating the two attributes of
the active disk has to be defined. Naturally a question arises: will any order of updates
leads to the same output as specified by the sampling algorithm? This question is answered
by the formal verification procedure, which refers to describing the implementation of the

65

66 CHAPTER 5. IMPLEMENTATION OF ALGORITHMS

computer program by mathematical models and proving rigorously the correctness of this
formal implementation. In this section, wepresent our computer program formultithreaded
ECMC in C++ in the framework of sequential consistency and discuss the design of the
program and the language features we have implemented. Then we show that the order
of updating position and local time can lead to differing outcomes, and that there is no
deadlock in our program.

5.1.1 Sequential Consistency

Sequential consistency [6565] is a tool for describing the causal relation between operations in
multithreaded programs. It is a mathematical representation of a computer program. In the
sequential consistency, the program is represented by a sequence of basic operations such
as read, write, and arithmetic operations. The operations on each thread are executed by a
given order. However, the order of operations on different threads is not specified, and there
are numerous orders of executing operations onmultiple threads (demonstrated in Fig. 5.15.1).
An abstract operation in the sampling algorithm (for example, updating velocity) is usually
realized through a collection of operations on a computer. The causal relation of two collec-
tions of operations falls in one of the two cases: ”precedes” and ”can affect”. Let A and B
be collections of operations. A precedes B means all operations in A precede all operations
in B. In this case, B has no impact on A, as operations in A have already finished before
executing the first operation in B. A can affect B means that some of the operations in A
precede some of the operations inB, and it is hard to say whetherA andB affect each other.
The sequential consistency comes with six axioms that allow the derivation of the causal
relation between any two collections of operations. For example, the mutual exclusion of a
collection of operationsC, i.e. only one of the threads is allowed to execute operationsC at a
time, can be proven via mathematical derivation showing that the operations C on different
threads precede each other.1 The sequential consistency takes into account that, when run-
ningmultithreaded program on a real processor, the order of operations on different threads
cannot be controlled, and that running a program repeatedly does not exhaust all possible
orders. It solves the problem that sometimes an undesired behavior is too infrequent to be
observed.

5.1.2 Example: Sequential consistency of multithreaded ECMC

The implementation of the multithreaded ECMC algorithm is abstracted as Algorithm 11.
Operations 1ι to 20ι are executed repeatedly before the active disk associated to the thread
covers a given distance. In each iteration, the thread first computes the time it takes for
its active disk to collide with the three potential targets specified by the constraint graph
(2ι,3ι,4ι). In themeantime, horizon violations, introduced in chapter 3chapter 3, are checked for (5ι).
A horizon violation terminates all threads. One of the three potential targets, which has the
lowest time of flight, is identified as the target of collision (6ι, 7ι, 8ι, 9ι). Then, the thread
tries to acquire the target by a compare-and-swap (CAS) operation (10ι). Acquiring the
target disk requires it being static. If it is successfully acquired, the thread checks whether
the position of the target disk is updated since the time of flight was computed (13ι). If

1In multithreaded programs, the operations on each thread are usually implemented in loops. Thus, the
collection of operationsC can be executed repeatedly, both before and after specific operations on other threads.

5.1 FORMAL VERIFICATION 67

it remains the same, the local time and the position of the active disk are increased by the
time of flight (15ι, 16ι), and the local time of the target disk becomes the same as the active
disk (14ι). At last, the thread releases the active disk before the collision by setting its tag to
static (17ι). If the target disk is active or its position has changed since the calculation of the
time of flight, the thread directly enters the next iteration and starts from the time-of-flight
computation.

Algorithm 1 (Multithreaded ECMC (abstraction of implementation)) This algorithm is taken
from [7171]. The operations in this algorithm take place between two breakpoints. Before the run starts,
all local times are set to 0, and all tags are put to static, except for the active spheres, whose tags cor-
respond to their thread ι. The buffer is set to {1a, 1b}. A random switch selects one buffer element.
The corresponding statement is executed on its thread, and the buffer is replenished. The following
provides pseudo-code for the multithreading stage (iι is the active sphere, jι the target sphere, and
distanceι the difference between the chain length and the local time, all on thread ι):

1ι τι ← distanceι; jι ← iι; xι ←∞
2ι for ̃ in {1,2,...,n} \ iι :
3ι x̃ ← ̃.x
4ι τi̃ ← x̃ − iι.x− bi̃
5ι if iι.t+τi̃< ̃.t : abort
6ι if τi̃ < τι :
7ι jι ← ̃
8ι xι ← x̃
9ι τι ← τi̃
10ι jι.tag.CAS(static,ι)
11ι if jι.tag = ι :
12ι if τι < distanceι :
13ι if xι = jι.x :
14ι jι.t← iι.t+ τι
15ι iι.t← iι.t+ τι
16ι iι.x← iι.x+ τι
17ι iι.tag ← static
18ι distanceι ← distanceι − τι
19ι iι ← jι

else :
20ι jι.tag ← static

goto 1
else :

21ι iι.t← iι.t+ τι
22ι iι.x← iι.x+ τι
23ι distanceι ← 0
24ι iι.tag ← stalled

else : goto 1
25ι if distanceι > 0 : goto 1
26ι wait

When all k threads have reached their wait statements, the algorithm terminates.

68 CHAPTER 5. IMPLEMENTATION OF ALGORITHMS

The implementation is based on a data structure in which each disk is defined as an
object, which contains the position, three arrows in the constraint graph, local time, and tag.
The tag denotes whether the disk is active or static. The disk objects are stored together
as an array. The multithreaded ECMC is implemented on a shared-memory multithreaded
computer. The operations in Algorithm 11 are executed simultaneously on multiple threads
(logical processors) which are labeled by their identity ι. The array storing the disk objects
can be read from and written into by all threads, so each thread ”sees” the work done by
other threads in real-time.

A common issuewith the shared-memoryprogram is data racing, that is, multiple threads
trying to write to the same location in the memory. Data racing leads to undefined behav-
ior such that the involved memory location stores an unpredictable value. Data racing is
avoided by forbidding two threads from moving a single disk at the same time. This is
achieved by defining the tag as an ”atomic” variable and using the atomic ”compare-and-
swap” operation to update its value. The tag of an active disk is the thread identity ι, and is
stalled when the active disk reaches the next breakpoint. In other cases, the disk tag is static.
At collisions, the thread (of identity ι) reads the tag of the target. If it is the identity of an-
other thread (for example ι′), thread ιwaits until thread ι′ moves its active disk away. If it is
static, the collision is allowed to take place, and thread ιwrites its identity ι to the tag of the
target. If the compare-and-swap operation is not implemented, reading the tag and writing
a new value into it are performed as two separate operations. Between the two operations,
thread ι′ can write its identity into the tag of the target disk on thread ι, and consequently,
thread ι and ι′ move the same disk. The atomic compare-and-swap operation solves this
problem by allowing no operation between the read and write. A detailed discussion on the
compare-and-swap operation can be found in Remark 9Remark 9 in the attached publication 1 [7171].

The C++ compiler sometimes rearranges operations for better performance. However,
the position and the local time of an active disk must be updated before the disk is re-
leased and becomes static. This is guaranteed by the implementation of the memory order
memory_order_seq_cst in the atomic compare-and-swap operation, which forbids moving
operations across the CAS. Furthermore, when a thread acquires a disk, it checks whether
the position of the disk is unchanged since the time-of-flight computation, in order to con-
firm that the disk has not been moved and then released by other threads before being ac-
quired. The CAS, together with the check, serves as an effective lock, implemented in place
of a true lockwhich blocks the code accessing the local time andposition and slows down the
program. This is referred to as lock-free programming, discussed inRemark 10 and Remark 12Remark 10 and Remark 12
in the attached publication 1 [7171]. As only the position is checked in the effective lock, the
order of updating the position and local time is crucial. This will be proven below by formal
verification.

The Algorithm 11 is complicated, and it is difficult to answer the following questions: if
the program finishes without any violation of horizon conditions, is the final configuration
always the same? Is there any deadlock in the program? Also, we are interested in knowing
whether changing the order of updating the position and the local time impacts the pro-
gram. All of these questions can be answered by sequential consistency of multithreaded
ECMC. We study two-thread runs in a four-disk and a five-disk system for a short chain
length by mapping them to absorbing Markov chains. We process the two-thread run using
a single-thread program simulating a multithreaded processor. The operation to be exe-
cuted is referred to as a buffer. For the two-thread case, the buffer is expressed as a pair of

5.1 FORMAL VERIFICATION 69

Fig. 5.1 Examples of orders of executions for a two-thread run. Both threads can either run
at the same pace or totally be de-synchronized with each other. The probability of observing
a specific order that leads to the wrong outcome (if it exist) may be vanishing.

. . .

state 1

. . .

state m

. . .

state 2 state 3

. . . abort
state x

terminate statestate y state n

Fig. 5.2 How the 3670 states are created. Starting from the initial state, two choices of
threads generate two states. All the unique states are stored to generate new states. This
process is repeated until all the states have been discovered.

operation indices. The state of the program, which allows for describing how the program
runs, contains the disk objects, all local variables, and the buffer. The state contains all the in-
formation of the program, in the sense that executing an operation on a given thread evolves
a state to another in a deterministic manner. There is a unique state ”abort”, indicating that
the program is terminated due to the violation of horizon condition. The ”abort” state does
not have buffer content. The simulated multithreaded processor randomly selects one of
the two threads and processes the buffer content on the selected thread. In a single run, the
operations can be executed following a large number of possible orders (as for example in
Fig. 5.15.1).

70 CHAPTER 5. IMPLEMENTATION OF ALGORITHMS

Fig. 5.3 The 3670 states in Alg. 11 for a 4-disk system projected onto the buffer. The ter-
minate buffer {26a, 26b} corresponds to a single state. (Figure from [7171].)

We exhaust all possible orders and find all possible states. Denoting the threads by a
and b, when the simulated multithreaded processor makes a move, the state of the program
either transits to the state obtained by executing an operation on thread a or thread b. When
the violation of the horizon condition is detected, the state leading to horizon violation tran-
sits to the state ”abort”. For each discovered state, we find the two possible states obtained
by executing the buffer content on either of the threads. All the discovered states are stored
in a set. We repeat this process until all the new states are in the set of explored states. This
procedure is demonstrated in Fig. 5.25.2. There are 3670 states in the 4-disk case we study.
A buffer can correspond to multiple states. The ”terminate” buffers {26a, 26b} have only
one state, indicating that the lifted configuration when the program terminates without any
horizon violation is always the same. All states that are not ”abort” or ”terminate” die out
at large times, indicating that there is no deadlock in the program. All states may be pro-
jected onto their buffer and visualized (see Fig. 5.35.3). When applying the same analysis to
a 5-disk configuration, exchanging operation 15ι and 16ι in Alg. 11 leads to two terminate
states. This result indicates that the order of operation 15ι and 16ι is crucial, as exchanging
them can lead to a wrong final configuration. The detailed discussion related to sequential
consistency of the multithreaded ECMC can be found in Section 2.3 and 2.4Section 2.3 and 2.4 in the attached
publication 1 [7171].

This case study of multithreaded ECMC demonstrates the strength of formal verifica-
tion. When running the C++ program, exchanging operations 15 and 16 produce virtually
no wrong output. Also, the rare wrong output is not reproducible, as the randomness in
the multithreaded processor cannot be seeded. Running the program repeatedly and not
seeing undesired output does not prove the program is correct. Yet the reordering problem
is detected by formal verification.

5.2 PERFORMANCE OF COMPUTER PROGRAMS 71

1 5 10 20 40
of physical threads (OMP_NUM_THREADS)

1.1e+11
2.4e+11
3.2e+11

6.3e+11

1.1e+12

1.6e+12
Ab

so
lu

te
 sp

ee
d

(e
ve

nt
s/

ho
ur

)

Multi-thread x86
Serial x86 (single-thread code)

1 4# of thr.
1.2e+10

4.7e+10

Ab
s.

sp
. ARM

2.2
1.0

2.9

5.7

10.3

14.3

Re
la

tiv
e

sp
ee

d

1.0

3.8

Re
l.

sp
.

Fig. 5.4 The EPH for multithreaded ECMC between two breakpoints for a 20 cores (40
threads) Intel x86 CPU and an ARM CPU. The number of active disks is always 80. The
single-thread code implements the pre-computed constraint graph but no atomic variable.
Compared to the cell-based version, the constraint graph introduces a speedup of 10. The
speed on the x86 CPU increases linearly for 1 to 20 threads and 21 to 40 threads with two
different slopes. At 40 threads, the program reaches 1.6 × 1012 EPH. On an ARM CPU,
the absolute speed is ten times slower. However, the performance scale perfectly with respect
to the number of threads and is better than the x86 CPU. This may be due to the various
frequency of the x86 CPU. (Figure from [7171].)

5.2 Performance of computer programs

In chapter 3chapter 3, we discussed the performance measured in the number of moves. However,
depending on the implementation, the computer time it takes to process amove differs dras-
tically. We measure the performance of the computer programs by the number of moves
(events) performed per hour (EPH).

The multithreaded ECMC has multiple implementations, all in C++, using OpenMP,
benchmarked on Intel Xeon 6230, 20 cores (40 threads) @ 2.10(3.90)GHz. The implemen-
tation discussed in section 3.3section 3.3 in the attached publication 1 [7171], whose performance is
shown in Fig. 5.45.4, treats only the run between two breakpoints. The constraint graph is pre-
calculated, and the horizon violation is ignored. This implementation manages to achieve
1.6×1012 EPH, 100 times the performance of the serial implementation. Combining the EPH
with the performance discussed in chapter 3chapter 3, we arrive at the conclusion that the |Ψ6| can
decouple with the extreme initial condition in hours. With this implementation, we show
that ECMC algorithms can be parallelized, even though this was finalized only partially, as
the horizon violations have to be taken care of for practical use. Our work-in-preparation
implementation of multithreaded ECMC is able to back up the lifted configuration at each
breakpoint, and rewind to the last breakpoint if a horizon violation is detected. When the

72 CHAPTER 5. IMPLEMENTATION OF ALGORITHMS

12345 10 20 40
of physical threads (OMP_NUM_THREADS)

0.0e+00

2.5e+10

5.0e+10

7.5e+10

1.0e+11

1.2e+11

1.5e+11

1.8e+11

Ab
so

lu
te

 sp
ee

d
(e

ve
nt

s/
ho

ur
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

sp
ee

d

No synchronization
Single thread verion

Fig. 5.5 The EPH for multithreaded ECMC between two resamplings in an implemen-
tation that rewinds the system to the last breakpoint in the case of a horizon violation,
measured on the same x86 CPU as in Fig. 5.45.4. The blue curve is the reference between-
breakpoint performance. This curve is lower than the curve in Fig. 5.45.4 due to the overhead
related to rewinding. The impact of the horizon violation manifests as the two-thread per-
formance being worse than the single-thread performance. The performance scales linearly
with respect to the number of threads until 10 threads, then the return of adding more
threads becomes diminishing. At 40 threads the program reaches 1.8× 1011 EPH, roughly
ten times slower than the implementation in Fig. 5.45.4.

5.2 PERFORMANCE OF COMPUTER PROGRAMS 73

horizon violation takes place, the program has to restart from the last breakpoint, and some
of the computation has to be repeated. Preparing and recovering from backup are also time-
consuming. As a consequence, as shown in Fig. 5.55.5, this implementation is only 10 times
faster than the serial implementation.

However, as the direction of velocity is required to change frequently, the constraint
graph has to be computed frequently. The third implementation of multithreaded ECMC
takes into account the computation of constraint graphs, which introduces a huge bottleneck
and bring the performance down to ≤ 1011 EPH. Again, this is also a work in preparation.
In the third implementation, the constraint graph is computed on the CPU. In the constraint
graph computation, the hard-disk configuration is read-only, and each memory location in
the constraint graph is written to only once, allowing for massive parallelization. We have
attempted themassively parallel constraint-graph computation on the GPU. Still, the perfor-
mance is limited by the bandwidth of transmitting data between the GPU andCPUmemory.
We are waiting for further hardware that may solve the bandwidth problem. Nevertheless,
we have shown that the full implementation of a parallelized ECMC is possible.

The state-of-the-art single-thread program for hard disks is straight ECMC implemented
in C++. The number of events per hour is roughly 1010. This means evolving the |Ψ6| of an
ordered or a disordered configuration to its typical value takes roughly several days. This
implementation of ECMC features a cell system. The constraint graph is not implemented,
as the direction has to be changed frequently, and the constraint graph needs to be recalcu-
lated [5757]. Implementing the constraint graph can speed up ECMC for ten times, but the
computer time consumed by the serial constraint-graph computation is huge.

By the time when this thesis is written, the best-performing program is the GPU imple-
mentation of MPMC in C++. On a single NVIDIA GeForce RTX3090 GPU, the MPMC code
reaches 2.1 × 1013 moves per hour [7070], indicating that evolving the |Ψ6| of a completely
ordered (or completely disordered) initial configuration to its typical value takes roughly
two days. The performance of the MPMC program is an order of magnitude better than an
earlier implementation [2929, Table II], and it is likely to further increase. Compared to the
Metropolis algorithm, the massive parallelization has a price to pay. The disks are confined
in the checkerboard cells in MPMC, and the checkerboard needs to be repositioned. Repo-
sitioning the checkerboard is computationally cheap. However, it still make the each move
in MPMC slightly less efficient than in the Metropolis algorithm.

Now, it would be interesting to seewhether other variants of ECMC (and of event-driven
algorithms in general) can be parallelized as was described in the present chapter. One of
the main limitations of our approach is the reliance on the constraint graph (which appears
restricted to the straight variant of ECMC). Clearly, much work is required to understand
whether ECMC algorithms can be successfully parallelized.

74 CHAPTER 5. IMPLEMENTATION OF ALGORITHMS

Chapter 6

Statistical analysis

In the example of the hard-disk problem, that is the subject of this thesis, the computer out-
puts a correlated sequence of hard-disk configurations, that is, of samples or of observables
such as the pressure. To simplify, we consider only observables that can be expressed as
functions of a single sample. Statistical analysis of the sequence guarantees that the running
averages roughly correspond to the expectations (as guaranteed in the infinite-time limit)
by the ergodic theorem for Markov chain, and that the uncertainty is correctly treated. As
for any Markov chain, the computer outputs correlated data. Although samples spaced
by more than the correlation time are practically independent, it is usually not optimal to
analyze only decimated data (for which the most naive methods that assume the sample
to be independent can be used). In this chapter, we introduce the statistical analysis used
throughout this thesis.

In the present chapter, we introduce to the statistical analysis in the hard-disk simulation,
especially pressure computation, as well as the statistical tools required in the analysis. We
verify our implementation of the sampling algorithm by comparing the disk-position distri-
bution, which can be done by performing a variant of the Kolmogorov–Smirnov test [119119].
We are also interested in the error bar of pressure, which is given either by blocking [3535, 5353]
or stationary bootstrap [9494, 9797, 100100, 101101]. The content in this chapter is only alluded to in
the Appendix A.2Appendix A.2 in the attached publication 3 [7070]. It was however used in all our pub-
lications but not treated in detail. The analysis discussed in the present chapter applies to
mixed Markov chains. As will be discussed in chapter 7chapter 7, in realistic settings, the length of
the run is usually shorter than the mixing time. Reliable analysis relies on not only rigorous
methods discussed in the present chapter but also studying special observables as discussed
in chapter 7chapter 7.

6.1 Distribution comparison

As an example of inference problems typically appearing in this thesis, we want to test
whether two implementations of the reflective ECMC algorithms, one with resampling and
the other without resampling, sample the same distribution. These implementations can
be compared by examining the difference between their spatial density. As discussed in
chapter 4chapter 4, the comparison is usually done on the level of observables (that is, on a statis-
tic of the samples, rather than the configurations themselves). A convenient statistic is the

75

76 CHAPTER 6. STATISTICAL ANALYSIS

distribution of one-dimensional projections of disk positions, represented by the empirical
distribution (4.184.18), which is rewritten as

F̂n(x) =

∑n
i=1 I(Xi ≤ x)

n
, (6.1)

where

I(Xi ≤ x) =
{
1, if Xi ≤ x;
0, else.

(6.2)

There Xi are the sampled x positions, and n = Nnsample is their total number. Let the cu-
mulative distribution function be F (x), the Dvoretzky-Kiefer-Wolfowitz inequality for inde-
pendent samples,

P

(√
n sup

x
|F (x)− F̂n(x)| > ε

)
≤ e−2ε

2
, (6.3)

suggests that the empirical distribution converges to the cumulative distribution, and the
statistic supx |F (x)− F̂n(x)| scales as n−

1
2 [2727, 7979, 119119]. As the positions of the disks may be

correlated, the bound in (6.36.3) may no longer be true for the hard-disk position distribution.
Nevertheless, the n− 1

2 scaling remains.
The DKW inequality and the scaling of the statistic supx |F (x)− F̂n(x)| provide a simpli-

fied example of what happens in reality. In practice, the true distribution is not known, and
two empirical distributions are compared with each other. The difference of two empirical
distributions F̂n(x) and Ĝm(x) is characterized by the statistics defined as

Dn,m = sup
x
|F̂n(x)− Ĝm(x)|. (6.4)

In the limit of n→∞ andm→∞, if F = G, the statistics Dn,m satisfies [4343]

P

(√
mn

m+ n
Dn,m ≥ ε

)
→ 2

(
e−2ε

2 − e−2(2ε)
2
+ e−2(3ε)

2 − ...
)
. (6.5)

Assuming that we use only a fraction k < 1 of all the samples to construct the empirical
distributions such that n = kn′,m = km′, where the total number of samples are n′ andm′.
Equation (6.56.5) becomes

P

(√
k
m′n′

m′ + n′
Dk,n′,m′ ≥ ε

)
→ 2

(
e−2ε

2 − e−2(2ε)
2
+ e−2(3ε)

2 − ...
)
. (6.6)

In the limit kn′ → ∞ and km′ → ∞, the statistics Dk,n′,m′ scales as k− 1
2 . In practice, we

prepare two big samples of size n′ and m′, respectively. Then we chose a fraction k out of
both samples, and calculate the statistic Dk,n′,m′ . If both samples are statistically the same,
the statisticsDk,n′,m′ scales as k−

1
2 . If the samples are obtained from different distributions,

there will be persisting deviation from zero in Dk,n′,m′ . Practically, we confirms that two
distributions are identical if the scaling k− 1

2 is observed and D1,n′,m′ becomes sufficiently
small (typically 10−4 for the density distribution of (6.16.1)). We use this method to validate
implementations of sampling algorithms, and also to study the necessity of resampling in
ECMC algorithms. This method assumes that configurations are sampled from the station-
ary distribution. The scaling is not observed if the Markov chain is not mixed.

6.2 CONFIDENCE INTERVAL OF CORRELATED SEQUENCES 77

6.2 Confidence interval of correlated sequences

To continue with the description of the hard-disk model as an example of a general estima-
tion problem, the pressure is the expectation of its estimator. To characterize the fluctuation
of this value, we calculate its confidence interval, that is, to find an interval (P̂α,low, P̂α,high)
such that, for a probability larger than 1−α, the expectation of pressure falls inside this inter-
val [119119]. If the distribution of the pressure estimator is symmetric, the confidence interval
is centered at the expectation. The half-length of a confidence interval is usually referred to
as the ”error bar” for α ≈ 0.32.

In order to get hold of the fluctuation of the pressure estimator P̂ , the whole run is bro-
ken into nsequence consecutive small runs, and the pressure estimator is evaluated in each of
them. The pressure is given as a correlated time series P̂1, P̂2, ..., P̂nsequence . The value of the
estimator during the whole run is the average of the time series, P̂ =

∑nsequence
t=1 P̂t/nsequence.

For independent time series, the error bar of its average is the standard error σ/√nsequence
of the time series, where

σ =

√∑nsequence
t=1 (P̂t − P̂)2
nsequence − 1

(6.7)

is the standard deviation of the time series. In pressure computation, there are usually cor-
relations in the time series that complicates the problem. The correlation is characterized by
the auto-correlation function C(τ) defined as

C(τ) =

∑nsequence−τ
t=1 (P̂t − P̂)(P̂t+τ − P̂)

(nsequence − τ)σ2
. (6.8)

Usually the auto-correlation functionC(τ) approaches 0 as τ approaches∞. It defines a time
scale referred to at the auto-correlation time, beyond which two elements in the time series
are practically independent. For a correlated time series, the standard deviation is larger
than (6.76.7), since (6.76.7) treats every element in the series as independent, thus over-estimated
the information carried by each element. The error bar of a correlated time series is obtained
mainly by two methods: blocking and stationary bootstrap. The error bar is also obtained
by doing independent runs and finding the standard error of their results. However, these
runs usually starts from correlated (if not identical) initial configurations, and the corre-
lation of these ”independent” runs is not well controlled. Thus, obtaining the results in a
long run and presenting the result in a consistently correlated time series is preferred over
”independent” runs, unless the independence of the runs has been thoroughly studied.

Inspired by the renormalization group theory [122122], the blocking method is first pro-
posed in [3535] to analyze correlated time series. In the blockingmethod, the operation of aver-
aging two pressures next to each other is applied to the time series repeatedly. For example,
the time series P̂1, P̂2, ..., P̂nsequence becomes P̂ ′1, P̂ ′2, ..., P̂ ′nsequence/2

, where P̂ ′i = (P̂2i−1 + P̂2i)/2.
Each operation reduces the length of the time series by half. The number of original ele-
ments, namely P̂1, ..., P̂nsequence , in each transformed element is thus 1, 2, 4, 8, ... as the oper-
ation is applied repeatedly to the time series. The transformed element can be seen as a
sub-series. The auto-correlation function of the transformed elements is calculated using
(6.86.8) after substituting the original elements in the formula into transformed elements. So,
if the length of the sub-series, referred to as the block size, is much larger than the auto-
correlation time, the auto-correlation function of the transformed time series is zero except

78 CHAPTER 6. STATISTICAL ANALYSIS

for at τ = 0. In this case, the standard error of the transformed time series is the error bar,
and further transform keeps it unchanged. The computed standard error has its own un-
certainty. If the block size becomes too large compared to the length of the original series,
the transformed series has too few elements. The uncertainty of the standard error becomes
too large, resulting in large fluctuation in the computed error bar. In practice, the blocking
is performed by plotting the standard error, together with the uncertainty of the standard
error, as a function of the block size. The standard error increases with respect to the block
size at the beginning. Then, a plateau emerges. At last, when the block size is comparable
with the length of the series, the standard error of the transformed series can take any value
due to the fluctuation. The error bar of the time series is the value of standard error at the
plateau. If the fluctuation becomes significant before the plateau showing up, the time series
is too short for statistical analysis. The optimal block size can be obtained automatically [5353].

Another method of calculating the error bar is the stationary bootstrap [100100]. Similar to
the idea in the bootstrap [2828], the stationary bootstrap duplicates the time series as pseudo
bootstrap time series {P̂ bt , t = 1, ..., nsequence}, b = 1, ..., nb by shuffling. Denote the average of
the pseudo bootstrap time series as P̂ b, the standard deviation of the average of the bootstrap
time series

σb =

√√√√∑nb
b=1

(
P̂ b − 1

nb

∑nb
b=1 P̂

b
)2

nb − 1
(6.9)

is the error bar of the original time series. As it is possible to generate an infinite number
of the bootstrap time series, the uncertainty of σb can be arbitrarily small. Shuffling in the
stationary bootstrap takes into account the correlation between the elements. There is a pa-
rameter p ∈ (0, 1) in the stationary bootstrap, namely the probability of choosing a random
element in the original time series when adding an element into the bootstrap time series.
The bootstrap time series is created starting from choosing a random element in the origi-
nal time series and adding it to the empty bootstrap time series. Denoting the last element
added to the bootstrap time series as P̂t, with probability 1− p, P̂t+1 is added into the boot-
strap time series. P̂nsequence+1 is regarded as P̂1. With probability p, a random element in
the original time series is added to the bootstrap time series. Repeat this process until the
length of the bootstrap time series is equal to the length of the original time series. The
value of p is chosen such that the mean square error of the error bar calculated by (6.96.9) is
minimized [9494, 9797, 100100, 101101].

The blocking method and stationary bootstrap are the statistical analyses we have per-
formed in the attached publication 3attached publication 3. The cross-validation of pressure estimators in the
same publication also relies on the precise computation of error bars. The error bars con-
stitute an interval estimator, while the running average of the pressure is a point estimator.
Both of the methods we present in this section yield reliable confidence interval for mixed
Markov chains. However, as will be discussed in chapter 7chapter 7, these methods along can under-
estimate error bars and lead to biased results if the Markov chain is not mixed well.

Chapter 7

Interpreting simulations

Interpreting the output of computer programs is the uppermost step in the stair-case struc-
ture in Fig. 1.11.1, where conclusions in physics are drawn from the numbers obtained from an
algorithm (step 1), that correspond to a certain observable (step 2), implemented in soft-
ware (step 3), that are validated (step 3), and that have reliable error bars (step 4). For
example, the numerical equation of state, that is, the computed pressure as a function of
volume, has once served as an evidence of the phase transition. However, in the work of
this thesis, we focus on the method of hard-disk simulation instead of the physics, and we
are still using the conceptual framework of the phase transition scenario proposed in [1010]
and confirmed in [2929]. We are interested in the information encoded in the numerical out-
puts about computation itself. In this chapter, we discuss the information in the output that
concerns the convergence of the computation and the reliability of results in the case of non-
convergence. The present chapter discusses again the statistical analysis. However, in this
chapter, the analysis is performed after, and based on the statistical analysis discussed in
chapter 6chapter 6, as it is more about the implication of the numerical results.

In this chapter, we discuss the statistics that characterize the ergodicity and the non-
equilibrium behavior of a Markov chain. We present two well-monitored example runs
(shown in Fig. 7.17.1 and Fig. 7.27.2) using state-of-the-art programs taking place in a N = 870
and a N = 1282 system at density η = 0.716, at which the majority of the system is hexatic.
Based on our observations in these runs, we demonstrate that: the global orientational order
is able to be used as a diagnostic tool for the convergence of Markov chains; the convergence
of pressure and the ”rotation” of global orientational order are connected to each other as
they are statistically correlated in small systems; the long-lasting fluctuation in pressure
may lead to biased computation. Also, we show that even today, for large systems, conver-
gence in the strict sense of that the probability distribution at large times is independent
of the initial configuration is impossible. But the pressure computation in these systems
remains valid, as the pressure is virtually independent of the global orientational order.
In the attached publication 3attached publication 3, we perform hard-disk simulations for parameters that were
previously considered in the literature, show the synopsis of published results and their
modern reproduction, and interpret the possible difference between them. We also provide
our precise computation of pressures in a wide range of systems as a benchmark for future
works.

79

80 CHAPTER 7. INTERPRETING SIMULATIONS

7.1 Functions of pressure and global orientational order

In this section, we introduce to the functions of pressure and orientational order that are
crucial for the statistical validity of computation. Unlike our discussion in chapter 6chapter 6, we
discuss the meaning of these functions in stochastic computation rather than how the anal-
ysis is performed. The relevant discussion can be also found in section IVsection IV in the attached
publication 3 [7070].

Fig. 7.1 Pressure P and global orientational order Ψ6 for a three-hour ECMC run (N =
870, η = 0.716, α=(1 :1)). (a): Values of Ψ6 in the complex plane. Highlighted clusters
with invertedΨ6 (such asα1 andα3) have the same statistical weight. (b): Cluster averages
for P vs. arg(Ψ6). (c): Trajectories of Im(Ψ6) and Re(Ψ6) with indicated clusters. (d):
Running average and window average for P . (Figure from [7070].)

7.1 FUNCTIONS OF PRESSURE AND GLOBAL ORIENTATIONAL ORDER 81

Fig. 7.2 PressureP and global orientational orderΨ6 for a singleMPMC run (N = 1282,
η = 0.716, α = (1 : 1)). (a): Histogram of Ψ6 in the complex plane. Clusters α, α′
satisfies Ψα6 = −Ψα′6 and have equal weight. (b): Cluster averages for P vs. arg(Ψ6).
(c): Trajectory of Re(Ψ6) and Im(Ψ6) with first visits to clusters indicated (cf Fig. 7.17.1).
(d): Running average and window average of the pressure, showcasing slow convergence.
(Figure from [7070].)

7.1.1 The sequence of global orientational order Ψ6

As discussed in section 4.44.4, the global orientation has symmetry, and its expectation in a
square box is known to vanish. Suppose that the global orientational order is computed
for configurations sampled at discrete times labeled by t = t0, t1, ..., tnsample−1, the ergodic
theorem of Markov chain guarantees that the running average of the sequence {Ψ6(x(t)),
t0, t1, ..., tnsample−1} approaches 0 for nsample → ∞. In practice this is realized in two steps.
In the first step, the |Ψ6(xt)| decouples from the initial condition |Ψ6(x0)|, as demonstrated
in chapter 3chapter 3. In the second step, the Ψ6(x(t)) stays in the ring of the typical |Ψ6| in equilib-
rium, and explores the space of argΨ6.1 In small systems, the exploration features jumps

1Nothing prevents the two steps takes place together. However, for high enough densities, in the hexatic
phase, the convergence of |Ψ6| always happens before the full exploration of the space of argΨ6.

82 CHAPTER 7. INTERPRETING SIMULATIONS

from one side to the other side on the ring and prolonged exploration in a cluster, as shown
in Fig. 7.17.1(a)(c). For large systems, the exploration features fast local oscillations and slow
global drifts, as shown in Fig. 7.27.2(a)(c). If the run if long enough for the ergodic theorem to
manifest, the whole ring is explored in a symmetric manner, as shown in Fig. 7.17.1(a). How-
ever, in practical pressure computations, the system is too large such that days of computer
time still leave an opening in the ring, as shown in Fig. 7.27.2(a) for a N = 1282 system. It can
be even worse, for example, for a even larger system of N = 10242, shown in Fig. 7.37.3(b),
that the argΨ6 remains almost the same throughout the whole run. This is observed for
multiple initial argΨ6 almost equally spread within the interval [0, π/2]. Strictly speaking,
if the running average of Ψ6 does not reach 0 or the ring is not fully explored, the Markov
chain is too short to be ergodic. However, the symmetry discussed in chapter 4chapter 4 indicates
that exploring one fourth of the complex plane amounts to sampling configurations having
all possible orientation.

Fig. 7.17.1(a) shows the scattering plot of Ψ6(x(t)) during a run for a N = 870 system at
density η = 0.716 in a square box. The Ψ6 mainly locates in several clusters which complies
with its symmetry. For small systems like this, configurations with specific orientations are
more compatible with the box than other configurations. In order words, the boundary free
energy, which likely plays an important role in the total free energy, is smaller in these clus-
ters. Fig. 7.27.2(a)(c) shows the evolution of Ψ6 in a N = 1282 system at the same density in a
square box. The whole space of Ψ6 is not fully explored, but at least one of the four symmet-
ric regions is well explored. The clusters in the complex plane are less pronounced, as for
large system the boundary free energy becomes less significant compared to the volume free
energy. For both system sizes the |Ψ6| is clearly away from zero, as themajority of the system
is in hexatic phase. Fig. 7.37.3(b) demonstrates the scatter plot of pressure versus argΨ6 in a
N = 10242 system in a square box. The Ψ6 does not rotate at all, indicating that the sample
space is not explored well.

The ergodic theorem of Markov chain discussed in chapter 3chapter 3 states that, in the limit of
nsample → ∞, the running average of {Ψ6(x(t)), t = t0, t1, ..., tnsample−1

} converges to zero.2
Whatwefinduseful in practice is its contraposition: if the running average ofΨ6 ismanifestly
away from zero, the Markov chain is not long enough to achieve ergodicity. This proposi-
tion leads to a practical criterion we use to check the ergodicity of a run: if the argΨ6(x(t))
fails to cover a angle more than π/2, the run is not ergodic. This criterion has already been
implemented in previous works [1010, 1111]. For a non-ergodic run, the running average of all
other observables may not converge to their expectation. As we will shortly discuss, the
non-convergence of pressure is observed in this case.

7.1.2 Correlation between pressure and global orientational order

The correlation between the pressure and arg(Ψ6) is shown in Fig. 7.17.1(b), Fig. 7.27.2(b), and
Fig. 7.37.3(a)(b) for N = 870, 1282, 5122, 10242, respectively. For N = 870, the correlation
between the pressure and arg(Ψ6) is clearly observed, as there are clusters in the scatter plot,
and the difference of pressure in each of them ismuch larger than the fluctuation of pressure

2This statement has to be taken with a grain of salt because it is strictly valid only for irreducible Markov
chains. The Böröczky packing blocks the ECMC algorithms, and none of the variants is strictly irreducible.
However, as discussed in chapter 2chapter 2, Böröczky packings are assumed to play no role.

7.1 FUNCTIONS OF PRESSURE AND GLOBAL ORIENTATIONAL ORDER 83

in each cluster.3 The clusters in Fig. 7.17.1(b) correspond to clusters in Fig. 7.17.1(a). If the Ψ6 is
trapped within one of the clusters in the complex plane, the result of pressure is the biased
cluster pressure. In this case, a non-rotating Ψ6 indicates explicitly a biased pressure.

For the N = 1282 system, there are still clusters in the scatter plot Fig. 7.27.2(b). How-
ever, the difference between the pressure in various clusters becomes much smaller. The
dependence is still detectable as the pressure of some clusters clearly differ from that of
other clusters, but the relative difference is quantitatively smaller than in the N = 870 case.
As shown in the Fig. 7.37.3(a), there is no visible dependence between the pressure and the
argΨ6. Fig. 7.37.3(b) shows that, in a N = 10242 system, which is the largest system in which
pressure is calculated precisely by the time this thesis is written, the systematic deviation
in the clusters is comparable with the fluctuation of pressure in each of the clusters. Thus,
although no algorithm can rotate Ψ6 in a N = 10242 system at the phase-transition density,
we can still trust their pressure computation.

Fig. 7.3 Convergence analysis for the hard-disk model at η = 0.708 and η = 0.718
(square box α= (1 : 1)) for MPMC. (a): Scatter plot of the pressure as a function of the
orientational order parameter (N = 5122). (b) Cluster averages obtained from indepen-
dent runs from initial configurations at specific values of Ψ6. (N = 10242) The difference,
smaller than 10−3, estimates the systematic error. The rotation of Ψ6 is not relevant for large
systems. (Figure from [7070].).

7.1.3 Window average of pressure

The window average refers to a sequence of length nsequence − tw, where tw is the window
size, derived from a sequence of pressure {P̂t, t = 1, 2, ..., nsequence}. The window average is
calculated as

P̂ twt =

∑t+tw−1
t′=t P̂ ′t
tw

, t = 1, 2, ..., nsequence − tw − 1. (7.1)

The window average is calculated to average out the short-term fluctuation in the sequence
of pressure, and is plotted in Fig. 7.17.1(d) and Fig. 7.27.2(d). ForN = 870 in straight ECMC, there
are two period in which the window average of pressure is constantly out of its confidence
interval, each lasting for 2× 107 sweeps in straight ECMC, corresponding to thirty minutes
of computer time. If the total run time is shorter than thirty minutes, the pressure can be

3The clusters subject to symmetry are considered as one cluster.

84 CHAPTER 7. INTERPRETING SIMULATIONS

biased. This bias can be detected by tracking the argΨ6 in the same run, but is impossible to
be detected by studying only the sequence of pressure. For N = 1282 in MPMC, there are
periods of significant deviation lasting for roughly 0.5×1010 sweeps, corresponding tomore
than a day. As the MPMC is faster than the Metropolis algorithm by a factor of thousands,
the deviated interval corresponds to ten years in the Metropolis algorithm, which indicates
that having non-biased results usingMetropolis algorithm inN = 1282 systems is very hard.
Nevertheless, comparing Fig. 7.27.2(d) and Fig. 7.27.2(c) one again concludes that the deviation
is correlated to a non-rotating Ψ6, and this deviation is detectable if Ψ6 is computed together
with the pressure.

7.2 Previous results

To highlight the limitation in the legacy pressure computations, we compare them to our
computations done by modern tools. For small systems, the limitation can be the depen-
dence of the aspect ratio, and for large systems, this can be the large mixing time. For both
small and large systems, the computation may suffer from non-convergence due to limited
computational resource, as well as inefficient pressure estimators using legacymethods pre-
sented in chapter 4chapter 4.

The hard-disk pressure computation is pioneered by Metropolis et al. [8484] and Alder
and Wainwright [22]. Their results were published more than sixty years ago, when the
computational resource was strictly limited. It was impossible to reach equilibrium, as the
mixing time was not manageable on the computers back then. Thus, the pioneering works
are considered as ”computer experiments”. They were supposed to provide insights, and
the precision of pressure computation was never their priority. However, with the com-
putational resource available to us today, we can obtain reliable numerical pressure in the
systems considered in the pioneering works. The synopsis of the historic result and their
modern reproduction is shown in Fig. 7.57.5(a). The Metropolis et al.’s result is systematically
lower than the modern results. According to Metropolis et al.’s description of their runs,
they start from an approximately crystalline configuration and last at most for eighty cycles.
In each cycle, each disk is moved at least once. The Ψ6 of a reproduced run usingMetropolis
et al.’s setup and the Metropolis algorithm, implemented (without a cell system) in Python
and running in Pypy, is shown in Fig. 7.47.4. Metropolis et al.’s run finishes in less than twenty
seconds on a modern laptop. The crystalline order in the initial configuration is relaxed.
However, the space of orientational order is not explored. As in small systems the pressure
and orientational order are strongly correlation, the pressure of the computation is likely
to be biased. As the runs are short, the simulation of Metropolis et al. is similar to the
perturbation of a crystal. The pressure in Metropolis et al. is obtained by extrapolation,
and its systematic bias is not known. The Ψ6 of the reproduction of Metropolis et al.’s work
demonstrate the strength of using it as a diagnostic tool. Besides, Metropolis et al. has been
scanning a overly large density interval. As a consequence, the resolution of the equation of
state is not good enough to identify the Mayer-Wood loop indicating the phase transition.

For the result ofAlder andWainwright [22] shown in Fig. 7.57.5(b)(c), we first notice that the
equation of state depends qualitatively on the aspect ratio. For N = 72, the loop indicating
the phase transition appears for α = (9 : 8

√
3/2), but not in a square box. We experiment

with the aspect ratio and suppose that the original computation of Alder andWainwright is

7.2 PREVIOUS RESULTS 85

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Re(6)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
(

6)

Fig. 7.4 Ψ6 for a N = 224 system in a square box at density η = 0.708 lasting for 80
cycles, starting from an approximate triangular lattice. The Ψ6 is plotted after every cycle.
The computation in [8484] is reproduced using the same parameters and the length of the
run in a modern Python program. |Ψ6| decreases during the run until reaching a cluster,
indicating the order in the initial configuration has relaxed. However, this run does not
explore the sample space well, since Ψ6 does not rotate. The resulting pressure of this run
is likely to be biased.

done with aspect ratios that allow for hosting fully packed configurations in periodic boxes.
The result of Alder and Wainwright also suffers from short run time. The first evidence is
that the there are two pressure for N = 72 as shown in Fig. 7.57.5(b). We suppose that this is
related to having different pressures in clusters corresponds to different Ψ6 in small systems,
as the modern result of pressure is between the two historic ones. ForN = 870, if the initial
configuration is a crystal and the run is short enough, we reproduce the equation of state
in [22]. If the Ψ6 of the run rotates well, the equation of state and Alder and Wainwright’s
results have a gap in between, as demonstrated in Fig. 7.57.5. We suppose that some clusters
of Ψ6 correspond to more ordered configurations that have lower pressure, and the system
is likely to be trapped in such clusters.

The synopsis of equations of state in N = 1282, 5122, 10242 systems is plotted in Fig. 7.67.6.
In large systems, the aspect ratio becomes irrelevant. Similar to the pioneering works, most
of the past works in the medium-large-size systems are "computer experiments". The sam-
pling algorithms used in these works are good enough to generate configurations in large
systems, inwhich some of the finite-size limitations are lifted, and newdiscussion in physics
is made possible. However, they are not good enough to reach equilibrium. This is not a
surprise, as our state-of-the-art program is not able to rotate Ψ6 in a N = 10242 system
even when this thesis is being written. Our computation of five-digit precision confirms the
historic results produced by ECMC and MPMC. This motivate us to believe that these re-
sults will be confirmed again after decades. We present the cross validation of our results
in Table IITable II in the attached publication 3 [7070]. However, even the best methods are not able
to treat the system larger than N = 10242 or η > 0.72, thus, a part of the physics of hard
disk still remains unknown. We are still waiting for an algorithm that surpasses all existing
methods to fully understand the hard-disk model.

86 CHAPTER 7. INTERPRETING SIMULATIONS

()
()

()

Fig. 7.5 Equations of state P (V) for the hard-disk model at small N . (a): P (V) for
N = 224 for α= (1 : 1) computed in 1953 [8484] compared with ECMC computations in
[7070]. (b): P (V) for N = 72 computed in 1962 [22] (for unspecified aspect ratio α) and
ECMC pressures for α=(1:

√
3/2), (1 :1), and (9 :8

√
3/2). (c): P (V) forN = 870. This

work’s square-box computations satisfy 〈Ψ6〉 ' 0, except for data points in parentheses (see
Fig. 7.17.1). (Figure from [7070].)

()

Fig. 7.6 Equations of state P (V) for the hard-disk model at large N . (a): P (V) for
N = 1282 from [5050, 7070, 135135] for α = (1 :

√
3/2) and α = (1 : 1) where all but the

data point in parentheses satisfy the rotation criterion. (b): P (V) for N = 5122 from
[2929, 5252, 7070, 7878, 7878] for aspect ratios α = (1 :

√
3/2) and α = (1 : 1), where runs with

η < 0.712 satisfy the rotation criterion. (c): P (V) for 10242 from [1010, 2929, 7070, 7878, 102102],
for aspect ratios α=(1:

√
3/2) and (1 :1), where at density η > 0.708 the rotation criterion

is violated, but the systematic error thus committed is negligible. (Figure from [7070].)

Bibliography

[1] B. J. Alder & T. E. Wainwright 1959. “Studies in Molecular Dynamics. I. General
Method”. J. Chem. Phys. 31, pp. 459–466J. Chem. Phys. 31, pp. 459–466. Cited pages 2929 and 3939

[2] B. J. Alder & T. E. Wainwright 1962. “Phase Transition in Elastic Disks”.
Phys. Rev. 127, pp. 359–361Phys. Rev. 127, pp. 359–361. Cited pages 44, 77, 8484, 8585, and 8686

[3] M. P. Allen 2006. “Evaluation of pressure tensor in constant-volume simulations of
hard and soft convex bodies”. J. Chem. Phys. 124(21), p. 214 103J. Chem. Phys. 124(21), p. 214 103. Cited page 6161

[4] Z. Allen-Zhu, Y. Li & Z. Song 2019. “A Convergence Theory for Deep Learning via
Over-Parameterization”. In “Proceedings of the 36th International Conference on
Machine Learning”, , edited by Kamalika Chaudhuri & Ruslan Salakhutdinov
Proceedings of Machine Learning Research, volume 97 (PMLR) pp. 242–252. URL
https://proceedings.mlr.press/v97/allen-zhu19a.htmlhttps://proceedings.mlr.press/v97/allen-zhu19a.html. Cited page 1111

[5] J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel & S. C. Glotzer 2013.
“Massively parallel Monte Carlo for many-particle simulations on GPUs”.
J. Comput. Phys. 254, pp. 27–38J. Comput. Phys. 254, pp. 27–38. Cited pages 44, 2929, and 3434

[6] S. Asakura & F. Oosawa 1954. “On Interaction between Two Bodies Immersed in a
Solution of Macromolecules”. J. Chem. Phys. 22, pp. 1255–1256J. Chem. Phys. 22, pp. 1255–1256. Cited page 2020

[7] F. Bailly & G. Longo 2011. Mathematics and the natural sciences: the physical singularity
of life volume 7 (World Scientific). Cited page 11

[8] Y. Baryshnikov, P. Bubenik & M. Kahle 2013. “Min-Type Morse Theory for
Configuration Spaces of Hard Spheres”. Int. Math. Res. Not. 2014, pp. 2577–2592.

Cited page 2525

[9] R. J. Baxter 2016. Exactly Solved Models in Statistical Mechanics (Elsevier). Cited page 11

[10] E. P. Bernard & W. Krauth 2011. “Two-Step Melting in Two Dimensions:
First-Order Liquid-Hexatic Transition”. Phys. Rev. Lett. 107, p. 155 704Phys. Rev. Lett. 107, p. 155 704.

Cited pages 77, 3131, 3535, 6363, 7979, 8282, and 8686

[11] E. P. Bernard, W. Krauth & D. B. Wilson 2009. “Event-chain Monte Carlo
algorithms for hard-sphere systems”. Phys. Rev. E 80, p. 056 704Phys. Rev. E 80, p. 056 704.

Cited pages 44, 66, 2929, 3131, 3434, 3535, 3636, and 8282

87

http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1063/1.2202352
https://proceedings.mlr.press/v97/allen-zhu19a.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2013.07.023
http://dx.doi.org/10.1063/1.1740347
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevE.80.056704

88 BIBLIOGRAPHY

[12] Etienne Bernard 2011. Algorithms and applications of the Monte Carlo method:
Two-dimensional melting and perfect sampling. Ph.D. thesis Université Pierre et Marie
Curie - Paris VI. URL https://tel.archives-ouvertes.fr/tel-00637330https://tel.archives-ouvertes.fr/tel-00637330.

Cited page 2121

[13] D. Bernoulli 1738. Hydrodynamica. URL
http://dx.doi.org/10.3931/e-rara-3911http://dx.doi.org/10.3931/e-rara-3911. Cited pages 33 and 1818

[14] H. J. Boehm & L. Crowl 2009. “C++ Atomic Types and Operations ”.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.htmlhttp://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html.

Cited page 55

[15] A. Bordes, S. Chopra & J. Weston 2014. “Question answering with subgraph
embeddings”. In “Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP)”, (Association for Computational
Linguistics, Doha, Qatar) pp. 615–620. URL
http://dx.doi.org/10.3115/v1/D14-1067http://dx.doi.org/10.3115/v1/D14-1067. Cited page 88

[16] K. Böröczky 1964. “Über stabile Kreis- und Kugelsysteme”. Ann. Univ. Sci. Budapest.
Eötvös Sect. Math. 7, pp. 79–82. Cited pages 66, 2222, 2323, and 2424

[17] L. Bottou 2012. Stochastic Gradient Descent Tricks Lecture Notes in Computer Science
(LNCS), volume 7700 (Springer) neural networks, tricks of the trade, reloaded
edition pp. 430–445. URL
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/.

Cited page 1111

[18] E. Brini, C. Simmerling & K. Dill 2020. “Protein storytelling through physics”.
Science 370(6520)Science 370(6520). Cited page 22

[19] L. M. Brown & R. T. Weidner. “physics”. Encyclopedia Britannica . Cited page 11

[20] P. E. Brumby, A. J. Haslam, E. de Miguel & G. Jackson 2011. “Subtleties in the
calculation of the pressure and pressure tensor of anisotropic particles from
volume-perturbation methods and the apparent asymmetry of the compressive and
expansive contributions”. Mol. Phys. 109(1), pp. 169–189Mol. Phys. 109(1), pp. 169–189. Cited page 6161

[21] A. Choromanska, Y. LeCun & G. B. Arous 2015. “Open problem: The landscape of
the loss surfaces of multilayer networks”. In “Conference on Learning Theory”,
(PMLR) pp. 1756–1760. Cited page 1010

[22] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu & P. Kuksa 2011.
“Natural language processing (almost) from scratch”. J. Mach. Learn. Res.
12(ARTICLE), pp. 2493–2537. Cited page 88

[23] B. C. Csáji et al. 2001. “Approximation with artificial neural networks”. Faculty of
Sciences, Eötvös Loránd University, Hungary . Cited page 88

[24] E. de Miguel & G. Jackson 2006. “The nature of the calculation of the pressure in
molecular simulations of continuous models from volume perturbations”.
J. Chem. Phys. 125(16), p. 164 109J. Chem. Phys. 125(16), p. 164 109. Cited page 6161

https://tel.archives-ouvertes.fr/tel-00637330
http://dx.doi.org/10.3931/e-rara-3911
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
http://dx.doi.org/10.3115/v1/D14-1067
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
http://dx.doi.org/10.1126/science.aaz3041
http://dx.doi.org/10.1080/00268976.2010.530301
http://dx.doi.org/10.1063/1.2363381

BIBLIOGRAPHY 89

[25] P. Diaconis, G. Lebeau & L. Michel 2011. “Geometric analysis for the Metropolis
algorithm on Lipschitz domains”. Invent. Math. 185(2), pp. 239–281Invent. Math. 185(2), pp. 239–281. Cited page 2525

[26] S. S. Du, X. Zhai, B. Poczos & A. Singh 2018. “Gradient descent provably optimizes
over-parameterized neural networks”. arXiv preprint arXiv:1810.02054 . Cited page 1111

[27] A. Dvoretzky, J. Kiefer & J. Wolfowitz 1956. “Asymptotic Minimax Character of the
Sample Distribution Function and of the Classical Multinomial Estimator”.
Ann. Math. Stat. 27(3), pp. 642–669Ann. Math. Stat. 27(3), pp. 642–669. Cited pages 4949 and 7676

[28] B. Efron 1979. “Bootstrap methods: another look at the jackknife”. Ann. Stat. , pp.
1–26. Cited page 7878

[29] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard & W. Krauth 2013.
“Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions
with three simulation methods”. Phys. Rev. E 87, p. 042 134Phys. Rev. E 87, p. 042 134.

Cited pages 77, 3535, 4949, 7373, 7979, and 8686

[30] R. Eppenga & D. Frenkel 1984. “Monte Carlo study of the isotropic and nematic
phases of infinitely thin hard platelets”. Mol. Phys. 52(6), pp. 1303–1334Mol. Phys. 52(6), pp. 1303–1334.

Cited page 6161

[31] J. J. Erpenbeck, W. W. Wood & B. J. Berne 1977. “Statistical Mechanics: Part B:
Time-Dependent Processes”. Modern Theoretical Chemistry 6. Cited page 6262

[32] C. Farabet, C. Couprie, L. Najman & Y. LeCun 2012. “Learning hierarchical features
for scene labeling”. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), pp. 1915–1929.

Cited page 88

[33] L. Fejes 1940. “Über einen geometrischen Satz”. Math. Z. 46, pp. 83–85. Cited page 1313

[34] Y. Feng & Y. Tu 2021. “The inverse variance–flatness relation in stochastic gradient
descent is critical for finding flat minima”. Proc. Natl. Acad. Sci. U.S.A. 118(9).

Cited page 1111

[35] H. Flyvbjerg & H. G. Petersen 1989. “Error estimates on averages of correlated
data”. J. Chem. Phys. 91(1), pp. 461–466J. Chem. Phys. 91(1), pp. 461–466. Cited pages 7575 and 7777

[36] R. Ge, F. Huang, C. Jin & Y. Yuan 2015. “Escaping from saddle points—online
stochastic gradient for tensor decomposition”. In “Conference on learning theory”,
(PMLR) pp. 797–842. Cited page 1111

[37] R. Gower, O. Sebbouh & N. Loizou 2021. “SGD for Structured Nonconvex Functions:
Learning Rates, Minibatching and Interpolation”. In “International Conference on
Artificial Intelligence and Statistics”, (PMLR) pp. 1315–1323. Cited page 1111

[38] S. Gu, Z. Ghahramani & R. E. Turner 2015. “Neural adaptive sequential Monte
Carlo”. Advances in neural information processing systems 28. Cited page 88

[39] M. Gurbuzbalaban, U. Simsekli & L. Zhu 2021. “The Heavy-Tail Phenomenon in
SGD”. In “International Conference on Machine Learning”, (PMLR) pp. 3964–3975.

Cited page 1111

http://dx.doi.org/10.1007/s00222-010-0303-6
http://dx.doi.org/10.1214/aoms/1177728174
http://dx.doi.org/10.1103/PhysRevE.87.042134
http://dx.doi.org/10.1080/00268978400101951
http://dx.doi.org/10.1063/1.457480

90 BIBLIOGRAPHY

[40] B. I. Halperin & David R. Nelson 1978. “Theory of Two-Dimensional Melting”.
Phys. Rev. Lett. 41, pp. 121–124Phys. Rev. Lett. 41, pp. 121–124. Cited pages 1313 and 6262

[41] T. Helmuth, W. Perkins & S. Petti 2022. “Correlation decay for hard spheres via
Markov chains”. Ann. Appl. Probab. 32(3)Ann. Appl. Probab. 32(3). Cited page 1313

[42] S. Hochreiter & J. Schmidhuber 1997. “Flat minima”.
Neural Comput. 9(1), pp. 1–42Neural Comput. 9(1), pp. 1–42. Cited page 1111

[43] J. L. Hodges 1958. “The significance probability of the Smirnov two-sample test”.
Ark. Mat. 3(5), pp. 469 – 486Ark. Mat. 3(5), pp. 469 – 486. Cited page 7676

[44] L. Hodgkinson & Michael M. W. 2021. “Multiplicative Noise and Heavy Tails in
Stochastic Optimization”. In “Proceedings of the 38th International Conference on
Machine Learning”, , edited by Marina Meila & Tong Zhang Proceedings of Machine
Learning Research, volume 139 (PMLR) pp. 4262–4274. URL
https://proceedings.mlr.press/v139/hodgkinson21a.htmlhttps://proceedings.mlr.press/v139/hodgkinson21a.html. Cited page 1111

[45] P. Höllmer, A. C. Maggs & W. Krauth 2022. “Hard-disk dipoles and non-reversible
Markov chains”. J. Chem. Phys. 156(8), p. 084 108J. Chem. Phys. 156(8), p. 084 108. Cited pages 2828 and 3535

[46] P. Höllmer, N. Noirault, B. Li, A. C. Maggs & W. Krauth 2022. “Sparse Hard-Disk
Packings and Local Markov Chains”. URL
http://dx.doi.org/10.1007/s10955-022-02908-4http://dx.doi.org/10.1007/s10955-022-02908-4.

Cited pages 33, 66, 77, 1313, 1717, 2222, 2323, 2424, 2525, 2727, 2828, 2929, 3333, 3535, 3636, 4141, 4242, and 4343

[47] K. Hornik, M. Stinchcombe & H. White 1989. “Multilayer feedforward networks are
universal approximators”. Neural Netw. 2(5), pp. 359–366Neural Netw. 2(5), pp. 359–366. Cited pages 22 and 88

[48] E. Ising 1925. “Beitrag zur Theorie des Ferromagnetismus”.
Z. Phys. 31(1), pp. 253–258Z. Phys. 31(1), pp. 253–258. Cited page 1616

[49] M. Isobe 1999. “Simple and Efficient Algorithm for Large Scale Molecular Dynamics
Simulation in Hard Disk System”.
International Journal of Modern Physics C 10, pp. 1281–1293International Journal of Modern Physics C 10, pp. 1281–1293. Cited page 44

[50] A. Jaster 1999. “An improved Metropolis algorithm for hard core systems”.
Physica A 264(1), pp. 134 – 141Physica A 264(1), pp. 134 – 141. Cited pages 77 and 8686

[51] A. Jaster 1999. “Computer simulations of the two-dimensional melting transition
using hard disks”. Phys. Rev. E 59(3), pp. 2594–2602Phys. Rev. E 59(3), pp. 2594–2602. Cited page 77

[52] A. Jaster 2004. “The hexatic phase of the two-dimensional hard disk system”.
Phys. Lett. A 330(1), pp. 120 – 125Phys. Lett. A 330(1), pp. 120 – 125. Cited pages 77 and 8686

[53] M. Jonsson 2018. “Standard error estimation by an automated blocking method”.
Phys. Rev. E 98(4), p. 043 304. Cited pages 7575 and 7878

[54] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al. 2021. “Highly accurate
protein structure prediction with AlphaFold”. Nature 596(7873), pp. 583–589Nature 596(7873), pp. 583–589.

Cited pages 22 and 88

http://dx.doi.org/10.1103/PhysRevLett.41.121
http://dx.doi.org/10.1214/21-aap1728
http://dx.doi.org/10.1162/neco.1997.9.1.1
http://dx.doi.org/10.1007/BF02589501
https://proceedings.mlr.press/v139/hodgkinson21a.html
http://dx.doi.org/10.1063/5.0080101
http://dx.doi.org/10.1007/s10955-022-02908-4
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1142/S0129183199001042
http://dx.doi.org/https://doi.org/10.1016/S0378-4371(98)00337-9
http://dx.doi.org/10.1103/physreve.59.2594
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2004.07.055
http://dx.doi.org/10.1038/s41586-021-03819-2

BIBLIOGRAPHY 91

[55] M. Kahle 2012. “Sparse Locally-Jammed Disk Packings”.
Ann. Comb. 16(4), pp. 773–780Ann. Comb. 16(4), pp. 773–780. Cited pages 66, 2323, 2424, and 2525

[56] Tobias A. Kampmann, Horst-Holger Boltz & Jan Kierfeld 2015. “Parallelized event
chain algorithm for dense hard sphere and polymer systems”.
Journal of Computational Physics 281, pp. 864–875Journal of Computational Physics 281, pp. 864–875. Cited page 55

[57] S. C. Kapfer & W. Krauth 2013. “Sampling from a polytope and hard-disk Monte
Carlo”. J. Phys. Conf. Ser. 454(1), p. 012 031J. Phys. Conf. Ser. 454(1), p. 012 031. Cited pages 55, 3636, and 7373

[58] H. Karimi, J. Nutini & M. Schmidt 2020. “Linear Convergence of Gradient and
Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition”. 1608.046361608.04636.

Cited page 99

[59] D. P. Kingma & J. Ba 2014. “Adam: A Method for Stochastic Optimization”.
International Conference on Learning Representations . Cited page 1010

[60] M. Klement & M. Engel 2019. “Efficient equilibration of hard spheres with
Newtonian event chains”. J. Chem. Phys. 150(17), p. 174 108J. Chem. Phys. 150(17), p. 174 108.

Cited pages 66, 2929, 3535, and 3737

[61] D. E. Knuth 2014. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (Addison-Wesley Professional). Cited page 22

[62] W. Krauth 2006. Statistical Mechanics: Algorithms and Computations (Oxford
University Press). Cited pages 11, 77, 1313, 1414, 1717, 1919, 2020, 2929, and 5656

[63] W. Krauth 2021. “Event-Chain Monte Carlo: Foundations, Applications, and
Prospects”. Front. Phys. 9, p. 229Front. Phys. 9, p. 229. Cited page 3535

[64] A. Krizhevsky, I. Sutskever & G. E. Hinton 2017. “Imagenet classification with deep
convolutional neural networks”. Commun. ACM 60(6), pp. 84–90. Cited page 88

[65] L. Lamport 1979. “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs”. IEEE Trans. Comput. C-28(9), pp. 690–691IEEE Trans. Comput. C-28(9), pp. 690–691.

Cited pages 55 and 6666

[66] L. D. Landau & E. M. Lifshitz 2013. Statistical Physics volume 5 (Elsevier).
Cited page 1111

[67] J. L. Lebowitz & O. Penrose 1964. “Convergence of Virial Expansions”.
J. Math. Phys. 5, pp. 841–847J. Math. Phys. 5, pp. 841–847. Cited page 1313

[68] Y. LeCun, Y. Bengio & G. Hinton 2015. “Deep learning”. Nature 521(7553), pp.
436–444. Cited page 88

[69] D. A. Levin, Y. Peres & E. L. Wilmer 2008. Markov Chains and Mixing Times
(American Mathematical Society). Cited pages 2929 and 3232

http://dx.doi.org/10.1007/s00026-012-0159-0
http://dx.doi.org/10.1016/j.jcp.2014.10.059
http://dx.doi.org/10.1088/1742-6596/454/1/012031
1608.04636
http://dx.doi.org/10.1063/1.5090882
http://dx.doi.org/10.3389/fphy.2021.663457
http://dx.doi.org/10.1109/tc.1979.1675439
http://dx.doi.org/10.1063/1.1704186

92 BIBLIOGRAPHY

[70] B. Li, Y. Nishikawa, P. Höllmer, L. Carillo, A. C. Maggs & W. Krauth 2022.
“Hard-disk pressure computations—a historic perspective”.
J. Chem. Phys. 157(23), p. 234 111J. Chem. Phys. 157(23), p. 234 111.
Cited pages 33, 44, 77, 1313, 1717, 1818, 1919, 2121, 2222, 3434, 3535, 4444, 4545, 5353, 5454, 5555, 5656, 5858, 5959, 6060, 6161, 6262, 7373, 7575, 8080, 8181, 8383, 8585, and 8686

[71] B. Li, S. Todo, A. C. Maggs & W. Krauth 2021. “Multithreaded event-chain Monte
Carlo with local times”. Comput. Phys. Commun. 261, p. 107 702Comput. Phys. Commun. 261, p. 107 702.

Cited pages 33, 55, 2929, 3636, 3737, 3838, 3939, 4040, 5252, 5959, 6565, 6767, 6868, 7070, and 7171

[72] H. Li, Z. Xu, G. Taylor, C. Studer & T. Goldstein 2018. “Visualizing the Loss
Landscape of Neural Nets”. In “Neural Information Processing Systems”, .

Cited page 1010

[73] Z. Li, S. Malladi & S. Arora 2021. “On the Validity of Modeling SGD with
Stochastic Differential Equations (SDEs)”. arXiv preprint arXiv:2102.12470 .

Cited page 1111

[74] K. Liu, L. Ziyin & M. Ueda 2021. “Noise and Fluctuation of Finite Learning Rate
Stochastic Gradient Descent”. In “Proceedings of the 38th International Conference
on Machine Learning”, , edited by Marina Meila & Tong Zhang Proceedings of
Machine Learning Research, volume 139 (PMLR) pp. 7045–7056. URL
https://proceedings.mlr.press/v139/liu21ad.htmlhttps://proceedings.mlr.press/v139/liu21ad.html. Cited page 1111

[75] B. D. Lubachevsky 1991. “How to simulate billiards and similar systems”. J. Comput.
Phys. , pp. 255–283. Cited page 2929

[76] B. D. Lubachevsky 1992. “Simulating billiards serially and in parallel”. International
Journal in Computer Simulation 2, pp. 373–411. Cited page 3939

[77] B. D. Lubachevsky & F. H. Stillinger 1990. “Geometric properties of random disk
packings”. J. Stat. Phys. 60(5), pp. 561–583J. Stat. Phys. 60(5), pp. 561–583. Cited page 4343

[78] C. H. Mak 2006. “Large-scale simulations of the two-dimensional melting of hard
disks”. Phys. Rev. E 73, p. 065 104Phys. Rev. E 73, p. 065 104. Cited pages 77 and 8686

[79] P. Massart 1990. “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz
Inequality”. Ann. Probab. 18(3), pp. 1269–1283Ann. Probab. 18(3), pp. 1269–1283. Cited pages 4949 and 7676

[80] J. E. Mayer & W. W. Wood 1965. “Interfacial Tension Effects in Finite, Periodic,
Two-Dimensional Systems”. J. Chem. Phys. 42, pp. 4268–4274J. Chem. Phys. 42, pp. 4268–4274. Cited page 2020

[81] Q. Meng, S. Gong, W. Chen, Z. Ma & T. Liu 2020. “Dynamic of Stochastic Gradient
Descent with State-Dependent Noise”. arXiv preprint arXiv:2006.13719 . Cited page 1111

[82] N. D. Mermin 1968. “Crystalline Order in Two Dimensions”.
Phys. Rev. 176, pp. 250–254Phys. Rev. 176, pp. 250–254. Cited page 6262

[83] P. Mertikopoulos, N. Hallak, A. Kavis & V. Cevher 2020. “On the Almost Sure
Convergence of Stochastic Gradient Descent in Non-Convex Problems”. In
“Advances in Neural Information Processing Systems”, , edited by H. Larochelle,

http://dx.doi.org/10.1063/5.0126437
http://dx.doi.org/10.1016/j.cpc.2020.107702
https://proceedings.mlr.press/v139/liu21ad.html
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1103/PhysRevE.73.065104
http://dx.doi.org/10.1214/aop/1176990746
http://dx.doi.org/10.1063/1.1695931
http://dx.doi.org/10.1103/PhysRev.176.250

BIBLIOGRAPHY 93

M. Ranzato, R. Hadsell, M.F. Balcan & H. Lin volume 33 (Curran Associates, Inc.)
pp. 1117–1128. URL
https://proceedings.neurips.cc/paper/2020/file/0cb5ebb1b34ec343dfe135db691e4a85-Paper.pdfhttps://proceedings.neurips.cc/paper/2020/file/0cb5ebb1b34ec343dfe135db691e4a85-Paper.pdf.

Cited pages 1010 and 1111

[84] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller & E. Teller 1953.
“Equation of State Calculations by Fast Computing Machines”.
J. Chem. Phys. 21, pp. 1087–1092J. Chem. Phys. 21, pp. 1087–1092. Cited pages 33, 77, 2929, 3333, 6161, 8484, 8585, and 8686

[85] N. Metropolis & S. Ulam 1949. “The Monte Carlo Method”.
J. Am. Stat. Assoc. 44(247), pp. 335–341J. Am. Stat. Assoc. 44(247), pp. 335–341. Cited page 11

[86] M. Michel 2016. Irreversible Markov chains by the factorized Metropolis filter: Algorithms
and applications in particle systems and spin models. Ph.D. thesis Ecole Normale
Superieure de Paris - ENS Paris. URL
https://tel.archives-ouvertes.fr/tel-01394204https://tel.archives-ouvertes.fr/tel-01394204. Cited page 3131

[87] M. Michel, A. Durmus & S. Sénécal 2020. “Forward Event-Chain Monte Carlo: Fast
Sampling by Randomness Control in Irreversible Markov Chains”.
J. Comput. Graph. Stat. 29(4), pp. 689–702J. Comput. Graph. Stat. 29(4), pp. 689–702. Cited pages 66, 2929, 3535, and 3737

[88] M. Michel, S. C. Kapfer & W. Krauth 2014. “Generalized event-chain Monte Carlo:
Constructing rejection-free global-balance algorithms from infinitesimal steps”.
J. Chem. Phys. 140(5), 054116J. Chem. Phys. 140(5), 054116. Cited pages 5353 and 5959

[89] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra &
M. Riedmiller 2013. “Playing atari with deep reinforcement learning”. arXiv preprint
arXiv:1312.5602 . Cited page 88

[90] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al. 2015. “Human-level
control through deep reinforcement learning”. Nature 518(7540), pp. 529–533.

Cited page 88

[91] T. Mori, L. Ziyin, K. Liu & M. Ueda 2022. “Power-law escape rate of SGD”. In
“Proceedings of the 39th International Conference on Machine Learning”, , edited
by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu &
Sivan Sabato Proceedings of Machine Learning Research, volume 162 (PMLR) pp.
15 959–15 975. URL https://proceedings.mlr.press/v162/mori22a.htmlhttps://proceedings.mlr.press/v162/mori22a.html.

Cited page 1111

[92] T. Müller, B. McWilliams, F. Rousselle, M. Gross & J. Novák 2019. “Neural
importance sampling”. ACM Trans. Graph. 38(5), pp. 1–19. Cited page 88

[93] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak & I. Sutskever 2021. “Deep
double descent: Where bigger models and more data hurt”. J. Stat. Mech. 2021(12),
p. 124 003. Cited page 99

[94] Y. Nishikawa, J. Takahashi & T. Takahashi 2021. “Stationary Bootstrap: A Refined
Error Estimation for Equilibrium Time Series”. 2112.118372112.11837 URL
http://dx.doi.org/10.48550/ARXIV.2112.11837http://dx.doi.org/10.48550/ARXIV.2112.11837. Cited pages 7575 and 7878

https://proceedings.neurips.cc/paper/2020/file/0cb5ebb1b34ec343dfe135db691e4a85-Paper.pdf
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1080/01621459.1949.10483310
https://tel.archives-ouvertes.fr/tel-01394204
http://dx.doi.org/10.1080/10618600.2020.1750417
http://dx.doi.org/10.1063/1.4863991
https://proceedings.mlr.press/v162/mori22a.html
2112.11837
http://dx.doi.org/10.48550/ARXIV.2112.11837

94 BIBLIOGRAPHY

[95] L. Onsager 1944. “Crystal Statistics. I. A Two-Dimensional Model with an
Order-Disorder Transition”. Phys. Rev. 65, pp. 117–149Phys. Rev. 65, pp. 117–149. Cited page 11

[96] J. Pach & M. Sharir 2009. Combinatorial Geometry and Its Algorithmic Applications
Mathematical Surveys and Monographs, volume 152 (American Mathematical Society).

Cited page 2323

[97] A. Patton, D. N. Politis & H. White 2009. “Correction to “Automatic Block-Length
Selection for the Dependent Bootstrap” by D. Politis and H. White”.
Econom. Rev. 28(4), pp. 372–375Econom. Rev. 28(4), pp. 372–375. Cited pages 7575 and 7878

[98] R. Peierls 1936. “On Ising’s model of ferromagnetism”.
Math. Proc. Camb. Philos. Soc. 32, pp. 477–481Math. Proc. Camb. Philos. Soc. 32, pp. 477–481. Cited page 11

[99] R. Pemantle 1990. “Nonconvergence to unstable points in urn models and stochastic
approximations”. Ann. Probab. 18(2), pp. 698–712. Cited pages 1010 and 1111

[100] D. N. Politis & J. P. Romano 1994. “The Stationary Bootstrap”.
J. Am. Stat. Assoc. 89(428), pp. 1303–1313J. Am. Stat. Assoc. 89(428), pp. 1303–1313. Cited pages 7575 and 7878

[101] D. N. Politis & H. White 2004. “Automatic Block-Length Selection for the
Dependent Bootstrap”. Econom. Rev. 23(1), pp. 53–70Econom. Rev. 23(1), pp. 53–70. Cited pages 7575 and 7878

[102] W. Qi, A. P. Gantapara & M. Dijkstra 2014. “Two-stage melting induced by
dislocations and grain boundaries in monolayers of hard spheres”.
Soft Matter 10(30), p. 5449Soft Matter 10(30), p. 5449. Cited pages 77 and 8686

[103] Hannes R. 1989. The Fokker-Planck Equation (Springer Berlin Heidelberg). URL
http://dx.doi.org/10.1007/978-3-642-61544-3http://dx.doi.org/10.1007/978-3-642-61544-3. Cited page 1111

[104] D. C. Rapaport 1980. “The Event Scheduling Problem in Molecular Dynamic
Simulation”. J. Comput. Phys. 34, pp. 184–201J. Comput. Phys. 34, pp. 184–201. Cited page 2929

[105] S. J. Reddi, S. Kale & S. Kumar 2019. “On the convergence of adam and beyond”.
arXiv preprint arXiv:1904.09237 . Cited page 1010

[106] T. Richthammer 2007. “Translation-Invariance of Two-Dimensional Gibbsian Point
Processes”. Commun. Math. Phys. 274(1), pp. 81–122Commun. Math. Phys. 274(1), pp. 81–122. Cited page 1313

[107] T. Richthammer 2016. “Lower Bound on the Mean Square Displacement of Particles
in the Hard Disk Model”. Commun. Math. Phys. 345, pp. 1077–1099Commun. Math. Phys. 345, pp. 1077–1099. Cited page 1313

[108] H. Robbins & S. Monro 1951. “A stochastic approximation method”.
Ann. Math. Statist. 22(3), pp. 400–407Ann. Math. Statist. 22(3), pp. 400–407. Cited pages 1010 and 1111

[109] S. Ruder 2016. “An overview of gradient descent optimization algorithms”. arXiv
preprint arXiv:1609.04747 . Cited pages 1010 and 1111

[110] J. Schmidhuber 2015. “Deep learning in neural networks: An overview”. Neural
Netw. 61, pp. 85–117. Cited page 88

http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1080/07474930802459016
http://dx.doi.org/10.1017/S0305004100019174
http://dx.doi.org/10.1080/01621459.1994.10476870
http://dx.doi.org/10.1081/etc-120028836
http://dx.doi.org/10.1039/c4sm00125g
http://dx.doi.org/10.1007/978-3-642-61544-3
http://dx.doi.org/10.1016/0021-9991(80)90104-7
http://dx.doi.org/10.1007/s00220-007-0274-7
http://dx.doi.org/10.1007/s00220-016-2584-0
http://dx.doi.org/10.1214/aoms/1177729586

BIBLIOGRAPHY 95

[111] O. Sebbouh, R. M. Gower & A. Defazio 2021. “Almost sure convergence rates for
stochastic gradient descent and stochastic heavy ball”. In “Conference on Learning
Theory”, (PMLR) pp. 3935–3971. Cited page 1010

[112] S. L. Smith & Q. V. Le 2018. “A Bayesian Perspective on Generalization and
Stochastic Gradient Descent”. In “International Conference on Learning
Representations”, . Cited page 1111

[113] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan & S. Ganguli 2015. “Deep
Unsupervised Learning using Nonequilibrium Thermodynamics”. In “Proceedings
of the 32nd International Conference on Machine Learning”, , edited by Francis
Bach & David Blei Proceedings of Machine Learning Research, volume 37 (PMLR, Lille,
France) pp. 2256–2265. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.htmlhttps://proceedings.mlr.press/v37/sohl-dickstein15.html. Cited page 88

[114] A. Sokal 1997. Monte Carlo Methods in Statistical Mechanics: Foundations and New
Algorithms (Springer US). ISBN 978-1-4899-0319-8 pp. 131–192. URL
http://dx.doi.org/10.1007/978-1-4899-0319-8_6http://dx.doi.org/10.1007/978-1-4899-0319-8_6. Cited page 3232

[115] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever & R. Salakhutdinov 2014.
“Dropout: a simple way to prevent neural networks from overfitting”. J. Mach.
Learn. Res. 15(1), pp. 1929–1958. Cited page 1010

[116] S. Vaswani, F. Bach & M. Schmidt 2019. “Fast and Faster Convergence of SGD for
Over-Parameterized Models and an Accelerated Perceptron”. In “The 22nd
International Conference on Artificial Intelligence and Statistics”, (PMLR) pp.
1195–1204. Cited page 99

[117] L. Verlet 1967. “Computer "Experiments" on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules”. Phys. Rev. 159(1), pp. 98–103Phys. Rev. 159(1), pp. 98–103.

Cited page 3636

[118] S. Vlaski & A. H. Sayed 2019. “Second-Order Guarantees of Stochastic Gradient
Descent in Non-Convex Optimization”. 1908.070231908.07023. Cited pages 1010 and 1111

[119] L. Wasserman 2004. All of Statistics (Springer, New York). URL
http://dx.doi.org/10.1007/978-0-387-21736-9http://dx.doi.org/10.1007/978-0-387-21736-9. Cited pages 4848, 4949, 7575, 7676, and 7777

[120] R. F. B. Weigel 2018. “Equilibration of orientational order in hard disks via arcuate
event-chain Monte Carlo”. Master thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg URL
https://theorie1.physik.uni-erlangen.de/research/theses/2018-ma-roweigel.htmlhttps://theorie1.physik.uni-erlangen.de/research/theses/2018-ma-roweigel.html.

Cited page 3636

[121] D. B. Wilson 2000. “How to couple from the past using a read-once source of
randomness”. Random Structures & Algorithms 16(1), pp. 85–113Random Structures & Algorithms 16(1), pp. 85–113. Cited page 2929

[122] K. G. Wilson 1975. “The renormalization group: Critical phenomena and the Kondo
problem”. Rev. Mod. Phys. 47, pp. 773–840Rev. Mod. Phys. 47, pp. 773–840. Cited page 7777

https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://dx.doi.org/10.1007/978-1-4899-0319-8_6
http://dx.doi.org/10.1103/physrev.159.98
1908.07023
http://dx.doi.org/10.1007/978-0-387-21736-9
https://theorie1.physik.uni-erlangen.de/research/theses/2018-ma-roweigel.html
http://dx.doi.org/10.1002/(SICI)1098-2418(200001)16:1<85::AID-RSA6>3.0.CO;2-H
http://dx.doi.org/10.1103/RevModPhys.47.773

96 BIBLIOGRAPHY

[123] S. Wojtowytsch 2021. “Stochastic gradient descent with noise of machine learning
type. Part I: Discrete time analysis”. arXiv preprint arXiv:2105.01650 .

Cited pages 99 and 1111

[124] S. Wojtowytsch 2021. “Stochastic gradient descent with noise of machine learning
type. Part II: Continuous time analysis”. arXiv preprint arXiv:2106.02588 .

Cited page 1111

[125] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz et al. 2020. “Transformers: State-of-the-art natural language
processing”. In “Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations”, pp. 38–45. Cited page 88

[126] S. Wolfram 2003. The mathematica book volume 1 (Wolfram Research, Inc.).
Cited page 11

[127] W. W. Wood 1968. “Monte Carlo Calculations for Hard Disks in the
Isothermal-Isobaric Ensemble”. J. Chem. Phys. 48, pp. 415–434. Cited page 1717

[128] W. W. Wood 1970. “NpT-ensemble Monte Carlo calculations for the hard-disk
fluid”. J. Chem. Phys. 52(2), pp. 729–741. Cited page 77

[129] W. W. Wood 1970. “NpT-ensemble monte carlo calculations for the hard-disk fluid”.
J. Chem. Phys. 52, pp. 729–741. Cited page 1717

[130] W. W. Wood, J. J. Erpenbeck, G. A. Baker & J. D. Johnson 2000. “Molecular
dynamics ensemble, equation of state, and ergodicity”. Phys. Rev. E 63, p. 011 106Phys. Rev. E 63, p. 011 106.

Cited pages 1818 and 6262

[131] Z. Xie, I. Sato & M. Sugiyama 2021. “A Diffusion Theory For Deep Learning
Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima”. In
“International Conference on Learning Representations”, URL
https://openreview.net/forum?id=wXgk_iCiYGohttps://openreview.net/forum?id=wXgk_iCiYGo. Cited page 1111

[132] C. Xing, D. Arpit, C. Tsirigotis & Y. Bengio 2018. “A Walk with SGD”. Cite
arxiv:1802.08770Comment: First two authors contributed equally URL
http://arxiv.org/abs/1802.08770http://arxiv.org/abs/1802.08770. Cited page 1111

[133] C. Zhang, Q. Liao, A. Rakhlin, B. Miranda, N. Golowich & T. Poggio 2018.
“Theory of deep learning IIb: Optimization properties of SGD”. arXiv preprint
arXiv:1801.02254 . Cited page 1111

[134] L. Ziyin, K. Liu, T. Mori & M. Ueda 2021. “Strength of Minibatch Noise in SGD”.
arXiv preprint arXiv:2102.05375 . Cited page 1111

[135] J. A. Zollweg & G. V. Chester 1992. “Melting in two dimensions”.
Phys. Rev. B 46, pp. 11 186–11 189Phys. Rev. B 46, pp. 11 186–11 189. Cited pages 77 and 8686

[136] D. Zou, J. Wu, V. Braverman, Q. Gu & S. Kakade 2021. “Benign overfitting of
constant-stepsize sgd for linear regression”. In “Proceedings of Thirty Fourth

http://dx.doi.org/10.1103/PhysRevE.63.011106
https://openreview.net/forum?id=wXgk_iCiYGo
http://arxiv.org/abs/1802.08770
http://dx.doi.org/10.1103/PhysRevB.46.11186

BIBLIOGRAPHY 97

Conference on Learning Theory”, , edited by Mikhail Belkin & Samory Kpotufe
Proceedings of Machine Learning Research, volume 134 (PMLR) pp. 4633–4635. URL
https://proceedings.mlr.press/v134/zou21a.htmlhttps://proceedings.mlr.press/v134/zou21a.html. Cited page 1111

https://proceedings.mlr.press/v134/zou21a.html

98 BIBLIOGRAPHY

Publications

99

100 PUBLICATIONS

Publication 1: Multithreaded event-chain Monte Carlo with
local times

Computer Physics Communications 261 (2021) 107702

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Multithreaded event-chainMonte Carlowith local times✩,✩✩

Botao Li a, Synge Todo b,c, A.C. Maggs d, Werner Krauth a,∗

a Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris
Cité, Paris, France
b Department of Physics, University of Tokyo, 113-0033 Tokyo, Japan
c Institute for Solid State Physics, University of Tokyo, 277-8581Kashiwa Japan
d CNRS UMR7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France

a r t i c l e i n f o

Article history:
Received 27 May 2020
Received in revised form 8 October 2020
Accepted 14 October 2020
Available online 1 November 2020

Keywords:
Monte Carlo algorithm
Irreversible Markov chain
Multithreading
Event-chain algorithm
Sequential consistency model
C++
Python
Fortran90

a b s t r a c t

We present a multithreaded event-chain Monte Carlo algorithm (ECMC) for hard spheres. Threads
synchronize at infrequent breakpoints and otherwise scan for local horizon violations. Using a mapping
onto absorbing Markov chains, we rigorously prove the correctness of a sequential-consistency
implementation for small test suites. On x86 and ARM processors, a C++ (OpenMP) implementation
that uses compare-and-swap primitives for data access achieves considerable speed-up with respect
to single-threaded code. The generalized birthday problem suggests that for the number of threads
scaling as the square root of the number of spheres, the horizon-violation probability remains small
for a fixed simulation time. We provide C++ and Python open-source code that reproduces all our
results.
Program summary
Program title: ParaSpheres.
CPC Library link to program files: https://doi.org/10.17632/c3rjk5k3z9.1
Developer’s repository link: https://github.com/jellyfysh/ParaSpheres
Licensing provisions: GNU GPLv3.
Programming languages: Python 3, C++, Fortran90.
Nature of problem: Multithreaded event-chain Monte Carlo for hard spheres.
Solution method: Event-driven irreversible Markov-chain Monte Carlo algorithm using local times.
Additional comments: The collection of programs is complete with shell scripts that allow one
to reproduce all data, and all the figures of the paper. Change of density and system size is
straightforward. The manuscript is accompanied by a frozen copy of the GitHub repository that is
made publicly available on GitHub (repository https://github.com/jellyfysh/ParaSpheres, commit hash
e2aa5b9727fb080ebe65581586c0f6133efa495d).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Event-chain Monte Carlo (ECMC) [1,2] is an event-driven re-
alization of a continuous-time irreversible Markov chain that has
found applications in statistical physics [3,4] and related fields [5].
Initially restricted to hard spheres and to models with piece-wise
constant pair potentials [6], ECMC was subsequently extended to
continuous potentials, such as spin models and all-atom particle
systems with long-range interactions [7,8]. Potentials need not

✩ The review of this paper was arranged by Prof. D.P. Landau.
✩✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
∗ Corresponding author.

E-mail address: werner.krauth@ens.fr (W. Krauth).

be pair-wise additive [9]. In opposition to standard Monte Carlo
methods, such as the Metropolis algorithm [10], ECMC does not
evaluate the potential U(x) of a configuration x (nor any ratio of
potentials) in order to sample the Boltzmann distribution π (x) =
exp [−βU(x)], with inverse temperature β .

For hard spheres, ECMC is a special case of event-driven
molecular dynamics [11,12]. In molecular dynamics, usually all
N spheres have non-zero velocities, and the number of candi-
date collision events at any time is O (N). A central scheduler,
efficiently implemented through a heap data structure, yields
the next collision with computational effort O (1), and it up-
dates the heap in at most O (log N) operations [13,14]. Event
times are global, and the CPU clock advances together with
the collision times. The global collision times and the required
communications at events complicate multithread implementa-
tions [15–19]. Domain decomposition, another strategy to cope
with synchronization, is also problematic [20].

https://doi.org/10.1016/j.cpc.2020.107702
0010-4655/© 2020 Elsevier B.V. All rights reserved.

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

In hard-sphere ECMC, a set At of k < N ‘‘active’’ spheres
(all of radius σ) have the same non-zero velocity v that changes
infrequently. All other spheres are ‘‘static’’. At a lifting [21] lt =
([i→ j], (x, x′), t), an active sphere i collides at time t with a
target sphere j at contact (|x′ − x| = 2σ , a condition that must be
adapted for periodic boundary conditions). The lifting lt connects
an in-state (the configuration just before time t , at time t−)
with an out-state (the configuration just after time t , at time
t+):

in-state :

⎡⎢⎢⎢⎢⎢⎢⎣

i ∈ At− , j ̸∈ At−

xi(t−) = x
xj(t−) = x′

vi(t−) = v
vj(t−) = 0

⎤⎥⎥⎥⎥⎥⎥⎦ ; out-state :

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

i ̸∈ At+ , j ∈ At+

xi(t+) = x
xj(t+) = x′

vi(t+) = 0

vj(t+) = v

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (1)

We consider in this paper two-dimensional spheres in a square
box with periodic boundary conditions. In this system, the direc-
tion of vmust be changed at certain breakpoints for the algorithm
to be irreducible [22]. However, we restrict our attention to ECMC
in between two such breakpoints h and h′ with, for concreteness,
v = (vx, vy) = (1, 0). For a generic ‘‘lifted’’ [21] initial configu-
ration {Ch,Ah} at h, ECMC is deterministic up to h′. Generically
no two liftings take place at the same time t , so that they can be
identified by their time.

Our multithreaded ECMC algorithm propagates k = |A| active
spheres in independent threads, with shared memory. In between
h and h′, it only uses local-time attributes of each sphere. At a
lifting lti = ([i→j], (x, x′), ti), j synchronizes with i (the local time
tj is set equal to ti). For a sphere i to move, it must not violate
certain horizon conditions of nearby spheres j. In the absence of
horizon violations between h and h′, multithreaded ECMC will be
proven equivalent to the global-time process.

The motivation for our work is twofold. First, we strive to
speed up current hard-sphere simulations where, typically, N ∼
1×106. These simulations require weeks or months of run time
to decorrelate from the initial configuration [3,23]. Using a con-
nection to the generalized birthday problem in mathematics, we
will argue that such simulations can successfully run with k ≲√
N . Our approach to multithreading thus uses the freedom to

tune the number of active spheres. Second, by providing proof of
concept for multithreaded ECMC algorithms, we hope to motivate
the development of parallel ECMC algorithms for other system to
which sequential ECMC applies already.

The multithreaded ECMC algorithm is presented in two ver-
sions. One implementation uses the sequential-consistency model
[24]. Mapped onto an absorbing Markov chain, its correctness is
rigorously proven for small test suites. The C++ implementation
uses OpenMP to map active chains onto hardware threads, to-
gether with atomic primitives [25] for fine-grained control of in-
teractions between threads. Considerable speed-up with respect
to a single-threaded version is achieved. The few simultaneously
moving spheres (k ≪ N) avoid communication bottlenecks
between threads, even though each hard-sphere lifting involves
only little computation.

Subtle aspects of our algorithm surface through the confronta-
tion of the C++ implementation with the sequential-consistency
computational model on the same test suites. By reordering single
statements in the code, we may for example introduce rare bugs
that are not detected during random testing, but that are readily
exhibited in the rigorous solution, and that illustrate difficulties
stemming from possible compiler or processor re-ordering.

Code availability. Cell-based ECMC for two-dimensional hard
spheres is implemented (in Fortran90) as CellECMC.f90. Our ver-
sion is slightly modified from two original programs made available

in a Fortran90/Historic directory, written by E. P. Bernard (see
Acknowledgments). The code prepares initial configurations. It is
used in validation scripts.

2. Algorithms: from global-time processes to multithreaded
ECMC

In this section, we start with the definition of a continuous-
time process, Algorithm 1, that is manifestly equivalent to molec-
ular dynamics with the collision rules of Eq. (1). Its event-driven
version, Algorithm 2, provides the reference set Lref of liftings
used in our validation scripts (see Section 3). The single-threaded
Algorithm 3 relies on local times. It has correct output if no hori-
zon violation takes place. Its event-driven version, Algorithm 4,
yields a practical method that can be implemented and tested.
Algorithms 5 and 6 realize multithreaded ECMC, the latter in a
highly efficient C++ implementation.

2.1. Continuous processes and ECMC with global time

Algorithm 1 (Continuous Process with Global Time). At global time
t = h, an initial lifted configuration {Ch,Ah} is given (vi = v =
(1, 0) ∀i ∈ Ah and vi = 0 ∀i ̸∈ Ah). All spheres i carry local times
ti, with, initially, ti(h) = h ∀i. For active spheres (i ∈ At), dti/dt =
1. At a lifting lt = ([i→j], (x, x′), t) the local time of sphere j is
updated as tj(t+) = t and, furthermore, At+ = At− \ {i} ∪ {j}.
The algorithm stops at global time t = h′, and outputs the lifted
configuration {Ch′ ,Ah′}, and the set Lh′ = {lt : h < t < h′} of
liftings that have taken place between h and h′.

Remark 1 (Meaning of Local Times). In Algorithm 1, the local time
ti(t) is a function of the global time t . It gives the global time at
which sphere i was last active (or ti(t) = h if i was not active for
[h, t]). Therefore ti(t) = t ∀i ∈ At and ti(t) < t ∀i ̸∈ At .

Remark 2 (Positivity of Local-time Updates). In Algorithm 1, at any
lifting lt , the update of tj is positive: tj(t+)− tj(t−) > 0.

Remark 3 (Time-reversal Invariance). Algorithm 1 is determinis-
tic and time-reversal invariant: If an initial lifted configuration
{Ch,Ah} generates the final lifted configuration {Ch′ ,Ah′} with v,
then the latter will reproduce the initial configuration with −v.
The set L of liftings is the same in both cases (with exchanged i
and j).

In order to converge towards a given probability distribution,
Markov-chain algorithms must satisfy the global-balance condi-
tion. It states that the probability flow into a configuration C
(summed over all liftings A) must equal the probability flow out
of it [22]. ECMC balances these flows for each lifting individually
(for the uniform probability distribution).

Lemma 1. Algorithm 1 satisfies the global-balance condition for any
lifted configuration {C,A}. All lifted configurations accessible from a
given initial configuration thus have the same statistical weight.

Proof. The algorithm is equivalent to molecular dynamics that
conserves one-dimensional momenta as well as the energy. The
claimed property follows for Algorithm 1 because it is satisfied
by molecular dynamics. The property can be shown directly for a
discretized version of Algorithm 1 on a rectangular grid aligned
with v with infinitesimal cell size such that each lifted configu-
ration {C,A} has a unique predecessor. The flow into each lifted
configuration equals one. This is equivalent to global balance for
the uniform probability distribution. □

2

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

The event-driven version of Algorithm 1 is the following:

Algorithm 2 (ECMC with Global Time). With input as in
Algorithm 1, in each iteration I = 1, 2, . . ., the next global
lifting time is computed as tI+1 = tI + mini∈A,j̸∈A τij,1 where
τij is the time of flight from sphere i to sphere j. At time tI ,
local times as well as positions of active spheres are advanced to
t̃ = min

(
tI+1, h′

)
, and to xi(tI+1) = xi(tI)+ (t̃ − tI)v, respectively.

If t̃ = tI+1 (a lifting lI+1 = ({i, j}, {x, x′}, tI+1) takes place), the set
of active spheres is updated as AI+1 = AI \ {i} ∪ {j}. Otherwise
t̃ = h′, and the algorithm stops. Output is as in Algorithm 1.

Code availability. Algorithm 2 is implemented in GlobalTime-
ECMC.py and invoked in several validation scripts, for which it
generates the reference lifting sets Lref.

2.2. Single-threaded processes and ECMC with local times

Algorithm 3, that we now describe, is a single-threaded em-
ulation of our multithreaded Algorithms 5 and 6. A randomly
sampled active chain ι ∈ {1, 2, . . .} advances (in what corre-
sponds to a thread) for an imposed duration, at most until its
local time reaches h′. On thread ι, the active sphere i must remain
above the horizons of its neighboring spheres j (see Fig. 1a). The
horizon condition is

ti + τij > tj, (2)

where the time of flight is τij = xj − xi + bij, with bij the contact
separation parallel to v between spheres i and j. The horizon
condition must be checked for at most three spheres j for a given
i because all other spheres are either too far for lifting with i
in the direction perpendicular to v or are prevented from lifting
with i by other spheres (see Section 3.1). The algorithm aborts if
a horizon violation is encountered. The active chain ι stops if a
lifting would be to a sphere j that is itself active. The active chain
ι+ 1 is then started.

Remark 4 (Double Role of Horizon Condition). The horizon con-
dition of Eq. (2) has two roles. First, it is a necessary condition
for a lifting of i with j (if it effectively takes place) to produce
the required positive local-time update of tj at the lifting time t
(see Remark 2 and Fig. 1a). Second, it is a sufficient non-crossing
condition for any sphere k, ensuring that k was not at a previous
local time in conflict with i (see Fig. 1b).

It is for the second role discussed in Remark 4 that the horizon
condition is checked for all neighboring spheres j of an active
sphere i.

Remark 5 (False Alarms from Horizon Condition). The horizon
condition may lead to false alarms (see Fig. 1b), which could be
avoided through the use of the non-crossing condition. The latter
is more difficult to check, as it requires the history of past liftings.
Our algorithms only implement the horizon condition.

Algorithm 3 (Single-threaded Continuous Process with Local Times).
With input as in Algorithm 1, active chain ι = 1, 2, . . . is initial-
ized (sequentially) with an active sphere i, sampled from Ã = {i ∈
A, ti ̸= h′}, and for a local-time interval τmax

ι = min
(
ran, h′ − ti

)
,

where ran is a positive random number. In active chain ι, the
active sphere i moves with velocity v for τ ∈ [0, τmax

ι] and

1 τij is infinite if i cannot lift with j for the given initial configuration C and
velocity v. The presence of an arrow [i→j] in the directed constraint graph G
indicates that τij can be finite (see Section 3.1).

Fig. 1. Horizon condition and non-crossing condition in local-time algorithms.
(a) Sphere i is above the horizon of sphere j (shaded area), so that at the lifting
of i with j, the local-time update of tj is positive. (b) Sphere i does not lift with
k. It does not cross the past trajectory of k, although it violates the horizon
condition with k (light shading) (supposing bik = 0). The lifting of i with j
could in principle be allowed under the non-crossing condition with k (dark
blue shading), supposing τjk = ∞.

dti/dτ = 1, if the horizon condition of Eq. (2) is satisfied for all
spheres j. (In case of a horizon violation, the algorithm aborts.)
If a lifting lti = ([i→j], (x, x′), ti) concerns an active sphere j, the
active chain ι stops with i at x. Otherwise, the local time of sphere
j is updated as tj(t+i) = ti and A = A \ {i} ∪ {j}, with the active
chain ι now moving j. The algorithm terminates if Ã = ∅, that is,
if all the active spheres are stalled. Output is as for Algorithm 1.

Remark 6 (Stalled Spheres). ‘‘Stalled’’ spheres (active spheres i
with ti = h′) make up the set A \ Ã. Considering stalled spheres
separately simplifies the sampling of Ã and the restart from h′ for
the next leg of the ECMC run.

Lemma 2. If Algorithm 3 terminates without a horizon violation, its
output is identical to that of Algorithm 1.

Proof. We consider the final lifted configuration {Ch′ ,Ah′} of a
run that has terminated without a horizon violation, and that
has preserved a log of all local-time updates. The termination
condition is Ã = ∅, so that all active spheres are stalled with
local time h′. We further consider the final lifting lh′′ in Lh′ (so
that t < h′′ ∀ lt ∈ Lh′′). Local times of static spheres satisfy
ti ≤ h′′ ∀i ̸∈ Ah′ . When backtracking, using Algorithm 1 with −v,
from h′ to h′′+, no lifting takes place among active spheres (see
Fig. 2a). The area swept out by the active spheres cannot overlap
with a static sphere j because it must have tj < h′′ (local times
are smaller than the last lifting) and, on the other hand, tj > h′′,
because of Eq. (2) (see Fig. 2b). The lifting lh′′ = ([i→j], (x, x′), h′′)
can now be undone. (From j ∈ Ah′ and i ̸∈ Ah′ , we obtain
Ah′′ = Ah′ \ {j} ∪ {i}. The updated local time tj(h′′−) can be
reconstructed from the log. It is smaller than h′′. The lifting is then
itself eliminated: Lh′′ = Lh′ \ {lh′′}.) All active spheres at h′′− now
have local time h′′. Similarly, all liftings can be undone, effectively
running Algorithm 2 with−v from h′ to h. As Algorithm 1 is time-
inversion invariant, the local times at its liftings are the same as
those of Algorithm 3. □

For concreteness, in the following event-driven formulation of
Algorithm 3, the local-time interval τmax

ι of an active chain ι is
chosen equal to the time of flight towards the next lifting.

Algorithm 4 (Single-threaded ECMC with Local Times). With input
as in Algorithm 1, for each (sequential) active chain ι = 1, 2, . . .,
an active sphere i is sampled from Ã = {i ∈ A, ti ̸= h′}. The
horizon conditions of Eq. (2) are checked for all2 spheres j that

2 At most three spheres j can have finite τij for any i, see Section 3.1.

3

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Fig. 2. Backtrack using Algorithm 1 from the final configuration of Algorithm 3.
(a) Active spheres k and l do not lift among each other. (b) A static sphere j
crossing the trajectory of active sphere k. This crossing is impossible because of
the horizon condition (τ̃ < h′ − h′′ leading to tj > h′′ , in contradiction with the
condition tj < h′′).

can have finite time of flight τij. The algorithm aborts if a violation
occurs. Otherwise, i is moved forward to min

(
ti + τij, h′

)
, and

the local time of i and j are updated to that time. The active
chain stops if j is an active sphere or if the local time equals
h′. Otherwise, the move corresponds to a lifting lti+τij = ([i→
j], (x, x′), ti+ τij) and A = A \ {i} ∪ {j}, with the active chain now
moving j. The algorithm terminates if Ã = ∅. Output is as for
Algorithm 1.

Code availability. Algorithm 4 is implemented in SingleThread-
LocalTimeECMC.py and tested in the PValidateECMC.sh script.

Remark 7 (Partial Validation). In Section 3.2, a variant of
Algorithm 4 is used to validate part of a run, even if it does not
terminate correctly. When a sphere i detects a horizon violation,
its time ti is recorded. At h′, the set Lt∗ of all liftings up to the
earliest horizon violation, at t∗, agrees with the corresponding
partial list of liftings for Algorithm 1.

2.3. Multithreaded ECMC (sequential-consistency model)

Algorithm 5, the subject of the present section, is a model
shared-memory ECMC on k threads, that is, on as many threads
as there are active spheres. The algorithm adopts the sequential-
consistency model [24]. We rigorously prove its correctness for
small test suites by mapping the multithreading stage of this
algorithm to an absorbing Markov chain. The algorithm allows
us to show that certain seemingly innocuous modifications of
Algorithm 6 (the C++ implementation) contain bugs that are too
rare to be detected by routine testing.

The algorithm has three stages. In the (sequential) initializa-
tion stage, it inputs a lifted initial configuration and maps each
active sphere to a thread. This is followed by the multithreading
stage, where each active chain progresses independently, check-
ing the horizon conditions in its local environment. The algorithm
concludes with the (sequential) output stage.

At each step of the multithreading stage of Algorithm 5, a
switch randomly selects one of the k statements (one for each
thread a, b, . . .) contained in a buffer as {nexta, nextb, . . .}. The
selected statement is executed on the corresponding thread, and
then the buffer is updated. The random sequence of statements
mimics the absence of thread synchronization except at break-
points. All threads possess an absorbing wait statement. When
it is reached throughout, the algorithm progresses to the output
stage, followed by successful termination. The program aborts
when a thread detects a horizon violation. For our test suites, we
prove by explicit construction that each state is connected to at
least one of the absorbing states, but we lack a general proof of
validity for arbitrary configurations and general N .

In Algorithm 5, each sphere has three attributes, namely a tag,
a local time and a position. The sphere’s tag indicates whether it is
active on a thread ι, stalled, or static. All threads have read/write

access to the attributes of all spheres. A state of the Markov chain
is constituted by the spheres with their attributes, some local
variables and the buffer content.

Algorithm 5 (Multithreaded ECMC (Sequential-consistency Model)).
At breakpoint h = 0, a lifted initial configuration {Ch,Ah} is input
(see Fig. 3 for the example with four spheres). All local times
are set to h = 0, all tags are put to static, except for the active
spheres, whose tags correspond to their thread ι. The buffer is
set to {11, . . . , 1ι, . . . , 1k}. A random switch selects one buffer
element. The corresponding statement is executed on its thread,
and the buffer is replenished. The following provides pseudo-code
for the multithreading stage (iι is the active sphere, jι the target
sphere, and distanceι the difference between h′ and the local time,
all on thread ι):

1ι τι ← distanceι; jι ← iι; xι ←∞

2ι for ȷ̃ in {1, 2, ..., n} \ iι :
3ι xȷ̃ ← ȷ̃.x
4ι τiȷ̃ ← xȷ̃ − iι.x− biȷ̃
5ι if iι.t+τiȷ̃ < ȷ̃.t : abort
6ι if τiȷ̃ < τι :
7ι jι ← ȷ̃
8ι xι ← xȷ̃
9ι τι ← τiȷ̃

10ι jι.tag.CAS(static, ι)
11ι if jι.tag = ι :
12ι if τι < distanceι :
13ι if xι = jι.x :
14ι jι.t ← iι.t + τι

15ι iι.t ← iι.t + τι

16ι iι.x← iι.x+ τι

17ι iι.tag ← static
18ι distanceι ← distanceι − τι

19ι iι ← jι
else :

20ι jι.tag ← static
goto 1

else :
21ι iι.t ← iι.t + τι

22ι iι.x← iι.x+ τι

23ι distanceι ← 0
24ι iι.tag ← stalled

else : goto 1
25ι if distanceι > 0 : goto 1
26ι wait

When all k threads have reached their wait statements, the algo-
rithm proceeds to its output stage. Output is as for Algorithm 1.

Code availability. SequentialMultiThreadECMC.py imple-
ments Algorithm 5. It also constructs all states connected to the
initial state and traces them to the absorbing states. It is called by
SequentialC4.sh and SequentialC5.sh

Remark 8 (Illustration of Pseudocode). The multithreading stage
of Algorithm 5 corresponds to k identical programs running in-
dependently. In the sequential-consistency model, the space of
programming statements is thus k-dimensional (one sequence
(1ι, . . . , 26ι) per thread), and each displacement in this space pro-
ceeds along a randomly chosen coordinate axis. As an example, if
for a buffer {next1, . . . , nextι = 20ι, . . . , nextk} the switch selects
thread ι, then the tag of target particle jι is set to ‘‘static’’, and the
buffer is updated to {next1, . . . , nextι = 1ι, . . . , nextk}. The thread
ι will thus be restarted at its next selection.

4

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Fig. 3. Algorithm 5, as applied to the SequentialC4 test suite. (a) Reference set Lref from Algorithm 2. (b) Run of Algorithm 5 involving a ‘‘lock-less’’ lock rejection
on the position of sphere 3.

The compare-and-swap (CAS) statement in 10ι of Algorithm 5
amounts to a single-line if. It is equivalent to: ‘‘if jι.tag = static :
jι.tag = ι’’ (if j is static, then it is set to active on thread ι (see
Remark 9 for a discussion).

We prove correctness of Algorithm 5, for the SequentialC4
test suite with N = 2 and k = 2 (see Fig. 3), that we later extend
to the SequentialC5 test suite with N = 5.

Lemma 3. If Algorithm 5 terminates without a horizon violation,
its output (for the SequentialC4 test suite) is identical to that of
Algorithm 1.

Proof. In the SequentialC4 test suite with threads ‘‘a’’ and ‘‘b’’,
we suppose that the switch samples a and b with equal proba-
bilities. The two-thread stage of Algorithm 5 then consists in a
finite Markov chain with 3670 states Sn that are accessible from
the initial state. The abort state has no buffer content. All other
3669 states comprise the buffer {nexta, nextb}, the sphere objects
(the spheres and their attributes: tag, local time, position), and
some thread-specific local variables. One iteration of the Markov
chain (selection of nexta or nextb, execution of the corresponding
statement, buffer update) realizes the transition from Sn to a state
Sm with probability Tnm = 1/2. The 3670× 3670 transition matrix
T = (Tnm) has unit diagonal elements for the abort, and for the
unique terminate state with buffer {26a, 26b}, which are both
absorbing states of the Markov chain. Furthermore, we can show
explicitly that all 3670 states have a finite probability to reach
an absorbing state in a finite number of steps. This proves that
the Markov chain is absorbing. For an absorbing Markov chain,
all states that are not absorbing are transient, and they die out
at large times. The algorithm thus either ends up in the unique
terminate state that corresponds to successful completion, or
else in the abort state. □

All states of the Markov chain may be projected onto their
buffer {nexta, nextb} and visualized (see Fig. 4)).

Remark 9 (CAS Statement). The CAS statements (see 10ι in
Algorithm 5) acquire their full meaning in the multithreaded
Algorithm 6 The way in which they differ from simple if state-
ments can already be illustrated in the simplified setting. We
suppose two threads a and b. Then, with jι the target sphere on
thread ι, a buffer content {10a, 10b}:

...
...

10a ja.tag.CAS(static, a)
11a if ja.tag = a :

...
...

...
...

10b jb.tag.CAS(static, b)
11b if jb.tag = b :

...
...

Fig. 4. The 3670 states in Algorithm 5 for the SequentialC4 test suite
projected onto the buffer content {nexta, nextb} (see Fig. 3). The terminate
buffer {26a, 26b} corresponds to a single state.

can belong to a state with ja = 3 = jb = 3.3 If the statement
10a is selected, sphere 3 becomes active on thread a (through the
statement 3.tag = a). In contrast, if the switch selects 10b, sphere
3 becomes active on thread b. The program continues consis-
tently for both switch choices, because the selection is made in a
single (‘‘atomic’’) step on each thread and because the sequential-
consistency model avoids conflicting memory assignments. In
contrast, if the switch selection from {10a, 10b} is split as:

...
...

10′a if ja.tag = static :
10′′a ja.tag = a
11a if ja.tag = a :

...
...

...
...

10′b if jb.tag = static :
10′′b jb.tag = b
11b if jb.tag = b :

...
...

the sequence 10′a → 10′b → 10′′a → 11a → 10′′b → 11b re-
sults in sphere 3 first becoming active on thread a (and the thread
continuing as if this remained the case), and then on thread b,
which is inconsistent. In Algorithm 6, the C++ implementation
of multithreaded ECMC, the CAS likewise keeps this selection
step atomic, and likewise excludes memory conflicts among all
threads during this step. It thus plays the role of a lightweight
memory lock.

Algorithm 5 features lock-free programming, which is also a key
ingredient of Algorithm 6.

3 This corresponds to the lifted configuration of Fig. 3h.

5

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Remark 10 (Lock-free Programming). To illustrate lock-free pro-
gramming in Algorithm 5, we consider two threads, a and b.

7a ja ← ȷ̃
8a xa ← xȷ̃

...
...

10a ja.tag.CAS(static, a)
...

...

13a if xa = ja.x :
...

...

...
...

16b ib.x← ib.x+ τb
17b ib.tag ← static

...
...

The identification of the target sphere ja on thread a (statements
7a and 8a) would be compromised if, before locking through
the CAS statement at 10a, it was changed in thread b, where
the same sphere ib is active (see statements 16b, 17b). However,
the statement 13a checks that sphere ja has not moved. If this
condition is not satisfied, the thread a will be restarted (through
statement 20a). (See also Remark 12.)

2.4. Multithreaded ECMC (C++, OpenMP implementation)

Algorithm 6, discussed in this section, translates Algorithm 5
into C++ (OpenMP). The CAS statement and lock-free program-
ming assure its efficiency. A sphere’s attributes are again its
position, its local time, and its tag. The latter is an atomic variable.
We refer to line numbers in Algorithm 5.

Algorithm 6 (Multithreaded ECMC (C++, OpenMP)). With initial
values as in Algorithm 1, thread management is handled by
OpenMP. The number of threads can be smaller than the number
of active spheres. The multithreading stage transliterates the one
of Algorithm 5. Statement 2ι of Algorithm 5 is implemented
through a constraint graph (see Section 3.1). Statements 10ι
through 13ι are expressed as follows in MultiThreadECMC.cc:

10ι→ j->tag.compare_exchange_strong(...static,...
11ι→ if (j->tag.load(memory_order) == iota)
12ι→ if (tau < distance)
13ι→ if (x == j->x),

where the memory_order qualifier may take on different values
(see Section 3.2). Important differences with Algorithm 5 are
discussed in Remarks 11 and 12. Output is as for Algorithm 1.

Code availability. Algorithm 6 is implemented in MultiThread-
ECMC.cc. It is executed in several validation and benchmarking
scripts (see Section 3.2).

Remark 11 (Active-sphere Necklaces). Algorithm 5 restarts thread
ι if the target sphere j (for an active sphere i on the thread) is itself
active on another thread. With periodic boundary conditions,
active-sphere necklaces, where all target spheres are active, can
deadlock the algorithm. To avoid this, Algorithm 6 moves sphere
i up to contact with j before restarting (this is also used in
Algorithm 4).

The source code of Algorithm 6 essentially translates that of
Algorithm 5. The compiler may however change the order of
execution for some statements in order to gain efficiency. (The
memory access in modern multi-core processors can also be
very complex and, in particular, thread-dependent.) Attributes,
such as the memory_order qualifier in the CAS statement, may
constrain the allowed changes of order. The reordering directives
adopted in Algorithm 6 were chosen and validated with the
help of extensive runs from randomly generated configurations.
However, subtle pitfalls escaping notice through such testing can
be exposed by explicitly reordering statements in Algorithm 5.

Remark 12 (Memory-order Directives in Algorithms 5 and 6). In the
SequentialC5 test suite with N = 5, interchanging statements
15ι and 16ι in Algorithm 5 yields a spurious absorbing state, and
invalidates the algorithm. The same test suite can also be input
into Algorithm 6, where it passes the Ordering.sh validation
test, even if the statements in MultiCPP.cc corresponding to
15ι and 16ι are exchanged. However, a 1 µs pause statement
introduced in the C++ program between what corresponds to the
(interchanged) statements 15ι and 16ι produces a∼ 1% error rate,
illustrating that Algorithm 6 is unsafe without a protection of the
order of the said statements. Safety may be increased through
atomic position and local time variables, allowing the use of the
fetch_add() operation to displace spheres.

3. Tools, validation protocols, benchmarks, and extensions

We now discuss the implementations of the algorithms of
Section 2, as well as their validation protocols, benchmarks, and
possible extensions. We also discuss the prospects of this method
beyond this paper’s focus on the interval between two break-
points h and h′.

In our implementation of Algorithms 2, 4, and 6, a directed
constraint graph encodes the possible pairs of active and target
spheres as arrows [i→j] (see Section 3.1). The outdegree of this
graph is at most three, and a rough constraint graph G(3) with,
usually, outdegree three for all vertices is easily generated. G(3)

may contain redundant arrows that cannot correspond to liftings.
Our pruning algorithm eliminates many of them. We also prove
that Gmin, the minimal constraint graph, is planar. This may be
of importance if disjoint parts of the constraint graph are stored
on different CPUs, each with a number of dedicated threads. In
general, we expect constraint graphs to be a useful tool for hard-
sphere production codes, with typically O (N) liftings between
changes of v.

Validation scripts are discussed in Section 3.2. Scripts check
that the liftings of standard cell-based ECMC are all accounted
for in the used constraint graph. For the ECMC algorithms of
Section 2, the set L of liftings provides the complete history of
each run, and scripts check that they correspond to Lref.

In Section 3.3, we benchmark Algorithm 6 and demonstrate
a speed-up by an order of magnitude for a single CPU with 40
threads on an x86 CPU (see Section 3.3). The overhead introduced
by multithreading (∼ 2.4) is very reasonable. We then discuss
possible extension of our methods (see Section 3.4).

3.1. Constraint graphs

For a given initial condition Ch and velocity v, arrows [i→ j]
of the constraint graph Gv represent possible liftings lt = ([i→
j], (x, x′), t) [26]. Arrows remain unchanged between breakpoints
because spheres i and j with a perpendicular distance of less
than 2σ cannot hop over one another (this argument can be
adapted to periodic boundary conditions), and pairs with larger
perpendicular distance are absent from G. All constraint graphs Gv
are supersets of a minimal constraint graph Gmin

v ≡ Gmin
−v (where

the equivalence is understood as [i→j]v ≡ [j→i]−v).

Remark 13 (Constraint Graphs and Convex Polytopes). Each arrow
[i→ j] of the constraint graph Gv provides (for v = (1, 0)) an
inequality

xi ≤ xj − bij (3)

that is tight (xi = xj − bij) when i lifts to j at contact (if there are
configurations C where it is tight, then [i→ j] belongs to Gmin

v).
The set of inequalities defines a convex polytope. With periodic
boundary conditions (unaccounted for in Eq. (3)), this polytope is

6

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Fig. 5. Constraint graphs, pruning, and planarity. (a) Corridors of an active
sphere i, with arrows [i→j−], [i→j0], and [i→j+] belonging to G(3)

(1,0) . (b) Pruning
of an arrow [i→j+] through a sphere jnext without there being an arrow [i→jnext].
(c) Spheres i and j, arrow [i→j], and impact path ⟨i, j⟩. Other spheres cannot
cover ⟨i, j⟩. (d) Spheres i, j, k, l with xi < · · · < xl and impact paths ⟨i, l⟩ and
⟨j, k⟩.

infinite in the direction corresponding to uniform translation of
all spheres with v (see [26]).

Remark 14 (Constraint Graphs and Irreducibility). Rigorously, we
define the constraint graph Gmin

v as the set of arrows [i → j]
that are encountered from Ch by Algorithm 1 (or, equivalently,
Algorithm 2) at liftings lt ∀t ∈ (−∞,∞). The liftings for t <

0 can be constructed because of time-reversal invariance (see
Remark 3). For the same reason, we have Gmin

v ≡ Gmin
−v , and the

set of arrows reached from Ch is equivalent to that reached from
any configuration that is reached from C (and in particular Ch′).
While we expect ECMC to be irreducible in the polytope defined
through the inequalities in Eq. (3), we do not require irreducibility
for the definition of Gmin.

Between breakpoints, the active sphere i can lift to at most
three other spheres, namely the sphere j0 minimizing the time
of flight τij in a corridor of width 2σ around the center of i,
and likewise the closest-by sphere j+ in the corridors [σ , 2σ]
and sphere j− in the corridor [−2σ ,−σ] (see Fig. 5a). The set
of arrows {[i→ j0], [i→ j−], [i→ j+] ∀i ∈ {1, . . . ,N}} consti-
tutes the constraint graph G(3)

v , which is thus easily computed.
Except for small systems (where the corridors may be empty),
G(3) has outdegree three for all spheres i. However, its indegree
is not fixed. The constraint graph G(3) is not necessarily locally
planar,4 and in the embedding provided by the sphere centers of a
given configuration, non-local arrows can be present (see Fig. 6a).
However, Gmin can be proven to be locally planar (see Fig. 6b).

Lemma 4. The graph Gmin is locally planar, and any sphere config-
uration that can be reached between breakpoints provides a locally
planar embedding.

Proof. We first consider two spheres i and j for v = (1, 0) in the
plane (without taking into account periodic boundary conditions).
The arrow [i→ j] is drawn by connecting the centers of i and j.
The impact path ⟨i, j⟩ is the horizontal line segment connecting
(xi, yimpact) and (xj, yimpact) where yimpact is the vertical position at
which the two spheres can touch by moving them with v (see
Fig. 5c). If the arrow [i→j] exists, no other sphere can intersect
the impact path ⟨i, j⟩.

4 ‘‘Locally planar’’ means that any subgraph that does not sense the periodic
boundary conditions is planar.

For four spheres i, j, k, l, we now show that no two arrows be-
tween spheres can cross each other. The x-values can be ordered
as xi < xj < xk < xl (again without taking into account periodic
boundary conditions). Two arrows between three spheres trivially
cannot cross. For arrows between two pairs of spheres, arrows
[i→j] and [k→l] cannot cross. Likewise, if there is an arrow [i→k],
then sphere j must be on one side of the impact path ⟨i, k⟩, and k
must be on the other side of ⟨j, l⟩, so that arrows [i→k] and [j→l]
cannot cross. Finally, if arrow [i→l] exists, then j and k must be on
the same side of the impact path ⟨i, l⟩ in order to have an impact
path. But then, [j→k] cannot cross [i→l] (see Fig. 5d). □

The minimal constraint graph Gmin is more difficult to compute
than G(3) because the underlying ‘‘redundancy detection’’ prob-
lem is not strictly polynomial in system size, although practical
algorithms exist [27]. However, G(3) can be pruned of redundant
constraints that correspond to pairs of spheres i and j that are pre-
vented from lifting by other spheres. For example, given arrows
[i→ j], [j→k] and [i→k], the latter can be ‘‘first-order’’ pruned
(eliminated with one intermediary, namely j) if bij + bjk > bik (in
Fig. 5, [i→j+] can be pruned for this reason). The presence of the
arrow [j→k] is not necessary to make this argument work (see
Fig. 5b). Pruning can be taken to higher orders. To second order, if
bij+bjk+bkl > bil, then the arrow [i→l] can be eliminated. Finally,
any arrow [i→j] in Gv can be pruned through symmetrization if
it is unmatched by [j→i] in G−v because Gmin

v ≡ Gmin
−v , with G[v]

and G[−v] obtained separately (see Remark 3).
Rarely, arrows can be eliminated by symmetrizing graphs that

were pruned to third or fourth order, and constraint graphs that
are obtained in this way appear close to Gmin (see Section 3.2).

Code availability. The constraint graph G(3) is constructed in
GenerateG3.py and pruned to G in PruneG.py. The program
GraphValidateCellECMC.cc runs cell-based ECMC to verify the
consistency of G.

3.2. Validation

Our programs apply to arbitrary density η = Nπσ 2/L2 and
linear size L of the periodic square box (with N = M2). We
provide sets of configurations and constraint graphs for validation
and benchmarking. One such set consists in a configuration C256

at M = 256, and for η = 0.708 and a fourth-order symmetrized
constraint graph G256. Where applicable, the number of active
spheres varies as k = 1, 2, 4, . . . , kmax and the number of threads
as nι = 1, 2, 3, . . . , nmax

ι . For fixed k and nι, there are nrun runs
that vary h and h′.

Constraint-graph validation. Constraint graphs are generated in
the Setup.sh script. The GraphValidateCellECMC test per-
forms cell-based ECMC derived from CellECMC.f90 [3,23],
where spheres are assigned to local cells and neighbor-
hood-cell searches identify possible liftings. Cell-based ECMC
must exclusively solicit liftings accounted for in G. The
GraphValidateCellECMC test also records the sweep (lifting
per sphere) at which an arrow [i→ j] ∈ G is first solicited in a
lifting and compares the time evolution of the average number of
solicited arrows with its average outdegree. The G256 constraint
graph passes the validation test with t = 2×107 sweeps. The
outdegree of G256 is 2.1, and 98.7% of its arrows are solicited dur-
ing the test. Logarithmic extrapolation (with 1/(ln t)α , α = 1.7)
suggests that G256 essentially agrees with Gmin (see Fig. 6c). Use
of G256 rather than G(3) speeds up ECMC, but further performance
gains through additional pruning are certainly extremely limited.

Validation of Algorithms 4 and 6. Our implementations of
Algorithms 4 and 6 are modified as discussed in Remark 7. Runs

7

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Fig. 6. ECMC constraint graphs for C256 (see Section 3.2 for definition). (a) G(3) for this configuration (detail), with highlighted non-local arrows. (b) G256 (same
detail), obtained from G(3) through fourth-order pruning followed by symmetrization. (c) Number of solicited arrows in G256 in a long cell-based ECMC run, compared
to its average outdegree.

compute the set Lt∗ to the earliest horizon-violation time t∗
(with t∗ = h′ if the run concludes successfully). The
PValidateECMC.sh test first advances C256

= Ct=0 to a random
breakpoint h (using Lref). Each test run is in the interval [h, h′],
where h′ is randomly chosen. To pass the validation test, Lt∗

must for each run agree with Lref (see Section 4 for details of
scripts used). Algorithm 4 passes the PValidateECMC.sh test
with nrun = 1×103 for kmax

= 8192.
Our x86 computer has two Xeon Gold 6230 CPUs with variable

frequency from 2.1 GHz to 3.9 GHz, each with 20 cores and
40 hardware threads. We use OpenMP directives to restrict all
threads to a single CPU. We consider again C256

= Ct=0 as the
initial configuration, and then run the program from h to h′. On
our x86 CPU, Algorithm 6 passes the CValidateECMC.sh test
with nrun = 1×103, kmax

= 8192 and nmax
ι = 40.

On our ARM CPU (Nvidia Jetson with Cortex A57 CPU (at
1.43 GHz) with four cores and four hardware threads), we again
consider C256

= Ct=0 as initial configuration. For the same system
parameters as above, Algorithm 6 passes the CValidateECMC.sh
test with nrun = 1× 103, kmax

= 8192 and nmax
ι = 4. The

ARM architecture allows dynamic re-ordering of operations, and
the separate validation test more severely scrutinizes thread
interactions than for the x86 CPU.

On both CPUs, Algorithm 6 passes the CValidateECMC.sh
test with the following choices of memory_order directives:

memory_order_relaxed. This most permissive memory order-
ing of the C++ memory model imposes no constraints on
compiler optimization or dynamic re-ordering of opera-
tions by the processors, and only guarantees the atomic
nature of the CAS operation. Such re-orderings are more
aggressive on ARM CPUs than on x86 CPUs. This memory
ordering does not guarantee that the statements consti-
tuting the lock-less lock are executed as required (see
Remark 12).

memory_order_seq_cst for all memory operations on the tag
attribute. This directive imposes the sequential-consistency
model (see Remark 12) for each access of the tag at-
tribute. It slows down the code by 40% compared to the
memory_order_relaxed directive.

memory_order_acquire on load, memory_order_release
on store. This directive implies ‘‘acquire–release’’ seman-
tics on the tag attribute. It imposes a lock-free exchange
at each operation on the tag attribute, so that all vari-
ables, including positions and local times, are synchro-
nized between threads during tag access. CAS remains
memory_order_seq_cst. This directive maintains speed

compared to memory_order_relaxed, yet provides bet-
ter guarantees on the propagation of variable modifica-
tion between threads. MultiThreadECMC.cc compiles by
default with this directive.

3.3. Benchmarks for Algorithm 6 (x86 and ARM)

Algorithm 6 is modified as discussed in Remark 7 (program ex-
ecution continues in spite of horizon violations) and used for large
values of h′. This measures the net cost of steady-state thread
interaction, without taking into account thread-setup times. We
report here on results of the BenchmarkECMC.sh script for C256

as an initial configuration and G256 with k = 40 active spheres.
The number of threads varies as nι = 1, 2, 3, . . . , nmax

ι , with
nrun = 20.

On our x86 CPU (see Section 3.2), the BenchmarkECMC.sh
script is parametrized with nmax

ι = 40. The benchmark speed
increases roughly linearly up to 20 threads (reaching a speed-up
of 10 for 20 threads), and then keeps improving more slowly with
a maximum for 40 threads at a speed-up of 14 and an absolute
speed of ∼ 1.6 × 1012 events/hour (see Fig. 7). The variable
frequency of Xeon processors under high load may contribute
to this complex behavior. On a single thread, our program runs
2.2 times slower than an unthreaded code, due to the eliminated
overhead from threading constructs. The original CellECMC.f90
cell-based production code generates 3×1010 events/hour. The
use of a constraint graph, rather than a cell-based search, thus
improves performance by almost an order of magnitude, if the
set-up of G is not accounted for.

On our ARM CPU, the BenchmarkECMC.sh script is
parametrized with nmax

ι = 4. The benchmark speed increases as
the number of threads, reaching a speed-up of 3.8 for nι = 4. The
absolute speed is about six times smaller than for our x86 CPU
for a comparable number of threads, as may be expected for a
low-power processor designed for use in mobile phones.

3.4. Birthday problem, full ECMC, multi-CPU extensions

In this section, we treat some practical aspects for the use of
Algorithm 6.

Birthday problem. We analyze multithreaded ECMC in terms of
the (generalized) birthday problem, which considers the probabil-
ity p that two among k′ integers (modeling individuals) sampled
from a discrete uniform distribution in the set {1, 2, . . . ,N ′}
(modeling birthdays) are the same. For large N ′, p ∼ [1 −
exp (−k′2/(2N ′))] [28], which is small if k′ ≲

√
N ′. At constant

density η, sphere radius σ , velocity v, and time interval h′ − h,
each active chain ι is almost restricted to a region of constant
area, whereas the total area of the simulation box is ηN . We may

8

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

Fig. 7. Output of the BenchmarkECMC.sh script for Algorithm 6 (five-number
summary of 20 runs) for k = 80 on an x86 CPU with 20 cores and 1, . . . , 40
threads, and for serial code that processes active chains sequentially. Inset:
Output of the script for a four-core ARM CPU.

suppose that the k active spheres are randomly positioned in the
simulation box broken up into a grid of ∝ N constant-area cells.
For k ≲

√
N , we expect the probability that one of these cells

contains two active spheres to remain constant for N → ∞,
and therefore also the probability of an update-order violation for
constant h′ − h.

Restarts. Our algorithms reproduce output of Algorithm 2 only
if they do not abort. In production code, the effects of horizon
violations will have to be repaired. Two strategies appear feasible.
First, the algorithm may restart the run from a copy of {Ch,Ah}

at the initial breakpoint h, and choose a smaller breakpoint h′′,
for example the time of abort. The successful termination of this
restart is not guaranteed, as the individual threads may organize
differently. Second, the time evolution may be reconstructed from
Lt∗ to the earliest horizon-violation time t∗ (see Remark 7), and
t∗ may then be used as the subsequent initial breakpoint. Besides
an efficient restart strategy, a multithreaded production code will
also need an efficient parallel algorithm for computing G after a
change of v.

Multi-CPU implementations. Algorithm 6 is spelled out for a single
shared-memory CPU and for threads that may access attributes
of all spheres (see statement 10ι in Algorithm 5 and Remark 11).
However, thread interactions are local and immutable in between
breakpoints (as evidenced by the constraint graphs). This invites
generalizations of the algorithm to multiple CPUs (each of them
with many threads). Most simply, two CPUs could administer
disjoint parts of the constraint graph, for example with interface
vertices doubled up on both of them (see Fig. 8). In this way,
an active sphere arriving at an interface would simply be copied
out to the neighboring CPU. The generalization to multiple CPUs
appears straightforward.

4. Available computer code

All implemented algorithms and used scripts that are made
available on GitHub in ParaSpheres, a public repository which
is part of a public GitHub organization.5 Code is made available
under the GNU GPLv3 license (for details see the LICENSE file).

The repository can be forked (that is, copied to an outside
user’s own public repository) and from there studied, modified

5 The organization’s url is https://github.com/jellyfysh.

Fig. 8. A constraint graph doubled up for a multi-CPU implementation of
Algorithm 6 (detail of C256 configuration shown). Interface vertices appear on
both sides.

and run in the user’s local environment. Users may contribute to
the ParaSpheres project via pull requests (see the README.md
and CONTRIBUTING.md files for instructions and guidelines). All
communication (bug reports, suggestions) take place through
GitHub ‘‘Issues’’, that can be opened in the repository by any user
or contributor, and that are classified in GitHub projects.

Implemented algorithms. The following programs are located in
the directory tree under their language (F90, Python or CPP)
and in similarly named subdirectories, that all contain README
files for further details. Some of the longer programs are split into
modules.
Code/Directory Algorithm/Usage
CellECMC.f90 Cell-based production

ECMC [3]
GenerateG3.py Generate G(3)

(Section 3.1)
PruneG.py Prune G (Section 3.1)
GraphValidateCellECMC.cc Validate G against

cell-based ECMC
GlobalTimeECMC.py Algorithm 2

(Section 2.1)
SingleThreadLocalTimeECMC.py Algorithm 4

(Section 2.2)
SequentialMultiThreadECMC.py Algorithm 5

(Section 2.3)
MultiThreadECMC.cc Algorithm 6

(Section 2.4)

Scripts and validation suites. The Scripts directory provides the
following bash scripts to compile and run groups of programs and
to reproduce all our results:

Script Summary of usage
Setup.sh Prepare Ct=0, G, Lref

SequentialC4.sh Test suite for Algorithm 5 with
N = 4

SequentialC5.sh Test suite for Algorithm 5 with
N = 5 (see Remark 12)

Ordering.sh Test suite for Algorithm 6 with
N = 5 (see Remark 12)

ValidateG.sh Validate constraint graph
PValidateECMC.sh Validate Algorithm 4 against Lref

CValidateECMC.sh Validate Algorithm 6 against Lref

BenchmarkECMC.sh Benchmark MultiThreadECMC.cc,
generate Fig. 7

In the Setup.sh script, CellECMC.f90 first produces a sam-
ple C0 such that the unidirectional dynamics in C0 is practi-
cally aperiodic. It then generates G(3) with GenerateG3.py,

9

B. Li, S. Todo, A.C. Maggs et al. Computer Physics Communications 261 (2021) 107702

and runs PruneG.py to output G. Finally, it runs GlobalTime-
ECMC.py for each set A0, in order to generate several
Lref. The ValidateG.sh script uses GraphValidate-
CellECMC.cc to run cell-based ECMC, and verifies that all liftings
are accounted for in G. It also tracks the solicitation of arrows
as a function of time. The PValidateECMC.sh script validates
SingleThreadLocalTimeECMC.py by comparing the sets of
liftings with Lref from Setup.sh. The CValidateECMC.sh script
does the same for MultiThreadECMC.cc. BenchmarkECMC.sh
benchmarks MultiThreadECMC.cc for different numbers of
threads. The test suites are concerned with small-N configura-
tions.

5. Conclusions and outlook

In this paper, we presented an event-driven multithreaded
ECMC algorithm for hard spheres which enforces thread synchro-
nization at infrequent breakpoints only. Between breakpoints,
spheres carry and update local times. Possible inconsistencies
are locally detected through a horizon condition. Within ECMC,
our method avoids the scheduling problem that has historically
plagued event-driven molecular dynamics. This is possible be-
cause in ECMC only few spheres move at any moment, and all
have the same velocity. Conflicts are thus exceptional, and little
information is exchanged between threads. We relied on the
generalized birthday problem to show that our algorithm remains
viable up to a number of threads that grows as the square root
of the number of spheres, a setting relevant for the simulation
of millions of spheres for modern commodity servers with ∼100
threads. The mapping of Algorithm 5 onto an absorbing Markov
chain allowed us to prove its correctness (for a given lifted ini-
tial configuration) and to rigorously analyze side effects of code
re-orderings in the multithreaded C++ code.

Our algorithm is presently implemented between two global
breakpoint times, where it achieves considerable speed-up with
respect to sequential ECMC. A fully practical multithreaded
ECMC code that greatly outperforms cell-based algorithms ap-
pears within reach. It is still a challenge to understand whether
multithreaded ECMC applies to general interacting-particle
systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

W.K. acknowledges support from the Alexander von Humboldt
Foundation, Germany. We thank E. P. Bernard for allowing his
original hard-sphere ECMC production code to be made available.

References

[1] E.P. Bernard, W. Krauth, D.B. Wilson, Phys. Rev. E 80 (2009) 056704,
http://dx.doi.org/10.1103/PhysRevE.80.056704, URL http://link.aps.org/doi/
10.1103/PhysRevE.80.056704.

[2] M. Michel, S.C. Kapfer, W. Krauth, J. Chem. Phys. 140 (5) (2014) 054116,
http://dx.doi.org/10.1063/1.4863991, arXiv:1309.7748.

[3] E.P. Bernard, W. Krauth, Phys. Rev. Lett. 107 (2011) 155704, http://dx.doi.
org/10.1103/PhysRevLett.107.155704, URL http://link.aps.org/doi/10.1103/
PhysRevLett.107.155704.

[4] S.C. Kapfer, W. Krauth, Phys. Rev. Lett. 114 (2015) 035702, http://dx.doi.
org/10.1103/PhysRevLett.114.035702, URL http://link.aps.org/doi/10.1103/
PhysRevLett.114.035702.

[5] M. Hasenbusch, S. Schaefer, Phys. Rev. D 98 (2018) 054502, http://dx.
doi.org/10.1103/PhysRevD.98.054502, URL https://link.aps.org/doi/10.1103/
PhysRevD.98.054502.

[6] E.P. Bernard, W. Krauth, Addendum to Event-chain Monte Carlo algorithms
for hard-sphere systems, Phys. Rev. E 86 (1) http://dx.doi.org/10.1103/
physreve.86.017701.

[7] S.C. Kapfer, W. Krauth, Phys. Rev. Lett. 119 (2017) 240603, http://dx.doi.
org/10.1103/PhysRevLett.119.240603, URL https://link.aps.org/doi/10.1103/
PhysRevLett.119.240603.

[8] M.F. Faulkner, L. Qin, A.C. Maggs, W. Krauth, J. Chem. Phys. 149 (6) (2018)
064113, http://dx.doi.org/10.1063/1.5036638.

[9] J. Harland, M. Michel, T.A. Kampmann, J. Kierfeld, Europhys. Lett. 117 (3)
(2017) 30001, URL http://stacks.iop.org/0295-5075/117/i=3/a=30001.

[10] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J.
Chem. Phys. 21 (1953) 1087–1092, http://dx.doi.org/10.1063/1.1699114.

[11] B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27 (1957) 1208–1209, http:
//dx.doi.org/10.1063/1.1743957.

[12] B.J. Alder, T.E. Wainwright, I. General Method, J. Chem. Phys. 31 (1959)
459–466, http://dx.doi.org/10.1063/1.1730376.

[13] D.C. Rapaport, J. Comput. Phys. 34 (1980) 184–201, http://dx.doi.org/10.
1016/0021-9991(80)90104-7.

[14] M. Isobe, Mol. Simul. 42 (16) (2016) 1317–1329, http://dx.doi.org/10.1080/
08927022.2016.1139106.

[15] B.D. Lubachevsky, Int. J. Comput. Simul. 2 (1992) 373–411.
[16] B. Lubachevsky, ACM SIGSIM Simul. Digest 23 (1993) 60–67, http://dx.doi.

org/10.1145/174134.158467.
[17] A.G. Greenberg, B.D. Lubachevsky, I. Mitrani, ACM Trans. Model. Comput.

Simul. (TOMACS) 6 (2) (1996) 107–136.
[18] A.T. Krantz, ACM Trans. Model. Comput. Simul. 6 (3) (1996) 185–209,

http://dx.doi.org/10.1145/235025.235030.
[19] M. Marin, Proceedings 11th Workshop on Parallel and Distributed

Simulation, 1997, pp. 164–171, http://dx.doi.org/10.1109/PADS.1997.
594602.

[20] S. Miller, S. Luding, J. Comput. Phys. 193 (1) (2004) 306–316, http://dx.doi.
org/10.1016/j.jcp.2003.08.009, arXiv:physics/0302002.

[21] P. Diaconis, S. Holmes, R.M. Neal, Ann. Appl. Probab. 10 (2000) 726–752.
[22] D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times,

American Mathematical Society, 2008.
[23] M. Engel, J.A. Anderson, S.C. Glotzer, M. Isobe, E.P. Bernard, W. Krauth,

Phys. Rev. E 87 (2013) 042134, http://dx.doi.org/10.1103/PhysRevE.87.
042134, URL http://link.aps.org/doi/10.1103/PhysRevE.87.042134.

[24] Lamport, IEEE Trans. Comput. C-28 (9) (1979) 690–691, http://dx.doi.org/
10.1109/tc.1979.1675439.

[25] H.J. Boehm, L. Crowl, C++ atomic types and operations, 2009, URL http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html.

[26] S.C. Kapfer, W. Krauth, J. Phys. Conf. Ser. 454 (1) (2013) 012031, http://dx.
doi.org/10.1088/1742-6596/454/1/012031, URL http://stacks.iop.org/1742-
6596/454/i=1/a=012031.

[27] K. Fukuda, B. Gärtner, M. Szedlák, Ann. Oper. Res. 265 (1) (2016) 47–65,
http://dx.doi.org/10.1007/s10479-016-2385-z.

[28] F.H. Mathis, SIAM Rev. 33 (2) (1991) 265–270, http://dx.doi.org/10.1137/
1033051.

10

111

Publication 2: Sparse hard-disk packings and local Markov
chains

Journal of Statistical Physics (2022) 187:31
https://doi.org/10.1007/s10955-022-02908-4

Sparse Hard-Disk Packings and Local Markov Chains

Philipp Höllmer1 · Nicolas Noirault2 · Botao Li2 · A. C. Maggs3 ·
Werner Krauth2

Received: 8 October 2021 / Accepted: 14 March 2022 / Published online: 22 April 2022
© The Author(s) 2022

Abstract
We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model
for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We
first generate such Böröczky packings in a square box with periodic boundary conditions and
analyze their properties. We then study how local MCMC algorithms, namely theMetropolis
algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configu-
rations that are obtained from the packings by slightly reducing all disk radii by a relaxation
parameter.We obtain two classes of ECMC, one in which the escape time varies algebraically
with the relaxation parameter (as for the local Metropolis algorithm) and another in which
the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is
confirmed by simulation results. We discuss the connectivity of the hard-disk sample space,
the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context
of the N PT ensemble. Our work is accompanied by open-source, arbitrary-precision soft-

Communicated by Ludovic Berthier.

Philipp Höllmer acknowledges support from the Studienstiftung des deutschen Volkes and from Institut
Philippe Meyer. Werner Krauth acknowledges support from the Alexander von Humboldt Foundation.

B Philipp Höllmer
hoellmer@physik.uni-bonn.de

Nicolas Noirault
nicolas.noirault@laposte.net

Botao Li
botao.li@phys.ens.fr

A. C. Maggs
anthony.maggs@espci.fr

Werner Krauth
werner.krauth@ens.fr

1 Physikalisches Institut and Bethe Center for Theoretical Physics, University of Bonn, Nussallee 12,
53115 Bonn, Germany

2 Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne
Université, Université de Paris, Paris, France

3 CNRS Gulliver, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France

123

31 Page 2 of 25 P. Höllmer et al.

ware for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian
ECMC (in Go).

Keywords Hard-disk packings · Stability · Markov chains · Hard-disk model · Event-chain
Monte Carlo · Mixing times

1 Introduction

The hard-disk system is a fundamental statistical-physics model that has been intensely stud-
ied since 1953. Numerical simulations, notablyMarkov-chainMonte Carlo [1] (MCMC) and
event-driven molecular dynamics [2], have played a particular role in its study. The existence
of hard-disk phase transitions [3] was asserted as early as 1962. The recent identification
of the actual transition scenario [4] required the use of a modern event-chain Monte Carlo
(ECMC) algorithm [5, 6].

The hard-disk model has been much studied in mathematics. Even today, the existence of
a phase transition has not been proven [7, 8]. A fundamental rigorous result is that the densest
packing of N equal hard disks (for N → ∞) arranges them in a hexagonal lattice [9]. This
densest packing is locally stable, which means that no single disk can move infinitesimally
in the two-dimensional plane. The densest packing is furthermore collectively stable, which
means that no subset of disks can move at once, except if the collective infinitesimal move
corresponds to symmetries, as for example uniform translations in the presence of periodic
boundary conditions [10–12]. In 1964, Böröczky [13] constructed two-dimensional disk
packings that are sparse, that is, have vanishing density in the limit N → ∞. The properties
of these Böröczky packings are very different from those of the densest hexagonal lattice.
Infinitesimal motion of just a single disk remains impossible, so that Böröczky packings
are locally stable. However, coherent infinitesimal motion of more than one disk does allow
escape from Böröczky packings so that they are not collectively stable.

In this work, we construct finite-N Böröczky packings in a fixed periodic box and use
them to build initial configurations for localMarkov-chainMonteCarlo (MCMC) algorithms,
namely the reversible Metropolis algorithm [1, 14] and several variants [5, 15, 16] of non-
reversible ECMC. In the Metropolis algorithm, single disks are moved one by one within a
given range δ. A Böröczky packing traps the local Metropolis algorithm if δ is small enough,
because all single-disk moves are rejected. ECMC is by definition local. It features individual
infinitesimal displacements of single disks, and it also cannot escape from a Böröczky pack-
ing. We thus consider ε-relaxed Böröczky configurations that have the same disk positions
as the Böröczky packings but with disk radii reduced by a factor (1 − ε). Here, ε � 0 is the
relaxation parameter.Our scaling theory for the escape times from ε-relaxedBöröczky config-
urations predicts the existence of two classes of local Markov-chain algorithms. In one class,
escape times grow as a power of the relaxation parameter ε, whereas the other class features
only logarithmic growth.Numerical simulations confirmour scaling theory,whose power-law
exponents we conjecture to be exact. The ε-relaxed Böröczky configurations are representa-
tive of a finite portion of sample space. For a fixed number of disks, the growth of the escape
times thus leads to the existence of a small but finite fraction of sample space that cannot be
escaped from or even accessed by local MCMC in a given upper limit of CPU time. More
generally, we discuss the apparent paradox that the lacking proof for the connectedness of the
hard-disk sample space, on the one hand, might render local MCMC non-irreducible (that
is, “non-ergodic”) but, on the other hand, does not invalidate their practical use. We resolve
this paradox by considering the N PT ensemble (where the pressure is conserved instead of

123

Sparse Hard-Disk Packings and Local... Page 3 of 25 31

the volume). We moreover advocate the usefulness of ε-relaxed Böröczky configurations for
modeling bottlenecks inMCMCand consider the comparison of escape times from these con-
figurations as an interesting benchmark.We provide open-source arbitrary-precision software
for Böröczky packings and for ECMC. Several of the ECMC algorithms can evolve towards
numerical gridlock, that can be diagnosed and studied using our arbitrary-precision software.

This work is organized as follows. In Sect. 2, we construct Böröczky packings following
the original proposal [13] and a variant due to Kahle [17], and we analyze their properties. In
Sect. 3, we discuss local MCMC algorithms and present analytical and numerical results for
the escape times from the ε-relaxed Böröczky configurations. In Sect. 4, we analyze algo-
rithms and their escape times and discuss fundamental aspects, among them irreducibility,
statistical ensembles, as well as the question of bottlenecks, and the difference between local
and non-local MCMC methods. In the conclusion (Sect. 5), we point to several extensions
and place our findings into the wider context of equilibrium statistical mechanics, the physics
of glasses and themechanics of granular materials. In Appendix A, we present further numer-
ical analysis and, in Appendix B, we introduce our open-source arbitrary-precision software
package BigBoro for Böröczky packings and for ECMC.

2 Böröczky Packings

In the present section, we discuss Böröczky packings of N disks of radius σ = 1 in a periodic
square box of sides L . The density η is the ratio of the disk areas to that of the box:

η = Nπσ 2/L2. (1)

For concreteness, the central simulation box ranges from −L/2 to L/2 in both the x and the
y direction. The periodic boundary conditions map the central simulation box onto an infinite
hard-disk system with periodically repeated boxes or, equivalently, onto a torus. A Böröczky
packing is locally stable, and each of its N disks is blocked—at a distance 2σ—by at least
three other disks (taking into account periodic boundary conditions), with the contacts not all
in the same half-plane. The opening angle of a disk i , the largest angle formed by the contacts
to its neighbors, is then always smaller than π . The maximum opening angle is the largest
of the N opening angle of all disks. Clearly, a locally stable packing cannot be escaped from
through the infinitesimal single-disk moves of ECMC or, in Metropolis MCMC, through
steps of small enough range. Only collective infinitesimal moves of all disks may escape
from the packing.

In a nutshell, Böröczky packings (see Sect. 2.1 for their construction) consist in cores and
branches (as visible in Fig. 1). The original Ref. [13] mainly focused on Böröczky packings
in an infinite plane, but also sketched how to generalize the packings to the periodic case.
Böröczky packings can exist for different cores, and they depend on a bounding curve (more
precisely: a convex polygonal chain) which encloses the branches, and which can be chosen
more or less freely (see Sect. 2.2 for the properties of Böröczky packings, including the
collective infinitesimal escape modes from them).

2.1 Construction of Böröczky Packings

In the central simulation box, a finite-N Böröczky packing is built on a central core placed
around (0, 0) (see Sect. 2.1.1 for a discussion of cores). This core connects to four periodic
copies of the core centered at (L, 0), (0, L), (−L, 0), and (0,−L) by branches that have k

123

31 Page 4 of 25 P. Höllmer et al.

separate layers (see Sects. 2.1.2 and 2.1.3 for a detailed discussion of branches). A Böröczky
packing shares the symmetries of the central simulation box. Cores with different shapes, as
for example that of a triangle, yield Böröczky packings in other geometries (see [13, 17] and
[18, Sect. 9.3]).

2.1.1 Böröczky Core, Kahle Core

We consider Böröczky packings with two different cores, either the Böröczky core or
the Kahle core. Both options are implemented in the BigBoro software package (see
Appendix B). The Böröczky core [13] consists of 20 disks (see Fig. 1a). Using reflec-
tion symmetry about coordinate axes and diagonals, this core can be constructed from
four disks at coordinates (

√
2, 0), (2 + √

2, 0), (2 + √
6/2 + 1/

√
2,

√
6/2 + 1/

√
2), and

(2+√
6/2+1/

√
2, 2+√

6/2+1/
√
2) (see highlighted disks in Fig. 1a). TheKahle core [17],

with a total of 8 disks, is constructed from two disks at coordinates (1, 1), and (1 + √
3, 0),

using the same symmetries (see highlighted disks in Fig. 1b). The Böröczky core for k = 0,
that is without the branches included in Fig. 1a, is only locally stable if repeated periodically
in a central simulation box that fully encloses the core disks, with L/2 = 3+√

6/2+1/
√
2.

The Kahle core, again without branches, can be embedded in two non-equivalent ways into
a periodic structure. When the outer-disk centers are placed on the cell boundaries, with
L/2 = 1+ √

3, it forms a collectively stable packing with no remaining degrees of freedom
other than uniform translations. Alternatively, it only forms a locally stable packing, with the
possibility of non-trivial collective deformations, if the outer disks are enclosed in a larger
simulation cell, with L/2 = 2 + √

3. These two cores are the seeds from which larger and
less dense Böröczky packings are now constructed and studied.

2.1.2 Branches—Infinite-Layer Case (Infinite N)

Following Ref. [13], we first construct infinite branches (k = ∞) that correspond to the
N → ∞ and η → 0 limits, without periodic boundary conditions. One such branch is
attached to each of the four sides of the central core so that all disks are locally stable. The
horizontal branch that extends from the central core in the positive x-direction is symmetric
about the x-axis. Thehalf branch for y ≥ 0 uses three sets of disks {A1, A2, . . .}, {B1, B2, . . .},
and {C1,C2, . . .}, where i = 1, 2, . . . is the layer index.

For the branch that is symmetric about the x-axis, the construction relies on four horizontal
lines [13]:

horizontal line g g1 g2 g3
y-value 0

√
3 2

√
3

√
3 + 2

. (2)

The disks A1 and B1 are aligned in x at heights g3 and g1, respectively. All A disks lie on a
given convex polygonal chainA between g2 and g3. The chain segments onA are of length 2
so that subsequent disks Ai and Ai+1 block each other, and the position of A1 fixes all other
A disks. All C disks lie on g, and Ci blocks Bi from the right (in particular, C1 is placed
after B1). The disk Bi , for i > 1, lies between g and g1 and it blocks disks Ai and Ci−1 from
the right. With the position of g2, the branch approaches a hexagonal packing for i → ∞.
After reflection about the x-axis, all disks except A1 and B1 are locally stable in the infinite
branch.

The Böröczky packing is completed by attaching the four branches along the four coor-
dinate axes to a core. For the Böröczky core, both A1 and B1 are blocked by core disks (see

123

Sparse Hard-Disk Packings and Local... Page 5 of 25 31

Fig. 1a). For the Kahle core, B1 is blocked by a core disk, and A1 is locally stable as it also
belongs to another branch (see Fig. 1b).

2.1.3 Branches—Finite-Layer Case (Finite N), Periodic Boundary Conditions

Branches can also be constructed for periodic simulation boxes, with a finite number k
of layers and finite N (see [13]). The branch that connects the central core placed around
(0, 0) with its periodic image around (L, 0) is then again symmetric about the x-axis but, in
addition, also about the boundary of the central simulation box at x = L/2. We describe the
construction of the half-branch (for y ≥ 0) up to this boundary (see Fig. 1).

For half-branches with a finite number of layers k and a finite number of disks
{A1, . . . , Ak}, {B1, . . . , Bk}, and {C1, . . . ,Ck−1} (with their corresponding mirror images),
the convex polygonal chain A lies between g<

2 and g3 where g<
2 is an auxiliary horizontal

line placed slightly below g2. The horizontal lines g and g1 and the algorithm for placing
the disks are as in Sect. 2.1.2 (see Fig. 1c, d). By varying the distance between g2 and g<

2 ,
one can make disk Bk satisfy the additional requirement xBk = xAk + 1 that allows for
periodic boundary conditions. The position of Bk then fixes the boundary of the square box
(xBk = L/2) and Bk blocks Ak as well as the mirror image Ak+1 of Ak (see Fig. 1c again).

2.2 Properties of Böröczky Packings

The local stability of Böröczky packings only relies on the fact that all A disks lie on a largely
arbitrary convex polygonal chainA [13]. The choice ofA influences the qualitative properties

(b)

L

2

(a)

−L

2
−L

2

L

2

(c)

A
g

g1
g2
g3
g<
2

A1 Ak

(d)

Core disk

A disk

B disk

C disk

Fig. 1 Hard-disk Böröczky packings, composed of a core and of four branches with k = 5 layers, with contact
graphs and highlighted opening angles. a Packing with the Böröczky core [13]. b Packing with the Kahle core
[17]. c Detail of a branch. d Convex polygonal chain A, and horizontal lines g<

2 , g2, and g3. Two different

classes of polygonal chains, called Ageo andAcirc, are considered in this work

123

31 Page 6 of 25 P. Höllmer et al.

of the packing. The BigBoro software package (see Appendix B) implements two different
classes of convex polygonal chains that we discuss in Sect. 2.2.1. Another computer program
in the package explicitly determines the space of collective escape modes from a Böröczky
packing, which we discuss in Sect. 2.2.2.

2.2.1 Convex Polygonal Chains (Geometric, Circular)

In the convex geometric chain Ageo (which is for instance used in Fig. 1), the disks Ai

approach the line g<
2 exponentially in i . In contrast, in the convex circular chain Acirc, all A

disks lie on a circle (including their mirror images after reflection about x = L/2) so that
their opening angles are all the same.

For the convex geometric chainAgeo, the distance between Ai and g<
2 follows a geometric

progression:

dist(Ai+1, g
<
2) = φ dist(Ai , g

<
2), φ ∈ (0, 1), (3)

with the attenuation parameter φ. (For a horizontal branch, the distances in Eq. (3) are
simply the difference between y-values.) The densities ηBör and ηKahle of the Böröczky
packings that either use the Böröczky or the Kahle core vary with φ, and they decrease as
∼ 1/k for large k (see Table 1). The geometric sequence for Ai induces that the maximum
opening angle, usually the one between Ak−1, Ak , and Ak+1, approaches the angle π as
θk = φk−2(1 − φ)(g3 − g<

2)/2 ∼ φk , that is, exponentially in k and in L . This implies that
the Böröczky packing with the convex geometric chain Ageo is for large number of layers k
exponentially close to losing its local stability (see fifth column of Table 1).

The convex circular chain Acirc improves the local stability of the Böröczky packing, as
the maximum opening angle onA approaches the critical angle π only algebraically with the
number of layers k. Here, all A disks lie on a circle of radius R. This includes A1, which by
construction lies on g3 (see Sect. 2.1.2). The circle is tangent to g<

2 at x = L/2. The center

Table 1 Parameters of Böröczky packings for different numbers k of layers with N ∼ 20k given by Eq. (4)

Layers k Density ηBör Density ηKahle Def. anglecirc Def. anglegeo

5 0.3957 ± 3.1×10−4 0.4660 ± 4.3×10−4 8.3×10−1 3.8×10−1

6 0.3625 ± 2.9×10−4 0.4204 ± 3.9×10−4 5.3×10−1 2.5×10−1

7 0.3338 ± 2.6×10−4 0.3820 ± 3.3×10−4 3.8×10−1 1.8×10−1

8 0.3089 ± 2.2×10−4 0.3496 ± 2.8×10−4 2.8×10−1 1.3×10−1

9 0.2873 ± 1.9×10−4 0.3219 ± 2.4×10−4 2.2×10−1 9.9×10−2

10 0.2683 ± 1.7×10−4 0.2982 ± 2.1×10−4 1.7×10−1 7.6×10−2

15 0.2010 ± 9.5×10−5 0.2171 ± 1.1×10−4 7.3×10−2 2.2×10−2

20 0.1604 ± 6.0×10−5 0.1704 ± 6.7×10−5 4.1×10−2 7.0×10−3

30 0.1141 ± 3.0×10−5 0.1190 ± 3.2×10−5 1.8×10−2 7.4×10−4

50 0.0722 ± 1.2×10−5 0.0741 ± 1.2×10−5 6.3×10−3 8.5×10−6

100 0.0376 ± 3.1×10−6 0.0381 ± 3.2×10−6 1.6×10−3 1.2×10−10

1000 0.0039 ± 3.3×10−8 0.0039 ± 3.3×10−8 1.5×10−5 7.4×10−98

Second and third columns: Density window for the Böröczky and Kahle cores with Ageo, obtained from φ

between 0.0001 and 0.9. Fourth and fifth columns: Deficit angle with respect to 180◦ of the maximum opening
angle (in degrees, same for both cores) forAcirc and forAgeo with attenuation parameter φ = 0.8

123

Sparse Hard-Disk Packings and Local... Page 7 of 25 31

of the circle lies on the vertical line at x = L/2. It follows from elementary trigonometry
that for large k, the radius of the circle R scales as∼ k2 and that the maximum opening angle
approaches the angle π as ∼ k−2 (see fourth column of Table 1).

2.2.2 Contact Graphs: Local and Collective Stability

The contact graph of a Böröczky packing connects any two disks whose pair distance equals
2 (including periodic boundary conditions, see Fig. 1). In a Böröczky packing with k ≥ 1
layers, the number N of disks and the number Ncontact of contacts are:

N Ncontact

Bpöröczky core 20k + 12 32k + 20
Kahle core 20k − 4 32k + 4

. (4)

For all values of k > 1, the number of contacts is smaller than 2N − 2. This implies that
collective infinitesimal two-dimensional displacements, with 2N − 2 degrees of freedom
(the values of the displacements in x and in y for each disk avoiding trivial translations), can
escape from a Böröczky packing, which is thus not collectively stable [17].

When all disks i , at positions xi = (xi , yi), are moved to xi + Δi with Δi = (Δx
i ,Δ

y
i),

the squared separation between two touching disks from the contact graph i and j changes
from |xi − x j |2 to

|xi + Δi − (x j + Δ j)|2 = |xi − x j |2 + 2(xi − x j) · (Δi − Δ j)
︸ ︷︷ ︸

first-order variation

+|Δi − Δ j |2. (5)

If the first-order term in Eq. (5) vanishes for all contacts i and j , the separation between
touching disks cannot decrease. It then increases to second order in the displacements, if
Δi 	= Δ j , so that contact is lost. Distances between disks that are not in contact need not be
considered because the displacementsΔi are infinitesimal. The first-order variation in Eq. (5)
can be written as a product of twice an “escape matrix” Mesc of dimensions Ncontacts × 2N
with a 2N -dimensional vectorΔ = (Δx

1,Δ
y
1,Δ

x
2,Δ

y
2, . . .). The row r ofMesc corresponding

to the contact between i and j has four non-zero entries

Mesc
r ,2i−1 = xi − x j ,

Mesc
r ,2i = yi − y j ,

Mesc
r ,2 j−1 = −(xi − x j),

Mesc
r ,2 j = −(yi − y j).

(6)

The BigBoro software package (see Appendix B) solves for

MescΔ = 0 (7)

using singular-value decomposition. The solutions of Eq. (7) are the directions of the small
displacements that break the contacts but do not introduce overlapping disks. For the k = 5
Böröczky packing with the Kahle core, we find 28 vanishing singular values. It follows from
Eq. (4) that, because of 28 = 2N −Ncontact, all contacts are linearly independent. We classify
the 28 modes by studying the following cost function on the contact graph:

L =
∑

i, j

(Δi − Δ j)
2, (8)

123

31 Page 8 of 25 P. Höllmer et al.

Fig. 2 Two orthogonal modes (represented as red arrows) out of the 28-dimensional space of all collective
escape modes Δ for the k = 5 Böröczky packing with the Kahle core and the convex geometric chain Ageo

with attenuation parameter φ = 0.7. Lines are drawn between pairs of disks which are in contact

where the sum is over all contact pairs i and j . This function, acting on the 2N displacements
Δ, measures the non-uniformity of a deformation. It acts as a quadratic form within the
28-dimensional space of vanishing singular values, and can be diagonalized within this
space. The resulting two lowest eigenmodes (with zero eigenvalue) of Eq. (8) describe rigid
translation of the packing in the plane. Other low-lying eigenmodes give smooth large-scale
deformations which collectively escape the contact constraints (see Fig. 2).

For k ≥ 1, the number of contacts in Eq. (4) is larger than N − 1. Böröczky packings
are thus collectively stable for displacements that are constrained to a single direction, as for
example the x or y direction. This strongly constrains the dynamics of MCMC algorithms
that for a certain time have only one degree of freedom per disk.

2.2.3 Dimension of the Space of Böröczky Packings

As discussed in Sect. 2.2.2, each Böröczky packing has a contact graph. Conversely, a given
contact graph describes Böröczky packings for a continuous range of densities η. As an
example, changing the attenuation parameter φ of the convex polygonal chainAgeo in Eq. (3)
continuously moves all branch disks, and in particular disk Bk and, therefore, the value of
L and the density η (see Table 1 for density windows that can be obtained in this way). We
conjecture that locally stable packings exist for any density at large enough N . Sparse locally
stable packings can also be part of dense hard-disk configurations where the majority of disks
are free to move.

Moreover, the space B of locally stable packings of N disks of radius σ in a given central
simulation box is of lower dimension than the sample space Ω: For each contact graph, each
independent edgedecreases thedimensionality byone. In addition there is only afinite number
of contact graphs for a given N . The low dimension of B also checks with the fact that any
packing, andmore generally, any configurationwith contacts, has effectively infinite pressure
(see the detailed discussion in Sect. 4.2.2). As the ensemble-averaged pressure is finite (except
for the densest packing), the packings (and the configurations containing packings) must be
of lower dimension. As the dimension of B, for large N , is much lower than that of Ω , we
conjecture Ω \ B to be connected for a given η below the densest packing at large enough
N although, in our understanding, this is proven only for η ∼ 1/

√
N (see [19, 20]).

123

Sparse Hard-Disk Packings and Local... Page 9 of 25 31

3 MCMC Algorithms and "-relaxed Böröczky configurations

In this section, we first introduce to a number of local MCMC algorithms (see Sect. 3.1). In
Sect. 3.2, we then determine the escape times (in the number of trials or events) after which
these algorithms escape from ε-relaxed Böröczky configurations, that is, from Böröczky
packings with disk radii multiplied by a factor (1 − ε) (see Fig. 3a, b). A scaling theory
establishes the existence of two classes of MCMC algorithms, one in which the escape time
from an ε-relaxed Böröczky configurations scales algebraically with ε, with exponents that
are predicted exactly, and the other inwhich the scaling is logarithmic. Numerical simulations
confirm the theory.

3.1 Local Hard-Disk MCMC Algorithms

We define the reversible Metropolis algorithm with two displacement sets, from which the
trial moves are uniformly sampled (see Sect. 3.1.1). We also consider variants of the non-
reversible ECMC algorithm that only differ in their treatment of events, that is, of disk
collisions (see Sect. 3.1.2). An arbitrary-precision implementation of the discussed ECMC
algorithms (in theGoprogramming language) is contained in theBigBoro software package
(see Appendix B).

3.1.1 Local Metropolis Algorithm: Displacement Sets

The N disks are at positions x = (x1, . . . , xN). In the local Metropolis algorithm [1], at each
time t = 1, 2, . . ., a trial move is proposed for a randomly chosen disk i , from its position
xi to xi + Δxi . If the trial produces an overlap, disk i stays put and x remains unchanged.
We study two sets for the trial moves. For the cross-shaped displacement set, the trial moves
are uniformly sampled within a range δ along the coordinate axes, that is, either along the x-
axis (Δxi = (ran(−δ, δ) , 0)) or along the y-axis (Δxi = (0,ran(−δ, δ))). Alternatively,
for the square-shaped displacement set, the trial moves are uniformly sampled as Δxi =
(ran(−δ, δ) ,ran(−δ, δ)). A Böröczky packing traps the local Metropolis algorithm if the
range δ is smaller than a critical range δc. This range is closely related to the maximum
opening angle (see the discussion in Sect. 2.2.1 and Fig. 3c). For these packings, the critical
range vanishes for N → ∞ independently of the specific core or of the convex polygonal
chain, simply because the maximum opening angle approaches π in that limit. On the other
hand, for large range δ, the algorithm can readily escape from the stable configuration. For
δ = L/2, theMetropolis algorithmwith a square-shaped displacement set proposes a random
placement of the disk i inside the central simulation box. This displacement set leads to a
very inefficient algorithm at the densities of physical interest, but it mixes very quickly at
small finite densities (see Sect. 4.2.1). For the scaling theory of the escape of the Metropolis
algorithm from ε-relaxed Böröczky configurations, we consider ranges δ smaller than the
critical range δc.

3.1.2 Hard-Disk ECMC: Straight, Reflective, Forward, Newtonian

Straight ECMC [5] is one of the two original variants of event-chain Monte Carlo. This
Markov chain evolves in (real-valued) continuous Monte-Carlo time tMCMC, but its imple-
mentation is event-driven. The algorithm is organized in a sequence of “chains”, each with
a chain time τchain, its intrinsic parameter. In each chain, with Monte-Carlo time between

123

31 Page 10 of 25 P. Höllmer et al.

tMCMC and tMCMC+τchain, disks move with unit velocity in one given direction (alternatively
in+x or in+y). A randomly sampled initial disk thus moves either until the chain time τchain
is used up, or until, at a collision event, it collides with another disk, which then moves in
its turn, etc. This algorithm is highly efficient in some applications [4, 5, 21]. During each
chain (in between changes of direction), any disk can collide only with three other disks
or fewer [22, 23]. A constraint graph with directed edges may encode these relations. This
constraint graph (defined for hard-disk configurations) takes on the role of the contact graph
(that is defined for packings) (see Fig. 3a, b). As the moves in a chain are all in the same
direction, straight ECMC has only N − 1 degrees of freedom, fewer than there are edges in
the constraint graph. It is for this reason that it may encounter the rigidity problems evoked
in Sect. 2.2.2.

In reflective ECMC [5], in between events, disks move in straight lines with unit velocity
just as in straight ECMC. At a collision event, the target disk does not continue in the
same direction as the active disk. Rather, the target-disk direction is the original active-disk
direction reflected from the line connecting the two disk centers at contact (see [5]). As all
ECMC variants, reflective ECMC satisfies the global-balance condition. Irreducibility (for
connected sample spaces) requires in principle resamplings of the active disk and its velocity
in intervals of the chain time τchain [15, 24, 25]. However, this seems not always necessary
[15, 25]. Numerical experiments indicate that reflective ECMC requires no resamplings in
our case as well. It is also faster without them (see Appendix A.2). A variant of reflective
ECMC, obtuse ECMC [16], has shown interesting behavior.

Forward ECMC [15] updates the normalized target-disk direction as follows after an event.
The component orthogonal to the line connecting the disks at contact is uniformly sampled
between 0 and 1 (reflecting the orthogonal orientation). Its parallel component is determined
so that the direction vector (which is also the velocity vector) is of unit norm. The parallel
orientation remains unchanged. In contrast to reflective ECMC, the event-based randomness
renders forward ECMC practically irreducible for the considered two-dimensional hard-disk
systems even without resamplings. Resamplings in intervals of the chain time τchain can still
be considered but slow the algorithm down (see Appendix A.2). We thus consider forward
ECMC without resampling.

(a) (b)

Ak−1

Ak Ak+1

Bk

δ

L

2

δc

(c)

Fig. 3 Contact graphs, constraint graphs and minimal escape range. a Contact graph for a packing consisting
solely of the Böröczky core. b Constraint graph in x-direction for an ε-relaxed Böröczky configurations
derived from the same packing with ε = 0.25. The edges indicate all possible collisions of straight ECMC in
x-direction. c Escape move δ and minimal escape range δc of the Metropolis algorithm with a square-shaped
displacement set

123

Sparse Hard-Disk Packings and Local... Page 11 of 25 31

Newtonian ECMC [16] mimics molecular dynamics in order to determine the velocity
of the target disk in an event. It initially samples disk velocities from the two-dimensional
Maxwell distribution with unit root-mean-square velocity. However, at each moment, only
a single disk is actually moving with its constant velocity. At a collision event, the veloc-
ities of the colliding disks are updated according to Newton’s law of elastic collisions for
hard disks of equal masses, but only the target disks actually moves after the event. In this
algorithm, the velocity (which indexes the Monte-Carlo time) generally differs from unity.
Similar to reflective ECMC, we tested that resamplings appear not to be required in our
case (and again yield a slower performance, see Appendix A.2), although Newtonian ECMC
manifestly violates irreducibility in highly symmetric models [25]. As in earlier studies for
three-dimensional hard-sphere systems [16] and for two-dimensional dipoles [25], Newto-
nian ECMC is typically very fast for ε-relaxed Böröczky configurations. However, it suffers
from frequent gridlocks (see Sect. 3.2.4).

3.2 Escape Times from "-relaxed Böröczky configurations

The principal figure of merit for a Markov chain is its mixing time [26], the number of
steps it takes from the worst-case initial condition to approach the stationary probability
distribution to some precision level. Böröczky packings trap the local Metropolis dynamics
(of sufficiently small range) as well as ECMC dynamics, so that the mixing time is, strictly
speaking, infinite. Although they cannot be escaped from, the packings make up only a set
of measure zero in sample space, and might thus be judged irrelevant.

However, as we will discuss in the present subsection, the situation is more complex. For
every Böröczky packing, an associated ε-relaxed Böröczky configurations keeps the central
simulation box and the disk positions, but reduces the disk radii from 1 to 1−ε. An ε-relaxed
Böröczky configurations effectively defines a finite portion of the sample space (the spheres
of radius ε around each disk position of the packing). All MCMC algorithms considered in
this work escape from these configurations in an escape time that diverges as ε → 0 (see
Sect. 3.2.1 for a definition of escape times). Numerical results and a scaling theory for the
escape times are discussed in Sects. 3.2.2 and 3.2.3, and a synopsis of our results is contained
in Sect. 3.2.4. The divergent escape times as ε → 0 are specific to the NVT ensemble (as
we will discuss in Sect. 4.2.2).

3.2.1 Nearest-Neighbor Distances and Escape Times

In a Böröczky packing, disks are locally stable, and they all have a nearest-neighbor distance
of 2. The packings are sparse, and the nearest-neighbor distance is thus smaller than its
∼ 1/

√
η equilibrium value. To track the escape from an ε-relaxed Böröczky configurations,

we monitor the maximum nearest-neighbor distance:

d(t) = max
i

[

min
j(=i)

|xi j (t)|
]

, (9)

where |xi j (t)| = |x j (t) − xi (t)| is the distance between disks i and j (possibly corrected
for periodic boundary conditions). The maximum nearest-neighbor distance signals when a
single disk breaks loose from what corresponds to its contacts. In the further time evolution,
the configuration then falls apart. For the Metropolis algorithm, we compute d(t) once every
N trials, and t denotes the integer-valued number of individual trial moves. For ECMC,
we sample d(t) and the number of events in intervals of the sampling Monte-Carlo time. In

123

31 Page 12 of 25 P. Höllmer et al.

Eq. (9), t then denotes the integer-valued number of events. Both discrete times t increment by
one with a computational effort O(1), corresponding to one trial in the Metropolis algorithm
and to one event in ECMC. Starting from an ε-relaxedBöröczky configurations, d(t) typically
remains at d(t) ∼ 2 + O (ε) for a long time until it approaches the equilibrium value in a
way that depends on the algorithm. We define the escape time tesc, an integer, as the time t
at which d(t) has increased by ten percent:

tesc = min
[

t : d(t) > 2(1 + γ)
]

, (10)

with γ = 0.1. All our results for the scaling of the escape time with the relaxation parameter
ε in the following subsections were reproduced for γ = 0.025 (see Appendix A.1). The
definition of the escape time based on the maximum nearest-neighbor distance d(t) is cer-
tainly not the only one to monitor the stability of ε-relaxed Böröczky configurations. It may
not be equally well-suited for all considered algorithms. Still, our scaling theory suggests
that the algorithms with an intrinsic parameter show a distinctly different behavior than the
algorithms without them, which appears to be independent of the precise definition of the
escape time.

3.2.2 Escape-Time Scaling for Metropolis and Straight ECMC

The local Metropolis algorithm and straight ECMC both have an intrinsic parameter, namely
the range δ of the displacement set or the chain time τchain. These two parameters play a
similar role. We numerically measure the escape time tesc of these algorithms for a wide
range of their intrinsic parameters and for small relaxation parameters ε (see Fig. 4, for the
escape times from ε-relaxed Böröczky configurations with k = 5 layers and the Kahle core).
The escape time diverges for δ, τchain → 0. For straight ECMC and small ε, tesc also diverges
for τchain → ∞ so that the function is “V ”-shaped with an optimal chain time τmin

chain. For
the Metropolis algorithm, tesc increases until around the critical range δc so that there is an
optimal range δmin < δc.

Two limiting cases can be analyzed in terms of the intrinsic parameter δ < δc or τchain,
and the internal length scales ε, and σ . For the Metropolis algorithm at small δ, a trajectory

10−4 10−3 10−2 10−1

range

102

104

106

108

1010

1012

es
ca

p
e

ti
m

e
t e

sc
(t

ri
a
ls

)

103
104
105

106

107

108

109

min

1010

tesc
∼ /ε

tesc ∼
−
2

c

1/ε

(a)

10−4 10−3 10−2 10−1 100

chain time chain

102

104

106

108

1010

es
ca

p
e

ti
m

e
t e

sc
(e

v
en

ts
)

103

104
105

106

107

108

109

1010

min
chain

tesc ∼
−
2chain

tesc
∼ chai

n/ε
1/ε

(b)

Fig. 4 Median escape times from the k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for different ε. a tesc (in trials) vs.
range δ for the Metropolis algorithm with the cross-shaped displacement set. b tesc (in events) vs. chain time
τchain for straight ECMC. Asymptotes are from Eqs. (11) and (12). Error bars are smaller than the marker
sizes

123

Sparse Hard-Disk Packings and Local... Page 13 of 25 31

spanning a constant distance is required to escape from an ε-relaxedBöröczky configurations.
This constant distance can be thought of as the escape distance δc in Fig. 3, which is on a
scale σ and independent of ε for small ε. As the Monte-Carlo dynamics is diffusive, this
constant distance satisfies const = δ

√
tesc. For straight ECMC with small chain times τchain,

the effective dynamics (after subtraction of the uniform displacement), is again diffusive.
This leads to:

tesc ∼
{

const/δ2 (Metropolis),

const/τ 2chain (straight ECMC),
(for small δ < δc, τchain). (11)

The independence of tesc of the relaxation parameter ε for small intrinsic parameters is clearly
brought out in the numerical simulations (see Fig. 4).

On the other hand, even for large δ < δc or τchain, the Markov chain must make a cer-
tain number of moves on a length scale ε in order to escape from the ε-relaxed Böröczky
configurations. In the Metropolis algorithm, the probability for a trial on this scale is ε/δ for
the cross-shaped displacement set and ε2/δ2 for the square-shaped displacement set. For the
straight ECMC with large τchain, all displacements beyond a time ∼ ε (or, possibly, ∼ Nε)
effectively cancel each other, because the constraint graph is rigid. This leads to:

tesc ∼

⎧

⎪
⎨

⎪
⎩

δ2/ε2 (Metropolis—square),

δ/ε (Metropolis—cross),

τchain/ε (straight ECMC),

(for large δ < δc, τchain). (12)

The scaling of tesc as ∼ 1/ε or ∼ 1/ε2 for large intrinsic parameters is confirmed in the
numerical simulations for small relaxation parameters ε (see Fig. 4). For large ε, the critical
range δc of the Metropolis algorithm (that slightly decreases with ε) falls below the region
of large δ. For large ε, the constraint graph of straight ECMC loses its rigidity, and τchain no
longer appears as a relevant intrinsic parameter. The scaling theory no longer applies.

The two asymptotes of Eqs. (11) and (12) form a “V ” with a base δmin (or τmin
chain) that is

obtained by equating the two expressions for tesc(δ) (or tesc(τchain)). This yields δmin ∼ 3
√

ε

for the Metropolis algorithm with a cross-shaped displacement set, and likewise τmin
chain ∼ 3

√
ε

for straight ECMC. For the Metropolis algorithm with a square-shaped move set, one obtains
δmin ∼ √

ε. The resulting optimum, the minimal escape time with respect to ε, is

tesc ∼

⎧

⎪
⎨

⎪
⎩

ε−1 (Metropolis—square),

ε−2/3 (Metropolis—cross),

ε−2/3 (straight ECMC),

(for optimal δmin, τmin
chain). (13)

These scalings balance two requirements: to move by a constant distance (which favors large
δ or τchain) and to move on the scale ε (which favors small δ or τchain).

3.2.3 Time Dependence of Free Path—Reflective, Forward, and Newtonian ECMC

The forward, reflective, and Newtonian variants of ECMC move in any direction, even in
the absence of resamplings, so that their displacement sets are 2N -dimensional. This avoids
the rigidity problem of straight ECMC (the fact that the number of constraints can be larger
than the number of degrees of freedom). We consider these algorithms without resamplings,
that is, for τchain = ∞. Finite chain times yield larger escape times that approach the value
at τchain = ∞ (see Appendix A.2). Without an intrinsic parameter, the effective free path
between events may thus adapt as the configuration gradually escapes from the ε-relaxed

123

31 Page 14 of 25 P. Höllmer et al.

Böröczky configurations. The free path is initially on the scale ε, but then grows on average
by a constant factor at each event, reaching a scale ε′ > ε after a time (that is, after a
number of events) that scales as ∼ ln(ε′/ε). The scale ε′ at which the algorithms break free
is independent of the initial scale ε, and we expect a logarithmic scaling of the escape time
(measured in events):

tesc ∼ ln(1/ε) (reflective, forward, and Newtonian ECMC). (14)

The absence of an imposed scale for displacements manifests itself in the logarithmic
growth with time of the average free path, that is, the averaged displacement between events
over many simulations starting from the same ε-relaxed Böröczky configurations (see Fig. 5
for the example of the escape of forward ECMC from ε-relaxed Böröczky configurations
with k = 5 layers and the Kahle core). Individual evolutions as a function of time t for small
relaxation parameters ε and ε′ overlap when shifted by their escape times. Starting from
an ε-relaxed Böröczky configurations with ε = 10−30, as an example, the same time is on
average required to move from an average free path of ∼ 10−30 to 10−25, as from an average
free path ∼ 10−25 to 10−20. The time t in this discussion refers to the number of events
and not to the Monte-Carlo time tMCMC. As discussed, the velocity in reflective and forward
ECMC, and the root-mean-square velocity in Newtonian ECMC, have unit value. The free
path between subsequent events—which, as discussed, grows exponentially with t—then
equals the difference of Monte-Carlo times tMCMC(t + 1) − tMCMC(t). The Monte-Carlo
time tMCMC thus grows as a geometric series and depends exponentially on the number of
events t . This emphasizes that the escape from an ε-relaxed Böröczky configurations is a
non-equilibrium phenomenon.

0 20000 40000 60000 80000 100000 120000
time t (events)

10−33

10−30

10−27

10−24

10−21

10−18

10−15

fr
ee

pa
th

|x
t+

1
−

x
t
|

← t = 0 for 1
/ε = 10

30 ← t = 0 for 1
/ε = 10

25 ← t = 0 for 1
/ε = 10

20

tesc(1030) − tesc(1025) tesc(1025) − tesc(1020)

10−25 10−23 10−21 10−19 10−17 10−15 10−13 10−11

continuous time tMCMC

Fig. 5 Free path (equivalently: Monte-Carlo time between events) for the forward ECMC algorithm started
from three k = 5 ε-relaxed Böröczky configurations (Kahle core and convex geometric chain Ageo with
attenuation parameter φ = 0.7, N = 96 disks) with ε = 10−30, 10−25 and 10−20. Integer time t (lower
x-axis) counts events, while tMCMC (upper x-axis) is the real-valued continuous Monte-Carlo time. Event
times are shifted. Expanded light curves show single simulations for each ε, dark lines average over 10,000
simulations

123

Sparse Hard-Disk Packings and Local... Page 15 of 25 31

105 1010 1015 1020 1025 1030

relaxation parameter 1/ε

104

106

108

1010

es
ca

p
e
ti
m
e

t e
sc

(t
ri
al
s
or

ev
en

ts
)

(a)

t e
sc

∼
ε
−2

/
3

t e
sc

∼
1/

ε

tesc ∼ ln(1/ε)

105 1015 1025

0

105

2×105

105 1010 1015 1020 1025 1030

relaxation parameter 1/ε

(b)

t e
sc

∼
ε
−2

/
3

t e
sc

∼
1/

ε

tesc ∼ ln(1/ε)

Metrop.:
square
cross

ECMC:
straight
reflective
forward
Newtonian

Fig. 6 Median escape time tesc from k = 5 ε-relaxedBöröczky configurationswith different cores (with convex
geometric chain Ageo and attenuation parameter φ = 0.7) for local MCMC algorithms (where applicable:
with optimized intrinsic parameters). a a tesc for the Kahle core (N = 96 disks). TheMetropolis algorithm and
straight ECMC show an algebraic scaling. Inset: log–lin plots suggesting logarithmic scaling for the forward,
reflective, and Newtonian ECMC. b tesc for the Böröczky core (N = 112 disks). Newtonian ECMC has
frequent gridlocks for small ε so that its logarithmic scaling is distorted. Error bars are smaller than the marker
sizes.

3.2.4 Escape Times: Synopsis of Numerical Results and Scaling Theory

Overall, escape times tesc(ε) (with intrinsic parameters optimized through a systematic scan
for the Metropolis algorithm and for straight ECMC) validate the algebraic scalings of
Eq. (13), on the one hand, and the logarithmic scaling of Eq. (14), on the other (see Fig. 6
for the escape times from ε-relaxed Böröczky configurations with k = 5 layers with either
the Kahle core or the Böröczky core). Our arbitrary-precision implementation of reflective,
forward, and Newtonian ECMC confirms their logarithmic scaling down to ε = 10−29.
Newtonian ECMC appears a priori as the fastest variant of ECMC. However, it frequently
gets gridlocked, i.e., trapped in circles of repeatedly active disks with a diverging event rate.
Gridlocks also rarely appear in straight and reflective ECMC. In runs that end up in gridlock,
escape times are very large, possibly diverging. (In Figs. 4 and 6, median escape times rather
than the means are therefore displayed for all algorithms. Mean and median escape times
are similar for the Metropolis algorithm and forward ECMC where gridlocks play no role.)
The gridlock rate increases with 1/ε. For the Kahle core, this effect is negligible for all ε.
For the Böröczky core, the gridlock rate of Newtonian ECMC is ∼ 30% for ε = 10−29 (see
Fig. 6b, the logarithmic scaling is distorted even for the median). We observe no clear depen-
dence of the gridlock rate on the floating-point precision of our arbitrary-precision ECMC
implementation, and it thus appears unlikely that gridlocks are merely numerical artifacts
(see Appendix A.3).

Gridlock is the very essence of ECMC dynamics from a locally stable Böröczky packing,
but it can also appear as a final state from an ε-relaxed Böröczky configurations. We observe
gridlocks in all hard-disk ECMCvariants that feature deterministic collision rules. Theywere
previously observed for straight ECMC from tightly packed initial configurations [27, Sect.
4.2.3]. Only forward ECMC with its event-based randomness is free of them. In a gridlock,
the event rate diverges at a given Monte-Carlo time, which then seems to stand still so that
no finite amount of Monte-Carlo time is spent in a configuration with contacts. Because
of the divergence of the event rate, gridlocks cannot be cured through resamplings at fixed

123

31 Page 16 of 25 P. Höllmer et al.

Monte-Carlo-time intervals. To overcome them in Newtonian ECMC, which appears a priori
as the fastest of our ECMC variants, one can probably introduce event-based randomness as
is done in forward ECMC. Nevertheless, gridlocks play no role in large systems at reasonable
densities. Also, ECMC algorithms for soft potentials introduce randomness at each event so
that gridlocks should not appear.

4 Discussion

In the present section, we discuss our results for the escape times (Sect. 4.1), as well as
a number of more fundamental aspects of Böröczky packings in the context of MCMC
(Sect. 4.2). We in particular clarify why a packing effectively realizes an infinite-pressure
configuration that in a constant-pressureMonte-Carlo simulation is instantly relaxed through
a volume increase.

4.1 Escape Times: Speedups, Bottlenecks

ECMC is a continuous-time MCMC method, and its continuous Monte-Carlo time tMCMC

takes the place of the usual count of discrete-time Monte-Carlo trials. However, ECMC
is event-driven. The time t , and especially the escape time tesc, are integers, and they
count events. The computational effort in hard-disk ECMC is O (1) per event, using a cell-
occupancy system that is also implemented in the BigBoro software package. In several
of our algorithms, the times t and tMCMC are not proportional to each other, because the
free path (roughly equivalent to the Monte-Carlo time between events) evolves during each
individual run.

4.1.1 Range of Speedups

The speedup realized by lifted Markov chains, of which ECMC is a representative, corre-
sponds to the transition from diffusive to ballistic transport [6, 28, 29]. This speedup refers
to what we call the “Monte-Carlo time” tMCMC, that is the underlying time of the Markov
process, and not to the time t that is measured in events. For Markov chains in a finite sample
space Ω , the Monte-Carlo time for mixing of the lifted Markov chain cannot be smaller
than the square root of the mixing time for the original (collapsed) chain. The remarkable
power-law-to-logarithm speedup in ε realized by some of the ECMC algorithms concerns
escape times which measure the number of events. The Monte-Carlo escape times probably
conform to the mathematical bounds, although it is unclear how to approximate hard-disk
MCMC for ε → 0 through a finite Markov chain. Mathematical results for the Monte-Carlo
escape times from locally blocked configurations would be extremely interesting, even for
models with a restricted number of disks.

4.1.2 Space of "-Relaxed Böröczky Configurations

The definition of an ε-relaxed Böröczky configurations can be generalized. Equivalent legal
hard-disk configurations are obtained by reducing the disk radii and choosing random disk
positions in a circle of radius ε around the original disk positions in the Böröczky packing.
These configurations also feature the escape-time scalings given in Eqs. (13) and (14). Any
ε-relaxed Böröczky configurations is thus merely a sample in a space Bε of volume ∼ ε2N .

123

Sparse Hard-Disk Packings and Local... Page 17 of 25 31

For a given upper limit tcpu of CPU time at fixed N , this corresponds to a volume of Bε

(that cannot be escaped from in tcpu) scaling with the computer-time budget as ∼ t−3N
cpu for

the straight ECMC and scaling as ∼ exp
(−2Ntcpu

)

for the forward ECMC. We expect Bε

to have a double role, as a space of configurations that the Monte-Carlo dynamics cannot
practically escape from, but maybe also a space that it cannot even access. The volume of Bε

(with ε chosen such that it cannot be escaped from in a reasonable CPU time) as well as the
corresponding changes in the free energy per disk are probably unmeasurably small except,
possibly, at very small N . The existence of a finite fraction of sample space that cannot be
escaped from in any reasonable CPU time at finite N is however remarkable. InmanyMCMC
algorithms for physical systems, as for example the Ising model, parts of sample space are
practically excluded because of their lowBoltzmannweight, but they feature diverging escape
times only in the limit N → ∞.

In this context,wenote thatMarkov chains canbe interpreted in termsof a single bottleneck
partitioning the sample space into two pieces [26, Sect. 7.2]. The algorithmic stationary
probability flow across the bottleneck sets the conductance of an algorithm, which again
bounds mixing and correlation times. Ideally, MCMC algorithms would be benchmarked
through their conductances. In the hard-disk model, the bottleneck has not been identified, so
that the benchmarking and the analysis of MCMC algorithms must rely on empirical criteria.
However, Böröczky packings and the related ε-relaxed Böröczky configurations may well
model a bottleneck, from which the Markov chain has to escape in order to cross from one
piece of the sample space into its complement. The benchmarks obtained by comparing
escape times from an ε-relaxed Böröczky configurations may thus reflect the relative merits
of sampling algorithms.

4.2 Böröczky Packings and Local MCMC: Fundamental Aspects

We now discuss fundamental aspects of the present work, namely the question of the irre-
ducibility of local hard-sphere Markov chains and the connection with non-local MCMC
algorithms (see Sect. 4.2.1), as well as regularization of Böröczky packings and ε-relaxed
Böröczky configurations in the N PT ensemble (see Sect. 4.2.2).

4.2.1 Irreducibility of Local and Non-local Hard-Disk MCMC

Strictly speaking, ECMC can be irreducible only if Ω \B is connected, where B is a suitably
defined space of locally stable configurations. Packings in B (a space of low dimension) are
certainly invariant under any version of the ECMC algorithm, so that they cannot evolve
towards other samples in Ω . Connectivity in Ω \ B would at least assure that this space
can be sampled. In addition it appears necessary to guarantee that a well-behaved initial
configuration cannot evolve towards an ε-environment around B (e.g., the space Bε of ε-
relaxed Böröczky configurations that makes up a finite portion of Ω) or to gridlocks with
diverging event rates. These properties appear not clearly established for finite densities η and
for large N . In other models, for example the Ising model of statistical physics, irreducibility
can be proven for any N .

These unresolved mathematical questions concerning irreducibility do not shed doubt on
the practical usefulness of MCMC for particle systems. First, the concept of local stability is
restricted to hard disks and hard spheres (that is, to potentials that are either zero or infinite).
The phase diagram of soft-disk models can be continuously connected to the hard-disk case
[30]. For soft disks, irreducibility is trivial, but the sampling speed of algorithms remains

123

31 Page 18 of 25 P. Höllmer et al.

crucial. Second, in applications, one may change the thermodynamic ensemble. In the N PT
ensemble, the central simulation box fluctuates in size and can become arbitrarily large. In
this ensemble, irreducibility follows from the fact that large enough simulation boxes are free
of steric constraints. Again, the question of mixing and correlation time scales is primordial.
Third, practical simulations that require some degree of irreducibility are always performed
under conditionswhere the simulation box houses a number of effectively independent copies
of the system. This excludes the crystalline or solid phases. Monte Carlo simulations of such
phases are more empirical in nature. They require a careful choice of initial states, and are
then not expected to visit the entire sample space during their time evolution. Fundamental
quantitative results can nevertheless be obtained [31].

In thiswork,we concentrate on localMCMCalgorithms, because global-move algorithms,
as the cluster algorithms in spin systems, rely onapriori probabilities formany-particlemoves
that appear too complicated. Also, global single-particle moves are related to the single-
particle insertion probabilities, in other words to fugacities (the exponential of the negative
chemical potential) that are prohibitively small. At lower (finite) densities, however, placing
at each time step a randomly chosen disk at a random position inside the box corresponds to
the Metropolis algorithm of Sect. 3.1.1 with a square-shaped displacement set and a range
δ = L/2. This non-local algorithm easily escapes from a Böröczky packing. Moreover, it is
proven to mix in O (N log N) steps at densities η < 1/6 [8, 32] (see also [33]), a result that
implies that the liquid phase in the hard-disk system extends at least to the density η = 1/6
[8]. The density bound for the algorithm (which yields a bound for the stability of the liquid
phase) is much smaller than the empirical density bound for the liquid phase, at η � 0.70.
At this higher density, the global-move Metropolis algorithm and the more general hard-
disk cluster algorithm [34] are almost totally stuck. For applications, we imagine structures
resembling ε-relaxed Böröczky configurations to be backbones of configurations at high
density, where global moves cannot be used.

4.2.2 Böröczky Packings and the NPT Ensemble

The concepts of packings and of local and collective stability make sense only in the NVT
ensemble, that is, for a constant number of particles and for a simulation box with fixed
shape and volume (the temperature T = 1/β that appears in NVT plays no role in hard-
disk systems [14]). In the N PT ensemble, the pressure P is constant, and the size of the
simulation box may vary. The equivalence of the two ensembles is proven [35] for large N ,
so that the choice of ensemble is more a question of convenience than of necessity. As wewill
see, in the N PT ensemble, tiny relaxation parameters (as ε = 10−29 in Fig. 6) are instantly
relaxed to ε ∼ 10−3 for normal pressures and system sizes.

To change the volume at constant pressure, onemay, among others, proceed to “rift volume
changes” (see [36, Sect. VI]) or else to homothetic transformations of the central simulation
box. We discuss this second approach (see [14, Sect. 2.3.4]), where the disk positions (but
not the radii) are rescaled by the box size L as:

x = (x1, . . . , xN) → α = (α1, . . . ,αN) with αi = xi/L. (15)

Each configuration is then specified by an α vector in the 2N -dimensional periodic unit
square and an associated volume V = L2, which must satisfy V ≥ Vcut(α). A classic
MCMC algorithm [37] directly samples the volume at fixed α from a gamma distribution
above Vcut(α), below which (α, V) ceases to represent a valid hard-disk configuration [14,
Eq. (2.19)]. Typical sample volumes are characterized by βP(V − Vcut) ∼ 1, and with

123

Sparse Hard-Disk Packings and Local... Page 19 of 25 31

V = (Lcut + ΔL)2, it follows that

ΔL

L
∼ ε ∼ 1

βPVcut
(at fixed α). (16)

This equation illustrates that a packing, with ε → 0, is realized as a typical configuration
only in the limit βP → ∞. For the Böröczky packings of Fig. 1, we have L � 20, and a
typical value for the pressure for hard-disk systems is βP ∼ 1, which results in ε ∼ 10−3.
In the N PT ensemble, as a consequence, escape times from a packing naturally correspond
to a relaxation parameter ε ∼ 1/(βPV), in our example to tesc(ε ∼ 10−3), which is O (1).

The above N PT algorithm combines constant-volume NVT -type moves of α with the
mentioned direct-sampling moves of V at fixed α. In practice, however, N PT calculations
are rarely performed in hard-disk systems [38, 39]. This is because, as discussed in Eq. (16),
the expected single-move displacement in volume at fixed α is ΔV ∼ 1/(βP), so that
ΔV /V ∼ 1/N (because N ∼ V and βP ∼ 1). The fluctuations of the equilibrium volume
V eq (averaged over α) scale as

√
V eq, which implies ΔV eq/V eq ∼ 1/

√
N . The volume-

sampling algorithm requires ∼ N single updates of the volume to go from the 1/N scale of
volume fluctuations at fixed α to the 1/

√
N scale of the fluctuations of V eq at equilibrium.

This multiplies with the number of steps to decorrelate at a given volume. In practice, it has
proven more successful to perform single NVT simulations, but to restrict them to physical
parameterswhere the central simulation box houses a finite number of effectively independent
systems mimicking constant-pressure configurations.

5 Conclusion

Building on an early breakthrough by Böröczky, we have studied in this work locally stable
hard-disk packings. Böröczky packings are sparse, with arbitrarily small densities for large
numbers N of disks. We constructed different types of these packings to arbitrary precision
for finite N , namely Böröczky packings with the original Böröczky core [13] and those with
the Kahle core [17]. In addition to the core and the number k of layers, Böröczky packings
are defined by the convex polygonal chain which bounds their branches. We constructed
Böröczky packings in a continuous range of densities, andmade our software implementation
of the construction openly accessible. Böröczky packings are locally, but not collectively
stable. Using singular-value decomposition (in an implementation that is included in our
open-source software) we explicitly exposed the unstable collective modes. We furthermore
reduced the radius of Böröczky packings slightly, and determined the escape times from
ε-relaxed Böröczky configurations as a function of the parameter ε for a number of local
MCMCalgorithms, including several variants ofECMC, arbitrary-precision implementations
of which are also made openly available. Although the algorithms depart from each other in
seemingly insignificant details only,wewitnessedwidely different escape times, ranging from
1/ε to log(1/ε). Our theory suggested that the significant speedup of some of the algorithms
is rooted in their event-driven nature coupled to their lack of an intrinsic scale. We noted that
the space of ε-relaxed Böröczky configurations is a finite portion of the sample space, and that
a given computer-time budget implies such a finite fraction of sample space that is practically
excluded in local MCMC at finite N . Here, the excluded volume only vanishes in the limit
of infinite CPU time. More generally, connectedness of the hard-disk sample space is not
proven. We pointed to the importance of statistical ensembles to reconcile the possible loss
of irreducibility with the proven practical usefulness of local hard-disk MCMC algorithms.
Although Böröczky packings or ε-relaxed Böröczky configurations are sparse, they could

123

31 Page 20 of 25 P. Höllmer et al.

form the locally stable (or almost locally stable) backbones of hard-disk configurations at
the much higher density which are of practical interest.

We expect the observed differences in escape times to carry over to real-world ECMC
implementations. Qualitatively similar performance differences were already observed in
autocorrelation times of hard-disk dipoles [25]. In statistical mechanics, bottlenecks and
escape times possibly play an important role in polymer physics and complex molecular
systems and some of the algorithms studied here may find useful applications. Escape times
may also play an important role in the study of glasses and in granular matter, where the
high or even infinite pressures favor local configurations that resemble the mutually blocked
disks in the ε-relaxed Böröczky configurations. We finally point out that the very concept of
locally stable packings naturally extends to higher dimensions.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability This work is based on computer programs that are all publicly available (see Appendix B).
Data will also be made available on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Escape Times, Resamplings and Gridlocks

In this appendix we collect a number of numerical results that support statements made in
the main text.

A.1 Critical MaximumNearest-Neighbor Distance

In the escape time tesc of Eq. (10), the parameter γ sets the criticalmaximumnearest-neighbor
distance d(t) for the escape from an ε-relaxed Böröczky configurations. In Sect. 3.2, we use
γ = 0.1 which corresponds to a 10%-increase of the initial value d(t = 0) = 2. Using the
alternative value γ = 0.025, we find that the escape time of straight ECMC again varies
algebraically as tesc ∼ ε−2/3 and, for forward, reflective, and Newtonian ECMC we again
find tesc ∼ ln(1/ε) (see Fig. 7). Our conclusions thus appear robust with respect to the value
of γ .

123

Sparse Hard-Disk Packings and Local... Page 21 of 25 31

A.2 Escape Times with Resamplings

The reflective, forward and Newtonian variants of ECMC, at a difference of straight ECMC,
appear to not always require resampling. In the main text, we therefore use τchain = ∞,
which, given our discussion in Sect. 3.1, is appropriate. Moreover, resamplings after chain
times τchain considerably deteriorate the escape time for all three variants (see Fig. 8). This
again illustrates the power of liftedMarkov chains, inwhich the proposedmoves are correlated
over long Monte-Carlo times.

A.3 Gridlock Rates with Different Numerical Precisions

The straight, reflective, and Newtonian variants of ECMC feature deterministic collision
rules, and they may run into gridlocks if started from ε-relaxed Böröczky configurations for
very small ε (see Sect. 3.2.4). In a gridlock, the active-disk label loops through a subset of

Fig. 7 Median escape times tesc from k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for ECMC algorithms. Solid
curves use γ = 0.1 for the definition of tesc (as in Sect. 3.2), dashed curves use γ = 0.025 (see Eq. (10)).
For both values of γ , straight ECMC with optimized chain time τchain shows algebraic scaling with identical
exponents, whereas forward, reflective, and Newtonian ECMC scale logarithmically. Error bars are smaller
than the marker sizes

chain

chain

Fig. 8 Median escape times tesc from k = 5 ε-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter φ = 0.7, N = 96 disks) for forward, reflective, and
Newtonian ECMC vs. chain time τchain for two different relaxation parameters ε. Horizontal lines indicate
the escape times without any resamplings. Error bars are smaller than the marker sizes

123

31 Page 22 of 25 P. Höllmer et al.

1011 1012 1013 1014 1015

relaxation parameter 1/ε

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

gr
id
lo
ck

ra
te

105 1015 1025

1/ε

0.0

0.1

0.2

0.3

gr
id
lo
ck

ra
te

number of mantissa bits:
150 (∼ 45 decimal digits)
175 (∼ 53 decimal digits)
200 (∼ 60 decimal digits)
250 (∼ 75 decimal digits)

Fig. 9 Gridlock rate of Newtonian ECMC simulations with different numerical precisions starting from a
k = 5 ε-relaxed Böröczky configurations (Böröczky core and convex geometric chain Ageo with attenuation
parameter φ = 0.7, N = 112 disks). The inset shows the gridlock rate as a function of 1/ε for the Newtonian
ECMC simulations with 200 mantissa bits that were used to measure the escape times in Fig. 6b

the N disks which are in contact. The event rate diverges, and so does the CPU time spent in
the gridlock. The Monte-Carlo time, however, stands still. Newtonian ECMC starting from
k = 5 ε-relaxed Böröczky configurations with the Böröczky core appears particularly prone
to gridlocks.

It remains an open question whether gridlocks are a numerical artifact related to the finite-
precision computer arithmetic. In our arbitrary-precision BigBoro software, the number of
mantissa bits (in base 2) can be set freely. We have studied the gridlock rate of Newtonian
ECMC (the fraction of simulations that run into gridlock) for the problematic k = 5 ε-relaxed
Böröczky configurations (using the convex geometric chain Ageo with attenuation parameter
φ = 0.7) with the Böröczky core, and observed no clear influence of the numerical precision.
It thus appears unlikely that gridlocks are a precision issue (see Fig. 9).

B BigBoro Software Package: Outline, License, Access

The BigBoro software package is published as an open-source project under the GNU
GPLv3 license. It is available on GitHub as part of the JeLLyFysh organization.1

The software package consists of three parts: First, the arbitrary-precision Python script
construct_packing.py constructs finite-N Böröczky packings of hard disks in a peri-
odic square box. Second, the Python script collective_escape_modes.py computes
collective infinitesimal displacements of hard disks in a packing that result in an escape.
Third, the arbitrary-precision Go application go-hard-disks performs hard-disk ECMC
simulations that may start from ε-relaxed Böröczky configurations derived from Böröczky
packings.

B.1 Python Script construct_packing.py

The arbitrary-precision Python script construct_packing.py implements the con-
struction of Böröczky packings. It allows for the Böröczky or Kahle cores (see Sect. 2.1.1),
and connects them to branches with a finite number of layers (see Sect. 2.1.3). The con-

1 The url of repository is https://github.com/jellyfysh/BigBoro.

123

Sparse Hard-Disk Packings and Local... Page 23 of 25 31

vex geometric chain Ageo with different attenuation parameters φ, and the convex circular
chain Acirc are implemented (see Sect. 2.2.1). The core, the number of layers, and the con-
vex polygonal chain are specified using command-line arguments. The construction of the
Böröczky packings uses arbitrary-precision decimal floating-point arithmetic. Two additional
command-line options specify the number of decimal digits, and the precision of the bisection
search for the value g<

2 that renders the Böröczky packing compatible with periodic boundary
conditions (see Sect. 2.1.3). The final configuration and its parameters (as for example the
system length) are stored in a human-readable format in a specified output file.

The example_packings directory of BigBoro contains several Böröczky packings
in corresponding subdirectories (as for example kahle_geometric_5). The headers of
these files contain the values of the command-line arguments for construct_packing.
py. A plot of each example configuration is provided. The different packings in kahle_
geometric_5 and boro_geometric_5 (see Fig. 1) were used in this work. Although
the bisection search for the construction of theBöröczkypacking usually requires an increased
precision, the high-precision packings with small enough number of layers may be used as
input for standard double-precision applications. For simplicity and improved readability,
we provide packing_double.txt files that store the configurations in double precision,
where applicable.

B.2 Python Script collective_escape_modes.py

The double-precision Python script collective_escape_modes.py identifies the
orthonormal basis vectors of the escape matrix Mesc from a packing x (see Eq. (6)) that
have zero singular values. Afterwards, these modes are classified using the cost function in
Eq. (8). The resulting basis vectorsΔa form the solution space for 2N -dimensional displace-
mentsΔ = {Δx

1,Δ
y
1,Δ

x
2,Δ

y
2, . . .} that have a vanishingfirst-order term inEq. (5) and thus for

collective infinitesimal displacements Δ of all disks that escape from the packing. The basis
vectorsΔa are stored in a human-readable output file, and optionally represented as in Fig. 2.
The input filename of the packing, and the output filename for the collective escape modes
are specified in command-line arguments. Further optional arguments specify the filename
for the plots of the escape modes, and the system length of the central simulation box (that
is unnecessary for packings generated by the Python script construct_packing.py in
which case the system length is parsed from the packing file).

B.3 Go Application go-hard-disks

The Go application go-hard-disks relies on a cell-occupancy system for the efficient
simulations of large-N hard-disk systems using several variants of the ECMC algorithm.
Straight, reflective, forward, and Newtonian ECMC are implemented. After each sampling
interval, it samples the maximum nearest-neighbor distance d(t) (see Eq. (9)). All compu-
tations use a fixed number of mantissa bits (in base 2) that may exceed the usual 24 or 53
bits for single- or double-precision floating-point values. The ECMC variant, its parameters
(as for example the sampling time or chain time), and further specifications (the number of
mantissa bits, the cell specifications, the filename for the initial configuration, etc.) are again
set using command-line arguments.

123

31 Page 24 of 25 P. Höllmer et al.

References

1. Metropolis,N., Rosenbluth,A.W.,Rosenbluth,M.N., Teller,A.H., Teller, E.: Equation of state calculations
by fast computing machines. J. Chem. Phys. 21, 1087 (1953). https://doi.org/10.1063/1.1699114

2. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208 (1957).
https://doi.org/10.1063/1.1743957

3. Alder, B.J., Wainwright, T.E.: Phase transition in elastic disks. Phys. Rev. 127, 359 (1962). https://doi.
org/10.1103/PhysRev.127.359

4. Bernard, E.P., Krauth,W.: Two-step melting in two dimensions: first-order liquid-hexatic transition. Phys.
Rev. Lett. 107, 155704 (2011). https://doi.org/10.1103/PhysRevLett.107.155704

5. Bernard, E.P., Krauth, W., Wilson, D.B.: Event-chain Monte Carlo algorithms for hard-sphere systems.
Phys. Rev. E 80, 056704 (2009). https://doi.org/10.1103/PhysRevE.80.056704

6. Krauth,W.:Event-chainMonteCarlo: foundations, applications, and prospects. Front. Phys.9, 229 (2021).
https://doi.org/10.3389/fphy.2021.663457

7. Lebowitz, J.L., Penrose, O.: Convergence of virial expansions. J. Math. Phys. 5, 841 (1964). https://doi.
org/10.1063/1.1704186

8. Helmuth, T., Perkins, W., Petti, S.: Correlation decay for hard spheres via Markov chains (2020). https://
arxiv.org/abs/2001.05323

9. Fejes, L.: Über einen geometrischen Satz. Math. Zeitschrift 46, 83 (1940)
10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1999)
11. Torquato, S., Stillinger, F.H.: Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev.

Mod. Phys. 82, 2633 (2010). https://doi.org/10.1103/RevModPhys.82.2633
12. Donev, A., Torquato, S., Stillinger, F., Connelly, R.: Jamming in hard sphere and disk packings. J. Appl.

Phys. 95, 989 (2004). https://doi.org/10.1063/1.1633647
13. Böröczky, K.: Über stabile Kreis- und Kugelsysteme. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7, 79

(1964)
14. Krauth,W.: StatisticalMechanics:Algorithms andComputations.OxfordUniversity Press,Oxford (2006)
15. Michel, M., Durmus, A., Sénécal, S.: Forward event-chain Monte Carlo: fast sampling by randomness

control in irreversible Markov chains. J. Comput. Graph. Stat. 29, 689 (2020). https://doi.org/10.1080/
10618600.2020.1750417

16. Klement, M., Engel, M.: Efficient equilibration of hard spheres with Newtonian event chains. J. Chem.
Phys. 150, 174108 (2019). https://doi.org/10.1063/1.5090882

17. Kahle, M.: Sparse locally-jammed disk packings. Ann. Comb. 16, 773 (2012). https://doi.org/10.1007/
s00026-012-0159-0

18. Pach, J., Sharir, M.: Combinatorial Geometry and Its Algorithmic Applications, Mathematical Surveys
and Monographs, vol. 152. American Mathematical Society, Providence (2009)

19. Diaconis, P., Lebeau, G., Michel, L.: Geometric analysis for the Metropolis algorithm on Lipschitz
domains. Invent. Math. 185, 239 (2011). https://doi.org/10.1007/s00222-010-0303-6

20. Baryshnikov, Y., Bubenik, P., Kahle, M.: Min-typeMorse theory for configuration spaces of hard spheres.
Int. Math. Res. Not. 2014, 2577 (2013). https://doi.org/10.1093/imrn/rnt012

21. Engel, M., Anderson, J.A., Glotzer, S.C., Isobe, M., Bernard, E.P., Krauth, W.: Hard-disk equation of
state: first-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E
87, 042134 (2013). https://doi.org/10.1103/PhysRevE.87.042134

22. Kapfer, S.C., Krauth, W.: Sampling from a polytope and hard-disk Monte Carlo. J. Phys. Conf. Ser. 454,
012031 (2013). https://doi.org/10.1088/1742-6596/454/1/012031

23. Li, B., Todo, S.,Maggs, A., Krauth,W.:Multithreaded event-chainMonte Carlowith local times. Comput.
Phys. Commun. 261, 107702 (2021). https://doi.org/10.1016/j.cpc.2020.107702

24. Bouchard-Côté, A., Vollmer, S.J., Doucet, A.: The bouncy particle sampler: a nonreversible rejection-
free Markov chain Monte Carlo method. J. Am. Stat. Assoc. 113, 855 (2018). https://doi.org/10.1080/
01621459.2017.1294075

25. Höllmer, P., Maggs, A.C., Krauth, W.: Hard-disk dipoles and non-reversible Markov chains. J. Chem.
Phys. 156, 084108 (2022). https://doi.org/10.1063/5.0080101

26. Levin, D.A., Peres, Y.,Wilmer, E.L.: Markov Chains andMixing Times. AmericanMathematical Society,
Providence (2008)

27. Weigel, R.F.B.: Equilibration of orientational order in hard disks via arcuate event-chain Monte
Carlo. https://theorie1.physik.uni-erlangen.de/research/theses/2018-ma-roweigel.html. Master thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (2018)

28. Diaconis, P., Holmes, S., Neal, R.M.: Analysis of a nonreversible Markov chain sampler. Ann. Appl.
Probab. 10, 726 (2000). https://doi.org/10.1214/aoap/1019487508

123

Sparse Hard-Disk Packings and Local... Page 25 of 25 31

29. Chen, F., Lovász, L., Pak, I.: Lifting Markov chains to speed up mixing. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, p. 275 (1999)

30. Kapfer, S.C., Krauth, W.: Two-dimensional melting: from liquid-hexatic coexistence to continuous tran-
sitions. Phys. Rev. Lett. 114, 035702 (2015). https://doi.org/10.1103/PhysRevLett.114.035702

31. Bolhuis, P.G., Frenkel, D., Mau, S.C., Huse, D.A.: Entropy difference between crystal phases. Nature
388, 235 (1997). https://doi.org/10.1038/40779

32. Kannan, R., Mahoney, M.W., Montenegro, R.: Rapid mixing of several Markov chains for a hard-core
model. In: Proc. 14th Annual ISAAC, Lecture Notes in Computer Science, pp. 663–675. Springer, Berlin
(2003)

33. Bernard, E.P., Chanal, C., Krauth, W.: Damage spreading and coupling in Markov chains. EPL 92, 60004
(2010). https://doi.org/10.1209/0295-5075/92/60004

34. Dress, C., Krauth, W.: Cluster algorithm for hard spheres and related systems. J. Phys. A 28, L597 (1995).
https://doi.org/10.1088/0305-4470/28/23/001

35. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)
36. Michel, M., Kapfer, S.C., Krauth, W.: Generalized event-chain Monte Carlo: constructing rejection-free

global-balance algorithms from infinitesimal steps. J. Chem. Phys. 140, 054116 (2014). https://doi.org/
10.1063/1.4863991

37. Wood,W.W.:Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble. J. Chem. Phys.
48, 415 (1968). https://doi.org/10.1063/1.1667938

38. Wood, W.W.: NpT-ensemble Monte Carlo calculations for the hard-disk fluid. J. Chem. Phys. 52, 729
(1970). https://doi.org/10.1063/1.1673047

39. Lee, J., Strandburg, K.J.: First-order melting transition of the hard-disk system. Phys. Rev. B 46, 11190
(1992). https://doi.org/10.1103/physrevb.46.11190

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

137

Publication 3: Hard-disk pressure computations—a historic
perspective

J. Chem. Phys. 157, 234111 (2022); https://doi.org/10.1063/5.0126437 157, 234111

© 2022 Author(s).

Hard-disk pressure computations—a
historic perspective

Cite as: J. Chem. Phys. 157, 234111 (2022); https://doi.org/10.1063/5.0126437
Submitted: 15 September 2022 • Accepted: 21 November 2022 • Published Online: 20 December 2022

 Botao Li, Yoshihiko Nishikawa, Philipp Höllmer, et al.

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Accelerated constant-voltage quantum mechanical/molecular mechanical method for
molecular systems at electrochemical interfaces
The Journal of Chemical Physics 157, 234107 (2022); https://doi.org/10.1063/5.0128358

The physics of boundary conditions in reaction–diffusion problems
The Journal of Chemical Physics 157, 234110 (2022); https://doi.org/10.1063/5.0128276

New insights into the early stage nucleation of calcium carbonate gels by reactive
molecular dynamics simulations
The Journal of Chemical Physics 157, 234501 (2022); https://doi.org/10.1063/5.0127240

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Hard-disk pressure computations—a
historic perspective

Cite as: J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437
Submitted: 15 September 2022 • Accepted: 21 November 2022 •
Published Online: 20 December 2022

Botao Li,1 Yoshihiko Nishikawa,2 Philipp Höllmer,3 Louis Carillo,1 A. C. Maggs,4

and Werner Krauth1,a)

AFFILIATIONS
1 Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris
Cité, Paris, France

2Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
3Physikalisches Institut and Bethe Center for Theoretical Physics, University of Bonn, Nussallee 12, 53115 Bonn, Germany
4CNRS Gulliver, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France

a)Author to whom correspondence should be addressed: werner.krauth@ens.fr

ABSTRACT

We discuss pressure computations for the hard-disk model performed since 1953 and compare them to the results that we obtain with a
powerful event-chain Monte Carlo and a massively parallel Metropolis algorithm. Like other simple models in the sciences, such as the
Drosophila model of biology, the hard-disk model has needed monumental efforts to be understood. In particular, we argue that the difficulty
of estimating the pressure has not been fully realized in the decades-long controversy over the hard-disk phase-transition scenario. We
present the physics of the hard-disk model, the definition of the pressure and its unbiased estimators, several of which are new. We further
treat different sampling algorithms and crucial criteria for bounding mixing times in the absence of analytical predictions. Our definite results
for the pressure, for up to one million disks, may serve as benchmarks for future sampling algorithms. A synopsis of hard-disk pressure data
as well as different versions of the sampling algorithms and pressure estimators are made available in an open-source repository.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0126437

I. INTRODUCTION

In fundamental physics, the most detailed descriptions of phys-
ical reality are not always the best. In our quantum-mechanical
world, many phenomena are, indeed, described classically, with-
out the elaborate machinery of wavefunctions and density matrices.
The exact thermodynamic singularities of helium, a quantum liq-
uid, at the famous lambda transition1 are, for example, obtained by a
seemingly unrelated model of classical two-component spins2–5 on a
three-dimensional lattice rather than by some quantum-mechanical
representation of all atoms in the continuum.6 Renormalization-
group theory7 guarantees that the simple classical spin model exactly
describes experiments in the quantum liquid.8,9 The universality of
simple models is also found in other sciences. In biology, the study
of the fruit fly Drosophila has gradually evolved from a subject of
entomology, the science of insects, to a parable for higher animals,
where it allows one to appreciate gene damage10 from radiation. In
recent decades, it was, moreover, understood that many of the genes

of Drosophila have exactly the same function as genes in vertebrates,
including humans. In physics as in biology, “(t)his remarkable con-
servation came as a big surprise. It had been neither predicted nor
expected,”11 to cite a Nobel-prize winner.

Paradoxically, even simple models in science, those stripped
to their bare bones, can take monumental efforts and decades of
research to be understood fully. This is the case for the Drosophila
fly that entered research laboratories around 190512 and then grad-
ually turned into a model organism.13 It is also what happened to
the simplest of all particle models, the hard-disk model, which is the
focus of the present work. The model consists of N identical clas-
sical disks with positions inside a box and with velocities. Disks fly
in straight-line trajectories, except when they collide with each other
or with an enclosing wall. The elementary collision rules are those of
elastic, friction-less, billiard balls. The hard-disk model caricatures
two-dimensional fluids: it lacks the explicit interparticle attractions
of more realistic descriptions, yet it shows almost all the interesting
properties of general particle systems. Moreover, its observed phase

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-1

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

behavior14 was understood in terms of topological phase transitions,
just like classical continuous spin models in two dimensions.15 The
interpretation common to both cases was unsuspected from the
conventional Landau theory of phase transitions.

Only few characteristics of the hard-disk model are known
from rigorous mathematics. The first was proven by Daniel
Bernoulli in 1738,16 namely, that the temperature, which is linked
to the mean-square velocity of the disks, plays no role in their spa-
tial distribution. It was also proven17,18 that the hard-disk model,
as a dynamical system with positions and velocities evolving under
Newton’s laws, can be described statistically with positions that all
have equal statistical weight. It is furthermore shown rigorously
that, at small finite density, the model is fluid,19,20 justifying ana-
lytic expansions developed in the 19th century21 to link dilute hard
disks to the ideal gas of non-interacting particles. For high densities,
it was established that at close packing, the hard-disk model forms a
hexagonal crystal.22 However, for all densities below close packing,
this crystalline structure is destroyed23,24 by long-wavelength fluctu-
ations. The invention of simulation methods, and their application

to this very model of hard disks ever since the 1950s, was meant to
overcome the scarcity of analytical results.

With its stripped-down interactions, the hard-disk model is,
indeed, simple. In particular, the model lacks attractive forces that
would pull the disks together. It is for this reason that, for a long
time, hard disks and hard spheres (in three dimensions) were con-
sidered to be too simple to show a phase transition from a disordered
fluid to a solid.25,26 In two dimensions, furthermore, ordered phases
were expected not to exist for theoretical reasons that were consid-
ered sufficiently solid to formally exclude any transition.27 Initial
computer simulations, in 1953, in the same publication that intro-
duced the Metropolis algorithm,28 accordingly found that “(t)here
is no indication of a phase transition.” It thus came as an enor-
mous surprise29,30 when, in 1962, Alder and Wainwright14 identified
a loop in the equation of state (see Fig. 1), suggesting31 a phase
transition between a fluid at low density and a solid (that was not
supposed, at the time, to exist) at high density. This laid the ground
work for the Kosterlitz–Thouless–Halperin–Nelson–Young theory
of melting in two-dimensional particle systems.32–34 Even after this

FIG. 1. Hard disks in a periodic box. (a) Equation of state (pressure vs volume) computed in 1962 by Alder and Wainwright.14 (b) and (c) Samples of 870 disks at densities
η = 0.726 and η = 0.672. (d) Pressures for N = 870 from (a) compared with ECMC results (this work) for aspect ratio α = (9 : 8

√
3/2) (cf . Fig. 10 for an analysis of

convergence behavior).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-2

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

important conceptual advance, the phase behavior and the equa-
tion of state of the hard-disk model remained controversial for
another fifty years until an analysis35 based on the powerful event-
chain Monte Carlo (ECMC) algorithm36 showed that hard disks
melt through a first-order fluid–hexatic phase transition combined
with a Kosterlitz–Thouless transition between the hexatic and the
solid, thus proposing a new scenario.

In this work, we discuss the hard-disk model in a computa-
tional and historical context, concentrating on the pressure as a
function of the volume. The reason for this restriction of scope on
pressures rather than on phases is that the aforementioned 50-year
controversy on the hard-disk phases takes its origin in difficul-
ties in computing the pressure as the dependent variable in the
equation of state. After a short introduction to the physics of the
hard-disk model, we review the thermodynamic and kinematic pres-
sure definitions and show that they are perfectly equivalent even
for finite systems. Nevertheless, the pressure may be anisotropic
and depend on the shape of the system, rather than being only a
function of system volume. We discuss pressure estimators, with
a focus on those that are unbiased at finite N and are convenient
to use. We furthermore clarify that different sampling algorithms
[molecular dynamics, reversible and non-reversible Markov-chain
Monte Carlo (MCMC)] all rigorously sample the same equal-weight
Boltzmann distribution of positions although the time scales for
convergence can differ widely even for local algorithms and can
reach years and even decades of computer time for moderate sys-
tem sizes. This was not understood in many important historical
contributions. With all this material in hand, we confront past
results with massive computations performed for this work, thus
providing definite high-precision pressure estimates for the hard-
disk model that may serve as benchmarks for the future. With
its rich phenomenology and its intractable mathematics, this sim-
ple model has become the Drosophila for particle systems and for
two-dimensional phase transitions. It has served as a parable for dif-
ficult computing problems and as a platform for the development
of MCMC and of molecular dynamics. This fascinating model has
yet to be fully understood. We aim at providing a solid base for
future work.

The plan of this work is as follows: In Sec. II, we discuss the fun-
damentals of the hard-disk model, from the definitions of densities
and volumes to an overview of its physical properties. In Sec. III, we
discuss sampling algorithms molecular dynamics and MCMC and
pressure estimators for this model, concentrating on new develop-
ments. In Sec. IV, we digitize, discuss, and make available numerical
computations of the equation of state performed since the paper by
Metropolis et al., in 1953, and superpose them with large-scale com-
putations done for this work. Section V contains our conclusions.
We also provide information on statistical analysis (Appendix A)
and introduce to the HistoricDisks open-source software package
(Appendix B), which collects pressure data since 1953 and imple-
ments sampling algorithms and pressure estimators that were used
in this work.

II. HARD-DISK MODEL

The hard-disk model consists of N impenetrable, identical,
classical disks of radius σ and mass m, which are perfectly elastic.

Collisions are instantaneous; they cause no deformations and induce
no rotations. Pair collisions conserve momentum and energy. Disks
evolve in a fixed rectangular box of sides Lx and Ly [specified through
the aspect ratio α = (Lx : Ly)], which may have periodic boundary
conditions (“periodic” box), or else hard-wall boundary condi-
tions (“non-periodic” box). The two-dimensional volume (area) is
V = Lx × Ly. In the NVT ensemble that we consider here, N, Lx,
and Ly are fixed. For the hard-disk system, the microcanonical NVE
ensemble (of constant energy E) and the canonical NVT ensemble
(of constant temperature T) are almost equivalent, and we connect
the two throughout this work. In other ensembles, the box can be of
varying dimensions,37–39 and N might vary.40 The disk i is described
by the position of its center xi = (xi, yi) and possibly by a veloc-
ity vi = (vx,i, vy,i). We denote the set of positions and velocities by
x = {x1, . . . , xN} and v = {v1, . . . , vN}, respectively.

A. Basic definitions and properties
We now discuss additional characteristics of the hard-disk

model and define its Newtonian dynamics. Furthermore, we sum-
marize the physics of two-dimensional particle systems.

1. System definitions, basic properties
In the limit N →∞, the properties of a particle system with

short-range interactions are independent of the boundary condi-
tions. At finite N, in contrast, the bulk part of the free energy (that
scales as V) cannot be separated from the surface term (that, in
two dimensions, scales as

√
V). For example, a close-packed crys-

tal of N = 72 = 8 × 9 disks can fit into a periodic box of aspect ratio
α = (9 : 8

√
3/2), whereas the maximum density for the same N in

a box with α = (1 :
√

3/2) is slightly smaller (see Fig. 2). Evidently,
the pressure in a box containing a finite number of disks depends on
its aspect ratio.

The following conventions for the volume or its inverse, the
density, have been commonly used in the literature. The first is
the volume V = Lx × Ly normalized by that of a perfect hexagonal
packing V0 = N(2σ)2√3/2 [as in Fig. 2(b)]. Second is the covering
density η, the total volume of all disks normalized by the box vol-
ume V . Third is the reduced density ρ, the number N of disks of
radius 1

2 divided by the volume and, finally, the inverse normalized
density ν/(2σ)2 with ν = (2σ)2/ρ. These quantities are related as
follows:

FIG. 2. Packings for N = 72 disks for different aspect ratios α. (a) Periodic box
with α = (1 :

√
3/2), with conjectured optimal packing. (b) Periodic box with

α = (9 : 8
√

3/2) at the close-packing density η = π/(2√3).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-3

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

V
V0
= π

2
√

3
1
η
= 2√

3
ν(2σ)2 ≥ 1,

η = π
2
√

3
V0

V
= N

V
πσ2 ≤ 0.907,

ρ = η
4
π
= V0

V
2√
3
= (2σ)2

ν
≤ 1.155,

ν(2σ)2 =
√

3
2

V
V0
= π

4
1
η
= 1

ρ
≥ 0.866.

(1)

We will re-plot published equations of state with all four units, thus
simplifying the comparison of data.

In the hard-disk model, all configurations have zero poten-
tial energy, and the Newtonian time evolution conserves the kinetic
energy. Pairs of disks collide such that, in their center-of-mass
coordinate system, they rebound from their line of contact with
conserved parallel and reversed perpendicular velocities.41 At a wall
collision, the velocity component of a disk parallel to the wall
remains the same while the perpendicular velocity v�wall is reversed.
When, at the initial time t = 0, all velocities are rescaled by a factor
γ, the entire trajectory transforms as

{x1(t), . . . , xN(t)} vi→γvi∀iÐÐÐÐÐ→{x1(t
γ
), . . . , xN(t

γ
)}. (2)

This property of hard-sphere models was already noticed by Daniel
Bernoulli.16

Statistically, during the Newtonian hard-disk time evolution,
the sets of positions and of velocities are mutually independent.
All positions x that correspond to N-disk configurations have the
same statistical weight π with a Cartesian density measure and, in
a non-periodic box, the velocities are randomly distributed on the
surface of the hypersphere in the 2N-dimensional space with radius
Rv = √2E/m, where E is the conserved (microcanonical) energy
of the NVE ensemble. The measure in the 4N-dimensional sample
space of positions and velocities is, thus,

dπ ∝ Θ(x)dN x dN v δ(E −∑
i

mv2
i /2), (3)

where Θ(x) = 1 for positions that correspond to hard-disk configu-
rations and Θ(x) = 0 otherwise. In a periodic box, in addition, the
two components of the total velocity and the position of the cen-
ter of mass in the rest frame are conserved. For large N, where the
ensembles are equivalent, the microcanonical energy per disk cor-
responds to E/N = kBT = 1/β, where kB is the Boltzmann constant
and T is the temperature of the canonical ensemble. The spatial
part of the measure of Eq. (3) remains unchanged, and the uniform
velocity distribution on the surface of the hypersphere in 2N dimen-
sions implies that the one-particle, marginal distribution of velocity
components becomes Gaussian,

π(vi,x) ∝ exp(−βmv2
i,x/2) (N →∞) (4)

(and analogously for vi,y, see Ref. 41, Sec. 2.1.1).

The probability distribution of the velocity perpendicular to
a wall v�wall at the discrete wall-collision times (essentially the his-
togram of momentum transfers with the walls) differs from Eq. (3).
For N →∞, this distribution is biased by a factor ∣v�wall∣ with respect
to the Maxwell distribution,

π(∣v�wall∣) ∝ ∣v�wall∣ exp[−βm(v�wall)2/2], (5)

which has been described through the “Maxwell boundary
condition” [see (Ref. 41, Sec. 2.3.1)]. For finite N, the same biasing
factor appears. The distribution of the velocity perpendicular to a
wall is derived from the surface element on the hypersphere of radius
Rv = √v2

1 + ⋅ ⋅ ⋅ + v2
n in n = 2N dimensions,

dΩ = Rn−1
v sinn−2 ϕ1 sinn−3 ϕ2 ⋅ ⋅ ⋅ sin ϕn−2dϕ1 ⋅ ⋅ ⋅dϕn−1, (6)

where ϕ1, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π], and where only
v1 = Rv cos ϕ1 is expressed in terms of a single angle. It is thus con-
venient to identify v1 with v�wall. The radius Rv of the hypersphere
at the microcanonical energy E = mR2

v/2 is related to the inverse
temperature in the canonical ensemble as R2

v = 2N/(mβ). With the
integrals

A = ∫ π

0
dϕ1∣ cos ϕ1∣sinn−2 ϕ1 = 2

n − 1
,

B = ∫ π

0
dϕ1 sinn−2 ϕ1 = √π

Γ[(n − 1)/2]
Γ(n/2) ,

(7)

this yields

⟨ 1∣v�wall∣ ⟩ =
1

Rv

B
A
= √π

Rv

Γ(N + 1
2)

Γ(N) N→∞ÐÐÐÐ→
√

πmβ
2

, (8a)

⟨∣v�wall∣⟩ = Rv
B

2NA
= Rv

√
π

2N
Γ(N + 1

2)
Γ(N) N→∞ÐÐÐÐ→√ π

2mβ
, (8b)

where in the limit N →∞, the ratio of the Γ functions approaches√
N. The relative perpendicular velocities Δv�ij (the projection of

the relative velocity vi − vj perpendicular to the interface separating
disks i and j at their collision) are, similarly,

⟨ 1∣Δv�ij ∣ ⟩ =
√

2π
Rv

Γ(N + 1
2)

Γ(N) N→∞ÐÐÐÐ→√πmβ, (9a)

⟨∣Δv�ij ∣⟩ = Rv
√

π√
2N

Γ(N + 1
2)

Γ(N) N→∞ÐÐÐÐ→√ π
mβ

. (9b)

2. Pair correlations, entropic phase transition
In the hard-disk model, the Boltzmann weights are the same for

all sets of disk positions, since there are no explicitly varying inter-
actions. In consequence, the two possible fluid phases (namely, the
gas and the liquid) are confounded. A purely entropic “depletion”
interaction42 between disks, nevertheless, arises from the pres-
ence of other disks, effectively driving phase transitions. The three
phases of the hard-disk model are fluid (with exponential decays
of the orientational and positional correlation functions), hexatic
(with an algebraic decay of orientational and exponential decay of

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-4

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Volume reductions for a non-
periodic box. (a) Pathological corner-
grind volume reduction that eliminates no
samples for sufficiently large σ. (b) Hori-
zontal wall rift used to estimate the pres-
sure Py . (c) Vertical rift used to estimate
Px . (d) Homothetic volume reduction.

positional correlations), and solid (with long-range orientational
correlations and an algebraic decay of positional correlations). The
hexatic and solid phases have only been identified through numeri-
cal simulations, and mathematical proofs of their existence are still
lacking.

B. Hard-disk thermodynamics
In statistical mechanics, a homogeneous system (composed

of, say, N particles in a fixed box) is described by an equation of
state connecting two quantities, for example, the volume and the
pressure. When for some volumes, a homogeneous phase may not
exist, two (or exceptionally three) phases may coexist. We now
link the definitions of the pressure from the thermodynamic and
kinematic viewpoints and then discuss phase coexistence in finite
systems.

1. Pressure, thermodynamic, and kinematic
definitions

In statistical mechanics, the pressure P is given by the change
in the free energy with the system volume,

βP = ∂ log Z
∂V

= lim
V′→V

1
V − V′

Z − Z′
Z

, (10)

with Z being the partition function and Z′ ≡ Z(V′). For hard disks
and related models, the rightmost fraction in Eq. (10) expresses the
probability that a sample in the original box of volume V is elim-
inated in the box of reduced volume V′ < V [see Figs. 3(a)–3(c)].
In rift-pressure estimators,43 the volume V of an Lx × Ly box is
reduced by removing an infinitesimal vertical or horizontal slab
(a “rift”), yielding the components Px and Py of the pressure. Rifts
can be placed anywhere in the box, and one may even average any
given hard-disk sample over all vertical or horizontal rift positions
(see Subsection III C). We will also discuss homothetic pressure esti-
mators, where all box dimensions and disk coordinates are scaled
down by a common factor [see Fig. 3(d)]. Used for decades, they
estimate the pressure P = (Px + Py)/2.

Besides the thermodynamic definition of the pressure, one can
also define the kinematic pressure as the exchange of momentum
with the enclosing walls. However, thermodynamic and kinematic
pressures are rigorously identical already at finite N, and the cor-
responding estimators can be transformed into each another. This
remains true for the pressure estimators built on the virial formalism
that we also discuss.

2. Equation of state, phase coexistence
In the thermodynamic limit, the stability of matter is expressed

through a positive compressibility κ = −(∂V/∂P)/V . For a finite
system in the NVT ensemble, this is not generally true in a pres-
ence of a first-order phase transition, where two coexisting phases
are separated by an interface with its own interface free energy.

In a periodic two-dimensional box for finite N, on increasing
the density (decreasing the volume), a first-order phase transition
first creates a bubble of the denser phase in the less dense phase
(for hard disks: a hexatic bubble inside the fluid). The stabilization
of this bubble requires an extra “Laplace” pressure corresponding
to the surface tension, which renders the overall pressure non-
monotonic with V .31 At larger densities, the bubble of the minority
phase transforms into a stripe that winds around the periodic box. In
the stripe regime, the length of the two interfaces and, thus, the inter-
face free energy do not change with V , so that the pressure remains
approximately constant. Finally, one obtains a bubble of the less
dense phase (the fluid) in the surrounding denser (hexatic) phase
(see Fig. 4). In the NVT ensemble, phase coexistence takes place at
certain specific volumes V/V0 that do not correspond to densities
η = (N/V)πσ2 of a homogeneous stable phase for N →∞. Phase
coexistence is absent in the NPT ensemble. The pressure is then
the control variable, and the volume V/V0 is discontinuous at the

FIG. 4. First-order phase transition in the NVT ensemble. (a) Free energy with
increasing second derivative and, thus, a monotonously decreasing pressure.
(b) Free energy with—for the infinite system—metastable branches starting at
volumes V1 and V2 and a non-monotonous equilibrium pressure P for finite N.
(c) Sequence of five regimes in a finite two-dimensional periodic box, with pure
(1, 5), bubble (2, 4), and stripe (3) phases.

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-5

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

transition, providing a simpler physical picture. However, in the
NPT ensemble and its variants, sampling algorithms generally
converge even more slowly than in the NVT ensemble.

The phase coexistence and the non-monotonous equation of
state are genuine equilibrium features at finite N. Moreover, the spa-
tially inhomogeneous phase-separated equilibrium state is reached
from homogeneous initial configurations through a slow coarsening
process, where an extensive number of bubbles coalesce into a sin-
gle bubble or a single stripe [see Fig. 4(c)]. The coarsening dynamics
depends on the sampling algorithm.

III. SAMPLING ALGORITHMS
AND PRESSURE ESTIMATORS

In this section, we discuss sampling algorithms (molecular
dynamics, MCMC) and pressure estimators for the hard-disk model.
All algorithms are unbiased and correct to machine precision. For
example, molecular dynamics implements the Newtonian time evo-
lution of disks without discretizing time. The reversible Monte Carlo
algorithms, from the historic Metropolis algorithm to the recent
massively parallel Monte Carlo (MPMC) on graphics-card comput-
ers, satisfy the detailed-balance condition: the net equilibrium flow
vanishes between any two samples. The non-reversible ECMC algo-
rithms only satisfy the global-balance condition, and samples are
taken in an extended “lifted” sample space.

Besides the sampling algorithms, we also discuss pressure esti-
mators, including recent ones that overcome the limitations of the
traditional approaches. Thermodynamic pressure estimators com-
pute the probability with which a sample is eliminated as the box is
reduced in size while kinematic pressure estimators determine the
momentum fluxes at the walls or inside the box. Importantly, both
types of estimators have the same expectation value (the pressure
P or its components Px or Py), and they merely differ in their effi-
ciency and ease of use. Even at finite N, there is, thus, no ambiguity
in the definition of the pressure. The various estimators play a key
role in the equation-of-state computations in Sec. IV. All algorithms
and estimators are cross-validated for four disks in a non-periodic
square box (see Appendix B 2 a). These tiny simulations illustrate
the absence of any finite-N bias in the pressure estimators.

A. Event-driven molecular dynamics (EDMD)
Event-driven molecular dynamics (EDMD)44 implements the

Newtonian time evolution for the hard-disk model by stepping for-
ward from one event (pair collision or wall collision) to the next.
Between collisions, the disks move with constant velocities. Col-
lisions of more than two disks or simultaneous collisions can be
neglected. For large run times τsim, if the sample space is con-
nected, molecular dynamics samples the equilibrium distribution of
positions and velocities of Eq. (3).

1. Naive molecular-dynamics program
From a given set of positions and velocities for N = 4 disks in

a non-periodic box, our naive EDMD code computes the minimum
over all pair collision times for the N(N − 1)/2 pairs of disks and
over the wall collision times for the N disks. This minimum cor-
responds to a unique collision event (multiple overlaps appearing
with finite-precision arithmetic can be treated in an ad-hoc fash-
ion). The code then updates all the positions and the velocities of the

colliding disks. This algorithm is of complexity O(N2) per event. A
related naive program in a periodic box (with arbitrary N) is used
for cross-validation of other algorithms. Practical implementations
of EDMD process the collisions through floating-point arithmetic.
As the hard-disk dynamics is chaotic for almost all initial configu-
rations, trajectories for different precision levels quickly diverge and
only the statistical properties of the trajectories are believed to be
correct. Naive EDMD provides proof of concept, and it can yield
results for small N on modern computers. The EDMD code used by
Alder and Wainwright already implemented sophisticated optimiza-
tion strategies, for example, the tracking of neighbors, as required by
the then available machines.45

2. Modern hard-disk molecular dynamics
The complexity of EDMD can be reduced from the naive

O(N2) per event scaling toO(log N). This is because the collisions
of a given disk must only be tracked with other disks in a local neigh-
borhood [reducing by itself the complexity to O(N)] and because
the collision of two disks i and j only modifies the future collision
times for pairs involving i or j (see Refs. 45–47). This algorithm keeps
O(N) candidate events of which a finite number must be updated
after each event. Using a heap data structure, this is of complexity
O(log N), while the retrieval of the shortest candidate event time
(the next event time) is O(1). Although the update of the event
times involves elaborate book-keeping, and although the processing
of events according to collision rules is time-consuming, the EDMD
algorithm is thus fairly efficient.48,49 It has been successfully used
for the hard-disk model up to intermediate sizes (N ≲ 2562 in the
transition region). Open-source implementations of this algorithm
are available.50 The EDMD algorithm has not been successfully
parallelized, despite some efforts in that direction.51–53

B. Hard-disk Markov-chain Monte Carlo
Hard-disk Monte-Carlo algorithms consider a sample space

consisting of the N positions. Initial samples that are easy to con-
struct are modified through reversible or non-reversible schemes. In
the large-time limit, the equal-probability measure of the positions
in Eq. (3) is reached.

1. Local hard-disk Metropolis algorithm
In the local hard-disk Metropolis algorithm,28 at each time step,

a small random displacement of a randomly chosen disk is accepted
if the resulting sample is legal and is rejected otherwise. A move
and its inverse are proposed with the same probability, so that the
algorithm satisfies the detailed-balance condition with a constant
equilibrium probability, and the net probability flows vanish.

The local Metropolis algorithm has been much used to obtain
the hard-disk equation of state. On a modern single-core central-
processing unit (CPU), this algorithm realizes roughly ∼1010 moves
per hour. (For simplicity, we use “moves” for “proposed moves.”)
However, its convergence is very slow. In Sec. IV B 2, we will show
evidence of mixing times54 in excess of 10 years of CPU time for∼106 disks. The sequential variant of the local Metropolis algo-
rithm updates the disk i + 1 (identifying N + 1 ≡ 1) at time t + 1 after
having updated disk i at time t. This non-reversible version runs
slightly faster as it requires fewer random numbers per move, but
the performance gain is minimal.

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-6

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

2. Massively parallel Monte Carlo (MPMC) algorithm
The MPMC algorithm generalizes the local Metropolis algo-

rithm for implementation on graphical processing units (GPU).55

It uses a four-color checkerboard of rectangular cells of sides larger
than 2σ, which is superposed onto the periodic box and is com-
patible with the periodic boundary conditions. Cells of the same
color are distant by more than 2σ. They are aligned with the êx and
êy axes. The MPMC algorithm samples one of the four colors and
then independently updates disks in all corresponding cells using the
local Metropolis algorithm with the additional constraint that disks
cannot leave their cells (see Fig. 5). After a certain time, the color is
resampled. The checkerboard is frequently detached from the box,
then randomly translated and repositioned, rendering the algorithm
irreducible.

On a single NVIDIA GeForce RTX3090 GPU, our MPMC code
reaches 2.1 × 1013 moves per hour, an order of magnitude more
than an earlier implementation (Ref. 56, Table II). Repositioning the
checkerboard is computationally cheap and is done often enough for
the convergence time, measured in moves, to be only slightly larger
than for the local Metropolis algorithm.

3. Hard-disk event-chain Monte Carlo (ECMC)
Hard-disk ECMC is a non-reversible continuous-time “lifted”

Markov chain36 in which—on a single processor—at each time
t, a single active disk moves with constant velocity, while all the
others are at rest. The identity and velocity of the active disk con-
stitute additional “lifting variables” in an extended (lifted) sample
space.57–59 At a collision event, the active disk stops, and the tar-
get disk becomes active. The variants of ECMC differ in how the
velocity is updated. In the “straight” variant of ECMC, the veloc-
ity of the active disks is maintained after a pair-collision event. It
is usually chosen to be either in the ±êx or the ±êy direction, i.e.,
along one of the coordinate axes. At a wall-collision event, the veloc-
ity is flipped, for example, from ±êx to ∓êx. In addition, resampling
events take place typically at equally spaced times separated by the
run-time interval τsim. At such resamplings, a new active disk is
sampled, and the new velocity is sampled from {±êx,±êy}. With

FIG. 5. Four-color checkerboard decomposition in a periodic box, with cells larger
than 2σ. If the green color is chosen, highlighted disks may move, but cannot leave
their cells. Disks in different green cells do not communicate.

periodic boundary conditions, the new velocity is sampled from{+êx,+êy}.
Under conditions of irreducibility and aperiodicity, ECMC

samples the equilibrium distribution of hard-disk positions with
non-zero net probability flows. However, the hard-sphere ECMC
and the hard-sphere local Metropolis algorithm are not strictly irre-
ducible.60 ECMC is much more powerful than the local Metropolis
algorithm, and in Sec. IV B 2, we will evidence speedup factors of∼103. The HistoricDisks software package (see Appendix B) con-
tains sample codes for straight ECMC, reflective ECMC,36 forward
ECMC,61 and Newtonian ECMC.62 Straight ECMC is fastest for the
hard-disk model, and it was successfully parallelized.63 The perfor-
mance of straight ECMC is roughly of 1010 events (collisions) per
hour on a modern single-core CPU. Its parallelized version reaches≲ 1011 events per hour. This performance is currently limited by a
hardware bandwidth bottleneck,64 which will be overcome in the
near future.

C. Hard-disk pressure estimators
As discussed in Subsection II B 1, the pressure describes, on one

hand, the change in the free energy when the volume is reduced and,
on the other hand, the time-averaged momentum exchange with the
walls. In this subsection, we reduce the volume through rifts and
rift averages and by uniformly shrinking the box. We also compute
the momentum exchange directly and through a virial formula. Our
motivation is two-fold. First, we obtain practical pressure estimators
that we implement in our algorithms. Second, we discuss in detail
that all the pressure estimators of Monte Carlo and of molecular
dynamics compute the same object, and this even for finite systems.
The decades-long discrepancies in the estimated pressures can thus
not be traced to differences in their definitions.

1. Rifts and rift averages
In an Lx × Ly box, the volume may be reduced through a vertical

“rift” [xr , xr + ϵ] × [0, Ly] with disk positions transforming as

{x, y} →
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{x, y} if x < xr

∅ if xr ≤ x < xr + ϵ
{x − ϵ, y} if x ≥ xr + ϵ,

(11)

where “∅” means that the position is eliminated. A rift either trans-
forms a uniform hard-disk sample into a uniform sample in the
reduced box, or else eliminates it because a disk falls inside the
rift or because two disks overlap (see Fig. 6). In a non-periodic
box, wall rifts at xr = 0 or xr = Lx − ϵ (and likewise for y) chip
off a slice from the surface. Vertical rifts, as in Eq. (11), estimate
the pressure Px, and horizontal rifts ([0, Lx] × [yr , yr + ϵ]) estimate
the pressure Py. Simultaneous vertical and horizontal rifts with
Lyϵx = Lxϵy conserve the aspect ratio of the box. Equivalent to a
homogeneous (homothetic) rescaling of the box, they estimate the
pressure P = (Px + Py)/2.

The pressure can be estimated for finite ϵ from a finite number
of samples, but this then requires an extrapolation toward ϵ→ 0.
In EDMD and ECMC, the extrapolation can be avoided because
of the infinite number of samples produced in a given run-time
interval τsim.

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-7

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Vertical rift [xr , xr + ϵ] × [0, Ly]. (a) Lx × Ly box with a vertical rift of width
ϵ at position xr . (b) Transformed sample, which is eliminated because of a pair
overlap.

We first reduce the volume V of a non-periodic Lx × Ly box
by a vertical wall rift with xr = Lx − ϵ or by a horizontal wall rift
with yr = Ly − ϵ. A sample in the original box is eliminated through
the wall rift with the probability that one of the disks overlaps
the wall rift. Disk i is at position xi with the normalized single-
disk probability density π(1)(xi) and at an x-position in the interval[Lx − σ − ϵ, Lx − σ] with probability ϵ ∫ dyπ(1)(Lx − σ, y). We nor-
malize the single-disk density ρ∗ to V , so that the normalized
probability density π(1)(xi) of a given disk i to be at position
xi equals π(1) (xi) = ρ∗(xi)/V . We then use the rescaled line density
ρ∗x (x) = ∫ dyρ∗(x, y)/Ly, and likewise for ρ∗y (y). With the vertical
rift volume ϵLy and analogously for the horizontal one, this gives the
wall-rift pressure estimator,

β
⎡⎢⎢⎢⎢⎣

Px

Py

⎤⎥⎥⎥⎥⎦ =
N
V

⎡⎢⎢⎢⎢⎣
ρ∗x (Lx − σ)
ρ∗y (Ly − σ)

⎤⎥⎥⎥⎥⎦. (12)

Naively, the rescaled line densities ρ∗x and ρ∗y are obtained from
a histogram of the x-coordinates, extrapolated to x = Lx − σ and
equivalently to x = σ (see Table I, line 1 and Appendix A).

Within EDMD, the rescaled line densities of Eq. (12) can
be computed, without extrapolation, from the time interval
Δt = 2ϵ/∣v�wall∣ before and after the collision during which a disk with
perpendicular velocity v�wall overlaps with the wall rift at xr = Lx − ϵ.
The time interval Δt here simply indexes equilibrium samples and
has no kinematic meaning. The change in volume (by the two rifts at

TABLE I. Thermodynamic pressure estimates for four disks of radius σ = 0.15 in a
non-periodic square box of sides 1. The kinematic estimators of Subsection III C 3
lead to identical expressions.

Line # Sampling method: pressure estimator βP

1 EDMD: wall-rift fit [see Eq. (12)] 10.74(7)
2 EDMD: wall rift [see Eq. (13c)] 10.796 25(4)
3 ECMC: wall rift [see Eq. (14)] 10.7962(4)
4 EDMD: rift average [see Eq. (19a)] 10.796 29(3)
5 ECMC: rift average [see Eq. (20)] 10.7962(4)
6 EDMD: homothetic fit [see Eq. (27a)] 10.74(4)

x = 0 and x = Lx) equals 2ϵLy. For ϵ→ 0, only a single disk overlaps
with the wall rift, leading to the EDMD wall-rift estimator,

βPx = 1
2Lyτ sim

∑
w:(i,±êx)

2∣v�(i)∣ (13a)

= ⟨ 2∣v�wall∣ ⟩
n̂±êx

wall³¹¹¹·¹¹µ
1

2Lyτ sim
∑

w:(i,±êx)
1 (13b)

= 2
√

π√∑ v2
i

Γ(N + 1
2)

Γ(N) n̂±êx
wall (13c)

N→∞ÐÐÐÐ→√2πβmn̂±êx
wall. (13d)

The sum in Eq. (13a) goes over the wall collisions w of all disks i in
the ±êx direction, and n̂±êx

wall is the wall-collision rate per vertical unit
line element. In Eq. (13), the right-hand sides are estimators, whose
expectation yields the pressure on the left-hand side. In this equation
and the following ones, the additional ⟨. . .⟩ [such as n̂±êx

wall → ⟨n̂±êx
wall⟩

in Eqs. (13c) and (13d)] are omitted. In Eq. (13a), the estimator
has infinite variance. It is regularized through its mean value in
Eq. (13b). The latter is evaluated in Eq. (13c) with the Maxwell-
boundary expression of Eq. (8) and tested to 4 × 10−6 in relative
precision against other estimators (see Table I, line 2). The pressure
estimator of Eq. (13c) can also be derived as a kinematic pressure
estimator through the momentum transfer with the walls (see Sub-
section III C 3). Thermodynamic and kinematic pressures thus agree
already at finite N.

The wall-rift pressure estimator adapts non-trivially to ECMC.
We consider straight ECMC with a single active disk that moves
with unit speed along the ±êx direction. As a lifted Markov chain,
ECMC splits the equilibrium probability of each “collapsed” sam-
ple x equally between the N lifted copies (consisting of x and
of the label of the active disk for a given displacement vector)
(see Refs. 59 and 65, Appendix A). ECMC only determines over-
laps with the walls for the active disk, and a lifted sample that must
be eliminated is detected with a biased probability 1/N. This bias
is corrected by multiplying the right-hand side of Eq. (13a) by N,
resulting in the ECMC wall-rift estimator,

βPx = N
2Lyτsim

∑
w:(a,±êx)

2∣v�wall∣ = 2Nn̂±êx
wall (14)

[see Fig. 7(a)]. It is tested to 4 × 10−5 in relative precision (see Table I,
line 3).

Within molecular dynamics and ECMC, pressures can also be
estimated by rifts inside the box and, in particular, by averages
over all rift positions xr in addition to the average over τsim already
contained in the wall-rift estimators. This can be written as

βPx = 1
ϵLy

1
Lxτsim

∫ t+τsim

t
dτ∫ Lx−ϵ

0
dxrΘ(τ, xr), (15)

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-8

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. ECMC rift estimators. (a) The ECMC wall-rift estimator only detects rift
overlaps of the active disk, explaining the factor N in Eq. (14), which is absent
in Eq. (13a). (b) A pair of disks (i, j) leading to the elimination of the sample is
detected only if either i or j is active, explaining a factor N/2 entering Eq. (20).
(c) Illustration of the x-separation at contact Δxmin

ij (also relevant for EDMD).

where Θ(τ, xr) is zero if the sample at time t + τ is maintained after
the reduction with parameter xr and one if it is eliminated. The ideal-
gas contribution to Eq. (15),

βP ideal gas
x = ϵN

Lx

1
ϵLy
= N

V
, (16)

counts the proportion of rifts that eliminate samples because the
centers of the disks fall inside. The pair-collision contribution to
Eq. (15) is derived considering the sample shown in Fig. 6. If the
distance between two disks i and j is in the interval [2σ, 2σ+ ϵΔxmin

ij /(2σ)], where Δxmin
ij is the x-separation at con-

tact, the corresponding samples are eliminated for a time(2/∣Δv�ij ∣)[ϵΔxmin
ij /(2σ)] for vertical rifts in the interval of length

Δxmin
ij between the two disks at contact. Together with the wall term

analogous to Eq. (13), the rift-average pressure estimator for EDMD
thus reads

βPx = N
V
+ 1

Vτ sim

⎡⎢⎢⎢⎢⎣ ∑p:(ij)
∣Δxmin

ij ∣2
2σ

⟨ 2
Δv�ij ⟩ + ∑

w:(i,±êx)
⟨ 2σ∣v�wall∣ ⟩

⎤⎥⎥⎥⎥⎦, (17)

where the mean values again involve Maxwell-boundary expres-
sions. Equation (17) can be combined with an analogous expression
for Py to obtain the EDMD rift-average estimator for P,

βP = N
V
+ σ

Vτ sim

⎡⎢⎢⎢⎢⎣ ∑p:(ij)⟨
2

Δv�ij ⟩ + ∑
w:(i,±êx ,±êy)

⟨ 1∣v�wall∣ ⟩
⎤⎥⎥⎥⎥⎦. (18)

In a non-periodic box, using Eqs. (8) and (9), the EDMD rift-average
estimator takes the form

βP = N
V
+ σ

√
π√∑ v2
i V

Γ(N + 1
2)

Γ(N) (n±êx±êy

wall +√2n pair) (19a)

N→∞ÐÐÐÐ→ N
V
(1 + σ

√
πmβ
N

n pair), (19b)

where n±êx±êy

wall is the wall-collision rate, the number of all wall colli-
sions per time interval, and similarly for the pair-collision rate npair.

In the N →∞ limit of Eq. (19b), wall collision plays no role. The
EDMD rift-average estimator of Eq. (19a) is tested to 3 × 10−6 in
relative precision (see Table I, line 4).

Rift-average pressure estimators for ECMC detect wall and pair
collisions with biases [see Eq. (14)], which must again be corrected,
namely, by a factor N for each wall event and by a factor N/2 for each
pair event, the latter because a lifted sample of N disks that must be
eliminated is detected only if either i or j is active [see Fig. 7(c)]. This
leads to the straight-ECMC rift-average estimator,

βPx = N
V
+ N

Vτ sim

⎛⎝ ∑p:(i,j)Δxmin
ij + ∑

w:(i,±êx)
2σ
⎞⎠, (20)

which again differs in the factors ∝ N from the corresponding
formulas of EDMD. Furthermore, it averages over a bounded dis-
tribution of Δxmin

ij , with the wall-velocity only taking the values ±1,
whereas in EDMD, the corresponding continuous distributions of
1/∣Δv�ij ∣ and of 1/∣v�wall∣ have infinite variance. The straight-ECMC
estimator of Eq. (20) is tested to 4 × 10−5 in relative precision (see
Table I, line 5).

In a periodic box, there are no wall collisions, and the direc-
tion of motion of straight ECMC is either +êx or +êy. In Eq. (20), all
the x-separations at contact Δxmin

ij and the chain length τsim (which,
because of the unit velocity, corresponds to the total displacement)
add up to the difference of the final position xfinal of the last disk
of the chain and the initial position xinitial of the chain’s first disk.
Here, periodic boundary conditions are accounted for so that in the
absence of collision, this distance equals τsim. For an event chain in
the +êx direction, Eq. (20) thus simplifies into the straight-ECMC
estimator for a periodic box,43

βPx = N
Vτ sim

(x final − x initial), (21)

that is easy to compute and that will be used extensively in Sec. IV.
There, we alternate event chains in +êx, which estimate Px, and
event chains in +êy, which estimate Py. Alternating the direction
of straight-ECMC chains is required for convergence towards equi-
librium. The rift-average estimator generalizes to other variants of
ECMC. The pressure Py can also be estimated through event chains
in ±êx and horizontal-rift averages, leading for the straight ECMC
in +êx to

βPy = N
V
+ N

Vτ sim
∑

p:(ij)
∣Δymin

ij ∣2
Δxmin

ij
. (22)

However, this estimator has infinite variance and is less convenient
than Eq. (21).

2. Homothetic volume reductions
Besides by rifts, the volume V of an Lx × Ly box can be reduced

by a homothetic transformation, where the box and all positions
xi are homogeneously scaled by a factor 1 − ϵα < 1, while the disk
radii σ remain unchanged. The transformation of the box corre-
sponds to simultaneous horizontal and vertical rifts of equal rift
volume, but the disk positions then transform inhomogeneously, as
in Eq. (11).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-9

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A homothetic volume reduction yields the pressure βP= β(Px + Py)/2, rather than one of the components. It may be per-
formed in two steps. In the first step [from (σ, V) to (σ′, V), see
Fig. 8], the box and xi are unchanged, but the disks are swollen by a
factor 1/(1 − ϵα), possibly eliminating samples. In the second step,
all lengths are rescaled by 1 − ϵα, so that the radii return to σ. This
second step [from (σ′, V) to (σ, V′)] is rejection-free, and its reduc-
tion of sample-space volume, with Z(σ, V′) = (V′/V)N Z(σ′, V),
constitutes the ideal-gas term of the pressure.

In the two-stage transition Z(σ, V) → Z(σ′, V) → Z(σ, V′),
the two-step procedure turns Eq. (10) into

βP = lim
V′→V

log [Z(σ, V)] − log[Z(σ, V′)]
V − V′

= N
V
+ 1

V − V′
Z(σ, V) − Z(σ′, V)

Z(σ, V) . (23)

The final term again divides the elimination probability of a sample
by the change in volume (see also Refs. 66–69).

The pair-elimination probability is expressed by the normal-
ized probability density ĝ(rx, ry), with ĝ(rx, ry)drxdry the probability
that a given pair distance is in [rx, rx + dx][ry, ry + dy]. With ĝ(r) as
the average of ĝ(rx, ry) over the corresponding ring of radius r, the
probability that a given pair distance is in the interval [r, r + dr] is
thus 2πrĝ(r)dr. By convention, the pair correlation function g(r) is
normalized to g(r) = Vĝ(r). For our application, we have r = 2σ and
dr = 2σϵα, and there are N(N − 1)/2 pairs of disks. In addition, the
absolute change in volume for Lx → Lx(1 + ϵα) and Ly → Ly(1 + ϵα)
is 2Vϵα. The pair-collision contribution to the pressure is, thus,

βP pair = N
V

N − 1
V

2πσ2 g(2σ), (24)

an expression that is correct for finite N and in periodic or non-
periodic boxes. The extrapolation of g(2σ) from a histogram is
detailed in Appendix A. The range of distances to the wall that
are eliminated is [σ, σ(1 + ϵα)], and the change in volume remains
2ϵαV . The contribution to the pressure of the wall at x = 0 is then

βPwall,−ê x = Nσϵα

2ϵαV ∫ dyπ(1)(σ, y) = Nσ
2VLx

ρ∗x (σ), (25)

where we used the rescaled line densities ρ∗x and ρ∗y , which remain
O(1) for V →∞ (see Subsection III C 1). Summing over the four
wall terms, one arrives at

FIG. 8. A homothetic volume reduction performed through a swelling of disks
followed by a uniform reduction of all lengths (box, positions, and radii).

βPwall = Nσ
V
[ρ∗x (σ)

Lx
+ ρ∗y (σ)

Ly
]. (26)

The computation of the line densities ρ∗x (σ) and ρ∗y (σ) from a
histogram is detailed in Appendix A. The combined pair and
wall contributions yield the homothetic pressure estimator for a
non-periodic Lx × Ly box,

βP = N/V + N
V
[2π
(N − 1)σ2

V
g(2σ) + σ

ρ∗x (σ)
Lx

+ σ
ρ∗y (σ)

Ly
] (27a)

N→∞ÐÐÐÐ→ N
V
[1 + 2ηg(2σ)]. (27b)

Equation (27a) is tested by histogram fits and extrapolations to con-
tact of ρ∗x (σ), ρ∗y (σ), and g(2σ) to 4 × 10−3 in relative precision (see
Table I, line 6). Equation (27b) has long been used for estimating
pressures in MCMC.28

EDMD and ECMC can estimate the pressure without the
extrapolations of the pair correlation functions and the wall den-
sities by tracking the time during which pairs of disks are close to
contact, or a disk is close to the wall. The explicit computation for
EDMD simply reproduces Eqs. (18) and (19), both at finite N and in
the thermodynamic limit. The corresponding homothetic pressure
estimators for ECMC are readily derived, but they have diverging
variances that require specific care. For all variants except straight
ECMC, they correctly estimate wall contributions to the pressure
and can be used for non-periodic boxes. The velocities of straight
ECMC are always parallel to some walls, precluding the estimation
of all wall contribution to the pressure.

3. Kinematic pressure estimators
Kinematic pressure estimators of EDMD determine the time-

averaged exchange of momentum between disks, or between disks
and a wall. Their use goes back to Daniel Bernoulli,16 who pointed
out that under the scaling vi → γvi∀i of Eq. (2), both the number of
collisions per time interval and the momentum transmitted scaled
as γ, so that the pressure had to be proportional to the mean square
velocity (in other words to the temperature). In the non-periodic
Lx × Ly box, the transmitted momentum with, say, the vertical walls
at x = 0 and x = Lx gives the kinematic EDMD estimator,

Px = 1
2Lyτ sim

∑
w:(i,±êx)

2m∣v�wall∣ (28a)

= 2m⟨∣v�wall∣⟩n̂±êx
wall (28b)

= mRv
√

π
N

Γ(N + 1
2)

Γ(N) n̂±êx
wall (28c)

N→∞ÐÐÐÐ→√2πβmn̂±êx
wall, (28d)

where in Eq. (28c), we used Eq. (8b). Already at finite N, the
kinematic EDMD estimator of Eq. (28c) is identical to the thermo-
dynamic wall-rift pressure estimator of Eq. (13c), as we may identify
R2
v = 2N/(mβ).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-10

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The EDMD kinetic pressure estimator can also be derived from
the virial function

Gx = m
N∑

i=1
xivi,x, (29)

which is strictly bounded during molecular dynamics, so that its
mean time derivative vanishes,

⟨ d
dt

Gx⟩ = ⟨ d
dt

G wall
x ⟩ + ⟨ d

dt
G pair

x ⟩ +m⟨ N∑
i=1

v2
i,x⟩

= m⟨ N∑
i=1
(xiv̇i,x + v2

i,x)⟩ = 0. (30)

The wall contribution to this expression stems from collisions with
the vertical walls at x = 0 and x = Lx, which are given by 2m⟨∣v�wall∣⟩σ
and −2m⟨∣v�wall∣⟩(Lx − σ), respectively. This results in

⟨ d
dt

G wall
x ⟩ = −2m⟨∣v�wall∣⟩(Lx/2 − σ)n±x

wall (31a)

= −VPx + 2mσ⟨∣v�wall∣⟩2Lyn̂±x
wall, (31b)

where we have used Eq. (28b).
For the pair-collision contribution to Eq. (30), we use that at the

collision of disks i and j, the distance Δxij = xi − xj satisfies ∣Δxij∣ =
2σ. With the unit vector ê� = Δxij/(2σ) and the velocity difference
Δv = vi − vj (before the collision), the change in the velocity of disk i
is −ê�(Δv ⋅ ê�) and the change in the velocity of disk j is ê�(Δv ⋅ ê�)
(see Ref. 41, Sec. 2.1.1). An individual pair collision thus contributes

−m
(Δxmin

ij)2

4σ2 (Δv ⋅ Δxmin
ij)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶−2σ∣Δv�ij ∣

, (32)

an expression where both terms can be averaged independently.
Finally, we may use ⟨v2

i,x⟩ = R2
v/(2N) to rearrange Eq. (30) into a

kinematic EDMD pressure estimator,

βPx = N
V
+ β

Vτ sim
∑

w:(i,±êx)
⟨2σ∣v�wall∣⟩

+ ∑
p:(ij)
(Δxmin

ij)2

4σ2 ⟨2σΔv�ij ⟩. (33)

Using Eqs. (8) and (9), this kinematic estimator is seen to be
equivalent to the thermodynamic rift-average estimator of Eq. (17).

IV. EQUATION-OF-STATE COMPUTATIONS

We now compare historic hard-disk pressure computations
since 195314,28,56,70–74 with massive simulation results obtained in
this work using the sampling algorithms and pressure estimators
of Sec. III. Our re-evaluation will illustrate the three principal chal-
lenges that the hard-disk model shares, mutatis mutandis, with other
sampling problems. First, the estimate of the pressure continues to
depend on the initial configuration for very long run times, until
equilibrium is reached. We will call this time the “mixing time”54

in a slight abuse of terminology, as we do not consider certain
pathological initial configurations, which trap the Markov chain for-
ever (see Ref. 60). The pioneering works by Metropolis et al. and
by Alder and Wainwright obtained crucial insights from very short
computer experiments on the then available computers. Alder and
Wainwright were aware of the dependence of their results on the ini-
tial configurations. They thus knew that their run times were much
below the correlation-time scale. Later works that attempted to
interpret manifestly unequilibrated samples,72,73,75–77 or that failed
to recognize the lack of convergence, arrived at qualitatively wrong
conclusions. In the hard-disk model, mixing times can be bounded
rigorously only at small densities.78 At higher densities, heuristic cri-
teria for the mixing time, which have not been fully presented before,
appear crucial. In our case, they depend on the time series of other
observables than the pressure, or on multiple runs from qualitatively
different initial configurations.

The second challenge for hard-disk computations consists in
the intricate dependence of the pressure on the shape of the box (that
is the aspect ratio) and on the number N of disks, rendering extrap-
olations to the thermodynamic limit non-trivial. In small boxes, the
hexatic and solid phases are confounded, as they only differ at large
distances, so that the behavior in the thermodynamic limit is not
necessarily reflected in the equation of state at small N.

The third challenge concerns the very evaluation of the pres-
sure. Within Monte Carlo methods, the pressure was long evaluated
through extrapolation toward contact of the pair correlation func-
tion in Eq. (27b), a procedure fraught with uncertainty. The rift
formulas of Subsection III C that originated with ECMC, and that we
even use in MPMC as short fictitious ECMC runs placed at regular
time intervals, overcome the need for extrapolations.

A. Hard-disk equation of state for small N
Since the early days of computer simulation, the pressure of the

hard-disk model has been computed with the aim of determining its
phase behavior in the thermodynamic limit. While the identification
of thermodynamic phases in finite systems can be subject to discus-
sion, the pressure is unambiguously defined, and it can, in principle,
be computed to arbitrary precision.

1. Metropolis et al. (1953), rotation criterion
In 1953, in the publication that first introduced MCMC,

Metropolis et al.28 estimated the pressure from the extrapolated
pair-correlation function for 224 disks in a periodic square box.
This number 224 = 16 × 14 disks can be perfectly packed at density
η = π/(2√3) = 0.907 in an almost square-shaped box of aspect ratio
α = (16

√
3/2 : 14) = (0.9897 : 1) and almost at that density in a

perfectly square box. Metropolis et al. concluded that “(t)here is no
indication of a phase transition,” which, in hindsight, is explained by
the historical computational limits that prevented accurate results in
the transition region. The equation of state for N = 224, α = (1 : 1),
recomputed in this work using straight ECMC to a relative preci-
sion of 10−4, is somewhat higher than the historic pressures. It is
also slightly non-monotonic [see Fig. 9(a)].

The 224-disk square-box system of Metropolis et al., from
1953, carries lessons that are pertinent to the present day. Indeed,
in a square box, any hard-disk sample can be rotated by an angle
π/2 = 90○ into another valid sample. At high enough density, two

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-11

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Equations of state P(V) for the hard-disk model at small N. (a) P(V) for N = 224 for α = (1 : 1) computed in 195328 compared with ECMC computations (this
work). (b) P(V) for N = 72 computed in 196214 (for unspecified aspect ratio α) and ECMC pressures for α = (1 :

√
3/2), (1 : 1), and (9 : 8

√
3/2). (c) P(V) for N = 870.

This work’s square-box computations satisfy ⟨Ψ6⟩ ≃ 0, except for data points in parentheses (see Fig. 10).

such samples are inequivalent because the local hexagon, which
describes the six disks that typically surround any given disk, has,
on average, a 60○ symmetry but not a 90○ symmetry. For each local
set of samples, there thus exists another inequivalent set of sam-
ples (generated through a 90○ rotation) of identical statistical weight.
This rotation and the corresponding transformation of samples can
be formalized through the global orientational order parameter,

Ψ6 = 1
N∑l

1
nbr(l)

nbr(l)∑
j=1

e6iϕlj , (34)

that changes from Ψ6 to−Ψ6 [that is, arg(Ψ6) → arg(Ψ6) + π] under
a rotation by 90○. In Eq. (34), ϕlj is the angle of the line connecting
disks l and j with respect to the êx-axis, and nbr(l) is the number
of neighbors of l resulting from a Voronoi construction. In a square
box, the ensemble average of the orientational order parameter thus
satisfies ⟨Ψ6⟩ = 0, and for an irreducible Markov chain, it agrees with
its time average, as expressed in the ergodic theorem,54

Pπ{0}[lim
t→∞

1
t

t∑
i=1

fi = ⟨f ⟩] = 1, (35)

where f is a function of the sample at time i given the distribution
π{0} of initial configurations and P is the probability. As the mean
value ⟨Ψ6⟩ is known to vanish, we can employ Eq. (35) with f = Ψ6
as a diagnostic tool and suppose that the hard-disk Markov chain in
a square box reaches the mixing time (with errors decreasing as the
square root of the run time) only when the sampled orientational
order parameter Ψ6 has covered at least one of the quadrants in the
complex plane. Because of the symmetry of the box, this suffices for
scanning the whole sample space. In our simulations, we confirm
that Ψ6 has been rotated more than 90○ and has visited at least one
of the two points on the real axis, Ψ6 ≃ ±∣Ψ6∣, and one on the imag-
inary axis, Ψ6 ≃ ±i∣Ψ6∣. In the following, we refer to this diagnostic
tool as the rotation criterion. It supposes that the orientational order
parameter Ψ6 is the slowest-decaying variable in the hard-disk sys-
tem. Our time series of Ψ6 in a square box, with known mean value

⟨Ψ6⟩ = 0, pinpoints problems with a hard-disk pressure estimation
that might not be signaled by the time series of the pressure itself. We
use the rotation criterion in two different settings. In small systems
(as the 224-disk case of Metropolis et al.), the entire range of arg(Ψ6)
values is swept through many times, leading to high-precision esti-
mates for the pressure, even though it strongly depends on the angle.
In large systems, as the hard-disk model with N = 1282 at η = 0.716,
which we will discuss in Fig. 12, we barely satisfy the criterion, but it
still assures us that up to a symmetry Ψ6 → −Ψ6, all relevant regions
of sample space were visited. High-precision estimates for the pres-
sure now result from the fact that the pressure depends weakly on
arg(Ψ6).

Our ECMC simulations satisfy the rotation criterion for N= 224 in a periodic square box up to a density of η = 0.72. At large
enough densities, the ECMC simulation may remain for long times
in a set of samples with essentially the same value of arg(Ψ6) before
flipping to another set of samples with arg(Ψ6) + π. This very slow
rotation of Ψ6 is a harbinger of the serious convergence problems
of the hard-disk model for larger N at densities of physical interest.
As we will show, the pressure is strongly correlated with Ψ6 up to
moderate values of N.

2. Revisiting Alder and Wainwright (1962)
Alder and Wainwright, in 1962, used EDMD to estimate the

pressure for 72 and 870 disks in rectangular periodic boxes for
which they did not specify the aspect ratios. As already discussed
in Fig. 1, their non-monotonic equation of state led to the predic-
tion of a phase transition. The computed pressure is independent of
the sampling method (molecular dynamics, local Metropolis algo-
rithm, ECMC), but it depends on the aspect ratio of the box. For
72 = 9 × 8 disks and aspect ratio α = (9 : 8

√
3/2) = (1 : 0.7698)

where they can be perfectly packed, the equation of state obtained by
ECMC in this work agrees remarkably well with the historic data [see
Fig. 9(b)], an astonishing feat given the then available computers. In
contrast, for a square box (aspect ratio α = (1 : 1)], the equation of
state follows a slight “S” shape, but it remains monotonous for all
densities. For the aspect ratio α = (1 :

√
3/2), the pressure is barely

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-12

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

“S” shaped. For the aspect ratio α = (1 : 1), our ECMC computations
satisfy the rotation criterion up to densities η ≲ 0.74, and pressure
estimates achieve 10−4 relative precision.

For 870 disks, the dependence of the pressure on the aspect
ratio is less pronounced than for N = 72 [see Fig. 9(c)]. Since
870 = 30 × 29, this number of disks can be close-packed for the
aspect ratio α = (29 : 30

√
3/2) = (1 : 0.896). For the aspect ratio

α = (1 : 1), the orientation criterion is again satisfied up to high
densities [see Fig. 10(a)]. However, even at moderate densities, an
ECMC run can take several CPU hours before visiting all possible
orientations, and the pressure clearly correlates with the orienta-
tion [see Fig. 10(b)]. On smaller time scales, the time series remains
blocked in samples that all roughly have the same orientational

order parameter Ψ6 [see Fig. 10(c)]. Analyzing such a shorter time
series gives incorrect estimates of the pressure (Pα or Pβ, etc., rather
than P). Accordingly, the window-averaged pressure features long-
time deviations from the running average, with an estimated time
scale of ∼ 2 × 1010 events (corresponding to roughly two CPU hours
for ECMC). Nevertheless, on a long enough time scale estimated
by the rotation criterion, all these systematic errors disappear, and
the error of the pressure estimator starts to decrease as the square
root of the run time [see Fig. 10(d)]. The achieved 10−4 relative
error on the pressure estimates in Fig. 9(c), from longer simulations
than those illustrated in Fig. 10, is much smaller than the system-
atic error ∣⟨Pα⟩ − ⟨Pγ⟩∣/P ∼ 10−2 of a calculation that is too short to
rotate Ψ6.

FIG. 10. Pressure P and global orienta-
tional order Ψ6 for a three-hour ECMC
run [N = 870, η = 0.716, square box
α = (1 : 1)]. (a) Values of Ψ6 in the
complex plane. Highlighted clusters with
inverted Ψ6 (such as α1 and α3) have
the same statistical weight. (b) Cluster
averages for P vs arg(Ψ6). (c) Tra-
jectories of Im(Ψ6) and Re(Ψ6) with
indicated clusters. (d) Running average
and window average (at the time of the
beginning of the window) for P.

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-13

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B. Equations of state for large N
The equations of state for larger N than those considered by

Metropolis et al. and by Alder and Wainwright came into focus
in the decades following 1962. At sufficiently large N, as we know
today, fluid, hexatic, and solid phases can be distinguished, and
the latter clearly differs from the crystal. In the simulations, three
effects stand out. First, mixing and autocorrelation times become
truly gigantic already for reasonable densities, even for the best
currently known algorithms. Nevertheless, the pressure (as other
physical quantities that we do not consider in this work) can be
computed to a precision that, from a given time on, increases as
the square root of the computer time. From N = 1282 to N = 10242,
this program can be put into practice, but it requires considerable
computer resources. The failure to converge is signaled through a
number of criteria, but not necessarily by the time series itself. Sec-
ond, in the coexistence phase of the fluid and the hexatic in the
NVT ensemble, the initial dynamics toward equilibrium is dom-
inated by coarsening. In this process, for example, small hexatic
islands nucleate in the fluid, then coalesce, and slowly grow until, in
the stationary state of the time evolution, the sample presents itself
as two domains, one for each coexisting phase. Precise knowledge of
the pressure allows one to draw the boundaries of the phase coex-
istence. Third, as realized ten years ago, the high-density coexisting
phase through the first-order phase transition is a hexatic and, thus,
distinct from the crystal that can serve as an initial configuration of
MCMC configurations. Mixing times in the hexatic phase are very
long and are likely to scale with a larger exponent with N than in
the fluid.20

1. Hard-disk model with N = 1282 to N = 5122

For the hard-disk model with N = 1282, the relative precision
levels of sequential ECMC, parallel ECMC, and MPMC reach ∼10−5

for the pressure, for example, at η = 0.698, much more precise than
previous studies in the literature70,79 [see Fig. 11(a)]. For α = (1 : 1),
our calculations satisfy the rotation criterion up to density η = 0.716,

albeit for high densities on an impressive time scale, even for the
MPMC algorithm (see Fig. 12). This is where earlier studies failed to
equilibrate and produced erroneous pressure estimates.

At density η = 0.716, samples of the MPMC computation may
remain in one cluster indexed by a given value of arg(Ψ6) for ∼109

sweeps and then produce a cluster average for the pressure βPV0/N
that differs relatively by about 10−3 from the equilibrium average
[see Fig. 12(b)]. On such time scales, the outcome of the simulation is
thus unpredictable, and the observed convergence of the pressure is
not toward its ensemble average but toward some metastable cluster
value. This behavior is readily detected from within the simulation
data through the rotation criterion and through the dependence
of obtained pressure values on initial conditions (such as different
orientations or fluid and crystalline initial configurations).

For even larger systems, such as N = 5122, the computations
in the literature dramatically suffer from the failure to equilibrate,
with incorrect pressure estimates especially at high densities. For
α = (1 : 1), our MPMC implementation satisfies the rotation cri-
terion at η ≲ 0.712 within a few weeks of computer time (which
would correspond to centuries of run time of the local Metropolis
algorithm on a single CPU). For even higher densities, all currently
known sampling algorithms fail to equilibrate in the strict sense of
that criterion. Fortunately, at larger N, the influence of the bound-
ary conditions is much smaller than for small N [see Fig. 13(a)]. We
estimate the systematic error stemming from the failure to rotate
Ψ6 by starting independent simulations for N = 5122 from a num-
ber of initial configurations with different global orientational order
parameters Ψ6 [see Fig. 13(b)]. The resulting systematic errors are
found to be at most as large as the statistical errors. Our pressure val-
ues are consistent with previous ECMC and MPMC calculations35,56

up to η = 0.718, cross-validating the correctness of the conclusion in
Ref. 56 [see Fig. 11(b)]. In a non-square box, the components Px and
Py of the pressure generally differ. For N = 1282 and 5122 at aspect
ratio α = (1 :

√
3/2), our estimates for Px and Py agree within error

bars even in the hexatic phase, as the system dimensions are larger
than the positional correlation length.

FIG. 11. Equations of state P(V) for the hard-disk model at large N. (a) P(V) for N = 1282 from Refs. 70 and 79 and MPMC pressures (this work) for α = (1 :
√

3/2)
and α = (1 : 1) where all but the data point in parentheses satisfy the rotation criterion (see Fig. 12 for Ψ6-resolved pressures). (b) P(V) for N = 5122 from Refs. 56, 72,
and 73 and MPMC pressures (this work) for aspect ratios α = (1 :

√
3/2) and α = (1 : 1), where runs with η < 0.712 satisfy the rotation criterion. (c) P(V) for 10242

from Refs. 35, 56, 73, and 74, compared to MPMC (this work) for aspect ratios α = (1 :
√

3/2) and (1 : 1), where at density η > 0.708, the rotation criterion is violated,
but the systematic error thus committed is negligible [see Fig. 13(b)].

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-14

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 12. Analysis of the rotation crite-
rion for a single MPMC run [N = 1282,
η = 0.716, α = (1 : 1)]. (a) Histogram
of Ψ6 in the complex plane. Clusters
α and α′ satisfy Ψα

6 = −Ψα′
6 and have

equal weight. (b) P vs arg(Ψ6), show-
casing the clusters. (c) Trajectory of
Re(Ψ6) and Im(Ψ6) with first visits to
clusters indicated (cf . Fig. 10). (d) Run-
ning average and window average (at
the time of the beginning of the win-
dow) of the pressure, showcasing slow
convergence.

2. Hard-disk model at N = 10242

For the hard-disk model at N = 10242, single-core implemen-
tations of the reversible Metropolis algorithm and of EDMD fail
to equilibrate for densities η ≳ 0.700 on accessible time scales even
on a modern CPU. Only straight ECMC (whose week-long mixing
time of the serial version35 reduces in the parallel implementation)
and MPMC (run in parallel on thousands of cores on a GPU) are
currently able to partially achieve convergence. It is for this reason
that in the past, unconverged calculations of large hard-disk sys-
tems resulted in erroneous pressure estimates and, in consequence,
quantitatively74 or even qualitatively72,73 wrong predictions for the
hard-disk phases and the phase transitions.

The slow mixing manifests itself in pairs of runs that start, on
the one hand, from a fluid-like initial configuration with only short-
range correlations and a global orientational order parameter ∣Ψ6∣≳ 0 (obtained by the Lubachevsky–Stillinger algorithm80) and, on
the other hand, from a crystalline initial configuration with ∣Ψ6∣ ≲ 1.

In the fluid–hexatic coexistence region (η = 0.708), as well as in the
hexatic phase (η = 0.718), ECMC takes about 106 sweeps to coa-
lesce the two values of ∣Ψ6∣ [see Figs. 13(c) and 13(d)]. For ECMC,
at ∼ 1010 events/hour, this corresponds to about a week of single-
core CPU time. In contrast, MPMC requires roughly 109 sweeps to
coalesce. On a GPU with ∼104 individual cores, this is achieved in
less than two days, but on a single-core CPU, the local Metropo-
lis algorithm (which has roughly the same efficiency per move as
MPMC) would require 109+6 moves, which correspond to ∼105 h or∼10 years, at a typical 1010 moves per hour. Both branches of these
calculations have similar times for arriving at equilibrium, illustrat-
ing that the fluid–hexatic coexistence phase is as difficult to reach
from the fluid as it is from the crystal. While the mixing is very slow,
the pairs of curves reaching the same value of ∣Ψ6∣ give a lower bound
for the required run times of our ECMC and MPMC algorithms,
although these times are still much below the mixing time in this
system, if one were to include the rotation in arg(Ψ6) in its

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-15

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 13. Convergence analysis for the hard-disk model at η = 0.708 and η = 0.718 [square box α = (1 : 1)]. (a) Scatter plot of the pressure as a function of the orientational
order parameter (N = 5122). (b)–(d) N = 10242 for MPMC and ECMC. (b) Cluster averages obtained from independent runs from initial configurations at specific values
of Ψ6. The difference, smaller than 10−3, estimates the systematic error. (c) and (d) Time evolution of the absolute orientational order ∣Ψ6∣, starting from either a disordered
initial configuration (with ∣Ψ6∣ ≳ 0) or from a crystal (with ∣Ψ6∣ ≲ 1) (LMC refers to the local Metropolis algorithm).

definition. For the density η = 0.718, at N = 10242, our total MPMC
run times amount to 6.4 × 109 sweeps, roughly 6 times longer than
what is shown in Fig. 13(d).

Although MPMC and ECMC are today’s fastest algorithms for
the hard-disk model, they fail to satisfy the rotation criterion on
human timescales for N = 10242 at densities η ≳ 0.708. Fortunately,
the influence of arg(Ψ6) on the pressure is quite small. To test
this, we started very long MPMC calculations from a number of
finely spaced crystalline initial configurations with different values
of arg(Ψ6). At the very high density of η = 0.718 for N = 10242, the

TABLE II. Cross validation of pressure estimates between straight ECMC (naive and
state-of-the-art) and MPMC in periodic boxes of given aspect ratio α, all at density
η = 0.698. MPMC integrates short fictitious runs of straight ECMC, in order to esti-
mate pressures through Eq. (21). ECMC uses the rift-average estimator of Eq. (21),
except where indicated to test agreement of the pair-correlation formula of Eq. (27b).

N α P/Px, Py Method

64 (1 :
√

3/2) 8.065(3), 8.137(4) Naive
8.0671(9), 8.1402(9) ECMC

72 (9 : 4
√

3) 8.1614(4), 8.2382(5) Naive
8.1617(7), 8.2386(8) ECMC

2562 (1 : 1) 9.172(5) ECMC [g(2σ)]
9.1707(2) ECMC
9.1708(1) MPMC

2562 (1 :
√

3/2) 9.176(6) ECMC [g(2σ)]
9.1703(2), 9.1704(3) ECMC
9.1704(1), 9.1705(1) MPMC

5122 (1 : 1) 9.170(2) ECMC [g(2σ)]
9.1699(2) ECMC
9.1696(1) MPMC

5122 (1 :
√

3/2) 9.167(3) ECMC [g(2σ)]
9.1694(3), 9.1694(3) ECMC
9.1695(2), 9.1697(2) MPMC

relative statistical errors for the pressure is 5 × 10−4 for each run,
while the maximum distance between the mean values, which could
possibly correspond to a systematic error, is also found to be 5 ×
10−4. We estimate the pressure uncertainty as the maximum of
the individual statistical and the difference in mean values [see
Fig. 13(b)]. The independence of the estimated pressures on the
aspect ratios α = (1 : 1) and α = (1 :

√
3/2) points into the same

direction [see Fig. 11(c)]. Finally, in non-square boxes, the estimates
for Px and Py agree to very high precision for large N, while they dif-
fer markedly in smaller systems (see Table II). The disagreement of
previous calculations appears thus rooted in the very long times to
reach the correct values of ∣Ψ6∣.
V. CONCLUSION

In this work, we have discussed the hard-disk pressure, which
was estimated in the very first MCMC computation in 1953, and in
one of the earliest molecular-dynamics computations, in 1962. We
have argued that the difficulty of the pressure estimation had not
been fully realized in the decades-long controversy over the phase-
transition scenario of this simple model. Our first aim was to provide
the context for this computation through a discussion of the physics
of the hard-disk model, of the sampling algorithms and pressure
estimators and, crucially, of the criteria for bounding mixing times.
Our second aim was to finally provide definite high-precision esti-
mates of the pressure through massive computations and to compare
them to the values from the literature, thereby ending a long period
of uncertainty and doubt. In doing so, we hope to provide bench-
marks for the next generation of sampling algorithms, estimators,
and physical theories.

The history of the hard-disk model epitomizes a number of
prime computational issues. One of them is the role of so-called
“computer experiments,” that is, of heuristic simulations that run
for much less than the mixing time. The pioneering work of Alder
and Wainwright was clearly of that type, as their published pressures
explicitly depend on the initial configurations.

Computer experiments below the mixing-time scale are akin
to perturbation expansions in the theory of liquids or in quantum

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-16

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

mechanics, as the sampling below the mixing-time scale merely
“perturbs” around the crystalline or fluid initial configurations. Just
like perturbation theory, such computer experiments can provide
important insights, yet they have limited predictive power, as was
evidenced by the decades-long controversy about the hard-disk
phase transitions. Beyond the mixing time, the influence of the initial
configuration fades away exponentially, and exponential conver-
gence toward the equilibrium distribution sets in. Only the statistical
errors remain. In this regime, MCMC and molecular-dynamics sam-
pling unfolds all its power. Although the mixing and correlation time
scales can be gigantic, as discussed, the goal of sampling beyond the
mixing time scale must not be lost sight of.

A crucial computational issue for MCMC and molecular-
dynamics algorithms consists of estimating the mixing times. We
have insisted that the analysis of a single time series [as that of the
pressure in Fig. 12(d)] may have to be supplemented by additional
cues. In this sense, we have discussed two strategies to estimate
these times reliably for the hard-disk model. First, we designed an
observable—the orientational order parameter for hard disks in a
square box—with a known mean value. We then argued that as
long as the run-time average of this observable differed considerably
from its known mean, the mixing-time scale has not been reached.
Used for more than a decade,35,36 this rotation criterion supposes
that the orientational order is the slowest-moving observable in the
hard-disk system.

Our second strategy to lend credibility to our MCMC calcula-
tions consists of starting from widely different initial configurations,
following in the footsteps of Alder and Wainwright, yet accepting
the result of the calculation only if the influence of the initial con-
figuration has faded away. This approach is related to the coupling
approach for Markov chains.81 The fluid and crystalline initial con-
figurations that we used to initialize Markov chains for 106 disks in
the hexatic phase stand in for the worst-case initializations, as they
are called for in the definition of the mixing time.54 The mixing time
provides the relevant time scale for analyzing MCMC calculations,
and certainly the one where run-time averages become independent
of how the Markov chain is initialized.

Finally, we emphasize the role of algorithm development, and
of hardware implementations, even in the simple model of hard
disks. In this work, we relied heavily on ECMC, which, as evi-
denced in Figs. 13(c) and 13(d), speeds up MCMC simulations by
several orders of magnitude. ECMC is a family of non-reversible
Markov chains, rather than a specific algorithm, and variants of
the original straight and reflective ECMC continue to be developed.
The opportunities granted by non-reversible Markov chains (and
by MCMC approaches in general), are certainly very far from hav-
ing all been explored. The recent extension of ECMC to arbitrary
interaction potentials43 and, in particular, to the field of molecular
simulation82,83 carries considerable promise. The spectacular devel-
opment of GPU hardware over the last fifteen years has greatly
democratized parallel computations with, again, one of the clean-
est applications being the hard-disk model. Decidedly, this simple
model is a “Drosophila” of statistical physics.

ACKNOWLEDGMENTS
P.H. acknowledges support from the Studienstiftung des

deutschen Volkes and from Institut Philippe Meyer. W.K. acknowl-
edges support from the Alexander von Humboldt Foundation. The

authors thank R.E. Kohler for helpful correspondence. Figure 1 is
adapted with permission from Ref. 14. Copyrighted by the American
Physical Society.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Botao Li: Conceptualization (supporting); Data curation (equal);
Investigation (equal); Software (equal); Validation (equal); Visu-
alization (lead); Writing – original draft (supporting); Writing –
review & editing (supporting). Yoshihiko Nishikawa: Concep-
tualization (equal); Data curation (equal); Investigation (equal);
Software (lead); Validation (equal); Visualization (supporting);
Writing – original draft (supporting); Writing – review & editing
(supporting). Philipp Höllmer: Data curation (supporting); Soft-
ware (equal); Validation (equal); Writing – review & editing
(supporting). Louis Carillo: Conceptualization (supporting); Data
curation (equal); Investigation (supporting); Software (support-
ing); Visualization (supporting). A. C. Maggs: Conceptualization
(equal); Investigation (equal); Software (supporting); Validation
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Werner Krauth: Conceptualization (lead); Investigation
(lead); Software (supporting); Supervision (lead); Validation (equal);
Writing – original draft (lead); Writing – review & editing (lead).

DATA AVAILABILITY

All materials (data and algorithms) are available through the
open-source software project.

APPENDIX A: EXTRAPOLATION AND STATISTICS

Sampling algorithms output time series of configurations and
of pressures (for example, one value of the estimated Px for each
event chain in ±êx). Further analysis transforms this raw output
into the pressure estimates and confidence intervals provided with
this work. The pressure estimators that rely on the extrapolation of
pair-correlation functions and wall densities have been superseded
in recent years by the rift-average estimators. We, nevertheless,
describe them here in order to illustrate that the new estimators are
perfectly sound. We also sketch the stationary-bootstrap method,
which estimates the confidence intervals of the pressure time
series.

1. Extrapolation of pair correlations and wall densities
The pressure estimator of Eq. (27a) extrapolates the rescaled

line densities ρ∗x (x) and ρ∗y (y) to x = σ, Lx − σ and y = σ, Ly − σ,
respectively, and the pair-correlation function g(r) to contact at
r = 2σ. We use the fourth-order polynomial histogram fitting proce-
dure of Ref. 35 contained in the HistoricDisks software package
(see Appendix B). Within our MPMC production runs, how-
ever, we use the parameter-free rift-average estimators from ficti-
tious straight-ECMC runs to estimate Px and Py, rather than the
extrapolation method.

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-17

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

To determine the rescaled line density ρ∗x (σ) (and similarly ρ∗y),
the x-coordinate of a disk at position xi = (xi, yi) is retained in a
histogram of bin size 10−3σ if xi < 1.1σ or xi > Lx − 1.1σ. The his-
togram is normalized by dividing the number of elements in each
bin by 2 × 10−3σnN, where n is the total number of sampled con-
figurations (not only those contributing to the histogram) and N is
the number of disks. The histogram is further multiplied by Lx for
ρ∗x (and likewise by Ly for ρ∗y) in order to satisfy the normalization
π(1) (xi) = ρ∗(xi)/V . It is the line density ρ∗x (x), which is fitted and
then extrapolated to x = σ.

The extrapolation of g(2σ) proceeds analogously to that of
ρ∗x (x). The pair distances in the range 2σ < r < 2.1σ are retained in
a histogram, then normalized by dividing the number of elements
in each bin by the bin size 10−3σ and the total number of sampled
distances nN(N − 1)/2. The normalized histogram approximates
2πrĝ(r). The histogram is further multiplied by V/2π and divided
by the distance r corresponding to the center of each bin, yielding
the empirical g(r), that is then extrapolated to r = 2σ.

2. Statistics
The standard errors in this work were computed using the

stationary bootstrap method84,85 and double-checked using the
blocking method.86 In stationary bootstrap, the standard error is
estimated by creating a large number of simulated time series (typi-
cally 1000). Each of the time series has the same length as the original
series and is created by piecing together randomly chosen sub-series
of geometrically distributed length. The only parameter control-
ling the geometrical distribution is chosen so that it minimizes the
mean squared error of the estimated standard error for an infinite
sub-series length and for an infinite number of sub-series.87,88 The
compatibility of the stationary-bootstrap error estimate with that
of the blocking method was carefully checked for the entire data
presented in the figures as well as in Table II.

APPENDIX B: HISTORIC DATA, CODES,
AND VALIDATION

The present work is accompanied by the HistoricDisks data
and software package, which is published as an open-source project
under the GNU GPLv3 license. HistoricDisks is available on
GitHub as a part of the JeLLyFysh organization.89 The package pro-
vides the pressure data extracted from the literature since 1953, and
also the set of high-precision pressures of the present work (see Sub-
section B 1). Furthermore, the package contains naive MCMC and
MD implementations and pressure estimators (used for validation
purposes in Table I) as well as state-of-the-art implementations used
in Sec. IV.

1. Pressure data, equations of states
The pressure data in the HistoricDisks package are from

Refs. 14, 28, 35, 70, 72–74, and 79, or else correspond to results
obtained in this work. Pressure data for a given reference, a given
system size and aspect ratio are stored in a separate file in the .csv
format (see the README file for details). Pressures and error bars
were digitized using the WebPlotDigitizer software90 where appli-
cable, or else extracted from published tables. The HistoricDisks
package furthermore provides Python programs that visualize equa-

tions of state. All pressure data are for the NVT ensemble, and the
control variable (volume or density, plotted on the x-axis) follows all
four conventions of Eq. (1). The dependent variable (the pressure,
plotted on the y-axis) follows two conventions, namely, βPV0/N and
βP(2σ)2. In order to facilitate the direct comparison across different
conventions, the produced figures have four x-axes and two y-axes.
The pressure database in the HistoricDisks package may evolve
in the future.

2. Computer programs
In addition to pressure data, the HistoricDisks package

provides access to sampling algorithms (the local Metropolis algo-
rithm, EDMD, and several variants of ECMC). Each algorithm is
implemented in two versions. A naive version for four disks in a
non-periodic rectangular box is patterned after Ref. 41. A naive
version for N disks in a periodic rectangular box is useful for valida-
tion of more advanced methods. Both versions are implemented in
Python3 (compatible with PyPy3). In addition, the package provides
a state-of-the-art ECMC program for hard disks.

a. Four-disk non-periodic-box programs
Our naive programs consider four disks of radius σ = 0.15 in

a non-periodic square box of sides 1. We implement the Metropo-
lis algorithm, EDMD, and the straight, reflective,36 forward61 and
Newtonian62 variants of ECMC. In addition, the pressure estima-
tors discussed in Subsection III C are implemented (see Table I). In
detail, we provide pressure estimates from the wall density (using
fit of the histogram), from the wall rifts using EDMD and the wall
rifts using ECMC, the latter testing the bias factor N that is intro-
duced because ECMC only moves a single disk. Moreover, we check
our rift-average estimators for EDMD and for straight ECMC (that
again differ by different biasing factors and mean values of per-
pendicular velocity components). Finally, we provide a test of the
traditional fitting formula involving the pair-correlation function.
All these estimators are of thermodynamic origin. As discussed in
the main text, the kinematic estimators, including the virial formula,
lead to identical formulas and need not be tested independently.

b. Naive periodic-box programs
The naive periodic-box programs contained in the

HistoricDisks package differ from the naive programs only
in that the number N of disks and the radius σ can be set freely
and that the box is periodic. These programs have some use for
demonstration purposes and to test the more efficient algorithms
for relatively small values of N. Again, the Metropolis algorithm,
EDMD, and the four variants of ECMC are implemented. Runs start
from a crystalline initial configuration. Configurations are output
at fixed time intervals. Straight ECMC also outputs estimates of the
pressure.

c. State-of-the-art hard-disk programs
The HistoricDisks package contains an optimized C++ code

for straight ECMC, which is derived from the Fortran90 code used in
Ref. 35. The GPU-based MPMC Cuda code used in this work derives
from a general MPMC code for soft-sphere models and will be pub-
lished elsewhere.91 Pressures obtained from these implementations
agree within very tight error bars (see Table II). A Python script con-
tained in the package analyzes samples that were saved from these

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-18

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

two codes in the HDF592 file format. It computes, for example, the
global orientational order parameters Ψ6.

REFERENCES
1P. Kapitza, “Viscosity of liquid helium below the λ-point,” Nature 141, 74 (1938).
2V. G. Vaks and A. I. Larkin, “On phase transitions of second order,”
J. Exp. Theor. Phys. 22, 678 (1966), available at http://www.jetp.ras.ru/cgi-
bin/e/index/e/22/3/p678?a=list.
3M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, “Theoretical esti-
mates of the critical exponents of the superfluid transition in 4He by lattice
methods,” Phys. Rev. B 74, 144506 (2006).
4M. Hasenbusch, “Monte Carlo study of an improved clock model in three
dimensions,” Phys. Rev. B 100, 224517 (2019).
5S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and
A. Vichi, “Carving out OPE space and precise O(2) model critical exponents,”
J. High Energy Phys. 2020, 142.
6E. L. Pollock and D. M. Ceperley, “Path-integral computation of superfluid
densities,” Phys. Rev. B 36, 8343 (1987).
7K. G. Wilson, “The renormalization group and critical phenomena,” Rev. Mod.
Phys. 55, 583 (1983).
8J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson,
“Heat capacity and thermal relaxation of bulk helium very near the lambda point,”
Phys. Rev. Lett. 76, 944 (1996).
9J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and T. C. P. Chui, “Specific
heat of liquid helium in zero gravity very near the lambda point,” Phys. Rev. B 68,
174518 (2003).
10H. J. Muller, “Nobel Lecture: The production of mutations,” in Nobel
Lectures, Physiology or Medicine 1942-1962 (Elsevier Publishing Company,
Amsterdam, 1964), available at https://www.nobelprize.org/prizes/medicine/
1946/muller/lecture/.
11C. Nüsslein-Volhard, “Nobel Lecture: The identification of genes control-
ling development in flies and fishes,” in Nobel Lectures, Physiology or Medicine
1991-1995, edited by N. Ringertz (World Scientific Publishing Co., Singapore,
1997), available at https://www.nobelprize.org/prizes/medicine/1995/nusslein-
volhard/lecture/.
12R. E. Kohler, Lords of the Fly: Drosophila Genetics and the Experimental Life,
History, Philosophy, and Social Studies of Science: Biology (University of Chicago
Press, 1994).
13M. R. Dietrich, R. A. Ankeny, and P. M. Chen, Publ. Trends Model Org. Res.,
Genet. 198, 787 (2014).
14B. J. Alder and T. E. Wainwright, “Phase transition in elastic disks,” Phys. Rev.
127, 359 (1962).
15J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase tran-
sitions in two-dimensional systems,” J. Phys. C: Solid State Phys. 6, 1181
(1973).
16D. Bernoulli, Hydrodynamica (ETH-Bibliothek Zürich, 1738); available at
https://doi.org/10.3931/e-rara-3911.
17Y. G. Sinai, “Dynamical systems with elastic reflections,” Russ. Math. Surv. 25,
137 (1970).
18N. Simányi, “Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard
disk systems,” Invent. Math. 154, 123 (2003).
19J. L. Lebowitz and O. Penrose, “Convergence of virial expansions,” J. Math.
Phys. 5, 841 (1964).
20T. Helmuth, W. Perkins, and S. Petti, “Correlation decay for hard spheres via
Markov chains,” Ann. Appl. Probab. 32, 2063 (2022).
21L. Boltzmann, Lectures on Gas Theory, Dover Books on Physics (Dover
Publications, 1995).
22L. Fejes, “Über einen geometrischen Satz,” Math. Z. 46, 83 (1940).
23T. Richthammer, “Translation-invariance of two-dimensional Gibbsian point
processes,” Commun. Math. Phys. 274, 81 (2007).
24T. Richthammer, “Lower bound on the mean square displacement of particles
in the hard disk model,” Commun. Math. Phys. 345, 1077 (2016).
25J. G. Kirkwood and E. Monroe, “Statistical mechanics of fusion,” J. Chem. Phys.
9, 514 (1941).

26G. Battimelli and G. Ciccotti, “Berni Alder and the pioneering times of
molecular simulation,” Eur. Phys. J. H 43, 303 (2018).
27R. Peierls, “Quelques propriétés typiques des corps solides,” Ann. Inst. Henri
Poincare 5, 177 (1935), available at https://eudml.org/doc/78996.
28N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” J. Chem. Phys. 21,
1087 (1953).
29H. E. Stanley and T. A. Kaplan, “Possibility of a phase transition for the two-
dimensional Heisenberg model,” Phys. Rev. Lett. 17, 913 (1966).
30N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev. 176, 250
(1968).
31J. E. Mayer and W. W. Wood, “Interfacial tension effects in finite, periodic, two-
dimensional systems,” J. Chem. Phys. 42, 4268 (1965).
32J. M. Kosterlitz, “The critical properties of the two-dimensional xy model,”
J. Phys. C: Solid State Phys. 7, 1046 (1974).
33B. I. Halperin and D. R. Nelson, “Theory of two-dimensional melting,” Phys.
Rev. Lett. 41, 121 (1978).
34A. P. Young, “Melting and the vector Coulomb gas in two dimensions,” Phys.
Rev. B 19, 1855 (1979).
35E. P. Bernard and W. Krauth, “Two-step melting in two dimensions: First-order
liquid-hexatic transition,” Phys. Rev. Lett. 107, 155704 (2011).
36E. P. Bernard, W. Krauth, and D. B. Wilson, “Event-chain Monte Carlo
algorithms for hard-sphere systems,” Phys. Rev. E 80, 056704 (2009).
37J. Lee and K. J. Strandburg, “First-order melting transition of the hard-disk
system,” Phys. Rev. B 46, 11190 (1992).
38H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or
temperature,” J. Chem. Phys. 72, 2384 (1980).
39M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A
new molecular dynamics method,” J. Appl. Phys. 52, 7182 (1981).
40L. A. Rowley, D. Nicholson, and N. G. Parsonage, “Monte Carlo grand canonical
ensemble calculation in a gas-liquid transition region for 12-6 Argon,” J. Comput.
Phys. 17, 401 (1975).
41W. Krauth, Statistical Mechanics: Algorithms and Computations (Oxford
University Press, 2006).
42S. Asakura and F. Oosawa, “On interaction between two bodies immersed in a
solution of macromolecules,” J. Chem. Phys. 22, 1255 (1954).
43M. Michel, S. C. Kapfer, and W. Krauth, “Generalized event-chain Monte Carlo:
Constructing rejection-free global-balance algorithms from infinitesimal steps,”
J. Chem. Phys. 140, 054116 (2014).
44B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,”
J. Chem. Phys. 27, 1208 (1957).
45B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. I. General
method,” J. Chem. Phys. 31, 459 (1959).
46D. C. Rapaport, “The event scheduling problem in molecular dynamic
simulation,” J. Comput. Phys. 34, 184 (1980).
47D. C. Rapaport, “The event-driven approach to N-body simulation,” Prog.
Theor. Exp. Phys. 178, 5 (2009).
48M. Isobe, “Simple and efficient algorithm for large scale molecular dynamics
simulation in hard disk system,” Int. J. Mod. Phys. C 10, 1281 (1999).
49M. Isobe, “Hard sphere simulation in statistical physics—Methodologies and
applications,” Mol. Simul. 42, 1317 (2016).
50M. N. Bannerman, R. Sargant, and L. Lue, “DynamO: A free O(N) general
event-driven molecular dynamics simulator,” J. Comput. Chem. 32, 3329 (2011).
51B. D. Lubachevsky, “Simulating billiards: Serially and in parallel,” Int. J.
Comput. Simul. 2, 373 (1992).
52S. Miller and S. Luding, “Event-driven molecular dynamics in parallel,”
J. Comput. Phys. 193, 306 (2004).
53M. A. Khan and M. C. Herbordt, “Parallel discrete molecular dynamics simu-
lation with speculation and in-order commitment,” J. Comput. Phys. 230, 6563
(2011).
54D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times
(American Mathematical Society, 2008).
55J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel, and S. C. Glotzer,
“Massively parallel Monte Carlo for many-particle simulations on GPUs,”
J. Comput. Phys. 254, 27 (2013).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-19

Published under an exclusive license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

56M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and
W. Krauth, “Hard-disk equation of state: First-order liquid-hexatic transition in
two dimensions with three simulation methods,” Phys. Rev. E 87, 042134 (2013).
57F. Chen, L. Lovász, and I. Pak, “Lifting Markov chains to speed up mixing,”
in Proceedings of the 17th Annual ACM Symposium on Theory of Computing
(Association for Computing Machinery, New York, 1999), p. 275.
58P. Diaconis, S. Holmes, and R. M. Neal, “Analysis of a nonreversible Markov
chain sampler,” Ann. Appl. Probab. 10, 726 (2000).
59W. Krauth, “Event-chain Monte Carlo: Foundations, applications, and
prospects,” Front. Phys. 9, 229 (2021).
60P. Höllmer, N. Noirault, B. Li, A. C. Maggs, and W. Krauth, “Sparse hard-disk
packings and local Markov chains,” J. Stat. Phys. 187, 31 (2022).
61M. Michel, A. Durmus, and S. Sénécal, “Forward Event-Chain Monte Carlo:
Fast sampling by randomness control in irreversible Markov chains,” J. Comput.
Graph. Stat. 29, 689 (2020).
62M. Klement and M. Engel, “Efficient equilibration of hard spheres with
Newtonian event chains,” J. Chem. Phys. 150, 174108 (2019).
63B. Li, S. Todo, A. C. Maggs, and W. Krauth, “Multithreaded event-chain Monte
Carlo with local times,” Comput. Phys. Commun. 261, 107702 (2021).
64B. Li, Y. Nishikawa, A. C. Maggs, and W. Krauth, “Multithreaded event-chain
Monte Carlo: Implementation and benchmarks” (2022) (unpublished).
65L. Qin, P. Höllmer, and W. Krauth, “Direction-sweep Markov chains,” J. Phys.
A: Math. Theor. 55, 105003 (2022).
66R. Eppenga and D. Frenkel, “Monte Carlo study of the isotropic and nematic
phases of infinitely thin hard platelets,” Mol. Phys. 52, 1303 (1984).
67P. E. Brumby, A. J. Haslam, E. de Miguel, and G. Jackson, “Subtleties in the
calculation of the pressure and pressure tensor of anisotropic particles from
volume-perturbation methods and the apparent asymmetry of the compressive
and expansive contributions,” Mol. Phys. 109, 169 (2011).
68E. de Miguel and G. Jackson, “The nature of the calculation of the pressure
in molecular simulations of continuous models from volume perturbations,”
J. Chem. Phys. 125, 164109 (2006).
69M. P. Allen, “Evaluation of pressure tensor in constant-volume simulations of
hard and soft convex bodies,” J. Chem. Phys. 124, 214103 (2006).
70J. A. Zollweg and G. V. Chester, “Melting in two dimensions,” Phys. Rev. B 46,
11186 (1992).
71A. Jaster, “Computer simulations of the two-dimensional melting transition
using hard disks,” Phys. Rev. E 59, 2594 (1999).
72A. Jaster, “The hexatic phase of the two-dimensional hard disks system,” Phys.
Lett. A 330, 120 (2004).
73C. H. Mak, “Large-scale simulations of the two-dimensional melting of hard
disks,” Phys. Rev. E 73, 065104 (2006).

74W. Qi, A. P. Gantapara, and M. Dijkstra, “Two-stage melting induced by dislo-
cations and grain boundaries in monolayers of hard spheres,” Soft Matter 10, 5449
(2014).
75H. Weber, D. Marx, and K. Binder, “Melting transition in two dimensions: A
finite-size scaling analysis of bond-orientational order in hard disks,” Phys. Rev. B
51, 14636 (1995).
76A. C. Mitus, H. Weber, and D. Marx, “Local structure analysis of the hard-disk
fluid near melting,” Phys. Rev. E 55, 6855 (1997).
77K. Binder, S. Sengupta, and P. Nielaba, “The liquid-solid transition of hard discs:
First-order transition or Kosterlitz-Thouless-Halperin-Nelson-Young scenario?,”
J. Phys.: Condens. Matter 14, 2323 (2002).
78R. Kannan, M. W. Mahoney, and R. Montenegro, “Rapid mixing of several
Markov chains for a hard-core model,” in Proceedings of 14th annual ISAAC,
Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2003), pp.
663–675.
79A. Jaster, “An improved Metropolis algorithm for hard core systems,” Physica A
264, 134 (1999).
80B. D. Lubachevsky and F. H. Stillinger, “Geometric properties of random disk
packings,” J. Stat. Phys. 60, 561 (1990).
81J. G. Propp and D. B. Wilson, “Exact sampling with coupled Markov chains and
applications to statistical mechanics,” Random Struct. Algorithms 9, 223 (1996).
82M. F. Faulkner, L. Qin, A. C. Maggs, and W. Krauth, “All-atom computations
with irreversible Markov chains,” J. Chem. Phys. 149, 064113 (2018).
83P. Höllmer, L. Qin, M. F. Faulkner, A. C. Maggs, and W. Krauth, “JELLYFYSH-
Version1.0—A Python application for all-atom event-chain Monte Carlo,”
Comput. Phys. Commun. 253, 107168 (2020).
84D. N. Politis and J. P. Romano, “The stationary bootstrap,” J. Am. Stat. Assoc.
89, 1303 (1994).
85Y. Nishikawa, J. Takahashi, and T. Takahashi, “Stationary bootstrap: a refined
error estimation for equilibrium time series,” arXiv:2112.11837 (2021).
86H. Flyvbjerg and H. G. Petersen, “Error estimates on averages of correlated
data,” J. Chem. Phys. 91, 461 (1989).
87D. N. Politis and H. White, “Automatic block-length selection for the dependent
bootstrap,” Econ. Rev. 23, 53 (2004).
88A. Patton, D. N. Politis, and H. White, “‘Correction to’ Automatic block-length
selection for the dependent bootstrap” by D. Politis and H. White,” Econ. Rev. 28,
372 (2009).
89The url of the repository is https://github.com/jellyfysh/HistoricDisks.
90A. Rohatgi, Webplotdigitizer: Version 4.5, 2021.
91Y. Nishikawa, W. Krauth, and A. C. Maggs, “Two-dimensional soft spheres -
phase diagrams and phase transitions” (2022) (unpublished).
92The HDF Group, Hierarchical Data Format, version 5 (1997–2022).

J. Chem. Phys. 157, 234111 (2022); doi: 10.1063/5.0126437 157, 234111-20

Published under an exclusive license by AIP Publishing

159

Publication 4: SGD with a constant large learning rate can
converge to local maxima

Published as a conference paper at ICLR 2022

SGD WITH A CONSTANT LARGE LEARNING RATE
CAN CONVERGE TO LOCAL MAXIMA

Liu Ziyin1, Botao Li2, James Simon3, & Masahito Ueda1

1The University of Tokyo
2ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris
3University of California, Berkeley

ABSTRACT

Previous works on stochastic gradient descent (SGD) often focus on its success.
In this work, we construct worst-case optimization problems illustrating that,
when not in the regimes that the previous works often assume, SGD can exhibit
many strange and potentially undesirable behaviors. Specifically, we construct
landscapes and data distributions such that (1) SGD converges to local maxima, (2)
SGD escapes saddle points arbitrarily slowly, (3) SGD prefers sharp minima over
flat ones, and (4) AMSGrad converges to local maxima. We also realize results in
a minimal neural network-like example. Our results highlight the importance of
simultaneously analyzing the minibatch sampling, discrete-time updates rules, and
realistic landscapes to understand the role of SGD in deep learning.

1 INTRODUCTION

SGD is the main optimization algorithm for training deep neural networks, and understanding SGD
is widely regarded as a key step on the path to understanding deep learning (Bottou, 2012; Zhang
et al., 2018; Xing et al., 2018; Mori et al., 2021; Du et al., 2018; Allen-Zhu et al., 2018; Wojtowytsch,
2021a;b; Gower et al., 2021; Ziyin et al., 2022b; Gurbuzbalaban et al., 2021; Zou et al., 2021; Li et al.,
2021; Feng and Tu, 2021). Despite its algorithmic simplicity (could be described by only two lines of
equations), SGD is hard to understand. The difficulty is threefold: (1) SGD is discrete-time in nature,
and discrete-time dynamics are typically much more complicated to solve than their continuous-time
counterparts (May, 1976); (2) SGD noise is state-dependent (Ziyin et al., 2022b; Hodgkinson and
Mahoney, 2020); and (3) the loss landscape can be nonlinear and non-convex, involving many local
minima, saddle points, and degeneracies (the Hessian is not full-rank) in the landscape (Xing et al.,
2018; Wu et al., 2017). Each of these difficulties is so challenging that very few works attempt to
deal with all of them simultaneously. Most previous works on SGD are limited to the cases when the
loss landscape is strongly convex (Ziyin et al., 2022b; Liu et al., 2021; Hoffer et al., 2017; Mandt
et al., 2017), or when the noise is assumed to be Gaussian and time-independent (Zhu et al., 2019;
Jastrzebski et al., 2017; Xie et al., 2021); for the works that tackle SGD in a non-convex setting, often
strong conditions are assumed. The reliance on strong assumptions regarding each of the challenges
means that our present understanding of SGD for deep learning could be speculative. This work
aims to examine some commonly held presuppositions about SGD and show that when all the three
challenging factors are taken together, many counter-intuitive phenomena may arise. Since most of
these phenomena are potentially undesired, this work can also be seen as a worst-case analysis of
SGD.

In this work, we study the behavior of SGD in toy landscapes with non-convex loss and multi-minima.
We approach the problem of SGD convergence from a different angle from many of the related works:
instead of studying when SGD will converge, our result helps answer the question of when SGD might
fail. In particular, the problem setting considers discrete-time SGD close to saddle points, where the
noise is due to minibatch sampling, and the learning rate is held constant throughout training. In the
next section, we define the SGD algorithm and the necessary notations. In Sec. 3, we discuss the
related works. A warmup example is provided in Sec. 4. Sec. 5 introduces the main results. Sec. 6
presents the numerical simulations, including a minimal example involving a neural network. We
also encourage the readers to examine the appendix. Sec. A presents additional experiments. Sec. B

1

Published as a conference paper at ICLR 2022

1.0 0.5 0.0 0.5 1.0
w

0

5

10

15

Loss landscape
Initial distribution
Step 10
Final distribution

2 1 0 1 2
w

0

2

4

6

8

10

Loss landscape
Initial distribution
Step 10
Final distribution

1.0 0.5 0.0 0.5 1.0
a

0.0

0.5

1.0

1.5

2.0

λ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: SGD converges to a local maximum for the example studied in Sec. 5.1. Left: Distribution of w on
the quadratic potential, L̂ = xw2/2; the histograms in different colors show the distribution of model parameters
at different time steps. Middle: Distribution on the fourth-order potential, L̂ = xw2/2 +w4/4. Right: Escape
probability as a function of a and λ. The parameters space is divided into an absorbing phase where w is
attracted to the local maximum (in dark blue) and an active phase where w successfully escapes the two central
bins (in white).

presents a continuous-time analysis of the problems in the main text and is relevant for discussing the
unique discrete-time features of SGD. Sec. C presents all the proofs.

2 BACKGROUND

Notation and Terminology. We use λ to denote the learning rate. w is the model parameter. L̂(w;x),
with the caret symbol ⋅̂, denotes the sampled loss function, which is a function of the data point, and
L ∶= Ex[L̂] is the loss landscape averaged over the data distribution; for notational conciseness, we
often hide the dependence of L̂ on x when the context is clear. The lowercase t denotes the time step
of optimization. The phrases loss, objective, and potential are also used interchangeably.

Now, we introduce the minibatch SGD algorithm. The objective of SGD can be defined as a pair(L̂, p(x)) such that L̂ is a differentiable function and p(x) is a probability density. We aim at finding
the minimizer of the following differentiable objective:

L(w) = Ex∼p(x)[L̂(w;x)], (1)

where x is a data point drawn from distribution p(x) and w ∈ RD is the model parameter. The
gradient descent (GD) algorithm for L is defined as the update rule wt = wt−1 − λ∇wL(w,x) for
some randomly initialized w0, where λ is the learning rate. The following definition defines SGD.
Definition 1. The minibatch SGD algorithm computes the update to the parameter w with the
following equation: wt = wt−1 − λĝt, where ĝt = ∇wt−1L̂(wt−1;xt), and xt is drawn from p(x) such
that xi is independent of xj for i ≠ j.
3 RELATED WORKS

Escaping Saddle Points. Because neural networks are highly nonlinear, the landscape of neural
networks is believed to have many local minima and saddle points (Du et al., 2017; Kleinberg et al.,
2018; Reddi et al., 2018b). It is thus crucial for the optimization algorithm to be able to overcome
saddle points efficiently and escape a suboptimal minimum. However, the majority of works on
escaping saddle points assume no stochasticity or only artificially injected noise (Li et al., 2017;
Du et al., 2017; Jin et al., 2017; Ge et al., 2015; Reddi et al., 2018b; Lee et al., 2016; Pemantle,
1990). Some physics-inspired approaches take the stochasticity into account but often rely on
continuous-time approximation and nontrivial assumptions regarding the stationary distribution of the
parameter (Mori et al., 2021; Xie et al., 2021; Liu et al., 2021). In the context of stochastic non-convex
optimization, one setting that SGD is known to escape saddles and converge well is when the learning
rate decreases to zero in the training (Pemantle, 1990; Vlaski and Sayed, 2019; Mertikopoulos et al.,
2020). In contrast, we only consider the case when the learning rate is held fixed. We stress that
our result does not contradict these previous results. On the opposite, our result reinforces the idea
that the learning rate needs to be carefully chosen and scheduled when convergence is an essential
concern.

Role of Minibatch Noise. One indispensable aspect of SGD is its stochasticity originated from
minibatch sampling (Wu et al., 2020; Ziyin et al., 2022b; Zhu et al., 2019; Hodgkinson and Mahoney,

2

Published as a conference paper at ICLR 2022

2020), whose strength and structure are determined by the model architecture and the data distribution.
Moreover, it has been observed that the models trained with SGD significantly outperform the models
directly trained with GD (Hoffer et al., 2017). Therefore, understanding the role of minibatch noise is
of both fundamental and practical value. However, in the previous works, the focus is on analyzing
the behavior of SGD on the landscape specified by L; the unique structures due to the noise in SGD
are often treated in an oversimplified manner without referring to the actual models in deep learning
or the actual data distributions. For example, Daneshmand et al. (2018) assumes that the noisy
gradient is negatively correlated with the least-eigenvalue direction of the Hessian, an assumption
that its validity is unclear when the Hessian is not full rank. Kleinberg et al. (2018) assumes that the
noise in SGD makes the landscape one-point strongly convex, which implies that the loss landscape
before the convolution is already close to a strongly convex landscape. Another commonly assumed
condition is that the loss-landscape satisfies the Lojasiewicz condition, which is non-convex but
implies the unrealistic condition that there is no local minimum except the global minimum (Karimi
et al., 2020; Wojtowytsch, 2021a; Vaswani et al., 2019), which is not sufficient to understand the
complicated dynamics that often happen in a setting with many minima (for example, a deep linear
net (Ziyin et al., 2022a)). In Sec. 6.3, we show that these assumptions are violated for a minimal
nonlinear neural network with two layers and one hidden neuron. While our example may or may
not be directly relevant for realistic settings in the deep learning practice, our work highlights the
importance of analyzing the actual noise structure imposed by a deep neural network in future works.

Large Learning Rate Regime. Recently, it has been realized that networks trained at a large learning
rate have a better performance than networks trained with a vanishing learning rate (lazy training)
(Chizat and Bach, 2018). Lewkowycz et al. (2020) shows that there is a qualitative difference between
the lazy training regime and the large learning rate regime; the performance features two plateaus
in testing accuracy in the two regimes, with the large learning rate regime performing much better.
However, almost no previous theory exists for understanding SGD at a large learning rate. Our work
is also relevant for understanding what happens at a large learning rate.

4 A WARM-UP EXAMPLE

This section studies a special example of the main results of our work. While the setting of this
example is restricted, it captures the essential features and mechanisms of SGD that we will utilize to
prove the main results. Consider the following loss function:

L̂(w) = x
2
w2, (2)

where x,w ∈ R and x is drawn from an underlying distribution p(x) at every time-step. We let
E[x] = a/2 and assume that Var[x] = σ2 is finite. This gives rise to a true, sample-averaged loss
of L(w) = a

4
w2. The stationary point of this loss function is w = 0. When a > 0, the underlying

(deterministic) landscape is a minimum; the a > 0 case is now well understood in the discrete-time
limit and when the underlying noise is state-dependent (Liu et al., 2021). When a < 0, the point w = 0
is a local maximum; one hopes that the underlying dynamics escape to infinity, and our goal is to
understand the behavior of SGD in this case.

The following proposition and proof show that for the zero-mean and bounded distribution p(x),
SGD cannot escape from the local maximum when the learning rate is set to be 1.
Proposition 1. Let λ = 1 and a < 0 and p(x) be the distribution such that x = 1 and x = −1 + a
with equal probability. Then, w converges to w = 0 with probability 1 with the SGD algorithm,
independent of the initialization.

Proof. By the definition of the SGD algorithm, we have

wt+1 = {0 with probability 0.5;(2 − a)wt otherwise.
(3)

Therefore, after t time steps, wt has at most 2−t probability of being non-zero. For infinite t, wt = 0
with probability 1. ◻
This simple toy example illustrates a few important points. First of all, it suggests that one cannot use
the expected value of w to study the escape problem of SGD. The expectation value of wt is

Ex[wt] = (1 − a/2)Ex[wt−1] = (1 − a/2)tw0 = w0e
ln(1−a/2)t, (4)

3

Published as a conference paper at ICLR 2022

which is an exponentially fast escape from any initialization w0 for a < 0. In fact, ln(1− a) is exactly
the escape time scale of the GD algorithm. This is counter-intuitive: SGD will converge to the local
maximum with probability 1, even if its expected value escapes the local maximum exponentially
fast.

Alternatively, one might also hope to use the expected loss or the norm Ewt[L(wt)] ∼ ∣∣wt∣∣22 as the
metric of escape, but it is not hard to see that they suffer the same problem. At time t, because wt = 0

with probability 1− 2−t and wt = (2− a)tw0 with probability 2−t, we have E[L(wt)] ∝ w2
0e

2t ln 2−a√
2 ,

which also predicts an exponentially fast escape. Again, this fails to reflect the fact that SGD has only
a vanishingly small probability of escaping the constructed local maximum. Statistically speaking,
the norms of wt fail to be good metrics to measure the escape rate because these metrics are not robust
against outliers. In our example, there is only 2−t probability for SGD to escape the local minimum,
yet the speed at which this outlier escapes the maximum outweighs the decay in its probability
through time, thus contributing more to the expected norm than any other events. This example also
shows the difficulty and subtlety of dealing with the escape problem. This example (together with
Sec. 5.1) also emphasizes the importance of showing convergence in probability for future works in
non-convex optimization because convergence in expectation is not sufficient to guarantee a good
empirical performance. The results in the rest of this work can be seen as extensions of this special
case to less restrictive settings.

5 MAIN RESULTS

In this section, we present our four main theoretical results: (1) SGD may converge to a local
maximum; (2) SGD may escape a saddle point arbitrarily slowly; (3) SGD may prefer sharp minima
over flat ones; and (4) AMSGrad may converge to a local maximum.

5.1 SGD MAY CONVERGE TO A LOCAL MAXIMUM

We show that there are cases where SGD may fail to escape saddle points, while GD can successfully
escape; this contradicts the suggestions in Kleinberg et al. (2018) that SGD always escapes a local
minimum faster than GD. It is appropriate to begin with the definition of a saddle point.
Definition 2. w is said to be a stationary point of L(w) if ∇wL(w) = 0. w is a minimum of L if, for
all w′ in a sufficiently small neighborhood of w, L(w′) ≥ L(w). w is said to be a saddle point if w is
a stationary point but not a local minimum.

This definition of saddle points, which includes local maxima, agrees with the common definition in
the literature (Daneshmand et al., 2018). The following proposition generalizes our warmup example
to a family of 1D problems in which SGD converges to a local maximum.
Proposition 2. Let Eq. 2 be the loss function. Let λ > 0, and p(x) be such that µ ∶= E[ln ∣1 − λx∣]
and s2 ∶= Var[ln ∣1 − λx∣]; then SGD converges to the local maximum in probability if µ < 0.

Proof Sketch. We first show that 1√
t

ln ∣wt/w0∣ obeys a normal distribution as t→∞. This allows us
to deduce the cumulative distribution function (c.d.f.) of w as t→∞. The c.d.f. has an bifurcative
dependence on the sign of µ ∶= E[ln ∣1 − λx∣]. When µ < 0, the distribution of wt converges to 0 in
probability. See Sec. C.2 for the detailed proof. ◻
Corollary 1. Let Eq. 2 be the loss function and p(x) = 1

2
δ(x−1)+ 1

2
δ(x+1−a); then SGD converges

to the local maximum in probability if

a

a − 1
< λ < a −

√
a2 − 8a + 8

2(a − 1) . (5)

One special feature of this example is that the state-dependent noise vanishes at the saddle point.
In this particular example, this is achieved by having an SGD noise proportional to the gradient
thus vanishing at the saddle point. This type of structure may be relevant for deep learning because
vanishing noise at a stationary point and state-dependent noise can appear at the origin of a deep
net, where weights of all layers are zero. Note that the convergence is independent of the actual
shape of the distribution p(x), and so may apply to many kinds of distributions besides the Bernoulli
distribution we considered. There are three different regimes/phases for this simple escaping problem

4

Published as a conference paper at ICLR 2022

(also see Fig. 1-Right). The escape regime λ > a−√a2−8a+8
2(a−1) is also present when a > 0; it means that

in this regime, SGD will also escape w0 even if it is a local minimum. This regime is not present if we
perform a continuous-time analysis (Sec. B), showing that this region is due to the instability of the
discrete-time SGD algorithm. This kind of escaping is undesirable because, in this regime, the local
gradient cannot provide any guidance for minimizing the loss. The region a

a−1 < λ < a−√a2−8a+8
2(a−1) is

the trapped regime. This is due to the special structure of the minibatch noise – a comparison with the
continuous-time analysis suggests that SGD will not be trapped if the noise is not position dependent
(Sec. B.1). The small learning rate regime λ < a

a−1 is the successful escape regime because the SGD
noise is of order λ2 and becomes negligible at a small λ (Liu et al., 2021). This regime corresponds
to the lazy learning regime of training: with negligible noise and vanishing gradient, SGD is known
to optimize neural networks well (Du et al., 2018). This discussion also justifies our later choice for
placing an upper bound to λ and focusing only on the second and third regime in Sec. 5.3 and 5.4.

It is important to understand why the previous works that show that the previous guarantees of
convergence do not apply to this particular example, for example, Ge et al. (2015). In comparison,
the SGD algorithm is not guaranteed to escape the saddle point in this example because two crucial
assumptions of Ge et al. (2015) is violated: (1) the gradient does not have a bounded fluctuation
around its mean (and so even parameters very far away from the saddle can be brought back close
to the saddle point due to the noise), and (2) we do not inject additive noise to the gradient and the
actual noise decreases as we approach the saddle point (and so the closer we are to the saddle point,
the less likely one can escape). The standard theoretical guarantee of convergence in Ge et al. (2015)
thus does not apply to this example. This example shows that the minibatch noise of SGD is very
special and can strongly influence convergence. A continuous-time analysis in Section B of this
example shows that the convergence to local maxima occurs when the minibatch noise dominates the
gradient, namely, when the signal to noise ratio becomes smaller than 1. This suggests the importance
of minibatch noise in influencing the dynamics of SGD. This suggests that the signal-to-noise ratio
can be an important parameter in SGD dynamics and may deserve more future research.

5.2 SGD MAY ESCAPE SADDLE POINTS ARBITRARILY SLOWLY

In the previous section, we have shown that one can adversarially construct a loss function for a
fixed learning rate such that the SGD algorithm converges to a local maximum. This section shows
that, even if one can tune the learning rate at will, there is a loss landscape where SGD can take an
arbitrarily long time to escape, no matter how one chooses the learning rate. We begin by defining
the escape rate.
Definition 3. The asymptotic average escape rate of w at learning rate λ, γ(λ), is defined as
γ ∶= limt→∞ 1

t
Ewt[ln ∣wt∣]. The optimal escape rate is defined as γ∗ ∶= supλγ(λ).

Remark. This definition can be seen as a generalization of the Lyapunov exponent to a probabilistic
setting. We note that this definition of escape rate differentiates this work from the standard literature
on escaping saddles, where the focus is on the time scale for reaching a local minimum when saddle
points exist (Ge et al., 2015; Daneshmand et al., 2018; Jin et al., 2017), while our definition focuses
on the time scale of escaping a specified saddle point. These two time scales can be vastly different.

As discussed in the previous section, the undesired escape can be achieved by setting the learning
rate to be arbitrarily large; however, this is not possible in practice because the learning rate of SGD
is inherently associated with the stability of learning, and λ usually has to be much smaller than 1.
Proposition 3. Let the loss function be Eq. (2), a < 0 and p(x) ∼ 1

2
δ(x − 1) + 1

2
δ(x − a + 1), where

δ is the Dirac delta function, and λ ≤ 1. Then, for any ε > 0, there exists a such that supλ γ(λ) < ε.
Specifically, γ∗ = ln 2−a

2
√
1−a , and, for any ε > 0, γ∗ < ε if ∣a∣ ≤ 2 ∣−eε√e2ε − 1 − e2ε + 1∣.

Namely, the SGD algorithm can escape the saddle point of Eq. (2) arbitrarily slowly. Intuitively, one
expects escaping to be easier as we increase the learning rate (Kleinberg et al., 2018), and that the
escape rate should monotonically increase as we increase the learning rate. This example conveys
a novel message that the escaping efficiency is not monotonically increasing as the learning rate
increases. For this example, the escape rate first decreases and starts to increase only when λ is quite
large. This example also shows the subtlety in the escaping problem. On the one hand, one needs to
avoid a too large learning rate to avoid training instability. On the other hand, one cannot use a too

5

Published as a conference paper at ICLR 2022

small learning rate because a small learning rate also makes optimization slow. Thus, there should
be a tradeoff between learning speed and learning stability, and we may construct a general theory
for finding the best learning rate that achieves the best tradeoff; however, this tradeoff problem is a
sufficiently complex problem on its own and is beyond the scope of the present work.

5.3 SGD MAY PREFER SHARPER MINIMA

Modern deep neural networks are often overparametrized and can easily memorize all the training
data points. This means that the traditional metrics such as Rademacher complexity cannot be
used to guarantee the generalization capability of SGD (Zhang et al., 2017). Nevertheless, neural
networks are found to generalize very well. This inspired the hypothesis that SGD, the main training
algorithm of neural networks, contains some implicit regularization effect such that it biases the neural
network towards simpler solutions (Neyshabur et al., 2017; Soudry et al., 2018). One hypothesized
mechanism of this regularization is that SGD selects flat minima over the sharp ones (Hochreiter and
Schmidhuber, 1997; Meng et al., 2020; Xie et al., 2021; Liu et al., 2021; Mori et al., 2021; Smith
and Le, 2018; Wojtowytsch, 2021b). In this work, we show that this may not be the case because
the dynamics and convergence of SGD crucially depend on the underlying mini-batch noise, while
the sharpness of the landscape is independent of the noise. Before introducing the results, let us first
define the sharpness of a local minimum.
Definition 4. Let w = w∗ be a local minimum of the loss function L(w); the sharpness s(w∗) of
a local minimum w∗ is defined as s(w∗) ∶= Tr[∇2

wL(w∗)]. We say that a minimum w∗
1 is sharper

than w∗
2 if and only if s(w∗

1) > s(w∗
2).

In this definition, the sharpness is the trace of the Hessian of the quadratic approximation to the local
minimum. Other existing definitions, such as the determinant of the Hessian, are essentially similar
to this definition (Dinh et al., 2017).

For an explicit construction, consider the following objective on a 2-dimensional landscape:

L̂(w1,w2) = 1

2
[−(w1 −w2)2 − (w1 +w2)2 + (w1 −w2)4 + (w1 +w2)4 − 2aw2

2 + xbw2
1] . (6)

for a, b > 0 and p(x) = 1
2
δ(x− 1)+ 1

2
δ(x+ 1). The diagonal terms of the Hessian of the loss function

is given by ⎧⎪⎪⎨⎪⎪⎩
∂2

∂w2
1
L̂(w1,w2) = −2 + 12w2

1 + 12w2
2;

∂2

∂w2
2
L̂(w1,w2) = −2 − 2a + 12w2

1 + 12w2
2.

(7)

There are four local minima in total for this loss function. These minima and their sharpnesses are

⎧⎪⎪⎨⎪⎪⎩
(w1,w2) = (± 1√

2
,0) with s = 4;

(w1,w2) = (0,±√ 1+a
2

) with s = 4 + 4a.
(8)

We see that for positive a, the minima at (0,±√ 1+a
2

) are sharper than the other two minima. We
show that SGD will converge to these sharper minima. For this example, we assume that w1 and w2

are bounded because, if initialized sufficiently far from the origin, the fourth-order term will cause
divergence.
Proposition 4. Let the loss function be Eq. (6), ∣w1∣ ≤ 1 and ∣w2∣ ≤ 1. For any λ < c for some
constant c = O(1), there exists some b such that if SGD converges in probability, it will converge to

the sharper minimum at (w1,w2) = (0,±√ 1+a
2

).

Remark. In this example, the noise is not full-rank, which is often the case in a deep learning setting
for overparametrized networks (Wojtowytsch, 2021a). For example, when weight decay is used, the
Hessian of the loss function should be full rank, while the rank of the noise covariance should be
proportional to the inherent dimension of the data points, which is in general much smaller than the
dimension of the Hessian in deep learning (Ansuini et al., 2019).

The proof is technical and given in the appendix Sec. C.5. In fact, it has been controversial whether
finding a flat minimum can help generalization. For example, Dinh et al. (2017) shows that, for every
flat minimum of a ReLU-based net, there exists a minimum that is arbitrarily sharper and generalizes

6

Published as a conference paper at ICLR 2022

as well. However, this work does not rule out the possibility that conditioning by using gradient-based
optimization, the performance of the sharper minima that gradient descent finds is worse than the
performance of the flatter minima. If this assumption is valid, then biasing gradient descent towards
flatter minima can indeed help, and the stochasticity of SGD has been hypothesized to help in this
regard. However, our construction shows that SGD, on its own, may be incapable of helping SGD
converge to a flatter minimum. At least some other assumptions need to be invoked to show that
SGD may help. For example, the definition of the neural networks may endow these models with a
special kind of Hessian and noise structure that, when combined with SGD, results in a miraculous
generalization behavior. However, no previous work has pursued this direction in sufficient depth to
our knowledge, and future studies in this direction may be fruitful.

5.4 NON-CONVERGENCE OF ADAPTIVE GRADIENTS

mt = β1mt−1 + (1 − β1)ĝt; (9)

vt = β2vt−1 + (1 − β2)ĝ2t ; (10)
v̂t = max(v̂t−1, vt); (11)

wt = wt−1 − λ√
v̂t
mt. (12)

Adam (Kingma and Ba, 2014) and its closely related variants
such as RMSProp (Tieleman and Hinton, 2012) have been
shown to converge to a local maximum even for some simple
convex loss landscapes (Reddi et al., 2018a). The proposed
fix, named AMSGrad, takes the maximum of all the previous
preconditioners in Adam. This section shows that AMSGrad
may also converge to a local maximum even in simple non-
convex settings. Let xt ∼ p(x) and ĝt = ∇L̂(xt,wt−1), the Adam algorithm is given by Eq. (9)-(12),
where v0 = m0 = 0. We have removed the numerical smoothing constant ε from the denominator,
which causes no problem if w0 is initialized away from 0. Here, β1 is the momentum hyperparameter.
vt is called the preconditioner, and β2 is the associated hyperparameter. The standard value for β1 is
0.9 and β2 is 0.999. In our theory, we only consider the case when β1 = 0. The experiment section
shows that a similar problem exists when β1 > 0 (with additional interesting findings). Intuitively,
this is easy to understand because AMSGrad behaves like SGD asymptotically, so we only have
to wait for long enough, and the results in previous sections would apply. The construction below
follows this intuition.
Proposition 5. Let wt ∈ [−1,1], and w0 ≠ 0. For fixed λ < 1 and the loss function in Eq. (2) there
exists a < 0 such that the AMSGrad algorithm converges in probability to a local maximum.

Remark. The proof is given in Sec. C.6. Note that the example we construct is similar to the original
construction in Reddi et al. (2018a) that shows that Adam converges to a maximum while AMSGrad
succeeds in reaching the global minimum. In their example (with some rescaling), the gradient is a
random variable

ĝt = {1 with probability q ≈ 1;
c0 < 0 with probability 1 − q ≪ 1;

(13)

such that the expected gradient is negative, and Adam is shown to converge to the direction opposite
to the gradient descent (therefore to a maximum). In our example, the gradient is (roughly)

ĝt = {wt−1 with probability 1/2;−(1 + a)wt−1 with probability 1/2.
(14)

Therefore, our example can be seen as a minimal generalization of the Reddi et al. (2018a) example
to a non-convex setting.

6 EXPERIMENTAL DEMONSTRATIONS

We perform experiments to illustrate the examples studied in this work. Due to space limitations, we
illustrate the escape rate and the convergence to sharper minima example in Appendix Sec. A.

6.1 SGD CONVERGES TO A LOCAL MAXIMUM

Numerical results are obtained for the setting described in section 5.1. See Fig. 1-Left. The loss
landscape is defined by L(w) = 1

4
aw2. In this numerical example, we set λ = 0.8 and a = −1, and

the histogram is plotted with 2000 independent runs. We see that the distribution converges to the
local maximum at w = 0 as the theory predicts. For better qualitative understanding, we also plot

7

Published as a conference paper at ICLR 2022

Figure 2: AMSGrad diverges to the local maximum with or without momentum in the example we studied in
Sec 5.4. Our result shows that AMSGrad is always attracted to the local maximum, while Adam has the potential
of escaping the local maximum with momentum. Left: without momentum. Right: with momentum.

the empirical phase diagram of this setting in Fig. 1-Right. We perform numerical evaluations for
different combinations of a and λ on a a − λ plane, and for each combination, we plot the percentage
of w that escapes the central bin (white is 100% and dark blue is 0%). For completeness, we also
plot the case when a > 0, i.e., when the critical point at w = 0 is a local minimum. The orange line
shows where the phase transition is expected to happen according to Eq. (5). The fact that the orange
line agrees exactly with the empirical phase transition line confirms our theory.

We also numerically study a closely related fourth-order loss landscape, defined as L̂(w) = 1
2
xw2 +

1
4
w4, where the distribution p(x) is the same as before. The expected loss L(w) has two local

minima located as w = ±√−2a. We are interested in whether SGD can converge to these two points
successfully; note that, without the fourth-order term, this loss is the same as the quadratic loss we
studied. See Fig. 1-Middle. As before, a = −1 and λ = 0.8. We see that the distribution of w also
concentrates towards the local maximum after training, and no w is found to converge to the two
local minimum even if a significant proportion of w is initialized close to these two minima. A phase
diagram analysis is given in the Sec. A.1.

6.2 NON-CONVERGENCE OF AMSGRAD

In this section, we illustrate the example of the convergence behavior of AMSGrad described in
Sec. 5.4; for reference, we also plot the behavior of Adam and gradient descent for this example. See
Fig. 2. The experiment is the average over 2000 runs, each with 5 × 104 steps. The uncertainty is
reflected by the shaded region (almost invisibly small). The loss function is the same as discussed
in Sec. 5.4 with a = −0.1. For illustration purposes, we set λ = 0.2 and β2 = 0.999 for both Adam
and AMSGrad. When momentum is used, we set β1 = 0.9. GD is run with a learning rate of 0.01.
Without momentum, both Adam and AMSGrad converge to the local maximum with almost the same
speed. When momentum is added, AMSGrad still converges to the local maximum. Curiously, Adam
is no longer attracted to the local maximum but also remains away from the local minimum. This
suggests that Adam, with momentum, might have a better capability of escaping saddle points than
AMSGrad and might be preferable to AMSGrad in a non-convex setting.

6.3 A TOY NEURAL NETWORK EXAMPLE

We have now illustrated several SGD phenomena we studied in artificial settings, inspiring the
natural question of whether they occur for an actual neural network. Here we construct a neural-
net-like optimization problem to show that the problems with convergence might indeed arise for a
neural network. The toy neural network function is given by f(x) = w2σ(w1x), where w1,w2 ∈ R.
σ is the nonlinearity, and we let σ(x) = x2 as a minimal example. This is the simplest kind
of nonlinear feedforward network one can construct (2 layer with a single hidden neuron). We
also pick a minimal dataset with a single data point: x = 1 with probability 1 and y ∈ {−1,2},
each with probability 0.5, i.e., the label has a degree of inherent uncertainty, which is often the
case in real problems. We use mean squared error (MSE) as the loss function. Therefore, the
expected loss is L(w1,w2) = 1

2
(w2w

2
1 + 1)2 + 1

2
(w2w

2
1 − 2)2. The global minimum L∗ = 2.25 is

degenerate, and is achieved when w1 = 1/√2w2. There is also a manifold of saddle points given by{(w1,w2)∣w1 = 0,w2 ≥ 0}, all with L = 2.5. Despite the simplicity of this example, it contains a few
realistic features in a realistic problem, including (1) inherent uncertainty in the data, (2) a nonlinear
hidden layer, and (3) a degenerate minimum with zero eigenvalues in the Hessian.

8

Published as a conference paper at ICLR 2022

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w2

1.5

1.0

0.5

0.0

0.5

1.0

1.5
w

1

Saddle points

Global minima

0

100

200

300

400

500

600

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

w
1

0

1000

2000

3000

4000

5000

6000

7000

8000

0.000 0.025 0.050 0.075 0.100 0.125 0.150
learning rate

2.25

2.30

2.35

2.40

2.45

2.50

lo
ss Diverge

Figure 3: Convergence of a two-layer one-neuron neural network to a saddle point. The blue region shows
the empirical density of converged parameter distribution. Left: λ = 0.001 at step 10000 converges to global
minima. Mid: λ = 0.1 at step 10000 converges to a saddle point. Right: Average loss in equilibrium as a
function of learning rate. The loss function diverges for learning rates larger than 0.108.

More importantly, most previous works on the convergence or escaping behavior of SGD are
inapplicable to this example. One dominant assumption is the ρ-Hessian Lipschitz property (Jin
et al., 2017; Ge et al., 2015), which does not hold for this example in particular. Another common
assumption is the PL condition (Karimi et al., 2020; Wojtowytsch, 2021a; Vaswani et al., 2019),
which does not apply due to the existence of the saddle point. One recent assumption is that the loss
function is 1-point convex for all points (Kleinberg et al., 2018), which is also ruled out because(0,0) is not 1-point strongly convex. Another relevant assumption is the correlated negative curvature
assumption, which also does not hold for (0,0). We explain in Sec. A.5 in detail why these conditions
are violated.

See Fig. 3 for the experimental results with this example. Here, w1 is initialized uniformly in [−1,1];
w2 is initialized uniformly in [0,1] to be closer to the global minimum and away from the saddle point
(standard initialization such as initializing in [−1,1] does not change the conclusion). The left figure
shows the stationary distribution of the model parameter at a small learning rate (λ = 0.001). All the
parameters are located in the global-minimum valley as expected. In contrast, when the learning rate
is large (λ = 0.1), the central figure shows that all models (1000 independent runs) converge to the
saddle point at (0,0). The right figure investigates this change more systematically and shows the
change in the average stationary training loss of the models as we increase the learning rate from
0.001 to 0.15. We see that for a small learning rate, the training loss is close to that of the global
minima (L = 2.25), and for a significant range of large learning rates, the model invariably converges
to a saddle point (L = 2.5). One additional interesting observation is that the model diverges at
λ ≈ 0.11, and there is almost no sign of such divergence (such as increased fluctuation) when the
learning rate is close to the divergent threshold. This example shows the relevance of our results to
the study of neural networks. In fact, it has often been noticed that at convergence, many large-scale
neural networks in real tasks exhibit negative eigenvalues in the Hessian (Alain et al., 2019; Granziol
et al., 2019). The existence of negative eigenvalues at a late time suggests either the possibility that
the algorithm has yet to escape or that it has indeed been attracted to such saddle points; if the latter
is true, then our work offers an explanation. The emergence of negative eigenvalues at the end of
training serves as indirect evidence that our result may be relevant for larger neural networks. It
thus remains an important open question to prove (and identify the condition of) or disprove the
convergence of larger and deeper neural networks to a local maximum.

7 DISCUSSION

We have shown that when the learning rate is not carefully chosen or scheduled, SGD can exhibit
many undesirable behaviors, such as convergence to local maxima or saddle points. The limitation of
our work is clear. At best, all the constructions we made are minimal and simplistic toy examples
that are far from practice, and investigating whether the discovered messages are relevant for deep
learning or not is the one important immediate future step. Other relevant questions include: (1) Does
convergence to saddle points help or hurt generalization? (2) If it hurts, how can we modify SGD
to avoid saddle points better? We suspect changing learning rates, changing batch size, or injecting
noise may help, but a convincing theoretical guarantee in a realistic setting is yet lacking. (3) If
saddle points do not have worse generalization, our results motivate for understanding why. This is
especially relevant because we showed that using a large learning rate is more likely to converge
to saddle points, while previous works have shown that using a large learning rate can improve
generalization; combined, this may imply that certain saddle points may have intriguing but unknown
regularization effects.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENT

We thank the anonymous reviewers for providing detailed and constructive feedback for our draft.
Ziyin thanks Jie Zhang for the help during the writing of this manuscript. Ziyin is financially
supported by the GSS Scholarship from the University of Tokyo. BL acknowledges CNRS for
financial support and Werner Krauth for all kinds of help. JS gratefully acknowledges support from
the National Science Foundation Graduate Fellow Research Program (NSF-GRFP) under grant DGE
1752814. This work was supported by KAKENHI Grant Numbers JP18H01145 and JP21H05185
from the Japan Society for the Promotion of Science.

REFERENCES

Alain, G., Roux, N. L., and Manzagol, P.-A. (2019). Negative eigenvalues of the hessian in deep
neural networks. arXiv preprint arXiv:1902.02366.

Allen-Zhu, Z., Li, Y., and Song, Z. (2018). A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962.

Ansuini, A., Laio, A., Macke, J. H., and Zoccolan, D. (2019). Intrinsic dimension of data representa-
tions in deep neural networks.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer.

Chizat, L. and Bach, F. (2018). A note on lazy training in supervised differentiable programming.
arXiv preprint arXiv:1812.07956, 8.

Daneshmand, H., Kohler, J., Lucchi, A., and Hofmann, T. (2018). Escaping saddles with stochastic
gradients. In International Conference on Machine Learning, pages 1155–1164. PMLR.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp minima can generalize for deep nets.
In International Conference on Machine Learning, pages 1019–1028. PMLR.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Poczos, B., and Singh, A. (2017). Gradient descent can
take exponential time to escape saddle points. arXiv preprint arXiv:1705.10412.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054.

Feng, Y. and Tu, Y. (2021). The inverse variance–flatness relation in stochastic gradient descent is
critical for finding flat minima. Proceedings of the National Academy of Sciences, 118(9).

Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015). Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on learning theory, pages 797–842. PMLR.

Gower, R., Sebbouh, O., and Loizou, N. (2021). Sgd for structured nonconvex functions: Learning
rates, minibatching and interpolation. In International Conference on Artificial Intelligence and
Statistics, pages 1315–1323. PMLR.

Granziol, D., Garipov, T., Zohren, S., Vetrov, D., Roberts, S., and Wilson, A. G. (2019). The deep
learning limit: are negative neural network eigenvalues just noise? In ICML 2019 Workshop on
Theoretical Physics for Deep Learning.

Gurbuzbalaban, M., Simsekli, U., and Zhu, L. (2021). The heavy-tail phenomenon in sgd. In
International Conference on Machine Learning, pages 3964–3975. PMLR.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1):1–42.

Hodgkinson, L. and Mahoney, M. W. (2020). Multiplicative noise and heavy tails in stochastic
optimization. arXiv preprint arXiv:2006.06293.

Hoffer, E., Hubara, I., and Soudry, D. (2017). Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 1729–1739.

10

Published as a conference paper at ICLR 2022

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., and Storkey, A. (2017).
Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I. (2017). How to escape saddle points
efficiently. In International Conference on Machine Learning, pages 1724–1732. PMLR.

Karimi, H., Nutini, J., and Schmidt, M. (2020). Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Kleinberg, B., Li, Y., and Yuan, Y. (2018). An alternative view: When does sgd escape local minima?
In International Conference on Machine Learning, pages 2698–2707. PMLR.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B. (2016). Gradient descent only converges to
minimizers. In Conference on learning theory, pages 1246–1257. PMLR.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J., and Gur-Ari, G. (2020). The large learning
rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2017). Visualizing the Loss Landscape of
Neural Nets. ArXiv e-prints.

Li, Z., Malladi, S., and Arora, S. (2021). On the validity of modeling sgd with stochastic differential
equations (sdes). arXiv preprint arXiv:2102.12470.

Liu, K., Ziyin, L., and Ueda, M. (2021). Noise and fluctuation of finite learning rate stochastic
gradient descent.

Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18:1–35.

May, R. (1976). Simple mathematical models with very complicated dynamics. nature. vol. 251, june.
10.

Meng, Q., Gong, S., Chen, W., Ma, Z.-M., and Liu, T.-Y. (2020). Dynamic of stochastic gradient
descent with state-dependent noise. arXiv preprint arXiv:2006.13719.

Mertikopoulos, P., Hallak, N., Kavis, A., and Cevher, V. (2020). On the almost sure convergence of
stochastic gradient descent in non-convex problems. arXiv preprint arXiv:2006.11144.

Mori, T., Ziyin, L., Liu, K., and Ueda, M. (2021). Logarithmic landscape and power-law escape rate
of sgd. arXiv preprint arXiv:2105.09557.

Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Srebro, N. (2017). Geometry of optimization
and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071.

Pemantle, R. (1990). Nonconvergence to unstable points in urn models and stochastic approximations.
The Annals of Probability, 18(2):698–712.

Reddi, S., Kale, S., and Kumar, S. (2018a). On the convergence of adam and beyond. In International
Conference on Learning Representations.

Reddi, S., Zaheer, M., Sra, S., Poczos, B., Bach, F., Salakhutdinov, R., and Smola, A. (2018b). A
generic approach for escaping saddle points. In International conference on artificial intelligence
and statistics, pages 1233–1242. PMLR.

Smith, S. L. and Le, Q. V. (2018). A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of
gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning.

11

Published as a conference paper at ICLR 2022

Vaswani, S., Bach, F., and Schmidt, M. (2019). Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1195–1204. PMLR.

Vlaski, S. and Sayed, A. H. (2019). Second-order guarantees of stochastic gradient descent in
non-convex optimization.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer.

Wojtowytsch, S. (2021a). Stochastic gradient descent with noise of machine learning type. part i:
Discrete time analysis. arXiv preprint arXiv:2105.01650.

Wojtowytsch, S. (2021b). Stochastic gradient descent with noise of machine learning type. part ii:
Continuous time analysis. arXiv preprint arXiv:2106.02588.

Wu, J., Hu, W., Xiong, H., Huan, J., Braverman, V., and Zhu, Z. (2020). On the noisy gradient descent
that generalizes as sgd. In International Conference on Machine Learning, pages 10367–10376.
PMLR.

Wu, L., Zhu, Z., and E, W. (2017). Towards Understanding Generalization of Deep Learning:
Perspective of Loss Landscapes. ArXiv e-prints.

Xie, Z., Sato, I., and Sugiyama, M. (2021). A diffusion theory for deep learning dynamics: Stochastic
gradient descent exponentially favors flat minima. In International Conference on Learning
Representations.

Xing, C., Arpit, D., Tsirigotis, C., and Bengio, Y. (2018). A walk with sgd. cite
arxiv:1802.08770Comment: First two authors contributed equally.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding deep learning
requires rethinking generalization.

Zhang, C., Liao, Q., Rakhlin, A., Miranda, B., Golowich, N., and Poggio, T. (2018). Theory of deep
learning iib: Optimization properties of sgd. arXiv preprint arXiv:1801.02254.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. (2019). The anisotropic noise in stochastic gradient
descent: Its behavior of escaping from sharp minima and regularization effects. In International
Conference on Machine Learning, pages 7654–7663. PMLR.

Ziyin, L., Li, B., and Meng, X. (2022a). Exact solutions of a deep linear network. arXiv preprint
arXiv:2202.04777.

Ziyin, L., Liu, K., Mori, T., and Ueda, M. (2022b). Strength of minibatch noise in SGD. In
International Conference on Learning Representations.

Zou, D., Wu, J., Braverman, V., Gu, Q., and Kakade, S. M. (2021). Benign overfitting of constant-
stepsize sgd for linear regression. arXiv preprint arXiv:2103.12692.

12

Published as a conference paper at ICLR 2022

A ADDITIONAL EXPERIMENTS

A.1 PHASE DIAGRAM OF THE FOURTH-ORDER LOSS FUNCTION

With two proper local minima, the fourth-order loss function is a more realistic loss function than
the one we considered in Sec. 5.1. We also performed one experiment in the main text (See Fig. 1).
Here, we plot its empirical phase diagram in Figure 4. We see that for this loss landscape also, there
is some region such that for all λ, SGD converges to the local maximum. This loss landscape is very
difficult to study in discrete time as it is known to lead to chaotic behavior at large learning rate (May,
1976). Therefore, we alternatively try to understand this landscape using continuous approximation.
See Sec. B.

1.0 0.5 0.0 0.5 1.0
a

0.0

0.5

1.0

1.5

2.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Escape probability from the local maximum as a function of a and λ with fourth-order
loss landscape. The parameters space is divided into an absorbing phase where w is attracted to the
local maximum and an active phase where w escapes to infinity successfully. The orange line is the
theoretical phase transition line for the quadratic loss function. We see that when λ is small, the line
based on quadratic loss also gives good agreement with the fourth-order loss. This suggests that part
of this result is universal and independent of the details of the loss function.

A.2 ESTIMATING THE ESCAPE RATE

In the escape rate experiments, the empirical results are obtained from the proposed approximation.
Here, we show that it is valid. See Fig. 5, where we plot the estimated γ as a function of the training
step. We see that the estimated value converges within about 20 steps. We, therefore, estimate the
escape rates at time step 100 in the main text.

20 40 60 80 100
t

0.4

0.2

0.0

0.2

0.4

γ

λ= 0.2

λ= 0.5

λ= 0.8

λ= 1.5

Figure 5: Escape rate γ as a function of time step t obtained when a = −1, showing that γ, defined in
Equation (73), is indeed a well-defined quantity when t is large. γ becomes stable after roughly 40
steps.

A.3 ESCAPE RATE EXPERIMENTS

This section illustrates the slow escape problem studied in Sec. 5.2. See Fig. 6. γ is calculated by
averaging the first 50 time steps across 2000 independent runs. We see that, as our theory predicts,
as ∣a∣ gets closer to 0, the optimal escape rate decreases towards 0. This implies that there exists
a landscape such that SGD is arbitrarily slow at learning, independent of parameter tuning. One
additional observation is that the optimal learning rate is neither too large nor too small, i.e., there
seems to be a tradeoff between the escape speed and escape probability (and between the speed and
stability). See also the discussion at the end of Sec. 5.2.

13

Published as a conference paper at ICLR 2022

1.0 0.5 0.0 0.5 1.0
a

0.0

0.5

1.0

1.5

2.0

λ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.4

0.2

0.0

0.2

0.4

γ

λ= a
2(a− 1)

a= − 3

a= − 2

a= − 1

a= 0

a= 1

Figure 6: Escape rate γ as a function of learning rate λ with quadratic loss landscape, obtained by simulations.
We note that the escape-rate analysis yields results which are compatible with the phase diagram.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0

2

4

6

8

10

12

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0

5

10

15

20

25

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0

100

200

300

400

500

600

700

Figure 7: Evolution of the distribution of w in a landscape where two flat minima and two sharp minima exist.
As Proposition 4 shows, the model parameters converge to the sharper minima even if initialized in the flat
minimum. Left: Initialization. Mid: step 2. Right: step 10000.

A.4 CONVERGENCE TO THE SHARPER MINIMUM

We use the same 2-dimensional loss landscape defined in Sec. 5.3. The experiment is run with 2000
independent simulations and learning rate λ = 0.05. See Fig. 7, where we overlap the underlying
landscape with the empirical distribution (the heat map). We see that, even though the initialization
overlaps significantly with the local flatter minimum, all points converge to the sharper minimum, as
the theorem predicts.

A.5 INADEQUACY OF STANDARD ASSUMPTIONS FOR THE NEURAL NETWORK EXAMPLE

In this section, we show that the standard assumptions in the previous literature do not hold for the
example studied in Sec. 6.3. One common assumption is that the loss function is ρ-Hessian Lifschitz.

Definition 5. A loss function L is said to be ρ-Hessian Lifschitz if, for some ρ > 0,

∀w,w′, ∣∣∇2L(w) − ∇2L(w)∣∣ ≤ ρ∣∣w −w′∣∣. (15)

This certainly does not hold for the example we considered. Explicitly, let w2 = 0, the Hessian H(w)
of the loss function is

Hw1,w1 =Hw1,w2 =Hw2,w1 = 0, (16)

and
Hw2,w2 = −w2

1. (17)

Let w1 →∞ violates the ρ-Hessian Lifschitz property.

Another common assumption for the non-convex setting is the PL condition.

Definition 6. Let L∗ be the value of L at the global minimum. A loss function L is said to satisfy
the PL (Lojasiewitz) condition if

∀w, ∣∣∇L(w)∣∣2 ≥ µ(L(w) −L∗), (18)

for some µ > 0.

This also does not hold due to the existence of the saddle point. Let (w1,w2) = (0,0). The gradient
is zero, but the right-hand side is greater than 0.

Recently, the correlated negative curvature assumption has been proposed to study the escaping
behavior of SGD.

14

Published as a conference paper at ICLR 2022

Definition 7. Let vw be the eigenvector of the minimum eigenvalue of the HessianH(w). L satisfies
the correlated negative curvature assumption if, for some γ > 0,

∀w,Ex[⟨vw,∇L(x,w)⟩2] > γ (19)

where x is the data point.

This also does not hold. The point (0,0) violates this condition because ∇L(x,w) = 0 for all x at(w1,w2) = (0,0). In fact, it is exactly this point that violates this condition that the SGD converges
to in this example.

Recently, the one point strongly convex assumption has been proposed to study the escaping behavior
of SGD.
Definition 8. A loss function is said to satisfy the c-one point strongly convex condition with respect
to w∗ for all gradient noise ε, c > 0, define v =w − λ∇L(w), we have

⟨−∇EεL(v − λw,w∗ − y) ≥ c∣∣w∗ − v∣∣22, (20)

where ε is the random noise caused by minibatch sampling.

This assumption is equivalent to that the loss landscape is strongly convex after convoluting with the
noise. This condition implies that there is only a single stationary point. However, this is not the case,
consider any point with w1 = 0 and w2 ≤ 0. These points have zero gradient for w1 ≤ 0 and so ε = 0
with probability 1. Then, these points all have the same loss after the convolution:

E[L(v − λε)] = L(v), (21)

which either imply that the landscape is not convex or that there is more than 1 stationary point, and
so the system is not one point strongly convex 1.

1One notices that the origin, where all the parameters are zero, is a special point in the problem. In fact, the
origin may be a very special point in the landscape of deep neural networks in general. For example, see Ziyin
et al. (2022a).

15

Published as a conference paper at ICLR 2022

B CONTINUOUS-TIME APPROXIMATION WITH FOKKER-PLANCK EQUATION

In this section, we study the examples we studied in the main text in a continuous-time approximation,
in order to understand the unique aspects of discrete-time SGD. Compared with the discrete-time
analysis, continuous-time analysis is usually more powerful in terms of calculation: it is able to deal
with more complicated potentials.

B.1 FOKKER-PLANCK EQUATION AND ITS STATIONARY DISTRIBUTION

Recall that the SGD update takes the form (see Sec. 2)

∆wt = −λ∇L + λ√Cηt, (22)

when λ < 1, the above equation may be approximated by a continuous-time Ornstein-Uhlenbeck
process (Mandt et al., 2017)

dw(t) = −λ∇Ldt + λ√
S

√
C(w)dW (t), (23)

where λ is the learning rate; we have also introduced S as the batch size. dW (t) is a stochastic
process satisfying

{dW (t) ∼ N(0, dtI),
E[dW (t)dW (t′)] ∝ δ(t − t′). (24)

By the definition of the underlying discrete-time process, the term dw(t) depends only on w(t) and
has no dependence on w(t + dt). Thus, the stochastic integration should be interpreted as Ito.

For simplicity, we only consider one-dimensional version of the Fokker-Planck, which is

∂P [w, t∣w(0),0]
∂t

= − ∂

∂w
J(w, t∣w(0),0), (25)

where J[w, t∣w(0),0] is the probability flow. The current J[w, t∣w(0),0] is:

J[w, t∣w(0),0] = λ∂L
∂w

P [w, t∣w(0),0] + λ2

2S

∂

∂w
{C(w)P [w, t∣w(0),0]}. (26)

Assuming that the SGD dynamics is ergodic, there is a unique stationary distribution for w when
t→∞ that can be found to be

P (w) ∝ 1

C(w) exp [−2S

λ
∫ dw

1

C(w) ∂L∂w] . (27)

We will apply this equation to study the relevant problems in this work.

B.2 A GENERAL CASE

In this section, we consider (a slightly more general version of) the fourth-order potential we studied
in the main text. The average loss landscape in this model is

L(w) = 1

4
aw2 + 1

4
bw4, (28)

where b > 0, guarantees that the w is bounded regardless the value of a. In the limit of b → 0, this
function reduces to saddle point problem we studied in Sec. 5.1. Besides the SGD noise, additive
noise is also present in the dynamics. The variance of the additive noise has no dependence on w.
When the additive noise is present, the update rule (equation of motion) is

dw(t) = −[λ(a/2)w(t) + bw3(t)]dt + ληm(t) + ληa(t), (29)

where both ηm(t) and ηa(t) are both Ornstein-Uhlenbeck process, denoting multiplicative noise
and additive noise respectively. The w-dependent covariance of w is C(w) = w2. The SGD noise is
thus a multiplicative noise. ηm(t) and has a variance w(t)2

S
dt, while the additive noise ηa(t) has a

variance of σ2dt, where σ is a positive constant denoting the strength of the additive noise. If the

16

Published as a conference paper at ICLR 2022

multiplicative noise is seen as a part of the loss landscape, (2) coincides with the 2nd-order term
in the loss landscape. There is no correlation between the additive noise and the SGD noise, i.e.
E[ηm(t)ηa(t′)] = 0. The additive noise can be seen as the artificially injected noise, a technique
sometimes used for aiding the escape or for Bayesian learning purposes (Jin et al., 2017; Welling and
Teh, 2011).

The additive noise vanishes in the limit of σ → 0, and the model becomes a normal SGD with
4th-order loss function. It is always possible to define a noise η′(t), whose contribution is equivalent
to the contribution of both the SGD and the additive noise, and the equation of motion becomes

dw(t) = −[λ(a/2)w(t) + bw3(t)]dt + λη′(t). (30)

This transformed noise η′(t) thus has 0 mean and a variance of (w(t)2
S

+ σ2)dt. Define η(t) =
η′(t)/√w(t)2

S
+ σ2, the equation of motion becomes

dw(t) = −λ[(a/2)w(t) + bw3(t)]dt + λ
√

w(t)2
S

+ σ2η(t). (31)

Comparing with (23), one finds
C(w) = w2 + Sσ2. (32)

The solution of the corresponding Fokker-Planck equation is

P (w) ∝ 1

w2 + Sσ2
exp [−2S

λ
∫ (a/2)w + bw3

w2 + Sσ2
dw]

= (w2 + Sσ2)−1 exp
⎡⎢⎢⎢⎣−

2Sb

λ
∫ (a

2b
− Sσ2)w +w3 + Sσ2w

w2 + Sσ2
dw

⎤⎥⎥⎥⎦
= (w2 + Sσ2)−1 exp [−2Sb

λ
∫ wdw − 2Sb

λ
(a

2b
− Sσ2)∫ w

w2 + Sσ2
dw]

= (w2 + Sσ2)−1 exp [−Sb
λ
w2 − (Sa

2λ
− S2σ2b

λ
) ln (w2 + Sσ2)].

Further simplification yields

P (w) ∝ (w2 + Sσ2)−1−Sa2λ +S2bσ2

λ exp [−Sb
λ
w2]. (33)

The function P (w) is finite everywhere and decays exponentially to 0 when w →∞, regardless of the

values of the parameters a, b, σ, S. This indicates that ∫ ∞−∞ dw(w2 + Sσ2)−1−Sa2λ +S2bσ2

λ exp [−Sb
λ
w2]

has a well-defined value. As a consequence, there is no concentration of measure. Thus, w(t) can be
fall into any interval with finite probability after big enough t, indicating that w(t) can be arbitrarily
far away from 0. In practice, this means that w(t) escapes from the saddle point at w = 0 regardless
of the value of the parameters.

1.0 0.5 0.0 0.5 1.0
w

0.5

0.0

0.5

1.0

1.5

2.0

Loss landscape
Initial distribution
Step 10
Final distribution

Figure 8: Stationary distribution of w with additive noise of σ = 0.1 with quadratic loss landscape.
All the other parameters are identical to those in Fig.1. This distribution has finite width.

The effect of additive noise is better understood when b = 0. In this case, which corresponds to the
case shown in Fig.1, w neither concentrates at 0, nor escapes to ±∞. Instead, it stays near 0 without

17

Published as a conference paper at ICLR 2022

converging to it. The stationary distribution of w when b = 0, obtained by numerical simulation, is
shown in Fig.8. The other settings are identical to the ones in Fig.1. The stationary distribution exists,
but w does not concentrate at w = 0 in the stationary distribution. First of all, this figure shows that
the additive noise helps SGD to escape saddle point. If the designed landscape is a part of a realistic
landscape, having a broader distribution means having more chance of being attracted by another
minimum. However, this figure also shows that w would stay in the neighborhood of w = 0 until the
noise is big enough. Thus, having additive noise and long enough training time does not guarantee
the efficiency of escape.

In the language of Bayesian inference, ln [P (w)] is the likelihood of w. ŵ, the most probable value
of w, is defined by the relation

d ln [P (w)]
dw

∣
w=ŵ = 0. (34)

which reads

0 = { d

dw
[(−1 − Sa

2λ
+ S2bσ2

λ
) ln [(w2 + Sσ2)] − Sb

λ
w2]}∣

w=ŵ
= ⎧⎪⎪⎨⎪⎪⎩2w

−1 − Sa
2λ

+ S2bσ2

λ

w2 + Sσ2
− 2Sb

λ
w

⎫⎪⎪⎬⎪⎪⎭
RRRRRRRRRRRRw=ŵ

= {w [−1 − Sa
2λ

+ S2bσ2

λ
− Sb
λ

(w2 + Sσ2)]}∣
w=ŵ

= ŵ (λ
Sb

+ a

2b
+ ŵ2) .

The likelihood maximizer is

ŵ = ⎧⎪⎪⎨⎪⎪⎩
0, a > − 2λ

S
;

±√− λ
Sb
− a

2b
, a < − 2λ

S
.

(35)

When a > − 2λ
S

, the maximum likelihood parameter is w = 0. When a < − 2λ
S

, w = ±√− λ
Sb
− a

2b

equally likely. This resembles the phase transition in statistical physics and we call − 2λ
S

the critical
value of a, or, the “critical a". For the energy landscape, when a > 0 there is only one global minimum
at w = 0, and when a < 0 there are two global minima at w = ±√− a

2b
. Comparing with the maximum

likelihood solutions, we see that the likelihood maximizer given by SGD is in fact a biased estimator
of the underlying minima.

There is a bias term introduced by the SGD noise in both the critical a and the value of the most
probable w. This term vanishes when S →∞, i.e. when the SGD noise vanishes. This indicates that,
when the noise is state-dependent, there is no reason to expect SGD to be an unbiased or consistent
estimator of the minimizer, as some works assume.

B.3 4-TH ORDER POTENTIAL WITH MULTIPLICATIVE NOISE

In this subsection, we study a 4-th order loss landscape in SGD dynamics without additive noise. The
average loss function with 4th-order term is

L(w) = aw2

4
+ bw4

4
; (36)

the SGD update rule (i.e., the equation of motion) in this case is

dw(t) = −λ[(a/2)w(t) + bw3(t)]dt + λ 1√
S
η(t)w(t), (37)

where the definition of η is identical to the previous example. The solution of corresponding stationary
Fokker-Planck equation is

P (w) ∝ w−2−Saλ exp [−Sb
λ
w2]. (38)

18

Published as a conference paper at ICLR 2022

When − Sa
2λ

< 1, (39)

P (w) diverges at w = 0. The normalization factor, i.e. integral ∫ +∞−∞ dww−2−Saλ exp [−Sb
λ
w2], also

diverges due to the divergence at w = 0. This solution could be seen as a limit of (33) when the
additive noise vanishes. As the strength of the additive noise σ → 0, the normalization factor keep
growing while the distribution remains normalized. For w ≠ 0, the function w−2−Saλ exp [−Sb

λ
w2]

is always finite. Thus, in the limit σ → 0, P (w) approaches 0 everywhere except for at w = 0. It
is straight forward to check that the normalization factor diverges slower that P (0) as σ → 0. As a
consequence, when σ = 0, P (w) diverges at w = 0 and P (w) becomes a Dirac delta function. This
corroborates with the result in Sec. 5.3 that a small a leads to a concentration of measure towards the
local maximum.

Compared with (33), one finds that the additive noise prevents the concentration of measure. Thus,
in practice, the additive noise helps SGD escape the local minimum or saddle point. However, the
existence of additive noise does not change the critical a and the position of the peaks.

B.4 QUADRATIC POTENTIAL

At last, we consider the continuous approximation of the model treated in the Sec. 5.1. Let the loss
function be

L̂ = x
2
w2, (40)

and we have

{Ex[ĝt] = a
2
wt

C(wt) = 1
S
E [∇`∇`T] − 1

S
∇; L(wt)∇L(wt)T = 1

S
E[x2]w2

t .
(41)

The SGD update rule (i.e., the equation of motion) in 1d is

∆w(t) = −λ ∂

∂w
L̂ (42)

= −λxw(t). (43)

With the continuous approximation, the equation of motion becomes

dw(t) = −λ(a/2)w(t)dt + λ 1√
S
w(t)η(t), (44)

where η(t) ∼ N(0,√dt). By comparing with the 1d Fokker-Planck equation,

{L(w) = a
4
w2;

B(w) = w. (45)

The stationary distribution of w is

P (w) ∝ 1

w2
exp [−S

λ
∫ dw

a

w
] ∝ w−2−Saλ . (46)

The only difference between the solution in this case and the one in the 4th-order-loss case is the
exponential factor, showing that the 4th-order potential does nothing but keeping w(t) bounded.
The function w−2−Saλ diverges at w = 0 or w = ±∞ depending on the value of a. However, the
stationary distribution, being a limit of (33), is well defined. In the case that it diverges at w = 0,
P (w) becomes a delta function. On the contrary, there are two peaks infinitely far away from 0 when
w−2−Saλ diverges at w = ±∞. Being able to escape requires that the probability measure of w does
not concentrate at 0, corresponding to

− Sa
2λ

> 1. (47)

This straight line agrees approximately with the boundary of the lower branch of the phase diagram
in Fig. 9. This condition of escaping is worth interpretation. Note that a is the local curvature and
reflects the strength of the gradient signal. In contrast, the strength of the SGD noise is proportional

19

Published as a conference paper at ICLR 2022

to λ/S.2 The term Sa/2λ is thus the signal to noise ratio of this learning problem, and the escaping
condition is exactly when the signal becomes larger than the noise. This analysis, therefore, pinpoints
the cause of the convergence to saddle points to be the dominance of the SGD noise over the gradient.

Also, this example raises an interesting question regarding the mechanism of SGD that causes a
convergence to the local maximum. From the perspective of the types of convergence, the SGD
mechanism behind proposition 1 may be different from that of proposition 2. However, from the
perspective of continuous-time analysis, there is really the same mechanism that is governing the SGD
dynamics behind proposition 1 and 2 (namely, the fact that the noise has dominated the gradient).

1.0 0.5 0.0 0.5 1.0
a

0.0

0.5

1.0

1.5

2.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Escape probability as a function of a and λ. The parameters space is divided into an
absorbing phase where w is attracted to the local maximum (in dark blue) and an active phase
where w successfully escapes the two central bins (in white). The orange line denotes the analytical
convergence bound on λ as a function of a obtained in the discrete-time calculation, while the red
dashed line denotes the same bound obtained by the continuous-time calculation. Here the batch
size S is set to 1. The result given by the continuous-time process agrees well with the discrete-time
process in the small λ small a limit.

2See Ziyin et al. (2022b), for example.

20

Published as a conference paper at ICLR 2022

C DELAYED PROOFS

C.1 TWO FREQUENTLY USED LEMMAS

We first prove the following lemma regarding the limiting distribution of ln ∣wt∣.
Lemma 1. Let the loss function be L̂(w) = 1

2
xw2, x ∼ p(x) such that Var[x] = σ2 and Ex[x] = a <

0 and that p(x) is continuous in a δ-neighborhood of x = 1, and w0 ≠ 0. Then, for wt generated by
SGD after t time steps,

1√
t
(ln ∣wt/w0∣ − µ) →d N(0, s2) (48)

where µ = Ex[ln ∣1 − λx∣] and s2 = Var[ln ∣1 − λx∣], where λ > 0 is the learning rate.

Proof. After t steps of SGD, we have

wt = t∏
i=1[1 − λxi]w0. (49)

This leads to

ln ∣wt
w0

∣ = t∑
i=1 ln ∣1 − λxi∣. (50)

Now, since p(1−x) is continuous in the neighborhood of 1 by assumption, we can apply Proposition 6
(appendix) to show that the first and second moment of ln ∣1 − λx∣ exists, whereby we can apply the
central limit theorem to obtain

1√
t
(ln ∣wt

w0
∣ − tE[ln ∣1 − λx∣]) →d N(0, s2), (51)

where s2 = Var[ln ∣1 − λx∣]. This proves the lemma. ◻
Proposition 6. Ex∼p(x)[ln2 ∣x∣] is finite if the second moment of p(x) exists and if p(x) is continuous
in the neighborhood of x = 0.

Proof. Since p(x) is continuous in the neighborhood of x = 0, then there exists δ > 0 such that for all∣ε∣ < δ, ∣p(δ) − p(x)∣ ≤ c for some c > 0. This means that we can divide the integral over p(x) into
three regions:

Ex∼p(x)[ln ∣x∣2] = ∫ ∞
−∞ dxp(x) ln2 ∣x∣ (52)

= ∫ −δ
−∞ dxp(x) ln2 ∣x∣ + ∫ δ

−δ dxp(x) ln2 ∣x∣ + ∫ ∞
δ

dxp(x) ln2 ∣x∣. (53)

The second term can be bounded as

∫ δ

−δ dxp(x) ln2 ∣x∣ ≤ [p(0) + c]∫ δ

−δ dx ln2 ∣x∣ (54)

= 2[p(0) + c]∫ δ

0
dx ln2 x (55)

= 2[p(0) + c]x(ln2 x − 2 lnx + 2)∣δ
0

(56)

= 2[p(0) + c]δ(ln2 δ − 2 ln δ + 2) < ∞. (57)

The first and the third term can also be bounded. Since ln ∣x∣ is a convex function in the regions x ≥ δ
and x ≤ δ respectively. We can find linear functions ax+ b of x such that ax+ b ≥ lnx for x ≥ δ. This
leads to

∫ ∞
δ

dx p(x) ln2 ∣x∣ ≤ ∫ ∞
δ

dx p(x)(ax + b)2 (58)

≤ ∫ ∞
−∞ dx p(x)(ax + b)2 (59)

= ∫ ∞
−∞ dxp(x)(a2x2 + 2abx + b2) (60)

= a2µ2 + 2abµ1 + b2, (61)

21

Published as a conference paper at ICLR 2022

where we have used the notation E[x2] = µ2 and E[x1] = µ, which by assumption is finite. The case
for x ≤ −δ is completely symmetric and can also be bounded by a2µ2 + 2abµ1 + b2. Therefore, we
have shown that

Ex∼p(x)[ln ∣x∣2] ≤ 2(a2µ2 + 2abµ1 + b2) + 2(p(0) + c)δ(ln2 δ − 2 ln δ + 2) ≤ ∞. (62)

This proves the proposition. ◻
Remark. Note that, the continuity in the neighborhood of 0 is not a necessary condition. For example,
one can also prove that Ex[ln2 ∣x∣] is finite if p(x) is bounded and its second moment exists.

C.2 PROOF OF PROPOSITION 2

Proof. The case when w0 = 0 is trivially true, we therefore consider the case w0 ≠ 0. By Lemma 1,
we have

1√
t
zt →d N(0, s2) (63)

where we have defined zt = 1√
t
(ln ∣wt

w0
∣ − tµ), µ = E[ln ∣1 − λx∣] and s2 = Var[ln ∣1 − λx∣]. This

means that

lim
t→∞p(1√

t
ln ∣wt

w0
∣) = lim

t→∞
1√

2πs2
exp [− 1

2ts2
(ln ∣wt

w0
∣ − tµ)] . (64)

By definition, ∣wt∣ = ∣w0∣e√tz+tµ. Therefore, we have

lim
t→∞P (∣wt∣ > ε) = lim

t→∞P (∣w0∣e√tz+tµ > ε) = {0 if µ < 0;

1 if µ > 0,
(65)

for all ε > 0. In other words, since µ and σ are t-independent, in the infinite t limit, the sign of
µ becomes crucial. When µ > 0, the limiting distribution diverges to infinity; when µ < 0, ∣wt∣
converges to 0 in probability. This finishes the proof. ◻
C.3 PROOF OF COROLLARY 1

Proof. By the definition of p(x),

µ = E[ln ∣1 − λx∣] (66)

= 1

2
ln ∣1 − λ∣ + 1

2
ln ∣1 − λ(a − 1)∣ (67)

= 1

2
ln ∣(1 − λ)(1 − λ(a − 1))∣, (68)

while s2 is indeed constant in time. Therefore, the asymptotic distribution of wt is solely dependent
on the sign of µ. The above equation implies that µ ≥ 0 when

∣(1 − λ)[1 − λ(a − 1)]∣ > 1. (69)

When λ ≤ 1, the above equation is solved by

λ < a

a − 1
. (70)

When λ > 1, the above equation solves to

λ ≥ a −
√
a2 − 8a + 8

2(a − 1) , (71)

only when the learning rate satisfies the above two conditions can it escape from the local maximum.
Conversely, SGD cannot escape the local minimum when

a

a − 1
≤ λ ≤ a −

√
a2 − 8a + 8

2(a − 1) . (72)

We are done. ◻
22

Published as a conference paper at ICLR 2022

C.4 PROOF OF PROPOSITION 3

Proof. By Lemma 1, we have that
1

t
E [ln ∣wt

w0
∣] = µ = 1

2
ln{(1 − λ)[1 − λ(a − 1)]}, (73)

where the second equality follows from the assumption that λ < 1. We differentiate with respect to λ
to find the critical escape rate:

λ∗ = a

2(a − 1) . (74)

Since µ is convex in λ, it follows that this critical escape rate is the maximum escape rate. Plugging
this into µ, we obtain that

γ∗ = µ(λ∗) = 1

2
ln

(2 − a)2
4(1 − a) = ln

2 − a
2
√

1 − a ≤ ε, (75)

i.e., the optimal escape rate can be made smaller than any ε if we set

∣a∣ ≤ 2 ∣−eε√e2ε − 1 − e2ε + 1∣ . (76)

This finishes the proof. ◻
C.5 PROOF OF PROPOSITION 4

Proof. It suffices to show that w1 converges to 0 with probability 1 because, if this is the case, the

only possible local minimum to converge to is (w1,w2) = (0,±√ 1+a
2

).

The SGD dynamics is

{∆w1,t = −λ(−2w1,t + 4w3
1,t + 12w2

2,tw1,t + xtbw1,t);
∆w2,t = −λ(−2w2,t + 4w3

2,t + 12w2
1,tw2,t − 2aw2,t). (77)

We focus on the dynamics of w1. By the definition of the noise x, we have that

w1,t+1 = {w1,t[1 + λ(2 − b) − 4λw2
1,t − 12λw2

2,t] with probability 1/2;
w1,t[1 + λ(2 + b) − 4λw2

1,t − 12λw2
2,t] with probability 1/2.

(78)

Equivalently,

∣w1,t+1
w1,t

∣ = {∣1 + λ(2 − b) − 4λw2
1,t − 12λw2

2,t∣ with probability 1/2;∣1 + λ(2 + b) − 4λw2
1,t − 12λw2

2,t∣ with probability 1/2.
(79)

Since 0 ≤ 4λw2
1,t + 12λw2

2,t ≤ 16λ, we can define a new random variable rt:

rt ∶= r(xt) ∶= {max(∣1 + λ(2 − b)∣ , ∣1 + λ(2 − b) − 16λ∣) if xt ≥ 0;
max(∣1 + λ(2 + b)∣ , ∣1 + λ(2 + b) − 16λ∣) if xt ≤ 0.

(80)

By construction, rt ≥ ∣w1,t+1/w1,t∣ for all values of xt. This implies that ∣w1,t/w1,0∣ ≤ ∏ti=1 rt, and
so,

P (∣w1,t/w1,0∣ > ε) ≤ P (∣ t∏
i=1 rt∣ > ε) , (81)

i.e., if∏ti=1 rt converges to 0 with probability 1, w1,t must also converge to zero with probability 1.

We let b = 1
λ
− 6 (note that this is the value of b such that rt is minimized for both cases), and we

obtain that

rt = {8λ if xt ≥ 0;
2 max(∣1 − 2λ∣ , ∣1 − 10λ∣) if xt ≤ 0.

(82)

The rest of the proof follows from applying the central limit theorem to 1√
t
∑ti=1 ln rt as in Lemma 1.

The result is that∏ti=1 ri converges to 0 with probabiliy 1 if

µ ∶= E[ln rt] = 1

2
ln[8λmax(∣1 − 2λ∣ , ∣1 − 10λ∣)] < 0. (83)

The above inequality solves to

λ ≤ 1

20
(1 +√

6) (84)

which is of order O(1) as stated in the theorem statement. This proves the proposition. ◻
23

Published as a conference paper at ICLR 2022

C.6 PROOF OF PROPOSITION 5

Proof. First we note that, since ∣wt∣ ≤ 1

∣ĝt∣ = ∣xtwt∣ ≤ 1 + a. (85)

By the definition of the AMSGrad algorithm, we have that

vt = β2vt−1 + (1 − β2)ĝ2t ; (86)
v̂t = max(v̂t−1, vt). (87)

Since v0 = 0 and ∣ĝt∣ = ∣xtwt∣ ≤ 1 + a, we have that

vt ≤ 1 + a (88)

for all t, and so
v̂t ≤ max

t
v̂t = max

t
vt ≤ 1 + a. (89)

Meanwhile, since v̂t is a monotonically increasing series and is upper bounded by 1 + a, it must
converge to a constant 0 < c ≤ 1 + a.

Now, as before, we want to upper bound the random variable

1√
t
(ln ∣wt+1

wt
∣ − µ) = 1√

t

t∑
i=1(ln ∣1 − λ√

v̂t
xt∣ − µ) , (90)

where µ = E[ln ∣wt+1
wt

∣]. Since v̂t converges to c, there must exists a positive integer N(ε) such that
for any ε > 0, v̂N ≤ c − ε. This allows us to divide the sum to two terms:

1√
t
(ln ∣wt+1

wt
∣ − µ) = 1√

t

t∑
i=1(ln ∣1 − λ√

v̂t
xt∣ − µ) (91)

= 1√
t

N∑
i=1(ln ∣1 − λ√

v̂t
xt∣ − µ) + 1√

t

t∑
i=N+1(ln ∣1 − λ√

c − ktxt∣ − µ) , (92)

where we introduced 0 ≤ kt ≤ ε. But the first term is of order O(1/√t) and converges to 0, and so for
sufficiently large t, the first term is also smaller than arbitrary ε. This means that

1√
t
(ln ∣wt+1

wt
∣ − µ) ≤ 1√

t

t∑
i=1(ln ∣1 − λ√

c − ktxt∣ − µ) + ε, (93)

We can now consider the random variable

∣1 − λ√
c − ktxt∣ =

⎧⎪⎪⎨⎪⎪⎩
∣1 − λ√

v̂t
∣ with probability 1

2
;

1 + λ√
v̂t

(1 − a) with probability 1
2
.

(94)

We now define a new random variable

rt(xt) ∶= {m if xt = 1;
1 + λ√

c−ε(1 − a) if xt = −1 + a. (95)

where we defined the constant m ∶= max(∣1 − λ/√c∣, ∣1 − λ/√c − ε∣). One can easily check that
rt ≥ ∣1 − λ√

c−ktxt∣. This means that

P (∣wt+1
w0

∣ > α) ≤ P (t∏
i=0 ri > α +O(1/√t)) , (96)

i.e., if rt converges to 0 in probability, ∣wt+1
w0

∣ must also converge to 0 in probability. Proceeding as in
the proof of Proposition 2. One finds that the condition for rt to converge in probability to 0 is

ln ∣m [1 + λ√
c − ε(1 − a)]∣ < 0, (97)

24

Published as a conference paper at ICLR 2022

which is equivalent to

∣m [1 + λ√
c
(1 − a)]∣ < 1. (98)

Since ε is arbitrary, we let ε→ 0 and obtain

∣(1 − λ√
c
)[1 + λ√

c
(1 − a)]∣ ≤ 1. (99)

Denote λ/√c as λ′, this condition solves to

a

a − 1
≤ λ′ ≤ a −

√
a2 − 8a + 8

2(a − 1) . (100)

Setting a such that the above condition is met, AMSGrad will converge to 0 in probability. For λ < 1,

This completes the proof. ◻

25

185

Publication 5: Exact solutions of a deep linear network

Exact Solutions of a Deep Linear Network

Liu Ziyin1, Botao Li2, Xiangming Meng3
1Department of Physics, The University of Tokyo

2Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL,
CNRS, Sorbonne Université, Université de Paris Cité, Paris, France

3Institute for Physics of Intelligence, Graduate School of Science, The University of Tokyo

Abstract

This work finds the analytical expression of the global minima of a deep linear
network with weight decay and stochastic neurons, a fundamental model for
understanding the landscape of neural networks. Our result implies that zero is
a special point in deep neural network architecture. We show that weight decay
strongly interacts with the model architecture and can create bad minima at zero in
a network with more than 1 hidden layer, qualitatively different from a network
with only 1 hidden layer. Practically, our result implies that common deep learning
initialization methods are insufficient to ease the optimization of neural networks
in general.

1 Introduction

Applications of neural networks have achieved great success in various fields. One central open
question is why neural networks, being nonlinear and containing many saddle points and local
minima, can sometimes be optimized easily (Choromanska et al., 2015a) while becoming difficult and
requiring many tricks to train in some other scenarios (Glorot and Bengio, 2010; Gotmare et al., 2018).
One established approach is to study the landscape of deep linear nets (Choromanska et al., 2015b),
which are believed to approximate the landscape of a nonlinear net well. A series of works proved
the famous results that for a deep linear net, all local minima are global (Kawaguchi, 2016; Lu and
Kawaguchi, 2017; Laurent and Brecht, 2018), which is regarded to have successfully explained why
deep neural networks are so easy to train because it implies that initialization in any attractive basin
can reach the global minimum without much effort (Kawaguchi, 2016). However, the theoretical
problem of when and why neural networks can be hard to train is understudied.

In this work, we theoretically study a deep linear net with weight decay and stochastic neurons, whose
loss function takes the following form in general:

ExEϵ(1),ϵ(2),...,ϵ(D)
⎛⎝
d,d1,d2,...dD∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2
W
(2)
i2i1

ϵ
(1)
i1
W
(1)
i1i
xi − y⎞⎠

2

´¹¹¹¸¹¹¹¶
L0

+γu∣∣U ∣∣22 + D∑
i=1γi∣∣W (i)∣∣2F

´¹¹¹¸¹¹¶
L2 reg.

,

(1)
where Ex denotes the expectation over the training set, U and W (i) are the model parameters, D is
the depth of the network,1 ϵ is the noise in the hidden layer (e.g., due to dropout), di is the width
of the i-th layer, and γ is the strength of the weight decay. Previous works have studied special
cases of this loss function. For example, Kawaguchi (2016) and Lu and Kawaguchi (2017) study the
landscape of L0 when ϵ is a constant (namely, when there is no noise). Mehta et al. (2021) studies

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1In this work, we use “depth" to refer to the number of hidden layers. For example, a linear regressor has
depth 0.

Figure 1: Left: A summary of the network landscape that is implied by the main results of this work when one
increases the weight decay strength γ while fixing other terms. We show that the landscape of a depth-1 net can
be precisely divided into two regimes, while, for D ≥ 2, there exists at least three regimes. The solid blue line
indicates that the division of the regimes is precisely understood. The dashed lines indicate that the conditions
we found are not tight and may be improved in the future. Right: ResNet18 on CIFAR10. The performance of a
linear regressor never drops to that of a trivial model, whereas the performance of ResNet18 drops to the level of
a trivial model, like a deep linear net with similar depth.

L0 with (a more complicated type of) weight decay but without stochasticity and proved that all the
stationary points are isolated. Another line of works studies L0 when the noise is caused by dropout
(Mianjy and Arora, 2019; Cavazza et al., 2018). Our setting is more general than the previous works
in two respects. First, apart from the mean square error (MSE) loss L0, an L2 regularization term
(weight decay) with arbitrary strength is included; second, the noise ϵ is arbitrary. Thus, our setting is
arguably closer to the actual deep learning practice, where the injection of noises to latent layers is
common, and the use of weight decay is virtually ubiquitous (Krogh and Hertz, 1992; Loshchilov and
Hutter, 2017). One major limitation of our work is that we assume the label y to be 1-dimensional,
and it can be an important future problem to prove whether an exact solution exists or not when y is
high-dimensional.

Our foremost contribution is to prove that all the global minimum of an arbitrarily deep and wide
linear net takes a simple analytical form. In other words, we identify in closed form the global minima
of Eq. (1) up to a single scalar, whose analytical expression does not exist in general. We then show
that it has nontrivial properties that can explain many phenomena in deep learning. In particular, the
implications of our result include (but are not limited to):

1. Weight decay makes the landscape of neural nets more complicated;
• we show that bad minima2 emerge as weight decay is applied, whereas there is no bad

minimum when there is no weight decay. This highlights the need to escape bad local
minima in deep learning with weight decay.

2. Deeper nets are harder to optimize than shallower ones;
• we show that a D ≥ 2 linear net contains a bad minimum at zero, whereas a D = 1 net

does not. This partially explains why deep networks are much harder to optimize than
shallower ones in deep learning practice.

3. Depending on the task, the common initialization methods (such as the Kaiming init.) can
initialize a deep model in the basin of attraction of the bad minimum at zero;

• common initialization methods initialize the models at a radius of roughly 1/√width
around the origin; however, we show that the width of the bad minimum is task-
dependent and can be larger than the initialization radius for tasks with a small margin
(∣∣E[xy]∣∣);

4. Thus, the use of (effective) weight decay is a major cause of various types of collapses in
deep learning (for example, see Figure 1).

Organization: In the next section, we discuss the related works. In Section 3, we derive the exact
solution for a two-layer net. Section 4 extends the result to an arbitrary depth. In Section 5, we
study and discuss the relevance of our results to many commonly encountered problems in deep
learning. The last section concludes the work and discusses unresolved open problems. All proofs
are delayed to Section B. Moreover, additional theoretical results on the effect of including a bias
term is considered in Section D.

2Unless otherwise specified, we use the word “bad minimum" to mean a local minimum that is not a global
minimum.

2

Notation. For a matrix W , we use Wi∶ to denote the i-th row vector of W . ∣∣Z ∣∣ denotes the L2 norm
if Z is a vector and the Frobenius norm if Z is a matrix. The notation ∗ signals an optimized quantity.
Additionally, we use the superscript ∗ and subscript ∗ interchangeably, whichever leads to a simpler
expression. For example, b2∗ and (b∗)2 denote the same quantity, while the former is “simpler."

2 Related Works

In many ways, linear networks have been used to help understand nonlinear networks. For example,
even at depth 0, where the linear net is just a linear regressor, linear nets are shown to be relevant
for understanding the generalization behavior of modern overparametrized networks (Hastie et al.,
2019). Saxe et al. (2013) studies the training dynamics of a depth-1 network and uses it to understand
the dynamics of learning of nonlinear networks. These networks are the same as a linear regression
model in terms of expressivity. However, the loss landscape is highly complicated due to the existence
of more than one layer, and linear nets are widely believed to approximate the loss landscape of a
nonlinear net (Kawaguchi, 2016; Hardt and Ma, 2016; Laurent and Brecht, 2018). In particular, the
landscape of linear nets has been studied as early as 1989 in Baldi and Hornik (1989), which proposed
the well-known conjecture that all local minima of a deep linear net are global. This conjecture
is first proved in Kawaguchi (2016), and extended to other loss functions and deeper depths in Lu
and Kawaguchi (2017) and Laurent and Brecht (2018). Many relevant contemporary deep learning
problems can be understood with deep linear models. For example, two-layer linear VAE models
are used to understand the cause of the posterior collapse problem (Lucas et al., 2019; Wang and
Ziyin, 2022). Deep linear nets are also used to understand the neural collapse problem in contrastive
learning (Tian, 2022). We also provide more empirical evidence in Section 5.

3 Two-layer Linear Net

This section finds the global minima of a two-layer linear net. The data point is a d-dimensional
vector x ∈ Rd drawn from an arbitrary distribution, and the labels are generated through an arbitrary
function y = y(x) ∈ R. For generality, we let different layers have different strengths of weight decay
even though they often take the same value in practice. We want to minimize the following objective:

Ld,d1(U,W) = ExEϵ

⎛⎝
d1∑
j

Ujϵj
d∑
i

Wjixi − y⎞⎠
2 + γw ∣∣W ∣∣2 + γu∣∣U ∣∣2, (2)

where d1 is the width of the hidden layer and ϵi are independent random variables. γw > 0 and
γu > 0 are the weight decay parameters. Here, we consider a general type of noise with E[ϵi] = 1
and E[ϵiϵj] = δijσ2 + 1 where δij is the Kronecker’s delta, and σ2 > 0.3 For shorthand, we use the
notation A0 ∶= E[xxT], and the largest and the smallest eigenvalues of A0 are denoted as amax and
amin respectively. ai denotes the i-th eigenvalue of A0 viewed in any order. For now, it is sufficient
for us to assume that the global minimum of Eq. (2) always exists. We will prove a more general
result in Proposition 1, when we deal with multilayer nets.

3.1 Main Result

We first present two lemmas showing that the global minimum can only lie on a rather restrictive
subspace of all possible parameter settings due to invariances in the objective.
Lemma 1. At the global minimum of Eq. (2), U2

j = γw

γu
∑iW

2
ji for all j.

Proof Sketch. We use the fact that the first term of Eq. (2) is invariant to a simultaneous rescaling of
rows of the weight matrix to find the optimal rescaling, which implies the lemma statement. ◻
This lemma implies that for all j, ∣Uj ∣ must be proportional to the norm of its corresponding row
vector in W . This lemma means that using weight decay makes all layers of a deep neural network
balanced. This lemma has been referred to as the “weight balancing" condition in recent works
(Tanaka et al., 2020), and, in some sense, is a unique and potentially essential feature of neural
networks that encourages a sparse solution (Ziyin and Wang, 2022). The following lemma further
shows that, at the global minimum, all elements of U must be equal.

3While we formally require γ and σ to nonzero, one can show that the solutions we provided remain global
minimizers in the zero limit by applying Theorem 2 from Ziyin and Ueda (2022).

3

Lemma 2. At the global minimum, for all i and j, we have

{U2
i = U2

j ;

UiWi∶ = UjWj∶. (3)

Proof Sketch. We show that if the condition is not satisfied, then an “averaging" transformation will
strictly decrease the objective. ◻
This lemma can be seen as a formalization of the intuition suggested in the original dropout paper
(Srivastava et al., 2014). Namely, using dropout encourages the neurons to be independent of one
another and results in an averaging effect. The second lemma imposes strong conditions on the
solution of the problem, and the essence of this lemma is the reduction of the original problem to a
lower dimension. We are now ready to prove our first main result.

Theorem 1. The global minimum U∗ and W∗ of Eq. (2) is U∗ = 0 and W∗ = 0 if and only if

∣∣E[xy]∣∣2 ≤ γuγw. (4)

When ∣∣E[xy]∣∣2 > γuγw, the global minima are

{U∗ = br;
W∗ = rE[xy]T b [b2 (σ2 + d1)A0 + γwI]−1 , (5)

where r = (±1, ...,±1) is an arbitrary vertex of a d1-dimensional hypercube, and b satisfies:

∣∣ [b2 (σ2 + d1)A0 + γwI]−1E[xy]∣∣2 = γu
γw
. (6)

Apparently, b = 0 is the trivial solution that has not learned any feature due to overregularization.
Henceforth, we refer to this solution (and similar solutions for deeper nets) as the “trivial" solution.
We now analyze the properties of the nontrivial solution b∗ when it exists.

The condition for the solution to become nontrivial is interesting: ∣∣E[xy]∣∣2 ≥ γuγw. The term∣∣E[xy]∣∣ can be seen as the effective strength of the signal, and γuγw is the strength of regularization.
This precise condition means that the learning of a two-layer can be divided into two qualitatively
different regimes: an “overregularized regime" where the global minimum is trivial, and a “feature
learning regime" where the global minimum involves actual learning. Lastly, note that our main
result does not specify the exact value of b∗. This is because b∗ must satisfy the condition in Eq. (6),
which is equivalent to a high-order polynomial in b with coefficients being general functions of the
eigenvalues of A0, whose solutions are generally not analytical by Galois theory. One special case
where an analytical formula exists for b is when A0 = σ2

xI . See Section C for more discussion.

3.2 Bounding the General Solution

While the solution to b∗ does not admit an analytical form for a general A0, one can find meaningful
lower and upper bounds to b∗ such that we can perform an asymptotic analysis of b∗. At the global
minimum, the following inequality holds:

∣∣ [b2 (σ2 + d1)amaxI + γwI]−1E[xy]∣∣2 ≤ ∣∣[b2 (σ2 + d1)A0 + γwI]−1E[xy]∣∣2
≤ ∣∣ [b2 (σ2 + d1)aminI + γwI]−1E[xy]∣∣2, (7)

where amin and amax are the smallest and largest eigenvalue of A0, respectively. The middle term is
equal to γu/γw by the global minimum condition in (33), and so, assuming amin > 0, this inequality
is equivalent to the following inequality of b∗:√

γw

γu
∣∣E[xy]∣∣ − γw

(σ2 + d1)amax
≤ b2∗ ≤

√
γw

γu
∣∣E[xy]∣∣ − γw

(σ2 + d1)amin
. (8)

Namely, the general solution b∗ should scale similarly to the homogeneous solution in Eq. (105) if
we treat the eigenvalues of A0 as constants.

4

4 Exact Solution for An Arbitrary-Depth Linear Net

This section extends our result to multiple layers. We first derive the analytical formula for the global
minimum of a general arbitrary-depth model. We then show that the landscape for a deeper network
is highly nontrivial.

4.1 General Solution

The loss function is

ExEϵ(1),ϵ(2),...,ϵ(D)
⎛⎝
d,d1,d2,...dD∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2
W
(2)
i2i1

ϵ
(1)
i1
W
(1)
i1i
xi − y⎞⎠

2 + γu∣∣U ∣∣2 + D∑
i=1γi∣∣W (i)∣∣2,

(9)
where all the noises ϵ are independent, and for all i and j, E[ϵ(i)j] = 1 and E[(ϵ(i)j)2] = σ2

i + 1 > 1.
We first show that for general D, the global minimum exists for this objective.
Proposition 1. For D ≥ 1 and strictly positive γu, γ1, ..., γD, the global minimum for Eq.(9) exists.

Note that the positivity of the regularization strength is crucial. If one of the γi is zero, the global
minimum may not exist. The following theorem is our second main result.
Theorem 2. Any global minimum of Eq. (9) is of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = burD;

W (i) = birirTi−1;
W (1) = r1E[xy]T (bu∏D

i=2 bi)µ [(bu∏D
i=2 bi)2s2 (σ2 + d1)A0 + γwI]−1 ,

(10)

where µ = ∏D
i=2 di, s2 = ∏D

i=2 di(σ2 + di), bu ≥ 0 and bi ≥ 0, and ri = (±1, ...,±1) is an arbitrary
vertex of a di-dimensional hypercube for all i. Furthermore, let b1 ∶= √∣∣Wi∶∣∣2/d and bD+1 ∶= bu, bi
satisfies

γk+1dk+1b2k+1 = γkdk−1b2k. (11)

Proof Sketch. We prove by induction on the depth D. The base case is proved in Theorem 1. We then
show that for a general depth, the objective involves optimizing subproblems, one of which is a D − 1
layer problem that follows by the induction assumption, and the other is a two-layer problem that has
been solved in Theorem 1. Putting these two subproblems together, one obtains Eq. (10). ◻
Remark. We deal with the technical case of having a bias term for each layer in Appendix D. For
example, we will show that if one has preprocessed the data such that E[x] = 0 and E[y] = 0, our
main results remain precisely unchanged.

The condition in Eq. (11) shows that the scaling factor bi for all i is not independent of one another.
This automatic balancing of the norm of all layers is a consequence of the rescaling invariance of the
multilayer architecture and the use of weight decay. It is well-known that this rescaling invariance
also exists in a neural network with the ReLU activation, and so this balancing condition is also
directly relevant for ReLU networks.

Condition (11) implies that all the bi can be written in terms of one of the bi:

bu
D∏
i=2 bi = c0sgn(bu

D∏
i=2 bi) ∣bD2 ∣ ∶= c0sgn(bu

D∏
i=2 bi) bD (12)

where c0 = (γ2d2d1)D/2√
γu∏D

i=2 γi∏D
i=2 di

√
d1

and b ≥ 0. Consider the first layer (i = 1), Eq (11) shows that the

global minimum must satisfy the following equation, which is equivalent to a high-order polynomial
in b that does not have an analytical solution in general:

∣∣E[xy]T c0bDµ [c20b2Ds2 (σ2 + d1)A0 + γwI]−1 ∣∣2 = d2b2. (13)

Thus, this condition is an extension of the condition (6) for two-layer networks.

At this point, it pays to clearly define the word “solution," especially given that it has a special
meaning in this work because it now becomes highly nontrivial to differentiate between the two types
of solutions.

5

Definition 1. We say that a non-negative real b is a solution if it satisfies Eq. (13). A solution is
trivial if b = 0 and nontrivial otherwise.

Namely, a global minimum must be a solution, but a solution is not necessarily a global minimum.
We have seen that even in the two-layer case, the global minimum can be the trivial one when the
strength of the signal is too weak or when the strength of regularization is too strong. It is thus natural
to expect 0 to be the global minimum under a similar condition, and one is interested in whether the
condition becomes stronger or weaker as the depth of the model is increased. However, it turns out
this naive expectation is not true. In fact, when the depth of the model is larger than 2, the condition
for the trivial global minimum becomes highly nontrivial.

The following proposition shows why the problem becomes more complicated. In particular, we have
seen that in the case of a two-layer net, some elementary argument has helped us show that the trivial
solution b = 0 is either a saddle or the global minimum. However, the proposition below shows that
with D ≥ 2, the landscape becomes more complicated in the sense that the trivial solution is always
a local minimum, and it becomes difficult to compare the loss value of the trivial solution with the
nontrivial solution because the value of b∗ is unknown in general.

Proposition 2. Let D ≥ 2 in Eq. (9). Then, the solution U = 0, W (D) = 0, ..., W (1) = 0 is a local
minimum with a diagonal positive-definite Hessian γI .

Comparing the Hessian of D ≥ 2 and D = 1, one notices a qualitative difference: for D ≥ 2, the
Hessian is always diagonal (at 0); for D = 1, in sharp contrast, the off-diagonal terms are nonzero in
general, and it is these off-diagonal terms that can break the positive-definiteness of the Hessian. This
offers a different perspective on why there is a qualitative difference between D = 1 and D = 2.

Lastly, note that, unlike the depth-1 case, one can no longer find a precise condition such that a b ≠ 0
solution exists for a general A0. The reason is that the condition for the existence of the solution is
now a high-order polynomial with quite arbitrary intermediate terms. The following proposition gives
a sufficient but stronger-than-necessary condition for the existence of a nontrivial solution, when all
the σi, intermediate width di and regularization strength γi are the same.4

Proposition 3. Let σ2
i = σ2 > 0, di = d0 and γi = γ > 0 for all i. Assuming amin > 0, the only

solution is trivial if

D + 1
2D
∣∣E[xy]∣∣dD−10 ((D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damin
)

D−1
D+1 < γ. (14)

Nontrivial solutions exist if

D + 1
2D
∣∣E[xy]∣∣dD−10 ((D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damax
)

D−1
D+1 ≥ γ. (15)

Moreover, the nontrivial solutions are both lower and upper-bounded:5

1

d0
[γ∣∣E[xy]∣∣]

1
D−1 ≤ b∗ ≤ [∣∣E[xy]∣∣

d0(σ2 + d0)Damax
]

1
D+1

. (16)

Proof Sketch. The proof follows from the observation that the l.h.s. of Eq. (13) is a continuous
function and must cross the r.h.s. under certain sufficient conditions. ◻
One should compare the general condition here with the special condition for D = 1. One sees that
for D ≥ 2, many other factors (such as the width, the depth, and the spectrum of the data covariance
A0) come into play to determine the existence of a solution apart from the signal strength E[xy] and
the regularization strength γ.

4This is equivalent to setting c0 = √d0. The result is qualitatively similar but involves additional factors
of c0 if σi, di, and γi all take different values. We thus only present the case when σi, di, and γi are the same
for notational concision and for emphasizing the most relevant terms. Also, note that this proposition gives a
sufficient and necessary condition if A0 = σ2

xI is proportional to the identity.
5For D = 1, we define the lower-bound as limη→0+ limD→1+ 1

d0
[γ+η∣∣E[xy]∣∣] 1

D−1 , which equal to zero if
E[xy] ≥ γ, and∞ if E[xy] < γ. With this definition, this proposition applies to a two-layer net as well.

6

lo
ss

lo
ss

Figure 2: The training loss as a function of b for a D = 1 network with different activation functions in the
hidden layer. For simplicity, dropout is not implemented. The non-linear activation functions we considered are
ReLU, Tanh, and Swish. The left and right panels use different data. Left: X are Gaussian random vectors, and
y = v ⋅ x is a linear function of x. Right: x are Gaussian random vectors, and y = v ⋅ tanh(x) are nonlinear
functions of data; the weight v is obtained as a Gaussian random vector.

4.2 Which Solution is the Global Minimum?

Again, we set γi = γ > 0, σ2
i = σ2 > 0 and di = d0 > 0 for all i for notational concision. Using this

condition and applying Lemma 3 to Theorem 2, the solution now takes the following form, where
b ≥ 0, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = √d0brD;

W (i) = brirTi−1;
W (1) = r1E[xy]T dD− 1

2

0 bD [dD0 (σ2 + d0)Db2DA0 + γ]−1 .
(17)

The following theorem gives a sufficient condition for the global minimum to be nontrivial. It also
shows that the landscape of the linear net becomes complicated and can contain more than 1 local
minimum.
Theorem 3. Let σ2

i = σ2 > 0, di = d0 and γi = γ > 0 for all i and assuming amin > 0. Then, if

∣∣E[xy]∣∣2 ≥ γ D+1
D D2(σ2 + d0)D−1aD−1

D
max

dD−10 (D − 1)D−1
D

(18)

the global minimum of Eq. (9) is one of the nontrivial solutions.

While there are various ways this bound can be improved, it is general enough for our purpose. In
particular, one sees that, for a general depth, the condition for having a nontrivial global minimum
depends not only on the E[xy] and γ but also on the model architecture in general. For a more
general architecture with different widths etc., the architectural constant c0 from Eq. (13) will also
enter the equation. In the limit of D → 1+, relation (18) reduces to

∣∣E[xy]∣∣2 ≥ γ2, (19)

which is the condition derived for the 2-layer case.

5 Implications

Relevance to nonlinear models. We first caution the readers that the following discussion should
be taken with a caveat and is based on the philosophy that deep linear nets can approximate the
nonlinear ones. This approximation certainly holds for fully connected models with differentiable
activation functions such as tanh or Swish because they are, up to first-order Taylor expansion, a deep
linear net around zero, which is the region for which our theory is the most relevant. We empirically
demonstrate that close to the origin, the landscape of linear nets can indeed approximate that of
nonlinear nets quite well. To compare, we plug in the solution in Theorem 4 to both linear and
nonlinear models of the same architecture and compare the loss values at different values of b around
b = 0. For simplicity, we only consider the case D = 1. The activation functions we consider are
ReLU, Tanh, and Swish (Ramachandran et al., 2017), a modern and differentiable variant of ReLU.
See Fig. 2.

The regressor x ∈ Rd is sampled as Gaussian random vectors. We consider two methods of generating
y; the first one (left) is y = v ⋅ x. The second one (right) is y = v ⋅ tanh(x), where the weight v ∈ Rd

is obtained as a Gaussian random vector. Fig. 2 shows that the landscape consisting of Tanh is
always close to the linear landscape. Swish is not as good as Tanh, but the Swish landscape shows a
similar tendency to the linear landscape. The ReLU landscape is not so close to the linear landscape

7

either for b > 0 or b < 0, but it agrees completely with the linear landscape on the other side, as
expected. Besides the quantitative closeness, it is also important to note that all the landscapes agree
qualitatively, containing the same number of local minima at similar values of b.

Landscape of multi-layer neural networks. The combination of Theorem 3 and Proposition 2 shows
that the landscape of a deep neural network can become highly nontrivial when there is a weight
decay and when the depth of the model is larger than 2. This gives an incomplete but meaningful
picture of a network’s complicated but interesting landscape beyond two layers (see Figure 1 for an
incomplete summary of our results). In particular, even when the nontrivial solution is the global
minimum, the trivial solution is still a local minimum that needs to be escaped. Our result suggests
the previous understanding that all local minima of a deep linear net are global cannot generalize to
many practical settings where deep learning is found to work well. For example, a series of works
attribute the existence of bad (non-global) minima to the use of nonlinearities (Kawaguchi, 2016) or
the use of a non-regular (non-differentiable) loss function (Laurent and Brecht, 2018). Our result,
in contrast, shows that the use of a simple weight decay is sufficient to create a bad minimum.6
Moreover, the problem with such a minimum is two-fold: (1) (optimization) it is not global and so
needs to be “overcome" and (2) (generalization) it is a minimum that has not learned any feature at
all because the model constantly outputs zero. To the best of our knowledge, previous to our work,
there has not been any proof that a bad minimum can generically exist in a rather arbitrary network
without any restriction on the data.7 Thus, our result offers direct and solid theoretical justification
for the widely believed importance of escaping local minima in the field of deep learning (Kleinberg
et al., 2018; Liu et al., 2021; Mori et al., 2022). In particular, previous works on escaping local
minima often hypothesize landscapes that are of unknown relevance to an actual neural network. With
our result, this line of research can now be established with respect to landscapes that are actually
deep-learning-relevant.

Previous works also argue that having a deeper depth does not create a bad minimum (Lu and
Kawaguchi, 2017). While this remains true, its generality and applicability to practical settings now
also seem low. Our result shows that as long as weight decay is used, and as long as D ≥ 2, there is
indeed a bad local minimum at 0. In contrast, there is no bad minimum at 0 for a depth-2 network:
the point b = 0 is either a saddle or the global minimum.8 Having a deeper depth thus alters the
qualitative nature of the landscape, and our results agree better with the common observation that a
deeper network is harder, if not impossible, to optimize.

We note that our result can also be relevant for more modern architectures such as the ResNet.
Using ResNet, one needs to change the dimension of the hidden layer after every bottleneck, and
a learnable linear transformation is applied here. Thus, the “effective depth” of a ResNet would
be roughly between the number of its bottlenecks and its total number of blocks. For example, a
ResNet18 applied to CIFAR10 often has five bottlenecks and 18 layers in total. We thus expect it to
have qualitatively similar behavior to a deep linear net with a depth in between. See Figure 1. The
experimental details are given in Section A.

Learnability of a neural network. Now we analyze the solution when D tends to infinity. We first
note that the existence condition bound in (15) becomes exponentially harder to satisfy as D becomes
large: ∣∣E[xy]∣∣2 ≥ 4d20amaxγe

D log[(σ2+d0)/d0] +O(1). (20)
When this bound is not satisfied, the given neural network cannot learn the data. Recall that for a
two-layer net, the existence condition is nothing but ∣∣E[xy]∣∣2 > γ2, independent of the depth, width,
or stochasticity in the model. For a deeper network, however, every factor comes into play, and the

6Some previous works do suggest the existence of bad minima when weight decay is present, but no direct
proof exists yet. For example, Taghvaei et al. (2017) shows that when the model is approximated by a linear
dynamical system, regularization can cause bad local minima. Mehta et al. (2021) shows the existence of bad
local minima in deep linear networks with weight decay through numerical simulations.

7In the case of nonlinear networks without regularization, a few works proved the existence of bad minima.
However, the previous results strongly depend on the data and are rather independent of architecture. For
example, one major assumption is that the data cannot be perfected and fitted by a linear model (Yun et al., 2018;
Liu, 2021; He et al., 2020). Some other works explicitly construct data distribution (Safran and Shamir, 2018;
Venturi et al., 2019). Our result, in contrast, is independent of the data.

8Of course, in practice, the model trained with SGD can still converge to the trivial solution even if it is a
saddle point (Ziyin et al., 2021) because minibatch SGD is, in general, not a good estimator of the local minima.

8

architecture of the model has a strong (and dominant) influence on the condition. In particular, a
factor that increases polynomially in the model width and exponentially in the model depth appears.

A practical implication is that the use of weight decay may be too strong for deep networks. If one
increases the depth or width of the model, one should also roughly decrease γ according to Eq. (20).

Figure 3: Training loss of D = 2 neu-
ral networks with ReLU and Tanh activa-
tions across synthetic tasks with different∣∣E[xy]∣∣. We see that with the Kaiming
initialization, both the Tanh net and the
ReLU net are stuck at the trivial solution in
expectation of our theory. In contrast, an
optimized linear regressor (D = 0) is better
than the trivial solution when ∣∣E[xy]∣∣ > 0.
See Section A for experimental details.

Insufficiency of the existing initialization schemes. We
have shown that 0 is often a bad local minimum for deep
learning. Our result further implies that escaping this local
minimum can be highly practically relevant because standard
initialization schemes are trapped in this local minimum for
tasks where the signal E[xy] is weak. See Inequality (16):
any nontrivial global minimum is lower-bounded by a factor
proportional to (γ/∣∣E[xy]∣∣1/(D−1))/d0, which can be seen
as an approximation of the radius of the local minimum at the
origin. In comparison, standard deep learning initialization
schemes such as Kaiming init. initialize at a radius roughly
1/√d0. Thus, for tasks E[xy] ≪ γ/√d0, these initialization
methods are likely to initialize the model in the basin of
attraction of the trivial regime, which can cause a serious
failure in learning. To demonstrate, we perform a numerical
simulation shown in the right panel of Figure 3, where we
train D = 2 nonlinear networks with width 32 with SGD on
tasks with varying ∣∣E[xy]∣∣. For sufficiently small ∣∣E[xy]∣∣, the model clearly is stuck at the origin.9
In contrast, linear regression is never stuck at the origin. Our result thus suggests that it may be
desirable to devise initialization methods that are functions of the data distribution.

Prediction variance of stochastic nets. A major extension of the standard neural networks is
to make them stochastic, namely, to make the output a random function of the input. In a broad
sense, stochastic neural networks include neural networks trained with dropout (Srivastava et al.,
2014; Gal and Ghahramani, 2016), Bayesian networks (Mackay, 1992), variational autoencoders
(VAE) (Kingma and Welling, 2013), and generative adversarial networks (Goodfellow et al., 2014).
Stochastic networks are thus of both practical and theoretical importance to study. Our result can
also be used for studying the theoretical properties of stochastic neural networks. Here, we present a
simple application of our general solution to analyze the properties of a stochastic net. The following
theorem summarizes our technical results.
Theorem 4. Let σ2

i = σ2 > 0, di = d0 and γi = γ > 0 for all i. Let A0 = σ2
xI . Then, at any global

minimum of Eq. (9), holding other parameters fixed,

1. in the limit of large d0, V ar[f(x)] = O (d−10) ;
2. in the limit of large σ2, V ar[f(x)] = O (1(σ2)D);
3. In the limit of large D, V ar[f(x)] = O (e−2D log[(σ2+d0)/d0]).

Interestingly, the scaling of prediction variance in asymptotic σ2 is different for different widths. The
third result shows that the prediction variance decreases exponentially fast in D. In particular, this
result answers a question recently proposed in Ziyin et al. (2022b): does a stochastic net trained on
MSE have a prediction variance that scales towards 0? We improve on their result in the case of
a deep linear net by (a) showing that the d−10 is tight in general, independent of the depth or other
factors of the model, and (b) proving a bound showing that the variance also scales towards zero as
depth increases, which is a novel result of our work. Our result also offers an important insight into
the cause of the vanishing prediction variance. Previous works (Alemi et al., 2018) often attribute the
cause to the fact that a wide neural network is too expressive. However, our result implies that this
is not always the case because a linear network with limited expressivity can also have a vanishing
variance as the model tends to an infinite width.

Collapses in deep learning. Lastly, we comment briefly on the apparent similarity between different
types of collapses that occur in deep learning. For neural collapse, our result agrees with the recent

9There are many natural problems where the signal is extremely weak. One well-known example is the
problem of future price prediction in finance, where the fundamental theorem of finance forbids a large ∣∣E[xy]∣∣
(Fama, 1970).

9

works that identify weight decay as a main cause (Rangamani and Banburski-Fahey, 2022). For
Bayesian deep learning, Wang and Ziyin (2022) identified the cause of the posterior collapse in
a two-layer VAE structure to be that the regularization of the mean of the latent variable z is too
strong. More recently, the origin and its stability have also been discussed as the dimensional collapse
in self-supervised learning (Ziyin et al., 2022a). Although appearing in different contexts of deep
learning, the three types of collapses share the same phenomenology that the model converges to a
“collapsed" regime where the learned representation becomes low-rank or constant, which agrees with
the behavior of the trivial regime we identified. We refer the readers to Ziyin and Ueda (2022) for a
study of how the second-order phase transition framework of statistical physics can offer a possible
unified explanation of these phenomena.

6 Conclusion

In this work, we derived the exact solution of a deep linear net with arbitrary depth and width and with
stochasticity. Our work sheds light on the highly complicated landscape of a deep neural network.
Compared to the previous works that mostly focus on the qualitative understanding of the linear
net, our result offers a more precise quantitative understanding of deep linear nets. Quantitative
understanding is one major benefit of knowing the exact solution, whose usefulness we have also
demonstrated with the various implications. The results, although derived for linear models, are also
empirically shown to be relevant for networks with nonlinear activations. Lastly, our results strengthen
the line of thought that analytical approaches to deep linear models can be used to understand deep
neural networks, and it is the sincere hope of the authors to attract more attention to this promising
field.

Acknowledgement

Ziyin is financially supported by the GSS scholarship of the University of Tokyo and the JSPS
fellowship. Li is financially supported by CNRS. X. Meng is supported by JST CREST Grant
Number JPMJCR1912, Japan.

References
Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., and Murphy, K. (2018). Fixing a broken

ELBO. In International Conference on Machine Learning, pages 159–168. PMLR.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58.

Cavazza, J., Morerio, P., Haeffele, B., Lane, C., Murino, V., and Vidal, R. (2018). Dropout as a
low-rank regularizer for matrix factorization. In International Conference on Artificial Intelligence
and Statistics, pages 435–444. PMLR.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015a). The loss surfaces
of multilayer networks. In Artificial Intelligence and Statistics, pages 192–204.

Choromanska, A., LeCun, Y., and Arous, G. B. (2015b). Open problem: The landscape of the loss
surfaces of multilayer networks. In Conference on Learning Theory, pages 1756–1760. PMLR.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of
Finance, 25(2):383–417.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

10

Gotmare, A., Keskar, N. S., Xiong, C., and Socher, R. (2018). A closer look at deep learning
heuristics: Learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.

Hardt, M. and Ma, T. (2016). Identity matters in deep learning. arXiv preprint arXiv:1611.04231.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019). Surprises in high-dimensional
ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560.

He, F., Wang, B., and Tao, D. (2020). Piecewise linear activations substantially shape the loss surfaces
of neural networks. arXiv preprint arXiv:2003.12236.

Kawaguchi, K. (2016). Deep learning without poor local minima. Advances in Neural Information
Processing Systems, 29:586–594.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kleinberg, B., Li, Y., and Yuan, Y. (2018). An alternative view: When does sgd escape local minima?
In International Conference on Machine Learning, pages 2698–2707. PMLR.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalization. In Advances
in neural information processing systems, pages 950–957.

Laurent, T. and Brecht, J. (2018). Deep linear networks with arbitrary loss: All local minima are
global. In International conference on machine learning, pages 2902–2907. PMLR.

Liu, B. (2021). Spurious local minima are common for deep neural networks with piecewise linear
activations. arXiv preprint arXiv:2102.13233.

Liu, K., Ziyin, L., and Ueda, M. (2021). Noise and fluctuation of finite learning rate stochastic
gradient descent.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Lu, H. and Kawaguchi, K. (2017). Depth creates no bad local minima. arXiv preprint
arXiv:1702.08580.

Lucas, J., Tucker, G., Grosse, R., and Norouzi, M. (2019). Don’t Blame the ELBO! A Linear VAE
Perspective on Posterior Collapse.

Mackay, D. J. C. (1992). Bayesian methods for adaptive models. PhD thesis, California Institute of
Technology.

Mehta, D., Chen, T., Tang, T., and Hauenstein, J. (2021). The loss surface of deep linear networks
viewed through the algebraic geometry lens. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Mianjy, P. and Arora, R. (2019). On dropout and nuclear norm regularization. In International
Conference on Machine Learning, pages 4575–4584. PMLR.

Mori, T., Ziyin, L., Liu, K., and Ueda, M. (2022). Power-law escape rate of SGD.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions.

Rangamani, A. and Banburski-Fahey, A. (2022). Neural collapse in deep homogeneous classifiers
and the role of weight decay. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4243–4247. IEEE.

Safran, I. and Shamir, O. (2018). Spurious local minima are common in two-layer relu neural
networks. In International conference on machine learning, pages 4433–4441. PMLR.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

11

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958.

Taghvaei, A., Kim, J. W., and Mehta, P. (2017). How regularization affects the critical points in linear
networks. Advances in neural information processing systems, 30.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. (2020). Pruning neural networks without any
data by iteratively conserving synaptic flow. Advances in Neural Information Processing Systems,
33:6377–6389.

Tian, Y. (2022). Deep contrastive learning is provably (almost) principal component analysis. arXiv
preprint arXiv:2201.12680.

Venturi, L., Bandeira, A. S., and Bruna, J. (2019). Spurious valleys in one-hidden-layer neural
network optimization landscapes. Journal of Machine Learning Research, 20:133.

Wang, Z. and Ziyin, L. (2022). Posterior collapse of a linear latent variable model. arXiv preprint
arXiv:2205.04009.

Yun, C., Sra, S., and Jadbabaie, A. (2018). Small nonlinearities in activation functions create bad
local minima in neural networks. arXiv preprint arXiv:1802.03487.

Ziyin, L., Li, B., Simon, J. B., and Ueda, M. (2021). SGD with a Constant Large Learning Rate Can
Converge to Local Maxima.

Ziyin, L., Lubana, E. S., Ueda, M., and Tanaka, H. (2022a). What shapes the loss landscape of
self-supervised learning? arXiv preprint arXiv:2210.00638.

Ziyin, L. and Ueda, M. (2022). Exact phase transitions in deep learning. arXiv preprint
arXiv:2205.12510.

Ziyin, L. and Wang, Z. (2022). Sparsity by Redundancy: Solving L1 with a Simple Reparametrization.
arXiv preprint arXiv:2210.01212.

Ziyin, L., Zhang, H., Meng, X., Lu, Y., Xing, E., and Ueda, M. (2022b). Stochastic neural networks
with infinite width are deterministic.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] The experiments
are only for demonstration and are straightforward to reproduce following the theory.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] The fluctuations are visually negligible.

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] They are done on a single 3080Ti
GPU.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Experimental Details

For the experiment in Figure 3, the input data consists of 1000 data points sampled from a multivariate
Gaussian distribution: x ∼ N(0, I5). The target is generated by a linear transformation y = v ⋅ x,
where the norm of v is rescaled to obtain different values of ∣∣E[xy]∣∣ as the control parameter of the
simulation. The models are with D = 2 neural networks with bias terms and with hidden width 32 for
both hidden layers. The training proceeds with gradient descent with a learning rate of 0.1 for 104
iterations when the training loss has stopped decreasing for all the experiments.

For the CIFAR10 experiments, we train a standard ResNet18 with roughly 107 parameters under
the standard procedure, with a batch size of 256 for 100 epochs.10 For the linear models, we use a
hidden width of 32 without any bias term. The training proceeds with SGD with batch size 256 for
100 epochs with a momentum of 0.9. The learning rate is 0.002, chosen as the best learning rate from
a grid search over [0.001,0.002, ...,0.01].
B Proofs

B.1 Proof of Lemma 1

Proof. Note that the first term in the loss function is invariant to the following rescaling for any a > 0:

{Ui → aUi;

Wij →Wij/a; (21)

meanwhile, the L2 regularization term changes as a changes. Therefore, the global minimum must
have a minimized a with respect to any U and W .

One can easily find the solution:

a∗ = argmin
a

⎛⎝γua2U2
i + γw∑

j

W 2
ij

a2
⎞⎠ = (

γw∑jW
2
ij

γuU2
i

)1/4 . (22)

Therefore, at the global minimum, we must have γua2U2
i = γw∑j

W 2
ij

a2 , so that

(U∗i)2 = (a∗Ui)2 = γw
γu
∑
j

(W ∗
ij)2, (23)

which completes the proof. ◻
B.2 Proof of Lemma 2

Proof. By Lemma 1, we can write Ui as bi and Wi∶ as biwi where wi is a unit vector, and finding the
global minimizer of Eq. (2) is equivalent to finding the minimizer of the following objective,

Ex,ε

⎡⎢⎢⎢⎢⎣
⎛⎝∑i,j b2i ϵiwijxj − y⎞⎠

2⎤⎥⎥⎥⎥⎦ + (γu + γw)∣∣b∣∣
2
2, (24)

= Ex

⎡⎢⎢⎢⎢⎣
⎛⎝∑i,j b2iwijxj − y⎞⎠

2⎤⎥⎥⎥⎥⎦ + σ
2∑

ij

b4i (∑
k

wikxk)2 + (γu + γw)∣∣b∣∣22, (25)

The lemma statement is equivalent to bi = bj for all i and j.

We prove this by contradiction. Suppose there exist i and j such that bi ≠ bj , we can choose i to
be the index of bi with maximum b2i , and let j be the index of bj with minimum b2j . Now, we can
construct a different solution by the following replacement of biwi∶ and bjwj∶:

{b2iwi∶ → c2v;

b2jwj∶ → c2v,
(26)

10Specifically, we use the implementation and training procedure of https://github.com/
kuangliu/pytorch-cifar, with standard augmentations such as random crop, etc.

14

where c is a positive scalar and v is a unit vector such that 2c2v = b2iwi∶ + b2jwj∶. Note that, by the
triangular inequality, 2c2 ≤ b2i + b2j . Meanwhile, all the other terms, bk for k ≠ i and k ≠ j, are left
unchanged. This transformation leaves the first term in the loss function (25) unchanged, and we now
show that it decreases the other terms.

The change in the second term is

(b2i∑
k

wikxk)2 + (b2j∑
k

wjkxk)2 → 2(c2∑
k

vkxk)2 = 1

2
(b2i∑

k

wikxk + b2j∑
k

wjkxk)2 . (27)

By the inequality a2 + b2 ≥ (a + b)2/2, we see that the left-hand side the larger than the right-hand
side.

We now consider the L2 regularization term. The change is

(γu + γw)(b2i + b2j) → 2(γu + γw)c2, (28)

and the left-hand side is again larger than the right-hand side by the inequality mentioned above:
2c2 ≤ b2i + b2j . Therefore, we have constructed a solution whose loss is strictly smaller than that of the
global minimum: a contradiction. Thus, the global minimum must satisfy

U2
i = U2

j (29)

for all i and j.

Likewise, we can show that UiWi∶ = UjWj∶ for all i and j. This is because the triangular inequality
2c2 ≤ b2i + b2j is only an equality if UiWi∶ = UjWj∶. If UiWi∶ ≠ UjWj∶, following the same argument
above, we arrive at another contradiction. ◻
B.3 Proof of Theorem 1

Proof. By Lemma 2, at any global minimum, we can write U∗ = br for some b ∈ R. We can also write
W∗ = rvT for a general vector v ∈ Rd. Without loss of generality, we assume that b > 0 (because the
sign of b can be absorbed into r).

The original problem in Eq. (2) is now equivalently reduced following problem because rT r = d1:

min
b,v

Ex

⎡⎢⎢⎢⎢⎣
⎛⎝bd1∑j vjxj − y

⎞⎠
2 + b2d1σ2 (∑

k

vkxk)2⎤⎥⎥⎥⎥⎦ + γud1b
2 + γwd1∣∣v∣∣22. (30)

For any fixed b, the global minimum of v is well known:11

v = bE[xy]T [b2 (σ2 + d1)A0 + γwI]−1 . (31)

By Lemma 1, at a global minimum, b also satisfies the following condition:

b2 = γw
γu
∣∣v∣∣2, (32)

One solution to this equation is b = 0, and we are interested in whether solutions with b ≠ 0 exist. If
there is no other solution, then b = 0 must be the unique global minimum; otherwise, we need to
identify which of the solutions are actual global minima. When b ≠ 0,

∣∣ [b2 (σ2 + d1)A0 + γwI]−1E[xy]∣∣2 = γu
γw
. (33)

Note that the left-hand side is monotonically decreasing in b2, and is equal to γ−2w ∣∣E[xy]∣∣2 when
b = 0. When b → ∞, the left-hand side tends to 0. Because the left-hand side is a continuous
and monotonic function of b, a unique solution b∗ > 0 that satisfies Eq. (33) exists if and only if
γ−2w ∣∣E[xy]∣∣2 > γu/γw, or, ∣∣E[xy]∣∣2 > γuγw. (34)

11Namely, it is the solution of a ridgeless linear regression problem.

15

Therefore, at most, three candidates for global minima of the loss function exist:

{b = 0, v = 0 if ∣∣E[xy]∣∣2 ≤ γuγw;
b = ±b∗, v = b [b2 (σ2 + d1)A0 + γwI]−1E[xy], if ∣∣E[xy]∣∣2 > γuγw, (35)

where b∗ > 0.

In the second case, one needs to discern the saddle points from the global minima. Using the
expression of v, one finds the expression of the loss function as a function of b

d1(d1 + σ2)b4∑
i

E[x′y]2i ai[b2(σ2 + d1)ai + γw]2 − 2b2d1∑i
E[x′y]2i

b2(σ2 + d1)ai + γw +E[y2]
+ γud1b2 + γwd1∑

i

E[x′y]2i b2[b2(σ2 + d1)ai + γw]2 , (36)

where x′ = Rx such that RA0R
−1 is a diagonal matrix. We now show that condition (34) is sufficient

to guarantee that 0 is not the global minimum.

At b = 0, the first nonvanishing derivative of b is the second-order derivative. The second order
derivative at b = 0 is −2d1∣∣E[xy]∣∣2/γw + 2γud1, (37)
which is negative if and only if ∣∣E[xy]∣∣2 > γuγw. If the second derivative at b = 0 is neg-
ative, b = 0 cannot be a minimum. It then follows that for ∣∣E[xy]∣∣2 > γuγw, b = ±b∗,
v = b [b2 (σ2 + d1)A0 + γwI]−1E[xy], if ∣∣E[xy]∣∣2 > γuγw are the two global minimum (because
the loss is invariant to the sign flip of b). For the same reason, when ∣∣E[xy]∣∣2 < γuγw, b = 0 gives
the unique global minimum. This finishes the proof. ◻
B.4 Proof of Proposition 1

Proof. We first show that there exists a constant r such that the global minimum must be confined
within a (closed) r-Ball around the origin. The objective (9) can be upper-bounded by

Eq. (9) ≥ γu∣∣U ∣∣2 + D∑
i=1γi∣∣W (i)∣∣2 ≥ γmin (∣∣U ∣∣2 +∑

i

∣∣W (i)∣∣2) , (38)

where γmin ∶=mini∈{u,1,2,...,D} > 0. Now, let w denote be the union of all the parameters (U,W (i))
and viewed as a vector. We see that the above inequality is equivalent to

Eq. (9) ≥ γmin∣∣w∣∣2. (39)

Now, note that the loss value at the origin is E[y2], which means that for any w, whose norm∣∣w∣∣2 ≥ E[y2]/γmin, the loss value must be larger than the loss value of the origin. Therefore, let
r = E[y2]/γmin, we have proved that the global minimum must lie in a closed r-Ball around the
origin.

As the last step, because the objective is a continuous function of w and the r-Ball is a compact set,
the minimum of the objective in this r-Ball is achievable. This completes the proof. ◻
B.5 Proof of Theorem 2

We divide the proof into the proof of a proposition and a lemma, and combining the following
proposition and lemma obtains the theorem statement.

B.5.1 Proposition 4

Proposition 4. Any global minimum of Eq. (9) is of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U = burD;

W (i) = birirTi−1;
W (1) = r1E[xy]T (bu∏D

i=2 bi)µ [(bu∏D
i=2 bi)2s2 (σ2 + d1)A0 + γwI]−1 ,

(40)

where µ = ∏D
i=2 di, s2 = ∏D

i=2 di(σ2 + di), bu ≥ 0 and bi ≥ 0, and ri = (±1, ...,±1) is an arbitrary
vertex of a di-dimensional hypercube for all i.

16

Proof. Note that the trivial solution is also a special case of this solution with b = 0. We thus focus on
deriving the form of the nontrivial solution.

We prove by induction on D. The base case with depth 1 is proved in Theorem 1. We now assume
that the same holds for depth D − 1 and prove that it also holds for depth D.

For any fixed W (1), the loss function can be equivalently written as

Ex̃Eϵ(2),...,ϵ(D)
⎛⎝
d1,d2,...dD∑
i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2
W
(2)
i2i1

x̃i1 − y⎞⎠
2 + γu∣∣U ∣∣2 + D∑

i=2γi∣∣W (i)∣∣2 + const.,
(41)

where x̃ = ϵ(1)i1 ∑iW
(1)
i1i
xi. Namely, we have reduced the problem to a problem involving only a

depth D − 1 linear net with a transformed input x̃.

By the induction assumption, the global minimum of this problem takes the form of Eq. (10), which
means that the loss function can be written in the following form:

Ex̃Eϵ(2),...,ϵ(D)
⎛⎝bubD...b3

d1,d2,...dD∑
i1,i2,...,iD

ϵ
(D)
iD

...ϵ
(2)
i2
vi1 x̃i1 − y⎞⎠

2 +L2 reg., (42)

for an arbitrary optimizable vector vi1 . The term ∑d2,...dD

i2,...,iD
ϵ
(D)
iD

...ϵ
(2)
i2
∶= η can now be regarded as a

single random variable such that E[η] = ∏D
i=2 di ∶= µ and E[η2] = ∏D

i=2 di(σ2
i +di) ∶= s2. Computing

the expectation over all the noises except for ϵ(1), one finds

Ex̃

⎛⎝bubD...b3s∑i1 vi1 x̃i1 −
µy

s

⎞⎠
2 +L2 reg. + const. (43)

= Ex,ϵ(1)
⎛⎝bubD...b3s∑i,i1 vi1ϵ

(1)
i1
W
(1)
i1i
xi − µy

s

⎞⎠
2 +L2 reg. + const., (44)

where we have ignored the constant term because it does not affect the minimizer of the loss. Namely,
we have reduced the original problem to a two-layer linear net problem where the label becomes
effectively rescaled for a deep network.

For any fixed bu, ..., b3, we can define x̄ ∶= bubD...b3sx, and obtain the following problem, whose
global minimum we have already derived:

Ex̄Eϵ2,...,ϵD

⎛⎝∑i,i1 vi1W
(1)
i1i
x̄i − µy

s

⎞⎠
2

. (45)

By Theorem 1, the global minimum is identically 0 if ∣∣E[µx̄y/s]∣∣2 < d2γ2γ1, or, E[xy] ≤
γ2γ1

b23...b
2
u(∏D

i=3 di) . When E[xy] > γ2γ1

b23...b
2
u(∏D

i=3 di) , the solution can be non-trivial:

{v∗ = b∗2r1;
W∗ = r1E[xy]Tµb∗2b3...bu [(b∗2)2d23...d2Db2us2 (σ2 + d1)A0 + γ1I]−1 , (46)

for some b∗2 . This proves the theorem. ◻
B.6 Lemma 3

Lemma 3. At any global minimum of Eq. (9), let b1 ∶= √∣∣Wi∶∣∣2/d and bD+1 ∶= bu,

γk+1dk+1b2k+1 = γkdk−1b2k. (47)

Proof. It is sufficient to show that for all k and i,

γk+1∑
ij

(W k+1
ji)2 = γk∑

ij

(W k
ij)2. (48)

17

We prove by contradiction. Let U∗,W ∗ be the global minimum of the loss function. Assuming that
for an arbitrary k,

γk+1∑
ij

(W ∗,k+1
ji)2 ≠ γk∑

ij

(W ∗,k
ij)2. (49)

Introduce W a such that W a,k+1
ji = aW ∗,k+1

ji and W a,k
ji =W ∗,k

ji /a. The loss without regularization is
invariant under the transformation of W ∗ →W a, namely

L0(W ∗) = L0(W a). (50)

In the regularization, all the terms remain invariant except two terms:

{γk+1∑ij(W ∗,k+1
ji)2 → γk+1∑ij(W a,k+1

ji)2 = a2γk+1∑ij(W ∗,k+1
ji)2

γk∑ij(W ∗,k
ij)2 → γk∑ij(W a,k

ji)2 = a−2γk∑ij(W ∗,k
ji)2 (51)

It could be shown that, the sum of a2γk+1∑ij(W ∗,k+1
ji)2 and a−2γk∑ij(W ∗,k

ji)2 reaches its mini-

mum when a2 =√ γk∑ij(W ∗,k
ji)2

γk+1∑ij(W ∗,k+1
ji)2 . If γk+1∑ij(W ∗,k+1

ji)2 ≠ γk∑ij(W ∗,k
ij)2, one can choose a to

minimize the regularization terms in the loss function such that L(W a) < L(W ∗), indicating W ∗ is
not the global minimum. Thus, γk+1∑ij(W ∗,k+1

ji)2 ≠ γk∑ij(W ∗,k
ij)2 cannot be true. ◻

B.7 Proof of Proposition 2

Proof. Let

L0 = Ex̃Eϵ2,...,ϵD

⎛⎝
d1,d2,...dD∑
i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(1)
i1
W
(1)
i1i
xi − y⎞⎠

2

. (52)

L0 is a polynomial containing 2D + 2th order, D + 1th order, and 0th order terms in terms of
parameters U and W . The second order derivative of L is thus a polynomial containing 2D-th order
and (D − 1)-th order terms; however, other orders are not possible. For D ≥ 2, there are no constant
terms in the Hessian of L, and there is at least a parameter in each of the terms.

The Hessian of the full loss function with regularization is

∂2L

∂2UiUj
= ∂2L0

∂2UiUj
+ (1 − δij)2γu(Ui +Uj) + δij2γu; (53)

∂2L

∂2W i
jkUl

= ∂2L0

∂2W i
jkUl

+ 2(γwW i
jk + γuUl); (54)

∂2L

∂2W i
jkW

l
mn

= ∂2L0

∂2W i
jkW

l
mn

+ (1 − δilδjmδkn)2γw(W i
jk +W l

mn) + δilδjmδkn2γw. (55)

For U = 0, W = 0, the Hessian of L0 is 0, since each term in L0 contains at least a U or a W . The
Hessian of L becomes

∂2L

∂2UiUj
∣
U,W=0 = δij2γu; (56)

∂2L

∂2W i
jkUl

RRRRRRRRRRRU,W=0
= 0; (57)

∂2L

∂2W i
jkW

l
mn

RRRRRRRRRRRU,W=0
= δilδjmδkn2γw. (58)

The Hessian of L is a positive-definite matrix. Thus, U = 0, W = 0 is always a local minimum of the
loss function L. ◻

18

B.8 Proof of Proposition 3

We first apply Lemma 3 to determine the condition for the nontrivial solution to exist. In particular,
the Lemma must hold for W (2) and W (1), which leads to the following condition:

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)DA0 + γ]−1E[xy]∣∣2 = 1. (59)

Note that the left-hand side is a continuous function that tends to 0 as b → ∞. Therefore, it is
sufficient to find the condition that guarantees that there exists b such that the l.h.s. is larger than
1. For any b, the l.h.s. is a monotonically decreasing function of any eigenvalue of A0, and so the
following two inequalities hold:

{∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Dσ2
x + γ)−1E[xy]∣∣ ≤ ∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Damin + γ)−1E[xy]∣∣∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Dσ2
x + γ)−1E[xy]∣∣ ≥ ∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Damax + γ)−1E[xy]∣∣.

(60)
The second inequality implies that if

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damax + γ]−1E[xy]∣∣ > 1, (61)

a nontrivial solution must exist. This condition is equivalent to the existence of a b such that

dD0 (σ2 + d0)Damaxb
2D − ∣∣E[xy]∣∣bD−1dD−10 < −γ, (62)

which is a polynomial inequality that does not admit an explicit condition for b for a general D. Since
the l.h.s is a continuous function that increases to infinity as b→∞, one sufficient condition for (62)
to hold is that the minimizer of the l.h.s. is smaller than γ.

Note that the left-hand side of Eq. (62) diverges to ∞ as b → ±∞ and tends to zero as b → 0.
Moreover, Eq. (62) is lower-bounded and must have a nontrivial minimizer for some b > 0 because
the coefficient of the bD−1 term is strictly negative. One can thus find its minimizer by taking
derivative. In particular, the left-hand side is minimized when

bD+1 = (D − 1)∣∣E[xy]∣∣
2Dd0(σ2 + d0)Damax

, (63)

and we can obtain the following sufficient condition for (62) to be satisfiable, which, in turn, implies
that (59) is satisfiable:

D + 1
2D
∣∣E[xy]∣∣dD−10 ((D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damax
)

D−1
D+1 > γ, (64)

which is identical to the proposition statement in (15).

Now, we come back to condition (60) to derive a sufficient condition for the trivial solution to be the
only solution. The first inequality in Condition (60) implies that if

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damin + γ]−1E[xy]∣∣ ≤ 1, (65)

the only possible solution is the trivial one, and the condition for this to hold can be found using the
same procedure as above to be

D + 1
2D
∣∣E[xy]∣∣dD−10 ((D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damin
)

D−1
D+1 ≤ γ, (66)

which is identical to (14).

We now prove the upper bound for the solution in ((16)). Because for any b, the first condition in 60
gives an upper bound, and so any b that makes the upper bound less than 1 cannot be a solution. This
means that any b for which

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damin + γ]−1E[xy]∣∣ ≤ 1 (67)

cannot be a solution. This condition holds if and only if

dD0 (σ2 + d0)Daminb
2D − ∣∣E[xy]∣∣bD−1dD−10 > −γ. (68)

19

Because γ > 0, one sufficient condition to ensure this is that there exists b such that

d0(σ2 + d0)Daminb
2D − ∣∣E[xy]∣∣bD−1 > 0, (69)

which is equivalent to

b > [∣∣E[xy]∣∣
d0(σ2 + d0)Damin

]
1

D+1
. (70)

Namely, any solution b∗ satisfies

b∗ ≤ [∣∣E[xy]∣∣
d0(σ2 + d0)Damin

]
1

D+1
. (71)

We can also find a lower bound for all possible solutions. When D > 1, another sufficient condition
for Eq. (68) to hold is that there exists b such that

∣∣E[xy]∣∣dD−10 bD−1 < γ. (72)

because the b2D term is always positive. This condition then implies that any solution must satisfy:

b∗ ≥ 1

d0
[γ∣∣E[xy]∣∣]

1
D−1

. (73)

For D = 1, we have by Theorem 1 that
b∗ > 0 (74)

if and only if E[xy] > γ. This means that

b∗ ≥ lim
η→0+ lim

D→1+
1

d0
[γ + η∣∣E[xy]∣∣]

1
D−1 = {∞ if E[xy] ≥ γ;

0 if E[xy] < γ. . (75)

This finishes the proof. ◻
B.9 Proof of Theorem 3

Proof. When nontrivial solutions exist, we are interested in identifying when b = 0 is not the global
minimum. To achieve this, we compare the loss of b = 0 with the other solutions. Plug the trivial
solution into the loss function in Eq. (9), the loss is easily identified to be Ltrivial = E[y2].
For the nontrivial minimum, defining f to be the model,

f(x) ∶= d,d1,d2,...dD∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2
W
(2)
i2i1

ϵ
(1)
i1
W
(1)
i1i
x (76)

= ηdD0 b2DE[xy]T [b2DdD0 (σ2 + d0)DA0 + γI]−1x, (77)

where, similar to the previous proof, we have defined ∑d1,...dD

i1,...,iD
ϵ
(D)
iD

...ϵ
(1)
i1
∶= η such that E[η] =∏D

i di = dD0 and E[η2] = ∏D
i di(σ2

i + di) ∶= dD0 (σ2 + d0)D. With this notation, The loss function
becomes

ExEη(f(x) − y)2 +L2 reg. (78)

= Ex,η[f(x)2] − 2Ex,η[yf(x)] +Ex[y2] +L2 reg. (79)

= ∑
i

d3D0 (σ2 + d0)Db4DaiE[x′y]2i[dD0 (σ2 + d0)Daib2D + γ]2 − 2∑i
d2D0 b2DE[x′y]2i

dD0 (σ2 + d0)Daib2D + γ +Ex[y2] +L2 reg. (80)

The last equation is obtained by rotating x using a orthogonal matrix such that R−1A0R = diag(ai)
and denoting the rotated x as x′ = Rx. With x′, The L2 reg term takes the form of

L2 reg. = γDd20b2 + γ∑
i

d2D0 b2D ∣∣E[x′y]i∣∣2(dD0 (σ2 + d0)Db2Dai + γ)2 . (81)

20

Combining the expressions of (81) and (80), we obtain that the difference between the loss at the
non-trivial solution and the loss at 0 is

−∑
i

d2D0 b2DE[x′y]2i[dD0 (σ2 + d0)Daib2D + γ] + γDd20b2. (82)

Satisfaction of the following relation thus guarantees that the global minimum is nontrivial:

∑
i

d2D0 b2DE[x′y]2i[dD0 (σ2 + d0)Daib2D + γ] ≥ γDd20b2. (83)

This relation is satisfied if

d2D0 b2D ∣∣E[xy]∣∣2[dD0 (σ2 + d0)Damaxb2D + γ] ≥ γDd20b2 (84)

b2D−2[dD0 (σ2 + d0)Damaxb2D + γ] ≥ γD

d2D−20 ∣∣E[xy]∣∣2 . (85)

(86)

The derivative or l.h.s. with respect to b is

b2D−3[(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D][dD0 (σ2 + d0)Damaxb2D + γ]2 . (87)

For b, γ ∈ (0,∞), the derivative dives below 0, indicating the l.h.s. of (86) has a global maximum at
a strictly positive b. The value of b is found when setting the derivative to 0, namely

b2D−3[(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D][dD0 (σ2 + d0)Damaxb2D + γ]2 = 0 (88)

(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D = 0 (89)

b2D = (D − 1)γ
dD0 (σ2 + d0)Damax

. (90)

The maximum value then takes the form

(D − 1)D−1
D

Dγ
1
D dD−10 (σ2 + d0)D−1aD−1

D
max

. (91)

The following condition thus guarantees that the global minimum is non-trivial

(D − 1)D−1
D

Dγ
1
D dD−10 (σ2 + d0)D−1aD−1

D
max

≥ γD

d2D−20 ∣∣E[xy]∣∣2 (92)

∣∣E[xy]∣∣2 ≥ γ D+1
D D2(σ2 + d0)D−1aD−1

D
max

dD−10 (D − 1)D−1
D

. (93)

This finishes the proof. ◻
B.10 Proof of Theorem 4

Proof. The model prediction is:

f(x) ∶= d,d1,d2,...dD∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2
W
(2)
i2i1

ϵ
(1)
i1
W
(1)
i1i
x (94)

= ηdD0 b2DE[xy]T [b2DdD0 (σ2 + d0)Dσ2
xI + γI]−1x. (95)

One can find the expectation value and variance of a model prediction:

Eη[f(x)] = d2D0 b2DE[xy]Tx
b2DdD0 (σ2 + d0)Dσ2

x + γ (96)

21

For the trivial solution, the theorem is trivially true. We thus focus on the case when the global
minimum is nontrivial.

The variance of the model is

V ar[f(x)] = E[f(x)2] −E[f(x)]2 (97)

= (σ2 + d0)Dd3D0 b4D(E[xy]Tx)2[b2DdD0 (σ2 + d0)Dσ2
x + γ]2 − d4D0 b4D(E[xy]Tx)2[b2DdD0 (σ2 + d0)D]2σ2

x + γ]2 (98)

= d3D0 [(σ2 + d0)D − dD0]b4D(E[xy]Tx)2[b2DdD0 (σ2 + d0)Dσ2
x + γ]2 (99)

= d3D0 [(σ2 + d0)D − dD0]b2D+2(E[xy]Tx)2∣∣E[xy]∣∣2 , (100)

where the last equation follows from Eq. (13). The variance can be upper-bounded by applying (16),

V ar[f(x)] ≤ dD0 [(σ2 + d0)D − dD0](E[xy]Tx)2(σ2 + d0)2Dσ2
x

∝ dD0 [(σ2 + d0)D − dD0](σ2 + d0)2D . (101)

We first consider the limit d0 →∞ with fixed σ2:

V ar[f(x)] ∝ Dd2D−10 σ2

(d0 + σ2)2D = O (1

d0
) . (102)

For the limit σ2 →∞ with d0 fixed, we have

V ar[f(x)] = O (1(σ2)D) . (103)

Additionally, we can consider the limit when D →∞ as we fix both σ2 and d0:

V ar[f(x)] = O (e−D2 log[(σ2+d0)/d0]) , (104)

which is an exponential decay. ◻
C Exact Form of b∗ for D = 1
Note that our main result does not specify the exact value of b∗. This is because b∗ must satisfy
the condition in Eq. (6), which is equivalent to a high-order polynomial in b with coefficients being
general functions of the eigenvalues of A0, whose solutions are generally not analytical by Galois
theory. One special case where an analytical formula exists for b is when A0 = σ2

xI . Practically, this
can be achieved for any (full-rank) dataset if we disentangle and rescale the data by the whitening
transformation: x→ σx

√
A−10 x. In this case, we have

b2∗ =
√

γw

γu
∣∣E[xy]∣∣ − γw
(σ2 + d1)σ2

x

, (105)

and

v = ±
¿ÁÁÁÀ
√

γu

γw
∣∣E[xy]∣∣ − γu

σ2
x(σ2 + d1) E[xy]∣∣E[xy]∣∣ , (106)

where v =Wi∶.

D Effect of Bias

This section studies a deep linear network with biases for every layer and compares it with the no-bias
networks. We first study a general case when the data does not receive any preprocessing. We then
show that the problem reduces to the setting we considered in the main text under the common data
preprocessing schemes that centers the input and output data: E[x] = 0, and E[y] = 0.

22

D.1 Two-layer network

The two-layer linear network with bias is defined as

fb(x;U,W,βU , βW) = ∑
i

ϵiUi(Wi∶ ⋅ x + βW
i) + βU , (107)

where βW ∈ Rd1 is the bias in the hidden layer, and βU ∈ R is the bias at the output layer. The loss
function is

Lb(U,W,βU , βW) =Eϵ,x,y[(∑
i

ϵiUi(Wi∶ ⋅ x + βW
i) + βU − y)2] +L2 (108)

=Ex,y [(UWx +UβW + βU − y)2 + σ2∑
i

U2
i (Wi∶ ⋅ x + βW

i)2] (109)

+ γu(∣∣U ∣∣2 + (βU)2) + γw(∣∣W ∣∣2 + ∣∣βW ∣∣2). (110)

It is helpful to concatenate x and 1 into a single vector x′ ∶= (x,1)T and concatenate W and βW into
a single matrix W ′ such that W , βW , x, and W ′, x′ are related via the following equation

Wx + βW =W ′x′. (111)

Using W ′ and x′, the model can be written as

fb(x′, U,W ′, βU) = ∑
i

ϵiUiW
′
i∶ ⋅ x′ + βU . (112)

The loss function simplifies to

Lb(U,W ′, β) = Eϵ,x,y[(∑
i

ϵiUiW
′
i∶ ⋅ x′ + βU − y)2] + γu(∣∣U ∣∣2 + (βU)2) + γw ∣∣W ′∣∣2. (113)

Note that (113) contains similar rescaling invariance between U andW ′ and the invariance of aligning
W ′

i∶ and W ′
j∶. One can thus obtain the following two propositions that mirror Lemma 1 and 2.

Proposition 5. At the global minimum of (108), U2
j = γw

γu
(∑iW

2
ji + (βW

j)2).
Proposition 6. At the global minimum, for all i and j, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U2
i = U2

j ;

UiWi∶ = UjWj∶;
Uiβ

W
i = Ujβ

W
j .

(114)

The proofs are omitted because they are the same as those of Lemma 1 and 2, substituting W by W ′.
By following a procedure similar to finding the solution for a no-bias network, one finds that

Theorem 5. The global minimum of Eq. (108) is of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = br;
βU = d1b[(d1+σ2) γu

γw
b−1]vE[x]−(d1

γu
γw

b2−1)E[y]
(d1+σ2)d1

γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1 ;

W = rb{E[x] [b γu

γw
(d1 + bσ2) − 1]βU +E[xy]}T [b2(d1 + σ2)A0 + γwI]−1;

βW = −r γu

γw
bβU ,

(115)

where b satisfies

γub
2 = b2 γw(E[y]S1S3

S4
E[x] −E[xy])(M−1)2(E[y]S1S3

S4
E[x] −E[xy])T + γ2

u

γw
(S3

S4
E[y] − bS2

S4
E[x]M−1E[xy])2

(bS2S1

S4
E[x]M−1E[x]T − 1)2 ,

(116)
where M,S1, S2, S3, S4 are functions of the model parameters and b, defined in Eq. (122).

23

Proof. First of all, we derive a handy relation satisfied by βU and βW at all the stationary points. The
zero-gradient condition of the stationary points gives

{Ex,y[2(UWx +UβW + βU − y)]U + 2γwβW = 0;
Ex,y[2(UWx +UβW + βU − y)] + 2γuβU = 0, (117)

leading to

Uγuβ
U + γwβW = 0 (118)

βW
i = − γuγwUiβ

U . (119)

Proposition 5 and proposition 6 implies that we can define b ∶= ∣Ui∣ and bv ∶= UiWi∶. Consequently,
Uiβ

W
i = − γu

γw
b2βU , and the loss function can be written as

Ex

⎡⎢⎢⎢⎢⎣
⎛⎝bd1∑j vjxj − (d1

γu
γw
b2 − 1)βU − y⎞⎠

2 + b2d1σ2 (∑
k

vkxk − γu
γw
bβU)2⎤⎥⎥⎥⎥⎦ + γud1b

2

+γwd1∣∣v∣∣22 + γu (b2d1γuγw
+ 1)(βU)2. (120)

The respective zero-gradient condition for v and βU implies that for all stationary points,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v = [b2(d1 + σ2)A0 + γwI]−1b{E[x] [b γu

γw
(d1 + bσ2) − 1]βU +E[xy]} ;

βU = d1b[(d1+σ2) γu
γw

b−1]vE[x]−(d1
γu
γw

b2−1)E[y]
(d1+σ2)d1

γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1 .
(121)

To shorten the expressions, we introduce

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = b2(d1 + σ2)A0 + γwI;
S1 = b γu

γw
(d1 + bσ2) − 1;

S2 = d1b [(d1 + σ2) γu

γw
b − 1] ;

S3 = d1 γu

γw
b2 − 1;

S4 = (d1 + σ2)d1 γ2
u

γ2
w
b4 + (γu − 2)d1 γu

γw
b2 + γu + 1.

(122)

With M,S1, S2, S3, S4, we have

{v =M−1b(E[x]S1β
U +E[xy]);

βU = S2vE[x]−S3E[y]
S4

.
(123)

The inner product of v and E[x] can be solved as

vE[x] = b S3

S4
E[x]M−1E[x]S1E[y] −E[x]M−1E[xy]

bS2

S4
E[x]M−1E[x]S1 − 1 . (124)

Inserting the expression of vE[x] into the expression of βU one obtains

βU = S3E[y] − bS2E[x]M−1E[xy]
bE[x]M−1E[x]S1S2 − S4

(125)

The global minimum must thus satisfy

γub
2 = γw ∣∣v∣∣2 + γu b2d1γu

γw
(βU)2 (126)

= b2 γw(E[y]S1S3

S4
E[x] −E[xy])(M−1)2(E[y]S1S3

S4
E[x] −E[xy])T + γ2

u

γw
(S3

S4
E[y] − bS2

S4
E[x]M−1E[xy])2

(bS2S1

S4
E[x]M−1E[x]T − 1)2 .

(127)

This completes the proof. ◻
24

Remark. As in the no-bias case, we have reduced the original problem to a one-dimensional problem.
However, the condition for b becomes so complicated that it is almost impossible to understand. That
being said, the numerical simulations we have done all carry the bias terms, suggesting that even
with the bias term, the mechanisms are qualitatively similar, and so the approach in the main text is
justified.

When E[x] = 0, the solution can be simplified a little:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = rb;

βU = − d1
γu
γw

b2−1
(d1+σ2)d1

γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1E[y];
W = rbE[xy]T [b2(d1 + σ2)A0 + γwI]−1;
βW = r γu

γw
b

d1
γu
γw

b2−1
(d1+σ2)d1

γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1E[y],
(128)

where the value of b is either 0 or determined by

γu = γw ∣E[xy]T [b2(d1+σ2)A0+γwI]−1∣2+ γ2u
γw

E[y]2 ⎛⎜⎝
d1

γu

γw
b2 − 1

(d1 + σ2)d1 γ2
u

γ2
w
b4 + (γu − 2)d1 γu

γw
b2 + γu + 1

⎞⎟⎠
2

.

(129)
In this case, the expression of W is identical to the no-bias model. The bias of both layers is
proportional to E[y]. The equation determining the value of b is also similar to the no-bias case. The
only difference is the term proportional to E[y]2.

We also note that the solution becomes significantly simplified when E[x] = 0 and E[y] = 0. This
could be seen by finding the partial derivative of L with respect to βW and βU and then setting them
to 0. When E[x] = 0, E[y] = 0, one obtains:⎧⎪⎪⎨⎪⎪⎩

∂L
∂βW

i

= UiUβ
W +Uiβ

U + γwβW
i = 0;

∂L
∂βU = UβW + βU + γuβU = 0. (130)

These equations lead to
Uγuβ

U + γwβW = 0, (131)
implying

{βU = 0;
βW = 0. (132)

In practice, it is common and usually recommended practice to subtract the average of x and y from
the data and achieve precisely E[x] = 0 and E[y] = 0. We generalize this result to deeper networks in
the next section.

D.2 Deep linear network

Let β be a (∑D
i di + 1)-dimensional vector concatenating all β1, β2, ..., βD, βU , and denoting the

collection of all the weights U , WD, ..., W 1 by w, the model of a deep linear network with bias is
defined as

fb(x,WD, ...,W 1, U, βD, ..., β1, βU) (133)

=(ϵU ○U)((ϵD ○WD)(...((ϵ2 ○W 2)((W 1x + β1) + β2)...) + βD) + βU (134)

=(ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)W 1x + (ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)β1 (135)

+ (ϵU ○U)(ϵD ○WD)...(ϵ3 ○W 3)β2 + ... + (ϵU ○U)βD + βU (136)

=(ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)W 1x + bias(w,β), (137)

where

bias(w,β) = (ϵU○U)(ϵD○WD)...(ϵ2○W 2)β1+(ϵU○U)(ϵD○WD)...(ϵ3○W 3)β2+...+(ϵU○U)βD+βU ,
(138)

25

and ○ denotes Hadamard product. The loss function is

Lb(x, y,w, β) = Eϵ,x,y[(fb(x,w,β) − y)2] +L2(w,β). (139)

Proposition 5 and Proposition 6 can be generated to deep linear network. Similar to the no-bias case,
we can reduce the landscape to a 1-dimensional problem by performing induction on D and using the
2-dimensional case as the base step. However, we do not solve this case explicitly here because the
involved expressions now become too long and complicated even to write down, nor can they directly
offer too much insight. We thus only focus on the case when the data has been properly preprocessed.
Namely, E[x] = 0 and E[y] = 0.

For simplicity, we assume that the regularization strength for all the layers employs the value γ. The
following theorem shows that When E[x] = 0 and E[y] = 0, the biases vanish for an arbitrarily deep
linear network:
Theorem 6. Let E[x] = 0 and E[y] = 0. The global minima of Eq. (139) have β1 = 0, β2 =
0, ..., βD = 0, βU = 0.

Proof. At the global minimum, the gradient of the loss function vanishes. In particular, the derivatives
with respect to β vanish:

∂Lb(x, y,w, β)
∂βi

= 0; (140)

Eϵ,x,y [∂fb(x,w,β)
∂βi

(fb(x,w,β) − y)] + γβi = 0; (141)

Eϵ,x,y [∂bias(w,β)
∂βi

(fb(x,w,β) − y)] + γβi = 0; (142)

Eϵ [∂bias(w,β)
∂βi

(fb(E[x],w, β) −E[y])] + γβi = 0, (143)

where βi is the ith element of β. The last equation is obtained since fb(x,w,β) is a linear function
of x. Using the condition E[x] = 0 and E[y] = 0, Equation (143) becomes

Eϵ [∂bias(w,β)
∂βi

bias(w,β)] + γβi = 0. (144)

bias(w,β) is a linear combination of βi. Consequently, ∂bias(w,β)/∂βi does not depend on β,
and bias(w,β)∂bias(w,β)/∂βi is a linear combination of βi. The ∑D

i di + 1 equation derived from
vanishing gradient yield a set of ∑D

i di + 1 linear equations of the form M(w)β = 0, where M(w)
is a (∑D

i di + 1) × (∑D
i di + 1) matrix with dependence on w. These linear equations are linearly

independent, since the term ∂L2(w,β)/∂βi = 2γβi and is different in each of the equations. Thus,
the linear system M(w)β = 0 has (∑D

i di + 1) independent equations and (∑D
i di + 1) variables.

The only possible solution to this linear system is

β = 0. (145)

This finishes the proof. ◻
Thus, for a deep linear network, a model without bias is good enough to describe data satisfying
E[x] = 0 and E[y] = 0, which could be achieved by subtracting the mean of the data.

26

212 PUBLICATIONS

213

RÉSUMÉ

Cette thèse étudie deux cas particuliers de calcul numérique. L’un est la simulation numérique du
modèle des disques durs à l’aide des Méthodes de Monte-Carlo par chaînes de Markov, et l’autre est
l’apprentissage profond.
Les chapitres deux à sept concernent le modèle des disques durs. Nous parallélisons l’algorithme
rapide de (straight) event-chain Monte Carlo en instaurant un critère simple qui enforce la causalité.
Nous atteignons des performances supérieures grâce à la programmation lock-free et avons formelle-
ment vérifié la mise en œuvre. Nous comparons les variantes des algorithmes de event-chain Monte
Carlo par des configurations des disques durs dérivées d’empilements clairsemés. Nous montrons
que ces variantes, ne variant que dans le détail, s’échelonnent différemment par rapport au paramètre
de relaxation de la configuration, confirmant notre théorie d’échelle. Nous nous dérivons des formules
efficaces estimant la pression à partir de ses deux définitions. Avec ces formules, une mise en œuvre
de pointe des algorithmes d’échantillonnage et une analyse statistique appropriée, nous évaluons la
pression et sa barre d’erreur avec une précision sans précédent.
L’algorithme d’optimisation et la fonction objectif présentés dans l’apprentissage profond sont abordés
dans cette thèse. Nous découvrons que l’algorithme du gradient stochastique montre des comporte-
ments indésirables tel que converger vers un maximum local ou ne pas échapper à un point col dans
les modèles simplifiés que nous avons conçus. Nous trouvons l’expression exactement des minima
dans un réseau linéaire profond avec décrochage et dégradation des pondérations et démontrons que,
selon la profondeur, il peut y avoir un minimum indésirable à l’origine de l’espace des paramètres.

MOTS CLÉS

Physique statistique, Simulation numérique, Chaînes de Markov, Modèle des disques durs, Transition
de phase, Apprentissage profond

ABSTRACT

This thesis studies two specific cases of computation. One is the simulation of the hard-disk model
using Markov-chain Monte Carlo algorithms, and the other is deep learning.
Chapters two to seven concern the hard-disk model. We parallelize the fast (straight) event-chain
Monte Carlo algorithm by introducing a rigorous criteria that enforces causality. We achieve superior
performance through lock-free programming, and formally verify the implementation. We benchmark
the variants of the event-chain Monte Carlo algorithms by hard-disk configurations derived from sparse
packings. We show that these variants, varying only in detail, scale differently with respect to the
relaxation parameter of the configuration, confirming our scaling theory. We derive efficient formulas
estimating pressure from both of its definitions. With these formulas, state-of-the-art implementation
of the sampling algorithms, and proper statistical analysis, we evaluate pressure and its error bar to
unprecedented precision.
Both optimization algorithm and loss landscape featured in deep learning are discussed in this thesis.
We find out that the stochastic gradient descent algorithm shows undesired behavior such as con-
verging to a local maximum or failing to escape a saddle point in the toy models we have designed.
We find the closed-form expression of minima in a deep linear network with dropout and weight decay
and demonstrate that, depending on the depth, there can be an undesired minimum at the origin of
parameter space.

KEYWORDS

Statistical physics, Simulation, Markov chains, Hard-disk model, Phase transition, Deep learning

	Contents
	Acknowledgement
	1 Introduction
	1.1 Multithreaded event-chain Monte Carlo with local times
	1.2 Sparse hard-disk packings and local Markov chains
	1.3 Hard-disk computer simulations—a historic perspective
	1.4 Simplified models and optimization algorithms in deep learning

	2 Hard disks in statistical physics
	2.1 Hard-disk model
	2.1.1 Definition of hard-disk model
	2.1.1.1 Hard-disk dynamics
	2.1.1.2 Statistical ensembles for the hard-disk model

	2.1.2 Properties of hard-disk model
	2.1.2.1 Basic properties
	2.1.2.2 Hard-disk thermodynamics and phase transition
	2.1.2.3 Aspect ratio and N

	2.2 Sparse packings
	2.2.1 Definition
	2.2.1.1 Construction of Böröczky packings

	2.2.2 Properties of Böröczky packings
	2.2.2.1 Contact graphs: local and collective stability
	2.2.2.2 Dimension of the space of Böröczky packings
	2.2.2.3 Escape modes
	2.2.2.4 -relaxed Böröczky configurations

	3 Algorithms
	3.1 Markov-chain Monte Carlo: the basics
	3.1.1 Introduction to Markov chains
	3.1.2 Convergence of Markov chains
	3.1.2.1 Convergence theorem
	3.1.2.2 Ergodic theorem

	3.2 Sampling algorithms
	3.2.1 Metropolis algorithm and its massive parallelization
	3.2.2 Event-chain Monte Carlo algorithms
	3.2.2.1 Straight ECMC
	3.2.2.2 Reflective ECMC
	3.2.2.3 Forward ECMC
	3.2.2.4 Newtonian ECMC

	3.2.3 Multithreaded ECMC
	3.2.4 Molecular Dynamics

	3.3 Algorithm performance
	3.3.1 Escaping performance
	3.3.2 Coarsening performance

	4 Observables
	4.1 Overview of observables
	4.2 Distributions
	4.2.1 Position distribution
	4.2.1.1 Overview of hard-disk position distribution
	4.2.1.2 Extrapolation of hard-disk position distribution

	4.2.2 Pair-correlation functions

	4.3 Pressure
	4.3.1 Definitions of pressure
	4.3.1.1 Kinematic definition
	4.3.1.2 Statistical-mechanics definition

	4.3.2 Pressure estimators
	4.3.2.1 Wall rifts
	4.3.2.2 Rift averages
	4.3.2.3 Homothetic volume reductions
	4.3.2.4 Kinematic pressure estimators

	4.4 Orientational order of hard disks

	5 Implementation of algorithms
	5.1 Formal verification
	5.1.1 Sequential Consistency
	5.1.2 Example: Sequential consistency of multithreaded ECMC

	5.2 Performance of computer programs

	6 Statistical analysis
	6.1 Distribution comparison
	6.2 Confidence interval of correlated sequences

	7 Interpreting simulations
	7.1 Functions of pressure and global orientational order
	7.1.1 The sequence of global orientational order 6
	7.1.2 Correlation between pressure and global orientational order
	7.1.3 Window average of pressure

	7.2 Previous results

	Bibliography
	Publications

