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Spécialité de doctorat : Mécanique des fluides et des solides, acoustique
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Introduction

1 Motivations

On March 11th, 2011, a moment magnitude (Mw ) 9.1 undersea megathrust earthquake

occurred in the Pacific Ocean, 72 km east of the Oshika Peninsula of the Tōhoku region. The

Japan Trench has moved by up to 60 m as a result of the quake, the Earth was shifted on

its axis so that the day was shortened by 1.8 microseconds, and the earthquake triggered

a tsunami which caused the Fukushima Daiichi nuclear disaster. On February 6th, 2023, a

moment magnitude (Mw ) 7.8 earthquake struck southern and central Turkey and northern

and western Syria. It ruptured approximately 370 km of the East Anatolian Fault producing a

maximum slip of 9 m within the Earth’s crust. What is interesting is that, the seismic waves

detected worldwide, and responsible for severe human and infrastructure damage, represent

only a small part of the energy released during a seismic event. In fact, most of the energy is

dissipated through friction (Kanamori & Brodsky, 2004; Kanamori & Rivera, 2006). Therefore,

the mechanisms behind friction are still investigated to understand the nucleation, evolution

and arrest of seismic events. A particular attention is paid to the apparent cyclic friction

behavior of faults (Bakun & Lindh, 1985).

Earthquakes are usually known as natural disasters, but they can also be induced by

anthropogenic sources. On September 12th, 2016, and on November 15th, 2017, two moment

magnitude (Mw ) 5.5 earthquakes struck South Korea (Gyeongju and Pohang earthquake

respectively) to a major right-lateral fault, the Yangsan fault, and close to an Enhanced

Geothermal Systems (EGSs) site. At this EGS site between early 2016 and September 2017,

many thousands of cubic meters of water were injected under pressure into wells reaching

approximately 4 km of depth, which suggests that the EGS activity induced both earthquakes.

On November 12th, 2019, the geothermal energy company Georhin, is likely to have induced

a magnitude 3.1 earthquake north of Strasbourg. Environment friendly industrial activities

such as deep geothermal energy projects and CO2 sequestration require the injection of

large amounts of fluids in the Earth’s crust. Current experiences show that earthquakes of

moderate to large magnitudes can be induced/triggered, which endangers the viability of

such environmentally promising projects.

We are still unable to predict both natural and induced earthquakes. However, based

on the established concept that fault slip can be stimulated by fluid injection in the Earth’s

crust, a new and timely question in the community is to show that the earthquake instability

could be mitigated by active control of fluid pressure. Such a study is being conducted in

the context of the European Research Council CoQuake’s project (Controlling earthQuakes,
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www.coquake.eu). It proposes to avoid earthquake instabilities by inducing them at a lower

energetic level, hence reducing the seismic risk and its human and economic cost. These

points and the fact that both natural and induced earthquakes’ nucleation relies on similar

physics, justify the development of efficient large-scale numerical tools to simulate the

earthquake instability.

In this work, we focus on the development of efficient and accurate simulations of fluid

effects in dynamic fault rupture, when the fluid is injected at a given distance from the fault.

This objective can be decomposed into two main tasks:

• An in-depth comparative study of existing numerical tools for seismic cycles to deter-

mine the most promising approach for an accurate description of the dynamic fault

rupture;

• Proposition of simplified models tailored to the study of fluid injection effects in dy-

namic fault rupture.

The developed numerical tools set the basis to help the community developing more and

more realistic simulations (incorporating 3D realistic fault geometries and multi-physics

couplings), in order to understand and mitigate earthquakes instabilities.

2 Scientific approach

This work aims at modeling fluid injection effects in dynamic fault rupture, i.e. seismic fault

slip. To this end, the first step consists in modeling the seismic instability. A dynamic fault

rupture is one of the three main steps of a seismic cycle, which takes into account the slow

accumulation of the shear stress at a fault zone until the nucleation of a seismic slip, and

its arrest followed by the accommodation of the Earth’s crust to a new equilibrium state.

Therefore, we first propose to model and simulate a seismic cycle problem to accurately

describe the seismic motion from its initiation to its arrest.

An important part of this thesis is devoted to the development of effective, state-of-the-art,

numerical tools in order to simulate seismic cycles, before incorporating fluid injection effects

on fault slip. We use the Boundary Element Method (BEM), known to be efficient for solving

elastodynamic problems in large-scale unbounded domains (Chaillat et al., 2017; Kpadonou

et al., 2020), and seismic cycles problems (Ando (2016), Luo et al. (2017), Barbot (2021),

and Ozawa et al. (2022) among others). For this class of problems, the BEM presents many

advantages compared to the volume methods such as Finite Difference (FD) or Finite Element

Method (FEM): reduction of one dimension of the computational domain, very good accuracy

and no artificially truncation of the calculation domain thanks to an exact formulation of

the radiation condition at infinity. Moreover, the recent development of Fast BEMs, such as

Fast Multipole Accelerated BEMs or Hierarchical matrices-based BEMs, lead to competitive

simulations with very low computational cost. The method is now mature enough to handle

complex geometries and realistic configurations Chaillat et al. (2012), but for single physics.

A progressive approach is adopted in this work, considering simplified problems before a

more complex large-scale case could be considered with the developed numerical tools. Due

to the fact that natural earthquakes and fluid injection induced earthquakes follow similar

2
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physics as far as it concerns their nucleation, a starting point is to first focus on a “dry” case

without fluid injection.

This dissertation focus on the verification and comparison of different time integration

methods incorporating Fast BEMs, which are commonly used in the seismic cycle community,

and to their sensitivity with respect to their parameters. Code verification exercises are still

largely discussed as detailed by Erickson et al. (2020a, 2023). For this purpose, the simulation

of an aseismic motion is distinguished from a seismic cycle simulation. An analytical solution

is proposed to verify the simulation of an aseismic slip, and a procedure to compare seismic

cycle results to reference results is detailed.

Another challenging part is to extend the capabilities of the developed numerical tools to

incorporate fluid injection effects in fault slip. The present work is mainly focused on fluid in-

jection effects at the specific timescale of a seismic motion, which has not been considered in

the literature. We also assume that the fluid is injected in the Earth’s crust at a given distance

from the fault. The poroelastodynamic framework is chosen to incorporate hydromechanical

couplings. However, a complete poroelastodynamic model would require non-negligible

computational costs or approximations. Thus, a reduction of the complete model is required

to provide an effective model than would be easier to integrate in the proposed numerical

framework, and would accurately take into account the predominant fluid effects at the

timescale of a seismic or aseismic motion. A dimensional analysis enables rigorous simpli-

fications of the complete model. A numerical illustration of the results obtained is crucial

before running a multi-physic test using Fast BEMs to solve a dynamic fault rupture problem

with fluid injection at the timescale of a seismic slip.

3 Overview of the thesis

This dissertation is organized in three chapters.

• Chapter 1 defines the concepts of earthquake instability and seismic cycle used in this

work, and provides the motivations for studying fluid effects on frictional fault slip.

Special attention is given to the modeling and the simulation of seismic cycle problems

without fluid-injection. These are key steps to develop efficient and accurate numerical

tools to study, in a second step, fluid-injection effects on dynamic fault rupture. This

chapter details the ingredients required to model a generic seismic cycle problem and

incorporate fluid effects on fault slip. It gives a broad literature review on the existing

numerical methods to solve seismic cycles problems and highlights the challenging

verification of such simulations.

• Chapter 2 concentrates on the comparison of seismic cycle simulations for simplified

mode II and mode III two-dimensional quasi-dynamic problems for planar faults. This

chapter presents the space and time integration methods developed to obtain our

numerical results. The numerical tools developed contain three explicit (respectively

explicit-implicit) time integration methods and use Fast Boundary Element Methods

accelerated using Fast Fourier Transform or Hierarchical matrices. It offers, in a sin-

gle code, an extensive comparison study between existing methods to solve seismic
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cycles problems, as well as a sensitivity study on the parameters of each method. It

allows to determine the most appropriate numerical methods to incorporate fluid-

injection effects at the timescale of a seismic motion, and to then consider realistic

configurations.

• Chapter 3 is dedicated to the modeling of fluid effects on fault slip at the timescale of

an earthquake instability in the case where the fluid is injected in the Earth’s crust at

a given distance of the fault. After highlighting the difficulties inherent to the use of

complete poroelastodynamic equations to incorporate hydromechanical couplings, a

dimensional analysis of the complete poroelastodynamic equations is conducted to

assess formally the predominant fluid effects at the timescale of a seismic or aseismic

motion. These developments enable to assess the model we want to use and to discuss

the commonly used models in the literature. A numerical illustration of the results

of the dimensional analysis using a simplified one-dimensional poroelastodynamic

problem is proposed to assess the validity range of the simplified model obtained at

the timescale of a seismic slip.

Conclusions and perspectives of this work are finally proposed.
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Chapter 1. Fast methods for earthquake cycles

1 Instability and its mitigation

1.1 Observation of seismic cycles: the genesis

When will the Big One hit? California is preparing for two major earthquakes in the next

few years. The West Coast of United States lies on the San Andreas Fault, a fracture zone

over 1,000 km long that extend all over to Mexico. This geological boundary between the

Pacific Ocean and North American continental plates is conducive to large-scale seismic

phenomena. But how did the question of studying faults to understand the possibility of a

seismic event to occur ?

Human and material damage caused by natural earthquakes urged the scientists to

develop in situ observations of such phenomenons (e.g. geodetic techniques1, Rolandone

(2022)). In particular, geodetic observations of the Parkfield segment of the San Andreas Fault

first confirmed a faulting origin of earthquakes (as reviewed by Romanet (2017)). A cyclic

pattern emerged from these observations that the fault had ruptured during six earthquakes

of magnitude 6 or greater, between 1850 and 1966, with a recurrence time of about 20

year (Bakun & Lindh, 1985). This study lead to conduct an experiment to predict future

earthquake on the basis of the periodicity highlighted. Nevertheless, it could not validate

the predictions as it had underestimated the complexity of the different deformation phases

at stake. So far, we are still not able to predict seismic events but studying seismic cycles

can help to estimate areas at risk and to get a better understanding of such devastating

phenomenons. However, it appeared from geodetic observations, that the slip dynamics

of faults is more complex than simply periodic (discovery of slow slip events for instance,

reviewed by Romanet (2017)). The monitoring facilities developed to study earthquakes

of natural cause, also exhibit earthquakes due to anthropogenic sources (called induced

earthquakes), that represent a non-negligible number of earthquake phenomena.

Nowadays, in situ observation of both natural and anthropogenic earthquakes benefit

from many new monitoring survey and networks worldwide: the United States Geological

Survey (USGS) https://www.usgs.gov/programs/earthquake-hazards thanks to the Advance

National Seismic Survey, in France, the national research infrastructure Epos-France (part of

the European Plate Observing System). HiQuake (The Human-Induced Earthquake Database)

provides the most complete database of anthropogenic projects to have induced earthquake

sequences. A world map of the induced events and their corresponding subsurface engineer-

ing technology are available on https://inducedearthquakes.org/.

So far, the understanding of earthquakes still relies on the collaboration between experi-

mentalist of rocks (laboratory experiments), geologists and physicists (geological observa-

tions), applied mathematicians and solid and fluid mechanicians (numerical experiments

and theoretical models). This active transdisciplinary connections are emphasized by Rolan-

done (2022), Bizzarri and Bhat (2012), and Ferrand et al. (2023) among others. In this work,

we focus on theoretical and numerical aspects of fault mechanics. As a first step, we propose

a kinematic model to explain the different phases of the earthquake processes called “the

seismic cycle”.

1Review of techniques to image earthquake and post-seismic phases by Zacharie Duputel and Frédérique

Rolandone in chapters 2 and 3 of Rolandone (2022)
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1. Instability and its mitigation

1.2 Definition of a seismic cycle: a kinematic approach

Seismic cycles are characteristic patterns that were revealed by geodetic observations. In

this part, we first propose a definition of this concept. Used since 1960 (Fedotov, 1968), the

expression “seismic cycles” refers to the recurring alternance between an inter-seismic phase

and a co-seismic phase at the vicinity of a fault. By “fault”, we mean the region of the rock

that is under pronounced localized shear deformation due to the far field tectonic movement.

Originally, the definition of a seismic cycle is based on Reid’s “elastic rebound theory” (Reid,

1910) whose principles are recalled by Segall (2010):

1. The fracture of the rock, which causes a tectonic earthquake, is the result of elastic

strains, greater than the strength of the rock can withstand, produced by the relative

displacements of neighboring portions of the earth’s crust.

2. These relative displacements are not produced suddenly at the time of the fracture, but

attain their maximum amounts gradually during a more or less long period of time.

3. The only mass movements that occur at the time of the earthquake are the sudden

elastic rebounds of the sides of the fracture towards position of no elastic strain; and

these movements extend to distances of only a few miles from the fracture.

4. The earthquake vibrations originate in the surface of fracture; the surface from which

they start has at first a very small area, which may quickly become very large, but at a

rate not greater than the velocity of compressional elastic waves in the rock.

5. The energy released at the time of an earthquake was, immediately before the rupture,

in the form of energy of elastic strain of the rock. (Reid 1911, p. 436)

A better understanding of the seismic cycle was allowed by the emergence of the plates

tectonic theory and advances made in the field of imaging the Earth’s interior2 (Coltice et al.,

2017; Rolandone, 2022). The plates tectonic theory emphasized the relatively continuous

displacement of the lithospheric plates with respect to one another in the convective system

in the interior of the earth as the main loading of the rock system. A review of the concept of

seismic cycle is given by Rolandone (2022).

In the present work, we consider the following definition of a seismic cycle as a chain of

causal physical phenomena, the only visible part of which is the earthquake. The seismic

cycle comprises three phases. These are:

• An inter-seismic phase, which corresponds to the slow accumulation of shear defor-

mation at a fault zone until it exceeds the ability of the frictional forces to prevent slip.

This period can last from tens to hundreds of years.

• A co-seismic phase, which consists in the sudden release of the accumulated stress

resulting from a rapid displacement at the fault interface. This leads to an earthquake,

characterized by seismic wave propagation, a variation in the temperature of the rock,

plastic damage in the vicinity of the fault zone etc. This phase can last a few seconds.

2Review of links between mantle convection and tectonics to date by Coltice et al. (2017), see chapters 2 and

3 from Rolandone (2022) for a review on imaging techniques for both co-seismic and post-seismic phases
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• A post-seismic phase that lasts from minutes to years after an earthquake. It consists in

additional movement of the Earth crust as it accommodates a new equilibrium state.

This remaining flow can lead to aftershocks at the fault interface or eventually decays

back to the steady inter-seismic motion.

To understand the mechanisms behind seismic cycles, let’s consider a simplified kine-

matic model. Figure 1.1 ((a) and (b)) represents a simplified kinematic model, idealizing the

seismic cycle as the stick-slip behavior of a reduced order spring-slider model. This model

mimics the behavior of a strike-slip fault represented on Figure 1.1 ((c) and (d)). By strike slip

fault, we mean a fault on which two Earth crust blocks slide past one another, resulting in

a horizontal motion. The strike refers to the fault azimuth, conventionally described with

respect to north. The spring-slider comprises a block that represents the mobilized rock mass

during an earthquake. The block weight allows for compression at the interface, which stands

for the far field loading that is normal to the fault in the strike slip case. The spring, of initial

length l0, represents the elastic behavior of the lithosphere surrounding the fault rock. The

tension applied to the spring mimics the relative motion of the lithospheric plates. The fault

is modelled as a planar interface between the rigid block and a rigid surface in the case of the

spring-slider, while it lies between two elastic blocks in the case of the strike-slip fault.

Figure 1.1 • Idealized representation of inter-seismic and co-seismic phases through the

analogy between the spring-slider system ((a) and (b)) and a strike-slip fault ((c)

and (d)) (Modified from Rolandone (2022)). Figures (a) and (c) represent the

stress accumulation phase (inter-seismic phase). Figures (b) and (d) represent

the stress-release phase (co-seismic phase).

Figure 1.1 (a) is analogous to the inter-seismic phase. It represents the elongation of the

spring in response to the tension imposed. Elastic deformation accumulates and a frictional

force Ffr, applies at the locked interface (in red) and opposes to the spring force Fsp and to

the movement of the block.

Figure 1.1 (c) extends the configuration described for Figure 1.1 (a) to a strike-slip fault.

10



1. Instability and its mitigation

In Figure 1.1 (b), a sudden displacement of the block occurs, combined with the compres-

sion of the spring and the release of the accumulated elastic energy. This corresponds to the

co-seismic phase as represented for the strike slip fault on Figure 1.1 (d). A brutal slip occurs

at the fault interface combined with the brittle behavior of the part of the lithospheric blocks

surrounding the fault and the release of the elastic energy previously accumulated.

1.3 Linear stability analysis (LSA) with rate-and-state friction

To understand the transition from inter-seismic to co-seismic phase, we need to study the

stability of the equilibrium state of the system. We use the reduced order spring-slider model

in this part, which allows us to re-derive stability results from Lapusta et al. (2000). The

conditions under which the equilibrium state of the spring-slider system is unstable and

triggers a seismic event can be easily understood by (re-)deriving the linear stability analysis

of equilibrium state of the quasi-static velocity-driven spring-slider system, as discussed

by Lapusta et al. (2000), Ruina (1983). We consider that the spring-slider moves steadily

at rate V ∗, which mimics the relative motion of lithospheric plates. Under the quasi-static

assumption, the instability criterion depends only on the frictional properties at the interface.

In the quasi-static configuration, the balance momentum equation writes as the equilibrium

between the friction force and the spring force applied to the mobilized block. Its projection

on the horizontal axis, writes

0 =−τA−k Aδ (1.1)

where τ is the shear stress, A is the active frictional surface, k is the spring stiffness per unit

area, and δ is the slip of the mobilized block. (1.1) is completed by an interface condition

to have a well-posed problem. Here, the rate-and-state friction law given in equation (1.2)

(detailed in Section 2.3) is considered at the interface between the block and the rigid surface.

At this stage, we only need to know that the interface frictional behavior described with rate-

and-state friction law implies that the shear stress is a function, denotedΨ, of the slip-rate

V = dδ/dt and of an internal state variable θ. The time derivative of θ is also given as a

function, denoted ϕ of V and θ. In the following, we denote by ·̇ the time derivative d ·/dt .

τ=Ψ(V ,θ), θ̇ =ϕ(V ,θ). (1.2)

Injecting the constitutive rate-and-state friction law (1.2) into the balance momentum equa-

tion (1.1) and replacing V (t) = δ̇(t), we obtain the non-linear differential equations on

(δ(t ),θ(t ))

0 =−Ψ(δ̇,θ)A−k Aδ, θ̇ =ϕ(δ̇,θ). (1.3)

The equilibrium state (δ∗,V ∗,θ∗) is given by

δ∗ =−Ψ(V ∗,θ∗)/k, ϕ(V ∗,θ∗) = 0 (1.4)

where the steady state slip rate V ∗ corresponds to the imposed loading.

We apply the 1st Lyapunov method to study the stability of the equilibrium point. The

objective is to determine the conditions under which the parameters of the system allow a
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perturbation of the equilibrium state to decay or to grow away. To this aim, we linearize the

system in the vicinity of the equilibrium state by calculating the Jacobian of the system (1.3).

0 ≈−
(
Ψ(V ∗,θ∗)+

(
∂Ψ

∂V

)
V =V ∗,θ=θ∗

˙̃δ+
(
∂Ψ

∂θ

)
V =V ∗,θ=θ∗

θ̃

)
A−k A(δ∗+ δ̃),

˙̃θ ≈ ϕ(V ∗,θ∗)+
(
∂ϕ

∂V

)
V =V ∗,θ=θ∗

˙̃δ+
(
∂ϕ

∂θ

)
V =V ∗,θ=θ∗

θ̃

(1.5)

where (δ̃, ˙̃δ, θ̃) denotes the perturbation of the equilibrium state described by (δ∗,V ∗,θ∗) in

(1.4).

To keep more compact notations, we denote:(
V
∂Ψ

∂V

)
V =V ∗,θ=θ∗

= A∗,

(
∂Ψ

∂θ

)
V =V ∗,θ=θ∗

=C∗,

(
∂ϕ

∂V

)
V =V ∗,θ=θ∗

=−
B∗

LC∗, with L =
(

V /
∂ϕ

∂θ

)
V =V ∗,θ=θ∗

Injecting (1.4) in (1.5) and rearranging the equations as an Ordinary Differential Equation

system on the perturbation (δ̃, θ̃), we obtain

˜̇δ

V ∗ =−
k

A∗δ̃−
C∗

A∗θ̃,
C∗L ˜̇θ

B∗V ∗ =
k

A∗δ̃−
(B∗− A∗)

A∗
C∗

B∗θ̃ (1.6)

Linear Stability Analysis is carried out on the dimensionless form of (1.6), namely

dD

dT
=−

kL

A∗D −
B∗

A∗Θ,
dΘ

dT
=

kL

A∗D +
B∗− A∗

A∗ Θ (1.7)

where:

δ̃= DL, t = T L/V ∗, θ̃ =ΘB∗/C∗ (1.8)

Hence, the Jacobian of the linear system (1.7) is

[J ] =
[
−kL/A∗ −B∗/A∗

kL/A∗ (B∗− A∗)/A∗

]
. (1.9)

As the obtained system is autonomous (non-explicit dependence in time i.e. Ẋ = f (X )

with ∂ f /∂t = 0), we use the definition of stability in the sense of Lyapunov. If the real part

of all the Jacobian eigenvalues is negative, a perturbation of the equilibrium state decays

exponentially, whereas if at least, one eigenvalue has a positive real part, the perturbation

grows exponentially. If the largest real part is 0, we obtain a long-time periodic motion.

The characteristic equation of the Jacobian det([J ]−λ [I]) = 0 writes

λ2 − tr([J ])λ+det([J ]) = 0. (1.10)

In our case, the product of all eigenvalues is strictly positive det([J ]) > 0. So both eigenvalues

have the same sign. We denote ∆= tr([J ])2 −4det([J ]), the discriminant of (1.10). Thus, if the

sum of all eigenvalues is negative tr([J ]) < 0, both eigenvalues have a negative real part and

the perturbation decays exponentially, whereas if tr([J ]) > 0 both eigenvalues have a positive

real part and the perturbation grows exponentially. This comes from the fact that the square
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root of the absolute value of the discriminant is lower than the absolute value of the sum of

all eigenvalues
p|∆| < |tr([J ]) |. When (B∗− A∗) < 0, tr([J ]) < 0, whereas when (B∗− A∗) > 0,

the sign of tr([J ]) depends on the sign of k − (B∗− A∗)/L, which defines a critical stiffness per

unit area kcr

kcr =
B∗− A∗

L
(1.11)

where L is generally interpreted as the characteristic slip length as the frictional resistance

drops (transition from static to dynamic friction) when slip occurs.

As a consequence, we can distinguish 3 cases:

• If k > kcr, (δ∗,V ∗,τ∗,θ∗) denotes an asymptotically stable equilibrium and the small

perturbations decays back to the initial equilibrium;

• If k < kcr, (δ∗,V ∗,τ∗,θ∗) denotes an unstable equilibrium and unstable slip occurs;

• If k = kcr, the perturbed equilibrium remains bounded around the equilibrium (stable

in the sense of Lyapunov).

To interpret this result in the case of the strike slip fault, we can express the apparent stiffness

per unit area of the fault as (Dieterich, 1979):

k ≈
G

Lac
(1.12)

where G is the shear modulus of the elastic lithosphere blocks surrounding the fault and Lac

is basically the length of the fault that slips over the fault plane. Thus, the instability condition

can rewrite

Lac > Lcr ≈
∣∣∣∣∣ LG

B∗− A∗

∣∣∣∣∣ , (1.13)

meaning that the length of the zone that slips must be greater than a critical size Lcr in order

to lead to unstable slip and earthquake nucleation. In practice Lcr is called the nucleation

length and denoted Lnuc.

In the previous calculations, inertial effects and the viscosity of the surrounding rock

have been neglected. These effects are key to model a complete seismic cycle. In effect, the

quasi-static approximation only allows to model the inter-seismic phase and the initiation of

the instability (co-seismic phase) but not the post-seismic phase as it leads to unbounded slip

velocities during the frictional instability (Barras et al., 2019). Thus, to simulate a complete

seismic cycle in Figure 1.2, we take into account both inertial effects and the viscosity. We

consider a mass-spring-damper model (Kelvin-Voigt rheology is assumed). The force balance

equation we solve in this case writes

mδ̈=−τA+k A(δ∞(t )−δ)+η(V∞− δ̇) (1.14)

where m is the mass of the mobilized slider, δ∞(t ) =V∞t corresponds to the far-field displace-

ment resulting from the far field velocity V∞ imposed to the system, and η is the damping

coefficient in the Kelvin-Voigt rheological model, taking into account the viscous effect of

the rock surrounding the fault zone. V∞ is previously introduced as the steady state slip-rate
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Chapter 1. Fast methods for earthquake cycles

V ∗. The far-field displacement had been neglected in the quasi-static case. As explained by

Stefanou (2019), this is a strong assumption leading to incorrect results regarding stability.

The difficulty is that the far field displacement depends explicitly on time and leads to a non-

autonomous system when combining the friction law with the equation of motion. Deriving

Lyapunov stability condition for a non-autonomous system is not an easy task as a uniformly

stable system has to be distinguished from a simply stable system (Hale, 1977; LaSalle, 1960).

To overcome this difficulty Stefanou (2019) proposes a double-scale approach. It consists

in noticing that the far-field velocity is much slower than the seismic slip-rate, leading to

introduce slow and fast time scales in the equations (respectively associated with far-field

movement, δ written as εt with ε≪ 1, and with t). From that assumption, each interface

variable depends on two time scales, and it allows to expand each term of the equation in

power series of ε. Considering the equation obtained at zeroth order of ε, thanks to this

perturbation approach, the force balance equation (1.14) would write in the form of a first

order

V̇ =−τA/m +k A(δ∞−δ)/m +η(V∞− δ̇)/m

δ̇=V
(1.15)

where δ∞ acts as a constant parameter.

×Remark 1.1. Taking into account the far field displacement resulting from the far

field velocity imposed to the system in the quasi-static case and applying the double scale

approach would give the equilibrium equation at zeroth order of ε

0 =−τA−k A(δ∞−δ) (1.16)

As a consequence, it influences on the interface variable values at steady state, but the

instability condition derived in equations (1.11) and (1.3) remains the same.

Results of the linear stability analysis incorporating inertia and viscosity effects are (re-)

derived by Tzortzopoulos (2021). Again, Lyapunov stability analysis is carried out as detailed

by Rice and Ruina (1983). It consists in showing that the equilibrium is stable as the spring

stiffness goes to infinity and unstable when k = 0. Thus, as the stiffness k reduces from ∞
to 0, one passes through a critical value kcr. At this critical stiffness value, the roots of the

characteristic polynomial of the Jacobian of the system are in the form ±iβ. Thus, at this

point, the interface unknowns are oscillating (Hopf bifurcation). The expression of kcr is

deduced in this case,

kcr =
(B∗− A∗)A−ηV∞

L

(
1+

mV∞
(A∗A+ηV∞)L

)
(1.17)

We can notice that the latter tends to the expression obtained in Equation (1.11) when both

inertial force and viscosity are neglected (m = 0 and η= 0).

Solving (1.15), we can simulate an isolated seismic event using the mass-spring-damper

system with rate-and-state friction law in order to simulate a complete seismic cycle. Results

are shown in Figure 1.2 (inspired from Tzortzopoulos (2021)) in terms of response of the mass-

spring-damper system in case k É kcr. Figure 1.2 (a) shows the superposition of the slip-rate
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1. Instability and its mitigation

V (t) and the slip δ(t) at the interface during a seismic cycle. Figure 1.2 (b) and (c) allow to

assess the response of the fault in terms of dissipated energy. These figures highlight that the

energy radiated to the environment through seismic waves represent only a small portion of

the energy budget, yet sufficient to cause significant human and material damage. Figure 1.2

(b) represents the frictional response associated with a shear stress drop with respect to the

accumulated slip. At point A, the fault is reactivated and the instability nucleates. The system

follows the black curve until it reaches a new equilibrium point (point B) of lower energy.

The accumulated slip from point A to point B corresponds to the characteristic slip length L

which appears in the expression of the critical spring stiffness (1.11). During the instability,

the spring is unloaded with a rate −k with respect to slip as represented by the red dashed line.

The shaded area between the two curves corresponds to the released elastic energy per unit

area, E R . Figure 1.2 (c) shows two other energy forms that complete the energy budget during

a seismic event (Kanamori & Brodsky, 2004). The red shaded area corresponds to the fracture

energy per unit area, EG , while the green shaded area corresponds to the frictional dissipation

per unit area, E H . Parameters are taken from tables 1.1 (a) and (c) from Tzortzopoulos (2021).

In the context of the stability analysis of a rate-and-state finite fault Viesca (2016b, 2016a)
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Figure 1.2 • Response of a fault under slip-weakening friction during an earthquake (a) Slip-

rate V (t) (orange curve) and slip δ(t) (black curve) in terms of time t . (b) Fric-

tional (black curve) and spring (red dashed line) response in terms of slip. The

shaded area corresponds to the released elastic energy per unit area, ĒR . (c)

The energy budget consists in the radiated energy per unit area, ĒR in blue, the

fracture energy per unit area, ĒG , in red and the frictional dissipation per unit

area, ĒH in green.
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extended the previous results using non-linear developments. Here, we concentrated on a

comprehensive approach of the transition from aseismic to seismic slip.

1.4 Fluid-injection effects on the condition for steady state slip of the

spring-slider analog

At this stage, we know how to model a seismic cycle. However, in the present work, we are

interested in assessing fluid-injection effects on the response of a single fault submitted to

steady far field loading at the timescale of the seismic instability. We come back to our reduced

order spring-slider model. A simplified model of fluid injection effects at the fault interface

consists in considering a weak coupling effect and fluid-injection at constant pressure with

respect to time. Such a fluid model only modifies the effective normal stress applied on the

fault. Assuming Coulomb friction, we can write the critical stiffness from Equation (1.17) as

follows

k inj
cr =

(b −a)σ′
n A−ηV∞
L

(
1+

mV∞
(A∗A+ηV∞)L

)
(1.18)

where a and b are rate-and-state friction parameters presented in subsection 2.3, and σ′
n is

the effective normal stress applied at the interface. The fluid pressure change modifies the

effective normal stress. Using Terzaghi’s principle (Terzaghi, 1923), the effective normal stress

applied at the fault interface writes

σ′
n =σn −p (1.19)

where, σn is the total normal stress at the fault interface and p is the fluid pressure, which

is assumed to be constant here. As a consequence, for increasing pore pressure, the critical

stiffness from 1.18 decreases. A first illustration of fluid effects, based on the spring-slider

reduced order model equations, is illustrated in Figure 1.3. It represents the analog of Fig-

ure 1.2 (b) without and with fluid injection. We observe that, in the dry case (Figure 1.3 top),

under the assumption of a spring-slider reduced order model, the evolution of the shear

stress τ with respect to cumulated slip δ follows the softening branch of slope −k (red line,

spring stiffness per unit surface). If −k > −kcr, then the steady state slip is unstable and

accumulated elastic energy is released. The case −k < −kcr leads to stable slip and a new

equilibrium state is reached. The condition −k >−kcr holds here, and the blue shaded area

corresponds to the released elastic energy per unit area E R . In the injection case (Figure 1.3

bottom), the friction force decreases as fluid is injected and the critical stiffness per unit area

−k
inj
cr is smaller than kcr. The shear stress τ at equilibrium in the dry case is greater than in

the injection case and the shear stress drop is of lower amplitude in the injection case than in

the dry case. If −k >−k
inj
cr , unstable slip occurs, but a smaller amount of accumulated elastic

energy is released compared to the dry case. The case −k <−k
inj
cr leads to stable slip towards

a new equilibrium state. The condition −k <−k
inj
cr is satisfied here and a stable slip occurs.

However, as explained by Stefanou (2019), if the necessary condition for instability k = kcr is

reached, but instability conditions are not satisfied, then slow aseismic slip arise.
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Figure 1.3 • Simplified illustration of fluid effects ranging from unstable to stable slip (modi-

fied from Tzortzopoulos (2021)).

1.5 Limitations of the reduced order model

The spring-slider model has been largely used in the literature (Ruina, 1983; Gu et al., 1984;

Lapusta et al., 2000). It allowed modeling and simulating seismic cycles as a stick-slip

phenomenon Gilbert (1884). Nevertheless, as all simplified models, this reduced-order

model has some main limitations.

The first limitation concerns the modeling of the fault and of friction. In both the spring-

slider model and the strike-slip fault representation (Figure 1.1), the fault is modeled as a

mathematical plane due to its very small thickness compared to other characteristic lengths

in the problem (length of the locked interface for instance). Stefanou (2019) highlights that

this thickness is linked to the reduction of friction as a function of slip, slip-rate, and other

multi-physic variables. Rattez et al. (2018a, 2018b) and Stathas and Stefanou (2023) used

Cosserat continuum and considered a perfectly (visco-)elastoplastic Drucker-Prager material

to take into account a more realistic model of the fault gouge and have a better understanding

of friction. In this work, we want to take into account frictional properties that can vary along

the fault.

The second limitation relates to the dimensionality of the problem. Nussbaum and Ruina

(1987) and Huang and Turcotte (1990), among others, proposed an extension of single spring-

slider case as two spring-sliders coupled by a spring and submitted to the same loading. Also,

p-degrees-of-freedom models have been considered by Burridge and Knopoff (1967) and

Carlson and Langer (1989). They studied p coupled oscillators, for which the p sliders are in

contact with a moving substrate and linked to a fixed support by p springs of identical stiffness.

In particular, Huang and Turcotte (1992), for two coupled spring-sliders, and Erickson et

al. (2011), for the Burridge-Knopoff model, proved chaotic behavior of these p-degrees-of-

freedom (p>2) kinematic models. Studies on the aperiodicity of the seismic cycle by Erickson
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et al. (2008) emphasized the limitations of the simplified spring-slider analog and questioned

the applicability of these models to actual fault systems. The spatio-temporal complexity

raised by the introduction of discrete coupled/assembled spring-slider models could not be

observed for a correctly discretized continuous problem of a planar fault under rate-and-state

friction (Rice, 1993). A potential candidate to explain the broad range of seismic and aseismic

slip phenomenons (slow-slips, earthquakes, pre- / post-seismic phenomenons) could be to

represent geometry complexities of fault networks (non-planar faults + overlapping faults

for instance as investigated by Romanet (2017), Romanet et al. (2020), Bhat et al. (2023), and

Cheng et al. (2023)). This corroborates the point of Rice (1993), that the solution for unstable

slip along a chain of coupled spring-slider models in the continuous limit had an uncertain

relation to dynamical solution for unstable slip along a fault embedded in a surrounding

elastic continuum. In case of discrete models, an instantaneous change in shear stress τ

implies an instantaneous change in the acceleration δ̈, but there is no instantaneous change

in slip rate δ̇ as it is the case for continuous models (as detailed in 2 1.1). This motivates the

use of continuous medium models in the present work.

×Remark 1.2. The stability results derived in this subsection have been extended to con-

tinuous models by Rice and Ruina (1983) (with spatially periodic slip-rate perturbations

along their interface) and by Aldam et al. (2017).

2 Generic spatio-temporal fault behavior

The previous section allowed us to define the concept of seismic cycle, to study the analogy

with a reduced order model to explain its main features, and to highlight specificities of

discrete versus continuous models. The latter made us aware of the limitations of reduced-

order models and of the need for a more realistic model which could incorporate more

complexities. Therefore, we are interested in the ingredients to model a seismic cycle problem

based on a continuous model. One challenge highlighted here, is the difficulty to model a

realistic seismic cycle. Ideally, both the realistic frictional behavior at the fault interface and

the influence of other external phenomenons than the relative plate tectonics motion should

be acknowledged (as detailed by Rolandone (2022) (section 4.3.2)). We detail the different

assumptions for both generic and standard seismic-cycle problems. Our objective is to model

an adequate fault mechanics problem to simulate seismic cycles. This section is set into four

subsections introducing the geometry, the balance momentum equation and constitutive

laws, interface conditions and finally, the boundary conditions.

2.1 Fault geometry

In the most generic case, we consider an infinite space Ω containing a discontinuity Γ (or

fault) of arbitrary shape. The two crack faces Γ+ and Γ− are geometrically identical such

that Γ= Γ+ = Γ− and have opposite unit normal vectors n+ =−n−, which points towards the

exterior of the medium.

In geophysics (dynamic rupture and seismic cycles communities), planar faults embedded
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in a semi-infinite medium have been largely studied (Rice, 1993; Lapusta et al., 2000; Harris

et al., 2009; Erickson et al., 2020a). However, many references focus on more realistic models

considering non-planar faults and faults with complex geometries as a key component to

understand real seismic events. Particularly, Romanet et al. (2020), emphasized on the

curvature as a link between geometrical complexities and the origin of slip complexities.

Different kinds of geometry complexities have been considered: faults with a change in

strike1, influence of fault branches, faults with a kink or a bend, and parallel fault segments.

Studies of those different configurations are reviewed in the following paragraphs.

Bouchon and Streiff (1997) looked into a two-dimensional dynamic rupture of a fault with

a change in strike. They highlighted that the rupture velocity slowed down as well as slip

amplitude, when rupture propagates onto a segment unfavorably oriented with respect to

the regional stress field.

The influence of fault branches in earthquake rupture dynamic has been considered in

various studies. Aochi and Fukuyama (2002), provided a realistic 3D simulation of the 1992

Landers, California earthquake. Kame et al. (2003), studied mode II rupture along a planar

main fault intersecting a branching fault. A review on the role of fault branches in earthquake

rupture dynamics and a comparison between the case of infinite and finite branches was

developed by Bhat et al. (2007). Motivated by the normal fault configuration in the vicinity of

Yucca Mountain, Nevada, Templeton et al. (2010), studied branched fault activation. Kame

et al. (2003), Bhat et al. (2004), emphasized the role of the fault pre-stress state, branching

angle, and the incoming rupture velocity at the branching junction in determining whether

the rupture would follow the branch or continue on the main fault or both. Fliss et al. (2005)

questions the directivity of rupture and proposes a mechanism of creation of a backward

branch related to field observations.

Templeton et al. (2009), analyzed shear crack nucleation and propagation along non-

planar kinked and branched fault. Numerous studies considered bent faults such as Aochi

et al. (2000), who observed that rupture could decelerate or arrest from some bend angles.

Oglesby and Archuleta (2003), simulated repeated earthquake events on a thrust fault with a

bend at depth. Duan and Oglesby (2005), also incorporated the effect of a strike-slip fault

with a bend during several seismic cycles. He insisted on taking into account a viscoelastic

model during inter-seismic process to avoid pathological stress around the bend. Romanet

et al. (2020), proposes a small slope approximation to overcome complex geometries effect

regarding numerical simulations extents.

Other works concentrate on parallel fault segments (Harris et al., 1991; Harris & Day, 1993;

Romanet, 2017; Barbot, 2019, 2021).

In the present work, we concentrate on planar faults embedded in a (semi-)infinite

medium as a starting configuration since our main interest is to study fluid-injection effects

on fault slip at the timescale of the seismic instability. This kind of configuration is represented

in Figure 1.4. We focus on a simplified two-dimensional configuration of a strike-slip fault.

In particular, we consider a planar fault, infinitely long along e2 and e3 directions. We also

consider the case of a semi-infinite (along e3 direction) planar fault in a semi-infinite space.

As a shear motion is imposed on either side of the fault, anti-plane strain or in-plane strain

1The strike refers to the fault azimuth, conventionally described with respect to north
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configurations are considered. As a starting point, we neglect complex fault geometries, and

we consider a single fault.

Figure 1.4 • Planar-fault Γ embedded in a semi-infinite mediumΩ.

2.2 Momentum balance and constitutive equations

Now that we chose the geometry, we want to derive the equations to model the seismic

cycle. Everywhere inΩ, the momentum balance equation has to be satisfied. This equation

is completed by a constitutive equation linking stress and strain tensors. This constitutive

equation depends on the material properties assumed. On the discontinuity Γ, a constitutive

friction law is considered. It is detailed in Section 2.3.

In the literature, elastic off-fault material has been largely assumed (Tse & Rice, 1986; Rice,

1993; Lapusta et al., 2000; Kaneko et al., 2011). Nevertheless, other constitutive properties

have also been considered in order to build a more realistic model.

Viscoelasticity has been incorporated to represent the different deformation mechanisms

in depth. Kato (2002), considered a vertical strike-slip fault embedded in a semi-infinite

medium composed of an elastic layer overlying a viscoelastic half-space. He showed that

this model could explain postseismic slip deformation observed at the Earth’s surface. He

observed an effect for short relaxation times. Johnson and Segall (2004), proposes the study

of a strike-slip fault in an elastic lithosphere coupled to a viscoelastic asthenosphere. A fault-

containing elastic layer over a viscoelastic half-space was studied by Kato (2002), Lambert and

Barbot (2016). Allison and Dunham (2018), reviews seismic cycles studies that examined the

role of viscoelasticity on earthquakes. They simulated earthquake cycles with rate-and-state

fault friction and off-fault power-law viscoelasticity for the classical problem of a vertical,

strike-slip plate boundary fault.

Other works incorporated plasticity to take into account irreversible deformations around

the fault zone. Off fault plasticity and viscoelasticity is considered by Ma and Andrews (2010),

Dunham et al. (2011a), Dunham et al. (2011b), Kaneko and Fialko (2011) (Drucker-Prager
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2. Generic spatio-temporal fault behavior

plasticity criterion), Erickson et al. (2017), Andrews (2005), Xu et al. (2012) (Mohr-Coulomb

plasticity criterion).

The case of a fault intersecting a sedimentary basin is studied by Erickson and Dunham

(2014), Fialko et al. (2005) who emphasized shallow slip deficit as large earthquake cannot

penetrate through sedimentary layers.

Finally, the case of off-fault dissimilar materials is reviewed and explored by Ranjith and

Rice (2001) who concentrated on the link between the ill-posedness of such a problem and

on the existence of an interfacial Rayleigh wave. Many studies were also conducted on the

incorporation of hydro-mechanical couplings and will be developed in section 4.

Cauchy continuum was assumed in all these works while studies conducted by Rattez

et al. (2018b), Rattez et al. (2018a) and Stathas and Stefanou (2023) who focused on modeling

the fault gouge and understanding friction, used momentum balance equations derived from

fault modeling using Cosserat continuum. They consider a perfectly (visco-)elastoplastic

Drucker-Prager material.

In this work, as a starting point, we consider a strike slip fault embedded in an elastic

medium. We use Cauchy continuum here. We consider a linear, elastic, homogeneous

isotropic medium with constitutive properties defined by mass density ρ, shear modulus

µ = G (not to be confused with the friction coefficient often denoted µ), the Poisson ratio

ν and the first Lamé coefficient λ = 2Gν/(1−2ν). The displacement is denoted u and the

Cauchy stress tensor σ. In this configuration, the balance momentum equation writes as in

(1.20)

∇∇∇·σ+ρF = ρü (1.20)

where ρF corresponds to the body force vector distribution which may have various origins

(gravity, thermal effects, fluid effects). Einstein convention is used in the following part.

Deformations are described by the strain tensor ε which writes, for linear elasticity under

small strain assumption

εi j =
1

2

(
ui , j +u j ,i

)
(1.21)

where ui denotes the i -th component of the displacement and ui , j is the derivative of ui with

respect to x j . The balance momentum equation (1.20) is here completed by the isotropic

constitutive Hooke’s law

σi j =Ci j klεkl , with Ci j kl =G

[
2ν

1−2ν
δi jδkl +δi kδ j l +δi lδ j k

]
. (1.22)

Equations (1.22) and (1.21) injected into (1.20) lead to the Navier equation of motion

G

1−2ν
∇∇∇ (∇∇∇·u)+G∇∇∇2u+ρF = ρü (1.23)

In this thesis, we concentrate on anti-plane and in-plane strain configurations (with a no-

opening condition on the fault for the in-plane configuration) which allow us to manipulate

scalar equations as a first step. Resulting balance momentum and constitutive equations for

particular anti-plane et in-plane strain configurations are gathered in table 1.1. This problem

is completed by interface and boundary conditions.

21



Chapter 1. Fast methods for earthquake cycles

Dislocation Balance momentum equation Constitutive Hooke’s law

Mode III

u = u2(x1, x3, t )e2

∂σ12

∂x1
+
∂σ23

∂x3
= ρ

∂2u2

∂t 2
σ12 =Gu2,1, σ23 =Gu2,3

Mode II

u = u1(x1, x3, t )e1 +u3(x1, x3, t )e3


∂σ11

∂x1
+
∂σ13

∂x3
= ρ

∂2u1

∂t 2

∂σ13

∂x1
+
∂σ33

∂x3
= ρ

∂2u3

∂t 2

σ11 = (λ+2G)
∂u1

∂x1
+λ

∂u3

∂x3

σ13 =G

(
∂u1

∂x3
+
∂u3

∂x1

)

σ33 =λ
∂u1

∂x1
+ (λ+2G)

∂u3

∂x3

Table 1.1 • Balance momentum and constitutive equations for anti-plane and in-plane shear

cases for a 1D fault lying in the plane {e1,e3}.

2.3 Interface conditions

Across the discontinuity Γ, we define the displacement jump (slip) δ(x, t )

δ(x, t ) = u+(x, t )−u−(x, t ). (1.24)

In the mode III configuration, this leads to

δ(x, t ) = δ2(x3, t )e2, where δ2(x3, t ) = u2(x1 = 0+, x3, t )−u2(x1 = 0−, x3, t ). (1.25)

In the mode II configuration we assume a “no-opening condition” on the fault, namely that

u1(x1 = 0+, x3, t ) = u1(x1 = 0−, x3, t )

⇒δ(x, t ) = δ3(x3, t )e3, where δ3(x3, t ) = u3(x1 = 0+, x3, t )−u3(x1 = 0−, x3, t ).
(1.26)

We define the slip velocity vector V(x,t) as the time derivative of the displacement disconti-

nuity vector δ(x, t ).

V j (x, t ) =
∂δ j

∂t
⇒ V(x,t) =V2(x3, t )e2 =

∂δ2

∂t
(mode III), V(x,t) =V3(x3, t )e3 =

∂δ3

∂t
(mode II).

(1.27)

Traction at the fault interface tD±
must be given to close the problem. Here, we assume the

media, the loading, and the material properties symmetrical on either side of the fault so that

the traction components were continuous at the interface:

(σn)+ =− (σn)−

⇒


σ12(x1 = 0+, x3, t ) =σ12(x1 = 0−, x3, t ), (mode III)

σ11(x1 = 0+, x3, t ) =σ11(x1 = 0−, x3, t ),

and σ13(x1 = 0+, x3, t ) =σ13(x1 = 0−, x3, t ), (mode II)

(1.28)

At the fault interface, traction is initially imposed resulting from the far-field loading. We

denote σ0 the corresponding pre-stress and t0 the corresponding traction vector. In addition

to this pre-stress state, the interactions between the two elastic media on either side of
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2. Generic spatio-temporal fault behavior

the fault are specified by an interface law. A change in elastic deformation in the medium

on either side of the fault will change the displacement discontinuity at the fault interface,

therefore the traction at the interface. On the other hand, the contact traction will influence

the elastic deformation of the medium. We separate the normal pre-stress σn0 and the shear

pre-stress τ0. The corresponding stress change is denoted∆σ (respectively∆t for the traction

change at the fault interface). Within the traction change vector at the fault interface, we

distinguish the normal stress change ∆σn and the shear stress change ∆τ. On the frictional

domain, the shear stress τ=τ0 +∆τ is equal to fault shear resistance F, namely

τ(x, t ) = F(δ,V,θ, t ) (1.29)

where the frictional resistance can depend on slip, slip-rate, a state variable, time, etc. We

assume Coulomb friction so that the frictional resistance writes as the product of the effective

normal stress σn by the friction coefficient f (δ,V,θ, t ) which can depend on slip, slip-rate, a

state variable, time, etc.

τ(x, t ) =σnf(δ,V,θ, t )
V

∥V∥. (1.30)

Different friction laws can be considered to define the friction coefficient. Frérot (2020)

reviews the arising of friction laws. An important point before considering different friction

models is the introduction of the characteristic slip distance Dc , which combined to the

slip-rate, corresponds to the weakening time in which the friction decreases from static to

dynamic friction. It is associated with a finite energy quantity released at the rupture front.

Dc corresponds to the quantity L =V /(∂ϕ(V ,θ)/∂θ)V =V ∗,θ=θ∗ defined in Equation (1.11) in

Section 1.2 for the stability analysis of the spring-slider reduced order model. Considering

the analogy with the spring-slider, the critical stiffness (under quasi-static assumption) per

unit surface of a fault is defined as

k fault =
G

Lnuc

(
= kcr =σn

b −a

Dc
for the spring-slider

)
,

Lnuc =
GDc

σn(b −a)
.

(1.31)

where Lnuc is the nucleation length1 meaning the portion of the fault plane behind the

crack tip where the shear stress decreases from its static value to its dynamic value and the

instability can occur. Other expressions of the nucleation length were given by Dieterich

(1992) and Rubin and Ampuero (2005).

In Rolandone (2022)2, a chronological state of the art of friction laws from the arising of

the idea of a frictional control of faults thanks to the works of Brace and Byerlee (1966) to the

description of the friction law currently used in the seismic cycles’ community is given. In the

field of fault mechanics, the most common friction models that can lead to earthquake-like

instabilities are:

• slip-weakening friction law (SW)

1Also called the cohesive (or slip-weakening) zone length in the literature, which is ambiguous (cf. Section 1.2)

as it refers to damage and fracture mechanics and not to contact mechanics that is considered here.
2in chapter 4 from Rolandone (2022), by Marion Thomas and Harsha Bhat
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• rate-weakening friction law (SRW)

• rate-and-state friction laws (RSF)

Slip-weakening friction (SW)

The SW law was first introduced to study the occurrence of singularities at the rupture tip for

faults loaded in tension. Introduced by Ida (1972) and Andrews (1976) in 2D and Day (1982)

in 3D in mode II. The corresponding friction coefficient writes:

µ(δ) =
(µs −µd )(1−δ/Dc )+µd , if δ< Dc

µd if δ> Dc

(1.32)

where µd <µs and Dc is a critical slip value. Slip is equal to zero until the shear stress reaches

the elastic limit τs . Once τs is reached, the friction resistance decreases to reach the value

τd , whereas the slip increases until its critical value Dc . If the slip is greater than Dc , the

shear stress is equal to τd . This law is appropriate to model one dynamic rupture but not a

complete seismic cycle as it does not take into account the healing process of the fault. Also,

it does not explain when rupture stops. Another expression is given by Scholz (2002)

µ(δ) = (µs −µd )exp(−δ/Dc )+µd (1.33)

Slip-rate-weakening friction (SRW)

Slip-rate-weakening friction is an empirical friction law proposed by Burridge and Knopoff

(1967). It allows to model the healing process in addition to the dynamic rupture. Once slip

has reached the critical value Dc , friction becomes a function of the slip rate V .

τ(V ) = (τs
f −τd

f )(V0/(V0 +V ))+τd
f (1.34)

When the slip rate is much smaller than the characteristic slip rate V0, the friction resistance

is equal to the product of the static friction coefficient by effective normal stress. Whereas,

when the slip rate is greater than V0, τ= µdσeff, a different form of the slip rate weakening

law is given by Huang and Turcotte (1992):

µ(V ) =µs/(1+V /V0) (1.35)

Where V0 is a characteristic slip rate describing the friction coefficient drop due to slip rate

weakening.

Rate-and-state friction (RSF)

Rate-and-state friction laws consist in empirical laws that quantify the shear response of a

fault submitted to a jump in slip-rate. Experimentally, the effect on the friction coefficient

of a jump in velocity is first a direct effect with sudden increase followed by a relaxation

phase towards a new steady state value of the friction coefficient. Dieterich (1979), Ruina

(1983) and Rice and Ruina (1983) were the first to introduce this law. Dieterich linked the
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2. Generic spatio-temporal fault behavior

decrease in the friction coefficient with velocity as an effect of decrease in the average contact

time. This allows to gather the static and the dynamic friction law as only one friction coeffi-

cient, depending on the slip rate. Chris Marone (Marone, 1998) proposed a modern version

of the rate-and-state dependent friction law and gave an exhaustive review of laboratory

observations. The friction coefficient given by Marone writes:

µ(V ,θ) =µ0 +a log(V /V0)+b log(θV0/Dc ) (1.36)

where a and b are state variables linked to the direct effect and to the relaxation phase

respectively. θ corresponds to a state variable often interpreted as the average contact time of

asperities. It is completed by a state law:

• aging law: θ̇ = 1−V θ/Dc ,

• slip evolution law: θ̇ =−V θ/Dc log(V θ/Dc ),

• other state laws (Perrin et al. (1995) for instance).

The correct form of the state law is still an open question. The aging law does not give a

symmetrical response depending upon the positive or negative velocity jump imposed. The

slip evolution law does not take into account the logarithmic evolution of the static friction

coefficient in time, which is in favor of the use of the aging law.

As an illustration of a seismic cycle simulation using rate-and-state friction with aging

law, Figure 1.5 represents the evolution of interface unknowns: the slip δ, the slip-rate V ,

the shear stress τ and the state variable θ with respect to time during three seismic cycles

over two hundred years. We used the spring-mass-damper model from Section 1.2 for this

simulation. After a transient regime, we can observe a periodic alternance of co-seismic and

inter-seismic phases. The period between two seismic events lasts about 80 years.

An important point concerning laboratory derived friction laws such as the rate-and-state

friction law is that it can lead to an ill-posed problem Pipping (2019). A regularization proce-

dure can tackle this mathematical issue. In the present work, we use one of the regularized

expression of the friction coefficient proposed by Pipping (2019).

µ(V ,Ψ) = a sinh

(
V

2VΨ

)
, where VΨ =V0 exp

(
−
µ0 +Ψ

a

)
, andΨ= b ln

(
θ

θ0

)
(1.37)

Tzortzopoulos (2021) showed that the different friction laws mentioned here are Lipschitz

continuous, which allows for existence and uniqueness of the solution for elastodynamic

problems with such friction laws. Van den Ende et al. (2018) compared the rate-and-state

friction law with microphysical models. Stathas and Stefanou (2023) studied fault friction

under thermo-hydro-mechanical couplings during large coseismic slip and justified rate-and-

state friction law numerically. Nevertheless, we have to be aware that the previous modeling

only describe an approximation of the complexity of the fault gouge and of the friction and

wear phenomenons at stake at the frictional surface (Myers & Aydin, 2004).
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Figure 1.5 • Evolution of the interface unknowns: (a) the slip δ, (b) the slip-rate V , (c) the

shear-stress τ and (d) the state-variable θ on with respect to time over three

seismic cycles.

2.4 Boundary conditions

When dealing with an unbounded domain, boundary conditions at infinity have to be pre-

scribed. In particular, mechanical fields (displacement and stress changes due to displace-

ment discontinuity) are expected to decay at infinity. Only outgoing waves are allowed. The

energy flux at infinity is outgoing, no energy may be radiated into the source region from

infinity. Nevertheless, as we consider a time-domain problem, the solutions (which prop-

agate at a finite rate) reach infinity at t →∞. Hence, the boundary conditions depend on

the size of the domain we choose for the problem. If we artificially truncate the domain

(x1, x2, x3) ∈ (]−∞,∞[, ]−∞,∞[, ]−∞,∞[):

• we either have to ensure that the domain is large enough so that the solution does not

reach the boundary at the maximum time instant considered,

• or we impose absorbing boundary conditions so that the solution does not reflect on

the boundary and radiate into the dislocation region,

• or we impose far enough of the seismogenic zone that the mechanical fields correspond

to the far-field plate tectonics relative motion imposed as a rigid body translation.

A more realistic configuration than a fault embedded in an infinite medium may be to

consider a fault embedded in a half-space. In this case, a free surface condition must be taken
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3. Simulating seismic cycles

into account. The traction components at the free surface are equal to zero

σn = 0, on ∂Ω (1.38)

In the present work, we consider a fault that is large enough compared to the nucleation

length, and we impose a slip-rate loading far enough from the seismogenic zone. We use the

case of a fault embedded in an infinite medium to validate the numerical tools we developed,

and we present benchmark results in case of a fault embedded in a semi-infinite medium

with a free-surface condition in Chapter 2

2.5 Initial conditions

Initial conditions on the different (volume and interface) unknowns are required to solve

the problem. Thus, u(x,0), V(x,0), θ(x,0) must be given. These initial conditions have to be

consistent with the friction law chosen. In any case, initial conditions must perturb the steady

state, so that instability could occur. A perturbation of the slip-rate or of the shear stress

change can be chosen to nucleate the first rupture right after the initialization (Ampuero

et al., 2002). For the validation of the numerical tools we developed, we give initial values

of the interface unknowns (slip δ(x,0), slip-rate V(x,0) and state-variable θ(x,0)), eventually

with a perturbation in slip-rate to validate results during a co-seismic phase and a seismic

cycle.

Table 1.2 summarizes the ingredients for modeling a seismic cycle. The columns in the

table refer to the choice of geometry, material properties, interface conditions and boundary

conditions respectively. The level of difficulty of each modeling choice increases from left to

right. The ingredients considered in this work are highlighted in red.

Ingredients Increasing complexity

Geometry Planar fault
Parallel faults

Overlapping faults

Faults with

a kink / branch(es) / bend(s)
Fault of realistic geometry

Continuum and

material properties

Cauchy continuum

Homogeneous, elastic,

isotropic medium

Cauchy continuum

incorporating viscoelasticity /

plasticity of the medium /

Porous medium

Cauchy continuum

incorporating heterogeneity

of the medium

Cosserat continuum to

model the fault gouge

Interface conditions Coulomb friction Slip-Weakening (SW) friction Slip-Rate-Weakening (SRW) friction Rate-and-State friction (RSF)

Boundary conditions Conditions at infinity Conditions at infinity + free-surface condition

Table 1.2 • Ingredients for modeling a seismic cycle.

The fault dynamics can be determined by solving equations resulting from the combina-

tion of the elastodynamic equations (Equation (1.23)) with friction law (Equation (1.28)+(1.37)

here), as well as boundary conditions (Equation (1.38) + conditions at infinity or artificial

truncation of the domain) and initial conditions.

3 Simulating seismic cycles

After having detailed the ingredients to model a seismic cycle, we now look into the numerical

simulation of this problem and the associated computational challenges. The specificity of
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this problem is the broad range of time and spatial scales involved. On the one hand, time

scales span from inter-seismic periods which may last tens to hundreds years to dynamic

co-seismic rupture phase in the order of seconds. Taking into account the full dynamic of a

fault rupture requires a high computational cost for the time integration. On the other hand,

the space discretization should be fine enough to resolve the controlling lengths highlighted

by the linear stability analysis (nucleation length). A fault measured in tens to hundreds

of kilometers may be discretized. Moreover, the fault is assumed to be embedded in an

unbounded domain.

3.1 Existing methods for spatio-temporal discretization of the problem

Efficient numerical methods are required to solve the problem detailed in Section 2. Their

objective is to compute the evolution of the displacement discontinuity and of the stress-state

at the frictional interface. We separate space discretization methods and time discretization

methods used to solve seismic-cycles problems in this part.

Space discretization

We can distinguish three main categories of methods used for the space discretization

• volume methods:

– finite differences;

– finite elements;

– spectral elements;

– discontinuous Galerkin.

• surface methods:

– Spectral Boundary Element Methods;

– Fast Boundary Element Methods based on Fast-multipole methods, or based on

Hierarchical matrices.

• hybrid (Finite-Element/Boundary-Element) methods.

Volume methods. The most used methods to solve partial differential equations (PDEs) are

volume methods. The common point between these methods is that (i) a volume mesh of the

medium on either side of the fault is required when using volume methods, (ii) an artificial

truncation of the domain containing the fault is required3, and (iii) the discretization of the

equations to solve leads to sparse matrices.

In case of volume methods, the equations satisfied are discretized in space on the mesh.

Summation-by-part have been largely used to approximate differential operators in case of

finite difference methods (Erickson and Dunham (2014), Erickson et al. (2020b), Almquist

3Some relevant techniques using infinite elements or absorbing boundary conditions like perfectly matched

layers (PML) (Liu et al., 2020) or similar can be used to take into account radiation conditions at infinity.
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and Dunham (2021), and Kozdon et al. (2021) among others) and penalty terms are used to

weakly enforce the boundary conditions. Both techniques allow to stabilize the solving. A

discretization of the weak formulation of the volume problem is performed in case of the

Finite Element Method as well as for Spectral Elements and Discontinuous Galerkin methods.

The volume methods used for seismic cycles simulations are geometrically flexible as

they allow considering complex fault geometries. The advantage of Discontinuous Galerkin

method over other volume methods is that the values defined on the face of each cell are

double-valued, so that it would naturally include the displacement discontinuity at the

fault while split nodes at the fault or Lagrange multipliers are considered in case of Finite

Differences or Finite Elements. Also, the Discontinuous Galerkin Method can be easily

parallelized.

For seismic cycles, finite difference method allowed to simulate the kinematics of a

planar fault under rate-and-state friction law embedded in a 2D elastic medium (Erickson

& Dunham, 2014; Erickson et al., 2017; Allison & Dunham, 2018; Erickson et al., 2020b;

Kozdon et al., 2021). 3D cases were also considered (Pranger, 2020; Almquist & Dunham,

2021). Viscoelastic (Allison & Dunham, 2018), thermoelastic (Erickson & Dunham, 2014),

plastic (Erickson et al., 2017) material properties were taken into account. Liu et al. (2020)

simulated 2D and 3D problems with a planar fault under rate-and-state friction embedded in

a linear elastic medium using the Finite Element Method. Roch (2023) used a finite element

code name Akantu (Richart & Molinari, 2015) to provide a numerical modeling of a frictional

rupture on a planar interface. Discontinuous Galerkin methods have been used for the same

configurations (Abhyankar et al., 2018; Uphoff et al., 2022). Similar cases were considered

only in 2D with Spectral Element Methods (Kaneko et al., 2011; Thakur et al., 2020). We refer

the interested reader for more details on volume methods to the previous cited works.

The main challenge of these methods is the artificial truncation of the domain. Some

works have been proposed in the seismic cycle community. In case of finite difference

methods, Erickson and Dunham (2014) used symmetries of the problem. This allowed

considering only one side of the domain containing the fault. Hence, the discretized domain

is limited by a boundary parallel to the fault and at a distance L of it, the fault, a free-surface

and is truncated at depth. The boundary that is parallel to the fault is loaded remotely with a

displacement boundary corresponding to the far-field plate motion. The volume domain is

truncated at depth far enough from the depth at which a seismic event can nucleate. At such

depths, the velocity is likely to approach a constant value independent of depth, resulting in

a displacement independent of depth too. Which leads the authors to impose a traction-free

boundary condition at depth too. This technique requires that the domain is large enough

in depth compared to the seismogenic zone, and is commonly used in the case of finite-

difference methods (Erickson & Dunham, 2014; Erickson et al., 2017; Allison & Dunham,

2018; Erickson et al., 2020b).

In case of volume methods, the large enough domain required to artificially truncate

the domain in the right way raises another difficulty. The larger the seismogenic zone, the

more prohibitive the number of mesh nodes. This difficulty is illustrated by Liu et al. (2020),

who presents the particular case of a 3D strike slip fault with a bend using finite difference

methods. He combined, one for the co-seismic phase (EQdyna) and the inter-seismic phase

(EQquasi) respectively. The volume domain is truncated far enough of the fault so as not to
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Chapter 1. Fast methods for earthquake cycles

have an influence on the fault slip in case of EQdyna because the stress change induced by

spontaneous propagating rupture is simulated. In the case of EQquasi, the fault can extend

to the model boundaries because the stress accumulation induced by long-term tectonic

loading is simulated. Tectonic loading is applied at the boundaries that are parallel to the

fault in EQquasi while Perfectly Matched Layers have been implemented in EQdyna. Example

for a size fault of 60 km in length and 30 km in depth, space discretization for EQquasi yields

a million hexahedral elements and tens of millions of elements for EQdyna.

Another difficulty apart from the meshing of the volume, is to take into account the

discontinuity. Erickson and Dunham (2014) consider a Dirichlet Boundary condition at the

fault interface. Other techniques to take into account the fault can be considered. The first

two techniques have been detailed by Luis A. Dalguer (Bizzarri & Bhat, 2012) and tested by

Andrews, 1999:

• Traction at Split-Node (TSN) scheme also used in Finite Elements (Liu et al., 2020) and

Spectral Elements. In this method, the fault discontinuity is explicitly incorporated

at velocity and/or displacement nodes. Interactions happen between the halves of

the "split nodes" exclusively through the traction (frictional resistance and normal

traction) acting between them, and they are in turn controlled by jump conditions and

a friction law. This approach allows the separation of equations on each side of fault

interface. Roch (2023) used such a node-to-node approach to model the discontinuity

numerically.

• Inelastic-zone scheme (Stress Glut (SG)) relies on an approximation of the fault rupture

conditions through inelastic increments of the stress components. This method is very

easy to implement in Finite Differences codes (a pedagogical script example is given by

Bizzarri and Bhat (2012)).

• Cohesive elements (Ortiz & Pandolfi, 1999) allow to model the propagation of a crack,

but also stick slip phenomena (Ringoot et al., 2021).

• Phase field approach (Francfort & Marigo, 1998) allows to model complex fault geome-

tries as it is mesh-independent.

Boundary Element Methods. In this work, we use Boundary Element Methods (BEM). This

surface methods rely on the Boundary Integral Equation Methods, which consist in refor-

mulating the PDEs satisfied in the volume in an integral equation verified on the domain

boundary. This reformulation step of the PDE as a Boundary Integral Equation (BIE) is based

on the existence of the fundamental solution of the PDE, which corresponds to the unit

force response of the system. The fundamental solution is known analytically for homoge-

neous material parameters (Bonnet, 1999). In case of more complex material parameters,

fundamental solutions may be determined semi-analytically or numerically. Unlike volume

methods, the discretization of the BIE leads to a dense matrix. Fast methods can tackle this

difficulty by determining a data-sparse approximation of the boundary element matrix. Such

methods reduce the CPU-time dedicated both to the computation of the BEM matrix and to
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the solving of the Integral Equation from O(N 2) to O(N log(N )), where N is the number of

mesh nodes from the discretization of the fault. We can distinguish three categories of fast

methods:

• Fast Multipole Methods, introduced by Greengard and Rokhlin (1987). These methods

have been used for elastodynamic problems too (Chaillat et al., 2008; Grasso et al.,

2012; Chaillat & Bonnet, 2013);

• Methods based on Hierarchical matrices, introduced by Hackbusch (1999) and Hack-

busch (2015). These methods have been used for elastodynamic problems (Chaillat

et al., 2017).

In the specific context of seismic cycle and dynamic fault rupture simulations, the Fast

Fourier Transform accelerated boundary element methods (called Spectral-BEM) is largely

considered to simulate the frictional sliding at planar discontinuities (Geubelle & Rice, 1995;

Lapusta et al., 2000; Lapusta & Liu, 2009; Barbot, 2019). Important numerical developments

using this method have been done in the dynamic rupture / seismic cycle community (Luo

et al. (2017) and Roch et al. (2022a) among others).

Many works have considered Boundary Elements Methods for seismic cycles problems.

The main advantage is that only the fault geometry has to be meshed, reducing the dimen-

sionality of the problem by one and outperforming volume methods in that sense. 2D/3D

planar-fault configurations (Lapusta et al., 2000; Lapusta & Liu, 2009; Barbot, 2019), 2D/3D

non-planar fault cases (Romanet, 2017; Romanet et al., 2020; Ozawa et al., 2022; Cheng et al.,

2023), and overlapping / parallel faults configurations (Romanet, 2017; Barbot, 2021) have

been considered using Boundary Element Methods. Romanet (2017) applied Fast Multipole

Methods and Fast BEMs based on Hierarchical matrices to non-planar faults cases. Fast

BEMs based on Hierarchical matrices were also applied to non-planar faults seismic cycles

problems by (Ohtani et al., 2011; Ozawa et al., 2022).

In this work, we consider both Spectral Boundary Element Method (S-BEM) and Fast

Boundary Element Method based on Hierarchical matrices (H-BEM) for mode II and III

planar fault configurations. As a starting point, we apply S-BEM to a simplified planar fault

problem as it is the more efficient technique in this case. In the particular case of a planar

fault in mode II or III, the BIE writes as a Hilbert transform and simplifies in the Fourier

domain in space (Geubelle & Rice, 1995). Then we apply H-BEM to the same configurations

in order to develop efficient and robust numerical tools to incorporate hydromechanical

couplings in our simulations.

Hybrid (Finite-Element/Boundary Element) methods. Hybrid methods can be proposed

to combine the versatility of volume methods with the advantages of boundary element

methods (Hajarolasvadi & Elbanna, 2017; Abdelmeguid et al., 2019; Roch, 2023). We refer the

interested reader for more details on hybrid methods for seismic cycles and dynamic rupture

simulations to the previous cited works.
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Time discretization

Now, we consider the time discretization of the problem. Time discretization methods for

seismic cycles must be able to handle a broad range of timescales, from inter-seismic periods

(in the order of tens to hundreds of years) to coseismic phases (in the order of seconds).

Adaptive time-stepping algorithm are key to solve seismic cycles problems. They can be

separated into three categories.

Explicit methods. Fourth/fifth-order adaptive time-stepping Runge-Kutta methods are the

most used schemes (Liu & Rice, 2007; Luo et al., 2017; Barbot, 2019, 2021; Ozawa et al., 2022;

Uphoff et al., 2022) and Bulirsch-Stoer method (Romanet, 2017; Luo et al., 2017) are often

used. Explicit methods require the reformulation of the equations as a system of Ordinary

Differential Equations, which is impossible if inertial effects are considered. Hence, these

methods can only deal with quasi-dynamic cases, where inertial effects are approximated at

the fault interface only by a radiation damping term −G/(2cs)V(x, t ).

Implicit methods. Linear multistep method such as Adams-Moulton or Backwards Differ-

ence Formulae are sometimes used (Pranger, 2020). Implicit methods also incorporate a

non-linear solving stage which requires linearization to be solved. The corresponding Ja-

cobian matrix has to be assembled and inverted in this case, which is highly demanding

numerically.

Hybrid explicit/implicit methods. Prediction-correction methods combined with forward

Euler (Lapusta et al., 2000; Lapusta & Liu, 2009; Hajarolasvadi & Elbanna, 2017; Abdelmeguid

et al., 2019), second/third-order (Kaneko et al., 2011; Allison & Dunham, 2018; Thakur et

al., 2020) or fourth/fifth-order (Erickson & Dunham, 2014; Erickson et al., 2017; Romanet &

Ozawa, 2021) accurate adaptive Runge-Kutta time-stepping algorithms among others. Hybrid

explicit/implicit methods can be used for both quasi-dynamic and fully-dynamic simulations,

but they incorporate a non-linear solving stage (often Newton-Raphson algorithm) of the

friction law to determine the slip-rate at the interface. This step can lead to a local minimum

of the friction law and thus implies cumulative error on interface unknowns at each time

step.

A more exhaustive review of the currently used numerical methods in space and time

for seismic cycles simulations is given in Table A.1 of Appendix A. In this work, we have

implemented three solving methods: a fourth/fifth-order adaptive time-stepping method

inspired by Ozawa et al. (2022), and two hybrid explicit/implicit predictor-corrector schemes,

respectively combined with a Forward Euler method (inspired by Lapusta et al. (2000)) or

with a fourth/fifth-order adaptive time-stepping method (inspired by Romanet and Ozawa

(2021)).

Link between spatial and time discretization: stability condition

Considering dynamic rupture of seismic cycle simulation on a pre-existing fault, spatial

and time discretization are interdependent in the sense that the occurrence of fault equi-

librium instability and numerical instability are linked. Using the linearized system (1.6)
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verified by the perturbation of the equilibrium, we can deduce a numerical stability condition.

Discretizing (1.6) with a forward Euler scheme for the sake of simplicity, we obtain[
(D (n+1) −D (n))/∆T

(Θ(n+1) −Θ(n))/∆T

]
= [J ]

[
D (n)

Θ(n)

]
(1.39)

or [
D (n+1)

Θ(n+1)

]
= [Q]

[
D (n)

Θ(n)

]
, with [Q] =

[
1−kL∆T /A∗ −B∗∆T /A∗

kL∆T /A∗ 1+ (B∗− A∗∆T /A∗)

]
(1.40)

where D (n) andΘ(n) are the non-dimensional slip and state-variable at the fault interface at

nth time step t (n) = n∆T , assuming a constant non-dimensional time step ∆T =V ∗∆t/L. We

determine the eigenvalues of [Q] and compare their values to unity to determine whether the

perturbation decays or not. The eigenvalues of the matrix [Q] are given by

λ1,2 =
tr([Q])

2
±

√
tr([Q])2

4
−det([Q]) = 1+

1

2
tr([J ])±

√
1

4
tr([J ])2 −

kL

A∗

 (1.41)

where [J ] is the Jacobian matrix defined in (1.9). When discretizing a fault embedded in a

(semi-)infinite medium, we can define the stiffness per unit surface k as the stiffness of one

element from the space discretization of the fault, such that k =G/h, where h is the space

step. The expression of the sum of the eigenvalues of the Jacobian matrix [J ] is given by

tr([J ]) =−
L

A∗

(
k −

B∗− A∗

L

)
=−

L

A∗
(
k −kcr

)
Now we can compare the eigenvalues λ1,2 of the matrix [Q] to unity. There are two cases:

• If tr([J ]) > 0, it corresponds either to the situation with steady-state velocity weakening

(B∗− A∗ > 0) or to the situation where the space discretization is too coarse (implies

k < kcr). In this case, the eigenvalues have their absolute values larger than unity, and

the perturbation grows regardless of the chosen time step ∆T . Thus, the only way

to pass through the instability is to take into account inertial effects (or at least an

approximation) to release the elastic energy accumulated.

• If tr([J ]) < 0, it corresponds either to the situation with steady-state velocity strengthen-

ing (B∗− A∗ < 0) or steady-state velocity weakening with sufficiently small space step.

In this case the eigenvalues can have their absolute values lower than unity and the

perturbation can decay if the non-dimensional time step ∆T =V ∗∆t/L is sufficiently

small.

This leads to the following conditions on the time step which can be written with respect to k

and kcr.

Defining χ=
1

4
tr([J ])2 −

kL

A∗ =
1

4

B∗− A∗

A∗

(
k

kcr

−1

)2

−
k

kcr

, we have

If χ> 0, ∆t <
L

V ∗
A∗

(B∗− A∗)(k/kcr −1)
=

L

V ∗ξχ>0,

If χ< 0, ∆t <
L

V ∗

(
1−

k

kcr

)
=

L

V ∗ξχ<0.

(1.42)
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Transposing the definition of k =G/h to kcr allows to define a critical space step

h∗ =
GL

max[B∗− A∗]
(1.43)

where the maximum is sought over all allowable values of B∗− A∗ and which quantifies the

“sufficiently dense” space discretization criterion. h∗ corresponds to the nucleation length

Lnuc. In practice, to capture seismic slip as well as aseismic slip, the time step is finally chosen

as

∆t = min[ξL/V ] . (1.44)

This point is very important as we do not want to confuse real instabilities with numerical

artifacts, and we want to perform stable calculations.

3.2 Validation vs. verification of the simulations

Another challenge consists in the validation of the simulations as to our best knowledge, there

is no existing analytical solution of seismic cycles problems as highlighted by Day et al. (2005)

and Harris et al. (2009). As a response to this difficulty, there has been a recent initiative in

the Earthquake cycle community to compare existing codes and provide code verification ex-

ercises (Harris et al., 2009; Erickson et al., 2020a) for simulating dynamic earthquake rupture

and Sequences of Earthquakes and Aseismic Slip (SEAS). This project is funded by the SCEC

(Erickson et al., 2020a) and is based on the preliminary work for the simulation of single earth-

quake ruptures detailed in Harris et al. (2009), Barall and Harris (2014) and Harris et al. (2018).

This initiative has been extended to seismic cycles simulations for which seven Benchmarks

are currently proposed. They consider a 1D or 2D planar fault in a 2D or 3D homogeneous,

linear elastic half-space or infinite space eventually with along-fault fluid diffusion. For 2D

problems, anti-plane shear motion of plane-strain motion is considered. Also, inertial effects

are either partially neglected (Quasi-Dynamic model) or taken into account (Fully-Dynamic

model). A rate-and-state friction law with either aging or slip law is used to model contact at

the fault interface. These numerical tests allow to evaluate the numerical models proposed

for the solving as well as evaluating some rupture phenomenon.

4 Mitigating the seismic risk using fluid injection?

Now that the seismic cycle community is active, we can go further in the modeling. A new and

timely question in the community is to show that the earthquake instability could be avoided

by active control of the fluid pressure. The challenge is here to understand the effects of an

increase in fluid pressure on the frictional behavior of the fault, and to determine whether

the equilibrium of the fault system under pore-pressure could go from unstable to stable.

4.1 Evidence of fault slip due to fluid injection

The presence of pore fluid in the earth crust plays an important role in fault mechanics

and frictional ruptures. Nur and Booker (1972) and Booker (1974) suggested that pore

34



4. Mitigating the seismic risk using fluid injection?

fluid flow induced by large earthquakes could contribute to aftershock activity. Sáez Uribe

(2023) reviews studies on possible natural sources of fluid-driven frictional ruptures. They

correspond to natural phenomena usually attributed to the migration of fluids in faults

zones. Fluid-driven frictional ruptures can also have anthropogenic causes. The notion

of fluid-injection induced earthquakes first emerged with the drill of a deep well at the

Rocky Mountain Arsenal northeast of Denver, Colorado in 1961 to dispose contaminated

waste water. Ellsworth (2013) reviews the understanding of the causes and mechanics of

earthquakes caused by human activity and the possibility to mitigate their risk. In the present

work, we are interested in earthquakes mitigation strategies which could ensure the security

of subsurface engineering activities.

Several studies (reviewed by Stefanou (2019)) established the concept that pore pressure

increase due to fluid injection can trigger fault slip. We can understand this affirmation by

using the principal stress system as done by Kanamori and Brodsky (2004). Let us consider

the case of a mode III strike-slip fault (infinitely long along e2 direction) for which anti-plane

motion is assumed u(x, t ) = u2(x1, x3, t )e2 as an example. The stress state on either side of the

fault is given as the sum of a normal pre-stress state (given by σ0) and of the stress change

due to anti-plane elastic displacement.

σ=

 σ0 Gu2,1 0

Gu2,1 σ0 Gu2,3

0 Gu2,3 σ0

 (1.45)

Which leads to the following principal stress components σ1 =σ0 +G
√

u2
2,3 +u2

2,1 and σ3 =
σ0 −G

√
u2

2,3 +u2
2,1. The corresponding expressions for the shear stress and normal stress on

a fault plane at an angle θ to σ1 are given by

τ=
σ1 −σ3

2
sin(2θ) =G

√
u2

2,3 +u2
2,1 sin(2θ)

σ=−
σ1 −σ3

2
cos(2θ)+

σ1 +σ3

2
=−G

√
u2

2,3 +u2
2,1 cos(2θ)+σ0

(1.46)

We can represent the two stresses given in (1.46) on a Mohr-circle diagram as represented by

Figure 1.6. The normal stress is on the x-axis and the shear stress is on the y-axis. The values

(σ,τ) are on a circle of center σ0 and of radius τmax = |σ1 −σ3|/2. The angle ∠OO′Q in the

diagram is 2θ. On the same diagram, we can plot Amonton-Coulomb friction law τ=µσ. In

the presence of interstitial fluid, the effective normal stress on the fault plane changes and

the friction law writes τ=µ(σ−p), where p is the fluid pressure. For a large enough value of

the pressure p the Mohr circle intersects the friction law line, which leads to failure at the

fault plane. This simplified study allows us to understand the influence of fluid pressure on

fault slip.

4.2 Earthquake mitigation strategies using fluid injection

Anthropogenic activities can trigger earthquakes. Understanding the mechanisms behind

fluid induced fault slip is not only key to develop induced-earthquake mitigation strategies
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*

Figure 1.6 • Adapted from Kanamori and Brodsky (2004): Mohr circle diagram. Given prin-

cipal stress magnitudes σ1 and σ3, possible combinations of shear and normal

stresses resolved on a plane are given by Equation (1.46) which is plotted as the

circle. The failure criterion τ=µσ is the dashed line. The failure criterion in the

presence of pore fluid is the solid line τ=µ(σ−p). Failure on a plane at an angle

θopt from the orientation of σ1 occurs at the ∗.

but also to determine if such studies could one day mitigate earthquakes of natural causes.

The 1976 Rangeley experiment (Raleigh et al., 1976) suggested the possibility of earthquake

mitigation strategies by controlling the pressure of the fluid injected in the Earth crust. As

explained by Raleigh et al. (1976), they monitored pore fluid pressure by injecting and recov-

ering water from wells drilled near the active seismic zone. Laboratory measurements were

performed to determine frictional properties of reservoir rocks and in-situ stress measure-

ment was conducted to deduce the value of fluid pressure required to trigger an earthquake.

The idea that pore pressure variations could contribute to the stabilization of shear rupture

zones against rapid propagation was mentioned by Rice (1973) and Palmer et al. (1997).

Recently, Stefanou (2019) explored the possibility of stabilizing a reduced-order spring-slider

model (in the spirit of the one presented in Section 1.2) by active control of the pressure of

the fluid injected at the interface between the slider and the rigid surface. An experimental

work, using absorbent porous paper to represent the fault, has recently been proposed by

Tzortzopoulos (2021). His study is based on the idea that large earthquakes could be miti-

gated by inducing earthquakes of lower intensity (slow slip events). He proposed a control

approach regarding the fluid pressure which allowed preventing laboratory earthquakes and

drive the fault system aseismically to an equilibrium point of lower energy. Laboratory exper-

iments combined with in-situ tests conducted by Guglielmi et al. (2015b) and Cappa et al.

(2019) showed that the increase in fluid pressure induces a change in the friction behavior

that promotes stable fault creep during fluid injection. These works give path to further

numerical/experimental/in-situ experiments to investigate strategies to ensure the security

of the subsurface engineering activities that require to inject large amounts of fluid in the

earth’s crust, running the risk to (re-)activate fault slip.

In this work, we are interested in choosing an adequate model to incorporate fluid effects
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in the fault mechanics problem introduced in Section 2. Particularly, our objective is to

investigate fluid-effects on a single fault for a fluid source at a chosen distance from the fault

unlike the case of a fluid source located at the fault interface as it is mainly considered in the

literature (Dunham and Rice (2008), Sáez Uribe (2023) among others).

4.3 Incorporating hydro-mechanical couplings

This question of modeling fluid-effects on fault-slip requires to change the model proposed

in Section 2 to incorporate hydromechanical couplings. The difficulty is to determine an

adequate model which could take into account the predominant fluid effects as well as it

could be easily implemented in the numerical tools developed to simulate seismic cycles.

The approach consists in modeling a porous medium to take into account the coupling

between solid-deformation and variations in fluid-pressure. Rice and Cleary (1976) applies

the Biot linearized theory of fluid infiltrated porous material (Biot, 1941; Biot, 1956b, 1956a) to

incorporate the coupling between a rupturing solid and a variation of its pore-fluid pressure.

This linearization is valid under the following assumptions Blanc (2013):

• the wavelength of the fluid perturbation is large in comparison with the characteristic

radius of the pores;

• the amplitude of the perturbations in the solid and in the fluid are small: strain -

displacement relations are chosen to be linear εs
i j = 1

2 (us
i , j +us

j ,i ), ε f
kk = u f

k,k ;

• the single fluid phase is continuous;

• the solid matrix is purely elastic;

• the thermo-mechanical effects are neglected.

Particularly, the first assumption gives the validity range for linear balance momentum equa-

tion to characterize the homogeneous porous medium. In this case, it is assumed that the

relative motion of fluid in the pores is of Poiseuille type. This is valid below a specific fre-

quency, denoted fc which depends on the depends on the kinematic viscosity of the fluid and

on the size of the pores. In the low-frequency range the viscous boundary layer that develops

in the fluid is large in comparison with the diameter of the pores, and the viscous efforts are

proportional to the relative velocity of the motion between the fluid and solid components,

which allows the linearization of the balance momentum equations. Carcione (2007) formally

derive the equations in the low-frequency range as well as in the high-frequency range. Here,

as in numerous geotechnics applications, we consider a poroelastodynamic problem in the

low-frequency range instead of a fluid-structure interaction problem.

In Biot’s poroelastodynamic equations (see for example Schanz (2009)), the balance

momentum equation results in two equations with the unknowns solid displacement us

and fluid displacement u f , and their dual σs and σ f . Thus, in the case of a linear, isotropic

poroelastic medium, the balance momentum equation (1.20) for a (dry) fault mechanics
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problem becomes

σs
i j , j + (1−Φ) f s

i = (1−Φ)ρsüs
i −ρa

(
ü f

i − üs
i

)
−
Φ2

k/η

(
u̇ f

i − u̇s
i

)
σ

f
,i +Φ f f

i =Φρ f ü f
i +ρa

(
ü f

i − üs
i

)
+
Φ2

k/η

(
u̇ f

i − u̇s
i

) (1.47)

where f s
i (respectively f f

i ) correspond to body forces in the solid skeleton (respectively in the

fluid), ρs is the solid density, ρ f is the fluid density, ρa is the apparent mass density which

depends on the tortuosity,Φ=V f /V is the porosity which corresponds to the ratio between

the volume of the interconnected pores contained in a sample of the bulk volume V , k is the

fluid compressibility and η is the dynamic viscosity.

The partial balances given in (1.47) are completed by two constitutive laws. The first one

is a modified version of the Hooke’s law (1.22), and relates the total stress σi j =σs
i j +σ f δDi j

with Biot’s effective stress coefficient α, the solid displacement us
i and the pore pressure p

σi j = 2Gεs
i j +λεs

i jδDi j −αδDi j p =σeffective
i j −αδDi j p (1.48)

where α= 1−K /K s , with K (respectively K s) being the bulk modulus of the porous medium

K =λ+2G/3 (respectively to the solid skeleton), and p is positive in compression while σi j is

positive in tension.

The second constitutive relation corresponds to the mass balance (continuity equation),

which gives the variation in fluid volume per unit reference volume ζ

ζ̇+qi ,i = 0,

where ζ=αεs
kk +

Φ2

R
p, R =

Φ2K f K s

K f (K s −K )+ΦK s(K s −K f )
,

and qi =Φ(u̇ f
i − u̇s

i ) = ẇi

(1.49)

where R is a coupling modulus between the fluid and the solid phases, qi is the specific flux,

and wi is the relative fluid-solid displacement.

×Remark 1.3. In Cheng (2016), the modulus denoted M in (time-domain and

frequency-domain) poroelastodynamic equations (9.92) to (9.103) of chapter 9 corre-

sponds to R/Φ2 in this dissertation, where we use notations from Schanz (2009).

Considering the definition of the total stress, the bulk body force per unit volume Fi =
(1−Φ) f s

i +Φ f f
i , the definition of the flux qi and σ f =−Φp, the partial balances from Equa-

tion (1.47) can rewrite as

σi j , j +Fi = ρs(1−Φ)üs
i +Φρ f ü f

i

qi = ẇi =−
k

η

(
p,i +

ρa

Φ

(
ü f

i − üs
i

)
+ρsü f

i − f f
i

)
(1.50)

where the second equation stands for the dynamic version of Darcy’s law.
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×Remark 1.4. Usually, Darcy’s law is presented in the form qi =−k/ηp,i disregarding

body forces and in the case of a quasi-static fluid flow through interconnected pores

(Detournay & Cheng, 1993). We consider the fully dynamic version of the equations here.

An equivalent (and more adequate for our problem) formulation of the previous equations

is a combination of the partial balances and of the constitutive equations in which the set of

unknowns is the solid displacement us
i and the fluid pressure p. As detailed by Schanz (2009),

this solid displacement - pore fluid pressure formulation can only be achieved in the Laplace

domain. In fact, the relation between the relative fluid-solid displacement wi = u f
i −us

i and

the pore fluid pressure is nonlinear in the time domain, but becomes linear in the Laplace

domain such that

ŵi =−
k/ηρ fΦ

2s2

Φ2s + s2k/η(ρa +Φρ f )︸ ︷︷ ︸
β(s)

1

s2ρ f

(
p̂,i + s2ρ f ûs

i − f̂ f
i

)
(1.51)

where L { f (t )} = f̂ (s) denotes the Laplace transform with the complex variable s.

We obtain (in the Laplace domain) a modified version of Navier equations (1.23) incorpo-

rating pore-fluid effects

Gûs
i , j j + (λ+G)ûs

j ,i j − (α−β(s))p̂,i − s2(ρ−β(s)ρ f )ûs
i =β(s) f̂ f

i − F̂i

β(s)

sρ f
p̂,i i −

Φ2s

R
p̂ − (α−β(s))sûs

i ,i =
β(s)

sρ f
f̂ f

i ,i

(1.52)

In addition to the momentum balance equations, the change in the pore-fluid pressure

has to be considered at the fault interface. Traction at the pre-existing discontinuity is

governed by Terzaghi’s effective stress. The effective traction vector t′ is defined as

t ′i (x, t ) = ti (x, t )−δi 1p(x, t ) (1.53)

where t denotes the total traction vector, δi j is the Kronecker delta, and ‘1′ corresponds to

the component that is normal to the fault at x is ‘2′ and ‘3′ are assumed to represent the two

tangential (shear) components, orthogonal with each other.

If we use complete poroelastodynamic equations and reformulate the volume problem

as a BIE on the fault only, we obtain two boundary integral equations (Chen, 1994b, 1994a).

They are written as convolutions in time and space, linking the shear stress with the dis-

placement discontinuity and the pore-fluid pressure with the displacement discontinuity.

The determination of these boundary integral equations relies on fundamental solutions

of the poroelastodynamic equations in response to a unit force applied to the solid phase

and on the fundamental solutions of poroelastodynamic equations in response to a unit

source applied to the fluid phase. Senjuntichai and Rajapakse (1994), Zheng et al. (2013)

derived fundamental solutions for poroelastodynamic equations considering time-harmonic

solutions, whereas Manolis and Beskos (1989), Manolis and Beskos (1990), Chen (1994b),

Chen (1994a) derived fundamental solutions in the Laplace domain. Theoretically, both

methods are convenient, but numerically, they would require to evaluate an inverse Fourier
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transform, or an inverse Laplace transform in time with varying time steps due to the time

integration methods inspired by seismic cycles simulations we implemented. We want to

avoid such a difficulty for a first case incorporating hydro-mechanical couplings.

Simplified poroelastodynamic equations (one way-coupling equations taking into ac-

count the effect of pore-fluid variations on the solid deformation only) have mainly been

used in the literature to study slow-slip events triggered by fluid injection. Segall and Rice

(1995), Bhattacharya and Viesca (2019), Dublanchet (2019), Larochelle et al. (2021), Sáez

et al. (2022) assume that the pore fluid pressure satisfies a diffusion equation. Segall and Lu

(2015) investigates the effect on injection-induced seismicity of a full poroelastic coupling in

quasi-static. Heimisson et al. (2019), Heimisson et al. (2021), Heimisson et al. (2022) consider

the effect of slip changes the pore pressure. Notably, he studied the case of a plane-strain-

loaded planar fault embedded in a linear isotropic poroelastic half-space submitted to a fluid

injection point source on the fault. The solution of simplified poroelastodynamic equations

in the Fourier domain in space and in the Laplace domain in time based on the method

from Morrissey and Geubelle (1997) combined with the use of Biot potentials as explained in

Detournay and Cheng (1993), allows to obtain the boundary integral equations in time and

space in the particular case of a plane-strain-loaded planar fault.
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Chapter 2. Fast methods for 2D quasi-dynamic planar fault problems

In this chapter, we develop a boundary-element based solver for frictional slip along a

pre-existing planar discontinuity embedded in a two-dimensional linear elastic (half-)space.

Mode II and mode III configurations can be considered. A regularized rate-and-state friction

law is imposed at the fault interface. The fault dynamics is determined by solving the equa-

tions resulting from the combination of the elastodynamic equations with the constitutive

friction law, plus boundary conditions, conditions at infinity and initial conditions. From a

modeling viewpoint, it is worth mentioning that in this work, we consider that inter-seismic,

co-seismic and post-seismic phases occur on pre-existing discontinuities. We do not con-

sider the creation of new fracture that would be described by additional damage and fracture

propagation. We define the transition from inter-seismic to co-seismic phases as an unstable

equilibrium state characterized by a loss of adhesion and the propagation of a brutal slip

over the fault interface. The latter is a friction problem. In the literature, the vocabulary

used may be ambiguous as it refers to “fault rupture” when a seismic event occurs. Particu-

larly, Andrews (1976) established that well-established fact that the frictional slip is a form

of fracture. This concept is also very well explained by Fineberg and Bouchbinder (2015),

Cambonie et al. (2018), and Roch et al. (2022b). Different numerical methods which use

boundary element methods (BEMs) to solve fault slip problems exist. The choices regarding

the geometry, the continuum and material properties, interface and boundary conditions

are summarized in Chapter 1, Section 1.2. We consider two space discretization techniques

using either a spectral boundary element method or a collocation boundary element method.

For the latter, a data-sparse approximation of the resulting dense boundary element matrix is

computed through a hierarchical low-rank approximation technique. We implemented three

different methods for time integration. The first one is based on a hybrid explicit-implicit

prediction-correction method inspired by Lapusta et al. (2000). The second time-stepping

method is based on an explicit fourth/fifth order adaptive time step Runge-Kutta method

inspired by Ozawa et al. (2022). And the third one is a hybrid prediction-correction / adaptive

time step Runge-Kutta method inspired by Romanet and Ozawa (2021). These methods are

not new, but the objectives of this chapter are:

• to assess the capabilities of the different solving methods implemented

• to assess the sensitivity of the different numerical methods implemented to their

parameters

• to determine the most performing numerical tools among the methods proposed

before complexifying our problem incorporating hydro-mechanical couplings.

1 Problem formulation at the continuous level : key assump-

tions

The details of the problem statement in both generic and simplified configurations have

been derived in Section 2 from Chapter 1. Here we focus on a more specific description of

the simplified mode II and mode III configurations that can be handled with a boundary-

element based solver. These planar-fault configurations allow to compare different solving
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1. Problem formulation at the continuous level : key assumptions

methods in space and time in order to determine the performing numerical tools to solve

seismic cycle problems which would be adapted to more complex problems incorporating

hydromechanical couplings.

Consider a Cartesian reference system [0,x,y,z] and its corresponding coordinate system

[0, x, y, z]. Let Ω be an infinite (respectively semi-infinite) homogeneous, linear, elastic,

isotropic medium containing a planar discontinuity Γ at x = 0, in the (y,z) plane. The

geometry of the fault is assumed to be invariant along y and z directions. In cases where

we consider a planar fault in a semi-infinite space, the fault geometry is invariant along

the y direction only and the fault is assumed to be perpendicular to the free surface ∂Ω. As

frictional properties are assumed to vary only at depth, we can consider a two-dimensional

problem, where the fault is an infinitely long line along the z direction embedded in a two-

dimensional space (x,y). Figure 2.1 represents two typical planar faults problems, with a

mode II (left) or mode III (right) loading imposed, considered in this chapter.

Figure 2.1 • Problems considered: planar fault embedded in a homogeneous, linear, elastic,

isotropic infinite space. For each case, the fault is governed by rate-and-state

friction on the fault width W f and is loaded in mode II or III with a constant

creep rate Vpl to the infinite depth.

We impose shear motion on either side of the fault such that anti-plane motion or in-plane

motion with a no-opening condition (no displacement discontinuity at the fault interface

in the normal displacement component). We define the only non-vanishing displacement

discontinuity component for mode II or III across the fault as

δ(z, t ) = u(x = 0+, z, t )−u(x = 0−, z, t ), on Γ (2.1)

where u(x = 0+, z, t ) and u(x = 0−, z, t ) are the displacement components along the y direction

for mode III (respectively z direction for mode II) at the upper Γ+ and lower Γ− faces, and t is

the time. The balance momentum equation satisfied in the mode II case and in the mode III

case are given in Table 1.1.

Now we want to reformulate the balance momentum equation satisfied inΩ as an integral

equation on the fault interface Γ using Boundary Integral Equations. We first detail the
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Chapter 2. Fast methods for 2D quasi-dynamic planar fault problems

method for the generic case of a fault of arbitrary shape embedded in an infinite elastic

medium before deriving the corresponding equations for the simplified mode II and mode

III planar-fault configurations.

1.1 Boundary Integral Equations for fault problems

In this part, we detail how to model the fault mechanics problem with Boundary Integral

Equations (BIE). We illustrate this approach with the case of an infinite linear elastic isotropic

spaceΩ containing a discontinuity Γ (or fault) of arbitrary shape (detailed by Bonnet (1999)).

The two crack faces Γ+ and Γ− are geometrically identical such that Γ= Γ+ = Γ− and have

opposite unit normal vectors n+ =−n−, which point towards the exterior of the medium. The

fault faces are loaded by tractions tD±. These imposed traction components are assumed to

result from a given load applied far enough from the fault.

We use the Boundary Integral Equation Method (BIEM).

Figure 2.2 • Fault (Γ) of arbitrary shape embedded in an infinite spaceΩ. Fault faces Γ+ and

Γ− have opposite normal vectors n+ =−n−.

We need first to derive the displacement integral representation for the fault mechanics

problem as detailed by Bonnet (1999), Aki and Richards (2002), and Udías et al. (2014).

Displacement integral representation. For the sake of simplicity, we neglect inertial effects in

first approximation. For any elastic state (u,σ) satisfying (1.20),(1.21),(1.22), and any virtual

displacement field u′ continuously differentiable overΩ, the virtual work principle writes∫
Ω
σ : ε(u′)dV −

∫
Γ

(σn) ·u′dS −
∫
Ω
ρF ·u′dV = 0. (2.2)

We take two elastic states (one for the unknown and another for the virtual displacement)

(u1,σ1,F1) and (u2,σ2,F2), apply (2.2) to each and take the difference using the symmetry of

the elastic constitutive law

σ1 : ε(u2) =σ2 : ε(u1), (2.3)

we obtain the Maxwell-Betti reciprocity relation∫
Γ

[
(σ1n) ·u2 − (σ2n) ·u1]dS =

∫
Ω

[
ρF2 ·u1 −ρF1 ·u2]dV. (2.4)
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Boundary integral representations use a fundamental solution. The elastostatic fundamental

solution (Uk ,Σk ,Fk ) is associated to a point force of unit magnitude, which is applied at a

given fixed point x ∈R3 along the k-direction, and satisfies

ρFk (y) = δD(y−x)ek

Σk
i j , j (x,y)+δD(y−x)δi k = 0

(2.5)

where δD is the Dirac distribution, y is the field point, x is the source point, k is the direction of

the load, U k
i (x,y) and Σk

i j (x,y) are respectively components of the fundamental displacement

vector Uk (x,y) and of the fundamental stress tensorΣk (x,y). Σk is at equilibrium with Fk and

is related to Uk through the Hooke’s law.

Σk
i j (x,y) =Ci j abU k

a,b(x,y) (2.6)

Tk is the traction vector of the fundamental solution for elastostatics.

T k
i (x,y) =Σk

i j (x,y)n j (y) (2.7)

Then, we apply the Maxwell-Betti theorem to the unknown state (u,σ,0) (we neglect body

forces) and to the fundamental solution for linear elastostatics (Uk ,Σk ,Fk ) in the sense of

distributions. We obtain the integral representation formula for the unknown displacement

uk (x) =
∫
Γ

{
ti (y)U k

i (x,y)−ui (y)T k
i (x,y)

}
dSy , ∀x ∉ Γ. (2.8)

We develop (2.8) on the crack faces

uk (x) =
∫
Γ+

{
t+i (y)U k

i (x,y)−u+
i (y)

(
Σk

i j (x,y)n j (y)
)+}

dSy

+
∫
Γ−

{
t−i (y)U k

i (x,y)−u−
i (y)

(
Σk

i j (x,y)n j (y)
)−}

dSy

=
n=n−=−n+

∫
Γ

{(u+
i (y)−u−

i (y))︸ ︷︷ ︸
δ(y)

T k
i (x,y)+ (t+i (y)+ t−i (y))︸ ︷︷ ︸

Ψ(y)

U k
i (x,y)}dSy ∀x ∉ Γ.

(2.9)

We introduce δ = u+−u−, the displacement discontinuity across Γ, and Ψ = t++ t−, the

traction discontinuity across Γ and
(
Σk

i j (x,y)n j (y)
)±

=Σk
i j (x,y)n±

j (y). The displacement rep-

resentation formula for the case of an infinite medium containing a fault finally writes

uk (x) =
∫
Γ

{
δi (y)T k

i (x,y)+Ψi (y)U k
i (x,y)

}
dSy , ∀x ∈Ω\Γ. (2.10)

The first term is in the form of a double layer potential Dδi (x), whereas the second term is a

single layer potential S Ψi (x), where we have used the notations

Dδi (x) =
∫
Γ
δi (y)T k

i (x,y)dSy , ∀x ∉ Γ,

S Ψi (x) =
∫
Γ
Ψi (y)U k

i (x,y)dSy , ∀x ∉ Γ.
(2.11)
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Using Trace theorems on Γ+ (respectively Γ−), using the convention n = n− for the unit

normal vector, we have

(Dδi )± (x) =±
1

2
δi (x)+Dδi (x) discontinuity of the double-layer potential ∀x ∈ Γ

(S Ψi )± (x) = SΨi (x) continuity of the single-layer potential ∀x ∈ Γ
(2.12)

where

Dδi (x) =
∫
Γ
δi (y)T k

i (x,y)dSy , ∀x ∈ Γ,

SΨi (x) =
∫
Γ
Ψi (y)U k

i (x,y)dSy , ∀x ∈ Γ.
(2.13)

Dδi (x) is a singular integral and is defined in the sense of Cauchy Principal Value (CPV) as in

3D, it behaves like |y−x|−2 and takes singular values when x = y. Applying the Trace theorem

(2.12) on side Γ± to (2.10), the singular integral Dδi (x) appears. Thus, a regularized version of

the displacement BIE is required on the fault Γ. We use a rigid body identity (Bonnet, 1999)

to regularize

1

2

(
u+

k +u−
k

)= δi (x)K k
i (x,Γ)+

∫
Γ

{
(δi (y)−δi (x))T k

i (x,y)+Ψi (y)U k
i (x,y)

}
dSy , ∀x ∈ Γ (2.14)

where K k
i (x,Γ) = ∫

ΓT k
i (x,y)dSy allows to regularize the BIE.

Now, let u0 be a uniform displacement field in the volumeΩ, continuous across the fault

Γ, yielding to a uniform traction t0 applied on the crack faces Γ±. Since (2.14) does not change

when the loading applied to the crack faces is t±+t0 instead of t±, and introducing∆u = u−u0,

(2.14) writes

1

2

(
∆u+

k +∆u−
k

)= δi (x)K k
i (x,Γ)+

∫
Γ

(δi (y)−δi (x))T k
i (x,y)dSy , ∀x ∈ Γ (2.15)

(2.15) degenerates in the form L∆u = 0 where L is a linear operator, and we have assumed

a symmetrically loaded crack such thatΨ= 0. Such a homogeneous equation has an infinite

number of solutions and cannot be exploited to solve the problem of an infinite linear, elastic,

isotropic medium containing a crack. Fault mechanic problems are similar to screens prob-

lems. In both situations, Bonnet (1999) emphasizes the inapplicability of the displacement

(respectively temperature for screens problems) Boundary Integral Equation.

×Remark 2.1. In the particular case of a planar crack in an anisotropic infinite 2D

medium or finite plate, displacement and traction fundamental solution are given

analytically by Snyder and Cruse (1975). In this case, the displacement boundary integral

equation can be used.

Traction Boundary Integral Equation. One way to avoid this is to use a BIE based on rep-

resentations for stresses as proposed by Bonnet (1999) (chapter 13). By differentiating (2.9)

with respect to x, we can deduce the representation formula for the displacement gradient:

uk,l (x) =
∫
Γ

{
ta(y)U k

a,l
(x,y)−ua(y)nb(y)Σk

ab,l
(x,y)

}
dSy , ∀x ∉ Γ, (2.16)
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where f,l (x,y) denotes the partial derivative of f with respect to the l-coordinate of its first

argument, the source point x. Kelvin fundamental solution for isotropic infinite elastic

medium has the following symmetry properties for all x,y in the volumeΩ

U k
i ,l

(x,y) =−U k
i ,l (x,y) Σk

i j ,l
(x,y) =−Σk

i j ,l (x,y) (2.17)

Using (2.17) in (2.16) plus an integration by part step yields

uk,l (x) =
∫
Γ

{
Dl bua(y)Σk

ab(x,y)− ta(y)U k
a,l (x,y)

}
dSy , ∀x ∉ Γ (2.18)

where we have introduced the differential operator Dlb() = nl (),b −nb(),l .

×Remark 2.2. (2.16) is hypersingular as Σk
ab,l

(x,y) is singular like |y−x|−3. (2.18) is

only singular as it involves only kernels behaving like |y−x|−2. Therefore, we choose to

explain the method to derive the traction BIE to solve the problem of an infinite medium

containing a fault using (2.18) that is less singular.

Regularized formulation. Even if (2.18) is less singular, it still requires to be regularized

to be expressed as a weakly singular integral. Regularization using integration by part has

been detailed by Tada and Yamashita (1996, 1997) for 2D anti-plane and in-plane strain

configurations that are considered in this work. After the regularization step, a limiting

process is used to go from the representation formula to the corresponding boundary integral

equation.

A proper formulation of the limiting process then consists in introducing an exclusion

neighborhood vε(x) removed fromΩ (as represented on Figure 2.3) such that

Ωe (x) =Ω− vε(x), Γε = (Γ−eε)+ sε, sε =Ω∩∂vε, eε = Γ∩ vε (2.19)

Thus, the integral representation formula for the displacement gradient is defined as the

Figure 2.3 • Figure from Bonnet (1999), introduction of an exclusion neighborhood for a

proper formulation of the limiting process.

limiting form for ε→ 0 of (2.18) with x ∉Ωε, i.e.,

0 =
∫

(Γ−eε)+sε

{
Dlbua(y)Σk

ab(x,y)− ta(y)U k
a,l (x,y)

}
dSy , ∀x ∉Ωe . (2.20)
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In order to regularize (2.20), a particular elastostatic state u∗ is introduced, of the form

u∗
a (y) = u0

a +aac (yc −xc ), ti (y) =Ci j abn j (y)aab . (2.21)

It corresponds to the superposition of a rigid body translation and a uniform strain, with

u0
i , ai j being arbitrary constants. The constants in u∗ are chosen equal to the unknown dis-

placement and displacement gradient at the source point x, {u0,a} = {u(x),∇∇∇u(x)}. Applying

(2.20) to the chosen elastostatic state u∗, doing the difference with (2.20) and assuming that

ui has C 1,α smoothness, we can conclude in the limit ε→ 0. After applying Hooke’s law, the

following weakly singular (i.e. convergent) integral representation formula for the stress is

obtained

1

2
σi j (x) =Ci j kl

∫
Γ

[
Dl bua(y)−Dlbua(x)

]
Σk

ab(x,y)dSy

−
∫
Γ

[
ta(y)− ta(x)

]
Σa

i j (x,y)dSy +Dl bua(x)Ci j kl Ak
ab(x,Γ)− ta(x)Aa

i j (x,Γ)

, ∀x ∉ Γ (2.22)

where Ak
i j (x,Γ) = ∫

ΓΣ
k
i j (x,y)dSy . It can be reformulated in terms of weakly singular integrals

by an integration by part. (2.22) does not allow to take into account the coupling between the

displacement and stress field quantities (u,σ) on each fault face. In our case, we model the

fault as a discontinuity under a friction constitutive law, which is different from considering

the fault faces as boundaries with Neumann boundary conditions. To take into account the

coupling induced by the friction interface condition, we use the displacement discontinuity

approach detailed by Bonnet (1999) (section 13.3). We introduce two volumesΩ+ andΩ−

by introducing the surface Γ̃, such that Γ∪ Γ̃ enclosedΩ− and thatΩ+ =R3 −Ω−. The closed

smooth surface Γ∪ Γ̃ is of exterior unit normal n. Writing (2.22) for a point x located on the

fault surface and relative to each subdomainΩ± and adding the resulting identities gives

1

2

[
σ+

i j +σ−
i j

]
(x) =−Ci j kl

∫
Γ∪Γ̃

[
Dlbδa(y)−Dlbδa(x)

]
Σk

ab(x,y)dSy

−
∫
Γ∪Γ̃

[
Ψk (y)−Ψk (x)

]
Σk

i j (x,y)dSy −Ci j kl Ak
ab(x,Γ∪ Γ̃)Dlbδa(x)−Ψk (x)Ak

i j (x,Γ∪ Γ̃)

, ∀x ∈ Γ
(2.23)

where δi = u+
i −u−

i is the displacement discontinuity across Γ∪ Γ̃,Ψi = t+i + t−i is the traction

discontinuity acrossΓ∪Γ̃, and Dlb refers to the normal n = n−. Knowing that the displacement

field and the traction components are continuous across Γ̃, that Ak
ab(x,Γ∪ Γ̃) = Ak

ab(x,Γ)+
Ak

ab(x, Γ̃) and that the global equilibrium is satisfied on Γ̃we obtain

1

2

[
σ+

i j +σ−
i j

]
(x) =−Ci j kl

∫
Γ

[
Dlbδa(y)−Dlbδa(x)

]
Σk

ab(x,y)dSy

−
∫
Γ

[
Ψk (y)−Ψk (x)

]
Σk

i j (x,y)dSy −Ci j kl Ak
ab(x,Γ)Dl bδa(x)−Ψk (x)Ak

i j (x,Γ)

, ∀x ∈ Γ (2.24)

To obtain the traction BIE, we take the product of (2.24) by the unit normal vector n = n−.

Denoting tD = tD−, we get

1

2

[
σ+

i j +σ−
i j

]
(x)n j (x) = t D

i (x)−
1

2
Ψi (x), ∀x ∈ Γ. (2.25)
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It leads to the traction BIE

t D
i (x) =−n j (x)Ci j kl Ak

ab(x,Γ)Dl bδa(x)−Ψk (x)

(
Ak

i j (x,Γ)−
1

2
δDi k

)
−n j (x)Ci j kl

∫
Γ

[
Dlbδa(y)−Dlbδa(x)

]
Σk

ab(x,y)dSy −n j (x)
∫
Γ

[
Ψk (y)−Ψk (x)

]
Σk

i j (x,y)dSy

, ∀x ∈ Γ
(2.26)

Simplifications in 2D cases. From (2.26), we can derive the traction BIE in the case of a

planar crack, subjected to symmetrical loading, in an infinite medium for the mode II-III

situation. In this case, the fault surface lies in the (e2,e3) plane. For any two points x,y of Γ,

one has

n(x) = n(y) = e1, r,1 = r,n =
y1 −x1

|y−x| = 0, Dlb f = δDl1 f,b −δDb1 f,l ,

Ψ= tD++ tD− = 0,

Cβ1k1 =GδDβk , Cβ1kα =GδDβα
δD1k , β,α= 2,3.

(2.27)

It follows that the generic regularized traction BIE (2.26) for a crack of arbitrary shape in an

elastic, linear, isotropic, infinite medium writes

t D
β (x) =−G

∫
Γ

[
δa,α(y)−δa,α(x)

]
Σ
β
aα(x,y)dSy −Gδa,α(x)Aβ

aα(x,Γ)

+G
∫
Γ

[
δa,α(y)−δa,α(x)

]
Σ1

a1(x,y)dSy +Gδa,β(x)A1
a1(x,Γ)

, ∀x ∈ Γ. (2.28)

Particularly, let us detail the simplified two-dimensional case with an infinite fault along the

e2 direction. In mode III configuration, the balance momentum equation writes as a two-

dimensional Laplace equation (see Table 1.1) in quasi-static. The corresponding fundamental

solution writes

U 2
2 (x,y) =

− log(r )

2πG
, r = |y−x|. (2.29)

In this configuration, it is assumed that on either side of the fault:

• The media are symmetrical;

• The material properties are symmetrical;

• The boundary (loading) conditions are symmetrical.

In the case of a symmetrical loading applied on the crack faces, the traction components

are continuous across Γ, such that Ψ = 0 ⇔ σ12(0+, x3, t) = σ12(0−, x3, t). Using the analog

of the symmetry properties (2.17) for the displacement gradient Green function (2.29), the

momentum balance equation and regularizing the BIE with an integration by part, (2.28)

writes

t D
2 (x3) =σ12(x3) =

G

2π

∫
Γ

∂δ2/∂y3

x3 − y3
dSy , ∀x ∈ Γ. (2.30)
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The integral in (2.30) is weakly singular and is given in the sense of Cauchy principal values

(CPV). In mode II configuration, using similar developments (as detailed by Tada and Ya-

mashita (1997), Romanet (2017) for non-planar faults), one can obtain the following traction

BIE

t D
3 (x3) =

G

2π(1−ν)

∫
Γ

∂δ3/∂y3

x3 − y3
dSy , ∀x ∈ Γ. (2.31)

The same kind of integral equation can be obtained for the normal traction component in

mode II when the non-opening condition is not considered for non-planar faults for instance

(effective normal stress applied at the fault front). In this case, a limiting criterion should

be added numerically to constrain the evolution of this traction component which keeps

accumulating without being released (in quasi-static at least) (Romanet, 2017).

For the mode III (respectively mode II with no-opening condition) planar-fault case, we

use Equation (2.30) (respectively (2.31)) in the following developments of this chapter. We de-

note t D
2 (x3) (respectively t D

3 (x3)) as τqs(x3), the only non-vanishing shear-stress component

resulting from quasi-static slip δ2(x3) (respectively δ3(x3)) denoted δ(x3).

Free surface condition for BIE. The methods to consider a free surface condition in the case

of faults embedded in half-spaces depend on whether we deal with a scalar problem or a

vector problem. The free surface condition writes

σn = 0, on ∂Ω. (2.32)

Figure 2.4 represents two methods to take into account a free surface conditions in the case

where a 1D planar fault, embedded in a 2D medium, and perpendicular to the free surface is

considered. In the case of a planar fault perpendicular to the free surface, we can take into

Figure 2.4 • Two methods to take into account a free surface condition in x3 = 0 (a) by repli-

cation of the fault geometry with respect to the free surface, (b) by the method

of images, in the case of the 2D case of a planar fault perpendicular to the free

surface.
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account the free-surface condition by adding to the initial fault geometry its mirror image

with respect to the free surface (Figure 2.4 (a)). For the particular anti-plane case or in-plane

strain case with a no-opening condition on the fault (δ1(x3) = 0, which corresponds to pure

Mode II), considering the free surface condition reduces to the following scalar condition

∂δ2

∂x3
|x3=0 = 0, (Mode III),

∂δ3

∂x3
|x3=0 = 0, (Mode II). (2.33)

This method duplicates the size of the discretized domain but does not change the expression

of the Green’s function.

A second method is the method of images (Bonnet (1999)) as illustrated in Figure 2.4 (b). It

consists in a superposition method, which combines the free surface fundamental solutions

for sources at x = (x1, x2, x3) and at its mirror image with respect to the free surface x =
(x1, x2,−x3). For our specific Mode III scalar problem for instance, the resulting fundamental

solution for the elastic half-space is

U 2
2 (x,y) =−

log(r )

2πG
−

log(r )

2πG
, r = |y−x|, r = |y−x|. (2.34)

The method of images can be only used in the case of scalar problems. This second method

differs from the first one as the discretized domain does not change, while the Green’s

function changes. This method does not extend to vector problem (general elastostatics

or elastodynamics) as the symmetry with respect to the boundary is no longer satisfied in

such cases but for this configuration, a more complex Green function can be defined Bonnet

(1999).

Extension to elastodynamics. Taking into account inertial effects is more difficult. For

elastodynamic problems, different fundamental solutions are used. In addition, a convolution

product in time is added in the traction BIE. Bonnet (1999) gives the regularized time-domain

traction BIE for a fault of arbitrary shape embedded in an infinite medium and subjected to

symmetrical loading on the crack faces such thatΨ= 0. The relation between the loading

t D
i (x, t ) and the displacement discontinuity history δi (y,τ), (0 É τÉ t ) is

t D
i (x, t ) =−Ci j kl n j (x)Dlbδa(x, t )Ak

ab(x,Γ)

−Ci j kl n j (x)

[{∫
Γ

∫ t

0
Σk

ab(x,y, t − t ′)Dl bδ(y, t ′)d t ′
}
−Dl bδa(x, t )Σk

ab(x,y)

]
dSy

−Ci j kl n j (x)ρ
∫
Γ

∫ t

0
U k

a (x,y, t − t ′)δa(y, t ′)nl (y)dSy

(2.35)

where both the elastodynamic fundamental solution (U k
a (x,y, t ),Σk

ab(x,y, t )) and the elasto-

static fundamental solutions (U k
a (x,y),Σk

ab(x,y)) are introduced for regularization purpose,

since they have the same singularity (see Bonnet (1999) page 176). The particular traction

BIE for a two-dimensional in-plane strain configuration of a non-planar fault embedded in

a two-dimensional linear elastic medium is given by Romanet and Ozawa (2021) based on

the Green’s function given by Tada and Yamashita (1997). Cochard and Madariaga (1994)

give a regularized fully-dynamic BIE in mode III between the traction t D
2 (x3, t) (which is
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scalar corresponding to the only non-vanishing traction component in mode III) and the

displacement discontinuity δ(x, t ) (also a scalar in mode III)

t D
2 (x3, t ) =−

G

2cs

∂δ

∂t
−

G

2π

∫
Γ

∫ tm

0

√
(t − t ′)2 − (x3 −ξ)2/c2

s

(t − t ′)(x3 −ξ)

∂δ

∂ξ
(ξ, t ′)dt ′dξ (2.36)

where tm = max(0, t −∥x3 −ξ∥/cs).

A “quasi-dynamic” approximation of the inertial effects is often privileged to reduce the

computational cost as it prevents to compute the convolution in time in addition to the

convolution in space. However, the inertial effects cannot be totally neglected otherwise, the

corresponding simulation could not pass the seismic event Rice (1993). The approximation

consists in a "viscous" term considered at the interface whereas quasi-static equations are

solved in the surrounding volume. This approximation is majorly used in mode III for which

the remaining kernel is showed to decrease rapidly with its argument (see Lapusta and Liu

(2009) and Romanet and Ozawa (2021)). In such cases (mode III), the shear-stress t D
2 change

due to slip δ2 writes

t D
2 (x3, t ) =−

G

2cs

∂δ2

∂t
−

G

2π

∫
Γ

∂δ2/∂ξ

x3 −ξ
dξ, ∀x ∈ Γ. (2.37)

In the mode II case, the “quasi-dynamic” approximation of the non-vanishing shear-stress

component t D
3 (x3, t ) writes (Geubelle & Rice, 1995)

t D
3 (x3, t ) =−

G

2cs

∂δ3

∂t
−

G

2π(1−ν)

∫
Γ

∂δ3/∂ξ

x3 −ξ
dξ, ∀x ∈ Γ. (2.38)

The latter integro-differential expressions contain weakly singular integrals, which are given

in the sense of Cauchy principal values (CPV). The term −G/(2cs)∂δ/∂t in Equations (2.37)

and (2.38) corresponds to the so-called radiation damping. The radiation damping term is

defined as the instantaneous stress drop at a given point x3e3 along the fault Γ due to a local

change in slip-rate.

For the mode III (respectively mode II with no-opening condition) planar-fault case,

we use Equation (2.37) (respectively (2.38)) in the following developments of this chapter.

We denote t D
2 (x3, t) (respectively t D

3 (x3, t)) as τ(x3, t), the only non-vanishing shear-stress

component resulting from slip δ2(x3, t ) (respectively δ3(x3, t )) denoted δ(x3, t ).

Alternative approach in the particular case of planar faults embedded in an elastic medium

In the particular case of planar faults in infinite spaces, a spectral reformulation of the

previous traction BIEs is possible and very efficient. The approach consists in solving the

momentum balance equation in the Fourier domain in space and in the Laplace domain in

time. The calculations have been performed by Geubelle and Rice (1995) and Morrissey and

Geubelle (1997). We (re-)derive the calculations in the particular case of a Mode III dynamic

fault slip problem.
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Following the anti-plane shear assumptions detailed in Table 1.1, the only non-vanishing

displacement component u2 is independent of the y-coordinate and satisfies the scalar wave

equation

G

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
3

)
= ρ∂

2u2

∂t 2
⇐⇒ c2

s

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
3

)
= ∂2u2

∂t 2
(2.39)

where G ∂u2
∂x1

is continuous at x1 = 0 and corresponds to the only non-vanishing traction

component. Focusing our attention on one spectral component of u2 we can write

u2(x1, x3, t ) =Ω(x1, t ;k)e i kx3 , (2.40)

where k is the wavenumber along e3 direction. Then, we take the Laplace transform with

respect to time of (2.39) yielding to

∂2Ω̂(x1, s;k)

∂x2
1

= kαsΩ̂(x1, s;k), (2.41)

where αs =
√

1+ s2

k2c2
s

and s is the Laplace variable. A bounded solution of Equation (2.41) for

the upper plane (x1 > 0) must have the form (as Ω̂−→ 0 as |x| −→∞)

Ω̂(x1, s;k) = Ω̂0(s;k)e−|k|αs x1 . (2.42)

It leads to:

û2(x1, x3, s) = e i kx3Ω̂0(s;k)e−|k|αs x1 . (2.43)

Now, we define the displacement Fourier coefficient U2(t ;k) linked to the displacement at

the fault interface

u2(x1 = 0+, z, t ) =U2(t ;k)e i kx3 , (2.44)

and the traction coefficient T2(t ;k) as

σ12(x1 = 0+, x3, t ) = T2(t ;k)e i kx3 . (2.45)

Combining (2.43) with Hooke’s law, we can relate the traction and displacement Fourier

coefficients by

T̂2(s;k) =−G|k|αsÛ2(s;k). (2.46)

Due to the symmetry of the media, the material properties and the loading on either side

of the fault, the displacement solution is antisymmetric with respect to the fracture plane

in the mode III configuration. Hence, we may rewrite (2.46) in terms of the displacement

discontinuity δ2(x3, t ) and its Fourier coefficient D2(t ;k) defined as

δ2(x3, t ) = u2(x1 = 0+, x3, t )−u2(x1 = 0−, x3, t ) = 2u2(x1 = 0+, x3, t ) = D2(t ;k)e i kx1 (2.47)

to obtain

T̂2(s;k) =−G

2
|k|αsD̂2(s;k). (2.48)

Before we arrive at the final space-time relation, we modify (2.48) by extracting G/(2cs)pD̂2(p;k)

corresponding to the instantaneous response

T̂2(s;k) = G

2cs
sD̂2(s;k)− G|k|

2

{
αs −

s

|k|cs

}
D̂2(s;k). (2.49)
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Next, we perform an inverse Laplace transform back to the time domain

T2(t ;k) =− G

2cs
Ḋ2(t ;k)+F (t ;k) (2.50)

where the dot denotes differentiation with respect to time. T2(t ;k) in (2.50) corresponds to

the Fourier transform with respect to space of t D
2 (x3, t ) in (2.36), where the radiation damping

term has been isolated to exhibit the kernel thereafter.

We write Ŵ (s) =
{
αs −

s

|k|cs

}
. Since pŴ (s) is bounded as s →+∞, there is a bounded

function W (t ) whose transform is Ŵ (s), and the convolution theorem allows us to write

F (t ;k) =−G

2
|k|

∫ t

0
M(|k|cs t ′)D((t − t ′);k)|k|csd t ′. (2.51)

To find W (t) we extend Ŵ (s) to the complex plane with branch cut on the imaginary axis

between s =−i |k|cs and s = i |k|cs , and then use the Bromwich inversion formula to write

M(|k|cs t ) = 1

2iπ

∮
Γ

(√
1+ s2

k2c2
s
− s

|k|cs

)
e st d s

where the contour Γ can be distorted to circle once around, and shrink onto, the branch cut.

Thus letting s = i |k|cs sinΨ, withΨ varying from 0 to 2π, it follows

M(|k|cs t ) = |k|cs

2π

∫ 2π

0
(cosΨ− i sinΨ)exp(i |k|cs t sinΨ)cosΨdΨ

= |k|cs

2

[
1

π

∫ π

0
cos(|k|cs t sinΨ)dΨ+ 1

π

∫ π

0
cos(|k|cs t sinΨ−2Ψ)dΨ

]
.

(2.52)

The two terms within the brackets are the integral representations of the Bessel functions J0

and J2, respectively, such that

M(|k|cs t ) = |k|cs

2
[J0(|k|cs t )+ J2(|k|cs t )] = J1(|k|cs t )

t
. (2.53)

Thus F (t ;k), when evaluated with this convolution kernel W (t ), gives the functional f (x3, t ),

in response to slip history δ2(x3, t ) = D2(t ;k)e i kx3 , as f (x3, t ) = F (t ;k)e i kx3 .

F (t ;k) =−G

2
|k|D2(t ′;k)+ G

2
|k|

∫ t

0
W (|k|cs t ′)Ḋ2((t − t ′);k)|k|csd t ′ (2.54)

where W (t) = ∫ ∞
t J1(θ)/θ dθ = 1− t J0(t)+ J1(t)− (π/2)t(J1(t)H0(t)− J0(t)H1(t)), with H0(t)

and H1(t) being Struve functions of order 0 and 1 respectively (Romanet & Ozawa, 2021).

W (t) decreases rapidly when t increases as shown in Figure 2.5. In practice, this is very

advantageous as it allows to truncate the convolution in time (reducing its computational

cost) without significant loss in its accuracy. Hence, the calculation of F (t ;k) allows to obtain

the traction f (x3, t ) in response to the slip history given by δ2(x3, t ) = D2(t ;k)e i kx3 , such that

f (x3, t) = F (t ;k)e i kx3 . The first term −G
2 |k|D2(t ′;k) of F (t ;k) in (2.54) corresponds to the

Fourier transform with respect to space of the quasi-static shear-stress t D
2 (x3) (τqs) in (2.30).

Similar results for Mode II and Mode I configurations are given by Geubelle and Rice

(1995).
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Figure 2.5 • Evolution of the kernel W (p) with its argument.

×Remark 2.3. This approach relies on a strong assumption that the fault geometry

repeats periodically at depth, which is not the case with the approach using the BIEM.

We show in Section 4.3 from Chapter 2, that this has significant consequences in the

numerical solving of fault slip problems.

This approach has been applied to several coupled planar faults by Barbot (2019). It has

also been extended to the case of a non-planar fault of moderate curvature by Romanet and

Ozawa (2021).

In the following developments, we now concentrate on mode II and mode III planar fault

configurations with symmetrical loading imposed on fault faces.

1.2 Interface problems for mode II and mode III planar-fault configura-

tions

Solving a seismic cycle problem consists in solving the combination of the balance momen-

tum equation with interface conditions, and completed by boundary and initial conditions.

We know that we can use the BIEM to reformulate the combination of balance momentum

equations, Hooke’s law, and boundary conditions as an integral equation on the fault interface

Γ.

As a consequence, the BIE relating the only non-vanishing shear-traction component

denoted τ at the fault interface to the displacement discontinuity δ as

τ(z, t ) = τ0(z)+
G

2πϵ

∫
Γ

∂δ/∂ξ

z −ξ dξ−
G

2cs

∂δ

∂t
:= τ0(z)+τqs(z, t )−

G

2cs

∂δ

∂t
, ∀z ∈ Γ (2.55)

where the pre-stress τ0 corresponds to the steady-state shear-stress due, for instance, to

the far-field tectonic loading.

τqs(z, t) corresponds to the quasi-static shear-stress change from Equation (2.30) due

to the change in the displacement discontinuity at the interface. ϵ = 1 (mode III) or (1−
ν) (mode II). The two-dimensional elastostatic Green function (2.29) for the free-space is

considered here as inertial effects are taken into account only at the fault interface. The BIE
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defining τqs has been regularized by integration by part such that the term in the integral is

only weakly singular. The BIE is defined in the sense of Cauchy Principal Values. The time

evolution of the unknowns comes from the interface conditions.

G/(2cs)∂δ/∂t is the radiation damping term as in Equation (2.37), proportional to the slip-

rate V = ∂δ/∂t , which approximates inertial effects. This term is negligibly small for aseismic

slips and only becomes relevant when slip undergoes a frictional instability. Lapusta et al.

(2000) in 2D and Lapusta and Liu (2009) in 3D investigated the comparison between quasi-

dynamic and fully-dynamic problems. This study showed that the quasi-dynamic approach

resulted in smaller slip per event, smaller slip velocity values and smaller rupture speeds

leading to have long-term influences over earthquake cycles especially in 3D. A possibility

to improve the comparison is to decrease the radiation damping term in order to increase

the slip-velocity values reached during seismic phases. In this work, we do not consider a

decreasing factor for the radiation damping term.

Now, we have to relate the obtained integro-differential equation (2.55) to the interface

condition. Symmetrical loading imposed on crack faces (see Figure 2.1) imply continuity of

the traction components at the interface. We assume that the discontinuity Γ obeys Coulomb

friction and consider a regularized rate-and-state friction law to model contact at the fault

interface, i.e.

τ(z, t ) =σnµ(V (z, t ),θ(z, t )),

with

µ(V (z, t ),θ(z, t )) = a(z)sinh−1

[
V (z, t )

V0
exp

(
µ0

a(z)
+

b(z) ln(θ(z, t )/θ0)

a(z)

)]
dθ

dt
= 1−

V (z, t )θ(z, t )

Dc

(2.56)

where σn is the effective normal stress applied at the fault interface, assumed to be constant.

σn is equal to a pre-stress value due, for instance, to the far-field tectonic loading. V is the

slip-rate. θ is the state variable governed by the so-called aging law. a and b are rate-and-state

parameters which can vary in depth. V0 and µ0 are respectively a reference slip-rate value

and a reference friction coefficient value, and θ0 = Dc /V0, where Dc is the characteristic

slip distance. Rate-and-state friction is considered on a fault width W f and outside this

rate-and-state zone, the fault creeps at a constant rate given by the interface condition

V (z, t ) =Vpl ,

 z ∉ [−W f /2,W f /2] (for an infinite space)

or z ÊW f (for a semi-infinite space)
(2.57)

where Vpl is the plate rate and mimics the far-field tectonic loading. Along the fault width, the

rate-weakening values of the rate-and-state parameters are considered for seismic instability

to occur. The choice of these parameters is important from a numerical viewpoint. Notably,

Barbot (2019) used the BIEM to simulate seismic cycles in quasi-dynamic on semi-infinite

and finite faults loaded in anti-plane (mode III) or in-plane strain (mode II). He performed

a non dimensionalization of the governing equations, which revealed non-dimensional

parameters that control separate aspects of the fault dynamic. The numerical performances

can be affected by the choice of the physical parameters, which also influences the choice of

the space step and the evolution of the time step.
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2. Space discretization of the boundary integral equation

Finally, initial conditions for the interface unknowns δ(z, t),V (z, t), θ(z, t) are required.

We consider that slip δ is initially zero everywhere in the domain and that its initial time

derivative value, slip-rate V , is initially constant equal to the plate-rate Vpl , corresponding to

its steady-state value:

δ(z,0) = 0, V (z,0) =Vpl . (2.58)

As a consequence, the steady state value of the state variable is θss = Dc /Vpl . Hence, we

define the pre-stress τ0 as the steady state stress, namely

τ0 =σnµ(Vpl ,θss)+
G

2cs
Vpl . (2.59)

To be consistent with slip-rate and pre-stress everywhere, the initial state variable can vary at

depth and is not necessarily at steady states:

θ(z,0) =
Dc

V0
exp

{
a(z)

b(z)
ln

[
2V0

Vpl
sinh

(
τ0 −G/(2cs)Vpl

a(z)σn

)]}
. (2.60)

θ(z,0) stands for the perturbation of the equilibrium that leads to seismic cycles due to the

material and friction properties chosen (as explained in Section 1.2 in Chapter 1)

Equation (2.55), along with interface conditions (2.56) and (2.57), eventually a free surface

condition, and initial conditions (2.58) and (2.60) are solved in space over the time period

0 É t É tfinal, where tfinal is a specified simulation time.

The benchmark proposed here neither takes into account geometric complexities of real

faults, nor fault networks, nor complexities of the geological layers. Nevertheless, it is worth

mentioning that these simplified configurations enable to focus on the validation of the

results produced and on the comparison of the different numerical methods implemented.

The anti-plane and in-plane strains problems presented here for a planar fault in quasi-

dynamic are similar to benchmark problems BP1/2 and BP3 (in case the fault is embedded in

a semi-infinite space and is perpendicular to the free surface) from SEAS project (Erickson

et al. (2020a)), whose descriptions are given in Erickson and Jiang (2018) and Erickson et al.

(2021) respectively.

In the case of a planar fault perpendicular to the free surface, we add to the initial problem

the mirror image of the fault on the other side of the free surface, so that the displacement

discontinuity would satisfy ∂δ/∂z|z=0 = 0, which allows to take into account the free surface

condition as explained in Section 1.1.

2 Space discretization of the boundary integral equation

Now that the continuous model has been presented, we move to the space discretization.

The integro-differential equation (2.55) satisfied at the interface Γ, combined with the rate-

and-state constitutive friction law (2.56) are the only equations that need to be discretized

in space. Maier et al. (1993) and Bonnet (1999) (chapter 13) among others, considered BEM

for contact and crack problems. Maerten (2010) reviews space discretization methods using

BEM for earthquakes triggering and fault interactions problems from the introduction of the

displacement discontinuity methods (DDM) in 2D by Crouch and Starfield (1983). Bonnet
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(1999) extended the DDM to 3D crack problems in infinite space and proposed a so-called

multi-region approach in case of bounded-domain problems.

Here, we discretize the pre-existing discontinuity Γ using 1D boundary elements (for 2D

domains). We assume piece wise constant slip over each element as done by Rice (1993),

Cochard and Madariaga (1994), Romanet (2017), Romanet and Ozawa (2021) among others,

and we take as evaluation points the centers of the elements, meaning that the slip δ(z, t)

writes in the discrete form

δ(z, t ) ≈
N∑

j=1
δ(z j , t )

(
H (z − (z j −∆z/2))−H (z − (z j +∆z/2))

)
=

 δ(z j , t ) if z ∈ [z j −∆z/2, z j +∆z/2]≜ [ξ j ,ξ j+1]

0 otherwise

(2.61)

where∆z is the space step and {ξ j } j=1,...,N+1 correspond to the extremities of the 1D elements,

and H is the Heaviside function.

For the sake of a more compact notation, we denote

K (z,ξ) =G/(2πϵ)1/(z −ξ). (2.62)

Notably, incorporating the discrete representation (2.61) of the displacement discontinuity δ

in the expression of the quasi-static stress change τqs from (2.55) yields

τqs(z, t ) =
∫
Γ

K (z,ξ)
∂δ

∂ξ
(ξ, t )dξ

≈
∫
Γ

K (z,ξ)
∂

∂ξ

(
N∑

j=1
δ(z j , t )

(
H (z −ξ j )−H (z −ξ j+1)

))

=
N∑

j=1
δ(z j , t )

(〈K (z,ξ)δD (ξ−ξ j )〉−〈K (z,ξ)δD (ξ−ξ j+1)〉)
=

N∑
j=1

δ(z j , t )
(
K (z,ξ j )−K (z,ξ j+1)

)
⇒ τqs(zi , t ) ≈

N∑
j=1

δ(z j , t )
(
K (zi ,ξ j )−K (zi ,ξ j+1)

)
, i = 1. . . N

(2.63)

It is worth noticing that the latter equality is no more singular thanks to the piece-wise

constant slip considered. We avoid the singularity of the kernel as z j and ξ j are never the

same. They are at least separated by half a space step. Figure 2.6a represents the space

discretization of a 1D planar fault with 16 1D elements as an illustration, so that we could

easily distinguish the center of the elements and their extremities.

The standard Boundary Element matrix contains the coefficients Ki j .

Ki j =
{
K (zi ,ξ j )−K (zi ,ξ j+1)

}
i , j=1,...,N . (2.64)

It is fully-populated and the matrix vector product required to evaluate the shear-stress

field at the collocation points and at each time-step leads to a computational complexity of
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2. Space discretization of the boundary integral equation

O (N 2), where N is the number of collocation points. It leads to prohibitive computational

costs for large problem sizes. The Boundary Element matrix can be viewed as an image

of the “interactions” between the degrees of freedom (DOFs). The “interaction” of a DOF

with itself is much more significant (due to the singular behavior of the kernel) than the

“interaction” between two DOFs that are located far from each other in the geometry. This

idea is to factorize “far” interactions to speed up the evaluation of the BEM matrix and the

iterative solution.

(a)

5 10 15

5

10

15

DOFs indices

D
O

F
s

in
d

ic
es

9 ·10−5

9.9 ·10−4

1 ·10−2

(b) Amplitude of the BEM matrix coefficients.

Figure 2.6 • (a) Space discretization of a 1D planar fault with 16 1D elements. The mesh

nodes are located in the center of the elements. (b) Evolution of the amplitude of

the coefficients of corresponding Boundary Element matrix. Diagonal coefficient

represents close interactions between geometrically close degrees of freedom

while off diagonal coefficients of lower amplitude represent far interactions

between geometrically far degrees of freedom.

In case of a planar discontinuity, two accelerated Boundary Element Methods techniques

can reduce the computational costs.

• A Spectral Boundary Element Method (S-BEM) based on the use of the Fast Fourier

Transform to accelerate the evaluation of the shear-stress field at the collocation points

of the fault interface, but limited to simple geometries;

• A Fast Boundary Element Method based on Hierarchical matrices (H-BEM) to provide a

data sparse approximation of the standard Boundary Element Matrix to accelerate both

its implementation and the matrix vector product with the displacement discontinuity

vector.

Another Fast Boundary Element method, the Fast Multipole Method (FMM) (Greengard &

Rokhlin, 1987; Ying et al., 2004), based on Taylor series expansion of the Green function to

separate close and far contributions, has been used by Romanet (2017). It requires to know

the fundamental solution analytically which is the case for elastic, linear, homogeneous,

isotropic configurations. H -matrices can be viewed as the algebraic analogue of FMM. Thus,

it is not necessary to study FMM in addition to H -matrices here.
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Chapter 2. Fast methods for 2D quasi-dynamic planar fault problems

2.1 Spectral Boundary Element Method for a planar discontinuity

In the particular case of a planar fault, the quasi-static shear-stress component τqs of (2.55)

writes as a convolution product (also as a Hilbert transform). It simplifies as we take the

Fourier transform of τqs with respect to space.

F
(
τqs(z, t )

)
:= T qs(t ;k) =F

(
1

z

)
F

(
∂δ

∂z
(z, t )

)
(2.65)

where F (·) is the Fourier transform operator in space and T qs is the Fourier transform in

space of the quasi-static shear-stress change τqs . The Fourier transform of 1/z is known

analytically

F

(
1

z

)
=−iπ

k

|k| (2.66)

where k is the Fourier wavenumber. The spatial partial derivative of the displacement

discontinuity writes in the Fourier domain

F

(
∂δ

∂z
(z, t )

)
= i kF (δ(z, t )) := i kD(t ;k) (2.67)

where D is the Fourier transform with respect to space of the slip δ. We finally get:

T qs(t ;k) =
G

2
|k|D(t ;k). (2.68)

Spectral Boundary Element Methods (S-BEM) have been largely used to solve seismic

cycles problems for planar faults configurations in 2D (Lapusta et al., 2000; Hillers et al.,

2006; Segall, 2010; Erickson et al., 2020a), in 3D (Lapusta & Liu, 2009; Luo et al., 2017; Barbot,

2019). The simplified Boundary Integral Equation has been derived for mode I, II and III

configurations Geubelle and Rice (1995), Perrin et al. (1995), Morrissey and Geubelle (1997) by

solving the balance momentum equation in the Fourier domain in space and in the Laplace

domain in time. The S-BEM for seismic cycle problems has been extended to multiple parallel

faults by Barbot (2021) and to non-planar faults of moderated curvature by Romanet and

Ozawa (2021), thanks to a “small-slope” approximation.

In practice, the implementation of the S-BEM relies on the use of Fast Fourier Trans-

form (FFT) often based on the Cooley-Tukey algorithm (Cooley (1987) based on a method

initially proposed by Gauss). The complexity of the Cooley-Tukey algorithm is in the or-

der of O (N log2(N )), where N is the number of degrees of freedom (DOFs). This method is

particularly efficient in the case of planar-fault problems where it can be used.

The major drawbacks of this method rely on two strong assumptions:

• The fault has to be planar

• the fault has to be infinite with periodic replication of its frictional behavior.

Numerically, the latter assumption requires the discretized domain containing the fault to be

chosen large enough, so that the values of the interface unknowns would not be influenced
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2. Space discretization of the boundary integral equation

by periodic replications. Cochard and Rice (1997) and Noda (2021) proposed a technique to

use the S-BEM without artificial periodic boundary conditions of the fault. Also, a uniform

space-step has to be chosen in this case.

In the present work, we implemented the S-BEM using the Fast Fourier Transform from

the module NumPy in Python. It uses the Cooley-Tukey algorithm.

2.2 Fast Boundary Element Method based on Hierarchical matrices

An alternative approach to overcome the limitations brought by the dense matrix obtained

from the discretization of the BIE is based on the concept of hierarchical matrices (H -

matrices) (Hackbusch, 1999; Grasedyck & Hackbusch, 2003; Grasedyck, 2005; Bebendorf,

2008; Hackbusch, 2015; Chaillat et al., 2017; Hodapp et al., 2019). H -matrices have been

introduced by Hackbusch (1999) to compute a data-sparse representation of some special

dense matrices (e.g. matrices resulting from the discretization of non-local operators). This

accelerated method also has the advantage to be an algebraic method such that it does

not require tedious problem-dependent developments, and it can handle complex Green’s

functions. This method outperforms the limitations of the S-BEM as it can handle complex

fault geometries, and it does not assume that the domain replicates periodically. H -matrices

have been used in contact mechanics to study macroscopic quantities (such as thermal,

electrical conductivity, sealing properties, . . . etc.) whose magnitude is controlled by the true

contact area (Beguin & Yastrebov, 2023). Maerten (2010) applies H -matrices to a 3D angular

dislocation problem based on the analytical solution given by Comninou and Dundurs (1975).

In the case of seismic cycles problems, H -matrices allow speeding up the matrix-vector

product required to compute the shear-stress τ (Bradley, 2014). They have been used for

2D Romanet (2017) and 3D non-planar faults problems (Ohtani et al., 2011; Bradley, 2014;

Ozawa et al., 2022).

The principle of H -matrices is

• to partition the initial dense matrix into sub-blocks using the fact that the rows and

columns of the matrix correspond to successive degrees of freedom (DOFs),

• to approximate the initial dense matrix into a data-sparse one by performing a low-rank

approximation of the sub-blocks that correspond to interactions between DOFs that

are located far enough from each other

Thereafter, we detail the different steps of the method (in the same order as Chaillat et al.

(2017) and Bagur et al. (2022)) through an application on the simplified case of a 1D planar

fault in an infinite space.

Clustering of the unknowns. The first step before the partitioning of the BEM matrix is the

clustering of the unknowns. It allows to make the correspondence between the sub-blocks

of the matrix and the interaction between clusters of DOFs. A cluster is defined as a set

of indices corresponding to DOFs that are “close” to each other. At this stage, we perform

recursive subdivisions until a stopping criterion corresponding to the minimum number of
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points in one cluster is achieved. Each subdivision consists in partitioning a “parent” subset

into two disjoints “sons” subsets. This procedure can be represented by a binary tree in which

the 0th-level (“root” cell) corresponds to the complete set of indices of the DOFs and the last

level (“leaf” cell) is not subjected to further subdivisions. Figure 2.7 gives an illustration of

the building of the previous binary tree in the simplified case of a one-dimensional planar

fault Γ. We consider a small problem as an illustration for the sake of simplicity.

Figure 2.7 • Clustering of the DOFs of a 1D planar fault embedded in an infinite space and

loaded in mode II or III.

Partitioning of the matrix. We now perform a partitioning of the matrix, which consists in

deducing a hierarchical structure within the matrix based on the comparison of the subsets

within a given level of the binary tree. The comparison between the subset of DOFs within

a given level of the previously built binary tree allows to characterize a corresponding sub-

block of the initial matrix and is based on a geometric criterion which is called “admissibility

condition”. Let us remark that a subdivision of a “parent” cell in two “son” cells in the binary

tree yields to four combinations for subset comparisons leading to the subdivision of an

initial sub-block into four sub-blocks in the matrix. The admissibility condition allows to

determine whether the block considered is a priori low-rank or not.

Before recalling the expression of the admissibility, we introduce some vocabulary. Let X

and Y be two subsets of DOFs which are compared:

• The diameter of X , diamX , (respectively Y , diamY ) is defined as the maximal distance

between two distinct nodes from the subset.

• The distance between the clusters X and Y , dist(X ,Y ), is defined as the distance

between the closer points from both subsets.
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2. Space discretization of the boundary integral equation

The admissibility condition can be derived from theoretical considerations for asymptoti-

cally smooth kernels (Hackbusch, 2015), which is the case of the space derivative of the 2D

elastostatic Green function for the free space. X and Y are said to be η-admissible (η> 0) if

min(diamX ,diamY ) < ηdist(X ,Y ) (2.69)

In practice we use η = 3 (Lizé, 2014). Testing the admissibility condition (2.69) for each

sub-block of the dense matrix leads to distinguish admissible and non-admissible blocks. If a

block does not satisfy the admissibility condition but corresponds to subsets of DOFs that

can be subdivided according to the binary tree, then we test the admissibility of the “sons”

subsets until the leaf level of the binary is reached or until an admissible block is found. If a

block does not satisfy the admissibility condition and the corresponding subsets are at the

leaf-level of the binary tree, then the block is said to be non-admissible (i.e. full rank). If

a block verifies the admissibility condition, then we do not go further in the subdivisions

of the binary tree and the block is said to be admissible (i.e. a priori low rank). It is worth

mentioning that in the matrix, in the case of the 1D planar fault considered, we need finer

blocks close to the diagonal (which corresponds to the interaction of a subset of mesh modes

on itself) and coarser far away (interaction between far enough subset of DOFs). Figure 2.8a

represents two subsets at a given level of the binary and the corresponding sub-block in the

matrix. The hierarchical decomposition of the matrix is represented with colors. Green blocks

correspond to admissible blocks while red block (finer ones) correspond to non-admissible

blocks.

(a) (b)

Figure 2.8 • Hierarchical decomposition of the boundary element matrix for the case of a

1D planar fault embedded in an infinite space and loaded in mode II or III. (a)

Building of the binary tree from the complete set of DOFs. Two subsets of nodes

X and Y at the third level of the binary tree satisfy the admissibility condition

and correspond to an admissible (green) block in the matrix (b), where non-

admissible blocks are displayed in red.

Low rank approximation of admissible sub-blocks. The last step consists in performing a low

rank approximation of the a priori low rank blocks (admissible blocks). This step allows saving
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Chapter 2. Fast methods for 2D quasi-dynamic planar fault problems

storage for the calculation of the boundary element matrix. A matrix M ∈Rm,n of numerical

rank r can be approximated by the product of two matrices A ∈Rm,r and B ∈Rn,r , such that

M = ABT . Then the storage is reduced from O (mn) to O (r (m +n)). This factorization also

accelerates the matrix-vector product Mx = y by decomposing it into two steps

• Step 1 w ← BT x

• Step 2 y ← Aw

which reduces the number of operations from O (mn) to O (r (m +n)).

It is important to note that in practice, when using Fast BEM based on Hierarchical

matrices, the complete dense matrix is never computed. Notably, the clustering of the

unknowns and the partitioning of the matrix are exclusively dependent on the geometry and

are independent of the Green’s function. Different low-rank approximation algorithms exist:

• The most accurate according to Eckart-Young theorem is the Singular value decom-

position (SVD). However, computing this decomposition is expensive O (r mn) (for

truncated SVD for m Ê n, where r is the rank of the approximation and n,m are the

dimensions of the matrix). Moreover, SVD also requires to assemble the initial dense

matrix O (mn), a step that is prohibitive in our case.

• An alternative to the SVD is the Adaptive Cross Approximation (ACA), that we use

here. This method is based on the point that every matrix of rank r is the sum of r

matrices of rank 1. Thus, the corresponding algorithm improves at each iteration the

accuracy of the approximation by adding rank-1 matrices similarly to a Gauss-pivot

algorithm. At iteration k, the matrix M ∈ Cm×n is split into a rank-k approximation

Mk =∑k
l=1 ul vT

l = Uk VT
k , where Uk ∈Cm×k and Vk ∈Cn×k and a residual Rk = M−Mk .

The stopping criterion for this algorithm can write ∥M−Mk∥F É εACAM, where εACA > 0

is a given tolerance and ∥ ·∥F is the Frobenius norm. Two versions of this method exist:

– The Fully pivoted ACA which is expensive because it requires O (r mn) iterations

to generate an approximation of rank r as well as the assembly of the complete

matrix as an input.

– The Partially pivoted ACA avoids the assembly of the complete matrix. Only one

row or one column is assembled at each iteration. This changes the stopping

criterion as the algorithm stops when the addition to a new rank-1 approximation

does not improve the accuracy of the approximation Mk anymore: ∥uk∥F∥vk∥F É
εACA∥Mk∥F . The corresponding complexity is O (r 2(m +n)) instead of O (r mn).

In this work, we use the partially pivoted ACA (see Chaillat et al. (2017) for details).

×Remark 2.4. In quasi-dynamic cases, if the geometry does not change in time, the

data-sparse representation matrix is computed only once at the initialization (also true

if the standard BEM are used), reducing drastically the computational time.
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3. Time discretization

2.3 Comparison between the two approaches

Two advantages of the H-BEM over the S-BEM can be mentioned. First, the H-BEM allows to

take into account non uniformly discretized and non-planar fault geometries Bradley (2014).

In addition, boundary condition can be handled more efficiently with the H-BEM (also true

with the standard BEM) than with the S-BEM. Hence, in the simplified case of a 1D planar

fault embedded in an infinite medium in mode II or III, the quasi static shear-stress change

expressed at the mesh nodes in the center each 1D element can be re-written as follows

τqs(zi , t ) =
N∑

j=1
δ(z j , t )

(
K (zi ,ξ j )−K (zi ,ξ j+1)

)
= (δ(z1, t )K (zi ,ξ1)−δ(zN , t )K (zi ,ξN+1))+

N∑
j=2

K (zi ,ξ j )
(
δ(z j , t )−δ(z j−1, t )

) (2.70)

As a consequence, if the displacement discontinuity δ is uniform on the fault width W f ,

and the geometry, the materials properties and the loading are symmetrical with respect to

the center of the fault, then only the fault width W f has to be meshed. At the extremity of

the mesh, two extremity nodes which take into account the loading must be included. The

outer zone does not contribute to the integral and the corresponding quasi static shear-stress

change τqs for a DOF in the outer zone is equal to zero. This is advantageous compared to

the S-BEM which requires to truncate the domain far enough from the seismogenic zone,

so that the periodic replications of the domain (assumed due to the use of FFT) would not

influence the unknowns values at the fault interface.

3 Time discretization

Now, we can focus on the time discretization. Various methods exist as detailed in Section 3

in Chapter 1 and in A.A.1. We focus on the three adaptive time step methods implemented

in this work that are among the most used methods in the earthquake cycle community.

The first time stepping method is based on a hybrid explicit-implicit prediction-correction

method inspired by Lapusta et al. (2000). The second time-stepping method is based on an

explicit fourth/fifth order adaptive time step Runge-Kutta method inspired by Ozawa et al.

(2022). And the third one is a hybrid prediction-correction / adaptive time step Runge-Kutta

method inspired by Romanet and Ozawa (2021).

3.1 Main time stepping methods implemented

For all these methods, the discretized values of slip δi (t ), slip-rate Vi (t ), state variable θi (t ),

shear-stress τi (t ), quasi-static shear-stress τqs
i (t ), state rate θ̇i (t ) and quasi-static shear-stress

rate τ̇qs
i (t ) are computed at the centers of the elements at each time t.

(A) Predictor-corrector scheme (Lapusta et al., 2000). It starts with a prediction step

1. Initial prediction for slip and state variable at time t +∆t using an explicit Euler scheme:

δ∗i (t +∆t ) = δi (t )+∆tVi (t ), θ∗i (t +∆t ) = θi (t )+∆t θ̇i (t ). (2.71)
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2. Evaluation of the corresponding prediction of shear transfer τqs
i (t +∆t) using a Fast

Fourier Transform and the computation of the Fourier coefficients of δ∗i (t+∆t ) or using

Fast BEMs with H -matrices.

3. Non-linear solution of the friction law for V ∗
i (t +∆t ).

4. Evaluation of the corresponding state rate θ∗i (t +∆t) from the evolution law on the

state variable.

The second part is a correction step.

1. Final prediction for slip and state variable at time t +∆t using an explicit Euler scheme:

δ∗∗i (t +∆t ) = δi (t )+∆t/2
(
Vi (t )+V ∗

i (t +∆t )
)

,

θ∗∗i (t +∆t ) = θi (t )+∆t/2
(
θ̇i (t )+ θ̇∗i (t +∆t )

)
.

(2.72)

2. Evaluation of the corresponding prediction of shear transfer τqs
i (t +∆t) using a Fast

Fourier Transform and the computation of the Fourier coefficients of δ∗∗i (t +∆t) or

using Fast BEMs with H -matrices.

3. Non-linear solution of the friction law for V ∗∗
i (t +∆t ).

4. Evaluation of the corresponding state rate θ∗∗i (t +∆t) from the evolution law on the

state variable.

5. Return δ∗∗i (t +∆t ), V ∗∗
i (t +∆t ), θ∗∗i (t +∆t ), θ̇∗∗i (t +∆t )

6. Evaluation of the evolution time step ∆t which satisfies the criteria given in Lapusta

et al. (2000) to ensure stability of the method and return to 1.

Figure 2.9 gives the structure of one prediction/correction step. Figure 2.10 represents

Estimate δ,θ

Calculate elastic response of

fault to δ (Spectral / Fast-BEMs)

Non-linear solving of fric-

tion law to determine V

Use V to update ∂θ/∂t

Figure 2.9 • Structure of the algorithm for one prediction/correction step to estimate inter-

face unknowns (in red) at the next time step

one step of the prediction-correction method.
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Prediction-Correction of δ,V ,θ

Adapt time-step as 1/V

Figure 2.10 • Structure of the algorithm for one step of the prediction-correction method to

estimate interface unknowns (in red) at the next time step

(B) Explicit method Ozawa et al. (2022). An alternative approach consists in first reformulat-

ing the contact problem as an ODE system. The unknowns of the ODE system considered are

the shear-stress and the state-variable. One time-step relies on a fourth- fifth-order adaptive

time-step Runge-Kutta method. One time-step of the algorithm is decomposed into three

steps:

1. Evaluation of the quantities τi (t +∆t ) and θi (t +∆t ) with a fourth- fifth-order adaptive

time-step Runge-Kutta method (Press & Teukolsky, 1992).

2. Evaluation of the field Vi (t +∆t) using the friction law and the values of τ and θ at

t +∆t .

3. Evaluation of the quasi-static shear-stress rate τ̇qs
i (t +∆t ).

Figure 2.11 gives the structure of one step of the explicit RK method.

RK45 step to solve ODE system

on τ,θ and adapt time-step

Use τ to update V

Use V to update dτqs/d t

Figure 2.11 • Structure of the algorithm for one step of the explicit RK method to estimate

interface unknowns (in red) at the next time step

(C) Hybrid scheme (Romanet & Ozawa, 2021). The third alternative consists in one prediction-

correction stage on the full current time-step in parallel to two successive prediction-correction

steps on half of the time-step.

1. Evaluation of δi (t +∆t ), Vi (t +∆t ), θi (t +∆t ) with a prediction-correction stage on the

full current time-step. The results are denoted δifull (t +∆t ), Vifull (t +∆t ), θifull (t +∆t ).

2. Evaluation of δi (t +∆t ), Vi (t +∆t ), θi (t +∆t ) with two successive prediction-correction

stage on half of the current time step. The results are respectively denoted δihalf1
(t +∆t ),

Vihalf1
(t +∆t ), θihalf1

(t +∆t ) and δihalf2
(t +∆t ), Vihalf2

(t +∆t ), θihalf2
(t +∆t ).
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3. Evaluation of the error on slip and state variable at t +∆t between the results of

the prediction-correction on the full time step and the results after two successive

prediction-correction stages on half time step

εδ = max
i=1...Nel e

∣∣∣∣∣δifull −δihalf2

δihalf2

∣∣∣∣∣ , εθ = max
i=1...Nel e

∣∣∣∣∣θifull −θihalf2

θihalf2

∣∣∣∣∣ , ε= max{εδ,εθ} , (2.73)

where δifull ,δihalf2
,θifull ,θihalf2

are evaluated at t +∆t .

4. Adapt the time-step ∆t = 0.9

(
εsolver

ε

) 1
3

∆t . εsolver corresponds to the solver tolerance.

5. Return δihalf2
(t +∆t ), Vihalf2

(t +∆t ), θihalf2
(t +∆t ), θ̇ihalf2

(t +∆t )

The comparison between the results obtained with both prediction-correction procedures

allow to adapt the time step in the spirit of adaptive time-step Runge-Kutta method.

Figure 2.12 gives one step of the hybrid method. Where, the prediction-correction step is

Time step adapation in

the spirit of RK45 method

Prediction-Correction

of δ,V ,θ on

full time-step

2 Prediction-

Correction of δ,V ,θ

on half time-step

Converged?
no

yes

Figure 2.12 • Structure of the algorithm for one step of the hybrid method to estimate inter-

face unknowns (in red) at the next time step

detailed in Figure 2.9.

Structure of the algorithm. Figure 2.13 gives an explanatory scheme that illustrates the

structure of the algorithm for seismic cycle simulations. It highlights the choice of both

time-stepping and space methods within the algorithm. The inputs correspond to:

• physical parameters (shear modulus, shear wave velocity, Poisson coefficient),

• rate-and-state parameters (cf. Table 2.17 for instance),

• creep rate out of rate and state zone Vpl ,
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• space discretization and time discretization parameters (space method chosen, H -

matrix parameters, length of the rate-and-state zone, number of elements in the rate-

and-state zone, size of the discretized domain, free surface option, final simulation

time, eventually minimum time step)

• time stepping method parameters (time stepping method chosen, εsolver, εNewton,

maxiterNewton)

• initial values of interface unknowns,

• export parameters

Generate fault mesh

Choice of time stepping method

Explicit RK45Prediction-

Correction
Hybrid

If t < t f
yes

no

calls to

space

methods

Figure 2.13 • Structure of the algorithm for seismic cycle simulations

The convergence of these numerical methods has not been investigated theoretically.

3.2 A priori theoretical comparison of the different numerical methods

The calculation of the shear-stress change from (2.55) is the most expensive step at each

iteration. It is important to notice that, as we use time integration methods based on explicit

time discretization schemes, we do not solve the boundary integral equation relating the

shear stress change to the slip. We only need to calculate a convolution product in space,

under the quasi-dynamic approximation (respectively in space and time for the fully-dynamic

case) between the slip and the fundamental solution of the balance momentum equation

to obtain the corresponding shear stress change at each iteration. In practice this operation

is accelerated using the Fast-Fourier-Transform (S-BEM), which leads to compute a simple

product at each iteration, or using Hierarchical matrices based BEM (H-BEM), which leads

to compute a matrix-vector product at each iteration, in the code. To compare the different

algorithms, we give the theoretical complexity of the calculation of the shear-stress change. If

the S-BEM or the H-BEM are used, the estimated complexity is in the order of O (N log(N ))

where N is the number of DOFs on the discretized fault. In addition, a comparison of the

different time stepping methods used is required. Table 2.1 presents an a priori comparison of
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Advance-in-time methods
Predictor-corrector scheme

Lapusta et al. (2000)

Explicit method

Ozawa et al. (2022)

Hybrid method

Romanet and Ozawa (2021)

Number of times τqs is

calculated in one time-step
2 6×Niter 6×Niter

Order of approximation

of interface unknowns
2 5 2

Choice of the time step Heuristic Convergence based Convergence based

Dynamic cases ✓

Table 2.1 • A priori comparison of the different time integration methods used.

the different advance-in-time methods used. We implemented each of these time integration

methods mentioned in Table 2.1 with both the S-BEM and the H-BEM. Calculating the

shear-stress using the H-BEM at each time-step allows to take into account more complex

geometries and more complete physics in the model. The convergence of the implemented

solvers has not been investigated theoretically, but we have studied their convergence as well

as their sensitivity to the parameter that scale both space and time discretization in practice.

Such convergence and sensitivity studies are not detailed in the literature. They are key to

bridge the gap of a relevant comparison of existing numerical methods and propose a joint

code to simulate seismic cycles.

4 Convergence assessment

We ran the calculations on a compute node from Unité de Mathématiques Appliquées (UMA)

at ENSTA Paris for all the results obtained in this chapter. The specifications of the compute

node used are given in Table 2.2.

CPU Reference Core / CPU Memory (GB)

Intel(R) Xeon(R) Gold 6244 3.60GHz 32 377

Table 2.2 • Compute node specifications.

4.1 Proposition of a configuration with an analytical aseismic solution

So far, the comparison and validation of seismic cycle simulations is still a challenging point

(Harris et al., 2009; Day et al., 2005; Erickson et al., 2020a, 2023). In order to compare and

validate numerically the different methods implemented, we need a reference solution. In

this part, we propose a particular initialization of a seismic cycle problem that provides an

analytical aseismic solution. The initialization of the problem differs from the one detailed

in Section 1. The analytical aseismic solution proposed here is derived from an analytical

solution for the boundary integral equation relating the quasi-static shear-stress change τqs

and the slip δ (2.55) proposed by Segall (2010). To our best knowledge, this extension of this

analytical value of τqs into an analytical aseismic solution has not been studied.
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4. Convergence assessment

We consider the simplified quasi-dynamic mode II configuration (equivalent to mode

III configuration in the simplified case of a planar fault) represented on Figure 2.1. The

configuration considered consists in a planar fault embedded in a homogeneous, linear,

elastic, isotropic infinite space. In-plane motion is assumed on either side of the fault. The

quasi-dynamic approximation is considered. A regularized rate-and-state friction given by

Equation (2.56) is considered on width W f . Outside of width W f , a constant creep rate Vpl is

imposed.

Let us recall that the nucleation length is defined by (Rubin & Ampuero, 2005)

Lnuc =


2×1.3774×Lb , 0 É a/b É 0.3781

2Lb

π(1−a/b)2
, a/b → 1

, where Lb =
GDc

σnb
. (2.74)

Here the rate-and-state parameters a and b are chosen, so that a velocity strengthening state

were considered, meaning that a perturbation of the steady state would die away as shown in

Section 1.2 in Chapter 1. In practice, the fault width W f is chosen large enough compared to

Lnuc, so that it were large enough compared to the distance along fault on which unstable

slip occurs.

Figure 2.14 represents the normalized initial values of the slip δ and the quasi-static

shear-stress change τqs . The initial slip distribution writes

δ(z,0) =
(1− (z/A)2)3/2 if |z| É A,

0 if |z| > A,
(2.75)

where A is the width along z direction on which the slip is non-zero. Here we choose A equal

to the nucleation length A = Lnuc.

We recall the expression of the quasi-static shear-stress change τqs

τqs(z, t ) = G

2πϵ

∫
Γ

1

z −ξ
∂δ

∂ξ
(ξ, t )dξ. (2.76)

Segall (2010) (see section 4.4 in his book) showed that using integral relations on Chebyshev

polynomials, the corresponding initial quasi-static shear-stress change writes

τqs(z,0) =− 3G

4Aϵ

1−2(z/A)2 if |z| É A,

1−2(z/A)2 +2|z/A|
√

(z/A)2 −1 if |z| > A.
(2.77)

The expression when |z| > A is given by Romanet (2017). This example allows for a non-

singular stress distribution everywhere on the fault. The analytical solutions proposed for δ

and τqs have the advantage to be representative of the evolution of the slip and the quasi-

static shear-stress change during a seismic event as shown on Figure 2.15.

The initial slip rate V and state-variable θ are chosen at their steady state values

V (z,0) =Vpl , θ(z,0) =
Dc

Vpl
. (2.78)
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Figure 2.14 • Normalized evolution of initial values of the slip δ(z,0) and the quasi-static

shear-stress change τqs(z,0) with respect to space on the rate-and-state fault

width W f = 5Lnuc.
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Figure 2.15 • Spatial evolution of (a) the slip and (b) the shear-stress change at t = 4.4 s,

during the first seismic event (simulation of a mode II configuration with a

no-opening condition on the fault cf. Figure 2.1).

The corresponding analytic solution is given by

δ(z, t ) = δ(z,0)+Vpl t , V (z, t ) =V (z,0),

τ(z, t ) = τ0 +τqs(z,0)−
G

2cs
V (z,0), θ(z, t ) = θ(z,0),

(2.79)

where, τ0 is constant due to constant values chosen for rate-and-state parameters a and b,

and is defined consistently with the rate-and-state friction law as

τ0 =σn a sinh−1

[
V (z,0)

2V0
exp

(
f0 +b ln(V0/V (z,0))

a

)]
+

G

2cs
V (z,0)−τqs(z,0). (2.80)

τ0 takes into account the initial quasi-static shear stress value τqs(z,0) in order to ensure that

the system remains in its steady state at each iteration.
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4. Convergence assessment

The objectives are to assess the convergence of the developed numerical methods and to

study the sensitivity of each method to its simulation parameters, in order to ensure the

accurate and efficient use of these numerical tools. We distinguish sensitivity studies with

Parameter Definition Value, Unit

G Shear modulus ≃ 30 GPa

cs Shear wave velocity 3000 m/s

ν Poisson coefficient 0.25

σn Effective normal stress 100 MPa

a Rate-and-state parameter 0.01

b Rate-and-state parameter 0.009

Dc Characteristic slip distance 1 mm

Vpl Imposed slip-rate 10−9 m/s

V0 Reference slip-rate 10−6 m/s

f0 Reference friction coefficient 0.6

Lnuc Nucleation length 1910 m

W f Rate-and-state fault width 5Lnuc

Table 2.3 • Parameters used for the convergence study.

respect to parameters that scale the space and time discretizations as proposed in the section

below.

4.2 Methodology for the convergence study

We showed in Section 3.1 in Chapter 1 that the convergence of the results of a seismic cycle

simulation relied on both space and time discretizations. Therefore, a sensitivity study

with respect to the parameters of the different implemented numerical methods is key to

choose parameter values that allow relevant interpretations of the seismic cycle simulations

performed. It is crucial to choose refined enough parameters in order to simulate seismic

cycles for which the seismic instability observed is not due to numerical artifacts, and the

nucleation of the instabilities is well resolved for actual events. It is also important to balance

this aspect with memory and computational costs. A complete sensitivity of the numerical

methods implemented is difficult as they depend on numerous parameters. Focusing on the

most relevant interactions between these parameters, we propose a strategy for the sensitivity

study. Section 4.3 concentrates on one calculation of the quasi-static shear stress change

τqs to study its accuracy with respect to the parameters that scale the space discretization

and to the parameters inherent to the H-BEM. The numerical solution is compared to the

analytical solution (2.77). Section 4.4 studies the sensitivity of the calculation of the interface

unknowns δ, V , τ, θ, with respect to parameters that scale the time discretization for the

different implemented time-stepping methods, using H-BEM. The simulations of an aseismic

phase and of seismic cycles are distinguished in this part. The aseismic results are compared

to the analytical solution (2.79), whereas the seismic cycle results are first compared to
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Chapter 2. Fast methods for 2D quasi-dynamic planar fault problems

reference results provided by Pierre Romanet (personal communication), then to refined

results obtained with standard BEMs.

4.3 Accuracy of one calculation of the shear-stress change τqs

As a first step, we consider the accuracy of calculation of the quasi-static shear-stress change

τqs . We concentrate on one calculation of τqs (in the quasi-dynamic approximation) as the

calculation of the shear-stress change is the only stage of the algorithm that relies directly

on the space discretization. Other steps are performed independently on each DOF. The

calculation of τqs consists in the discretization of the BIE (2.76). It allows to compare the

standard BEM to the H-BEM and the S-BEM. This sensitivity study is performed with respect

to parameters which scale the space discretization of the fault Γ, i.e.:

• The number of mesh nodes that resolve the characteristic length Lb , the corresponding

quantity Lb/∆z is directly linked to the space step ∆z.

• The ratio between the size of the discretized domain and the fault width W f , denoted

Nrep such that the length of the interface that is discretized writes Nrep ×W f .

Our reference solution here is the analytical value of τqs (2.77) resulting from the slip distri-

bution (2.75).

Convergence assessment with respect to Lb/∆z. We first vary the number of elements that

resolve the characteristic length Lb : Lb/∆z. An adequate discretization of Lb ensures that the

nucleation length is well resolved. In the case of seismic cycle simulations, it means that we

can resolve correctly the occurrence of unstable slip on the fault. Numerical solutions for τqs

obtained with the standard BEM, the H-BEM or the S-BEM are compared to the analytical

solution (2.77) using a relative L2-norm error defined as

ετqs =
∥τqs

app −τqs
ex∥L2

∥τqs
ex∥L2

, (2.81)

where τqs
app is the quasi-static shear-stress change computed numerically, and τ

qs
ex is the

analytical value of the quasi-static shear-stress change (2.77) evaluated at the centers of the

1D mesh elements. The L2-norm is defined as ∥f∥L2 =
√
∆z

∑N
i=1 f 2

i since we assume the

interface field quantities are constant per element, with N the number of DOFs, and ∆z

is the space step. We also consider the calculation of the time derivative of τqs , denoted

∂τqs/∂t = τ̇qs such that, recalling the definition of the slip-rate δ̇=V ,

τ̇qs =
G

2πϵ

∫
Γ

1

z −ξ
∂V

∂ξ
(ξ, t )dξ= 0, since

∂V

∂ξ
= 0. (2.82)

Given the evolution of slip in (2.79), and as it results from a uniform in space slip-rate

distribution, the time derivative of the quasi-static shear-stress change should be zero. It

confirms our interpretation of Equation (2.70). The Fourier transform with respect to space

of τ̇qs writes

Ṫ qs(t ;k) =
G

2
|k|Ḋ(t ;k) =

G

2
|k|δD (k) = 0, (2.83)
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4. Convergence assessment

where Ṫ qs(t ;k) and Ḋ(t ;k) are respectively the Fourier transform with respect to space of the

time derivative of the quasi-static shear-stress change τqs and of the slip-rate V . We define

the L2-norm error on τ̇qs

ετ̇qs = ∥τ̇qs
app − τ̇qs

ex∥L2 , (2.84)

Note that since τ̇qs
ex is equal to zero, we consider an absolute error for that case.

Figure 2.16 shows the evolution of the relative L2-norm errors on the quasi-static shear-

stress change τqs (a) and on its time derivative τ̇qs (b). Parameters used to compute these

results are given in Table 2.4. As visible in Figure 2.16a, we obtain the same convergence

Parameters Nrep Nleaf η εACA

BEM 1 / / /

H-BEM 1 100 3 10−5

S-BEM 51 / / /

Table 2.4 • Space discretization parameters for convergence study with respect to Lb/∆z.
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Figure 2.16 • Relative L2-norm error on (a) the quasi-static shear-stress change τqs : ετqs and

on (b) its time derivative τ̇qs : ετ̇qs with respect to Lb/∆z.

rate with the three methods (standard BEM, H-BEM and S-BEM). In Figure 2.16b, we obtain

τ̇qs = 0 using the S-BEM. The non-zero error values obtained with the standard BEM are

the result of the accumulation of numerical errors, whereas the error values obtained using

the H-BEM are, in addition, influenced by the data-sparse approximation of the boundary

element matrix. Moreover, the tolerance for the low-rank approximation is fixed to 10−5, and

we obtain absolute error values ετ̇qs in the order of 10−6 with the H-BEM which makes sense.

In practice, we consider Lb/∆z ≈ 6 for the following seismic cycle simulations, which leads to

an error of about 10−3 on τqs and about 10−7 on τ̇qs for the H-BEM.

Convergence assessment with respect to Nrep. Nevertheless, as explained in Section 2.1,

convergence of the S-BEM depends on the size of the discretized domain. It has to be chosen
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large enough, so that the interface field quantity values would not be influenced by the

periodic replications of the fault behavior inherent to the use of Fast Fourier Transform in

the case of the S-BEM. On the contrary, the size of the discretized domain should neither

influence the calculation of τqs nor τ̇qs when using the standard BEM or the H-BEM, nor

the calculation of τ̇qs when using the S-BEM. Figure 2.17 shows the evolution of the relative

L2-norm error on (a) the quasi-static shear-stress change τqs , and on (b) its time derivative

τ̇qs , with respect to the size of the number of replications of the fault width Nrep. Parameters

used to compute these results are given in Table 2.5.

Parameters Lb/∆z Nleaf η εACA

BEM ≈ 62 / / /

H-BEM ≈ 62 100 3 10−5

S-BEM ≈ 62 / / /

Table 2.5 • Space discretization parameters for convergence study with respect to Nrep.
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Figure 2.17 • Relative L2-norm error on (a) the quasi-static shear-stress change τqs and on

(b) its time derivative τ̇qs with respect to the size of the discretized in terms of

number of nucleation length Nrep. Lb/∆z ≈ 62.

In Figure 2.17a, we can observe that the convergence is reached for the S-BEM (in the case

Lb/∆z ≈ 62), when the size of the domain is in the order of 33W f . As expected, a change in the

size of the discretized domain does not influence the error values obtained with the standard

BEM nor the H-BEM. These tests highlight that large problem sizes become prohibitive when

using standard-BEM. In effect, we can notice that only 3 error values over 7 are displayed for

the standard BEM. This is due to the fact that for other points, the allocated memory required

to build the boundary element matrix using the standard BEMs is prohibitive (Nrep = 5

corresponds to a boundary element matrix of size (N × N ) with N = 105 DOFs). Again,

the non-zero error value of the time derivative of the quasi-static shear-stress change τ̇qs

obtained with the standard BEM results from the accumulation of numerical errors, whereas

the error values obtained using the H-BEM are, in addition, influenced by the data-sparse

approximation of the boundary element matrix.
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Convergence assessment with respect to H-BEM parameters. At that point, it is important

to study the influence of the parameters introduced by the use of the H-BEM: Nleaf, η and

εACA. We recall that Nleaf is the stopping criterion for the clustering of the unknowns, η is the

admissibility coefficient that allows to determine a priori low-rank blocks in the boundary

element matrix, and εACA is the tolerance for the low-rank approximation of admissible

blocks. Figure 2.18 represents the evolution of ετqs with respect to εACA for different values

of η and when Nleaf = 200 (a) or Nleaf = 5 (b). Parameter values used for these results are in

Table 2.6.

Parameters Lb/∆z Nrep

BEM ≈ 6 1

H-BEM ≈ 6 1

Table 2.6 • Space discretization parameters for convergence study with respect to Nrep.
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(a) Nleaf = 200.

10−7 10−6 10−5 10−4 10−3 10−2 10−1

εACA

10−3

10−2

10−1

100

ε τ
qs

BEM

H-BEM η = 0.3

H-BEM η = 3

H-BEM η = 30

H-BEM η = 300

(b) Nleaf = 5.

Figure 2.18 • Relative L2-norm error on the quasi-static shear-stress change τqs with respect

to εACA for different values of η; Lb/∆z ≈ 6.

Comparing both figures, we can interpret that the smaller the value of Nleaf, the larger the

number of admissible blocks for a given value of the admissibility coefficient η. The limiting

value for Nleaf is Nleaf = N , and corresponds to the total number of DOFs. In this case, the

H-BEM is equivalent to the standard BEM. As visible in Figure 2.18b, the larger the value of

the admissibility coefficient η, the larger the number of a priori low-rank blocks exhibited

by the admissibility condition (2.69). Large values of η imply that we consider as admissible

full-rank blocks. As a consequence, for large values of η and large values of the tolerance εACA,

the data-sparse approximation of the BEM matrix and of τqs is way less accurate with the

H-BEM than with the standard BEM. If the value of η is small enough, such that none of the

blocks would be admissible, then the H-BEM would again be equivalent to the standard BEM.

Finally, the lower the value of the tolerance εACA for the low-rank approximation of admissible

blocks, the closer to the dense boundary element matrix its data-sparse approximation. The
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values Nleaf = 100, η= 3 and εACA = 10−5 chosen for the following simulations allow the H-

BEM to reach accurate enough approximations of the quasi-static shear-stress τqs compared

to the standard BEM.

Finally, we compare the performances of the standard BEM, the H-BEM and the S-BEM.

Parameters have also been chosen so that the same numbers of DOFs were considered for

each method, they are given in Table 2.7. Figure 2.19a shows observed and estimated CPU

time to compute BEM matrix with respect to the number of degrees of freedom (DOFs) N for

the standard BEM and the H-BEM. It confirms that the CPU time to compute the BEM matrix

is in the order of O (N 2) for the standard BEM and O (N log(N )) for the H-BEM. Figure 2.19b

shows observed and estimated CPU time to compute the quasi-static shear-stress change

τqs with respect to the number of DOFs N . It confirms that the CPU time to compute τqs is

in the order of O (N 2) for the standard BEM and O (N log(N )) for the H-BEM and the S-BEM.

Here, the computational time is larger for the H-BEM than for the S-BEM as the S-BEM

is performed using an optimized Python library, and the other methods are only using in-

house non optimized developments. Figure 2.19c and Figure 2.19d respectively represent the

storage requirement Ns and the compression rate τ(H ) with respect to the number of DOFs

N . Ns is in the order of O (N 2) for the standard BEM and in the order of O (N log(N )) for the

H-BEM. The compression rate τ(H ) is in the order of O (1) for the standard BEM as the dense

matrix is fully computed, and in the order of O (N−1 log(N )) for the H-BEM. In Figure 2.19, we

can notice that only four points over seven are represented for the standard BEM. This is due

to the prohibitive memory cost required from N > 105 DOFs, which shows the advantage of

the H-BEM over the standard BEM for large problems. In Figure 2.19e, we show that each

simulation carried out with the standard BEM, the H-BEM and the S-BEM to compute τqs

has been performed so that it lead to the same relative L2-norm error ετqs .

Parameters Lb/∆z Nrep Nleaf η εACA

BEM ∈ {0.3,0.6,3,6,15,31,62} 33 / / /

H-BEM ∈ {0.3,0.6,3,6,15,31,62} 33 100 3 10−5

S-BEM ∈ {0.3,0.6,3,6,15,31,62} 33 / / /

Table 2.7 • Space discretization parameters to compare the performances of the standard

BEM, the H-BEM and the S-BEM.

Conclusions on the convergence assessments in space and link with convergence assessments

in time. In this part, we carried out sensitivity tests on the calculation of the quasi-static

shear-stress change and its time derivative with respect to parameters that scales the space

discretization of the problem. We showed that for a fixed space step ∆z (respectively fixed

number of elements that resolve the characteristic length Lb : Lb/∆z), we could choose con-

verged values of the parameters Nrep for the S-BEM and Nleaf, η and εACA for the H-BEM.

Before studying the sensitivity of the different implemented adaptive time-stepping meth-

ods with respect to their simulation parameters in the following part, we want to choose an

adequate value of Lb/∆z so that the solving in time were numerically stable. An appropriate
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Figure 2.19 • Observed and estimated (a) CPU time to compute the BEM matrix with respect

to the number of DOFs N ; (b) CPU time to compute the quasi-static shear-stress

change τqs with respect to the number of DOFs N ; (c) memory requirement Ns

and (d) compression rate τ(H ) with respect to the number of DOFs N ; (e) CPU

time to compute τqs with respect to ετqs .
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choice of Lb/∆z is important as the error in space can cumulate in time. To this aim, we

perform a seismic cycle simulation, using the hybrid prediction-correction - RK45 method

inspired by Romanet and Ozawa (2021), initialized so that a seismic event occurred right

after the initialization for different values of the number of elements that resolve Lb . We

consider a planar fault embedded in a linear, isotropic, elastic, infinite medium (see Fig-

ure 2.1). In-plane strains and a no-opening condition on the fault are assumed. The fault is

under rate-and-state friction along the fault width W f and rate-weakening values of the rate-

and-state parameters are considered so that unstable slip could occur. The quasi-dynamic

approximation is considered. The initial values of the interface unknowns are:

δ(z,0) = 0,

V (z,0) =
 10−3

(
exp(−z2/Lnuc)−exp(−Lnuc/4)

)+Vpl , if z ∈ [−Lnuc/2,Lnuc/2] ,

Vpl otherwise,

τ(z,0) = τ0 −G/(2cs)V (z,0),

θ(z,0) = Dc /Vpl .

(2.85)

Figure 2.20 shows the evolution of the maximum in depth of the four interface unknowns: (a)

the slip δ, (b) the slip-rate V , (c) the shear-stress τ and (d) the state-variable θ with respect

to time for different values of Lb/∆z. We can observe that for Lb/∆z Ê 6, the time evolution

converges towards the most refined solution. Ozawa et al. (2022) had estimated at least

Lb/∆z Ê 3. Parameters used for these simulations are given in Table 2.8.

Parameter Definition Value, Unit

µ Shear modulus ≃ 30 GPa

cs Shear wave velocity 3000 m/s

σn Effective normal stress at the fault interface 100 MPa

a(z) Rate and state parameter 0.009

b(z) Rate and state parameter 0.01

Dc (z) Characteristic slip distance 1 mm

Vpl Imposed slip rate out of rate-and-state zone 10−9 m/s

V0 Reference slip rate 10−9 m/s

f0 Reference friction coefficient 0.6

W f Width of the rate-and-state zone 5Lnuc km

Table 2.8 • Parameter values used for quasi-dynamic in-plane case.

4.4 Convergence in time

Now that we chose converged parameter values for the space discretization, the second step

consists in studying the influence of the parameters that scales the time discretization. We

first focus on the simulation of an aseismic phase. We compare the results obtained with

each adaptive time-stepping method to the analytical aseismic solution Equation (2.79).

The parameters considered are:
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Figure 2.20 • Evolution of the maximum in depth of (a) the slip δ, (b) the slip-rate V , (c)

the shear-stress τ, and (d) the state variable θ with respect to time during one

seismic event for different values of Lb/∆z.

• the solver tolerance εsolver is a parameter of the explicit method inspired from Ozawa

et al. (2022) and of the hybrid method inspired from Romanet and Ozawa (2021), it

does not have the same meaning for each method (cf. Section 3.1);

• the Newton-Raphson algorithm tolerance εNewton and the maximum number of iter-

ations of Newton-Raphson algorithm maxiterNewton are parameters of the predictor-

corrector method inspired from Lapusta et al. (2000) and of the hybrid method inspired

from Romanet and Ozawa (2021);

• the coefficient βmin, which multiplies the initial time step for the three methods imple-

mented and which influences the minimum time-step value for the predictor-corrector

method inspired from Lapusta et al. (2000).

Convergence tests using the analytical aseismic solution Equation (2.79)

We start by showing the convergence tests carried out using the analytical aseismic solution

Equation (2.79). The problem is initialized with the analytical solution taken at t = 0. The

final simulation time is tfinal = 10 yrs. For each time-stepping method, we define the relative
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L2-norm error in space on each interface unknown at the final time step as

ε
tfinal
δ

=
∥δapp(·, tfinal)−δex(·, tfinal)∥L2

∥δex(·, tfinal)∥L2
, εtfinal

V =
∥Vapp(·, tfinal)−Vex(·, tfinal)∥L2

∥Vex(·, tfinal)∥L2
,

ε
tfinal
τ =

∥τapp(·, tfinal)−τex(·, tfinal)∥L2

∥τex(·, tfinal)∥L2
, εtfinal

θ
=

∥θapp(·, tfinal)−θex(·, tfinal)∥L2

∥θex(·, tfinal)∥L2
,

(2.86)

where δapp(·, tfinal), Vapp(·, tfinal), τapp(·, tfinal), and θapp(·, tfinal) correspond to the slip δ, the

slip-rate V , the shear-stress τ and the state-variable θ, computed numerically at the final

time step, and δex(·, tfinal), Vex(·, tfinal), τex(·, tfinal), and θex(·, tfinal) are their analytical values at

the final time step. The L2-norm is defined in the same way as for Equation (2.81). This error

quantifies the accumulated error during an aseismic phase.

In order to present more compact results, we concentrate on results obtained for the

H-BEM as it is the most promising method for more complex problems (i.e. accounting

for multi-physics couplings and geometrical complexities). We fixed the parameters for the

space discretization in this study (see Table 2.9).

Parameters Lb/∆z Nrep Nleaf η εACA

H-BEM 6 1 100 3 10−5

Table 2.9 • Space discretization parameters for the convergence tests on the different time-

stepping methods using the analytical aseismic solution Equation (2.79).

Predictor-corrector time-stepping method. Table 2.10 gives the values of the relative final

L2-norm error on the slip δ, the slip-rate V , the shear-stress τ and the state variable θ with

respect to the tolerance of the Newton-Raphson method εNewton for the predictor-corrector

time-stepping method, using the H-BEM. We do not observe a clear convergence with respect

to εNewton. The error values are in the same order of magnitude, meaning that the method

seems to be quite robust regarding the parameter εNewton for this kind of steady state cases.

Also, the errors reached are larger than those obtained with explicit and hybrid methods below.

This can be linked to the fact that slip-rate values found as an output of the Newton-Raphson

algorithm were local minima of the nonlinear friction law that achieved the tolerance of the

Newton-Raphson method, which also limits the convergence of the prediction-correction

method.

The parameter βmin which multiplies the initial time-step and limits the minimum time-

step at each iteration does not have any influence here as the minimum time-step is never

reached during the aseismic phase. We chose βmin = 0.12 for each time-stepping method.

Also, the maximum number of iterations of the Newton-Raphson algorithm maxiterNewton

is chosen equal to 40 (for both prediction-correction and hybrid methods), so that it would

not influence the convergence of the simulation. In practice, 3 to 4 iterations of the Newton-

Raphson algorithm are sufficient at each time-step.

Explicit time-stepping method. Figure 2.21 shows the evolution of the relative final L2-norm

error on (a) the slip δ, (b) the slip-rate V , (c) the shear-stress τ, and (d) the state variable θ
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εNewton 10−1 10−2 10−4 10−6 10−8

ε
tfinal
δ

3.843·10−4 3.541·10−4 3.817·10−4 3.817·10−4 3.817·10−4

ε
tfinal
V 1.397·10−2 1.756·10−2 1.730·10−2 1.731·10−2 1.731·10−2

ε
tfinal
τ 4.268·10−4 3.356·10−4 3.312·10−4 3.312·10−4 3.312·10−4

ε
tfinal
θ

1.053·10−3 1.007·10−3 9.957·10−4 9.958·10−4 9.958·10−4

Table 2.10 • Relative final L2-norm error on the slip δ, the slip-rate V , the shear-stress τ and

the state variable θ with respect to the tolerance of the Newton-Raphson method

εNewton for the predictor-corrector time-stepping method, using the H-BEM.

with respect to the solver tolerance εsolver for the explicit time-stepping method using the

H-BEM. For each interface unknown considered, we observe a nice convergence with respect

to εsolver.
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Figure 2.21 • Relative L2-norm error on (a) the slip δ, (b) the slip-rate V , (c) the shear-stress

τ, and (d) the state variable θ with respect to the solver tolerance εsolver for the

explicit time-stepping method using the H-BEM.

Hybrid time-stepping method. Figure 2.22 shows the evolution of the relative final L2-norm

error on (a) the slip δ, (b) the slip-rate V , (c) the shear-stress τ, and (d) the state variable θ
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with respect to the solver tolerance εsolver for different values of the tolerance for the Newton-

Raphson method εNewton for the hybrid time-stepping method using the H-BEM. For each

interface unknown considered, we observe a clear convergence with respect to εsolver when

εNewton Ê 10−4. We notice a non-negligible coupling between the effect of εsolver and εNewton

for the convergence. In particular, if εNewton > εsolver, it limits the convergence rate towards

the analytical solution. The latter interpretation highlights that the error on the slip-rate

obtained by the nonlinear solving of the friction law using Newton-Raphson method limits

the convergence of the other interface unknowns (the slip δ and the state-variable θ notably)

which are calculated thanks to the slip-rate V . Therefore, we must choose εsolver É εNewton.
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Figure 2.22 • Relative final L2-norm error on (a) the slip δ, (b) the slip-rate V , (c) the shear-

stress τ, and (d) the state variable θ with respect to the solver tolerance εsolver

for different values of the tolerance for the Newton-Raphson method εNewton

for the hybrid time-stepping method using the H-BEM.

In this part, we showed the sensitivity of the different time-stepping methods with respect

to parameters that scales the time discretization in the case of an aseismic slip simulation

only. However, these results are not sufficient to study the sensitivity of the time-stepping

methods implemented with respect to their parameters. The analytical solution considered

does not account for rapid variations in the interface unknowns magnitude linked to the

occurrence of a seismic event. Thus, in the second part, we want to carry out sensitivity tests

on a more realistic seismic cycle simulation.
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4. Convergence assessment

Comparison of seismic cycle simulations with results provided by Pierre Romanet (per-
sonal communication)

As seismic cycle problems do not admit analytical solution, we first propose a comparison

between results provided by Pierre Romanet for the in-plane strain configuration of a planar

fault under rate-and-state friction embedded in a linear, elastic, isotropic infinite medium as

represented in Figure 2.1 and our results. We use the three time-stepping methods imple-

mented. The problem is initialized so that a seismic event would be triggered at initialization

(see Equation (2.85)). One difficulty is that seismic cycle simulations are very sensitive to a

tiny change in initial condition. Here, as our implementation of the space discretization of

the fault is different from Romanet’s, which leads to a small change in the initialization of the

slip-rate (the only interface unknown that is not uniform in space at initialization). The error

is

εt=0
V =

∥Vapp(z,0)−VRomanet(z,0)∥
∥VRomanet(z,0)∥ ≈ 3.19 ·10−5. (2.87)

Due to this small discrepancy, the adaptive time-stepping method incorporating S-BEM

used by Romanet and our different time-stepping methods do not calculate the unknowns at

the same time-steps. This can also lead to a shift in time from one result compared to the

other, which makes the comparison of the time evolutions of the interface unknowns almost

impossible. Hence, we choose the following criterions for the comparison:

• the time at which the slip-rate V first exceeds 1 m/s for each seismic event

• the spatial evolution of the interface unknowns at the time at which the slip-rate V

first exceeds 1 m/s for each seismic event (we neglect the small difference in the space

discretization between Romanet’s results and ours).

Another difficulty of this study, is that the different adaptive time-step methods implemented

do not depend on the same parameters.

Tables 2.11 and 2.12 give the simulation parameters used for this comparison study.

The results provided by Pierre Romanet were obtained using the S-BEM and the hybrid

time-stepping method. Thus, we fixed the same parameters for the S-BEM and the hybrid

time-stepping method, and we fixed parameters to obtain similar results for the standard

BEM, the H-BEM and for the prediction-correction and the explicit time-stepping methods.

The final simulation time is tfinal = 34 yrs, which allows to observe 3 seismic events. The time

period of each inter-seismic phase is in the order of 16,9 yrs.

Parameters Lb/∆z Nrep Nleaf η εACA

standard BEM 6 1 / / /

H-BEM 6 1 100 3 10−5

S-BEM 6 9 / / /

Table 2.11 • Space discretization parameters for the comparison study between our results

and the results provided by Pierre Romanet (personal communication) on a

seismic cycle simulation.
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Parameters βmin εNewton maxiterNewton εsolver

Prediction-correction 0.12 10−8 40 /

Explicit method 0.12 / / 10−16

Hybrid method 0.12 10−8 40 10−6

Table 2.12 • Time discretization parameters for the comparison study between our results

and the results provided by Pierre Romanet (personal communication) on a

seismic cycle simulation.

Table 2.13 gives the absolute and relative errors, denoted EtV >1 m/s and εtV >1 m/s respectively,

on the time at which the slip-rate V first exceeds 1m/s compared to Romanet’s results for

each seismic event. The absolute error is given in seconds for the first seismic event, and in

years for the second and the third seismic event. The absolute errors increase with respect to

time but remain acceptable relatively to Romanet’s results.

Seismic event index 1 2 3

Time stepping method Spatial method EtV >1 m/s (s) εtV >1 m/s EtV >1 m/s (yrs) εtV >1 m/s EtV >1 m/s (yrs) εtV >1 m/s

Prediction-correction

BEM 1.82·10−3 9.04·10−4 3.54·10−1 2.08·10−2 7.07·10−1 2.08·10−2

H-BEM 1.82·10−3 9.04·10−4 3.54·10−1 2.08·10−2 7.08·10−1 2.08·10−2

S-BEM 1.83·10−4 9.10·10−5 3.43·10−1 2.02·10−2 6.11·10−1 1.80·10−2

Explicit

BEM 2.77·10−3 1.38·10−3 3.24·10−1 1.91·10−2 6.48·10−1 1.91·10−2

H-BEM 2.76·10−3 1.37·10−3 3.24·10−1 1.91·10−2 6.47·10−1 1.91·10−2

S-BEM 9.25·10−4 4.60·10−4 2.60·10−1 1.53·10−2 5.20·10−1 1.53·10−2

Hybrid

BEM 3.28·10−3 1.63·10−3 3.31·10−1 1.95·10−2 6.61·10−1 1.95·10−2

H-BEM 3.28·10−3 1.63·10−3 3.31·10−1 1.95·10−2 6.61·10−1 1.95·10−2

S-BEM 1.44·10−3 7.18·10−4 2.67·10−1 1.57·10−2 5.33·10−1 1.57·10−2

Table 2.13 • Errors on time at which V > 1 m/s for each seismic event.

Table 2.14 gives the relative L2-norm errors on the interface unknowns (the slip rate

V , the quasi-static shear stress change τqs and the state variable θ) at time at which the

slip-rate V first exceeds 1 m/s for each seismic event. Our values of the slip-rate V , the quasi-

static shear stress change τqs , and the state-variable θ obtained with each time-stepping

method implemented using the standard BEM, the H-BEM or the S-BEM, are compared to

Romanet’s values. The corresponding relative errors are denoted εtV >1 m/s
V , εtV >1 m/s

τqs and εtV >1 m/s
θ

respectively. Error values achieved on each interface unknown with each method show good

agreement between our results and Romanet’s, except for the prediction-correction method

with S-BEM. It may be related to the fact that the time step value is limited by a minimum

value at each iteration, which limits the convergence in this case. This can also be linked to

the fact that slip-rate values found as an output of the Newton-Raphson algorithm is a local

minimum of the nonlinear friction law that achieve the tolerance of the Newton-Raphson

method, which also limits the convergence of the prediction-correction method. We also

draw attention on the fact that adding a rate-strengthening zone at the extremities of the

fault width could help for more numerically stable results.

The different error values obtained with the different spatial and time-stepping methods

implemented emphasize that the reproducibility of seismic cycle simulations is challenging,
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Seismic event index 1 2 3

Time stepping method Spatial method ε
tV >1 m/s
V ε

tV >1 m/s
τqs ε

tV >1 m/s
θ

ε
tV >1 m/s
V ε

tV >1 m/s
τqs ε

tV >1 m/s
θ

ε
tV >1 m/s
V ε

tV >1 m/s
τqs ε

tV >1 m/s
θ

Prediction-correction

BEM 1.12·10−2 1.04·10−2 9.37·10−4 5.19·10−2 7.06·10−2 8.89·10−2 5.14·10−2 7.36·10−2 8.86·10−2

H-BEM 1.12·10−2 1.04·10−2 9.37·10−4 1.19·10−1 2.15·10−1 8.89·10−2 9.36·10−2 1.54·10−1 8.88·10−2

S-BEM 1.28·10−3 1.13·10−3 7.00·10−5 1.77 1.86 1.21 1.58 1.65 9.62·10−1

Explicit

BEM 1.28·10−2 1.23·10−2 1.10·10−3 2.81·10−2 4.89·10−2 2.81·10−2 2.81·10−2 4.92·10−2 2.80·10−2

H-BEM 1.28·10−2 1.23·10−2 1.09·10−3 6.45·10−2 1.15·10−1 2.80·10−2 6.73·10−2 1.20·10−1 2.84·10−2

S-BEM 9.28·10−3 8.69·10−3 6.02·10−4 2.60·10−2 4.73·10−2 2.68·10−2 2.64·10−2 4.75·10−2 2.68·10−2

Hybrid

BEM 1.15·10−2 1.07·10−2 9.61·10−4 2.33·10−2 4.19·10−2 1.81·10−2 2.38·10−2 4.13·10−2 1.80·10−2

H-BEM 1.15·10−2 1.06·10−2 9.56·10−4 6.47·10−2 1.17·10−1 1.81·10−2 6.84·10−2 1.22·10−1 1.80·10−2

S-BEM 7.72·10−3 6.99·10−3 4.54·10−4 1.90·10−2 3.69·10−2 1.51·10−2 2.08·10−2 3.51·10−2 1.51·10−2

Table 2.14 • Relative L2-norm error on each interface unknown, for each seismic event.

which reinforces our interest in this sensitivity study.

Convergence tests with respect to the time discretization parameters for seismic cycle
simulations

After a first comparison with simulation results provided by Pierre Romanet, we “build” a

reference solution. We propose an overkill solution by simulating the in-plane problem

previously considered for the comparison study, with the hybrid time-stepping method

inspired by Romanet and Ozawa (2021), and very refined values of the parameters εsolver and

εNewton that scales the time discretization. Among the methods implemented, the hybrid

method is the most adequate method to incorporate fully-dynamic effects and to perform

accurate simulations. We use the standard-BEM for the overkill simulation. We show the

convergence of our results towards the reference refined solution. The parameters used to

simulate the overkill case are given in Tables 2.15 and 2.16.

Parameters Lb/∆z Nrep Nleaf η εACA

standard BEM 6 1 / / /

Table 2.15 • Space discretization parameters for the overkill seismic cycle simulation.

Parameters βmin εNewton maxiterNewton εsolver

Hybrid method 0.12 10−12 40 10−10

Table 2.16 • Time discretization parameters for the overkill seismic cycle simulation.

Figure 2.23 represents the relative error in time at which the slip-rate V first exceeds

1 m/s for the first and the second seismic events with respect to the tolerance εNewton for

different values of the coefficient βmin for the prediction-correction method. We observe a

clear convergence of the time values, and the results seem to be robust with respect to the

value of βmin.

Figure 2.24 represents the relative L2-norm error on the different interface unknowns at

time at which the slip-rate V first exceeds 1 m/s for the first seismic event with respect to

the tolerance εNewton for different values of the coefficient βmin for the prediction-correction
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Figure 2.23 • Error in time at which V > 1 m/s for 1st and 2nd seismic event when solved

with prediction-correction method.

time-stepping method, using H-BEM. We observe a clear convergence of the interface un-

known values towards the refined reference, and we observe a non-negligible influence of

the coefficient βmin. The larger the value of βmin, the worst the convergence. βmin = 0.12

seems to be a good compromise, whereas the results diverge for βmin = 0.96 in the sense

that the spatial evolution of the interface unknowns at the time at which V first exceeds 1

m/s is completely different from the reference solution. Nevertheless, Lapusta et al. (2000)

recommend not to decrease too much the value of βmin to ensure convergence. They advise

to change the space step instead.

Figure 2.25 represents the relative L2-norm error as in Figure 2.24, but for the second

seismic event. We observe a clear convergence of the time values, and the results seem to be

robust with respect to the value of βmin.

Figure 2.26 represents the relative error in time at which the slip-rate V first exceeds 1

m/s for the first and the second seismic event with respect to the tolerance εsolver for the

explicit time-stepping method. We observe a clear convergence of the time values towards

the reference solution.

Figure 2.27 represents the relative error in time at which the slip-rate V first exceeds 1

m/s for the first and the second seismic event with respect to the tolerance εsolver for the

explicit time-stepping method, using H-BEM. We observe a clear convergence of the interface

unknown values towards the refined reference.

Figure 2.28 represents the relative error in time at which the slip-rate V first exceeds

1 m/s for the first and the second seismic event with respect to the tolerance εsolver for

different values of the tolerance εNewton for the hybrid time-stepping method, using H-BEM.

We observe a clear convergence of the time values towards the refined reference, and we

notice the influence of εNewton on εsolver. If εNewton > εsolver, this limits the convergence. Error

values are smaller than the one obtained with the prediction-correction and the explicit

time-stepping method as we also used the hybrid time-stepping method to compute the

reference solution.

Figure 2.29 represents the relative L2-norm error on each interface unknown at time at

which the slip-rate V first exceeds 1 m/s for the second seismic event with respect to the
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Figure 2.24 • Relative L2-norm error on each interface unknown, for the 1st seismic event,

when solved with prediction-correction method.

tolerance εsolver for different values of the tolerance εNewton for the hybrid time-stepping

method using H-BEM. We observe a clear convergence of the interface unknown values

towards the refined reference, and we notice the influence of εNewton on εsolver. If εNewton >
εsolver, this limits the convergence. To sum up, for given values of εsolver, εNewton (such that

εsolver É εNewton), and βmin, the error in time at which the slip rate first exceeds 1 m/s during

a seismic event cumulates at each new seismic cycle.

5 Numerical test on a seismic cycle benchmark

Finally, we compared our results to results approved by the seismic cycles’ community. We

take as reference results the results provided by Junle Jiang for the first benchmark problem

BP1 proposed in the framework of the SEAS benchmark/validation exercise project (Erickson

et al., 2020a). The benchmark description is given in Erickson and Jiang (2018). We consider

a planar fault embedded in a homogeneous, linear, elastic, isotropic half-space with a free

surface. The fault is governed by rate-and-state friction down to the depth W f and creeps at

an imposed constant rate Vpl down to the infinite depth. Anti-plane motion is considered

and the quasi-dynamic approximation is used. Tables 2.17 to 2.19 give parameters used for

this case. 36 seismic cycles are simulated over 3 000 years. Jiang’s results are obtained using a
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Figure 2.25 • Relative L2-norm error on each interface unknown, for the 2nd seismic event,

when solved with prediction-correction method.
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Figure 2.26 • Error in time at which V > 1 m/s for 1st and 2nd seismic event when solved

with explicit method.

prediction-correction method using S-BEM inspired by Lapusta et al. (2000). However, apart

from the space step and the size of the discretized domain ∆z = 25 m, Nrep = 4, we do not

have any information on the parameters used by Jiang. Figure 2.31 shows the time evolution

of the interface unknowns (slip, slip rate, shear stress, state variable) at 12.5 km at depth (close
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Figure 2.27 • Relative L2-norm error on each interface unknown, for the 2nd seismic event,

when solved with explicit method.
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Figure 2.28 • Error in time at which V > 1 m/s for 1st and 2nd seismic event when solved

with hybrid method.

to the nucleation zone) obtained with the three developed time integration method, and

using H-BEM. Our results show good agreement with Jiang’s results for the slip, the slip-rate

and the state variable. We observe a small difference in the amplitude of the shear stress. It

may be due to the fact that the space discretization parameters chosen by Jiang does not
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Figure 2.29 • Relative L2-norm error on each interface unknown, for the 2nd seismic event,

when solved with hybrid method.

lead to the same precision as ours for the calculation of the shear stress. In particular, we

had insisted on the importance of a large enough size of the discretized domain when using

S-BEM in Section 4.3. We also notice a small progressive shift in time between our results and

Jiang’s. Figure 2.32 quantifies the shift in time observed by giving (a) the error on the starting

time of each seismic instability, (b) the duration of each interseismic period. Closer results to

Jiang’s are obtained using the explicit time integration method inspired by Ozawa et al. (2022),

and both prediction-correction and hybrid method give really similar results. The explicit

method uses a 5th order time discretization scheme, whereas both prediction-correction and

hybrid methods use a 2nd order time discretization scheme, which can explain the differences

observed. This can either be explained by:

• a coupling effects between the choice of the space discretization and of the time

discretization as shown in Figure 2.20;

• the choice of different time discretization parameters in our simulation and Jiang’s

which can lead to a cumulating shift in time;

• a small discrepancy in the initialization which cumulates in time as explained in Sec-

tion 4.4 in the case of the comparison between our seismic cycle results and results

provided by Pierre Romanet.
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The previous sensitivity study made us aware of all the potential causes of the small differ-

ences between our results and Jiang’s.

Parameter Definition Value, Unit

µ Shear modulus ≃ 32 GPa

cs Shear wave velocity 3464 m/s

σn Effective normal stress at the fault interface 50 MPa

a(z) Rate and state parameter Figure 2.30

b(z) Rate and state parameter Figure 2.30

Dc (z) Characteristic slip distance 8 mm

Vpl Imposed slip rate out of rate-and-state zone 10−9 m/s

V0 Reference slip rate 10−6 m/s

f0 Reference friction coefficient 0.6

W f Width of the rate-and-state zone 40 km

Table 2.17 • Parameter values used for BP1 SEAS benchmark simulation.
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Figure 2.30 • Rate-and-state parameters with respect to depth.

Parameters Lb/∆z Nrep Nleaf η εACA

H-BEM 6 1 100 3 10−5

Table 2.18 • Space discretization parameters for the benchmark problem 1 (BP1 SEAS).

Another cross-validation is performed on the benchmark problem BP6 from SEAS bench-

mark / validation exercises. This benchmark incorporates the effect of fluid injection (at

constant rate, followed by along fault fluid diffusion) on fault slip in the form of a one-way cou-

pling model. In practice, an elastodynamic equation is combined with a diffusion equation

satisfied by the fluid pressure. This study is given in Appendix B.
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Parameters βmin εNewton maxiterNewton εsolver

Prediction-correction 0.25 10−8 40 /

Explicit method 0.12 / / 10−12

Hybrid method 0.12 10−6 40 10−5

Table 2.19 • Time discretization parameters for the benchmark problem 1 seismic cycle

simulation.
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Figure 2.31 • Time evolution of (a) slip δ, (b) slip rate V , (c) shear stress τ, (d) state variable θ,

at z = 12.5 km, close to nucleation region.

6 Summary of the qualities and drawbacks of space and time

discretization/integration methods

Here we summarize and conclude on the advantages and limitations of the different space

and time discretization/integration methods implemented in the present work. We choose

the most appropriate methods to incorporate fluid injection effects in the vicinity of a fault at

the timescale of a seismic motion, and increase the problem complexity.

Space discretization methods

In this work, we implemented three space discretization methods based on Boundary Ele-

ment Methods (BEMs).
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Figure 2.32 • (a) Error on the starting time of each seismic instability, (b) Duration of each

interseismic period.

Standard Boundary Element Method (Standard BEM). Standard BEM allows to consider

complex fault geometries. It relies on the calculation (once if the geometry is fixed) of a fully-

populated BEM matrix (O (N 2)), and requires a matrix-vector product (O (N 2)) to compute

the shear stress induced by fault slip at each iteration. This method is expensive for large

problems as shown in Figures 2.17 and 2.19. We implemented two accelerated BEM methods

to tackle this drawback.

Spectral Boundary Element Method (S-BEM). S-BEM is largely used in the seismic cycle

community. It is easy to implement and particularly efficient for planar faults (O (N log(N ))).

However, several limitations are inherent to the method:

• The fault has to be planar (so that the BIE can be written as a scalar equation);

• Periodic repetitions of the domain are required1;

• A regular mesh of the fault is required.

Hierarchical matrices based Fast Boundary Element Methods (H-BEM). To efficiently con-

sider complex fault geometries, accelerated BEM based on Hierarchical matrices can be used.

This method gather the advantages of standard BEM and enables a data-sparse approxima-

tion of the dense BEM matrix:

• Adapted to non-planar fault configurations;

• No need for spatial replications of the domain;

1S-BEM method without spatial replications introduced by Cochard and Rice (1997) can be used and only

requires a domain twice as long as the effective fault. However, it requires more elaborate calculations of the

convolution kernel (once if geometry is fixed) in the Fourier domain and induces approximation of the Fourier

transform of the kernel.
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• Problem-independent algebraic method;

• Data-sparse approximation of the BEM matrix (O (N log(N )), only once if the geometry

is fixed), and accelerated matrix-vector product to compute shear stress induced by

slip at each iteration in time (O (N log(N ))).

The approximation of the calculation of the shear stress induced by slip because of data-

sparse approximation of the BEM matrix leads to low error on the shear stress which do

not prevent from convergence for refined enough space discretization. This is shown in

Figures 2.16b and 2.20a to 2.20d. As a conclusion, H-BEM is the most appropriate space

discretization method to consider more complex problems.

Time discretization/integration methods

In this work, we implemented three adaptive time stepping (explicit and hybrid implicit/ex-

plicit) methods.

Prediction-correction method. Prediction-correction method is largely used in the earth-

quake cycles community. This method is easy to implement and can handle dynamic cases

without changing the code structure. However, its main drawback relies on the non-optimal

choice of the time step at each iteration. The latter is based on an heuristic, which consist in

a CFL condition deduced from the combination of the LSA of a reduced order spring-block

model with the discretization of its motion equation with a constant time-step. This non-

optimal time step choice can induce cumulative error in time and limits convergence as

shown in Table 2.10 for aseismic slip simulation and in Figures 2.23 to 2.25 for seismic cycle

simulations.

Explicit RK method. Explicit RK methods are also largely considered in the earthquake

cycles community. These methods are easy to implement and are available in numerous

libraries. The choice of the time step at each iteration is based on a convergence criterion for

the calculation of the slip and the state variable with a given solver tolerance. For sufficiently

refined values of the solver tolerance, the explicit RK45 method implemented allows for

accurate calculations of the interface unknowns as shown in Figure 2.21 for aseismic slip

simulation, and Figures 2.26 and 2.27 for seismic cycle simulations. Explicit RK methods are

particularly efficient and accurate for quasi-dynamic cases. However, such methods cannot

handle dynamic cases as equations cannot be written as an ODE system in this case.

Hybrid method. The hybrid method combines the advantages of both prediction-correction

and explicit RK methods. For refined enough values of the solver tolerance for the choice

of the time step, and of the tolerance of the non-linear solving required at each prediction

and correction steps (chosen to be smaller than the solver tolerance in order not to limit the

convergence), this method allows for accurate calculations of the interface unknowns. This is

shown in Figure 2.22 for aseismic slip simulations and in Figures 2.28 and 2.29 for seismic cy-

cle simulations. As a conclusion, the hybrid method is chosen in the present work as the most

appropriate time discretization/integration method to consider more complex problem and
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incorporate fluid injection effects in the vicinity of a fault at the timescale of a seismic motion.

In this part, we developed numerical tools to simulate seismic cycles. We conducted

an in-depth sensitivity study with respect to the simulation parameters at stake to assist in

the accurate and efficient use of the methods implemented. In the following part, we are

interested in studying pore fluid effects on a fault during the earthquake instability. Thus, we

want to study one instability, i.e. one seismic event.
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In this chapter, we aim at modeling fluid effects on unstable frictional slip, in the case

where the fluid is injected at a given distance from the fault. Now that we have developed

the numerical tools incorporating Fast BEMs for standard seismic cycles problems, we want

to extend their capabilities to the simulation of fluid-injection effects on unstable frictional

slip. To overcome the inherent difficulties of the numerical integration of the complete

poroelastodynamic equations reformulated as boundary integral equations, we want to

simplify equations rigorously. Thus, we first need to formally evaluate the predominant fluid-

injection effects in the vicinity of a fault, depending on the characteristic time Tc (seismic
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timescale or aseismic timescale). Then, we will discuss the validity range of the simplified

model chosen as well as the simplified models used in the literature. This will enable us to

implement efficiently a simplified model taking into account hydro-mechanical couplings.

1 Fluid-injection in simplified fault-mechanics problem

Figure 3.1 represents the typical fault mechanics problem with fluid-injection that we want

to consider. This goal problem is very similar to the “dry” (without fluid-injection) config-

urations from Figure 2.1 in Section 1 of Chapter 2, the difference being that the medium

containing the discontinuity is poroelastic and a fluid source is taken into account. It changes

both the balance momentum equation and the interface and initial conditions. The configu-

rations represented in Figure 3.1 consist in a planar fault (Γ) embedded in a linear, isotropic,

poroelastic half-space (Ω). The fault is assumed to be infinitely long along the y-direction.

The fault interface is governed by rate-and-state friction (to depth W f ) and a creep rate Vpl is

imposed below the rate-and-state zone. Either anti-plane (Figure 3.1a, mode III) or in-plane

(Figure 3.1b, mode II) motion with a no-opening condition of the fault is considered. Fluid is

injected through an impermeable injection well. As a starting point, to incorporate hydro-

mechanical couplings in the two-dimensional initial strike-slip configuration, we consider a

fluid-injection point source in a 2D borehole (which corresponds to a fluid line source in 3D)

at a given distance D (≈ 5 km for instance) from the fault. Even if the assumption for the fluid

injection is unrealistic, it is a first proposition to take into account the fluid-effect. Note that

a different problem is considered by Dunham and Rice (2008) and Heimisson et al. (2022): a

2D fluid injection point source at the fault plane.

(a) (b)

Figure 3.1 • Strike-slip fault configurations in (a) mode III or (b) mode II with a no-opening

condition on the fault. Fluid is injected through an impermeable borehole at a

given distance D from the fault Γ embedded in a poroelastic half-spaceΩ.

In the poroelastic volumeΩ\Γ, the u - p (2D Laplace domain solid displacement-pore

fluid pressure) formulation of the balance momentum equation (1.52) (see Section 4.3 of

Chapter 1) is satisfied, but with a fluid source term. Modeling a fluid-injection source term

consists in incorporating a rate of fluid supply per unit volume in the continuity equation for

the fluid, which writes in 2D

ζ̇+qi ,i = γ(t )δD (xi −xi0 ), (3.1)

where ζ=αui ,i +Φ2p/R is the variation in fluid volume per unit reference volume, qi = ẇi
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is the fluid flux vector (time derivative of the seepage displacement wi ), and the index i

corresponds to x or z coordinates.

Combining the continuity equation (mass balance) (3.1) with the Laplace transform of

the “dynamic” Darcy’s law recalled here.

ŵi =−β(s)/(s2ρ f )(p̂,i + s2ρ f ûi − f f
i ),

we obtain the complete u−p formulation of the poroelastodynamic balance momentum

equations

Gûi , j j + (λ+G)û j ,i j − (α−β(s))p̂,i − s2(ρ−β(s)ρ f )ûi =β(s) f̂ f
i − F̂i ,

β(s)

sρ f
p̂,i i −

Φ2s

R
p̂ − (α−β(s))sûi ,i =

β(s)

sρ f
f̂ f

i ,i −γ(t )δD (xi −xi0 ).
(3.2)

ui is the i − th component of the solid displacement and p is the pore fluid pressure and

the indices i , j correspond to x or z coordinates. f f
i is the body force per unit volume in the

fluid and Fi = (1−Φ) f s
i +Φ f f

i denotes the bulk body forces per unit volume, with f s
i the body

force per unit volume in the solid skeleton. In the following parts we consider that from the

initial values of displacement u and pore pressure p to their final values, the body forces in

the solid skeleton f s
i or in the fluid f f

i do not vary. Therefore, taking the variations between

the final and the initial u−p values as unknowns eliminates the body forces from (3.2).

Rate-and-state friction is assumed on the fault interface Γ down to depth W f such that,

the only non-vanishing shear-stress component on the fault plane τ(0±, z, t ) writes

τ(0±, z, t ) = (σn −p(0, z, t ))µ(V (z, t ),Ψ(z, t )),

with µ(V (z, t ),Ψ(z, t )) = a sinh

(
V

2VΨ

)
, VΨ =V0 exp

(
−
µ0 +Ψ

a

)
, andΨ= b ln

(
θ

θ0

)
,

(3.3)

where (σn −p(0, z, t )) corresponds to Terzaghi’s effective normal stress and µ(V (z, t ),Ψ(z, t ))

is the regularized rate-and-state friction coefficient from Equation (1.37). The fault creeps at

a given slip-rate Vpl below the rate-and-state zone

V (z, t ) =Vpl , ∀z ÊW f (3.4)

We consider a no-opening condition on the fault such that the normal component of the

displacement discontinuity is equal to 0:

δ(z, t ) ·ex = 0. (3.5)

The traction components are continuous at the interface

σ(0+, z, t )ex =σ(0−, z, t )(−ex). (3.6)

The momentum balance equations and the interface conditions are completed by bound-

ary conditions. Notably, radiation conditions must be taken into account at infinity (as

explained in Section 2.4 of Chapter 1) and a free surface condition is required at z = 0

σez = 0, on ∂Ω. (3.7)

Finally, initial conditions are required for the unknown field quantities.
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Chapter 3. Modeling fluid-injection effects in the vicinity of a fault

2 Reduction of the complete poroelastodynamic equations

The fault dynamics can be determined by solving equations resulting from the combination

of the poroelastodynamic equations (3.2) with the friction law at the fault interface (3.3)

as well as boundary and initial conditions. As we use BEMs, we first need to reformulate

poroelastodynamic equations as boundary integral equations at the fault interface. The

boundary integral equation method solved with the displacement discontinuity method

(DDM) can be used in the case of fault mechanics problems incorporating hydro-mechanical

couplings. This allows to reformulate the poroelastodynamic balance momentum equation

(3.2) satisfied inΩ into two boundary integral equations on the fault interface (Detournay &

Cheng, 1993; Cheng & Detournay, 1998). Although the efficiency of the boundary integral

equation methods for “dry” fault mechanics problems is largely agreed, the incorporation of

hydro-mechanical couplings implies two main difficulties:

• Two fundamental solutions must be used, and these fundamental solutions are diffi-

cult to obtain in closed form. In the case of the complete linear poroelastodynamic

equations, time-domain Green’s functions for fully-dynamic poroelasticity still remain

unknown. Such solutions have been derived in the frequency domain though. Manolis

and Beskos (1989, 1990) derived fundamental solutions for instantaneous point forces

acting on both solid and fluid phases in the Laplace domain by the potential method.

Chen (1994b, 1994a) determined the fundamental solutions for a unit force and a unit

fluid source (point force and source in 3D, line force and source in 2D). Zheng et al.

(2013) (respectively Senjuntichai and Rajapakse (1994)) determined the 3D (respec-

tively 2D) fundamental solutions due to a time-harmonic concentrated point force and

fluid source in the frequency domain in a (semi-)infinite space. Cheng and Detournay

(1998) gave time-domain fundamental solutions for quasi-static poroelasticity only.

However, going back to time-domain solution cannot be done analytically.

• Time-domain boundary integral equations are required, and need to be incorporated

in existing seismic cycles solving methods. The first point implies that an inverse

Laplace transform (respectively inverse Fourier transform in the case of time-harmonic

fundamental solutions) of the fundamental solutions must be performed numerically.

This step is difficult numerically as the time-integration of seismic cycles problems is

based on adaptive time stepping algorithms. Constant time step should be used for

the inverse transform, but this choice would bring errors which could prevent from

obtaining interpretable seismic cycles simulations results.

Hence, before considering the fault mechanic problem with fluid injection detailed in Sec-

tion 1, we must concentrate on the reduction of poroelastodynamic equations in order to

derive a simplified model that would be easier to integrate in our numerical tools. This will

enable us to derive Green’s functions adapted to our problem, and avoid the mentioned

difficulties for a case incorporating hydro-mechanical couplings. The first step is to simplify

rigorously poroelastodynamic equations in order to take into account predominant poroe-

lastodynamic effects. In our case, we want to evaluate the predominant effects of injecting

fluid at a given distance from a fault on the frictional behavior of this same fault on the
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timescale of a seismic instability. At the timescale of a seismic instability, we suspect that fluid

diffusion is negligible. To assess the latter assumption, we perform a dimensional analysis of

1D poroelastodynamic equations in Section 4.1 (for the sake of simplicity), then extend to 2D

with fluid source in Section 4.3 of Section 4.

3 Existing simplified models for fluid effects on fault slip

In the literature, simplified versions of the poroelastodynamic equations (3.2) have been

considered. One-way coupling models have been largely used without preliminary dimen-

sional analysis developments to justify their use. They usually consist in an elastodynamic

equation (under quasi-dynamic approximation) perturbed by the pore-fluid gradient, plus

a diffusion equation which governs the evolution of the pore-fluid. This one-way coupling

approximation neglects both inertial effects for the fluid and the effect of the solid dilation

rate on fluid diffusion. Such simplified equations have been used to model fluid-effects on

fault slip at the timescale of an aseismic motion. Also, the fluid-injection source term appears

only in the interface condition as fluid-injection is considered at the fault interface. Two

kinds of studies which considered this simplified model can be distinguished.

Some studies considered fluid-injection in the Earth’s crust as a trigger for aseismic or

seismic fault slip. They focused on consequences of fluid injection on fault slip and nucleation

of earthquakes. Their objectives consisted in understanding and explaining the mechanisms

behind the seismic or aseismic slip induced by fluid injection. A major part of the studies

modeling fluid effects on fault slip using a one-way coupling model came after in-situ and

laboratory experiments which emphasized direct and indirect effects of fluid diffusion along a

strike-slip fault on fault slip. Experiments conducted at a depth of 282 m below Earth’s surface

in cretaceous limestone of the southeast France sedimentary basin and analyzed by Guglielmi

et al. (2015a) showed that fluid injection could trigger primarily aseismic slip, and induce

earthquake nucleation as a secondary effect. Fluid-injection-induced fault slip experiments

conducted in the laboratory and in-situ by Cappa et al. (2019) allowed identifying three

stages in fluid effects on fault slip. They first revealed that the variation in fluid pressure first

induces accelerating seismic creep and fault opening. Then, a further increase in pore-fluid

pressure promotes rate-strengthening friction associated with aseismic slip. Finally, induced

aseismic slip is likely to induce seismic events as it loads non-pressurized fault patches (such

couplings between slow slip events and large earthquakes have also recently been showed

in subduction zones Maubant et al. (2022)). Corroborating these experimental results, Eyre

et al. (2019), Bhattacharya and Viesca (2019), and Sáez Uribe (2023) have shown numerically

that fluid diffusion was not directly responsible for the observation of repeated fault slip,

but rather was a consequence of stress transfer caused by aseismic slip induced by fluid

injection. Viesca (2021) provided a benchmark for numerical solving the 2D boundary value

problem of fluid-injection induced fault slip with fluid diffusion along the fault interface. He

identified two asymptotic regimes either emphasizing fault-slip outpacing fluid-diffusion in

the case of a critically stressed fault, or predominant fluid diffusion in the case of a marginally

pressurized fault. Both regimes were also identified by Dublanchet (2019).

Conversely to all these studies, we consider fluid-injection at a given distance from the
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fault interface, so that a fluid source term appears in the balance momentum equations (see

(3.2)). Garagash and Germanovich (2012) consider pore-fluid diffusion along fault and at a

distance of it to investigate conditions leading to slip and dynamic rupture nucleation, and

the rupture run-out distance before it is arrested. Here, we intend to determine a suitable

model to study the effect of fluid injected at a distance from the fault at the seismic motion

timescale for which the diffusion equation seem inadequate.

Other works investigated the possibility of fluid-injection in the earth’s crust as an input to

the dynamics of the fault system to mitigate the seismic risk and drive aseismically the system

towards a lower-energy equilibrium state. Their aim is to release the energy accumulated

aseismically. These strategies have been the subject of theoretical studies based on robust

control theory (Stefanou (2019) for the spring-slider model, extension to the Generalized-

Burridge-Knopoff model and to seismic fault models Stefanou and Tzortzopoulos (2022),

Gutierrez-Oribio et al. (2023), and Gutiérrez-Oribio et al. (2024)) and experimental tests

in the laboratory (Tzortzopoulos (2021), Tzortzopoulos et al. (2021), and Gutiérrez-Oribio

et al. (2023)). These studies also used a one-way coupling model to test their earthquake

prevention strategies numerically.

Note that some studies considered two-way coupling models, but they also focused on

fluid-effects at the timescale of an aseismic motion. Segall (1989) used quasi-static poroe-

lastodynamic equations to predict surface deformation and earthquakes locations in good

agreement with measurements at Wilmington oil field near Long Beach, California (human-

induced earthquakes). He explained that large pore-pressure increase had a destabilizing

effect while large pore-pressure decrease were stabilizing. Heimisson et al. (2019), Heimis-

son et al. (2021), and Heimisson et al. (2022) studied fluid-injection induced fault slip with

fluid-diffusion at the fault interface. He took into account a two-way coupling model as he in-

corporated the effect of the solid dilation rate on fluid diffusion. Marguin and Simpson (2023,

2024) consider a 2D plane strain configuration where fluid is injected at the base of a thrust

fault. He studies the coupling between fluid injection, porous flow, thermal pressurization

and strong variations in permeability at the timescale of seismic cycles.

Conversely to all the studies previously mentioned in this section, we want to study fluid

effects on fault slip on the timescale of a seismic motion for which the usually used one-way

coupling model is not adequate. To this aim, the most generic model would correspond to

the complete poroelastodynamic equations (3.2). Nevertheless, we highlighted the difficulty

to derive time domain fundamental solutions in closed form and the inherent numerical

difficulties in Section 2. Thus, before solving our frictional slip problem, we need to reduce

the complete poroelastodynamic equations so that their reformulation as boundary integral

equations could be more easily integrated numerically. In order to rigorously reduce complete

poroelastodynamic equations in agreement with our assumptions, we conduct a dimensional

analysis.

×Remark 3.1. Note that Segall and Rice (1995) considered a variation in the porosity

related to slip-rate to model the link between dilatancy (increasing compliance of the

rock) and the mitigation of the instability. Ciardo and Lecampion (2019) considered the

stabilizing or at least delayed effects of dilatancy associated with fault slip on (aseismic
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to seismic) frictional slip due to fluid injection. They also modeled a variation in fault

permeability and showed that it had no influence on the stabilizing value of dilatancy.

In the present work, as a starting point, we neither take into account variations in the

permeability nor porosity, nor dilatancy.

4 Scaling poroelastodynamic equations

4.1 Scaling 1D poroelastodynamic equations without source

In this part, we formally assess the predominant fluid effect during an earthquake and

during a seismic cycle. The following developments allow to derive the appropriate simplified

equations in our case. This step is key to incorporate hydro-mechanical couplings in frictional

slip simulations efficiently.

For the sake of simplicity, we first consider a one-dimensional poroelastodynamic prob-

lem. Equations (3.8a) and (3.8b) give the generic u−p formulation of the poroelastodynamic

equations (see Schanz (2009) for example). As detailed in Section 4.3 of Chapter 1, this

formulation is in the Laplace domain. Einstein’s convention for summation is used here. In

1D (in the in-plane z-th direction for instance), Equation (3.2) becomes:

Mûz,zz − (α−β(s))p̂,z − (ρ−β(s)ρ f )s2ûz = 0, (3.8a)

β(s)

sρ f
p̂,zz −

Φ2s

R
p̂ − (α−β(s))sûz,z = 0, (3.8b)

where ûz and p̂ are respectively the Laplace transforms of the solid skeleton displacement

component uz and of the pore fluid pressure p. β(s) corresponds to the dimensionless

complex coefficient resulting from a transformation in the Laplace domain of the dynamic

version of the Darcy’s law (1.51). It allows to express the seepage displacement (relative

fluid-solid skeleton displacement wz) as a function of pore-fluid pressure and obtain a u−p

formulation of poroelastodynamic equations. It is given by:

β(s) = sρ f

k

η

(
1+

k

η

(
ρa

Φ
+ρ f

))−1

. (3.9)

It is interesting to take a look at the different terms in equations (3.8a) and (3.8b).

• Mûz,zz −αp̂,z expresses the Laplace transform of the poroelastic stress variation;

• +β(s)
(
p̂,z +ρ f s2ûz

)
corresponds to the Laplace transform of the relative fluid-solid

acceleration, it stands for relative inertial effects for the fluid;

• ρs2ûz is the Laplace transform of the acceleration of the solid;

• +β(s)

(
1

sρ f
p̂,zz + sûz,z

)
corresponds to the Laplace transform of the seepage velocity

gradient. It corresponds to the relative fluid diffusion;
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•
Φ2s

R
p̂ +αsûz,z defines the time-derivative of the undrained pore-pressure, divided by

the coupling modulus R. It couples the variation of excess pore pressure compared

to the equilibrium state with the solid strain variation. Furthermore, it expresses the

fluid-solid coupling in case of an impermeable solid matrix.

Now, the first step of our dimensional analysis consists in introducing scales for the

dimensioned quantities xi , û, p̂, s and ρ. Non-dimensionalized quantities are written with a

bar.

z =W f z, ûz =U ûz , p̂ =Σp̂, s =
1

Tc
s, ρ = ρ f ρ, (3.10)

where:

• the length scale W f corresponds to the fault length;

• U is a characteristic length scale for the solid phase displacement in the z-th direction;

• The characteristic scale for the pore pressure is denoted Σ and expresses as

Σ=
U

W f
M = ϵ0M , with M =λ+2G = K +4/3G , (3.11)

where M is the longitudinal wave modulus, which can be expressed in terms of Lamé

coefficients (λ,G) or using the bulk modulus K and the shear wave modulus G ;

• ϵ0 is a characteristic deformation of the solid;

• ρ and ρ f are respectively the densities of the porous medium and of the pore fluid;

• Tc defines the characteristic timescale of forced motion. It allows to non-dimensionalize

the Laplace variable s and its values may range between the characteristic timescale of

a seismic motion (≈ 1 s) and the characteristic timescale of an aseismic motion (≈ 1

year).

The simplification of the complete poroelastodynamic equations relies on the identifica-

tion of negligible timescales with respect to representative natural periods of the system. We

define the different timescales considered:

• T f expresses a characteristic diffusion timescale at the microscopic pore fluid scale.

T f = ρ f

k

η
, (3.12)

where k is the permeability of the porous medium, and η denotes the dynamic viscosity

of the pore-fluid;

• Tpw corresponds to the characteristic longitudinal wave propagation timescale.

Tpw =
W f

cp
, with cp =

√
M/ρ, (3.13)

where cp defines the longitudinal wave velocity. This timescale is in the same order of

magnitude as the period of a seismic motion;
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• Td defines another diffusion timescale at the macroscopic scale.

Td =
D2

chy
, with chy = Rk/η, (3.14)

where D is the distance between the injection well and the fault, chy is the hydraulic

diffusivity coefficient, and R is a coupling modulus between the fluid and the solid. Td

represents the time for the fluid to diffuse from the injection well to the fault interface,

i.e. to drain through the interconnected pores in the solid matrix of the porous medium.

The different scales are gathered in Table 3.1. From the parameter values given in Table 3.2,

we can deduce the values of the natural characteristic times of the system T f , Tpw , and Td .

Scale Definition Value / Units

W f = z/z Characteristic fault length ≈ 5 km

U = ui /ui Characteristic length scale for the solid displacement in the z-direction m

ϵ0 =U /W f Characteristic strain scale ⪅ 10−3 [ϵ0] = 1

Σ= ϵ0M = p/p Characteristic scale for the pore fluid pressure ⪅ 18 ·106 Pa

Tc Characteristic time between 1 s and 1 year

T f = ρ f k/η Characteristic diffusion timescale (at microscopic pore fluid scale) ≈ 3.3 ·10−4 s

Tpw =W f /cp Characteristic longitudinal wave propagation timescale ≈ 1.7 s

Td = D2/chy Characteristic diffusion timescale from the diffusion equation ≈ 2.5 ·105 s = 70 h

λL = D/W f Characteristic length ratio 1 [λL] = 1

Table 3.1 • Scales introduced for the dimensional analysis of poroelastodynamic equations.

Now that we have introduced all these dimensionless quantities and their associated

scales, we can rewrite (3.8) in a dimensionless form. To simplify the reading, details are

omitted but given in C.2.

ûz,zz −
α−

T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 p̂ ,z −
ρ− T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 1

ρ

T 2
pw

T 2
c

s2ûz = 0, (3.15a)

Tc

Td

λ2
L

Φ2

(
1+ s

T f

Tc

T

Φ

)−1

p̂ ,zz − sp̂ −
α−

T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 R

Φ2M
sûz,z = 0. (3.15b)

where T is the tortuosity.

In (3.15), we identify two non-dimensional timescales ratio, which are in front of poten-

tially negligible terms. The simplifications conducted in the following developments depend

on characteristic time ratios:

ε=̂
T f

Tc
, and ξ=̂

Tpw

Tc
=̂εκ/2, with κ ∈Z. (3.16)

Determining the order of magnitude of these time ratios will allow us to know whether the

corresponding terms in the equations are predominant or negligible. We can assume that

ε ≪ 1 to simplify our dimensionless equations. Indeed, Tc stands for the characteristic

timescale of the forced motion, which ranges between the characteristic timescale of a

seismic motion (≈ 1 s) and the characteristic period of an aseismic motion (≈ 1 yr). We want
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to assess formally that inertial effects are predominant over diffusion effects at the timescale

of an earthquake motion, whereas diffusion effects should be privileged at the timescale

of an aseismic motion. In both cases Tc ≫ T f as the latter corresponds to a microscopic

diffusion timescale, which characterizes the motion of fluid in the pore network. As we do

not know the order of magnitude of the characteristic time ratio ξ, we express it as a power of

ε using the exponent κ. Determining the range of values taken by κ enables determining the

order of magnitude of ξ. Assuming that ε→ 0, we are aware that we loose some solutions of

the complete poroelastodynamic equations (in the case where the terms that are neglected

were singular perturbations, Bender and Orszag (2013)). Nevertheless, this allows to simplify

equations, keeping only the predominant fluid effects, which guaranties a more efficient

incorporation of hydro-mechanical couplings in our numerical tools.

We write equations (3.15a) and (3.15b) in terms of ε and ξ= εκ/2 with the help of Equation

(3.18):

ûz,zz −
α−εs

(
1+ sε

T

Φ

)−1 p̂ ,z −
ρ−εs

(
1+ sε

T

Φ

)−1 1

ρ
εκs2ûz = 0, (3.17a)

ρ
R

Φ2M
ε1−κ

(
1+ sε

T

Φ

)−1

p̂ ,zz − sp̂ −
α−εs

(
1+ sε

T

Φ

)−1 R

Φ2M
sûz,z = 0. (3.17b)

(3.17) corresponds to the non-dimensionalized poroelastodynamic balance momentum

equations for the solid matrix and for the pore-fluid.

In order to evaluate the predominant terms in equations (3.17), we need to determine

the values that can be taken by the superscript κ defined in (3.16). To this aim, the order of

magnitude of the natural periods of the system, T f ,Tpw ,Td allow deriving inequalities which

are useful to determine the range of values of κ.

Td > Tpw > T f and
T f

Td
≪ 1,

Tpw

Td
≪ 1,

Tpw

T f
≫ 1, with T f =

λ2
L

ρ

M

R

T 2
pw

Td
, (3.18)

yielding

Tpw Ê T f ⇔
Tc>0

Tpw

Tc
Ê

T f

Tc
⇔ εκ/2 Ê ε ⇔

0<ε<1
κÉ 2,

which is always true.

In addition, the values reached by κ depend on the characteristic time Tc . If the charac-

teristic time Tc is of the order of the timescale of a seismic motion, we have

Tpw Ê Tc ⇔ εκ/2 Ê 1 = ε0 ⇔
0<ε<1

κÉ 0.

Finally, if the characteristic time Tc is of the order of the characteristic period of an

aseismic motion or of a seismic cycle, we have

if Tpw < Tc ⇔ εκ/2 < 1 = ε0 ⇔
0<ϵ<1

κ> 0.

We distinguish the case where the characteristic time Tc is of the order of the characteristic

timescale of a seismic motion (κÉ 0, our case), from the case where the characteristic time
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Tc is of the order of the characteristic period of an aseismic motion or of a seismic cycle

(0 < κÉ 2, cases majorly considered in the literature) in equations (3.17). This allows to give

simplified models (i) at the timescale of a seismic motion or (ii) at the timescale of an aseismic

motion or a seismic cycle.

We first consider that the period Tc is of the order of the timescale of a seismic motion.

This corresponds to the case where κ= 0 (Tc = Tpw ). Separating terms of the order of ε from

the others, (3.17) becomes

ûz,zz −αp̂ ,z − s2ûz = ε
(
−s

T

Φ
ûz,zz +

(
α

T

Φ
−1

)
sp̂ ,z +

(
T

Φ
−

1

ρ

)
s3ûz

)
(3.19a)

− sp̂ −α
R

Φ2M
sûz,z = ε

(
−ρ

R

Φ2M
p̂ ,zz +

T

Φ
s2p̂ +

(
α

T

Φ
−1

)
R

Φ2M
s2ûz,z

)
(3.19b)

Assuming ε→ 0 to keep only the predominant poroelastodynamic terms, (3.19) write

ûz,zz −αp̂ ,z − s2ûz = 0, (3.20a)

sp̂ +α
R

Φ2M
sûz,z = 0. (3.20b)

The characteristic time Tc → Tpw . Tpw is the compression wave timescale. It is a repre-

sentative characteristic timescale of the system, and it is of the order of magnitude of the

characteristic period of a seismic motion (≈ 1 s). As expected, (3.20) shows that no relative

movement of the fluid is permitted in this case of fast timescale. Thus, both diffusion effects

and inertial effects for the fluid are neglected, whereas the inertial effects for the solid, the

poroelastic stress variation, and the rate of undrained pore pressure are predominant effects.

This is equivalent to wz → 0 (wz is the seepage displacement, wz → 0 means no relative fluid

movement) and k → 0 (the medium behaves as impermeable) in (3.8). The corresponding

dimensionalized system to (3.20) is

Muz,zz −αp,z −ρüz = 0, (3.21a)

ṗ +α
R

Φ2
u̇z,z = 0. (3.21b)

Equation (3.21a) corresponds to an elastodynamic equation perturbed with the pore pressure

gradient, and Equation (3.21b) is the time derivative of the undrained pore pressure pu

pu = p +α
R

Φ2
uz,z . (3.22)

In (3.21), the fluid mass does not vary, which leads to a simplification of the continuity

equation and the pore pressure is proportional to solid strains. As a consequence, in the

Laplace domain, we can reduce (3.20) to one elastodynamic equation on the unknown uz

(vertical solid displacement) alone, with undrained material properties. After an inverse

Laplace transform, we obtain the corresponding equation in the dimensionalized form and

in the time-domain (
M +α2

R

Φ2

)
uz,zz −ρüz = 0, with uz,z =−

Φ2

αR
p. (3.23)
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In (3.23), only the compression-wave modulus M is modified in its undrained form M +
α2R/Φ2 compared to a “dry” elastodynamic problem. Therefore, the solution of the poroelas-

todynamic equations at the timescale of the seismic motion can be obtained either using the

u−p formulation given by (3.21) or with the reduced equation (3.23). Thus, we may propose

to use these undrained equations to take into account the fluid effects on fault slip when the

response of the system corresponds to a seismic event.

Next, we consider that the characteristic time Tc is of the order of the timescale of an

aseismic motion or of a seismic cycle. This corresponds to the case where 0 < κÉ 2. In the

particular case where κ= 1 (Tc > Tpw ), separating terms of the order of ε or lower from the

others, (3.17) becomes

ûz,zz −αp̂ ,z = ε
(
−s

T

Φ
ûz,zz +

(
α

T

Φ
−1

)
sp̂ ,z + s2ûz

)
+ε2

(
T

Φ
−

1

ρ

)
s3ûz (3.24a)

ρ
R

Φ2M
p̂ ,zz − sp̂ −α

R

Φ2M
sûz,z = ε

(
T

Φ
s2p̂ +

(
α

T

Φ
−1

)
R

Φ2M
s2ûz,z

)
(3.24b)

Assuming ε→ 0 to keep only the predominant poroelastodynamic terms, (3.24) writes

ûz,zz −αp̂ ,z = 0 (3.25a)

ρ
R

Φ2M
p̂ ,zz − sp̂ −α

R

Φ2M
sûz,z = 0 (3.25b)

The characteristic time Tc is larger than the compression wave timescale Tpw . We can assume

that Tc takes the order of the characteristic period of an aseismic motion (≈ 1 year). Then,

both acceleration terms for the solid and for the fluid can be neglected in (3.25), whereas the

poroelastic stress variation, the dimensionless diffusion term ρR/(Φ2M)p̂ ,zz , and the rate of

undrained pore pressure cannot. This is equivalent to a sufficiently slow motion such üz → 0

and ẅz → 0 in the complete poroelastodynamic equation (3.8). Thus, in the case where

κ = 1 (Tc > Tpw ) and ε→ 0, (3.8) is reduced to a quasi-static problem. The corresponding

dimensionalized equations in the time domain write

Muz,zz −αp,z = 0, (3.26a)

chy

Φ2
p,zz − ṗ −α

R

Φ2
u̇z,z = 0. (3.26b)

(3.26) corresponds to the consolidation equations (Biot, 1941; Zienkiewicz et al., 1980)

considered by Heimisson et al. (2019), Heimisson et al. (2021), and Heimisson et al. (2022).

This long-term behavior approximation consists in a two-way coupling between the fluid

and the solid that is modelled by a poroelastostatic equation (3.26a) and a diffusion equation

perturbed by a solid deformation term (3.26b).

×Remark 3.2. For a lot of practical configurations the poroelastostatic equations (3.26)

uncouple. In the case of an irrotational displacement field, equations can uncouple

using Biot’s (potentials) decomposition as detailed by Detournay and Cheng (1993) and

Cheng (2016). It is also the case for flow-driven deformation in a layer surrounded by
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impermeable material (Marck et al., 2015), or when the layer is much more permeable

than the surrounding host rock as considered by Viesca (2021) and Sáez et al. (2022)

among others. In this work we do not consider such assumptions.

In the particular case where κ= 2 we must come back to (3.17) to reevaluate the predomi-

nant poroelastodynamic terms. Hence, we separate terms of the order of ε or lower from the

others in (3.17). We obtain

ûz,zz −αp̂ ,z = ε
(
−s

T

Φ
ûz,zz +

(
α

T

Φ
−1

)
sp̂ ,z

)
+ε2s2ûz +ε3

(
T

Φ
−

1

ρ

)
s3ûz (3.27a)

ρ
R

Φ2M
p̂ ,zz = ε

(
sp̂ +α

R

Φ2M
sûz,z

)
+ε2

(
T

Φ
s2p̂ +

(
α

T

Φ
−1

)
R

Φ2M
s2ûz,z

)
(3.27b)

Assuming ε→ 0 to keep only the predominant poroelastodynamic terms, we obtain a further

approximation of equations (3.25), and (3.27)

ûz,zz −αp̂ ,z = 0, (3.28a)

p̂ ,zz = 0. (3.28b)

Since κ= 2, the characteristic time Tc is larger than the compression wave timescale Tpw ,

of the order of the characteristic timescale of an aseismic motion (≈ 1 year). Both accel-

eration terms for the solid and for the fluid, and the rate of undrained pore pressure have

been neglected, whereas the poroelastic stress variation and the dimensionless diffusion

term p̂ ,zz are predominant. It results in uncoupled equations which correspond to drained

poroelastostatic equations in case of a constant fluid pore pressure (or zero excess pore

pressure compared to the equilibrium state). Drained equations can also be obtained in

the approximation of an infinitely permeable medium (k → 0) in the quasi-static version of

equations (3.8a) and (3.8b). In this case, K and G are thus identified as the bulk and the shear

modulus of the drained elastic solid. The corresponding dimensionalized equations when

κ= 2 (Tc > Tpw ), and ε→ 0 write

Muz,zz −αp,z = 0, (3.29a)

k

η
p,zz = 0. (3.29b)

(3.29a) corresponds to a poroelastostatic equation (respectively a drained elastostatic equa-

tion in case of a constant fluid pore pressure) and (3.29b) corresponds to a Laplace equation

for the fluid pore pressure. They are one-way coupled equations. As a consequence, the

above analysis suggests the use of the first-order approximation system of equations (3.26)

to take into account fluid-effects on fault slip when the response of the system is likely to

correspond to an aseismic motion as in the context of fluid-injection induced aseismic slip.

(3.26) corresponds to the model used by Heimisson et al. (2019), Heimisson et al. (2021), and

Heimisson et al. (2022).

In the following developments, we focus on the case where κ = 0 and ε → 0, which

corresponds to the case where the characteristic time Tc is of the order of the characteristic
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time of a seismic motion. The results of the dimensional analysis of the poroelastodynamic

equations are summarized in Table 3.3. All the parameters and variables used are defined

in Table 3.2. The choices for numerical values in Table 3.2 are detailed in C.1. A reasonable

choice of the orders of magnitude of the parameters allows to discuss the importance of each

term in the poroelastodynamic equations considered.

Parameter Definition Value / Units

M = K +4/3G longitudinal wave modulus ≈ 18 GPa

K Bulk modulus of the elastic skeleton ≈ 10 GPa

G Shear modulus of the elastic skeleton ≈ 6 GPa

α Biot effective stress coefficient 0.8

ρ Density of the porous medium 2500 kg.m−3

cp =
√

M/ρ longitudinal wave velocity ≈ 2683 m.s−1

ρ f Density of the fluid phase 1000 kg.m−3

ρa Apparent density of the fluid phase 99 kg.m−3

T = (ρa/ρ f +Φ)/Φ Tortuosity ≈ 1.66

Φ Porosity 0.15

k Permeability of the medium 10−10 m2

η Dynamic viscosity 3 ·10−4 Pa.s

chy = Rk/η Diffusion coefficient ≈ 102 m2.s−1

R Coupling modulus between the fluid and the solid ≈ 0.31 GPa

D Characteristic distance between the injection well and the fault 5 km

s Laplace variable s−1

ui Solid displacement in the i-direction m

xi Space variable in the i-direction m

p Pore fluid pressure MPa

Table 3.2 • Parameters for the dimensional analysis of poroelastodynamic equations.
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4.2 Scaling 1D poroelastodynamic equations with a fluid source

We now add a fluid-injection point source in the generic 1D poroelastodynamic equation

(3.8b), and we extend the results of the dimensional analysis conducted in Section 4.1. This

new one-dimensional problem is closer to the one we considered in Section 1. The objectives

are to model a fluid-injection source in the initial version of the poroelastodynamic equations

(3.8), and to assess formally the conditions under which the fluid-source term is considered

as a predominant term in the poroelastodynamic equations.

The balance momentum equations used here are the one-dimensional version of (3.2).

Mûz,zz − (α−β(s))p̂,z − (ρ−β(s)ρ f )s2ûz = 0, (3.30a)

β(s)

sρ f
p̂,zz −

Φ2s

R
p̂ − (α−β(s))sûz,z =−γ̂δD (z − z0). (3.30b)

In addition to the dimensionless quantities and the corresponding scales considered in

Section 4.1, we introduce Ts to scale the rate of fluid supply per unit volume

γ̂= T −1
s γ̂, (3.31)

where Ts corresponds to a fluid-injection characteristic time. Here, γ̂ = O (1) and s = O (1).

The objective is to assess formally the conditions under which the fluid injection source term

is part of the predominant terms in (3.30b). We perform the non-dimensionalization of (3.30)

following the same stages as previously.

In the case with a fluid-injection source, equation (3.17), obtained after having performed

the scaling, using the expression of β(s) (C.1), and introduced ε and εκ/2 becomes

ûz,zz −
α−εs

(
1+ sε

T

Φ

)−1 p̂ ,z −
ρ−εs

(
1+ sε

T

Φ

)−1 1

ρ
εκs2ûz = 0 (3.32a)

ρ
R

Φ2M
ε1−κ

(
1+ sε

T

Φ

)−1

p̂ ,zz − sp̂ −
α−εs

(
1+ sε

T

Φ

)−1 R

Φ2M
sûz,z

=−
R

Φ2Σ

Tc

Ts︸ ︷︷ ︸
Ψ≡εΛ

γ̂δD (z − z0)

(3.32b)

where we introduced the more compact notationΨ≡ εΛ. Therefore, assessing whether the

fluid-injection source term must be kept in the balance momentum equations is equivalent

to determining the range of values reached byΛ.

As in Section 4.1, we first need to determine the values reached by κ in order to simplify

the non-dimensionalized complete poroelastodynamic equations (3.32).

Tpw Ê T f ⇔ κÉ 2, and κÉ 0 if Tpw Ê Tc , otherwise κ> 0 if Tpw < Tc .

We concentrate on the case where the time Tc is of the order of the earthquake instability

timescale (κ É 0, our case) in (3.32). This case allows us to focus on the simplification of
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the complete poroelastodynamic equations at the timescale of a seismic motion. When the

period Tc is of the order of the earthquake instability timescale, κ= 0 (Tc = Tpw ). Separating

terms of the order of ε from the others, (3.32) writes

ûz,zz −αp̂ ,z − s2ûz = ε
(
−s

T

Φ
ûz,zz +

(
α

T

Φ
−1

)
sp̂ ,z +

(
T

Φ
−

1

ρ

)
s3ûz

)
(3.33a)

− sp̂ −α
R

Φ2M
sûz,z +εΛγ̂δD (z − z0) = ε

(
−ρ

R

Φ2M
p̂ ,zz +

T

Φ
s2p̂ +

(
α

T

Φ
−1

)
R

Φ2M
s2ûz,z

)
(3.33b)

We now focus on the conditions under which the fluid source term can be maintained in

the simplified equations. In equation (3.33b), if we want to keep the fluid source term when

ε→ 0, its order of magnitude must be comparable to the order of the rate of fluid pressure.

As we assumed γ̂=O (1) and s =O (1), this corresponds to the case where the coefficientΨ

has the same order of magnitude as the dimensionless pore-fluid pressure (p̂ = p̂/Σ, defined

as the ratio of pressure over the characteristic stress scale). The value ofΛ depends on the

values of the pore-fluid pressure compared to the characteristic stress scale Σ. For instance if

p̂ =Σ,Λ= 0. This gives a condition on the characteristic fluid injection timescale Ts .

Λ= 0 ⇒Ψ(= 1) ∼ p̂ ⇒ Ts ≈
R

Φ2M
≈1

(
p̂

M

)−1

Tc . (3.34)

(3.34) highlights that maintaining the fluid source term in (3.33b), implies the characteristic

fluid injection time to be of the order of (p̂/M)−1Tc . The ratio p̂/M quantifies the volume

strain to which the solid matrix is submitted due to fluid injection. This strain level must

be acceptable to prevent the solid matrix to collapse when injecting fluid underground. As

expected, the fluid injection timescale Ts also depends on the characteristic time Tc . In

fact, the injection time must be adapted to the period which characterizes the fault slip so

that a coupling effect could be at stake. To maintain the fluid source term in (3.33b), the

characteristic fluid injection time must satisfy (3.34).

Assuming (3.34) is satisfied and ε→ 0, (3.33) becomes

ûz,zz −αp̂ ,z − s2ûz = 0, (3.35a)

sp̂ +α
R

Φ2M
sûz,z = γ̂δD (z − z0). (3.35b)

Thus, when κ= 0, no relative movement of the fluid is permitted (see Section 4.1). Both

diffusion effects and inertial effects for the fluid are neglected, whereas the inertial effects for

the solid, the poroelastic stress variation, the rate of undrained pore pressure and the fluid

source, if (3.34) is satisfied, are predominant effects. This is equivalent to wz → 0 and k → 0

in equations (3.30). The dimensioned form of (3.35) gives

Muz,zz −αp,z −ρüz = 0, (3.36a)

ṗ +α
R

Φ2
u̇z,z =

R

Φ2
γδD (z − z0). (3.36b)
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4. Scaling poroelastodynamic equations

Equation (3.36a) corresponds to an elastodynamic equation perturbed with the pore pressure

gradient, and Equation (3.36a) gives a relation between the time derivative of the undrained

pore pressure and the fluid source. In the Laplace domain, we can reduce equations (3.35a)

and (3.35b) to one elastodynamic equation with undrained material properties and a dipole

source term (spatial derivative of the fluid-injection point-source term).(
M +α2

R

Φ2

)
ûz,zz −ρs2ûz =α

R

Φ2

γ̂

s
δD (z − z0),z and ûz,z =−

Φ2

αR
p̂ +

γ̂

αs
δ(z − z0). (3.37)

After an inverse Laplace transform, we obtain the corresponding equation in the time domain(
M +α2

R

Φ2

)
uz,zz −ρüz =α

R

Φ2

∫ t

0
γ(t ′)d t ′δD (z − z0),z

and uz,z =−
Φ2

αR
p +

1

α

∫ t

0
γ(t ′)d t ′δD (z − z0).

(3.38)

As a result, the previous analyses suggest the use the system (3.36) or (3.38) to take into

account fluid effects on fault slip when the characteristic time Tc of the system correspond to

the timescale of a seismic motion.

4.3 Extension to 2D

In practice, 1D equations are not sufficient to take into account fluid effects on fault. At least,

2D equations must be considered. Here, we present the procedure to extend the dimensional

analysis conducted in section 4.1 to a 2D/3D generic poroelastodynamic problem with a

fluid-injection point source as introduced in Section 1. For the sake of simplicity we present

the 2D case.

In 2D, the generic poroelastodynamic equations with a fluid-injection source term write

as (3.2).

Gûs
i , j j + (K + (1/3)G)ûs

j ,i j −
(
α−β(s)

)
p̂,i − s2 (

ρ−β(s)ρ f
)

ûs
i = 0, (3.39a)

β(s)

sρ f
p̂,i i −

Φ2s

R
p̂ − (

α−β(s)
)

sûs
i ,i =−γ̂δD (xi −xi0 ), (3.39b)

where δD (x) is the two-dimensional Dirac distribution, with xT = (xi , x j ) = (x, z) in Figure 3.1.

In addition to the parameters and scales defined in Tables 3.2 and 3.1, we give the shear

wave velocity

cs =
√

G/ρ, (3.40)

where G is the shear wave modulus and ρ is the density of the porous medium. In the 1D case,

only compression waves could occur, so that we had used the longitudinal wave modulus

to define the characteristic scale Σ for the pore pressure. In the 2D case, both shear and

compression waves can occur. Hence, we choose to define the characteristic stress scale Σ

using the shear modulus G .

Σ=Gϵ0. (3.41)
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And we re-define the dimensionless displacement field and space variable to take into ac-

count each direction in space.

xi =W f Li j x j , where Li j =W −1
f diag(L1,L2),

ui =UU i j u j , where U i j =U−1diag(U1,U2).
(3.42)

We conduct the non-dimensionalization of equations (3.39) following the same stages as in

C.2.

In the case of a two-dimensional configuration with a fluid-injection point source, af-

ter having performed the scaling, and introduced ε and εκ/2, the 2D poroelastodynamic

equations (3.39) writes

U i k L
−2
j l ûk,l l +

K +1/3G

G
U i k L

−1
i l L

−1
j mûk,lm −

α−εs

(
1+ sε

T

Φ

)−1L
−1
i j p̂ , j

−
ρ−εs

(
1+ sε

T

Φ

)−1 1

ρ
εκs2U i j û j = 0,

(3.43a)

ρ
R

Φ2G
ε1−κ

(
1+ sε

T

Φ

)−1

L
−2
i j p̂ , j j − sp̂ −

α−εs

(
1+ sε

T

Φ

)−1 R

Φ2G
sU i j L

−1
i k û j ,k

=−
R

Φ2Σ

Tc

Ts︸ ︷︷ ︸
Ψ≡εΛ

γ̂δD (x−x0).

(3.43b)

As previously, we first need to determine the values reached by κ in order to simplify the

non-dimensionalized complete poroelastodynamic system of equations (3.43)

Tpw Ê T f ⇔ κÉ 2, and κÉ 0 if Tpw Ê Tc ,κ> 0 if Tpw < Tc .

The condition (3.34) has again to be satisfied by the characteristic scale of the fluid-source

term so that it could be maintained in the equations. Here it is given by

Λ= 0 ⇒Ψ(= 1) ∼ p̂ ⇒ Ts ≈
R
Φ2G

≈1

(
p̂

G

)−1

Tc . (3.44)

Thus, in the particular case where κ = 0 (when the characteristic observation time of

the fault Tc = Tpw , thus is of the order of the seismic timescale (≈ 1 s)), condition (3.44) is

satisfied, and ε→ 0 to keep only the predominant poromechanics effects, (3.43) now writes

U i k L
−2
j l ûk,l l +

K +1/3G

G
U i k L

−1
i l L

−1
j mûk,lm −αL

−1
i j p̂ , j − s2U i j û j = 0, (3.45a)

sp̂ +α
R

Φ2G
sU i j L

−1
i k û j ,k = γ̂δD (xi −xi0 ). (3.45b)
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The corresponding dimensionalized version of (3.45) in the time-domain is given by

Gui , j j + (K +1/3G)u j ,i j −αp,i −ρüi = 0, (3.46a)

ṗ +α
R

Φ2
u̇i ,i =

R

Φ2
γδD (xi −xi0 ). (3.46b)

In (3.46), both the fluid diffusion and inertial effects for the fluid have been neglected,

while the inertial effects for the solid, the poroelastic stress variation, the rate of undrained

pore pressure and the fluid source if (3.34) is satisfied are predominant effects. The relative

movement of the fluid is neglected in this case, which is equivalent to wi → 0 and k → 0 in

equation (3.39). Equation (3.46a) corresponds to a 2D elastodynamic equation perturbed

with the pore fluid pressure gradient, and Equation (3.46b) gives a relation between the time

derivative of the undrained pore pressure and the fluid source. They can again be reduced to

one elastodynamic equation with undrained material properties and a dipole source term

(spatial derivative of the fluid-injection point source term). In the time domain, we obtain

Gui , j j + (K +1/3G)u j ,i j +α2
R

Φ2
ui ,i i −ρüi =α

R

Φ2

∫ t

0
γ(t ′)d t ′δD (x−x0),i

with ui ,i =−
Φ2

αR
p +

1

α

∫ t

0
γ(t ′)d t ′δD (x−x0).

(3.47)

Thus, for a 2D configuration with a fluid point source (see Figure 3.1), the above analysis

suggests the use of equation (3.46) or (3.47) to take into account fluid effects on fault slip

when the characteristic time Tc correspond to the timescale of a seismic motion.

4.4 Synthesis of the dimensional analysis of the poroelastodynamic equa-

tions

Table 3.3 summarizes our results for the scaling of the poroelastodynamic equations at

different timescales.

In the 1D case without fluid-injection, at the timescale of an aseismic motion (Aseismic

1), we obtained simplified poroelastodynamic equations given by

Muz,zz −αp,z = 0, (3.48a)

chy

Φ2
p,zz − ṗ −α

R

Φ2
u̇z,z = 0. (3.48b)

A further simplification of (3.48) at the timescale of an aseismic motion (Aseismic 2) gives

Muz,zz −αp,z = 0, (3.49a)

k

η
p,zz = 0. (3.49b)
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At the timescale of a seismic motion, the complete model simplifies as an undrained

poroelastodynamic equation(
M +α2

R

Φ2

)
uz,zz −ρüz = 0, with uz,z =−

Φ2

αR
p. (3.50)

In the 1D case with fluid injection, at the timescale of a seismic motion, the fluid-injection

source term is maintained in the equations under the condition

Λ= 0 ⇒Ψ(= 1) ∼ p̂ ⇒ Ts ≈
R

Φ2M
≈1

(
p̂

M

)−1

Tc . (3.51)

Hence, the complete model simplifies as the undrained poroelastodynamic equation(
M +α2

R

Φ2

)
uz,zz −ρüz =α

R

Φ2

∫ t

0
γ(t ′)d t ′δ(z − z0),z

and uz,z =−
Φ2

αR
p +

1

α

∫ t

0
γ(t ′)d t ′δD (z − z0).

(3.52)

In the 2D case with fluid injection, at the timescale of a seismic motion, the fluid-injection

source term is maintained in the equations under the condition

Λ= 0 ⇒Ψ(= 1) ∼ p̂ ⇒ Ts ≈
R
Φ2G

≈1

(
p̂

G

)−1

Tc . (3.53)

The complete model simplifies as the undrained poroelastodynamic equation

Gui , j j + (K +1/3G)u j ,i j +α2
R

Φ2
ui ,i i −ρüi =α

R

Φ2

∫ t

0
γ(t ′)d t ′δD (x−x0),i

with ui ,i =−
Φ2

αR
p +

1

α

∫ t

0
γ(t ′)d t ′δD (x−x0).

(3.54)

We highlight that inertial effects are important to model fluid-injection effects on fault slip

at the timescale of a seismic motion. A first step towards the incorporation of these effects

into the numerical framework proposed would be to conduct fully-dynamic simulation

instead of the quasi-dynamic simulations considered. The difficulty is that the calculation of

a convolution product in time is required. To ensure efficient solving, in the frame of seismic

cycle simulations, a constant time step is usually imposed as detailed by Lapusta and Liu

(2009), which can induce cumulative errors and prevent from obtaining interpretable results.
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Configuration Timescale Po
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1D without

fluid source

Aseismic 1 (Tc ≈ 1 year)

κ= 1 i.e.
Tpw

Tc
=O (

p
ε) ≪ 1

✓ ✓ ✓ ✓ / (3.48)

Aseismic 2 (Tc ≈ 1 year)

κ= 2 i.e.
Tpw

Tc
=O (ε) ≪ 1

✓ ✓ / (3.49)

Seismic (Tc ≈ 1 s)

κ= 0 i.e.
Tpw

Tc
=O (1)

✓ ✓ ✓ ✓ / (3.50)

1D with

fluid source

Seismic (Tc ≈ 1 s)

κ= 0 i.e.
Tpw

Tc
=O (1)

✓ ✓ ✓ ✓ ✓ (3.51) + (3.52)

2D with

fluid source

Seismic (Tc ≈ 1 s)

κ= 0 i.e.
Tpw

Tc
=O (1)

✓ ✓ ✓ ✓ ✓ (3.53) + (3.54)

Table 3.3 • Summary of our results for the scaling of poroelastodynamic equations at dif-

ferent timescales: predominant effects (✓), negligible effects (X), corresponding

equations.
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5 Illustration with a one-dimensional poroelastic problem

In this section, we illustrate the limitations of the simplifications of the complete poroelasto-

dynamic equation at the timescale of a seismic motion with the help of a semi-analytical 1D

example (see Schanz and Cheng (2000)). The numerical analysis first requires to determine

the impulse responses of the equations considered in the Laplace domain using standard

techniques for ordinary differential equations. Then, the inverse Laplace transform and the

calculation of time-domain solutions using a convolution product in time with the function

defining the temporal behavior of the loading are performed using the convolution quadra-

ture method. Finally, the time domain responses of the complete poroelastodynamic model

and of its simplified form at the timescale of a seismic motion are compared under and

outside the assumptions of the simplified model to illustrate the conditions under which

such an approximation if valid.

5.1 Problem formulation

Figure 3.2 defines the geometry and the boundary conditions of a wave-propagation problem

in a one-dimensional poroelastic column (see Schanz and Cheng (2000)). We consider a

Figure 3.2 • Geometry and boundary conditions of the poroelastic column.

poroelastic column of length L along the z − th direction for instance. The sidewalls and the

bottom are rigid, frictionless, and impermeable so that normal displacement to the surface

were blocked, and the column could only slide parallel to the wall. At the top, the traction

tz and the fluid pressure p are prescribed. At the bottom the displacement uz is assumed

to be equal to zero as well as the fluid flux qz . This one-dimensional example can be seen

as an approximation of a poroelastic half-space by setting the layer depth L large enough.

The unknowns are the displacement uz and the pore pressure p, which are governed by the

poroelastodynamic balance momentum equations given in the Laplace domain by

Mûz,zz − (α−β(s))p̂,z − (ρ−β(s)ρ f )s2ûz = 0 (3.55a)

β(s)

sρ f
p̂,zz −

Φ2s

R
p̂ − (α−β(s))sûz,z = 0 (3.55b)
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In the following parts we consider that from the initial values of displacement u and pore

pressure p to their final values, the body forces in the solid skeleton f s
i or in the fluid f f

i do

not vary. Therefore, taking the variations between the final and the initial u−p values as

unknowns eliminates the body forces from (3.55). The Laplace domain boundary conditions

in the case of an impulse loading f (t ) = δD (t ) are

ûz(z = 0) = 0, q̂z(z = 0) = 0, and t̂z(z = L) =−Σ0, p̂(z = L) = P0. (3.56)

Each of the nonzero boundary conditions in (3.56) represent a different type of loading. In the

present work, the traction boundary condition stands for the steady-state far-field tectonic

loading in a poroelastic half-space, and the pressure boundary condition plays the role of

the fluid-injection in the medium. A more realistic way to take into account the fluid source

term, would be in a second step to add a fluid-source term in (3.55b). As a starting point, we

consider zero source term and the boundary conditions given in (3.56).

The aim is to demonstrate numerically that at the timescale of a seismic motion, the

response of the complete poroelastodynamic model coincides with the response of the

simplified model. Therefore, we also give the problem formulation in its simplified undrained

form at the timescale of an earthquake instability resulting from the dimensional analysis

previously conducted.

(
M +α2

R

Φ2

)
ûz,zz −ρs2ûz = 0 (3.57a)

with p̂ =−α
R

Φ2
ûz,z (3.57b)

In this case, in the Laplace domain, the boundary conditions in the case of an impulse

loading are given by

ûz(z = 0) = 0 and t̂z(z = L) =−Σ0. (3.58)

The one-dimensional version of the poroelastic constitutive law (1.48) is given by

t̂z = Mûz,z −αp̂. (3.59)

Hence, using the boundary conditions (3.58), and (3.57b), we deduce the imposed pressure

p at the top of the poroelastic column.

t̂z(z = L) =
(3.58)

−Σ0 = Mûz,z(z = L)−αp̂(z = L) =
(3.57b)

−
M +α2R/Φ2

αR/Φ2
p̂(z = L)

⇒ p̂(z = L) =Σ0

αR/Φ2

M +α2R/Φ2
≜ P∗

0 .

(3.60)

Using the dynamic Darcy’s law (1.51) without body forces and no fluid source term, we verify
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that, as expected, the fluid flux q̂z is equal to zero at the bottom

q̂z(z = 0) =−
β(s)

ρ f s
(p̂,z(z = 0)+ρ f s2ûz(z = 0)︸ ︷︷ ︸

=0

)

=
(3.57b)

β(s)

ρ f s
α

R

Φ2
ûz,zz(z = 0)

=
(3.57a)

β(s)

ρ f

αρsR/Φ2

M +α2R/Φ2
ûz(z = 0)︸ ︷︷ ︸

=0

= 0,

(3.61)

Before comparing the response of the complete model with the one from the simplified

model, we first need to solve their equations. The first step is to determine the displacement

and pressure fundamental solutions of the complete and the simplified model.

5.2 Laplace domain Green’s functions for both the complete and the

simplified models

Both the complete and the simplified model are in the form of homogeneous ordinary

differential equations with inhomogeneous boundary conditions. Such systems can be

solved using the exponential ansatz

Ĝu
z (z, s) =U eλsz , Ĝ p (z, s) = Peλsz , (3.62)

where Ĝu and Ĝ p are the Laplace transforms of the displacement and pressure fundamental

solutions. The procedure to derive these Laplace domain impulse responses is given in

Schanz and Cheng (2000). It consists in injecting the exponential solutions (3.62) in equations

(3.55a), (3.55b) (respectively equations (3.57a) and (3.57b)), which leads to an eigenvalue

problem for λ. Once the eigenvalues (λi ) are determined, the fundamental solutions for the

displacement express as

Ĝu
z (z, s) =

∑
i

Ui eλi sz , Ĝ p (z, s) =
∑

i
Pi eλi sz . (3.63)

The eigenvectors of the system give a relation between the unknown constants Ui and Pi ,

which divides the number of unknown constants by two. Finally, we find the values of Ui

using the boundary conditions. The details of the calculations for both the complete and the

simplified poroelastodynamic equations are omitted here but are given in C.3.

Going back to spatio-temporal solutions requires to apply an inverse Laplace transform

of the fundamental solutions (3.63), convoluted in time with the function f (t ) defining the

temporal behavior of the loading.

uz(z, t ) =
∫ t

0
L −1{Ĝu}(z, t − t ′) f (t ′)d t ′

p(z, t ) =
∫ t

0
L −1{Ĝ p }(z, t − t ′) f (t ′)d t ′

(3.64)

The solid displacement uz(z, t) and of the pore fluid pressure p(z, t) are evaluated numeri-

cally.
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5. Illustration with a one-dimensional poroelastic problem

5.3 Convolution quadrature method

The most efficient method is to use the Convolution Quadrature Method (CQM) proposed by

Lubich (1988a, 1988b). This method enables to approximate convolution integrals numeri-

cally using the Laplace transformed impulse response functions Ĝu(z, s) and Ĝ p (z, s) of the

ODE system (3.55), and a linear multistep method (see Mavaleix-Marchessoux (2020) and

Schanz (2001) for details). The principle is to consider a convolution product given by

q(t ) =
∫ t

0
G(t − t ′) f (t ′)d t ′ =

∫ t

0
G(t ′) f (t − t ′)d t ′. (3.65)

G(t − t ′) can be expressed as the inverse Laplace transform of Ĝ(s): L −1{Ĝ}(t − t ′):

L −1{Ĝ}(t − t ′) =
1

2πi

∫ c+i∞

c−i∞
Ĝ(s)e s(t−t ′)d s, (3.66)

where the real constant c is chosen so that the integral in (3.66) converged, and Ĝ is assumed

to be well-defined (zero initial conditions on G and on its time derivative). Injecting (3.66) in

(3.65) and assuming applicability of Fubini’s theorem, we obtain

q(t ) =
1

2πi

∫ c+i∞

c−i∞
Ĝ(s)h(t ; s)d s, with h(t ; s) =

∫ t

0
e s(t−t ′) f (t ′)d t ′, (3.67)

where ( f (tn))nÊ0 is a set of discrete loading term values. The key point is to note that the

inner function h(t ; s) satisfies the initial-value problem
dh

dt
(t ; s) = sh(t ; s)+ f (t )

h(t É 0; s) = 0
(3.68)

The solution of the first order ODE (3.68) can be approximated using a linear k-step method:

k∑
j=0

α j hn+ j−k (s) =∆t
k∑

j=0
β j (shn+ j−k (s)+ fn+ j−k ), ∀n ∈N,

h−p (s) = f−p = 0, ∀p ∈ {1 . . .k},

(3.69)

where h(n∆t ; s) ≈ hn(s) is the approximated solution h(t ; s) evaluated at the discrete time

n∆t , and the coefficients α j and β j are the constants of the multistep method. We consider

the Backward Differentiation Formula of order 2 for which we have k = 2, α0 = 1/2, α1 =−2,

α2 = 3/2, β0 = 0, β1 = 0, β2 = 1. As equation (3.69) is not in a suitable form to extract the

solution hn(s), we reformulate (3.69) relating (hn(s)) and
(

fn
)

in terms of the Z -transforms

of those sequences. We recall that the Z -transform Z [(xn)](ξ) of a discrete-time signal (xn)

is defined by

Z : (xn) 7→Z [(xn)](ξ) =
∞∑

n=0
xnξ

n ≜ X (ξ), ξ ∈C. (3.70)

Taking the Z -transform of (3.69), we obtain

k∑
j=0

α jξ
k− j H(ξ; s) =∆t

k∑
j=0

β jξ
k− j (sH(ξ; s)+F (ξ)) ⇒ H(ξ; s) =

(
ρ(ξ)

∆t
− s

)−1

F (ξ),

with ρ(ξ) =
∑k

j=0α jξ
k− j∑k

j=0β jξk− j
.

(3.71)
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The function ρ(ξ) is the characteristic polynomial of the linear multistep method of order k.

ρ(ξ) = 1/2ξ2 −2ξ+3/2 for the BDF2 scheme. Therefore, the Z -transform of the convolution

product (3.67) is given as

Q(ξ) =
1

2iπ

∫ c+i∞

c−i∞
Ĝ(s)

(
ρ(ξ)

∆t
− s

)−1

F (ξ)d s. (3.72)

Using Cauchy’s residue theorem (valid if Ĝ(s) is bounded at infinity, which is an inherent

property of the fundamental solutions we consider in place of Ĝ(s) in our developments), we

find

Q(ξ) = Ĝ

(
ρ(ξ)

∆t

)
F (ξ) ⇔

∞∑
n=0

q(n∆t )ξn = Ĝ

(
ρ(ξ)

∆t

)
∞∑

n=0
f (n∆t )ξn . (3.73)

To find an expression for q(n∆t ) in the form of a quadrature formula in which we can identify

the quadrature weights. We first need to represent the right-hand side of (3.73) in a power

series with coefficients independent of the Z -transform variable ξ. It requires developing

Ĝ
(
ρ(ξ)/∆t

)
in a power series

Ĝ

(
ρ(ξ)

∆t

)
=

∞∑
n=0

ωn(∆t )ξn , (3.74)

where the coefficients ωn(∆t) can be determined by Cauchy’s integral formula. They are

given by

ωn(∆t ) =
1

2πi

∫
ξ=R

Ĝ

(
ρ(ξ)

∆t

)
ξ−n−1dξ, (3.75)

with R the radius of a circle in the domain of analyticity of Ĝ
(
ρ(ξ)/∆t

)
. Incorporating (3.74)

in (3.73) we obtain
∞∑

n=0
q(n∆t )ξn =

∞∑
n=0

ωn(∆t )ξn
∞∑

n=0
f (n∆t )ξn =

∞∑
n=0

n∑
k=0

ωn−k (∆t ) f (n∆t )ξn . (3.76)

Comparing the left-hand-side and the right-hand side of equation (3.76), we finally identify

the discrete form of the convolution integral (3.68) written as the quadrature formula

q(n∆t ) =
n∑

k=0
ωn−k (∆t ) f (n∆t ), n = {0,1, . . . N }. (3.77)

The quadrature weights ωn−k (∆t) are given by (3.75). In practice, after a polar coordinate

change (ξ=Re iφ) in (3.75) to get a real valued integral, the quadrature weights are approxi-

mated by the trapezoidal rule

ωn(∆t ) =
R−n

J

J−1∑
j=0

Ĝ

ρ(Re i j 2π
J )

∆t

e−i n j 2π
J , (3.78)

with J equal steps 2π/J . We can calculate the quadrature weights for the solid displacement

and for the pore pressure, and they are given by

ωu
n−k (n∆t ) =

R−n

J

J−1∑
m=0

Ĝu

(
ρ(Re i j 2π/J )

∆t

)
e−i n j 2π/J ,

ω
p
n−k (n∆t ) =

R−n

J

J−1∑
m=0

Ĝ p

(
ρ(Re i j 2π/J )

∆t

)
e−i n j 2π/J .

(3.79)
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5. Illustration with a one-dimensional poroelastic problem

In practice, the quadrature weights can be efficiently computed using the Fast Fourier Trans-

form. R is chosen such that Rn = ε in order to have an O (ε) accuracy. The J complex

frequencies s = ρ(ξ)/∆t depend on the desired accuracy ε and on the step size ∆t (J = N is

considered here).

We first perform a validation test of the implemented CQM. We consider the function

G(t ) = cos(t )H (t ). Its Laplace transform is known analytically Ĝ = s/(s2 +ω2). Considering

f (t ) =H (t ), we have

q(t ) =
∫ t

0
L −1{Ĝ}(t − t ′) f (t ′)d t ′ =

∫ t

0
L −1{Ĝ}(t ′) f (t − t ′)d t ′ =

∫ t

0
cos(t ′)d t ′ = sin(t ). (3.80)

Figure 3.3 represents the comparison between the analytical solution q(t ) of the convolution

product (3.80), and its numerical approximation using the CQM. The results obtained with

different time steps are superposed for t ∈ [0,6π]. Figure 3.3a shows, on the left, the super-

position of the approximated values qapp(t) of q(t) (with t = n∆t) obtained with different

time-steps with the expected solution, and on the right, the time evolution of the absolute

error Eq (t ) between the analytical values of the convolution product q(t ) and its numerical

approximation qapp(t ) such that

Eq (t ) = |q(t )−qapp(t )|.

The maximum absolute error on the convolution product is in the order of the time step ∆t

chosen for the CQM. Figure 3.3b represents the relative L2-norm error in time on q(t ) such

that

εt
q =

∥∥∥∥∥q(t )−qapp(t )

q(t )

∥∥∥∥∥
L2([0,t f ])

.

In the following part we choose ∆t = 10−3 s as it allows an error smaller than 0.1%,and a

reasonable computational cost to evaluate the convolution product.

5.4 Comparison between the complete poroelastodynamic model and

the simplified model at the timescale of a seismic motion

At the timescale of the seismic motion, we showed in Section 4.1 that the complete poroe-

lastodynamic equations (3.55) simplified as an undrained system (3.57). Under this approxi-

mation, no relative fluid motion is permitted. Inertial effects for the fluid are neglected as

well as diffusion effects. It imposes a direct relation between the pore pressure and the solid

deformation.

We begin by assuming that the assumptions of the simplified model are satisfied. This

means adding undrained boundary conditions to the complete model. Such boundary con-

ditions satisfy the relation (3.57b). Hence, for both models, we add the boundary conditions

tz(z = L, t ) =−Σ0H (t ) and p(z = L, t ) = P∗
0 H (t ), with Σ0 = 1 N/m2, (3.81)

as in (3.60).

In addition, the choice of the final simulation time is important. First, the loading of the

top of the column leads to the propagation of a compression wave in the poroelastic column
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Figure 3.3 • Validation test of the CQM with G = cos(t )H (t ), f (t ) =H (t ) and q(t ) = sin(t ) for

different time steps ∆t , (a) (left) Superposition of the approximated convolution

product qapp(t) of q(t) (with t = n∆t) obtained with different time steps and

compared to the analytical solution q(t ), (right) Time evolution of the absolute

error Eq (t) (b) Evolution of the relative L2-norm error in time on q(t): εt
q with

respect to ∆t .
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5. Illustration with a one-dimensional poroelastic problem

according to complete poroelastodynamic equations. This compression wave results from a

fast compression wave propagating in the elastic solid matrix and a slow compression wave

propagating in the fluid. Their characteristic velocities can be determined with the help of

the solid matrix properties and with the fluid properties respectively, and are denoted c s and

c f

c s =

√√√√Ks +4/3Gs

ρs
≈ 2683 m/s, c f =

√√√√K f +4/3G f

ρ f
≈ 1581 m/s.

At the timescale of a seismic motion, the loading of the column leads to the propagation of a

compression wave in the undrained poroelastic column according to simplified poroelasto-

dynamic equations. Its characteristic velocity is denoted cu , and is given by

cu =

√√√√M +α2R/Φ2

ρ
≈ 3275 m/s

Their values are determined with the help of Table 3.2. Knowing the length L of the column,

we can deduce the time required for each wave to reach the bottom of the column

t s =
L

c s
≈ 1.86 s, t f =

L

c f
≈ 3.2 s, , t u =

L

cu
≈ 1.52 s.

Hence, choosing a sufficiently short final time tfinal compared to t u , so that none of the

compression waves could reach the bottom of the column would approximate the case of

an infinitely long column. Otherwise, perfect reflections would occur at the bottom of the

column for longer values of tfinal. Observing reflections of the compression waves at the

bottom of the column would not be of great interest as the objective of 1D example we study

here is to illustrate the validity range of the simplified poroelastodynamic equations to use

them in the context of a fault mechanics problem in an unbounded domain. On the basis of

these arguments, we have set

tfinal = 1.50 s ≈ 0.99t u .

We also discretize the column with 100 points along the z-coordintate to compare the re-

sponse of the simplified model to the response of the complete model. In the following

Figures, the complete poroelastodynamic model, given by equations (3.55), is denoted “Full”

in the graphs’ legend, and the simplified poroelastodynamic model, given by equations (3.57),

is denoted “Simplified” in the graphs’ legend.

Figure 3.4 represents the comparison between the “Simplified” and “Full” model when

undrained boundary conditions (see (3.81)) are applied for both models. Figures 3.4a and 3.4b

and 3.4c correspond to given instants t = {∆t , tfinal/2, tfinal}. Figure (i) (respectively (ii)) repre-

sents the spatial evolution of the “Full” and the “Simplified” solid displacement uz responses

(respectively pore fluid pressure p responses).

At the first computed instant t =∆t , we observe that identical boundary conditions are

applied at the first time step. At t = tfinal/2 and t = tfinal, we observe the propagation of a

compression wave front in the poroelastic column and shows good agreement between the

“Full” and the “Simplified” models at these instants too.

Figure 3.5 compares the “Full” and the “Simplified” solutions in the half height of the

column. As expected, we observe that the wave front reaches the middle of the column
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Figure 3.4 • Comparison of the “Simplified” with the “Full” models with respect to the z-

coordinate for undrained boundary conditions applied to both models.
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at tfinal/2 ≈ (L/2)/cu , and we again observe good agreement between the “Full” and the

“Simplified” models.
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Figure 3.5 • Comparison of the “Simplified” with the “Full” models with respect to time for

“undrained” boundary conditions applied to both models.

We can calculate global L2-norm relative errors (one with respect to the displacement

and the other with respect to the pore pressure) in space and time between the “Full” and the

“Simplified” models. It allows us to quantify the extent to which the “Simplified model” is an

accurate approximation of the “Full” model. These global errors are defined as

εz,t
u =

∥∥∥∥∥∥uFull
z −uSimplified

z

uFull
z

∥∥∥∥∥∥
L2([0,L])×L2([0,tfinal])

, εz,t
p =

∥∥∥∥∥pFull −pSimplified

pFull

∥∥∥∥∥
L2([0,L])×L2([0,tfinal])

,

where uFull
z and pFull are the displacement and pore-pressure solutions of the “Full” model

and uSimplified
z and pSimplified are the displacement and pore-pressure solutions of the “Simpli-

fied” model. In the case where the “undrained loading” (3.81) is applied we obtain

εz,t
u = 5.1 ·10−6, εz,t

p = 6.6 ·10−5,

which confirms that the “Simplified” model is a very good approximation of the “Full” model

at the timescale of a seismic motion. This is an interesting point as the “Simplified” undrained

model is much easier to implement and to integrate.

We want to check when the simplified model is no longer valid. We therefore need to

consider a general case outside the assumptions of the simplified model. This is what we are

interested in. We approach the general case by perturbing the boundary conditions. This

involves adding perturbed boundary conditions to the complete model compared with the

undrained boundary conditions previously considered.

In a real case scenario, the “Full” poroelastodynamic model applies, and the undrained

relation between the pore pressure and the solid deformation (3.57b) is not satisfied. At

the timescale of a seismic motion, we had showed in equation (3.19b) resulting from the

dimensional analysis performed in Section 4.1 that an additional term in the order of ε =
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T f /Tc (ratio of the natural characteristic microscopic fluid diffusion period of the system over

the characteristic time Tc ) was at stake. In the following, we take into account the influence

of this term in the form of a small regular perturbation on the pressure boundary condition

of the “Full” model. Hence, the boundary conditions for the “Simplified” remain the same as

in (3.81), while the boundary conditions for the “Full” model are given by

tz(z = L, t ) =−Σ0H (t ) and p(z = L, t ) = P0 = P∗
0 H (t )+∆P (t )H (t ). (3.82)

×Remark 3.3. In addition to the perturbation of the boundary conditions, choosing a

longer final simulation time would be another way to consider a case where the simplified

model is no longer valid. In fact, it would allow fluid diffusion to become a preponderant

effect too. We recall that the characteristic fluid diffusion time is

t d =
L

chy
≈ 2.5 ·105 s ≫ t f , t s and t u .

However, imposing a longer final simulation time implies perfect reflections in the poroe-

lastic column that we do not want to consider.

Initially, a constant perturbation is added to approximate the general case. In a second

step, we get closer to a generic case by varying the perturbation on the boundary conditions

over time, acting on its frequency. The aim is to see if, in this case, other fluid effects are

predominant in addition to the predominant effects in the simplified model, in which case

the latter would no longer be a good approximation of the complete model. Hence, we

distinguish two scenarios for the value of ∆P in (3.82) in order to assess the effect of the

amplitude and of the frequency of the perturbation:

• 1st scenario: we consider a constant perturbation on the pressure boundary condition

∆P = εP∗
0 where we vary ε≪ 1. This perturbation only affects the displacement and

the pore pressure fundamental solution of the “Full” model.

• 2nd scenario: we consider a sinusoidal perturbation on the pressure boundary condi-

tion ∆P (t) = εP∗
0 cos(ωt), where we vary ε≪ 1 and ω. This perturbation affects only

the time evolution of the loading imposed. This impacts the convolution product in

time, which determines the time domain displacement and pore pressure responses

(3.64).

We first introduce a perturbation expressed as ∆P/P∗
0 = (P0 −P∗

0 )/P∗
0 = ε. This perturba-

tion has an effect on the displacement and the pore pressure fundamental solutions only,
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which write in the Laplace domain

ûy (y, s) =
Σ0

M s(d1λ2 −d2λ1)

[
d2

(
e−λ1s(L−y) −e−λ1s(L+y)

)
1+e−2λ1sL

−
d1

(
e−λ2s(L−y) −e−λ2s(L+y)

)
1+e−2λ2sL

]

+
P∗

0 (1+ε)

M s(d1λ2 −d2λ1)

[
(Mλ2 −αd2)

(
e−λ1s(L−y) −e−λ1s(L+y)

)
1+e−2λ1sL

−
(Mλ1 −αd1)

(
e−λ2s(L−y) −e−λ2s(L+y)

)
1+e−2λ2sL

]

p̂(y, s) =
Σ0d1d2

M(d1λ2 −d2λ1)

[ (
e−λ1s(L−y) +e−λ1s(L+y)

)
1+e−2λ1sL

−
(
e−λ2s(L−y) +e−λ2s(L+y)

)
1+e−2λ2sL

]

+
P∗

0 (1+ε)

M(d1λ2 −d2λ1)

[
d1(Mλ2 −αd2)

(
e−λ1s(L−y) +e−λ1s(L+y)

)
1+e−2λ1sL

−
d2(Mλ1 −αd1)

(
e−λ2s(L−y) +e−λ2s(L+y)

)
1+e−2λ2sL

]

(3.83)

Figure 3.6 compares the “Simplified” and “Full” models for a constant perturbation of the

boundary conditions (1st perturbation scenario). Figures 3.6a and 3.6b and 3.6c correspond

to given instants t = {∆t , tfinal/2, tfinal}. Figure (i) (respectively (ii)) represents the spatial

evolution of the “Full” and the “Simplified” solid displacement uz responses (respectively,

pore fluid pressure responses). Figure (iii) (respectively (iv)) gives the spatial evolution of the

normalized absolute error Eu (respectively Ep ) between these responses.

At the first computed instant t =∆t , as expected, we observe that the boundary conditions

of the “Full” model and of the “Simplified” model diverge. The amplitude of the error on the

pore-pressure at the top of the column scales as ∆P .

At t = tfinal/2 and t = tfinal, we observe an increase in the amplitude of the normalized

errors Eu and Ep . This shows that the perturbation on the pressure boundary condition

propagates as the compression wave propagates through the poroelastic column. However,

the larger error value is located at the top of the column. Hence, the first perturbation

scenario results in the creation of a “boundary layer” effect of the perturbation imposed

on the pore-pressure boundary condition. This behavior was expected due to the regular

perturbation imposed.

Figure 3.7 shows the evolution of the global L2-norm relative errors on the displacement

εz,t
u and on the pore pressure εz,t

p between the “Full” and the “Simplified” models with

respect to the amplitude of the perturbation ∆P/P∗
0 . εz,t

p scales as a tenth of the perturbation

(0.1∆P/P∗
0 ), while εz,t

u scales as a hundredth of the perturbation 10−2∆P/P∗
0 .

In the 1st perturbation scenario, we showed that the “Simplified” model is not a good

approximation of the “Full” model close to the top of the column where we perturbed the

boundary conditions. Outside the boundary, the “Simplified” model remains a good approxi-

mation of the “Full” model. In order to get closer to a generic case, where the assumptions

of the “Simplified” model are not satisfied, we now consider the 2nd perturbation scenario.

The perturbation expresses as ∆P = εP∗
0 cos(ωt). It evolves with time. We are particularly

interested in the effect of the pulsation ω with respect to the 1st perturbation scenario. ε is

chosen as in the first scenario and the pulsation ω corresponds to an imposed period to the
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Figure 3.6 • Comparison of the “Simplified” with the “Full” models with respect to the z-

coordinate for a constant perturbation (∆P/P∗
0 = 10−1) on the pressure at the

top of the column for the “Full” model.134
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system. High values of ω (i.e. high frequency regime) correspond to a fast loading of the

system, whereas small values of ω (low-frequency regime) stand for a slow loading regime. In

theory, the high-frequency (fast loading) regime tends to the undrained boundary conditions

configuration, whereas in the low-frequency (slow loading) the “Simplified” model would not

be appropriate to approximate the “Full” model as non-negligible fluid effects such as fluid

diffusion should be included. It is a bit different here. In particular, we impose either a fast or

a slow perturbation of the initially undrained boundary conditions. In the case where a fast

perturbation is imposed, the response of the system should still tend to the response obtained

in the undrained boundary conditions configuration. In the case where a slow perturbation is

imposed, for a short time interval, ωt ≪ 1, so cos(ωt ) ≈ 1 and ∆P/P∗
0 = εcos(ωt ) ≈ ε, which

tends to the constant perturbation case (1st perturbation scenario). For larger time values,

we should see a non-negligible effect of the pulsation ω on the divergence between the

“Simplified” and the “Full” model.

Figures 3.8 and 3.9 and 3.10 compare the “Simplified” and “Full” model for a sinusoidal

perturbation (∆P/P∗
0 = εcos(ωt) with ε= 10−1 and ω ∈ {10−2,1,103}) on the pressure at the

top of the column for the “Full” model (2st perturbation scenario). Figures 3.8a and 3.9a

and 3.10a correspond to t =∆t for the different values of ω. At the first computed instant

t =∆t , as expected, we observe that the boundary conditions of the “Full” model and of the

“Simplified” model diverge. The amplitude of the error on the pore pressure at the top of the

column scales as ∆P .

Figure 3.8 compares both solutions at three given instants t = {∆t , tfinal/2, tfinal}, in the

case where a fast sinusoidal perturbation (ω= 103 rad/s) is applied. At t = tfinal/2 and t = tfinal,

we do not observe a significant influence of a fast sinusoidal perturbation imposed on the

pressure boundary condition for the “Full” model on the divergence between the “Simplified”

and the “Full” model. The spatial evolutions of the errors on the displacement and on the

pore pressure are similar to those obtained in Figure 3.6 for the 1st perturbation scenario. The
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εz
,t
u

10−5 10−4 10−3 10−2 10−1
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εz
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p

Figure 3.7 • Evolution of the L2-norm relative errors in space and time on the solid displace-

ment εz,t
u and on the pore pressure εz,t

p with respect to the amplitude of the

loading perturbation ∆P/P∗
0 .
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error on the pore pressure Ep (respectively the error on the displacement Eu) scales as 10−2ε

relatively to the amplitude of the pressure (respectively to the amplitude of the displacement).

Figure 3.9 compares both solutions at three given instants t = {∆t , tfinal/2, tfinal}, in the

case where a sinusoidal perturbation (ω = 1 rad/s) is applied. At t = tfinal/2 and t = tfinal,

we observe a more significant propagation of the perturbation through the column than

in the 1st perturbation scenario or in the 2nd perturbation scenario with high values of ω.

Compared to the results obtained in Figure 3.8, the corresponding spatial evolution of the

error values Eu and Ep scale as ε. This shows that for ω= 1 the perturbation on the boundary

conditions corresponds to a generic case in which the assumptions of the “Simplified” model

are not satisfied, and the “Simplified” model is not a good approximation of the “Full” model

anymore.

Figure 3.10 compares both solutions at three given instants t = {∆t , t f /2, t f }, in the case

where a slow sinusoidal perturbation (ω= 10−2 rad/s) is applied to the pressure boundary

condition of the “Full” model. At t = t f /2 and t = t f , we observe a more significant propa-

gation of the perturbation through the column than in the 1st perturbation scenario or in

the 2nd perturbation scenario with high values of ω. Compared to the results obtained in

Figure 3.8, the corresponding spatial evolution of the error values Eu and Ep both errors scale

as ε. In particular, the error on the pressure does not vary much with respect to space (offset

error). The divergence between the “Simplified” and the “Full” is more significant as the

pulsationω decreases. Thus, when a slow perturbation of the boundary condition is imposed,

the “Simplified” models is no longer a good approximation of the “Full” model.

Figure 3.11 shows the evolution of the global L2-norm relative errors in space and time on

the displacement εz,t
u and on the pore pressure εz,t

p between the “Full” and the “Simplified”

models with respect to the pulsation ω of the perturbation. It confirms that a fast sinusoidal

perturbation leads to a better agreement between the “Simplified” and the “Full” models

than a slow sinusoidal perturbation.
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Figure 3.8 • Comparison of the “Simplified” with the “Full” models with respect to the z-

coordinate for a sinusoidal perturbation (∆P/P∗
0 = 10−1 cos(103t)) on the pres-

sure at the top of the column. 137
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Figure 3.9 • Comparison of the “Simplified” with the “Full” models with respect to the z-

coordinate for a sinusoidal perturbation (∆P/P∗
0 = 10−1 cos(t )) on the pressure

at the top of the column.138
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Figure 3.10 • Comparison of the “Simplified” with the “Full” models with respect to the

z-coordinate for a sinusoidal perturbation (∆P/P∗
0 = 10−1 cos(10−2t)) on the

pressure at the top of the column. 139
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Figure 3.11 • Evolution of the L2-norm relative errors in space and time on the solid dis-

placement εz,t
u and on the pore pressure εz,t

p with respect to the pulsation of the

loading perturbation.

To conclude on this 1D example, under the condition to an imposed “undrained” loading

that is compatible with our simplified undrained approximation, the simplified model is a

very good simplification of the complete one, which is important as the simplified model is

easier to implement and integrate. However, in real case scenarios modeled as a perturbation

of the “undrained” pressure loading, errors are expected, which scale with the amplitude of

the perturbation ∆P and its time evolution. Assuming that the pressure loading represents a

fluid source, the previous illustration confirms that the characteristic time of the fluid source

term should be derived with respect to the characteristic time of the system (timescale of a

seismic instability here) so that the undrained approximation of the complete model would

remain valid.
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Conclusions and perspectives

1 Main contributions to the modeling of fluid injection ef-

fects in dynamic fault rupture using Fast Boundary Ele-

ment Methods

Chapter 1 summarizes available literature on dynamic fault rupture and gives a comprehen-

sive approach of the concepts used in the present work. The nucleation of a dynamic fault

rupture and its arrest are part of the seismic cycle process that is defined using a kinematic

approach (spring-slider reduced-order-model, see Section 1.2). A linear stability analysis is

performed in Section 1.3 to (re-)derive the instability condition when a rate-and-state friction

law is considered without fluid injection (resp with fluid injection in Section 1.4). After having

emphasized the limitations of a reduced-order-model to model seismic cycle problems in

Section 1.5, Section 2 presents the ingredients required to model a generic seismic cycle

problem. We pay particular attention to the incorporation of hydromechanical couplings

in the problem statement in Section 4. This key point is investigated in Chapter 3. Specifi-

cally, we justify the use of poroelastodynamic equations to take into account fluid effects,

and we detail their impact in the interface condition and the balance momentum equation.

Section 3 provides a large literature review on existing numerical methods in space and time

to simulate seismic cycles. We insist on the advantages of the Fast Boundary Element Method

based on hierarchical matrices (H-BEM) to solve seismic cycle problems for planar faults as

well as for faults of complex geometries. A boundary element based solver for seismic cycle

problem is developed from scratch in the next chapter. Moreover, we raise attention about

the challenging verification and code comparison for seismic cycle simulations, which set

the context for our contribution in Chapter 2.

Chapter 2 presents a significant part of our contribution. We assert the importance of

accurate and efficient numerical tools to simulate seismic cycles problems before incorporat-

ing fluid-effects on fault slip. An important part of this work is devoted to the verification of

seismic cycles simulations for standard two-dimensional quasi-dynamic mode II and III rate-

and-state planar faults. For this purpose, we developed a boundary element method solver

for seismic cycle problems from scratch. This solver incorporates the standard boundary

element method (BEM), the fast boundary element method based on hierarchical matrices

(H-BEM) and the spectral boundary element method (S-BEM) to solve the problem in space.

Three time integration methods are implemented: an explicit-implicit prediction-correction

method inspired by Lapusta et al. (2000), an explicit fourth-fifth order Runge-Kutta (RK45)
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method inspired by Ozawa et al. (2022), and a hybrid prediction-correction - RK45 method

inspired by Romanet and Ozawa (2021). The problem formulation for mode II and mode III

simplified configurations using the boundary integral equation method (BIEM) is detailed in

Section 1. The space and time discretization methods implemented are detailed in Section 2

and Section 3 respectively. A significant part of this chapter is the study of both the conver-

gence and the sensitivity of the seismic cycle simulation results with respect to parameters

that scale the space and time discretization in Section 4.2. Such a sensitivity study has not

been investigated in the literature. This in-depth review of the most widely used methods rep-

resents a promising contribution to help the seismic cycle community develop a joint code.

In Section 4.3, we compare the space discretization methods implemented. We first focus on

one calculation of the shear stress at the fault interface using the traction Boundary Integral

Equation (BIE) previously derived in Section 1. As expected, we show that the convergence of

the calculation of the on-fault shear stress depends on the choice of the space step only for

both standard BEM and H-BEM, whereas it relies on both the choice of the space step and the

size of the discretized domain for S-BEM. We insist on the comparison of the performances

of BEM, H-BEM and S-BEM, which shows the advantages of H-BEM over standard BEM in

case of large problems. In order to provide accurate results, we investigate the coupled effect

of the space step and the time step to prevent numerical artifacts that could be confused with

seismic instabilities, leading to non-interpretable results. Section 4.4 studies the sensitivity of

the calculation of the interface unknowns δ, V , τ, θ, with respect to parameters that scale the

time discretization for the different implemented time-stepping methods, using H-BEM. We

distinguish aseismic phases for which we are able to provide an analytical solution from the

seismic phases. For the latter, we propose a strategy to compare our results with reference

results provided by Pierre Romanet (personal communication) as analytical solutions for

seismic slip simulations are unknown. We first show convergence results in the case of an

aseismic simulation using the analytical solution proposed as a reference. Then, we compare

seismic cycle results to results provided by Pierre Romanet. In particular, we compare the

time at which the slip-rate first overcomes 1 m/s for each seismic event, and show that a small

perturbation of the initialization leads to errors that cumulate at each new seismic event. In

fact, we do not use the same method to mesh the fault as Pierre Romanet, which implies this

small discrepancy at initialization. Finally, this study allows us to assess our numerical tools

on a standard mode III benchmark and compare our results those obtained by Junle Jiang

(member of the SEAS project, see Erickson et al. (2020a)) in Section 5. The previous results

made us aware that the accumulated time shift could be explained by a difference in the

initialization and/or a difference in the parameters that scale the time discretization. Such

results could enhance the strategy that is currently proposed in the SEAS project for code

verification procedure, and could help develop a joint code for seismic cycle simulations.

Now that we implemented accurate numerical tools for seismic cycle simulations, Chap-

ter 3 concentrates on the modeling of fluid-injection effects on fault slip. The originality of

this work is to focus on the case where the fluid is injected at a given distance from the fault

and on fluid effects at the timescale of a seismic motion. It is a key step in order to incorporate

the appropriate hydro-mechanical couplings in the boundary-element-based solver. After

having extended the “dry” two-dimensional mode II and mode III problem from Chapter 2 to

a case with fluid injection in Section 1, we emphasize on the numerical difficulties inherent
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to the use of the complete poroelastodynamic model to incorporate hydro-mechanical cou-

plings in Section 2. Moreover, in Section 3, we assess existing works on fluid effects on fault

slip which highlight the use of simplified poroelastodynamic equations. Nevertheless, such

simplified models are not necessarily adapted to the configuration we consider. We propose a

simplified model allowing to account for fluid effects on fault slip at the timescale of a seismic

motion. Therefore, we conduct a dimensional analysis on poroelastodynamic equations

in Section 4 to formally assess predominant fluid effects at the timescale of a seismic or

aseismic motion. We show that at the timescale of a seismic instability, we can neglect the

relative fluid-solid skeleton motion, and we obtain an undrained model. Conversely, at the

timescale of an aseismic motion, both inertial effects for the solid and for the fluid can be

neglected leading to consolidation equations. We also derive a condition of a fluid-injection

characteristic time so that a fluid injection source term could be maintained in the simplified

model at the timescale of a seismic motion. Hence, these developments enable us to deduce

the simplified poroelastodynamic equations of interest at the timescale of a seismic motion

as well as to assess the validity range of the models used in the literature. The results of the

dimensional analysis are summarized in Section 4.4. Finally, in Section 5, we consider a

simplified 1D poroelastodynamic problem to illustrate the validity range of the simplified

model obtained at the timescale of a seismic motion.

2 Main numerical developments

In order to choose the most appropriate numerical tools to simulate fluid injection effects

on dynamic fault rupture, I have started the seismic cycle code from scratch. It allowed

me to compare different numerical methods in space and time, developed using the same

techniques within a single code base. It was also a new subject in my host laboratories. For

the sake of clarity, I summarize here all the numerical developments of this thesis. Important

numerical developments have been done to assess the capabilities of different numerical

tools incorporating Fast BEMs to solve seismic cycle problems as well as dynamic fault rupture

before incorporating hydromechanical couplings. I have developed a 2D boundary element

method solver for seismic cycle problems to obtain the results presented in Chapter 2. The

implementation is done in Python, and solves 2D quasi-dynamic seismic cycle and dynamic

fault rupture problems for planar fault:

• Mode III and mode II (with a no-opening condition on the fault) with or without a

free-surface option can be considered with a fault governed by rate-and-state friction

with aging law to a given depth, and an imposed creep rate outside the rate-and-state

zone;

• Mode III problems, with a fault governed by rate-and-state friction with aging law or

slip law, and subjected to perturbations in effective normal stress due to fluid injection

and along fault pore fluid diffusion can also be considered.

More precisely, the main software development contributions are:

• The 2D BEM and H-BEM have been implemented from scratch. They also allow to

efficiently compute the quasi-static shear stress τqs (respectively its time-derivative).
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The BEM matrix obtained by discretizing the boundary integral equation relating τqs to

the slip δ is first computed (once for all before the solving when the geometry is fixed).

• The 2D Spectral-BEM has also been implemented from scratch. It allows to efficiently

compute the quasi-static shear stress τqs (respectively its time-derivative) by calcu-

lating the boundary integral equation relating τqs to the slip δ as a simple product in

the Fourier domain with respect to space. I needed this method for the comparisons

studies I proposed as it is mostly used in the seismic cycle community.

• Three time integration methods (the corresponding algorithms are presented in Sec-

tion 3.1) have been implemented from scratch too:

– an explicit-implicit prediction-correction method inspired by Lapusta et al. (2000);

– an explicit fourth-fifth order Runge-Kutta (RK45) method inspired by Ozawa et al.

(2022);

– a hybrid prediction-correction - RK45 method inspired by Romanet and Ozawa

(2021).

We also implemented a CQM routine in Python from scratch to obtain the results pre-

sented in Chapter 3.

Although the efficiency of the mentioned codes can be improved in many ways, we

developed a full prototype code for solving 2D quasi-dynamic seismic cycle problems for

planar faults. It allows comparison between commonly used numerical tools in the seismic

cycle community. In particular, a new time integration or space discretization method can

easily be added to the code, which is promising for future use like the development of a

common code for seismic cycle simulations. A specific routine and several bash scripts have

been proposed to conduct each convergence and sensitivity study efficiently, and the same

structure is used to store results in order to ease the post-process step. The codes developed

contains 11469 lines for source codes, and 5243 lines for post-processing codes. A public

repository on Git will soon be set up to make these developments available to the community.

We will also soon provide our results on SEAS benchmarks to the SCEC group to participate

in the effort of the SEAS project.

3 Directions for future work

The main results of this work are promising and give path to lots of extensions.

A direct extension to this work is to incorporate hydro-mechanical couplings in the code

to provide reliable simulation results for fluid injection induced earthquake as well as for

the assessment of earthquake mitigation strategies using fluid injection. This could be done

using the simplified models resulting from the dimensional analysis performed in Section 4

in Chapter 3. To study fluid effects on fault slip at the timescale of a seismic motion, we

could use the undrained system (3.47). We could start with a quasi-dynamic version of the

undrained model to ease the incorporation of hydromechanical coupling in the boundary

element based solver and avoid the difficulties mentioned in Section 2 of Chapter 3 as analyt-

ical time domain Green function could be derived. Next we could consider a fully-dynamic
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model. However, the difficulty is that the calculation of a convolution product in time is

required. To ensure efficient solving, in the frame of seismic cycle simulations, a constant

time step is usually imposed as detailed by Lapusta and Liu (2009), which can induce cu-

mulative errors and prevent from obtaining interpretable results. If we keep a varying time

step, new values of the fundamental solutions should be computed at each iteration. In

both cases, a cut-off criterion can be estimated to truncate the convolution in time and

accelerate its calculation. The balance between the approximation introduced and the effi-

ciency of the method should be assessed. To study fluid effects on fault slip at the timescale

of a seismic motion, we could use the 2D equivalent of the consolidation system (3.48) as

done by Heimisson et al. (2022), but with a fluid source term at a given distance from the fault.

Other extensions to this work are also possible.

Short-term:. We can first distinguish short-term extensions to improve the accuracy of the

developed numerical tools. Time integration methods for seismic cycle problems could

be improved. We could implement more accurate methods by using higher order time

discretization schemes in prediction-correction methods. Moreover, we could prevent the

time step from oscillating, using control techniques for time step selection (Gustafsson (1991),

Söderlind (2002), or Arévalo et al. (2021) for multistep methods). The computation efficiency

could also be improved. The low-rank approximation of admissible blocks in H-BEM can

be parallelized as well as the two prediction-correction steps on a full time step and on two

successive half-time steps respectively in the hybrid prediction-correction - RK45 method

implemented.

Mid-term:. Next, mid-term extensions could be considered. Regarding the verification of

the accuracy of solving methods for seismic cycle problems, we could use the method of

manufactured solutions to provide an analytical solution to assess the convergence of the

solving methods during seismic phases. The principle of the method of manufactured solu-

tions relies on adapting the initial problem so that it is satisfied by an a priori chosen solution.

In practice, we choose a (manufactured) solution which is similar to the expected one. This

manufactured solution must satisfy the boundary and initial conditions. Next, we add a

source term to the initial balance momentum equation so that the manufactured solution

is an analytical solution of this new problem. Assuming that the order of approximation

of the new governing equation is the same as for the original one, the problem is solved,

and the solution compared to the manufactured solution which stands for the analytical

solution. In general, two manufactured solutions are introduced, which can respectively

be exactly approximated in space or time with the discretization chosen in order to study

independently convergence in space and time. Erickson and Dunham (2014) and Erickson

et al. (2017) introduce a manufactured solution to study convergence in space only, assuming

that the accumulation of error in time is negligible. This method has only been proposed

to verify sufficient accuracy of some Finite Difference Codes (Erickson & Dunham, 2014;

Erickson et al., 2017). This would be complementary to the use of benchmark to validate

solving methods for seismic cycle problems.

Fully-dynamic seismic cycle simulations (based on elastodynamic balance momentum
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equation) would improve the realism of the simulation results without and with fluid injec-

tion. The method proposed by Lapusta and Liu (2009) and largely used in the seismic cycle

community (see Erickson et al. (2023)) gives a starting point to incorporate full elastody-

namics in seismic cycle simulations. However, the main drawback of this method is that it

introduces a constant time step to tackle the expensive computation of the time-convolution

product inherent to the dynamic part. This can induce errors that can cumulate in space and

time and prevent from obtaining interpretable results. As such dynamic effects are especially

relevant during seismic instabilities, we could include such effects during seismic phase only

in our simulations and add a safety coefficient to the minimum time step chosen such that

it would be lower than the minimum optimal seismic time step given in the quasi-dynamic

approximation.

Long-term:. Long-term extensions would focus on the reliability of the seismic cycle model

as a faithful abstraction of reality. Now that we developed a boundary element solver for

standard two-dimensional mode II and mode III seismic cycle problems, we could consider

fully-dynamic three-dimensional problems, with realistic fault geometries, which is possible

with H-BEM (Ando, 2016; Ozawa et al., 2022). However, such cases could lead to prohibitive

computational costs due to the large problem size required so that the cell size could accu-

rately resolve the nucleation length. In addition, the Spectral-BEM cannot be applied. To

avoid these difficulties, we could consider the approach detailed by Ando (2016), who pro-

poses a clever way to decompose the boundary integral equation so that its calculation could

be further accelerate using Fast BEMs bases on Hierarchical matrices. Ozawa et al. (2022)

investigates the use of Lattice Hierarchical matrices to accelerate seismic cycle simulations in

the case of non-planar faults. Considering realistic fault geometries could drastically enhance

the reliability of the prediction of fluid effects on fault slip.
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A
Currently used codes for seismic cycles sim-

ulations

Table A.1 is modified from Erickson et al. (2020a, 2023) and gives details (problem configu-

ration, spatial and temporal discretization methods, . . . etc.) of the currently used codes for

simulations of sequences of earthquakes and aseismic slips. Numerical methods for both

spatial and temporal discretization are given.
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Appendix A. Currently used codes for seismic cycles simulations

Code

name

Modeler

name
2D or 3D Frictiona Rock

structureb Geometryc Rock

responsed Probleme Spatial

discretization

Time-stepping

method

Garnet1
Li M.

Allison K. L.

Rivet M.

2D and 3D RSF Homog.
Planar fault

in SIS

QD and FD

elastic
EC FDM

Adams-Moulton

or BDF

SCYCLE2

Yang Y.

Dunham E.

Zhu W.

Erickson B. A.

Duru K.

2D RSF Homog.
Planar fault

in SIS

QD and FD

elastic /

viscoelastic /

thermoelastic

EC

and

Icesteam

SBP-FDM
Prediction-correction

with RK23 or RK45

FDCYCLE3 Erickson B. 2D RSF Homog.
Planar fault

in SIS

QD

elastic /

plastic

EC SBP-FDM RK45

sbplib4 Almquist M. 2D and 3D RSF Homog.

(Dipping)

planar fault

in SIS

QD

elastic /

viscoelastic

EC SBP-FDM RK23

Thrase5 Harvey T. W. 2D RSF Homog.
Planar fault

in SIS

QD and FD

elastic
EC SBP-FDM

Adaptive time-stepping

method in Julia

EQSimu6 Liu D.

Duan B.
2D and 3D RSF Homog.

Planar fault

in SIS

QD and FD

elastic
EC FEM

Prediction-correction

with Euler scheme

QDESDG7 Kozdon J. E. 2D RSF Homog.
Planar fault

in SIS

QD

elastic
EC DG RK45

tandem8 Uphoff C. 2D and 3D RSF Homog.

(Dipping)

planar fault

in SIS

QD

elastic
EC DG RK23 or RK45

Sem2pack9 Liang C. 2D RSF

Homog.

and

Heterog.

Planar fault

in SIS

QD and FD

elastic /

inelastic

EC

and

DR

SEM
Prediction-correction

with Newmark scheme

SPEAR10 Thakur P. 2D RSF Homog.
Planar fault

in SIS

QD and FD

elastic
EC SEM

Prediction-correction

with Euler scheme

FEBE11 Abdelmeguid M. 2D RSF Homog.
Planar fault

in SIS

QD and FD

elastic
EC

Hybrid

FEM/S-BEM

Prediction-correction

with Euler scheme

BICYCLE12
Jiang J.

Lambert V.

Ma X.

2D RSF Homog.
Planar fault

in SIS

QD and FD

elastic
EC S-BEM

Prediction-correction

with Euler scheme

Motorcycle13 Barbot S. 2D and 3D RSF Homog.

(Multi-)

planar fault(s)

in SIS

QD

elastic
EC S-BEM RK45

Unicycle14 Barbot S. 2D and 3D RSF Homog.

(Dipping)

planar fault

in SIS

QD

elastic /

viscoelastic

EC S-BEM RK45

MDSBI15 Dunham E. 2D and 3D TP-FH-RSF

Homog.

and

Bimaterial

Planar fault

in SIS

QD and FD

elastic

EC

and

DR

MDSBI
Prediction-correction

with RK45

ESAM16 Liu Y. 2D and 3D RSF Homog.
Planar fault

in SIS

QD

elastic
EC S-BEM RK45

QDYN17

Luo Y.

Idini B.

Van den Ende M.

Ampuero J. P.

2D and 3D

RSF and

CNS friction

and heterog.

friction properties

Homog.

(Non-)

planar fault

in SIS

and fault

surrounded by

damaged zone

QD

elastic
EC S-BEM

Bulirsch-Stoer

and RK45

Fastcycles18 Romanet P. 2D and 3D RSF Homog.

(Non-)

planar fault

in SIS

QD and FD

elastic
EC S-BEM

Hybrid

prediction-correction

+ RK45

HBI19 Ozawa S. 2D and 3D RSF Homog.

(Non-)

planar fault

in SIS

QD

elastic
EC

Lattice-

H-BEM
RK45

TriBIE20 Li D. 2D and 3D RSF Homog.

(Dipping/Non-)

planar fault

in SIS

QD

elastic
EC S-BEM Not given

FDRA21 Cattania C. 2D and 3D RSF Homog.

(Dipping/Non-)

planar fault

in SIS

QD

elastic
EC H-BEM Not given

Table A.1 • Details of currently active codes for seismic cycles simulations and configurations

considered.

Several abreviations are used in Table A.1: a RSF is Rate-and-State Friction, TP-FH-RSF

is Rate-and-State Friction with Thermal Pressurization and Flash Heating, CNS is Chen-

Niemeijer-Spiers friction model; b Homog. is Homogeneous et Heterog. is Heterogeneous; c

SIS is Semi-Infinite Space; d QD is quasi-dynamic and FD is fully-dynamic; e EC is earthquake

cycles and DR is dynamic rupture.
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Below are the corresponding useful references for code development and url if code is avail-

able online.
1 Pranger (2020)
2 Erickson and Dunham (2014), Allison and Dunham (2018), https://github.com/kali-allison/

SCycle
3 Erickson and Dunham (2014), Erickson et al. (2017), https://github.com/brittany-erickson/

FDCycle
4 Almquist and Dunham (2021)
5 https://github.com/Thrase/Thrase
6 Liu et al. (2020), Lapusta et al. (2000)
7 https://github.com/jkozdon/QDESDG
8 Uphoff et al. (2022), Abhyankar et al. (2018), https://github.com/TEAR-ERC/tandem
9 https://github.com/jpampuero/sem2dpack
10 Thakur et al. (2020), https://github.com/thehalfspace/Spear
11 Hajarolasvadi and Elbanna (2017), Abdelmeguid et al. (2019), Lapusta et al. (2000)
12 Lapusta and Liu (2009), Lapusta et al. (2000)
13 Barbot (2021)
14 Barbot (2019), http://bitbucket.org/sbarbot
15 https://pangea.stanford.edu/$\sim$edunham/codes/codes.html
16 Liu and Rice (2007)
17 Luo et al. (2017), https://github.com/ydluo/qdyn
18 Romanet and Ozawa (2021)
19 Ozawa et al. (2022), https://github.com/sozawa94/hbi
20 Li and Liu (2016), Li and Liu (2017)
21 Segall and Bradley (2012), Bradley (2014)
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B
Numerical test on fluid-injection induced

slow slip Benchmark

Here, we present a supplementary cross-validation of the numerical tools developed on the

benchmark problem BP6 from SEAS benchmark / validation exercises. This benchmark incor-

porates the effect of fluid injection (at constant rate, followed by along fault fluid diffusion)

on fault slip in the form of a one-way coupling model. In practice, an elastodynamic equa-

tion is combined with a diffusion equation satisfied by the fluid pressure. Quasi-dynamic

approximation is assumed for this problem.

We consider the case of a 2D problem in whole-space containing a 1D fault subjected to

rate-and-state friction with perturbation of the effective normal stress due to fluid-injection

and along-fault pore fluid diffusion Figure B.1. Anti-plane motion is considered The problem

Figure B.1 • 2D illustration of benchmark problem 6 (BP6 SEAS) from https://strike.scec.org/

cvws/seas/download/SEAS_BP6_Nov18.pdf.

statement is similar to the one of BP1 SEAS. The only change consists in a perturbation of the
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Appendix B. Numerical test on fluid-injection induced slow slip Benchmark

effective normal stress due to the pore fluid pressure.

σn(z, t ) =σ0 −p(z, t ) (B.1)

The pore-fluid pressure satisfies a 1D diffusion equation (B.2).

∂p

∂t
−

k

Φβη

∂2p

∂z2
=

qinj(t )

βΦ
δ(z) (B.2)

where the parameters are given in table B.1 and the solution of Equation (B.2) is known

analytically (see Equation (B.3))

p(z, t ) =
q0

βΦ
p
α

[G(z, t ,α)H (t )−G(z, t − toff,α)H (t − toff)] (B.3)

where,

G(z, t ,α) =
p

t

 exp
(
−z2

4αt

)
p
π

−
|z|

p
4αt

erfc

( |z|
p

4αt

) ,

and H (t ) is the Heaviside function.

Parameter Definition Value, Unit

µ Shear modulus ≃ 32 GPa

cs Shear wave speed 3464 m/s

σn Initial effective normal stress at the fault interface 50 MPa

a(z) Rate and state parameter 0.007

b(z) Rate and state parameter 0.005

Dc (z) Characteristic slip distance 4 mm

Vpl Imposed slip rate out of rate-and-state zone 0 m/s

Vinit Initial slip rate 10−12 m/s

V0 Reference slip rate 10−6 m/s

f0 Reference friction coefficient 0.6

W f Width of the rate-and-state zone 40 km

q0 fluid injection rate 1.25 10−6 m/s

β pore and fluid compressibility 10−8 Pa−1

Φ Porosity 0.1

k permeability 10−13 m2

η fluid viscosity 10−3 Pa.s

α hydraulic diffusivity 0.1 m2/s

to f f injection turn-of time 100 days

Table B.1 • Parameter values used for BP1 SEAS.

Here, we consider a weak coupling between the fluid and the solid. We used the hybrid

prediction-correction - RK45 method (inspired by Romanet and Ozawa (2021)) with hierar-

chical matrices based fast boundary element methods to obtain the results presented here.
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Parameters βmin εNewton maxiterNewton εsolver

Hybrid method 0.12 10−6 40 10−5

Table B.2 • Time discretization parameters for the benchmark problem 6 (BP6) seismic cycle

simulation.

Parameters Lb/∆z Nrep Nleaf η εACA

H-BEM 6 1 100 3 10−5

Table B.3 • Space discretization parameters for the benchmark problem 6 (BP6) seismic cycle

simulation.

The parameters used for the time-stepping method are given in Table B.2. The parameters

used for the H-BEM are given in Table B.3

Figure B.2 shows the time evolution of each interface unknown: the slip δ, the slip-rate V ,

the shear stress τ, the state-variable θ, and the fluid pressure p. We observe that a slow slip

is induced by fluid diffusion along the fault. Our results are in good agreement with results

from So Ozawa, approved by seismic cycles’ community (See Figure B.2).
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Figure B.2 • Time evolution of the slip rate at z = 0 km, close to the fluid injection point and

to the nucleation region of the slow slip event (SSE).
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C
Dimensional analysis of poroelastodynamic

equations

1 Assessing the governing parameters

Here we describe the methodology to choose orders of magnitude for the governing parame-

ters in Table 3.2

These developments are conducted under Biot’s poroelastic assumptions. To determine

the longitudinal wave modulus M , we calculate the bulk modulus of the skeleton K and the

shear modulus of the skeleton G . From equation (6) in Schanz (2009) which defines the Biot’s

effective stress coefficient, we have:

K = K s(1−α)

where K s is the bulk modulus of the solid grains.

We then use the relation between the bulk modulus and the shear modulus of the solid

grains (Ks and Gs respectively).

K s =
2G s(1+ν)

3(1−2ν)

We impose the shear modulus of the solid grains G s = 30·109 Pa, the Poisson ratio ν= 0.25

and Biot’s coefficient α= 0.8. Consequently, K ≈ 1010 Pa. Then we reuse the previous relation

(1) to deduce G from K .

G =
3K (1−2ν)

2(1+ν)

We obtain G ≈ 6 ·109 Pa and M ≈ 18 ·109 Pa.

We choose the following values for bulk density ρ, the fluid density ρ f and apparent mass

density ρa .

ρ = 2500 kg.m−3, ρ f = 1000 kg.m−3, ρa = 0.66Φρ f ≈ 99 kg.m−3

ρa is linked to the tortuosity and is defined in Schanz (2009).
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Appendix C. Dimensional analysis of poroelastodynamic equations

We choose the following values for porosity, permeability and dynamic viscosity.

Φ= 0.15, k = 10−10 m2, η≈ 3 ·10−4 Pa.s

To calculate R, we use the expression from Equation (4) in Schanz (2009).

R =
Φ2K s

(1−K /K s)+Φ(K s/K f −1)

We take K f as the inverse of the fluid compressibility β≈ 4 ·10−10 Pa−1. We obtain R ≈ 3.1 ·108

Pa.

2 Scaling poroelastodynamic equations

Here, we describe the methodology for the non-dimensionalization of the poroelastodynamic

equations (3.8a) and (3.8b) using the scales introduced in Table 3.1. We give the develop-

ments for the one-dimensional version of the poroelastodynamic equations for the sake of

simplicity. The method used the one-dimensional poroelastodynamic equations with fluid

source, and for the two-dimensional and three-dimensional version of the poroelastody-

namic equations follows the same steps. Only the scales for the non-dimensionalization of

the space coordinate and for the displacement field are different. They are given in (3.42).

We first rewrite the quantityβ(s) from Equation (3.9) in terms of the timescales introduced

in Table 3.1.

β(s) =
T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1

=
T f

Tc
β(s), with β(s) = s

(
1+ s

T f

Tc

T

Φ

)−1

, and T =
ρa/ρ f +Φ

Φ
, (C.1)

where T is the tortuosity.

Then, we perform the non-dimensionalization of the poroelastodynamic equations (3.8a)

and (3.8b) using the scales introduced in Table 3.1, and using the expression of β(s) from

(C.1)

Mϵ0

W f
ûz,zz −

(
α−

T f

Tc
β(s)

)
Σ

W f
p̂ ,z −

(
ρ−

T f

Tc
β(s)

)
ρ f U

T 2
c

s2ûz = 0, (C.2a)

T f Σ

ρ f W 2
f

β(s)

s
p̂ ,zz −

Φ2Σ

RTc
sp̂ −

(
α−

T f

Tc
β(s)

)
ϵ0

Tc
sûz,z = 0. (C.2b)
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3. Determining 1D poroelastodynamic fundamental solutions

Then, we divide (C.2a) by
Mϵ0

W f
and (C.2b) by

Φ2Σ

RTc
, and we can notice that

Σ

W f
×

(
Mϵ0

W f

)−1

= 1

ρ f U

T 2
c

×
(

Mϵ0

W 2
f

)−1

=
1

ρ

W 2
f

c2
p

1

T 2
c
=

1

ρ

T 2
pw

T 2
c

T f Σ

ρ f W 2
f

×
(
Φ2Σ

RTc

)−1

=
Rk

ηD2

Tcλ
2
L

Φ2
=

Tc

Td

λ2
L

Φ2

ϵ0

Tc
×

(
Φ2Σ

RTc

)−1

=
R

Φ2M

Thus, (C.2a) and (C.2b) write

ûz,zz −
(
α−

T f

Tc
β(s)

)
p̂ ,z −

(
ρ−

T f

Tc
β(s)

)
1

ρ

T 2
pw

T 2
c

s2ûz = 0, (C.3a)

Tc

Td

λ2
L

Φ2

β(s)

s
p̂ ,zz − sp̂ −

(
α−

T f

Tc
β(s)

)
R

Φ2M
sûz,z = 0. (C.3b)

We develop the expression of β(s) in Equations (C.3a) and (C.3b)

ûz,zz −
α−

T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 p̂ ,z −
ρ− T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 1

ρ

T 2
pw

T 2
c

s2ûz = 0, (C.4a)

Tc

Td

λ2
L

Φ2

(
1+ s

T f

Tc

T

Φ

)−1

p̂ ,zz − sp̂ −
α−

T f

Tc
s

(
1+ s

T f

Tc

T

Φ

)−1 R

Φ2M
sûz,z = 0. (C.4b)

3 Determining 1D poroelastodynamic fundamental solu-

tions

Here, we detail the calculation of the displacement fundamental solutions of the homoge-

neous complete poroelastodynamic equations (3.55a) and (3.55b) with non-homogeneous

boundary conditions (3.56). Such an ordinary differential equation system can be solved

using the exponential ansatz

Ĝu
y (z, s) =U eλsz , Ĝ p (z, s) = Peλsz , (C.5)

where Ĝu and Ĝ p are the Laplace transforms of the displacement and pressure fundamental

solutions. Injecting the exponential solution forms in equations (3.55a) and (3.55b), we

obtain Mλ2 − (ρ−β(s)ρ f ) −(α−β(s))λ/s

−s(α−β(s))λ λ2
β(s)

ρ f
−
φ2

R

[
U

P

]
=

[
0

0

]
(C.6)
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To obtain a non-trivial solution of equation (C.6), we have to satisfy the equation

Mβ(s)

ρ f︸ ︷︷ ︸
A

λ4 −
(

Mφ2

R
+ (
ρ−β(s)ρ f

) β(s)

ρ f
+ (
α−β(s)

)2

)
︸ ︷︷ ︸

B

λ2 +
φ2

(
ρ−β(s)ρ f

)
R︸ ︷︷ ︸
C

= 0 (C.7)

which leads to the following eigenvalues:

λ1 =−λ3 =

√
B +

p
B 2 −4AC

2A
, λ2 =−λ4 =

√
B −

p
B 2 −4AC

2A

Moreover, the eigenvectors of the system (C.6) satisfy the relation

Pi =
Mλ2

i − (ρ−β(s)ρ f )

(α−β(s))λi
sUi =̂di sUi , ⇒ d1 =−d3, d2 =−d4

Hence, the complete solution of the homogeneous problem can write as

Ĝu
z (z, s) =

4∑
i=1

Ui eλi sz

Ĝ p (z, s) =
4∑

i=1
Pi eλi sz

T̂z(z, s) = MĜu
z,z(z, s)−αĜ p (z, s)

Q̂z(z, s) =−
β(s)

sρ f

(
Ĝ p

,z(z, s)+ s2ρ f Ĝu
z (z, s)

)
=−

β(s)M s

ρ f (α−β(s))

4∑
i=1

λ2
i Ui eλi sz +β(s)s

ρ−αρ f

ρ f (α−β(s))
Ĝu

z (z, s)

where T̂z and Q̂z are the Laplace transform of the traction and the fluid flux fundamental

solutions of the complete poroelastodynamic equations.

Finally, we find the values of Ui using the boundary conditions. As we are dealing with a

linear problem, the superposition principle is valid. Therefore, the calculation of the solutions

can be divided into different loading cases

• first loading case: ûz(z = 0) = 0,q̂z(z = 0) = 0, t̂z(z = L) =−Σ0, p̂(z = L) = 0

• second loading case: ûz(z = 0) = 0,q̂z(z = 0) = 0, t̂z(z = L) = 0, p̂(z = L) = P0
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We apply boundary conditions for the first load case:

ûy (y = 0, s) = 0 =U1 +U2 +U3 +U4 (C.8)

q̂(y = 0, s) = 0 =−
β(s)M s

ρ f (α−β(s))

(
λ2

1(U1 +U3)+λ2
2(U2 +U4)

)
+β(s)s

ρ−αρ f

ρ f (α−β(s))
(U1 +U2 +U3 +U4)

(C.9)

σ̂y (y = L, s) =−Σ0 = M
(
λ1sU1eλ1sL +λ2sU2eλ2sL −λ1sU3e−λ1sL −λ2sU4e−λ2sL

)
−α

(
d1sU1eλ1sL +d2sU2eλ2sL −d1sU3e−λ1sL −d2sU4e−λ2sL

)
= (Mλ1 −αd1)s

(
U1eλ1sL −U3e−λ1sL

)
+ (Mλ2 −αd2)s

(
U2eλ2sL −U4e−λ2sL

)
(C.10)

p̂(y = L, s) = 0 = d1s
(
U1eλ1sL −U3e−λ1sL

)
+d2s

(
U2eλ2sL −U4e−λ2sL

)
(C.11)

(C.8) ⇔ U1 +U3 =−(U2 +U4)

(C.8) injected in (C.9) gives (−λ2
1 +λ2

2)(U2 +U4) = 0 ⇒ U4 =−U2 and U3 =−U1

(C.11) ⇔ U2 =−
d1

d2
U1

eλ1sL

eλ2sL

1+e−2λ1sL

1+e−2λ2sL

(C.10) ⇔ U1 =Σ0

d2

M s(d1λ2 −d2λ1)

e−λ1sL

1+e−2λ1sL
⇒ U2 =−Σ0

d1e−λ2sL

M s(d1λ2 −d2λ1)(1+e−2λ2sL)

Finally, we obtain

ûy (y, s) =
Σ0

M s(d1λ2 −d2λ1)

[
d2

(
e−λ1s(L−y) −e−λ1s(L+y)

)
1+e−2λ1sL

−
d1

(
e−λ2s(L−y) −e−λ2s(L+y)

)
1+e−2λ2sL

]

p̂(y, s) =
Σ0d1d2

M(d1λ2 −d2λ1)

[ (
e−λ1s(L−y) +e−λ1s(L+y)

)
1+e−2λ1sL

−
(
e−λ2s(L−y) +e−λ2s(L+y)

)
1+e−2λ2sL

] (C.12)

We apply boundary conditions for the second load case:

ûy (y = 0, s) = 0 =U1 +U2 +U3 +U4 (C.13)

q̂(y = 0, s) = 0 =−
β(s)M s

ρ f (α−β(s))

(
λ2

1(U1 +U3)+λ2
2(U2 +U4)

)
+β(s)s

ρ−αρ f

ρ f (α−β(s))
(U1 +U2 +U3 +U4)

(C.14)

σ̂y (y = L, s) = 0 = M
(
λ1sU1eλ1sL +λ2sU2eλ2sL −λ1sU3e−λ1sL −λ2sU4e−λ2sL

)
−α

(
d1sU1eλ1sL +d2sU2eλ2sL −d1sU3e−λ1sL −d2sU4e−λ2sL

)
= (Mλ1 −αd1)s

(
λ1sU1eλ1sL −λ1sU3e−λ1sL

)
+ (Mλ2 −αd2)s

(
λ2sU2eλ2sL −λ2sU4e−λ2sL

)
(C.15)

p̂(y = L, s) = P0 = d1s
(
λ1sU1eλ1sL −λ1sU3e−λ1sL

)
+d2s

(
λ2sU2eλ2sL −λ2sU4e−λ2sL

)
(C.16)
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(C.13) ⇔ U1 +U3 =−(U2 +U4)

(C.13) injected in (C.14) gives (−λ2
1 +λ2

2)(U2 +U4) = 0 ⇒ U4 =−U2 and U3 =−U1

(C.15) ⇔ U2 =−
(Mλ1 −αd1)

(Mλ2 −αd2)
U1

eλ1sL

eλ2sL
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1+e−2λ2sL
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M s(d1λ2 −d2λ1)(1+e−2λ2sL)

Finally, we obtain
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]
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)
1+e−2λ2sL

]
(C.17)

Hence, for the boundary conditions considered in (3.56), the displacement and pore-

pressure fundamental solutions express as

ûy (y, s) =
Σ0

M s(d1λ2 −d2λ1)

[
d2

(
e−λ1s(L−y) −e−λ1s(L+y)

)
1+e−2λ1sL

−
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(
e−λ2s(L−y) −e−λ2s(L+y)

)
1+e−2λ2sL

]

+
P0

M s(d1λ2 −d2λ1)

[
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(
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)
1+e−2λ1sL

−
(Mλ1 −αd1)

(
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)
1+e−2λ2sL

]
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M(d1λ2 −d2λ1)

[ (
e−λ1s(L−y) +e−λ1s(L+y)

)
1+e−2λ1sL

−
(
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)
1+e−2λ2sL

]

+
P0

M(d1λ2 −d2λ1)

[
d1(Mλ2 −αd2)

(
e−λ1s(L−y) +e−λ1s(L+y)

)
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−
d2(Mλ1 −αd1)

(
e−λ2s(L−y) +e−λ2s(L+y)

)
1+e−2λ2sL

]

(C.18)

Now, we detail the calculation of the displacement fundamental solutions of the homoge-

neous simplified poroelastodynamic equations (3.57a) and (3.57b) with non-homogeneous

boundary conditions (3.58), from which we can deduce the pore-pressure at the top of the

column (see Equation (3.60)) and verify that there is no fluid flux at the bottom of the col-

umn (see Equation (3.61)). (3.57a) is a second order ordinary differential equation on ûz , its

characteristic equation is given by (
M +α2

R

φ2

)
λ2 −ρ = 0 (C.19)
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yielding

λ1 =−λ2 =

√√√√ ρ

M +α2R/φ2

this leads to the complete solution of the homogeneous problem

Ĝu
z (z, s) =

2∑
i=1

Ui eλi sz

We apply the boundary conditions:

ûy (y = 0, s) = 0 =U1 +U2 ⇒ U1 =−U2 (C.20)

σ̂y (y = L, s) =−Σ0 = Mûy,y (y = L, s)−αp̂(y = L, s) = (M +α2R/φ2)ûy,y (y = L, s)

=
(

M +α2
R

φ2

)
λ1sU1

(
eλ1sL +e−λ1sL

)
⇒U1 =−

Σ0

sλ1
(
M +α2R/Φ2

) e−λ1sL

1+e−2λ1sL
=−U2

(C.21)

Finally we obtain the solutions

ûy (y, s) =
−Σ0

sλ1
(
M +α2R/Φ2

)e−λ1s(L−y) −e−λ1s(L+y)

1+e−2λ1sL

p̂(y, s) =−α
R

Φ2
ûy,y (y, s) =

αΣ0R/Φ2(
M +α2R/Φ2

)e−λ1s(L−y) +e−λ1s(L+y)

1+e−2λ1sL

= P∗
0

e−λ1s(L−y) +e−λ1s(L+y)

1+e−2λ1sL

(C.22)
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D
Extended abstract in French

1 Motivations

Le 11 mars 2011, un séisme sous-marin d’une magnitude de 9.1 s’est produit dans l’océan

Pacifique, à 72 km à l’est de la péninsule d’Oshika, dans la région de Tohoku. La fosse du

Japon s’est déplacée de 60 m à la suite du séisme, la Terre a été déplacée sur son axe de sorte

que le jour a été raccourci de 1.8 microseconde, et le tremblement de terre a déclenché un

tsunami qui a provoqué la catastrophe nucléaire de Fukushima Daiichi. Le 6 février 2023,

un tremblement de Terre de magnitude 7.8 a frappé le sud et le centre de la Turquie, ainsi

que le nord et l’ouest de la Syrie. Il a rompu environ 370 km de la faille anatolienne orientale,

produisant un glissement maximal de 9 m dans la croûte terrestre. Ce qui est intéressant, c’est

que les ondes sismiques détectées dans le monde entier et responsables de graves dégâts

humains et infrastructurels ne représentent qu’une petite partie de l’énergie libérée lors

d’un événement sismique. En fait, la majeure partie de l’énergie est dissipée par la friction

(Kanamori & Brodsky, 2004; Kanamori & Rivera, 2006). Par conséquent, les mécanismes à

l’origine de la friction sont toujours étudiés pour comprendre la nucléation, l’évolution et

l’arrêt des événements sismiques. Une attention particulière est accordée au comportement

de friction cyclique apparent des failles (Bakun & Lindh, 1985).

Les tremblements de Terre sont généralement considérés comme des catastrophes na-

turelles, mais ils peuvent également être induits par l’activité humaine. Le 12 septembre

2016 et le 15 novembre 2017, deux tremblements de Terre de magnitude 5.5 ont frappé la

Corée du Sud (respectivement à Gyeongju et à Pohang) sur une importante faille latérale

droite, la faille de Yangsan, et à proximité d’un site de géothermie (Enhanced Geothermal

Systems, EGS). Sur ce site EGS, entre début 2016 et septembre 2017, plusieurs milliers de

mètres cubes d’eau ont été injectés sous pression dans des puits atteignant environ 4 km de

profondeur, ce qui suggère que l’activité EGS a induit les deux tremblements de Terre. Le

12 novembre 2019, l’entreprise de géothermie Georhin est susceptible d’avoir provoqué un

séisme de magnitude 3,1 au nord de Strasbourg. Les activités industrielles respectueuses

de l’environnement, telles que les projets de géothermie profonde et la séquestration du

CO2, nécessitent l’injection de grandes quantités de fluides dans la croûte terrestre. Les

expériences actuelles montrent que des tremblements de Terre de magnitude modérée à

importante peuvent être induits/déclenchés, ce qui met en péril la viabilité de ces projets
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prometteurs pour l’environnement.

Nous ne sommes toujours pas en mesure de prédire les tremblements de Terre naturels

et induits par l’activité humaine. Cependant, sur la base du concept établi selon lequel

le glissement des failles peut être stimulé par l’injection de fluide dans la croûte terrestre,

une nouvelle question d’actualité dans la communauté est de montrer que l’instabilité des

tremblements de Terre pourrait être atténuée par un contrôle actif de la pression du fluide.

Une telle étude est menée dans le cadre du projet CoQuake (Controlling earthQuakes, www.

coquake.eu) du Conseil européen de la recherche. Ce projet propose d’éviter les instabilités

sismiques en les provoquant à un niveau énergétique inférieur, réduisant ainsi le risque

sismique et son coût humain et économique. Ces points et le fait que la nucléation des

tremblements de Terre naturels et induits reposent sur des principes physiques similaires

justifient le développement d’outils numériques efficaces à grande échelle pour simuler

l’instabilité sismique.

Dans ce travail, nous nous concentrons sur le développement de simulations efficaces

et précises des effets du fluide dans la rupture dynamique des failles, lorsque le fluide est

injecté à une distance donnée de la faille. Cet objectif peut être décomposé en deux tâches

principales :

• Une étude comparative approfondie des outils numériques existants pour les cycles

sismiques afin de déterminer l’approche la plus prometteuse pour une description

précise de la rupture dynamique des failles ;

• Proposition de modèles simplifiés destinés à l’étude des effets de l’injection de fluide

dans la rupture de faille dynamique.

Les outils numériques développés constituent des éléments de base pour aider la commu-

nauté à développer des simulations de plus en plus réalistes (incorporant des géométries de

faille réalistes en 3D et des couplages multi-physiques), afin de comprendre et d’atténuer les

instabilités des tremblements de Terre.

2 Approche scientifique

Ce travail vise à modéliser les effets de l’injection de fluide sur la rupture dynamique de faille,

c’est-à-dire le glissement sismique à l’interface. Pour atteindre cet objectif, la première étape

consiste à modéliser l’instabilité sismique. Une rupture dynamique de faille est l’une des

trois étapes principales d’un cycle sismique, qui prend en compte la lente accumulation

de la contrainte de cisaillement au niveau de la faille jusqu’à la nucléation d’un glissement

sismique, et son arrêt suivi par l’accommodation de la croûte terrestre à un nouvel état

d’équilibre. Par conséquent, nous proposons tout d’abord de modéliser et de simuler un

problème de cycle sismique afin de décrire avec précision le mouvement sismique depuis

son initiation jusqu’à son arrêt.

Une partie importante de cette thèse est consacrée au développement d’outils numériques

efficaces, issus de l’état de l’art, afin de simuler des cycles sismiques, avant d’incorporer les

effets de l’injection de fluide sur le glissement des failles. Nous utilisons la méthode des

éléments de frontière (BEM), connue pour son efficacité dans la résolution de problèmes
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élastodynamiques dans des domaines non bornés à grande échelle (Chaillat et al., 2017;

Kpadonou et al., 2020), et de problèmes de cycles sismiques (Ando (2016), Luo et al. (2017),

Barbot (2021), and Ozawa et al. (2022) parmi d’autres). Pour cette classe de problèmes, la BEM

présente de nombreux avantages par rapport aux méthodes volumiques telles que la méth-

ode des Différences Finies (FD) ou la Méthode des Éléments Finis (FEM) : réduction d’une

dimension du domaine de calcul, très bonne précision et pas de troncature artificielle du

domaine de calcul grâce à une formulation exacte de la condition de rayonnement à l’infini.

De plus, le développement récent des BEM rapides, tels que les BEM accélérés par multipôles

rapides ou les BEM basés sur des matrices hiérarchiques, permet de réaliser des simulations

compétitives avec un coût de calcul très faible. La méthode est maintenant suffisamment

mature pour traiter des géométries complexes et des configurations réalistes Chaillat et al.

(2012), mais pour une physique unique. Une approche progressive est adoptée dans ce travail,

en considérant des problèmes simplifiés avant qu’un cas plus complexe à grande échelle

puisse être considéré avec les outils numériques développés. Étant donné que les tremble-

ments de Terre naturels et induits par l’injection de fluide suivent des principes physiques

similaires en ce qui concerne leur nucléation, un point de départ est de se concentrer d’abord

sur un cas “sec” sans injection de fluide.

Cette thèse se concentre sur la vérification et la comparaison de différentes méthodes

d’intégration temporelle incorporant des BEMs rapides, qui sont couramment utilisées dans

la communauté des cycles sismiques, et sur leur sensibilité par rapport à leurs paramètres.

Les exercices de vérification de codes sont encore largement discutés, comme le détaillent

Erickson et al. (2020a, 2023). Dans le but de proposer une méthode de vérification applicable

quelque soit le solveur employé, la simulation d’un mouvement asismique est distinguée

de la simulation d’un cycle sismique. Une solution analytique est proposée pour vérifier

la simulation d’un glissement asismique, et une procédure pour comparer les résultats des

cycles sismiques aux résultats de référence est détaillée.

Un autre défi consiste à étendre les capacités des outils numériques développés pour

intégrer les effets de l’injection de fluide dans le glissement de faille. Dans cette thèse, on

s’intéresse principalement aux effets d’injection de fluide à l’échelle de temps spécifique d’un

mouvement sismique, ce qui n’a pas été pris en compte dans la littérature. Nous supposons

également que le fluide est injecté dans la croûte terrestre à une distance donnée de la faille.

Le cadre poroélastodynamique est choisi pour intégrer les couplages hydromécaniques.

Cependant, un modèle poroélastodynamique complet nécessiterait des coûts de calcul ou

des approximations non négligeables. Ainsi, une réduction du modèle complet est nécessaire

pour fournir un modèle efficace qui serait plus facile à intégrer dans le cadre numérique

proposé, et qui prendrait en compte avec précision les effets du fluide prédominants à

l’échelle de temps d’un mouvement sismique ou asismique. Une analyse dimensionnelle

permet des simplifications rigoureuses du modèle complet. Une illustration numérique

des résultats obtenus est cruciale avant d’effectuer un test multi-physique utilisant les BEM

rapides pour résoudre un problème de rupture de faille dynamique avec injection de fluide à

l’échelle de temps d’un glissement sismique.
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3 Organisation de la thèse

Cette thèse est organisée en trois chapitres. Le chapitre 1 introduit les notions d’instabilité

sismique et de cycle sismique, en abordant à la fois le glissement sec et le glissement induit

par le fluide dans les systèmes de failles frictionnelles. Ce chapitre permet de situer ce travail

dans le contexte de la littérature existante, justifie la méthodologie de recherche et propose

une revue des notions et des outils (existants) utilisés dans la suite. Les chapitres 2 et 3 sont

consacrés aux principales contributions de ce travail :

• la proposition d’une méthode de comparaison des méthodes de simulation des cycles

sismiques et le développement d’un solveur 2D incluant les différentes méthodes

d’intégration temporelle et spatiale comparées.

• la determination des outils numériques les plus performants pour incorporer les ef-

fets de l’injection de fluide à l’échelle de temps d’un mouvement sismique dans les

simulations.

• la justification rigoureuse de la modélisation des effets de l’injection de fluide à distance

d’une faille sur son comportement en frottement.

4 Principaux résultats et conclusions

Le chapitre 1 résume la littérature disponible sur les ruptures dynamique de faille et donne

une approche pédagogique des concepts utilisés dans cette thèse. La nucléation d’une

rupture dynamique de faille et son arrêt font partie du processus de cycle sismique qui est

défini à l’aide d’une approche cinématique (modèle d’ordre réduit de type patin-ressort, voir

section 1.2). Une analyse de stabilité linéaire est effectuée à la section 1.3 pour (re)dériver

la condition d’instabilité lorsqu’une loi de frottement dépendante en vitesse et en variable

d’état est considérée sans injection de fluide (respectivement avec injection de fluide à la

section 1.4). Après avoir souligné les limites d’un modèle d’ordre réduit pour modéliser

les problèmes de cycles sismiques dans la section 1.5, la section 2 présente les ingrédients

nécessaires pour modéliser un problème générique de cycle sismique. Nous accordons une

attention particulière à l’incorporation des couplages hydromécaniques dans l’énoncé du

problème à la section 4. Ce point clé est étudié au chapitre 3. En particulier, nous justifions

l’utilisation des équations poroélastodynamiques pour prendre en compte les effets du fluide,

et nous détaillons leur impact dans la condition d’interface et l’équation de mouvement. La

section 3 fournit une large revue de la littérature sur les méthodes numériques existantes dans

l’espace et le temps pour simuler les cycles sismiques. Nous insistons sur les avantages de la

méthode des éléments de frontière rapide basée sur les matrices hiérarchiques (H-BEM) pour

résoudre les problèmes de cycles sismiques pour les failles planes ainsi que pour les failles

de géométries complexes. Un solveur basé sur les éléments de frontière pour les problèmes

de cycles sismiques est développé à partir de zéro dans le chapitre suivant. En outre, nous

attirons l’attention sur la difficulté de la vérification et de la comparaison des codes pour les

simulations de cycles sismiques, ce qui définit le contexte de notre contribution au chapitre

2.
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Le chapitre 2 présente une partie importante de notre contribution. Disposer d’outils

numériques précis et efficaces est essentiel pour simuler les problèmes de cycles sismiques

avant d’incorporer les effets du fluide sur le glissement des failles. Une partie importante

de ce travail est consacrée à la vérification des simulations de cycles sismiques pour des cas

standard de failles planes bidimensionnelles en quasi-dynamiques et chargées en mode II et

III. Pour ce faire, nous avons développé à partir de zéro un solveur 2D basé sur la méthode des

éléments de frontière pour les problèmes de cycles sismiques. Ce solveur intègre la méthode

des éléments de frontière standard (BEM), la méthode des éléments de frontière rapide basée

sur des matrices hiérarchiques (H-BEM) et la méthode des éléments de frontière spectrale

(S-BEM) pour résoudre le problème dans l’espace. Trois méthodes d’intégration temporelle

sont mises en œuvre : une méthode de prédiction-correction explicite-implicite inspirée

de Lapusta et al. (2000), une méthode explicite de Runge-Kutta (RK45) à l’ordre quatre et

cinq inspirée de Ozawa et al. (2022), et une méthode hybride prédiction-correction - RK45

inspirée de Romanet and Ozawa (2021). La formulation du problème pour les configura-

tions simplifiées en modes II et III utilisant la méthode des équations intégrales de frntière

(BIEM) est détaillée dans la section 1. Les méthodes de discrétisation spatiale et temporelle

mises en œuvre sont détaillées dans les sections 2 et Section 3 respectivement. Une partie

importante de ce chapitre concerne l’étude de la convergence et de la sensibilité des résultats

de simulation de cycles sismiques par rapport aux paramètres de discrétisation spatiale et

temporelle dans la section Section 4.2. Une telle étude de sensibilité n’a pas été proposée

dans la littérature. Cet examen approfondi des méthodes les plus utilisées représente une

contribution prometteuse pour aider la communauté des cycles sismiques à développer

un code commun. Dans la section 4.3, nous comparons les méthodes de discrétisation

spatiale mises en œuvre. Nous nous concentrons d’abord sur un calcul de la contrainte de

cisaillement à l’interface de la faille en utilisant l’équation intégrale de frontière en traction

(BIE) dérivée précédemment dans la section 1. Comme attendu, nous montrons que la

convergence du calcul de la contrainte de cisaillement sur la faille ne dépend que du choix

du pas d’espace pour la BEM standard et la H-BEM, alors qu’elle dépend à la fois du choix

du pas d’espace et de la taille du domaine discrétisé pour la S-BEM. Nous insistons sur la

comparaison des performances de BEM, H-BEM et S-BEM, qui montre les avantages de la H-

BEM par rapport à la BEM standard dans le cas de problèmes de grande taille. Afin de fournir

des résultats précis, nous étudions l’effet couplé du pas d’espace et du pas de temps pour

éviter les artefacts numériques qui pourraient être confondus avec des instabilités sismiques,

conduisant à des résultats non interprétables. La section 4.4 étudie la sensibilité du calcul des

inconnues d’interface δ, V , τ, et θ par rapport aux paramètres de discrétisation temporelle

pour les différentes méthodes d’intégration temporelle implémentées, en utilisant la H-BEM.

Nous distinguons les phases asismiques pour lesquelles nous sommes en mesure de fournir

une solution analytique des phases sismiques. Pour ces dernières, nous proposons une

stratégie de comparaison de nos résultats avec des résultats de référence fournis par Pierre

Romanet (communication personnelle) car les solutions analytiques pour les simulations de

glissement sismique sont inconnues. Nous montrons d’abord les résultats de convergence

dans le cas d’une simulation asismique en utilisant la solution analytique proposée comme

référence. Ensuite, nous comparons les résultats des cycles sismiques aux résultats fournis

par Pierre Romanet. En particulier, nous comparons le temps auquel le taux de glissement
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dépasse pour la première fois 1 m/s pour chaque événement sismique, et nous montrons

qu’une petite perturbation de l’initialisation conduit à des erreurs qui se cumulent à chaque

nouvel événement sismique. En effet, nous n’utilisons pas la même méthode de maillage de

la faille que Pierre Romanet, ce qui implique ce petit écart à l’initialisation. Enfin, cette étude

nous permet d’évaluer nos outils numériques sur un benchmark standard en mode III et de

comparer nos résultats à ceux obtenus par Junle Jiang (membre du projet SEAS, voir Erickson

et al. (2020a)) dans la section 5. Les résultats précédents nous ont fait prendre conscience que

le décalage temporel accumulé pouvait s’expliquer par une différence dans l’initialisation

et/ou une différence dans les paramètres qui échelonnent la discrétisation temporelle. De

tels résultats pourraient améliorer la stratégie actuellement proposée dans le projet SEAS

pour la procédure de vérification du code, et pourraient aider à développer un code commun

pour les simulations de cycles sismiques.

A présent que nous avons mis en œuvre des outils numériques précis pour les simulations

de cycles sismiques, le chapitre 3 se concentre sur la modélisation des effets de l’injection de

fluide sur le glissement des failles. L’originalité de ce travail est de se concentrer sur le cas où

le fluide est injecté à une distance donnée de la faille et sur les effets du fluide à l’échelle de

temps d’un mouvement sismique. Il s’agit d’une étape essentielle pour intégrer les couplages

hydromécaniques appropriés dans le solveur basé sur les éléments de frontière. Après avoir

étendu le problème bidimensionnel “sec” en modes II et III du chapitre 2 à un cas avec

injection de fluide dans la section 1, nous mettons l’accent sur les difficultés numériques

inhérentes à l’utilisation du modèle poroélastodynamique complet pour incorporer les cou-

plages hydromécaniques dans la section 2. En outre, dans la section 3, nous évaluons les

travaux existants sur les effets du fluide sur le glissement des failles qui mettent en évidence

l’utilisation d’équations poroélastodynamiques simplifiées. Néanmoins, ces modèles sim-

plifiés ne sont pas nécessairement adaptés à la configuration que nous considérons. Nous

proposons un modèle simplifié permettant de prendre en compte les effets du fluide sur

le glissement des failles à l’échelle de temps d’un mouvement sismique. Par conséquent,

nous effectuons une analyse dimensionnelle des équations poroélastodynamiques dans

la section 4 afin d’évaluer formellement les effets prédominants du fluide à l’échelle de

temps d’un mouvement sismique ou asismique. Nous montrons qu’à l’échelle de temps

d’une instabilité sismique, nous pouvons négliger le mouvement relatif du fluide par rapport

à la matrice solide, et nous obtenons un modèle non drainé. Inversement, à l’échelle de

temps d’un mouvement asismique, les effets d’inertie pour le solide et pour le fluide peuvent

être négligés, ce qui conduit à des équations de consolidation. Nous déduisons également

une condition sur le temps caractéristique d’injection du fluide afin qu’un terme source

d’injection de fluide puisse être maintenu dans le modèle simplifié à l’échelle de temps d’un

mouvement sismique. Ces développements nous permettent donc de déduire les équations

poroélastodynamiques simplifiées d’intérêt à l’échelle de temps d’un mouvement sismique

et d’évaluer le domaine de validité des modèles utilisés dans la littérature. Les résultats

de l’analyse dimensionnelle sont résumés à la section 4.4. Enfin, dans la section 5, nous

considérons un problème poroélastodynamique 1D simplifié pour illustrer le domaine de

validité du modèle simplifié obtenu à l’échelle de temps d’un mouvement sismique.
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5 Principaux développements numériques

Afin de choisir les outils numériques les plus appropriés pour simuler les effets de l’injection

de fluide sur la rupture dynamique des failles, j’ai implementé un code pour la simulation de

cycles sismiques à partir de zéro. Cela m’a permis d’implémenter et de comparer différentes

méthodes numériques en espace et en temps au sein d’un seul et même code. Il s’agissait

également d’un nouveau sujet dans mes laboratoires d’accueil. Par souci de clarté, je résume

ici tous les développements numériques de cette thèse. Des développements numériques

importants ont été réalisés pour évaluer les capacités de différents outils numériques incorpo-

rant les BEM rapides pour résoudre des problèmes de cycles sismiques ainsi que de rupture

dynamique de faille avant d’incorporer des couplages hydromécaniques. J’ai développé

un solveur 2D basé sur la méthode des éléments de frontière pour les problèmes de cycles

sismiques afin d’obtenir les résultats présentés dans le chapitre 2. L’implémentation est faite

sous Python et Matlab, et résout des problèmes 2D en quasi-dynamique de cycles sismiques

et de rupture dynamique de faille pour une faille plane :

• Des configurations en mode III et en mode II (avec une condition de non-ouverture

sur la faille) avec ou sans surface libre peuvent être considérés dans le cas d’une faille

régie par une loi de frottement dépendante en vitesse et en variable d’état complétée

par une loi d’évolution jusqu’à une profondeur donnée. En dehors de cette zone, une

vitesse de glissement est imposée ;

• Des problèmes en mode III, dans le cas d’une faille régie par une loi de frottement

dépendante en vitesse et en variable d’état complétée par différentes lois d’évolution,

et soumise à des perturbations de la contrainte normale effective dues à l’injection de

fluide et à la diffusion de fluide interstitiel le long de la faille, peuvent également être

pris en compte.

Plus précisément, les principales contributions au développement du solveur sont les suiv-

antes :

• Les BEM et H-BEM en 2D ont été implémentés à partir de zéro sur Matlab. La matrice

BEM est obtenue en discrétisant l’équation intégrale de frontière reliant la contrainte

de cisaillement quasi-statique τqs au glissement δ est d’abord calculée (une fois pour

toutes avant la résolution lorsque la géométrie est fixe).

• La BEM spectrale en 2D a également été implémenté à partir de zéro sur Python.

Elle permet de calculer efficacement la contrainte de cisaillement quasi-statique τqs

(respectivement sa dérivée temporelle) en calculant l’équation intégrale de frontière

reliant τqs au glissement δ comme un simple produit dans le domaine de Fourier en

espace. Cette méthode s’est révelée être très utile pour les études comparatives que j’ai

menées, car elle est largement utilisée dans la communauté des cycles sismiques.

• Trois méthodes d’intégration temporelle (les algorithmes correspondants sont présen-

tés à la section 3.1) ont également été implémentées à partir de zéro :
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– une méthode de prédiction-correction explicite-implicite inspirée de Lapusta

et al. (2000)

– une méthode explicite de Runge-Kutta (RK45) à l’ordre quatre et cinq inspirée de

Ozawa et al. (2022)

– une méthode hybride prédiction-correction - RK45 inspirée de Romanet and

Ozawa (2021)

Nous avons également mis en œuvre une routine CQM en Python à partir de zéro pour

obtenir les résultats présentés au chapitre 3. Bien que l’efficacité des codes mentionnés

puisse être améliorée de nombreuses façons, nous avons développé un code prototype

complet pour résoudre les problèmes 2D de cycles sismiques en quasi-dynamique pour

les failles planes. Il permet de comparer les outils numériques couramment utilisés dans

la communauté des cycles sismiques. En particulier, une nouvelle méthode d’intégration

temporelle ou de discrétisation spatiale peut facilement être ajoutée au code, ce qui est

prometteur pour une utilisation future comme le développement d’un code commun pour

les simulations de cycles sismiques. Une routine spécifique et plusieurs scripts bash ont été

proposés pour mener efficacement chaque étude de convergence et de sensibilité, et la même

structure est utilisée pour stocker les résultats afin de faciliter l’étape de post-traitement. Les

codes développés contiennent 11469 lignes pour les codes sources, et 5243 lignes pour les

codes de post-traitement. Un dépôt public sur Git sera bientôt mis en place pour mettre

ces développements à la disposition de la communauté scientifique. Nous allons également

bientôt fournir nos résultats sur les benchmarks SEAS au groupe SCEC afin de participer à

l’effort du projet SEAS.
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Titre : Modélisation des effets de l’injection de fluide sur une instabilité sismique en utilisant les méthodes d’éléments de
frontière rapides
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Résumé : Les tremblements de terre d’origine naturelle
ou anthropique provoquent d’importants dégâts humains et
matériels. Dans les deux cas, la présence de fluides intersti-
tiels influe sur le déclenchement des instabilités sismiques.
Une nouvelle question d’actualité dans la communauté est de
montrer que l’instabilité sismique peut être atténuée par un
contrôle actif de la pression des fluides. Dans ce travail, nous
étudions la capacité des méthodes d’éléments de frontière ra-
pides (Fast BEMs) à fournir un solveur robuste multi-physique
à grande échelle nécessaire à la modélisation des processus
sismiques, de la sismicité induite et de leur atténuation.
Dans une première partie, un solveur BEM rapide avec
différents algorithmes d’intégration temporelle est utilisé.
Nous évaluons les performances de diverses méthodes à
pas de temps adaptatif sur la base de problèmes de cycles
sismiques 2D usuels pour les failles planes. Nous propo-
sons une solution asismique analytique pour effectuer des
études de convergence et fournir une comparaison rigou-
reuse des capacités des différentes méthodes en plus des
problèmes de cycles sismiques de référence testés. Dans
le cas d’un problème de cycles sismiques, une stratégie de
comparaison par rapport à des résultats de référence est
proposée. Une étude de convergence et de sensibilité ap-
profondie des différentes méthodes utilisée par rapport aux
paramètres de discrétisation en espace et en temps est ef-
fectuée. Nous montrons qu’une méthode hybride prédiction-
correction / Runge-Kutta à pas de temps adaptatif permet non

seulement une résolution précise, mais aussi d’incorporer à
la fois les effets inertiels et les couplages hydro-mécaniques
dans les simulations de rupture dynamique de faille.
Dans une deuxième partie, une fois les outils numériques
développés pour des configurations standards, notre objec-
tif est de prendre en compte les effets de l’injection de
fluide sur le glissement sismique. Nous choisissons le cadre
poroélastodynamique pour incorporer les effets de l’injection
sur l’instabilité sismique. Un modèle poroélastodynamique
complet nécessiterait des coûts de calcul ou des approxima-
tions non négligeables. Les modèles faiblement couplés sont
les plus largement pris en compte dans la littérature. Nous jus-
tifions rigoureusement quels effets fluides prédominants sont
en jeu lors d’un tremblement de Terre ou d’un cycle sismique.
Pour cela, nous effectuons une analyse dimensionnelle des
équations. Plus précisément, nous montrons qu’à l’échelle
de temps de l’instabilité sismique, les effets inertiels sont
prédominants alors qu’une combinaison de la diffusion du
fluide et de la déformation élastique de la matrice solide due à
la variation de la pression interstitielle devrait être privilégiée
à l’échelle de temps du cycle sismique, au lieu du modèle de
diffusion principalement utilisé dans la littérature. Enfin, nous
considérons un problème de poroelastodynamique 1D sim-
plifié pour illustrer les conditions sous lesquelles le modèle de
poroélastodynamique complet peut être simplifié à l’échelle
de temps d’un mouvement sismique.

Title : Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods

Keywords : Seismic instability, Seismic cycles, Fast BEMs, Poroelastodynamics, Fluid effects

Abstract : Earthquakes due to either natural or anthropoge-
nic sources cause important human and material damage. In
both cases, the presence of pore fluids influences the trigge-
ring of seismic instabilities. A new and timely question in the
community is to show that the earthquake instability could be
mitigated by active control of the fluid pressure. In this work,
we study the ability of Fast Boundary Element Methods (Fast
BEMs) to provide a multi-physic large-scale robust solver re-
quired for modeling earthquake processes, human induced
seismicity and their mitigation.
In a first part, a Fast BEM solver with different temporal in-
tegration algorithms is used. We assess the performances
of various possible adaptive time-step methods on the basis
of 2D seismic cycle benchmarks available for planar faults.
We design an analytical aseismic solution to perform conver-
gence studies and provide a rigorous comparison of the capa-
cities of the different solving methods in addition to the seis-
mic cycles benchmarks tested. In the case where a seismic
cycle problem is considered, a methodology for the compa-
rison between the results obtained and reference results is
given. We conduct an in-depth convergence and sensitivity
study of the different methods with respect to the parame-
ters that scale both space and time discretizations. We show
that a hybrid prediction-correction / adaptive time-step Runge-

Kutta method allows not only for an accurate solving but also
to incorporate both inertial effects and hydro-mechanical cou-
plings in dynamic fault rupture simulations.
In a second part, once the numerical tools are developed for
standard fault configurations, our objective is to take into ac-
count fluid injection effects on the seismic slip. We choose the
poroelastodynamic framework to incorporate injection effects
on the earthquake instability. A complete poroelastodynamic
model would require non-negligible computational costs or
approximations. One-way coupling models are most largely
considered in the literature. We justify rigorously which pre-
dominant fluid effects are at stake during an earthquake or a
seismic cycle. To this aim, we perform a dimensional analysis
of the equations, and illustrate the results using a simplified
1D poroelastodynamic problem. We formally show that at the
timescale of the earthquake instability, inertial effects are pre-
dominant whereas a combination of diffusion and elastic de-
formation due to pore pressure change should be privileged
at the timescale of the seismic cycle, instead of the diffusion
model mainly used in the literature. Finally, we consider a sim-
plified 1D poroelastodynamic problem to illustrate the validity
range of the simplified model obtained at the timescale of a
seismic motion.
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