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Abstract

The work we present in this thesis is structured around the concepts of field theories and geometry,
which are applied to gravity and thermalisation.

On the gravity side, our work aims at shedding new light on the asymptotic structure of the
gravitational field in the context of asymptotically flat spacetimes, using information encoded on
the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of
relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector
field spanning the kernel of the latter. This vector selects a particular direction which can be the
starting point for describing Carroll structures in a split frame. We first elaborate on the geometry
one can construct on such amanifold in this frame, including a comprehensive study of connections
and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical
momenta conjugate to the geometry or the connection are introduced, and the variation of the
action shall give their conservation equations, upon which isometric charges can be reached.

Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics.
This limit usually exhibits more Carrollian descendants than what might be expected from a naive
intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for
which two actions, electric andmagnetic arise in the limit) and the Carrollian Chern-Simons action.
The richness of the limiting procedure is due to this versatility in describing a palette of degrees of
freedom. This turns out to be an awesome tool in studying the relationship between asymptotically
anti de Sitter (AdS) and flat spacetimes.

Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge,
covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is
shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit
on the boundary, while preserving this covariance feature. We demonstrate that the infinite solu-
tion space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary
energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance
laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite ex-
pansion resums), we use the Carrollian flux/balance laws together with the conservation of the
energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely
boundary perspective. Among them we recover the mass and angular momentum mutipolar mo-
ments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to
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unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study
exhaustively the case of Ehlers’ 𝑆𝐿(2,ℝ) symmetry.

On the side of thermal field theory we see that while at infinite temperature a CFT is described
by its spectrum and theOPE coefficients, additional data is needed in the thermal case. These are the
average values of primary operators, completely determined up to a constant coefficient. Numer-
ical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually
employed to uncover the latter. Our work features a new breadth. Starting from two coupled har-
monic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This
observation is the first step for setting a new correspondence between thermal partition functions
and graphs.
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Résumé en Français

Le travail que nous présentons dans cette thèse est structuré autour de la notion de théorie des
champs et de géométrie, qui sont appliquées à la gravité et la thermalisation.

En gravité, notre travail donne un éclairage nouveau sur la structure asymptotique du champ
gravitationnel dans le contexte des espace-temps asymptotiquement plats, ceci en utilisant l’infor-
mation codée sur leur bord conforme. Ce dernier est une hypersurface de genre lumière sur laquelle
émerge la physique carrollienne au lieu de la physique relativiste. Une structure carrollienne sur
une variété est constituée une métrique dégénérée et un champ de vecteurs couvrant le noyau de
cette dernière. Ce vecteur sélectionne une direction particulière qui peut être le point de départ
de la description des structures carrolliennes dans un cadre séparé. Nous développons d’abord la
géométrie carrollienne, y compris une étude complète des connexions et isométries (conformes).
Des actions effectives peuvent vivre sur un arrière-plan carrollien. Les moments canoniques con-
jugués à la géométrie ou à la connexion peuvent être définis, et la variation de l’action donnera leurs
équations de conservation, à partir desquelles les charges isométriques peuvent être bâties.

La physique carrollienne émerge également lorsque la vitesse de la lumière tend vers zéro. Cette
limite donne généralement plus de descendants carrolliens que ce qui est attendu après une analyse
intrinsèque, comme le montrent les exemples explicites des fluides carrolliens, des champs scalaires
carrolliens (pour lesquels deux actions, électrique et magnétique, apparaissent dans la limite) et du
tenseur de Cotton carrollien. La richesse de la limite est due à sa possibilité de décrire plus de degrés
de liberté, ce qui s’avère être un outil fondamental dans l’étude de la relation entre les espace-temps
asymptotiquement anti de Sitter et plats.

Les espace-temps asymptotiquement plats peuvent être écrits comme une expansion infinie
dans une jauge covariante par rapport à leur bord nul. Cette légère extension de la jauge deNewman-
Unti est également valable dans anti-de Sitter, ce qui permet de prendre la limite plate dans le bulk,
équivalente à la limite carrollienne sur le bord. Nous démontrons que l’espace des solutions in-
fini des espace-temps Ricci-plats provient en fait du développement en série de Laurent du tenseur
énergie-impulsion d’AdS. Ces répliques obéissent à chaque ordre une dynamique carrollienne (lois
de flux). Dans le cadre des espaces algébriquement spéciaux de Petrov (pour lesquels le dévelop-
pement infinie se resomme), nous utilisons les lois de flux carrolliennes ainsi que la conservation
des tenseurs énergie-impulsion et de Cotton pour construire, du point de vue du bord, deux tours
duales de charges du bulk. Parmi elles, nous retrouvons l’expansion mutipolaire de la masse et du
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moment angulaire pour la famille Kerr-Taub-NUT. La jauge covariante est également le cadre ap-
proprié pour dévoiler l’action des symétries cachées de la gravité sur le bord nul. Dans ce travail,
nous étudions le cas de la symétrie 𝑆𝐿(2,ℝ) d’Ehlers.

Du côté de la théorie thermique des champs, nous travaillons sur l’ensembleminimal de données
nécessaires pour les décrire à température finie. Alors qu’à température infinie toutes les valeurs
moyennes des opérateurs primaires s’annulent, leurs valeurs non nulle dans le cas thermique con-
stituent les données supplémentaires qu’il faut calculer pour caractériser la théorie. Les simulations
numériques, la dualité avec un trou noir dans AdS ou une analyse spectrale sont généralement les
méthodes employées pour trouver la valeur de ces coefficients. Notre travail propose une nouvelle
approche à ce problème en montrant, à partir de deux oscillateurs harmoniques couplés, que ces
coefficients sont en fait liés à des graphes conformes de théories de type «fishnet». A partir de cette
observation, nous avons établi une correspondance entre les fonctions de partition thermique et
ces graphes.
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𝚷𝜺𝝆𝜾𝝀𝜼𝝍𝜼 𝝈 𝝉𝜶 𝜺𝝀𝝀𝜼𝝂𝜾𝜿𝜶

Η εργασία που παρουσιάζω σε αυτή τη διατριβή αφορά µελέτες πάνω στην βαρύτητα τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙 και
τις σύµµορφες θεωρίες πεδίου σε µη µηδενική θερµοκρασία.

Από την πλευρά της βαρύτητας, η εργασία µου στοχεύει στο να ρίξει νέο φως στην ασυµπτωτική δοµή
του βαρυτικού πεδίου σε ασυµπτωτικά επίπεδους χωρόχρονους , χρησιµοποιώντας πληροφορίες που κω-
δικοποιούνται στο σύµµορφο όριο του. Το τελευταίο όριο είναι µια µηδενική υπερεπιφάνεια στην οποία
λειτουργεί η φυσική τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙 αντί της σχετικιστικής φυσικής. Η γεωµετρική 𝐶𝑎𝑟𝑟𝑜𝑙𝑙 σε µια πολ-
λαπλότητα βασίζεται σε µια εκφυλισµένη µετρική και ένα διανυσµατικό πεδίο που εκτείνεται στον πυρήνα
της τελευταίας. Το διανυσµατικό πεδίο αυτό επιλέγει µια συγκεκριµένη κατεύθυνση η οποία µπορεί να α-
ποτελέσει το σηµείο εκκίνησης για την περιγραφή δοµών𝐶𝑎𝑟𝑟𝑜𝑙𝑙. Μελετήσαµε αρχικά τη γεωµετρία που
µπορεί κανείς να κατασκευάσει σε µια τέτοια πολλαπλότητα συµπεριλαµβανοµένης µιας ολοκληρωµένης
µελέτης των συνοχών και των σύµµορφων ισοµετριών τους. Ενεργές δράσεις τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙 διαφόρων
πεδίων µπορούν να οριστούν σε αυτό το υπόβαθρο. Εισάγονται κανονικές ορµές συζυγείς µε τη γεωµετρία
ή την συνοχή, και η µεταβολή της δράσης θα δώσει τις εξισώσεις διατήρησής τους και έτσι να µελετηθούν
διατηρίσιµα φορτία που συνδέονται µε ισοµετρίες.

Η φυσική τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙 προκύπτει στο όριο όπου η ταχύτητα του φωτός µηδενίζεται. Στο όριο αυτό
εµφανίζονται συνήθως περισσότερες φυσικές καταστάσεις από ότι θα ανέµενε κανείς. Αυτό φαίνεται στα
παραδείγµατα των ρευστών τύπου𝐶𝑎𝑟𝑟𝑜𝑙𝑙, των βαθµωτών πεδίων τύπου𝐶𝑎𝑟𝑟𝑜𝑙𝑙 (για τα οποία προκύπτουν
δύο δράσεις, η ηλεκτρική και η µαγνητική), και της δράσης 𝐶ℎ𝑒𝑟𝑛 − 𝑆𝑖𝑚𝑜𝑛𝑠 τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙, το όριο
𝐶𝑎𝑟𝑟𝑜𝑙𝑙 εµπεριέχει µια ενδιαφέρουσα ευελιξία στην περιγραφή διαφορετικών βαθµών ελευθερίας. Αυτό
αποδεικνύεται ένα σηµαντικό εργαλείο για τη µελέτη της σχέσης µεταξύ ασυµπτωτικά 𝐴𝑛𝑡𝑖 − 𝐷𝑒 𝑆𝑖𝑡𝑡𝑒𝑟
και επίπεδων χωροχρόνων.

Οι µετρικές σε ασυµπτωτικά επίπεδους χωροχρόνους µπορούν να εκφραστούν σε µια βαθµίδα που είναι
συναλλοίωτη σε σχέση µε το φωτοειδές όριο τους. Αυτή η βαθµίδα είναι µια µικρή επέκταση της γνωστής
βαθµίδας𝑁𝑒𝑤𝑚𝑎𝑛−𝑈𝑛𝑡𝑖 και αποδεικνύεται ότι ισχύει και στον χώρο 𝐴𝑑𝑆. Η βαθµίδα αυτή µας επιτρέπει
να πάρουµε το επίπεδο όριο του χωρόχρονου - το οποίο αντιστοιχεί στο όριο τύπου𝐶𝑎𝑟𝑟𝑜𝑙𝑙 στο όριο του –
µε συναλλοίωτο τρόπο. Δείνουµε ότι ο άπειρος χώρος λύσεων των επίπεδων χωροχρόνων 𝑅𝑖𝑐𝑐𝑖 προκύπτει
στην πραγµατικότητα από το ανάπτυγµα 𝐿𝑎𝑢𝑟𝑒𝑛𝑡 του τανυστή ενέργειας-ορµής του ορίου 𝑎𝑛𝑡𝑖−𝑑𝑒 𝑆𝑖𝑡𝑡𝑒𝑟.
Οι λύσεις αυτές, σε κάθε τάξη, υπακούουν σε δυναµική τύπου𝐶𝑎𝑟𝑟𝑜𝑙𝑙 και συγκεκριµένα σε νόµους ροής/ισ-
σοροπίας. Επικεντρώνοντας την προσοχή µας στους αλγεβρικά ειδικούς χωροχρόνους 𝑃𝑒𝑡𝑟𝑜𝑣 για τους
οποίους το ανάπτυγµα τύπου 𝐿𝑎𝑢𝑟𝑒𝑛𝑡 µπορεί να αθροισθεί, χρησιµοποιούµε τους νόµους τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙
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ροής/ισορροπίας µαζί µε τη διατήρηση των τανυστών ενέργειας-ορµής και τον τανυστή 𝐶𝑜𝑡𝑡𝑜𝑛 για να
κατασκευάσουµε από το σύνορο του χωρόχρονου δύο άπειρες σειρές διατηρίσιµων φορτίων της µετρικής.
Ανάµεσά τους συναντούµε τις πολυπολικές ροπές µάζας και στροφορµής για την οικογένεια µετρικών
𝐾𝑒𝑟𝑟 − 𝑇𝑎𝑢𝑏 − 𝑁𝑈𝑇 . Επιπλέον, η παραπάνω συναλλοίωτη βαθµίδα αποδεικνύεται ότι είναι το κατάλ-
ληλο πλαίσιο για να αποκαλυφθούν κρυµµένες συµµετρίες της βαρύτητας στο όριο τύπου 𝐶𝑎𝑟𝑟𝑜𝑙𝑙. Σε
αυτή τη διατριβή και σε αυτό το πλαίσιο µελετάµε αναλυτικά την περίπτωση της συµµετρίας 𝑆𝐿(2,ℝ)
του 𝐸ℎ𝑙𝑒𝑟𝑠 και την εµφάνισή της στο όριο τύπου𝐶𝑎𝑟𝑟𝑜𝑙𝑙.

Σε ένα ξεχωριστό κοµµάτι της διατριβής µου µελέτησα σύµµορφες θεωρίες πεδίου σε µη µηδενική
θερµοκρασία. Ενώ σε µηδενική θερµοκρασία µια σύµµορφή θεωρία πεδίου περιγράφεται από το φάσµα
των τελεστών της και από τους συντελεστές του τελεστικού αναπτύγµατος𝑂𝑃𝐸, στη θερµική περίπτωση
απαιτούνται πρόσθετα δεδοµένα. Αυτά είναι παράµετροι που αντοιστοιχούν στις θερµικές µέσες τιµές των
πρωτογενών σύµµορφων τελεστών της θεωρίας. Οι µέθοδοι που µέχρι τώρα χρησιµοποιούνται για την
µελέτη των παραµέτρων αυτών είναι αριθµητικές προσοµοιώσεις τύπου 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝, δυαδικότητα τύπου
𝐴𝑑𝑆/𝐶𝐹𝑇 µε καταστάσεις φασµατικές αναλύσεις. Η εργασία µου δίνει µια εντελώς νέα διάσταση στις
παραπάνω µελέτες. Ξεκινώντας από δύο συζευγµένους αρµονικούς ταλαντωτές δείχνω ότι οι παραπάνω
παράµετροι σχετίζονται µε σύµµορφα διαγράµµατα 𝐹𝑒𝑦𝑛𝑚𝑎𝑛 θεωρίων τύπου 𝑓 𝑖𝑠ℎ𝑛𝑒𝑡. Πιστεύω ότι αυτή
η παρατήρηση είναι το πρώτο βήµα για µια εντελώς απροσδόκητη νέα αντιστοιχία ανάµεσα σε θερµικές
σύµµορφες συναρτήσεις και διαγραµµάτων 𝐹𝑒𝑦𝑛𝑚𝑎𝑛.
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Nomenclature

• (𝐴, 𝐵,𝐶, . . . ) are 𝑑+2-spacetime indices labeling {𝑟, 𝑡,x} in Chapter 3 and are arbitrary frame
indices in Appendix A,

• (𝜇, 𝜈, . . . ) are 𝑑 + 1 spacetime indices labeling {𝑡,x},

• (𝑎, 𝑏, . . . ) are Cartan’s frame spatial indices in Chapter 3 and Appendix ?? and B.2. In these
chapters the time index is denoted by 0,

• (𝑖, 𝑗, . . . ) are spatial indices labeling {x},

• υ is the field of observers, τ the clock form which contains the Ehresmann connection 𝑏𝑖,

• Weak Carroll structures contains υ and a metric 𝑎𝑖 𝑗. Ruled weak Carroll structures contains
an Ehresmann on top of that,

• ∇̄ denote an arbitrary connection, ∇̂ denotes the Carrollian connection without spatial tor-
sion. It is spatially Levi-Civita,

• Strong Carroll structures (resp. ruled) are weak (resp. ruled) structures equipped with a
Carrollian connection,

• 1
Ω �̂�𝑡 is the Carroll-covariant temporal derivative. Its Weyl-extension is denoted 1

ΩD̂𝑡 ,

• ∇̂𝑖 is the Carroll-covariant spatial derivative. Its Weyl-extension is denoted D̂𝑖,

• 𝑐 is the velocity of light while 𝑘 =

√︃
−Λ

3 is the effective velocity of light on the timelike
boundary of AdS (with Λ the cosmological constant),

• 𝒖 is a timelike congruence normalized at −𝑘2,

• Abreviations: AdS = anti-de Sitter, FG = Fefferman-Graham, CNU = Covariant Newman-
Unti, RP = Randers-Papapetrou, OPE = Operator Product Expansion.
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Introduction

The most important and useful tool to handle the laws of Nature is symmetry, as it helps character-
izing any physical system via the construction of charges (e.g. the electric charge) and constants of
motion. Symmetries can be divided into two parts, those which act the same way at every point of
spacetime, dubbed global, which are true symmetries of the theory; and those which act in a differ-
ent way from one spacetime point to another, called local (or gauge) symmetries, which only exist
due to the redundancy in the description of the degrees of freedom of the theory. After the seminal
works of Lagrange and Hamilton, Noether derived her famous first and second theorems [1] stat-
ing the equivalence between symmetries and conserved charges. The first theorem is dealing with
global symmetries and associate to them a charge living on a co-dimension one hypersurface while
the second one relates gauge symmetries to charges defined on co-dimension two hypersurfaces,
as the current one can build from the first theorem vanishes on-shell (see e.g. [2,3] for reviews). The
main example is electromagnetism, gauge theory based on the Abelian group 𝑈 (1) whose charge,
the electric charge, lives on two-dimensional spheres. Having the set of all symmetries and charges
carried by a system is essential for its faithful description and is the first step towards its quantiza-
tion. Indeed the canonical quantization procedure, due to Dirac, allows to translate the symplectic
structure and the Poisson brackets generated by the classical charges into correlators of quantum
operators.

A gauge theory which was at the center of the attention during the last few years is gravity. Me-
diated by a spin-2 gauge boson, the graviton, which propagates two polarizations in four spacetimes
dimensions, its gauge group corresponds to the group of diffeomorphisms of coordinates used to
label points in space-time. Interest in gravity grew at all physical scales. In the ultra-violet regime,
therefore at microscopical scales, semi-classical approaches like the Hawking radiation [4] led to
the so-called black hole information paradox [5] which states that after a black hole evaporation,
information about the initial state would be permanently lost, which is in conflict with the unitar-
ity of quantum mechanics. Such a statement calls for a quantization of General Relativity (or any
theory of gravity). In the infrared regime, consequently at macroscopic scales, the study of gravit-
ational waves dazzled a lot of attention [6–13], as the latter constitutes a way to probe astrophysical
phenomena such as the merging of two supermassive black holes.

Investigating the infrared structure of gravity demands to consider the entire spacetime, and
not just a subpart centered on a region of interest. A careful treatment of infinities, the boundary
of the spacetime, is then necessary. The notion of boundary appears after a conformal compac-
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tification [14] which brings infinities to a finite distance, at the price of working in an unphysical
manifold, which however has the virtue of preserving the causal structure. Going back to sym-
metry principles, gravity being a gauge theory, its charges are encoded in co-dimension two hyper-
surfaces from the point of view of the interior of spacetime (dubbed from now on the bulk) so on
co-dimension one hypersurfaces from the point of view of the boundary. Therefore, one is temp-
ted to reinterpret the gauge symmetries of the bulk close to its boundary as global symmetries of
the latter. This is, with the black hole entropy analysis [15–17] showing that it scales like the area
of the horizon instead of the interior volume, one of the strongest mathematical suggestion that
gravity is holographic. An other observation due to Brown and Henneaux [18] revealed that asymp-
totic symmetries of Anti-de Sitter spacetime in three dimensions, equipped with suitable boundary
conditions, are made of two copies of the Virasoro algebra (typical feature of two dimensional
Conformal Field Theory) with central charge 𝑐 = 3𝑙/2𝐺 (with 𝑙 the AdS radius and 𝐺 Newton’s
constant), suggesting that gravity in AdS may be equivalently described by a two-dimensional CFT
in which gravity plays no role. This paradigm is generally known under the name of “Holography”.

Holography can be henceforth thought of as a way to describe the gravitational degrees of free-
dom of the bulk in terms of non-gravitational boundary data. On the one hand, the zeroth step
of such a duality corresponds to being able to reconstruct the full bulk gravitational metric from
degrees of freedom defined on the boundary. On the other hand, the ultimate achievement would
be a complete dictionary between two theories translating into the equivalence between the bulk
and boundary quantum partition functions. This happens within the AdS/CFT correspondence of
Maldacena [19] and Witten [20] where gravitational degrees of freedom in a given region of AdS
can be equivalently described by a conformal quantum field theory without gravity living on its
(conformal) timelike boundary, once Dirichlet boundary conditions have been imposed. Explicit
realizations of the duality are Type IIB String Theory on 𝐴𝑑𝑆5 × 𝑆5 and N = 4 Super Yang-Mills
with𝑈 (𝑁) gauge group; or Vasiliev higher spin gravity [21, 22] and the𝑂(𝑁) vector model at large
𝑁 [23,24]. This AdS/CFT correspondence has been found to be very useful in areas such as thermal
CFT (see e.g. [25]), condensed matter physics (see the Lecture Notes [26]) in addition to high en-
ergy physics. A spin-off of AdS/CFT is the so-called fluid/gravity correspondence [27–29] where
classical AdS spacetimes are described by a boundary theory in the hydrodynamic regime. In this
correspondence one misses the microscopic description of the dual theory, as the long wavelengths
approximation is assumed, but re-expressing Einstein’s equations in terms of fluid conservation
laws make them easier to handle. The bulk metric is then expressed in terms of fluid quantities
(see [30] for explicit examples of bulk reconstruction).

The holographic paradigm constitutes a very prolific area of research and this thesis aims at de-
veloping some neighboring aspects, arising from natural questions still left opened. Our first angle
of studies concerns the extension of the AdS/CFT duality, valid when the cosmological constant is
negative, to the case where the latter vanishes. In this case the bulk is now an asymptotically flat
spacetime i.e. a spacetime which goes back to Minkowski at infinity. They are of great interest as
they constitute the toy model of an isolated gravitational system emitting radiation, in fine cap-
tured by an observer at astrophysical scales away from the source. Such an observer could be the
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LIGO and VIRGO detectors, making this model a fundamental tool to handle gravitational wave
physics. The structure of gravity away from its sources will then be of primordial importance.
Several roads can be followed to unveil this structure, but the mostly used one is the gauge fixing
procedure and asymptotic symmetries (see [31] for a pedagogical review). After conformal compac-
tification a coordinate system adapted to the problem one wants to solve is selected. In the case
of gravitational wave physics, one chooses a coordinate system which allows to follow null-rays,
which in the conformally compactified manifold ends at a locus dubbed null infinity.1 This is what
Bondi, van der Burg andMetzner [32] and at the same time Sachs [33] studied in their seminal works
which have led to two major advances. On the one hand, they showed that gravitational radiation
is not an artefact of the linearized theory of gravity (which was the framework used by Einstein to
demonstrate the existence of gravitational waves). On the other hand they revealed that contrary to
the expectations, instead of Poincaré, the asymptotic symmetries2 of asymptotically flat spacetimes
near null infinity form an infinite dimensional enhancement of the latter, dubbed the BMS group.
If the holographic principle can be extended to flat spacetimes, the symmetry analysis tells us that
the dual theory living on the null boundary should be a BMS-invariant field theory (see e.g. [34]).
This seminal analysis and the unexpected conclusions it drew signed the renaissance of classical
general relativity, mainly in the context of asymptotically flat spacetimes. The geometric structure
of the gravitational field close to infinities was unveiled in [35] where the first covariant definition
of gravitational radiation was given. In a series of papers [36–39], the path towards what could be a
quantized version of gravity was paved, as the radiative degrees of freedom (therefore the graviton
itself) were clearly identified at null infinity as a part of the affine connection induced by the bulk
on that codimension-one hypersurface. In addition, a unified treatment of null and spatial infinity
(necessary as the latter cut the former into two parts, past and future null infinity) was proposed.

Many years later and not so long ago, the study of the infrared structure of gravity has under-
gone a revival thanks to the observation that asymptotic symmetries constitute one of a tripartite
web of dualities, ubiquitous in gauge theories [40]. This “infrared triangle” is composed for the two
other edges by memory effects [9, 11, 41–43] on the one hand, which are unalterable modifications
of physical quantities (like the spacing between two intertial observers) due to the passage of grav-
itational radiation, and by soft theorems on the other hand. Soft theorems were first enunciated
by Weinberg [44] and state that whenever a soft particle, i.e. a particle whose momenta tends to
vanish, is inserted into a scattering, the structure of the 𝑆-matrix in inverse powers of the soft mo-
menta when the latter goes to zero, is universal. Works on this infrared triangle include e.g. [45–48].
Eventually, the IR structure of gravity is much richer than expected and, in view of finding a flat
analogue to the AdS/CFT duality, has to be exposed. This thesis aims therefore at presenting some
aspects of the asymptotic structure of gravity, keeping holography in mind.

The path we follow in this work uses a fundamental result. The BMS algebra is actually iso-
morphic to the algebra of conformal isometries of a Carrollian manifold [49]. The latter is the
conformal extension of the Carroll3 algebra, which is the İnönü-Wigner contraction of Poincaré

1Massive particles would end at time-like infinitywhile space-like infinity is the locus where all Cauchy surfaces ends.
2These are the symmetries of the metric once the latter approaches the boundary of the compactified manifold.
3Named in honour of Lewis Carroll’s Through the Looking Glass in which the Red Queen told Alice that “in her
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when the velocity of light 𝑐 vanishes [50, 51]. This unusual limit of the Poincaré group reveals new
and somehow unexpected physical behaviors which are typical features of Wonderland, the Car-
rollian world. As the light cone shrinks on the time axis, any kind of motion and interaction seem
to be prohibited, even if the particles have momentum. The relativity at work in the Carrollian
world is completely different from the one of special relativity and is the exact dual of the one we
can experience in our daily life i.e. Newtonian or Galilean relativity. In the latter, boosts do not af-
fect time as time is taken to be absolute. Conversely, Carrollian relativity does not allow for boosts
affecting space, giving then an absolute status to space. However amusing this new physics seemed
and even though it was long thought of as just a mathematical curiosity, interesting applications
to systems undergoing Carroll symmetry were found. Some of them will be presented in the main
content of this manuscript but let us mention in particular that Carrollian physics, in the hydro-
dynamic regime, was shown to be applicable to the description of Ricci-flat spacetimes belonging to
the algebraically special class [52]. This flat extension of the fluid/gravity duality demonstrated that
for such spacetimes, Einstein dynamics in the bulk can be completely recast into the conservation
laws of a dual Carrollian fluid [53]. This was one of the major advances in the realm of flat bulk re-
construction from a null boundary perspective. Such a reconstruction can actually be extended for
more general spacetimes, once a suitable gauge is chosen, as we shall see in this thesis. Eventually,
it gives hope in the existence of a flat version of AdS holography, perhaps reachable from a limit of
the latter.

The equivalence between asymptotic symmetries near null infinity and the conformal Carroll
algebra is actually not a surprise. Future null infinity, denotedJ +, which is the conformal bound-
ary of asymptotically flat spacetimes, has the topology ℝ × 𝑆𝑑 (in (𝑑 + 2)-bulk dimensions).4 Most
importantly it is naturally equipped with a vector and a degenerate metric whose kernel is spanned
by the former. The non-degenerate part of the metric is 𝑑-dimensional and describe the 𝑑-spheres.
This is a geometrical structurewhich is knownunder the name ofCarroll structures. First described
in [54] and much later in e.g. [55, 56], these structures are ubiquitous in physics as they describe any
manifold whose metric is degenerate. Hence, apart from null infinity, any embedded null hypersur-
face, like the horizon of a black hole [57], can be described by Carrollian geometry and is the setting
for the associated physics. It turns out that the conformal isometries of a flat conformal Carroll
structure reproduce exactly the BMS group, explaining a posteriori the result of Bondi, Sachs and
collaborators. Carrollian physics is therefore set to play a prominent role in the quest for “Flat
holography”. The main question we would like to answer in this work is: what perspective on the
bulk dynamics can the Carrollian physics living on the null boundary give us?

Going back toAdS, the holographic paradigm, beyond itsmicroscopic aspects, provides away to
handle the process of thermalization. More precisely, a black hole state in AdS can be described by
a boundary conformal field theory at finite temperature (see e.g. [25]), the latter being the Hawking
temperature of the black hole. Both in view of a better understanding of the AdS/CFT correspond-
ence and in the aim of anticipating a possible flat limit at finite temperature, which would lead

country it take all the running one can do to stay at the same place". In other words, nothing moves in the Carrollian
world, as the maximal allowed velocity, namely the one of light, tends to zero.

4More precisely any open subset of J + possesses this topology.
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us towards the Thermal Wonderland, having a better control on thermal field theory constitute a
direction worth unveiling. How to describe precisely a conformal field theory at finite temperat-
ure? This is the second topic of this thesis in which we present a work related to the description of
thermalization from a pure field theoretical viewpoint. That is to say that we seek the minimal set
of data needed to fully describe a thermal theory. Part of these data corresponds to thermal average
of primary operators. We observed that the latter are actually related to a certain class of conformal
ladder graphs, and established a correspondence between these two a priori distinct realms.

The two directions detailed in this thesis emanate from holography. They both belong to a
wider and ambitious plan which aims at finding the flat counterpart of the AdS gauge/gravity dual-
ity. Recall that this work does not explicitly deals with holography, but more with geometry, bulk
reconstruction and field theory. Holography in AdS and its putative flat extension serve as binders
between the inspected themes.

Outline of the manuscript and summary of achievements

This thesis is divided into three parts.

Part I is devoted to the presentation of Carrollian geometry and Carrollian field theories from
two distinct albeit complementary approaches. In Chapter 1 we present the notion of Carroll struc-
tures, Carroll connections, Carroll isometries and Carrollian conservation laws in a formalism
which takes advantage of the null direction generated by the kernel of the metric. This split form-
alism is complementary to the covariant formalism of [54]. This first Chapter is a comprehensive
presentation of the subject and it aims at being as concise as possible. As the Carroll group emerges
from the 𝑐 → 0 limit of the Poincaré group, Carrollian theories can be obtained from a limit of
relativistic theories. In Chapter 2 we present how the 𝑐 → 0 limit is performed and highlight its
power with three examples: Carrollian hydrodynamics, the Carrollian scalar field and the Carrol-
lian Cotton tensor, which is a geometric tensor built upon third derivatives of the metric.

Part II is dedicated to applications of Carrollian physics in the context of gravity in asymptot-
ically flat spacetimes. Even though many important results were derived in the Bondi gauge (or
related gauges like Newman-Unti [58] or partial Bondi [59]), it does not decompose the bulk met-
ric into boundary tensors; preventing any attempts at giving a boundary perspective on the bulk
dynamics. As our objective is to look for what the Carrollian boundary can tell us about gravity
in bulk, we first present in Chapter 3 a new gauge, which is a covariant version of Newman-Unti,
which expresses the quantities required to construct the bulk metric as tensors living on J +. A
method to get a Ricci-flat spacetimes from AdS is also provided; it provides in particular an ex-
planation for the origin of the infinite set of functions composing the flat solution space, rooted
in the AdS boundary energy-momentum tensor. Armed with the general expression of asymp-
totically flat spacetimes in Covariant Newman-Unti gauge we present two situations in which the
Carrollian boundary can give us a new perspective on bulk dynamics. In Chapter 4 we study the
relationship between bulk and boundary isometries and show how bulk charges can emerge from
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a pure boundary analysis. In Chapter 5 we leave asymptotic symmetries aside and consider another
type of symmetries gravity can encompass: hidden symmetries. A wide range of such symmetries,
mainly appearing through dimensional reduction, were found. In this work, we focus on one of
them, namely Ehlers 𝑆𝐿(2,ℝ) symmetry [60], and show how it acts on the Carrollian boundary
data. We will show that, even though the symmetry acts non-locally in the bulk, on the boundary
everything becomes local, therefore much simpler to handle. The latter action will also reveals an
interesting electric-magnteic duality, through an interplay between the Bondi mass and the NUT
charge.

Part III presents in details the open question of thermal averages in thermal field theories and
exhibits how the correspondence between thermal partition functions and conformal ladder graphs
can help. It is a self-contained partwhich can be read independently from the rest of themanuscript.

In a Conclusion we summarize our findings and discuss several open directions to consider in
this quest of finding the putative flat analogue of the gauge/gravity duality, and we discuss steps to
pave the way through it.
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Chapter 1

Intrinsic Carrollian geometry in the split
formalism

In differential geometry, the distance between two infinitesimally close points is measured with a
covariant rank-two tensor dubbed the metric. When the latter is non-degenerate, it defines a scalar
product between vectors aswell as an isomorphism (usually called themusical isomorphism) between
vectors and covectors. The manifold is said to be Riemannian. The metric, together with its inverse
(which always exists due to the non-degeneracy) are used to lower and raise indices of components
of tensors, once a basis is chosen. Once a metric is given, it is always possible to equip the tangent
space with an affine connection, uniquely built upon it: this is the Levi-Civita connection. When
working in a coordinate basis, the geometry of Riemanian manifold can be expressed in a diffeo-
morphism covariant way. The variation of an action with respect to the later yields the covariant
conservation of the energy-momentum tensor of the considered theory, while the boundary terms
disclose the conserved current upon which a conserved charge can be reached. All these consider-
ations are closely related to the underlying assumption that the metric is invertible. What happen if
this is no longer the case i.e. if themetric possesses a degenerate direction? The geometry associated
to such a metric is called a Carroll structure.

Carroll structures where originally introduced in [54] as manifolds endowed with a doublet
(𝑞𝜇𝜈 , 𝑛𝜇) made of a metric 𝑞𝜇𝜈 whose kernel is spanned by the nowhere vanishing vector 𝑛𝜇 i.e.
𝑞𝜇𝜈𝑛

𝜈 = 0, everything being written in a covariant way under general diffeomorphisms. However
due to the degeneracy of the metric, one cannot freely raise and lower indices like in a plain relativ-
istic set-up; the index at hand has to be transverse with respect to 𝑛𝜇. This makes the manipulation
of quantities and the contractions between tensors harder, in addition to the fact that such a way of
writing tensors does not take advantage of the natural splitting between the direction spanned by
the kernel (which could reasonably by identified with theCarrollian time) and the others (the spatial
directions).

More recently, in a series of papers [52, 53, 61–63] on Carrollian structures and Carrollian fluids
and their use in flat holography, an alternative way of describing the Carrollian geometry has been
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developed: the time/space split frame or split formalism. One coordinate is aligned with the degen-
erate direction while the others label points on the base space. In this Chapter we aim at reviewing
this formalism and show its numerous advantages.

After describing the notion of Carroll structure in the split formalism (Sec. 1.1), we will deal
with Carrollian connections. We shall give a comprehensive description of them (Sec. 1.2), from
the most general one to the one that resembles the most the relativistic Levi-Civita connection,
with emphasis on the ones widely used in the literature. In Sec. 1.3 we present how Carrollian dy-
namics emerges from requiring Carrollian invariance of an action for a theory defined on a Carroll
structure. The way to encompass Weyl transformations (in view of applications to null infinity)
is explained in Sec. 1.4 while Sec. 1.5 deals with the notion of isometries together with the one of
currents and charges. For later purposes (see Chapter 3), it will be useful to describe the structure
in a Cartan orthonormal frame. To this end Sec. B.1 aims then at reviewing Carroll structures in
this framework. The second part of this work will deal with three dimensional Carroll structures,
mostly described in holomorphic coordinates. We gather in Sec. 1.6 all the important geomet-
ric results. Our approach will be to work in coordinates; a coordinate-free description of Carroll
structures can be found in the Appendix of [56] and in [49,55,64]. Apart from the study of Carrollian
connection in Sec. 1.2 and the associated conservation equations (at the end of Sec. 1.3), the material
presented in this Chapter mostly reviews the already cited literature and [65, 66].

This Chapter is complemented by several Appendices. AppendixA gathers in one place all useful
formulae, the reader is advised to go back to it as much as needed. As the splitted formalism is not
the most common one in the literature, we relate it with the covariant approach of [54] and latter
e.g. [67–69] in Appendix C. Finally in Appendix D we say a few words about the structure dual to a
Carrollian manifold: Newton-Cartan spacetimes.

1.1 Weak Carroll structures

A weak Carroll structure [49,54,63,65] on a (𝑑+1)-dimensional manifold of the formM = ℝ×S is a
doublet made of a degenerate metric and a nowhere-vanishing vector field which spans the kernel
of the latter. Such a spacetime can be seen as a one-dimensional fiber bundle over the Riemannian
base space S, which will be equipped with a genuine Riemannian, hence non-degenerate, metric.
The fibers are identified with the (Carrollian) time direction.

One can always choose a coordinate system (𝑡,x) where 𝑡 is aligned with the fibers and x = (𝑥𝑖)
for 𝑖 = 1, ..., 𝑑 are local coordinates on S. This allows to write the Carrollian metric as

d𝑠2 = 𝑞𝜇𝜈d𝑥𝜇d𝑥𝜈 = 0 × d𝑡2 + 𝑎𝑖 𝑗(𝑡, x)d𝑥𝑖d𝑥 𝑗 (1.1.1)

where 𝑎𝑖 𝑗 is Riemannian of signature (+, ...,+). The kernel of 𝑞𝜇𝜈 is spanned by the field of observers
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(also dubbed Carrollian vector field) which reads

1
Ω(𝑡,x) 𝜕𝑡 := υ (1.1.2)

where Ω is finite and non-zero for υ to be nowhere-vanishing.

Remark Note that our definition of Carroll structure encompassing a nowhere-vanishing Carroll
vector field fits with the historical definitions of [54] and [49], but is not the most general.
Extended Carroll structures with vanishing Carroll vector field for a finite number of loci on
the fibre are found to be relevant to define a notion of Carroll black holes [70] or to describe
null infinity of asymptotically flat spacetime [71, 72].

This structure naturally introduces anEhresmann connection, background gauge field 𝒃 = 𝑏𝑖(𝑡, x)d𝑥𝑖,
contained in the dual form of the Carrollian vector field. The latter is called the clock form and reads1

τ = Ω d𝑡 − 𝑏𝑖 d𝑥𝑖, (1.1.3)

such that 𝜄υτ = τ(υ) = 1, the plus sign being conventional.2 Endowing a weak Carroll structure
with an Ehresmann connection makes it a ruled Carroll structure, as the clock form defines the
notion of ruler.

Remark From a geometrical viewpoint, the role of the clock form is to split the tangent space into
a direct sum 𝑇M = Span(υ) ⊕ 𝐻 where

𝐻 = {𝑋 ∈ Γ(𝑇M) / 𝜄𝑋τ = 0} . (1.1.4)

The Ehresmann connection 𝒃 encodes all the obstruction to the unicity of this splitting. Vec-
tors along Span(υ) are dubbed longitudinalwhile vectors belonging to 𝐻 are transverse. While
this terminology makes a lot of sense in the covariant approach to Carroll structures, the use
of the split frame renders it a bit anecdotic.

We can see that the duality relation τ(υ) = 1 does not constrain the value of 𝑏𝑖. Hence another
type of transformation, acting on the Ehresmann connection, is authorized. Denoting by 𝝀 its
parameter, it acts like a shift 𝛿𝜆𝑏𝑖 = 𝜆𝑖, therefore 𝜆 has to be a transverse covector. This is often
called a local Carroll boost in the literature but here we will prefer the term shift symmetry.

1Most of the literature, especially the one in covariant formalism refers to τ instead of b when dealing with the
Ehresmann connection. Note however that as the time leg is constrained by the duality condition, b is the only arbitrary
piece, hence the genuine degree of freedom.

2Note that this frame is not the most general, as one could have chosen υ̃ = 1
Ω (𝜕𝑡 + 𝑤𝑖𝜕𝑖) dual to

τ̃ = Ωd𝑡 − 𝑏𝑖 (d𝑥𝑖 − 𝑤𝑖d𝑡). Here 𝜄𝑋 is the interior product with a vector υ. However, what will be said in the following
does not depend on the expression of υ in a coordinate basis.
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This formalism, which completely separates time from space, is motivated by the natural desire
that objects should transform covariantly under the restricted class of general diffeomorphism that
preserves this split. These are the so-called Carrollian diffeomorphisms and are of the form

𝑡′ = 𝑡′(𝑡, x) x′ = x′(x), (1.1.5)

together with the Jacobians

𝐽 (𝑡,x) = 𝜕𝑡′

𝜕𝑡
, 𝑗𝑖(𝑡,x) =

𝜕𝑡′

𝜕𝑥𝑖
, 𝐽 𝑖𝑗(x) =

𝜕𝑥′𝑖

𝜕𝑥 𝑗
. (1.1.6)

Asking the weak Carroll structure (d𝑠2,υ) to be invariant under (1.1.5) leads the the following trans-
formation laws

Ω′ =
Ω

𝐽
, 𝑎′𝑖 𝑗 = ( 𝐽−1) 𝑘𝑖 ( 𝐽−1) 𝑙𝑗 𝑎𝑘𝑙 , 𝑏′𝑘 = ( 𝐽

−1) 𝑖𝑘
(
𝑏𝑖 +

Ω

𝐽
𝑗𝑖

)
, (1.1.7)

i.e. Ω is a scalar density for time-time diffeomorphisms, 𝑏𝑖 a connection (as it should) and 𝑎𝑖 𝑗 a
rank-2 covariant tensor. The coordinate basis {𝜕𝜇} (where 𝜇 = 𝑡, 𝑖) does not have a vector-like
transformation law under (1.1.5)

𝜕
′
𝑡 =

1
𝐽
𝜕𝑡 and 𝜕

′
𝑗 = ( 𝐽−1) 𝑖𝑗

(
𝜕𝑖 −

𝑗𝑖

𝐽
𝜕𝑡

)
, (1.1.8)

so we are tempted to introduce as basis and dual basis (𝐴 = 0, 𝑎)

B = {�̂�𝐴} = {υ, �̂�𝑖} and B∗ = {θ̂𝐴} = {τ, d𝑥𝑖} (1.1.9)

where �̂�𝑖 := 𝜕𝑖 + 𝑏𝑖
Ω𝜕𝑡 . They transform as

{υ, �̂�𝑖} →
{
υ, ( 𝐽−1) 𝑗

𝑖
�̂�𝑗

}
and {τ, d𝑥𝑖} →

{
τ, 𝐽 𝑖𝑗d𝑥

𝑗
}

(1.1.10)

under (1.1.5). From now on indices in the basis (1.1.9) will be denoted (𝑡, 𝑖). Note that the metric 𝑎𝑖 𝑗
is non-degenerate and thus can be used, along with its inverse 𝑎𝑖 𝑗, to raise and lower indices. In the
bases at hand the Carrollian metric reads

d𝑠2 = −0 × τ2 + 𝑎𝑖 𝑗d𝑥𝑖d𝑥 𝑗 . (1.1.11)

Remark One needs to be careful with the difference between indices (𝑡, 𝑖) and (𝑡, 𝑖). For example
let us consider a vector 𝝃 = 𝜉 𝑡𝜕𝑡 + 𝜉 𝑖𝜕𝑖. In the bases (1.1.9) its components read

𝝃 := 𝜉 𝑡υ + 𝜉 𝑖𝜕𝑖 = (Ω𝜉 𝑡 − 𝜉 𝑖𝑏𝑖)υ + 𝜉 𝑖𝜕𝑖. (1.1.12)

In this expression 𝜉 𝑡 is a Carrollian scalar (contrary to 𝜉 𝑡 which was a scalar density) and
𝜉 𝑖 = 𝜉 𝑖 the components of a vector. As the spatial components coincides in both frames, we
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will have the tendency in the following to drop the hat on top of the spatial indices, as an
abuse of notations. Let’s now consider a form B = 𝐵𝑡d𝑡 + 𝐵𝑖d𝑥𝑖. In the basis (1.1.9) we get

B := 𝐵𝑡τ + 𝐵𝑖d𝑥𝑖 =
𝐵𝑡

Ω
τ +

(
𝐵𝑖 +

𝑏𝑖

Ω
𝐵𝑡

)
d𝑥𝑖 (1.1.13)

with 𝐵𝑡 and 𝐵𝑖 respectively Carrollian scalar and the components of a covector.

At the level of the shift symmetry the bases at hand transform as

𝛿𝜆υ = 0 , 𝛿𝜆�̂�𝑖 = 𝜆𝑖υ 𝛿𝜆τ = −𝜆𝑖d𝑥𝑖 and 𝛿𝜆d𝑥𝑖 = 0. (1.1.14)

The form basis carries non-holonomy coefficients

dτ = 𝜑𝑖d𝑥𝑖 ∧ τ − 𝜛 𝑖 𝑗d𝑥𝑖 ∧ d𝑥 𝑗 (1.1.15)

i.e. using (A.0.3)
�̂�𝑡
𝑡𝑖
= 𝜑𝑖 and �̂�𝑡𝑖 𝑗 = 2𝜛 𝑖 𝑗 (1.1.16)

where

𝜑𝑖 =
1
Ω
(𝜕𝑡𝑏𝑖 + 𝜕𝑖Ω) (1.1.17)

𝜛 𝑖 𝑗 = 𝜕[𝑖𝑏𝑗] + 𝑏[𝑖𝜑 𝑗] (1.1.18)

are respectively dubbed the acceleration and the vorticity [53]. Note that (1.1.15) is equivalent to the
non commutativity of the basis vectors[

υ, 𝜕𝑖
]
= 𝜑𝑖υ

[
�̂�𝑖, �̂�𝑗

]
= 2𝜛 𝑖 𝑗υ. (1.1.19)

𝜑𝑖 and 𝜛 𝑖 𝑗 are genuine Carrollian tensors (respectively one and two-forms) and transform under
shift symmetry as

𝛿𝜆𝜑𝑖 = υ (𝜆𝑖) and 𝛿𝜆𝜛 𝑖 𝑗 = �̂�[𝑖𝜆 𝑗] + 𝜆[𝑖𝜑 𝑗] , (1.1.20)

i.e. like connections.

Note that the acceleration is also related to the Lie derivative of the clock form along the field
of observers i.e.

𝜑𝑖 = (Lυτ) 𝑖 . (1.1.21)

Let us finishwith an important discussion about the vorticity. In this thesis we consider (in view
of physical applications) Carroll structures only onmanifolds of the typeM = ℝ×S. However this
is not the most general situation. Once we are given an Ehresmann connection, the tangent space
ofM gets splitted into Span(υ) ⊕ 𝐻 with 𝐻 defined in (1.1.4). One may legitimately wonder when
𝐻 is itself the tangent space of a codimension one hypersurface ofM. When this is the case,M is
actually foliated by a succession of hypersurface modeled on the base space S, and one says that 𝐻
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is an integrable distribution. For this to hold, Frobenius criterion should be satisfied for the clock
form i.e. τ ∧ dτ should vanish, which finally implies 𝜛 𝑖 𝑗 = 0. Carroll structures with vanishing
vorticity are then always of the form ℝ × Ŝ with 𝑇Ŝ = 𝐻 .

Remark For completeness, note that another type of transformations a Carroll structure can en-
compass is related to the rescalings of the field of observers υ→ 𝑓 (𝑡,x)υwith 𝑓 an arbitrary
function, while the degenerate metric and the clock form are left invariant. This shall not be
confused withWeyl transformations that affect both the field of observers and the metric (see
Sec. 1.4). This is dubbed a vertical boost in [73]. We will not consider such transformations in
this thesis.

1.2 Classifying all possible connections

In this Section we will clarify the statement according which there is no equivalent of a Levi-Civita
connection on aweakCarroll structure. In general, after decomposing themost general connection
in the bases (1.1.9), one imposes constraints on it, like the compatibility with the degenerate metric,
or the absence of some components of the torsion; all choices restricting drastically the shape the
connection coefficients can take. In this paragraph we shall consider a completely unconstrained
connection ∇̄ that we will comprehensively study. We will then classify the connections mostly
used in the literature depending on the physical manifold at hand.

From now on, let (M , 𝑎𝑖 𝑗, 𝑏𝑖,Ω) be a ruled Carroll structure and let ∇̄ be a connection onM.

1.2.1 Generalities

In general terms, in the bases at hand, one can decompose ∇̄ in the following way

∇̄υυ = 𝛾 υ + 𝜌𝑖 �̂�𝑖
∇̄υ�̂�𝑖 = 𝛿𝑖 υ + 𝛾 𝑗𝑖 �̂�𝑗
∇̄�̂�𝑖υ = �̂�𝑖 υ + �̂� 𝑗𝑖 �̂�𝑗
∇̄�̂�𝑖 �̂�𝑗 = 𝛽𝑖 𝑗 υ + 𝛾𝑘𝑖𝑗 �̂�𝑘

∇̄υτ = −𝛾 τ − 𝛿𝑖 d𝑥𝑖

∇̄υd𝑥𝑖 = −𝜌𝑖 τ − 𝛾 𝑖𝑗 d𝑥 𝑗

∇̄�̂�𝑖τ = −�̂�𝑖 τ − 𝛽𝑖 𝑗 d𝑥 𝑗

∇̄�̂�𝑖d𝑥
𝑗 = −�̂� 𝑗

𝑖
τ − 𝛾 𝑗

𝑖𝑘
d𝑥𝑘.

(1.2.1)

Hencewe have that themost general connection on can put on aCarrollian structure is decomposed
into of the following (𝑑 + 1)3 degrees of freedom, 𝛾 , 𝜌𝑖, 𝛿𝑖, �̂�𝑖, 𝛾

𝑗

𝑖
, �̂� 𝑗

𝑖
, 𝛽𝑖 𝑗 and 𝛾𝑘𝑖𝑗 .

Before going on, it is legitimate to ask about the transformation rules of these new objects
under the transformations we exhibited in the last section, Carrollian diffeomeorphisms and shift
symmetry. Denoting with a prime the quantities obtained after the change of coordinates we have
by definition

∇̄′
υ
′ �̂�
′
𝑖 := 𝛿

′
𝑖υ
′ + 𝛾

′ 𝑗
𝑖
�̂�
′
𝑗. (1.2.2)
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Using (1.1.10) we get3

𝛿
′
𝑖 = ( 𝐽−1) 𝑗

𝑖
𝛿 𝑗 and 𝛾

′ 𝑗
𝑖
= 𝐽

𝑗

𝑘
( 𝐽−1) 𝑙𝑖 𝛾𝑘𝑙 (1.2.3)

i.e. the components of a Carrollian one-form and a rank-(1, 1) tensor. Applying the same method
to ∇̄′

�̂�′
𝑖

�̂�′
𝑗
we find

𝛽
′
𝑖 𝑗 = ( 𝐽−1) 𝑘𝑖 ( 𝐽−1) 𝑙𝑗 𝛽𝑘𝑙 and 𝛾

′𝑘
𝑖𝑗 = 𝐽𝑘𝑛( 𝐽−1) 𝑙𝑖 ( 𝐽−1) 𝑚𝑗 𝛾𝑛𝑙𝑚 + 𝐽

𝑘
𝑛( 𝐽−1) 𝑙𝑖 �̂�𝑙

(
( 𝐽−1) 𝑛𝑗

)
(1.2.4)

i.e 𝛽𝑖 𝑗 is a Carrollian rank-2 tensor and 𝛾𝑘
𝑖𝑗
are Carrollian connection coefficients. With ∇̄υ′υ

′
we

get
𝛾
′
= 𝛾 and 𝜌

′ 𝑖 = 𝐽 𝑖𝑗 𝜌
𝑗 (1.2.5)

i.e. 𝛾 is a genuine scalar while 𝜌𝑖 is a Carrollian vector, while ∇̄�̂�′
𝑖
υ′ yields

�̂�
′
𝑖 =

(
𝐽−1) 𝑗

𝑖
�̂� 𝑗 and �̂�

′ 𝑗
𝑖

= 𝐽
𝑗

𝑘
( 𝐽−1) 𝑙𝑖 �̂� 𝑘𝑙 (1.2.6)

so �̂�𝑖 are indeed the components of a co-vector and �̂� 𝑗
𝑖
a rank-(1, 1) tensor. From now on we will

adopt a new notation for the time-covariant derivative

∇̄υ :=
1
Ω
�̄�𝑡 . (1.2.7)

Remark For a general connection Γ𝜆𝜇𝜈 in (𝑑 + 1)-dimensions, given the Jacobian 𝐽𝜇𝜈 , the finite
transformation law under diffeomorphism is

Γ
′𝜌
𝜇𝜈 = 𝐽

𝜌
𝛾 ( 𝐽−1) 𝛼𝜇 ( 𝐽−1) 𝛽𝜈 Γ

𝛾

𝛼𝛽
+ ( 𝐽−1) 𝛼𝜇 𝐽

𝜌
𝛾 𝒆𝛼

[ (
𝐽−1) 𝛾

𝜈

]
, (1.2.8)

with 𝒆𝛼 a basis vector. In our bases (1.1.9) the Jacobian takes the matrix form 𝐽
𝜇
𝜈 =

(
1 0
0 𝐽 𝑖

𝑗
(x)

)
so we recover (1.2.3), (1.2.4), (1.2.5) and (1.2.6) from (1.2.8), as it should.

Remark As genuine Carrollian tensors, 𝛾 , 𝛿𝑖, �̂�𝑖, 𝜌𝑖, 𝛾𝑖 𝑗, �̂�𝑖 𝑗 and 𝛽𝑖 𝑗 could be consistently set equal
to Carrollian tensors of the same rank without breaking Carroll diffeomorphism covariance.
It is also consistent to set them to zero, and we shall pick later a particular connection for
which this happens. However such choices may not be shift invariant.

Applying the same method on (1.2.1), using (1.1.14) we get the transformations of the coefficients
under shift symmetry

𝛿𝜆𝛾 = −𝜌𝑖𝜆𝑖 (1.2.9a)

3The tensorial character of 𝛾 𝑗
𝑖
comes from the use of Carrollian diffeomorphisms, so is rooted in the time-

independence of the Jacobian 𝐽 𝑖
𝑗
. Otherwise a term likeυ

(
( 𝐽−1) 𝑘

𝑖

)
𝐽
𝑗

𝑘
would have appear. This has to be linkedwith the

further use of this tensor as Carrollian temporal connection, while 𝛾𝑘
𝑖𝑗
will play the role of Carrollian spatial connection,

see (1.3.2).
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𝛿𝜆𝜌
𝑖 = 0 (1.2.9b)

𝛿𝜆𝛿𝑖 = 𝜆𝑖𝛾 − 𝛾 𝑗𝑖𝜆 𝑗 + υ (𝜆𝑖) (1.2.9c)

𝛿𝜆 �̂�𝑖 = 𝜆𝑖𝛾 − �̂� 𝑗𝑖 𝜆 𝑗 (1.2.9d)

𝛿𝜆𝛾
𝑗

𝑖
= 𝜆𝑖𝜌

𝑗 (1.2.9e)

𝛿𝜆 �̂�
𝑗

𝑖
= 𝜆𝑖𝜌

𝑗 (1.2.9f)

𝛿𝜆𝛽𝑖 𝑗 = −𝛾𝑘𝑖𝑗𝜆𝑘 + 𝜆 𝑗 �̂�𝑖 + 𝜆𝑖𝛿 𝑗 + �̂�𝑖
(
𝜆 𝑗

)
(1.2.9g)

𝛿𝜆𝛾
𝑘
𝑖𝑗 = 𝜆 𝑗 �̂�

𝑘
𝑖 + 𝜆𝑖𝛾𝑘𝑗 (1.2.9h)

showing that 𝛿𝑖 and 𝛽𝑖 𝑗 are respectively the Carrollian temporal and spatial shift connections.

Remark Putting together (1.2.5) and (1.2.9b) we conclude that 𝜌𝑖 is both a Carrollian tensor and a
shift-invariant quantity. Hence it can be consistently set to zero. Once set to zero, �̂� 𝑖

𝑗
is also

a shift-invariant Carrollian tensor, which we can also set to zero. Therefore we have that
neither 𝜌𝑖 nor �̂� 𝑖

𝑗
play any role in building a Carrollian connection. The study in Cartan’s

orthonormal frame that we present in Sec. B.1 will show that these degrees of freedom are
actually connections for Galilean boosts, transformations that do not play any role on a Car-
roll structure.

The torsion two-form of such a connection reads

T̂ 𝑡 = 1
2
(𝛿𝑖 − �̂�𝑖 − 𝜑𝑖)τ ∧ d𝑥𝑖 + (𝛽[𝑖 𝑗] − 𝜛 𝑖 𝑗)d𝑥𝑖 ∧ d𝑥 𝑗 (1.2.10a)

T̂ 𝑖 =
1
2

(
𝛾 𝑖𝑗 − �̂� 𝑖𝑗

)
τ ∧ d𝑥 𝑗 + 𝛾 𝑖[𝑘𝑗]d𝑥

𝑘 ∧ d𝑥 𝑗. (1.2.10b)

This implies the following commutation rules on a scalar[
1
Ω
�̄�𝑡 , ∇̄𝑖

]
𝑓 = (�̂�𝑖 + 𝜑𝑖 − 𝛿𝑖)υ (𝑓 ) +

(
�̂�
𝑗

𝑖
− 𝛾 𝑗

𝑖

)
�̂�𝑗 (𝑓 ) (1.2.11a)[

∇̄𝑖, ∇̄𝑗
]
𝑓 = 2

(
𝜛 𝑖 𝑗 − 𝛽[𝑖 𝑗]

)
υ (𝑓 ) − 2𝛾𝑘[𝑖 𝑗] �̂�𝑘 (𝑓 ) . (1.2.11b)

We see that it is possible to completely cancel the torsion with the following requirements
(which are legitimate as these are tensorial equalities)4

𝛿𝑖 = 𝛼𝑖 + 𝜑𝑖 , 𝛽[𝑖 𝑗] = 𝜛 𝑖 𝑗 , 𝛾 𝑖𝑗 = �̂� 𝑖𝑗 , 𝛾𝑘[𝑖 𝑗] = 0. (1.2.12)

Note that the symmetric part of 𝛽(𝑖 𝑗) is not constrained by these requirements, hence it is a genu-
ine ambiguity of the connection. This extends to general connections the well known result that
any two torsion-free Carrollian connections are related by a symmetric, transverse (w.r.t. the field
of observers) rank-2 tensor, see Appendix C for the proof in covariant formalism. Under a shift

4Due to the first of these constraint we see that there exists an infinite number of such connections.
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transformation the torsion two-form behaves like

𝛿𝜆T 𝑡 = −𝜆 𝑗T 𝑗 (1.2.13a)

𝛿𝜆T 𝑖 = 0. (1.2.13b)

Hence, asking for no torsion at all, imposing (1.2.12), is a shift-invariant statement.

Proposition 1.0.1. Endowing a Carrollian structure with a completely torsion-free connection is
a Carroll diffeomorphism invariant as well as a Carroll-shift invariant statement.

Actually, to preserve Carroll diffeomorphisms and shifts it is sufficient to cancel only the spatial part
of the torsion. This statement will no longer holdwhen dealingwith Carrollian strong connections,
see Sec. 1.2.2. The Riemann curvature matrix-valued two-form reads

R𝑡
𝑡
=

1
2

(
υ(�̂�𝑖) + �̂� 𝑗𝑖 𝛿 𝑗 −

(
�̂�𝑖 + 𝜑𝑖

)
𝛾 − 𝜌𝑗𝛽𝑖 𝑗 − 𝜑𝑖𝛾

)
τ ∧ d𝑥𝑖 (1.2.14a)

+
(
�̂�[𝑖 �̂� 𝑗] + �̂� 𝑘

[ 𝑗 𝛽𝑖]𝑘 − 𝜛 𝑖 𝑗𝛾
)
d𝑥𝑖 ∧ d𝑥 𝑗,

R𝑡𝑖 =
1
2

(
υ(𝛽 𝑗𝑖) + 𝛽 𝑗𝑖𝛾 + 𝛾𝑘𝑗𝑖𝛿𝑘 − �̂�𝑗

(
𝛿𝑖

)
− 𝛿𝑖 �̂� 𝑗 − 𝛾𝑘𝑖𝛽 𝑗𝑘 − 𝜑 𝑗𝛿𝑖

)
τ ∧ d𝑥 𝑗 (1.2.14b)

+
(
�̂�[ 𝑗

(
𝛽𝑘] 𝑖

)
+ 𝛽[𝑘|𝑖| �̂� 𝑗] + 𝛾 𝑙[𝑘|𝑖|𝛽 𝑗] 𝑙 − 𝜛 𝑗𝑘𝛿𝑖

)
d𝑥 𝑗 ∧ d𝑥𝑘

R 𝑖
𝑡
=

1
2

(
υ

(
�̂� 𝑖𝑗

)
+ �̂� 𝑗𝜌𝑖 + �̂� 𝑘𝑗 𝛾 𝑖𝑘 − �̂�𝑗

(
𝜌𝑖
)
− 𝛾 �̂� 𝑖𝑗 − 𝜌𝑘𝛾 𝑖𝑘𝑗 − 𝜑 𝑗𝜌

𝑖
)
τ ∧ d𝑥 𝑗 (1.2.14c)

+
(
�̂�[ 𝑗

(
�̂� 𝑖
𝑘]

)
+ �̂�[𝑘 �̂� 𝑖

𝑗] + �̂�
𝑙
[𝑘 𝛾

𝑖
𝑗] 𝑙 − 𝜛 𝑗𝑘𝜌

𝑖
)
d𝑥 𝑗 ∧ d𝑥𝑘

R 𝑖𝑗 =
1
2

(
υ

(
𝛾 𝑖𝑘𝑗

)
+ 𝛽𝑘𝑗𝜌𝑖 + 𝛾 𝑙𝑘𝑗𝛾

𝑖
𝑙 − �̂�𝑘

(
𝛾 𝑖𝑗

)
− 𝛿 𝑗 �̂� 𝑖

𝑘 − 𝛾
𝑙
𝑗𝛾
𝑖
𝑘𝑙 − 𝜑𝑘𝛾

𝑖
𝑗

)
τ ∧ d𝑥𝑘 (1.2.14d)

+
(
�̂�[𝑘

(
𝛾 𝑖
𝑙] 𝑗

)
+ �̂� 𝑙
[𝑘 𝛽𝑙] 𝑗 + 𝛾

𝑖
[𝑘|𝑚|𝛾

𝑚
𝑙] 𝑗 − 𝜛𝑘𝑙𝛾

𝑖
𝑗

)
d𝑥𝑘 ∧ d𝑥𝑙

and gives the commutator of two covariant derivatives on a vector, see (A.0.10b). One could study
the tensorial and shift properties of the latter but as such general connections are marginal in the
literature this would bring us far from our goal.

For the moment we haven’t imposed any constraints on the connection, we have just seen that
there exists a set of hypotheses allowing to completely cancel the torsion. Our analysis hence re-
stricts to the decomposition of a general connection into longitudinal parts (with only 𝑡 indices),
purely transverse parts (with only Latin indices) and mixed parts.

Remark As we shall see in the next section, Carrollian connections were originally demanded to
satisfy some constraints (e.g. the preservation of the weak structure). However as shown in
e.g. [73, 74] the connection induced on a black-hole horizon by the ambient Levi-Civita one
does not fulfill the latter requirement, rendering our previous analysis worth being done. The
same remark applies to the case of stretched horizons [75].
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1.2.2 Strong Carroll connections

Let us start with the connection ∇̄. In [49] a Carrollian connection is defined to be a connection that
preserves the weak Carroll structure. In this paragraph we shall impose the latter constraint and
study its consequences.

Hypothesis 1 : Compatibility with the field of observers i.e. ∇̄υ = 0
This implies that 𝛾 = 0, �̂�𝑖 = 0, 𝜌𝑖 = 0 and �̂� 𝑗

𝑖
= 0, so we are left with

∇̄υυ = 0

∇̄υ�̂�𝑖 = 𝛿𝑖 υ + 𝛾 𝑗𝑖 �̂�𝑗
∇̄�̂�𝑖υ = 0

∇̄�̂�𝑖 �̂�𝑗 = 𝛽𝑖 𝑗 υ + 𝛾𝑘𝑖𝑗 �̂�𝑘

∇̄υτ = −𝛿𝑖 d𝑥𝑖

∇̄υd𝑥𝑖 = −𝛾 𝑖𝑗 d𝑥 𝑗

∇̄�̂�𝑖τ = −𝛽𝑖 𝑗 d𝑥 𝑗

∇̄�̂�𝑖d𝑥
𝑗 = −𝛾 𝑗

𝑖𝑘
d𝑥𝑘.

(1.2.15)

Everything is well-behaved under Carrollian diffeomorphisms and the transformations under shift
(1.2.9c), (1.2.9e), (1.2.9h) and (1.2.9g) reduces to

𝛿𝜆𝛿𝑖 = υ(𝜆𝑖) − 𝛾 𝑗𝑖𝜆 𝑗 (1.2.16a)

𝛿𝜆𝛾
𝑗

𝑖
= 0 (1.2.16b)

𝛿𝜆𝛾
𝑘
𝑖𝑗 = 𝜆𝑖𝛾

𝑘
𝑗 (1.2.16c)

𝛿𝜆𝛽𝑖 𝑗 = �̂�𝑖
(
𝜆 𝑗

)
+ 𝜆𝑖𝛿 𝑗 − 𝜆𝑘𝛾𝑘𝑖𝑗. (1.2.16d)

Hence, given the last equations and the Remark belowEq. (1.2.9h), imposingHypothesis 1 is a Carroll
diffeomorphism and shift invariant requirement.

Hypothesis 2 : Compatibility with the metric, ∇̄𝑎𝑖 𝑗 = 0
Using App. (A.0.8) we get only two non-identically zero conditions5

1
Ω
�̄�𝑡𝑎𝑖 𝑗 = υ(𝑎𝑖 𝑗) − 2𝛾(𝑖 𝑗) = 0 and ∇̄𝑘𝑎𝑖 𝑗 = �̂�𝑘𝑎𝑖 𝑗 − 𝛾 𝑙𝑘𝑖𝑎𝑙 𝑗 − 𝛾

𝑙
𝑘𝑗𝑎𝑖𝑙 = 0 (1.2.17)

which are solved imposing first

𝛾(𝑖 𝑗) =
1
2
υ(𝑎𝑖 𝑗) := 𝜉𝑖 𝑗 +

𝜃

𝑑
𝑎𝑖 𝑗 (1.2.18)

where 𝜉𝑖 𝑗 is a Carrollian tensor dubbed the geometric shear and

𝜃 = υ(ln
√
𝑎) (1.2.19)

5Our conventions for (anti)-symmetrisation are as follows (for a rank-2 tensor) 𝐴(𝜇𝜈) = 1
2 (𝐴𝜇𝜈 + 𝐴𝜈𝜇) and

𝐴[𝜇𝜈] =
1
2 (𝐴𝜇𝜈 − 𝐴𝜈𝜇).
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is a Carrollian scalar called the expansion. This combination is often called in the literature the
extrinsic curvature as it measures how the metric of the base space S changes along the geodesic
tubes generated byυ. The second condition in (1.2.17) is solved using the standard technique (∇̄𝑘𝑎𝑖 𝑗−
∇̄𝑖𝑎𝑗𝑘 − ∇̄𝑗𝑎𝑘𝑖 = 0) and gives

𝛾𝑘(𝑖 𝑗) =
1
2
𝑎𝑘𝑙 (�̂�𝑖𝑎𝑗𝑙 + �̂�𝑗𝑎𝑙𝑖 − �̂�𝑙𝑎𝑖 𝑗) (1.2.20)

i.e. genuine Christoffels symbols for the purely spatial part of the connection. A connection that
satisfied Hypotheses 1 and 2 is dubbed a strong Carroll connection and the structure (𝑎𝑖 𝑗,υ, ∇̄) is
then called a strong Carroll structure (ruled if we add a 𝑏𝑖). We see that not all the residual degrees
of freedom we got after requiring the first hypothesis are constrainted for a strong connection.
Actually we have the following

Proposition 1.0.2. A strong Carrollian connection leaves free 𝛿𝑖, 𝛽𝑖 𝑗, 𝛾 [𝑖 𝑗] and 𝛾𝑘[𝑖 𝑗] i.e.
𝑑(𝑑+1)2

2
degrees of freedom.

For completeness, let us see howour strong connection acts onCarrollian tensors. LetV = 𝑣𝑡υ + 𝑣𝑖�̂�𝑖
and 𝝎 = 𝜔𝑡τ + 𝜔𝑖d𝑥𝑖 be respectively a vector and a one-form. Given (1.2.15) together with (1.2.18),
(1.2.20) and the Leibniz rule we get

1
Ω
�̄�𝑡𝑣

𝑡 = υ(𝑣𝑡) + 𝑣𝑖𝛿𝑖

∇̄𝑖𝑣𝑡 = �̂�𝑖𝑣𝑡 + 𝛽𝑖 𝑗𝑣 𝑗

1
Ω
�̄�𝑡𝑣

𝑖 = υ(𝑣𝑖) + 𝛾 𝑖 𝑗𝑣𝑗

∇̄𝑗𝑣𝑖 = �̂�𝑗𝑣𝑖 + 𝛾 𝑖𝑗𝑘𝑣
𝑘

1
Ω
�̄�𝑡𝜔𝑡 = υ(𝜔𝑡)

∇̄𝑖𝜔𝑡 = �̂�𝑖𝜔𝑡
1
Ω
�̄�𝑡𝜔𝑖 = υ(𝜔𝑖) − 𝜔 𝑗𝛾𝑖 𝑗 − 𝜔𝑡𝛿𝑖

∇̄𝑗𝜔𝑖 = �̂�𝑗𝜔𝑖 − 𝛾𝑘𝑖𝑗𝜔𝑘 − 𝛽𝑖 𝑗𝜔𝑡 .

(1.2.21)

Let’s end this paragraph describing some examples of Carroll strong connections. Indeed given
the remaining pieces, depending on the degrees of freedom one chooses to discard, the resulting
connection will get drastically different characteristics.

Carroll special connection

Using the general formulae (1.2.10a) and (1.2.10b) we get for the torsion one-form in the case at hand

T̂ 𝑡 = (𝛽[𝑖 𝑗] − 𝜛 𝑖 𝑗)d𝑥𝑖 ∧ d𝑥 𝑗 + (𝛿𝑖 − 𝜑𝑖)τ ∧ d𝑥𝑖 (1.2.22a)

T̂ 𝑖 = 𝛾 𝑖𝑗τ ∧ d𝑥 𝑗 + 𝛾 𝑖[𝑘𝑗]d𝑥
𝑘 ∧ d𝑥 𝑗 = 𝑎𝑖𝑘

(
𝛾(𝑘𝑗) + 𝛾 [𝑘𝑗]

)
τ ∧ d𝑥 𝑗 + 𝛾 𝑖[𝑘𝑗]d𝑥

𝑘 ∧ d𝑥 𝑗. (1.2.22b)

From this formula we can make several remarks. First, because 𝛾(𝑘𝑗) is related to the geometry in
virtue of (1.2.18) we have the following result

Proposition 1.0.3. It is not possible to endow a general weak Carrollian structure with a com-
pletely torsionfree strong connection. The unavoidable piece of torsion is related to the extrinsic
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curvature via the geometric shear 𝜉𝑖 𝑗 and the expansion 𝜃 and reads

T̂ 𝑡 = 0 and T̂ 𝑖 = 𝑎𝑖𝑘
(
𝜉𝑖 𝑗 +

𝜃

𝑑
𝑎𝑖 𝑗

)
τ ∧ d𝑥 𝑗 . (1.2.23)

This statement is not shift invariant due to (1.2.13a), (1.2.13b) and T 𝑡 being zero.

Remark This is in perfect agreement with what was found in the covariant formalism, see Remark
(C.0.11) and [56], where it was shown in a coordinate independent way that only invariant
Carroll structures (the ones for which Lυ𝑞 = 0) can admit torsion-free connections.

Remark In the case of J + is it always possible to go to a frame in which the extrinsic curvature
vanishes, by making use of a Weyl transformation. Thus one can always endow J + with a
completely torsion-free strong connection.

The maximum we can do is to ask all the pieces in (1.2.22a) and (1.2.22b) but 𝛾(𝑖 𝑗) to vanish i.e.

𝛿𝑖 = 𝜑𝑖 , 𝛽[𝑖 𝑗] = 𝜛 𝑖 𝑗 , 𝛾 [𝑖 𝑗] = 0 , and 𝛾 𝑖[𝑘𝑗] = 0 (1.2.24)

which is perfectly fine given the transformations (1.2.3) and (1.2.4).6 We call such a connection a
special Carrollian connection. We have the result

Proposition 1.0.4. A special Carrollian connection leaves only free a rank-2 transverse and sym-
metric tensor, 𝛽(𝑖 𝑗) i.e.

𝑑(𝑑+1)
2 degrees of freedom.

Remark This is precisely in this tensor that Ashtekar identified the two polarization of the grav-
iton (see [76] for a review in modern notations), relating then 𝛽(𝑖 𝑗) (more precisely its trace-
free part) with the Bondi shear. Indeed in four-dimensional bulk spacetimes i.e. three-
dimensional null infinity, the trace-free part of 𝛽𝑖 𝑗 is both unconstrained and can hold two
degrees of freedom. These are exactly the two main features of the shear tensor.

Split-frame compatible connection

As we saw in (1.2.15), strong connections do not leave the clock form invariant a priori. This will
ultimately blur the time/space splitting. This is neither a caveat nor an issue, however onemaywant
to consider a connection that completely preserves the splitting. In that case it is asked that ∇̄τ ∝ τ

and thus 𝛿𝑖 = 0 and 𝛽𝑖 𝑗 = 0. Hence, because of (1.2.22a) and (1.2.22b), the torsion is supported by
geometric quantities (𝜑𝑖 and 𝜛 𝑖 𝑗) and then cannot be generally set to zero. This is an important result
that for general Carrollian structures, there is no special strong connection that fully preserves the
time/space splitting. Moreover such connections cannot be Carroll shift invariant as 𝛿𝑖 and 𝛽𝑖 𝑗
gauge the latter transformation, see (1.2.16a) and (1.2.16d).

6Note however that this is not a shift invariant statement as T 𝑖 is non vanishing.
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1.3 Strong Carroll structures and conservation equations

In this Section we introduce the connection used in [52, 53, 61, 65] which is a connection without
ambiguities and which is the closest analogue to a Levi-Civita connection. Equipped with this
connection we shall consider a generic effective action whose variation under a Carrollian diffeo-
morphism will give rise to the notion of conjugate momenta and the emergence of their associated
conservation equations.

1.3.1 The hat connection ∇̂

Due to their tensorial properties, one can also choose to set

𝛿𝑖 = 0, 𝛽𝑖 𝑗 = 0, 𝛾 [𝑖 𝑗] = 0 and 𝛾 𝑖[𝑘𝑗] = 0 (1.3.1)

leading to a torsionfull connection but with no spatial torsion.7 This makes it a Levi-Civita con-
nection on the spatial sections S. We shall denote it ∇̂ and use it from now on.8 We give the action
on a vector field, as then one can deduce the rest from the Leibniz rule

1
Ω
�̂�𝑡𝑉

𝑖 =
1
Ω
𝜕𝑡𝑉

𝑖 + 𝛾 𝑖𝑗𝑉 𝑗 and ∇̂𝑗𝑉 𝑖 = �̂�𝑗𝑉
𝑖 + 𝛾 𝑖( 𝑗𝑘)𝑉

𝑘. (1.3.2)

The Carrollian metric is also preserved by the temporal covariant derivative,9 that is

1
Ω
�̂�𝑡𝑎𝑖 𝑗 = 0. (1.3.3)

Acting on scalars the covariant derivatives do not commute[
1
Ω
�̂�𝑡 , ∇̂𝑖

]
𝑓 = 𝜑𝑖

1
Ω
𝜕𝑡𝑓 − 𝛾 𝑗𝑖 �̂�𝑗 𝑓 (1.3.4a)[

∇̂𝑖, ∇̂𝑗
]
𝑓 = 2𝜛 𝑖 𝑗

1
Ω
𝜕𝑡𝑓 . (1.3.4b)

We see appearing the intrinsic torsion (𝛾(𝑖 𝑗) , 𝜑𝑖 and 𝜛 𝑖 𝑗) that is left non zero by our choices (1.3.1).

The commutators of Carrollian covariant derivatives on a vector define Carrollian curvature
tensors10 [

∇̂𝑘, ∇̂𝑙
]
𝑉 𝑖 =

(
�̂�𝑘𝛾

𝑖
𝑙 𝑗
− �̂�𝑙𝛾 𝑖𝑘𝑗 + 𝛾

𝑖
𝑘𝑚
𝛾𝑚
𝑙𝑗
− 𝛾 𝑖

𝑙𝑚
𝛾𝑚
𝑘𝑗

)
𝑉 𝑗 +

[
�̂�𝑘, �̂�𝑙

]
𝑉 𝑖

= 𝑟𝑖
𝑗𝑘𝑙
𝑉 𝑗 + 𝜛𝑘𝑙 2

Ω𝜕𝑡𝑉
𝑖,

(1.3.5)

where 𝑟𝑖
𝑗𝑘𝑙

is called the Riemann–Carroll tensor. The Ricci–Carroll tensor and the Ricci–Carroll

7Here T 𝑡 = −𝜛 𝑖 𝑗d𝑥𝑖 ∧ d𝑥 𝑗 − 𝜑𝑖τ ∧ d𝑥𝑖 and T 𝑖 = 𝛾 𝑖
𝑗
τ ∧ d𝑥 𝑗 so 𝑇 𝑘

𝑖𝑗
= 0.

8In Section 2.1.1 we shall see that ∇̂ is the connection inherited from the relativistic ascendant.
9This can be easily shown by direct computation.
10Note that the second term of the second line is due to torsion.
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scalar curvature are defined as
𝑟𝑖 𝑗 = 𝑟

𝑘
𝑖𝑘𝑗 ≠ 𝑟𝑗𝑖, 𝑟 = 𝑎𝑖 𝑗𝑟𝑖 𝑗. (1.3.6)

Similarly, space and time derivatives do not commute[
1
Ω
�̂�𝑡 , ∇̂𝑖

]
𝑉 𝑗 = 𝜑𝑖

((
1
Ω
�̂�𝑡 + 𝜃

)
𝑉 𝑗 − 𝛾 𝑗

𝑘
𝑉 𝑘

)
− 𝛾 𝑘𝑖 ∇̂𝑘𝑉 𝑗 − 𝑑𝑟 𝑗

𝑖𝑘
𝑉 𝑘 (1.3.7)

with

𝑟
𝑗

𝑖𝑘
=

1
𝑑

(
𝜃𝜑𝑖𝛿

𝑗

𝑘
+ ∇̂𝑖𝛾 𝑗𝑘 −

1
Ω
𝜕𝑡𝛾

𝑗

𝑖𝑘

)
, 𝑟

𝑗

𝑗𝑘
= 𝑟𝑘 =

1
𝑑

(
∇̂𝑗𝛾 𝑗𝑘 − �̂�𝑘𝜃

)
, (1.3.8)

further Carrollian curvature tensors mixing space and time.

1.3.2 Action, momenta, and conservation equations

In this sectionwe consider the connection ∇̂ and an effective Carrollian action, which is a functional
of the geometric pieces and of matter fields (collectively denoted by Φ),

𝑆 = 𝑆 [𝑎𝑖 𝑗, 𝑏𝑖,Ω;Φ] =
∫

d𝑡 d𝑑𝑥
√
𝑎ΩL (1.3.9)

where L is the Lagrangian density. From the relativistic intuition we know that varying the action
under a general diffeomorphism and asking it to be invariant implies the on-shell conservation
of the energy-momentum tensor, seen as the conjugate momenta of the metric. We shall define
here the notion of Carrollian momenta and derive from Carrollian diffeomorphism invariance of
𝑆 their conservation equations. Throughout the Section 𝝃 = 𝜉 𝑡 (𝑡, x)υ + 𝜉 𝑖(x)�̂�𝑖 parameterizes an
infinitesimal Carrollian diffeomorphism. Note already that 𝜉 𝑖 is time-independent.

Lie derivatives and divergences

As 𝑎𝑖 𝑗,υ,τ are tensors under Carrollian diffeomorphisms the latter will act with the Lie derivative

𝛿𝝃𝑎𝑖 𝑗 = −L𝝃𝑎𝑖 𝑗 , 𝛿𝝃υ = −L𝝃υ , 𝛿𝝃τ = −L𝝃τ , (1.3.10)

where the minus sign is conventional. Using (A.0.16a) and (A.0.24a) we get

L𝝃𝑎𝑖 𝑗 = 2𝜉 𝑡𝛾(𝑖 𝑗) + 2∇̂(𝑖𝜉𝑘𝑎𝑗)𝑘 (1.3.11a)

L𝝃υ = −
(

1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖
)
υ (1.3.11b)

L𝝃τ =

(
1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖
)
τ +

(
(�̂�𝑖 − 𝜑𝑖)𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖

)
d𝑥𝑖. (1.3.11c)
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Given that

L𝝃υ = L𝝃 (Ω−1𝜕𝑡) = −L𝝃 (lnΩ)υ and L𝝃τ = L𝝃 (lnΩ)τ +
(
L𝝃𝑏𝑖 − 𝑏𝑖L𝝃 (lnΩ)

)
d𝑥𝑖 (1.3.12)

we infer11

L𝝃 (lnΩ) =
(

1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖
)

and L𝝃𝑏𝑖 = 𝑏𝑖

(
1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑 𝑗𝜉 𝑗
)
+

(
(�̂�𝑖 − 𝜑𝑖)𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖

)
. (1.3.13)

Remark In the basis B the total metric (1.1.11) takes the matrix form 𝑞𝐴𝐵 =

(
0 0
0 𝑎𝑖 𝑗

)
and we have

L𝝃𝑞𝑡𝑡 = 0, L𝝃𝑞𝑡𝑖 = L𝝃𝑞𝑖𝑡 = 0 together with L𝝃𝑞𝑖 𝑗 = L𝝃𝑎𝑖 𝑗. Hence Carrollian diffeomorph-
isms preserve the form (1.1.11), i.e. the time/space splitting, as advertised.

In the process of varying an action one has to dealwith integrations by parts. Herewe shall write
the Carrollian equivalent of the well-known relativistic formula (valid for a Levi-Civita connection)
√−𝑔∇𝜇𝑉 𝜇 = 𝜕𝜇(

√−𝑔𝑉 𝜇) with 𝑔 = det (𝑔𝜇𝜈) the determinant of the Riemannian metric and 𝑉 𝜇 a
vector. Note that because we are integrating over 𝑡 and 𝑥𝑖 with a volume element

√
𝑎Ω the good

temporal and spatial boundary terms should be built upon the ordinary spatial derivative 𝜕𝑖 and
not �̂�𝑖. Manipulating the temporal and spatial divergences, i.e. respectively υ(𝑓 ) and ∇̂𝑖𝑉 𝑖, with 𝑓 a
Carrollian scalar and 𝑉 𝑖 the components of a Carrollian vector, we get

√
𝑎Ωυ(𝑓 ) = −

√
𝑎Ω𝜃 𝑓 + 𝜕𝑡 (

√
𝑎𝑓 ) (1.3.14a)

√
𝑎Ω∇̂𝑖𝑉 𝑖 = −

√
𝑎Ω𝜑𝑖𝑉

𝑖 + 𝜕𝑡 (
√
𝑎𝑏𝑖𝑉

𝑖) + 𝜕𝑖(
√
𝑎Ω𝑉 𝑖). (1.3.14b)

Remark In deriving the formula for the spatial divergence we made use of the equality

∇̂𝑖𝑉 𝑖 =
1
√
𝑎
�̂�𝑖(
√
𝑎𝑉 𝑖) (1.3.15)

which is valid because the connection ∇̂ is spatially Levi-Civita. One then has to be careful
when using another connection. In particular this is the reason why we choose to re-express
the Lie derivatives (originally written with ordinary derivatives) in terms of the connection
∇̂.

Varying the effective action

Carrollian momenta are conjugate variables to the geometrical data. They are the Carrollian equi-
valents of the relativistic energy-momentum tensor and are defined as

Π𝑖 𝑗 =
2
√
𝑎Ω

𝛿𝑆

𝛿𝑎𝑖 𝑗
, Π𝑖 =

1
√
𝑎Ω

𝛿𝑆

𝛿𝑏𝑖
, Π = − 1

√
𝑎

(
𝛿𝑆

𝛿Ω
+ 𝑏𝑖
Ω

𝛿𝑆

𝛿𝑏𝑖

)
. (1.3.16)

11Note that becauseΩ and 𝑏𝑖 are not tensorial under Carrollian diffeomorphisms it is an abuse of notation to use the
symbol L𝝃 on them. One should then see (1.3.13) as definitions.
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They12 are dubbed respectively the energy-stress tensor, the energy current and the energy density and
their definition guarantees their tensorial properties under Carrollian diffeomorphisms.13

Remark Asking for a Carrollian theory to be shift invariant will impose that no physical quantity
should depend on 𝑏𝑖, hence Π𝑖 = 0. However not all theories behave like that (as we will see
in the case of the magnetic scalar field in Sec. 2.3.1). This is in particular the case for radiating
systems for which the energy-flux Π𝑖 will be non zero as it will encode part of the radiation
(like in Robinson-Trautman spacetimes, Sec. 2.3.3).

Taking the variation of the action gives

𝛿𝝃𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎Ω

(
1
2
Π𝑖 𝑗𝛿𝝃𝑎𝑖 𝑗 + Π𝑖𝛿𝝃𝑏𝑖 −

1
Ω

(
Π + 𝑏𝑖Π𝑖

)
𝛿𝝃Ω

)
. (1.3.17)

Using (1.3.11a), (1.3.13) together with (1.3.14a) and (1.3.14b) and 𝜉 𝑖 = 𝜉 𝑖(x) we get14

𝛿𝝃𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎Ω

{
−𝜉 𝑡

[(
1
Ω
𝜕𝑡 + 𝜃

)
Π +

(
∇̂𝑖 + 2𝜑𝑖

)
Π𝑖 + Π𝑖 𝑗𝛾𝑖 𝑗

]
+ 𝜉 𝑖

[(
∇̂𝑗 + 𝜑 𝑗

)
Π
𝑗

𝑖
+ 2Π𝑗𝜛 𝑗𝑖 + Π𝜑𝑖

]}
+
∫

d𝑡d𝑑𝑥
{
𝜕𝑡

[√
𝑎

(
𝜉 𝑡

(
Π + 𝑏𝑖Π𝑖

)
− 𝜉 𝑗𝑏𝑖Π𝑖 𝑗

)]
+𝜕𝑖

[√
𝑎Ω

(
𝜉 𝑡Π𝑖 − 𝜉 𝑗Π𝑖 𝑗

)]}
(1.3.19)

which leads to the conservation equations15(
1
Ω
𝜕𝑡 + 𝜃

)
Π +

(
∇̂𝑖 + 2𝜑𝑖

)
Π𝑖 + Π𝑖 𝑗𝛾𝑖 𝑗 =̂ 0 , (1.3.20)

and (
∇̂𝑗 + 𝜑 𝑗

)
Π
𝑗

𝑖
+ 2Π𝑗𝜛 𝑗𝑖 + Π𝜑𝑖 =̂ −

(
1
Ω
𝜕𝑡 + 𝜃

)
𝑃𝑖 (1.3.21)

where an extra piece, the momentum 𝑃𝑖, appears because of the time independence of 𝜉 𝑖. Indeed√
𝑎Ω𝜉 𝑖

( 1
Ω𝜕𝑡 + 𝜃

)
𝑃𝑖 = 𝜕𝑡 (

√
𝑎𝜉 𝑖𝑃𝑖) and this is a genuine boundary term.16 For an explicit theory,

12We thus have 1√
𝑎Ω

𝛿𝑆
𝛿Ω = − 1

Ω (Π + 𝑏𝑖Π
𝑖).

13See Section 2.2 formore details about the relationship between the Carrollianmomenta and the relativistic energy-
momentum tensor.

14To help the reader we give one of the intergrations by part to perform

−Π𝑖 𝑗∇̂𝑖𝜉 𝑗 = −∇̂𝑖 (Π𝑖 𝑗𝜉 𝑗) + 𝜉 𝑗∇̂𝑖Π𝑖 𝑗 = 𝜉 𝑗 (∇̂𝑖 + 𝜑𝑖)Π𝑖𝑗 −
1
√
𝑎Ω

𝜕𝑖 (
√
𝑎ΩΠ𝑖 𝑗𝜉

𝑗) − 1
√
𝑎Ω

�̂�𝑡 (
√
𝑎𝑏𝑖Π

𝑖
𝑗𝜉
𝑗) (1.3.18)

where we have used (1.3.14b).
15On-shellness will be denoted with a hat on top of the equal sign.
16In the most general frame where υ = 1

Ω

(
𝜕𝑡 + 𝑤𝑖𝜕𝑖

)
the momentum is obtained through variation via 𝑃𝑖 = 1√

𝑎Ω
𝛿𝑆
𝛿𝑤𝑖

and appears naturally in the equation when requiring general diffeomorphism invariance.
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these two equations must be valid on-shell and this determines 𝑃𝑖 (see Section 2.3.2 for the example
of the scalar field).

Equation for a𝑼 (1) current

Let’s assume that our action is further invariant under a local 𝑈 (1) symmetry associated with a
gauge field 𝑩 = 𝐵(𝑡,x)d𝑡 + 𝐵𝑖(𝑡,x)d𝑥𝑖. Under a gauge transformation of parameter Λ the gauge
field changes as 𝛿Λ𝐵 = 𝜕𝑡Λ and 𝛿Λ𝐵𝑖 = 𝜕𝑖Λ. The conjugate momenta are dubbed the charge density
and the charge current

𝜚 =
1
√
𝑎

(
𝛿𝑆

𝛿𝐵
− 𝑏𝑖
Ω

𝛿𝑆

𝛿𝐵𝑖

)
, (1.3.22a)

𝑁 𝑖 =
1

Ω
√
𝑎

𝛿𝑆

𝛿𝐵𝑖
(1.3.22b)

so that 𝛿𝑆
𝛿𝐵

=
√
𝑎
(
𝜚 + 𝑏𝑖𝑁 𝑖

)
. The gauge variation of the action is here

𝛿Λ𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎

((
𝜚 + 𝑏𝑖𝑁 𝑖

)
𝛿Λ𝐵 + Ω𝑁 𝑖𝛿Λ𝐵𝑖

)
(1.3.23)

= −
∫

d𝑡d𝑑𝑥
√
𝑎

((
𝜚 + 𝑏𝑖𝑁 𝑖

)
𝜕𝑡Λ + Ω𝑁 𝑖𝜕𝑖Λ

)
=

∫
d𝑡d𝑑𝑥

√
𝑎ΩΛ

(
1
Ω
𝜕𝑡𝜚 + 𝜃𝜚 +

(
∇̂𝑖 + 𝜑𝑖

)
𝑁 𝑖

)
−

∫
d𝑡d𝑑𝑥

{
𝜕𝑡

(√
𝑎Λ

(
𝜚 + 𝑏𝑖𝑁 𝑖

))
+ 𝜕𝑖

(√
𝑎ΛΩ𝑁 𝑖

)}
. (1.3.24)

Invariance of 𝑆 leads to a Carrollian continuity equation17(
1
Ω
𝜕𝑡 + 𝜃

)
𝜚 +

(
∇̂𝑖 + 𝜑𝑖

)
𝑁 𝑖 =̂ 0. (1.3.25)

These equations (1.3.20), (1.3.21) together with (1.3.25) were obtained in [53, 65].

Turning on the ambiguities

One may finally wonder what are the conservation equations if we turn on all the possible ambi-
guities of a strong Carrollian connection, that is 𝛿𝑖, 𝛽𝑖 𝑗, 𝛾 [𝑖 𝑗] := �̂�𝑖 𝑗 and 𝛾𝑘[𝑖 𝑗] := 𝜌𝑘

𝑖𝑗
to18 which we

17This is the Carrollian equivalent of the relativistic divergence of a vector ∇𝜇𝑉 𝜇 = 0 thanks to (1.3.14a) and (1.3.14b).
18Recall that our convention for antisymmetrization is 𝐴[𝜇𝜈] = 1

2 (𝐴𝜇𝜈 − 𝐴𝜈𝜇).
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associate the conjugate momenta19

𝜁 𝑖 =
1
√
𝑎Ω

𝛿𝑆

𝛿 𝛿𝑖

𝐵𝑖 𝑗 =
2
√
𝑎Ω

𝛿𝑆

𝛿 𝛽𝑖 𝑗

Λ𝑖 𝑗 =
2
√
𝑎Ω

𝛿𝑆

𝛿 �̂�𝑖 𝑗

𝑍
𝑖 𝑗

𝑘
=

2
√
𝑎Ω

𝛿𝑆

𝛿 𝜌𝑘
𝑖𝑗

(1.3.26)

with Λ𝑖 𝑗 = Λ[𝑖 𝑗] and 𝑍 𝑖 𝑗

𝑘
= 𝑍

[𝑖 𝑗]
𝑘

. All the object being genuine Carrollian tensors, Carrollian diffeo-
morphisms acts only with the Lie derivative, giving

−𝛿𝝃 𝛿𝑖 = L𝝃 𝛿𝑖 = 𝜉
𝑡 1
Ω
�̂�𝑡𝛿𝑖 + 𝜉 𝑗∇̂𝑗𝛿𝑖 + 𝛿 𝑗∇̂𝑖𝜉 𝑗 + 𝜉 𝑡𝛾(𝑖 𝑗)𝛿 𝑗 + 𝜉 𝑡 �̂�𝑖 𝑗𝛿 𝑗 + 2𝜉 𝑗𝜌𝑘𝑗𝑖𝛿𝑘 (1.3.27a)

−𝛿𝝃 𝛽𝑖 𝑗 = L𝝃 𝛽𝑖 𝑗 = 𝜉
𝑡 1
Ω
�̂�𝑡𝛽𝑖 𝑗 + 𝜉𝑘∇̂𝑘𝛽𝑖 𝑗 + 𝛽𝑘𝑗∇̂𝑖𝜉𝑘 + 𝛽𝑖𝑘∇̂𝑗𝜉𝑘 + 𝜉 𝑡

(
𝛾(𝑖𝑘)𝛽

𝑘
𝑗 + 𝛾( 𝑗𝑘)𝛽 𝑘𝑖

)
(1.3.27b)

+ 𝜉 𝑡
(
�̂�𝑖𝑘𝛽

𝑘
𝑗 + �̂� 𝑗𝑘𝛽𝑘𝑖

)
+ 2𝜉𝑘𝜌𝑙𝑘𝑗𝛽𝑖𝑙 + 2𝜉𝑘𝜌𝑙𝑘𝑖𝛽𝑙 𝑗

−𝛿𝝃 �̂�𝑖 𝑗 = L𝝃 �̂�𝑖 𝑗 = 𝜉
𝑡 1
Ω
�̂�𝑡 �̂�𝑖 𝑗 + 𝜉𝑘∇̂𝑘 �̂�𝑖 𝑗 + �̂�𝑘𝑗∇̂𝑖𝜉𝑘 + �̂�𝑖𝑘∇̂𝑗𝜉𝑘 + 𝜉 𝑡

(
𝛾(𝑖𝑘) �̂�

𝑘
𝑗 + 𝛾( 𝑗𝑘) �̂� 𝑘𝑖

)
(1.3.27c)

+ 𝜉 𝑡
(
�̂�𝑖𝑘 �̂�

𝑘
𝑗 + �̂� 𝑗𝑘 �̂�𝑘𝑖

)
+ 2𝜉𝑘𝜌𝑙𝑘𝑗 �̂�𝑖𝑙 + 2𝜉𝑘𝜌𝑙𝑘𝑖 �̂�𝑙 𝑗

−𝛿𝝃 𝜌𝑘𝑖𝑗 = L𝝃 𝜌
𝑘
𝑖𝑗 = 𝜉

𝑡 1
Ω
�̂�𝑡𝜌

𝑘
𝑖𝑗 + 𝜉 𝑙∇̂𝑙𝜌𝑘𝑖𝑗 + 𝜌𝑘𝑙 𝑗∇̂𝑖𝜉

𝑙 + 𝜌𝑘𝑖𝑙∇̂𝑗𝜉
𝑙 − 𝜌𝑙𝑖 𝑗∇̂𝑙𝜉𝑘 (1.3.27d)

+ 𝜉 𝑡
(
𝛾(𝑖𝑙)𝜌

𝑘𝑙
𝑗 + 𝛾( 𝑗𝑙)𝜌𝑘 𝑙𝑖 − 𝛾 (𝑘𝑙)𝜌𝑙𝑖 𝑗

)
+ 𝜉 𝑡

(
�̂�𝑖𝑙𝜌

𝑘𝑙
𝑗 + �̂� 𝑗𝑙𝜌𝑘 𝑙𝑖 − �̂�𝑘𝑙𝜌𝑙𝑖 𝑗

)
+ 2𝜉 𝑙

(
𝜌𝑚𝑙𝑖𝜌

𝑘
𝑚𝑗 + 𝜌𝑚𝑙𝑗𝜌

𝑘
𝑖𝑚 − 𝜌𝑘𝑙𝑚𝜌

𝑙
𝑖 𝑗

)
where we have used (A.0.18a), (A.0.20a) and (A.0.22). We can now take the variation of the action
𝑆 [𝑎𝑖 𝑗, 𝑏𝑖,Ω, 𝛿𝑖, 𝛽𝑖 𝑗, �̂�𝑖 𝑗, 𝜌𝑘 ;Φ] evaluated on a Carrollian diffeomorphism

𝛿𝝃𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎Ω

(
1
2
Π𝑖 𝑗𝛿𝝃𝑎𝑖 𝑗 + Π𝑖𝛿𝝃𝑏𝑖 −

1
Ω
(Π + Π𝑖𝑏𝑖)𝛿𝝃Ω + 𝜁 𝑖𝛿𝝃 𝛿 𝑖 (1.3.28)

+1
2
𝐵𝑖 𝑗𝛿𝝃 𝛽𝑖 𝑗 +

1
2
Λ𝑖 𝑗𝛿𝝃 �̂�𝑖 𝑗 +

1
2
𝑍

𝑖 𝑗

𝑘
𝛿𝝃 𝜌

𝑘
𝑖𝑗

)
.

After a tedious but straightforward computation we get(
1
Ω
𝜕𝑡 + 𝜃

)
Π +

(
∇̂𝑖 + 2𝜑𝑖

)
Π𝑖 + Π𝑖 𝑗𝛾(𝑖 𝑗) + 𝜁 𝑖

1
Ω
�̂�𝑡𝛿𝑖 +

1
2
𝐵𝑖 𝑗

1
Ω
�̂�𝑡𝛽𝑖 𝑗 +

1
2
Λ𝑖 𝑗

1
Ω
�̂�𝑡 �̂�𝑖 𝑗 (1.3.29)

+ 1
2
𝑍

𝑖 𝑗

𝑘

1
Ω
�̂�𝑡𝜌

𝑘
𝑖𝑗 + 𝜁 𝑖𝛿 𝑗

(
𝛾(𝑖 𝑗) + �̂�𝑖 𝑗

)
+ 1

2
𝐵𝑖 𝑗

(
𝛾(𝑖𝑘)𝛽

𝑘
𝑗 + 𝛾( 𝑗𝑘)𝛽 𝑘𝑖 + �̂�𝑖𝑘𝛽𝑘𝑗 + �̂� 𝑗𝑘𝛽 𝑘𝑖

)
+ 1

2
Λ𝑖 𝑗

(
𝛾(𝑖𝑘) �̂�

𝑘
𝑗 + 𝛾( 𝑗𝑘) �̂� 𝑘𝑖 + �̂�𝑖𝑘 �̂�𝑘𝑗 + �̂� 𝑗𝑘 �̂� 𝑘𝑖

)
+ 1

2
𝑍

𝑖 𝑗

𝑘

(
𝛾(𝑖𝑙)𝜌

𝑘𝑙
𝑗 + 𝛾( 𝑗𝑙)𝜌𝑘 𝑙𝑖 − 𝛾 (𝑘𝑙)𝜌𝑙𝑖 𝑗 + �̂�𝑖𝑙𝜌𝑘𝑙 𝑗 + �̂� 𝑗𝑙𝜌𝑘 𝑙𝑖 − �̂�𝑘𝑙𝜌𝑙𝑖 𝑗

)
= 0

19Actually, all these pieces enter the relativistic hypermomentum (see App. A), usually denoted Δ
𝜇𝜈
𝜌 with here 𝜁 𝑖 =

Δ 𝑡𝑖
𝑡
, �̂�𝑖 𝑗 = Δ

𝑖 𝑗

𝑡
, Λ̂ 𝑗

𝑖
= Δ

𝑡 𝑗

𝑖
and �̂� 𝑖 𝑗

𝑘
= Δ

𝑖 𝑗

𝑘
.
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and(
∇̂𝑖 + 𝜑𝑖

) [
Π𝑖𝑘 + 𝜁

𝑖𝛿𝑘 +
1
2
𝛽𝑘𝑗𝐵

𝑖 𝑗 + 1
2
𝛽 𝑗𝑘𝐵

𝑗𝑖 + �̂�𝑘𝑗Λ𝑖 𝑗 + 𝜌𝑙𝑘𝑗𝑍
𝑖 𝑗

𝑙
− 1

2
𝜌𝑖𝑙 𝑗𝑍

𝑙 𝑗

𝑘

]
(1.3.30)

+2Π𝑖𝜛 𝑖𝑘 + Π𝜑𝑘 − 𝜁 𝑖∇̂𝑘𝛿𝑖 −
1
2
𝐵𝑖 𝑗∇̂𝑘𝛽𝑖 𝑗 −

1
2
Λ𝑖 𝑗∇̂𝑘 �̂�𝑖 𝑗 −

1
2
𝑍
𝑖 𝑗

𝑙
∇̂𝑘𝜌𝑙𝑖 𝑗

−2𝜁 𝑖𝛿 𝑗𝜌
𝑗

𝑘𝑖
− 𝐵𝑖 𝑗

(
𝛽𝑙 𝑗𝜌

𝑙
𝑘𝑖 + 𝛽𝑖𝑙𝜌

𝑙
𝑘𝑗

)
− Λ𝑖 𝑗

(
�̂�𝑙 𝑗𝜌

𝑙
𝑘𝑖 + �̂�𝑖𝑙𝜌

𝑙
𝑘𝑗

)
−𝑍 𝑖 𝑗

𝑙

(
𝜌𝑚𝑘𝑖𝜌

𝑙
𝑚𝑗 + 𝜌𝑚𝑘𝑗𝜌

𝑙
𝑖𝑚 − 𝜌𝑙𝑘𝑚𝜌

𝑚
𝑖𝑗

)
= −

(
1
Ω
𝜕𝑡 + 𝜃

)
𝑃𝑘.

The two previous equations represent the implication of Carroll diffeomorphism invariance im-
posed on an action whose associated strong Carroll structure possesses the most general strong
Carroll connection, without any other requirements but the preservation of the weak structure. As
we have already discussed the irrelevance of the other degrees of freedom (which anyway would
spoil the strong character of the connection), we will not display the conservation equations asso-
ciated to the connection ∇̄ of Sec. 1.2.20

1.4 Weyl covariance and its implications

When a Carroll structure lies on the null boundary of an asymptotically flat spacetime, it naturally
inherits Weyl covariance from the bulk conformal compactification procedure, see e.g. [52]. In this
Chapter where our study of Carrollian structure is intrinsic and irrespective of any bulk space-
time, we shall impose by hand covariance under Weyl transformations and adapt the previously
developed framework to encompass the latter. This is the aim of the present Section.

1.4.1 Generalities

Conformal compactification and Weyl covariance

When dealing with null infinity in the context of asymptotically flat spacetimes, it turns out that
the conformal compactification calls not for Carroll structures but for conformal Carroll structures
i.e. structures which can encompass rescalings of the metric and the field of observers. From an in-
trinsic viewpoint we just add, ex nihilo, to the transformations aweakCarroll structure can support,
a new one, dubbedWeyl transformations, whose action yields

𝑎𝑖 𝑗 →
1
B2 𝑎𝑖 𝑗 , 𝑏𝑖 →

1
B 𝑏𝑖 , Ω→ 1

BΩ (1.4.1)

20A motivated reader can however try to compute them as an exercise.
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with B = B(𝑡,x) an arbitrary function. We read that these quantities possess a Weyl-weight −2,
−1 and −1 respectively. This implies at the level of the bases (1.1.9)

{υ, �̂�𝑖} → {Bυ, �̂�𝑖} and {τ, d𝑥𝑖} → {B−1τ, d𝑥𝑖}. (1.4.2)

Hence the whole previous framework needs to be enhanced to include Weyl covariance. This is
what we will do in the next paragraph.

Remark The metric 𝑎𝑖 𝑗 being weighted, in the Weyl–Carroll framework the position of spatial
indices is crucial. Raising an index increases the weight by 2 when lowering decreases it by
2.

Weyl Carroll covariant derivative

Weyl-covariance under Weyl transformations requires the introduction of aWeyl–Carroll connec-
tion built on 𝜑𝑖 and 𝜃 which transform as

𝜑𝑖 → 𝜑𝑖 − �̂�𝑖 lnB and 𝜃 → B𝜃 − 𝑑υ (B) . (1.4.3)

The Weyl–Carroll connection 1-form then takes the form21 [53]

A =
1
𝑑
𝜃τ + 𝜑𝑖d𝑥𝑖. (1.4.4)

The Carrollian vorticity 𝜛 𝑖 𝑗 and the Carrollian shear 𝜉𝑖 𝑗 are Weyl-covariant of weight −1. See [62]
for a discussion on Weyl-connections in the context of AdS/CFT holography.

The Weyl–Carroll space and time covariant derivatives are torsionless and metric-compatible.
They are built upon our strong covariant derivatives 1

Ω �̂�𝑡 and ∇̂. For a weight-w scalar function Φ,
a vector with weight-w components 𝑉 𝑙 and a form of weight-w components𝑊𝑙 , the action is [53]

D̂𝑗Φ = �̂�𝑗Φ + w𝜑 𝑗Φ, (1.4.5a)

D̂𝑗𝑉
𝑙 = ∇̂𝑗𝑉 𝑙 + (w − 1)𝜑 𝑗𝑉 𝑙 + 𝜑𝑙𝑉𝑗 − 𝛿 𝑙𝑗𝑉 𝑖𝜑𝑖, (1.4.5b)

D̂𝑗𝑊𝑙 = ∇̂𝑗𝑊𝑙 + (w + 1)𝜑 𝑗𝑊𝑙 + 𝜑𝑙𝑊𝑗 − 𝑎𝑗𝑙𝑊𝑖𝜑
𝑖. (1.4.5c)

The Weyl–Carroll spatial derivative does not alter the weight, and one checks that D̂𝑗𝑎𝑘𝑙 = 0. Es-
pecially we get for a rank-2 and weight-w tensor

D̂𝑗𝑡𝑘𝑙 = ∇̂𝑗𝑡𝑘𝑙 + (w + 2)𝜑 𝑗𝑡𝑘𝑙 + 𝜑𝑘𝑡 𝑗𝑙 + 𝜑𝑙𝑡𝑘𝑗 − 𝑎𝑗𝑙𝑡𝑘𝑖𝜑𝑖 − 𝑎𝑗𝑘𝑡𝑖𝑙𝜑𝑖 (1.4.6a)

D̂𝑗𝑡
𝑘𝑙 = ∇̂𝑗𝑡𝑘𝑙 + (w − 2)𝜑 𝑗𝑡𝑘𝑙 + 𝜑𝑙𝑡𝑘𝑗 + 𝜑𝑘𝑡 𝑙𝑗 − 𝛿 𝑙𝑗 𝑡𝑖𝑘𝜑𝑖 − 𝛿 𝑘𝑗 𝑡𝑖𝑙𝜑𝑖. (1.4.6b)

21Note that this is the form one gets when taking the flat limit from the AdS Weyl connection appearing in the
covariant Newmann-Unti gauge, see Sec. 3.3.1.
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Remark Note that there is a pattern in the second factor of the right-hand-side with the weight.
It is always of the form (w + 𝑝 − 𝑞) for a 𝑝-covariant and 𝑞-contravariant tensor of weight-w.

Regarding time, one defines [53]

1
Ω

D̂𝑡Φ =
1
Ω
�̂�𝑡Φ +

w

𝑑
𝜃Φ = υ(Φ) + w

𝑑
𝜃Φ, (1.4.7a)

1
Ω

D̂𝑡𝑉
𝑙 =

1
Ω
�̂�𝑡𝑉

𝑙 + w − 1
𝑑

𝜃𝑉 𝑙 = υ(𝑉 𝑙) + w

𝑑
𝜃𝑉 𝑙 + 𝜉 𝑙𝑖𝑉 𝑖, (1.4.7b)

1
Ω

D̂𝑡𝑊𝑙 =
1
Ω
�̂�𝑡𝑊𝑙 +

w + 1
𝑑

𝜃𝑊𝑙 = υ(𝑊𝑙) +
w

𝑑
𝜃𝑊𝑙 − 𝜉𝑙 𝑗𝑊 𝑗. (1.4.7c)

and all are of weight w + 1. Similarly for any tensor by Leibniz rule e.g. for a rank-2 tensor22 of
weight-w,

1
Ω

D̂𝑡𝑡𝑘𝑙 =
1
Ω
�̂�𝑡𝑡𝑘𝑙 +

w + 2
𝑑

𝜃𝑡𝑘𝑙 = υ(𝑡𝑘𝑙) +
w

𝑑
𝜃𝑡𝑘𝑙 − 𝜉𝑘𝑗𝑡 𝑗𝑙 − 𝜉𝑙 𝑗𝑡

𝑗

𝑘
. (1.4.8)

In particular we find D̂𝑡𝑎𝑘𝑙 = 0.

We now close this paragraph with the Weyl–Carroll curvature tensors, appearing in the com-
mutation of Weyl–Carroll covariant derivatives. We find[

D̂𝑖, D̂𝑗

]
Φ =

2
Ω
𝜛 𝑖 𝑗D̂𝑡Φ + wΩ𝑖 𝑗Φ, (1.4.9a)[

D̂𝑘, D̂𝑙

]
𝑉 𝑖 =

(
R̂ 𝑖

𝑗𝑘𝑙 − 2𝜉 𝑖𝑗𝜛𝑘𝑙
)
𝑉 𝑗 + 2

Ω
𝜛𝑘𝑙 D̂𝑡𝑉

𝑖 + wΩ𝑘𝑙𝑉
𝑖, (1.4.9b)

where we have introduced the following Carrollian, weight-0 Weyl-covariant tensors

R̂ 𝑖
𝑗𝑘𝑙 = 𝑟

𝑖
𝑗𝑘𝑙 − 𝛿

𝑖
𝑗𝜑𝑘𝑙 − 𝑎𝑗𝑘∇̂𝑙𝜑𝑖 + 𝑎𝑗𝑙∇̂𝑘𝜑𝑖 + 𝛿 𝑖𝑘∇̂𝑙𝜑 𝑗 − 𝛿

𝑖
𝑙 ∇̂𝑘𝜑 𝑗

+ 𝜑𝑖
(
𝜑𝑘𝑎𝑗𝑙 − 𝜑𝑙𝑎𝑗𝑘

)
−

(
𝛿 𝑖𝑘𝑎𝑗𝑙 − 𝛿

𝑖
𝑙 𝑎𝑗𝑘

)
𝜑𝑚𝜑

𝑚 +
(
𝛿 𝑖𝑘𝜑𝑙 − 𝛿

𝑖
𝑙 𝜑𝑘

)
𝜑 𝑗, (1.4.10a)

Ω𝑖 𝑗 = �̂�𝑖𝜑 𝑗 − �̂�𝑗𝜑𝑖 −
2
𝑑
𝜛 𝑖 𝑗𝜃. (1.4.10b)

Additionally, we define traces as:

R̂𝑖 𝑗 = R̂𝑘
𝑖𝑘𝑗, R̂ = 𝑎𝑖 𝑗R̂𝑖 𝑗 (1.4.11)

with
R̂ = 𝑟 + (𝑑 − 1)

(
2∇̂𝑖𝜑𝑖 − (𝑑 − 2)𝜑𝑖𝜑𝑖

)
. (1.4.12)

Observe that the Weyl-covariant Carroll–Ricci tensor is not symmetric: R̂[𝑖 𝑗] = − 𝑑2Ω𝑖 𝑗. Finally, we
recall that [

1
Ω

D̂𝑡 , D̂𝑖

]
Φ = wR̂𝑖Φ − 𝜉 𝑗𝑖D̂𝑗

Φ, (1.4.13)

22Note the same pattern for the second term than for the spatial derivatives, of the form (w + 𝑝 − 𝑞).
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where
R̂𝑖 =

1
Ω
𝜕𝑡𝜑𝑖 −

1
𝑑

(
�̂�𝑖 + 𝜑𝑖

)
𝜃 (1.4.14)

are the components of a Weyl-covariant weight-1 Carrollian curvature one-form.

1.4.2 Weyl covariant conservation equations

Let’s first recap the Weyl weight of the relevant quantities.23 In the Table, an (𝑎) means an inhomo-
geneous transformation like in (1.4.3).

Quantity Π𝑖 𝑗 Π𝑖 𝑃 𝑖 Π 𝑎𝑖 𝑗 𝑏𝑖 Ω 𝜛 𝑖 𝑗 𝜉𝑖 𝑗 𝜃 𝜑𝑖

Weight 𝑤 𝑑 + 3 𝑑 + 2 𝑑 + 2 𝑑 + 1 −2 −1 −1 −1 −1 1 (𝑎) 0 (𝑎)
(1.4.15)

The procedure is then to start from (1.3.20) and (1.3.21), go from usual covariant derivatives to
Weyl–Carroll ones and ask for all terms proportionnal either to 𝜃 (for the time equation) or 𝜑𝑖 (for
the spatial one) to vanish, as they are inhomogeneous under Weyl transformations (see (1.4.3)). This
will give the Carrollian equivalent to the usual tracefree condition implied by Weyl invariance in
the relativistic framework. We find

1
Ω

D̂𝑡Π + D̂𝑖Π
𝑖 + Π𝑖 𝑗𝜉𝑖 𝑗 =̂ 0 (1.4.16)

and

D̂𝑖

(
Π𝑖𝑘

)
+ 2Π𝑗𝜛 𝑗𝑘 +

(
1
Ω

D̂𝑡𝛿𝑘𝑖 + 𝜉𝑘𝑖
)
𝑃 𝑖 =̂ 0 , (1.4.17)

together with the condition
Π𝑖𝑖 =̂Π . (1.4.18)

Starting from (1.3.25) we get
1
Ω

D̂𝑡𝜌 + D̂𝑖𝑁
𝑖 =̂ 0 (1.4.19)

for a𝑈 (1) current.

Completely free strong connection

We start by completing the table of weights (1.4.15) with the new ambiguities (𝛿𝑖, 𝛽𝑖 𝑗, 𝛾 [𝑖 𝑗] := �̂�𝑖 𝑗

and 𝛾𝑘[𝑖 𝑗] := 𝜌𝑘
𝑖𝑗
) and their momenta (1.3.26). The method for finding the weights under Carrollian

diffeomorphisms is the following. The defining properties of the strong Carrollian connection,
namely the preservation of the field of observers and the metric, should be valid irrespective of the

23The weight of the canonical momenta are found by demanding that the total action in (𝑑 + 1)-dimensions is of
weight 0.
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Weyl frame at hand. This gives

𝛾 → B𝛾 + υ(B) (1.4.20a)

𝜌𝑖 → B2𝜌𝑖 (1.4.20b)

�̂�𝑖 → �̂�𝑖 + �̂�𝑖(lnB) (1.4.20c)

�̂�
𝑗

𝑖
→ B �̂� 𝑗

𝑖
(1.4.20d)

for the preservation of the vector, and

𝛾 𝑖𝑗 → B𝛾 𝑖𝑗 + υ(B)𝑎𝑖 𝑗 (1.4.21a)

𝛾𝑘(𝑖 𝑗) → 𝛾𝑘(𝑖 𝑗) − �̂�𝑖(lnB)𝛿
𝑘
𝑗 − �̂�𝑗(lnB)𝛿 𝑘𝑖 − �̂�𝑘(lnB)𝑎𝑖 𝑗 . (1.4.21b)

It therefore remains to fix the transformation rules for 𝛿𝑖 and 𝛽𝑖 𝑗. We use for that the expression of
the torsion (B.1.27) and (B.1.28) where we see that the non-torsion conditions (1.2.12) implies that

𝛿𝑖 → 𝛿𝑖 (1.4.22a)

𝛽𝑖 𝑗 → B−1𝛽𝑖 𝑗 . (1.4.22b)

The complete table of weights then reads

Quantity 𝛿𝑖 𝜁 𝑖 𝛽𝑖 𝑗 𝐵𝑖 𝑗 �̂�𝑖 𝑗 Λ̂𝑖 𝑗 𝜌𝑘
𝑖𝑗

�̂�
𝑖 𝑗

𝑘

Weight 𝑤 0 𝑑 + 1 −1 𝑑 + 2 −1 𝑑 + 2 0 𝑑 + 1
(1.4.23)

After a very long and tedious but straightforward computation we get for the conservation equa-
tions

1
Ω

D̂𝑡Π + D̂𝑖Π
𝑖 + Π𝑖 𝑗𝜉𝑖 𝑗 +

1
2
𝐵𝑖 𝑗

1
Ω

D̂𝑡𝛽𝑖 𝑗 +
1
2
Λ𝑖 𝑗

1
Ω

D̂𝑡 �̂�𝑖 𝑗 +
1
2
𝑍

𝑖 𝑗

𝑘

1
Ω

D̂𝑡𝜌
𝑘
𝑖𝑗 (1.4.24)

+1
2
𝐵𝑖 𝑗

(
𝜉𝑖𝑘𝛽

𝑘
𝑗 + 𝜉 𝑗𝑘𝛽 𝑘𝑖 + �̂�𝑖𝑘𝛽𝑘𝑗 + �̂� 𝑗𝑘𝛽 𝑘𝑖

)
+ 1

2
Λ𝑖 𝑗

(
𝜉𝑖𝑘 �̂�

𝑘
𝑗 + 𝜉 𝑗𝑘 �̂� 𝑘𝑖 + �̂�𝑖𝑘 �̂�𝑘𝑗 + �̂� 𝑗𝑘 �̂� 𝑘𝑖

)
+1

2
𝑍

𝑖 𝑗

𝑘

(
𝜉𝑖𝑙𝜌

𝑘𝑙
𝑗 + 𝜉 𝑗𝑙𝜌𝑘 𝑙𝑖 − 𝜉𝑘𝑙𝜌𝑙𝑖 𝑗 + �̂�𝑖𝑙𝜌𝑘𝑙 𝑗 + �̂� 𝑗𝑙𝜌𝑘 𝑙𝑖 − �̂�𝑘𝑙𝜌𝑙𝑖 𝑗

)
= 0 ,

and

D̂𝑖

[
Π𝑖𝑘 +

1
2
𝛽𝑘𝑗𝐵

𝑖 𝑗 + 1
2
𝛽 𝑗𝑘𝐵

𝑗𝑖 + �̂�𝑘𝑗Λ𝑖 𝑗 + 𝜌𝑙𝑘𝑗𝑍
𝑖 𝑗

𝑙
− 1

2
𝜌𝑖𝑙 𝑗𝑍

𝑙 𝑗

𝑘

]
(1.4.25)

+2Π𝑖𝜛 𝑖𝑘 −
1
2
𝐵𝑖 𝑗D̂𝑘𝛽𝑖 𝑗 −

1
2
Λ𝑖 𝑗D̂𝑘 �̂�𝑖 𝑗 −

1
2
𝑍
𝑖 𝑗

𝑙
D̂𝑘𝜌

𝑙
𝑖 𝑗

−𝐵𝑖 𝑗
(
𝛽𝑙 𝑗𝜌

𝑙
𝑘𝑖 + 𝛽𝑖𝑙𝜌

𝑙
𝑘𝑗

)
− Λ𝑖 𝑗

(
�̂�𝑙 𝑗𝜌

𝑙
𝑘𝑖 + �̂�𝑖𝑙𝜌

𝑙
𝑘𝑗

)
−𝑍 𝑖 𝑗

𝑙

(
𝜌𝑚𝑘𝑖𝜌

𝑙
𝑚𝑗 + 𝜌𝑚𝑘𝑗𝜌

𝑙
𝑖𝑚 − 𝜌𝑙𝑘𝑚𝜌

𝑚
𝑖𝑗

)
=̂ −

(
1
Ω

D̂𝑡𝛿𝑘𝑖 + 𝜉𝑘𝑖
)
𝑃 𝑖 .
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together with the Weyl condition

Π𝑖𝑖 +
1
2
𝛽𝑖 𝑗𝐵

𝑖 𝑗 + 1
2
�̂�𝑖 𝑗Λ

𝑖 𝑗 + 1
2
𝑍

𝑖 𝑗

𝑘
𝜌𝑘𝑖𝑗 = Π . (1.4.26)

Recall that (1.4.24) and (1.4.25) result from the Carroll diffeomorphism invariance plus Weyl covari-
ance of the effective action, nothing more.

Remark One might also want to Weyl covariantise the conservation equations obtained with the
completely free connection ∇̄. However, as Weyl covariance appears in a physical situation
(onJ +) for which the Carrollian structure is endowed with a strong Carrollian connection,
there is no point, or at least no relevant applications known to us to these Weyl covariant
equations.

1.5 Killing vectors, charges and conservation

This section deals with the notion of isometries and charges on a Carroll structure. This will also
be the occasion to encounter for the first time the Carroll algebra and its conformal extension. It is
highly inspired by [65, 66].

Carroll-Killing equations and the Carroll algebra

Isometries are by definition [64, 65] generated by vector fields 𝝃 satisfying

L𝝃𝑎𝑖 𝑗 = 0 and L𝝃υ = 0. (1.5.1)

This gives in the frame at hand the Carroll-Killing equations

∇̂(𝑖𝜉 𝑗) + 𝜉 𝑡𝛾(𝑖 𝑗) = 0 , υ
(
𝜉 𝑡
)
+ 𝜑𝑖𝜉 𝑖 = 0 . (1.5.2)

These equations reflect the invariance of the weak Carroll structure and usually possess an infinite
number of solutions, dubbed Carrollian Killing vectors. One may also ask the connection to be left
invariant by 𝝃 ,24 then the solution space of (1.5.2) may be drastically reduced. However, we do not
ask the clock form to be left invariant and for 𝝃 a Carrollian Killing (1.3.13) becomes

L𝝃Ω = 0 and L𝝃𝑏𝑖 = (�̂�𝑖 − 𝜑𝑖)𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖. (1.5.3)

For example let us go in the case 𝑎𝑖 𝑗 = 𝛿𝑖 𝑗, constant 𝑏𝑖 andΩ = 1, which is the flat ruled Carrollian

24Using in particular (1.3.27a), (1.3.27b), (1.3.27c) and (1.3.27d).
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structure. There, equations (1.5.2) have an infinite number of solutions

𝝃 =

(
Ω𝑖

𝑗𝑥𝑖 + 𝑋 𝑗
)
𝜕𝑗 + 𝑓 (x)𝜕𝑡 (1.5.4)

whereΩ𝑖 𝑗 = Ω𝑖
𝑘𝛿𝑘𝑗 are constants and antisymmetric (generating the 𝔰𝔬(𝑑) Lie algebra of rotations),

𝑋 𝑗 are constants (generating the spatial translations) and 𝑓 (x) is an arbitrary function of space. If
the flat Carroll connection is also invariant25 under 𝝃 then one has 𝑓 = 𝑇 − 𝐵𝑖𝑥𝑖 where 𝑇 generates
times translations and 𝐵𝑖 Carroll boosts. One then recovers26

𝝃𝔠𝔞𝔯𝔯 =
(
Ω𝑖

𝑗𝑥𝑖 + 𝑋 𝑗
)
𝜕𝑗 +

(
𝑇 − 𝐵𝑖𝑥𝑖

)
𝜕𝑡 (1.5.7)

i.e. the (𝑑+1) (𝑑+2)/2 solutions generating the Carroll algebra 𝔠𝔞𝔯𝔯(𝑑+1).27 The vector 𝝃𝔠𝔞𝔯𝔯 forms
a differential representation of the latterwith generators ( 𝐽𝑖 𝑗, 𝑃𝑖, 𝐵 𝑗, 𝐻) (𝑖, 𝑗 = 1, ..., 𝑑) associatedwith
(Ω𝑖 𝑗, 𝑋𝑖, 𝐵𝑖, 𝑇) respectively. The non-vanishing commutators are[

𝐽𝑖 𝑗, 𝑃𝑘
]
= 𝛿𝑘𝑗 𝑃𝑖 − 𝛿𝑘𝑖 𝑃𝑗 (1.5.8a)[

𝐽𝑖 𝑗, 𝐵𝑘
]
= 𝛿𝑘𝑗 𝐵𝑖 − 𝛿𝑘𝑖 𝐵 𝑗 (1.5.8b)[

𝐽𝑖 𝑗, 𝐽𝑘𝑙
]
= 𝛿𝑖𝑘 𝐽𝑗𝑙 + 𝛿 𝑗𝑙 𝐽𝑘𝑖 − 𝛿𝑖𝑙 𝐽𝑗𝑘 − 𝛿 𝑗𝑘 𝐽𝑙𝑖 (1.5.8c)[

𝐵𝑖, 𝑃𝑗
]
= 𝛿𝑖 𝑗 𝐻 . (1.5.8d)

The Hamiltonian is then a central element and the last commutator on the one hand betrays the
presence of an Heisenberg subalgebra (𝐻, 𝑃𝑖, 𝐵𝑖) while on the other hand it prevents the Carroll
algebra from being centrally extended, contrary to its dual “Galilean” algebra whose central exten-
sion yields the Bargmann algebra and the notion of mass.28 Carroll boosts commute hence there is
no Thomas precession in a Carroll structure. Note that at the level of the Ehresmann connection
we get when 𝝃 belongs to the Carroll algebra

L𝝃𝔠𝔞𝔯𝔯𝑏𝑖 = −
(
𝐵𝑖 + Ω 𝑗

𝑖
𝑏𝑗

)
≠ 0 (1.5.9)

exhibiting a constant shift related to the boost parameter 𝐵𝑖 as well as a 𝔰𝔬(𝑑) rotation. This justi-
fying a posteriori the mostly used terminology employed to refer to this transformation. Also note

25The connection ∇̂ being Levi-Civita on the spatial sections we can use the identity

𝛿𝝃 𝛾
𝑘
(𝑖 𝑗) =

1
2
𝑎𝑘𝑙

(
2∇̂(𝑖 (𝛿𝝃𝑎𝑗) 𝑙) − ∇̂𝑙 (𝛿𝝃𝑎𝑖 𝑗)

)
(1.5.5)

which implies that 𝑓 (x) has to be at most linear in x.
26The Carroll group acts on coordinates as {

𝑡′ = 𝑡 + 𝐵𝑖𝑥𝑖 + 𝑡0
𝑥′𝑘 = 𝑅𝑘

𝑖
𝑥𝑖 + 𝑥𝑘0

(1.5.6)

with 𝑅 ∈ 𝑆𝑂(𝑑) and 𝐵𝑖 a constant covector.
27This algebra can also be obtained as the Inönü-Wigner contraction of the Poincaré algebrawhen 𝑐→ 0, see e.g. [50].
28In (1+1)-dimensions the Carroll andGalilean algebras are isomorphic to theHeisenberg algebra, upon exchanging

the role of time and space, hence the two-dimensional Carroll algebra can be centrally extended.
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that Carroll boosts are broken if one asks the Ehremann connection to be preserved by 𝝃 in addition
to the weak structure.

Remark Actually, to go from (1.5.4) to (1.5.7) instead of asking the flat connection to be preserved
one can ask the ruled flat Carroll structure to be preserved. This implies that 𝑏𝑖 (which is
constant) has to be shifted only by a constant, implying that 𝜉 𝑡 is at most linear in x. Hence
the full flat Carroll structure including a constant Ehresmann is preserved only by the Carroll
algebra.

Carrollian Killing charges

In a relativistic framework, if 𝝃 is a Killing field of the spacetimeM and𝑇𝜇𝜈 the energy-momentum
tensor of the theory, the current defined as

𝐼𝜇 = 𝜉
𝜈𝑇𝜇𝜈 (1.5.10)

has zero divergence and (recall that S is the 𝑑-dimensional spatial section of M with induced
metric of determinant 𝜎 and outwards pointing normal 𝑛𝜇)

𝑄𝐼 =

∫
S

d𝑑𝑥
√
𝜎𝑛𝜇𝐼

𝜇 (1.5.11)

is conserved. On a Carrollian structure a current has a scalar component 𝜅 as well as a Carrollian-
vector set of components 𝐾 𝑖 which are build upon the Carrollian momenta, and the Carrollian
Killing field

𝜅 = 𝜉 𝑖𝑃𝑖 − 𝜉 𝑡Π 𝐾 𝑖 = 𝜉 𝑗Π𝑗
𝑖 − 𝜉 𝑡Π𝑖. (1.5.12)

Remark In the relativistic framework, varying an action 𝑆 = 𝑆 [𝑔𝜇𝜈;Φ] functional of themetric 𝑔𝜇𝜈
and of a collection of matter fieldsΦ, one gets after variation under a general diffeomorphism
and integration by parts

𝛿𝝃𝑆=̂ −
∫
M

d𝑑+1𝑥
√−𝑔 𝜉𝜇∇𝜈𝑇 𝜈𝜇 +

∫
M

d𝑑+1𝑥
√−𝑔 ∇𝜈

(
𝜉𝜇𝑇 𝜈𝜇

)
(1.5.13)

where the first term gives the conservation equation while the conserved current is displayed
in the second term (i.e. the boundary term). Applying the samemethod in theCarrollian setup
we read the expressions (1.5.12) from the boundary terms of (1.3.20) and (1.3.21).

The divergence of the current (𝜅, 𝐾 𝑖) takes the form

K =

(
1
Ω
𝜕𝑡 + 𝜃

)
𝜅 +

(
∇̂𝑖 + 𝜑𝑖

)
𝐾 𝑖 = −Π𝑖(L𝝃τ)𝑖 (1.5.14)

implying that, contrary to the relativistic case,
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Proposition 1.0.5. A plain Carrollian Killing field does not generically provide a conservation law
in Weyl-invariant Carrollian dynamics.

Conservation is subject either to the cancellation of the energy flux, which translates local Carroll-
shift invariance (requirement not even satisfied in the flat Carroll structure) or to the Carrollian
Killing field satisfying

L𝝃τ = 0 . (1.5.15)

We dubbed the latter strong Carrollian Killings [66]. Note that nothing prevents a priori K to be
a boundary term, but this is to be appreciated case-by-case, see in particular the next remark on
potential flow below. Strong Killings form a subalgebra of the algebra of Carroll–Killing field.29

Preserving the clock form is actually a boost dependent statement, by virtue of (1.1.14). Hence the
associated charges would be conserved only in a particular boost frame.

Remark It is too strong to ask that K identically vanishes for conservation to occur, as K can
actually just be a divergence. In the flat instance we get K = Π𝑖

(
𝐵𝑖 + Ω 𝑗

𝑖
𝑏𝑗

)
using (1.5.7) and

(1.5.9). 𝑈𝑖 = 𝐵𝑖 + Ω 𝑗

𝑖
𝑏𝑗 is then a constant covector. If there exist two functions 𝜙(𝑡, x) and

𝜙𝑖(𝑡,x) such thatK = 𝜕𝑡 (𝜙𝑖)𝑈 𝑖+𝜕𝑖(𝜙)𝑈 𝑖 then it is easy to remark that, using (1.3.14a),(1.3.14b)
and knowing that

√
𝑎 = 1 and Ω = 1,(

1
Ω
𝜕𝑡 + 𝜃

) (
𝜅 − 𝜙𝑖𝑈 𝑖

)
+

(
∇̂𝑖 + 𝜑𝑖

) (
𝐾 𝑖 − 𝜙𝑈 𝑖

)
= 0. (1.5.16)

This defines a potential flow conserved current for boosts and rotations, built upon �̃� = 𝜅 − 𝜙𝑖𝑈 𝑖

and �̃� 𝑖 = (𝐾 𝑖 − 𝜙𝑈 𝑖).

The charge associated with the current (𝜅, 𝐾𝐾𝐾) is an integral at fixed 𝑡 over the base manifold S
of the Carrollian structure30

𝑄𝐾 =

∫
S
d𝑑𝑥
√
𝑎

(
𝜅 + 𝑏𝑖𝐾 𝑖

)
, (1.5.17)

whose time evolution reads

d𝑄𝐾

d𝑡
=

∫
S
d𝑑𝑥
√
𝑎ΩK −

∫
𝜕S

★𝐾𝐾𝐾Ω, (1.5.18)

where ★𝐾𝐾𝐾 is the S-Hodge dual of 𝐾𝑖d𝑥𝑖. This shows that for vanishing divergence K , this is
conserved if one can ignore the boundary term owing to adequate fall-off or boundary conditions
on the fields, as expected.

Remark One may say that the presence of 𝑏𝑖 in (1.5.17) breaks Carroll diffeomorphism covariance
down to a covariance under the diffeomorphisms that preserve the form of the integrand.

29When the Carrollian structure is the null boundary of an asymptotically flat spacetime, plain Killings of the bulk
become strong Carrollian Killings on the boundary, see [66] and Sec. 4.2.

30This formula is not a guess but comes naturally when seeing the Carrollian structure as coming from a relativistic
ascendant, see [61] and Sec. 2.1.1.
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These are Aristotelian diffeomorphisms 𝑡′ = 𝑡′(𝑡) and x′ = x′(x). This is actually not a caveat
as it only translates a feature of the hypersurface we have chosen to compute the charge,
that is S. For example for a Carroll structure whose clock form is closed τ = d𝜓 one may
chose as space-like hypersurface Σ𝜓 such that 𝜓 (𝑡,x) = cst and obtain 𝑄𝐾 =

∫
Σ𝜓

d𝑑𝑥
√
𝑎 𝜅.

Nevertheless all choices of spacelike hypersurfaces lead to the same charge.

Remark If we are given a𝑈 (1) current satisfying (1.3.25) then one can build the conserved charge

𝑄𝑁 =

∫
S
d𝑑𝑥
√
𝑎

(
𝜌 + 𝑏𝑖𝑁 𝑖

)
. (1.5.19)

Taking V ⊂ S such that 𝜕V is time-independent we get for the time evolution of the𝑈 (1)
charge

d𝑄𝑁

d𝑡
= −

∫
V
d𝑑𝑥𝜕𝑖

(√
𝑎Ω𝑁 𝑖

)
= −

∫
𝜕V

Ω ★𝑁𝑁𝑁. (1.5.20)

Conformal Carrollian isometries and the BMS algebra

Conformal isometries are generated by a vector field 𝝃 satisfying

L𝝃𝑎𝑖 𝑗 = 𝜆𝑎𝑖 𝑗 and L𝝃υ = 𝜇υ (1.5.21)

where

𝜆(𝑡,x) = 2
𝑑

(
∇̂𝑖𝜉 𝑖 + 𝜃𝜉 𝑡

)
and 𝜇(𝑡,x) = −

(
1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖
)
. (1.5.22)

An extra condition is usually imposed for reaching an operational definition of conformal Killing
vectors. The guideline for this is Weyl covariance, imposed by hand on a Carrollian structure but
coming from the bulk in a holographic perspective (See Sec. 1.4). A desirable feature of conformal
Killings is to be insensitive to Weyl rescalings of the metric. Under (1.4.1) we find

𝜆 ↦→ 𝜆 − 2𝜉 𝑖�̂�𝑖(lnB) and 𝜇 ↦→ 𝜇 + 𝜉 𝑖�̂�𝑖(lnB). (1.5.23)

The Weyl-invariant combination then reads

2𝜇 + 𝜆 (1.5.24)

which can be set to zero. It physically means that conformal isometry should treat time and space
the same way, via this combination adapted to the Weyl weights of the metric and the field of ob-
servers. To solve (1.5.21) for 𝝃 we first plug the value of 𝜆(𝑡,x) back into (1.5.21). This yields

∇̂(𝑖𝜉 𝑗) −
2
𝑑
∇̂𝑘𝜉𝑘 𝑎𝑖 𝑗 = −2𝜉 𝑡𝜉𝑖 𝑗 (1.5.25)
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while (1.5.24) gives a second equation

∇̂𝑖𝜉 𝑖 − 𝑑𝜑𝑖𝜉 𝑖 = 𝑑
1
Ω
𝜕𝑡𝜉

𝑡 − 𝜃𝜉 𝑡 . (1.5.26)

A conformalCarrollianKilling field is then a solution of (1.5.25) and (1.5.26). This is a very hard system
to solve without any further assumptions. However given that most of the applications (especially
in holography) concern shearless Carroll structures (i.e. 𝜉𝑖 𝑗 = 0) this will be our framework from
now on. We first note the important result31

Proposition 1.0.6. In a weak Carrollian structure (𝑎𝑖 𝑗,υ), the vanishing of the geometric shear,
𝜉𝑖 𝑗 = 0 is equivalent to the factorization of time-dependence of the metric

𝑎𝑖 𝑗(𝑡,x) = 𝑒2𝜎 (𝑡,x) �̃�𝑖 𝑗(x). (1.5.27)

Under this hypothesis one can perform a Weyl rescaling by a function B(𝑡,x) = 𝑒𝜎 (𝑡,x) that
remove the time dependence of the metric, leading to simpler equations whose general solution is

𝝃𝑇,𝑌 =

(
𝑇 (x) − 𝑌 𝑖(x)�̂�𝑖𝐶(𝑡,x) +

1
𝑑
𝐶(𝑡, x)∇̃𝑖𝑌 𝑖(x)

)
𝑒−𝜎 (𝑡,x)υ + 𝑌 𝑖(𝑡,x)�̂�𝑖 (1.5.28)

with ∇̃𝑖 the Levi-Civita connection for �̃�𝑖 𝑗, 𝑇 (x) an arbitrary function and 𝑌 𝑖(x) satisfying

∇̃(𝑖𝑌𝑗) =
1
𝑑
∇̃𝑘𝑌 𝑘 �̃�𝑖 𝑗. (1.5.29)

Also we have

𝐶(𝑡,x) :=
∫ 𝑡

d𝜏 𝑒−𝜎 (𝜏,x)Ω(𝑡,x). (1.5.30)

Hence in the shearless case the algebra of conformal Carrollian Killing vectors32 is just

𝔠𝔠𝔞𝔯𝔯∗𝑑+1 = 𝔠𝔬𝔫𝔣(�̃�𝑖 𝑗) + 𝔰 (1.5.31)

where 𝔰 stands for the supertranslations algebra (generated by 𝑇 (x)) and the other term is the
algebra of conformal isometries of �̃�𝑖 𝑗. The commutator of two such vector fields yields

[𝝃𝑇,𝑌 , 𝝃�̂� ,�̂� ] = 𝝃𝑀𝑌 (�̂�)−𝑀𝑌 (𝑇),[𝑌,�̂� ] (1.5.32)

where the operator 𝑀𝑌 acts on any function Φ(𝑡,x) as

𝑀𝑌 (Φ) := 𝑌 𝑖�̂�𝑖(Φ) −
1
𝑑
Φ∇̃𝑖𝑌 𝑖. (1.5.33)

31The proof is simple. If 𝜉𝑖 𝑗 = 0 then from (1.2.18) one gets an PDE on 𝑎𝑖 𝑗 (𝑡, x) whose most general solution is (1.5.27).
32We denote it with a star to make the difference with the flat structure case which is in fine related to the BMS

algebra.
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For example, let us consider again the standard flat Carroll spacetime (�̃�𝑖 𝑗 = 𝛿 𝑖 𝑗, Ω = 1 and
constant 𝑏𝑖). Equations (1.5.21) and (1.5.24) possess an infinite number of solutions, which for a strong
Carroll structure with flat connection read

𝝃𝔠𝔠𝔞𝔯𝔯 = 𝑌
𝑗(x)�̂�𝑗 +

(
𝑇 (x) + 𝑡

𝑑
�̂�𝑖𝑌

𝑖
)
𝜕𝑡 (1.5.34)

with 𝑇 (x) an arbitrary function generating the so-called supertranslations and 𝑌 𝑖(x)𝜕𝑗 being con-
formal Killing fields of Euclidean 𝑑-dimensional space, generating 𝔰𝔬(𝑑 + 1, 1). This is the con-
formal Carroll algebra 𝔠𝔠𝔞𝔯𝔯(𝑑 + 1) ≡ 𝔰𝔬(𝑑 + 1, 1) + 𝔰, also known as the BMS𝑑+2 for Bondi–van
der Burg–Metzner–Sachs. Note that this is the usual BMS algebra which could be extended to the
version of [77] at the expense of giving up integrability at 0 and ∞.33 However as 𝑌 (x) has to be
a conformal Killing of the sphere we cannot recover the generalized version of the BMS algebra
proposed in [78].

Assuming the existence of a conformal isometry, the conservation equations (1.3.20) and (1.3.21)
can be used for computing the Carrollian scalarK , corresponding to the divergence of the current
built upon 𝝃 (as in (1.5.34)) and Carrollian momenta,

K = Π

(
𝜆

2
+ 𝜇

)
− Π𝑖

( (
�̂�𝑖 − 𝜑𝑖

)
𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖

)
. (1.5.35)

The defining equation (1.5.24) for conformal Killing vectors on Carrollian spacetimes expectantly
arises in (1.5.35), but is insufficient to ensure K = 0. As anticipated,

Proposition 1.0.7. A plain conformal Killing field does not generically provide a conservation law
in Weyl-invariant Carrollian dynamics.

The conditions to satisfy for conservation to occur are the same than for a plain Killing. Hence
there also exist a notion of strong conformal Carrollian Killing fields, for which the associated charge
is always conserved.

Remark Actually the most general extra condition is not (1.5.24) but rather 2𝜇 + 𝑧𝜆 = 0 with 𝑧 a
constant dubbed the dynamical exponent [55,64] such that υ→ B𝑧υ. The associated algebra
exhibits a level 𝑁 = 2/𝑧: 𝔠𝔠𝔞𝔯𝔯𝑁 (𝑑 + 1). Strictly speaking 𝔠𝔠𝔞𝔯𝔯(𝑑 + 1) ≡ 𝔠𝔠𝔞𝔯𝔯2(𝑑 + 1) is
BMS𝑑+2 for 𝑑 = 1, 2 only.

Under a conformal isometry the clock form behaves as

L𝝃τ =

(
𝜕𝑖

(
𝑇 − 𝑌 𝑗𝑏𝑗

)
+ 𝑏𝑖
𝑑
𝜕𝑗𝑌

𝑗 + 𝑡
𝑑
𝜕𝑖𝜕𝑗𝑌

𝑗

)
d𝑥𝑖. (1.5.36)

The associated current is not conserved since K in (1.5.35) does not generically vanish, unless
𝜕𝑗𝑌

𝑗 = 𝐶0 and 𝑇 = 𝑇0 + 𝑌 𝑗𝑏𝑗 − 𝐶0
𝑑
𝑏𝑖𝑥

𝑖 with 𝐶0 and 𝑇0 constants. This excludes the 𝑑 special con-
33We are here moving from 𝑆2 to ℂ via the stereographic projection.
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formal transformations of 𝔰𝔬(𝑑 + 1, 1) and leaves the supertranslations with the time translation as
unique freedom, leading to a symmetry subgroup of finite dimension 𝑑2

2 +
𝑑
2 + 2.

Remark Note that some authors, like the ones of [79] call conformal Carroll algebra the 𝑐 → 0
limit of the usual conformal algebra 𝔰𝔬(2, 𝑑 − 1) which would hence be finite-dimensional
and isomorphic to the Poincaré algebra, contrary to (1.5.31).

Remark It is also possible that Π𝑖
( (
�̂�𝑖 − 𝜑𝑖

)
𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖

)
with 𝝃 a conformal Killing field of a Car-

rollian manifoldM might be a boundary term, possibly leading to a conserved Carrollian
current in the same way than for plain Killings and potential flows, see for example the mag-
netic scalar field on a Robinson-Trautman background in Sec. 2.3.3.

1.6 Three dimensional Carroll structures in holomorphic co-
ordinates

When the dimension of the base space S is two i.e. when 𝑑 = 2, it is convenient to use complex
spatial coordinates 𝜁 and 𝜁 . With the permission of the authors of [52] and [66], we paraphrase here
the appendices of these references, summarizing the useful formulas in this coordinate system aswe
will use many of them in Chapters 3 and 5. Using Carrollian diffeomorphisms (1.1.7), the metric of
the Carrollian geometry on the two-dimensional surface S can be recast in conformally flat form,

dℓ2 =
2
𝑃2d𝜁d𝜁 (1.6.1)

with 𝑃 = 𝑃 (𝑡, 𝜁 , 𝜁 ) a real function, under the necessary and sufficient condition that the Carrollian
shear 𝜉𝑖 𝑗 displayed in (1.2.18) vanishes. We will here assume that this holds and present a number
of useful formulas for Carrollian and conformal Carrollian geometry. These geometries carry two
further pieces of data: Ω(𝑡, 𝜁 , 𝜁 ) and

𝑏𝑏𝑏 = 𝑏𝜁 (𝑡, 𝜁 , 𝜁 ) d𝜁 + 𝑏𝜁 (𝑡, 𝜁 , 𝜁 ) d𝜁 (1.6.2)

with 𝑏𝜁 (𝑡, 𝜁 , 𝜁 ) = �̄�𝜁 (𝑡, 𝜁 , 𝜁 ).

Hodge duality in two-dimensions

For 𝑑 = 2, theS -Hodge duality is induced by 𝜂𝑖 𝑗 =
√
𝑎𝜖𝑖 𝑗. Our conventions are the ones of Ref. [52],

namely 𝜖12 = −1, 𝜂𝜁 𝜁 =
−i
𝑃2 ,
√
𝑎 = i

𝑃2 and therefore the spatial volume form reads 1
2𝜂𝑖 𝑗d𝑥

𝑖 ∧ d𝑥 𝑗 =
d2𝑥
√
𝑎 = d𝜁∧d𝜁

i𝑃2 . Note that 𝜂𝑖𝑙𝜂𝑗𝑙 = 𝛿 𝑖𝑗 and 𝜂
𝑖 𝑗𝜂𝑖 𝑗 = 2 so that

τ ∧ d𝑥𝑖 ∧ d𝑥 𝑗 = 𝜂𝑖 𝑗d𝑡 d2𝑥
√
𝑎Ω = −i 𝜂𝑖 𝑗d𝑡d𝜁 ∧ d𝜁

𝑃2 Ω . (1.6.3)
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This duality is involutive on Carrollian vectors as well as on two-index symmetric and traceless
Carrollian tensors:

∗𝑉𝑖 = 𝜂𝑙𝑖𝑉𝑙 , ∗𝑊𝑖 𝑗 = 𝜂
𝑙
𝑖𝑊𝑙 𝑗, (1.6.4)

in particular

∗𝜛 =
1
2
𝜂𝑖 𝑗𝜛 𝑖 𝑗 ⇐⇒ 𝜛 𝑖 𝑗 = ∗𝜛 𝜂𝑖 𝑗. (1.6.5)

This fully antisymmetric form can be used to recast some of the expressions introduced in Sec 1.3.1.

The first-derivative Carrollian tensors are the acceleration (1.1.17), the expansion (1.2.19) and the
scalar vorticity (1.6.5),:

𝜑𝜁 = 𝜕𝑡
𝑏𝜁

Ω
+ �̂�𝜁 lnΩ, 𝜑𝜁 = 𝜕𝑡

𝑏𝜁

Ω
+ �̂�𝜁 lnΩ, (1.6.6a)

𝜃 = − 2
Ω
𝜕𝑡 ln 𝑃, ∗𝜛 =

iΩ𝑃2

2

(
�̂�𝜁
𝑏𝜁

Ω
− �̂�𝜁

𝑏𝜁

Ω

)
(1.6.6b)

with
�̂�𝜁 = 𝜕𝜁 +

𝑏𝜁

Ω
𝜕𝑡 , �̂�𝜁 = 𝜕𝜁 +

𝑏𝜁

Ω
𝜕𝑡 . (1.6.7)

Curvature scalars and vector are second-derivative (see (1.3.8))34

�̂� = 𝑃2 (
�̂�𝜁 �̂�𝜁 + �̂�𝜁 �̂�𝜁

)
ln 𝑃, �̂� = i𝑃2 (

�̂�𝜁 �̂�𝜁 − �̂�𝜁 �̂�𝜁
)

ln 𝑃, (1.6.8a)

𝑟𝜁 =
1
2
�̂�𝜁

(
1
Ω
𝜕𝑡 ln 𝑃

)
, 𝑟𝜁 =

1
2
�̂�𝜁

(
1
Ω
𝜕𝑡 ln 𝑃

)
, (1.6.8b)

and we also quote

∗𝜑 = i𝑃2 (
�̂�𝜁 𝜑𝜁 − �̂�𝜁 𝜑𝜁

)
, (1.6.9a)

∇̂𝑘𝜑𝑘 = 𝑃2
[
�̂�𝜁𝜕𝑡

𝑏𝜁

Ω
+ �̂�𝜁𝜕𝑡

𝑏𝜁

Ω
+

(
�̂�𝜁 �̂�𝜁 + �̂�𝜁 �̂�𝜁

)
lnΩ

]
. (1.6.9b)

Weyl-Carroll derivatives

We also remind for convenience some expressions for the determination ofWeyl–Carroll covariant
derivatives. If Φ is a weight-w scalar function

D̂𝜁Φ = �̂�𝜁Φ + w𝜑𝜁Φ, D̂𝜁Φ = �̂�𝜁Φ + w𝜑𝜁Φ. (1.6.10)

34We also quote for completeness

�̂� = 𝐾 + 𝑃2
[
𝜕𝜁
𝑏𝜁

Ω
+ 𝜕𝜁

𝑏𝜁

Ω
+ 𝜕𝑡

𝑏𝜁 𝑏𝜁

Ω2 + 2
𝑏𝜁

Ω
𝜕𝜁 + 2

𝑏𝜁

Ω
𝜕𝜁 + 2

𝑏𝜁 𝑏𝜁

Ω2 𝜕𝑡

]
𝜕𝑡 ln 𝑃

with 𝐾 = 2𝑃2𝜕𝜁𝜕𝜁 ln 𝑃 the ordinary Gaussian curvature of the two-dimensional metric (1.6.1).
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For weight-w form components 𝑉𝜁 and 𝑉𝜁 the Weyl–Carroll derivatives read

D̂𝜁𝑉𝜁 = ∇̂𝜁𝑉𝜁 + (𝑤 + 2)𝜑𝜁𝑉𝜁 , D̂𝜁𝑉𝜁 = ∇̂𝜁𝑉𝜁 + (w + 2)𝜑𝜁𝑉𝜁 , (1.6.11a)

D̂𝜁𝑉𝜁 = ∇̂𝜁𝑉𝜁 + w𝜑𝜁𝑉𝜁 , D̂𝜁𝑉𝜁 = ∇̂𝜁𝑉𝜁 + w𝜑𝜁𝑉𝜁 , (1.6.11b)

while the Carrollian covariant derivatives are simply

∇̂𝜁𝑉𝜁 =
1
𝑃2 �̂�𝜁

(
𝑃2𝑉𝜁

)
, ∇̂𝜁𝑉𝜁 =

1
𝑃2 �̂�𝜁

(
𝑃2𝑉𝜁

)
, ∇̂𝜁𝑉𝜁 = �̂�𝜁𝑉𝜁 , ∇̂𝜁𝑉𝜁 = �̂�𝜁𝑉𝜁 . (1.6.12)

Finally,

D̂𝑘D̂
𝑘Φ = 𝑃2 (

�̂�𝜁 �̂�𝜁Φ + �̂�𝜁 �̂�𝜁Φ + wΦ
(
�̂�𝜁 𝜑𝜁 + �̂�𝜁 𝜑𝜁

)
+ 2w

(
𝜑𝜁 �̂�𝜁Φ + 𝜑𝜁 �̂�𝜁Φ + w𝜑𝜁 𝜑𝜁Φ

) )
. (1.6.13)

The weight-1 curvature one-form (1.4.14) is

R̂𝜁 =
1
Ω
𝜕𝑡𝜑𝜁 −

1
2

(
�̂�𝜁 + 𝜑𝜁

)
𝜃, R̂𝜁 =

1
Ω
𝜕𝑡𝜑𝜁 −

1
2

(
�̂�𝜁 + 𝜑𝜁

)
𝜃. (1.6.14)

and the Carroll-Ricci
R̂𝑖 𝑗 = 𝑠𝑖 𝑗 + ˆK 𝑎𝑖 𝑗 + ˆA 𝜂𝑖 𝑗, (1.6.15)

where we have introduced two weight-2 Weyl-covariant scalar Gauss–Carroll curvatures:

ˆK =
1
2
𝑎𝑖 𝑗R̂𝑖 𝑗 = �̂� + ∇̂𝑘𝜑𝑘, ˆA =

1
2
𝜂𝑖 𝑗R̂𝑖 𝑗 = �̂� − ∗𝜑 . (1.6.16)

1.7 Discussion

This concludes our study of Carrollian structures in split formalism. Weak Carroll structures con-
tains a degenerate metric and a field of observers. If one considers an Ehresmann connection the
structure is said to be ruled. Adding on top of that a compatible affine connection makes it a strong
Carroll structure. The split formalism provides a complementary approach to the covariant ap-
proach as it completely makes use of the natural splitting between the Carrollian time direction
and the spatial ones. We have been as comprehensive as possible while fitting with the historical
definitions of [54] and much later [49] which considers only nowhere vanishing field of observers.
As explained in a remark such a definition is unable to encompass Carroll black hole horizons [70],
it should then be extended and consequences at the level of the connection and the conservation
equations should be studied. This is to be done in future endeavor. Weyl covariance can be added
to the geometry at the price of modifying slightly the formalism. Finally we ended up presenting
the notion of isometries and charges of Carroll structures.

The two main physical applications of Carrollian geometry are null infinity I + and black hole
horizons. Null infinity is a manifold that makes use of all transformations displayed in this Chapter:
Carrollian diffeomorphisms, shift symmetry and also Weyl transformations, as the structure ap-
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pearing on it is conformal. In that instance, as I + is related to a bulk, the dynamics of the lat-
ter will impose constrains on its geometry. In particular the geometric shear identically vanishes
(𝜉𝑖 𝑗 = 0) and it is always possible to perform a Weyl rescaling that cancels the expansion (1.2.19) (at
the expense of reducing the residual Weyl symmetry to time-independent rescalings though). The
connection onI + is induced by the bulk Levi-Civita and can always be chosen to be torsionless [38]
as one can cancel the extrinsic curvature. The conformal isometries of null infinity are (1.5.31) which
as expected coincide with the BMS algebra in one dimension higher. Any open subset of I + has
the topology ℝ × 𝑆𝑑 in (𝑑 + 2)-bulk dimensions. As we will be mostly dealing with the case 𝑑 = 2
in the second part of this thesis our discussion about holomorphic coordinates was worth doing.

The case of black hole horizons is also of great interest for physical applications.35 It was shown
in [57] that Einstein’s equations once projected on the horizon (which is a null hypersurface) can be
mapped to plain Carrollian dynamics of the form (1.3.20) and (1.3.21). Whatmakes black hole horizon
peculiar is the vanishing of the energy flux Π𝑖 hence the invariance under shift symmetry. The case
of the connection is ambivalent as on the one hand it is also induced by the ambient spacetime Levi-
Civita while on the other hand it usually possesses torsion as the expansion scalar is generically non
zero. While null infinity is a null hypersurface located at conformal infinity, black hole horizons are
at finite distance and one can always build a coordinate system with a time-like coordinate 𝜌 such
that the horizon is located at 𝜌 = 0 while every hypersurfaces 𝜌 = cst > 0 are timelike. These are
the Gaussian null coordinates [80] which were used first in [57] and latter in [75] to approach physics
at the horizon via a succession of Lorentzian spacetimes on which our intuition is more efficient.
This procedure actually reduces to findingCarrollian physics at the horizon via a limit (here 𝜌→ 0).
This limiting procedure is a powerful tool to handle Carrollian theories taking advantage of what
is already known in relativistic physics. Delving deeper in such considerations is our objective for
the next Chapter.

35Emphasis should bemade once again on the fact that we consider only black holes in the bulk which are relativistic
and not Carroll black holes like in [70].

– 62 –



Chapter 2

From relativistic systems to Carrollian
physics: the 𝒄 → 0 limit

Carrollian structures where studied from an intrinsic geometric point of view in the last Chapter.
Nothing has been said about real “physical” aspects neither about explicit field theories on a Car-
roll structure. As explained in the Introduction, the shrinking of the light cone that occurs in the
Carrollian world forbids any motion, rendering a priori particularly hard the deep understanding
of basic relativistic or Newtonian concepts such as particles and interactions. Carroll symmetries
have nontheless a wide range of applications: description of null hypersurfaces [57, 63, 75, 81–83],
the fluid/gravity correspondence [53, 84–86] (spin-off of the AdS/CFT correspondence where the
dual CFT is treated within the hydrodynamic approximation), condensed matter systems such as
fractons [87–90], Hall effects [91] or fermions [92]. The main question is thus, how can we get in-
sights about Carrollian physics? A practical method to get a Carrollian system from a well-known
relativistic one: the 𝑐 → 0 limit (a discussion about this procedure is proposed in [93]). As we will
see in this Chapter it has the advantage of delving directly into physical considerations, which com-
plement the intrinsic analysis. However, the limit has to be supplemented with group-theoretical
considerations like representations of the Carroll algebra [94] to classify all possible particles or the
co-adjoint orbit method to build geometric actions (see e.g. [34]).

As the Carroll algebra is the 𝑐 → 0 contraction of the Poincaré algebra, it is expected to get
Carrollian structures andCarrollian theories from the limit of vanishing speed of light of relativistic
metrics and systems. We first present how to parametrize a relativistic metric in such a way as
to recover in the limit a Carrollian structure of the type of (1.1.1) and (1.1.2). This is the Randers–
Papapetrou frame, presented in Sec. 2.1. Developing any relativistic quantity in powers of 𝑐2 in such
a frame coincides with a decomposition of tensors under the group of Carrollian diffeomorphisms
(1.1.5), ensuring that the 𝑐 → 0 limit will give rise to Carrollian quantities. The power of this tool
is demonstrated first by considering the Carrollian counterpart of hydrodynamics in Sec. 2.2. We
shall define what is a Carrollian fluid, what kind of equations it obeys and conclude with some
examples. As we will explain, the limiting procedure is actually the only known way till now to
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deal with such fluids. In Sec. 2.3 we study an explicit field theory: the Carrollian scalar field. In Sec.
2.4 we present the relativistic and Carrollian Cotton tensors, together with the procedure to find
the latter as the 𝑐 → 0 limit of the former. The decomposition under Carrollian diffeomorphisms
will show that starting from a unique relativistic action or tensor, one usually gets two or more
Carrollian descendent which do not always have an intrinsic origin. This is in agreement with
the observation of [49] in the case of electromagnetism, latter generalised for scalars and 𝑝-form
gauge theories in [95]. The limiting procedure hence gives us access to more information. Works
on Carrollian field theories include [69, 79, 96] for scalar fields or [97–102] in the case of gravity and
higher-spin theories.

This Chapter, mostly inspired from [53, 66, 103, 104], is completed by Appendix B.2 where the
𝑐 → 0 limit of relativistic structures in Cartan’s frame yields the Carroll structure displayed in
Appendix B.1.

2.1 Relativistic ascendant of a Carroll structure

In this Section we explain how one can get weak and strong Carroll structures from relativistic
spacetimes1 written in an adapted parametrisation. We then show how the definition of the Carrol-
lian charge (1.5.17) arises from the relativistic one. We also elaborate on the link between relativistic
and Carrollian isometries. Hence, here we are no longer living intrinsically on a Carrollian mani-
fold.

2.1.1 The Randers-Papapetrou frame

Let M be a (𝑑 + 1)-dimensional Riemannian spacetime. Its relativistic metric can always be put in
the Randers-Papapetrou (RP for short) form

d𝑠2 := 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 = −𝑐2
(
Ωd𝑡 − 𝑏𝑖d𝑥𝑖

)2
+ 𝑎𝑖 𝑗d𝑥𝑖d𝑥 𝑗 = −𝑐2τ2 + 𝑎𝑖 𝑗d𝑥𝑖d𝑥 𝑗 (2.1.1)

where all parameters are functions of all coordinates (𝑡,x). Assuming the 𝑐-dependence to be ex-
plicit (i.e. neither Ω nor 𝑏𝑖 nor 𝑎𝑖 𝑗 depend on 𝑐) one see that the 𝑐 → 0 limit of this metric yields a
weak Carroll structure as defined in (1.1.1) and (1.1.2).2 This frame is invariant under Carrollian dif-
feomorphism (1.1.5) given the transformation rules (1.1.7). Here again one can have (𝑡, 𝑖) coordinates

1The adjective relativistic refers to pseudo-Riemannian spacetimes. Following Jean-Marc Lévy-Leblond the latter is
actually amisnomer because Carrollian dynamics hence Carrollianmanifolds are also relativistic, albeit with a different
relativity group (which discards boosts affecting space).

2In [105] the authors considered the casewhen 𝑎𝑖 𝑗 explicitly depends on 𝑐. We shall latter explainwhat this hypothesis
changes in the framework we will develop.
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when using τ as temporal form. The covariant basis is then

BRP =
{
𝑐

Ω
𝜕0, �̂�𝑖 := 𝜕𝑖 +

𝑐𝑏𝑖

Ω
𝜕0

}
. (2.1.2)

In this frame the components of a vector 𝝃 = 𝜉𝜇𝜕𝜇 and its form 𝜉𝜇 (related via themusical isomorph-
ism 𝜉𝜇 = 𝑔𝜇𝜈𝜉

𝜈) read

𝜉 𝑡 = Ω𝜉 𝑡 − 𝑏𝑖𝜉 𝑖 , 𝜉 𝑖 = 𝜉 𝑖 , 𝜉𝑡 = −𝑐2𝜉 𝑡 , 𝜉𝑖 = 𝑎𝑖 𝑗𝜉
𝑗 = 𝜉𝑖 + 𝑏𝑖𝜉𝑡 . (2.1.3)

Remark One may wonder how such a parametrisation (2.3.2) came out. Paraphrasing [53] we note
on the one hand that, while Galilean fundamental objects are particles moving along lines,
their Carrollian counterpart (or dual) could be thought as extended objects like space-filling
branes (i.e. a 𝑑-dimensional hypersurfaceV ⊂ M ) whose action is the one of Dirac, Born
and Infeld

SDBI =
∫
V
d𝑑𝑥
√
ℎ (2.1.4)

with ℎ𝑖 𝑗 the induced metric onV

ℎ𝑖 𝑗 = 𝑔𝜇𝜈
𝜕𝑥𝜇

𝜕𝑦𝑖

𝜕𝑥𝜈

𝜕𝑦 𝑗
. (2.1.5)

Here 𝑔𝜇𝜈 and 𝑥𝜇 (𝜇 = 0, 1, ..., 𝑑) are themetric and local coordinates onM while 𝑦𝑖 (𝑖 = 1, ..., 𝑑)
are local coordinates on V . On the other hand, seeking an action intrinsic to V which is
invariant under the Carroll group (1.5.6) we find

St =
∫
V
d𝑑𝑥

1
2
ℎ𝑖 𝑗(𝜕𝑖𝜑 − 𝑏𝑖) (𝜕𝑗𝜑 − 𝑏𝑗) (2.1.6)

where 𝑏𝑖 plays the role of an inverse-velocity. This means that the brane should be described
by a scalar field 𝜑(x) with action (2.1.6). ExpandingSDBI in powers of 𝑐2 one sees that its strict
Carrollian limit yields St if and only if 𝑔𝜇𝜈 is in the Randers-Papapetrou parametrisation,
justifying the use of the latter.

Within the RP frame, relativistic tensors can be directly reduced under Carrollian diffeomorph-
isms. Any tensor with a lower time index component transforms as a Carrollian density hence
gives a scalar upon division by Ω while its components with upper spatial indices transforms as
Carrollian tensors. In the case of a vector 𝒖 = 𝑢𝜇𝜕𝜇 its 𝑑 + 1 components transforms as

𝑢′0 =
𝑢0

𝐽
, 𝑢′𝑖 = 𝐽 𝑖𝑘𝑢

𝑘. (2.1.7)

Therefore the position of the indices before taking the 𝑐 → 0 limit is very important. We are now
ready to study the Levi-Civita connection in the frame (2.3.2) to see what it gives after the 𝑐 → 0
limit.
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As a genuine relativistic spacetime, M can be endowed with the Levi-Civita connection, the
unique torsionfree and metric-compatible connection. Using (A.0.5) we get

Γ𝑡
𝑡𝑡
= 0 Γ𝑡

𝑡𝑖
= 𝜑𝑖 Γ𝑡

𝑖𝑡
= 0 Γ𝑡𝑖 𝑗 =

1
2𝑐2υ(𝑎𝑖 𝑗) + 2𝜛 𝑖 𝑗 Γ𝑖

𝑡𝑡
= 𝑐2𝜑𝑖 (2.1.8)

Γ𝑖
𝑗𝑡
= Γ𝑖

𝑡 𝑗
=

1
2
𝑎𝑖𝑘υ(𝑎𝑗𝑘) − 𝑐2𝜛 𝑖𝑗 Γ𝑖( 𝑗𝑘) =

1
2
𝑎𝑖𝑙

(
�̂�𝑗𝑎𝑗𝑙 + �̂�𝑗𝑎𝑖𝑙 − �̂�𝑙𝑎𝑖 𝑗

)
Γ𝑖[ 𝑗𝑘] = 0 .

We thus first see that the limit is smooth only for invariant Carroll structures i.e. those forwhich
the extrinsic curvature vanishes completely

1
2
υ(𝑎𝑖 𝑗) = 0 . (2.1.9)

Then we can take the Carrollian limit and we reach a connection which in terms of the variables
(1.2.1) reads

𝛾 = 0, 𝛿𝑖 = 𝜑𝑖, �̂�𝑖 = 0, 𝛽𝑖 𝑗 = 𝜛 𝑖 𝑗, (2.1.10)

𝜌𝑖 = 0, 𝛾 𝑖
𝑗
= 𝜅 𝑖

𝑗
= 0, 𝛾𝑘(𝑖 𝑗) = Γ𝑘(𝑖 𝑗) , 𝛾𝑘[𝑖 𝑗] = 0 .

Hence, we see that, spatially, we get the hat connection ∇̂ we introduced in Sec. 1.3. However we
notice two restrictions: i) such a connection is valid only for invariant Carrollian geometries and
ii) the temporal connection 𝛾 𝑖

𝑗
vanishes whereas the ambiguity 𝛿𝑖 is set equal to the acceleration 𝜑𝑖.

Therefore the hat connection is a slight extension of the one we get in the limit, the extension being
such that the intrinsic connection can also be considered on a structure with extrinsic curvature.
In the following we will then work with the hat connection.

2.1.2 Isometries, charges and their Carrollian limits

We consider here a vector 𝝃 = 𝜉 𝑡υ + 𝜉 𝑖�̂�𝑖 and a relativistic energy-momentum tensor 𝑇 𝜇𝜈 which is
then by definition symmetric 𝑇 𝜇𝜈 = 𝑇 𝜈𝜇 and divergence-free ∇𝜇𝑇 𝜇𝜈 = 0. The relativistic conserved
current is then 𝐼𝜇 = 𝜉 𝜈𝑇 𝜇𝜈 and its divergence reads

∇𝜇𝐼𝜇 = −𝑇00

(
1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖
)
+ 2𝑇 𝑖0

( (
�̂�𝑖 − 𝜑𝑖

)
𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖 −

1
𝑐2Ω

𝑎𝑖 𝑗𝜕𝑡𝜉
𝑗

)
+ 𝑇 𝑖 𝑗

(
∇̂(𝑖𝜉 𝑗) + 𝜉 𝑡𝛾(𝑖 𝑗)

)
.

(2.1.11)
This is a relativistic expression although written in terms of Carrollian variables. It vanishes if and
only if

1
Ω
𝜕𝑡𝜉

𝑡 + 𝜑𝑖𝜉 𝑖 = 0 (2.1.12a)(
�̂�𝑖 − 𝜑𝑖

)
𝜉 𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖 −

1
𝑐2Ω

𝑎𝑖 𝑗𝜕𝑡𝜉
𝑗 = 0 (2.1.12b)

∇̂(𝑖𝜉 𝑗) + 𝜉 𝑡𝛾(𝑖 𝑗) = 0 . (2.1.12c)
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Taking the 𝑐→ 0 limit of these equations leads to (1.5.2) together with the strong Killing condition
L𝝃τ = 0 (this is the second equation in (2.1.12a)) while finiteness at zero 𝑐 asks for 𝜕𝑡𝜉 𝑗 = 0 i.e. 𝝃
generates a Carrollian diffeomorphism. We thus see why only strong Carrollian Killings can give
rise to a conserve charge. This computation is the application in RP frame of a more general one
than can be performed in any arbitrary frame (see (B.1.68) for the case of Cartan’s frame).

Given a conserved current 𝐼𝜇 one can always build a conserved charge via the formula

𝑄 =

∫
Σ𝑡

d𝑑𝑥
√
𝜎 𝑛𝜇𝐼

𝜇 (2.1.13)

where the integration is performed on a time-like hypersurface Σ𝑡 (identified with a surface 𝑡 = 𝑐𝑠𝑡)
whose induced metric is 𝜎𝜇𝜈 and whose outwards pointing normal vector is 𝑛𝜇. As shown in [61] in
the RP frame one gets

√
𝜎 =
√
𝑎 + O(𝑐2) , 𝑛0 = 𝑐Ω + O(𝑐3) , 𝐼0 =

𝑐

Ω

(
I + 𝑏𝑖I 𝑖

)
(2.1.14)

with 𝑰 = 𝐼𝜇𝜕𝜇 = I 𝑐
Ω𝜕𝑡 + I

𝑖�̂�𝑖 and 𝑛𝑖 = 0. Hence the 𝑐→ 0 limit of (2.1.13) gives 𝑄 → 𝑐2𝑄Carr with

𝑄Carr =

∫
Σ𝑡

d𝑑𝑥
√
𝑎

(
I + 𝑏𝑖I 𝑖

)
(2.1.15)

which is exactly (1.5.17). This is a first example of the power of using the RP frame in order to find
Carrollian formulas for quantities: go to the RP frame and take carefully the 𝑐 → 0 limit of the
well-known relativistic definition. The next example will be the Cotton tensor in Sec. 2.4.

2.2 Carrollian fluids

In this Section we aim at explaining how the conservation equations (1.3.20) and (1.3.21) arise from
the expansion of the relativistic energy-momentum tensor in RP frame. This will be the occasion to
present the notion of Carrollian fluids (whenever the energy-momentum tensor can be interpreted
as the one of a fluid). After briefly reviewing relativistic hydrodynamics, we carefully expand the
relativistic fluid equations in order to derive their Carrollian counterpart. We end up with two
examples of Carrollian fluids. This section is inspired by [53, 65, 103].

2.2.1 Reviewing relativistic hydrodynamics

Relativistic fluids are used to described out-of-equilibrium phenomena when the typical length
scale of the perturbations are large compared to the typical kinetic scales (like the mean free path
for example). When living on a relativistic spacetime (M , 𝑔𝜇𝜈 ,∇)with∇ the Levi-Civita connection
of 𝑔𝜇𝜈 , these fluids are usually described by means of a four-velocity congruence 𝒖 = 𝑢𝜇𝜕𝜇 used to
decompose their energy-momentum tensor into thermodynamic quantities, as local thermal equi-
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librium is assumed. While perfect fluids possess only an energy density 𝜀 and a pressure 𝑝, it is
customary to add terms resulting from friction (the symmetric stress-tensor 𝜏𝜇𝜈) and thermal con-
duction (the heat current 𝑞𝜇) when dealing with viscous fluids. The energy-momentum tensor for
such viscous fluids then reads

𝑇 𝜇𝜈 = (𝜀 + 𝑝)𝑢
𝜇𝑢𝜈

𝑐2 + 𝑝𝑔
𝜇𝜈 + 𝜏𝜇𝜈 + 𝑢

𝜇𝑞𝜈

𝑐2 +
𝑢𝜈𝑞𝜇

𝑐2 (2.2.1)

and its covariant conservation
∇𝜇𝑇 𝜇𝜈 = 0 , (2.2.2)

yields a set of 𝑑+1 equations, the temporal one being the conservation of energy while the 𝑑 spatial
ones are called Euler equations. The dynamical variables are 𝜀, 𝑝 and the spatial components of
the velocity 𝑢𝑖,3 as hydrodynamics assumes constitutive relations expressing the stress and the heat
current as derivative expansions on the velocity, the temperature (and the chemical potential if we
have a further conserved current). In its current form the system (2.2.2) contains 𝑑 + 1 equations
for 𝑑 + 2 variables, it can be closed by setting a relationship between the energy density and the
pressure

𝜀 = 𝜀(𝑝) . (2.2.3)

This is called an equation of state. It is customary to assume a conformal equation of state, i.e. a
relation of the form

𝜀 = 𝑑𝑝 . (2.2.4)

The tensors 𝑞𝜇 and 𝜏𝜇𝜈 are transverse with respect to the velocity congruence 𝒖 i.e.

𝑢𝜇𝑞𝜇 = 0, 𝑢𝜇𝜏𝜇𝜈 = 0, (2.2.5)

which means that only 𝑞𝑖 and 𝜏 𝑖 𝑗 are relevant. We finally find that

𝑢𝜇𝑇𝜇𝜈 = −𝑞𝜈 − 𝜀𝑢𝜈 , 𝜀 =
1
𝑐2𝑇𝜇𝜈𝑢

𝜇𝑢𝜈 . (2.2.6)

Summarizing, we have

• that 𝜀 is the energy density per unit of proper volume as measured by an observer at velocity
𝒖,

• that 𝑝 is the local-equilibrium thermodynamic pressure which obeys (2.2.3),

• that 𝑞𝑖 and 𝜏 𝑖 𝑗 capture the physical properties of the out of equilibrium state. They are often
expressed as expansions in temperatures, chemical potential and derivatives of the velocity.
This constitute the constitutive relations. At first order in derivatives one can write

𝑞
(1)
𝜇 = −𝜅ℎ 𝜈

𝜇

(
𝜕𝜈𝑇 +

𝑇

𝑐2 𝑎𝜈

)
(2.2.7)

3This is due to the normalisation | |𝒖| |2 = −𝑐2 which fixes the temporal component in terms of the spatial ones.
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𝜏
(1)
𝜇𝜈 = −2𝜂𝜎𝜇𝜈 − 𝜁 ℎ𝜇𝜈Θ (2.2.8)

where we see appearing, on top of the temperature 𝑇 and the transport coefficients 𝜅, 𝜂, 𝜁 ,
kinematical quantities related to the velocity 𝒖

𝑎𝜇 = 𝑢
𝜈∇𝜈𝑢𝜇 acceleration

Θ = ∇𝜇𝑢𝜇 relativistic expansion
𝜎𝜇𝜈 = 𝜎𝜈𝜇 = ∇(𝜇𝑢𝜈) + 1

𝑐2𝑢(𝜇𝑎𝜈) − 1
𝑑
Θℎ𝜇𝜈 shear

𝜔𝜇𝜈 = −𝜔𝜈𝜇 = ∇[𝜇𝑢𝜈] + 1
𝑐2𝑢[𝜇𝑎𝜈] vorticity

(2.2.9)

with ℎ𝜇𝜈 the projector onto the space transverse to the velocity field

ℎ𝜇𝜈 =
𝑢𝜇𝑢𝜈

𝑐2 + 𝑔𝜇𝜈 . (2.2.10)

The unknown coefficients in (2.2.7) and (2.2.8) characterize the transport phenomena occur-
ring in the fluid. 𝜅 is the thermal conductivitywhile 𝜂 and 𝜁 are respectively the shear and bulk
viscosity. The latter is related to the change of volume of the fluid while the former describes
the resistance applied by a layer of fluid onto the one which is above it. These coefficients are
determined either if one has access to a microscopic theory either phenomenologically.

2.2.2 The emergence of Carrollian fluids

What is a Carrollian fluid? Following the relativistic or Galilean paradigm, this should be a many-
body state close to thermodynamic equilibrium. None of these concepts has been defined in the
Carrollian regime, and the primitive absence of motion for point-like objects makes it even harder
to state. Leaving these deep issues aside, we will assume that the Carrollian equivalent of a fluid
exists, and focus mostly on their dynamics in terms of conservation laws, similar to the existing
ones in the previously quoted instances. As a preamble to their exhibition, it may be useful to recall
the various paths one can follow to derive the Galilean fluid equations a.k.a. the Navier-Stokes
equations.

• The firstway is to consider amesoscopic element of fluid onwhichwe applyNewton’s second
law i.e. the fundamental principle of Galilean dynamics (see [106]). Following this path for
Carroll would require first to agree on what would the fundamental law of Carrollian dy-
namics be and this is still under scrutiny.

• An other path is via a kinetic theory à la Boltzmann, where the small fluid element made
of 𝑁 particles is described by a function of time, positions and momenta (in the sense of
momentum 𝒑 = 𝑚𝒗 with 𝑚 the mass) of all particles which satisfies the Vlasov equation in
virtue of Liouville theorem. Takingmomentawith respect to the average velocity of the latter
equation give rise to the continuity and Euler equations, to which one has just to add viscous
terms to get Navier-Stokes. However this approach gives a special role to the time direction
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which in the Carrollian case is degenerate, rendering it more complex than it seems.

• Apart from these “physical” ways of deriving the Navier-Stokes equation, one can also think
of simply taking the 𝑐 → ∞ limit of the relativistic equations, as Galilean fluids are just the
non-relativistic approximation of the latter. It has been done in particular in [53] following
[106], where the authors followed the dual path to find the Carrollian fluid equations i.e. by
taking the 𝑐→ 0 limit of ∇𝜇𝑇 𝜇𝜈 = 0. Presenting this method is our objective in the following
paragraph.

In order to proceed with the fluid equations we need to assume a behavior at small 𝑐 for the
relativistic energy-momentum tensor

𝑇 𝑖 𝑗 = 1
𝑐2 Π̃

𝑖 𝑗 + Π𝑖 𝑗 + O(𝑐2)
− 𝑐

Ω𝑇
𝑖
0 = Π𝑖 + 𝑐2𝑃 𝑖 + O(𝑐4)

1
Ω2𝑇00 = Π + O(𝑐2) .

(2.2.11)

Contrary to the non-relativistic (i.e. Galilean) case, there are no physical principles to guide us
towards the best scaling in powers of 𝑐2. The idea of the authors of [53] was to choose the scaling
dictated in [52]when usingCarrollian fluids to describe holographycially solutions of asymptotically
flat Einstein gravity. The scalings (2.2.11) are the minimal scalings needed to describe at least Petrov-
type D solutions of Einstein’s equations and also encompass Robinson-Trautman spacetimes. More
on Petrov classification will be said in Chapter 4.

Remark The expansion (2.2.11) translates into an expansion at the level of the thermodynamic
quantities introduced in the last section

𝜀 = 𝜂 + O(𝑐2) (2.2.12a)

𝑝 = 𝜛 + O(𝑐2) (2.2.12b)

𝑞𝑖 = 𝑄𝑖 + 𝑐2𝜋 𝑖 + O(𝑐4) (2.2.12c)

𝜏 𝑖 𝑗 = −Σ
𝑖 𝑗

𝑐2 − Ξ
𝑖 𝑗 + O(𝑐2) , (2.2.12d)

The Carrollian momenta are then equal to

Π𝑖 = 𝑄𝑖, 𝑃 𝑖 = 𝜋 𝑖, Π = 𝜂, Π̃𝑖 𝑗 = −Σ𝑖 𝑗, Π𝑖 𝑗 = 𝜛𝑎𝑖 𝑗 − Ξ𝑖 𝑗 . (2.2.13)

The relativistic equations (conservation of the energy–momentum tensor) should be presented as

∇𝜇𝑇 𝜇0 = 0, ∇𝜇𝑇 𝜇𝑖 = 0. (2.2.14)

Under Carrollian diffeomorphisms (1.1.5), (1.1.6), (2.2.14) transform as

∇′𝜇𝑇
′𝜇

0 =
1
𝐽
∇𝜇𝑇 𝜇0, ∇

′
𝜇𝑇
′𝜇𝑖 = 𝐽 𝑖𝑙∇𝜇𝑇

𝜇𝑙 , (2.2.15)
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which means that the temporal and spatial equations do not mix under these transformations. This
was to be expected as the Randers-Papapetrou frame allows for this splitting. Plugging the behavior
(2.2.12) into (2.2.14) we can expand the relativistic equations in powers of 𝑐2

𝑐

Ω
∇𝜇𝑇 𝜇0 =

F
𝑐2 + E + O

(
𝑐2) , (2.2.16a)

∇𝜇𝑇 𝜇𝑗 =
H 𝑗

𝑐2 + G
𝑗 + O

(
𝑐2) . (2.2.16b)

where each coefficient of the expansion provides a Carrollian tensor. What we have done with this
expansion is then a reduction of the covariant relativistic equation under Carrollian diffeomorph-
isms. In these expressions (2.2.16a) and (2.2.16b) we read

E = −
(

1
Ω
�̂�𝑡 + 𝜃

)
Π −

(
∇̂𝑖 + 2𝜑𝑖

)
Π𝑖 − Π𝑖 𝑗𝛾𝑖 𝑗, (2.2.17a)

F = −Π̃𝑖 𝑗𝛾𝑖 𝑗, (2.2.17b)

G 𝑗 =
(
∇̂𝑖 + 𝜑𝑖

)
Π𝑖 𝑗 + 2Π𝑖𝜛 𝑖 𝑗 + Π𝜑 𝑗 +

(
1
Ω
�̂�𝑡 + 𝜃

)
𝑃 𝑗 + 𝑃𝑖𝛾 𝑖 𝑗. (2.2.17c)

H 𝑗 =

(
∇̂𝑖 + 𝜑𝑖

)
Π̃𝑖 𝑗 +

(
1
Ω
�̂�𝑡 + 𝜃

)
Π𝑗 + Π𝑖𝛾 𝑖 𝑗, (2.2.17d)

At zero 𝑐 the Carrollian fluid equations are then E = F = 0 and G 𝑖 = H 𝑖 = 0.

Remark Asking all coefficients associatedwith non positive powers of 𝑐2 in the expansions (2.2.16a)
and (2.2.16b) to vanish is legitimate as we work in the limit 𝑐 → 0. If we were working at a
fixed and finite value of 𝑐2 the whole infinite expansion would have been set to zero, and not
the coefficients separately.

Remark There are instances forwhich expansions of the type of (2.2.16a) and (2.2.16b) are finite and
exact. One then talks about a decomposition in powers of 𝑐2. In that case the development is
valid irrespective of the finite value of 𝑐2 and all coefficients, even those with positive powers
of the parameter, are required to vanish. An explicit example will be given in Sec. 2.4 with
the Cotton tensor.

It is now time to pause and think a bit more about the equations (2.2.17a), (2.2.17b), (2.2.17c) and
(2.2.17d).

• Equation E = 0 is scalar and mimic eq. (1.3.20) found through variation. This is the energy
conservation.

• Equation G 𝑖 = 0 is the vectorial counterpart of E = 0. It is a momentum equation which is
the parallel of (1.3.21). It can therefore be obtained through variation. This is a general fact that
when comparing what one can find by the limiting procedure and by an intrinsic analysis,
the intrinsic case sits at order 1 in the expansion prior to the limit.
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• Equation F = 0 is non-dynamical. It is valid either if the momenta Π̃𝑖 𝑗 is absent, which is a
“physical” requirement, or if the extrinsic curvature of the Carroll structure vanishes, which
is a geometric constraint. The latter is fulfilled when the metric 𝑎𝑖 𝑗 does not depend on time.

• The equationH 𝑖 = 0 is a new dynamical equation on the heat current. It involves the time
derivative of the vector Π𝑖 together with the gradient of the rank-two tensor Π𝑖 𝑗. We are
therefore tempted to interpret it as a kind of “Carrollian continuity equation”. Note that
according to the current knowledge, this equation is not associated to any symmetry and
thus cannot be obtained through variation.

It is also important to notice that, contrary to the intrinsic case, the momentum 𝑃𝑖 is no longer
undetermined as it can be expressed explicitly in terms of the thermodynamic variables. In con-
clusion, the expansion of the energy-momentum tensor and its conservation equations in powers
of 𝑐2 leads to a set of couples of equations (E = 0 with G 𝑖 = 0 and F = 0 withH 𝑖 = 0). Through
variation, one obtain the couple sitting at order 1 in (2.2.16a) and (2.2.16b). The other couples are un-
reachable by this means excepts if one assumes a similar Laurent expansion of the Carroll structure,
field of observers and metric, see e.g. [105].

Remark One could have assume an expansion more general than (2.2.11), with more degrees of
freedom at negative powers of 𝑐2. This would have lead to a similar multiplication of equa-
tions, see [65] for a discussion on that topic.

Remark Equations (2.2.17a), (2.2.17b), (2.2.17c) and (2.2.17d) can be re-expressed in aWeyl-covariant
way using tools developed in Sec. 1.4. We find

E = − 1
Ω

D̂𝑡Π − D̂𝑖Π
𝑖 − Π𝑖 𝑗𝜉𝑖 𝑗, (2.2.18a)

F = −Π̃𝑖 𝑗𝜉𝑖 𝑗, (2.2.18b)

G𝑗 = D̂𝑖Π
𝑖
𝑗 + 2Π𝑖𝜛 𝑖 𝑗 +

(
1
Ω

D̂𝑡𝛿
𝑖
𝑗 + 𝜉 𝑖𝑗

)
𝑃𝑖, (2.2.18c)

H𝑗 = D̂𝑖Π̃
𝑖
𝑗 +

(
1
Ω

D̂𝑡𝛿
𝑖
𝑗 + 𝜉 𝑖𝑗

)
Π𝑖 . (2.2.18d)

The trace condition would be in that case

Π̃𝑖𝑖 = 0 and Π𝑖𝑖 = Π . (2.2.19)

We conclude this paragraphwith a little discussion about the fate of Carrollian charges as described
in Sec. 1.5 when additional degrees of freedom i.e. momenta are present. Suppose that 𝝃 is the
generator of a Carrollian diffeomorphism (1.1.5). It can be used to create two currents out4 of Π𝑖 𝑗,

4Of course if more momenta were present, more currents would be available.

– 72 –



Π̃𝑖 𝑗, Π𝑖, 𝑃 𝑖 and Π 
𝜅 = 𝜉 𝑖𝑃𝑖 − 𝜉 𝑡Π
�̃� = 𝜉 𝑖Π𝑖

𝐾 𝑖 = 𝜉 𝑗Π 𝑖
𝑗
− 𝜉 𝑡Π𝑖

�̃� 𝑖 = 𝜉 𝑗Π̃ 𝑖
𝑗
,

(2.2.20)

If 𝝃 is a (conformal) Carrollian Killing field, and assuming all momenta on-shell i.e. Eqs. (2.2.18a),
(2.2.18b), (2.2.18c) and (2.2.18d) (with (2.2.19) satisfied in the conformal instance), one finds the follow-
ing Carrollian divergences (the conformal weights of 𝜅 and �̃� are 𝑑, those of 𝐾 𝑖 and �̃� 𝑖, 𝑑 + 1, and
−1 for 𝜈𝑖)5 {

˜K = 1
ΩD̂𝑡 �̃� + D̂𝑖 �̃�

𝑖 = 0

K = 1
ΩD̂𝑡𝜅 + D̂𝑖𝐾

𝑖 = Π𝑖𝜈𝑖 ,
(2.2.21)

with 𝜈𝑖 = (�̂�𝑖−𝜑𝑖)𝜉 𝑡 +2𝜉 𝑗𝜛 𝑖 𝑗. Two charges can be defined following (1.5.17): 𝑄 �̃� and𝑄𝐾 . The former
is always conserved, whereas the latter isn’t for generic isometries unless the field configuration has
vanishing energy flux Π𝑖, i.e. if local Carroll-boost invariance is unbroken (which will not be the
case for radiating spacetimes, see Chapter 5).

Comparison with Galilean fluids: the case of 1 + 1-dimensions

To get more insights on the physical content of the Carrollian fluid equations, namely Eqs. (2.2.17a),
(2.2.17b), (2.2.17c) and (2.2.17d), one can compare with the Galilean analysis. The latter serves as a
guide in absence of a microscopic description. To make the relation between Galilean and Car-
rollian fluid, we restrict the following comments to the (1 + 1)-dimensional case because in this
dimension the Carrollian and Galilean algebras are isomorphic. This translates into interesting du-
ality relations between the fluid equations. We will mostly follow [107] (see also [108, 109] for con-
siderations on the stability of the equations). The coordinates on the (1+1)-dimensional spacetime
are (𝑡, 𝑥) and will be denoted by an index 0 (for time) and 𝑥 (for space).

Galilean structures (dubbed Newton-Cartan spacetimes) are described in any dimension in Ap-
pendixD.We recall here the principal notionswhichwill be useful whenwriting the fluid equations.
Many notations are common with the Carrollian case so an index “G” will be associated to the Ga-
lilean quantities, whenever an ambiguity exists. The Galilean clock form is τG = ΩGd𝑡, dual to the
field of observers υG = 1

ΩG
(𝜕𝑡 + 𝑤𝑥𝜕𝑥) + 𝛼𝑥𝜕𝑥 . The degenerate cometric reads 𝜕2

𝑠 = 𝑎
−1𝜕2

𝑥 .

Galilean fluid equations are obtained either from first principles (as recalled in the introduction
of this section) either from the 𝑐→∞ limit of the relativistic equations. Following this latter path,

5Notice that these are the specific conformal weights ensuring the Carroll divergence in (1.5.14) be identical to the
Weyl–Carroll divergence. For

{
𝜅, 𝐾 𝑖

}
of general weights (𝑤, 𝑤+1) we find instead

( 1
Ω𝜕𝑡 + 𝜃

)
𝜅+

(
∇̂𝑖 + 𝜑𝑖

)
𝐾 𝑖 = 1

Ω D̂𝑡𝜅+

D̂𝑖𝐾
𝑖 + (𝑑 − 𝑤)

(
𝜃
𝑑
𝜅 + 𝜑𝑖𝐾 𝑖

)
.
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we need to assume a scaling in powers of 𝑐2 for the energy-momentum tensor
𝑇𝑥𝑥 = Π𝑥𝑥 + O(𝑐2)
𝑐Ω𝑇0

𝑥 = 𝑐
2𝑃𝑥 + Π𝑥 + O(𝑐4)

Ω2𝑇00 = 𝑐2𝜌 + Π + O(𝑐2) .
(2.2.22)

In (2.2.22) 𝜌 is the mass density and 𝑃𝑥 is the momemtum (it contains in particular the combination
𝜌𝛼𝑥 i.e. the mass density times the velocity). SimilarlyΠ is the total energy-density andΠ𝑥𝑥 the total
energy-stress tensor. Note that these scalings are suggested by physical consideration, contrary to
the Carrollian ones (2.2.11) which were dictated only by the fluid/gravity correspondence.

The large-𝑐 expansion of the relativistic fluid equations leads to

𝑐∇𝜇𝑇 𝜇0 = 𝑐2C + EG + O
(

1
𝑐2

)
(2.2.23a)

∇𝜇𝑇 𝜇1 = 𝑐2N +M + O
(

1
𝑐2

)
, (2.2.23b)

The Galilean fluid equations are then C = EG = 0 andN =M = 0 with

EG =

(
1
Ω
(𝜕𝑡 + 𝑤𝑥𝜕𝑥) + 𝜃𝑤

)
Π +

(
∇̂𝑥 + 2𝜑𝑥

)
Π𝑥 + 𝜃𝑤Π𝑥𝑥 , (2.2.24a)

M =

(
1
Ω
D̂𝑡 + 2𝜃𝑤

)
𝑃𝑥 +

(
∇̂𝑥 + 𝜑𝑥

)
Π𝑥𝑥 + 𝜑𝑥Π, (2.2.24b)

C =

(
1
Ω
(𝜕𝑡 + 𝑤𝑥𝜕𝑥) + 𝜃𝑤

)
𝜚 +

(
∇̂𝑥 + 2𝜑𝑥

)
𝑃𝑥 , (2.2.24c)

N = 𝜑𝑥𝜚 . (2.2.24d)

In these expressions 𝜑𝑥 = 𝜕𝑥 lnΩG, 𝜃𝑤 is given in (D.2.20), the Galilean covariant temporal derivat-
ive 1

Ω �̂�𝑡 is displayed in (D.2.21) and the spatial covariant derivative is built in (D.2.11).

Delving deeper into the structure of these equations we find that

• C = 0 is the continuity equation. It is associated to the conservation of the mass.

• EG = 0 is the energy equation.

• M = 0 is the momentum (Euler) equation.

• N is more exotic and translates into either a physical requirement (𝜌 = 0) either a geometric
identity namely the closure of the Galilean clock form τG. The first option of the alternative
is reached for a fluid with massless carriers like photons. The second option implies the
existence of an absolute time tN such that τ = 𝑑tN. It corresponds to the instance of ordinary
fluids.
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We therefore notice the following duality relations between Galilean fluid equations and their Car-
rollian counterparts. In the first instance the constraint equation N𝑖 = 0 calls for the absolute
character of time, while for Carroll structures with absolute space, F = 0 is automatically satisfied.
This is reminiscent of the dual roles played by space and time in Galilean and Carrollian geomet-
ries. The duality can be thrust further. Following [107] and given the dual roles of time and space we
can associate the Galilean energy equation EG to the momentum Carrollian equation G. Similarly
the Galilean momenta equationM is associated to the Carrollian energy equation E . Finally the
Carrollian equationH which was lacking interpretation is dual to the Galilean continuity equation
C. However in the Carrollian case the continuity is associated with the directions transverse to the
fluid velocity and not the longitudinal ones like for ordinary fluids. This dual role between time and
space gives the impression that concepts such that the entropy would be more related to dissipative
terms, leading to a kind of “magnetic entropy”, yet to define and understand.

To conclude we observed that giving a physical sense to the Carrollian fluid equations is not an
easy task, as long as a microscopic description is not available. Comparing with the Galilean case
we were able to exhibit a complete duality between time and space, which translates into a duality
between the fluid equations. Let us now give an explicit example of Carrollian fluid. As the third
part of this thesis deals with thermalization, we present the notion of “thermal” Carrollian fluids.

2.2.3 Example: a “thermal” Carrollian fluid

We consider a three-dimensional manifoldM = ℝ × S where the two-dimensional surface S is
described by means of complex holomorphic coordinates (𝜁 , 𝜁 )

dℓ2 =
2

𝑃2(𝑡, 𝜁 , 𝜁 )
d𝜁d𝜁 (2.2.25)

which is a case in which the geometric shear 𝜉𝑖 𝑗 vanishes. We choose the frame such that 𝑏𝑖 = 0
and Ω = 1 i.e. 𝜑𝑖 = 0 and 𝜛 𝑖 𝑗 = 0. On this surface we put a Carrollian fluid at rest (𝛽𝑖 = 0) whose
non vanishing momenta are Π = 𝜀,Π𝑖 = 𝑄𝑖,Π𝑖 𝑗 = 𝑝𝑎𝑖 𝑗 and Π̃𝑖 𝑗 = −Σ𝑖 𝑗 where 𝜀 and 𝑝 are related by
a conformal equation of state 𝜀(𝑡, 𝜁 , 𝜁 ) = 2𝑝(𝑡, 𝜁 , 𝜁 ). The conformal behavior of the fluid imposes
that Σ𝑖 𝑗 appearing in (2.2.12) satisfies Σ𝜁 𝜁 = 0.

The Carrollian fluid equations (2.2.18a), (2.2.18b), (2.2.18c) and (2.2.18d) reduce, for the fluid at
hand, to

E = 3𝜀𝜕𝑡 ln 𝑃 − 𝜕𝑡𝜀 − 𝜕𝑖𝑄𝑖 = 0 (2.2.26a)

G𝑖 = 𝜕𝑖𝑝 (2.2.26b)

H 𝑖 = 𝜕𝑡𝑄
𝑖 − 2𝑄𝑖𝜕𝑡 ln 𝑃 − 𝜕𝑗Σ𝑖 𝑗 = 0 , (2.2.26c)

the others being identically zero due to the absence of absence of certainmomenta and the vanishing
of the geometric shear. The momentum equation G𝑖 = 0 imposes that 𝑝 (and the energy density
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because of the equation of state (2.2.3)) only depends on time. To give an interpretation to the energy
equation E = 0 we should first pause and think.

In first order relativistic hydrodynamics one relates the heat current of the fluid to the gradient
of the temperature via Fourier’s law. We may think of doing something similar for a Carrollian
fluid i.e. we seek a quantity 𝑇C which could be considered as temperature and such that

Q = −grad
(
𝜅C𝑇C

)
, (2.2.27)

with 𝜅C the Carrollian “thermal” conductivity. However, as there is no kinetic theory in this set-up,
we should not think about temperature as coming from the motion of particles but rather as the
motion (better, the change) of the background geometry itself. The latter is encoded into the Gauss
curvature which for the two-dimensional surface (2.2.25) reads

𝐾 = Δ ln 𝑃 (2.2.28)

with Δ = 2𝑃2𝜕𝜁𝜕𝜁 the Laplacian operator in (𝜁 , 𝜁 ) coordinates. We may then define the Carrollian
temperature as

𝜅C𝑇 (𝑡, 𝜁 , 𝜁 ) = 𝜅′𝐾 (𝑡, 𝜁 , 𝜁 ) . (2.2.29)

Here, 𝜅′ is a constant introduced for dimensional reasons. Indeed, the temperature hasWeyl weight
1 so, because of (2.2.29), the product 𝜅C𝑇C is weight 2. Given (2.2.29) the equation E = 0 in (2.2.26)
reads

3𝜀𝜕𝑡 ln 𝑃 − 𝜕𝑡𝜀 + 𝜅′Δ𝐾 = 0 , (2.2.30)

wherewe explicitly see that the fluid is purely geometrical. If one defines amass such that𝑀 (𝑡) = 𝜀(𝑡)
4𝜅′

and set 𝜅′ = 1
16𝜋𝐺 we get

ΔΔ ln 𝑃 + 12𝑀𝜕𝑡 ln 𝑃 − 4𝜕𝑡𝑀 = 0 , (2.2.31)

which is the Robinson-Trautman equation [110]. The Robinson–Trautman equations appears then
both as a heat equation in conformal Carrollian fluids and in four-dimensional Einstein gravity.
This is an example of the fluid/gravity duality [27], spin-off of the AdS/CFT in which an asymptot-
ically AdS spacetime is associated to a conformal fluid on the boundary. This duality was extended
to the flat case in [52]. In the case treated here, the two-dimensional conformal Carrollian fluid
studied here originates from flat Robinson–Trautman spacetime holography.

This concludes our analysis of Carroll geometry in Randers–Papapetrou frame and its applica-
tions to Carrollian fluids as the 𝑐→ 0 limit of relativistic fluids. Actually hydrodynamics is not the
only instance in which such a limit allows to build Carrollian theories from relativistic ones. Some
of them where studied e.g. in [49, 95] and also in [103] where we elaborated on the case of the scalar
field.
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2.3 The Carrollian scalar field

In this Section we illustrate part of the previously developed formalism in the simple case of the
scalar field, as developed in [103]. We will follow the limiting procedure approach even though one
could also define intrinsically on a Carroll structure Carroll diffeomorphisms invariant actions.
Other references on the Carrollian scalar field, though in different formalisms, include [69, 95, 96].

2.3.1 Electric and magnetic actions

The set-up

LetM a (𝑑 + 1)-dimensional Riemannian manifold. We start with the action for a relativistic scalar
field Φ

𝑆 = −
∫

M
d𝑡 d𝑑𝑥

√−𝑔
(

1
2
𝑔𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ + 𝑉 (Φ)

)
, (2.3.1)

on a Papapetrou-Randers background

d𝑠2 = −𝑐2 τ2 + 𝑎𝑖 𝑗 d𝑥𝑖d𝑥 𝑗. (2.3.2)

Assuming the following expansion in powers of 𝑐2 for the potential 𝑉

𝑉 (Φ) = 1
𝑐2𝑉e(Φ) + 𝑉m(Φ) + O

(
𝑐2) , (2.3.3)

we can decompose the relativistic action in powers of 𝑐2

𝑆 =
1
𝑐2𝑆e + 𝑆m + O

(
𝑐2) (2.3.4)

with 𝑆e and 𝑆m the Carrollian actions with Lagrangian densities

Le =
1
2

(
1
Ω
𝜕𝑡Φ

)2

− 𝑉e(Φ), (2.3.5a)

Lm = −1
2
𝑎𝑖 𝑗�̂�𝑖Φ�̂�𝑗Φ − 𝑉m(Φ). (2.3.5b)

The indices “e” and “m” stand for electric andmagnetic. The terminology comes from [49] where the
Carrollian limit of electromagnetism was studied. Latter it was used in other theories like Yang-
Mills and gravity in [95,101]. Note that both actions are invariant under Carrollian diffeomorphisms.
Hence they are, according to our terminology, genuine Carrollian actions.6 Indeed the Randers-
Papapetrou form of the metric behaves covariantly under Carrollian diffeomorphisms, hence the
decomposition of any relativistic tensor as a (usually truncated) Laurent expansion in 𝑐2, provides

6The actions associated with the O
(
𝑐2) terms are non-dynamical as no kinetic term appears at this order, see the

explicit example of the conformally coupled scalar in the following.
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a Carrollian tensor at each order. Phrased in more mathematical terms, the expansion in powers of
𝑐2, amounts to reducing the representations of the full diffeomorphism group, with respect to the
subgroup of Carrollian diffeomorphism.

Remark The decomposition (2.3.4) crucially depends on the assumption (2.3.3). One can show that
most of the possible potential terms, and among them the conformal coupling that we shall
shortly see, fit in this hypothesis.

Remark With a strict 𝑐 → 0 limit we can only reach one of the two actions, 𝑆m. A rescaling
of the field Φ is necessary to get the other one, see e.g. [95]. In this work and also e.g. in
[79] the terminology "magnetic" was reserved to a two-field formulation of the theory whose
Lagrangian density reads

L = 𝜋 ¤𝜙 − 1
2
𝜕𝑖𝜙 𝜕

𝑖𝜙 (2.3.6)

with 𝜋 the Hamiltonian conjugate variable to the field 𝜙. Hence calling "magnetic" the Lag-
rangian (2.3.5b) refers more to its subleading position in the expansion (2.3.4).

Remark In [68] the authors recovered the electric and magnetic (two-fields) actions also with an
expansion in 𝑐2. However, contrary to (2.3.1) and (2.3.3) where the geometry and the potential
where expanded without touching the dynamical field, in [68] the field 𝜙 itself is expanded
around 𝑐 = 0

𝜙 = 𝑐Δ
(
𝜙0 + 𝑐2𝜙1 + 𝑐4𝜙2 + . . .

)
, (2.3.7)

for some Δ. The field 𝜙0 and 𝜙1 plays respectively the role of 𝜙 and 𝜋 in (2.3.6).

Conformal coupling

For a scalar field Φ of weight w = 𝑑−1
2 ,

𝑉 (Φ) = 𝑑 − 1
8𝑑

𝑅Φ2. (2.3.8)

is a conformal coupling. Conformality imposes to translate covariant derivatives intoWeyl-covariant
derivatives. In our setup this can be done using a congruence 𝒖 dual to τ, from which we define the
Weyl-connection

𝐴 =
1
𝑐2

(
𝒂 − Θ

𝑑
𝒖

)
(2.3.9)

with 𝒂 andΘ the acceleration and expansion of𝒖 as defined in (2.2.9). TheWeyl-covariant derivative
acts then on scalars 𝑓 of weight w as

D𝜆𝑓 = ∇𝜆𝑓 + w𝐴𝜆𝑓 (2.3.10)

and on one-forms 𝑣𝜇 as

D𝜆𝑣𝜇 = ∇𝜆𝑣𝜇 + (w + 1)𝐴𝜆𝑣𝜇 + 𝐴𝜇𝑣𝜆 − 𝑔𝜇𝜆𝐴𝜌𝑣𝜌 . (2.3.11)
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The energy-momentum tensor of the conformaly coupled theory7

𝑇𝜇𝜈 = − 2
√−𝑔

𝛿𝑆

𝛿 𝑔𝜇𝜈
= ∇𝜇Φ∇𝜈Φ −

1
2
𝑔𝜇𝜈∇𝛼Φ∇𝛼Φ +

𝑑 − 1
4𝑑

(
𝐺𝜇𝜈Φ

2 + 𝑔𝜇𝜈□Φ2 − ∇𝜇∇𝜈Φ2)
= D𝜇ΦD𝜈Φ −

1
2
𝑔𝜇𝜈D𝛼ΦD 𝛼Φ (2.3.13)

+𝑑 − 1
4𝑑

((
R(𝜇𝜈) −

R

2
𝑔𝜇𝜈

)
Φ2 + 𝑔𝜇𝜈D𝛼D

𝛼Φ2 −D(𝜇D𝜈)Φ
2
)

is traceless when Φ is on-shell (i.e. □Φ = 0) and with a Weyl-weight of 𝑑 − 1. Conformal couplings
are very useful in cosmology aswell as when dealingwith null infinity (see belowwhere our theories
will be put on the null boundary of Robinson-Trautman spacetimes).

As a consequence of diffeomorphism invariance, the energy–momentum tensor obeys a Weyl-
covariant conservation equation, when the field Φ is on-shell

∇𝜇𝑇 𝜇𝜈 = D𝜇𝑇
𝜇𝜈=̂0. (2.3.14)

Note that the usual covariant divergence matches the Weyl-Carroll one thanks to the weight of𝑇 𝜇𝜈

(use (1.4.5a) and Leibniz rule). Finally the equations of motion reads

−D𝜇D
𝜇Φ + 𝑑 − 1

4𝑑
RΦ = 0. (2.3.15)

We now need to recast (2.3.8) in the form (2.3.3), decomposing first the Ricci scalar

𝑅 =
1
𝑐2

(
2
Ω
𝜕𝑡 𝜃 +

1 + 𝑑
𝑑

𝜃2 + 𝜉𝑖 𝑗𝜉 𝑖 𝑗
)
+ 𝑟 − 2∇̂𝑖𝜑𝑖 − 2𝜑𝑖𝜑𝑖 + 𝑐2𝜛 𝑖 𝑗𝜛

𝑖 𝑗. (2.3.16)

This leads to
𝑉 (Φ) = 1

𝑐2𝑉e(Φ) + 𝑉m(Φ) + 𝑐
2𝑉nd(Φ) (2.3.17)

with

𝑉e(Φ) =
𝑑 − 1

8𝑑

(
2
Ω
𝜕𝑡 𝜃 +

1 + 𝑑
𝑑

𝜃2 + 𝜉𝑖 𝑗𝜉 𝑖 𝑗
)
Φ2, (2.3.18a)

𝑉m(Φ) =
𝑑 − 1

8𝑑

(
𝑟 − 2∇̂𝑖𝜑𝑖 − 2𝜑𝑖𝜑𝑖

)
Φ2, (2.3.18b)

𝑉nd(Φ) =
𝑑 − 1

8𝑑
𝜛 𝑖 𝑗𝜛

𝑖 𝑗Φ2. (2.3.18c)

In the last expression the index “nd” stands for “non-dynamical.” The reason is that when the ex-

7Here 𝐺𝜇𝜈 is the Einstein tensor, R𝜇𝜈 and R are the Weyl-Ricci and scalars defined by

R𝜇𝜈 = 𝑅𝜇𝜈 + (𝑑 − 1)
(
∇𝜈𝐴𝜇 + 𝐴𝜇𝐴𝜈 − 𝑔𝜇𝜈𝐴𝜆𝐴𝜆

)
+ 𝑔𝜇𝜈∇𝜆𝐴𝜆 − 𝐹𝜇𝜈 , (2.3.12a)

R = 𝑅 + 2𝑑∇𝜆𝐴𝜆 − 𝑑(𝑑 − 1)𝐴𝜆𝐴𝜆 . (2.3.12b)
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pression (2.3.17) of the potential is used in the relativistic action (2.3.1), it produces the Carrollian
electric and magnetic actions – with some boundary terms dropped here8

𝑆e =

∫
d𝑡 d𝑑𝑥

√
𝑎Ω

(
1
2

(
1
Ω

D̂𝑡Φ

)2

− 𝑑 − 1
8𝑑

𝜉𝑖 𝑗𝜉
𝑖 𝑗Φ2

)
, (2.3.19a)

𝑆m =

∫
d𝑡 d𝑑𝑥

√
𝑎Ω

(
−1

2
D̂𝑖ΦD̂ 𝑖Φ − 𝑑 − 1

8𝑑
R̂Φ2

)
, (2.3.19b)

as well as a third one 𝑆nd = −
∫
d𝑡 d𝑑𝑥

√
𝑎Ω 𝑑−1

8𝑑 𝜛 𝑖 𝑗𝜛
𝑖 𝑗Φ2, which has no kinetic term for Φ. The

Carrollian equations of motion in the two non trivial cases read

1
Ω

D̂𝑡

1
Ω

D̂𝑡Φ +
𝑑 − 1

4𝑑
𝜉𝑖 𝑗𝜉

𝑖 𝑗Φ = 0 electric, (2.3.20a)

−D̂𝑖D̂
𝑖Φ + 𝑑 − 1

4𝑑
R̂Φ = 0 magnetic, (2.3.20b)

and are Weyl-covariant of weight 𝑑+1
2 . This discussion highlights how we get much more informa-

tion with a Carrollian reduction with respect to a purely intrinsic study.

2.3.2 Momenta

In (1.3.16) we showed how to define conjugate momenta on a weak Carroll structure, once we are
given an action. For the electric and magnetic actions at hand we find

Π
𝑖 𝑗
e = 𝑎𝑖 𝑗

2

(
1
ΩD̂𝑡Φ

)2
+ 𝑑−1

4𝑑

(
1
ΩD̂𝑡

(
𝜉 𝑖 𝑗Φ2) − 𝑎𝑖 𝑗 ( 1

2𝜉𝑙𝑘𝜉
𝑙𝑘Φ2 + 1

ΩD̂𝑡
1
ΩD̂𝑡Φ

2
))

Π𝑖e = 0

Πe =
1
2

(
1
ΩD̂𝑡Φ

)2
− 𝑑−1

8𝑑 𝜉𝑖 𝑗𝜉
𝑖 𝑗Φ2,

(2.3.21)

and 
Π
𝑖 𝑗
m = D̂ 𝑖ΦD̂ 𝑗Φ − 𝑎𝑖 𝑗

2 D̂𝑙ΦD̂ 𝑙Φ + 𝑑−1
4𝑑

((
R̂ (𝑖 𝑗) − R̂

2 𝑎
𝑖 𝑗
)
Φ2 + 𝑎𝑖 𝑗D̂𝑙D̂ 𝑙Φ2 − D̂ (𝑖D̂ 𝑗)Φ2

)
Π𝑖m = − 1

ΩD̂𝑡ΦD̂ 𝑖Φ + 𝑑−1
4𝑑

(
D̂ 𝑖 1

ΩD̂𝑡Φ
2 − D̂𝑗

(
𝜉 𝑖 𝑗Φ2) )

Πm = 1
2D̂𝑖ΦD̂ 𝑖Φ + 𝑑−1

4𝑑

(
R̂
2 Φ

2 − D̂𝑖D̂ 𝑖Φ2
)
.

(2.3.22)

For the non-dynamical action we get
Π
𝑖 𝑗

nd =
𝑑−1
4𝑑

(
2𝜛 𝑙𝑖𝜛 𝑗

𝑙
− 𝑎𝑖 𝑗

2 𝜛 𝑙𝑘𝜛
𝑙𝑘
)
Φ2

Π𝑖nd =
𝑑−1
4𝑑 D̂𝑗

(
𝜛 𝑗𝑖Φ2)

Πnd =
3(𝑑−1)

8𝑑 𝜛 𝑖 𝑗𝜛
𝑖 𝑗Φ2.

(2.3.23)

8On the relativistic side we find: 1
2 𝑔

𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ + 𝑑−1
8𝑑 𝑅Φ

2 = 1
2D 𝜇ΦD𝜇Φ + 𝑑−1

8𝑑 RΦ2 − 𝑑−1
4√−𝑔 𝜕𝜇

(√−𝑔𝐴𝜇Φ2) .
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They all obey the Weyl trace condition Π𝑖
𝑖
= Π. Both electric and magnetic set satisfy (1.3.14a) and

(1.3.14b) and assuming the fields to be on-shell we get the expression for the momenta

𝑃 𝑖e = Π𝑖m (2.3.24a)

𝑃 𝑖m = Π𝑖nd. (2.3.24b)

Remark Eqs. (2.3.24a) and (2.3.24b) set a relationship between the electric and magnetic dynamics
and this comes from the limiting procedure. Actually both theories (2.3.5a) and (2.3.5b) are
genuine Carrollian theories that could have been studied from an intrinsic point of view.
Getting them from the limit means that they come from the same relativistic parent action
(2.3.1). The relativistic energy-momentum tensor of this theory reads

𝑇 𝑖 𝑗 = 1
𝑐2Π

𝑖 𝑗
e + Π

𝑖 𝑗
m + 𝑐2Π

𝑖 𝑗

nd

− 𝑐
Ω𝑇

𝑖
0 = Π𝑖m + 𝑐2Π𝑖nd

1
Ω2𝑇00 = 1

𝑐2Πe + Πm + 𝑐2Πnd ,

(2.3.25)

so comparing with the general result (2.2.11) we understand Eqs. (2.3.24a) and (2.3.24b). We
could have also expanded the relativistic conservation of energy–momentum ∇𝜇𝑇 𝜇𝜈 = 0 and
recollect the Carrollian conservation equations for the electric, the magnetic and the non-
dynamical cases. In this process, like in the case of fluids, the role of momenta 𝑃 𝑖 of the lead-
ing quadruplet of momenta (the electric one) is played by the energy-flux of the subleading
quadruplet (the magnetic one), and so on and so forth.

2.3.3 Charges on a Robinson-Trautman background

Robinson–Trautman (RT for short) spacetimes are four-dimensional, time-dependent Ricci-flat
solutions of algebraically special Petrov type. They describe radiative configurations which settle
down in the far future into a Schwarzschild black hole. The original solution was first described
in [110, 111]. Latter they have been discussed in the framework of AdS/CFT in [30, 112–114], and fur-
ther in flat holography in [52, 59]. Their null boundary is a Carrollian manifoldM = ℝ × S, where
S is equipped with a conformally flat 𝑑 = 2 metric

dℓ2 =
2
𝑃2d𝜁d𝜁 , (2.3.26)

where 𝑃 = 𝑃 (𝑡, 𝜁 , 𝜁 ) obeys a fourth-order partial-differential equation known asRobinson–Trautman’s
equation

ΔΔ ln 𝑃 + 12𝑀𝜕𝑡 ln 𝑃 − 4𝜕𝑡𝑀 = 0 , (2.3.27)

with 𝑀 (𝑡) the mass aspect.
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The field of observers and the clock form are (Ω = 1, 𝑏𝑖 = 0)

υ = 𝜕𝑡 , τ = d𝑡. (2.3.28)

Hence, one can compute the basic geometric data9

𝜃 = −2𝜕𝑡 ln 𝑃, 𝜑𝑖 = 0, 𝜛 𝑖 𝑗 = 0, 𝜉𝑖 𝑗 = 0, R̂ = 4𝑃2𝜕𝜁𝜕𝜁 ln 𝑃. (2.3.29)

Fromnowon ourCarrollian scalar fields, electric andmagnetic, will live on this RT background.
As this Section aims at illustrating the theoretical framework previously developed inChapter 1, will
shall now compute some Carrollian charges, built upon the symmetries of RT spacetimes.

Asymptotic symmetries

Robinson–Trautman solutions have no isometries but they have asymptotic symmetries, and these
are actually reflected in the conformal isometries of the Carrollian boundary. Following Sec (1.5),
we recall that the conformal Killing fields ofM are expressed in terms of an arbitrary real function
𝑇 (𝜁 , 𝜁 ), which encodes the supertranslations and the conformal Killing vectors 𝑌𝑌𝑌 = 𝑌 𝜁𝜕𝜁 + 𝑌 𝜁𝜕𝜁 of
dℓ̃2 = 2d𝜁d𝜁 , which is flat space. When𝑌𝑌𝑌 are superrotations, we find that they can be written as any
combination of ℓ𝑚 + ℓ̄𝑚 or i (ℓ𝑚 − ℓ̄𝑚) with

ℓ𝑚 = −𝜁𝑚+1𝜕𝜁 , ℓ̄𝑚 = −𝜁𝑚+1𝜕𝜁 , (2.3.30)

obeying Witt ⊕Witt:

[ℓ𝑚, ℓ𝑛] = (𝑚 − 𝑛)ℓ𝑚+𝑛, [ ℓ̄𝑚, ℓ̄𝑛] = (𝑚 − 𝑛) ℓ̄𝑚+𝑛. (2.3.31)

In this representation, 𝔰𝔬(3, 1) is generated by 𝑛 = 0,±1. The conformal Killing fields of M are

ξ𝑇,𝑌 = (𝑇 − 𝑀𝑌 (𝐶))
1
𝑃
𝜕𝑡 + 𝑌 𝑖𝜕𝑖, (2.3.32)

where

𝐶(𝑡, 𝜁 , 𝜁 ) =
∫ 𝑡

d𝜏𝑃 (𝜏, 𝜁 , 𝜁 ), (2.3.33)

and 𝑀𝑌 is an operator acting on scalar functions 𝑓 (𝑡, 𝜁 , 𝜁 ) as:

𝑀𝑌 (𝑓 ) = 𝑌 𝑘𝜕𝑘𝑓 −
𝑓

2
𝜕𝑘𝑌

𝑘. (2.3.34)

The structure 𝔰𝔬(3, 1) + supertranslations – or (Witt ⊕Witt) + supertranslations – is recovered in[
ξ𝑇,𝑌 , ξ𝑇 ′ ,𝑌 ′

]
= ξ𝑀𝑌 (𝑇 ′)−𝑀𝑌 ′ (𝑇),[𝑌,𝑌 ′] (2.3.35)

9Recal that our conventions are
√
𝑎 = i

𝑃2 and 𝜖𝜁 𝜁 = 1, see Sec. 1.6.

– 82 –



as seen in Sec. 1.5.

Remark The existence of conformal Killing fields for the Carrollian structure at hand is remark-
able. Actually, the relativistic ascendant of this structure d𝑠2 = −𝑐2d𝑡2 + 2

𝑃2d𝜁d𝜁 , appearing
as the conformal time-like boundary of AdS-Robinson–Trautman spacetimes, has generic-
ally no conformal Killings. In particular, it is not conformally flat because it has a non-zero
Cotton tensor – see [30, 112–114].

Electric theory

The electric equation ofmotion (2.3.20a) reads as follows in the three-dimensional Carrollian space-
time (2.3.26)

𝜕𝑡
1
𝑃
𝜕𝑡

Φ
√
𝑃
= 0. (2.3.36)

Its general solution is given in terms of two arbitrary functions 𝑓 (𝜁 , 𝜁 ) and 𝑔(𝜁 , 𝜁 )

Φ =
√
𝑃 (𝐶𝑓 + 𝑔) . (2.3.37)

In terms of these arbitrary functions, the conformal Killing fields (2.3.32) reads

𝜅e𝑇,𝑌 = 𝑃2
[
𝑌 𝑖

(
1
4
𝜕𝑖(𝑓 𝑔) − 𝑓𝜕𝑖𝑔

)
− 𝑇𝑓

2

2
− 1

4
𝜕𝑖

(
𝑌 𝑖𝐶𝑓 2

)]
, (2.3.38)

which leads to the charges

𝑄e𝑇,𝑌 = −i
∫

S
d𝜁 ∧ d𝜁

(
𝑌 𝑖

(
1
4
𝜕𝑖(𝑓 𝑔) − 𝑓𝜕𝑖𝑔

)
− 𝑇𝑓

2

2

)
− 1

4

∫
𝜕S

★𝑌𝑌𝑌𝐶𝑓 2𝑃2. (2.3.39)

On-shell, the time dependence is exclusively encoded in the last term through 𝑃 (and 𝐶). This is a
flux at infinity, and thus it vanishes upon appropriate fall-off behaviour of the field 𝑓 . Therefore,
the charges are indeed conserved, as expected for a theory with vanishing energy flux Π𝑖e = 0.

The infinite number of conserved charges is a consequence of the separation of time and space
imposed by Carrollian symmetry. The field equation (2.3.36) contains no spatial derivative, hence
every locus (𝜁 , 𝜁 ) provides a decoupled degree of freedom. This can even happen when the equa-
tions of motion contain both temporal and spatial derivatives as e.g. in the magnetic conformally
stationary scalar field – see below. This infinity is rooted in the fact that the conformal extension
of the Carroll algebra is infinite dimensional.
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"Magnetic" theory

The magnetic equation of motion (2.3.20b) is

4𝜕𝜁𝜕𝜁Φ = Φ𝜕𝜁𝜕𝜁 ln 𝑃. (2.3.40)

We are here in the canonical situationwhere themagnetic energy fluxΠ𝑖m is non-vanishing. Conser-
vation will therefore occur under the following alternative: either 𝝃 is a strong Killing field, either
we take a field configuration (i.e. a solution of (2.3.40)) such that Π𝑖m = 0. Let’s study separately the
two cases.

Strong Killing. This requirement yields

𝑇 = 𝑆𝑃 + 𝑀𝑌 (𝐶), (2.3.41)

where 𝑆 is a function of time only. Since 𝑃 and 𝐶 are time-dependent while 𝑇 isn’t, Eq. (2.3.41)
restricts severely the allowed subset of S-conformal Killings𝑌𝑌𝑌 , which may even be empty. Assum-
ing this set is not empty, due to the vanishing of the magnetic momentum 𝑃 𝑖m (as a consequence of
𝜛 𝑖 𝑗 = 0), Eq. (1.5.12) leads to a single conserved charge built upon 𝜅m 𝑆 = −𝑆Πm with Πm given in
(2.3.22)

𝑄m 𝑆 = −𝑆
∫

S

d𝜁d𝜁
𝑃2 Πm . (2.3.42)

This charge is the total energy, but it turns out to vanish here as, on-shell, Πm reads (Eqs. (2.3.20b)
and (2.3.22)),

Πm =
1

2𝑑
D̂𝑖

(
ΦD̂ 𝑖Φ

)
, (2.3.43)

irrespective of the dimension and of the geometric background. In the case under consideration
where 𝑏𝑖 = 0 and 𝜑𝑖 = 0, Πm = 𝑃2

4

[
𝜕𝜁

(
Φ𝜕𝜁Φ

)
+ 𝜕𝜁 (Φ𝜕𝜁Φ)

]
, which is a divergence. Hence 𝑄m 𝑆

receives only an S-boundary contribution, vanishing under appropriate fall-off or boundary con-
ditions.

Remark Vanishing magnetic conserved charges actually appear in any dimensions 𝑑 as long as the
Ehresmann connection is set to zero. Indeed, when 𝑏𝑖 = 0, the vorticity vanishes, leading
therefore to𝑄m = −

∫
S

d𝑑𝑥
√
𝑎𝜉 𝑡Πm. For Killing fields obeying the extra conditionL𝝃τ = 0,

using (2.3.43) we find that the on-shell integral is again a boundary term.

Vanishing energy-flux. When Π𝑖𝑚 given in (2.3.22) vanishes, the magnetic charges are all con-
served, as inferred by Eq. (1.5.14). This occurs in particular (the Carrollian geometric shear vanishes
here, see (2.3.29)) for conformally stationary scalars obeying 1

ΩD̂𝑡Φ ≡
√
𝑃𝜕𝑡

Φ√
𝑃
= 0, thus of the form

Φ =
√
𝑃𝑔(𝜁 , 𝜁 ), where 𝑔(𝜁 , 𝜁 ) is further determined by solving the magnetic equation of motion

(2.3.40). The latter10 may not be solvable in a general Robinson–Trautman background 𝑃 (𝑡, 𝜁 , 𝜁 )
10With Φ =

√
𝑃𝑔(𝜁 , 𝜁 ), Eq. (2.3.40) reads: 4𝑃𝜕𝜁𝜕𝜁 𝑔 + 2

(
𝜕𝜁 𝑃𝜕𝜁 𝑔 + 𝜕𝜁 𝑃𝜕𝜁 𝑔

)
+ 𝑔𝜕𝜁𝜕𝜁 𝑃 = 0 (also valid if 𝑃 is traded for

𝐶).
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under the present ansatz. If it is, the conserved magnetic charges are found using Eqs. (1.5.12) and
(2.3.32). On-shell, these lead to

𝜅m𝑇,𝑌 = −𝜉 𝑡Πm =
𝑃2

2
(𝑀𝑌 (𝐶) − 𝑇)

(
𝜕𝜁 𝑔𝜕𝜁 𝑔 − 𝑔𝜕𝜁𝜕𝜁 𝑔

)
, (2.3.44)

which are integrated as

𝑄m𝑇 =
i
2

∫
S

d𝜁 ∧ d𝜁𝑇
(
𝜕𝜁 𝑔𝜕𝜁 𝑔 − 𝑔𝜕𝜁𝜕𝜁 𝑔

)
− 1

4

∫
𝜕S

★𝑋𝑋𝑋𝑃2 (2.3.45)

with 
𝑋 𝜁 = 𝐶

(
𝑌 𝜁

(
𝜕𝜁 𝑔𝜕𝜁 𝑔 − 𝑔𝜕𝜁𝜕𝜁 𝑔

)
+ 𝑌 𝜁

(
3
(
𝜕𝜁 𝑔

)2 − 𝑔𝜕2
𝜁
𝑔

))
− 1

2𝑌
𝜁 𝑔2𝜕2

𝜁
𝐶

𝑋 𝜁 = 𝐶

(
𝑌 𝜁

(
𝜕𝜁 𝑔𝜕𝜁 𝑔 − 𝑔𝜕𝜁𝜕𝜁 𝑔

)
+ 𝑌 𝜁

(
3 (𝜕𝜁 𝑔)2 − 𝑔𝜕2

𝜁
𝑔

))
− 1

2𝑌
𝜁 𝑔2𝜕2

𝜁
𝐶.

(2.3.46)

As in the electric case (see Eq. (2.3.39)), the time dependence is confined into a boundary term, which
ultimately drops, taking with it all the dependence on the 𝔰𝔬(3, 1) vectors 𝑌𝑌𝑌 . For a conformally
stationary scalar field in Robinson–Trautman background, the magnetic charges are non-zero and
conserved on-shell without restriction on the Carrollian conformal Killing vector 𝜉𝑇,𝑌 (the energy
flux vanishes), but they only depend on its supertranslation component 𝑇 (𝜁 , 𝜁 ).

This ends our study of the Carrollian scalar field, which had the double virtue of showing us
first, how useful the Carrollian reduction method can be and second, how to treat the conservation
of charges in an explicit Carrollian theory.

2.4 The Carrollian Cotton tensor in three dimensions

In this sectionwe introduce an important characterwhen dealingwith the null infinity of asymptot-
ically flat spacetimes, the Cotton tensor. Presenting its main features and especially how to get from
its relativistic definition the Carrollian equivalent would be the occasion to show again the power
of the Randers-Papapetrou frame in taking the 𝑐→ 0 limit. Inspired by [52, 66] and especially [104]
we make a comprehensive review of the state of the art regarding the Carrollian counterpart of the
Cotton tensor.

2.4.1 Reviewing the relativistic Cotton tensor

The Cotton tensor can be defined on any (𝑑 + 1)-dimensional Riemannian manifold (M , 𝑔𝜇𝜈 ,∇)
endowed with a meric 𝑔𝜇𝜈 and a Levi-Civita connection ∇. It carries three indices and is partially
antisymmetric. In the special case of three dimensions (i.e. 𝑑 = 2) it can be Hodge dualized into a
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two-index symmetric tensor

𝐶𝜇𝜈 = 𝜂
𝜌𝜎
𝜇 ∇𝜌

(
𝑅𝜈𝜎 −

𝑅

4
𝑔𝜈𝜎

)
(2.4.1)

where 𝑆𝜇𝜈 = 𝑅𝜇𝜈 − 𝑅/4 𝑔𝜇𝜈 is the usual Schouten tensor, 𝑔𝜇𝜈 is of signature (− + +), determinant
𝑔 and 𝜂𝜇𝜈𝜌 =

√−𝑔𝜖𝜇𝜈𝜌 (𝜖012 = 1). The vanishing of the Cotton tensor is equivalent to conformal
flatness of the associated manifold.

This tensor isWeyl-covariant with weight 𝑑+1. In three dimensions, due to the absence ofWeyl
tensor (the Cotton itself is playing its role) and the first Bianchi identity, it is covariantly conserved
and Weyl-conserved11

∇𝜌𝐶𝜌𝜈 = D𝜌𝐶
𝜌
𝜈 = 0. (2.4.2)

From its symmetry and (2.4.2) we observe a lot of similarities between this tensor and a usual energy-
momentum tensor. The main difference lies in that the Cotton tensor is conserved off-shell while
the energy-momentum conservation requires the equations of motion to be fulfilled.

Remark The Cotton is actually the energy-momentum tensor obtained through the variation of
the (gravitational) Chern-Simons action with respect to the metric i.e.

𝐶𝜇𝜈 =
1
√−𝑔

𝛿𝑆𝐶𝑆

𝛿 𝑔𝜇𝜈
, (2.4.3)

with

𝑆CS =
1
2𝑐

∫
M

Tr
(
ω ∧ dω + 2

3
ω ∧ω ∧ω

)
(2.4.4)

whereω is the Levi-Civita spin connection. The trace is defined as Tr(ω ∧ dω) = ω
𝜇
𝜈 ∧

dω𝜈
𝜇 and similarly for the second term. This action is built upon general diffeormorphisms

or local Lorentz transformations.

2.4.2 Carrollian descendants from the limiting procedure

In all this section we are on a (2 + 1)-Riemannian manifold or a (2 + 1)-Carrollian structure.
Recall that the two-dimensional Hodge duality (denoted by an asterisk ∗) on such a structure was
introduced in Sec. 1.6.

Decomposing the relativistic Cotton

Finding theCarrollian descendants of the relativistic Cotton tensor constitute the paragon of how to
use the Randers-Papapetrou frame to get Carrollian descendants of a relativistic quantity. The pro-
cedure is canonical and recalls what we saw in Sec 2.2 when we dealt with the energy-momentum

11The Weyl-covariant conservation is due to the weight, 𝑑 + 1, which is the only one for which covariant and Weyl-
covariant derivatives agree.
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tensor and its conservation equations. We start by decomposing in powers of 𝑐 the relativistic Cot-
ton tensor on a Randers-Papapetrou background with the Levi-Civita connection ∇. It is straight-
forward: Carrollian scalars and vectors emerge from 𝐶𝑡𝑡 and 𝐶𝑡𝑖, while 𝐶𝑖 𝑗 − 𝐶𝑡𝑡

2 𝑎
𝑖 𝑗 leads to sym-

metric and traceless Carrollian tensors. They are readily decomposed in powers of 𝑐 as follows

1
𝑐
𝐶𝑡𝑡 = 𝑐2𝛾 + 𝑐Cot +

𝜁

𝑐2 +
𝜏

𝑐4 , (2.4.5a)

𝐶𝑡𝑖 = 𝑐2𝜓 𝑖 + 𝜒𝑖 + 𝑧
𝑖

𝑐2 , (2.4.5b)

𝐶𝑡𝑡𝑎𝑖 𝑗

2𝑐
− 𝐶

𝑖 𝑗

𝑐
= Ψ 𝑖 𝑗 + 𝑋

𝑖 𝑗

𝑐2 +
𝑍𝑖 𝑗

𝑐4 . (2.4.5c)

With this, any Carrollian structure supplied with the connection at hand, is naturally endowedwith
ten Weyl-covariant Carrollian Cotton descendants. The former method, used to reach Carrollian
counterparts of relativistic, is dubbed a Carrollian reduction.

Remark Note that this decomposition in powers of 𝑐2 is exact, contrary to what we saw in Sec.
2.2 when we assumed an expansion of the energy-momentum tensor. This is logical as the
Cotton tensor is coming only from the geometry.

These descendants are

• four weight-3 scalars12

𝛾 = 8 ∗𝜛3, 𝑐Cot =
(
D̂𝑙D̂

𝑙 + 2 ˆK
)
∗𝜛, 𝜁 = D̂𝑖D̂𝑗 ∗𝜉 𝑖 𝑗, 𝜏 = ∗𝜉𝑖 𝑗

1
Ω

D̂𝑡𝜉
𝑖 𝑗; (2.4.6)

• three weight-2 forms

𝜓𝑖 = 3𝜂𝑗𝑖D̂ 𝑗 ∗𝜛2, (2.4.7a)

𝜒𝑖 =
1
2
𝜂𝑗𝑖D̂

𝑗 ˆK + 1
2
D̂𝑖

ˆA − 2 ∗𝜛
(
R̂𝑖 + 2D̂ 𝑗𝜉𝑖 𝑗

)
+ 3D̂ 𝑗

(
∗𝜛𝜉𝑖 𝑗

)
, (2.4.7b)

𝑧𝑖 =
1
2
𝜂𝑖 𝑗D̂

𝑗𝜉2 − D̂ 𝑗 1
Ω

D̂𝑡 ∗𝜉𝑖 𝑗 − ∗𝜉𝑖 𝑗D̂𝑘𝜉
𝑗𝑘; (2.4.7c)

• three weight-1 traceless and symmetric two-index covariant tensors

Ψ𝑖 𝑗 = −2 ∗𝜛2 ∗𝜉𝑖 𝑗 + D̂𝑖D̂𝑗 ∗𝜛 −
1
2
𝑎𝑖 𝑗D̂

𝑘D̂𝑘 ∗𝜛 − 𝜂𝑖 𝑗
1
Ω

D̂𝑡 ∗𝜛2, (2.4.8a)

𝑋𝑖 𝑗 =
1
2
𝜂𝑘𝑖D̂

𝑘
(
R̂𝑗 + D̂ 𝑙𝜉 𝑗𝑙

)
+ 1

2
𝜂𝑘𝑗D̂𝑖

(
R̂𝑘 + D̂𝑙𝜉

𝑘𝑙
)

− 3
2

ˆA 𝜉𝑖 𝑗 − ˆK ∗𝜉𝑖 𝑗 + 3
∗𝜛
Ω

D̂𝑡𝜉𝑖 𝑗, (2.4.8b)

𝑍𝑖 𝑗 = 2 ∗𝜉𝑖 𝑗𝜉2 − 1
Ω

D̂𝑡

1
Ω

D̂𝑡 ∗𝜉𝑖 𝑗. (2.4.8c)
12The subscript ’Cot’ in 𝑐Cot is here to differentiate between this Cotton density and the velocity of light 𝑐.
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Remark The limiting procedure is, at the time this section was written, the only way to define
a Carrollian equivalent to the Cotton tensor, even though the work started in [104] about
Chern-Simons theory paved the way towards an intrinsic definition. However, as the limit
always gives more information that intrinsic definitions, it is likely that the later would only
capture 𝑐Cot, 𝜒𝑖 and Ψ 𝑖 𝑗.

Remark TheCarrollian limit of relativistic Chern-Simons theories has been studied in [104] where
the authors showed that the Carrollian reduction method gives rise to four different Carrol-
lian Chern-Simons dynamics. This has to be compared with other methods to get Carrollian
actions, like algebra gauging [101] or strict 𝑐→ 0 limit [93].

Conservation equations

As for the conservation equation (2.4.2), the covariant conservation of the Cotton tensor supplies
the following Carrollian decompositions

∇𝜌𝐶𝜌0̂ = D𝜌𝐶
𝜌

0 = 𝑐2DCot + ECot +
FCot
𝑐2 +

WCot

𝑐4 = 0 , (2.4.9)

and
1
𝑐
∇𝜌𝐶𝜌𝑖 =

1
𝑐
D𝜌𝐶

𝜌𝑖 = 𝑐2I 𝑖Cot + G 𝑖Cot +
H 𝑖

Cot

𝑐2 +
X 𝑖Cot
𝑐4 = 0 . (2.4.10)

All identities are Weyl-covariant with

DCot = −
1
Ω

D̂𝑡𝛾 − D̂𝑖𝜓
𝑖, (2.4.11a)

ECot = −
1
Ω

D̂𝑡𝑐Cot − D̂𝑖 𝜒
𝑖 + Ψ𝑖 𝑗𝜉 𝑖 𝑗, (2.4.11b)

FCot = −
1
Ω

D̂𝑡𝜁 − D̂𝑖𝑧
𝑖 + 𝑋𝑖 𝑗𝜉 𝑖 𝑗, (2.4.11c)

WCot = −
1
Ω

D̂𝑡𝜏 + 𝑍𝑖 𝑗𝜉 𝑖 𝑗, (2.4.11d)

and

I 𝑖Cot =
1
2
D̂ 𝑖𝛾 + 2 ∗𝜛 ∗𝜓 𝑖, (2.4.12a)

G 𝑖Cot =
1
2
D̂ 𝑖𝑐Cot − D̂𝑗Ψ

𝑖 𝑗 + 2 ∗𝜛 ∗ 𝜒𝑖 + 1
Ω

D̂𝑡𝜓
𝑖 + 𝜓 𝑗𝜉 𝑖 𝑗, (2.4.12b)

H 𝑖
Cot =

1
2
D̂ 𝑖𝜁 − D̂𝑗𝑋

𝑖 𝑗 + 2 ∗𝜛 ∗𝑧𝑖 + 1
Ω

D̂𝑡 𝜒
𝑖 + 𝜒 𝑗𝜉 𝑖 𝑗, (2.4.12c)

X 𝑖Cot =
1
2
D̂ 𝑖𝜏 − D̂𝑗𝑍

𝑖 𝑗 + 1
Ω

D̂𝑡𝑧
𝑖 + 𝑧 𝑗𝜉 𝑖 𝑗. (2.4.12d)

The four couples of equations
{
DCot = 0,I 𝑖Cot = 0

}
,
{
ECot = 0,G 𝑖Cot = 0

}
,
{
FCot = 0,H 𝑖

Cot = 0
}

and
{
WCot = 0,X 𝑖Cot = 0

}
originate from the different orders in 𝑐2 in which the conservation of

the Cotton tensor (2.4.2) decomposes. These are purely geometrical identities fulfilled on any three-
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dimensional Carroll structure M = ℝ × S. Moreover, they are typical Carrollian conserva-
tion equations obtained as a consequence of general covariance applied to a Weyl-invariant action
𝑆 =

∫
M d𝑡d𝑑𝑥L defined onM = ℝ×S, see (1.4.16) and (1.4.17). Hence one can associate Carrollian

momenta ΠCot, Π𝑖Cot, 𝑃
𝑗

Cot, Π
𝑖 𝑗

Cot and even Π̃Cot, Π̃𝑖Cot and Π̃
𝑖 𝑗

Cot to the Cotton tensor

ΠCot = 𝑐Cot, Π𝑖Cot = 𝜒𝑖, 𝑃
𝑗

Cot = 𝜓
𝑗, Π

𝑖 𝑗

Cot =
𝑐Cot

2
𝑎𝑖 𝑗 − Ψ 𝑖 𝑗, (2.4.13a)

Π̃Cot = 𝜁 , Π̃𝑖Cot = 𝑧
𝑖, �̃� 𝑖Cot = 𝜒𝑖, Π̃𝑖 𝑗 = −𝑋 𝑖 𝑗 , (2.4.13b)

comparing Eqs. (2.4.12a), (2.4.12b), (2.4.12c) and (2.4.12d) from which current and charges could be
defined (see Sec. 4.1 for an application in Ricci-flat gravity). From (2.4.11d) we could complete the
list (2.4.13) with more subleading momenta (denoted with a bar)

Π̄Cot = 𝜏 and Π̄
𝑖 𝑗

Cot = 𝑍
𝑖 𝑗 , (2.4.14)

and so on and so forth.

Remark To bemore precise, the variation of the action defined directly on theCarrollian structure
will give access to ECot and G 𝑖Cot as they are at O(1) in the decomposition in powers of 𝑐2 of
(2.4.2). The other equations, even thought they possess the same shape, are coming from the
limiting procedure and give rise to subleadingmomenta. This is themultiplication of degrees
of freedom described in Sec. 2.2.

Conformally flat Carroll structures

As the Cotton tensor indicates in three dimensions the lack of conformal flatness one may wonder
whatwould happen in theCarrollian case. Recall that a Carrollian structureM = ℝ×S, having first
a fiber bundle structure and second amuchwider freedom in the choice of an affine connection, this
notion might be severely different. Actually, we should make a clear distinction between conformal
flatness of the Riemannian base space S and what would be the equivalent for the fibers. Several
cases could be separately treated.

• Vanishing geometric shear. In virtue of 1.0.6, when 𝜉𝑖 𝑗 = 0 we can write 𝑎𝑖 𝑗(𝑡,x) =

𝑒2𝜎 (𝑡,x) �̃�𝑖 𝑗(x) and as �̃�𝑖 𝑗(x) is a two dimensional metric, it is necessarily proportional to 𝛿𝑖 𝑗,
hence S is conformally flat. As a consequence, we infer from (2.4.6), (2.4.7c) and (2.4.8c) that
the Carrollian Cotton pieces 𝜁 , 𝜏, 𝑧𝑖 and 𝑍𝑖 𝑗 vanishes.

• Vanishing vorticity. If 𝜛 𝑖 𝑗 = 0 then, at the level of the clock form we get from (1.1.15)

dτ = 𝜑𝑖d𝑥𝑖 ∧ τ (2.4.15)
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which implies, in virtue of Fröbenius criterion, that τ is an exact form. Hence, choosing ap-
propriately the time coordinate, one can always cancel the Ehresmann connection 𝑏𝑖, yielding

τ = Ω(𝑡, x)d𝑡. (2.4.16)

This is the equivalent of what could be called conformal flatness along the fibers. As a con-
sequence, we infer from (2.4.6), (2.4.7a) and (2.4.8a) that the Carrollian Cotton pieces 𝛾 , 𝑐Cot,
𝜓𝑖 and Ψ𝑖 𝑗 vanishes.

Merging these two cases one is tempted to define as total Carrollian conformal flatness a Carrollian
structure with vanishing vorticity and geometric shear. Note that even in that case two Carrollian
Cotton descendent, namely 𝜒𝑖 and 𝑋 𝑖 𝑗 still do not vanish, blurring the exact equivalence between
Carrollian conformal flatness and vanishing of all Carrollian Cotton pieces.

2.5 Some last remarks

As we saw the limiting procedure is among the most powerful tools at our disposal to understand
better the structure if not the meaning of Carrollian systems and theories. However a lot of ques-
tions are still unanswered and we would like to close this Chapter with some of them.

Getting the Randers–Papapetrou frame (2.3.2) from the limit of a brane-like action (2.1.4) sug-
gests that Carroll fundamental excitations should not be thought like point-particles but rather
instantonic space-filling objects whose dynamics is encoded directly in the geometry they live on.
From such a conception one could try to build a fundamental principle of Carrollian dynamics (dual
to Newton’s second law) and use it to build a “kinetic-like” theory of Carroll particles, leading ulti-
mately to a physical notion of Carrollian fluids and conservation equations (not mentioning also an
interpretation for the thermodynamic variables appearing in the fluid energy-momentum tensor).
If Galilean/Newtonian particles are points, then Carrollian ones should be waves. In [115] the au-
thors nicely discussed the interplay between a Galilean position space and a Carrollian momentum
space and vice-versa. In fact the whole Galilean/Carrollian duality should be thrust further.

Another remark deals with the continuity equation. In Galilean systems the continuity is an
extra equation, arising on top of the energy balance and momentum Euler equations. It betrays
an extra symmetry, which is associated the mass conservation. In the parent Carrollian system,
the extra equation isH𝑖 = 0. No symmetry emerges in the Carrollian algebra such as the Galilean
central extension (Bargmann algebra). What would be the relevant underlying Carrollian structure,
if any, that would yield this equation, without referring to the zero-𝑐 limit?

This concludes our part about Carroll geometry and Carrollian physics either from an intrinsic
point of view or through the 𝑐 → 0 limit. Our attention will now be turned to applications of
Carrollian physics in the context of asymptotically flat spacetimes, for which Carrollian physics
appears on their null boundary.
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Part II

Carrollian perspective on asymptotically
flat gravity

91





Chapter 3

The Covariant Newman-Unti gauge

Studying the asymptotic structure of the gravitational field but also more generally of any gauge
theory is an old subject which in the context of gravity saw his torch rekindle with the advent
of the AdS/CFT correspondence in conjunction with the increasing interest in gravitational radi-
ation. Indeed, any attempt of extending the framework of validity of AdS/CFT must resonate with
a clear control of asymptotic symmetries underlying that framework, be it flat or de Sitter space,
with gravity or gauge theories such as higher spins. When dealing with the asymptotic structure
of a gauge theory one means firstly to impose “suitable” boundary conditions, strong enough to
discard unphysical situations but weak enough to allow for simple solutions (like Schwarzschild
in gravity), secondly to compute the asymptotic symmetries and their algebra to finally get their
associated charges. Charged gauge transformations will ultimately map two inequivalent solutions
of the theory at hand.

Several paths towards asymptotics of gravity exist. The first one is due to Penrose and is purely
geometric [14, 116], with conformal compactifications in a coordinate independent formalism as a
basis. While its obvious main advantage is the fact of being gauge independent, this approach has
the drawback of rendering very hard the choice and definition of boundary conditions, to such an
extent that various authors first work in coordinates and then try to find the Penrose equivalent to
their findings. The second path is to work in Hamiltonian formalism (like e.g. in [18, 117, 118]) where
a coordinate system splitting time (more generally an evolution parameter) and space is chosen
without any gauge fixing. Gauges theories are usually better described by means of the Lagrangian
formalism, where gauge invariance can be used to set the system in a convenient form. In gravity
this amounts to a choice of coordinate system, a way towrite themetric. Depending on the problem
wewant to address, adapted coordinate systems can be defined. This is the third path, the gauge fix-
ing approach to asymptotics of gravity. In this case one fixes the form of the metric in a way that is
always reachable by a diffeomorphism. This form should allow for residual gauge transformations,
namely such that the chosen form is preserved. Themetric is thenwritten in terms of arbitrary func-
tions on which one imposes fall-offs at infinity: these are the boundary conditions. The asymptotic
symmetries are the residual diffeomorphims that also preserve the boundary conditions. If their
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associated charges are non-vanishing, then their action alters the physical configuration. They are
dubbed strong asymptotic symmetries. The set of functions necessary to describe the metric, given
the gauge fixing and the fall-off conditions, and after Einstein’s equations have been imposed, is the
solution space. These functions obey a set of evolution equations (some of those, if not all, are the
celebrated flux-balance equations).

The structure of gravity of asymptotically AdS and flat spacetimes away from sources is of-
ten probed in different gauges. In AdS the analysis is usually performed in the Fefferman-Graham
gauge, as it was shown in [119, 120] that any conformally compact manifold (like the Wick-rotated
version of AdS) can be chartedwith such coordinates. The analysis reveals a finite solution space ex-
pressed in term of tensorial quantities with respect to the boundary together with a set of flux/bal-
ance equations. Despite being very powerful in AdS, the Fefferman-Graham gauge cannot be ex-
tended to asymptotically flat spacetimes. The latter are usually described in a gauge that supports
a lightlike coordinate, a radial coordinate and angles. Paragons are the Bondi [32, 33] and Newman-
Unti [58, 121] gauges identified by the affine character of the radial coordinate in Newman-Unti.
The analysis reveals for asymptotic symmetries the BMS group. The solution space turns out to
be infinite, with an infinite tower of consistency relations involving the deep degrees of freedom.1

This is the first difference with the AdS case while the second one is that the solution space is not
expressed in terms of boundary-covariant quantities, which makes harder any attempt to use the
latter to give a new perspective on the bulk dynamics.

Can we explain how the infinite flat solution space arises from the finite AdS one? As explained
in the Introduction, Carrollian physics naturally emerges on the null boundary of asymptotically
flat spacetimes. This null boundary is coming from the timelike boundary of AdS when the cos-
mological constant is taken to zero. Hence it is legitimate to think that a Λ → 0 limit of the AdS
analysis can give us an answer to this question. However, for the limit to have a chance to work, two
things are necessary. The first one is a gauge in which both asymptotically AdS and flat spacetimes
are expressed in terms of boundary (relativistic or Carrollian) tensors. This will be a covariantized
version of the Newman-Unti gauge, hence the name of the present Chapter. The second one is
a way to take the limit at the level of the AdS solution space, flux/balance laws and line element.
This amounts to taking once again the Carrollian limit of a relativistic system, and as we saw in the
previous Chapter, it is required to expand quantities in a Laurent series in powers of the velocity of
light (here the effective velocity on the boundary, related to the bulk cosmological constant). This
will ultimately give rise to more Carrollian descendants than relativistic quantities and this is in
these replicas that the infinite flat solution space finds its origin. Finally, we should be also able to
recover the flux-balance laws and consistency relations, though with slightly different definitions
for the quantities, requiring the limit to be smooth.

Our plan for this Chapter is the following. In Section 3.1 we briefly recap the analysis of asymp-
totically AdS andflat spacetimes respectively in Fefferman-GrahamandBondi/Newman-Unti gauge
and we show how they fit in the derivative expansion framework. In Section 3.2 we build the Cov-

1The adjective deep refers to the power in radial coordinate of the degree of freedom in the fall-offs. In the following
they shall be called Chthonians in reference of the Greek God of depths.
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ariant Newman-Unti gauge for AdS spacetimes upon the usual one plus a velocity congruence like
in the derivative expansion. As infinity is not a plain but rather a conformal manifold, Weyl trans-
formations should be supported in our analysis. The finite AdS solution space and the flux/balance
laws are also derived within this new framework. In Section 3.3 we explain the flat limit: how
to expand the quantities, how to find the subleading degrees of freedom from replicas of the AdS
energy-momentum tensor and how to derive the flat flux/balance equations either from the AdS
ones, either from requiring finiteness of the line element. We conclude in Section 3.4 with a discus-
sion about the deep structure of gravity in this new gauge. Unless specified we work in four bulk
dimensions i.e. three-dimensional boundary and two-dimensional celestial sphere.

3.1 A web of gauges

In this Section we review the main gauges used to probe the asymptotic structure of AdS and flat
spacetimes, highlighting their advantages an drawbacks. From this analysis, the way to build a
conformal boundary covariant gauge will become clear. The following discussion is adapted to
the four-dimensional case from [85, 86] where the authors investigated this web of gauges and their
relations in three bulk dimensions.

Fefferman-Graham gauge

The description of asymptotically (locally) AdS spacetimes is well-known in the literature [119, 120,
122] (see [3, 31] for reviews). We recap here for completeness its basic aspects. The analysis is based
on a radial coordinate 𝜌 (dubbed the holographic coordinate) parameterizing a family of timelike
hypersurfaces (𝜌 = cst) and for which the conformal boundary is located at 𝜌 = 0. The metric takes
the form

d𝑠2FG =
d𝜌2

(𝑘𝜌)2 + 𝑔𝑎𝑏(𝜌, 𝑥
𝑐)d𝑥𝑎d𝑥𝑏 , (3.1.1)

where the 𝑥𝑎 for 𝑎 = 1, 2, 3 are local coordinates on the hypersurfaces orthogonal to 𝜕𝜌 and where
the constant 𝑘 is related to the cosmological constant Λ (negative for AdS spacetimes) through

Λ = −3𝑘2 . (3.1.2)

The only dynamical field is thus 𝑔𝑎𝑏(𝜌, 𝑥𝑐). To unveil its equation of motion it is customary to
assume an expansion in powers of the radial coordinate

𝑔𝑎𝑏(𝜌, 𝑥𝑐) =
1
𝜌2 𝑔
(−2)
𝑎𝑏
(𝑥𝑐) + 1

𝜌
𝑔
(−1)
𝑎𝑏
(𝑥𝑐) + 𝑔 (0)

𝑎𝑏
(𝑥𝑐) + 𝜌𝑔 (1)

𝑎𝑏
(𝑥𝑐) + O(𝜌2) , (3.1.3)

where the logarithmic terms are discarded as they only appear for odd bulk dimensions [123, 124].
Einstein’s equations for the metric (3.1.1) with ansatz (3.1.3) leads to the following results
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• 𝑔
(−2)
𝑎𝑏

and 𝑔 (1)
𝑎𝑏

are the only elements of the solution space, as the other coefficient of the ex-
pansion (3.1.3) can be expressed in terms of the latters,

• 𝑔
(−2)
𝑎𝑏

is a symmetric rank-2 tensor corresponding to the Lorentzian boundary metric,

• 𝑔
(1)
𝑎𝑏

is a symmetric rank-2 tensor constrained by Eintein’s equations to be traceless and cov-
ariantly conserved. If one introduces 𝑇𝑎𝑏 = 3𝑘

16𝜋𝐺 𝑔
(1)
𝑎𝑏

then

𝐷𝑎𝑇
𝑎𝑏 = 0 and 𝑇 𝑎𝑎 = 0 , (3.1.4)

with 𝐷𝑎 the Levi-Civita connection associated to 𝑔 (−2)
𝑎𝑏

.

The solution space is then made of 11 arbitrary functions, 6 in 𝑔 (−2)
𝑎𝑏

, 5 in 𝑔 (1)
𝑎𝑏

and the flux/balances
laws are encoded into the conservation of the boundary energy-momentum tensor 𝑇𝑎𝑏.

The main advantage of the Fefferman-Graham gauge is its covariance with respect to the con-
formal boundary. It can also bemodified tomake itWeyl-covariant [62,125–127]. However as the cos-
mological constant appear in the denominator in (3.1.1), one cannot extend it to encompass asymp-
totically flat spacetimes. This is possible with another gauge dubbed the Bondi gauge.

Bondi gauge for asymptotically AdS spacetimes

This gauge, introduced in [32,33,128] for asymptotically flat spacetimes, and later studied in [129,130],2

is valid irrespective of the value of the cosmological constant. In the case of asymptotically globally
AdS spacetimes it was studied e.g. in [133, 134] while the introduction of leaky boundary conditions
in [122, 135] allowed for encompassing also asymptotically locally AdS spacetimes. The gauge is built
in the following a way. Take 𝑢 a coordinate parametrizing a set of null hypersurfaces (𝑢 = cst)
i.e. 𝑔𝑢𝑢 = 0. On each hypersurfaces we take local coordinates 𝑥𝐴 (𝐴 = 1, 2) which parameterize
two-spheres and are such that their directional derivative along the normal vanishes i.e. 𝑔𝑢𝐴 = 0.
To follow a light ray from its emission point to the boundary we take a radial coordinate 𝑟 such that
𝑟 →∞ is the boundary and such that 𝑟 is the luminosity distance i.e.

𝜕𝑟

(
det𝑔𝐴𝐵
𝑟4

)
= 0 . (3.1.5)

In the coordinates (𝑢, 𝑟, 𝑥𝐴) the metric reads3

ds2
Bondi = 𝑒

2𝛽𝑉

𝑟
d𝑢2 − 2𝑒2𝛽d𝑢 d𝑟 + 𝑔𝐴𝐵

(
d𝑥𝐴 −𝑈 𝐴d𝑢

) (
d𝑥𝐵 −𝑈𝐵d𝑢

)
(3.1.6)

where 𝑉, 𝛽,𝑈𝐵 and 𝑔𝐴𝐵 are arbitrary functions of all coordinates. We impose the following bound-
ary conditions

2See also [59, 131, 132] for a partial enhancement and its consequences on asymptotic symmetries and charges
3Lowering the conditions 𝑔𝑢𝑢 = 0 and 𝑔𝑢𝐴 = 0 gives 𝑔𝑟𝑟 = 0 and 𝑔𝑟𝐴 = 0.
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• 𝑔𝐴𝐵 = 𝑟2𝑞𝐴𝐵 + 𝑟𝐶𝐴𝐵 + 𝐷𝐴𝐵 + 𝑟−1𝐸𝐴𝐵 + 𝑟−2𝐹𝐴𝐵 + O(𝑟−3),

• 𝑉
𝑟
= Λ

3 𝑒
2𝛽0𝑟2 + · · · + 2𝑀

𝑟
+ O(𝑟−2),

• 𝛽 = 𝛽0 + O(𝑟−1),

• 𝑈 𝐴 = 𝑈 𝐴
0 + · · · +

1
𝑟3

(
𝑁 𝐴 + . . .

)
+ O(𝑟−4).

Solving Einstein’s equations with negative cosmological constant for the ansatz (3.1.6) with the pre-
vious fall-offs leads to a solution space made of 𝛽0, 𝑈

𝐴
0 , 𝑞𝐴𝐵, 𝑀, 𝑁

𝐴, 𝐸𝐴𝐵 i.e. 11 arbitrary functions
of all boundary coordinates (𝑢, 𝑥𝐴). Among them 𝑀 and 𝑁 𝐴 satisfy dynamical equations where 𝑢
plays the role of the evolutionary parameter. These are the flux/balance laws. The function 𝑀 is
called themass aspect and 𝑁 𝐴 is the angular momentum aspect. The tensor 𝑞𝐴𝐵 is the “boundarymet-
ric” which is here the metric on the two-dimensional slices of the boundary. In [122] it was left free,
allowing radiation to pass through the boundary even in AdS (contrary to previous works where
Dirichlet conditions were assumed).

The Bondi solution space is then equivalent to the one of Fefferman-Graham albeit expressed
in a different form. The diffeomorphism between the latter and Bondi was performed in three
dimensions in [85, 86] and in four dimensions in [122].

Bondi gauge for asymptotically flat spacetimes

In the case of asymptotically flat spacetimes the ansatz for the metric remains the same (3.1.6) but
Einstein’s equations without cosmological constant give rise to an infinite solution space made of
the 11 functions of AdS plus an infinite tower of degrees of freedomwhich corresponds to the sym-
metric and traceless projection of the tensors 𝐸𝐴𝐵, 𝐹𝐴𝐵 etc... appearing in the expansion of 𝑔𝐴𝐵. In
either cases, AdS and flat, the Bondi gauge works. However it is not covariant with respect to the
boundary geometry, contrary to Fefferman-Graham. For example peforming a Carrollian diffeo-
morphism 𝑢′ = 𝑢′(𝑢, 𝑥𝐴) will make terms proportional to d𝑢d𝑥𝐴 appear while they are forbidden
by definition of the gauge. In addition it cannot encompassWeyl transformations which is a pilar in
holography as what appears on the null boundary in a conformal Carroll structure. Our objective
now is to design a gauge which borrow the good features of both Bondi and Fefferman-Graham i.e.
be Weyl-covariant, boundary-covariant and valid both for AdS and flat spacetimes. To reach that
goal we can find inspiration in the fluid/gravity derivative expansion (DE for short) [27, 52]

d𝑠2DE =
2
𝑘2𝒖(d𝑟 + 𝑟𝑨) + 𝑟

2d𝑠2bry + · · · (3.1.7)

where the dots denote an infinite expansion in powers of 𝑟. This is an incomplete gauge fixingwhere
the additional degrees of freedomare packaged in a boundary timelike congruence𝒖normalized to4

| |𝒖| |2 = −𝑘2 andwhich corresponds on to the velocity of the dual fluid describing the asymptotically

4This justifies that on the boundary 𝑘 plays the role of the effective velocity of light.
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AdS bulk. One then replace d𝑢 by 𝒖. Fixing this congruence amounts to fixing a gauge (e.g. Bondi
where 𝒖 = exp(2𝛽)d𝑢) hence the derivative expansion is a two-parameter family of true-gauges
among which sit the usual ones. This new degree of freedom will make all quantities boundary-
covariant, as we shall see in the next section. Eq. (3.1.7) also naturally contains a Weyl connection
𝑨, which is another of its advantages. The main tool of this parametrization is also a null affine
coordinate 𝑟, which is not the case in Bondi gauge but rather in Newman-Unti gauge. The good
gauge to covariantize should then be the latter.

We thus finally recall for completeness that the Newman-Unti line element reads

d𝑠2bulk =
𝑉

𝑟
d𝑢2 − 2d𝑢d𝑟 + 𝑔𝐴𝐵

(
d𝑥𝐴 −𝑈 𝐴d𝑢

) (
d𝑥𝐵 −𝑈𝐵d𝑢

)
, (3.1.8)

The main results previously described in Bondi stays valid and the comprehensive review of that
gauge is available in [121].

3.2 Building a covariant gauge in AdS

In this Section we explain how to make the Newman-Unti gauge covariant under boundary Weyl
transformations and boundary diffeomorphisms in AdS. With the new ansatz for the metric, we
solve Einstein’s equations in AdS and write the explicit solution up to 1

𝑟2 -order. This resolution will
show that like in Fefferman-Graham, the solution space is made of the energy-momentum tensor,
though in a split form with respect to the congruence 𝒖, and by the boundary geometry through
the Cotton tensor (instead of the metric).

3.2.1 Covariantising the Newman-Unti gauge

The Newman-Unti gauge (3.1.8) is stable neither under boundary diffeomorphisms 𝑥 → 𝑥′, nor
underWeyl rescalings 𝑟 → 𝑟B(𝑥). To reach a covariantized versionwe trade−𝑘2d𝑢 for a boundary
one-form 𝒖 = 𝑢𝜇d𝑥𝜇, which is an invariant object dual to a time-like vector field normalized at −𝑘2.
As it will become manifest in Sec. 3.3.1, where the AdS time-like conformal boundary will become
a null manifold equipped with a Carrollian structure in the limit 𝑘 → 0, our parameterization is
such that 𝑘 plays the role of the effective boundary velocity of light.

Remark Introducing this normalized but otherwise arbitrary boundary congruence turns on two
degrees of freedom. This a relaxation of the original Newman-Unti gauge fixing. Incomplete
gauge fixings might produce enhancements of asymptotic symmetries and materialize in ex-
tra charges — not always integrable or conserved. They have been investigated mostly in
three bulk dimensions in [84–86, 136–141]. It was shown there that adding an arbitrary con-
gruence combined with the freedom of choosing the boundary metric restores the boundary
local Lorentz symmetry (related to the hydrodynamic frame invariance) and its realization
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as bulk diffeomorphisms, augmenting the asymptotic symmetry group [84–86, 140, 141].

As local Lorentz invariance is manifest in Cartan’s orthonormal frame, we choose express the
boundary metric as

d𝑠2 = 𝜂𝐴𝐵θ
𝐴θ𝐵 = −

(
θ0̂

)2
+ 𝛿𝑎𝑏θ𝑎θ𝑏, (3.2.1)

and set
𝒖 = −𝑘θ0̂. (3.2.2)

From now on we use 𝐴, 𝐵, . . . ∈
{

0̂, 1̂, 2̂
}
as boundary “flat” indices with 𝑎, 𝑏, . . . ∈

{
1̂, 2̂

}
. The dual

frame vectors are {e𝐴} =
{
e0̂, e𝑎

}
with θ𝐵 (e𝐴) = 𝛿 𝐵

𝐴
. A possible parameterization of the frame,

which we will not use explicitly though, is displayed in Eqs. (B.2.2), (B.2.3) and (B.2.4).

The boundary congruence 𝒖 provides also the appropriate tool for addressing Weyl invariance,
as from any congruence one can build a Weyl connection as in (2.3.9). The bulk geometry should
be insensitive to a Weyl rescaling of the boundary metric (weight −2) and of the boundary velocity
form (weight −1)

d𝑠2 → d𝑠2

B2 , u→ u
B
, (3.2.3)

which should be in fine reabsorbed into a redefinition of the radial coordinate: 𝑟 → 𝑟B. As we
already saw many times we just need to introduce a Weyl connection one-form A = 𝐴𝜇d𝑥𝜇 trans-
forming as

A→ A − d ln B . (3.2.4)

This suggests the following amendment to the Newman–Unti gauge

−d𝑢d𝑟 → u
𝑘2 (d𝑟 + 𝑟A), (3.2.5)

which is indeed Weyl-invariant, as well as being boundary-general-covariant. Modifying the rest
of the framework and in particular covariant derivatives to encompass Weyl transformations will
be addressed in Sec. 3.2.2.

We can recast (3.1.8), ignoring the logarithms, in terms of boundary tensors according to their
transversality with respect to the congruence 𝒖 as well as their conformal weights. The bulk line
element reads

d𝑠2bulk = 2
u
𝑘2 (d𝑟 + 𝑟A) + 𝑟

2d𝑠2 + 𝑟C𝐴𝐵θ
𝐴θ𝐵 + 1

𝑘4 F𝐴𝐵θ
𝐴θ𝐵

+
∞∑︁
𝑠=1

1
𝑟𝑠

(
𝑓(𝑠)

u2

𝑘4 + 2
u
𝑘2 𝑓(𝑠)𝐴θ

𝐴 + 𝑓(𝑠)𝐴𝐵θ𝐴θ𝐵
)
, (3.2.6)

where all boundary tensors are now defined in the orthonormal frame at hand and depend only on
boundary coordinates (𝑢, 𝑥𝑎). This is the covariant Newman-Unti gauge (CNU for short) which we
recall is an incomplete gauge fixing due to the arbitrariness in 𝒖.

In the expression (3.2.6), 𝑓(𝑠) are boundary scalars, 𝑓(𝑠)𝐴 boundary transverse vectors, 𝑓(𝑠)𝐴𝑢𝐴 = 0,

– 99 –



and 𝑓(𝑠)𝐴𝐵 boundary symmetric and transverse tensors, 𝑓(𝑠)𝐴𝐵𝑢𝐴 = 0. Their Weyl weights are 𝑠 + 2.5

At order 𝑟2 we recognize the boundary metric d𝑠2, which is a free piece of data in the spirit of
[84–86, 122, 141]. As long as the bulk metric (3.2.6) is off-shell, the boundary symmetric tensors F𝐴𝐵

(weight 2) and C𝐴𝐵 (weight 1) have no reason to be transverse with respect to 𝒖. The latter is the
shear of the affine null geodesic congruence tangent to 𝜕𝑟 . It is also known as the “Bondi” shear even
though, strictly speaking, the latter is defined in the BMS gauge (in the expansion𝐺𝑖 𝑗 = 𝑟

2𝑞𝑖 𝑗 +O(𝑟)
the two-dimensional metric 𝑞𝑖 𝑗 is fixed to be the round sphere). This usual Bondi shear is related to
the one introduced here by an inhomogeneous transformation.

Imposing Einstein’s equations will determine all the boundary tensors introduced so far in
terms of basic independent functions that define the solution space. As we will see, this set of
functions includes 𝒖 as well as the boundary metric d𝑠2 and a rank-two symmetric, traceless and
conserved tensor coinciding with the energy–momentum tensor of the Fefferman–Graham gauge.

Remark Logarithms of the radial coordinate are not always required when probing the space of
solutions of Einstein’s equations. In some cases, like, e.g., when choosing the Fefferman–
Graham gauge in odd spacetime dimensions, they are necessary. In other cases, like, e.g.,
in asymptotically flat spacetimes in the Bondi gauge, they describe an independent sector
of the solution space that might be added or not to the polynomial expansion. A thorough
investigation of the larger space of solutions including logarithms and analyzing its interplay
with residual symmetries was done e.g. in [3, 122, 135, 142, 143]). Note also the recent work
[132] in which the authors work in the partial Bondi gauge [59, 131], and define the notion of
“logarithmically-asymptotically-flat” spacetimes, as logarithmic terms are implied by tails in
the displacement memory effect.

Remark In [122] the authors have shown that logarithms are generated in AdS by the traceless
projection of the order 1 tensor in the expansion of the sphere metric, 𝐷𝐴𝐵 (see just after
(3.1.6)) which can either be taken into account or not, as two different subclass of solutions
are described. In this thesis we treat the latter case.

We now drive our attention towards one of the two main advantages of this new gauge, the
consideration of Weyl covariance.

3.2.2 Encompassing Weyl covariance

The covariant Newman–Unti gauge (3.2.6) naturally encompasses Weyl covariance. As any bound-
aryWeyl transformation can be reabsorbed by a redefinition of the radial coordinate 𝑟 it is desirable
to list the available tensors with the correct conformal weights at each order 𝑠 of the radial expan-
sion, as they are the only ones that can appear at the selected order. One also has to translate

5This shows the power of the orthonormal frame, all unknown functions possess the same Weyl weight.
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covariant derivatives into Weyl-covariant derivatives. This is what we shall do now. The reader
will recognize a formalism already discussed in Sec. 1.4 but now from a relativistic point of view.

The Weyl connection one-form 𝑨 = 𝐴𝐴θ
𝐴 is built as usual on the congruence 𝒖 = 𝑢𝐴θ

𝐴 via

𝑨 =
1
𝑘2

(
𝒂 − Θ

2
𝒖

)
, (3.2.7)

which transforms as anticipated in (3.2.4). Kinematical variables of the congruence 𝒖where already
displayed in (2.2.9) and (2.2.10). Note however that we are here in a Cartan orthonormal frame (3.2.1).

Using theWeyl connection 𝑨we get Weyl covariant derivativesD𝐴 acting on a weight-w tensor
as e.g. a scalar Φ

D𝐴Φ = e𝐴(Φ) + w𝐴𝐴Φ, (3.2.8)

or a form 𝑣𝐴

D𝐵𝑣𝐴 = ∇𝐵𝑣𝐴 + w𝐴𝐵𝑣𝐴 + 𝐴𝐴𝑣𝐵 − 𝜂𝐴𝐵𝐴𝐶𝑣𝐶 . (3.2.9)

The resulting tensors have weight w+1. When dealing withWeyl covariance in orthonormal frame,
the metric components have weight zero. Hence for any tensor, covariant and contravariant com-
ponents have the same weights. The coframe form elements, however, have weight−1, whereas the
frame vectors have weight +1. If a weight-w tensor has 𝑝 contravariant and 𝑞 covariant indices, its
Weyl-covariant derivative reads

D𝐶𝐾
𝐴...

𝐵... = ∇𝐶𝐾 𝐴...
𝐵... + (w + 𝑝 − 𝑞)𝐴𝐶𝐾 𝐴...

𝐵...

+
(
𝜂𝐶𝐷𝐴

𝐴 − 𝛿 𝐴𝐶 𝐴𝐷 − 𝛿
𝐴
𝐷𝐴𝐶

)
𝐾 𝐷...
𝐵... + · · ·

−
(
𝜂𝐶𝐵𝐴

𝐷 − 𝛿𝐷𝐶 𝐴𝐵 − 𝛿
𝐷
𝐵 𝐴𝐶

)
𝐾 𝐴...
𝐷... − · · ·

and this has now weight w + 1. See App. B.1 for the Carrollian analogue.

The form field 𝒖 has weight −1 i.e. 𝑢𝐴 are weight-zero, whereas 𝜔𝐴𝐵 and 𝜎𝐴𝐵 have all weight 1.
The explicit form of A (3.2.7) is obtained by demanding

D𝐴𝑢
𝐴 = 0 and 𝑢𝐶D𝐶𝑢𝐴 = 0. (3.2.10)

The Weyl covariant derivative is metric-compatible with effective torsion

D𝐶𝜂𝐴𝐵 = 0, (3.2.11a)

(D𝐴D𝐵 −D𝐵D𝐴) Φ = wΦ𝐹𝐴𝐵, (3.2.11b)

where
F =

1
2
𝐹𝐴𝐵θ

𝐴 ∧ θ𝐵 = d𝑨 (3.2.12)
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is Weyl-invariant (𝐹𝐴𝐵 are weight-2). Metric compatibility and (3.2.10) imply

𝑢𝐶D𝐶ℎ𝐴𝐵 = 0, (3.2.13)

infering that the operator 𝑢𝐶D𝐶 respects transversality.

Commuting the Weyl-covariant derivatives acting on vectors, one defines the Weyl covariant
Riemann tensor

(D𝐴D𝐵 −D𝐵D𝐴) 𝑉𝐶 = R𝐶
𝐷𝐴𝐵𝑉

𝐷 + (w + 1)𝑉𝐶𝐹𝐴𝐵 (3.2.14)

(𝑉𝐶 are weight-wwhereas V = 𝑉𝐶e𝐶 has weight w+1) and the usual subsequent quantities. In three
(boundary) spacetime dimensions, the covariant Ricci and the scalar (both weight-2) curvatures
read

R𝐴𝐵 = 𝑅𝐴𝐵 + ∇𝐵𝐴𝐴 + 𝐴𝐴𝐴𝐵 + 𝜂𝐴𝐵
(
∇𝐶𝐴𝐶 − 𝐴𝐶𝐴𝐶

)
− 𝐹𝐴𝐵, (3.2.15a)

R = 𝑅 + 4∇𝐴𝐴𝐴 − 2𝐴𝐴𝐴𝐴, (3.2.15b)

where 𝑅𝐴𝐵 is the Ricci tensor of the boundary Levi–Civita connection and 𝑅 the corresponding
scalar curvature. The Weyl-invariant Schouten tensor is

S𝐴𝐵 = R𝐴𝐵 −
1
4
R𝜂𝐴𝐵 = 𝑅𝐴𝐵 −

1
4
𝑅𝜂𝐴𝐵 + ∇𝐵𝐴𝐴 + 𝐴𝐴𝐴𝐵 −

1
2
𝐴𝐶𝐴

𝐶𝜂𝐴𝐵 − 𝐹𝐴𝐵. (3.2.16)

It is customary to introduce the vorticity two-form

ω =
1
2
𝜔𝐴𝐵 d𝑥𝐴 ∧ d𝑥𝐵 =

1
2

(
du + 1

𝑘2u ∧ a
)
, (3.2.17)

as well as the Hodge dual of this form, which is proportional to u:

𝑘𝛾u = ★ω ⇔ 𝑘𝛾𝑢𝐴 =
1
2
𝜖𝐴𝐵𝐶𝜔

𝐵𝐶 . (3.2.18)

In this expression 𝛾 is a scalar of weight 1.

In three spacetime dimensions and in the presence of a vector field u, one naturally defines a
fully antisymmetric two-index tensor6

�̂�𝐴𝐵 = −𝑢
𝐶

𝑘
𝜖𝐶𝐴𝐵, (3.2.19)

obeying
�̂�𝐴𝐶 �̂�

𝐶
𝐵 = ℎ𝐴𝐵, �̂�𝐴𝐵�̂�𝐴𝐵 = 2. (3.2.20)

This is the relativistic equivalent of the Carrollian tensor 𝜂𝜁 𝜁 introduced in Sec. 1.6. With this tensor

6This hatted two-index tensor should not be confused with Minkowski metric.
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the vorticity reads
𝜔𝐴𝐵 = 𝑘2𝛾�̂�𝐴𝐵. (3.2.21)

The two-index tensor �̂�𝐴𝐵 defines a duality mapwithin the space of symmetric, transverse (with
respect to u) and traceless tensors. If 𝑉 𝐴 is transverse, so is

∗𝑉 𝐴 = �̂�𝐵𝐴𝑉𝐵. (3.2.22)

Similarly with a symmetric, transverse and traceless tensor𝑊𝐴𝐵

∗𝑊𝐴𝐵 = �̂�𝐶𝐴𝑊𝐶𝐵 (3.2.23)

is symmetric, transverse and traceless. We can also define a scalar quantity from a rank-2 antisym-
metric tensor, using (3.2.19) e.g.

∗𝜛 =
1
2
𝜂𝐴𝐵𝜔𝐴𝐵 , (3.2.24)

which yields the vorticity scalar.

3.2.3 Einstein’s equations for asymptotically AdS spacetimes

AdS energy-momentum and Cotton tensor

As we said, metrics of AlAdS spacetimes are completely described by means of the boundary metric
and the boundary energy-momentum tensor. What is new in our CNU gauge is that the former
will appears also through its third order derivatives via another tensor presented in Sec. 2.4, the
Cotton tensor.

Having at hand the time-like congruence 𝒖 such that | |𝒖| |2 = −𝑘2 we use it to decompose the
energy-momentum tensor in a hydrodynamic way (see Sec. 2.2)

𝑇𝐴𝐵 = (𝜀 + 𝑝)𝑢𝐴𝑢𝐵
𝑘2 + 𝑝𝜂𝐴𝐵 + 𝜏𝐴𝐵 +

𝑢𝐴𝑞𝐵

𝑘2 +
𝑢𝐵𝑞𝐴

𝑘2 . (3.2.25)

Such a decomposition allows us to re-use all the formalism developed in Sec. 2.2 and we refer the
reader to it e.g. for the transversality properties of 𝑞𝐴 and 𝜏𝐴𝐵.

Remark Even though the energy-momentum tensor is written in a fluid form, we are not doing
hydrodynamics here. What we have chosen is a timelike congruence under which we decom-
pose𝑇𝐴𝐵 like in (3.2.25), this is just away to package differently the degrees of freedom. Hydro-
dynamics (we recall) is more, as all thermodynamic quantities are to be expanded in powers
of the velocity and the temperature with transport coefficients. These are the constitutive
relations. The latter are not obeyed everywhere in the Einstein solution space. The subspace
where this happens is the realm of fluid/gravity correspondence [27, 144]. For convenience,
we will nonetheless refer to 𝒖 as the “velocity field” and decompose the energy–momentum
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tensor accordingly.

Remark Whenever the energy–momentum tensor gets a fluid interpretation, the congruence at
hand is identified with the fluid lines and its arbitrariness corresponds to the relativistic
hydrodynamic-frame invariance [65, 106, 145]. This feature is however strictly local because
the bulk diffeomorphisms associated with the boundary hydrodynamic-frame transforma-
tions are possibly charged (see [84–86] for a discussion in three bulk dimensions).

In CNU gauge the other important character is the Cotton tensor (see later (3.2.38). Together
with the energy-momentum tensor they both enter the bulk metric, playing dual, electric versus
magnetic, roles in various instances, as e.g. in the bulk Weyl tensor. Indeed it has been shown
in [146, 147] that in the 1/𝑟-expansion of the latter appears at leading order (1/𝑟3) a combination of
the form𝑇𝐴𝐵+ 𝑤𝑘𝐶𝐴𝐵 with a constant coefficient 𝑤 depending onNewton’s constant𝐺. The Cotton
tensor possessing the same symmetries than the energy-momentum tensor (it is also traceless) and
satisfying the same equation (∇𝐴𝐶𝐴𝐵 = D𝐴𝐶

𝐴𝐵 = 0) it is reasonable to decompose it along the
congruence 𝒖 like in (3.2.25)

1
𝑘
𝐶𝐴𝐵 =

3𝑐
2
𝑢𝐴𝑢𝐵

𝑘2 +
𝑐

2
𝜂𝐴𝐵 −

𝑐𝐴𝐵

𝑘2 +
𝑢𝐴𝑐𝐵

𝑘2 +
𝑢𝐵𝑐𝐴

𝑘2 . (3.2.26)

Such a decomposition naturally defines the weight-3 Cotton scalar density

𝑐 =
1
𝑘3𝐶𝐴𝐵𝑢

𝐴𝑢𝐵, (3.2.27)

as the longitudinal component. The symmetric and traceless Cotton stress tensor 𝑐𝐴𝐵 and the Cotton
current 𝑐𝐴 (also weight-3) are purely transverse

𝑐 𝐴
𝐴 = 0, 𝑢𝐴𝑐𝐴𝐵 = 0, 𝑢𝐴𝑐𝐴 = 0, (3.2.28)

and obey

𝑐𝐴𝐵 = −𝑘ℎ𝐶𝐴ℎ
𝐷
𝐵𝐶𝐶𝐷 +

𝑐𝑘2

2
ℎ𝐴𝐵, 𝑐𝐵 = −𝑐𝑢𝐵 −

𝑢𝐴𝐶𝐴𝐵

𝑘
. (3.2.29)

The Cotton density, current and stress tensor can also be expressed as ordinary or Weyl deriv-
atives of the curvature using its definition as derivative of the Schouten, see (2.4.1)

𝑐 =
1
𝑘2𝑢

𝐵�̂�𝐷𝐶D𝐶 (S𝐵𝐷 + 𝐹𝐵𝐷) , (3.2.30a)

𝑐𝐵 = �̂�𝐶𝐷D𝐶 (S𝐵𝐷 + 𝐹𝐵𝐷) − 𝑐𝑢𝐵, (3.2.30b)

𝑐𝐴𝐵 = −ℎ𝐸𝐴
(
𝑘𝜖 𝐶𝐷

𝐵 − 𝑢𝐵�̂�𝐶𝐷
)
D𝐶 (S𝐸𝐷 + 𝐹𝐸𝐷) +

𝑐𝑘2

2
ℎ𝐴𝐵. (3.2.30c)

We conclude this paragraph displaying the Weyl weights of all relevant quantities

Quantity 𝑇𝐴𝐵 𝜀 𝑝 𝑞𝐴 𝜏𝐴𝐵 𝑐 𝑐𝐴 𝑐𝐴𝐵

Weight 𝑤 3 3 3 3 3 3 3 3
(3.2.31)
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therefore the table of weight is very easy due to the choice of orthonormal frame.

Solving the equations order by order

We shall now plug this ansatz (3.2.6) into the bulk Einstein equations

E𝑀𝑁 ≡ 𝑅bulk𝑀𝑁 −
1
2
𝑅bulk𝑔bulk𝑀𝑁 − 3𝑘2𝑔bulk𝑀𝑁 = 0 , (3.2.32)

where we use 𝑀, 𝑁, . . . ∈ {𝑟, boundary} as bulk indices, and solve them order by order.

• Order 𝒓. This equation will relate the would-be Bondi shearC𝐴𝐵 to the shear of the congru-
ence 𝒖 via

𝑘2C𝐴𝐵 = −2𝜎𝐴𝐵 , (3.2.33)

which set a relation between a gravitational quantity and a purely geometric quantity. On-
shell, the Bondi shear becomes transverse and traceless (as 𝑢𝐴𝜎𝐴𝐵 = 0 and 𝜎 𝐴

𝐴
= 0). One

can define in this framework the equivalent to the Bondi news tensor, taking the appropriate
derivative of the shear

N𝐴𝐵 = 𝑢𝐶D𝐶C𝐴𝐵 . (3.2.34)

This tensor is manifestly boundary-covariant (by contrast with all other gauges and in par-
ticular the Bondi gauge), Weyl-invariant, symmetric, traceless and transverse.

• Order 1. The equations (3.2.32) fix the form of the tensor F𝐴𝐵 which ends up being related
to the boundary Weyl-invariant Schouten tensor

F𝐴𝐵 = 2𝑢𝐶
(
S𝐶(𝐴 + 𝐹𝐶(𝐴

)
𝑢𝐵) +D𝐴𝑢𝐶 D𝐵𝑢

𝐶 (3.2.35)

= 2𝑢(𝐴D𝐶

(
𝜎 𝐶
𝐵) + 𝜔

𝐶
𝐵)

)
− R

2
𝑢𝐴𝑢𝐵 +

(
𝜎 2 + 𝑘4𝛾2) ℎ𝐴𝐵 + 2𝜔 𝐶

(𝐴 𝜎
𝐵)𝐶 ,

where
𝛾2 =

1
2𝑘4𝜔𝐴𝐵𝜔

𝐴𝐵, 𝜎 2 =
1
2
𝜎𝐴𝐵𝜎

𝐴𝐵 . (3.2.36)

Note that at this stage, the only independent and free data are those defining the boundary
geometry.

• Orders 1/𝒓 and 1/𝒓2. At order 1
𝑟
new information is expected to come up in the form of

a boundary conformal energy–momentum tensor. In the Fefferman–Graham gauge it ap-
pears in one block𝑇𝐴𝐵 whereas in the CNU gauge the energy–momentum enters through its
decomposition with respect to the congruence 𝒖, i.e. 𝜀, 𝑞𝐴 and 𝜏𝐴𝐵. Furthermore, it comes ac-
companied with the transverse-dual of the Cotton current and stress, ∗𝑐𝐴 and ∗𝑐𝐴𝐵 which is
yet another motivation to split the energy–momentum tensor as discussed earlier. This trait
is new, both compared to the Fefferman–Graham gauge, where the Cotton tensor does not
appear explicitly at any order,7 and with respect to standard Bondi or Newman–Unti gauges.

7This is the Schouten tensor that appears in [148, 149].
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The functions to be determined are 𝑓(1) , 𝑓(1)𝐴 and 𝑓(1)𝐴𝐵, which must have conformal weight
3. This leaves little freedom, given the available tensors. We find that

𝑓(1)
u2

𝑘4 + 2
u
𝑘2 𝑓(1)𝐴θ

𝐴 + 𝑓(1)𝐴𝐵θ𝐴θ𝐵 =
8𝜋𝐺
𝑘4

(
𝜀u2 + 4

3
uΔq + 2𝑘2

3
Δτ

)
(3.2.37)

with Δq = Δ𝑞𝐴θ
𝐴 and Δτ = Δ𝜏𝐴𝐵θ

𝐴θ𝐵 defined as

Δ𝑞𝐴 = 𝑞𝐴 −
1

8𝜋𝐺
∗𝑐𝐴, Δ𝜏𝐴𝐵 = 𝜏𝐴𝐵 +

1
8𝜋𝐺𝑘2 ∗𝑐𝐴𝐵. (3.2.38)

The functions 𝜀, 𝑞𝐴 and 𝜏𝐴𝐵 are the unknown functions that which merely parameterize the
line element. Retrospectively we see that they can be packaged in a symmetric and trace-
less tensor 𝑇𝐴𝐵 as in (3.2.25). Moreover (3.2.42) and, as we shall see shortly, Einstein’s equa-
tions demand the conservation of this𝑇𝐴𝐵 built upon these unknowns. Thus we are tempted
to identify this tensor with the boundary energy–momentum tensor as in the Fefferman–
Graham gauge.

We now focus on the 1
𝑟2 contribution to the line element (3.2.6), i.e., on

𝑓(2)
u2

𝑘4 + 2
u
𝑘2 𝑓(2)𝐴θ

𝐴 + 𝑓(2)𝐴𝐵θ𝐴θ𝐵, (3.2.39)

where 𝑓(2) , 𝑓(2)𝐴 and 𝑓(2)𝐴𝐵 must have conformal weight 4. The analogy with the Fefferman–
Graham expansion suggests that no new free boundary functions should appear without
spoiling Einstein’s equations, they can just be derivatives or contraction with a weight-1
tensor or the energy-momentum components. Indeed, upon imposing (3.2.33) and (3.2.35),
one finds

E𝑟𝑟 = − 3
𝑟5 𝜂𝐴𝐵𝑓

𝐴𝐵
(1) − 6

(
𝜂𝐴𝐵𝑓

𝐴𝐵
(2) +

3
2𝑘2 𝜎𝐴𝐵𝑓

𝐴𝐵
(1)

)
1
𝑟6 + O

(
1
𝑟7

)
𝑘E𝑟0̂ =

(
−𝑓(2) − 2𝑘2𝜂𝐴𝐵𝑓

𝐴𝐵
(2) +

1
2ℎ𝐴𝐵D

𝐴𝑓 𝐵(1) −
5
2𝜎𝐴𝐵𝑓

𝐴𝐵
(1) + 𝑐𝛾

)
1
𝑟4 + O

(
1
𝑟5

)
E𝑟𝑎 =

(
2𝑓(2)𝑎 − 3

2ℎ𝑎𝐵D𝐶𝑓
𝐵𝐶
(1) +

1
𝑘2 (𝜎𝑎𝐵 + 4𝜔𝑎𝐵) 𝑓 𝐵(1)

)
1
𝑟4 + O

(
1
𝑟5

)
E𝑎𝑏 =

(
−𝑓(2)ℎ𝑎𝑏 + 𝑐𝛾ℎ𝑎𝑏 + 4𝜔 (𝑎

𝐶
𝑓
𝑏)𝐶
(1) + 2𝑘2�̂� 𝑎

𝐶
�̂� 𝑏
𝐷
𝑓𝐶𝐷(2) − 2𝑢𝐶D𝐶𝑓

𝑎𝑏
(1)

+ �̂� 𝑎
𝐶
�̂� 𝑏
𝐷

D (𝐶𝑓𝐷)(1) +
1
𝑘2

(
𝑐�̂� 𝑎
𝐶
𝜎𝐶𝑏 − 𝑓(1)𝜎 𝑎𝑏

)
+ 4𝜎 (𝑎

𝐶
𝑓
𝑏)𝐶
(1)

)
1
𝑟2 + O

(
1
𝑟3

)
(3.2.40)

for the constraint Einstein’s equations.8 These equations confirm the absence of any new
free function. When rewritten in terms of the basic quantities parameterizing the space of
solutions, the three coefficients in (3.2.39) read

𝑓(2) =
8𝜋𝐺
3𝑘2

(
𝜎𝐶𝐷Δ𝜏

𝐶𝐷 +D𝐶Δ𝑞
𝐶
)
+ 𝑐𝛾, (3.2.41a)

𝑓(2)𝐴 = − 8𝜋𝐺
3𝑘4 𝜎𝐴𝐶Δ𝑞

𝐶 + 4𝜋𝐺
𝑘2

(
ℎ𝐴𝐶D𝐷Δ𝜏

𝐶𝐷 + 8
3
𝛾 ∗Δ𝑞𝐴

)
, (3.2.41b)

8This terminology is borrowed from the Hamiltonian analysis of Einstein’s gravity.
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𝑓(2)𝐴𝐵 = − 4𝜋𝐺
𝑘4

(
4
3
𝑢𝐶D𝐶Δ𝜏𝐴𝐵 +

2
3
ℎ𝐴𝐶ℎ𝐵𝐷D (𝐶Δ𝑞𝐷) − 1

3
ℎ𝐴𝐵ℎ

𝐶𝐷D𝐶Δ𝑞𝐷 + 2𝜎 𝐶
(𝐴 Δ𝜏

𝐵)𝐶

)
− 1

2𝑘4 (8𝜋𝐺𝜀𝜎𝐴𝐵 − 𝑐 ∗𝜎𝐴𝐵) +
32𝜋𝐺

3𝑘2 𝛾 ∗Δ𝜏𝐴𝐵. (3.2.41c)

These expressions contain all possible combinations of the shear and of the vorticity to-
gether with adequately projected Weyl covariant derivatives of the energy–momentum and
Cotton tensors,9 carrying the right tensorial structure and conformal weight. Substituting
Eqs. (3.2.41a), (3.2.41b), (3.2.41c) into the remaining Einstein’s equations (3.2.32) one obtains

𝑘

8𝜋𝐺
E0̂0̂ =

1
𝑟2 D𝐵𝑇

𝐵

0̂ + O
(

1
𝑟3

)
,

𝑘

8𝜋𝐺
E0̂𝑎 =

1
𝑟2 D𝐵𝑇

𝐵
𝑎 + O

(
1
𝑟3

)
(3.2.42)

(since 𝑇𝐴𝐵 is traceless, D𝐴 ≡ ∇𝐴, the Levi–Civita boundary connection for the frame met-
ric 𝜂𝐴𝐵). The omitted terms contain the tensors 𝑓(3) , 𝑓(3)𝐴 and 𝑓(3)𝐴𝐵. This confirms that no
additional constraints are imposed on the quantities parameterizing the solution space iden-
tified at the previous orders, i.e., the velocity field, the boundary metric (frame in the present
formalism) and the boundary energy–momentum tensor. We therefore conclude that

AdS solution space = {𝑢𝐴, d𝑠2bry, 𝜀, 𝑞𝐴, 𝜏𝐴𝐵} . (3.2.43)

• Subleading orders The above pattern can be repeated again and again at the cost of a sub-
stantial growth in admissible terms. The third order would be interesting as it is expected
to host the Newman–Penrose charges in the flat limit, according to the analysis of [150–154].
However as showed for the order 1/𝑟2 no additional degrees of freedom will appear in the
solution space.

Remark There is a set of hypotheses under which the line element (3.2.6) can be resummed in a
finite and closed expression. This is the case when the bulkWeyl tensor is tunned to select the
subclass of solution of Einstein’s equations which are Petrov-algebraically special. Imposing

𝜎𝐴𝐵 = 0, Δ𝑞𝐴 = 0, Δ𝜏𝐴𝐵 = 0, (3.2.44)

which implies that
𝑓(𝑠)𝐴 = 0, 𝑓(𝑠)𝐴𝐵 = 0 (3.2.45)

and
𝑓(2𝑠+1) = (−)𝑠8𝜋𝐺𝜀𝛾2𝑠, 𝑓(2𝑠+2) = (−)𝑠𝑐𝛾2𝑠+1. (3.2.46)

The boundary metric is still a free variable, but only the energy density 𝜀(x) remains from
the energy–momentum tensor, whose heat current and stress are fixed by those of the Cotton

𝑞𝐴 =
1

8𝜋𝐺
∗𝑐𝐴, 𝜏𝐴𝐵 = − 1

8𝜋𝐺𝑘2 ∗𝑐𝐴𝐵. (3.2.47)

9This is in line with the identification of the CNU gauge with a derivative expansion.
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As a consequence, assuming that ∇𝐴𝑇 𝐴𝐵 = 0 is satisfied, one finds for the line element

d𝑠2res. Einstein = 2
u
𝑘2 (d𝑟 + 𝑟A) + 𝑟

2d𝑠2 + F

𝑘4 +
u2

𝑘4𝜌2 (8𝜋𝐺𝜀𝑟 + 𝑐𝛾) (3.2.48)

with
𝜌2 = 𝑟2 + 𝛾2 (3.2.49)

and F = F𝐴𝐵θ
𝐴θ𝐵 given in (3.2.35) imposing zero geometric shear 𝜎𝐴𝐵. The Petrov analysis

of (3.2.48) has been discussed in Refs. [52,114]. and the flat counterpart will be discussed in Sec.
4.1.

3.3 Asymptotically flat spacetimes as a limit of Anti de Sitter

3.3.1 Laurent expansion and the flat limit

In this subsection we take the 𝑘→ 0 limit of the AdS case. After recalling how a Carroll structure
emerges from the timelike boundary of AdS we expand the unknowns of (3.2.6) i.e. the energy-
momentum tensor, in a Laurent series about 𝑘 = 0, allowing us to take the limit in the conservation
equation. From this we get the first two flux/balance laws while the others are found requiring
finiteness at zero 𝑘. Remember that we are in four-dimensional bulk spacetime with indices (�̂�, 𝑎)
where 𝑎 ranges from 1 to 3.

From Riemann to Carroll

The Carrollian limit of the boundary geometry is reached as follows

υ = lim
𝑘→0

𝑘 𝒆0 , τ = − lim
𝑘→0

𝒖

𝑘2 = lim
𝑘→0

θ0

𝑘
, �̂�𝑎 = lim

𝑘→0
𝒆𝑎 , θ̂

𝑎
= lim
𝑘→0

θ𝑎 (3.3.1)

so that the Carrollian degenerate metric spells

dℓ2 = lim
𝑘→0

d𝑠2 = 𝛿𝑎𝑏θ̂
𝑎
θ̂
𝑏
. (3.3.2)

The kernel of the degenerate metric (3.3.2) is the field of observers υ, and τ is its dual clock form
embracing also the Ehresmann connection, as explained in Sec. B.1. The frame and coframe, {υ, �̂�𝑎}
and {τ, θ̂𝑎} obey

τ(υ) = 1, θ̂
𝑎(�̂�𝑏) = 𝛿 𝑎𝑏 , θ̂

𝑎(υ) = 0, τ(�̂�𝑎) = 0 . (3.3.3)

The Carrollian geometric data are part of the solution space of Ricci-flat spacetimes in the flat
covariant Newman–Unti gauge. Compared to the standard flat Newman–Unti gauge, the extra
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piece of data is the clock form τ, which echoes the velocity congruence of the AdS relative.10 More
accurately, the additional piece of information carried by the covariant Newman–Unti gauge is the
boundary vorticity ∗𝜛, see (3.2.24).

The vanishing-𝑘 limit of the AdS-boundary Weyl connection 𝑨 is straightforward due to its
𝑘-independence. We actually recover the connection given in (1.4.4)

𝑨 = 𝜑𝑎θ̂
𝑎 + 𝜃

2
τ (3.3.4)

with 𝜑𝑎 and 𝜃 defined in (B.1.11) and (B.1.31). Therefore, the first two terms in (3.2.6) have a well-
defined limit without the need of imposing Einstein’s equations.

We proceed now with the next two terms namely the order 𝑟 and 1 which we recall are trans-
verse. The order 𝑟 plays an essential role in gravitational physics. Indeed, Einstein’s equation (3.2.33),
reproduced here for the spatial components— the only non-zero due transversality combinedwith
our choice of congruence 𝒖,

𝑘2C𝑎𝑏 = −2𝜎𝑎𝑏, (3.3.5)

implies that 𝜎𝑎𝑏 = 0 at vanishing 𝑘. As explained in Eq. (B.2.12), the latter translates in Carrollian
terms into

𝑘2C𝑎𝑏 = −2𝜉𝑎𝑏 , (3.3.6)

where 𝜉𝑎𝑏 is defined in (B.1.31) as the traceless component of the extrinsic curvature. In the flat
instance we find that the geometrical shear 𝜉𝑎𝑏 of the boundary Carrollian geometry must vanish.
On the other hand, the dynamical shear C𝑎𝑏 is completely unconstrained and carries two degrees
of freedom which are identified with the two polarizations of the graviton. No equation makes
C𝑎𝑏 evolve, but it will source the evolution of other degrees of freedom. From the Bondi shear
C𝑎𝑏 one can introduce the Bondi news which is another traceless Carrollian tensor obtained as the
Carrollian limit of Eq. (3.2.34)

ˆN𝑎𝑏 = D̂υC𝑎𝑏. (3.3.7)

The relationship between (3.3.7) and the news defined in other classical gauges will be unveil in Sec.
3.3.2.

In summary, till the order 𝑟, the Ricci-flat bulk metric reads

d𝑠2Ricci-flat
��
𝑟
= −τ

[
2d𝑟 + 𝑟

(
2𝜑𝑎θ̂

𝑎 + 𝜃τ
)]
+ 𝑟2dℓ2 + 𝑟C𝑎𝑏θ̂

𝑎
θ̂
𝑏
, (3.3.8)

where C𝑎𝑏(𝑢,x) is an arbitrary traceless Carrollian tensor.

To handle the limit of the order 1 term we will design a method which constitutes the main
achievement of the work [155]. The trick is to make a partially on-shell flat limit, using the equality
between the shears (3.3.6). Trading now the geometric shear 𝜉𝑎𝑏 for − 𝑘

2

2 C𝑎𝑏 may most of the time

10In the usual Newman-Unti gauge the Ehresmann connection is zero, which amounts in the split notations to set
𝑏𝑖 = 0.

– 109 –



not have any effect on the term under consideration, which will still drop out; however it may
sometimes cancel a divergence, making the term appear in the Carrollian case. When dealing with
the flux/balance equations we will prove that the radiation, source of the latter, appears in this way.
For the moment we illustrate this method with the tensorF = F𝐴𝐵θ

𝐴θ𝐵, which can be expanded
in Carrollian terms as

F

𝑘4 =
𝜉2

𝑘4dℓ
2 + 1

𝑘2

(
3𝜉2τ2 − 2D̂𝑏𝜉

𝑏
𝑎τθ̂

𝑎 − 2 ∗𝜛 ∗𝜉𝑎𝑏θ̂
𝑎
θ̂
𝑏
)

+ ∗𝜛2dℓ2 + 2 ∗D̂𝑎 ∗𝜛τθ̂
𝑎 − ˆK τ2 − 5𝑘2 ∗ 𝜛2τ2

=

(
C 2

4
+ ∗𝜛2

)
dℓ2 − ˆK τ2 + D̂𝑏C

𝑏
𝑎τθ̂

𝑎 + 2 ∗D̂𝑎 ∗𝜛τθ̂
𝑎

+ ∗𝜛 ∗C𝑎𝑏θ̂
𝑎
θ̂
𝑏 + 𝑘2

(
3
4
C 2 − 5 ∗𝜛2

)
τ2 (3.3.9)

with C 2 = 1
2C 𝑎𝑏C𝑎𝑏 and quantities like 𝜉2, ∗𝜛, ˆK defined in Sec. B.1.

Remark Recall that in (3.3.9) we just decomposed the relativistic quantities in a Carrollian fash-
ion, no limit has been taken yet. So the result, even though written in terms of Carrollian
quantities, is still genuinely relativistic.

Some terms drop in the zero-𝑘 limit but no divergence occurs and we are left with a piece in the
line element, which now contains explicitly the Bondi shear

lim
𝑘→0

F

𝑘4 =

(
C 2

4
+ ∗𝜛2

)
dℓ2 − ˆK τ2 + D̂𝑏C

𝑏
𝑎τθ̂

𝑎 + 2 ∗D̂𝑎 ∗𝜛τθ̂
𝑎 + ∗𝜛 ∗C𝑎𝑏θ̂

𝑎
θ̂
𝑏
. (3.3.10)

Remark The authors of Ref. [122] were the first to propose the idea of substituting the Bondi for
the geometric shear with the accompanying power of the cosmological constant. In their
work it turned out to be necessary to reach integrable charges.

Expanding the energy momentum tensor

Apart from the replacement between the two shears our second hypothesis is that the energy-
momentum tensor, which we recall constitutes the other part of the AdS solution space, is analytic
in powers of 𝑘2. It can thus be written as a Laurent series about 𝑘 = 0

𝜀 =
∑︁
𝑛∈ℤ

𝑘2𝑛𝜀(𝑛) , (3.3.11a)

𝑞𝑎 =
∑︁
𝑛≥2

𝜁 𝑎(𝑛)
𝑘2𝑛 +

𝜁 𝑎

𝑘2 + 𝑄
𝑎 + 𝑘2𝜋 𝑎 +

∑︁
𝑛≥2

𝑘2𝑛𝜋 𝑎(𝑛) , (3.3.11b)

𝜏𝑎𝑏 = −
∑︁
𝑛≥3

𝜁 𝑎𝑏(𝑛)
𝑘2𝑛 −

𝜁 𝑎𝑏

𝑘4 −
Σ𝑎𝑏

𝑘2 − Ξ
𝑎𝑏 − 𝑘2𝐸𝑎𝑏 −

∑︁
𝑛≥2

𝑘2𝑛𝐸𝑎𝑏(𝑛) . (3.3.11c)
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Each function in these series is a Carrollian tensor (scalar, vector, or symmetric and traceless two-
tensor) that is possibly one of the boundary degrees of freedom, which we call Chthonian to recall
they encode the asymptotically flat Einstein dynamics probing the bulk metric in depth from the
boundary. These tensors are expected to obey flux-balance equations, which are Carrollian avatars
of vacuum Einstein’s equations, and that we will attain using the anti-de Sitter dynamics and im-
posing a regular behaviour at zero 𝑘.

Remark We have no proof for this analyticity. The latter is a working framework which leads to
a consistent description of asymptotically flat spacetimes. Retrospectively we thus consider
this assumption to be physically relevant. The rules are simple: given the limit of the geometry
(3.3.1) and the expansion (3.3.11a), (3.3.11b) and (3.3.11c), impose regularity at 𝑘 = 0 after trading
𝜉𝑎𝑏 for − 𝑘

2

2 C𝑎𝑏. This process starts with 1
𝑟
, since this is the first term sensitive to the energy–

momentum tensor, but the substitution of C𝑎𝑏 will be performed systematically, everywhere
𝜉𝑎𝑏 appears.

At order 1
𝑟
we should probe (3.2.37), which spells

𝑓(1)
u2

𝑘4 + 2
u
𝑘2 𝑓(1)𝑎θ

𝑎 + 𝑓(1)𝑎𝑏θ𝑎θ𝑏 = 8𝜋𝐺
(
𝜀τ2 − 4

3
τ
Δ𝑞𝑎
𝑘2 θ̂

𝑎 + 2
3
Δ𝜏𝑎𝑏
𝑘2 θ̂

𝑎
θ̂
𝑏
)

(3.3.12)

with 𝜀 given in (3.3.11a) and

Δ𝑞𝑎

𝑘2 =
∑︁
𝑛≥2

𝜁 𝑎(𝑛)
𝑘2𝑛+2 +

1
𝑘4

(
𝜁 𝑎 − ∗𝑧

𝑎

8𝜋𝐺

)
+ 1
𝑘2

(
𝑄𝑎 − ∗𝜒

𝑎

8𝜋𝐺

)
+

(
𝜋 𝑎 − ∗𝜓

𝑎

8𝜋𝐺

)
+
∑︁
𝑛≥2

𝑘2𝑛−2𝜋 𝑎(𝑛) , (3.3.13)

Δ𝜏𝑎𝑏

𝑘2 = −
∑︁
𝑛≥3

𝜁 𝑎𝑏(𝑛)
𝑘2𝑛+2 −

1
𝑘6

(
𝜁 𝑎𝑏 − ∗𝑍

𝑎𝑏

8𝜋𝐺

)
− 1
𝑘4

(
Σ𝑎𝑏 − ∗𝑋

𝑎𝑏

8𝜋𝐺

)
− 1
𝑘2

(
Ξ𝑎𝑏 − ∗Ψ

𝑎𝑏

8𝜋𝐺

)
−𝐸𝑎𝑏 −

∑︁
𝑛≥2

𝑘2𝑛−2𝐸𝑎𝑏(𝑛) , (3.3.14)

where we have used (3.3.11b), (3.3.11c), the definitions (3.2.38) ofΔ𝑞𝑎 andΔ𝜏𝑎𝑏, as well as the Carrollian
Cotton tensors 𝑧𝑎, 𝜒𝑎, 𝜓𝑎, 𝑍𝑎𝑏, 𝑋 𝑎𝑏, Ψ 𝑎𝑏 displayed in (2.4.7c), (2.4.7b), (2.4.7a), (2.4.8c), (2.4.8b) and
(2.4.8a). Finiteness in the flat limit sets up two sorts of requirements on the Carrollian descendants
of the energy–momentum tensor.

• Infinite subsets of Laurent coefficients are required to vanish:
𝜀(𝑛) = 0 ∀𝑛 < 0

𝜁 𝑎(𝑛) = 0 ∀𝑛 ≥ 2

𝜁 𝑎𝑏(𝑛) = 0 ∀𝑛 ≥ 3;

(3.3.15)
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• Five Laurent coefficients are locked in terms of the dual of Carroll Cotton tensors

𝜁 𝑎 =
∗𝑧𝑎

8𝜋𝐺
, 𝑄𝑎 =

∗𝜒𝑎
8𝜋𝐺

, 𝜁 𝑎𝑏 =
∗𝑍𝑎𝑏
8𝜋𝐺

, Σ𝑎𝑏 =
∗𝑋 𝑎𝑏

8𝜋𝐺
, Ξ𝑎𝑏 =

∗Ψ 𝑎𝑏

8𝜋𝐺
. (3.3.16)

Hence a finite subset of energy–momentum Carrollian descendants are not independent but
are instead of geometric nature, determined by the boundary Carroll structure via its Cotton tensor.

These were the only constraints at 1
𝑟
order. Defining

𝑁𝑎 = ∗𝜓𝑎 − 8𝜋𝐺𝜋 𝑎, (3.3.17)

we recast the order-1
𝑟
term (3.3.12) in the flat limit as

lim
𝑘→0

(
𝑓(1)

u2

𝑘4 + 2
u
𝑘2 𝑓(1)𝑎θ

𝑎 + 𝑓(1)𝑎𝑏θ𝑎θ𝑏
)

= 8𝜋𝐺𝜀(0)τ2 + 4
3
τ𝑁𝑎θ̂

𝑎 − 16𝜋𝐺
3

𝐸𝑎𝑏θ̂
𝑎
θ̂
𝑏

≡ 𝑓(1)τ
2 − 2τ𝑓(1)𝑎θ̂

𝑎 + 𝑓(1)𝑎𝑏θ̂
𝑎
θ̂
𝑏
. (3.3.18)

Note that the Chthonian Carrollian tensors 𝜀(𝑛≥1) , 𝜋 𝑎(𝑛≥2) and 𝐸
𝑎𝑏
(𝑛≥2) are absent. We should not

interpret this as a sign that those aren’t genuine degrees of freedom. Some of them may appear in
the line element in the next orders and therefore participate in the dynamics. Only when one is
guaranteed that a Laurent coefficient is absent from the line element at any order, can we declare it
is irrelevant and set it consistently to zero. We should thus wait for the analysis at order- 1

𝑟2 .

3.3.2 The flat flux/balance equations and the infinite solution space

Order 1/𝒓 and flux-balance equations

Given ourmethod, this dynamics is encoded in the zero-𝑘 limit of anti-de Sitter Einstein’s equations
and in the finiteness requirement of the line element. As the flat limit of the line element up to 1

𝑟
-

order is finite we shall consider now the energy–momentum conservation ∇𝐴𝑇 𝐴𝐵 = D𝐴𝑇
𝐴𝐵 = 0.

Our treatment consists in the four steps summarized below.

1. In the frame (3.3.1), we consider D𝐴𝑇
𝐴𝐵 = 0 recast in Carrollian terms, see Eqs. (B.2.18a) and

(B.2.18b). We re-display them here

L = D̂υ𝜀 + D̂𝑎𝑞
𝑎 + 𝜉𝑎𝑏𝜏𝑎𝑏 = 0, (3.3.19a)

T 𝑎 =
1
𝑑
D̂ 𝑎𝜀 + D̂𝑏𝜏

𝑎𝑏 + 2𝑞𝑏𝜛𝑏𝑎 +
1
𝑘2

(
D̂υ𝑞

𝑎 + 𝜉𝑎𝑏𝑞𝑏
)
= 0 . (3.3.19b)

2. We insert in these equations the variables 𝜀, 𝑞𝑎 and 𝜏𝑎𝑏 in their expanded forms (3.3.11a), (3.3.11b)
and (3.3.11c), taking into account the finiteness requirements (3.3.15) and (3.3.16).
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3. The requirements (3.3.15) and (3.3.16) bring the Cotton tensor inside the boundary energy–
momentum conservation equations L = 0 and T 𝑎 = 0. Therefore we must also exploit
the Cotton identities

{
DCot = 0,I𝑎Cot = 0

}
,
{
ECot = 0,G𝑎Cot = 0

}
,
{
FCot = 0,H 𝑎

Cot = 0
}
and{

WCot = 0,X𝑎Cot = 0
}
set in Eqs. (2.4.11a), (2.4.11b), (2.4.11c), (2.4.11d), (2.4.12a), (2.4.12b), (2.4.12c),

(2.4.12d) and recast for our needs as

D̂𝑏 ∗Ψ 𝑎𝑏 + 2 ∗𝜛 𝜒𝑎 = D̂υ ∗𝜓𝑎 +
1
2
∗D̂ 𝑎𝑐(0) − ∗𝜓𝑏𝜉𝑎𝑏, (3.3.20a)

D̂𝑏 ∗𝑋 𝑎𝑏 + 2 ∗𝜛𝑧𝑎 − D̂υ ∗ 𝜒𝑎 =
1
2
∗D̂ 𝑎𝑐(1) − ∗𝜒𝑏𝜉𝑎𝑏, (3.3.20b)

D̂𝑏 ∗𝑍𝑎𝑏 − D̂υ ∗𝑧𝑎 =
1
2
∗D̂ 𝑎𝑐(2) − ∗𝑧𝑏𝜉𝑎𝑏 . (3.3.20c)

With this we reach the following longitudinal equation

L = 𝑘2D̂𝑎𝜋
𝑎 +

∑︁
𝑛≥2

𝑘2𝑛D̂𝑎𝜋
𝑎
(𝑛) − 𝜉𝑎𝑏

(
𝑘2𝐸𝑎𝑏 +

∑︁
𝑛≥2

𝑘2𝑛𝐸𝑎𝑏(𝑛)

)
+D̂𝜐𝜀(0) +

∑︁
𝑛≥1

𝑘2𝑛D̂𝜐𝜀(𝑛) −
1

8𝜋𝐺

(
∗Ψ 𝑎𝑏𝜉𝑎𝑏 − D̂𝑎 ∗ 𝜒𝑎

)
− 1

8𝜋𝐺𝑘2

(
∗𝑋 𝑎𝑏𝜉𝑎𝑏 − D̂𝑎 ∗𝑧𝑎

)
− 1

8𝜋𝐺𝑘4 ∗𝑍
𝑎𝑏𝜉𝑎𝑏, (3.3.21)

and

T 𝑎 = −D̂𝑏

(
𝑘2𝐸𝑎𝑏 +

∑︁
𝑛≥2

𝑘2𝑛𝐸𝑎𝑏(𝑛)

)
+ 2 ∗𝜛

(
𝑘2 ∗𝜋 𝑎 +

∑︁
𝑛≥2

𝑘2𝑛 ∗𝜋 𝑎(𝑛)

)
+ 1

2
D̂ 𝑎𝜀(0)

+1
2

∑︁
𝑛≥1

𝑘2𝑛D̂ 𝑎𝜀(𝑛) + D̂υ

(
𝜋 𝑎 +

∑︁
𝑛≥2

𝑘2𝑛−2𝜋 𝑎(𝑛)

)
+ 𝜉𝑎𝑏

(
𝜋𝑏 +

∑︁
𝑛≥2

𝑘2𝑛−2𝜋𝑏(𝑛)

)
− 1

8𝜋𝐺

(
D̂υ ∗𝜓𝑎 +

1
2
∗D̂ 𝑎𝑐(0) − ∗𝜓𝑏𝜉𝑎𝑏

)
− 1

8𝜋𝐺𝑘2

(
1
2
∗D̂ 𝑎𝑐(1) − ∗𝜒𝑏𝜉𝑎𝑏

)
− 1

8𝜋𝐺𝑘4

(
1
2
∗D̂ 𝑎𝑐(2) − ∗𝑧𝑏𝜉𝑎𝑏

)
, (3.3.22)

for the transverse equation.

4. Lastly we substitute the geometric Carrollian shear for the Bondi shear with a power of the
cosmological constant: 𝜉𝑎𝑏 = − 𝑘

2

2 C𝑎𝑏 inside Eqs. (3.3.21) and (3.3.22). Some singular terms in
the last lines of (3.3.21) and (3.3.22) get regularized at vanishing 𝑘. Instead of a divergence we
obtain a bunch of finite terms, all coming from the Carrollian Cotton tensor.

The flat limit of the boundary energy–momentum conservation can now be safely taken and
yields

lim
𝑘→0
L = D̂υ𝜀(0) +

1
8𝜋𝐺

D̂𝑎 ∗ 𝜒𝑎 −
1

16𝜋𝐺

(
D̂𝑎D̂𝑏

ˆN 𝑎𝑏 + C 𝑎𝑏D̂𝑎R̂𝑏 +
1
2
C𝑎𝑏D̂υ

ˆN 𝑎𝑏

)
, (3.3.23)
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and

lim
𝑘→0
T 𝑎 =

1
2
D̂𝑏

(
𝛿 𝑎𝑏𝜀(0) +

1
8𝜋𝐺

𝜂𝑎𝑏𝑐(0)

)
+ D̂𝜐

(
𝜋 𝑎 − 1

8𝜋𝐺
∗ 𝜓𝑎

)
+ 1

16𝜋𝐺

[
C 𝑎𝑏D̂𝑏

ˆK + ∗C 𝑎𝑏D̂𝑏
ˆA − 4 ∗𝜛 ∗C 𝑎𝑏R̂𝑏

−1
2
D̂ 𝑏

(
D̂𝑏D̂𝑐C

𝑎𝑐 − D̂ 𝑎D̂ 𝑐C𝑏𝑐

)
+C 𝑎𝑏D̂ 𝑐 ˆN𝑏𝑐 +

1
2
D̂ 𝑏

(
C 𝑎𝑐 ˆN𝑏𝑐

)
− 1

4
D̂ 𝑎

(
C 𝑏𝑐 ˆN𝑏𝑐

) ]
. (3.3.24)

Remark Observe that all terms accounting for gravitational radiation are coming from the Cotton
tensor, through the use of (3.2.33). This method therefore shows the central role of the latter.

We can finish our computation, inserting (3.3.16) which relates the Carrollian Cotton descendants
to replicas of the energy-momentum tensor, into (3.3.23) and (3.3.24). This yields an alternative form
of the flux/balance equations

D̂υ𝜀(0) + D̂𝑎𝑄
𝑎 =

1
16𝜋𝐺

(
D̂𝑎D̂𝑏

ˆN 𝑎𝑏 + C 𝑎𝑏D̂𝑎R̂𝑏 +
1
2
C𝑎𝑏D̂υ

ˆN 𝑎𝑏

)
(3.3.25)

and

1
2
D̂ 𝑎𝜀(0) − D̂𝑏Ξ

𝑎𝑏 + 2 ∗𝜛 ∗𝑄𝑎 + D̂𝜐𝜋
𝑎 = − 1

16𝜋𝐺

[
C 𝑎𝑏D̂𝑏

ˆK + ∗C 𝑎𝑏D̂𝑏
ˆA − 4 ∗𝜛 ∗C 𝑎𝑏R̂𝑏

−1
2
D̂ 𝑏

(
D̂𝑏D̂𝑐C

𝑎𝑐 − D̂ 𝑎D̂ 𝑐C𝑏𝑐

)
+ C 𝑎𝑏D̂ 𝑐 ˆN𝑏𝑐

+1
2
D̂ 𝑏

(
C 𝑎𝑐 ˆN𝑏𝑐

)
− 1

4
D̂ 𝑎

(
C 𝑏𝑐 ˆN𝑏𝑐

) ]
. (3.3.26)

These two equations are particular examples of the Carrollian conservation equations (with locked
connection i.e. no ambiguities) that we saw in (1.3.20) and (1.3.21) but with a right-hand side though.
This is thus a flux-balance equation, where the source is captured by the bulk gravitational radiation
encoded in the shear and the news.11 Notice that the above momentum 𝜋 𝑎 coincides with 𝑃𝑎 in
(1.3.21) and is dynamical, whereas the traceless Carrollian stress Ξ𝑎𝑏 is −Υ𝑎𝑏 in (B.1.49), (B.1.50), and
is dictated by the Cotton due to (3.3.16); similarly 𝑄𝑎 here is the energy flux Π𝑎 of (B.1.49), (B.1.50),
also locked by the Cotton in (3.3.16).

Remark Note that even if the Bondi shear C𝑎𝑏 or news ˆN𝑎𝑏, vanish local Carroll boost (aka shift
symmetry) is broken due to the presence of a non-zero energy flux Π𝑎. This breaking ori-
ginates from the bulk gravitational radiation, which in the covariant Newman–Unti gauge
does not originate solely in the news (3.2.34) but is also carried by the Carrollian energy flux

11It was argued by Ashtekar in [38] (then reviewed in [76]) that the radiative degrees of freedom should be contained
in the boundary connection, more precisely in 𝛽𝑎𝑏 defined in (1.2.1).
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Π𝑎 = 𝑄𝑎 = 1
8𝜋𝐺 ∗ 𝜒

𝑎 therefore by the Cotton tensor. The paragon are Robinson–Trautman
spacetimes for which in the present gauge, the gravitational radiation is exclusively rooted in
this Carrollian Cotton descendant, see [52].

Remark The Cotton tensor also satisfies ∇𝐴𝐶𝐴𝐵 = 0 off-shell, after the 𝑘 → 0 limit we get two
equations

D̂υ𝑐(0) + D̂𝑎 𝜒
𝑎 = 0, (3.3.27a)

1
2
D̂ 𝑎𝑐(0) − D̂𝑏Ψ

𝑎𝑏 + 2 ∗𝜛 ∗ 𝜒𝑎 + D̂υ𝜓
𝑎 = 0. (3.3.27b)

which play dual roles with respect to Eqs. (3.3.25) and (3.3.26), because the energy density
𝜀(0) = 𝑐Cot of Sec. 2.4 carries information on the mass of the source, while 𝑐(0) captures its
NUT charge (monopole-like magnetic mass). The two sets of equations are not symmetric
though: Eq. (3.3.27a) for instance is driven exclusively by the Cotton vector 𝜒𝑎 —as opposed
to its Carroll-dual ∗𝜒𝑎 entering the electric-mass equation (3.3.25) through 𝑄𝑎 = 1

8𝜋𝐺 ∗ 𝜒
𝑎.

Setting a dictionary between the various gauges

The flux/balance equations displayed in (3.3.23) and (3.3.24) corresponds to the boundary and Weyl
covariant enhancement of the ones already derived in the seminal BMS papers [32,33] and reviewed
in [130] by brute force computation for the Bondi mass aspect mass 𝑀Bondi and the angular mo-
mentum aspect 𝑁 𝐴

Bondi. In [156] the authors found them using symmetry arguments based on the
BMS-Weyl asymptotic symmetry group of asymptotically flat spacetimes. They defined the notion
of tensors and pseudo-tensors under the latter group (tensors are homogeneous while pseudo-
tensors can admit linear anomalies), sorted the pseudo-tensors with respect to their spin and found
the right combination of the latter and their derivatives such that thewhole thing is tensorial (i.e. no
longer just pseudo-tensorial). These combinations are the flux/balance equations for the covariant
massM , the angular momentumP 𝐴 and the covariant stress-tensor E𝐴𝐵, where we have used the
notations of [156].

What should be then worth doing now it to set up the dictionary between our work [155] and
the latter two [130, 156]. Our first exercise is to introduce the concept of covariant Bondi mass and
angular momentum. For the mass we can define

𝑀 = 4𝜋𝐺𝜀(0) −
1
8
C 𝑎𝑏 ˆN𝑎𝑏. (3.3.28)

This definition is reached from Eq. (2.39) of [122] valid in anti-de Sitter, at 𝑘 = 0. It coincides
with (42) of [156] upon identifying M of this reference with our 4𝜋𝐺𝜀(0) . What distinguishes the
energy density 4𝜋𝐺𝜀(0) and the mass 𝑀 is a radiative contribution which makes 𝑀 transforms
unhomogeneously under BMS-Weyl (while 4𝜋𝐺𝜀(0) transforms homogeneously). As studying the
action of asymptotic symmetries on the solution space is not part of the agenda of this thesis the
reader is asked to look at the aforementioned references for more details on that point. For the
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angular momentum aspect the definition (3.3.17) is enough.

We can also try to define a magnetic-mass aspect starting from anti-de Sitter, where the be-
haviour of the bulk Weyl tensor in the gauge used here exhibits the complex-mass combination
𝜏 = −𝑐+ 8𝜋 i𝐺𝜀 (see [147]) with 𝜀 the AdS-boundary energy density and 𝑐 the Cotton scalar. We thus
define the complex mass aspect of Ricci-flat spacetimes in CNU gauge as

�̂� = lim
𝑘→0

𝜏 = −2𝜈 + 8𝜋 i𝐺𝜀(0) , (3.3.29)

where
𝜈 =

1
2

lim
𝑘→0

𝑐 =
1
2
𝑐(0) −

1
4
D̂𝑎D̂𝑏 ∗C 𝑎𝑏 − 1

8
C𝑎𝑏 ∗ ˆN 𝑎𝑏 (3.3.30)

is the magnetic-mass aspect reached using (2.4.5a) and (2.4.6) upon substitution of 𝜉𝑎𝑏 = − 𝑘2

2 C𝑎𝑏.
Inspired by (3.3.28) we subtract the radiative contribution. This defines the NUT aspect

𝑁 = 𝜈 + 1
8
C𝑎𝑏 ∗ ˆN 𝑎𝑏 =

1
2
𝑐(0) −

1
4
D̂𝑎D̂𝑏 ∗C 𝑎𝑏, (3.3.31)

where 𝑐(0) =
(
D̂𝑎D̂ 𝑎 + 2 ˆK

)
∗𝜛 is one of the four Carroll Cotton scalars displayed in (2.4.6). Our

definitions for 𝜈 and𝑁 matchwith−M̃ and−�̃� of [156] , Eqs. (53) and (55), for 𝑐(0) = 0 (nomagnetic
monopole mass).

With the above definitions, Eqs. (3.3.27a), (3.3.25) and (3.3.26) become12

D̂υ𝑁 = − 1
2
D̂𝑎 𝜒

𝑎 − 1
4

(
D̂𝑎D̂𝑏 ∗ ˆN 𝑎𝑏 − ∗C 𝑎𝑏D̂𝑎R̂𝑏

)
, (3.3.32a)

D̂υ𝑀 = − 1
2
D̂𝑎 ∗ 𝜒𝑎 +

1
4

(
D̂𝑎D̂𝑏

ˆN 𝑎𝑏 + C 𝑎𝑏D̂𝑎R̂𝑏 −
1
2

ˆN𝑎𝑏
ˆN 𝑎𝑏

)
, (3.3.32b)

D̂υ𝑁
𝑎 − D̂ 𝑎𝑀 + ∗D̂ 𝑎𝑁 =

1
2

[
C 𝑎𝑏D̂𝑏

ˆK + ∗C 𝑎𝑏D̂𝑏
ˆA − 4 ∗𝜛 ∗C 𝑎𝑏R̂𝑏 −

1
2
∗D̂ 𝑎D̂𝑏D̂𝑐 ∗C 𝑏𝑐

− 1
2
D̂ 𝑏

(
D̂𝑏D̂𝑐C

𝑎𝑐 − D̂ 𝑎D̂ 𝑐C𝑏𝑐

)
+ C 𝑎𝑏D̂ 𝑐 ˆN𝑏𝑐 +

1
2
D̂ 𝑏

(
C 𝑎𝑐 ˆN𝑏𝑐

) ]
.

(3.3.32c)

The first equation phrases the loss process of the NUT aspect sustained by the Carroll-dual news
∗ ˆN𝑎𝑏 and the Carroll Cotton current 𝜒𝑎. It is actually a geometric identity associated with the Car-
roll structure — as is (3.3.27b), which could have been reexpressed as well in terms of the NUT
aspect. The last two flux-balance equations (3.3.32b) and (3.3.32c) for the electric-mass and angular-
momentum aspects are genuinely dynamical and coincide with Eqs. (2.53) and (2.50) of Ref. [122],
where the approach to asymptotic flatness via a limit of vanishing cosmological constant was pro-
posed, or else with (4.50) and (4.49) of [130], obtained in a plain Ricci-flat context.

Remark We observe that even-though the loss phenomena affects both the electric “Bondi” mass
12All these computations call for abundant use of the Weyl-covariant-derivative commutators presented in the ap-

pendix, Eqs. (B.1.61a), (B.1.61b), (B.1.61c), (B.1.64a), (B.1.64b) and (B.1.64c) .
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and the magnetic NUT charge, the latter is not affected neither by Ĉ𝑎𝑏 not ˆN𝑎𝑏 i.e. by grav-
itational radiation. This is in line with the important distinction raised between these two
quantities e.g. in [157].

Let us recap in a Table the links between the CNU gauge [155], the Bondi gauge in Bondi aspects
[130] and the Bondi gauge in BMS-Weyl covariant aspects [156]. The main message is the equality
between the dynamical shears.

CNU gauge [155] Bondi [130] Bondi BMS-Weyl [156]
τ exp(2𝛽0)d𝑢 d𝑢

∗𝜛, 𝜑𝑎 ≠ 0 0 0
C𝑎𝑏 𝐶𝑎𝑏 C𝑎𝑏

ˆN 𝑎𝑏 𝑁𝑎𝑏
trace-free −

𝑙
2𝐶

𝑎𝑏 N 𝑎𝑏

4𝜋𝐺𝜀(0) 𝑀Bondi − 1
8C𝑎𝑏

ˆN 𝑎𝑏 M
𝑁𝑎 𝑁𝑎

Bondi +
1
4

(
C 𝑎𝑏∇̂𝑐C𝑏𝑐 + 3

8 ∇̂
𝑎
(
C 𝑏𝑐C𝑏𝑐

) )
P𝑎

𝐸𝑎𝑏 − 3
16𝜋𝐺

(
𝐸𝑎𝑏Bondi −

1
16C 𝑎𝑏C 𝑐𝑑C𝑐𝑑

)
− 1

16𝜋𝐺T
𝑎𝑏

(3.3.33)

Note that we have already introduced in this table the stress 𝐸𝑎𝑏 which appears at order-1
𝑟
and

whose evolution equation will now be derived by taking the 𝑘 → 0 limit of the subleading order
1
𝑟2 , requiring regularity. Comparing our momenta with the BMS-Weyl covariant one of [158] we
therefore conclude that our CNU provides an appropriate framework to handle asymptotically flat
spacetimes in a boundary covariant fashion, at least in the regime in which logarithmic terms of
the radial coordinate are neglected.

Order 1/𝒓2 and the flat line element

The Carrollian symmetric and traceless two-tensor 𝐸𝑎𝑏, descendant of the AdS-boundary stress,
enters the line element at order 1

𝑟
. However, the fundamental Carrollian energy–momentum con-

servation equations (3.3.23) and (3.3.24) fail to capture its dynamics. Hence we have to go to the next
subleading order. The bulk metric, including the term (3.2.39) with the 𝑓(2)s as in (3.2.41a) (3.2.41b)
and (3.2.41c), is on-shell, as we have assumed the energy-momentum tensor to be conserved. How-
ever, this term is due to exhibit divergences at vanishing 𝑘. Removing them will impose conditions
involving the Chthonian degrees of freedom as well as their longitudinal derivatives appearing ex-
plicitly in (3.2.41c). This is the way that flat flux-balance equations are recovered in the transition
from anti-de Sitter to asymptotically flat spacetimes.

We just need to repeat the same method again, take the 𝑘→ 0 limit trading 𝜉𝑎𝑏 for − 𝑘
2

2 C𝑎𝑏. Let
us open the study with the scalar contribution 𝑓(2) , Eq. (3.2.41a) whose limit yields

lim
𝑘→0

𝑓(2) = 2 ∗𝜛𝜈 − 1
3
D̂𝑎𝑁

𝑎 ≡ 𝑓(2) . (3.3.34)
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Next we consider the transverse vector 𝑓(2)𝑎θ𝑎 in (3.2.41b):

lim
𝑘→0

𝑓(2)𝑎 = −
1
6
𝑁𝑏C𝑏𝑎 −

4
3
∗𝜛 ∗𝑁𝑎 − 4𝜋𝐺D̂𝑏𝐸

𝑏
𝑎 ≡ 𝑓(2)𝑎. (3.3.35)

Neither the limit (3.3.34) nor (3.3.35) introduce any new Chthonian degree of freedom or impose
any further condition on their evolution. As we will now see, the situation is different for the
transverse tensor (3.2.41c) 𝑓(2)𝑎𝑏θ𝑎θ𝑏. Using the numerous tools developed in this Chapter, we find13

𝑓(2)𝑎𝑏 =
1
𝑘2

(
16𝜋𝐺

3
D̂υ𝐸𝑎𝑏 +

1
3
D̂⟨𝑎𝑁𝑏⟩ + 2𝜋𝐺𝜀(0)C𝑎𝑏 −

𝜈

2
∗C𝑎𝑏

)
+ 2𝜋𝐺

(
8
3
D̂υ𝐸(2)𝑎𝑏 −

4
3
D̂⟨𝑎𝜋(2)𝑏⟩ + 𝜀(1)C𝑎𝑏 − 2C 𝑐

(𝑎 𝐸𝑏)𝑐

)
− 2 ∗𝜛3 ∗C𝑎𝑏

+ O
(
𝑘2) . (3.3.36)

This expansion in powers of 𝑘2 possesses interesting features, characteristic of the Chthonian or-
ders

• The flat limit is singular unless the order- 1
𝑘2 contribution to 𝑓(2)𝑎𝑏 is absent i.e.

D̂υ𝐸𝑎𝑏 =
3

16𝜋𝐺

(
−1

3
D̂⟨𝑎𝑁𝑏⟩ − 2𝜋𝐺𝜀(0)C𝑎𝑏 +

𝜈

2
∗C𝑎𝑏

)
, (3.3.37)

which is the new Carrollian flux-balance equation for 𝐸𝑎𝑏. This equation matches with Eq.
(4e) of [156] given the dictionary established in (C.0.18).

• Assuming Eq. (3.3.37) is fulfilled, the limit can be taken

lim
𝑘→0

𝑓(2)𝑎𝑏 =
16𝜋𝐺

3

(
D̂υ𝐸(2)𝑎𝑏 −

1
2
D̂⟨𝑎𝜋(2)𝑏⟩ +

3
8
𝜀(1)C𝑎𝑏 −

3
4
C 𝑐
(𝑎 𝐸𝑏)𝑐

)
− 2 ∗𝜛3 ∗C𝑎𝑏

≡ 𝑓(2)𝑎𝑏 , (3.3.38)

and provides the last piece of the order- 1
𝑟2 term in the Ricci-flat line element.

• New Chthonian degrees of freedom enter the bulk metric at this order: 𝐸(2)𝑎𝑏, 𝜋(2)𝑎 and 𝜀(1)
in the form of a symmetric and traceless Carrollian tensor

𝐹𝑎𝑏 = D̂υ𝐸(2)𝑎𝑏 −
1
2
D̂⟨𝑎𝜋(2)𝑏⟩ +

3
8
𝜀(1)C𝑎𝑏 −

3
8𝜋𝐺

∗𝜛3 ∗C𝑎𝑏. (3.3.39)

Their dynamics is unknown at this stage but will be unravelled in the course of the analysis
at order 1

𝑟3 .

We will close this paragraph exhibiting the explicit Ricci flat metric at the considered order. To
13We define the symmetric and traceless part of a Carrollian two-tensor 𝑠𝑎𝑏 as 𝑠⟨𝑎𝑏⟩ = 𝑠(𝑎𝑏) − 1

𝑑
𝑠 𝑐𝑐 𝛿𝑎𝑏 (here 𝑑 = 2).
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this end we use the results (3.2.6), (3.3.8), (3.3.10), (3.3.18), (3.3.34), (3.3.35), (3.3.38) and (3.3.39)

d𝑠2Ricci-flat = −τ
[
2d𝑟 +

(
2𝑟𝜑𝑎 − 2 ∗D̂𝑎 ∗𝜛 − D̂𝑏C

𝑏
𝑎

)
θ̂𝑎 +

(
𝑟𝜃 + ˆK

)
τ
]

+
(
𝑟2 + ∗𝜛2 + C 2

4

)
dℓ2 + (𝑟C𝑎𝑏 + ∗𝜛 ∗C𝑎𝑏) θ̂𝑎θ̂𝑏

+1
𝑟

(
8𝜋𝐺𝜀(0)τ2 + 4

3
τ𝑁𝑎θ̂

𝑎 − 16𝜋𝐺
3

𝐸𝑎𝑏θ̂
𝑎θ̂𝑏

)
+ 1
𝑟2

(
2 ∗𝜛𝜈 − 1

3
D̂𝑎𝑁

𝑎

)
τ2 + 1

𝑟2τ

(
1
3
𝑁𝑏C𝑏𝑎 +

8
3
∗𝜛 ∗𝑁𝑎 + 8𝜋𝐺D̂𝑏𝐸

𝑏
𝑎

)
θ̂𝑎

+ 1
𝑟2

(
16𝜋𝐺

3
𝐹𝑎𝑏 − 4𝜋𝐺C 𝑐

(𝑎 𝐸𝑏)𝑐

)
θ̂𝑎θ̂𝑏 + O

(
1
𝑟3

)
. (3.3.40)

This solution to vacuum Einstein’s equations is built upon the following boundary Carrollian data

• a generic Carrollian structure without geometric shear 𝜉𝑎𝑏 = 0 (but arbitrary Ehresmann
connection providing 𝜑𝑎 and ∗𝜛)

• a dynamical shear C𝑎𝑏 left free via the Carrollian limit of (3.2.33), which sources the flux-
balance laws for the mass and the angular momentum,

• an energy density 𝜀(0) i.e. a Bondi mass 𝑀, a heat current 𝑁𝑎 aka the Bondi angular mo-
mentum aspect and a stress 𝐸𝑎𝑏, all satisfying the flux-balance equations (3.3.32b), (3.3.32c)
and (3.3.37) (recall that the magnetic equivalent for the NUT charge 𝑁 is a geometric identity
and not a flux-balance law),

• three more degrees of freedom 𝐸(2)𝑎𝑏, 𝜋(2)𝑎 and 𝜀(1) encoded in 𝐹𝑎𝑏 (3.3.39) with evolution
equations yet to be uncovered but expected to arise at order- 1

𝑟3 .

This concludes the presentation of our method to find the structure of asymptotically flat space-
times from the one of AdS.

3.4 Outlook and discussion

In this Chapter we described a method to reach the infinite solution space of asymptotically flat
spacetimes from a smooth 𝑘 → 0 limit of the finite AdS one. This was not expected as these two
types of solutions of Einstein gravity support completely distinct behavior regarding gravitational
radiation, which passes through the null boundary in the former, while being reflected in the latter
(under usual boundary conditions though). However we were able to design an incomplete gauge
fixing, adapted fromNewman-Unti, built upon a timelike congruence 𝒖, which allows to treat both
cases in a boundary covariant way, the covariance surviving the flat limit. This is our first achieve-
ment.
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The second one is the flat limit itself. Sending the cosmological constant to zero in the bulk
translates into a Carrollian limit on the pseudo-Riemannian boundary of AdS. The limit is carefully
taken following three steps. The Bondi shear C𝑎𝑏 is traded on-shell for the geometric shear 𝜎𝑎𝑏.
Then the AdS energy-momentum tensor 𝑇 𝐴𝐵 decomposed with respect to 𝒖 is Laurent-expanded
in powers of 𝑘2 = −Λ

3 about 𝑘2 = 0, supplying an infinite set of replicas which account for the
infinite Chthonian flat degrees of freedom. Finally the evolution equations (flux/balance laws) are
obtained through the limit of the AdS conservation of energy and momentum, or by requiring
finiteness of the line element. On top of that, some replicas of the energy-momentum tensor are
locked in terms of the Cotton tensor, hence the geometry, reducing the total number of arbitrary
variables.

Our analysis showed that even in flat space the boundary energy-momentum tensor plays a
central role in reconstructing the bulk. Besides the Bondi shear, the solution space is made of the
Carrollian energy density, angular momentum, stress together with an infinite tower of Chthonian
tensors. The status of the latter is still to be uncovered. Are they relevant and if yes to what extend?
What are their dynamics? What do they encode? These are old interrogations that our covariant
gauge may help to answer.14 One case of special interest is the order- 1

𝑟3 where we expect to find, as
already said, the ten Newman-Penrose charges [150–154]. The method presented here should then
be push further by first finding the relevant tensors in AdS and then taking the flat limit which
should give, in addition to the flat line element, the flux/balance law for the first Chthonian tensor
𝐹𝑎𝑏 in (3.3.39).

Another achievement of the present analysis concerns the AdS origin of the gravitational ra-
diation of the flat instance. Indeed we show that all source terms in the flux/balance laws (3.3.23)
and (3.3.24) are rooted in the decomposition of the boundary AdS Cotton tensor. Invisible in usual
gauges, the CNU gives shows the central role it plays in the description of asymptotically flat space-
times.

The CNU gauge has been introduced here with the flat limit in mind. The analysis usually con-
tinues with the computation of the asymptotic symmetry algebra and group in view of finding the
action of the latter on the solution space. Such a study is of great help, for example, in defining a
physical notion of gravitational radiation as it is expected that the tensor supporting it transforms
homogeneously under the asymptotic symmetry algebra (see e.g. [161] for the definition of the phys-
ical news tensor in Bondi gauge). Other works use the transformations laws of the solution space to
define a physical notion of angular momentum [162–165]. One should also address the question of
logarithmic terms. How do they fit in the analysis presented in this Chapter and how this is related
to previous works like [59, 132]? This has to be unveiled in the near future.

The boundary covariance of the CNUgauge allows to study asymptotically flat spacetimes from
a completely new perspective, namely the one of the Carrollian boundary. The next Chapter aims
at illustrating this statement in the restricted context of algebraically special spacetimes.

14Note also that an analysis in double-light cone coordinate may also prove useful, see e.g. [159, 160].
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Chapter 4

Algebraically special spacetimes and a
Carrollian perspective on charges

The covariant Newman-Unti gauge provides an adequate framework to investigate asymptotically
flat spacetimes, rooted in their null boundary and associated with a free congruence. This was
the conclusion of the previous chapter. The aim of the present is to illustrate this statement by
showing how to recover e.g. gravitational multipoles like in [166] but from a Carrollian perspective.
As our purpose is only to give explicit examples, we will not deal with the complete metric in CNU
gauge (3.3.40) but rather with a simpler, resummed version, obtained once suitable conditions are
assumed on the boundary data. This will be the flat analogue of (3.2.48) obtained in AdS. Like in this
instance, it captures Petrov-algebraically special spacetimes. This subclass of solutions of Einstein
gravity should be thought of as a playground to better understand the interplay between bulk and
boundary dynamics. Extending the analysis to to the general case should be rather direct and is
part of our future agenda.

The quantities we want to study from a Carrollian point of view are charges built upon isomet-
ries. One should then relate bulk isometries to isometries of the Carrollian boundary. If the latter
are strong (i.e. they preserve the clock form) they will be associated with conserved charges. We
would like to clarify a point at this stage. In gravity like in any gauge theory one can associate to
a gauge symmetry a charge defined on a codimension-two hypersurface using Noether theorem.
These charges are computed using usual methods like the covariant phase space formalism (see [167]
or [3] for reviews). The latter are called surface charges, even though they are purely related to the
bulk gauge symmetries. The question we want to address here deals with bulk isometries i.e. rigid
symmetries and their associated charges. We want to compute the latter focusing exclusively on
the boundary Carroll structure, and compare the result with the one procured by traditional bulk
methods.

This Chapter is organised as follows. Sec. 4.1 is aimed at presenting the set of algebraically
special solutions in CNU gauge, together with a reminder on the Petrov classification. Then, as
the charge analysis and Chapter 5 will extensively use the subclass of stationary solutions, we shall
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study them in details. In Section 4.2 we exhibit a way to relate bulk isometries and their associ-
ated charges to the ones we learnt to construct in a Carroll structure in Sec. 1.5. Thanks to the
resummation of the line element, two infinite towers of charges can be constructed either from the
energy-momentum tensor or from the Cotton tensor. We compute them explicitly in the case of
Kerr-Taub-NUT spacetimes and observe that they correspond to gravitational multipoles. Recall
that we are still in four dimensions and that we shall describe the two-dimensional base space of the
Carrollian boundary in holomorphic coordinates, for which Sec. 1.6 contained all useful informa-
tion.

4.1 Algebraically special solutions

In this Section we focus on a sub-class of solutions of asymptotically flat gravity for which the
infinite expansion (3.3.40) is resummed into a finite form. After presenting the hypotheses under
which this occurs, we will comprehensively study the sub-sector of time-independent solutions, as
they will constitute our framework in the next Chapter.

4.1.1 Generalities

Resumming the radial expansion

Resummation of (3.3.40) occurs when suitable conditions are imposed on the boundary data. These
conditions are the following

• the vanishing of the dynamical shear C𝑎𝑏(𝑡,x) which implies via (3.3.28) that the Bondi mass
aspect reads 𝑀 = 4𝜋𝐺𝜀(0) ,

• all Chthonian functions should vanish, like e.g. 𝐸𝑎𝑏, 𝐸(2)𝑎𝑏 or 𝜋(2)𝑎,

• the angular momentum aspect 𝑁 𝑎 is set to zero. This fixes the fluid heat current 𝜋 𝑎 as a
component of the dual Cotton tensor

𝜋 𝑎 =
1

8𝜋𝐺
∗ 𝜓𝑎 , (4.1.1)

leaving 𝜀(0) as only arbitrary component of the energy-momentum tensor.

The bulk spacetime is then entirely described by means of the Carrollian boundary geometry (met-
ric, field of observers and Ehresmann connection) plus the the energy density of the associated
Carrollian fluid and its line element reads

d𝑠2res. Ricci-flat = −τ
[
2d𝑟 +

(
2𝑟𝜑𝑎 − 2 ∗D̂𝑎 ∗𝜛

)
θ̂𝑎 +

(
𝑟𝜃 + ˆK

)
τ
]
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+
(
𝑟2 + ∗𝜛2) dℓ2 + 1

𝑟2 + ∗𝜛2

(
8𝜋𝐺𝜀(0)𝑟 + ∗𝜛𝑐(0)

)
τ2. (4.1.2)

This captures all algebraically special Ricci-flat spacetimes (see below for the proof) provided 𝜀(0)
obeys (3.3.25) and (3.3.26) which now read

D̂υ𝜀(0) +
1

8𝜋𝐺
D̂𝑎 ∗ 𝜒𝑎 = 0, (4.1.3a)

D̂𝑎𝜀(0) −
1

8𝜋𝐺
∗D̂𝑎𝑐(0) = 0, (4.1.3b)

where we recall that 𝜀(0) is the fluid energy density while 𝑐(0) and 𝜒𝑖 are pieces of the Carrollian
Cotton tensor displayed in (2.4.6) and in (2.4.7b). These Carrollian fluid equations, which guarantee
Ricci-flatness of the line element (4.1.2), are now genuine conservation equations without source
terms (2.2.18a), (2.2.18b), (2.2.18c) and (2.2.18d), where the momenta are

Π = 𝜀(0) , Π𝑎 =
1

8𝜋𝐺
∗ 𝜒𝑎, 𝑃𝑎 =

1
8𝜋𝐺

∗ 𝜓𝑎, Π̃𝑎𝑏 = − 1
8𝜋𝐺

∗𝑋 𝑎𝑏, Π𝑎𝑏 =
𝜀(0)
2
𝑎𝑎𝑏 − 1

8𝜋𝐺
∗Ψ 𝑎𝑏

(4.1.4)
together with Π̃ = 0 and Π̃𝑎 = 0. Recall that similar equations holds for the Cotton tensor, with
momenta displayed in Eq. (2.4.13).

Remark Equations (4.1.3a) and (4.1.3b) coincide with Eqs. (29.16) and (29.15) of [110].1 The latter are
rather complicated and it is remarkable they are translated into simple conservation equa-
tions such as (4.1.3a) and (4.1.3b). Reaching this conclusion would have been inconceivable
without the null boundary perspective and the Carrollian tools, which are the appropriate
language for asymptotically flat spacetimes.

From the above Eqs. (4.1.3a) and (4.1.3b) as well as Eq. (2.4.11b) one can observe that the energy
density 𝜀(0) and the Carrollian Cotton scalar 𝑐(0) play dual roles. This will be formulated concretely
in Sec. 5.2 in the context of the boundary action of the hidden Ehlers symmetry. Anticipating what
will be done in this Chapter, we introduce the followingCarrollian complex scalar �̂� (𝑡, x) and vector
�̂�𝑎(𝑡,x)

�̂� = −𝑐(0) + 8𝜋 i𝐺𝜀(0) , (4.1.5a)

�̂�𝑎 = 𝜒𝑎 − i ∗ 𝜒𝑎. (4.1.5b)

The aforementioned equations are thus recast as

D̂υ �̂� = D̂𝑎 �̂�
𝑎, D̂𝑎 �̂�D̂ 𝑎 �̂� = 0,

D̂𝑎 �̂�D̂ 𝑎 ˆ̄𝜏 = 8
(
2 ∗𝜛 ∗ 𝜒𝑏 + D̂υ𝜓𝑏 − D̂ 𝑎Ψ𝑎𝑏

) (
2 ∗𝜛 ∗ 𝜒𝑏 + D̂υ𝜓

𝑏 − D̂𝑘Ψ
𝑐𝑏
)
.

(4.1.6)

1For that purpose, the following identifications are necessary, in Papapetrou–Randers frame and complex coordin-
ates x =

{
𝜁 , 𝜁

}
with dℓ2 = 2

𝑃2 (𝑢,𝜁 ,𝜁 ) d𝜁d𝜁 , υ = 1
Ω𝜕𝑢, τ = Ωd𝑢 − 𝑏𝑎d𝑥𝑎 and �̂�𝑎 = �̂�𝑎 = 𝜕𝑎 + 𝑏𝑎

Ω 𝜕𝑢,ˆ
θ𝑎 = d𝑥𝑎: Ω = 1, 𝑏𝜁 = −𝐿, ∗𝜛 = −Σ, �̂� = 2(𝑀 + i𝑚), whereas their radial coordinate is 𝑟 = 𝑟 − 𝑟0 with 𝑟0 (𝑢, 𝜁 , 𝜁 ) the

origin in the affine parameter of the geodesic congruence tangent to 𝜕𝑟 .
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Acting with a second spatial derivative on (4.1.3b) and using (1.4.9a), we finally obtain

D̂ 𝑎D̂𝑎 �̂� = 2i
(
D̂υ ∗𝜛�̂� − ˆA �̂�

)
. (4.1.7)

This equation will be of major importance when studying stationary spacetimes in Sec. 4.1.2.

Remark The algebraically special character of a spacetime comes from the Petrov classification of
the Weyl tensor 𝐶𝜇𝜈𝜌𝜎 , which reads in (3 + 1)-dimensions

𝐶𝜇𝜈𝜌𝜎 = 𝑅𝜇𝜈𝜌𝜎 +
1
2

(
𝑅𝜇𝜎 𝑔𝜈𝜌 − 𝑅𝜇𝜌𝑔𝜈𝜎 + 𝑅𝜈𝜌𝑔𝜇𝜎 − 𝑅𝜈𝜎 𝑔𝜇𝜌

)
+ 1

6
𝑅(𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎 𝑔𝜈𝜌) . (4.1.8)

Spacetimes are differentiated regarding the principal null directions their Weyl tensor pos-
sesses. A principal null direction is a null vector field 𝒌 which satisfies

𝑘[𝛾𝐶𝜇]𝜈𝜌[𝜎 𝑘𝜅]𝑘
𝜈𝑘𝜌 = 0 . (4.1.9)

There exist at most four such vectors. The Petrov class the spacetime at hand belongs to
depends on the number andmultiplicity of its principal null direction (PND).While counting
them should not be an issue, computing their multiplicity requires a null tetrad (𝒌, 𝒍,𝒎, �̄�)
in which the metric reads d𝑠2 = −2𝒌 · 𝒍 + 2𝒎 · �̄� and upon which the Newman-Penrose Weyl
scalar are computed. The latter read

Ψ0 = 𝐶𝜇𝜈𝜌𝜎 𝑘
𝜇𝑚𝜈𝑘𝜌𝑚𝜎 (4.1.10a)

Ψ1 = 𝐶𝜇𝜈𝜌𝜎 𝑘
𝜇𝑙𝜈𝑘𝜌𝑚𝜎 (4.1.10b)

Ψ2 = 𝐶𝜇𝜈𝜌𝜎 𝑘
𝜇𝑚𝜈�̄�𝜌𝑙𝜎 (4.1.10c)

Ψ3 = 𝐶𝜇𝜈𝜌𝜎 𝑘
𝜇𝑙𝜈�̄�𝜌𝑙𝜎 (4.1.10d)

Ψ4 = 𝐶𝜇𝜈𝜌𝜎 �̄�
𝜇𝑙𝜈�̄�𝜌𝑙𝜎 (4.1.10e)

and, when 𝒌 is a PND, the five of them are related by a fourth-order algebraic equation

Ψ0 − 4𝐸Ψ1 + 6𝐸2Ψ2 − 4𝐸3𝜓3 + 𝐸4Ψ4 = 0 , (4.1.11)

to solve for 𝐸. The number of roots of (4.1.11) and their multiplicities is exactly what we were
seeking. The complete Petrov classification is then displayed in the next Table.

Petrov type Number of roots Multiplicities Newman-Penrose coefficients
I 4 (1, 1, 1, 1) Ψ1 = Ψ3 = 0
II 3 (2, 1, 1) Ψ0 = Ψ1 = Ψ3 = 0
III 2 (3, 1) Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0
D 2 (2, 2) Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0
N 1 (4) Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0
O 0 None Ψ𝑖 = 0 for 𝑖 = 0, . . . , 5

(4.1.12)
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An algebraically special spacetime is then a spacetimeswhich is not type I whichmeans that at
least Ψ0 and Ψ1 both have to vanish. Well-known solutions of Type D includes the Plebanski-
Demianski [168] family among which sits the Schwarzschild and Taub-NUT solutions. Type
O only include the vacuum.

Remark The Newman-Penrose Weyl scalars [169] contain useful information to characterise the
spacetime at hand. If one remembers that theWeyl tensor contains the propagating degrees of
freedom, i.e. the gravitational radiation, in a null tetrad (𝒌, 𝒍,𝒎, �̄�) where 𝒌 labels incoming
null rays and 𝒍 outgoing null rays, the Ψs get the following interpretation

• Ψ0 and Ψ1 encode the incoming gravitational radiation coming from I −,

• Ψ3 and Ψ4 encode the outgoing gravitational radiation passing through I +,

• Ψ2 is a complex numberwhose real part is related to themass of the source of gravitation
while its imaginary part corresponds to the NUT charge or magnetic mass (the latter is
the 𝑛 parameter of the Taub-NUT solution [170, 171]).

In terms of the solution space in CNU gauge, given its relation to the Bondi gauge and using
[131] we get that 𝐸𝑎𝑏 ∝ Ψ (0)0 , 𝑁𝑎 ∝ Ψ (0)1 , 𝜀(0) , 𝜈 ∝ Ψ (0)2 , D𝑎

ˆN 𝑎𝑏 ∝ Ψ (0)3 and Dυ
ˆN 𝑎𝑏 ∝

Ψ (0)4 . The upper 0 index refers to the leading coefficient in the 1
𝑟
-expansion of the Newman-

Penrose scalars.

The Goldberg-Sachs theorem (see e.g. Theorem 7.1 of [110]) states that if a gravitational field
possesses a shearfree geodesic null congruence 𝒌 and if 𝑅𝑎𝑏𝑘𝑎𝑘𝑏 = 0 then this field is algebraically special
and 𝒌 is a degenerate eigendirection i.e. Ψ0 = Ψ1 = 0. The cancellation of these two Newmann-
Penrose coefficients shows that such spacetimes cannot encompass incoming radiation (in the fluid
language this corresponds to 𝐸𝑎𝑏 = 0 and 𝑁𝑎 = 0 which fits precisely in our hypotheses). In our
case we use the null, geodesic, and shear-free bulk congruence tangent to 𝜕𝑟 . The latter is part of
the canonical null tetrad parallelly transported along 𝜕𝑟 (thanks to the affine nature of 𝑟) introduced
in [52], which coincides with that of [110], Eq. (29.13a), as well as with the original Ref. [169]. In
complex coordinates 𝜁 and 𝜁 the null tetrad reads

k = 𝜕𝑟

l = 1
2

(
8𝜋𝐺𝜀 (0) 𝑟+∗𝜛𝑐(0)

𝑟2+∗𝜛2 − 𝑟𝜃 − ˆK
)
𝜕𝑟 + υ

m = 𝑃
𝑟−i∗𝜛

(
�̂�𝜁 +

(
∗D̂𝜁 ∗𝜛 − 𝑟𝜑𝜁

)
𝜕𝑟

) (4.1.13)

with k · l = −1, m · m̄ = 1 and d𝑠2res. Ricci-flat = −2kl + 2mm̄. Generically, k is a multiplicity-two
principal null direction of the Weyl tensor, and using the tetrad at hand we find the following Weyl
complex scalars: Ψ0 = Ψ1 = 0 (as expected) and

Ψ2 =
i�̂�

2(𝑟 − i ∗𝜛)3 , Ψ3 =
i𝑃 𝜒𝜁

(𝑟 − i ∗𝜛)2 +O
(

1
(𝑟 − i ∗𝜛)3

)
, Ψ4 =

i𝑋 𝜁

𝜁

𝑟 − i ∗𝜛 +O
(

1
(𝑟 − i ∗𝜛)2

)
. (4.1.14)

– 125 –



Note that all Ψs are expressed using the Carrollian descendants of the boundary Cotton tensor —
as well as their derivatives in the higher-order terms. This is not a surprise as the Cotton tensor
is nothing but the three-dimensional analogue of the Weyl tensor. Hence the bulk information
about radiation is directly translated on the Carrollian boundary via the Cotton tensor, as already
observed in the last Chapter.

The precise Petrov type of the solution at hand can be determined using the followingCarrollian
tensors [114] (with the notations of Sec. 2.2)

𝜀± = 𝜀(0) ±
𝑖

8𝜋𝐺
𝑐(0) , (4.1.15a)

𝑄±𝑖 = 𝑄𝑖 ±
𝑖

8𝜋𝐺
𝜒𝑖 , (4.1.15b)

Σ±𝑖 𝑗 = Σ𝑖 𝑗 ±
𝑖

8𝜋𝐺
𝑋𝑖 𝑗 . (4.1.15c)

These Carrollian geometric tensors encompass information also stored in the Newman-Penrose
scalars (4.1.10). The way they determine the Petrov type will be presented now with an explicit
example.

Example of resummable spacetime

We have already encountered this example when dealing with the charges of the Carrollian scalar
field as well as when presenting a simple Carrollian fluid. This is the four-dimensional Robinson-
Trautman solution described in coordinates (𝑟, 𝑡, 𝜁 , 𝜁 ). As we saw in Sec. 2.2 these solutions are
described by a vorticity-free Carrollian fluid as 𝑏𝑖 = 0 and Ω = 1. The resummable metric (4.1.2)
can then be written as

d𝑠2RT = −2d𝑡(d𝑟 + 𝐻d𝑡) + 2
𝑟2

𝑃2d𝜁d𝜁 , (4.1.16)

with 𝑃 (𝑡, 𝜁 , 𝜁 ) satisfying the Robinson-Trautman equation (2.3.27) and where

2𝐻 = −2𝑟𝜕𝑡 ln 𝑃 + 𝐾 − 2𝑀 (𝑡)
𝑟

, (4.1.17)

with again 𝐾 the Gaussian curvature (see (2.2.28)). In addition two descendants of the Cotton tensor
are non vanishing, 𝝌 and 𝑿 , and read

𝝌 =
𝑖

2
(
𝜕𝜁𝐾d𝜁 − 𝜕𝜁𝐾d𝜁

)
, 𝑿 =

𝑖

2
(
𝜕𝜁 (𝑃2𝜕𝑡𝜕𝜁 ln 𝑃)d𝜁 2 − 𝜕𝜁 (𝑃2𝜕𝑡𝜕𝜁 ln 𝑃)d𝜁 2) . (4.1.18)

In the coordinates at hand the tensors (4.1.15) read

𝜀+ =
𝑀 (𝑡)
4𝜋𝐺

, 𝑸+ = − 1
8𝜋𝐺

𝜕𝜁𝐾d𝜁 , 𝚺+ = − 1
4𝜋𝐺𝑃2𝜕𝜁 (𝑃

2𝜕𝑡𝜕𝜁 ln 𝑃)d𝜁 2 , (4.1.19)

and the following classification was derived in [114]
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• Type II. generic tensors,

• Type III. 𝜀+ = 0 and div 𝑸+ = 0,

• Type N. 𝜀+ = 0 and 𝑄+
𝜁
= 0,

• Type D. 2𝑄+
𝜁
𝑄+
𝜁
= 3𝜀+Σ+

𝜁 𝜁
and vanishing traceless part of the first derivative of 𝑸.

4.1.2 Stationary solutions

To illustrate the power of the boundary perspective on asymptotically flat spacetimes, we will study
in a more systematic and comprehensive way an important subclass of spacetimes, the stationary
ones. A nice feature of the latter is that the timelike character of the Killing field is maintained
even in the asymptotic region when 𝑟 → ∞. This allows us to pick as Killing a vector that will
ultimately coincide with the field of observers υ of the Carrollian boundary (see (1.1.2)) and hence
with the fibers of the Carroll structure. Using the freedom given by Weyl transformations (1.4.1) we
will eventually choose this Killing to be aligned with 𝜕𝑡 by setting Ω = 1. This set-up is of course
far from being general as it for example forbids any solutions in which the timelike Killing field
becomes spacelike in the asymptotic region, like the 𝐶-metric (see [110, 168, 172]). Anyway it will be
enough for our purposes and extending the forthcoming analysis tomore general spacetimes is part
of our future agenda.

When 𝜕𝑡 is a Killing field and when Ω is taken equal to one, all the Carrollian data present in
(4.1.2) is time-independent. Moreover, at the level of the geometry 𝜃 = 0 and 𝜑𝑖 = 0 which have for
main consequence to cancel the differences betweenCarroll andWeyl-Carroll covariant derivatives
(as the Weyl connection (1.4.4) identically vanishes). The only non vanishing geometrical data are
the vorticity ∗𝜛, the Gauss curvature ˆK and pieces of the Carrollian Cotton tensor. They read

∗𝜛 =
i𝑃2

2
(
𝜕𝜁 𝑏𝜁 − 𝜕𝜁 𝑏𝜁

)
, (4.1.20a)

ˆK = �̂� = 𝐾 = Δ ln 𝑃, (4.1.20b)

𝑐(0) = (Δ + 2𝐾) ∗𝜛, (4.1.20c)

𝜒𝜁 =
i
2
𝜕𝜁𝐾, 𝜒𝜁 = −

i
2
𝜕𝜁𝐾, (4.1.20d)

𝜓𝜁 = 3i𝜕𝜁 ∗𝜛2, 𝜓𝜁 = −3i𝜕𝜁 ∗𝜛2, (4.1.20e)

Ψ𝜁 𝜁 =
1
𝑃2𝜕𝜁

(
𝑃2𝜕𝜁 ∗𝜛

)
, Ψ𝜁 𝜁 =

1
𝑃2𝜕𝜁

(
𝑃2𝜕𝜁 ∗𝜛

)
, (4.1.20f)

where we recall that Δ𝑓 = 2𝑃2𝜕𝜁𝜕𝜁 𝑓 . To these one should add the energy density 𝜀(0) , as well as
another scalar

𝜛 =
𝑃2

2
(
𝜕𝜁 𝑏𝜁 + 𝜕𝜁 𝑏𝜁

)
, (4.1.21)

which corresponds to 1
2∇𝑖𝑏

𝑖 and should not be confused with ∗𝜛 = −1
2∇𝑖 ∗𝑏

𝑖 displayed explicitly in
(4.1.20a) (its definition as the two-dimensional Hodge dual of the vorticity was displayed in (3.2.24)).
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These two real twist scalars are adroitly combined into the complex Carrollian twist

�̂� = ∗𝜛 + i𝜛 , (4.1.22)

in a combination that recall the definition of �̂� in (4.1.5a).

Together with the geometry are the equations of motion (4.1.3a) and (4.1.3b) that we prefer to
treat in the form (4.1.6) with �̂� in view of the subsequent Ehlers analysis to be done in Chapter 5.
They are recast as

Δ𝐾 = 0 , (4.1.23a)

𝜕𝜁 �̂� = 0 , (4.1.23b)

which first imply that the curvature is a harmonic function i.e.

𝐾 (𝜁 , 𝜁 ) = 1
2

(
�̂�(𝜁 ) + ˆ̄𝑘(𝜁 )

)
, (4.1.24)

with �̂�(𝜁 ) a function and ˆ̄𝑘 is the function whose values are complex-conjugate to �̂�. For further
use we also introduce another harmonic function

𝐾∗(𝜁 , 𝜁 ) = 1
2𝑖

(
�̂�(𝜁 ) − ˆ̄𝑘(𝜁 )

)
(4.1.25)

which is the imaginary part of �̂�(𝜁 ).

Remark Although �̂�(𝜁 ) may seem arbitrary, remember that 𝐾 = Δ ln 𝑃 (see (4.1.20b)) so in fine
the freedom is rather limited. Actually only one non constant solution has been exhibited so
far [110]: 𝐾 = −3(𝜁 + 𝜁 ) associated with 𝑃 = (𝜁 + 𝜁 )3/2.

Using (4.1.23b) and the definition (4.1.5a) we infer that −𝑐(0) is the real part of an arbitrary holo-
morphic function �̂� (𝜁 ) while 8𝜋𝐺𝜀(0) is its imaginary part. As (4.1.7) reduces in the situation at
hand to Δ�̂� = 0, both 𝑐(𝜁 , 𝜁 ) and 𝜀(𝜁 , 𝜁 ) are holomorphic functions. Finally, given the Cotton dens-
ity 𝑐(0) and the curvature 𝐾 one can solve (4.1.20c) for ∗𝜛 and eventually 𝑏𝜁 , 𝑏𝜁 (which is the complex
conjugate of the former). This is what means solving Einstein’s equations in the present case. Two
main situations can be distinguished, regarding the curvature 𝐾 which can be either constant or
not.

Non-constant 𝑲. Apart from the explicit solution exhibited above, even though this is the
generic situation, that case is in practice very obscure regarding the interpretation of the associ-
ated bulk geometry. Anyway if one has a 𝑃 associated with a non-constant curvature on gets for
Ehresmann connection

𝑏𝜁 (𝜁 , 𝜁 ) =
𝑖 ˆ̄𝜏 (𝜁 )

𝑃2(𝜁 , 𝜁 )𝜕𝜁 ˆ̄𝑘(𝜁 )
. (4.1.26)

Constant 𝑲. In this case �̂�(𝜁 ) is also constant, hence due to the derivative in the denominator
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of (4.1.26), that solution is no longer valid. This case is the most common situation as it captures
three standard instances: spherical, flat or hyperbolic foliations. For example the Kerr-Taub-NUT
family that we shall study more in details in the following belongs to that class. One should now
distinguish between zero and non-zero curvature. Before that, note that one can always paramet-
rize the function 𝑃 (which is harmonic i.e. Δ𝑃 = 0) in term of two real constants 𝐴 and 𝐷 plus one
complex constant 𝐵 as

𝑃 (𝜁 , 𝜁 ) = 𝐴𝜁 𝜁 + 𝐵𝜁 + �̄�𝜁 + 𝐷 , (4.1.27)

which leads to a curvature of the form

𝐾 = 2(𝐴𝐷 − 𝐵�̄�) . (4.1.28)

• If 𝑲 ≠ 0. As −𝑐(0) is the real part of �̂�, it can be expressed as 𝑐(0) (𝜁 , 𝜁 ) = − �̂� (𝜁 )+
ˆ̄𝜏 (𝜁 )

2 . In this
case (4.1.20c) can be solved as

∗𝜛 (𝜁 , 𝜁 ) =
𝑐(0) (𝜁 , 𝜁 )

2𝐾
+ i

(
𝑓 (𝜁 )𝜕𝜁 ln 𝑃 (𝜁 , 𝜁 ) − 𝑓 (𝜁 )𝜕𝜁 ln 𝑃 (𝜁 , 𝜁 ) + 1

2
(
𝜕𝜁 𝑓 (𝜁 ) − 𝜕𝜁 𝑓 (𝜁 )

) )
(4.1.29)

with 𝑓 (𝜁 ) an arbitrary holomorphic function. Such a solution is reached with the following
Ehresmann connection

𝑏𝜁 (𝜁 , 𝜁 ) = −
𝜁 ( �̂�0 + i�̂� (𝜁 ))

2𝐾 (𝐵𝜁 + 𝐷)𝑃 (𝜁 , 𝜁 )
+ 𝑓 (𝜁 )
𝑃2(𝜁 , 𝜁 )

(4.1.30a)

𝑏𝜁 (𝜁 , 𝜁 ) =
i𝜁 ˆ̄𝜏 (𝜁 )

2𝐾 ( �̄�𝜁 + 𝐷)𝑃 (𝜁 , 𝜁 )
+ 𝑓 (𝜁 )
𝑃2(𝜁 , 𝜁 )

, (4.1.30b)

with �̂�0 a real constant.

• If 𝑲 = 0. This case can be attained with 𝐴 = 𝐵 = 0 so that 𝑃 = 𝐷 i.e. a constant. Given an
arbitrary holomorphic function 𝑐(0) (𝜁 , 𝜁 ) = − �̂� (𝜁 )+

ˆ̄𝜏 (𝜁 )
2 and another arbitrary holomorphic

function 𝑍(𝜁 ) we find for the vorticity

∗𝜛 (𝜁 , 𝜁 ) = i
2

(
𝑍(𝜁 ) − �̄�(𝜁 )

)
− 1

4𝑃2

(
𝜁

∫ 𝜁

d𝑧 �̂� (𝑧) + 𝜁
∫ 𝜁

d𝑧 ˆ̄𝜏 (𝑧)
)
, (4.1.31)

and for the Ehresmann

𝑏𝜁 (𝜁 , 𝜁 ) =
1
𝑃2

∫ 𝜁

d𝑧 �̄�(𝑧) − 𝜁 2

4𝑃4

∫ 𝜁

d𝑧 ( �̂�0 + i�̂� (𝑧)) (4.1.32a)

𝑏𝜁 (𝜁 , 𝜁 ) =
1
𝑃2

∫ 𝜁

d𝑧 𝑍(𝑧) + i𝜉2

4𝑃4

∫ 𝜁

d𝑧 ˆ̄𝜏 (𝑧) , (4.1.32b)

with �̂�0 a real integration constant.

Note that the last two cases have in common the instance where 𝑐(0) = 𝐾 = 0, realized with
vanishing �̂� and constant 𝑃.
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Remark As 𝑐(0) is a purely geometrical quantity on the conformal Carrollian boundary, which is
also Weyl covariant (i.e. it transforms without inhomogeneous terms), one may argue that
we could have used a Weyl rescaling to set it to a constant. However such a transformation
would have set Ω back to a non constant value, hence 𝜑𝑖 would no longer have been zero.
As we have chosen to get rid of the latter it is no longer possible to use Weyl rescalings to
simplify the value of 𝑐(0) .

Kerr-Taub-NUT family. There is a useful subclass of constant curvature stationary solutions.
It is described bymeans of a mass parameter𝑀 and a NUT charge (also dubbed “magnetic mass”) 𝑛.
Again two cases emerge, vanishing or non-vanishing 𝐾 , realised with vanishing or non-vanishing
𝐴.

• For non-vanishing 𝐾 , the holomorphic function �̂� is

�̂� = 2i(𝑀 + i𝐾𝑛), (4.1.33)

where 𝑀 is the mass and 𝑛 the nut charge, both constants. The holomorphic function 𝑓 (𝜁 )
reads

𝑓 (𝜁 ) = i𝑎𝜁 (4.1.34)

with 𝑎 the Kerr angular velocity. Using Eqs. (4.1.29), (4.1.30a) and (4.1.30b) with �̂�0 = 2𝑀 we
find:

𝑏𝜁 (𝜁 , 𝜁 ) = −i𝜁
( 𝑎
𝑃2 −

𝑛

𝐷𝑃

)
(4.1.35)

and
∗𝜛 (𝜁 , 𝜁 ) = 𝑛 + 𝑎 − 2𝐷𝑎

𝑃
, (4.1.36)

where 𝑃 = 𝐴𝜁 𝜁 + 𝐷 and 𝐾 = 2𝐴𝐷.

• For 𝐾 = 0 (i.e. 𝑃 = 𝐷 constant), we use Eqs. (4.1.31), (4.1.32a) and (4.1.32b) with �̂�0 = 2𝑀,2

�̂� = 2i𝑀 (4.1.37)

and
𝑍 = i𝑎. (4.1.38)

This leads to

𝑏𝜁 (𝜁 , 𝜁 ) = −i
𝜁 𝑎

𝑃2 (4.1.39)

and
∗𝜛 = −𝑎. (4.1.40)

2Both for vanishing and non-vanishing 𝐾 , �̂�0 has been tuned so as to ensure that𝑀 does not appear in 𝑏𝜁 , displayed
in (4.1.35) and (4.1.39). There is no principle behind this choice, it is simply in line with standard conventions for the
Kerr–Taub–NUT family. As a consequence, 𝜛 defined in (4.1.21) vanishes.
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Despite this absence of magnetic charges, the solution at hand belongs formally to the Taub–
NUT family (see Ref. [172], §12.3.2).

This concludes our study of stationary solutions that can be written as a resummable metric ex-
pressed in terms of Carrollian data (4.1.2). We now turn to the analysis of the isometrics of such
spacetimes but from a boundary rather than from a bulk perspective.

4.2 Carrollian perspective on bulk isometric charges

In this Section, we discuss to what extent the Carrollian boundary can give us a new perspective
on the determination and the computation of bulk gravitational charges. The latter contain fun-
damental information about the content of the spacetime at hand, and they allow to distinguish
between two diffeomorphic solutions. After showing how to relate bulk isometries to boundary
isometries, we discuss how expanding back the resummed metric (4.1.2) leads to two towers of
charges, electric and magnetic, coming from the covariant conservation of the energy-momentum
and Cotton tensors respectively.

Translating bulk isometries into (strong) boundary isometries

Recall that the (𝑑+2)-dimensional bulk spacetime (4.1.2) is described in orthonormal frame bymeans
of

e𝑡 ≡ υ, e𝑎 ≡ �̂�𝑎 = �̂�𝑎, e𝑟 ≡ 𝜕𝑟 ,
θ�̂� ≡ τ, θ𝑎 ≡ θ̂𝑎, θ𝑟 ≡ d𝑟.

(4.2.1)

The components for the bulk metric (4.1.2) read (in order to avoid cluttering, we keep the “hat” on
the time indices only, where potential ambiguity exists)

𝑔𝑡𝑡 =
1
𝜌2 (8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐) − 𝑟𝜃 − ˆK , 𝑔𝑡𝑎 = ∗D̂𝑎 ∗𝜛 − 𝑟𝜑𝑎, 𝑔𝑡𝑟 = −1,

𝑔𝑟𝑎 = 0, 𝑔𝑟𝑟 = 0, 𝑔𝑎𝑏 = 𝜌2𝛿𝑎𝑏 ,
(4.2.2)

with
𝜌2 = 𝑟2 + (∗𝜛)2 . (4.2.3)

We give ourselves a Killing field of (4.1.2) which is assumed to have no legs along the radial direction
e𝑟

𝝃 = 𝜉 𝑡 (𝑡, 𝑥𝑎)υ + 𝜉𝑏(𝑡, 𝑥𝑎)e𝑏 (4.2.4)
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which of course does not constitute the more general case but is enough for our purpose. The Lie
derivative of the bulk metric then reads

Lξ𝑔𝑟𝑟 = 0, Lξ𝑔𝑟𝑡 = 𝜇, Lξ𝑔𝑟𝑎 = 𝜈𝑎,

Lξ𝑔𝑎𝑏 = 2𝜌2
(
∇̂(𝑎𝜉 𝑐𝛿𝑏)𝑐 + 𝜉 𝑡𝛾𝑎𝑏

)
− 2𝑔𝑡(𝑎𝜈𝑏) + 𝛿𝑎𝑏ξ

(
∗𝜛2) ,

Lξ𝑔𝑡𝑎 = −𝑔𝑡𝑎𝜇 − 𝑔𝑡𝑡𝜈𝑎 − 𝑟
(
ξ (𝜑𝑎) + 𝜑𝑏�̂�𝑎𝜉𝑏

)
+ 𝝃

(
∗D̂𝑎 ∗𝜛

)
+

(
∗D̂𝑏 ∗𝜛

)
�̂�𝑎𝜉

𝑏 + 𝜌2𝛿𝑎𝑏υ(𝜉𝑏) ,

Lξ𝑔𝑡𝑡 = −2𝑔𝑡𝑡𝜇 + 2𝑔𝑡𝑎υ(𝜉𝑎) − 𝝃
(

1
𝜌2 (8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐) − 𝑟𝜃 − ˆK

)
(4.2.5)

with 𝜇(𝑡,x) and 𝜈𝑎(𝑡,x) given by

𝜇(𝑡,x) = −υ(𝜉 𝑡) − 𝜉𝑎𝜑𝑎 (4.2.6)

𝜈𝑎(𝑡,x) = −�̂�𝑎(𝜉 𝑡) + 𝜑𝑎𝜉 𝑡 + 2𝜉𝑏𝜛𝑏𝑎 . (4.2.7)

Observe that everything is expressed in terms of boundary geometric objects.

Since the Killing components are 𝑟-independent, the above Lie derivative vanishes if and only
if the coefficients of every power of 𝑟 do. The independent conditions we reach for this to occur
are

υ(𝜉𝑎) = 0 (4.2.8)

and (1.5.2) together with (1.5.15), which therefore map the bulk Killing field (4.2.4) onto a boundary
Carrollian strong Killing vector (see Sec. 1.5). Some apparent extra conditions such as 𝝃

(
∗𝜛2) = 0

or 𝝃 (𝜑𝑎) + 𝜑𝑏e𝑎𝜉𝑏 = 0 are the vanishing of 𝝃-Lie derivatives of some Carrollian tensors, which is
guaranteed by the strong Killing requirement on 𝝃 . Hence the important result to remember is that
A bulk Killing field of the form (4.2.4) translates into a strong Carrollian Killing on the null boundary.

Towers of electric and magnetic charges

Charges are often described using the asymptotic symmetry group of the bulk spacetime, BMS4

in the case of asymptotically flat gravity in four dimensions. Due to gravitational radiation they
are not conserved in general, the main example being the Bondi mass aspect as seen in (3.3.28).
From a boundary perspective this group translates into the infinite set of conformal Carrollian
isometries (1.5.31), which in principle allows for an alternative construction of the charges, from a
purely boundary perspective, whose (non) conservation is encoded into to the Carrollian Cotton
descendants (see Sec. 2.4) and the shear Ĉ𝑎𝑏.

The Carrollian way of constructing charges has been described in Sec. 1.5. It requires, on top
of the conformal Carrollian vector 𝝃 , a set of momenta Π,Π𝑎,Π𝑎𝑏, 𝑃𝑎 satisfying the Carrollian dy-
namics encoded in (1.3.20) and (1.3.21). With this at hand, (1.5.12) gives the current and (1.5.17) the
charge. These are the features a Ricci-flat metric described in terms of Carrollian variables (3.3.40)
(or (4.1.2) for the resummed version) should possess for the bulk charges to be described with a
boundary approach. Focusing here on the resummable instance (4.1.2) we see that this is indeed the
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case. Expanding the 1
𝜌2 in powers of 𝑟 we get for the first few orders

d𝑠2res. Ricci-flat = · · · + 1
𝑟2 + ∗𝜛2

(
8𝜋𝐺𝜀(0)𝑟 + ∗𝜛𝑐(0)

)
τ2 (4.2.9)

= · · · + 1
𝑟2

[
8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐 − 8𝜋𝐺𝜀

(∗𝜛)2
𝑟2 − (∗𝜛)

3𝑐

𝑟3 + · · ·
]
τ2 .

We see two patterns emerging (here 𝑠 ∈ {1, 2, ...})

• at every order O( 1
𝒓2𝒔+1 ) we get Carrollian dynamics with “fluid-like” momenta Π(𝑠) , Π𝑖(𝑠) ,

𝑃 𝑖(𝑠) , Π̃
𝑖 𝑗

(𝑠) and Π
𝑖 𝑗

(𝑠) . The 𝑠 = 0 terms are displayed in (4.1.4) while going to deeper order is
made through the multiplication of the latter by (∗𝜛)2𝑠. Every such set of momenta together
with the Carrollian conformal Killings (1.5.29), which depends on a supertranslation 𝑇 and 𝑠
superrotation 𝑌 , lead to currents 𝜅(𝑠) , 𝐾 𝑖(𝑠) , �̃�(𝑠) , �̃�

𝑖
(𝑠) and charges𝑄 (𝑠) 𝑇,𝑌 and �̃� (𝑠) 𝑇,𝑌 , follow-

ing (1.5.17) and (2.2.20). Their conservation or evolution encoded in (1.5.18) depends on K(𝑠) ,
˜K(𝑠) in (2.2.21). The set associated with 𝑠 = 0 corresponds to the fluid momenta (4.1.4) and

its charges are leading; the sets with 𝑠 ≥ 1 reveal the subleading charges. Moreover, all these
charges should be referred to as electric because their conservation, if valid, occurs on-shell.3

Using the Carroll–Bianchi identities (4.2.28a), (4.2.28b) and (4.2.28c), we find the divergences
(2.2.21), which contribute to the time evolution of the charges computed as in (1.5.17), using
(1.5.18):

˜K(𝑠) = −𝑠 ∗𝜛2𝑠−2
(
∗𝜛 ˆA �̃� + 1

3
�̃� 𝑖 ∗𝜓𝑖

)
, (4.2.10a)

K(𝑠) = −
∗𝜛2𝑠

8𝜋𝐺
∗ 𝜒𝑖

(
D̂𝑖𝜉

𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖
)
− 𝑠 ∗𝜛2𝑠−2

(
∗𝜛 ˆA 𝜅 + 1

3
𝐾 𝑖 ∗𝜓𝑖

)
(4.2.10b)

with currents 

𝜅 = 1
8𝜋𝐺 𝜉

𝑖 ∗𝜓𝑖 − 𝜉 𝑡𝜀(0)
�̃� = 1

8𝜋𝐺 𝜉
𝑖 ∗ 𝜒𝑖

𝐾 𝑖 =
𝜀 (0)

2 𝜉 𝑖 − 1
8𝜋𝐺

(
𝜉 𝑗 ∗Ψ 𝑖

𝑗
+ 𝜉 𝑡 ∗ 𝜒𝑖

)
�̃� 𝑖 = − 1

8𝜋𝐺 𝜉
𝑗 ∗𝑋 𝑖

𝑗
,

(4.2.11)

and the Killing components 𝜉 𝑡 and 𝜉 𝑖 read off in (1.5.28) and displayed again here for facilitate
the reading

𝝃𝑇,𝑌 =

(
𝑇 (x) − 𝑌 𝑖(x)�̂�𝑖𝐶(𝑡,x) +

1
𝑑
𝐶(𝑡,x)∇̄𝑖𝑌 𝑖(x)

)
𝑒−𝜎 (𝑡,x)υ + 𝑌 𝑖(𝑡,x)�̂�𝑖 . (4.2.12)

Regarding the charges and their evolution, only �̃� (0) 𝑇,𝑌 =
∫
S d

2𝑥
√
𝑎
(
�̃� + 𝑏𝑗 �̃� 𝑗

)
≡ �̃�𝑇,𝑌 are

always conserved (i.e. for all 𝑇 and 𝑌 ). These charges are purely geometric because they are

3Remember that they come from the Carrollian descendant of the relativistic energy-momentum tensor, which is
covariantly conserved only on-shell.
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integrals over4 S, the base space of the Carrollian boundary,

�̃�𝑇,𝑌 = − 1
8𝜋𝐺

∫
S
d2𝑥
√
𝑎 ∗𝜉 𝑖

(
𝜒𝑖 − 𝑏𝑗𝑋 𝑗

𝑖

)
, (4.2.13)

which do not involve the energy density 𝜀(0) , as opposed to𝑄 (0) 𝑇,𝑌 =
∫
S d

2𝑥
√
𝑎
(
𝜅 + 𝑏𝑗𝐾 𝑗

)
≡

𝑄𝑇,𝑌 spelled as

𝑄𝑇,𝑌 = − 1
8𝜋𝐺

∫
S
d2𝑥
√
𝑎𝜉 𝑡

(
8𝜋𝐺𝜀(0) + 𝑏𝑖 ∗ 𝜒𝑖

)
+ 1

8𝜋𝐺

∫
S
d2𝑥
√
𝑎𝜉 𝑖

(
∗𝜓𝑖 + 4𝜋𝐺𝜀(0)𝑏𝑖 − 𝑏𝑗 ∗Ψ 𝑗

𝑖

)
.

(4.2.14)

The latter are conserved for strong Carrollian Killings. Other charges might also be con-
served for specific Carrollian conformal Killings, or depending on the configuration. The
full tower of leading and subleading electric charges

{
𝑄 (𝑠) 𝑇,𝑌

}
and

{
�̃� (𝑠) 𝑇,𝑌

}
are obtained

by multiplying the integrand of (4.2.13) and the one of (4.2.14) by (∗𝜛)2𝑠.

• at every order O( 1
𝒓2𝒔+2 ) the expansion of (4.1.2) reveals off-shell Carrollian dynamics for the

Carrollian Cotton tensor with momenta ΠCot(𝑠) , Π𝑖Cot(𝑠) , 𝑃
𝑖
Cot(𝑠) , Π̃

𝑖 𝑗

Cot(𝑠) and Π
𝑖 𝑗

Cot(𝑠) . The 𝑠 = 0
terms are displayed in (2.4.13) while going to deeper order is made through the multiplication
of the latter by (∗𝜛)2𝑠. Here also currents 𝜅Cot (𝑠) , 𝐾 𝑖Cot (𝑠) , �̃�Cot (𝑠) , �̃�

𝑖
Cot (𝑠) , and finally mag-

netic charges 𝑄Cot (𝑠) 𝑇,𝑌 and �̃�Cot (𝑠) 𝑇,𝑌 can be defined. They are dubbedmagnetic as their
conservation arise off-shell. In the situation at hand the leading magnetic currents read

𝜅Cot = 𝜉
𝑖𝜓𝑖 − 𝜉 𝑡𝑐

�̃�Cot = 𝜉
𝑖 𝜒𝑖

𝐾 𝑖Cot =
𝑐
2𝜉

𝑖 − 𝜉 𝑗Ψ 𝑖
𝑗
− 𝜉 𝑡 𝜒𝑖

�̃� 𝑖Cot = −𝜉 𝑗𝑋 𝑖
𝑗
,

(4.2.15)

Their divergences (2.2.21) take the form

˜KCot (𝑠) = −𝑠 ∗𝜛2𝑠−2
(
∗𝜛 ˆA �̃�Cot +

1
3
�̃� 𝑖Cot ∗𝜓𝑖

)
, (4.2.16a)

KCot (𝑠) = − ∗𝜛2𝑠 𝜒𝑖
(
D̂𝑖𝜉

𝑡 − 2𝜉 𝑗𝜛 𝑗𝑖
)
− 𝑠 ∗𝜛2𝑠−2

(
∗𝜛 ˆA 𝜅Cot +

1
3
𝐾 𝑖Cot ∗𝜓𝑖

)
. (4.2.16b)

These determine the evolution (1.5.18) of the charges (1.5.17), fromwhichwe learn that �̃�Cot (0) 𝑇,𝑌 =∫
S d

2𝑥
√
𝑎

(
�̃�Cot + 𝑏𝑗 �̃� 𝑗

Cot

)
≡ �̃�Cot𝑇,𝑌 are always conserved

�̃�Cot𝑇,𝑌 =

∫
S
d2𝑥
√
𝑎𝜉 𝑖

(
𝜒𝑖 − 𝑏𝑗𝑋 𝑗

𝑖

)
. (4.2.17)

4We use the property 𝑉 𝑖 ∗𝑊𝑖 = − ∗𝑉 𝑖𝑊𝑖 – see (1.6.4).
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For strong Carrollian Killing fields, 𝑄Cot (0) 𝑇,𝑌 =
∫
S d

2𝑥
√
𝑎

(
𝜅Cot + 𝑏𝑗𝐾 𝑗

Cot

)
≡ 𝑄Cot𝑇,𝑌 given

by

𝑄Cot𝑇,𝑌 = −
∫
S
d2𝑥
√
𝑎𝜉 𝑡

(
𝑐 + 𝑏𝑖 𝜒𝑖

)
+

∫
S
d2𝑥
√
𝑎𝜉 𝑖

(
𝜓𝑖 +

𝑐

2
𝑏𝑖 − 𝑏𝑗Ψ 𝑗

𝑖

)
(4.2.18)

are also conserved off-shell, as other magnetic charges are in specific situations. The full
tower of leading and subleading electric charges

{
𝑄Cot (𝑠) 𝑇,𝑌

}
and

{
�̃�Cot (𝑠) 𝑇,𝑌

}
are obtained

by multiplying the integrand of (4.2.17) and the one of (4.2.18) by (∗𝜛)2𝑠.

• electric and magnetic towers are related. As the limit from AdS spacetimes sets a rela-
tionship between the energy-momentum tensor and the Cotton tensor (see (3.3.16) and (4.1.1))
it should not be a surprise that the electric and magnetic towers of charge described above
possess a non-empty intersection: �̃� (𝑠) 𝑇,𝑌 and �̃�Cot (𝑠) 𝑇,𝑌 generally coincide. This is because
in 𝑑 = 2, if 𝜉 𝑖 are the spatial components of a conformal Killing field, so are ∗𝜉 𝑖. Hence the
set of all 𝜉 𝑖s is identical to that of ∗𝜉 𝑖s. The associated charges could be called “self-dual,” and
in total three distinct towers emerge: the self-dual

{
�̃� (𝑠) 𝑇,𝑌

}
≡

{
�̃�Cot (𝑠) 𝑇,𝑌

}
, the electric{

𝑄 (𝑠) 𝑇,𝑌
}
and the magnetic

{
𝑄Cot (𝑠) 𝑇,𝑌

}
. The ∗𝜛2𝑠 insertion pattern grants the sublead-

ing towers with the status of multipolar moments (see the original works [166, 173–175] as well
as [176] for a modern perspective).

Note finally that among the above charges associated to Carrollian Conformal Killings, which are
not always conserved, one can find the ones that are associated to bulk isometries, if present. As
discussed in the last subsection, these isometries are mapped to the boundary as strong Carrollian
isometries. We shall now illustrate the previous discussion with an explicit example.

Charge analysis of the Kerr-Taub-NUT family

We consider again the Kerr-Taub-NUT family described in the previous subsection fromEq. (4.1.33).
The Carrollian approach to the computation of bulk charges enables us to find the gravitational
mass and angular momentum charges and their multipolar expansion. As we consider stationary
spacetimes, 𝝃 = 𝜕𝑡 is a Killing field. The non-tilde electric and magnetic currents then read

𝜅 = −𝜀(0) , 𝐾 𝑖 = − 1
8𝜋𝐺

∗ 𝜒𝑖, 𝜅Cot = −𝑐(0) , 𝐾 𝑖Cot = −𝜒𝑖 , (4.2.19)

from which we find the leading (𝑠 = 0) charges

𝑄em =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 (8𝜋𝐺𝜀(0) + 𝜛𝐾), 𝑄mm =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 (−𝑐(0) + ∗𝜛𝐾) , (4.2.20)

where the indices refers to electric mass (em) and magnetic mass (mm) because these charges are
associated to 𝜕𝑡 . They are nicely combined into a complex mass charge

𝑄m = 𝑄mm + 𝑖𝑄em =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 ( �̂� + �̂�𝐾) . (4.2.21)
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Remark The integrals can be performed by setting 𝜁 = 𝑍e𝑖𝛷, where 0 ≤ 𝛷 < 2𝜋 and 𝑍 =
√

2 tan 𝛩
2 ,

0 < 𝛩 < 𝜋 for 𝕊2; 𝑍 = 𝑅√
2
, 0 < 𝑅 < +∞ for 𝔼2; 𝑍 =

√
2 tanh Ψ

2 ,0 < Ψ < +∞ for ℍ2.

To get the subleading (𝑠 ≥ 1) we insert the appropriate power of (∗𝜛)2𝑠. this leads for the higher-𝑠
mass multipole moment

𝑄m(𝑠) =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 ( �̂� + �̂�𝐾) (∗𝜛)2𝑠 . (4.2.22)

In the instance of the 𝐾 = 1 Kerr–Taub–NUT family displayed in Eqs. (4.1.33), (4.1.34), (4.1.35), (4.1.36)
with 𝐴 = 1

2 and 𝐷 = 1, we find

𝑄m (𝑠) = 4𝜋 i (𝑀 + i𝑛)
(
(𝑛 + 𝑎)2𝑠+1 − (𝑛 − 𝑎)2𝑠+1

𝑎(2𝑠 + 1)

)
, (4.2.23)

where we recall that 𝑀 is the Bondi mass (constant here), 𝑛 the NUT charge and 𝑎 the angular
velocity.

For this set of solutions 𝜼 = 𝑖(𝜁𝜕𝜁 − 𝜁𝜕𝜁 ) is also a Killing field (spacelike) which has the virtue of
being pushed forward into a strong Carrollian isometry on the null boundary. Therefore the above
discussionwith 𝜕𝑡 can be repeatedwith 𝜼. Again the “tilde” (Eqs. (4.2.13) and (4.2.17)) are zerowhereas
the “non-tilde” (see. (4.2.11) and (4.2.15)) are combined in the complex higher-𝑠 angular-momentum
multipole moments

𝑄r (𝑠) =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 6𝜁 𝜁

(
𝑛 + i𝑀
𝑃2 (𝑎 − 𝑛𝑃)

(
𝑛 + 𝑎 − 2𝑎

𝑃

)2𝑠

− 2𝑎
𝑃2

(
𝑛 + 𝑎 − 2𝑎

𝑃

)2𝑠+1
)

(4.2.24)

with 𝑃 = 1+ 1
2 𝜁 𝜁 , which are non-zero if one of the parameters 𝑎 or 𝑛 is present. We find for example

𝑄r (0) = −8𝜋 [𝑎(𝑛 + i𝑀) + 3𝑛(𝑛 − i𝑀)] . (4.2.25)

Expressions (4.2.23) and (4.2.25), found from a boundary analysis, are in linewith the results obtained
in Refs. [166,173–175] (see also [177], where the electric part of𝑄r (0) is given) using standard methods
restricted to bulk dynamics. They provide conserved moments since the divergences (4.2.10b) and
(4.2.16b) vanish.

Remark There is another simple charge that we could have built for Kerr-Taub-NUT spacetimes.
However before presenting this construction we need to complete the three-dimensional
Carrollian analysis in holomorphic coordinates presented in Sec. 1.6. The Weyl-Ricci tensor
can be decomposed as

R̂𝑖 𝑗 = 𝑠𝑖 𝑗 + ˆK 𝑎𝑖 𝑗 + ˆA 𝜂𝑖 𝑗, (4.2.26)

where we have introduced two weight-2 Weyl-covariant scalar Gauss–Carroll curvatures

ˆK =
1
2
𝑎𝑖 𝑗R̂𝑖 𝑗 = �̂� + ∇̂𝑘𝜑𝑘, ˆA =

1
2
𝜂𝑖 𝑗R̂𝑖 𝑗 = �̂� − ∗𝜑, (4.2.27)
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and ∗𝜑 = 1
2𝜂

𝑖 𝑗𝜑𝑖 𝑗. Recall that �̂�𝑖 𝑗 is defined above (1.6.3). These obey Carroll-Bianchi identities

2
Ω

D̂𝑡 ∗𝜛 + ˆA = 0, (4.2.28a)

1
Ω

D̂𝑡
ˆK − 𝑎𝑖 𝑗D̂𝑖R̂𝑗 − D̂𝑖D̂𝑗𝜉

𝑖 𝑗 = 0, (4.2.28b)

1
Ω

D̂𝑡
ˆA + 𝜂𝑖 𝑗D̂𝑖R̂𝑗 = 0. (4.2.28c)

The identities (4.2.28b) and (4.2.28c) resemble Carrollian divergence of a current (𝜅, 𝐾 𝑖) with
couples

{ ˆK ,−R̂ 𝑖 − D̂𝑗𝜉
𝑖 𝑗
}
and

{ ˆA ,− ∗R̂ 𝑖
}
of weights (2, 3). This allows to define electric

and magnetic curvature charges as in Eqs. (1.5.17)

𝑄ec =

∫
S

d2𝑥
√
𝑎

(
ˆK − 𝑏𝑖

(
R̂ 𝑖 + D̂𝑗𝜉

𝑖 𝑗
))
, 𝑄mc =

∫
S

d2𝑥
√
𝑎

(
ˆA − 𝑏𝑖 ∗R̂ 𝑖

)
. (4.2.29)

Following (1.5.18), we find

d𝑄ec

d𝑡
=

∫
𝜕S
∗
(
R̂RR + D̂DD · 𝜉𝜉𝜉

)
Ω,

d𝑄mc

d𝑡
= −

∫
𝜕S

R̂RR Ω. (4.2.30)

Upon regular behaviour, the boundary terms vanish and the curvature charges are both con-
served. For a Kerr-Taub-NUT spacetime the electric curvature charge reads5

𝑄ec =

∫
S

d𝜁 ∧ d𝜁
i𝑃2 𝐾. (4.2.31)

Whendivided by the volumeofS , this is simply the averageGauss curvature. Note in passing
that the charges defined here are extensive, hence the integralsmay reveal convergence issues,
in particular when S is non-compact. Normalizing by Vol =

∫
S

d𝜁∧d𝜁
i𝑃2 is the simplest way

to fix this divergence. Alternatively, S could be compactified – quotiented by a discrete
isometry group.

This concludes our study of algebraically special spacetimes in CNU gauge. It should be em-
phasised that the boundary analysis of bulk gravitational charges is also in its early stages. What
we found is that bulk isometries are supported on the boundary by strong Carrollian Killing fields.
Given such a boundary Killing vector, one can built two infinite towers of charges contracting the
latter with pieces of the bulk energy-momentum and Cotton tensor and their conservation proper-
ties originate from those of the bulk tensor. A precise contactwith charges discovered and discussed
from a purely bulk perspective in [150–154, 163, 178] should be made. For that a precise translation of
our findings in Newman-Penrose formalism has to be established.

It is now time to leave asymptotic symmetries by considering the case of hidden symmetries of

5Remember that here 𝜉𝑖 𝑗 = 0, and the geometry is 𝑡-independent with vanishing 𝜃, 𝜑𝑖, ˆA , R̂𝑖 as well as 𝑋𝑖 𝑗. Also
ˆK = 𝐾 .
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gravity and their action on the Carrollian boundary.
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Chapter 5

Hidden symmetries of gravity on the
Carrollian boundary

Hidden symmetries of gravity usually arise after a dimensional reduction of the theory. The story
started in the late fifties with the seminal work by Ehlers [60] in the context of four-dimensional
Ricci-flat Einstein gravity. Reducing such a spacetime to three dimensions, along the orbits of a
Killing field, which should be either timelike or spacelike, reveals a hidden 𝑆𝐿(2,ℝ) symmetry
acting on the reduced Einstein’s equations. With the advent of supergravity, a deeper and wider
understanding of dimensional reduction was reached, which disclosed a broader class of hidden-
symmetry groups, among them the exceptional ones (see e.g. [179–182] and more recently [183]).
Hidden symmetries can be used to design solution-generating techniques. In particular, following
Geroch [184], Ehlers symmetry can be used to generate a new Ricci-flat spacetime from a given
one, the new one possessing the same Killing than the one used for the reduction. In general this
involves a non-local transformation in the bulk (in the sense that the metric of the two spacetimes
are not related by an algebraic transformation). This observation was soon generalized to more
complicated situations like e.g. with two commuting Killings allowing for a two-dimensional re-
duction [185–187], each time with new and bigger hidden symmetry groups. This paved the way
towards the analysis of noticeable and somehow unexpected integrability properties of subsets of
solutions of Einstein gravity [188–192] (see in particular [193–195] for a comprehensive discussion of
the stationary, axially symmetric case).

A legitimate set of questions one may ask when casting a solution to vacuum Einstein’s equa-
tions from a Carrollian boundary perspective is: what is the action of hidden symmetries on the
Carrollian boundary data and how do the corresponding charges behave under this action? This
is the central question we treated in [66] and which we want to present in this Chapter. In order
to acquire a clear view of the physical phenomenon while keeping the technical level reasonable,
we have restricted our analysis to the case of Ricci-flat metrics (4.1.2), hence algebraically special
spacetimes, studied in Chapter 4, for which the computations are tractable.

Sec. 5.1 is first devoted to the presentation of Ehlers symmetry from the bulk perspective, with
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an explicit example, before showing next, in Sec. 5.2 what happens to the Carrollian boundary data.
In Sec. 5.3 we make the link with the charge analysis of Chapter 4 as we present the action of Ehlers’
symmetry on the latter. Our analysis is centered on three-dimensional Carrollian structures which
we shall describe using holomorphic coordinates. We therefore remind the reader that Sec. 1.6
contains all useful results.

5.1 Ehlers’ hidden symmetry and Geroch’s method

In this Section we review the hidden symmetry exhibited by Ehlers in [60] and further studied by
Geroch in [184, 185], where he designed a newmethod to generate solutions of Ricci-flat gravity. We
also give an explicit example to highligth its power.

5.1.1 The solution-generating technique

Let (M , 𝑔, 𝝃) be a 4-dimensional manifold endowed with a Lorenztian metric 𝑔 having a Killing
field 𝝃 everywhere either spacelike or timelike. Along the Section we denote by capital Latin letters
𝑀, 𝑁, ... ∈ 0, 1, 2, 3 the bulk indices. As we will go in the timelike case in Sec. 5.2 this will be our
framework from now on. We define the norm and the twist of 𝝃 as

𝜆 = 𝜉𝑀𝜉𝑀 (5.1.1a)

ω𝑀 =
√−𝑔𝜖𝑀𝑁𝑃𝑄𝜉

𝑁∇𝑃𝜉𝑄 . (5.1.1b)

We further assume this spacetime to be Ricci flat i.e. 𝑅𝑀𝑁 = 0. Thus one sees that the twist is closed
thus locally exact i.e. there exist a scalar 𝜔 such that

ω = d𝜔. (5.1.2)

One can construct a 3-dimensional space by quotientingM byOrb(𝝃) the orbits of the Killing field

S = M /Orb(𝜉). (5.1.3)

Remark In the case where 𝝃 is orthogonal to an hypersurface Σ, S = Σ i.e. a 3-dimensional
manifold where by each point, one and only one orbit of 𝝃 passes through. In general, 𝝃
is not hypersurface orthogonal, thus endowing S with a metric and a covariant derivative
requires more work.

Following Geroch, we define ℎ the metric on S by

ℎ𝑀𝑁 = 𝑔𝑀𝑁 −
𝜉𝑀𝜉𝑁

𝜆
. (5.1.4)
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Then one can state a one to one correspondence between tensors in S and 𝝃-invariant and trans-
verse tensors in M namely tensors satisfying 𝜄𝜉𝑇 = 0 and L𝜉𝑇 = 0 (see the appendix of [184] for
more details), from which one defines the S -covariant derivative

D𝑄𝑇
𝑁1...𝑁𝑞

𝑀1...𝑀𝑝
= ℎ 𝐿

𝑄 ℎ
𝑄1

𝑀1
...ℎ

𝑄𝑝

𝑀𝑝
ℎ
𝑁1
𝑅1
...ℎ

𝑁𝑞

𝑅𝑞
∇𝐿𝑇

𝑅1...𝑅𝑞
𝑄1...𝑄𝑝

(5.1.5)

with ∇𝑀 theM -Levi-Civita connection. It is a fact thatD𝑀 coincides with the unique Levi-Civita
covariant derivative one can construct onS . This sets a relationship1 between the Riemann tensor
on M and the one on S

R𝑀𝑁𝑃𝑄 = ℎ𝑆[𝑀ℎ
𝑇
𝑁]ℎ

𝑈
[𝑃ℎ

𝑉
𝑄]

(
𝑅𝑆𝑇𝑈𝑉 +

2
𝜆
(∇𝑆𝜉𝑇 ∇𝑈 𝜉𝑉 + ∇𝑆𝜉𝑈 ∇𝑇 𝜉𝑉

)
. (5.1.6)

Using (5.1.5) and (5.1.6), Einstein’s equations on M can be recast in terms of (ℎ, 𝜔, 𝜆) seen as fields
on S

R̃𝑀𝑁 = −2(𝜏 − 𝜏)−1D̃(𝑀𝜏D̃𝑁)𝜏 (5.1.7a)

D̃2𝜏 = 2(𝜏 − 𝜏)−1D̃𝑀𝜏D̃𝑁 𝜏ℎ̃
𝑀𝑁 (5.1.7b)

where
𝜏 = 𝜔 + 𝑖𝜆 . (5.1.8)

D̃𝑀 and R̃𝑀𝑁 are the Levi-Civita covariant derivative and Ricci tensor with respect to ℎ̃𝐴𝐵 = 𝜆ℎ𝐴𝐵.
Eqs. (5.1.7) are the fundamental tools to build new solutions from a given one. They are telling
us when a new dataset (ℎ′

𝐴𝐵
(ℎ𝐴𝐵, 𝜆, 𝜔), 𝜆′(𝜆, 𝜔), 𝜔′(𝜆, 𝜔)) can be lifted to a new four-dimensional

Ricci-flat manifold M ′.

The last step is to go back to four dimensions and build the new spacetime. We can define a new
four dimensional metric 𝑔′ on M with Killing vector 𝝃′ = 𝜼𝜆′ (normalized such that 𝜄𝝃𝜼 = 1) as

𝑔′𝑀𝑁 = ℎ′𝑀𝑁 +
𝜉′
𝑀
𝜉′
𝑁

𝜆′
(5.1.9)

Here we have defined 𝜼 using the fact that for a curl-free skew-symmetric field 𝐹′ on 𝑆, the pull
back 𝐹𝑀𝑁 onM is closed, i.e.,

𝐹′𝑀𝑁 :=
1

(−𝜆′)3/2
√−𝑔𝜀′𝑀𝑁𝑃D

𝑃𝜔′ = d𝜂′ , (5.1.10)

with 𝜀′
𝑀𝑁𝑃

the Levi-Civita tensor on S . On top of this method to generate solutions of Ricci-flat
gravity, Ehlers noticed an additional symmetrywhich forms its homonymous group. The process of
going back to four dimensions given a three dimensional metric ℎ𝑀𝑁 onS is dubbed an oxidation.

1This is a generalisation of the Gauss-Codazzi equation.
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The Ehlers group

This group is nothing else than the group of transformations preserving the fundamental set of
equations in S (5.1.7). The form of the latter suggest to consider

𝜏′ =
𝛼𝜏 + 𝛽
𝛾𝜏 + 𝛿 (5.1.11)

where the real numbers 𝛼, 𝛽, 𝛾 and 𝛿 satisfy 𝛼𝛿 − 𝛽𝛾 = 1. One gets a transformed triplet in terms of
the old one which is still solution of these equations. This new triplet reads

ℎ′𝑀𝑁 = [(𝜔𝛾 + 𝛿)2 + 𝛾2𝜆2]ℎ𝑀𝑁 (5.1.12a)

𝜆′ =
𝜆

(𝜔𝛾 + 𝛿)2 + 𝛾2 (5.1.12b)

𝜔′ =
(𝜔𝛼 + 𝛽) (𝜔𝛾 + 𝛿) + 𝛼𝛾𝜆2

(𝜔𝛾 + 𝛿)2 + 𝛾2 . (5.1.12c)

Hence, the procedure described above exhibits a hidden 𝑆𝐿(2,ℝ) symmetry in four-dimensional
Ricci-flat spacetimes. Given a Ricci-flat solution of vacuum Einstein’s equations, the other ones are
obtained via an 𝑆𝐿(2,ℝ) transformation of (𝜆, 𝜔). The 𝑆𝐿(2,ℝ) is hidden in the four-dimensional
perspective, but explicit in the three-dimensional model, materialized here in Eqs. (5.1.7).

Remark The Ehlers transformations can actually be divided into two class. Part of the group is
in fact visible in four dimensions because it acts as four-dimensional diffeomorphisms; part
is creating genuinely different Ricci-flat solutions. This can be illustrated in the concrete
example of Schwarzschild–Taub–NUT solutions with mass 𝑀 and nut charge 𝑛 that we will
show below. The compact subgroup of rotations

(
cos 𝜒 sin 𝜒
− sin 𝜒 cos 𝜒

)
∈ 𝑆𝑂(2) ⊂ 𝑆𝐿(2,ℝ) induces

rotations of angle 2𝜒 in the parameter space (𝑀, 𝑛), while non-compact transformations(
𝛼 𝛽

0 1
𝛼

)
∈ 𝑁 ⊂ 𝑆𝐿(2,ℝ) act homothetically, (𝑀, 𝑛) →

(
𝑀
𝛼
, 𝑛
𝛼

)
. As a conclusion, among all

the allowed transformations in the space S only a sub part of it are relevant. Giving rise to
a pure gauge or an actual transformation depends on the Killing vector chosen to quotient
the manifold M (when several choices are possible).

5.1.2 From Schwarzschild to Taub-NUT

To illustrate the power of this method, we propose to work out the calculations showing how the
Taub-NUT solution is obtained from a Schwarzschild spacetime. We recall that in coordinates
(𝑡, 𝑟, 𝜃, 𝜙) the Taub-NUT metric reads

d𝑠2 = −𝑓 (𝑟) (d𝑡2 + 2𝑛(1 − cos𝜃)d𝜙)2 + d𝑟2

𝑓 (𝑟) + (𝑟
2 + 𝑛2) (d𝜃2 + sin2𝜃d𝜙2) (5.1.13)
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with
𝑓 (𝑟) = 1

𝑟2 + 𝑛2 [𝑟
2 − 𝑛2 − 2𝑚𝑟 + 𝑘2(𝑟4 + 6𝑛2𝑟2 − 3𝑛4)] (5.1.14)

where 𝑘 = 0,+1,−1 corresponds to flat, dS and AdS cases and 𝑚 and 𝑛 are respectively the mass
and NUT parameter.

We start our analysis with the usual form of Schwarzschild’s metric in (𝑡, 𝑟, 𝜃, 𝜙) coordinates
(with 𝑟𝑠 = 2𝑚)

d𝑠2Schwarzschild = −
(
1 − 𝑟𝑠

𝑟

)
d𝑡2 +

(
1 − 𝑟𝑠

𝑟

)−1
d𝑟2 + 𝑟2 (

d𝜃2 + sin2 𝜃 d𝜙2) (5.1.15)

which possesses four Killing fields: 𝜕𝑡 and an 𝔰𝔬(3) algebra for the spherical symmetry. Here we
choose 𝝃 to be the timelike Killing vector 𝜕𝑡 . We use equation (5.1.1a) to find the norm and scalar
twist of this Killing field as

𝜆 = 𝑔𝑡𝑡 = −
(
1 − 𝑟𝑠

𝑟

)
, 𝜔 = 0. (5.1.16)

Using (5.1.4), the metric on S is given by

d𝑠2S =

(
1 − 𝑟𝑠

𝑟

)−1
d𝑟2 + 𝑟2 (

d𝜃2 + sin2 𝜃 d𝜙2) (5.1.17)

Now we have the triplet (ℎ, 𝜆, 𝜔) at hand. The form of (5.1.7) suggests that we can take ℎ̃′(= 𝜆′ℎ′)
to be equal to ℎ̃(= 𝜆ℎ). Then, we perform an 𝑆𝑂(2) ⊂ 𝑆𝐿(2,ℝ) transformation on 𝜏 = 𝜔 + 𝑖𝜆
parametrized by an angle 𝜒2 (

𝛼 𝛽

𝛾 𝛿

)
=

(
cos 𝜒 sin 𝜒
− sin 𝜒 cos 𝜒

)
. (5.1.18)

We get

𝜆′ =
𝜆

cos2 𝜒 + 𝜆2 sin2 𝜒

𝜔′ =
sin 𝜒 cos 𝜒(1 − 𝜆2)
cos2 𝜒 + 𝜆2 sin2 𝜒

ℎ′𝑀𝑁 = (cos2 𝜒 + 𝜆2 sin2 𝜒)ℎ𝑀𝑁 .

(5.1.19)

Finally using equation (5.1.10), we get that the field 𝜼, necessary to reconstruct the transformed
four-dimensional metric, is such that

∇[𝑀𝜂𝑁] =
1

(−𝜆)3/2
ℎ̃𝑃𝑄𝜖𝑀𝑁𝑃𝜕𝑄𝜔

′ , (5.1.20)

where 𝜖𝑎𝑏𝑐 = 1√
−𝜆
𝜖𝑎𝑏𝑐𝑑𝜉

𝑑. This equation can be solved component-wise to give,

∇[𝑟𝜂𝜃] = 0, ∇[𝑟𝜂𝜙] = −
1

(−𝜆)3/2
ℎ′𝜃𝜃𝜕𝜃𝜔

′, ∇[𝜃𝜂𝜙] =
1

(−𝜆)3/2
ℎ′𝑟𝑟𝜕𝑟 .𝜔

′ (5.1.21)

2We are then making what was called an “actual” transformation.
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The latter 𝜼 is in Γ(𝑇S) so now we promote it to a vector field on M ′ the new four dimensional
manifold using the the normalization condition 𝜄𝝃𝜼 = 1. An ansatz for 𝜼 is then,

𝜂𝑀 = (1, 0, 0, 𝑎(𝜃)) (5.1.22)

and 𝐹 is skew symmetric and substituting it in (5.1.21), we get

𝑎(𝜃) = −2𝑟𝑠 cos 𝜃 sin 2𝜒. (5.1.23)

Hence the new metric 𝑔′ of equation (5.1.9) from Schwarzschild geometry is

d𝑠′2 = 𝜆′d𝑡2 − 1
𝜆′

d𝑟2 + 𝜆

𝜆′
𝑟2d𝜃2 + 𝜆′

(
2𝑎d𝑡 +

(
𝜆

𝜆′2
𝑟2 sin2 𝜃 + 𝑎2

)
d𝜙

)
d𝜙

= 𝜆′ (d𝑡 + 𝑎d𝜙)2 − 1
𝜆′

d𝑟2 + 𝜆

𝜆′
𝑟2 (

d𝜃2 + sin2 𝜃d𝜙2) . (5.1.24)

Clearly if we choose
𝜆′ = −𝑓 (𝑟), sin 2𝜒 =

𝑛

𝑟𝑠
(5.1.25)

then (5.1.24)) is a Taub-NUTmetric (5.1.13). A crucial point to note here is that not all Killing vectors
lead to a new geometry. Indeed, hadwe chosen the spacelike Killing vector like 𝜕𝜙 instead, wewould
have obtained a metric that is diffeomorphic to the Schwarzschild metric. This would have been a
“pure gauge” transformation. Note also that all Killings of the spherical 𝔰𝔬(3) algebra would have
led to pure gauge transformations.

Remark Parametrizing the 𝑆𝑂(2) transformation with an angle 𝜒, 𝑔′𝜇𝜈 ( 𝜒) obtained after trans-
formation is a solution of vacuumEinstein’s equations. All thesemetrics define a one-parameter
family of solutions.

Remark It was shown in [185] that when 𝑔𝜇𝜈 has two commuting Killings 𝜉𝜇 and 𝜓𝜇, after apply-
ing this algorithm with 𝜉𝜇, 𝜓𝜇 remains a Killing of the new metric. Thus, one can reapply
the algorithm with 𝜓𝜇 to generate a two-parameter family of solutions 𝑔′𝜇𝜈 ( 𝜒, 𝜒′) from the
original one. Given the property of conversing the original Killings, one may wonder what
happens if one applies once again the algorithm to 𝑔′𝜇𝜈 . In general, according to Geroch, new
solutions are reached, thus we create a three-parameter family of solution, and so on and so
forth such that all asymptotically flat, stationary, axisymmetric vacuum solutions of Einstein’s
equations can be generated from Minkowski spacetime via Geroch’s algorithm (see [185] for
more details).
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5.2 Actionof theEhlers transformationon theCarrollianbound-
ary

In this Section we unravel the action of the Ehlers group (5.1.11) on the boundary Carrollian ob-
servables, using the expression of the resummed bulk Ricci-flat metric (4.1.2) assumed to possess a
time-like Killing vector field, 𝝃 = 𝜕𝑡 and Ω = 1.

In order to proceed, we follow the steps for the Geroch reduction described in Sec. 5.1, i.e.
determine 𝜏 as defined in (5.1.8) for the metric (4.1.2) with 𝜆 and 𝜔 given in (5.1.1a) and (5.1.2). These
should be expanded in inverse powers of 𝑟 and thus deliver the boundary ingredients together with
their transformations following (5.1.11).

Remark One has to be careful when performing the Geroch reduction. Indeed as we want to
study its action on the Carrollian boundary data, we should identify quantities before and
after the transformation which defines the novel Ricci-flat solution. Nothing guarantees that
the new metric will assume again the resummed form (4.1.2) in CNU gauge. Actually we will
see that it doesn’t and a redefinition of the radial coordinate is necessary to bring it back into
the original gauge, before the identification can be safely made.

It is convenient for the present task to adopt the Cartan frame defined in (4.2.1), leading to the
bulk metric components

𝑔𝑡𝑡 =
1
𝜌2 (8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐) − 𝐾, 𝑔𝑡𝑖 = ∗𝜕𝑖 ∗𝜛, 𝑔𝑡𝑟 = −1,

𝑔𝑟𝑖 = 0, 𝑔𝑟𝑟 = 0, 𝑔𝑖 𝑗 = 𝜌2𝑎𝑖 𝑗
(5.2.1)

obtained using (4.2.2), assuming 𝑡-independence andΩ = 1. In this expression ∗𝜛, 𝐾 and 𝑐 are given
in Eqs. (4.1.20a), (4.1.20b) and (4.1.20c). The Killing form reads:

𝝃 = −
(
𝐾 − 1

𝜌2 (8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐)
)
τ + ∗𝜕𝑖 ∗𝜛d𝑥𝑖 − d𝑟, (5.2.2)

with norm
𝜆 =

8𝜋𝐺𝜀𝑟 + ∗𝜛𝑐
𝜌2 − 𝐾 . (5.2.3)

For the twist potential we get

𝜔 =
8𝜋𝐺𝜀 ∗𝜛 − 𝑐𝑟

𝜌2 + 𝐾∗ , (5.2.4)

with 𝐾∗ introduced in (4.1.25). On-shellness is implemented here through boundary dynamics as
summarized in Sec. 4.1.2, i.e. in Eqs. (4.1.23b), (4.1.24) and (4.1.25). Inserting the above results into
Eqs. (5.1.8) and using (4.1.5a), we find

𝜏 =
�̂�

𝑟 + i ∗𝜛 − i�̂� . (5.2.5)
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The Geroch reduced and rescaled metric (2.1.5) is

ℎ̃𝐴𝐵d𝑥𝐴d𝑥𝐵 = −
(
d𝑟 − ∗𝜕𝑘 ∗𝜛 d𝑥𝑘

)2
+ 𝜆𝜌2𝑎𝑖 𝑗d𝑥𝑖d𝑥𝑖. (5.2.6)

With this, 𝜏 given in (5.2.5) unsurprisingly solves the reduced Einstein’s equations (5.1.7).

The Ehlers transformation rules are (5.1.11) and the invariance of ℎ̃𝐴𝐵. From these follows the
rest of the construction, i.e. the transformation of ℎ𝐴𝐵 and the oxidation toward 𝑔′

𝐴𝐵
. Using for

convenience holomorphic and antiholomorphic coordinates as introduced in Sec. 1.6, expression
(5.2.6) is recast as follows

ℎ̃𝐴𝐵d𝑥𝐴d𝑥𝐵 = −
(
d𝑟 − i𝜕𝜁 ∗𝜛 d𝜁 + i𝜕𝜁 ∗𝜛 d𝜁

)2 + (𝜏 − 𝜏) (𝑟 + i ∗𝜛) (𝑟 − i ∗𝜛)
i𝑃2 d𝜁d𝜁 . (5.2.7)

Combining (5.1.11) with (5.2.5), we obtain the following boundary transformations

�̂�′ = − �̂�(
𝛾�̂� + i𝛿

)2 , (5.2.8a)

�̂�′ = i
𝛼�̂� + i𝛽
𝛾�̂� + i𝛿

, (5.2.8b)

�̂�′ = �̂� + 𝛾 �̂�

𝛾�̂� + i𝛿
(5.2.8c)

and
𝑃′ =

𝑃��𝛾�̂� + i𝛿 �� , (5.2.9)

as well as the radial shift3

𝑟′ = 𝑟 + i
2

(
𝛾 �̂�

𝛾�̂� + i𝛿
− 𝛾 ˆ̄𝜏

𝛾 ˆ̄𝑘 − i𝛿

)
. (5.2.10)

These transformation rules leave indeed (5.2.7) invariant. As advertised earlier, they are local, provid-
ing a direct transformation (5.2.9) of the boundarymetric. The transformation of the energy density
𝜀(0) is obtained from (5.2.8a) using (4.1.5a)

8𝜋𝐺𝜀′(0) =
8𝜋𝐺𝜀(0)

(
(𝛾𝐾∗ + 𝛿)2 − 𝛾2𝐾2

)
− 2𝑐(0)𝛾𝐾 (𝛾𝐾∗ + 𝛿)(

𝛾2𝐾2 + (𝛾𝐾∗ + 𝛿)2
)2 . (5.2.11)

3One could alternatively adopt a new radial coordinate defined as 𝑟 = 𝑟 + 𝜛 that is invariant under Möbius trans-
formations. This is actually mandatory in order to reach boundary 𝑆𝐿(2,ℝ)-covariant tensors from the bulk, as we
will discuss in Sec. 5.3. It furthermore coincides with the radial coordinate of Ref. [110] §29 provided 𝑟0 = −𝜛.
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The transformation of 𝑐(0) is inferred similarly

𝑐′(0) =
𝑐(0)

(
(𝛾𝐾∗ + 𝛿)2 − 𝛾2𝐾2

)
+ 16𝜋𝐺𝜀(0)𝛾𝐾 (𝛾𝐾∗ + 𝛿)(

𝛾2𝐾2 + (𝛾𝐾∗ + 𝛿)2
)2 . (5.2.12)

All these rules are compatible with the relations Eqs. (4.1.20b) and (4.1.20c). Finally the transforma-
tions of the Carrollian Cotton descendents 𝜒𝜁 and Ψ𝜁 𝜁 are reached using the above results combined
with Eqs. (4.1.20d), (4.1.20e) and (4.1.20f). The transformation of the Ehresmann connection is ob-
tained directly from the expressions reached for the latter in (4.1.30a), (4.1.30b) (4.1.32a) and (4.1.30b).
To this end, observe that in the constant-�̂� instance, 𝐴, 𝐵, �̄� and 𝐷 transform with a factor 1

|𝛾�̂�+i𝛿 |
in order to comply with (5.2.9). Similarly, 𝑓 (𝜁 ) and 𝑍(𝜁 ), introduced in (4.1.29) and (4.1.31), must be
respectively invariant and transforming as

𝑍′(𝜁 ) = 𝑍(𝜁 ) + i 𝛾 �̂� (𝜁 )
𝛾�̂� + i𝛿

, (5.2.13)

so that (5.2.8c) be fulfilled.

Going back to Geroch’s solution-generating method, once the 𝑆𝐿(2,ℝ) transformation is per-
formed on the boundary, the reconstruction of the new Ricci-flat solution is straightforward using
the boundary-to-bulk formula (4.1.2), expressed with primed data – except for the unaltered bound-
ary coordinates

{
𝑡, 𝜁 , 𝜁

}
. This is equivalent to the oxidation procedure operated from three to four

dimensions along the lines of Eqs. (5.1.10), (5.1.9) with

𝜼′ = τ′ − 1
𝜆′

(
d𝑟′ − i𝜕𝜁 ∗𝜛′ d𝜁 + i𝜕𝜁 ∗𝜛′ d𝜁

)
, τ′ = d𝑡 − 𝑏′

𝜁
d𝜁 − 𝑏′

𝜁
d𝜁 , (5.2.14)

finally leading to (5.1.9), which assumes the form (4.1.2) primed. The newbulkKilling vector 𝝃′ = 𝜆′𝜼′

is again 𝜕𝑡 .

Example. Consider again the Kerr–Taub–NUT family treated at the end of Sec. 4.1.2 with 𝑃 =
1
2 𝜁 𝜁 + 1, 𝐾 = 1 and 𝐾∗ = 0 (this was not explicitly required). These choices are stable only under(

cos 𝜒 sin 𝜒
− sin 𝜒 cos 𝜒

)
∈ 𝑆𝐿(2,ℝ). For this transformation, using (5.2.8a) we find 𝑀′ + i𝑛′ = (𝑀 + i𝑛)e−2i𝜒

hence a rotation in the plane generated by the mass and magnetic-mass aspects. From a solution
containing just a mass, Ehlers’ transformations generate a NUT aspect. This is the boundary ex-
planation of howTaub-NUT emerges fromSchwarzschild. Note that computations aremuch easier
on the boundary contrary to what they were in the bulk.

We conclude repeating that the main message of our study in the simple set-up of stationary
spacetimes is thus that the non-local action of the Ehlers transformation in the bulk translates into
a local action on the Carrollian boundary.
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5.3 Action on boundary charges

Carrollian charges have been introduced in Sec. 4.2 and further discussed for stationary and al-
gebraic spacetimes. Two generic charges were found and computed: 𝑄ec and 𝑄m. The former is
purely geometric and stands for the integrated curvature 𝐾 of the celestial sphere, see (4.2.31); the
latter carries genuine dynamical information captured in the electric and magnetic masses (recall
that 𝜀(0) and 𝑐(0) satisfies flux/balance laws (4.1.3a) and (4.1.3b)). Actually 𝑄ec is invariant under
Ehlers’ 𝑆𝐿(2,ℝ) as it can be inferred from (5.2.8b) and (5.2.8c). The mass charge 𝑄m is not but its
transformation (see (5.2.8a), (5.2.8b) and (5.2.8c)) suggests that it might belong to some 𝑆𝐿(2,ℝ) mul-
tiplet or, more accurately, that it may be modified to this end. Indeed, a slight amendment to the
charge 𝑄m, namely

𝑄′m =

∫
S

d𝜁 ∧ d𝜁
i𝑃2

(
�̂� + 2�̂�𝐾

)
, (5.3.1)

is 𝑆𝐿(2,ℝ)-invariant.4

It is then legitimate to wonder whether one can make these charges fit into 𝑆𝐿(2,ℝ) multiplets.
Actually in [184], Geroch obtained an 𝑆𝐿(2,ℝ) triplet of M two-forms by oxidizing the following
two-form triplet on S

V1 = 1
(𝜏−𝜏)2 ★

3
ℎ̃
(d𝜏 + d𝜏) , V2 = 1

(𝜏−𝜏)2 ★
3
ℎ̃
(𝜏d𝜏 + 𝜏d𝜏) , V3 = 1

(𝜏−𝜏)2 ★
3
ℎ̃

(
𝜏2d𝜏 + 𝜏2d𝜏

)
,

(5.3.2)
where “★3

ℎ̃
” stands for the three-dimensional Hodge-dual on S equipped with ℎ̃𝐴𝐵 displayed in

(5.2.7). Upon integration over the celestial sphere of M ,(5.3.2) leads to surface charges. One may
wonder whether one can find this triplet from a Carrollian boundary perspective.

In general terms, in order to build a 𝑆𝐿(2,ℝ) two-form triplet from Carrollian considerations,
one needs a Carrollian two-form 𝑣𝑣𝑣 transforming under 𝑆𝐿(2,ℝ) as

𝑣𝑣𝑣→ 𝑣𝑣𝑣′ = −𝑣𝑣𝑣
(
𝛾 ˆ̄𝑘 − 𝑖𝛿

)2
, (5.3.3)

from which we construct the triplet, a symmetric rank-two tensor, transforming as(
𝑣𝑣𝑣′3 𝑣𝑣𝑣′2
𝑣𝑣𝑣′2 𝑣𝑣𝑣′1

)
=

(
𝛼 𝛽

𝛾 𝛿

) (
𝑣𝑣𝑣3 𝑣𝑣𝑣2

𝑣𝑣𝑣2 𝑣𝑣𝑣1

) (
𝛼 𝛾

𝛽 𝛿

)
, (5.3.4)

where
𝑣𝑣𝑣1 = 𝑣𝑣𝑣, 𝑣𝑣𝑣2 = i ˆ̄𝑘𝑣𝑣𝑣, 𝑣𝑣𝑣3 = − ˆ̄𝑘2𝑣𝑣𝑣. (5.3.5)

The same holds for the complex-conjugate triplet �̄�𝑣𝑣1 = �̄�𝑣𝑣, �̄�𝑣𝑣2 = −i�̂��̄�𝑣𝑣 and �̄�𝑣𝑣3 = −�̂�2�̄�𝑣𝑣. An 𝑆𝐿(2,ℝ)
triplet of charges is thus reached as

𝑄 𝐼 =

∫
S
𝑣𝑣𝑣𝐼 , 𝐼 = 1, 2, 3, (5.3.6)

4There is a factor of 2 of difference with respect to (4.2.21) (in front of �̂�).
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and𝑄 ≡ 𝑄1𝑄3−𝑄2
2 is invariant under Ehlers’ transformations, from properties of the determinant.

The above general procedure can be applied in the explicit case of stationary resummable space-
times. We can exhibit two two-forms satisfying the properties displayed in Eq. (5.3.3), namely

𝑥𝑥𝑥 = − �̂�

2(�̂� + ˆ̄𝑘)
d𝜁 ∧ d𝜁
i𝑃2 , 𝑦𝑦𝑦 = −

(
𝑃

�̂� + ˆ̄𝑘

)2

𝜕𝜁 �̂� 𝜕𝜁 �̂�
d𝜁 ∧ d𝜁
i𝑃2 . (5.3.7)

These lead along (5.3.6) to two triplets of charges.

What is remarkable is that the asymptotic limit of Geroch’s two-form triplet (5.3.2) coincides
with that designed earlier from Carrollian boundary considerations. This statement is captured in
the following result

lim
𝑟→∞

(
V3 V2

V2 V1

)
=

(
− ˆ̄𝑘2(𝑥𝑥𝑥 + 𝑦𝑦𝑦) − �̂�2(�̄�𝑥𝑥 + �̄�𝑦𝑦) i ˆ̄𝑘(𝑥𝑥𝑥 + 𝑦𝑦𝑦) − i�̂�(�̄�𝑥𝑥 + �̄�𝑦𝑦)
i ˆ̄𝑘(𝑥𝑥𝑥 + 𝑦𝑦𝑦) − i�̂�(�̄�𝑥𝑥 + �̄�𝑦𝑦) 𝑥𝑥𝑥 + 𝑦𝑦𝑦 + �̄�𝑥𝑥 + �̄�𝑦𝑦

)
, (5.3.8)

where 𝑟 = 𝑟+𝜛 was introduced in footnote 3 as an 𝑆𝐿(2,ℝ)-invariant radial coordinate, whichmust
be used here in order to guarantee that the limit preserves the 𝑆𝐿(2,ℝ) behaviour. This results sets
again a relationship amongst the charges introduced in Sec. 4.2 using purely boundary methods
and those computed directly by standard bulk techniques.

5.4 Outlook and discussion

Ourmain motivation in this Chapter was to develop the necessary tools for exhibiting the action of
the Ehlers’ group on the three-dimensional Carrollian boundary. We have restricted our analysis
to stationary, algebraically special spacetimes, whose timelike isometry is aligned with the fiber of
the Carrollian boundary. As a consequence the bulk reduction translates on the boundary into a
reduction along the fibers which bring us to the base space of the Carroll structure, therefore on
a genuine Riemannian manifold. The Carrollian metric reduces to the one of the base space and
the field of observers becomes an irrelevant direction. The last important point finally is that after
performing an Ehlers transformation, the bulk line element stays in CNU gauge, up to a radial shift.

Extending the previous analysis to more general situations requires an outmost care. Other
choices of Killing fields for the reduction make the Ehlers transformation blur the algebraically
special character of the spacetime at hand, forbidding the identification of quantities before and
after its action. Moreover, performing the bulk reduction along an isometry which is not 𝜕𝑡 re-
quires to understand Carrollian reductions along a direction distinct from the fiber. This is an
uncharted territory of mathematics, which is relevant to study in its own right, before delving into
its application to the topic at hand.

Finally, a legitimate question would be to repeat the analysis of hidden symmetries but in AdS
spacetimes. It should therefore be emphasized that hidden symmetries à la Ehlers are generally
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absent (or restricted) in AdS [146,147] and the issue of their boundary realization could only be raised
in the framework we have elaborated in this thesis (with the CNU gauge), allowing to reconstruct
Ricci-flat spacetimes from null boundary dynamics. Furthermore, as opposed to its action on the
bulk metric, the boundary action of the hidden symmetry is local – the bulk non-locality is rooted
to the radial coordinate.
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Part III

Some aspects of thermal field theory
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Chapter 6

Thermal correlators, twisted partition
functions and fishnet graphs

Symmetries are, like in asymptotically flat gravity, one of the most powerful tools to handle and
get a better control on field theories, as they impose a set of consistency relations operators and
correlation functions have to satisfy. The paragon is conformal invariance i.e. invariance under
transformations that preserves the angles. It uniquely fixes (up to an overall multiplicative con-
stant) the form of the two and three-points functions, which in virtue of Wick’s theorem applied
to Gaussian theories, completely determine the shape of all possible correlators. One then talks
about a Conformal Field Theory (CFT) [196]. CFTs are ubiquitous in Nature, as they are used to de-
scribe second order phase transitions and corresponds to IR and UV fixed points of Quantum Field
Theories (QFT) thanks to scale invariance. In a sense there exist only CFTs, as any QFT can just
be seen as a deformation of a CFT by a set of relevant operators. First studied in two-dimensions
where the conformal group is infinite dimensional, the effect of conformal invariance on field the-
ories in 𝑑 > 2 was comprehensively analysed in [197]. What matters when defining a CFT is no
longer the correlation functions, which are already fixed, but however the spectrum of operators
together with their scaling dimension (their eigenvalue under the action of the dilation operator 𝐷)
and the multiplicative factor of their three-point functions. Hence these multiplicative factors are
of primary importance in describing the CFT at hand and one should have the easiest possible way
to compute them.

EuclideanCFTs are basically defined onflat spacewith the Euclideanmetric 𝛿𝜇𝜈 , a setup inwhich
there is no notion of temperature. However, as they are relevant for the study of systemwithmatter,
extending the framework to encompass temperature 𝑇 is crucial. Given an Euclidean field theory
living on a flat background, say ℝ𝑑 , the procedure to obtain a thermal CFT from a one at infinite
temperature is to compactify on a circle of diameter 𝛽 = 1

𝑇
one of the dimensions, the theory living

then on 𝑆1
𝛽
×ℝ𝑑−1. These two backgrounds are however not related by conformal transformations,

unless 𝑑 = 2. Therefore, one expects to deduce all the features of the thermal CFT from the original
one in two-dimensions, whereas in 𝑑 > 2 some additional data will be needed. The latter are
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encoded into correlation functions at finite 𝑇 , dubbed now thermal correlators. The general result
for a massless scalar theory yields for the two-point function a formula of the type [198]

⟨𝜑(𝑟, cos 𝜃)𝜑(0, 0)⟩ = 1
𝑟2Δ

∑︁
{𝑄𝑠}

𝑎𝑄𝑠

(
𝑟

𝛽

)Δ𝑄𝑠
𝐶𝜈𝑠 (cos 𝜃) (6.0.1)

where the sum runs over all spin-𝑠 operators 𝑄𝑠 appearing in the conformal operator product ex-
pansion (OPE) 𝜑 × 𝜑. Also Δ = 1

2 (𝑑 − 2). We work in Euclidean coordinates (𝜏,x) with 𝜏 ∼ 𝜏 + 𝛽,
𝑟2 = 𝜏2 + |x|2, cos 𝜃 = 𝜏

𝑟
and denote by 𝐶𝜈𝑠 the Gegenbauer polynomial depending on 𝜈 = 𝑑

2 − 1.
Here, the only unknowns are the 𝑎𝑄𝑠

which, as we shall see in the main content, are related to the
expectation values of the 𝑄𝑠, higher spin trace-free operators. These are the data one needs to de-
scribe the thermal CFT. The massless scalar theory being still a plain CFT, one may wonder what
happens if the CFT is deformed by a set of relevant operators like the mass or the 𝑈 (1) charge. It
turns out that the resulting theory is generically not a CFT, unless some conditions known under
the name of “gap equations” fix the deformation parameters to a precise value that restore con-
formal invariance [199]. Anyway one can still expand the thermal part of the 2-point function in
Gegenbauers (6.0.1) and look for the 𝑎𝑄𝑠

. Several options are at our disposal to compute them: the
AdS/CFT correspondence (see e.g. [25]) is of primary use: one recast the thermal correlator calcula-
tion into a gravity computation on a background endowedwith an AdS black hole state of Hawking
temperature𝑇 . Spectral analysis and inversion-like formulas (see [198]) are also useful and standard
ways to compute these 1-point functions. However there seems to be no guiding principle to un-
derstand where do these numbers come from and how one could follow their evolution along the
Renormalisation Group flow generated by the deformations.

Diving deeper into the structure of the mathematical expression for the lower spin 𝑎𝑄𝑠
, the

ubiquity of a certain class of single-valued polylogarithms was described in [200] after having been
first noticed in the case of the 𝑂(𝑁) vector model at large 𝑁 in [201]. On the other hand, these
functions often appears in the context of ladder graphs [202–204] and fishnet theories [205, 206].
Onemay then legitimately wonder if there exists a relationship between thermal expectation values
and conformal ladder graphs. This is precisely what we shall study in this part of the thesis. In
addition to the establishment of a correspondence between these two a priori distinct realm of
field theory, it turns out that, starting from the very elementary model of a couple of harmonic
oscillators, one can deduce from its partition function a set of differential operators which allows
one to construct the full tower of 𝐿-loops conformal ladder graphs from the tree level one. Onemay
also eventually resum the full expansion in loops and get the exact correlator of the fishnet theory,
using our correspondence in the other way. This paves the way to a yet completely unexplored web
of relations between graphs and thermal averages.

The plan of this section is as follows. In Section 6.1 we recall some basics notions on CFT. In Sec.
6.2 we present thermal field theories, general and then conformal, with some remarks on how to
recover a CFT after a deformation. All these preliminary notions will be used in Section 6.3 where
the precise correspondence between thermal partition functions and conformal ladder graphs is
stated. We end up in Section 6.4 with some applications of the latter to the construction of higher
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loops ladder graphs and their resummation. We finally conclude with some extensions of our work
and perspectives for the (near) future. The new results of this Chapter are mostly based on [200]
and [207] by the author and collaborators.

6.1 Crash course on Conformal Field Theories

This Section aims at reviewing the basic ingredients we may use in the future Sections of this
Chapter. We will mostly base ourselves on [208].

Let us start we study of conformal invariance in dimensions strictly greater than 2 i.e. we take
𝑑 ≥ 3 and our background shall be ℝ𝑝,𝑞 (with 𝑑 = 𝑝 + 𝑞) with coordinates 𝑥 = 𝑥𝜇 and Lorentzian
metric 𝑔𝜇𝜈 , 𝜇, 𝜈 = 0, 1, ..., 𝑑 of signature (𝑝, 𝑞).

Conformal transformations

Let 𝜙 be a differentiable map between twometrics 𝜙 : 𝑔𝜇𝜈 (𝑥) → 𝑔′𝜇𝜈 (𝑥′). Note that both the point at
which the metric is calculated and the metric itself are assumed to change under such a transform-
ation. The special case for which 𝑔′𝜇𝜈 (𝑥′) = Ω2(𝑥)𝑔𝜇𝜈 (𝑥) with Ω(𝑥) an arbitrary function of the
coordinates is called aWeyl transformation andΩ(𝑥) is theWeyl factor. Conformal transformations
aremore. These are by definition changes of coordinates 𝑥 → 𝑥′ such that 𝑔′𝜇𝜈 (𝑥′) = Ω2(𝑥)𝑔𝜇𝜈 (𝑥)
holds.1 Given the tensorial character of the metric under diffeomorphisms we get that a conformal
transformation should satisfy

𝑔𝜌𝜎
𝜕𝑥′𝜌

𝜕𝑥𝜇
𝜕𝑥′𝜎

𝜕𝑥𝜈
= Ω2(𝑥)𝑔𝜇𝜈 , (6.1.1)

from which we clearly see that angles are preserved by such transformations.

We seek now the infinitesimal form of conformal transformation in the simplest case of flat
space i.e. 𝑔𝜇𝜈 = 𝜂𝜇𝜈 . Assuming

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝜀𝜇(𝑥) + O(𝜀) (6.1.2)

we get the conformal Killing equation at linear order

𝜕(𝜇𝜀𝜈) =
1
𝑑
(𝜕𝜌𝜀𝜌)𝜂𝜇𝜈 (6.1.3)

whose most general solution reads

𝜀𝜇 = 𝑎𝜇 + 𝑏𝜇𝜈𝑥𝜈 + 𝑐𝜇𝜈𝜌𝑥𝜈𝑥𝜌 (6.1.4)

with 𝑎𝜇, 𝑏𝜇𝜈 and 𝑐𝜇𝜈𝜌 = 𝑐𝜇𝜌𝜈 constant coefficients. Note that one can show that 𝑏(𝜇𝜈) ∝ 𝜂𝜇𝜈 . The

1Indeed Weyl transformations have nothing to do with changes of coordinates, they just rescale the metric by an
overall multiplicative factor.
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various terms in (6.1.4) can be interpreted as follows.2

• 𝑎𝜇 corresponds to a usual translations generated by the operator 𝑃𝜇 = −𝑖𝜕𝜇,

• as 𝑏𝜇𝜈 = 𝛼𝜂𝜇𝜈 +𝑚𝜇𝜈 with𝑚𝜇𝜈 = 𝑚[𝜇𝜈] one identifies the latter with usual Lorentz transforma-
tions generated by 𝐿𝜇𝜈 = 𝑖

(
𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇

)
while the former corresponds to a scale transform-

ation (i.e. 𝑥′𝜇 = (1 + 𝛼 + O(𝛼2))𝑥𝜇) generated by 𝐷 = −𝑖𝑥𝜇𝜕𝜇,

• 𝑐𝜇𝜈𝜌 corresponds to a new type of transformations, dubbed special conformal transformations
acting as (with 𝑏𝜈 = 1

𝑑
𝑐
𝜇
𝜇𝜈)

𝑥′𝜈 = 𝑥𝜇 + 2𝑥𝜈𝑏𝜈𝑥𝜇 − 𝑥𝜈𝑥𝜈𝑏𝜇 + O(𝑏2) (6.1.8)

generated by the operator 𝐾𝜇 = −𝑖
(
2𝑥𝜇𝑥𝜈𝜕𝜈 − 𝑥𝜈𝑥𝜈𝜕𝜇

)
. We display for completeness the

finite version of a special conformal transformation

𝑥′𝜇 =
𝑥𝜇 − 𝑥𝜈𝑥𝜈𝑏𝜇

1 − 2𝑏𝜈𝑥𝜈 + 𝑏𝜈𝑏𝜈𝑥𝜌𝑥𝜌
. (6.1.9)

The set of operators {𝑃𝜇, 𝐿𝜇𝜈 , 𝐷, 𝐾𝜇} forms the conformal algebra 𝔰𝔬(𝑝 + 1, 𝑞 + 1). Its (non-zero)
commutators read

[𝐷, 𝑃𝜇] = 𝑖𝑃𝜇 (6.1.10a)

[𝐷, 𝐾𝜇] = −𝑖𝐾𝜇 (6.1.10b)

[𝐾𝜇, 𝑃𝜈] = 2𝑖
(
𝜂𝜇𝜈𝐷 − 𝐿𝜇𝜈

)
(6.1.10c)

[𝐾𝜌, 𝐿𝜇𝜈] = 𝑖
(
𝜂𝜌𝜇𝐾𝜈 − 𝜂𝜌𝜈𝐾𝜇

)
(6.1.10d)

[𝑃𝜌, 𝐿𝜇𝜈] = 𝑖
(
𝜂𝜌𝜇𝑃𝜈 − 𝜂𝜌𝜈𝑃𝜇

)
(6.1.10e)

[𝐿𝜇𝜈 , 𝐿𝜌𝜎 ] = 𝑖
(
𝜂𝜈𝜌𝐿𝜇𝜎 + 𝜂𝜇𝜎𝐿𝜈𝜌 − 𝜂𝜇𝜌𝐿𝜈𝜎 − 𝜂𝜈𝜎𝐿𝜇𝜌

)
(6.1.10f)

meaning that as expected the 𝐿𝜇𝜈 form a Lorentz algebra with 𝑃𝜇 and 𝐾𝜇 transforming under the
vectorial representation of the latter. This algebra is (𝑑+2) (𝑑+1)

2 dimensional.

2To find the expression of the generator, given a transformation

𝑥′𝜇 = 𝑥𝜇 + 𝜀𝑎
𝛿𝑥𝜇

𝛿 𝜀𝑎
(6.1.5a)

𝜙′ (𝑥′) = 𝐹 (𝜙(𝑥)) (6.1.5b)

with 𝐹 a function, we define the generator of the transformation as

𝜙′ (𝑥) − 𝜙(𝑥) := −𝑖𝜀𝑎𝐺𝑎𝜙(𝑥) (6.1.6)

so that
𝑖𝐺𝑎𝜙 =

𝛿𝑥𝜇

𝛿 𝜀𝑎
𝜕𝜇𝜙 −

𝛿𝐹

𝛿 𝜀𝑎
. (6.1.7)
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Remark Given that 𝑝 + 𝑞 = 𝑑 one can redefine the generator as

𝐽𝜇𝜈 := 𝐿𝜇𝜈 , 𝐽−1𝜇 :=
1
2
(𝑃𝜇 − 𝐾𝜇) , 𝐽0𝜇 :=

1
2
(𝑃𝜇 + 𝐾𝜇) , 𝐽−10 := 𝐷 (6.1.11)

so that they satisfy the algebra

[𝐽𝐴𝐵, 𝐽𝐶𝐷] = 𝑖 (𝜂𝐵𝐶𝐿𝐴𝐷 + 𝜂𝐴𝐷𝐿𝐵𝐶 − 𝜂𝐴𝐶𝐿𝐵𝐷 − 𝜂𝐵𝐷𝐿𝐴𝐶) , (6.1.12)

when 𝜂𝐴𝐵 is taken to be diag(−1,−1, 1, . . . , 1).

One could then pursue by studying the representations of the conformal algebra, but this very
canonical notion is not part of our agenda. Instead let’s focus on the transformations of fields under
a scale transformation.

Scaling dimensions, (quasi)-primary fields, descendants

Let Φ be a field, under a finite scale transformation 𝑥′ = 𝜆𝑥 it is assumed to behave like

Φ(𝜆𝑥) = 𝜆−ΔΦΦ(𝑥) . (6.1.13)

The real number ΔΦ ∈ ℝ is called the scaling dimension of Φ. For example if Φ = 𝜙 an ordinary
massless scalar field, given that the action 𝑆 =

∫
d𝑑𝑥 𝜕𝜇𝜙𝜕𝜇𝜙, should be invariant one finds that

Δ𝜙 =
𝑑

2
− 1 . (6.1.14)

Under a general conformal transformation 𝑥 → 𝑥′ of Jacobian | 𝜕𝑥′
𝜕𝑥
| our scalar field 𝜙 changes like

𝜙(𝑥) → 𝜙′(𝑥′) =
����𝜕𝑥′𝜕𝑥 ����−Δ𝜙/𝑑 𝜙(𝑥) , (6.1.15)

and such a field is then called a quasi-primary field.

Remark The notion of primary field comes from the representation theory of the conformal al-
gebra. Without delving too much on that, one defines a primary field as a representation Φ of
the conformal algebra that is annihilated by 𝐾𝜇 once inserted at 𝑥 = 0 that is 𝐾𝜇Φ(0) = 0.
The latter operator is then seen as a lowering operator whereas the 𝑃𝜇 is the raising operator
which allows to build descendants fields from a conformal primary. As 𝑃𝜇 is realized as −𝑖𝜕𝜇,
descendants fields are just derivatives of the primary field.

Remark In general this Jacobian can be expressed like a scale factorΩ(𝑥) thatmultiplies a rotation
matrix 𝑀𝜇

𝜈 i.e.
|𝜕𝑥′𝜇/𝜕𝑥𝜈 | = Ω(𝑥)𝑀𝜇

𝜈 (𝑥) . (6.1.16)
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Hence we can deduce that the equivalent of (6.1.15) for a spin 𝑠-field 𝜓𝑠 of scaling dimension
Δ𝜓 is

𝜓𝑠(𝑥) → 𝜓′𝑠(𝑥′) = Ω−Δ𝜓 (𝑥)𝑅[𝑀𝜇
𝜈 (𝑥)]𝜓𝑠(𝑥) (6.1.17)

with 𝑅 the spin-𝑠 irreducible representation of 𝑆𝑂(𝑑).

Remark One has to be careful with scale invariance and conformal invariance. A theory may
be scale invariant without being conformal invariant. Actually a CFT possesses a traceless
energy-momentum tensor while in a scale invariant theory this trace is equal to the diver-
gence of a local current 𝑇 𝜇𝜇 = 𝜕𝜇𝐾

𝜇 but with some additional requirements on 𝐾𝜇 like the
good scaling dimension (plus e.g. in 𝑑 = 2 it should not be itself the derivative of a scalar).
If there are no suitable candidates for 𝐾𝜇 then scale invariance is equivalent to conformal
invariance. Note that the converse is not true as there exist theories (like a bi-scalar quadrad-
ically coupled in 𝑑 = 4− 𝜖) which possesses such a current while being conformally invariant.
There is a set of requirements which allows to directly go from scale to conformal invariance.
In 𝑑 = 2 and 𝑑 = 4, Lorentz invariance and unitarity suffice [209, 210] while for 𝑑 = 3 and
𝑑 ≥ 5 this set is yet unknown, whereas no counter examples have been found [211].

Once we are given a primary field, one can compute its correlators or 𝑛-point functions. Let
𝑆 [Φ𝑖] be the action of a general Lorentzian CFT whose matter content is denoted by a set of fields
Φ𝑖, 𝑖 ∈ 𝐼 . Introducing the path-integral partition function 𝑍

𝑍 =

∫
D [Φ𝑖]𝑒𝑖𝑆 [Φ𝑖] (6.1.18)

one computes the 𝑛-point function with the formula

⟨𝜙1(𝑥1) . . . 𝜙𝑛(𝑥𝑛)⟩ =
1
𝑍

∫
D [Φ𝑖]𝜙(𝑥1) . . . 𝜙(𝑥𝑛)𝑒𝑖𝑆 [Φ𝑖] . (6.1.19)

Assuming conformal invariance of the action and given that all 𝜙 𝑗, 𝑗 = 1, . . . , 𝑛 are quasi-primaries
of dimension Δ𝑖 we find that the 𝑛-point function should behave like

⟨𝜙1(𝑥1) . . . 𝜙𝑛(𝑥𝑛)⟩ =
���� 𝜕𝑥𝜕𝑥′ ����Δ

/
1𝑑

𝑥=𝑥1

. . .

���� 𝜕𝑥𝜕𝑥′ ����Δ𝑛/𝑑𝑥=𝑥𝑛

⟨𝜙1(𝑥′1) . . . 𝜙′𝑛(𝑥𝑛)⟩ (6.1.20)

under a conformal transformation. This equation (6.1.20) drastically constrain the shape of low 𝑛

correlators. Actually, thanks to translation invariance, all 1-point functions should be zero except
for the unity operator

⟨𝜙(𝑥)⟩ =
{

1 if 𝜙 = 𝐼𝑑

0 otherwise .
(6.1.21)
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Eq. (6.1.20) also completely fixes the shape of the 2 and 3-point correlators which respectively are

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ =


𝑑12
|𝑥1−𝑥2 |2Δ1 if Δ1 = Δ2

0 otherwise
(6.1.22)

with 𝑑12 a constant, and

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)⟩ =
𝜆123

𝑥
Δ−2Δ3
12 𝑥

Δ−2Δ1
23 𝑥

Δ−2Δ2
13

(6.1.23)

with 𝑥𝑖 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |, Δ = Δ1 + Δ2 + Δ3 and 𝜆123 a constant. Hence up to a numerical factor, the
shape of these correlators is completely fixed by conformal invariance. For the 4-point function we
can only write the correlators up to an arbitrary function 𝑓 that depends on conformal invariant
quantities called conformal ratios

𝑥2
12𝑥

2
34

𝑥2
13𝑥

2
24

:= 𝑢 and
𝑥2

12𝑥
2
34

𝑥2
23𝑥

2
14

:= 𝑣 (6.1.24)

to3 give

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)𝜙4(𝑥4)⟩ = 𝑓 (𝑢, 𝑣)
4∏
𝑖<𝑗

𝑥
Δ/3−Δ𝑖−Δ𝑗
𝑖 𝑗

(6.1.26)

with4 again Δ =
∑4
𝑖=1 Δ𝑖. Recall that this is what we can achieve using only what conformal in-

variance tells us. As we shall see, the notion of operator product expansion will help to compute
explicitly higher point correlators.

Remark In computing a 4-point function as in (6.1.26) it is always possible to use conformal in-
variance to fix some of the points to a chosen value. With a translationwe can set 𝑥1 = 0, then
with the combination of a rotation and a scale transformation we set 𝑥2 = 1 (the rotation is
around the origin) and finally with a special conformal transformation 𝑥3 = +∞. As dilata-
tion would not bring anything else we see that one can always fix three of the coordinates,
which would considerably simplify the computation of the correlator.

Operator-state correspondence

We recall first in this paragraph the process of radial quantisation. Quantisation requires a notion of
evolution along a parameter that is often took to be the time, as one needs to compute equal-time
commutation relations. Geometrically speaking it means that our 𝑑-dimensional background is cut

3One can express the conformal ratios in terms of complex variables 𝑧, 𝑧 related to 𝑢 and 𝑣 as

𝑣 = 𝑧𝑧 and
𝑢

𝑣
= (1 − 𝑧) (1 − 𝑧) . (6.1.25)

4An additional symmetry dubbed crossing symmetry and related to the OPE imposes that 𝑓 (𝑢, 𝑣) =
(
𝑢
𝑣

)Δ
𝑓 (𝑣, 𝑢).
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(one says foliated) by (𝑑 − 1)-dimensional sub-manifolds corresponding to 𝑡 = 𝑐𝑠𝑡. In (Euclidean)
CFT, given the dilation operator (𝐷 = 𝑟𝜕𝑟) and the invariance under scale transformations, instead
of foliating with respect to time, we choose 𝑆𝑑−1 spheres centered at the origin.5 Moving form one
sphere to another is done with the 𝐷 operator and we classify states by their scaling dimension and
their spin

𝐷 |Δ, 𝑠⟩ = 𝑖Δ|Δ, 𝑠⟩ (6.1.27a)

𝐿𝜇𝜈 |Δ, 𝑠⟩ = 𝑅[(Σ𝜇𝜈)] |Δ, 𝑠⟩ (6.1.27b)

with 𝑅[Σ𝜇𝜈] the spin-𝑠 representation of the Lorentz algebra. This whole process amounts to write
the metric of ℝ𝑑 as

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑Ω2
𝑑−2 (6.1.28)

with 𝑑Ω2
𝑑−1 the metric of the unite round (𝑑 − 1)-sphere. Introducing 𝜏 := log 𝑟 we get

𝑑𝑠2 = 𝑒2𝜏 (𝑑𝜏2 + 𝑑Ω2
𝑑−1) (6.1.29)

which allows to write the evolution operator between the spheres as

𝑈 = 𝑒𝑖𝐷𝜏 . (6.1.30)

Note in passing that this change of coordinate leading to the overall scale factor 𝑒2𝜏 shows that ℝ𝑑

and ℝ × 𝑆𝑑−1 are conformally equivalent. This is a fact that we will use in the next Section. Note
finally that radial quantization is strictly equivalent to ordinary quantization with respect to time
but on a cylinder.

Within this framework, the operator-state correspondence states that, given the vacuum state |0⟩
of dimension and spin 0, a state |Δ⟩ of scaling dimension Δ is equivalent to the insertion at the
origin of a local quasi-primary operator of that dimension. In other words

⟨𝜙(𝑥1)𝜙(𝑥2) . . .OΔ(0)⟩ = ⟨0|𝜙(𝑥1)𝜙(𝑥2) . . . |Δ⟩ , (6.1.31)

which will make us from now on identify states with local operators.

Remark It is possible to give constraints on the scaling dimension Δ. Requiring unitarity6 (i.e.
positive norm states) we get the well-known unitarity bounds

Δ𝑠=0 ≥
𝑑

2
− 1 (6.1.32a)

Δ𝑠=1/2 ≥
𝑑 − 1

2
(6.1.32b)

Δ𝑠≥1 ≥ 𝑑 − 2 + 𝑠 , (6.1.32c)

5Translation-invariance ensures that quantising from any other point would give the same correlators.
6In Euclidean signature one should instead talk about reflexion positivity.
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with 𝑠 the spin of the field.

Wick’s theorem, operator product expansion

Two additional notions are very useful when dealing with CFT. When the theory is Gaussian one
can always reduce the computation of any 𝑛-points functions to lower point functions usingWick’s
theorem which states that7

⟨𝜙1(𝑥1)𝜙2(𝑥2) . . . 𝜙2𝑛−1(𝑥2𝑛−1)𝜙2𝑛(𝑥2𝑛)⟩ = (6.1.33)∑︁
𝜎

⟨𝜙𝜎 (1) (𝑥𝜎 (1))𝜙𝜎 (2) (𝑥𝜎 (2))⟩ . . . ⟨𝜙𝜎 (𝑛−1) (𝑥𝜎 (𝑛−1))𝜙𝜎 (𝑛) (𝑥𝜎 (𝑛))⟩

where the sum runs over all permutations 𝜎 ∈ 𝔖2𝑛 of 1, ..., 2𝑛.

The other notion is the operator product expansionwhich states that the product of two operators
O𝑖 andO𝑗 evaluated at neighboring points 𝑥 and 𝑦 can always be re-expressed as a sum of operators
i.e.

O𝑖(𝑥)O𝑗( 𝑦) =
∑︁
𝑘

𝜆𝑖 𝑗𝑘CO ( 𝑦, 𝜕𝑦)O𝑘( 𝑦) (6.1.34)

where CO ( 𝑦, 𝜕𝑦) can be though as an expansion in powers of 𝜕𝑦 and where 𝜆𝑖 𝑗𝑘 are the three-point
function coefficients (6.1.23). Hence we see that in such an OPE appears the primary states and their
descendent, which are just derivatives of the latter. It can be proven that in the OPE between a
quasi-primary O and itself only appears itself and its descendants.

Remark Recall that applying the OPE inside a correlation function is not innocuous at all. OPEs
only work in a certain regime (refers as neighboring points before), i.e. in the context of radial
quantization one should select two operators O𝑖 and O𝑗 (where the hat means a fixed value
of the index) which can be surrounded by a sphere whose interior is flat that excludes all
other operators. This is trivial on ℝ𝑑 but not for more complicated manifolds. See [198] for
discussions on that issue.

What characterises a CFT?

So far one could see that the fundamental quantities that describe a CFT are its spectrum of primary
operators of dimension Δ (from which one can deduce its descendent) and the normalisation con-
stants of the two and three-point functions 𝑑𝑖 𝑗 and 𝜆𝑖 𝑗𝑘 (the latter appearing also in the OPE of the
corresponding fields). However it is always possible to renormalise the two-point function coeffi-
cient to 1 when the fields are the same i.e. 𝑑𝑖𝑖 = 1 but once this is fixed it is not possible to fix its
three-point analogue. Therefore the fundamental data describing the CFT at hand is the spectrum
of operators and its OPE coefficients

{OΔ, 𝜆𝑖 𝑗𝑘} . (6.1.35)
7We write it for an even number of fields for simplicity, in the odd case a three point function would appear.
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From this set of data, using (6.1.34) one can deduce the shape of all 𝑛-point functions and hence solve
the theory. This was for CFTs without temperature It is actually possible to extend the framework
so that it encompasses this notion. This is the purpose of the next paragraph.

Remark This whole paragraph was about CFT in 𝑑 ≥ 3 where the conformal algebra and groups
are finite dimensional. In twodimensions the conformal algebra is infinite dimensionalwhich
allows for a much richer analysis exhibiting nice algebraic structures like the Witt and Viras-
oro algebras. Everything we described in higher dimensions can be redone in 𝑑 = 2 but as we
will mostly sit in higher odd dimensions in the rest of this Chapter it is not worth spending
too much time on that topic. In addition, some words about two dimension will be given in
the thermal case.

6.2 Thermal Field Theories

We focus here onhow to add temperature in field theory, focusing first on the case of one-dimensional
field theory a.k.a. quantum mechanics. Using conformal invariance we then show that in two-
dimensions, CFTs and thermal CFT are in one-to-one correspondence, meaning that no additional
data is required to describe the 2𝑑 thermal CFT. In higher dimensions problems arise but we left
that issue for the next Section as our advertised correspondence with conformal graphs will help
solving it.

6.2.1 Generalities and useful techniques

Thermal quantummechanics

Whendealingwith thermal systems in statistical physics and then in quantummechanics, the notion
of ensemble is fundamental. We recall that the two main ensembles are the canonical and the grand
canonical. In the former the system is assumed to be at equilibrium with a reservoir at temperature
𝑇 := 1

𝛽
and with a fixed number of particles, hence it exchanges energy with the reservoir while its

volume 𝑉 and its number of particles 𝑁 remains constant. In the latter the system exchanges both
energy and particles hence both the volume and the chemical potential 𝜇 of the particles are fixed.
In both ensembles the fundamental quantity is the partition function 𝑍, quantity from which one
can deduce all the thermodynamics of the system. In the canonical ensemble it reads8

𝑍 = Tr(𝑒−𝛽�̂�) (6.2.1)

with �̂� the Hamiltonian operator and the trace is taken over the whole Hilbert space.9 Taking
derivatives of (6.2.1) (more precisely ln 𝑍, this will have a big impact in the following) we respectively

8The quantity 𝑒−𝛽�̂� is often called the density operator and denoted by 𝜌.
9If E𝐻 = {|𝜓𝑖⟩} is the Hilbert space and �̂� and operator acting on it we have Tr( �̂�) = ∑

𝑖⟨𝜓𝑖 | �̂�|𝜓𝑖⟩.
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get the free energy 𝐹, the pressure 𝑃, the entropy 𝑆 or the number of particles 𝑁

𝐹 = −𝑇 ln 𝑍 , 𝑃 = 𝑇
𝜕 ln 𝑍
𝜕𝑉

, 𝑆 = −𝜕𝐹
𝜕𝑇

, 𝑁 = 𝑇
𝜕 ln 𝑍
𝜕𝜇

, (6.2.2)

while the energy reads 𝐸

𝐸 =
1
𝑍
Tr(�̂�𝑒−𝛽�̂�) . (6.2.3)

This was for the canonical ensemble. One gets the grand-canonical replacing �̂� by �̂� − 𝜇�̂� with
�̂� the operator that counts the number of particles.

Given an operator �̂�we define its thermal expectation value at temperature 𝛽 as

⟨�̂�⟩𝛽 =
1
𝑍
Tr( �̂�𝑒−𝛽�̂�) (6.2.4)

This is of course, like in the rest of this paragraph, a one-dimensional definition. The easiest system
one can study in that dimension is the thermal harmonic oscillator. Given the importance it will get
in our correspondence Section 6.3 we shall spend some time detailing it. For a massive harmonic
oscillator of frequency 𝜔 and mass also 𝑚 the Hamiltonian read (with ℏ = 1)

�̂� =
1

2𝑚
�̂�2 + 1

2
𝑚𝜔2�̂�2 := 𝜔

(
�̂� + 1

2

)
(6.2.5)

where �̂� and �̂� are respectively the momentum and position operators while �̂� is the number op-
erator.10 The partition function is then

𝑍H.O. =
1

2 sinh 𝛽𝜔

2

(6.2.6)

from which we get

𝐹 =
𝜔

2
+ 1
𝛽

ln(1 − 𝑒−𝛽𝜔) (6.2.7a)

𝑆 = − ln(1 − 𝑒−𝛽𝜔) + 𝜔𝛽 1
𝑒𝛽𝜔 − 1

(6.2.7b)

𝐸 = 𝜔

(
1
2
+ 1

1 − 𝑒−𝛽𝜔

)
. (6.2.7c)

Note the contribution of the zero-temperature case in the energy. The Hamiltonian (6.2.5) can be
enhanced to encompass a chemical potential. This will be our fundamental model in Section 6.3.
This model can also be studied by path-integral quantisation [212] but we won’t give details on that.

10Recall that �̂� = �̂�† �̂� in terms of ladder operators.
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Imaginary time formalism and Matsubara frequencies

In this section we go to field theory and we shall show some of the usual techniques when dealing
with temperature. The first one comes under the nameof imaginary time formalism. Let𝑆 = 𝑖

∫
d𝑡d𝑑−1𝑥L

be an action for a 𝑑-dimensional theory11 in Lorentzian signature at infinite temperature with co-
ordinates (𝑡,x). One can add temperature performing the following steps

• Wick rotate the time, defining 𝜏 := 𝑖𝑡, hence the name of imaginary time formalism. This
brings the theory to Euclidean signature,

• replace the Lorentzian action by theEuclidean one𝑆 → 𝑆𝐸 = −
∫
d𝑡d𝑥𝐿𝐸with 𝐿𝐸 = −L(𝜏 = 𝑖𝑡),

• require periodicity on 𝜏 i.e. 𝜏 ∼ 𝜏 + 𝛽 with 𝛽 := 1
𝑇
where 𝑇 is the temperature. This compac-

tifies the time direction on a circle of radius 𝛽 a.k.a. 𝑆1
𝛽

• compute the partition function using the Euclidean path integral, 𝑍[Φ] =
∫

D [Φ]𝑒−𝑆𝐸 [Φ] .

Carrying out the compactification on a circle will have tremendous consequences when the theory
lives in 𝑑 > 2. We will come back to that issue in the next Section.

Remark Note that compactifying a dimension implies an explicit breaking of translation invari-
ance, hence one expects the thermal expectation values of operators ⟨O⟩𝛽 to be in general
non-zero.

The coordinates are now (𝜏,x). When it comes to compute thermal correlators of a field 𝜙(𝜏,x)
(let’s take it scalar for simplicity) a useful trick is to Fourier transform. As the time direction is now
compact the Fourier transform is no longer an integral but rather a discrete (albeit infinite) sum

𝜙(𝜏, x) = 1
𝛽

+∞∑︁
𝑛=−∞

�̃�(𝜔𝑛,x)𝑒−𝑖𝜔𝑛𝜏 (6.2.8)

where the 𝜔𝑛 are called Matsubara frequencies. What are the values these frequencies can take ? It
turns out that the imaginary time formalism comes with its own set of conditions. One of them is
that all fields should be either periodic or anti-periodic (depending on their commutation relations)
in imaginary time i.e.

Φ(0,x) = ±Φ(𝛽, x) . (6.2.9)

This is the Kubo-Martin-Schwinger relation (KMS for short) and it implies that the Matsubara fre-
quencies should be

𝜔𝑛 =
2𝜋𝑛
𝛽

for commuting fields (6.2.10)

11(𝑑 − 1 + 1)...
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𝜔𝑛 =
2𝜋 (𝑛 + 1/2)

𝛽
for anti-commuting fields. (6.2.11)

From (6.2.8) one can also Fourier transform along the spatial dimensions to get

𝜙(𝜏, x) = 1
𝛽

+∞∑︁
𝑛=−∞

∫
d𝑑−1p
(2𝜋)𝑑−1 �̃�(𝜔𝑛, p)𝑒

−𝑖𝜔𝑛𝜏−𝑖p·x . (6.2.12)

We shall now illustrate these concepts with an explicit example.

Massless free scalar field in 𝒅-dimensions

In this paragraph we denote by (𝑥) = (𝑥𝜇), 𝜇 = 0, 1, ...𝑑 − 1 the coordinates (𝜏,x) and we set 𝛽 = 1.
The Lagrangian of this simple theory is

L =
1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 . (6.2.13)

Let’s compute the thermal propagator i.e. the thermal 2-points function, by Fourier transform and
using polar coordinates

⟨𝜙(𝑥)𝜙(0)⟩𝛽 := 𝑔𝑑 (𝑟, cos 𝜃) (6.2.14)

=

+∞∑︁
𝑛=−∞

∫
d𝑑−1p
(2𝜋)𝑑−1

𝑒−𝑖𝜔𝑛𝜏−𝑖p·x

𝜔2
𝑛 + p2

=
Γ( 𝑑2 − 1)

4𝜋𝑑/2

+∞∑︁
𝑛=−∞

1
[(𝜏 + 𝑛)2 + x2]𝑑/2−1

=
Γ( 𝑑2 − 1)

4𝜋𝑑/2

[
1
𝑟𝑑−2 +

+∞∑︁
𝑛=1

(
1

(𝑟2 + 𝑛2 + 2𝑟𝑛 cos 𝜃)𝑑/2−1
+ 1
(𝑟2 + 𝑛2 − 2𝑟𝑛 cos 𝜃)𝑑/2−1

)]
=

Γ( 𝑑2 − 1)
4𝜋𝑑/2

1
𝑟𝑑−2

[
1 +

+∞∑︁
𝑛=1

2𝜁 (𝑑 − 2 + 2𝑛)𝑟𝑑−2+2𝑛𝐶
𝑑/2−1
2𝑛 (cos 𝜃)

]
,

where12 we have introduced the widely used notations 𝑟2 = 𝜏2+x2 and cos 𝜃 = 𝜏
𝑟
(while sin 𝜃 = |x|

𝑟
).

In this expression also appear the well-known Gegenbauher polynomials𝐶𝜈𝑛(cos 𝜃). Note also that
this expression reassembles the one of (6.0.1) which means that we have in that case

𝑎Q𝑠 = 2𝜁 (𝑑 − 2 + 2𝑛) ∝ ⟨Q𝑠⟩𝛽 (6.2.15)

where the Q𝑠 form an infinite set of higher-spin operators with dimensions ΔQ𝑠 = 𝑑 − 2 + 𝑠 and
even spin 𝑠 = 2𝑝. Hence the massless scalar field, which is always a CFT, is a theory for which the

12In (6.2.14) Γ(𝑥) stands for the Euler Gamma function.
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thermal expectation values are explicitly computable. We also find that

□𝑑𝑔𝑑 (𝑟, cos 𝜃) = 0 , (6.2.16)

with □𝑑 the Laplacian in 𝑑-dimensions. This is a typical feature of a theory whose spectrum is
uniquely composed by higher-spin operators.

Remark The Gegenbauer polynomials form a set of orthogonal functions defined on [−1, 1] and
generated by

1
(1 − 2𝑥𝑡 + 𝑡2)𝜈 =

+∞∑︁
𝑛=0

𝐶𝜈𝑛(𝑥)𝑡𝑛 (6.2.17)

with 0 ≤ |𝑥 | < 1, |𝑡 | < 1 and 𝜈 > 0. They are particular solutions of the differential equation
on 𝑦(𝑥)

(1 − 𝑥2) 𝑦′′ − (2𝜈 + 1)𝑥𝑦′ + 𝑛(𝑛 + 2𝜈) 𝑦 = 0 (6.2.18)

and their orthogonality relation reads∫ 1

−1
𝐶𝜈𝑛(𝑥)𝐶𝜈𝑚(𝑥) (1 − 𝑥2)𝜈−

1
2d𝑥 = 0 . (6.2.19)

Remark Actually the Q𝑠 in (6.2.15) are nothing but the infinite tower of higher spin currents one
can always construct from a scalar field (see e.g. the Section 5 of [213]). As the latter was real
in our case, only even spins appears.

Remark In a more general theory, on top of the higher-spin operators, it appears in the OPE 𝜙×𝜙
higher-twist operator of the form

O𝑛,𝑠 = 𝜙𝜕𝜇1 . . . 𝜕𝜇𝑠□2𝑛𝜙 (6.2.20)

with 𝜇1, . . . , 𝜇𝑠 ∈ {0, 1, ..., 𝑑 − 1} and 𝑛 the twist number. When dealing with the two-point
function written as (6.2.25), in virtue of (6.2.16), the part annihilated by the Laplacian in 𝑑-
dimension is the one containing only the zero-twist higher-spin operators.

This ends our brief review of the main techniques used in thermal field theory, not necessarily
conformal. We shall now delve into the case of CFT, study how conformal invariance can help us
describing the thermal theory, and point out the main questions to be solved, among them the one
our correspondence illuminates.

6.2.2 From CFT to thermal CFT

Thanks to conformal invariance, when two backgroundsM andM′ are related by a conformal
transformation, on can get any information about the CFT on the latter given what is known on
the former. This is of precious help when thermalisation arises.
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The two-dimensional case

We first consider a theory living on ℝ2 whose metric in polar coordinates reads

d𝑠2 = d𝑟2 + 𝑟2d𝜃2 , (6.2.21)

with 𝑟 ≥ 0 and 𝜃 ∈ [0, 2𝜋). Introducing a new coordinate 𝜌 such that 𝑟 = 𝐿𝑒𝜌/𝐿 one re-expresses
the metric as

d𝑠2 = 𝑒2𝜌/𝐿 (
d𝜌2 + 𝐿2d𝜃2) (6.2.22)

with 𝜌 ∈ [0, 𝐿]. (6.2.22) is conformally equivalent to a metric on 𝑆1
𝛽
× ℝ with 𝛽 = 𝐿 and 𝑒2𝜌/𝐿 as

conformal factor. (6.2.21) and (6.2.22) being conformally related, one can deduce from the correlators
on ℝ2 namely13

⟨O(𝑟1, 𝜃)O(𝑟2, 𝜃)⟩ =
1

(𝑟2
1 + 𝑟2

2 − 2𝑟1𝑟2 cos 𝜃)ΔO
(6.2.23)

the form of the correlators on 𝑆1
𝛽
×ℝ

⟨O(𝜌1𝜃)O(𝜌2, 0)⟩ =
1

𝐿2ΔO

1(
2 cosh 𝜌1−𝜌2

𝐿
− 2 cos 𝜃

)ΔO (6.2.24)

i.e. from the theory on the flat backgroundwe determine completely the theory on the thermal geo-
metry (6.2.22). This is an important result that in 𝑑 = 2, after thermalisation there are no additional
data required to describe the CFT, the spectrum and the OPE coefficients are sufficient.

Remark One may ask about the fate of one-point functions which are all vanishing on ℝ2 but
may non vanish on 𝑆1

𝛽
× ℝ due to the breaking of translation invariance. This seems in

contradiction with the previous statement that no additional data is needed in the thermal
case. Actually non vanishing thermal one-point functions are determined by the anomalous
behavior under conformal transformation of the operators of the non-thermal CFT. This
is in particular the case of the energy-momentum tensor. See [214, 215] and latter [199] for
comments on that.

What about higher dimensions?

If we start now from aCFT living onℝ𝑑 with 𝑑 > 2we see that the same change of variable 𝑟 = 𝐿𝑒𝜌/𝐿

allows to conformally relate this background toℝ × 𝑆𝑑−1. However this is not a thermal geometry
and actually it can be shown thatℝ𝑑 cannot be related to 𝑆1

𝛽
×ℝ𝑑−1 by a conformal transformation.

Therefore thermal correlators in dimensions higher than two should depend on extra parameters
with respect to the infinite temperature CFT. In this thesis we will focus mostly on what can be said
about thermal 2-points functions.

13This is just (6.1.22) but in (𝑟, 𝜃) coordinates.
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It as been shown in [198] that in the case of scalar fields one can always expand the thermal CFT
2-point function like in (6.2.14) i.e. in the basis of Gegenbauer polynomials

⟨𝜑(𝑟, cos 𝜃)𝜑(0, 0)⟩ = 1
𝑟2Δ

∑︁
{O𝑠}

𝑎O𝑠

(
𝑟

𝛽

)ΔO𝑠
𝐶𝜈𝑠 (cos 𝜃) (6.2.25)

with 𝜈 = 𝑑/2 − 1. In (6.2.25) the sum runs over all operators O𝑠 appearing in the OPE 𝜙 × 𝜙.14 The
latter are spin-𝑠 irreducible representation of 𝑆𝑂(𝑑). It can also be shown that the coefficient 𝑎O𝑠 is
related to the thermal expectation value of O𝑠 via15

𝑎O𝑠 =
𝑠!

2𝑠(𝜈)𝑠
𝜆𝜙𝜙O

𝑑O𝑠
𝑏O𝑠 (6.2.27)

and16

⟨O𝑠⟩𝛽 = 𝑏O𝑠 (𝑒𝜇1 . . . 𝑒𝜇𝑠 − traces) (6.2.28)

where 𝑑O𝑠 is the normalisation factor of ⟨O𝑠O𝑠⟩, 𝜆𝜙𝜙O is the one of ⟨𝜙𝜙O𝑠⟩ and with 𝑒 a unit vector.
The 𝑏O𝑠 are the new parameters we need to determine in order to describe our thermal CFT (we
already found them in the case of the free massless scalar field in (6.2.15)). Recall that as translation-
invariance is broken there are to be non-zero.17 Note that the expression(

𝑟

𝛽

)ΔO𝑠
𝐶𝜈𝑠 (cos 𝜃) (6.2.29)

is universal and can then receive the sweet name of “thermal (conformal) blocks” by analogy with the
conformal blocks in higher point functions in infinite temperature CFT.

Remark In [198] the authors pointed out a possible spectral analysis in seeking an expression for
the 𝑎O𝑠 . Introducing a new variable Δ one can rewrite (6.2.25) as

𝑔(𝑟, cos 𝜃) =
∑︁
𝑠

∮ −𝜀+𝑖∞

−𝜀−𝑖∞

dΔ
2𝜋 𝑖

𝑎(Δ, 𝑠)𝐶
𝜈
𝑠 (cos 𝜃)
𝑟2Δ𝜙−Δ

(6.2.30)

with 𝜀 > 0 small and 𝑎(Δ, 𝑠) ∼ − 𝑎O𝑠
Δ−ΔO𝑠

. Using (6.2.19) one finally gets, setting 𝑥 = cos 𝜃

𝑎(Δ, 𝑠) = 1
𝑁𝜈,𝑠

∫ 1

0

d𝑟
𝑟Δ−2Δ𝜙+1

∫ 1

−1
d𝑥(1 − 𝑥2)𝜈−1/2𝐶𝜈𝑠 (𝑥)𝑔(𝑟, 𝑥) , (6.2.31)

14Such an expansion is only valid in the OPE regime which implies |𝑥 | =
√
𝜏2 + x2 < 𝛽. Otherwise there are no

sphere with flat interior to apply the OPE.
15Recall the expression of the Pochhammer symbol

(𝑥)𝑛 = 𝑥(𝑥 + 1) . . . (𝑥 + 𝑛 − 1) . (6.2.26)

16To be rigorous one should read O𝜇(𝑠) instead of O𝑠 with 𝜇(𝑠) a multi-index completely symmetrised.
17Only for quasi-primary operators, descendent still have a vanishing expectation value [198].
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with 𝑁𝑠 an overall normalisation factor [199]

𝑁𝜈,𝑠 =
21−2𝜈𝜋Γ(𝑠 + 2𝜈)
(𝑠 + 𝜈)Γ(𝑠 + 1)Γ2(𝜈) . (6.2.32)

The latter equation (6.2.31) is also called an (Euclidean) inversion formula. It can be extended
to Lorentzian signature, see [198].

What characterises a thermal CFT?

Adding temperature requires to know the spectrum of operators of the theory with their scaling
dimensions and their OPE coefficients, but the main difference lies in the thermal one point func-
tions of quasi-primary operators, which contain an arbitrary coefficient 𝑏O (see (6.2.27)). Hence the
set of data that fully describes a thermal CFT is

{ΔO , 𝜆OOO′ , 𝑏O} . (6.2.33)

6.2.3 Deforming the CFT and evolution along the RG flow

So far we were dealing with theories that remains conformally-invariant in the thermal instance.
However, as we recall in the introduction of this Chapter, CFTs are always RG fixed points of QFTs.
In other words, QFTs are deformations of CFT by relevant operators such as the mass with para-
meter 𝑚 or an 𝑈 (1) charge with parameter 𝜇, the chemical potential. One may then legitimately
wonder what is the fate of the new data 𝑎O𝑠 once a free CFT gets deformed.

Let’s go back to the case of the scalar field which we now consider to be massive, the theory is
hence deformed by the operator 𝜙2. (6.2.14) gets modified into

𝑔𝑑 (𝑟, cos 𝜃;𝑚) =
+∞∑︁
𝑛=−∞

∫
d𝑑−1p
(2𝜋)𝑑−1

𝑒−𝑖𝜔𝑛𝜏−𝑖p·x

𝜔2
𝑛 + p2 + 𝑚2

=
1
√

2𝜋

(𝑚
𝑟

)𝑑/2−1
𝐾𝜈 [𝑚𝑟] +

1
√

2𝜋

+∞∑︁
𝑘=1

[(
𝑚

[(𝑘 − 𝜁 ) (𝑘 − 𝜁 ]𝑑/2

) 𝜈
𝐾𝜈 [𝑚((𝑘 − 𝜁 ) (𝑘 − 𝜁 )]

+
(

𝑚

[(𝑘 + 𝜁 ) (𝑘 + 𝜁 )]𝑑/2

) 𝜈
𝐾𝜈 [𝑚((𝑘 + 𝜁 ) (𝑘 + 𝜁 )]

(6.2.34)

with 𝜈 = 𝑑/2−1 again, 𝜁 = 𝜏+ 𝑖|x| so 𝜁 = 𝜏− 𝑖|x| and 𝐾𝜈 the modified Bessel function of the second
kind. The first term in the second line corresponds to the usual zero temperature result. Note that
one can also expand 𝑔𝑑 (𝑟, cos 𝜃;𝑚) in Gegenbauer polynomials and get a formula similar to (6.2.25).
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In that case one gets for higher even spins (𝑠 > 0) with a spectral analysis [199]

𝑎(Δ𝑠) =
1

22𝑠+ 𝑑−3
2

1
𝑠!

Γ( 𝑑2 − 1)
Γ(𝑑 − 2 + 𝑠)

𝑑−3
2 +𝑠∑︁
𝑛=0

2𝑛+1

𝑛!
(𝑑 − 3 + 2𝑠 − 𝑛)!
( 𝑑−3

2 + 𝑠 − 𝑛)!
𝑚𝑛Li𝑑−2+𝑠−𝑛(𝑒−𝑚) (6.2.35)

where we see appearing for the first time polylogarithms Li𝑛(𝑧), ubiquitous functions in graph
(e.g. [216]) and number theory (e.g. [217]). They are defined by

Li𝑛(𝑧) =
+∞∑︁
𝑘=1

𝑧𝑘

𝑘𝑛
, (6.2.36)

with 𝑛 ∈ ℂ the order and 𝑧, complex number of modulus 1, the argument. Note that in particular
that Li1(𝑧) = − ln(1 − 𝑧) and

Li𝑠+1(𝑧) =
∫ 𝑧

0

Li𝑠(𝑡)
𝑡

d𝑡 . (6.2.37)

The linear combination appearing in (6.2.35) has the special property of being single-valued.

Remark Themassive scalar field is generically not a CFT sowe should not expect any consequence
of conformal invariance to hold. However, in odd dimensions 𝑑 = 2𝐿 + 1 (𝐿 = 0, 1, 2, 3, ...),
the Bessel functions become polynomials and it is always possible to tune themass parameter
𝑚 to get a CFT [199]. Actually it is expected that, in the deformed theory, the operator 𝜙2

do not appear in the spectrum, leaving its place to its so-called shadow operator. Such an
operator is often denoted by 𝜎 and has a scaling dimension Δ𝜎 such that Δ𝜎 + Δ𝜙2 = 𝑑 i.e.
Δ𝜎 = 2. When the thermal theory is a CFT the shadows do not belong to the spectrum
contrary to 𝜙2. Expanding on the one hand the zero temperature result and on the other
hand the thermal part, both in power of (𝑚𝑟) we can find the coefficient that multiplies the
power of 1

𝑟
corresponding to ⟨𝜙2⟩ and ask for the coefficient in front to vanish. This leads to

the gap equation of [199] to solve of 𝑚

𝐿−1∑︁
𝑛=0

2𝑛+1

𝑛!
(2(𝑘 − 1) − 𝑛)!
(𝑘 − 1 − 𝑛)! 𝑚𝑛

thLi2𝑘−1−𝑛(𝑒−𝑚th) = − 1
2
√
𝜋
𝑚2𝑘−1
th Γ(−𝑘 + 1

2 ) , (6.2.38)

with𝑚th the special value of the parameter that leads to conformal invariance of the deformed
theory. For example in 𝑑 = 3 on finds that the mass should be adjusted to

𝑚𝑑=3
th = 2 ln

(
1 +
√

5
2

)
. (6.2.39)

The general picture is now clear. In a zero temperature CFTwe know the shape of the correlat-
ors (6.1.22), (6.1.23) and (6.1.26). One can deform this CFT and study its evolution along the RG flow
but still be able to recover a CFT upon fine-tuning of the parameters. When thermalisation arises, a
new set of data, contain in the 𝑎O , is needed to describe the CFT, which again can also be deformed
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as in (6.2.34). Several questions then arise

• Where do these 𝑎O come from? Is there an underlying principle explaining their values?

• Is it possible to write the thermal 2-point function in a CFT form?

• How does 𝑎O evolve along the RG flow i.e. what happen when 𝑎O (0) → 𝑎O (𝑚)?

This are our objectives for the remaining of the Chapter and an innocent but crucial observation
will help us in that quest.

Towards conformal graphs

As we pointed out before (6.2.36), the single-valued polylogarithms are graphical functions (in the
sense of [216]) which were found to appear in [202] when computing conformal ladder graph for
3 and 4-point functions of a massless 𝜑3 theory at 𝐿-loops and in odd dimensions. It seems then
that those two a priori distinct area of field theory, on the one hand thermal correlators and on the
other hand conformal ladder graphs, are related through these mathematical functions. This is the
observation made in [200] and pursued in our work [207] where we went further, showing that
conformal graphs are actually related to thermal partition functions.

6.3 Conformal graphs as twisted partition functions

In this Section we establish our correspondence [207] between partition functions, thermal correl-
ators in odd dimensions 𝑑 = 2𝐿 + 1 and 𝐿-loops conformal ladder graphs. After reviewing our
fundamental model (from which everything will be deduced) we shall give some details about the
structure of conformal fishnet theories, mainly the model of [206] which is at the heart of our work.
After precisely stating the correspondence we finish with some of its present and future applica-
tions.

6.3.1 Twisted scalar fields in 𝒅 = 2𝑳 + 1 dimensions

The model: relativistic Bose gas

In this paragraph our background is 𝑆1
𝛽
× ℝ𝑑−1 described by means of the (Euclidean) coordinates

(𝜏, x) where 𝜏 is the imaginary time. The temperature is still denoted by 𝑇 = 1
𝛽
. We mostly follow

[200] and our work [207].
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We consider the thermal partition function of a massive complex scalar field 𝜙 coupled to a
𝑈 (1) gauge field 𝐴𝜇 = (𝜇, ®0) with 𝜇 a complex imaginary chemical potential18

𝑍𝑑 (𝛽;𝑚, 𝜇) =
∫

D𝜙D �̄�𝑒−𝑆𝐸 [𝜙,𝐴𝜇] (6.3.1)

with Euclidean action19

𝑆𝐸 =

∫ ∞

0
d𝜏

∫
d𝑑−1𝑥

[
| (𝜕𝜏 − 𝑖𝜇)𝜙|2 + |®𝜕𝜙|2 + 𝑚2 |𝜙|2

]
, (6.3.2)

and periodic boundary conditions

𝜙(𝜏 + 𝛽, 𝑥) = 𝜙(𝜏, 𝑥) . (6.3.3)

Remark Note that the parameter 𝜇 can equivalently be identified to a twist i.e. if one introduces
the field �̃� such that

�̃�(𝜏, 𝑥) = 𝑒−𝑖𝜇𝜏𝜙(𝜏, 𝑥) , (6.3.4)

then it satisfies twisted boundary conditions

𝜙(𝜏 + 𝛽, x) = 𝑒𝑖𝛽𝜈𝜙(𝜏,x) . (6.3.5)

Such a theory (6.3.2) is Gaussian, (6.3.1) can hence be computed exactly with usual QFT techniques
[218, 219]. However for latter purposes we shall derive it from a different perspective. We start by
the easiest case of 𝑑 = 1 i.e. we have a thermal quantum mechanical system. Using the techniques
developed in Sec. (6.2.1) we should be able to write 𝑍𝑑=1 like in (6.2.1) for a yet to determine Hamilto-
nian �̂� . An easy way to proceed is to start from the real time action (before eventually performing
a “Wick rotation”)

𝑆 :=
∫

d𝑡L =

∫
d𝑡

(
| ¤𝜙|2 + 𝑖𝜇

(
(𝜕𝑡𝜙)�̄� − 𝜙(𝜕𝑡 �̄�)

) )
+ (𝜇2 − 𝑚2) |𝜙|2 , (6.3.6)

compute its canonical momenta

𝜋𝜙 :=
𝜕L
𝜕(𝜕𝑡𝜙)

= 𝜕𝑡 �̄� + 𝑖𝜇�̄� , 𝜋�̄� :=
𝜕L
𝜕(𝜕𝑡 �̄�)

= 𝜕𝑡𝜙 − 𝑖𝜇𝜙 , (6.3.7)

to deduce the Hamiltonian

�̂� = �̂�†�̂� + 𝑚2�̂�†�̂� + 𝑖𝜇
(
�̂� �̂� − �̂�†�̂�†

)
, (6.3.8)

with �̂� = �̂�𝜙, �̂�† = �̂��̄� and canonical commutation relations [�̂�, �̂�] = 𝑖 and [�̂�†, �̂�†] = 𝑖. Introducing

18Note that in the context of the AdS/CFT correspondence, the charge of the black hole state translates into the
chemical potential of the dual CFT.

19This is the usual action with gauge derivative 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇 of coupling 𝑔 set to one in our model.
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ladder operators �̂�, �̂� (and h.c.) via

�̂� =
1
√

2𝑚
(�̂�† + �̂�) , �̂� = 𝑖

√︂
𝑚

2
(�̂�† − �̂�) , (6.3.9)

with commutation relations [�̂�, �̂�†] = [�̂�, �̂�†] = 1 one can re-write (6.3.8) as

�̂� = 𝑚(�̂�†�̂� + �̂�†�̂� + 1) + 𝜇(�̂�†�̂� − �̂�†�̂�) . (6.3.10)

We recognise the Hamiltonian of two-coupled harmonic oscillators twisted by a chemical potential
𝜇. Recalling the number operators �̂�1 = �̂�†�̂� and �̂�2 = �̂�†�̂� we get the total Hilbert space

H = H1 ⊗H2 = {|𝑛1⟩ ⊗ |𝑛2⟩/𝑛1, 𝑛2 ∈ ℕ} . (6.3.11)

In terms of the usual position �̂�1, �̂�2 and momentum operators �̂�1, �̂�2 the ladder operators read

�̂� =
1

2
√
𝑚
(𝑚(�̂�1 − 𝑖�̂�2) + ( �̂�2 + 𝑖�̂�1)) , �̂� =

1
2
√
𝑚
(𝑚(�̂�1 + 𝑖�̂�2) − ( �̂�2 − 𝑖�̂�1)) , (6.3.12)

which yields for the real Hamiltonian

�̂� =
1
2
( �̂�2

1 + �̂�2
2)︸       ︷︷       ︸

�̂�0

+𝑚2 1
2
(�̂�2

1 + �̂�2
2)︸       ︷︷       ︸

O

+𝜇 ( �̂�2�̂�1 − �̂�1�̂�2)︸           ︷︷           ︸
Q

. (6.3.13)

This is the Hamiltonian of a free theory �̂�0 deformed by a mass operator O and a charge operator
Q. All this was in real time formalism, to go back to the thermal theory we perform the “Wick
rotation” 𝜇→ −𝑖𝜇 and express 𝑍𝑑=1 like in (6.2.1)

𝑍𝑑=1 = TrH
[
𝑒−𝛽(�̂�0+𝑚2O)𝑒−𝑖𝛽𝜇Q

]
, (6.3.14)

which can be explicitly computed

𝑍𝑑=1 =
𝑒−𝛽𝑚

(1 − 𝑒−𝛽𝑚−𝑖𝛽𝜇) (1 − 𝑒−𝛽𝑚+𝑖𝛽𝜇)
. (6.3.15)

It is actually more convenient to unpack 𝑚 and 𝜇 in a unique complex variable 𝑧

𝑧 = 𝑒−𝛽𝑚−𝑖𝛽𝜇 ⇐⇒ 𝑧 = 𝑒−𝛽𝑚+𝑖𝛽𝜇 , (6.3.16)

and to compute the logarithm of the partition function

ln 𝑍𝑑=1 = ln |𝑧 | − ln |1 − 𝑧 | − ln |1 − 𝑧 | , (6.3.17)
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which can be put into an integral form

ln 𝑍𝑑=1 =

∫ 𝑧

0

d𝑧′

1 − 𝑧′ +
∫ 𝑧

0

d𝑧′

1 − 𝑧′ −
∫ 1

|𝑧 |

d𝑧′

𝑧′
. (6.3.18)

We can now compute the 𝑑-dimensional partition function, however restricting ourselves to the
odd-dimensional case i.e. we set 𝑑 = 2𝐿+1 with 𝐿 = 0, 1, 2, . . . (so ln 𝑍𝑑=1 := ln 𝑍0). This is actually
a standard textbook computation. We assume that our system lives in a (𝑑 − 1)-dimensional cubic
box of volume 𝑉𝑑−1 = ℓ𝑑−1 with quantized momentum ®𝑝 =

( 2𝜋
ℓ
𝑛1, ...,

2𝜋
ℓ
𝑛𝑑−1

)
= 2𝜋

ℓ
®𝑛. The number

of modes having momenta inside the spherical shell bounded by | ®𝑝| and | ®𝑝| + d| ®𝑝| in 𝑑 = 2𝐿 + 1
dimensions is

d𝑛 =
(
ℓ2

4𝜋2

)𝐿
| ®𝑝|2𝐿−1d| ®𝑝|

∫
dΩ2𝐿 , (6.3.19)

with
∫
dΩ2𝐿 = 2𝜋𝐿/Γ(𝐿). Using then the dispersion relation 𝜔2 = ®𝑝 2 + 𝑚2, for 𝜌𝐿(𝜔;𝑚) ≡ 𝑑𝑛/𝑑𝜔

we obtain

ln 𝑍𝐿 =
2𝛼2𝛽2

(𝐿 − 1)!

∫ ∞

𝑚

𝜔d𝜔(𝜔2 − 𝑚2)𝐿−1 ln 𝑍0 ; (6.3.20)

with 𝛼2 = ℓ2/4𝜋𝛽2. Hence we have written ln 𝑍𝐿 as that of a 𝑑 = 2𝐿 + 1-dimensional relativistic
thermal gas of bosons

ln 𝑍𝐿 =
∫

𝑑𝜔 𝜌𝐿(𝜔;𝑚) ln 𝑍0 , (6.3.21)

with density of state

𝜌𝐿(𝜔;𝑚) = 2𝛼2𝛽2

(𝐿 − 1)!𝜔(𝜔
2 − 𝑚2)𝐿−1 . (6.3.22)

(6.3.20) will actually allow us to write ln 𝑍𝐿 in a particularly convenient form. Observing that

(𝜔2 − 𝑚2)𝐿−1

(𝐿 − 1)! =

∫ ∞

𝑚

d𝑚′2𝑚′
(𝜔2 − 𝑚′2)𝐿−2

(𝐿 − 2)! (6.3.23)

we see that (6.3.21) can be written, for 𝐿 > 1, as iterated integrals

ln 𝑍𝐿 =
ℓ2𝐿

(2𝜋)𝐿

∫ ∞

𝑚

d𝑚1𝑚1

∫ ∞

𝑚1

d𝑚2𝑚2· · ·
∫ ∞

𝑚𝐿−1

d𝑚𝐿𝑚𝐿 ln 𝑍0(𝛽;𝑚𝐿, 𝜇) , (6.3.24)

i.e.

ln 𝑍𝐿 = (−2𝛼2)𝐿
𝐿−1∏
𝑖=0

[∫ 𝑤𝑖+1

0

d𝑤𝑖
𝑤𝑖

ln𝑤𝑖

]
ln 𝑍0 , (6.3.25)

where ln 𝑍0 is taken to be a function of 𝑧0, 𝑧0 with 𝑧0 = 𝑤0𝑒
−𝑖𝛽𝜇, 𝑤𝐿 = |𝑧 | and the integrals are

performed in the order 𝑤0 ↦→ 𝑤1.. ↦→ 𝑤𝐿. The conclusion is that integrating the 𝑑 = 1 harmonic
oscillator partition function actually generates the higher dimensional ones.

Remark In all these derivations we have used an imaginary chemical potential. This may seem
odd but actually, the imaginary character of this deformation parameter allows for numerical
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studies like Monte-Carlo to converge. A complex fermionic determinant arises in the case
of a real chemical potential occurring a sign problem in the algorithm which breaks down.
It has been shown however that working with an imaginary chemical potential and then
analytically continue it to real values does not blur any information (see e.g. [220]). For more
works on imaginary chemical potential see e.g. [221–224].

Remark Computations of relativistic Bose-gas integral and their expansion at high and low tem-
perature carried out in full generality in [225].

The emergence of single-valued polylogarithms

Using (6.3.25) and knowing (6.3.18) we see that ln 𝑍𝐿 coincides with the class of iterated integrals
giving rise to single-valued polylogarithms

ln 𝑍𝐿 = 𝛼2𝐿 (−1)𝐿𝐿!
2(2𝐿 + 1)! (2 log |𝑧 |)2𝐿+1 + 𝛼2𝐿

𝐿∑︁
𝑛=0

(2𝐿 − 𝑛)!(−2 log |𝑧 |)𝑛
(𝐿 − 𝑛)!𝑛!

2ℜ[Li2𝐿+1−𝑛(𝑧)] , (6.3.26)

where we have carefully perform the regularization of the zero point energy, substracting the zero
temperature partition function at 𝑚 = 𝜇 = 0. The thermal expectation value of the 𝑈 (1)-charge
operator associated to the chemical potential 𝜇, which reads Q = 𝜙†

←→
𝐷 𝜏𝜙, can also be expressed in

terms of polylogarithms, however not with a sum but rather a difference

⟨Q⟩𝐿 = 𝛼2𝐿
𝐿∑︁
𝑛=0

(2𝐿 − 𝑛)!(−2 log |𝑧 |)𝑛
(𝐿 − 𝑛)!𝑛!

2𝑖ℑ[Li2𝐿−𝑛(𝑧)] . (6.3.27)

This difference of polylogarithms has been related to graphical functions in [216].

Given the iterated integral structure of (6.3.25) one expects differential relations between the
partition functions in different odd dimensions. We introduce the differential operators

D̂ =
1
𝛽2

𝜕

𝜕𝑚2 =
1

2 ln |𝑧 | (𝑧𝜕𝑧 + 𝑧𝜕𝑧) , (6.3.28a)

L̂ =
𝑖

𝛽

𝜕

𝜕𝜇
= (𝑧𝜕𝑧 − 𝑧𝜕𝑧) . (6.3.28b)

Explicit calculations yield the following set of first order differential equations [200]

⟨O⟩𝐿 = −𝛽 D̂ ln 𝑍𝐿 = 𝛽𝛼2 ln 𝑍𝐿−1 (6.3.29a)

⟨Q⟩𝐿 = L̂ ln 𝑍𝐿 = −D̂ · ⟨Q⟩𝐿+1/𝛼2 . (6.3.29b)

Notice that D̂ acts on ln 𝑍𝐿 and ⟨Q⟩𝐿 as a dimension lowering operator. Introducing the Laplacian
in the variables 𝑚 and 𝜇 as

∆̂ = 4𝛽2 𝑧𝑧𝜕𝑧𝜕𝑧 =
𝜕2

𝜕𝑚2 +
𝜕2

𝜕𝜇2 , (6.3.30)
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we further find
∆̂𝑓𝐿(𝑧, 𝑧) = −4𝛽2𝐿𝛼2𝑓𝐿−1(𝑧, 𝑧) , (6.3.31)

for 𝑓𝐿(𝑧, 𝑧) = {ln 𝑍𝐿, ⟨Q⟩𝐿}. We can combine (6.3.31) with (6.3.29a), (6.3.29b) to obtain the second
order equation [

𝑚2∆̂ − 4𝐿𝛽2𝑚2D̂
]
𝑓𝐿(𝑧, 𝑧) = 0 . (6.3.32)

Notice that 𝑚2∆̂ is the Laplacian on the upper half plane ℍ2 with coordinates 𝑚, 𝜇 and 2𝛽2𝑚2D̂ =

𝑚(𝜕/𝜕𝑚) is the radial derivative. Equation (6.3.32) is reminiscent of similar results for partition
functions in [226] where the a connection to the huge literature of string scattering amplitudes [227–
229] was noted. Another interpretation of (6.3.32) is as the Laplace-Beltrami operator of 𝐴𝑑𝑆2𝐿+2

with metric

d𝑠2 =
1
𝑚2

(
d𝑚2 + d𝜇2 +

2𝐿∑︁
𝑖=1

d𝑥𝑖d𝑥𝑖
)
, (6.3.33)

acting on functions of just𝑚 and 𝜇. Since𝑚 and 𝜇 parametrize relevant deformations of a free CFT,
such an interpretation may be related to RG flow.

As we already said, single-valued polylogarithms also appear in the realm of conformal ladder
graphs and fishnet theories that we shall now discuss.

6.3.2 Twisted partition functions as conformal ladder graphs

Recall that 𝑑 = 2𝐿 + 1 is the dimension of the thermal correlator, while the coordinates are (𝜏, x).
When dealing with conformal graph, we will denote the dimension of the latter 𝐷 and the coordin-
ates (𝑥) to make a clear distinction between the two.

An observation

We consider the conformal integral in 𝐷 = 4

𝐼 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
1
𝜋2

∫
d4𝑥

1
(𝑥 − 𝑥1)2(𝑥 − 𝑥2)2(𝑥 − 𝑥3)2(𝑥 − 𝑥4)2

(6.3.34)

which reads, in terms of the variables (6.1.24)

𝐼 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
1

𝑥2
13𝑥

2
24
Φ(𝑣, 𝑢) , (6.3.35)

and corresponds to a graph of the form of Fig. (6.1). Using conformal invariance we can take the
limit of that graph fixing the values of three points, namely 𝑥1 → 0, 𝑥3 → ∞ and 𝑥4 → 1, and
leaving 𝑥2 → 𝑧 with 𝑧 defined in (6.1.25). It yields, upon rescaling

lim
(𝑥1,𝑥2,𝑥3,𝑥4)→(0,𝑧,∞,1)

𝑥2
3 𝐼 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

1
𝜋2

∫
d4𝑥

1
𝑥2(𝑥 − 𝑧)2(𝑥 − 1)2 := Φ(1)4 (𝑧, 𝑧) (6.3.36)
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Figure 6.1: The 4-point function (6.3.35).

Figure 6.2: Conformal limit of the 4-points function (6.3.36).

where in Φ(1)4 the upper index refers to the number of vertical lines in the graph 6.1 (i.e. here we
work at tree level) while the lower index refers to the dimension of the underlying theory. The
associated graph is then Fig. (6.2).

It turns out that (6.3.36) can be written in terms of our beloved polylogarithms

Φ(1)4 (𝑧, 𝑧) =
1

𝑧 − 𝑧4𝑖 [Li2(𝑧) − Li2(𝑧) + ln |𝑧 | (ln |1 − 𝑧 | − ln |1 − 𝑧 |)] . (6.3.37)

One may then see a relation between our thermal expectation values ⟨O⟩ and ⟨Q⟩ and the graph
Fig. 6.1. And this is actually true; comparing (6.3.27) with (6.3.37) we find

Φ(1)4 (𝑧, 𝑧) =
1
𝛼2

1
𝑧 − 𝑧 ⟨Q⟩1 , (6.3.38)

setting the stage to a correspondence glimpsed in [200].
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Remark Equation (6.3.37) can actually be expressed in terms of the Bloch-Wigner function

𝐷(𝑧) = ℑ𝔪[Li2(𝑧) + ln |𝑧 | ln |1 − 𝑧 |] (6.3.39)

that gives the volume of an ideal tetrahedron in three-dimensional hyperbolic spaceℍ3 with
vertices attached to the boundary 𝜕ℍ3 [230]. Note also that ⟨Q⟩0 itself has a geometric inter-
pretation. Indeed,

⟨Q⟩0 =
𝑧 − 𝑧

(1 − 𝑧) (1 − 𝑧) . (6.3.40)

and setting 𝑧 = 𝑒𝑖𝜙(𝑏/𝑎) with cos 𝜙 = (𝑎2 + 𝑏2 − 1)/2𝑎𝑏 we find that ⟨Q⟩0/4𝑖 = 1
2𝑎𝑏 sin 𝜙

gives the area of a triangle whose side lengths are 𝑎, 𝑏 and 1, and 𝜙 the angle between 𝑎 and
𝑏. Then (6.3.38) gives the volume of an ideal hyperbolic tetrahedron as an integral of the area
of a triangle. One then wonders if there is a geometric interpretation for the higher order
iterated integrals in (6.3.24).

Going to loop level and computing loop-diagrams coming from (6.1) we showed in [207] that

Figure 6.3: 𝐿-loops expansion of the graph 𝐼 .

Φ(𝐿)4 (𝑧, 𝑧) =
1
𝐿!

1
𝑧 − 𝑧 ⟨Q⟩𝐿 , (6.3.41)

showing indeed that this particular thermal expectation value in various odd dimensions 𝑑 = 2𝐿+1
corresponds to a 𝐿-loop conformal ladder graph in 𝐷 = 4. But what is the theory leading to the
graphs 6.3? It actually comes from a special type of bi-scalars theories dubbed fishnet theories, on
which we say a few words now.
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Fishnet theories

These are particular limits of the generalised bi-scalar theory in 𝐷-dimensions first formulated
in [205] (see also [206]) with Lagrangian

L =𝑁𝑐Tr
[
𝜙
†
1 (−𝜕

2)𝜔𝜙1 + 𝜙†2 (−𝜕
2) 𝐷−2𝜔

2 𝜙2 + 𝑎2
𝐷,𝜔𝜙

†
1𝜙
†
2𝜙1𝜙2

]
. (6.3.42)

𝜙1,2 belong to the adjoint of 𝑆𝑈 (𝑁𝑐), 𝜔 ∈
(
0, 𝐷2

)
and coupling 𝑎2

𝐷,𝜔
is classically dimensionless. The

fractional box operator (□ = 𝜕𝜇𝜕
𝜇) is defined as

(
𝜕𝜇𝜕

𝜇
) 𝛾 :=

(−4)𝛾Γ
(
𝐷
2 + 𝛾

)
𝜋𝐷/2Γ(−𝛾)

∫
d𝐷𝑥

𝑓 ( 𝑦)
|𝑥 − 𝑦 |𝐷+2𝛾 , (6.3.43)

when acting of a scalar field 𝑓 (𝑥), leading a (position-space) propagator of the form (by definition
solution of

(
𝜕𝜇𝜕

𝜇
) 𝛾
𝐺(𝑥) = 𝛿 (𝐷) (𝑥)))

𝐺(𝑥 − 𝑦) =
Γ
(
𝐷
2 + 𝛾

)
4𝛾𝜋𝐷/2Γ(𝛾) |𝑥 − 𝑦 |𝐷−2𝛾

. (6.3.44)

In (6.3.42) the scaling dimensions of the operators 𝜙1 and 𝜙2 are

Δ𝜙1 =
𝐷 − 2𝜔

2
and Δ𝜙2 = 𝜔 , (6.3.45)

where we see the two relevant label of the fishnet theory, its dimension 𝐷 and its order 𝜔. We now
consider the four-point function function

𝐺
(𝐿)
𝐷,𝜔
({𝑥𝑖}) = ⟨Tr

[
𝜙𝐿2 (𝑥1)𝜙1(𝑥3)𝜙†𝐿2 (𝑥2)𝜙†1 (𝑥4)

]
⟩ , (6.3.46)

whose leading 𝑁𝑐 contribution comes from a unique 𝐿-loop conformal ladder graph.20 Using again

Figure 6.4: The graph contributing to 𝐺(𝐿)
𝐷,𝜔

.

conformal invariance we can reduce the computation of (6.3.46) to the one of the graph 6.4 which

20The trace acts on internal 𝑆𝑈 (𝑁𝑐) indices.
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is exactly (6.3).

Hence for 𝐷 = 4, 𝜔 = 1 the model coincides with the original four-dimensional conformal
fishnet CFT introduced in [205], and then𝐺(𝐿)4,1 is proportional to the Davydychev-Usuykina 𝐿-loop
conformal ladder graphs [202, 203]. Up to overall normalizations and using (6.3.27) we verify that

�̃�
(𝐿)
4,1 (𝑧, 𝑧) =

1
𝐿!

1
𝑧 − 𝑧 ⟨Q⟩𝐿(𝑧, 𝑧) , (6.3.47)

whenwe set 𝑎2
4,1 = 𝛼2. In writing (6.3.47) we have identified: i) the variable 𝑧 representing conformal

ratios on the l.h.s. with the modular-like parameter 𝑧 of the thermal QFT on the r.h.s. and ii) the
number of loops 𝐿 on the l.h.s. with 𝐿 = (𝑑 − 1)/2 on the r.h.s. . We thus have found in fishnet
graphs the underlying theory for Φ(𝐿)4 (𝑧, 𝑧) showed that the latter is hence a spin-1 operator.

Let’s study now the case of the mass operator, namely ⟨O⟩𝐿.

What about ⟨O⟩𝑳?

Giving more computational details we start with (6.3.46) at 𝐿-loops i.e.

𝐺
(𝐿)
𝐷,𝜔
({𝑥𝑖}) =

∫ 𝐿∏
𝑖=1

d𝐷𝑢𝑖
𝐿+1∏
𝑛=1

1
|𝑢𝑛−1 − 𝑢𝑛 |𝐷−2𝜔

𝐿∏
𝑛=1

(
1

|𝑥1 − 𝑢𝑛 |2𝜔
1

|𝑢𝑛 − 𝑥2 |2𝜔

)
, (6.3.48)

with 𝑢0 := 𝑥3 and 𝑢𝐿 := 𝑥4. Due to conformal invariance, in terms of 𝑧, 𝑧 variables we get

Figure 6.5: Conformal simplification of the integral (6.3.46).

𝐺
(𝐿)
𝐷,𝜔
({𝑥𝑖}) =

1

(𝑥2
12)𝐿𝜔(𝑥2

34)
𝐷−2𝜔

2

(1 − 𝑧) (1 − 𝑧)
𝑧 − 𝑧 𝐼𝐿(𝑧, 𝑧) , (6.3.49)
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where 𝐼𝐿(𝑧, 𝑧) can be computed in the conformal limit like in (6.3.36) (see the graph 6.5). For
𝐷 = 2, 𝜔 = 1 the model (6.3.42) is singular as𝐺(𝐿)2,1 would seem to vanish. 21 Nevertheless, a nonzero
result can be obtained if we define the effective coupling

�̃�𝐷,𝜔 = 𝑎𝐷,𝜔
1

Γ(𝐷/2 − 𝜔) , (6.3.50)

that remains finite as 𝐷 ↦→ 2, 𝜔 ↦→ 1. Then, following the graph-building techniques introduced
in [231–234] we can show that the appropriately normalised four-point function of Fig. 6.5 is given
by

�̃�
(𝐿)
2,1 (𝑧, 𝑧) = �̃�

2𝐿
2,1

∑︁
𝑚∈ℤ

∫
𝑑𝜈
(𝑧𝑧) 𝑖𝜈 (𝑧/𝑧)𝑚/2

(𝑚2

4 + 𝜈2)𝐿+1
. (6.3.51)

Since |𝑧 | < 1 we compute the integrals above using contour intergation. When 𝑚 ≠ 0 we can close
the contour from below and pick up the residues in the lower half complex plane. We obtain∑︁
𝑚≠0

∫
𝑑𝜈
(𝑧𝑧) 𝑖𝜈 (𝑧/𝑧)𝑚/2

(𝑚2

4 + 𝜈2)𝐿+1
= −2𝜋𝑖

𝐿!

∑︁
𝑚≠0

( 𝑧
𝑧

) 𝑚
2 𝑑𝐿

𝑑𝜈𝐿

(𝑧𝑧) 𝑖𝜈

(𝜈 − 𝑖|𝑚|
2 )𝐿+1

�����
𝜈=− 𝑖 |𝑚 |2

=
2𝜋
𝐿!

∑︁
𝑚≠0
[(𝑧/𝑧)𝑚/2 𝑑

𝐿

𝑑𝜈𝐿

𝑒2𝑖 log |𝑧 |𝜈

𝑖(𝜈 − 𝑖|𝑚|
2 )𝐿+1

�����
𝜈=− 𝑖 |𝑚 |2

]

=
2𝜋
𝐿!

∑︁
𝑚≠0
[(𝑧/𝑧)𝑚/2

𝐿∑︁
𝑛=0

(
𝐿

𝑛

)
( 𝑑

𝑛

𝑑𝜈𝑛
𝑒2𝑖 log |𝑧 |𝜈 𝑑

𝐿−𝑛

𝑑𝜈𝐿−𝑛
1

𝑖(𝜈 − 𝑖|𝑚|
2 )𝐿+1

)
�����
𝜈=− 𝑖 |𝑚 |2

]

=
2𝜋
𝐿!

∑︁
𝑚≠0
[(𝑧/𝑧)𝑚/2

𝐿∑︁
𝑛=0

𝐿!
(𝐿 − 𝑛)!𝑛!

(2𝑖 log |𝑧 |)𝑛(𝑧𝑧) |𝑚|/2(−1)𝐿−𝑛 ×

× 1
𝑖(−𝑖|𝑚|)2𝐿+1−𝑛

(2𝐿 − 𝑛)!
𝐿!

]

=
2𝜋
𝐿!

∑︁
𝑚≠0
[(𝑧/𝑧)𝑚/2

𝐿∑︁
𝑛=0

(2𝐿 − 𝑛)!
(𝐿 − 𝑛)!𝑛!

(−)𝑛(2 log |𝑧 |)𝑛(𝑧𝑧) |𝑚|/2 1
|𝑚|2𝐿+1−𝑛 ]

=
2𝜋
𝐿!

𝐿∑︁
𝑛=0

(2𝐿 − 𝑛)!(−2 log |𝑧 |)𝑛
(𝐿 − 𝑛)!𝑛!

2ℜ[𝐿𝑖2𝐿+1−𝑛(𝑧)] (6.3.52)

=
2𝜋
𝛼2𝐿𝐿!

ln 𝑍𝛽≠0
𝐿

.

For 𝑚 = 0 the contour integral appears to be zero, but there is a pole on the real axis which we
need to circumvent by a small semicircle 𝐶𝜖 between −𝜖 and 𝜖 run counterclockwise. The contour
integral is now zero since it does not include any poles, Taking the Cauchy principal valuewe obtain

−
∫
𝐶𝜖

𝑑𝜈
|𝑧 |2𝑖𝜈
𝜈2𝐿+2 = −𝑖

∫ 2𝜋

𝜋

𝑑𝜃
exp (2𝑖𝜖 log |𝑧 |𝑒𝑖𝜃)
𝜖2𝐿+1𝑒𝑖(2𝐿+1)𝜃 . (6.3.53)

21The 𝑥-space two-point function with Lagrangian L = 𝜙(−𝜕2)𝑎𝜙 in 𝑑 = 2𝐿 + 1-dimensions is 𝐶𝐿
𝜙
(𝑎)/𝑥2𝐿+1−2𝑎,

with 𝐶𝐿
𝜙
(𝑎) = Γ(𝐿 + 1/2 − 𝑎)/Γ(𝑎)4𝑎𝜋𝐿+1/2.
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For 𝜖 ↦→ 0 we encounter 2𝐿+ 1 divergent terms, which we discard, and a finite contribution which
reads

−𝑖
∫ 2𝜋

𝜋

𝑑𝜃
(2𝑖 log |𝑧 |)2𝐿+1

(2𝐿 + 1)! = (−)𝐿𝜋 (2 log |𝑧 |)2𝐿+1

(2𝐿 + 1)! . (6.3.54)

Putting together (6.3.52) and (6.3.54) we finally obtain

𝐺
(𝐿)
2,1 (𝑧, 𝑧) =

2𝜋
𝐿!

ln 𝑍𝐿(𝑧, 𝑧) , (6.3.55)

when we set �̃�2
2,1 = 𝛼2. This is one of the main results of [207].22 This then relates the 𝐷 = 2, 𝜔 = 1

fishnet to a spin-0 operator.

Remark The differential operators L̂ and D̂ together with the relations (6.3.29a) and (6.3.29b) give
relations among the graphs. Actually, actingwith L̂ on both sides of (6.3.55) and using (6.3.29b)
we see that the ladder graphs of the four-dimensional CFT are derivatives of the correspond-
ing ladder graphs of the two-dimensional CFT. This dimension-shift property between con-
formal ladder graphs generalises to all even dimensions.

The correspondence

We have then set up a relationship between two a priori distinct areas of field theory. On the one
hand we have thermal expectation values of deformation operator (mass 𝑚 and chemical potential
𝜇 packaged in 𝑧, 𝑧) of a 𝑑 = 2𝐿+ 1 dimensional theory, which can all be obtained from the partition
function of a twisted harmonic oscillator in one-dimension. On the other hand we have fishnet
conformal graphs in (𝐷 = 2, 𝜔 = 1) and (𝐷 = 4, 𝜔 = 1) computed at 𝐿-loops and at coordinates
points 𝑧, 𝑧. Everything is summarised in the next Table.

Graphs Thermal 1-point functions
𝐷 ?

𝐿-loops 𝑑 = 2𝐿 + 1
𝑥𝑖 = (0, 1, 𝑧,∞) 𝑧 = 𝑒−𝛽𝑚−𝑖𝛽𝜇

coupling 𝑎2
4,1 𝛼2 𝑙2

4𝜋𝛽2

𝐼𝐿(𝑧, 𝑧)𝐷=2,𝜔=1 ln 𝑍𝐿(𝑧, 𝑧)
𝐼𝐿(𝑧, 𝑧)𝐷=4,𝜔=1 ⟨Q⟩𝐿

(6.3.56)

The questionmark in the first row correspond to a quantity not defined yet, whichwewill introduce
in Section 6.4.1.

22Notice that the leading “zero temperature" contributions in (6.3.55) and (6.3.14) arise after the subtraction of a finite
number of divergent terms.
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Back to the thermal scalar two-point function

The thermal two-point function of a massive and twisted scalar field, like any other, can be written
in the form (6.0.1) with 𝑎O𝑠 thermal expectation values of spin-𝑠 quasi-primary operators appearing
in the OPE 𝜙×𝜙, which is, when keeping things as general as possible, made of higher-spin, higher-
twist operators. The sector annihilated by the Laplacian□𝑑 , as we saw in (6.2.16), is the one where
zero-twist higher-spins operators lie. Focusing on that part and expanding (6.2.34) in Gegenbauers
we obtain

𝑎𝐿O𝑠 =
Γ
(
𝐿 − 1

2
)

Γ
(
𝐿 + 𝑠 − 1

2
)
(4𝜋)𝐿22𝑠

𝐿−1+𝑠∑︁
𝑛=0

2𝑛

𝑛!
(𝛽𝑚)𝑛(2𝐿 − 2 + 𝑠 − 𝑛)!
(𝐿 − 1 + 𝑠 − 𝑛)! (6.3.57)

× [Li2𝐿−1+𝑠−𝑛(𝑧) + (−1)𝑠Li2𝐿−1+𝑠−𝑛(𝑧)] .

If the theory were a CFT we would associate the coefficients 𝑎𝐿O𝑠 with thermal one-point functions
of conformal quasi-primary operators. For generic values of𝑚 and 𝜇 this is more complicated. For
example, 𝑎𝐿O2

represents the contribution of a rank-2 symmetric traceless tensor which is not the the
energy momentum tensor of the massive theory since the latter has nonzero trace. Nevertheless,
the coefficients 𝑎𝐿O0

and 𝑎𝐿O1
do represent the thermal one-point functions of the operators O and

Q as they have been independently calculated in (6.3.29a), (6.3.27). Also these are the only necessary
building blocks for computing the one-point functions of all higher spin fields. Explicitly we have

𝑎𝐿O0
=

1
(4𝜋)𝐿𝛽𝛼2𝐿 ⟨O⟩𝐿 , 𝑎

𝐿
O1

=
1

(4𝜋)𝐿𝛼2𝐿
1
2
⟨Q⟩𝐿 . (6.3.58)

Using (6.3.29a), (6.3.29b) we see that for 𝑧 = 𝑧 = 1 the above reduce to (6.2.15) as they should. The
novel result is that all coefficients 𝑎𝐿O𝑠 with 𝑠 ≥ 2 are related to 𝐿-loop conformal graphs by virtue
of the following recursion relations shown by brute force calculations

𝑎𝐿O𝑠+2
=

2𝜋
2𝐿 − 1

𝑎𝐿+1
O𝑠 +

(𝑚𝛽)2
(2𝐿 − 1 + 2𝑠) (2𝐿 + 1 + 2𝑠) 𝑎

𝐿
O𝑠 (6.3.59)

Consequently, the part of the twisted thermal two-point function (6.2.34) that is annihilated by the
𝑑-dimensional Laplacian23 is a generating function for (linear combinations) of 𝐿-loop conformal
ladder graphs.

As we have related 𝑎𝐿O0
and 𝑎𝐿O1

to spin-0 and spin-1 operators one may legitimately wonder
if this is also the case for higher spins. Let’s consider the spin-2 case i.e. the energy-momentum
tensor 𝑡𝜇𝜈 . Eq. (6.3.59) actually corresponds to a standard hydrodynamic result. From the twisted
partition function (6.3.21) with Hamiltonian 𝐻 = 𝐻0 + 𝑚2O + 𝑖𝜇Q we can derive

⟨𝐻⟩𝐿 =
𝑑 − 1
𝛽

ln 𝑍𝐿 + 2𝑚2⟨O⟩𝐿 + 𝑖𝜇⟨Q⟩𝐿 , (6.3.60)

where ⟨𝐻⟩𝐿 = −⟨𝑡𝜏𝜏⟩𝐿. When the CFT gets deformed by 𝑚 and 𝜇 the energy-momentum tensor
23Which we recall is the one corresponding to zero-twist higher-spin operators.
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is no longer traceless, however it is possible to build from it a traceless spin-2 operator T𝜇𝜈 with
T𝜏𝜏 = 𝑡𝜏𝜏 + 2𝑚2O/𝑑 + 𝑖𝜇Q. Then (6.3.60) becomes

−⟨T𝜏𝜏⟩𝐿 =
𝑑 − 1
𝛽

ln 𝑍𝐿 + 2𝑚2 𝑑 − 1
𝑑
⟨O⟩𝐿 . (6.3.61)

The general relation connecting 𝑎𝐿O2
with the T𝜏𝜏 is 24

(4𝜋𝛼2)𝐿
𝛽

𝑎𝐿O2
=

2𝑔𝜙†𝜙𝑇
(𝑑 − 1) (𝑑 − 2)𝐶𝑇

⟨𝑇00⟩𝐿 = −
𝐶𝐿
𝜙
(1)𝑆𝐿

2(𝑑 − 1) ⟨T𝜏𝜏⟩ . (6.3.62)

Using then (6.3.58), (6.3.29a) and (6.3.29b) we can verify that (6.3.61) coincides with (6.3.59). We believe
that similar arguments relating tracefull and traceless higher spin operators of the massive free
scalar theory can provide a physical understanding for (6.3.59) for general 𝑠, but this is yet to be
understood.

Summarising

We have connected two seemingly unrelated quantities: twisted partition functions of a massive
free complex scalar field in 𝑑 = 2𝐿+1 dimensions, and four-point conformal 𝐿-loop ladder graphs.
The reason for such a relationship is that they both satisfy the same sets of differential equations.
For the partition functions these are given by (6.3.32). For the conformal ladder graphs they are
the differential equations discussed in number of earlier works on conformal integrals (i.e. Eq. 2.15
in [235]). We do not have however an explanation for this common property.

Our results draw a unifying picture for the thermal one-point functions 𝑎𝐿O𝑠 in massive free
complex scalar theories. This is depicted in Fig. (6.6). By the algebraic relations (6.3.59) they are all
ultimately given by 𝑎𝐿O0

or 𝑎𝐿O1
, and then by the action of the differential operators D̂ and L̂ to the

⟨O⟩0 and ⟨Q⟩0 of the harmonic oscillator model (6.3.14).

6.4 Some applications

6.4.1 Constructing fishnet graphs from partition functions in 𝑫 > 4

Starting from ln 𝑍0 (see (6.3.17)) we constructed ln 𝑍𝐿 for 𝐿 = 0, 1, ... and from it ⟨O⟩𝐿 and ⟨Q⟩𝐿
which are the conformal ladder graphs in 𝐷 = 2 and 𝐷 = 4 respectively. The differential relations
we exhibited in (6.3.29a) and (6.3.29b) corresponds then to relations between graphs at different loop
level. The second order equation (6.3.32) is brand new and should call for further investigations

24We use the standard free CFT results for the three-point function coupling 𝑔𝜙†𝜙T , the normalization of the
two-point function of T𝜇𝜈 , 𝐶T and we take into account that a complex scalar corresponds to two real scalars.
𝑆𝐿 = 2𝜋𝐿+1/2/Γ(𝐿 + 1/2) is the surface of the 2𝐿 + 1-dimensional unit sphere.
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Figure 6.6: Differential (solid lines) and algebraic (dashed lines) relationships among the 𝑎𝐿O𝑠 .

which are not part of our present agenda though. However we want now to show how one can
construct the graphs in 𝐷 > 4 using the D̂ and L̂ operators. For that purpose we need an additional
operator.

We see with (6.3.29a) that D̂ lowers the number of loops 𝐿, hence its inverse D̂−1 that we will
denote d̂ raises 𝐿. Its expression is

d̂ = 2𝛽2
∫ ∞

𝑚

𝜔d𝜔 , (6.4.1)

and it satisfies
d̂⟨�̂�⟩𝐿 = −

1
𝛼2 ⟨O⟩𝐿+1 . (6.4.2)

Hence from ln 𝑍0 we construct ln 𝑍𝐿 by a repeated action of the d̂ operator. Now recall that we
constructed the 𝐿-loops, 𝐷 = 2 conformal ladder graph from ln 𝑍0 in such a way

L̂ ln 𝑍0 = ⟨Q⟩ = ⟨�̂�1 − �̂�2⟩ =
𝑧 − 𝑧

(1 − 𝑧) (1 − 𝑧) , (6.4.3)

with �̂�𝑖 the number operators introduced after (6.3.10). Their difference is related to spin and will
be denoted by

�̂�1 − �̂�2 := �̂� . (6.4.4)

Introducing a new notation we write

L̂ ln 𝑍0 = ⟨Q⟩ = (𝑧 − 𝑧)𝑞(1)0 =⇒ 𝑞
(1)
0 =

1
|1 − 𝑧 |2 (6.4.5)

where we can think of 𝑞(1)0 as the massless free two-point function for a scalar field in 𝐷 = 4 (which
would then have scaling dimension Δ𝜙 = 2). It is actually better to think of it as the “singular” part
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of a bi-scalar theory of the type (6.3.42)

⟨𝜙† 𝐿1 (𝑥1)𝜙†2 (𝑥2)𝜙𝐿1 (𝑥3)𝜙2(𝑥4)⟩𝐿=0 −→(𝑥1,𝑥2,𝑥3,𝑥4)→(0,𝑧,∞,1)
1

|1 − 𝑧 |𝐷−2 (6.4.6)

leading to the last of (6.4.5) when 𝐷 = 4. This was for tree level, but as we just noticed acting with
d̂ we get the higher loops

⟨Q⟩𝐿 =
(
−𝛼2)𝐿 d̂𝐿 [(𝑧 − 𝑧)𝑞(1)0 ] := (𝑧 − 𝑧)𝑞(1)

𝐿
, (6.4.7)

so that the low index of 𝑞 represents the number of loops. To understand the upper index let’s
generalise this construction(

1
𝑧 − 𝑧 L̂

)𝑘
ln 𝑍0 =

1
(𝑧 − 𝑧)𝑘

(L̂ − 𝑘 + 1) (L̂ − 𝑘 + 2) . . . L̂ ln 𝑍0 (6.4.8)

=
1

𝑧 − 𝑧 ⟨�̂�(�̂� − 1) . . . (�̂� − 𝑘 + 1)⟩𝐿=0

=
1

|1 − 𝑧 |2𝑘
:= 𝑞(𝑘)0 ,

ans setting 𝑘 = 𝐷
2 − 1 we can identify 𝑞(𝑘)0 with the singular part of the four-point function in 𝐷-

dimensions with 𝐷 > 4. The number 𝑘 should then be identify to a kind of “spin”, the would-be
spin of the operator whose thermal expectation value is related to these new graphs. Acting with a
slightly modified version of d̂ we obtain the 𝐿-loop graphs

𝑞
(𝑘)
𝐿+1 = D (𝑘)𝑞(𝑘)

𝐿
(6.4.9)

with
D (𝑘) =

1
(𝑧 − 𝑧) [d̂(𝑧 − 𝑧)

𝑘] . (6.4.10)

Therefore we can actually construct conformal ladder graphs from the partition function of
the twisted harmonic oscillator (6.3.14), in all even dimension 𝐷 = 2𝑘 + 2 with 𝑘 ∈ ℕ. This general
construction is summarised in Fig. 6.7.

6.4.2 Resummation of ladder graphs

Equations such as (6.3.29a) and (6.3.29b) lead naturally to the resummation of infinite series. For
example, by virtue of (6.3.29a) the infinite product 𝑍 =

∏∞
𝑛=0 𝑍𝑛 satisfies the inhomogenous first

order equation

(D̂ + 𝛼2) ln 𝑍 = −1
𝛽
⟨O⟩0 . (6.4.11)
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Figure 6.7: Generation of ladder graphs from ln 𝑍0 with repeated action of ℓ̂ = L̂
𝑧−𝑧 and D (𝑘) .

This can be integrated to

ln 𝑍 = −𝛽𝑒−𝛽2𝛼2𝑚2
∫ 𝑚2

𝑒𝛽
2𝛼2�̃�2 ⟨O⟩0 𝑑�̃�2 . (6.4.12)

An analogous result can be derived for the ⟨Q⟩ = ∑∞
𝑛=0⟨Q⟩𝑛. Given (6.3.47) and (6.3.55) these are

all-loop Borel summations of conformal ladder graphs. Indeed applying L̂ to (6.4.12) gives

(D̂ + 𝛼2)⟨𝑄⟩ = D̂⟨𝑄⟩0 (6.4.13)

where ⟨𝑄⟩ = ∑∞
𝐿=0⟨𝑄⟩𝐿. By virtue of (6.3.47) this sumcan beBorel transformed into theBroadhurst-

Davydychev infinite sum of the 𝐿-loop conformal ladder graphs in four-dimensions [204], see also
[236, 237]. Indeed the solution of the first order equation (6.4.13) is

⟨𝑄⟩ = 𝛽2𝑒−𝛽
2𝛼2𝑚2

∫ 𝑚2

𝑒𝛽
2𝛼2�̃�2

D̂⟨𝑄⟩0𝑑�̃�2 , (6.4.14)

and can be thought of as a series of the form ⟨𝑄⟩ ≡ 𝐴(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 with 𝑧 = 𝛼2. Its Borel trans-
form series B [𝐴] (𝑡) :=

∑∞
𝑘=0

𝑎𝑘
𝑘! 𝑡

𝑘 is given by the contour integral

B [𝐴] (𝑡) = 1
2𝜋 𝑖

∫
𝐶

𝑑𝑧

𝑧
𝑒𝑧𝐴(𝑡/𝑧) (6.4.15)
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where𝐶 is the Hankel contour. 25 Using the following integral representation of the Bessel function

𝐽𝜈 (𝑧) =
( 1

2 𝑧)
𝜈

2𝜋 𝑖

∫
𝐶

𝑑𝑡
1
𝑡𝜈+1 𝑒

𝑡− 𝑧2
4𝑡 , (6.4.16)

we obtain

B[𝑄] (𝑡) = 𝛽2 1
2𝜋 𝑖

∫ 𝑚2

𝑑�̃�2(D̂⟨𝑄⟩0)
∫
𝐶

𝑑𝑢

𝑢
𝑒𝑢−

𝑡𝛽2
𝑢
(𝑚2−�̃�2)

= 𝛽2
∫ 𝑚2

𝑑�̃�2 𝐽0(2𝛽
√︁
𝑡(𝑚2 − �̃�2)) (D̂⟨𝑄⟩0)

(6.4.17)

Using then

D̂⟨𝑄⟩0 =
𝑖

2𝛽𝑚
sinh(𝛽𝑚) sin(𝛽𝜇)

(cosh(𝛽𝑚) − cos(𝛽𝜇))2 , (6.4.18)

and setting 𝑡 = − 𝜅2

4 , 𝛽�̃� = 𝜂, ℓ = 2𝛽𝑚 and putting the lower bound of the integral to be +∞,
(6.4.17) coincides with Eq. 15 of [204]. This is one of the main proof/application in favor of our new
correspondence.

6.5 Outlook

In this chapter we exhibited a new correspondence between twisted partition functions in odd
dimensions, thermal expectation values and conformal ladder graphs. All relevant quantities on
one side (dimension, deformation parameters, twist) have been found to get a partner on the other
side (number of loops, coordinate, dimension of the fishnet). Differential identities between the
expectation values translates into unexpected relations between graphs at different loop level. Our
correspondence proved useful in generating all bi-scalar fishnet conformal ladder graphs from the
partition function of the harmonic oscillator, and also allows to resum them in a close expression.
In 𝐷 = 2 and 𝐷 = 4 we showed that all loop graphs can be related to a spin 0 and a spin 1 operator
constructed from the harmonic oscillator. It is then natural to generalize and seek the higher-spin
operators whose thermal average give the conformal ladder graphs in 𝐷 > 4.

Our results focused on bosonic fields, therefore a similar analysis starting from the fermionic
harmonic oscillator should be performed to see what kind of graphs can be obtained. It is worth
mentionning that this work opens several news paths and relations between areas of theoretical
physics. In particular it offers a complementary approach to the AdS/CFT correspondence for the
computation of thermal correlators. Also the relations between thermal one point function and
geometry through the relationship with hypergeometry should be thrust further. Hence we believe
to have opened a path towards a very exciting direction of research with this correspondence.

25We use the convention that C starts at ∞ − 𝑖𝜖 with 𝜖 > 0, then encircles (0,0) counterclockwise and ends up to
−∞ + 𝑖𝜖.
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Conclusion

This thesis was an opportunity to explore two directions of research, aimed at extending and ex-
ploring aspects of the AdS/CFT gauge/gravity duality. The first direction points towards flat-space
holography and Carrollian physics, whereas the second is related to thermal field theory.

In the first two parts of this manuscript we have presented some elements of Carrollian geo-
metry and Carrollian physics, together with applications to the study of gravity in asymptotically
flat spacetimes. The discussion proposed at the end of each chapter was already taking stock of
the performed analysis. Here we would like to summarize broadly the results and present the open
questions, from the simplest to the more conceptual, and the future prospects, from the short-term
projects to the long-term foreseen analyses.

We have started with Carroll structures and spent some time detailing the construction of affine
connections, isometries and charges. This framework was also extended to include Weyl covari-
ance. After this intrinsic analysis, we presented howCarrollian theories emerge from the vanishing
speed of light limit of relativistic theories. With explicit examples such as Carrollian hydrodynam-
ics, Carrollian scalar field and Carrollian Cotton tensor, we ascertain that expanding in powers of
𝑐2 prior to the limit itself can possibly replicate the Carrollian theories that the intrinsic approach
yields.

We then turned our attention to applications of Carrollian physics at null infinity in asymptot-
ically flat spacetimes. As a prerequisite to this, a gauge analysis was necessary. A desirable feature
in view of future holographic applications is that the gauge should be covariant with respect to the
Carrollian boundary. Chapter 3 was devoted to the construction of such a gauge. Valid both in the
AdS and flat instances, we were able to take the flat limit in the bulk i.e. the Carrollian limit on the
boundary. This revealed that the infinite solution space of the flat case can actually be generated
by the expansion of the AdS boundary energy-momentum tensor in powers of the bulk cosmo-
logical constant. Demanding the limit be smooth for the AdS flux-balance laws and for the line
element gave access to their flat counterparts. The last two chapters were devoted to show explicit
situations in which the Carrollian boundary can give a new perspective on Einstein dynamics. Re-
stricting our analysis to the subclass of Petrov-algebraically special spacetimes, we presented firstly
howbulk charges and gravitationalmultipoles can be constructed frompurely boundary considera-
tions. Secondly we explored the action of hidden symmetries of gravity on the Carrollian boundary
data. We exhibited a local action of the symmetry on the boundary while in the bulk the latter is
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highly non-local.

In the third part of this thesis we drove our attention towards thermal field theories. We showed
that thermalization implies non-vanishing averages of primary operators. These values are new
data which, together with the scaling dimensions and the OPE coefficients, constitute the complete
description of the field theory. A way to compute these averages was presented, based on a new
correspondence with Feynman graphs of fishnet theories.

The results of thiswork call for natural extensions. The geometry ofCarroll structures is by now
well-established, in two complementary formalisms, covariant and split. Dimensional reduction
is a major concept that remains to be defined in general terms, especially along directions which
do not coincide with the field of observers. As already advocated at the end of the fifth chapter,
such a framework is needed for generalising our preliminary study of hidden symmetries to bigger
symmetry groups. Among many interesting questions, the validity of the boundary-action locality
and its potential dependence on the symmetry group, or the organization of the towers of charges
(multipoles) are of outmost importance.

Carrollian field theories can be obtained starting from relativistic theories via a limiting proced-
ure that is well understood and complements the intrinsic analysis, handling possibly more degrees
of freedom. The expansion method has been successfully applied to the Chern-Simons action [104]
with the consequences on the Cotton tensor we have analyzed and exploited in [155]. Building Car-
rollian Chern-Simons actions intrinsically from a gauge symmetry principle is an open question
with diverse applications. The expansion method could also be explored to probe the behavior of
a relativistic theory (as e.g. relativistic hydrodynamics) in the neighborhood of an embedded null
hypersurface, such as a black-hole horizon or an ultra-relativistic domain.

Leaving aside the study of Carrollian geometry and its direct physical applications, and going
back to gravity, the main extensions of the work we presented in Chapter 3 are threefold. First, the
covariant Newman-Unti gauge in four dimensions with flat or anti de Sitter asymptotics should
be studied in detail: residual diffeomorphisms, asymptotic symmetries, charges etc. with emphasis
on the status of hydrodynamic frame transformations accessible thanks to the congruence 𝒖. The
latter undergoes local Lorentz (or Carroll) transformations on the boundary, which, according to
the three-dimensional analysis of [85, 86], translates into bulk diffeomorphisms. The latter being
possibly charged, a change of fluid velocity may relate two nonequivalent physical situations. The
second extension is related to the Chthonian orders in the radial expansion (the ones after the order
1
𝑟2 ). As alreadymentioned earlier, theNewman-Penrose charges arise at the next order, and our goal
would be to reach them in a boundary covariant fashion, translating thereby the analysis developed
in [150–152]. Regarding the Chthonian degrees of freedom an important question resurface. Which
of them are really relevant (in the sense that they explicitly appear in the line element)? Understand-
ing better the new gauge at hand and comparing our analysis with previous works in other gauges,
especially the recent ones in partial Bondi gauge [59, 131] or in double-null coordinates [159, 160]
should help us addressing this issue. The third extension is connected to higher dimensions. When
the boundary is three-dimensional, we showed the prominent role played by the Cotton tensor, es-

– 190 –



pecially regarding gravitational radiation. In higher dimensions, both the boundaryWeyl-covariant
Cotton and the Weyl tensor enter the bulk line element, carrying distinct information. Further-
more, gravitational radiation is not captured by the same order in the radial expansion. Hence,
part of our results is clearly specific to the four-dimensional bulk case, whereas others, such as the
validity of the covariant Newman-Unti gauge, are generic. A higher-dimensional analysis is worth
undertaking.

The results gathered in this manuscript demonstrate that a wealth of information on asymptot-
ically flat spacetimes is drawn from AdS asymptotics. However one should refrain in speculating
on a flat analogue of the AdS gauge/gravity duality, as deep questions are still to be answered, and
many of them may require a long time to be settled. What is a (conformal) Carrollian field the-
ory? How to quantize a (conformal) theory on a space with a degenerate direction? Is there an
analogue to the state-operator correspondence or of operator product expansion? How to define
primary operators, descendants? Is there a radial quantization? More related to flat holography one
may wonder what would be the fundamental observables of the dual Carrollian field theory. What
would be the role of the replicas of the energy-momentum tensor? And most importantly, can such
a duality between Ricci-flat bulks and Carrollian boundaries qualify as holography, as an infinite
set of data is required to reconstruct the bulk? The limiting procedure developed in Chapter 3 sets
the hope that the flat limit of the AdS/CFT is on a firmer ground. Working out explicit situations
may be the good path to handle these questions.

Coming back to thermal field theories, in addition to a better understanding of the correspond-
ence we have presented, some results turn useful in the realm of standard holography. Indeed, the
holographic dual of a black-hole state in AdS is a thermal CFT. This motivates our work for its po-
tential AdS/CFT applications. At the same time, it opens Pandora’s box for thewould be flat/Carroll
CFT correspondence. This asserts even more basic questions, the first being the definition of the
temperature in Carrollian systems, long before being ready to address questions on thermal cor-
relators in Carrollian CFTs. The geometric definition of temperature given in the second chapter
may serve as a guide. However, it is legitimate to wonder if we can reach a physical i.e. microscopic
definition for a Carrollian temperature. Thermodynamics needs to be rethought from start and an
explicit example of Carrollian systems has to be worked out. Finally, in line with the correspond-
ence discovered in [207], one may wonder if thermal Carrollian partition functions are related to
Feynman graphs – assuming that all these words are given a precise meaning. All these questions
are foreseeable long-term explorations that demand for the Carrollian translation of many basic
concepts of relativistic and Galilean physics.

In conclusion this thesis is an invitation to explore the realm of Carrollian physics and asymp-
totically flat gravity with a small but noticeable excursion in thermal field theories. Having set
Carrollian geometry under control and equipped the bulk with a boundary-covariant gauge, the
appropriate tools are now at our disposal to start addressing the hard core of holography in flat
spacetimes, hoping in the longer term to add temperature and ultimately investigate the Thermal
Wonderland.

– 191 –



– 192 –



Appendices

193





Appendix A

Useful formulae

Frames, connection and related objects

LetM a (𝑑+1)-dimensionnal manifold whose tangent and cotangent spaces are describe by means
of the bases

B = {𝒆𝐴} and B∗ = {θ𝐴}, (A.0.1)

which are such that θ𝐴 (𝒆𝐵) = 𝛿 𝐴𝐵 . At the level of the Lorentzian metric1 we get

d𝑠2 = 𝑔𝐴𝐵θ
𝐴θ𝐵. (A.0.2)

One usually has
[𝒆𝐴, 𝒆𝐵] = 𝐶𝐶𝐴𝐵𝒆𝐶 (A.0.3)

where 𝐶𝐶
𝐴𝐵

are the non-holonomy coefficients. One can easily show that equation (A.0.3) is equi-
valent to

dθ𝐶 + 1
2
𝐶𝐶𝐴𝐵θ

𝐴 ∧ θ𝐵 = 0. (A.0.4)

M can also be endowed with a general connection ∇ that does not need to be related to the metric.
Its coefficients are defined by

∇𝒆𝐴𝒆𝐵 := ∇𝐴𝒆𝐵 = Γ𝐶𝐴𝐵𝒆𝐶 . (A.0.5)

Note that then Cartan’s spin connection is defined by

𝝎𝐴
𝐵 = Γ𝐴𝐶𝐵θ

𝐶 . (A.0.6)

Given a connection Γ𝐴
𝐵𝐶

one can built three tensors2

1Our signature convention is the mostly plus one.
2Here we give only the components in the frame at hand, this is derived from the very general frame independant

definitions of those tensors.
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• the torsion tensor
𝑆𝐴𝐵𝐶 = 2Γ𝐴[𝐵𝐶] − 𝐶

𝐴
𝐵𝐶 , (A.0.7)

• the non-metricity tensor

𝑄𝐶𝐴𝐵 := ∇𝐶𝑔𝐴𝐵 = 𝒆𝐶 (𝑔𝐴𝐵) − Γ𝐷𝐶𝐴𝑔𝐷𝐵 − Γ
𝐷
𝐶𝐵𝑔𝐴𝐷 , (A.0.8)

• the Riemann curvature tensor

𝑅𝐸𝐶𝐴𝐵 = 𝒆𝐴(Γ𝐸𝐵𝐶) + Γ
𝐷
𝐵𝐶Γ

𝐸
𝐴𝐷 − 𝒆𝐵(Γ

𝐸
𝐴𝐶) − Γ

𝐷
𝐴𝐶Γ

𝐸
𝐵𝐷 − 𝐶

𝐷
𝐴𝐵Γ

𝐸
𝐷𝐶 . (A.0.9)

These tensors can of course be read form the commutator of two covariant derivatives built upon
Γ𝐴

𝐵𝐶
acting on a scalar and on a vector

[∇𝐴,∇𝐵] 𝑓 = −𝑆𝐶𝐴𝐵∇𝐶𝑓 (A.0.10a)

[∇𝐴,∇𝐵]𝑊𝐶 = 𝑅𝐶𝐷𝐴𝐵𝑊
𝐷 − 𝑆𝐷𝐴𝐵∇𝐷𝑊

𝐶 . (A.0.10b)

One can also repackage the information stored in the torsion and curvature tensors into a vector-
valued and a matrix-valued two-form respectively

T̂ 𝐴 = �̂�𝐴𝐵𝐶θ
𝐵 ∧ θ𝐶 (A.0.11a)

R𝐴𝐵 =
1
2
𝑅𝐴𝐵𝐶𝐷θ

𝐶 ∧ θ𝐷 . (A.0.11b)

Note finally thatwhendealingwith a Levi–Civita connection that is a torsion-freemetric-compatible
connection, the symmetric part of the coefficients reads

Γ̂𝐶(𝐴𝐵) =
1
2
𝑔𝐶𝐷

(
𝒆𝐴(𝑔𝐵𝐷) + 𝒆𝐵(𝑔𝐷𝐴) − 𝒆𝐷 (𝑔𝐴𝐵) + 𝑔𝐴𝐸𝐶𝐸𝐷𝐵 + 𝑔𝐵𝐸𝐶

𝐸
𝐷𝐴

)
, (A.0.12)

while the antisymmetric part is just the non-holonomy i.e. Γ̂𝐶[𝐴𝐵] =
1
2𝐶

𝐶
𝐴𝐵
.

It is also frequent to build vectors upon (A.0.7) and (A.0.8). These are the torsion pseudo-vector

�̂�𝐴 = 𝜖𝐴𝐵𝐶𝐷𝑇
𝐵𝐶𝐷 , (A.0.13)

and the non metricity vector and dual vector

𝑄𝐴 = 𝑄𝐴𝐵𝐶𝑔
𝐵𝐶 and �̂�𝐶 = 𝑄𝐴𝐵𝐶𝑔

𝐴𝐵 . (A.0.14)

The difference between a general connection Γ𝐶
𝐴𝐵

and the Levi-Civita connection is encoded into
the distorsion tensor 𝑁𝐴𝐵𝐶 which reads

𝑁𝐴𝐵𝐶 =
1
2
(𝑄𝐵𝐶𝐴 + 𝑄𝐶𝐴𝐵 − 𝑄𝐴𝐵𝐶) − (𝑆𝐴𝐵𝐶 + 𝑆𝐴𝐶𝐵 − 𝑆𝐵𝐶𝐴) . (A.0.15)
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The fundamental tool that we will need in the main text and especially when varying the Car-
rollian action, is the Lie derivative.

Lie derivatives

By virtue of the Leibniz rule and the possibility to decompose any tensor fields in the bases B and
B∗ we just need the action of the Lie derivative on the latter and on a scalar field. Let 𝝃 a vector
field3 𝝃 = 𝜉𝐴𝒆𝐴, and let 𝑓 a scalar field. We have

L𝝃 𝑓 = 𝜉
𝐴𝒆𝐴(𝑓 ) (A.0.16a)

L𝝃𝒆𝐴 = (𝜉𝐷𝐶𝐵
𝐷𝐴 − 𝒆𝐴(𝜉

𝐵))𝒆𝐵 (A.0.16b)

L𝝃θ
𝐴 = (𝜉𝐶𝐶𝐴

𝐵𝐶 + 𝒆𝐵(𝜉
𝐴))θ𝐵 . (A.0.16c)

Now for a vector 𝑩 = 𝐵𝐴𝒆𝐴 and a one form 𝝎 = 𝜔𝐴θ
𝐴 we have

L𝝃𝑩 = L𝝃𝐵
𝐴 𝒆𝐴 + 𝐵𝐴L𝝃𝒆𝐴 (A.0.17a)

L𝝃𝝎 = L𝝃𝜔𝐴θ
𝐴 + 𝜔𝐴L𝝃θ

𝐴 (A.0.17b)

which leads to

L𝝃𝐵
𝐴 = 𝜉𝐶𝒆𝐶 (𝐵𝐴) − 𝐵𝐶𝒆𝐶 (𝜉𝐴) + 𝜉𝐵𝐵𝐶𝐶𝐴

𝐵𝐶 (A.0.18a)

L𝝃𝜔𝐵 = 𝜉𝐴𝒆𝐴(𝜔𝐵) + 𝜔𝐴𝒆𝐵(𝜉𝐴) + 𝜔𝐴𝜉𝐶𝐶𝐴
𝐵𝐶 . (A.0.18b)

The same procedure gives for a rank-two covariant tensor 𝑲 = 𝐾𝐴𝐵θ
𝐴 ⊗ θ𝐵 and for a rank-two

contravariant tensor 𝑲 = 𝐾𝐴𝐵𝒆𝐴 ⊗ 𝒆𝐵

L𝝃𝑲 = L𝝃𝐾𝐴𝐵 θ
𝐴 ⊗ θ𝐵 + 𝐾𝐴𝐵L𝝃θ

𝐴 ⊗ θ𝐵 + 𝐾𝐴𝐵θ𝐴 ⊗ L𝝃θ
𝐵, (A.0.19a)

L𝝃𝑲 = L𝝃𝐾
𝐴𝐵 𝒆𝐴 ⊗ 𝒆𝐵 + 𝐾𝐴𝐵L𝝃θ

𝐴 ⊗ 𝒆𝐵 + 𝐾𝐴𝐵𝒆𝐴 ⊗ L𝝃𝒆𝐵 , (A.0.19b)

and thus

L𝝃𝐾𝐴𝐵 = 𝜉𝐶𝒆𝐶 (𝐾𝐴𝐵) + 𝐾𝐶𝐵𝒆𝐴(𝜉𝐶) + 𝐾𝐴𝐶𝒆𝐵(𝜉𝐶) + (𝐾𝐶𝐵𝐶𝐶𝐴𝐷 + 𝐾𝐴𝐶𝐶
𝐶
𝐵𝐷)𝜉

𝐷 (A.0.20a)

L𝝃𝐾
𝐴𝐵 = 𝜉𝐶𝒆𝐶 (𝐾𝐴𝐵) − 𝐾𝐶𝐵𝒆𝐶 (𝜉𝐴) − 𝐾𝐴𝐶𝒆𝐶 (𝜉𝐵) + (𝐾𝐴𝐶𝐶𝐵

𝐷𝐶 + 𝐾
𝐶𝐵𝐶𝐴

𝐶𝐷)𝜉
𝐷 . (A.0.20b)

Finally for a mixed tensor 𝑵 = 𝑁 𝐴
𝐵
𝒆𝐴 ⊗ θ𝐵 we get

L𝝃𝑁
𝐴
𝐵 = 𝜉𝐶𝒆𝐶

(
𝑁 𝐴

𝐵

)
+ 𝑁 𝐴

𝐶𝒆𝐵(𝜉
𝐶) − 𝑁𝐶

𝐵𝒆𝐶 (𝜉
𝐴) + 𝑁𝐶

𝐵𝜉
𝐷𝐶𝐴

𝐷𝐶 + 𝑁
𝐴
𝐷𝜉

𝐶𝐶𝐷𝐵𝐶 . (A.0.21)

3In the following we shall often identify vectors and tensors with their components in a given basis.
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The last Lie derivative that we used in the main content was the one for a mix type tensor of the
form 𝑴 = 𝑀𝐴

𝐵𝐶
𝒆𝐴 ⊗ θ𝐵 ⊗ θ𝐶 for which we have

L𝝃𝑀
𝐴
𝐵𝐶 = 𝜉𝐷𝒆𝐷 (𝑀𝐴

𝐵𝐶
) + 𝑀𝐴

𝐸𝐶
𝒆𝐵(𝜉𝐸) + 𝑀𝐴

𝐵𝐸
𝒆𝐶 (𝜉𝐸) − 𝑀𝐸

𝐴𝐵
𝒆𝐸 (𝜉𝐴) (A.0.22)

+(𝑀𝐸
𝐵𝐶
𝐶𝐴

𝐷𝐸
+ 𝑀𝐴

𝐸𝐶
𝐶𝐸

𝐵𝐷
+ 𝑀𝐴

𝐵𝐸
𝐶𝐸

𝐶𝐷
)𝜉𝐷 . (A.0.23)

Remark Once expressed using ordinary derivatives, one may need to translate the Lie derivative
in covariant derivatives. In the simple case where the connection ∇ is metric compatible but
with torsion we have the following identities

L𝝃 𝑔𝐴𝐵 = 2∇(𝐴𝜉𝐵) − 2𝑔(𝐴|𝐶𝑆𝐶𝐵)𝐷𝜉
𝐷 (A.0.24a)

L𝝃𝐵
𝐴 = 𝜉𝐶∇𝐶𝐵𝐴 − 𝐵𝐶∇𝐶𝜉𝐴 + 𝑆𝐴𝐵𝐶𝐵

𝐵𝜉𝐶 . (A.0.24b)

These formulae (A.0.24a) and (A.0.24b) are independent from the exact formof the connection
and in particular of its ambiguities.

Equipped with the Lie derivative we can take variations of an effective action under diffeomorph-
isms.

Remark At the level of the connection coefficients the action of a diffeomorphims yields

𝛿𝝃Γ
𝐴
𝐵𝐶 = 𝜉𝐷𝒆𝐷 (Γ𝐴𝐵𝐶) − Γ

𝐴
𝐷𝐶𝒆𝐵(𝜉

𝐷) − Γ𝐴𝐵𝐷𝒆𝐶 (𝜉
𝐷) + Γ𝐷𝐵𝐶𝒆𝐷 (𝜉

𝐴) (A.0.25)

+
(
Γ𝐸𝐵𝐶𝐶

𝐴
𝐷𝐸 + Γ

𝐴
𝐸𝐶𝐶

𝐸
𝐵𝐷 + Γ

𝐸
𝐶𝐷

)
𝜉𝐷 − 𝒆𝐴

(
𝒆𝐵(𝜉𝐴)

)
where we notice the inhomogeneous last term characteristic for a connection.

General variations and "conservation" equations

Let 𝑆 an action functional and 𝝃 a general diffeomorphism. Such a transformation acts on tensorial
quantities with the Lie derivative and the assumption that the action should be invariant will lead
to an equation valid on-shell.

In the following the action will depend first on the background metric 𝑔𝐴𝐵, on a gauge field 𝐵𝐴

and on a set of matter fields collectively denoted by Φ so 𝑆 = 𝑆 [𝑔𝐴𝐵, 𝐵𝐴;Φ]. We first assume the
connection ∇ to be just metric compatible but torsionfull. The conjugate momenta are

𝑇 𝐴𝐵 =
2
√−𝑔

𝛿𝑆

𝛿 𝑔𝐴𝐵
and 𝐽𝐴 =

1
√−𝑔

𝛿𝑆

𝛿𝐵𝐴
(A.0.26)

and are dubbed the energy-momentum tensor and the gauge current. Note that 𝑔 = det 𝑔𝐴𝐵. Varying
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𝑆 with respect to 𝝃 we get

𝛿𝝃𝑆 =

∫
d𝑑+1𝑥

√−𝑔
(

1
2
𝑇𝐴𝐵L𝝃 𝑔

𝐴𝐵 + 𝐽𝐴L𝝃𝐵
𝐴 + E.O.M.

𝛿𝑆

𝛿Φ

)
, (A.0.27)

where appears the equations of motion (E.O.M). Using (A.0.24a), (A.0.24b) and performing some
integration by parts4 we are left with, on shell5

𝛿𝝃𝑆 =̂

∫
d𝑑+1𝑥

√−𝑔
(
∇𝐴(𝑇 𝐴

𝐶 + 𝐵
𝐴𝐽𝐶 + 𝐽𝐴∇𝐶𝐵𝐴 + (𝑇 𝐴

𝐵 + 𝐵
𝐴𝐽𝐵)𝑆𝐵𝐴𝐶

)
𝜉𝐶 (A.0.28)

−
∫

d𝑑+1𝑥 𝒆𝐴[
√−𝑔(𝑇 𝐴

𝐵𝜉
𝐵 + 𝐽𝐵𝜉𝐵𝐵𝐴)].

Upon vanishing of the boundary term we get the on-shell conservation equation

∇̂𝐴(𝑇 𝐴
𝐶 + 𝐵

𝐴𝐽𝐶) + 𝐽𝐴∇̂𝐶𝐵𝐴 + (𝑇 𝐴
𝐵 + 𝐵

𝐴𝐽𝐵)𝑆𝐵𝐴𝐶 =̂ 0 . (A.0.29)

Now let’s take a completely general connection, such that we can associate to it a conjugate
momenta dubbed the hypermomentum

Δ 𝐴𝐵
𝐶 =

2
√−𝑔

𝛿𝑆

𝛿Γ𝐶
𝐴𝐵

. (A.0.30)

We consider an action functional 𝑆 = 𝑆 [𝑔𝐴𝐵,Γ𝐶𝐴𝐵;Φ] and 𝝃 a general diffeomorphism. In the
following the connection is denoted ∇ and its Riemann tensor is 𝑅𝐴

𝐵𝐶𝐷
.

Remark By virtue of the definitions of the hypermomentum and of the energy-momentum tensor,
if the connection is assumed to be completely independent from the metric then the two
variations should commute, leading to

𝜕

𝜕𝑔𝐴𝐵

(√−𝑔Δ 𝐷𝐸
𝐶

)
=
√−𝑔 𝜕𝑇𝐴𝐵

𝜕Γ𝐶
𝐷𝐸

. (A.0.31)

Hence it is expected that for an explicit action whose matter content does not couple to the
connection (e.g. scalar fields) the associated hypermomentum is metric independent.

Remark Note that in general the connection is not completely independent from the metric, im-
posing some constraints to be satisfied. Some Lagrange multipliers may then be needed in
the process of varying the action.

Varying 𝑆 with respect to 𝝃 leads to the following equation

√−𝑔
(
2∇̃𝐴𝑇 𝐴

𝐵 − Δ
𝐶𝐴𝐷𝑅𝐶𝐴𝐷𝐵

)
+ ∇̂𝐴∇̂𝐵(

√−𝑔Δ𝐴𝐷𝐵 ) + 2𝑆 𝐶
𝐴𝐵 ∇̂𝐷 (

√−𝑔Δ𝐴𝐷𝐶 ) = 0 (A.0.32)

4We use the well known formula valid only for a Levi-Civita connection √−𝑔∇𝐴𝑉 𝐴 = 𝒆𝐴(
√−𝑔𝑉 𝐴) for any vector

field 𝑉 𝐴.
5On-shellnesss is denoted by a =̂ symbol.
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with ∇̂ the Levi-Civita derivative (A.0.12) and ∇̃𝐴 = ∇𝐴 − 2𝑇𝐴 is the modified covariant derivative
(where 𝑇𝐴 is introduced in (A.0.13)). Introducing the modified energy-momentum tensor

𝑡𝐴𝐵 = 𝑇 𝐴
𝐵 −

1
2√−𝑔 ∇̂𝐶 (

√−𝑔Δ 𝐴𝐶
𝐵 ) (A.0.33)

(A.0.32) can be written as

1
√−𝑔 ∇̂𝐴(

√−𝑔𝑡𝐴𝐵) =
1
2
Δ𝐶𝐴𝐷𝑅𝐶𝐴𝐷𝐵 +

1
2
𝑄𝐵𝐴𝐷𝑇

𝐴𝐷 + 2𝑆𝐵𝐴𝐷𝑡𝐴𝐷 . (A.0.34)

Works on hypermomentum include [238,239] and reference therein. We conclude with this expres-
sion our compilation of useful formulae.
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Appendix B

Carroll structures in Cartan’s frame

B.1 Intrinsic geometry

In this Appendix we give some details on Carrollian geometry in a Cartan orthonormal frame. We
denote with Latin letters from the beginning of the alphabet frame indices which range from 1 to
𝑑. The Carroll structure is still (𝑑 + 1)-dimensional and defined onM = ℝ × S.

B.1.1 Frame, coframe, non holonomy

The aim of a Cartan orthonormal frame is to decompose Carrollian tensors under local 𝔰𝔬(𝑑) ro-
tations instead of Carrollian diffeomorphisms (1.1.5). The weak Carroll structure is then given by

d𝑠2 = 0 × τ + 𝛿𝑎𝑏θ̂
𝑎
θ̂
𝑏

(B.1.1)

whose one-dimensional kernel is spanned by υ. The frame and coframe, {υ, �̂�𝑎} and {τ, θ̂
𝑎} obey

τ(υ) = 1, θ̂
𝑎(�̂�𝑏) = 𝛿 𝑎𝑏 , θ̂

𝑎(υ) = 0, τ(�̂�𝑎) = 0, (B.1.2)

where τ is still the clock form. When needed, the time index will be denoted �̂� to make a clear and
complete distinction w.r.t. the split notations.1 Latin indices, lowered and raised using 𝛿𝑎𝑏 and its
inverse 𝛿 𝑎𝑏, represent tensorial indices with respect to the subgroup of the Carroll group generating
spatial rotations, while quantities without indices are scalars.

Our frames at hand undergo two types of transformations, the (infinitesimal) local rotations
parameterized by 𝑤 𝑏

𝑎 (with 𝑤𝑎𝑏 = −𝑤𝑏𝑎)2 and the local boosts parameterized by 𝜆𝑎; they act as

𝛿𝑤υ = 0, 𝛿𝑤τ = 0, 𝛿𝑤 �̂�𝑎 = 𝑤
𝑏
𝑎 �̂�𝑏 𝛿𝑤θ̂

𝑎
= −𝑤 𝑎

𝑏 θ̂
𝑏

(B.1.3)

1Note then that θ�̂� = τ.
2The linearized form of the rotation would then be 𝐵 𝑏

𝑎 = 𝛿 𝑏𝑎 + 𝑤 𝑏
𝑎 .
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𝛿𝜆υ = 0, 𝛿𝜆τ = −𝜆𝑎θ̂
𝑎
, 𝛿𝜆 �̂�𝑎 = 𝜆𝑎υ, 𝛿𝜆θ̂

𝑎
= 0. (B.1.4)

The latter are coming from the 𝑐 → 0 limit of the relativistic Lorentz transformations applied to
an orthonormal frame.

Remark Let’s give more details on this last point. Let {θ𝐴} with 𝐴 = 0, 𝑎 and 𝑎 = 1, ..., 𝑑 an
orthonormal frame i.e.

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 = 𝜂𝐴𝐵θ𝐴θ𝐵, (B.1.5)

the dual basis being denoted by {𝒆𝐴}. While general diffeomorphisms acts on the coordinate
bases, Lorentz transformations Λ𝐴

𝐵
are at work on the frame

θ
′𝐴 = Λ𝐴𝐵θ

𝐵 and 𝒆′𝐴 =
(
Λ−1) 𝐵

𝐴
𝒆𝐵. (B.1.6)

Any Lorentz transformation can be written as a combination of a boost parameterized by a
vector 𝜆𝑎 (whose norm is 𝜆2 = 𝛿𝑎𝑏𝜆

𝑎𝜆𝑏) and a rotation parameterized by a matrix 𝐵𝑎
𝑏

Λ𝐴𝐵 =

(
Γ −𝑐Γ𝜆𝑐𝐵𝑐𝑏
−𝑐Γ𝜆𝑎 𝐵𝑎

𝑏
+ (Γ − 1) 𝜆𝑐𝜆

𝑎𝐵𝑐
𝑏

𝜆2

)
(B.1.7)

whose inverse reads

(
Λ−1) 𝐴

𝐵
=

(
Γ 𝑐Γ𝜆𝑏

𝑐Γ𝜆𝑐𝐵𝑎𝑐 −𝐵𝑎𝑏 + (Γ − 1) 𝜆𝑐𝜆
𝑎𝑤𝑐

𝑏

𝜆2

)
. (B.1.8)

Here the Lorentz factor Γ reads Γ =

(√
1 − 𝑐2𝜆2

)−1
= 1+O(𝑐2). In order to get the Carrollian

equivalent one has to take the 𝑐→ 0 limit of (B.1.6), informed with

υ = lim
𝑐→0

𝑐𝒆0 , τ = lim
𝑐→0

θ0

𝑐
, �̂�𝑎 = lim

𝑐→0
𝒆𝑎 , θ̂

𝑎
= lim
𝑐→0

θ𝑎 (B.1.9)

together with the 𝑐-independence of the boost parameter and knowing that 𝐵𝑎
𝑏
= 𝛿 𝑎

𝑏
− 𝑤𝑎

𝑏

at linear level. For example it gives for the Carrollian clock form

θ
′0 = Λ0

0θ
0 + Λ0

𝑎θ
𝑎 =⇒ τ

′
= τ − 𝜆𝑎θ𝑎 (B.1.10)

that is τ is insensitive to local rotations but undergoes Carrollian boosts. Performing the
same analysis for the rest of the frame and coframe we get (B.1.3) and (B.1.4).

These frames (B.1.2) are non holonomous by virtue of

dτ − 𝜑𝑎θ̂
𝑎 ∧ τ + 𝜛𝑎𝑏θ̂

𝑎 ∧ θ̂𝑏 = 0 and dθ̂
𝑐 + 𝑐𝑐𝑎θ̂

𝑎 ∧ τ + 1
2
𝑐𝑐𝑎𝑏θ̂

𝑎 ∧ θ̂𝑏 = 0 (B.1.11)

or equivalently
[υ, �̂�𝑎] = 𝜑𝑎υ − 𝑐𝑐𝑎�̂�𝑐, and [�̂�𝑎, �̂�𝑏] = 2𝜛𝑎𝑏υ + 𝑐𝑐𝑎𝑏�̂�𝑐 (B.1.12)
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with3 𝜛 (𝑎𝑏) = 0 and 𝑐𝑐(𝑎𝑏) = 0. We thus read

𝐶�̂��̂�𝑎 = 𝜑𝑎 , 𝐶�̂�𝑎𝑏 = 2𝜛𝑎𝑏 , 𝐶𝑐�̂�𝑎 = −𝑐
𝑐
𝑎 , 𝐶𝑐𝑎𝑏 = 𝑐

𝑐
𝑎𝑏. (B.1.14)

as non-holonomy coefficients. Under linearized rotations of the form 𝐵𝑎
𝑏
= 𝛿 𝑎

𝑏
− 𝑤 𝑎

𝑏
(i.e. 𝐵 𝑏

𝑎 =

𝛿 𝑏
𝑎 + 𝑤 𝑏

𝑎 ) these geometric quantities transform as

𝛿𝑤𝜑𝑎 =𝑤
𝑏
𝑎 𝜑𝑏 (B.1.15a)

𝛿𝑤𝜛𝑎𝑏 =𝑤
𝑐
𝑎 𝜛𝑐𝑏 + 𝑤 𝑐

𝑏 𝜛𝑎𝑐 (B.1.15b)

𝛿𝑤𝑐
𝑐
𝑑 =𝑤

𝑏
𝑑 𝑐

𝑐
𝑏 − 𝑤

𝑐
𝑎 𝑐

𝑎
𝑑 − υ

(
𝑤 𝑐
𝑑

)
(B.1.15c)

𝛿𝑤𝑐
𝑐
𝑎𝑏 =

(
𝑤 𝑑
𝑎 𝑐

𝑐
𝑑𝑏 + 𝑤

𝑑
𝑏 𝑐

𝑐
𝑎𝑑 − 𝑤

𝑐
𝑑 𝑐

𝑑
𝑎𝑏

)
+ 2 �̂�[𝑎

(
𝑤 𝑐
𝑏]

)
. (B.1.15d)

which, from a group-theoretical viewpoint, shows that the latter two quantities are the gauge con-
nections associated with the local rotations while from a geometrical viewpoint they represent the
non-closure of the coframe θ̂

𝑎
. They do not appear in [75, 105] where the authors assume dθ̂

𝑎
= 0.

At the level of the local boosts the geometry transforms as on the frame while they give

𝛿𝜆𝜑𝑎 = υ (𝜆𝑎) + 𝜆𝑐𝑐𝑐𝑎 , (B.1.16a)

𝛿𝜆𝜛𝑎𝑏 = �̂�[𝑎(𝜆𝑏]) + 𝜆[𝑎𝜑𝑏] − 1
2 𝜆𝑐𝑐

𝑐
𝑎𝑏 , (B.1.16b)

𝛿𝜆𝑐
𝑎
𝑏 = 0 , (B.1.16c)

𝛿𝜆𝑐
𝑐
𝑎𝑏 = 2 𝑐𝑐[𝑎𝜆𝑏] . (B.1.16d)

This time, 𝜑𝑎 and 𝜛𝑎𝑏 play the role of temporal and spatial connections under local Carroll boosts.

B.1.2 Adding a connection

We now equip the structure again with a connection that we first decompose into

∇̄υυ = 𝛾υ + 𝜌𝑎�̂�𝑎
∇̄υ�̂�𝑎 = 𝛿𝑎υ + 𝛾𝑏𝑎�̂�𝑏
∇̄υτ = −𝛾τ − 𝛿𝑎θ̂

𝑎

∇̄υθ̂
𝑎
= −𝜌𝑎τ − 𝛾𝑎𝑏θ̂

𝑏

∇̄𝑎υ = �̂�𝑎υ + �̂� 𝑏
𝑎 �̂�𝑏

∇̄𝑎�̂�𝑏 = 𝛽𝑎𝑏υ + 𝛾𝑐𝑎𝑏�̂�𝑐
∇̄𝑎τ = −�̂�𝑎τ − 𝛽𝑎𝑏θ̂

𝑏

∇̂𝑎θ̂
𝑏
= −�̂� 𝑏

𝑎 τ − 𝛾𝑏𝑎𝑐θ̂
𝑐
.

(B.1.17)

3There is a geometric formula for 𝜑𝑎 and 𝑐𝑎𝑏. Using Cartan’s magic formula we get

Lυτ = −𝜑𝑎θ̂
𝑎

and Lυθ̂
𝑎
= 𝑐𝑎𝑏θ̂

𝑏
. (B.1.13)

Note that this coincides with (C.0.4) of the covariant formalism.

– 203 –



Under (infinitesimal) local rotations the various components behave as4

𝛿𝑤𝛾 = 0 , (B.1.18a)

𝛿𝑤𝜌
𝑎 = −𝑤𝑏𝑎𝜌𝑏 , (B.1.18b)

𝛿𝑤 �̂�𝑎 = 𝑤𝑎
𝑏�̂�𝑏 , (B.1.18c)

𝛿𝑤 �̂�𝑎
𝑏 = 𝑤𝑎

𝑐 �̂�𝑐
𝑏 − 𝑤𝑐𝑏 �̂�𝑎𝑐 , (B.1.18d)

𝛿𝑤𝛿𝑎 = 𝑤𝑎
𝑏𝛿𝑏 , (B.1.18e)

𝛿𝑤𝛽𝑎𝑏 = 𝑤𝑎
𝑐𝛽𝑐𝑏 + 𝑤𝑏𝑐𝛽𝑎𝑐 , (B.1.18f)

𝛿𝑤𝛾
𝑎
𝑏 = −𝑤𝑐𝑎𝛾𝑐𝑏 + 𝑤𝑏𝑐𝛾𝑎𝑐 + υ(𝑤𝑏𝑎) = ∇̂υ𝑤 𝑎

𝑏 , (B.1.18g)

𝛿𝑤𝛾
𝑐
𝑎𝑏 = 𝑤𝑎

𝑑𝛾𝑐𝑑𝑏 + 𝑤𝑏𝑑𝛾𝑐𝑎𝑑 − 𝑤𝑑𝑐𝛾𝑑𝑎𝑏 + �̂�𝑎(𝑤𝑏𝑐) = 𝑤 𝑑
𝑎 𝛾

𝑐
𝑑𝑏 + ∇̂𝑎𝑤

𝑐
𝑏 , (B.1.18h)

where (B.1.18g) and (B.1.18h) shows that 𝛾𝑎
𝑏
and 𝛾𝑐

𝑎𝑏
are respectively a temporal and spatial rotation

connection. Under local boost we get

𝛿𝜆𝛾 = −𝜌𝑎𝜆𝑎 (B.1.19a)

𝛿𝜆𝜌
𝑎 = 0 (B.1.19b)

𝛿𝜆 �̂�𝑎 = 𝜆𝑎𝛾 − �̂� 𝑏
𝑎 𝜆𝑏 (B.1.19c)

𝛿𝜆𝛿𝑎 = 𝜆𝑎𝛾 − 𝛾𝑏𝑎𝜆𝑏 + υ (𝜆𝑎) = 𝜆𝑎𝛾 + ∇̂υ𝜆𝑎 (B.1.19d)

𝛿𝜆𝛽𝑎𝑏 = −𝛾𝑐𝑎𝑏𝜆𝑐 + 𝜆𝑏�̂�𝑎 + 𝜆𝑎𝛿𝑏 + �̂�𝑎 (𝜆𝑏) = 𝜆𝑏�̂�𝑎 + 𝜆𝑎𝛿𝑏 + ∇̂𝑎𝜆𝑏 (B.1.19e)

𝛿𝜆 �̂�
𝑏
𝑎 = 𝜆𝑎𝜌

𝑏 (B.1.19f)

𝛿𝜆𝛾
𝑏
𝑎 = 𝜆𝑎𝜌

𝑏 (B.1.19g)

𝛿𝜆𝛾
𝑐
𝑎𝑏 = 𝜆𝑏 �̂�

𝑐
𝑎 + 𝜆𝑎𝛾𝑐𝑏 (B.1.19h)

where (B.1.19d) and (B.1.19e) shows that 𝛿𝑎 and 𝛽𝑎𝑏 are respectively a temporal and spatial Carrollian
boosts connection.

The Carrollian affine-connection one-form reads (see (A.0.6))

ω̄�̂�
�̂� = 𝛾τ + �̂�𝑎θ̂

𝑎

ω̄�̂�
𝑎 = 𝛿𝑎τ + 𝛽𝑏𝑎θ̂

𝑏
,

ω̄𝑎
�̂� = 𝜌𝑎τ + �̂� 𝑎

𝑏 θ̂
𝑏

ω̄𝑎
𝑏 = 𝛾

𝑎
𝑏τ + 𝛾

𝑎
𝑐𝑏θ̂

𝑐 (B.1.20)

which means that the spin connection varies under local rotations as

𝛿𝑤ω̄
0

0 = 0 , (B.1.21a)

𝛿𝑤ω̄
0
𝑎 = 𝑤𝑎

𝑏ω̄0
𝑏 , (B.1.21b)

𝛿𝑤ω̄
𝑎

0 = −𝑤𝑏𝑎ω̄𝑏
0 , (B.1.21c)

𝛿𝑤ω̄
𝑎
𝑏 = −𝑤𝑐𝑎ω̄𝑐

𝑏 + 𝑤𝑏𝑐ω̄𝑎
𝑐 +

(
υ(𝑤𝑏𝑎)τ + �̂�𝑐 (𝑤𝑏𝑎)θ̂𝑐

)
. (B.1.21d)

4As it will drastically simplify the variation of the action under rotation later, we already re-express the variations
in terms of the hat derivative defined in (B.1.34).
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while under boosts it changes like5

𝛿𝜆ω̄
0

0 = −𝜆𝑎ω̄𝑎
0 , (B.1.22a)

𝛿𝜆ω̄
0
𝑎 = 𝜆𝑎ω̄

0
0 +

(
υ(𝜆𝑎) − 𝛾𝑏𝑎𝜆𝑏

)
τ +

(
�̂�𝑏(𝜆𝑎) − 𝛾𝑐𝑏𝑎𝜆𝑐

)
θ̂𝑏 , (B.1.22b)

𝛿𝜆ω̄
𝑎

0 = 0 , (B.1.22c)

𝛿𝜆ω̄
𝑎
𝑏 = 𝜆𝑏ω̄

𝑎
0 . (B.1.22d)

Hence we see thatω�̂�
𝑎 encodes the Carrollian boosts whileω𝑎

𝑏
encodes the local rotations.

Remark If we were to study a Galilean structure in Cartan’s frame instead of a Carrollian one (see
App. D), the Galilean equivalent of the boosts would act on the bases {υ, �̂�𝑎} and {τ, θ̂

𝑎} like

𝛿𝜆υ = 𝜆𝑎�̂�𝑎, 𝛿𝜆τ = 0, 𝛿𝜆 �̂�𝑎 = 0, 𝛿𝜆θ̂
𝑎
= −𝜆𝑎τ. (B.1.23)

Studying the transformation properties of the connection (B.1.17) we would have found that
𝜌𝑎 and �̂� 𝑎

𝑏
and hence ω𝑎

�̂�
are the components encoding the Galilean boosts. For the inter-

pretation of the remaining two pieces 𝛾 and �̂�𝑎 see later.

We can now specify further our connection first by asking the preservation of the field of observers
∇̄υυ = 0 and ∇̄𝑎υ = 0 we are left with

∇̄υ�̂�𝑎 = 𝛿𝑎υ + 𝛾𝑏𝑎�̂�𝑏
∇̄𝑎�̂�𝑏 = 𝛽𝑎𝑏υ + 𝛾𝑐𝑎𝑏�̂�𝑐

∇̄υτ = −𝛿𝑎θ̂
𝑎

∇̄𝑎τ = −𝛽𝑎𝑏θ̂
𝑏

∇̄υθ̂
𝑎
= −𝛾𝑎𝑏θ̂

𝑏

∇̄𝑎θ̂
𝑏
= −𝛾𝑏𝑎𝑐θ̂

𝑐
,

(B.1.24)

from which we can infer the vector compatible Carrollian affine-connection one-form

ω̄�̂�
�̂� = 0 , ω̄�̂�

𝑎 = 𝛿𝑎τ + 𝛽𝑏𝑎θ̂
𝑏

, ω̄𝑎
�̂� = 0 , ω̄𝑎

𝑏 = 𝛾
𝑎
𝑏τ + 𝛾

𝑎
𝑐𝑏θ̂

𝑐
. (B.1.25)

Metric-compatibility being equivalent to ω̄(𝑎𝑏) = 0 we get two conditions

𝛾(𝑎𝑏) = 0 and 𝛾(𝑎|𝑐 |𝑏) = 0 (B.1.26)

where the symmetrisation acts on the two extreme indices. Hence we get the following result

Proposition B.0.1. In Cartan’s frame, a strong Carrollian connection leaves free 𝛿𝑎, 𝛽𝑎𝑏, 𝛾 [𝑎𝑏] and
𝛾 [𝑎|𝑐 |𝑏] .

The torsion two-form then reads

T̄ �̂� =

(
𝛿𝑎 − 𝜑𝑎

)
τ ∧ θ̂𝑎 +

(
𝛽[𝑎𝑏] − 𝜛𝑎𝑏

)
θ̂
𝑎 ∧ θ̂𝑏 (B.1.27)

5Here we already used the hat connection ∇̂ defined in (B.1.34).
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T̄ 𝑎 = 𝛿 𝑏𝑐
(
𝛾 [𝑏𝑎] + 𝑐[𝑏𝑎] + 𝑐(𝑏𝑎)

)
τ ∧ θ̂𝑎 +

(
𝛾𝑐𝑎𝑏 −

1
2
𝑐𝑐𝑎𝑏

)
θ̂
𝑎 ∧ θ̂𝑏 (B.1.28)

Now it is time to make choices

• we could ask for the minimal possible torsion which imposes

𝛿𝑎 = 𝜑𝑎, 𝛽[𝑎𝑏] = 𝜛𝑎𝑏, 𝛾 [𝑎𝑏] = −𝑐𝑎𝑏, 𝛾𝑎𝑏𝑐 =
1
2

(
𝑐𝑎𝑏𝑐 + 𝑐

𝑎
𝑏 𝑐 + 𝑐

𝑎
𝑐 𝑏

)
, (B.1.29)

which is perfectly fine as we are equating quantities having, in virtue of (B.1.15), the same
tensorial properties. The remaining torsion is then

T̂ �̂� = 0 and T̂ 𝑐 = +𝛿 𝑐𝑎𝑐(𝑎𝑏)τ ∧ θ̂
𝑏

(B.1.30)

so the torsion is held by a symmetric rank-two tensor 𝑐(𝑎𝑏) which can further be decomposed
into a symmetric and traceless part 𝜉𝑎𝑏 and a pure trace part 𝜃 via

𝑐(𝑎𝑏) = 𝜉𝑎𝑏 +
𝜃

𝑑
𝛿𝑎𝑏. (B.1.31)

Hence in the frame formulation this tensor 𝑐(𝑎𝑏) plays the role of the extrinsic curvature. If
and only if it vanishes one can built a completely torsion free Carrollian connection. Note
that everything is coherent because in the frame the metric is chosen to be constant so it
has no usual extrinsic curvature, the latter is then supported by the lack of closeness of the
orthonormal forms θ̂

𝑎
in the temporal direction τ. Once (B.1.32) imposed, the remaining

degrees of freedom are encoded into 𝛽(𝑎𝑏) .

• alternatively one could ask for a preservation of the time and space splitting i.e. 𝛿𝑎 = 0 and
𝛽𝑎𝑏 = 0 while minimizing the torsion demanding 𝛾 [𝑎𝑏] = −𝑐[𝑎𝑏] . The remaining torsion is
then

T̂ �̂� = 𝜑𝑎τ ∧ θ̂
𝑎 − 𝜛𝑎𝑏θ̂

𝑎 ∧ θ̂𝑏 and T̂ 𝑐 = 𝛿 𝑐𝑎𝑐(𝑎𝑏)τ ∧ θ̂
𝑏
. (B.1.32)

This connection, denoted ∇̂𝑎 from now on is the equivalent of ∇̂𝑖 in coordinate frame. This
is the one we will use from now on.

The connection ∇̂

The covariant time and space derivatives with ∇̂ act on Carrollian scalars 𝑓 as time and space dir-
ectional derivatives i.e.

∇̂υ𝑓 = υ(𝑓 ) and ∇̂𝑎𝑓 = �̂�𝑎(𝑓 ). (B.1.33)

For Carrollian vectors ζ = 𝜁 𝑎�̂�𝑎 and forms ζ = 𝜁𝑎θ̂
𝑎
we obtain:

∇̂𝑎𝜁 𝑏 = ê𝑎
(
𝜁 𝑏

)
+ 𝛾𝑏𝑎𝑐𝜁 𝑐 ⇔ ∇̂𝑎𝜁𝑏 = ê𝑎 (𝜁𝑏) − 𝛾𝑐𝑎𝑏𝜁𝑐, (B.1.34a)
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∇̂υ𝜁 𝑎 = υ (𝜁 𝑎) − 𝑐[𝑎𝑏] 𝜁𝑏 ⇔ ∇̂υ𝜁𝑎 = υ (𝜁𝑎) − 𝑐[𝑎𝑏] 𝜁 𝑏, (B.1.34b)

and we extend these actions to higher order tensors using the Leibniz rule.

We can finally determine the curvature of the Carrollian connection under consideration using
Cartan’s formula in Appendix A

R̂�̂�𝑏 = 0 and R̂𝑎𝑏 = �̂�
𝑎
𝑐𝑏τ ∧ θ̂

𝑐 + 1
2
�̂�𝑎𝑏𝑐𝑑θ̂

𝑐 ∧ θ̂𝑑 (B.1.35)

with

�̂�𝑎𝑏𝑐𝑑 = ê𝑐
(
𝛾𝑎𝑑𝑏

)
− ê𝑑

(
𝛾𝑎𝑐𝑏

)
+ 𝛾𝑒𝑑𝑏𝛾

𝑎
𝑐𝑒 − 𝛾𝑒𝑐𝑏𝛾

𝑎
𝑑𝑒 − 𝑐

𝑒
𝑐𝑑𝛾

𝑎
𝑒𝑏 + 2𝜛𝑐𝑑𝛾 [𝑒𝑏]𝛿 𝑎𝑒, (B.1.36a)

�̂�𝑎𝑐𝑏 = −
(
∇̂𝑎 + 𝜑𝑎

)
𝛾(𝑏𝑐) +

(
∇̂𝑏 + 𝜑𝑏

)
𝛾(𝑐𝑑)𝛿

𝑎𝑑. (B.1.36b)

One can trace the above and yield the Carroll-Ricci tensor and the Carroll scalar curvature

�̂�𝑐𝑑 = �̂�
𝑎
𝑐𝑎𝑑 and �̂� = 𝛿 𝑐𝑑 �̂�𝑐𝑑. (B.1.37)

As usual these components of the Riemann tensor allows one to derive the commutation rules of
our connection ∇̂.

B.1.3 Momenta and conservation equations

Let 𝑆 be an (effective) action functional. It depends on the geometry encoded into {υ, �̂�𝑎} and on a
set of matter fields collectively denoted by Φ

𝑆 = 𝑆 [υ, �̂�𝑎;Φ] =
∫

µL (B.1.38)

with µ the volume form µ = 1
2 𝜖𝑎𝑏θ̂

𝑎 ∧ θ̂
𝑏 ∧ τ and L the (effective) Lagrangian density. Note then

that we consider the connection as being completely fixed with no residual degrees of freedom i.e.
𝛿𝑎 = 0, 𝛽𝑎𝑏 = 0, 𝛾 [𝑎𝑏] = 0, 𝛾𝑐[𝑎𝑏] = 0. The (non-evaluated) variation of the action yields

𝛿𝑆 =

∫
µ (𝑼𝛿υ +𝑼 𝑎𝛿 �̂�𝑎) (B.1.39)

where one should see the conjugate momenta𝑼 and𝑼 𝑎. They are respectively a scalar-valued and
a vector-valued one-form which can thus be decomposed as

𝑼 = 𝑈�̂�τ +𝑈𝑎θ̂
𝑎

and 𝑼 𝑎 = 𝑈𝑎
�̂�τ +𝑈

𝑎
𝑏θ̂

𝑏
. (B.1.40)

Given our three transformations at hand, local rotations, local boosts and variation along a vector,
requiring invariance of the action under each of them will yield constraints and equations on the
momenta.
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• Boosts. Let 𝜆𝑎 be the boost parameter.

𝛿𝜆𝑆 = 0⇐⇒
∫

µ𝜆𝑎𝑼
𝑎(υ) = 0 (B.1.41)

which implies
𝑈𝑎

�̂� = 0 . (B.1.42)

• Rotations. Let 𝑤𝑎𝑏 = −𝑤𝑏𝑎 be the rotation parameter.

𝛿𝑤𝑆 = 0⇐⇒
∫

µ𝑤 𝑏
𝑎 𝑈

𝑎
𝑏 = 0 (B.1.43)

which implies
𝑈𝑎𝑏 = 𝑈𝑏𝑎 (B.1.44)

by anti-symmetry of 𝑤𝑎𝑏.

• Diffeomorphisms. Let 𝝃 = 𝜉𝑎�̂�𝑎 be a vector. Under its action the frame vectors change with
the Lie derivative

L𝝃υ = −
(
υ(𝜉0) + 𝜉𝑎𝜑𝑎

)
υ −

(
υ(𝜉𝑎) − 𝜉𝑎𝑐𝑏𝑎

)
�̂�𝑏 , (B.1.45a)

L𝝃τ =
(
υ(𝜉0) + 𝜉𝑎𝜑𝑎

)
τ +

(
�̂�𝑏(𝜉0) + 2𝜉 𝑐𝜛𝑏𝑐 − 𝜉0𝜑𝑏

)
θ̂𝑏 , (B.1.45b)

L𝝃 �̂�𝑎 = −
(
�̂�𝑎(𝜉0) + 2𝜉𝑏𝜛𝑎𝑏 − 𝜉0𝜑𝑎

)
υ −

(
�̂�𝑎(𝜉𝑐) + 𝜉0𝑐𝑐𝑎 + 𝜉𝑏𝑐𝑐𝑎𝑏

)
�̂�𝑐 , (B.1.45c)

L𝝃 θ̂
𝑎 =

(
υ(𝜉𝑎) − 𝑐𝑎𝑏𝜉

𝑏
)
τ +

(
�̂�𝑏(𝜉𝑎) + 𝜉 𝑐𝑐𝑎𝑏𝑐 + 𝜉

0𝑐𝑎𝑏
)
θ̂𝑏 . (B.1.45d)

where we have related the formulae to our connection ∇̂. The last step before varying the
action is to display the divergence equations (1.3.14a) and (1.3.14b) in Cartan’s frame. In the
following, 𝑓 , 𝑉 𝑎 and 𝑉 𝑎

𝑏
are respectively a scalar, a vector and a rank-(1, 1) tensor under

rotations

µ𝑓 ∇̂υ𝜉 �̂� = −µ𝜉 �̂�
(
∇̂υ + 𝜃

)
𝑓 + b.t. (B.1.46)

µ𝑉𝑎∇̂υ𝜉𝑎 = −µ𝜉𝑎
(
∇̂υ + 𝜃

)
𝑉𝑎 + b.t.

and

µ𝑉 𝑎∇̂𝑎𝜉 �̂� = −µ𝜉 �̂�
(
∇̂𝑎 + 𝜑𝑎

)
𝑉 𝑎 + b.t. (B.1.47)

µ𝑉 𝑎
𝑏∇̂𝑎𝜉

𝑏 = −µ𝜉𝑏
(
∇̂𝑎 + 𝜑𝑎

)
𝑉 𝑎

𝑏 + b.t.

where b.t. means “up to boundary terms” thatwe do not display here (there are available in the
hybrid frame, see (1.3.14a) and (1.3.14b)). For completeness we display the explicit computation
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for the first equation (recall that as 𝜉 �̂� is a scalar ∇̂υ(𝜉 �̂�) ≡ υ(𝜉 �̂�))

µ 𝑓 υ(𝜉0) = Lυ(µ 𝑓 𝜉0) − 𝜉0Lυ(µ 𝑓 )

= d
(

1
2 𝜖𝑎𝑏 θ̂

𝑎 ∧ θ̂𝑏 𝑓 𝜉0
)
− 𝜉0 1

2 𝜖𝑎𝑏 d(θ̂
𝑎 ∧ θ̂𝑏 𝑓 )

= b.t. − µ 𝜉0 υ(𝑓 ) − 𝜉0 𝑓 𝜖𝑎𝑏dθ̂𝑎 ∧ θ̂𝑏

= b.t. − µ 𝜉0 υ(𝑓 ) − µ 𝜉0 𝑓 𝑐𝑎𝑎

= b.t. − µ 𝜉0 [υ(𝑓 ) + 𝜃𝑓 ] .

(B.1.48)

Asking the effective action to be invariant under such a transformation yields the conserva-
tion equations in Cartan’s frame(

∇̂υ + 𝜃
)
𝑈�̂� +

(
∇̂𝑎 + 2𝜑𝑎

)
𝑈𝑎

�̂� − 𝑐(𝑎𝑏)𝑈
𝑎𝑏 = 0 (B.1.49)

and (
∇̂𝑎 + 𝜑𝑎

)
𝑈𝑎

𝑏 −𝑈�̂�𝜑𝑏 − 2𝑈𝑎
�̂�𝜛𝑎𝑏 = −

(
∇̂υ + 𝜃

)
𝑈𝑏 (B.1.50)

which, comparing with (1.3.20) and (1.3.21), leads to the following identifications

𝑈�̂� = Π , 𝑈𝑎 = −𝑃𝑎 , 𝑈𝑎
�̂� = Π𝑎 , 𝑈𝑎𝑏 = −Π𝑎𝑏. (B.1.51)

Note that the latter are consistent with the properties (B.1.42) and (B.1.44).

On could then turn on the ambiguities of the connection and perform a similar analysis than the
one at the end of Sec. (1.3.2).

B.1.4 Weyl covariance

Weyl transformations parametrised by an arbitrary function B(𝑡,x) are added by hand into the
Carroll structure. They act on the frame and coframe as

υ→ Bυ , �̂�𝑎 → B�̂�𝑎 , τ→ B−1τ , θ̂
𝑎 → B−1θ̂

𝑎
(B.1.52)

meaning that the frame vectors are weight 1 while the coframe forms are weight −1. The other
geometric quantities behave like

𝑐𝑎𝑏 → B𝑐𝑎𝑏 − υ(B)𝛿
𝑏
𝑎 , 𝑐𝑐𝑎𝑏 → B𝑐𝑐𝑎𝑏 − �̂�[𝑎(B)𝛿

𝑐
𝑏] (B.1.53)

𝜑𝑎 → B𝜑𝑎 + �̂�𝑎(B) , 𝜛𝑎𝑏 → B𝜛𝑎𝑏. (B.1.54)

The various components of the connection are splitted in two categories regarding Weyl trans-
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formations. Part of them are covariant and their weights are displayed in the next Table.

Quantity 𝛿𝑎 𝜌𝑎 𝛽𝑎𝑏 �̂� 𝑎
𝑏

Weight 𝑤 1 1 1 1
(B.1.55)

The remaining ones are still weight 1 but possess an anomalous part.

𝛾 → B𝛾 + υ(B) , �̂�𝑎 → B�̂�𝑎 + �̂�𝑎(B) (B.1.56)

𝛾𝑎𝑏 → B𝛾𝑎𝑏 + υ(B)𝛿
𝑎
𝑏 , 𝛾𝑐𝑎𝑏 → B𝛾𝑐𝑎𝑏 + �̂�𝑎(B)𝛿

𝑐
𝑏 . (B.1.57)

Remark It is now time to recap which part of the spin-connection is a connection under which
transformations. Using (B.1.18g), (B.1.18h), (B.1.19d), (B.1.19e), (B.1.56) and (B.1.57) we have that

• ω�̂�
�̂�
gauges tracefree Weyl transformations seen as the generator 𝑢𝜕𝑢 ∈ 𝐺𝐿(𝑑 + 1),

• ω𝑎
�̂�
gauges Galilean boosts seen as the generator 𝑢𝜕𝑎 ∈ 𝐺𝐿(𝑑 + 1) ,

• ω�̂�
𝑎 gauges Carrollian boosts seen as the generator 𝑥𝑎𝜕𝑢 ∈ 𝐺𝐿(𝑑 + 1),

• ω𝑎
𝑏
gauges both local rotations seen as the generator 𝑥𝑎𝜕𝑏 − 𝑥𝑏𝜕𝑎 ∈ 𝐺𝐿(𝑑 + 1).

Remark As onemay have already noticed, whenworking inCartan’s orthonormal frame, theWeyl
weights are slightly modified with respect to the ones in hybrid frame (𝑡, 𝑖). The main virtue
of the former frame is that all geometric quantities, whether belonging to the metric or the
connection, have the same weight (up to anomalous parts).

Following the pattern adopted for the affine connection ∇̂, we introduce here aWeyl connection
that respects the time and space splitting, associatedwith twoWeyl-covariant derivatives. These act
onweight-wCarrollian tensors and produceCarrollian tensors ofweight w+1. TheWeyl connection
is encoded in 𝜃 and 𝜑𝑎, see (B.1.11), and the Weyl-covariant derivatives are defined as follows:

• on scalars
D̂υΦ = υ(Φ) + w

𝑑
𝜃Φ, D̂𝑎Φ = ê𝑎(Φ) + w𝜑𝑎Φ; (B.1.58)

• on vectors v = 𝑣𝑎ê𝑎

D̂υ𝑣
𝑎 = ∇̂υ𝑣𝑎 +

w

𝑑
𝜃𝑣𝑎, D̂𝑎𝑣

𝑏 = ∇̂𝑎𝑣𝑏 + w𝜑𝑎𝑣𝑏 + 𝜑𝑏𝑣𝑎 − 𝛿 𝑏𝑎𝑣𝑐𝜑𝑐; (B.1.59)

• on rank-2 tensors t = 𝑡𝑎𝑏θ̂𝑎 ⊗ θ̂𝑏

D̂υ𝑡𝑎𝑏 = ∇̂υ𝑡𝑎𝑏 +
w

𝑑
𝜃𝑡𝑎𝑏, (B.1.60a)

D̂𝑐𝑡𝑎𝑏 = ∇̂𝑐𝑡𝑎𝑏 + w𝜑𝑐𝑡𝑎𝑏 + 𝜑𝑎𝑡𝑐𝑏 + 𝜑𝑏𝑡𝑎𝑐 − 𝛿𝑎𝑐𝑡𝑑𝑏𝜑𝑑 − 𝛿𝑐𝑏𝑡𝑎𝑑𝜑𝑑. (B.1.60b)

Using Leibniz’ rule one obtains the generalization for any conformal tensor.
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The Riemann–Carroll–Weyl curvature is a weight-2 tensor defined through the commutator of
the Carrollian Weyl derivatives acting on Carrollian scalars Φ, vectors 𝑣𝑐 or 2-tensors 𝑡𝑐𝑑 of weight
w [

D̂𝑎, D̂𝑏

]
Φ = 2𝜛𝑎𝑏D̂υΦ + wΩ𝑎𝑏Φ, (B.1.61a)[

D̂𝑎, D̂𝑏

]
𝑣𝑐 = Ŝ 𝑐

𝑑𝑎𝑏𝑣
𝑑 + 2𝜛𝑎𝑏D̂υ𝑣

𝑐 + wΩ𝑎𝑏𝑣
𝑐, (B.1.61b)[

D̂𝑎, D̂𝑏

]
𝑡𝑐𝑑 = Ŝ 𝑐

𝑒𝑎𝑏𝑡
𝑒𝑑 + Ŝ 𝑑

𝑒𝑎𝑏𝑡
𝑐𝑒 + 2𝜛𝑎𝑏D̂υ𝑡

𝑐𝑑 + wΩ𝑎𝑏𝑡
𝑐𝑑 , (B.1.61c)

where
Ω𝑎𝑏 = ê𝑎 (𝜑𝑏) − ê𝑏 (𝜑𝑎) − 𝑐𝑐𝑎𝑏𝜑𝑐 −

2
𝑑
𝜛𝑎𝑏𝜃 (B.1.62)

is yet another weight-2 Carrollian tensor. From the Riemann–Weyl–Carroll tensor, we define

Ŝ𝑐𝑑 = Ŝ 𝑎
𝑐𝑎𝑑 , R̂ = 𝛿 𝑐𝑑Ŝ𝑐𝑑 , (B.1.63)

all weight-2.

We can further consider time and space derivatives:[
D̂υ, D̂𝑎

]
Φ = −𝜉𝑏𝑎D̂𝑏Φ + wR̂𝑎Φ, (B.1.64a)[

D̂υ, D̂𝑎

]
𝑣𝑏 = −Ŝ 𝑏

𝑎𝑐𝑣
𝑐 − 𝜉 𝑐𝑎D̂𝑐𝑣

𝑏 + wR̂𝑎𝑣
𝑏, (B.1.64b)[

D̂υ, D̂𝑎

]
𝑡𝑏𝑐 = −Ŝ 𝑏

𝑎𝑑𝑡
𝑑𝑐 − Ŝ 𝑐

𝑎𝑑𝑡
𝑏𝑑 − 𝜉𝑑𝑎D̂𝑑𝑡

𝑏𝑐 + wR̂𝑎𝑡
𝑏𝑐, (B.1.64c)

revealing a clear pattern for any Carrollian conformal tensor. In these expressions

Ŝ 𝑐
𝑎𝑏 = −Ŝ

𝑐
𝑏𝑎 = D̂ 𝑐𝜉𝑎𝑏 − D̂𝑏𝜉

𝑐
𝑎 + 𝛿 𝑐𝑎R̂𝑏 − 𝛿𝑎𝑏R̂𝑐 (B.1.65)

and R̂𝑎 are weight-two tensors. Note that in Cartan frame, both the shear 𝜉𝑎𝑏 and the vorticity 𝜛𝑎𝑏
have weight one, regardless of the position of the indices. In natural frame 𝜉𝑖 𝑗 and 𝜛 𝑖 𝑗 have weight
−1, but raising an index augments the weight by two units.

Within the Weyl-covariant framework in Cartan’s frame, the conservation equations with the
connection D̂ (i.e. the equivalent of (1.4.16) and (1.4.17)) takes the form

D̂υΠ + D̂𝑎Π
𝑎 + Υ𝑎𝑏𝜉

𝑏
𝑎 = 0, (B.1.66)

1
2
D̂𝑎Π + D̂𝑏Υ

𝑏
𝑎 + 2 ∗𝜛 ∗Π𝑎 + D̂υ𝑃𝑎 + 𝜉 𝑏

𝑎 𝑃𝑏 = 0. (B.1.67)

with the momenta Π𝑎
𝑏
= Υ𝑎

𝑏
+ 1

2Π𝛿
𝑎
𝑏
.
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B.1.5 Isometries and charges

A plain Killing field is require to preserve the weak Carroll structure (i.e. L𝝃υ = 0 and L𝝃 𝛿𝑎𝑏 = 0)
which leads to the Carroll-Killing frame equations

∇̂(𝑎𝜉𝑏) + 2𝜉 �̂�𝑐(𝑎𝑏) = 0

υ
(
𝜉 �̂�

)
+ 𝜉𝑎𝜑𝑎 = 0

υ (𝜉𝑎) − 𝑐𝑎
𝑏
𝜉𝑏 = 0.

(B.1.68)

Remark The last condition selects a peculiar type of diffeomorphisms which actually are the Car-
rollian diffeomorphisms. Hence υ (𝜉𝑎) − 𝑐𝑎

𝑏
𝜉𝑏 = 0 can be taken as their defining property.

Remark In Cartan’s frame strong Killings are asked to preserve the clock form τ yielding

ê𝑎
(
𝜉 �̂�

)
− 𝜑𝑎𝜉 �̂� + 2𝜛𝑎𝑏𝜉𝑏 = 0 . (B.1.69)

One then defines a charge current by a couple (𝜅, 𝐾𝑎) contracting the momenta with the compon-
ents of a Carroll-Killing field

𝜅 = −𝜉 �̂�Π + 𝜉𝑎𝑃𝑎 and 𝐾𝑎 = −𝜉 �̂�Π𝑎 + 𝜉𝑏Π𝑎𝑏 (B.1.70)

Its divergence reads (
∇̂υ + 𝜃

)
𝜅 +

(
∇̂𝑎 + 𝜑𝑎

)
𝐾𝑎 = (L𝝃τ)𝑎Π𝑎 (B.1.71)

leading to the same alternative that in the hybrid frame. Finally the charge takes the following form

𝑄 (𝜅,𝑲) =

∫
S
µ 𝜅. (B.1.72)

B.2 The 𝒄 → 0 limit

We turn now to Carroll structures describes in a Cartan orthonormal frame and obtained from the
limit. As this Appendix is just displayed for completeness, with the permission of the authors of [155]
we reproduce here the Appendix A of that reference.

Here capital Latin indices 𝐴, 𝐵, ... range over 0, 1, ...𝑑while small Latin indices 𝑎, 𝑏, ... over 1, 2, ....
We can reach a Carroll structure like (A.0.2) starting from a pseudo-Riemannian spacetime in the
following parametrization

d𝑠2 = 𝜂𝐴𝐵θ
𝐴θ𝐵 = −

(
θ0̂

)2
+ 𝛿𝑎𝑏θ𝑎θ𝑏 = −𝑐2

(
θ̂
�̂�
)2
+ 𝛿𝑎𝑏θ̂

𝑎
θ̂
𝑏
, (B.2.1)

where we have assumed that all 𝑐-dependence is explicit i.e. θ𝑎 = θ̂
𝑎
while θ0̂ = 𝑐θ̂

�̂�
. The relation-

ship between the relativistic congruence 𝒖 and the Carrollian fibre attributes, field of observers and
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clock form, is υ = u = �̂��̂� for the former and τ = − 𝒖
𝑐2 = θ̂

�̂�
for the latter.

When the Carrollian frame, coframe and degenerate metric are parameterized as

e0̂ =
𝛾

𝑘

(
𝜕𝑢 + 𝑣𝑖𝜕𝑖

)
⇔ θ0̂ = 𝑘

(
d𝑢
𝛾
− Δ𝑖

(
d𝑥𝑖 − 𝑣𝑖d𝑢

) )
, (B.2.2)

e𝑎 = 𝑒 𝑖
𝑎

(
𝜕𝑖 + 𝛾Δ𝑖

(
𝜕𝑢 + 𝑣 𝑗𝜕𝑗

) )
⇔ θ𝑎 = 𝑒𝑎

𝑖

(
d𝑥𝑖 − 𝑣𝑖d𝑢

)
(B.2.3)

then relativistic metric reads

d𝑠2 = −𝑐2
(
d𝑢
𝛾
− Δ𝑖

(
d𝑥𝑖 − 𝑣𝑖d𝑢

))2

+ Γ2
𝑖 𝑗

(
d𝑥𝑖 − 𝑣𝑖d𝑢

) (
d𝑥 𝑗 − 𝑣 𝑗d𝑢

)
,

= − 𝑐
2

𝛾2

(
d𝑢2 − 2𝛾Δ𝑖d𝑢

(
d𝑥𝑖 − 𝑣𝑖d𝑢

))
+

(
Γ2
𝑖 𝑗 − 𝑐2Δ𝑖Δ𝑗

) (
d𝑥𝑖 − 𝑣𝑖d𝑢

) (
d𝑥 𝑗 − 𝑣 𝑗d𝑢

)
,

(B.2.4)

where the normalized vector congruence is

𝒖 = 𝛾

(
𝜕𝑢 + 𝑣𝑖𝜕𝑖

)
. (B.2.5)

We will not explicitly operate with this frame, which coincides at 𝑣𝑖 = 0 with the Papapetrou–
Randers form employed in Refs. [52, 53, 65, 66, 84, 104], where Ω = 1

𝛾
, 𝑏𝑖 = Δ𝑖 and 𝑎𝑖 𝑗 = Γ2

𝑖 𝑗
.

The pseudo-Riemannian manifold is naturally equipped with a Levi–Civita connection. We
would like to express the latter in terms of the Carrollian tensors appearing in Eqs. (A.0.6) and
(B.1.11). This procedure is to provide the suitable tools for reaching the 𝑐 → 0 limit in relativistic
dynamical equations such as ∇𝑎𝑇 𝑎𝑏 = 0. We reckon that in the parameterization of

{
dθ𝐴

}
={

dθ0̂, dθ𝑎
}
, Eq. (B.1.11) holds

dθ0̂ − 𝜑𝑎θ𝑎 ∧ θ0̂ + 𝑐𝜛𝑎𝑏θ𝑎 ∧ θ𝑏 = 0, dθ𝑐 + 1
𝑐
𝛾𝑐𝑎θ

𝑎 ∧ θ0̂ + 1
2
𝑐𝑐𝑎𝑏θ

𝑎 ∧ θ𝑏 = 0. (B.2.6)

Thus the Levi–Civita affine connection one-form reads:

ω𝑎𝑏 = −
(
𝑐𝜛𝑎𝑏 +

1
𝑐
𝛾 [𝑎𝑏]

)
θ0̂ + 𝛿𝑎𝑑𝛾𝑑𝑐𝑏θ̂

𝑐 (B.2.7)

= −
(
𝑐2𝜛𝑎𝑏 + 𝛾 [𝑎𝑏]

)
τ + 𝛿𝑎𝑑𝛾𝑑𝑐𝑏θ̂

𝑐
= −𝑐2𝜛𝑎𝑏τ + ω̂𝑎𝑏,

and
ω0̂

𝑎 = 𝜑𝑎θ
0̂ − 𝑐𝜛𝑎𝑏θ𝑏 +

1
𝑐
𝛾(𝑎𝑏)θ

𝑏 = −𝑐
(
−𝜑𝑎τ + 𝜛𝑎𝑏θ̂

𝑏
)
+ 1
𝑐
𝛾(𝑎𝑏)θ̂

𝑏
. (B.2.8)

It has zero torsion and the curvature reads

R 0̂
𝑎 =

[
1
𝑐

(
∇̂υ𝛾(𝑎𝑏) + 𝛾(𝑎𝑐)𝛾(𝑏𝑑)𝛿 𝑐𝑑

)
− 𝑐

(
𝜛 𝑐
𝑎 𝛾(𝑐𝑏) + 𝜛 𝑐

𝑏 𝛾(𝑐𝑎) + ∇̂(𝑎𝜑𝑏) + 𝜑𝑎𝜑𝑏
)

+ 𝑐3𝜛 𝑐
𝑎 𝜛𝑏𝑐

]
τ ∧ θ̂𝑏 + 1

2

[
1
𝑐

(
�̂�𝑏𝑎𝑐 − 𝜑𝑏𝛾(𝑎𝑐) + 𝜑𝑐𝛾(𝑎𝑏)

)
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− 𝑐
(
∇̂𝑎𝜛𝑏𝑐 + 𝜑𝑎𝜛𝑏𝑐 + 𝜑𝑏𝜛𝑎𝑐 − 𝜑𝑐𝜛𝑎𝑏

) ]
θ̂
𝑏 ∧ θ̂𝑐, (B.2.9a)

R𝑎𝑏 = R̂
𝑎
𝑏 + 𝛿

𝑎𝑑
[
𝜑𝑑𝛾(𝑐𝑏) − 𝜑𝑏𝛾(𝑐𝑑) + 𝑐2

(
∇̂𝑐𝜛𝑑𝑏 + 𝜑𝑐𝜛𝑑𝑏 + 𝜑𝑑𝜛𝑐𝑏 − 𝜑𝑏𝜛𝑐𝑑

)]
τ ∧ θ̂𝑐

+ 1
2
𝛿 𝑎𝑒

[
1
𝑐2

(
𝛾(𝑒𝑐)𝛾(𝑏𝑑) − 𝛾(𝑒𝑑)𝛾(𝑏𝑐)

)
− 𝛾(𝑒𝑐)𝜛𝑏𝑑 + 𝛾(𝑒𝑑)𝜛𝑏𝑐

− 𝛾(𝑏𝑑)𝜛𝑒𝑐 + 𝛾(𝑏𝑐)𝜛𝑒𝑑 + 𝑘2 (2𝜛𝑒𝑏𝜛𝑐𝑑 − 𝜛𝑒𝑑𝜛𝑏𝑐 + 𝜛𝑒𝑐𝜛𝑏𝑑)
]
θ̂
𝑐 ∧ θ̂𝑑 , (B.2.9b)

where we have used the Carrollian expressions available in (B.1.35), (B.1.36a) and (B.1.36b).

Remark Note that at Δ𝑖 = 0 in (B.2.4), one recovers the boundary frame of bulk Newman–Unti
anti-de Sitter gauge, and

dθ0̂ = 𝜑𝑎θ
𝑎 ∧ θ0̂, (B.2.10)

which resonates with the Carrollian relative (B.1.11). Hence the boundary vorticity vanishes
following Eq. (B.2.6).

We would like now to make the contact with the Carrollian descendants. The relativistic con-
gruence is 𝒖 = −𝑐θ0̂. Given the connection, we can determine its kinematical properties: the
expansion Θ, the acceleration 𝑎𝐴, the shear 𝜎𝐴𝐵 and the vorticity 𝜔𝐴𝐵 as defined in Eqs. (2.2.9). The
latter tensors are all transverse (and traceless for the shear) and have thus non-vanishing compon-
ents in spatial directions only (indices 𝑎, 𝑏, . . .). We find

Θ = 𝜃, 𝑎𝑎 = 𝑐
2𝜑𝑎, (B.2.11)

and
𝜎𝑎𝑏 = 𝜉𝑎𝑏 = 𝛾(𝑎𝑏) −

𝜃

𝑑
𝛿𝑎𝑏, 𝜔𝑎𝑏 = 𝑐

2𝜛𝑎𝑏. (B.2.12)

Anticipating the next Chapter we can furthermore determine the Weyl connection we will en-
counter (3.2.7) (where we must trade the 2 for 𝑑)

𝑨 = 𝜑𝑎θ̂
𝑎 + 𝜃

𝑑
τ, (B.2.13)

and its curvature (3.2.12):

F = dA =
1
2
Ω𝑎𝑏θ̂

𝑎 ∧ θ̂𝑏 + R̂𝑎τ ∧ θ̂
𝑎
, (B.2.14)

where Ω𝑎𝑏 and R̂𝑎 are defined in Eqs. (B.1.62) and (B.1.64a) — explicitly

R̂𝑎 = ∇̂υ𝜑𝑎 + 𝜉𝑎𝑏𝜑𝑏 −
1
𝑑
ê𝑎(𝜃). (B.2.15)

All the above quantities are relativistic, but expressed in terms of the Carrollian descendants de-
scribing the properties of the manifold reached at vanishing-𝑐.

We can finally convey the relativistic conservation equations ∇𝐴𝑇 𝐴𝐵 = 0 for an arbitrary
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energy–momentum tensor 𝑇 𝐴𝐵, stated in Carrollian language. Given the choice of congruence,
the transverse heat current and stress tensor have only spatial components: 𝑞𝑎 and 𝜏𝑎𝑏. We then
define as usual the longitudinal and transverse components of the conservation equations,

L = −𝑢𝐵∇𝐶𝑇
𝐶
𝐵 = −𝑐∇𝐶𝑇

𝐶

0̂ = −∇𝐶𝑇
𝐶
�̂�, T

𝑎 = 𝑒𝑎𝐵∇𝐶𝑇
𝐶𝐵 = ∇𝐶𝑇𝐶𝑎, (B.2.16)

and explicitly find

L = υ(𝜀) + 𝜃𝜀 +
(
∇̂𝑎 + 2𝜑𝑎

)
𝑞𝑎 +

(
𝜉𝑎𝑏 +

𝜃

𝑑
𝛿𝑎𝑏

) (
𝜏𝑎𝑏 + 𝑝𝛿 𝑎𝑏

)
, (B.2.17a)

T 𝑎 =

(
∇̂𝑏 + 𝜑𝑏

) (
𝜏𝑎𝑏 + 𝑝𝛿 𝑎𝑏

)
+ 𝜑𝑎𝜀 + 2𝑞𝑏𝜛𝑏𝑎 +

1
𝑐2

(
∇̂υ𝑞𝑎 +

𝑑 + 1
𝑑

𝜃𝑞𝑎 + 𝜉𝑎𝑏𝑞𝑏
)
. (B.2.17b)

In the conformal case, assuming thus 𝜀 = 𝑑𝑝 and 𝜏 𝑎
𝑎 = 0 and canonical conformal weights 𝑑 + 1 for

𝜀, 𝑞𝑎 and 𝜏𝑎𝑏 (we are in Cartan’ frame and the weights do not depend on the position of the indices),
these equations are recast as:

L = D̂υ𝜀 + D̂𝑎𝑞
𝑎 + 𝜉𝑎𝑏𝜏𝑎𝑏, (B.2.18a)

T 𝑎 =
1
𝑑
D̂ 𝑎𝜀 + D̂𝑏𝜏

𝑎𝑏 + 2𝑞𝑏𝜛𝑏𝑎 +
1
𝑐2

(
D̂υ𝑞

𝑎 + 𝜉𝑎𝑏𝑞𝑏
)
. (B.2.18b)

As discussed extensively in Refs. [53, 65], the outcome of the Carrollian limit depends on the be-
haviour of 𝜀, 𝑞𝑎 and 𝜏𝑎𝑏 with respect to 𝑐. The equations at hand will be conceivably multiplied,
leading to replicas. The same phenomenon occurs in the Galilean limit with the emergence of the
continuity equation out of the relativistic longitudinal equation, besides the energy equation.

Useful formulas

We close this appendix with some formulas that are useful when considering the zero-𝑐 limit. In
the following, we reduce the Riemannian Levi–Civita and Weyl covariant derivatives in terms of
the Carrollian connections introduced earlier.

Levi–Civita We will present the vector and the rank-two tensor

𝑽 = 𝑽 𝑨e𝑨 — 𝑉 𝑎 provide the components of a Carrollian vector and 𝑉�̂� = 𝑐𝑉0̂ = −𝑐𝑉 0̂ a
Carrollian scalar 

𝑐2∇0̂𝑉
0̂ = 𝑐υ

(
𝑉 0̂

)
+ 𝑐2𝜑𝑎𝑉

𝑎

𝑐∇0̂𝑉
𝑏 = ∇̂υ𝑉 𝑏 + 𝑐𝑉 0̂𝜑𝑏 + 𝑐2𝑉 𝑎𝜛 𝑏

𝑎

𝑐∇𝑎𝑉 0̂ = 𝑐ê𝑎
(
𝑉 0̂

)
+

(
𝜉𝑎𝑏 + 𝜃

𝑑
𝛿𝑎𝑏 + 𝑐2𝜛𝑎𝑏

)
𝑉 𝑏

∇𝑎𝑉 𝑏 = ∇̂𝑎𝑉 𝑏 + 1
𝑐

(
𝜉 𝑏
𝑎 + 𝜃

𝑑
𝛿 𝑏𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑉 0̂;

(B.2.19)

𝑻 = 𝑻𝑨𝑩e𝑨 ⊗ e𝑩 — 𝑇 𝑎𝑏 are farther interpreted as components of a Carrollian rank-two
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tensor, 𝑇 𝑎
�̂�

= 𝑐𝑇 𝑎

0̂
= −𝑐𝑇 0̂𝑎 and 𝑇 𝑎

�̂�
= 𝑐𝑇 𝑎

0̂
= −𝑐𝑇 𝑎0̂ those of Carrollian vectors, while

𝑇�̂��̂� = 𝑐
2𝑇0̂0̂ = 𝑐2𝑇 0̂0̂ gives a Carrollian scalar

𝑐3∇0̂𝑇
0̂0̂ = 𝑐2υ

(
𝑇 0̂0̂

)
+ 𝑐3𝜑𝑎

(
𝑇 𝑎0̂ + 𝑇 0̂𝑎

)
𝑐2∇0̂𝑇

𝑏0̂ = 𝑐∇̂υ𝑇 𝑏0̂ + 𝑐2𝜑𝑏𝑇 0̂0̂ + 𝑐2𝜑𝑎𝑇
𝑏𝑎 + 𝑐3𝜛 𝑏

𝑎 𝑇
𝑎0̂

𝑐∇0̂𝑇
𝑎𝑏 = ∇̂υ𝑇 𝑎𝑏 + 𝑐

(
𝜑𝑎𝑇 0̂𝑏 + 𝜑𝑏𝑇 𝑎0̂

)
+ 𝑐2 (

𝑇 𝑎𝑐𝜛 𝑏
𝑐 + 𝑇 𝑐𝑏𝜛 𝑎

𝑐

)
𝑐∇𝑎𝑇 𝑏0̂ = 𝑐∇̂𝑎𝑇 𝑏0̂ +

(
𝜉𝑎𝑐 + 𝜃

𝑑
𝛿𝑎𝑐 + 𝑐2𝜛𝑎𝑐

)
𝑇 𝑏𝑐 +

(
𝜉 𝑏
𝑎 + 𝜃

𝑑
𝛿 𝑏𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑇 0̂0̂

𝑐2∇𝑎𝑇 0̂0̂ = 𝑐2ê𝑎
(
𝑇 0̂0̂

)
+ 𝑐

(
𝜉𝑎𝑐 + 𝜃

𝑑
𝛿𝑎𝑐 + 𝑐2𝜛𝑎𝑐

)
𝑇 𝑐0̂ + 𝑐

(
𝜉𝑎𝑐 + 𝜃

𝑑
𝛿𝑎𝑐 + 𝑐2𝜛𝑎𝑐

)
𝑇 0̂𝑐

∇𝑎𝑇 𝑏𝑐 = ∇̂𝑎𝑇 𝑏𝑐 + 1
𝑐

(
𝜉 𝑏
𝑎 + 𝜃

𝑑
𝛿 𝑏𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑇 0̂𝑐 + 1

𝑐

(
𝜉 𝑐
𝑎 + 𝜃

𝑑
𝛿 𝑐𝑎 + 𝑐2𝜛 𝑐

𝑎

)
𝑇 𝑏0̂;

(B.2.20)

Weyl similarly

𝑽 = 𝑽 𝑨e𝑨 
𝑐2D0̂𝑉

0̂ = 𝑐D̂υ𝑉
0̂

𝑐D0̂𝑉
𝑏 = D̂υ𝑉

𝑏 + 𝑐2𝑉 𝑎𝜛 𝑏
𝑎

𝑐D𝑎𝑉
0̂ = 𝑐D̂𝑎𝑉

0̂ +
(
𝜉𝑎𝑏 + 𝑐2𝜛𝑎𝑏

)
𝑉 𝑏

D𝑎𝑉
𝑏 = D̂𝑎𝑉

𝑏 + 1
𝑐

(
𝜉 𝑏
𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑉 0̂;

(B.2.21)

𝑻 = 𝑻𝑨𝑩e𝑨 ⊗ e𝑩

𝑐3D0̂𝑇
0̂0̂ = D̂υ

(
𝑐2𝑇 0̂0̂

)
𝑐2D0̂𝑇

0̂𝑏 = D̂υ

(
𝑐𝑇 0̂𝑏

)
+ 𝑐3𝑇 0̂𝑎𝜛 𝑏

𝑎

𝑐D0̂𝑇
𝑎𝑏 = D̂υ𝑇

𝑎𝑏 + 𝑐2 (
𝑇 𝑐𝑏𝜛 𝑎

𝑐 + 𝑇 𝑎𝑐𝜛 𝑏
𝑐

)
𝑐2D𝑎𝑇

0̂0̂ = D̂𝑎

(
𝑐2𝑇 0̂0̂

)
+

(
𝜉𝑎𝑏 + 𝑐2𝜛𝑎𝑏

)
𝑐𝑇 𝑏0̂ +

(
𝜉𝑎𝑏 + 𝑐2𝜛𝑎𝑏

)
𝑐𝑇 0̂𝑏

𝑐D𝑎𝑇
0̂𝑏 = D̂𝑎

(
𝑐𝑇 0̂𝑏

)
+

(
𝜉𝑎𝑐 + 𝑐2𝜛𝑎𝑐

)
𝑇 𝑐𝑏 +

(
𝜉 𝑏
𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑇 0̂0̂

D𝑎𝑇
𝑏𝑐 = D̂𝑎𝑇

𝑏𝑐 + 1
𝑐

(
𝜉 𝑏
𝑎 + 𝑐2𝜛 𝑏

𝑎

)
𝑇 0̂𝑐 + 1

𝑐

(
𝜉 𝑐
𝑎 + 𝑐2𝜛 𝑐

𝑎

)
𝑇 𝑏0̂.

(B.2.22)
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Appendix C

Bridging the split and covariant
formalisms

In this Appendix we give some details about the covariant approach to Carrollian geometry and
we set up a dictionary with the splitted formalism.1 When dealing with the covariant formalism,
spatial indices are denoted by a Latin index 𝑖, 𝑗, ... and the temporal one by 0.

Weak Carroll structures

Let C be a smooth manifold. The Carrollian structure is denoted by (𝑔𝜇𝜈 , 𝑛𝜇) with 𝑔𝜇𝜈𝑛𝜈 = 0 and
𝑛𝜇 nowhere vanishing. Associated clock forms are one-forms 𝜏𝜇 obeying

𝜏𝜇𝑛
𝜇 = −1. (C.0.1)

from which one can define the transverse cometric 𝐺𝜇𝜈 as the unique contravariant symmetric
tensor solving

𝐺𝜇𝜈𝑔𝜈𝜌 = 𝛿
𝜇
𝜌 + 𝑛𝜇𝜏𝜌, (C.0.2a)

𝐺𝜇𝜈𝜏𝜈 = 0. (C.0.2b)

Remark Note that there exist infinitely many cometrics to 𝑔𝜇𝜈 , precisely because of its degeneracy.
However, once a clock form (hence an Ehresmann connection) is fixed, there is a unique
solution to (C.0.2a) and (C.0.2b).

These objects are not uniquely defined as the clock form is subjected to the following gauge
invariance

𝛿𝜆𝜃𝜇 = 𝜆𝜇, 𝛿𝜆𝐺
𝜇𝜈 = 𝑛𝜇𝜆𝜈 + 𝑛𝜈𝜆𝜇, (C.0.3)

1It is a pleasure to thank Adrien Fiorucci for numerous discussions about the covariant formalism and for author-
ising me to display for completeness some of the notions he will detail in his Lectures Notes [240].
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with covector parameter 𝜆𝜇 such that 𝑛𝜇𝜆𝜇 = 0 i.e. the shift acts only on the purely transverse
part of the clock form (i.e. the Ehresmann connection), like in the split formalism with 𝜆𝑖. Once a
clock form is given (the Carrollian structure is said ruled), horizontal spaces are spanned by vectors
𝑉 𝜇 obeying 𝜃𝜇𝑉 𝜇 = 0. The components of the related Ehresmann curvature d𝜽 are the Carrollian
acceleration 𝜑𝜇 and vorticity 𝜛𝜇𝜈 given by

𝜑𝜇 = L𝑛𝜃𝜇, 𝜛𝜇𝜈 = 𝜕[𝜇𝜃𝜈] + 𝜃 [𝜇𝜑𝜈] , (C.0.4)

with 𝜑𝜇𝑛𝜇 = 0 and 𝜛𝜇𝜈𝑛𝜇 = 𝜛𝜇𝜈𝑛
𝜈 = 0.2

The horizontal projector is defined by

Π𝜇𝜈 = 𝛿
𝜇
𝜈 + 𝑛𝜇𝜃𝜈 = 𝐺𝜇𝜌𝑔𝜌𝜈 . (C.0.5)

Finally the extrinsic curvature is defined as

𝐾𝜇𝜈 = −
1
2
L𝑛𝑔𝜇𝜈 . (C.0.6)

It is a transverse symmetric tensor and is shift-invariant. In the following Table we sketch the
dictionary between this covariant formalism and the time/space split one.

Covariant 𝑔𝜇𝜈 𝑛𝜇 𝜃𝜇 𝐺𝜇𝜈 𝜑𝜇 𝜛𝜇𝜈 Π
𝜇
𝜈 𝐾𝜇𝜈

Splitting 𝑎𝑖 𝑗 υ/Ω τ 𝑎𝑖 𝑗 𝜑𝑖 𝜛 𝑖 𝑗 𝛿 𝑖
𝑗

𝛾(𝑖 𝑗)
(C.0.7)

Strong Carroll strcutures

Connections are required to preserve the weak Carrollian structure (𝑔𝜇𝜈 , 𝑛𝜇) i.e. we ask

∇𝜌𝑔𝜇𝜈 = 0 and ∇𝜇𝑛𝜈 = 0 . (C.0.8)

It can be shown that the coefficients of the most general strong Carrollian connection are given by
the coefficients

Γ𝜌𝜇𝜈 = 𝛾
𝜌
𝜇𝜈 − 𝑛𝜌𝜕𝜇𝜃𝜈 − 𝐺𝜌𝛼𝐾𝜇𝛼 𝜃𝜈 + 𝑛𝜌𝑎(𝑛)𝜇𝜈 + 𝐺𝜌𝛼𝐴

(𝐺)
𝛼𝜇𝜈 (C.0.9)

where 𝑎(𝑛)𝜇𝜈 := ∇𝜇𝜃𝜈 is a tensor (non-necessarily symmetric) satisfying 𝑎(𝑛)𝜇𝜈 𝑛𝜈 = 0 and 𝐴(𝐺)𝛼𝜇𝜈 satisfies

𝑛𝛼𝐴
(𝐺)
𝛼𝜇𝜈 = 0, 𝐴

(𝐺)
𝛼𝜇𝜈𝑛

𝜈 = 0, 𝐴
(𝐺)
𝛼(𝜇𝜈) = 𝐴

(𝐺)
𝜇[𝜈𝛼] + 𝐴

(𝐺)
𝜈[𝜇𝛼] . (C.0.10)

Remark If ∇ is a solution of (C.0.8), one can derive from (C.0.6) the following identity:

𝐾𝜇𝜈 = 𝐵(𝜇𝜈)𝛼𝑛
𝛼 , 𝐵𝜇𝜈𝛼 ≡ 𝑔𝜇𝛽𝑇 𝛽 𝜈𝛼 , (C.0.11)

where 𝑇 𝜌𝜇𝜈 ≡ 2Γ𝜌 [𝜇𝜈] is the torsion of the connection ∇ (since the indices 𝜇, 𝜈, 𝜌. . . refer to a
2Coherent with the splitted formulae having only spatial legs 𝜑𝑖 and 𝜛 𝑖.
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coordinate basis). Hence there is always a unavoidable part of torsion related to the extrinsic
curvature 𝐾𝜇𝜈 . We recover in covariant formalism the result of Theorem (1.0.3) given that
𝛾(𝑖 𝑗) ⇔ 𝐾𝜇𝜈 .

On the other hand the most general torsionfree connection reads, when 𝐾𝜇𝜈 = 0,

Γ𝜌𝜇𝜈 = 𝛾
𝜌
𝜇𝜈 − 𝑛𝜌𝜕(𝜇𝜃𝜈) − 𝑛𝜌𝜃(𝜇𝜑𝜈) (C.0.12)

where 𝛾 𝜌 𝜇𝜈 =
1
2𝐺

𝜌𝜎 (𝜕𝜇𝑔𝜎 𝜈 + 𝜕𝜈𝑔𝜎𝜇 − 𝜕𝜎 𝑔𝜇𝜈) are the Carroll Christoffel symbols.

Remark It turns out that the requirements (C.0.8) do not fix uniquely the Carrollian connection,
even with stronger (and simplifying) hypotheses such as the absence of torsion. Indeed, con-
sider ∇ and ∇′, two symmetric (i.e. torsion-free) connections solving (C.0.8). For any one-
form 𝜶, one has

(∇′𝜇 − ∇𝜇)𝛼𝜈 = ΔΓ𝜌𝜇𝜈𝛼𝜌, ΔΓ𝜌𝜇𝜈 = ΔΓ𝜌 (𝜇𝜈) . (C.0.13)

where ΔΓ𝜌𝜇𝜈 , being the difference of two connections, is a tensor. By virtue of the (C.0.8),
any contraction like ΔΓ𝜌𝜇𝜈𝑔𝜌𝜎 must vanish:3 therefore, one can write ΔΓ𝜌𝜇𝜈 = 𝑛𝜌Σ𝜇𝜈 for some
symmetric tensor Σ𝜇𝜈 . Given a clock form 𝜃𝜇, because of (C.0.1), one has ∇𝜇(𝜃𝜈𝑛𝜈) = 0 =

∇′𝜇(𝜃𝜈𝑛𝜈) which translates into(
∇′𝜇 − ∇𝜇

)
(𝜃𝜈𝑛𝜈) = 𝑛𝜈ΔΓ𝜌𝜇𝜈 𝜃𝜌 = 𝑛𝜇𝑛𝜌Σ𝜇𝜈 𝜃𝜌 = −𝑛𝜇Σ𝜇𝜈 = 0 (C.0.14)

using (C.0.8) and (C.0.13). As a result, two torsion-free metric-compatible Carrollian connec-
tions ∇ and ∇′ may differ by some ambiguous terms aligned with the field of observers and
involving a traverse symmetric tensor, i.e.

Γ′𝜇𝜈𝜌 = Γ𝜇𝜈𝜌 + 𝑛𝜇Σ𝜈𝜌, Σ𝜇𝜈𝑛
𝜈 = 0, (C.0.15)

which is the covariant version of Proposition 1.0.4.Adding the latter ambiguity in (C.0.12) we
get

Γ𝜌𝜇𝜈 = 𝛾
𝜌
𝜇𝜈 − 𝑛𝜌𝜕(𝜇𝜃𝜈) − 𝑛𝜌𝜃(𝜇𝜑𝜈) + 𝑛𝜌Σ𝜇𝜈 . (C.0.16)

Using (1.0.4) it is then easy to relate Σ𝜇𝜈 with 𝛽(𝑖 𝑗) of the splitting formalism.

Mapping the ambiguities

Wegoback to (C.0.9)wherewe see thatΣ𝜇𝜈 is contained into 𝑎
(𝑛)
𝜇𝜈 . Let’s count the degrees of freedom.

In 𝑎(𝑛)𝜇𝜈 = ∇𝜇𝜃𝜈 there are4 𝑑2 + 𝑑 and in 𝐴(𝐺)𝛼𝜇𝜈 there are, given (C.0.10),
𝑑(𝑑2−1)

2 . Furthermore the total

3Use Leibniz rule on 𝑔𝜇𝜈 given (C.0.13).
4Being a rank-2 tensor transverse on one index.
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torsion of the most general Carrollian connection (C.0.9) reads

𝑇 𝜌𝜇𝜈 = 2Γ𝜌 [𝜇𝜈] = 𝑇
𝜌
𝜇𝜈 + 2𝑛𝜌𝑎(𝑛)[𝜇𝜈] − 2𝐺𝜌𝛼𝐴

(𝐺)
𝛼[𝜇𝜈] , (C.0.17)

so we are tempted to make the following identifications (up to multiplicative factors)

Covariant 𝑎
(𝑛)
𝑖 𝑗

𝑎
(𝑛)
0𝑖 𝐴

(𝐺)
𝑖0𝑗 𝐴

(𝐺)
𝑖𝑘𝑗

Splitting 𝛽𝑖 𝑗 𝛿𝑖 𝛾 [𝑖 𝑗] 𝛾𝑘[𝑖 𝑗]
(C.0.18)

which show that the time/space split formalism also allows to recover all the well-known ambigu-
ities first discovered in the covariant one. Note that ∇ acts non trivially on the cometric

∇𝜇𝐺𝜈𝜌 = 2𝑛(𝜇𝐺𝜌)𝛼∇𝜇𝜃𝛼 (C.0.19)

hence its value crucially depends on the ambiguity 𝑎(𝑛)𝜇𝜈 .

Projected connections and splitted connection ∇̂

Even though the use of covariant notations blurs the separation between time and space, the Car-
rollian manifold can still be seen as a 1-dimensional fiber bundle over a base space. On may then
wonder what happen to the connection when projected either along the fibers or onto the base
space.

Using the projector (C.0.5) one defines the spatially projected connection (aka horizontal connec-
tion) as

∇̃𝜇𝑇 𝜈 𝜌 ≡ Π𝛼𝜇Π
𝜈
𝛽Π

𝛾
𝜌∇𝛼𝑇 𝛽𝛾 (C.0.20)

and the vertical connection as
∇⊥𝑇 𝜈 𝜌 = 𝑛𝛼Π𝜈 𝛽Π𝛾 𝜌∇𝛼𝑇 𝛽𝛾 . (C.0.21)

The commutators on scalars are given by[
∇̃𝜇, ∇̃𝜈

]
𝑓 = 2𝜛𝜇𝜈𝑛𝛼𝜕𝛼𝑓 (C.0.22a)[

∇⊥, ∇̃𝜇
]
𝑓 = 𝐾𝜇

𝜈∇̂𝜈𝑓 + 𝜑𝜇∇⊥𝑓 . (C.0.22b)

Hence using the dictionary (C.0.18) it can be easily shown (see [240]) that (C.0.20) reproduces our
splitted ∇̂𝑖 while (C.0.21) is exactly 1

Ω �̂�𝑡 .
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Energy momentum tensor

In the covariant formalism the effective action on the Carrollian structure is a functional of the
degenerate metric and the Carrollian vector 𝑆 = 𝑆 [𝑔𝜇𝜈 , 𝑛𝜇]. The conjugate momenta are defined as

𝑇
(𝑛)
𝜇 = − 1

Ω𝑉

𝛿𝑆

𝛿𝑛𝜇
and 𝑇

(𝐺)
𝜇𝜈 = − 2

Ω𝑉

𝛿𝑆

𝛿𝐺𝜇𝜈
, (C.0.23)

and the covariant Carrollian energy-momentum tensor is defined as a combination of the two [69]

𝑇 𝜇𝜈 ≡ −𝑛𝜇𝑇 (𝑛)𝜈 − 𝐺𝜇𝜌𝑇
(𝐺)
𝜈𝜌 . (C.0.24)

Remark The Carrollian volume element is defined as the strictly positive scalar density of weight
one Ω𝑉 solution of [54]

G𝜇𝜈 = Ω2
𝑉𝑛

𝜇𝑛𝜈 , (C.0.25)

where
G𝜇𝜈 = 1

(𝑑 − 1)! 𝜖
𝜇𝛼1...𝛼𝑑−1𝜖𝜈𝛽1...𝛽𝑑−1 𝑔𝛼1𝛽1 . . . 𝑔𝛼𝑑−1𝛽𝑑−1 (C.0.26)

represents the matrix of minors of 𝑔𝜇𝜈 (𝜖𝜇1...𝜇𝑑 is the numerically invariant Levi-Civita sym-
bol in 𝑑 dimensions), which is correctly a rank-one symmetric matrix obeying G𝜇𝜈𝑔𝜈𝜌 = 0
because of the degeneracy of the metric. Under the gauge transformation (C.0.3), one has
𝛿𝜆Ω𝑉 = 0. One can show that

Ω2
𝑉 = 𝜃𝜇𝜃𝜈G𝜇𝜈 = det(𝑀𝜇𝜈), 𝑀𝜇𝜈 ≡ 𝜃𝜇𝜃𝜈 + 𝑔𝜇𝜈 . (C.0.27)

General diffeomorphism invariance of the action gives on-shell

𝛿𝜉𝑆 = −
∫

M
d𝑑𝑥Ω𝑉

(
𝑇
(𝑛)
𝜇 𝛿𝜉𝑛

𝜇 + 1
2
𝑇
(𝐺)
𝜇𝜈 𝛿𝜉𝐺

𝜇𝜈
)
. (C.0.28)

i.e. after having discarded the boundary terms [69]

𝜕𝜇
(
Ω𝑉𝑇

𝜇
𝜈

)
= Ω𝑉

(
𝑇
(𝑛)
𝜇 𝜕𝜈𝑛

𝜇 + 1
2
𝑇
(𝐺)
𝜇𝜌 𝜕𝜈𝐺

𝜇𝜌

)
, (C.0.29)

which is the Carrollian avatar of the formula ∇𝜇𝑇 𝜇𝜈 = 0 in Lorentzian theories. Components
of the covariant energy-momentum tensor can be identified with the splitted momenta (1.3.16), as
displayed in the next Table.

Splitted Π𝑖
𝑗

Π𝑖 𝑃𝑖 Π

Covariant 𝑇 𝑖
𝑗
𝑇 𝑖0 𝑇0

𝑖
𝑇0

0
(C.0.30)

This concludes our dictionary between the covariant and the splitted formalisms. The inter-
ested reader is advised to have a look at the upcoming Lectures Notes [240] for more details.
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Appendix D

A few words on Newton-Cartan
geometries

This appendix is aimed at being the Galilean counterpart of Sec. 1.1, 1.2 and 1.3.2. We shall give the
very basics definitions of a weak and strong Galilean (or Newton-Cartan) structures, highlighting
the major differences with respect to the Carrollian ones, and we end up showing the conserva-
tion equations arising from invariance of the action. We restrict ourselves here to study the split
frame whereas everything can also be performed in Cartan’s orthonormal frame. This Appendix is
inspired by [53] and [65].

D.1 Weak Newton-Cartan structures

A weak Newton-Cartan structure is a (𝑑 + 1)-dimensional manifoldM = ℝ × S endowed with a
degenerate cometric whose kernel is generated by a nowhere-vanishing one-form τ dubbed the
clock form. It is always convenient to take a coordinate system (𝑡,x) such that the clock-form is
proportional to the coordinate differential d𝑡 i.e. such that it exists a functionΩ = Ω(𝑡,x) such that

τ = Ωd𝑡, (D.1.1)

and such that x are local coordinates on S. Actually, Newton-Cartan structures imposes that a
notion of absolute time can be define at every points of the manifoldM. This is possible if and only
if Ω is space-independent because then

𝜃 =

∫
τ =

∫
Ω(𝑡)d𝑡 (D.1.2)
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defines and absolute time.1 In the (𝑡,x) coordinates the degenerate cometric takes the following
form

𝝏2
s = 𝑎

𝑖 𝑗(𝑡,x)𝜕𝑖𝜕𝑗. (D.1.3)

Like in the Carrollian case there exist a dual of the clock-form, the field of observers whose form is

υ =
1
Ω

(
𝜕𝑡 + 𝑤𝑖𝜕𝑖

)
(D.1.4)

where𝑤𝑖 is an additional degree of freedomwithwhich the triple (𝑎𝑖 𝑗,Ω, 𝑤𝑖) forms a ruledNewton-
Cartan structure.

Remark In the ruled case the subspace S plays the role of a 𝑑-dimensional Newtonian spacetime
endowedwith a Riemannianmetric 𝑎𝑖 𝑗(𝑡,x) and observed from a framewith respect towhich
the locally inertial frame as velocity w = 𝑤𝑖𝜕𝑖.

One has the normalisation condition

τ(υ) = 1. (D.1.5)

Like in the Carrollian instance (D.1.5) does not uniquely fix the form of the dual variable, here the
field of observers. Hence there also exist a Galilean shift symmetry, also dubbed Galilean boosts in
the literature, that acts on 𝑤𝑖 like

𝛿𝜆𝑤
𝑖 = Ω𝜆𝑖 (D.1.6)

while preserving (D.1.5). The presence of Ω is conventionnal and added for the Galilean covariant
bases to have a tractable transformation law.

The frame at hand is adapted for the reduction of tensors under Galilean diffeomorphisms, the
ones leaving time absolute

𝑡′ = 𝑡′(𝑡) and x′ = x′(𝑡, x). (D.1.7)

The associated Jacobians are

𝐽 (𝑡) = 𝜕𝑡′

𝜕𝑡
, 𝑗𝑖(𝑡, x) = 𝜕𝑥′𝑖

𝜕𝑡
, 𝐽 𝑖𝑗(𝑡,x) =

𝜕𝑥′𝑖

𝜕𝑥 𝑗
. (D.1.8)

togetherwith the transformation laws of the ruled structure, obtained by asking the co-line element
and the clock form to be invariant under (D.1.7)

Ω′ =
Ω

𝐽
, 𝑎′𝑖 𝑗 = ( 𝐽−1) 𝑘𝑖 ( 𝐽−1) 𝑙𝑗 𝑎𝑘𝑙 , 𝑤

′𝑘 =
1
𝐽

(
𝐽𝑘𝑖𝑤

𝑖 + 𝑗𝑘
)
. (D.1.9)

The covariant vector and form basis are in this case

B = {�̂�𝐴} = {υ, 𝜕𝑖} and B∗ = {θ̂𝐴} = {τ, d̂𝑥
𝑖
} (D.1.10)

1It is then called a torsionlessNewton-Cartan spacetime.
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with d̂𝑥
𝑖
= d𝑥𝑖 − 𝑤𝑖d𝑡. In these bases the indices shall be denoted by (𝑡, 𝑖).

Remark Given a vector 𝝃 = 𝜉 𝑡𝜕𝑡 + 𝜉 𝑖𝜕𝑖. In the bases (D.1.10) its components reads

𝝃 := 𝜉 𝑡υ + 𝜉 𝑖𝜕𝑖 = Ω𝜉 𝑡υ + (𝜉 𝑖 − 𝜉 𝑡𝑤𝑖)𝜕𝑖. (D.1.11)

Let’s now consider a form B = 𝐵𝑡d𝑡 + 𝐵𝑖d𝑥𝑖. In the basis (D.1.10) we get

B := 𝐵𝑡τ + 𝐵𝑖d̂𝑥
𝑖
=

1
Ω

(
𝐵𝑡 + 𝑤𝑖𝐵𝑖

)
τ + 𝐵𝑖d̂𝑥

𝑖
(D.1.12)

with 𝐵𝑡 and 𝐵𝑖 respectively Galilean scalar and covector. In the following, we will have the
tendency to drop the hat on top of the spatial indices as the components are the same for
one-forms, so one should be careful.

At the level of the shift symmetry the bases at hand transform as

𝛿𝜆υ = 𝜆𝑖𝜕𝑖 , 𝛿𝜆𝜕𝑖 = 0 𝛿𝜆τ = 0 and 𝛿𝜆d̂𝑥
𝑖
= −𝜆𝑖τ. (D.1.13)

The form basis carries non-holonomy coefficients

dτ = 0 and d̂𝑥
𝑖
=

1
Ω
𝜕𝑗𝑤

𝑖τ ∧ d̂𝑥
𝑗

(D.1.14)

i.e. using (A.0.3)

�̂�𝑖
𝑡 𝑗
= − 1

Ω
𝜕𝑗𝑤

𝑖 := −𝐴 𝑖
𝑗 (D.1.15)

with 𝐴 𝑖
𝑗
theGalilean frame acceleration. Note that (D.1.14) is equivalent to the non commutativity of

the basis vectors
[υ, 𝜕𝑖] = −𝐴 𝑖

𝑗 𝜕𝑗
[
�̂�𝑖, �̂�𝑗

]
= 0. (D.1.16)

𝐴 𝑖
𝑗
is a genuine Galilean tensor whose transformation under Galilean shift reads

𝛿𝜆𝐴
𝑖
𝑗 = 𝜕𝑗𝜆

𝑖. (D.1.17)

Remark Such intrinsic Newton-Cartan spacetimes can be obtained via the 𝑐 → +∞ limit of a
relativistic metric written in the Zermelo frame (dual to the Randers-Papapatrou frame used
in the Carrollian instance, see Sec. 2.1.1)

d𝑠2 = −𝑐2Ω2d𝑡2 + 𝑎𝑖 𝑗
(
d𝑥𝑖 − 𝑤𝑖d𝑡

) (
d𝑥 𝑗 − 𝑤 𝑗d𝑡

)
(D.1.18)

together with the inverse metric

𝝏2
s = −

1
𝑐2Ω2

(
𝜕𝑡 + 𝑤𝑖𝜕𝑖

)
+ 𝑎𝑖 𝑗𝜕𝑖𝜕𝑗. (D.1.19)
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Remember that first the 𝑐-dependence is explicit and second that here Ω = Ω(𝑡) only, which
makes (D.1.18) slightly different from the well-known ADM parametrisation.

Remark The frame at hand is not the most general one. Asking the clock form to be aligned only
along the temporal direction is a restriction that allows to break general covariance down
to Galilean covariance, which is the one we get starting from a Zermelo background. In the
most general case the clock form reads

τ = Ω(𝑡)d𝑡 − 𝑏𝑖(𝑡,x)d𝑥𝑖 (D.1.20)

with a new degree of freedom 𝑏𝑖, Galilean covector.

D.2 Newton-Cartan’s connections

In this Section we construct the most general Galilean strong connection, that is a metric and clock
form-compatible connection.

Generalities

Very generally, in the bases at hand, one can decompose ∇̄ in such a way

∇̄υυ = Γ̂𝑡
𝑡𝑡
υ + Γ̂𝑖

𝑡𝑡
𝜕𝑖

∇̄υ𝜕𝑖 = Γ̂𝑡
𝑡𝑖
υ + Γ̂ 𝑗

𝑡𝑖
𝜕𝑗

∇̄𝜕𝑖υ = Γ̂𝑡
𝑖𝑡
υ + Γ̂ 𝑗

𝑖𝑡
𝜕𝑗

∇̄𝜕𝑖 �̂�𝑗 = Γ̂𝑡𝑖 𝑗 υ + Γ̂𝑘𝑖𝑗 𝜕𝑘

∇̄υτ = −Γ̂𝑡
𝑡𝑡
τ − Γ̂𝑡

𝑡𝑖
d̂𝑥

𝑖

∇̄υd̂𝑥
𝑖
= −Γ̂𝑖

𝑡𝑡
τ − Γ̂𝑖

𝑡 𝑗
d̂𝑥

𝑗

∇̄�̂�𝑖τ = −Γ̂𝑡
𝑖𝑡
τ − Γ̂𝑡𝑖 𝑗 d̂𝑥

𝑗

∇̄�̂�𝑖 d̂𝑥
𝑗
= −Γ̂ 𝑗

𝑖𝑡
τ − Γ̂ 𝑗

𝑖𝑘
d̂𝑥

𝑘
.

(D.2.1)

We shall from now on give a different name to all connection coefficients i.e.

∇̄υυ = 𝛾 υ + 𝜌𝑖 𝜕𝑖
∇̄υ𝜕𝑖 = 𝛿𝑖 υ + 𝛾 𝑗𝑖 𝜕𝑗
∇̄𝜕𝑖υ = �̂�𝑖 υ + �̂� 𝑗𝑖 𝜕𝑗
∇̄𝜕𝑖𝜕𝑗 = 𝛽𝑖 𝑗 υ + 𝛾𝑘𝑖𝑗 𝜕𝑘

∇̄υτ = −𝛾 τ − 𝛿𝑖 d̂𝑥
𝑖

∇̄υd̂𝑥
𝑖
= −𝜌𝑖 τ − 𝛾 𝑖𝑗 d̂𝑥

𝑗

∇̄�̂�𝑖τ = −�̂�𝑖 τ − 𝛽𝑖 𝑗 d̂𝑥
𝑗

∇̄�̂�𝑖 d̂𝑥
𝑗
= −�̂� 𝑗

𝑖
τ − 𝛾 𝑗

𝑖𝑘
d̂𝑥

𝑘
.

(D.2.2)

Hence we have the following result2

Proposition D.0.1. The most general connection on can put on a Carrollian structure is made of
the following (𝑑 + 1)3 degrees of freedom, 𝛾 , 𝜌𝑖, 𝛿𝑖, �̂�𝑖, 𝛾

𝑗

𝑖
, �̂� 𝑗

𝑖
, 𝛽𝑖 𝑗 and 𝛾𝑘𝑖𝑗.

2This is just a time/space splitting of the usual (𝑑 + 1)3 degrees of freedom of a unconstrained connection.
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All these degrees of freedom are genuine Galilean tensors, as their index structure suggests it,
except for 𝛾 𝑖

𝑗
and 𝛾𝑘

𝑖𝑗
which are temporal and spatial Galelian connections transforming as

𝛾
′ 𝑖
𝑗 = 𝐽 𝑖𝑘( 𝐽

−1) 𝑙𝑗 𝛾𝑘𝑙 − ( 𝐽
−1) 𝑘𝑗 υ

(
𝐽 𝑖𝑘

)
︸ ︷︷ ︸ (D.2.3)

𝛾
′𝑘
𝑖𝑗 = 𝐽𝑘𝑛( 𝐽−1) 𝑙𝑖 ( 𝐽−1) 𝑚𝑗 𝛾𝑛𝑙𝑚 + 𝐽

𝑘
𝑛( 𝐽−1) 𝑙𝑖 𝜕𝑙

(
( 𝐽−1) 𝑛𝑗

)
, (D.2.4)

where the second term in the transformation of 𝛾 𝑖
𝑗
vanishes for Galilean diffeomorphism, rendering

the latter tensorial.

Remark As genuineGalilean tensors, 𝛾 , 𝛿𝑖, �̂�𝑖, 𝜌𝑖, �̂�𝑖 𝑗 and 𝛽𝑖 𝑗 can be consistently set equal toGalilean
tensors of the same rank. Otherwise one would break Galilean diffeomorphism covariance.
It is also consistent to set them to zero, and we shall pick later a particular connection for
which it happens.

Applying the samemethod on (D.2.2), using (D.1.13) we get the transformations of the coefficients
under shift symmetry

𝛿𝜆𝛾 = 𝜆𝑖 �̂�𝑖 + 𝛿𝑖𝜆𝑖 (D.2.5a)

𝛿𝜆𝜌
𝑖 = −𝜆𝑖𝛾 − 𝜆 𝑗 �̂� 𝑖𝑗 + 𝛾 𝑖𝑗𝜆 𝑗 + υ(𝜆𝑖) (D.2.5b)

𝛿𝜆𝛿𝑖 = 𝜆𝑖𝛽𝑖 𝑗 (D.2.5c)

𝛿𝜆 �̂�𝑖 = 𝜆 𝑗𝛽 𝑗𝑖 (D.2.5d)

𝛿𝜆𝛾
𝑗

𝑖
= −𝜆𝑖𝛿 𝑗 − 𝜆𝑘𝛾 𝑖𝑘𝑗 (D.2.5e)

𝛿𝜆 �̂�
𝑗

𝑖
= −𝜆 𝑗 �̂�𝑖 + 𝛾 𝑗𝑖𝑘𝜆

𝑘 + 𝜕𝑖𝜆 𝑗 (D.2.5f)

𝛿𝜆𝛽𝑖 𝑗 = 0 (D.2.5g)

𝛿𝜆𝛾
𝑘
𝑖𝑗 = −𝜆 𝑗𝛽𝑖𝑘 (D.2.5h)

showing that, as found in the last Chapter, 𝜌𝑖 and �̂� 𝑖
𝑗
are the Galilean boosts temporal and spatial

connections. On the other hand, as 𝛿𝑖 and 𝛽𝑖 𝑗 encodes Carrollian boosts, they can be completely
discarded and this will be consistent with the transformations laws (D.2.5c) and (D.2.5g).3 One could
then conclude that they do not play any role in Galilean connections.

The torsion one-form of such a connection reads

T̂ 𝑡 = 1
2
(𝛿𝑖 − �̂�𝑖)τ ∧ d̂𝑥

𝑖
+ 𝛽[𝑖 𝑗] d̂𝑥

𝑖
∧ d̂𝑥

𝑗
(D.2.6a)

T̂ 𝑖 =
1
2

(
𝛾 𝑖𝑗 − �̂� 𝑖𝑗 + 𝐴 𝑖

𝑗

)
τ ∧ d̂𝑥

𝑗
+ 𝛾 𝑖[𝑘𝑗] d̂𝑥

𝑘
∧ d̂𝑥

𝑗
. (D.2.6b)

3Indeed 𝛽𝑖 𝑗 being both a Galilean tensor and a boost invariant quantity, it can be consistently set to zero, which
makes 𝛿𝑖 also both a tensor and a boost invariant quantity, hence set to zero also.
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This implies the following commutation rules on a scalar[
1
Ω
�̄�𝑡 , ∇̄𝑖

]
𝑓 = (�̂�𝑖 − 𝛿𝑖)υ (𝑓 ) +

(
�̂�
𝑗

𝑖
− 𝛾 𝑗

𝑖

)
𝜕𝑗 (𝑓 ) (D.2.7a)[

∇̄𝑖, ∇̄𝑗
]
𝑓 = −2𝛽[𝑖 𝑗]υ (𝑓 ) − 2𝛾𝑘[𝑖 𝑗]𝜕𝑘 (𝑓 ) . (D.2.7b)

We see that it is possible to completely cancel the torsion with the following requirements
(which are legitimate as these are tensorial equalities)

𝛿𝑖 = 𝛼𝑖 , 𝛽[𝑖 𝑗] = 0 , 𝛾 𝑖𝑗 + 𝐴 𝑖
𝑗 = �̂� 𝑖𝑗 , 𝛾𝑘[𝑖 𝑗] = 0. (D.2.8)

Note that the symmetric part of 𝛽(𝑖 𝑗) is not constrained by these requirements, hence it is a genu-
ine ambiguity of the connection. One could then compute the Riemann tensor and study further
the properties of the completely unconstrained connection, but to keep things short we shall now
construct from (D.2.2) a strong Galilean connection.

Strong connections

Like in the Carrollian case, we ask the fundamental doublet (τ, 𝑎𝑖 𝑗) to be left invariant by a strong
connection. Asking the clock form to be preserved yields

𝛾 = 0 , �̂�𝑖 = 0 , 𝛿𝑖 = 0 and 𝛽𝑖 𝑗 = 0. (D.2.9)

Hence we have that a clock-form compatible Galilean connection is described in terms of 𝜌𝑖, �̂� 𝑖
𝑗
, 𝛾 𝑖

𝑗

and 𝛾𝑘
𝑖𝑗
.

Imposing the cometric compatibility leads to

𝛾 (𝑖 𝑗) = − 1
2Ω

𝜕𝑡𝑎
𝑖 𝑗 and 𝛾 𝑖𝑗𝑘 =

1
2
𝑎𝑖𝑙

(
𝜕𝑗𝑎𝑙𝑘 + 𝜕𝑘𝑎𝑙 𝑗 − 𝜕𝑙𝑎𝑗𝑘

)
(D.2.10)

while 𝛾 [𝑖 𝑗] and 𝛾 𝑖
𝑗𝑘
are not fixed. Hence the result is

Proposition D.0.2. The most general strong Galilean connection leaves free 𝜌𝑖, �̂� 𝑖
𝑗
, 𝛾 [𝑖 𝑗] and 𝛾 𝑖

𝑗𝑘

i.e. 𝑑(𝑑+1)2
2 degrees of freedom.

To further constrain this connection one can cancel the purely spatial part of the torsion that
is set 𝛾 𝑖[ 𝑗𝑘] = 0, giving rise to a Levi-Civita connection on the Riemannian subspace S. However,
because of (D.2.10) which relates 𝛾 (𝑖 𝑗) to the geometry and due to (D.2.6b), one sees that it is also
imposssible in the Galilean framework to built a torsion-free strong connection.
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Our Galilean connection

The connection we are using is the one that arises from the 𝑐 → +∞ limit of the Levi-Civita
connection in Zermelo frame. As we are still separating time from space, let’s start with the spatial
part of the connection

𝛾 𝑖𝑗𝑘 =
𝑎𝑖𝑙

2
(
𝜕𝑗𝑎𝑙𝑘 + 𝜕𝑘𝑎𝑙 𝑗 − 𝜕𝑙𝑎𝑗𝑘

)
. (D.2.11)

The associated covariant derivative is spelled ∇̂𝑖, as opposed to ∇𝑖, the spatial component of the
Levi–Civita covariant derivative ∇𝜇 defined on the ascendent pseudo-Riemannian spacetime. This
connection is torsionless

𝑡𝑘𝑖𝑗 = 2𝛾𝑘[𝑖 𝑗] = 0, (D.2.12)

and metric-compatible
∇̂𝑖𝑎𝑗𝑘 = 0 (D.2.13)

as being just a sub-connection of ∇̄ defined in the last paragraph. Its Riemann, Ricci and scalar
curvature tensors are defined as usual 𝑑-dimensional Levi–Civita curvature tensors would be onS.
Note however their independence with respect to time[

∇̂𝑘, ∇̂𝑙
]
𝑉 𝑖 =

(
𝜕𝑘𝛾

𝑖
𝑙 𝑗 − 𝜕𝑙𝛾

𝑖
𝑘𝑗 + 𝛾

𝑖
𝑘𝑚𝛾

𝑚
𝑙𝑗 − 𝛾

𝑖
𝑙𝑚𝛾

𝑚
𝑘𝑗

)
𝑉 𝑗 = 𝑟𝑖𝑗𝑘𝑙𝑉

𝑗. (D.2.14)

For the temporal part of the connection we need an observation. Galilean tensors can be con-
structed from an object which is not a vector but rather transforming like a connection,

𝐴′𝑘 =
1
𝐽

(
𝐽𝑘𝑖 𝐴

𝑖 + 𝑗𝑘
)
. (D.2.15)

Indeed
1
Ω
∇̂(𝑘𝐴𝑙) − 1

2Ω
𝜕𝑡𝑎

𝑘𝑙 = − 1
2Ω

(
LA𝑎

𝑘𝑙 + 𝜕𝑡𝑎𝑘𝑙
)

(D.2.16)

(LA is the Lie derivative along A = 𝐴𝑖𝜕𝑖) and

1
Ω
∇̂(𝑘𝐴𝑙) +

1
2Ω

𝜕𝑡𝑎𝑘𝑙 =
1

2Ω
(LA𝑎𝑘𝑙 + 𝜕𝑡𝑎𝑘𝑙) (D.2.17)

have tensorial transformation rules, and their trace is a scalar.4 We can apply this to w and define

𝛾𝑤𝑖𝑗 =
1
Ω

(
∇̂(𝑖𝑤𝑗) +

1
2
𝜕𝑡𝑎𝑖 𝑗

)
. (D.2.18)

This quantity is purely geometrical (and emerges in the large-𝑐 expansion of the relativistic-spacetime
Levi–Civita connection in Zermelo frame). From this tensor, one defines their traceless relatives

4Observe that neither 1
Ω𝜕𝑡 nor

1
ΩLA acting on Galilean tensors give separately tensors.
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and the traces: the geometric Galilean shear

𝜉𝑤𝑖𝑗 =
1
Ω

(
∇̂(𝑖𝑤𝑗) +

1
2
𝜕𝑡𝑎𝑖 𝑗

)
− 1
𝑑
𝑎𝑖 𝑗𝜃

𝑤, (D.2.19)

and the geometric Galilean expansion

𝜃𝑤 =
1
Ω

(
𝜕𝑡 ln
√
𝑎 + ∇̂𝑖𝑤𝑖

)
. (D.2.20)

The temporal, metric-compatible covariant derivative �̂� (again emerging in the Galilean expansion
of the spacetime Levi–Civita covariant derivative in the time direction of a Zermelo frame) is then
built upon 𝛾𝑤

𝑖𝑗
. For a scalar function Φ it is simply

1
Ω

D̂Φ
d𝑡

= e𝑡 (Φ) =
1
Ω
𝜕𝑡Φ +

𝑤 𝑗

Ω
𝜕𝑗Φ, (D.2.21)

whereas for vectors one finds5

1
Ω

D̂𝑉 𝑖

d𝑡
=

1
Ω
𝜕𝑡𝑉

𝑖 + 𝑤
𝑗

Ω
𝜕𝑗𝑉

𝑖 − 𝑉 𝑗𝜕𝑗
𝑤𝑖

Ω
+ 𝛾𝑤𝑖𝑗𝑉 𝑗

=
1
Ω

(
𝜕𝑡𝑉

𝑖 +Lw𝑉
𝑖
)
+ 𝛾𝑤𝑖𝑗𝑉 𝑗. (D.2.22)

More generally, the Leibniz rule leads to

1
Ω

D̂𝐾 𝑖...
𝑗...

d𝑡
=

1
Ω

(
𝜕𝑡𝐾

𝑖...
𝑗... +Lw𝐾

𝑖...
𝑗...

)
+ 𝛾𝑤𝑖𝑘𝐾

𝑘...
𝑗... + · · · − 𝛾𝑤𝑘𝑗𝐾 𝑖...𝑘... − · · · , (D.2.23)

and as a consequence
1
Ω

D̂𝑎𝑖 𝑗

d𝑡
=

1
Ω

D̂𝑎𝑖 𝑗
d𝑡

= 0. (D.2.24)

Space and time Galilean covariant derivatives do not commute. They define a Galilean tensor,
rooted in the Riemann tensor of the ascendent relativistic spacetime at finite velocity of light. We
find [

1
Ω

D̂
d𝑡
, ∇̂𝑖

]
Φ = −𝛾𝑤𝑘𝑖𝜕𝑘Φ, (D.2.25a)[

1
Ω

D̂
d𝑡
, ∇̂𝑖

]
𝑉 𝑗 = −𝛾𝑤𝑘𝑖∇̂𝑘𝑉 𝑗 + 𝑟 𝑗

𝑖𝑘
𝑉 𝑘, (D.2.25b)

and similarly for higher-rank Galilean tensors, where

𝑟
𝑗

𝑖𝑘
=

1
Ω

(
𝜕𝑡𝛾

𝑗

𝑖𝑘
+ ∇̂𝑖∇̂𝑘𝑤 𝑗 − ∇̂𝑖𝛾𝑤𝑗𝑘 + 𝑤

𝑙𝑟
𝑗

𝑘𝑙𝑖

)
. (D.2.26)

5When writing L𝒘 one sees𝒘 as a vector and apply the usual formula e.g. L𝒘𝑨 = [𝒘, 𝑨] for a vector 𝑨 = 𝐴𝑖𝜕𝑖.
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D.3 Galilean conservation equations

In this sectionwe are equippedwith the connection ∇̂ and an effectiveGalilean action, 𝑆 [𝑎𝑖 𝑗, 𝑤𝑖,Ω;Φ] =∫
d𝑡 d𝑑𝑥

√
𝑎ΩL where L is the Lagrangian density. We shall define here the notion of Galilean

momenta and derive from Galilean diffeomorphism invariance of 𝑆 their conservation equations.
Throughout the Section 𝝃 = 𝜉 𝑡 (𝑡)υ + 𝜉 𝑖(𝑡,x)𝜕𝑖 parameterizes a linear Galilean diffeomorphism.
Note already the independence of 𝜉 𝑡 with respect to space.

Lie derivatives and divergences

The variation under diffeomorphisms is implemented through the Lie derivative (the minus sign is
conventional)

−𝛿ξ𝑎𝑖 𝑗 = Lξ𝑎
𝑖 𝑗 = −2

(
∇̂(𝑖𝜉 𝚥) + 𝛾𝑤𝑖𝑗𝜉 𝑡 + 1

Ω
𝑤(𝑖𝑎𝑗)𝑘𝜕𝑘𝜉

𝑡

)
, (D.3.1)

where the last term drops for Galilean diffeomorphisms. Furthermore

L𝝃υ = − 1
Ω

(
𝜕𝑡𝜉

𝑡 +Lw𝜉
𝑡
)
υ − 1

Ω

(
𝜕𝑡𝜉

𝚤 +Lw𝜉
𝚤
)
𝜕𝑖, (D.3.2)

from which, we infer

−𝛿ξΩ = LξΩ = 𝜕𝑡𝜉
𝑡 +Lw𝜉

𝑡 , 𝛿ξ𝑤
𝑖 = −Lξ𝑤

𝑖 = 𝜕𝑡𝜉
𝚤 +Lw𝜉

𝚤. (D.3.3)

Notice also the action on the clock form

Lξτ =
1
Ω

(
𝜕𝑡𝜉

𝑡 +Lw𝜉
𝑡
)
τ =

1
Ω

D̂𝜉 𝑡

d𝑡
τ = 𝜇τ, (D.3.4)

where we introduced

𝜇(𝑡,x) = 1
Ω

D̂𝜉 𝑡

d𝑡
. (D.3.5)

Varying the effective action

Galilean momenta are conjugate variables to the geometry. They are the Galilean equivalent of the
relativistic energy-momentum tensor and are defined as the energy–stress tensor, themomentum and
the energy density

Π𝑖 𝑗 = −
2
√
𝑎Ω

𝛿𝑆

𝛿𝑎𝑖 𝑗
, (D.3.6a)

𝑃𝑖 = −
1
√
𝑎Ω

𝛿𝑆

𝛿 𝑤
𝑖

Ω

, (D.3.6b)

Π = − 1
√
𝑎Ω

(
Ω
𝛿𝑆

𝛿Ω
− 𝑤

𝑖

Ω

𝛿𝑆

𝛿 𝑤
𝑖

Ω

)
, (D.3.6c)
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which can likewise be combined as 𝛿𝑆
𝛿Ω = −

√
𝑎

(
Π + 𝑤𝑖

Ω 𝑃𝑖

)
.

Remark Asking for a Galilean theory to be shift invariant will impose that no physical results
should depend on 𝑤𝑖, hence 𝑃𝑖 = 0. However not all theories behave like that so one has to
be careful.

Varying the effective action then yields

𝛿𝑆 = −
∫

d𝑡Ω
∫

d𝑑𝑥
√
𝑎

(
1
2
Π𝑖 𝑗𝛿𝑎

𝑖 𝑗 + 𝑃𝑖𝛿
𝑤𝑖

Ω
+

(
Π + 𝑤

𝑖

Ω
𝑃𝑖

)
𝛿 lnΩ

)
. (D.3.7)

so under a Galilean diffeomorphism we get using (D.3.1), (D.3.4) and (D.3.2)

𝛿ξ𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎Ω

{
−𝜉 𝑡

[
1
Ω

D̂Π
d𝑡
+ 𝜃𝑤Π + Π𝑖 𝑗𝛾𝑤𝑖𝑗

]
+ 𝜉 𝚤

[
1
Ω

D̂𝑃𝑖
d𝑡
+ 𝜃𝑤𝑃𝑖 + 𝑃𝑗𝛾𝑤𝑗𝑖 + ∇̂

𝑗Π𝑖 𝑗

]}
+
∫

d𝑡d𝑑𝑥
{
𝜕𝑡

(√
𝑎

(
Π𝜉 𝑡 − 𝑃𝑗𝜉 𝚥

))
+𝜕𝑖

(√
𝑎𝑤𝑖

(
Π𝜉 𝑡 − 𝑃𝑗𝜉 𝚥

)
−
√
𝑎ΩΠ𝑖 𝑗𝜉

𝚥
)}
. (D.3.8)

Requiring that 𝛿ξ𝑆 vanishes and ignoring the boundary terms (last two lines in Eq. (D.3.8)), we reach
two equations. The momentum equation is the simplest because 𝜉 𝚥 being functions of both 𝑡 and x,
their factor must vanish (

1
Ω

D̂
d𝑡
+ 𝜃𝑤

)
𝑃𝑖 + 𝑃𝑗𝛾𝑤𝑗𝑖 + ∇̂

𝑗Π𝑖 𝑗 = 0. (D.3.9)

The energy equation is more subtle because 𝜉 𝑡 depends on 𝑡 only. As a consequence it is enough to
require that its factor be the Galilean divergence of a vector(

1
Ω

D̂
d𝑡
+ 𝜃𝑤

)
Π + Π𝑖 𝑗𝛾𝑤𝑖𝑗 = −∇̂𝑖Π𝑖, (D.3.10)

where Π𝑖 is undetermined a priori. Indeed,
√
𝑎Ω𝜉 𝑡∇̂𝑖Π𝑖 = 𝜕𝑖

(√
𝑎Ω𝜉 𝑡Π𝑖

)
, which leads to a boundary

term and vanishes inside the integral. One can interpret Π𝑖 as the energy current (also energy flux).6

6This new degree of freedom can arise as a variation when going to the most general frame (D.1.20)

Π𝑖 = − 1
Ω
√
𝑎

𝛿𝑆

𝛿𝑏𝑖
. (D.3.11)
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Equation for a𝑼 (1) current

Let’s assume that our action is invariant under a local 𝑈 (1) associated with a gauge field B =

𝐵(𝑡,x)d𝑡 + 𝐵𝑖(𝑡,x)d𝑥𝑖. Under a gauge transformation of parameter Λ the gauge field changes as
𝛿Λ𝐵 = 𝜕𝑡Λ and 𝛿Λ𝐵𝑖 = 𝜕𝑖Λ. The conjugate momenta are now the matter density and the matter
current

𝜚 = − 1
√
𝑎

𝛿𝑆

𝛿𝐵
, (D.3.12a)

𝑁 𝑖 =
1

Ω
√
𝑎

(
𝑤𝑖
𝛿𝑆

𝛿𝐵
− 𝛿𝑆

𝛿𝐵𝑖

)
(D.3.12b)

with 𝛿𝑆
𝛿𝐵𝑖

= −
√
𝑎
(
Ω𝑁 𝑖 + 𝜚𝑤𝑖

)
, and

𝛿𝑆 = −
∫

d𝑡d𝑑𝑥
√
𝑎

(
𝜚𝛿 𝐵 +

(
Ω𝑁 𝑖 + 𝜚𝑤𝑖

)
𝛿 𝐵𝑖

)
(D.3.13)

for the matter sector. The gauge variation of the action reads

𝛿Λ𝑆 =

∫
d𝑡d𝑑𝑥

√
𝑎

(
𝜚𝜕𝑡Λ +

(
Ω𝑁 𝑖 + 𝜚𝑤𝑖

)
𝜕𝑖Λ

)
= −

∫
d𝑡d𝑑𝑥

√
𝑎ΩΛ

(
1
Ω

D̂𝜚
d𝑡
+ 𝜃𝑤𝜚 + ∇̂𝑖𝑁 𝑖

)
+
∫

d𝑡d𝑑𝑥
{
𝜕𝑡

(√
𝑎Λ𝜚

)
+ 𝜕𝑖

(√
𝑎Λ

(
Ω𝑁 𝑖 + 𝜚𝑤𝑖

))}
. (D.3.14)

Invariance of 𝑆 leads to the Galilean continuity equation(
1
Ω

D̂
d𝑡
+ 𝜃𝑤

)
𝜚 + ∇̂𝑖𝑁 𝑖 = 0. (D.3.15)

These equations (D.3.10), (D.3.9) together with (D.3.15) where obtained in [53, 65]. The reader is ad-
vised to look at these references for more details on isometries and charges.

Remark Weyl-covariance can also be accomodated inNewton-Cartan structures. Like in intrinsic
Carrollian structure the latter is imposed by hand. We assume that under the ruled Newton-
Cartan structure undergo an additional type of transformations, dubbed Weyl transforma-
tions, parametrised by a function B and acting as

𝑎𝑖 𝑗 → B2𝑎𝑖 𝑗, Ω→ 1
BΩ, 𝑤𝑖 → 𝑤𝑖, 𝑤𝑖 →

1
B2𝑤𝑖. (D.3.16)

Since Ω is a function of 𝑡 only, the second of (D.3.16) imposes B = B(𝑡). Weyl-invariance
requirement of an effective action 𝑆 leads to following weights for the Galilean momenta, the
energy–stress tensor Π𝑖 𝑗 has weight 𝑑 − 1, the momentum 𝑃𝑖, 𝑑, and the energy density Π,
𝑑 + 1. The energy flux Π𝑖 introduced in (D.3.10) has also weight 𝑑. The Weyl trace condition
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reads
Π 𝑖
𝑖 = Π. (D.3.17)

On thematter sector, the gauge fields 𝐵 and 𝐵𝑖 are weight-zero, whereas 𝜚 is weight-𝑑 and𝑁𝑖,
𝑑 − 1. It remains to built a Weyl-covariant derivative (for which no spatial Weyl connection
exist, as a major difference with respect to the Carrollian instance) and rewrite the conserva-
tion equations (D.3.10), (D.3.9) and (D.3.15) with them. This would bring us far from our goal
in writing this Appendix, the interested reader should see [65].
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We show that a class of L-loop conformal ladder graphs are intimately related to twisted partition
functions of free massive complex scalars in d ¼ 2Lþ 1 dimensions. The graphs arise as four-point
functions in certain two- and four-dimensional conformal fishnet models. The twisted thermal two-point
function of the scalars becomes a generator of conformal ladder graphs for all loops. We argue that this
correspondence is seeded by a system of two decoupled harmonic oscillators twisted by an imaginary
chemical potential. We find a number of algebraic and differential relations among the conformal graphs
that mirror the underlying free dynamics.

DOI: 10.1103/PhysRevLett.132.231601

Introduction and summary.—In [1], one of the authors
observed that the logarithm of the partition function ZL
of a free massive complex scalar ϕðxÞ, twisted by the
global Uð1Þ charge along the thermal circle in d ¼ 2Lþ 1
dimensions, is given in terms of a class of single-valued
polylogarithms. The latter functions are ubiquitous in
multiloop quantum field theory (QFT) calculations (see,
e.g., [2] for a recent review), and their intriguing math-
ematical properties have been discussed in a number of
works [3,4]. The twisting parameter μ corresponds to an
imaginary chemical potential for the Abelian “charge”

operator Q ¼ ϕ†D
↔

τϕ, with Dτ ¼ ∂τ − iμ, which together
with O ¼ jϕj2 can be viewed as integrable relevant defor-
mations of the massless free theory. From lnZL we can
calculate the thermal one-point functions hOiL and hQiL,
respectively, and it was shown in [1] that hQiL is essentially
given by the L-loop Davydychev-Usyukina conformal
ladder graph [5,6].
We show here that lnZL itself is also given by an L-loop

conformal ladder graph that evaluates a certain four-point
function of the singular two-dimensional conformal fishnet
model of Kazakov and Olivucci [7]. Consequently, the
differential equations satisfied by hOiL and hQiL presented
in [1] become differential relations among four-point
ladder graphs of conformal fishnet models in two and four
dimensions. The observations above prompt us to consider

the twisted thermal two-point function hϕ†ðxÞϕð0ÞiL.
When m ¼ μ ¼ 0 this is expanded in thermal conformal
blocks with constant coefficients corresponding to the
thermal one-point functions of conformal quasiprimary
operators with definite dimension and spin [see (24) later
on]. We show that for nonzero values of m and μ the above
two-point function can also be expanded in terms of
thermal conformal blocks, but with coefficients now given
by single-valued polylogarithms. The latter are recursively
related to linear combinations of hOiL and hQiL, and hence
of conformal ladder graphs. In other words hϕ†ðxÞϕð0ÞiL is
a generating function of all-loop conformal ladder graphs.
Some implications of our results and a number of future
directions are discussed.
From relativistic Bose gases to single-valued

polylogarithms.—We firstly rederive the results in [1] from
a new perspective. Consider the following twisted partition
function of two decoupled harmonic oscillators with unit
mass and common frequency m:

Z0 ¼ TrH1;2
½e−βðH0þm2OÞe−iβμQ�: ð1Þ

This can be viewed as a deformation of the free
Hamiltonian H0¼ðp̂2

1þ p̂2
2Þ=2 by the operators O ¼

1
2
ðx̂21 þ x̂22Þ and Q ¼ p̂2x̂1 − p̂1x̂2 [8]. The twisting param-

eter μ acts effectively as an imaginary chemical potential
for Q. Z0 is the grand canonical partition function. Using
the complex variable z ¼ e−βm−iβμ one finds

lnZ0 ¼
Z

z

0

dz0

1 − z0
þ
Z

z̄

0

dz0

1 − z0
−
Z

1

jzj

dz0

z0
: ð2Þ
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From (2) we can construct the logarithm of the partition
function of a free charged scalar field in d dimensions
with mass m and twisting parameter μ [9] as that of a
d ¼ 2Lþ 1-dimensional relativistic thermal gas (see
Appendix B for details),

lnZL ¼
Z

dωρLðω;mÞ lnZ0: ð3Þ

The calculations are considerably simpler for integer L
(d odd) to which we restrict from now on.
After some straightforward manipulations (3) can be

brought into the form of an iterated integral for L > 1 as

lnZL ¼ ð−2α2ÞL
YL−1
i¼0

�Z
wiþ1

0

dwi

wi
lnwi

�
lnZ0; ð4Þ

where lnZ0 is taken to be a function of z0; z̄0 with
z0 ¼ w0e−iβμ, wL ¼ jzj, and the integrals are performed
in the order w0 ↦ w1:: ↦ wL. Here, α2 ¼ l2=4πβ2 is a
dimensionless parameter. By virtue of (2) we see that (4)
coincides with the class of iterated integrals that give rise to
single-valued polylogarithms [4]. We obtain [10]

lnZL ¼ α2L
ð−1ÞLL!

2ð2Lþ 1Þ! ð2 log jzjÞ
2Lþ1

þ α2L
XL
n¼0

ð2L − nÞ!ð−2 log jzjÞn
ðL − nÞ!n! 2ℜ½Li2Lþ1−nðzÞ�;

ð5Þ

hQiL¼α2L
XL
n¼0

ð2L−nÞ!ð−2 logjzjÞn
ðL−nÞ!n! 2iℑ½Li2L−nðzÞ�: ð6Þ

The formulas above correspond to the class of single-
valued polylogarithms discussed in many places in the
literature. The functions (6) correspond to the graphical
functions nicely discussed in [4,11]. However, to our
knowledge the functions (5) have not been discussed in
terms of graphical functions until now. Below we show that
they correspond to conformal ladder graphs of a two-
dimensional conformal field theory (CFT).
It is useful to introduce the differential operators

D̂ ¼ 1

β2
∂

∂m2
¼ 1

2 ln jzj ðz∂z þ z̄∂z̄Þ; ð7Þ

L̂ ¼ i
β

∂

∂μ
¼ ðz∂z − z̄∂z̄Þ: ð8Þ

Explicit calculations yield the following set of first order
differential equations [1]:

hOiL ¼ −βD̂ lnZL ¼ βα2 lnZL−1; ð9Þ

hQiL ¼ L̂ lnZL ¼ −D̂ · hQiLþ1=α
2: ð10Þ

Notice that D̂ acts on lnZL and hQiL as a dimension
lowering operator. Introducing the Laplacian in the vari-
ables m and μ as

Δ̂ ¼ 4β2zz̄∂z∂z̄ ¼
∂
2

∂m2
þ ∂

2

∂μ2
; ð11Þ

we further find

Δ̂fLðz; z̄Þ ¼ −4β2Lα2fL−1ðz; z̄Þ ð12Þ

for fLðz; z̄Þ ¼ flnZL; hQiLg. We can combine (12) with
(9), (10) to obtain the second order equation

½m2Δ̂ − 4Lβ2m2D̂�fLðz; z̄Þ ¼ 0: ð13Þ

Notice that m2Δ̂ is the Laplacian on the upper half plane
H2 with coordinates m, μ, and 2β2m2D̂ ¼ mð∂=∂mÞ is the
radial derivative. Equation (13) is reminiscent of
similar results for partition functions in [12] where the
connection to the huge literature of string scattering
amplitudes [13–15] was noted. Another interpretation
of (13) is as the Laplace-Beltrami operator of AdS2Lþ2

with metric

ds2 ¼ 1

m2

�
dm2 þ dμ2 þ

X2L
i¼1

dxidxi
�

ð14Þ

acting on functions of just m and μ. Since m and μ
parametrize relevant deformations of a free CFT, such an
interpretation may be related to RG flow.
Conformal graphs as thermal partition functions.—We

will now show that formulas (5) and (6) arise in an
apparently unrelated context: as four-point correlators in
conformal fishnet models. The latter are particular limits of
the generalized biscalar theory in D dimensions introduced
in [7] with Lagrangian

L¼NcTr½ϕ†
1ð−∂2Þωϕ1þϕ†

2ð−∂2Þ
D−2ω

2 ϕ2þa2D;ωϕ
†
1ϕ

†
2ϕ1ϕ2�:

ð15Þ

ϕ1;2 belong to the adjoint of SUðNcÞ, ω∈ ½0; ðD=2Þ� and
coupling a2D;ω is classically dimensionless. We consider the
four-point function

GðLÞ
D;ωðfxigÞ ¼ hTr½ϕL

2 ðx1Þϕ1ðx3Þϕ†L
2 ðx2Þϕ†

1ðx4Þ�i; ð16Þ

whose leadingNc contribution comes from a unique L-loop
conformal ladder graph. It is well known that due to
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conformal invariance GðLÞ
D;ω depends on two conformal

ratios, or equivalently a complex variable z, and can be
represented by an integral of the form depicted in Fig. 1.
For D ¼ 4, ω ¼ 1 the model coincides with the original
four-dimensional conformal fishnet CFT introduced in [16],

and then GðLÞ
4;1 is proportional to the Davydychev-Usuykina

L-loop conformal ladder graphs [5,6]. Up to overall nor-
malizations and using (9) we verify that

G̃ðLÞ
4;1 ðz; z̄Þ ¼

1

L!
1

z − z̄
hQiLðz; z̄Þ ð17Þ

when we set a24;1 ¼ α2. In writing (17) we have identified
(i) the variable z representing conformal ratios on the lhs
with the modularlike parameter z of the thermal QFT on
the rhs and (ii) the number of loops L on the lhs with
L ¼ ðd − 1Þ=2 on the rhs.

For D ¼ 2, ω ¼ 1 the model (15) is singular as GðLÞ
2;1

would seem to vanish [17]. Nevertheless, a nonzero result
can be obtained if we define the effective coupling

ãD;ω ¼ aD;ω
1

ΓðD=2 − ωÞ ; ð18Þ

which remains finite as D ↦ 2, ω ↦ 1. Then, following
the graph-building techniques introduced in [18–21] we
can show that the appropriately normalized four-point
function of Fig. 1 is given by

G̃ðLÞ
2;1 ðz; z̄Þ ¼ ã2L2;1

X
m∈Z

Z
dν

ðzz̄Þiνðz=z̄Þm=2

ðm2

4
þ ν2ÞLþ1

: ð19Þ

Since jzj < 1we compute the integrals above using contour
integration. When m ≠ 0 we can close the contour from
below and pick up the residues in the lower half complex
plane. We obtain

X
m≠0

Z
dν

ðzz̄Þiνðz=z̄Þm=2

ðm2

4
þν2ÞLþ1

¼2π

L!

XL
n¼0

ð2L−nÞ!ð−2 log jzjÞn
ðL−nÞ!n! 2ℜ½Li2Lþ1−nðzÞ�: ð20Þ

Form ¼ 0 the contour integral appears to be zero, but there
is a pole on the real axis. Taking the Cauchy principal value
we obtain

−
Z
Cϵ

dν
jzj2iν
ν2Lþ2

¼ −i
Z

2π

π
dθ

exp ð2iϵ log jzjeiθÞ
ϵ2Lþ1eið2Lþ1Þθ : ð21Þ

For ϵ ↦ 0 we encounter 2Lþ 1 divergent terms, which we
discard, and a finite contribution that reads

−i
Z

2π

π
dθ

ð2i log jzjÞ2Lþ1

ð2Lþ 1Þ! ¼ ð−ÞLπ ð2 log jzjÞ
2Lþ1

ð2Lþ 1Þ! : ð22Þ

Putting together (20) and (22) we finally obtain

GðLÞ
2;1 ðz; z̄Þ ¼

2π

L!
lnZLðz; z̄Þ ð23Þ

when we set ã22;1 ¼ α2. This is one of the main results of the
present work. Notice that the leading “zero temperature”
contributions in (19) and (4) arise after the subtraction of a
finite number of divergent terms. Acting with L̂ on both
sides of (23) and using (10) we see that the ladder graphs
of the four-dimensional CFT are derivatives of the corre-
sponding ladder graphs of the two-dimensional CFT. This
dimension-shift property between conformal ladder graphs
generalizes to all even dimensions.
Twisted thermal one-point functions and multiloop

conformal graphs.—The thermal one-point functions
hOiL and hQiL appear in the expansion of the thermal
two-point function hϕ†ðxÞϕð0Þi ¼ gðLÞðτ;xÞ. This moti-
vates us to ask whether thermal one-point functions of
higher spin operators are also related to conformal ladder
graphs. It is usually highly nontrivial to calculate thermal
one-point functions in a generic QFT. However, for a
CFT with a complex scalar ϕðxÞ having dimension Δϕ in
d ¼ 2Lþ 1 we have [22]

gðLÞðτ;xÞ ¼
X
Os

aLOs

�
r
β

�
ΔOs Cν

sðcos θÞ
r2Δϕ

; ð24Þ

where ν ¼ d=2 − 1. The main assumption behind (24) is
the existence of a conformal operator product expansion at
zero temperature such that ϕ† × ϕ can be expanded in a
sum of quasiprimary operators Os with definite spins s and
scaling dimensions ΔOs

. The latter are represented by
symmetric, traceless rank-s tensors, and their one-point
functions depend on a single parameter that is proportional
to the coefficient aLOs

. For example, for free massless
complex scalars when Δϕ ¼ L − 1=2 one obtains [23–25]

aLOs
¼ 2CL

ϕð1Þζð2L − 1þ sÞ; s ¼ 0; 2; 4…: ð25Þ

In that case, only symmetric and conserved higher-spin
operators with dimensions ΔOs

¼ d − 2þ s and even spin

FIG. 1. The graph contributing to GðLÞ
D;ω.
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s appear in (24). Each term in the sum (24) is of the form
rsCL−1=2

s ðcos θÞ and we find □dGðLÞðxÞ ¼ 0 with □d the
d-dimensional Laplacian. This is the usual free field theory
result away from the origin.
In nontrivial CFTs the operator spectrum, their scaling

dimensions, and aLOs
change in a way determined by the

dynamics; hence, the thermal two-point function does not
satisfy a simple equation in general, although the form of
the expansion (24) remains the same. The latter property is
not expected to be true in a generic QFT. Nevertheless,
remarkably, the thermal two-point functions of the complex
scalars ϕðxÞ in the massive free theory with partition
function (4) do admit an expansion of the form (24) and
contain a part that is annihilated by the d-dimensional
Laplacian, albeit with different coefficients aLOs

from (25).
This might not be surprising as the theory is Gaussian;
nevertheless, the theory is not generically a CFT. gðLÞðτ;xÞ
is obtained as the Fourier transform of the unit normalized
momentum space two-point function with twisted boun-
dary conditions [9] on S1β. We obtain (setting β ¼ 1 for
simplicity)

gðLÞðτ;xÞ ¼ 1

ð2πÞν
X∞
n¼−∞

eiμn
�
m
jXnj

�
ν

KνðmjXnjÞ; ð26Þ

with Xn ¼ ðτ − n;xÞ andKν the modified Bessel functions.
The coefficients aLOs

can be calculated from (26) using the
inversion method of [24], as it was done in [25], but taking
now care that the two-point function is complex so that the
discontinuities along the cuts in the positive and negative r
axis are complex conjugates [26]. We focus on the part
of GðLÞðτ; x⃗Þ that is annihilated by the d-dimensional
Laplacian, namely to the contribution of the would-be
higher-spin currents with dimensions ΔOs

¼ 2L − 1þ s.
We obtain

aLOs
¼ ΓðL − 1

2
Þ

ΓðLþ s − 1
2
Þð4πÞL22s

×
XL−1þs

n¼0

2n

n!
ðβmÞnð2L − 2þ s − nÞ!

ðL − 1þ s − nÞ!
× ½Li2L−1þs−nðzÞ þ ð−1ÞsLi2L−1þs−nðz̄Þ�: ð27Þ

If the theory were a CFT we would associate the coef-
ficients aLOs

with thermal one-point functions of conformal
quasiprimary operators. For generic values of m and μ this
is more complicated. For example, aLO2

represents the
contribution of a rank-2 symmetric traceless tensor that
is not the energy momentum tensor of the massive theory
since the latter has nonzero trace. Nevertheless, the coef-
ficients aLO0

and aLO1
do represent the thermal one-point

functions of the operators O and Q as they have been
independently calculated in (9), (6). Explicitly we have

aLO0
¼ 1

ð4πÞLβα2L hOiL; aLO1
¼ 1

ð4πÞLα2L
1

2
hQiL: ð28Þ

Using (9), (10) we see that for z ¼ z̄ ¼ 1 the above reduce
to (25) as they should. The novel result is that all
coefficients aLOs

with s ≥ 2 are related to L-loop conformal
graphs by virtue of the following recursion relations shown
by brute force calculations:

aLOsþ2
¼ 2π

2L − 1
aLþ1
Os

þ ðmβÞ2
ð2L − 1þ 2sÞð2Lþ 1þ 2sÞ a

L
Os
:

ð29Þ

Consequently, the part of the twisted thermal two-point
function (26) that is annihilated by the d-dimensional
Laplacian is a generating function for (linear combinations)
of L-loop conformal ladder graphs.
Our (29) implies that we can associate a “spin” to a

certain combination of L- and L − 1-loop conformal ladder
graphs. This is evident for s ¼ 0, and it can be generalized
for all s. We do not yet have an understanding of this “spin”
from the point of view of the conformal graphs, but from
the thermal field theory point of view it can be given
a physical interpretation in terms of the underlying free
field theory dynamics. However, we believe that they
have a simpler underlying physical interpretation. For
example, (29) corresponds to a standard thermodynamics
relationship for s ¼ 2. To see that, note that from the
twisted partition function ZL with Hamiltonian of the
form H ¼ H0 þm2Oþ iμQ one can derive the following
general result:

hHiL ¼ d − 1

β
lnZL þ 2m2hOiL þ iμhQiL; ð30Þ

where hHiL ¼ −htττiL with tμν the energy momentum
tensor of theory. For nonzero m and μ this is not traceless,
but for the massless free complex scalar with imaginary
chemical potential we can construct a traceless spin-2
operator T μν with T ττ¼ tττþ2m2O=dþ iμQ. Then (30)
becomes

−hT ττiL ¼ d − 1

β
lnZL þ 2m2

d − 1

d
hOiL: ð31Þ

The general relation connecting aLO2
with the T ττ is [27]

ð4πα2ÞL
β

aLO2
¼ 2gϕ†ϕT

ðd − 1Þðd − 2ÞCT
hT00iL

¼ −
CL
ϕð1ÞSL

2ðd − 1Þ hT ττi: ð32Þ

Using then (28), (9), and (10) we can verify that (31)
coincides with (29). We believe that similar arguments
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relating trace-full and traceless higher-spin operators of the
massive free scalar theory can provide a physical under-
standing for (29) for general s.
Discussion and outlook.—In this Letter, we have con-

nected two seemingly unrelated quantities: twisted partition
functions of a massive free complex scalar field in
d ¼ 2Lþ 1 dimensions, and four-point conformal L-loop
ladder graphs. The reason for such a relationship is that
they both satisfy the same sets of differential equations. For
the partition functions these are given by (13). For the
conformal ladder graphs they are the differential equations
discussed in number of earlier works on conformal inte-
grals [i.e., Eq. (2.15) in [28] ]. This common property begs
for a deeper explanation.
Our results draw a unifying picture for the thermal one-

point functions aLOs
in massive free complex scalar theories.

This is depicted in Fig. 2. By the algebraic relations (29)
they are all ultimately given by aLO0

or aLO1
, and then by the

action of the differential operators D̂ and L̂ to the hOi0 and
hQi0 of the harmonic oscillator model (1).
There are many questions that arise from our observa-

tions. It would be interesting to understand the possible
relationship of our results to the integrability of fishnet
models. It would also be interesting to connect our results
to works that relate partition functions and string ampli-
tudes. Another question would be to connect our approach
to studies of nonintegrable deformations of thermal CFTs
(i.e., see Refs. [29–31] for interesting recent works).
We close with some remarks. Our iterated integral

formula (4) when applied to hQiL gives for L ¼ 1

hQi1 ¼ ð−2α2Þ
Z jzj

0

djz0j
jz0j ln jz

0jhQi0 ¼ 4iα2DðzÞ; ð33Þ

where DðzÞ ¼ ℑ½Li2ðzÞ þ ln jzj lnð1 − zÞ� is the celebrated
Bloch-Wigner function that gives the volume of an ideal
tetrahedron in three-dimensional hyperbolic space H3 with

vertices in ∂H3 [32]. It is then amusing to note that hQi0
itself has a geometric interpretation. Indeed,

hQi0 ¼
z − z̄

ð1 − zÞð1 − z̄Þ ; ð34Þ

and setting z ¼ eiϕðb=aÞ with cosϕ ¼ ða2 þ b2 − 1Þ=2ab
we find that hQi0=4i ¼ 1

2
ab sinϕ gives the area of a

triangle whose side lengths are a, b and 1, and ϕ the
angle between a and b. Then (33) gives the volume of an
ideal hyperbolic tetrahedron as an integral of the area of a
triangle. One then wonders if there is a geometric inter-
pretation for the higher order iterated integrals in (4). We
should further note that hOi0 also has an interpretation
as an area, but we are not aware of a nice geometric
interpretation of hOi1.
Another observation is that hQi0 ¼ −8πρD¼4

m0↦m1þm2

where ρDm0↦m1þm2
is the D-dimensional 1 ↦ 2 decay phase

space of relativistic massive particles. Since

ρD¼4
m0↦m1þm2

¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; m2

1=m
2
0; m

2
2=m

2
0Þ

q
ð35Þ

with λða;b;cÞ¼a2þb2þc2−2ab−2ac−2bc the Källén
triangle function, we see that if we set a ¼ m1=m0 and
b ¼ m2=m0, then hQi0 represents the phase space for a
virtual process with λ < 0 [33]. Then, our (4) is reminiscent
of Eq. (7) of [34], which gives a recurrent relationship for
higher dimensional 1 ↦ 2 relativistic phase spaces.
We further note that equations such as (9) and (10) lead

naturally to the resummation of infinite series. For example,
by virtue of (9) the infinite product Z ¼ Q∞

n¼0 Zn satisfies
the inhomogeneous first order equation

ðD̂þ α2Þ lnZ ¼ −
1

β
hOi0: ð36Þ

This can be integrated to

lnZ ¼ −βe−β2α2m2

Z
m2

eβ
2α2m̃2hOi0dm̃2: ð37Þ

An analogous result can be derived for the
hQi ¼ P∞

n¼0hQin. Given (17) and (23) these are all-loop
Borel summations of conformal ladder graphs [35]. See
Appendix A for some additional observations.
Finally, we point out the work [36] where 2-2 scattering

amplitudes are given in terms of a dispersive integral over
generating functions of knot polynomials [see, e.g., (12)
and (23) of that reference] [37]. The latter generating
functions written in terms of the variables z; z̄ correspond
to thermal averages of certain bilinear operators in a
q-deformed harmonic oscillator, much like our hOiL and
hQiL. We find the connection of the approach in [36] and
our results quite intriguing and we believe that in deserves
further study.

FIG. 2. Differential (solid lines) and algebraic (dashed lines)
relationships among the aLOs

.
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Appendix A: Further observations.—Applying L̂ to (37)
gives

ðD̂þ α2ÞhQi ¼ D̂hQi0; ðA1Þ

where hQi ¼ P∞
L¼0hQiL. By virtue of (17) this sum can

be Borel transformed into the Broadhurst-Davydychev
infinite sum of the L-loop conformal ladder graphs in four
dimensions [38]; see also [39,40]. Indeed the solution of
the first order equation (A1) is

hQi ¼ β2e−β
2α2m2

Z
m2

eβ
2α2m̃2

D̂hQi0dm̃2 ðA2Þ

and can be thought of as a series of the form hQi≡
AðzÞ ¼ P∞

n¼0 anz
n with z ¼ α2. Its Borel transform series

B½A�ðtÞ ≔ P∞
k¼0ðak=k!Þtk is given by the contour integral

B½A�ðtÞ ¼ 1

2πi

Z
C

dz
z
ezAðt=zÞ; ðA3Þ

where C is the Hankel contour [41]. Using the following
integral representation of the Bessel function

JνðzÞ ¼
ð1
2
zÞν

2πi

Z
C
dt

1

tνþ1
et−

z2
4t ; ðA4Þ

we obtain

B½Q�ðtÞ¼β2
1

2πi

Z
m2

dm̃2ðD̂hQi0Þ
Z
C

du
u
eu−

tβ2

u ðm2−m̃2Þ

¼β2
Z

m2

dm̃2J0
h
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðm2−m̃2Þ

q i
ðD̂hQi0Þ: ðA5Þ

Using then

D̂hQi0 ¼
i

2βm
sinhðβmÞ sinðβμÞ

½coshðβmÞ − cosðβμÞ�2 ; ðA6Þ

and setting t ¼ −ðκ2=4Þ, βm̃ ¼ η, l ¼ 2βm and putting
the lower bound of the integral to be þ∞, (A5) coincides
with Eq. 15 of [38].

Appendix B: The relativistic thermal gas.—The one-
particle density of states ρLðω;mÞ for the relativistic
thermal gas in d ¼ 2Lþ 1 dimensions is found as usual
by considering the system in a (d − 1)-dimensional
spatial cubic box of volume Vd−1 ¼ ld−1 with quantized
momentum p⃗ ¼ ½ð2π=lÞn1;…; ð2π=lÞnd−1� ¼ ð2π=lÞn⃗.
The number of modes having momenta inside the
spherical shell bounded by jp⃗j and jp⃗j þ djp⃗j in d ¼
2Lþ 1 dimensions is

dn ¼
�
l2

4π2

�
L

jp⃗j2L−1djp⃗j
Z

dΩ2L; ðB1Þ

with
R
dΩ2L ¼ 2πL=ΓðLÞ. Using then the dispersion

relation ω2 ¼ p⃗2 þm2, for ρLðω;mÞ≡ dn=dω we obtain

ρLðω;mÞ ¼ 2α2β2

ðL − 1Þ!ωðω
2 −m2ÞL−1; ðB2Þ

which when substituted in (3) gives

lnZL ¼ 2α2β2

ðL − 1Þ!
Z

∞

m
ωdωðω2 −m2ÞL−1 lnZ0; ðB3Þ

or alternatively (4) in terms of the real variable
ωjzj ¼ e−βm. We can now apply our differential
operators D̂ and L̂ to this and obtain the integral
representations of all our thermal one-point functions.
In particular, applying L̂ to (B3) we will get the integral
representation of the L-loop conformal ladder graphs
given in Eq. (2.20) of [42] for purely imaginary ϕ and
up to and overall 1=L!.
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1 Introduction

The solution space of Einstein’s equations and the corresponding asymptotic symmetries
are severely altered by the presence of a cosmological constant Λ.1 Firstly, asymptotically
flat spacetimes support incoming and outgoing gravitational radiation, which are harder
to accommodate in asymptotically anti-de Sitter — unless leaky boundary conditions are
assumed [2]. Secondly, the number of free functions on the boundary characterizing the
solution space is finite for non-zero Λ and infinite for Λ = 0. Hence, investigating the
holographic description of Ricci-flat spacetimes from the limit of Einstein spacetimes with
non-vanishing cosmological constant seems at best a futile task, limited to special cases
like three spacetime dimensions.

The purpose of the present work is to reconsider this statement in four dimensions
and show that expanding the anti-de Sitter energy-momentum tensor in Laurent series in
k2 = −Λ/3, one recovers the full Ricci-flat solution space in a 1/r-expansion together with
its evolution dynamics captured in flux-balance equations.

In order to perform the above analysis, a choice of gauge is required, as usual. Baring in
mind potential further developments towards flat holography, it is desirable to privilege null
infinity in the asymptotically flat instance, which plays the role of a conformal boundary
hosting all independent functions of the solution space, often referred to as degrees of
freedom in the following. The null boundary is a three-dimensional Carrollian manifold
and it is therefore convenient to select a bulk gauge making the corresponding boundary
general and Weyl covariance manifest. This has prompted to choose a modified version of
the Newman-Unti gauge [3]. This gauge is built upon an incomplete gauge fixing that is
expected to lead to an enhancement of the asymptotic symmetries with respect to more
customary gauges like the Bondi one, in analogy with what has been observed in three bulk

1See [1] for a recent review and further reading suggestions.
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dimensions in several examples of incomplete gauge fixings [4–13]. We will not pursue this
direction here, although it has attracted recent interest — see, e.g., [14, 15] where in the
latter reference the gauge under consideration was dubbed “differential Newman-Unti” —
and we will focus on the comparison between the space of solutions of Einstein’s equations
in the asymptotically anti-de Sitter and flat cases in the chosen gauge. Reference [3] has
set the stage for the gauge we will describe here, although it was originally circumscribed
to the restricted class of algebraically special solutions (for AdS, see [16–22]).

In a nutshell, the starting point is the anti-de Sitter case, where the solution space
admittedly consists of the boundary metric and the boundary energy-momentum tensor,
which is covariantly conserved as a consequence of bulk Einstein’s equations. The ana-
logue of the “Bondi shear” (sometimes referred to as “dynamical shear” later) is not an
independent piece of data because Einstein’s equations require it be proportional with a
k-dependent factor to the geometric shear of the gauge congruence — already part of the
solution space. We move to the asymptotically flat instance by sending k to zero, expanding
the energy-momentum tensor in powers of k2, trading the geometric shear for the dynami-
cal shear along the lines of [23], and requiring the bulk line element to remain finite. This
imposes further evolution equations for the new degrees of freedom at every order in the
radial 1/r expansion, which supplement the energy-momentum conservation in the zero-k
limit. The resulting infinite set defines the flux-balance equations, which can otherwise be
obtained directly by solving Einstein’s equations without cosmological constant.

Besides reaching the correct boundary Ricci-flat dynamics and tracing the AdS ori-
gin of the asymptotically flat solution space, the method presented here delivers Carroll-
covariant flux-balance equations revealing the entire freedom for the choice of the boundary
Carrollian geometry. The pattern involves the general and Weyl-covariant gauge mentioned
earlier, which naturally incorporates the Cotton tensor of the anti-de Sitter boundary, or
its Carrollian emanations in the asymptotically flat situation (see [24]). This tensor carries
information on the gravitational radiation and plays a pivotal role for the description of
magnetic charges [25].

We begin our presentation by defining the covariant Newman-Unti gauge for asymp-
totically anti-de Sitter spaces. Along the way, we review its boundary Weyl covariance, as
well as a useful decomposition of the boundary energy-momentum and Cotton tensors. We
then provide an on-shell expression of the line element up to order 1/r2, where r is a null
radial coordinate, infinite at the conformal boundary. The flat limit, following the prescrip-
tion summarized above, is carried out in the upcoming section, after a precise setting of the
boundary Carrollian structure consecutive to the zero-Λ limit. We show how the new de-
grees of freedom resulting from the expansion of the anti-de Sitter energy-momentum tensor
are sorted out, how they enter the metric and how flux-balance equations are reached. Two
appendices complement the main exposition, bringing about the necessary tools of Carrol-
lian geometry in arbitrary frames (strong Carroll structures, connections, curvatures) as
well as showing how such structures can be attained from pseudo-Riemannian geometries
at vanishing speed of light. A presentation of the Carrollian descendants of the Cotton
tensor closes this article.
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2 Einstein spacetimes in covariant Newman-Unti gauge

Choosing a boundary-covariant gauge. Due to the Fefferman-Graham ambient met-
ric construction [26–28], asymptotically locally anti-de Sitter four-dimensional spacetimes
are determined by a set of independent boundary data, namely a three-dimensional metric
ds2 = gµνdxµdxν and a rank-two tensor T = Tµνdxµdxν , symmetric (Tµν = Tνµ), traceless
(Tµ

µ = 0) and conserved:2

∇µTµν = 0. (2.1)

This construction is reached by setting a homonymous gauge, imposing fall-offs and solving
Einstein’s equations order by order in powers of the radial space-like coordinate.3 At every
order in this expansion, the line element is determined by a tensor G(s)

µν , fixed by Einstein’s
equations in terms of gµν = G

(−2)
µν , Tµν = 3k

16πGG
(1)
µν and their derivatives (here the conformal

boundary is located at ρ→ +∞):

ds2
Einstein = dρ2

(kρ)2 +
∑

s≥−2

1
(kρ)s

G(s)
µν (x)dxµdxν . (2.2)

The conservation (2.1) is itself a consequence of Einstein’s dynamics.
Fefferman-Graham’s gauge is covariant with respect to the three-dimensional pseudo-

Riemannian boundary M . It can also be modified so as to make it Weyl-covariant [30–33].
However, it does not admit a smooth vanishing-k limit. Alternative gauges are Bondi or
Newman-Unti [34–36], valid regardless of the cosmological constant, but not covariant with
respect to the boundary. Let us consider for concreteness the Newman-Unti gauge with
radial coordinate r.4 The line element reads:

ds2
bulk = V

r
du2 − 2dudr +Gij

(
dxi − U idu

) (
dxj − U jdu

)
, (2.3)

where V , Ui and Gij are functions of all coordinates. They are treated as power series of
r, possibly including logarithms,5 with coefficients depending on boundary coordinates x:
the retarded time u and the angles x.

The bulk metric (2.3) is stable neither under boundary diffeomorphisms x → x′, nor
under Weyl rescalings r → rB(x), and these are the features we would like to implement in
a “covariantized” version of the gauge at hand. To this end, we trade −k2du for a boundary
one-form u = uµdxµ, which is an invariant object dual to a time-like vector field normalized
at −k2. As it will become manifest in section 3, where the timelike conformal boundary

2The covariant derivative ∇ stands for the boundary Levi-Civita connection. Indices µ, ν, . . . ∈ {0, 1, 2}
fill in the boundary natural frame, whereas i, j, . . . ∈ {1, 2} are associated with spatial sections.

3Residual symmetries constrain the possible terms entering each order in the radial expansion, thus
simplifying the process of solving Einstein’s equations. The constraints imposed by the boundary Weyl
symmetry were studied in the Fefferman-Graham gauge in [29] and will play an important role too in the
covariant Newman-Unti gauge discussed in the following.

4Both in Bondi and Newman-Unti, ∂r is tangent to a null geodesic congruence. In Newman-Unti gauge
this congruence is affinely parameterized, in contrast to Bondi. This enables to parallelly transport a
canonical null tetrad and make contact with Newman-Penrose formalism [37].

5Logarithms also appear in the Fefferman-Graham gauge when the boundary dimension is even [38, 39].
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will become a null manifold equipped with a Carrollian structure in the limit k → 0, our
parameterization has been chosen such that k =

√
−Λ/3 plays the role of effective boundary

velocity of light. Therefore, the previous substitution amounts to choosing a time-like
boundary congruence that could be interpreted as a hydrodynamic velocity field, if the
boundary energy-momentum tensor were associated with a fluid. This is not necessarily
so because the hydrodynamic regime requires constitutive relations, which are not obeyed
everywhere in the Einstein solution space. The subspace where this happens is the realm
of fluid/gravity correspondence [16, 17]. For convenience, we will nonetheless refer to u as
the “velocity field” and decompose the energy-momentum tensor accordingly.

Introducing a boundary congruence provides also the appropriate tool for addressing
Weyl invariance. In the spirit of the Fefferman-Graham ambient construction, the bulk
geometry should be insensitive to a Weyl rescaling of the boundary metric (weight −2)
and of the boundary velocity form (weight −1)

ds2 → ds2

B2 , u → u
B
, (2.4)

which should be reabsorbed into a redefinition of the radial coordinate: r → rB. This
requires to introduce a Weyl connection one-form A = Aµdxµ transforming as

A → A − d lnB, (2.5)

and suggests the following amendment to the Newman-Unti gauge

−dudr → u
k2 (dr + rA), (2.6)

which is indeed Weyl-invariant, as well as being boundary-general-covariant.
We can follow the suggested pattern and recast (2.3), ignoring the logarithms,6 avoiding

the demarcation of angular and time directions, and reorganizing the expansion in terms
of boundary tensors according to their transversality with respect to the congruence u as
well as their conformal weights:

ds2
bulk = 2 u

k2 (dr + rA) + r2ds2 + rCµνdxµdxν + 1
k4 Fµνdxµdxν

+
∞∑

s=1

1
rs

(
f(s)

u2

k4 + 2 u
k2 f(s)µdxµ + f(s)µνdxµdxν

)
. (2.7)

In this expression f(s) are boundary scalars, f(s)µ boundary transverse vectors, f(s)µu
µ = 0,

and f(s)µν boundary symmetric and transverse tensors, f(s)µνu
µ = 0. Their conformal

weights are s + 2, s + 1 and s. The r2 term defines the boundary metric ds2, which is a
6Logarithms of the radial coordinate might or might not be required depending on the gauge chosen to

investigate the space of solutions. In some cases, like, e.g., when choosing the Fefferman-Graham gauge
in odd spacetime dimensions, they are necessary to reconstruct the full solution space. In other cases,
like, e.g., in asymptotically flat spacetimes in the Bondi gauge, they describe an independent sector of the
solution space that might be added or not to the polynomial expansion. Our case fits in the latter class and
performing a thorough investigation of the larger space of solutions including logarithms and analyzing its
interplay with residual symmetries (see, e.g., [2, 23, 40–42]) is not part of our present agenda.
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free piece of data in the spirit of [9–11, 13, 23]. As long as the bulk metric (2.7) is off-shell,
the boundary symmetric tensors Fµν (weight 0) and Cµν (weight −1) have no reason to be
transverse with respect to u. The latter is the shear of the affine null geodesic congruence
tangent to ∂r aka “Bondi” shear.7 Imposing Einstein’s equations will determine all the
boundary tensors introduced so far in terms of basic independent functions that define the
solution space. As we will see, this set of functions includes u as well as the boundary
metric ds2 and a rank-two symmetric, traceless and conserved tensor coinciding with the
energy-momentum tensor of the Fefferman-Graham gauge.

Before moving on to Einstein’s equations, a few comments are worth making to ap-
preciate the covariant Newman-Unti gauge (2.7). Introducing a normalized but otherwise
arbitrary boundary congruence amounts to the on-set of two degrees of freedom, i.e. to a re-
laxation of the original Newman-Unti gauge fixing. Incomplete gauge fixings might produce
enhancements of asymptotic symmetries and materialize in extra charges — not always in-
tegrable or conserved. They have been investigated mostly in three bulk dimensions [4–13],
where the introduction of an arbitrary congruence8 combined with the freedom of choosing
the boundary metric restores the boundary local Lorentz symmetry and its realization as
bulk diffeomorphisms, augmenting the asymptotic symmetry group [9–13]. Following [10],
an elegant way of taming this information without redundancy is to express the boundary
metric in an arbitrary orthonormal Cartan coframe,9

ds2 = ηABθ
AθB = −

(
θ0̂
)2

+ δabθ
aθb, (2.8)

and set
u = −kθ0̂. (2.9)

The dual frame vectors are {eA} =
{
e0̂, ea

}
with θB (eA) = δB

A . A possible parameterization
of the frame, which we will not use explicitly though, is displayed in eqs. (A.41), (A.42)
and (A.43).

We will not delve into the analysis of asymptotic symmetries in the present note.
Due to the partial relaxation of the gauge this complementary task is more intricate and
deserves a separate and thorough treatment [9–15].

In order to proceed with the covariant Newman-Unti gauge (2.7) and impose Einstein’s
equations, it is desirable to list the available tensors with the correct conformal weights at

7Strictly speaking, the Bondi shear is defined in the BMS gauge (in the expansion Gij = r2qij + O(r)
the two-dimensional metric qij is fixed to be the round sphere) with a prominent role in the asymptotically
flat instance. Normally it is related to the one introduced here by an inhomogeneous transformation.

8Whenever the energy-momentum tensor empowers a fluid interpretation, the conruence at hand is
interpreted as the fluid lines and its arbitrariness portrays the relativistic hydrodynamic-frame invari-
ance [43–45]. This feature is however strictly local because the bulk diffeomorphisms associated with the
boundary hydrodynamic-frame transformations are possibly charged. These properties have been thor-
oughly investigated in two boundary dimensions [9–11, 13] and would undoubtedly deserve a generalization
in higher dimensions, which is outside our scope here. It would better fit a broader study where frame
orthonormality would be downsized, probing general boundary linear transformations.

9We use A, B, . . . ∈
{
0̂, 1̂, 2̂

}
as boundary “flat” indices with a, b, . . . ∈

{
1̂, 2̂
}

. The parameterization of
the coframe in terms of 8 arbitrary functions, suitable for the Carrollian limit, is provided in appendix A,
eq. (A.43).
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each order s of the radial expansion. To achieve this, we need to cope with Weyl covariance
and decompose the energy-momentum tensor with respect to the chosen congruence.

Kinematics, Weyl covariance and transverse duality. Covariantization with re-
spect to Weyl transformations requires to introduce a connection one-form A = AAθ

A,
built on the congruence u = uAθ

A:

A = 1
k2

(
a − Θ

2 u
)
, (2.10)

which transforms as anticipated in (2.5). In this expression a = aAθ
A and Θ are the

acceleration and expansion of the congruence u, defined together with the shear and the
vorticity as10

aA = uB∇BuA, Θ = ∇Au
A, (2.11)

σAB = ∇(AuB) +
1
k2u(AaB) −

1
2ΘhAB, (2.12)

ωAB = ∇[AuB] +
1
k2u[AaB], (2.13)

where hAB is the projector onto the space transverse to the velocity field:

hAB = uAuB

k2 + ηAB (2.14)

(remember we work in an orthonormal Cartan mobile frame — metric displayed in (2.8)).
The above vectors are transverse, whereas the tensors are transverse and traceless.

The Weyl connection A enters the Weyl covariant derivative DA acting on a weight-w
tensor as e.g. a scalar Φ:

DAΦ = eA(Φ) + wAAΦ, (2.15)

or a form vA:
DBvA = ∇BvA + wABvA +AAvB − ηABA

CvC . (2.16)

The resulting tensors have weight w + 1.11 The form field u has weight −1 i.e. uA are
weight-zero, whereas ωAB and σAB have all weight 1. The explicit form of A (2.10) is
obtained by demanding

DAu
A = 0 and uCDCuA = 0. (2.17)

10Our conventions for (anti-) symmetrization are: A(AB) = 1
2 (AAB + ABA) and A[AB] = 1

2 (AAB − ABA).
11Special caution is advised in comparing the present expressions with those appearing e.g. in

refs. [3, 45, 46], where a natural frame was used. When dealing with Weyl covariance in orthonormal
frame, the metric components have weight zero. Hence for any tensor, covariant and contravariant com-
ponents have the same weights. The coframe form elements, however, have weight −1, whereas the frame
vectors have weight +1. If a weight-w tensor has p contravariant and q covariant indices, its Weyl-covariant
derivative reads:

DCK A...
B... = ∇CK A...

B... + (w + p − q)ACK A...
B...

+
(
ηCDAA − δA

C AD − δA
DAC

)
K D...

B... + · · ·

−
(
ηCBAD − δD

C AB − δD
B AC

)
K A...

D... − · · ·

and this has now weight w + 1.
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The Weyl covariant derivative is metric-compatible with effective torsion:

DCηAB = 0, (2.18)
(DADB − DBDA) Φ = wΦFAB, (2.19)

where
F = 1

2FABθ
A ∧ θB = dA (2.20)

is Weyl-invariant (FAB are weight-2). Metric compatibility and (2.17) imply

uCDChAB = 0, (2.21)

infering that the operator uCDC respects transversality.
Commuting the Weyl-covariant derivatives acting on vectors, one defines the Weyl

covariant Riemann tensor

(DADB − DBDA)V C = RC
DABV

D + (w + 1)V CFAB (2.22)

(V C are weight-w whereas V = V CeC has weight w + 1) and the usual subsequent quan-
tities. In three (boundary) spacetime dimensions, the covariant Ricci and the scalar (both
weight-2) curvatures read:

RAB = RAB +∇BAA +AAAB + ηAB

(
∇CA

C −ACA
C
)
− FAB, (2.23)

R = R+ 4∇AA
A − 2AAA

A, (2.24)

where RAB is the Ricci tensor of the boundary Levi-Civita connection and R the corre-
sponding scalar curvature. The Weyl-invariant Schouten tensor is

SAB = RAB − 1
4RηAB = RAB − 1

4RηAB +∇BAA +AAAB − 1
2ACA

CηAB − FAB. (2.25)

It is customary to introduce the vorticity two-form

ω = 1
2ωAB dxA ∧ dxB = 1

2

(
du + 1

k2 u ∧ a
)
, (2.26)

as well as the Hodge dual of this form, which is proportional to u:

kγu = ⋆ω ⇔ kγuA = 1
2ϵABCω

BC . (2.27)

In this expression γ is a scalar of weight 1.
In three spacetime dimensions and in the presence of a vector field u, one naturally

defines a fully antisymmetric two-index tensor:12

η̂AB = −u
C

k
ϵCAB, (2.28)

obeying
η̂AC η̂

C
B = hAB, η̂AB η̂AB = 2. (2.29)

12This hatted two-index tensor should not be confused with Minkowski metric.
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With this tensor the vorticity reads:

ωAB = k2γη̂AB. (2.30)

The two-index tensor η̂AB defines a duality map within the space of symmetric, trans-
verse (with respect to u) and traceless tensors. If V A is transverse, so is

∗V A = η̂B
AVB. (2.31)

Similarly with a symmetric, transverse and traceless tensor WAB:

∗WAB = η̂C
AWCB (2.32)

is symmetric, transverse and traceless.

The energy-momentum tensor and the Cotton tensor. Given a normalized con-
gruence ∥u∥2 = −k2 we can decompose the energy-momentum tensor as in hydrodynamics:

TAB = (ε+ p)uAuB

k2 + pηAB + τAB + uAqB

k2 + uBqA

k2 , (2.33)

where
ε = 1

k2TABu
AuB (2.34)

is the energy density and p the analogue of a perfect stress. The symmetric viscous stress
tensor τAB and the heat current qA are purely transverse:

uAτAB = 0, uAqA = 0, qB = −εuB − uATAB. (2.35)

In three dimensions, a conformal energy-momentum tensor has weight-1 covariant
components in the coordinate basis, and weight-3 components in the orthonormal frame.
Consequently, the pressure and energy density, the heat-current qA and the viscous stress
tensor τAB have all weight 3. Furthermore, since the splitting of the stress tensor into p

and τAB is arbitrary, we choose to implement the absence of trace as

ε = 2p, τ A
A = 0. (2.36)

Due to the absence of trace, the conservation equation (2.1) can be traded for

DCT
C
B = 0. (2.37)

In the gauge under consideration, the energy-momentum tensor comes along with the
boundary Cotton tensor. They both enter the bulk metric, playing dual, electric versus
magnetic, roles in various instances, as e.g. in the bulk Weyl tensor. The Cotton tensor is
generically a three-index tensor with mixed symmetries.13 In three dimensions, which is

13From the bulk viewpoint, the boundary energy-momentum and Cotton tensors play dual roles. Notice
that the energy-momentum tensor in (2.33) has an extra factor of k with respect to the Cotton tensor
in (2.40), due to their different dimensions.
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the case for our boundary geometry, the Cotton tensor can be dualized into a two-index,
symmetric and traceless tensor:14

CAB = ϵ CD
A DC (FBD + SBD) = ϵ CD

A ∇C

(
RBD − R

4 ηBD

)
, (2.38)

where we recall that FBD and SBD are respectively the Weyl curvature and the Weyl-
covariant Schouten tensor defined in (2.20) and (2.25). The Cotton tensor CABθ

AθB is
Weyl-covariant of weight 1, and is identically conserved:

DCC
C

B = ∇CC
C

B ≡ 0, (2.39)

sharing thereby all properties of the energy-momentum tensor.
Following (2.33) we can decompose the Cotton tensor into longitudinal, transverse and

mixed components with respect to the congruence u:
1
k
CAB = 3c

2
uAuB

k2 + c

2ηAB − cAB

k2 + uAcB

k2 + uBcA

k2 . (2.40)

Such a decomposition naturally defines the weight-3 Cotton scalar density

c = 1
k3CABu

AuB, (2.41)

as the longitudinal component. The symmetric and traceless Cotton stress tensor cAB and
the Cotton current cA (also weight-3) are purely transverse:

c A
A = 0, uAcAB = 0, uAcA = 0, (2.42)

and obey

cAB = −khC
Ah

D
BCCD + ck2

2 hAB, cB = −cuB − uACAB

k
. (2.43)

One can use the definition (2.38) to further express the Cotton density, current and
stress tensor as ordinary or Weyl derivatives of the curvature. We find

c = 1
k2u

B η̂DCDC (SBD + FBD) , (2.44)

cB = η̂CDDC (SBD + FBD)− cuB, (2.45)

cAB = −hE
A

(
kϵ CD

B − uB η̂
CD
)

DC (SED + FED) + ck2

2 hAB. (2.46)

Solving Einstein’s equations. Einstein’s equations are15

EMN ≡ Rbulk
MN − 1

2R
bulkgbulk

MN − 3k2gbulk
MN = 0, (2.47)

and we must probe them in the covariant Newman-Unti gauge. Assuming a boundary
metric given in (2.8), the bulk line element (2.7) reads:

ds2
bulk = 2 u

k2 (dr + rA) + r2ds2 + rCABθ
AθB + 1

k4 FABθ
AθB

+
∞∑

s=1

1
rs

(
f(s)

u2

k4 + 2 u
k2 f(s)Aθ

A + f(s)ABθ
AθB

)
, (2.48)

14We use a plain font for the Cotton CAB versus a curly font for the shear CAB .
15We use M, N, . . . ∈ {r, boundary} as bulk indices.
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where all boundary tensors are now defined in the orthonormal frame at hand.16 The
summation over A and B in the last terms of (2.48) is actually reduced to a summation
over the transverse components a and b thanks to the transversality of f(s)A and f(s)AB

with respect to the velocity field (2.9).
We will limit here the analysis to the order 1/r2, which is sufficient for illustrating

accurately later the asymptotically flat pattern.

Order r The important output here is that the Bondi shear CAB is not free, but settled
by the shear of the congruence u, which is of geometric nature:

k2CAB = −2σAB. (2.49)

On shell, the Bondi shear is thus manifestly traceless and transverse with respect to
u. Anticipating the usage of the present formalism in describing general solutions
of vacuum Einstein’s equations, we also introduce a news tensor (similarly defined
in arbitrary dimension). As opposed to the usual definitions, the present tensor is
boundary-covariant, Weyl-invariant, symmetric, traceless and transverse:

NAB = uCDCCAB. (2.50)

Equation (2.49) will be assumed when moving to the next orders.

Order 1 Unsurprisingly from the Feffermam-Graham experience, we learn that FAB is
related to the boundary Weyl-invariant Schouten tensor displayed in eq. (2.25):17

FAB = 2uC
(
SC(A + FC(A

)
uB) + DAuC DBu

C ,

= 2u(ADC

(
σ C

B) + ω C
B)

)
− R

2 uAuB +
(
σ2 + k4γ2

)
hAB + 2ω C

(A σB)C ,

(2.51)
where

γ2 = 1
2k4ωABω

AB, σ2 = 1
2σABσ

AB (2.52)

(γ was defined alternatively in eq. (2.27)). At this stage, the only independent and free
data are those defining the boundary geometry (as stressed in (2.9), the congruence
u is aligned with the observers at rest with respect to (2.8)).

Orders 1/r and 1/r2 At order 1/r new information is expected to come up in the form
of a boundary conformal energy-momentum tensor. In contrast with the Fefferman-
Graham gauge, the energy-momentum enters through its decomposition with respect
to the congruence u, i.e. ε, qA and τAB, rather than TAB. Furthermore, it comes
accompanied with the transverse-dual of the Cotton current and stress, ∗cA and
∗cAB, see eqs. (2.31), (2.32) and (2.45), (2.46) — yet another motivation to split the

16In this frame CAB has weight one, f(s), f(s)A and f(s)AB have all weight s+2 whereas FAB is weight-2.
17The tensor defined in (2.51) is slightly different from the analogous tensor SAB introduced in [3],

eq. (2.42). It contains extra shear terms. The reason is that in ref. [3], when writing (2.41), the authors
wanted to stress that shear terms were present, but ultimately the shear was vanishing. The present
definition accounts for all shear terms.
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energy-momentum tensor as discussed earlier. This trait is new, both compared to
the Fefferman-Graham gauge, where the Cotton tensor does not appear explicitly at
any order, and with respect to standard Bondi or Newman-Unti gauges, where it is
present in disguise.18

The functions to be determined are f(1), f(1)A and f(1)AB, which must have conformal
weight 3. This leaves little freedom, given the available tensors. We find:

f(1)
u2

k4 + 2 u
k2 f(1)Aθ

A + f(1)ABθ
AθB = 8πG

k4

(
εu2 + 4

3u∆q + 2k2

3 ∆τ

)
(2.53)

with ∆q = ∆qAθ
A and ∆τ = ∆τABθ

AθB defined as

∆qA = qA − 1
8πG ∗cA, ∆τAB = τAB + 1

8πGk2 ∗cAB. (2.54)

The functions ε, qA and τAB, which merely parameterize the line element at this
stage, can be packaged in a symmetric and traceless tensor TAB as in (2.33), (2.36)
and, as we shall see shortly in (2.60), Einstein’s equations demand the conservation
of TAB, thus completing its identification as the boundary energy-momentum tensor
as in the Fefferman-Graham gauge.
We now ought to focus on the 1/r2 contribution to the line element (2.48), i.e., on

f(2)
u2

k4 + 2 u
k2 f(2)Aθ

A + f(2)ABθ
AθB, (2.55)

where f(2), f(2)A and f(2)AB must have conformal weight 4. The analogy with
the Fefferman-Graham expansion suggests that no new free boundary functions
should appear without spoiling Einstein’s equations. Indeed, upon imposing (2.49)
and (2.51), one finds

Err = − 3
r5 ηABf

AB
(1) − 6

(
ηABf

AB
(2) + 3

2k2σABf
AB
(1)

)
1
r6 +O

(
1
r7

)
kEr0̂ =

(
−f(2) − 2k2ηABf

AB
(2) + 1

2hABDAfB
(1) −

5
2σABf

AB
(1) + cγ

)
1
r4 +O

(
1
r5

)
Era =

(
2f(2)a − 3

2haBDCf
BC
(1) + 1

k2 (σaB + 4ωaB) fB
(1)

)
1
r4 +O

(
1
r5

)
Eab =

(
−f(2)h

ab + cγhab + 4ω (a
C f

b)C
(1) + 2k2η̂ a

C η̂ b
D fCD

(2) − 2uCDCf
ab
(1)

+ η̂ a
C η̂ b

D D
(C
f

D)
(1) +

1
k2

(
cη̂ a

C σCb − f(1)σ
ab
)
+ 4σ (a

C f
b)C
(1)

)
1
r2 +O

(
1
r3

)
(2.56)

for the often referred to as constraint Einstein’s equations. These equations fix al-
gebraically all terms at the 1/r2 order in the expansion of the bulk metric, thus con-
firming the absence of any new free function. When rewritten in terms of the basic

18One could not stress enough the profound versatility of the boundary Cotton tensor. Together with
the boundary energy-momentum tensor, they control the asymptotic behaviour of the bulk Weyl tensor,
the electric versus magnetic gravitational characteristics, the duality issues, and are natural ingredients in
Newman-Penrose formalism. In the flat instance and in the current gauge, the Cotton tensor contributes
to the gravitational radiation along with the Bondi shear. A recent presentation of some of these features
is available in ref. [25].
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quantities parameterizing the space of solutions, the three coefficients in (2.55) read:

f(2) = 8πG
3k2

(
σCD∆τCD + DC∆qC

)
+ cγ, (2.57)

f(2)A = −8πG
3k4 σAC∆qC + 4πG

k2

(
hACDD∆τCD + 8

3γ ∗∆qA

)
, (2.58)

f(2)AB = −4πG
k4

(4
3u

CDC∆τAB + 2
3hAChBDD (C∆qD) − 1

3hABh
CDDC∆qD

+2σ C
(A ∆τB)C

)
− 1

2k4 (8πGεσAB − c ∗σAB) +
32πG
3k2 γ ∗∆τAB. (2.59)

These expressions contain all possible combinations of the shear and of the vor-
ticity together with adequately projected Weyl covariant derivatives of the energy-
momentum and Cotton tensors,19 carrying the right tensorial structure and conformal
weight. Substituting eqs. (2.57), (2.58), (2.59) into the remaining Einstein’s equa-
tions (2.47) one obtains:

k

8πGE0̂0̂ = 1
r2 DBT

B
0̂ +O

( 1
r3

)
,

k

8πGE0̂a = 1
r2 DBT

B
a +O

( 1
r3

)
(2.60)

(since TAB is traceless, DA ≡ ∇A, the Levi-Civita boundary connection for the frame
metric ηAB). The omitted terms contain the tensors f(3), f(3)A and f(3)AB. This con-
firms that no additional constraints are imposed on the quantities parameterizing the
solution space identified at the previous orders, i.e., the velocity field, the boundary
metric (frame in the present formalism) and the boundary energy-momentum tensor.

Higher orders and possible resummation The above pattern can be repeated ad nau-
seam at the cost of a substantial growth in admissible terms. The third order would
be interesting as it is expected to host the Newman-Penrose charges in the flat limit.
This is beyond our motivations, but raises the issue of resummability under condi-
tions of the series (2.7). This question is usually immaterial in Bondi or Newman-Unti
gauges, where due to the absence of boundary vorticity20 simple solutions such as
Kerr’s are embodied in the form of infinite series. In the covariant Newman-Unti
gauge, the explicit appearance of the boundary Cotton tensor allows to tune the bulk
Weyl tensor and select algebraically special Einstein spacetimes, for which the series
is resummable. This is achieved by imposing

σAB = 0, ∆qA = 0, ∆τAB = 0, (2.61)

which implies that
f(s)A = 0, f(s)AB = 0 (2.62)

19The covariant Newman-Unti gauge has often been referred to as the derivative-expansion gauge for this
reason. This was borrowed from the original fluid/gravity literature, where the derivative expansion was
inspired by the fluid constitutive relations.

20An explicit realization of the boundary frame of Newman-Unti gauge is displayed in (A.41), (A.42) with
∆i = 0, as mentioned earlier in this section. The boundary vorticity always vanishes then as it is proven
by comparing (A.45) with (A.46).
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and
f(2s+1) = (−)s8πGεγ2s, f(2s+2) = (−)scγ2s+1. (2.63)

The boundary metric is still a free variable, but only the energy density ε(x) remains
from the energy-momentum tensor, whose heat current and stress are fixed by those
of the Cotton:

qA = 1
8πG ∗cA, τAB = − 1

8πGk2 ∗cAB. (2.64)

As a consequence, assuming that (2.1) is satisfied, one finds

ds2
res. Einstein = 2 u

k2 (dr + rA) + r2ds2 + F

k4 + u2

k4ρ2 (8πGεr + cγ) (2.65)

with
ρ2 = r2 + γ2 (2.66)

and F = FABθ
AθB given in (2.51) imposing zero shear. The Petrov analysis of (2.65)

has been discussed in refs. [3, 20].

3 The flat avatars

First things first. Handling the flat limit is a triptych. At the first place stands the
boundary geometry, which becomes Carrollian as the time-like conformal boundary of
asymptotically anti-de Sitter spacetimes is traded for the null infinity of their asymptoti-
cally flat relatives. Secondly, the energy-momentum tensor should be expanded in Laurent
series with respect to k2 and embrace all extra degrees of freedom of the flat solution space.
Finally comes the bulk line element that should remain finite in the zero-k limit, imposing
to this end constraints and evolution equations on the functions defining the solution space,
besides the Carrollian limit of the already available eqs. (2.1).

Given the relativistic boundary metric and the velocity field, (2.8) and (2.9), the start-
ing point of our analysis is the bulk line element (2.48), which we reproduce here bearing
in mind the transversality properties:

ds2
bulk = 2 u

k2 (dr + rA) + r2ds2 + rCabθ
aθb + 1

k4 FABθ
AθB

+
∞∑

s=1

1
rs

(
f(s)

u2

k4 + 2 u
k2 f(s)aθ

a + f(s)abθ
aθb

)
. (3.1)

The Carrollian limit of the boundary geometry is reached as follows:21

µ = lim
k→0

u
k2 = − lim

k→0

θ0̂

k
, θ̂a = lim

k→0
θa, (3.2)

so that the Carrollian degenerate metric spells

dℓ2 = lim
k→0

ds2 = δabθ̂
aθ̂b. (3.3)

21Carrollian quantities will often be distinguished with hats. However, in order to avoid cluttering of
indices and symbols, we do make the distinction amongst relativistic and Carrollian attributes, only when
it is necessary. This will not be the case e.g. for the Bondi shear and news.
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For the frame vectors, the prescription is

υ = lim
k→0

u = lim
k→0

ke0̂, êa = lim
k→0

ea. (3.4)

It should be stressed that the limit may not be necessary, because the parameterization of
the diads θa in terms of the natural-coframe components dxµ can be chosen so as not to de-
pend on k, and that θ0̂ could simply be dx0 = kdu in which case µ = −du (some further ex-
amples are displayed in appendix A, eqs. (A.3), (A.4), (A.7) and eqs. (A.41), (A.42), (A.43)).
This will be definitely our viewpoint here.

The kernel of the degenerate metric (3.3) is the field of observers υ, and µ is its dual
clock form embracing also the Ehresmann connection, as explained in appendix A. All
these obey

µ(υ) = −1, θ̂a(êb) = δa
b , θ̂a(υ) = 0, µ(êa) = 0. (3.5)

The Carrollian geometric data are part of the solution space of Ricci-flat spacetimes in the
flat covariant Newman-Unti gauge. Compared to the standard flat Newman-Unti gauge,
the extra piece of data is the clock form µ, which echoes the velocity congruence of the
AdS relative. More accurately, the additional piece of information carried by the covariant
Newman-Unti gauge is the boundary vorticity ∗ϖ, as discussed in appendix A, footnote 36.

The vanishing-k limit the AdS-boundary Weyl connection A is readily reached due to
its k-independence. As described explicitly in appendix A, one effortlessly expresses A in
Carrollian terms, eq. (A.53):

A = φaθ̂
a − θ

2µ (3.6)

with φa and θ given in (A.13) or (A.46) and (A.19). Therefore, the first two terms in (3.1)
have a well-defined limit without the need of imposing Einstein’s equations.

The next term in (3.1) plays an essential role in gravitational physics. Indeed, Ein-
stein’s equation (2.49), reproduced here for the spatial components — the only non-zero
due transversality combined with our choice of congruence u,

k2Cab = −2σab, (3.7)

implies that σab = 0 at vanishing k. As explained in eq. (A.52), the latter translates in
Carrollian terms into

ξab = 0, (3.8)

where ξab is defined in (A.19) as the traceless component of the extrinsic curvature. On
the one hand, the geometrical shear ξab of the boundary Carrollian geometry must vanish
— an extrinsic-curvature condition for the conformal null boundary. On the other hand,
the dynamical shear Cab is free and carries information on the gravitational radiation. No
equation will constrain it or make it evolve, but it will source the evolution of other degrees
of freedom.

In summary, till the order r, the Ricci-flat bulk metric reads:

ds2
Ricci-flat

∣∣∣
r
= µ

[
2dr + r

(
2φaθ̂

a − θµ
)]

+ r2dℓ2 + rCabθ̂
aθ̂b, (3.9)
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where Cab(u,x) is an arbitrary traceless Carrollian tensor, referred to as the Bondi shear
(cf. the footnote 7). The Bondi news is another traceless Carrollian tensor obtained as the
Carrollian limit of eq. (2.50):

ˆNab = D̂υCab. (3.10)
In order to pursue the study of the next orders, we must be careful with the zero-k

limit. Both in the line element and in the conservation equations (2.1), the geometric
shear σab = ξab must be substituted by −k2

2 Cab on account of eq. (3.7) before the limit is
taken. Often this won’t have any effect and the term in consideration will drop. Sometimes,
however, due to the presence of negative powers of k, finite terms will survive or divergences
will impose further requirements.

The first and simplest application of the rule just stated concerns the order-1 term
F
k4 = 1

k4 FABθ
AθB. Expressing (2.51) in Carrollian terms we find:

F

k4 = ξ2

k4 dℓ2 + 1
k2

(
3ξ2µ2 + 2D̂bξ

b
aµθ̂

a − 2 ∗ϖ ∗ξabθ̂
aθ̂b
)

+ ∗ϖ2dℓ2 − 2 ∗D̂a ∗ϖµθ̂a − K̂ µ2 − 5k2 ∗ϖ2µ2

=
(

C 2

4 + ∗ϖ2
)

dℓ2 − K̂ µ2 − D̂bC
b
aµθ̂

a − 2 ∗D̂a ∗ϖµθ̂a

+ ∗ϖ ∗Cabθ̂
aθ̂b + k2

(3
4C 2 − 5 ∗ϖ2

)
µ2 (3.11)

with C 2 = 1
2C abCab and quantities like ξ2, ∗ϖ, K̂ defined in appendix B. The asterisk

stands for the relativistic congruence-transverse or Carrollian-basis duality introduced in
eqs. (2.28), (2.29), (2.31), (2.32) or (B.1), (B.2). Some terms drop in the zero-k limit but
no divergence occurs and we are left with a piece in the line element, which now contains
explicitly the Bondi shear :

lim
k→0

F

k4 =
(

C 2

4 + ∗ϖ2
)

dℓ2 − K̂ µ2 − D̂bC
b
aµθ̂

a − 2 ∗D̂a ∗ϖµθ̂a + ∗ϖ ∗Cabθ̂
aθ̂b. (3.12)

Before moving on to the next order, which uncovers the method of expanding the anti-
de Sitter energy-momentum tensor as a mean of reconstructing Ricci-flat spacetimes, it is
fair to give credit to the authors of ref. [23], where the pioneering idea of substituting the
Bondi for the geometric shear with the accompanying power of the cosmological constant
was initiated.

Order 1/r and the advent of the energy-momentum tensor. Let us assume that
in the course of the bulk flat limit, the boundary energy-momentum tensor is analytic in
k2. It can thus be represented as a Laurent series about k = 0:

ε =
∑
n∈Z

k2nε(n), (3.13)

qa =
∑
n≥2

ζa
(n)
k2n

+ ζa

k2 +Qa + k2πa +
∑
n≥2

k2nπa
(n), (3.14)

τab = −
∑
n≥3

ζab
(n)
k2n

− ζab

k4 − Σab

k2 − Ξab − k2Eab −
∑
n≥2

k2nEab
(n). (3.15)
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Each function in these series (some have been singled out for reasons that will be clarified
later) is a Carrollian tensor (scalar, vector, or symmetric and traceless two-tensor) that
is possibly one of the boundary degrees of freedom, which we call Chthonian to recall
they encode the asymptotically flat Einstein dynamics probing the bulk metric in depth
from the boundary. These tensors are expected to obey flux-balance equations, which are
Carrollian avatars of vacuum Einstein’s equations, and that we will attain using anti-de
Sitter dynamics and imposing a regular behaviour at zero k.

As an introductory statement, it is important to stress that we have no proof for
the proclaimed analyticity. The latter is a working framework, resulting in a consistent
description of asymptotically flat spacetimes, and this end justifies the means. The rules
are simple: insert (3.13), (3.14), (3.15) in the line element (3.1) at each order, and impose
regularity at k = 0 after trading ξab for −k2

2 Cab. This process starts with 1/r, since this is
the first term sensitive to the energy-momentum tensor, but the substitution of Cab will
be performed systematically, in the line element, in Einstein’s equations, or in the further
definition of the complex mass aspect, without raising any order ambiguity.

At order 1/r we should probe (2.53), which spells

f(1)
u2

k4 + 2 u
k2 f(1)aθ

a + f(1)abθ
aθb = 8πG

(
εµ2 + 4

3µ
∆qa

k2 θ̂a + 2
3
∆τab

k2 θ̂aθ̂b
)

(3.16)

with ε given in (3.13) and

∆qa

k2 =
∑
n≥2

ζa
(n)

k2n+2 + 1
k4

(
ζa − ∗za

8πG

)
+ 1
k2

(
Qa − ∗χa

8πG

)
+
(
πa − ∗ψa

8πG

)
+
∑
n≥2

k2n−2πa
(n), (3.17)

∆τab

k2 = −
∑
n≥3

ζab
(n)

k2n+2 − 1
k6

(
ζab − ∗Zab

8πG

)
− 1
k4

(
Σab − ∗Xab

8πG

)
− 1
k2

(
Ξab − ∗Ψab

8πG

)

−Eab −
∑
n≥2

k2n−2Eab
(n), (3.18)

where we have used (3.14), (3.15), the definitions (2.54) of ∆qa and ∆τab, as well as the
Carrollian Cotton tensors za, χa, ψa, Zab, Xab, Ψab displayed in (B.13), (B.14). Finiteness
in the flat limit sets up two sorts of requirements on the Carrollian descendants of the
energy-momentum tensor.

• Infinite subsets of Laurent coefficients are required to vanish:
ε(n) = 0 ∀n < 0
ζa

(n) = 0 ∀n ≥ 2
ζab

(n) = 0 ∀n ≥ 3;
(3.19)

• Five Laurent coefficients are locked in terms of the Carroll Cotton tensors defined
in (B.17), (B.18), (B.20), (B.21), (B.22):

ζa = ∗za

8πG, Qa = ∗χa

8πG, ζab = ∗Zab

8πG , Σab = ∗Xab

8πG , Ξab = ∗Ψab

8πG . (3.20)
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Hence a finite subset of energy-momentum Carrollian descendants are not indepen-
dent but are instead of geometric nature, determined by the boundary Carroll structure
via its Cotton tensor.

No more constraints show on the Chthonian degrees of freedom at 1/r order.
Defining

Na = ∗ψa − 8πGπa, (3.21)

we recast the order-1/r term (3.16) in the flat limit as:

lim
k→0

(
f(1)

u2

k4 + 2 u
k2 f(1)aθ

a + f(1)abθ
aθb

)
= 8πGε(0)µ

2 − 4
3µNaθ̂

a − 16πG
3 Eabθ̂

aθ̂b

≡ f̂(1)µ
2 + 2µf̂(1)aθ̂

a + f̂(1)abθ̂
aθ̂b. (3.22)

The latter expression calls for two remarks. Firstly, the Carrollian tensors ε(n≥1), πa
(n≥2)

and Eab
(n≥2) are absent. We should refrain from interpreting this as a sign that those aren’t

genuine degrees of freedom. Some of them ought to appear in the line element in the
next orders and therefore participate in the dynamics. Only when one is guaranteed that
a Laurent coefficient is absent from the line element at any order, can we declare it is
irrelevant and set it consistently to zero. The order-1/r2 analysis will significantly underpin
this statement.

Secondly comes an important question: what is the dynamics of the boundary degrees
of freedom ε(0), Na and Eab that remain in the 1/r term of the bulk line element? Ensuing
our philosophy, this dynamics is encoded (i) in the zero-k limit of anti-de Sitter Einstein’s
equations and (ii) in the finiteness requirement of the line element. The latter has already
been exploited at the order under consideration, while the former is the energy-momentum
conservation (2.1) on which we will elaborate now. Our treatment consists in the four steps
summarized below.

1. In the frame at use, we consider the relativistic energy-momentum tensor conservation
equations (2.1) recast in Carrollian terms as in appendix A, eqs. (A.59) and (A.60),
which we redisplay here for convenience:

L = D̂υε+ D̂aq
a + ξabτ

ab = 0, (3.23)

T a = 1
d
D̂aε+ D̂bτ

ab + 2qbϖ
ba + 1

k2

(
D̂υq

a + ξabqb

)
= 0. (3.24)

2. We insert in these equations the variables ε, qa and τab in their expanded
forms (3.13), (3.14) and (3.15), taking into account the finiteness requirements (3.19)
and (3.20).

3. The requirements (3.19) and (3.20) bring the Cotton tensor inside the boundary
energy-momentum conservation equations L = 0 and T a = 0. At this stage
we must exploit the Cotton identities {DCot = 0, Ia

Cot = 0}, {ECot = 0,Ga
Cot = 0},

{FCot = 0,Ha
Cot = 0} and {WCot = 0,X a

Cot = 0} set in appendix B — see
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eqs. (B.25), (B.26), (B.27), (B.28), (B.29), (B.30), (B.31), (B.32) — and recast for
our needs as:

D̂b ∗Ψab + 2 ∗ϖχa = D̂υ ∗ψa + 1
2 ∗D̂ac(0) − ∗ψbξ

ab, (3.25)

D̂b ∗Xab + 2 ∗ϖza − D̂υ ∗χa = 1
2 ∗D̂ac(1) − ∗χbξ

ab, (3.26)

D̂b ∗Zab − D̂υ ∗za = 1
2 ∗D̂ac(2) − ∗zbξ

ab. (3.27)

With this we reach the following:

L = k2D̂aπ
a +

∑
n≥2

k2nD̂aπ
a
(n) − ξab

(
k2Eab +

∑
n≥2

k2nEab
(n)

)

+D̂υε(0) +
∑
n≥1

k2nD̂υε(n) −
1

8πG
(
∗Ψabξab − D̂a ∗χa

)
− 1
8πGk2

(
∗Xabξab − D̂a ∗za

)
− 1

8πGk4 ∗Zabξab, (3.28)

and

T a = −D̂b

(
k2Eab +

∑
n≥2

k2nEab
(n)

)
+ 2 ∗ϖ

(
k2 ∗πa +

∑
n≥2

k2n ∗πa
(n)

)
+ 1

2D̂aε(0)

+1
2
∑
n≥1

k2nD̂aε(n) + D̂υ

(
πa +

∑
n≥2

k2n−2πa
(n)

)
+ ξa

b

(
πb +

∑
n≥2

k2n−2πb
(n)

)

− 1
8πG

(
D̂υ ∗ψa + 1

2 ∗D̂ac(0) − ∗ψbξ
ab
)

− 1
8πGk2

(1
2 ∗D̂ac(1) − ∗χbξ

ab
)
− 1

8πGk4

(1
2 ∗D̂ac(2) − ∗zbξ

ab
)
. (3.29)

4. Lastly we express the geometric Carrollian shear as ξab = −k2

2 Cab inside eqs. (3.28)
and (3.29). This is a juggernaut due to the heavy presence of ξab in the Car-
rollian Cotton tensors c(1), c(2), χa, za, Ψab, Xab and Zab — see their defini-
tions (B.15), (B.17), (B.18), (B.20), (B.21) and (B.22). This operation regularizes
the otherwise singular behaviour of the last lines in (3.28) and (3.29) at vanishing k,
which instead produce a wealth of finite terms, all rooted in the Carrollian Cotton
tensor.

The flat limit of the boundary energy-momentum conservation can now be safely
taken and yields:

lim
k→0

L = D̂υε(0) +
1

8πGD̂a ∗χa − 1
16πG

(
D̂aD̂b

ˆN ab + C abD̂aR̂b +
1
2CabD̂υ

ˆN ab
)
,

(3.30)
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and

lim
k→0

T a = 1
2D̂b

(
δabε(0) +

1
8πGη

abc(0)

)
+ D̂υ

(
πa − 1

8πG ∗ ψa
)

+ 1
16πG

[
C abD̂bK̂ + ∗C abD̂bÂ − 4 ∗ϖ ∗C abR̂b

−1
2D̂b

(
D̂bD̂cC

ac − D̂aD̂cCbc

)
+C abD̂c ˆNbc +

1
2D̂b

(
C ac ˆNbc

)
− 1

4D̂a
(
C bc ˆNbc

) ]
. (3.31)

Equations (3.30) and (3.31) are one of our main achievements and deserve further
discussion. We would like to insist that there is neither magic nor ambiguity in reaching
them. We have followed a plain zero-k limit informed about the regularity conditions (3.20),
which involve the Carrollian Cotton tensor and its identities, and instructed with Einstein’s
equation ξab = −k2

2 Cab. Although long and technical, the method reveals the central
role of the Cotton tensor: all terms responsible for the gravitational radiation, involving
among others the shear and the news tensors, originate from the Carrollian Cotton tensors.
Because of the vanishing ξab, only six of those remain — see appendix B: c(−1), c(0), ψa,
eqs. (B.15), (B.16), and χa, Ψab, Xab given in (B.35), (B.36), (B.37) for vanishing Carrollian
shear. They obey eqs. (B.38), (B.39), (B.40), (B.41) and (B.42).22 This means in particular
that once the bulk flat limit is reached i.e. the boundary Carroll structure has no geometric
shear, za and Zab vanish. The Carrollian energy-momentum tensors ζa and ζab do also
vanish by virtue of (3.20). Only Qa, Σab and Ξab survive, and (3.30), (3.31) lead to an
alternative writing of the conservation equations:

D̂υε(0) + D̂aQ
a = 1

16πG

(
D̂aD̂b

ˆN ab + C abD̂aR̂b +
1
2CabD̂υ

ˆN ab
)

(3.32)

and

1
2D̂aε(0) − D̂bΞab + 2 ∗ϖ ∗Qa + D̂υπ

a = − 1
16πG

[
C abD̂bK̂ + ∗C abD̂bÂ − 4 ∗ϖ ∗C abR̂b

−1
2D̂b

(
D̂bD̂cC

ac − D̂aD̂cCbc

)
+ C abD̂c ˆNbc

+1
2D̂b

(
C ac ˆNbc

)
− 1

4D̂a
(
C bc ˆNbc

) ]
. (3.33)

This latter form discloses a Carrollian conservation of the type (B.33), (B.34) with a right-
hand side though. This is thus a flux-balance equation, where the source is maintained
by the bulk gravitational radiation encoded in the shear and the news. Notice that the
above momentum πa coincides with P a in (B.34) and is dynamical, whereas the traceless

22The Carrollian Cotton identities described in appendix B as {DCot = 0, Ia
Cot = 0}, {ECot = 0,Ga

Cot = 0},
{FCot = 0,Ha

Cot = 0} and {WCot = 0,X a
Cot = 0} are obtained from the relativistic conservation (2.39) ex-

pressed as (B.23) and (B.24). We must not insert in these equations ξab = − k2

2 Cab before taking the flat
limit as they are agnostic about bulk Einstein’s equations. The Cotton identities at hand are of boundary-
geometric nature, and when the Carrollian shear vanishes, they just become simpler by setting ξab = 0.
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Carrollian stress Ξab is −Υab in (B.33), (B.34), and is dictated by the Cotton due to (3.20);
similarly Qa here is the energy flux Πa of (B.33), (B.34), also locked by the Cotton in (3.20).

Even in absence of Bondi shear Cab and news ˆNab, the presence of a non-vanishing en-
ergy flux betrays the breaking of local Carroll boost invariance (see the end of appendix B)
in the boundary Carrollian dynamics associated with Ricci-flat spacetimes. This break-
ing accounts for bulk gravitational radiation, which in the covariant Newman-Unti gauge
does not originate solely in the news (3.10) but is also carried by the Carrollian energy
flux Πa = Qa = 1

8πG ∗χa. In Robinson-Trautman spacetimes and in the present gauge,
the gravitational radiation is exclusively rooted in this Carrollian Cotton descendant —
see ref. [3].

Observe in passing the Carrollian Cotton identities (B.39) and (B.41), which we repli-
cate here for convenience:

D̂υc(0) + D̂aχ
a = 0, (3.34)

1
2D̂ac(0) − D̂bΨab + 2 ∗ϖ ∗χa + D̂υψ

a = 0. (3.35)

They play dual roles with respect to eqs. (3.32) and (3.33), because the energy density ε(0)
carries information on the mass of the source, while c(0) endorses its nut charge (monopole-
like magnetic mass) (see e.g. [25] for a recent discussion on these electric-magnetic dual
observables). The two sets of equations are dissymmetric though: eq. (3.34) for instance is
driven exclusively by the Cotton vector χa — as opposed to its Carroll-dual ∗χa entering
the electric-mass equation (3.32) through Qa = 1

8πG ∗χa. Even though loss phenomena
concern both the electric and the magnetic masses, as captured e.g. in eqs. (76) and (80)
of [47] — see also appendix D of [48], the time evolution of the nut is not affected by Cab

and ˆNab, whereas that of the mass is, in line with an important distinction between these
aspects raised in [49].

A useful exercise, which we will not undertake here, would be to set up a precise
dictionary between the gauge at hand and the more conventional Newman-Unti or Bondi
gauges, regarding the radiation observables. We can nonetheless take a few steps towards
this end using the Carrollian tensor Na introduced in (3.21), reminiscent of the Bondi
angular-momentum aspect,23 and a Bondi mass aspect

M = 4πGε(0) −
1
8C ab ˆNab. (3.36)

This definition is reached from eq. (2.39) of [23] valid in anti-de Sitter, at k = 0.24 What
distinguishes the energy density 4πGε(0) and the mass M is a radiative contribution.

We can attempt to define a magnetic-mass aspect starting from anti-de Sitter, where
the behaviour of the bulk Weyl tensor in the gauge used here exhibits the complex-mass

23As for the shear and the news, the physics conveyed by Na in the covariant Newman-Unti gauge,
is slightly different compared to the standard angular-momentum aspect. For the Kerr geometry, as an
example, in the gauge at hand Na = 0 and the angular momentum is carried by the Carrollian vorticity, as
opposed to plain Newman-Unti gauge, where the boundary vorticity is absent (see eq. (A.20)). This hints
towards the recent progress in defining a supertranslation-invariant angular momentum and comparing the
multiple routes to it (see e.g. [42, 50–53]).

24It coincides with (42) of [47] upon identifying M of this reference with our 4πGε(0).
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combination τ = −c+ 8πiGε (see [22]) with ε the AdS-boundary energy density and c the
Cotton scalar (longitudinal component with respect to the congruence u). We thus define
the complex mass aspect of Ricci-flat spacetimes in covariant Newman-Unti gauge as

τ̂ = lim
k→0

τ = −2ν + 8πiGε(0), (3.37)

where
ν = 1

2 lim
k→0

c = 1
2c(0) −

1
4D̂aD̂b ∗C ab − 1

8Cab ∗ ˆN ab (3.38)

is the magnetic-mass aspect reached using (B.12) and (B.15) upon substitution of
ξab = −k2

2 Cab. Subtracting the radiative contribution as in (3.36), we define the nut aspect

N = ν + 1
8Cab ∗ ˆN ab = 1

2c(0) −
1
4D̂aD̂b ∗C ab, (3.39)

where c(0)=
(
D̂aD̂a+2K̂

)
∗ϖ is one of the four Carroll Cotton scalars displayed in (B.15).25

Following the case of asymptotically AdS spacetimes quoted earlier, the behaviour of the
bulk Weyl tensor in the Ricci-flat instance does also depend on the complex mass aspect
τ̂ , and we find indeed

Ψ2 = iτ̂
2r3 +O (1/r4) . (3.40)

The higher-order missing terms in (3.40) are absent in the resummable, algebraically special
solutions discussed in refs. [20, 22, 25]. Unsurprisingly, this expression coincides with
eq. (68c) of [47].

With the above definitions, eqs. (3.34), (3.32) and (3.33) become:26

D̂υN = −1
2D̂aχ

a − 1
4
(
D̂aD̂b ∗ ˆN ab − ∗C abD̂aR̂b

)
, (3.41)

D̂υM = −1
2D̂a ∗χa + 1

4

(
D̂aD̂b

ˆN ab + C abD̂aR̂b −
1
2

ˆNab
ˆN ab
)
, (3.42)

D̂υN
a−D̂aM+∗D̂aN = 1

2

[
C abD̂bK̂ + ∗C abD̂bÂ − 4 ∗ϖ ∗C abR̂b −

1
2 ∗D̂aD̂bD̂c ∗C bc

− 1
2D̂b

(
D̂bD̂cC

ac−D̂aD̂cCbc

)
+ C abD̂c ˆNbc +

1
2D̂b

(
C ac ˆNbc

) ]
.

(3.43)

The first equation phrases the loss process of the nut aspect sustained by the Carroll-dual
news ∗ ˆNab and the Carroll Cotton current χa. It is actually a geometric identity associated
with the Carroll structure — as is (3.35), which could have been reexpressed as well in
terms of the nut aspect. The last two flux-balance equations (3.42) and (3.43) for the
electric-mass and angular-momentum aspects are genuinely dynamical and coincide with
eqs. (2.53) and (2.50) of ref. [23], where the approach to asymptotic flatness via a limit

25Our definitions for ν and N match with −M̃ and −M̃ of [47], eqs. (53) and (55), for c(0) = 0 (no
magnetic monopole mass). This condition pertains to the use of the Bondi gauge in the quoted reference,
where no Ehresmann connection exists and thus ∗ϖ vanishes (as φa).

26All these computations call for abundant use of the Weyl-covariant-derivative commutators presented
in the appendix, eqs. (A.31), (A.32), (A.33), (A.36), (A.37) and (A.38).
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of vanishing cosmological constant was proposed, or else with (4.50) and (4.49) of [54],
obtained in a plain Ricci-flat context.27

Order 1/r2 and the next flux-balance equation. The Carrollian symmetric and trace-
less two-tensor Eab, descendant of the AdS-boundary stress, enters the line element at order
1/r. However, the fundamental Carrollian energy-momentum conservation equations (3.30)
and (3.31) fail to capture its dynamics. In a direct search of Ricci-flat spacetimes, Ein-
stein’s equations bring their share at each order and this is how the flux-balance equations
emerge for the Chthonian degrees of freedom as Eab. In the present method, Einstein’s
equations have already been imposed at the considered order. The bulk metric including
the term (2.55) with the f(2)s as in (2.57) (2.58) and (2.59) is thus on-shell — assuming (2.1)
is satisfied. However, this term is due to exhibit divergences at vanishing k. Removing
them will impose conditions involving the Chthonian degrees of freedom as well as their
longitudinal derivatives appearing explicitly in (2.59). This is how flat flux-balance equa-
tions are recovered in the transition from anti-de Sitter to asymptotically flat spacetimes,
and this is another laudable achievement of this note.

The protocol is by now well established: we ought to follow the four steps enumerated
earlier, starting with any tensor f(2) — and later on with other f(s). Let us open the study
with the scalar contribution f(2), eq. (2.57). With little effort we find:

lim
k→0

f(2) = 2 ∗ϖν − 1
3D̂aN

a ≡ f̂(2). (3.44)

Next we consider the transverse vector f(2)aθ
a in (2.58):

lim
k→0

f(2)a = −1
6N

bCba − 4
3 ∗ϖ ∗Na − 4πGD̂bE

b
a ≡ f̂(2)a. (3.45)

Neither the limit (3.44) nor (3.45) introduce any new Chthonian degree of freedom
or impose any further condition on their evolution. As we will now see, the situation is
different for the transverse tensor (2.59) f(2)abθ

aθb. Using the numerous tools developed
in this work, we find:28

f(2)ab = 1
k2

(16πG
3 D̂υEab +

1
3D̂⟨aNb⟩ + 2πGε(0)Cab −

ν

2 ∗Cab

)
+2πG

(8
3D̂υE(2)ab −

4
3D̂⟨aπ(2)b⟩ + ε(1)Cab − 2C c

(a Eb)c

)
− 2 ∗ϖ3 ∗Cab

+O
(
k2
)
. (3.46)

This result meets our expectations and allows us to draw significant conclusions.
27In the quoted section 2.5 of [23] µ = −du so that φa = ϖab = 0 (Bondi gauge with exp 2β0 = 1).

Furthermore our definition of Na is slightly different: Na
here = Na

there + 1
4

(
C ab∇̂cCbc + 3

8 ∇̂
a
(
C bcCbc

))
with

∇̂c being actually the ordinary two-dimensional Levi-Civita connection due to the absence of Ehresmann
connection in [23] (see eq. (A.29) where the Carroll-Weyl covariant derivative reduces to the ordinary one
when φa vanishes). This definition is in line with that of [55]. Likewise N̂ ab

here = Nab
TF there − lthere

2 C ab

with lthere = θhere and for further use we also quote that Eab
here = − 3

16πG

(
Eab

there − 1
16 C abC cdCcd

)
. The

comparison with ref. [54] is reviewed in [23].
28We define the symmetric and traceless part of a Carrollian two-tensor sab as s⟨ab⟩ = s(ab) − 1

d
s c

c δab

(here d = 2).
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• The flat limit is singular unless the order-1/k2 contribution to f(2)ab is absent i.e.

D̂υEab =
3

16πG

(
−1
3D̂⟨aNb⟩ − 2πGε(0)Cab +

ν

2 ∗Cab

)
, (3.47)

which is the sought-after Carrollian flux-balance equation for Eab, later referred to as
FBE(1) = 0. This equation matches with eq. (4e) of [47].29

• Assuming eq. (3.47) is fulfilled, the limit can be taken

lim
k→0

f(2)ab = 16πG
3

(
D̂υE(2)ab −

1
2D̂⟨aπ(2)b⟩ +

3
8ε(1)Cab −

3
4C c

(a Eb)c

)
− 2 ∗ϖ3 ∗Cab

≡ f̂(2)ab, (3.48)

and provides the last piece of the order-1/r2 term in the Ricci-flat line element.

• New Chthonian degrees of freedom enter the bulk metric at this order: E(2)ab, π(2)a
and ε(1) in the form of a symmetric and traceless Carrollian tensor

Fab = D̂υE(2)ab −
1
2D̂⟨aπ(2)b⟩ +

3
8ε(1)Cab −

3
8πG ∗ϖ3 ∗Cab. (3.49)

Their dynamics is unknown at this stage but will be unravelled in the course of the
analysis at order 1/r3.

We will close this paragraph exhibiting the explicit Ricci flat metric at the considered
order. To this end we use the results (3.1), (3.9), (3.12), (3.22), (3.44), (3.45), (3.48)
and (3.49):

ds2
Ricci-flat = µ

[
2dr +

(
2rφa − 2 ∗D̂a ∗ϖ − D̂bC

b
a

)
θ̂a −

(
rθ + K̂

)
µ
]

+
(
r2 + ∗ϖ2 + C 2

4

)
dℓ2 + (rCab + ∗ϖ ∗Cab) θ̂aθ̂b

+1
r

(
8πGε(0)µ

2 − 4
3µNaθ̂

a − 16πG
3 Eabθ̂

aθ̂b
)

+ 1
r2

(
2 ∗ϖν − 1

3D̂aN
a
)
µ2 − 1

r2µ

(1
3N

bCba + 8
3 ∗ϖ ∗Na + 8πGD̂bE

b
a

)
θ̂a

+ 1
r2

(16πG
3 Fab − 4πGC c

(a Eb)c

)
θ̂aθ̂b +O (1/r3) . (3.50)

This solution to vacuum Einstein’s equations is built upon the following boundary Carrol-
lian data: (i) a generic Carrollian structure with geometric shear ξab = 0 (but arbitrary
Ehresmann connection providing φa and ∗ϖ); (ii) a dynamical shear Cab, utterly free; (iii)
an energy density ε(0) i.e. a Bondi mass M , a heat current Na aka the Bondi angular
momentum aspect and a stress Eab, all satisfying the flux-balance equations (3.42), (3.43)
and (3.47);30 (iv) three more degrees of freedom E(2)ab, π(2)a and ε(1) encoded in Fab (3.49)
with evolution equations yet to be uncovered.

29For this we use the dictionary for ref. [47] set up in footnotes 24 and 25, together with the relations
−16πGEab

here = T ab
there and Na

here = Pa
there. Observe that eqs. (58) and (63) of [47] are also compatible with

further quantities introduced in [23] and mentioned in footnote 27.
30As pointed out earlier the nut aspect N — equivalently the magnetic mass ν — is in essence part of

the Carrollian structure and its evolution equation (3.41) is a geometric identity in disguise.
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Recursion and the fate of Chthonian degrees of freedom. All this has been
achieved as the limit of vanishing cosmological constant within general asymptotically
anti-de Sitter Einstein spacetimes, where infinitely many flat degrees of freedom originate
from the Laurent expansion of the anti-de Sitter boundary energy-momentum tensor about
k2 = −Λ/3 = 0 and constrained through evolution equations. Compared to the anti-de Sitter
solution space, the extra — Chthonian — functions are {χ(n≥2)}≡

{
ε(n−1≥1), π

a
(n≥2), E

ab
(n≥2)

}
.

It is natural to wonder whether these are truly independent functions. Answering this ques-
tion demands a higher-order analysis but some simple considerations allow to infer that
ε(n−1), πa

(n) and Eab
(n) could be repackaged in a single symmetric traceless tensor F ab

(n), having
the expected conformal weight.

Indeed, one should recall that the χ(n)s are all weight-3 and contribute to the f(s)s (of
weight s+ 2) through an appropriate number of longitudinal or transverse Weyl-covariant
derivatives uCDC or Da, powers of vorticity ωab or shear σab, all raising the weight by one
unit (in the Carrollian limit, the latter two bring a factor k2 with ∗ϖη̂ab or Cab). The
analysis of Einstein’s equations Err, Er0̂, Era and Eab in the radial expansion exhibits a
remarkable recursion structure for the f(s), fa

(s) and fab
(s) — for s = 2 these equations are

sorted in (2.56). The latter are given in terms of quantities of order s − 1 along with one
transverse Weyl derivative, one power of vorticity, or one power of shear. Furthermore,
the scalar and the vector do not involve any net power of k2, whereas the tensor does:
fab

(s) = 1
k2

[
uCDCf

ab
(s−1) + · · ·

]
. This shows, on the one hand, that the scalar and vector

contributions to the line element remain finite in the Carrollian limit, and do not impose any
supplementary constraint. On the other hand, flux-balance equations originate exclusively
from the two-index term.

Owing to the fact that χ = ∑
m≥2 k

2mχ(m), the Chthonian degrees of freedom χ(m)
persist in the Carrollian limit of the fs if a power of k2 equal to or more negative than
−m is inherited from the AdS solution. Combined with the above recursive pattern, where
in particular negative powers appear solely in the tensor fab

(s), this suggests that once a
combination of χ(m) has emerged, such as F ab ≡ F ab

(2) in eq. (3.49) for χ(2) inside (3.46), only
this precise expression will appear in the subsequent orders, along with more derivatives,
powers of shear and vorticity, and increasing negative powers of k2. For instance, this
occurs for F ab

(1) ≡ Eab
(1) ≡ Eab in fab

(1) as in eq. (3.22), fab
(2) as in eq. (3.46), and likewise in

higher orders.
This scheme has two consequences. The first is that at order (s + 1), one new flux-

balance equation FBE(s) = 0 emerges, for the previously determined combination F ab
(s) of

the Chthonian functions χ(s), as it should for global evolution consistency. Schematically
this property is captured in the following:

fab
(s+1) =

s−1∑
n=1

c(s,n)

k2(s−n+1) D̂
s−n
υ FBE(n) +

c(s,s)
k2 FBE(s) + f̂ab

(s+1) +O
(
k2
)
, (3.51)

with c(s,n) some immaterial coefficients, the new equation being FBE(s) = 0. The second
consequence is that the triplet χ(s) counts as a single Chthonian degree of freedom materi-
alized in F ab

(s), the one appearing in the line element and obeying a flux-balance equation
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revealed at the next order in 1/r. The following generic structure of the solutions underpins
the above reasoning:31

• f̂(2s+1) contains (−)s8πGε(0) ∗ϖ2s and D̂af̂
a
(2s);

• f̂(2s+2) contains (−)s2ν ∗ϖ2s+1 and D̂af̂
a
(2s+1);

• f̂a
(s+1) contains D̂bf̂

ab
(s), ∗ϖ ∗ f̂a

(s), C a
bf̂

b
(s);

• f̂ab
(s+1) = c(s+1,s+1)F

ab
(s+1) + tensors based on objects of order s;

• F ab
(s+1) contains D̂s

υE
ab
(s+1), D̂s−1

υ D̂
⟨a
π

b⟩
(s+1), ε(s) ∗ϖs−1C ab, . . . ;

• FBE(s) = 0 is of the form D̂υF
ab
(s) =

{
D̂

⟨a
f̂

b⟩
(s),C

abf̂(s), . . .
}

,

where the dots stand for other possible admissible terms. As anticipated, the actual Chtho-
nian degrees of freedom capturing the flat dynamics are the emerging F ab

(s), which should
be substituted for the (s− 1)th derivatives of Eab

(s), πa
(s) and ε(s−1) delivered by the anti-de

Sitter energy-momentum tensor.
A legitimate question one may finally ask in view of our analysis pertains to the

existence of other, possibly infinite, sets of Chthonian data originating from a Laurent
expansion of the AdS boundary metric (see e.g. [45, 56]). Direct exploration of Ricci-flat
solution spaces does not seem to support such an expectation, but a definite answer requires
a thorough investigation, which would bring us far from our main goal.

The flat resummation. The anti-de Sitter resummable instance presented in eq. (2.65)
can be realized in the flat limit, as it was shown in [3]. In this case all Chthonian functions
should vanish, together with Na, Eab and the shear C ab, leading ultimately to

ds2
res. Ricci-flat = µ

[
2dr +

(
2rφa − 2 ∗D̂a ∗ϖ

)
θ̂a −

(
rθ + K̂

)
µ
]

+
(
r2 + ∗ϖ2

)
dℓ2 + 1

r2 + ∗ϖ2

(
8πGε(0)r + ∗ϖc(0)

)
µ2. (3.52)

This captures all algebraically special Ricci-flat spacetimes provided ε(0) obeys (3.32)
and (3.33) which now read:

D̂υε(0) +
1

8πGD̂a ∗χa = 0, (3.53)

D̂aε(0) −
1

8πG ∗D̂ac(0) = 0. (3.54)

Equations (3.53) and (3.54) coincide with eqs. (29.16) and (29.15) of [57].32 The latter are
rather complicated and it is remarkable they are tamed into simple conservation equations

31We remind that F ab
(1) ≡ Eab

(1) ≡ Eab, πa
(1) ≡ πa, and F ab

(2) ≡ F ab.
32For that purpose, the following identifications are necessary, in Papapetrou-Randers frame and complex

coordinates x =
{

ζ, ζ̄
}

with dℓ2 = 2
P 2(u,ζ,ζ̄) dζdζ̄, υ = 1

Ω ∂u, µ = −Ωdu + badxa and êa = ∂̂a = ∂a + ba
Ω ∂u,

θ̂a = dxa: Ω = 1, bζ = −L, ∗ϖ = −Σ, τ̂ = 2(M + im), whereas their radial coordinate is r̃ = r − r0 with
r0(u, ζ, ζ̄) the origin in the affine parameter of the geodesic congruence tangent to ∂r.

– 25 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
8

such as (3.53) and (3.54). Reaching this conclusion would have been inconceivable without
the null boundary perspective and the Carrollian tools, which are the appropriate language
for asymptotically flat spacetimes.

The algebraically-special nature of the metric (3.52) is proven using the Goldberg-Sachs
theorem with the null, geodesic, and shear-free in the resummed instance, bulk congruence
tangent to ∂r. The latter is part of the canonical null tetrad parallelly transported along
∂r (thanks to the affine nature of r) introduced in [3], which coincides with that of [57],
eq. (29.13a), as well as with the original ref. [37]. In complex celestial-sphere coordinates
ζ and ζ̄ (see footnote 32) the null tetrad reads:

k = ∂r

l = 1
2

(8πGε(0)r+∗ϖc(0)
r2+∗ϖ2 − rθ − K̂

)
∂r + υ

m = P
r−i∗ϖ

(
∂̂ζ̄ +

(
∗D̂ζ̄ ∗ϖ − rφζ̄

)
∂r

) (3.55)

with k·l = −1, m·m̄ = 1 and ds2
res. Ricci-flat = −2kl+2mm̄. Generically, k is a multiplicity-

two principal null direction of the Weyl tensor, and using the tetrad at hand we find the
following Weyl complex scalars: Ψ0 = Ψ1 = 0 and

Ψ2 = iτ̂
2(r − i ∗ϖ)3 , Ψ3 = iPχζ

(r − i ∗ϖ)2 + O (1/(r−i∗ϖ)3) , Ψ4 =
iX ζ̄

ζ

r − i ∗ϖ + O (1/(r−i∗ϖ)2) .

(3.56)
Observe that neither Ψ3 nor Ψ4 vanish in the instance of Petrov type D solutions, because
l is not a principal null direction. Another tetrad is reached with a Lorentz transformation
suitably adjusted for l′ be a principal direction of multiplicity two whereas k′ ∝ k, and
Ψ′

3 = Ψ′
4 = 0. Unsurprisingly, all Ψs are spelled using the Carrollian descendants of the

boundary Cotton tensor — as well as their derivatives in the higher-order terms.

4 Outlook

Asymptotically anti-de Sitter and flat spacetimes subject to Einstein equations are distin-
guished mainly by two features. The first is gravitational radiation escaping at or arriving
from null infinity in the flat instance, which is absent under the usual boundary condi-
tions for anti-de Sitter. The second concerns the data required for a faithful depiction of
these geometries and of their dynamics imposed by Einstein’s equations: a finite versus an
infinite number for asymptotically AdS or flat.

In spite of the sharp distinctness of the solution spaces with non-vanishing and zero cos-
mological constant, the latter can be smoothly reached from the former in a procedure that
is the core of this work. It can be outlined in three steps, performed along with the process
of sending Λ to zero, which simultaneously transmutes the pseudo-Riemannian conformal
boundary of anti-de Sitter into a Carrollian descendant, carrying akin information.

• Bondi’s shear CAB is substituted on-shell for the geometric shear σAB.

• The anti-de Sitter boundary energy-momentum tensor TAB is Laurent-expanded in
powers of k2 = −Λ/3 about k2 = 0. This supplies an infinite number of replicas, which
account for the awaited flat, Chthonian, degrees of freedom.
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• The evolution (flux-balance) equations of the — now Carrollian — degrees of freedom
are reached using both the limit of the conservation of the energy and momentum, as
well as the requirement of finiteness for the line element in the flat limit. The latter
(i) selects the Chthonian variables ε(n≥1), πa

(n≥2) and Eab
(n≥2) besides the standard

energy density ε(0), momentum πa and stress Eab, and we have argued that genuine
degrees of freedom are only the F ab

(n)s; (ii) freezes a few other components of the ex-
panded energy-momentum tensor in terms of the boundary Carrollian Cotton tensors(
ζa, Qa, ζab,Σab,Ξab

)
; (iii) delivers the Chthonian dynamics, which is not captured

by the energy-momentum conservation but echoes flat Einstein equations.

The technical tour de force of our exploration shouldn’t shadow the conceptual af-
termath of our findings. These bring back the boundary energy and momentum at the
center of the asymptotically flat bulk reconstruction, besides the Bondi shear, under the
form of a Carrollian energy density, momentum and stress, together with an infinite tower
of replicas of the latter. Speculating over a flat extension of AdS gauge/gravity duality,
and owing to the key role played by the energy-momentum tensor in the latter, one is
led to several unescapable questions. What would the fundamental observables be in the
dual Carrollian field theory? What role would the replicas of the energy-momentum sector
play? What is the interplay between the Chthonian and the shear/news sector, which has
been investigated in celestial holography? Could this correspondence still be qualified as
holographic — given the seemingly infinite number of necessary data? Our approach does
not yet provide any cue for answering these questions, though it hands some confidence in
the zero-Λ limit, that could be inquired within the AdS/CFT correspondence. This last
point is probably the deepest our analysis conveys.

This is the big picture. Other questions merit equal attention, starting with the ones
related to symmetries and charges. What are the asymptotic symmetries in a partially
unfixed gauge like the covariant Newman-Unti introduced here? What sort of charges does
this extension carry? What is the precise combination of vorticity and angular-momentum
aspect that would define the physical angular momentum? How would logarithmic terms
in the radial expansion alter the analysis? In answering these questions, one could follow
recent works such as, e.g., [10, 13, 15] as well as [42, 50–52, 58]. In particular, one should
adress the Weyl invariance in conjunction with the boundary local Lorentz (or Carroll)
gauge invariance inherited from the onset of a velocity congruence or a clock form in the
boundary pseudo-Riemannian (or Carrollian) structure. In a similar fashion as the one
presented in this work, a careful analysis would allow to embrace both the anti-de Sitter
and flat cases.

Regarding the charges, a thorough comparison of our method with Newman-Penrose’s
would be a valuable practice, reasonably accessible thanks to the affinely parameterised
radial congruence ∂r present in the (covariant) Newman-Unti gauge. In the first place, this
would allow to extract the famous ten non-vanishing Newman-Penrose conserved charges —
we know that these are carried by the Chthonian stress tensor descendant Fab.33 Secondly,

33Contact with the Newman-Penrose formalism beyond the algebraically special resummable metrics
mentioned at the end of section 3 starts with Ψ0

0 ∝ iE ζ̄
ζ , Ψ1

0 ∝ iF ζ̄
ζ , Ψ0

1 ∝ iNζ , Ψ0
2 ∝ iτ̂ (see (3.40)),
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one could recast these charges following their general Carrollian definition, as described
in refs. [25, 59], giving credit to this full-fledged boundary method for the charge com-
putation. Lastly, one may deepen concepts such as subleading charges or electric versus
magnetic charges and possible dualities involving the Carrollian Cotton tensors, as recently
undertaken in [25] from the Carrollian standpoint in the limited framework of resummable,
algebraically special Ricci-flat spacetimes, and more generally discussed in refs. [60–75].
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A Carrollian geometry in Cartan frame and arbitrary dimension

Frame and covariance. Carroll structures on M = R × S with a d-dimensional base
S were alluded to in section 3. They are equipped with a degenerate metric,

dℓ2 = δabθ̂
aθ̂b, (A.1)

as well as a frame and a coframe, {êû = υ, êa} and
{
θ̂û = −µ, θ̂a

}
obeying

µ(υ) = −1, θ̂a (êb) = δa
b , θ̂a (υ) = 0, µ(êa) = 0. (A.2)

Here υ is the field of observers, kernel of the degenerate metric, and µ the clock form (see
e.g. [76]).

Ψ0
3 ∝ iP χζ and Ψ0

4 ∝ iX ζ̄
ζ , where the adopted Carrollian frame is that of footnote 32. The higher-order

terms will involve derivatives of the Cotton tensors, of the energy density, the momentum and the stress,
as well as the infinite tower of Chthonian replicas F ab

(s).
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A convenient parameterization in terms of d+ (d+1)(d+2)
2 functions (i.e. 8 for d=2) is34

υ = γ
(
∂u + vi∂i

)
⇔ µ = −du

γ
+∆i

(
dxi − vidu

)
, (A.3)

êa = e i
a

(
∂i + γ∆i

(
∂u + vj∂j

))
⇔ θ̂a = ea

i

(
dxi − vidu

)
(A.4)

with
Γ2

ij = δabe
a

ie
b
j ⇔ δab = e i

a e
j

b Γ2
ij (A.5)

and
ea

ie
j

a = δj
i , eb

je
j

a = δb
a, δabe i

a Γ2
ij = eb

j , δabe
a

iΓ2ij = e j
b , (A.6)

where (Γ2)ikΓ2
kj = δi

j . Consequently, the degenerate metric assumes the form35

dℓ2 = Γ2
ij

(
dxi − vidu

) (
dxj − vjdu

)
. (A.7)

In this specific parameterization, which generalizes that of [10] in arbitrary dimension, the
bulk Newman-Unti gauge is recovered by setting ∆i = 0 in the boundary frame.36

Carrollian tensors have commonly spacetime indices. In the Cartan frame (A.1), (A.2),
their tensorial behaviour refers to the local Carroll group, as much as relativistic tensors
in an orthonormal Cartan frame are tamed according to the local Lorentz group. Here,
the metric being degenerate the spacetime indices cannot be lowered or raised. One way
to manage this inconvenience is by introducing a pseudo-inverse [83]. Our strategy has
been slightly different, and is hinged on separating time and space, since this is natural in
Carrollian manifolds due to the fibre structure. In the frame at hand, the method boils
down to considering tensors with solely spatial indices, organized in representations of the
d-dimensional orthogonal local group, subgroup of the local Carroll group, and raised or
lowered with δab or δab. The fibre null-time direction supports scalars without indices.37

This approach is in line with the boundary reconstruction of Ricci-flat spacetimes, where
the longitudinal/transverse decomposition of the fundamental tensors coincides with the
time/space reduction of the Carrollian tensors.

A strong Carroll structure comes with a metric-compatible and field-of-observers-
compatible connection, which is not unique due to the metric degeneracy. The connection
we use defines a parallel transport that respects the time/space splitting mentioned above,

34Here γ is an arbitrary function and must not to be confused with (2.27) which is related to the vorticity
of the timelike congruence u.

35The degenerate metric is often spelled dℓ2 = qµνdxµdxν in the Carrollian literature, and n = nµ∂µ

stands for the field of observers.
36The presence of γ ≡ exp(−2β0), which persists in the bulk line element as −2 exp(2β0)dudr, assesses

a slight redefinition of the radial coordinate before reaching stricto sensu Newman-Unti gauge. We are
cavalier with this detail because the counting from the point of view of the solution space matches: the
contribution of the boundary geometry is (d+1)(d+2)/2. The same holds for the anti-de Sitter ascendant.

37When working in natural frames, as in refs. [3, 9, 24, 25, 45, 46, 85], the tensor structure is based
instead on diffeomorphisms. The time/space splitting sought for is realized in Papapetrou-Randers frame,
i.e. setting vi = 0 in the formulas (A.3), (A.4), (A.7), because this frame is stable under the Carrollian
subset of diffeomorphisms, consisting of transformations u → u′(u, x) and x → x′(x). Carrollian tensors
have again spatial indices and transform with the Jacobian matrices of Carrollian diffeomorphisms.
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embracing distinct time and space Carrollian covariant derivatives ∇̂υ acting as a scalar
and ∇̂a acting as a form. We set for this purpose

∇̂υυ = 0, ∇̂υêa = γ̂[ab]δ
bcêc, ∇̂êaυ = 0, ∇̂êa êb = γ̂c

abêc, (A.8)

from which we infer the resulting Carrollian affine connection one-form:38

ω̂û
û = ω̂û

b = ω̂a
û = 0, ω̂a

b = δacγ̂[cb]µ+ γ̂a
cbθ̂

c (A.9)

At this stage γ̂[ab] and γ̂a
cb are arbitrary, although anticipating the next step (metric com-

patibility), we have imposed antisymmetry for the former.
The covariant time and space derivatives act on Carrollian scalars as time and space

directional derivatives. For Carrollian vectors ζ = ζaêa and forms ζ = ζaθ̂
a we obtain:

∇̂aζ
b = êa

(
ζb
)
+ γ̂b

acζ
c ⇔ ∇̂aζb = êa (ζb)− γ̂c

abζc, (A.10)

∇̂υζ
a = υ (ζa)− γ̂[ab]ζb ⇔ ∇̂υζa = υ (ζa)− γ̂[ab]ζ

b. (A.11)

Under a frame transformation, γ̂[ab] and γ̂a
cb transform as connection coefficients, i.e. with

inhomogeneous terms.
Field-of-observers-compatibility is built in (A.8). Metric-compatibility translates in

ω̂(ab) = 0. This imposes
γ̂(a|c|b) = 0, (A.12)

where the symmetrization acts on the two extreme indices. The latter can be utterly
determined by further imposing the absence of torsion in the spatial section, T c

ab = 0. In
order to implement this we can use the following parameterization of the dθ̂As:

dµ− φaθ̂
a ∧ µ−ϖabθ̂

a ∧ θ̂b = 0, dθ̂c + γ̂c
aµ ∧ θ̂a + 1

2 ĉ
c
abθ̂

a ∧ θ̂b = 0, (A.13)

or equivalently
[υ, êa] = φaυ− γ̂c

aêc, [êa, êb] = 2ϖabυ+ ĉc
abêc. (A.14)

We have again foreseen the following action by introducing γ̂ab whose antisymmetric part
already appears in the affine connection one-form. Hence, the extra condition of the absence
of torsion in the spatial section combined with (A.12) delivers

γ̂a
bc =

1
2 (ĉa

bc + ĉ a
b c + ĉ a

c b) . (A.15)

Let us also point out the useful integrability conditions d2µ = d2θ̂a = 0 associated
with (A.13): ∇̂[cϖab] = φ[cϖab]

∇̂υϖab +ϖ c
a γ̂(cb) −ϖ c

b γ̂(ca) = ∇̂[aφb]
(A.16)

38Remember that ωA
B = ΓA

CBθC with ∇eA eB = ΓC
ABeC . The torsion and curvature two-forms are

T C = dθC + ωC
A ∧ θA = 1

2 T C
ABθA ∧ θB and RA

B = dωA
B + ωA

C ∧ ωC
B = 1

2 RA
BCDθC ∧ θD. Tor-

sion and curvature tensors can alternatively be determined using the commutator of covariant derivatives:
[∇A,∇B ]W C = RC

DABW D − T D
AB∇DW C .
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and υ (ĉa
bc)− γ̂a

dĉ
d
bc − 2ĉa

d[bγ̂
d
c] + 2ê[b

(
γ̂a

c]

)
− 2γ̂a

[bφc] = 0
ê[d

(
ĉa

bc]

)
− ĉa

e[bĉ
e
cd] + 2γa

[bϖcd] = 0.
(A.17)

In summary, our strong Carroll connection is totally determined thanks to the infor-
mation stored inside the second of eqs. (A.13), by requiring the time-and-space splitting
and the absence of spatial torsion. The total torsion is non-zero though and we find:

T̂ û = φaµ ∧ θ̂a −ϖabθ̂
a ∧ θ̂b, T̂ a = δabγ̂(bc)θ̂

c ∧ µ. (A.18)

The torsion is thus encoded in three Carrollian tensors (i.e. transforming homogeneously),
featuring three properties of the null-time fibre materialized in υ: the acceleration φa, the
vorticity ϖab and the extrinsic curvature γ̂(ab), which can be further decomposed into the
geometric shear ξab (traceless) and the expansion θ:

γ̂(ab) = ξab +
θ

d
δab. (A.19)

We could consistently set the Carrollian torsion to zero. From the bulk perspective,
this would significantly impoverish the range of options the covariant Newman-Unti gauge
offers for Ricci-flat spacetimes, as discussed in section 3. It is opportune to recall that
in the frame-parameterization (A.3), (A.4), ordinary Newman-Unti gauge corresponds to
∆i = 0. In more intrinsic terms, this amounts to setting

dµ = φaθ̂
a ∧ µ ⇔ [êa, êb] = ĉc

abêc (A.20)

i.e. to discarding the vorticity.
We can finally determine the curvature of the Carrollian connection under considera-

tion using Cartan’s formula, cf. footnote 38:

R̂û
b = 0, R̂a

b = R̂a
cbµ ∧ θ̂c + 1

2R̂
a
bcdθ̂

c ∧ θ̂d (A.21)

with

R̂a
bcd = êc (γ̂a

db)− êd (γ̂a
cb) + γ̂e

dbγ̂
a
ce − γ̂e

cbγ̂
a
de − ĉe

cdγ̂
a
eb + 2ϖcdγ̂[eb]δ

ae, (A.22)

R̂a
cb =

(
∇̂a + φa

)
γ̂(bc) −

(
∇̂b + φb

)
γ̂(cd)δ

ad. (A.23)

One can trace the above and yield the Carroll-Ricci tensor and the Carroll scalar curvature:

R̂cd = R̂a
cad, R̂ = δcdR̂cd. (A.24)

Let us stress anew that the freedom in designing a Carrollian connection is rather wide
— see [76–79] or [80–82] for a review — even when conditions like Levi-Civita are im-
posed, which we haven’t. Our guideline has been to ensure that all information ultimately
stored in the Carrollian frame, connection, torsion and curvature coincides with that of the
relativistic, pseudo-Riemannian ascendant, as we will shortly see: φa, ϖab, γ̂ab and ĉc

ab.
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As a final comment, we would like to mention that Carrollian geometries may have
isometries and in particular conformal isometries. The latter play a central role when
considering the null conformal boundary, as they mirror bulk asymptotic symmetries. A
vector field ξ = ξûυ + ξaêa is a Carrollian Killing if the Lie derivative of the degenerate
metric and of the field of observers vanishes. This requirement generates three conditions:

∇̂(aξb) + ξûγ̂(ab) = 0
υ
(
ξû
)
+ ξaφa = 0

∇̂υξa − γ̂(ab)ξ
b = 0.

(A.25)

In Papapetrou-Randers frame where υ = 1
Ω∂u and the degenerate metric has no time

legs, the last condition selects the Carrollian diffeomorphisms, ∂uξ
i = 0. In the Cartan

frame at hand all diffeomorphisms are permitted; the Killing fields are nonetheless further
constrained. As usual, strong Killing fields must also leave the clock form invariant, which
implies

êa

(
ξû
)
− φaξ

û + 2ϖabξ
b = 0. (A.26)

Bulk Killing fields of Ricci-flat spacetimes are mapped onto strong Killings of their null
boundary [25].

Weyl covariance. Following the pattern adopted for the affine connection, we introduce
here a Weyl connection that respects the time and space splitting, associated with two
Weyl-covariant derivatives. These act on weight-w Carrollian tensors and deliver Carrol-
lian tensors of weight w + 1.39 The Weyl connection is encoded in θ and φa, see (A.13)
and (A.19), and the Weyl-covariant derivatives are defined as follows:

• on scalars
D̂υΦ = υ(Φ) + w

d
θΦ, D̂aΦ = êa(Φ) + wφaΦ; (A.27)

• on vectors v = vaêa

D̂υv
a = ∇̂υv

a + w

d
θva, D̂av

b = ∇̂av
b + wφav

b + φbva − δb
av

cφc; (A.28)

• on rank-2 tensors t = tabθ̂
a ⊗ θ̂b:

D̂ctab = ∇̂ctab + wφctab + φatcb + φbtac − δactdbφ
d − δcbtadφ

d, (A.29)
D̂υtab = ∇̂υtab +

w

d
θtab. (A.30)

Using Leibniz’ rule one obtains the generalization for any conformal tensor.
39As already mentioned in footnote 11, when working in a Cartan frame the Weyl properties are slightly

modified and there is no contradiction with the results displayed in refs. [3, 9, 24, 25, 45, 46, 85], where a
Papapetrou-Randers frame was in use.
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The Riemann-Carroll-Weyl curvature is a weight-2 tensor defined through the com-
mutator of the Carrollian Weyl derivatives acting on Carrollian scalars Φ, vectors vc or
2-tensors tcd of weight w:40

[
D̂a, D̂b

]
Φ = 2ϖabD̂υΦ+ wΩabΦ, (A.31)[

D̂a, D̂b

]
vc = Ŝ c

dabv
d + 2ϖabD̂υv

c + wΩabv
c, (A.32)[

D̂a, D̂b

]
tcd = Ŝ c

eabt
ed + Ŝ d

eabt
ce + 2ϖabD̂υt

cd + wΩabt
cd, (A.33)

where
Ωab = êa (φb)− êb (φa)− ĉc

abφc −
2
d
ϖabθ (A.34)

is yet another weight-2 Carrollian tensor. From the Riemann-Weyl-Carroll tensor, we define

Ŝcd = Ŝ a
cad, R̂ = δcdŜcd, (A.35)

all weight-2.
We can further consider time and space derivatives:[

D̂υ, D̂a

]
Φ = −ξb

aD̂bΦ+ wR̂aΦ, (A.36)[
D̂υ, D̂a

]
vb = −Ŝ b

acv
c − ξc

aD̂cv
b + wR̂av

b, (A.37)[
D̂υ, D̂a

]
tbc = −Ŝ b

adt
dc − Ŝ c

adt
bd − ξd

aD̂dt
bc + wR̂at

bc, (A.38)

revealing a clear pattern for any Carrollian conformal tensor. In these expressions

Ŝ c
ab = −Ŝ c

ba = D̂cξab − D̂bξ
c
a + δc

aR̂b − δabR̂
c (A.39)

and R̂a are weight-two tensors. Note that in Cartan frame, both the shear ξab and the
vorticity ϖab have weight one, regardless of the position of the indices. In natural frame
ξij and ϖij have weight −1, but raising an index augments the weight by two units.

Relation with a relativistic ascendant. A Carrollian manifold as described earlier
can be reached from a pseudo-Riemannian geometry at zero velocity of light k. Following
the pattern proposed in eqs. (3.2), (3.3) and (3.4), we can express the metric (2.8) of the
pseudo-Riemannian ascendant as

ds2 = ηABθ
AθB = −

(
θ0̂
)2

+ δabθ
aθb = −k2

(
θ̂û
)2

+ δabθ̂
aθ̂b, (A.40)

where we have assumed that all k-dependence is explicit i.e. θa = θ̂a while θ0̂ = kθ̂û. The
relationship among the relativistic congruence (2.9) and the Carrollian fibre attributes,
field of observers and clock form, is υ = u = êû for the former and µ = u

k2 = −θ̂û for
the latter.

40The use of Ŝ is unconventional for a curvature, but is intended to avoid confusion with a slightly
different definition given as R̂ in [3, 25, 45, 46].
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If the Carrollian frame, coframe and degenerate metric are parameterized as in
eqs. (A.3), (A.4) and (A.7), then

e0̂ = γ

k

(
∂u + vi∂i

)
⇔ θ0̂ = k

(du
γ

−∆i

(
dxi − vidu

))
, (A.41)

ea = e i
a

(
∂i + γ∆i

(
∂u + vj∂j

))
⇔ θa = ea

i

(
dxi − vidu

)
(A.42)

and the relativistic metric reads:

ds2 = −k2
(du
γ

−∆i

(
dxi − vidu

))2
+ Γ2

ij

(
dxi − vidu

) (
dxj − vjdu

)
,

= −k
2

γ2

(
du2 − 2γ∆idu

(
dxi − vidu

))
+
(
Γ2

ij − k2∆i∆j

) (
dxi − vidu

) (
dxj − vjdu

)
,

(A.43)
where the normalized vector congruence is

u = γ
(
∂u + vi∂i

)
. (A.44)

We will not explicitly operate with this frame, which coincides at vi = 0 with the
Papapetrou-Randers form employed in refs. [3, 9, 24, 25, 45, 46], where Ω = 1/γ, bi = ∆i

and aij = Γ2
ij .

At ∆i = 0, one recovers the boundary frame of bulk Newman-Unti anti-de Sitter gauge
(modulo a remark stated in footnote 36 and valid here), and

dθ0̂ = φaθ
a ∧ θ0̂, (A.45)

which resonates with the Carrollian relative (A.20). Hence the boundary vorticity vanishes
following eq. (A.46) below.

The pseudo-Riemannian manifold is equipped with a Levi-Civita connection. We
would like to express the latter in terms of the Carrollian tensors appearing in eqs. (A.9)
and (A.13) or (A.14). The purpose of this exercise is to provide the suitable tools for
reaching the k → 0 limit in relativistic dynamical equations such as (2.1). We reckon that
in the parameterization of

{
dθA

}
=
{

dθ0̂, dθa
}

, eqs. (A.13) and (A.14), hold:

dθ0̂ − φaθ
a ∧ θ0̂ + kϖabθ

a ∧ θb = 0, dθc + 1
k
γ̂c

aθ
a ∧ θ0̂ + 1

2 ĉ
c
abθ

a ∧ θb = 0. (A.46)

Thus the Levi-Civita affine connection one-form reads:

ωab = −
(
kϖab +

1
k
γ̂[ab]

)
θ0̂ + δadγ̂

d
cbθ̂

c

=
(
k2ϖab + γ̂[ab]

)
µ+ δadγ̂

d
cbθ̂

c

= k2ϖabµ+ ω̂ab,

(A.47)

and
ω0̂

a = φaθ
0̂ − kϖabθ

b + 1
k
γ̂(ab)θ

b = −k
(
φaµ+ϖabθ̂

b
)
+ 1
k
γ̂(ab)θ̂

b (A.48)
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with γ̂c
ab as in (A.15). It has zero torsion and the curvature reads:

R0̂
a =

[1
k

(
∇̂υγ̂(ab) + γ̂(ac)γ̂(bd)δ

cd
)
− k

(
ϖ c

a γ̂(cb) +ϖ c
b γ̂(ca) + ∇̂(aφb) + φaφb

)
+k3ϖ c

a ϖbc

]
θ̂b ∧ µ+ 1

2

[1
k

(
R̂bac − φbγ̂(ac) + φcγ̂(ab)

)
−k

(
∇̂aϖbc + φaϖbc + φbϖac − φcϖab

) ]
θ̂b ∧ θ̂c, (A.49)

Ra
b = R̂a

b + δad
[
φdγ̂(cb) − φbγ̂(cd) + k2

(
∇̂cϖdb + φcϖdb + φdϖcb − φbϖcd

)]
θ̂c ∧ µ

+1
2δ

ae
[ 1
k2

(
γ(ec)γ(bd) − γ(ed)γ(bc)

)
− γ(ec)ϖbd + γ(ed)ϖbc

−γ(bd)ϖec + γ(bc)ϖed + k2 (2ϖebϖcd −ϖedϖbc +ϖecϖbd)
]
θ̂c ∧ θ̂d, (A.50)

where we have used the Carrollian expressions available in (A.21), (A.22) and (A.23).
We would like now to make the contact with the Carrollian descendants. The rel-

ativistic congruence is u = −kθ0̂ see (2.9). Given the connection, we can determine its
kinematical properties: the expansion Θ, the acceleration aA, the shear σAB and the vor-
ticity ωAB as defined in eqs. (2.11), (2.12), (2.13). The latter tensors are all transverse (and
traceless for the last two) and have thus non-vanishing components in spatial directions
only (indices a, b, . . .). We find

Θ = θ = γ̂c
c, aa = k2φa, (A.51)

and
σab = ξab = γ̂(ab) −

θ

d
δab, ωab = k2ϖab. (A.52)

We can furthermore determine the Weyl connection (2.10) (where we must trade the 2
for d)

A = φaθ̂
a − θ

d
µ, (A.53)

and its curvature (2.20):

F = dA = 1
2Ωabθ̂

a ∧ θ̂b + R̂aθ̂
a ∧ µ, (A.54)

where Ωab and R̂a are defined in eqs. (A.34) and (A.36) — explicitly

R̂a = ∇̂υφa + ξabφ
b − 1

d
êa(θ). (A.55)

All the above quantities are relativistic, but expressed in terms of the Carrollian descen-
dants describing the properties of the manifold reached at vanishing-k.

We can finally convey the relativistic conservation equations (2.1) for an arbitrary
energy-momentum tensor TAB as in (2.33), stated in Carrollian language. Given the choice
of congruence, the transverse heat current and stress tensor have only spatial components:
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qa and τab. We then define as usual the longitudinal and transverse components of the
conservation equations,

L = −uB∇CT
C

B = −k∇CT
C

0̂ = −∇CT
C

û, T a = ea
B∇CT

CB = ∇CT
Ca, (A.56)

and explicitly find:

L = υ(ε) + θε+
(
∇̂a + 2φa

)
qa +

(
ξab +

θ

d
δab

)(
τab + pδab

)
, (A.57)

T a =
(
∇̂b + φb

) (
τab + pδab

)
+ φaε+ 2qbϖ

ba + 1
k2

(
∇̂υq

a + d+ 1
d

θqa + ξabqb

)
. (A.58)

In the conformal case, assuming thus ε = dp and τ a
a = 0 and canonical conformal weights

d + 1 for ε, qa and τab (we are in Cartan’ frame and the weights do not depend on the
position of the indices), these equations are recast as:

L = D̂υε+ D̂aq
a + ξabτ

ab, (A.59)

T a = 1
d
D̂aε+ D̂bτ

ab + 2qbϖ
ba + 1

k2

(
D̂υq

a + ξabqb

)
. (A.60)

As discussed extensively in refs. [45, 46], the outcome of the Carrollian limit depends on
the behaviour of ε, qa and τab with respect to k. The equations at hand will be conceivably
multiplied, leading to replicas. The same phenomenon occurs in the Galilean limit with the
emergence of the continuity equation out of the relativistic longitudinal equation, besides
the energy equation.

We would like to close this section with some formulas that are useful when considering
the zero-k limit, leading in particular to the flux-balance equation (3.47). In the following,
we reduce the Riemannian Levi-Civita and Weyl covariant derivatives in terms of the
Carrollian connections introduced earlier.

Levi-Civita We will present the vector and the rank-two tensor:

V = V AeA — V a provide the components of a Carrollian vector and
Vû = kV0̂ = −kV 0̂ a Carrollian scalar



k2∇0̂V
0̂ = kυ

(
V 0̂
)
+ k2φaV

a

k∇0̂V
b = ∇̂υV

b + kV 0̂φb + k2V aϖ b
a

k∇aV
0̂ = kêa

(
V 0̂
)
+
(
ξab + θ

dδab + k2ϖab

)
V b

∇aV
b = ∇̂aV

b + 1
k

(
ξ b

a + θ
dδ

b
a + k2ϖ b

a

)
V 0̂;

(A.61)

T = T ABeA ⊗ eB — T ab are farther interpreted as components of a Carrollian rank-
two tensor, T a

û = kT a
0̂ = −kT 0̂a and T a

û = kT a
0̂ = −kT a0̂ those of Carrollian
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vectors, while Tûû = k2T0̂0̂ = k2T 0̂0̂ gives a Carrollian scalar

k3∇0̂T
0̂0̂ = k2υ

(
T 0̂0̂

)
+ k3φa

(
T a0̂ + T 0̂a

)
k2∇0̂T

b0̂ = k∇̂υT
b0̂ + k2φbT 0̂0̂ + k2φaT

ba + k3ϖ b
a T

a0̂

k∇0̂T
ab = ∇̂υT

ab + k
(
φaT 0̂b + φbT a0̂

)
+ k2

(
T acϖ b

c + T cbϖ a
c

)
k∇aT

b0̂ = k∇̂aT
b0̂ +

(
ξac + θ

dδac + k2ϖac

)
T bc +

(
ξ b

a + θ
dδ

b
a + k2ϖ b

a

)
T 0̂0̂

k2∇aT
0̂0̂ = k2êa

(
T 0̂0̂

)
+ k

(
ξac + θ

dδac + k2ϖac

)
T c0̂ + k

(
ξac + θ

dδac + k2ϖac

)
T 0̂c

∇aT
bc = ∇̂aT

bc + 1
k

(
ξ b

a + θ
dδ

b
a + k2ϖ b

a

)
T 0̂c + 1

k

(
ξ c

a + θ
dδ

c
a + k2ϖ c

a

)
T b0̂;

(A.62)

Weyl similarly:

V = V AeA 

k2D0̂V
0̂ = kD̂υV

0̂

kD0̂V
b = D̂υV

b + k2V aϖ b
a

kDaV
0̂ = kD̂aV

0̂ +
(
ξab + k2ϖab

)
V b

DaV
b = D̂aV

b + 1
k

(
ξ b

a + k2ϖ b
a

)
V 0̂;

(A.63)

T = T ABeA ⊗ eB

k3D0̂T
0̂0̂ = D̂υ

(
k2T 0̂0̂

)
k2D0̂T

0̂b = D̂υ

(
kT 0̂b

)
+ k3T 0̂aϖ b

a

kD0̂T
ab = D̂υT

ab + k2
(
T cbϖ a

c + T acϖ b
c

)
k2DaT

0̂0̂ = D̂a

(
k2T 0̂0̂

)
+
(
ξab + k2ϖab

)
kT b0̂ +

(
ξab + k2ϖab

)
kT 0̂b

kDaT
0̂b = D̂a

(
kT 0̂b

)
+
(
ξac + k2ϖac

)
T cb +

(
ξ b

a + k2ϖ b
a

)
T 0̂0̂

DaT
bc = D̂aT

bc + 1
k

(
ξ b

a + k2ϖ b
a

)
T 0̂c + 1

k

(
ξ c

a + k2ϖ c
a

)
T b0̂.

(A.64)

B The Carrollian Cotton tensors in three dimensions

The Cotton tensor introduced in section 2 can be decomposed in terms of Carrollian de-
scendants, which obey Carrollian identities resulting from (2.39). In Papapetrou-Randers’
frame and for vanishing ξab a thorough exhibition is available in appendix C of [25]. The
Carrollian Cotton tensor will be investigated from a more general viewpoint in [24]. Here
we will summarize its properties in Cartan’ frame with ξab ̸= 0. Prior to this presentation
we need to spend some time on d = 2.

In three boundary spacetime dimensions, we pointed out that given a congruence
u, a transverse Hodge duality can be designed mapping transverse vectors to trans-
verse vectors and symmetric, traceless and transverse two-tensors onto similar objects,
eqs. (2.28), (2.29), (2.31), (2.32). This procedure is readily extended to a Carroll structure
M = R × S and the duality coincides with the Hodge duality in the 2-dimensional basis
S : Carrollian vectors are mapped onto Carrollian vectors and Carrollian symmetric and
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traceless two-tensors onto the same class. In the relativistic Cartan frame we use here the
antisymmetric pseudo-tensor is ϵABC or ϵABC with ϵ0̂1̂2̂ = −ϵ0̂1̂2̂ = 1, whereas using (2.9)
in (2.28) we find η̂AB = −ϵ0̂AB so that only η̂ab is non-zero with η̂1̂2̂ = −1. We adopt this
convention for the Carrollian object, without introducing any further symbol. Now (2.29)
translates into

η̂acη̂
c

b = δab, η̂abη̂ab = 2, (B.1)

and (2.31), (2.32) give
∗va = η̂b

avb, ∗wab = η̂c
awcb, (B.2)

for Carrollian vectors va and Carrollian symmetric, traceless tensors wab. We will often
use the following identities, generalizable to any tensor:

∗∗ va = −va, ∗vawa = −va ∗wa. (B.3)

The Carroll-Riemann, Carroll-Ricci and scalar (A.24) curvatures read:

R̂abcd = K̂ (δacδbd − δadδbc) , R̂ab = K̂δab, R̂ = 2K̂. (B.4)

The Carroll-Weyl-Riemann and Ricci tensors, the Carroll-Weyl-Ricci scalar (see (A.35)) as
well as the Carroll-Weyl tensor curvature (A.34) are

Ŝabcd = K̂ (δacδbd − δadδbc) , Ŝab = K̂ δab, Ωab = −Â η̂ab, (B.5)

expressed in terms of two weight-2 Weyl-covariant scalars:

K̂ = K̂ + ∇̂aφ
a, Â = ∗ϖθ − ∗φ (B.6)

with
∗ϖ = 1

2 η̂
abϖab ⇔ ϖab = η̂ab ∗ϖ, (B.7)

and
∗φ = 1

2 η̂
abφab where φab = êa(φb)− êb(φa). (B.8)

These obey Carroll-Bianchi identities:

2D̂υ ∗ϖ + Â = 0, (B.9)
D̂υK̂ − D̂aR̂

a − D̂aD̂bξ
ab = 0, (B.10)

D̂υÂ + η̂abD̂aR̂b = 0. (B.11)

The Carroll reduction of the Cotton tensor is encrypted in the longitudinal, mixed
and transverse components (2.41) and (2.43), which encompass several weight-3 Carrollian
scalars, vectors and symmetric, traceless two-tensors, dubbed “Carrollian Cotton tensors.”
In Cartan’ frame we obtain

c = c(−1)k
2 + c(0) +

c(1)
k2 +

c(2)
k4 , (B.12)

ca = k2ψa + χa + za

k2 , (B.13)

cab = k2Ψab +Xab + Zab

k2 (B.14)

with
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• four Carroll scalars:

c(−1) = 8 ∗ϖ3, c(0) =
(
D̂aD̂

a + 2K̂
)
∗ϖ, c(1) = D̂aD̂b ∗ξab, c(2) = ∗ξabD̂υξ

ab;
(B.15)

• three Carroll vectors:

ψa = 3η̂baD̂b ∗ϖ2, (B.16)

χa = 1
2 η̂

baD̂bK̂ + 1
2D̂aÂ − 2 ∗ϖ

(
R̂a + 2D̂bξ

ab
)
+ 3D̂b

(
∗ϖξab

)
, (B.17)

za = 1
2 η̂

abD̂bξ
2 − D̂bD̂υ ∗ξab − ∗ξa

bD̂cξ
bc, (B.18)

where we defined41

ξ2 = 1
2ξ

abξab ⇔ ξacξ b
c = ξ2δab; (B.19)

• three Carroll traceless and symmetric two-index tensors:

Ψab = −2 ∗ϖ2 ∗ ξab + D̂aD̂b ∗ϖ − 1
2δ

abD̂cD̂
c ∗ϖ − η̂abD̂υ ∗ϖ2, (B.20)

Xab = 1
2 η̂

caD̂c

(
R̂b + D̂dξ

bd
)
+ 1

2 η̂
cbD̂a

(
R̂c + D̂dξcd

)
−3
2Â ξab − K̂ ∗ξab + 3 ∗ϖD̂υξ

ab, (B.21)

Zab = 2 ∗ξabξ2 − D̂υD̂υ ∗ξab. (B.22)

As for the conservation equations (2.39), expressing them as in (A.59), (A.60), they
yield

LCot = −k3DCot − kECot −
FCot
k

− WCot
k3 = 0, (B.23)

T a
Cot = k3Ia

Cot + kGa
Cot +

Ha
Cot
k

+ X a
Cot
k3 = 0 (B.24)

with

DCot = −D̂υc(−1) − D̂aψ
a, (B.25)

ECot = −D̂υc(0) − D̂aχ
a +Ψabξ

ab, (B.26)
FCot = −D̂υc(1) − D̂az

a +Xabξ
ab, (B.27)

WCot = −D̂υc(2) + Zabξ
ab (B.28)

and

Ia
Cot = 1

2D̂ac(−1) + 2 ∗ϖ ∗ψa, (B.29)

Ga
Cot = 1

2D̂ac(0) − D̂bΨab + 2 ∗ϖ ∗χa + D̂υψ
a + ξabψb, (B.30)

Ha
Cot = 1

2D̂ac(1) − D̂bX
ab + 2 ∗ϖ ∗za + D̂υχ

a + ξabχb, (B.31)

X a
Cot = 1

2D̂ac(2) − D̂bZ
ab + D̂υz

a + ξabzb. (B.32)

41Many identities of this sort are useful: ξac ∗ξ b
c = ξ2η̂ab, ∗ξac ∗ξ b

c = ξ2δab, ϖacϖ b
c = ∗ϖ2δab.
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The four couples of equations {DCot = 0, Ia
Cot = 0}, {ECot = 0,Ga

Cot = 0},
{FCot = 0,Ha

Cot = 0} and {WCot = 0,X a
Cot = 0} originate from the different orders

in k in which the conservation of the Cotton tensor (2.39) decomposes. These are purely
geometrical identities fulfilled on any three-dimensional Carroll structure M = R × S .
Moreover, they are typical Carrollian conservation equations obtained as a consequence of
general covariance applied to a Weyl-invariant action S = −1

2
∫
M η̂abθ̂

a ∧ θ̂b ∧ µL defined
on M = R × S :

D̂υΠ+ D̂aΠa +Υa
bξ

b
a = 0, (B.33)

1
2D̂aΠ+ D̂bΥb

a + 2 ∗ϖ ∗Πa + D̂υPa + ξ b
a Pb = 0. (B.34)

The momenta Π, Πa, Pb and Πa
b = Υa

b + 1
2Πδa

b are defined as variations of the action
with respect to the triad

{
µ, θ̂a

}
(the explicit computation is accessible in ref. [45] for the

Papapetrou-Randers frame,42 where the organizing pattern is the subgroup of Carrollian
diffeomorphisms instead of the subgroup of local orthogonal transformations in the tangent
space). These are the energy density, the energy flux, the momentum and the stress.

For Carroll structures with vanishing Carrollian shear, ξab = 0, met e.g. at null infinity
of asymptotically flat spacetimes, six out of the ten Carroll Cotton tensors survive: c(−1),
c(0), ψa as in eqs. (B.15), (B.16) and χa, Ψab, Xab. Using eqs. (B.17), (B.20), (B.21) we
find the simplified expressions of the latter:

χa = 1
2 ∗D̂aK̂ + 1

2D̂aÂ − 2 ∗ϖR̂a, (B.35)

Ψab = D̂aD̂b ∗ϖ − 1
2δ

abD̂cD̂
c ∗ϖ − η̂abD̂υ ∗ϖ2, (B.36)

Xab = 1
2 ∗D̂aR̂b + 1

2D̂a ∗R̂b. (B.37)

These tensors now obey

DCot = −D̂υc(−1) − D̂aψ
a = 0, (B.38)

ECot = −D̂υc(0) − D̂aχ
a = 0, (B.39)

and

Ia
Cot = 1

2D̂ac(−1) + 2 ∗ϖ ∗ψa = 0, (B.40)

Ga
Cot = 1

2D̂ac(0) − D̂bΨab + 2 ∗ϖ ∗χa + D̂υψ
a = 0, (B.41)

Ha
Cot = −D̂bX

ab + D̂υχ
a = 0. (B.42)

On a Carroll manifold in Cartan frame, the degenerate metric is invariant under local
Carroll-group transformations. Invariance of the action under its local orthogonal subgroup
is in line with a symmetric Πab; invariance under local Carroll boosts demands Πa = 0. This

42Equations (B.33) and (B.34) were obtained for the first time in ref. [46]. They have been recently
rediscussed in [84].
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is not always met in Carrollian theories approached from relativistic theories at vanishing
speed of light (see e.g. [85]) — alternatively it can be imposed by hand as in [86]. The
Cotton tensor and the corresponding Chern-Simons dynamics [24] admirably illustrate this
feature, which persists in the flux-balance equations of Ricci flat spacetimes, powered by
gravitational radiation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

Hidden symmetries have a long history in relativistic theories of gravity, which started with
the seminal work of Ehlers in the late fifties [1]. It was shown in this article that in the
presence of an isometry, vacuum Einstein’s equations were invariant under Möbius trans-
formations. This observation triggered an important activity in several directions. In line
with the sixties’ renaissance of general relativity, it opened the way for solution-generating
techniques applicable to vacuum Einstein’s equations [2, 3]. This was soon generalized to
situations with more commuting Killing fields [4, 5] — and bigger hidden symmetry group,
providing the system with remarkable and unexpected integrability properties [6–14]. The
underlying deep origin for the above pattern was unravelled with the advent of higher-
dimensional supergravity theories, and is rooted in the reduction mechanism. This has
revealed a wide class of hidden groups, among which the exceptional play a prominent role
(see e.g. [15–17], or [18] for a more recent presentation and further references).

The integrable sector of Einstein’s equations is only a tiny fraction of their solution
space. Unveiling the latter, in conjunction with its asymptotic symmetries and conserved
charges, has been in the very early agenda of general relativity. It shares features with
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gauge theories because of general covariance, and has led Bondi to come out with his
homonymous gauge, where a systematic resolution of Einstein’s equations is possible as an
expansion in powers of a radial coordinate.1 This delivers a set of functions of time and
angular coordinates, obeying first-order time-evolution equations. For Ricci-flat spacetimes
(asymptotically locally flat) this set is infinite, but it is finite for Einstein spacetimes with
negative cosmological constant (asymptotically locally anti-de Sitter).

In modern language, the set of functions necessary for reconstructing the solution are
said to be defined on the conformal boundary of the spacetime. In the asymptotically flat
instance the conformal boundary is null infinity and features a Carrollian three-dimensional
hypersurface.2 Bulk Einstein dynamics is therefore traded for boundary effective Carrol-
lian conformal field dynamics. This statement is accurate when discussing Einstein’s equa-
tions. Whether it could be promoted to a holographic principle akin to the better known
AdS/CFT involving asymptotically anti-de Sitter spacetimes and conformal field theories
defined on their time-like conformal boundary is a timely subject, currently under scrutiny.

How do hidden symmetries such as Ehlers’ act on the Carrollian boundary data?
This is the central question we would like to address in the present work. The conformal
symmetries of the boundary reflect the asymptotic symmetries of the bulk. These define
for instance the BMS4 algebra (Bondi-van der Burg-Metzner-Sachs [27–29]), which is iso-
morphic to the conformal Carroll algebra in three dimensions ccarr(3) (see [30, 31]), and
emerges upon appropriate fall-off conditions. From this perspective, wondering how the
bulk hidden symmetries are embraced by the Carrollian boundary and what their interplay
is with BMS4 ≡ ccarr(3), is both natural and relevant.

There is yet another motivation for pursuing this analysis. Following Geroch [2, 3], the
action of some Ehlers subgroup is a duality rotation in the plane of gravitational electric and
gravitational magnetic charges, as are e.g. the mass and the nut charge. Ricci-flat space-
times possess in fact multiple infinities of charges (not necessarily conserved), incarnated in
pairs of electric and magnetic representatives, and originating from the infinitely many in-
dependent “subleading” degrees of freedom necessary for reconstructing the bulk solution,
as well as the infinitely many generators of the asymptotic symmetry group. This pic-
ture has been widely conveyed through the work of Godazgar-Godazgar-Pope [32–34] (see
also [35–39]) and amply deserves to be reconsidered in the light of hidden symmetries. The
remarkable fact is here that such an analysis can be conducted exclusively on the boundary,
where the charges are constructed (see e.g. [40]) using the boundary dynamics combined
with the three-dimensional-boundary Carrollian conformal isometries, the latter being al-
ways generated by the infinite-dimensional algebra BMS4 ≡ so(3, 1)+supertranslations [41].
Translating the Ehlers group on the null boundary forcedly exhibits a mapping among the
infinite towers of charges, which is obscured in a bulk approach. The boundary Carrollian
geometry provides the most suitable language for clarifying these properties.

1Other canonical gauges are Fefferman-Graham or Newman-Unti — see e.g. refs. [19, 20] for a review
and more complete reading suggestions on this subject.

2The original observation that triggered this “flat-holography” activity is described in refs. [21, 22]. A
more systematic analysis in four dimensions was presented in [23], which set the foundations for a Carrollian
description of the dual theory, and provides a more complete reference list. Up-do-date developments in
this vein are refs. [24–26].

– 2 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

In the present work, we will analyse along the above lines the integrable sector of Ricci-
flat spacetimes possessing a time-like Killing field, whose congruence coincides with the
boundary Carrollian fiber. This sector is obtained by setting conditions on the boundary
data, which ultimately guarantee that the infinite series in powers of the radial coordinates
is resummed. The boundary conditions involve the Carrollian boundary Cotton tensor and
the Carrollian boundary momenta (see [23]), which both enter the boundary computation
of the charges associated with the solution at hand. They rephrase the special structure
of bulk Weyl tensor3 and unsurprisingly lead to algebraic Ricci-flat spacetimes. Although
this class leaves interesting cases aside, it captures the main feature of the Ehlers-group
boundary manifestation. The latter turns out to be an algebraic transformation mixing
e.g. the Carrollian Cotton scalar and the Bondi mass aspect. This mixing is transmitted to
other boundary observables, including the charges through their boundary expression, and
completes the picture of the bulk-and-boundary action of the hidden group. The action
of the Möbius group, generically non-local on the four-dimensional Ricci-flat metric, is
therefore local on the boundary — as it is on the three-dimensional sigma-model of the
reduction along the bulk Killing congruence.

The starting point of our study is a reminder on the Ehlers group and the Geroch
method, as they emerge in the reduction of Ricci-flat spacetimes along orbits of one-
dimensional groups of motions. We next move and describe the bulk-to-boundary rela-
tionship for four-dimensional Ricci-flat spacetimes. This requires the use of a gauge (we
call it “modified Newman-Unti” or “covariantized”) in which the three-dimensional Carrol-
lian boundary geometry is ostensible. The bulk metric in this gauge is manifestly covariant
with respect to the boundary Carrollian diffeomorphisms and to the boundary Weyl trans-
formations. The Carrollian boundary dynamics induced by the bulk Einstein’s equations
is the following item in our agenda, which further enables us to define sets of charges and
dual charges — electric and magnetic. Finally, using the available tools for a Ricci-flat
spacetime enjoying a time-like isometry, we translate the action of the bulk Möbius trans-
formations onto the boundary observables. This analysis is performed for the integrable
sector (resummable metrics) and is based on a specific class of time-like Killing fields.

Most of our investigation relies on rather unusual geometric tools, which have been
developed recently in the framework of Carroll structures. We have sorted them out in a
first appendix, valid for any dimension d+ 1. Carrollian dynamics and conservation prop-
erties, necessary for describing the boundary perspective as inherited from bulk Einstein’s
equations, is summarized in the second appendix. The third appendix is specific to three
dimensions with emphasis on the Carrollian Cotton tensors.

3The interplay between the bulk Weyl tensor, expanded in powers of the radial coordinate, and the
boundary Cotton plus energy-momentum tensors for Einstein spacetimes was disclosed in [42–44] — see
also [45]. There is no rigorous similar statement for the Ricci-flat instance since the Carrollian relatives of
the Cotton tensor have not yet been thoroughly investigated.
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2 Ehlers and Geroch

We remind here Geroch’ generalization of Ehlers’ work following [2]. We consider a four-
dimensional pseudo-Riemannian manifold (M, g) possessing an isometry generated by a
time-like4 Killing vector field ξ. The latter has norm and twist — here A,B, . . . ∈
{0, . . . , 3}:

λ = ξAξA, (2.1)
wA = ηABCDξ

B∇CξD, (2.2)

where ηABCD = √−g εABCD (ε0123 = 1). Assuming the spacetime be Ricci-flat,5 one shows
that the one-form w = wAdxA is closed so locally exact, hence

w = dω (2.3)

with ω a scalar function.
We define the three-dimensional space S as the quotient M/orb(ξ). This coset space is

not a subspace of M unless ξ is hypersurface-orthogonal, which would imply zero twist
with S the orthogonal hypersurface. A natural metric on S is induced by g ofM:

hAB = gAB −
ξAξB
λ

, (2.4)

which defines the projector onto S as

hBA = δBA −
ξBξA
λ

. (2.5)

The fully antisymmetric tensor for (2.4) is ηABC = −1√
−λ ηABCDξ

D.
Tensors ofM, transverse and invariant with respect to ξ, are in one-to-one correspon-

dence with tensors on S. If T is a tensor of S, the covariant derivative D defined following
this correspondence,

DCT
B1...Bq

A1...Ap
= hLCh

M1
A1

. . . h
Mp

Ap
hB1
N1
. . . h

Bq
Nq
∇LT

N1...Nq
M1...Mp

(2.6)

with ∇ the Levi-Civita connection on (M, g), coincides with the Levi-Civita connection
on (S, h). This sets a relationship between the Riemann tensor on S and the Riemann
tensor onM, generalizing thereby the Gauss-Codazzi equations to the instance where ξ is
not-hypersurface orthogonal:

RABCD = h P[Ah
Q
B]h

R
[Ch

S
D]

(
RPQRS + 2

λ (∇P ξQ∇RξS +∇P ξR∇QξS)
)

(2.7)

(the calligraphic letters refer to curvature tensors of S).
The Ricci-flat dynamics for gAB is recast in the present framework in terms of6

h̃AB = λhAB, (2.8)
4The described procedure goes through in the same fashion with space-like isometries, but keeping the

two options would bring unnecessary multiplication of indices without shedding more light on our purpose.
5This property actually holds more generally for Einstein spacetimes [46].
6With our conventions, this metric is definite-negative.
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as well as ω and λ viewed as fields on S, packaged in

τ = ω + iλ, (2.9)

and obeying the following equations:7

R̃AB = − 2
(τ − τ̄)2 D̃(AτD̃B)τ̄ ,

D̃2τ = 2
τ − τ̄

D̃MτD̃Nτ h̃MN .

(2.10)

The first results from (2.7), while the second is obtained by a direct computation of the
S-Laplacian acting on τ . Here D̃A and R̃AB are the Levi-Civita covariant derivative and
the Ricci tensor associated with the metric h̃AB displayed in (2.8).

Equations (2.10) feature two important properties. The first, due to Ehlers [1], is the
invariance under transformations maintaining h̃AB unaltered and mapping τ into

τ ′ = ατ + β

γτ + δ
,

(
α β

γ δ

)
∈ SL(2,R). (2.11)

This is the original instance where a hidden group, SL(2,R), reveals upon reduction with
respect to an isometry. The second, described by Geroch in [2, 3], is the method for
reversing the reduction process, and finding a Ricci-flat four-dimensional spacetime with an
isometry, starting from any solution of eqs. (2.10) encoded in ω′+iλ′ = τ ′ and h′AB = 1

λ′ h̃AB.
To this end, one shows that the S-two-form defined as

F ′AB = 1
(−λ′)3/2

η′ABCDCω′ (2.12)

is closed. Thus, locally
F′ = dη′. (2.13)

The one-form field η′, defined on S, can be promoted to a field on M by adding the
necessary exact piece such that its normalization be

ξAη′A = 1. (2.14)

This defines a new Killing field onM

ξ′ = λ′η′ (2.15)

and the new four-dimensional metric reads:8

g′AB = h′AB + ξ′Aξ
′
B

λ′
. (2.16)

7Equations (2.10) can be reached by varying a three-dimensional sigma-model action defined on S. This
is at the heart of many developments about integrability and hidden symmetries — see the already quoted
literature for more information.

8The consequence of Möbius transformations on the Weyl tensor has been investigated in ref. [47].
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Closing this executive reminder, we would like to add a remark. The SL(2,R) is
hidden from the four-dimensional perspective, but explicit in the three-dimensional sigma-
model, materialized here in eqs. (2.10). Nevertheless, part of this group is in fact visible
in four dimensions because it acts as four-dimensional diffeomorphisms; part is creating
genuinely different Ricci-flat solutions. This can be illustrated in the concrete example
of Schwarzschild-Taub-NUT solutions with mass M and nut charge n. The compact sub-
group of rotations

(
cosχ sinχ
− sinχ cosχ

)
∈ SO(2) ⊂ SL(2,R) induces rotations of angle 2χ in the

parameter space (M,n), while non-compact transformations
(
α β
0 1/α

)
∈ N ⊂ SL(2,R) act

homothetically, (M,n)→ (M/α, n/α).

3 Ricci-flat spacetimes and Carrollian dynamics

3.1 Bulk reconstruction and resummable Ricci-flat metrics

Choosing a covariant gauge. Four-dimensional Ricci-flat metrics are generally ob-
tained as expansions in powers of a radial coordinate, in a designated gauge, usually Bondi
or Newman-Unti. Appropriate fall-offs are assumed, and the solution is expressed in terms
of an infinite set of functions of time and angles, obeying some evolution equations, mir-
roring Einstein’s equations (see [19] for details and further references). Can one define a
three-dimensional boundary, and describe covariantly this set of functions and their dy-
namics?

The answer to this question has been known to be positive for a long time in the
case of Einstein spacetimes. It is best formulated in the Fefferman-Graham gauge [48, 49]
— see also [50] for a Weyl-covariant extension of this gauge. The (conformal) boundary
is a three-dimensional pseudo-Riemannian spacetime, and every order in the expansion
brings a tensorial object with respect to the boundary geometry. All these are expressed in
terms of two independent tensors: the first and second fundamental forms of the boundary,
namely the boundary metric and the boundary energy-momentum tensor, which is covari-
antly conserved with respect to the associated Levi-Civita connection. This conservation
translates those of Einstein’s equations that have not been used in the process of taming
the expansion.

The boundary covariance of the Fefferman-Graham gauge makes it elegant and suit-
able for holographic applications in the framework of anti-de Sitter/conformal-field-theory
correspondence. Setting up a gauge that is covariant with respect to the boundary is
therefore desirable as part of the effort to unravel a similar duality for asymptotically flat
spacetimes. In this case, the conformal boundary is at null infinity and is endowed with a
Carrollian geometry [21, 22].

Carroll structures [30, 31, 41, 51–56] consist of a d+1-dimensional manifold M = R×S

equipped with a degenerate metric. The kernel of the metric is a vector field called field of
observers. We will adopt coordinates (t,x) and a metric of the form

d`2 = aij(t,x)dxidxj , i, j . . . ∈ {1, . . . , d} (3.1)

with kernel
υ = 1

Ω∂t. (3.2)
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The coordinate system at hand is adapted to the space/time splitting. It is thus respected
by Carrollian diffeomorphisms

t′ = t′(t,x) and x′ = x′(x) (3.3)

with Jacobian

J(t,x) = ∂t′

∂t
, ji(t,x) = ∂t′

∂xi
, J ij(x) = ∂xi′

∂xj
. (3.4)

The clock form is dual to the field of observers with µ(υ) = −1:

µ = −Ωdt+ bidxi (3.5)

(Ω and bi depend on t and x) and incorporates an Ehresmann connection, which is the
background gauge field bbb = bidxi.9 Carrollian tensors depend on time t and space x.
They carry indices i, j, . . . lowered and raised with aij and its inverse aij , and transform
covariantly under (3.3) with J ji and J−1i

j defined in (3.4). The basics on Carrollian tensors
and Carrollian covariant derivatives are summarized in appendix A. In the following we
will focus on d = 2, corresponding to the three-dimensional conformal null boundary of a
four-dimensional asymptotically flat spacetime, and further information on this instance is
available in appendix C. The boundary Carrollian covariance is part of the bulk general
covariance, as inherited in the boundary geometry.

Fefferman-Graham gauge is only valid for Einstein spacetimes, on the one hand. On the
other hand, Bondi and Newman-Unti gauges, applicable to Ricci-flat spacetimes, are not
covariant with respect to the boundary, because the spatial section of the three-dimensional
null boundary is locked. An alternative, still of the Eddington-Finkelstein type i.e. with
a light-like radial direction, was introduced in the framework of fluid/gravity correspon-
dence [60, 61], and made more systematic in the subsequent works both in AdS [62–65]
and for Ricci-flat spacetimes [23]. It is a sort of modified and slightly incomplete Newman-
Unti gauge [57, 58, 66] (see also [67, 68] for other extensions of the Bondi or Newman-Unti
gauges). The time coordinate t is actually a retarded time (usually spelled u) and coincides
at the boundary with the Carrollian time used in (3.1), (3.2) and (3.5).

9A Carroll structure endowed with metric (3.1) and clock form (3.5) is naturally reached in the
Carrollian limit (c → 0) of a pseudo-Riemannian spacetime M in Papapetrou-Randers gauge ds2 =
−c2

(
Ωdt− bidxi

)2 + aijdxidxj , where all functions are x-dependent with x ≡ (x0 = ct,x). It should
be noticed here that the degenerate metric could generally have components along dt, which would in turn
give ∂i components to the field of observers. In this instance, the above Carrollian diffeomorphisms (3.3)
play no privileged role, and plain general covariance is at work — without affecting the dynamics presented
in appendix B. This option is sometimes chosen (see e.g. [54] for a general approach, or [57–59] for an
application to three-dimensional Minkowski spacetime), but it is always possible to single out the time
direction supported by the fiber of the Carrollian structure, i.e. distinguish time and spatial sections with
no conflict with general covariance.
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We can summarize as follows the structure of the four-dimensional Ricci-flat solutions
in the advertised gauge, up to order 1/r2 (G is four-dimensional Newton’s constant):

ds2
Ricci-flat= µ

[
2dr −

(
rθ + K̂

)
µ+

(
2rϕi − 2 ∗D̂i ∗$ − D̂jC

j
i

)
dxi
]

+Cij
(
rdxidxj − ∗$ ∗dxidxj

)
+
(
r2 + ∗$2 + CklC

kl

8

)
d`2

+1
r

[
8πGεµ2 + 32πG

3

(
πi −

1
8πG ∗ψi

)
dxiµ− 16πG

3 Eijdxidxj
]

+ 1
r2

(
∗$cµ2 + · · ·

)
+ O

( 1
r3

)
, (3.6)

where the star designates a d = 2 Carrollian Hodge duality as defined in eq. (C.1).10
As anticipated, this expression is neither in Bondi gauge (no determinant condition —
see [27, 28]), nor in Newman-Unti (grt = −Ω 6= −1 and gri = bi 6= 0, obtained using (3.5)
— see [69]).11 Delving into the details of this gauge would bring us outside the main
purpose of the present work. We will rather explain the various ingredients appearing in
the above expression and insist on their Carrollian-covariant nature. This includes the
account of the required boundary data and the description of the evolution equations they
obey so that the bulk metric be Ricci-flat.

All quantities entering expression (3.6) are defined on the conformal boundary and can
be sorted as follows (see also the appendices for further information).

Carrollian geometry. The conformal boundary itself is part of the solution space. It
is materialized in aij , bi and Ω, accompanied with all attributes such as Carrol-
lian connections and curvature tensors, Carrollian Cotton descendants etc. — see
appendices A and C. These are free data, without evolution equations, except for
the restriction of vanishing Carrollian geometric shear as a consequence of Einstein’s
equations: ξij = 0.12

Shear. The dynamic shear is a symmetric and traceless Carrollian boundary tensor Cij(t,x)
not to be confused with the geometric shear ξij(t,x).13 It is a boundary emanation of
the bulk ∂r-congruence shear, and is completely free, although it sources the evolu-
tion equations of other tensorial data. The dynamic shear carries information on the
bulk gravitational radiation through the symmetric and traceless Bondi-like news:

ˆNij = 1
ΩD̂tCij . (3.7)

10Referring to the complex coordinates introduced in appendix C, we chose the orientation as inherited
from the parent Riemannian spacetime: η0ζζ̄ = Ω

√
a ε0ζζ̄ = iΩ

P2 , where x0 = kt.
11In all quoted Eddington-Finkelstein type of gauges, ∂r is tangent to a null geodesic congruence. In

Newman-Unti and in modified Newman-Unti this congruence is affinely parameterized, in contrast to Bondi.
In modified Newman-Unti gauge, as opposed to the others, ∂r is not hypersurface-orthogonal. Indeed, the
metric-dual form to ∂r is µ, which has a twist because of Ω and bi, the defining features of the gauge at
hand: µ ∧ dµ = ∗$ηijdxi ∧ dxj ∧ µ (we have used eqs. (A.5) and (C.3)).

12In BMS gauge, one would set bi = 0, Ω = 1, and aij the round sphere.
13In Einstein spacetimes these two shears are proportional with the cosmological constant as a factor. In

the asymptotically flat limit, the geometric shear is required to vanish, while the dynamic shear decouples.
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With these definitions, the shear and the news are supported by genuine boundary
conformal Carrollian-covariant tensors (weight −1 and 0), hence meeting the adver-
tised expectations.14

Carrollian fluid. The boundary Carrollian fluid of Ricci-flat spacetimes is the descendant
of the relativistic boundary fluid in Einstein spacetimes in the vanishing speed of light
limit, supported by the conserved energy-momentum tensor Tµν . It is described in
terms of the energy density ε, the heat currents Qi and πi, and the symmetric and
traceless stress tensors Σij and Ξij [70, 71]. The associated momenta of the fluid
dynamics in the sense of appendix B are as follows:

Π = ε, Πi = Qi, P i = πi, Π̃ij = −Σij , Πij = ε

2a
ij − Ξij . (3.8)

As opposed to the relativistic boundary fluid, however, the Carrollian fluid is not
free, but sourced by the shear, the news and the Carrollian Cotton descendants. Put
differently, its dynamical equations are (B.1), (B.2), (B.3) and (B.4) (at zero ξij) with
a non-vanishing right-hand side. These equations translate part of Einstein’s, which
furthermore impose15

Qi = 1
8πG ∗χ

i, Σij = 1
8πG ∗X

ij Ξij = 1
8πG ∗Ψ

ij . (3.9)

Three of the Carrollian fluid data are thus tuned in terms of the boundary ge-
ometry through the Carrollian Cotton descendants displayed in eqs. (C.12), (C.14)
and (C.15). Only two momenta remain independent (Π = ε and P i = πi) and subject
to two Carrollian-fluid evolution equations ((B.1) and (B.3) with zero ξij and external
force,16 often referred to as flux-balance equations) out of the four — the other two are
automatically satisfied owing to the Cotton equations (B.1), (B.2), (B.3) and (B.4)

14Notice that they do not exactly coincide with the original shear and news defined in BMS gauge. They
vanish in Robinson-Trautmann spacetimes expressed in the gauge at hand, which is their defining gauge,
although these solutions are radiating.

15The presence of a non-vanishing energy flux Πi = Qi betrays the breaking of local Carroll boost
invariance (see appendix B, footnote 40) in the boundary Carrollian dynamics associated with Ricci-flat
spacetimes. This breaking accounts for bulk gravitational radiation, which in the boundary-covariant
gauge designed here does not originate solely in the news (3.7) but is also encoded in the Carrollian
energy flux Πi = Qi = 1

8πG ∗χ
i and the Carrollian stress Π̃ij = −Σij = − 1

8πG ∗X
ij obeying eq. (B.4)

or equivalently (C.19). In Robinson-Trautman spacetimes e.g., the gravitational radiation is exclusively
rooted in the latter Cotton descendants — see footnote 14 and ref. [23].

16We display for completeness these Carrollian equations, which coincide with eqs. (2.53) and (2.50) of
ref. [72], once translated from our gauge into the BMS gauge:

1
Ω D̂tΠ+D̂iΠi = 1

16πG

(
D̂iD̂jN̂

ij+C ijD̂iR̂j+
1
2Cij

1
Ω D̂tN̂

ij
)
,

D̂jΠij+ 1
Ω D̂tP

i+2∗$∗Πi = 1
16πG

[
C ijD̂jK̂ +∗C ijD̂jÂ −4∗$∗C ijR̂j−

1
2 D̂j

(
D̂jD̂kC

ik−D̂ iD̂kCjk
)

+C ijD̂kN̂jk+ 1
2 D̂j

(
C ikN̂jk

)
− 1

4 D̂ i
(
C jkN̂jk

)]
with Π, Πi, Πij , P i as in eqs. (3.8) and (3.9).
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with (C.16). These data are related to the Bondi mass and angular momentum
aspects, M(t,x) and N i(t,x):

8πGε = 2M + 1
4C jk ˆNjk, (3.10)

8πGπi = ∗ψi −N i (3.11)

with ψi given in (C.13).

Similarly to the expansion of Einstein spacetimes (in Fefferman-Graham or in the
present gauge), fluid-related tensors appear at every order and not exclusively for
1/r, as expression (3.6) might suggest.

Further degrees of freedom. Contrary to the asymptotically anti-de Sitter case, the
above fluid data are not the only degrees of freedom besides the boundary geometry.
An infinite number of Carrollian tensors are necessary to all orders in the radial
expansion, as Eij(t,x) in (3.6) at order 1/r, which obey Carrollian evolution — flux-
balance — equations similar to those already displayed in footnote 16. These are
dubbed “Chthonian” degrees of freedom.

We will not elaborate any further on the features of the expansion and the structure
of the various evolution equations. The covariantization with respect to boundary Carroll
diffeomorphisms and Weyl covariance is a powerful tool,17 rooted in the bulk general covari-
ance. It can be supplemented with the boundary-fluid hydrodynamic-frame invariance at
the expense of giving up radically the complete bulk gauge fixing. This requires a modified
and incomplete Newman-Unti gauge, and has been performed for three bulk dimensions in
refs. [57–59, 66].

Resumming the series expansion. In certain circumstances the series (3.6) can be
resummed. As advertised in the introduction, this occurs when conditions are imposed on
the boundary data, which enforce specific features for the bulk Weyl tensor:

1. the dynamic shear Cij(t,x) should vanish, implying in particular the relation M =
4πGε;

2. all non-Carrollian-fluid related degrees of freedom should be discarded, as e.g. Eij(t,x);

3. N i in (3.11) should be set to zero, which amounts to demanding the Carrollian
momentum P i = πi be tuned with respect to a Carrollian Cotton descendant:18

πi = 1
8πG ∗ ψ

i. (3.12)
17The expression (3.10) matches with eq. (42) of ref. [73], reached through a completely different logical

path. Similarly the Carroll Cotton scalar c given in (C.11) plays here the role of the dual mass aspect,
captured in (53) of the quoted reference.

18Although eq. (3.12), which secretly tunes the bulk Weyl tensor, bares some resemblance with a self-
duality condition, it isn’t as the Ricci-flat spacetimes at hand are Lorentzian rather than Euclidean and
this option is not available.
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In the configuration reached with the above conditions, the remaining degrees of free-
dom are those describing the boundary Carrollian geometry (metric, field of observers and
Ehresmann connection), and the Carrollian-fluid energy density i.e. the Bondi mass aspect.
Expression (3.6) is now resummed into an exact Ricci-flat spacetime of algebraically special
type:19

ds2
res. Ricci-flat = µ

[
2dr + 2

(
rϕj − ∗D̂j ∗$

)
dxj −

(
rθ + K̂

)
µ
]
+ρ2d`2+µ

2

ρ2 [8πGεr + ∗$c]
(3.13)

with
ρ2 = r2 + ∗$2. (3.14)

Ricci flatness is guaranteed by the Carrollian fluid equations, which are now genuine con-
servation equations without forcing term (B.1), (B.2), (B.3) and (B.4), where the momenta
are (using (3.9) and (3.12))

Π = ε, Πi = 1
8πG ∗χ

i, P i = 1
8πG ∗ ψ

i, Π̃ij = − 1
8πG ∗X

ij , Πij = ε

2a
ij − 1

8πG ∗Ψ
ij .

(3.15)
The same equations are identically obeyed by the Carrollian Cotton tensors (C.16) and the
geometric shear is vanishing. We are therefore left with two independent equations, which
are (B.1) and (B.3):

1
ΩD̂tε+ 1

8πGD̂i ∗χi = 0, (3.16)

D̂jε−
1

8πG ∗D̂jc = 0, (3.17)

where c and χi are given in geometric terms in (C.11) and (C.12), and ε is proportional to
the Bondi-mass aspect, as stressed in item 1 above. Equations (3.16) and (3.17) are those
displayed in footnote 16 with vanishing right-hand side.

From the above eqs. (3.16) and (3.17) as well as eq. (C.17) one can foresee that the
energy density ε and the Carrollian Cotton scalar c play dual roles. This will be formu-
lated concretely in section 4 with reference to the boundary action of the Möbius group.
Anticipating this argument, we introduce the following Carrollian complex scalar τ̂(t,x)
and vector χ̂j(t,x):

τ̂ = −c+ 8πiGε, (3.18)
χ̂j = χj − i ∗χj . (3.19)

The aforementioned equations are thus recast as20

1
ΩD̂tτ̂ = D̂jχ̂

j , D̂j τ̂D̂
j τ̂ = 0,

D̂j τ̂D̂
j ˆ̄τ = 8

(
2 ∗$ ∗χi + 1

ΩD̂tψi − D̂ jΨji

)(
2 ∗$ ∗χi + 1

ΩD̂tψ
i − D̂kΨki

)
.

(3.20)

19Details and examples are available in [23].
20The first of eqs. (3.20) is flux-balance, driven exclusively by the Cotton vector χ̂j displayed in (3.19).

The loss phenomenon concerns both the mass aspect ε and the “magnetic-mass aspect” c, as captured in
eqs. (76) and (80) of [73] — see also appendix D of [75]. As opposed to ε, the time evolution (C.17) of the
magnetic-mass aspect is not altered by Cij and N̂ij , in line with [76].
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Acting with a second spatial derivative on (3.17) and using (A.19), we finally obtain

D̂ jD̂j τ̂ = 2i
( 1

ΩD̂t ∗$τ̂ − Â τ̂

)
. (3.21)

Let us mention for completeness that eqs. (3.16) and (3.17) coincide with eqs. (29.16) and
(29.15) of [74].21 It is remarkable that complicated equations as the latter can actually be
tamed into a simple fluid conservation supplemented with a kind of self-duality requirement.
It would have been unthinkable to reach such a conclusion without the null boundary
analysis performed here and the corresponding Carrollian geometric tools. The latter
provide definitely the natural language for unravelling asymptotically flat spacetimes.

A last comment before closing this section concerns the algebraic-special nature of the
metric (3.13). This is proven thanks to the Goldberg-Sachs theorem using the null, geodesic
and, in the resummed instance, shear-free bulk congruence tangent to ∂r. The latter is part
of the canonical null tetrad parallelly transported along ∂r (thanks to the affine nature of
r) introduced in [23], which coincides with that of [74], eq. (29.13a), as well as with the
original ref. [77]. In complex celestial-sphere coordinates ζ and ζ̄, see appendix C, the null
tetrad reads: 

k = ∂r

l = 1
2

(
8πGεr+∗$c

ρ2 − rθ − K̂
)
∂r + υ

m = P
r−i∗$

(
∂̂ζ̄ +

(
∗D̂ζ̄ ∗$ − rϕζ̄

)
∂r
) (3.22)

with the usual relations k·l = −1, m·m̄ = 1 and ds2
res. Ricci-flat = −2kl+2mm̄. Generically,

k is a multiplicity-two principal null direction of the Weyl tensor, and using the tetrad at
hand we find the following Weyl complex scalars:22

Ψ0 = Ψ1 = 0
Ψ2 = iτ̂

2(r−i∗$)3

Ψ3 = iPχζ
(r−i∗$)2 + O (1/(r−i∗$)3)

Ψ4 = iX ζ̄
ζ

r−i∗$ + O (1/(r−i∗$)2) .

(3.23)

Unsurprisingly, all Ψs are spelled using the Carrollian descendants of the boundary Cotton
tensor — as well as their derivatives in the higher-order terms.

3.2 Bulk versus boundary isometries

The geometries under consideration possess at least one Killing vector field. A natural ques-
tion to address concerns the boundary manifestation of a bulk isometry. At the same time
such an analysis provides the recipe for designing bulk isometries from a purely boundary
perspective.

21For that purpose, the following identifications are necessary (in complex coordinates, as in appendix C):
bζ = −L, ∗$ = −Σ, τ̂ = 2(M + im), Ω = 1, t = u, whereas their radial coordinate is r̃ = r − r0 with
r0(t, ζ, ζ̄) the origin in the affine parameter of the geodesic congruence tangent to ∂r.

22Neither Ψ3 nor Ψ4 vanish in the instance of Petrov type D solutions, because l is not a principal null
direction. Another tetrad is reached with a Lorentz transformation suitably adjusted for l′ be a principal
direction of multiplicity two whereas k′ ∝ k, and Ψ′

3 = Ψ′
4 = 0.
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We will circumscribe our investigation to vector fields, which have no component along
∂r, and whose other components depend only on t and x. We could be more general without
much effort assuming e.g. an expansion in inverse powers of r for the missing component
and for the radial dependence of the others. However, this would unnecessarily sophisticate
our presentation without shedding more light on our simple and robust conclusion: the
bulk isometries at hand are mapped onto boundary Carrollian diffeomorphisms generated
by strong Killing vectors (a summary on Carrollian isometries is available in appendix B).

It is convenient for the subsequent developments to adopt bulk Cartan frame and
coframe aligned with the boundary (3.2), (A.2) and (3.5):

et̂ ≡ υ = 1
Ω∂t, eı̂ ≡ ∂̂i = ∂i + bi

Ω∂t, er̂ ≡ ∂r,

θt̂ ≡ −µ = Ωdt− bidxi, θı̂ ≡ dxi, θr̂ ≡ dr.
(3.24)

The components for the bulk metric (3.13) read (in order to avoid cluttering, we keep the
“hat” on the time indices only, where potential ambiguity exists):

gt̂t̂ = 1
ρ2 (8πGεr + ∗$c)− rθ − K̂ , gt̂i = ∗D̂i ∗$ − rϕi, gt̂r = −1,

gri = 0, grr = 0, gij = ρ2aij .

(3.25)

Assuming a bulk vector of the form

ξ = ξt(t,x)∂t + ξk(t,x)∂k = ξ t̂(t,x)υ+ ξk(t,x)∂̂k, (3.26)

where ξ t̂ = Ωξt − ξkbk, we can determine the Lie derivative of the metric:

Lξgrr = 0, Lξgrt̂ = µ, Lξgri = νi,

Lξgij = 2ρ2
(
∇̂(iξ

kaj)k + ξ t̂γ̂ij
)
− 2gt̂(iνj) + aijξ

(
∗$2

)
,

Lξgt̂i = −gt̂iµ− gt̂t̂νi − r
(
ξ (ϕi) + ϕj ∂̂iξ

j
)

+ ξ
(
∗D̂i ∗$

)
+
(
∗D̂j ∗$

)
∂̂iξ

j + ρ2aij
1
Ω∂tξ

j ,

Lξgt̂t̂ = −2gt̂t̂µ+ 2gt̂i
1
Ω∂tξ

i − ξ
( 1
ρ2 (8πGεr + ∗$c)− rθ − K̂

)
(3.27)

with µ(t,x) and νi(t,x) given in (B.10). Observe that everything is expressed in terms of
boundary Carrollian geometric objects (see appendix A).

Since the Killing components are r-independent, the above Lie derivative vanishes if
and only if the coefficients of every power of r do. The independent conditions we reach
for this to occur are

∂tξ
i = 0 (3.28)

and (B.12), (B.13) and (B.17), which therefore map the bulk Killing field (3.26) onto a
boundary Carrollian strong Killing vector (see appendix B). Some apparent extra condi-
tions such as ξ

(
∗$2) = 0 or ξ (ϕi) + ϕj ∂̂iξ

j = 0 are the vanishing of ξ-Lie derivatives of
some Carrollian tensors, which is guaranteed by the strong Killing requirement on ξ.
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3.3 Towers of charges and dual charges

The Carrollian dynamics emerging on the boundary as a consequence of bulk Einstein’s
equations, combined with the always available Carrollian conformal isometry group BMS4,
enables us to define a variety of charges. These are not necessarily conserved, but even in
that instance, their evolution properties are canonical and provide an alternative, tamed
picture of the dynamics. Furthermore, they should ultimately pertain to those charges
recently discovered and discussed from a bulk perspective [32–39], based as usual on the
asymptotic symmetries — also and unsurprisingly BMS4, under appropriate fall-off con-
ditions. Making the precise contact with those works would require a translation of our
findings into the Newman-Penrose formalism [77] beyond what we have already observed in
eqs. (3.23), namely Ψ0

2 = i
2 τ̂ , Ψ0

3 = iPχζ and Ψ0
4 = iX ζ̄

ζ . This would bring us far from our
goal, and we will limit ourselves to pointing out that the ten Newman-Penrose conserved
charges vanish here because the spacetimes are algebraically special. These charges would
have been otherwise associated with the s = 1 “non-tilde” class introduced below, involving
non-zero Eij and Ni in the non-algebraic instance.

Ricci-flat metrics, either in the general form (3.6) or in its resummed version (3.13),
exhibit two important features for the description of charges. Firstly, every order 1/r2s+1

reveals Carrollian dynamics of the type (B.1), (B.2), (B.3) and (B.4) with momenta Π(s),
Πi

(s), P i(s), Π̃ij
(s) and Πij

(s), and possibly with right-hand sides — non-conservation. Every
such set of momenta together with the Carrollian conformal Killings (C.20) lead to currents
κ(s), Ki

(s), κ̃(s), K̃i
(s) and charges Q(s)T,Y and Q̃(s)T,Y , following (B.20) and (B.22). Their

conservation or evolution encoded in (B.21) depends on K(s), K̃(s) in (B.23). The set
associated with s = 0 corresponds to the fluid momenta (3.8) and its charges are leading;
the sets with s ≥ 1 reveal the subleading charges. Moreover, all these charges should be
referred to as electric because their conservation, if valid, occurs on-shell.

Secondly, the Carrollian Cotton tensors obey conservation equations (B.1), (B.2), (B.3)
and (B.4) with momenta (C.16), leading to two towers of Cotton charges QCotT,Y and
Q̃CotT,Y , as discussed in appendix C. These charges are magnetic as the conservation of
the Cotton is an identity valid off-shell.23 Furthermore, the Carrollian Cotton tensors
are not exclusive to 1/r2: each order 1/r2s+2 brings its share of off-shell Carrollian dynamics
with momenta ΠCot (s), Πi

Cot (s), P iCot (s), Π̃ij
Cot (s), Πij

Cot (s), currents κCot (s), Ki
Cot (s), κ̃Cot (s),

K̃i
Cot (s), and finally magnetic charges QCot (s)T,Y and Q̃Cot (s)T,Y .

Incidentally, it should be noticed that due to the relationships amongst the fluid and
the Cotton (eq. (3.9) in general plus eq. (3.12) in the resummable family), the electric
and the magnetic towers have a non-empty intersection: Q̃(s)T,Y and Q̃Cot (s)T,Y generally
coincide.

Let us for concreteness overview the situation in the resummable instance, eq. (3.13).
Expanding the resummed factor 1/ρ2, we find the following results.

Electric towers. These have sth momenta Π(s), Πi
(s), P i(s), Π̃ij

(s) and Πij
(s) equal to (3.15)

multiplied by ∗$2s. The same factor will multiply the leading Carrollian current (s =
23We borrow here the phrasing electric and magnetic from refs. [76, 78].
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0 i.e. κ, Ki, κ̃, K̃i) and give the sth, κ(s), Ki
(s), κ̃(s) and K̃i

(s), following (B.22). Using
the Carroll-Bianchi identities (C.6), (C.7) and (C.8), we find the divergences (B.23),
which contribute the time evolution of the charges computed as in (B.20), using (B.21):

K̃(s) = −s ∗$2s−2
(
∗$Â κ̃+ 1

3K̃
i ∗ψi

)
, (3.29)

K(s) = −∗$
2s

8πG ∗χ
i
(
D̂iξ

t̂ − 2ξj$ji

)
− s ∗$2s−2

(
∗$Â κ+ 1

3K
i ∗ψi

)
(3.30)

with 

κ = 1
8πGξ

i ∗ψi − ξ t̂ε
κ̃ = 1

8πGξ
i ∗χi

Ki = ε
2ξ
i − 1

8πG

(
ξj ∗Ψi

j + ξ t̂ ∗χi
)

K̃i = − 1
8πGξ

j ∗Xi
j ,

(3.31)

and the Killing components ξ t̂ and ξi read off in (C.20) following (B.6).

Regarding the charges and their evolution, only Q̃(0)T,Y =
∫
S d2x

√
a
(
κ̃+ bjK̃

j
)
≡

Q̃T,Y are always conserved. These charges are purely geometric because they are
integrals over S 24

Q̃T,Y = − 1
8πG

∫
S
d2x
√
a ∗ξi

(
χi − bjXj

i

)
, (3.32)

which do not involve the energy density ε, as opposed toQ(0)T,Y =
∫
S d2x

√
a
(
κ+bjKj

)
≡QT,Y spelled as

QT,Y =− 1
8πG

∫
S
d2x
√
a ξ t̂

(
8πGε+bi∗χi

)
+ 1

8πG

∫
S
d2x
√
a ξi

(
∗ψi+4πGεbi−bj∗Ψj

i

)
.

(3.33)
The latter are conserved for strong Carrollian Killings. Other charges might also be
conserved for specific Carrollian conformal Killings, or depending on the configura-
tion.

Magnetic towers. The sth magnetic momenta ΠCot (s), Πi
Cot (s), P iCot (s), Π̃ij

Cot (s) and
Πij
Cot (s) are (C.16) multiplied by ∗$2s. As for the electric case, this latter factor

will appear in all magnetic currents κCot (s), Ki
Cot (s), κ̃Cot (s) and K̃i

Cot (s) built out of
the leading s = 0: 

κCot = ξiψi − ξ t̂c
κ̃Cot = ξiχi

Ki
Cot = c

2ξ
i − ξjΨi

j − ξ t̂χi

K̃i
Cot = −ξjXi

j ,

(3.34)

24We use the property V i ∗Wi = − ∗V iWi — see (C.1).
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Their divergences (B.23) read:

K̃Cot (s) = −s ∗$2s−2
(
∗$Â κ̃Cot + 1

3K̃
i
Cot ∗ψi

)
, (3.35)

KCot (s) = − ∗$2sχi
(
D̂iξ

t̂ − 2ξj$ji

)
− s ∗$2s−2

(
∗$Â κCot + 1

3K
i
Cot ∗ψi

)
. (3.36)

These determine the evolution (B.21) of the charges (B.20), from which we learn that
Q̃Cot (0)T,Y =

∫
S d2x

√
a
(
κ̃Cot + bjK̃

j
Cot

)
≡ Q̃CotT,Y are always conserved:

Q̃CotT,Y =
∫

S
d2x
√
a ξi

(
χi − bjXj

i

)
. (3.37)

For strong Carrollian Killing fields, QCot (0)T,Y =
∫
S d2x

√
a
(
κCot + bjK

j
Cot

)
≡

QCotT,Y given by

QCotT,Y = −
∫

S
d2x
√
a ξ t̂

(
c+ biχ

i
)

+
∫

S
d2x
√
a ξi

(
ψi + c

2bi − bjΨ
j
i

)
(3.38)

are also conserved off-shell, as other magnetic charges are in specific situations.

Several comments are in order here concerning the above sets of charges obtained for the
resummable metrics (3.13). The tower of electric geometric charges Q̃(s)T,Y , constructed
upon multiplying the integrand of (3.32) by ∗$2s, coincides with its magnetic counterpart
Q̃Cot (s)T,Y obtained likewise using (3.37). In d = 2, if ξi are the spatial components of a
conformal Killing field, so are ∗ξi.25 Hence the set of all ξis is identical to that of ∗ξis. The
associated charges could be called “self-dual,” and in total three distinct towers emerge: the
self-dual

{
Q̃(s)T,Y

}
≡
{
Q̃Cot (s)T,Y

}
, the electric

{
Q(s)T,Y

}
and the magnetic

{
QCot (s)T,Y

}
— the last two are reached by inserting ∗$2s into the integrals (3.33) and (3.38). The
∗$2s insertion pattern grants the subleading towers with the status of multipolar moments
(see the original works [79–82] as well as [83] for a modern perspective). Making this
statement precise would force us to deviate substantially from the analysis of the hidden
Möbius group. This could fit more naturally in a comprehensive comparison of the present
approach to subleading charges with the rich existing literature quoted earlier. Nonetheless,
the pertinence of the proposition will be illustrated in the example of Kerr solution, at the
very end of the forthcoming section 3.4.

Among the above towers of BMS4 charges, always present but not always conserved,
one finds those corresponding to the bulk isometries, whenever present. Indeed, as discussed
in section 3.2, bulk Killings of the form (3.26) are associated with boundary strong Carrol-
lian Killing vector fields. Combined as previously with the leading and subleading, electric
and magnetic momenta, they generate two electric and two magnetic towers of charges:{
Q(s), Q̃(s), QCot (s), Q̃Cot (s)

}
. The four leading charges

{
Q(0), Q̃(0), QCot (0), Q̃Cot (0)

}
are

always conserved, but part of them may be trivial or not independent. The subleading are
neither necessarily conserved, nor always independent, and have the status of electric and
magnetic multipole moments.

25The proof of this statement is straightforward in complex coordinates, see footnote 50.
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3.4 Time-independent solutions

Reconstruction from the boundary. In view of the forthcoming Ehlers-Geroch re-
duction, we will now assume the existence of a time-like Killing vector field ξ in Ricci-flat
solutions of the resummable type (3.13). Such a vector could be generally of the form (3.26).
In stationary spacetimes, the field ξ remains time-like in the asymptotic region. Then, it
is possible to choose the field υ (3.2) of the modified Newman-Unti gauge such that υ ≡ ξ.
Setting further Ω = 1 brings the Killing to the simple form ∂t (see e.g. [77] for a detailed
description of the procedure). On the conformal boundary, the time-like Killing congru-
ence thus coincides with the fibre of the Carrollian bundle. This feature is absent for
spacetimes where a time-like Killing field exists but becomes space-like in the asymptotic
region. Examples of this sort are captured by the Plebański-Demiański family (like the
C-metric) [84] (see also [74, 85]), which is algebraically special of Petrov type D.26 These
include the black-hole acceleration parameter, which is responsible for the appearance of
another Killing horizon, creating a new asymptotic region where the Killing vector fails to
be time-like. Although interesting on its own right — of limited physical use, however —
the inclusion of this parameter would render the presentation too convoluted, in particular
because the action of the Ehlers group in this instance does not respect the algebraic fea-
ture of the spacetime. For the sake of clarity we will restrict our investigation to Killings
of the form ∂t, aligned with the fiber, i.e. to truly stationary spacetimes, which remain
algebraically special under Ehlers transformations.

With the present choice, none of the Carrollian building blocks of ds2
res. Ricci-flat depends

on t. As a consequence (see appendices A and C) θ = 0 and ϕi = ∂i ln Ω. The latter can
be set to zero with a time-independent Weyl rescaling, which therefore amounts to setting
Ω = 1. This is an innocuous gauge fixing that will be assumed here because it allows to
severely simplify the dynamics. Backed with time independence, Carrollian Weyl-covariant
derivatives become ordinary Levi-Civita derivatives, and the only non-vanishing tensors are
the following, in complex coordinates with P = P (ζ, ζ̄) — see appendix C:

∗$ = iP 2

2
(
∂ζbζ̄ − ∂ζ̄bζ

)
, (3.39)

K̂ = K̂ = K = ∆ lnP, (3.40)
c = (∆ + 2K) ∗$, (3.41)

χζ = i
2∂ζK, χζ̄ = − i

2∂ζ̄K, (3.42)

ψζ = 3i∂ζ ∗$2, ψζ̄ = −3i∂ζ̄ ∗$
2, (3.43)

Ψζζ = 1
P 2∂ζ

(
P 2∂ζ ∗$

)
, Ψζ̄ζ̄ = 1

P 2∂ζ̄

(
P 2∂ζ̄ ∗$

)
, (3.44)

where ∆f = 2P 2∂ζ̄∂ζf . To these one should add the energy density (i.e. the Bondi mass
aspect) ε, as well as another scalar

$ = P 2

2
(
∂ζbζ̄ + ∂ζ̄bζ

)
, (3.45)

26Their Weyl components are given in eq. (3.23) — see also footnote 22.
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which is 1
2∇ib

i and should not be confused with the two-form $ = 1
2$ijdxi ∧ dxj , i.e. the

Hodge-dual of the scalar ∗$ = −1
2∇i ∗b

i displayed explicitly in (3.39). These two real twist
scalars are adroitly combined into the complex Carrollian twist

$̂ = ∗$ + i$. (3.46)

The equations of motion (3.16), (3.17) (or in the form (3.20), (3.21) with τ̂ defined
in (3.18)) are recast as

∆K = 0, (3.47)
∂ζ τ̂ = 0. (3.48)

The first shows that the curvature is required to be a harmonic function i.e.

K(ζ, ζ̄) = 1
2
(
k̂(ζ) + ˆ̄k(ζ̄)

)
, (3.49)

and although k̂(ζ) is an arbitrary holomorphic function, the freedom is rather limited as K
must also be the Laplacian of lnP . Besides the constant-curvature cases, one solution has
been exhibited thus far [74] (up to holomorphic coordinate transformations): K = −3(ζ+ζ̄)
realized with P = (ζ+ ζ̄)3/2. We will not specify any particular choice for the moment. For
future use, we define the imaginary part of k̂(ζ) as another harmonic function

K∗(ζ, ζ̄) = 1
2i
(
k̂(ζ)− ˆ̄k(ζ̄)

)
. (3.50)

From eqs. (3.48) and (3.18), we infer that −c is the real part of an arbitrary holomorphic
function τ̂(ζ), whereas the imaginary part of the latter is 8πGε; both are harmonic func-
tions. Given c and K, we can proceed with eq. (3.41) and find ∗$, from which it is always
possible to determine bζ and bζ̄ .

Although the focus of the present work is not to solve Einstein’s equations, we will
elaborate for illustrative purposes on the steps we’ve just described, without delving into
fine questions like completeness or gauge redundancy of the solutions. Note in passing how
remarkably the Carrollian boundary formalism is adapted to the framework of Ricci-flat
spacetimes, allowing to convey often complicated expressions in a very elegant manner,
and sorting naturally otherwise scattered classes of solutions (the ones we present can be
found in various chapters of refs. [74, 85]). Several distinct instances appear, which require
a separate treatment.

Non-constant KKK. This is the generic situation, although in practice the most obscure
regarding the interpretation of the bulk geometries. As already mentioned, very few
P s are expected to possess a non-constant harmonic curvature K, but assuming one
has one, accompanied by its holomorphic function k̂(ζ), and making a choice for
the arbitrary holomorphic function τ̂(ζ), eq. (3.41) can be solved for ∗$, which is
expressed using (3.39) with Ehresmann connection

bζ(ζ, ζ̄) = iˆ̄τ(ζ̄)
P 2(ζ, ζ̄)∂ζ̄

ˆ̄k(ζ̄)
. (3.51)
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Constant KKK. This implies that k̂(ζ) is also constant and the above solution is invalid.
The situation at hand is the most common, however, as it captures three standard
instances: spherical, flat or hyperbolic foliations. We can parameterize the function
P as follows:

P (ζ, ζ̄) = Aζζ̄ +Bζ + B̄ζ̄ +D (3.52)

with A, D arbitrary real constants and B an arbitrary complex constant, leading to

K = 2(AD −BB̄). (3.53)

Several cases emerge, which must be treated separately.

K 6= 0K 6= 0K 6= 0. Here c(ζ, ζ̄) = − τ̂(ζ)+ˆ̄τ(ζ̄)
2 is an arbitrary (possibly constant) harmonic func-

tion, and eq. (3.41) is solved with

∗$(ζ, ζ̄) = c(ζ, ζ̄)
2K +i

(
f̄(ζ̄)∂ζ̄ lnP (ζ, ζ̄)− f(ζ)∂ζ lnP (ζ, ζ̄) + 1

2
(
∂ζf(ζ)− ∂ζ̄ f̄(ζ̄)

))
(3.54)

with f(ζ) an arbitrary holomorphic function. It is reached with the following
Ehresmann connection (τ̂0 is a real constant):

bζ(ζ, ζ̄) = − ζ̄ (τ̂0 + iτ̂(ζ))
2K(Bζ +D)P (ζ, ζ̄)

+ f̄(ζ̄)
P 2(ζ, ζ̄)

. (3.55)

K = 0K = 0K = 0. This instance is obtained with A = B = 0 so that P = D. Now, given an
arbitrary harmonic function c(ζ, ζ̄) = − τ̂(ζ)+ˆ̄τ(ζ̄)

2 and an arbitrary holomorphic
function Z(ζ), we find

∗$(ζ, ζ̄) = i
2
(
Z(ζ)− Z̄(ζ̄)

)
− 1

4P 2

(
ζ̄

∫ ζ

dz τ̂(z) + ζ

∫ ζ̄

dz̄ ˆ̄τ(z̄)
)
, (3.56)

and (τ̂0 is a real integration constant)

bζ(ζ, ζ̄) = 1
P 2

∫ ζ̄

dz̄ Z̄(z̄)− ζ̄2

4P 4

∫ ζ

dz (τ̂0 + iτ̂(z)). (3.57)

The last two cases have in common the instance where c = K = 0, realized with
vanishing τ̂ and constant P .

As already noticed, all solutions described in a unified fashion here can be found in the
earlier quoted literature under distinct labels.27 Discussing them would take us outside of
our objectives. We will only emphasize a notorious subclass, which is the Kerr-Taub-NUT
family. For the latter, the curvature K is constant (3.53) and realized e.g. with B = 0.
Two distinct instances emerge: vanishing and non-vanishing K, respectively obtained with
vanishing and non-vanishing A.

27It should be stressed that part of the present solution space originates in gauge freedom. In particular,
c(ζ, ζ̄) being Weyl-covariant of weight 3 (see appendix C), it can always be reabsorbed by a boundary Weyl
transformation, which is in turn neutralized by a bulk r-rescaling. Such a boundary transformation will
bring Ω back with non-vanishing ϕi, which we have set to zero, and this is the reason we cannot here restrict
to constant c and τ̂ .
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• For non-vanishing K, the holomorphic function τ̂ is

τ̂ = 2i(M + iKn), (3.58)

whereM is the mass and n the nut charge, both constants. The holomorphic function
f(ζ) reads

f(ζ) = iaζ (3.59)

with a the Kerr angular velocity. Using eqs. (3.54) and (3.55) with τ̂0 = 2M we find:

bζ(ζ, ζ̄) = −iζ̄
(
a

P 2 −
n

DP

)
(3.60)

and
∗$(ζ, ζ̄) = n+ a− 2Da

P
, (3.61)

where P = Aζζ̄ +D and K = 2AD.

• For K = 0 (i.e. P = D constant), we use eqs. (3.56) and (3.57) with τ̂0 = 2M ,28

τ̂ = 2iM (3.62)

and
Z = ia. (3.63)

This leads to
bζ(ζ, ζ̄) = −i ζ̄a

P 2 (3.64)

and
∗$ = −a. (3.65)

Observe the absence of nut charge in the present case.29

A remark on the rigidity theorem. The rigidity theorem asserts that under appropri-
ate hypotheses, the isometry group of stationary asymptotically flat spacetimes contains
R×U(1). This theorem is best presented in refs. [86, 87], where the necessary assumptions
are stated more accurately than in the original discussions (see e.g. [88]). Our framework
does embrace stationary spacetimes. However, we have been agnostic regarding analytic-
ity or regularity properties, which turn out to be fundamental for the applicability of the
theorem at hand. Hence, we have no reason to foresee any additional U(1) symmetry in
all reconstructed solutions of the present section.

Aside from mathematical rigor, we can recast the conceivable disruption of the rigidity
theorem from the boundary perspective, which has been our viewpoint. We have shown
in section 3.2 that a bulk Killing field is mapped onto a Carrollian strong Killing on the

28Both for vanishing and non-vanishing K, τ̂0 has been tuned to ensure that M does not appear in bζ ,
displayed in (3.60) and (3.64). There is no principle behind this choice, it is simply in line with standard
conventions for the Kerr-Taub-NUT family. As a consequence, $ defined in (3.45) vanishes.

29Despite the absence of magnetic charges, the solution at hand belongs formally to the Taub-NUT family
(see ref. [85], section 12.3.2).
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boundary. The generator of the desired U(1) is of the form (3.26) with no time leg30 i.e.
ξt = 0, and no time dependence in ξi as imposed by (3.28):

ξ = −
(
ξζbζ + ξζ̄bζ̄

)
∂t + ξζ ∂̂ζ + ξζ̄ ∂̂ζ̄ . (3.66)

A strong Carrollian Killing field must obey eqs. (B.12), (B.13) and (B.17). Here (B.13) is
identically satisfied, whereas (B.12) leads to

∂ζξ
ζ̄ = ∂ζ̄ξ

ζ = 0, ∂ζ
ξζ

P 2 + ∂ζ̄
ξζ̄

P 2 = 0. (3.67)

Finally (B.17) reads:
P 2∂ζ

(
ξζbζ + ξζ̄bζ̄

)
+ 2i ξζ̄ ∗$ = 0 (3.68)

plus its complex conjugate.
For arbitrary P (ζ, ζ̄), eqs. (3.67) have no solution, hence no extra Killing field is avail-

able. As mentioned earlier in the present section, the P s with harmonic curvature (required
in (3.47)) are very restricted and probably lack the necessary analyticity properties, ex-
plaining why the rigidity theorem is not applicable. This indeed happens in the quoted
example with P = (ζ + ζ̄)3/2.

Alternatively, considering P = Aζζ̄ + D with constant curvature K = 2AD, we find
three more solutions to the equations (3.67):

ξ1 = i
(
ζ∂ζ − ζ̄∂ζ̄

)
, (3.69)

ξ2 = i
2
√
|AD|

((
D −Aζ2

)
∂ζ −

(
D −Aζ̄2

)
∂ζ̄

)
, (3.70)

ξ3 = 1
2
√
|AD|

((
D +Aζ2

)
∂ζ +

(
D +Aζ̄2

)
∂ζ̄

)
, (3.71)

closing in so(3), e2 and so(2, 1) algebras31 for positive, zero or negative K. Using (3.60)
and (3.61) one shows that for generic angular velocity a and nut charge n, only ξ1 obeys
the strong condition (3.68). This is then promoted to a bulk field generating the rotational
U(1) isometry of the Kerr-Taub-NUT family. For vanishing a and n, all three Carrollian
Killing fields are strong and the bulk Ricci flat solution is fully isotropic — Schwarzschild
or A-class metric, see [74, 85].

Charge analysis. We would like to close the present section with a brief account on
the charges of the Ricci-flat solutions under investigation. Gravitational charges disclose
the identity of a background and, as we have proposed in section 3.3, boundary Carrollian
geometry supplies alternative techniques for their determination and the study of their
conservation. These techniques are still in an incipient stage though, because the contact
with the standard methods still needs to be elaborated. Furthermore, non-radiating con-
figurations, in particular stationary and algebraically special, offer a limited playground

30We could keep non-vanishing ξt and perform a more thorough analysis. This would not alter the
conclusions, which are meant here to illustrate possible boundary faults in the rigidity theorem.

31The Lie brackets of the ξs are [ξ1, ξ2] = ξ3, [ξ3, ξ1] = ξ2 and [ξ2, ξ3] = K
|K|ξ1. For vanishing K,

ξ2 = i
2

(
∂ζ − ∂ζ̄

)
and ξ3 = 1

2

(
∂ζ + ∂ζ̄

)
are the translation commuting generators of e2.
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in this programme. We would like nevertheless to summarize the situation, in view of the
follow-up discussion on Möbius hidden-group action, section 4.2.

The simplest non-vanishing charge is the electric curvature defined in (C.9):32

Qec =
∫

S

dζ ∧ dζ̄
iP 2 K. (3.72)

Divided by the volume of S , this is simply the average Gauss curvature. Note in passing
that the charges defined here are extensive, hence the integrals may reveal convergence
issues, in particular when S is non-compact. Normalizing with Vol =

∫
S

dζ∧dζ̄
iP 2 is the sim-

plest way to fix this divergence.33 Alternatively, S could be compactified — quotiented
by a discrete isometry group. We will leave this discussion aside, as it would be better ad-
dressed within attempts to make sense of Ricci-flat black holes with non-compact horizons
(see e.g. Ch. 9 of [85]).

The towers of charges introduced in section 3.3 are slightly simpler in the instance
under consideration. Indeed, the Carrollian conformal Killings used in expressions (3.31)
and (3.34) are (C.47) with

C(t, ζ, ζ̄) = tP (ζ, ζ̄) (3.73)

(see (C.48)). Observe also that K̃i = K̃i
Cot = 0 so that K̃(s) = K̃Cot (s) = 0. Generically, K(s)

and KCot (s) are non-zero though, because the conformal Killing vectors are not necessarily
strong and due to the time dependence, here encoded exclusively in their component ξ t̂.
The corresponding charges are ultimately expressed as integrals of combinations of k̂, ˆ̄k, τ̂ ,
ˆ̄τ , ∗$, $, and of their derivatives.34

For concreteness, we will illustrate the above with the distinctive strong Carrollian
conformal Killing field ∂t, i.e. the generator of the Ehlers-Geroch bulk three-dimensional
reduction. For this Killing field, the “tilde” Carrollian charges vanish. In example, for the
leading charges (s = 0 in the coding of section 3.3), we find35

Qem =
∫

S

dζ ∧ dζ̄
iP 2 (8πGε+$K) , Qmm =

∫
S

dζ ∧ dζ̄
iP 2 (−c+ ∗$K) , (3.74)

up to boundary terms with respect to (3.33) and (3.38) (and a factor −8πG for the former),
handily combined into

Qm = Qmm + iQem =
∫

S

dζ ∧ dζ̄
iP 2 (τ̂ + $̂K) . (3.75)

The indices stand for magnetic and electric masses. These mass definitions carry some
arbitrariness since, as a consequence of time independence, each of the terms in the integrals

32Remember that here ξij = 0, and the geometry is t-independent with vanishing θ, ϕi, Â , R̂i as well as
Xij .

33The integrals can be performed by setting ζ = ZeiΦ, where 0 ≤ Φ < 2π and Z =
√

2 tan Θ
2 , 0 < Θ < π

for S2; Z = R√
2 , 0 < R < +∞ for E2; Z =

√
2 tanh Ψ

2 , 0 < Ψ < +∞ for H2.
34Although the components bi of the Ehresmann connection enter the expression of the Carrollian

charges (B.20), upon integration by parts, they are traded for ∗$ or $.
35Using (3.31) and (3.34) with ξt̂ = 1 and ξi = 0, we find κ = −ε, Ki = − 1

8πG ∗χ
i, κCot = −c and

Ki
Cot = −χi.
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provide a separate well-defined charge. We will turn back to this when discussing the action
of the Möbius group, in section 4.2.

Following section 3.3, the subleading mass charges associated with the strong Carrollian
conformal Killing field ∂t are captured in

Qm (s) =
∫

S

dζ ∧ dζ̄
iP 2 (τ̂ + $̂K) ∗$2s (3.76)

and define the higher-s mass multipole moments. In the instance of the K = 1 Kerr-Taub-
NUT family displayed in eqs. (3.58), (3.59), (3.60), (3.61) with A = 1/2 and D = 1, we
find:

Qm (s) = 4πi (M + in)
(

(n+ a)2s+1 − (n− a)2s+1

a(2s+ 1)

)
. (3.77)

For this set of solutions, ξ1 in (3.69) is a strong Carrollian Killing vector, which brings
its own Carrollian rotational charges. Again the “tilde” (eqs. (3.32) and (3.37)) vanish
whereas the “non-tilde” (see. (3.31) and (3.34)) are combined in the complex higher-s
angular-momentum multipole moments

Qr (s) =
∫

S

dζ ∧ dζ̄
iP 2 6ζζ̄

(
n+ iM
P 2 (a− nP )

(
n+ a− 2a

P

)2s
− 2a
P 2

(
n+ a− 2a

P

)2s+1
)

(3.78)
with P = 1 + 1

2ζζ̄, which are non-zero if one rotation parameter a or n is present. We find
for example:

Qr (0) = −8π [a(n+ iM) + 3n(n− iM)] . (3.79)

Expressions (3.77) and (3.79) are in line with the results obtained in refs. [79–82] (see
also [89], where the electric part of Qr (0) is given) using standard methods circumscribed
to bulk dynamics. They provide conserved moments since the divergences (3.30) and (3.36)
vanish.

4 Ehlers transformations

4.1 Bulk reduction and Möbius action on the boundary

Our next and pivotal task is to unravel the action of the Ehlers group (2.11) on the
boundary Carrollian observables, using the expression of the bulk Ricci-flat metric (3.6)
assumed to possess a time-like Killing vector field. We will focus in the present work on
the restricted class of resummable metrics (3.13), as exploited in section 3.4, i.e. equipped
with a time-like Killing field ξ = ∂t and Ω = 1.

In order to proceed, we are called to follow the steps for the Geroch reduction described
in section 2, i.e. determine τ as defined in (2.9) for the metric (3.13) with λ and ω given
in (2.1), (2.2) and (2.3). These should be expanded in inverse powers of r and thus deliver
the boundary ingredients together with their transformations following (2.11). A remark
should be made before hand. The Geroch reduction is followed by an oxidation, which
defines the novel Ricci-flat solution. Nothing guarantees in this course that the oxidized
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metric will assume again the form (3.13). Actually it doesn’t and a redefinition of the
radial coordinate is necessary to bring it back into the expected original gauge.

It is convenient for the present mission to adopt the Cartan frame defined in (3.24),
leading to the bulk metric

gt̂t̂ = 1
ρ2 (8πGεr + ∗$c)−K, gt̂i = ∗∂i ∗$, gt̂r = −1,

gri = 0, grr = 0, gij = ρ2aij

(4.1)

obtained using (3.25), assuming t-independence and Ω = 1. In this expression ∗$, K and
c are given in eqs. (3.39), (3.40) and (3.41). The Killing form reads:

ξ =
(
K − 1

ρ2 (8πGεr + ∗$c)
)
µ+ ∗∂i ∗$dxi − dr, (4.2)

with norm
λ = 8πGεr + ∗$c

ρ2 −K. (4.3)

For the twist we use eq. (2.2), expressed as

w = − ?(ξ ∧ dξ) , (4.4)

where “?” stands for the four-dimensional Hodge duality. The latter one-form is exact
on-shell and we find the following potential (eq. (2.3)):

ω = 8πGε ∗$ − cr
ρ2 +K∗. (4.5)

On-shellness is implemented here through boundary dynamics as summarized in section 3.4,
i.e. in eqs. (3.48), (3.49) and (3.50).

Inserting the above results into eqs. (2.9) and using (3.18), we find

τ = τ̂

r + i ∗$ − ik̂. (4.6)

Likewise, we obtain the Geroch reduced and rescaled metric (2.8):

h̃ABdxAdxB = −
(
dr − ∗∂k ∗$ dxk

)2
+ λρ2aijdxidxi. (4.7)

With this, τ given in (4.6) unsurprisingly solves the reduced Einstein’s equations (2.10).
The premier Ehlers transformation rules are (2.11) and the invariance of h̃AB. From

these follows the rest of the construction, i.e. the transformation of hAB and the oxida-
tion toward g′AB. In the present framework, we have to some extent locked the gauge, via
the resummed bulk expression (3.13). Ehlers transformations are not designed a priori to
maintain this form, and they are generally expected to require further coordinate transfor-
mations. It is rather remarkable that, to this end, a local (i.e. celestial-sphere dependent)
shift in the radial coordinate suffices.

– 24 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

Using for convenience holomorphic and antiholomorphic coordinates as introduced in
appendix C, expression (4.7) is recast as follows:

h̃ABdxAdxB = −
(
dr − i∂ζ ∗$ dζ + i∂ζ̄ ∗$ dζ̄

)2
+ (τ − τ̄)(r + i ∗$)(r − i ∗$)

iP 2 dζdζ̄. (4.8)

Combining (2.11) with (4.6), we obtain the following boundary transformations:

τ̂ ′ = − τ̂(
γk̂ + iδ

)2 , (4.9)

k̂′ = iαk̂ + iβ
γk̂ + iδ

, (4.10)

$̂′ = $̂ + γτ̂

γk̂ + iδ
(4.11)

and
P ′ = P∣∣∣γk̂ + iδ

∣∣∣ , (4.12)

plus the radial shift36

r′ = r + i
2

(
γτ̂

γk̂ + iδ
− γ ˆ̄τ
γ ˆ̄k − iδ

)
. (4.13)

These transformation rules leave indeed (4.8) invariant. As advertised earlier, they are
local, providing a direct transformation (4.12) of the boundary metric. The transformation
of the energy density ε is obtained from (4.9) using (3.18):

8πGε′ =
8πGε

(
(γK∗ + δ)2 − γ2K2

)
− 2cγK (γK∗ + δ)(

γ2K2 + (γK∗ + δ)2
)2 . (4.14)

The transformation of c is inferred similarly:

c′ =
c
(
(γK∗ + δ)2 − γ2K2

)
+ 16πGεγK (γK∗ + δ)(

γ2K2 + (γK∗ + δ)2
)2 . (4.15)

All these rules are compatible with eqs. (3.40) and (3.41). Finally the transformations of
the Carrollian Cotton tensors are reached using the above results combined with eqs. (3.42),
(3.43) and (3.44).

The transformation of the Ehresmann connection is obtained directly from the expres-
sions reached for the latter in (3.51), (3.55) and (3.57). To this end, observe that in the
constant-k̂ instance, A, B, B̄ and D transform with a factor 1/|γk̂+iδ| in order to comply

36One could alternatively adopt a new radial coordinate defined as r̃ = r + $ that is invariant under
Möbius transformations. This is actually mandatory in order to reach boundary SL(2,R)-covariant tensors
from the bulk, as we will discuss in section 4.2. It furthermore coincides with the radial coordinate of
ref. [74] section 29 provided r0 = −$ (origin of the affine parameter along the geodesic congruence tangent
to ∂r — see footnote 21).
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with (4.12). Similarly, f(ζ) and Z(ζ), introduced in (3.54) and (3.56), must be respectively
invariant and transforming as

Z ′(ζ) = Z(ζ) + i γτ̂(ζ)
γk̂ + iδ

, (4.16)

so that (4.11) be fulfilled.
Let us mention for completeness that once the Möbius transformation is performed on

the boundary, the reconstruction of the new Ricci-flat solution is straightforward using the
boundary-to-bulk formula (3.13), expressed with primed data — except for the unaltered
boundary coordinates

{
t, ζ, ζ̄

}
. This is equivalent to the oxidation procedure operated

from three to four dimensions along the lines of eqs. (2.12), (2.13), (2.14) and (2.15) with

η′ = −µ′ − 1
λ′

(
dr′ − i∂ζ ∗$′ dζ + i∂ζ̄ ∗$

′ dζ̄
)
, µ′ = −dt+ b′ζdζ + b′

ζ̄
dζ̄, (4.17)

finally leading to (2.16), which assumes the form (3.13) primed. The new bulk Killing
vector ξ′ = λ′η′ is again ∂t.

In the example of the Kerr-Taub-NUT family treated at the end of section 3.4, the
specific choices of P = 1

2ζζ̄ + 1, K = 1 and K∗ = 0 (this was not explicitly demanded) are
stable only under

(
cosχ sinχ
− sinχ cosχ

)
∈ SL(2,R). For this transformation, using (4.9) we find

M ′ + in′ = (M + in)e−2iχ. Observe that (4.11) will switch on a non-zero $ though, as
opposed to its original value in the family at hand (see footnote 28).

4.2 Charges and SL(2,R) multiplets

Carrollian charges have been introduced in section 3.3 and further discussed for stationary
and algebraic spacetimes in section 3.4. Two generic charges were found and displayed
in (3.72) and (3.75). The former is purely geometric and stands for the integrated curvature
of the celestial sphere; the latter carries genuine dynamic information captured in the
electric and magnetic masses. It is legitimate to wonder how these quantities behave under
Möbius transformations, and possibly tame them in SL(2,R) multiplets. Although ideally
this programme should be conducted for reductions along generic bulk Killing fields and
no special algebraic structure — these would be non-resummable, i.e. of the form (3.6),
and labelled by a possibly plethoric set of independent charges — we will pursue it here
for illustrative purposes in the restricted framework at hand.

The curvature charge Qec in (3.72) is invariant under Ehlers’ SL(2,R), and this is
inferred using the transformation laws (4.10) and (4.12). The mass charge Qm, eq. (3.75),
is not, but its transformation (see (4.9), (4.10) and (4.11)) suggests that it might belong
to some SL(2,R) multiplet or, more accurately, that it may be modified to this end — we
have this freedom owing to time independence. Actually, a slight amendment to the charge
Qm, namely

Q′m =
∫

S

dζ ∧ dζ̄
iP 2 (τ̂ + 2$̂K) , (4.18)

is SL(2,R)-invariant. We can even go further and apply the following pattern to generate
SL(2,R) triplets. Suppose we identify a Carrollian two-form vvv transforming under SL(2,R)
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as
vvv → vvv′ = −vvv

(
γ ˆ̄k − iδ

)2
. (4.19)

This allows to design an SL(2,R) two-form triplet, i.e. a symmetric rank-two tensor, trans-
forming as (

vvv′3 vvv
′
2

vvv′2 vvv
′
1

)
=
(
α β

γ δ

)(
vvv3 vvv2
vvv2 vvv1

)(
α γ

β δ

)
, (4.20)

where
vvv1 = vvv, vvv2 = iˆ̄kvvv, vvv3 = −ˆ̄k2vvv. (4.21)

The same holds for the complex-conjugate triplet: v̄vv1 = v̄vv, v̄vv2 = −ik̂v̄vv and v̄vv3 = −k̂2v̄vv. An
SL(2,R) triplet of charges is thus reached as

QI =
∫

S
vvvI , I = 1, 2, 3, (4.22)

and Q ≡ Q1Q3 −Q2
2 is invariant under Möbius transformations.

The above strategy can be readily applied. Two-forms transforming as in (4.19)
can be found, inspired by the structures of the charge (3.75) and of the Carrollian cur-
rents (3.31) and (3.34), given the expressions of the Carrollian twist (3.46), the Carrollian
curvature (3.40), and the Carrollian Cotton tensors (3.41), (3.42), (3.43) and (3.44). We
here exhibit two such Carrollian forms:

xxx = − τ̂

2(k̂ + ˆ̄k)
dζ ∧ dζ̄
iP 2 , (4.23)

yyy = −
(

P

k̂ + ˆ̄k

)2

∂ζ k̂ ∂ζ̄$̂
dζ ∧ dζ̄
iP 2 . (4.24)

These lead along (4.22) to two triplets of charges, which do not carry more information
than the original (3.72) and (3.75) though — in the constant-k̂ paradigm, which is in fact
the most generic, these are K, M , n and possibly a, and the second triplet vanishes.

The last item in our Carrollian agenda is to setting the relationship amongst the
charges introduced here using purely boundary methods and those computed directly by
standard bulk techniques. This sort of question definitely deserves to be addressed in more
general situations than ours, i.e. in the presence of a large set of non-trivial surface charges
computed e.g. within covariant phase-space formalism [90]. Nonetheless some relevant
observations can be made here, in relation with the original discussion on charges of ref. [2],
in which the above two-forms (4.23) and (4.24) turn out to play a prominent role.

In ref. [2], an SL(2,R) triplet of bulk two-forms, leading to surface charges upon inte-
gration on the celestial sphere ofM, is obtained by oxidizing the following two-form triplet
of S ≡ M/orb(ξ) (eqs. (18) and (16) of the quoted reference):

V1 = 1
(τ − τ̄)2 ?

3
h̃ (dτ + dτ̄) ,

V2 = 1
(τ − τ̄)2 ?

3
h̃ (τ̄dτ + τdτ̄) ,

V3 = 1
(τ − τ̄)2 ?

3
h̃

(
τ̄2dτ + τ2dτ̄

)
,

(4.25)
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where “?3
h̃” stands for the three-dimensional Hodge-dual on S equipped with h̃AB displayed

in (4.8). It is remarkable that the asymptotic limit of this two-form triplet coincides with
those designed earlier from Carrollian boundary considerations. This statement is captured
in the following result:

lim
r̃→∞

(
V3 V2
V2 V1

)
=

−ˆ̄k2(xxx+ yyy)− k̂2(x̄xx+ ȳyy) iˆ̄k(xxx+ yyy)− ik̂(x̄xx+ ȳyy)
iˆ̄k(xxx+ yyy)− ik̂(x̄xx+ ȳyy) xxx+ yyy + x̄xx+ ȳyy

 , (4.26)

where r̃ = r + $ was introduced in footnote 36 as an SL(2,R)-invariant radial coordi-
nate, which must be used here in order to guarantee that the limit preserves the SL(2,R)
behaviour.

5 Conclusions

When a four-dimensional spacetime geometry is invariant under the action of a one-
dimensional group of motions, a reduction can be performed and vacuum Einstein dynamics
reveals a symmetry under Möbius transformations. Our main motivation was to exhibit
this action from a holographic perspective, namely on the three-dimensional boundary of
the Ricci-flat configuration at hand. We have successfully reached this goal for a class of
resummable or integrable metrics, which are algebraic in Petrov’ classification and possess a
time-like isometry. All of our findings can be extended to embody any Ricci-flat spacetime
possessing an isometry at the expense of an augmented technical difficulty due to (i) the
use of generic Killing vectors with Ehlers action ending outside the class of algebraically
special, resummable metrics (3.13),37 and (ii) the presence of an indefinitely increasing
number of independent boundary observables transforming under SL(2,R). The main fea-
tures of the boundary SL(2,R) action are however clearly captured by the simplest case
treated here and we will now summarize them.

At the heart of the boundary Möbius transformations one finds the Carrollian Cotton
tensors. The latter are a set of descendants of the original boundary pseudo-Riemannian
Cotton, reached in the zero-speed-of-light limit. One finds in particular a scalar c, which
is a dual-mass aspect, naturally combined with the Bondi mass aspect, another Carrol-
lian scalar identified with the boundary Carrollian fluid energy density ε. The Möbius
transformation hence mixes the geometric boundary variables i.e. those which determine
the boundary itself with the dynamical variables like the boundary fluid (this is one of
the infinite data, made redundant in the resummable situation studied here). Our analy-
sis reveals that this duality transformation on the boundary is algebraic i.e. local for the
metric, Ehresmann connection, field of observers, and for every other Carrollian boundary
data. This is an important achievement summarized in eqs. (4.9), (4.10), (4.11) and (4.12),
rooted in the decoupling of r close to the boundary.

An aside message this analysis conveys is the role of the Cotton tensor, which is man-
ifestly dual to the energy/momentum. Before the advent of flat holography and Carrollian

37See e.g. [91], where examples of space-like Killings are displayed with Ehlers groups connecting Petrov
special to Petrov general Ricci-flat spacetimes (more recent works in a similar spirit are refs. [92, 93]),
and [47] for a mathematical essay on the behaviour of the Weyl tensor under Ehlers’ Möbius group.
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physics, the boundary Cotton tensor had been recognized in AdS/CFT as an unavoidable
boundary trait carrying information on the bulk magnetic charges such as the nut [63, 64]
(see also [94]). The Möbius transformation (4.9) for the SO(2) ⊂ SL(2,R) subgroup was
actually anticipated as a relationship on the conformal pseudo-Riemannian boundary of
four-dimensional Einstein spacetimes [65, 95], in an attempt to relate electric and mag-
netic solutions to Einstein’s equations. Although such dual solutions exist irrespective of
the cosmological constant, the relevant subgroup of Ehlers’ breaks down for Λ 6= 0 [46].
The bulk duality relationship fades in this case, but persists asymptotically and reveals on
the conformal boundary. What we find here is a Λ-to-zero limit of this relationship.

Notwithstanding their role in boundary Ehlers duality manifestation, the Carrollian
Cotton tensors obey off-shell conservation properties and generate towers of magnetic
charges, some of them being conserved. This property is not exclusive to Ricci-flat space-
times and Carrollian boundaries. Einstein bulk spacetimes and pseudo-Riemannian bound-
aries do provide a conserved Cotton tensor, which contracted with any boundary conformal
Killing vector leads to a conserved current, hence a conserved charge. This powerful tool is
undermined by the limited — if any — number of conformal isometries on arbitrary three-
dimensional Riemannian spacetimes. The remarkable spin-off about Carrollian boundaries
is the existence of an infinite-dimensional conformal group, which makes this method of
charge determination a serious alternative to the more standard bulk asymptotic tech-
niques. Following the Cotton pattern, electric towers of charges are constructed with the
fluid dynamical data, which can only enjoy on-shell conservation — the same would hold in
AdS boundaries with the aforementioned limitation. On both electric and magnetic sides,
the towers of charges are multiplied ad nauseam, beyond their leading components.

Our present investigation on towers of charges designed from a boundary standpoint
is radically novel and deserves a systematic extension. It has been here confined in the
integrable case, where the infinite set of observables is redundant and shrinks to the elemen-
tary “leading” data — our tentative definition of subleading currents might have turned too
naive, hadn’t it reproduced successfully the multipole moments. Moreover, our main goal
being primarily on boundary Ehlers action, we have assumed a time-like bulk isometry,
which further reduces this set. Besides, the chosen time-like Killing field was aligned with
the fibre of the boundary Carrollian structure, which screens the black-hole acceleration pa-
rameter and avoids exploring head-on the uncharted subject of Carrollian reductions. The
latter is the mathematical tool to be developed for unravelling the bulk-to-boundary rela-
tionship of hidden symmetries in Ricci-flat spacetimes. It could encompass bulk reductions
along space-like isometries, which are interesting because they leave room for gravitational
radiation,38 probing the interplay between Ehlers Möbius group, time evolution and charge
non-conservation. Last, we did not address the question of the charge algebra and its po-
tential central extensions, or discussed other more general related physical aspects. All
this calls for a thorough comparison to alternative approaches such as those of refs. [32–39]
based on Newman-Penrose formalism — or to applications [83, 96–101].

38The Petrov-algebraic spacetimes (3.13) accommodate axisymmetric time-dependent solutions of the
Robinson-Trautman type, whose final state is the C-metric — see. [74] section 28.1.
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In the chapter of charges, in spite of the various limitations just stated, we have
successfully described the Ehlers Möbius action, and discussed the organisation of available
charges in SL(2,R) multiplets. This enabled us to recover from a Carrollian viewpoint the
triplet of Komar charges inferred by Geroch in its original publication [2]. Again, this
result should be considered as a first step toward a methodical SL(2,R) taming of the
above towers of electric/magnetic currents and charges in more general situations. These
objects should include the boundary attributes of the bulk Weyl tensor, whose behaviour
under Möbius transformations has been addressed in [47].

The importance of the boundary covariantization — Carroll and Weyl — is yet another
feature we would like to stress, as it hasn’t been sufficiently appreciated in the literature.
This characteristic is absent from Bondi or Newman-Unti gauges, where the formalism
might suggest that the relevant part of the conformal boundary is its two-dimensional
spatial section — the celestial sphere. We heavily insist on the three-dimensional and
Carrollian nature of the boundary, which is made manifest in the gauge we have been
using. In ordinary AdS/CFT holography the Fefferman-Graham gauge is superior for this
reason. One should likewise use a truly boundary-covariant gauge in flat holography and
take advantage of it, as we modestly did for exhibiting the action of Ehlers’ group, or for
discussing the charges and their conservation. No boundary approach of this sort would
have been possible in the more conventional gauges. Correspondingly, flat holography
based on a purely celestial gauge is bound to be incomplete.

It is worth mentioning that Ehlers’ SL(2,R) group is the first and simplest example
of a hidden symmetry. As pointed out in the introduction (see the references proposed
there), more involved reductions reveal richer symmetries and the underlying dynamics is
captured by elegant sigma models in various dimensions. Recasting this knowledge in a
holographic fashion, we could possibly learn more, or at least differently, not only about
hidden symmetries but also on flat holography. Carrollian reductions might again be the
appropriate tool.

On a more speculative tone, our results suggest that a boundary analysis might reveal
more general or unexpected duality properties. The paradigm of anti-de Sitter spacetimes,
where the SL(2,R) is broken in the bulk but restored on the boundary, calls for a systematic
investigation that would complement the heuristic discussion of ref. [65], and possibly
uncover novel instances of boundary duality symmetries, associated e.g. with an asymptotic
Killing field rather than a plain reduction along Killing orbits. One could even be more
audacious and entertain the idea of a “boundary” analysis for half-flat spaces (this is
vaguely motivated by footnote 18), which have attracted some attention in relation with
w1+∞ symmetry (see the original works [104–106] and [107–111] for a recent emanation).
The main caveat foreseen here is the absence of Carrollian boundaries in Euclidean gravity,
but this could be evaded in the ultra-hyperbolic instance (2 + 2 signature).
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A Carrollian covariance in arbitrary dimension

Carroll structures on M = R × S were introduced in section 3.1 with emphasis on the
covariance properties they enjoy when the time coordinate is aligned with the fiber of the
structure. In the present appendix we will elaborate on this subject, treating in particular
Carrollian covariant and Weyl-covariant derivatives.

The Carrollian transformations (eqs. (3.3) and (3.4)) are connection-like (non-covariant)
for ∂i and bi, and density-like for ∂t and Ω:

∂′j = J−1i
j

(
∂i −

ji
J
∂t

)
, b′k =

(
bi + Ω

J
ji

)
J−1i

k, ∂′t = 1
J
∂t, Ω′ = Ω

J
. (A.1)

The vector fields dual to the forms dxi are

∂̂i = ∂i + bi
Ω∂t (A.2)

and transform covariantly under (3.3) together with the metric (3.1), and the fields (3.2)
and (3.5):

υ′ = υ, µ′ = µ, ∂̂′i = J−1j
i ∂̂j , aij′ = J ikJ

j
l a

kl. (A.3)

The vectors ∂̂i and υ do not commute. They define the Carrollian vorticity and accelera-
tion:[

∂̂i, ∂̂j
]

= 2
Ω$ij∂t,

[
υ, ∂̂i

]
= 1

Ωϕi∂t, $ij = ∂[ibj] + b[iϕj], ϕi = 1
Ω (∂tbi + ∂iΩ) ,

(A.4)
similarly appearing in

dµ = $ijdxi ∧ dxj + ϕidxi ∧ µ. (A.5)

A Carroll structure (strong definition) is also equipped with a metric-compatible and
torsionless connection. Due to the degeneration of the metric, such a connection is not
unique, but it can be chosen as the connection inherited from the parent relativistic space-
time (see footnote 9),

γ̂ijk = ail

2
(
∂̂jalk + ∂̂kalj − ∂̂lajk

)
, (A.6)

obeying γ̂k[ij] = 0, ∇̂iajk = 0 and leading to the Levi-Civita-Carroll spatial covariant deriva-
tive ∇̂i.39

39Details on the transformation rules can be found in the appendix A.2 of ref. [70].
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The ordinary time-derivative operator 1
Ω∂t acts covariantly on Carrollian tensors. How-

ever, it is not metric-compatible because aij depend on time and a temporal covariant
derivative is defined requiring 1

Ω′ D̂′t = 1
ΩD̂t and D̂tajk = 0. To this end, we introduce a

temporal connection (a sort of extrinsic curvature of the spatial section S )

γ̂ij = 1
2Ω∂taij = ξij + 1

d
aijθ, θ = 1

Ω∂t ln
√
a , (A.7)

which is a symmetric Carrollian tensor spliting into the geometric Carrollian shear (trace-
less) and the Carrollian expansion (trace). The action of D̂t on any tensor is obtained
using Leibniz rule plus the action on scalars and vectors:

1
ΩD̂tV

i = 1
Ω∂tV

i + γ̂ijV
j ,

1
ΩD̂tVi = 1

Ω∂tVi − γ̂
j
i Vj . (A.8)

The commutators of Carrollian covariant derivatives define Carrollian curvature ten-
sors: [

∇̂k, ∇̂l
]
V i =

(
∂̂kγ̂

i
lj − ∂̂lγ̂ikj + γ̂ikmγ̂

m
lj − γ̂ilmγ̂mkj

)
V j +

[
∂̂k, ∂̂l

]
V i

= r̂ijklV
j +$kl

2
Ω∂tV

i,
(A.9)

where r̂ijkl is the Riemann-Carroll tensor. The Ricci-Carroll tensor and the Carroll scalar
curvature are thus

r̂ij = r̂kikj 6= r̂ji, r̂ = aij r̂ij . (A.10)

Similarly, space and time derivatives do not commute:[ 1
ΩD̂t, ∇̂i

]
V j = ϕi

(( 1
ΩD̂t + θ

)
V j − γ̂jkV

k
)
− γ̂ k

i ∇̂kV j − dr̂jikV
k (A.11)

with

r̂jik = 1
d

(
θϕiδ

j
k + ∇̂iγ̂jk −

1
Ω∂tγ̂

j
ik

)
, r̂jjk = r̂k = 1

d

(
∇̂j γ̂jk − ∂̂kθ

)
, (A.12)

further Carrollian curvature tensors.
The boundary geometry — be it pseudo-Riemannian or Carrollian — enjoy conformal

properties. Weyl transformations are defined through their action on elementary geometric
data

aij →
1
B2aij , bi →

1
B
bi, Ω→ 1

B
Ω (A.13)

with B = B(t,x) an arbitrary function. AWeyl-covariant derivative requires an appropriate
connection built on ϕi and θ defined in (A.4) and (A.7), which transform as

ϕi → ϕi − ∂̂i lnB, θ → Bθ − d

Ω∂tB. (A.14)

The Carrollian vorticity $ij (A.4) and the Carrollian shear ξij (A.7) are Weyl-covariant of
weight −1.

The Weyl-Carroll space and time covariant derivatives are metric-compatible and tor-
sionless. For a scalar function Φ and a vector V l of weight w, we find:

D̂jΦ = ∂̂jΦ + wϕjΦ, (A.15)
D̂jV

l = ∇̂jV l + (w − 1)ϕjV l + ϕlVj − δljV iϕi. (A.16)
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The weights are not altered by the spatial derivative and D̂jakl = 0. One also defines

1
ΩD̂tΦ = 1

ΩD̂tΦ + w

d
θΦ = 1

Ω∂tΦ + w

d
θΦ, (A.17)

1
ΩD̂tV

l = 1
ΩD̂tV

l + w − 1
d

θV l = 1
Ω∂tV

l + w

d
θV l + ξliV

i, (A.18)

both are of weight w + 1. Furthermore D̂takl = 0, using Leibniz rule.
We finally obtain[

D̂i, D̂j

]
Φ = 2

Ω$ijD̂tΦ + wΩijΦ, (A.19)[
D̂k, D̂l

]
V i =

(
R̂i

jkl − 2ξij$kl

)
V j +$kl

2
ΩD̂tV

i + wΩklV
i, (A.20)

where

R̂i
jkl = r̂ijkl − δijϕkl − ajk∇̂lϕi + ajl∇̂kϕi + δik∇̂lϕj − δil∇̂kϕj

+ϕi (ϕkajl − ϕlajk)−
(
δikajl − δilajk

)
ϕmϕ

m +
(
δikϕl − δilϕk

)
ϕj , (A.21)

Ωij = ∂̂iϕj − ∂̂jϕi −
2
d
$ijθ (A.22)

are weight-0 Weyl-covariant tensors. Tracing them we obtain:

R̂ij = R̂k
ikj , R̂ = aijR̂ij (A.23)

with
R̂ = r̂ + (d− 1)

(
2∇̂iϕi − (d− 2)ϕiϕi

)
, (A.24)

of weights zero and 2. The Weyl-covariant Carroll-Ricci tensor is not symmetric, R̂[ij] =
−d

2Ωij , and a weight-1 curvature form also appears with[ 1
ΩD̂t, D̂i

]
Φ = wR̂iΦ− ξjiD̂jΦ, (A.25)

where
R̂i = 1

Ω∂tϕi −
1
d

(
∂̂i + ϕi

)
θ. (A.26)

B Conformal Carrollian dynamics and charges

A complete account on the subject of dynamics and charges with the present conventions is
available in refs. [70, 71]. We summarize here the necessary items, in particular regarding
the Weyl-covariant side, which is relevant on the holographic boundaries.

The basics are encoded into four Carrollian momenta, replacing the relativistic energy-
momentum tensor, which are obtained by varying some (effective) action with respect to
aij , bi and Ω (the fourth momentum is not necessarily obtained in this way — for details
see [71]). These are the energy-stress tensor Πij , the energy flux Πi, the energy density Π
as well as the momentum P i, of conformal weights d + 3, d + 2, d + 1 and d + 2. Extra
momenta can also emerge as more degrees of freedom may be present. This phenomenon
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occurs when studying the small-c limit of a relativistic energy-momentum tensor and the
corresponding conservation equations. Keeping things rather minimal with only Π̃ij the
equations read:40

1
ΩD̂tΠ + D̂iΠi + Πijξij = 0, (B.1)

Π̃ijξij = 0, (B.2)

D̂iΠi
j + 2Πi$ij +

( 1
ΩD̂tδ

i
j + ξij

)
Pi = 0, (B.3)

D̂iΠ̃i
j +

( 1
ΩD̂tδ

i
j + ξij

)
Πi = 0 (B.4)

with

Π̃ i
i = 0, Π i

i = Π, (B.5)

as a consequence of the assumed Weyl invariance.

Equations (B.1), (B.2), (B.3) and (B.4) are the Carrollian emanation of the relativistic
conservation equation ∇µTµν = 0. As for the relativistic instance, conformal isometries
lead to conserved currents and conserved charges. Let ξ be a d+ 1-dimensional vector

ξ = ξt∂t + ξi∂i =
(
ξt − ξi biΩ

)
∂t + ξi

(
∂i + bi

Ω∂t
)

= ξ t̂
1
Ω∂t + ξi∂̂i (B.6)

restricted to ξi = ξi(x), generator of a one-dimensional group of Carrollian diffeomorphisms
on M = R ×S . Its action on the elementary geometric data (3.1), (3.2) and (3.5) is as

40Using the language of fluids, Π appears as the zero-c limit of the relativistic energy density, Πi and P i

are the orders one and c2 of the relativistic heat current, whereas Π̃ij and Πij are the orders 1/c2 and one of
the relativistic stress. A non-vanishing Carrollian energy flux Πi breaks local Carroll-boost invariance (see
e.g. [102]) and makes its dual variable i.e. the Ehresmann connection bbb = bidxi dynamical. This is neither
a surprise nor a caveat. On the one hand, Carrollian dynamics, i.e. dynamics on geometries equipped
with a degenerate metric, is often reached as a vanishing-c limit of relativistic dynamics and naturally
breaks local Carroll boosts, even when the original relativistic theory is Lorentz-boost invariant. Indeed,
invariance under local Lorentz boosts sets symmetry constraints on the components of the relativistic energy-
momentum tensor, but not on their behaviour with respect to c2, leaving the possibility of persisting energy
flux Πi and “over-stress” Π̃ij related through eq. (B.4). A similar phenomenon occurs in Galilean theories,
defined on spacetimes with a degenerate cometric, where the Galilean momentum is possibly responsible
for the breaking of local Galilean-boost invariance. On the other hand, it is fortunate that this happens in
the present instance (one of the very few known applications of Carrollian dynamics), when passing from
the relativistic boundary of asymptotically anti-de Sitter spacetimes to the Carrollian boundary of their
asymptotically flat relatives, as the Carrollian energy flux accounts for non-conservation properties resulting
from bulk gravitational radiation, whereas the Ehresmann connection is part of the Ricci-flat solution space.
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follows:41

Lξaij = 2∇̂(iξ
kaj)k + 2ξ t̂γ̂ij , (B.7)

Lξυ = µυ, (B.8)
Lξµ = −µµ+ ν (B.9)

with ν = νidxi and
µ(t,x) = −

(
1
Ω∂tξ

t̂ + ϕiξ
i
)
,

νi(t,x) = −
(
∂̂i − ϕi

)
ξ t̂ + 2ξj$ji.

(B.10)

Due to the degeneration of the metric on M , the variation of the field of observers υ is not
identical to that of the clock form µ.

Isometries are generated by Killing fields of the Carrollian type (B.6), required to
obey [30, 31, 41, 51]:

Lξaij = 0, Lξυ = 0. (B.11)

i.e.

∇̂(iξ
kaj)k + ξ t̂γ̂ij = 0, (B.12)
1
Ω∂tξ

t̂ + ϕiξ
i = 0. (B.13)

The clock form is not required to be invariant. Carrollian conformal Killing fields must
satisfy

Lξaij = λaij (B.14)

with
λ(t,x) = 2

d

(
∇̂iξi + θξ t̂

)
. (B.15)

This set of partial differential equations is insufficient for defining conformal Killing fields.
One usually imposes to tune µ versus λ (see [30, 31, 51] for a detailed presentation) so that
the scaling of the metric be twice that of the field of observers:

2µ+ λ = 2
(1
d
D̂iξ

i − 1
ΩD̂tξ

t̂
)

= 0 (B.16)

(the conformal weight of ξ t̂ is −1, that of ξi is zero). Again, the clock form is not involved.
If one demands the latter be invariant under the action of a Killing field, or aligned with
itself under the action of a conformal Killing, which in both cases amounts to setting

νi ≡ −D̂iξ
t̂ + 2ξj$ji = 0 (B.17)

41The Lie derivative along ξ = ξt̂ 1
Ω∂t + ξi∂̂i of a general Carrollian tensor reads:

LξS
j...

i... =
(
ξt̂

1
Ω∂t + ξk∂̂k

)
S j...
i... + S j...

k... ∂̂iξ
k + · · · − S k...

i... ∂̂kξ
j − · · ·

=
(
ξt̂

1
Ω∂t + ξk∇̂k

)
S j...
i... + S j...

k... ∇̂iξk + · · · − S k...
i... ∇̂kξj − · · · .
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(this is a conformal rewriting of νi given in (B.10)), then the corresponding (conformal)
isometry generator will be referred to as (conformal) strong Killing vector field.42

Transformations generated by ordinary Carrollian Killing fields leave invariant geo-
metric markers that are built over the metric aij and Ω, such as the Carrollian expansion θ
or the shear ξij , encoded in γ̂ij , see (A.7). The Carrollian vorticity and acceleration given
in (A.5) are not left invariant, however, since

Lξdµ = dν, (B.18)

unless the Carrollian Killing field is strong (vanishing ν). Likewise, curvature invariance
does also require the strong condition. This applies in particular to the Carrollian Cotton
tensor discussed in d = 2 (see appendix C).

On a Carroll manifold a current has a scalar component κ as well as a Carrollian-vector
set of components Ki. The divergence takes the form (see [40, 71, 103])

K =
( 1

Ω∂t + θ

)
κ+

(
∇̂i + ϕi

)
Ki. (B.19)

The charge associated with the current (κ,KKK) is an integral at fixed t over the basis S

QK =
∫

S
ddx
√
a
(
κ+ biK

i
)
, (B.20)

and obeys the following time evolution:

dQK
dt =

∫
S
ddx
√
aΩK −

∫
∂S
∗KKK Ω. (B.21)

The last term is of boundary type with ∗KKK the S -Hodge dual of Kidxi. Generally, one
can ignore it owing to adequate fall-off or boundary conditions on the fields.

Suppose that ξ is the generator (B.6) of a Carrollian diffeomorphism. It can be used
to create two currents out43 of Πij , Π̃ij , Πi, P i and Π [40, 71]:

κ = ξiPi − ξ t̂Π
κ̃ = ξiΠi

Ki = ξjΠ i
j − ξ t̂Πi

K̃i = ξjΠ̃ i
j ,

(B.22)

If ξ is a (conformal) Carrollian Killing field, and assuming all momenta on-shell i.e.
eqs. (B.1), (B.2), (B.3) and (B.4) (with (B.5) satisfied in the conformal instance), one
finds the following Carrollian divergences (the conformal weights of κ and κ̃ are d, those
of Ki and K̃i, d+ 1, and −1 for νi):K̃ = 1

ΩD̂tκ̃+ D̂iK̃
i = 0

K = 1
ΩD̂tκ+ D̂iK

i = Πiνi.
(B.23)

42Carroll boosts, which are the archetype isometries of flat Carrollian spacetimes, are not generated by
strong Killings [71].

43We stress here that if more momenta were present, more currents would be available.
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Two charges can be defined following (B.20): QK̃ and QK . The former is conserved,
whereas the latter isn’t for generic isometries unless the field configuration has vanishing
energy flux Πi, i.e. if local Carroll-boost invariance is unbroken. The breaking of local
Carroll-boost invariance hence appears as the trigger of non-conservation laws. This pecu-
liarity was risen in [40, 71] and further illustrated with concrete field realizations in [103]. In
four-dimensional Ricci-flat spacetimes, this boundary non-conservation is the consequence
of bulk gravitational radiation, as mentioned previously in footnote 40. Observe never-
theless that irrespective of the energy flux Πi, the (conformal) strong Killings introduced
earlier do lead to full conservation properties as a consequence of (B.17).

C Three dimensions and the Carrollian Cotton tensor

Three-dimensional boundaries (d = 2) outline the framework of the Ehlers and Geroch
investigation pursued in the main part of this article. Three dimensions have two remark-
able properties. At the first place, if the geometric Carrollian shear ξij defined in (A.7)
vanishes, which occurs for the Carrollian boundaries of Ricci-flat spacetimes as a conse-
quence of Einstein’s equations (see section 3.1), the Carrollian conformal isometry group
is infinite-dimensional: BMS4 ≡ ccarr(3) ≡ so(3, 1) n supertranslations [23, 41]. This
potentially generates infinite towers of charges, possibly conserved.

Secondly, three-dimensional Carrollian spacetimes possess a Carrollian Cotton tensor
obeying conservation dynamics. It appears as a set of Carrollian scalars, vectors and ten-
sors emerging in the small-c expansion of the relativistic Cotton Cµν , which is symmetric,
traceless, divergence-free and Weyl-covariant with weight 1. Reference [23] provides a com-
plete account of the Carrollian descendants as they emerge from the pseudo-Riemannian
Cotton tensor, in the absence of geometric Carrollian shear. Here we will circumscribe our
exhibition to the basic output.

For d = 2, the S -Hodge duality is induced by44 ηij =
√
a εij . This duality is involutive

on Carrollian vectors as well as on two-index symmetric and traceless Carrollian tensors:

∗Vi = ηliVl, ∗Wij = ηliWlj . (C.1)

This fully antisymmetric form can be used to recast some of the expressions introduced in
appendix A. The Carroll-Ricci tensor (A.10) is decomposed as

r̂ij = ŝij + K̂aij + Âηij (C.2)

with

ŝij = 2 ∗$ ∗ξij , K̂ = 1
2a

ij r̂ij = 1
2 r̂, Â = 1

2η
ij r̂ij = ∗$θ, ∗$ = 1

2η
ij$ij . (C.3)

Similarly
R̂ij = ŝij + K̂ aij + Â ηij , (C.4)

44We use here the conventions of ref. [23], namely ε12 = −1, convenient when using complex coordinates
{ζ, ζ̄}. Notice that ηilηjl = δij and ηijηij = 2.
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where we have introduced two weight-2 Weyl-covariant scalar Gauss-Carroll curvatures:

K̂ = 1
2a

ijR̂ij = K̂ + ∇̂kϕk, Â = 1
2η

ijR̂ij = Â− ∗ϕ. (C.5)

These obey Carroll-Bianchi identities:

2
ΩD̂t ∗$ + Â = 0, (C.6)

1
ΩD̂tK̂ − aijD̂iR̂j − D̂iD̂jξ

ij = 0, (C.7)
1
ΩD̂tÂ + ηijD̂iR̂j = 0. (C.8)

Thanks to the identities (C.7) and (C.8), the couples
{
K̂ ,−R̂i−D̂jξ

ij
}
and

{
Â,−∗R̂i

}
allow to define electric and magnetic curvature charges as in eqs. (B.19) and (B.20):

Qec =
∫

S
d2x
√
a
(
K̂ − bi

(
R̂i + D̂jξ

ij
))
, Qmc =

∫
S
d2x
√
a
(
Â − bi ∗R̂i

)
. (C.9)

Following (B.21), we find

dQec
dt =

∫
∂S
∗
(
R̂RR + D̂DD · ξξξ

)
Ω, dQmc

dt = −
∫
∂S

R̂RR Ω. (C.10)

Upon regular behaviour, the boundary terms vanish and the curvature charges are both
conserved.

Besides the various curvature tensors, which are second derivatives of the metric and
the Ehresmann connection, one defines third-derivative tensors, the descendants of the
relativistic Cotton tensor. We will here limit our presentation to the instance ξij = 0,
which is the appropriate framework when solving Einstein’s equations in the bulk. This
reduces the number of tensors to five, a weight-3 scalar, two weight-2 forms and two weight-
1 two-index symmetric and traceless tensors:

c =
(
D̂lD̂

l + 2K̂
)
∗$, (C.11)

χj = 1
2η

l
jD̂lK̂ + 1

2D̂jÂ − 2 ∗$R̂j , (C.12)

ψj = 3ηljD̂l ∗$2, (C.13)

Xij = 1
2η

l
jD̂lR̂i + 1

2η
l
iD̂jR̂l, (C.14)

Ψij = D̂iD̂j ∗$ −
1
2aijD̂lD̂

l ∗$ − ηij
1
ΩD̂t ∗$2. (C.15)

As a consequence of the relativistic conservation of the Cotton tensor, its Carrollian de-
scendants obey eqs. (B.1), (B.2),45 (B.3) and (B.4) with

ΠCot = c, Πi
Cot = χi, P iCot = ψi, Π̃ij

Cot = −Xij , Πij
Cot = c

2a
ij −Ψij , (C.16)

45Equation (B.2), is trivially satisfied due to the vanishing of ξij . If ξij 6= 0, extra Cotton Carrollian
descendants are available, and the conservation dynamics is encoded in more momenta and equations — in
particular (B.2) is modified.
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which read
1
ΩD̂tc+ D̂iχ

i = 0, (C.17)
1
2D̂jc+ 2χi$ij + 1

ΩD̂tψj − D̂iΨi
j = 0, (C.18)

1
ΩD̂tχj − D̂iX

i
j = 0. (C.19)

When the geometric Carrollian shear vanishes, the time dependence in the metric
is factorized as aij(t,x) = e2σ(t,x)āij(x). One then shows [23, 41] that the Carrollian
conformal isometry group is the semi-direct product of the conformal group of āij(x) with
the infinite-dimensional supertranslation group. The former is generated by Y i(x), the
latter by T (x), and the Carrollian conformal Killing fields read:

ξT,Y =
(
T (x)− Y i(x)∂̂iC(t,x) + 1

2C(t,x)∇̄iY i(x)
) eσ(t,x)

Ω ∂t + Y i(x)∂̂i (C.20)

with
C(t,x) ≡

∫ t

dτ e−σ(τ,x)Ω (τ,x) . (C.21)

This result is valid in any dimension. At d = 2, āij(x) is conformally flat and Y i(x)
generate so(3, 1).46

The conservation of the Carrollian Cotton momenta (C.16) makes it possible to define
two infinite towers of Carrollian Cotton charges QCotT,Y and Q̃CotT,Y following (B.20),
based on the Carrollian Cotton currents κCot, Ki

Cot, κ̃Cot and K̃i
Cot (see (3.34)). Accord-

ing to (B.23), the latter are always conserved,47 whereas the former are only if χiνi =
−χi

(
D̂iξ

t̂ − 2ξj$ji

)
= 0. This occurs for special geometries (χi = 0) or for the subset of

strong Carrollian conformal Killing fields (νi = 0) .
In d = 2, it is convenient to use complex spatial coordinates ζ and ζ̄. With the permis-

sion of the authors of [23], we reproduce here the appendix of that reference, summarizing
the useful formulas in this coordinate system. Using Carrollian diffeomorphisms (3.3), the
metric (3.1) of the Carrollian geometry on the two-dimensional surface S can be recast in
conformally flat form,

d`2 = 2
P 2dζdζ̄ (C.22)

with P = P (t, ζ, ζ̄) a real function, under the necessary and sufficient condition that the
Carrollian shear ξij displayed in (A.7) vanishes. We will here assume that this holds and
present a number of useful formulas for Carrollian and conformal Carrollian geometry.
These geometries carry two further pieces of data: Ω(t, ζ, ζ̄) and

bbb = bζ(t, ζ, ζ̄) dζ + bζ̄(t, ζ, ζ̄) dζ̄ (C.23)
46The so(3, 1) factor can also be promoted to superrotations (double Virasoro) if we give up the absolute

regularity requirement.
47The conformal Killing fields (C.20), (C.21) depend explicitly on time. Inside the charges they define,

when conserved, this time dependence is confined, on-shell, in a boundary term, and hence drops — see
concrete examples in [103].
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with bζ̄(t, ζ, ζ̄) = b̄ζ(t, ζ, ζ̄). Our choice of orientation is inherited from the one adopted for
the relativistic boundary (see footnote 10) with aζζ̄ = 1/P 2 is48

ηζζ̄ = − i
P 2 . (C.24)

The first-derivative Carrollian tensors are the acceleration (A.4), the expansion (A.7)
and the scalar vorticity (A.4), (C.3):

ϕζ = ∂t
bζ
Ω + ∂̂ζ ln Ω, ϕζ̄ = ∂t

bζ̄
Ω + ∂̂ζ̄ ln Ω, (C.25)

θ = − 2
Ω∂t lnP, ∗$ = iΩP 2

2

(
∂̂ζ
bζ̄
Ω − ∂̂ζ̄

bζ
Ω

)
(C.26)

with
∂̂ζ = ∂ζ + bζ

Ω ∂t, ∂̂ζ̄ = ∂ζ̄ +
bζ̄
Ω ∂t. (C.27)

Curvature scalars and vector are second-derivative (see (C.3), (A.12)):49

K̂ = P 2
(
∂̂ζ̄ ∂̂ζ + ∂̂ζ ∂̂ζ̄

)
lnP, Â = iP 2

(
∂̂ζ̄ ∂̂ζ − ∂̂ζ ∂̂ζ̄

)
lnP, (C.28)

r̂ζ = 1
2 ∂̂ζ

( 1
Ω∂t lnP

)
, r̂ζ̄ = 1

2 ∂̂ζ̄
( 1

Ω∂t lnP
)
, (C.29)

and we also quote:

∗ϕ = iP 2
(
∂̂ζϕζ̄ − ∂̂ζ̄ϕζ

)
, (C.30)

∇̂kϕk = P 2
[
∂̂ζ∂t

bζ̄
Ω + ∂̂ζ̄∂t

bζ
Ω +

(
∂̂ζ ∂̂ζ̄ + ∂̂ζ̄ ∂̂ζ

)
ln Ω

]
. (C.31)

Regarding conformal Carrollian tensors we remind the weight-2 curvature scalars (C.5):

K̂ = K̂ + ∇̂kϕk, Â = Â− ∗ϕ, (C.32)

and the weight-1 curvature one-form (A.26):

R̂ζ = 1
Ω∂tϕζ −

1
2
(
∂̂ζ + ϕζ

)
θ, R̂ζ̄ = 1

Ω∂tϕζ̄ −
1
2
(
∂̂ζ̄ + ϕζ̄

)
θ. (C.33)

The three-derivative Cotton descendants displayed in (C.11)–(C.15) are a scalar

c =
(
D̂lD̂

l + 2K̂
)
∗$ (C.34)

48This amounts to setting
√
a = i/P2 in coordinate frame and εζζ̄ = −1. The volume form reads

d2x
√
a = dζ∧dζ̄

iP2 .
49We also quote for completeness (useful e.g. in eq. (C.32)):

K̂ = K + P 2
[
∂ζ
bζ̄
Ω + ∂ζ̄

bζ
Ω + ∂t

bζbζ̄
Ω2 + 2

bζ̄
Ω ∂ζ + 2 bζΩ ∂ζ̄ + 2

bζbζ̄
Ω2 ∂t

]
∂t lnP

with K = 2P 2∂ζ̄∂ζ lnP the ordinary Gaussian curvature of the two-dimensional metric (C.22).
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of weight 3 (∗$ is of weght 1), two vectors

χζ = i
2D̂ζK̂ + 1

2D̂ζÂ − 2 ∗$R̂ζ , χζ̄ = − i
2D̂ζ̄K̂ + 1

2D̂ζ̄Â − 2 ∗$R̂ζ̄ , (C.35)

ψζ = 3iD̂ζ ∗$2, ψζ̄ = −3iD̂ζ̄ ∗$
2, (C.36)

of weight 2, and two symmetric and traceless tensors

Xζζ = iD̂ζR̂ζ , Xζ̄ζ̄ = −iD̂ζ̄R̂ζ̄ , (C.37)
Ψζζ = D̂ζD̂ζ ∗$, Ψζ̄ζ̄ = D̂ζ̄D̂ζ̄ ∗$, (C.38)

of weight 1. Notice that in holomorphic coordinates a symmetric and traceless tensor Sij
has only diagonal entries: Sζζ̄ = 0 = Sζ̄ζ .

We also remind for convenience some expressions for the determination of Weyl-Carroll
covariant derivatives. If Φ is a weight-w scalar function

D̂ζΦ = ∂̂ζΦ + wϕζΦ, D̂ζ̄Φ = ∂̂ζ̄Φ + wϕζ̄Φ. (C.39)

For weight-w form components Vζ and Vζ̄ the Weyl-Carroll derivatives read:

D̂ζVζ = ∇̂ζVζ + (w + 2)ϕζVζ , D̂ζ̄Vζ̄ = ∇̂ζ̄Vζ̄ + (w + 2)ϕζ̄Vζ̄ , (C.40)
D̂ζVζ̄ = ∇̂ζVζ̄ + wϕζVζ̄ , D̂ζ̄Vζ = ∇̂ζ̄Vζ + wϕζ̄Vζ , (C.41)

while the Carrollian covariant derivatives are simply:

∇̂ζVζ = 1
P 2 ∂̂ζ

(
P 2Vζ

)
, ∇̂ζ̄Vζ̄ = 1

P 2 ∂̂ζ̄

(
P 2Vζ̄

)
, (C.42)

∇̂ζVζ̄ = ∂̂ζVζ̄ , ∇̂ζ̄Vζ = ∂̂ζ̄Vζ . (C.43)

Finally,

D̂kD̂
kΦ = P 2

(
∂̂ζ ∂̂ζ̄Φ + ∂̂ζ̄ ∂̂ζΦ + wΦ

(
∂̂ζϕζ̄ + ∂̂ζ̄ϕζ

)
+ 2w

(
ϕζ ∂̂ζ̄Φ + ϕζ̄ ∂̂ζΦ + wϕζϕζ̄Φ

))
.

(C.44)
Using complex coordinates, we can recast the conformal Killing vectors of a shear-free

Carrollian spacetime M in three dimensions, given in eqs. (C.20) and (C.21). These are
expressed in terms of an arbitrary real function T (ζ, ζ̄), which encodes the supertranslations,
and the conformal Killing vectors of flat space d ¯̀2 = 2dζdζ̄. The latter are of the form
Y ζ(ζ) ∂ζ + Y ζ̄(ζ̄) ∂ζ̄ , reached with any combination of `m + ¯̀

m or i
(
`m − ¯̀

m

)
, where50

`m = −ζm+1∂ζ , ¯̀
m = −ζ̄m+1∂ζ̄ , (C.45)

obeying the Witt⊕Witt algebra:

[`m, `n] = (m− n)`m+n,
[
¯̀
m, ¯̀

n

]
= (m− n)¯̀

m+n, (C.46)

50Notice that combining (C.1) and (C.24), we find ∗
(
`m + ¯̀

m

)
= −i

(
`m − ¯̀

m

)
.
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and referred to as superrotations. Usually one restricts to so(3, 1), generated by n = 0,±1.
The conformal Killing fields of M are thus

ξT,Y =
(
T −

(
Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄

)
C + C

2
(
∂ζY

ζ + ∂ζ̄Y
ζ̄
)) 1

P
υ+ Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄ (C.47)

with
C(t, ζ, ζ̄) ≡

∫ t

dτ P (τ, ζ, ζ̄) Ω(τ, ζ, ζ̄). (C.48)

The structure so(3, 1) + supertranslations — or (Witt⊕Witt) + supertranslations — is
recovered in [

ξT,Y , ξT ′,Y ′
]

= ξMY (T ′)−MY ′ (T ),[Y,Y ′] (C.49)

with
MY (f) =

(
Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄

)
f − f

2
(
∂ζY

ζ + ∂ζ̄Y
ζ̄
)
. (C.50)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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We investigate the (conformally coupled) scalar field on a general Carrollian spacetime in arbitrary
dimension. The analysis discloses electric and magnetic dynamics. For both, we provide the energy and the
momenta of the field, accompanied by their conservation equations. We discuss the conservation and
nonconservation properties resulting from the existence of conformal isometries and the associated
charges. We illustrate those results for a scalar field propagating on the null boundary of four-dimensional
Ricci-flat Robinson-Trautman spacetimes.
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The Carroll group was discovered in the seminal works
of Lévy-Leblond [1] and Sen Gupta [2]. Its first applica-
tion, due to Henneaux, appeared 14 years later [3] and it
took almost 50 years for Carrollian physics to emerge as a
full-blown research area, ranging from differential geom-
etry to holographic duality. Carrollian physics is meant to
embrace phenomena occurring on a Carrollian spacetime,
such as hydrodynamics or, at a more fundamental level,
field dynamics. The simplest field is a scalar and it has
received some attention [4–11].
The aim of the present note is to present the dynamics of

a (conformally coupled) scalar on a general Carrollian
manifold, tame and illustrate scattered results, and unify
two distinct and complementary approaches. The first relies
on Carrollian structures and diffeomorphism invariance.
The second consists in reaching Carrollian geometry and
dynamics from a pseudo-Riemannian relative at vanishing
speed of light. The set of features we address includes:
(i) electric vs magnetic dynamics; (ii) action and equations
of motion; (iii) energy, momentum, and their conservation;
(iv) isometries and Noether’s theorem. The basic technical
tools are listed in the Appendix.
Carroll structures were introduced in [12–14] (see also

[15–20]). They consist of a (dþ 1)-dimensional manifold
M ¼ R ×S equipped with a degenerate metric and a
vector field, the kernel of the metric. For concreteness, we

will adopt coordinates ðt;xÞ and degenerate metrics of the
form

dl2 ¼ aijðt;xÞdxidxj; i; j… ∈ f1;…; dg ð1Þ

with a kernel generated by

υ ¼ 1

Ω
∂t; ð2Þ

which defines a field of observers. This coordinate system
is adapted to the space/time splitting, which is in turn
respected by Carrollian diffeomorphisms

t0 ¼ t0ðt;xÞ and x0 ¼ x0ðxÞ: ð3Þ

The Carrollian manifold incorporates an Ehresmann con-
nection, which is the background gauge field b ¼ bidxi

appearing in the dual form of the field of observers (2),
defined such as μðυÞ ¼ −1:

μ ¼ −Ωdtþ bidxi; ð4Þ

the clock form (Ω andbi depend on t andx). Thevector fields
dual to the forms dxi are

∂̂i ¼ ∂i þ
bi
Ω
∂t: ð5Þ

As shown in the Appendix, they transform covariantly under
Carrollian diffeomorphisms (3). A Carroll structure (strong
definition) is also equipped with a torsionless and metric-
compatible connection. This is not unique, due to the
degeneracy of the metric. We use here the connection
inherited from the parent relativistic spacetime.
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A Carroll structure endowed with metric (1) and clock
form (4) is naturally reached in the Carrollian limit (c → 0)
of a pseudo-Riemannian spacetime M in Papapetrou-
Randers gauge

ds2 ¼ −c2ðΩdt − bidxiÞ2 þ aijdxidxj; ð6Þ

where all functions are x dependent with x≡ ðx0 ¼ ct;xÞ.
The connection we use on the Carrollian side is given in
the Appendix, Eqs. (A4) and (A6). These are parts of the
Levi-Civita connection attached to (6), and decomposed in
powers of c.
The dynamics of scalar fields on an arbitrary Carrollian

spacetime, limited to two-derivative kinetic terms encom-
passes two distinct situations dictated by Carrollian covari-
ance. Their Lagrangian densities read

Le ¼
1

2

�
1

Ω
∂tΦ

�
2

− VeðΦÞ; ð7Þ

Lm ¼ −
1

2
aij∂̂iΦ∂̂jΦ − VmðΦÞ; ð8Þ

and enter the Carrollian action SC ¼ R
M dtddx

ffiffiffi
a

p
ΩL. The

indices “e” and “m” stand for “electric” and “magnetic.”
They refer to the origin of these actions in the parent
relativistic theory [8,9]. Indeed starting from a relativistic
scalar field on a Papapetrou-Randers background (6)

S ¼ −
Z
M

dtddx
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μΦ∂νΦþ VðΦÞ

�
; ð9Þ

and assuming

VðΦÞ ¼ 1

c2
VeðΦÞ þ VmðΦÞ þOðc2Þ; ð10Þ

we find

S ¼ 1

c2
Se þ SmþOðc2Þ; ð11Þ

with Se and Sm the Carrollian actions with Lagrangian
densities (7) and (8). The existence of an expansion (10) for
the original relativistic potential in powers of c2 is a bona
fide assumption, necessary to reach two actions invariant
under Carrollian diffeomorphisms (3).1

Due to the form of the metric (6), and to its sub-
sequent behavior under Carrollian diffeomorphisms, the
decomposition of any relativistic tensor as a (usually
truncated) Laurent expansion, provides a Carrollian tensor

for each term.2 If we insist in reaching a single Carrollian
tensor at vanishing c, then an appropriate rescaling by some
power of c2 is necessary—in order, e.g., to select one out of
two options, if only two options are available as in the
above scalar-field action (see [8], where this procedure
is illustrated in Hamiltonian formalism and for flat
spacetime).
An insightful scalar potential for a relativistic curved

spacetime in dþ 1 dimensions is the following:

VðΦÞ ¼ d − 1

8d
RΦ2: ð12Þ

For a scalar field Φ of weight w ¼ d−1
2
, this is a conformal

coupling. Indeed, the relativistic energy-momentum tensor
for (9) with (12) has the form (∇μΦ ¼ ∂μΦ)

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
¼ ∇μΦ∇νΦ −

1

2
gμν∇αΦ∇αΦ

þ d − 1

4d
ðGμνΦ2 þ gμν□Φ2 −∇μ∇νΦ2Þ;

¼ DμΦDνΦ −
1

2
gμνDαΦDαΦ

þ d − 1

4d

��
RðμνÞ −

R

2
gμν

�
Φ2

þ gμνDαD
αΦ2 −D ðμDνÞΦ2

�
; ð13Þ

where3 Gμν is the Einstein tensor, Rμν and R the Weyl-
covariant Ricci and scalar defined in the Appendix
[Eqs. (A37) and (A38)], together with the Weyl-covariant
derivative Dμ. This energy-momentum tensor is traceless
when Φ is on shell, and with a Weyl-covariant of weight
d − 1. The action is Weyl invariant (up to boundary terms4),
whereas the equations of motion can be recast readily with
Weyl-covariant attributes:

−DμD
μΦþ d − 1

4d
RΦ ¼ 0: ð14Þ

As a consequence of diffeomorphism invariance, the
energy-momentum tensor obeys a Weyl-covariant conser-
vation equation, when the field Φ is on-shell:

∇μTμν ¼ DμTμν ¼ 0: ð15Þ

1The actions associated with the Oðc2Þ terms are nondynam-
ical as no kinetic term appears at this order. This will be illustrated
in the subsequent analysis of a conformally coupled scalar, see
Eq. (16).

2Phrased in more mathematical terms, the expansion in powers
of c2, amounts to reducing the representations of the full
diffeomorphism group, with respect to the Carrollian diffeo-
morphism subgroup.

3We thank Konstantinos Siampos for a useful discussion on
this topic.

4Equation (14) is also simply −□Φþ d−1
4d RΦ ¼ 0.
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The interest for studying relativistic conformally coupled
scalar fields is originally found in inflationary models of
cosmology.5 On the Carrollian side the motivation is
entrenched in the attempts to generalize the gauge/gravity
holographic correspondence for asymptotically flat space-
times, where the boundary is null infinity, i.e., a Carrollian
manifold par excellence.
Inserting inside (12) the Carrollian decomposition of R

as displayed in the Appendix Eq. (A39), leads to

VðΦÞ ¼ 1

c2
VeðΦÞ þ VmðΦÞ þ c2VndðΦÞ; ð16Þ

with

VeðΦÞ ¼ d − 1

8d

�
2

Ω
∂tθ þ

1þ d
d

θ2 þ ξijξ
ij

�
Φ2; ð17Þ

VmðΦÞ ¼ d − 1

8d
ðr̂ − 2∇̂iφ

i − 2φiφiÞΦ2; ð18Þ

VndðΦÞ ¼ d − 1

8d
ϖijϖ

ijΦ2: ð19Þ

In the last expression the index “nd” stands for “non-
dynamical.” The reason is that when the expression (16) of
the potential is used in the relativistic action (9), it produces
the Carrollian electric and magnetic actions—with some
boundary terms dropped here6

Se ¼
Z

dtddx
ffiffiffi
a

p
Ω
�
1

2

�
1

Ω
D̂ tΦ

�
2

−
d − 1

8d
ξijξ

ijΦ2

�
;

ð20Þ

Sm ¼
Z

dtddx
ffiffiffi
a

p
Ω
�
−
1

2
D̂ iΦD̂ iΦ −

d − 1

8d
R̂Φ2

�
; ð21Þ

as well as a third one Snd ¼ −
R
dtddx

ffiffiffi
a

p
Ω d−1

8d ϖijϖ
ijΦ2,

which has no kinetic term for Φ.7 The Carrollian equations
of motion for the two nontrivial cases are as follows:

1

Ω
D̂ t

1

Ω
D̂ tΦþ d − 1

4d
ξijξ

ijΦ ¼ 0 electric; ð22Þ

−D̂ iD̂
iΦþ d − 1

4d
R̂Φ ¼ 0 magnetic; ð23Þ

where the detailed expressions for the derivatives and
Carrollian tensors are available in the Appendix. These
equations are Weyl-covariant of weight w ¼ dþ1

2
.

Energy and momenta are part of the agenda when
discussing field dynamics. These are conjugate variables
to the geometric data, as is Tμν in (13) for a relativistic
theory, and inherit their conservation from the Carrollian
diffeomorphism invariance. In Carrollian geometries there
is no energy-momentum tensor, but instead an energy-
stress tensorΠij, an energy fluxΠi and an energy densityΠ,
defined as [4,22,23]

Πij ¼ 2ffiffiffi
a

p
Ω
δSC
δaij

; ð24Þ

Πi ¼ 1ffiffiffi
a

p
Ω
δSC
δbi

; ð25Þ

Π ¼ −
1ffiffiffi
a

p
�
δSC
δΩ

þ bi
Ω
δSC
δbi

�
; ð26Þ

with conformal weights dþ 3, dþ 2 and dþ 1. Requiring
Weyl invariance for the action translates into

Πi
i ¼ Π; ð27Þ

which is valid on shell (as the tracelessness of the
relativistic energy-momentum tensor).
A momentum Pi (weight d) is also defined but is not

conjugate to a geometric variable. It enters the conservation
equations that mirror the Carrollian diffeomorphism invari-
ance. For Weyl-invariant dynamics these are [23]

1

Ω
D̂ tΠþ D̂ iΠi þ Πijξij ¼ 0; ð28Þ

D̂ iΠi
j þ 2Πiϖij þ

�
1

Ω
D̂ tδ

i
j þ ξij

�
Pi ¼ 0: ð29Þ

Conservation equations are satisfied when the field Φ
is on shell, and this allows us to determine the
momentum.
Using Eqs. (24)–(26), we obtain the following energy

and momenta for the Carrollian electric and magnetic
actions:

5See, e.g., [21] where more references are displayed.
6On the relativistic side we find: 1

2
gμν∂μΦ∂νΦþ d−1

8d RΦ2 ¼
1
2
DμΦDμΦþ d−1

8d RΦ2 − d−1
4
ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

AμΦ2Þ.
7These results coincide with those obtained for d ¼ 2 in

Ref. [7], where the authors proceed with a thorough investigation
of the possible Weyl-compatible terms. The kinetic terms of the
electric and magnetic actions, (20) and (21), can also be
compared to the corresponding results of [8]. They also agree
up to the magnetic constraint introduced in Ref. [8], which would
read here Πi

m ¼ 0 [see (31)]. The latter guarantees the invariance
of the action under local Carrollian boosts, which we have not
required a priori—Carrollian invariance features here the covari-
ance under Carrollian diffeomorphisms (3) of a theory defined on
a Carrollian spacetime (1) and (2).
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8>><
>>:

Πij
e ¼ aij

2
ð1Ω D̂ tΦÞ2 þ d−1

4d ð1Ω D̂ tðξijΦ2Þ − aijð1
2
ξlkξ

lkΦ2 þ 1
Ω D̂ t

1
Ω D̂ tΦ2ÞÞ

Πi
e ¼ 0

Πe ¼ 1
2
ð1Ω D̂ tΦÞ2 − d−1

8d ξijξ
ijΦ2

; ð30Þ

8>><
>>:

Πij
nd ¼ d−1

4d ð2ϖliϖl
j − aij

2
ϖlkϖ

lkÞΦ2

Πi
m ¼ − 1

Ω D̂ tΦD̂ iΦþ d−1
4d ðD̂ i 1

Ω D̂ tΦ2 − D̂jðξijΦ2ÞÞ
Πm ¼ 1

2
D̂ iΦD̂ iΦþ d−1

4d ðR̂
2
Φ2 − D̂ iD̂

iΦ2Þ
: ð31Þ

For the nondynamical action, which will turn useful in a
short while, we find

8>><
>>:

Πij
nd ¼ d−1

4d ð2ϖliϖl
j − aij

2
ϖlkϖ

lkÞΦ2

Πi
nd ¼ d−1

4d D̂jðϖjiΦ2Þ
Πnd ¼ 3ðd−1Þ

8d ϖijϖ
ijΦ2

: ð32Þ

They all obey (27), and conservation equations (28) and
(29) are satisfied with the electric momenta, assuming the
field be on shell, i.e., obeying (22), and deliver the electric
momentum:

Pi
e ¼ Πi

m: ð33Þ

In a similar fashion for the magnetic dynamics, and using
the equation of motion (23), we obtain

Pi
m ¼ Πi

nd: ð34Þ

One might be puzzled at this stage by the interplay
Eqs. (33) and (34) seem to entail amongst electric,
magnetic, and nondynamics. There is no doubt that electric
and magnetic Carrollian scalar dynamics resulting from Le
and Lm are distinct, and can be studied separately, on any
Carrollian background. Likewise, the action Lnd ¼ −Vnd is
also Carrollian invariant with bona fide Carrollian
momenta, but is nondynamical. What sets a deeper link
between these dynamics, which is not visible when treating
them directly in the Carrollian framework, is that they all
emerge in the “small-c expansion” of a unique relativistic
theory for the scalar field. This was one possible guideline
for obtaining the Carrollian scalar theories. It can also be
applied to the relativistic energy-momentum tensor, and
will deliver in a similar expansion8 the Carrollian momenta:

8>>><
>>>:

Tij ¼ 1
c2 Π

ij
e þ Πij

m þ c2Πij
nd

− c
ΩT

i
0 ¼ Πi

m þ c2Πi
nd

1
Ω2 T00 ¼ 1

c2 Πe þ Πm þ c2Πnd

: ð35Þ

The relationship between relativistic and Carrollian
dynamics can be thrust further. Following [23,24] we
can expand the relativistic conservation of energy momen-
tum (15) and recollect the Carrollian conservation equa-
tions for the electric, the magnetic and the nondynamical
cases. In this process Eqs. (28) and (29) arise for each case
at a different c order, and their momenta Pi

e and Pi
m are

naturally determined in terms of the next-order energy
fluxes. This explains the above results (33) and (34).
Conserved charges are fundamental ingredients for han-

dling a dynamical system. They often appear as the conse-
quence of symmetries. In a relativistic framework, if ξ is a
Killing field of the spacetimeM , then the current defined as

Iμ ¼ ξνTμν ð36Þ

has zero divergence and (S is a d-dimensional spatial
section of M and �I the M -Hodge dual of I ¼ Iμdxμ)

QI ¼
Z
S
�I ð37Þ

is conserved. For Weyl-covariant dynamics this applies with
conformal Killing fields.
In a Carrollian spacetime a current has a scalar compo-

nent κ as well as a Carrollian-vector set of components Ki,
and the divergence takes the form

K ¼
�
1

Ω
∂t þ θ

�
κ þ ð∇̂i þ φiÞKi: ð38Þ

This result can be inferred9 as from a relativistic compu-
tation, with a current Iμ such that

8The wording “expansion” is an abuse because the result is
exact here.

9See Ref. [23], where it is also shown how the current
components are retrieved without reference to a relativistic
ascendent.
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−
1

cΩ
I0 ¼ κ þ Oðc2Þ; Ik ¼ Kk þ Oðc2Þ; ð39Þ

leading in a Papapetrou-Randers background (6) to
∇μIμ ¼ Kþ Oðc2Þ. Defining a charge associated with
the current ðκ;KÞ as an integral at fixed t over the basis
S of the Carrollian structure

QK ¼
Z
S
ddx

ffiffiffi
a

p ðκ þ biKiÞ; ð40Þ

we obtain the following time evolution:

dQK

dt
¼

Z
S
ddx

ffiffiffi
a

p
ΩK −

Z
∂S

⋆KΩ; ð41Þ

where ⋆K is the S -Hodge dual of Kidxi. For vanishing
divergence K, this is conserved if one can ignore the
boundary term owing to adequate falloff or boundary
conditions on the fields. Notice that if K happens to be
identical to the Carrollian divergence of some potential
ðϕ;ϕÞ, then a conserved charge is obtained with
κ − ϕ, Ki − ϕi.
Suppose that ξ is the generator of a Carrollian diffeo-

morphism [see (A24) in the Appendix]. It can be used to
create a current out of Πij, Πi, Π, and Pi [4,23]:

κ ¼ ξiPi − ξt̂Π; Ki ¼ ξjΠj
i − ξt̂Πi: ð42Þ

For a Weyl-covariant system [Eq. (27)] with a conformal
Killing vector [see the defining conditions in the Appendix,
(A30) and (A31)], one obtains this:

K ¼ −Πiðð∂̂i − φiÞξt̂ − 2ξjϖjiÞ: ð43Þ
As opposed to the relativistic situation, a conformal Killing
field does not provide a conservation law in Weyl-invariant
Carrollian dynamics, unless it satisfies (the conformal
weight of ξt̂ is −1, that of ξi zero)

ð∂̂i − φiÞξt̂ − 2ξjϖji ≡ D̂ iξ
t̂ − 2ξjϖji ¼ 0: ð44Þ

This last condition amounts to further demanding the clock
form (4) be invariant under the action of the conformal
Killing [see Eq. (A27) in the Appendix]. In Carrollian
dynamics, symmetry is generated by a subalgebra of the
conformal isometry algebra.
Electric and magnetic Carrollian scalar fields with

conformal coupling have different behavior regarding
conservation. The former have vanishing energy flux
[see (30)] and lead thus to conserved charges Qe ¼R
S ddx

ffiffiffi
a

p ðκe þ biKi
eÞ with

κe ¼ ξiΠmi − ξt̂Πe; Ki
e ¼ ξjΠi

ej; ð45Þ
where we have used (33). For the latter, Qm ¼R
S ddx

ffiffiffi
a

p ðκm þ biKi
mÞ with [see (31) and (34)],

κm ¼ ξiΠndi − ξt̂Πm; Ki
m ¼ ξjΠi

mj − ξt̂Πi
m ð46Þ

is not conserved since, according to (43),

Km ¼ −Πi
mðð∂̂i − φiÞξt̂ − 2ξjϖjiÞ: ð47Þ

Conservation is attainable for field configurations such that
Πi

m ¼ 0, which translates local Carroll-boost invariance
[17]. Following (31), this happens, e.g., when D̂ tΦ ¼ 0 in
backgrounds with vanishing geometric Carrollian shear
[ξij ¼ 0, defined in the Appendix, Eq. (A6)], which is
possibly compatible with the magnetic dynamics (23).
Conformal Killing fields on general Carrollian space-

times are obtained upon solving a set of complicated partial
differential equations and this is not an easy task. It is
remarkable that when the Carrollian shear [see (A6) in the
Appendix] ξij vanishes, the conformal Killing fields are
known [19]. Zero shear implies that the time dependence in
the metric is factorized: aijðt;xÞ ¼ B−2ðt;xÞãijðxÞ. This
drives the conformal algebra of the Carrollian structure to
the standard infinite-dimensional semidirect sum of the
conformal algebra of ãijðxÞwith supertranslations. For con-
formally flat ãijðxÞ, the latter coincides with ccarrðdþ 1Þ.
One recovers in particularBMSdþ2 ind ¼ 1 and2—possibly
in higher dimensions.10

The Carrollian spacetimes emerging as null boundaries
of asymptotically locally flat solutions to Einstein equa-
tions turn out to satisfy the vanishing-shear condition.11

That makes this class of Carrollian structures particularly
appealing and the forthcoming example will illustrate their
properties regarding the propagation of a conformally
coupled scalar field.
Robinson-Trautman spacetimes are four-dimensional,

time-dependent Ricci-flat solutions of algebraically special
Petrov type. They describe configurations emitting gravi-
tational radiation and settling down in the far future into a
Schwarzschild black hole.12 Their null boundary is a
Carrollian manifold M ¼ R ×S , where S is equipped
with a conformally flat d ¼ 2 metric:

10The standard conformal Carrollian algebra ccarrðdþ 1Þ is
also referred to as “level-2” ccarr2ðdþ 1Þ. More general level-N
algebras ccarrNðdþ 1Þ emerge in the presence of a dynamical
exponent z ¼ 2=N—see footnote 21. For d > 2 the BMS algebra
is finite-dimensional, whereas ccarrNðdþ 1Þ is not. Infinite-
dimensional extensions of the BMSdþ2 require adjustments in the
fall-off behaviors and have been considered in the literature (see,
e.g., [25] for a recent account and further reading suggestions).

11See, e.g., [26], Eq. (3.40) at vanishing Λ (see also [27]). One
should not confuse the shear of the boundary Carrollian manifold,
with the Bondi shear which is another boundary Carrollian tensor,
nonvanishing in general and carrying information about the bulk
gravitational radiation.

12The original solution is available in [28,29]. Robinson-
Trautman spacetimes have been discussed in the framework of
AdS=CFT in Refs. [30–33], and further in flat holography in
Refs. [27,34].
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dl2 ¼ 2

P2
dζdζ̄: ð48Þ

Here P ¼ Pðt; ζ; ζ̄Þ obeys a fourth-order partial-differential
equation known as Robinson-Trautman’s equation, which
also involves the Bondi mass aspect MðtÞ.13 The field of
observers and the clock form are (Ω ¼ 1, bi ¼ 0)

υ ¼ ∂t; μ ¼ −dt: ð49Þ

Hence, one can compute the basic geometric data14:

θ ¼ −2∂t lnP; φi ¼ 0; ϖij ¼ 0;

ξij ¼ 0; R̂ ¼ 4P2
∂ζ̄∂ζ lnP: ð50Þ

Although the Robinson-Trautman solutions have no
isometries, they have asymptotic symmetries, and these
are actually reflected in the conformal isometries of the
Carrollian boundary. Following [19], we find that the
conformal Killing fields of M are expressed in terms of
an arbitrary real function Tðζ; ζ̄Þ, which encodes the
supertranslations and the conformal Killing vectors Y ¼
Yζ

∂ζ þ Y ζ̄
∂ζ̄ of dl̃

2 ¼ 2dζdζ̄, which is flat space. The latter
generate soð3; 1Þ–or even a double copy of Witt algebras
referred to as “superrotations,” if we are ready to give up
invertibility. We find that Y is any combination of lm þ l̄m

or iðlm − l̄mÞ with

lm ¼ −ζmþ1
∂ζ; l̄m ¼ −ζ̄mþ1

∂ζ̄; ð51Þ

obeying Witt ⊕ Witt:

½lm;ln� ¼ ðm − nÞlmþn; ½l̄m; l̄n� ¼ ðm − nÞl̄mþn: ð52Þ

In this representation, soð3; 1Þ is generated by n ¼ 0;�1.
The conformal Killing fields of M are [see (A24) in the
Appendix]15

ξT;Y ¼ ðT −MYðCÞÞ
1

P
∂t þ Yi

∂i; ð53Þ

where

Cðt; ζ; ζ̄Þ ¼
Z

t
dτPðτ; ζ; ζ̄Þ; ð54Þ

and MY is an operator acting on scalar functions
fðt; ζ; ζ̄Þ as

MYðfÞ ¼ Yk
∂kf −

f
2
∂kYk: ð55Þ

The structure soð3; 1Þ ⨭ supertranslations—or ðWitt ⊕
WittÞ ⨭ supertranslations—is recovered in

½ξT;Y; ξT 0;Y 0 � ¼ ξMY ðT 0Þ−MY0 ðTÞ;½Y;Y 0�: ð56Þ

We are now ready to discuss the dynamics of a
conformally coupled scalar field and its conserved charges.
The ultimate motivation for this study is flat holography
and the possible usefulness of the Carrollian dynamics for
describing modes that propagate all the way inside the bulk
towards the null boundary of asymptotically flat space-
times. The electric equation of motion (22) reads as follows
in the three-dimensional Carrollian spacetime under con-
sideration:

∂t
1

P
∂t

Φffiffiffiffi
P

p ¼ 0: ð57Þ

Its general solution is given in terms of two arbitrary
functions fðζ; ζ̄Þ and gðζ; ζ̄Þ:

Φ ¼
ffiffiffiffi
P

p
ðCf þ gÞ: ð58Þ

With this, we can compute the energy density Πe and the
electric momentum Pi

e as in (33), using (30) and (31), and
combine them into the scalar component of the current (45)
associated with the conformal Killing fields (53):

κeT;Y ¼ P2

�
Yi

�
1

4
∂iðfgÞ − f∂ig

�
−
Tf2

2
−
1

4
∂iðYiCf2Þ

�
:

ð59Þ

This leads to the charges

QeT;Y ¼ −i
Z
S
dζ ∧ dζ̄

�
Yi

�
1

4
∂iðfgÞ − f∂ig

�
−
Tf2

2

�

−
1

4

Z
∂S

⋆YCf2P2: ð60Þ

On shell, the time dependence is exclusively encoded in
the last term through P (and C). This is a flux at infinity,
and thus vanishes upon appropriate falloff behavior of the
field f. Hence, the charges are indeed conserved.
The infinite number of conserved charges, awkward at

first glance, translates the separation of time and space
imposed by Carrollian symmetry. The field equation (57)
contains no spatial derivative, hence every locus ðζ; ζ̄Þ

13We will not specifically use the Robinson-Trautman equation
[displayed in the aforementioned literature—footnote 12—e.g.,
Ref. [33], Eq. (2.35)] in our subsequent analysis, which is thus
valid for arbitrary Pðt; ζ; ζ̄Þ.

14Conventions:
ffiffiffi
a

p ¼ i=P2 and ϵζ̄ζ ¼ 1.
15The existence of conformal Killing fields for the Carrollian

structure at hand is remarkable. Actually, the relativistic ascend-
ent of this structure ds2 ¼ −c2dt2 þ 2

P2 dζdζ̄, appearing as the
conformal timelike boundary of AdS (anti–de Sitter)-Robinson-
Trautman spacetimes, has generically no conformal Killings. In
particular, it is not conformally flat because it has a nonzero
Cotton tensor, see [30–33].
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provides a decoupled degree of freedom. This often
happens in Carrollian field theory (as, e.g., in the magnetic
conformally stationary scalar field—see below), although
the general equations at hand (22) and (23) contain actually
both time and space derivatives—D̂ t and D̂ i contain
both—making the advertised decoupling less transparent.
The magnetic equation (23) is

4∂ζ∂ζ̄Φ ¼ Φ∂ζ∂ζ̄ lnP: ð61Þ

According to (47), magnetic charges are conserved with
those conformal Killing fields obeying the extra condition
(44), which leads to

T ¼ SPþMYðCÞ; ð62Þ

where S is a function of time only. Since P and C are time
dependent while T is not, Eq. (62) restricts severely the
allowed subset of S -conformal Killings Y, which may
even turn empty. Assuming this set is not empty, due to the
vanishing of the magnetic momentum Pi

m [see (34) with
(32)—here ϖij ¼ 0], Eq. (46) leads to a single conserved
charge based on κmS ¼ −SΠm with Πm given in (31):

QmS ¼ −S
R
S

dζdζ̄
P2 Πm. This charge is nothing but the total

energy, but it turns out to vanish here. Indeed, on shell, Πm
reads [Eqs. (23) and (31)] irrespective of the dimension and
of the geometric background:

Πm ¼ 1

2d
D̂ iðΦD̂ iΦÞ: ð63Þ

In the case under consideration (bi ¼ 0 and φi ¼ 0),
Πm ¼ P2

4
½∂ζðΦ∂ζ̄ΦÞ þ ∂ζ̄ðΦ∂ζΦÞ�, which is a divergence.

Hence QmS receives only an S -boundary contribution,
vanishing under appropriate falloff or boundary conditions.16

It is worth stressing that Eq. (62) is extremely con-
straining. For instance, if the function Pðt; ζ; ζ̄Þ obeys the
Robinson-Trautman equation, it can awkwardly entangle
time and space dependence (see, e.g., [29]), leaving little
room for finding Tðζ; ζ̄Þ and Yiðζ; ζ̄Þ that satisfy (62). In
the simplest possible instance, which is flat space (P ¼ 1
and C ¼ t),17 the two special conformal transformations of
the soð3; 1Þ are excluded (∂iYi ¼ C0 constant), and only
constant time translations are allowed (T ¼ T0 constant,
and SðtÞ ¼ T0 þ C0t=2); this is a five-dimensional sub-
group of the infinite-dimensional BMS4.
When Πi

m given in (31) vanishes, the magnetic charges
are all conserved, as inferred by Eq. (47). This occurs
in particular [the Carrollian geometric shear vanishes
here, see (50)] for conformally stationary scalars obeying
1
Ω D̂ tΦ≡ ffiffiffiffi

P
p

∂t
Φffiffiffi
P

p ¼ 0, thus of the form Φ ¼ ffiffiffiffi
P

p
gðζ; ζ̄Þ,

where gðζ; ζ̄Þ is further determined by solving the magnetic
equation of motion (61). The latter18 may not be solvable in
a general Robinson-Trautman background Pðt; ζ; ζ̄Þ under
the present ansatz. If it is, the conserved magnetic charges
are found using Eqs. (46) and (53). On shell, these lead to

κmT;Y ¼ −ξtΠm ¼ P2

2
ðMYðCÞ − TÞð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ;

ð64Þ

which are integrated as in (40):

QmT ¼ i
2

Z
S
dζ ∧ dζ̄Tð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ −

1

4

Z
∂S

⋆XP2

ð65Þ

with

�Xζ ¼ CðYζð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ þ Y ζ̄ð3ð∂ζ̄gÞ2 − g∂2
ζ̄
gÞÞ − 1

2
Y ζ̄g2∂2

ζ̄
C

Xζ̄ ¼ CðY ζ̄ð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ þ Yζð3ð∂ζgÞ2 − g∂2ζgÞÞ − 1
2
Yζg2∂2ζC

: ð66Þ

As in the electric case [see Eq. (60)], the time dependence is
confined into a boundary term, which ultimately drops,
taking with it all the dependence on the soð3; 1Þ vectors Y.
For a conformally stationary scalar field in Robinson-
Trautman background, the magnetic charges are nonzero
and conserved on shell without restriction on the Carrollian
conformal Killing vector ξ (the energy flux vanishes), but
they only depend on its supertranslation component
Tðζ; ζ̄Þ.
Concluding, we would like to summarize our results.

The present framework is set by a general Carrollian
spacetime and the systems under investigation are gen-
eral covariant with respect to Carrollian diffeomorphisms.

16This property of vanishing scalar-field conserved magnetic
charges is actually valid more generally, in any dimension d, and
for a Carrollian background structure with bi ¼ 0. Indeed, this
implies ϖij ¼ 0, leading therefore to Qm ¼ −

R
S ddx

ffiffiffi
a

p
ξt̂Πm.

For Killing fields obeying the extra condition (44), using (63) we
find that the on-shell integral is again a boundary term.

17Notice in passing that the general solution of (61) is in this
case Φðt; ζ; ζ̄Þ ¼ fðt; ζÞ þ f̄ðt; ζ̄Þ, where fðt; ζÞ is arbitrary.

18With Φ ¼ ffiffiffiffi
P

p
gðζ; ζ̄Þ, Eq. (61) reads 4P∂ζ∂ζ̄gþ 2ð∂ζP∂ζ̄gþ

∂ζ̄P∂ζgÞ þ g∂ζ∂ζ̄P ¼ 0 (also valid if P is traded for C).

REVISITING THE CARROLLIAN SCALAR FIELD PHYS. REV. D 106, 085004 (2022)

085004-7



The Carrollian scalar field dynamics is either electric or
magnetic. The same holds for a conformally coupled scalar,
and the two options are rather different. The electric is
“timelike,” whereas the magnetic looks “spacelike,” and
they couple to distinct pieces of the Carrollian curvature.
We have determined the energy-stress tensor, the energy
flux, the energy density, and the momentum in both
situations, and shown that Carrollian conformal isometries
imply conservation laws in the electric instance but not in
the magnetic. The physical reason behind this cleavage is
rather easy to understand. A Carrollian (conformal) isom-
etry translates the invariance of the metric and the field of
observers, but not that of its dual clock form. Time
(supported by the field of observers) and space (associated
with the clock form) directions behave differently and this
ultimately reveals in the conservation properties of electric
versus magnetic dynamics. A similar phenomenon is
expected to occur in Newton-Cartan manifolds, where a
scalar field will also have electric and magnetic dynamics.19

Isometries will guarantee conservation laws for the latter, as
opposed to the former, because the clock form is invariant
under the action of a Killing vector, while the field of
observers is not.
The above findings have been illustrated in the case of

the null boundary of Robinson-Trautman asymptotically
locally flat spacetimes, which are Carrollian with vanishing
geometric shear and vorticity. The electric conformally
coupled scalar field has been worked out thoroughly,
accompanied with its infinite tower of conserved charges.
For the magnetic dynamics, we have found that all charges
associated with the subalgebra of the conformal Carrollian
algebra satisfying the extra conservation condition
[Eq. (44)] vanish—i.e., amount to purely boundary terms.
Nonvanishing conserved magnetic charges appear for field
configurations with Πi

m ¼ 0, and this happens, e.g., for
conformally stationary fields.
From our general discussion one should probably retain

the contrast between the infinite tower of conformal Killing
fields available in most Carrollian structures and the often
lesser conserved Carrollian charges. In this picture one
should not underestimate the role of the nonconserved
ones, usually infinite in number. When the Carrollian
structures are null boundaries of asymptotically flat space-
times, the presence of nonconserved charges betrays,
among others, gravitational radiation.
Even though we have focused our analysis on confor-

mally coupled scalar fields, ordinary scalars share these
properties—with Killings instead of conformal Killings.

The motivation behind conformal couplings lies in the role
these may play in flat holography—for scalar or more
general fields. This calls for a better understanding of the
classical dynamics, and above all of the quantum proper-
ties. The conservation of charges, the associated algebras
and the distinction of electric versus magnetic represent-
atives, should ultimately be translated into bulk language.
Our example of the null three-dimensional boundary of
Robinson-Trautman Ricci-flat spacetimes is meant to
illustrate this bridge, although discussed here in a primitive
fashion, revealing a generically trivial magnetic conserva-
tion as opposed to an infinite set of electric conserved
charges. How this reflects flat-holographic properties
remains in limbo.

We would like to express our gratitude to our colleagues
Marios Petropoulos and Konstantinos Siampos for care-
fully reading the draft of this manuscript, for many useful
discussions and for suggestions of improvements. We also
thank Jelle Hartong and Gerben Oling for interesting
exchanges on Carrollian covariance and Carroll-boost
invariance. The work of D. R.-B. was funded by Becas
Chile (ANID) Scholarship No. 72200301. The work of
M. V. was supported by the Hellenic Foundation for
Research and Innovation (H. F. R. I.) under the First Call
for H. F. R. I. Research Projects to support Faculty mem-
bers and Researchers and the procurement of high-cost
research equipment grant (MIS 1524, Project No. 96048).

APPENDIX: CARROLLIAN MANIFOLDS

Under Carrollian diffeomorphisms (3) with Jacobian

Jðt;xÞ ¼ ∂t0

∂t
; jiðt;xÞ ¼

∂t0

∂xi
; JijðxÞ ¼

∂xi0

∂xj
; ðA1Þ

the transformations are noncovariant (connectionlike) for
∂i and bi, and densitylike for ∂t and Ω:

∂
0
j ¼ J−1ij

�
∂i −

ji
J
∂t

�
; b0k ¼

�
bi þ

Ω
J
ji

�
J−1ik;

∂
0
t ¼

1

J
∂t; Ω0 ¼ Ω

J
: ðA2Þ

They are covariant for the other objects:

υ0 ¼ υ; μ0 ¼ μ; ∂̂
0
i ¼ J−1ji∂̂j; aij0 ¼ JikJ

j
la

kl: ðA3Þ

Carrollian tensors depend on time t and space x, carry
indices i; j;… lowered and raised with aij and its inverse
aij, and transform covariantly under Carrollian diffeo-
morphisms (3) with Jji and J−1ji defined in (A1). A
Levi-Civita-Carroll spatial covariant derivative ∇̂i is
defined with connection coefficients

19The magnetic and electric scalar-field actions are, respec-
tively, Sm ¼ −

R
M dtddx

ffiffiffi
a

p
Ωð1

2
aij∂iΦ∂jΦþ VmðΦÞÞ and Se ¼R

M dtddx
ffiffiffi
a

p
Ωðð1Ω D̂Φ

dt Þ2 − VeðΦÞÞ in torsionless Newton-Cartan
geometries with degenerate cometric aij, clock form Ωdt, field of
observers 1

Ω ð∂t þ wj
∂jÞ, and metric-compatible time derivative

1
Ω
D̂Φ
dt ¼ 1

Ω ∂tΦþ wj

Ω ∂jΦ.
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γ̂ijk ¼
ail

2
ð∂̂jalk þ ∂̂kalj − ∂̂lajkÞ; ðA4Þ

which emerge naturally in the vanishing-c limit of a Levi-
Civita connection in the Papapetrou-Randers coordinates
(6). This connection is torsionless and metric compatible20:
γ̂k½ij� ¼ 0, ∇̂iajk ¼ 0. The vectors ∂̂i do not commute and

define the Carrollian vorticity and acceleration:

½∂̂i; ∂̂j� ¼
2

Ω
ϖij∂t; ϖij ¼ ∂½ibj� þ b½iφj�;

φi ¼
1

Ω
ð∂tbi þ ∂iΩÞ: ðA5Þ

The usual time-derivative operator 1
Ω ∂t acts covariantly

on Carrollian tensors, but it is not metric compatible
because aij depend on time. A temporal covariant deriva-
tive is defined by requiring 1

Ω0 D̂0
t ¼ 1

Ω D̂t and D̂tajk ¼ 0,
and is also inherited from the Papapetrou-Randers Levi-
Civita connection. To this end, we introduce a temporal
connection

γ̂ij ¼
1

2Ω
∂taij ¼ ξij þ

1

d
aijθ; θ ¼ 1

Ω
∂t ln

ffiffiffi
a

p
; ðA6Þ

which is a symmetric Carrollian tensor split into the
Carrollian shear (traceless) and the Carrollian expansion
(trace). The action of D̂t on scalars is ∂t whereas on vectors
or forms it is defined as

1

Ω
D̂tVi ¼ 1

Ω
∂tVi þ γ̂ijVj;

1

Ω
D̂tVi ¼

1

Ω
∂tVi − γ̂i

jVj:

ðA7Þ

Generalization to any tensor uses the Leibniz rule.
The commutators of Carrollian covariant derivatives

define Carrollian curvature tensors. We keep it minimal
here with

½∇̂k; ∇̂l�Vi ¼ ð∂̂kγ̂ilj− ∂̂lγ̂
i
kjþ γ̂ikmγ̂

m
lj − γ̂ilmγ̂

m
kjÞVjþ½∂̂k; ∂̂l�Vi

¼ r̂ijklVjþϖkl
2

Ω
∂tVi: ðA8Þ

In this expression r̂ijkl should be called the “Riemann-
Carroll” tensor. The Ricci-Carroll tensor and the Carroll
scalar curvature are thus

r̂ij ¼ r̂kikj ≠ r̂ji; r̂ ¼ aijr̂ij: ðA9Þ

Weyl covariance under Weyl transformations

aij →
1

B2
aij; bi →

1

B
bi; Ω →

1

B
Ω; ðA10Þ

with B ¼ Bðt;xÞ an arbitrary function, requires a Weyl-
Carroll connection built on φi and θ defined in (A5) and
(A6), which transform as

φi → φi − ∂̂i lnB; θ → Bθ −
d
Ω
∂tB: ðA11Þ

The Carrollian vorticity ϖij (A5) and the Carrollian shear
ξij (A6) are Weyl covariant of weight −1.
The Weyl-Carroll space and time covariant derivatives

are torsionless and metric compatible. For a weight-w
scalar function Φ and a vector with weight-w components
Vl, the action is

D̂jΦ ¼ ∂̂jΦþ wφjΦ; ðA12Þ

D̂jVl ¼ ∇̂jVl þ ðw − 1ÞφjVl þ φlVj − δljV
iφi: ðA13Þ

The Weyl-Carroll spatial derivative does not alter the
weight, and one checks that D̂jakl ¼ 0. Regarding time,
one defines

1

Ω
D̂ tΦ ¼ 1

Ω
D̂tΦþ w

d
θΦ ¼ 1

Ω
∂tΦþ w

d
θΦ; ðA14Þ

1

Ω
D̂ tVl ¼ 1

Ω
D̂tVl þ w − 1

d
θVl ¼ 1

Ω
∂tVl þ w

d
θVl þ ξliVi;

ðA15Þ

and both are of weight wþ 1. Similarly for any tensor by
Leibniz rule and in particular we find D̂ takl ¼ 0.
We now close this paragraph with the Weyl-Carroll

curvature tensors, appearing in the commutation of Weyl-
Carroll covariant derivatives. We find

½D̂ i; D̂j�Φ ¼ 2

Ω
ϖijD̂ tΦþ wΩijΦ; ðA16Þ

½D̂k;D̂ l�Vi ¼ ðR̂i
jkl − 2ξijϖklÞVjþϖkl

2

Ω
D̂ tViþwΩklVi;

ðA17Þ

where we have introduced the following Carrollian,
weight-0 Weyl-covariant tensors:

R̂i
jkl ¼ r̂ijkl − δijφkl − ajk∇̂lφ

i þ ajl∇̂kφ
i

þ δik∇̂lφj − δil∇̂kφj þ φiðφkajl − φlajkÞ
− ðδikajl − δilajkÞφmφ

m þ ðδikφl − δilφkÞφj; ðA18Þ
20Details on the transformation rules can be found in Appen-

dix A. 2 of Ref. [24], together with further useful properties.
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Ωij ¼ ∂̂iφj − ∂̂jφi −
2

d
ϖijθ: ðA19Þ

Additionally, we define traces as

R̂ij ¼ R̂k
ikj; R̂ ¼ aijR̂ij ðA20Þ

with

R̂ ¼ r̂þ ðd − 1Þð2∇̂iφ
i − ðd − 2Þφiφ

iÞ: ðA21Þ

Observe that the Weyl-covariant Carroll-Ricci tensor is not
symmetric: R̂½ij� ¼ − d

2
Ωij. Finally, we recall that

�
1

Ω
D̂ t; D̂ i

�
Φ ¼ wR̂iΦ − ξjiD̂jΦ; ðA22Þ

where

R̂i ¼
1

Ω
∂tφi −

1

d
ð∂̂i þ φiÞθ ðA23Þ

are the components of a Weyl-covariant weight-1 Carrollian
curvature one-form.
Isometries and conformal isometries are associated with

Killing and conformal Killing fields. Carrollian diffeo-
morphisms (3) are generated by vector fields

ξ ¼ ξt∂t þ ξi∂i ¼
�
ξt − ξi

bi
Ω

�
∂t þ ξi

�
∂i þ

bi
Ω
∂t

�

¼ ξt̂
1

Ω
∂t þ ξi∂̂i ðA24Þ

restricted to ξi ¼ ξiðxÞ. Their action operates with the Lie
derivative, and for the geometric data one finds

L ξaij ¼ 2∇̂ðiξkajÞk þ 2ξt̂γ̂ij; ðA25Þ

L ξυ ¼ μυ; ðA26Þ

L ξμ ¼ −μμ − ðð∂̂i − φiÞξt̂ − 2ξjϖjiÞdxi; ðA27Þ

with

μðt;xÞ ¼ −
�
1

Ω
∂tξ

t̂ þ φiξ
i

�
: ðA28Þ

The significant observation is here that due to the degen-
eration of the metric on M , the variation of the clock
form μ is not identical to that of the field of observers υ.
For further use, we also introduce the trace of (A25) divided
by d:

λðt;xÞ ¼ 2

d
ð∇̂iξ

i þ θξt̂Þ: ðA29Þ

Carrollian isometries are Carrollian diffeomorphisms
generated by Killing fields, obeying L ξaij ¼ 0 and
L ξυ ¼ 0. In the strong Carroll structure, this requirement
is completed with the invariance of the connection. For
conformal Carrollian isometries one demands

L ξaij ¼ λaij: ðA30Þ

This set of partial differential equations is insufficient for
defining conformal Killing vectors and one usually
imposes to tune μ versus λ so that the scaling of the metric
be twice that of the field of observers21:

2μþ λ ¼ 0: ðA31Þ

The projective structure associated with some Carroll
connection should also be preserved.
For a pseudo-Riemannian manifold M in dþ 1 dimen-

sions with metric gμν (weight-2), a Weyl-covariant deriva-
tive Dμ maintains the weight w of a Weyl-covariant tensor.
The corresponding connection uses a (weight-1) vector uμ

of norm−c2, as well as its expansionΘ and acceleration aμ:

A ¼ 1

c2

�
a −

Θ
d
u

�
: ðA32Þ

The Weyl covariant derivative is metric compatible with

ðDμDν −DνDμÞf ¼ wfFμν; Fμν ¼ ∂μAν − ∂νAμ;

ðA33Þ

where the action on a weight-w scalar f is

Dλf ¼ ∇λf þ wAλf: ðA34Þ

The action of Dλ on a weight-w form vμ is

Dλvμ ¼ ∇λvμ þ ðwþ 1ÞAλvμ þ Aμvλ − gμλAρvρ; ðA35Þ

and we obtain

ðDμDν −DνDμÞvρ ¼ Rρ
σμνvσ þ wvρFμν: ðA36Þ

The Weyl-covariant Ricci (weight 0) and scalar (weight 2)
curvatures read

21One usually considers in the literature 2μþ zλ ¼ 0, where z
is minus the conformal weight of Ω, referred to as the dynamical
exponent. Here, due to the relationship of the considered
Carrollian spacetimes with relativistic parents, the weight of Ω
is −1.
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Rμν ¼ Rμν þ ðd − 1Þð∇νAμ þ AμAν − gμνAλAλÞ
þ gμν∇λAλ − Fμν; ðA37Þ

R ¼ Rþ 2d∇λAλ − dðd − 1ÞAλAλ: ðA38Þ

Observe that Rμν is not symmetric.
If the metric is of the Papapetrou-Randers form (6), the

dependence with respect to the velocity of light c is explicit.
Thus every relativistic tensor, i.e., a tensor with respect to
the full diffeomorphism group, can be reduced with respect
to the Carrollian subgroup (3), and exhibits a finite number
of Carrollian tensors. We find

R ¼ 1

c2

�
2

Ω
∂tθ þ

1þ d
d

θ2 þ ξijξ
ij

�
þ r̂ − 2∇̂iφ

i

− 2φiφi þ c2ϖijϖ
ij; ðA39Þ

R ¼ 1

c2
ξijξ

ij þ R̂ þ c2ϖijϖ
ij: ðA40Þ

Actually, the Carroll and Weyl-Carroll connections intro-
duced earlier are also obtained from the ordinary Levy-
Civita and the Weyl connections of the pseudo-Riemannian
spacetime at hand, in the form of an exact, truncated
Laurent expansion.
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Titre : Aventures au Pays des Merveilles

Mots clés : Symétries asymptotiques, Holographie Carrollienne, Géometrie des espaces de genre lumière,
Théories des champs thermiques

Résumé : Le travail que nous présentons dans cette thèse
est structuré autour de la notion de théorie des champs et de
géométrie, qui sont appliquées à la gravité et la thermalisation.
En gravité, notre travail donne un éclairage nouveau sur la struc-
ture asymptotique du champ gravitationnel dans le contexte des
espace-temps asymptotiquement plats, ceci en utilisant l’informa-
tion codée sur leur bord conforme. Ce dernier est une hypersurface
de genre lumière sur laquelle émerge la physique carrollienne au
lieu de la physique relativiste. Une structure carrollienne sur une
variété est constituée une métrique dégénérée et un champ de vec-
teurs couvrant le noyau de cette dernière. Ce vecteur sélectionne
une direction particulière qui peut être le point de départ de la
description des structures carrolliennes dans un cadre séparé.
Nous développons d’abord la géométrie carrollienne, y compris
une étude complète des connexions et isométries (conformes).
Des actions effectives peuvent vivre sur un arrière-plan carrol-
lien. Les moments canoniques conjugués à la géométrie ou à la
connexion peuvent être définis, et la variation de l’action donnera
leurs équations de conservation, à partir desquelles les charges
isométriques peuvent être bâties.
La physique carrollienne émerge également lorsque la vitesse de
la lumière tend vers zéro. Cette limite donne généralement plus de
descendants carrolliens que ce qui est attendu après une analyse
intrinsèque, comme le montrent les exemples explicites des fluides
carrolliens, des champs scalaires carrolliens (pour lesquels deux
actions, électrique et magnétique, apparaissent dans la limite) et du
tenseur de Cotton carrollien. La richesse de la limite est due à sa
possibilité de décrire plus de degrés de liberté, ce qui s’avère être
un outil fondamental dans l’étude de la relation entre les espace-
temps asymptotiquement anti de Sitter et plats.
Les espace-temps asymptotiquement plats peuvent être écrits
comme une expansion infinie dans une jauge covariante par rap-

port à leur bord nul. Cette légère extension de la jauge de Newman-
Unti est également valable dans AdS, ce qui permet de prendre
la limite plate dans le bulk, équivalente à la limite carrollienne sur
le bord. Nous démontrons que l’espace des solutions infini des
espace-temps Ricci-plat provient en fait du développement en série
de Laurent du tenseur énergie-impulsion d’AdS. Ces répliques
obéissent à chaque ordre une dynamique carrollienne (lois de flux).
Dans le cadre des espaces algébriquement spéciaux de Petrov
(pour lesquels le développement infinie se resomme), nous utili-
sons les lois de flux carrolliennes ainsi que la conservation des
tenseurs énergie-impulsion et de Cotton pour construire, du point
de vue du bord, deux tours duales de charges du bulk. Parmi elles,
nous retrouvons l’expansion mutipolaire de la masse et du moment
angulaire pour la famille Kerr-Taub-NUT. La jauge covariante est
également le cadre approprié pour dévoiler l’action des symétries
cachées de la gravité sur le bord nul. Dans ce travail, nous étudions
le cas de la symétrie SL(2,R) d’Ehlers.
Du côté de la théorie thermique des champs, nous travaillons
sur l’ensemble minimal de données nécessaires pour les décrire
à température finie. Alors qu’à température infinie toutes les va-
leurs moyennes des opérateurs primaires s’annulent, leurs va-
leurs non nulle dans le cas thermique constituent les données
supplémentaires qu’il faut calculer pour caractériser la théorie. Les
simulations numériques, la dualité avec un trou noir dans AdS ou
une analyse spectrale sont généralement les méthodes employées
pour trouver la valeur de ces coefficients. Notre travail propose une
nouvelle approche à ce problème en montrant, à partir de deux
oscillateurs harmoniques couplés, que ces coefficients sont en fait
liés à des graphes conformes de théories de type fishnet. A partir
de cette observation, nous avons établi une correspondance entre
les fonctions de partition thermique et ces graphes.

Title : Adventures in (thermal) Wonderland

Keywords : Asymptotic symmetries, Carrollian holography, Geometry of null manifolds, Thermal CFT

Abstract : The work we present in this thesis is structured
around the concepts of field theories and geometry, which are ap-
plied to gravity and thermalisation.
On the gravity side, our work aims at shedding new light on the
asymptotic structure of the gravitational field in the context of
asymptotically flat spacetimes, using information encoded on the
conformal boundary. The latter is a null hypersurface on which Car-
rollian physics instead of relativistic physics is at work. A Carroll
structure on a manifold is a degenerate metric and a vector field
spanning the kernel of the latter. This vector selects a particular di-
rection which can be the starting point for describing Carroll struc-
tures in a split frame. We first elaborate on the geometry one can
construct on such a manifold in this frame, including a comprehen-
sive study of connections and (conformal isometries). Effective ac-
tions can be defined on a Carrollian background. Canonical mo-
menta conjugate to the geometry or the connection are introduced,
and the variation of the action shall give their conservation equa-
tions, upon which isometric charges can be reached.
Carrollian physics is also known to emerge as the vanishing speed
of light of relativistic physics. This limit usually exhibits more Carrol-
lian descendants than what might be expected from a naive intrin-
sic analysis, as shown in the explicit examples of Carrollian fluids,
Carrollian scalar fields (for which two actions, electric and magnetic
arise in the limit) and the Carrollian Chern-Simons action. The rich-
ness of the limiting procedure is due to this versatility in describing
a palette of degrees of freedom. This turns out to be an awesome
tool in studying the relationship between asymptotically anti de Sit-
ter (AdS) and flat spacetimes.
Metrics on asymptotically flat spacetimes can be expressed as an

infinite expansion in a gauge, covariant with respect to their null
boundaries. This slight extension of the Newman-Unti gauge is
shown to be valid also in AdS, which allows to take the flat limit
in the bulk i.e. the Carrollian limit on the boundary, while preserving
this covariance feature. We demonstrate that the infinite solution
space of Ricci-flat spacetimes actually arises from the Laurent ex-
pansion of the AdS boundary energy-momentum tensor. These re-
plicas obey at each order Carrollian dynamics (flux/balance laws).
Focusing our attention to Petrov algebraically special spacetimes
(for which the infinite expansion resums), we use the Carrollian
flux/balance laws together with the conservation of the energy-
momentum and Cotton tensors to build two dual towers of bulk
charges from a purely boundary perspective. Among them we re-
cover the mass and angular momentum mutipolar moments for the
Kerr-Taub-NUT family. The covariant gauge is also the appropriate
framework to unveil the action of hidden symmetries of gravity on
the null boundary. In this thesis we study exhaustively the case of
Ehlers’ SL(2, R) symmetry.
On the side of thermal field theory we see that while at infinite tem-
perature a CFT is described by its spectrum and the OPE coeffi-
cients, additional data is needed in the thermal case. These are
the average values of primary operators, completely determined up
to a constant coefficient. Numerical simulations, duality with black-
hole states in AdS or spectral analyses are the methods usually
employed to uncover the latter. Our work features a new breadth.
Starting from two coupled harmonic oscillators, we show that they
are related to conformal ladder graphs of fishnet theories. This ob-
servation is the first step for setting a new correspondence between
thermal partition functions and graphs.
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