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Résumé

Cette thèse de doctorat explore l’intégration de la préservation de la confidentialité,
de l’imagerie médicale et de l’apprentissage fédéré (FL) à l’aide de méthodes cryp-
tographiques avancées. Dans le cadre de l’analyse d’images médicales, nous développons
un cadre de recalage d’images préservant la confidentialité (PPIR). Ce cadre aborde le
défi du recalage des images de manière confidentielle, sans révéler leur contenu. En éten-
dant les paradigmes de recalage classiques, nous incorporons des outils cryptographiques
tels que le calcul multipartite sécurisé et le chiffrement homomorphe pour effectuer ces
opérations en toute sécurité. Ces outils sont essentiels car ils empêchent les fuites de
données pendant le traitement. Étant donné les défis associés à la performance et à
l’évolutivité des méthodes cryptographiques dans les données de haute dimension, nous
optimisons nos opérations de recalage d’images en utilisant des approximations de gradi-
ent. Notre attention se porte sur des méthodes de recalage de plus en plus complexes,
telles que les approches rigides, affines et non linéaires utilisant des splines cubiques ou
des difféomorphismes, paramétrées par des champs de vitesses variables dans le temps.
Nous démontrons comment ces méthodes de recalage sophistiquées peuvent intégrer des
mécanismes de préservation de la confidentialité de manière efficace dans diverses tâches.
Parallèlement, la thèse aborde le défi des retardataires dans l’apprentissage fédéré, en
mettant l’accent sur le rôle de l’agrégation sécurisée (SA) dans l’entraînement collaboratif
des modèles. Nous introduisons "Eagle", un schéma SA synchrone conçu pour optimiser
la participation des dispositifs arrivant tardivement, améliorant ainsi considérablement
les efficacités computationnelle et de communication. Nous présentons également "Owl",
adapté aux environnements FL asynchrones tamponnés, surpassant constamment les
solutions antérieures. En outre, dans le domaine de la Buffered AsyncSA, nous proposons
deux nouvelles approches : "Buffalo" et "Buffalo+". "Buffalo" fait progresser les tech-
niques de SA pour la Buffered AsyncSA, tandis que "Buffalo+" contrecarre les attaques
sophistiquées que les méthodes traditionnelles ne parviennent pas à détecter. Cette
solution exploite les propriétés des fonctions de hachage incrémentielles et explore la
parcimonie dans la quantification des gradients locaux des modèles clients. "Buffalo" et
"Buffalo+" sont validés théoriquement et expérimentalement, démontrant leur efficacité
dans une nouvelle tâche de FL inter-dispositifs pour les dispositifs médicaux. Enfin, cette
thèse a accordé une attention particulière à la traduction des outils de préservation de la
confidentialité dans des applications réelles, notamment grâce au cadre open-source FL
Fed-BioMed. Les contributions concernent l’introduction de l’une des premières implé-
mentations pratiques de SA spécifiquement conçues pour le FL inter-silos entre hôpitaux,
mettant en évidence plusieurs cas d’utilisation pratiques.

Mots-clés: Sécurité et confidentialité, Technologies de renforcement de la confidentialité,
Apprentissage fédéré.
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Abstract

This PhD thesis explores the integration of privacy preservation, medical imaging, and
Federated Learning (FL) using advanced cryptographic methods. Within the context
of medical image analysis, we develop a privacy-preserving image registration (PPIR)
framework. This framework addresses the challenge of registering images confidentially,
without revealing their contents. By extending classical registration paradigms, we
incorporate cryptographic tools like secure multi-party computation and homomorphic
encryption to perform these operations securely. These tools are vital as they prevent
data leakage during processing. Given the challenges associated with the performance
and scalability of cryptographic methods in high-dimensional data, we optimize our
image registration operations using gradient approximations. Our focus extends to
increasingly complex registration methods, such as rigid, affine, and non-linear ap-
proaches using cubic splines or diffeomorphisms, parameterized by time-varying velocity
fields. We demonstrate how these sophisticated registration methods can integrate
privacy-preserving mechanisms effectively across various tasks. Concurrently, the thesis
addresses the challenge of stragglers in FL, emphasizing the role of Secure Aggregation
(SA) in collaborative model training. We introduce "Eagle", a synchronous SA scheme
designed to optimize participation by late-arriving devices, significantly enhancing com-
putational and communication efficiencies. We also present "Owl", tailored for buffered
asynchronous FL settings, consistently outperforming earlier solutions. Furthermore,
in the realm of Buffered AsyncSA, we propose two novel approaches: "Buffalo" and
"Buffalo+". "Buffalo" advances SA techniques for Buffered AsyncSA, while "Buffalo+"
counters sophisticated attacks that traditional methods fail to detect, such as model
replacement. This solution leverages the properties of incremental hash functions and
explores the sparsity in the quantization of local gradients from client models. Both
Buffalo and Buffalo+ are validated theoretically and experimentally, demonstrating their
effectiveness in a new cross-device FL task for medical devices. Finally, this thesis has
devoted particular attention to the translation of privacy-preserving tools in real-world
applications, notably through the FL open-source framework Fed-BioMed. Contributions
concern the introduction of one of the first practical SA implementations specifically
designed for cross-silo FL among hospitals, showcasing several practical use cases.

Keywords: Security and privacy, Privacy enhancing technologies, Federated Learning.
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1Introduction

Contents
1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Privacy-Enhancing Technologies . . . . . . . . . . . . . . . . . . . . . 4

1.3 Challenges in Privacy-Preserving Medical Applications . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The integration of digital technologies in healthcare offers the potential to enhance
diagnosis, treatment, and patient outcomes, offering unprecedented opportunities to
optimize patient care, streamline administrative processes, and advance medical research.
These applications include electronic health records (EHRs), telemedicine platforms,
mobile health apps, and data analytics systems. The use of artificial intelligence (AI) is
expected in particular to significantly improve healthcare at both patients and through
improved workflow automation. The potential of AI is expected to disrupt the way we
conceive healthcare nowadays, improving every aspect from management to patient
care.

The performance and quality of AI systems heavily depend on the availability of large,
high-quality and representative datasets used for model training. Nevertheless, when it
comes to healthcare applications, medical data format, availability, and quality do not
often match the standards needed by AI.

In particular, the sensitive nature of medical data requires robust privacy protection
measures when using multiple data sources for training AI models. Medical data contains
personal and confidential information, which requires stringent protections to ensure
patient privacy. Furthermore, a single hospital often lacks a sufficient volume of data
to train comprehensive AI models, effectively. Consequently, collaborative efforts that
aggregate data from multiple institutions become essential for developing accurate and
reliable models. Complying with data protection regulations encourages the adoption
of collaborative learning (CL) strategies, which minimize the exchange of sensitive
information while facilitating the creation of robust AI models.

In real-world healthcare applications of AI, due to concerns over data privacy and security,
the parties involved, often, may not be allowed to share information in clear form. As
reported in Figure 1.1(1), in a setting involving two parties, one may possess sensitive
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Figure 1.1.: Example of collaborative learning (CL) with two-party and with multiple-party
settings.

data while the other could provide a model for training. This situation creates a need
for mechanisms enabling collaboration without compromising the confidentiality of the
shared information, either under the form of data or model’s parameters. A typical
application is represented by the collaboration between a hospital having extensive
patient records, and a tech company requiring to train a model on this data. Both
entities need to collaborate to improve patient outcomes but are worried about of
sharing sensitive information directly. A more complex scenario requires multiple parties
(Figure 1.1(2)), each holding different sensitive data. In such cases, Federated Learning
(FL) [McMahan, 2017a] has emerged as a promising collaborative approach. FL is a
decentralized machine learning approach where multiple institutions collaborate to train
a shared model without exchanging raw data. Each institution performs rounds of partial
model training on the respective local data and only shares model updates which are
then aggregated to form a global model. Two primary types of FL have been identified
in the literature: cross-silo and cross-device [Kairouz, 2019]. Cross-silo FL involves
collaboration between a small number of institutions or organizations, such as hospitals
or research centers. Each silo typically has significant computational resources and
large datasets. Cross-device FL, on the other hand, consists of a collaboration of a large
number of devices, such as smartphones or IoT devices, each with limited computational
power and small amounts of data. This approach is useful for applications where data is
generated at the edge, such as mobile health apps collecting user data.

Notably, collaborative training alone does not inherently provide strong privacy guaran-
tees [Shokri, 2017]. To further enhance privacy in such environments, Privacy-Enhancing
Technologies (PETs) can be integrated into the AI model development process. PETs
offer tools and frameworks that ensure data privacy and security by providing explicit
guarantees on the protection of the data used to perform mathematical operations, for

2 Chapter 1 Introduction



example through encryption. Despite the significant potential of PETs to enhance privacy,
there is currently a lack of comprehensive frameworks allowing to seamlessly integrate
PETs in compliance with the restrictive requirements of real-world healthcare application
scenarios. Filling this gap requires to extend the current technology to address unmet
needs for real-world deployment, for example guaranteeing the trade-off between privacy
protection and system scalability.

To address thes challenges, in this thesis we study the use of advanced PETs in collabora-
tive healthcare applications. We first show that their integration is not straightforward
and consequently list the main system requirements for successfull practical deployment.
We further review existing PETs to later identify the main challenges raised by their
integration into FL systems.

1.1 Requirements

Health information is highly sensitive, and its unauthorized disclosure can result in severe
consequences for individuals and organizations. To mitigate these risks, governments
have enacted stringent data protection laws, such as the European Union’s General Data
Protection Regulation (GDPR)1 and the United States’ Health Insurance Portability and
Accountability Act (HIPAA)2.

The GDPR, effective since 2018, is a data protection regulation applicable to all EU
member states. It aims to unify data privacy laws across Europe and empower individuals
with greater control over their personal information. One of its key requirements is
implementing appropriate technical and organizational measures to ensure data security
and privacy. In a similar vein, HIPAA, enacted in 1996, establishes national standards for
the protection of certain health information in the United States.

To meet the requirements of these regulations and ensure the effective implementation
of PETs in AI applications, the following key requirements must be addressed:

- Privacy (R1): To design a privacy-preserving application using the previously men-
tioned PET techniques, it is essential to identify and address key privacy requirements.
The provided input must remain confidential and accessible only to its actual owner,
ensuring input data privacy. In data privacy, particularly in a two-party setting, the
primary focus is protecting data from the other party. While, in a multi-party setting,
the individual models must be protected to ensure that local data and models remain
private.

1https://gdpr-info.eu/
2https://www.hhs.gov/hipaa/index.html
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- Scalability (R2): Scalability is crucial for the successful adoption of emerging tech-
nologies, particularly in real-time clinical settings where performance metrics such as
computation and communication overhead vary with factors such as the number of
parties involved and the size of the model used.

- Availability (R3): Availability is fundamental, as healthcare providers must have unin-
terrupted access to critical systems and data. High availability ensures these applications
are accessible whenever needed, reducing downtime and minimizing disruptions in pa-
tient care. This implies implementing robust infrastructure, and fault-tolerant protocols
to maintain continuous operation even during hardware failures or general issues.

In the next section, we introduce the technologies that we use in this thesis, to address
the aforementioned requirements.

1.2 Privacy-Enhancing Technologies

Privacy-enhancing technologies (PETs) protect individuals’ privacy while allowing data
processing and analysis. Below, are the key PETs discussed in this thesis:

Homomorphic Encryption

Homomorphic encryption [Cheon, 2017] enables computations on encrypted data with-
out decrypting it, preserving privacy. This is useful for processing sensitive information,
such as medical data, by third-party services without exposing the raw data. It consists of
the following algorithms: Key Generation, Encryption, Decryption, and Evaluation. For
this explanation, we assume asymmetric encryption, where the key generation algorithm
randomly generates a pair of public and private keys. However, symmetric encryption,
which uses a single key for both encryption and decryption, is also possible.

KeyGen(1λ)→ (pk, sk)

where λ is the security parameter, pk is the public key, and sk is the private key. The
encryption algorithm takes the public key pk, a plaintext message m, and outputs a
ciphertext c.

Enc(pk,m)→ c

The decryption algorithm takes a secret key sk and a ciphertext c and outputs the
plaintext message m.

Dec(sk, c)→ m
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The evaluation algorithm takes a public key pk, a function f , and a set of ciphertexts
c1, . . . , cn, and outputs a new ciphertext cf which is the encryption of f applied to the
plaintexts.

Eval(pk, f, c1, . . . , cn)→ cf

For an FHE scheme to be correct, it must satisfy:

Dec(sk,Eval(pk, f,Enc(pk,m1), . . . ,Enc(pk,mn))) = f(m1, . . . ,mn)

for any function f and any plaintexts m1, . . . ,mn and any pair of (sk, pk).

Multi-Party Computation

Multi-Party Computation (MPC) [Yao, 1982] allows multiple parties to compute a func-
tion over their inputs while keeping those inputs private. This is valuable for collaborative
research on sensitive data, such as health information from different institutions.

Let P1, P2, . . . , Pn be n parties, and let x1, x2, . . . , xn be their respective private inputs.
The goal is to compute a function f(x1, x2, . . . , xn) such that no party learns anything
about the inputs of the other parties beyond what can be inferred from the output.

In additive secret sharing [Shamir, 1979], each input x is split into n shares such that the
sum of the shares equals the original input. This technique is commonly used in MPC
protocols. Share Generation, randomly split x in shares:

Share(x)→ (x1, x2, . . . , xn)

such that x =
∑n
i=1 xi. And the reconstruction takes n shares:

Reconstruct(x1, x2, . . . , xn)→ x

obtaining the original secret x.

Secure Aggregation

Recent studies [Nasr, 2019; Shokri, 2017] have shown that even sharing local FL model
parameters may expose some information about the clients’ training data through various
attacks, such as membership inference or model inversion. A popular solution to tackle
such attacks is Secure Aggregation (SA) [Mansouri, 2023], which ensures that the global
model’s parameters are computed through the aggregation of the individual ones without
disclosing them individually. Each client first protects its local parameters and sends
them to the server, which then computes the aggregated parameters and shares them
back with all the clients.
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Formally, are defined three algorithms: Setup, Protect, and Aggregate.

Let P = {P1, P2, . . . , Pn} be a set of n parties. The Setup algorithm generates secret keys
for each party and a server key:

Setup(1λ)→ ({ski}∀i∈[1,n], sks)

where λ is the security parameter, ski are private keys for parties Pi, and sks is the
server’s key used for aggregation.

Each party Pi, with private input xi ∈ Z, protects its input using its secret key ski:

Protect(ski, xi)→ yi

Each party sends yi to the server. The server aggregates these protected values {yi}∀i∈[1,n]

to compute the aggregate result without decrypting individual inputs:

x = Agg(sks, {yi}∀i∈[1,n])

Thus, Secure Aggregation ensures that no individual party learns anything about the
inputs of other parties beyond the final aggregate result, thereby safeguarding privacy in
collaborative learning scenarios.

Other PETs

In addition to the PETs discussed in this thesis, it is important to briefly mention Dif-
ferential Privacy (DP) mechanism [Dwork, 2006] and Trusted Execution Environments
(TEEs) [Sabt, 2015]. A DP mechanism ensures that the removal or addition of a single
database item does not significantly affect the outcome of any analysis, thereby protecting
individual data privacy. It typically involves adding random noise to the results of queries
on the dataset to mask the presence or absence of any single individual’s data. Trusted
Execution Environments, on the other hand, provide secure areas within a processor
where sensitive data can be processed in isolation from the rest of the system, protecting
it from potential breaches.
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1.3 Challenges in Privacy-Preserving Medical
Applications

The primary aim of this thesis is to explore and implement appropriate Privacy Enhancing
Technologies for collaborative medical applications, addressing the previously defined
requirements. We emphasize three main challenges that we tackle:

• Challenge 1: Balancing Privacy, Performance, and Accuracy (R1)
Applying PETs to medical applications implies a trade-off between privacy, perfor-
mance, and accuracy. While these PETs enable patient data protection, they can
introduce latency and reduce the speed of data processing. For example, processing
over encrypted data may require more computational resources, leading to slower
response times and increased communication overhead. This can be problematic,
especially in medical applications where real-time or fast responses are needed.
We expect accuracy to be reasonably preserved when adapting privacy-preserving
solutions. This requirement arises because privacy-preserving solutions often do
not efficiently support the original operations, and approximations are required.
Hence, they might introduce approximation errors. Balancing these trade-offs is
critical to ensure that privacy-preserving medical applications remain both effective
and efficient.

• Challenge 2: Implementing and demonstrating PETs for specific Real-life med-
ical applications. (R2)
Implementing PETs in collaborative medical applications presents significant chal-
lenges, particularly when ensuring efficient operation over encrypted data. More-
over, the performance overhead associated with these technologies can be sub-
stantial, potentially impacting the efficiency of medical applications. Additionally,
collaborative applications that require data sharing between multiple institutions
or systems must navigate complex encryption and decryption processes, which can
further complicate their implementation.

• Challenge 3: Stragglers in Cross-Device Settings (R3)
In cross-device FL, ensuring availability and efficiency can be challenging. Strag-
glers, or devices that are slower or less reliable than others, can significantly impact
the performance of the distributed process and in particular of SA. Addressing this
issue requires robust strategies for handling device variability and fault-tolerant
protocols. Ensuring high availability in these settings also involves implementing
secure communication channels and maintaining integrity across devices.
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Chapter 2 Chapter 3 Chapter 4
C1: Balancing PETs accuracy and performance ✓ ✓

C2: PETs for specific medical task ✓
C3: Stragglers in cross-device settings ✓ ✓

Table 1.1.: Overview of the main contributions tackling challenges.

1.4 Contributions

Table 1.1 depicts our contributions, we address the aforementioned requirements and
challenges mentioned.

Chapter 2 deals with C1 and C2 in a two-party setting, addressing a well-known problem
in medical applications: image registration. The goal of image registration is to align
features between scans to facilitate the representation of medical images in a common
spatial reference frame. Image registration has evolved significantly over the years.
Initially, the optimization task has been solved through traditional optimization routines
such as gradient descent or iterative closest point, to identify optimal parameterized
transformations (e.g. linear of splines) optimizing the spatial matching. Despite their
effectiveness, these algorithms can be computationally intensive and may struggle with
large datasets and complex transformations. With advances in machine learning, neural
networks have increasingly been applied to solve the image registration task. They can
learn complex patterns and transformations from training data, offering a more flexible
and scalable approach compared to traditional methods. These networks can be trained
to predict the optimal transformation parameters directly from image pairs, significantly
reducing the computational burden during the registration process. However, in the
medical context, the scarcity and poor quality of data samples pose challenges in training
neural networks to accurately learn the correct data distribution and generalize to new
images, especially in non-linear cases. Consequently, standard registration algorithms
today still remain a valid and robust option.

The ensemble of these methods is not privacy-compliant because they necessitate direct
access to medical data. Current PETs, such as MPC and HE, face significant challenges
when dealing with these complex, non-linear processes. A major issue is the scalability
of these cryptographic methods. Medical image registration involves computationally
intensive tasks, including matrix operations, gradient computations, and iterative refine-
ment. Executing these tasks on encrypted data significantly increases overhead, leading
to substantial resource consumption. Hence, in Chapter 2, we study this problem and
propose the first 2-party privacy-preserving image registration.

Chapter 3 works with a multi-party setting and presents the practical development
of SA in a real-world healthcare FL framework, Fed-BioMed, considering the unique
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requirements and constraints of this environment. Despite extensive research in FL,
many proposed SA schemes do not fully address the specific needs of healthcare settings,
particularly regarding scalability and availability. Most existing SA protocols are designed
for scenarios with a large number of clients. These protocols can become computationally
expensive when applied to healthcare environments with a limited number of centers,
typically requiring multiple communication rounds between clients and the server to
ensure privacy. In healthcare cross-silo settings, where network reliability and bandwidth
are not limited, the classic scenario accounting for client failure adds unnecessary
overhead to the FL framework. Since medical imaging and other healthcare tasks are
already resource-intensive to process, the added cryptographic operations can further
strain computational resources. This overhead can make real-time or near-real-time
processing impractical, which is often required in clinical settings. We implement a
suitable SA protocol within the Fed-BioMed framework, showcasing its applications with
four known collaborative medical environments.

Finally, the third and fourth contributions of this thesis (Chapters 4 and 5) address C3 and
work with a multi-party setting. Specifically, we study how stragglers negatively impact
SA in cross-device FL. For Synchronous FL (SyncFL), we analyze how client selection can
cause additional overhead due to inherent dropout to cope with stragglers (Chapter 4).
We introduce a new SA method agnostic to stragglers in SyncFL, namely Eagle, which
improves upon previous state-of-the-art methods and stands as one of the first agnostic
solutions to stragglers. We also provide a new protocol for Buffered Asynchronous FL.
Most SA solutions rely on SyncFL and cannot be adapted to asynchronous environments
where clients are not synchronized. We illustrate this with a realistic use case example.
In Chapter 5, we further enhance Buffered Asynchronous SA. We introduce one of the
first practical Buffered Asynchronous SA schemes, namely Buffalo, and extend it by
offering aggregation verification. This guarantees that the server correctly aggregates
the protected input, ensuring the client that their contribution to the aggregate has
been considered. We present the first verifiable asynchronous SA, Buffalo+, with low
computational overhead, thanks to the properties of incremental hashing. We evaluate
the performance of these SA schemes in a cross-device medical use case.
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The contributions of this manuscript led to the following publications and submissions in
conferences and peer-reviewed journals.

• Privacy Preserving Image Registration [Taiello, 2022], Riccardo Taiello, Melek Önen,
Olivier Humbert and Marco Lorenzi. The 25th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI 2022).

• Privacy Preserving Image Registration [Taiello, 2024a], Riccardo Taiello, Melek Önen,
Francesco Capano, Olivier Humbert and Marco Lorenzi. Medical Image Analysis
Journal (MedIA), Volume 94, May 2024, 103129.

• Enhancing Privacy in Federated Learning: Secure Aggregation for Real-World Health-
care Applications. Riccardo Taiello, Sergen Cansiz, Marc Vesin, Francesco Cremonesi,
Lucia Innocenti, Melek Önen and Marco Lorenzi. The 5th Workshop on Distributed,
Collaborative, and Federated Learning, in conjunction with MICCAI 2024.

• Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Client
Stragglers [Taiello, 2024b], Riccardo Taiello, Melek Önen, Clémentine Gritti and
Marco Lorenzi. The 19th International Conference on Availability, Reliability and
Security (ARES 2024).

• Buffalo: A Practical Secure Aggregation Protocol for Asynchronous Federated Learning,
Riccardo Taiello, Melek Önen, Clémentine Gritti and Marco Lorenzi. Under Review.
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In this chapter, we present a novel framework for image registration under privacy-
preserving conditions. Image registration is a crucial task in medical imaging, facilitating
the representation of medical images in a common spatial reference frame. Traditional
image registration methods typically assume that image content is accessible in clear
form for spatial transformation estimation. However, due to the sensitive nature of
medical images, practical applications often require privacy constraints that prevent open
sharing of image content.
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To address this, we formulate the problem of image registration in a privacy-preserving
regime, assuming images are confidential and cannot be disclosed openly. Our privacy-
preserving image registration (PPIR) framework extends classical registration paradigms
by incorporating advanced cryptographic tools, such as secure multi-party computa-
tion and homomorphic encryption. These tools enable operations without revealing
underlying data.

To tackle the performance and scalability challenges of cryptographic tools in high-
dimensional spaces, we introduce several optimization techniques. These include gradient
approximations and the use of homomorphic encryption through packing, which allows
efficient encryption and multiplication of large matrices. Our focus spans registration
methods of varying complexity, including rigid, affine, and non-linear registration based
on cubic splines or diffeomorphisms parameterized by time-varying velocity fields.

We demonstrate how the registration problem can be adapted to privacy-preserving
operations and showcase the effectiveness of PPIR across a range of registration tasks.
This chapter has been accepted to MICCAI 2022 [Taiello, 2022] and published in Medical
Image Analysis [Taiello, 2024a].

2.1 Introduction

Image Registration is a crucial task in medical imaging applications, allowing to spa-
tially align imaging features between two or multiple scans. Registration methods are
today a central component of state-of-the-art methods for atlas-based segmentation
[Shattuck, 2009; Cardoso, 2013], morphological and functional analysis [Dale, 1999;
Ashburner, 2000], multi-modal data integration [Heinrich, 2011], and longitudinal
analysis [Reuter, 2010; Ashburner, 2013]. Typical registration paradigms are based
on a given transformation model (e.g. affine or non-linear), a cost function and an
associated optimization routine. A large number of image registration approaches have
been proposed in the literature over the last decades, covering a variety of assumptions
on the spatial transformations, cost functions, image dimensionality and optimization
strategy [Schnabel, 2016]. Image registration is the workhorse of many real-life medical
imaging software and applications, including public web-based services for automated
segmentation and labelling of medical images. Using these services generally requires
uploading and exchanging medical images over the Internet, to subsequently perform im-
age registration with respect to one or multiple (potentially proprietary) atlases. Besides
these classical medical imaging use-cases, emerging paradigms for collaborative data
analysis, such as Federated Learning (FL) [McMahan, 2017b], have been proposed to
enable analysis of medical images in multicentric scenarios for performing group analysis
[Gazula, 2021] and distributed machine learning [Kaissis, 2021; Zerka, 2020]. However,
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in these settings, typical medical imaging tasks such as spatial alignment and downstream
operations are generally not possible without disclosing the image information.

Due to the evolving juridical landscape on data protection, medical image analysis
tools need to be adapted to guarantee compliance with regulations currently existing in
many countries, such as the European General Data Protection Regulation (GDPR) 1, or
the US Health Insurance Portability and Accountability Act (HIPAA)2. Medical imaging
information falls within the realm of personal health data [Lotan, 2020] and its sensitive
nature should ultimately require the analysis under privacy preserving constraints, for
instance by preventing to share the image content in clear form.

Advanced cryptographic tools hold great potential in sensitive data analysis problems
(e.g., [Lauter, 2021]). Examples of such approaches are Secure-Multi-Party-Computation
(MPC) [Yao, 1982] and Homomorphic Encryption (HE) [Rivest, 1978b]. While MPC
allows multiple parties to jointly compute a common function over their private inputs and
discover no more than the output of this function, HE enables computation on encrypted
data without disclosing either the input data or the result of the computation.

This work presents privacy-preserving image registration (PPIR), a new methodological
framework allowing image registration under privacy constraints. To this end, we
reformulate the image registration problem to integrate cryptographic tools, namely
MPC or FHE, thus preserving the privacy of the image data. Due to the well-known
scalability issues of such cryptographic techniques, we investigate strategies for the
practical use of PPIR. In our experiments, we evaluate the effectiveness of PPIR on a
variety of registration tasks and medical imaging modalities. Our results demonstrate the
feasibility of PPIR and pave the way for the application of secured image registration in
sensitive medical imaging applications.

2.2 Background

Given images I, J : Rd 7→ R, image registration (IR) aims at estimating the parameters
θ of a spatial transformation Wθ ∈ Rd 7→ Rd, either linear or non-linear, maximizing
the spatial overlap between J and the transformed image I(Wθ), by minimizing a
registration loss function f :

θ∗ = argminθ f (I(Wθ(x)), J(x)) . (2.1)

The loss f can be any similarity measure, e.g., the Sum of Squared Differences (SSD),
the negative Mutual Information (MI), or normalized cross correlation (CC). Equation

1https://gdpr-info.eu/
2https://www.hhs.gov/hipaa/index.html
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Algorithm 1 IR via Gauss-Newton optimization
Input:

▷ Moving image I
▷ Template image J
▷ Distance function f
Wθ

▷ convergence threshold ϵ
Output:

▷ Transformed image I(Wθ) after convergence is reached

1: function IMAGEREGISTRATION(I, J,Wθ):
2: θ ←− InitializeParameters()
3: repeat
4: e←− f

[
I(Wθ), J

]
5: G←− ∂f

∂θ

6: H ←− ∂2f
∂θ2

7: ∆θ ←− H−1 ·G
8: θ ←− θ + ∆θ
9: until ∥∆θ∥ ≤ ϵ

10: return I(Wθ), e
11: end function

(2.1) can be typically optimized through gradient-based methods, where the parameters
θ are iteratively updated until convergence. In particular, when using a Gauss-Newton
optimization scheme (Algorithm 1), the update of the spatial transformation can be
computed through Equation (2.2):

∆θ = H−1 ·G, (2.2)

where G = ∂f
∂θ is the Jacobian and H = ∂2f

∂θ2 the Hessian of f . Besides the Gauss-Newton
schemes proposed in the field of IR [Pennec, 1999; Modersitzki, 2009], gradient-based
techniques are classically adopted to solve the IR task, for example in diffeomorphic
image registration problems [Ashburner, 2007; Avants, 2011].

In all these cases we consider a scenario with two parties, party1, and party2, whereby
party1 owns image I and party2 owns image J . The parties wish to collaboratively
optimize the image registration problem without disclosing their respective images to
each other. We assume that only party1 has access to the transformation parameters θ

and that it is also responsible for computing the update at each optimization step. In what
follows, we introduce the basic notation to develop PPIR based on different registration
frameworks. We focus on registration methods of increasing complexity, including (i)
rigid, (ii) affine, and (iii) non-linear registration based on cubic splines or diffeomor-
phisms parametrized by time-varying velocity fields (large deformation diffeomorphic
metric mapping, LDDMM) [Beg, 2005]. In all these settings, we demonstrate how
the registration problem can be naturally adapted for accounting to privacy-preserving
operations, and illustrate the effectiveness of PPIR on a variety of registration tasks.
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(a) PPIR(MPC) (b) PPIR(FHE)-v1

Figure 2.1.: Optimization of SSD loss: proposed framework to compute matrix-vector multiplica-
tion ST · J based on PPIR(MPC) and PPIR(FHE)-v1.

2.2.1 Analysis of classical IR loss functions under a
privacy-preserving perspective

In this section we review typical loss functions used in image registration, and analyze
the related requirements for privacy-preserving optimization.

2.2.2 Optimization of SSD loss

A typical loss function to be optimized during the registration process is the sum of
squared intensity differences (SSD) evaluated on the set of image coordinates:

SSD(I, J,θ) = argminθ

∑
x

[I(Wθ(x))− J(x)]2 (2.3)

with Jacobian:
G =

∑
x

S(x) · (I(Wθ(x))− J(x)), (2.4)

where the quantity

S(x) = ∇I(x)∂Wθ(x)
∂θ

(2.5)

quantifies image and transformation gradients, and

H =
∑

x

(
∇I(x)∂Wθ(x)

∂θ

)T (
∇I(x)∂Wθ(x)

∂θ

)
(2.6)
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is the second order term obtained from Equation (2.3) through linearization [Pennec,
1999; Baker, 2004]. The solution to this problem requires the joint availability of both
images I and J , as well as of the gradients of I and of Wθ. In a privacy-preserving
setting, this information cannot be disclosed, and the computation of Equation (2.2)
is therefore impossible. We note that to calculate the update of the registration ∆θ of
Equation (2.2), the only operation that requires the joint availability of information from
both parties is the term R =

∑
x S(x) · J(x), which can be computed a matrix-vector

multiplication of vectorized quantities R = ST · J .

2.2.3 Mutual Information

Mutual Information quantifies the joint information content between the intensity dis-
tributions of the two images. This is calculated from the joint probability distribution
function (PDF):

MI(I, J,θ) = argminθ −
∑
r,t

p(r, t; θ) log
(
p(r, t; θ)
p(r; θ)p(t)

)
(2.7)

where, given Nr and Nt the maximum intensity for respectively I and J , we define
r ∈ [0;Nr − 1] ⊆ N and t ∈ [0;Nt − 1] ⊆ N as the range of discretized intensity
values of I and J , respectively. A Parzen window [Parzen, 1961] is used to generate
continuous estimates of the underlying intensity distributions, thereby reducing the
effects of quantization from interpolation, and discretization from binning the data. Let
ψ3
I : R 7→ [0, 1] be a cubic spline Parzen window, and let ψ0

J : R 7→ [0, 1] be a zero-order
spline Parzen window. The smoothed joint histogram of I and J [Viola, 1997; Mattes,
2003] is given by:

p(r, t; θ) =
1
Nx

∑
x

ψ3
I

(
r − I(Wθ(x))− I(Wθ(x))◦

∆br

)
· ψ0

J

(
t− J(x)− J◦

∆bt

)

In the above formula, the intensity values of I and J are normalized by their respective
minimum (denoted by I(Wθ)◦ and J◦), and by the bin size (respectively ∆br and ∆bt),
to fit into the specified number of bins (br or bt) of the intensity distribution. The final
value for p(r, t; θ) is computed by normalizing by Nx, the number of sampled voxels.
Marginal probabilities are simply obtained by summing along one axis of the PDF, that
is, p(r) =

∑
t p(r, t; θ) and p(t) =

∑
r p(r, t; θ). Let the matrices A3

I ∈ RNx×Nr and
B0
J ∈ RNx×Nt be defined as:

A3
I(x, r; θ) = ψ3

I

(
r − I(Wθ(x))− I(Wθ)◦

∆br

)
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and

B0
J(x, t) = ψ0

J

(
t− J(x)− J◦

∆bt

)
,

the discretized joint PDF can be rewritten in a matrix form via the multiplication:

P = 1
Nx
· (A3

I)T ·B0
J . (2.8)

The first derivative of the joint PDF is calculated as follows [Dowson, 2006]:

∂p(r, t; θ)
∂θ

= − 1
Nx
·
∑

x

B0
J(x, t) · ∂ψ

3
I (ϵ)
∂ϵ

· ∂ϵ

∂I(Wθ(x)) ·
∂I(Wθ(x))

∂θ

where ϵ = ϵ(x, r; θ) = r − I(Wθ(x))−I(Wθ)◦

∆br
is the input of the cubic spline. We also

introduce the tensor C3
I ∈ RNx×Nr×|θ| defined as C3

I (x, r; θ) = ∂ψ3
I (ϵ)
∂ϵ ·

∂ϵ
∂I(Wθ(x)) ·

∂I(Wθ(x))
∂θ ,

to write the discretized first derivative as:

P ′ = − 1
Nx
· (B0

J)T · C3
I , (2.9)

where P ′ ∈ RNt×Nr×|θ|.

The Jacobian of the MI is obtained from the chain rule and takes the form:

G = P ′ log
(
P

PI

)
,

while the linearized Hessian [Dowson, 2007] can be written as:

H = P ′TP ′
( 1
P
− 1
PI

)
,

where PI =
∑
t p(r, t,θ) is a vector which defines the discretized marginal PDF of the

moving image.

The derivatives can be easily calculated from the properties of B-splines since we have
∂ψ3

I
∂ϵ = ψ2

I (ϵ+ 1
2)− ψ2

I (ϵ− 1
2). In a privacy-preserving scenario, to calculate the update

of the registration ∆θ of Equation (2.7), two operations require the joint availability of
information from both parties, which are the matrix P of Equation (2.8) and the matrix
P ′ of Equation (2.9).
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2.2.4 Cross Correlation with Advanced Normalization Tools

In the Advanced Normalization Tools (ANTs) introduced by [Avants, 2008], the nor-
malized cross-correlation (CC) loss was specified in the context of diffeomorphic image
registration. Let ϕ define a diffeomorphism over the domain Ω = Rd, parameterized by a
time-varying velocity field v(x, t).

In the ANTs setting, inverse consistency is obtained by optimizing the CC loss with
respect to both forward and backward (inverse) transformations, here denoted by ϕ1(x, t)
and ϕ2(x, t), and parameterized by velocity fields v1(x, t) and v2(x, t) respectively. In
particular, both images I and J are simultaneously warped towards a “half-way” space,
to obtain I1 = I(ϕ1(x, 0.5)) and J2 = J(ϕ2(x, 0.5)). The CC loss is thus defined as:

CC(x) =
∑

xi
(Ī(xi), J̄(xi))2∑

xi
(Ī(xi))2 ∑

xi
(J̄(xi))2 = D2

EF

where Ī(xi) = (I1(xi)− µI1(x)) and J̄(xi) = (J2(xi)− µJ2(x)) quantify the images
appearance at location xi, with respect to the average intensity µI1 and µJ2 measured
in a local window of size M . Coherently with the LDDMM formulation, the variational
optimization problem is defined as:

ECC = inf
ϕ1

inf
ϕ2

∫ 0.5

t=0
∥v1(x, t)∥2L + ∥v2(x, t)∥2L dt

+
∫

Ω
CC(x) dΩ.

where L is a linear operator prescribing a norm on the velocity fields acting as a regular-
izer. The equation for the derivative of the forward update is given by:

∇ϕ1(x,0.5)CC(x) = 2Lv1(x, 0.5) + 2D
EF

×
(
J̄(x)− D

E
Ī(x)

)
|Dϕ1|∇Ī(x),

(2.10)

while the derivative of the backward update is analogously given by:

∇ϕ2(x,0.5)CC(x) = 2Lv2(x, 0.5) + 2D
EF

×
(
Ī(x)− D

F
J̄(x)

)
|Dϕ2|∇J̄(x)

(2.11)

In privacy-preserving scenario, the sensitive terms carrying private image information
are 2D

EF , (J̄(x) − D
E Ī(x)) and (Ī(x) − D

F J̄(x)), which must therefore be computed in a
privacy-preserving regime.
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2.2.5 Building blocks for Secure Computation

After introducing in Section 1 the IR optimization problem and the related functionals
addressed in this work, in this section, we review the standard privacy-preserving
techniques that will be employed to develop PPIR.

2.2.6 Secure Multi-Party Computation

Introduced by [Yao, 1982], MPC is a cryptographic tool that allows multiple parties
to jointly compute a common function over their private inputs (secrets) and discover
no more than the output of this function. Among existing MPC protocols, additive
secret sharing consists of first splitting every secret s into additive shares ⟨s⟩i, such that∑n
i=1⟨s⟩i = s, where n is the number of collaborating parties. Each party i receives one

share ⟨s⟩i and executes an arithmetic circuit in order to obtain the final output of the
function. In this paper, we adopt the two-party computation protocol defined in SPDZ
[Damgård, 2012], whereby the actual function is mapped into an arithmetic circuit and
all computations are performed within a finite ring with modulus Q. Additions consist
of locally adding shares of secrets, while multiplications require interaction between
parties. Following [Damgård, 2012], SPDZ defines: MPCMUL to compute element-wise
multiplication, MPCDOT to compute matrix-vector multiplication and MPCMATMUL to
compute matrix-matrix multiplication. These operations are performed within an honest
but curious protocol.

2.2.7 Homomorphic Encryption

Initially introduced by Rivest et al. in [Rivest, 1978b], Homomorphic Encryption (HE)
enables the execution of operations over encrypted data without disclosing either the
input data or the result of the computation. Hence, party1 encrypts the input with its
public key and sends the encrypted input to party2. In turn, party2 evaluates a circuit
over this encrypted input and sends the result, which still remains encrypted, back to
party1 which can finally decrypt them. Among various HE schemes, CKKS [Cheon, 2017]
supports the execution of all operations on encrypted real values and is considered a
levelled homomorphic encryption (LHE) scheme. The supported operations are: SUM

(+), Element-wise multiplication (∗) and DOTPRODUCT. With CKKS, an input vector is
mapped to a polynomial and further encrypted with a public key in order to obtain a
pair of polynomials c = (c0, c1). The original function is further mapped into a set of
operations that are supported by CKKS, which are executed over c. The performance and
security of CKKS depend on multiple parameters including the degree of the polynomial
N , which is usually sufficiently large (e.g. N = 4096, or N = 8192).
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2.3 Methods: from IR to PPIR

In this section, we describe the privacy preserving variants of the three IR methods
described in Section 2.2.1. We propose two versions of PPIR for SSD according to the
underlying cryptographic tool, namely PPIR(MPC), integrating MPC, and PPIR(FHE),
integrating FHE. In the case of MI and NCC, we focus on the design of the MPC-variant,
due to the non-negligible computational overhead of FHE in these applications. Finally,
we also study rigid point cloud registration and describe its privacy-preserving variant in
Appendix A.1.

2.3.1 PPIR based on SSD

As mentioned in Section 2.2.2, when optimizing the SSD cost, the only sensitive operation
that must be jointly executed by the parties is the matrix-vector multiplication: R =
ST · J , where ST is only known to party1 and J to party2. Figure 2.1 illustrates how
cryptographic tools are employed to ensure privacy during registration.

With MPC (Figure 2.1a), party1 secretly shares the matrix ST to obtain (⟨S⟩1, ⟨S⟩2), while
party2 secretly shares the image J to obtain (⟨J⟩1, ⟨J⟩2). Each party also receives its
corresponding share, so that party1 holds (⟨S⟩1, ⟨J⟩1) and party2 holds (⟨S⟩2, ⟨J⟩2). The
parties execute a circuit with MPCMUL operations to calculate the 2-party dot product
between ST and J . The parties further synchronize to allow party1 to obtain the product
and finally to calculate ∆θ (Equations (2.4) and (2.6)).

When using FHE (Figure 2.1b), party2 first uses a FHE key k to encrypt J and obtains
JJK← ENC(k, J). This encrypted image is sent to party1, who computes the encrypted
matrix-vector multiplication JRK. In this framework, only vector J is encrypted, and
therefore party1 executes scalar multiplications and additions in the encrypted domain
only (which are less costly than multiplications over two encrypted inputs). The encrypted
result JRK is sent back to party2, which can obtain the result by decryption: R =
DEC(k, JRK). Finally, party1 receives R in clear form and can therefore compute ∆θ.

Thanks to the privacy and security guarantees of these cryptographic tools, during the
entire registration procedure, the content of the image data S and J is never disclosed to
the opposite party.
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2.3.2 PPIR based on MI

In the MPC variant to calculate the joint PDF P in a privacy-preserving manner, the
quantity A3

I is only known to party1, while the quantity B0
J to party2 (Section 2.2.1.2).

With reference to Supplementary Figure A.1a, party1 secretly shares matrix (A3
I)T =

(⟨A3
I⟩1, ⟨A3

I⟩2), while party2 does the same with B0
J = (⟨B0

J⟩1, ⟨B0
J⟩2). Each party also

receives its corresponding share: party1 now holds (⟨A3
I⟩1, ⟨B0

J⟩1), and party2 holds
(⟨B0

J⟩2, ⟨A3
I⟩2). The parties execute a circuit with MPCMATMUL operation to calculate the

2-party matrix multiplication between (A3
I)T and B0

J . The next operation carried out in
the privacy-preserving setting is the computation of the first derivative of Equation (2.9).
Supplementary Figure A.1b illustrates the MPC variant, where party1 only knows C3

I and
party2 only knows B0

J . Initially, party1 secretly shares the matrix C3
I = (⟨C3

I ⟩1, ⟨C3
I ⟩2),

while party2 does the same with (B0
J)T = (⟨B0

J⟩1, ⟨B0
J⟩2). Each party also receives its cor-

responding share, namely: party1 holds (⟨C3
I ⟩1, ⟨B0

J⟩1) and party2 holds (⟨C3
I ⟩2, ⟨B0

J⟩2).
The parties also execute a circuit with the MPCMATMUL between (B0

J)T and C3
I .

2.3.3 PPIR based on ANTS CC loss

According to Section 2.2.1.3, party1 has access to Ī and E, whereas party2 has access
to J̄ and F . The computation begins with the optimization of the CC term, specifically
the quantity 2D

EF . In the initial phase, as illustrated in Supplementary Figure A.2a,
party1 and party2 secretly share Ī = (⟨Ī⟩1, ⟨Ī⟩2), and J̄ = (⟨J̄⟩1, ⟨J̄⟩2), respectively. The
subsequent multiplication of these shared values results in the computation of the shares
of D = (⟨D⟩1, ⟨D⟩2), which is never reconstructed. In the next step of the protocol,
party1 secretly shares 1

E , and party2 secretly shares 1
F . Through a multiplication of the

shares of D, 1
E , and 1

F , both parties collectively obtain the final value of 2D
EF .

The other two terms that need to be jointly computed are the third term of Equation
(2.10) and (2.11), namely (J̄ − D

E Ī) and (Ī − D
F J̄), reported in Supplementary Figure

A.2b. In the case of (J̄− D
E Ī), party1 secretly shares Ī and 1

E , while party2 secretly shares
J̄ . Since both parties already have access to the share of D from the previous protocol,
they proceed to multiply the secret shares of D, 1

E , and Ī. Subsequently, they subtract
the result from J̄ to obtain the final value of (Ī − D

F J̄). The computation of (J̄ − D
E Ī)

is analogous to the one of (Ī − D
F J̄), where party2 secretly shares 1

E , and both parties
participate to the multiplication of D, 1

E , and J̄ . The resulting value is finally subtracted
from Ī, yielding the final result (J̄ − D

E Ī).
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2.3.4 Protocols enhancement for SSD loss

Effectively optimizing Equation (2.1) with MPC or FHE is particularly challenging, due
to the computational bottleneck of these techniques when applied to large-dimensional
objects [Haralampieva, 2020; Benaissa, 2021], notably affecting the computation time
and the occupation of communication bandwidth between parties. Because cryptographic
tools introduce a non-negligible overhead in terms of performance and scalability, in this
section we introduce specific techniques to optimize the underlying image registration
operations.

Gradient sampling

Since the registration gradient is generally driven mainly by a fraction of the image
content, such as the image boundaries in the case of SSD cost, a reasonable approximation
of Equations (2.4) and (2.6) can be obtained by evaluating the cost only on relevant
image locations. This idea has been introduced in medical image registration [Viola,
1997; Mattes, 2003; Sabuncu, 2004], and here is adopted to optimize Equation (2.3)
by reducing the dimensionality of the arrays on which encryption is performed. We
test two different techniques: (i): Uniformly Random Selection (URS), proposed by
[Viola, 1997; Mattes, 2003], in which a random subset of dimension l ≤ d of spatial
coordinates is sampled at every iteration with uniform probabilities, p(x) = 1

d ; and (ii):
Gradient Magnitude Sampling (GMS) [Sabuncu, 2004], which consists of sampling a
subset of coordinates with probability proportional to the norm of the image gradient,
p(x) ∼ ∥∇I(x)∥. We note that gradient sampling is not necessary for computing the
MI since in Equation (2.8) the computation is already performed on a subsample of the
image voxels.

Matrix partitioning in FHE

We now describe additional improvements dedicated to PPIR(FHE) and propose two
versions of this solution: (i) PPIR(FHE)-v1 implements an optimization of the matrix-
vector multiplication by partitioning the vector image into a vector of submatrices,
whereas (ii) PPIR(FHE)-v2 enhances the workload of the parties by fairly distributing
the computation among them.

PPIR(FHE)-v1

We introduce here a novel optimization dedicated to PPIR with FHE, in particular when
the CKKS algorithm is adopted. CKKS allows multiple inputs to be packed into a single
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ciphertext to decrease the number of homomorphic operations. To optimize matrix-
vector multiplication, we propose to partition the image vector J into k sub-arrays of
dimension l, and the matrix ST into k sub-matrices of dimension |θ| × l. Once all
sub-arrays Ji are encrypted, we propose to iteratively apply DOTPRODUCT as proposed
by Benaissa et al. [Benaissa, 2021], between each sub-matrix and corresponding sub-
array; these intermediate results are then summed to obtain the final result, namely:
JRK =

∑K
i=0 DOTPRODUCT

(
JJTi K, Si

)
= ST · JJK.

PPIR(FHE)-v2

In addition to packing multiple inputs into a single ciphertext, the application of FHE
to PPIR can be optimized by more equally distributing the workload among the two
parties. We note that in PPIR(FHE)-v1, party1 is in charge of computing the matrix-
vector multiplication entirely while party2 only encrypts the input and decrypts the result.
Following Supplementary Figure A.4, PPIR(FHE)-v2 starts by splitting the matrix S of
party1 into two sub-matrices S1 and S2 using the operation splith,K . This operation
partitions the matrix into K equally-sized sub-matrices. Next, the operation flatten is
applied to S1 and S2, obtaining vectors S′

1 and S′
2 respectively. Then, party1 encrypts S′

2
and sends it to party2, which subsequently applies to its vector J the operation splitv,K ,
obtaining J1 and J2. This operation splits J into K equally-sized partitions, and it
executes the operation replicated to J1 and J2, obtaining J ′

1 and J ′
2 respectively. party2

encrypts J ′
1 and sends it to party1. Both parties then iteratively perform the element-wise

multiplication ∗ and sum up the results of the different partitions using the primitive
Sumi,k. The protocol doesn’t rely anymore on DOTPRODUCT and leads to a significant
gain in computational load.

2.4 Experiments & Results

Dataset Dimension Modality Registration Type Loss function PETs

2D Point Cloud 193 points Mono Rigid SSD MPC and FHE-v1

2D Whole body PET 1260 × 1090 voxels Mono Affine/Cubic splines SSD MPC+URS/GMS, FHE-v1
and v2 + URS/GMS

2D Brain MRI 121 × 121 voxels Mono Cubic splines SSD MPC, FHE-v1 and v2

3D Brain MRI and PET 180 × 256 × 256 Multi Affine MI MPC
and 160 × 160 × 96 voxels

3D Abdomen MR and CT 192 × 160 × 192 voxels Multi Diffeomorphic (ANTs) CC MPC

Table 2.1.: Overview of the datasets used in the study. PETs: Privacy Enhancing Technologies.

We demonstrate and assess the different versions of PPIR illustrated in Section 2.2.1
on a variety of image registration problem, namely: (i) SSD for rigid transformation of
point cloud data, (ii) SSD with linear and non-linear alignment of whole body positron
emission tomography (PET) data; (iii) SSD and MI for mono- and multimodal linear
alignment of MRI and PET brain scans; (iv) diffeomorphic non-linear registration with CC
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of multimodal abdomen data from CT and MRI scans. Experiments are carried out on 2D
(mainly for the SSD case) and 3D imaging data. In Table 2.1 is reported an overview of
the datasets used specifying their dimensions, modality, registration type, loss functions,
and the Privacy Enhancing Technologies (PETs) employed.

2.4.1 Experimental data

Point Cloud Data. We showcase rigid registration on 2D point cloud data representing
the corpus callosum, as presented in Vachet et al. [Vachet, 2012], with a set size n = 193.
The registration loss here considered is SSD between point coordinates (additional details
are provided in Appendix A.1).

Whole body PET data. The dataset considered for linear and non-linear registration
with SSD consists of 18-Fluoro-Deoxy-Glucose (18FDG) whole body PET scans. The
images are a frontal view of the maximum intensity projection reconstruction, obtained
by 2D projection of the voxels with the highest intensity across views (1260 × 1090
pixels). Brain MRI and PET data. This dataset regroups brain MRI and PET images
obtained from the Alzheimer’s Disease Neuroimaging Initiative [Mueller, 2005]. MRI data
were processed via a standard processing pipeline to estimate gray matter density maps
[Ashburner, 2000]. Non-linear registration was carried out on the extracted mid-coronal
slice, of dimension 121× 121 pixels. For 3D multimodal linear registration with MI, we
use both MRI images and PET images, with respective dimension of 180× 256× 256 and
160× 160× 96 voxels.

Abdomen MR and CT data. The multimodal dataset Abdomen-MR-CT [Hering, 2022]
was used for experiments with ANTs registration based on CC. The data was compiled
from public studies of the cancer imaging archive (TCIA) [Clark, 2013] that contains 8
paired scans of MRI and CT from the same patients. The data have an isotropic resolution
of 2mm and a voxel dimension of 192× 160× 192. They also provide 3D segmentation
masks for the liver, spleen, and left and right kidney. All scans were pre-aligned by
groupwise affine registration.

2.4.2 Experimental Details

In order to avoid local minima and to decrease computation time, we use a hierarchical
multiresolution optimization scheme. The scheme involves M resolution steps, denoted
as r1 . . . rM . At each resolution step rm, the input data is downsampled by a scaling factor
m, where m ∈ [1 . . .M ]. The quality of PPIR is assessed by comparing the registration
results with those obtained with standard registration on clear images (CLEAR). The
metrics considered are the difference in image intensity at optimum (for SSD), the total
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number of iterations required to converge, and the displacement root mean square
difference (RMSE) between CLEAR and PPIR. We also evaluate the performance of PPIR
in terms of average computation (running time) and communication (bandwidth) across
iterations. In the multimodal Abdomen data, the quality of the registration result was
assessed by the overlap across the labeled anatomical regions, quantified by the DICE
score.

Point Cloud Data. The registration protocol here adopted is detailed in Appendix A.1.
For MPC we set as the prime modulus Q = 232. For PPIR(FHE), we define the polynomial
degree modulus as N = 4096.

Whole body PET data. Whole-body PET image alignment was first performed by
optimizing the transformation Wθ in Equation (2.1) with respect to affine registration
parameters. The multiresolution steps used are r1, r5, r10, r20. A second whole-body
PET image alignment experiment was performed by non-linear registration, without
gradient approximation based on a cubic spline model (one control point every four pixels
along both dimensions), with multiresolution steps r1,r2,r5,r10,r20 and r30. Concerning
the PPIR framework, transformations were optimized for both MPC and FHE by using
gradient approximation (Section 2.3) using the same sampling seed for each test. For
MPC we set as the prime modulus Q = 232. For PPIR(FHE), we define the polynomial
degree modulus as N = 4096, and set the resizing parameter D to optimize the trade-off
between run-time and bandwidth. Since D needs to be a divisor of the image size image
data we set D = 128.

Brain MRI and PET data. The registration of brain gray matter density images was
performed by non-linear registration based on SSD, without gradient approximation,
based on a cubic spline model (one control point every five pixels along both dimensions),
with multiresolution steps r1 and r2. For PPIR(MPC) we use the same configuration
defined in the previous section, while for PPIR(FHE) we use the same N and we set
D = 121.

We tested PPIR with MI for multi-modal 3D affine image registration between PET and
MRI brain scans where, in addition to varying the multi-resolution steps, a Gaussian
blurring filter is applied to the images with a kernel that narrows as multi-resolution
proceeds. The kernel size at different resolutions, denoted with σ1 . . . σM , is used to
control the amount of blurring applied to the image at each step of the multi-resolution
process. The multiresolution steps applied are r5 and r10, with 10% of the image’s pixels
utilized as the number of subsample pixels (Nx). Gaussian image blurring is applied with
a degree of σ5 = 1 and σ10 = 3. For MPC we set as the prime modulus Q = 264.
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Abdomen MRI and CT data. We tested PPIR with CC for multi-modal 3D ANTs image
registration between MRI and CT abdomen scans. The multiresolution steps applied are
r3, r2 and r1 and the CC window size M = 5× 5× 5.

Implementation Details

The PPIR framework for the SSD is implemented using two state-of-the-art libraries:
PySyft [Ryffel, 2018], which provides SPDZ two-party computation, and TenSeal [Be-
naissa, 2021], which implements the CKKS protocol3.

PPIR based on MI and CC is implemented by extending the Dipy framework of Garyfallidis
et al. [Garyfallidis, 2014] 4. Finally, PPIR for point cloud data is released in a separated
repository5.

All the experiments are executed on a machine with an Intel(R) Core(TM) i7-7800X
CPU @ (3.50GHz x 12) using 132GB of RAM. For each registration configuration, the
optimization is repeated 10 times to account for the random generation of MPC shares
and FHE encryption keys.

2.4.3 Results

Point Cloud Data. In Supplementary Table A.1 we present the registration metrics for
PPIR(MPC) and PPIR(FHE)-v1. The registration shows that PPIR(MPC) achieves the best
results compared to PPIR(FHE), which exhibits not only a longer computation time but
also requires higher bandwidth, thanks to its non-iterative algorithm. However, to carry
out MATMUL, a sufficiently large N (4096) is required, and in this scenario, it leads to a
significant loss of chipertext slots compared to the dimension of the point set n = 193.
Finally, the qualitative results reported in Figure A.7 show negligible differences between
point cloud transformed with CLEAR, PPIR(MPC) and PPIR(FHE)-v1.

Whole body PET data: affine registration (SSD). Table 2.2 compares CLEAR, PPIR(MPC),
PPIR(FHE)-v1 and v2, showcasing metrics resulting from the affine transformation of
whole-body PET images. Notably, registration through PPIR(MPC) yields negligible
differences compared to CLEAR in terms of the number of iterations, intensity, and dis-
placement. In contrast, registering with PPIR(FHE) is not feasible when considering
entire images due to computational complexity. Nevertheless, Supplementary Figure A.5
shows that neither MPC nor FHE decreases the overall quality of the affine registered

3https://github.com/rtaiello/pp_image_registration
4https://github.com/rtaiello/pp_dipy/tree/main
5https://github.com/rtaiello/ppir_pc
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Figure 2.2.: Qualitative results for affine registration with MI over 3D medical images using
ADNI dataset [Mueller, 2005]. The images are presented in a 3×4 grid, with the first
row representing the axial axis, the second row the coronal axis, and the third row
the sagittal axis. In the first column of each row, the moving image obtained using
PET modality is shown, while in the second column, the fixed image obtained using
MRI modality is displayed. The third column shows the checkerboard alignment
result using CLEAR, while the fourth column shows the result using PPIR(MPC).
The different protocols are highlighted by red and green frames, respectively.

Figure 2.3.: Qualitative results for diffeomorphic registration with CC between 3D medical
images from the AbdomenMRCT dataset [Hering, 2022]. The images are presented
in a 3 × 4 grid, with the first row representing the axial axis, the second row the
coronal axis, and the third row the sagittal axis. First and second column show
respectively MRI and CT images. The third column shows the MRI transformed using
CLEAR, while the fourth column shows the MRI transformed using PPIR(MPC). The
transformed images are highlighted by red and green frames, respectively.
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SSD Affine Registration Metrics
Solution Loss Num. Iteration Metric
CLEAR 4.34± 0.0 118± 0.0 -
PPIR(MPC) 4.34± 0.0 114.8± 4.0 0.13± 0.04
CLEAR + URS 4.38± 0.0 61± 0.0 -
PPIR(MPC) + URS 4.34± 0.0 60.4± 6.85 1.75± 0.19
PPIR(FHE)-V1 (D = 128) + URS 4.34± 0.10 61.80± 4.82 13.47± 2.87
PPIR(FHE)-V2 (D = 128) + URS 4.34± 0.10 61.60± 7.21 13.93± 4.28
CLEAR + GMS 4.34± 0.0 63± 0.0 -
PPIR(MPC) + GMS 4.34± 0.0 59.80± 6.20 0.93± 0.42
PPIR(FHE)-V1 (D = 128) + GMS 4.34± 0.05 60.40± 5.12 0.59± 0.35
PPIR(FHE)-V2 (D = 128) + GMS 4.34± 0.05 57.03± 4.07 0.50± 0.36

SSD Affine Efficiency Metrics
Solution Time (s) Comm. (MB)

party1 party2 party1 party2
PPIR(MPC) 0.13 0.13 1.54 1.54
PPIR(MPC) + URS 0.02 0.02 0.20 0.20
PPIR(FHE)-V1 (D = 128) + URS 2.55 0.02 0.06 0.01
PPIR(MPC) + GMS 0.02 0.02 0.20 0.20
PPIR(FHE)-V1 (D = 128) + GMS 2.51 0.02 0.06 0.01
PPIR(FHE)-V2 (D = 128) + GMS 0.02 0.02 0.73 0.93

Table 2.2.: Affine SSD registration test, comparison between Clear, PPIR(MPC), PPIR(FHE)-v1
and PPIR(FHE)-v2. Registration metrics are reported as mean and standard deviation.
Efficiency metrics in terms of average across iterations. RMSE: root mean square
error.

images. A comprehensive assessment of the registration results is available in the Ap-
pendix. Table 2.2 (Efficiency metrics) shows that PPIR(MPC) performed on full images
requires higher computation time and required communication bandwidth compared to
PPIR(MPC)+URS/GMS. These numbers improve sensibly when using URS or GMS (by
factors 10× and 20× for time and bandwidth, respectively). Concerning PPIR(FHE)-V1,
we note the uneven computation time and bandwidth usage between clients, due to
the asymmetry of the encryption operations and communication protocol (Figure 2.1).
PPIR(FHE)-V2, which shares the computational workload between the two parties and
avoids DOTPRODUCT, allows obtaining an important speed-up over PPIR(FHE)-V1 (100×
faster). Notably, this gain is obtained without affecting the quality of the registration
metrics, and improves the execution time of PPIR(MPC). On the other side, although
PPIR(FHE)-V1 is able to improve communication with respect to PPIR(MPC), it still
suffers from the highest communication among the three proposed solutions. This is
due to the fact PPIR(FHE) protocols can find different applications depending on the
requirements in terms of computational power or bandwidth. Brain MRI data and
whole body PET data: non-linear registration (SSD). Table 2.3, comparing CLEAR and
PPIR(MPC), PPIR(FHE)-v1 and v2, showcases the metrics resulting from spline-based
non-linear registration between grey matter density images without the application
of gradient approximation. Additionally, the table includes results for the registration
between whole-body PET images when the gradient approximation is applied.
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SSD Cubic Splines Registration Metrics
Solution Loss Num. Iteration Metric
CLEAR 0.65± 0.0 413± 0.0 -
PPIR-MPC 0.65± 0.0 345.70± 91.22 7.31± 1.86
PPIR(FHE)-V1(D = 121) 0.64± 0.0 224.7± 79.15 9.50± 4.34
PPIR(FHE)-V2(D = 256) 0.64± 0.0 379.2± 75.82 11.02± 4.93
Clear + URS 0.02± 0.0 101± 0.0 -
PPIR(MPC) + URS 0.02± 0.00 79.3± 1.88 5.59± 0.39
PPIR(FHE)-V1(D = 128) + URS 0.02± 0.00 105.40± 1.71 7.63± 0.01
PPIR(FHE)-V2(D = 128) + URS 0.02± 0.00 105.20± 2.54 8.74± 1.90
Clear + GMS 0.02± 0.0 103.00± 0.0 -
PPIR(MPC) + GMS 0.02± 0.04 80.20± 1.62 6.17± 0.37
PPIR(FHE)-V1(D = 128) + GMS 0.02± 0.00 105.70± 2.40 5.60± 2.22
PPIR(FHE)-V2(D = 128) + GMS 0.02± 0.00 106.32± 1.30 9.11± 2.34

SSD Cubic Splines Efficiency Metrics
Solution Time (s) Comm. (MB)

party1 party2 party1 party2
PPIR-MPC 0.63 0.63 21.47 28.98
PPIR(FHE)-V1(D = 121) 3.41 0.00 0.06 0.01
PPIR(FHE)-V2(D = 256) 0.98 0.43 40.45 3.56
PPIR(MPC) + URS 0.41 0.41 8.00 8.00
PPIR(FHE)-V1(D = 128) + URS 12.23 0.0 0.06 0.01
PPIR(FHE)-V2(D = 128) + URS 0.62 0.26 24.74 3.37
PPIR(MPC) + GMS 0.41 0.41 8.00 8.00
PPIR(FHE)-V1(D = 128) + GMS 11.95 0.0 0.06 0.01
PPIR(FHE)-V2(D = 128) + GMS 0.62 0.26 24.91 3.35

Table 2.3.: Non-Linear SSD registration test comparison between Clear, PPIR(MPC), PPIR(FHE)-
v1, and PPIR(FHE)-v2. The registration metrics are reported as mean and standard
deviation. Efficiency metrics are in terms of average across iterations. RMSE: root
mean square error.

Brain MRI data without gradient approximation. Regarding the registration accuracy,
we draw conclusions similar to those of the affine case, where PPIR(MPC) leads to
minimum differences with respect to CLEAR, while PPIR(FHE)-V1 seems slightly superior.
PPIR(MPC) is associated with a lower execution time and a higher computational
bandwidth, due to the larger number of parameters of the cubic splines, which affects the
size of the matrix S. Although PPIR(FHE)-V1 has a slower execution time, the demanded
bandwidth is inferior to the one of PPIR(MPC), since the encrypted image is transmitted
only once. PPIR(FHE)-V2, as in the affine case, outperforms PPIR(FHE)-V1 (still about
100× faster) leading to comparable values between registration metrics and is still inferior
to PPIR(MPC). Here, the limitations of PPIR(FHE)-V1 on the bandwidth size are even
more evident than in the affine case, since the bandwidth increases according to the
number of parameters. This result gives a non-negligible burden to the party1, due to
the multiple sending of the flattened and encrypted submatrices of updated parameters.
Furthermore, in this case, PPIR(FHE)-V1 performs slightly worse than PPIR(MPC) in
terms of execution time.

Whole Body PET Data With Gradient Approximation. Incorporating gradient approximation
for handling whole-body PET data leads to similar conclusions as for the experiments on
brain data. Qualitative results, reported in Supplementary Figure A.6, show negligible
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differences between images transformed with CLEAR+GMS, PPIR(MPC)+GMS, and
PPIR(FHE)-V1+GMS.

MI Affine Registration Metrics
Solution Loss Num. Iteration Metric
Clear 0.22 ± 0.00 213 ± 0.0 -
PPIR(MPC) 0.22 ± 0.00 264 ± 0.0 0.41 ± 0.04

MI Affine Efficiency Metrics
Solution Time (s) Comm. (MB)

party1 party2 party1 party2
PPIR(MPC) 1.02 1.02 15.00 15.00

Table 2.4.: Affine MI registration test, comparison between Clear and PPIR(MPC). Registration
metrics (Loss = Mutual Information and metric = displacement RMSE (mm))are
reported as mean and standard deviation. Efficiency metrics are reported as average
across iterations.

Brain MRI and PET data: affine registration (MI). Table 2.4 provides information
on the computation cost of the protocol and the registration metrics for both the joint
PDF and the First Derivative of the Joint PDF, using both CLEAR and PPIR(MPC). The
results demonstrate a reasonable execution time (completed in under 5 minutes for the
entire process) and noteworthy data transfer, totaling less than 4GB. Qualitative results
for the image registration are shown in Figure 2.2, indicating that there is no difference
between the moving transformed using CLEAR and PPIR(MPC).

CC ANTs Registration Metrics
Solution Initial DICE score Final DICE score Num. Iteration Displacement RMSE (mm)

Forward
Clear

0.54 ± 0.13
0.68 ± 0.19 26 ± 0.0 -

PPIR(MPC) 0.67 ± 0.19 26 ± 0.0 0.22 ± 0.04
Backward

Clear
0.54 ± 0.13

0.69 ± 0.19 26 ± 0.0 -
PPIR(MPC) 0.68 ± 0.19 26 ± 0.0 0.22 ± 0.04

CC ANTs Efficiency Metrics
Solution Time (s) Comm. (MB)

party1 party2 party1 party2
PPIR(MPC) 24.00 24.00 152.25 152.25

Table 2.5.: ANTs registration with CC, comparison between Clear and PPIR(MPC). Registration
metrics are reported as mean and standard deviation. Efficiency metrics are reported
as average across iterations. RMSE: root mean square error.

Abdomen MRI and CT data: diffeomorphic non-linear registration (CC). Table 2.5
presents the metrics for ANTs registration using both CLEAR and PPIR(MPC) methods.
The initial DICE scores for both forward and backward transformations are consistent
between CLEAR and PPIR(MPC), with slight variations in the final DICE scores. The
number of iterations and displacement RMSE values also exhibit similar trends. In terms
of communication and computation times, PPIR(MPC) demonstrates comparable perfor-
mance with CLEAR, showcasing its feasibility for secure registration. The computation
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times and communication bandwith between the two parties are well within reasonable
limits. These qualitative result in Figure 2.3 indicates that the proposed PPIR(MPC)
solution maintains the quality of registration metrics while ensuring secure and private
communication between parties.

2.5 Discussion

This current work builds upon Taiello et al. [Taiello, 2022] by extending its application
to include MI with linear registration (3D images), CC using the ANTs framework
(3D images), enhancing the FHE for the SSD loss function, namely PPIR(FHE)-v2,
and also integrating rigid point cloud registration. We recognize specific limitations
associated with the use of FHE in our PPIR framework, which limited the effective use
of this techniques besides the optimization of the SSD loss. FHE’s computational cost
during homomorphic operations poses challenges, limiting the scalability and real-time
applicability of PPIR(FHE). This is particularly evident when dealing with large datasets,
such as 3D images, or when employing advanced image registration cost functions that
demand significant computational resources. To address this gap, researchers are actively
exploring the optimization of FHE through the integration of hardware accelerators
[Boemer, 2021].

For the SSD loss function, we provide comparison experiments with both URS and GMS
[Viola, 1997; Mattes, 2003; Sabuncu, 2004] for sake of completeness and compatibility
with subsampling approaches in IR. We recognized that URS doesn’t bring substantial
improvements with respect to GRS, and this latter method should be preferred in the
considered application or testing scenario.

While PPIR focuses on the privacy-preserving formulation of classical image registration
methods based on gradient-based optimization, throughout the past years the research
community has been steering the attention towards deep learning (DL)-based image reg-
istration [Simonovsky, 2016; Krebs, 2017; Yang, 2017; Balakrishnan, 2019]. Among the
medical imaging application of privacy-preserving methodologies, Kaissis et al. [Kaissis,
2021] discussed privacy-preserving FL with Secure Aggregation [Bonawitz, 2017b] and
Differential Privacy [Abadi, 2016] for 2D medical image classification tasks. However,
as highlighted by [Kaissis, 2021], deploying DL models for privacy-preserving inference
nowadays is predominantly achievable through Multi-Party Computation (MPC). This
process necessitates multiple servers and incurs significant overhead, primarily attributed
to the size of the DL model, especially when handling 3D image registration tasks within
a DL-based framework [Balakrishnan, 2019]. To the best of our knowledge both DL and
non-DL registration methods available in the literature do not satisfy the PPIR require-
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ments investigated in our work, as they always require the disclosure of the target and
moving images in clear.

2.6 Conclusion and future works

This study introduces the novel paradigm of Privacy Preserving Image Registration, de-
signed for allowing image registration in privacy-preserving scenarios where images
are confidential and cannot be shared in clear. Leveraging both secure multi-party
computation (MPC) and Fully Homomorphic Encryption (FHE), we propose in PPIR
effective strategies integrating cryptographic techniques into a variety of state-of-the-art
registration frameworks, encompassing different parameterization and loss functions.
We evaluate the framework’s performance across various registration benchmarks, con-
ducting quantitative and qualitative assessment for all the considered image registration
problems. Our future direction involve extending PPIR to encompass additional cost
functions commonly used in image registration, aiming to enhance the framework’s
versatility and applicability.
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In this chapter, we address the challenges of deploying federated learning (FL) in real-
world scenarios, particularly within the healthcare sector, focusing on communication
and security. A key aspect of FL is the federated aggregation procedure, where secure
aggregation (SA) schemes are studied to provide privacy guarantees over the model
parameters transmitted by clients. However, the practical application of SA in existing FL
frameworks is limited due to computational and communication bottlenecks.

To bridge this gap, we explore the implementation of SA within the open-source Fed-
BioMed framework. We implement and compare two SA protocols, Joye-Libert (JL)
and Low Overhead Masking (LOM), providing extensive benchmarks across various
healthcare data analysis problems. Our theoretical and experimental evaluations on four
datasets demonstrate that SA protocols effectively protect privacy while maintaining task
accuracy. The computational overhead during training is less than 1% on a CPU and less
than 50% on a GPU for large models, with protection phases taking less than 10 seconds.
Integrating SA into Fed-BioMed impacts task accuracy by no more than 2% compared to
non-SA scenarios.

Overall, this study demonstrates the feasibility of SA in real-world healthcare applications
and contributes to narrowing the gap towards adopting privacy-preserving technologies
in sensitive applications.

This chapter has been accepted at the 5th Workshop on Distributed, Collaborative, and
Federated Learning, in conjunction with MICCAI 2024.
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Federated Learning (FL) is a distributed machine learning paradigm that enables multiple
clients to collaboratively train a global model without sharing their local datasets. While
researchers have largely focused in developing FL theories and methods in a variety of
applications, the deployment of FL in real-world scenarios is still challenging, particularly
in terms of communication protocols, security, and customization bottlenecks.

A critical requirement for real-world applications of FL concerns the protection of the
model’s parameters shared by the clients during model aggregation. To this end, privacy-
preserving methodologies such as Secure Aggregation (SA) [Mansouri, 2023] are cur-
rently under study, to guarantee that aggregated data shared among participants does
not reveal individual contributions.

Compared to other privacy-enhancing technologies like Differential Privacy [Dwork,
2006], which requires only minor adjustments to the federated aggregation process
through the injection of noise to the model’s parameters, implementing SA in production
is more complex as it requires changes to the standard operational flow of the FL
framework by incorporating new communication phases. As a result, the adoption of SA
in currently available FL software frameworks is lagging behind. Existing SA solutions
primarily target settings with a large number of clients, where hardware limitations can
lead to protocol execution failures. Some preliminary solutions have been proposed
in the framework FLOWER [Beutel, 2020], which however introduce a non-negligible
overhead. The approach provided by NVFLARE is simpler but suffers from a weak security
model [Roth, 2022]. Finally SA in OPENFL [Reina, 2021] requires dedicated hardware
solutions. Overall, the applications of these SA protocols in the cross-silo healthcare
setting is suboptimal, due to the limited number of clients, and their general availability
as compared to the cross-device setting.

To address these limitations, in this work we explore the implementation of SA schemes
optimally customized for cross-silo healthcare applications. In particular, we study the
two suitable categories of SA based on masking and additively homomorphic encryption
[Mansouri, 2023]. We identify respectively LOW OVERHEAD MASKING [Kursawe, 2011]
and JOYE-LIBERT [Joye, 2013] as the most relevant solutions for our application. These
protocols are designed to protect individual updates from being exposed during the
aggregation process.

This work is based on theoretical and experimental evaluation of these SA protocols
within the Fed-BioMed framework [Cremonesi, 2023]. In particular, we conducted a
comprehensive comparison on four distinct medical datasets including medical images
and tabular data: Fed-IXI [Ogier du Terrail, 2022], Fed-Heart [Ogier du Terrail, 2022],
REPLACE-BG [Aleppo, 2017], and FedProstate [Innocenti, 2023]. We measured the
computational resources required for training, encryption, and overall execution time.
When training was performed on a CPU, we achieved a total computation overhead of
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less than 1%, while on a GPU, for larger machine learning models (> 5M parameters),
the overhead was less than 50%, with a protection phase that took less than 10 sec-
onds. Furthermore, we analyzed the impact of SA on task accuracy, demonstrating that
incorporating SA into Fed-BioMed affects accuracy by no more than 2% compared to
non-SA scenarios. Overall this study demonstrates the feasibility of SA in real-world
healthcare applications and contributes in reducing the gap towards the adoption of
privacy-preserving technologies in sensitive applications.

Federated Learning.

As introduced by McMahan et al. [McMahan, 2017a], FL consists of a distributed machine
learning paradigm where a group of clients, denoted as U , collaboratively trains a global
model with parameters θ⃗ ∈ Rd, under the guidance of a FL server. One of the first and
popular methods used to train a FL model is the FedAvg scheme [McMahan, 2017a].
With FedAvg, at each FL round denoted by τ , each client u ∈ U trains the model θ⃗u,τ
on the private local data Du, for example through Stochastic Gradient Descent (SGD)
[Bottou, 2004]. Upon completion of the local training, each client forwards its updated
model θ⃗u,τ to the server and the local dataset size wu = |Du|. When the server receives
the updated models from all participating clients, it proceeds to the weighted aggregation
step:

θ⃗τ+1 ←
∑

∀u∈U wuθ⃗u,τ∑
∀u∈U wu

.

This iterative process continues until the global model θ⃗ reaches some desired level
of accuracy. The presence of a large number of FL clients significantly impacts the
communication overhead. To mitigate this, instead of involving all clients in the training,
at each FL round, the server selects a subset of clients (client selection [McMahan,
2017a]), denoted as U (τ) ⊆ U , with |U (τ)| = n, and collects their parameters only for
aggregation.

Secure Aggregation.

SA [Mansouri, 2023] typically involves multiple users and a single aggregator. Each user
possesses a private input, and the role of the aggregator is to calculate the sum of these
inputs. A property of SA is that the aggregator learns nothing more than the aggregated
sum, thereby preserving the privacy of individual user inputs.

SA has found significant applications in Federated Learning (FL), where it is used to
securely aggregate the updated model parameters received from FL clients (aligned with
the user’s concept in SA) during each FL round, by instantiating an FL server (aggregator
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in the context of SA). The adoption of SA is motivated by the potential threats posed by
adversaries having access to the client’s updated model θ⃗u,τ which may infer information
about its private dataset Du [Nasr, 2019; Shokri, 2017]. Hence, the local models should
remain confidential even against the FL server. SA in FL was first developed by Bonawitz
et al. [Bonawitz, 2017a]. The protocol considered in that study faced two different
challenges:

• Threat models defining the potential risks and behaviors that the security protocol is
designed to protect against. The primary threat scenarios in SA include the honest-but-
curious model where parties (server and clients) follow the protocol without tampering
with the data but may attempt to infer additional information.

• Client dropouts, caused by factors such as connectivity issues or voluntary withdrawal,
are common in real-world federated learning environments. Dropouts can significantly
impact the computation and number of communication rounds of the SA protocol, as
they often require the participation of all selected clients within a training round. With
communication rounds, we refer to the number of interactions required between the
clients and the server to complete a particular phase of the protocol.

3.1 Related Works

In real-world deployments, only a few FL frameworks implement some form of SA:
OPENFL[Reina, 2021], NVFLARE[Roth, 2022], and FLOWER [Beutel, 2020].

FLOWER implements SECAGG+ [Bell, 2020], a masking-based protocol that ensures secu-
rity in the honest-but-curious model. This protocol requires four communication rounds
and uses Shamir’s Secret Sharing to recover missing masks in case of client dropout,
ensuring the server can complete the aggregation. Compared to the SA schemes here
introduced in Fed-BioMed, Flower’s approach is more costly in terms of communications,
albeit accommodating for client dropout.

NVFLARE introduces an SA method that leverages the CKKS asymmetric homomorphic
encryption scheme [Cheon, 2017]. This threat model is considered weaker than typical
state-of-the-art protocols because it requires clients to share a common secret key and
assumes clients are honest. Clients protect their inputs using a public key, while the server,
operating under the honest-but-curious model, aggregates these inputs and returns the
aggregate to each client for decryption using the same secret key. This approach requires
one communication round and allows client dropout.
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Figure 3.1.: Overview of Secure Aggregation phases.

OPENFL’s use of Trusted Execution Environments (TEEs) represents a further step in
sandboxing and securing local computations, but requires specific hardware which may
not be available in typical FL studies involving hospitals.

3.2 Methods

In this section, we detail the implementation in Fed-BioMed of the two SA protocols,
JOYE-LIBERT (JL) and LOW OVERHEAD MASKING (LOM). From this point on, we adopt
the terminology of Fed-BioMed, where a client is referred to as a node.

A general overview of SA is depicted in Figure 3.1, and a more detailed scheme is
provided in Supplementary Figure B.2. An SA protocol comprises two phases: setup and
online. The setup phase, illustrated in Figure 3.1.1, is executed among all participating
nodes in U before the FL training. This step ensures that all parties have the appropriate
cryptographic material necessary to run the specific SA protocol.

The online phase, Figure 3.1.2 is repeated during each FL round τ and consists of
two steps: (i) protect and (ii) aggregate. In the protection step, each node protects its
private local model using specific SA primitives and then sends the protected model
to the server. In the aggregation step, the server receives the protected local models,
computes the aggregate, and then decrypts it. To ensure the correct functioning of the
cryptographic primitives, the locally-trained model vector of each node must be quantized
beforehand.
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Prerequisites.

To perform FedAvg with SA, we first convert the node’s local parameters θ⃗u,τ ∈ Rd into in-
tegers Zd2L , where L represents the maximum number of bits of the plaintext. This conver-

sion is achieved by applying uniform quantization, defined as: Q(θ⃗u,τ ) =
⌊

2L·(θ⃗u,τ −θmin)
(θmax−θmin)

⌉
.

Here, ⌊·⌉ denotes the standard rounding function. To ensure that real values are within a
desired range, we apply a clipping function, clip(x, θmin, θmax) = min(max(x, θmin), θmax),
where θmin and θmax are the lower and upper bounds, respectively.

To apply weighted averaging over the integers, we assume that wu ∈ Z2Wu , where
Wu is the number of bits to represent the node’s dataset size, and we define W =
max({Wu}∀u∈U ).

The weighted local model is computed as x⃗u,τ = Q(θ⃗u,τ ) · wu, resulting in x⃗u,τ ∈ Zd2L+W .
To avoid overflow, we define M = L + W + log2(n) as the maximum number of bits
for sum computation. The aggregate x⃗τ = (

∑
u∈U(τ) x⃗u,τ ) ∈ Zd2M is then divided by

s =
∑
u∈U(τ) wu and dequantized using the following formula: θ⃗τ+1 = Q−1(x⃗τ ) =

x⃗τ · (θmax−θmin)
2L + θmin.

In this context, we assume that quantization has been performed and omit the details of
the dequantization process in the protocol explanation.

Joye-Libert

In Supplementary Figure B.2a, we illustrate the Joye-Libert (JL) implementation in
Fed-BioMed. During the setup phase, the participating nodes U generate their private
keys sku, and the server creates its server key sk0 — which is the sum of the node keys —
using Shamir Secret Sharing (SS) [Shamir, 1979].

During the online phase, the protection and aggregation are applied as described in JL
(Section 4 [Joye, 2013]). In the protection step, each node uses a private secret key sku
at FL round τ with a one-time mask derived from sku and τ , to obtain a protected local
model through modular exponentiation over a large modulus N . Using the server key
sk0, the server can recover the aggregate of the nodes’ private local models in clear.

Our JL implementation works with vectors; the protection and aggregation algorithms
are applied element-wise. We use the element’s index i to generate a unique FL round
(need to guarantee a one-time mask) for each element in the vector. For instance, to
protect x⃗u,τ , we execute protect and aggregate over the FL round τ ||i and input x⃗u,τ [i],
where x⃗u,τ [i] represents the i-th element of the vector x⃗u,τ .
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The computation and communication of the protected local model is optimized by using
vector encoding [Mansouri, 2022].

Software details.

SS is integrated into Fed-BioMed using MP-SPDZ library [Keller, 2020]. The modulus N
is provided by the server, and the modular operations are performed using the GMPY21

Python library.

Low Overhead Masking

The second implementation, Low Overhead Masking (LOM) [Kursawe, 2011], which
supports client selection, is depicted in Figure B.2b. During the setup phase, all par-
ticipating nodes U establish a pairwise secret su,v, such that su,v = sv,u, with all nodes
through the Diffie-Hellman Key Agreement (KA) [Diffie, 2022], which will be used in the
protect step.

In the online phase, during the protection step, a selected node u ∈ U (τ) runs the protect
algorithm (Section 3.4 [Kursawe, 2011]). This algorithm protects the local model with
a one-time mask derived through a Pseudo-Random Function (PRF) which uses the
pairwise secret with the selected nodes U (τ) and the current FL round τ , and sends the
protected local model to the server. The server then sums the protected local models and
collects the final aggregate x⃗τ .

Software details.

Diffie-Hellman KA and PRF are implemented in the CRYPTOGRAPHY2 Python library, with
ECDH and the ChaCha20[Bernstein, 2008] stream cipher, respectively. Distribution of
the DH public key is assumed outside of Fed-BioMed, offline, or trough a Public Key
Infrastructure.

3.3 Evaluation

In this Section we provide our theoretical and experimental evaluation of the two
implemented SA protocols.

1GMPY2: https://gmpy2.readthedocs.io/
2CRYPTOGRAPHY: https://github.com/pyca/cryptography
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Complexity Analysis: JL’s node computation is O(d), independent of the number of
selected nodes, but requires modular exponentiation, and node communication for vector
encoding is O(d ·2 ·M) [Mansouri, 2022]. The server’s computation is O(n+d), involving
n multiplications and d exponentiation [Joye, 2013].

LOM’s node computation is O(nd), dependent on the number of selected nodes, using
faster modular addition and PRF evaluation. The server’s computation involves nd
modular additions, and node communication is O(d ·M) [Kursawe, 2011].

3.3.1 Experimental evaluation:

The experimental evaluation consists of tracking the computation time between JL and
the LOM. We carried out the experiments by considering varying FL hyper-parameters
represented by the number of total nodes ntot, the number of selected nodes n, the
number of FL rounds T , the number of local SGD steps e, the batch size b and the
learning rate η. For SA, the hyper-parameterswe explored were the number of bits input
L, the number of bits weight W . Moreover, we fixed the aggregation number of bits
M = 32 and the clipping range min and max. Finally, we report the hardware used to
train ML model. We report all this information for each experiments in Table 3.1.

We use four medical datasets to evaluate the task accuracy of our SA implementations
over the aggregated global model at each FL round, using a dedicated tasks-specific test
set, and tracking the required computational resources for the nodes.

The four datasets are:

• Fed-Heart [Ogier du Terrail, 2022], providing patients’ demography and clinical history
from four hospitals. The task is to predict the clinical status of a patient (binary classifi-
cation from tabular data). For FL training and testing we follow [Ogier du Terrail, 2022],
and the target evaluation metric is the balanced accuracy.

• Fed-IXI [Ogier du Terrail, 2022], is composed by T1 and T2 brain magnetic resonance
images (MRIs) from three hospitals. The task is supervised brain segmentation, and
ground truth segmentations are provided. For FL training and testing we follow [Ogier
du Terrail, 2022], and the target evaluation metric is the dice score.

• REPLACE-BG dataset [Aleppo, 2017] was obtained from a cohort of 202 participants.
The task is prediction of blood glucose levels for the subsequent hour based on data from
the last three hours, including glucose levels, insulin boluses, and CHO content.
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• FedProstate dataset [Innocenti, 2023] provides T2 MRIs of the whole prostate from
three publicly available datasets, and the task is supervised prostate segmentation. We
defined the splitting criteria into different clients, the pre-processing methods, and the
FL training and testing parameters coherently with [Innocenti, 2023].

Supplementary Table B.1 reports the dataset details, the FL and SA hyper-parameters,
and the hardware specific for model training across experiments. The code is publicly
available3.

SA Time Training (s) Time Encrypt (s) Time Total (s)

FedIXI (d = 246K;ntot = n = 3)
JL 68.10± 2.17 52.21± 0.85 121.48± 2.50

LOM 46.51± 1.39 0.62± 0.14 48.22± 1.03

FedHeart (d = 258;ntot = n = 4)
JL 0.24± 0.08 0.08± 0.01 0.68± 0.09

LOM 0.20± 0.09 > 0.01 0.59± 0.08

REPLACE-BG (d = 256K;ntot = 180;n = 18)
JL N/A N/A N/A

LOM 53.72± 8.61 0.39± 0.06 57.42± 6.95

FedProstate (d = 7.4M ;ntot = n = 4)
JL N/A > 300 > 300

LOM 7.65± 1.6 9.22± 0.38 23.86± 2.1

Table 3.1. Figure 3.2.

Table 3.1 Comparison of node average computation time across different SA protocols using
four medical datasets. Each dataset is characterized by the total number of nodes (ntot), the
number of selected nodes (n), and the size of the local model (d). Fig. 3.2 Compare the task
accuracy of the global model at each FedAvg aggregation with and without applying SA for FedIXI
and FedProstate. The SA is characterized by L bits for representing the local model, W bits
for representing the maximum dataset size, and the specified maximum and minimum clipping
range.

In Table 3.1, we report the required node’s computational resources comparing the two
SA solutions. We present the average training time, encryption time, and total time. LOM
consistently outperforms JL due to its faster underlying primitive (modular addition vs.
modular exponentiation). Specifically, in all experiments where training runs on a CPU,
LOM accounts for less than 1% of the total time. When a GPU (e.g., in FedProstate) is
available, the overall encryption time is around 40% of the total time, considering a large
input parameter dimension of d = 7.4M .

In Figure 3.2, we display the task accuracy comparison with and without SA for FedIXI
and FedProstate. Additionally, Appendix Figure B.1 presents the results for FedHeart and
REPLACE-BG. These figures demonstrate that incorporating SA in Fed-BioMed affects the
accuracy by no more than 2% compared to the case without SA.

3Anonymous GitHub code
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3.4 Conclusion and Future Works

We have demonstrated that SA can be effectively implemented within the Fed-BioMed
framework to enhance privacy in federated learning. Our evaluations using four medical
datasets show that both Joye-Libert and Low Overhead Masking protocols protect privacy
while maintaining task accuracy. The computational overhead is minimal, making SA
a viable option for real-world deployments. As part of future work, we plan to replace
MP-SPDZ with a direct implementation of additive secret sharing within Fed-BioMed. We
also aim to replace JL with a quantum-resistant SA [Brakerski, 2011] using the SHELL
C++ library 4.

4SHELL library: https://github.com/google/shell-encryption/
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In this chapter, we explore innovative solutions for Secure Aggregation (SA) in Federated
Learning (FL) systems, which are crucial for collaboratively training global machine
learning models while preserving the privacy of individual clients’ local datasets. Existing
SA protocols in FL literature often operate synchronously, leading to significant runtime
slowdowns due to the presence of stragglers, or late-arriving clients. To mitigate this
issue, one common approach treats stragglers as client failures and utilizes SA solutions
robust against dropouts. However, this method negatively impacts protocol performance,
as the cost is highly dependent on the dropout ratio, which increases significantly when
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stragglers are considered. Another strategy explored in the literature is introducing
asynchronicity into the FL system, but the existing asynchronous SA solutions suffer
from high overhead. In this work, we propose to manage stragglers as client failures
while designing SA solutions that do not rely on the dropout ratio, ensuring that an
inevitable increase in this metric does not affect performance. We first introduce Eagle,
a synchronous SA scheme that depends solely on the inputs of online users, rather
than client failures. This approach offers better computation and communication costs
compared to existing solutions in realistic scenarios with a high number of stragglers. We
then propose Owl, the first SA solution suitable for asynchronous settings, which again
considers only the contributions of online clients.

We implement both solutions and demonstrate that: (i) in synchronous FL with realistic
dropout rates, Eagle outperforms the best SA solution, Flamingo, by a factor of four;
(ii) in the asynchronous setting, Owl exhibits superior performance compared to the
state-of-the-art solution, LightSecAgg.

This chapter has been accepted at ARES 2024 [Taiello, 2024b].

4.1 Introduction

Federated Learning (FL) [McMahan, 2017a] is a popular framework enabling multiple
clients to collaborate in training a common machine learning model without sharing their
local data. In centralized FL, the primary server initializes the parameters of a global
model and sends them to the clients for optimization with respect to the local data. The
locally trained parameters are transmitted to the server and aggregated (e.g. through
weighted averaging) to produce a new global model for the next FL round.

Recent studies [Nasr, 2019; Shokri, 2017] show that even sharing local model parameters
may expose some information about the clients’ training data, through various attacks
such as membership inference or model inversion. A popular solution to tackle such
attacks is Secure Aggregation (SA), which ensures that the global model’s parameters
are computed through the aggregation of the individual ones without disclosing them
individually. Informally, each client first protects its local parameters and sends them to
the server, and the server computes the aggregated parameters and shares them back
to all the clients. The underlying privacy protection technique usually consists of either
secure masking, additively homomorphic encryption, or differential privacy mechanisms
[Mansouri, 2023].

As pointed out in [Mansouri, 2023], initial SA solutions were strongly relying on the
online presence of all FL clients and even a single client failure, referred to as client
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dropout, was resulting in the complete failure of the aggregation protocol. To cope with
this problem of robustness, many works [Bonawitz, 2017a; Mansouri, 2022; So, 2021;
Kadhe, 2020; Bell, 2020; Ma, 2023] propose to initially secret share clients’ keying
material with the others so that whenever a client failure occurs, the remaining online
clients can collaborate to reconstruct the dropped client’s material and complete the
aggregation operation correctly.

While these solutions have indeed been proven robust against client dropouts, their
security is only valid when clients are synchronized and share their parameters on an
FL-round basis. Unfortunately, a synchronous FL (SyncFL) setting encounters challenges
in heterogeneous environments whereby slow, late-arriving clients, known as stragglers
[Xie, 2019; Nguyen, 2022; Fraboni, 2023], can be detrimental to the overall system
performance.

Very few solutions under SyncFL settings, namely [Bonawitz, 2019b; Yang, 2018], address
this challenge and employ a technique known as over-selection. In this approach, a larger
pool of clients is initially engaged so that potential stragglers are inherently avoided. If
this approach is adopted in the context of SA in SyncFL, then the dropout rate needs
to be set as the sum of the potential ratio of stragglers and the actual client failures. In
practical FL deployments, a dropout rate, including the ratio of stragglers, is expected to
be around 30% [Bonawitz, 2019b; Nguyen, 2022]. Unfortunately, this non-negligible
ratio will result in a significant increase in SA parameters and consequently in a significant
overhead both at the server [Bell, 2020; Bonawitz, 2017a] and at the client [Ma, 2023;
Mansouri, 2022].

Asynchronous FL (AsyncFL) [Xie, 2019; Fraboni, 2023; Nguyen, 2022] modifies SyncFL
by taking into account clients’ model updates as soon as they arrive to the server. This
allows to leverage the impact of stragglers, that do not block the system. Nevertheless,
as previously mentioned in [So, 2022], existing SA solutions become insecure in such
AsyncFL settings.

Contributions

Client Comp. Client Comm. Online Rounds FL Type

SecAgg [Bonawitz, 2017a] O(n2 + nd) O(n+ d) 4 SyncFL
FTSA [Mansouri, 2022] O(n2 + n log(n)d) O(n+ d) 3 SyncFL
Eagle O(n log(n) + d) O(n+ d) 3 SyncFL

LightSecAgg [So, 2022] O(n2 d
(1−δ)n−t + d) O(n d

(1−δ)n−t + d) 3 AsyncFL
Owl O(n2 + d) O(n + d) 3 AsyncFL

Table 4.1.: Complexity analysis for one round (n: number of clients; δ: fraction of dropped
clients; t: threshold value; d: input dimension).
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In this paper, we cope with the problem of stragglers and propose two new SA protocols
that address the aforementioned challenges inherent to realistic FL systems. More
specifically:

• In the context of SyncFL, we significantly reduce the computation and communi-
cation overheads of FL clients and server through a new protocol named Eagle.
More specifically, Eagle ignores dropped clients (including stragglers) and hence
supports realistic dropout rates (from 10% to 30%). The performance improve-
ment comes from a variant of the Threshold Joye-Libert scheme (TJL) proposed in
[Mansouri, 2022].

• We develop a second protocol, named Owl, tailored to the AsyncFL setting. Similar
to Eagle, Owl does not need to be aware of dropped clients and stragglers to
complete the aggregation. We show that Owl is more efficient than the unique
existing work [So, 2022]. Moreover, Owl is particularly suitable for deep learning
models with large numbers of parameters.

• We conduct an extensive performance study and compare these two newly proposed
schemes with relevant state-of-the-art solutions. Table 4.1 shows the asymptotic
improvements of our two solutions compared to existing SA schemes. Especially,
Eagle theoretically outperforms SecAgg and FTSA, whereas Owl asymptotically
and experimentally shows better performance than LightSecAgg .

Notations

We provide the notations used throughout our paper in Table D.1.

4.2 Building Blocks

4.2.1 Joye-Libert Secure Aggregation Scheme

The Joye-Libert scheme (JL) [Joye, 2013], involving a Trusted Dealer (TD), n clients and
one aggregator, is defined as follows:

• (sk0, {sku}u∈[1,n], N,H) ← JL.Setup(λ): Given security parameter λ, this algo-
rithm generates two large and equal-size prime numbers p and q and sets N = pq.
It randomly generates n secret keys sku

R←− ZN2 and sets the aggregator key
sk0 = −

∑n
u=1 sku. Then, it defines a cryptographic hash function H : Z→ Z∗

N2 . It
outputs the n+ 1 keys and the public parameters (N,H).
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• yu,τ ← JL.Protect(pp, sku, τ, xu,τ ): This algorithm encrypts the private input xu,τ ∈
ZN for time period τ using secret key sku ∈ ZN2 . It outputs the cipher

yu,τ = (1 + xu,τN) ·H(τ)sku mod N2

.

• xτ ← JL.Agg(pp, sk0, τ, {yu,τ}u∈[1,n]): This algorithm aggregates the n ciphers
received at time period τ to obtain yτ =

∏n
1 yu,τ and decrypts the result

xτ =
n∑
1
xu,τ = H(τ)sk0 · yτ − 1

N
mod N

The JL scheme ensures Aggregator Obliviousness under the Decision Composite
Residuosity (DCR) assumption [Paillier, 1999] in the random oracle model and
assuming that each client encrypts only one value per time period [Joye, 2013].

4.2.2 Threshold Joye-Libert SA Scheme

In this section, we elaborate on a new variant of the Threshold JL scheme (TJL) [Man-
souri, 2022]. In the original TJL, clients assist the aggregator in recovering the inputs of
failed clients, which consist of the protected zero value encrypted under the failed client’s
individual key. This process allows for the computation of the final aggregate value.
The TJL proposed here is a slightly modified version that utilizes the same primitive but
instead of reconstructing the encrypted zero value for dropped clients, it reconstructs
the aggregated zero-value for online clients. This approach helps us remove the need for
defining an aggregation key in advance. Instead, an on-the-fly, per-round aggregation
key is built based on the actual online clients at the specific round.

TJL cannot directly use the standard Shamir Secret Sharing scheme (SS) [Shamir, 1979]
because sku is defined in Z∗

ϕ(N2) and ϕ(N2) is not known to the clients (see Section 3.1
[Mansouri, 2022]). Hence, the solution uses the Integer version of SS (ISS) [Rabin,
1998], which is defined over integers rather than in a field (see Section 3.2 [Mansouri,
2022]). Informally, ISS.Share is run to split the secret key sku into n shares while
ISS.Recon is called to recover the key given at least t shares.

The TJL scheme consists of the following PPT algorithms:

• (sk0, {sku}u∈[1,n], N,H) ← TJL.Setup(λ, σ): Given a security parameter λ, this
algorithm essentially calls the original JL.Setup(λ) and outputs the aggregator
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key, one secret key per client, and the public parameters. Additionally, it sets the
security parameter of the ISS scheme to σ.

• {(v, [∆sku]v)}∀v∈U ← TJL.SKShare(sku, t,U): Upon input of client u’s secret key
sku, this algorithm calls ISS.Share where the interval of the secret is ZN2 .

• yu,τ ← TJL.Protect(pp, sku, τ, xu,τ ): This algorithm primarily calls JL.Protect(pp,
sku, τ, xu,τ ) and outputs the ciphertext yu,τ .

• [y′
τ ]u ← TJL.ShareProtect(pp, {[∆skv]u}v∈Uon , τ): This algorithm protects a zero-

value using client u’s shares of all online clients secret keys (i.e. v ∈ Uon). It calls
JL.Protect(pp,−

∑
v∈Uon

[∆skv]u, τ, 0) and outputs [y′
τ ]u = H(τ)−

∑
v∈Uon

[∆skv ]u

mod N2.

• y′
τ ← TJL.ShareCombine({(u, [y′

τ ]u, n)}u∈Ushares
,Ushares, t): This algorithm com-

bines t-out-of-n protected shares of the protected zero-value for time period τ and
clients in Ushares ⊆ Uon such that |Ushares| ≥ t and ∆ = n!. It executes the Lagrange
interpolation on the exponent to get y′

τ =
∏

u∈Ushares

([y′
τ ]u)µu = H(τ)−∆2

∑
v∈Uon

skv

where the µu coefficients are defined in ISS.Recon.

• xτ ← TJL.Agg(pp, sk0, τ, {yu,τ}u∈Uon , y
′
τ ): Given the public parameters pp, the

aggregation key sk0 (set to 0), the individual ciphertexts of online clients (i.e.
u ∈ Uon), and the ciphertexts of the zero-value corresponding to the clients Uon,
this algorithm aggregates the ciphertexts for time period τ . It first multiplies the
inputs for all clients in Uon, raises them to the power of ∆2, and multiplies the
result with the ciphertext of the zero-value to get yτ = (

∏
u∈Uon

yu,τ )∆2 · y′
τ ·H(τ)sk0

mod N2. To decrypt the final result, the algorithm calculates xτ = yτ −1
N∆2 mod N .

The TJL scheme provides AO under the DCR assumption in the random oracle
model if the number of corrupted clients is strictly less than t [Mansouri, 2022].

4.3 Eagle in SyncFL

We present Eagle, a fault-tolerant SA solution in the context of a synchronous setting.
The design principles are the following: (1) The first aim is to not depend on dropped
clients/stragglers anymore and to consider online clients’ inputs only. We hence eliminate
the need for blinding masks as in existing SA solutions [Bonawitz, 2017a; Bell, 2020]
and significantly reduce the communication cost at the client side. (2) Instead of
reconstructing the actual model parameters (which are usually assumed to be numerous),
only one key is periodically reconstructed. Each client protects its private input using
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Parties: Server and selected clients in U (τ), such that |U (τ)| = n
Public Parameters: Generate the public parameters ppKA ← KA.Param(λ),
(⊥,⊥, N0, H0, σ)← TJL.Setup(λ) and (⊥,⊥, N1, H1)← JL.Setup(λ) s.t.
N0 ≥ 2 ·N1 + log2(n) and set pp = (ppKA, N0, N1, H0, H1, τ0, σ, t, n, d,R)
Prerequisites: Each client u ∈ U generates a key pair (cPKu , cSKu )← KA.gen(ppKA) and
registers cPKu to Server or to a PKI

Setup - Key Setup:

Client u ∈ U (τ): // Generate TJL key and secret
share

1. ∀v ∈ U (τ) \ {u}, cu,v ←
KA.agree(ppKA, cSKu , cPKv ). // Estab-
lish pairwise channel keys with each client

2. sku
R←− ZN2

0
. // Generate TJL secret key

3. {(v, [sku]v)}v∈U(τ) ←
TJL.SKShare(sku, t,U (τ)). // Gener-
ate t-out-of-n shares

4. ∀v ∈ U (τ) \ {u}, ϵu,v ←
AE.enc(cu,v, u || v || [sku]v). // En-
crypt each share with the corresponding
public key

5. Send {(u, v, ϵu,v)}v∈U(τ) to Server.

Server: // Collect encrypted shares of TJL keys and
forward them to destined clients

1. Collect {(u, v, ϵu,v)}v∈U(τ) .

2. ∀v ∈ U (τ) \ {u}, send {(u, v, ϵu,v)}u∈U(τ) .

Client u ∈ U (τ): // Decrypt the received shares

1. ∀v ∈ U (τ) \ {u}, [skv]u ←
AE.dec(cu,v, v || u || ϵv,u). // De-
crypt each share with the corresponding
public key

Online - Protection (step τ):

Client u ∈ U (τ): // Protect the private input using
JL key, the per-round JL secret key using TJL key,
and send them to the server

1. sku,τ
R←− ZN2

1
. // Generate the per-round

JL secret key

2. y⃗u,τ ← JL.Protect(pp, sku,τ , τ0, x⃗u,τ ). //
Protect private input x⃗u,τ ∈ ZdR using JL

3. ⟨sku,τ ⟩ ← TJL.Protect(pp, sku, τ, sku,τ ).
// Protect the per-round JL secret key
sku,τ ∈ ZN2

1
using TJL

4. Send y⃗u,τ and ⟨sku,τ ⟩ to Server.

Server: // If the number of online clients (U (τ)
on ⊆

U (τ)) is less than t, abort; otherwise, collect the
protected secret keys, the protected inputs, and
broadcast U (τ)

on to all clients

1. Collect {⟨sku,τ ⟩}∀u∈U(τ)
on

and {y⃗u,τ}∀u∈U(τ)
on

.

2. If |U (τ)
on | < t, abort; otherwise broadcast

U (τ)
on .

Online - Consistency Check (step τ): // See Figure 4
(Consistency Check) of [Bonawitz, 2017a] Online - Recon-
struction (step τ):

Client u ∈ U (τ)
on : // Compute the share of the per-round JL

server key, and send it to the server

1. [⟨sk′
0,τ ⟩]u ← TJL.ShareProtect(pp, {[skv]u}v∈U(τ)

on
, τ).

2. Send [⟨sk′
0,τ ⟩]u to Server.

Server:// If the number of honest clients (U (τ)
shares ⊆ U

(τ)
on )

is less than t abort; otherwise collect t shares, recon-
struct the per-round JL server key and complete the
aggregation

1. Collect {[⟨sk′
0,τ ⟩]u}u∈U(τ)

shares

.

2. If |U (τ)
shares| < t, abort; otherwise, proceed.

3. sk′
0,τ ← TJL.ShareCombine({[⟨sk′

0,τ ⟩]u}u∈U(τ)
shares

, t).
// Reconstruct the zero-scalar value of the online
clients

4. sk0,τ ← TJL.Agg(pp, 0, τ, {sku,τ}u∈U(τ)
on
, sk′

0,τ ).
// Reconstruct the per-round JL server key

5. x⃗τ ← JL.Agg(pp,−sk0,τ , τ0, {y⃗u,τ}u∈U(τ)
on

). //
Complete the aggregation

Figure 4.1.: Eagle in SyncFL.
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a freshly generated per-round JL key and this key is then protected with the TJL key.
Thanks to this approach, Eagle exhibits a quasi-linear computation cost at the client. The
solution is defined in two phases: the setup phase during which clients first register to the
server and receive their keying material, and the online phase during which aggregation
occurs.

Description

The protocol is depicted in Figure 4.1. It starts with the setup phase, where each FL
client first generates a pair of secret and public keys and transmits its public key to the
FL server who then broadcasts them to all FL clients together with the public parameters
pp. Delegating the public parameter generation to a TD is common in other existing
works1. At the Key Setup step, each client independently computes t out of n shares of
its secret key sku using TJL.SKShare. Subsequently, similar to FTSA [Mansouri, 2022],
these shares are one-by-one sent to the appropriate clients, via the server, through
authenticated encrypted (AE) channels. The online phase, is broken down into three
steps for each round:

(1) At the protection step, online clients generate one per-round JL secret key sku,τ that is
then used to protect their private input vectors x⃗u,τ using JL.Protect at round τ , such that
the protection with JL uses a fixed τ = τ0. This key is further protected using TJL.Protect
and all this information is sent to the FL server. The server gathers both the protected
inputs (vectors) and the protected per-round clients’ keys (scalars).

(2) The consistency check step is the same as for SecAgg [Bonawitz, 2017a].

(3) At the reconstruction step, the clients receive the list of the online clients U (τ)
on . Their

goal is to help compute/reconstruct the per-round aggregation key for the server in
order to have access to the actual sum of private inputs in plaintext. This aggregation
key basically consists of the sum of the per-round keys of online clients that will be
reconstructed with the collaboration of at least t online clients using TJL.ShareCombine.
Then, the actual model parameters x⃗τ can be computed using JL.Agg.

Security Analysis (Sketch)

We briefly analyse the security of Eagle by following the approach given in [Mansouri,
2022], hybrid security proof is provided in Appendix C.1.

1Note that the generation of public parameters pp depends on the existence of a TD. Nevertheless, there
exist methods in the decentralized setting [Nishide, 2011; Veugen, 2019; Chen, 2021].
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Parties: Server and all clients in U , such that |U| = ntot, and clients in the buffer Uon,
such that |Uon| = n
Public Parameters: Generate the public parameters ppKA ← KA.Param(λ) and
(⊥,⊥, N,H,⊥)← JL.Setup(λ) and set pp = (ppKA, N,H, τ0, t, ntot, d,Fp, R)
Prerequisites: Each client u ∈ U generates a key pair (cPKu , cSKu )← KA.gen(ppKA) and
registers cPKu to Server or to a PKI
Setup - Key Setup:

Client u ∈ U :

1. ∀v ∈ U \ {u}, cu,v ←
KA.agree(ppKA, cSKu , cPKv ). // Estab-
lish pairwise channel keys with each client

Online - Protection:

Client u: // Protect private input using JL key, secret
share per-client-round JL secret key

1. sku,τu

R←− ZN2 . // Generate JL secret key
for round τu

2. y⃗u,τu ← JL.Protect(pp, sku,τu , τ0, x⃗u,τu).
// Protect private input x⃗u,τu using JL key

3. {(v, [sku,τu ]v)}∀v∈U ←
SS.Share(sku,τu , t,U). // Generate
shares of the per-client JL secret key for
round τu

4. v ∈ U \ {u}, ϵu,v ←
AE.enc(cu,v, u || v || [sku,τu ]v). //
Encrypt each share with the corresponding
public key

5. Send y⃗u,τu and {(u, v, ϵu,v)}u∈U to Server.

Server: // If the number of clients is less than t,
abort; otherwise, collect protected inputs, en-
crypted shares of secret keys, forward encrypted
shares to destined clients and broadcast Uon

1. Collect {y⃗u,τu}u∈Uon and
{(u, v, ϵu,v)}u∈Uon .

2. If |Uon| < t, abort; otherwise, broadcast
Uon and ∀v ∈ Uon send {(u, v, ϵu,v)}u∈Uon .

Online - Consistency Check: // See Figure 4 (Consistency
Check) of [Bonawitz, 2017a]
Online - Reconstruction:

Client u: // Compute the share of the JL aggregation key

1. ∀v ∈ Uon \ {u}, [skv,τv ]u ←
AE.dec(cu,v, v || u || ϵv,u). // Decrypt
each share

2. [sk0]u ←
∑

∀v∈Uon
[skv,τv ]u. // Compute share

of per-round aggregation key

3. Send [sk0]u to Server.

Server: // If the number of honest clients is less than
t, abort; otherwise, collect t shares, reconstruct the
per-client-round JL server key and complete the aggre-
gation

1. Collect {[sk0]u}u∈Ushares
.

2. If |Ushares| < t, abort; otherwise, proceed.

3. sk0 ← SS.Recon({[sk0]v}v∈Ushares
, t). // Re-

construct JL aggregation key

4. x⃗ ← JL.Agg(pp,−sk0, τ0, {y⃗u,τu}u∈Uon). //
Compute aggregate value

Figure 4.2.: Owl in BAsyncFL.
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• In the honest-but-curious model, we assume that the server correctly follows the
protocol but can collude with (or corrupts) up to n− t clients. Let Ucorr be the set
of corrupted clients and C = Ucorr ∪ S where S represents the server. The view
of C is computationally indistinguishable from a simulated view if the number
of corrupted clients is less than the threshold t (i.e., |Ucorr| < t). Based on that,
the minimum number of honest clients t should be strictly larger than half of the
number of clients in the protocol (i.e., t > n

2 ). Hence the protocol can recover
from up to n

2 − 1 client failures. The security of the TJL ensures that parties in
C cannot distinguish the protected temporary JL key of an honest client ⟨sku,τ ⟩
from random values. It also ensures that if parties in C have access to at most t− 1
shares of sku (i.e., |Ucorr| < t), then, they cannot distinguish the shares held by
the honest clients from random values. Therefore, the view of parties in C at the
end of each FL round τ is computationally indistinguishable from a simulated view.
Thus, the server learns nothing more than the sum of the online clients’ inputs if
|U (τ)
on | ≥ |U (τ)

shares| ≥ t and hence AO is ensured.

• In the active model, S can additionally manipulate its inputs to the protocol. The
only messages S distributes, other than the clients’ public keys, are the protected
shares that are forwarded from and to the clients. S cannot modify the values of
these encrypted shares thanks to the underlying authenticated encryption scheme
AE. Therefore, S ’s power in the protocol is limited to not forwarding some of
the shares. This may make clients reach some false conclusions about the set of
online clients U (τ)

on . It is important to note that S can present different views to
different clients regarding their online/dropped status. This capability enables S to
easily acquire the individual temporary JL key sku,τ of a client u. More precisely, S
can convince a subset of honest clients that the set of online clients is U (τ)

on while
indicating to another subset that the online clients’ set is U (τ)′

on = U (τ)
on \ {u} (i.e.,

u is dropped). If this occurs, S can aggregate the protected inputs from U (τ)
on to

derive the per-round aggregation key skτ , and also aggregate inputs from U (τ)′
on

to derive sk′
τ , and then calculate sku,τ = skτ − sk′

τ . Considering the scenario
where S may collude with n − t corrupted clients, it can obtain n − t shares of
⟨skτ ⟩ and ⟨sk′

τ ⟩ and hence n− t shares of sku,τ . Furthermore, S has the ability to
convince t

2 honest clients that client u is online, and the other t
2 honest clients that

u is dropped, thereby collecting shares of y⃗τ and y⃗′
τ respectively. Hence, in total,

the server can learn a maximum number of n − t + t
2 shares of ⟨skτ ⟩ and ⟨sk′

τ ⟩.
Therefore, to prevent such attacks and still ensure AO, we additionally require that
n− t+ t

2 < t =⇒ t > 2n
3 . Hence the protocol can recover from up to n

3 − 1 client
failures in the active model.

To conclude, if the server operates under an honest-but-curious model, selecting t > n
2

ensures security. However, if the server actively manipulates protocol messages, the
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threshold should be set to t > 2n
3 . Additional details about the threat model and the

rationale behind these thresholds can be found in [Bonawitz, 2017a] (Sections 6.1 and
6.2). Note that we achieve the same threshold values as those in SecAgg [Bonawitz,
2017a] and FTSA [Mansouri, 2022].

• A new type of attack, called model inconsistency attack, launched by an active
aggregator is defined and studied in [Pasquini, 2022]. This attack consists of
a malicious server sending carefully crafted models to specific clients instead of
the actual global model parameters, with the aim of extracting private clients’
parameters. Eagle can easily prevent such attacks by adopting the same approach
proposed in [Pasquini, 2022]. In more details, using the hash of the global model
to set the server’s value τ0, which needs to be the same for all clients, allows to
overcome the aforementioned attack.

4.4 Owl in AsyncFL

In the asynchronous setting, we propose Owl, defined with a setup phase and an online
phase. As opposed to the case in SyncFL, in the context of AsyncFL, clients cannot be
expected to be synchronized with respect to the same round τ . Consequently, by design,
the TJL scheme cannot be used directly. To counter this problem, one common round τ0

is defined per client u and each client uses JL.Protect with its own per-round key sku,τu .
On the other hand, the FL server also defines its own round τ0 (which, in fact, never
changes) and is still able to aggregate all values thanks to the use of JL.Agg with τ0 to
get the per-round aggregate key and to further obtain the aggregate model.

Description

The protocol is depicted in Figure 4.2. It starts with the setup phase, similar to Eagle,
where each FL client generates a pair of secret and public keys and transmits its public
key to the FL server who then broadcasts it to all FL clients, together with the public
parameters pp. The online phase, consists of three steps:

(1) During the protection step, each online client u generates one JL secret key at round
τu, denoted as sku,τu . The client then computes n shares of this secret key such that any
t shares can reconstruct it, using the SS scheme. Subsequently, the private input x⃗u,τu

(vector) is protected using JL.Protect which takes as inputs sku,τu and a fixed τ0 defined
by the server. The server collects both the protected inputs and the encrypted shares of
the protection key from the online clients.
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(2) The consistency check step is the same as for SecAgg [Bonawitz, 2017a].

(3) At the reconstruction step, each client u receives the encrypted shares of each
other client’s protection key and computes the share of the server’s JL aggregation
key

∑
∀v∈Uon

[skv,τv ]u. This global share is forwarded to the server. The server should
receive at least t shares to reconstruct the aggregation key sk0. Finally, the server
aggregates the inputs of the online clients using JL.Agg.

Security Analysis (Sketch)

We briefly analyse the security of Owl by following the approach given in [Mansouri,
2022], hybrid security proof is provided in Appendix C.1.

• In the honest-but-curious model, the JL scheme ensures that the server together
with clients in C cannot distinguish protected inputs y⃗u,τu from random values.
Furthermore, the SS scheme ensures that if parties in C have access to less than
t − 1 shares of the client’s secret key sku,τu (i.e. |Ucorr| < t), then they cannot
distinguish the shares held by the honest clients from random values. Therefore,
the view of clients in C is computationally indistinguishable from a simulated view.
Thus, the server learns nothing more than the sum of the online clients’ inputs if
|U (τ)
on | ≥ |U (τ)

shares| ≥ t.

• When S is an active adversary, it can try to convince a subset of honest clients that
the set of online clients is Uon while indicating to another subset that the set of
online clients is U ′

on = Uon \ {u} for a client u. If this occurs, S can reconstruct sk0

and sk′
0 and then, it can compute sku,τu = sk0− sk′

0. Because we assume that there
are n− t corrupted clients, S can obtain n− t shares of sk0 and sk′

0 respectively.
Furthermore, S has the ability to convince t

2 honest clients that the client u is online,
and the other t

2 honest clients that u is dropped, thereby collecting shares of sk0 and
sk′

0 respectively. Therefore, to ensure AO, we require that n− t+ t
2 < t =⇒ t > 2n

3 .

To conclude, if S is honest-but-curious, selecting t > n
2 ensures security. However, if

S actively manipulates protocol messages, the threshold should be t > 2n
3 . We get the

same threshold values obtained in [So, 2022].

• As mentioned in [Pasquini, 2022], defenses against model inconsistency attacks
in AsyncFL settings are a difficult task and no one has yet proposed a potential
solution. Consequently, those attacks are out of scope for Owl.
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4.5 Related Work

Secure Aggregation for SyncFL

Bonawitz et al. [Bonawitz, 2017a] propose SecAgg, a fault-tolerant SA approach that
employs secure masking. Each pair of clients creates a shared mask through a key
agreement scheme and uses this mask to protect clients’ inputs. Additionally, before
this protection, clients also combine their input data with another blinding mask. The
purpose of this blinding mask is to prevent any active, malicious server from discovering
one individual input at the reconstruction step. To address the potential issue of client
dropout, the protocol implements secret sharing: the clients secretly share their respective
shared masks and blinding masks. Then, the server computes the sum of the masked
inputs and further recovers the shared masks of the failed clients and the blinding
masks of the online clients, thereby completing the aggregation. Compared to SecAgg,
Eagle does not use any blinding mask and consequently is more efficient in terms of
computation and communication costs.

Mansouri et al. [Mansouri, 2022] develop a fault-tolerant SA solution called FTSA, which
uses the TJL scheme to protect client inputs and reconstruct the aggregate in case of
client failures, reducing the online communication rounds from 4 to 3 rounds compared
to SecAgg. To address the issue of potential client dropouts, the clients secretly share
their respective secret keys using the ISS scheme. Similar to SecAgg, FTSA also uses
blinding masks for clients’ inputs which once again increases the communication cost
compared to our protocol. Furthermore, FTSA cannot directly support client selection as
the non-selected clients would be considered as failed clients and this would significantly
increase the computation and communication overhead. Our solution instead only
depends on the number of online client.

Ma et al. [Ma, 2023] introduce Flamingo, a fault-tolerant SA protocol employing
secure masking. The authors construct connected graphs of clients (as opposed to
fully connected clients) such that the shared mask is created among the connected
clients. Flamingo introduces the concept of decryptors to help the server reconstruct the
aggregate, as opposed to distribute the reconstruction to all clients. Its functioning is as
follows: each pair of connected clients generates a shared seed through key agreement
and creates a shared pairwise mask using a Pseudo-Random Function (PRF). Moreover, a
blinding mask is created. To address the potential issue of client dropout, the protocol
implements Threshold ElGamal asymmetric encryption (TEG). In Flamingo, clients
encrypt the pairwise mask using TEG, while the blinding mask is secretly shared with
the decryptors. If a client fails, the server asks the decryptors to reconstruct the pairwise
mask using the partial decryption of TEG. Otherwise, they reconstruct the blinded mask
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for the online clients. Consequently, Flamingo incurs three client-server trips. Similar
to previously explained protocols, the computational complexity increases with the use
of the blinding mask. Additionally, its complexity scales with the number of dropped
clients, impacting the number of connected clients in the sparse graph. Furthermore,
dropped clients have a negative impact during the reconstruction led by the decryptors,
as the more they drop, the more pairwise masks the decryptors and the server have to
reconstruct.

Bell et al. [Bell, 2020] enhance the scalability of SecAgg [Bonawitz, 2017a]. Their
method does not require the clients to secretly share secret keys with every other client
to ensure resilience against dropouts. Instead, the authors build connected graphs of
clients (as opposed to fully connected clients) in which SA is exclusively carried out
among the connected clients. We did not provide a detailed experimental comparison,
as [Ma, 2023] already demonstrated that [Bell, 2020] requires 6 online communication
rounds compared to 3 for Flamingo and Eagle.

Several protocols provide slight improvements either on the computation cost [Kadhe,
2020] or on the communication cost [So, 2021]. We do not extensively compare Eagle
with these solutions, mainly because they do not offer the same privacy guarantees.

A recent work [Li, 2023] proposes a SA method, called Lerna, for a large number of
clients and which shows a similar DCR construction to Eagle. However, their work
focuses only on a large number of clients, without considering dropped clients/stragglers
and AsyncFL settings. Therefore, we choose to not include Lerna in our comparisons.

Secure Aggregation for AsyncFL

So et al. [So, 2022] propose a SA method, called LightSecAgg, that is designed to be
compatible with AsyncFL and is the closest solution to Owl. In LightSecAgg, each client
independently generates a random mask which is further secretly shared (using Lagrange
code computing [Yu, 2018]) among other clients. At the protection step, each client
adds the mask to protect its local model and sends the masked model to the server. At
the reconstruction step, the server can reconstruct and cancel out the aggregated masks
of the online clients through one-shot decoding. This decoding is performed using the
aggregated shared masks received in a second round of communication. Owl offers
better scalability mainly because, instead of secretly sharing the random mask, it only
requires the secret sharing of a single value, the client’s JL secret key. This optimization
significantly reduces both the runtime and communication costs associated with the
protocol.
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Other protocols, such as FedBuff [Nguyen, 2022], rely on the use of a Trusted Execu-
tion Environment (TEE). While such solutions may be more efficient, such a memory-
constrained technology cannot be assumed available in all FL settings.

4.6 Complexity Analysis

4.6.1 Eagle

We evaluate the computation and communication costs of Eagle and we compare them
with SecAgg [Bonawitz, 2017a] and FTSA [Mansouri, 2022]. Table 4.1 on page 45
summarizes this study. Note that our analysis considers the size of the secret shares since
this metric has a non-negligible impact on the reconstruction step.

• Client computation: Firstly, at the protection step, the client protects its d-size input
x⃗u,τ which results in a cost worth O(d). Then, at the reconstruction step, the client
executes TJL.ShareProtect which consists of: (i) computing the sum of the secret
shares of online clients which requires a computational cost of O(n) as opposed
to O(n2) for FTSA and SecAgg, mainly because both the latter compute the secret
shares of the blinding mask; (ii) protecting the zero-scalar value using this sum
of secret shares through ISS, and hence incurring an overhead of O(n log(n)), as
opposed to O(n log(n)d) for FTSA. Thus, the overall computation cost for this step
is O(n log(n) + d), which is a quasi-linear complexity.

• Client communication: There are two communication rounds. Firstly, at the protec-
tion step, the client sends its protected input y⃗u,τ to the server, which has a size
of O(d). Then, at the reconstruction step, the client receives the information on
other online clients which is of size O(n), and sends one zero-scalar value protected
with the combination of their shares, namely sk′

0,τ , to the server, which has a
constant size O(1). Hence, the communication cost at the client is O(n+ d) which
is asymptotically the same as FTSA and SecAgg. Nevertheless, in FTSA, during
the reconstruction step, a zero-vector value is sent which has the same size as of
the protected input, that is O(d). When client dropouts occur, our solution would
outperform FTSA mainly because Eagle does not depend on the number of client
failures. This is also experimentally studied and evaluated in Section 4.7.

• Server computation: The server performs two main operations: (i) at the recon-
struction step, it reconstructs the protected zero-scalar value sk′

0,τ from the t shares
of the online clients, requiring a computation cost of O(n2 + n) (from Lagrange
coefficients); (ii) the server aggregates the protected values and unmasks the result,
which requires a computation cost of O(nd). The overall cost is the same as in
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FTSA, worth O(n2 +nd). As at the clients, the computation cost at the server is not
impacted by dropouts. On the other side, in FTSA and SecAgg, the server needs
to reconstruct the blinding masks of dropped clients. In particular, in FTSA, the
computation of the protected zero-vector value of the dropped clients incurs a cost
of O(n2 + nd), and in SecAgg, the masks of the dropped clients are reconstructed
with a complexity O(n2d). This is also experimentally studied and evaluated in
Section 4.7.

• Server communication: Similar to SecAgg and FTSA, since the message exchanges
in the protocol only occur between the server and the clients, the server’s commu-
nication cost is equal to n times each client’s communication cost.

Flamingo [Ma, 2023] Eagle

Client Comp. Regular client: O(k2 + ad) Regular client: O(d)
Decryptor: O(δan+ (1− δ)n) Decryptor: O((1− δ)n+ k log k)

Client Comm. Regular client: O(a+ k + d) Regular client: O(d)
Decryptor: O(δan+ (1− δ)n) Decryptor: O(n)

Table 4.2.: Complexity analysis for one SyncFL round with decryptors (n: number of clients, d:
input dimension; k: number of decryptors; δ: dropout rate; a: upper bound on the
number of neighbors per client).

4.6.2 Eagle with decryptors

We conduct a comparative complexity analysis of Eagle when decryptors are in-
volved, and compare the online phase against Flamingo [Ma, 2023]. We distinguish
regular clients (who contribute to the global model) from decryptors (who help the
server obtain this global model). Let the dimension of the model be d, the dropout
rate be δ, the number of neighbors for a given client be a, the number of decryptors
be k and the number of regular clients be n. Note that the number of neighbors
a is determined by the dropout rate δ, as shown in [Ma, 2023] (see Appendix C).
The results are summarized in Table 4.2.

• Client Computation: For regular clients in Eagle, the primary computational cost
is attributed to the protection step, worth O(d). In the case of Flamingo, the
protection cost is O(ad). This cost involves the secret sharing of the blinding mask
with k decryptors, incurring an expense of O(k2), and the TEG encryption of the
pairwise masks worth O(a).

For decryptors in Eagle, the computational requirements resemble those without
decryptors, with the different being the size of the TJL secret key share, which
is k log k. Consequently, the cost associated with protecting the zero-scalar value
becomes O(k log k), resulting in a total cost of O(n + k log k). In the context of
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Flamingo, the overhead incurred by decryptors is proportional to the fraction
of dropped clients δ, since decryptors partially decrypt δan TEG ciphertexts and
decrypt (1− δ)n secret shares.

• Client Communication: For regular clients in Eagle, the communication cost worth
O(d) depends on the protected input size d. In the case of Flamingo, in addition to
the protected input, the communication also involves sending a TEG ciphertexts
and k encrypted secret shares of the blinding mask.

For decryptors in Eagle, the only required information is the set of online clients,
which has to be reconstructed, incurring a cost of O((1 − δ)n). In the context of
Flamingo, the decryptors receive from the server δan TEG ciphertexts and (1− δ)n
encrypted blinding masks, costing O(δan+ (1− δ)n).

• Server Computation: During the reconstruction step in Eagle, the server reconstructs
the protected zero-scalar value using t shares from the decryptors, requiring a
computational cost of O(k2 + k) (due to Lagrange coefficients’ computation).
Subsequently, the server aggregates the protected values and unmasks the result,
which requires a computational cost of O(nd).

In Flamingo, the reconstruction step requires the cost of the Lagrange coefficients’
computation, worth O(k2), in addition to the reconstruction of (1− δ)n blinding
masks, incurring a cost of O((1− δ)nk). The reconstruction of the pairwise masks
implies a cost of O(δank), and then the aggregation and unmasking cost O(k2 +
δank + (1− δ)nk + nd).

• Server Communication: In both protocols, the communication cost is equal to n
times the client’s communication cost.

4.6.3 Owl

We evaluate our protocol Owl tailored for AsyncFL and compare its costs with Light-
SecAgg [So, 2022]. Table 4.1 on page 45 summarizes our study and shows that our
solution outperforms LightSecAgg. We set the complexity of polynomial evaluation and
interpolation as O(n2) for all solutions. Note that this complexity can be reduced to
O(n logn) as pointed out in [So, 2022] and acknowledged in [Shamir, 1979].

• Client computation: At the protection step, the client generates t out of n shares of
the secret key sku,τu , which requires a computation cost of O(n2). Also, the client
protects its message x⃗u,τu using the secret key sku,τu , which requires a computation
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cost of O(d). Finally, at reconstruction step, the client computes the sum of the
secret key shares of other online clients, which requires a computation cost of O(n).
This cost is better than in LightSecAgg , which is O(n2 d

(1−δ)n−t + d), mainly due to
their underlying encoding [Yu, 2018].

• Client communication: At the protection step, the client sends O(n) shares of its
secret key sku,τu and receives O(n) shares in return. The client further sends
the encrypted input y⃗u,τu to the server, which is of size O(d). Finally, at the
reconstruction step, the client sends its share of the server’s secret key [sk0]u which
has a size of O(1). The total cost, worth O(n+ d), is better than O(n d

(1−δ)n−t + d)
from LightSecAgg.

• Server computation: At the reconstruction step, the server constructs the server key
sk0 from its t shares, which requires a computation cost of O(n2). Additionally, the
server aggregates the ciphertexts received from each client and unmasks the result,
which requires a computation cost of O(nd).

• Server communication: Similar to Eagle, since the message exchanges in the
protocol only occur between the server and the clients, the server’s communication
cost is equal to n times each client’s communication cost.

4.7 Experimental Study

We also conduct an experimental study of the performance of Eagle and Owl, with
respect to the number of selected clients and buffer size respectively, the size of the
machine learning model, while considering realistic dropout rates and over selection.
We also study use cases of training a machine learning model for MNIST, CIFAR-10 and
Shakespeare datasets.

4.7.1 Experimental Setting

Figure 4.3.: Computation and communication costs (sent/received) per client during the setup
phase of Eagle and Owl.
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All our implementations use the Python programming language2. Experiments were
carried out on a single-threaded process, using a machine equipped with an Intel(R)
Core(TM) i7-7800X CPU @ 3.50GHz processor and 126 GB of RAM. For the sake of fair
comparison, our solutions along with SecAgg, FTSA, Flamingo, and LightSecAgg are
implemented using the same building blocks and libraries mentioned in [Mansouri, 2022]
(see Appendix C).

We consider different settings that simulate realistic environments. The number of
selected SyncFL clients and the size of the AsyncFL buffer is set to n = {512, 1024},
and the model size is d = {105, 106}. Similar to previous works, the client dropout and
over-selection rates are set to δ = {0.0, 0.1, 0.3}, and the chosen threshold to t = 2n

3 . We
assume that client dropouts happen before the clients send their protected inputs. This is
essentially the “worst dropout case”, since the server must perform an expensive recovery
computation to correctly compute the aggregate. Regarding the packing technique, we
adopt the vector encoding approach proposed by [Mansouri, 2022].

We measure the execution time (i.e. computation cost) and the bandwidth (i.e. com-
munication cost) at both the client and the server sides. The values shown for each
experiment are the result of an average of measurements from 5 independent executions.
We report performance results of the the setup phase in Figure 4.3. Below, we detail the
performance results of the online phase below.

4.7.2 Eagle

We evaluate the performance of Eagle by first comparing it with SecAgg and FTSA since
these three solutions have similar settings. Since Flamingo considers the involvement
of some decryptors who help reconstruct clients’ material (see Section 4.6.2), we con-
duct additional experiments that simulate these decryptors for Eagle and enable a fair
comparison with Flamingo.

4.7.3 Eagle vs. SecAgg and FTSA

Table 4.3 depicts the running time of one FL client as well as the total data transfer for
various realistic settings. As expected, we observe that the best running time is obtained
with Eagle, which is independent of the dropout rates. While there is a significant
difference with SecAgg due to its strong dependence on the number of clients n, it is
lighter in the case of FTSA when there is no dropout, since Eagle does not require any
sharing of blinding masks. Even if only one client drops, the running time at the client

2The code of the paper can be found at: GitHub repository.
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N. Clients Dim. Drop. Client Server
Wall-clock running time (s) Total data transfer (sent/received) (MB) Wall-clock running time (s)
SecAgg FTSA Eagle SecAgg FTSA Eagle SecAgg FTSA Eagle

512

105

0.0 35.32 7.81 7.15 0.49 0.71 0.64 496.12 52.08 18.08
0.1 35.39 48.77 7.14 0.49 1.35 0.64 2167.81 6516.23 17.61
0.3 35.48 48.79 7.13 0.49 1.34 0.64 5527.75 5020.67 16.81

106

0.0 336.23 72.99 70.86 3.30 6.47 6.40 2376.32 390.31 120.21
0.1 336.91 404.82* 71.11 3.30 12.87* 6.40 19994.62 > 7d. 116.59
0.3 340.87 403.86* 70.71 3.30 12.87* 6.40 52499.26 > 7d. 107.28

1024

105

0.0 73.02 8.90 7.55 0.67 0.79 0.66 2904.75 187.34 45.94
0.1 72.67 94.21 7.36 0.67 1.45 0.66 9449.02 29534.22 45.03
0.3 72.61 93.79 7.40 0.68 1.43 0.66 22853.70 23470.55 43.08

106

0.0 667.20* 75.46 72.75 3.60* 6.70 6.57 > 7d. 861.19 193.16
0.1 655.43* 739.85* 72.81 3.60* 13.20* 6.57 > 7d. > 7d. 185.30
0.3 658.34* 743.77* 72.49 3.60* 13.20* 6.57 > 7d. > 7d. 164.72

Table 4.3.: Computation and communication costs per client and computation costs for the
server, for one SyncFL round. Comparison with SecAgg and FTSA. Values highlighted
with "*" are the result of an estimation since the underlying experiments took more
than seven days and hence were aborted.

in FTSA increases significantly because the reconstruction of dropped clients’ inputs is
performed over all model parameters and not over a key such as in Eagle (see Section
4.6). When n = 1024, d = 106 and δ = 0.1, Eagle is approximately 10× faster than the
two other solutions. Regarding the communication cost, when dealing with large client
inputs, SecAgg exhibits the best communication cost, as also identified in [Mansouri,
2022]. This is primarily because FTSA and Eagle use vector encoding, whereas SecAgg
implements secure masking. On the other hand, our protocol always shows better results
compared with FTSA. This is achieved thanks to the TJL protection of a scalar instead
of a vector. In conclusion, on the client’s side, we believe that Eagle shows its best
performance when dropouts would most probably happen.

We have also evaluated the computation cost of the FL server for one SyncFL round,
and depict the results in Table 4.3. We do not show the communication cost as this
would correspond to n times the communication cost of one FL client. We observe that
the running time of the FL server in SecAgg and FTSA increases with the dropout rate,
while this trend is reversed when it comes to Eagle. The reason behind this performance
comes from the fact that the number of online clients decreases, and consequently the
aggregation time, when the dropout rate increases.

4.7.4 Eagle vs. Flamingo

To compare the performance of Eagle with Flamingo, we have emulated Flamingo’s
environment and re-implemented Eagle accordingly. As detailed in Section 4.5, Flamingo
employs a pairwise masking scheme built upon the creation of a random sparse graph and
introduces k decryptors, which correspond to special clients helping the server reconstruct
the aggregate. We incorporate the concept of decryptors in Eagle by involving them
during the reconstruction phase. Accordingly, the threshold value t is set to 2

3k. We have
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N. Clients Dim. Drop. Regular client / Decryptor Server
Wall-clock running time (s) Total data transfer (sent/received) (MB) Wall-clock running time (s)
Flamingo Eagle Flamingo Eagle Flamingo Eagle

512

105

0.0 0.30 / 0.06 7.13 / 0.02 0.31 / 0.04 0.64 / 0.01 239.91 11.47
0.1 6.44 / 3.67 7.14 / 0.02 0.31 / 0.38 0.64 / 0.01 742.09 11.00
0.3 15.53 / 20.33 7.09 / 0.02 0.31 / 1.95 0.64 / 0.01 2936.63 10.15

106

0.0 2.50 / 0.11 70.57 / 0.02 3.12 / 0.04 0.64 / 0.01 2049.78 113.83
0.1 64.78 / 3.84 70.65 / 0.02 3.12 / 0.38 0.64 / 0.01 4799.36 109.76
0.3 156.50 / 20.69 70.93 / 0.02 3.12 / 1.95 0.64 / 0.01 18720.37 101.48

1024

105

0.0 0.07 / 0.13 7.33 / 0.02 0.33 / 0.08 0.64 / 0.01 66.12 16.38
0.1 12.13 / 14.90 7.30 / 0.02 0.33 / 1.44 0.64 / 0.01 1807.76 15.48
0.3 28.54 / 79.57 7.41 / 0.02 0.33 / 7.49 0.64 / 0.01 10381.25 13.54

106

0.0 4.38 / 0.35 72.46 / 0.02 3.25 / 0.08 0.64 / 0.01 683.48 163.41
0.1 129.91 / 14.94 72.44 / 0.02 3.25 / 0.08 0.64 / 0.01 12703.08 154.31
0.3 300.20 / 78.74 72.26 / 0.02 3.25 / 7.46 0.64 / 0.01 75420.51 135.11

Table 4.4.: Computation and communication costs per regular client and decryptor, and compu-
tation costs for the server, for one SyncFL round. Comparison with Flamingo with a
number of decryptors set to 60.

conducted similar experiments as above, with the addition of the value k = 60 as in
[Ma, 2023].

Table 4.4 shows our experimental results for regular clients, decryptors and server. As
expected, Flamingo is the preferred choice when the dropout rate is null. However, as
the dropout rate increases (δ ≥ 0.1), Flamingo becomes more costly in terms of regular
client computation. This is mainly due to the increasing number of the clients’ neighbors,
as detailed in Section 4.6.2. On the other hand, Flamingo is always better in term of
communication since its plaintext space is smaller than Eagle. Regarding decryptors,
Eagle is consistently better for both computation and communication, primarily due to
the costly reconstruction operations for the pairwise masks in Flamingo. To summarize,
Eagle shows its best performance with n = 1024, d = 105 and a dropout rate exceeding
δ = 0.1 when compared with Flamingo. Specifically, Eagle is ×4 better for computation
and ×3 better for communication in the aforementioned scenario.

4.7.5 Owl

We also run the previously described experiments for Owl and LightSecAgg [So, 2022]
in the asynchronous setting. In Table 4.5, we report the wall-clock time and size of the
data transferred within a single FL round, for one FL client and one FL server respectively.
Firstly, we observe that Owl always exhibits better computation time, as already identified
in the asymptotic analysis (see Section 4.6.3). In LightSecAgg, the computation time
increases with the dropout rate, mainly because the reconstruction step is conducted
by fewer online clients. Furthermore, the computation and communication costs of
LightSecAgg, with a model size larger than 105 and a buffer size larger than 512, could
not be measured as the execution took more than seven days. To conclude, Owl exhibits
the best performance in AsyncFL.
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N. Clients Dim. Drop. Client Server
Wall-clock running time Total data transfer (sent/received) (MB) Wall-clock running time
LightSecAgg Owl LightSecAgg Owl LightSecAgg Owl

512

105

0.0 > 7d 7.72s − 0.96 > 7d 12.85s
0.1 > 7d 7.66s − 0.96 > 7d 12.13s
0.3 > 7d 7.78s − 0.96 > 7d 10.77s

106

0.0 > 7d 71.28s − 6.72 > 7d 116.60s
0.1 > 7d 72.00s − 6.72 > 7d 111.80s
0.3 > 7d 71.60s − 6.72 > 7d 102.58s

1024

105

0.0 > 7d 12.88s − 1.31 > 7d 22.29s
0.1 > 7d 9.48s − 1.30 > 7d 20.31s
0.3 > 7d 9.46s − 1.30 > 7d 16.65s

106

0.0 > 7d 74.76s − 7.21 > 7d 171.74s
0.1 > 7d 75.12s − 7.21 > 7d 159.11s
0.3 > 7d 74.50s − 7.21 > 7d 137.53s

Table 4.5.: Computation and communication costs per client and computation costs for the
server, for one AsyncFL round. Comparison with LightSecAgg. "> 7d" denotes
experiments with an overall execution taking more than seven days.

Realistic Use Cases

Figure 4.4.: FL training simulation of Eagle, SecAgg and FTSA (δ is the dropout rate).

Figure 4.5.: FL training simulation of Eagle and Flamingo with 60 decryptors (δ is the dropout
rate).

In Figures 4.4 and 4.5, we report the results of experiments conducted on three FL
tasks, namely MNIST [LeCun, 1998] (d = 61k parameters, 0.99 accuracy), CIFAR-10
[Krizhevsky, 2014] (d = 270k parameters, 0.83 accuracy), and Shakespeare [Caldas,
2018] (d = 819k parameters, 0.56 accuracy). We consider a first scenario without client
failure and another scenario with client failure with a dropout rate set to 30%. We first
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compare Eagle against SecAgg and FTSA. When decryptors are available, we compare
Eagle against Flamingo. Neural network training is performed using Python in PyTorch
framework [Paszke, 2019] without GPU acceleration. For each online communication
round, we consider a timeout of 10 seconds as in [Ma, 2023]. We set n = 400 and use
SGD as the training algorithm with learning rate η, number T of FL rounds, batch size B,
number E of epochs, and number S of samples. More precisely: (i) for MNIST: T = 300,
η = 0.1, B = 32, E = 5 and S = 150; (ii) for CIFAR-10: T = 300, η = 0.1, B = 8, E = 4
and S = 125; (iii) for Shakespeare: T = 60, η = 0.3, B = 8, E = 1 and S = 2000. Model
parameter updates are converted to 8-bit fixed point values by applying 8-bit probabilistic
quantization with 7 fractional bits [Konečnỳ, 2016]. The results show that in all three
datasets, with a dropout rate δ = 0.3, Eagle always outperforms previous works in terms
of total computation.

4.8 Conclusion

We have studied the problem of stragglers in FL, which have a non-negligible impact
on the performance and robustness of SA protocols. To cope with this problem, we
have considered stragglers as client dropouts and developed two new SA protocols,
namely Eagle and Owl. Eagle in SyncFL does not depend on dropouts anymore, and
hence is more efficient than existing works, especially when the number stragglers is
non-negligible. Owl in AsyncFL does not suffer from stragglers inherently, and is thus
more efficient than the only existing solution in asynchronous settings.

As part of future work, we aim to optimize the cost of Owl and to consider stronger
threat models whereby both FL clients and the server can be malicious and modify the
actual aggregate model. In such a setting, honest FL clients should be able to verify the
correctness of the computation of the aggregate value.

Acknowledgments

We thank the ARES reviewers for their comments. We also thank Mohamed Mansouri
for his help with FTSA, Yiping Ma for his assistance with Flamingo, and Lucia Innocenti
for the helpful discussions about client selection and dropouts. This work has been
supported by the French government, through the 3IA Côte d’Azur Investments in the
Future project managed by the National Research Agency (ANR) with the reference
number ANR-19-P3IA-0002, by the TRAIN project ANR-22-FAI1-0003-02, and by the
ANR JCJC project Fed-BioMed 19-CE45-0006-01.

4.8 Conclusion 65





5Buffalo: A Practical Secure
Aggregation Protocol for
Asynchronous Federated Learning

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Synchronous Federated Learning . . . . . . . . . . . . . . . . 72

5.3.2 Buffered Asynchronous Federated Learning . . . . . . . . . . . 73

5.3.3 SA Threat Model and Security. . . . . . . . . . . . . . . . . . . 75

5.4 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Joye-Libert SA . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 LWE-based SA . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Aggregation Verifiability . . . . . . . . . . . . . . . . . . . . . 77

5.5 Our protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1 Buffalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.2 Buffalo+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7.1 Overall performance of BAsyncFL schemes . . . . . . . . . . . 90

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

In this chapter, we introduce a pioneering approach to Secure Aggregation (SA) in
the context of Buffered Asynchronous Federated Learning (BAsyncFL), a paradigm that
has revolutionized the collaborative training of Machine Learning (ML) models while
preserving data privacy. Traditional synchronous FL methods face challenges due to
stragglers, or slow clients, which delay the training process. BAsyncFL addresses these
inefficiencies by allowing clients to update the global model as they complete their local
computations, thereby eliminating synchronization constraints. However, existing SA
techniques, which enable servers to aggregate client updates without learning individual
updates and thus prevent inference attacks, are not easily applicable to asynchronous
settings due to their need for synchronized rounds.
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To bridge this gap, we present Buffalo, the first practical SA protocol specifically de-
signed for BAsyncFL. Buffalo utilizes lattice-based encryption to manage the scalability
challenges associated with large ML models and introduces a novel role, the decryptor, to
assist the server in the aggregation phase. To further enhance client trust and ensure the
integrity of the aggregation process, we propose Buffalo+, an extension of Buffalo that
incorporates verifiable SA. This extension allows clients to verify that their updates have
been accurately included in the global model.

Our comprehensive evaluation, encompassing both theoretical analysis and experimental
validation on real-world datasets, demonstrates the efficiency and practicality of our
protocols. Both Buffalo and Buffalo+ significantly enhance client computation efficiency
and ensure robust, scalable SA in BAsyncFL environments.

This chapter is currently under review.

5.1 Introduction

Cross-device Federated Learning (FL) [McMahan, 2017a] has rapidly emerged as a
dominant paradigm for collaboratively training Machine Learning (ML) models while
maintaining the privacy of individual data. In the traditional Synchronous FL (SyncFL)
framework, a central server initializes the global model and sends these parameters to
a pre-selected subset of clients. These selected clients optimize the model parameters
using their local data and transmit their updates to the server for aggregation, which
typically consists of weighted averaging. The same process is repeated through several
rounds until the model reaches a certain level of accuracy.

However, sharing local model parameters introduces vulnerabilities that can inadvertently
expose sensitive client data to risks such as membership inference or model inversion
attacks [Shokri, 2017; Nasr, 2019]. To mitigate these risks, Secure Aggregation (SA)
techniques have been proposed [Mansouri, 2023; Bell, 2020; Bell, 2023; Ma, 2023;
Mansouri, 2022], which protect client updates prior to transmission.

Despite its advantages, FL faces challenges due to the heterogeneity of the clients involved,
differing significantly in storage, communication, and computation capabilities. Notably,
the presence of stragglers, i.e. slower participating clients, can severely delay the training
rounds, especially in traditional FL frameworks which assume that FL clients are strongly
synchronized with the server. Such a delay can adversely affect the overall performance
of the FL system [Bonawitz, 2019a; Nguyen, 2022].
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One strategy to manage stragglers in a SyncFL environment is the over-selection of
clients [Bonawitz, 2019a]. This approach involves selecting a larger subset of clients than
necessary in anticipation that some will not complete their tasks promptly. However, this
method can lead to inefficiencies, as slow clients that have locally trained the model might
not be included in the updated global model, leading to wasted computational resources
and potential loss of diverse data contributions. Additionally, it significantly affects SA
since non-selected clients are treated as dropped, increasing protocol complexities.

Asynchronous Federated Learning (AsyncFL) frameworks, as described by [Xie, 2019],
address inefficiencies by processing client updates as they arrive, thus eliminating the
need for synchronized rounds. However, in pure asynchronous FL methods, each client
update results in an immediate server model update. This approach poses challenges
for privacy, as traditional SA techniques become inadequate. SA relies on aggregating
multiple updates to protect individual contributions, which is not possible in a pure
asynchronous setting where updates are processed individually.

To address these issues, a compatible privacy-preserving asynchronous framework has
been proposed: Buffered AsyncFL (BAsyncFL) [Nguyen, 2022], where a server collects
local inputs in a buffer and updates the global model periodically, i.e., every time
the buffer is full. Nonetheless, existing SA solutions typically assume a synchronous
environment, necessitating prior knowledge by clients of their participation, complicating
their direct application to BAsyncFL.

Our contributions in this paper include:

• We introduce Buffalo, the first practical SA protocol designed specifically for BAsyncFL.
Buffalo employs lattice-based encryption, coupled with homomorphic encryption on keys
rather than on models, to address scalability issues related to the dimensions of machine
learning models. We also introduce a new role, the decryptor, to assist the server during
the aggregation phase. Clients generate on-the-fly keys for their updates, and decryptors
help the server reconstruct these keys, making the process asynchronous and avoiding
synchronization issues. This ensures efficient and secure aggregation without requiring
synchronized rounds.

• To further incentivize client participation and ensure that clients’ local computations
are considered for aggregation, we propose Buffalo+, an asynchronous verifiable SA
protocol. Buffalo+ allows clients to verify that the server has correctly included their
updates in the aggregation process, ensuring trust in the distributed training.

• Evaluating our protocols and comparing them with existing solutions adapted to
BAsyncFL in real asynchronous simulations, using benchmark datasets and a novel
medical dataset [Aleppo, 2017]. Our evaluations include both theoretical and experi-
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mental validations of our protocols across three real datasets. Our results showcase the
practicality and effectiveness of our solutions, particularly in medical applications.

(a) SyncFL

(b) BAsyncFL

Figure 5.1.: Illustrations of SyncFL (a) and BAsyncFL (b). SyncFL: (1) The server randomly
selects two clients, here clients 1 and 3; (2) The selected clients locally train and
produce updated local models x⃗1,τ and x⃗3,τ resp.; (3) The server aggregates these
local models. BAsyncFL: (1) All available clients start local training asynchronously
such that clients 1 and 3 are the fastest and thus send their updated local models
x⃗1,τ1 and x⃗3,τ3 resp., to fill the buffer on the server; (2) The server aggregates the
received local models.

5.2 Related work

SA for FL- SA for FL faces challenges with client dropouts and failures. Bonawitz et al.
[Bonawitz, 2017a] introduced SecAgg, the first single-server SA protocol, using Shamir’s
secret sharing and masking techniques. Subsequent enhancements include SecAgg+
[Bell, 2020] and ACORN [Bell, 2023] utilizing sparse graphs and lattice-based masking.
Stevens et al. [Stevens, 2022] proposed DPSecAgg, a scheme that replaces standard
masking with lattice-based masking and employs a packed version of secret sharing over
the lattice-based mask. Similarly, So et al. [So, 2022] developed LightSecAgg, which
utilizes packed Shamir secret sharing techniques over inputs.

Recent works have also aimed to reduce the number of communication rounds required
in the protocol and eliminate the need for a trusted third party in actively secure
models. Protocols such as Flamingo [Ma, 2023] and LERNA [Li, 2023] introduce special
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roles, called decryptor and member committees respectively, to aid the server during the
aggregation process.

There are also solutions with two or more non-colluding servers to achieve distributed
trust and privacy preservation [Addanki, 2022; Corrigan-Gibbs, 2017; Rathee, 2023].
A promising approach named ELSA [Rathee, 2023] leverages two servers to aggregate
vectors. Their scheme can withstand model poisoning attacks by detecting and filtering
out boosted gradients. In our work, we consider only solutions with a single server.

Buffered Asynchronous SA- Existing solutions, such as SecAgg, SecAgg+, ACORN, Flamingo
and LERNA [Bonawitz, 2017a; Bell, 2020; Bell, 2023; Ma, 2023; Li, 2023], share a
common characteristic: they operate within a synchronized FL framework. In this setting,
each selected client submits its updated model or data in alignment with a synchronized
FL round. This synchronization typically relies on information shared among the selected
clients or utilizes round-specific information.

In contrast, LightSecAgg demonstrates that it can adapt to BAsyncFL settings. However,
this solution requires involvement from the entire FL client population, leading to high
computational complexity and communication overhead. DPSecAgg [Stevens, 2022],
while not originally designed for BAsyncFL, shows adaptability to such settings, we
provide more details in Section 5.3.2.

Verifiable SA- SA protocols prevent a curious FL server from learning about the clients’
inputs but do not protect against a malicious server that might modify the aggregated
model and the users to verify the correct aggregate. The initial FL solution with verifiable
SA, introduced by Xu et al. [Xu, 2019], allows clients to verify the correctness of
aggregation through a proof generated by the server. However, the communication
overhead of this method, proportional to the model size, is impractical for large-scale FL
systems.

An alternative by Guo et al. [Guo, 2020] involves hashing clients’ local model updates
for verification but was later found to be insecure, and fixed in [Guo, 2022]. Subse-
quently, Buyukates et al. [Buyukates, 2022] introduced LightVeriFL, a more scalable
approach that utilizes elliptic curve-based secret sharing techniques, effectively reducing
both computation and communication costs, particularly in scenarios involving client
dropout.
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5.3 Background

In this section, we review both SyncFL and AsyncFL framwworks, along with SA tech-
niques. Notations can be found in Appendix D.1.

Setup: Server initializes the global model x⃗0, the empty buffer set UBUFF = ∅ and a set of
available clients U ′ = U
ServerAggregation(x⃗τ ,UBUFF,U ′)

Server repeats steps 1-4 until convergence criteria is
reached

1. Run ClientUpdate(x⃗τ ) on U ′ asyn-
chronously

2. If Client u’s input has been submitted:

Receive input x⃗u,τu ← from Client u

UBUFF ← UBUFF ∪ {u}
i← i+ 1

3. If i == n:

x⃗τ ←
∑
u∈UBUFF

x⃗u,τu

Reset buffer: UBUFF ← ∅, i← 0, τ ← τ+1
4. Set available clients U ′ = UBUFF

ClientUpdate(x⃗)

Client u ∈ U ′ proceeds as follows

1. Receive global model x⃗ from Server

2. y⃗u,0 ← x⃗

3. Perform local SGD updates: y⃗u,q =
LocalSGD(y⃗u,0, q, η)

4. Compute update difference: x⃗u,τu ← y⃗u,0−
y⃗u,q

5. Return x⃗u,τu to Server

Figure 5.2.: FedBuff Algorithm

5.3.1 Synchronous Federated Learning

As introduced by McMahan et al. [McMahan, 2017a], FL consists of a distributed ML
framework where a set U of clients (|U| = ntot) collaboratively trains a global model
x⃗ ∈ Rd under the guidance of a FL server, as reported in Figure 5.1a. One of the first and
popular methods used to train a FL model is FedAvg [McMahan, 2017a]. With FedAvg,
at each FL round τ , the server selects a subset U (τ) ⊆ U of clients (|U (τ)| = n ≤ ntot)
through client selection [McMahan, 2017a], Fig. 5.1a (1). Each client u ∈ U (τ) trains
the model x⃗u,τ on its private local data Du, for example through Stochastic Gradient
Descent (SGD) [Ruder, 2016], Fig. 5.1a (2), and forwards this updated model x⃗u,τ
to the server. When the server receives the updated models from all clients in U (τ), it
proceeds to the aggregation step, Fig. 5.1a (3), by computing the average of these models
and updating the round counter as follows: x⃗τ ← 1

n

∑
u∈U(τ) x⃗u,τ and τ ← τ + 1. This

iteration proceeds until the global model x⃗ exhibits some desired level of accuracy. This
approach to FL requires a Synchronous FL (SyncFL) setting whereby FL clients should
be synchronized and participate on a round-by-round basis. Usually, in such a setting,
ntot ∈ [106, 1010] and n ∈ [50, 5000] (see [Kairouz, 2019]).
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5.3.2 Buffered Asynchronous Federated Learning

SyncFL settings usually are slowed down by stragglers, i.e. slow clients [Nguyen, 2022]:
a FL round is completed only when all selected clients send their updated model (see
Figure5.1a). Hence, the impact of stragglers becomes significant especially when the set
of clients is system heterogeneous. To mitigate such a problem, some systems, like those
described by Bonawitz et al. [Bonawitz, 2019a], employ client over-selection, where the
size of the subset of selected clients is usually increased by 30% in order to reach the
actual sufficient number of model updates to run FedAvg. This means that to execute
FedAvg with 1000 client inputs, 1300 clients are selected, and the FL round concludes
whenever the server receives 1000 updates from the most rapid clients. Hence SyncFL
becomes straggler-resistant with a non-negligible cost of over-selection.

As an alternative, Buffered Asynchronous FL (BAsyncFL) is proposed to remove the need
for synchronization and hence avoid the effect of late arrivals (see Figure 5.1b). FedBuff
[Nguyen, 2022] is introduced as a buffered asynchronous framework whereby the FL
server collects local models received from clients in a buffer and updates the global model
whenever this buffer is full. As reported in Figure 5.2, each client u ∈ U ′ runs its local
round τu such that the local update is denoted as x⃗u,τu . Note that the training round is
specific to each client: for another client v ̸= u, τv ̸= τu. When the first n clients fill the
buffer UBUFF, the server computes the aggregation and resets the buffer. This process is
repeated until a convergence criterion is reached. In this setting, stragglers’ inputs are
still taken into account as they will eventually fill a future buffer.

Secure Aggregation

Many studies, such as [Nasr, 2019; Shokri, 2017], have shown that, although FL clients
train the model locally and keep their datasets Du private in their premises, model
updates that are shared with the FL server do leak information about the local datasets.
Hence, local model updates should also remain confidential even against the FL server.
As already shown in [Bonawitz, 2017a; Mansouri, 2022; Bell, 2020; Ma, 2023; Li, 2023],
the main solution to prevent such a leakage is the use of Secure Aggregation (SA) which
enables the FL server, named the aggregator, to compute the average of model updates,
i.e. the global model parameters, without having access to the clients’ individual updates.
In Figures 5.1a and 5.1b, we illustrate the processes of SA in SyncFL and AsyncFL
environments, respectively.
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Towards SA for BAsyncFL

In this paper, we investigate the design of SA protocols for the BAsync FL setting. An
initial study from [So, 2022] highlights the incompatibility of current SA protocols with
the BAsyncFL setting (see Appendix F.2 of [So, 2022] for more details). The authors
identify that this incompatibility stems from the fact that clients know in advance which
other clients are participating to the FL round, and protect their input accordingly. In
Figure 5.1a - step (1), two clients are selected by the server and thus protect their
local inputs based on this selection. In general, in SyncFL settings, the ntot clients in
U must learn who are the n clients selected for a given round τ . Moreover, in order to
overcome stragglers, over-selection is performed, meaning that n+ 0.3 · n clients have
been actually selected (when fixing over-selection at 30% as suggested above). Once this
knowledge has been acquired, each selected client submits their updated input using
some information specifically shared with other selected clients. Such a constraint comes
against the idea behind buffered asynchronicity where clients train and submit their
inputs at their own pace, without following what other clients are doing. In Figure 5.1b
- step (1), two clients have finished their training and simply submit their local inputs
to the server without noticing and requiring other clients. Therefore, to successfully
develop SA protocols for BAsync FL settings, we must overcome the above constraint by
avoiding clients requiring to know which other clients participate to the current round,
as proposed in [So, 2022].

Following the last remark, we identify two potential SA protocols that can be easily
transformed to be compatible with BASyncFL: LightSecAgg [So, 2022] and DPSecAgg
[Stevens, 2022]. Indeed, in both LightSecAgg and DPSecAgg, clients do not need to
know who is participating to the actual round τ . Nevertheless, those solutions have
been first designed for SyncFL, and thus assume that all ntot clients are online during
the aggregation phase. Indeed, clients secret share their inputs with all clients to enable
successful aggregation. This is due to the fact that clients are missing the information
related to client participation for a specific round. We recall that ntot >> n, hence
making such a design really inefficient. One way to overcome such a limitation is to
let the server provide this missing information to the clients, resulting into an extra
communication round. Another way to make LightSecAgg and DPSecAgg compatible in
BAsyncFL settings is to introduce several special clients that must remain online, called
decryptors, whose task is to help the server reconstruct the aggregation key and hence
the aggregate result.

Based on this last suggestion, we propose a new, more efficient SA protocol, called
Buffalo, suitable with the BASync setting. In Buffalo, the client’s input is first encrypted
using a lattice-based encryption scheme. The key used for the first encryption is further
protected using a second encryption scheme. Thanks to this additional encryption step, a
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scalar value, rather than a substantial vector value, needs to be secret shared and further
reconstructed as the first aggregation key. The server then obtains the second, lattice-
based, aggregation key from the first aggregation key to finally recover the aggregate
result.

Aggregation Verifiability

Furthermore, inspired by [Buyukates, 2022], we propose a second protocol, called
Buffalo+, that extends Buffalo by allowing clients to verify whether the actual aggregate
result is correct and takes their inputs into account. The solution follows the same
building block as in LightVeriFL [Buyukates, 2022], namely homomorphic hash functions,
digital signatures and commitments. Nevertheless, our solution reaches significant
performance improvements based on the observation that most of the client’s model
parameters from one round to another one remain unchanged. Consequently, in Buffalo+,
clients do not need to recompute the hash value of their entire updated input, but only
the hash value based on the modified parts of this new input compared to the previous
one. This way, the computation cost at the client is decreased significantly compared to
LightVeriFL.

5.3.3 SA Threat Model and Security.

Similar to the related work [Ma, 2023], we assume a static, malicious adversary that
corrupts the server and up to a fraction γ of the total number ntot of clients in the
system.

In Buffalo and Buffalo+, there are two types of clients in the system: regular clients that
provide their input to the server, and special clients, called decryptors, whose job is to
help the server recover the final result.

Contrary to existing fault-tolerant solutions which must consider dropouts both at client
and decryptor sides when elaborating their security proofs, our protocols only rely on
the availability of the decryptors. We distinguish between the fraction γn of corrupted
regular clients and the fraction γk of corrupted decryptors. In particular, we examine the
following types of decryptor failures: (i) honest decryptors that disconnect or are too
slow to respond as a result of unstable network conditions, power loss, etc; (ii) arbitrary
actions by an adversary that controls the server and a bounded fraction γ of clients. We
upper bound the number of decryptors that drop out in any given aggregation round
by the fraction δd. More details about the above examination are given in [Ma, 2023]
(Appendix A). Moreover, we explore attacks against the integrity of the aggregation
computation by embedding verifiability mechanisms in Buffalo+. Given a threshold t
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and the number k of decryptors in the system, we require in both Buffalo and Buffalo+
that the number of honest and alive decryptors has to be t > 2k

3 [Bonawitz, 2017a]. We
consider denial of services attacks as out of scope.

5.4 Building Blocks

In this section, we introduce the main cryptographic primitives utilized as foundational
elements in our two protocols. The remaining cryptographic primitives are presented in
Appendix D.2. Notations can be found in Appendix D.1.

Secure Aggregation

We are interested in SA schemes that are homomorphic with relation to the secret key
sku and input xu:

∑
u∈U Protect(sku, xu) = Protect(−

∑
u∈U sku,

∑
u∈U xu).

Namely, we describe the Joye-Libert (JL) scheme and a lattice-based scheme relying on
the Learning With Errors (LWE) problem. For sake of simplicity, we denote the latter as
the LWE scheme. Both schemes are used in Buffalo and Buffalo+.

5.4.1 Joye-Libert SA

Let us consider n clients and one aggregator. The JL scheme [Joye, 2013] is defined with
three algorithms.

• (sk0, {sku}u∈[1,n], pp)← JL.Setup(λ): Given the security parameter λ, this algorithm
generates two large, equal-size prime numbers p and q and sets the modulus N = pq. It
randomly generates n client secret keys sku ∈ ZN2 and computes the aggregator secret
key sk0 = −

∑n
u=1 sku. Then, it defines a cryptographic hash function F : Z→ Z∗

N2 . It
outputs the n+ 1 secret keys and the public parameters pp = (N,F ).

• yu,τ ← JL.Protect(pp, sku, τ, xu,τ ): This algorithm encrypts private input xu,τ ∈ ZN for
time period τ using secret key sku ∈ ZN2 , resulting in ciphertext yu,τ = (1 + xu,τN) ·
F (τ)sku mod N2.

• xτ ← JL.Agg(pp, sk0, τ, {yu,τ}u∈[1,n]): This algorithm aggregates the n protected inputs
from clients received at time period τ to obtain yτ =

∏n
u=1 yu,τ . It then decrypts yτ to

recover the plaintext aggregate xτ =
∑n
u=1 xu,τ = (F (τ)−sk0 · yτ − 1)/N mod N .
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The JL scheme ensures Aggregator Obliviousness under the Decision Composite Residuosity
(DCR) assumption [Paillier, 1999], in the random oracle model and assuming that each
client u encrypts only one input xu,τ per time period τ [Joye, 2013].

5.4.2 LWE-based SA

Several SA solutions [Bell, 2023; Li, 2023] have their security relying on the LWE
assumption. Such SA schemes are parameterized by a ring R of degree m over Z, an
integer modulus q > 0 defining a quotient ring Rq = R/qR, and two distributions χs, χe
over R. Let d be the length of the client’s vector input x⃗u. Let us consider n clients and
one aggregator. The LWE scheme is defined with three algorithms.

• pp ← LWE.Setup(λ): Given security parameter λ, this algorithm generates public
matrix A ∈ Zm×d

p which is defined as the public parameters pp = A.

• y⃗u ← LWE.Protect(pp, s⃗u, x⃗u): To encrypt a vector x⃗u ∈ Zd, the algorithm first samples
two vectors, namely the client’s secret key s⃗u ← χs ⊆ Zmq and the error vector e⃗← χe ⊆
Zmq . The ciphertext y⃗u ∈ ZmD is computed as follows: y⃗u = As⃗u + D · e⃗ + x⃗u mod q,
where D is the chipertext modulus.

• x⃗ ← LWE.Agg(pp, s⃗0, {y⃗u}u∈[1,n]): Let s⃗0 =
∑
u∈[1,n] s⃗u be the aggregation key. This

algorithm computes the aggregate x⃗ from the n chipertexts using s⃗0 as follows: x⃗ =
(
∑
u∈[1,n] y⃗u −As⃗0) mod D.

The LWE scheme guarantees Aggregator Obliviousness under the Hint-LWE problem [Lee,
2018], assuming that each client u encrypts only one input x⃗u per round using the same
secret key s⃗u [Bell, 2023].

5.4.3 Aggregation Verifiability

To ensure the integrity of the aggregation operation, a combination of hash functions,
signatures, commitments and secret sharing techniques are employed in LightVeriFL
[Buyukates, 2022]. In this subsection, we describe the hash process presented in
[Buyukates, 2022], and show how we can benefit from its homomorphic properties
to improve the aggregation check step. We choose to use the Threshold ElGamal (TEG)
encryption scheme (Appendix D.2.3) instead of the Shamir Secret Sharing (SS) scheme
(Appendix D.2.2) to reach constant computational costs. We detail other cryptographic
primitives in Appendix D.2.4.
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Homomorphic Hashing

Let us consider the cyclic group G of prime order p with generator g. Given d distinct
elements g1, . . . , gd ∈ G, the hash of a vector x⃗u ∈ Zdp is defined as follows [Bellare,
1994]:

hu = H(x⃗u) =
d∏
i=1

g
x⃗u[i]
i (5.1)

where x⃗u[i] represents the ith element of the vector x⃗u. This hash function H is additively
homomorphic, meaning that for any two vectors x⃗u, x⃗v, we have H(x⃗u + x⃗v) = H(x⃗u) ·
H(x⃗v). Additionally, the hash function H is incrementally computable. Specifically, let
two vectors x⃗u and x⃗v differ in only one element: x⃗u[j] ̸= x⃗v[j] and ∀i ̸= j, x⃗u[i] = x⃗v[i].
Thanks to the homomorphic property of H, given hu = H(x⃗u), one can easily compute
hv using hu. Indeed, hv = H(x⃗v) = hu · g−x⃗u[j]+x⃗v [j]

j . Hence, instead of computing hv
from scratch using Eq. 5.1 (as it is done in LightVeriFL [Buyukates, 2022]), one can save
exponentiation calculations by using the aforementioned technique. We thus define the
function HINC as follows:

HINC(x⃗v, x⃗u, hu) =

hu · g
−x⃗u[j]+x⃗v [j]
j if x⃗u[j] ̸= x⃗v[j]

do nothing otherwise
(5.2)

To improve that efficiency of the hashing process, H and HINC can be implemented using
Elliptic Curve (EC) points [Buyukates, 2022].

5.5 Our protocols

5.5.1 Buffalo

We present Buffalo, a SA protocol in the context of a BAsyncFL setting. The design
principles of Buffalo are the following:

(1) As opposed to the synchronized setting, clients who contribute to a given buffer
are not known in advance. Hence, the aggregation key cannot be pre-computed or
pre-defined. Therefore, Buffalo defines an ’on-the-fly’ generation of the aggregation
key once the buffer is full, along with the buffer set UBUFF. This aggregation key is
computed through the help of decryptors. They are special clients who receive other
clients’ contribution to the aggregation key, and collaboratively construct the final version
of that key. It is worth noting that, as opposed to the state-of-the-art solutions who make
use of decryptors to reduce/optimize some computational costs [Ma, 2023; Li, 2023],
the purpose here is to deal with potential clients turning offline after sending their
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Parties: Server and clients in U , such that |U| = ntot, where decryptors belong to K ⊆ U
such that |K| = k
Public Parameters: input domain ZdL; buffer set UBUFF whose size is |UBUFF| = n;
security parameter λ for cryptographic primitives; secret sharing threshold t
Prerequisites: For K and r ∈ {2, 3}, we denote Kr the set of decryptors that execute
Round r, and we denote by K′

r, the set of decryptors that completed without dropping
out. It holds that K′

r ⊆ Kr ⊆ Kr−1 for all r ∈ {2, 3}.

Setup

Client u ∈ U :

Keys registration

1. (cPKu , cSKu )← KA.Gen(ppKA)
2. {dSKu , dPKu }u∈U ← Sig.Setup(λ)
3. Register cPKu and dPKu to PKI

Decryptor channel key setup

4. ∀i ∈ K, cu,i ← KA.Agree(cSKu , cPKi )

Trusted Dealer (TD):

5. (⊥,⊥, ppJL)← JL.Setup(λ)
6. ppLWE ← LWE.Setup(λ)
7. (pk, {[sk]i}i∈K)← TEG.Setup(t,K, λ)
8. Register ppJL, ppLWE and pk to PKI

9. Send [sk]i to Decryptor i ∈ K

Decryptor i ∈ K:

10. Receive [sk]i from TD

Online - Round 1

Client u ∈ U :

Input protection and authentication

1. s⃗u,τu

R←− χs // Generate LWE secret key for
round τu

2. y⃗u,τu ← LWE.Protect(ppLWE, s⃗u,τu , x⃗u,τu) //
Protect input using LWE

3. hu,τu

R←− HINC(x⃗u,τu , x⃗u,τu−1, hu,τu−1) //
Compute input hash

4. (zu,τu , z
′
u,τu

, ru,τu) R←− E(Fp) // Generate
hash mask, witness mask and witness

5. h̃u,τu = hu,τu +zu,τu // Mask local input hash

6. cu,τu ← COM.Commit(hu,τu , ru,τu) // Com-
mit to input hash

7. σu,τu ← Sig.Sign(dSKu , cu,τu) // Sign com-
mitment

Key protection and authentication

8. sku,τu

R←− ZN2 // Generate JL secret key for
round τu

9. ⟨s⃗u,τu⟩ ← JL.Protect(ppJL, sku,τu , τ0, s⃗u,τu)
// Protect LWE key using JL

10. {(i, [sku,τu ]i)}i∈K ← SS.Share(sku,τu , t,K)
// Secret share JL secret key

11. ∀i ∈ K, ϵu,i ← AE.Enc(cu,i, u || i || [sku,τu ]i)
// Encrypt JL key shares

12. r̃u,τu = ru,τu + z′
u,τu

// Mask witness

13. ⟨(zu,τu , z
′
u,τu

)⟩ ←
TEG.Protect(pk, (zu,τu , z

′
u,τu

))
// Protect hash and witness masks using
TEG

14. σ′
u,τu

← Sig.Sign(dSKu , ⟨(zu,τu , z
′
u,τu

)⟩) //
Sign encrypted masks

15. Send y⃗u,τu , ⟨s⃗u,τu⟩, {ϵu,i}i∈K, cu,τu , σu,τu ,
σ′
u,τu

, h̃u,τu , ⟨(zu,τu , z
′
u,τu

)⟩, r̃u,τu to Server

Server:

16. Collect {y⃗u,τu , ⟨s⃗u,τu⟩, {ϵu,i}i∈K, cu,τu , σu,τu ,σ
′
u,τu

, h̃u,τu , ⟨(zu,τu , z
′
u,τu

)⟩, r̃u,τu}u∈UBUFF

17. If |UBUFF| < t, abort; otherwise,
broadcast {ϵu,i}u∈UBUFF , UBUFF,
{σ′

u,τu
, ⟨(zu,τu , z

′
u,τu

)⟩}u∈UBUFF to i ∈ K

Online - Round 2

Decryptor i ∈ K2:

Consistency check

1. Receive {ϵu,i, ⟨(zu,τu , z
′
u,τu

)⟩, σ′
u,τu
}u∈UBUFF and

UBUFF

2. Assert that |UBUFF| = n; if not, abort

3. σ′′
i ← Sig.Sign(dSKi ,UBUFF)

4. ∀u ∈ UBUFF, 1 ← Sig.Ver(dPKu , ⟨(zu,τu , z
′
u,τu

)⟩,
σ′
u,τu

); if not, abort

5. Send σ′′
i to Server

Server:

6. Assert that |K′
2| ≥ t; if not, abort

7. Collect {σ′′
i }i∈K′

2
and broadcast to decryptors in

K′
2

Online - Round 3

Decryptor i ∈ K3:

Aggregation key share construction

1. Receive {σ′′
j }j∈K′

2

2. ∀j ∈ K′
2, 1 ← Sig.Ver(dPKj ,UBUFF, σ

′′
j ); if not,

abort

3. ∀u ∈ UBUFF, [sku,τu ]i ← AE.Dec(ci,u, u || i || ϵu,i)
// Decrypt JL secret key

4. [sk0]i =
∑
u∈UBUFF

[sku,τu ]i // Compute share of JL
aggregation key

5. ⟨(z0, z
′
0)⟩ =

∏
u∈UBUFF

⟨(zu,τu , z
′
u,τu

)⟩ // Compute
aggregated encrypted hash and witness masks

6. [(z0, z
′
0)]i = TEG.PartialDecrypt([sk]i, ⟨(z0, z

′
0)⟩)

// Compute partial TEG decryption

7. Send [sk0]i and [(z0, z
′
0)]i to Server

Server:

Aggregation

8. Assert that |K′
3| ≥ t; if not, abort

9. Collect {[sk0]i, [z0]i}i∈K′
3

10. sk0 ← SS.Recon({[sk0]i}i∈K′
3
, t) // Reconstruct

JL aggregation key

11. s⃗0 ← JL.Agg(ppJL, sk0, τ0, {⟨s⃗u,τu⟩}u∈UBUFF ) //
Compute LWE aggregation key

12. x⃗ ← LWE.Agg(ppLWE, s⃗0, {y⃗u,τu}u∈UBUFF ) // Com-
pute aggregated input

13. (z0, z
′
0) ← TEG.Decrypt({[(z0, z

′
0)]i}i∈K′

3
) //

Compute full TEG decryption

14. h0 =
∏
u∈UBUFF

h̃u,τu − z0 // Unmask aggregated
input hash

15. r0 =
∏
u∈UBUFF

r̃u,τu − z′
0 // Unmask aggregated

witness

16. Broadcast x⃗, {cu,τu , σu,τu}u∈UBUFF , h0, r0 to u ∈
UBUFF

Verification

Client u ∈ UBUFF:

1. Receive {cv,τv}v∈UBUFF , x⃗, h0 and r0

2. ∀v ∈ UBUFF, 1 ← Sig.Ver(dPKv , cv,τv , σv,τv ); if not,
abort

3. c0 =
∏
v∈UBUFF

cv,τv // Compute aggregated com-
mitment

4. Check COM.Commit(h0, r0) = c0; if not, abort

5. hagg = H(x⃗) // Compute global model hash

6. Check if hagg = h0; if not, abort

Figure 5.3.: Buffalo steps – blue parts guarantee SA verification (Buffalo+ steps)
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contributions to the buffer. Hence, in our case, decryptors are not mandatory if all clients
are online during the construction of the aggregation key.

(2) In addition to being the first SA solution for the asynchronous setting, Buffalo
exhibits good performance results at the client thanks to the use of a lattice-based
batched encryption scheme to encrypt model parameters, as proposed in [Bell, 2023].
The number of LWE ring coefficients usually is in [211, 212] [Bell, 2023] and each of them
needs to be protected and further aggregated. In order to avoid clients sharing as many
partial keys as the number of ring coefficients, Buffalo introduces an additional layer
of protection. Informally, each client’s input is first encrypted using a LWE key and the
LWE key is further encrypted using a JL key. This key is then secretly shared with all the
decryptors, only. Thanks to this approach, Buffalo achieves better client computation by
sharing a single scalar value instead of a vector value. Such a performance improvement
is very important in the context of an asynchronous setting wherein saving resources
becomes fundamental and taking into account inputs from slow clients pivotal.

Description

Buffalo, reported in Figure 5.3, is defined over two phases: the Setup phase during
which clients first register to the server and generate their keying material, and the
Online phase during which aggregation occurs asynchronously (i.e. whenever the buffer
is full).

In the Setup phase, similar to other solutions [Bonawitz, 2017a; Ma, 2023], each client
creates a pair of secret and public keys and a pair of signing and verification keys, and
sends the public and verification keys to the Public Key Infrastructure (PKI) to register
them. Furthermore, each pair of client and decryptor u and i establish a pairwise key cu,i.
A Trusted Dealer (TD)1 generates the public parameters, in particular the JL modulus N
and the public LWE matrix A, and register them to the PKI.

The Online phase, also reported in Figure 5.3, is split into three rounds:

(Round 1) Each client u in the set U generates a secret LWE key s⃗u,τu and a secret JL key
sku,τu at their local round τu. The JL key sku,τu protects the LWE key s⃗u,τu using a fixed
’round’ τ = τ0. Each private input vector x⃗u,τu is protected with the LWE key s⃗u,τu . The
server collects the n first submitted protected inputs and encrypted secret LWE keys. The
clients owning those elements are finally included in a buffer set UBUFF ⊆ U . Each client
u then secretly shares their key sku,τu such that t out of these n shares can reconstruct it

1Alternative methods exist in decentralized settings to avoid the participation of a TD [Chen, 2021].
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using the SS scheme. They send the shares of sku,τu , encrypted using the AE scheme, to
the server. The latter broadcasts those elements to all decryptors in the set K.

(Round 2) The decryptors follow the same process as in [Bonawitz, 2017a; Ma, 2023]
over the set UBUFF. The latter is signed by each decryptor and the resulting signature
is forwarded to the server, which passes it on to all decryptors in K. This step ensures
consistency over the set UBUFF across the entire system.

(Round 3) Each decryptor in K2 ⊆ K receives the encrypted shares of the secret JL
keys of clients in UBUFF. It computes the aggregated value [sk0]i, that is its share of the
server’s JL aggregation key sk0. The decryptor then forwards it to the server. The latter
must receive at least t of these aggregated shares in order to successfully reconstruct sk0.
Once this key is retrieved, the server can have access to the LWE aggregation key s⃗0

through the aggregation of the clients’ encrypted LWE keys. The server finally recovers
the aggregated model x⃗ using the key s⃗0.

Security Analysis

We briefly analyse the security of Buffalo. The full, hybrid-based, proof is given in
Appendix D.5. Let the set of corrupted clients be denoted as C ⊂ U , where |C| = γ, and
the set of corrupted decryptors be denoted as Ck ⊂ K, where |Ck| = γk.

The security of the LWE and JL schemes guarantees that parties in C cannot distinguish
the protected input x⃗u,τu (protected with a LWE key) and the LWE key s⃗u,τu (protected
with a JL key) of an honest client u from random values.

The security of the SS scheme guarantees that decryptors in Ck cannot distinguish the
protected JL key sku,τu of an honest client u from a random value. More precisely, the
security of the SS scheme ensures that if at most t − 1 decryptors in Ck have access to
shares of [sk0]u (i.e. each decryptor has at most one share and |Ck| < t), then they cannot
reconstruct the key.

Moreover, when the server is a malicious adversary, it can try to convince some honest
decryptors that the set of clients in the buffer is UBUFF while indicating to other honest
decryptors that the set of clients in the buffer is U∗

BUFF = UBUFF \ {u} for a client u. If this
occurs, the server can reconstruct sk0 for UBUFF and sk∗

0 for U∗
BUFF. Then, it can compute

sku,τu = sk0 − sk∗
0. This is prevented during Round 2, through a consistency check

step over the set UBUFF [Bonawitz, 2017a; Ma, 2023]. Since we assume that there are
k − t corrupted decryptors, the server can obtain k − t shares of sk0 and sk∗

0, respectively.
Furthermore, the server has the ability to convince t

2 honest decryptors that the client u is
in the buffer and the other t

2 honest decryptors that u is not, thereby collecting shares of
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sk0 and sk′
0 accordingly. Therefore, to ensure Aggregator Obliviousness regarding the JL

scheme, we require that k − t+ t
2 < t =⇒ t > 2k

3 .

5.5.2 Buffalo+

We introduce Buffalo+, a verifiable extension of Buffalo. Specifically, Buffalo+ is an
asynchronous adaptation of the protocol detailed in [Buyukates, 2022]. We depict the
parts specific to Buffalo+ in Figure 5.3 in blue. Moreover, for the sake of space, operations
denoted as executed on an input pair are actually operations executed twice, once for
each input taken individually (e.g. line 6 in Online - Round 3: TEG.PartialDecrypt on
the pair of encrypted hash and witness masks). The design principles are the following:

(1) Buffalo+ ensures that every client u ∈ UBUFF can verify the aggregation of the global
model obtained by the server, and in particular, that their input x⃗u,τu has been included
in the process. Each client generates a homomorphic hash over the local update x⃗u,τu

and commits to it. Then, both the hash value and the commitment witness are masked
with some randomness. Instead of secretly sharing those random masks as in [Buyukates,
2022], we choose to use the Threshold ElGamal (TEG) scheme (Appendix D.2.3) to
encrypt them because TEG provides constant encryption time (see Section 5.6 for the
complexity analysis). The resulting TEG ciphertexts are sent to the decryptors who are
in charge of applying threshold decryption to obtain the masks. This design choice
allows constant communication and computation costs compared to using the classical
SS scheme as in [Buyukates, 2022]. Specifically, Buffalo+ reduces the regular client
computation by a factor of k2 and communication by a factor of k.

(2) We leverage the incremental nature of the homomorphic hash function HINC to
reduce computational overhead. As demonstrated in [Buyukates, 2022], computing a
homomorphic hash function over a locally updated model of dimensions d remains a
significant bottleneck. While most steps in the protocol can be parallelized during the
training of local models [Mansouri, 2022; So, 2022], the critical hashing step (line 3
in Online - Round 1) must await the end of the training of the local model x⃗u,τu to be
executed [Buyukates, 2022].

Drawing from extensive research in distributed optimization [Ström, 2015; Fei, 2021;
Sun, 2020], which shows that not all local ML parameters (here, gradients) change in
each client round, we exploit parameter sparsification and quantization to avoid the
full computation of Eq. 5.1. Utilizing this assumption of sparsity, each client computes
the input hash for a given round τu and stores the local model x⃗u,τu . In the next client
round τu + 1, the client assesses the changes between x⃗u,τu and x⃗u,τu+1, and employs the
incremental hashing property to compute partial hashes only for the changed parameters
using Eq. 5.2. Let ρ denote the fraction of parameters that changed between two client
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rounds τu and τu + 1. The aforementioned method requires only O(d) comparisons and
O(⌊ρ · d⌋) EC exponentiations, thus proving to be more efficient than directly hashing the
input x⃗u,τu+1, despite incurring the cost of storing the previous local model input x⃗u,τu in
practice.

Description

To provide verifiable aggregation, Buffalo+ follows the previously described protocol
Buffalo with additional steps highlighted in blue in Figure 5.3. Specifically, there is a
third phase, called Verification, that allows clients to check that the server has correctly
aggregated their inputs submitted to the buffer. Additionally, in the Setup phase, the
TD2 generates the TEG public key and the decryptors’ secret key shares. It registers the
former to the PKI and sends the latter to the decryptors.

We report the differences between Buffalo and Buffalo+ in the Online phase as follows:

(Round 1) The clients generate random EC points ru,τu and (zu,τu , z
′
u,τu

). They compute
the local model hash hu,τu (using Eq. 5.2 except at their first own round τu = 1), and
commit to the latter using the witness ru,τu . They also mask hu,τu and ru,τu using the
values zu,τu and z′

u,τu
, respectively. The clients then protect the hash and witness masks

(zu,τu , z
′
u,τu

) using the TEG scheme, and sign the resulting encryptions along with the
commitment cu,τu . They send both masked elements, protected masks, signatures and
commitments to the server.

(Round 2) During the consistency check, each decryptor further verifies that the signa-
tures over the encrypted masks.

(Round 3) At least t remaining online decryptors in K3 ⊆ K help the server construct the
aggregated masking pair (z0, z

′
0), which enables the construction of the aggregated hash

h0 and witness r0. As in Buffalo, the JL aggregation key sk0 is constructed, followed
by the LWE aggregation key s⃗0. The latter allows the server to recover the aggregated
model x⃗. All these elements are forwarded to the clients for aggregation verification.

In the Verification phase, all the clients in UBUFF can verify if the server has correctly
aggregated their inputs. More precisely, each client receives and aggregates the commit-
ments of all the clients in UBUFF, and verifies the aggregated commitment c0 given the
aggregated witness r0 and the aggregated hash value h0. Finally, the client computes the
hash hagg of the received global model and verifies if it is equal to h0.

2A possible solution with a decentralized TEG setup is proposed in [Ma, 2023].
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Security Analysis

As in Buffalo, we require that t > 2k
3 . Here, we briefly analyze the security regarding

aggregation verifiability. The full, hybrid-based, proof is given in Appendix D.5.

The TEG scheme ensures that the server, along with clients in the set C, cannot distinguish
the protected masking pair ⟨(zu,τu , z

′
u,τu

)⟩ from random values. During the verification
phase of Buffalo+, clients in the buffer set UBUFF receive two to-be-verified elements from
the server. The first element is the aggregate hash reconstruction h0 of the other clients in
the buffer, using the individual (signed) commitments c0. If the server sends an incorrect
aggregate hash h0 at this step, clients in UBUFF can detect the error during the aggregate
commitment check step (line 4 in Verification), thanks to the computationally binding
property of the underlying commitment scheme. The second element is the aggregate
model x⃗. The clients will not accept an incorrect global model if the hash hagg of this
value does not match the constructed hash h0 sent by the server. This is ensured by the
collision resistance of the homomorphic hash function H we use. More details on the
proof are given in Appendix D.5.

Further Extensions

Decentralized Setup- To enhance readability, we initially present the two protocols with
the participation of a TD for the key generation of the JL and TEG schemes. It is worth to
note that their Setup phase can be run among the decryptors in a decentralized manner,
i.e. without the intervention of a TD. Informally, the common modulus N of the JL
scheme can be generated using the decentralised solution proposed in [Chen, 2021] and
the TEG Setup phase can follow the decentralized process presented in [Ma, 2023]. The
use of these two building blocks are also a justification of this decentralized setup (at
the current stage, we are unaware of a threshold LWE encryption scheme that does not
require a trusted third party for the setup phase and it requires only 2 communication
rounds for decryptors as TEG in [Ma, 2023] in the online phases of the protocol.

Dynamic Decryptors- To balance the computation costs over decryptors, it could be
beneficial to offer dynamicity over the set K, i.e. the set of decryptors changes after some
amount of aggregation operations. Unfortunately, current Buffalo and Buffalo+ require
the exchange of pairwise keys between each client and decryptor pair. Consequently,
each time the set K changes, new pairwise keys need to be established between each
new decryptor and other clients.

Another way of enabling dynamic decryptors would be to use the additively homomorphic
TEG scheme (based on elliptic curves) which allows all clients to encrypt with the same
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Table 5.1.: Complexity analysis for one BAsyncFL round (n: buffer size; k: number of decryptors;
m: number of LWE key coefficients, t: threshold value; d: input dimension; δk:
fraction of dropped decryptors).

AsyncDPSecAgg [Stevens, 2022] Buffalo

Client Comp. Client: O(k2 m
⌊δkk−t⌋ + d) Client: O(k2 + m + d)

Decryptor: O(n m
⌊δkk−t⌋) Decryptor: O(n)

Client Comm. Client: O(k m
⌊δkk−t⌋ + d) Client: O(k + m + d)

Decryptor: O(n m
⌊δkk−t⌋) Decryptor: O(n)

Server Comp. O(k2 m
⌊δkk−t⌋ + nm+ nd) O(k2 + nm + nd)

public key, no matter who the decryptors are. Unfortunately, using such a TEG scheme
to encrypt messages would erase the advantage of the use of the LWE scheme with
effective batching techniques. Moreover, if the TEG scheme is combined with either
LWE or JL schemes (i.e. used to encrypt either LWE or JL keys), then the decryption
of these keys would consist of computing the discrete log of a point in a large field,
which will negatively affect the overall performance of the system. Consequently, it is not
straightforward to enable dynamic decryptors in Buffalo and Buffalo+ while maintaining
acceptable overheads.

Model Inconsistency- A recent study in [Pasquini, 2022] highlights an attack against
SA in FL, called model inconsistency. Informally, the server can bypass SA steps by
sending different models to different clients. This attack has been shown only in SyncFL
contexts and can be overcome by embedding the training round in the encryption of
the local models. Note that in a BAsyncFL setting, the verification steps of Buffalo+
straightforwardly overcome such an attack.

5.6 Complexity Analysis

We analyze the complexity of Buffalo and compare it with Async-DPSecAgg [Stevens,
2022], we report the comparison results in Table 5.1. In Table D.2, we additionally
provide the complexity analysis for AsyncLightSecAgg [So, 2022]. However, we refrain
from direct comparison due to its higher complexity in practical applications, as explained
in Appendix D.2.

• Client Computation: The encryption of the private input x⃗u,τu in Buffalo is equivalent to
the one in AsyncDPSecAgg [Stevens, 2022]. However, the encryption of the LWE secret
key in AsyncDPSecAgg is calculated as O(k2 m

⌊δkk−t⌋), due to the packed variant of the SS
scheme. In contrast, in Buffalo, the cost of protecting this key through the JL scheme is
O(m). Furthermore, the cost for sharing the JL key using the SS scheme is O(k2) since
such a process deals with a scalar value. Indeed, our protocol does not secretly shares a
vector but a scalar value, and hence, improves the overall performance, as empirically
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shown in Section 5.7. Regarding decryptors, the cost only corresponds to summing O(n)
shares in Buffalo, whereas it reaches O(n m

⌊δkk−t⌋) in AsyncDPSecAgg.

• Client Communication: In both Buffalo and AsyncDPSecAgg, each client u sends
a protected input ⟨x⃗u,τu⟩ of dimension O(d). However, there are notable differences
between the two solutions beyond this point. In AsyncDPSecAgg, clients transmit
O(k m

⌊δkk−t⌋) secret shares, and each decryptor receives O(n m
⌊δkk−t⌋) of them. In contrast,

our protocol involves sending the LWE secret key, of size m, to the server. This is
accompanied by the protected JL secret key. Each regular client thus ends up sending k
shares of the JL secret key, while each decryptor receives n of these shares. In practice, our
experimental results have demonstrated that the bandwidth required for communication
in AsyncDPSecAgg is greater compared to Buffalo at decryptors, since the number of
shares is proportional to the size m of the LWE secret key.

• Server Computation: At Round 3, the server constructs the JL aggregation key sk0

from t shares, requiring a computation cost of O(k2), in contrast with O(k2 m
⌊δkk−t⌋) for

AsyncDPSecAgg due to the reconstruction of s⃗0. Additionally, for both protocols, the
server aggregates the protected LWE secret keys and the protected private inputs received
from clients and unmasks the aggregated results, which requires computation costs of
O(n ·m) and O(n · d), respectively.

• Server Communication: The message exchanges in both protocols only occur between
the server and clients. Hence, the server communication cost is equal to n times each
client communication cost.

Buffalo+

We analyze the complexity of Buffalo+ and compare it with LightVeriFL [Buyukates,
2022]. In Buffalo+, regular clients’ extra computational cost involves calculating the
homomorphic hash using HINC, worth O(⌊ρ · d⌋). Additionally, the cost of encrypting the
masks using the TEG scheme is O(1). In contrast, in LightVeriFL [Buyukates, 2022], the
computational costs include calculating the homomorphic hash (using Equation 5.1) and
secretly sharing the masks which together are worth O(k2 + d).

5.7 Experimental Results

In this section, we experimentally evaluate the performance of Buffalo and Buffalo+. In
order to conduct a comparative study, in addition to these two solutions, we have also
implemented AsyncDPSecAgg [Stevens, 2022] (which is more efficient than LightSecAgg

86 Chapter 5 Buffalo: A Practical Secure Aggregation Protocol for Asynchronous Federated

Learning



(a) Average Client Computation (ms)

(b) Average Client Send Communication (Bytes)

(c) Average Server Computation (ms)

Figure 5.4.: Performance evaluation of Buffalo (green) and AsyncDPSecAgg (crossed-orange).
Buffer size is fixed to n = 512 while varying the number k of decryptors.

[So, 2022; Ngong, 2023]) to compare with Buffalo, and Buffalo with LightVeriFL
[Buyukates, 2022] to compare with Buffalo+.

Experimental Setting

Our implementations use Python with the Olympia framework [Ngong, 2023] and Py-
bind11 to wrap the C++ LWE SHELL library3. The code can be found on our anonymous
GitHub page4. Experiments were conducted on a single-threaded processor, using a
machine equipped with an Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz and 126 GB
of RAM. For the sake of a fair comparison, Buffalo, Buffalo+, AsyncDPSecAgg and

3https://github.com/google/shell-encryption/tree/master
4AnonymousGitHub code

5.7 Experimental Results 87

https://github.com/google/shell-encryption/tree/master
https://anonymous.4open.science/r/buffalo-1088/README.md


(a) (b) (c)

Figure 5.5.: Performance evaluation of Buffalo+ (green) and LightVeriFL (crossed-orange). Input
dimension is fixed to d = 105 and buffer size to n = 26. In (a), the number of
decryptors is equal to k = 60. In (b), the fraction of parameters that changed
between two client rounds is equal to ρ = 0.01.

LightVeriFL are implemented using the same building blocks and libraries mentioned in
[Ngong, 2023; Buyukates, 2022]. We only evaluate the online phase of our protocols
Buffalo and Buffalo+.

To have an idea of the cost of implementing a decentralized setup for Buffalo, we
refer the reader to Table 3 in [Chen, 2021]. For instance, given 100 decryptors, the
time needed is less than 8.3 minutes. Similarly for Buffalo+, an implementation of a
decentralized TEG setup is evaluated in [Ma, 2023]) (Section 8). The verification step
implementation is the same as the one evaluated in [Buyukates, 2022].

FL Parameters- To accurately evaluate the performance of the four schemes, we consider
several scenarios that simulate realistic environments with the following varying parame-
ters: buffer size n in {64, 128, 256, 512}; model dimension d in {30K, 260K, 1.2M};
number k of decryptors in {60, 120, 360} with threshold t set as 2k

3 . The performance of
the four solutions is evaluated by measuring the execution time (i.e. computation cost)
and the bandwidth (i.e. communication cost) at both the client and server sides. The
values shown for each scenario are the result of the average of measurements from five
independent executions.

SA Parameters- Following [Bell, 2023], the LWE error distribution χe with a discrete
Gaussian distribution has a standard deviation equal to 3.2. The ring degree is set
to m = 211 and the prime modulus to q = 1 mod 2m, with λ > 128 bits of security
according to [Albrecht, 2015]. The size of the JL modulus N is set to log2(N) = 2048.
For both LWE and JL schemes, we apply packing techniques from [Bell, 2023; Mansouri,
2022] to pack multiple plaintexts in one single ciphertext.

BASyncLF Environment- We emulate realistic BASyncFL scenarios using the FLSim frame-
work5 with Pytorch. The FLSim framework allows us to emulate asynchronicity. We

5https://github.com/facebookresearch/FLSim/tree/main
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use the same staleness distribution (i.e., the delay in clients’ update that can occur in
asynchronous systems) as FedBuff [Nguyen, 2022], namely a half-normal distribution
with standard deviation equal to 1.25.

Test Datasets- We consider three FL use cases with two datasets from the LEAF benchmark
[Caldas, 2018], namely CELEBA and SENT140, and one new medical dataset called
REPLACE-BG [Aleppo, 2017].

CELEBA- The CELEBA is a binary image classification dataset that contains celebrity
pictures. We use the Convolutional Neural Network (CNN) proposed in [Xie, 2019].

REPLACE-BG- The REPLACE-BG dataset was obtained from a cohort of 202 adult partici-
pants. It consists of three primary features:

• interstitial glucose levels measured in milligrams per deciliter (mg/dL) using Dexcom
G4 Platinum sensors;

• insulin boluses administered in units (U);

• carbohydrate (CHO) content measured in milligrams (mg).

We have implemented the pre-processing steps for this dataset following the procedure
described in [Jaloli, 2023]. Namely, the data were prepared as inputs to a CNN-Long
Short-Term Memory (CNN-LSTM) architecture, a model commonly used for sequential
data prediction tasks. The CNN-LSTM network is trained to predict blood glucose levels
for the subsequent hour based on data from the last three hours, including glucose levels,
insulin boluses, and CHO content [Cui, 2021].

SENT140- The SENT140 datasets is a text classification dataset for binary sentiment
analysis. We use an LSTM model with 1.2M parameters.

Performance

We first evaluate the performance of Buffalo and compare it with AsyncDPSecAgg [Stevens,
2022]. We consider the three aforementioned use cases and fix the buffer size to n = 512.
We first measure the computation and communication costs at the client with respect
to the number k of decryptors. Figure 5.4 shows the experimental results. We observe
that, thanks to the use of the JL scheme for the aggregation of the LWE key, Buffalo
outperforms AsyncDPSecAgg in terms of computation both at the client and server sides.
We recall that the LWE key is secretly shared with decryptors in AsyncDPSecAgg while
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this is the JL key in Buffalo. The communication cost remains similar for both solutions
since this cost mainly depends on the transmission of protected inputs of dimension d.

We then evaluate the performance of Buffalo+ and compare it with LightVeriFL [Buyukates,
2022]. In Figure 5.5, we show the performance of the use of homomorphic hashng
techniques in both Buffalo+ and LightVeriFL, in terms of execution time in milliseconds
(ms). We set the input dimension to d = 105 and the buffer size to n = 256. In Figure
5.5a, the number of decryptors is equal to to k = 60 while the input sparsity parameter
ρ for the model varies. We observe the benefits of Buffalo+ over LightVeriFL. Notably,
when ρ = 0.5, the computation is almost ×2 faster for the former. Furthermore, in
Figure 5.5b, we fix ρ = 0.01 and vary the number of decryptors. This experimental
result demonstrates the previous theoretical analysis discussed in Section 5.6 on the
advantage of constant encryption time using the TEG scheme instead of the SS method
as in LightVeriFL, which implies a quadratic result w.r.t. k.

5.7.1 Overall performance of BAsyncFL schemes

For each FL task (REPLACE-BG, CELEBA and SENT140), we consider Client Updates (CU),
determined by the product of the buffer size and the total number of rounds necessary to
achieve the Target Metric (TM), as reported in Tables 5.2a and 5.2b. We set the number
of decryptors at k = 60, with a dropout rate of δk = 0.01. Further implementation details
are provided in Appendix D.4.

In Table 5.2a, we depict the total execution time in hours (h) and the bandwidth
consumption in GigaBytes (GB) of Buffalo, Buffalo+ and AsyncDPSecAgg, and compare
them also with the case where aggregation is performed in cleartext. We observe
that in terms of computation and communication costs, Buffalo always outperforms
AsyncDPSecAgg by at least a factor of x3.

In Table 5.2b, we evaluate the the two verifiable SA protocols, namely Buffalo+ and
LightVeriFL (using Buffalo for SA). Compared to the previous table, we also include the
per-buffer average number of updated model parameters, which corresponds to ⌊ρ · d⌋
and the input storage cost in MegaBytes (MB). Buffalo+ consistently shows savings,
especially when applied to the SENT140 task and its underlying ML model. This is
primarily due to the underlying embedding layers: embedding layers are designed to
process high-dimensional, typically sparse, data [Fei, 2021]. Finally, considering model
sparsity for computational savings also requires storing the private inputs (in MB) from
the previous client round. We therefore include this information as well in the fourth
column.
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(a) Comparisons for BAsyncFL SA schemes.

Protocol Time (h) Bandwidth (GB)

REPLACE-BG (d = 260K; CU=24K; TM: RMSE 11.5% ↓; n = 16; ntot = 180)

Clear 28.41 6.42
AsyncDPSecAgg 100.46 16.37
Buffalo 31.23 14.52
Buffalo+ 73.43 14.63

CELEBA (d = 31K; CU=48K; TM: Accuracy 90.0% ↑; n = 128; ntot = 2336)

Clear 6.75 1.51
AsyncDPSecAgg 142.10 13.20
Buffalo 12.54 9.83
Buffalo+ 54.61 10.04

SENT140 (d = 1.2M ; CU=99K; TM: Accuracy 80.0% ↑, n = 256; ntot = 3482)

Clear 6.55 92.26
AsyncDPSecAgg > 7d. 395.93
Buffalo 20.26 389.61
Buffalo+ 77.98 390.01

(b) Comparisons for BAsyncFL VeriSA schemes.

Protocol Time (h) Bandwidth (GB) Avg (= ⌊ρ · d⌋) Storage (MB)

REPLACE-BG (d = 260K; CU=24K; TM: RMSE 11.5% ↓; n = 16; ntot = 180)

LightVeriFL(B) > 7d. 14.73 260K 0
Buffalo+ 73.43 14.63 1653 0.26

CELEBA (d = 31K; CU=48K; TM: Accuracy 90.0% ↑; n = 128; ntot = 2336)

LightVeriFL(B) > 7d. 10.24 31K 0
Buffalo+ 54.61 10.04 2310 0.03

SENT140 (d = 1.2M ; CU=99K; TM: Accuracy 80.0% ↑, n = 256; ntot = 3482)

LightVeriFL(B) > 7d. 390.61 1M 0
Buffalo+ 77.98 390.01 1786 1.20

Table 5.2.: Comparison of execution time and bandwidth consumption, under various FL tasks.
Client Updates (CU) product of buffer size n and rounds necessary to achieve the
Target Metric (TM), we denote with ↑ when higher is better, and ↓ when lower
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We show that, computation-wise, Buffalo+ outperforms LightVeriFL, primarily due to
the efficient use of homomorphic hash function (using Eq. 5.2 rather than Eq. 5.1).
Moreover, Buffalo+ exhibits better communication costs than LightVeriFL.

5.8 Conclusion

We introduced Buffalo, a SA protocol for BAsyncFL. To achieve asynchronicity, Buffalo
uses lattice-based techniques for input protection and the participation of decryptors to
help the server construct on-the-fly secret aggregation keys. Buffalo+ extends Buffalo by
adding verifiable SA to ensure aggregate integrity. Our evaluation, through theoretical
analysis and real-world datasets, shows the efficiency and practicality of both protocols.
Future work will extend our threat model to include malicious clients attempting to
poison the global model, considering client input validation
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This Chapter gives conclusive remarks and identifies future perspectives.

6.1 Summary of the Main Contributions

6.1.1 Privacy-Preserving Image Registration

In Chapter 2, we focus on the two-party setting in the dedicated medical image task.
We have introduced a novel Privacy-Preserving Image Registration (PPIR) framework
that addresses the need for confidentiality in medical imaging. We formulated the image
registration problem under privacy-preserving conditions, recognizing the necessity to
keep medical images confidential and not disclosed openly.

To address the data privacy problem, our approach incorporates advanced cryptographic
tools, specifically secure multi-party computation (MPC) and fully homomorphic encryp-
tion (FHE), into traditional image registration paradigms. These tools allow operations
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on encrypted data without revealing the underlying information. To tackle perfor-
mance and scalability challenges, we introduced several optimization techniques, to
meet Challenge 2 (See Chapter 1), including gradient approximations and homomorphic
encryption through packing, enhancing the efficiency of cryptographic operations in
high-dimensional spaces.

The PPIR framework supports a variety of registration methods, such as rigid, affine,
and non-linear registration, providing a comprehensive solution adaptable to different
medical imaging tasks. We demonstrated the effectiveness of the PPIR framework through
extensive evaluation across various registration benchmarks, showcasing its ability to
maintain the accuracy of traditional methods while ensuring privacy.

6.1.2 Enhancing Privacy in Federated Learning: Secure
Aggregation for Real-World Healthcare Applications

In Chapter 3, we focus on the multi-party setting, and we implement secure aggregation
(SA) schemes within the open-source Fed-BioMed framework. Despite the computational
and communication bottlenecks that SA has in existing FL frameworks, we explored and
implemented two SA protocols, Joye-Libert (JL) and Low Overhead Masking (LOM).

Our extensive benchmarks and evaluations on four healthcare datasets demonstrated
that these SA protocols effectively protect privacy while maintaining task accuracy. The
computational overhead introduced by SA is minimal, with training overheads being less
than 1% on a CPU and less than 50% on a GPU for large models, and protection phases
taking less than 10 seconds. Moreover, incorporating SA into Fed-BioMed resulted in a
negligible impact on task accuracy, with deviations of no more than 2% compared to
non-SA scenarios.

6.1.3 Let Them Drop: Scalable and Efficient Federated Learning
Solutions Agnostic to Stragglers

Chapter 4 addresses the challenges posed by stragglers, in FL systems (Challenge 3 in
Chapter 1) by proposing two new SA protocols, Eagle and Owl, which significantly im-
prove upon existing solutions. In the context of synchronous FL (SyncFL), we introduced
Eagle, a protocol that reduces computation and communication overheads for both FL
clients and the server. Eagle effectively ignores dropped clients, including stragglers, and
supports realistic dropout rates (10% to 30%). This improvement is achieved through a
variant of the Threshold Joye-Libert scheme (TJL), resulting in enhanced performance
compared to current methods. For asynchronous FL (AsyncFL) settings, we developed
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Owl, a protocol that, like Eagle, does not require awareness of dropped clients and
stragglers to complete the aggregation process. We conducted an extensive performance
study, comparing Eagle and Owl with relevant state-of-the-art solutions both theoretically
and experimentally.

6.1.4 Buffalo: A Practical Secure Aggregation Protocol for
Asynchronous Federated Learning

In Chapter 5 we address the challenge in the realistic Buffered Asynchronous Federated
Learning (BAsyncFL) setting. Our contributions include the introduction of two innova-
tive SA protocols, Buffalo and Buffalo+, designed to improve scalability, security, and
client participation. We introduced Buffalo, the first practical SA protocol tailored for
BAsyncFL. Buffalo utilizes lattice-based encryption and homomorphic encryption on
keys rather than models, addressing scalability issues related to the high dimensionality
of machine learning models. A novel role, the decryptor, assists the server during the
aggregation phase by helping to reconstruct keys generated on-the-fly by clients. This
approach allows for asynchronous aggregation, avoiding synchronization issues and en-
suring efficient and secure aggregation without requiring synchronized rounds. To further
incentivize client participation and ensure that their local computations are considered in
the aggregation process, we proposed Buffalo+, an asynchronous verifiable SA protocol.
Buffalo+ enables clients to verify that the server has correctly included their updates in
the aggregation process, thereby ensuring trust and transparency in distributed training.
We evaluated our protocols against existing solutions adapted to BAsyncFL through real
asynchronous simulations using benchmark datasets and a novel medical dataset. Our
evaluations, including both theoretical and experimental validations across three real
datasets, demonstrate the practicality and effectiveness of our solutions, particularly in
medical applications.

6.2 Perspectives and Future Applications

6.2.1 PPIR extensions

In Chapter 2, we consider classic gradient-based optimization to solve different cost
functions, such as SSD and MI. In particular, we show how the communication overhead
of PPIR compared to the classic image registration algorithm suffers with respect to
the total number of gradient descent interactions needed, since for each iteration an
exchange between the two parties has to be done. Some works have shown how to
replace gradient-based optimization with neural networks [Andrychowicz, 2016] through
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meta-learning [Hospedales, 2021]. In these works the parameters of one neural network
(the optimizee) are learned using a different neural network (the optimizer), trained to
solve the optimization task. Thus, there are two distinct neural networks: the optimizee
performs a specific task such as regression or image classification, and the optimizer
updates the weights of the optimizee. This approach has been shown to enhance the
convergence speed of the cost function, decreasing the required number of optimization
steps. More recently, a meta-learning approach has also been proposed in the context of
image registration [Falta, 2022]. The paper introduces a novel recurrent framework that
combines an iterative dynamic cost sampling step with a trainable optimizer designed to
emulate Adam optimization, significantly reducing the number of iterations needed. We
note that the underlying formulation proposed in this work does not directly decrease the
PPIR computation cost, as their meta-learning optimizer uses the SSD displacement error
over high-dimensional features [Heinrich, 2012]. This error, which must be computed
in a privacy-preserving manner, is larger compared to the original input dimensions.
Hence, finding a proper meta-learning optimizer, compatible with PPIR two-party setting
optimization is a future challenge.

In the multi-party setting, a future perspective involves the process of registering multiple
images to a common template [Ashburner, 2007], which comprises several critical steps
to ensure accuracy and convergence. Initially, one of the images can be selected as the
template, or an average of all the images can be used to create an initial estimate. Each
image is subsequently registered to this template using an image registration algorithm.
Once all images are aligned to the current template, a new template is computed by
averaging the registered images. This process of registration and template updating
is repeated iteratively until the difference between successive templates falls below a
predefined threshold, indicating convergence. This approach can be studied and adapted
to preserve privacy, for example, by enabling the use of SA, it becomes possible to protect
individual images while revealing only the global template. Studying the impact of
SA within the template creation and how it affects the final registration is a possible
challenge.

An additional extension of PPIR might involve its impact on other domains, such as
biometric verification algorithms. Biometric verification, such as facial recognition, veri-
fies individual identities by comparing a live image to a stored template in a database.
Classic biometric verification typically involves capturing a live image of the individ-
ual, extracting unique features (such as facial landmarks or fingerprint minutiae), and
comparing these features to pre-registered templates to confirm a match. Existing
privacy-preserving solutions protect the template data [Sandhya, 2017] during verifi-
cation, enabling computation and comparison over encrypted data [Ibarrondo, 2023].
However, the pre-registration step of the database templates relies on a trusted party
that uses centralized alignment algorithms, before storing the protected templates. Im-
plementing PPIR within this context presents a future challenge, as it involves adapting
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privacy-preserving techniques to improve the system’s security and privacy, thereby
removing the need for a trusted party to pre-register the template images.

6.2.2 Privacy-Preserving Neural Networks for Medical Imaging
Applications

Neural networks (NN) are now commonly used in image registration [Balakrishnan,
2019] and other medical imaging tasks, such as image segmentation [Ronneberger,
2015]. Some medical imaging tasks have even been proposed with FL [Terrail, 2022],
however, it does not guarantee privacy [Shokri, 2017] and incurs significant overhead,
often failing to achieve good and reliable results in complex tasks due to data scarcity
and heterogeneity of local datasets. Recently, Privacy-preserving NN with Multi-Party
Computation (MPC) has gained significant attention. The concept involves jointly training
or evaluating a neural network with several parties under different privacy-preserving
scenarios: (i) one party may own both features and labels, increasing the total number
of samples, (ii) some parties may own the features while others own the labels, and
(iii) one party may own all the features while another party owns the neural network
parameters. To reduce the introduced overhead, several software advancements have
been made in recent years for privacy-preserving NN with MPC. For instance, to decrease
computation overhead, two recent works, CryptGPU [Tan, 2021] and Piranha [Watson,
2022], have proposed methods to convert neural networks for MPC training and inference
by exploiting GPU hardware acceleration. These methods perform linear operations
and approximations entirely on GPUs, significantly decreasing computational overhead.
Both studies demonstrated applicability in image classification tasks using datasets like
CIFAR-10 and MNIST, and considered a broad range of neural networks, such as VGG
and AlexNet. Applying privacy-preserving MPC with GPU frameworks can facilitate a
training approach similar to a centralized one, potentially bridging the existing gap with
FL and providing a future alternative. When dealing with these frameworks, it is essential
to analyze different loss functions, such as DiceLoss. Studying and implementing the
missing components of these MPC with GPU frameworks involves developing native
solutions tailored for specific medical imaging tasks and addressing trade-offs for privacy
protection and system scalability requirements.

6.2.3 Leveraging Sparsity in Distributed Learning with Secure
Aggregation

In FL, each round involves a client sending its local model to the server. These transmitted
models are usually large, causing the communication speed to become the bottleneck
of the training process. This issue can be mitigated by either designing algorithms that
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exchange fewer messages or reducing the size of each message. Sparsification[Konečnỳ,
2016] provides a way to reduce the size of exchanged models, it is a lossy compression
technique typically used on parameters (gradients) in FL. By representing the gradients as
a subset of their values selected using specific criteria, clients can send only the selected
indices instead of the full model. In Chapter 5, we explored how to leverage the sparsity
of a client’s parameters (gradients) to exploit incremental hashing and improve the
communication, within verifiable SA. However, only a few studies have investigated how
this sparsity can be exploited in the context of distributed learning combined with SA
[Beguier, 2020]. This solution requires a common indices agreement among all the clients,
hence does not allow each client to select indices independently. Finally studying how
SA quantization and convergence [Ström, 2015] can reduce communication and enable
the application of existing sparsity techniques [Konečnỳ, 2016] in a privacy-preserving
manner could significantly reduce SA communication overhead.

6.2.4 Post-Quantum Secure Aggregation

Peter Shor, recently named the winner of the IEEE Claude Shannon Award for 2025, is
best known for his groundbreaking work on quantum computation. His Shor’s algorithm,
developed in 1994, demonstrated the potential of quantum computers to break con-
ventional RSA codes by efficiently factoring large integers. If executed on a sufficiently
powerful quantum computer, Shor’s algorithm [Shor, 1999] could compromise public-key
cryptographic schemes such as RSA, Finite Field Diffie-Hellman, and Elliptic Curve Diffie-
Hellman [Rivest, 1978a; Diffie, 2022]. Post-quantum cryptographic algorithms, designed
to be secure against quantum attacks, include lattice-based cryptography, hash-based
cryptography, and multivariate polynomial cryptography. Lattice-based cryptography
has shown promising features, such as its homomorphic properties, enabling computa-
tions on encrypted data without decryption. However, it faces significant challenges in
practical deployment. One major issue is its computational efficiency. The algorithms
often require high computational power [Nejatollahi, 2017] and memory usage, making
them less practical for devices with limited resources, such as IoT devices or mobile
phones. Another concern is the complexity of parameter selection and incorrect param-
eters can either weaken the security or make the system inefficient. Furthermore, the
standardization of these parameters is still an ongoing process, and achieving consensus
in the cryptographic community is challenging. Therefore, a possible future direction
is to extend the SA protocols presented in Chapters 3, 4, and 5 with post-quantum
privacy-preserving solutions, without compromising performances.
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Figure A.1.: Optimization of MI loss: proposed framework to calculate matrix multiplication
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Figure A.2.: Optimization of ANTS NCC loss: proposed framework to calculate 2D
EF and (J̄ − D

E Ī)
based on PPIR(MPC).

99



(a) PPIR(MPC) (b) PPIR(FHE)

Figure A.3.: Optimization of rigid point cloud: proposed framework to compute matrix multipli-
cation L = Q ·Q′T based on PPIR(MPC) and PPIR(FHE).

Rigid Point Clouds Registration
Solution Displacement RMSE (mm) Time party1 (s) Time party2 (s) Comm. party1 (MB) Comm. party2 (MB)

PPIR(MPC) 1.11 ± 0.31 0.02 0.02 0.03 0.03
PPIR(FHE) 1.26 ± 0.37 1.10 0.18 1.42 35.93

Table A.1.: Rigid Point Clouds registration test, comparisson between PPIR(MPC) and
PPIR(FHE). Registration metrics are reported as mean and standard deviation.
Efficiency metrics in terms of average across iterations. RMSE: root mean square
error.

A.1 Rigid Point Cloud Registration

Let {zi}, {z′
i} two finite n size point sets where zi, z′

i ∈ Rd , to continue ... A non-iterative
least-squares approach to match two sets of points, was proposed by Arun et al. [Arun,
1987]. The method uses singular value decomposition (SVD) and is trying to minimize
the following cost function:

Σ2 =
n∑
i=1
||z′

i − (Rzi + t)||2, (A.1)

where R is the rotation matrix and t is the translation vector. Let define z̄ and z̄′ to
represent the centroids of {zi} and {z′

i} respectively. Let R̂ being the estimated rotation
matrix, and t̂ being the estimated translation. The method lies in the algorithm for
finding R̂ detailed below:

1. Calculate the following quantities:

qi = pi − z̄

q′
i = p′

i − z̄′

for all 0 ≤ i ≤ n, which are distances from each point to its centroid.
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Figure A.4.: Proposed framework to compute matrix-vector multiplication ST · J based on
PPIR(FHE)-v2.

2. Calculate L ∈ Rd×d, L =
∑n
i=1 qiq

′T
i , in vectorized form:

L = Q ·Q′T , (A.2)

where Q,Q′ ∈ Rd×n.

3. Find SVD of L, namely L = UΛV T ;

4. Calculate X = V UT ;

5. Check the determinant of X. If it equals to +1, then R̂ = X and t̂ = q′ − R̂q. If the
determinant equals to −1, the algorithm has failed.

We note that the only operation that requires the joint availability of information from
both parties is Equation A.2 which can be computed with a matrix multiplication with
PPIR(MPC) and PPIR(FHE) as reported in Figure A.7.
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Figure A.5.: Qualitative results for affine registration with SSD between 2D medical images. The
red frame is the transformed moving image using CLEAR+URS registration. Green
and Yellow frames are the transformed images using respectively PPIR(MPC)+URS
and PPIR(FHE)v1+URS.

Figure A.6.: Qualitative results for Cubic splines registration with SSD between 2D medical
images. The red frame is the transformed moving image using CLEAR+GMS
registration. Green and Yellow frames are the transformed images using respectively
PPIR(MPC)+GMS and PPIR(FHE)v1+GMS.
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Figure A.7.: Qualitative results for rigid point cloud registration between 2D corpus callosum
point sets. The red frame is the transformed moving image using CLEAR registration.
Green and Yellow frames are the transformed images using respectively PPIR(MPC)
and PPIR(FHE)v1.
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BAppendix Chapter 3

Dataset FL Hyper-params SA Hyper-params Hardware spec.

ntot n T e b η L W max/min

FedIIXI 3 3 75 10 2 1× 10−3 22 8 +20/-20 CPU
FedHeart 4 4 75 10 8 5× 10−4 15 17 +3/-3 CPU

REPLACE-BG 180 18 400 10 64 1× 10−3 13 15 +3/-3 CPU
FedProstate 4 4 75 6 8 1× 10−3 22 8 +2/-2 GPU

Table B.1.: FL hyper-params: number of total nodes ntot, the number of selected nodes n, the
number of FL rounds T , the number of local SGD steps e, the batch size b, and the
learning rate η. SA hyper-params: number of bits input L, number of bits weight W
and clipping range max/min.

Figure B.1.: Compare the task accuracy of the global model at each FedAvg aggregation with
and without applying SA for FedHeart and REPLACE-BG. The SA is characterized by
L bits for representing input parameters, W bits for representing maximum dataset
size, and the specified maximum and minimum clipping range.
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Prerequisites Security paramter λ.
Parties: Server, nodes U and selected nodes U (τ), s.t |U| = ntot and |U (τ)| = n.

Public Parameters:

• (⊥, ppJL)← JL.Setup(λ)

Setup - Key Setup:

Node u:

1. sku
R←− ZN2 .

2. {(v, [sku]v)}∀v∈U ← SS.Share(sku, t,U)
3. Send ∀v ∈ U \ {u}, [sku]v
4. Receive {[skv]u}∀v∈U\{u}

5. [sk0]u ←
∑

∀v∈U [skv]u
6. Send [sk0]u to Server

Server:

1. Collect {[sk0]u}∀u∈U .

2. If |U| < t, abort; otherwise, proceed.

3. sk0 ← SS.Recon({[sk0]v}∀v∈U , t)

Online - Protection (τ):

Node u ∈ U :

1. y⃗u,τ ← JL.Protect(ppJL, sku, τ, x⃗u,τ )
2. Send y⃗u,τ to

Server.

Online - Aggregation (τ):

Server:

1. Collect {y⃗u,τ}∀u∈U .

2. x⃗τ ← JL.Agg(pp,−sk0, τ, {y⃗u,τ}∀u∈U )

(a) JL

Public Parameters:

• (⊥, ppLOM )← LOM.Setup(λ)

• (⊥, ppKA)← KA.Param(λ)

Setup - Key Setup:

Node u ∈ U :

1. ∀v ∈ U \ {u},
su,v ← KA.agree(ppKA, cSKu , cPKv )

Online - Protection (τ , U (τ)):

Node u ∈ U (τ):

1. y⃗u,τ ←
LOM.Protect(ppLOM , {su,v}∀v∈U(τ)\u, τ, x⃗u,τ )

2. Send y⃗u,τ to Server.

Online - Aggregation (τ):

Server:

1. Collect {y⃗u,τ}∀u∈U(τ) .

2. x⃗τ ← LOM.Agg(ppLOM , {y⃗u,τ}∀u∈U(τ))

(b) LOM

Figure B.2.: SA protocols implemented in Fed-BioMed
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CAppendix Chapter 4

C.1 Hybrid Security Proofs

We present the security proofs of our two protocols using the hybrid argument technique.
We do not consider the security proofs with an honest server since those proofs are
relatively straightforward. We let the reader refer to [Bonawitz, 2017a] for more
details.

We prove our protocols in the random oracle model for both adversarial models (i.e.
honest-but-curious and active) since the security of the JL scheme and its TJL variant
relies on the hash function being seen as a random oracle.

C.1.1 Honest-but-Curious Model

We first prove our protocol Eagle secure in the honest-but-curious model and then our
protocol Owl.

Eagle

We prove the security of Eagle against honest-but-curious server and clients through
a sequence of hybrids. We define a simulated execution, represented by a simulator
SIMU ,t,λ

C (x⃗τ,C ,U ,U (τ)
on ,U (τ)

shares) (denoted as SIM for short), through several modifications
to the real execution of the protocol, represented by REALU ,t,λ

C (x⃗τ,U ,U ,U (τ)
on ,U (τ)

shares)
(denoted as REAL for short), such that two subsequent hybrids are computationally
indistinguishable.

Hybrid0. Let C ⊆ U be any subset of adversarial parties (server and clients) such that
there are strictly less than t adversarial clients. This hybrid is distributed exactly as
REAL, that is the joint view of the parties in C in a real execution.

Hybrid1. In this hybrid, the behavior of the honest parties in U \ C is changed. Instead of
using the key cu,v ← KA.agree(ppKA, cSKu , cPKv ) to encrypt messages, a random key
cu,v is uniformly chosen by SIM. The security of the Diffie-Hellman key agreement
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KA under the Decisional Diffie-Hellman assumption ensures that this hybrid is
indistinguishable from Hybrid0.

Hybrid2. In this hybrid, all ciphertexts encrypted by honest parties in U \ C are changed.
Instead of encryptions of shares [sku]v, encryptions of 0 padded to the appropriate
length are sent to other honest parties. Note that the honest clients in U \ C still
answer with the correct shares [sku]v in the reconstruction step. Only the contents
of the ciphertexts have changed, hence the IND-CPA security of AE applies and
guarantees that this hybrid is indistinguishable from Hybrid1.

Hybrid3. In this hybrid, all shares of sku generated by users in U \ C are substituted with
shares of 0 using a different sharing of 0 for every client in that set. The security of
TJL has its secret sharing properties ensuring that the distribution of any |C| shares
of 0 is identical to the distribution of |C| shares of sku. The server never receives
sufficient shares to reconstruct sku since honest parties will not send their shares
of sku. Therefore, this hybrid is indistinguishable from Hybrid2.

Hybrid4. In this hybrid, instead of using y⃗u,τ ← JL.Protect(pp, sku,τ , τ0, x⃗u,τ ) for par-
ties in U \ C, we use y⃗u,τ ← JL.Protect(pp, sku,τ , τ0, w⃗u,τ ), where

∑
u∈U\C x⃗u,τ =∑

u∈U\C w⃗u,τ for uniformly random w⃗u,τ . The security of JL under the Decision Com-
posite Residuosity assumption ensures that encryptions of private inputs x⃗u,τ are
indistinguishable from encryptions of w⃗u,τ . Hence, this hybrid is indistinguishable
from Hybrid3.

Hybrid5. In this hybrid, for all parties in U \ C, instead of encryptions of the JL secret
key sku,τ , encryptions of 0 padded to the appropriate length are generated. The
security of TJL under the Decision Composite Residuosity assumption ensures that
this hybrid is indistinguishable from Hybrid4.

Hybrid6. Let us define U∗ = U \ C when |U (τ)
on | < t and U∗ = U \ U (τ)

on \ C other-
wise. In this hybrid, for all parties in U∗, instead of computing [⟨sk′

0,τ ⟩]u ←
TJL.ShareProtect(pp, {[skv]u}v∈U(τ)

on
, τ), we set it to be a uniformly random vari-

able of the appropriate size. Note that the key sku is chosen uniformly at random
in the real execution and that in a previous hybrid, the shares [sku]v of sku given
to the adversary were substituted with shares of 0. Hence, the only change in this
hybrid is the substitution of the output of the algorithm TJL.ShareProtect. From
the security of TJL under the Decision Composite Residuosity assumption, this
hybrid is indistinguishable from Hybrid5.

We finally define the PPT simulator SIM that samples from the distribution described
in Hybrid6. This proves that SIM’s output is computationally indistinguishable from
REAL’s output.
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Owl

We prove the security of Owl against honest-but-curious server and clients through
a sequence of hybrids. We define a simulated execution, represented by a simulator
SIMU ,t,λ

C (x⃗C ,U ,Uon,Ushares) (denoted as SIM for short), through several modifications to
the real execution of the protocol, represented by REALU ,t,λ

C (x⃗U ,U ,Uon,Ushares) (denoted
as REAL for short), such that two subsequent hybrids are computationally indistinguish-
able.

Hybrid0. Let C ⊆ U be any subset of adversarial parties (server and clients) such that
there are strictly less than t adversarial clients. This hybrid is distributed exactly as
REAL, that is the joint view of the parties in C in a real execution.

Hybrid1. In this hybrid, the behavior of the honest parties in U \ C is changed. Instead
of using the key cu,v ← KA.agree(ppKA, cSKu , cPKv ) to encrypt messages, a random
key cu,v is uniformly randomly chosen by SIM. The security of the Diffie-Hellman
key agreement KA under the Decisional Diffie-Hellman assumption ensures that
this hybrid is indistinguishable from Hybrid0.

Hybrid2. In this hybrid, all ciphertexts encrypted by honest parties in U \ C are changed.
Instead of encryptions of shares [sku,τu ]v, encryptions of 0 padded to the appropriate
length are sent to other honest parties. Note that the honest clients in U \ C still
answer with the correct shares [sku,τu ]v in the reconstruction step. Only the contents
of the ciphertexts have changed, hence the IND-CPA security of AE applies and
guarantees that this hybrid is indistinguishable from Hybrid1.

Hybrid3. In this hybrid, all shares of sku,τu generated by users in U \ C are substituted
with shares of 0 using a different sharing of 0 for every client in that set. The
properties of SS guarantees that the distribution of any |C| shares of 0 is identical
to the distribution of |C| shares of sku. The server never receives sufficient shares to
reconstruct sku,τu since honest parties will not send their shares of sku,τu . Therefore,
this hybrid is indistinguishable from Hybrid2.

Hybrid4. In this hybrid, instead of using y⃗u,τu ← JL.Protect(pp, sku,τu , τ0, x⃗u,τu) for par-
ties in U \C, we use y⃗u,τu ← JL.Protect(pp, sku,τu , τ0, w⃗u,τu), where

∑
u∈U\C x⃗u,τu =∑

u∈U\C w⃗u,τu for uniformly random w⃗u,τu . The security of JL under the Decision
Composite Residuosity assumption ensures that encryptions of private inputs x⃗u,τu

are indistinguishable from encryptions of w⃗u,τu . Hence, this hybrid is indistinguish-
able from Hybrid3.
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We finally define the PPT simulator SIM that samples from the distribution described
in Hybrid4. This proves that SIM’s output is computationally indistinguishable from
REAL’s output.

C.1.2 Active Model

Here, we consider active adversaries, that are clients or server deviating from the proto-
col by sending incorrect and/or arbitrarily chosen messages to honest users, aborting,
omitting messages and sharing their protocol view with each other (including the server),
as defined in [Bonawitz, 2017a].

We assume that authenticated encrypted channels exist to ensure that received messages
come from clients and not the server. We thus prevent the server from launching Sybil
attacks. We also ask the server to forward clients public keys in an honest way during the
registration step, to assist clients to establish private and authenticated communication
channels with each other.

Similarly to [Bonawitz, 2017a], we include a consistency check phase to prevent the
server to give different information about which client is online during the online phase.
This allows us to avoid the server to learn different sets of shares from different users,
allowing the unauthorised reconstruction of secrets.

Finally, the security proof requires us to be in the random oracle model. Such a model
helps the simulator reprogram the random oracle to make dummy information indistin-
guishable from values of honest clients.

We only present the security proof in the active model for Eagle since the differences
between the latter and the protocol Owl are small. Informally, the security of the protocol
Owl partly relies on the security of JL and of SS, rather than of TJL with ISS. The
remaining for proving our AsyncFL protocol Owl secure follows the same pattern as for
Eagle (i.e. encryption scheme, signature scheme).

Eagle - We prove the security of Eagle against active server and clients through a
sequence of hybrids. Given n, t, λ and a subset C of adversarial parties, we define MC as
a probabilistic polynomial-time algorithm that denotes the “next-message” function of
adversarial parties [Bonawitz, 2017a]. This function allows parties in C to dynamically
select their inputs at any round of the protocol execution as well as the list of online
users.

We define a simulated execution, represented by a simulator SIMU ,t,λ,IDξ

C (MC) (denoted
as SIM for short), through several modifications to the real execution of the protocol, rep-

110 Chapter C Appendix Chapter 4



resented by REALU ,t,λ
C (MC , x⃗U\C) (denoted as REAL for short), such that two subsequent

hybrids are computationally indistinguishable. REAL exhibits the combined views of the
adversarial parties in the protocol execution such that their messages and honest clients’
aborts are chosen using MC .

MC enables to dynamically set the subset of honest clients for which the server learns
their local model aggregation. Therefore, this aggregation cannot be provided for a
fixed subset of clients as input to SIM. Instead, SIM will make a single query to an ideal
functionality ID (seen as a random oracle) that allows it to learn the aggregation for a
dynamically chosen subset L of honest clients, such that |L| ≥ ξ for a lower bound ξ of
the number of honest clients. Note that all parties and MC have access to the random
oracle.

Hybrid0. Let C ⊆ U be any subset of adversarial parties (server and clients) such that
there are strictly less than t adversarial clients. This hybrid is distributed exactly
as the joint view of MC in REAL, that is the joint view of the parties in C in a real
execution.

Hybrid1. In this hybrid, a simulator emulates the real execution. This simulator knows
all the inputs x⃗u,τ of the honest parties and runs a full execution of the protocol
with MC, including a simulation of the random oracle “on the fly”, the secure
communication channel establishment and the setup phase. Thus, the adversarial
view is the same as in Hybrid0.

Hybrid2. In this hybrid, given any pair of honest users u and v, the messages be-
tween u and v are encrypted before being given to MC and decrypted after being
given to MC, using a uniformly random key rather than the one obtained from
KA.agree(ppKA, cSKu , cPKv ). The security of the Diffie-Hellman key agreement KA
under the Decisional Diffie-Hellman assumption ensures that this hybrid is indistin-
guishable from Hybrid1.

Hybrid3. In this hybrid, SIM aborts if MC manages to deliver a message to an honest
client u on behalf of another honest client v during the key setup phase, such
that the message is different from the message that SIM has given to MC in that
phase and that the decryption of this message does not fail (using the proper key).
Note that the encryption key that u and v used in Hybrid1 was randomly chosen.
Hence, based on such a message, the integrity of the ciphertext could be threatened.
Since the underlying encryption scheme is INT-CTXT secure, then this hybrid is
indistinguishable from the previous one.
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Hybrid4. In this hybrid, the simulator changes all encrypted shares sent between pairs
of honest users with encryptions of 0. Note that SIM still returns the “real” shares
in the reconstruction step as it did before. Since the encryption keys were chosen
uniformly at random, the IND-CPA security of the underlying encryption scheme
guarantees that Hybrid4 is indistinguishable from Hybrid3.

Hybrid5. In this hybrid, SIM aborts if MC gives a signature on a set which correctly
verifies based on an honest client’s public key during the consistency check step,
but the honest client has never created the signature on that set. The security of
the underlying signature scheme guarantees that forgeries happen with negligible
probability. Hence, Hybrid5 is indistinguishable from Hybrid4.

Hybrid6. Let Q ⊆ U be the single set where an honest party received Q during the
consistency check step and then received at least t valid signatures on it during the
reconstruction step.

SIM aborts if MC asks for key shares for some honest client u either before the
adversary has received the responses from the honest parties in the reconstruction
step, or after such responses have been received for u /∈ Q. In both cases, the key
sku is information theoretically hidden from MC, and the simulator aborts if MC

can guess one of those sku, happening with negligible probability. Indeed, the
values sku are chosen from the large domain ZN2

0
. Thus, the adversarial view is the

same as in Hybrid5.

Hybrid7. In this hybrid, the simulator aborts if MC asks for encryptions of the per-round
JL secret key for some honest client u either before the adversary has received
the responses from the honest parties in the reconstruction step, or after such
responses have been received for u /∈ Q. In both cases, the key sku,τ is information
theoretically hidden from MC, and the simulator aborts if MC can guess one of
those sku,τ , happening with negligible probability. Indeed, the values sku,τ are
chosen from the large domain ZN2

1
. Thus, the adversarial view is the same as in

Hybrid6.

Hybrid8. In this hybrid, the values y⃗u,τ computed by SIM on behalf of honest users and
sent to MC during the protection phase are changed with uniformly sampled values
such that those values are independent from the rest of the view. Hence, this hybrid
is indistinguishable from the previous one.

Hybrid9. For all u ∈ Q\ C, we choose values w⃗u,τ such that
∑
u∈Q\C w⃗u,τ =

∑
u∈Q\C x⃗u,τ .

Since sku,τ is never queried for u ∈ Q\ C by MC , then in the view of MC , the above
values are identically distributed as in the previous hybrid.
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Hybrid10. In this hybrid, SIM does not receive the inputs of honest parties. Instead,
during the reconstruction step, the simulator submits a query to ID for the set Q \ C
and uses the output to sample the required elements w⃗u,τ . By construction, we
have |Q| ≥ t and |Q \ C| ≥ t− nC where nC = U ∩ C. Hence, ID will not abort. This
change does not modify the view of the adversary, making Hybrid9 and Hybrid10
indistinguishable. Moreover, this hybrid does not make use of the inputs of honest
parties, concluding the proof.
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DAppendix Chapter 5

D.1 Notations

Symbol Description (Chapter 4) Description (Chapter 5)
ntot total number of clients total number of clients
n number of selected clients / buffer size buffer size
δ fraction of dropped clients fraction of dropped decryptors
t number of honest online clients number of online honest decryptors
d size of input size of input
∆ value set as equal to n! -
U set of clients set of clients s.t. |U| = ntot
U (τ) set of selected clients set of clients in the buffer s.t. |UBUFF| = n
Uon set of online clients -
Ushares set of honest online clients set of decryptors s.t. |K| = k
xu client’s (scalar) input scalar input of client u
x⃗u client’s (vector) input vector input of client u
yu protected client’s (scalar) input protected scalar input of client u
y⃗u protected client’s (vector) input protected vector input of client u
y′ protected (scalar) zero value -
y⃗′ protected (vector) of zero values -
x aggregate (scalar) scalar aggregate
x⃗ aggregate (vector) vector aggregate
τ current FL round -
τ0 value set as equal to 0 -
τu current FL round of client u current FL round of client u
[s] share produced by secret sharing scheme share of a secret s
N modulus JL modulus
R plaintext size -
m - size of LWE secret key
p, q - prime numbers
λ security parameter security parameter
R←− chosen uniformly at random chosen uniformly at random

Table D.1.: Notations

D.2 Cryptographic Building Blocks

D.2.1 Elliptic Curves

An Elliptic Curve (EC) E(Fp), over the field Fp with prime number p, consists of points
P = (x, y), where x, y ∈ Fp satisfy y2 = x3 + ax+ b, together with the point at infinity
O [Lopez, 2000]. Let p > 3 be an odd prime, and a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0. Two
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operations are defined on EC, namely point addition and scalar multiplication. Given
an integer k, the scalar multiplication kP corresponds to adding the point P to itself k
times and is analogous to the exponentiation operation in multiplicative groups.

D.2.2 Shamir Secret Sharing

A t-out-of-n Shamir Secret Sharing scheme [Shamir, 1979], denoted as SS, defined in a
field Fp, where p is a prime number, consists of two PPT algorithms:

• {(u, [s]u)}u∈U ←SS.Share(s, t,U): This algorithm splits a secret s ∈ Fp into n

shares [s]u ∈ Fp, each of them for one client u ∈ U . Note that each u is an element
of Fp, representing each client uniquely. Let t be the reconstruction threshold and n
be the number of the clients in the set U . The algorithm first generates a polynomial
p(x) of uniformly random coefficients and degree t − 1 such as p(0) = s. It then
computes p(u) = [s]u for all u ∈ U .

• s ←SS.Recon({(u, [s]u)}u∈U ′ , t): This algorithm reconstructs the secret s ∈ Fp
using at least t shares. It is required that U ′ ⊆ U and |U ′| ≥ t. The algorithm uses
the Lagrange interpolation to compute the value p(0) = s as follows (all operation
are in the field Fp):

s =
∑
u∈U ′

λu[s]u where λu =
∏

u∈U ′\{u}

v

v − u

Packed SS Variant

A packed variant of the SS scheme can be constructed as follows [Franklin, 1992]. Let us
consider the case of generating n shares from a secret vector s⃗ ∈ Flp where l < n. Let t
be the reconstruction threshold and n− l − t be the dropout tolerance. We construct a
polynomial of degree l + t− 1 with the l secret vector inputs and t random masks in Fp
as coefficients. The polynomial evaluations on n distinct non-zero points in Fp yield the
n shares of the SS scheme.

D.2.3 Threshold ElGamal Encryption

The following TEG scheme is additively homomorphic with respect to messages (rep-
resented as EC points) [Lopez, 2000]. The TEG scheme uses the Shamir SS scheme
[Shamir, 1979], where the algorithm SS.Share shares a secret s into n shares while the
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algorithm SS.Recon allows recovering this secret s by collecting t out of the n shares
(see Appendix D.2.2). The TEG scheme is defined by four algorithms.

• (pk, {[sk]u}u∈U ) ← TEG.Setup(t,U , λ): Let t be the threshold for successful secret
reconstruction and U be the set of participants. The algorithm selects sk ∈ Zp where p
is a prime number, and computes pk = gsk where g is a generator of the cyclic group
built from some elliptic curve. It then shares sk into [sk]u ∀u ∈ U using the algorithm
SS.Share.

• ⟨m⟩ ← TEG.Encrypt(pk,m): To encrypt the message m, the algorithm computes the
ciphertext ⟨m⟩ = (c0, c1) = (gr,m · pkr) where r ∈ Zp is the encryption randomness.

• [m]u ← TEG.PartialDecrypt([sk]u, ⟨m⟩): The partial decryption [m]u of the message
m is computed as follows: [m]u = (c[sk]u

0 , c1) where ⟨m⟩ = (c0, c1).

• m ← TEG.Decrypt({(u, [m]u)}u∈U ′): The algorithm computes the Lagrange interpo-
lation on the exponent as follows: csk0 =

∏
u∈U ′(c[sk]u

0 )λu where the coefficients λu are
defined in the algorithm SS.Recon, and U ′ ⊆ U such that |U ′| ≥ t. The algorithm finally
computes the original message m as follows: m = (csk0 )−1 · c1.

D.2.4 Other Cryptographic Primitives

In our protocols, we employ the following cryptographic primitives for secure communi-
cation among clients and server.

Through a secure Key Agreement protocol, denoted as KA, any client can input their
private key and the public key of another client to produce a shared secret key. In practice,
it can be instantiated with a Diffie–Hellman KA protocol followed by a key derivation
function [Bonawitz, 2017a].

Authenticated Encryption, denoted as AE, combines confidentiality and integrity guar-
antees for messages exchanged between two parties. It consists of a key generation
algorithm that outputs a private key, an encryption algorithm AE.Enc that takes as input
a key and a message, and outputs a ciphertext, and a decryption algorithm AE.Dec that
takes as input a ciphertext and a key, and outputs the original plaintext.

We also consider a Signature scheme Sig that is existentially unforgeable under chosen
message attacks. A signing algorithm Sig.Sign takes as input a secret key and a message
and outputs a signature, and a verification algorithm Sig.Ver takes as input a public key,
a signature and a message, and outputs ’1’ if and only if the signature is valid for the
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AsyncLightSecAgg [So, 2022]

Client Comp. Client: O(k2 d
⌊δkk−t⌋ + d)

Decryptor: O(n d
⌊δkk−t⌋)

Client Comm. Client: O(k d
⌊δkk−t⌋ + d)

Decryptor: O(n d
⌊δkk−t⌋)

Server Comp. O(k2 d
⌊δkk−t⌋ + nd)

Table D.2.: Complexity analysis for one BAsyncFL round (n: buffer size; k: number of
decryptors;t: threshold value; d: input dimension; δk: fraction of dropped de-
cryptors).

given message. In practice, it can be instantiated with the Elliptic-Curve Digital Signature
Algorithm (ECDSA) followed by a key derivation function.

Finally, a commitment scheme that is perfectly hiding and computationally binding
under the discrete logarithm assumption is needed for aggregation verification. A
committing algorithm COM.- Commit takes as input a message and a witness and outputs
a commitment, and an opening algorithm COM.Open takes as input a commitment, a
message and a witness, and outputs ’1’ if and only if the commitment is valid for the
given message. In practice, it can be instantiated with the Pedersen scheme with vector
commitments [Pedersen, 1992].

D.3 Complexity LightSecAgg in BAsyncFL

In Table D.2, we present the complexity analysis for AsyncLightSecAgg. A comparison
with Table 5.1 reveals that AsyncLightSecAgg encounters challenges from the substantial
input dimension d, which commonly surpasses 104 in practical scenarios [Kairouz, 2019].
Consequently, when compared with both Buffalo and AsyncDPSecAgg, it consistently
exhibits higher computation and communication overheads. They both rely on lattice-
based encryption, where the dimensionality of the LWE (m) is considerably smaller
compared to d.

D.4 Implementation Details of BAsyncFL

Stochastic Gradient Descent (SGD) was employed as the client training algorithm with a
learning rate (η), batch size (b), and a specific number (e) of local SGD steps.

More precisely: (i) For REPLACE-BG: η = 0.1, b = 64, e = 20; (ii) For CELEBA: η = 0.01,
b = 8, e = 10; (iii) For SENT140: η = 0.1, b = 32, e = 10.
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Model parameter updates are converted to 8-bit fixed-point values by multiplying by a
factor of 10.

D.5 Hybrid Security Proofs

Buffalo

To prove security of Buffalo, we follow the standard simulation-based paradigm. In
particular, we show that the view of any attacker against the protocol can be simulated
using only the input of the corrupted parties and the protocol output. Intuitively, this
means that corrupted parties learn nothing more than their inputs and the intended
protocol leakage (i.e. the aggregated input in our case). We prove our protocol in the
random oracle model for the active model (the security in the honest-but-curious setting
follows directly) since the security of the JL scheme relies on the hash function being
seen as a random oracle. We assume that the adversary controls a set C of corrupted
clients in U . As before, the set of the decryptors is K. The honest decryptors form a set
K \ (K ∩ C) such that |K \ (K ∩ C)| > 2k

3 .

Given n, k, t, λ and the set C of adversarial parties, we define A as a probabilistic
polynomial-time algorithm that denotes the “next-message” function of adversarial
parties [Bonawitz, 2017a]. This function allows parties in C to dynamically select their
inputs at any round of the protocol execution as well as the list of clients.

We define a simulated execution, represented by a simulator SU ,K,t,λ,IDξ

C (A) (denoted as
S for short), through several modifications to the real execution of the protocol, repre-
sented by REALU ,K,t,λ

C (A, x⃗U\C) (denoted as REAL for short), such that two subsequent
hybrids are computationally indistinguishable. REAL exhibits the combined views of the
adversarial parties in the protocol execution such that their messages and honest clients’
aborts are chosen using A.

A enables to dynamically set the subset of honest clients for which the server learns
their local model aggregation. Therefore, this aggregation cannot be provided for a
fixed subset of clients as input to S. Instead, S will make a single query to an ideal
functionality ID (seen as a random oracle) that allows it to learn the aggregation for a
dynamically chosen subset L of honest clients, such that |L| ≥ ξ for a lower bound ξ

of the number of honest clients. Note that all parties and A have access to the random
oracle.

Hybrid0. Let C ⊆ U be any subset of adversarial parties (server and clients) such that
there are strictly less than t adversarial decryptors. This hybrid is distributed exactly
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as the joint view of A in REAL, that is the joint view of the parties in C in a real
execution.

Hybrid1. In this hybrid, the simulator emulates the real execution. S knows all the inputs
{x⃗u,τu}u∈U\C of the honest parties and runs a full execution of the protocol with A,
including a simulation of the random oracle “on the fly”, the secure communication
channel establishment and the setup phase. Thus, the adversarial view is the same
as in Hybrid0.

Hybrid2. In this hybrid, given any pair of honest client/decryptor u ∈ U and i ∈ K,
the messages between u and i are encrypted before and decrypted after be-
ing given to A, using an uniformly random key rather than the one obtained
from KA.agree(ppKA, cSKu , cPKi ) = KA.agree(ppKA, cSKi , cPKu ). The security of the
Diffie-Hellman key agreement KA under the Decisional Diffie-Hellman assumption
ensures that this hybrid is indistinguishable from Hybrid1.

Hybrid3. In this hybrid, S aborts if A manages to deliver a message to an honest client
u on behalf of another honest decryptor i during Round 1 (line 11), such that
the message is different from the message that S has given to A in that phase
and that the decryption of this message does not fail (using the proper key). Note
that the encryption key that u and i used in Hybrid2 was randomly chosen. Hence,
based on such a message, the integrity of the ciphertext could be threatened.
Since the underlying encryption scheme is INT-CTXT secure, then this hybrid is
indistinguishable from the previous one.

Hybrid4. In this hybrid, the simulator changes all encrypted shares sent between pairs
of honest clients/decryptors with encryptions of 0. Note that S still returns the
“real” shares in the Round 3 as it did before. Since the encryption keys were chosen
uniformly at random, the IND-CPA security of the underlying encryption scheme
guarantees that Hybrid4 is indistinguishable from Hybrid3.

Hybrid5. In this hybrid, S aborts if A gives a signature on a set UBUFF which correctly
verifies based on an honest decryptor’s public key during Round 3 (line 2), but
the honest decryptor has never created the signature on that set. The security of
the underlying signature scheme guarantees that forgeries happen with negligible
probability. Hence, Hybrid5 is indistinguishable from Hybrid4.

Hybrid6. Let Q ⊆ K be the single set where an honest decryptor received UBUFF during
Round 2 (line 1) and then received at least t valid signatures on it during Round 3
(line 2).
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S aborts ifA asks for key shares for some honest client u either before the adversary
has received the responses from the honest parties in Round 3, or after such
responses have been received for u /∈ UBUFF. In both cases, the JL key sku,τu is
information theoretically hidden from A, and the simulator aborts if A can guess
one of those sku,τu , happening with negligible probability. Indeed, the values sku,τu

are chosen from the large domain ZN2 . Thus, the adversarial view is the same as
in Hybrid5.

Hybrid7. In this hybrid, the simulator aborts if A asks for encryptions of the per-round
LWE secret key for some honest client either before the adversary has received
the responses from the honest parties in the Round 3, or after such responses
have been received for u /∈ UBUFF. In both cases, the key s⃗u,τu is information-
theoretically hidden from A, and the simulator aborts if A can guess one of those
s⃗u,τu , happening with negligible probability. Indeed, the values s⃗u,τu are chosen
from the large domain Zmq . Thus, the adversarial view is the same as in Hybrid6

Hybrid8. In this hybrid, the values y⃗u,τu computed by S on behalf of honest clients and
sent to A during the protection phase are changed with uniformly sampled values
such that those values are independent from the rest of the view. Hence, this hybrid
is indistinguishable from the previous one.

Hybrid9. For all u ∈ UBUFF \ C, we choose values w⃗u,τu such that
∑
u∈UBUFF\C w⃗u,τu =∑

u∈UBUFF\C x⃗u,τu . Since s⃗u,τu and sku,τu are never queried for u ∈ UBUFF \ C by A,
then in the view of A, the above values are identically distributed as in the previous
hybrid.

Hybrid10. In this hybrid, S does not receive the inputs of honest parties. Instead, during
Round 3, the simulator submits a query to ID for the set UBUFF \ C and uses the
output to sample the required elements w⃗u,τu . By construction, we have |K| ≥ t

and |K \ (K ∩ C)| ≥ t − kC where kC = |K ∩ C|. Hence, ID will not abort. This
change does not modify the view of the adversary, making Hybrid9 and Hybrid10
indistinguishable. Moreover, this hybrid does not make use of the inputs of honest
parties, concluding the proof.

Buffalo+

We refer to the other works [Kempen, 2023] (Appendix E), [Ma, 2023] (Appendix D.5)
and [Guo, 2022] (Section 3) for an overview of the hybrid security proof of Buffalo+.
Similar to [Kempen, 2023], Buffalo+’s proof follows Buffalo’s hybrid proof as described
above, in addition to extra hybrid steps that we shortly describe below. Following
[Kempen, 2023], we can prove that Buffalo+ is secure thanks to the unforgeability
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property of the digital signature scheme, the binding property of the commitment scheme
and the hiding property of the masking technique. Following [Ma, 2023], we can prove
that Buffalo+ is secure thanks to the CPA security of the TEG scheme. Following [Guo,
2022], we can prove that Buffalo+ is secure thanks to the collision resistance of the
underlying hash function.
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