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Chapitre 1

Introduction en français

1.1 Médecine de précision

1.1.1 Généralités

La recherche médicale permet de mieux comprendre les mécanismes biologiques qui
influencent l’évolution et le développement des maladies chroniques, des mécanismes
qui varient considérablement d’un patient à l’autre. Grâce aux avancées remarquables
de la médecine moderne en termes de soins, de médicaments et de traitements, l’ex-
ploration de nouvelles approches se concentre de plus en plus sur l’idée de fournir le
bon traitement à la bonne personne, au bon moment. C’est le paradigme de la méde-
cine de précision, également connue sous le nom de médecine personnalisée, qui permet
d’adapter les traitements aux caractéristiques individuelles des patients [11, 50, 51].
Son objectif n’est pas de remplacer les traitements existants ou de déterminer un médi-
cament unique pour chaque patient, mais de compléter l’arsenal thérapeutique actuel
pour permettre une prise de décision médicale personnalisée, dans le but de soigner cha-
cun de manière efficace. Cela est rendu possible grâce aux avancées technologiques dans
la collecte et le stockage des données. Le volume de données individuelles collectées a
considérablement augmenté, permettant ainsi de mieux comprendre les facteurs indivi-
duels influençant les effets d’une intervention. Ces nouvelles et vastes bases de données
permettent de contrôler l’hétérogénéité des patients. Chaque individu est unique, que
ce soit en termes de génétique, d’environnement, de mode de vie et particulièrement
dans sa réponse aux traitements. Ces variabilités, souvent mises en lumière par les
essais cliniques randomisés contrôlés, soulignent l’importance de mettre en place des
traitements plus personnalisés, améliorant ainsi la qualité des soins proposés.

Nous nous intéressons ici plus particulièrement aux maladies chroniques telles que
le cancer, le diabète ou les troubles psychiatriques... Les patients atteints de ces mala-
dies suivent des traitements de longue durée, régulièrement évalués ou réévalués par les
médecins. La médecine de précision se matérialise alors sous la forme de règles de déci-
sion qui recommandent les traitements à entreprendre en fonction de l’état du patient.
Ces ensembles de règles de décision médicale sont formalisés à travers des régimes de
traitements dynamiques, ou Dynamic Treatment Regimes (DTR) en anglais. Un DTR
consiste en une séquence de règles de décision, une par étape d’intervention, qui dicte
comment individualiser les traitements en fonction de l’évolution de l’historique des
traitements et des covariables [11]. Lorsqu’il n’y a qu’une seule étape d’intervention
médicale, un seul temps de décision, on parle alors de régime de traitement individua-
lisé ou Individualized Treatment Regime (ITR) en anglais.
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La recherche de règles de décision médicale personnalisées, en particulier dans le
cadre des DTR, s’appuie sur des données observationnelles médicales structurées de
manière longitudinale. L’analyse de ces données réelles en médecine implique néces-
sairement de prendre en compte la causalité. En médecine de précision, il est crucial
de comprendre les relations causales pour déterminer comment les interventions mé-
dicales affectent individuellement les patients. Contrairement aux simples corrélations,
les relations causales permettent d’identifier les effets directs des traitements sur la
santé, ce qui aide les cliniciens à adapter les traitements aux caractéristiques spéci-
fiques des patients, garantissant ainsi des interventions appropriées et efficaces. Pour
tirer des conclusions causales à partir des données observées, il est essentiel de res-
pecter certaines hypothèses, que nous détaillerons dans la Section 3.4.3 du Chapitre
3. L’un des designs d’essais cliniques qui satisfait ces conditions est celui des Sequen-
tial Multiple Assignment Randomized Trials (SMART). Les essais SMART sont des
études expérimentales dans lesquelles les patients sont randomisés à plusieurs moments
clés du traitement, afin de tester et d’optimiser des stratégies de traitement adaptatif.
Considérés comme le "gold standard" des essais cliniques en médecine de précision, ces
designs sont largement étudiés dans la littérature [13, 51, 11]. Cependant, leur mise en
œuvre est complexe et coûteuse, ce qui limite le nombre d’essais disponibles. Parmi les
essais notables, on peut citer CATIE [107], ADHD [11, 54], et STAR*D [11, 53].

1.1.2 Individualized treatment regime

Un premier cadre formel de la prise de décision dans le cadre de la médecine de
précision est celui des ITR. On considère un seul point de décision à partir de données
observées, de taille n ∈ N, de la forme {(Xi, Ai, Ri)}ni=1, où X ∈ X représente les
caractéristiques initiales du patient, A ∈ A est le traitement administré, et R ∈ R
est la réponse au traitement, des valeurs plus élevées indiquant un meilleur état du
patient. Un ITR est une fonction d : X → A. Sous le régime d, les patients avec X = x

se verraient attribuer le traitement d(x) [50]. Identifier un ITR optimal, implique de
trouver la règle de décision qui maximise la réponse au traitement R pour tous les
patients.

1.1.3 Dynamic treatment regimes

Le second cadre formel, qui généralise les ITR dans un contexte à plusieurs étapes de
décisions, est celui des DTR. Les données se présentent alors sous la forme {(X1,i, A1,i,

R1,i, . . . , XT,i, AT,i, RT,i)}ni=1 qui comprennent n données identiquement indépendam-
ment distribuées répliques de (X1, A1, R1, . . . , XT , AT , RT ) où X1 ∈ X1 sont les ca-
ractéristiques du patient au début de l’étude et Xt ∈ Xt sont les données récoltées
au temps intermédiaire t pour t = 2, . . . , T ; At ∈ At est le traitement assigné au
temps t ; Rt est la réponse mesuré au temps t. On introduit également H1 = X1 et
Ht = (Ht−1, At−1, Rt−1, Xt) où Ht représente l’historique médical du patient au temps
t. Un DTR est une séquence de fonctions d = (d1, . . . , dT ) où dt : Ht → At [50],
signifiant qu’à chaque étape de décision, un traitement est recommandé en fonction
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de l’historique de traitement. Un DTR optimal maximise l’espérance d’une mesure de
réponse cumulative du vecteur R = (R1, . . . , RT ).

1.1.4 Méthodes de constructions de règles de décision

Pour construire ces règles de décision optimales, deux grandes familles d’approches
existent. La première famille repose sur des modèles de régression tels que le Q-learning
[126, 75] et la G-estimation [96, 99, 95]. La deuxième famille de méthodes inclut des
approches qui estiment la valeur attendue de la réponse sous un régime particulier sans
faire d’hypothèses paramétriques. Une fois cette valeur estimée, la règle de décision
optimale peut être déterminée en explorant une classe de régimes possibles. Parmi ces
méthodes, on trouve les marginal structural mean models [97, 83], inverse probability
of treatment weighting [97], augmented inverse probability of treatment weighting [139],
et Outcome-Weighted Learning (OWL) [143].

Pendant cette thèse, notre recherche s’est appuyée sur une méthode de chaque fa-
mille de résolution : le Q-learning et OWL. Dans la suite de cette introduction, nous
nous concentrerons tout d’abord particulièrement sur le Q-learning, dans le cadre DTR,
un algorithme faisant partie du vaste domaine de l’apprentissage par renforcement. En
effet, nous verrons que ce sous-domaine de l’apprentissage automatique, qui répond aux
problèmes de décision à plusieurs étapes, peut s’adapter parfaitement au contexte de
la médecine de précision dans la Section 1.2. Cela nous permettra de situer deux de
nos travaux de recherche : l’intégration des connaissances médicales dans les modèles
d’apprentissage par renforcement et la construction de récompenses dites data-driven
via l’apprentissage par préférences. Ensuite, nous nous reviendrons plus particulière-
ment sur l’une des méthodes non paramétriques appliquées dans le cadre des ITR : la
méthode OWL dans la Section 1.3. Cela nous conduira à introduire la troisième contri-
bution de cette thèse, qui propose une perspective bayésienne pour cette méthode,
permettant de quantifier l’incertitude associée aux traitements recommandés.

1.2 Apprentissage par renforcement

1.2.1 Qu’est que l’apprentissage par renforcement ?

Le Q-learning, mentionné parmi les méthodes précédentes, fait partie d’un ensemble
plus large d’algorithmes appartenant au domaine de l’apprentissage par renforcement,
ou Reinforcement Learning (RL). Ce domaine de recherche en apprentissage automa-
tique se concentre sur l’acquisition de stratégies de contrôle pour un système, en ex-
ploitant les interactions dynamiques entre ce système et un agent intelligent. L’objectif
est de permettre à cet agent, une entité apprenante, de maximiser un objectif prédéfini
au fil de ses interactions avec l’environnement. Classiquement, le RL se déroule dans
un environnement interactif. L’agent choisit des actions, entraînant des modifications
de l’état de l’environnement. En retour, l’environnement fournit des récompenses, des
valeurs numériques spécifiques, pouvant être positives ou négatives. Ces récompenses
indiquent à quel point les actions de l’agent ont été bénéfiques ou nuisibles par rapport
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à l’objectif global de maximisation de la récompense cumulative. Grâce à ce retour d’in-
formation, l’agent adapte sa stratégie pour améliorer ses décisions futures et atteindre
plus efficacement son objectif. Ainsi, le domaine de l’apprentissage par renforcement
introduit les notions suivantes :

— État : une représentation de la situation actuelle dans laquelle se trouve l’agent.
Les états contiennent les informations nécessaires pour décider des actions fu-
tures.

— Action : une décision prise par l’agent qui affecte l’environnement. Les actions
peuvent être discrètes (comme déplacer un pion sur un plateau) ou continues
(comme ajuster la vitesse d’une voiture).

— Récompense : un signal reçu par l’agent après avoir effectué une action. La
récompense indique à quel point l’action était bénéfique en fonction de l’objectif
de l’agent.

— Politique : une stratégie ou un ensemble de règles que l’agent utilise pour choisir
ses actions en fonction des états. La politique peut être déterministe (une action
fixe pour chaque état) ou stochastique (une distribution de probabilités sur les
actions).

— Fonctions valeur : une estimation de l’utilité ou de la récompense future cu-
mulée qu’un agent peut attendre d’un état ou d’une action donnée. Les fonctions
de valeur aident à évaluer les politiques et à décider des meilleures actions.

Les fondements et origines de l’apprentissage par renforcement sont attribués à Ri-
chard Bellman dans les années 60 [6, 7, 108] grâce à ses travaux sur la programmation
dynamique et l’optimalité, dont les équations forment maintenant un des principes clés
de ce domaine. Dans les années 90, l’algorithme du Q-learning a été proposé par Chris
Watkins, marquant une avancée significative [125]. Parallèlement, Richard Sutton a dé-
veloppé la méthode de l’apprentissage par différence temporelle [112]. En 1998, Andrew
Barto et Richard Sutton ont publié une première édition de "Reinforcement Learning :
An Introduction" [113] qui résume et compile leurs recherches et développements anté-
rieurs. Ce livre, souvent cité comme une source essentielle pour comprendre l’évolution
et les fondements de l’apprentissage par renforcement, pose les bases des concepts de
récompense et de politique formalisés dans le cadre des processus de décision de Markov.

Le formalisme mathématique classique et largement adopté par la communauté de
l’apprentissage par renforcement est celui des Processus de Décision de Markov ou
Markov Decision Process (MDP). Un MDP est défini par un quintuplet (S,A, P,R, γ)

[9, 28] où :
— États : ensemble des états possibles du système, S.
— Actions : ensemble des actions disponibles pour l’agent, A.
— Probabilités de transition : fonction P (s′|s, a) donnant la probabilité d’at-

teindre l’état s′ après avoir pris l’action a dans l’état s.
— Récompense : fonction R(s, a) fournissant la récompense reçue après avoir pris

l’action a dans l’état s.
— Facteur d’actualisation : paramètre 0 ≤ γ ≤ 1 qui pondère l’importance des

récompenses futures.
L’objectif est de trouver une politique optimale π∗ qui maximise la récompense
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cumulative attendue à long terme à partir de chaque état s.
L’apprentissage par renforcement trouve des applications variées dans de nombreux

domaines grâce à sa capacité à résoudre des problèmes complexes de prise de décision
séquentielle. Dans les jeux et simulations, il est utilisé pour former des agents à des
jeux complexes comme le Go et les échecs. En robotique, le RL permet aux robots de
naviguer, d’éviter des obstacles et de manipuler des objets avec précision. Dans l’auto-
matisation industrielle, il optimise les chaînes de production et la gestion des ressources
en temps réel. En finance, il aide à développer des stratégies de trading algorithmique
et à optimiser la gestion des risques. Dans le transport et la logistique, le RL est utilisé
pour entraîner des véhicules autonomes et optimiser la chaîne d’approvisionnement. Il
améliore également la personnalisation du contenu dans les systèmes de recommanda-
tion. Dans le cadre de cette thèse, c’est l’application du RL en santé qui nous intéresse,
et qui a suscité un engouement dans la recherche médicale à travers de nombreuses
revues [133, 16, 21]. Le RL peut servir la santé de nombreuses manières, allant de la
logistique et gestion hospitalière aux soins des patients. Ici, nous nous concentrerons
particulièrement sur son utilisation en médecine de précision pour l’apprentissage de
stratégies de traitements personnalisés.

1.2.2 Apprentissage par renforcement et médecine de précision

L’apprentissage automatique a connu un développement significatif au cours des
dernières décennies, offrant des solutions efficaces pour résoudre des problèmes com-
plexes de grande envergure. Parmi ces approches, RL s’est distingué par sa capacité à
apprendre des règles de décision dans des scénarios séquentiels, démontrant ainsi son
utilité en médecine de précision. Le RL vise principalement à identifier des règles de
décision optimales en maximisant les gains cumulatifs à long terme. En médecine, où
les effets des traitements et leurs éventuels effets secondaires peuvent se manifester
après plusieurs étapes, l’élaboration d’une stratégie à long terme est un atout majeur.
De plus, les modèles de RL permettent de traiter simultanément de vastes ensembles
de données de covariables des patients tout en abordant des problèmes de décision à
plusieurs étapes.

La modélisation du problème de décisions séquentielles sous-jacent établit un lien
entre les DTR et le RL. Ainsi, le RL s’est largement imposé parmi les méthodes de
détermination des DTR au cours de ces dernières années [127, 19, 121, 15, 60]. Ce-
pendant, la transition entre RL et DTR, bien que évidente, n’est pas nécessairement
directe. Le RL, tel qu’il est présenté classiquement, n’est pas adaptable aux questions
liées à l’application médicale, et certains algorithmes répondent mieux aux attentes de
ce domaine. Premièrement, décrire un DTR par un processus de décision markovien
peut être limitant à cause de l’hypothèse markovienne. Cette dernière stipule que le
dernier état du patient contient toute l’information nécessaire à la prise de décision,
obligeant ainsi à ignorer son passé médical. C’est une hypothèse forte pour le cadre
de la santé, où il est préférable de considérer un processus de décision plus général.
Deuxièmement, le RL est généralement introduit dans un contexte d’environnement
interactif. Or, il est évident qu’il est impossible et non éthique de laisser un algorithme
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interagir avec des patients pour apprendre par tâtonnement une stratégie de traitement
optimale. Cette stratégie de traitement doit être déterminée à partir de données déjà
collectées. Nous sommes alors dans un contexte particulier de RL appliqué en mode
offline. Plus précisément, les données collectées l’ont été selon une stratégie médicale
déjà établie, soit par un médecin, soit dictée par un essai clinique. Nous apprenons donc
une stratégie optimale par rapport à celle déjà suivie, ce qui est désigné par le terme
de RL off-policy. Le RL est régi par différentes dichotomies : model-based/model-free,
policy-based/value-based ou encore on-policy/off-policy. Ces propriétés peuvent nous ai-
der à nous y retrouver parmi la vaste littérature algorithmique du RL. Cela m’amène
à mon troisième point sur les spécificités de l’application du RL aux DTR : le Q-
learning. Parmi la grande variété d’algorithmes, le Q-learning dans sa forme backward
s’est imposé comme l’algorithme idéal pour l’application aux DTR (voir l’Annexe 6).
Les propriétés du Q-learning, étudiées en détail, montrent pourquoi cet algorithme est
particulièrement adapté aux besoins de la médecine de précision.

Le lien entre les DTR et le RL, ainsi que les éléments soulevés ici, feront l’objet du
Chapitre 3, permettant d’approfondir le formalisme du RL, les spécificités du contexte
applicatif et les propriétés algorithmiques.

1.2.3 Intégration du savoir médical dans les modèles d’apprentissage
par renforcement

Bien que le RL soit une solution technique prometteuse pour les questions de méde-
cine de précision, il repose sur des techniques d’apprentissage automatique qui peuvent
susciter de l’appréhension chez les patients comme chez les praticiens. S’assurer que
les règles de décision construites sont sûres, interprétables et efficaces sur le plan mé-
dical est l’une des problématiques majeures de l’application concrète du RL en milieu
hospitalier [21, 133]. Un des moyens de répondre à cette problématique est d’intégrer
le savoir médicale dans les modèles de RL. En combinant les connaissances cliniques
aux algorithmes d’apprentissage automatique, il est possible de créer des modèles plus
robustes et adaptés aux réalités du terrain. L’idée est de créer une synergie entre les
capacités d’apprentissage automatique et les connaissances des experts du domaine [39,
69]. Cette collaboration renforce la confiance dans les modèles de RL et leurs recom-
mandations [66], tout en facilitant l’adoption de cette technologie par les professionnels
de la santé et les patients en milieu clinique [40]. La combinaison de l’apprentissage
automatique et de l’expertise humaine produit des résultats supérieurs à ceux obte-
nus par l’utilisation seule du RL ou par les seules décisions des experts [5, 56]. En
outre, d’un point de vue technique, l’intégration des connaissances médicales réduit le
temps d’apprentissage, permettant une adaptation et une amélioration plus rapides des
méthodes, ce qui mène à des solutions de santé plus efficaces et centrées sur le patient.

L’intégration des connaissances médicales dans les algorithmes d’apprentissage par
renforcement commence par la préparation du modèle, notamment par le traitement et
la préparation des données ainsi que par la sélection de l’algorithme le plus approprié.
Ensuite, cette intégration intervient particulièrement sur les éléments clés du RL tels
que les récompenses, les fonctions de valeur et d’objectif, ainsi que la politique. La
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première partie du Chapitre 4 présentera un état de l’art des méthodes d’intégration des
connaissances médicales dans les modèles d’apprentissage par renforcement, en mettant
l’accent sur les propriétés algorithmiques choisies par chacune de ces méthodes. Cela
permettra de mettre en lumière les adaptations nécessaires pour l’application des DTR
sur des données observationnelles.

1.2.4 Construction de récompenses par apprentissage par préférences

Dans le contexte de l’intégration du savoir d’expert, l’apprentissage par préférences,
ou Preference Learning, se révèle être une méthode particulièrement prometteuse. L’idée
consiste à construire les récompenses d’un modèle de RL à partir de préférences fournies
par un expert. Les récompenses jouent un rôle crucial dans l’apprentissage des stratégies
car elles constituent le critère à optimiser. Ainsi, leur conception doit encapsuler au
mieux l’état du système pour fournir de réelles indications pendant l’apprentissage.
Généralement, les récompenses sont définies par un expert du système qui propose
de les évaluer via un score. Par exemple, dans les essais cliniques pour les personnes
atteintes d’obésité visant à réduire leur poids, la récompense peut être mesurée par
l’indice de masse corporelle [61]. Dans les soins intensifs, les traitements peuvent être
évalués en fonction des taux de survie ou de mortalité [101]. Certaines récompenses sont
plus complexes et combinent plusieurs variables. Par exemple, dans une simulation de
cancer présentée dans [144], les récompenses sont basées sur la taille de la tumeur, la
toxicité du traitement, le bien-être du patient et les taux de survie. En cas de décès, un
score arbitraire de -60 est généralement attribué. Construire manuellement une fonction
de récompense peut impliquer des choix arbitraires ou très spécifiques au contexte, ce
qui peut limiter les objectifs d’apprentissage.

L’apprentissage par préférence propose de généraliser la construction des récom-
penses en utilisant un modèle probabiliste de Bradley-Terry [105, 10]. Ce modèle permet
de convertir les préférences des médecins, basées sur la différenciation des états des pa-
tients, en récompenses quantitatives et ordinales. Dans la deuxième partie du Chapitre
4, nous présenterons notre méthode de construction des récompenses par apprentissage
par préférence. Ce processus se déroule en trois étapes : (1) un expert exprime des
préférences entre des paires d’éléments, ce qui induit un classement parmi toutes les
instances du jeu de données collecté ; (2) les récompenses sont ensuite construites à
l’aide du modèle probabiliste de Bradley-Terry ; (3) ces récompenses sont utilisées pour
apprendre la politique dans les modèles de Q-learning. La principale contribution de
cette méthode réside dans sa capacité à construire des récompenses de manière généra-
lisée et guidée par les données. Cette approche exploite non seulement l’expertise des
professionnels de santé, mais également les relations entre les données des patients, évi-
tant ainsi les constructions manuelles de récompenses qui peuvent entraîner des choix
arbitraires, tout en garantissant une cohérence dans l’apprentissage des stratégies mé-
dicales. Cette méthode sera illustrée à travers deux études de cas : l’une portant sur
le traitement des adolescents atteints d’obésité [8, 61] et l’autre sur une simulation de
cancer [144].
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1.3 Outcome-Weighted Learning

1.3.1 Une méthode de classification pondérée

Pour construire des règles de décision médicale, nous avons abordé une famille
de méthodes centrées sur l’apprentissage par renforcement, avec l’algorithme de Q-
learning au cœur des applications DTR. Comme mentionné précédemment, il existe
également une deuxième famille de méthodes, plus directe et non paramétrique, parmi
laquelle se trouve la méthode Outcome-Weighted Learning (OWL). Cette méthode a
été plus particulièrement développée dans le cadre de décisions à une seule étape, les
ITR, où l’on étudie la possibilité de choisir entre deux traitements, tels que A ∈ A =

{−1, 1}. Dans l’article [143] qui présente cette méthode, il a été montré que déterminer
un ITR optimal équivaut à résoudre un problème de classification. Plus précisément,
ils reformulent la recherche de stratégies médicales en un problème de classification
pondérée, où la frontière de décision représente la règle de décision entre les deux
traitements et les poids sont déterminés à partir des réponses des patients. D’un point
de vue d’apprentissage automatique, il s’agit d’un problème de classification à deux
classes où les labels correspondent aux traitements administrés, et les observations i
pour chaque patient sont pondérées par la récompense observée Ri et la propension ρ
à recevoir le traitement. Ce problème est ensuite résolu à l’aide d’algorithmes tels que
les support vector machines.

1.3.2 Quantification d’incertitude et Bayesian OWL

La recherche en statistique pour la médecine de précision se structure autour de
trois grands axes principaux. Le premier axe est l’estimation : à partir d’une stratégie
d, pouvons-nous en estimer sa valeur spécifique ? Le deuxième axe est l’optimisation de
d : peut-on identifier une stratégie optimale dopt ? De nombreuses méthodes abordées
précédemment s’efforcent de répondre à cette question, et des extensions continuent
d’être développées pour améliorer encore davantage cette optimisation. Le troisième
axe est l’amélioration du recueil de données : afin d’estimer efficacement la valeur
d’un régime d et de déterminer dopt, quelles données sont nécessaires ? De nombreuses
études se concentrent sur le design et la construction d’essais cliniques pour répondre
à la question : quel est le design optimal pour générer des données pertinentes dans le
cadre des analyses de médecine de précision ?

Grâce aux avancées dans ces trois domaines et aux preuves d’amélioration des soins
qu’elles apportent, le besoin d’intégrer ces méthodes de détermination de stratégies
médicales personnalisées dans la pratique clinique quotidienne devient de plus en plus
pressant. D’une part, cela passe par le souhait d’incorporer ces nouvelles méthodes
dans le système de santé tout en démontrant leur efficacité [46], et d’autre part, par
le développement d’outils statistiques exploitables et adaptés à une utilisation par les
professionnels de santé. C’est dans cette seconde thématique que s’inscrit la méthode
développée dans le Chapitre 5 : Bayesian OWL. En effet, la formulation de la méthode
OWL dans un cadre bayésien permet d’utiliser les méthodes d’inférence bayésienne
pour quantifier l’incertitude sur les traitements recommandés. En partant de la fonc-
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tion objectif de l’OWL, nous générons une pseudo-vraisemblance qui peut être exprimée
comme un mélange d’échelles de distributions normales. Un algorithme d’échantillon-
nage de Gibbs est développé pour échantillonner la distribution postérieure des para-
mètres. Une fois transformée d’un cadre d’optimisation à un cadre probabiliste, notre
méthode génère une distribution postérieure complète, utilisable pour l’inférence et,
plus important encore, pour la quantification de l’incertitude des recommandations de
traitement. Cela constitue un outil précieux pour les professionnels de santé dans l’aide
à la décision thérapeutique.

1.4 Organisation du manuscrit

Après les deux chapitres d’introduction, respectivement en français et en anglais,
le Chapitre 3 s’ouvrira sur la présentation du cadre mathématique de l’apprentissage
par renforcement appliqué à la médecine de précision. Nous y définirons des concepts
fondamentaux tels que les processus décisionnels, les politiques, les récompenses et les
fonctions de valeur. Cette section se conclura par une illustration du Q-learning, l’un
des algorithmes les plus couramment utilisés en RL, à la fois dans son format classique
d’apprentissage en ligne et dans son application aux données observationnelles sous
une forme rétroactive. Nous aborderons ensuite le contexte multi-étapes des DTR, en
mettant l’accent sur le lien entre le formalisme du RL et les propriétés des algorithmes
de RL adaptés à ce cadre. Enfin, nous introduirons le contexte à une seule étape des
ITR, en les positionnant par rapport aux DTR et au RL. En utilisant le formalisme
simplifié des ITR, nous présenterons les concepts clés et les hypothèses relatives à la
causalité en médecine de précision.

Dans le chapitre 4, nous commencerons par présenter un état de l’art des méthodes
permettant d’améliorer l’apprentissage par renforcement dans le contexte médical en
intégrant les connaissances d’experts. Diverses méthodes seront exposées, expliquant les
techniques par lesquelles elles intègrent l’expertise médicale et quelles parties du modèle
d’apprentissage par renforcement sont modifiées pour incorporer ce savoir. Nous pren-
drons également le temps d’identifier les propriétés de chacun de ces algorithmes afin
de faire un parallèle avec les propriétés attendues et idéales dans le contexte des DTR.
Dans la seconde partie de ce chapitre, nous présenterons notre méthode d’apprentissage
des récompenses par apprentissage des préférences, conçue pour une application aux
DTR. Cette méthode sera illustrée par deux exemples d’application : l’une sur le trai-
tement des adolescents atteints d’obésité [8, 61] et l’autre sur une simulation de cancer
[144]. Ce chapitre se conclut par une section mettant en lumière les perspectives de
recherche sur l’intégration des connaissances médicales dans les modèles d’apprentis-
sage par renforcement, et plus particulièrement sur la continuité des recherches alliant
apprentissage par préférence et apprentissage par renforcement.

Dans le chapitre 5, nous introduisons une approche bayésienne de la méthode OWL.
À notre connaissance, il s’agit de la première stratégie bayésienne visant à apprendre
directement des ITR optimaux. Nous utilisons une construction similaire à celle de
[88], en construisant une pseudo-vraisemblance à partir de la fonction de perte pondé-
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rée de classification. Nos principales contributions dans ce chapitre sont les suivantes.
Tout d’abord, nous proposons une approche bayésienne pour apprendre des ITR op-
timaux, en utilisant un cadre basé sur la classification. Ensuite, nous développons un
algorithme simple d’échantilloneur de Gibbs pour apprendre ces ITR optimaux. En-
fin, nous démontrons comment utiliser la distribution pseudo-postérieure obtenue pour
quantifier l’incertitude dans les recommandations de traitement. Nous démontrons les
performances de notre approche à travers des études de simulation. Nous conclurons
ce chapitre en abordant les améliorations possibles et les perspectives de recherche
pour notre méthode Bayesian OWL, en mettant en lumière les directions futures pour
perfectionner et étendre cette approche.

Enfin, le Chapitre 6 nous permettra de tirer une conclusion globale de ce manus-
crit en récapitulant les principales contributions et résultats de notre recherche. Nous
discuterons des implications de nos travaux et la détermination de règles de décision
optimales pour la médecine de précision, en mettant en évidence les avancées réalisées
ainsi que les défis restants.



Chapter 2

Introduction

2.1 Precision Medicine

2.1.1 Overview

Medical research has significantly enhanced our understanding of the biological
mechanisms that influence the progression and development of chronic diseases, mech-
anisms that vary considerably from one patient to another. Thanks to the remarkable
advances in modern medicine in terms of care, medications, and treatments, the ex-
ploration of new approaches is increasingly focused on the idea of providing the right
treatment to the right person at the right time. This is the paradigm of precision
medicine, also known as personalized medicine, which aims to tailor treatments to the
individual characteristics of patients [11, 50, 51]. The goal is not to replace existing
treatments or to develop a unique drug for each patient, but to complement the cur-
rent therapeutic arsenal to enable personalized medical decision-making, with the aim
of treating each person effectively. This is made possible by technological advances
in data collection and storage. The volume of individual data collected has increased
significantly, allowing for a better understanding of the individual factors influencing
the effects of an intervention. These new and extensive databases allow for the control
of patient heterogeneity. Each individual is unique, whether in terms of genetics, envi-
ronment, lifestyle, or particularly in their response to treatments. These variabilities,
often highlighted by randomized controlled clinical trials, underscore the importance
of implementing more personalized treatments, thereby improving the quality of care
provided.

We focus here specifically on chronic diseases like cancer, diabetes, or psychiatric
disorders... Patients with these conditions go through long-term treatments that are
regularly checked or adjusted by doctors. Precision medicine employs decision rules
to recommend treatments specifically based on the patient’s current condition. These
decision rules are formalized through Dynamic Treatment Regimes (DTR). A DTR
is a sequence of decision rules, one for each step of treatment, that guides how to
personalize treatments based on the patient’s treatment history and other factors [11].
When there is only one step in the medical intervention, with just one decision point,
it is called an Individualized Treatment Regime (ITR).

The search for personalized medical decision rules, especially within DTRs, relies
on longitudinally structured observational medical data. Analyzing this observational
data in medicine requires considering causality. In precision medicine, understanding
causal relationships is crucial to determine how medical interventions individually af-
fect patients. Unlike simple correlations, causal relationships help identify the direct
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effects of treatments on health, allowing clinicians to tailor treatments to the specific
characteristics of patients, ensuring appropriate and effective interventions. To draw
causal conclusions from observed data, it is crucial to adhere to certain assumptions,
which we will detail in Section 3.4.3 of Chapter 3. One clinical trial design that meets
these conditions is the Sequential Multiple Assignment Randomized Trials (SMART).
SMART trials are experimental studies where patients are randomized at multiple de-
cision points to test and optimize adaptive treatment strategies. Considered the "gold
standard" of clinical trials in precision medicine, these designs are widely studied in
the literature [13, 51, 11]. However, they are complex and expensive to implement,
limiting the number of available trials. Notable examples include CATIE [107], ADHD
[11, 54], and STAR*D [11, 53].

2.1.2 Individualized treatment regime

A formal framework for decision-making in precision medicine is the concept of
ITR. This approach considers a single decision point based on observed data of size
n ∈ N, in the form {(Xi, Ai, Ri)}ni=1, where X ∈ X represents the initial characteristics
of the patient, A ∈ A is the administered treatment, and R ∈ R is the treatment
response, with higher values indicating a better patient outcome. An ITR is a function
d : X → A. Under the regime d, patients with X = x would be assigned the treatment
d(x) [50]. Identifying an optimal ITR involves finding the decision rule that maximizes
the treatment response R for all patients.

2.1.3 Dynamic treatment regimes

The second formal framework, which generalizes ITR into a context with multiple
decision points, are DTRs. The data is then represented as {(X1,i, A1,i, R1,i, . . . , XT,i,

AT,i, RT,i)}ni=1, which consists of n identically and independently distributed replicates
of (X1, A1, R1, . . . , XT , AT , RT ), where X1 ∈ X1 are the patient’s characteristics at the
beginning of the study, and Xt ∈ Xt are the data collected at the intermediate time
t for t = 2, . . . , T ; At ∈ At is the treatment assigned at time t; Rt is the response
measured at time t. We also introduce H1 = X1 and Ht = (Ht−1, At−1, Rt−1, Xt)

where Ht represents the patient’s medical history at time t. A DTR is a sequence of
functions d = (d1, . . . , dT ) where dt : Ht → At, meaning that at each decision point, a
treatment is recommended based on the treatment history. An optimal DTR maximizes
the expected cumulative response measure of the vector R = (R1, . . . , RT ).

2.1.4 Decision rule construction methods

To construct these optimal decision rules, two main families of approaches ex-
ist. The first family relies on regression models such as Q-learning [126, 75] and G-
estimation [96, 99, 95]. The second family includes methods that estimate the expected
value of the response under a particular regime without making parametric assump-
tions. Once this value is estimated, the optimal decision rule can be determined by
exploring a class of possible regimes. Among these methods are marginal structural
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mean models [97, 83], inverse probability of treatment weighting [97], augmented in-
verse probability of treatment weighting [139], and Outcome-Weighted Learning (OWL)
[143].

Our research relied on a method from each resolution family: Q-learning and OWL.
In the remainder of this introduction, we will first focus particularly on Q-learning
within the DTR framework, an algorithm that is part of the broader field of reinforce-
ment learning. Indeed, we will see that this subdomain of machine learning, which
addresses multi-stage decision problems, can be perfectly adapted to the context of
precision medicine in Section 2.2. This will allow us to situate two of our research
works: the integration of medical knowledge into reinforcement learning models and
the construction of data-driven rewards through preference learning. Then, we will turn
our attention more specifically to one of the non-parametric methods applied in the ITR
framework: the OWL method in Section 2.3. This will lead us to introduce our third
contribution, which offers a Bayesian perspective for OWL, enabling the quantification
of uncertainty associated with the recommended treatments.

2.2 Reinforcement learning

2.2.1 What is reinforcement learning?

Q-learning, mentioned among the previous methods, is part of a broader set of
techniques known as Reinforcement Learning (RL). This area of research in machine
learning focuses on acquiring control strategies for a system by exploiting the dynamic
interactions between this system and an intelligent agent. The goal is to enable this
agent, a learning entity, to maximize a predefined objective through its interactions
with the environment. Typically, RL takes place in an interactive environment. The
agent selects actions that lead to changes in the state of the environment. In return,
the environment provides rewards, specific numerical values that can be positive or
negative. These rewards indicate how beneficial or harmful the agent’s actions have
been concerning the overall goal of maximizing cumulative rewards. Through this feed-
back, the agent adjusts its strategy to improve its future decisions and more effectively
achieve its objective. Thus, the field of RL introduces the following concepts:

— State: a representation of the current situation in which the agent finds itself.
States contain the necessary information to decide on future actions.

— Action: a decision made by the agent that affects the environment. Actions can
be discrete (such as moving a piece on a board) or continuous (such as adjusting
the speed of a car).

— Reward: a signal received by the agent after performing an action. The reward
indicates how beneficial the action was concerning the agent’s objective.

— Policy: a strategy or set of rules that the agent uses to choose its actions based
on the states. The policy can be deterministic (a fixed action for each state) or
stochastic (a probability distribution over actions).

— Value functions: an estimate of the expected future cumulative reward that
an agent can expect from a given state or action. Value functions help evaluate
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policies and determine the best actions.
The foundations and origins of RL are attributed to Richard Bellman in the 1960s

[6, 7, 108] through his work on dynamic programming and optimality, whose equations
now form one of the key principles of this field. In the 1990s, the Q-learning algorithm
was proposed by Chris Watkins, marking a significant advancement [125]. Simulta-
neously, Richard Sutton developed the temporal difference learning method [112]. In
1998, Andrew Barto and Richard Sutton published the first edition of "Reinforcement
Learning: An Introduction" [113], which summarizes and compiles their previous re-
search and developments. This book, often cited as an essential source for understand-
ing the evolution and foundations of reinforcement learning, lays the groundwork for
the concepts of reward and policy formalized within the framework of Markov decision
processes.

The classical mathematical formalism widely adopted by the reinforcement learning
community is that of Markov Decision Processes (MDP). An MDP is defined by a
quintuple (S,A, P,R, γ) [9, 28] where:

— States: the set of possible states of the system, S.
— Actions: the set of actions available to the agent, A.
— Transition probabilities: function P (s′|s, a) giving the probability of reaching

state s′ after taking action a in state s.
— Reward: function R(s, a) providing the reward received after taking action a

in state s.
— Discount factor: parameter 0 ≤ γ ≤ 1 that weights the importance of future

rewards.
The objective is to find an optimal policy π∗ that maximizes the expected long-term

cumulative reward from each state s.
RL finds applications in various domains due to its ability to solve complex sequen-

tial decision-making problems. In games and simulations, it is used to train agents in
complex games like Go and chess. In robotics, RL enables robots to navigate, avoid ob-
stacles, and manipulate objects with precision. In industrial automation, it optimizes
production lines and resource management in real-time. In finance, it aids in develop-
ing algorithmic trading strategies and optimizing risk management. In transportation
and logistics, RL is employed to train autonomous vehicles and optimize supply chains.
It also enhances content personalization in recommendation systems. In the context of
this thesis, we are particularly interested in the application of RL in healthcare, which
has sparked significant interest in medical research through numerous reviews [133, 16,
21]. RL can serve healthcare in various ways, from logistics and hospital management
to patient care. Here, we will focus specifically on its use in precision medicine for
learning personalized treatment strategies.

2.2.2 Reinforcement learning and precision medicine

Machine learning has seen significant development over the past few decades, of-
fering effective solutions for solving complex, large-scale problems. Among these ap-
proaches, RL has stood out for its ability to learn decision rules in sequential scenarios,
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demonstrating its utility in precision medicine. RL primarily aims to identify optimal
decision rules by maximizing long-term cumulative gains. In medicine, where the ef-
fects of treatments and their potential side effects may manifest after several stages,
developing a long-term strategy is a major advantage. Additionally, RL models al-
low for the simultaneous processing of large sets of patient covariates while addressing
multi-stage decision-making problems.

The modeling of the underlying sequential decision-making problem establishes a
link between DTR and RL. As a result, RL has become widely recognized as one
of the leading methods for determining DTRs in recent years [127, 19, 121, 15, 60].
However, the transition from RL to DTR, while apparent, is not always straightforward.
Classical RL, as it is typically presented, is not necessarily well-suited for addressing
the specific challenges of medical applications, and some algorithms are better equipped
to meet the demands of this field. First, describing a DTR through a Markov decision
process can be limiting due to the Markov assumption. This assumption stipulates
that the most recent patient state contains all the necessary information for decision-
making, which requires disregarding the patient’s medical history. This is a strong
assumption in the healthcare setting, where it is often preferable to consider a more
general decision-making process. Second, RL is generally introduced in the context
of an interactive environment. However, it is both impossible and unethical to allow
an algorithm to interact with patients in a trial-and-error manner to learn an optimal
treatment strategy. Instead, this strategy must be determined from data that has
already been collected. This situates us in a particular context of RL applied in an
offline mode. Specifically, the data has been collected according to a pre-established
medical strategy, either by a physician or dictated by a clinical trial. We then learn an
optimal strategy relative to the one that was already followed, which is referred to as
off-policy RL. RL is governed by various dichotomies: model-based/model-free, policy-
based/value-based, and on-policy/off-policy. These properties can help us navigate the
vast RL algorithmic literature. This brings me to my third point on the specificities
of applying RL to DTR: Q-learning. Among the wide variety of algorithms, backward
Q-learning has emerged as the ideal algorithm for applying to DTRs (see Appendix
6). The properties of Q-learning, studied in detail, demonstrate why this algorithm is
particularly well-suited to the needs of precision medicine.

The link between DTRs and RL, as well as the points raised here, will be discussed
in Chapter 3, allowing for a deeper exploration of the RL formalism, the specificities
of the application context, and the algorithmic properties.

2.2.3 Integrating medical knowledge into reinforcement learning
models

While RL presents a promising technical solution for precision medicine, it relies on
machine learning techniques that may raise concerns among both patients and prac-
titioners. Ensuring that the decision rules constructed are safe, interpretable, and
medically effective is one of the major challenges of applying RL in a hospital setting
[21, 133]. One way to address this challenge is to integrate medical knowledge into
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RL models. By combining clinical knowledge with machine learning algorithms, it is
possible to create more robust models that are better adapted to real-world condi-
tions. The idea is to create a synergy between the learning capabilities of machines
and the expertise of domain professionals [39, 69]. This collaboration enhances trust
in RL models and their recommendations [66], while also facilitating the adoption of
this technology by healthcare professionals and patients in clinical settings [40]. The
combination of machine learning and human expertise yields superior results compared
to the use of RL alone or decisions made solely by experts [5, 56]. Moreover, from
a technical perspective, the integration of medical knowledge reduces learning time,
allowing for faster adaptation and improvement of methods, leading to more effective,
patient-centered healthcare solutions.

The integration of medical knowledge into RL algorithms begins with the prepa-
ration of the model, particularly through data processing, data preparation, and the
selection of the most appropriate algorithm. This integration specifically impacts key
RL elements such as rewards, value functions, objective functions, and policy. The
first part of Chapter 4 will present a state-of-the-art review of methods for integrating
medical knowledge into reinforcement learning models, with a focus on the algorith-
mic properties chosen by each of these methods. This will highlight the necessary
adaptations for the application of DTRs on observational data.

2.2.4 Reward construction through preference learning

In the context of integrating expert knowledge, preference learning is a particularly
promising method. The idea is to construct the rewards of an RL model based on
preferences provided by an expert. Rewards play a crucial role in learning strategies,
as they constitute the criterion to optimize. Therefore, their design must encapsulate
the state of the system as accurately as possible to provide meaningful guidance during
learning. Typically, rewards are defined by a system expert who evaluates them using
a score. For example, in clinical trials aimed at reducing weight in individuals with
obesity, the reward may be measured by the body mass index [61]. In intensive care,
treatments can be evaluated based on survival or mortality rates [101]. Some rewards
are more complex and combine several variables. For example, in a cancer simulation
presented in [144], rewards are based on tumor size, treatment toxicity, patient well-
being, and survival rates. In the event of death, an arbitrary score of -60 is typically
assigned. Manually constructing a reward function can involve arbitrary or highly
context-specific choices, which may limit the learning objectives.

Preference learning proposes to generalize the construction of rewards using a proba-
bilistic Bradley-Terry model [105, 10]. This model allows for converting the preferences
of physicians, based on distinctions between patient states, into quantitative and ordi-
nal rewards. In the second part of Chapter 4, we will present our reward construction
method using preference learning. This process involves three steps: (1) an expert
expresses preferences between pairs of elements, which induces a ranking among all
instances in the collected dataset; (2) rewards are then constructed using the Bradley-
Terry probabilistic model; (3) these rewards are used to learn the policy in Q-learning
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models. The main contribution of this method lies in its ability to construct rewards
in a generalized, data-driven manner. This approach leverages not only the expertise
of healthcare professionals but also the relationships between patient data, thereby
avoiding manual reward constructions that may lead to arbitrary choices, while ensur-
ing consistency in the learning of medical strategies. This method will be illustrated
through two case studies: one focusing on the treatment of adolescents with obesity [8,
61] and the other on a cancer simulation [144].

2.3 Outcome-Weighted Learning

2.3.1 A weighted classification method

To construct medical decision rules, we discussed a family of methods centered
around reinforcement learning, with the Q-learning algorithm at the core of DTR ap-
plications. As mentioned earlier, there is also a second family of methods, more direct
and non-parametric, among which is the Outcome-Weighted Learning (OWL) method.
This method has been particularly developed in the context of single-stage decisions,
such as ITR, where the possibility of choosing between two treatments is studied, for
example, A ∈ A = {−1, 1}, which represents the action or treatment. In their work,
[143] demonstrated that determining an optimal ITR is equivalent to solving a classi-
fication problem. More specifically, they reformulate the search for medical strategies
into a weighted classification problem, where the decision boundary represents the deci-
sion rule between the two treatments and the weights are determined based on patient
responses. From a machine learning perspective, this is a two classes classification
problem where the labels correspond to the administered treatments, and the observa-
tions i for each patient are weighted by the observed reward Ri and the propensity ρ
to receive the treatment. This problem is then solved using algorithms such as support
vector machines.

2.3.2 Uncertainty quantification and Bayesian OWL

Statistical research in precision medicine is structured around three main areas of
focus. The first area is estimation: given a strategy d, can we estimate its specific
value? The second area is the optimization of d: can we identify an optimal strategy
dopt? Many of the methods discussed earlier aim to answer this question, and ongoing
extensions are being developed to further enhance this optimization. The third area
is improving data collection: in order to effectively estimate the value of a regime
d and determine dopt, what data is necessary? Numerous studies focus on designing
and constructing clinical trials to answer the question: what is the optimal design for
generating relevant data in the context of precision medicine analyses?

With the advancements in these three areas and the demonstrated improvements
in patient care they bring, the push to integrate these personalized medical strategy
determination methods into everyday clinical practice is becoming increasingly urgent.
On the one hand, this involves incorporating these new methods into the healthcare



18 Chapter 2. Introduction

system while demonstrating their effectiveness [46], and on the other hand, it requires
developing statistical tools that are practical and suitable for use by healthcare pro-
fessionals. It is within this second focus area that the method developed in Chapter
5, Bayesian OWL, is situated. By formulating the OWL method within a Bayesian
framework, we can leverage Bayesian inference methods to quantify the uncertainty of
the recommended treatments. Starting from the OWL objective function, we generate
a pseudo-likelihood that can be expressed as a scale mixture of normal distributions.
A Gibbs sampling algorithm is developed to sample the posterior distribution of the
parameters. Once transformed from an optimization framework to a probabilistic one,
our method generates a complete posterior distribution, which can be used for inference
and, more importantly, for quantifying the uncertainty of treatment recommendations.
This constitutes a valuable tool for healthcare professionals in therapeutic decision-
making.

2.4 Structure of the manuscript

Following our two introductory chapters, presented in French and English respec-
tively, Chapter 3 will introduce the mathematical framework of reinforcement learning
as applied to precision medicine. We will cover key concepts like decision processes,
policies, rewards, and value functions. This section will end with an example of Q-
learning, a widely used RL algorithm, shown both in its traditional online form and
in its use with observational data in a retrospective manner. We will then look at the
multi-step context of DTRs, focusing on how RL formalism connects with the proper-
ties of RL algorithms in this area. Finally, we will introduce the single-step context
of ITR, comparing them to DTRs and RL. Using the simpler ITR framework, we will
explain the key ideas and assumptions related to causality in precision medicine.

In Chapter 4, we will begin by presenting a state-of-the-art review of methods that
enhance reinforcement learning in the medical context by integrating expert knowledge.
Various methods will be discussed, explaining the techniques by which they incorpo-
rate medical expertise and how different components of the RL model are modified to
include this knowledge. We will also take the time to identify the properties of each
algorithm to draw parallels with the expected and ideal properties in the context of
DTRs. In the second part of this chapter, we will present our preference-based reward
learning method, designed for application to DTRs. This method will be illustrated
through two case studies: one on the treatment of adolescents with obesity [8, 61] and
the other on a cancer simulation [144]. Chapter 4 will conclude with a section highlight-
ing future research perspectives on integrating medical knowledge into reinforcement
learning models, with a particular focus on the continued exploration of combining
preference learning with reinforcement learning.

In Chapter 5, we introduce a Bayesian approach to the OWL method. To our knowl-
edge, this is the first Bayesian strategy aimed at directly learning optimal ITR. We use
a construction similar to that of [88], building a pseudo-likelihood from the weighted
classification loss function. Our main contributions in this chapter are as follows. First,
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we propose a Bayesian approach to learning optimal ITR, using a classification-based
framework. Next, we develop a simple Gibbs sampling algorithm to learn these optimal
ITR. Finally, we demonstrate how to use the resulting pseudo-posterior distribution to
quantify uncertainty in treatment recommendations. We showcase the performance of
our approach through simulation studies. We will conclude this chapter by discussing
possible improvements and research perspectives for our Bayesian OWL method, high-
lighting future directions for refining and extending this approach.

Finally, Chapter 6 will allow us to draw a comprehensive conclusion of this manuscript
by summarizing the main contributions and results of our research. We will discuss the
implications of our work and the determination of optimal decision rules for precision
medicine, highlighting the advancements made as well as the remaining challenges.
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Reinforcement learning for dynamic
treatment regimes
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3.1 Introduction

Modern medicine, with its remarkable advancements in care, drugs, and treatments,
now seeks to enhance its ability to deliver personalized treatments for each individual
patient. The paradigm of precision medicine [50] initiates a profound consideration
of this question. Precision medicine aims to optimize the quality of healthcare by
tailoring the medical approach to match the specific and continually changing health
condition of every individual patient. The heterogeneity among patients’ populations
and sub-populations leads to distinct reactions and, consequently, necessitates different
treatment approaches. Initially, this research domain introduced statistical models [11,
50, 51] aimed at facilitating decision-making support. Naturally, with the advent of
data storage and the computational power, machine learning methods [16, 133] have
also begun to be applied to address this issue.
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In this context, one of the growing interests of modern medicine is to adapt pre-
scribed treatments to the individual data, unique characteristics and particular medical
history of the patient. Precision medicine seeks to put the patient’s own information
at the center in order to improve their health. The motto behind is "The right treat-
ment for the right patient (at the right time)". In a 2015 State of the Union address,
President Obama announced a Precision Medicine Initiative to revolutionize how we
improve health, research, and treat disease. The initiative defines precision medicine
as "an emerging approach for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each person" [115]. In
technical terms, Adaptive Treatment Strategies (ATS) or Dynamic Treatment Regimes
(DTR) formalize the objective of enhancing the care pathway for patients by proposing
an optimal and personalized treatment sequence. They aim to establish a decision rule
at each stage of the care process. It conditions the treatment based on responses to
previous prescriptions and medical history [11, 54]. The goal is to optimize the patient’s
long-term positive response to the sequence of treatment decisions while tailoring the
treatment to their own medical information [51].

In the past decades, machine learning has emerged as a solution to large-scale and
high-complexity problems. When it comes to decision support, particularly in sequen-
tial scenarios, Reinforcement Learning (RL) [113] offers the most effective solution.
These methods excel in adapting to changing conditions and optimizing decisions over
a series of steps, making them especially valuable in dynamic decision-making pro-
cesses. The concept revolves around identifying a decision rule, referred to as policy,
which is designed to optimize a long-term objective. This policy is crafted in order to
make decisions over time that lead to the greatest cumulative benefit or outcome.

RL methods is thus an appealing candidate for precision medicine and has been
intensely studied as a potential tool to guide medical decisions towards personalized
medicine. First, the application of these methods to DTR is facilitated by modeling
the underlying decision problem using a so-called Decision Process (DP), as detailed
in Section 3.2. It is straightforward to express and establish connections between med-
ical elements and its mathematical components. Second, the primary aim of RL is to
identify this decision rule. In this context, there is a desire to establish this rule while
maximizing long-term cumulative gains. In medicine, the effects of treatments and side
effects are not immediate but can take several stages to manifest. The way the policy
is constructed is a significant asset for precision medicine. Third, RL models have the
capacity to simultaneously consider the extensive patient covariates data and address
multi-stage decision problems. The scope of RL applications in precision medicine is
in recent thematic reviews of major interest : a non-technical survey offering illustra-
tions of RL applications in public health is proposed in [127]. More specifically, RL
applications in the context of mobile health are presented in [19]. Two more technical
reviews describe the methods for determining medical decision rules using off-policy RL
approach [121], or more specifically with the use of Q-learning [15] and their empirical
comparison with other estimation methods [60].

In this chapter, we will first outline the mathematical framework of RL as applied
to precision medicine. We will define key concepts such as decision processes, policies,
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rewards, and value functions. This section will conclude with an illustrative example
of RL through one of the most commonly used algorithms, Q-learning, presented both
in its classical online learning format and its application to observational data in a
backward form. In the following section, we will delve into the multi-stage context
of DTRs, particularly focusing on bridging RL formalism with the properties of RL
algorithms in this setting. Finally, we will introduce the single-stage context of Indi-
vidualized Treatment Regime (ITR), positioning it in relation to DTRs and RL. Using
the simpler formalism of ITR, we will present fundamental concepts and assumptions
regarding causality in precision medicine.

3.2 Theoretical foundations of reinforcement learning

This section aims to outline the mathematical framework of RL applied in the DTR
field. Typically, RL is explained in the context of a Markov Decision Process (MDP)
and its evolution into a Partially Observable Markov Decision Process (POMPD). How-
ever, in this context, a return is made to a decision-making framework without the
inclusion of Markov assumptions, which is referred to as a decision process. Subse-
quently, fundamental concepts are introduced : policy, value function, and the notion
of optimality.

3.2.1 Decision process

3.2.1.1 General statement

The modeling context revolves around the realm of decision-making. A foundation
proposed is DP, which acts as the initial framework for DTR. It represents a dynamic
system which evolves through time t ∈ T. This system navigates within the space of
states S by executing actions within the realm of possibilities defined by the space of
actions A. The collection of non-empty measurable subsets of A, denoted as {A(s)|s ∈
S}, represents the feasible actions that can be undertaken when the system finds itself
in a specific state s ∈ S.

Definition 3.2.1 (Decision process). A decision process (S,A, {A(s)|s ∈ S}, ν) on T
includes:

— A family S of S-valued vectors of random variables {St, t ∈ T}, S is called space
of states.

— a family A of A-valued random variables {At, t ∈ T}, A is called space of actions.
— a family {A(s)|s ∈ S} of non empty measurable subsets of A, the set of realizable

actions when the system is in the state s ∈ S. The requirement is for K =

{(s, a)|s ∈ S, a ∈ A(s)} to be a measurable subset of S× A.
— a distribution ν on S.

Remark 3.2.1. DP is initially characterized for Borel spaces S and A. However,
in most practical applications, these spaces typically have finite dimensions, context
considered for the rest of the article.
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Remark 3.2.2. St represents the state at time t. This is a vector that includes several
covariates observed at this time.

Remark 3.2.3. In full generalities, T will be taken as continuous or discrete but for a
sake of readability T will be a discrete space denoted by T = {0 = t0, t1, . . . , tn, . . . , τ},
with τ representing either a finite (τ = tN < ∞) or infinite (τ = ∞) value. For the
sake of simplicity, the variables Xtn will be indicated as Xn and Xτ as X∞ in infinite
horizon setting.

Definition 3.2.2. For any n ∈ N, an admissible history at time n is a vector which
contains the states traveled by the system together with the actions taken up to time
n. The set of admissible histories at time n is denoted:

H0 = S Hn = Kn−1 × S

An element hn ∈ Hn writes (s0, a0, . . . , sn−1, an−1, sn) where for all 0 ≤ j ≤ n −
1, (sj , aj) ∈ K.

The point of main importance to deal with the decision process is to exhibit the
probability to reach state sn+1 at time n + 1 given the history up to time n and the
decision taken at time n this expresses as:

Pν [Sn+1 = sn+1 | Hn = hn, An = an] . (3.1)

In practice the computation of these probabilities requires significant computational
resources because of the increasing length of the vector hn as n increases. Rapidly
working directly with such variable is intractable (usually when n ≥ 4).

3.2.1.2 Markov decision process

To overpass this difficulty the Markov assumption is of particular interest. It con-
sists in simplifying the dependence on the past by considering that all the necessary
information for is contained in the current state.

Definition 3.2.3 (Markov decision process). A Markov decision process on T is a
decision process (S,A, {A(s)|s ∈ S}, ν) satisfying:

Pν [Sn+1 = sn+1 | Hn = hn, An = an] = Pν [Sn+1 = sn+1 | Sn = sn, An = an] . (3.2)

A MDP is thus governed by a family of probability transitions

Pan(sn, sn+1) = P [Sn+1 = sn+1 | Sn = sn, An = an] .

which is the probability that action an in state sn at time tn ∈ T leads to state sn+1

at time tn+1.

The most traditional RL framework is MDP [6, 28]. The majority of optimizing
application complete their decision models with the memory-less Markov assumption.



3.2. Theoretical foundations of reinforcement learning 25

Remark 3.2.4. Behind MDP modeling, there is a strong assumption that all the in-
formation necessary for the decisions observed. In reality, states space can be noisy
or incomplete. To overpass this assumption, Partially Observable Markov Decision
Process (POMDP) model introduced in [72] provides a relaxation to this assumption.
POMDP can be seen as a generalization of MDP and is broadly based on the same
framework. The major difference comes from the expression of the state space. POMDP
consider a distinction between observed data and unobserved data, whereas DP and
MDP are based exclusively on the data which have been directly observed. Mathemat-
ically, POMDP defines as an MDP except S which is a family of Sobs × Sunobs-valued
random variables {(Sobs

n , Sunobs
n ), n ∈ N} where Sobs is observed and Sunobs is not.

3.2.2 Policy

The crucial concept in addressing dynamic programming is the notion of a policy,
which is formalized as follows :

A policy is a sequence π = (πn)n∈N of conditional distributions from A given Hn

defined, for any A ∈ B(A) and all hn ∈ Hn, by:

πn(A, hn) = P [An ∈ A | Hn = hn] ,

satisfying for all n ∈ N, all hn ∈ Hn :

πn(A(sn), hn) = 1,

and for all n ∈ N, all hn ∈ Hn and all an ∈ A(sn)

πn(an, hn) > 0.

Decision-making is selecting an option based on environmental information. A
policy represents a plan that establishes a sequence of actions. This strategy can be
tailored to align with a specified objective. As a result, the focus will be on deriving
the strategy that optimizes this objective. A policy πn is a strategy that suggests,
for every possible states sn ∈ S, an action an ∈ A(sn) taking to account the history
hn ∈ Hn of the system.

Theorem 3.2.1 ([38, 82]). Given a policy π and the initial distribution ν, there is a
unique probability Pπ

ν such that, for all B ∈ B(S), the Borel algebra of S, and A ∈ B(A),
the Borel algebra of A :

Pπ
ν [S0 ∈ B] = ν(B),

Pπ
ν [An ∈ A | Hn = hn] = πn(A, hn)

In the following, Eπ
ν denotes the expectation associated with the probability Pπ

ν for
an arbitrary policy π and an initial distribution ν.

The following result is of major practical importance and expresses the likelihood
to observe a trajectory hn by means of the DP.
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Theorem 3.2.2. Given (S,A, {A(s)|s ∈ S}, ν) a decision process on T and π a policy,
we have for all n ∈ N∗ and all hn ∈ Hn,

Pπ
ν [Hn = hn] =

n∏
j=1

P [Sj = sj | Aj−1 = aj−1, Hj−1 = hj−1]π(aj−1, hj−1)ν(s0)

Proof. First, we have, for any j ∈ N∗,

Pπ
ν [Hj = hj ]

= Pπ
ν [Sj = sj , Aj−1 = aj−1, Hj−1 = hj−1]

= P [Sj = sj | Aj−1 = aj−1, Hj−1 = hj−1]

× Pπ
ν [Aj−1 = aj−1 | Hj−1 = hj−1]P

π
ν [Hj−1 = hj−1]

= P [Sj = sj | Aj−1 = aj−1, Hj−1 = hj−1]π(aj−1, hj−1)P
π
ν [Hj−1 = hj−1]

Now, by induction over n, it is easily shown that,

Pπ
ν [Hn = hn]

=

n∏
j=1

P [Sj = sj | Aj−1 = aj−1, Hj−1 = hj−1]π(aj−1, hj−1)P
π
ν [S0 = s0]

=
n∏

j=1

P [Sj = sj | Aj−1 = aj−1, Hj−1 = hj−1]π(aj−1, hj−1)ν(s0).

In the framework of MDP, to follow the same lines as in the proof of Theorem 3.2.2,
an additional assumption on the policy is needed yielding to the concept of Markov
policy:

Definition 3.2.4 (Markovian policy). [82] A Markovian policy π = (πn)n∈N is a policy
satisfying for all n ∈ N, all A ∈ B(A) and all hn ∈ Hn:

P [An ∈ A | Hn = hn] = P [An ∈ A | Sn = sn] = πn(A, sn).

3.2.3 Rewards, valuation and optimization of policies

3.2.3.1 Rewards

As discussed in the Introduction, the aim of DP modeling is to find optimal policies
associated to an objective. To do so, a criterion of optimality has to be introduced.
This criterion is usually built by means of rewards functions which provides a temporal
judgment of the desirability of a state-action pair and are formalized as follows:

Definition 3.2.5. Reward is defined as a family of bounded R-valued random variables
{Rn, n ∈ N}. For a sake of simplicity, let us denote for a given n ∈ N, for all hn ∈ Hn,
all an ∈ A and all sn+1 ∈ S :

Rn+1(hn, an, sn+1) = Eπ
ν [Rn+1 | Hn = hn, An = an, Sn+1 = sn+1] .

Remark 3.2.5. The concept of rewards functions are usually integrated in the defini-
tion of a decision process.



3.2. Theoretical foundations of reinforcement learning 27

3.2.3.2 Valuation of policies and value-functions

State-value functions and state-action values functions are respectively known as
V-function and Q-functions. These two concepts provide quantitative measures for
evaluating policies, making meaningful policies comparisons and defining the optimal
policy. These value-functions serve as qualitative evaluations for guiding strategic adap-
tations.

State-value functions allow to answer to : "How good is to be in state s after
following the policy π?" while action-value functions allow to answer to : "How good
it is to have done the action a following policy π knowing that they were in state s?".
The key point is the evaluation is not assessing step-by-step evaluation but by means of
the cumulative reward over time. In such a way, value functions focus on a long-term
objective.

Definition 3.2.6. Given γ < 1 a discount parameter, the stage n long term discounted
reward function is defined for all n ∈ N, by:

Gn =

∞∑
j=n+1

γj−n−1Rj

Definition 3.2.7 (Value functions [11, 103]). Given (S,A, {A(s)|s ∈ S}, ν) a decision
process on T, {Rn, n ∈ N} a family of rewards, π a policy and γ < 1 a discount
parameter.

— The stage n state-value function (V-function) for a history hn is the total ex-
pected future rewards from stage n given by:

V π
n (hn) = Eπ

ν [Gn | Hn = hn] .

— The stage n action-value function (Q-function) is the total expected future re-
wards starting from a history hn, taking action an is given by

Qπ
n(hn, an) = Eπ

ν [Gn | Hn = hn, An = an] .

The crucial aspect to observe in these definitions is that, instead of a step-by-step
evaluation, the approach aims to assess a long-term objective. The goal is to evaluate
the cumulative reward over time. Asa consequence of a decision, after each time step
tn, an immediate reward Rn is received which is the most distinctive feature of RL.
The value functions represent the total expected future reward starting at a particular
state s0 and thereafter choosing actions according to the policy π.

Remark 3.2.6. The discount factor γ introduced in the definition of the long-term
reward at each step n aims to strike a thoughtful balance between immediate rewards
and long-term rewards. It allows for a balancing between striving for the highest
cumulative reward and the aim to reach substantial benefits within a reasonable time
[16]. This is also a mathematical trick to make the sum converge.
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Remark 3.2.7. In the finite horizon case τ = tN , the values functions can be defined
in a similar way by considering

Gn =
N∑

j=n+1

γj−n−1Rj

Notice that in this framework, the introduction of a discount parameter is not needed
and is usually fixed to 1 from the definitions.

Remark 3.2.8. To consider valuation in infinite horizon, we have considered processes
in infinite horizon and to do so, the Markov assumptions on the decision process and
on the policy are necessary. The discount factor is now mandatory to insure the con-
vergence of the long term discounted reward. The values functions can be defined in
the same way by considering conditional to S expectations:

V π
n (sn) = Eπ

ν [Gn | Sn = sn] .

Qπ
n(sn, an) = Eπ

ν [Gn | Sn = sn, An = an] .

The following proposition highlights the link between V-functions and Q-functions.

Proposition 3.2.1 ([51, 103, 113]). For all n ∈ N, all hn ∈ Hn and an ∈ A, we have:

V π
n (hn) =

∑
an∈A(sn)

Qπ
n(hn, an) πn(hn, an) (3.3)

Qπ
n(hn, an) =

∑
sn+1∈S

(
Rn+1(hn, an, sn+1) + γV π

n+1((hn, an, sn+1)
)

× Pπ
ν [Sn+1 = sn+1 | Hn = hn, An = an] . (3.4)

The remaining issue consists in the computation of the value functions. To do so,
the result of major importance is the recursive form of the value functions which states
that the value functions can be decomposed into immediate reward plus discounted
value of successor state.

Theorem 3.2.3 (Recursive form for value functions [11, 142]). For all n ∈ N, all
hn ∈ Hn and an ∈ A, we have:

V π
n (hn) =

∑
sn+1∈S

∑
an∈A(sn)

(
Rn+1(hn, an, sn+1) + γ V π

n+1(hn+1)
)

× P [Sn+1 = sn+1 | Hn = hn, An = an]π(an, hn) (3.5)

Qπ
n(hn, an) =

∑
sn+1∈S

(Rn+1(hn, an, sn+1)

+ γ
∑

an+1∈A(sn+1)

Qπ
n+1(hn+1, an+1)π(hn+1, an+1))

× P [Sn+1 = sn+1 | Hn = hn, An = an] (3.6)
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Equations (3.5) and (3.7) are known as Bellman’s equation. A policy being fixed,
the Bellman equation can be solved, therefore making it possible to determine the
values of the value functions and thus the values of Q-function. Indeed, in the case
where the number of steps is finite, the Bellman equation actually hides a linear system
of N equations to N unknowns, where N is final finite number of steps considered. It
can therefore be solved, once translated into a matrix equation, by a technique such as
the Gaussian pivot.

3.2.3.3 Optimization of the policies

The key concern of the RL problem is to determine the optimal policy, denoted
as π∗, which represents the optimal strategy for maximizing our long-term reward
function. In other words, it is about finding the best way to make decisions in an
environment to obtain the highest long-term rewards. The search for the optimal
policy is based on the Bellman optimality principle developed bellow.

Definition 3.2.8. The optimal state-value functions (V ∗
n ) are defined for all n ∈ N,

all hn ∈ Hn as the maximum value functions over all policies

V ∗
n (hn) = max

π
V π
n (hn)

The optimal action-value functions (Q∗
n) are defined for all n ∈ N, all hn ∈ Hn and

an ∈ A, as the maximum action-value functions over all policies

Q∗
n(hn, an) = max

π
Qπ

n(hn, an)

Definition 3.2.9. Consider the partial ordering over policies defined by:

π′ ≥ π if and only if, for all n ∈ N, all hn ∈ Hn, V π′
n (hn) ≥ V π

n (hn).

This partial ordering allows to define optimal policy in the following way:

Proposition 3.2.2. There exists an optimal policy π∗ that is better than or equal to
all other policies, π∗ ≥ π for all π.

Theorem 3.2.4. All optimal policies achieve the optimal value functions and the
optimal action-value functions, for all n ∈ N, all hn ∈ Hn and an ∈ A,

V π∗
n (hn) = V ∗

n (hn) and Qπ∗
n (hn, an) = Q∗

n(hn, an).

Theorem 3.2.5 (Bellman Optimality Equations for Q∗
n). For all n ∈ N, all hn ∈ Hn

and an ∈ A, we have

Q∗
n(hn, an) =

∑
sn+1∈S

(
Rn+1(hn, an, sn+1) + γ max

a∈A(sn+1)
Q∗

n+1(hn+1, a)

)
× P [Sn+1 = sn+1 | Hn = hn, An = an] (3.7)
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Proof.

Q∗
n(hn, an) = max

π
(Eπ

ν [Gn+1|Hn = hn, An = an])

= max
π

(
∑

sn+1∈S

Rn+1(hn, an, sn+1) + γ
∑

an+1∈A

Qπ
n+1(hn+1, an+1))

× P [Sn+1 = sn+1 | Hn = hn, An = an]

=
∑

sn+1∈S

[Rn+1(hn, an, sn+1) + γmax
π

∑
an+1∈A

Qπ
n+1(hn+1, an+1)]

× P [Sn+1 = sn+1 | Hn = hn, An = an]

Now, consider a∗n+1 ∈ argmaxaQ
∗
n+1(hn+1, a), we have :

Q∗
n(hn, an) =

∑
sn+1∈S

[Rn+1(hn, an, sn+1) + γmax
π

Qπ
n+1(hn+1, a

∗
n+1)]

× P [Sn+1 = sn+1 | Hn = hn, An = an]

=
∑

sn+1∈S

[Rn+1(hn, an, sn+1) + γQ∗
n+1(hn+1, a

∗
n+1)]

× P [Sn+1 = sn+1 | Hn = hn, An = an]

=
∑

sn+1∈S

[Rn+1(hn, an, sn+1) + γmax
a

Q∗
n+1(hn+1, a)]

× P [Sn+1 = sn+1 | Hn = hn, An = an]

As a consequence of the Bellman Optimality Equation, we can claim that an optimal
policy can be found by maximizing over Qπ∗

n (s, a) for all n ∈ N and by considering the
optimal policy defined as

π∗n(s, a) =

{
1 if a ∈ argmaxa∈A(s)Q

∗
n(s, a)

0 otherwise
(3.8)

Note that this policy is deterministic.

3.2.4 Reinforcement learning

The mathematical foundations established in the previous sections serve as the ba-
sis for building algorithms to determine decision rules. In the field of RL, numerous
algorithms aim to learn optimal policies. We have chosen to present two of these algo-
rithms to illustrate a first distinction between online and offline application contexts.
Furthermore, the second algorithm presented has been widely adopted to meet our ap-
plication context. A discussion on the different RL algorithms suitable for our context
will be the subject of Section 3.3.5.
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3.2.4.1 Forward Q-learning

Q-learning, proposed in 1989 by Chris Watkins [113, 125], is one of the most famous
and widely used algorithms in RL. It was historically developed in the so-called online
context where the algorithm can dynamically interact with its application context.
This is associated with the notion of "agent" which is an entity capable of interacting
with the environment while receiving rewards. The concept of interaction is related to
the exploitation-exploration dilemma. The agent must, through trial and error, choose
between exploiting acquired knowledge to maximize immediate rewards or exploring
new actions to discover better long-term strategies [113]. An excellent illustration of
this problem is the ϵ-greedy strategy presented in the following definition:

Definition 3.2.10 (ϵ-greedy Policy).

πϵ(s) =

{
random action from A(s) with probability ϵ
argmaxa∈A(s)Q(s, a) with probability 1− ϵ

where ϵ ∈ [0, 1] is an hyperparemeter called the exploration rate.

Q-learning relies on the recursive Bellman equations (3.2.3). The idea is to estimate
value functions based on the differences between current and previous estimates, and
then to derive an optimal strategy from Equation (3.8) of Bellman optimality.

Algorithm 1 Q-learning
Initialisation : Q(s, a) arbitrarily, set learning rate α, discount factor γ, and explo-
ration rate ϵ
for each history to build do

Initialize state s
while s has not reached the terminal stage do

Choose action a using policy derived from Q (e.g., ϵ-greedy)
Take action a, observe reward r and new state s′

Update Q(s, a) using the Q-learning update rule:
Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s′, a′)−Q(s, a))

s← s′

end while
end for
Output: The optimal decison rule is determined such as π∗(s, a) = argmaxaQ(s, a)

3.2.4.2 Backward Q-learning

When exploration of the environment is challenging, learning can be conducted
using existing data, allowing decision rules to be derived from a non-interactive envi-
ronment. This is referred to as offline or batch-RL. In this context, the algorithm does
not interact with its environment; learning relies on estimating value functions from
pre-existing databases. This offline Q-learning [22, 84] follows a backward approach
illustrated in Figure 3.1.
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Figure 3.1 – Illustration of the Backward Q-learning algorithm for estimating Q-values
on a history with 4 steps.

The estimates of the Q-function are initialized at the terminal time and move back-
ward in time step by step. This strategy allows for the consideration of a possible delay
effect commonly observed in longitudinal data. To estimate the Q-functions, various
regression algorithms can be used, such as linear regression, support vector machines,
decision trees or by deep neural networks, among others.

Algorithm 2 Backward Q-learning
Input: A set of training offline data consists of patients admissible histories ht and
their associated indexed reward rt, t = 0, ..., τ and a regression algorithm
Initialisation : Let t = τ + 1 and Q̂t be a function equal to zero everywhere on
S× A
while until t = 0 do

t← t− 1 (Backward)
Qt is fitted with a regression algorithm though the following recursive equation :

Qt(st, at) = rt +maxat+1 Q̂t+1(st+1, at+1)

end while
Output: Given the sequential estimates of {Q̂0, ..., Q̂τ}, the sequential optimal poli-
cies {π̂0, ..., π̂τ} can be determined

Remark 3.2.9. In an offline context, direct exploration is not present because decisions
are made based on data collected in the database. Although there is no longer an
exploration-exploitation dilemma as in the online context, it will be necessary to take
into account a bias resulting from data where exploration-exploitation has already been
performed.
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3.3 The multi-decision setting : dynamic treatment regimes

3.3.1 Dynamic treatment regimes

Until the end of the 20th century, progress in medicine followed a "one-size-fits-
all" approach. The search for the effect of a treatment or intervention was framed
within evidence-based medicine on a target population. With the advent of massive
data, particularly genomics, the paradigm has evolved. The volume of individual data
collected has exploded, suggesting the possibility of integrating individual factors in
the search for the effect of an intervention. The desired effect of treatment is no longer
an average effect but a conditional effect on patient characteristics.

In this context, where the effect of an intervention is conditional to the variable
characteristics of the patient which vary over time, the relevance of a treatment for a
given individual may also vary over time. A central objective of precision medicine is
to develop adaptive, and potentially optimal, intervention rules, where the definition
of optimality must be clearly defined [47].

The search for adaptive (optimal) intervention rules is not a new question. A vast
literature, primarily in the field of causal inference, exists and has real practical rel-
evance. The foundational works in this context are attributed to [95], and the three
extensions that allow for the effects of time-varying regimes in the presence of con-
founding variables: G-computation [93], the method of structural nested mean [94]
models and G-estimation [96, 99, 95], as well as marginal structural models [97] and
methods associated with inverse probability of treatment weighting [12]. Subsequently,
a number of methods have been proposed, both in frequentist and Bayesian frame-
works. All estimate the optimal DTR based on distributional assumptions of the data
generation process via parametric models. We can consider them as direct resolution
methods. These methods will not be further developed in this article; an up-to-date
review including direct methods can be found in [18].

In the following section, we will detail the parallel that can be drawn between DTR
and RL, which helps overcome a major barrier of direct methods, namely the risk of
misspecification of underlying assumptions [142]. To address this limitation, in [77],
followed immediately by [98], semi-parametric methods were considered, marking the
first examples of RL-based approaches in the literature on DTR. The innovations of
RL have breathed new life into the search for optimal DTRs, gradually expanding its
applicability domain.

3.3.2 Decision process and dynamic treatment regimes

In Section 3.2, we notably introduced decision processes, policy and rewards which
forms the theoretical foundation for algorithms searching for optimal policies, namely
reinforcement learning. To describe the contribution of RL algorithms in the medical
context, we will begin by examining how the framework introduced and DTRs are
linked.

As discussed in Section 3.3.1, an adaptive intervention involves making a treatment
decision based on the patient’s characteristics and treatment history. An adaptive
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decision rule can thus be perceived as a policy in the theoretical sense presented in
Section 3.2.2. To leverage the results of reinforcement learning, it is essential to define
the applied framework of the underlying DP for DTRs.

Building upon the definition 3.2.1 of a decision process, it is natural to consider, in
a medical context:

— The state space S contains the selected covariates describing the patient’s state.
— The action space A contains the selected treatments and their associated dosages.
— The subset {A(s)|s ∈ S} states that the treatments feasible or accessible for a

patient depend on a given state.

Remark 3.3.1. It is worth noting that in our context, the variable St is a vector
containing a set of covariates observed at time t describing the patient’s health state,
which may influence the transition probabilities from one state to another.

The observed histories ht are then the care pathways of different patients. They
contain health data and treatments administered up to decision t.

One of the key elements of RL is the reward. In the medical context, rewards are
defined to address the clinical objective. This is a very important point as optimization
relies on it. The notion of reward will be central in the discussion on the integration
of medical expertise in Section 4.2. Indeed, for a given situation, different rewards can
be associated depending on the expertise of the physicians, the specific objectives of
the clinical trial, either proximally (directly after the decision) or distally (at the end
of the follow-up).

3.3.3 Specificities of the medical context

DTRs find their primary application in medical contexts where multiple treatment
lines are possible or in contexts with multiple possible decision points (see Figure
3.2). These adaptive strategies are particularly relevant in areas such as intensive care,
chronic diseases, psychiatry, or oncology.

Figure 3.2 – Illustration of medical history: treatment line for a patient.

The medical context is known for the great heterogeneity of its data [46, 111],
whether in terms of care pathways, treatment response, side effects, social factors, or
lifestyle. In this regard, data-driven methods offer interesting perspectives by overcom-
ing the issue of model misspecification. Precision medicine would thus offer a path to
more equitable access to treatments. Moreover, the decision-making process can take
into account variables such as resource availability, finances, and other socio-economic
or discriminatory factors, leading to fairer decision rules.

The timing of decision-making moments is a central issue in the problem of adap-
tive interventions. Typically, these decision points are linked to patient visits to the
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practitioner. It is therefore natural to consider these moments as discrete and finite
and to model them using a finite-horizon DP introduced in Section 3.2.1. Two issues
arise: the time interval between two decision points and their frequency.

The issue of non-homogeneous time intervals between patients in the context of
DTRs is typically addressed by considering the time between two visits as a covariate.
Technically, this means defining the time based on the protocol and not worrying about
the actual calendar time between visits. Even if the visits are not evenly spaced, by
including this time information in a variable, we can treat the visits as if they are
evenly spaced within the Markovian framework [54, 55, 103].

In some scenarios, such as patient follow-up in oncology or diabetes care, the number
of visits is indefinite and varies based on individual patient needs. These patients are
regularly monitored through mobile-Health (m-Health) initiatives, which operate in
an online environment. Therefore, employing the Q-learning approach with backward
induction, as explained in Section 3.2.4.2, becomes impractical. In [67], researchers
identified optimal DTRs within an indefinite horizon framework using V-learning. This
method aims to estimate the optimal policy from a predefined class of policies. Another
approach, discussed in [23], utilizes an inferential procedure for estimating Q-functions.

Remark 3.3.2. In the rapidly expanding field of m-Health research, online approaches
are particularly suitable. Just-In-Time Adaptive Interventions (JITAIs) have already
been the subject of research efforts [43, 80, 92]. A synthesis of JITAI research is
provided in [19], along with a comparative study with DTRs. This study addresses the
technical aspect of making decisions about adaptive treatments in an interactive online
environment. We will not cover these aspects further in the work, as the framework of
DTRs on robservational data is discussed in Section 3.2.4.2, which is only feasible in
the context of offline algorithms.

3.3.4 Real data application

Appendix 6 provides an overview of the RL research conducted in the context of
DTRs. It is important to note that decision points are typically few in observational
data application context; many studies consider two or three decision points. This
choice is primarily driven by computational challenges: the more decision points there
are, the more complex it becomes to integrate the patient’s history into the models.
An alternative approach is to impose a Markov assumption on the DP. However, in
healthcare applications, this assumption is often unrealistic. The entire patient history
can rarely be ignored or encapsulated in the current state.

As with any analysis on healthcare data, it is natural to question the biases inherent
in the methods and the issue of causality [37, 81]. Since machine learning techniques
are not causal inference methods, their use requires unbiased data. The issue typically
arises in terms of "potential outcomes", and it is common to consider causal infer-
ence assumptions such as the "stable unit treatment value" assumption and the "no
unmeasured confounders" assumption, as explained in [11, Chap. 2]. The question of
causality in the field of reinforcement learning is also addressed more directly in the
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framework of "causal RL" 1 [11, 140]. The search for adaptive intervention rules relies
on data with a specific longitudinal structure. Innovations in algorithms for finding
optimal DTRs often begin with adjustments to existing observational databases.

The Medical Information Mart for Intensive Care (MIMIC) [45] is a publicly ac-
cessible observational database containing information on 53,423 distinct admissions
for patients in intensive care units between 2001 and 2012. It includes data on vital
signs, medications, laboratory tests, measurements, caregiver notes, procedure and di-
agnostic codes, imaging reports, length of hospital stay, survival data, etc. Due to the
wealth of available information and its longitudinal nature, MIMIC has been widely
used by the RL community as a support for methods comparison (see [101], Table 3.1
and Appendix 6). It is also utilized as a training dataset for the development of data
augmentation methods [118] and the generation of interactive environment models [86,
89].

Similarly to how randomized trials play a distinct role in clinical research and may
be considered the gold standard for causal relationship investigation, the Sequential
Multiple Assignment Randomized Trial (SMART) design [13, 51] can be regarded as
the gold standard for clinical trial design in the context of adaptive interventions.
SMART designs involve an initial randomization of patients to various treatment op-
tions, followed by re-randomizations at each subsequent stage of some or all of the
patients to another available treatment at that stage. With such a design, the stable
unit treatment value assumption is "by design" fulfilled. However, SMART designs are
challenging to implement, costly, and as a result, there is limited access to data from
SMARTs. However, notable trials include :

— CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) is a SMART
study involving 1,460
schizophrenia patients over 18 months aimed at evaluating the clinical effective-
ness of specific sequences of antipsychotic medications [107].

— ADHD (Attention Deficit Hyperactivity Disorder) is a SMART study involving
150 simulated participants, aimed at evaluating an adaptive intervention for chil-
dren with this disorder. This study integrates behavior modification treatment
along with medication treatment [11, 54].

— STAR*D (Sequenced Treatment Alternatives to Relieve Depression) is a SMART
study involving 4,041 patients with major depressive disorders. This study eval-
uated the effectiveness of different treatment regimens [11, 53].

3.3.5 Properties of RL applied to DTR

There is a wide range of RL algorithms offering various methodological approaches
tailored to specific contexts, as illustrated in Appendix 6 table. Figure 3.3 below pro-
vides a non-exhaustive overview of the most common RL algorithms. It presents many
dichotomies, which will be explained in the following paragraph and contextualized in
DTRs applications.

1. for details of "causal RL" initiative, see https://crl.causalai.net/
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Reference Model State Space Action Space Rewards

[49] SARSA Discretised state
space

25 unique actions
based on a 5 by 5
binning procedure

of maximum
vasopressor dose

and sum of
intravenous fluids

per 4h time interval

Terminal reward at
the end of each

trajectory based on
90-day mortality

[90] Dueling DDQN Ordinary and
Sparse

Auto-Encoders
were used for

latent state space
representation

As paper [49] Terminal reward at
the end of each

trajectory based on
in-hospital mortality

[89] Dueling DDQN Continuous state
space based on 4h

aggregated
features based on

physiological
parameters

As paper [49] Intermediate reward
based on changes in
critical care scores

and lactate combined
with a terminal

reward for survival
based on ICU

mortality

[86] Dueling DDQN Patient states are
encoded

recurrently using
an LSTM

autoencoder
representing the

cumulative
history for each

patient

As paper [49] The change in the
negative mortality

logodds of mortality
between the current
observations and the
next observations.

[58] Actor-Critic POMDP As paper [49] As paper [49]

[135] Dueling DDQN As paper [3] As paper [49] Developed several
reward functions

based on 7 potential
features most

important during the
treatment process

Table 3.1 – Applications of RL algorithms on MIMIC database: highlighting various
medical objectives with rewards design extract from [101].
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Figure 3.3 – Classification of the most common RL algorithms.

3.3.5.1 Model-based vs. Model-free

The first dichotomy in Figure 3.3 is based on the distinction between a model-
based approach and a model-free approach. This distinction is related to the concept
of transition probability defined by equation (3.1). A procedure is considered "model-
based" when it relies on knowledge of all transition probabilities from a model, which
means having access to all dynamics of the system. A model-free method is able to
bypass this model and is based on partial information of the associations between states
and actions to determine the optimal strategy. In a model-based approach, all possible
paths from an initial state s0 are explored, and an optimal policy is one that maximizes
the objective.

However, in a medical context, exploring all possibilities from the same starting
point is infeasible, mainly for clinical and ethical reasons. The environment is thus
inherently partially observed. This reality inherently places us in a model-free frame-
work. It is worth noting the existence of an application on simulated patient data based
on MIMIC (see Section 3.1) in the model-based framework in [91].
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3.3.5.2 Policy-based vs. Value-based vs. Actor-critic

The second distinction involves two different approaches to determine the best
strategy: policy-based methods and value-based methods. The former aim to directly
find the optimal policy by formalizing the RL problem through a family of policies,
introduced in [113, Chapter 13]. The latter seek the optimal policy through value
functions, introduced in Section 3.2.3.2, and serve as the basis for algorithmic methods
such as dynamic programming, Monte Carlo, and temporal-difference, also presented
in the same book. These two approaches can be combined, thus forming actor-critic
methods [33, 113].

Policy-based Policy-based methods are direct approaches to finding the optimal
policy that rely on a parametric form of the strategy πθ for θ ∈ Θ. Optimization can
be typically achieved through gradient descent :

θn+1 = θn +∇Eπθ
[Gn|θ] (3.9)

where Gn is the cumulative long-term reward introduced in Remark 3.2.7.
This method has been applied to simulated HIV data [132] as well as in the intensive

care domain [91]. Note that the first application highlighted the challenges of converging
to an optimal decision rule due to the simplification of simulation models. The main
obstacle to using this method is the difficulty of convergence, which requires a large
volume of data.

Value-based Value-based methods evaluate the optimal policy indirectly based on
value functions V π or Qπ introduced in Section 3.2.3.2. The general idea is to quantita-
tively evaluate states or action-state pairs using one of the value functions (Q-function
or V-function). The optimal policy is then obtained by identifying actions that max-
imize these values. The success of these methods relies on the ability to model these
value functions, as outlined in Section 3.2.4.2, through algorithms such as Backward
Q-learning, making it a highly flexible approach.

The initial work was conducted by [75], who introduced an offline Q-learning, also
known as batch learning, in a context of non-Markovian planning with a limited and
restricted number of steps (n ≤ 4). This approach proves ideal for its application
to DTRs and can serve as a starting point for many other applications. Research
activity in this field quickly became significant, considering various parametric, semi-
parametric, and non-parametric strategies to model the value function [11, 53, 76,
119].

Value-based methods are better suited for application to DTRs. They enable the
discovery of optimal decision rules in a non-Markovian framework with a small number
of steps and data, unlike policy-based methods. This makes them easily applicable to
observational data. Moreover, they can offer a clearer interpretation, especially when Q-
function estimation relies on a linear regression model [53], thus providing interpretable
decision rules. As shown in Appendix 6, this is the most widely used method in practice,
particularly Q-learning approaches and its derivatives in the context of DTRs.
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Actor-critic A third approach to address the question of finding an optimal strategy
is known as the ’Actor-Critic’ method. It takes a hybrid approach by combining an
actor based on policy-based methods with a critic based on model-based methods, thus
integrating the advantages of both previous methods. The actor refines the parame-
terized policy under the guidance of the critic. The latter uses value functions, also
parameterized V πθ or Qπθ , to guide learning. This third way of constructing decision
rules was developed to correct biases in value-based methods and to counterbalance
the high variability of the gradient part of policy-based methods in equation (3.9) [33].

Actor-critic methods have been applied to the MIMIC dataset. This compromise
between policy-based and value-based methods converges towards a decision rule re-
ducing patient mortality in [124] or providing a decision rule in line with physician’s
usual opinions in [57, 59]. This approach relies on gradient descent, similar to policy-
based methods, thus necessitating databases containing a large number of individuals,
often simulated data.

3.3.5.3 On-policy vs. Off-policy

This last dichotomy is closely related and sometimes confused with the concepts of
offline and online algorithms presented in Section 3.2.4.

DTRs on observational data inherently operate in an offline context, aiming to de-
termine the optimal policy using previously collected data. This means that, rather
than adapting in real time, the analysis and optimization are done retrospectively. For
example, all SMART designs gather data from established clinical protocols. These
protocols dictate the timing and nature of patient visits, ensuring a structured col-
lection of data. By analyzing this data, researchers can develop and refine treatment
strategies [121, 11, 50]. Therefore, applying RL in the DTR context and clinical de-
cision support is fundamentally off-policy, meaning that the strategy used to generate
the data (’behavior policy’) is not necessarily optimal. The optimal strategy (’target
policy’) is deduced subsequently.

On-policy algorithms require an interactive online context where the strategy gen-
erating the data is optimized. The concepts of behavior and target policies are merged.
The online framework can benefit from both on-policy algorithms, as is the case in the
medical domain with Just-in-Time Adaptive Interventions (JITAIs) discussed in [19],
and off-policy algorithms (see Figure 3.3). Some online algorithms, both off-policy and
on-policy, have been explored within the context of DTRs, but exclusively in simulated
data settings, as indicated in Appendix 6.

3.4 The single-decision setting : individualized treatment
regime

3.4.1 Individualized treatment regime

When introducing precision medicine in clinical decision-making, it is traditionally
more common to start with a context involving a single medical decision step. This



3.4. The single-decision setting : individualized treatment regime 41

is referred to as Individualized Treatment Regimes (ITR). However, the multi-stage
context of DTR can be seen as a generalization of ITR. Indeed, ITR corresponds to a
single decision or a single-stage problem. It is essentially a DTR with only one decision
rule between two states [119].

This natural entry point into precision medicine is presented through a formalism of
the form {(Xi, Ai, Yi)}ni=1, where X ∈ X represents the baseline patient characteristics,
A ∈ A is the administered treatment, and Y ∈ R is the outcome such that higher
values indicate a better state of the patient. For each x ∈ X , let ψ(x) ⊆ A represent
the set of allowable treatments for a patient with X = x [50]. More precisely, Xi =

(Xi,1, . . . , Xi,p)
T ∈ X denotes the p-dimensional biomarker and prognostic information

vector, a set of random variables contained in the space X . We will consider the simple
case of two treatments where the treatment space is binary A = {0, 1}. This binary
notation is associated with statistical resolution methods, but it is also common to find
A = {−1, 1}, whose reformulation benefits the formalism of other machine learning-
based models.

An ITR in this context is a map d : X → A that satisfies d(x) ∈ ψ(x) for all
x ∈ X . Under d, patients with X = x would be assigned the treatment d(x) [50].
Thus, fundamentally, identifying an optimal ITR involves finding the treatment rule
that maximizes the expected outcome across all patients. The optimal regime is defined
as dopt.

As discussed in Section 3.3.1, the search for an optimal individualized medical de-
cision dates back to the 1990s and initially focused on single-stage approaches. The
two most well-known regression-based methods are Q-learning (see Section 1) and G-
estimation [96, 99, 95]. Both methods primarily rely on the parametric estimation
of E[Y |X,A]. To move beyond linear decision rules and adopt a more direct and
nonparametric approaches, the statistical research for precision medicine introduces
methods such as marginal structural mean models [97, 83], inverse probability of treat-
ment weighting [97], augmented inverse probability of treatment weighting [139], and
outcome-weighted learning [143]. Each of these methods estimates the value of a specific
treatment regime d, defined as V d = E[Y (d)], which represents the expected average
outcome if all patients were to follow regime d. Each method offers a distinct approach
to weighting this value. A comprehensive explanation and comparison of these methods
are provided in [51, Chapter 6].

3.4.2 Decision process and individualized treatment regime

In Section 3.2.1, we introduced fundamental concepts such as decision processes,
policies, and rewards, which form the theoretical basis of RL. In Section 3.3.2, we estab-
lished the connections between mathematical elements and their practical applications.
In this section, we will perform a similar exercise, taking the time to draw parallels
between the mathematical foundations of ITR and the RL framework.

Building on the definition of a decision process provided in 3.2.1, we can observe
the following:

— An ITR represents a single-stage decision process, hence involving only a singu-
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lar stage.
— The state space S encompasses the covariates that describe the patient. In

the context of ITR, X and S coincide, meaning that X, the vector of baseline
covariates, corresponds to S0.

— The action space A, which includes the available treatments, is represented by
A. This space is typically restricted to a limited number of treatment options,
often just two.

Remark 3.4.1. In the context of a multistage discrete DTR problem, n refers to the
number of stages. In contrast, in the ITR context, n denotes the number of patients.

In the context of ITR, the observed history ht no longer describes longitudinal
data. Instead, it consists solely of the covariates at the beginning of the trial and the
administered treatment, represented as h = (s0, a0) = (x, a).

The decision rule described in Section 3.4.1 can be generalized using the framework
outlined in Section 3.2.2.

The final outcome Y serves as a quantitative measure of the patient’s condition and
thus corresponds to the reward. In some applications of ITR, Y may also be denoted
as R, representing either the reward or the response.

Bridging the gap between the statistical framework of ITR and RL solving methods,
such as Q-learning and other regression-based approaches, was addressed in [15].

3.4.3 Causality

The single-stage context with a binary action space provides an opportunity to
discuss the causal framework using a simpler formalism, offering the initial key steps
and intuitions, which can be generalized to a multi-stage framework.

In order to discuss how to make inferences from observational data concerning
ITR, we need to introduce the notion of potential outcomes or counterfactuals. This
concept refers to the patient’s response if a certain treatment were administered (or
if a certain regimen were followed), possibly different from the one actually observed
(hence, counter to fact). A potential outcome Y ∗(a) is the outcome the patient would
experience if they were to receive the treatment option a. We aim to determine the
best treatment a ∈ A for a patient, corresponding to the largest Y ∗(a) for that patient.
Obviously, it is impossible to identify the best treatment option for an individual since
all potential outcomes for a given patient are not observable. Therefore, this problem
cannot be solved at an individual level. However, it is possible to identify population-
level causal parameters or average causal effects under conditions of perfect compliance
with randomization, or to estimate bounds on these effects under conditions of non-
compliance [11]. In the absence of randomization, such as in observational studies or
randomized trials with imperfect compliance, additional assumptions are necessary to
estimate population-level effects. These assumptions are presented in the single-stage
setting, but applications to the multiple-stage setting can be found in [11, Chapter 2].

The axiom of consistency is a fundamental requirement stating that the potential
outcome under the observed treatment and the actual observed outcome must be the
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same. In other words, the expectation of the observed outcome when treatment a is
administered is equal to the expectation of counterfactual outcome.

Remark 3.4.2. This axiom is often plausible in studies of medical treatments, where it
is straightforward to design how to manipulate the treatments administered to patients.
Consequently, it is easily verified by the study design and data collection process.

The three other assumptions are necessary for an unbiased estimation of treatment
effects [11, 24] :

— The Stable Unit Treatment Value Assumption (SUTVA): A subject’s outcome
Y (a) is not influenced by other subjects’ treatment allocation [102].

— No Unmeasured Confounding (NUC): The covariates X encompass all informa-
tion relevant for assigning treatments. This is expressed in the context by:

Y ∗(a), Y ∗(a′) ⊥ A | X

This assumption implies that the effect of potential outcomes can be assessed
using the data as follows:

E[Y ∗(a)] = E[E[Y ∗(a) | X]]

= E[E[Y ∗(a) | A = a,X]]

= E[E[Y (a) | A = a,X]]

= E[Y (a)]

— The positivity assumption, also known as Experimental Treatment Assignment
(ETA), requires that every treatment option has a positive probability of be-
ing assigned given any set of covariates. This means that for each possible
covariate-treatment pair, there must be a positive probability that the treat-
ment prescribed by the treatment regime is observed. In other words, subjects
should be able to receive both treatments without any restrictions.

Remark 3.4.3 (STUVA). The SUTVA is often reasonable, particularly in the con-
text of randomized trials. However, it may be violated in specific scenarios, such as
vaccinations for contagious diseases, where "herd immunity" effects can influence the
outcomes.

Remark 3.4.4 (NUC). The NUC assumption is a standard but unverifiable require-
ment for observational studies. It is automatically satisfied for data obtained from
randomized trials.

Remark 3.4.5 (Positivity). In practice, the positivity assumption can be checked
through studies of data distribution. However, positivity can be violated in two ways:
theoretically or practically. A theoretical violation occurs when the study design pre-
vents certain individuals from receiving specific treatments. A practical violation hap-
pens when certain groups of people have a very low chance of receiving the treatment
[11, 24].
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3.5 Conclusion

This chapter introduces and aims to facilitate the understanding of RL methods
for precision medicine, especially its application to optimal DTR and ITR research.
This topic is of major practical interest since it aims to determine an optimal decision
rule for personalized treatments, with a large range of applications in areas such as
intensive care, chronic diseases, psychiatry, and oncology. However, applying RL to
medical research requires specific considerations and adaptations.

The main specificity arises from the data, typically derived from observational stud-
ies, which limits RL methods to offline applications. While an online setting is feasible,
such as in m-health scenarios, for many cases, it is unethical to base treatment decisions
solely on an algorithm. Therefore, since the data has already been collected beforehand,
it is important to note that the well-known exploration-exploitation dilemma of online
RL translates into an exploration-exploitation bias in offline RL settings. Section 3.3.5
details the properties of RL algorithms and helps identify the most desirable charac-
teristics for an algorithm applied to DTR. First, due to clinical and ethical constraints,
exploring all possibilities from the same starting point is impractical, necessitating the
use of model-free algorithms. Secondly, value-based methods enable the discovery of
optimal decision rules in a non-Markovian setting with limited steps and data, distin-
guishing them from policy-based approaches. Thirdly, off-policy algorithms are suited
for offline contexts where data is already collected following a specific strategy, allow-
ing for the determination of the optimal policy in a second phase. When these three
characteristics converge, the result is an algorithm well suited for practical applica-
tions with observational DTR data. Consequently, Backward Q-learning, also known
as Fitted Q-Iteration, emerges as the most widely adopted and utilized algorithm in
the realm of applying RL to DTR [15].

Closely related to all research involving observational data, the issue of causality
is also significant in the context of optimal DTRs. We have used the framework of
ITR to provide initial insights and assumptions governing causality in this context,
which can later be generalized to the domain of DTRs. However, when applying RL to
DTRs, only a few studies address this challenge directly [11, 140], while most rely on
assumptions that are difficult to verify, which can render the results questionable. This
limitation can be mitigated by using experimental designs such as SMART, although
these designs are complex and costly to implement [13, 51].

The classical formulation of RL relies on decision processes theory under the Markov
assumption. However, this assumption is often too stringent in practical applications.
Indeed, there is no guarantee that the current state under study contains all the nec-
essary information to construct a precise decision. However most of the mathematical
properties remain true without this Markov assumption by considering the entirety of
the patient’s history. In practice, that necessitates huge computational capacities and
restricts to the applications the determination of adaptive strategies where the number
of DTR steps is small (less than 4).
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4.1 Introduction

The previous chapter introduced Reinforcement Learning (RL) methods for preci-
sion medicine, particularly for optimal Dynamic Treatment Regimes (DTR) research.
This is crucial for personalized treatments across various fields like intensive care,
chronic diseases, psychiatry, and oncology. Applying RL in medical research requires
specific considerations and adaptations. We noted that data typically comes from
observational studies, limiting RL methods to offline applications. Note that, the
exploration-exploitation dilemma of online RL becomes an exploration-exploitation
bias. Online reinforcement learning can work in settings like mobile-health, where
patients are frequently monitored. However, it is often unethical to rely only on algo-
rithms for treatment decisions. Section 3.3.5 outlines the properties of RL algorithms,
identifying key characteristics for DTR applications:

— Model-Free: due to clinical and ethical constraints, exploring all possibili-
ties from the same starting point is impractical, making model-free algorithms
essential.
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— Value-Based: these methods help find optimal decision rules in non-Markovian
settings with limited steps and data, unlike policy-based approaches.

— Off-Policy: suitable for offline contexts where data is collected following a
specific strategy, allowing the determination of the optimal policy later.

When these characteristics align, the algorithm is well suited for practical DTR
applications. Thus, backward Q-learning, or fitted Q-Iteration, is the most widely used
algorithm for applying RL to DTR.

While RL offers promising algorithms for sequential decision-making in healthcare,
as detailed in Appendix 6, relying on a machine learning algorithm may create appre-
hension among all stakeholders in the process. This hesitation can originate from both
the patient and the physician sides. In order to be operational in a clinical context,
several points must be improved such as safer, more interpretative and efficient medical
decision making [21]. One approach to enhance the application of RL in healthcare is
the integration of expertise or human knowledge into the models. The concept is to
create a partnership between both machine learning capabilities and domain experts
[39, 69]. This "collaboration" would not only improve confidence in RL models and the
recommendations they provide [66] but also facilitate the utilization of this technology
by healthcare professionals and patients within a clinical setting [40]. This merging of
machine learning and human expertise yields to improved results compared to RL in
isolation or expert decisions alone [5, 56]. From a technical point, involving experts or
medical knowledge also reduces the learning time, allowing for quicker adaptation and
enhancement of the methods, ultimately leading to more effective and patient-centered
healthcare solutions.

The first objective of this chapter is to review the state of the art in integrating
medical knowledge into reinforcement learning models. This involves paying particular
attention to the algorithmic properties with which these models have been developed,
thereby highlighting the necessary adaptations for their application to DTR derived
from observational data.

One of the methods presented in subsection 4.2.2, and explored in depth, is the
construction of rewards through preference learning [27]. Indeed, rewards are crucial
elements in learning optimal strategies, as the overarching goal of RL is to maximize
them. They provide quantitative indications of the system’s state. Their construction
or formulation is thus critical in decision-making learning. Generally, rewards are de-
signed by a system expert who proposes to evaluate it through a score. For example,
in the context of clinical trials for individuals with obesity, where the goal is to reduce
their weight, the reward can be measured through their body mass index [61]. Another
example, in critical care settings, is to evaluate treatments based on survival or mortal-
ity rates [101]. Some rewards can be designed more subtly by making compromises and
combining variables. In the context of a cancer simulation presented in [144], rewards
are evaluated based on tumor size, treatment toxicity, patient well-being, and survival
rates. However, when a patient’s death occurs, an arbitrary choice is usually made
to assign a score of -60 to the event. Manually constructing a reward function can
involve arbitrary or very context-specific choices and lead to overly restrictive learning
objectives.
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Preference learning offers an interesting approach to generalizing reward construc-
tion by employing a probabilistic Bradley-Terry model [105, 10] to convert physician
preferences between patient trajectories into quantitative and ordinal rewards. The
second objective of this chapter is to show how this method meets the ideal properties
for applying RL to DTR: offline, model-free, value-based, and off-policy, while ensuring
that learned policies align with medical objectives. This will be demonstrated through
two case studies: one on treating adolescents with obesity [8, 61] and another on a
generic cancer simulation [144].

To achieve the objectives of this chapter, we structure it as follows. In Section 4.2,
we provide an overview of methods to enhance reinforcement learning in the medical
context by integrating expert knowledge. Various methods are presented and discussed.
In Section 4.3, we present our method of learning rewards through preference learning,
designed for application to DTR, along with two examples of application. The chapter
concludes with a section highlighting research perspectives in Section 4.4.

4.2 Approaches to integrating medical knowledge into RL

In Chapter 3, we examined the theoretical foundations of RL in Section 3.2. We
discussed key concepts such as reward elements, value functions, and objective func-
tions, which are essential for integrating medical knowledge into RL models. In this
section, we provide a state-of-the-art review of integrating medical knowledge and ma-
chine learning at each stage of applying RL in the context of DTR. This section has
two main objectives: first, to define how medical knowledge can be integrated into
RL algorithms for developing treatment decision rules; and second, to propose adjust-
ments to algorithms to better tailor them for DTR applications. These objectives aim
to enhance the safety, interpretability, and relevance of medical decision-making tools.

4.2.1 Medical knowledge and model preparation

Like any machine learning method, the search for the optimal DTR depends on the
data from which the method was trained. Data preparation is therefore an essential
step. Medical knowledge is certainly involved in this process. Indeed, in this causal
context, the choice of variables to collect and the selection of confounding factors
are crucial. These decisions are primarily guided by medical expertise, drawn from
the experience of practitioners and medical literature, as detailed in Section 3.3.3.
The construction of the training dataset is thus the very first intervention of medical
knowledge in RL models. It is primarily a methodological consideration that may bias
the constructed optimal decision rule (Remark 3.2.9).

The second step in the preparation phase of applying RL in the context of search-
ing for optimal DTRs involves selecting an algorithm from the various possibilities
presented in Figure 3.3. This choice is primarily based on how the data were collected,
the chronology of events, juxtaposed with the different characteristics of RL algorithms
discussed in Section 3.3.5. The choice of method thus depends mainly on the appli-
cation context and available data, and therefore, on underlying medical knowledge.
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Again, this is primarily a methodological issue, where the medical specialist collab-
orates with the machine learning specialist to make this choice or develop a new ad
hoc method. This discussion could follow the decision tree outlined in the figure titled
"Overview of the guideline for the application of RL to healthcare" in [16].

4.2.2 Medical knowledge and rewards

One crucial aspect of learning optimal strategies is the formulation of rewards.
This is a key component and one of the primary mechanisms for integrating medical
knowledge into RL methods. In practical terms, commonly, the choice of reward is
directly based on medical expertise. It is primarily a methodological issue closely
linked to the definition of the study’s objective. The selection of the reward is similar to
choosing the primary outcome in the design of a clinical trial, with the same imperatives
of precision and representativeness of the variable. Rewards mainly consist in scores
or quantitative variables, such as changes in body mass index (BMI) in weight loss
studies [61], or survival functions in critical care settings [101]. Additionally, more
complex rewards can be found, such as compromises or combinations of variables, as
seen in oncology contexts [144], where the reward is evaluated considering tumor size,
treatment toxicity, patient well-being, and survival rates. In Table 3.1, an illustration of
various reward functions is provided, each aiming to achieve a specific medical objective.

It is evident that selecting an ad hoc reward for the problem under study can
entail choices that are either too arbitrary or too context-specific, potentially leading
to overly restrictive learning objectives. An alternative approach is to replace this
choice of reward with reward shaping. Several approaches have been developed in this
direction.

One way to generalize and automatically construct rewards is through inverse re-
inforcement learning. This method uses patient trajectories generated with expert
medical decision-making to extract an estimate of the underlying reward function for
these choices. Thus, it also seeks to highlight the characteristics that should be con-
sidered for its formulation. The latent medical knowledge will then be encapsulated in
the estimation of the reward function. This approach has been used in the context of
alcohol addiction management [104] for the search for a personalized decision-making
rule. The application of inverse reinforcement learning to the framework of DTRs is
also explored in the article [68], where the objective of this study is to construct a
reward function as a linear combination of covariates. Inverse reinforcement learning
allows for the determination of rewards from data, thereby accelerating the learning
of a decision rule compared to manually constructed rewards. It is important to note
that these methods assume that the physicians who generated the training data made
decisions aimed at maximizing the interests of each patient. Thus, the constructed
rewards are sensitive not only to the quality of the data but also to medical decisions.

Another way to generalize the construction of rewards based on expert knowledge
is preference learning. A subfield of research in machine learning, it relies on the idea
that the expert provides preferences between two elements, which induces a ranking
among these elements. Combined with reinforcement learning, preference learning uses
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this induced ranking to guide the policy learning. In a model-based and online frame-
work [27], preference learning replaces rewards to induce a preferred action based on
preferences between trajectories, states, or policies. The principle is to use a simula-
tion model to generate all possible trajectories from all possible actions, then select
the preferred ones using a preference model. In an online, model-free, and off-policy
framework, learning an optimal strategy is done in three steps [2]. First, an exploratory
phase where trajectories are generated by a behavior policy. Second, an expert provides
preferences, which induces a ranking. Third, the model learns an optimal strategy by
solving a constrained optimization problem where the preferences are modeled within
the constraints. In an offline framework, preference learning separately learns the re-
wards and the optimal strategy. The comparisons are then used in a probabilistic
model, such as the Bradley-Terry algorithm, to construct rewards by maximum like-
lihood estimation or neural networks [105]. These rewards are then integrated into
RL algorithms. Preference learning methods, described as model-based/on-policy by
[27] and model-free/off-policy by [2], use preferences on trajectories on simulated data
similar to the generic cancer scenario described by [144]. In [27], patient trajectories
are compared using a partial order relation that considers survival, maximum toxicity
over time, and final tumor size. Meanwhile, [2] formulate expert preferences by priori-
tizing trajectories with superior final outcomes, which include minimal tumor size and
reduced toxicity levels. Preference Learning enables the construction of rewards based
on expert preferences on trajectories, allowing learning to rely on explainable choices.
However, the applications described in the articles [27, 2] are based on simulated cancer
data and simulated preferences and have been developed in an online framework, which
is not suitable for direct clinical application. An offline, off-policy solution is proposed
in [105], but it has been developed in the context of robotic or video game applications.

Other methods for constructing rewards exist, such as human-centered reinforce-
ment learning, which utilizes rewards directly provided by an expert. The agent in-
terprets expert feedback as numerical rewards. These approaches are detailed in [56],
but they are generally applied in an online and on-policy context, which involves direct
interaction of the agent with patients, thus raising ethical concerns and requiring a
specific application framework beyond the scope of this article.

4.2.3 Medical knowledge and value functions

The evaluation or estimation of value functions V π
n and Qπ

n is also a key concept
in RL. In the medical context, due to the complexity of environments and the volume
of available data, these assessments often suffer from a lack of precision. Integrating
medical expertise can be considered to improve results.

This is particularly true when medical expertise translates into knowledge of treat-
ment response mechanisms. Indeed, these observations can then be integrated into RL
methods to guide the learning of the optimal strategy. From a technical standpoint, it
is conceivable to penalize the value function: decrease the value function when mecha-
nisms identified by an expert indicate that the treatment is inappropriate and increase
the value function when the treatment is considered relevant. Actions associated with
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a lower value function are less likely to be selected than those associated with a higher
value function. This approach thus highlights actions considered more relevant by the
expert and guides learning in the right direction. This approach was implemented for
patients with renal failure in [29]. Medical experts identified that patients who do not
respond to standard treatment require higher doses. The authors constructed a DTR
by incorporating this clinical fact into a Q-learning algorithm. When a patient does not
respond to a treatment dose, the Q-values of lower doses are penalized, thus favoring
higher doses. This approach offers the advantage of reducing the need for exploration
and hence the learning time. However, it was developed in an online framework using
simulated data, limiting its applicability to observational data.

The integration of medical expertise can also occur through relay collaboration. The
principle involves considering two concurrent value functions: Q, the usual value func-
tion, and Qclin, the value function under the practitioner’s strategy in a given situation.
The latter comes into play only when the patient is in a critical state, as evidenced by
their vital signs. Subsequently, this decision and the patient’s response to treatment
will be used to enrich the learning model through an enhanced value function, denoted
as Q+. Thus, the strategy for updating the value functions involves recommending
treatments suggested by the RL model while seeking the expertise of physicians when
the patient’s condition is deemed critical. Q+ can therefore be formalized as:

Q+(st, a
+
t ) =

{
Qclin(st, a

clin
t ) If the patient’s covariates indicate a critical state

Q(st, at) Otherwise

where aclin is the treatment chosen by the clinician.
This approach has been deployed in the context of intensive care treatment in [128]

when the patient exhibits severe symptoms. In such situations, RL algorithms may pro-
pose aggressive treatment strategies to maximize reward, which can entail significant
risk for the patient. In this study, a model based on value functions Q incorporates
human expertise on the treatment of sepsis. Applied to the MIMIC database, this
model is evaluated using a score reflecting the patient’s critical state. Expert inter-
vention is triggered when the score is considered low. The application of this method
demonstrates a higher survival rate compared to some similar methods without human
expertise and also improves the estimation of the value function.

The principle of collaboration between the agent and the expert is also addressed in
the article [109] using the MIMIC database. It still impacts the Q-functions, but now
through a statistical test. The idea is to introduce exploration into an offline model
by comparing risks between two strategies. One simulates standard medical decisions,
while the other strategy suggests an alternative treatment. From a comparison test on
state values associated with a policy, one of these strategies is adopted. The question
is: when could a new treatment be better than conventional therapies? The solution
seeks to balance choices of standard treatments with new options while assessing risks
to discover promising alternatives that physicians have not considered.

This connection between RL and medical expertise allows for both the supervision
of treatments in complex cases and the exploration of alternative treatments while as-
sessing associated risks. Although off-policy RL can be subject to data biases, these
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methods offer the potential to improve medical practice by combining data-driven in-
sights with physicians’ perspectives. Indeed, integrating medical knowledge relies pri-
marily on observing medical mechanisms from health data or on direct input from a
physician. In both cases, this integration must balance between data, expert opinion,
and statistical models to determine the most suitable treatment strategies. This issue
is part of a broader research question: What is the relative impact of expert knowledge,
data, and machine learning agents?

4.2.4 Medical knowledge and objective function

Value-based approaches can benefit from the integration of medical expertise in
determining optimal strategies. Similarly, methods for incorporating medical expertise
have been proposed for policy-based approaches, which directly modify on the objective
function.

Supervised reinforcement learning merges two subfields of machine learning: su-
pervised learning and RL. The fundamental principle of this method is to maximize a
long-term objective, with the supervision of an expert, in order to maintain consistency
with clinical treatment standards. Its ultimate goal is to predict an optimal treatment
policy, minimizing deviations from medical expert recommendations. In this frame-
work, the expert plays a crucial role as a reference for training the RL algorithm, using
a database containing all medical decisions made within a cohort. This control affects
the objective function in two ways. The latter is simplified into two parts: the first,
derived from an actor-critic algorithm, aims to perfectly mimic the experts through
its "critic" part (Section 3.3.5.2). The second part of supervised learning minimizes
the difference between predicted treatments and those traditionally administered. This
method, described notably in [134], is applied in the intensive care domain using the
MIMIC database and focusing on ventilation and sedation dosing. The primary objec-
tive is to provide optimal care that respects both short-term and long-term goals for
patients, while adhering to best clinical practices. In this context, research shows that
the supervised reinforcement learning approach outperforms the classical Actor-Critic
approach in terms of convergence speed and alignment with usual medical decisions. In
the study by [124], the supervised reinforcement learning approach was applied to the
MIMIC dataset. The treatment recommendations obtained would lead to a decrease
in patient mortality rates. Supervised reinforcement learning, in its fundamental con-
struction, aims to perfectly mimic the usual treatment practices, making it an excellent
means of emulating practitioners. However, it prevents for the proposal of alternative
or less explored treatments compared to usual care methods.

4.2.5 Medical knowledge and policy

It is important to note that medical decision rules constructed within the frame-
work of reinforcement learning recommend only a single action for a given state. The
multiple policies approach involves proposing different equivalents or closely related
strategies for a given patient state. Consequently, the specialist, relying on their exper-
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tise and the constraints of their environment, chooses the treatment from the selection
of actions offered. This approach introduces the notion of quasi-equivalent actions that
may take into account considerations such as side effects, less invasive treatments, and
local availability. Essentially, the general idea is to train a set of policies evaluated by
value functions, which learn a correspondence between each state and a collection of
closely comparable actions. Subsequently, the approach involves restricting the choice
of actions by evaluating the extent to which the deviation from optimal value is ac-
ceptable. This is the concept of worst-case value, referring to the expected gain in the
worst possible scenario within the set of allowed actions. The level of deviation from
optimality allowed will be controlled by a hyperparameter.

The concept of multiple policies was introduced in [70] and applied in a simulated
setting of sequential clinical trials for patients suffering from depression. It was de-
veloped within a model-based, on-policy, online framework with a finite horizon, not
conducive to observational data or real clinical applications. In the article [114], the
method evolved into a model-free and off-policy framework, still online using the tem-
poral difference learning algorithm, and was applied in the simulated context of critical
care based on MIMIC. Like the previous method, its development in an online environ-
ment does not align with our application context, but it establishes the foundation for
a model-free approach, thus representing progress towards a model suitable for DTR.

In conclusion, the concept of multiple policies has also been employed in a multi-
objective context, not based on expert opinion but on patient preferences, as detailed in
[65]. By combining the notion of equivalent strategies with a multi-objective framework
and Pareto dominance, and considering the preferences of patients, less restrictive
solutions can be obtained. This approach, applied in the CATIE study specifically
tailored to the DTR context, offers decision-makers increased choice by a larger class
of optimal policies. These could provide the basis for an application that integrates
experts’ preferences and medical knowledge, thus addressing the issue outlined in this
work.

4.3 Rewards construction based on preference learning

Integrating medical knowledge is crucial for developing models that are both re-
liable and well suited to the inputs of the medical field. This dissertation embraces
this approach by exploring the construction of rewards through preference learning,
specifically targeting offline and off-policy RL models, which provide an ideal context
for applying DTR to observational data. It is with this objective that our method of
constructing rewards through preference learning was developed. It offers a potential
solution in the context of generalizing reward construction. These methods have been
applied to two simulated medical applications: the treatment of patients with obesity
and the treatment of patients with cancer.

In the first example, we aim to illustrate that reward models constructed through
preference learning align well with traditional reward models. The goal is to demon-
strate that preference learning models exhibit similar trends and provide a comparable
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quantitative score for each patient as traditional methods.
The second application serves to show that even if the rewards generated through

preference learning do not perfectly replicate traditional rewards, they can still facilitate
the learning of a treatment strategy that is both coherent and optimal for the study’s
objectives.

4.3.1 Preference learning

One of the key elements in RL that guides the learning of the optimal strategy is
the rewards describing the model. As mentioned in Section 4.2.2, these rewards are a
crucial aspect for integrating medical knowledge. Among the emerging methods, our
work has particularly focused on the in-depth study of preference learning, with the
aim of adapting it to DTR applications.

Preference learning is a subfield of machine learning research. It relies on observing
or collecting preferences to induce a ranking among the elements being compared.
When combined with RL, it affects the reward design. The ranking information is
then used to guide the policy learning. In an offline and off-policy setting, this process
occurs in three steps:

— an expert expresses preferences between pairs of elements, which induces a rank-
ing among all the instances in the previously collected dataset.

— rewards are constructed using a Bradley-Terry probabilistic model.
— these rewards are used for learning the policy in backward Q-learning models

(see Section 3.2.4.2).
In the context of learning from longitudinal medical data, the data are generated

from a sequence of medical decisions or a clinical trial protocol. The initial step involves
collecting preferences or defining a preference rule in collaboration with an expert.
Preferences can be expressed regarding patient states sn, patient trajectories τn, or
treatment strategies π. In this study, we focused on two specific types of preferences:
first, a preference rule for comparing the conditions of different patients, and second, a
rule for comparing the overall trajectories of patients. We did not consider comparisons
between patient histories hn = (s0, a0, . . . , aN−1, sn), as our rules do not incorporate
preferences related to treatments. Concrete examples of these preference rules will be
provided for two applications: one concerning the treatment of adolescents with obesity
[8, 61], and the other involving a generic cancer simulation [144].

The comparisons between patient i and patient j are captured in the set D, defined
as D = {(i, j, kij) | i, j ∈ {1, 2, . . . , q}, kij ∈ N}. In this set, each element (i, j, kij)

represents a comparison between patient i and patient j, where i and j range from 1
to q (with q being the total number of patients). The preference score kij is a natural
number that indicates the degree of preference for patient i over patient j. This set of
preferences can be constructed for each individual step of treatment or for a complete
trajectory, and it may also represent a global comparison of the entire patient care
pathway.

From the collected preferences, the second step is to estimate the rewards using a
probabilistic model. We chose to use the Bradley-Terry model, as proposed in [105], due
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to its demonstrated advantages in reward construction. This model, introduced in the
1950s [10], is particularly used for ranking problems or comparisons where elements
need to be ordered based on their relative performance. The Bradley-Terry model,
when applied to reward construction considering preferences such as i > j, is presented
as follows:

P(i > j) =
Ri

Ri +Rj

where Ri = eβi is the positive real score parameterized by β associated with individual
i, and will be considered as the reward associated with patient i in the RL application.

The article [105] uses a neural network model for the parametric estimation of
Ri. We opted for a simpler approach based on maximum likelihood estimation. This
method offers several advantages: it requires fewer data, has reduced computational
complexity, and allows for a more straightforward implementation. Thus, to estimate
Ri using maximum likelihood, we introduce wij as the number of times i was preferred
over j. The likelihood of R1, . . . , Rk, where k ∈ N is the number of patients, is given
by

L(R) =
∏

(i,j)∈D

(P(i > j))wij =
∏

(i,j)∈D

(
Ri

Ri +Rj

)wij

The corresponding log-likelihood is then:

l(R) = lnL(R)

=
∑

(i,j)∈D

ln

(
Ri

Ri +Rj

)wij

=
∑

(i,j)∈D

wij ln

(
Ri

Ri +Rj

)
=

∑
(i,j)∈D

wij (lnRi − ln(Ri +Rj))

The partial derivative of the log-likelihood can be decomposed into two distinct
terms. First:

∂

∂Ri

∑
(i,j)∈D

wij lnRi =
∑

(i ̸=j)∈D

wij

Ri

The second term is obtained by applying the chain rule:
— ∂

∂Ri

∑
(i,j)∈D wij ln(Ri +Rj) =

∑
(i ̸=j)∈D wij

1
Ri+Rj

∂(Ri+Rj)
∂Ri

=
∑

(i ̸=j)∈D
wij

Ri+Rj

— ∂
∂Rj

∑
(i,j)∈D wij ln(Ri +Rj) =

∑
(j ̸=i)∈D

wji

Ri+Rj

Thus, we obtain:

∂

∂Ri

∑
(i,j)∈D

wij ln(Ri +Rj) =
∑

(i ̸=j)∈D

wij + wji

Ri +Rj
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The final partial derivative obtained is:

∂l(R)

∂Ri
=

∑
(i ̸=j)∈D

wij

Ri
− wij + wji

Ri +Rj

The preference rules on which we base the learning of our rewards compare each
pair of individuals only once. Consequently, we have wij = 1 for each pair (i, j),
which can lead to a database considered weak in terms of information. To address this
limitation, it is common in the literature on comparison models to use variants of the
Bradley-Terry model with Lasso or Ridge penalization [122, 120, 25].

The penalized log-likelihood for the Bradley-Terry model with L2 regularization
(Ridge), which we chose to apply, is given by:

lpen(R) =
∑

(i,j)∈D

wij ln

(
Ri

Ri +Rj

)
− λ

∑
i

R2
i

=
∑

(i,j)∈D

wij (lnRi − ln(Ri +Rj))− λ
∑
i

R2
i

where λ is the regularization parameter that controls the strength of the penalty applied
to the rewards.

The estimation of Ri is performed using the Newton-Raphson optimization algo-
rithm. This algorithm adjusts the parameters at each iteration based on a gradient
descent approach.

When the model is based on preferences between states, we construct a reward
r(St, St+1) for each state transition of a patient. In this case, the classic form of
backward Q-learning can be applied using an induction regression model. The Q-
function, Q̂N , at the final step N is obtained by regressing the values of hN on rN .
The Q-functions, Q̂n, for the previous steps are obtained by regressing the values of hn
on rn +maxan∈A(sn) Q̂n+1(sn, an).

When the model is based on preferences between trajectories, we construct a single
final reward for each patient. In this case, the classic backward Q-learning algorithm,
which relies on intermediate rewards, can no longer be used. Instead, we opt for a
regression method that does not depend on intermediate evaluations or rewards [79, 53,
61]. The estimation of the final Q-function, Q̂N , remains unchanged. However, the Q-
functions, Q̂n, are obtained by regressing the values of hn on maxan∈A(sn) Q̂n+1(sn, an).

4.3.2 BMI data application

4.3.2.1 Data

The bmiData dataset contains simulation data that mimics a two-stage clinical
trial, similar to the one described in [8]. The goal of this study was to reduce the Body
Mass Index (BMI) in adolescents with obesity by personalizing the treatment at each
stage. The treatments considered are meal replacement and conventional diet, coded
as {−1, 1} respectively. It includes data from 210 patients.
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This dataset contains the following information:
— The adolescent’s gender: gender
— The adolescent’s race: race
— Parents’ BMI: parent BMI
— BMI at the start of the study: baseline BMI
— The first treatment chosen: A1
— BMI at the fourth month: month 4 BMI
— The second treatment administered: A2
— BMI at the twelfth month of the study: month 12 BMI
The bmiData dataset was used in [61] to illustrate the functioning of backward Q-

learning based on a linear regression model. It is available in two R packages: iqlearn-
ing [61] and DynTxRegime 1.

In the context of SMART studies, it is common to evaluate the progression of a
patient’s treatment based on a final outcome variable. In this study, we consider the
change in BMI as the final response, defined by:

R2 = −100×
bmiData[’month 12 BMI’]− bmiData[’baseline BMI’]

bmiData[’baseline BMI’]

When the RL model requires an intermediate response, we will use the change in
BMI after 4 months, calculated as follows:

R1 = −100×
bmiData[’month 4 BMI’]− bmiData[’baseline BMI’]

bmiData[’baseline BMI’]

4.3.2.2 Preference rules

We generated two preference rules: one based on each state sn and the other on
trajectories τ . Patients are compared pairwise according to these rules before applying
a reward estimation model based on the Bradley-Terry model.

Preference rule based on states At step t = 1, the preference between patients is
determined by comparing the reduction in BMI after 4 months. Patient i is preferred
over patient j if the weight loss observed for i after 4 months is greater than that for
j. In other words, if the reduction in BMI for i compared to its initial value is greater
than that of j, then i is considered to have a better performance at this stage. In all
other cases, the patients are deemed incomparable, and the score assigned is 0.

At step t = 2, preferences are evaluated based on two distinct levels of criteria.
First, the variation in BMI between the fourth and twelfth months is compared. A
patient is preferred if their weight loss during this period is more significant. Thus,
the patient with the greatest reduction in BMI between these two dates receives a
score of 2. Second, if the weight changes between the fourth and twelfth months are
equivalent, the total BMI loss from the start to the end of the study is examined. The
patient with the greatest total BMI loss is preferred, and a score of 1 is assigned to

1. Available on CRAN: https://cran.r-project.org/web/packages/DynTxRegime/index.html.

https://cran.r-project.org/web/packages/DynTxRegime/index.html


4.3. Rewards construction based on preference learning 57

the preferred patient. In summary, this method prioritizes the comparison criteria: the
first level focuses on recent weight loss (between the 4th month and the 12th month of
the study), while the second level evaluates the total weight loss since the beginning of
the study. This approach provides a clear preference between patients based on their
improvement over time. In all other cases, the patients are deemed incomparable, and
the score assigned is 0.

With this comparison rule, we will obtain, for each step, an estimated reward vector,
denoted RBT

1 and RBT
2 . These vectors will be compared to the manual reward vectors

R1 and R2.

Remark 4.3.1. In our preference models, we introduce preference levels. Assigning
a score of 2 indicates that this situation is preferred over one assigning a score of 1.
This does not imply that it is twice as good, but it allows us to establish ordered
relationships between patients.

Preference rules based on trajectories To evaluate preferences between patients
based on their trajectories, we use a hierarchical method based on several levels of
criteria. Firstly, we compare weight loss continuously throughout the study. A patient
is considered to have a superior overall performance if their weight loss is more signif-
icant at each stage compared to another patient. This approach, reflecting consistent
improvement over time, is assigned a score of 2. Secondly, if these comparisons do not
provide a clear distinction, we analyze the overall change in BMI from the beginning
to the end of the study. A patient is preferred if they have lost more weight over the
entire period, even if this loss was not progressive. This criterion is associated with a
score of 1. Thus, this hierarchical comparison method prioritizes criteria by first giving
preference based on progressive weight loss throughout the study, followed by overall
weight loss. This allows for establishing preferences between patients based on their
weight loss trajectories.

In all other cases, patients are not comparable, and the score assigned is 0.
With this comparison rule, we will obtain an estimated reward vector, denoted

RBT
T . This vector will be compared to the manual response studied when there is no

intermediate response, R2.

4.3.2.3 Results

The first objective is to compare the rewards constructed traditionally with those
generated through the preference model. To facilitate this comparison and place the
rewards on a common scale, they have been standardized. We will start with a descrip-
tive study of the two types of rewards. Next, we will perform a correlation analysis to
assess the relationship between these rewards. Lastly, we will examine the final results
in terms of variable importance after applying backward Q-learning based on linear
regression.

Descriptive statistics The histograms presented in Figures 4.1 and 4.2 reveal a
similar distribution of the data for the classical rewards in blue and those generated by
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Figure 4.1 – Comparative histograms of reward models in the first stage

Figure 4.2 – Comparative histograms of reward models in the second stage

the preference model, with rewards by stage shown in orange and rewards by trajectory
shown in purple. This comparison suggests that the different types of rewards share
comparable distribution characteristics. The analysis of the boxplots shown in Figures
4.3 and 4.4 further confirms this similarity. Indeed, the boxplots display reward distri-
butions that, while potentially exhibiting specific variations, show comparable overall
structures. These observations reinforce the idea that both the classical rewards and
those derived from the preference model share similar dispersion characteristics.

The analysis of Figure 4.5 shows a positive, linear trend between the classical re-
wards and those generated by the preference model. This linear relationship suggests
that, despite the different calculation methods, the two types of rewards are closely
related and follow a similar trend.

Correlation analysis To further explore the correlation between the reward models,
we calculated several metrics. We first computed the Pearson correlation coefficient to
measure the strength and direction of the linear relationship between the rewards from
different models. The results indicate a moderately strong positive correlation. Next,
we used the Spearman rank correlation coefficient to check if the rewards from the
models change together in a monotonous way, meaning they follow a consistent trend,
even if it is not linear. This also showed a moderately strong correlation. Finally, we
used Kendall’s coefficient to assess the level of correlation between the reward models.
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Figure 4.3 – Comparative boxplots of reward models in the first stage

Figure 4.4 – Comparative boxplots of reward models in the second stage

This coefficient compares how often the order of rewards is the same or different be-
tween models. A high Kendall’s coefficient indicates a strong correlation, while a low
coefficient suggests less correlation. The results show a moderate correlation between
the classical rewards and those generated by the preference model. The associated
p-values are very low, indicating that these correlations are statistically significant and
unlikely to be due to chance.

Importance features For the stage-based preference models, as discussed at the end
of Section 4.3.1, we used the Q-learning method described in Chapter 2, Section 3.2.4.2.
We chose support vector regression with a linear kernel as our regression model. This
approach allows us to determine the importance of features for each model trained with
different rewards. As shown in Table 4.2, the signs of the coefficients are the same for all
features, except for the gender and race of patients at the first stage. The magnitudes
are similar, and the ranking of feature importance is almost entirely preserved.
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Figure 4.5 – Scatter-plots between traditional rewards and preference-based rewards

Correlation coefficients study
R1/R

BT
1 R2/R

BT
2 R2/R

BT
T

Pearson 0.57 [0.47, 0.65] 0.41 [0.29, 0.51] 0.62 [0.52, 0.70]
Spearman 0.55 [0.45, 0.64] 0.35 [0.23, 0.46] 0.56 [0.45, 0.66]

Kendall
0.39 [0.31, 0.46]

7× 10−17

0.24 [0.15, 0.33]

2× 10−7

0.40 [0.32, 0.48]

3× 10−18

Table 4.1 – Correlation coefficients between R1/R
BT
1 , R2/R

BT
2 , and R2/R

BT
T .The

95% confidence intervals are shown in brackets. For Kendall, the first line represents
the correlation coefficient, and the second line gives the p-value from the Kendall rank
correlation test. This test checks if the observed association between two variables is
significantly different from what would be expected under the null hypothesis of no
association.

For the trajectory-based preference models, as mentioned at the end of Section
4.3.1, we used a Q-learning model without intermediate rewards. We replicated the
Q-learning model from bmiData in [61], which is based on linear regressions with inter-
actions between treatments and state variables. The results, shown in Table 4.3, lead
to the same conclusions as before.

Remark 4.3.2. Constructing confidence intervals for the results in Tables 4.2 and
4.3 is challenging due to the non-differentiable nature of the regression models used
in Q-learning (i.e., maximization). In [54], the authors discuss interval estimation and
propose a locally consistent confidence interval for parameters indexing the optimal
DTR.
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First Stage Second Stage
R1 RBT

1 R2 RBT
2

Gender 0.03 -0.20 -0.01 -0.12
Race -0.12 0.22 0.02 0.10
Parent_BMI -1.28 -0.69 -0.03 -0.07
Baseline_BMI 0.83 0.11 1.19 0.48
A1 - - 0.00 0.03
Month4_BMI - - -1.37 -0.76

Table 4.2 – Q-learning coefficients, indicating the influence of each variable in the
regression model, for the first and second stages, with manual rewards and stage pref-
erence learning rewards.

First Stage Second Stage
R2 RBT

T R2 RBT
T

Gender -0.05 0.00 -0.04 0.00
Race 0.00 0.01 -0.12 -0.11
Parent_BMI -0.19 -0.08 -0.12 -0.15
Baseline_BMI -0.04 0.01 -0.44 -0.15
A1 -0.04 0.01 0.05 0.10
A1:Gender 0.02 0.01 0.02 0.01
A1:Parent_BMI -0.11 -0.01 0.02 0.13
Month4_BMI - - -0.44 -0.15
A2 - - 0.05 0.10
A2:Parent_BMI - - 0.15 0.13
A2:Month4_BMI - - 0.02 0.16

Table 4.3 – Q-learning coefficients, indicating the influence of each variable in the
regression model, for the first and second stages with manual rewards and trajectory
preference learning rewards.

4.3.3 Cancer application

4.3.3.1 Data

In this second application case, we consider a simulation of non-specific cancer
treated with chemotherapy, based on a model proposed by [144]. This model is fre-
quently used as a case study in RL [27, 2, 41, 32]. It relies on four principles:

1. Tumor growth without chemotherapy : the model simulates the natural
progression of the tumor if no treatment is administered.

2. Negative effects of chemotherapy on patient well-being : the side effects
of chemotherapy are modeled, reflecting their impact on the patient’s quality of
life.

3. Drug efficacy against tumor cells and increased toxicity : The model
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takes into account the drug’s ability to eliminate tumor cells while increasing
toxicity for the patient.

4. Interaction between tumor cells and patient well-being : a dynamic
interaction between tumor progression and the impact on patient well-being is
integrated into the model.

For each patient, there are two state variables St = {Yt, Xt}, where Y represents
the tumor size and X represents the toxicity of the treatment at each month t such
that t = 0, . . . , 6. The treatment At administered at month t is a dosage between 0

and 1 with a step of 0.1. This model is based on the following system of differential
equations:

∆Yt = [0, 15×max(Xt, X0)− 1, 2× (At − 0, 5)]× 1(Yt > 0)

∆Xt = 0, 1×max(Yt, Y0) + 1, 2× (At − 0, 5)

By using the indicator function 1(Yt > 0), the model assigns the status of complete
remission to a patient when the size of their tumor is reduced to zero, indicating no
recurrence.

The possibility of a patient’s death during a treatment is represented by a survival
model. For each time interval (t− 1, t], the survival rate is defined as a function of the
tumor size and toxicity: λ(t) = exp(−4+Yt+Xt). In this model, both tumor size and
toxicity have an equally important influence on the patient’s survival. The probability
of the patient dying during the time interval (t− 1, t] is given by:

Pdécès = 1− exp

(
−
∫ t

t−1
λ(x)dx

)
Remark 4.3.3. In a non-Markovian framework, observational applications of DTRs
typically involve a limited number of steps, rarely exceeding four. However, to enable
a direct comparison with the results obtained in [144], we extended the model to six
stages.

Remark 4.3.4. Backward Q-learning is specifically designed to be applied to data with
complete trajectories, to maintain consistency in dimensions throughout the induction
process. However, [144] does not specify how to handle incomplete trajectories. To
address this gap, we adopted an approach for patients who were either in remission
or had died before the end of the trajectory. In these cases, the last available values
for tumor size Y and toxicity X are extended to the end of the trajectory, with a
chemotherapy dose fixed at zero. The survival status and remission, as well as the
associated stage, are preserved as indicators for subsequent analysis.

The reward model, which we will compare to and which is proposed by [144], is
defined as follows:

Rt,1 =
{
−60 if the patient dies
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Rt,2 =

{
5 if Xt+1 −Xt ≤ −0.5
−5 if Xt+1 −Xt > −0.5

Rt,3 =


15 if Yt+1 = 0

5 if Yt+1 − Yt ≤ −0.5 and Yt+1 ̸= 0

−5 if Yt+1 − Yt > −0.5

Rt = Rt,1 +Rt,2 +Rt,3

4.3.3.2 Preference rules

Preference rule based on states The preference rule between two patients at stage
n is defined according to several criteria that allow comparison based on their health
status. The criteria are as follows:

1. Remission: if patient i is in remission at stage n and their remission stage is
lower than that of patient j, then patient i is preferred over patient j. In this
case, patient i receives a score of 3.

2. Death: if patient i is still alive at stage n while patient j is deceased at this
stage, patient i is preferred. Here, patient i receives a score of 2.

3. Tumor size and toxicity: if the tumor measurement Yn and toxicity Xn for
patient i are both lower than those for patient j at stage n, then patient i is
preferred. In this case, patient i receives a score of 1.

In all other cases, patients are not comparable, and the score assigned is 0.
In summary, this model assigns preference scores first based on remission, then on

death status, and finally on tumor and toxicity measurements.
Using this comparison rule, we obtain preference score vectors RBT

t for each stage
transition t. These reward vectors can then be compared to the reward vectors Rt

provided by the classical model.

Preference rule based on trajectories This preference rule, partly inspired by
[27], compares two patients based on several criteria related to their health status. The
criteria are defined as follows:

1. Remission: if one patient is in remission while the other is not, the patient in
remission is preferred. This situation is associated with a score of 2.

2. Death: if one patient has died at a given stage while the other is still alive at
that stage, the patient who is still alive is preferred. This case is also associated
with a score of 2.

3. Tumor size and toxicity: when the previous conditions do not determine a
preference, we compare patients based on the maximum toxicity and the final
tumor size over their entire trajectory. Specifically:
— the maximum observed toxicity over the trajectory must be less than or

equal for the preferred patient.



64 Chapter 4. Integrating medical knowledge into RL models

— the final tumor size over the trajectory must also be less than or equal for
the preferred patient.

If these conditions are met, the patient with the most favorable maximum tox-
icity and tumor size receives a score of 1.

In all other cases, patients are not comparable, and the score assigned is 0.
In summary, this preference model assigns scores based on remission, death, and

overall toxicity and tumor size on the trajectory.
Using this comparison rule, we will obtain a reward vector RBT

T for each patient.
Learning in this specific context will be performed using backward Q-learning without
intermediate rewards, as specified when introducing the model.

4.3.3.3 Results

In a similar manner as previously, we will compare the traditionally constructed
rewards with those generated through preference models. To facilitate this compari-
son and provide a comprehensive overview, we will compare the cumulative rewards
for [144] model and the state-based preference model with those obtained from the
trajectory-based preference model, using histograms and boxplots. The rewards have
been standardized. Correlation analysis will be conducted both on cumulative rewards
and on a step-by-step comparison.

The primary goal of this application is to study and compare the learned strate-
gies based on different rewards. To evaluate them, we will observe their application
on 10,000 new patients and study the average change in their tumor size, treatment
toxicity, and the combination of both.

Descriptive statistics The blue histogram in Figure 4.6, corresponding to the cu-
mulative reward from the initial model [144], clearly reflects the discretization with
the possible value combinations. The orange histogram, related to the state-based
preference model, and the purple histogram, related to the trajectory-based preference
model, show that these methods yield continuous rewards. The distribution for each is
different. This difference is also highlighted by the boxplots, with the same conclusion
in terms of dispersion, in Figure 4.7. The correlation graphs in Figure 4.8 do not show
linear correlation.

Figure 4.6 – Comparative histograms of reward models for generic cancer application
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Figure 4.7 – Comparative boxplots of reward models for generic cancer application

Figure 4.8 – Scatter-plots between traditional rewards and preference-based rewards
for generic cancer application

Correlation analysis The Pearson and Spearman correlation coefficients presented
in Table 4.4 between the traditional cumulative rewards and those obtained from the
stage-based preference model are moderately strong. However, when comparing them
stage by stage, as shown in Table 4.5, the correlations are weak, and very weak for the
last stage. The Pearson and Spearman correlation coefficients between the cumulative
rewards from the classical model and those obtained from the trajectory-based prefer-
ence models are weak. The reward models obtained through preference learning are
not correlated with those described in [144].

∑
RZhao/

∑
RSPL

∑
RZhao/RT

Pearson 0.55 [0.50, 0.59] 0.14 [0.08, 0.20]
Spearman 0.50 [0.44, 0.55] 0.11 [0.05, 0.17]

Table 4.4 – Correlation coefficients between the cumulative reward
∑

RZhao from [144]
and the cumulative reward of stage preference learning

∑
RSPL or the trajectory pref-

erence learning model RT . The 95% confidence intervals are indicated in brackets.
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R0/R
BT
0 R1/R

BT
1 R2/R

BT
2

Pearson 0.38 [0.31, 0.43] 0.20 [0.14, 0.26] 0.24 [0.18, 0.30]
Spearman 0.39 [0.33, 0.43] 0.25 [0.19, 0.31] 0.26 [0.20, 0.32]

R3/R
BT
3 R4/R

BT
4 R5/R

BT
5

Pearson 0.26 [0.20, 0.32] 0.23 [0.17, 0.29] 0.02 [-0.04, 0.08]
Spearman 0.26 [0.21, 0.32] 0.23 [0.17, 0.29] 0.01 [-0.05, 0.08]

Table 4.5 – Correlation coefficients between manual rewards [144] and stage preference
learning rewards at each stage. The 95% confidence intervals are indicated in brackets.

Optimal policies The objective of this study is to compare the optimal strategies
generated by the different reward models. To achieve this, we examined the evolution
of tumor size and treatment toxicity. All these quantities were averaged over 10,000
simulated patients based on the model presented in Section 4.3.3.1, following the dif-
ferent learned treatment strategies. Each model was trained on 1,000 patients. For
learning strategies from rewards generated by the state-based preference model and
the traditional rewards presented in the reference paper, we used classical backward
Q-learning. For learning strategies from rewards constructed by the trajectory-based
preference model and for the manual cumulative rewards, we used backward Q-learning
without intermediate rewards. In both cases, the regression model chosen is based on
Support Vector Regression. These results were also compared to the administration of
constant dosages among the possible dosages 0.1, 0.2, . . . , 1.0.

In Figures 4.9 and 4.10, we observe the average evolution of tumor size and treat-
ment toxicity, either with a constant treatment or by following the four different strate-
gies. None of the proposed strategies show better results than those achieved with a
constant dosage. This result is expected, as explained in [144]: "because when a higher
dose level decreases tumor size, it can yield a higher toxicity simultaneously, and vice
versa. However, due to our reward functions structure, the estimated optimal policies
have an appealing feature that seeks a good balance between toxicity and efficacy."

Thus, Figure 4.11 illustrates the combined average results of tumor size and treat-
ment toxicity. In the long term, the four models outperform the constant dosage
treatment plans. We observe that the model based on rewards from a trajectory-based
preference model achieves the lowest performance. Strategies based on the stage-based
preference model or the classical model from [144] yield nearly identical results. The
model with the best performance in terms of balancing toxicity and tumor size is the
one derived from the cumulative rewards of the [144] model.

4.3.4 Conclusion

The objective of our first case study on the bmiData dataset was to demonstrate that
rewards constructed using a preference model, whether based on stages or trajectories,
capture the same variations and dispersion as the observed rewards in the classical
approach. This result was confirmed by a descriptive study as well as an analysis of
correlation coefficients. The differences observed between the two types of rewards
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Figure 4.9 – Average tumor size across stages for different treatment policies, calculated
over 10,000 patients

primarily appear in the study of feature importance. Although the results are very
close, they are not perfectly identical. It is important to note that the baseline rewards
perfectly fulfill their medical objective and are initially well-calibrated to address the
clinical trial problem. Our method has shown its consistency in a classical application
case but could be particularly advantageous in contexts where it is more challenging to
manually define a reward function, especially when arbitrary variable weightings must
be chosen, as in our second case study.

The objective of the second case study was to examine the strategies learned from
the different models. The initial reward model, constructed manually, uses values that
assess the patient’s condition; these choices can be considered subjective or determined
by trial and error. Notably, the decision to assign a score of -60 can be considered
particularly arbitrary. The advantage of the method presented here is that it con-
structs rewards from a preference model, making it a more generalized approach. The
reward construction is data-driven, based on rankings among all the information gath-
ered in the database rather than on individual data. The descriptive statistical study
and correlation analyses show that the rewards generated by our models and those of
the initial model do not have the same distributions and are very weakly correlated.
However, as shown in Figure 4.11, the performance of the strategies learned from these
models produces the expected results: a medical decision rule capable of balancing
the treatment’s toxicity and tumor size. Moreover, the performance of our stage-based
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Figure 4.10 – Average toxicity across stages for different treatment policies, calculated
over 10,000 patients

preference reward construction method is very similar to that obtained with the model
of [144].

4.4 Perspectives

Applying RL in precision medicine requires specific adaptations. Indeed, the data
generally comes from observational studies, limiting the methods to offline applications.
RL algorithms for DTR must be model-free, value-based, and off-policy, as argued in
the previous chapter. We evaluated all RL methods applied to DTR against these
characteristics. However, when aiming for real clinical use of these methods in hospitals,
a major issue emerges in the search for an optimal treatment strategy: the acceptability
of the optimal DTR to both patients and practitioners. This raises concerns about how
understandable the decision rules are for both patients and physicians, which is crucial
for their clinical use. Integrating medical expertise into machine learning methods for
personalized treatments is essential to improve safety, interpretability, and effectiveness
in observational scenarios.

One way to overcome this issue is to consider algorithms involving, one way or
another, medical expertise or knowledge. The integration of expert knowledge can
occur at various levels in the RL application process or in its key components, such as
rewards, value functions, the objective function, or the policy.
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Figure 4.11 – Average toxicity combined to tumor size across stages for different treat-
ment policies, calculated over 10,000 patients

First, the medical knowledge is often integrated before the study, at the design of the
experiment. Indeed, physicians contribute to selecting the variables used for learning
the decision rule. Similarly, algorithm selection involves collaboration between medical
and machine learning expert, based on the application framework and available data.

Second, the medical knowledge can be integrated by acting on the rewards. Rewards
is one of the main elements of a RL algorithm. Since they influence and guide the
determination of the decision rule. Their design is thus crucial. Traditionally, a variable
representative of the study’s objective is chosen. Methods such as inverse reinforcement
learning and preference learning attempt to generalize their construction through expert
input. Preference learning [27, 2] and human-centered RL [56] directly incorporate
expert knowledge into reward construction. However, this method suffers from being
developed only in an online setup, which is not applicable to DTRs and observational
clinic application. Nonetheless, early research in this area can serve as a foundation
for further exploration. On the other hand, inverse reinforcement learning is promising
since it is developed within the offline context and it is well suited for real clinical
application [104, 68].

Thirdly, the learning of decision rules can be achieved through value functions,
allowing for the integration of medical expertise at this level. One approach is to incor-
porate observed medical mechanisms; specifically, the idea is to penalize the Q-values
associated with non-decisive treatments [29]. However, this method was initially devel-
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oped in an online context and requires reassessment for offline settings. A second idea is
to establish a relay between human decisions and decisions proposed by the algorithm.
In one scenario, the physician would take over when the patient is in critical conditions
[128]. In another scenario, the algorithm would suggest alternative treatments to those
traditionally proposed, along with associated risks [109]. These hybrid methods seem
promising for real clinical applications, but concrete evidence of their implementation
is currently lacking. In the policy-based methodological framework, the integration of
expertise can occur through a method called supervised RL [134, 124]. Its aim is to
faithfully replicate common medical practices, offering precise emulation of physicians’
decisions. However, it does not allow for the discovery of alternative or underexplored
treatments compared to conventional care methods.

Lastly, the learning of decision rules can be approached methodologically through
policy and it is worth noting that classical RL methods typically recommend only one
policy, typically one treatment and one dose for each decision time. To enrich the
context, multiple policies methods have been developed with the aim of offering an
expert multiple equivalent treatment to choose from. The work of [65] is particularly
suitable for application to observational data-based DTRs, but it was developed within
a framework of patient preferences and could be reassessed within an expert preference
framework.

In this manuscript, we decided to provide an initial response to the issues raised
by this state of the art. We developed a method that generalizes the construction of
rewards based on preference learning and can be applied to DTRs. The method we im-
plemented consists of three steps. First, an expert expresses preferences between pairs
of elements, which induces a ranking among all instances in the previously collected
dataset. Second, rewards are constructed using a Bradley-Terry probabilistic model.
Third, these rewards are used to learn the policy in backward Q-learning models.

In our initial case study using the bmiData dataset, we showed that rewards derived
from a preference model, whether based on stages or trajectories, effectively capture the
same variations and dispersion with traditional reward methods. This was validated
by descriptive analyses and correlation studies, though some differences appeared in
feature importance assessments. Although our method demonstrated reliability in a
standard application, it offers significant benefits in situations where manually defin-
ing a reward function is difficult, particularly when arbitrary variable weightings are
involved, as illustrated in our second case study.

The second case study, involving simulated generic cancer, aimed to evaluate the
strategies derived from different models. Descriptive statistics and correlation analyses
indicate that the reward distributions from our models differ significantly from those of
the initial model, exhibiting very weak correlations. This expected result is due to our
method’s data-driven construction of rewards, which utilizes the entire dataset rather
than individual data points. Consequently, as illustrated in Figure 4.11, the strategies
learned from our models achieve the desired outcomes: a medical decision rule that
effectively balances treatment toxicity and tumor size. Furthermore, the performance
of our stage-based preference reward method closely aligns with that of the model
proposed by [144].
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Our work has some limitations and could potentially see performance improvements.
The estimation of rewards from the Bradley-Terry pairwise comparison model relies on
the Newton-Raphson algorithm. However, literature on comparison models suggests
that the minorization-maximization algorithm [42] is a more powerful estimation tech-
nique. Other comparison models, from research in social choice or sports statistics,
could also be considered. For instance, the Thurstone-Mosteller model [34], the Elo
model [14], and the Plackett-Luce model [87] are worth mentioning. One limitation of
this method is that it directly provides reward values from comparisons. It would be
interesting to reformulate the models into a parametric reward function based on state
variables.

The integration of medical knowledge is a promising research field, exploring vari-
ous innovative perspectives and methods. However, further research is needed to adapt
them to the specific constraints and realities of precision medicine. These advance-
ments have the potential to lead to practical clinical applications and significantly
enhance daily hospital operations. This aligns with the broader challenge of applying
mathematical solutions effectively in clinical practice. Particularly, the development of
health system science enables the use of interdisciplinary skills to study the complexity
of healthcare systems [3, 46]. Practically speaking, the aim is to ease the transition of
laboratory discoveries into clinical practices [31], achieved by forming interdisciplinary
teams within healthcare systems. Combining progress in both research areas could es-
tablish a tangible framework for applying RL alongside medical expertise, simplifying
the treatment decision process for the benefit of all involved parties. We hope this
study will encourage collaboration between machine learning researchers and health-
care professionals, by showing a framework that helps practically applying RL for DTR
context.





Chapter 5

Bayesian
Outcome-Weighted Learning

One of the primary goals of statistical precision medicine is to learn
optimal individualized treatment rules (ITRs). The classification-
based, or machine learning-based, approach to estimating optimal
ITRs was first introduced in outcome-weighted learning (OWL). OWL
recasts the optimal ITR learning problem into a weighted classifica-
tion problem, which can be solved using machine learning methods,
e.g., support vector machines. In this paper, we introduce a Bayesian
formulation of OWL. Starting from the OWL objective function, we
generate a pseudo-likelihood which can be expressed as a scale mix-
ture of normal distributions. A Gibbs sampling algorithm is developed
to sample the posterior distribution of the parameters. In addition
to providing a strategy for learning an optimal ITR, Bayesian OWL
provides a natural, probabilistic approach to estimate uncertainty in
ITR treatment recommendations themselves. We demonstrate our
method through several simulation studies.

This research, conducted in collaboration with Nikki L. B. Free-
man, is accessible on arXiv:2406.11573. At the time of writing this
manuscript, it has not been submitted for publication, as we intend to
augment it with an application using real clinical data.
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5.1 Introduction

The task of statistical precision medicine is to learn from data how to match patients
to treatments with the aim of improving health outcomes [50]. One way to operational-
ize this goal is through individualized treatment regimes (ITRs), functions that map
from patient characteristics to treatment recommendations. Ideally, we would like to
learn ITRs that if followed in practice would lead to better outcomes on average in the
target population than if another treatment strategy was used, e.g., a one-size-fits-all
approach. These ITRs are called optimal ITRs [50, 77].

In the language of reinforcement learning, we focus on the "batch, off-policy" set-
ting. By “batch" we mean that data have been previously collected and no new data
will be received, and by “off policy’ we mean that the strategy for assigning treatments
in the observed data (e.g., through randomization as in a clinical trial) may not be the
optimal strategy (or alternatively, regime or policy) [113]. Within this setting, a large
number of methods and approaches have been developed to learn such ITRs from data.

Some approaches estimate the expected value of the outcome we would expect under
a particular ITR without any parametric assumptions. Then, the optimal ITR may be
learned by searching over a class of ITRs. Examples of this general strategy include
those proposed by [83], [100], and [139].
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Another class of approaches, sometimes referred to as indirect methods, model the
mean of the outcome conditional on treatment and covariates. For a multi-stage ITR,
sometimes called a dynamic treatment regime, this entails specifying a conditional
mean model for each stage. Through these estimated conditional means, optimal ITRs
can be deduced. One of the most popular regression-based frameworks for learning
optimal ITRs is Q-learning [126, 75]. Q-learning has been used to learn optimal ITRs
in many settings, including clinical trial data [103], observational data [73], and in the
presence of censoring for time-to-event data [32].

Machine learning or classification-based optimal ITR learning approaches convert
the optimal ITR learning problem into the classification framework by which machine
learning methods can be employed. [143] introduced outcome-weighted learning (OWL)
which leverages a simple value function estimator and the Radon-Nikodym theorem to
rewrite the value function as a weighted classification problem. Consequently, learning
the ITR that optimizes the value function can be solved as minimizing the classifi-
cation loss function. Since its introduction, a number of extensions to OWL have
been made including backwards outcome-weighted learning (BOWL) and simultaneous
outcome-weighted learning (SOWL) for learning optimal multi-stage treatment regimes
[142], residual weighted learning (RWL) [146] and augmented outcome-weighted learn-
ing (AOL) [63] which improve the finite sample properties of OWL, robust outcome-
weighted learning (ROWL) which uses an angle-based classification approach [26], and
efficient augmentation and relaxation learning (EARL) which employs both a propen-
sity model and outcome model and has the double robustness property [141].

Finally, a few Bayesian approaches for learning optimal ITRs have also been pro-
posed. The Bayesian machine learning (BML) approach was introduced by [78]. It
employs Bayesian modeling within a framework that closely aligns with Q-learning by
modeling the outcomes at each stage. Likelihood-based approaches, strategies that
model both the distribution of the final outcome and the intermediate outcomes, have
also been proposed within the Bayesian framework [116, 117, 4, 138, 129, 136].

The focus of this paper will be on the machine learning, or classification-based
method, for learning optimal ITRs. Although classification-based approaches are pow-
erful and avoid estimating models that are not the target of the analysis itself, there
are limitations. For example, many machine learning methods for classification do not
naturally quantify uncertainty, e.g., quantification of the uncertainty of a particular
prediction. While this may be acceptable in some cases, being unable to quantify un-
certainty is a serious gap when generating evidence for health care decision-making.
Moreover, machine learning analyses are often evaluated in terms of predictive power
which does not necessarily translate into inferential capability.

In this paper, we present a Bayesian approach to OWL. To our knowledge, this is
the first Bayesian optimal ITR learning strategy to directly learn optimal ITRs. Using
a construction similar to [88], we construct a pseudo-likelihood from the weighted
classification loss function. Once transformed from an optimization-based framework
to a probabilistic framework, our method generates an entire posterior distribution that
can be used for inference and, most powerfully, for uncertainty quantification of the
treatment recommendations themselves. Our main contributions are as follows:
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1. We propose a Bayesian approach to learning optimal ITRs that leverages the
classification-based framework and avoids modeling the outcome or nuisance
conditional mean models.

2. We propose a simple Gibbs sampling algorithm for learning such an optimal
ITR.

3. We demonstrate how to use our resulting pseudo-posterior distribution to quan-
tify uncertainty in the treatment recommendations.

In Section 5.2, we set the notation and review OWL and Bayesian support vector
machines. In Section 5.3 we construct the probabilistic formulation of the OWL clas-
sification problem, derive a Gibbs sampling algorithm for estimation, and detail our
approach to uncertainty quantification. In Section 5.4 we demonstrate the performance
of our approach through simulation studies. We conclude in Section 5.5 with a discus-
sion of our results and future work.

5.2 Background

5.2.1 Setting

We let A ∈ A = {−1, 1} denote the action, or treatment, and assume that observed
treatments are assigned randomly as in a clinical trial with P (A = 1) = ρ known.
Let Xi = (Xi,1, . . . , Xi,p)

⊤ ∈ X denote the p-dimensional biomarker and prognostic
information vector, and let R denote the outcome (bigger is better). We further assume
that the reward can be rescaled so that R > 0. Then, the observed data is iid replicates
of (Ai, Xi, Ri) for i = 1, . . . , n.

An ITR is a function d that maps from X to a recommended treatment in A. For
a given ITR d, the value of d is V (d) = E[R(d)], where R(d) is the reward we would
observe if treatments were allocated according to rule d. An optimal ITR dopt satisfies
V (dopt) ≥ V (d) for all d ∈ D, where D is a class of ITRs. Our goal is to learn an optimal
ITR dopt. Under the assumptions of causal consistency, the stable unit treatment value
assumption, no unmeasured confounding, and positivity, V (d) can be identified from
the observed data and V (d) = E{maxA∈A E[R|A = d(x), X = x]}.

5.2.2 Outcome-weighted learning

If we let P denote the distribution of (X,A,R), and P d denote the distribution of
(X,A,R) when A = d(X), then the reward we would expect if ITR d(X) were followed
is given by

Ed(R) =

∫
RdP d =

∫
R
dP d

dP
dP = E

[
1(A = d(X))

Aρ+ (1−A)/2
R

]
. (5.1)

[143] showed that maximizing Equation (5.1) is equivalent to a weighted classification
problem and thereby solvable using techniques from machine learning. Specifically,
they proposed OWL, a strategy for learning an optimal ITR using a convex surrogate
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loss function in place of the zero-one loss function and strategies from support vector
machines. OWL minimizes the objective function

QOWL
n (β) =

1

n

n∑
i=1

Ri

Aiρ+ (1−Ai)/2
(1−Aih(Xi,β))+ (5.2)

where (z)+ = max(z, 0) denotes the hinge loss function and h(·) is the ITR parame-
terized by β. The article [110] introduced a penalized variant of OWL that included
a regularization term pλ(β) for the ITR parameters. POWL minimizes the objective
function

QPOWL
n (β)

1

n

n∑
i=1

Ri

Aiρ+ (1−Ai)/2
(1−Aih(Xi,β))+ +

p∑
j=1

pλ(|βj |) (5.3)

where pλ(β) is a penalty function and λ is a tuning parameter.

5.2.3 Bayesian support vector machines

Although the pure machine learning framework is powerful, it is limited in its ability
to capture and model uncertainty as in a statistical framework. The article [88] bridged
this gap between pure machine learning and statistical modeling for SVMs by showing
how to cast SVM into a Bayesian framework. They considered the Lα-norm regularized
support vector classifier that chooses β to minimize

dα(β, ν) =

n∑
i=1

max(1− rix⊤
i β, 0) + ν−α

k∑
j=1

|βj/σj |α (5.4)

where σj is the standard deviation of the j-th element of x and ν is a tuning parameter.
For this objective function, the learned classifier is a linear classifier. The article [88]
shows that minimizing Equation (5.4) is equivalent to finding the mode of the pseudo-
posterior distribution p(β|ν, α, y)

p(β|ν, α, r) ∝ exp(−dα(β, ν))
∝ Cα(ν)L(r|β)p(β|ν, α) (5.5)

where Cα is a pseudo-posterior normalization constant. Thus, the data dependent
factor L(y|β) is a pseudo-likelihood

L(r|β) =
∏
i

Li(ri|β) = exp

{
−2

n∑
i=1

max(1− rix⊤i β, 0)

}
. (5.6)

The main theoretical result from [88] is that the pseudo-likelihood contribution Li(ri|β)
is a location-scale mixture of normals ([88], Theorem 1).
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5.3 Our approach

We follow the strategy employed by [88] to cast the OWL objective function into
a probabilistic Bayesian learning framework. The conversion is not one-to-one since
[88] constructed a Bayesian model for a standard SVM whereas the objective function
for OWL Equation (5.2) is a weighted SVM problem. We first employ a non-penalty
prior to mimic the original formulation of OWL as in [143], and later we demonstrate
the inclusion of a penalty prior on the ITR coefficients. Minimizing Equation (5.2) is
equivalent to finding the mode of the pseudo-posterior which we can write as

p(x|ai, ν, α) ∝ exp(−Qn(β, ν, α))

∝ exp

{
n∑

n=1

ri
aiρ+ (1−Ai)/2

(1− aih(xi,β))+

}
p∏

j=1

p(βj |µ0, σ20)

∝ C(ν, α)L(a|β)p(β|µ0, σ20). (5.7)

Throughout, we will assume R > 0. When this is not the case, a distance-preserving
transformation ofR from R to R+ can be used. Assuming that h is linear, i.e., h(xi,β) =

x⊤
i β and following the strategy taken in Theorem 1 of [88], the contribution of a single

observation to the pseudo-likelihood is given by

Li(ai|ri,xi,β) = exp

{
−2 ri

aiρ+ (1− ai)/2
max(1− aix⊤

i β, 0)

}
=1(ai = 1)

∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri
ρ
+ λi −

ri
ρ
aix

⊤
i β

)2
}
dλi

+ 1(ai = −1)

×
∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri

1− ρ
+ λi −

ri
1− ρ

aix
⊤
i β

)2
}
dλi, (5.8)

or in other words that Li(ai, λi|ri,xi,β) is a scale mixture of Gaussians.

Proof. Because we have assumed that the reward is is strictly positive, the weight
ri

aiρ+(1−ai)/2
is also positive and can be brought inside of the maximization operator so

that

Li(ai|ri,xi,β)

= exp

{
−2 ri

aiρ+ (1− ai)/2
max(1− aix⊤

i β, 0)

}
=exp

{
−2max

(
ri

aiρ+ (1− ai)/2
(1− aix⊤

i β, 0)

)}
=1(ai = 1) exp

{
−2max

(
ri
ρ
(1− aix⊤

i β, 0)

)}
+ 1(ai = −1) exp

{
−2max

(
ri

1− ρ
(1− aix⊤

i β, 0)

)}
.
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The derivation of the pseudolikelihood representation follows [88]: Andrews and Mal-
lows (1974) showed that

∫∞
0

a√
2πλ

e−
1
2
(a2λ+b2λ−1)dλ = e−|ab|. Setting a = 1 and b = u,

we have ∫ ∞

0

1√
2πλ

e−
1
2
(λ+u2λ−1)dλ =e−|u|.

Multiplying through by e−u and recalling the identity max(u, 0) = 1
2(|u|+ u), we have

e−u

∫ ∞

0

1√
2πλ

e−
1
2
(λ+u2λ−1)dλ =e−|u|e−u

=⇒
∫ ∞

0

1√
2πλ

e−
1
2
(λ+u2λ−1)−udλ =e−|u|−u

=⇒
∫ ∞

0

1√
2πλ

e−
1
2λ

(λ2+u2+2uλ)dλ =e−|u|−u

=⇒
∫ ∞

0

1√
2πλ

e−
1
2λ

(u+λ)2dλ =e−2max(u,0).

Thus we can write the individual contribution of each observation to the marginal
likelihood as

Li(ai|λi, ri,xi,β)

=1(ai = 1) exp

{
−2max

(
ri
ρ
(1− aix⊤

i β, 0)

)}
+ 1(ai = −1) exp

{
−2max

(
ri

1− ρ
(1− aix⊤

i β, 0)

)}
=1(ai = 1)

∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri
ρ
(1− aix⊤

i β) + λi

)2
}
dλi

+ 1(ai = −1)
∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri

1− ρ
(1− aix⊤

i β) + λi

)2
}
dλi

=1(ai = 1)

∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri
ρ
+ λi −

ri
ρ
aix

⊤
i β

)2
}
dλi

+ 1(ai = −1)
∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri

1− ρ
+ λi −

ri
1− ρ

aix
⊤
i β

)2
}
dλi,

and that Li(ai, λi|ri,xi,β) is a scale mixture of Gaussians.

5.3.1 Prior specification for the ITR parameters

In their formulation of Bayesian SVM, [88] use the exponential power prior for
β, a prior that can be shown to be equivalent to L1-regularization of the regression



80 Chapter 5. Bayesian OWL

parameters. Regularization of the OWL parameters have been explored as in [110].
In this paper, we first construct our method as an analogy to the original formulation
of OWL without penalization. We make this choice because (1) our primary aim is
to develop a Bayesian classification-based ITR learning approach, and because (2) L1-
regularization does not necessarily yield sparse rules (see the discussion in Section 4.1
of [88]). However, regularization help avoid overfitting, a common problem in machine
learning. Thus, we also explore penalty priors for β, including the exponential power
prior distribution and the spike-and-slab prior distribution.

5.3.1.1 Normal prior distribution for β

We first consider the case with normal distribution priors on the treatment rule
parameters βj ∼ N(µ0, σ

2
0) for j = 1, . . . , p where µ0 and σ20 are hyperparameters.

With the pseudo-likelihood and a suitable prior for the ITR parameters defined, we
can write the pseudo-posterior distribution as

p(β,λ|x, r,a, α, ν) ∝
n∏

{i:ai=1}

λ
−1/2
i · exp

−1

2

n∑
i:a1=1

(
ri
ρ + λi − ri

ρ aix
⊤
i β
)2

λi


×

n∏
{i:ai=−1}

λ
−1/2
i · exp

−1

2

n∑
i:ai=−1

(
ri

1−ρ + λi − ri
1−ρaix

⊤
i β
)2

λi


×

p∏
j=1

1√
2πσ20

exp

{
−1

2

(βj − µ0,j)2

σ20

}
(5.9)

where λ = (λ1, . . . , λn)
⊤, r = (ri, . . . , rn)

⊤, and a = (a1, . . . , an)
⊤.

5.3.2 Exponential power prior distribution for β

Rather than use normal priors for the coefficients of the rule, [88] employed an
exponential power prior on β. This prior contains the regularization penalty, and from
Theorem 2 of [88], the double exponential prior regularization penalty can be written
as

p(βj |ν, α = 1) =

∫ ∞

0
ϕ(βj |0, ν2ωjσ

2
j )
1

2
e−

ωj
2 dωj (5.10)

where p(ωj |α) ∝ ω
− 3

2
j St+α/2(ω

−1
j ) and St+α/2 is the density function of a positive stable

random variable of index α/2. In particular, when α = 1, p(ωj |α) ∼ Exponential(2)

(Corollary 1 of [88]).
Under this prior distribution specification, we can write the pseudo-posterior dis-
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tribution as

p(β,λ,ω|x, r,a, α, ν) ∝
n∏

{i:ai=1}

λ
−1/2
i · exp

−1

2

n∑
i:a1=1

(
ri
ρ + λi − ri

ρ aix
⊤
i β
)2

λi


×

n∏
{i:ai=−1}

λ
−1/2
i · exp

−1

2

n∑
i:ai=−1

(
ri

1−ρ + λi − ri
1−ρaix

⊤
i β
)2

λi


×

p∏
j=1

ω
− 1

2
j · exp

− 1

2ν2

p∑
j=1

β2j
σ2jωj

 ·
p∏

j=1

p(ωj |α). (5.11)

where ω = (ω1, . . . , ωp)
⊤.

5.3.3 Spike-and-slab prior distribution for β

The article [88] also explored the use of a spike-and-slab prior for β. The spike-
and-slab prior is a Bayesian approach used for variable selection. It combines a "spike"
component, which is a Dirac delta function at zero, to induce sparsity by shrinking
some coefficients exactly to zero, and a "slab" component that allows other coefficients
to vary freely [71, 30]. Thus, the spike-and-slab prior on the jth coefficient βj can be
written as

p(βj |γj , ν2) = γjN(0, ν2σ2j ) + (1− γj)δ0(βj) (5.12)

where δ0(·) is the Dirac measure (point mass at 0). The prior on γj is given by

p(γj |π) = πγj (1− π)1−γj . (5.13)

Letting ⊙ denote elementwise multiplication, i.e., where (a1, . . . , an) ⊙ (b1, . . . , bn) =

(a1b1, . . . , anbn), the full pseudo-posterior when a spike-and-slab prior distribution is
specified for β can be written as

p(β,λ,γ|y,X, π, ν) =
n∏

i=1

p(yi|β,γ,λ)
p∏

j=1

[
p(βj |γj , ν2)p(γj |π)

]
=

n∏
i=1

1√
2πλi

exp

{
1

2

(1 + λi − yix⊤i (γ ⊙ β))2

λi

}

×
p∏

j=1

[
(γjN(0, ν2σ2j ) + (1− γj)δ0(βj))πγj (1− π)1−γj

]
. (5.14)

5.3.4 Estimation

To draw from the pseudo-posterior distribution, [88] employed two algorithms, an
expectation-minimization (EM) approach and a Gibbs sampling approach. The ap-
proach we take is the latter. Although sampling the pseudo-posterior is likely to be
more time intensive than estimation via the EM algorithm, the rationale for a fully
Bayesian approach is to enable uncertainty quantification (Section 5.3.5).
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5.3.4.1 Normal prior distribution for β

The full pseudo-posterior distribution under normal priors for β Equation (5.9) has
two unknown parameters, β and λ. To sample these parameters, we derive a Gibbs
sampling algorithm, which entails sequentially sampling each parameter conditionally
on the most up-to-date values of the other parameters. We give a high level summary of
the derivation in this section and full details in Section 5.6. The conditional distribution
of λi|β,xi,ai, ri (up to a normalizing constant) can be written as:

p(λi|β,xi, ai, ri)× 1(a = −1)λ−1/2
i · exp

{
−1

2

(
λi +

(
ri

1− ρ

)2

(1− aix⊤
i β)λ

−1
i

)}
.

From [20], page 479, a random variable has the generalized inverse Gaussian distribution
GIG(γ, ψ, χ) if its density function is p(x|γ, ψ, χ) = C(γ, ψ, χ)xγ−1 exp

{
−1

2

(χ
x + ψx

)}
,

where C(γ, ψ, χ) is a normalization constant. Thus

p(λi|β,xi, ai, ri) ∼ 1(ai = 1)GIG

(
1

2
, 1,

(
ri
ρ

)2

(1− aix⊤
i β)

2

)

+ 1(ai = −1)GIG

(
1

2
, 1,

(
ri

1− ρ

)2

(1− aix⊤
i β)

2

)
. (5.15)

The conditional distribution of β|λ,ω, r,a,x follows from standard arguments for
Bayesian linear models. The notable difference from such a standard model is that
β|λ,ω, r,a,x is a mixture over two distributions, one for when the observed treatment
in the data under analysis is 1 and one for when the observed treatment is −1. The
conditional distribution of β|λ, r,a,x has the form

p(β|λ, r,a,x)

∝ exp
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2

∑
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−2ri
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aix
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⊤
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· exp
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j=1

(βj − µ0,1)2

σ20


Let n1 =

∑n
i=1 1(ai = 1) and n−1 =

∑n
i=1 1(ai = −1). Define X1, W1, R1, and Λ1 as

X1 ≡

 a1x1,1 · · · a1x1,p
...

...
an1xn1,1 · · · an1xn1,p


(n1×p)

, W1 ≡

 1 + r1
λ1

...
1 +

rn1
λn1


(n1×1)

,

R1 ≡ diag(r1/ρ, . . . , rn1/ρ)(n1×n1), and Λ1 = diag(λ1, . . . , λn1). (5.16)
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Define X−1, W−1, R−1, and Λ−1 analogously. Additionally define and Σ as diag(σ1, . . . , σp).
Then, we have that

p(β|λ,ω, r,a,x)

∝ exp

{
− 1

2

[
β⊤
(
X⊤

1 R
⊤
1 Λ

−1
1 R1X1 +X⊤

−1R
⊤
−1Λ

−1
−1R−1X−1 +Σ−1

)
︸ ︷︷ ︸

≡B−1
1

β

− 2(W⊤
1 R1X1 +W⊤

−1R−1X−1 + µ⊤
0 Σ

−1︸ ︷︷ ︸
≡b1

)β

]}

∝ exp

{
−1

2
(β −B1b1)

⊤B−1
1 (β −B1b1)

}
.

In other words, the conditional distribution of β given λ, ω, and is multivariate normal
with mean B1b1 and variance-covariance matrix B1. With the necessarily conditional
distributions derived, the Gibbs sampling algorithm for sampling from the posterior
distribution is given in Box 1.

Box 1. Gibbs sampling algorithm for normal distribution priors on β

Initialize λ and β; set the hyperparameters µ0 and σ20.
Step 1: Draw β(g+1)|λ(g), r,a,x ∼ N (B

(g)
1 b

(g)
1 , B

(g)
1 ).

Step 2: Draw λ−1(g+1)|β(g), r,a,x where

λi ∼ 1(ai = 1)GIG

(
1

2
, 1,

(
ri
ρ

)2

(1− aix⊤
i β)

2

)

+ 1(ai = −1)GIG

(
1

2
, 1,

(
ri

1− ρ

)2

(1− aix⊤
i β)

2

)
.

Repeat Steps 1 and 2 until the chains converge.

5.3.4.2 Exponential power prior distribution for β

The full pseudo-posterior distribution when an exponential power prior distribution
is specified for β (Equation (5.11)) has three unknown parameters, β, λ, and ω. To
sample these parameters, we derive a Gibbs sampling algorithm, which entails sequen-
tially sampling each parameter conditionally on the most up-to-date values of the other
parameters. We give a high-level summary of the derivation in this section and full
details in Section 5.6.3. The conditional distribution of λi|β,xi,ai, ri is the same as in
the case with normal prior distributions for β given in Equation (5.15).

The conditional distribution of β|λ,ω, r,a,x follows from standard arguments for
Bayesian linear models. The notable difference from such a standard model is that
β|λ,ω, r,a,x is a mixture over two distributions, one for when the observed treatment
in the data under analysis is 1 and one for when the observed treatment is −1. The
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third term of the conditional distribution is the penalty. The conditional distribution
of β|λ,ω, r,a,x has the form

p(β|λ,ω, r,a,x)

∝ exp
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Letting Ω ≡ diag(ω1, . . . , ωp)(p×p), we have that

p(β|λ,ω, r,a,x)

∝ exp
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Thus, the conditional distribution of β given λ, ω, and is multivariate normal with
mean B2b2 and variance-covariance matrix B2. Full details of this derivation are given
in Section 5.6.

Finally, the conditional distribution of ω|β, ν is the same as that given in Corollary
3 of [88]. For α = 1, the full conditional distribution of ω is ω−1

j |βj , ν ∼ IG(νσj/|βj |, 1).
Together, with these three conditional distributions, we can summarize the Gibbs sam-
pling algorithm as in Box 2.
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Box 2. Gibbs sampling algorithm for exponential power distribution prior on β

Initialize λ, β and ω.
Step 1: Draw β(g+1)|ν,Λ(g),Ω(g), r,a,x ∼ N (B

(g)
2 b

(g)
2 , B

(g)
2 ).

Step 2: Draw λ−1(g+1)|β(g+1), r,a,x where

λ
(g+1)
i |β(g+1), ν, ri, xi ∼1(ai = 1)GIG

(
1

2
, 1,

(
ri
ρ
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(1− aix⊤
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(g+1))2

)

+ 1(ai = −1)GIG

(
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2
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(
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)
.

Step 3: Draw ω
−1(g+1)
j |β(g+1)

j , ν ∼ IG(νσj |βj |−1, 1)

Repeat Steps 1, 2, and 3 until the chains converge.

5.3.4.3 Spike-and-slab prior distribution for β

The full pseudo-posterior distribution when a spike-and-slab prior is specified for β
has three unknown parameters, β, λ, and γ. Similarly to the procedure outlined earlier,
we employ a Gibbs sampling algorithm to obtain these parameters. The conditional
distribution of λi|β,xi,ai, ri is the same as in the case with normal prior distributions
for β given in Equation (5.15).

The conditional distribution of β given λ, r, a, and x mirrors the previous expo-
nential power prior distribution, but without the third term of the penalty term. The
adjustments are slight, with only the following modifications:

B−1
γ = XT

1 R
T
1 Λ

−1
1 R1X1 +XT

−1R
T
−1Λ

−1
−1R−1X−1

bγ = Bγ(W
T
1 R1X1 +W T

−1R−1X−1)

The spike-and-slab prior induces sparsity in coefficients through the parameters γ.
The conditional distribution of γ given λ, r, a, and x may be written as in [88] with
bγ and Bγ previously introduced :

p(γ|γ, r,a,x, ν) ∝ p(γ)
|Σ−1

γ /ν2|1/2

|B−1
γ |1/2

exp (−1

2

n∑
i=1

(1 + λi − aixTi,γbγ)2

λi
− 1

2ν2
bTγΣ

−1
γ bγ)

By exploiting the quadratic term, the conditional distribution can be rewritten as
in step 2 of Box 3. This form includes static terms that do not need to be recomputed
in every iteration. To sample γ, a second Gibbs sampler nested within the first must
be implemented.
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Box 3. Gibbs sampling algorithm for spike-and-slab prior distribution on β

Initialize β and γ.
Step 1: Draw λ−1(g+1)|β(g+1), r,a,x where

λ
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.

Step 2: For i = 1, . . . , k draw γi from p(γi|γ−i) which is proportional to

p(γ|γ, r,a,x, ν) ∝ p(γ)
|Σ−1

γ /ν2|1/2

|B−1
γ |1/2

× exp(−1

2
[c(λ) + bTγ (X

TΛ−1X)γbγ − 2bTγ [X
T (1 + λ−1)]γ ]

− 1
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γ bγ)

Step 3: When γi = 1, draw β
(g+1)
γ |ν,Λ(g), r,a,x ∼ N (b

(g)
γ , B

(g)
γ ).

Repeat Steps 1, 2, and 3 until the chains converge.

5.3.5 Prediction and uncertainty quantification

Using the posterior predictive distribution, we can make treatment recommenda-
tions for a new patient and quantify our uncertainty in our recommendation. Let
Θ = {β,λ} and ã denote the recommended treatment for a new patient with features
x̃. Then

p(ã = 1|x̃,X, r,a) =
∫
Θ
p(ã = 1|x̃,X, r,a,β,λ)p(β,λ|x, r,a)dθ.

For the class predictions, we can use the probit model which has the form

p(a = 1|x) = Φ(x⊤β)

where Φ is the cumulative distribution function of the standard normal distribution.
Thus we can write the posterior predictive distribution as

p(ã = 1|x̃,X, r,a) =
∫
Θ
Φ(x̃⊤β)p(β,λ|x, r,a)dθ. (5.17)

5.4 Simulation studies

5.4.1 Classification performance

We conducted simulation studies to assess the classification performance of the
proposed method, following [143] and [110]. We compared the performance of OWL,
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Bayesian OWL with normal priors for β, Bayesian OWL with exponential power prior
for β, and Bayesian OWL with spike-and-slab prior for β. For each simulated patient,
we generated a 10-dimensional vector of patient features, X1, . . . , X10, drawn indepen-
dently and uniformly distributed on [−1, 1]. Treatment A was drawn from {−1, 1}
independently of the prognostic variables with P(A = 1) = 1/2. The outcome vari-
able R was normally distributed with mean Q0 = 1 + 2X1 + X2 + 0.5X3 + T0(X,A)

and standard deviation 1, where T0(X,A) was the interaction term between treatment
and patient features. We examined two scenarios for the treatment-feature interaction
term:

— Scenario 1 : T0(A,X) = (X1 +X2)A

— Scenario 2 : T0(A,X) = 0.442(1−X1 −X2)A

Both scenarios 1 and 2 had linear decision boundaries determined by X1 and X2.
For scenario 1, the true optimal rule was given by 1(X1 +X2 > 0), while for scenario
2, it was 1(1 − X1 − X2 > 0). OWL was implemented with a linear kernel. For
Bayesian OWL, Gibbs sampling was used to draw from the posterior distributions of
the parameters 500 times. The first 150 draws were discarded as "burn-in" and point
estimates of β were computed by taking the mean of the draws from the posterior
distribution. Throughout, we set the hyperparameter ν = 0.8.

For each scenario, we varied the training dataset from 100 to 200, 400 and 800 and
tested on 1000 patients. For each training set size, we conducted 200 simulation runs.
We evaluated classification performance using the misclassification rate, the ratio of the
number of patients recommended a treatment counter to the true optimal rule divided
by the total number of patients in the simulation run (Number of patients misclassified

Total number of patients ). The
simulation results are presented in Table 1 and 2.

Bayesian OWL Bayesian OWL Bayesian OWL
n OWL Normal Prior Exponential Power Prior Spike and Slab

100 0.24 0.38 0.38 0.39
200 0.18 0.34 0.34 0.34
400 0.13 0.29 0.29 0.30
800 0.10 0.24 0.24 0.26

Table 5.1 – Misclassification rates for different methods and sample sizes for scenario
1.

As expected, the classification performance improved among all the ITR learning
methods evaluated as the sample size increased. However, OWL consistently outper-
formed Bayesian OWL in all sample sizes and in both scenarios. We hypothesize that,
with additional hyperparameter tuning, the performance of Bayesian OWL can be im-
proved. Ordinarily, one would be hesitant to propose a method that is dominated by an
existing method. However, the dominance of OWL is with respect to the misclassifica-
tion rate. OWL, even with 800 samples in our simulation, has a 10% misclassification
rate, and there is no way to determine which of the 10% of the simulated patients
are likely misclassified (given a non-optimal treatment recommendation). In contrast,
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Bayesian OWL Bayesian OWL Bayesian OWL
n OWL Normal Prior Exponential Power Prior Spike and Slab

100 0.22 0.38 0.38 0.39
200 0.15 0.34 0.34 0.34
400 0.13 0.31 0.31 0.30
800 0.10 0.25 0.25 0.22

Table 5.2 – Misclassification rates for different methods and sample sizes for scenario
2.

Bayesian OWL yields the entire posterior distribution of the estimated optimal ITR
and thereby allows for immediate uncertainty quantification of individual-level treat-
ment recommendations. In essence, Bayesian OWL can inform us of which treatment
recommendations it is less certain about whereas OWL cannot. We demonstrate this
in Section 5.4.2.

5.4.2 Treatment recommendation uncertainty quantification

To highlight the utility of quantifying the uncertainty of individual-level treatment
recommendations, we generated a data set of 1000 patients under Scenario 1. We used
these simulated data to train a Bayesian OWL model using the exponential power
prior. Next, we used the same generative approach to simulate another 1000 patients.
Specifically, we used a fine grid to generate X1 and X2, the key variables in the true
optimal rule (i.e., tailoring variables). The rationale for this approach was to generate
a simulated set of patients whose characteristics covered the domain of the true op-
timal ITR so that we could estimate the uncertainty for combinations of X1 and X2

throughout the domain, X1 ×X2 ∈ [−1, 1]2.
We evaluated the coefficients for the trained Bayesian OWL model. With an expo-

nential power prior on β, which is analogous to L1 regularization, we would expect the
coefficients of the features in the true optimal rule (tailoring variables) to be large and
the coefficients of the features not in the rule to be driven close to 0. The magnitudes of
the coefficients are displayed in Figure 5.1. As we would hope based on our knowledge
of the true optimal rule, the magnitudes of the coefficients for X1 and X2 were larger
than those for the other features, indicating that the estimated ITR using Bayesian
OWL made decisions based on the correct patient features.

Figure 5.2 demonstrates Bayesian OWL’s ability to quantify uncertainty in its treat-
ment recommedations. In Scenario 1, the true optimal ITR divides patients into two
groups: patients in the upper-right half of the graph (where X1 + X2 > 0) should
ideally get treatment A = 1, while those in the lower-left half should get treatment
A = −1. Using the posterior predictive distribution as in Section 5.3.5, we computed
the uncertainty associated with recommending Treatment 1 for patients whose features
X1 and X2 lie in the upper-right half of the graph and the uncertainty associated with
recommending Treatment -1 in the lower-left half. Notably, uncertainty was evaluated
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Figure 5.1 – Feature importance

individually for each of the 1000 patients in our test cohort. This means that for each
individual, we estimated how certain or uncertain we were about their specific treat-
ment recommendation given their features X1 and X2. Moreover, because our test set
included simulated patients whose features spanned the domain of the ITR, we were
able to compute uncertainty for every “type" of patient who could be recommended a
treatment using the estimated ITR. We visualize the uncertainty across the domain of
the ITR using a heat map (Figure 5.2). Certainties close to 1 (less uncertainty) are
lighter in color and depicted with yellow and light green. In contrast, certainties close
to 0 (more uncertain) are darker in color and depicted with purple and dark blue. As
expected, Bayesian OWL is more certain about treatment recommendations for pa-
tients whose features are far from the decision boundary than for those that are close
to the decision boundary.

Furthermore, in Figure 5.2, we have included misclassified individuals in our simula-
tion. Those who were recommended treatment −1 but should have been recommended
treatment 1 are indicated by red points, and those who were recommended treatment
1 but should have been recommended treatment −1 are indicated by orange points.
We observe that the misclassified patients are located near the boundary, as we expect,
and most noteworthy that they are located in regains where the model exhibits the
greatest uncertainty (regions in which the background is shaded purple).

5.5 Discussion

In this paper, we introduced a Bayesian formulation of OWL. To our knowledge, this
is the first Bayesian strategy for directly learning an ITR. Moreover, we demonstrate
how the Bayesian approach can enable us to quantify the uncertainty in our treatment
recommendations. Both tasks, learning the optimal ITR and uncertainty quantifica-
tion, can be implemented through a simple Gibbs sampling strategy for sampling the
posterior distribution.

One may wonder why a Bayesian approach to OWL is needed since we already have
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Figure 5.2 – Heatmap of uncertainty quantification

OWL which can rely on methods from convex optimization. We believe that the answer
to this question is two-fold. First, OWL is an appealing strategy for learning optimal
ITRs because it models the decision rule directly rather than modeling conditional
mean models and backing out the optimal ITR. Second, our Bayesian formulation of
OWL yields a full pseudo-posterior distribution which means that we can quantify
uncertainty in ITR’s treatment recommendations at the individual level. This is in
contrast to the more common approach in the ITR literature which involves estimating
the uncertainty in the value of the proposed ITR, i.e., the uncertainty in the expected
value we would observe if everyone in the population were treated according to the
rule. This may prove useful in the design and implementation of clinical studies by
providing a strategy for identifying the types of patients for whom we feel confident in
our ability to make treatment recommendations and the patient types that may require
additional sampling and information to improve the recommendations. By casting the
direct ITR learning approach into a probabilistic framework, we have widened the
inferential possibilities for directly learned ITRs.

Our work has limitations. For example, we only examine linear rules. Although
linear rules are simple to understand, there may be times when a nonlinear rule is
desired or a nonlinear rule significantly outperforms a linear rule, i.e., clinically mean-
ingful improvement from the nonlinear rule is worth the decrease in interpretability.
[36] proposed a strategy for Bayesian SVM for nonlinear decision boundaries, which is
likely a good blueprint for extending this work to the nonlinear rule setting. Moreover,
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our approach does not attempt to do variable selection. This limits its applicability
in high dimensional settings in which there is no information or weak information as
to which tailoring covariates should be included in the treatment rule. [88] considers
L1-regularization on the decision boundary coefficients as well as a spike-and-slab prior
to induce sparsity. These may be reasonable strategies to approximate the penalized
version of OWL introduced by [110]. Finally, in simulation studies, OWL outperforms
Bayesian OWL with respect to the misclassification rate, which is only ameliorated by
the fact that Bayesian OWL can tell us when it is uncertain about its recommendations
whereas OWL cannot.

While the direct learning, or classification, approach to learning optimal ITRs is in-
credibly powerful, leveraging tools from machine learning, inference and uncertainty
quantification at the individual treatment recommendation level continues to be a
challenge. Bayesian OWL overcomes this limitation by fully leveraging the benefits of
direct-learning and the use of a probabilistic framework. Generating precision medicine
evidence with wider inferential potential can improve our ability to build trust in these
treatment algorithms and ultimately improve how we deploy precision medicine evi-
dence in real-world health care decision making.



92 Chapter 5. Bayesian OWL

5.6 Appendix : derivation of the Gibbs sampling algo-
rithms

5.6.1 Conditional distribution of λi|β,xi, ai, ri
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From [20], page 479, a random variable has the generalized inverse Gaussian distribution
GIG(γ, ψ, χ) if its density function is
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where C(γ, ψ, χ) is a normalization constant. Thus
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Recall that if X ∼ GIG
(
1
2 , λ, χ

)
, then X−1 ∼ IG(µ, λ) where χ = λ/µ2 and IG

denotes the inverse Gaussian distribution. Consequently, we can write
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5.6.2 Conditional distribution of β|λ,µ0, σ
2
0, r, a,x (Normal prior)
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Define X1, W1, and R1 as
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Observe that
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Define Λ1 = diag(λ1, . . . , λn1). Then

Term 2 =

(
1

ρ2

)(
r21
λ1

)
a21(x

⊤
1 β)

2 + · · ·+
(

1

ρ2

)(
r2n1

λn1

)
a21(x

⊤
n1
β)2

=

(
1

ρ2

)((
r21
λ1

)
· · ·

(
r2n1
λn1

)) a21β
⊤x1x

⊤
1 β

...
a2n1

β⊤xn1x
⊤
n1
β


=

(
1

ρ2

)((
r21
λ1

)
· · ·

(
r2n1
λn1

))
β⊤X⊤

1 X1β

=β⊤X⊤
1 R

⊤
1 Λ

−1
1 R1X1β.

Let n−1 =
∑n

i=1 1(ai = −1). Similarly, define X−1, W−1, R−1, and Λ−1 as

X−1 ≡

 a1x1,1 · · · a1x1,p
...

...
an−1xn−1,1 · · · an−1xn−1,p


(n−1×p)

, W−1 ≡


1 + r1

λ1
...

1 +
rn−1

λn−1


(n−1×1)

,

R−1 ≡ diag(r1/(1− ρ), . . . , rn−1/(1− ρ))(n−1×n−1), and Λ−1 = diag(λ1, . . . , λn−1).

Additionally define Σ ≡ diag(σ1, . . . , σp) so that we can write

exp

−1

2

p∑
j=1

β2j − 2βjµ0,j

σ20

 =exp

{
−1

2
(β⊤Σ−1β − 2µ⊤

0 Σ
−1β)

}
.

Thus, we have that

p(β|λ,ω, r,a,x)

∝ exp

{
−1

2

(
−2W⊤

1 R1X1β + β⊤X⊤
1 R

⊤
1 Λ

−1
1 R1X1β

)}
· exp

{
−1

2

(
−2W⊤

−1R−1X−1β + β⊤X⊤
−1R

⊤
−1Λ

−1
−1R−1X−1β

)}
· exp

{
−1

2
(−2µ⊤

0 Σ
−1β + β⊤Σ−1β)

}
=exp

{
− 1

2

[
β⊤
(
X⊤

1 R
⊤
1 Λ

−1
1 R1X1 +X⊤

−1R
⊤
−1Λ

−1
−1R−1X−1 +Σ−1

)
︸ ︷︷ ︸

≡B−1
1

β

− 2(W⊤
1 R1X1 +W⊤

−1R−1X−1 + µ⊤
0 Σ

−1︸ ︷︷ ︸
≡b1

)β

]}

=exp

{
−1

2
(β −B1b1)

⊤B−1(β −B1b1)− b⊤1 B1b1

}
∝ exp

{
−1

2
(β −B1b1)

⊤B−1
1 (β −B1b1)

}
.

The conditional distribution of β given λ is multivariate normal with mean B1b1 and
variance-covariance matrix B1.
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5.6.3 Conditional distribution of β|λ,ω, r, a,x (Exponential power prior)
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The summation inside the first and second exponential terms are the same as in the
derivation under the normal distribution prior for β (Section 5.6.2). Letting Ω ≡
diag(ω1, . . . , ωp)(p×p), we can write
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Thus, we have that
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The conditional distribution of β given λ, ω, and is multivariate normal with mean
B2b2 and variance-covariance matrix B2.
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Conclusion and perspectives

We explored the concept of decision rules in precision medicine by focusing on
two methods for constructing optimal rules: Q-learning and Outcome-Weighted Learn-
ing (OWL), with a particular emphasis on integrating expert knowledge. The first
method, Q-learning, led us to examine decision-making processes within the framework
of Dynamic Treatment Regimes (DTR) and their broader connection to Reinforcement
Learning (RL), while considering the specificities of observational data. This analysis
served as the foundation for a comprehensive review on integrating medical expertise
within this context, which subsequently guided the development of a method for incor-
porating expert knowledge into RL models through preference-based reward learning.
The second method, OWL applied to Individualized Treatment Regime (ITR), led us
to reconsider its formalism from a Bayesian perspective, allowing us to quantify uncer-
tainty and provide practitioners with a new decision support tool.

Our exploration begins with the specific characteristics of the data, which impose
certain constraints on the application of RL. First, the modeling of RL traditionally
relies on the Markov assumption, which presumes that the current state contains all
the necessary information to make an optimal decision. However, this assumption of-
ten proves too restrictive in practice. To overcome this limitation, it is possible to
consider the patient’s entire history, but this approach demands significant computa-
tional resources and extensive data, which in practice limits the application of DTRs
to a reduced number of decision points. Second, when applying RL to medical data,
the issue of causality becomes crucial, particularly with observational data, which is
commonly used for DTRs. To better understand the challenges of causality in preci-
sion medicine, we first examined this issue within the simpler context of ITR, which
allowed us to illustrate the key assumptions governing this problem. These assump-
tions can be generalized to the DTR framework. However, it is important to note that
RL does not inherently address causality, even though there has been considerable re-
search on this topic [11, 140]. Addressing the causality issue, while using RL, largely
depends on the data and how it is collected. A clinical trial design that addresses this
issue is the sequential multiple assignment randomized trials, which are specifically de-
signed to satisfy all causal assumptions. However, such clinical trials are expensive and
difficult to implement, leading to a limited number of available datasets. Third, the
choice of RL algorithms for DTRs must meet specific criteria: they must be model-free,
value-based, and off-policy to ensure their effectiveness in an offline context. Among
these algorithms, backward Q-learning, or Fitted Q-Iteration, stands out as the most
commonly used in RL applications for DTRs.

The first contribution of this thesis is the development of a state-of-the-art review
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on the integration of medical knowledge into RL models. A key observation, based
on the fact that data generally comes from observational studies, reveals that this
restricts the application of methods to offline contexts, with specific algorithmic prop-
erties needed for such settings. We then identified the properties of each algorithm
and compared them with the desired characteristics for effective use in the context of
DTRs. Beyond these technical considerations, the application of RL in clinical settings
may face resistance due to the complexity and interpretability of the proposed treat-
ment strategies. A key issue is the acceptability of the optimal DTR by both patients
and practitioners, which largely depends on the understanding of the decision rules.
Therefore, integrating medical expertise into machine learning methods for personal-
ized treatments is essential to enhance safety, interpretability, and effectiveness. The
integration of this expertise can occur at various stages of the RL process or within its
key components, such as rewards, value functions, the objective function, or the pol-
icy. First, medical knowledge is often integrated at the outset of the study, during the
design of the experiment. Physicians contribute to the selection of variables used for
learning the decision rule. Similarly, the selection of algorithms is made in collaboration
between medical experts and machine learning experts, depending on the application
framework and available data. Second, medical knowledge can be incorporated by in-
fluencing the rewards, which are one of the key elements of an RL algorithm since they
directly impact the construction of the decision rule. Therefore, their design is crucial.
Traditionally, a variable representative of the study’s objective is chosen to define the
rewards. However, some methods propose a less ad hoc approach to designing these
rewards. Among these methods, inverse reinforcement learning [104, 68] and prefer-
ence learning [27, 2] seek to leverage expert knowledge from a dataset or preferences
to generalize the construction of rewards. Human-centered RL [56] directly replaces
rewards with expert feedback. However, preference learning and human-centered RL
are often limited to interactive contexts, making them inapplicable to DTRs and obser-
vational clinical applications. In contrast, inverse reinforcement learning is promising
as it is developed in an offline context and is well-suited for real clinical applications.
Third, the learning of decision rules can be achieved through value functions, allow-
ing the integration of medical expertise at this level. One approach is to incorporate
observed medical mechanisms; specifically, it involves penalizing Q-values associated
with non-decisive treatments [29]. However, this method was initially developed in
an online context and needs to be reassessed for offline settings. Another idea is to
establish a relay between human decisions and those proposed by the algorithm. In
one scenario, the physician would take over when the patient is in a critical situa-
tion [128]. In another, the algorithm would suggest alternative treatments to those
traditionally proposed, along with associated risks [109]. These hybrid methods seem
promising for real clinical applications, but concrete evidence of their implementation
is still lacking. In the policy-based methodological framework, expertise integration
can be achieved through a method called supervised RL [134, 124]. Its goal is to faith-
fully replicate common medical practices, offering a precise emulation of physicians’
decisions. However, it does not allow for the discovery of alternative or underexplored
treatments compared to conventional care methods. Finally, decision rule learning can
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be approached methodologically through the policy. It is important to note that classi-
cal RL methods typically recommend only one policy, meaning one treatment and one
dose for each decision time. To enrich the context, multi-policies methods have been
developed to offer an expert multiple equivalent treatments to choose from. The work
of [65] is particularly suitable for application to DTRs based on observational data,
but it was developed within a framework of patient preferences and could be reassessed
within an expert preference framework.

This first part of our resarches on both RL for DTR and the state-of-the-art
review on the integration of expert knowledge is covered in an article available on
arXiv:2407.00364, which will be submitted for publication soon. In my future research,
I plan to delve deeper into methods related to multiple policies, with the aim of offering
practitioners not just a single optimal treatment, but multiple equivalent treatment op-
tions. The concept of near-optimality is particularly complex in a multistage context,
as choosing an action that is close in equivalence may lead to a gradual deviation from
optimality over time.

The second contribution of this thesis directly stems from the previous state-of-the-
art review and the conclusions drawn from it. We were particularly interested in the
generalization of reward construction, especially through preference learning. We thus
developed a reward learning method based on preference learning, specifically designed
for application to DTRs. This process unfolds in three steps: (1) an expert expresses
preferences between pairs of elements, which induces a ranking among all instances in
the previously collected dataset; (2) rewards are then constructed using a Bradley-Terry
probabilistic model; (3) these rewards are used to learn the policy in Q-learning models.
The main strength of this method lies in its ability to construct rewards in a generalized,
data-driven manner. It leverages both the expertise of healthcare professionals and the
relationships between patient data, thereby avoiding manual reward construction that
can be arbitrary, while ensuring consistency in the learning of medical strategies. This
method was illustrated by two case studies: one on the treatment of adolescents with
obesity [8, 61], and the other on a cancer simulation [144]. In our first case study,
the objective was to demonstrate that rewards constructed using a preference model,
whether based on stages or trajectories, capture the same variations and dispersions
as the rewards observed in the classical approach. However, our method stands out
particularly in the second case study, where we examined the strategies learned from
different models. The presented method, which generates rewards from a data-driven
preference model, offers a more generalized approach compared to the initial model,
where rewards were defined more subjectively. Although the distributions of rewards
generated by our model and those of the initial model are different and weakly corre-
lated, the learned strategies produce the expected medical results, effectively balancing
treatment toxicity and tumor size. However, our work has some limitations and could
benefit from improvements. The estimation of rewards from the Bradley-Terry pairwise
comparison model relies on the Newton-Raphson algorithm. The literature suggests
that the minorization-maximization algorithm [42] could be a more efficient estimation
technique. Additionally, other comparison models, stemming from research in social
choice or sports statistics, could also be explored, such as the Thurstone-Mosteller
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model [34], the Elo model [14], and the Plackett-Luce model [87]. Another limitation
of our method is that it directly provides reward values from comparisons. It would
be interesting to reformulate these models into a parametric reward function based on
state variables.

This second contribution will be the subject of a forthcoming article. Moving for-
ward, I would like to explore the last limitation identified: the parametric formulation of
the model into a function dependent on patient states. This would enable the develop-
ment of an interpretable and explainable reward function, highlighting the importance
of variables in the construction of decision rules.

The third contribution of this thesis is the development of a Bayesian outcome-
weighted learning method aimed at quantifying uncertainty in treatment recommenda-
tions. By introducing a Bayesian framework, this approach enhances traditional OWL
methods by enabling a probabilistic estimation of decision rules. By reformulating
the optimization problem within a probabilistic framework, our method generates a
complete posterior distribution, offering both inferential capabilities and a precise eval-
uation of the uncertainty associated with the recommended treatments. The main steps
of our contribution are as follows. First, we propose a Bayesian approach for learning
optimal ITR, based on a classification framework. Next, we developed a simple Gibbs
sampling algorithm to facilitate this learning process. Finally, we demonstrate how the
resulting pseudo-posterior distribution can be used to quantify uncertainty in treatment
recommendations, with performance illustrated through simulation studies. This abil-
ity to assess uncertainty on an individual basis is particularly useful for the design and
implementation of clinical studies, by identifying patients for whom recommendations
are reliable and those requiring additional information. However, our work has some
limitations. We focused solely on linear rules, which, while simple to interpret, can
sometimes be outperformed by nonlinear rules that offer significant clinical improve-
ments, even if they are less interpretable. An extension to nonlinear rules could draw
on work related to Bayesian support vector machines with nonlinear decision bound-
aries, such as those proposed by [36]. Additionally, our method does not incorporate
variable selection, which limits its application in high-dimensional contexts. Strategies
such as L1 regularization or the use of spike-and-slab priors, as suggested by [88], could
be explored to overcome this limitation.

This third contribution is the result of joint work with Nikki L. B. Freeman, acces-
sible on arXiv:2406.115. Before submission, we plan to further enhance the work by
including an application on observational data. Moving forward, we particularly aim
to extend Bayesian OWL to a nonlinear framework, which would more accurately re-
flect decision rules on observational data, and incorporate variable selection to identify
and retain only the most relevant variables for the model, eliminating those that are
redundant or uninformative, as highlighted in the model’s limitations.

The research presented, which includes both RL methods and OWL approach,
focuses on enhancing the personalization of care by integrating clinical specificities
and observational data. These strategies aim to tailor treatments more effectively
to individual patient characteristics while incorporating medical expertise at various
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stages of the process. By embedding medical knowledge early on, it becomes possible
to construct rewards that fully utilize data and expert insights. Additionally, the
Bayesian OWL method introduces a new tool for analyzing optimal strategies through
uncertainty quantification. Overall, this contributions offer promising directions for
making machine learning algorithms more relevant and better suited to the challenges
of precision medicine, potentially increasing practitioners’ trust in these tools.

This work also highlights the importance of interdisciplinary collaboration, par-
ticularly among the fields of machine learning, medical sciences, and statistics. The
development of the proposed methods, which integrate medical knowledge into rein-
forcement learning models and quantify uncertainty in treatment recommendations,
could greatly benefit from close interaction among researchers from these areas. Such
collaborations are essential for ensuring that the algorithms developed meet specific
clinical needs and remain comprehensible to healthcare professionals. Moreover, they
are necessary to guarantee that the proposed methods are well-suited to clinical con-
texts and genuinely practical. Integrating expertise from various disciplines could also
facilitate the adoption of these technologies in clinical settings, offering solutions that
are both technically robust and clinically relevant.





Appendix

Table : Reinforcement learning applications for sequential
decision in healthcare

Table 6.1 – Reinforcement learning applications for sequential decision in
healthcare. Ref, References; Environment, description of the medical application
context; Data, Simulated or Real; Model, Decision Process (DP) or Markov Decision
Process (MPD) or Partially Observable Markov Decision Process (POMDP); Stage,
number of stages; Off/On, offline or online; Algorithm, standard reference algorithm of
reinforcement learning without the paper specifications or innovation added.

Ref. Environment Data Model Stage Off/On Algorithm
[29] Simulated patient with

anemia due to kidney
failure

Real Data MDP 24 Online Q-learning

[144] ODE Simulation of
cancer trial for ad-
vanced generic cancer
of treatment

Simulation DP 6 Offline Backward Q-learning

[35] ODE Simulation of
cancer growth on a cell
population level

Simulation MDP N/A Online Q-learning

[1] ODE Simulation of
cancer growth on a cell
population level

Simulation DP N/A Online Actor-Critic

[107] CATIE Real Data DP 2 Offline Backward Q-learning
[2] Same as in [144] Simulation MDP 12 Online Policy Search
[32] Same as in [144] Simulation DP 3 Offline Backward Q-learning
[79] ADHD Real Data DP 2 Offline Backward Q-learning
[27] Same as in [144] Simulation MDP 6 Online Policy Iteration
[145] Exponential distribu-

tion simulation of can-
cer for parties in phase
III.

Simulation DP 2 Offline Backward Q-learning

[123] (Chapter 4) Electrical
stimulation for epilepsy
from in vitro experi-
ments

Real Data MDP N/A Offline Backward Q-learning

[123] (Chapter 5) Electrical
stimulation for Parkin-
son’s disease

Simulation MDP 2, 6, 9, 10 Online SARSA, Temporal Dif-
ference

[123] (Chapter 5) Electrical
stimulation for Parkin-
son’s disease

Simulation MDP 2, 6, 9, 10 Offline Backward Q-learning

[123] (Chapter 6) Fractiona-
tion scheduling for ra-
diation therapy

Simulation MDP 4, 10, 30 Offline Backward Q-learning

[54] ADHD Real Data DP 2 Offline Backward Q-learning
[53] STAR*D Real Data DP 2 Offline Backward Q-learning
[23] Simulated patients

with diabetes
Simulation MDP Indefinite Online Q-learning

Continued on next page
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Table 6.1 – Continued from previous page
Ref. Environment Data Model Stage Off/On Algorithm
[13] Comparison of depres-

sion interventions af-
ter acute coronary syn-
drom (SMART)

Real Data DP 2 Offline Backward Q-learning

[64] STAR*D and ADHD Real Data DP 2 Offline Outcome-Weighted
Learning and Q-
learning

[41] Same as in [144] Simulation MDP N/A Offline Backward Q-learning
[85] ODE Simulation of

cancer growth on a cell
population level

Simulation MDP N/A Online Q-learning

[118] 114 patients used to
construct synthetic
data by GAN

Simulation MDP 35 Online Deep Q-learning

[44] Model of tumor growth
using NetLogo pack-
age, Agent-based simu-
lation

Simulation DP N/A Online Q-learning

[62] Registry data from
6021 AML patients
who underwent al-
logeneic stem cell
transplantation

Real Data DP 5 Offline Deep Q-learning

[52] Nonrandomized reg-
istry data from 11,141
patients who under-
went allogeneic stem
cell transplantation

Real Data DP 2 Offline Backward Q-learning

[90] MIMIC Real Data MDP N/A Offline Deep Q-Learning
[89] MIMIC Real Data MDP N/A Offline Deep Q-Learning
[130] Linear and ODE Simu-

lation of cancer trial
Simulation MDP N/A Online Deep Q-learning

[86] MIMIC Real Data MDP N/A Offline Deep Q-Learning
[131] ODE Simulation of

cancer growth on a cell
population level

Simulation MDP N/A Online Q-learning

[67] Simulated patients
with diabetes

Simulation MDP Indefinite Online V-learning

[58] MIMIC Real Data POMDP N/A Offline Deep Q-Learning
[137] ODE Simulation of

cancer growth on a cell
population level

Simulation MDP N/A Online Q-learning

[17] Real dataset of breast
cancer

Real Data MDP N/A Online Q-learning

[114] MIMIC Real Data MDP 750 Offline Temporal Difference
[109] MIMIC Real Data MDP N/A Offline Q-learning
[74] Simulate tumor devel-

opment inside healthy
tissue and the effect of
radiation therapy

Simulation MDP N/A Online Deep Policy Gradient

[128] MIMIC Real Data MDP N/A Offline Deep Q-Learning
[106] 40 patients of stage-

four colon cancer
Real Data MDP 6 Offline Deep Q-Learning

[48] MIMIC Real Data MDP N/A Offline Deep Q-Learning
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Titre : Appren�ssage par renforcement et outcome-weighted learning bayésien pour la médecine de précision. Intégra�on de connaissances
médicales dans les algorithmes de décision.
Mots clés : Dynamic treatment regimes, Individualized TreaIndividualized treatment regimetment Regimes, Processus de décision, Savoir d'expert,
Appren�ssage par préferences, Quan�fica�on d'incer�tude
Résumé : La médecine de précision vise à adapter les traitements aux caractéris�ques de chaque pa�ent en s'appuyant sur les formalismes des
"Individualized Treatment Regimes" (ITR) et des "Dynamic Treatment Regimes" (DTR). Les ITR concernent une seule décision thérapeu�que, tandis
que les DTR perme�ent l'adapta�on des traitements au fil du temps via une séquence de décisions. Pour être per�nentes, ces approches doivent
être en mesure de traiter des données complexes et d'intégrer les connaissances médicales, essen�elles pour perme�re une u�lisa�on clinique
réaliste et sans risques. Ce�e thèse présente trois projets de recherche. Premièrement, un état de l'art des méthodes d'intégra�on des connaissances
médicales dans les modèles de "Reinforcement Learning" (RL) a été réalisé, en tenant compte du contexte des DTR et de leurs contraintes spécifiques
pour une applica�on sur des données observa�onnelles. Deuxièmement, une méthode probabiliste de construc�on des récompenses a été
développée pour les modèles de RL, s'appuyant sur les préférences des experts médicaux. Illustrée par des études de cas sur le diabète et le cancer,
ce�e méthode génère des récompenses de manière à exploiter les données, le savoir de l'expert médical et les rela�ons entre les pa�ents, évitant les
biais de construc�on "à la main" et garan�ssant une cohérence avec les objec�fs médicaux. Troisièmement, un cadre bayésien pour la méthode
"Outcome-Weighted Learning" (OWL) a été proposé afin de quan�fier l'incer�tude dans les recommanda�ons de traitement, renforçant ainsi la
robustesse des décisions thérapeu�ques, et a été illustré à travers de simula�ons de données. Les contribu�ons de ce�e thèse visent à améliorer la
fiabilité des ou�ls de prise de décision en médecine de précision, d'une part en intégrant les connaissances médicales dans les modèles de RL, et
d'autre part en proposant un cadre bayésien pour quan�fier l'incer�tude dans le modèle OWL. Ces travaux s'inscrivent dans une perspec�ve globale
de collabora�on interdisciplinaire en par�culier entre les domaines de l'appren�ssage automa�que, des sciences médicales et des sta�s�ques.

Title: Reinforcement learning and Bayesian outcome-weighted learning for precision medicine: integra�ng medical knowledge into decision-making
algorithms.
Key words: Dynamic treatment regimes, Individualized treatment regime, Decision process, Expert knowledge, Preference learning, Uncertainty
quan�fica�on
Abstract: Precision medicine aims to tailor treatments to the characteris�cs of each pa�ent by relying on the frameworks of Individualized Treatment
Regimes (ITR) and Dynamic Treatment Regimes (DTR). ITRs involve a single therapeu�c decision, while DTRs allow for the adapta�on of treatments
over �me through a sequence of decisions. For these approaches to be effec�ve, they must be capable of handling complex data and integra�ng
medical knowledge, which is essen�al for enabling realis�c and safe clinical use. This work presents three research projects. First, a state-of-the-art
review of methods for integra�ng medical knowledge into Reinforcement Learning (RL) models was conducted, considering the context of DTR and
their specific constraints for applica�on to observa�onal data. Second, a probabilis�c method for construc�ng rewards was developed for RL
models, based on the preferences of medical experts. Illustrated by case studies on diabetes and cancer, this method generates data-driven rewards,
avoiding the biases of "manual" construc�on and ensuring consistency with medical objec�ves in learning treatment recommenda�on strategies.
Third, a Bayesian framework for the Outcome-Weighted Learning (OWL) method was proposed to quan�fy uncertainty in treatment
recommenda�ons, thereby enhancing the robustness of therapeu�c decisions, and was illustrated through simula�ons studies. This contribu�ons
aim to improve the reliability of decision-making tools in precision medicine, by integra�ng medical knowledge into RL models on one hand, and
proposing a Bayesian framework to quan�fy uncertainty in the OWL model on the other. This work is part of a global perspec�ve of interdisciplinary
collabora�on, par�cularly among the fields of machine learning, medical sciences, and sta�s�cs.


	Contents
	Chapitre 1 Introduction en français
	1.1 Médecine de précision
	1.1.1 Généralités
	1.1.2 Individualized treatment regime
	1.1.3 Dynamic treatment regimes
	1.1.4 Méthodes de constructions de règles de décision

	1.2 Apprentissage par renforcement
	1.2.1 Qu'est que l'apprentissage par renforcement ?
	1.2.2 Apprentissage par renforcement et médecine de précision
	1.2.3 Intégration du savoir médical dans les modèles d'apprentissage par renforcement
	1.2.4 Construction de récompenses par apprentissage par préférences

	1.3 Outcome-Weighted Learning
	1.3.1 Une méthode de classification pondérée
	1.3.2 Quantification d'incertitude et Bayesian OWL

	1.4 Organisation du manuscrit

	Chapter 2 Introduction
	2.1 Precision Medicine
	2.1.1 Overview
	2.1.2 Individualized treatment regime
	2.1.3 Dynamic treatment regimes
	2.1.4 Decision rule construction methods

	2.2 Reinforcement learning
	2.2.1 What is reinforcement learning?
	2.2.2 Reinforcement learning and precision medicine
	2.2.3 Integrating medical knowledge into reinforcement learning models
	2.2.4 Reward construction through preference learning

	2.3 Outcome-Weighted Learning
	2.3.1 A weighted classification method
	2.3.2 Uncertainty quantification and Bayesian OWL

	2.4 Structure of the manuscript

	Chapter 3 Reinforcement learning for dynamic treatment regimes
	Contents
	3.1 Introduction
	3.2 Theoretical foundations of reinforcement learning
	3.2.1 Decision process
	3.2.2 Policy
	3.2.3 Rewards, valuation and optimization of policies
	3.2.4 Reinforcement learning

	3.3 The multi-decision setting: dynamic treatment regimes
	3.3.1 Dynamic treatment regimes
	3.3.2 Decision process and dynamic treatment regimes
	3.3.3 Specificities of the medical context
	3.3.4 Real data application
	3.3.5 Properties of RL applied to DTR

	3.4 The single-decision setting: individualized treatment regime
	3.4.1 Individualized treatment regime
	3.4.2 Decision process and individualized treatment regime
	3.4.3 Causality

	3.5 Conclusion

	Chapter 4 Integrating medical knowledge into reinforcement learning models
	Contents
	4.1 Introduction
	4.2 Approaches to integrating medical knowledge into RL
	4.2.1 Medical knowledge and model preparation
	4.2.2 Medical knowledge and rewards
	4.2.3 Medical knowledge and value functions
	4.2.4 Medical knowledge and objective function
	4.2.5 Medical knowledge and policy

	4.3 Rewards construction based on preference learning
	4.3.1 Preference learning
	4.3.2 BMI data application
	4.3.3 Cancer application
	4.3.4 Conclusion

	4.4 Perspectives

	Chapter 5 Bayesian Outcome-Weighted Learning
	Contents
	5.1 Introduction
	5.2 Background
	5.2.1 Setting
	5.2.2 Outcome-weighted learning
	5.2.3 Bayesian support vector machines

	5.3 Our approach
	5.3.1 Prior specification for the ITR parameters
	5.3.2 Exponential power prior distribution for β
	5.3.3 Spike-and-slab prior distribution for β
	5.3.4 Estimation
	5.3.5 Prediction and uncertainty quantification

	5.4 Simulation studies
	5.4.1 Classification performance
	5.4.2 Treatment recommendation uncertainty quantification

	5.5 Discussion
	5.6 Appendix: derivation of the Gibbs sampling algorithms
	5.6.1 Conditional distribution of λi|β, xi, ai, ri
	5.6.2 Conditional distribution of β|λ, μ0, σ2/0, r, a, x (Normal prior)
	5.6.3 Conditional distribution of β|λ, ω, r, a, x (Exponential power prior)


	Chapter 6 Conclusion and perspectives
	Appendix
	Table: Reinforcement learning applications for sequential decision in healthcare

	Bibliography
	Résumé
	Abstract

