
HAL Id: tel-04793664
https://theses.hal.science/tel-04793664v1

Submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transport of probability distributions across different
Euclidean spaces

Antoine Salmona

To cite this version:
Antoine Salmona. Transport of probability distributions across different Euclidean spaces. Machine
Learning [stat.ML]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASM033�. �tel-04793664�

https://theses.hal.science/tel-04793664v1
https://hal.archives-ouvertes.fr


T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
3
U
P
A
S
M
0
3
3

Transport of probability

distributions across dierent

Euclidean spaces
Transport de mesures de probabilites a travers des

espaces euclidiens de dimensions diferentes

These de doctorat de l’universite Paris-Saclay

Ecole doctorale n◦ 574, mathematiques Hadamard (EDMH)

Specialite de doctorat : mathematiques appliquees

Graduate school : Mathematiques. Referent : ENS Paris-Saclay

These preparee dans l’unite de recherche Centre Borelli (ENS Paris-Saclay), UMR 9010

CNRS, sous la direction de Agnes DESOLNEUX, directrice de recherche a l’ENS

Paris-Saclay, et de Julie DELON, professeure a l’universite Paris-Cite.

These soutenue a Paris-Saclay, le  decembre 2023, par

Antoine SALMONA

Composition du jury

Membres du jury avec voix deliberative

Gabriel PEYRE President
Directeur de recherche, ENS Ulm
Jeremie BIGOT Rapporteur & Examinateur
Professeur, Universite de Bordeaux
Laetitia CHAPEL Rapportrice & Examinatrice
Professeure , Institut Agro Rennes-Angers
David PICARD Examinateur

Professeur, Ecole des Ponts ParisTech





Transport of probability distributions across different Euclidean spaces

Remerciements

Tout d’abord, j’aimerais remercier les membres de mon jury. Merci d’une part à Gabriel Peyré et David
Picard, pour avoir accepté d’en faire partie, mais aussi à mes rapporteur.rice.s, Laetitia Chapel et Jérémie
Bigot, pour leurs rapports détaillés sur mon manuscrit. Merci beaucoup de prendre le temps de vous
intéresser à mes travaux.

Ensuite, merci infiniment à mes directrices de thèse, Julie et Agnès. Merci bien évidemment pour la
grande qualité de l’encadrement sur le plan scientifique, sans qui cette thèse ne serait probablement même
pas l’ombre d’elle-même. Merci pour votre investissement et pour votre aide à tous les niveaux, aussi
bien sur les tâches de recherche les plus amusantes que les moins palpitantes. Mais merci aussi pour la
qualité humaine de cet encadrement, qui m’a permis de travailler pendant 3 ans dans un environnement
idéal et qui a fait que je ressortais de nos réunions toujours super motivé, même dans les moments ou
la motivation était le moins au rendez-vous. Merci aussi à Valentin de Bortoli d’avoir participer à cet
encadrement sur la partie modèles génératifs. Sans toi, cette thèse ne ressemblerait pas à ce qu’elle est
aujourd’hui et je ne serais probablement jamais allé à la Nouvelle-Orléans. Merci beaucoup également
à Lucía Bouza d’avoir réalisé les expériences et la démo Ipol de l’article sur la colorisation, cet article
n’aurait probablement jamais été terminé sans toi.

J’aimerais aussi remercier tout le MAP5 pour l’ambiance bienveillante que l’on peut trouver au labo.
Merci d’abord aux piliers du bureau 725-C1 comme Pierre-Louis, Anton et Zoé, puis aux deux Rémi et
à Mariem qui s’en ont allé.es vivre de nouvelles aventures au 8ème, puis enfin à Loïc, Eloi, Guillaume,
Herb, Alexander et Adélie, qui ont su combler le vide que les autres ont laissé. Merci aussi aux autres
doctorants et post-doc du labo que j’ai eu la chance de côtoyer pendant ces 3 ans, comme Antoine, Mehdi,
Sonia, Ivan, Charlie, Ariane, Chabane, Keanu, Ousmane, Florian, Thaïs, Leonard, Bernardin, Charles,
Yen, Diala, et bien d’autres encore. Je vous souhaite à tous une bonne fin de thèse pour ceux qui ne l’ont
pas déjà terminé, et une bonne continuation pour les autres.

Par ailleurs, j’aimerais aussi remercier mes amis d’avoir toujours été là dans les meilleurs comme
dans les moins bons moments. Un immense merci à Mathis, Alban, Raphaël, Marc-Antoine, Luc, Jane,
Mathilde, Clément, Olivier, Virgile, Lucile, Mathieu, Ella, Neige, et bien d’autres encore. Merci aussi
à Céline d’être toujours là pour moi et de me soutenir dans tous mes projets. Merci également à mes
amis de la musique, Slim et Julien, pour leur bienveillance ces derniers mois quand je ne pouvais pas
autant m’investir qu’eux. Enfin, je remercie mes parents, mes grandes soeurs et mon grand frère pour
leur soutien inconditionnel dans tous mes projets.

3





Contents

Introduction 19
1.1 Optimal transport between measures on different Euclidean spaces . . . . . . . . . . . . . 20
1.2 Optimal transport in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Expressivity of generative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

I Optimal transport with invariances between measures possibly on
different Euclidean spaces 27

2 Generalities about optimal tranport 29
2.1 The classic optimal transport problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 The Monge problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Kantorovich relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Dual formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 The Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Metric properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Wasserstein distance with quadratic cost . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Earth mover’s distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.4 Particular cases: one-dimensional and Gaussian distributions . . . . . . . . . . . . 36

2.3 Solving OT in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Optimal transport between measures on incomparable spaces 41
3.1 The Gromov-Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Metric properties of Gromov-Wasserstein distances . . . . . . . . . . . . . . . . . . 43
3.1.3 Particular case: one-dimensional distributions . . . . . . . . . . . . . . . . . . . . . 44
3.1.4 Solving GW in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Other formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Invariant Wasserstein discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Projection Wasserstein discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Embedded Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Links with invariant and projection Wasserstein discrepancies . . . . . . . . . . . . 49
3.3.2 Equivalent formulations of the embedded and projection Wasserstein problems . . 51
3.3.3 Metric properties of EW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Case of equivalence with Gromov-Wasserstein . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 The Gromov-Wasserstein distance between Gaussian distributions 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 The quadratic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Probabilistic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Study of the general problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Problem restricted to Gaussian couplings . . . . . . . . . . . . . . . . . . . . . . . 62

5



Transport of probability distributions across different Euclidean spaces

4.2.4 Tightness of the bounds and particular cases . . . . . . . . . . . . . . . . . . . . . 65
4.2.4.1 Bound on the difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4.2 Explicit case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4.3 Case of degenerate measures . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.5 Behavior of the empirical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 The inner-product case and other formulations . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 The inner-product case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Invariant Wassertein discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Embedded Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Projection Wasserstein discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Gromov-Wasserstein type distances between Gaussian mixture models 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Background: GMMs and Mixture Wasserstein distance . . . . . . . . . . . . . . . . . . . . 78
5.3 Gromov-Wasserstein distance between GMMs . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Metric properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 MGW2 in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Embedded Wasserstein distance between GMMs . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Numerical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2 Transportation plans and transportation maps . . . . . . . . . . . . . . . . . . . . 85
5.4.3 Improving the MGW2 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 Low dimensional GMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.2 Application to shape matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 Application to hyperspectral image color transfer . . . . . . . . . . . . . . . . . . . 90

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

II Expressivity of deep push-forward generative models 93

6 An introduction to generative modeling 95
6.1 The generative modeling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 Challenges of generative modeling in imaging science . . . . . . . . . . . . . . . . . 97

6.2 Deep generative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.1 A brief introduction to deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 The most commonly used deep generative models in imaging science . . . . . . . . 99

6.2.2.1 Variational autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2.2 Generative Adversarial networks . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2.3 Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Other common models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3.1 Normalizing flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3.2 Autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3.3 Energy-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.4 Two stage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.5 Evaluating the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Fitting push-forward generative models on multimodal distributions 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Push-forward measure and Lipschitz mappings . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Isoperimetric property of push-forward measures . . . . . . . . . . . . . . . . . . . 113
7.3.2 Lower bounding the Lipschitz constant of push-forward mappings . . . . . . . . . . 115

7.3.2.1 Lipschitz constant of the Brenier map . . . . . . . . . . . . . . . . . . . . 116
7.3.3 Lower bounds on dissimilarity measures between probability distributions . . . . . 118

7.3.3.1 Lower bound on the total variation distance . . . . . . . . . . . . . . . . 118
7.3.3.2 Lower bound on the Kullback-Leibler divergence . . . . . . . . . . . . . . 119

6



Transport of probability distributions across different Euclidean spaces

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.1 Univariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4.2 Experiments on MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusion 127

A Supplementary materials of Part I 131
A.1 Proofs of the claims of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1.1 Proof of Lemma 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.1.2 Proof of Lemma 3.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.1.3 Proof of Lemma 3.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.1.4 Proof of Lemma 3.3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Proofs of the claims of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2.1 Proof of Lemma 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2.2 Proof of Lemma 4.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2.3 Proof of Lemma 4.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2.4 Proof of Lemma 4.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.5 Proof of Lemma 4.2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2.6 Proof of Lemma 4.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.2.7 Proof of Proposition 4.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Proofs of the claims of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.3.1 Proof of Lemma 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Supplementary materials of Part II 145
B.1 Proofs of the claims of Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.1.1 Proof of Corollary 7.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.1.2 Proof of Corollary 7.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.1.3 Proof of Corollary 7.3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 Additional theoretical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.3.1 Univariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.3.2 Synthetic mixture of Gaussians on MNIST . . . . . . . . . . . . . . . . . . . . . . 149
B.3.3 Subset of MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.4 Additional experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.4.1 Bounds on TV distance and KL divergence in the univariate case . . . . . . . . . . 151
B.4.2 Additional examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.4.2.1 Univariate histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.4.2.2 Visualization of generated data . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 153

7





Introduction (French)

De nos jours, le domaine du traitement d’image est intrinsèquement lié aux statistiques et aux probabilités.
En effet, l’omniprésence des approches par apprentissage a imposé un point de vue probabiliste de ce qu’est
une image. Les images sont considérées comme des réalisations d’un vecteur aléatoire de grande dimension
(une dimension par pixel) et les jeux de données sont pensés comme des distributions de probabilité
empiriques. En ce sens, de nombreuses tâches en science de l’imagerie impliquent la comparaison plus
ou moins directe de distributions de probabilité. C’est bien entendu le cas de nombreuses méthodes de
machine learning, qui consistent grosso modo à ajuster un modèle paramétrique à un jeu de données fixé
en minimisant directement ou indirectement une mesure de dissimilarité entre la distribution paramétrique
du modèle et la distribution empirique du jeu de données.

Pour effectuer ces comparaisons entre distributions, certaines applications s’appuient sur la théorie
du transport optimal qui fournit un cadre mathématique bien défini pour comparer les mesures entre
elles. La théorie du transport optimal introduit la notion de transport : afin de transformer une mesure
en une autre, il faut transporter localement la masse qui la compose à chaque point, conformément à
la structure globale de la mesure cible. Un exemple classique illustrant cette notion est donné par le
mathématicien Monge (1746-1818) : un ouvrier doit déplacer une grande pile de sable se trouvant sur
un chantier de construction afin d’ériger une pile cible de forme désirée. Pour ce faire, il doit déplacer
chaque grain de sable de manière à former une nouvelle pile de la forme désirée. Le transport est alors
optimal s’il minimise un coût global, dans ce cas l’effort de l’ouvrier, en utilisant l’information locale du
coût de transport d’un grain de sable d’un endroit à un autre.

En plus de comparer deux distributions, certaines tâches nécessitent également de transporter une
distribution vers une autre. C’est notamment le cas des modèles génératifs qui sont devenus, au cours de
la dernière décennie, l’un des sujets de recherche les plus populaires en traitement d’image, voire plus
généralement en science des données. Informellement, l’objectif de la modélisation générative est de créer
de nouvelles données en utilisant l’information d’un jeu de données fixé. Dans le contexte du traitement
d’image, un modèle génératif vise à créer de nouvelles images synthétiques qui semblent appartenir à
un jeu de données d’images réelles. En adoptant le point de vue probabiliste, l’objectif d’un modèle
génératif est donc de créer de faux échantillons qui semblent avoir été tirés de la distribution empirique de
l’ensemble d’images. Une approche générale pour résoudre cette tâche consiste à approcher la distribution
empirique du jeu de données par une mesure paramétrique tout en transportant (pas nécessairement de
manière optimale) une distribution simple facile à échantillonner vers cette dernière mesure paramétrique
potentiellement très complexe.

Jusqu’à récemment, la plupart des recherches sur le transport de mesures présupposaient que les
mesures impliquées évoluaient dans le même espace ambiant. L’avènement des modèles génératifs et
l’introduction de distances de transport optimal qui restent pertinentes lorsque les mesures vivent dans
des espaces incomparables ont simultanément amené l’idée que les mesures pouvaient également être
transportées à travers des espaces qui ne sont pas directement comparables, comme des espaces euclidiens
de dimensions différentes par exemple. Dans cette thèse, nous étudions trois problèmes liés au transport
de mesures qui vivent dans des espaces euclidiens différents, les deux premiers étant dans le contexte du
transport optimal et le dernier étant dans le contexte des modèles génératifs. Plus précisément, le but de
cette thèse est triple :

(i) étudier le comportement des généralisations communes du transport optimal, dont celle dite de
Gromov-Wasserstein, entre des distributions gaussiennes de dimensions différentes.

(ii) concevoir une distance de transport optimal entre des mélanges de gaussiennes de dimensions
différentes.

(iii) étudier l’expressivité des modèles génératifs en relation avec la constante de Lipschitz de la fonction
de transport.
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Nous décrivons en détails ces trois problèmes ci-dessous.

Transport optimal entre mesures sur espaces euclidiens différents

L’objectif du transport optimal est de comparer des distributions de probabilités entre elles. Il fournit donc
des outils mathématiques très utiles pour diverses tâches de traitement d’image (Haker and Tannenbaum,
2001; Rubner et al., 1998; Rabin et al., 2012, 2014) ou plus généralement d’apprentissage (Courty et al.,
2016, 2018; Xu et al., 2018), par exemple en traitement du language (Kusner et al., 2015) ou encore pour
les modèles génératifs (Arjovsky et al., 2017; Genevay et al., 2018; Tolstikhin et al., 2018). Le succès du
transport optimal en science des données est principalement dû à sa capacité à établir des correspondances
entre des nuages de points tout en induisant une distance géodésique entre les distributions de probabilité,
connue sous le nom de distance de Wasserstein.

Dans son cadre classique, une présupposition implicite du transport optimal est que les deux
distributions impliquées vivent dans le même espace ambiant, ou du moins que les deux espaces sont
comparables, c’est-à-dire qu’il existe une fonction de coût pertinente pour les comparer. Cependant, cette
hypothèse n’est pas forcément vérifiée pour de nombreuses applications. C’est le cas lorsqu’il s’agit de
données structurées, telles que des graphes par exemple, ou lorsque les données proviennent de sources
hétérogènes, comme en adaptation de domaine hétérogène (Wang and Mahadevan, 2011; Yeh et al., 2014;
Liu et al., 2020). Un exemple concret de ce dernier problème est donné par Vayer (2020) : comment
adapter un classificateur entraîné sur les images de taille 28 × 28 pixels provenant du jeu de données
MNIST (LeCun et al., 1998) afin qu’il fonctionne bien avec les images de taille 16× 16 du jeu de données
USPS (Hull, 1994) ? De plus, d’autres tâches nécessitent la conception de fonctions de coût qui doivent
être telles que le problème soit invariant par rapport à certaines familles de transformations, telles que les
translations et les rotations par exemple, au sens où nous voulons que la distance entre une distribution
donnée et une version translatée d’elle-même soit nulle. Même si les distributions impliquées dans ces
applications peuvent résider dans le même espace ambiant, il n’est pas facile de concevoir une fonction de
coût adéquate.

Pour surmonter ces limitations du transport optimal classique, plusieurs généralisations ont été
proposées (Cohen and Guibasm, 1999; Pele and Taskar, 2013; Alvarez-Melis et al., 2019; Cai and Lim,
2022). La plupart d’entre elles impliquent de réaligner les deux mesures en envoyant l’une d’entre elles
dans l’espace de l’autre. Alternativement, la généralisation la plus couramment utilisée est peut-être
la distance de Gromov-Wasserstein (Mémoli, 2011), qui a récemment suscité un grand intérêt dans la
littérature grâce à la flexibilité que cette approche offre. En effet, elle ne nécessite pas de spécifier
au préalable un sous-ensemble d’invariances ni de concevoir une fonction de coût pertinente entre les
espaces sur lesquels résident les distributions. Cette approche a été appliquée a plusieurs problèmes de
d’apprentissage (Mémoli, 2009; Solomon et al., 2016; Alvarez-Melis and Jaakkola, 2018), notamment
pour des données structurées (Vayer et al., 2019a; Brogat-Motte et al., 2022) ou encore pour les modèles
génératifs (Bunne et al., 2019). Malgré le fait que la distance de Gromov-Wasserstein soit largement
utilisée dans la littérature, sa compréhension théorique reste encore limitée. Son comportement sur des
distributions 1D a été étudié par Vayer (2020), Beinert et al. (2022) et Dumont et al. (2022). En revanche,
son comportement sur des distributions gaussiennes n’avait été que partiellement abordé dans Vayer
(2020), et nous y remédions dans cette thèse.

Transport optimal en pratique

Le transport optimal est connu pour être un problème difficile à résoudre numériquement. Entre des
distributions discrètes, son calcul implique de résoudre un programme linéaire (Dantzig, 1951) qui devient
rapidement coûteux dès que le nombre de points est modérément élevé. Entre deux ensembles de n
points, son calcul se fait en O(n3log(n)) (Seguy et al., 2017), ce qui compromet son utilisation dans des
applications impliquant plusieurs dizaines de milliers de points. Pour alléger le coût de calcul du transport
optimal, de nombreux travaux ont développé des outils pour résoudre plus efficacement le problème. En
particulier, Cuturi (2013) propose de résoudre un problème de transport optimal régularisé à l’aide de
l’algorithme de Sinkhorn-Knopp (Sinkhorn and Knopp, 1967), réduisant ainsi le coût du problème à
O(n2). En s’appuyant sur cette idée, diverses améliorations ont été développées pour résoudre le problème
de transport optimal régularisé en temps quasi-linéaire (Altschuler et al., 2017, 2018, 2019; Forrow et al.,
2019; Scetbon and Cuturi, 2020; Scetbon et al., 2021). Un autre type de méthodes introduites par Rabin
et al. (2012) repose sur le fait que le problème de transport optimal entre des distributions 1D se réduit
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à un simple problème de tri qui peut être résolu en O(nlog(n)). Ces méthodes consistent à calculer
une infinité de projections linéaires des deux distributions qui vivent en grande dimension pour obtenir
des représentations unidimensionnelles, puis de calculer une distance de Wasserstein moyenne entre ces
représentations unidimensionnelles. Alternativement, Delon and Desolneux (2020) et Chen et al. (2018)
ont proposé d’abord d’approcher les données par des mélanges de gaussiennes, puis de comparer les
mélanges obtenus à l’aide d’une distance de transport optimal peu côuteuse en terme de calcul. Le
principal avantage de cette dernière approche est que la complexité du problème de transport optimal
obtenu ne dépend ni de la dimension, ni du nombre de points, mais seulement du nombre de composantes
dans les mélanges, ce qui implique que le coût de calcul de cette approche dépend presque entièrement de
la phase d’apprentissage des mélanges. Bien que cette méthode ne puisse probablement pas rivaliser avec
les raffinements les plus récent de l’algorithme de Sinkhorn-Knopp en termes d’efficacité pure, elle fournit
une distance de transport optimal particulièrement adaptée lorsqu’il existe déjà une sorte de structure de
clusters dans les données.

Les généralisations du transport optimal à des mesures qui ne vivent pas dans le même espace sont
connues pour être encore plus coûteuses en termes de calcul que le transport optimal classique. Par
exemple, résoudre le problème de Gromov-Wasserstein implique de résoudre un problème d’optimisation
quadratique qui est connu pour être un problème NP-difficile (Burkard et al., 1998). Comme pour le
transport optimal classique, plusieurs travaux ont proposé des algorithmes plus rapides qui approchent
la distance de Gromov-Wasserstein, reposant par exemple sur de la régularisation (Peyré et al., 2016;
Scetbon et al., 2022). Dans cette thèse, nous proposons deux généralisations possibles de la distance
proposée par Delon and Desolneux (2020) qui restent pertinentes lorsque les mélanges vivent dans des
espaces de dimensions différentes. Nous illustrons l’utilisation de ces distances sur divers problèmes reliés
à Gromov-Wasserstein.

Expressivité des modèles génératifs

Les modèles génératifs sont devenus ces dernières années l’un des sujets de recherche les plus populaires
en science des données. Ils ont récemment attiré l’attention du grand public avec l’arrivée de plusieurs
modèles à grande échelle tels que DALL-E 2 (Ramesh et al., 2022) ou Stable Diffusion (Rombach et al.,
2022) qui inondent Internet d’images générées synthétiques. En science des données, les modèles génératifs
ont été utilisés dans de nombreuses applications dans divers sous-domaines du machine learning, tels
que l’augmentation de données (Sandfort et al., 2019; Antoniou et al., 2018), la résolution de problèmes
inverses (Ravuri et al., 2021; Ledig et al., 2017) ou la traduction automatique (Isola et al., 2017; Yang
et al., 2018). De nombreux modèles génératifs synthétisent des données en transformant un vecteur
aléatoire suivant une loi normale multidimensionelle à l’aide d’une fonction déterministe, souvent modélisée
par un réseau de neurones. C’est notamment le cas pour deux types de modèles très populaires, les
Variational Autoencoders (VAEs) (Kingma and Welling, 2014) et les Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). Ces modèles consistent donc à transporter (pas nécessairement de
manière optimale) une distribution gaussienne vers une distribution complexe en grande dimension, en
utilisant un réseau de neurones déterministe en tant que fonction de transport.

L’expressivité des réseaux de neurones profonds est un domaine de recherche très actif. Le théorème
d’approximation universelle (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989) stipule que les réseaux
de neurones sont des approximateurs universels, au sens où toute fonction peut théoriquement être
approchée avec n’importe quelle précision par un réseau de neurones composé d’une seule couche mais
avec potentiellement un nombre infini de neurones. Plus récemment, Hanin (2019) a montré que les
réseaux de neurones possédant un nombre fini de neurones sur chaque couche mais avec potentiellement un
nombre infini de couches pouvaient eux aussi approcher n’importe quelle fonction continue avec n’importe
quelle précision, à condition d’avoir un nombre suffisant de neurones à chaque couche. En pratique, les
réseaux de neurones qui ont à la fois un nombre fini de neurones et de couches semblent être beaucoup
plus restreints en termes d’expressivité. Une restriction importante réside dans le fait que les réseaux de
neurones sont la plupart du temps des applications lipschitziennes, car leurs fonctions d’activation sont
généralement lipschitziennes. Cela vient principalement du fait que les réseaux de neurones doivent être
différentiables presque partout pour être entraînés avec l’algorithme de back-propagation (Rumelhart et al.,
1986). De plus, il a été largement observé dans la littérature que la constante de Lipschitz d’un réseau de
neurones pouvait presque être utilisée comme une mesure de l’instabilité de son entraînement (Glorot
and Bengio, 2010; Szegedy et al., 2013; Pennington et al., 2017). Outre les instabilités d’entraînement, il
est également bien connu que les méthodes d’optimisation génériques telles que la descente de gradient
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stochastique sont implicitement biaisées (Strand, 1974; Morgan and Bourlard, 1989; Gunasekar et al.,
2018), dans le sens où elles ont tendance à converger vers des minimums particuliers. Récemment,
Mulayoff et al. (2021) ont montré que lors de l’entraînement d’un réseau de neurones, l’algorithme de
descente de gradient stochastique était biaisé vers des fonctions relativement régulières, peu importe
l’initialisation. Ainsi, lorsque l’on tente d’approcher une fonction irrégulière avec une grande constante de
Lipschitz en utilisant un réseau de neurones, en plus des instabilités d’entraînement, il est probable de
converger vers un minimum local correspondant à une fonction plus régulière que la fonction cible.

L’analyse de l’expressivité des modèles génératifs par deep learning semble cependant être un domaine
de recherche relativement nouveau. Plusieurs travaux se sont concentrés sur le cas où la distribution cible
réside sur deux ou plusieurs variétés déconnectées (Khayatkhoei et al., 2018; Mehr et al., 2019; Tanielian
et al., 2020). Khayatkhoei et al. (2018) fait la simple observation qu’une discontinuité dans la fonction de
transport doit être introduite d’une manière ou d’une autre pour pouvoir transporter une distributions
gaussienne vers une distribution qui réside sur plusieurs variétés déconnectées. Dans le contexte des
normalizing flows (Rezende and Mohamed, 2015), il a été montré que la contrainte d’inversibilité limitait
nécessairement l’expressivité du modèle. En effet, les auteurs de Cornish et al. (2020) ont montré que
les distributions générées par les normalizing flows ont des supports nécessairement homéomorphes au
support de la distribution latente. Par conséquent, la constante de Lipschitz du flux inverse doit être
arbitrairement grande pour pouvoir approcher correctement les distributions résidant sur des variétés
déconnectées (Cornish et al., 2020; Hagemann and Neumayer, 2021; Behrmann et al., 2021). Cependant,
ce dernier résultat ne concerne que les réseaux de neurones inversibles et les distributions cibles vivant
sur des variétés déconnectées. Dans cette thèse, nous étudions le cas plus général où la distribution cible
est multimodale et la fonction de transport est n’importe quel réseau de neurones lipschitzien.

Contributions

Cette thèse couvre l’ensemble des travaux de l’auteur menés sur les axes de recherche sur le transport
optimal avec invariances entre mesures sur espaces euclidiens différents et sur l’expressivité des modèles
génératifs push-forward. Un travail supplémentaire de l’auteur (Salmona et al., 2022a) sur la colorisation
d’images n’est pas inclus dans ce manuscrit. Au cours des trois années de doctorat qui ont été consacrées
à la préparation de cette thèse, l’auteur a rédigé les articles scientifiques suivants :

(Salmona et al., 2021). Antoine Salmona, Julie Delon et Agnès Desolneux. Gromov-Wasserstein
distances between Gaussian distributions. Journal of Applied Probability1, 2021.

(Salmona et al., 2022b). Antoine Salmona, Valentin de Bortoli, Julie Delon et Agnès Desolneux. Can
Push-forward Generative Models Fit Multimodal Distributions? Advances in Neural Information
Processing2, 2022.

(Salmona et al., 2023). Antoine Salmona, Julie Delon et Agnès Desolneux. Gromov-Wassertein-like
Distances in the Gaussian Mixture Models Space. Preprint, 2023.

(Salmona et al., 2022a). Antoine Salmona, Lucía Bouza et Julie Delon. DeOldify: A Review and
Implementation of an Automatic Colorization Method. Image Processing On Line3, 2022.

Nous donnons des détails sur les contributions de chaque chapitre dans ce qui suit.

Chapitre 2

Ce chapitre introduit les fondements mathématiques de la théorie du transport optimal. Nous présentons
également brièvement les solveurs numériques les plus couramment utilisés dans la littérature pour
résoudre le problème du transport optimal en pratique. Pour deux distributions de probabilité µ et ν,
respectivement sur des espaces X et Y, et étant donnée une fonction c : X × Y → R+ appelée coût, le
transport optimal, dans sa forme la plus classique, vise à résoudre le problème d’optimisation suivant :

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) ,

1https://www.cambridge.org/core/journals/journal-of-applied-probability/article/
2https://proceedings.neurips.cc/paper-files/paper/2022
3https://www.ipol.im/pub/art/2022
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où Π(µ, ν) est l’ensemble des mesures sur X × Y de marginales µ et ν. Lorsque X et Y sont égaux et
euclidiens, le choix du coût cp(x, y) = ∥x− y∥p, avec p ≥ 1 et où ∥.∥ est la norme euclidienne, induit une
distance entre les distributions de probabilité qui ont leur moment d’ordre p fini appelée la distance de
Wasserstein Wp.

Chapitre 3
Dans ce chapitre, nous introduisons la généralisation la plus commune du transport optimal entre mesures
qui vivent dans des espaces non comparables, c’est-à-dire lorsque il n’existe pas de manière évidente
de concevoir une fonction de coût c : X × Y → R+ pour comparer les espaces X et Y. Il s’agit de la
distance de Gromov-Wasserstein (Mémoli, 2011). Nous présentons également les solveurs numériques les
plus couramment utilisés dans la littérature pour résoudre ce problème. Entre deux distributions µ et ν,
respectivement sur des espaces X et Y, la distance de Gromov-Wasserstein d’ordre p ≥ 1 s’écrit :

GWp(cX , cY , µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y

∫
X×Y

|cX (x, x′)− cY(y, y′)|pdπ(x, y)dπ(x′, y′)
) 1

p

,

où cX : X × X → R et cY : Y × Y → R sont deux fonctions mesurables également appelées coûts. GWp

définit une pseudométrique sur l’espace des "réseaux mesurés" (Chowdhury and Mémoli, 2019), c’est-à-
dire les triplets de la forme (X , cX , µ). Nous introduisons également les autres formulations récentes du
transport optimal entre mesures qui vivent dans des espaces euclidiens de dimensions différentes proposées
par (Alvarez-Melis et al., 2019) et (Cai and Lim, 2022). Nous définissons une nouvelle formulation que
nous appelons EW2, pour Embedded Wasserstein distance. Entre deux mesures vivant respectivement
dans Rd et Rd′ , elle s’ecrit de la manière suivante,

EW2(µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
W2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
W2(ψ#µ, ν)

}
,

où, pour r ≥ 1 et s ≥ 1, Isoms(Rr) est l’ensemble des isométries de Rs à valeur dans Rr. Nous montrons
que cela définit une pseudométrique sur l’espace de mesures de dimensions arbitraires avec des moments
d’ordre 2 finis.

Chapitre 4
Dans ce chapitre, qui est principalement une reproduction de (Salmona et al., 2021), nous étudions le
comportement de la distance de Gromov-Wasserstein d’ordre 2 entre deux distributions gaussiennes
µ = N(m0,Σ0) et ν = N(m1,Σ1) qui vivent respectivement dans Rd et Rd′ , avec d′ potentiellement non
égal à d. Nous étudions notamment les cas où cX et cY sont, soit les distances euclidiennes au carré sur
Rd et Rd′ , soit les produits scalaires sur Rd et Rd′ . Tout d’abord, nous commenccons par étudier le cas
des distances euclidiennes au carré. En utilisant un résultat technique de Vayer (2020), nous montrons
que le problème GW2 avec coûts quadratiques, que nous appelons (GW2-Q), admet une formulation
probabiliste équivalente4, qui s’écrit de la manière suivante :

sup
X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) + 2∥Cov(X,Y )∥2F , (1.1)

où X = (X1, X2, . . . , Xd)
T , Y = (Y1, Y2, . . . , Yd′)

T , ∥.∥F est la norme de Frobenius, T0 : x 7→ PT0 (x−m0)
et T1 : y 7→ PT1 (y −m1), et où (P0, D0) et (P1, D1) sont les diagonalisations respectives de Σ0 et Σ1 qui
trient les valeurs propres dans l’ordre décroissant. Cette formulation met en évidence que le problème
(GW2-Q) est difficile à résoudre sans autres hypothèses sur le plan de transport π, car résoudre ce
problème implique de connaître la règle probabiliste qui lie les co-moments d’ordre 4 aux co-moments
d’ordre 2 de π. Ainsi, nous dérivons d’abord une borne inférieure sur (GW2-Q) en optimisant séparément
les deux termes de (1.1). Ensuite, nous dérivons une borne supérieure en restreignant le problème à des
plans de transport qui sont eux-mêmes gaussiens. Dans ce cas, la règle qui lie les co-moments d’ordre 4
aux co-moments d’ordre 2 de π est donnée par le théorème d’Isserlis (Isserlis, 1918). Il en découle que le
problème restreint GW2, que nous appelons (GW2-QG), est équivalent au problème suivant :

sup
X∼T0#µ,Y∼T1#ν

∥Cov(X,Y )∥2F . (1.2)

4Deux problèmes d’optimisation sont équivalents si les solutions de l’un sont directement obtenues à partir des solutions
de l’autre, et inversement.
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Nous montrons ensuite que (GW2-QG) admet des solutions analytiques de la forme (Idd, T )#µ avec T
affine tel que pour tout x ∈ Rd :

T (x) = m1 + P1

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2
0d′,d−d′

)
PT0 (x−m0) ,

où D(d′)
0 est la matrice de taille d′ × d′ formée avec les d′ premières lignes et colonnes de D0, et Ĩdd′ est

n’importe quelle matrice de la forme diag((±1)1≤i≤d′). Nous montrons que ces solutions sont liées avec
l’Analyse en Composantes Principales (ACP). Entre deux mesures centrées µ̄ et ν̄, nous montrons ensuite
que les solutions décrites ci-dessus sont également des solutions du problème de Gromov-Wasserstein
pour le choix de produits scalaires comme fonctions de coût (GW2-IP), puisque ce dernier problème est
également équivalent au problème (1.2). La distance de Gromov-Wasserstein admet alors une expression
simple dans ce cas :

GW 2
2 (⟨.⟩d, ⟨.⟩d′ , µ̄, ν̄) = ∥Σ0∥2F + ∥Σ1∥2F − 2tr(D

(d′)
0 D1) .

Nous comparons ensuite aux autres formulations du transport optimal entre les mesures qui vivent dans
des espaces non comparables introduites dans le chapitre précédent. Nous montrons que les solutions
présentées ci-dessus sont également solutions du problème de l’Embedded Wasserstein et des problèmes
étudiés par Alvarez-Melis et al. (2019). Enfin, nous montrons que la distance de transport optimal
proposée par Cai and Lim (2022) a un comportement différent des autres formulations étudiées dans ce
chapitre.

Chapitre 5
Ce chapitre, qui est principalement une reproduction de (Salmona et al., 2023), propose deux généralisations
de type Gromov de la distance entre mélanges de gaussiennes proposée par Delon and Desolneux (2020).
Plus précisément, Delon and Desolneux (2020) ont proposé la distance suivante, qui consiste à restreindre
le problème de Wasserstein aux plans de transport qui sont eux-mêmes des mélanges de gaussiennes,

MW 2
2 (µ, ν) = inf

π∈Π(µ,ν)∩GMM∞(R2d)

∫
Rd×Rd

∥x− y∥2dπ(x, y) ,

où GMM∞(R2d) est l’ensemble des mélanges de gaussiennes sur Rd avec un nombre fini de composantes.
Un résultat clé de Delon and Desolneux (2020) est que MW2 peut être réécrit comme un problème
de transport optimal discret à petite échelle. Plus précisement, entre deux mélanges µ =

∑K
k akµk et

ν =
∑L
l blνl sur Rd,

MW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µk, νl) ,

où a = (a1, . . . , aK)T et b = (b1, . . . , bL)
T . Cette dernière formulation rend MW2 facilement calculable

en pratique, car la distance W2 entre gaussiennes a une formule analytique simple. Les plans optimaux
ω∗ et π∗ sont ensuite liés par la relation suivante, pour tout x, y ∈ Rd :

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=Tk,l
W2

(x) , (1.3)

où pµk
est la densité de µk et T k,lW2

est le transport qui minimise W2 entre µk et νl. Dans ce chapitre,
nous proposons une première généralisation de type Gromov-Wasserstein de MW2 que nous appelons
MGW2 qui s’écrit, entre deux mélanges µ =

∑K
k=1 akµk et ν =

∑L
l=1 blνl respectivement sur Rd et Rd′ ,

MGW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
k,l,i,j

|W 2
2 (µk, µi)−W 2

2 (νl, νj)|2ωk,lωi,j .

Nous montrons que cela définit une pseudométrique sur l’ensemble des mélanges de gaussiennes avec
un nombre fini de composantes et de dimension arbitraire. Cependant, cette distance n’admet pas, à
notre connaissance, une formulation continue équivalente simple comme c’était le cas pour MW2. Par
conséquent, la dérivation d’un plan de transport entre deux nuages de points avec MGW2 n’est pas
évidente. Une solution pourrait être de définir un plan π∗ par analogie avec MW2, en utilisant une
formule similaire à (1.3). Cependant, cela impliquerait de connaître la transformation isométrique qui a
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été implicitement appliquée à l’une des deux mesures lors du calcul de la distance. C’est pourquoi nous
introduisons une autre généralisation de MW2, que nous appelons MEW2, qui s’exprime comme suit :

MEW 2
2 (µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
MW2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
MW2(ψ#µ, ν)

}
.

Contrairement à MGW2, cette formulation permet de dériver directement un plan de transport entre
deux nuages de points car elle explicite la transformation isométrique. Si l’on suppose sans perte de
généralité que d ≥ d′, un plan π∗ optimal pour MEW2 est alors obtenu en modifiant T k,lW2

dans (1.3) en
ϕ−1∗ ◦T k,lW2

, où ϕ−1∗ est l’inverse de la transformation isométrique ϕ∗ restreint à ϕ∗(Rd′). Nous concevons
ensuite un plan de transport π pour MGW2 par analogie avec MEW2. Enfin, nous illustrons l’utilisation
pratique de MGW2 et MEW2 sur des problèmes à moyenne et grande échelle tels que la correspondance
de formes et le transfert de couleur sur des images hyperspectrales.

Chapitre 6
Ce chapitre introduit les concepts de base des modèles génératifs et présente les principaux modèles
utilisés en traitement d’image. Nous mettons en évidence l’existence de deux types principaux de modèles
génératifs que nous appelons respectivement les modèles push-forward et les modèles push-forward
indirects.

Dans les modèles push-forward, la distribution générée νθ est de la forme νθ = gθ#µd′ , où µd′ =
N(0, Idd′) est une loi normale multidimensionelle et gθ est un réseau de neurones déterministe. Dans les
modèles "push-forward indirects", la distribution générée νθ est de la forme νθ = Gθ#µd(K+1) mais cette
fois-ci Gθ est une fonction déterministe qui représente K itérations d’une dynamique de Monte-Carlo. La
distribution latente µd(K+1) correspond à la concaténation de tous les bruits gaussiens ajoutés pendant la
dynamique. Les principales différences par rapport aux modèles push-forward sont que l’optimisation
n’est pas directement effectuée sur la correspondance push-forward Gθ elle-même, mais sur une fonction
auxiliaire, et que l’espace latent est de dimension bien supérieure à celle de l’espace ambiant.

Chapitre 7
Dans ce chapitre, qui reprend en grande partie Salmona et al. (2022b), nous étudions l’expressivité des
modèles push-forward par rapport à la constante de Lipschitz du réseau de neurones utilisé pendant le
processus de génération. Plus précisément, nous montrons que pour n’importe quelle fonction lipschitzienne
g : Rd′ → Rd et pour n’importe quel borelien A de Rd,

Lip(g)(g#µd′)
+(∂A) ≥ φ(Φ−1(g#µd′(A))) , (1.4)

où (g#µd′)
+(∂A) désigne la (g#µd′)-surface de la frontière de A, qui peut informellement être vue comme

une mesure de la masse que g#µd′ a sur l’hyper-surface ∂A, où φ(x) = (2π)−1/2 exp[−x2/2] est la
densité de N(0, 1), et Φ(x) =

∫ x
−∞ φ(t)dt. Ce résultat est principalement une conséquence de l’inégalité

isopérimétrique gaussienne (Sudakov and Tsirelson, 1978), qui implique que pour n’importe quel borelien
A de Rd,

µ+
d′(∂A) ≥ φ(Φ

−1(µd′(A))) .

L’inégalité (1.4) peut être utilisée d’abord pour déterminer une borne inférieure sur la constante de
Lipschitz des fonctions g qui transportent µd′ vers une distribution donnée ν. Par exemple, lorsque
ν = λN(m1, σ

2 Idd) + (1− λ)N(m2, σ
2 Idd) est un mélange de deux gaussiennes avec m1,m2 ∈ Rd, σ > 0

et λ ∈ (0, 1), on peut montrer à partir de (1.4) que les fonctions g qui transportent µd′ vers ν vérifient
nécessairement

Lip(g) ≥ σ exp
[
∥m2 −m1∥2/(8σ2)− (Φ−1(λ))2/2

]
.

Cela illustre que lorsque ν est multimodale, les fonctions g qui transportent µd′ vers ν ont nécessairement
de grandes constantes de Lipschitz. Deuxièmement, nous utilisons (1.4) pour dériver des bornes inférieures
sur la distance en variation totale et la divergence de Kullback-Leibler entre, d’une part la mesure g#µd′ ,
et d’autre part une distribution cible ν fixée. Étant donné que contraindre les constantes de Lipschitz
des réseaux de neurones est un moyen courant de stabiliser les différents modèles, cela met en évidence
qu’il existe un compromis entre la capacité des modèles push-forward à approcher des distributions
multimodales et la stabilité de leur entraînement. Nous validons nos résultats sur des images et des
données 1D, et nous montrons empiriquement que les modèles à diffusion récemment introduits par Song
and Ermon (2019) et Ho et al. (2020) ne semblent pas souffrir de telles limitations.

15





Transport of probability distributions across different Euclidean spaces

Notations

We define in the following some of the notations that will be used throughout the thesis.

Linear algebra

• ⟨x, x′⟩d stands for the Euclidean inner product in Rd between x and x′. We will denote ⟨x, x′⟩ when
there is no ambiguity about the dimension.

• ∥x∥Rd stands for the Euclidean norm of x ∈ Rd. We will denote ∥x∥ when there is no ambiguity
about the dimension.

• rk(M) stands for the rank of a matrix M .

• the notation tr(M) denotes the trace of a matrix M .

• ∥M∥F stands for the Frobenius norm of a matrix M , i.e. ∥M∥F =
√

tr(MTM).

• ∥M∥∗ stands for the nuclear norm of a matrix M , i.e. ∥M∥∗ = tr((MTM)
1
2 ).

• the notation σ(M) denotes the vector of singular values of the matrix M .

• Idd is the identity matrix of size d× d.

• Ĩdd stands for any matrix of size d× d of the form diag((±1)1≤i≤d)

• Suppose d ≥ d′. For any matrix M of size d × d, we denote M (d′) the submatrix of size d′ × d′
containing the d′ first rows and the d′ first columns of A.

• Let r ≤ d and s ≤ d′. For any matrix M of size r × s, we denote M [d,d′] the matrix of size of the

form
(
M 0
0 0

)
. When d = d′, we will denote M [d].

• For any x ∈ Rd, diag(x) denotes the matrix of size d× d with diagonal vector x.

• We denote Sd the set of symmetric matrices of size d×d, Sd+ the set of symmetric positive semi-definite
matrices, and Sd++ the set of symmetric positive definite matrices.

• 1d′,d = (1)1≤i≤d′
1≤j≤d

denotes the matrix of ones with d′ rows and d columns.

• O(Rd) denotes the set of orthogonal matrices of size d× d.

• Vd′(Rd) denotes the Stiefel manifold, i.e the set of rectangular matrices P of size d× d′ such that
PTP = Idd′ .

Measure theory

• A ∪ B denotes the union of the sets A and B. When the two sets don’t intersect, we will denote
A ⊔ B.

• The notation X ∼ µ means that X is a random variable with probability distribution µ.

• If µ is a positive measure on X and ϕ : X → Y is a mapping ϕ#µ stands for the push-forward measure
of µ by T , i.e. the measure on Y such that for any measurable set A of Y, ϕ#µ(A) = µ(ϕ−1(A)).

• If µ is a positive measure on X , supp(µ) denotes its support, i.e. the subset of X defined as
supp(µ) = {x ∈ X | for all open set Nx such that x ∈ Nx, µ(Nx) > 0}.

• If X and Y are random vectors on Rd and Rd′ , we denote Cov(X,Y ) the matrix of size d× d′ of
the form E

[
(X − E[X])(Y − E[Y ])T

]
.

• For any positive measure µ, we denote µ̄ its associated centered measure, i.e. the measure such that
if X ∼ µ, we have X − EX∼µ[X] ∼ µ̄.
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• For any m ∈ Rd and any Σ ∈ Sd+, we denote N(m,Σ) the Gaussian measure of mean m and
covariance matrix Σ.

• For x ∈ X , δx denotes the Dirac distribution at x.

• B(Rd) denotes the Borel sigma-field on Rd.

• P(X ) denotes the set of probability distributions on X

• For µ ∈ P(X ) and ν ∈ P(Y), Π(µ, ν) denotes the set of probability distributions on X × Y with
marginals µ and ν.

• ∆n denotes the probability simplex of Rn, i.e. ∆n = {a ∈ Rn+ :
n∑
k=1

ak = 1}.

Operators

• ⊘ denotes the entrywise division.

• ⊗ denotes the tensor-matrix product.

• ⊗K denotes the Kronecker product, i.e. if A is a matrix of size p× q of the form A = [ai,j ]1≤i≤p
1≤j≤q

and B is a matrix of size r × s, A⊗K B is the matrix of size pr × qs of the form,a1,1B . . . a1,qB
...

. . .
...

ap,1B . . . ap,qB

 .

• ⊕K denotes the Kronecker sum, i.e. if A is a matrix of size r × r and B is a matrix of size s× s,
A⊕K B is the matrix of size rs× rs of the form A⊗K Ids+Idr ⊗KB.

• For any mapping T : Rd′ → Rd, J [T ](x) ∈ Rd×d′ denotes the Jacobian matrix of T at x ∈ Rd, i.e.
the matrix obtained by stacking the gradients in x of each coordinate of T .
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Nowadays, modern imaging science is intrinsically linked to statistics and probability. Indeed, the
ubiquity of machine learning approaches has imposed a probabilistic point of view of what an image
is. Images are thought as realizations of a highly-dimensional random vector (one dimension per pixel)
and datasets are seen as empirical probability distributions. To that extent, many imaging science tasks
involve more or less direct comparisons of probability distributions at some point. This is of course the
case for numerous machine learning methods that roughly consist in fitting a parametric model to a given
dataset by minimizing directly or indirectly a dissimilarity measure between the parametric distribution
of the model and the empirical distribution of the dataset.

To perform these comparisons between distributions, some applications rely on the theory of Optimal
Transport (OT) that provides a well-defined mathematical framework to compare measures. The theory
of optimal transport introduces the notion of transport : in order to transform a measure into another,
one must locally transport the mass that composes it at each point accordingly to retrieve the global
structure of the target measure. A classic example that illustrates this notion is given by the French
mathematican Monge (1746-1818): a worker has to move a large pile of sand lying on a construction site
in order to erect a target pile of a desired shape. To do so, he must move each grain of sand in the right
way to form a new pile of the desired shape. The transport is then optimal if it minimizes a global cost,
in this case the effort of the worker, which is done using the local information of the cost of transporting
one grain of sand from one location to another.

In addition to comparing two distributions, some tasks require also transporting one distribution
towards another. This is notably the case of Generative Modeling (GM) that has become over the last
decade one of the most popular research topic in imaging science, or more generally in data science.
Informally, the goal of generative modeling is to create new data using the information of a given dataset.
In the context of imaging science, a generative model aims at creating new synthetic images that seems to
belong to a given dataset of real images. Retrieving the probablistic point of view, the goal of a generative
model is thus to create fake samples that seem to have been drawn from the empirical distribution of
the image dataset. A general approach to solve this task is to approximate the empirical distribution of
the dataset by a parametric measure while transporting (not necessarily in an optimal manner) a simple
easy-to-sample distribution towards this latter potentially highly complex parametric measure.

Until recently, most research on transport of measures presupposed that the measures involved were
living in the same ground space. The breakthrough of generative modeling and the introduction of OT
distances that stay meaningful when the measures involved live in incomparable spaces have at the same
time brought to light the idea that measures could also be transported across spaces that are not directly
comparable, as for instance Euclidean spaces of different dimensions. In this thesis, we study three
problems related to the transport of measures lying on different Euclidean spaces, the first two being
in the context of optimal transport and the last one being in the context of generative modeling. More
precisely, the purpose of this thesis is threefold:

(i) studying the behavior of the common generalizations of optimal transport, including the so-called
Gromov-Wasserstein distance, between Gaussian distributions in incomparable spaces.
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(ii) designing a computationally efficient and scalable OT distance between Gaussian mixtures possibly
living in different Euclidean spaces.

(iii) studying the expressivity of generative models relatively to the Lipschitz constant of the mapping
which transports the easy-to-sample distribution towards the complex target distribution.

Before going into the details of this thesis, we give more details about these three problems in what
follows.

1.1 Optimal transport between measures on different Euclidean
spaces

The goal of optimal transport theory is to design meaningful ways to compare probability distributions.
It provides thus very useful mathematical tools for diverse imaging sciences and machine learning tasks
including image registration (Haker and Tannenbaum, 2001), image retrieval (Rubner et al., 1998), image
processing (Rabin et al., 2012, 2014), domain adaptation (Courty et al., 2016), embedding learning
(Courty et al., 2018; Xu et al., 2018), natural language processing (Kusner et al., 2015) and generative
modeling (Arjovsky et al., 2017; Genevay et al., 2018; Tolstikhin et al., 2018). The sucess of optimal
transport in data science is mainly due to its ability to draw correspondences between sets of points while
inducing a geodesic distance between probability distributions, known as the Wasserstein distance.

In its classic setting, an implicit prerequisite of optimal transport is that the two distributions involved
lie on the same ground space, or at least that the two spaces are comparable, i.e. there exists a relevant
cost function to compare them. However, this assumption may not hold for many applications. This is
often the case when dealing with structured data, as graphs for instance, or when the data come from
heterogeneous sources, as in the case of heterogeneous domain adaptation (Wang and Mahadevan, 2011;
Yeh et al., 2014; Liu et al., 2020). An illustrative concrete application of this latter problem is given by
Vayer (2020): how to adapt a classifier trained on the 28× 28 digit images of the MNIST dataset (LeCun
et al., 1998) in order that it works well on the 16× 16 digit images of the USPS dataset (Hull, 1994)?
Moreover, some other tasks such as shape matching or word embedding require designing cost functions
such that the problem is invariant to some families of invariances, such as translations and rotations
for example, in the sense that we want the distance between a given distribution and a translated and
rotated version of itself to be zero. Even if the distributions involved in these applications may live in the
same ground space, it is not straightforward to design an adequate cost function.

To overcome these limitations of classic optimal transport, several generalizations have been proposed
(Cohen and Guibasm, 1999; Pele and Taskar, 2013; Alvarez-Melis et al., 2019; Cai and Lim, 2022). Most of
them involve realigning the two measures by sending one of them into the space of the other. Alternatively,
the most commonly used generalization is perhaps the Gromov-Wasserstein distance (Mémoli, 2011)
which has recently received high interest thanks to the flexibility this approach offers. Indeed, it only
requires modeling topological aspects of the distributions within each domain to compare them without
having to specify first a subset of invariances nor to design a relevant cost function between the spaces the
distributions lie on. This approach has been applied to shape matching (Mémoli, 2009) or more generally
to correspondence problems (Solomon et al., 2016), word embedding (Alvarez-Melis and Jaakkola, 2018),
graph classification (Vayer et al., 2019a), graph prediction (Brogat-Motte et al., 2022), and generative
modeling (Bunne et al., 2019). Despite the fact that the Gromov-Wasserstein distance is widely used
in the literature, its theoretical understanding remains still nascent. Its behavior on one-dimensional
distributions has been studied by Vayer (2020), Beinert et al. (2022) and Dumont et al. (2022). However,
its behavior on Gaussian distributions had only been partially studied in Vayer (2020), and we remedy
this in this thesis.

1.2 Optimal transport in practice

Optimal transport is known to be a computationally challenging problem. Between discrete distributions,
its computation involves solving a Linear Program (LP) (Dantzig, 1951) that rapidly becomes costly
as soon as the number of points is moderately large. Between two sets of n points, its computation is
done in O(n3log(n)) (Seguy et al., 2017), which compromises its usability for settings with more than
a few tens of thousand of points. To lighten OT computational cost, a large number of works have
developped efficient computational tools in order to solve OT problems. In particular, Cuturi (2013)
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proposes to solve a regularized OT problem using the Sinkhorn-Knopp algorithm (Sinkhorn and Knopp,
1967), reducing the cost of the problem to O(n2). Building on this idea, various refinements have been
developed to solve the regularized OT problem in near-linear time (Altschuler et al., 2017, 2018, 2019;
Forrow et al., 2019; Scetbon and Cuturi, 2020; Scetbon et al., 2021). Another type of methods introduced
by Rabin et al. (2012) and known as sliced methods, rely on the fact that the optimal transport problem
between one-dimensional distributions reduces itself to a simple sorting problem which can be solved
in O(nlog(n)). These consist in computing infinitely many linear projections of the high-dimensional
distributions to one-dimensional representations and then computing an average Wasserstein distance
between these one-dimensional representations. Alternatively, Delon and Desolneux (2020) and Chen et al.
(2018) have proposed to first approximate the data by Gaussian Mixture Models (GMMs), and to compare
the obtained GMMs using a computationally effective composite OT distance. The main benefit of this
latter approach is that the complexity of the composite OT problem does not depend of the dimension
nor of the number of points but only of the number of components in the GMMs, implying that the
computational cost of this approach comes almost entirely from the fitting of the GMMs. Although this
method probably does not compete with the fastest recent refinements of the Sinkhorn-Knopp algorithm
in terms of pure computational cost, it provides a relatively scalable and computationally effective OT
distance that is particularly suited when there already exists a kind of clustering structure in the data.

The generalizations of optimal transport to measures that are not living in the same ground space
are known to be even more computationally costly than classic optimal transport. For instance, solving
the Gromov-Wasserstein problem involves solving a Quadratic Assignment Problem (QAP) which is
known to be a NP-hard problem (Burkard et al., 1998). As for classic OT, several works have proposed
faster algorithms that approximate the Gromov-Wasserstein distance, building for instance either on
regularization (Peyré et al., 2016; Scetbon et al., 2022) or on sliced mechanisms (Vayer et al., 2019b). In
this thesis, we propose two possible generalizations of the distance proposed by Delon and Desolneux
(2020) that stay relevant when the GMMs are living in spaces of different dimensions and we show that
these OT distances can be used to solve relatively efficiently Gromov-Wasserstein related tasks.

1.3 Expressivity of generative models

Generative modeling has become over the last years one of the most popular research topics in imaging
science and more generally in data science. It has recently caught the general audience’s attention with
the arrival of several large-scale models such as DALL-E 2 (Ramesh et al., 2022), or Stable Diffusion
(Rombach et al., 2022) that flood the internet with synthetic generated images. In the data science
community, generative models have been used in numerous applications in various machine learning
subfields, such as data augmentation (Sandfort et al., 2019; Antoniou et al., 2018), solving inverse
problems (Ravuri et al., 2021; Ledig et al., 2017) or machine translation (Isola et al., 2017; Yang et al.,
2018). Many generative models synthesize data by transforming a standard Gaussian random variable
using a deterministic mapping, often modelized by a neural network. This is notably the case for two
very popular types of models, the Variational Autoencoders (VAEs) (Kingma and Welling, 2014) and
the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). Such models consists thus in
transporting (not necessarily in an optimal manner) a standard Gaussian distribution towards a highly
complex high-dimensional distribution, using a deterministic neural network as transport map.

The expressivity of deep neural networks is an active research field on its own. The universal
approximation theorem (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989) states that shallow neural
networks are universal approximators, in the sense that any mapping can theoretically be approximated
with any precision by a neural network composed of one single layer but with a pottentially infinite
number of neurons. More recently, Hanin (2019) has shown that deep neural networks with finite numbers
of neurons on each layer but with a potentially infinite number of layers could approximate any continuous
mapping with any precision as long as it has a sufficient number of neurons at each layer. In practice,
deep neural networks with finite number of neurons and layers seems to be a lot more restrained in terms
of expressivity. An important restriction is that finite deep neural networks are most of the time Lipschitz
mappings by design, since their activation functions are generally Lipschitz. This is mainly due to the fact
that deep neural networks have to be differentiable almost everywhere in order to be trained using the
backpropagation algorithm (Rumelhart et al., 1986). More critically, it has been widely observed in the
literature that the Lipschitz constant of a neural network could almost be used as a measurement of the
instability of its training (Glorot and Bengio, 2010; Szegedy et al., 2013; Pennington et al., 2017). Beside
training instabilities, it is also well known that generic optimization methods such as Stochastic Gradient
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Descent (SGD) are implicity biased (Strand, 1974; Morgan and Bourlard, 1989; Gunasekar et al., 2018) in
the sense that they tends to converge to particular minima. Recently, Mulayoff et al. (2021) have shown
that when training a neural network, SGD was biased towards relatively regular functions, regardless of
the initialization. Thus when trying to approximate an irregular function with large Lipschitz constant
with a neural network, in addition of training instabilites, it is likely to converge towards a local minimum
corresponding to a more regular function than the target one.

Analysing the expressivity of deep generative models seems to be however a relatively new field of
research. Several works have focused on the case where the target distribution lies on two or more
disconnected manifolds (Khayatkhoei et al., 2018; Mehr et al., 2019; Tanielian et al., 2020). Khayatkhoei
et al. (2018) has made the simple observation that a discontinuity in the transport mapping must
be somehow introduced in order to be able to transport correctly a Gaussian distributions towards a
distribution which lies on disconnected manifolds. In the context of normalizing flows (Rezende and
Mohamed, 2015), it has been shown that the invertibility constraint limits the expressivity of the model.
Indeed, Cornish et al. (2020) show that distributions generated by invertible normalizing flows have a
support which is necessarily homeomorphic to the support of the latent distribution. As an outcome,
the Lipschitz constant of the inverse flow has to approach infinity to correctly approximate distributions
lying on disconnected manifolds (Cornish et al., 2020; Hagemann and Neumayer, 2021; Behrmann et al.,
2021). However, this latter result concerns only invertible neural networks and disconnected target
distributions. In this thesis, we study the more general case where the target distribution is multimodal
and the transport map is any Lipschitz neural network.

1.4 Contributions

This thesis covers all the author’s work conducted on the lines of research of optimal transport with
invariances between measures possibly on different Euclidean spaces and expressivity of deep push-forward
generative models. Additional work (Salmona et al., 2022a) of the author on image colorization is not
included in this manuscript. During the three years of doctoral studies that went into the preparation of
this thesis, the author has written the following scientific papers:

(Salmona et al., 2021). Antoine Salmona, Julie Delon and Agnès Desolneux. Gromov-Wasserstein
distances between Gaussian distributions. Journal of Applied Probability5, 2021.

(Salmona et al., 2022b). Antoine Salmona, Valentin de Bortoli, Julie Delon and Agnès Desolneux.
Can Push-forward Generative Models Fit Multimodal Distributions? Advances in Neural Information
Processing6, 2022.

(Salmona et al., 2023). Antoine Salmona, Julie Delon and Agnès Desolneux. Gromov-Wassertein-like
Distances in the Gaussian Mixture Models Space. Preprint, 2023.

(Salmona et al., 2022a). Antoine Salmona, Lucía Bouza and Julie Delon. DeOldify: A Review and
Implementation of an Automatic Colorization Method. Image Processing On Line7, 2022.

We give details on the contributions of each chapter in what follows.

Chapter 2
This chapter introduces the mathematical foundations of optimal transport theory. We also briefly
introduce the common numerical solvers that are used in the literature to solve optimal transport
problems in practice. For two probability distributions µ and ν respectively on some spaces X and Y,
and given a function c : X × Y → R+ called cost, optimal transport in its most classic form, aims at
solving the following optimization problem,

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) ,

where Π(µ, ν) is the set of measures on X × Y with marginals µ and ν. When X and Y are equal and
Euclidean spaces, the choice of cost cp(x, y) = ∥x− y∥p, with p ≥ 1 and ∥.∥ being the Euclidean norm
induces a metric between probability distributions with finite p-th moments, called the Wasserstein
distance Wp.

5https://www.cambridge.org/core/journals/journal-of-applied-probability/article/
6https://proceedings.neurips.cc/paper-files/paper/2022
7https://www.ipol.im/pub/art/2022
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Chapter 3
In this chapter, we introduce the common generalization of optimal transport to measures living in
incomparable spaces, i.e. when it is not straightfoward to design a meaningful cost function c : X×Y → R+,
which is the Gromov-Wasserstein distance (Mémoli, 2011). We also introduce the common numerical
solvers that are used in the literature to solve this problem. Between two distributions µ and ν, respectively
on some spaces X and Y, the Gromov-Wasserstein distance of order p ≥ 1 reads as

GWp(cX , cY , µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y

∫
X×Y

|cX (x, x′)− cY(y, y′)|pdπ(x, y)dπ(x′, y′)
) 1

p

,

where cX : X × X → R and cY : Y × Y → R are two measurable functions also called costs. GWp defines
a pseudometric on the space of network measure spaces Chowdhury and Mémoli (2019), i.e. the triplets
of the form (X , cX , µ). We also introduce the other recent formulations of optimal transport to measures
living in Euclidean spaces of different dimensions proposed by Alvarez-Melis et al. (2019) and Cai and Lim
(2022). Building on these latters, we define a new formulation that we call EW2 for embedded Wasserstein
distance. Between two measures living respectively in Rd and Rd′ , this reads as

EW2(µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
W2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
W2(ψ#µ, ν)

}
,

where for r ≥ 1 and s ≥ 1, Isoms(Rr) denotes the set of isometries from Rs to Rr. We show that this
defines a pseudometric on the space of measures of abitrary dimensions with finite order 2 moments.

Chapter 4
In this chapter, which is mostly a reproduction of (Salmona et al., 2021), we study the behavior of
the Gromov-Wasserstein distance of order 2 between two Gaussian distributions µ = N(m0,Σ0) and
ν = N(m1,Σ1) living respectively in Rd and Rd′ with d′ possibly not equal to d. We focus on the cases
where cX and cY are either the squared Euclidean distances on respectively Rd and Rd′ or the inner
products on Rd and Rd′ . First, we start by studying the squared Euclidean case. Building on a technical
result of Vayer (2020), we show that the GW2 problem with quadratic costs, that we call (GW2-Q),
admits an equivalent8 probabilistic formulation which reads as,

sup
X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) + 2∥Cov(X,Y )∥2F , (1.5)

where X = (X1, X2, . . . , Xd)
T , Y = (Y1, Y2, . . . , Yd′)

T , ∥.∥F is the Frobenius norm, and where T0 : x 7→
PT0 (x−m0) and T1 : y 7→ PT1 (y −m1) where (P0, D0) and (P1, D1) are the respective diagonalizations of
Σ0 and Σ1 that sort the eigenvalues in non-increasing order. This formulation highlights that the (GW2-Q)
problem is hard to solve without further assumptions on the coupling π, because it would requires to
know the probabilistic rule that links the co-moments of order 4 to the co-moments of order 2 of π. Thus,
we derive first a lower bound on (GW2-Q) by optimizing the two terms of (1.5) separately. Then, we
derive an upper bound by constraining the set of admissible couplings to transportation plans that are
themselves Gaussian. In that case, the rule that links the co-moments of order 4 to the co-moments of
order 2 of π is given by the Isserlis theorem (Isserlis, 1918). It follows, that the restricted GW2 problem,
that we call (GW2-QG), is equivalent to the following problem,

sup
X∼T0#µ,Y∼T1#ν

∥Cov(X,Y )∥2F . (1.6)

We show then that (GW2-QG) admits some closed forms solutions of the form (Idd, T )#µ with T affine
such that for all x ∈ Rd,

T (x) = m1 + P1

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2
0d′,d−d′

)
PT0 (x−m0) ,

where D(d′)
0 is the matrix of size d′ × d′ that is formed with the d′ first rows and columns of D0, and

Ĩdd′ is any matrix of the form diag((±1)1≤i≤d′). We show that these solutions share close connections
8We say that two optimization problems are equivalent if the solutions of one are readily obtained from the solutions of

the other, and vice-versa.
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with Principal Component Analysis (PCA). Between centered measures µ̄ and ν̄, we then show that
the solutions described above are also solutions of the Gromov-Wasserstein problem for the choice of
inner-product as cost functions (GW2-IP), since this latter problem is also equivalent to Problem (1.6).
The Gromov-Wasserstein distance has then a nice closed form expression in that case:

GW 2
2 (⟨.⟩d, ⟨.⟩d′ , µ̄, ν̄) = ∥Σ0∥2F + ∥Σ1∥2F − 2tr(D

(d′)
0 D1) .

We then compare to the other formulations of optimal transport between measures on incomparable
spaces introduced in the previous chapter. We show that the solutions presented above are also solutions
of the embedded Wasserstein problem and of the problems studied by Alvarez-Melis et al. (2019). Finally,
we show that the OT distance proposed by Cai and Lim (2022) admits a different behavior than the other
formulations studied in this chapter.

Chapter 5
This chapter, which is mostly a reproduction of (Salmona et al., 2023), proposes two Gromov-type
generalizations of the distance between GMMs proposed by Delon and Desolneux (2020). More precisely,
Delon and Desolneux (2020) have proposed the so-called Mixture Wasserstein distance (MW) between
GMMs, by restricting the set of admissible couplings in the Wasserstein distance to transportation plans
that are temselves GMMs, i.e.

MW 2
2 (µ, ν) = inf

π∈Π(µ,ν)∩GMM∞(R2d)

∫
Rd×Rd

∥x− y∥2dπ(x, y) ,

where GMM∞(R2d) is the set of all finite Gaussian mixtures on Rd. One key result of Delon and
Desolneux (2020) is that MW2 can be rewritten as a small-scale discrete optimal transport problem.
Between two GMMs µ =

∑K
k akµk and ν =

∑L
l blνl on Rd, this reads as,

MW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µk, νl) ,

where a = (a1, . . . , aK)T and b = (b1, . . . , bL)
T . This latter formulation makes MW2 easily computable

in practice, since the W2 distance between Gaussian distributions has a simple closed form. The optimal
plans ω∗ and π∗ are then linked by the following relation for all x, y ∈ Rd

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=Tk,l
W2

(x) , (1.7)

where pµk
is the density of µk and T k,lW2

is the W2 transport map between µk and νl. In this chapter, we
propose a first Gromov generalization of MW2 that we call MGW2 for Mixture Gromov Wasserstein
distance, that is defined between two GMMs µ =

∑K
k=1 akµk and ν =

∑L
l=1 blνl, respectively on Rd and

Rd′ , as
MGW 2

2 (µ, ν) = inf
ω∈Π(a,b)

∑
k,l,i,j

|W 2
2 (µk, µi)−W 2

2 (νl, νj)|2ωk,lωi,j .

We show that this defines a pseudometric on the spaces of all finite GMMs in any dimension. However,
this OT distance doesn’t admit, to the best of our knowledge, a simple equivalent continuous formulation
as this was the case for MW2. As an outcome, the derivation of an assignment between clouds of points
with MGW2 is not straightfoward. A possible solution could be to define a plan π∗ by analogy with
MW2, using a similar formula to (1.7). Yet, this would imply to know the isometric transformation that
have been implicitly applied to one of the two measures during the derivation of the distance. Thus is
why we introduce another generalization of MW2 that we call MEW2 for Mixture Embedded Wasserstein
distance, that reads as

MEW 2
2 (µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
MW2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
MW2(ψ#µ, ν)

}
.

As opposed to MGW2, this formulation allows to derive directly an assignment between clouds of points
because it expicits the isometric transformation. If we suppose without any loss of generality that d ≥ d′,
an optimal plan π∗ for MEW2 is thus obtained by replacing T k,lW2

in (1.7) by ϕ−1∗ ◦ T k,lW2
, where ϕ−1∗ is

the inverse of the optimal ϕ∗ restricted to ϕ∗(Rd′). We design then an assignment for MGW2 by analogy
with MEW2. Finally, we illustrate the pratical use of MGW2 and MEW2 on medium-to-large scale
problems such as shape matching and hyperspectral image color transfer.
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Chapter 6
This chapter introduces the basic concepts of generative modeling as well as the most commonly used
generative models in imaging science. We highlight that there exists two main types of generative
models that we call respectively push-forward models and indirect push-forward models. In push-forward
models, the generated distribution νθ is of the form νθ = gθ#µd′ with µd′ = N(0, Idd′) is the standard
Gaussian distribution and gθ is a deterministic neural network. In indirect push-forward models, the
generated distribution νθ is of the form νθ = Gθ#µd(K+1), but this time Gθ is a deterministic mapping
that corresponds to K iterations of a Monte-Carlo dynamics. The latent distribution µd(K+1) corresponds
to the concatenation of all Gaussian noises added during the dynamics. The main differences with
push-forward models are that optimization is not directly performed on the push-forward mapping Gθ
itself but on an auxilary function, and that the latent space is of much more larger dimension than the
ambient space.

Chapter 7
In this chapter, which is mostly a reproduction of Salmona et al. (2022b), we study the expressivity of
push-forward models relatively to the Lipschitz constant of the neural network that is used for generation.
More precisely, we show that for any Lipschitz mapping g : Rd′ → Rd and for any Borel set A of Rd,

Lip(g)(g#µd′)
+(∂A) ≥ φ(Φ−1(g#µd′(A))) , (1.8)

where (g#µd′)
+(∂A) denotes the (g#µd′)-surface area of the border of A which is informally a measure of

the mass that g#µd′ has on the hypersurface ∂A, and φ(x) = (2π)−1/2 exp[−x2/2] is the density function
of N(0, 1), and Φ(x) =

∫ x
−∞ φ(t)dt. This result is mainly a consequence of the Gaussian isoperimetric

inequality (Sudakov and Tsirelson, 1978), that states that for any Borel set A of Rd,

µ+
d′(∂A) ≥ φ(Φ

−1(µd′(A))) .

Inequality (1.8) can be used first to determine a Lower bound on the Lipschitz constant of the mappings
g that push µd′ into a given distribution ν. For instance, when ν = λN(m1, σ

2 Idd)+ (1−λ)N(m2, σ
2 Idd)

is a bimodal Gaussian mixture with m1,m2 ∈ Rd, σ > 0 and λ ∈ (0, 1), one can show from (1.8) that the
mappings g that pushes µd′ into ν necessarily verify

Lip(g) ≥ σ exp
[
∥m2 −m1∥2/(8σ2)− (Φ−1(λ))2/2

]
.

This illustrates that when ν is multimodal, the mappings g that push µd′ into ν have necessarily large
Lipschitz constants. Secondly, we use (1.8) to derive lower bounds on the total variation distance and the
Kullback-Leibler divergence between the push-forward measure g#µd′ and a given target distribution ν
for a given mapping g such that the Lipschitz constant of g is not large enough for reaching ν. Since
constraining the Lipschitz constants of neural networks is a common way to stabilize generative models,
this highlights that there is a trade-off between the ability of push-forward models to approximate
multimodal distributions and the stability of their training. We validate our findings on one-dimensional
and image datasets and empirically show that the recently introduced diffusion models (Song and Ermon,
2019; Ho et al., 2020) do not suffer of such limitation.

1.5 Outline of the thesis

The rest of this thesis is divided in two parts. Part I covers all the author’s work on optimal transport
with invariances between measures possibly on different Euclidean spaces and is organized as follow.

In Chapter 2, we expose the mathematical background of optimal transport. We present the
fundamental concepts and results of classic optimal transport theory as well as the most commonly
used numerical solvers in the literature.

In Chapter 3, We introduce the common generalization of optimal transport to measures that live
in incomparable spaces, i.e. the Gromov-Wasserstein distance. We also introduce the common
numerical solvers used to solve this problem. In the second part of the chapter, we introduce
the other formulations that have been recently proposed in the literature, and we define a new
formulation that we call embedded Wasserstein distance. This chapter contains some result of
Salmona et al. (2023).
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In Chapter 4, we study the behavior of the Gromov-Wasserstein distance between Gaussian
distributions, for both choices of squared Euclidean distances and inner-products as cost functions.
We also compare with the other formulations presented in the previous chapter. This chapter is
mostly based on the work (Salmona et al., 2021) but also contains some results of Salmona et al.
(2023).

In Chapter 5, we introduce two Gromov-Wasserstein related OT distances between GMMs possibly
living in different dimensions and we show that both can be used to relatively efficiently solve
Gromov-Wasserstein-related tasks. This chapter is based on the work (Salmona et al., 2023).

Part II covers all the author’s work on the expressivity of deep push-forward generative models and is
organized as follow.

In Chapter 6, we expose the basic concepts of generative modeling, and we introduce the most
commonly used generative models in imaging science. We highlight that there exist two main
categories of generative models that we call push-forward generative models and indirect push-
forward generative model.

In Chapter 7, we study the expressivity of push-forward generative models relatively to the Lipchitz
constant of the generative network. We show that for push-forward generative models, there exists
a trade-off between their expressivity and the stability of their training. We also empirically show
that indirect push-forward models seem not to suffer of the same limitation. This chapter is mostly
based on the work (Salmona et al., 2022b).
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Chapter 2

Generalities about optimal tranport
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In this chapter, we present in short the classic concepts and results of the OT theory. We also briefly
present the different classic solvers that exist in the literature. We refer to Santambrogio (2015) for a
complete general reference on OT theory, Villani (2008) for a more mathematically oriented reference
and Peyré and Cuturi (2019) for a numerically oriented reference.

2.1 The classic optimal transport problem

Before presenting the foundations of OT theory, we shortly introduce some important mathematical
notions that we will use throughout the thesis.

Polish spaces. We say that a space X is Polish if it is a separable complete metrizable space, i.e. if it
contains a countable dense subset (separability) and it can be endowed with a metric dX : X × X → R+

such that (X , dX ) is complete, in the sense that every Cauchy sequence1 in X converges in X . A basic
example of Polish space is Rd with the usual Euclidean metric for any d ≥ 1. This relatively general
notion is the only prerequisite on the ground space to be able to develop the theory of optimal transport.
Note that in all the thesis, we say that a function dX : X × X → R+ is a "metric" or a "distance" when
it verifies all the properties of a metric (symmetry, separability, non-negativity, triangle inequality, and
finiteness), whereas we use the terms "discrepancies" or "OT distances" in a less rigorous manner to
qualify functions (issued from the OT theory) which act as "measures of dissimilarity" between probability
distributions but not necessarily verify all the axioms of a metric.

Measures and histograms. Let X be a Polish space, we write P(X ) the set of Borel probability
measures on X . This set includes both continuous and discrete probability measures. Discrete probability
measures can be written as Σni akδxk

, with δxk
being the Dirac distribution at position xk ∈ X and

a = (a1, . . . , an)
T ∈ Rn+ being an histogram, i.e. an element of the probability simplex of Rn

∆n = {a ∈ Rn+ :
n∑
k=1

ak = 1} .

To avoid degeneracy issues where locations with no mass are accounted for, we will assume when
considering discrete probability measures that the elements of a are all positive.

1A Cauchy sequence {xk}k∈N of (X , dX ) is a sequence such that for any ε > 0, there exists a positive integer K such
that for any k, k′ > K, dX (xk, x

′
k) ≤ ε.
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2.1.1 The Monge problem

The OT problem has been historically introduced by Gaspard Monge in 1781. It can be described as the
following least effort problem: given two probability distributions µ and ν, how can we transport the
mass of µ towards ν so that the overall effort of transferring this mass is minimized? To formalize this
problem, we need to introduce the notions of push-forward measure and cost which respectively translate
the notions of transport and effort.

Push-forward measure. Let µ be a Borel probability measure on a space X and let T : X → Y
be a mapping between X and another space Y. We call push-forward measure and we denote T#µ the
probability measure defined such that for any Borel set A of Y, T#µ(A) = µ(T−1(A)). When ν = T#µ,
we say that T pushes µ into ν. Finally, when µ is a discrete measure of the form

∑m
k=1 akδxk

, the
push-forward measure T#µ is of the form

∑m
k=1 akδT (xk).

Cost functions and matrices. Let X and Y be two Polish spaces. A cost function can be any positive
lower semi-continuous mapping c : X × Y → R+. When Y = X , dpX with p ≥ 1 is a classic example of
cost function. Given a cost function c : X × Y → R+ and given a m-tuple {xk}mk of elements of X and a
n-tuple {yl}nl of elements of Y, one can construct a cost matrix C ∈ Rm×n

+ as C = (c(xk, yl))k,l. Thus,
given two sets of respectively m and n points, a cost matrix can be any positive matrix of size m× n.

The Monge problem. Now we are ready to introduce the Monge problem (Monge, 1781). Let X and
Y be two Polish spaces. Given a source measure µ ∈ P(X ) and a target measure ν ∈ P(Y), and given a
cost function c : X × Y → R+, it aims at solving the following optimization problem,

inf
T : ν=T#µ

∫
X
c(x, T (x))dµ(x) . (MP)

Thus, we want to find a mapping T which pushes µ into ν while minimizing a global cost defined as the
continuous sum of all the local costs corresponding to the cost of transporting the mass at position x
towards T (x). When T is solution of Problem (MP), we say that T is a Monge map and we denote it
TOT.

The Monge problem between discrete measures. When both measures µ and ν are discrete and
of the form

∑m
k=1 akδxk

and
∑n
l=1 blδyl , the Monge problem seeks a map that associates to each point xk

a single point yl and which transports the mass of µ toward the mass of ν. Thus, by mass conservation,
the push-forward condition translates into

for all 1 ≤ l ≤ n
∑

k:T (xk)=yl

ak = bl .

It is also possible to encode T using indices σ : J1,mK→ J1, nK so the mass conservation is written

for all 1 ≤ l ≤ n,
∑

k∈σ−1(l)

ak = bl ,

where σ−1(l) is the preimage set of l. In the special case where m = n and both distributions are uniform,
i.e. for any k and l, ak = bl =

1
n , the Monge problem can then be rewritten in an equivalent way as an

optimal assignment problem,

min
σ∈Perm(n)

1

n

n∑
k=1

Ck,σ(k) ,

where C ∈ Rn×n is a given cost matrix and Perm(n) is the set of all permutations of J1, nK. If σ∗ is
solution of this latter problem, the map T : {x1, . . . , xm} → {y1, . . . , yn} such that T (xk) = yσ(k) for all
1 ≤ k ≤ m is then solution of the Monge problem. Note that the optimal assignment problem may have
several optimal solutions as it is the case for instance if all the points are equidistant. In contrast, when
m ̸= n, they may not exists any feasible2 map T . This happens when the histograms a and b are not
compatible, which is always the case when the target measure has more points than the source measure,
i.e. when m < n.

2A feasible element is any element of the set on which optimization is performed.
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2.1.2 Kantorovich relaxation

The Monge problem is not always relevant to studying discrete measures, such as those found in practical
problems since there exists cases where the set of feasible mappings T is empty. Moreover this latter set
is non-convex as well as Perm(n). Therefore, the Monge problem and the optimal assignment problems
are non-convex optimization problems which makes them difficult to solve. One major breakthrough in
OT theory is due to Russian mathematician Leonid Kantorovich in 1942. The key idea of Kantorovich is
to relax the deterministic nature of the mapping which sends the mass at position x to a given target
position T (x). Thus, Kantorovich’s formulation allows to split the mass at position x to several target
positions. This flexibility is encoded using, instead of a push-forward mapping that pushes µ into ν, a
coupling measure which associates the two measures.

Coupling measures and matrices. Let X and Y be two spaces and let µ and ν be two measures on
X and Y. We call coupling any measure π on X × Y with marginals µ and ν, i.e. such that PX#π = µ
and PY#π = ν, where for every couple (x, y) in X ×Y , PX (x, y) = x and PY(x, y) = y are the projections
on respectively X and Y. We will denote Π(µ, ν) the set of couplings associated with µ and ν. When
these latter measures are discrete, µ =

∑m
k=1 akδxk

and
∑n
l=1 blδyl the coupling measure is also discrete

and of the form
π =

∑
k,l

ωk,lδ(xk,yl) , (2.1)

and it is possible to parametrize the set Π(µ, ν) as the set of measures of the form (2.1) and such that
for all 1 ≤ k ≤ m and all 1 ≤ l ≤ n,

∑
k ωk,l = bl and

∑
l ωk,l = ak. We will call coupling matrix any

ω ∈ Rm×n such that its coefficients verify these latter conditions and we will denote Π(a, b) the set of
coupling matrices associated with histograms a and b. Note that the constraints on the coefficients are
often rewritten under the compact form of the two following constraints: ω1n = a and ωT1m = b, where
1n = (1)1≤k≤n.

Kantorovich formulation. The Kantorovich problem (Kantorovich, 1942) is the modern classic
formulation of the OT problem. Given two measures µ and ν on two Polish spaces X and Y and given a
cost function c : X × Y → R+, it aims at solving the following optimization problem

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) . (KP)

The resulting cost, potentially infinite without further assumptions, corresponds to the minimal cost of
pushing µ into ν while authorizing to split the mass µ has at a given position x. The transport is done
according the optimal coupling measure π that we call then the optimal transport plan betwen µ and ν.
Unlike the set of maps which push µ into ν, the set Π(µ, ν) is always non-empty since it at least contains
the product measure µ⊗ ν, and so Problem (KP) is always feasible.

Kantorovich formulation between discrete measures. Between discrete distributions
∑m
k=1 akδxk

and
∑n
l blδyl , the Kantorovich problem translates into

inf
ω∈Π(a,b)

∑
k,l

Ck,lωk,l , (2.2)

where ω = (ωk,l)k,l is a matrix of size m× n. This latter problem is a Linear Program (Dantzig, 1951)
with possibly more than one optimal solution. A good illustration of this latter problem is given by the
following resource allocation problem (Hitchcock, 1941): suppose that an operator runs m warehouses and
n factories. Each warehouse is indexed with an integer k and contains a quantity ak of a given ressource
that is needed to run properly the factories. Each factory is indexed with an integer l and must possess a
quantity bl of that ressource to run properly. The operator wants to transport the ressource from the
different warehouses to the different factories. To do so, he will use a transportation company which
charges a× Ck,l to move a quantity a of ressource from the k-th warehouse to the l-th factory (the price
is proportional to the quantity transported). In order to minimize its total cost, the operator can solve
Problem (2.2). Indeed, solving this latter problem provides a coupling matrix ω of size m× n such that
for all 1 ≤ k ≤ m and all 1 ≤ l ≤ n, ωk,l indicates the quantity of ressource to transport from the k-th
warehouse to l-th factory to minimize the total cost.

31



Generalities about optimal tranport

Relationship between Kantorovich and Monge problems. Solving the Kantorovich problem
can provide a solution of the Monge problem. For instance, in the case where the measure are uniform
discrete distributions both composed of n points, solving the Kantorovich problem provides a coupling
matrix ω∗ such that n× ω∗ is a permutation matrix3 of J1, nK that minimizes the optimal assignment
problem, see Peyré and Cuturi (2019) for more details. More generally, if there is an optimal coupling
solution of Problem (KP) of the form π = (IdX , T )#µ with IdX being the identity operator on X and
T : X → Y being any deterministic mapping which pushes µ into ν, then T is solution of Problem (MP).

Existence of solutions. When X and Y are compact metric spaces, one can show relatively easily -
see Santambrogio (2015) for details - that Π(µ, ν) is compact. One can show then that Problem (KP)
admits at least one solution: because c is lower semi-continuous, the functional π 7→

∫
c(x, y)dπ(x, y) is

also lower semi-continuous and so we can directly use the Weierstrass theorem which states that a lower
semi-continuous function reaches its infinimum on a compact set. When X and Y are not compact but
Polish, it is still possible to show that Π(µ, ν) is compact but we need to use more advanced tools of
measure theory. Indeed, it can be shown that any sequence in Π(µ, ν) is tight4 and then one can deduce
that Π(µ, ν) is compact using the Prokhorov theorem which states that the condition of every sequence
of Π(µ, ν) being tight is equivalent to its compactness. In a nutshell, the Kantorovich problem always
admits a solution and the infinimum in (KP) can be replaced by a minimum.

Convexity. In addition to being compact, Π(µ, ν) is also a convex set. Indeed, for any π and π′ in
Π(µ, ν), observe that every linear combinaison of the form tπ + (1− t)π′ with t ∈ [0, 1] is also in Π(µ, ν)
since the projection operators are linear:

PX#(tπ + (1− t)π′) = tPX#π + (1− t)PX#π
′ = tµ+ (1− t)µ = µ ,

and the same goes for PY . Therefore the Kantorovich problem is a linear optimization problem under
convex constraints and so all the tools of convex optimization, in particular duality, can be used to solve
Problem (KP).

Probabilistic interpretation. Kantorovich’s problem can be reinterpreted through the prism of
random variables. Indeed, Problem (KP) is equivalent to

inf
X∼µ,Y∼ν

E[c(X,Y )] , (2.3)

where the notation X ∼ µ means that X is a random variable with probability µ. The law of the couple
(X,Y ) is then π ∈ Π(µ, ν).

2.1.3 Dual formulation

The Kantorovich problem (KP) is a convex optimzation problem with constraints. Therefore it can be
naturally paired with a so-called dual problem, which is a constrained concave maximization problem.
By strong duality, this dual problem admits the same optimal value that the primal problem (KP). Let
Cb(X ) denotes the set of continuous bounded functions from X to R.

Dual Kantorovich problem. The dual problem of Problem (KP) can be expressed as follow:

sup
(f,g)∈R(c)

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y) , (DP)

where
R(c) = {(f, g) ∈ Cb(X )× Cb(Y) : for all (x, y) ∈ X × Y, f(x) + g(y) ≤ c(x, y)} .

The dual variable f and g are often referred to as Kantorovich potentials. The derivation of this dual
problem is not trivial and requires an important property of optimal couplings: if a coupling π is

3This is a consequence of the fact that the optimum of a linear program is reached at an extremal point of the feasible
set (see Bertsimas and Tsitsiklis (1997, Theorem 2.7)) and of the Birkhoff theorem (Birkhoff, 1946) that states that the set
of extremal points of Π(1n,1n) is exactly the set of permutation matrices of J1, nK.

4A sequence (µk)k∈N is tight if for every ε > 0, there is a compact set K such that µk(K) > 1− ε for all k.
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optimal for Problem (KP), then its support5 supp(π) is a c-cyclically monotone set, i.e. for any n-tuple
{(xk, yk)}nk=1 of elements of supp(π) and any permutation σ of J1, nK, we have

n∑
k=1

c(xk, yk) ≤
n∑
k=1

c(xk, yσ(k)) .

We refer to (Villani, 2008, Theorem 5.10) for the full proof of the derivation of the dual problem. Note
that the Kantorovich potentials f and g can be interpreted as the Lagrange multipliers associated with
the constraint of π being in Π(µ, ν). They are therefore continous bounded functions since the space of
measures is in duality with this latter space. Observe also that the strong duality condition of optimality
allows to locate the support of the optimal coupling π, as

supp(π) ⊂ {(x, y) ∈ X × Y : f(x) + g(y) = c(x, y)} .

Dual problems for discrete distributions. When µ and ν are discrete and of the form
∑m
k=1 akδxk

and
∑n
l=1 blδyl , one can derive the following dual problems of Problem (2.2),

sup
(α,β)∈R(C)

αTa+ βT b , (2.4)

with α = (α1, . . . , αm)T and β = (β1, . . . , βn)
T and where,

R(C) = {(α, β) ∈ Rm × Rn : for all 1 ≤ k ≤ m and all 1 ≤ l ≤ n, αk + βl ≤ Ck,l} .

The derivation of this latter problem is a lot more straightfoward than in the general case and is a direct
consequence of the more general result of the strong duality for linear programs (Bertsimas and Tsitsiklis,
1997, Theorem 4.4). The proof consists roughly in writing the Lagrangian associated with the primal
problem, see (Peyré and Cuturi, 2019, Proposition 2.4) for details. The Kantorovich potentials α and
β can be interpreted as prices, as opposed with c which can be interpreted as a cost. Indeed, one can
illustrate the dual problem retrieving the previous example of warehouses and factories: imagine that the
operator decides to subcontract the previous transportation problem to a company that basically buys
the ressource from the warehouses and sell it to the factories. This company has to set a price at which it
is willing to buy the quantity ak of ressource of the k-th warehouse and a price at which it wishes to sell
the quantity bl of ressource needed by the l-th factory. Thus, if the company also applies a scheme of
pricing proportional to the quantity of ressource, it can set the price of buying a quantity a of ressource
from the k-th warehouse as a× |αk| with αk being negative (since the company actually spends money
when buying the ressource) and the price of selling a quantity b of ressource to the l-th warehouse as
b× βl, so it costs in total αTa+ βT b to the operator to move all the ressource from all the warehouses to
all the factories. As opposed to the operator which wants to minimize its total cost, the company wants
to maximize its gains, and so wants to find α and β such that αTa+ βT b is maximal. Yet, in order to be
competitive, the company has to set its prices such that it is cheaper for the operator to subcontract with
it rather than to use the previous transportation company. Thus, it has to set its prices such that for all
1 ≤ k ≤ m and all 1 ≤ l ≤ n, αk + βl ≤ Ck,l.

c-transforms and c̄-transforms. Consider any dual feasible pair (f, g) ∈ R(c). For this given
f : X → R, observe that there is no better solution for g : Y → R than the following function f c : Y → R
called the c-transform of f and defined for all y ∈ Y as

f c(y) = inf
x∈X

(c(x, y)− f(x)) .

Indeed, it is easy to see that (f, f c) ∈ R(c) and that is the function such that the constraint is saturated.
Alternatively, for a given g, there is no better solution for f than the c̄-transform gc̄ : X → R of g defined
for all x ∈ X as

gc̄(x) = inf
y∈Y

(c(x, y)− g(y)) .

Moreover we say that a function h : Y → R is c̄-concave if there exists f : X → R such that h = f c and
we say that a function h′ : X → R is c-concave if there exists g : Y → R such that h′ = gc̄. Note that

5The support supp(µ) of a probability measure µ ∈ P(X ) is defined as the smallest closed Borel set A of X × Y such
that µ(A) = 1, or equivalently, supp(µ) = {x ∈ X : there exits Nx open such that x ∈ Nx and µ(Nx) > 0}.
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when X = Y and c is symmetric, the distinction between c and c̄ can be omitted. Using the c-transform
of f , one can rewrite Problem (DP) as the following single variable constrained optimization problem.

sup
f c-concave

∫
X
f(x)dµ(x) +

∫
Y
f c(y)dν(y) . (2.5)

2.2 The Wasserstein distance

2.2.1 Metric properties

The most common scenario in many OT applications is when X = Y. In that case, a natural choice
of cost is to set c = dpX where p ≥ 1 and dX is the metric associated with X . This choice defines the
so-called Wasserstein distance of order p

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

dpX (x, y)dπ(x, y)

) 1
p

. (Wp)

Metric properties of Wasserstein distance. It can be shown - see Villani (2008, definition 6.1) for
details - that Wp satisfies all the axioms of a metric on P(X ), i.e. if µ and ν and ξ are three probability
measures on X ,

(i) Wp(µ, ν) is symmetric and non-negative.

(ii) Wp(µ, ν) = 0 if and only if µ = ν.

(iii) Wp satisfies the triangle inequality, i.e.

Wp(µ, ν) ≤Wp(µ, ξ) +Wp(ξ, ν) .

However, without further assumptions on µ and ν, Wp(µ, ν) is not a metric in the strict sense since it
can be infinite. To complete its construction, it is natural to restrict Wp on a subset of P(X )× P(X )
where it takes finite values. One can thus define the Wasserstein space as

Wp(X ) = {µ ∈ P(X ) :
∫
X dX (x0, x)

pdµ(x) < +∞} ,

where x0 is an arbitrary element of X . Note that this space does not depend on the choice of the point x0.
Finally, Wp defines a (finite) metric on Wp(X ). The space Wp(X ) endowed with the topology induced by
Wp has a nice geodesic structure, in the sense that given an optimal transport coupling π ∈ Π(µ0, µ1),
the parametric curve

(µt)t∈[0,1] = {µt ∈ Wp(X ) : µt = Pt#π, with Pt = (1− t)x+ ty and t ∈ [0, 1]} ,

is a constant speed geodesic between µ0 and µ1, i.e for every s and t in [0, 1], we have Wp(µs, µt) =
|s− t|Wp(µ0, µ1). The interpolated measures of the form µt are often called Wasserstein barycenters in
the literature. This formulation can be easily extended to more than two probability distributions.

Weak convergence of measures. Let (µk)k∈N be a sequence of probability measures on a Polish space
X . We say that (µk)k∈N converges weakly towards µ in X if for all continuous and bounded functions
h : X → R, ∫

X
hdµk −−−−−→

k→+∞

∫
X
hdµ .

Villani (2003) has shown that for any sequence (µk)k∈N such that
∫
dpX (x0, x)dµk(x)→

∫
dpX (x0, x)dµ(x),

the Wasserstein distance metrizes the weak convergence of (µk)k∈N, i.e. (µk)k∈N converges weakly towards
µ if and only if Wp(µk, µ)→ 0.

Wasserstein spaces are Polish spaces. An interesting fact shown by Bolley (2008) is that Wasserstein
spaces are themselves separable complete metric spaces when endowed with Wp as metric. Therefore, for
a given Polish space X , its associated Wasserstein space Wp(X ) of order p is also a Polish space.
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Euclidean case. A notable particular case is when X is Euclidean, typically Rd. In that case dX = ∥.∥
is the Euclidean norm and

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥pdπ(x, y) ,

and the Wasserstein space of order p is defined as the set of measures on Rd with finite p-th order moment,
i.e.

Wp(Rd) = {µ ∈ P(Rd) :
∫
Rd ∥x∥pdµ(x) < +∞} .

2.2.2 Wasserstein distance with quadratic cost

An important particular case is when X = Rd is Euclidean and p = 2. This case has been analyzed in depth
in the 1980s-90s by the works of Knott and Smith (1984), Cuesta and Matrán (1989), Rüschendorf and
Rachev (1990), Brenier (1991) that have resulted in the Brenier theorem which is one major breakthrough
in the OT theory.

Brenier Theorem. The Brenier theorem (Brenier, 1991) can be stated as follows. If µ and ν are
in W2(Rd) and at least one of the two measures, say µ, admits a density with respect of the Lesbegue
measure, the Wasserstein problem

inf
π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y) , (2.6)

admits a unique solution π∗ of the form (Idd, TOT)#µ, with Idd being the identity mapping on Rd and
where TOT is solution of the Monge problem (MP). Furthermore, T - which is often called Brenier map
in that case - is uniquely defined as the gradient of a convex function ϕ : Rd → R, where ϕ is the unique
(up to an additive constant) convex function such that ν = (∇ϕ)#µ. Finally, ϕ is related to the dual
Kantorovich potential f as for all x ∈ Rd, ϕ(x) = ∥x∥2

2 − f(x).
Note that McCann (1995) established a version with weaker assumptions that is that if µ vanishes on

all Borel sets with Hausdorff dimension6 d−1, then there exists a unique convex function ϕ : Rd → R such
that ν = (∇ϕ)#µ even if µ and ν have infinite second order moments. In the case where µ and ν have finite
second order moments, ∇ϕ is then solution of the Monge problem (MP). Another possible generalization
of Brenier theorem is to consider continuous costs c more general than the squared Euclidean distance
that satisfies the so-called Twist condition (Villani, 2008; McCann and Guillen, 2011), i.e. such that c
is differentiable with respect to x at every point and the map y 7→ ∇xc(x0, y) is injective for every x0.
In particular, if c is of the form c(x, y) = h(x− y) with h strictly convex for every couple (x, y), then it
satisfies the Twist condition.

Monge-Ampère equation. When µ and ν both admit densities pµ and pν with respect of the Lesbegue
measure, one can reformulate the condition ν = T#µ, assuming T is smooth and bijective, using the
change-of-variable formula. The condition ν = T#µ translates into

for all x ∈ Rd, pµ(x) = |det(J [T ](x))|pν(T (x)) ,

where J [T ](x) ∈ Rd×d is the Jacobian matrix of T at x, i.e. the matrix obtained by stacking the gradients
in x of each coordinate of T . Using Brenier theorem, we get that the unique convex function ∇ϕ such
that (Idd,∇ϕ)#µ is solution of the 2-Wasserstein problem (2.6) verifies

for all x ∈ Rd, det(∂2ϕ(x))pν(T (x)) = pµ(x) , (2.7)

where ∂2ϕ(x) is the Hessian of ϕ at x. This latter equation is a Monge-Ampère type equation and
is particularly useful to study the regularity of Brenier maps as well as the regularity of Kantorovich
potentials. We refer to Caffarelli (2003) and Figalli (2009) as review papers on this topic.

6The Hausdorff dimension of a Borel set A is the smallest real number d such that the Hausdorff measure of order d of A
is null, i.e. d = inf{d ∈ R+ : Hd(A) = 0}, see Ambrosio et al. (2000) for more details.
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Translations. A nice property of the Wasserstein distance of order 2 is that it is possible to factor out
translations. This means that if EX∼µ[X] = mµ and EY∼ν [Y ] = mν with mµ and mν being in Rd, then

W 2
2 (µ, ν) = ∥mµ −mν∥2 +W 2

2 (µ̄, ν̄) , (2.8)

where µ̄ and ν̄ are the centered measures associated with µ and ν, i.e. the measures such that if X ∼ µ
(respectively Y ∼ ν), then X − EX∼µ[X] ∼ µ̄ (respectively Y − EY∼ν [Y ] ∼ ν̄).

Equivalent formulation of the W2 problem. Observe that when developping the 2-Wasserstein
problem (2.6), we get

inf
π∈Π(µ,ν)

(∫
Rd

∥x∥2dµ(x) +
∫
Rd

∥y∥2dν(y)− 2

∫
Rd×Rd

xT ydπ(x, y)

)
.

Since
∫
Rd ∥x∥2dµ(x) and

∫
Rd ∥y∥2dν(y) do not depend on π, it follows that the problem is equivalent to

sup
π∈Π(µ,ν)

∫
Rd×Rd

xT ydπ(x, y) .

This latter problem can be thought as an OT problem with cost c(x, y) = −xT y that can takes negative
values.

2.2.3 Earth mover’s distance
Another case of interest introduced under the name of the Earth mover’s distance by Rubner et al. (2000)
is when p = 1 with X not necessarily being Euclidean. In that case the Wasserstein problem of order 1
reads as

inf
π∈Π(µ,ν)

∫
X×X

dX (x, y)dπ(x, y) . (2.9)

There doesn’t exist any result analogous to the Brenier theorem for this latter problem, and so the optimal
coupling is in general not unique.

Dual formulation. The dual problem of Problem (2.9) has an interesting formulation deriving from
the formulation (2.5) of the dual Kantorovich problem with c-transforms:

sup
Lip(f)≤1

∫
X
f(x)dµ(x)−

∫
X
f(x)dν(x) , (2.10)

where the Lipschitz constant Lip(f) of a mapping f : X → R is defined as

Lip(f) = sup{ |f(x)−f(y)|dX (x,y) : (x, y) ∈ X , x ̸= y} .

The key observation to derive this formulation from (2.5) is that if f : X → R is c-concave, its Lipschitz
constant Lip(f) is necessarily smaller than 1. Indeed, for all x, y ∈ X , we have

|f(x)− f(y)| = | inf
z∈X

(dX (x, z)− g(z)) + inf
z∈X

(dX (y, z)− g(z)) |

≤ sup
z∈X
|dX (x, z)− dX (y, z)|

≤ dX (x, y) ,

where the first equality follows from the definition of the c-transform, the next inequality follows from
the identity | inf f − inf g| ≤ sup |f − g|, and the last from the triangle inequality. From the fact that
Lip(f) ≤ 1, one can deduce with further calculations, see Peyré and Cuturi (2019, Proposition 6.1), that
f c = −f , which gives (2.10). This latter formulation plays an important role in generative modeling,
since it is the core theoretical component of the Wasserstein Generative Adversarial Networks (WGANs)
(Arjovsky et al., 2017) and the Wasserstein Autoencoders (WAEs) (Tolstikhin et al., 2018).

2.2.4 Particular cases: one-dimensional and Gaussian distributions
There are two important particular cases of distributions on which Wasserstein problems admit closed-form
solutions: when µ and ν are on R and when µ and ν are Gaussian distributions.
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Optimal transport on the real line. For a measure µ on R, one can define its cumulative distribution
function Fµ : R→ [0, 1] for all x ∈ R as

Fµ(x) = µ((−∞, x]) .

One can also define its pseudoinverse called the generalized quantile function of µ for all r ∈ [0, 1] as

F−1
µ (r) = inf{x ∈ R : Fµ(x) ≥ r} .

Then, for all p ≥ 1,

W p
p (µ, ν) =

∫ 1

0

|F−1
µ (r)− F−1

ν (r)|pdr .

Furthermore the optimal coupling π∗ is of the form (Id, TOT)#µ, where Id is the identity operator on R
and where TOT is defined as,

TOT = F−1
ν ◦ Fµ . (2.11)

We refer to Santambrogio (2015, Chapter 2) for a detailed survey of the properties of optimal transport
on the real line. Note that T is an non-decreasing function. Therefore, the notion of gradient of a convex
function in the Brenier theorem corresponds to a generalization of T being non-decreasing in higher
dimension. Moreover, by analogy with (2.11), one can define a generalization of the generalized quantile
function of a distribution µ on Rd as the Monge map between a reference distribution on Rd - typically
the uniform distribution on the unit cube or the standard Gaussian distribution N(0, Idd) - and µ, see
Carlier et al. (2016). When µ and ν are two discrete distributions of the forms µ =

∑m
k=1

1
mδxk

and
ν =

∑n
l=1

1
nδyl , this corresponds to sorting x1 ≤ · · · ≤ xm and y1 ≤ · · · ≤ yn and sending as much mass

as possible from x1 to y1, then sending the remaining mass to y2 (and so on if it remains some mass),
then repeating this procedure for x2 and so on until no more mass is left. Thus the Wasserstein distance
between discrete distributions on the real line can be solved using simple sorting algorithms.

Optimal transport between Gaussian distributions. Another important case where the Wasserstein
distance has a closed-form is when X = Rd, p = 2 and µ and ν are Gaussian distributions. Indeed if
µ = N(m0,Σ0) and ν = N(m1,Σ1), with m0 and m1 in Rd and Σ0 and Σ1 in Sd+, where Sd+ denotes the
set of symmetric Positive Semi-Definite (PSD) matrices, the Wasserstein distance of order 2 is written

W 2
2 (µ, ν) = ∥m0 −m1∥2 + tr

(
Σ0 +Σ1 − 2

(
Σ

1
2
1 Σ0Σ

1
2
1

) 1
2

)
,

where for any PSD matrix A ∈ Sd+, A
1
2 is the unique PSD square root of A. Note that the rightmost

term defines itself a metric between PSD matrices often referred to as the Bures distance Bures (1969).
Therefore the Wassertein distance of order 2 between Gaussian distributions is often called the Bures-
Wasserstein distance and defines a metric on the space of Gaussian distributions on Rd that we denote
here N (Rd)7. Note that when Σ0 and Σ1 commute, the Bures distance coincides with the Hellinger
distance

dH(Σ0,Σ1) = ∥Σ
1
2
0 − Σ

1
2
1 ∥F ,

where ∥.∥F is the Frobenius norm between matrices of size d× d. When Σ0 is non-singular, the optimal
coupling π is of the form (Idd, TOT)#µ and the Monge map TOT between µ and ν turns out to be affine
and defined for all x ∈ Rd as

TOT(x) = m1 +Σ
− 1

2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 (x−m0) . (2.12)

These results have been known since Dowson and Landau (1982) and have been proved in several different
ways. One key point in the proof is to observe that the optimal transport plan is Gaussian: observe first
that by sucessively factoring out the translations as in (2.8) and using the probabilistic formulation (2.3),
we get that

W 2
2 (µ, ν) = ∥m0 −m1∥2 + inf

X∼µ̄, Y∼ν̄
E[∥X − Y ∥2]

7Note that N (Rd) includes the degenerate Gaussian distributions, as for instance the Dirac distributions. The interior
set of N (Rd) is the set of all non-degenerate Gaussian distributions and is often referred to as the Bures manifold in the
literature.
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= ∥m0 −m1∥2 + EX∼µ̄[∥X∥2] + EY∼ν̄ [∥Y ∥2]− 2 sup
X∼µ̄, Y∼ν̄

tr(E[XY T ]) ,

and so the problem is equivalent to find the law of the couple of random variables (X,Y ) such that
the trace of the cross-covariance matrix E[XY T ] is maximal. Yet, for any feasible value A of this
cross-covariance matrix, there exists a Gaussian coupling π of (X,Y ) such that E(X,Y )∼π[XY

T ] = A, and
so there exists a Gaussian coupling π∗ such that tr(E(X,Y )∼π∗ [XY T ]) is maximal.

2.3 Solving OT in practice

Apart from the special cases mentioned above and some other additional simple cases, it is in general not
possible to solve analytically the OT problem. However, when µ and ν are discrete, it is possible to solve
it numerically. To complete our general introduction to classic optimal transport, we briefly present here
the different numerical solvers that are commonly used in the literature. We refer to Peyré and Cuturi
(2019, Chapters 3 and 4) for a complete introduction on this topic. In all this section, we suppose than µ
and ν are discrete and on the form µ =

∑m
k=1 akδxk

and ν =
∑n
l=1 blδyl .

Linear programing. In order to solve Kantorovich problem in the discrete case (2.2), one can rely on
classic algorithms for solving linear programs (Dantzig, 1951). Among them, the reference algorithms to
solve (2.2) are the network simplexes (Cunningham, 1976). These algorithms rely on the dual problem
(2.4) that is

min
(α,β)∈Rm×Rn

for all 1≤k,l≤m,n, αk+βl≤Ck,l

αTa+ βT b . (2.13)

This type of algorithms consists in searching an optimal couple of Kantorovich solutions (α, β) among
the extremal feasible points, i.e. the couples (α, β) such that αk + βl = Ck,l for the indices k and l such
that ωk,l > 0, where ω is the primal variable. This leverages one fundamental result of linear programing
which states that the optimum of a linear program is reached at an extremal point of the feasible set, see
Bertsimas and Tsitsiklis (1997, Theorem 2.7). When m = n, the most efficient algorithm of this type
has a complexity O(n3 log(n)). There exist alternative algoritms for solving this problem which include
interior points, as dual ascent methods (Kuhn, 1955) for instance, but these methods do not perform as
well as the network simplexes on this particular type of linear program. In the special case of the optimal
assignment problem where m = n and both histograms are uniform, one can use the Auction algorithm
(Bertsekas and Eckstein, 1988), whose most effective refinement has a cubic complexity O(n3).

The failure of alternate optimization. A common type of algorithms to solve optimization problems
with two variables as (2.13) consists in alternating the optimization of each variable. One could be
tempted to design an alternate optimization algorithm using the discrete versions of the c and c̄-transforms:
given a feasible couple (α, β), one can define αC ∈ Rn and βC̄ ∈ Rm such that for all 1 ≤ k ≤ m and all
1 ≤ l ≤ n,  (αC)l = min

1≤k≤m
Ck,l − α

(βC̄)k = min
1≤l≤n

Ck,l − β ,

and for a given feasible couple (α, β) we have

αTa+ βT b ≤ αTa+ (αC)T b ≤ (αCC̄)Ta+ (αC)T b .

Thus, one could design an algorithm by applying successively C and C̄ transforms, yet this doesn’t work
because αCC̄C = α, and so we would quickly reach a stationary regime. This behavior is a classic behavior
of alternating optimization schemes on non-smooth problems and a typical way to cope with it is to
introduce regularization, which motivates the use of entropic optimal transport.

Entropic regularization. Solving the OT problem (2.13) with a network simplex algorithm remains
costly since it has a complexity of O(n3 log(n)), and it is not possible to solve it directly with an alternate
maximization scheme as we have seen above. An idea that has been made very popular in the OT
community by (Cuturi, 2013) is to penalize the entropy of the coupling ω and thus to solve the following
regularized problem

inf
ω∈Π(a,b)

∑
k,l

Ck,lωk,l − εH(ω) , (ε-KP)

38



Generalities about optimal tranport

where
H(ω) = −

∑
k,l

ωk,l(log(ωk,l)− 1) .

Solving Problem (ε-KP) instead of (KP) has several important advantages: it turns the optimal transport
problem into a strongly-convex minimization problem with a unique solution, and the minimization of the
regularized problem can be solved using a simple alternate minimization scheme with simple matrix-vector
products as iterations, which makes it particularly suited for GPU implementation. The algorithm used to
solve Problem (ε-KP) is the Sinkhorn-Knopp matrix scaling algorithm. It leverages a result of Sinkhorn
and Knopp (1967) that states that Problem (ε-KP) admits a unique solution ω∗ that is of the form

ω∗ = diag(u)Kdiag(v) ,

with u ∈ Rm+ , v ∈ Rn+ and K = exp[−Cε ] where the exponential is applied entrywise, and where diag(u)
is the diagonal matrix of size m × m with diagonal u. The Sinkhorn-Knopp algorithm consists in
starting from an initial couple (u(0), v(0)), usually, (1m,1n), and finding u(1) ∈ Rm such that the coupling
ω = diag(u(1))Kdiag(v(0)) has left-marginal a, i.e. such that ω1n = a, then finding v(1) ∈ Rn such
that the coupling ω′ = diag(u(1))Kdiag(v(1)) has right-marginal b, i.e. such that ωT1m = b, and then
continuing this alternating optimization scheme until convergence. This leads to the following updates for
u and v: {

u{i+1} = a⊘Kv{i}
v{i+1} = b⊘KTu{i+1} ,

where ⊘ denotes the entrywise division. In a nutshell, this gives Algorithm 1.

Algorithm 1 Sinkhorn-Knopp algorithm for regularized OT problem

Require: a, b, C, ε > 0, v{0} = 1n

1: K ← exp[−C/ε]
2: for i = 1, . . . , Nit do
3: u{i} ← a⊘Kv{i−1} ▷ Update left scaling
4: v{i} ← b⊘KTu{i} ▷ Update right scaling
5: end for
6: return ω = diag(u)Kdiag(v)

In terms of complexity, Altschuler et al. (2017) have shown that when m = n and setting τ = 4 log(n)
ε , the

Sinkhorn-Knopp algorithm could produce a coupling ω such that
∑
k,l Ck,lωk,l approximate the optimal

value of the unregularized problem (KP) with precision τ in O(n2 log(n)τ−3) operations. Finally, note
that there exist countless refinements, extensions and generalizations of the Sinkhorn-Knopp algorithm.
Among them, some recent refinements build notably on low-rank factorizations or approximations of the
Kernel matrix K (Solomon et al., 2015; Altschuler et al., 2019; Scetbon and Cuturi, 2020) while others
impose a low-rank constraint on the coupling ω (Forrow et al., 2019; Scetbon et al., 2021), which results
in very efficient solvers whose complexity depends linearly on the number of points.

Sliced methods. Another type of methods commonly used in the literature to solve OT problems
builds on the fact that Wasserstein problems on the real line can be solved using simple sorting algorithms,
see Section 2.2.4. This results in the so-called Sliced Wasserstein distance (SW) (Rabin et al., 2012) that
is defined as follows for all p ≥ 1 and given µ and ν on Rd,

SW p
p (µ, ν) =

∫
Sd−1

W p
p (Pθ#µ, Pθ#ν)dLd−1(θ) , (SWp)

where Sd−1 is the unit-hypersphere on Rd, Ld−1 is the uniform measure on Sd−1, and Pθ is a projection
on θ, i.e. for all x ∈ Rd, Pθ(x) = xT θ. The idea behind the sliced Wasserstein distance is to first, obtain
a family of one-dimensional representations for a higher-dimensional probability distribution through
linear projections, and then, calculate the distance between two input distributions as a functional of
the Wasserstein distance of their one-dimensional representations, i.e. the one-dimensional projected
measures. If the Sliced Wasserstein distance can be thought as an approximation of the Wasserstein
distance, it can also be thought as another OT distance on its own that has several interesting properties.
It has notably been shown that SW2 defines a metric on W2(Rd) (Bonnotte, 2013) that metrizes the weak
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convergence (Nadjahi et al., 2019) and which is equivalent to the Wasserstein distance W2 for measures
with compact supports (Bonnotte, 2013; Nadjahi et al., 2020). In practice, (SWp) is approximated using
a Monte-Carlo method that corresponds to choose randomly L projection directions on Sd−1 and to
compute 1

L

∑L
i W

p
p (Pθi#µ, Pθi#ν). Hence, for discrete probability measures composed of n points, the

overall complexity of computing (SWp) is O(Ln log(n)), which makes it very attractive when dealing
with large-scale problems. Finally, one drawback of this type of methods is it doesn’t provide directly an
optimal coupling between the measures µ and ν.

2.4 Conclusion

In this chapter, we have introduced the main concepts of the classic optimal transport theory. The theory
of optimal transport has matured over the years starting from its initial formulation by Monge in 1781,
then its rediscovery in the 1940s thanks to the works of Kantorovich and Dantzig, and finally its revisit
under new points of view in the 1990s by mathematicians such as Brenier and later in the 2000s with the
works of Villani. The introduction of entropic-regularized OT by Cuturi (2013) has yet triggered another
revolution of the field, transforming it from a predominantly theoretical domain to an applied field that
provides tools very useful to solve a large class of data science problems. In the imaging science field, OT
has been used in numerous applications such as image matching (Zhu et al., 2007; Wang et al., 2013;
Li et al., 2013), medical imaging (Wang et al., 2010; Gramfort et al., 2015), texture synthesis and style
transfer (Leclaire and Rabin, 2021; Gutierrez et al., 2017), or shape registration (Feydy et al., 2017; Su
et al., 2015), just to name a few.

In its classic setting, an implicit prerequisite of optimal transport is that the two distributions involved
lie on the same ground space, or at least that the two spaces are comparable, i.e. there exists a relevant
cost function to compare them. However, this assumption may not hold for many applications. This is
often the case when dealing with structured data, as graphs for instance, or when the data come from
heterogeneous sources, as in the case of heterogeneous domain adaptation. Some other tasks such as
shape matching or word embedding require designing cost functions such that the problem is invariant to
some families of invariances, such as translations and rotations for example, in the sense that we want the
distance between a given distribution and a translated and rotated version of itself to be null. Even if the
distributions involved in these applications may live in the same ground space, it is not straightforward
to design an adequate cost function. In the next chapter, we introduce the common generalization of
optimal transport to measures living in incomparable spaces, which is known as the Gromov-Wasserstein
distance (Mémoli, 2011). We also introduce two other recent formulations proposed by Alvarez-Melis
et al. (2019) and Cai and Lim (2022) and we define a new formulation that we call embedded Wasserstein
discrepancy.
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In the first part of this chapter, we introduce the theoretical concepts of the Gromov-Wasserstein
distance (Mémoli, 2011), that is probably the most common generalization of optimal transport between
measures on incomparable spaces. We also briefly present the common numerical solvers used for this
problem. In the second part of this chapter, we introduce two other recent formulations proposed by
Alvarez-Melis et al. (2019) and Cai and Lim (2022) and we define a new formulation that we call embedded
Wasserstein. Parts of this chapter are reproduction of Salmona et al. (2023).

3.1 The Gromov-Wasserstein distance

One intrisic limitation of the classic OT theory introduced above is that it implicitly assumes that the
spaces X and Y are comparable, i.e. that there exists a relevant cost function c : X ×Y → R+ to compare
them. Yet, this assumption is not always verified. For instance, if X = Rd and Y = Rd′ with d ̸= d′, the
definition of a meaningful cost function c : Rd × Rd′ → R+ is not straightforward. Furthermore, some
applications such as shape matching require having an OT distance that is invariant to important families
of transformations, such as translations or rotations or more generally to isometries. Even if the two
distributions involved in these applications do live in the same ground space, it is not straightforward
to design a cost function such that the resulting OT distance will be invariant to these families of
transformations. The common generalization of the classic optimal transport problem that overcomes
these limitations is the Gromov-Wasserstein (GW) distance (Mémoli, 2011). The goal of this section
is to present the Gromov-Wasserstein problem and its metric properties. We refer to Mémoli (2011),
Sturm (2012), and Chowdhury and Mémoli (2019) for further readings on the theoretical properties of
the Gromov-Wasserstein problem.

3.1.1 Problem statement
The Gromov-Wasserstein problem. The Gromov-Wasserstein problem (Mémoli, 2011) can be
defined as follows: given two Polish spaces X and Y , two measurable integrable functions cX : X ×X � R
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and cY : Y × Y � R, and two probability measures µ ∈ P(X ) and ν ∈ P(Y), it aims at finding for any
p ≥ 1,

GWp(cX , cY , µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y

∫
X×Y

|cX (x, x′)− cY(y, y′)|pdπ(x, y)dπ(x′, y′)
) 1

p

. (GWp)

With a slight abuse of language, we will also call cX and cY cost functions, even if they can take values
in R and not only in R+ and they are not necessarily lower semi-continuous. Problem (GWp) depends
on the choice of cX and cY . When this choice is clear from the context, we will note GWp(µ, ν) instead
of GWp(cX , cY , µ, ν). The GW distance is constructed so that if an optimal coupling π assigns x to y
and x′ to y′, then the value of cX (x, x′) should be close to the value of cY(y, y′). Thus it measures a
distortion between the pair of points (x, x′) and (y, y′) within each space. Since X and Y can each be
endowed with respective metric dX and dY , a natural choice for cX and cY is dqX and dqY with q ≥ 1. This
case has been studied in depth by Sturm (2012). The general case when cX and cY are not metrics but
simply measurable integrable functions which for instance don’t verify the triangle inequality has been
studied by Chowdhury and Mémoli (2019).

Network measure and metric measure spaces. (GWp) defines a measure of dissimilarity between
network measure spaces (Chowdhury and Mémoli, 2019), i.e. the triplets of the form (X , cX , µ) where X
is a Polish space, cX : X ×X → R is a measurable integrable function, and µ is a probability measure on
X . When cX = dqX , where q ≥ 1 and dX is the metric associated with X , (GWp) defines a measure of
dissimilarity between metric measure spaces (Sturm, 2012), i.e. the triplets of the form (X , dX , µ).

The Gromov-Wasserstein problem between discrete distributions. When µ and ν are discrete
probability distributions of the form µ =

∑m
k=1 akδxk

and ν =
∑n
l=1 blδyl , the Gromov-Wasserstein

problem (to a power p) reads as

inf
ω∈Π(a,b)

∑
i,j,k,l

|Cxi,k − C
y
j,l|pωi,jωk,l , (3.1)

where Cx and Cy are matrices of respective sizes m ×m and n × n. This is a non-convex quadratic
program (Loiola et al., 2007) that can be seen as a relaxation of the Quadratic Assignment Problem
(QAP) (Koopmans and Beckmann, 1957), which is known to be in all generality a NP-hard problem.
Such problem consists in its most standard form in solving, given two matrices A = (ai,j)1≤i,j≤n and
D = (Di,j)1≤i,j≤n,

min
σ∈Perm(n)

∑
i,j

ai,jdσ(i),σ(j) .

This latter problem can be illustrated with the facility location problem. Given n different facilities and
n possible locations such that the distance between the i-th and the j-th facility is di,j , and given a
matrix of flows ai,j corresponding for instance to the number of people that have to move everyday from
facility i to facility j, we aim to attribute a given location to each facility that minimizes the total sum of
distance covered in one day by all people that have to move from one given facility to another. Thus, we
want to find the permutation σ such that the total cost

∑
i,j ai,jdσ(i),σ(j) is minimal. The QAP is also

intrinsically linked with the graph matching problem (Karp et al., 1990) whose goal is to match the edge
affinities of two graphs that are represented by symmetric matrices.

Discrete distributions as structured objects. Between discrete distributions µ =
∑m
k=1 akδxk

and
ν =

∑n
l=1 blδyl respectively on X and Y, solving the GW problem (3.1) with ground cost matrices Cx

and Cy can informally be thought as comparing the edge affinities of two graphs, whose vertices are
respectively the tuples {xk}1≤k≤m and {yl}1≤l≤n, and whose edges are encoded by the matrices Cx and
Cy. Hence the Gromov-Wasserstein distance compares the edge affinities of the two graphs, related to the
inherent structures of the two distributions µ and ν, while the Wasserstein distance compares the vertex
positions in the two graphs. This explains why the Gromov-Wasserstein is naturally well-suited to compare
structured data. Building on this analysis, the fused Gromov-Wasserstein distance (Vayer et al., 2019a)
proposes to use both edge affinities and vertex positions informations by mixing the Gromov-Wasserstein
and the Wasserstein problems.
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Existence of solutions. As for Problem (KP), one can show that Problem (GWp) admits at least
one solution if cX and cY are continuous. The proof builds on similar arguments as for the existence
of solutions of Problem (KP): the main idea is to use the Weierstrass theorem using the fact that
Π(µ, ν) is compact if X and Y are Polish. The only fact that needs to be checked is that the functional
J : π 7→

∫ ∫
|cX − cY |pdπdπ is lower semi-continuous. This can be done by showing that J can be

expressed as a supremum of lower semi-continuous functions, see Vayer (2020, Lemma 2.2.1).

Link with Gromov-Hausdorff distance. The Gromov-Wasserstein problem shares close connections
with the Gromov-Hausdorff distance (Gromov, 1981) that informally quantifies how far two metric
spaces (X , dX ) and (Y, dY) are from being isometric to each other. However computing this distance
results in a highly non-convex optimization problem whose global solution is generally untractable. The
Gromov-Wasserstein distance can be thought as a "smoothing" of the Gromov-Hausdorff distance as
shown in Mémoli (2011).

The Gromov-Monge problem. Analogously to Problem (MP), one can define the Gromov-Monge
problem (Mémoli and Needham, 2018) as

inf
T : ν=T#µ

∫
X

∫
X
|cX (x, x′)− cY(T (x), T (x′))|pdµ(x)dµ(x′) .

However, as for (MP), there are many cases where there doesn’t exist any map such that ν = T#µ and
so where the infinimum doesn’t actually exist. An active field of research aims at establishing whether
there exists a result similar to the Brenier theorem for the Gromov-Wasserstein problem of order 2 in
the Euclidean setting, more precisely whether the optimal coupling solution of (GWp) is supported by
the graph of the gradient of a convex function. Dumont et al. (2022) have notably shown an analogous
result to the Brenier theorem in the case where X = Rd and Y = Rd′ with d ≥ d′, when choosing the
inner-products as cost functions cRd and cRd′ , supposing that µ admits a density with respect to the
Lesbegue measure on Rd and supposing that the supports of µ and ν are compact. A similar result
has been proved by Vayer (2020) but with stronger assumptions that happen to be difficult to check in
practice. The situation seems however to be more tricky in the case where cRd = ∥.∥2Rd and cRd′ = ∥.∥2Rd′ ,
where ∥.∥2Rd denotes the Euclidean norm in Rd. Indeed, in the case where X = R and Y = R, and where
µ = 1

n

∑
k δxk

and ν = 1
n

∑
l δyl , Beinert et al. (2022) have exhibited a counter-example which suggests

there doesn’t systematically exist a monotone Monge map solution of the problem in one dimension, and
so there doesn’t systematically exist a Monge map that takes the form of a gradient of convex function in
higher dimension. A procedure to exhibit other counter-examples in one dimension has been proposed in
Dumont et al. (2022).

3.1.2 Metric properties of Gromov-Wasserstein distances

Before presenting the metric properties of the Gromov-Wasserstein distance, we need to introduce the
notion of isometry, as well as the notions of strong and weak isomorphisms.

Isometries. Let (X , dX ) and (Y, dY) be two metric spaces. We say that ϕ : X → Y is an isometry if
for every couple (x, x′) in X × X ,

dY(ϕ(x), ϕ(x
′)) = dX (x, x′) .

Note that with this definition, isometries are necessarily injective but not necessarily bijective. When
there exists a bijective isometry between two metric spaces (X , dX ) and (Y, dY), we say that these metric
spaces are isometric. In the Euclidean setting, the Mazur-Ulam theorem (Mazur and Ulam, 1932) states,
in the refined version of Baker (1971), that the isometries from (Rd′ , ∥.∥Rd′ ) to (Rd, ∥.∥Rd) with d ≥ d′

are necessarily affine.

Strong isomorphisms. When considering metric measure spaces of the form (X , dX , µ) instead of
simple metric spaces, one can enrich the notion of isometry by taking into account the measure µ. This
results in the notion of strong isomorphisms (Sturm, 2012): we say that two metric measures spaces
(X , dX , µ) and (Y, dY , ν) are strongly isomorphic if there exists a bijective isometry ϕ : supp(µ)→ supp(ν)
that pushes µ into ν.
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Weak isomorphisms. There exists a similar notion to the notion of strong isomorphisms when
considering network measure spaces of the form (X , cX , µ) instead of metric measure spaces, with cX not
necessarily being a metric: we say that (X , cX , µ) is weakly isomorphic (Sturm, 2012) to (Y, cY , ν) if there
exists a third measure network (Z, cZ , ξ) such that supp(ξ) = Z and there exist two maps ϕ0 : Z → X
and ϕ1 : Z → Y such that

(i) for all (z, z′) ∈ Z × Z, cZ(z, z′) = cX (ϕ0(z), ϕ0(z
′)) = cY(ϕ1(z), ϕ1(z

′)).

(ii) ϕ0 pushes ξ into µ and ϕ1 pushes ξ into ν.

When cX = dqX and cY = dqY with q ≥ 1, Sturm (2012) has shown that the notion of weak isomorphism
was in fact equivalent to the notion of strong isomorphism, i.e. the network measure spaces (X , dqX , µ)
and (Y, dqY , ν) are weakly isomorphic if and only if the metric measure spaces (X , dX , µ) and (Y, dY , ν)
are strongly isomorphic.

Metric properties of Gromov-Wasserstein distances. It can be shown, see Chowdhury and
Mémoli (2019, Theorem 18) for details, that GWp satisfies all the axioms of a pseudo-metric on the space
of network measure spaces. More precisely, for (X , cX , µ), (Y, cY , ν) and (Z, cZ , ξ), we have

(i) GWp(cX , cY , µ, ν) is symmetric and non-negative.

(ii) GWp(cX , cY , µ, ν) = 0 if and only if (X , cX , µ) and (Y, cY , ν) are weakly isomorphic.

(iii) GWp satisfies the triangle inequality, i.e.

GWp(cX , cY , µ, ν) ≤ GWp(cX , cZ , µ, ξ) +GWp(cZ , cY , ξ, ν) .

In the case where cX = dqX and cY = dqY with q ≥ 1, (ii) can be replaced by:

GWp(d
q
X , d

q
Y , µ, ν) = 0 if and only if (X , dX , µ) and (Y, dY , ν) are strongly isomorphic,

and GWp defines thus a pseudo-metric on the space of metric measure spaces in that case. We refer to
Sturm (2012, Lemma 9.2) for the proof of this latter fact. However GWp is not a metric in the strict
sense of the term since: (i) it can possibly take infinite values, (ii) we can have GWp(cX , cY , µ, ν) = 0
and (X , cX , µ) not equal to (Y, cY , ν). A natural way to remedy (i) is to restrict GWp to spaces where it
can only take finite values. We thus define, for p ≥ 1,

Mp = {(X , cX , µ) :
∫
X×X c

p
X (x, x′)dµ(x)dµ(x′) < +∞} ,

such that GWp defines a pseudo-metric on Mp. Finally, GWp defines a metric on Mp quotiented by the
weak isomorphisms, or equivalently quotiented by the strong-isomorphisms if we restrict GWp to the
metric measure spaces. Interestingly, the space Mp quotiented by the weak isomorphims has also a nice
geodesic structure (Sturm, 2012) when endowed with the topology induced by GWp. We can therefore
defines the notion of Gromov-Wasserstein barycenters (Peyré et al., 2016) between network measure
spaces, analogously with the notion of Wasserstein barycenters for the Wasserstein distance.

3.1.3 Particular case: one-dimensional distributions
In general, the Gromov-Wasserstein problem cannot be solved analytically. There is however one very
particular case where closed-form solutions can be derived. This happens when X = Y = R, p = 2, the
ground costs cX and cY are both the Euclidean inner-product on R, i.e cX (x, y) = cY(x, y) = xy for all x
and y in R. In that case, Problem (GWp) reads as

inf
π∈Π(µ,ν)

∫
R×R

∫
R×R
|xx′ − yy′|2dπ(x, y)dπ(x′, y′) . (3.2)

Vayer (2020) has shown that this latter problem admits two distinct solutions that are respectively of the
form (IdR, T

�
GW)#µ and (IdR, T

�
GW)#µ where T �

GW = F−1
ν ◦ F �

µ and T �
GW = F−1

ν ◦ F �
µ with F−1

ν being
the generalized quantile function associated with ν and F �

µ and F �
µ are respectively the cumulative and

anti-cumulative distribution function associated with µ, i.e for all x ∈ R,

F �
µ(x) = µ((−∞, x]) and F �

µ(x) = µ([−x,+∞)) .
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The proof of Vayer (2020) use the equivalence between Problem (3.2) and the problem introduced by
Alvarez-Melis et al. (2019) that we will present in Section 3.2. We give an alternative proof of this
result in Section 3.3.4. Note that this result doesn’t hold anymore if we replace the inner-product by
the squared distance, i.e. when cX (x, y) = cY(x, y) = |x− y|2 for all x in y in R, as we have seen that
counter-examples could be exhibited (Beinert et al., 2022; Dumont et al., 2022) when introducing the
Gromov-Monge problem.

3.1.4 Solving GW in practice
In this section we briefly introduce the commonly used numerical solvers for the Gromov-Wasserstein
problem. In all what follows µ and ν are discrete probability distributions on X and Y of the form∑m
k=1 akδxk

and
∑n
l=1 blδyl .

Quadratic programing. The Gromov-wasserstein problem (3.1) between µ and ν reads as

inf
ω∈Π(a,b)

∑
i,j,k,l

|Cxi,k − C
y
j,l|

pωi,jωk,l .

This is a non-convex quadratic program (QP) which is known to be NP-hard in general (Loiola et al.,
2007). It is therefore expected that its approximation is costly. Observe that this latter problem can be
rewritten under the form

inf
ω∈Π(a,b)

⟨Lp(Cx, Cy)⊗ ω, ω⟩F , (3.3)

where L is the functional which associates to (Cx, Cy) the 4-th order tensor (|Cxi,k − C
y
j,l|)i,j,k,l, ⊗ is the

tensor-matrix product, and ⟨.⟩F is the Frobenius inner-product between matrices of size m×n. In general,
evaluating this objective costs O(m2n2) operations, which prevents solving the problem even in moderate
scale settings. In the particular case p = 2, Problem (3.3) can be rewritten in the equivalent form

inf
ω∈Π(a,b)

⟨cCx,Cy , ω⟩F − 2⟨Cxω(Cy)T , ω⟩F , (3.4)

where cCx,Cy = (Cx)2a1Tn+1mb
T (Cy)2. This objective can in that case be computed using O(m2n+n2m)

operations instead of O(m2n2), see Peyré et al. (2016, Proposition 1), which is already a significant gain
in terms of complexity. This latter problem shares strong connections with the graph matching problem
that in its standard form reads as

sup
σ∈Perm(n)

⟨C1σC
T
2 , σ⟩F , (3.5)

where C1 and C2 are two matrices of size n× n. One way to approximate solutions of (3.5) is to relax
the combinatorial nature of the problem, by expanding the constraint set to the convex-hull of Perm(n),
i.e. to exactly Π(1n,1n) (Birkhoff, 1946). Thus, Problem (3.4) can be seen, in the case where m = n and
a = b = 1

n , as the convex relaxation of Problem (3.5), namely as a soft graph matching problem. Finally
Problem (3.4) can be rewritten in the standard QP form

inf
ω∈Π(a,b)

1

2
vecT (ω)Qvec(ω) + vecT (cCx,Cy )vec(ω) , (3.6)

where for a matrix A of size m × n, vec(A) is the vector operator, i.e. the vector in Rmn obtained by
stacking the columns of A, and Q = −4Cx ⊗K Cy where ⊗K denotes the Kronecker product.

Algorithmic solution. Problem (3.6) can be thought as a classic OT problem with a non-convex
quadratic regularization. The non-convexity of the regularization motivates the use of a Conditional
Gradient algorithm, also known as the Frank-Wolfe algorithm (Frank et al., 1956). This algorithm consists
in first deriving the first-order Taylor approximation of the objective at current estimate ω, that reads as

DωGW (ω) = L(Cx, Cy)⊗ ω + L((Cx)T , (Cy)T )⊗ ω ,

then in finding a descent direction by minimizing a classic OT problem with ground cost DωGW (ω),
using the network simplex algorithm, then in updating the estimate of the coupling ω with a line-search
that boils down to a constrained minimization of a second degree polynomial function admitting a closed
form solution. This gives Algorithm 2. This latter algorithm is known to converge to a local minima with
a rate of O(N− 1

2 ), where N denotes the number of iterations (Lacoste-Julien, 2016). Yet, its principal
bottleneck is the network simplex step that has a complexity of O(n3 log(n)).
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Algorithm 2 Conditional gradient algorithm for non-regularized GW problem

Require: a, b, Cx, Cy, ω{0} = abT

1: while not converged do
2: C ← Dω{i−1}GWa,b,Cx,Cy (ω{i−1}) ▷ Derive first-order Taylor approximation
3: ζ ← Network-Simplex(a, b, C) ▷ Find a direction by solving a classic OT problem
4: ω{i} ← Line-search(ω{i−1}, ζ) ▷ Line-search between ω{i} and ζ
5: end while
6: return ω

Entropic Regularization. Peyré et al. (2016) and Solomon et al. (2016) have proposed to solve an
entropic-regularized version of Problem (3.1):

inf
ω∈Π(a,b)

∑
i,j,k,l

|Cxi,k − C
y
j,l|

pωi,jωk,l − εH(ω) . (ε-GWp)

This latter problem can be solved using a projected gradient descent scheme, where each update consists
in deriving the first-order Taylor approximation DωGW (ω) of the objective at current estimate ω as for
the non-regularized problem, then solving a regularized classic OT problem with ground cost DωGW (ω)
using the Sinkhorn-Knopp algorithm. This is summarized in Algorithm 3. Although this algorithm works
well in practice and always leads to a converging sequence of ω, there is to the best of our knowledge
no theory guaranting the convergence of this algorithm. Its overall theoretical complexity is in O(n3).
Yet recently, Scetbon et al. (2022) has proposed a refinement using low-rank approximations (as for the
classic regularized OT problem) of both cost and couplings, which results in a solver that approximates
GW with a linear complexity in time and memory.

Algorithm 3 Entropic-regularized GW solver

Require: a, b, Cx, Cy, ε > 0, ω{0} = abT

1: for i = 1, . . . , Nit do
2: C ← Dω{i−1}GWa,b,Cx,Cy (ω{i−1}) ▷ Derive first-order Taylor approximation
3: ω{i} ← Sinkhorn-Knopp(a, b, C, ε) ▷ Solve a regularized OT problem using Algorithm 1
4: end for
5: return ω

Computing a lower bound. Initially, Mémoli (2011) had proposed to optimize the following lower
bound instead of Problem (3.1), referred to as the Third Lower Bound (TLB),

inf
ω∈Π(a,b)

∑
k,l

W p
p (µk, νl)ωk,l , (TLB)

where µk =
∑
i aiδCx

i,k
and νl =

∑
j bjδCy

j,l
are discrete probability measures on R. The interest of this

lower bound is that it can be solved using only tools of classic optimal transport theory, more precisely by
solving consecutively two classic OT problems, where the second is between one-dimensional distributions
and thus can be solved using a simple sorting algorithm.

Other solvers. There exist numerous alternative solvers for the Gromov-Wasserstein problem that
build either on approximations or alternate formulations of the initial problem (3.1). In the Euclidean
setting, one can notably cite the sliced Gromov-Wasserstein distance (Vayer et al., 2019b) that builds on
similar ideas as the sliced Wasserstein distance (Rabin et al., 2012). Other solvers consist in reducing the
size of the GW problem, either through quantization of input measures (Chowdhury et al., 2021), or by
recursive clustering approaches (Xu et al., 2019a; Blumberg et al., 2020).

3.2 Other formulations

We introduce here two other OT distances that have been respectively introduced by Alvarez-Melis et al.
(2019) and Cai and Lim (2022). In this thesis, we call them respectively invariant Wasserstein discrepancy
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(IW) and projection Wasserstein discrepancy (PW). These two approaches differ from GW mainly in the
fact that they both encode explicitely their invariances whereas the invariance to isometries in GW is
encoded implicitly. Note also that, in contrast to Gromov-Wasserstein, these two OT distances are only
defined in the Euclidean setting.

3.2.1 Invariant Wasserstein discrepancy
We start by the OT distance proposed Alvarez-Melis et al. (2019) that we call invariant Wasserstein
discrepancy. Initially, Alvarez-Melis et al. (2019) have introduced this OT distance in the setting where µ
and ν are both living in the same Euclidean space Rd. Yet, it generalizes well to settings where µ and ν
are living in spaces of different dimensions.

Problem statement. Alvarez-Melis et al. (2019) propose to solve the following problem, between two
centered measures µ and ν on Rd,

IW 2
2 (H, µ, ν) = inf

π∈Π(µ,ν)
inf
h∈H

∫
Rd×Rd′

∥x− h(y)∥2dπ(x, y) , (IW2)

where H is a class of mappings from Rd′ to Rd encoding the invariance. This is a non-convex optimization
problem in π and h that becomes convex in π if h is fixed and becomes also convex in h if π is fixed and
H is a convex set.

Equivalent formulations. When d is equal to d′, Alvarez-Melis et al. (2019) have notably shown that
when ν is such that EY∼ν [Y Y

T ] = Idd and when H = H1 := {P ∈ Rd×d : ∥P∥F ≤
√
d}, Problem (IW2)

is equivalent to the Gromov-Wasserstein problem (GWp) of order 2 with inner-product as cost functions
cX and cY . Indeed, it can be shown (see Chapter 4 for details) that both problems are equivalent in that
case to

sup
π∈Π(µ,ν)

∥∥∥∥∫
Rd×Rd

xyTdπ(x, y)

∥∥∥∥
F
, (F-COV)

where for any matrix A of size d × d, ∥A∥F denotes the Frobenius norm, i.e.
√
tr(ATA). Another

interesting case is when H = H2 := O(Rd) = {P ∈ Rd×d : PTP = Idd} is the set of orthogonal matrices
of size d× d. In that case, Problem (IW2) is equivalent to

sup
π∈Π(µ,ν)

∥∥∥∥∫
Rd×Rd

xyTdπ(x, y)

∥∥∥∥
∗
, (∗-COV)

where for any matrix A of size d × d, ∥A∥∗ is the nuclear norm of A, i.e. ∥A∥∗ = tr((ATA)
1
2 ). Note

that both Problems (F-COV) and (∗-COV) are non-convex. These results have been shown by Alvarez-
Melis et al. (2019) in the case where µ and ν are discrete but can easily be extended to continuous
distributions. Observe that problem (∗-COV) consists in maximizing the sum of the singular values of
the cross-covariance matrix

∫
xyTdπ(x, y), whereas the Problem (F-COV) consists in maximizing the

sum of the squared singular values of the cross-covariance matrix. In general, these two problems are not
equivalent despite being structurally similar, as the example of Figure 3.1 illustrates it.

3.2.2 Projection Wasserstein discrepancy
We introduce now the OT distance proposed by (Cai and Lim, 2022), that we call here projection
Wasserstein discrepancy.

Problem statement. Cai and Lim (2022) have proposed the following OT distance between two
measures µ ∈ P(Rd) and ν ∈ P(Rd′), supposing that d ≥ d′

PW2(µ, ν) = inf
ϕ∈Γd(Rd′ )

W2(ϕ#µ, ν) , (PW2)

where Γd(Rd
′
) is the set of affine mappings ϕ from Rd to Rd′ such that for all x ∈ Rd, ϕ(y) = PT (x− b)

where b ∈ Rd and where P is in the Stiefel manifold (James, 1976), i.e. the set of orthogonal d′-frames

Vd′(Rd) = {P ∈ Rd×d
′
: PTP = Idd′} . (3.7)

The projection Wasserstein discrepancy consists thus in projecting the measure living in the larger space
to the smaller space while finding the "best" projection possible.
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Figure 3.1: Transport plans between two discrete centered distributions on R2 composed of three points.
Left: optimal coupling given by the maximization of Problem (F-COV). Right: optimal coupling given
by the maximization of Problem (∗-COV).

Equivalent formulation. One of the key results of Cai and Lim (2022) is to show that PW2 has the
following equivalent formulation

PW2(µ, ν) = inf
ξ∈Pν(Rd)

W2(µ, ξ) , (3.8)

where Pν(Rd) is the subset of P(Rd) defined as

Pν(Rd) = {ξ ∈ P(Rd) | there exists ϕ(x) = PT (x− b) with P ∈ Vd′(Rd) and b ∈ Rd such that ϕ#ξ = ν} .

Note that Problem (3.8) is different to find the "best" affine mapping ϕ : Rd′ → Rd of the form
ϕ(y) = Py + b with b ∈ Rd and P ∈ Vd′(Rd) for all y ∈ Rd′ since the measure ϕ#ν is necessarily
degenerate whereas Pν(Rd) can include measures ξ that are not degenerate.

3.3 Embedded Wasserstein distance

In this section, we define another OT distance between measures living in incomparable spaces that we
call embedded Wasserstein distance. This OT distance can be seen as the symmetrized mirror construction
of the projection Wasserstein discrepancy or as a particular case of the invariant Wasserstein discrepancy.
In contrast to the two previously introduced formulations which are not symmetric, we will show that
this OT distance defines a pseudometric invariant to isometries.

Motivation. Observe that the equivalence between (IW2) and (F-COV) generalizes well to cases of
different dimensions. Indeed, the equivalence between (IW2) and (F-COV) or (∗-COV) holds as soon as
it is possible to develop Problem (IW2) under the following form∫

Rd

∥x∥2dµ(x) +
∫
Rd′
∥y∥2dµ(y)− 2 sup

π∈Π(µ,ν)

sup
h∈H

∫
Rd×Rd′

xh(y)Tdπ(x, y) ,

in which the term
∫
Rd′ ∥y∥2dµ(y) doesn’t depend on h. In the case whereH = {P ∈ Rd×d′ : ∥P∥F ≤

√
d′},

this is possible as soon as ν is such that EY∼ν [Y Y
T ] = Idd′ regardless whether d ≥ d′ or d < d′, see the

proof of Corollary 4.3.2 for details. However, generalizing the equivalence between Problem (IW2) and
Problem (∗-COV) when the measures are living in different dimensions is a bit less immediate. When
d ̸= d′, the natural generalization of O(Rd) is the Stiefel manifold Vd′(Rd), as defined in (3.7). Yet this
generalization intrinsically supposes that d ≥ d′ since it implies that the feasible P are of rank d′. When
d < d′, there doesn’t exist any matrix P of size d×d′ such that PTP = Idd′ . In other words, when d ≥ d′,
there exist isometries P from Rd′ to Rd, whereas this is not the case when d < d′, since any isometry must
necessarily be injective. Hence, we need to suppose d ≥ d′ to generalize the equivalence between (IW2)
and (∗-COV). In that case, observe that Problem (IW2) corresponds to find an isometric embedding of
the measure living in the smaller space into the larger space. Informally, this seems to be the mirror
construction of the projection Wasserstein distance, that corresponds to project the measure living in the
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larger space into the smaller space. This motivates the introduction of the embedded Wasserstein distance,
which can be seen as the symmetrized mirror construction of the projection Wasserstein discrepancy and
which can be defined independently whether d ≥ d′ or d < d′.

Definition 3.3.1. Let µ ∈ P(Rd) and ν ∈ P(Rd′). For r ≥ 1 and s ≥ 1, let us denote Isoms(Rr) the set
of all isometries - for the Euclidean norm - from Rs to Rr. We define

EW2(µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
W2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
W2(ψ#µ, ν)

}
, (EW2)

with the convention that the infinimum over an empty set is equal to +∞.

Observe that if d > d′, the set Isomd(Rd
′
) is empty and so EW2(µ, ν) = infϕ∈Isomd′ (Rd)W2(µ, ϕ#ν).

In contrast, if d < d′, Isomd′(Rd) is empty and so EW2(µ, ν) = infψ∈Isomd(Rd′ )W2(ψ#µ, ν). When d = d′,
the two infinimums are equivalent. In all what follows, we will suppose without any loss of generality
that d ≥ d′. More generally, one can define, given two - not necessarily Euclidean - Polish spaces X and
Y each endowed with respective distances dX and dY , and given two measures µ ∈ P(X ) and ν ∈ P(Y),
the following OT distance

EWp(µ, ν) = inf

{
inf

ϕ∈IsomY(X )
Wp(µ, ϕ#ν), inf

ψ∈IsomX (Y)
Wp(ψ#µ, ν)

}
, (EWp)

where p ≥ 1 and IsomY(X ) (respectively IsomX (Y)) is the set of all isometries from Y to X (respectively
from X to Y), i.e. such that dX (ϕ(y), ϕ(y′)) = dY(y, y

′) for every y, y′ ∈ Y, and Wp is the Wasserstein
distance of order p on P(X ). However there might be cases where both set IsomY(X ) and IsomX (Y) are
empty. In that case, by convention EWp(µ, ν) = +∞.

3.3.1 Links with invariant and projection Wasserstein discrepancies

We give now details on the links between EW2 and the two other OT distances defined in the previous
section. First, observe that EW2 is the symmetrized mirror construction of PW2, as a direct consequence
of the following result, which is itself a consequence of the Mazur-Ulam theorem (Mazur and Ulam, 1932)
which implies that any isometry from Rd′ to Rd - both endowed with the Euclidean norms - is necessarily
affine. The proof of this lemma is postponed to Appendix A.

Lemma 3.3.2. Suppose d ≥ d′. Then ϕ : Rd′ → Rd is an isometry for the Euclidean norm if and only if
there exists P ∈ Vd′(Rd) and b ∈ Rd such that for all y ∈ Rd′ , ϕ is of the form

ϕ(y) = Py + b .

Hence, the embedded Wasserstein distance consists in finding an isometry ϕ from the smaller space Rd′

to the larger space Rd, which is necessarily of the form ϕ(y) = Py + b for all y ∈ Rd′ , with P ∈ Vd′(Rd)
and b ∈ Rd, while the projection Wasserstein discrepancy consists in finding a mapping ψ from the larger
space Rd to the smaller space Rd′ of the form ψ(x) = PT (x− b) for all x ∈ Rd. This mirror structure
between PW2 and EW2 is illustrated in Figure 3.2. Now, we show that EW2 can in fact be seen as a
particular case of IW2.

Proposition 3.3.3. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) and let suppose d ≥ d′. Then,

EW 2
2 (µ, ν) = inf

π∈Π(µ,ν)
inf

P∈Vd′ (Rd), b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y) . (3.9)

This result is a consequence of Lemma 3.3.2 and of the following result by Delon et al. (2022).
Lemma 3.3.4 (Delon et al., 2022). Let µ ∈ W2(Rd) and ν ∈ W2(Rd

′
) with d not necessarily greater

than d′, and let T : Rd′ → Rd be a measurable map. Then π′ ∈ Π(µ, T#ν) if and only if there is some
π ∈ Π(µ, ν) such that π′ = (Idd, T )#π. In particular, if there exist a, b ≥ 0 such that ∥T (y)∥ ≤ a+ b∥y∥
for all y ∈ Rd′ , then

inf
π∈Π(µ,ν)

∫
Rd×Rd′

∥x− T (y)∥2dπ(x, y) = inf
π∈Π(µ,T#ν)

∫
Rd×Rd

∥x− z∥2dπ(x, z) .
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Figure 3.2: Link between PW2 and EW2 for two distributions µ and ν respectively on R2 and R. In
PW2, µ is projected into R by a mapping of the form x 7→ PT (x− b). In EW2, ν is transformed into a
degenerate measure (lying on the purple line) on R2 with an isometric mapping of the form y 7→ Py + b.

Proof of Proposition 3.3.3. Since we suppose d ≥ d′, we have

EW 2
2 (µ, ν) = inf

ϕ∈Isomd′ (Rd)
W 2

2 (µ, ϕ#ν) .

Let ϕ ∈ Isomd′(Rd) for the Euclidean norm. Using Lemma 3.3.2, we get that there exists P ∈ Vd′(Rd)
and b ∈ Rd such that for all y ∈ Rd′ , ϕ(y) = Py + b. Moreover, we have, using Lemma 3.3.4,

EW 2
2 (µ, ν) = inf

ϕ∈Isomd′ (Rd)
inf

π∈Π(µ,ϕ#ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y)

= inf
ϕ∈Isomd′ (Rd)

inf
π∈Π(µ,ν)

∫
Rd′×Rd

∥x− ϕ(y)∥2dπ(x, y)

= inf
π∈Π(µ,ν)

inf
P∈Vd′ (Rd), b∈Rd

∫
Rd′×Rd

∥x− Py − b∥2dπ(x, y) ,

which concludes the proof.

Observe that Problem (3.9) is very similar to the IW2(Vd′(Rd), µ, ν) problem presented in the previous
section and differs only by the introduction of the variable b ∈ Rd that allows to handle non-centered
distributions. Observe also that, as soon as H is such that for any h ∈ H, there exists a, b ≥ 0 such that
∥h(y)∥ ≤ a+ b∥y∥ for every y ∈ Rd′ , one can directly put Problem (IW2) under the following form using
Lemma 3.3.4:

IW2(H, µ, ν) = inf
h∈H

W2(µ, h#ν) .

Thus, we can see from this formulation that PW2 can also be seen as a particular case of IW2. Finally,
one can show from Proposition 3.3.3 that the infinimum in ϕ in (EW2) is in fact always achieved.

Corollary 3.3.5. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) and let suppose d ≥ d′. Then there exists an optimal

isometry ϕ∗ : Rd′ → Rd such that EW2(µ, ν) =W2(µ, ϕ
∗
#ν).

This result is a consequence of Lemma 3.3.4 and of the following result, whose proof is postponed to
Appendix A.

Lemma 3.3.6. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) with d not necessarily greater than d′. Let µ̄ and ν̄

denote the centered measures associated to µ and ν and let P be any subset of matrices of size d × d′.
Then,

inf
π∈Π(µ,ν)

inf
P∈P, b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y) = inf
π∈Π(µ̄,ν̄)

inf
P∈P

∫
Rd×Rd′

∥x− Py∥2dπ(x, y) .

Proof of Corollary 3.3.5. Using Lemma 3.3.6 and Lemma 3.3.4, we have that

EW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)
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= inf
P∈Vd′ (Rd)

W 2
2 (µ̄, P#ν̄) ,

where µ̄ and ν̄ are the centered measures associated with µ and ν. Let us denote J : P 7→ W2(µ̄, P#ν̄)
and let us show that J is continuous. For any P0 and P1 in Vd′(Rd), we have,

|J(P0)− J(P1)| = |W2(µ̄, P0#ν̄)−W2(µ̄, P1#ν̄)| ≤W2(P0#ν̄, P1#ν̄) ,

where we used the triangular inequality property of W2. Furthermore,

W 2
2 (P0#ν̄, P1#ν̄) = inf

π∈Π(P0#ν̄,P1#ν̄)

∫
Rd×Rd

∥x− y∥2dπ(x, y)

= inf
π∈Π(ν̄,ν̄)

∫
Rd′×Rd′

∥P0x− P1y∥2dπ(x, y) ,

where we used Lemma 3.3.4 twice. Now observe that the coupling (Idd′ , Idd′)#ν̄ is in Π(ν̄, ν̄), so it follows

inf
π∈Π(ν̄,ν̄)

∫
Rd′×Rd′

∥P0x− P1y∥2dπ(x, y) ≤
∫
Rd′
∥P0x− P1x∥2dν̄(x) .

Finally, for any x ∈ Rd′ , we have

∥P0x− P1x∥2 ≤ ∥x∥2 sup
∥z∥=1

∥(P0 − P1)z∥2 ≤ ∥P0 − P1∥2F∥x∥2 ,

and so it follows that
|J(P0)− J(P1)|2 ≤ ∥P0 − P1∥2F

∫
Rn

∥x∥2dν̄ .

Since ν is in W2(Rd
′
), ν̄ is in W2(Rd

′
) and so

∫
Rd′ ∥x∥2dν̄ < +∞. It follows that |J(P0)− J(P1)| −→ 0

when ∥P0 −P1∥2F −→ 0 and so J is continuous. Moreover, since Vd′(Rd) is compact (James, 1976), J has
a minimum on Vd′(Rd) as a result of the classic Weierstrass theorem that states that any real-valued
continous function defined on a compact set achieves its infinimum. Thus, there exists P ∗ such that
EW2(µ, ν) =W2(µ̄, P

∗
#ν̄) and setting b∗ = EX∼µ[X]− P ∗EY∼ν [Y ] and ϕ∗(x) = P ∗x+ b∗ for all x ∈ Rd,

we get that there exists ϕ∗ ∈ Isomd′(Rd) such that EW2(µ, ν) = W2(µ, ϕ
∗
#ν), which concludes the

proof.

3.3.2 Equivalent formulations of the embedded and projection Wasserstein
problems

Here we derive equivalent problems to respectively Problems (EW2) and (PW2). We start with (EW2).

Equivalent problem for embedded Wasserstein distance. We show that Problem (EW2) is
equivalent to Problem (∗-COV) between the centered measures µ̄ and ν̄. In what follows, for any matrix
A of size r × s with r ≤ d and s ≤ d′, we denote A[d,d′] the matrix of size d× d′ of the form

A[d,d′] =

(
A 0
0 0

)
.

Proposition 3.3.7. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) and let suppose d ≥ d′. Problem (EW2) is

equivalent to
sup

π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rd)

tr(PTKπ) , (3.10)

where µ̄ and ν̄ denotes the centered measures associated with µ and ν and Kπ =
∫
Rd×Rd′ xy

Tdπ(x, y).
Furthermore, solving this latter problem in P for a fixed π, (3.10) reduces to

sup
π∈Π(µ̄,ν̄)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)

∥∥∥∥
∗
,

and this is achieved at
P ∗
π = Uπ Id

[d,d′]
d′ V Tπ ,

where Uπ ∈ O(Rd) and Vπ ∈ O(Rd′) are the left and right orthogonal matrices associated with the Singular
Value Decomposition (SVD) of Kπ.
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This is a consequence of the following technical result, whose proof is postponed to Appendix A.

Lemma 3.3.8. Let K be a matrix of size d×d′ with Singular Value Decomposition (SVD) K = UKΣKV
T
K

and let P be any compact set of matrices of size d× d′. Then,

sup
P∈P

tr(PTK) = max
P∈P

tr(ΣTPΣK) ,

where ΣP = diag[d,d
′](σ(P )) with σ(P ) ∈ Rd′+ denoting the vector of singular values of P. Furthermore it

is achieved at P of the form,
P = UKΣPV

T
K .

Proof of Proposition 3.3.7. Using Lemmas 3.3.6, (3.9) can be rewritten

EW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)

= inf
P∈Vd′ (Rd)

inf
π∈Π(µ̄,ν̄)

∫
Rd×Rd′

(
∥x∥2 + ∥Py∥2 − 2⟨x, Py⟩

)
dπ(x, y) .

Since for all P ∈ Vd′(Rd), ∥Py∥ doesn’t depend on P , we get that the problem is equivalent to

sup
P∈Vd′ (Rd)

sup
π∈Π(µ̄,ν̄)

∫
Rd×Rd′

⟨x, Py⟩dπ(x, y) .

Now observe that for all π ∈ Π(µ̄, ν̄),∫
Rd×Rd′

⟨x, Py⟩dπ(x, y) =
∫
Rd×Rd′

tr(xyTPT )dπ(x, y) =

∫
Rd×Rd′

tr(PTxyT )dπ(x, y) ,

where we used the cyclical permutation property of the trace operator. Finally using the linearity of the
trace, we get that the problem is equivalent to

sup
P∈Vd′ (Rd)

sup
π∈Π(µ̄,ν̄)

tr

(
PT
∫
Rd×Rd′

xyTdπ(x, y)

)
,

or equivalently,

sup
P∈Vd′ (Rd)

sup
π∈Π(µ̄,ν̄)

〈
P,

∫
Rd×Rd′

xyTdπ(x, y)

〉
.

Now, using Lemma 3.3.8 and using the fact that if P ∈ Vd′(Rd), σ(P ) = 1d′ , we get that the problem
reduces to

sup
π∈Π(µ̄,ν̄)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)

∥∥∥∥
∗
,

and this is achieved for P ∗ = Uπ Id
[d,d′]
d′ V Tπ , where Uπ ∈ O(Rd) and Vπ ∈ O(Rd′) are respectively the left

and right orthogonal matrices of the SVD of
∫
Rd×Rd′ xy

Tdπ(x, y), which concludes the proof.

Observe that P ∗
π is the projection of Kπ on the Stiefel manifold Vd′(Rd) since tr(PTKπ) is the

Frobenius inner-product between P and Kπ and so maximizing the inner-product is equivalent to
minimizing the distance between Kπ and P since ∥P∥F is necessarily equal to d′.

Equivalent problem for projection Wasserstein discrepancy. To highlight the difference between
(EW2) and (PW2), we also derive similarly an equivalent problem for (PW2). Observe that in that case,
the mapping ϕ in (PW2) is not an isometry since it is not injective. As a result, the term that previously
depended only on the marginal µ in the developpement of the square of the Euclidean distance will now
depend on P . More precisely, this gives the following result.

Proposition 3.3.9. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) and let suppose d ≥ d′. Problem (PW2) is

equivalent to
inf

π∈Π(µ̄,ν̄)
inf

P∈Vd′ (Rd)

(
tr(PTΣxP )− 2tr(PTKπ)

)
, (3.11)

where Σx =
∫
Rd×Rd xx

T dµ̄(x), Kπ =
∫
Rd×Rd′ xy

T dπ(x, y), and where µ̄ and ν̄ are the centered measures
associated with µ and ν.
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Proof of Proposition 3.3.9. First observe that using Lemma 3.3.6, we can consider without any loss
generality that µ and ν are centered and omit b. Using Lemma 3.3.4, it follows

PW 2
2 (µ, ν) = inf

P∈Vd′ (Rd)
inf

π′∈Π(PT
#µ,ν)

∫
Rd′×Rd′

∥z − y∥2dπ′(z, y)

= inf
P∈Vd′ (Rd)

inf
π∈Π(µ,ν)

∫
Rd×Rd′

∥PTx− y∥2dπ(x, y)

= inf
P∈Vd′ (Rd)

(∫
Rd

∥PTx∥2dµ(x) +
∫
Rd′
∥y∥2dν(y)− 2 sup

π∈Π(µ,ν)

∫
Rd×Rd′

(PTx)T ydπ(x, y)

)
,

and so the problem is equivalent to

inf
P∈Vd′ (Rd)

(∫
Rd

∥PTx∥2dµ(x)− 2 sup
π∈Π(µ,ν)

∫
Rd′×Rd′

(PTx)T ydπ(x, y)

)
,

which is itself equivalent to (3.11), which concludes the proof.

Observe that Problem (3.11) can be interpreted as a regularization in P of Problem (3.10). It can also
be interpreted as a W2 problem between ν and a measure µ′ which has a different second-order moment
than µ.

3.3.3 Metric properties of EW2

Here we show that EW2 satisfies all the axioms of a pseudometric on
⊔
k≥1W2(Rk) that is invariant to

isometries for the Euclidean norm.

Theorem 3.3.10. In the following, µ ∈ W2(Rd) and ν ∈ W2(Rd
′
). Then,

(i) EW2 is symmetric, non-negative and satisfies the triangular inequality, i.e. for any ξ ∈ W2(Rd
′′
),

EW2(µ, ν) ≤ EW2(µ, ξ) + EW2(ξ, ν) .

(ii) EW2(µ, ν) = 0 if and only if there exists an isometry ϕ : Rd′ → Rd such that ν = ϕ#µ.

Thus EW2 defines a pseudometric on
⊔
k≥1W2(Rk).

In the proof of this theorem, we will use the following intermediary result, whose proof is postponed
to Appendix A.1.

Lemma 3.3.11. Let µ ∈ W2(Rd) and ν ∈ W2(Rd
′
) with d not necessarily greater than d′. Let r ≥

max{d, d′} and let ψ ∈ Isomd(Rr). Then, EW2(µ, ν) = EW2(ψ#µ, ν).

Proof of Theorem 3.3.10. First observe that non-negativity is straightforward. Furthermore, observe also
that if d ≠ d′, symmetry is also straightfoward. Now suppose d = d′ and observe that that the set Vd′(Rd)
coincides with the set of orthogonal matrices O(Rd). Thus we have

inf
ϕ∈Isomd(Rd)

W2(µ, ϕ#ν) = inf
π∈Π(µ,ν)

inf
P∈O(Rd), b∈Rd

∫
Rd×Rd

∥x− Py − b∥2dπ(x, y)

= inf
π∈Π(µ,ν)

inf
P∈O(Rd), b∈Rd

∫
Rd×Rd

∥PTx− y − PT b∥2dπ(x, y)

= inf
ψ∈Isomd(Rd)

W2(ψ#µ, ν) ,

and so EW2 is also symmetric in that case. Before turning to the proof of the two other points, we recall
that the infinimum in ϕ is always achieved, see Corollary 3.3.5.

(i) Now we prove the triangle inequality. Let r ≥ max{d, d′, d′′}, ϕ0 ∈ Isomd(Rr) and for ξ ∈ W∈(Rd
′′
),

let ϕ1 ∈ argminϕ∈Isomd′′ (Rr)W2(ϕ0#µ, ϕ#ξ). We have, using first Lemma 3.3.11, then using the
triangle inequality property of W2,

EW2(µ, ν) = EW2(ϕ0#µ, ν) = inf
ϕ∈Isomd′ (Rr)

W2(ϕ0#µ, ϕ#ν)

53



Optimal transport between measures on incomparable spaces

≤ inf
ϕ∈Isomd′ (Rr)

[W2(ϕ0#µ, ϕ1#ξ) +W2(ϕ1#ξ, ϕ#ν)]

≤W2(ϕ0#µ, ϕ1#ξ) + inf
ϕ∈Isomd′ (Rr)

W2(ϕ1#ξ, ϕ#ν)

≤ EW2(ϕ0#µ, ξ) + EW2(ϕ1#ξ, ν) .

We conclude then by applying Lemma 3.3.11 on both terms.

(ii) Suppose without any loss of generality that d ≥ d′ and suppose EW2(µ, ν) = 0. Since the infinimum
in ϕ is achieved, there exists ϕ ∈ Isomd′(Rd) such that W2(µ, ϕ#ν) = 0 and so µ = ϕ#ν. The
reverse implication is obvious.

Finally, observe that if µ and ν have finit order 2 moments, then EW2 necessarily takes finite values, and
so EW2 defines a pseudometric on

⊔
k≥1W2(Rk).

Observe that Lemma 3.3.11 highlights that EW2 shares close connections with the distance between
metric measure spaces introduced in Sturm (2006) that can be defined as follows,

Dp((X , dX , µ), (Y, dY , ν)) = inf
Z,ψ,ϕ

Wp(ψ#µ, ϕ#ν) , (3.12)

where (X , dX , µ) and (Y, dY , ν) are two metric measure spaces, Z is a third Polish space, and where
ψ : X → Z and ϕ : Y → Z are two isometric mappings. However it is not clear that the two distances are
strictly equivalent because the infinimum in Z in Equation (3.12) also includes non-Euclidean spaces.
However, if we restrict the problem to only Euclidean spaces Z, then Lemma 3.3.11 directly implies that
the two distances are equivalent.

3.3.4 Case of equivalence with Gromov-Wasserstein

Finally, we exhibit here a particular case where the EW2 problem is equivalent with the Gromov-
Wasserstein problem with inner-product costs, which is when the smaller space is R. Indeed, When
ν is a one-dimensional distribution on R, the EW2 problem is equivalent to the GW2 problem with
inner-products as cost functions, as it is stated in the following result.

Theorem 3.3.12. Let µ ∈ P(Rd) and ν ∈ P(R). Then the Gromov-Wasserstein problem with inner-
products as cost functions between the centered measures µ̄ and ν̄, i.e.

inf
π∈Π(µ̄,ν̄)

∫
Rd×R

∫
Rd×R

(⟨x, x′⟩d − yy′)2dπ(x, y)dπ(x′, y′) ,

is equivalent to Problem (EW2) between µ and ν, i.e.

inf
ϕ∈Isom1(Rd)

W2(µ, ϕ#ν) .

Proof. Since Kπ =
∫
Rd×R xy

Tdπ(x, y) is of size d× 1, it has a unique singular value λπ > 0, and so one
can observe that Problems (F-COV) and (∗-COV), i.e.

sup
π∈Π(µ̄,ν̄)

∥Kπ∥F and sup
π∈Π(µ̄,ν̄)

∥Kπ∥∗ ,

that are respectively equivalent to the Gromov-Wasserstein problem with inner-product costs between µ̄
and ν̄, and the Embedded Wasserstein problem between µ and ν, can both be rewritten

sup
π∈Π(µ̄,ν̄)

λπ ,

implying thus that the two problems are equivalent.

Observe that this theorem allows to recover almost directly the result of Vayer (2020) on Gromov-
Wasserstein between one-dimensional distributions presented in Section 3.1.3. However, Theorem 3.3.12
is a bit more general than the result of Vayer (2020) since µ is not necessarily one-dimensional here but
of can be of any arbitrary dimension d.
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3.4 Conclusion

In this chapter, we have introduced the common generalization of optimal transport to measures living
in incomparable spaces, i.e. the Gromov-Wasserstein distance (Mémoli, 2011), as well as the other
recent other formulations proposed respectively by Alvarez-Melis et al. (2019) and Cai and Lim (2022).
We also have introduced a new formulation, the embedded Wassertein distance, that can be seen as
a generalization of a particular case of the OT distance proposed by Alvarez-Melis et al. (2019) to
measures living in Euclidean spaces of different dimensions, and as the mirror construction of the OT
distance proposed by Cai and Lim (2022). The relatively recent introduction of the Gromov-Wasserstein
distance has generalized OT to cases where there doesn’t exist any meaningful ground cost to compare
the two spaces X and Y the distributions are living in. The property of the GW distance of comparing
the inherent structures of the distributions rather than the positions of their atoms makes it naturally
well-suited for structured data as graphs. Hence the Gromov-Wasserstein distance has been used over
the last past years for numerous graph related applications, such as graph matching (Xu et al., 2019b;
Petric Maretic et al., 2019; Vincent-Cuaz et al., 2021), graph classification (Vayer et al., 2019a; Jin
et al., 2022) or graph prediction (Brogat-Motte et al., 2022). Thanks to its invariance property to
isometric transformations, it has also been used in object matching related applications, such as shape
matching (Mémoli, 2009; Schmitzer and Schnörr, 2013), cell alignment (Demetci et al., 2020, 2022), or
word embedding (Alvarez-Melis and Jaakkola, 2018).

In contrast to classic OT, the theoretical understandings of the Gromov-Wasserstein problem are
still relatively nascent. Even on one-dimensional distributions, the behavior of the Gromov-Wasserstein
distance is still not well understood in the case the ground costs cX and cY are the squared Euclidean
distances, whereas the Wasserstein distance has a simple closed-form solution in that case. The other
known simple particular case where the Wasserstein problem admits a closed-form solution is the case
of Gaussian distributions. In the case of Gromov-Wasserstein, little was known prior to our work - to
the best of our knowledge - on its behavior on Gaussian distributions. Only Vayer (2020) has derived a
closed-form solution for the Gromov-Monge problem restricted to linear Monge maps. In order to bridge
the gap between the theoretical understandings of the Gromov-Wasserstein and the Wasserstein distances,
the goal of Chapter 4 is therefore to derive a closed-form expression of the Gromov-Wasserstein distance
between Gaussian distributions. We also continue to establish links with the three formulations presented
above. In Chapter 5, we introduce two new Gromov-Wasserstein-like OT distances between Gaussian
mixture models, similarly to the work of Delon and Desolneux (2020) with the Wasserstein distance, and
illustrate their pratical uses on several Gromov-related tasks.
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Chapter 4

The Gromov-Wasserstein distance
between Gaussian distributions
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In this chapter, we study the behavior of the Gromov-Wasserstein distance of order 2 between Gaussian
distributions possibly living in different dimensions, as well as the two other formulations presented in
Section 3.2. This chapter is mostly a reproduction of Salmona et al. (2021) but also contains some results
of Salmona et al. (2023).

4.1 Introduction

Most of the time, OT problems cannot be solved analytically and require the use of numerical solvers.
However, there are two notable cases, e.g. between one-dimensional or between Gaussian distributions,
where the Wasserstein distance admits a closed-form expression and the associated optimal transport
plan admits a nice closed-form solution. Despite being relatively simple, these closed-forms have been
proved to be very useful for practitioners to design new OT tools or tools inspired by the OT geometry.
For instance, the sliced Wasserstein distance (Rabin et al., 2012) builds on the closed-form of OT on one-
dimensional distributions by deriving a family of one-dimensional representations for a higher-dimensional
probability distribution through linear projections, and then by calculating the distance between two input
distributions as a functional of the Wasserstein distance between their one-dimensional representations.
This yields to a computationally effective OT distance with nice properties that has therefore attracted
a lot of attention. It has been sucessfully applied to a variety of practical tasks, including generative
modeling (Kolouri et al., 2018a; Deshpande et al., 2018; Liutkus et al., 2019) and learning GMMs (Kolouri
et al., 2018b). On the other hand, the closed-form expression of the Wasserstein distance between
Gaussian distributions has inspired the Frechet Inception Distance (FID) (Heusel et al., 2017) that is the
most commonly used tool to assess the results of generative models. Furthermore, analogously to the
sliced Wasserstein distance with the one-dimensional distributions, Delon and Desolneux (2020) have
proposed a composite OT distance between GMMs that leverages the closed-form expression of the W2
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distance between Gaussian distributions and that can also be used as a relatively computationally efficient
alternative to the Wasserstein distance.

Similarly to classic OT, the Gromov-Wasserstein distance of order 2 has also a closed-form expression
between one-dimensional distributions when the cost functions cX and cY are both the inner-product
on R. Indeed, Vayer (2020) has shown that the GW problem admits two distinct solutions in that
case that correspond in the discrete case to the non-increasing and the non-decreasing rearrangement
of the points. If this property also seems to hold in most cases when the costs functions cX and cY
are the square Euclidean distances instead of the inner-products (Vayer et al., 2019b), Beinert et al.
(2022) and Dumont et al. (2022) have shown that one can construct very specific counter-examples
where it is not the case. Still, these results and observations motivate the introduction of the sliced
Gromov-Wasserstein distance (Vayer et al., 2019b) in a similar way to the sliced Wasserstein distance,
that leads to a computationally efficient solver for GW problems in the Euclidean setting. In contrast,
little was known before this work on the behavior of the Gromov-Wasserstein distance between Gaussian
distributions, possibly living in different dimensions. Vayer (2020) has derived a closed-form expression
of the Gromov-Monge problem restricted to linear push-forward mappings when the ground costs cX
and cY are the squared Euclidean distances. Vayer (2020) has also derived a closed-form solution in case
where the two Gaussian distributions are living in the same dimension. Still, these results concern only a
very restricted problem and so there is no guarantee at all that the solution found by Vayer (2020) is also
solution to the non-restricted Gromov-Wasserstein problem.

It has been known since Dowson and Landau (1982) that the Wasserstein distance of order 2 between
Gaussian distributions admits a closed-form solution that is supported by the graph of an affine mapping.
This degeneracy of the optimal coupling is in line with the Brenier theorem (Brenier, 1991) which states
that as soon as µ is absolutely continuous with respect with the Lesbegue measure, the W2 problem admits
a unique solution that is supported by the graph of a mapping. In the Gromov-Wasserstein case, Dumont
et al. (2022) have recently shown that the GW problem with inner-products as cost functions admits at
least one solution that is supported by the graph of a mapping, assuming that the supports of the measures
µ and ν are compact. Even though the Gaussian distributions do not satisfy the compactness property of
their support, it is thus likely to find a solution of the GW problem between Gaussian distributions that
is a degenerate transport plan supported by the graph of a mapping. However, when the cost functions
are the squared Euclidean distances, it seems that there doesn’t exists any result similar to the Brenier
theorem. Hence one cannot intuit the form of the solutions of the GW problem in that case.

Contributions of this chapter. In this chapter, we study the behavior of the Gromov-Wasserstein
distance between Gaussian distributions, focusing on the cases where the cost functions are the squared
Euclidean distances or the inner-products. We also study the behaviors of the other formulations presented
in Section 3.2. More precisely, In Section 4.2 we derive lower and upper bounds of the GW problem with
squared Euclidean distances as cost functions, then we show that the latter problem restricted to Gaussian
couplings admits closed form solutions that are supported by the graph of an affine mapping. These
solutions are closely related to Principal Components Analysis (PCA). We then study the tightness of
our bounds and exhibit some particular cases where the solution of the restricted problem is also solution
of the general problem. Finally, we discuss the form of the solution in the general case. In Section 4.3,
we show that the solutions of the previous restricted problem are also solutions of the GW problem
with inner-product as cost functions, but now without any restriction on the set of admissible couplings.
We also show that these couplings are also solutions, on the one hand, of the invariant Wasserstein
discrepancy (Alvarez-Melis et al., 2019) in the particular case where this latter problem is equivalent to
Problem (F-COV), and on the the other hand of the embedded Wasserstein distance. Finally, we derive
the expression of the projection Wasserstein discrepancy (Cai and Lim, 2022) between two multivariate
Gaussian distributions.

4.2 The quadratic case

In this section, we focus on the Gromov-Wasserstein distance of order 2 between two Gaussian measures
µ = N(m0,Σ0) and ν = N(m1,Σ1), respectively on Rd and Rd′ , i.e. m0 ∈ Rd, m1 ∈ Rd′ , Σ0 ∈ Sd+ and
Σ1 ∈ Sd′+ . More precisely, our goal is to solve the following optimization problem

GW 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd′

∫
Rd×Rd′

∣∣∥x− x′∥2Rd − ∥y − y′∥2Rd′

∣∣2 dπ(x, y)dπ(x′, y′) , (GW2-Q)
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where ∥.∥Rd and ∥.∥Rd′ are the Euclidean norms on respectively Rd and Rd′ .

4.2.1 Probabilistic formulation

In this section, we derive an equivalent probalistic formulation of Problem (GW2-Q) which takes the form
of a functional of co-moments of order 2 and 4 of π. Note that this formulation is not specific to Gaussian
measures but to all measures with finite order 2 moments. More precisely, we show the following result.

Proposition 4.2.1. Let µ ∈ W2(Rd) with mean vector m0 ∈ Rd and covariance matrix Σ0 ∈ Sd+ and
ν ∈ W2(Rd

′
) with mean vector m1 and covariance matrix Σ1 ∈ Sd′+ . Let P0, D0 and P1, D1 be respective

diagonalizations of Σ0(= P0D0P
T
0 ) and Σ1(= P1D1P

T
1 ). Let us define T0 : x 7→ PT0 (x − m0) and

T1 : y 7→ PT1 (y −m1). Then Problem (GW2-Q) is equivalent to the following problem

sup
X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) + 2∥Cov(X,Y )∥2F , (supCOV)

where X = (X1, X2, . . . , Xd)
T , Y = (Y1, Y2, . . . , Yd′)

T . More precisely, (X,Y ) is optimal for (supCOV)
if and only if the law of (T−1

0 (X), T−1
1 (Y )) is optimal for (GW2-Q).

This proposition is a direct consequence of the two following intermediary results.

Lemma 4.2.2. We denote O(Rd) = {O ∈ Rd×d| OTO = Idd} the set of orthogonal matrices of size d.
Let µ and ν be two probability measures respectively W2(Rd) and W2(Rd

′
). Let Td : x 7→ Odx+ xd and

Td′ : y 7→ Od′y + yd′ be two affine applications with xd ∈ Rd, Od ∈ O(Rd), yd′ ∈ Rd′ , and Od′ ∈ O(Rd′).
Then for GW2(Td#µ, Td′#ν) = GW2(µ, ν).

Lemma 4.2.3 (Vayer, 2020). Suppose there exist some scalars a, b, c such that cX (x, x′) = a∥x∥2Rd +
b∥x′∥2Rd′ + c⟨x, x′⟩d, where ⟨., .⟩d denotes the inner product on Rd, and cY(y, y′) = a∥y∥2Rd′ + b∥y′∥2Rd′ +

c⟨y, y′⟩d′ . Let µ and ν be two probability measures respectively in W2(Rd) and W2(Rd
′
). Then,

GW 2
2 (cX , cY , µ, ν) = Cµ,ν − 2 sup

π∈Π(µ,ν)

Z(π) ,

where GW2(cX , cY , µ, ν) is defined as in (GWp), Cµ,ν =
∫
c2Xdµdµ+

∫
c2Ydνdν − 4ab

∫
∥x∥2Rd∥y∥2Rd′dµdν,

and

Z(π) = (a2 + b2)

∫
∥x∥2Rd∥y∥2Rd′dπ(x, y) + c2

∥∥∥∥∫ xyTdπ(x, y)

∥∥∥∥2
F

+ (a+ b)c

∫ (
∥x∥2Rd⟨EY∼ν [Y ], y⟩d′ + ∥y∥2Rd′ ⟨EX∼µ[X], x⟩d

)
dπ(x, y) . (4.1)

Proof of Proposition 4.2.1. Using Lemma 4.2.2, we can focus without any loss of generality on centered
Gaussian measures with diagonal covariance matrices. Thus, defining T0 : x 7→ PT0 (x − m0) and
T1 : y 7→ PT1 (y−m1) and then applying Lemma 4.2.3 on GW2(T0#µ, T1#ν) with a = 1, b = 1, and c = −2
while remarking that the last term in Equation (4.1) is null because EX∼T0#µ[X] = 0 and EY∼T1#ν [Y ] = 0,
it follows that Problem (GW2-Q) is equivalent to

sup
π∈Π(T0#µ,T1#ν)

∫
∥x∥2Rd∥y∥2Rd′dπ(x, y) + 2

∥∥∥∥∫ xyTdπ(x, y)

∥∥∥∥2
F
.

Since T0#µ and T1#ν are centered, it follows that
∫
xyTdπ(x, y) = Cov(X,Y ) where X ∼ T0#µ and

Y ∼ T1#ν. Furthermore, it can be easily computed that∫
∥x∥2Rd∥y∥2Rd′dπ(x, y) =

∑
i,j

Cov(X2
i , Y

2
j ) +

∑
i,j

E[X2
i ]E[Y 2

j ] .

Since the second term doesn’t depend on π, we get that problem (GW2-Q) is equivalent to problem
(supCOV).
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The left-hand term of (supCOV) is closely related to the sum of symmetric co-kurtosis1 and so
depends on co-moments of order 4 of π. On the other hand, the right-hand term is directly related to the
co-moments of order 2 of π. For this reason, Problem (supCOV) is hard to solve because it involves to
optimize simultaneously the co-moments of order 2 and 4 of π and so to know the probabilistic rule which
links them. This rule is well-known when π is Gaussian thanks to the Isserlis lemma (Isserlis, 1918), but
this is not the case in general to the best of our knowledge and there is no a priori reason for the solution
of Problem (supCOV) to be Gaussian even if the marginals µ and ν are Gaussian.

4.2.2 Study of the general problem
Although Problem (supCOV) is hard to solve because of its dependence on co-moments of order 2 and 4
of π, one can still optimize both terms seperately in order to find a lower bound of GW2(µ, ν). In the
rest of the chapter, we suppose for convenience and without any loss of generality that d ≥ d′.

Proposition 4.2.4. Suppose without any loss of generality that d ≥ d′. Let µ = N (m0,Σ0) and
ν = N (m1,Σ1) be two Gaussian measures on Rd and Rd′ . Let P0, D0 and P1, D1 be the respective
diagonalizations of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues of Σ0 and Σ1 in

non-increasing order. We suppose that Σ0 is non-singular. A lower bound for GW2(µ, ν) is then

GW 2
2 (µ, ν) ≥ LGW 2

2 (µ, ν) ,

where

LGW 2
2 (µ, ν) = 4 (tr(D0)− tr(D1))

2
+ 4 (∥D0∥F − ∥D1∥F )2 + 4∥D(d′)

0 −D1∥2F
+ 4

(
∥D0∥2F − ∥D

(d′)
0 ∥2F

)
, (4.2)

where for any matrix A of size d× d, A(d′) denotes the submatrix of size d′ × d′ containing the d′ first
rows and the d′ first columns of A.

The proof of this proposition is divided in smaller intermediary results. First we recall the Isserlis
lemma (Isserlis, 1918), which allows to derive the co-moments of order 4 of a Gaussian distribution as a
function of its co-moments of order 2.
Lemma 4.2.5 (Isserlis, 1918). Let X be a zero-mean Gaussian vector of size d. Then for all 4-tuple of
indices i, j, k, l in J1, dK,

E [XiXjXkXl] = E [XiXj ]E [XkXl] + E [XiXk]E [XjXl] + E [XiXl]E [XjXk] .

Then we derive the two following general optimization lemmas, whose proofs are postponed to
Appendix A.2. In all the following, Ĩdd denotes any diagonal matrix of the form diag((±1)1≤i≤d). We
also recall, that for any matrix A of size r × s with r ≤ d and s ≤ d′, we denote A[d,d′] the matrix of size
d× d′ of the form

A[d,d′] =

(
A 0
0 0

)
.

When d = d′, we will denote A[d] instead of A[d,d′].

Lemma 4.2.6. Suppose that d ≥ d′. Let Σ be a symmetric positive semi-definite matrix of size d+ d′ of
the form

Σ =

(
Σ0 K
KT Σ1

)
,

with Σ0 ∈ Sd++, Σ1 ∈ Sd′+ and K being a rectangular matrix of size d × d′. Let P0, D0 and P1, D1 be
the respective diagonalisations of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues in

non-increasing order. Then

max
K : Σ1−KTΣ−1

0 K∈Sd′+
∥K∥2F = tr(D(d′)

0 D1), (4.3)

and is achieved at any K∗ of the form

K∗ = P0

(
Ĩdd′D

(d′)
0

1
2
D

1
2
1

)[d,d′]

PT1 . (opK1)

1The symmetric co-kurtosis of two random variables X and Y is defined as E[(X−E[X])2(Y −E[Y ]2)]

σ2
X

σ2
Y

, where σX and σY

denote the standard deviations of X and Y .
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Lemma 4.2.7. Suppose that d ≥ d′. Let Σ be a symmetric positive semi-definite matrix of size d+ d′ of
the form:

Σ =

(
Σ0 K
KT Σ1

)
,

with Σ0 ∈ Sd++, Σ1 ∈ Sd′+ and K being a rectangular matrix of size d × d′. Let A ∈ Rd′×d be a matrix
with rank 1. Then,

max
K : Σ1−KTΣ−1

0 K∈Sd′+
tr(KA) =

√
tr(AΣ0ATΣ1).

In particular, if Σ0 = diag(α) and Σ1 = diag(β) with α ∈ Rd and β ∈ Rd′ , then, denoting 1d′,d the
rectangular matrix of size d′ × d whose coefficients are all equal to 1,

max
K : Σ1−KTΣ−1

0 K∈Sd′+
tr(K1d′,d) =

√
tr(Σ0)tr(Σ1) ,

and this is achieved at

K∗ =
αβT√

tr(Σ0)tr(Σ1)
. (opK2)

Proof of Proposition 4.2.4. For µ = N(m0,Σ0) and ν = N(m1,Σ1), we denote P0, D0 and P1, D1 the
respective diagonalizations of Σ0 and Σ1 that sort the eigenvalues in non-increasing order. Let T0 : x 7→
PT0 (x − m0) and T1 : y 7→ PT1 (y − m1). For π ∈ Π(T0#µ, T1#ν) and (X,Y ) ∼ π, we denote Σπ the
covariance matrix of (X,Y ) and Σ̃π the covariance matrix of (X2, Y 2) where X2 and Y 2 are defined
respectively as (X2

i )1≤i≤d and (Y 2
j )1≤j≤d′ . Using Isserlis lemma 4.2.5 to compute Cov(X2, X2) and

Cov(Y 2, Y 2), it follows that Σπ and Σ̃π are of the form:

Σπ =

(
D0 Kπ

KT
π D1

)
and Σ̃ =

(
2D2

0 K̃π

K̃T
π 2D2

1

)
.

In order to find a supremum for each term of (supCOV), we use two necessary conditions for π to be
in Π(T0#µ, T1#ν) that are that Σπ and Σ̃π must be positive semi-definite matrices. To do so, we can
use the equivalent conditions that the Schur complements of Σπ and Σ̃π, i.e. D1 − KT

πD
−1
0 Kπ and

2D2
1 − 1

2K̃
T
πD

−2
0 K̃π, must also be positive semi-definite matrices. Remarking that the left-hand term in

(supCOV) can be rewritten tr(K̃π1d′,d), we get the two following inequalities

sup
X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) ≤ max

2D2
1−

1
2 K̃

T
πD

−2
0 K̃π∈Sd′+

tr(K̃π1d′,d) , (4.4)

and
sup

X∼T0#µ,Y∼T1#ν
∥Cov(X,Y )∥2F ≤ max

D1−KT
πD

−1
0 Kπ∈Sd′+

∥Kπ∥2F . (4.5)

Applying Lemmas 4.2.6 and 4.2.7 on both right-hand terms, we get on the one hand:

sup
X∼T0#µ,Y∼T1#ν

∥Cov(X,Y )∥2F ≤ tr(D(d′)
0 D1),

and on the other hand:

sup
X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) ≤ 2

√
tr(D2

0)tr(D2
1) = 2∥D0∥F∥D1∥F .

Furthermore, using Lemma 4.2.3, it follows that

GW 2
2 (µ, ν) = Cµ,ν − 4 sup

X∼T0#µ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) +

∑
i,j

E
[
X2
i

]
E
[
X2
j

]
+ 2 ∥Cov(X,Y )∥2F


≥ Cµ,ν − 8

√
tr(D2

0)tr(D2
1)− 4tr(D0)tr(D1)− 8tr(D(d′)

0 D1) ,

where

Cµ,ν = EU∼N(0,2D0)[∥U∥
4
Rd ] + EV∼N(0,2D1)[∥V ∥

4
Rd′ ]− 4EX∼µ[∥X∥2Rd ]EY∼ν [∥Y ∥2Rd′ ]

= 8tr(D2
0) + 4(tr(D0))

2 + 8tr(D2
1) + 4(tr(D1))

2 − 4tr(D0)tr(D1) .
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Finally

GW 2
2 (µ, ν) ≥ 4(tr(D0))

2 + 4(tr(D1))
2 − 8tr(D0)tr(D1) + 8tr(D2

0) + 8tr(D2
1)

− 8
√

tr(D2
0)tr(D2

1)− 8tr(D(d′)
0 D1)

= LGW 2
2 (µ, ν) ,

which concludes the proof.

Inequality (4.4) becomes an equality if there exists a plan π ∈ Π(T0#µ, T1#ν) such that for (X,Y ) ∼ π,∑
Cov(X2

i , Y
2
j ) = 2∥D0∥F∥D1∥F . Thanks to Lemma 4.2.7, we know that tr(K̃∗

1d′,d) = 2∥D0∥F∥D1∥F
for

K̃∗ =
2α2(β2)T

∥D0∥F∥D1∥F
,

where α2 = (α2
1, α

2
2, . . . , α

2
d) and β2 = (β2

1 , β
2
2 , . . . , β

2
d′) are the diagonal vectors of D2

0 and D2
1. However,

it doesn’t seems straightforward to exhibit a plan π ∈ Π(T0#µ, T1#ν) such that for (X,Y ) ∼ π,
Cov(X2, Y 2) = K̃∗. An important point to mention is that it can be shown, thanks to Isserlis lemma
4.2.5, that there does not exist any Gaussian plan in Π(T0#µ, T1#ν) with such symmetric co-moments of
order 4.

On the other hand, it can be easily seen that inequality (4.5) is in fact an equality since the maximal
value of ∥Cov(X,Y )∥2F is reached when the law of (X,Y ) is Gaussian and Cov(X,Y ) is of the form
(opK1). Moreover, the following lemma shows that if Cov(X,Y ) is of the form (opK1), then the law of
(X,Y ) is necessarily Gaussian and (X,Y ) is in general sub-optimal for the left-hand term in (supCOV).

Lemma 4.2.8. Suppose d ≥ d′. Let X ∼ N(0, D0) and Y ∼ N(0, D1) be two Gaussian vectors of
respective size d and d′ and with diagonal covariance matrices. If Cov(X,Y ) is of the form

Cov(X,Y ) =

(
Ĩdd′D

(d′)
0

1
2
D

1
2
1

)[d,d′]

,

then

Y =

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2

)[d′,d]

X ,

which implies that (X,Y ) is a Gaussian vector and∑
i,j

Cov(X2
i , Y

2
j ) = 2tr(D(d′)

0 D1) ,

where X = (X1, X2, . . . , Xd)
T and Y = (Y1, Y2, . . . , Yd′)

T .

Thus, apart from particular cases discussed in Section 4.2.4, there doesn’t exist any plan π in
Π(T0#µ, T1#ν) with co-moments of order 2 of the form (opK1) and with symmetric co-moments of order
4 of the form (opK2) since the former requires π to be Gaussian and the latter requires generally π not
to be Gaussian. However, it is not clear from the proof of Lemma 4.2.6 that the solutions of the form
(opK1) are necessarily the only solutions of Problem (4.3). Hence there might exist a plan π which is
optimal for both terms of (supCOV) but with co-moments of order 2 of a different form than (opK1).
Thus, we cannot conclude whether GW2(µ, ν) = LGW2(µ, ν) or GW2(µ, ν) > LGW2(µ, ν).

4.2.3 Problem restricted to Gaussian couplings
In this section, we study the following problem, where we restrict the set of feasible transport plans to
Gaussian couplings.

GGW 2
2 (µ, ν) = inf

π∈Π(µ,ν)∩N (Rd+d′ )

∫ ∫ (
∥x− x′∥2Rd − ∥y − y′∥2Rd′

)2
dπ(x, y)dπ(x′, y′) , (GW2-QG)

where N (Rd+d′) is the set of Gaussian measures on Rd+d′ .
Since GGW2 is the Gromov-Wasserstein problem restricted to Gaussian transport plans, it is clear

that (GW2-QG) is an upper bound of (GW2-Q). Combining this result with Proposition 4.2.4, we get
the following immediate but important result.
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Theorem 4.2.9. Let µ = N(m0,Σ0) and ν = N(m1,Σ1) be two Gaussian measures on Rd and Rd′ with
Σ0 non-singular. Then,

LGW2(µ, ν) ≤ GW2(µ, ν) ≤ GGW2(µ, ν) .

We then exhibit in the following a solution of Problem (GW2-QG), which yields an explicit form for
the upper bound GGW2(µ, ν).

Theorem 4.2.10. Suppose without any loss of generality that d ≥ d′. Let µ = N(m0,Σ0) and
ν = N(m1,Σ1) be two Gaussian measures on Rd and Rd′ . Let P0, D0 and P1, D1 be the respective
diagonalizations of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) which sort the eigenvalues in non-increasing

order. We suppose that µ is not degenerate, i.e. Σ0 is non-singular. Then Problem (GW2-QG) admits
solutions of the form π∗ = (Idd, T )#µ with T affine of the form

∀x ∈ Rd, T (x) = m1 + P1AP
T
0 (x−m0) , (4.6)

where A is any rectangular matrix of size d′ × d of the form

A =

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2

)[d′,d]

.

Furthermore,

GGW 2
2 (µ, ν) = 4(tr(D0)− tr(D1))

2 + 8∥D(d′)
0 −D1∥2F + 8

(
∥D0∥2F − ∥D

(d′)
0 ∥2F

)
. (4.7)

Proof. Since the problem is restricted to Gaussian plans, the left-hand term in Equation (supCOV) can
be rewritten 2∥Cov(X,Y )∥2F thanks to Isserlis lemma 4.2.5, and so Problem (supCOV) becomes in that
case

sup
X∼T0#µ,Y∼T1#ν

4∥Cov(X,Y )∥2F .

Applying Lemma 4.2.6, we can exhibit optimal Gaussian couplings π̃∗ ∈ Π(T0#µ, T1#ν) with associated
covariance matrix Σπ̃∗ of the form

Σπ̃∗ =

(
D0 Kπ̃∗

KT
π̃∗ D1

)
,

with

Kπ̃∗ =

(
Ĩdd′D

(d′)
0

1
2
D

1
2
1

)[d,d′]

.

Thus, applying Lemma 4.2.8, it follows directly that π̃∗ are of the form (Idd, T̃ )#T0#µ, with T̃ linear and
such that for all x ∈ Rd,

T̃ (x) = Ax ,

with A being any rectangular matrix of size d′ × d of the form

A =

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2

)[d′,d]

.

Then, we can deduce the form of the optimal Gaussian plans π∗ ∈ Π(µ, ν):

π∗ = (T−1
0 , T−1

1 )#π̃
∗ = (T−1

0 , T−1
1 )#(Idd, T̃ )#T0#µ = (Idd, T

−1
1# T̃#T0)#µ = (Idd, T )#µ ,

where T is affine and such that for all x ∈ Rd,

T (x) = T−1
1 ◦ T̃ ◦ T0(x) = m1 + P1AP

T
0 (x−m0) .

Moreover, using successively Lemma 4.2.3 then Lemma 4.2.6, it follows that

GGW 2
2 (µ, ν) = Cµ,ν − 16 sup

X∼T0#µ,Y∼T1#ν
∥Cov(X,Y )∥2F

= 8tr(D2
0) + 4(tr(D0))

2 + 8tr(D2
1) + 4(tr(D1))

2 − 4tr(D0)tr(D1)− 16tr(D(d′)
0 D1)

= 4(tr(D0)− tr(D1))
2 + 8tr

(
(D

(d′)
0 −D1)

2
)
+ 8

(
tr(D2

0)− tr((D(d′)
0 )2)

)
,

which concludes the proof.

Note that it is not clear from the proof of Lemma 4.2.6 that the solutions that we exhibited here are
the only solution of Problem (GW2-QG). Indeed, there might exist other cross-covariance matrices Kπ

such that ∥Kπ∥F is maximal but that are not of the form (opK1).
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Link with Gromov-Monge restricted to linear mappings. The previous result generalizes Vayer
(2020, Theorem 4.2.6), which studies the solutions of the Gromov-Monge problem restricted to linear
mappings between Gaussian distributions

inf
ν=T#µ : T linear

∫ ∫ (
∥x− x′∥2Rd − ∥T (x)− T (x′)∥2Rd′

)2
dµ(x)dµ(x′) . (4.8)

Indeed, solutions of (4.8) necessarily provide Gaussian transport plans π = (Idd, T )#µ if T is linear.
Conversely, Theorem 4.2.10 shows that restricting the optimal plan to be Gaussian in the GW problem
between two Gaussian distributions yields an optimal plan of the form π = (Idd, T )#µ with a linear T ,
whatever the dimensions d and d′ of the two Euclidean spaces.

Link with Principal Component Analysis. We can easily draw connections between GGW2 and
PCA. Indeed, we can remark that the optimal plans can be derived by performing PCA on both
distributions µ and ν in order to obtain distributions µ′ and ν′ with zero mean vectors and diagonal
covariance matrices with eigenvalues in non-increasing order (µ̃ = T0#µ and ν̃ = T1#ν), then by keeping
only the d′ first components in µ′ and finally by deriving the optimal transport plan solution of the W2

problem between the obtained truncated distribution and ν′. In other terms, denoting Pd′ : Rd → Rd′

the linear mapping that, for x ∈ Rd keeps only its d′ first coordinates, TW2 the optimal transport map as
defined in (2.12) such that πW2

= (Idd′ , TW2
)#Pd′#µ̃ achieves W2(Pd′#µ̃, ν̃), it follows that the optimal

plans πGGW2
that achieve GGW2(µ

′, ν′) are of the form

πGGW2
= (Idd, Ĩdd′#TW2#Pd′)#µ̃ ,

where, with an abuse of notation, we write Idd (resp. Ĩdd′) the map on Rd (resp. Rd′) represented by the
similarly denoted matrix. An example of πGGW2 can be found in Figure 4.1 when d = 2 and d′ = 1.

Figure 4.1: An optimal transport plan πGGW2
solution of problem (GW2-QG) with d = 2 and d′ = 1.

In that case, πGGW2
is the degenerate Gaussian distribution supported by the affine plane of equation

y = TW2
(x), where TW2

is the classicW2 optimal transport map, as defined in (2.12), when the distributions
are rotated and centered first.

Case of equal dimensions. When d = d′, the optimal transport plans πGGW2
that achieve GGW2(µ, ν)

are closely related to the optimal transport plan πW2
= (Idd, TW2

)#T0#µ. Indeed, a plan πGGW2
can be

simply derived by applying the transformations T0 and T1 to respectively µ and ν, then by computing
πW2

between T0#µ and T1#ν, and finally by applying the inverse transformations T−1
0 and T−1

1 . In other
terms, πGGW2 can be written

πGGW2 = (Idd, T
−1
1# Ĩdd′#TW2#T0)#µ .

An example of transport between two Gaussians measures in dimension 2 in Figure 4.2.
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Figure 4.2: Solution of (GW2-QG) between two Gaussians measures in dimension 2. First the distributions
are centered and rotated. Then a classic W2 transport is applied between the two aligned distributions.

As illustrated in Figure 4.3, the GGW2 optimal transport map TGGW2
defined in Equation (4.6) is

not equivalent to the W2 optimal transport map TW2
as defined in (2.12) even when the dimensions d

and d′ are equal. More precisely, if Σ0 and Σ1 can be diagonalized in the same orthonormal basis with
eigenvalues sorted in the same order, i.e. non-increasing or non-decreasing, then TW2

and TGGW2
are

equivalent, see top of Figure 4.3. In contrast, if Σ0 and Σ1 can be diagonalized in the same orthonormal
basis but their eigenvalues are not sorted in the same order, TW2 and TGGW2 will have very different
behaviors, see bottom of Figure 4.3. Between these two extreme cases, we can say that the closer the
columns of P0 will be colinear to the columns of P1, the more TW2

and TGGW2
will tend to have similar

behaviors, see middle of Figure 4.3.

4.2.4 Tightness of the bounds and particular cases

4.2.4.1 Bound on the difference

Proposition 4.2.11. Suppose without loss of generality that d ≥ d′. Let µ = N(m0,Σ0) and ν =
N(m1,Σ1), then

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) ≤ 8∥Σ0∥F∥Σ1∥F
(
1− 1√

d

)
.

To prove this proposition, we will use the following technical result:

Lemma 4.2.12. Let u ∈ Rd and v ∈ Rd be two unit vectors with non-negative coordinates ordered in
non-increasing order. Then

uT v ≥ 1√
d
,

with equality if u = ( 1√
d
, 1√

d
, . . . )T and v = (1, 0, . . . )T .

Proof of Proposition 4.2.11. By subtracting (4.2) from (4.7), it follows that

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) = 8
(
∥D0∥F∥D1∥F − tr(D(d′)

0 D1)
)

= 8
(
∥D0∥F∥D[d]

1 ∥F − tr(D0D
[d]
1 )
)
. (4.9)

Denoting α ∈ Rd and β[d] ∈ Rd the vectors of eigenvalues of D0 and D[d]
1 , it follows that

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) = 8(∥α∥∥β[d]∥ − αTβ[d]) = 8∥α∥∥β[d]∥(1− uT v) ,

65



The Gromov-Wasserstein distance between Gaussian distributions

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 4.3: Comparison between W2 and GGW2 mappings between empirical distributions. Left:
2D source distribution (colored) and target distribution (transparent). Middle: resulting mapping of
Wasserstein TW2 . Right: resulting mapping of Gaussian Gromov-Wasserstein TGGW2 . The colors are
added in order to visualize where each sample has been sent.

where u = α
∥α∥ and v = β[d]

∥β[d]∥ . Applying lemma 4.2.12, we get directly that

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) ≤ 8∥D0∥F∥D[d]
1 ∥F

(
1− 1√

d

)
.

= 8∥Σ0∥F∥Σ1∥F
(
1− 1√

d

)
,

which concludes the proof.

The difference between GGW 2
2 (µ, ν) and LGW 2

2 (µ, ν) can be seen as the difference between the right
and left terms of the Cauchy-Schwarz inequality applied to the two vectors of eigenvalues α ∈ Rd and
β[d] ∈ Rd. The difference is maximized when the vectors α and β[d] are the least colinear possible. This
happens when the eigenvalues of D0 are all equal and d′ = 1 or ν is degenerate of true dimension 1. On
the other hand, this difference is null when α and β[d] are colinear. Between those two extremal cases,
we can say that the difference between GGW 2

2 (µ, ν) and LGW 2
2 (µ, ν) will be relatively small if the last

d− d′ eigenvalues D0 are small compared to the d′ first eigenvalues and if the d′ first eigenvalues are close
to be proportional to the eigenvalues of D1. An example in the case where d = 2 and d′ = 1 can be found
in Figure 4.4.

4.2.4.2 Explicit case

As seen before, the difference between GGW 2
2 (µ, ν) and LGW 2

2 (µ, ν), with µ = N(m0,Σ0) and ν =
N(m1,Σ1), is null when the two vectors of eigenvalues of Σ0 and Σ1 - sorted in non-increasing order - are
colinear. When we suppose Σ0 non-singular, this implies that d = d′ and that the eigenvalues of Σ1 are
proportional to the eigenvalues of Σ0 (rescaling).

Proposition 4.2.13. Suppose d = d′. Let µ = N (m0,Σ0) and ν = N (m1,Σ1) two Gaussian measures on
Rd. Let P0, D0 and P1, D1 be the respective diagonalizations of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that
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Figure 4.4: plot of GGW 2
2 (µ, ν) and LGW 2

2 (µ, ν) in function of α2 for µ = N(0, diag(α)), ν = N (0, β
[d]
1 ),

α = (α1, α2)
T , for (α1, β

[d]
1 ) = (1, 1) (left), (α1, β

[d]
1 ) = (1, 2) (middle), (α1, β

[d]
1 ) = (1, 10) (right). One

can easily compute using (4.7) and (4.2) that GGW 2
2 (µ, ν) = 12α2

2 + 8α2(α1 − β[d]
1 ) + 12(α1 − β[d]

1 )2 and
LGW 2

2 (µ, ν) = 12α2
2 + 8α2(α1 − β[d]

1 )− 4
√
α2
2 + α2

1β
[d]
1 + 12(α1 − β[d]

1 )2 + 8α1β
[d]
1 .

sort eigenvalues in non-increasing order. Suppose Σ0 is non-singular and that there exists a scalar λ ≥ 0
such that D1 = λD0. In that case, GW 2

2 (µ, ν) = GGW 2
2 (µ, ν) = LGW 2

2 (µ, ν) and Problem (GW2-Q)
admits solutions of the form (Idd, T )#µ with T such that for all x ∈ Rd,

T (x) = m1 +
√
λP1ĨddP

T
0 (x−m0) . (4.10)

Moreover, in that case
GW 2

2 (µ, ν) = (λ− 1)2
(
4(tr(Σ0))

2 + 8∥Σ0∥2F
)
. (4.11)

Proof. From (4.9), we have

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) = 8 (∥D0∥F∥D1∥F − tr(D0D1)) .

Denoting α ∈ Rd and β ∈ Rd the eigenvalues vectors of D0 and D1, it follows that

GGW 2
2 (µ, ν)− LGW 2

2 (µ, ν) = 8(∥α∥∥β∥ − αTβ) .

Since there exists λ ≥ 0 such that D1 = λD0, we have β = λα, and so αTβ = ∥α∥∥β∥. Thus
GGW 2

2 (µ, ν)− LGW 2
2 (µ, ν) = 0 and using Proposition 4.2.9, we get that GW 2

2 (µ, ν) = GGW 2
2 (µ, ν) =

LGW 2
2 (µ, ν). We then get (4.10) and (4.11) by simply reinjecting D1 = λD0 in (4.6) and (4.7).

This case also includes the more particular case where d = d′ = 1. In that case µ = N(m0, σ
2
0) and

ν = N(m1, σ
2
1), because σ1 is always proportional to σ0.

Corollary 4.2.14. Let µ = N(m0, σ
2
0) and ν = N(m1, σ

2
1) be two Gaussian measures on R. Then

GW 2
2 (µ, ν) = 12

(
σ2
0 − σ2

1

)2
,

and the optimal transport plans π∗ are of the form (IdR, T )#µ with T affine of the form, for all x ∈ R,

T (x) = m1 ±
σ1
σ0

(x−m0) . (4.12)

Observe that the solution of W 2
2 (µ, ν) is also solution of GW 2

2 (µ, ν) in that case. More precisely, the
two solutions of the form (4.12) correspond to the mappings F−1

ν ◦ F �
µ and F−1

ν ◦ F �
µ , where F �

µ and F �
ν

denote respectively the cumulative and anti-cumulative distribution functions of µ, i.e. for all x ∈ R,

F �
µ(x) = µ((−∞, x]) and F �

µ(x) = µ([−x,+∞)) .

The couplings (IdR, F
−1
ν ◦ F �

µ)#µ and (IdR, F
−1
ν ◦ F �

µ)#µ are also the two solutions of the GW problem
with inner-product as cost functions, as shown in Vayer (2020). This result implies therefore that in
case of one-dimensional Gaussian distributions, the GW problem with squared Euclidean distances as
cost functions has the same "nice" behavior as in the inner-product case. This is not the case in general
when the distributions are not Gaussian, as it has been shown by Beinert et al. (2022) and Dumont et al.
(2022).
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4.2.4.3 Case of degenerate measures

In all the results of the previous sections, we have supposed Σ0 non-singular, which means that µ admits
a density with respect to the Lesbegue measure. Yet, if Σ0 is not full rank, one can easily extend the
previous results thanks to the following proposition.

Proposition 4.2.15. Let µ = N(0, D0) and ν = N(0, D1) be two centered Gaussian measures on
Rd and Rd′ with diagonal covariance matrices D0 and D1 with eigenvalues sorted in non-increasing
order. We denote r = rk(D0) the rank of D0 and we suppose that r < d. Let Pr =

(
Idr 0r,d−r

)
be

the linear mapping from Rd to Rr that keeps only the r first coordinates of the vector of Rd. Then
GW 2

2 (µ, ν) = GW 2
2 (Pr#µ, ν), GGW 2

2 (µ, ν) = GGW 2
2 (Pr#µ, ν), and LGW 2

2 (µ, ν) = LGW 2
2 (Pr#µ, ν).

Proof. For r < d, we denote Γr(Rd) the set of vectors x = (x1, . . . , xd)
T of Rd such that xr+1 = · · · =

xd = 0. For π ∈ Π(µ, ν), one can remark that for any Borel set A ⊂ Rd ∖ Γr(Rd), and any Borel set
B ⊂ Rd′ , we have π(A,B) = 0 and so

GW 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd′

∫
Rd×Rd′

(∥x− x′∥2Rd − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′)

= inf
π∈Π(µ,ν)

∫
Γr(Rd)×Rd′

∫
Γr(Rd)×Rd′

(∥x− x′∥2Rd − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′)

= inf
π∈Π(µ,ν)

∫
Γr(Rd)×Rd′

∫
Γr(Rd)×Rd′

(∥Pr(x− x′)∥2Rr − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′) .

Now, observe that for π ∈ Π(µ, ν), (Pr, Idd′)#π ∈ Π(Pr#µ, ν). It follows that

GW 2
2 (µ, ν) ≤ inf

π∈Π(Pr#µ,ν)

∫
Rr×Rd′

∫
Rr×Rd′

(∥x− x′∥2Rr − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′)

= GW 2
2 (Pr#µ, ν).

Conversely, since µ has no mass outside of Γr(Rd), PTr#Pr#µ = µ, which implies that for π ∈ Π(Pr#µ, ν),
(PTr , Idd′)#π ∈ Π(µ, ν). It follows that

GW 2
2 (Pr#µ, ν) = inf

π∈Π(Pr#µ,ν)

∫
Rr×Rd′

∫
Rr×Rd′

(∥x− x′∥2Rr − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′)

= inf
π∈Π(Pr#µ,ν)

∫
Rr×Rd′

∫
Rr×Rd′

(∥PTr (x− x′)∥2Rr − ∥y − y′∥2Rd′ )
2dπ(x, y)dπ(x′, y′)

≤ inf
π∈Π(µ,ν)

∫
Rd×Rd′

∫
Rd×Rd′

(∥x− x′∥2Rd − ∥y − y′∥2Rdi)
2dπ(x, y)dπ(x′, y′)

≤ GW 2
2 (µ, ν) .

The exact same reasoning can be made in the case of GGW2. Furthermore, it can be easily seen when
looking at (4.2) that LGW 2

2 (µ, ν) = LGW 2
2 (Pr#µ, ν).

Thus, when Σ0 is not full rank, one can apply Proposition 4.2.15 and consider directly the GW
problem between the projected non-degenerate measure Pr#µ on Rr and ν and so Theorem 4.2.9 still
holds when µ is degenerate.

In the case of GGW2, an explicit optimal transport plan can still be exhibited. In the following, we
denote r0 and r1 the ranks of Σ0 and Σ1, and we suppose without loss of generality that r0 ≥ r1, but
this time not necessarily that d ≥ d′. Let µ = N(m0,Σ0) and ν = N(m1,Σ1) be two Gaussian measures
on Rd and Rd′ , and let (P0, D0) and (P1, D1) be the respective diagonalizations of Σ0 (= P0D0P

T
0 ) and

Σ1 (= P1D1P
T
1 ) that sort the eigenvalues in decreasing order. Optimal transport plans for GGW2(µ, ν)

are then of the form π∗ = (Idd, T )#µ with T such that for all x ∈ Rd,

T (x) = m1 + P1AP
T
0 (x−m0) ,

where A ∈ Rd′×d is any matrix of the form

A =

(
Ĩdr1D

(r1)
1

1
2
D

(r1)
0

− 1
2

)[d′,d]

.
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Figure 4.5: Plot of the first coordinate of samples Yi in function of the first coordinate of their assigned
samples Xj (blue dots) and line of equation y = ±

√
βx (orange line) for k = 2000, α = (1, 0.1)T and

β = 2 (top left), k = 2000, α = (1, 0.1)T and β = (2, 0.3)T (top right), k = 2000, α = (1, 0.1, 0.01)T

and β = 2 (middle left), k = 7000, α = (1, 0.3) and β = 2 (middle right), k = 7000, α = (1, 0.1)T , and
β = (2, 1)T (bottom left), and k = 7000 and α = (1, 0.3, 0.1) and β = 2 (bottom right).

4.2.5 Behavior of the empirical solutions

In this section, we perform a simple experiment to illustrate the behavior of the empirical solutions of
the Gromov Wasserstein problem. In this experiment, we draw independently n samples (Xj)1≤j≤n and
(Yi)1≤i≤n from respectively µ = N(0, diag(α)) and ν = N(0, diag(β)) with α ∈ Rd and β ∈ Rd′ . Then we
compute the Gromov-Wasserstein distance between the two histograms X and Y using the non-regularized
GW solver described in Section 3.1.4. We use for that the implementation provided by the Python
Optimal Transport (POT) library2 (Flamary et al., 2021). In Figure 4.5, we plot the first coordinates of
the samples Yi in function of the first coordinate of the samples Xj they have been assigned to by the
solver (blue dots). We draw also the line of equation y = ±

√
βx in order to compare with the theoretical

solution of the Gaussian restricted problem (orange line) for n = 2000, α = (1, 0.1)T and β = 2 (top left),
n = 2000, α = (1, 0.1)T and β = (2, 0.3)T (top right), n = 2000, α = (1, 0.1, 0.01)T and β = 2 (middle

2The package is accessible here: https://pythonot.github.io/.
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left), n = 7000, α = (1, 0.3) and β = 2 (middle right), n = 7000, α = (1, 0.1)T , and β = (2, 1)T (bottom
left), and n = 7000 and α = (1, 0.3, 0.1) and β = 2 (bottom right). Observe that the empirical solution
seems to be behaving exactly in the same way as the theoretical solution exhibited in Theorem 4.2.10
as soon as α and β are close to be colinear. However, when α and β are further away from colinearity,
determining the behavior of the empirical solution becomes more complex. Solving the GW problem
numerically, even approximately, is a particularly hard task, therefore we cannot conclude if the empirical
solution does not behave in the same way as the theoretical solution exhibited in Theorem 4.2.10 or if
the solver has not converged in these more complex cases. This second assumption seems to be more
likely because it seems that increasing the number of points n reduces the gap between the blue dots and
the orange line. Thus, we conjecture that in most cases the optimal plan which achieves GGW2(µ, ν) is
also solution of the non-restricted problem GW2(µ, ν) and that GW2(µ, ν) = GGW2(µ, ν). However, the
situation might be analogous to the one-dimensional case where the Gromov-Wasserstein distance behaves
"nicely" with high-probability but we can construct very specific particular cases where this not case
(Beinert et al., 2022; Dumont et al., 2022): there might exist very specific configurations of eigenvalues
α and β where the solution of the non-restricted problem GW2(µ, ν) is not solution of GGW2(µ, ν).
Constructing such counter-examples remains, to the best of our knowledge, an open problem.

4.3 The inner-product case and other formulations

In this section, we study the GW problem between Gaussian distributions, but this time with inner-
products as cost functions instead of the squared Euclidean distance as well as the three other formulations
discussed in the previous chapter.

4.3.1 The inner-product case
Here, we focus on the Gromov-Wasserstein distance of order 2 between two centered Gaussian measures
µ = N(0,Σ0) and ν = N(0,Σ1), respectively on Rd and Rd′ . Our goal is therefore to solve the following
optimization problem

GW 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd′

∫
Rd×Rd′

|⟨x, x′⟩d − ⟨y, y′⟩d′ |
2
dπ(x, y)dπ(x′, y′) . (GW2-IP)

Note that if µ and ν are not centered, one can still use (GW2-IP) to compare them by simply centering
them beforehand. We show the following main result.

Theorem 4.3.1. Suppose without any loss of generality that d ≥ d′. Let µ = N(0,Σ0) and ν = N(0,Σ1) be
two centered Gaussian measures on Rd and Rd′ . Let P0, D0 and P1, D1 be the respective diagonalizations
of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues in non-increasing order. We suppose

that µ is not degenerate, i.e. Σ0 is non-singular. Then Problem (GW2-IP) admits solutions of the form
π∗ = (Idd, T )#µ with T : Rd → Rd′ being any affine mapping such that for all x ∈ d,

T (x) = P1

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2

)[d′,d]

PT0 x .

Furthermore,
GW 2

2 (µ, ν) = ∥D0∥2F + ∥D1∥2F − 2tr(D
(d′)
0 D1) . (4.13)

Proof. The proof of this result is a direct consequence of Lemma 4.2.3: indeed, applying this latter lemma
with a = 0, b = 0, and c = 1 yields the following equivalent problem,

sup
π∈Π(µ,ν)

∥∥∥∥∫ xyTdπ(x, y)

∥∥∥∥2
F
.

Since µ and ν are centered, it follows that Problem (GW2-IP) is equivalent to

sup
X∼µ,Y∼ν

∥Cov(X,Y )∥2F .

Applying Lemma 4.2.6, this yields to the solutions exhibited in Lemma 4.2.8. Finally, reinjecting the
expression of the optimal Cov(X,Y ) in (4.1) and observing that

∫
xTxx′Tx′dµ(x)dµ(x′) = ∥D0∥F and∫

yT yy′T y′dµ(y)dµ(y′) = ∥D1∥F , we get (4.13), which concludes the proof.
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This theorem implies that the solutions of Problem (GW2-QG) between two Gaussian measures
µ = N(m0,Σ0) and ν = N(m1,Σ1) are also solutions of Problem (GW2-IP) between the associated
centered measures µ̄ and ν̄. Note that Problem (GW2-IP) is not restricted to Gaussian couplings only.
Thus, the GW problem between Gaussian distributions with inner-product as cost functions seems to have
a much simpler structure than the GW problem with squared Euclidean distance as cost functions, as it
was already the case for one-dimensional distributions. Finally, note that, as for Problem (GW2-QG), the
solutions exhibited in Theorem 4.3.1 are not necessarily the only ones.

4.3.2 Invariant Wassertein discrepancy

In this section, we study the behavior of Problem (IW2) between Gaussian distributions, initially
introduced in Alvarez-Melis et al. (2019), when this latter problem is equivalent to

sup
π∈Π(µ,ν)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)

∥∥∥∥
F
, (F-COV)

where we recall that for any matrix A of size d× d′, ∥A∥F denotes the Frobenius norm, i.e.
√
tr(ATA).

In all what follows, for any π ∈ Π(µ, ν), we denote Kπ the cross-covariance matrix
∫
Rd×Rd′ xy

Tdπ(x, y)
of size d × d′ associated with the coupling π. Clearly, Problem (F-COV) is equivalent to Problem
(GW2-IP), as it has been already shown by Alvarez-Melis et al. (2019). We thus directly get that
the solutions exhibited in Theorem 4.3.1 are also solutions of Problem (F-COV). When µ = N(0,Σ0)
and ν = N(0, Idd′), this corresponds to choosing the set of invariance H in the definition of (IW2) as
H1 = {P ∈ Rd×d′ : ∥P∥F ≤

√
d′} and so this gives the solutions of the IW2(H1, µ, ν) problem. This

gives therefore the following corollary of Theorem 4.3.1.

Corollary 4.3.2. Let µ = N(0,Σ0) and ν = N(0, Idd′) with d not necessarily greater than d′. Let P0, D0

be the diagonalization of Σ0 (= P0D0P
T
0 ) that sorts its eigenvalues in non-increasing order. We suppose

furthermore that µ is not degenerate, i.e. Σ0 is non-singular. Let H1 = {P ∈ Rd×d′ : ∥P∥F ≤
√
d′}.

Then the problem
IW2(H1, µ, ν) = inf

P∈H1

W2(µ, P#ν) , (4.14)

admits as solution any couple (π∗, P ∗) with P ∗ =
√
d′

∥Kπ∗∥F
Kπ∗ , and π∗ of the form:

(i) if d ≥ d′, π∗ = (Idd, T )#µ with T : Rd → Rd′ being any affine mapping of the form,

T =

(
Ĩdd′D

(d′)
0

− 1
2

)[d′,d]

PT0 .

(ii) if d ≤ d′, π∗ = (T, Idd′)#ν with T : Rd′ → Rd being any affine mapping of the form

T = P0

(
ĨddD

1
2
0

)[d,d′]
.

Furthermore, in both cases

IW 2
2 (H1, µ, ν) = tr(D0) + d′ − 2

√
d′tr(D

(d′)
0 ) ,

with the convention that D(d′)
0 = D0 when d ≤ d′.

To prove this theorem, we will use the following intermediary lemma.
Lemma 4.3.3 (Vayer, 2020). For µ ∈ P(Rd) and ν ∈ P(Rd′), and given any matrix K of size d× d′,
denoting ⟨., .⟩F the Frobenius inner-product,

sup
P∈H1

⟨K,P ⟩F =
√
d′∥K∥F , (4.15)

and this supremum is achieved at P ∗ =
√
d′

∥K∥F
K.
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Observe that this lemma yields the closed-form of the projection of any matrix K of size d× d′ on the
set {P ∈ Rd×d′ : ∥P∥F =

√
d′}. Indeed, this projection is defined as the matrix P ∈ H1 that minimizes

inf
∥P∥F=

√
d′
∥P −K∥F .

Hence, this latter problem is equivalent to

inf
∥P∥F=

√
d′
∥P −K∥2F = inf

∥P∥F=
√
d′

(
∥P∥2F + ∥K∥2F − 2⟨K,P ⟩F

)
,

Since ∥P∥2F is necessarily equal to d′, the problem is equivalent to Problem (4.15). Now, we turn to the
proof of Corollary 4.3.2.

Proof of Corollary 4.3.2. Since EY∼ν [Y Y
T ] = Idd′ , Problem (4.14) can be rewritten, using Lemma 3.3.4,

as
IW 2

2 (H1, µ, ν) =

∫
Rd

∥x∥2dµ(x) +
∫
Rd′
∥y∥2dν(y)− 2 sup

π∈Π(µ,ν)

sup
P∈H1

∫
Rd×Rd′

xTPydπ(x, y) .

First observe that∫
xTPydπ(x, y) =

∫
tr(PTxyT )dπ(x, y) = tr

(
PT
∫
xyTdπ(x, y)

)
,

where we successively used cyclical permutation invariance and the linearity properties of the trace
operator. Then, by interverting the suprema, we get that the problem is equivalent to

sup
P∈H1

⟨P,Kπ∗⟩F .

Applying Lemma 4.3.3 with K = Kπ∗ gives the expression of P ∗. Furthermore it follows that

IW 2
2 (H1, µ, ν) =

∫
Rd

∥x∥2dµ(x) +
∫
Rd′
∥y∥2dν(y)− 2

√
d′ ∥Kπ∗∥F ,

Since this latter problem is clearly equivalent with (GW2-IP), we get point (i) by directly applying
Theorem 4.3.1. Point (ii) is obtained also by applying Theorem 4.3.1 but this time by exchanging the role
of µ and ν. Finally, we can derive that

∫
∥x∥2dµ(x) = tr(D0) and

∫
∥y∥2dν(y) = tr(Idd′) = d′, which

concludes the proof.

4.3.3 Embedded Wasserstein distance
Suppose without any loss of generality that d ≥ d′. We recall that the EW2 problem is equivalent to, see
Proposition 3.3.7,

sup
π∈Π(µ̄,ν̄)

∥∥∥∥∫
Rd×Rd′

xyTdπ(x, y)

∥∥∥∥
∗
, (∗-COV)

where for any matrix A of size d× d′, ∥A∥∗ is the nuclear norm of A, i.e. ∥A∥∗ = tr((ATA)
1
2 ) and µ̄ and

ν̄ are the centered measures associated with µ and ν. As discussed in Section 3.2, Problems (F-COV)
and (∗-COV) are not equivalent in general. The following result shows that when µ and ν are Gaussian
measures, the two problems share in fact some common solutions.

Theorem 4.3.4. Suppose without any loss of generality that d ≥ d′. Let µ = N(0,Σ0) and ν = N(0,Σ1) be
two centered Gaussian measures on Rd and Rd′ . Let P0, D0 and P1, D1 be the respective diagonalizations
of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues in non-increasing order. We suppose

that µ is not degenerate, i.e. Σ0 is non-singular. Then the problem

EW2(µ, ν) = inf
P∈Vd′ (Rd)

W2(µ, P#ν) ,

admits solutions of the form (π∗, P ∗) with P ∗ of the form P ∗ = P0Ĩd
[d,d′]

d′ PT1 and π∗ = (Idd, T )#µ with T
being any affine map such that for all x ∈ Rd,

T (x) = P1

(
Ĩdd′D

1
2
1 D

(d′)
0

− 1
2

)[d′,d]

PT0 x .
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In other terms, the solutions of Problem (GW2-IP) exhibited in Theorem 4.3.1 are also solutions of
Problem (EW2). Furthermore,

EW 2
2 (µ, ν) = tr(D0) + tr(D1)− 2tr(D

(d′)
0

1
2
D

1
2
1 ) .

The proof of this theorem is mostly based on the following result whose proof is postponed to
Appendix A.2.

Lemma 4.3.5. Suppose that d ≥ d′. Let Σ be a symmetric positive semi-definite matrix of size d+ d′ of
the form

Σ =

(
Σ0 K
KT Σ1

)
,

with Σ0 ∈ Sd++, Σ1 ∈ Sd′+ and K is a rectangular matrix of size d × d′. Let P0, D0 and P1, D1 be
the respective diagonalisations of Σ0 (= P0D0P

T
0 ) and Σ1 (= P1D1P

T
1 ) that sort the eigenvalues in

non-increasing order. Then,

max
K : Σ1−KTΣ−1

0 K∈Sd′+
∥K∥∗ = max

K : Σ1−KTΣ−1
0 K∈Sd′+

max
P∈Vd′ (Rd)

⟨P,K⟩F = tr(D
(d′)
0

1
2
D

1
2
1 ) , (4.16)

and it is achieved at any couple (K∗, P ∗) of the form P ∗ = P0Ĩdd′P
T
1 and

K∗ = P0

(
Ĩdd′D

(d′)
0

1
2
D

1
2
1

)[d,d′]

PT1 . (4.17)

Proof of Theorem 4.3.4. Using Proposition 3.3.7, we get that Problem (EW2) is equivalent to

sup
π∈Π(µ,ν)

sup
P∈Vd′ (Rd)

⟨P,Kπ⟩F ,

where Kπ =
∫
xyTdπ(x, y). As before, we use the necessary condition for π to be in Π(µ, ν) that is that

the covariance matrix Σπ of the law π is a PSD matrix, or equivalently that the Schur complement of Σπ,
i.e. Σ1 −KT

π Σ
−1
0 Kπ is also a PSD matrix. This gives the following inequality:

sup
π∈Π(µ,ν)

sup
P∈Vd′ (Rd)

⟨P,Kπ⟩F ≤ max
K : Σ1−KTΣ−1

0 K∈Sd′+
max

P∈Vd′ (Rd)
⟨P,K⟩F .

Using Lemma 4.3.5, we get that the right-hand term is equal to tr(D
(d′)
0

1
2
D

1
2
1 ) and this is achieved for

any couple (P ∗,K∗) of the form exhibited above. Now observe that the optimal K∗ (4.17) are in fact the
same as in (opK1). Thus using Lemma 4.2.8, we can deduce the form of the optimal couples (P ∗, π∗) that
are solutions of Problem (EW2). Finally by reinjecting the optimal value in the expression of EW2(µ, ν),
we get

EW 2
2 (µ, ν) = tr(D0) + tr(D1)− 2tr(D

(d′)
0

1
2
D

1
2
1 ) ,

which concludes the proof.

Supposing that d′ ≤ d, Theorem 4.3.4 implies that between Gaussian distributions, solving Problem
(GW2-IP) is to find an isometric embedding of ν in Rd which minimize the W2 distance between
µ ∈ P(Rd) and the embedded degenerate measure ν̃ ∈ P(Rd). This is coherent with the observations
made in Section 4.2.3. This behavior seems however to be specific to Gaussian measures since maximizing
the Frobenius norm of the cross-covariance matrix is in general not equivalent to maximizing its nuclear
norm, see Figure 3.1 for a simple discrete example in R2.

4.3.4 Projection Wasserstein discrepancy

Finally, we study the behavior of Problem (PW2), initially introduced by Cai and Lim (2022), when µ
and ν are Gaussian distribution. We recall that this latter problem is equivalent to, see Proposition 3.3.9,

inf
π∈Π(µ̄,ν̄)

inf
P∈Vd′ (Rd)

(
tr(PTΣxP )− 2tr(PTKπ)

)
,
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where Σx =
∫
Rd×Rd xx

T dµ̄(x), Kπ =
∫
Rd×Rd′ xy

T dπ(x, y), and where µ̄ and ν̄ are the centered measures
associated with µ and ν. In the following, µ = N(m0,Σ0) and ν = N(m1,Σ1) and we suppose d ≥ d′ and
that Σ0 is non-singular. Let (α1, . . . , αd)

T ∈ Rd and (β1, . . . , βd′)
T ∈ Rd′ be the respective eigenvalues

of Σ0 and Σ1 ordered in non-increasing order and let us now denote by (P0�, D0�) and (P1�, D1�) the
respective diagonalizations of Σ0 (= P0�D0�P

T
0�) and Σ1 (= P1�D1�P

T
1�) which sort the eigenvalues

in non-increasing order, i.e. D0� = diag(α1, . . . , αd) and D1� = diag(β1, . . . , βd′). Let (P0�, D0�) and
(P1�, D1�) denote the respective diagonalizations of Σ0 and Σ1 which sort the eigenvalues in non-decreasing
order, i.e. D0� = diag(αd, . . . , α1) and D1� = diag(βd′ , . . . , β1). We show the following result, whose full
proof is postponed to Appendix A.2.7.

Proposition 4.3.6. Suppose d ≥ d′. Let µ = N(0,Σ0) and ν = N(0,Σ1) with Σ0 ∈ Sd++ and Σ1 ∈ Sd′+ .
Then,

PW2(µ, ν) = inf
P∈Vd′ (Rd)

W2(P
T
#µ, ν) = inf

P : PTΣ0PΣ1=Σ1PTΣ0P
∥(PTΣ0P )

1
2 − Σ

1
2
1 ∥F ,

Furthermore,

(i) if αd > β1, then

PW2(µ, ν) = ∥D(d′)
0�

1
2 −D

1
2
1�∥F .

It is achieved at any (π∗, P ∗) of the form P ∗ = P0�Ĩd
[d,d′]

d′ PT1� and π∗ = (Idd, T )#µ with T being
any affine mapping of the form,

T = P1�

(
Ĩdd′D

1
2
1�D

(d′)
0�

− 1
2

)[d′,d]

PT0� .

(ii) if α1 < βd′ , then

PW2(µ, ν) = ∥D(d′)
0�

1
2 −D

1
2
1�∥F .

It is achieved at any (π∗, P ∗) of the form P ∗ = P0�Ĩd
[d,d′]

d′ PT1� and π∗ = (Idd, T )#µ with T being
any linear mapping of the form,

T = P1�

(
Ĩdd′D

1
2
1�D

(d′)
0�

− 1
2

)[d′,d]

PT0� .

Sketch of the proof. The proof of this result consists mostly in using the equivalent formulation (3.11) of
Problem (PW2), then using the necessary condition for π to be in Π(µ, ν) that its associated covariance
matrix Σπ is a PSD matrix, or equivalently that its Schur complement is a PSD matrix, and finally in
solving the obtained relaxed problem similarly to Lemma 4.3.5. See Appendix A.2.7 for the full proof.

Note that this result generalizes Cai and Lim (2022, Example VI.1) that derived the expression of
the PW2 discrepancy between a d-dimensional Gaussian and a one-dimensional Gaussian distributions.
The PW2 problem between Gaussian distributions is thus equivalent to minimize the Hellinger distance
between PTΣ0P and Σ1 on the subset of Vd′(Rd) of matrices P such that PTΣ0P and Σ1 commute.
Observe that PW2 has a different behavior in the case where the eigenvalues of Σ0 are all greater than
the eigenvalues of Σ1 and in the case where the eigenvalues of Σ0 are all smaller than the eigenvalues of
Σ1. In the case where the eigenvalues of Σ0 and Σ1 are entangled, PW2 vanishes as soon as there exists a
projection P ∈ Vd′(Rd) such that PTΣ0P has the same eigenvalues than Σ1. Geometrically speaking,
this corresponds to finding a d′-dimensional plan in Rd encoded by P on which the projection of µ has
the same structure than ν has on Rd′ . This is a really different behavior from the previously studied
OT distances that vanish only when there exists a d′-dimensional plan that contains entirely the support
of µ and such that µ has the same structure on that plan than ν has on Rd′ . In other words, PT is
not an isometric operator but a projection operator, and so it can transform µ while pushing it into a
distributions µ′ on Rd′ that will have a similar structure to ν whereas in Rd, the embedded measure P#ν
will be different from µ. The following example illustrates the difference between PW2 and the previously
studied OT distances.

Example 4.3.7. Let µ = N(0,Σ0) and ν = N
(
0, σ2

1

)
with

Σ0 =

(
2 0
0 1

)
and σ2

1 =
3

2
.

Then we have PW2(µ, ν) = 0 but GW2(⟨.⟩2, ⟨.⟩1, µ, ν) > 0.
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Observe indeed that when setting p∗ =
(

1√
2

1√
2

)T
, we have

(
1√
2

1√
2

)(
2 0
0 1

)( 1√
2
1√
2

)
=

3

2
,

and so p∗TΣ0p
∗ = σ2

1 . Since p∗ is clearly in V1(R2) and p∗TΣ0p
∗ commutes clearly with σ2

1 (since there
both are scalars), we have

PW 2
2 (µ, ν) ≤ |(p∗TΣ0p

∗)
1
2 − σ1|2 = 0 ,

and so PW2(µ, ν) = 0. On the other hand,

GW2(⟨.⟩2, ⟨.⟩1, µ, ν) = ∥Σ0∥2F + ∥σ2
1∥2 − 2tr(Σ

(1)
0 σ2

1) =
17

4
> 0 .

Note that we have also automatically IW2(H1, µ, ν) > 0 and EW2(µ, ν) > 0 since these latter problems
are equivalent to the GW2(⟨.⟩2, ⟨.⟩1, µ, ν) problem. Finally, note that apart from the two cases studied
above, we could expect the IW2 discrepancy, as defined in (IW2), to behave similarly to the PW2

discrepancy, since in general Problem (IW2) reads as

IW 2
2 (H, µ, ν) =

∫
Rd

∥x∥2dµ(x) + inf
π∈Π(µ,ν)

inf
h∈H

(∫
Rd′
∥h(y)∥dν(y)− 2

∫
Rd×Rd′

xhT (y)dπ(x, y)

)
,

with the term
∫
Rd′ ∥h(y)∥dν(y) depending on h, and so the problem is in general structurally similar to

(3.11).

4.4 Discussion

In this chapter, we have studied the behavior of the Gromov-Wasserstein distance of order 2 between
two Gaussian distributions µ = N(m0,Σ0) and ν = N(m1,Σ1) for costs given by the squared Euclidean
distances and the inner-products, as well as the behaviors of the three other formulations of optimal
transport on different Euclidean spaces introduced in Chapter 3. We have derived closed-form solutions
for the GW2 problem with inner-products as cost functions and we have shown that these solutions are
also solutions of the GW2 problem with squared Euclidean distances restricted to Gaussian couplings.
We also have shown that these solutions are also solutions of the embedded Wasserstein distance and also
of the invariant Wasserstein discrepancy in the case this latter is equivalent to (F-COV). We have also
empirically shown that these solutions seamed to also be most of the time solutions of the unrestricted
GW problem with squared Euclidean distances. Yet, we are not able to prove it formally since it would
imply understanding the probabilistic rule that links the symmetric co-moments of order 2 and 4 of an
arbitrary (non-Gaussian) coupling in Π(µ, ν). This is in general, to the best of our knowledge, not known
at the exception of few particular cases including the Gaussian distributions thanks to the Isserlis lemma
(Isserlis, 1918). The solutions we have exhibited share close links with principal componant analysis since
these solutions roughly consist in ordering first the eigenvalues of each covariance matrix, then assigning
the largest eigenvalue of Σ0 to the largest eigenvalue of Σ1, then doing the same for the second largest
eigenvalue and so on until all the eigenvalues of the smallest covariance matrix are assigned. In constrast,
the OT distance introduced by Cai and Lim (2022), i.e. the projection Wasserstein distance, presents a
very different behavior than the other OT distances studied in this chapter.

A question that arises with regard to our work and in conjunction with the works of Vayer (2020),
Beinert et al. (2022) and Dumont et al. (2022) is what is a good choice of cost functions for the Gromov-
Wasserstein problem in Euclidean spaces? Indeed, the choice of squared Euclidean distances, despite being
natural, seems to induce strange behaviors, both on one-dimensional (Beinert et al., 2022) and Gaussian
distributions. In contrast, the choice of inner-products as cost functions induce nice properties, both
on one-dimensional (Vayer, 2020) and Gaussian distributions, and more generally on distributions that
admit densities since Dumont et al. (2022) have shown an analogous result to the Brenier theorem. These
properties seem to generalize "naturally" the properties of the W2 distance in the case the distributions are
living in different Euclidean spaces. From a probabilistic point of view, an important difference between
the GW2 problem (GW2-IP) with inner-products as cost functions and the GW2 problem (GW2-Q) with
squared Euclidean distances as cost functions is that the former depends only on the co-moments of
order 2 associated with the coupling π, whereas the latter depends not only on the co-moments of order
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2 but also on the co-moments of order 4. This joint optimization of the co-moments of order 2 and
4 of π might explain why Problem (GW2-Q) favours sometimes non-natural couplings (Beinert et al.,
2022), even if most of the time, Problem (GW2-Q) seems to behave similarly to Problem (GW2-Q). The
situation might be probably the same for Gaussian distributions. Indeed we have observed that Problem
(GW2-Q) seemed to behave similarly to Problem (GW2-IP) in our experiments. However we are not able
to tell whether the solutions of (GW2-IP) are always also solutions of (GW2-Q) or if there exists peculiar
situations where this is not the case.
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Chapter 5

Gromov-Wasserstein type distances
between Gaussian mixture models
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In this chapter, we introduce two Gromov-Wasserstein type OT distances between Gaussian mixture
models and we illustrate their pratical use in solving Gromov-Wasserstein related tasks. This chapter is
mostly a reproduction of Salmona et al. (2023).

5.1 Introduction

Gaussian Mixture Models (GMMs) have become ubiquitous in modern data science. These models are
most of the time used in applied fields to represent probability distributions of real datasets, thanks to
their ability to approximate any continuous density when the numbers of components is chosen large
enough, including the most complex multimodal ones. Their parameters can also be inferred analytically
using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). In imaging science, GMMs
have been widely used for various applications, such as image restoration (Zoran and Weiss, 2011; Yu
et al., 2011; Feng et al., 2013; Teodoro et al., 2015; Zhang et al., 2017) or texture synthesis (Galerne et al.,
2017).

In parallel, optimal transport has also become ubiquitous in modern data science. Indeed, if it had
become a predominantly theoretical field in the past, the developpement of efficient numerical solvers
has widened the use of OT to various data science problems. In the imaging science field, OT has been
used in numerous applications such as image matching (Zhu et al., 2007; Wang et al., 2013; Li et al.,
2013), medical imaging (Wang et al., 2010; Gramfort et al., 2015), texture synthesis and style transfer
(Leclaire and Rabin, 2021; Gutierrez et al., 2017), or shape registration (Feydy et al., 2017; Su et al.,
2015). It has also been used in other machine learning subfields such as domain adaptation (Courty et al.,
2016), embedding learning (Courty et al., 2018; Xu et al., 2018), natural language processing (Kusner
et al., 2015) and generative modeling (Arjovsky et al., 2017; Genevay et al., 2018; Tolstikhin et al., 2018).
These efficient numerical solvers are often based on entropic regularization of the classic OT problem that
allows to solve the problem with an alternate minimization scheme using the Sinkhorn-Knopp algorithm
(Sinkhorn and Knopp, 1967; Cuturi, 2013). Over the last past years, a large body of works have focused on
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speeding up the Sinkhorn-Knopp algorithm, building mostly on diverse low-rank approximations (Solomon
et al., 2015; Altschuler et al., 2018, 2019; Forrow et al., 2019; Scetbon and Cuturi, 2020; Scetbon et al.,
2021). These approaches have helped to reduce the computational cost of the problem from cubic (for the
non-regularized problem) to linear complexity. Another type of commonly used solvers are building on
sliced mechanisms (Rabin et al., 2012; Kolouri et al., 2019) that leverage the fact that the OT problem
between one-dimentional distributions can be solved using a simple sorting algorithm. These solvers
roughly consist in computing infinitely many linear projections of the high-dimensional distributions
to one-dimensional distributions and then computing the average of the Wasserstein distances between
these one-dimensional representations. Alternatively, Delon and Desolneux (2020) have proposed an
OT distance not relying on direct comparison of histograms of points. First, a Gaussian mixture model
(GMM) is fitted on each distribution, then the two obtained GMMs are compared using a restricted
version of the W2 distance where the admissible transportation couplings π must themselves be GMMs.
This OT problem has an equivalent formulation, that had already been proposed by Chen et al. (2018),
that allows to solve it by merely calculating W2 distances between pairwise Gaussian components, which
can be done analytically, and then solving a small-scale discrete OT problem. The main benefit of this
latter approach is that the complexity of the composite OT problem does not depend on the dimension
nor on the number of points but only on the number of components in the GMMs, implying that the
computational cost of this approach comes almost entirely from the fitting of the GMMs. Although this
method probably doesn’t compete with the fastest recent refinements of the Sinkhorn-Knopp algorithm
in terms of pure computational cost, it provides a relatively scalable and computationally effective OT
distance that is particularly suited when there already exists a kind of clustering structure in the data.
This approach has been used for texture synthesis (Leclaire et al., 2022), evaluating generative models
(Luzi et al., 2023), or Gaussian Mixture reduction (Zhang and Chen, 2020).

Computationally speaking, the Gromov-Wasserstein problem is known to be much more costly to
solve than the classic linear OT problem. Indeed, solving numerically the non-regularized GW problem
involves solving a classic OT problem at each iteration. As for linear OT, entropic-regularized solvers
have also been proposed (Peyré et al., 2016; Solomon et al., 2016) and involve in that case solving a
regularized linear OT problem at each iteration. Recently, Scetbon et al. (2022) have shown that the
low-rank approximations used to speed-up the Sinkhorn-Knopp algorithm were particularly suited for
the regularized GW problem, resulting in a much more computationally efficient solver. Alternatively,
other works have proposed efficient solvers by reducing the size of the GW problem, either through
quantization of input measures (Chowdhury et al., 2021), or by recursive clustering approches (Xu et al.,
2019a; Blumberg et al., 2020). Specifically to the Euclidean setting, Vayer et al. (2019b) has introduced a
solver buiding on a sliced mechanism, and leveraging the observation that the GW problem seems most
of the time easy to solve between one-dimensional distributions. In this work, we aim to construct an
OT distance between GMMs that is invariant to isometries and that stays relevant between GMMs of
different dimensions, in order to design a relatively efficient and scalable solver for Gromov-Wasserstein
related problems, especially when there already exists a kind of clustering structure in the data.

Contributions of this chapter. In this chapter, we introduce two Gromov-Wasserstein type OT
distances between GMMs. More precisely, we introduce in Section 5.3 a natural Gromov version of the
distance introduced by Chen et al. (2018) and Delon and Desolneux (2020), that we call MGW2 for
Mixture Gromov Wasserstein. This distance can be used for applications which only require to evaluate
how far the distributions are from each other, without having to identify correspondences between points.
However, this formulation does not allow to derive directly an optimal transportation plan between the
points. To design a way to define such an optimal transportation plan, we define in Section 5.4 another
OT distance between GMMs derived from EW2, that we call MEW2 for Mixture Embedded Wasserstein
distance. This latter OT distance is not as computationally efficient as MGW2 but allows to derive
directly an optimal assignment between the points. We also define a transportation plan for MGW2

by analogy with MEW2. Finally, in Section 5.5, we show that MGW2 and MEW2 can both be used
to solve relatively efficiently Gromov-Wasserstein related problems. The proofs of all the lemmas are
postponed to Appendix A.3.

5.2 Background: GMMs and Mixture Wasserstein distance

We present here the distance introduced in Delon and Desolneux (2020), as well as various results of this
latter paper. We denote GMMK(Rd) the set of Gaussian mixtures on Rd with less than K components,
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i.e. the set of measures in P(Rd) which can be written

µ =
K′∑
k=1

akµk ,

where K ′ ≤ K, a = (a1, . . . , aK′)T is in ∆K′ , and {µk}k is a family of pairwise distinct Gaussian
distributions, each of mean mk ∈ Rd and covariance matrix Σk ∈ Sd+. Again, to avoid degeneracy issues
where locations with no mass are accounted for, we will assume that the elements of a are all positive.
The set of all finite Gaussian mixture distributions on Rd is then written

GMM∞(Rd) =
⋃
K≥0

GMMK(Rd) .

Note that the condition that the Gaussian components are pairwise distinct ensures the identifiability of
the elements of GMM∞(Rd) (Yakowitz and Spragins, 1968), in the sense that two GMMs µ =

∑K
k akµk

and ν =
∑L
l blνl are equal if and only if K = L, and we can reorder the indices such that for all k, ak = bk

and µk = νk. It can been shown that GMM∞(Rd) is dense in Wp(Rd) for the metric Wp, meaning that
any measure in Wp(Rd) can be approximated with any precision for the distance Wp by a finite Gaussian
mixture distribution. Let µ ∈ GMMK(Rd) and ν ∈ GMML(Rd). The Mixture-Wasserstein distance of
order 2 is defined as

MW2(µ, ν) =

(
inf

π∈Π(µ,ν)∩GMM∞(R2d)

∫
Rd×Rd

∥x− y∥2dπ(x, y)
) 1

2

.

As for W2 with W2(Rd), MW2 defines a metric on GMM∞(Rd). In general, the transportation plan
solution of the W2 problem is not a Gaussian mixture, thus by restricting the set of admissible couplings,
we most of the time have MW2(µ, ν) > W2(µ, ν). It can be shown that the difference between MW2(µ, ν)
and W2(µ, ν) is upper-bounded by a term that only depends on the weights and the covariances matrices
of the components of the two mixtures. Finally, MW2 can be written in an equivalent form, which had
already been introduced in Chen et al. (2018): if µ =

∑K
k akµk and ν =

∑L
l blνl, then

MW 2
2 (µ, ν) = inf

ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µk, νl) , (MW2)

where a = (a1, . . . , aK)T , b = (b1, . . . , bL)
T . From a computational point of view, this latter formulation

reduces the problem to a simple small-scale discrete optimal transport problem since the W2 distance
between Gaussian distributions has a closed form: indeed, recall that if µk = N(mk,Σk) and νl = N(ml,Σl),
then

W 2
2 (µk, νl) = ∥mk −ml∥2 + tr

(
Σk +Σl − 2

(
Σ

1
2

l ΣkΣ
1
2

l

) 1
2

)
.

5.3 Gromov-Wasserstein distance between GMMs

In this section, we define a Gromov-Wasserstein type distance between Gaussian mixture distributions.
This distance is a natural "Gromovization" of Problem (MW2). Indeed, as it has already been observed
in the literature (Chen et al., 2018; Lambert et al., 2022), any Gaussian mixture in dimension d can be
identified with a probability distribution on Rd × Sd+, i.e. the product space of means and covariance
matrices. Equivalently, a finite Gaussian mixture can be seen as a discrete probability distribution on
the space of Gaussian distributions N (Rd)1, which has been proven to be a complete metric space when
endowed with W2 (Takatsu, 2010) and is furthermore separable since it is a subspace of W2(Rd) which
is itself a separable metric space when endowed with W2 (Bolley, 2008). Since the theory of optimal
transport still applies on measures over non-Euclidean spaces (Villani, 2008), it follows that Problem
(MW2) can formally be thought as a simple OT problem between two discrete measures in P(N (Rd)).
Thus, one can define directly its Gromov version.

Definition 5.3.1. Let µ =
∑
k akµk and ν =

∑
l blνl be two Gaussian mixtures respectively on Rd and

Rd′ , we define
MGW 2

2 (µ, ν) = inf
ω∈Π(a,b)

∑
i,j,k,l

|W 2
2 (µi, µk)−W 2

2 (νj , νl)|2ωi,jωk,l . (MGW2)

1N (Rd) includes the degenerate Gaussian distributions, as for instance the Dirac distributions.

79



Gromov-Wasserstein type distances between Gaussian mixture models

Unlike MW2, there is no straightforward equivalent formulation of this latter problem. In particular,
it is not clear whether Problem (MGW2) is equivalent or not to the continuous GW problem between µ
and ν - seen as continuous measures on Rd and Rd′ - where the set of admissible couplings is restricted to
Gaussian mixture distributions. In the rest of the chapter, we distinguish the distribution µ̃ ∈ P(N (Rd))
from its associated GMM µ ∈ GMM∞(Rd). Thanks to the identifiability property of the set of finite
Gaussian mixture, we have that each µ ∈ GMM∞(Rd) is associated with a unique discrete distribution
µ̃ ∈ P(N (Rd)) and MGW2 between µ and ν coincides with GW2 with squared W2 as cost functions
between the associated measures µ̃ and ν̃. More generally, one can define for any metric measure space of
the form (N (Rd),W 2

2 , µ̃) and (N (Rd′),W 2
2 , ν̃), the following continuous GW problem,

inf
π∈Π(µ̃,ν̃)

∫
N (Rd)×N (Rd′ )

∫
N (Rd)×N (Rd′ )

|W 2
2 (γ, γ

′)−W 2
2 (ζ, ζ

′)|2dπ(γ, ζ)dπ(γ′, ζ ′) ,

where µ̃ and ν̃ can be possibly thought as infinite mixture of Gaussians. However, there is in general no
identifiability property for infinite Gaussian mixture and so for a given GMM µ on Rd, they might be
more than one associated measure µ̃ on N (Rd). For instance, the standard Normal distribution N(0, 1)
can naturally be identified in P(N (R)) with the Dirac distribution at N(0, 1), but also with the Normal
distribution N(0, 1/2) over the parametrized line {N(θ, 1/2) ∈ N (R) : θ ∈ R}, or with N(0, 1) over the
parametrized line {δθ ∈ N (R) : θ ∈ R}.

5.3.1 Metric properties
Here we study the metric property of MGW2 that mainly arises from the Gromov-Wasserstein structure
of Problem (MGW2). Indeed, the following result is a direct consequence of the theory developped by
Sturm (2012).

Proposition 5.3.2. In the following, µ =
∑
k akµk and ν =

∑
l blνl are two GMMs respectively in

GMMK(Rd) and GMML(Rd
′
).

(i) MGW2 is non-negative and symmetric.

(ii) MGW2 satisfies the triangle inequality, i.e. for any ξ ∈ GMMS(Rd
′′
),

MGW2(µ, ν) ≤MGW2(µ, ξ) +MGW2(ξ, ν) .

(iii) MGW2(µ, ν) = 0 if and only if there exists a bijection ϕ : {µk}k → {νl}l such that ν =
∑
k akϕ(µk)

and ϕ is an isometry for W2, i.e. for all k and i smaller than K, W2(ϕ(µk), ϕ(µi)) =W2(µk, µi).

Proof. Takatsu (2010) has shown that the space of Gaussian distributions N (Rd) is a complete metric
space when endowed with W2. Moreover, N (Rd) is separable since it is a subspace of W2(Rd) which is
itself a separable metric space when endowed with W2 (Bolley, 2008). Thus, N (Rd) is Polish and we
can directly apply the Gromov-Wasserstein theory developped in Sturm (2012). Let (N (Rd),W2, µ̃) and
(N (Rd′),W2, ν̃) be two metric measure spaces respectively in M4. Let us define

D(µ̃, ν̃) = inf
π∈Π(µ̃,ν̃)

∫
N (Rd)×N (Rd′ )

∫
N (Rd)×N (Rd′ )

|W 2
2 (γ, γ

′)−W 2
2 (ζ, ζ

′)|2dπ(γ, ζ)dπ(γ′, ζ ′) .

Applying Sturm (2012, Corollary 9.3), we get that D defines a metric over the space of metric measure
spaces of the form (N (Rd),W2, µ̃) quotiented by the strong isomorphisms, and thus we get directly
that D is symmetric, non-negative, satisfies the triangle inequality and D(µ̃, ν̃) = 0 if and only if
there exists a bijection ϕ : supp(µ̃) → supp(ν̃) such that ν̃ = ϕ#µ̃, where for any γ and γ′ in supp(µ̃),
W2(ϕ(γ), ϕ(γ

′)) = W2(γ, γ
′). Now observe that if µ =

∑
k akµk and ν =

∑
l blνl are respectively in

GMMK(Rd) and GMML(Rd
′
) and µ̃ =

∑
k akδµk

and ν̃ =
∑
l blδνl are respectively in P(N (Rd)) and

P(N (Rd′)), we have∫
N (Rd)×N (Rd)

W 4
2 (γ, γ

′)dµ̃(γ)dµ̃(γ′) =
∑
k,i

akaiW
4
2 (µk, µi) < +∞ ,

and ∫
N (Rd′ )×N (Rd′ )

W 4
2 (ζ, ζ

′)dν̃(ζ)dν̃(ζ ′) =
∑
l,j

blbjW
4
2 (νl, νj) < +∞ ,

so (N (Rd),W2, µ̃) and (N (Rd′),W2, ν̃) are both in M4. Furthermore, we have MGW2(µ, ν) = D(µ̃, ν̃).
Hence MGW2 inherits the metric properties of D, which concludes the proof.
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MGW2 defines thus a pseudometric on the set of all finite Gaussian mixtures of arbitrary dimensions,
i.e. the set,

GMM∞ =
⊔
d≥1

GMM∞(Rd) ,

that is invariant to the mappings ϕ that transform a finite Gaussian mixture
∑
k=1 akµk into another finite

Gaussian mixture of the form
∑K
k=1 akνk such that for all k and i smaller than K, W2(νk, νi) =W2(µk, µi).

A question that arises is: are all these mappings ϕ associated with mappings T that are isometries for the
Euclidean norm and such that T# coincides with ϕ? We can already state the following converse result.

Proposition 5.3.3. Let d ≥ d′, and let T : Rd′ → Rd be a mapping that is an isometry for the Euclidean
norm. Then the mapping ϕT : GMM∞(Rd′)→ P(Rd) defined as ϕT (µ) = T#µ for all µ ∈ GMM∞(Rd′),
is such that for any µ of the form ΣKk=1akµk, ϕT (µ) is in GMM∞(Rd′) and is of the form ΣKk=1akνk,
with {νk}Kk=1 being such that, for all k and i smaller than K, W2(νk, νi) =W2(µk, µi).

Proof. First recall that the push-foward measure T#µ with µ on Rd′ and T : Rd′ → Rd is defined as
the measure on Rd such that for every Borel set A of Rd, T#µ(A) = µ(T−1(A)). Equivalently, for any
measurable map h : Rd → R, we have∫

Rd

h(x)d(T#µ)(x) =

∫
Rd′

(h ◦ T )(y)dµ(y) .

Now observe that for any finite GMM µ on Rd′ of the form µ =
∑K
k akµk, we have∫

Rd′ (h ◦ T )(y)dµ(y) =
∫
Rd′ (h ◦ T )(y)d

(∑K
k akµk(y)

)
=
∑K
k ak

∫
Rd′ (h ◦ T )(y)dµk(y)

=
∑K
k ak

∫
Rd h(x)d(T#µk)(x)

=
∫
Rd h(x)d

(∑K
k ak(T#µk)(x)

)
,

and so T#µ is of the form
∑K
k ak(T#µk) with T#µk Gaussian since T is necessarily affine as a consequence

of Lemma 3.3.2. Thus, T#µ is in GMM∞(Rd). This proves that ϕT takes its values only in GMM∞(Rd)
and that ϕT (

∑K
k=1 akµk) is of the form

∑
k=1 akνk. Now observe that, for every k and i smaller than K,

W 2
2 (ϕT (µk), ϕT (µi)) = inf

π∈Π(T#µk,T#µi)

∫
Rd×Rd

∥x− y∥2dπ(x, y) .

Using two times succesively Lemma 3.3.4 using the fact that T is an isometry an so for any y ∈ Rd′ ,
∥T (y)∥ = ∥y∥, it follows

inf
π∈Π(T#µk,T#µi)

∫
Rd×Rd

∥x− x′∥2dπ(x, x′) = inf
π∈Π(µk,µi)

∫
Rd′×Rd′

∥y − y′∥2dπ(y, y′) =W2(µk, µi) ,

which concludes the proof.

Hence, if T : Rd′ → Rd is an isometry for the Euclidean norm, then MGW2 is invariant to the mapping
ϕT : GMM∞(Rd′) → GMM∞(Rd) such that for all µ ∈ GMM∞(Rd′), ϕ(µ) = T#µ. Yet, in general,
there exist mappings ϕ :W2(Rd

′
)→W2(Rd) that are isometries for W2 and that are not induced by any

mapping T : Rd′ → Rd that is an isometry for the Euclidean norm. This has been proven by Kloeckner
(2010). The following counter-example shows that this still holds when considering isometries defined on
subspaces of N (Rd′).

Example 5.3.4. Let N++(R) be the set of one-dimensional Gaussian distributions with strictly positive
mean. Let ϕ : N++(R)→ N++(R) be the mapping that swaps the mean and the standard deviation, i.e.
such that for any γ = N(mγ , σ

2
γ) with mγ > 0 and σγ > 0, ϕ(γ) = N(σγ ,m

2
γ). Then ϕ is an isometry for

W2.

Observe indeed that for γ and ζ in N++(R), we have

W2(ϕ(γ), ϕ(ζ)) = (σγ − σζ)2 + (mγ −mζ)
2 =W2(γ, ζ) .
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Thus ϕ is an isometry for W2, yet ϕ is not induced by any isometry of R. Hence there exist mappings from
GMM∞(Rd′) to GMM∞(Rd) that satisfy the conditions above but which are not induced by isometries
for the Euclidean norm from Rd′ to Rd. To sum things up, we state a straightforward but important
corollary of Proposition 5.3.2 that implies that MGW2 is invariant to isometries for the Euclidean norm,
and whose converse is not true as we have just seen above.

Corollary 5.3.5. Let µ ∈ GMMK(Rd) and ν ∈ GMML(Rd
′
), and let suppose that there exists an

isometry T : Rd′ → Rd for the Euclidean norm such that µ = T#ν. Then MGW2(µ, ν) = 0.

5.3.2 MGW2 in practice

Using MGW2 on discrete data distributions. Most applications of optimal transport involve
discrete data that can be thought as samples drawn from underlying distributions, which are not GMMs
in general. In those applications, we aim to evaluate an OT distance between two distributions of the form
µ̂ = (1/M)

∑
i δxi

and ν̂ = (1/N)
∑
j δyj where {xi}i and {yj}j are families of respectively M and N

vectors of Rd and Rd′ . Though µ̂ and ν̂ can be thought as mixtures of degenerate Gaussian distributions,
evaluating directly MGW2(µ̂, ν̂) is not particularly interesting since we have in that case MGW2(µ̂, ν̂) =
GW2(∥.∥2, ∥.∥2, µ̂, ν̂). However, we can design a pseudometric MGWK,2 between µ̂ and ν̂ by fitting two
GMMs µ and ν with K components on µ̂ and ν̂ and then setting MGWK,2(µ̂, ν̂) =MGW2(µ, ν). The
approximation of µ̂ and ν̂ by µ and ν can be done by maximizing the log-likelihood of the GMMs with
the EM algorithm (Dempster et al., 1977). Note that if K is chosen too small, the approximations µ̂
and ν̂ will be of bad quality and we are likely to observe undesirable behaviors, as for instance having
MGWK,2(µ̂, ν̂) = 0 despite µ̂ and ν̂ not being equal up to an isometry. Thus, the choice of K must be a
compromise between the quality of the approximation given by the GMM and the computational cost.
To illustrate the pratical use of MGW2 on a simple toy example, we draw 150 samples from the spiral
dataset provided in the scikit-learn toolbox2 (Pedregosa et al., 2011) and we apply rotations with various
angles on this dataset. We then fit independently GMMs with 20 components on the initial and the target
rotated datasets and we compute MGW2 between the two obtained GMMs. We also compute GW2 with
inner-product as cost functions, MW2 using also 20 Gaussian components and W2. The results can be
found in Figure 5.1. As expected, MGW2 is rotation-invariant as GW2 which is not the case of MW2

and W2.

Spiral datasets Evolution of OT distances

0 /4 /2 3 /4
0

5

10

15

20

25

MGW2

GW2
MW2

W2

Figure 5.1: Left first column: spiral datasets (in blue and red) composed of 150 points of R2. The red
dataset corresponds to points sampled from the distribution of the blue dataset rotated from π. Left
second column: The two corresponding learned GMMs with 20 components via EM algorithm (each color
corresponds to a Gaussian component of the GMMs). Right: evolution of MGW2, GW2, MW2, and
W2 between the initial distribution (in blue) and the rotated ones in function of the angle of rotation.
Experiments are averaged over 10 runs and the colored bands correspond to +/− the standard deviation.
This experiment is inspired from Vayer et al. (2019b).

2The package is accessible here: https://scikit-learn.org/stable/.
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Difficulty of designing a transportation plan. The MGW2 problem can be used on discrete data
to provide an optimal coupling between the Gaussian components of the two Gaussian mixtures µ and
ν that approximate the discrete data distributions µ̂ and ν̂. However, some applications require an
optimal coupling between the points that compose µ̂ and ν̂. It is not straightforward to design such
a transportation plan associated with the plan that minimizes the MGW2 problem. More precisely,
for two GMMs µ =

∑
k akµk and ν =

∑
l blνl, the discrete MW2 problem between the associated

distributions µ̃ ∈ P(N (Rd)) and ν̃ ∈ P(N (Rd)) is equivalent to restricting the set of coupling to be
GMMs in the continuous W2 problem between µ and ν. Thus, there exists a direct relationship between
the optimal couplings ω∗ and π∗ associated with these two latter problems. Indeed, when the muk are all
non-degenerate distributions, we have for any x, y ∈ Rd,

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=Tk,l
W2

(x), (5.1)

where for µk = N(mk,Σk), pµk
(x) = (2π)−

m
2 |Σk|−

1
2 exp

[
− 1

2 (x−mk)
TΣ−1

k (x−mk)
]

is the density of µk
in x, and T k,lW2

is the optimal affine transportation map between µk and νl = N(ml,Σl) associated with
W2, i.e. for all x ∈ Rd,

T k,lW2
(x) = ml +Σ

− 1
2

k (Σ
1
2

kΣlΣ
1
2

k )
1
2Σ

− 1
2

k (x−mk) .

However, in the case of MGW2, there doesn’t exist to the best of our knowledge, any equivalent continuous
formulation of the problem and so there is formally no such plan π∗ associated with the discrete optimal
coupling ω∗ that minimizes the MGW2 problem. Yet, supposing without any loss of generality that
d ≥ d′, and that ν ∈ GMML(Rd

′
), one could still define by analogy a plan π relatively to ω∗ using (5.1)

and replacing TW2
by suited transportation maps between Gaussian components. A naive approach would

be to simply replace TW2 by the affine transportation map TGGW2 associated with the Gaussian plan
that minimizes the GW problems (GW2-QG) and (GW2-IP) between µk and νl that we have exhibited
in the previous chapter:

T k,lGGW2
(x) = ml + Pl

(
Ĩdd′D

1
2

l D
(d′)
k

− 1
2

)[d′,d]

PTk (x−mk) ,

where (Pk, Dk) and (Pl, Dl) are the respective diagonalizations of Σk (= PkDkP
T
k ) and Σl (= PlDlP

T
l )

that sort the eigenvalues in non-increasing order. Yet this approach implies that each Gaussian component
is transported independently of the others and so offers too many degrees of freedom. Observe indeed
that TGGW2

is defined up to Ĩdd′ that can be any matrix of the form diag((±1)i≤d′), implying that we
have 2d

′
possibilities for each Gaussian component. For each component, since we want that points that

are close to each other but associated with different Gaussian components remain close when tranported,
we need to determine, relatively to all the other components, which of the 2d

′
possibilities is the correct

one. To illustrate this problem, we show in Figure 5.2 a 2-dimensional example where we derive two
different transport maps using TGGW2

but each time with a different Ĩd2. If the transport on the middle
of Figure 5.2 preserves the global structure of the distribution since two points that are close to each
other but associated with different Gaussian components remain close when tranported, this is not the
case of the transport on the right.

Therefore, in order to design a transport plan πMGW2 associated with the MGW2 problem, it is in
general necessary to determine for each pair of indices k, l, which Ĩdd′ preserves, relatively to the others,
the global structure of the GMM, which becomes a difficult combinatorial problem in itself as soon as
the dimension d′ is large. Alternatively, a less tedious solution to design such plan would be to derive
explicitely the isometric transformation that has been implicitely applied to one of the two measures
when solving the MGW2 problem. This is the idea behind the mixture embedded Wasserstein distance
that we introduce in the following section.

5.4 Embedded Wasserstein distance between GMMs

Similarly to Delon and Desolneux (2020), one can define an OT distance derived from EW2 when µ and
ν are GMMs by restricting the set of admissible couplings to be themselves GMMs.

Definition 5.4.1. Let µ ∈ GMMK(Rd) and ν ∈ GMML(Rd
′
) and suppose that d ≥ d′. We define

MEW2(µ, ν) = inf

{
inf

ϕ∈Isomd′ (Rd)
MW2(µ, ϕ#ν), inf

ψ∈Isomd(Rd′ )
MW2(ψ#µ, ν)

}
. (5.2)
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Figure 5.2: Left: two discrete distributions µ̂ (in gradient of colors) and ν̂ (in blue) that have been drawn
from two GMMs. The colors have been added to µ̂ in order to visualize the couplings between µ̂ and ν̂.
Middle: transport of µ̂ obtained by plugging the discrete plan that minimizes MGW2 in (5.1), then using
TGGW2 with Ĩd2 = Id2 for all components to transport the points. Right: transport of µ̂ obtained the
same way as previously, but with another Ĩd2.

As before, one can reformulate this latter problem by observing that the isomorphic mappings for
the Euclidean norm are necessarily of the form Px+ b with P ∈ Vd′(Rd) and b ∈ Rd. Similarly to EW2,
one can show that the infinimum in ϕ is always achieved and that MEW2 satisfies all the properties
of a pseudometric on GMM∞ by simply replacing W2 by MW2 in the proofs of Corollary 3.3.5 and
Theorem 3.3.10. Supposing without any loss of generality that d ≥ d′ and using the equivalent discrete
formulation (MW2) of the MW2 problem, we get that for µ =

∑
k akµk and ν =

∑
l blνl, the problem is

equivalent to
inf

P∈Vd′ (Rd)
inf

ω∈Π(a,b)

∑
k,l

ωk,lW
2
2 (µ

′
k, P#ν

′
l) , (MEW2)

where for any k ≤ K and l ≤ L, µ′
k and ν′l are the Gaussian components respectively associated to the

centered GMMs µ̄ and ν̄. Note that µ′
k and ν′l are not necessarily themselves centered.

5.4.1 Numerical solver
This time, it is not possible to derive analytically the closed form of the optimal P ∗ for Problem (MEW2).
However, one can still solve the problem numerically using an alternate minimization scheme. Indeed,
Problem (MEW2) is not convex in P and ω, but is convex in ω if P is fixed and is furthermore a simple
small-scale discrete OT problem in that case, which motivates the use of an alternating optimization
scheme for solving this problem. However, Problem (MEW2) is not convex in P for a fixed ω because
the feasible set, i.e. the Stiefel manifold Vd′(Rd), is not convex. For a fixed ω, the minimization in P can
be done by projected gradient descent (Calamai and Moré, 1987), i.e. for a given iterate P {i} and a given
ω, the next iterate P {i+1} is given by

P {i+1} = κVd′ (Rd)

(
P {i} − η ∂Jω(P

{i})

∂P

)
,

where κVd′ (Rd) is the projection mapping on the Stiefel manifold, where η > 0 and where for all matrices
P of size d′ × d, Jω(P ) =

∑
k,l ωk,lW2(µ

′
k, P#ν

′
l). As we have seen above in Proposition 3.3.7, for all P of

size d′ × d, the projection κVd′ (Rd) can be written

κVd′ (Rd)(P ) = UP Id
[d,d′]
d′ V TP ,

where UP ∈ O(Rd) and VP ∈ O(Rd′) are respectively the left and right orthogonal matrices associated
with the SVD of P . In a nutshell, this yields to Algorithm 4.

When µ and ν are only composed of non-degenerate Gaussian components, one can compute
∂Jω(P )/∂P either by using automatic differentiation (Baydin et al., 2018) or by using the following
technical result, whose proof is postponed to Appendix A.3.

Lemma 5.4.2. Let for any k ≤ K, µk = N(m0k,Σ0k) with m0k ∈ Rd and Σ0k ∈ Sd++ and for any l ≤ L,
νl = N(m1l,Σ1l) with m1l ∈ Rd′ and Σ1l ∈ Sd′++. For any ω in the K × L simplex, let Jω : Rd×d′ → R be
the functional defined, for all matrix P of size d× d′, by

Jω(P ) =
∑
k,l

ωk,lW
2
2 (µk, P#νl) .
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Algorithm 4 Mixture embedded Wasserstein solver

Require: µ =
∑K
k akµk, ν =

∑L
l blνl, P

{0} ∈ Vd′(Rd), η > 0.
1: while not converged do
2: [C]k,l ←W 2

2 (µk, νl) for k = 1, . . . ,K; l = 1, . . . , L
3: ω{i} ← Network-Simplex(a, b, C) ▷ Solve a classic OT problem.
4: while not converged do ▷ Do projected gradient descent on P .
5: A← P {i−1} − η∂Jω{i}(P {i−1})/∂P
6: U,Σ, V T ← SVD(A)

7: P {i} ← U Id
[d,d′]
d′ V T

8: end while
9: end while

10: return ω, P

Then for any full-rank matrix P of size d× d′, we have

∂Jω(P )

∂P
= 2

∑
k,l

ωk,l

[
Pm1lm

T
1l −m0km

T
1l − Σ0kPΣ

1
2

1l(Σ
1
2

1lP
TΣ0kPΣ

1
2

1l)
− 1

2Σ
1
2

1l

]
.

Initialization procedure. Since the problem is non-convex, the solution to which Algorithm 4 converges
strongly depends on the initialization of P . It is therefore crucial to design a good initialization procedure.
To do so, we propose to use the annealing scheme introduced by Alvarez-Melis et al. (2019). More
precisely, we propose to set the initial P as the solution of the following iterative procedure. First
we solve an entropic-regularized W2 problem between the two discrete measures µ◦ =

∑
k akδm0k

and
ν◦ =

∑
k blδm1l

with a large value of regularization ε0 in order to obtain a coupling ω{1}. Then we set

P {1} = κVd′ (Rd)

(∑
k,l ω

{1}
k,l m0km

T
1l

)
.

We then solve another entropic-regularized W2 problem, this time between µ◦ and P {1}
# ν◦, using a smaller

value of regularization ε1 = α× ε0 with α ∈ (0, 1). We obtain thus a new coupling ω{2} and we can then
derive P {2} as previously. We repeat this procedure Nit times until the regularization term εNit

becomes
small enough. This boils down to Algorithm 5.

Algorithm 5 Annealed initialization procedure for mixture embedded Wasserstein

Require: a, b, {m0k}Kk , {m1l}Ll , ε0 > 0, α ∈ (0, 1), P {0} = Id
[d,d′]
d′

1: for i = 1, . . . , Nit do
2: [C]k,l ← ∥m0k − P {i−1}m1l∥2
3: ω{i} ← Sinkhorn-Knopp(a, b, C, εi−1) ▷ Solve a regularized OT problem using Algorithm 1.
4: A←

∑
k,l ω

{i}
k,lm0km

T
1l

5: U,Σ, V T ← SVD(A)

6: P {i} = U Id
[d,d′]
d′ V T

7: εi ← αεi−1 ▷ Annealing scheme.
8: end for
9: return P

In practice, we set in all our experiments α = 0.95 and ε0 = 1 as in Alvarez-Melis et al. (2019). Furthermore
we observed that in most cases, setting Nit = 10 was sufficient to obtain a good initialization of P for
Algorithm 4.

5.4.2 Transportation plans and transportation maps
Since (MEW2) has a continous equivalent formulation (5.2), one can derive from any optimal solution
(ω∗, P ∗) of the former, an optimal solution (π∗, ϕ∗) of the latter. More precisely, we have on the one
hand for all y ∈ Rd′ , ϕ∗(y) = P ∗y + b∗, where b∗ = EX∼µ[X]− P ∗EY∼ν [Y ], and on the other hand for
all (x, y) ∈ Rd × Rd′ ,

π∗(x, y) =
∑
k,l

ω∗
k,lpµk

(x)δy=ψ∗◦Tk,l
W2

(x) , (5.3)
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where T k,lW2
(x) is the optimal W2 transport map between µ′

k and P ∗
#ν

′
l and ψ∗ : Rd → Rd′ is defined for

all x ∈ Rd as ψ∗(x) = P ∗T (x− b∗). As in Delon and Desolneux (2020), it is possible to define a unique
assignment of each x by setting for all x ∈ Rd,

Tmean(x) = E(X,Y )∼π∗ [Y |X = x] =
∑

k,l ω
∗
k,lpµk

(x)ψ∗◦Tk,l
W2

(x)∑
k akpµk

(x)pµk
(x) .

Note that Tmean is not a Monge map since π∗ is not of the form (Idd, T )#µ. In particular, Tmean#µ is
not equal to ν and Tmean#µ is not necessarily the gradient of a convex function. Another possible way to
define an assignment proposed by Delon and Desolneux (2020) is to define it as a random assignment for
a fixed x, i.e.

Trand(x) = ψ∗ ◦ T k,lW2
(x) with probability pk,l(x) =

ω∗
k,lpµk

(x)∑
i aipµi

(x) .

Hence, when using MEW2 to obtain an assignment between two sets {xi}Mi and {yj}Nj of respectively M
and N vectors of Rd and Rd′ , one can compute either Tmean(x) or Trand(x) for each xi, and then determine
for each xi which yj is the closest of Tmean(xi) - or Trand(xi) - using a nearest-neighbor algorithm (Fix
and Hodges, 1951).

5.4.3 Improving the MGW2 method
Inspired by the MEW2 method presented above, we propose in this section to improve the MGW2

method by: (i) proposing an annealed scheme similarly to Algorithm 5 in order to reduce the chances of
converging to sub-optimal local minima, (ii) designing a transportation plan for MGW2 similarly to (5.3).

Annealing scheme. Since Problem (MGW2) is non-convex, we are only guaranteed to converge
towards a local minimum when solving it with a classic non-regularized GW solver, e.g. the conditional
gradient algorithm presented in Algorithm 2. Furthermore, the convergence towards a particular minimum
depends strongly on the initialization of the coupling ω. Since the discrete GW problem in MGW2 is
of very small scale and so not costly in itself, we propose, by anology with MEW2, to use a similar
annealing scheme as in Algorithm 5 to reduce the chance of converging to a sub-optimal local minimum.
More precisely, this gives the following algorithm.

Algorithm 6 Annealed mixture Gromov-Wasserstein solver

Require: µ =
∑K
k akµk, ν =

∑L
l blνl, α ∈ (0, 1), ε0, ω{0} = abT

1: [Cx]k,i ←W 2
2 (µk, µi) for k = 1, . . . ,K, i = 1, . . . ,K

2: [Cy]l,j ←W 2
2 (νl, νj) for l = 1, . . . , L, j = 1, . . . , L

3: for n = 1, . . . , Nit do
4: ω{n} ← ε-GW(a, b, Cx, Cy, εn−1, ω

{n−1}) ▷ Solve a regularized GW problem (Algorithm 3).
5: εn ← αεn−1 ▷ Annealing scheme.
6: end for
7: return GW(a, b, Cx, Cy, ω{Nit}) ▷ Solve the non-regularized GW problem (Algorithm 2).

As previously, we set in our experiments α = 0.95 and ε0 = 1 as in Alvarez-Melis et al. (2019) and we
observed that, in toy cases where we know what the global minimum is, that Nit = 10 seemed to be a
sufficient number of iterations to prevent the algorithm from converging towards a sub-optimal minimum.

Designing a transportation plan. Still by analogy with MEW2, one can design a transportation
plan for MGW2 by defining a matrix PMGW2

∈ Vd′(Rd) and a vector bMGW2
∈ Rd, and then replacing

TW2 ◦ ψ∗ in (5.3) by TW2 ◦ ψMGW2 , where for all x ∈ Rd, ψMGW2(x) = PTMGW2
(x − bMGW2). Given

two GMMs µ =
∑
k akµk and ν =

∑
l blνl respectively in GMMK(Rd) and GMML(Rd

′
) and given the

optimal discrete plan ω∗ solution of Problem (MGW2), one can define the matrix PMGW2 as the solution
of the following problem

inf
P∈Vd′ (Rd)

∑
k,l

ω∗
k,lW

2
2 (µ

′
k, P#ν

′
l) , (5.4)

where µ′
k and ν′l are the Gaussian component of the centered GMMs µ̄ and ν̄, then we can set bMGW2 =

EX∼µ[X]−PMGW2
EY∼µ[Y ]. As above, this problem can be solved numerically by performing a projected
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gradient descent on P , using either automatic differentiation or Lemma 5.4.2. This is also a non-convex
optimization problem since Vd′(Rd) is non-convex and so the solution given by the projected gradient
descent depends on the initialization. We propose thus to initialize with the projection on the Stiefel
manifold of the discrete cross-covariance matrix between the means of the Gaussian components, i.e.

P
{0}
MGW2

= κVd′ (Rd)

(∑
k,l ω

∗
k,lm0km

T
1l

)
.

Finally, using PMGW2 one can define a continous plan πMGW2 associated with the discrete optimal
plan ω∗ solution of the MGW2 problem similarly to (5.3). We can therefore use MGW2 to transport
distributions, using as previously either Tmean or Trand. We can also, as for MEW2, use MGW2 to obtain
an assignment between two sets of points.

5.5 Experiments

In what follows, we use MGW2 and MEW2 to solve Gromov-Wasserstein related tasks on various datasets.
More precisely, we apply first the two methods on simple toy low-dimensional GMMs. Then, we show
that both methods can be used to solve relatively efficiently GW related tasks on real datasets in large
scale settings involving sometimes several tens of thousands of points. We apply thus our methods to two
shape matching problems, then to color transfer on hyperspectral images. In all our experiments, we use
the numerical solvers provided by the Python Optimal Transport (POT) package3 (Flamary et al., 2021)
that implements the network-simplex algorithm for the classic linear OT problems, the Sinkhorn-Knopp
algorithm for the regularized linear OT problems, as well as the non-regularized and regularized solvers
of the GW problem presented in 3.1.4.

5.5.1 Low dimensional GMMs
In Figure 5.3, we use again the example of Figure 5.2 and we derive an optimal transport plan for the
MGW2 problem as described in Section 5.4.3. We also show the plan obtained by solving the EW2

problem. One can see that with both solutions, the global structure of the distribution is preserved in the
sense that points that are closed to each other but in two different Gaussian components have been sent
to points that are also close to each other but in different Gaussian components.

data MGW2 MEW2

Figure 5.3: Left: two discrete distributions µ̂ (in gradient of colors) and ν̂ (in blue) that have been drawn
from two GMMs. The colors have been added to µ̂ in order to visualize the couplings between µ̂ and
ν̂. Middle: transport of µ̂ obtained by solving the MGW2 problem, then deriving PMGW2

∈ V2(R2) by
solving Problem (5.4). Right: transport of µ̂ obtained by solving the MEW2 problem.

5.5.2 Application to shape matching
We apply now our methods on two shape matching problems. The first one consists in reproducing an
experiment originally conducted in Rustamov et al. (2013) and presented in Solomon et al. (2016) with
the use of entropic-regularized GW, that aims to revover the cyclical nature of a horse’s gallop. The
second problem consists in drawing correspondences betwen human shaped meshes from the SHREC’19
dataset4 (Melzi et al., 2019) in the sense that we aim to assign a hand with a hand, a foot with a foot,
etc. Note that the goal of these experiments is not to obtain state-of-the-art results in shape-matching,
but rather to demonstrate the usability of our methods in moderate-to-large scale settings.

3The package is accessible here: https://pythonot.github.io/.
4The SHREC’19 dataset is accessible here: http://profs.scienze.univr.it/ marin/shrec19/
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Galloping horse sequence. Here we repoduce the experiment of the galloping horse, that has been
originally conducted in Rustamov et al. (2013) and presented in Solomon et al. (2016) with the use
of entropic-regularized GW. The goal of this experiment is to compute a matrix of pairwise distances
between the 45 meshes representing a galloping horse, and then to conduct a Multi-Dimensional Scaling
(MDS) (Borg and Groenen, 2005) - which roughly can be thought as a generalization of PCA - of the
pairwise distances in order to plot each mesh as a 2-dimensional point. The results can be found in
Figure 5.4. As in Solomon et al. (2016), the cyclical nature of the motion is recovered in both cases
when MGW2 or MEW2 is used to compare the meshes. Each mesh is composed of approximately 9000
vertices and the average time to compute one distance when using the POT implementation of the
entropic-regularized GW solver is around 30 minutes which makes the computation of the full pairwise
distance matrix impractical, as mentioned in Solomon et al. (2016). In constrast, when using our methods
with GMMs with K = 20 components, it took us only approximately 10 minutes to compute the full
distance matrix using MGW2, and around one hour using MEW2, these times including the fitting of all
the GMMs.

MGW2 MEW2 Data

0 10 20 30 40
Mesh id

0 10 20 30 40
Mesh id

Figure 5.4: MDS on the galloping horse animation using the MGW2 distance (left), and the MEW2

distance (middle). Each point corresponds to a given mesh and the meshes are colored in function of
their number in the sequence. Right: 4 examples among the 45 meshes that composes the sequence. The
computations of both distances have been done by first fitting GMMs with 20 components on each mesh
independently.

Local minima. To highlight the importance of using an annealing scheme when deriving MGW2 or
MEW2, we have reconducted the previous experiment but this time without the annealing schemes
described in Algorithm 6 and Algorithm 5. In Figure 5.5, we plot the evolutions of the values of MGW 2

2

and MEW 2
2 between one given fixed mesh and all the others. In both cases, the annealing scheme seems

to be useful to prevent the solver to converge towards sub-optimal mininima. However, if the MGW2

solver seems to often converge to the same optimum regardless the use of the annealing scheme, this is not
the case of MEW2 which, without the annealing initialization procedure (Algorithm 5), converges most
of the time to a sub-optimal minimum, so much that the periodical aspect doesn’t even appear in that
case. Beside to highlight the importance of using a good initialization, this experiment also emphasizes
the fact that when solving a GW problem with the non-regularized solver or the entropic solver presented
in Section 3.1.4, we are not at all guaranteed to converge towards a global minimum and, more critically,
we have in general no ways to know if the solution we converged to is actually optimal or sub-optimal.

Matching human shaped meshes. To demonstrate the usability of our methods in larger scale
settings, we use the SHREC’19 dataset that contains human shaped meshes that can sometimes be
composed of more than 300000 vertices. Our goal is to draw correspondences between the shapes using
only the information of the vertices (the dataset also includes edges). To do so, we first fit independently
GMMs with 20 components on each mesh and we derive directly couplings at the scale of the Gaussian
components that represents the different parts of the bodies. In such large scale settings, the main
bottleneck of the methods in terms of computational time is clearly the fitting of the GMMs that can
take at worst 2 minutes for the meshes composed of the highest number of vertices. The results are
displayed on Figure 5.6. Observe that in most cases, both methods seem to be able to match correctly the
colored parts. Yet in the last row, MEW2 matches a leg at the left in red to an arm at the right. This
probably implies that the method has been trapped in a local minimum despite the annealing initialization
procedure. Finally, note that we presented here cases where the methods performed relatively well, but
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MGW2 MEW2

0 10 20 30 40
Mesh id

0.00
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0.04
without annealing
with annealing
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Mesh id
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0.02

0.03

0.04

0.05
without annealing
with annealing

Figure 5.5: Left: Evolution of MGW 2
2 between the second mesh and all the others, using an annealing

scheme (Algorithm 6) in blue, and without the annealing scheme in orange. Right: Evolution of MEW 2
2

between the first mesh and all the others, with the annealing initialization procedure (Algorithm 5) in
blue, and without in orange. The computation of both distances have been done by first fitting GMMs
with 20 components on each mesh independently.

there are cases where MGW2 or MEW2 fail to find correct correspondences and exhibit behaviors similar
to MEW2 in the last row, which suggests that the methods converge sometimes to sub-optimal minima
despite the annealing schemes.

Source Target (MGW2) Target (MEW2)

Figure 5.6: Shape matching between human-shaped meshes using MGW2 (middle) and MEW2 (right).
Each shape on the left column is matched with the shapes on the same row. GMMs with 20 components
have been fitted independently on each shape and the points colored in green and red correspond to
Gaussian components that are matched together when solving MGW2 or MEW2. From left to right and
top to bottom, the meshes are composed respectively of 84912, 30300, 75000, 273624, 360678, and 360357
vertices.
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5.5.3 Application to hyperspectral image color transfer
The goal here is to reproduce the experiment of color transfer conducted in Delon and Desolneux (2020),
but this time using a hyperspectral image, i.e an image with more than 3 color channels. More precisely, we
aim to create an RGB image from an hyperspectral image u using the colors of another RGB image v. To
do so, we consider images as empirical distributions in the color spaces and we solve a Gromov-Wasserstein
problem between the distributions µ̂ = 1

M

∑M
k δuk

and ν̂ = 1
N

∑N
l δvl , where M and N are the number

of pixels in respectively the hyperspectral image and the RGB image we use as color palette, and {uk}Mk
and {vl}Nl are the values at each pixel, i.e for here all l, vl ∈ R3 and for all k, uk ∈ Rd with d > 3.
We thus fit two GMMs µ and ν and respectively µ̂ and ν̂ and we use MGW2 or MEW2 to derive a
mapping Tmean : Rd → R3, as described in Section 5.4.2. We apply this process to a hyperspectral image
of 512× 512 pixels with 15 channels that are displayed in Figure 5.7 top left. We use as color palettes two
paintings by Gauguin and Renoir, displayed in Figure 5.7 top right, that are respectively Manhana no
atua (top) and Le déjeuner des canotiers (bottom). These two images are composed of 1024× 768 pixels.
The resulting images Tmean(u) are displayed in Figure 5.7 bottom (Gauguin at the left and Renoir at the
right). For this experiment, we observed that setting the number of Gaussian components to K = 15 was
a good compromise between capturing the complexity of the color distributions and obtaining a relatively
regular mapping Tmean. This experiment shows that MGW2 and MEW2 can be used in large scale
settings: observe indeed that the color distributions µ̂ and ν̂ are composed respectively of approximatively
300000 and 800000 points, which makes the problem intractable with entropic-GW solvers such as Peyré
et al. (2016) or Solomon et al. (2016). Furthermore, note also that d = 15 is already a relatively high
dimension in the context of Gromov-Wasserstein. In term of computation time, the fitting of the GMM for
the hyperspectral image takes aproximatively 15 minutes against one minute for the GMM for the RGB
image. The projected gradient descent becomes rather slow in that setting, which makes it preferable to
few updates of P at each step of Algorithm 4 for the computation of MEW2. Finally, for both methods,
it takes around 20 minutes to compute the whole RGB image Tmean(u).

5.6 Discussion

In this chapter, we have introduced two new OT distances on the set of Gaussian mixture models, MGW2

and MEW2, and we have shown that they both can be used to solve relatively efficiently Gromov-
Wasserstein related problems on Euclidean spaces, especially in moderate-to-large scale settings involving
several tens of thousands of points. These OT distances are also by design particularly suited to settings
where there already exists a kind of clustering structure in the data. This being said, if MEW2 remains
an efficient alternative to the entropic GW solvers proposed by Peyré et al. (2016) and Solomon et al.
(2016), we observed that the method was actually slower and perhaps harder to tune than MGW2 for
roughly the same quality of results, and so we believe that MGW2 is a better choice in practice. This
latter distance is part of the families of Gromov-Wasserstein type OT distances that reduce the size of
the GW problem by quantization (Chowdhury et al., 2021) or by clustering (Xu et al., 2019a; Blumberg
et al., 2020). To the best of our knowledge, however, no such methods specific to the Euclidean case had
already been proposed in the literature. MGW2 could also be easily extended to other type of mixtures
as soon as we have an identifiability property between the mixtures and the probability distributions on
the space of the distributions that compose the mixtures. If in the Euclidean setting GMMs seem to be
versatile enough to represent large classes of concrete and applied problems, an interesting extension on
our work could be to consider mixture of distributions on non-Euclidean spaces.

Computationally speaking, the main bottleneck of the method probably comes from the fitting of the
GMMs with the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) which can become
relatively costly in large scale settings or as soon as the dimension increases. If the EM algorithm remains
invariably the classical algorithm for learning GMMs, some recent approaches (Hosseini and Sra, 2020;
Sembach et al., 2022; Pasande et al., 2022) have proposed alternative algorithms that seems to outperform
it. These approaches are based on Riemannian stochastic optimization, leveraging the rich Riemmanian
structure of the set of positive definite matrices. Another interesting alternative that has been shown
to outperform the EM algorithm has been proposed by (Kolouri et al., 2018b) and is based on the
minimization of the sliced-Wasserstein distance. Integrating this in our method could result thus in an
approach fully-based on optimal transport.

Another possible limitation of our work lies in the fact that the MGW2 solver converges sometimes to
sub-optimal local minima. If the annealed procedure introduced in Section 5.4.3 seems to reduce this
issue, we generally have no guarantee that the solution we have converged to is optimal. This is not

90



Gromov-Wasserstein type distances between Gaussian mixture models

MGW2 MEW2

Figure 5.7: Color transfers between a hyperspectral image with 15 channels (top left) and two paintings
by Gauguin and Renoir (top right, top to bottom). Bottom line: the obtained RGB images using MGW2

and MEW2. For this experiment, we used GMMs with 15 components. Image taken by Francesca
Ramacciotti (Alma Mater Studiorum - University of Bologna) and Laure Cazals (supported by the
European Commission in the framework of the GoGreen project (GA no. 101060768)).

specific to our method and comes from the gradient descent structure of the classic GW solvers described
in Section 3.1.4. Still, when solving the GW problem between GMMs rather than solving it directly
between the points, it is likely that we increase the probability of converging towards a sub-optimal local
minimum because we inevitably introduce symmetries by simplifying the problem and so we probably
increase in the mean time the number of local minima in the GW objective. In the Euclidean setting, the
recent work of Ryner et al. (2023) proposes an algorithm for solving the GW problem that is guaranteed
to converge toward a global minimum, leveraging the low-rank structure of the cost matrices when the
cost functions are the squared Euclidean distances. A future perspective of work could be therefore to
study if a similar idea could be applied for solving the MGW2 problem.
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An introduction to generative modeling
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In this chapter, we introduce the basic concepts of generative modeling and we present the most
commonly used generative models in imaging science.

6.1 The generative modeling problem

Informally, the goal of generative modeling is to create "fake" data - synthetic images for instance - that
look like they belong to a given dataset. This makes thus generative models directly useful for data
augmentation (Antoniou et al., 2018; Haradal et al., 2018; Shao et al., 2019; Luo et al., 2020) that consists
in artificially increasing the size and diversity of a dataset in order to improve the performances of machine
learning methods. Generative modeling has been also sucessfully used to solve a wide range of inverse
problems such as image inpaiting (Yu et al., 2018; Yeh et al., 2017; Song et al., 2021), super-resolution
(Ledig et al., 2017), image colorization (Nazeri et al., 2018; Saharia et al., 2022), or audio source separation
(Subakan and Smaragdis, 2018), just to name a few. Yet, the popularity of generative models can probably
be explained more by the impressive aspect of their direct application rather than by their true scientific
usefulness. To that extent, recent large scale text-to-image models such as DALL-E 2 (Ramesh et al.,
2022) or Stable Diffusion (Rombach et al., 2022) have recently caught general audience’s attention thanks
to ther ability of generating photorealistic or artistic high definition images from simple text descriptions.
In this chapter, we introduce the basic concepts of generative modeling and briefly introduce the models
that are used today in the machine learning community. Note that we especially focus on generative
models in the context of imaging science in this thesis, but most of the models presented here can also be
used in other machine learning subfields, such as natural language processing or audio signal processing.

6.1.1 Mathematical formulation

In the following, we adopt the probabilistic point of view where data are seen as realizations of a
random variable following a probability law. We suppose indeed that there exists an unknown underlying
probability distribution ν on Rd such that the n points xi forming the dataset are actually n samples that
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have been drawn independently from ν. In this framework, the task of creating "fake" data mathematically
translates into predicting new samples from ν given the information of the n true samples.

General approach. A general approach to solve the problem described above is to define a parametric
family of distributions {νθ}θ∈Θ and to solve the following problem

min
θ∈Θ

D (ν̂, νθ) , (6.1)

where D is a measure of dissimilarity between probability distributions and ν̂ = 1
n

∑n
i=1 δxi

is the empirical
data distribution. The idea behind this approach is that if the parametric family {νθ}θ∈Θ is well chosen
and if {xi}ni is a representative sample set of ν, the optimal distribution νθ∗ that minimizes (6.1) will be
similar to ν. Hence, a generative model with this approach consists in first solving Problem (6.1) and
then sampling from the obtained optimal distribution νθ∗ . Note that in the next section, we will discuss
more in details the two assumptions mentioned above. Finally, note also that D can be a distance as well
as a divergence, or simply a functional that measures the dissimilarity between probability distributions
without verifying any axioms of a metric, which is most of the time the case in practice. Still, these
functionals are always more or less directly linked to a distance or a divergence, which can typically be
the Wasserstein distance, the Kullback-Leibler or the Jensen-Shannon divergence. For µ and ν being two
measures on Rd with µ absoluty continuous with respect to ν. The Kullback-Leibler divergence is defined
as

DKL(µ||ν) =
∫
Rd

log

(
dµ

dν
(x)

)
dµ(x) ,

where dµ
dν is the Radon–Nikodym derivative of µ with respect to ν, i.e. the unique function pµ/ν : Rd → R

such that dµ(x) = pµ/ν(x)dν(x) ν-almost everywhere. One can then define the Jensen-Shannon divergence
as

DJS(µ||ν) = 1
2DKL(µ||ξ) + 1

2DKL(ν||ξ) ,

where ξ = 1
2 (µ+ ν) is the mixture distribution of µ and ν.

Sampling from the parametric distribution. Once Problem (6.1) is solved, a question that arises
is: how do we sample from the parametric distribution νθ∗? A first approach to do so is to design the
family of parametric distributions {νθ}θ∈Θ in such a way that for all θ ∈ Θ, νθ is easy to sample. An
important example of this approach is when {νθ}θ∈Θ is defined as family of distribution of the form, for
all θ ∈ Θ,

νθ = gθ#µd′ ,

where gθ : Rd
′ → Rd is a parametric mapping and µd′ = N(0, Idd′) is the standard Gaussian distribution

in dimension d′. In that case, we say that the model is a push-forward generative model since it consists
in deriving a transport map - not necessarily optimal in the sense of Part I - that pushes µd′ into a
distribution close to ν. Alternatively, another approach consists in, rather than designing the family
{νθ}θ∈Θ specifically to be sampled easily, sampling from νθ∗ using a Markov Chain Monte Carlo (MCMC)
method (Robert et al., 1999). Indeed, the generative modeling problem is inherently linked with the
MCMC methods since these latters consist in sampling from a target probability distribution ν by
designing an ergodic Markov chain that converges towards ν and such that its initial distribution is
easy to sample. We refer to Andrieu et al. (2003) for a machine learning oriented introduction on these
methods. This approach consists thus in designing a Markov chain that can be thought as a functional Gθ
defined on the space of trajectories of a Brownian motion (Bt)t∈T

1, and such that for a given realization
(zt)t∈T of (Bt)t∈T, Gθ((zt)t∈T) is a sample of νθ. We will refer to Gθ as the generation dynamics of the
generative model.

Supervised variant. The generative modeling problem as described above can be classified as an
unsupervised learning problem since it doesn’t require in any way the data to be labeled. However, there
exists an important supervized variant of the generative modeling problem which is known as conditional
generative modeling. Given a labeled dataset {xi, yi}ni such that the xi are n independent realizations of
a random variable X with unknown probability ν and the yi are n independent realizations of a random
variable Y , a conditional generative model aims at approximating the regular conditional probability

1Note that T can be a subset of N as well as a subset of R.
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distributions νX|Y (.|Y = yi)
2 for each yi instead of the probability distribution ν. This supervised

variant makes generative modeling particularly useful for solving diverse inverse problems such as image
inpainting (Song et al., 2021), super-resolution (Ledig et al., 2017) image colorization (Nazeri et al., 2018),
or more generally image-to-image translation (Isola et al., 2017; Saharia et al., 2022).

Generative versus discriminative models. Here we would like to clarify the fact that the meaning
of the term generative model differs from its use in statistics. Indeed a generative model, in the statistical
sense of the term, can be any model of the joint law of the observations (X,Y ), where X is the random
variable corresponding to the data and Y is the random variable corresponding to the labels. This is
opposed to the discriminative models that model the conditional law of the observations X given the
labels Y . Hence, the unsupervised generative models in the machine learning sense of the term are also
generative models in the statistical sense, whereas the conditional generative models are discriminative
models. Conversely, not all generative models in the statistical sense are generative models in the machine
learning sense, but many can be used as such. For instance, one can use a Gaussian mixture model to
synthesize new data.

6.1.2 Challenges of generative modeling in imaging science
Before introducing the major approaches which are used for generative modeling, we explain in this
section what makes generative modeling a challenging problem, focusing mainly on the context of imaging
science.

Ill-posed problem. First of all, it should be noted that the problem described above is a very ill-posed
problem in the sense that for a given dataset {xi}ni , there exists an infinite number of probability
distributions ν from which the points xi could have been sampled. The goal of generative modeling is
thus to approach a distribution ν that could be the underlying law of the dataset, even if we have no
ways to verify if this is actually the case and we don’t even know if such an underlying law does exist.
Furthermore, note also that we can only hope to approach a law ν for which {xi}ni is a representative
sample set. Thus, in the case where we know the distribution ν from which the xi have been sampled
from but the sample set {xi}ni misses significant parts of its support, we could never manage to recover
the missing parts of ν.

Choosing the right parametric family of distribution. A fundamental difficulty of generative
modeling lies in the choice of the parametric family of distributions {νθ}θ∈Θ. A first issue we might
encounter if this family is not well chosen is of course that we might not be able to minimize D correctly,
implying that we will not be able to correctly approach ν and so to generate good quality synthetic samples.
More interestingly, another issue we might also encounter would be, at the opposite, to over-minimize D
and to obtain a distribution νθ∗ that is similar to the empirical distribution ν̂ = 1

n

∑
i δxi

. This would
imply that our model has overfitted the dataset and has no ability to generate synthetic data that are
different from the original data {xi}ni . Thus, one must choose the family {νθ}θ∈Θ in a way such that νθ
can be close of the underlying distribution ν but at the same time cannot be to close to the empirical
distribution ν̂.

Approaching a distribution of high dimension. Another major difficulty of generative modeling in
the context of imaging science is that it involves high dimensional distributions. Indeed, in the framework
described above, images are seen as high dimensional vectors with each pixel corresponding to a dimension.
Thus, for a medium-high resolution image of 1024×768 pixels, the dimension of the probability distribution
ν we want to approach is already around 800000. Yet, if ν lives in a highly dimensional space, it is likely
that it actually lies in a low dimensional sub-manifold. This common assumption in imaging science is
known as the manifold hypothesis and has been partly validated empirically by Pope et al. (2020). The
basic idea behind this hypothesis is that the value of a given pixel in an image is strongly conditioned by
the values of all the other pixels. On one hand, the manifold hypothesis mitigates the dimension of the
problem since the intrisic dimension of the distribution we want to approach is in reality much lower than
the dimension of the ambient space. On the other hand, it complexifies even more the problem since ν is
an highly degenerate measure and so its support is of Lesbegue measure zero.

2These regular conditional probability distributions are defined as the unique probability measures on Rd such that, for
all Borel set A of Rd, νX|Y (A|Y = yi) = E[χA|Y = yi] where χA denotes the characteristic function of the set A. In the
following, we will note νX|Y (A|yi) instead of νX|Y (A|Y = yi).
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6.2 Deep generative modeling

The recent emergence of generative modeling in imaging science, or more generally, in data science, is
closely linked to the emergence of deep learning approaches in these fields. Indeed, the commonly used
generative models in imaging science nowadays all invariably use a deep neural network at some point in
the model. In this section, we present briefly some key notions of deep learning, then we introduce the
different models that are commonly used in imaging science.

6.2.1 A brief introduction to deep learning

We call deep learning any machine learning method that builds upon a deep neural network architecture.
In the imaging science context, the deep neural networks that are used are most of the time Convolutional
Neural Networks (CNN) (LeCun et al., 1989; Krizhevsky et al., 2012) which are a particular type of
feed-forward neural networks.

Feed-forward neural network. Given a L-tuple of dimensions {dl}Ll=1 such that d1 = d′ and dL = d,
a feed-forward neural network is any parametric mapping fθ : Rd

′ → Rd of the form

fθ = fLθL ◦ . . . f
1
θ1 ,

with θ = (θ1, . . . , θL) and where for all 1 ≤ l ≤ L, f lθl : R
dl → Rdl+1 is of the form, for all x ∈ Rdl

f lθl(x) = ρl(Wlx+ bl) ,

where θl = (Wl, bl), Wl ∈ Rdl+1×dl , bl ∈ Rdl+1 and ρl : R → R is a non-linear function applied
elementwise that is called activation function. The Wl and bl are referred to respectively as weights
and bias and the functions f lθl are called the layers of the neural network. The most commonly used
activations functions are the Rectified Linear Unit (ReLU), i.e. ReLU(x) = max{0, x}, the sigmoid
function sigmoid(x) = (1+exp[−x])−1, the softmax function or the hyperbolic tangent function tanh(x) =
(exp[2x] − 1)(exp[2x] + 1)−1. An important particular case is the ReLU networks in which the ρl are
all ReLU activation functions. In that case, it is well known that fθ is piecewise-linear with at most
2d2+...dL pieces (Montufar et al., 2014). A CNN is a particular type of feedforward neural network in
which the weights matrices Wl are imposed to be convolution matrices. This convolutional structure is
particularly adapted for image processing and allows to considerably reduce the number of parameters at
each layers. This allows in practice to encode complex models that would be considerably larger in terms
of parameters if this structure were not imposed, which explains why CNNs have been key elements to
the success of deep learning in imaging science.

Modern deep neural network architectures. In practice, the modern deep neural networks
architectures used in the literature are much more complex than the simple model of feedforward neural
networks described above. Indeed, practitioners typically add normalizations layers such as batch
normalization (Ioffe and Szegedy, 2015), weight normalization (Salimans and Kingma, 2016) or spectral
normalization (Miyato et al., 2018). They also commonly add skip-connections (Bishop, 1995; Ronneberger
et al., 2015; He et al., 2016), i.e. structures where the output at a given layer is re-used sometimes several
layers later. More recently, following the breakthrough of transformers (Vaswani et al., 2017) in natural
language processing, the Vision Tranformers (ViT) networks (Dosovitskiy et al., 2020) have been shown
to outperform CNNs for various computer vision tasks. These networks are built on non-local attention
layers (Wang et al., 2018). Still, modern deep neural networks architecture in imaging science are still
roughly composition of functions that can been encoded with some basic operations, such as tensor
multiplications, additions and concatenations, and with some non-linear activation functions applied
elementwise. Hence, the model of feedforward neural networks stays a relevant simplified model for most
of modern neural network architectures used nowadays.

Expressivity of deep neural networks. In machine learning, neural networks are mostly used
to approximate functions. One question that arises is: are neural networks able to approximate any
mapping? Examining the expressivity of deep neural networks is still an active research field. The
universal approximation theorem (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989) states that
shallow feedforward neural networks are universal approximators, in the sense that any mapping can
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theoretically be approximated with any precision by a neural network composed of one single layer
but with a pottentially infinite number of neurons. More recently, Hanin (2019) has shown that deep
feedforward neural networks with finite numbers of neurons on each layer but with a potentially an
infinite number of layers could approximate any continuous mapping with any precision as long as it has
a sufficient number of neurons at each layer. In practice, deep neural Networks seem to be much more
limited in terms of expresivity, mainly because of their training.

Learning a deep neural network. A general approach to train a deep neural network to approximate
a target mapping f whose values are known on a dataset of n points {xi}ni , is to define a loss function L
and to solve the following empirical risk minimization problem

min
θ∈Θ

1

n

n∑
i=1

L(fθ(xi), f(xi)) .

The typical method to do so is to use a stochastic gradient descent algorithm (Robbins and Monro, 1951)
or one of its numerous recent refinements (Kingma and Ba, 2015; Ruder, 2016). This algorithm roughly
consists in randomly selecting at each iterate a subset of data that we call minibatch and computing the
gradient of the sum on the minibatch instead of computing the gradient of the whole sum as in traditional
gradient descent. In terms of order of magnitude, the number of data n in deep learning is typically
larger than 106, whereas the number of data in each minibatch can vary from a dozen to a thousand,
depending on the application. It is important to note that minimizing the empirical risk is in general
not a convex problem, and so one can only hope to converge towards a local minimum (which is not
necessarily a global minimum) when training a deep neural network. The stochastic gradient descent
algorithm involves computing the gradient of fθ with respect to the parameters θ = (W1, b1, . . . ,WL, bl).
This is possible thanks to the backpropagation algorithm (Rumelhart et al., 1986) which roughly consists
in retropropagating the gradient through the f lθl , leveraging the Leibniz’s chain rule. Observe that the
backpropagation algorithm requires all the f lθl , and so all the activation ρl, to be differentiable almost
everywhere. This is the main reason why all the commonly used activation functions are chosen Lipschitz,
which limits in practice the expressivity of deep neural network to Lipschitz mappings.

6.2.2 The most commonly used deep generative models in imaging science

Here we present the three models that are the most commonly used generative models in imaging science.
These models are the Variational Autoencoders (VAEs) (Kingma and Welling, 2014), the Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) and the more recent Score-based Generative
Models (SGMs) (Song and Ermon, 2019) that are also known as Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020), or simply diffusion models. Note that for each of these three models, there
exists an extensive number of refinements but we present them here in their vanilla versions.

6.2.2.1 Variational autoencoders

First, we begin with the Variational Autoencoders (VAEs) that have been introduced by Kingma and
Welling (2014). We refer to Kingma et al. (2019) and Doersch (2016) for two tutorials on VAEs.

Motivation. In this model, we suppose there exists a latent random variable Z in dimension d′ and a
deterministic mapping g : Rd′ → Rd such that the data {xi}ni are realizations of the random variable
g(Z). This basic idea builds on the manifold hypothesis: since the underlying distribution ν from which
the data are sampled lies on a low dimensional manifold, one can encode the data with a variable living
in much more smaller dimension than the dimension of the ambient space. Thus, d′ is chosen most of the
time much smaller than d, although the model theoretically doesn’t assume any order relation between d′
and d. In theory, as soon as d′ is greater than the intrisic dimension of ν, there probably exists an infinite
number of low-dimensional representations Z and mappings g such that the data could be realizations
of g(Z). The variational autoencoder model proposes to learn a representation in which Z follows a
standard gaussian law µd′ = N(0, Idd′) and to approximate g by a neural network gθ that we call decoder.
Therefore, VAEs are push-forward generative models since the parametric distribution νθ that approaches
ν is of the form νθ = gθ#µd′ .
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Training of VAEs: the variational approach. In order to train this model, we would like to
maximize its log-likelihood, i.e. the following quantity

l(θ,x) =

n∑
i=1

log(pνθ (xi)) ,

where x = (x1, . . . , xn) and pνθ is the density function of νθ. A first theoretical problem we encounter
here is that as soon as d′ is smaller than d, which is most of the time the case in practice, νθ is a
degenerate distribution - because νθ = gθ#µd′ - and so pνθ doesn’t exist. The typical remedy to this
problem is to add noise in the model: instead of νθ, we maximize the log-likelihood of a noisy version
νσθ = νθ ∗N(0, σ2 Idd) where ∗ denotes the convolution operator between measures and the noise level
σ > 0 is an hyper-parameter of the model to be chosen. In order to maximize the log-likelihood, we would
like to use the latent structure of our model. To do so we could use the fact that for all x ∈ Rd,

pνσ
θ
(x) =

∫
Rd′

pπσ
θ
(x, z)dz , (6.2)

where pσπθ
is the density of the joint law of (Xσ, Z), where Xσ ∼ νσθ and Z ∼ µd′ . Yet this integral is

in practice intractable as soon as the dimension d′ is moderately high. A possible solution could be to
approximate (6.2) using a Monte-Carlo method but this yields to high variance in the gradient estimates
during the maximization of the log-likelihood. A better solution consists in, rather than maximizing the
log-likelihood directly, constructing a tractable lower bound and to optimize this lower bound instead.
This methods are known in the literature as variational approaches. The main idea is to introduce
another parametric family of distributions {ξλ}λ∈Λ with support Rd′ and density pξλ and to inject it in
the log-likelihood. More precisely, observe that for all x ∈ Rd

log(pνσ
θ
(x)) = log

(∫
Rd′

pπσ
θ
(x, z)dz

)
= log

(∫
Rd′

pξλ(z)

pξλ(z)
pπσ

θ
(x, z)dz

)
.

Using furthermore the Jensen-inequality, it follows

log(pνσ
θ
(x)) ≥

∫
Rd′

log

(
pπσ

θ
(x, z)

pξλ(z)

)
pξλ(z)dz = EZ∼ξλ

[
log

(
pπσ

θ
(x, Z)

pξλ(Z)

)]
.

This lower bound is known in the literature of variational methods as the Evidence Lower Bound (ELBO).
With further calculation, using the fact that for all x ∈ Rd and all z ∈ Rd′ , pπσ

θ
(x, z) = pνσ

θ
(x|z)pµd′ (z),

where pνσ
θ
(x|z) is the density of the conditional law of Xσ given Z and pµd′ (z) is the density function of

µd′ , we get
ELBO(x, θ, λ) = EZ∼ξλ

[
log(pνσ

θ
(x|Z))

]
−DKL(ξλ||µd′) . (6.3)

Observe that with our model, for a given z ∈ Rd′ , the conditional law of X given z is given by
νθ,X|Z(.|z) = δgθ(z) and so the the conditional law of Xσ reads as νσθ,X|Z(.|z) = N(gθ(z), σ

2 Idd). Hence
maximizing the left-hand term in (6.3) is equivalent to minimizing (1/2σ2)EZ∼ξλ [∥x − gθ(Z)∥2]. On
the other hand, it is usual for these models to choose, for a given x ∈ Rd, the parametric family
{ξλ}λ∈Λ as the conditional distributions of the form ξλ,Z|X(.|x) = N(f1λ(x),diag(exp[f2λ(x)])) where
fλ(x) = (f1λ(x), f2λ(x)) ∈ R2d′ is the output of another neural network that we call encoder. This choice
makes the right-hand term of (6.3) also tractable since the Kullback-Leibler divergence between two
non-degenerate Gaussian distribution µ0 = N(m0,Σ0) and ν1 = N(m1,Σ1) on Rd′ admits as closed form

DKL(µ0||ν1) =
1

2

[
log
|Σ1|
|Σ0|

− d′ + tr(Σ−1
1 Σ0) + (m1 −m0)

TΣ−1
1 (m1 −m0)

]
.

The training is then done by optimizing simultanously both variables in the following problem using
stochastic gradient descent

max
θ∈Θ

max
λ∈Λ

EX∼ν̂ [ELBO(X, θ, λ)] .

Note that it can be problematic that the expectation in the left-hand term in (6.3) depends on λ. A
simple way to remedy this, known as the reparametrization trick, consists in writing the random variable
Z as f1λ(x) + diag

1
2 (exp[f2λ(x)])Y with Y ∼ N(0, Idd′), and to sample from the random variable Y

instead from Z. Finally, the training is summarized in Algorithm 7.
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Algorithm 7 Training of VAEs
Require: data distribution ν̂, decoder gθ, encoder fλ, minibatch size m, learning rate η,
1: while not converged do
2: sample minibatch {xi}mi from ν̂
3: draw k samples {εi}mi from N(0, Idd′)

4: zi ← f1λ(xi) + diag
1
2 (exp[f2λ(xi)])εi for i = 1, . . . ,m

5: θ ← θ − η
σ2m

∑m
i=1∇θ(∥xi − gθ(zi)∥2) ▷ update the decoder

6: λ← λ− η
m

∑m
i=1∇λDKL(ξλ,Z|X(.|xi)||N(0, Idd′)) ▷ update the encoder

7: end while

Variant: the Bernoulli-VAE. Note that we described above the Gaussian-VAE model from Kingma
and Welling (2014) because we are interested in generating data in Rd. There exists a variant in which
the data are booleans, i.e. in {0, 1}. In that case one can set the conditional law of X given z to follow a
Bernoulli law of parameter gθ(z) instead of a Gaussian distribution.

Generation process. Given a trained VAE model, i.e a trained encoder/decoder pair (fλ, gθ), the
generation process is straightforward: sample z from N(0, Idd′) then give z as input of the decoder to
obtain the generated data gθ(z). Note that if we have introduced the noisy distribution νσθ in order to be
able to write the log-likelihood, we are in reality interested in sampling from νθ and so we don’t need νσθ
anymore.

Performances of VAEs. VAEs are known to have some nice properties such as stable training
(Tolstikhin et al., 2018) or robustness to outlier data (Dai et al., 2018). Still, in term of quality of results,
VAEs are not able to reach the same kind performances than the two other models presented below. A
possible explanation proposed by (Dai and Wipf, 2018) is that the ELBO can be maximized in a way
such that νθ approximates well the target distribution ν but in the mean time such that the aggregated
posterior (Makhzani et al., 2015), i.e. the distribution in the latent space defined as

ξλ,θ =

∫
Rd

ξλ,Z|X(.|x)dνθ(x) , (6.4)

is quite far from N(0, Idd′). This implies that even if we found a good low dimensional representation
of our data, we are still not able to correctly generate new synthetic data because we are not able to
correctly sample from this low dimensional representation.

6.2.2.2 Generative Adversarial networks

We present here the vanilla model of Generative Adversarial Networks (GANs) that have been introduced
by Goodfellow et al. (2014). We refer to Creswell et al. (2018) and Gui et al. (2021) as two review papers
on the topic.

Motivation. As for the VAE model, we suppose there exists a latent random variable Z in dimension
d′ and a deterministic mapping g : Rd′ → Rd such that the data {xi}ni are realizations of the random
variable g(Z). As for the VAE, we aim at finding a low dimensional representation of the data such that
Z follows a standard Gaussian law µd′ = N(0, Idd′) and we approximate g by a neural network gθ that is
called this time generator. Hence generative adversarial networks are also push-forward generative models
since the parametric distribution νθ that approaches ν is also of the form νθ = gθ#µd′ .

Training of GANs: the adversarial approach. The key idea of the GAN model is to train the
generator gθ using an adversarial scheme. For that, we define another neural network fλ : Rd → [0, 1] that
we call discriminator and whose role is to classify if a given input data has been generated by the generator
or comes from the dataset. We train both networks gθ and fλ simultanously such that the discriminator
fλ becomes gradually better at detecting whether a given data is synthetic or real, and the generator
gθ becomes gradually better at fooling the discriminator. Mathematically, this generator/discriminator
dynamics can be created by performing an alternate optimization scheme on the following min-max
problem:

min
θ∈Θ

max
λ∈Λ

EX∼ν̂ [log(fλ(X))] + EZ∼µd′ [log(1− fλ(gθ(Z)))] . (6.5)
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The training is done by an alternating minimization on θ and a maximization on λ using respectively
stochastic gradient descent and ascent. This can be thought as a two-player min-max game between
the generator gθ and the discriminator fλ. Thus, following the game theory terminology, we want the
training to converge to a local Nash equilibrum (Osborne and Rubinstein, 1994) which can be thought as
a particular type of saddle points where no player can improve its objective given the current state of the
other player. Yet, it has been observed that the training of GANs, as initially proposed in Goodfellow
et al. (2014), may fail to converge towards a Nash equilibrum (Goodfellow et al., 2014; Goodfellow, 2016;
Salimans et al., 2016). Heusel et al. (2017) have suggested that the problem might come from the fact that
the generator and the discriminator were optimized with the same learning rate. Indeed, they have proven
that, under mild conditions, the training of GANs with the Adam optimizer (Kingma and Ba, 2015) and
with different learning rates for the generator and the discriminator converges to a local stationary Nash
equilibrum. Interestingly enough, these conditions include a smoothness assumption on the networks gθ
and fλ that ReLU networks, which are still today the most used in practice, don’t verify. Finally the
training of GANs is summarized in Algorithm 8.

Algorithm 8 Training of GANs
Require: data distribution ν̂, generator gθ, discriminator fλ, minibatch size m, learning rates ηg and ηf ,

number of update of dicriminator Nf at each iterate
1: while not converged do
2: for j = 1, . . . , Nf do
3: sample minibatch {xi}mi from ν̂
4: draw m noise samples {zi}mi from N(0, Idd′)
5: λ← λ+

ηf
m

∑m
i=1∇λ [log(fλ(xi)) + log(1− fλ(gθ(zi)))] ▷ update the discriminator

6: end for
7: draw m noise samples {zi}mi from N(0, Idd′)
8: θ ← θ − ηg

m

∑m
i=1∇θ log(1− fλ(gθ(zi))) ▷ update the generator

9: end while

Optimal discriminator analysis. A possible theoretical analysis of GANs initially proposed by
Goodfellow et al. (2014) is to study the model while assuming that at each update of the generator,
we choose the best discriminator possible. Goodfellow et al. (2014) have shown that if we assume that
both distributions ν and νθ admit densities pν and pνθ (which is not the case in the most usual pratical
setting), the best discriminator possible for a given fixed gθ is,

fλ(x) =
pν(x)

pν(x) + pνθ (x)
.

Plugging this into the min-max objective, this gives that Problem (6.5) is in that case equivalent to
minimizing the Jensen-Shannon divergence DJS(ν||νθ) between ν and νθ. Building on this analysis, a
large number of variants of (6.5) have been proposed in order to replace the Jensen-Shannon divergence
by another divergence or distance between probability distributions. Among them, one can cite notably
the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) model that proposes to learn a real-valued
discriminator fλ : Rd → R, renamed critic, and to solve the following min-max problem,

min
θ∈Θ

max
λ∈Λ

EX∼ν̂ [fλ(X)]− EZ∼µd′ [fλ(gθ(Z))] , (6.6)

while enforcing the Lipschitz constant Lip(fλ) of the critic to be smaller than 1. The idea is, building
on the same optimal discriminator analysis than before, that (6.6) is in that case equivalent to solving
the dual W1 problem (2.10) as described in Chapter 2 and so learning a WGAN while choosing the
optimal discrimator at each iteration is equivalent to minimizing the W1 distance between ν and νθ. If
this analysis seems to reveal an interesting theoretical property of GANs by showing that they would
implicitly minimize an underlying divergence or distance and has led to the development of numerous
variants of the initial model, it might not be as relevant as it seems. Firstly, the assumption of choosing
the optimal discriminator is never verified in practice. Furthermore, the large scale study of Lucic et al.
(2018) suggests that the difference of performances between the different models built over this analysis
could in fact be more explained by the choice of the different hyperparameters rather than by the choice
of the objective function. More critically, in the WGAN setting, the studies of Mallasto et al. (2019) and
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Stanczuk et al. (2021) suggest that a better approximation of the optimal discriminator would in reality
lead to worse perfomances in terms of generation, even if the distance W1(ν, νθ) is theoretically better
minimized. A possible explanation could be that it comes from the fact that there is an infinite number
of distributions ν from which the data could have been sampled, including the empirical data distribution
ν̂. Since the model has only access to the empirical data distribution ν̂ and to an empirical version ν̂θ of
the distribution νθ, it is possible that a better approximation of the W1 distance leads to a distribution
νθ that is close to the minimizer of W1(ν̂, ν̂θ), which corresponds in reality to a "k-medians" clustering
(Stanczuk et al., 2021) of ν̂. Yet, interestingly, Korotin et al. (2022) have shown that even if WGANs don’t
approximate well the W1 distance between νθ and ν (when this latter is known), the gradients computed
during training can however be used as good estimators of the W1 gradients, suggesting that the training
of these models stays linked with a minimization of a W1 distance. In short, this analysis reveals an
interesting connection between the GAN training and the minimization of an underlying distance (or
divergence) but is far from sufficient to explain the GAN training, as the dynamics between the generator
and the discriminator is probably at least as important as this underlying distance and because the link
with this latter is less direct than it first seems.

Stability of training. Until recently, GANs were considered as the state-of-the-art models for image
generation. Still, a common pitfall of such models is the instability of their training (Salimans et al., 2016).
This can lead to models that forget significant parts of the support of the target distribution, which is
known as mode collapsing (Arjovsky and Bottou, 2017; Metz et al., 2017) in the GAN literature. Thus,
the success of GANs is largely due to advances in stabilizing their training. First, enforcing the Lipschitz
constant of the critic to be smaller than 1 in Wasserstein GANs has been proved, as a by product of the
method, to stabilize their training. The same idea has been applied with sucess to other GAN models.
Typical methods to constraint the Lipschitz constant of the discriminator are to penalize the Jacobian of
the discriminator Gulrajani et al. (2017) or to apply spectral normalization Miyato et al. (2018). It has
been then shown by Odena et al. (2018) that constraining the Lipschitz constant of the generator was
also important to stabilize the training of GANs. To that extent, state-of-the-art models such as Zhang
et al. (2019) or Brock et al. (2019) apply spectral normalization both on generator and discriminator.

The StyleGAN variant. Karras et al. (2019) have introduced an important variant of the model
described above by redesigning the generator architecture using ideas coming from the style transfer
literature. This has led to the model StyleGAN 3 (Karras et al., 2021) which is the state-of-the-art in
generation on the CelebA dataset (Liu et al., 2015). Besides some technical changes, the main structural
difference with a classic generator architecture lies in the addition of Gaussian noise after each convolution.
Thus, the StyleGAN model can still be thought as a push-forward generative model, but with a latent
variable that consists in the concatenation of all the noises added in the generator and with a push-forward
map gθ with a particular structure in which the information of the latent space is progressively added.

6.2.2.3 Diffusion models

We present here the diffusion models, also known as Score-based Generative Models (SGMs) that have
been introduced by Song and Ermon (2019). Note that they also have been introduced almost at the
same time by Ho et al. (2020) under the name of Denoising Diffusion Probabilistic Models (DDPMs) with
a different point of view. The equivalence between the two points of view has been finally established by
Song et al. (2020). We refer to this latter paper for an introduction on SGMs.

Motivation: the score-matching point of view. One popular Monte Carlo method for sampling
from a probability distribution ν on Rd with probability density pν builds on the Langevin dynamics, i.e.
the following Stochastic Differential Equation (SDE) which describes an Itô diffusion,

dXt = ∇ log pν(Xt)dt+
√
2dBt , X0 ∼ N(0, Idd) ,

where (Bt)t∈[0,T ] is a Brownian motion and T > 0. An Euler-Maruyama discretization (Kloeden et al.,
1992) of the process (Xt)t∈[0,T ] that solves this SDE yields to the following Monte Carlo method, known
as the Unajusted Langevin Algorithm (ULA),

x{k} = x{k−1} + αk∇x log pν(x{k−1}) +
√
2αkz

{k} , z{k} ∼ N(0, Idd) ,

for any 1 ≤ k ≤ K, with x{0} ∼ N(0, Idd), and where {αk}Kk is a non-increasing sequence. Note that this
algorithm introduces an error that needs to be corrected using an additional Metropolis-Hastings update
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at each step, which yields to the Metropolis-Adjusted Langevin Algorithm (MALA) (Besag, 1994). Yet, it
has been observed that this error could be often ignored in practice (Chen et al., 2014; Du and Mordatch,
2019; Nijkamp et al., 2020). The term ∇ log pν is often referred to as the Stein score, or simply the score
of the probability distribution ν. Thus, if we have access to a good estimator of the score ∇ log pν , we are
theoretically able to sample from ν. The basic idea of SGMs is to approximate the Stein score by a neural
network. As before, a first theoretical problem that comes up, when generating real data such as images,
is that the underlying target distribution has probably no density, because of the manifold hypothesis.
The typical remedy is once again to inject noise in the model by estimating the score of a noisy version
νσ of ν, i.e. νσ = ν ∗ N(0, σ2 Idd). Note that we will never be able to correctly approximate the score
∇x log pσ of νσ in the regions where the density pσ is too small because the model will see almost no
data in these areas. Hence, when σ is chosen too small, the algorithm is likely to be initialized in an area
of low density and never reach a region where the score is well approximated. On the other hand, when σ
is chosen too large, νσ doesn’t approximate well anymore ν. A natural solution to this problem proposed
by Song and Ermon (2019) is to rely on an annealed scheme:

(i) choose an increasing sequence of K noise levels {σk}Kk such that σK is large enough so that νσK is
close to a standard Gaussian distribution N(0, Idd) - which implicitly supposes that the data are
normalized in a way that their empirical variance is smaller than 1 - and σ1 is small enough such
that νσ1 is close to ν.

(ii) train a neural network sθ : Rd × R → Rd on {xi}ni × {σk}Kk at approximating ∇x log pσ for any
noise level between σK and σ1 .

(iii) perform K iterations of the so-called annealed Langevin dynamics (Song and Ermon, 2019):

x{k} = x{k−1} + αksθ(x
{k−1}, σK−k) +

√
2αkz

{k} , z{k} ∼ N(0, Idd) ,

for any 1 ≤ k ≤ K, with x{0} ∼ N(0, Idd), and where {αk}Kk is a non-increasing sequence. Note
that in practice, the sequence {σk}Kk is most of the time chosen piecewise constant, in the sense
that there exists an integer L such that σ1 = · · · = σL, then σL+1 = · · · = σ2L, and so on until
reaching K. The idea is that during the early steps of the dynamics, the noise level is large enough
so that ∇x log pσ is well approximated everywhere and that we reach the high-density regions before
σ decreases to much.

The variational approach. Here we present an approach initially introduced by Sohl-Dickstein
et al. (2015) and applied to generative modeling in Ho et al. (2020) under the name of Denoising
Diffusion Probabilistic Models (DDPMs). The basic idea of DDPMs is to construct a Markov chain
(Yk)k∈J0,KK such that Y0 ∼ ν̂ and for any 1 ≤ k ≤ K, the conditional law of Yk given Yk−1 = yk−1

is N(yk−1 + αkf(yk−1), 2αk Idd), where f : Rd → Rd and {αk}Kk is a non-increasing sequence of step
sizes chosen such that the law of YK is close of a standard Gaussian distribution N(0, Idd) - which also
supposes implicitly that the second order moment of ν̂ is smaller than 1. This Markov chain consists
in progressively applying noise to the data until having nothing but noise. A generative model can be
then obtained by approaching the reverse-time Markov chain associated with (Yk)k∈J0,KK. To do so, we
define a parametric Markov chain (Xθ,k)k∈J0,KK such that Xθ,K ∼ N(0, Idd) and for any 1 ≤ k ≤ K, the
conditional law of Xθ(k−1) given Xθ,k = xk is N(gθ(xk, k), 2αk Idd) where gθ : Rd × R→ Rd is a neural
network. We then train our model using a variational approach, i.e. by optimizing an evidence lower
bound of the log-likelihood of the model. More precisely, denoting pνθ the density of the law of Xθ,0, i.e.
the parametric distribution νθ that approaches the underlying data distribution ν, pπθ

the density of the
joint law of the parametric markov chain (Xθ,0, . . . , Xθ,K) and ξ1:T |Y0

(.|y0) the law of (Y1, . . . , YK) given
the data Y0 = y0, we have for any x ∈ Rd,

log(pνθ (x)) ≥ E(Y1,...,YK)∼ξ1:T |Y0
(.|x)

[
pπθ

(x, Y1, . . . , YK)

ξ1:T |Y0
(Y1, . . . , YK |x)

]
= ELBO(x, θ) .

Once the model is trained, the generation process consists simply in deriving a realization of the Markov
chain (Xθ∗,k)

K
k , i.e. first sampling xK ∼ N(0, Idd), then sampling xK−1 ∼ N(gθ∗(xK ,K), 2αk Idd) and

pursuing until obtaining a synthetic data.
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Unifying the two approaches: the SDE point of view. An observation made by Song et al.
(2020) is that the forward Markov chain (Yk)k∈J0,KK in DDPMs, whose transition rules read as for any
1 ≤ k ≤ K,

yk = yk−1 + αkf(yk−1) +
√
2αkzk , zk ∼ N(0, Idd) ,

can be thought as an Euler-Maruyama discretization of the process (Yt)t∈[0,T ] that solves the following
SDE, which describes an Itô diffusion,

dYt = f(Yt)dt+
√
2dBt , Y0 ∼ ν̂ . (6.7)

Yet, it is well-known since (Anderson, 1982) that, under mild conditions, any process (Yt)t∈[0,T ] that
solves an SDE of the form

dYt = h(Yt, t)dt+ r(t)dBt , Y0 ∼ ν0 ,

where ν0 ∈ P(Rd) and with h : Rd × R → Rd and r : R → R regular enough, admits a reverse-time
process (Xt)t∈[0,T ] that solves the following diffusion SDE,

dXt = [−h(Xt, T − t) + r(T − t)2∇x logT−t(Xt)]dt+ r(T − t)dBt , X0 ∼ νT ,

where νT ∈ P(Rd) is the law of YT and for all t ∈ [0, T ], pt is the density of the law of Yt. Hence, the
reverse time process (Xt)t∈[0,T ] associated with the process (Yt)t∈[0,T ] that solves (6.7) is solution of the
following SDE,

dXt = [−f(Xt) + 2∇x log pT−t(Xt)]dt+
√
2dBt , X0 ∼ N(0, Idd) , (6.8)

where we made the approximation that the law of YT was exactly N(0, Idd). Informally, this implies
that in DDPMs, the parametric Markov chain (Xθk)k∈J0,KK approximates in reality a discretization of
(XT−t)t∈[0,T ], where (Xt)t∈[0,T ] solves (6.8). Hence the neural network gθ implicitly learns the score of
the law of XT−t. On the other hand, the authors of Song et al. (2020) show that the annealed Langevin
dynamics, when {σk}Kk is chosen as a geometric progression and for an adequate choice of step sizes
{αk}Kk , can be thought as an Euler-Maruyama discretization of the process (Xt)t∈[0,T ] that solves

dXt = e2(T−t)∇x log pT−t(Xt)dt+ eT−tdBt , X0 ∼ N(0, Idd) ,

which is the reverse-time SDE associated with

dYt = etdBt , Y0 ∼ ν̂ .

Thus, the two approaches of DDPMs (Ho et al., 2020) and SGMs (Song and Ermon, 2019) are in fact two
different point of views of the same model and they only differ in the choice of the SDE, which can be
thought as a component of the model. Finally, note that practitioners usually learn diffusion models with
the score-matching approach but use most of the time the SDE (6.7) induced by the DDPM model from
(Ho et al., 2020).

Training of SGMs: denoising score matching. The training of SGMs builds on the works of
Hyvärinen (2005) and Vincent (2011) which draw connections between the task of estimating the score
and the denoising task. Indeed, Vincent (2011) has proven that for a given distribution ν on Rd and a
given noise level σ, approximating the score ∇y log pσ of νσ = ν ∗ N(0, σ2 Idd) with a function sθ(y, σ)
could be done by solving the following problem,

min
θ∈Θ

1
2EX∼ν̂

[
EY∼N(x,σ2 Idd)

[∥∥sθ(Y, σ)− x−Y
σ2

∥∥2 ∣∣∣∣X = x

]]
.

Informally, this can be fastly retrieven using the Tweedie formula (Robbins, 1955), that states that for
any y ∈ Rd,

∇y log pσ(y) =
1

σ2
(x̂(y)− y) ,

where x̂(y) is the Minimum Mean Square Error (MMSE) estimator of the denoised version of y, i.e.

x̂(y) = E[X|Y = y] = (2πσ2)−
d
2

∫
Rd

x exp[−∥y − x∥2/2σ2]dν(x) .
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Hence, given a dataset {xi}ni , one can construct a noisy dataset {yi}ni by sampling from ν̂ ∗N(0, σ2 Idd)
and, if we suppose that for any i, xi is the perfectly denoised version of yi and so x̂(yi) ≃ xi, we get that

∇y log pσ(yi) ≃
1

σ2
(xi − yi) .

Finally, the objective is averaged over the empirical noise level distribution 1
K

∑K
k=1 δσk

. The training of
SGMs is summarized in Algorithm 9.

Algorithm 9 Training of SGMs

Require: data distribution ν̂, noise level distribution ζ̂, minibatch size m, learning rate η
1: while not converged do
2: sample minibatches {xi}mi and {σi}mi from ν̂ and ζ̂.
3: draw sample yi ∼ N(xi, σ

2
i Idd) for i = 1, . . . ,m

4: θ ← θ − η
2m

∑m
i ∇θ(∥sθ(xi, σi)−

xi−yi
σ2
i
∥2)

5: end while

Score network architecture. One question that arises is: what kind of network architecture should we
use for sθ? In particular, can we use any deep neural network that has been pretrained for denoising? If
this should work in theory, it is not the case in practice. A possible explanation is that the generation task
requires to approximate the score ∇x log pσ for any noise level σ much more accurately than the denoising
task. Hence, sθ should have a much more complex architecture than the ones that are sufficient for the
denoising task. Another question is: how to integrate the noise information in the network? Initially,
Song and Ermon (2019) have proposed to integrate the noise information relying on conditional instance
normalization (Dumoulin et al., 2016). Alternatively, Ho et al. (2020) have proposed an architecture
composed of two parallel networks, taking respectively x and σ as inputs. The network taking σ as input
consists in the composition of a positional encoding (Vaswani et al., 2017) and of a simple feed-forward
network. Then, its output is injected at each layer of the other network by simple concatenation. It
seems that it is this latter architecture that has been adopted by the community. Finally, note that the
architecture of Ho et al. (2020) uses a U-Net structure as backbone (Ronneberger et al., 2015), which is a
classic neural network architecture in computer vision for neural networks that take values in Rd. It has
been observed by Jolicoeur-Martineau et al. (2020) that this U-Net architecture substantially improved
the sample quality compared to the previous architecture (Lin et al., 2017; Song and Ermon, 2020) used
for denoising score matching.

Computational cost of diffusion models. SGMs are nowadays the state-of-the-art in generative
modeling. Indeed, they have been shown to outperform GANs on image synthesis (Dhariwal and Nichol,
2021). Futhermore, SGMs are also responsible of the general public’s recent craze for generative models,
with the arrival of large-scale text-to-image conditional models such as DALL-E 2 (Ramesh et al., 2022)
or Stable Diffusion (Rombach et al., 2022). Beside their impressive results, their training is known to
be relatively stable - at least compared to GANs - since it roughly consists in simply training a neural
network at denoising for various noise levels. The main downfall of diffusion models is however related to
their computational cost, which is heavy not only during the training phase, as with other models, but
also during the generation phase because the neural network is used sometimes thousand of times in the
generation dynamics and because there is no reduction of dimensions. There exists an extensive literature
focusing on speeding the generation dynamics of SGMs (Nichol and Dhariwal, 2021; Watson et al., 2021;
San-Roman et al., 2021; Jolicoeur-Martineau et al., 2021; Luhman and Luhman, 2021; De Bortoli et al.,
2021). Other methods (Vahdat et al., 2021; Rombach et al., 2022) propose to learn a diffusion model in
the latent space of a VAE to combine the benefits of SGMs with the benefits of learning a low dimensional
representation of the data.

SGMs as indirect push-forward generative models. As we have seen above, the generation
dynamics Gθ in SGMs can be expressed as a SDE and so it takes theorically the form of a function on
the space of trajectories of a Brownian motion (Bt)t∈[0,T ]. Still, the generation is done in practice by
achieving an Euler-Maruyama discretization of the SDE and sampling from the obtained discrete Markov
Chain. For instance, the generation can be done by performing K iterations of the annealed Langevin
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dynamics, which are of the form

x{k} = x{k−1} + αksθ(x
{k−1}, σK−k) +

√
2αkz

{k} ,

where for any k ≥ 0, z{k} ∼ N(0, Idd). Denoting for any k, hkθ : Rd ×Rd → Rd the map such that for any
x and z in Rd,

hkθ(x, z) = x+ αksθ(x, σK−k) +
√
2αkz ,

we get that, in practice, the generation dynamics Gθ is a deterministic mapping from Rd(K+1) to R which
can be written as, for any z = (z0, . . . , zK) ∈ Rd(K+1)

Gθ(z) = hKθ
(
hK−1
θ

(
. . . (h2θ

(
h1θ(z0, z1), z2

)
, . . . ), zK−1

)
, zK

)
.

Hence, the generated distribution νθ in SGMs is of the form νθ = Gθ#µd(K+1). Still, an important
difference with push-foward generative models such as VAEs or GANs is that the optimization is not
directly performed on Gθ but on an auxiliary function (the score). For this reason, we refer to them as
indirect push-forward generative models.

6.2.3 Other common models

We shortly present here three other generative models that are also used in imaging science but a bit less
commonly than the three previous models. These models are the Normalizing Flows (NFs) (Rezende and
Mohamed, 2015), the Autoregressive Models (ARMs) (Bengio et al., 2000), and the Energy-Based Models
(EBMs) (LeCun et al., 2006).

6.2.3.1 Normalizing flows

Normalizing Flows (NFs), in their vanilla forms introduced by Rezende and Mohamed (2015), are push-
forward generative models that approach the underlying data distribution ν by a parametric distribution
νθ = gθ#µd where µd = N(0, Idd) is the standard Gaussian distribution in dimension d and where
gθ : Rd → Rd is an invertible mapping. As an outcome of the invertibility of gθ, the distribution νθ admits
necessarily a density pνθ . The NFs builds then on the change-of-variable formula between densities, i.e.
for any x ∈ Rd,

pνθ (x) = pµd
(g−1
θ (x))|det(J [g−1

θ ](x))| ,

where J [g−1
θ ](x) is the Jacobian matrix of g−1

θ in x, i.e. for any 1 ≤ i, j ≤ d, [J [g−1
θ ](x)]i,j =

∂g−1
θi

∂xj
(x)

Supposing that gθ is of the form
gθ = gLθ ◦ · · · ◦ g1θ ,

with for any 1 ≤ l ≤ L, glθ : Rd → Rd being a non-linear invertible map, the density pνθ can be rewritten
for any x ∈ Rd as,

pνθ (x) = pµd
(g−1
θ (x))

L∏
l=1

|det(J [gl−1

θ ](x(l)))| .

If the glθ are designed such that their Jacobian is tractable, for instance such that the Jacobian matrix is
triangular, the model can be simply trained by maximizing the log-likelihood

∑n
i=1 log(pνθ(x)) on the

data. Note that, from a practical point of view, the conditions of being invertible and having a tractable
Jacobian prevent the use of classical neural network architectures. From a theoretical point of view, it
has been shown that the invertibility constraint limits the expressivity of the model (Cornish et al., 2020).
One possible remedy to this problem is to inject stochasticity in the model (Cornish et al., 2020; Wu
et al., 2020). Finally, we refer to Kobyzev et al. (2020) for a complete introduction on the topic of NFs.

6.2.3.2 Autoregressive models

Autoregressive Models (ARMs) (Bengio et al., 2000) propose to generate images pixel per pixel. More
precisely, they learn a parametric distribution νθ with density pνθ of the form, for a given x = (x1, . . . , xd)
in Rd,

pνθ (x) =

d2∏
k=1

pθ(x
k|x1, . . . , xk−1) ,
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where the conditional densities pθ(.|x1, . . . , xk−1) are typically Gaussian distributions, each parametrized
by a different neural network. The model is then learned by simply maximizing the log-likelihood. In
practice, Autoregressive models in imaging science use one single network with masked convolutions to
predict the parameters of the different conditional distributions. The most popular autoregressive model
in imaging science is PixelCNN (Van Den Oord et al., 2016). Note that, if ARMs are not so commonly
used in imaging science compared to VAEs, GANs, or SGMs, the autoregressive structure is however
particularly adapted for temporal data, and so ARMs have been very popular in audio synthesis until
the introduction of diffusion models. Finally, observe that when the conditional densities are chosen as
Gaussian distributions (which is the natural choice when generating real-valued data), ARMs are also
push-forward generative models since the generation procedure can be rewritten of the form gθ(Z) with
Z ∼ N(0, Idd) and with gθ : Rd → Rd being a deterministic mapping whose only specificity is to have a
particular autoregressive structure.

6.2.3.3 Energy-based models

Energy-Based Models (EBMs) (LeCun et al., 2006) propose to approach the underlying data distribution
ν by a parametric Boltzman distribution νθ, i.e. a distribution with density pνθ of the form for any x ∈ Rd

pνθ (x) =
exp[−fθ(x)]

Z(θ)
,

where fθ : Rd → R is a neural network and Z(θ) =
∫
Rd exp[−fθ(x]dx is called partition function and

can be thought as a normalization factor to ensure that νθ is a probability distribution. An important
difficulty for maximizing the log-likelihood of this model is that Z(θ) is intractable. The typical solution
of this problem is to use a contrastive divergence algorithm (Hinton, 2002) which roughly consists in
estimating Z(θ) with a MCMC method. Once the model is trained, the generation is done by MCMC
sampling from νθ. Observe that Langevin methods such as ULA or MALA are especially adapted to the
generation dynamics of EBMs since we have ∇x log pνθ = −fθ(x). Thus, since in practice the generation
dynamics is always composed of a finite number of steps, EBMs can be classified, as SGMs, as indirect
push-forward generative models.

6.2.4 Two stage models

A recent trend in deep generative modeling consists in combining the different models presented above,
or more precisely to learn a second generative model in the latent space of a VAE (Van Den Oord et al.,
2017; Razavi et al., 2019; Ghosh et al., 2019; Vahdat et al., 2021; Rombach et al., 2022). These types
of model are often referred to as two stage models. This is mainly motivated by the analysis that the
bad performances of VAEs in image synthesis probably come from the fact that the aggregated posterior
ξλ,θ, as defined in (6.4), is quite far from a standard Gaussian distribution N(0, Idd′) at the end of the
training. Thus, a low dimensional representation of the data is first learned with the VAE and the second
model then learns how to sample from this low dimensional representation. An alternative possibility
consists in learning the models simultaneously (Kingma et al., 2016; Chen et al., 2016; Sønderby et al.,
2016; Maaløe et al., 2019; Vahdat and Kautz, 2020; Child, 2020) although it is not clear in practice if
learning the models simultaneously increases the perfomances compared to learning them successively.

6.2.5 Evaluating the models

An important topic in generative modeling is the question of evaluating the models. Indeed, evaluating
generative models such as VAEs, GANs or SGMs is not a trivial problem since these models do not predict
likelihood values. If the results of a generative model can be qualitatively evaluated, it is difficult to verify
whether a given model correctly approachs the target distribution ν or only produces new synthetic data
that could have been sampled from ν but without recovering its underlying structure. Hence a generative
model should be evaluated on the two following criterions: (i) the fidelity of the results, i.e. the ability of
the model to generate images perceptually similar to the data, (ii) the diversity of the results, i.e. the
ability of the model to capture all the diversity of the dataset and so to cover integraly the support of the
underlying distribution ν. Several quantitative measures of performances have been designed in order to
assess generative models. The two most popular among them are the Inception Score (IS) (Salimans et al.,
2016) and the Frechet Inception Distance (FID) (Heusel et al., 2017) which are both used specifically to
evaluate models trained on Imagenet (Russakovsky et al., 2015). These two measures of performances
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are both using the features of InceptionV3 classifier (Szegedy et al., 2016) that has been pre-trained on
Imagenet. More precisely, the Inception Score (IS) reads as, given a generated distribution νθ

IS(νθ) = exp
[∫

Rd DKL(ωY |X=x||ωθ)dνθ(x)
]
,

where ωY |X=x is the conditional distribution of the labels Y predicted by the InceptionV3 classifier given
an input image x and ωθ =

∫
Rd ωY |X=xdνθ(x) is the marginal distribution of the labels. The idea is

that, on one hand, if νθ covers correctly all the support of the underlying distribution of Imagenet, the
generative model should output a diverse set of images from all the different classes and so ωθ should be
uniform. On the other hand, if the model is able to predict correct samples, they should be classified by
the InceptionV3 network without too much incertitude and so ωY |X=x should be close to a one-hot vector
and have low entropy. Thus the Kullback-Leibler divergence, and so the inception score, is maximized
when the generative model satisfies both conditions of fidelity and diversity. Alternatively, the Frechet
Inception Distance (FID) reads as, given a empirical version ν̂θ of νθ

FID(ν̂θ, ν̂) =W2(µνθ , µν̂) ,

where µν̂θ and µν̂ are two Gaussian distributions that have been fitted on the input responses of an
intermediary layer of the InceptionV3 classifier when the input are respectively samples of ν̂θ and ν̂.
While these two measures of performances have been proved to be valuable tools, they have some key
limitations which come mainly from the fact that they heavily depend on the features of a pre-trained
network. Thus, it is unclear how they relate to any classical distance or divergence between probability
distributions and how well they transfer to other datasets. More critically, it seems that they are heavily
sensitive to particular implementation details (Barratt and Sharma, 2018; Parmar et al., 2022). Another
possible measure of performances of generative models is the Precision and Recall measure (Sajjadi et al.,
2018). Formally, for two probability distributions µ and ν, µ is said to have an attainable precision a and
recall b with respect to ν, if it exists three probability distributions ξ, ξµ and ξν such that

µ = aξ + (1− a)ξµ and ν = bξ + (1− b)ξν .

The component ξν denotes the part of ν that is missed by µ, whereas, ξµ denotes the noise part of µ.
The maximal attainable precision and recall ā and ν̄ are respectively ā = µ(supp(ν)) and b̄ = ν(supp(µ)).
Applied to generative models, the idea is that the precision a quantifies the fidelity of the model, while
the recall b quantifies the diversity.

6.3 Conclusion

In this chapter, we have presented the key concepts of generative modeling as well as the most commonly
used models in imaging science. We have shown that most of the models could either be classified as
push-forward generative models or as indirect push-forward generative models. In (direct) push-forward
generative models, the generated distribution is of the form gθ#µd′ with µd′ = N(0, Idd′) being the
standard Gaussian distribution in dimension d′ and gθ being a neural network which is directly optimized
during training. In constrast, the generation dynamics Gθ in indirect push-forward generative models
takes the form of a Monte Carlo procedure. Since these generation dynamics are necessarily only composed
of a finite number of iterations in practice, the generated distribution in indirect push-forward generative
models is also of the form Gθ#µd′ , but this time d′ is much larger than d and the optimization is not
performed directly on Gθ.

Generative modeling is a challenging problem which has become very popular over the recent years
because of its impressive abilities to generate photorealistic images. In just a few years, the performance
as well as the models themselves have evolved considerably. Still, these changes stem more from practical
progresses than from theoretical advances. Indeed, the theoretical understandings of most of generative
models remain relatively nascent. For instance, if analyzing the expressivity of deep neural networks has
been an active field since the 90s, little is known however, to the best of our knowledge, on the expressivity
of deep generative models, with the exception of several works on GANs that have focused on the case
where the target distribution lies on two or more disconnected manifolds (Khayatkhoei et al., 2018; Mehr
et al., 2019; Tanielian et al., 2020) and works on normalizing flows that have shown that the invertibility
constraints limits the expressivity of the models (Cornish et al., 2020; Hagemann and Neumayer, 2021;
Behrmann et al., 2021). In the next chapter, we study more generally the expressivity of push-forward
generative models and we show that there is a trade-off for these models between expressivity and stability
of training.
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Chapter 7

Fitting push-forward generative models
on multimodal distributions
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In this chapter, we study the expressivity of push-forward generative models relatively to the Lipschitz
constant of the generative network when the target distribution is multimodal. This chapter is mostly a
reproduction of Salmona et al. (2022b).

7.1 Introduction

Generative modeling has become over the last years one of the most popular research topics in machine
learning and computer vision. Beside their direct application (Sandfort et al., 2019; Antoniou et al., 2018),
generative models have been used in numerous applications in various machine learning subfields, such as
solving inverse problems (Ravuri et al., 2021; Ledig et al., 2017) or machine translation (Isola et al., 2017;
Yang et al., 2018). However, most generative modeling methods still lack theoretical understanding and
it remains often unclear whether the method approaches correctly the underlying probability distribution
ν from which the data have been sampled, or only generates samples that appear to have been drawn
from ν without fully recovering the underlying structure of the distribution.

Deep neural networks are most of the time Lipschitz mappings by design, since their activation functions
are generally Lipschitz. In the literature, constraining the Lipschitz constant of a neural network is widely
used as a way to increase its robustness (Virmaux and Scaman, 2018; Fazlyab et al., 2019), in particular
to adversarial attacks (Goodfellow et al., 2015). Common approaches to bound Lipschitz constants of
neural networks are spectral normalization (Miyato et al., 2018), adding a gradient penalization in the
loss (Gulrajani et al., 2017; Mohajerin Esfahani and Kuhn, 2018), or Jacobian regularization (Pennington
et al., 2017). These approaches have been widely used to stabilize the training of GANs, where Lipschitz
constraints have been first imposed on discrimators (Arjovsky et al., 2017; Kodali et al., 2017; Fedus et al.,
2018), while recent state-of-the-art architectures such as BigGAN (Brock et al., 2019), SAGAN (Zhang
et al., 2019) or StyleGAN2 (Karras et al., 2020) also impose similar constraints on the generators through
spectral normalization (Brock et al., 2019; Zhang et al., 2019), or Jacobian regularization (Karras et al.,
2020). In contrast to GANs, the recent study of Kumar and Poole (2020) shows that the decoder Jacobian
in VAEs is implicitly regularized, which limits its Lipschitz constant. A similar implicit regularization
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might be operating in the case of normalizing flows (Behrmann et al., 2021), for which it is known
that limited Lipschitz constant are necessary to ensure invertibility (Behrmann et al., 2019), and large
bi-Lipschitz constants lead to numerical instability (Behrmann et al., 2021).

In the case where the underlying data distribution ν lies on two or more disconnected manifols, several
works (Khayatkhoei et al., 2018; Mehr et al., 2019; Tanielian et al., 2020; Cornish et al., 2020; Hagemann
and Neumayer, 2021; Behrmann et al., 2021) have shown that GANs and normalizing flows were unable to
correctly fit ν. This could be explained simply by an observation made by (Khayatkhoei et al., 2018): since
the support of the distribution ν is a discontinuous set, a discontinuity must somehow been introduced in
the transport map that pushes the standard Gaussian distribution µd′ into ν. More generally, this raises
the following question: are push-forward generative models able to correctly fit multimodal distributions?
Indeed, since on one hand, it is clear in 1D that the mappings that push a standard Gaussian distribution
into a given multimodal distribution must necessarily have large Lipchitz constants, and on the other
hand, the Lipschitz constant of a neural network can almost be used as a measurement of the instability
of its training (Glorot and Bengio, 2010; Szegedy et al., 2013; Pennington et al., 2017), it seems that
the ability of push-forward generative models to generate multimodal distributions may be antagonist
with the stability of their training. In this chapter, we prove that it is indeed the case, regardless of the
dimension of the target measure ν nor the dimension of the standard Gaussian distribution µd′ .

Recently, Dhariwal and Nichol (2021) trained an unconditional Score-based Generative Model (SGM)
(Song and Ermon, 2019; Ho et al., 2020) on ImageNet (Russakovsky et al., 2015) and achieved state-of-
the-art generation. To the best of our knowledge, there is no push-forward generative model capable of
reaching this kind of performance on such a complex dataset without explicitly adding any conditional
label information in the model, see (Brock et al., 2019) for instance. This suggests that indirect push-
forward generative models, such as SGMs, might not suffer of the same limitations than push-forward
generative models.

Contributions of this chapter. In this chapter, we study the expressivity of direct and indirect
push-forward generative models in relation to the Lipschitz constant of the push-forward mapping they
learn. More precisely, in Section 7.3, for a Lipschitz function g and a given multimodal probability
distribution ν, we formally demonstrate that the Lipschitz constant of g must necessarily be large in
order for g#µd′ to approximate ν correctly, as it has been already intuitively observed in the literature
(Lu et al., 2020; Luise et al., 2020; Khayatkhoei et al., 2018). As a direct consequence, we exhibit lower
bounds on D(g#µd′ , ν), where D is the total variation distance or the Kullback-Leibler divergence, with
an explicit dependence on the Lipschitz constant Lip(g) of g, which highlights that there is a fundamental
trade-off for (direct) push-forward generative models between expressivity and stability of training. In
Section 7.4, we illustrate these theoretical results on several experiments, showing the difficulties of
GANs and VAEs to generate multimodal distributions. We compare these models with SGMs and show
experimentally that SGMs seem to be able to generate correctly multimodal distributions while keeping
the Lipschitz constant of the score network relatively small, suggesting that these models do not suffer of
such previously mentioned limitations.

7.2 Related works

Assessing the efficiency of push-forward models is a recurrent and important question in the literature.
Sajjadi et al. (2018) and Kynkäänniemi et al. (2019) propose Precison and Recall metrics to assess
GANs, aiming to measure simultaneously the mode collapse and the proportion of off-manifold generated
samples. Using similar metrics, Tanielian et al. (2020) prove an upper bound on the precision of vanilla
GANs (the proportion of generated samples which could have been generated by the target distribution).
To overcome this limitation, they simply propose to reject samples associated with large values of the
generator Jacobian. The intuition behind this idea is that those samples lie in regions of the space where
the discontinuous optimal generator would "jump" between modes and so are off-manifold.

In the context of normalizing flows, it has been shown that the invertibility constraint limits the
expressivity of the model. Indeed, Cornish et al. (2020) show that distributions generated by invertible
normalizing flows have a support which is necessarily homeomorphic to the support of the latent
distribution. As an outcome, the Lipschitz constant of the inverse flow has to approach infinity to
correctly approximate distributions lying on disconnected manifolds (Cornish et al., 2020; Hagemann and
Neumayer, 2021; Behrmann et al., 2021). To improve the expressivity of normalizing flows, it has been
proposed in Cornish et al. (2020) and Wu et al. (2020) to inject stochasticity in the model.
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Another line of research focuses on the fact that the model has access to only the empirical distribution
ν̂ = 1

n

∑
i δxi

and not to the true target distribution. For instance Nagarajan et al. (2018) study to what
extend GANs only memorize the data. Gulrajani et al. (2018) highlight the fact that common GAN
benchmarks prefer training set memorization to a model which imperfectly fits the true distribution but
covers more of its support. Related to this, Stéphanovitch et al. (2022) study specifically the Wasserstein
GAN case, where the latent distribution is uniform and construct an optimal generator which minimizes
the Wasserstein distance of order 1 between the push-forward measure and the empirical distribution,
thus deriving a lower bound on the 1-Wasserstein distance. In the same paper, and more related to our
work, the authors study the asymptotic case of an infinite number of data and show that most of the
time the minimal 1-Wasserstein distance between the push-forward measure and the target distribution
remains strictly positive.

7.3 Push-forward measure and Lipschitz mappings

In this section, we study the properties of the push-forward measure g#µd′ when µd′ = N(0, Idd′) is the
standard Gaussian distribution in dimension d′ and g is a Lipschitz mapping. In the following, we denote
B(Rd) the Borel σ-field on Rd and, for any probability measure γ on Rd and any Borel set A ∈ B(Rd), we
define the γ-surface area of A by

γ+(∂A) = lim inf
ε→0+

γ(Aε)− γ(A)
ε

,

where Aε = {x ∈ Rd : there exists a ∈ A, ∥x− a∥ ≤ ε} is the ε-extension of A and ∂A is the boundary of
A. The γ-surface area can be interpreted as the mass of γ on the hypersurface ∂A. Note that the support
of γ and A can be sets of intrinsic dimension smaller than d, which is most of the time the case when
working with real data which are likely to live on low dimensional manifolds (Pope et al., 2020).

7.3.1 Isoperimetric property of push-forward measures
The main theoretical result of this chapter establishes some properties of push-forward measures depending
on the regularity of the push-forward mapping.

Theorem 7.3.1. Let g : Rd′ → Rd be a Lipschitz function with Lipschitz constant Lip(g). Then for any
Borel set A ∈ B(Rd),

Lip(g)(g#µd′)
+(∂A) ≥ φ

(
Φ−1(g#µd′(A))

)
, (7.1)

where φ(x) = (2π)−1/2 exp[−x2/2] and Φ(x) =
∫ x
−∞ φ(t)dt. In addition, we have that for any r ≥ 0

g#µd′(Ar) ≥ Φ
(

r
Lip(g) +Φ−1(g#µd′(A))

)
. (7.2)

For vizualization purpose, the graph of the function φ ◦ Φ−1 is represented in Figure 7.1.
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Figure 7.1: Graph of φ ◦ Φ−1.

Theorem 7.3.1 is mainly a consequence of the Gaussian isoperimetric inequality (Sudakov and Tsirelson,
1978) which can be stated as follows.
Lemma 7.3.2 (Sudakov and Tsirelson, 1978). Let A ∈ B(Rd′) and µd′ = N(0, Idd′). Then we have

µ+
d′(∂A) ≥ φ(Φ

−1(µd′(A))) ,
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where φ(x) = (2π)−1/2 exp[−x2/2] and Φ(x) =
∫ x
−∞ φ(t)dt. Equivalently, for all r ≥ 0,

µd′(Ar) ≥ Φ(r +Φ−1(µd′(A))) .

Informally, the Gaussian isoperimetric implies that the half-spaces of Rd′ , i.e. the spaces of the form
{x ∈ Rd′ : aTx ≥ 0} with a ∈ Rd′ , have minimal µd′ -surface area. Indeed, it can be shown (see proof of
Corollary 7.3.3 for details) that for any half-space H of Rd′ , µ+

d′(H) = φ(Φ−1(µd′(H))). An illustration of
the Gaussian isoperimetric inequality can be found in Figure 7.2.

A

H

Figure 7.2: The Gaussian isoperimetric inequality on R2. Supposing µ2(A) = µ2(H), Lemma 7.3.2 implies
that µ2 has more mass on ∂H (in blue, right) than on ∂A (in red, left).

Now, we are ready to turn to the proof of Theorem 7.3.1.

Proof of Theorem 7.3.1. Let A ∈ B(Rd) such that g#µd′(A) > 0 (note that if g#µd′(A) = 0 then the result
is trivial). First, we show that for any ε > 0, g((g−1(A))ε/Lip(g)) ⊂ Aε. Let x be in g((g−1(A))ε/Lip(g)).
There exists z1 ∈ (g−1(A))ε/Lip(g) such that g(z1) = x. There also exists z2 ∈ g−1(A) such that

∥z1 − z2∥ ≤
ε

Lip(g)
.

Hence, we have that
∥x− a∥ ≤ Lip(g)∥z1 − z2∥ ≤ ε ,

where a = g(z2). Since z2 ∈ g−1(A), a ∈ A, and therefore x ∈ Aε. Using this result, the fact that
g#µd′(B) = µd′(g

−1(B)) and B ⊂ g−1(g(B)) for any B ∈ B(Rd), we have

lim inf
ε→0+

1

ε
(g#µd′(Aε)− g#µd′(A)) ≥ lim inf

ε→0+

1

ε

(
g#µd′(g((g

−1(A))ε/Lip(g)))− g#µd′(A)
)

≥ lim inf
ε→0+

1

ε

(
µd′((g

−1(A))ε/Lip(g))− µd′(g−1(A))
)
. (7.3)

Using Lemma 7.3.2, we have

Lip(g) lim inf
ε→0+

1

ε

(
µd′((g

−1(A))ε/Lip(g))− µd′(g−1(A))
)
≥ φ(Φ−1(µd′(g

−1(A)))) ,

Combining this result and (7.3), we get that

Lip(g)(g#µd′)
+(∂A) ≥ φ(Φ−1(g#µd′(A))) .

In addition, using Lemma 7.3.2, we have for all r ≥ 0

µd′((g
−1(A))r/Lip(g)) ≥ Φ

(
r

Lip(g) +Φ−1(µd′(g
−1(A)))

)
.

Using this result and that g((g−1(A))r/Lip(g)) ⊂ Ar, we have for any r ≥ 0

g#µd′(Ar) = µd′(g
−1(Ar)) ≥ µd′((g−1(A))r/Lip(g)) ≥ Φ

(
r

Lip(g) +Φ−1(g#µd′(A))
)
.
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Note that (7.2) implies (7.1) upon remarking that (7.2) is an equality for r = 0, dividing by r and
letting r → 0. Theorem 7.3.1 recovers the Gaussian inequality in the case where g is the identity mapping
and extends it to all Lipschitz mappings. As the Gaussian inequality, Theorem 7.3.1 is dimension free, in
the sense that neither d, nor d′, nor the intrinsic dimension of g(Rd′) play a role in the lower bounds.
In the following section, we are going to use Theorem 7.3.1 to (i) give a lower bound on the Lipschitz
constant so that push-forward generative models exactly match the data distribution, (ii) give a lower
bound on the total variation and the Kullback-Leibler divergence between the push-forward and data
distributions which depends on the Lipschitz constant of the model.

7.3.2 Lower bounding the Lipschitz constant of push-forward mappings
Equation (7.1) implies that the Lipschitz constant of g must necessarily be large for g#µd′ to be multimodal.
It provides indeed a lower bound on the Lipschitz constant of the mappings g which push µd′ into a given
measure ν. In the extreme case where the support of ν is composed of disconnected manifolds, we retrieve
that there doesn’t exist any Lipschitz mapping which pushes µd′ into ν since it can be found Borel sets
A with null ν -surface area but such that the right-hand term of (7.1) is strictly positive, which occurs
when 0 < ν(A) < 1. In the intermediate case where the support of ν is connected but ν is multimodal,
the less mass ν has between modes, the larger must be the Lipschitz constant of the mappings which
push µd′ into ν. Indeed, if ν has little mass between its modes, one can find sets A with small ν-surface
area and such that 0 < ν(A) < 1. As a toy example, we get an explicit bound on the Lipschitz constant
of the mappings which push µd′ into a mixture of two isotropic Gaussians.

Corollary 7.3.3. Let ν = λN(m1, σ
2 Idd)+(1−λ)N(m2, σ

2 Idd) with m1,m2 ∈ Rd, σ > 0 and λ ∈ (0, 1).
Assume that there exists g : Rd′ → Rd Lipschitz such that g#µd′ = ν. Then

Lip(g) ≥ σ exp
[
∥m2 −m1∥2/(8σ2)− (Φ−1(λ))2/2

]
.

Proof of Corollary 7.3.3. We prove the corollary when ν = λN(−m,σ2 Idd) + (1− λ)N(m,σ2 Idd) since
the problem can always be reduced to that case by translation and setting m = (m2 −m1)/2. Let H be
defined by H = {x ∈ Rd : mTx ≥ 0}. Note that for any x ∈ ∂H, ∥x−m∥ = ∥x+m∥. Since the problem
is invariant by rotation, we can consider without any loss of generality that m = (∥m∥, 0, . . . , 0). In that
case, we have ν = ν1⊗N(0, σ2 Idd−1), where ν1 = λN(−∥m∥, σ2)+(1−λ)N(∥m∥, σ2), and ⊗ is the tensor
product between measures. In this case, we have that H = {x1 ∈ R : x1 ≥ 0}×Rd−1. Therefore, we have

ν+(∂H) = lim inf
ε→0+

1

ε

(∫
Hε

pν(x)dx−
∫
H

pν(x)dx

)
,

= lim inf
ε→0+

1

ε

(∫ +∞

−ε

∫
Rd−1

pν1(x1)h(y)dx1dy −
∫ +∞

0

∫
Rd−1

pν1(x1)h(y)dx1dy

)
,

where pν and pν1 are the respective densities of ν and ν1, and h is the density of N(0, σ2Id−1). It follows
that

ν+(∂H) = lim inf
ε→0+

1

ε

∫ 0

−ε
pν1(x1)

(∫
Rd−1

h(y)dy

)
dx1

= lim inf
ε→0+

1

ε

∫ 0

−ε
pν1(x1)dx1 = pν1(0) = (2πσ2)−1/2 exp[−∥m∥2/(2σ2)] .

Applying Theorem 7.3.1, we get that

Lip(g) ≥ φ(Φ−1(ν(H)))/ν+(∂H) .

Furthermore, one can derive that

ν(H) = λ(1− Φ(m/σ)) + Φ(m/σ)(1− λ)
= λ(1− 2Φ(m/σ)) + Φ(m/σ) .

Observing that λ− ν(H) is an increasing function of λ and λ− ν(H) = 0 if λ = 1/2, we get that λ ≤ ν(H)
if λ ≤ 1/2 and λ ≥ ν(H) if λ ≥ 1/2. Since φ ◦ Φ−1 reaches its maximum in 1/2, it follows that for any
λ ∈ (0, 1) we have

φ(Φ−1(ν(H))) ≥ φ(Φ−1(λ)) ,
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and thus

Lip(g) ≥ (2π)1/2σφ(Φ−1(λ)) exp[∥m∥2/(2σ2)]

≥ σ exp[∥m∥2/(2σ2)− (Φ−1(λ))2/2] ,

which concludes the proof.

Figure 7.3: The half-space H used in the proof of Corollary 7.3.3 when d = 2.

Note that assuming there exists g : Rd′ → Rd such that g#µd′ = ν implies d′ ≥ d since ν covers the
whole ambient space and so g must be a surjective mapping. This bound is maximal in the balanced case
when λ = 1/2 since Φ−1(λ) = 0 in that case. Otherwise, the more unbalanced the modes are, the smaller
the bound is since the two terms in the exponential compensate each other more and more. Extending
this corollary to mixtures of more than two Gaussians with different covariance matrices is technically
difficult but we could expect a similar exponential growth in the square distance between modes since it
depends mainly on the order of magnitude of the local minima of the distribution density.

7.3.2.1 Lipschitz constant of the Brenier map

As a by-product of Theorem 7.3.1, we also get the following result which shows that (in the one-dimensional
case) the Brenier map, i.e. the optimal transport map for the ℓ2 cost, minimizes the Lipschitz constant of
the push-forward mapping.

Corollary 7.3.4. Let ν be a probability measure on R with density w.r.t. the Lesbesgue measure and such
that supp(ν) = R. Assume that there exists g : Rd′ → R Lipschitz such that ν = g#µd′ . Let us denote
TOT = Φ−1

ν ◦ Φ the Monge map between µ1 and ν, where Φν is the cumulative distribution function of ν.
Then we have Lip(g) ≥ Lip(TOT).

Proof. Since ν admits a density pν with respect to the Lesbegue measure, it follows that Φν is differentiable
almost everywhere. Moreover, since supp(ν) = R, it follows that Φν : R→ (0, 1) is increasing and therefore
is bijective, and so TOT = Φ−1

ν ◦ Φ is also differentiable almost everywhere and bijective, with inverse
T−1
OT = Φ−1 ◦ Φν , using (Peyré and Cuturi, 2019, Remark 2.29). Therefore, for any x ∈ R we have

T ′
OT(x) =

φ(x)

pν(TOT(x))

=
φ(Φ−1(Φν(TOT(x)))

pν(TOT(x))
.

Let y ∈ R. Using Theorem 7.3.1 with A = (−∞, y] we get that for any g : Rd′ → R Lipschitz such that
g#µd′ = ν,

Lip(g) ≥ sup
y∈R

φ(Φ−1(Φν(y)))

pν(y)
,

and so, since TOT is bijective
Lip(g) ≥ sup

x∈R
|T ′

OT(x)| ,

which concludes the proof.
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Interestingly, we can also show that the same result holds in the case where the target measure ν is
any non-degenerate Gaussian measure on Rd.
Corollary 7.3.5. Let ν = N(m,Σ) with m ∈ Rd and Σ ∈ Rd×d non-singular. Let g : Rd′ → Rd Lipschitz
with Lipschitz constant Lip(g) such that g#µd′ = ν. Let TOT the Brenier map between µd and ν, i.e. for
all x ∈ Rd,

TOT(x) = m+Σ
1
2x .

Then,
Lip(g) ≥ Lip(TOT) .

Proof. First observe that (7.1) can be rewritten in the following way:

Lip(g)ν+(∂A) ≥ µ+
d (∂H) ,

where H is any half-space such that µd(H) = ν(A). Let us denote {λi}di the eigenvalues of Σ and {pi}di
the corresponding unitary eigenvectors in Rd. Let set for any 1 ≤ i ≤ d,

Ai = {x ∈ Rd : pTi (x−m) ≥ 0} .

It is easy to see that for any 1 ≤ i ≤ d, ν(Ai) = 1/2. Since µd is invariant by rotation, we set

H = {x1 ∈ R : x1 ≤ 0} × Rd−1 ,

such that µd(H) = 1/2. Thus it follows, for any 1 ≤ i ≤ d,

Lip(g) ≥ sup
i

µ+
d (∂H)

ν+(∂Ai)
.

On one hand we have, denoting φ(m,Σ) the density of N(m,Σ),

µ+
d (H) = lim inf

ε→0+

1

ε

(∫
Hε

φ(0,Idd)(x)dx−
∫
H

φ(0,Idd)(x)dx

)
= lim inf

ε→0+

1

ε

(∫ ε

0

∫
Rd−1

φ(0,Idd−1)(y)φ(t)dydt

)
= lim inf

ε→0+

1

ε

∫ ε

0

φ(t)dt

= φ(0) = (2π)−
1
2 .

On the other hand we have for any 1 ≤ i ≤ d, denoting D = diag ((λi)i≤d)

ν+(Ai) = lim inf
ε→0+

1

ε

(∫
Aiε

φ(m,Σ)(x)dx−
∫
Ai

φ(m,Σ)(x)dx

)

= lim inf
ε→0+

1

ε

(∫
PT (Aiε−m)

φ(0,D)(x)dx−
∫
PT (Ai−m)

φ(0,D)(x)dx

)

= lim inf
ε→0+

1

ε

(∫ ε

0

∫
Rd−1

φ(0,D(i))(y)φ(0,λi)(t)dydt

)
= lim inf

ε→0+

1

ε

∫ ε

0

φ(0,λi)(t)dt

= φ(0,λi)(0) = (2πλi)
− 1

2 .

Thus it follows,
Lip(g) ≥ sup

i

√
λi .

Moreover, since TOT(x) = m+Σ1/2x for all x ∈ Rd, we have, denoting |||.||| the operator matrix norm,
i.e. for any M of size d× d, |||M ||| = sup∥x∥=1 ∥Mx∥,

Lip(TOT) = sup
x∈Rd

|||JTOT(x)||| = |||Σ1/2||| = sup
i

√
λi ,

which concludes the proof.

Apart from these two particular cases where the analytical expression of the Brenier map is known,
identifying whether this result holds or not for arbitrary target distribution ν on Rd with d > 1 remains,
to the best of our knowledge, an open problem.
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7.3.3 Lower bounds on dissimilarity measures between probability distributions

Equation (7.2) provides a bound on the minimal mass the push-forward measure g#µd′ can have on a
given set when g is fixed with Lipschitz constant Lip(g). As a consequence, if ν is a distribution such that
there exist sets on which ν has less mass than the minimal quantity that g#µd′ can reach on those sets
given the value of Lip(g), then g#µd′ cannot be equal to ν, implying that most of dissimilarity measures
between g#µd′ and ν will be automatically strictly positive. In the following, we consider that g and ν
are fixed and we derive lower bounds on the total variation distance and the Kullback-Leibler divergence
between g#µd′ and ν. We recall that the total variation distance between two probability measures on
Rd, ν0, ν1 is given by

DTV(ν0, ν1) = sup{ν0(A)− ν1(A) : A ∈ B(Rd)} .

Similarly, we define the Kullback-Leibler divergence between two probability measures on Rd, ν0, ν1, using
the Donsker-Varadhan representation (Dupuis and Ellis, 2011, Lemma 1.4.3a):

DKL(ν0||ν1) = sup{
∫
Rd f(x)dν0(x)− log

(∫
Rd exp[f(x)]dν1(x)

)
: f ∈ B(Rd,R)} ,

where B(Rd,R) denotes the set of all bounded mappings from Rd to R. In the following, we will denote
for any A ∈ B(Rd) and r > 0,

αg(A, r) = Φ
(

r
Lip(g) +Φ−1(g#µd′(A))

)
,

βg(A, r) = αg(A, r)− g#µd′(A) ,

where αg(A, r) and βg(A, r) are the lower bounds of g#µd′(Ar) and g#µd′(Ar\A) provided by Theorem 7.3.1.

7.3.3.1 Lower bound on the total variation distance

We start by showing the following lower bound on the total variation distance.

Theorem 7.3.6. Let ν be a probability measure on Rd and let g : Rd′ → Rd be a Lipschitz function.
Then,

DTV(g#µd′ , ν) ≥ sup{αg(A, r)−min{g#µd′(A), ν(A)} − ν(Ar \ A) : A ∈ B(Rd), r > 0} . (7.4)

Proof. Let A ∈ B(Rd) and let r > 0. We have on one hand

|g#µd′(Ar \ A)| ≤ |g#µd′(Ar \ A)− ν(Ar \ A)|+ |ν(Ar \ A)|
≤ DTV(g#µd′ , ν) + ν(Ar \ A) .

Using Theorem 7.3.1, we get

|g#µd′(Ar \ A)| = g#µd′(Ar)− g#µd′(A) ≥ Φ
(

r
Lip(g) +Φ−1(g#µd′(A))

)
− g#µd′(A) ,

and so
DTV(g#µd′ , ν) ≥ αg(A, r)− g#µd′(A)− ν(Ar \ A) .

On the other hand, we have

|g#µd′(Ar)| ≤ |g#µd′(Ar)− ν(Ar)|+ |ν(Ar)|
≤ DTV(g#µd′ , ν) + ν(Ar \ A) + ν(A) .

Using Theorem 7.3.1, we get

|g#µd′(Ar)| ≥ Φ
(

r
Lip(g) +Φ−1(g#µd′(A))

)
,

and so
DTV(g#µd′ , ν) ≥ αg(A, r)− ν(A)− ν(Ar \ A) ,

which concludes the proof.
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Observe that (7.4) always holds but the right-hand term may become negative if the Lipschitz constant
of g is large enough. The main idea behind this bound is to find a set A and a real r > 0 such that ν has
a lot of mass on A but almost no mass on Ar \ A. For instance, if ν is a distribution on two disconnected
manifolds M1 and M2, an optimal choice for A would either be M1 or M2 and the optimal r would be the
distance between the two manifolds. Using Theorem 7.3.6, one can derive smaller but more explicit lower
bounds only depending on ν and the Lipschitz constant of g. As a first example, we derive an explicit
lower bound in the case where ν is a bi-modal distribution on two disconnected manifolds. The proof of
the following result is postponed to Appendix B.1.

Corollary 7.3.7. Let ν be a measure on Rd on two disconnected manifolds M1 and M2 such that
ν(M1) = λ and ν(M2) = 1− λ, with λ ∈ [1/2, 1), and let g : Rd′ → Rd be a Lipschitz function. Then,

DTV(g#µd′ , ν) ≥
∫ d(M1,M2)/2Lip(g)+Φ−1(λ)

Φ−1(λ)

φ(t)dt ,

where d(M1,M2) = inf{∥m1 −m2∥ : m1 ∈ M1,m2 ∈ M2}.

As a second example, we also get an explicit lower bound in the case where ν is a mixture of two
isotropic Gaussians (the proof is also postponed to Appendix B.1). For simplicity we stick to the balanced
case.

Corollary 7.3.8. Let ν = 1
2 [N(m1, σ

2 Idd)+N(m2, σ
2 Idd)] with m1,m2 ∈ Rd and σ ≥ 0. Let g : Rd′ → Rd

be a Lipschitz function. Then,

DTV(g#µd′ , ν) ≥
∫ ∥m2−m1∥/4σLip(g)

0

φ(t)dt− 1

2

∫ ∥m2−m1∥(2σ+1)/4σ2

∥m2−m1∥(2σ−1)/4σ2

φ(t)dt .

In both corollaries, the lower bound tends to 1/2 when the distance between the modes tends to
infinity, meaning that g#µd′ is far from well approaching ν. Note that the lower bound exhibited in
Corollary 7.3.7 is always strictly positive regardless of the value of the Lipschitz constant of g. One can
also observe that this latter bound is maximal in the balanced case, when λ = 1/2, since the standard
normal distribution concentrates its mass around 0.

7.3.3.2 Lower bound on the Kullback-Leibler divergence

Now we derive a similar lower bound on the Kullback-Leibler divergence between g#µd′ and ν. We
consider the Kullback-Leibler divergence since this is a measure of dissimilarity between measures which
is bounded and is very sensitive to the mismatch of supports between the generated and the data
distributions.

Theorem 7.3.9. Let ν be a probability measure on Rd and let g : Rd′ → Rd be a Lipschitz function.
Then,

DKL(g#µd′ ||ν) ≥ sup {βg(A, r) log
(
βg(A,r)
ν(Ar\A)

)
+ (1− βg(A, r)) log

(
1−βg(A,r)
1−ν(Ar\A)

)
: A ∈ B(Rd), r > 0} .

Proof. Let A ∈ B(Rd), r > 0 and ζ > 0. We set for any x ∈ Rd f(x) = ζχAr\A(x), where χA denotes the
characteristic function of the set A. Since f is bounded, it follows that

dKL(g#µd′ ||ν) ≥
∫
Rd

f(x)dg#µd′(x)− log

(∫
Rd

ef(x)dν(x)

)
≥ ζg#µd′(Ar \ A)− log

(
1 + (eζ − 1)ν(Ar \ A)

)
.

Using Theorem 7.3.1, we get

g#µd′(Ar \ A) = g#µd′(Ar)− g#µd′(A) ≥ βg(A, r) .

Thus we get
DKL(g#µd′ ||ν) ≥ sup{J(ζ,A, r) : ζ ∈ R,A ∈ B(Rd), r > 0} ,

where the functional J is defined by

J(ζ,A, r) = ζβg(A, r)− log
(
1 + (eζ − 1)ν(Ar \ A)

)
.
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Differentiating J with respect to ζ, we get that

∇ζJ(ζ,A, r) = βg(A, r)− (eζν(Ar \ A))/(1 + (eζ − 1)ν(Ar \ A)) .

Applying the first order condition, we get that:

ζ∗ = log[βg(A, r)(1− ν(Ar \ A))]− log[ν(Ar \ A)(1− βg(A, r))] .

By re-injecting the value of ζ∗, we get

ζ∗βg(A, r)− log
(
1 + (eζ

∗ − 1)ν(Ar \ A)
)
= βg(A, r) log

(
βg(A,r)(1−ν(Ar\A))
ν(Ar\A)(1−βg(A,r))

)
− log

(
1−ν(Ar\A)
1−βg(A,r)

)
= βg(A, r) log

(
βg(A,r)
ν(Ar\A)

)
+(1− βg(A, r)) log

(
1−βg(A,r)
1−ν(Ar\A)

)
,

which concludes the proof.

As above, this bound always holds but the right-hand term becomes negative if Lip(g) is large enough.
As for Theorem 7.3.6, the main idea is to find a set A and a real r such that ν has a lot of mass on A, but
ν has almost no mass on Ar \ A. Observe that if ν(Ar \ A) tends to 0, the left-hand term of the bound
tends to infinity. This is coherent with the behavior of the Kullback-Leibler divergence. Similarly to
Corollary 7.3.8, we also get an explicit lower bound in the case where ν is a mixture of two isotropic
Gaussians. As for Corollary 7.3.8, we stick to the balanced case for simplicity. The proof of the following
result is postponed to Appendix B.1.

Corollary 7.3.10. Let ν = 1
2

[
N(m1, σ

2 Idd) + N(m2, σ
2 Idd)

]
with m1,m2 ∈ Rd and σ ≥ 0. Let

g : Rd′ → Rd be a Lipschitz function. We denote

λ = g#µd′
(
{(m2 −m1)

T (x− (m2 +m1)/2) ≤ 0 : x ∈ Rd}
)
,

and we suppose without loss of generality, that λ ∈ (0, 1/2]. Then,

DKL(g#µd′ , ν) ≥ A log
(
A
B

)
+ (1−A) log

(
1−A
1−B

)
,

where

A =

∫ ∥m2−m1∥/4σLip(g)−Φ−1(1−λ)

−Φ−1(1−λ)
φ(t)dt and B =

1

2

∫ ∥m2−m1∥(2σ+1)/4σ2

∥m2−m1∥(2σ−1)/4σ2

φ(t)dt .

Observe that this time, Lip(g) is no longer the only dependency in g since the bound also depends
on the proportion of the modes of g#µd′ . However, it should be noted that when g#µd′ approximates
correctly ν, λ is automatically close to 1/2 and so Φ−1(1− λ) is small in that case. To conclude, this
section, we highlight the fact that, if our results are dimension free in theory, the dimension might be
hidden in the distances between modes and the Lipschitz constant of g when working with real datasets.
Indeed, the order of magnitude of the Euclidean distance between two samples xi is likely to increase
with the dimension d. As an outcome, the orders of magnitude of the distance between modes and so the
Lipschitz constant that g must reach for correct generation probably increases with d also.

7.4 Experiments

In what follows, we illustrate the pratical implications of our results by training GANs, VAEs and SGMs
on simple bi-modal distributions. More precisely, we show on one hand that generating multimodal
distributions with GANs and VAEs is difficult since for those models, good generation necessarily involves
generative networks with large Lipschitz constants. On the other hand, we show that SGMs seem to
be able to generate multimodal distributions while keeping the Lipschitz constant of the score network
relatively small and thus do not suffer of the same limitation. First, we focus on the univariate case where
we can easily assess the Lipschitz constants of the networks. Then we illustrate our results in higher
dimensions by training the three models on datasets derived from MNIST (LeCun et al., 1998). In all our
experiments, we use the same architecture for the VAE decoder and the GAN generator in order to offer
rigorous comparisons of the different models. For score-based modeling, we use architectures with similar
numbers of learnable parameters. All details on the experiments and architecture of the networks can be
found in Appendix B.3.
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7.4.1 Univariate case

First, we train a VAE and a GAN with one-dimensional latent spaces on 50000 independent samples
drawn from a balanced mixture of two univariate Gaussians ν = 1

2 [N(−m, 1) + N(m, 1)] for different
values of m > 0. We also train a SGM on the same samples.

Histograms of generated distributions. Figure 7.4 shows histograms of generated distributions for
m = 10 with the three different models. VAE models seem to generate Gaussians modes but interpolate
significantly between them, while GANs do not interpolate but fail to retrieve the structure of the target
distribution and forget parts of their support, which is known as mode collapse and is a common pitfall of
such models (Arjovsky and Bottou, 2017; Metz et al., 2017). On the same task, SGMs do not suffer from
such shortcomings. In the following section, we will link the interpolation/mode-collapsing properties of
these models with their Lipschitz constants.

15 10 5 0 5 10 15 15 10 5 0 5 10 15 15 10 5 0 5 10 15

Figure 7.4: Histograms of distributions generated with VAE (left, in orange), GAN (middle, in green),
and with SGM (right, in purple) for m = 10. The data distribution densities are plotted in blue.

Lipschitz constants and mass between modes. In Figure 7.5 (right), we observe that the GAN
generator reaches much larger Lipschitz constants than the VAE decoder. This explains the difference of
behaviors between GAN and VAE observed in Figure 7.4, as the mapping learned by the VAE is not stiff
enough to concentrate the push forward measure on the two modes. One possible explanation for the
interpolating behavior of the VAE is that the Euclidean norm of the Jacobian of the VAE decoder is
implicitly regularized during training, as it has been demonstrated in Kumar and Poole (2020). Both
GAN and VAE saturate the constraint on g#µd′([−m/2,m/2]) provided by Theorem 7.3.1, meaning
that the generative networks minimize the amount of mass between modes as much as their Lipschitz
constants allow it. Finally, we can observe that the score network is able to keep a relatively small
Lipschitz constant compared to the GAN, while managing to interpolate less than the latter. A probable
explanation for this follows from the fact that the score network is used multiple time during inference.
Hence, the Lipschitz constant of the push-forward mapping (the whole generation dynamic) is likely much
larger than the Lipschitz constant of the neural network itself, and so the model is able to push-forward a
Gaussian distribution into a multimodal distribution keeping a relatively small Lipschitz constant of the
score network. Finally, in Figure 7.5 (left), we observe that when m increases, the Lipschitz constant
of the VAE decoder and the GAN generator becomes rapidly much smaller than the value of the lower
bound provided by Corollary 7.3.3. This means that for m large enough it is not possible to close the gap
between the data distribution and the push-forward distribution. We highlight that this observation does
not apply to SGMs since in this setting the network is applied multiple times.

Stability of GAN and mode collapse. Odena et al. (2018) suggested that the magnitude of the
norm of the generator jacobian may be causally related to instability and mode collapse. This is why
many state-of-the-art GANs apply spectral normalization (Miyato et al., 2018) on their generators.
In Figure 7.6 (left), we show that this technique cannot be used when training GANs on multimodal
distributions: since spectral normalization constraints the Lipschitz constant of the generator to be
smaller than 1, the GAN is trained towards concentrating in one of the modes of the distribution over
interpolating massively between them. This has been referred to as mode dropping by Khayatkhoei et al.
(2018). To complete this analysis, we also train the GAN adding an additional gradient penalty term
10/L2 maxz∼N(0,Idd′ )

(∥∇zgθ(z)∥22 − L)2, in the generator loss function, similarly to WP-GAN (Gulrajani
et al., 2017), where L is an hyperparameter corresponding to the targeted Lipschitz constant. As expected,
we can observe in Figure 7.6 (right), that when Lip(g) increases, the GAN begin to generate both modes
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Figure 7.5: Left: evolution of the Lipschitz constants of the three different generative models trained on
50000 samples of 1

2 [N(−m, 1) + N(m, 1)] in function of m. Right: evolution of the proportion of samples
generated by the three models on the interval [−m/2,m/2]. We also show on this graph the lower bounds
predicted by Theorem 7.3.1 for the VAE and the GAN, as well as the true probability ν([−m/2,m/2]).
Experiments are averaged over 10 runs and the colored bands correspond to +/- the standard deviation.

but becomes also more and more prone to mode collapse. This illustrates the fundamental trade-off
between expressivity and robustness in push-forward generative models.
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Figure 7.6: Histograms of distributions generated with GANs with spectral normalization applied on
the generator (left), and with gradient penalty (right) for Lip(g) ≈ L = 5, Lip(g) ≈ L = 15 and
Lip(g) ≈ L = 25. The data distribution densities are plotted in blue.

Influences of generator depth and time of training. In Figure 7.7, we study the effect of increasing
the number of layers of the generative network as well as increasing the training time on the value of
the Lipschitz constant of the VAE decoder and the GAN generator. In the VAE setting, the Lipschitz
constant increases linearly with the depth of the decoder. This is not the case in the GAN setting,
where increasing the size of the model seems to dramatically affect its stability. For both models, the
Lipschitz constants of the generative network grow with the number of epochs. Yet this growth seems
to be logarithmic for the VAE and the GAN seems to becomes more unstable as the number of epochs
increases.
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Figure 7.7: Evolution of the Lipschitz constant of the generative network with respect to its number of
layers (left) and of the Lipschitz constant in function of the numbers of epochs (right). The experiments
are averaged over 10 runs and the colored bands correspond to +/- the standard deviation.
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Figure 7.8: Evolution of the Lipschitz constant of the VAE decoder (left) and the GAN generator (right)
trained on 50000 samples of (1/2)[N(−m, 1) + N(m, 1)] for 3 different architectures of the generative
network: simple feed-forward backbone, backbone with skip-connections of type "resnet", and backbone
with skip-connections of type "densenet". Experiments are averaged over 5 runs and the colored bands
correspond to +/- the standard deviation.

Influence of generator architecture. Finally, we study in Figure 7.8 the impact of the architecture
of the generative network (i.e. the VAE decoder and the GAN generator) on its Lipschitz constant as
well as on the training stability of the model by comparing three different architectures: first, we use
a simple feed-forward network as precedently, then we add additive skip-connections of type "resnet"
(He et al., 2016) to the previous backbone, and last we add concatenation skip-connections of type
"densenet" (Huang et al., 2017) instead of additive skip-connections. For both models, it seems that more
expressive decoder architectures do not help to reach larger values of Lipschitz constant. However, one can
observe that in the GAN setting, even if the model remains certainly too unstable for correct distribution
generation, adding additive skip-connections seems to stabilize the training a little since the colored bands
are narrower than for the two other models. This suggests that some generator architectures may be
better than others at learning mappings with large Lipschitz constants while staying stable.

7.4.2 Experiments on MNIST

We train a VAE, a GAN and a SGM on two datasets derived from MNIST (LeCun et al., 1998): first,
two images of two different digits (3 and 7) are chosen and 10000 noisy versions of theses images are
drawn with a noise amount of σ = 0.15, forming a dataset of n = 20002 independent samples drawn
from a balanced mixture of two Gaussian distributions in dimension 784 = 28× 28. Second, we train the
models on the subset of all 3 and 7 of MNIST. We emphasize that our goal is not reach state-of-the-art
performance on this problem but rather to illustrate our theoretical results in a moderate dimensional
setting.

Mixture of Gaussians. For this experiment, we set the dimension of the latent space in the GAN and
the VAE to 784 = 28× 28 since it is the intrinsic dimension of the support of the data distribution. In
order to visualize the interpolation between modes, we project the data on the line passing through the
mean of each Gaussian, i.e. the two original clean images, and we plot histograms of the one-dimensional
projections. In order to understand which bins of data in the histograms correspond to which digit,
we train a classifier and we assign a color in function of which digit the data have been classified as.
Results can be found in Figure 7.9 top. Moreover, GAN and VAE both fail to generate noisy versions of
the images. As in the univariate case, the SGM is able to not interpolate between modes and seem to
retrieve the Gaussian structure of the modes. This suggests that while direct push-forward models fail at
representing multimodal distributions, considering stacked models with noise input at each step (as in
SGM) might help to close the gap between the generated and the data distributions. However SGM does
not manage to retrieve the right modes proportions. This is a well-known shortcoming of score-based
models which has been studied in (Wenliang and Kanagawa, 2020).

Subset of MNIST. Finally, we train the three different models on the subset of MNIST composed of
all 3 and 7 (no Gaussian noise was added). We choose a latent dimension of 20 for the VAE and the
GAN. Since the Euclidean distance is not a meaningful metric to compare the different digits of MNIST,
we use the deep Wasserstein embedding proposed by Courty et al. (2018): an autoencoder is learned in a
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Figure 7.9: mixture of Gaussians (top): histograms of projections on the line passing through the mean
of each Gaussian. Subset of MNIST (bottom): histograms of projections on the line passing through the
barycenters of all the 3 and 7 in the deep Wasserstein embedding space. Bins of data are colored in blue
if they are classified as 3, in green if classified as 7, and in red if classified as another digit.

supervised fashion such that the Euclidean distance in the latent space approximates the Wasserstein
distance between pairs of images of MNIST. In the learned Wasserstein space, we project data on the
line passing through the Euclidean barycenters of all 3 and 7 and plot histograms of projections, using
the same classifier as before. Results can be found in Figure 7.9 (bottom). Note that the distribution
does not exhibit strong multimodality features contrary to the mixture of Gaussians settings, see Figure
7.9. As before, the VAE interpolate between modes, the GAN manages to not interpolate but generate a
narrower histogram, and the score-based model does not interpolate and seems to recover the structure of
the distribution, but doesn’t retrieve the right modes proportions. However, we emphasize that all these
models seem to perform better than on the previous dataset. A possible explanation of this is that the
modes are less separated than in the Gaussian mixtures and therefore the model is easier to train.

7.5 Discussion

In this chapter, given a Lipschitz mapping g and a measure ν, we derived lower bounds on the total
variation distance and the Kullback-Leibler divergence between the push-forward measure g#µd′ and ν
depending on the Lipschitz constant of the mapping g. These bounds indicate how the mass between
the modes of the push-forward measure depends on the Lipschitz constant of the push-forward mapping.
They highlight the trade-off between the ability of VAEs and GANs to fit multimodal distributions and
the stability of their training.

A common assumption in the imaging literature, validated empirically by Pope et al. (2020), is
that distributions of natural images live on low dimensional manifolds. Understanding whether these
distributions are composed of separated modes or not remains, to the best of our knowledge, an open
problem. To that extent, the fact that unsupervised push-forward generative models perform well on
datasets such as CelebA (Liu et al., 2015) could possibly be, in regard of our work, an indicator that the
data distributions of those datasets are unimodal, or at least not composed of well separated modes.

Several techniques have been proposed in the literature to fit data distributions on disconnected
manifolds. Most of them consist in overparametrizing the model, either by using stacked generative
networks (Khayatkhoei et al., 2018; Mehr et al., 2019) or by learning a more complex latent distribution
than the standard Gaussian (Gurumurthy et al., 2017; Rezende and Mohamed, 2015; Kingma et al., 2016;
Luise et al., 2020). Other methods consist in rejecting a posteriori samples associated to large values of
the Jacobian generator (Tanielian et al., 2020; Issenhuth et al., 2020). In this work, we empirically showed
that score-based models seemed to be able to fit separated manifolds without model overparametrization
or additional posterior sample rejection scheme. This suggests that the structure of the generation
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dynamic in these models is particularly adapted to (indirectly) learn mappings with large Lipschitz
constants. Their good performance on multimodal distributions might follow from the fact that these
models do not optimize directly the push-forward mapping itself and/or that noise is injected at each
step during the generation process. Hence, a future perspective of work would be to study what are the
structural aspects of diffusion models that play a significant role in their expressivity.

A possible limitation of this work is that the bounds derived on the Kullback-Leibler divergence and
total variation distance are not tight (see Appendix B.4), mainly because they take no account of the
fact that when interpolating, g#µd′ has automatically less mass than ν on the modes since a significant
amount of its total mass is between them. In future work, we plan to tighten the gap between our bounds
and the true distance.
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Conclusion and perspectives

Overview of the contributions

In this thesis, we have provided some answers to three problems related to the transport of measures
across different Euclidean spaces, the first two being in the context of optimal transport between measures
on incomparable spaces and the last one being in the context of generative modeling. More precisely, in
Part I, we have first defined an alternative formulation to the Gromov-Wasserstein distance that we have
called embedded Wasserstein distance. Then we have studied the behavior of the Gromov-Wasserstein
and the embedded distances between two Gaussian distributions µ = N(m0,Σ0) and ν = N(m1,Σ1). We
have focused on the choices of costs of the squared Euclidean distances and the inner-products. We
have derived closed-form solutions for the GW2 problem with inner-products as cost functions and we
have shown these solutions were also solutions of the GW2 problem with squared Euclidean distances
restricted to Gaussian couplings. We also have shown these solutions were also solutions of the embedded
Wasserstein distance. Then, we have introduced two new OT distances on the set of Gaussian mixture
models, MGW2 and MEW2, which can both be thought as generalizations of the distance proposed
by Delon and Desolneux (2020) to Gaussian mixture models living in different dimensions. We have
shown that these two OT distances can be used to solve relatively efficiently Gromov-Wasserstein related
problems on Euclidean spaces, especially in moderate-to-large scale settings involving several tens of
thousands of points.

In Part II, we first have shown that most of the generative models that are commonly used in imaging
science could either be classified as push-forward generative models or as indirect push-forward generative
models. Then, we have studied the expressivity of push-forward generative models relatively to the
Lipschitz constant of the generative network when the target distribution is multimodal. More precisely,
given a Lipschitz mapping g and a measure ν, we have derived lower bounds on the total variation distance
and the Kullback-Leibler divergence between the push-forward measure g#µd′ and ν depending on the
Lipschitz constant of the mapping g. These bounds indicate how the mass between the modes of the
push-forward measure depends on the Lipschitz constant of the push-forward mapping. They highlight
the trade-off between the ability of push-forward generative models to fit multimodal distributions and
the stability of their training. We have also empirically shown that indirect push-forward generative
models such as diffusion models don’t seem to suffer of such limitations.

Future perspectives of work

To conclude, we discuss in this section the possible extensions of the works presented in this thesis.

Choice of costs functions for Gromov-Wasserstein. A first perspective of work with regard of the
results of Chapter 4 and in conjunction with the works of Vayer (2020), Beinert et al. (2022) and Dumont
et al. (2022) on Gromov-Wasserstein between one-dimensional distributions, could be to study more in
depth the differences between the choice of squared Euclidean distances and the choice of inner-products
as cost functions. Indeed, the choice of squared Euclidean distances, despite being natural, seems to
induce strange behaviors, both on one-dimensional (Beinert et al., 2022) and Gaussian distributions. In
contrast, the choice of inner-products costs induces nice properties, both on one-dimensional (Vayer, 2020)
and Gaussian distributions, and more generally on distributions that admit densities since (Dumont et al.,
2022) have shown a result analogous to the Brenier theorem. Hence, a future perspective of work could
be to compare the performances of the two distances GW2(⟨.⟩d, ⟨.⟩d′ , µ, ν) and GW2(∥.∥2Rd , ∥.∥2Rd′ , µ, ν)
for solving Gromov-Wasserstein-related tasks such as shape matching.
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Optimization landscape of the Gromov-Wasserstein objective. One potential limitation of
the MGW2 distance proposed in Chapter 5 is that the MGW2 solver we have proposed might converge
sometimes to a suboptimal local minimum. This is not specific to our method and comes from the gradient
descent structure of the classic GW solvers. Still, when solving the GW problem between GMMs rather
than solving it directly between the points, it is likely that we increase the probability of converging
toward a sub-optimal local minimum because we inevitably introduce symmetries by simplifying the
problem and so we probably increase in the mean time the number of local minima in the GW objective.
A future perspective of work could be thus to analyze the optimization landscape of the GW objective.
In particular: what kind of couplings do the local minima correspond to? It is likely that these local
minima are intrinsically linked with the implicit isometric transformation that is applied to one of the
two measures during the computation of the distance.

Globally solving the MGW2 problem. Recently, Ryner et al. (2023) have proposed an algorithm for
solving the GW problem with quadratic cost that is guaranteed to converge toward a global minimum. A
future perspective of work could be to study if a similar idea could be applied for solving the MGW2

problem. The method of Ryner et al. (2023) builds on the low-rank structure of the cost matrices in the
quadratic case. In the MGW2 setting, it is not clear that we even need such a low-rank property for the
Wasserstein distance matrices since the problem is of very small scale if the number of components is
not chosen too large. More generally, since the discrete GW problem involved in the MGW2 method
is of very small scale, it is possible that we can use global optimization methods which are usually not
accessible in medium-to-large scale settings because too computationally expensive.

Expressivity of indirect push-forward generative models. A future perspective of work with
regard to the work of Chapter 7 would be to study theoretically the expressivity of indirect push-forward
models such as diffusion models. For instance, can we show that the Lipschitz constant of the whole
generation dynamics can be larger than the Lipschitz constant of the neural network that approximates
the score? Such a question is closely related to the question of convergence of diffusion models (De Bortoli
et al., 2021; De Bortoli, 2022; Lee et al., 2022). One challenge in analysing the convergence of diffusion
models lies in the fact that the approximation of the scores ∇x log pσ of the noisy versions of the target
distribution ν by a neural network sθ introduces errors in the dynamics. Thus, analysing the convergence
of diffusion models involves understanding how these errors affect the distribution νθ towards which the
dynamics converges. In particular, can we generate a distribution ν using a neural network sθ such that
when σ is small, x 7→ sθ(x, σ) is much more regular than ∇x log pσ?

Generative modeling and optimal transport. A last future perspective of work with regard to the
works presented in this thesis would be to investigate more in details the connections between optimal
transport and generative modeling. From a pratical point of view, there exists several connections between
the two fields. First, an OT distance can of course be used more or less directly as a loss function
for the training of a generative model, as it is the case in Wasserstein-GANs (Arjovsky et al., 2017)
or Wasserstein Autoencoders (Tolstikhin et al., 2018). Second, generative models such as GANs can
be used to approximate Monge maps (González-Sanz et al., 2022; Fan et al., 2022) between two fixed
- not necessarily Gaussian - distributions. Furthermore, Rout et al. (2021) have recently proposed a
push-forward generative model where the push-forward map gθ approximates a Monge map between a
standard Gaussian distribution and the target distribution ν. The work of Rout et al. (2021) supposes
that the dimension of the latent space d′ is equal to the dimension of the ambient space d, but we could
imagine generative models that approximate optimal transportation maps associated with OT distances
that remain meaningful between measures living in different dimensions, as long as d′ stays larger than
the intrisic dimension of the support of ν. A question that arises is: Is it interesting for a generative model
to approximate an optimal transportation map? To that extent, Corollary 7.3.4 brings some answers in
1D since it implies that the Monge map between the standard Gaussian distribution µ1 = N(0, 1) and
the target distribution ν is the mapping which pushes µ1 into ν with the smallest Lipschitz constant.
Furthermore, Corollary 7.3.4 might also suggest that it is possible that any push-forward generative
model in 1D actually approximates this Monge map as a consequence of the stochastic gradient descent
algorithm being biased towards regular mappings regardless of the initialization (Mulayoff et al., 2021).
However, if we have shown in Corollary 7.3.5 a similar result to Corollary 7.3.4 when ν is a Gaussian
distribution on Rd, it is not clear that Corollary 7.3.4 generalizes to arbitrary target distribution ν on
Rd. This problem shares close connections with studying the regularity of Brenier maps, which is an
active research field on its own (Caffarelli, 1996; Figalli, 2007; Philippis, 2013; Paty et al., 2020). The
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Conclusion and perspectives

key ingredient in this field is the fact that the Brenier maps are gradients of convex potentials which are
solutions of the Monge-Ampère equation defined in (2.7). If proving a result similar to Corollary 7.3.4 for
abitrary target distributions ν on Rd seems probably too difficult in view of the advances in this field,
one could try to study if a similar result to Corollary 7.3.4 holds when ν is a specific distribution on Rd,
for instance a Gaussian mixture.
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A.1 Proofs of the claims of Chapter 3

A.1.1 Proof of Lemma 3.3.2

Proof of Lemma 3.3.2. First observe that for P ∈ Vd′(Rd) and b ∈ Rd, y 7→ Py + b is an isometry since
we have, for any y and y′ in Rd′

∥Py + b− Py′ − b∥2 = ∥P (y − y′)∥2 = (y − y′)TPTP (y − y′) = (y − y′)T (y − y′) = ∥y − y′∥2 .

The converse is a consequence of the Mazur–Ulam theorem (Mazur and Ulam, 1932) that states - in the
version of Baker (1971) - that an isometry from a real normed space to a strictly convex normed space, i.e.
a normed space where the unit ball is a stricly convex set, is necessarily affine. Since it is easy to show
that the unit ball {x ∈ Rd : ∥x∥ ≤ 1} is a strictly convex set, we get that for all x ∈ Rd′ , ϕ is of the
form y 7→ Py + b with P being a matrix of size d× d′, and b ∈ Rd. Moreover we have for all y, y′ ∈ Rd′

∥ϕ(y)− ϕ(y′)∥2 = ∥Py − Py′∥2 = ∥P (y − y′)∥2 = (y − y′)TPTP (y − y′) .

Since ϕ is an isometry, it follows that ∥y − y′∥2 = (y − y′)TPTP (y − y′) and so PTP = Idd′ , which
concludes the proof.

A.1.2 Proof of Lemma 3.3.6

Proof of Lemma 3.3.6. Denoting m0 = EX∼µ[X], m1 = EY∼ν [Y ], x̃ = x−m0, and ỹ = y −m1, we have
for any π ∈ Π(µ, ν),∫

Rd×Rd′
∥x− Py − b∥2dπ(x, y) =

∫
Rd×Rd′

∥x̃− P ỹ − b+m0 − Pm1∥2dπ(x, y)

= ∥m0 − b− Pm1∥2 +
∫
Rd×Rd′

∥x̃− P ỹ∥2dπ(x, y) ,
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since
∫
⟨x̃− P ỹ,m0 − b− Pm1⟩dπ(x, y) = 0. Thus it follows,

inf
π∈Π(µ,ν)

inf
P∈P, b∈Rd

∫
Rd×Rd′

∥x− Py − b∥2dπ(x, y)

= inf
P∈P

(
inf
b∈Rd
∥m0 − Pm1 − b∥2 + inf

π∈Π(µ̄,ν̄)

∫
Rd×Rd′

∥x− Py∥2dπ(x, y)
)
.

Observe now that for any P ∈ P, ∥m0−Pm1− b∥2 = 0 if b = m0−Pm1, which concludes the proof.

A.1.3 Proof of Lemma 3.3.8

Proof of Lemma 3.3.8. Note that this lemma can be proven with a proof similar to the one of Alvarez-
Melis et al. (2019, Lemma 4.2), using the min-max theorem for singular values. Here we offer an alternative
proof based on Lagragian analysis. First observe that the supremum is achieved as a direct consequence
of the Weierstrass theorem because P is compact and the mapping P 7→ tr(PTK) is continuous. For a
given P ∈ P, let UPΣPV TP be the SVD of P . The problem can be rewritten as

max
P∈P

tr(VPΣ
T
PU

T
P UKΣKV

T
K ) .

Now, let us denote U = UTP UK and V = V TP VK . Observe that U is in O(Rd) and V is in O(Rd′). Using
the cyclical permutation of the trace operator, the problem becomes

max
P∈P

tr(ΣTPUΣKV
T ) .

Now, for a given fixed ΣP , we determine which U and V maximize tr(ΣTPUΣKV
T ). This problem reads

as
max

U∈O(Rd), V ∈O(Rd′ )
tr(ΣTPUΣKV

T ) .

The Lagrangian of this problem reads as

L(U, V,C0, C1) = −tr(ΣTPUΣKV
T ) + tr(C0(U

TU − Idd)) + tr(C1(V
TV − Idd′)) ,

where C0 ∈ Sd and C1 ∈ Sd′ are the Lagrange multipliers respectively associated with the constraints
U ∈ O(Rd) and V ∈ O(Rd′). The first order condition gives{

ΣPV ΣTK = 2UC0

ΣTPUΣK = 2V C1 ,

or equivalently {
UTΣPV ΣTK = 2C0

ΣTPUΣKV
T = 2V C1V

T .

Since C0 and C1 are symmetric matrices (because they are associated with symmetric constraints), we
get that both left-hand terms are symmetric. This gives the following conditions{

UTΣPV ΣTK = ΣKV
TΣTPU

ΣTPUΣKV
T = V ΣTKU

TΣP .

Now, observe that when multiplying the first condition at right by UTΣP and multiplying the second
condition at left by ΣKV

T , we get by combining the two conditions{
UΣKV

TΣTPΣP = ΣPΣ
T
PUΣKV

T

UTΣPV ΣTKΣK = ΣKΣTKU
TΣPV

T ,

or equivalently, {
UΣKV

TDP = D
[d]
P UΣKV

T

UTΣPV DK = D
[d]
K UTΣPV

T ,
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where DP = diag(σ(P )) and DK = diag(σ(K)). Multiplying the first condition at left by V ΣTKU
T and

the second condition at right by V ΣTPU , this yields to{
V DKV

TDP = V ΣUTD
[d]
P UΣKV

T

D
[d]
K UTD

[d]
P U = UTΣPV DKV ΣTPU .

It follows that V DKV
TDP and D

[d]
K UTD

[d]
P U are symmetric matrices and so V DKV

T commutes with
DP and UTD

[d]
P U commutes with D

[d]
K . Thus we can deduce that U and V are permutation matrices.

Since the singular values are ordered in non-increasing order, we deduce that the problem is maximized
when U = Idd and V = Idd′ . This implies that UP = UK and VP = VK , which concludes the proof.

Note that Lemma 3.3.8 is especially useful when the constraint of belonging to the set P can be
expressed as a constraint on the singular values. Observe that this is the case of Vd′(Rd) since for
all P ∈ Vd′(Rd), we have PTP = Idd′ and so an equivalent condition of belonging in Vd′(Rd) is that
σ(P ) = 1d′ .

A.1.4 Proof of Lemma 3.3.11

Proof of Lemma 3.3.11. First, using Lemma 3.3.2, we get that there exists P1 ∈ Vd(Rr) and b1 ∈ Rr such
that for all x ∈ Rd, ψ(x) = P1x+ b1. Since r ≥ d′, we have, denoting µ̄, ψ#µ and ν̄ the centered measures
respectively associated with µ, ψ#µ, and ν, and using successively Lemma 3.3.6 and Lemma 3.3.4,

EW 2
2 (ψ#µ, ν) = inf

π∈Π(ψ#µ,ν)
inf

P∈Vd′ (Rr), b∈Rr

∫
Rr×Rd′

∥z − Py − b∥2dπ(z, y)

= inf
π∈Π(ψ#µ,ν̄)

inf
P∈Vd′ (Rr)

∫
Rr×Rd′

∥z − Py∥2dπ(z, y)

= inf
π∈Π(µ̄,ν̄)

inf
P∈Vd′ (Rr)

∫
Rd×Rd′

∥P1x− Py∥2dπ(x, y)

=

∫
Rd

∥P1x∥2dµ̄(x) +
∫
Rd′
∥Py∥2dν̄(y)− 2 sup

π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rr)

tr(PTP1Kπ)

=

∫
Rd

∥x∥2dµ̄(x) +
∫
Rd′
∥y∥2dν̄(y)− 2 sup

π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rr)

tr(PTP1Kπ) ,

where Kπ =
∫
Rd×Rd′ xy

Tdπ(x, y). Applying Proposition 3.3.7, we get

sup
π∈Π(µ̄,ν̄)

sup
P∈Vd′ (Rr)

tr(PTP1Kπ) = sup
π∈Π(µ̄,ν̄)

∥P1Kπ∥∗ .

Now observe that P1Kπ has the same singular values as Kπ since KT
π P

T
1 P1Kπ = KT

πKπ. Thus ∥P1Kπ∥∗ =
∥Kπ∥∗ and so EW2(ψ#µ, ν) = EW2(µ, ν), which concludes the proof.

A.2 Proofs of the claims of Chapter 4

A.2.1 Proof of Lemma 4.2.2

Proof of Lemma 4.2.2. By simple computation, it follows for all x, x′ ∈ Rd

∥Td(x)− Td(x′)∥ = ∥Odx+ xd −Odx− xd∥ = ∥Od(x− x′)∥ = ∥x− x′∥ ,

since Od ∈ O(Rd). The same reasoning can be made with T ′
d, which concludes the proof.

A.2.2 Proof of Lemma 4.2.6

The proof of Lemma 4.2.6 is inspired from the proof of the closed form of W2 between Gaussian
distributions provided in Givens et al. (1984). Before turning to the actual proof of Lemma 4.2.6, we
prove the following technical result, that we will use multiple times thorough the chapter.
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Lemma A.2.1. Suppose that d ≥ d′. Let Σ be a positive semi-definite (PSD) matrix of size d+ d′ of the
form

Σ =

(
Σ0 K
KT Σ1

)
,

with Σ0 ∈ Sd++, Σ1 ∈ Sd′+ and K being a rectangular matrix of size d× d′. Let S = Σ1 −KTΣ−1
0 K be the

Schur complement of Σ. Then there exists r ≤ d′ and Br ∈ Vr(Rd) such that

K = Σ
1
2
0 BrΛrU

T
r ,

where Ur ∈ Vr(Rd
′
) and Λr is a diagonal positive matrix of size r such that

Σ1 − S = UrΛ
2
rU

T
r .

Proof. For a given Schur complement S = Σ1−KTΣ−1
0 K, we have KTΣ−1

0 K = Σ1−S. Since Σ0 ∈ Sd++,
we can deduce that KTΣ−1

0 K ∈ Sd′+ and so that Σ1 − S ∈ Sd′+ . We note r the rank of KTΣ−1
0 K. One can

observe that
r ≤ d′ ≤ d ,

where the left-hand side inequality follows from the fact that rk(AB) ≤ min{rk(A), rk(B)}. Then, Σ1−S
can be diagonalized

Σ1 − S = KTΣ−1
0 K = UΛ2UT = UrΛ

2
rU

T
r , (A.1)

with Λ2 = diag(λ21, ..., λ2r)[d
′], Λ2

r = diag(λ21, ..., λ2r), and Ur ∈ Vr(Rd
′
) such that U =

(
Ur Ud′−r

)
. From

(A.1), we can deduce that
(Σ

− 1
2

0 KUrΛ
−1
r )TΣ

− 1
2

0 KUrΛ
−1
r = Idr ,

where Λr is the unique PSD square-root of Λ2
r. Let us set Br = Σ

− 1
2

0 KUrΛ
−1
r such that Br ∈ Vr(Rd). It

follows that
KUr = Σ

1
2
0 BrΛr .

Moreover, since UTd−rK
TΣ−1

0 KUd−r = 0 and Σ0 ∈ S++
d (R), it follows that KUd′−r = 0 and so

K = KUUT = KUrU
T
r = Σ

1
2
0 BrΛrU

T
r ,

which concludes the proof.

Now we can turn to the proof of Lemma 4.2.6.

Proof of Lemma 4.2.6. We want to maximize tr(KTK) with the constraint that Σ is semi-definite positive.
Problem (4.3) can be written in the following way

min
S∈Sd′+

−tr(KTK) ,

where S is the Schur complement of Σ, i.e. S = Σ1 −KTΣ−1
0 K. Now using Lemma A.2.1, we can write

tr(KTK) as a function of Br :

tr(KTK) = tr(UrΛrBTr Σ0BrΛrU
T
r )

= tr(UTr UrΛrB
T
r Σ0BrΛr)

= tr(Λ2
rB

T
r Σ0Br) .

Thus, for a given S, the set of K such that KTΣ−1
0 K = Σ1 − S is parametrized by Br. We want to find

Br which maximizes tr(KTK) for a given S. This problem can be rewritten in the following way.

min
Br∈Vr(Rd

−tr(Λ2
rB

T
r Σ0Br) . (A.2)

The rest of the proof is a readaptation of the proof of the Anstreicher and Wolkowicz (2000, Proposition
3.1) when Br is not a squared matrix. The Lagrangian of problem (A.2) can be written

L(Br, C) = −tr(Λ2
rB

T
r Σ0Br) + tr(C(BTr Br − Idr)) ,
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where C ∈ Sr is the Lagrange multiplier associated to the constraint BTr Br = Idr (C is symmetric because
BTr Br − Idr is symmetric). We can then derive the first-order condition

−2Σ0BrΛ
2
r + 2BrC = 0 ,

or equivalently
Σ0BrΛ

2
rB

T
r = BrCB

T
r .

Since C is symmetric, BrCBTr is also symmetric and it follows that Σ0BrΛ
2
rB

T
r is symmetric. We can

deduce that Σ0 and BrΛ2
rB

T
r commute. Moreover, since Σ0 and BrΛ2

rB
T
r are both symmetric, they can

be diagonalized in the same basis. Since Br ∈ Vr(Rd), it can be thought as the r first vectors of an
orthogonal basis of Rd. It means there exists a matrix Bd−r such that

BrΛ
2
rB

T
r = BΛ2

dB
T ,

where Λ2
d = diag(λ21, ..., λ2r)[d] and B =

(
Br Bd−r

)
. Thus the eigenvalues of BrΛ2

rB
T
r are exactly

the eigenvalues of Λ2
d. Since Σ0 and BrΛ

2
rB

T
r can be diagonalized in the same basis, we get that

tr(Λ2
rB

T
r Σ0Br) = tr(Σ0BrΛ

2
rB

T
r ) = tr(D0Λ̃d) where Λ̃d is a diagonal matrix with the same eigenvalues as

Λd but in a different order. Now, it can be easily seen that the optimal value of (A.2) is reached when B
is a permutation matrix which sorts the eigenvalues of Λd in non-increasing order.

Thus, for a given S, the maximum value of tr(KTK) is tr(D0Λ̃d(S)). We can now establish for which
S, tr(D0Λ̃m(S)) is optimal. For a given S, we denote λ1, ..., λd′ the eigenvalues of Σ1 − S and β1, ..., βd′
the eigenvalues of Σ1, both ordered in non-increasing order. Since S ∈ Sd′+ , the following inequality holds
for all y ∈ Rd′ ,

yT (Σ1 − S)y ≤ yTΣ1y ,

ant this inequality still holds when restricted to any subspace of Rd′ . Using the classic algebra min-max
Courant-Fischer theorem (Courant, 1920; Fischer, 1905), we can conclude that for all 1 ≤ i ≤ d′,

λi ≤ βi .

Thus, the optimal value of tr(D0Λ̃d(S)) is reached when S = 0 and

Λ̃d(0) =

(
D1 0
0 0

)
,

and so tr(D0Λ̃d(0)) = tr(D(d′)
0 D1). Now let A = (Ĩdd′(D

(d′)
0 )

1
2D

1
2
1 )

[d,d′] with Ĩdd′ being any matrix of the
form diag((±1)i≤d′). It can be easily verified that ATD−1

0 A = D1 and if K∗ = P0AP
T
1 , then

K∗TΣ−1
0 K∗ = P1A

TPT0 Σ−1
0 P0AP

T
1 = P1A

TD−1
0 APT1 = P1D1P

T
1 = Σ1 .

Furthermore K∗TK∗ has the same eigenvalues as ATA and tr(ATA) = tr(D(d′)
0 D1), which concludes the

proof.

A.2.3 Proof of Lemma 4.2.7
In order to prove Lemma 4.2.7, we will use the following result of Anstreicher and Wolkowicz (2000).
Lemma A.2.2 (Anstreicher and Wolkowicz, 2000). Let Σ0 and Σ1 be two symmetric matrices of size
d. We note Σ0 = P0Λ0P

T
0 and Σ1 = P1Λ1P

T
1 there respective diagonalization such that the eigenvalues

of Λ0 are sorted in non-increasing order and the eigenvalues of Λ1 are sorted in increasing order. Then

min
PTP=Id

tr(Σ0PΣ1P
T ) = tr(Λ0Λ1) ,

and it is achieved at P ∗ = P0P
T
1 .

Now we are ready to turn to the proof of Lemma 4.2.7.

Proof of Lemma 4.2.7. As before, we want to maximize tr(KA) with the constraint that Σ is semi-definite
positive. Problem (4.3) can be written in the following way

min
S∈Sd′+

−tr(KA) ,
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where S is the Schur complement of Σ, i.e. S = Σ1 −KTΣ−1
0 K. Now using Lemma A.2.1, we can write

tr(KA) as a function of Br:

tr(KA) = tr(ATKT ) = tr(ATUrΛrBTr Σ
1
2
0 ) = tr(Σ

1
2
0 A

TUrΛrB
T
r ) .

For a given S, the problem of finding the optimal value is parametrized by Br and is:

min
Br∈Vr(Rd)

−tr(Σ
1
2
0 A

TUrΛrB
T
r ) .

The Lagrangian of this problem reads as

L(Br, C) = −tr(Σ
1
2
0 A

TUrΛrB
T
r ) + tr(C(BTr Br − Idr)) ,

where C ∈ Sr is the Lagrangian multiplier associated to the constraint BTr Br = Idr. We then can derive
the first-order condition that reads as

−Σ
1
2
0 A

TUrΛr + 2BrC = 0 ,

or equivalently,
Σ

1
2
0 A

TUrΛrB
T
r = 2BrCB

T
r .

Since C is symmetric, 2BrCBTr is also symmetric and so Σ
1
2
0 A

TUrΛrB
T
r ∈ is symmetric. Furthermore,

the rank of Σ
1
2
0 A

TUrΛrB
T
r is equal to 1 because rk(A) = 1 a nd rk(Σ

1
2
0 A

TUrΛrB
T
r ) = 0 would imply that

tr(KA) = 0, which cannot be the maximum value of our problem. So there exists a vector ud ∈ Rd such
that

Σ
1
2
0 A

TUrΛrB
T
r = udu

T
d .

Then we can reinject the value Br in the expression:

Σ
1
2
0 A

TUrΛrB
T
r = Σ

1
2
0 A

TUrΛrΛ
−1
r UTr K

TΣ
− 1

2
0

= Σ
1
2
0 A

TUrU
T
r K

TΣ
− 1

2
0

= Σ
1
2
0 A

TKTΣ
− 1

2
0 ,

where we used the fact that K = KUUT = KUrU
T
r because KUd′−r = 0. Thus, we have on one hand,

tr(KA) = tr(Σ
1
2
0 A

TKTΣ
− 1

2
0 ) = tr(uduTd ) = uTd ud .

On the other hand, we have

Σ
1
2
0 A

TKTΣ
− 1

2
0 (Σ

1
2
0 A

TKTΣ
− 1

2
0 )T = Σ

1
2
0 A

TKTΣ−1
0 KAD

1
2
0

= Σ
1
2
0 A

T (Σ1 − S)AΣ
1
2
0

= udu
T
d udu

T
d

= uTd ududu
T
d ,

and thus
tr(Σ

1
2
0 A

T (Σ1 − S)AΣ
1
2
0 ) = uTd udtr(udu

T
d ) = (uTd ud)

2 = (tr(KA))2.

Then we determine for which S, tr(Σ
1
2
0 A

T (Σ1 − S)AΣ
1
2
0 ) is maximum. We have

tr(Σ
1
2
0 A

T (Σ1 − S)AΣ
1
2
0 ) = tr(AΣ0A

T (Σ1 − S))
= tr(AΣ0A

TΣ1)− tr(AΣ0A
TS) .

Let B = AΣ0A
T . Observe that B ∈ Sd′+ and is of rank 1. Moreover, since S ∈ Sd′+ , it can be diagonalized,

such that S = PDPT . As before, we will first determine the value of tr(BS) for a given D, then we will
determine which D minimizes tr(BS). Thus, for a given D, we want to find the optimal value of the
following problem.

min
PTP=Idd′

tr(BPDPT ) .
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Since B is symmetric with rank 1, it has only one non null eigenvalue which is equal to its trace. Using
Lemma A.2.2, we can deduce therefore that

min
PTP=Idd′

tr(BPDPT ) = tr(B)λd′ ,

where λd′ is the smallest eigenvalue of D. Since S ∈ Sd′+ , the smallest possible value for λd′ is 0.
Now, if Σ0 = diag(α), Σ1 = diag(β), it can be easily seen that tr(1d′,dΣ01d,d′Σ1) = tr(Σ0)tr(Σ1).

Thus, if K = αβT√
tr(Σ0)tr(Σ1)

=
Σ01d,d′Σ1√
tr(Σ0)tr(Σ1)

, we can observe that

tr(K1d′,d) = tr(1d′,dK) =
tr(1d′,dΣ01d,d′Σ1)√

tr(Σ0)tr(Σ1)
=
√

tr(Σ0)tr(Σ1) ,

Now we must show that S = Σ1 −KTΣ−1
0 K is in Sd′+ . To do so, we will show that for all 1 ≤ i ≤ d′, the

determinant of the principal minor S(i) is positive. We can derive that

S = Σ1 −
βαTΣ−1

0 αβT

tr(Σ0)tr(Σ1)
= Σ1 −

ββT tr(Σ0)

tr(Σ0)tr(Σ1)
= Σ1 −

ββT

tr(Σ1)
.

Using the matrix determinant lemma, it follows for all 1 ≤ i ≤ d′,

det(S(i)) =

i∏
k

βk

(
1− tr(Σ(i)

1 )

tr(Σ1)

)
.

Thus, for all 1 ≤ i < d′, det(S(i)) > 0, and det(S) = 0. We conclude that S is in Sd′+ and that its smallest
eigenvalue of is 0.

A.2.4 Proof of Lemma 4.2.8

Proof of Lemma 4.2.8. for any 1 ≤ i ≤ d and any 1 ≤ j ≤ d′, the Cauchy-Schwarz inequality tells us that

|Cov(Xi, Yj)| ≤
√
E [X2

i ]E
[
Y 2
j

]
,

with equality if and only if Yj = λXi with λ ∈ R. If Cov(X,Y ) is of the form (Ĩdd′(D
(d′)
0 )

1
2D

1
2
1 )

[d,d′], then
for all 1 ≤ i ≤ d′, we have

|Cov(Xi, Yi)| =
√
αiβi ,

where αi = E
[
X2
i

]
and βi = E

[
Y 2
i

]
. Thus, for all i ≤ d′, Yi = λiXi with λi ∈ R. Since Xi ∼ N(0, αi)

and Yi ∼ N(0, βi), it follows that λi = ±
√

βi

αi
and that

Y =
(
Ĩdd′D

1
2
1 (D

(d′)
0 )−

1
2

)[d′,d]
X.

Since Y depends linearly onX, it follows that (X,Y ) is a Gaussian vector. Thus, using Isserlis Lemma 4.2.5,
we can compute that

Cov(X2
i , Y

2
j ) =

{
2αiβi if i = j
0 otherwise.

Thus it follows that
∑
i,j

Cov(X2
i , Y

2
j ) = 2tr(D(d′)

0 D1).

A.2.5 Proof of Lemma 4.2.12

Proof of Lemma 4.2.12. For d ≥ 1, let Γd denote the set of vectors v = (v1, . . . , vd) of Rd such that
v1 ≥ v2 ≥ . . . ≥ vd ≥ 0 and

∑d
i=1 v

2
i = 1. We want to prove that

∀u, v ∈ Γd,

d∑
i=1

uivi ≥
1√
d
.
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We proceed by induction on d. For d = 1, it’s obviously true since Γ1 = {1}. Assume now d > 1,
and the result true for d − 1. Let u, v ∈ Γd, then using the result for (u2, . . . , ud)/(

∑d
i=2 u

2
i )

1/2 and
(v2, . . . , vd)/(

∑d
i=2 v

2
i )

1/2 that both belong to Γd−1, we have

d∑
i=1

uivi = u1v1 +

d∑
i=2

uivi ≥ u1v1 +
1√
d− 1

(
d∑
i=2

u2i

)1/2( d∑
i=2

v2i

)1/2

= u1v1 +
1√
d− 1

√
1− u21

√
1− v21 .

Now since u, v ∈ Γd, we have u1, v1 ∈ [ 1√
d
, 1]. Let us denote F (u1, v1) = u1v1 +

1√
d−1

√
1− u21

√
1− v21 .

We have for all v1 ∈ [ 1√
d
, 1] :

F (1, v1) = v1 ≥
1√
d

and F

(
1√
d
, v1

)
=

√
1− v21 + v1√

d
≥ 1− v21 + v1√

d
≥ 1√

d
.

And computing the partial derivative of F with respect to u1, we get

∂F

∂u1
(u1, v1) = v1 −

u1
√
1− v21√

d− 1
√
1− u21

.

This is a decreasing function of u1, with value v1 at u1 = 0 and value that goes to −∞ when u1 goes to 1.
Therefore the function F (·, v1) on [0, 1] is first increasing and then decrasing, showing that

∀u1 ∈
[

1√
d
, 1

]
, F (u1, v1) ≥ min

(
F (

1√
d
, v1), F (1, v1)

)
≥ 1√

d
.

Finally we thus have proved that
d∑
i=1

uivi ≥
1√
d
,

and moreover the equality is achieved when the vectors u and v are the vectors (1, 0, . . . , 0) and
( 1√

d
, 1√

d
, . . . , 1√

d
).

A.2.6 Proof of Lemma 4.3.5

Before turning to the proof of Lemma 4.3.5, we will prove the following technical results.

Lemma A.2.3. Let A ∈ Sd. We denote λ1 and λd its largest and smallest eigenvalues. For all x ∈ Rd
such that ∥x∥ = 1, we have

(i) x is an eigenvector of A associated to λ1 if and only if xTAx = λ1.

(ii) x is an eigenvector of A associated to λd if and only if xTAx = λd.

Proof. Let x ∈ Rd such ∥x∥ = 1. Since A is symmetric, there exists O ∈ O(Rd) and Λ = diag((λk)1≤k≤d)
such that xTAx = xTOAOTx. Denoting z the vector OTx, we get thus

xTAx = zTΛz =

d∑
k=1

λkz
2
k .

Hence it follows that
λd∥z∥2 ≤ xTAx ≤ λ1∥z∥2 ,

with equality if and only if z is an eigenvector associated with λ1 or λd.

Now we are ready to prove Lemma 4.3.5.
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Proof of Lemma 4.3.5. First we prove that max
P∈Vd′ (Rd)

⟨P,K⟩F = ∥K∥∗. Using Lemma 3.3.8, we get that

sup
P∈Vd′ (Rd)

⟨P,K⟩F = sup
P∈Vd′ (Rd)

tr(PTK) = max
P∈Vd′ (Rd)

tr(ΣTPΣK) ,

where ΣP = diag[d,d
′](σ(P )) and ΣK = diag[d,d

′](σ(K)). Now observe that for all P ∈ Vd′(Rd), σ(P ) is
necessarily equal to 1d′ and so ΣP = Id

[d,d′]
d′ . Thus, by definition of the singular values, it follows,

max
P∈Vd′ (Rd)

tr(ΣTPΣK) = tr(Id
[d′,d]
d′ ΣK) = tr((KTK)

1
2 ) = ∥K∥∗ ,

which proves the left-hand equality in (4.16). Now we prove the right-hand equality. The rest of the proof
is inspired from the proof of the closed-form of the W2 between two Gaussians provided by Givens et al.
(1984). We want to solve the following constrained optimization problem

min
Σ1−KTΣ−1

0 K∈Sd
′

+

P∈Vd′ (R
d)

−2tr(PTK) .

As before, using Lemma A.2.1, we can write tr(PTK) as a function of Br. This gives the following
equivalent constrained optimization problem

min
BT

r Br=Idr,PTP=Idd′
−2tr(PTΣ

1
2
0 BrΛrU

T
r ) .

The Lagrangian of this latter problem reads as

L(Br, P, C0, C1) = −2tr(PTΣ
1
2
0 BrΛrU

T
r ) + tr(C0(B

T
r Br − Idr)) + tr(C1(P

TP − Idd′)) ,

where C0 ∈ Sr and C1 ∈ Sd′ are the Lagrange multipliers respectively associated with the constraints
BTr Br = Idr and PTP = Idd′ . The first order condition gives{

Σ
1
2
0 PUrΛr = BrC0

Σ
1
2
0 BrΛrU

T
r = PC1 .

Since Σ0, P , Ur, and Λr are full rank, Σ
1
2
0 PUrΛr is of rank r and so C0 is also of rank r. Thus we get that

Br = Σ
1
2
0 PUrΛrC

−1
0 ,

and so
BTr Br = Idr = C−1

0 ΛrU
T
r P

TΣ0PUrΛrC
−1
0 .

Thus,
C0 = (ΛrU

T
r P

TΣ0PUrΛr)
1
2 .

On the other hand, by reinjecting the expression of Br in the other first order condition we get

PTΣ0PUrΛr(ΛrU
T
r P

TΣ0PUrΛr)
− 1

2ΛrU
T
r = C1 .

By multiplying this equation by itself we get

PTΣ0PUrΛ
2
rU

T
r = C2

1 .

Since C2
1 is symmetric we get that PTΣ0P commutes with UrΛ2

rU
T
r and so Σ1 − S. Moreover, as before

we have

tr(PTK) = tr(((Σ1 − S)
1
2PTΣ0P (Σ1 − S)

1
2 )

1
2 )

= tr((Σ1 − S)
1
2 (PTΣ0P )

1
2 ) .

As before, using the Courant-Fischer min-max theorem (Courant, 1920; Fischer, 1905) to characterize the
eigenvalues of Σ1 − S, we get that tr(PTK) is maximized when S = 0 and so the problem is equivalent
to the following problem

max
P∈Vd′ (R

d)

PTΣ0PΣ1=Σ1P
TΣ0P

tr(D̂
1
2
1 D

1
2

0,P ) , (A.3)
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where (P̂1, D̂1) is any diagonalization of Σ1 and D0,P = P̂T1 P
TΣ0PP̂1. For all y ∈ Rd′ we have

αd∥y∥2 ≤ yTPTΣ0Py ≤ α1∥y∥2 ,

where α1, . . . , αd are the eigenvalues of Σ0 ordered in non-increasing order. Thus, denoting λ1, . . . , λd′
the eigenvalues of PTΣ0P , we get that for all k ≤ d′,

αd ≤ λk ≤ α1 .

Since we want to maximize tr(D̂
1
2
1 D

1
2

0,P ), we set the largest eigenvalue λ1 of PTΣ0P to α1. We denote
y1 ∈ Rd′ the eigenvector associated. We have y1P

TΣ0Py1 = α1 and ∥Py1∥ = ∥y1∥ = 1 so using
Lemma A.2.3, we get that ∥Py1∥ is an eigenvector of Σ0 associated with α1. Let λk and yk be any other
eigenvalue and its associated eigenvector in the orthonormal basis in which PTΣ0P is diagonal. We have
yTk y1 = 0 and so yTk P

TPy1 = 0. Thus Pyk is orthogonal to Py1. Since ∥Pyk∥ = 1, we get that Pyk is
also an eigenvector of Σ0 and so it exists i ≤ d− 1 such that λk = yTk P

TΣ0Pyk = αi. Thus, we conclude
that the eigenvalues of the optimal PTΣ0P are the d′ largest eigenvalues of Σ0. Moreover, tr(D̂

1
2
1 D

1
2

0,P ) is
clearly maximized when D0,P and D̂1 have their eigenvalues sorted in the same order. We conclude then
that setting D0,P = D

(d′)
0 and D̂1 = D1, where D0 and D1 are the diagonal matrices associated with

the diagonalizations that sort the eigenvalues in non-increasing order, maximizes (A.3). This proves the
right-hand equality of (4.16). Finally, observe that when setting K∗ of the form

K∗ = P0(Ĩdd′D
(d′)
0

1
2
D

1
2
1 )

[d,d′]PT1 ,

K∗ is clearly in the feasible set since its the solution of Problem (4.3), and we have

∥K∥∗ = tr((K∗TK∗)
1
2 ) = tr((D

(d′)
0 D1)

1
2 ) = tr(D

(d′)
0

1
2
D

1
2
1 ) ,

and so K∗ is optimal. Furthermore, observe that K∗ admits as SVD P0((D
(d′)
0 )

1
2D

1
2
1 )

[d,d′]Ĩdd′P
T
1 . For a

given fixed Ĩdd′ , we get using Lemma 3.3.8, that the optimal P ∗ associated with K∗ is P = P0Ĩd
[d,d′]

d′ PT1 ,
which concludes the proof.

A.2.7 Proof of Proposition 4.3.6
Proof of Proposition 4.3.6. As before, the proof is inspired from the proof of the closed-form of the W2

between two Gaussians provided by Givens et al. (1984). This time, we want to solve the following
constrained optimization problem

min
Σ1−KTΣ−1

0 K∈Sd
′

+

P∈Vd′ (R
d)

tr(PTΣ0P )− 2tr(PTK) .

Again, one can, using Lemma A.2.1, write tr(PTK) as a function of Br. This gives the following problem

min
BT

r Br=Idr

PTP=Idd′

tr(PTΣ0P )− 2tr(PTΣ
1
2
0 BrΛrU

T
r ) .

The Lagrangian of this latter problem reads as

L(Br, P, C0, C1) = tr(PTΣ0P )− 2tr(PTΣ
1
2
0 BrΛrU

T
r ) + tr(C0(B

T
r Br − Idr)) + tr(C1(P

TP − Idd′)) ,

where C0 ∈ Sr and C1 ∈ Sd′ are the Lagrange multipliers respectively associated with the constraints on
Br and P . The first order condition gives{

Σ
1
2
0 PUrΛr = BrC0

Σ
1
2
0 BrΛrU

T
r = PC1 +Σ0P .

Since Σ0, P , Ur, and Λr are full rank, Σ
1
2
0 PUrΛr is of rank r and so C0 is also of rank r. Thus we get that

Br = Σ
1
2
0 PUrΛrC

−1
0 ,
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and so
BTr Br = Idr = C−1

0 ΛrU
T
r P

TΣ0PUrΛrC
−1
0 .

Thus
C0 = (ΛrU

T
r P

TΣ0PUrΛr)
1
2 .

On the other hand, by reinjecting the expression of Br in the other first order condition we get

PTΣ0PUrΛr(ΛrU
T
r P

TΣ0PUrΛr)
− 1

2ΛrU
T
r = C1 + PTΣ0P .

By multiplying this equation by itself, we get

PTΣ0PUrΛ
2
rU

T
r = (C1 + PTΣ0P )

2 .

Since (C1 + PTΣ0P )2 is symmetric, we get that PTΣ0P commutes with UrΛ2
rU

T
r and thus with Σ1 − S.

Moreover,

tr(PTK) = tr(C0) = tr((ΛrU
T
r P

TΣ0PUrΛr)
1
2 )

= tr(UTr Ur(ΛrU
T
r P

TΣ0PUrΛr)
1
2 )

= tr(Ur(ΛrU
T
r P

TΣ0PUrΛr)
1
2UTr )

= tr((UrΛrU
T
r P

TΣ0PUrΛrU
T
r )

1
2 )

= tr(((Σ1 − S)
1
2PTΣ0P (Σ1 − S)

1
2 )

1
2 ) .

As before, using the Courant-Fischer min-max theorem (Courant, 1920; Fischer, 1905) to characterize the
eigenvalues of Σ1 − S, we get that tr(PTK) is maximized when S = 0. Thus we get that

PW 2
2 (µ, ν) = min

PTΣ0PΣ1=Σ1PTΣ0P
tr(PTΣ0P ) + tr(Σ1)− tr((Σ

1
2
1 P

TΣ0PΣ
1
2
1 )

1
2 ) .

Since PTΣ0P and Σ1 commute, this expression can be reduced to

PW 2
2 (µ, ν) = min

PTΣ0PΣ1=Σ1PTΣ0P
tr

((
(PTΣ0P )

1
2 − Σ

1
2
1

)2)
(A.4)

= min
PTΣ0PΣ1=Σ1PTΣ0P

∥D
1
2

0,P −D
1
2
1 ∥2F ,

where (P1, D1) is any diagonalization of Σ1 (= P1D1P
T
1 ), and where D0,P = PT1 P

TΣ0PP1. Thus, the
problem is reduced to find the P ∈ Vd′(Rd) such that the eigenvalues of (PTΣ0P )

1
2 are the closest

possible (in term of l2 distance) to the eigenvalues of Σ
1
2
1 . Let (α1, . . . , αd)

T and (β1, . . . , βd′)
T denotes

the respective eigenvalues of Σ0 and Σ1 sorted in decreasing order. Observe that for all P ∈ Vd′(Rd) and
for all y ∈ Rd′ , we have

αd∥y∥2 = αd∥Py∥2 ≤ yTPTΣ0Py ≤ α1∥Py∥2 = α1∥y∥2 ,

and so, for k ≤ d′, if λk is an eigenvalue of PTΣ0P , then

αd ≤ λk ≤ α1 .

(i) Suppose αd > β1: since the eigenvalues of PTΣ0P are necessarily greater than αd, we set the
minimum eigenvalue of PTΣ0P to λd′ = αd in order to minimize (A.4). We denote yd′ ∈ Rd′ the
eigenvector associated. We have yd′PTΣ0Pyd′ = αd and ∥Pyd′∥ = ∥yd′∥ = 1 so using Lemma A.2.3,
we get that ∥Pyd′∥ is an eigenvector of Σ0 associated with αd. Let λk and yk be any other eigenvalue
and its associated eigenvector in the orthonormal basis in which PTΣ0P is diagonal. We have
yTk yd′ = 0 and so yTk P

TPyd′ = 0. Thus Pyk is orthogonal to Pyd′ . Since ∥Pyk∥ = 1, we get that
Pyk is also an eigenvector of Σ0 and so it exists i ≤ d− 1 such that λk = yTk P

TΣ0Pyk = αi. Thus,
we conclude that the eigenvalues of the optimal PTΣ0P are the d′ smallest eigenvalues of Σ0. Now
we determine their order. We have

∥D
1
2

0,P −D
1
2
1 ∥2F = tr(D0,P ) + tr(D1)− 2tr(D

1
2

0,PD
1
2
1 ) .
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Since only tr(D
1
2

0,PD
1
2
1 ) depends of the order of the eigenvalues, one can observe that setting

D0,P = D
(d′)
0� and D1 = D1� minimizes the expression. The optimal value is achieved for any P of

the form
P ∗ = P0�Ĩd

[d,d′]

d′ PT1� ,

Since for a given P , the expression of the optimal map which minimizes W2(P
T
#µ, ν) is given by, for

all x ∈ Rd′ ,
TW2

(x) = (PTΣ0P )
−1(PTΣ0PΣ1)

1
2x .

Re-injecting P ∗ in the above gives the expression of T in that case.

(ii) Suppose that α1 < βd: since the eigenvalues of PTΣ0P are necessarily smaller than α1, we set
λ1 = α1 in order to minimize (A.4). We denote y1 ∈ Rd′ the eigenvector associated. We have
y1P

TΣ0Py1 = α1 and ∥Py1∥ = ∥y1∥ = 1 so using Lemma A.2.3, we get that ∥Py1∥ is an eigenvector
of Σ0 associated with α1. Applying the same reasoning as before, we get that the eigenvalues of
the optimal PTΣ0P are the d′ largest eigenvalues of Σ0. Thus, setting D0,P = D

(d′)
0� and D1 = D1�

minimizes (A.4). This is achieved for any P of the form

P ∗ = P0�Ĩd
[d,d′]

d′ PT1� .

By re-injecting this in the expression of TW2
, we get the expression of T in that case, which concludes

the proof.

A.3 Proofs of the claims of Chapter 5

A.3.1 Proof of Lemma 5.4.2

Proof of Lemma 5.4.2. First note that in this proof, we denote Rd×d′ the set of matrices of size d× d′

that we distinct of the set Rdd′ of vector with d× d′ coordinates. We set g : P ∈ Rd×d′ 7→ Σ
1
2
1 P

TΣ0PΣ
1
2
1

and h : Q ∈ Sd′+ 7→ Q
1
2 such that for all matrix P of size d× d′, we have

f(P ) = tr(h(g(P ))) .

For any matrix A ∈ Rd×d′ , we denote vec(A) ∈ Rdd′ the vector obtained by stacking the columns of A.
Observe that, see (Magnus and Neudecker, 2019) for details, for any function ϕ : Rd×d′ → Rr×s, the
Jacobian matrix J [ϕ] of ϕ can be defined as, for all P ∈ Rd×d′ ,

J [ϕ](P ) =
∂vec(f(P ))

∂vec(P )
.

Moreover, observe that since f : Rd×d′ → R, J [f ][P ] ∈ Rdd′ and

∂f(P )

∂P
= vec−1(JT [f ](P )) ,

where vec−1 is the inverse vector operator, i.e. such that for any A ∈ Rd×d′ , vec−1(vec(A)) = A .
Applying the chain rule to derive f , we have

J [f ](P ) = J [tr]((h ◦ g)(P ))J [h](g(P ))J [g](P ) .

• First, we compute J [g](P ). It follows, using formula provided by Petersen et al. (2008) and Magnus
and Neudecker (2019),

∂(Σ
1
2
1 P

TΣ0PΣ
1
2
1 ) = Σ

1
2
1 ∂P

TΣ0PΣ
1
2
1 +Σ

1
2
1 P

TΣ0∂PΣ
1
2
1 ,

and so

∂vec(Σ
1
2
1 P

TΣ0PΣ
1
2
1 ) = (Σ

1
2
1 P

TΣ0 ⊗K Σ
1
2
1 )∂vec(P

T ) + (Σ
1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P )
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= (Σ
1
2
1 P

TΣ0 ⊗K Σ
1
2
1 )Kdd′∂vec(P ) + (Σ

1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P )

= (Id′2 +Kd′2)(Σ
1
2
1 ⊗K Σ

1
2
1 P

TΣ0)∂vec(P ) ,

where ⊗K denotes the Kronecker product and for any r, Kr is the commutation matrix of size r× r,
see (Magnus and Neudecker, 2019) for details. Thus,

J [g](P ) = (Id′2 +Kd′2)(Σ
1
2
1 ⊗K Σ

1
2
1 P

TΣ0) .

• Now we compute J [h](Q). Observe that we have for any Q ∈ Sd′+ ,

Q
1
2Q

1
2 = Q .

Thus it follows, denoting s : Q 7→ Q1/2,

∂s(Q)Q
1
2 +Q

1
2 ∂s(Q) = ∂Q .

This latter equation is a Sylvester equation with variable ∂s(Q), which is equivalent to the following
linear system:

(Q
1
2 ⊕K QT

1
2 )∂vec(s(Q)) = ∂vec(Q) ,

where ⊕K stands for the Kronecker sum. If Q is non-degenerate, Q
1
2 ⊕K QT

1
2 is also non-degenerate

and so in that case
J [h](Q) = (Q

1
2 ⊕K QT

1
2 )−1 .

• Finally, it is easy to see that for R ∈ Rd′×d′ we have

J [tr](R) = vecT (Idd′).

Thus, denoting A = Σ
1
2
1 P

TΣ0PΣ
1
2
1 and observing that A is symmetric and full-rank when P is full-rank

(since we supposed that Σ0 and Σ1 are full rank), it follows that for all full-rank matrix P of size d× d′,

JT [f ](P ) = (Σ
1
2
1 ⊗K Σ0PΣ

1
2
1 )(Id′2 +Kd′2)(A

1
2 ⊕K A

1
2 )−1vec(Idd′) ,

where we used that Kd′2 and (A⊕K A)−1 were symmetric. Observe now that (A
1
2 ⊕K A

1
2 )−1vec(Idd′) =

vec(X), where X ∈ Rd′×d′ is the unique solution of the following Sylvester equation

A
1
2X +XA

1
2 = Idd′ .

Since A is symmetric, one can set A = QDQT where Q ∈ O(Rd′) and D is a diagonal matrix of size d′.
The Sylvester equation can be rewritten

D
1
2Y + Y D

1
2 = Idd′ ,

where Y = QTXQ. Since A is full-rank, D is invertible and it is easy to see that the unique solution of
this latter equation is Y = (1/2)D− 1

2 and so X = (1/2)A− 1
2 and thus

(A
1
2 ⊕K A

1
2 )−1vec(Idd′) =

1

2
vec(A− 1

2 ) .

Moreover, since A is symmetric, we have Kd′2vec(A
− 1

2 ) = vec(A− 1
2 ) and so it follows that

JT [f ](P ) = (Σ
1
2
1 ⊗K Σ0PΣ

1
2
1 )vec(A

− 1
2 )

= vec(Σ0PΣ
1
2
1 A

− 1
2Σ

1
2
1 ) ,

which concludes the proof.
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B.1 Proofs of the claims of Chapter 7

B.1.1 Proof of Corollary 7.3.7
To prove Corollary 7.3.7, we will first need to prove the following result.

Lemma B.1.1. Let A ∈ B(Rd) and r > 0. We denote B = (Ar)
c. Then

Br ⊂ Āc ,

where Āc denotes the closure of the complementary of A.

Proof. Let x ∈ Br. There exists b ∈ B such that ∥x− b∥ ≤ r. Moreover, since B = (Ar)
c, it follows that

for all a ∈ A,
∥b− a∥ > r .

Then
r < ∥b− x∥+ ∥x− a∥ ,

and so, it follows that for all a ∈ A,
∥x− a∥ > 0 .

Thus x ∈ Āc.

Now we are ready to turn to the proof of Corollary 7.3.7.

Proof of Corollary 7.3.7. We set r = d(M1,M2)/2 and A = (M1)r. Using Theorem 7.3.6, we have

DTV(g#µd′ , ν) ≥ αg(A, r)−min{g#µd′(A), ν(A)} − ν(Ar \ A) .

First we suppose that g#µd′(A) ≥ ν(A): since Φ is a non-decreasing function, it follows that

αg(A, r) = Φ
(

r
Lip(g) +Φ−1(g#µd′(A))

)
≥ Φ

(
r

Lip(g) +Φ−1(ν(A))
)
.
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Moreover, min{g#µd′(A), ν(A)} = ν(A) = λ = Φ(Φ−1(λ)) and so it follows

DTV(g#µd′ , ν) ≥ Φ
(
d(M1,M2)
2Lip(g) +Φ−1(λ)

)
− Φ(Φ−1(λ)) ≥

∫ r/Lip(g)+Φ−1(λ)

Φ−1(λ)
φ(t)dt ,

since ν has no mass on Ar \ A. Now we suppose that g#µd′(A) ≤ ν(A): we then set B = Ac. Since
g#µd′(A) ≤ ν(A), we have g#µd′(B) ≥ ν(B). Applying Theorem 7.3.6, and the same reasoning as before
we get

DTV(g#µd′ , ν) ≥ αg(B, r)−min{g#µd′(B), ν(B)} − ν(Br \ B)

≥ Φ

(
d(M1,M2)

2Lip(g)
+ Φ−1(1− λ)

)
− Φ(Φ−1((1− λ))− ν(Br \ B) .

Using Lemma B.1.1, we get that ν(Br \ B) ≤ ν(Āc \ (Ar)c) but ν(Āc \ (Ar)c) = 0 since ν has no mass on
Āc \ (Ar)c except on its boundary and so its follows that

DTV(g#µd′ , ν) ≥ Φ
(
d(M1,M2)
2Lip(g) +Φ−1(1− λ)

)
− Φ(Φ−1((1− λ))

≥ Φ
(
d(M1,M2)
2Lip(g) − Φ−1(λ)

)
− Φ(−Φ−1(λ))

≥
∫ r/Lip(g)−Φ−1(λ)

−Φ−1(λ)

φ(t)dt ,

since Φ−1(1− λ) = −Φ−1(λ). Since λ ≥ 1/2, it follows that Φ−1(λ) ≥ 0 and so∫ r/Lip(g)−Φ−1(λ)

−Φ−1(λ)

φ(t)dt ≥
∫ r/Lip(g)+Φ−1(λ)

Φ−1(λ)

φ(t)dt ,

which concludes the proof.

B.1.2 Proof of Corollary 7.3.8

Proof of Corollary 7.3.8. As previously, we prove the corollary when ν = 1
2 [N(−m,σ

2 Idd)+N(m,σ2 Idd)]
since the problem can always be reduced to that case by translation and setting m = (m2 −m1)/2. Since
the problem is invariant by rotation, we can assume without any loss of generality that m = (∥m∥, 0, . . . , 0).
Let H be the half-space of Rd defined by H = (−∞, 0]× Rd−1 and we set r = ∥m∥/2σ. First we suppose
that g#µd′(H) ≥ ν(H): using Theorem 7.3.6, we get that

DTV(g#µd′ , ν) ≥ αg(H, r)−min{g#µd′(H), ν(H)} − ν(Hr \ H) ,

with Hr = (−∞, ∥m∥/2σ] × Rd−1. On one hand we have that ν = ν1 ⊗ N(0, σ2 Idd−1), where ν1 =
1
2 [N(−∥m∥, σ2) + N(∥m∥, σ2)] and so ν(Hr \ H) = ν1([0, ∥m∥/2σ]). On the other hand we have that
min{g#µd′(H), ν(H)} = ν(H) and g#µd′(H) ≥ 1/2 since g#µd′(H) ≥ ν(H). Hence it follows that

DTV(g#µd′ , ν) ≥ Φ(r/Lip(g))− 1
2 − ν1([0, ∥m∥/2σ]) .

Now we suppose that g#µd′(H) ≤ ν(H): we then set H2 = (0,+∞]×Rd−1. Since g#µd′(H) ≤ 1/2, we get
that g#µd′(H2) ≥ 1/2 and so g#µd′(H2) ≥ ν(H2). Hence we retrieve the previous case and so it follows
that

DTV(g#µd′ , ν) ≥ Φ(r/Lip(g))− 1
2 − ν1([−∥m∥/2σ, 0]) .

Since ν1([−∥m∥/2σ, 0]) = ν1([0, ∥m∥/2σ]), we get in both cases

DTV(g#µd′ , ν) ≥ Φ(r/Lip(g))− 1
2 − ν1([0, ∥m∥/2σ]) .

Now we derive the value of ν1([0, ∥m∥/2σ]):

ν1([0, ∥m∥/2σ]) =
1

2

∫ m/2σ

0

(2πσ2)−1/2 exp[−(x+m)2/2σ2]dx

+
1

2

∫ m/2σ

0

(2πσ2)−1/2 exp[−(x−m)2/2σ2]dx
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=
1

2

∫ m/2σ

−m/2σ
(2πσ2)−1/2 exp[−(x+m)2/2σ2]dx

=
1

2

∫ ∥m∥(2σ+1)/2σ2

∥m∥(2σ−1)/2σ2

φ(x)dx ,

which concludes the proof.

B.1.3 Proof of Corollary 7.3.10

Proof of Corollary 7.3.10. As previously, we prove the corollary when ν = 1
2 [N(−m,σ

2 Idd)+N(m,σ2 Idd)]
since the problem can always be reduced to that case by translation and settingm = (m2−m1)/2. Since the
problem is invariant by rotation, we can assume without any loss of generality that m = (∥m∥, 0, . . . , 0).
Furthermore, observe that the half-space {(m2 − m1)

T (x− (m1 +m2)/2) ≤ 0 : x ∈ Rd} becomes
(−∞, 0]×Rd−1 in that case, and that the condition λ ∈ (0, 1/2] is indeed non-restrictive since the problem
is invariant by rotation. We set as before H = (−∞, 0]×Rd−1 and r = ∥m∥/2σ. Applying Theorem 7.3.9,
we get

DKL(g#µd′ ||ν) ≥ βg(H, r) log
(
βg(H,r)
ν(Hr\H)

)
+ (1− βg(H, r)) log

(
1−βg(H,r)
1−ν(Hr\H)

)
.

On one hand, we get

βg(H, r) = Φ
(

r
Lip(g) +Φ−1(g#µd′(H)

)
− g#µd′(H)

= Φ
(

r
Lip(g) +Φ−1(g#µd′(H)

)
− Φ

(
Φ−1(g#µd′(H)

)
=

∫ ∥m∥/2σLip(g)+Φ−1(λ)

Φ−1(λ)

φ(t)dt

=

∫ ∥m∥/2σLip(g)−Φ−1(1−λ)

−Φ−1(1−λ)
φ(t)dt ,

denoting λ = g#µd′(H). We replaced Φ−1(λ) by −Φ−1(1 − λ) in order to emphasize that Φ−1(λ) ≤ 0
since λ ≤ 1/2. Observe that if we supposed λ ≥ 1/2, we would have βg(Hc, r) ≥ βg(H, r) and so the
bound that we would have found by reasoning on H would have been sub-optimal. On the other hand,
observing as before that ν = ν1 ⊗N(0, σ2 Idd−1), where ν1 = 1

2 [N(−∥m∥, σ
2) + N(∥m∥, σ2)], we get that

ν(Hr \ H) = ν1([0, ∥m∥/2σ])

=
1

2

∫ ∥m∥(2σ+1)/2σ2

∥m∥(2σ−1)/2σ2

φ(t)dt ,

which concludes the proof.

B.2 Additional theoretical result

In this section we derive a generalization of Corollary 7.3.7 when ν is a distribution whose support is
composed of more than two disconnected manifolds.

Proposition B.2.1. Let ν be a measure on Rd on N disconnected manifolds (M1, . . . ,MN ), and let
g : Rd′ → Rd be a Lipschitz function. Then,

DTV(g#µd′ , ν) ≥ max
I⊂J1,NK

∫ d(
⊔
i∈I

Mi,
⊔

j∈J1,NK\I
Mj)/2Lip(g)+Φ−1(λ)

Φ−1(λ)

φ(t)dt ,

where for A,B ∈ B(Rd), d(A,B) = inf{∥a− b∥ : a ∈ A, b ∈ B}, and λ = ν

(⊔
i∈I

Mi

)
if ν

(⊔
i∈I

Mi

)
≥ 1/2

and λ = 1− ν
(⊔
i∈I

Mi

)
otherwise.
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Proof. Let I ⊂ J1, NK. First, we suppose that ν
(⊔
i∈I

Mi

)
≥ 1/2. Since ν can be seen as a bi-modal

distribution on the two disconnected sets
⊔
i∈I

Mi and
⊔

j∈J1,NK\I
Mj , we can apply Corollary 7.3.7. Thus we

get

DTV(g#µd′ , ν) ≥
∫ d(

⊔
i∈I

Mi,
⊔

j∈J1,NK\I
Mj)/2Lip(g)+Φ−1(λ)

Φ−1(λ)

φ(t)dt .

If ν
(⊔
i∈I

Mi

)
≤ 1/2, we can still apply Corollary 7.3.7 by interchanging the roles of

⊔
i∈I

Mi and
⊔

j∈J1,NK\I
Mj ,

thus we get also Inequality (B.2) in that case, which concludes the proof.

B.3 Experimental details

We detail our experiments in dimension 1 in Appendix B.3.1. In Appendix B.3.2, we give details on
our experiment on the synthetic mixture of two Gaussians derived from MNIST. Finally, we detail the
experiment on the subset of all 3 and 7 of MNIST in Appendix B.3.3. We trained our models using 2
NVIDIA Titan Xp from the proprietary server of our institution with an estimated total training time of
approximately 175 GPU hours. Code is available here 1.

B.3.1 Univariate case

In the univariate case we use a simple 3-layer Multi Layer Perceptron (MLP) of shape (1, 128, 256, 1)
as decoder for the VAE and as generator for the GAN. The network has a total of 33537 learnable
parameters. The score network uses also a a 3-layer MLP block, this time of shape (1, 96, 196, 1), in which
at each layer is injected the noise information transformed by a positional encoding (Vaswani et al., 2017)
and then by another MLP block size (16, 32, 64), see Figure B.1. The score network has a total of 34665
learnable parameters. In all three models, we use LeakyReLU (Maas et al., 2013) as non-linearity with a
negative slope of 0.2. The three models are trained during 400 epochs with a batch size of 1000 using
ADAM (Kingma and Ba, 2015) with a momentum of 0.9 and a learning rate of 10−4. In the following,
we give more specific details for each model.

Figure B.1: Architecture of the score network used for the univariate experiments. The "positional
encoding" block applies the sine transform described in Vaswani et al. (2017).

⊕
corresponds to

concatenation, the vertical blocks correspond to the fully connected layers and the numbers over the
arrows correspond to the size of the vectors.

Variational autoencoder. We use the vanilla VAE model as described in Kingma and Welling (2014).
In the following, we denote θ and λ the respective parameters of the decoder and the encoder. The
decoder fϕ is composed of an MLP block of size (1, 256, 128) followed by two parallel fully connected
layers of shape (128, 1) which gives two outputs f1ϕ(x) and f2ϕ(x). Then the input z of the decoder

1https://github.com/AntoineSalmona/Push-forward-Generative-Models
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gθ is obtained by the so-called reparametrization trick, which consists in sampling z ∼ q
z|x
ϕ , where

q
z|x
ϕ = N(f1ϕ(x), exp[f2ϕ(x)]). During training, the model minimizes the following loss function:

LVAE(θ, ϕ) = Ex∼ν [ELBOθ,ϕ(x, qz|xϕ , p
x|z
θ )] ,

where px|zθ = N(gθ(z), c
2 Idd) and ELBO is the Evidence Lower Bound (Blei et al., 2017), defined as

follows:
ELBOθ,ϕ(x, q

z|x
ϕ , p

x|z
θ ) = E

z∼qz|xϕ

[log(pθ(x|z))]−DKL(q
z|x
ϕ ||N(0, Idd′)) .

The standard deviation c in px|zθ is an hyperparameter of the model. For our experiments, we observed
that c = 0.1 gave good results.

Generative adversarial network. As for the VAE, we use the vanilla GAN model as described in
Goodfellow et al. (2014). The discriminator is 4-layer MLP of shape (1, 512, 256, 128, 1) with spectral
normalization (Miyato et al., 2018) in order to reduce as much as possible mode collapse. We train
the model using the vanilla adversarial loss, that the discriminator dϕ tries to maximize and that the
generator gθ tries to minimize

LGAN(θ, ϕ) = Ex∼ν [log(dϕ(x)] + Ez∼N(0,Idd′ )
[log(1− dϕ(gθ(z)))] .

We also tried with the hinge version of the adversarial loss, as proposed in Lim and Ye (2017) and Tran
et al. (2017) and we obtained similar results.

Score-based generative modeling. Our diffusion model is similar to the model introduced by Song
and Ermon (2019). The neural network sθ learns to approximate, for a given x and a given σ, the score
∇xpν(x, σ) of the data distribution convoluted with a Gaussian distribution of standard deviation σ. This
is done by first defining a geometrical progression {σi}Li=1 where L = 10 and where the ratio is chosen
such that σL ≈ 0.01, and then minimizing the Fischer divergence (Vincent, 2011)

LSGM(θ) = Eσ∼1/L
∑
δσi

[
σ2Ex∼ν

[
Ey∼N(x,σ2 Idd)

[∥∥sθ(y, σ) + (y − x)/σ2
∥∥2]]] .

Then, in order to generate data, we use an annealed Langevin dynamic scheme as defined in Song and
Ermon (2019). In the Langevin dynamic, we set the step size to 2× 10−5 and the number of step for
each value of σ to 100 as in Song and Ermon (2019).

Influence of generator depth. For this experiment, we increase the number of layers of the VAE
decoder and the GAN generator from 2 to 6. At each new layer, we double the number of neurons at the
previous layer. For instance, the generative network with 2 layers is thus an MLP of shape (1, 128, 1) and
the one with 6 layers is an MLP of shape (1, 128, 256, 512, 1024, 2048, 1). Specifically to the GAN model,
we also increase the number of layers in the discriminator in order to keep the dynamic between this
latter and the generator balanced. As in the 3-layers case, the discriminator is one layer deeper than the
generator. For instance, the discriminator associated to the generator with 2 layers is an MLP of shape
(1, 256, 128, 1).

Influence of generator architecture. For this experiment, we use a feed-forward MLP of shape
(1, 256, 256, 256, 1) as backbone. Then we add two additive pre-activation skip-connections of type "resnet"
between the first and the second hidden layers and between the second and the third hidden layers. Finally,
we replace the two previous additive skip-connections of type "resnet" by concatenation pre-activation
skip-connections of type "densenet".

B.3.2 Synthetic mixture of Gaussians on MNIST
Models details. We adapt our three models to MNIST, changing mainly the networks architectures
and making small modifications that we describe in what follows. We base the architecture of the GAN
and the VAE on DCGAN (Radford et al., 2015), using the generator as decoder and the discriminator as
encoder for our VAE. This is done by doubling the last layer of the discriminator in order that the VAE
encoder has two outputs as in the univariate case. For the GAN model, we replaced the convolutional
discriminator by a simple MLP of shape (784, 512, 256, 128, 1) because the dynamic between the generator
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and the discriminator seemed unbalanced otherwise. We also update our GAN model using some features
of SAGAN (Zhang et al., 2019): applying spectral normalization on the discriminator and using the
unconditional hinge version of the adversarial loss (Lim and Ye, 2017; Tran et al., 2017):

LdϕGAN = −Ex∼ν [min{0,−1 + dϕ(x)}]− Ez∼N(0,Idd′ )
[min{0,−1− dϕ(gθ(z)}] ,

LgθGAN = −Ez∼N(0,Idd′ )
[dϕ(gθ(z))] .

Such loss function is equivalent to minimize the Kullback-Leibler divergence between the generated
distribution and the data distribution. The VAE decoder and the GAN generator have 1713088 learnable
parameters. For the score network architecture, we use the vanilla U-Net architecture (Ronneberger et al.,
2015) in which we double the number of channels at each layer, we add group normalization (Wu and
He, 2018) after each convolution and we replace the ReLU non-linearies by SiLU (Elfwing et al., 2018).
As in the univariate case, we use positional encoding (Vaswani et al., 2017) followed by a MLP block
of shape (1, 16, 32) to incorporate the noise information at each layer. The score network has 1607392
learnable parameters. For inference, we use the same Langevin dynamic scheme as above with the same
hyperparameters as in the univariate case. The three models are trained during 100 epochs with a batch
size of 128 using ADAM with a momentum of 0.9 and a learning rate of 2× 10−4.

Additional details. The histograms of projection on the line passing through the mean of each
Gaussians are obtained using 20000 generated samples. To assign a color to each bin of the histograms,
we train a simple MLP of shape (784, 1024, 50, 10) as classifier on MNIST. The classifier is trained during
10 epochs using again ADAM with a momentum of 0.9 and a learning rate of 2× 10−4 and reaches an
accuracy of 0.98 on the test set.

B.3.3 Subset of MNIST

Models details. Since the dataset is more complex than before, we use bigger models. For the score
network, we use the architecture defined in Ho et al. (2020), in which we set the number of channels
to 64 instead to 128 and we remove the self attention layers (Wang et al., 2018) for computational
resource purposes. The score network has 6072065 learnable parameters. Again, we use an annealed
Langevin dynamic scheme for inference with the same hyperparameters as before. For the VAE and
the GAN, we use the same architecture as before, using this time the convolutional discriminator of
DCGAN, and quadrupling the number of channels at each layer. This is mainly done in order to scale the
generator/decoder to the score network. Hence the VAE decoder/GAN generator has 7151104 learnable
parameters. We train all three models during 600 epochs with a batch size of 128 using ADAM with a
momentum of 0.9 and a learning rate of 2× 10−4.

Additional details. We use the deep Wasserstein embedding proposed by Courty et al. (2018) in order
to visualize histograms of projection in the Wasserstein space. We use the exact same network architecture
and the same training procedure that in Courty et al. (2018): first, one million pairs of digits of MNIST
are chosen randomly, in which 700000 are kept for the training set, 200000 for the test set, and 100000
for the validation set. We normalize each image in order to consider it as a two-dimensional distribution
and we compute the 1-Wasserstein distance for each pair. Then, we train an autoencoder in a supervised
manner in a way that the images at output of the autoencoder are close to the images in input, and
that the euclidean distance between two vectors in the latent space is close to the 1-Wassertein distance
between the two corresponding images of MNIST. As in Courty et al. (2018), the latent Wasserstein
space is of dimension 50 and the autoencoder is trained during 100 epochs with a batch size of 100 and
with an early stopping criterion. Again, we use ADAM with a momentum of 0.9 and a learning rate of
10−3. We use the same classifier as before to assign color to each bin of the histograms. Finally, the
histograms of projection on the line passing through the deep Wasserstein barycenters of all 3 and 7 are
obtained using 20000 generated samples.

B.4 Additional experimental results

In the following, we provide additional experimental results. First, we compare estimates of the bounds
of Theorem 7.3.6, Corollary 7.3.8, and Theorem 7.3.9 to estimates of the total variation distance and
the Kullback-Leibler divergence in the univariate case. Then we study the possible correlation between
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the size of the score network and the tendency of the score-based model to generate unbalanced modes.
Finally, we provide additional visualizations of histograms of generated distributions for the univariate
case and generated samples for the experiments on MNIST.

B.4.1 Bounds on TV distance and KL divergence in the univariate case

DTV(g#µd′ , ν) DKL(g#µd′ ||ν)

5 6 7 8 9 10
m

0.05

0.10

0.15

0.20
empirical distance
bound Theorem 4
bound Corollary 6

5 6 7 8 9 10
m

0

1

2

3
empirical divergence
bound Theorem 7

Figure B.2: total variation distance (left) and Kullback-Leibler divergence (right) for the VAE (in orange)
and estimates of the respective lower bounds from Theorem 7.3.6 and Theorem 7.3.9 in blue. The lower
bound of Corollary 7.3.8 is also plotted in red for the total variation. The experiments are averaged over
10 runs and the colored bands correspond to +/- the standard deviation.

In this experiment, we compare estimates of the bounds of Theorem 7.3.6, Corollary 7.3.8, and
Theorem 7.3.9 to estimates of the total variation distance and the Kullback-Leibler divergence. We only
provide results for the VAE since the bounds are not interesting for the GAN since they are consequences
of interpolation between modes due to a small Lipschitz constant of the generative network. Yet this latter
in the GAN case achieves a large Lipschitz constant so does not interpolate significantly. To estimate
empirically the total variation distance and the Kullback-Leibler divergence, we used their respective
analytical formula

DTV(g#µd′ , ν) = (1/2)
∫
R |pg#µd′ (x)− pν(x)|dx ,

DKL(g#µd′ ||ν) =
∫
R pg#µd′ (x) log

(
pg#µd′ (x)/pν(x)

)
dx ,

where pg#µd′ and pν are the respective densities of g#µd′ and ν. In order to estimate the lower bounds
of Theorem 7.3.6 and Theorem 7.3.9, we set A of the form (−∞,−r/2] and we perform a grid search
on r. In Figure B.2, we can observe that the estimates of the bounds provided by Theorem 7.3.6 and
Theorem 7.3.9 are not tights. This is possibly because we selected a sub-optimal A but it most likely
follows from the fact that the bounds don’t take into account that g#µd′ has automatically less mass on
the modes than ν since a significant amount of its total mass is between them. One can also observe
that the explicit lower bound of Corollary 7.3.8 is much smaller than the bound of Theorem 7.3.6. This
can be explained by the facts that ∥m∥/2σ is probably a sub-optimal choice of r and that the bound of
Corollary 7.3.8 minimizes the interpolation between modes over all the mappings with Lipschitz constant
Lip(g), regardless whether these mappings approximate well ν on its modes or not. Since there is less
interpolation if the modes are unbalanced (see Section 7.3.3), it is likely that the mappings g such that
g#µd′ is unbalanced are affecting the value of this bound in a bad way.

B.4.2 Additional examples

B.4.2.1 Univariate histograms

We provide additional visualizations of histograms of generated data with the three models for various
values of m in Figure B.3. We can observe that the score-based model already generates unbalanced
modes, but the phenomenon is globally less visible than in higher dimensions. Secondly, we provide
additional visualizations of histograms of generated data with GANs trained with an additional gradient
penalty term in the generator loss for various values of L ≈ Lip(g) in Figure B.4.
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Figure B.3: Histograms of distributions generated with VAE (top, in orange), GAN (middle, in green),
and with SGM (bottom, in purple) for m = 2, m = 4, m = 6 and m = 8. The data distribution densities
are plotted in blue.
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Figure B.4: histograms of distributions generated with GANs with with gradient penalty for Lip(g) ≈
L = 11, Lip(g) ≈ L = 15, Lip(g) ≈ L = 19 and Lip(g) ≈ L = 23. The data distribution densities are
plotted in blue.

B.4.2.2 Visualization of generated data

Finally, we show randomly chosen generated samples with VAE, GAN and SGM on the synthetic mixture
of Gaussian on MNIST and the subset of all 3 and 7 of MNIST in Figure B.5

VAE GAN SGM

Figure B.5: Generated samples with VAE, GAN and SGM on the synthetic mixture of Gaussian on
MNIST (top) and the subset of all 3 and 7 of MNIST (bottom). The samples have been randomly chosen.
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