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Abstract xiii

Parallelizable Training in Deep Learning Through Local and Distributed Approaches

Abstract

Recent breakthroughs in deep learning have been driven by the growth of deep neural net-
works, improving their ability to memorize and generalize. However, this growth requires
ever-increasing computational resources to train these networks. In this thesis, we propose to
improve the standard deep learning training framework, which consists of parallelized mini-
batch SGD with backpropagation. By deviating from it, we can obtain more parallelizable
and faster approaches. First, we study the capabilities of local learning approaches, a more
parallelizable alternative to the backpropagation gradient estimation method. The model is
split into sequential stages connected only by feedforward connections. We find that we can
improve self-supervised local learning by removing certain data samples from the local losses
computation, preventing information collapse. We also show that forward-mode automatic dif-
ferentiation, which computes a directional derivative in a single forward pass, can be improved
by using local gradients as tangent directions. Second, we study distributed approaches to
training deep neural networks, and consider their communication costs in particular. We modify
synchronous data parallelism to balance the overall memory and communication overhead by
shifting worker execution from simultaneous to sequential. Finally, we propose a novel highly
communication-efficient distributed training approach that allows an ensemble of models to be
weight-averaged at the end of training, resulting in a single ensemble-level model.

Keywords: deep learning, neural network, local learning, distributed learning, backpropagation,
data parallelism, model parallelism, forward gradient, ensembling, delayed gradient

Entraînement Parallélisable en Apprentissage Profond par le biais d’Approches Locales et
Distribuées

Résumé

Les récentes avancées dans le domaine de l’apprentissage profond ont été poussées par la
croissance des réseaux de neurones profonds, améliorant leur capacité de mémorisation et
de généralisation. Cependant, cette croissance s’étend aussi aux ressources computationnelles
nécessaires à leur entraînement. Dans cette thèse, nous proposons d’améliorer l’algorithme
d’apprentissage standard qui consiste en de la rétropropagation parallélisée. En s’en écartant,
il est possible d’obtenir des approches plus parallélisables et rapides. Tout d’abord, nous étu-
dions les capacités des approches d’apprentissage local, une alternative plus parallélisable à la
méthode standard d’estimation du gradient par rétropropagation. Le modèle est divisé en stages
séquentiels reliées uniquement par des connexions de type ‘feedforward’. Nous améliorons
l’apprentissage local auto-supervisé en supprimant certains échantillons de données des calculs
locaux, ce qui permet d’éviter un effondrement de l’information. Nous montrons également que
la dérivation automatique en mode direct, qui calcule une dérivée directionnelle en ‘feedforward’,
est améliorée en utilisant les gradients locaux comme directions tangentes. Deuxièmement, nous
étudions les approches distribuées pour l’apprentissage profond, en particulier en tenant compte
de leurs coûts de communication. Nous modifions le parallélisme de données synchrone pour
équilibrer l’utilisation de la mémoire globale et des communications, en passant les calculs de
simultanés à séquentiels. Enfin, nous proposons une nouvelle approche d’apprentissage distribué
nécessitant peu de communications permettant à un ensemble de réseaux d’être moyenné après
entraînement, donnant un modèle très performant au niveau de l’ensemble.

Mots clés : apprentissage profond, réseau de neurones, apprentissage local, apprentissage dis-
tribué, rétropropagation, parallélisme des données, parallélisme des modèles, gradient
avant, ensemblisme, gradient retardé

Institut des Systèmes Intelligents et de Robotique
Campus Pierre et Marie Curie – Pyramide, Tour 55 – 4, place Jussieu – 75005 Paris –
France
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Chapter1
Introduction

The Mechanical Turk was created in 1770 to impress the Empress Maria Theresa of
Austria. Able to play chess at the level of a strong human player, the automaton toured
Europe, defeating Benjamin Franklin and Napoleon Bonaparte. It fascinated the young
Edgar Allan Poe, who nevertheless remained suspicious of the automaton’s abilities.
Comparing its operation to that of a deterministic calculating machine, he wrote: "It
is quite certain that the operations of the Automaton are regulated by mind, and by
nothing else". Indeed, he was right, as the Turk was not a machine, but was actually
operated by a human hidden inside the automaton [301, 331].

The field of Deep Learning (DL) uses massive amounts of data to train large machines,
with the goal of achieving human-like ‘artificial intelligence’ (AI). This idea has led
to impressive breakthroughs in many fields, from board games [45, 301, 335, 320] to
even self-driving cars [337] and medicine [32, 164]. Nowadays, modern Deep Neural
Networks (DNNs) such as Large Language Models (LLM) [271, 351] can even handle
multiple data types and pass the Turing Test, mimicking human interlocutors [352, 314].
These large ‘foundation models’, generally based on the Transformer architecture [353],
are strong networks designed to be applicable to a wide range of tasks [37].

However, both the size of these models and their training datasets are growing
rapidly. The number of computations required for training, measured in floating point
operations (FLOPs), scales linearly with these sizes [140]. The growth of this number
has been empirically exponential, doubling every 100 days with a millionfold increase
predicted in the next five years [409, 284]. The reason for this increase is the pursuit of
performance dictated by neural scaling laws [140, 44, 5]. These empirical statistical laws
show (and predict) that performance improves as a power law of model and dataset sizes.
Thus, it is estimated that the training computational requirements must scale at least
as a fourth-order polynomial of the performance gains, i.e., compute = Ω(performance4).
For instance, this means that a 10× increase in performance should require 10 000×
more computations [350].

This increase in training computation leads to several problems. DL training gen-
erates large carbon [123, 40] and water footprints [125, 209]. For example, training a

1



2 CHAPTER 1. Introduction

BERT [78] model emits about a ton of CO2 [336]. This also results in longer training
times, for instance with the BLOOM LLM taking 3.5 months to train [198]. Finally,
training DNNs requires massive computational clusters, composed of many intercon-
nected AI accelerator chips such as GPUs and TPUs [72, 163]. This results in rapidly
rising hardware and power costs [68], limiting the ability to train large models to only a
handful of companies, which can have detrimental effects [100, 145, 371].

In this thesis, we study the training process of DNNs, to address these increasing
computational demands. In particular, we propose to modify the standard training
paradigm used for DL, which has remained largely unchanged for decades. Our research
aims to find novel and parallelizable training algorithms, that can improve on the
training speed, memory overhead, and communication costs of the standard methods.
We will focus particularly on distributed learning, where replicas of the DNNs are
trained on separate devices, and local learning, where components of the DNN are
trained separately without feedback.

In the following section, we first discuss the standard DL training paradigm. We will
then show that few methods opt to improve on it, despite its computational limitations.
Finally, we will present the background of our thesis and our contributions.

1.1 The standard DL training paradigm

1.1.1 Training DNNs with backpropagation

The main elements of DL training were already introduced decades ago. The idea of
Neural Networks (NNs) appeared in the 1950s [234, 303], although limited computa-
tional power led to decades known as the AI Winters [306]. Data-driven training of
DNNs then became a viable approach mainly due to two things. First, the introduction
of now-standard techniques such as the backpropagation gradient estimation algorithm
[219, 168, 304] and Stochastic Gradient Descent (SGD) [7, 38]. Second, the populariza-
tion of the use of GPU hardware enabled fast parallel computation for DL. This allowed
AlexNet [185] in 2012 to be the first DNN to outperform classical image classification
methods on the ImageNet dataset, ushering in an era of breakthroughs for DL. Even
modern DNNs follow a similar training paradigm as a decade ago, which we describe
here.

The goal of DL training is to minimize a training objective L that takes as input
the output of a DNN f . This DNN is parameterized by a data input x sampled from a
training dataset D, and its parameters θ, which are modified to minimize the objective.
This can be written as the following optimization problem

argmin
θ

Ex∼DL(f (x,θ)) . (DL optimization)

The standard approach for training DNNs can be described as mini-batch SGD with
backpropagation. The DL optimization problem is highly non-convex, but differentiable.
As such, an efficient way to find a local minimum is to use a first-order optimization
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Figure 1.1: Representation of the training of a DNN with backpropagation. Data
examples for a dataset are sequentially fed to a DNN (here, with 3 layers). It then
propagates the data through a forward pass, computing and storing activations (blue).
The output of the DNN is used to compute a training loss. This results in an error
gradient, which is backpropagated in a backward pass, using the stored activations (red).
The DNN parameters are then updated using the computed gradients (yellow).

algorithm such as Gradient Descent (GD). However, modern datasets are too large to
compute GD directly, and only subsets of the dataset called mini-batches are randomly
sampled at each training step. This approximation of GD is the SGD algorithm. Other
more sophisticated stochastic optimization methods, such as adaptive gradient methods
like Adam [172, 222], can result in faster training [338].

The mini-batch gradients used to update the parameters via SGD are computed
using backpropagation, also known as reverse-mode automatic differentiation (AD).
This algorithm requires two sequential steps, called ‘forward’ and ‘backward’ passes.
First, at each training step, mini-batches are sampled from the training dataset and
fed to the DNN, starting the forward pass. Sequentially, each layer of the network
computes output values, called activations, using the activations of the previous layer
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as input. These activations are then stored in a buffer for the gradient computation
later. This process ends when the last layer of the network returns an output, which
is used to compute the loss value of the training objective (e.g., a classification error
for a given label). The next step is to compute the gradient of the loss with respect
to the parameters. Backpropagation efficiently computes these gradients during the
backward pass, requiring only the same number of computations as the forward pass
[219]. Finally, the parameters are updated according to SGD or similar stochastic
optimization methods, and a new training step begins. The backpropagation algorithm
is shown schematically in Figure 1.1 and is described in more detail below.

Example 1 End-to-end backpropagation.

We consider the standard training of a DNN following end-to-end backpropaga-
tion to compute a mini-batch gradient. The computation is done in two separate
stages. First, a forward pass is performed to propagate the activations of the
network for a given mini-batch of input data x0 = (x0

0, ...x
0
B). These activations are

stored in a buffer at each layer, and the training loss is computed using the DNN
output L = 1

B
∑

iL(xJi ). Here, a DNN is composed of J sequential layers fj , each
with its own parameters θj , and the activations are computed by

x
j+1
i = f j(xji ,θ

j ) , (Forward pass)

Then a backward pass propagate the loss gradient with respect to the intermediate
activations and parameters of each layer. This is done by using the Leibniz chain
rule [348], which allows the computation to be performed from the last layer to
the first, in the reverse order of the forward pass. We denote δ

j
i the activation

gradient of an input i at layer j and ∆j the parameter gradient at layer j. The
training loss gradient with respect to the DNN output is equal to δJi = ∇xJiL, and
we obtain

δ
j
i =

∂L

∂x
j
i

=
∂f j(xji ,θ

j )

∂x
j
i

δ
j+1
i , (Backward pass)

∆j =
∂L
∂θj

=
1
B

∑
i

∂f j(xji ,θ
j )

∂θj
δ
j+1
i .

The parameter gradients are then used to optimize the parameters, following an
optimization method like SGD.

This training procedure is generally parallelized on several devices to drastically
accelerate computations, which we describe next.
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1.1.2 Parallelization of the mini-batch SGD algorithm

Modern AI accelerator chips are tailored for DL training, designed to perform com-
putations such as matrix multiplication in parallel on a massive scale [62, 173, 341].
Following the demand for more computing power, their performance has more than dou-
bled every year, a phenomenon known as Huang’s Law [72] that have allowed to tackle
the rising amount of training computation. Still, training on a single chip is not enough
for modern DNNs. The DL training algorithm is typically parallelized on modern deep
learning clusters using thousands of interconnected GPUs or TPUs [74]. There are two
main reasons for this. First, this overcomes the memory limitations of individual devices.
Indeed, the backpropagation algorithm requires the storage of intermediate activations
prior to the backward pass. Since the size of these activations scales with the batch
size, this limits the batch size that such devices can handle, and thus the training speed.
Outside of activations, even the number of parameters in modern DNNs can exceed
the memory capacity of a single GPU. Second, and most importantly, parallelizing the
computations leads to a speedup in training by dividing a computational task across
multiple devices, allowing such clusters to reach exaflops numbers of computations per
second [238].

There are two main ways to parallelize the training procedure of DL. We can catego-
rize these as either parallelizing how to estimate the gradient, or parallelizing how many
gradients are estimated, as we represent in Figure 1.2. We will refer to these methods as
either Model Parallelism (MP), which parallelizes the components of the DNN itself, or
Distributed Training, which parallelizes the computations on replicas of the model.

The most common distributed approach to DL training is Data Parallelism (DP).
The model is replicated on different devices, and each device trains its replica on a
separate micro-batch, effectively increasing the batch size [208]. After each training
step, each device’s micro-batch gradient must be communicated and averaged across all
workers. This ensures that the parameter update is the same on all workers, and thus
the parameters of all replicas remain the same. In this thesis, we refer to distributed
training as all methods that train replicas of the DNN in parallel, separating them from
MP approaches. Note that other works may use distributed training as a substitute for
parallel training altogether, but we make this choice for a clearer separation.

The other approach to parallelization in DL training is MP, which parallelizes the
gradient estimation directly. For example, tensor parallelism [316] splits layers into
several sub-layers that can be computed in parallel. But the most interesting idea is to
split the DNN in depth. This is a natural approach because the order of computation in
a DNN is sequential during the forward and backward passes, so only one layer needs
to be computed at a time. The idea is then to divide the network into sequential stages
(consisting of one or more layers), that can be trained in parallel on different devices. In
particular, pipeline parallelism [146] divides the mini-batch gradient computation into
smaller micro-batches that can be processed in parallel by each stage. Note that DP and
MP approaches are often integrated together to combine their benefits [316, 323, 325].

In this section, we introduced the standard training paradigm in DL. It consists of
the mini-batch SGD algorithm with backpropagation, which is parallelized on multiple
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Figure 1.2: Standard parallel training in DL. Model Parallel approaches (red) like tensor
or pipeline parallelism parallelize the computation of the gradient used in optimization.
In distributed approaches like Data Parallelism (blue), the parallelization is done over
the mini-batch, by scaling the gradient computation to more data at each time step.

devices using DP and MP approaches. We now present the challenge of improving
the speed of this training algorithm, with the goal of mitigating the increasing compu-
tational demands of modern DL training. First, we summarize the different ways to
accelerate training that are not related to the training algorithm itself. We then show the
computational limitations of the current training algorithm, due to backpropagation as
well as the standard parallelization approaches.

1.2 Accelerating the DL training process

1.2.1 Improving the other training components

This thesis focuses on improving the training process in DL. The training pipeline can
be broadly divided into four major components: the hardware, the datasets, the model
architectures, and the training algorithm itself, and each can be improved to accelerate
training.

First, as discussed above, the hardware used for DL training continues to improve,
allowing for faster parallel computations that can handle the increasing computational
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load of modern networks. Existing hardware can also be used more efficiently. For
example, mixed precision training [243, 361] halves the memory overhead with minimal
loss of precision, and FlashAttention [73] uses parallelization and efficient memory
read/writes to improve the implementation of the attention mechanism of Transformers.
The datasets used for training can also be a source of improvement. The massive amount
of examples scrapped on the internet can be refined to keep only high quality examples,
thus reducing the training time for similar performance [283]. In addition, novel
architectures can also reduce computational and memory costs. For example, Mixture of
Experts models [232, 298, 159] use router layers to assign an ‘expert’ (i.e., a part of the
network) to compute the output for a given data sample, reducing the inference cost of
the network to a subset of layers. Alternatives to the standard Transformer architecture,
such as state-space models like Mamba [407, 10], aim to avoid the quadratic cost of the
attention map layer. Some approaches also suggest learning smaller networks at the
beginning of training to reduce computation, before gradually increasing their size [57,
94].

Finally, the training algorithm itself is the remaining component that can be im-
proved. Notably, many approaches opt to improve the stochastic optimization algorithm
to accelerate the convergence of the training objective. Adaptive gradient methods
[172, 222, 126] use quantities stored in buffers to adjust the gradient parameter-wise.
Improved learning rate schedulers [322] or even learning rate-free methods [75] can
also better adapt the magnitude of the update. Finally, learned optimizer approaches
[239, 240, 129] are a promising way to improve stochastic optimization algorithms by
meta-learning them directly.

In this thesis, we also focus on improving the training algorithm. But rather than
considering the stochastic optimization algorithm, we choose to modify the training
algorithm itself, from the computation of the gradient to its communication across
multiple devices. In order to do so, we need to depart from the standard paradigm of
parallelized mini-batch SGD. To motivate this choice, we show next the computational
limitations of both backpropagation and the synchronous parallel approaches, that
hinder the training speed.

1.2.2 Limitations of backpropagation

First, we present the limits of the backpropagation algorithm. There is a clear discrep-
ancy in the energy required by backpropagation [336] compared to the energy required
by the brain [16], which calls for more efficient learning algorithms inspired by biolog-
ical systems. In practice, computing the loss gradient of a DNN can also be unstable,
and a common problem is keeping the magnitude of the gradients in the network at an
acceptable level. In fact, cascading gradient computations during backpropagation can
result in either vanishing gradients with a magnitude close to zero, or conversely, gradi-
ents that grow uncontrollably [150]. Furthermore, DL optimization being a non-convex
problem, there is no guarantee that descending in the direction of the backpropagation
gradient will lead to a global optimum of the objective. Nevertheless, the local optima
found by DL are often empirically good enough, although they can be improved with
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ensembling methods [99]. Another important issue with backpropagation is its memory
overhead. Storing activations during the forward pass is necessary to efficiently compute
gradients during the backward pass. However, the size of these activations increases
with the size of the mini-batch. A larger mini-batch results in faster training, but the
GPU has limited memory, which limits the size of the activation buffers it can store,
and thus the size of the mini-batch. It is possible to reduce this memory overhead, but
this requires trade-offs, for instance by using more computations [58], or reducing the
computational precision [243].

However, the most important computational issues of the backpropagation algorithm
are the computational ‘locks’ defined in [155], that limit the training speed of DL. As
described earlier, when training with backpropagation, each layer of the DNN is ‘locked’
after having propagated its activations in the forward pass. It does not perform any
other computations, until it receives its associated gradient backpropagated during
the backward pass. Note also that its activations must be kept in a buffer during this
time. In other words, the backpropagation algorithm can be referred to as backward
locked. This locking constrains the training of the layers of the DNN to be sequential
and synchronous, forcing for instance the first layer of the network to wait for all
subsequent layers to compute their gradients. Other learning algorithms that could
relax this locking could allow layers to learn in parallel and even asynchronously. Thus,
the computation time could be sped up, as more mini-batches could be processed by the
DNN simultaneously. If for such an algorithm, a layer only requires that subsequent
layers finish their forward pass, it is only update locked. If it can also bypass this
requirement and require solely that previous layers finish their forward pass, it is
forward locked. In the most efficient case, an algorithm could be forward unlocked, and
learn even while previous layers are forwarding activations.

1.2.3 Limitations of the standard parallelization approaches

Previously, we introduced how the mini-batch SGD algorithm is typically parallelized.
But the two types of approaches we discussed, DP and MP, both suffer from limitations
that slow down training.

First, the synchronous communication step of DP can be an obstacle in modern
training clusters. This is because communication cannot start until the slowest device
has completed its computation, and the volume of communication scales with the
number of devices [51]. This can cause the training cluster to slow down as devices
wait for all communication steps to be completed. This is not optimal, as each device
should ideally be used to its maximum capacity without wasting compute time waiting.
In addition, communication can be the largest contributor to energy consumption in a
cluster. Second, MP approaches are limited by the compute locks of backpropagation
that we have discussed. Even though pipeline parallelism approaches allow model stages
(i.e., subsets of the model layers’) to compute on micro-batches in parallel, there are still
‘bubbles’ of idle time because later stages must wait, first at the beginning of the training
step to receive microbatches of activations, and at the end while backpropagation
finishes in the early stages.
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We have seen in this section that accelerating the training in DL is generally done
by improving the other components of the training pipeline, rather than the training
algorithm itself. Yet, the standard parallelized mini-batch SGD is computationally
limited, either by the need for workers to communicate for DP, or by the backward pass
in backpropagation for MP. In this thesis, we propose novel training approaches for DL
that diverge from this standard paradigm for better parallelization. In the following
section, we provide the context of this thesis, namely the distributed training approaches
that break synchronization between the replicas for more limited communication, and
the MP approaches that use alternatives to backpropagation to estimate the gradients.
We present them in Figure 1.3, as well as the positioning of our thesis relative to other
training paradigms.

1.3 This thesis: exploring alternatives to synchronous parallel
SGD

1.3.1 Thesis context

We first provide the context of this thesis. The first year of this PhD began differently,
as a project to better understand the training of DNNs through the lens of simple and
explainable alternatives. I focused on improving patch-based approaches to image
classification [349, 42] and on learning useful convolution operators for linear node
classification networks [55, 343, 177]. Despite promising results, these projects were
outperformed by DL approaches, regardless of the high computational requirements of
DL training. Inspired by the alternative learning approaches we studied, we focused
on improving DL training through novel approaches that allow for faster parallelized
training.

More specifically, this thesis was written as part of the ADONIS (Asynchronous
Decentralized Optimization of MachiNe LearnIng ModelS 1) research project of my
supervisor Edouard Oyallon; in the MLIA team of the ISIR laboratory at Sorbonne
Université. I also spent 3 months in Montréal in 2024 as an academic visitor in the team
of Eugene Belilovsky at Concordia University and the Mila Quebec AI Institute.

1.3.2 Communication-efficient distributed training

To break from the limiting synchronous communication step of DP, other distributed
training approaches can choose to limit the communication between the devices. In this
case, this breaks the synchronicity between the DNN replicas. For instance, commu-
nication can be limited to asynchronous gossip between devices [114], thus allowing
communications to occur simultaneously to computations [257]. Another approach is to
allow multiple optimization steps on each device before communicating and averaging
parameters, but the models may diverge between the averaging steps [332, 276]. How-
ever, this divergence is not necessarily a disadvantage, as the diversity in the population

1https://adonis-research.github.io/

https://adonis-research.github.io/
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Figure 1.3: Representation of the parallel training paradigms in DL, divided into
distributed training, which uses replicas of the model, and MP, which divides the
DNN components. Standard DL training remain equivalent to backpropagation on one
device, by using approaches such as data or tensor parallelism. MP approaches that
use alternatives to backpropagation avoid its computational locks and allow for more
parallelization. Distributed training approaches can similarly break the synchronicity
requirement between replicas of the model to allow for faster parallel training since less
communication is required. In this thesis, our proposed approaches can be related to
the gray colored paradigms.

of models can be used for ensembling methods, which improve the generalization per-
formance [376]. To maintain this improvement without requiring the inference cost of
multiple models [237], the models obtained from this ensemble training can be fused
into a single model by averaging their weights, provided that the model weights are
close enough [375]. This can be done by keeping the models close during training,
for instance by averaging the weights periodically. However, these operations require
communication as before, and in this case collapse the models diversity. These examples
show that distributed training approaches face trade-offs, between synchronicity of the
models and communication.

In Chapters 3 and 4 of this thesis, we will focus on improving these two ends of
the spectrum of distributed approaches: either use replicas with equal weights, or
use their diversity. At one end is DP, which requires synchronous communication
at every step. Because the replicas all compute simultaneously, they reach the end
of the forward pass, when memory usage peaks, and the end of the backward pass,
when the models must communicate, at the same time. This creates an imbalance in
both communication scheduling and overall memory usage, that can be detrimental
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to parallel implementations. We will focus on balancing both the communication and
memory overhead. At the other end is ensemble training, where the model replicas are
encouraged to diverge from each other to improve their ensemble capabilities. Still,
the distance between the models must be controlled during training for them to be
amenable to averaging, at the expense of both the diversity of the models and a high
communication volume during training. In both cases, efficient communication is the
key to improve distributed training.

1.3.3 MP approaches using alternatives to backpropagation

As for MP approaches, they aim at finding more efficient ways to estimate the gradient
used in DL training. Since backpropagation is at the root of their issues, it seems
natural to look for alternative gradient estimation methods that might be easier to
parallelize. A first method that remove the idleness of workers in pipeline parallelism is
to approximate the backpropagation gradient by using delayed quantities [259, 411],
which can affect performance. Several ideas have also been proposed for a different
reason, namely to find learning rules for DNNs that are more biologically plausible, i.e.,
likely to be used by the brain [216]. These approaches are often backward unlocked,
requiring only a forward pass in the network, for instance by using forward-mode AD
[319, 21, 296], which is the inverse operation to backpropagation. However, they result in
a severe drop in performance compared to backpropagation. Conversely, local learning is
a promising approach that is motivated by increasing parallelization while maintaining
performance [265, 26]. The idea is to keep the backpropagation algorithm, but to
divide the network into sequential stages connected only by feedforward connections.
In each stage, a local training objective is used to compute backpropagation only in
that stage. This approach has been shown to scale well compared to other alternatives
to backpropagation, but still results in a performance gap with backpropagation [223,
318]. This is due to the greedy effect of local training losses, which do not optimize
early stage activations to be used for later stages, resulting in an information collapse
[365]. Like with distributed learning, MP approaches require trade-offs, mainly between
parallelization capacity and performance.

In Chapters 5 and 6 of this thesis, we look at MP approaches with a particular
focus on local learning methods. They offer a good balance between parallelization and
performance, since the stages retain the benefits of backpropagation while computing
separately in parallel. Several approaches have been proposed to address the resulting
performance gap. For example, regularization of these losses has been shown to have
a promising albeit limited effect in the case of supervised local learning [365]. On the
other hand, introducing feedback from the last layer’s loss could also be used to improve
local learning, if this doesn’t bring back unwanted computational locks. These two
approaches could be a way to bridge the gap with backpropagation, resulting in highly
parallelizable learning approaches with similar performance to end-to-end learning.
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1.3.4 Research questions

The goal of this thesis is to propose more parallelizable alternatives to standard training
paradigm in DL. It is possible to diverge from the synchronous parallelized mini-
batch SGD paradigm, but existing approaches require improvements. Distributed
training approaches must either keep the synchronicity between the model replicas with
an expensive synchronous communication step, or break it for instance for ensemble
training, but this requires careful trade-offs between communication and model diversity.
MP approaches like local learning are faster by the virtue of being backward unlocked,
but their performances are lower than backpropagation, and existing regularization
approaches are not enough to close this gap. From these two axes, two main research
questions emerge that will drive this thesis and its contributions.

• How can we improve backward unlocked MP approaches to achieve perfor-
mance comparable to traditional backpropagation?

• How can we improve both synchronous and ensemble training with more
communication-efficient approaches?

We have presented the background of this thesis, i.e. the parallelizable training
approaches that diverge from the standard DL paradigm, and the research questions
that emerge from it. We now present the contributions and structure of this thesis.

1.4 Contributions of this thesis

In this thesis, we present four contributions that deal with parallelizable approaches to
DL training, divided between the two axes discussed earlier into two publications each.

First, we work on alternatives to backpropagation that are more amenable to par-
allelization, in particular the field of local learning, which aims at dividing the DNN
into independent stages, each with its own local training objectives. We will explore
ways to reduce information collapse in self-supervised local learning using data subsam-
pling. We will also show how local learning can be used to improve forward-mode AD
approaches.

We then contribute to the field of distributed learning by proposing training al-
gorithms that focus on the communication required between devices. We show how
changing the execution of computations in standard DP result in synchronous learning
with improved balance of communication and memory across workers. Then, we pro-
pose a novel ensemble training algorithm that allows training a population of models in
parallel with low communication volume, which can be weight averaged at the end of
training into a high accuracy model.
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1.4.1 Local learning approaches for DL training

Preventing Dimensional Collapse in Contrastive Local Learning with Subsampling
Louis Fournier, Adeetya Patel, Michael Eickenberg, Edouard Oyallon, Eugene Belilovsky.
ICML 2023, Workshop on Localized Learning.

• We use contrastive self-supervised objectives for local learning. We demonstrate
an information collapse between stages, and we show that it can be remedied
by subsampling certain examples, either using an oracle or the stagewise feature
similarity.

• Abstract: This paper presents an investigation of the challenges associated with
efficiently training Deep Neural Networks (DNNs) via self-supervised objectives,
using local learning as a parallelizable alternative to traditional backpropaga-
tion. In our approach, the DNN is segmented into distinct stages, each updated
independently via gradients provided by small local auxiliary neural networks.
Despite the evident computational benefits, extensive splits often result in perfor-
mance degradation, a consequence of information loss between stages. Through
analysis of a synthetic example, we identify a layer-wise dimensional collapse as
a major factor behind such performance losses. To counter this, we propose a
novel and straightforward sampling strategy based on stagewise feature-similarity,
explicitly designed to evade such dimensional collapse. Extensive experiments
on the STL-10 and CIFAR-10 datasets confirm the effectiveness of our proposed
approach to prevent this collapse, paving the way for highly parallelized training
of self-supervised DNNs on a nearly layer-by-layer basis.

Can Forward Gradient Match Backpropagation?
Louis Fournier*, Stéphane Rivaud*, Eugene Belilovsky, Michael Eickenberg and Edouard
Oyallon. ICML 2023.

• We investigate the use of local learning objectives to obtain gradients that can be
used for forward-mode AD. We demonstrate that this allows Forward Gradient
methods to scale, although a performance gap remains with backpropagation due
to the difference in alignment between local and global gradients.

• Abstract: Forward Gradients - the idea of using directional derivatives in forward
differentiation mode - have recently been shown to be utilizable for neural net-
work training while avoiding problems generally associated with backpropagation
gradient computation, such as locking and memorization requirements. The cost
is the requirement to guess the step direction, which is hard in high dimensions.
While current solutions rely on weighted averages over isotropic guess vector
distributions, we propose to strongly bias our gradient guesses in directions that
are much more promising, such as feedback obtained from small, local auxiliary
networks. For a standard computer vision neural network, we conduct a rigorous
study systematically covering a variety of combinations of gradient targets and
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gradient guesses, including those previously presented in the literature. We find
that using gradients obtained from a local loss as a candidate direction drastically
improves on random noise in Forward Gradient methods.

1.4.2 Communication-efficient distributed approaches for DL training

Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks
Louis Fournier and Edouard Oyallon. Preprint.

• We propose an alternative to the standard data parallelism framework by forcing
a cyclic rather than simultaneous execution of workers. By balancing the total
memory occupied by activations as well as the stage gradients communication
during training, we demonstrate that a variety of parallel implementations using
data parallelism can be improved.

• Abstract: Training large deep learning models requires parallelization techniques
to scale. In existing methods such as Data Parallelism or ZeRO-DP, micro-batches
of data are processed in parallel, which creates two drawbacks: the total memory
required to store the model’s activations peaks at the end of the forward pass, and
gradients must be simultaneously averaged at the end of the backpropagation step.
We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the
micro-batches from simultaneous to sequential, with a uniform delay. At the cost
of a slight gradient delay, the total memory taken by activations is constant, and
the gradient communications are balanced during the training step. With Model
Parallelism, our technique reduces the number of GPUs needed, by sharing GPUs
across micro-batches. Within the ZeRO-DP framework, our technique allows
communication of the model states with point-to-point operations rather than a
collective broadcast operation. We illustrate the strength of our approach on the
CIFAR-10 and ImageNet datasets.

WASH: Train your Ensemble with Communication-Efficient Weight Shuffling, then
Average
Louis Fournier, Adel Nabli, Masih Aminbeidokhti, Marco Pedersoli, Eugene Belilovsky and
Edouard Oyallon. Preprint.

• We propose a novel distributed approach to ensemble training. By randomly
shuffling a very small fraction of the weights, the population of models can be
averaged into a high performance final network with very low communication
overhead.

• Abstract: The performance of deep neural networks is enhanced by ensemble
methods, which average the output of several models. However, this comes at an
increased cost at inference. Weight averaging methods aim at balancing the gener-
alization of ensembling and the inference speed of a single model by averaging
the parameters of an ensemble of models. Yet, naive averaging results in poor
performance as models converge to different loss basins, and aligning the models
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to improve the performance of the average is challenging. Alternatively, inspired
by distributed training, methods like DART and PAPA have been proposed to train
several models in parallel such that they will end up in the same basin, resulting in
good averaging accuracy. However, these methods either compromise ensembling
accuracy or demand significant communication between models during training.
In this paper, we introduce WASH, a novel distributed method for training model
ensembles for weight averaging that achieves state-of-the-art image classification
accuracy. WASH maintains models within the same basin by randomly shuffling a
small percentage of weights during training, resulting in diverse models and lower
communication costs compared to standard parameter averaging methods.

1.5 Structure of this thesis

This thesis is structured as follows.

• We have first introduced our thesis subject and contributions in Chapter 1. We
then summarize the literature relevant to our contributions, mainly related to
parallel training for DNNs and alternatives to backpropagation, in Chapter 2.

• In the first part of this thesis, we present our two contributions to the field of
backpropagation alternatives. We focus our study on approaches related to local
learning, a model parallel approach to training DNNs with strong performance
relative to backpropagation. In Chapter 3, we study self-supervised local learning
and show that we can reduce the performance gap with backpropagation by
subsampling examples from the local losses computations. In Chapter 4, we bridge
local and global learning by using local losses gradients as tangent directions for
forward-mode automatic differentiation.

• Then, in the second part of this thesis, we present our two contributions regarding
distributed learning in DL. In Chapter 5, we propose to improve standard DP
by shuffling workers execution from simultaneous to cyclic. At the opposite of
synchronized distributed learning, we also improve approaches to learn a diverse
population of models with limited communications in Chapter 6. By shuffling
randomly parameters, we find that these models can be averaged into a high
performance model.

• Finally, we present a conclusion of our thesis as well as a perspective on the
approaches we tackled. After the bibliography, we also provide the Appendix of
our works in Appendixes A to D. A summary of the thesis in French is provided in
Appendix E.
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Chapter2
Related work

In this chapter, we propose a more thorough overview of the exisiting works related
to our thesis. In Section 2.1, we first summarize the existing techniques that allow
a parallel training of DNNs, divided into distributed and MP approaches. Then, in
Section 2.2, we provide an overview of the approaches that more specifically propose an
alternative to backpropagation, for reasons of biological plausibility or computational
efficiency.

2.1 Parallel training in DL

In this section, we present in more detail the current approaches used to parallelize
the training of DNNs. These approaches can be broadly classified into two categories:
Distributed training, where the DNN is replicated on different workers; and MP, where
the components of the DNN itself are divided into multiple stages, each assigned to a
dedicated worker.

2.1.1 Distributed training: learning with model replicas

Data parallelism: synchronous distributed learning

Modern DL frameworks frequently operate on large clusters of interconnected nodes
of GPUs. The standard DP framework leverages this to parallelize computations for
training a DNN [74, 208]. The model is first replicated on several workers. Then at each
training step, the mini-batch of data is split into separate micro-batches that are com-
puted on separately by each replica. The locally computed gradients are subsequently
averaged across all workers to obtain the gradient with regard to the full mini-batch,
using an all-reduce operation, that does not necessitate a centralized parameter server.
The resulting averaged gradient is used to locally update the models, typically following
SGD. A schematic representation is proposed in Figure 2.1.
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Figure 2.1: Models training
with Data Parallel. Each color
represent a model replica, com-
municating its gradients with
an all-reduce operation after
every training step (arrows).

However, this method suffers from several disadvan-
tages. First, the model states, i.e., the DNN parameters,
the averaged gradients, and the optimizer states (for
instance, the momentum in SGD), are replicated on
each model, resulting in the total memory increasing
linearly with the number of workers. Secondly, the com-
munication step is synchronous, as all workers must
complete their gradient computations before commu-
nicating. This results in idle workers waiting for the
slowest worker [138]. Furthermore, the communica-
tions costs of the all-reduce operation increase either
logarithmically or linearly [51]. In Transformers archi-
tectures [353], the data is composed of a sequence of
tokens. Consequently, it can be divided not only within
the batch but also within this sequence. Thus, the ap-
proach of sequence parallelism [210, 180, 204] entails
the splitting of token computations among the workers, in a manner analogous to that
of DP. However, this approach necessitates communications between all workers for
every computation of an attention layer.

Example 2 Mini-batch SGD with Data Parallelism.

In a standard DP framework for computing SGD on a mini-batch of data, each
worker n ∈ [1,N ] receives mini-batch slices xn = (xn,1, ...,xn,B), called micro-batches,
of size B. The replica of the model fn is associated with a differentiable loss L,
resulting in the training objective Ln = L ◦ fn, which takes as input xn and is
parameterized by θt. At each training step t, using backpropagation, each worker
n computes the gradient of its local loss function with respect to the parameters
for the entire mini-batch 1

B
∑B

b=1∇θLn(xn,b,θt). Typically using an all-reduce
operation [51], the gradients are averaged over the workers. Finally, each worker
locally updates the parameters θt using the averaged gradient. With the learning
rate γt, the standard SGD update rule [299] used in DP can be written as

θt+1 = θt −
γt
NB

N∑
n=1

B∑
b=1

∇θLn(xn,b,θt). (DP)

Nevertheless, as datasets and DNNs grow in size [5], the memory required to store a
complete model replica, as well as the activations required for backpropagation, often
exceeds the memory capacity of a single device. This makes standard DP implementa-
tions impractical. To reduce the memory cost of DP, one notable technique is to shard
model states across workers, thereby avoiding memory redundancy. This concept was
initially proposed as Zero Redundancy Optimizer powered DP (ZeRO-DP) [289] and
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subsequently implemented in PyTorch [9] under the name Fully-Sharded DP [404]. We
represent the model states sharding of ZeRO-DP in Figure 2.2.

Figure 2.2: Models training with ZeRO-DP. The states of the models are divided into
stages, with each stage being held by a single worker. This approach reduces the memory
overhead but increases the communication volume.

Example 3 Zero Redundancy Optimizer powered DP.

Training with mini-batch SGD with ZeRO-DP results in the following changes
during backpropagation. We assume that the DNN can be divided into J sequential
stages j ∈ [1, J] where a stage is a single layer or a set of layers. To train with
ZeRO-DP, we have J = N the number of workers. The worker n receives only the
parameters and optimizer states of the corresponding stage n.
During the forward pass of the backpropagation training step, when the workers
reach stage n, the worker broadcasts the parameters to all other workers. After
computing the forward pass on this stage, the parameters are deleted from the
memories of all workers except n.
During the backward pass, when reaching the stage n, the parameters are first
broadcast from the associated worker as before to compute the gradients. After
deleting the stage parameters, the locally computed gradients are then gathered by
the worker n, which updates the stage parameters using its shard of the optimizer
states. It should be noted that only this worker optimizes the stage parameters,
since it holds the only version of the parameters that will be propagated to the
others. Fully-Sharded DP is the same algorithm, with the sole distinction being
that the model states are sharded equally among the workers for all stages, as
opposed to one stage being assigned to one worker.

This method avoids the need for a linearly increasing memory, at the cost of an
increase in communication volume of at most ×1.5. The required memory can be further
reduced by storing model states on the CPU [295, 288], at the expense of communications
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between the CPU and GPU, which are much slower than inter-GPUs ones. This issue is
resolved by updating the optimizer on the CPU in parallel of the gradient computations,
thus hiding the communication cost. However, this requires that the parameters used
for training are one optimizer step behind the latest version, resulting in a ‘Delayed
Parameter Update’. Delayed gradients are often a way to speed up computations, as we
will see in the following section or with MP approaches. Finally, to address the increase
in communication volume of ZeRO-DP, improvements have been proposed by either
compressing communications [356] or striking a balance with the memory [400].

Communication-efficient distributed training

However, the main issue in DP approaches remains the need to synchronously commu-
nicate gradients between workers, which becomes more important as computational
hardware improves [281]. We now discuss more general distributed methods that soften
the synchronization requirement between the workers, either by allowing models to be
potentially different during training, or by updating locally for a number of steps before
the synchronous communication. This loss of synchronization has an obvious advantage,
which is a reduction in communication volume. The decentralized distributed training
methods [391, 93, 114] do not require synchronous global communication between
workers. Rather, each worker communicates with its neighbors using a gossip algorithm.
By using more complex algorithms leveraging Chebyshev polynomials [311, 182, 328]
or the graph resistance [95, 257, 256], this can lead to accelerated communication rates,
while reducing the communication overhead. In addition, the communication step can
be overlapped with the gradient step, hiding it completely [14, 257, 256]. However, these
methods require additional variables, that increase the memory overhead of distributed
training.

Another approach, called Local SGD, proposes to maintain synchronicity between
the workers but allow several local update steps on the workers before the periodic
averaging [332]. This idea predates DNN training [412, 235] and is still being studied
theoretically [374, 248]. Specific algorithms that mitigate the effects of the reduced
averaging steps have allowed the method to be used for training DNNs, such as EASGD
[398], SlowMo [359], or Post-local SGD [218, 276], using momentum buffers at the cost
of an additional memory overhead. The communication bottleneck can be completely
hidden by overlapping communication and computation, as in Overlap local-SGD [358],
COCO-SGD [315] or CO2 [339]; and heterogeneous hardware can be handled with
worker-specific computation rates [81, 230]. Federated learning, where models train on
their private local data and communicate infrequently, makes particular use of such
learning algorithms [236, 179, 212, 293]. This approach has also been linked to Bayesian
learning [103] in [366, 86], and to subnetwork training [87, 317]. Note that in this feder-
ated case, the averaging step requires a centralized parameter server that all workers
will communicate with. This is an opposite approach to the previous decentralized
training methods where workers were located on potentially poorly connected graphs.
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a) Model ensembling b) Model averaging

Figure 2.3: Inference with a population of models. The predictions of the models can
be averaged, resulting in model ensembling (a). Faster and more memory-efficient but
with possibly worse results, inferring with the averaged model (b) of the population
gives in an approximation of the ensemble prediction.

Ensemble training and model averaging

The distributed training approaches discussed so far trade consensus between model
replicas for reduced communication overhead. Pushing this idea to its limit, the model
replicas could never communicate and simply be trained in parallel without communica-
tion. With this approach, the resulting population of DNNs presents a diversity that can
be used to improve prediction performance. This approach is referred to as ensembling,
where the predictions of multiple models are combined to improve the ability of the
predictive system to make accurate generalizations [79, 191] as well as to reduce the
variance of the estimator [41]. We represent it in Figure 2.3a. We will refer to distributed
training without communication as a form of ensemble training. The variance reduction
of ensembling is especially effective when the population of models exhibits diversity:
in particular when the models’ errors are uncorrelated, i.e., that they do not fail on the
same instances simultaneously [113, 99]. However, ensembling requires the memory
and inference time of each of the models in the ensemble. These resources are critical
for on-device inference [237], rendering the generalization improvement potentially
superfluous.

To resolve this issue, the population of models can be merged into a single model
to try to combine both the improvements of ensembling and the lower inference cost
of a single model [213]. A simple technique is to average the weights of the different
models to obtain a fused model [376], as represented in Figure 2.3b. This idea was first
explored in simple linear [192] and convex scenarios [286, 39], before being explored in
DL in Stochastic Weight Averaging (SWA) [151]. They establish that weight averaging is
a first-order approximation of the ensemble when models are close in the weight space.
Notably, a simple averaging of multiple points along the SGD trajectory leads to better
generalization. SWAD [49] proposed to exclude suboptimal solutions for SWA with a
dense and overfit-aware weight sampling strategy. For independently trained models,
it was observed that the loss basins to which the models converge to are connectable
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[104, 102] (this can referred to as mode connectivity). Thus, [33, 375] proposed learning
simplexes in parameter space with a regularization penalty to encourage diversity in
weight space. Similarly, [377, 290] train multiple model branches with different last-
layer initializations and hyperparameters concurrently. These models are later averaged
to enhance generalization and reduce the inference cost. However, for these models to be
amenable to weight averaging, they must start with the same pre-trained initialization
[261]. This can reduce model diversity at the expense of performance (see Figure 6
of [99]), revealing a trade-off between model diversity and weight averageability. To
alleviate this issue, neuron alignment techniques [321, 3, 282, 143] match the units of
multiple networks to make them amenable to weight averaging, but they rarely work
in practical scenarios [162], often achieving performance below that of the individual
models.

Distributed training with limited communication offers an alternative to ensemble
training that can allow model averaging. Indeed, approaches have been proposed to
train a population of models in parallel on heterogeneous data, while communicating to
control model diversity. DART [157] and Branch-Train-Merge (BTM) [207] propose a
three-phase training pipeline. The process begins with an initial shared training phase,
followed by the parallel training of multiple models, each diversified by different data
domains or different data augmentations. Finally, these models are merged into a single
model. They find that iterative refinement of the last 2 stages enhances the overall
optimization trajectory and improves generalization. To increase the diversity among
the models, PAPA [161] proposes to push the model weights more gradually towards
the averaged parameters using an Exponential Moving Average (EMA) throughout the
training process, thus controlling the model diversity more finely. In particular, they
show that training a population this way yields models that generalize better than a
model trained alone with the same computational resources as the entire population,
demonstrating the potential of these approaches.

These distributed methods are algorithmically very similar to the communication-
efficient methods that we discussed earlier, which also traded the consensus requirement
for a reduced communication volume. In particular, the training in DART and BTM is
similar to the Local SGD training, where models are periodically averaged after several
computational steps. PAPA, which uses an EMA of the averaged model to gradually move
the models toward consensus, is similar to methods such as EASGD [398] or SlowMo
[359]. Only averaging a population at the end of training, as in BTM, has also been
proposed for Local SGD [330], and federated learning also uses techniques discussed
previously for model merging [357, 392, 56]. Still, these approaches discussed here
require an all-reduce operation to compute the averaged model. This communication
may be infrequent, but results in a complete loss of the diversity in the population [157].
The EMA of PAPA is applied more frequently, resulting in a high communication cost
during the parallel training of the model population, hindering its scalability as the
population size increases [276].
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Example 4 PopulAtion Parameter Averaging (PAPA).

Compared to previous DP approaches, PAPA does not keep the model replicas at
consensus. To maintain diversity between models, the parameters are initialized
differently, and the models are trained with different data augmentations and
regularizations. The local model parameters are thus denoted as θn

t , and the
averaged model as θ̄t ≜

1
N

∑N
n=1θ

n
t . In each training step, the models are updated

locally before being pushed towards the averaged model using an EMA, with
parameter α (adapted to the learning rate). This ensures that the models are in
the same loss basin. This results in

θn
t+1/2 = θn

t −γt
1
B

B∑
b=1

∇θLn(xn,b,θ
n
t ) , θn

t+1 = (1−
αγt
γ0

)θn
t+1/2 +

αγt
γ0

θ̄t+1/2 . (PAPA)

In this section, we considered distributed training methods, that train replicas of
a model on different workers, either with regular communication (DP), maintaining a
constant consensus between workers, or with less frequent communication, mitigating
the consensus between models, which can be used to induce diversity for ensembling.
We now consider the other side of parallel approaches to DL training with MP, which
directly divides the components of the network during training.

2.1.2 Model parallelism: learning with model shards

Exact backpropagation computation

a) Intra-layer b) Inter-layer

Figure 2.4: Models training with model parallelism. The components of a network can
be divided in two different ways. In intra-layer MP (a), multiple workers are used to
handle the computation of a layer in parallel. On the other hand, workers in inter-layer
MP (b) each worker computes on a separate slice of the network (called a stage).
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Model Parallelism [74] refers to the family of parallel approaches in DL training
that partition the network being trained, rather than the micro-batch, to parallelize
computations. This family can be further subdivided into approaches that partition
the layers of the network itself (i.e., intra-layer MP), or partition the network into
different sequential components (i.e., inter-layer MP). These approaches are illustrated
in Figure 2.4. Note that these parallelization techniques are often integrated together,
with 3D parallelism [316, 323, 325], for example, combining DP and the two forms of
MP mentioned above. Intra-layer MP is mostly known as tensor parallelism [158, 316,
360], and partitions the individual layers across workers. For instance, the operation of
a linear layer can be subdivided by splitting the weight matrix into several sub-matrices,
and concatenating the result of each matrix multiplication to obtain the final output.
This method is algorithmically simple, but requires heavy modification of the DNN
implementation as well as high communication costs.

Pipeline Parallelism (PP) is the standard example of inter-layer MP, and proposes
instead to divide the network into sequential stages (sets of layers, as in ZeRO-DP),
each on a different device. A naive training in this framework is suboptimal, since only
one of the workers computes at a time since the stages are executed sequentially in the
forward-backward pass, as presented in Figure 2.5a. The pipeline framework introduced
by GPipe [146] mitigates this problem. It divides mini-batches into micro-batches
that are passed sequentially to successive stages. This allows each micro-batch to be
propagated to the next stage as soon as it has completed its forward pass, allowing stages
to compute micro-batches in parallel. GPipe thus reduces the number of idle workers,
but still leaves an unwanted ‘bubble’, shown in white in Figure 2.5b. Other pipeline
schedules have been proposed to strike a balance between the size of the idle bubble
and the memory overhead required to store activations and stage parameters [171]. For
instance, DAPPLE [97] reduces the activation memory overhead and also combines with
DP by using stage replicas to handle micro-batches partitions. GEMS [156] further
reduces this overhead, but requires a much larger bubble. Similarly to GEMS, Chimera
[211] uses a bidirectional pipeline, but heavily reduces the bubble in exchange for a
high peak memory. [193] pushed this idea to its limit, with the same issue. These
techniques are effective for synchronous parallel training. Automatic schedulers that
optimize both the pipeline schedules and the use of other parallelisms help to further
reduce idleness and memory overhead [97, 344, 405]. However, such as the previously
mentioned communication-efficient distributed methods, some asynchrony is needed to
significantly reduce the resources needed during training.

Asynchronous pipelining

First introduced with AMPNet [105], the key to completely remove the bubble of idle
workers in PP is the ‘1F1B’ (One Forward One Backward) pipeline schedule, where
each worker alternates between the forward pass of one micro-batch and the backward
pass of another. We represent this schedule in Figure 2.5c. To avoid the convergence
problems of asynchronous learning, PipeDream [259] popularized this framework by
stashing copies of the parameters, such that the backward pass of a micro-batch can be
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a) Standard MP

b) GPipe

c) PipeDream and
asynchronous
methods

Time

Stage 2
Stage 1
Stage 0

Stage 2
Stage 1
Stage 0

Stage 2
Stage 1
Stage 0

Figure 2.5: Mini-batch execution in different pipeline frameworks. The colors cor-
respond to different micro-batches, and a black line represents an optimization step.
A naive implementation of a inter-layer MP framework (a) results in a single stage
(and thus worker) being computed on at a time. By splitting the mini-batch into micro-
batches, workers can compute in parallel as proposed in GPipe (b). This still results in
idle workers, which can be mitigated by feeding micro-batches are fed as in PipeDream
(c) at the cost of using delayed gradients. Note that in practice, backward passes take
about twice as long as forward passes, compared to our schematic representation.

done with the corresponding version of the parameter used during the forward pass.
However, these buffers come at a high memory overhead, which increases for the earlier
stages. PipeDream-2BW [258] improves on PipeDream by keeping only two versions of
the parameters and accumulating the gradients of the micro-batches to update them.
This reduces the staleness to one optimization step, but the memory overhead due to
micro-batch activations remains, resulting in a quadratic volume with respect to the
number of stages.

Example 5 PipeDream-2BW.

In this learning framework, the network is split into J sequential stages, and each
worker receives the parameters of one stage j, of which it keeps two versions at
all times: θ

j
t and θ

j
t−1. At each time step, a new micro-batch is fed to the first

worker for its forward pass, and a new mini-batch is split into micro-batches if
necessary. Each worker alternates between a forward step and a backward step.
In the former, it executes the forward propagation of the last micro-batch that
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the previous stage communicated to it, using the updated parameters θ
j
t , and

then forward it to the next stage. In the backward step, it executes the backward
propagation of the last micro-batch it received from the upper stage, and similarly
propagates the gradient to the previous stage. Compared to the forward pass, it
uses the delayed parameters θj

t−1 since the parameters have been updated since
the forward pass, and using the updated parameters would not result in a valid
gradient. When a worker has computed the gradients for all the B micro-batches
of a mini-batch, it updates its parameters with the accumulated gradients. For
the model, the resulting update rule (when training with SGD) is the following
one-step delayed rule

θt+1 = θt −
γt
B

B∑
b=1

∇θL(xb,θt−1). (PipeDream-2BW)

Like AMPNet, more asynchronous methods have been proposed to further decouple
the stages and their forward and backward passes. These approaches can be referred to
as delayed gradient training methods. In these techniques, delays occur stage-wise: the
backward pass may be computed with outdated parameters or activations compared
to the forward pass. For instance, [147] proposes a feature replay approach, where a
forward pass first stores intermediate activations, which are then ‘replayed’ to compute
the backward pass in parallel. This method still requires heavy synchronization between
layers, resulting in a lock on computations. In [410, 411] stale gradients are computed
from older parameter versions that differ from the parameters used during the update.
These methods, like previous pipelining methods, are limited by their memory overhead
because the computational graph is fully stored. A first step to reduce this, as proposed
in Diversely Stale Parameters [385], PipeMare [387] and [181], is to keep a single set of
parameters and approximate the gradients computed during the backward pass with
the updated parameters, that differ from those used in the forward pass. However, the
quadratic activation memory overhead still limits the scalability of these methods for
many stages.

Learning with delayed gradients

Both the pipelining techniques discussed previously and distributed asynchronous
training methods (and some synchronous [295]) require delayed gradients in their
updates, or other delayed quantities when approximating the gradients. Due to their
ubiquity, their convergence rates have been extensively studied, in the case of distributed
SGD with a parameter server, which is centralized compared to our general DP case.
Earlier works focused on the maximum delay [2, 333], while more recent ones show that
asynchronous SGD is faster than standard mini-batch SGD even with unbounded delays
[176, 379, 98, 247]. The impact of momentum on delayed SGD has also been addressed
[250, 397]. In practice, several methods have been proposed to mitigate the effect of
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the delay on the convergence. When possible, a simple practice is to have a warm-up
period where the optimization steps are forced not to be delayed [295]. The idea is that
the error due to the delay depends on the difference between the parameters that are
delayed or not. As the DNN converges, the influence of the delay becomes negligible.
Several techniques propose to rescale the delayed gradient, simply using the delay value
[399, 382, 411] or with more elaborate schemes [18]. By approximating the Hessian
matrix with the (diagonal of the) outer product matrix of the gradient, also known as
the Fisher information matrix, [406] offers to rectify the approximated error due to the
delay. In federated learning and delayed gradient training approaches, accumulating
delayed values is another way to reduce the effect of their delay [410, 262]. Finally, in PP,
another approach has been proposed to mitigate the effect of staleness. By predicting
the future weights using the momentum of the optimizer, the gradients used for training
are computed on parameters closer to the real parameters. The simplest approach is to
directly use the momentum, scaled by the delay, as the direction of the weight change
[54]. More elaborate predictions have also been proposed for SGD to further reduce the
impact of the delay [181, 387], but the impact of different optimizers is still relatively
unexplored [121, 122].

Example 6 Staleness mitigation methods.

Here we consider a DNN learning with SGD with momentum, that receives a
mini-batch gradient (written ∇f (θt−τ ) for simplicity) computed on a previous
version of the parameters τ optimization steps away. A first type of staleness
mitigation method is to replace the gradient with a rescaled version, with some
examples

∇L(θt−τ )← 1
τ
∇L(θt−τ ) (Staleness-aware)

← 1

1 + |θt−θt−τ |
γmaxEt |∇L(θt−τ )|

◦∇L(θt−τ ) (Gap-aware)

←∇L(θt−τ ) +λt∇L(θt−τ ) ◦∇L(θt−τ ) ◦ (θt −θt−τ ) ,
(Delay-compensation)

where λt is a control parameter. The other technique is to predict the weights τ of
later optimization steps using the SGD momentum (noted as vt). These predicted
weights are then used for the gradient computation ∇L(θ̂t), with

θ̂t ≜ θt−τ − τγt−τvt−τ (Weight prediction)

As previously observed, parallelizable approaches in DL training, whether following
the distributed or MP paradigm, often requires more intricate computational techniques
to obtain, communicate, or use the backpropagation gradient, potentially with delays.
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As the source of the limitations for efficient learning at scale, it is no surprise that a vast
literature aims at finding alternatives to the backpropagation algorithm, which we will
discuss in the following section.

2.2 Alternatives to backpropagation

Despite the ubiquity of the backpropagation algorithm, this gradient estimation method
is plagued by two main problems: its biological implausibility, which we will discuss
next, and its computational cost. For these reasons, other ways of training DNNs
have been investigated, with the end goal of finding a biologically plausible, energy-
efficient, and faster DL training algorithm. We present in this section different families
of alternatives to backpropagation, and we summarize some of the notable ones in
Table 2.1. We note how biologically plausible they are (notably, if they require weight
transport), whether the training objective followed is global (at the end of the DNN) or
local, their computational lock, whether they approximate the backpropagation gradient,
and finally a synthetic representation of the performance of DNNs trained according to
these frameworks. We will first explain why backpropagation is considered biologically
implausible, before presenting bio-inspired learning approaches.

Table 2.1: Summary of the major alternatives to backpropagation (BP) We propose
to summarize the alternatives discussed in Section 2.2, on their biological plausibility
(Bio. plsb.) and if they require weight transport (WT). We also summarize whether
their learning objective is global or local (Objective), what are their computational
locks (Locking), if they approximate backpropagation (≈ BP) and their approximate
performances (Perform.).

Algorithm WT Bio. plsb. Objective Locking ≈ BP Perform.

Backprop. ✓ ✗ Global Bwd +++

Hebbian [310] ✗ ✓ Local Fwd ✗

Fdbck. Align. [264] ✗ ≈ Global Updt ✗ +
Equil. Propa. [313] ≈ ≈ Global Bwd ✓ +++
Target Propa. [92] ✗ ≈ Global Bwd ✓ +++
Forward Grad. [21] ✗ ✗ Global Updt ✓ +
Synth. Grad. [155] ✓ ✗ Local Bwd ≈ +
Local Learning [26] ≈ ≈ Local Fwd ✗ ++

2.2.1 Biologically plausible alternatives

One of the main reason for searching alternatives to backpropagation is to avoid its
biological implausibility. The idea is that, although the structure of DNNs is inspired
by the network of neurons found in the brain, it seems unlikely that the brain learns
according to a mechanism equivalent to the backpropagation used for DNNs [297, 216].
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In fact, several problems can be highlighted. First, the backpropagation algorithm
suffers from the weight transport problem [47, 69, 119]. Forward and backward propa-
gation require two types of connections between neurons: feedforward and feedback
ones. Furthermore, both require the knowledge of the same weights to compute the
backward pass associated with a forward pass, an impossibility in the brain known as
the weight transport problem [216]. Other similar synchronizations and computations
seem difficult to reconcile with our current knowledge of the brain. Neurons must be
able to compute and communicate their activations derivative [272]. They must wait for
the backward pass before updating with the corresponding activations (a point which
we will discuss next). Even the main problem that DNN training aims to solve, which
is the minimization of a training objective, is not necessarily the same objective that is
followed by synaptic plasticity in the brain [297].

Most importantly, as described in the introduction, the brain is able to learn very
efficiently [88] while requiring much less energy than backpropagation [336, 16]. For
these reasons, it seems necessary to find more biologically plausible alternatives to
backpropagation that could train networks as efficiently as the brain.

Hebbian learning

Computational neuroscience aims to develop biologically plausible neural systems
using local learning rules that do not require backpropagation. Following the Hebbian
principle [132], the synaptic plasticity of neurons is modeled such that neurons that
"fire together, wire together". Oja’s rule improve on this idea by adding a weight decay
term [269]. The weights of the neurons following this rule align with the principal
component of the input data. The Generalized Hebbian algorithm [310] extend on this
subspace learning as it computes the Principal Component Analysis (PCA) of the data.
The Winner-Takes-All learning rules leverage additional inhibitory interactions [305,
226, 252]. Other approaches called three-factor Hebbian learning models [106], such as
REINFORCE [373], use a reward signal to improve the learning rule. Attention-Gated
Reinforcement Learning (AGREL) [302] and Q-AGREL [287] add an attention gating
mechanism to select the neurons that learn.

Another approach is to consider a different modeling of biological neural networks,
for example with Spiking Neural Networks (SNNs) [389, 266, 190]. In this framework,
activations are not represented as static values, as in standard DNNs, but as temporal
activity spikes, with their values encoded in their timing or frequency. Their training
remains a challenge because standard backpropagation is impossible in such DNNs
[190]. Several learning rules have been studied for SNNs, such as Spike Time Dependent
Plasticity [34], the equivalent of Hebbian learning for SNNs, or the BCM rule [35, 186],
which uses a weight decay term as in Oja’s rule.

Energy-based approaches

Three different families of backpropagation alternatives can be categorized as energy-
based approaches. They opt to view the learning step not as two phases to propagate a
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gradient, as with the forward and backward passes of backpropagation, but two phases
where the model converges to different states. They are based on Energy-Based Models
(EBM) [200] where the training objective, called energy, is a more general function than
in standard backpropagation. It depends on both the classical supervised loss but also
an additional internal energy defined by the model internal state. The fundamental
EBM is the Hopfield network [141], which has binary neurons that serve as a kind of
biological associative memory.

Internal energy
loss function

Activations 

Gradients

Total loss

Supervised loss
function (only in
clamped phase)

DNN Stage and
states

Figure 2.6: Representation of train-
ing with Equilibrium Propagation and
similar energy-based methods. In a
first free phase, the model converge ac-
cording to an internal energy. In the
second weakly clamped phase, a super-
vised loss is added (in parentheses). The
scaled difference between the parame-
ter gradients of these two states approx-
imates the backpropagation gradient.

The first family, Contrastive Hebbian
Learning (CHL) [255, 267, 383] was intro-
duced to train continuous Hopfield models
[142]. In the first free phase, only the input
is fixed, the network converges to an equilib-
rium and then update its weights following a
Hebbian rule. In the second clamped phase,
the output is also fixed, and after the model
converges again, an anti-Hebbian (i.e., neg-
ative) weight update is performed. Since it
uses neural activation difference rather than
gradients, this kind of approach is referred
to as ‘neural gradient representation by activ-
ity differences’ (NGRAD) methods by [216].
NGRAD approaches, such as GeneRec [267]
recirculation [136] or [369, 308], are seen as
more closely following our understanding of
feedback in the brain than backpropagation.

Predictive Coding Networks (PCNs) [292,
272] are another EBM approach. They are re-
lated to the neuroscience principle of free en-
ergy [246], where the network perform both
inference and learning, by learning to predict

the input. PCNs approximate backpropagation [370, 326] although other approaches
try to differentiate from this approximation [6, 327, 242].

Finally, Equilibrium Propagation (EP) [313] is an EBM approach similar to CHL.
Rather than clamping the output value during the second phase, the outputs are ‘nudged’
towards the target with a clamping loss term. Improvements of EP have been proposed to
avoid the weight transport problem [175] or to make it more amenable to DNN training
[189], notably by updating the parameters during the clamped phase and not only at the
end [91]. These three EBM approaches can be unified as approximating backpropagation
[245], as all minimize a supervised loss and an additional internal energy. PCNs follow
a CHL algorithm using the variation free energy instead of the Hopfield internal energy
and EP is an infinitesimal perturbation of the EBM loss function.
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Example 7 Equilibrium Propagation.

Training with Equilibrium Propagation is done in two successive stages. In each,
the state X of the network (i.e., all its activations) converges by minimizing a total
energy E composed of two terms. The first term is a standard supervised loss L(X),
computed with the output of the DNN. The second term is an internal energy – or
primitive – function on the state of the network. It is generally a form of Hopfield
energy [141, 30], which translates into a symmetric weighting requirement [91].
If the DNN is a multilayer perceptron (MLP), with pre-activation states xi , an
activation function ρ, and layer weights and biases Wij ,bi , the internal energy is
defined by I (X) = 1

2
∑

i x
2
i −

1
2
∑

i,jWijρ(xi)ρ(xj )−
∑

i biρ(xi). Then the total energy
function is E(β,X) = I (X) + βL(X) where β is an influence parameter. In the first
‘free phase’ the states of the model converge only according to the internal energy

E(0) = I . This results in the state X̄0 such that ∂E(0,X̄0)
∂X = 0. In the second ‘weakly

clamped phase’, the model converges following the total energy for a small value

of β. We obtain X̄β such that
∂E(β,X̄β)

∂X = 0. Finally, the parameters θ of the network
are updated using the following value ∆

∆ =
1
β

(
∂E(β,X̄β)

∂θ
− ∂E(0, X̄0)

∂θ

)
. (Equilibrium Propagation)

When β tends to zero, this value tends exactly to the backpropagation gradient

lim
β→0

∆ = lim
β→0

1
β

(
∂E(β,X̄β)

∂θ
− ∂E(0, X̄0)

∂θ

)
(EP limit)

=
∂
∂β

(
∂E(0, X̄0)

∂θ
)
)

=
∂
∂θ

(
∂E(0, X̄0)

∂β
)
)

=
∂L
∂θ

.

Auxiliary variables

An alternative family of DNN training method is to rewrite the DNN learning problem
using auxiliary variables. This rewriting of the optimization problem is similar to
the previous energy-based approaches, but with a greater focus on the optimization
task rather than biological plausibility. Still, this approach requires one forward and
backward pass before even tackling the local sub-problems [64]. This idea was proposed
in [70], using Lagrange multipliers. Auxiliary variables replace the layer activations
(pre or post-activation function) and decompose the deep optimization problem as
a combination of coupled simpler problems, that can be solved in parallel. A less
restrictive idea proposed using auxiliary variables between stages of the DNN and not
all layers [115]. Two different approaches tackle these problems: the Block Coordinate
Descent (BCD) methods, and the Alternating Direction Method of Multipliers (ADMM)
ones. BCD approaches solve the sub-problems cyclically, keeping the other blocks fixed.
Meanwhile, ADMM approaches first use the saddle points of augmented Lagrangian
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functions via primal and dual variable updates. The primal variables are updated in an
approach similar to BCD.

A BCD approach to DNN training was first proposed in [196]. Lifted Neural Net-
works [13] is a similar BCD-inspired approach based on representing the activation
functions of a DNN as the argmin of a corresponding convex optimization problem.
Improvements have been proposed simultaneously in Fenchel Lifted Networks [120]
and Lifted Proximal Operator Machines [206]. [395] provides a deeper theoretical
understanding of these BCD methods. Regarding the ADMM approaches, the Method
of Auxiliary Coordinates [48] uses quadratic penalties to enforce the sub-problems
constraints, however, it then requires solvers for these sub-problems. Two concurrent
methods have been proposed using ADMM to train the sub-problems more effectively:
very deep supervised hashing [401], and [345], which uses Bregman iteration methods.
Rather than neuron-level computations, [396] allows for layer-level ones. However,
these methods are not adapted to mini-batch training, except for [64].

Learning with no weight transport

Finally, we discuss approaches that aim to avoid the weight transport problem discussed
above. Indeed, the credit assignment problem [217] remains a challenge for computa-
tional neuroscience. It asks how to assign credit (or blame) to neurons in early layers,
for changes in later layers. The weight transport problem makes the answer proposed by
backpropagation unsatisfactory, and thus some methods have been proposed to address
this specific problem. For example, in [124], segregated dendrites are used to receive
feedback and compute local error signals. To train DNNs on large datasets, two main
ideas have been proposed.

Feedback Alignment (FA) was introduced by [217] as an approach that avoids the
symmetric backward connections of backpropagation by greatly relaxing this require-
ment. The idea is to propagate the error not with the same weights as in the forward
pass, but with random and fixed feedback weights between layers. This method shows
promising results in simple cases and is more biologically plausible than backpropaga-
tion, and we represent in Figure 2.7a. It has also been coupled with CHL methods in
[77]. Sign-symmetry is a slightly relaxed version of FA that allows feedback weights to
be equal to the sign of the feedforward weights, and has shown some promising results
despite this limited information [215, 381]. Direct Feedback Alignment (DFA) [264]
extends the idea of FA even further by not propagating the error through the layers to
reach lower stages. Rather, the loss error is given directly to each layer, directly scaling
the random fixed layer weights and thus further parallelizing the process. We represent
training with DFA in Figure 2.7b. A similar idea is presented in Kickback [17]. [294]
studies the learning dynamics of DFA and finds that the DNN weights first learn to align
with the feedback weights, before memorizing the data. However, although DFA has
been applied to special Optical Processing Units [268], which are photonic coprocessors
used for large-scale random projections, this learning approach does not scale well for
large-scale DNN training [197].

Instead of using fixed feedback weights, another proposed alternative is to have
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backward matrices
(backward pass)
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a) Feedback
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Figure 2.7: Training with feedback alignment methods. The feedback connections
in a DNN are not symmetric as in backpropagation. (a) In Feedback Alignment, the
backpropagation algorithm is exactly the same, with the only difference being the use of
random and fixed feedback weights. (b) To avoid a slow backward pass, Direct Feedback
Alignment parallelizes the process by using the error signal directly at each layer instead
of propagating it.

distinctive but learnable feedback weights. Target Propagation (TP) was first introduced
in [29] with this idea. Targets are propagated from the end of the network with separate
feedback operators, and the difference between activations and targets is used to update
the feedforward operators. In this approach, the DNN can be seen as a stack of auto-
encoders [216], a type of network that learns to reconstruct its input [1]. However, there
is a significant reconstruction error in standard TP, which is mitigated in Difference
Target Propagation (DTP) by modifying the propagation formula [202, 19]. Other similar
approaches have been proposed, such as Local Representation Alignment [275, 274],
weight mirror approaches [188, 4], or using auto-encoders [165]. Finally, using the links
between DTP and Gaussian-Newton updates [28, 241], [92] introduces Local Difference
Reconstruction Loss (L-DRL), which ensures that the feedback-pass Jacobian matches
the transpose of the feedforward-pass Jacobian, by using a more sophisticated learning
scheme.

Example 8 Local Difference Reconstruction Loss.

This improvement over DTP uses noisy perturbations to train the feedback weights
and ensures that the feedback path computes the Jacobian of the feedforward path
in expectation and in the limit of small noise. The feedback equivalent of the
feedforward layer fj and parameters θj are gj and ωj respectively. With θ > 0 and
ϵ,µ ∼N (0,θ2), the feedback weights at layer j are trained following the following
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Figure 2.8: Representation of training with target propagation methods. As in FA, the
feedback weights are different from the feedforward weights. In this case however, they
are learned, by using perturbations of activations before or after the forward connections
to align the backward ones.

L-LDR loss

Lj = −ϵ⊤
(
gj(fj(xj + ϵ,θj ),ωj )− gj(xj+1,ωj )

)
+

1
2
∥gj(xj+1 +µ,ωj )− gj(xj+1,ωj )∥2 .

(L-LDR)

2.2.2 Computationally efficient alternatives

Other alternatives to backpropagation have been proposed, that focus more on improv-
ing the efficiency of the backpropagation algorithm than on making it more biologically
plausible.

Memory-efficient approaches

Without many modifications to the backpropagation algorithm, two approaches, check-
pointing and reversibility, allow to reduce the memory required to store intermediate
activations during the forward pass [324]. Tangentially related, compression and quan-
tization schemes are another family of approaches that aim to reduce the memory
overhead in DL, but without modifying backpropagation [260, 249]. They can also
reduce the communication overhead in distributed learning [46, 128, 386].

Activation (or gradient) checkpointing is a method that trades additional computa-
tions for a reduced memory overhead due to the buffered activations [58]. The main idea
is not to store all the activations required during the forward pass of the DNN. Rather,
the activations chosen to be stored are considered as a kind of ‘checkpoint’. During
the backward pass, all activations not stored in memory are computed again, starting
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Figure 2.9: Representation of training with reversible backpropagation in reversible
networks. Unlike standard backpropagation, there are no buffers to store the intermedi-
ate activations computed during the forward pass. Instead, the activations needed to
compute the gradients are reconstructed during the backward pass, using the output of
each stage.

from the last checkpoint. In other words, the memory overhead is reduced, for the
approximate computational cost of an additional forward pass for the activations not
stored. This idea has been combined, for example, with modern parallelism implemen-
tations [170, 221]. Assuming that the J stages of the network are homogeneous, with k
the number of stages kept as checkpoints, the maximum number of stages with stored
activation memory at any time is k (number of checkpoints) + J−k

k (interval between
two checkpoints, fully used during the backward pass). Minimizing this simple case
yields the classical number of checkpoints used in modern DL implementations [9],
which is every

√
J stages [133]. However, this hides an important disparity among

different DNN architectures. For instance, [180] shows that Transformers [353] can be
particularly optimized by checkpointing just before the attention blocks. More generally,
the heterogeneity of modern DNN models requires automatic planners to compute the
optimal checkpointing schedule [133, 403].

Another approach proposes to reduce the activation memory overhead even further.
Inspired by nonlinear independent components estimation [80], which learns a bijective
transformation, [110] first proposed RevNets, a reversible DNN based on the ResNet

architecture [130]. Reversible DNNs are particular architectures of DNNs that are
composed of layers that are invertible. This means that the input of a layer can be
computed only from the output of the layer. Such approaches allow to avoid the storage
of intermediate activations during the forward pass, since they are reconstructed and
propagated with the gradients during the backward pass. However, some layers may not
be invertible, requiring the buffering of some activations. Furthermore, reconstruction
has a computational cost equivalent to a forward pass, similar to activation checkpoint-
ing. Invertible networks is the name given to reversible networks that consist only of
invertible layers, removing any activation buffer in the DNN. For example, in convo-
lutional architectures, this requires removing dimensionality reduction steps such as
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downsamplings [22, 153]. Reversibility is not limited to one type of architecture or task.
Such networks have been used extensively for generative models [12], denoising [220],
inverse problems [11], and in other architectures such as Recurrent Neural Networks
(RNNs) [52] and Transformers architectures [229, 214]. We represent such methods in
Figure 2.9.

Forward pass approaches

The backward pass of the backpropagation algorithm is the reason for its computational
locks and activations buffering. Thus, several alternatives propose to train the network
with forward passes only. Some methods propagate additional data along with the input
to update the layers locally. The forward-forward approach [135, 273] uses two forward
passes to propagate positive and negative data. Meanwhile, signal propagation [174]
proposes to propagate both the input and a learning signal (e.g., the label in a supervised
setting) with the same weights, which are updated using a local loss on the propagated
values.

The most common approach to using only forward passes in DNN training is to
approximate the backpropagation gradient. Zero-order methods [108] perturb the
activations or weights of the model directly, and use finite differences of the losses to
approximate the value of the directional derivative of the loss gradient along the pertur-
bation [329]. This idea was first used in early alternatives to backpropagation as weight
perturbation [233] and node perturbation [152, 372, 368] methods. However, learning
with such methods is very slow due to the variance of the estimation [53]. Nevertheless,
this method has shown some success in some fine-tuning tasks, as presented in MeZO
[228].

Another similar approach has been proposed that takes advantage of recent deep
learning frameworks. The backpropagation gradient is computed using backward-mode
AD. Forward-mode AD [367, 117] reverses the order of computation of the gradient.
Computations in the chain rule are performed from the input gradients, from the
first to last layer. Although it is computable during the forward pass, this method
is not applicable to DNN training because the number of computations required to
obtain the gradient scales linearly with the input size. This is not competitive with
backpropagation, as backward-mode AD is constant with respect to the input size.
However, there is a way to make this computation as fast as backpropagation: computing
the directional derivative of the loss instead of the entire gradient. In other words, the
backpropagation algorithm can be seen as a vector-Jacobian product, where the loss
value is a scalar vector and the Jacobian of the DNN is its gradient. Given a tangent
vector of the same size as the input, forward-mode AD computes a Jacobian-vector
product, where the vector is the tangent. This only returns a scalar value, the directional
derivative of the loss with respect to the tangent. Multiplied by the tangent, this is equal
to the projection of the gradient on the tangent. Silver et al. [319] showed that this
idea could be used to train RNNs, as it provides an ideal candidate to solve the issue
with long-term Backpropagation-through-time. [21] popularized using this idea as an
alternative to backpropagation under the name Forward Gradient (FG), to train DNNs
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in a single forward pass. More specifically, by sampling stochastic Gaussian tangents,
they show that the gradient projection computed with forward-mode AD provides an
unbiased estimate of the gradient. This training framework is represented in Figure
2.10a. Further theoretical analysis of the FG algorithm was provided by Belouze [27],
which showed that sampling the tangent from a Rademacher distribution provides
the unbiased estimate with minimum variance. Although the method by which such
derivatives could be computed is unclear, this method is more biologically plausible
than backpropagation, as it removes the weight transport problem. Following this
idea, [15] combines FGs with DFA. To scale FG, [296] proposes three improvements that
reduce the variance of the estimate. Instead of perturbing the parameters to compute the
FG, they show that, depending on the architecture, perturbing the activations provides
a reduction in variance. Instead of trying to approximate the end-to-end loss, they
propose to approximate local losses – which we will discuss next – to reduce the size
of the estimated Jacobian, as represented in Figure 2.10b. Finally, similar to [279],
the output channels are divided into groups, each associated with a local loss, further
reducing the variance. Even with these changes, the FG scales poorly and no longer
approximates the backpropagation gradient.

Example 9 Forward Gradient.

In the Forward Gradient framework, a tangent direction ν with the same size d as
the parameters θ is sampled from a distribution with a zero mean value, and a unit
covariance. For instance, ν ∼N (0, Id). Then, during the forward pass, we compute
a Jacobian-vector product

〈
1
B
∑

i∇θf (xi ,θ),ν
〉
. Finally, the parameters θ of the

network are updated using ∆, which is the projection of the mini-batch gradient
along the direction ν, an unbiased estimate of the backpropagation gradient

∆ =
〈

1
B

∑
i

∇θf (xi ,θ),ν
〉
ν . (Forward Gradient)

Supervised Local learning

Finally, we present the family of approaches that we refer to as Local Learning (LL) [83].
Also referred to as Modular, Layerwise, or Greedy Learning, we categorize here all the
approaches that split a DNN into stages (possibly at the level of a single layer), connected
only by feedforward connections, and each with its own local training objective, as
represented in Figure 2.11b. We will start by describing LL approaches in the context of
supervised learning.

The use of local losses has emerged for reasons other than LL. First, the addition of
intermediate local losses to the main training objective [201] can be used to improve the
performance of a DNN. By having the network randomly choose a local loss as its output,
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Figure 2.10: Training with forward gradient methods. (a) Using a random tangent
direction (yellow), a Jacobian-vector product is computed during the backward pass.
The value multiplied by the tangent is then used to update the weights. (b) To reduce
the variance of the gradient estimate, local losses can be used.

it can also speed up training as this amounts to training a smaller network [112]. A
related idea has been proposed to not backpropagate through early layers after a certain
portion of the training run to train the model faster [43]. Having intermediate local
losses can also allow to look at the DNN differently. [144] proposes to consider a ResNet
model [130] as a stack of weak classifiers and the whole network as a strong learner.
Meanwhile, inspired by the Cascade-Correlation Learning Architecture [96], [231]
trains DNNs with Deep Cascade Learning by incrementally increasing the size of the
network. Other similar works train a network by increasing its size layer by layer, such
as [355], [253] which is inspired by boosting theory, and [167] for generative networks.
In particular, [67] proposes to grow a DL model by trying candidate subnetworks to
append to the existing network. Finally, the idea of local losses that allow classification
at intermediate points of the network can be used to have early exits in the DNN [347,
362, 312]. These are especially important in adaptive inference, which aims to reduce
inference time [205, 194, 390].

Our main point of interest in local losses for this thesis is different from the previous
ideas. LL can be used to train a network layer by layer (or stage by stage), preserving
only the feedforward connections between layers. This results in an update unlocked
learning algorithm, that can be parallelized more easily than other MP approaches like
PP, which relies on backpropagation. It is also possible to train each layer to convergence
before starting to train the next layer. This idea of supervised layerwise learning has
been explored in early works but only for simple problems [203, 134], or for a limited
class of computer vision problems [227]. In [254], a random classifier matrix is used
to produce the stage prediction, and [8] rather uses the difference between pre and
post-activation values for their local losses. LL approaches have also been related to
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kernel learning. For instance, [187] trains a network layer by layer by solving a kernel
problem at each layer. [84, 85] propose to view DNNs as a stack of linear models in
feature spaces (looking at the pointwise activations as being applied at the beginning
and not at the end of the layers) and link them to kernel machines. Then, a contrastive
objective is applied to train these local kernels. However, all previous LL methods
remained non-competitive with backpropagation except in simple cases.

As discussed at the beginning of this section, [155] first proposed the different locks
of backpropagation. In this work, the authors also proposed an update unlocked training
method using Synthetic Gradients (SG), which is slightly different from the classical
LL paradigm. In it, instead of a local loss, each stage has an auxiliary network that
outputs a synthetic gradient, that is fed back to the previous stage. The error between
this synthetic gradient and the real one is used to update the auxiliary network during
a later backward pass. This idea is illustrated in Figure 2.11b and has been studied in
more detail in [71].

LL has been shown to be competitive with backpropagation even for large-scale
image classification tasks in Greedy Learning [25], by demonstrating that using appro-
priate trainable auxiliary networks before computing the local loss, as in [155], allows
to improve the performance of the DNN. Taking this approach further, it is possible
to have a forward unlocked learning algorithm called Decoupled Greedy Learning, by
storing activations in a buffer at the beginning of each stage and replaying them to
train the stages asynchronously [24, 26]. Other improvements to this method have been
suggested. [265] uses a combination of two different supervised local loss functions to
improve LL. More specifically, the addition of a supervised clustering loss improves on
the use of a cross-entropy loss alone. Another exploration proposed by [279] is to add
width-wise modularity to the depth-wise modularity of LL by dividing the output of the
stages into groups, each with its own local loss. Finally, some approaches have proposed
intermediate approaches with more standard backpropagation learning. [109] proposes
a method between local and global learning, where the activations of each stage are
propagated to a few other stages before using a local loss to compute its gradient. Thus,
in this framework, stages are connected with feedback weights, but backpropagation is
still limited to a few stages. [263] offers a different setting, related to model distillation.
A ‘meta-model’ is first pretrained with backpropagation. Then each stage is trained
separately, keeping the other stages frozen from their pretraining initialization. The
concatenation of the trained stages results in the final model.

Example 10 Greedy Learning.

In Greedy Learning and similar LL approaches, the network is split into stages
and each stage has at his disposal an auxiliary network aj (parameterized by ωj)
associated with a local loss. Here we consider that this local loss is the same
supervised loss used to train the output of the DNN. Then, for each mini-batch
fed to the network, training at a stage j proceeds as follows: first, a forward pass
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propagates the activations as in standard backpropagation x
j+1
i = f j(xji ,θ

j). A
‘stop gradient’ operation is used to avoid any feedback connection from the next
stages. Then, the activations are fed into the stage auxiliary network and the local
loss to compute the mini-batch loss L = 1

B
∑

i aj(x
j+1
i ,ωj ). Then, a backward pass is

computed solely for the auxiliary network and the stage j to compute the gradients

∆
j
a =

∂L
∂ωj

,∆j =
∂L
∂θj

, (Greedy Learning)

which are used to update both the stage and the auxiliary network, following
standard optimization algorithms.

Nevertheless, these LL approaches maintain a performance gap with models trained
with backpropagation. One explanation for this gap is that local losses greedily optimize
the supervised loss, producing suboptimal intermediate representations, as shown by
[365]. To address this problem, they propose InfoPro, by adding an expensive recon-
struction loss to the local supervised loss to preserve information in the intermediate
representations. A similar regularization approach has been proposed by [166], inspired
by the minimizing movement scheme of optimal transport. [309] analyzes further local
training through the lens of the information bottleneck. They show that backprop-
agation allows for better propagation of information through the network, and that
information compression is approached differently for different stages of the network.
Meanwhile, models trained with local training show uniform compression across all
stages, or, when trained with InfoPro, a uniform increase. The same idea led to the
use of Mutual Information Neural Estimation (MINE) [23] to train DNNs with LL [90,
89]. Another approximation to the information bottleneck, the Hilbert-Schmidt inde-
pendence criterion (HSIC) was used by [225] to learn a network in which each stage
both maximizes the HSIC between its activations and the labels and minimizes it with
the input. Further improvements have made this approach more biologically plausible
[285].

Unsupervised Local learning

Self-supervised learning has made significant progress in recent years in the fields of
LLMs [78] and Computer Vision (CV), where large amounts of unlabeled data can be
exploited. In particular, methods based on contrastive learning have enabled major
breakthroughs in CV. In this approach, representations are learned by contrasting
positive (similar) and negative (dissimilar) examples. Notable algorithms in this area
include Momentum Contrast [131], which uses a dynamic dictionary to store and
contrast features, and SimCLR [59], which uses a data augmentation strategy to produce
positive examples and a projector network before contrastive loss. Other popular
methods have been proposed to avoid the need for negative examples, such as BYOL
[118], which uses a slow-moving average of the network acting as the target network,
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Figure 2.11: Training with Synthetic Gradients and Local Learning approaches. (a)
Using synthetic gradients means using an auxiliary network that takes into input the
activations and outputs a synthetic gradient that is used to backpropagate through the
stage. The backward pass will provide the real gradient to update the auxiliary network.
(b) Local learning approaches are diverse, but can generally be represented as a DNN
with only feedforward connections between the stages. Each stage has an auxiliary
network (or not) and a local loss, that will provide the gradients to update the stage.

or the Barlow Twins method [393], which trains positive example representations to
have a cross-correlation matrix close to the identity. Note, however, that self-supervised
contrastive learning can lead to dimensional collapse. In particular, [160] showed that
the SimCLR loss leads to low-dimensional embeddings without proper projectors, which
is addressed by their proposed architecture. More sophisticated data sampling strategies
have been proposed to improve the SimCLR framework [148, 60], such as hard negative
sampling, which prioritizes difficult negative examples [300, 342].

LL approaches have also been proposed with unsupervised training objectives.
Greedy layerwise unsupervised learning [31] was first used as a way to efficiently
pretrain the network, before using backpropagation to fine-tune the entire model. Sim-
ilar greedy learning was used for fast training of deep belief networks [137]. This
approach has been extended to image classification and visual recognition, by learning
a sparse dictionary by cascading pooled sparse learned on image patches of a dataset
[36]. Unsupervised LL can also be linked back to the Hebbian learning methods shown
earlier. In particular, [149] showed that biologically plausible contrastive LL can scale
to deep networks. Conversely, standard Hebbian learning rules can be seen as a form of
LL, with appropriate losses [244].

Following the improvements of self-supervised approaches in CV and LLM, LL
approaches using contrastive methods have shown promising results to improve on the
previous unsupervised objectives. [223] proposed a method for CV based on mutual
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information criteria, following the InfoNCE bound [270]. Each stage is trained to maxi-
mally preserve the information of its inputs (patches from the same image) using the
contrastive InfoNCE loss. [384] extended on this idea with an intermediate method
between local and global learning, where the stages are synchronized similarly to [111].
Following another self-supervised CV method, [318] trains a DNN on the large-scale
ImageNet dataset via LL and the Barlow Twins loss. However, the DNN is split into only
four stages, suggesting that achieving greater decoupling is challenging. [195] explored
the use of LL for parallel training, showing the difference in gradient directions and
features between local and global learning. They also showed that LL can be used to
train LLMs. Similarly, [169] suggested using LL to finetune LLMs.

In this chapter, we have summarized the existing parallel approaches for training
DNNs. We have also looked at backpropagation alternatives that can lead to faster
and more biologically plausible learning. With this background, we now present the
contributions of this thesis in the following chapters. First, we introduce our work
regarding MP approaches related to local learning.



Part I

Local learning approaches for DL
training





Chapter3
Preventing Dimensional Collapse in
Contrastive Local Learning with
Subsampling

In this chapter, we present our first contribution to the field of local learning. We
complement the knowledge of the informational collapse studied in supervised local
learning, to the self-supervised contrastive case. We show that efficient subsampling of
the examples can improve the performance of local learning by preventing a dimensional
collapse.

This chapter led to a workshop paper at ICML 2023, at the Workshop on Localized
Learning (LLW). We present in this chapter a version of this work with additional results.
My contributions in this work start from the modification of the original idea, which was
doing curriculum learning for local learning by using an oracle. I used local activation
similarities in an inverse way, performed all the experiments and showed an dimensional
collapse phenomenon and that our my method prevented it.

Contribution

Louis Fournier, Adeetya Patel, Michael Eickenberg, Edouard Oyallon, Eugene
Belilovsky. Preventing Dimensional Collapse in Contrastive Local Learning with
Subsampling. ICML 2023, Workshop on Localized Learning.

3.1 Introduction

Training a DNN via backpropagation is a computationally expensive process that re-
quires sequential and synchronous processing of layers, with intermediate computations
stored in memory [155]. A promising alternative to this approach is local learning,

45
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which separates the objective functions for different subsets of the network and can
update in parallel a subset of parameters associated with a particular task or input. In
this paradigm, a Neural Network is divided into smaller stages, with each layer updated
via gradient estimates that emulate End-to-End (E2E) dynamics. These gradients are
typically generated from small auxiliary NNs [265], which allows efficient parallelization
of computations and limits memory usage with limited overhead. Nevertheless, the
quality of these gradient estimates is highly dependent on the auxiliary NNs, and in
supervised settings, larger splits (i.e., smaller stages) often result in a more significant
accuracy gap with End-to-End training [26].

This performance discrepancy is often attributed to information loss, where a local
auxiliary network may greedily focus only on features relevant to its specific task, inad-
vertently allowing other potentially useful features for subsequent layers to dissipate
and become inaccessible [365]. This phenomenon also seems to manifest in unsuper-
vised settings: very deep NNs are usually divided into a limited number of components
(e.g., only 4 in [223, 318]), which limits their parallelization potential. However, this
issue has not been investigated until our work. Beyond the computational benefits, the
integration of unsupervised and local learning is appealing because it paves the way for
the development of more biologically plausible algorithms. However, the comparison is
hampered by the length of the stages of the DNNs, given the biological implausibility of
backpropagation within large stages.

Unsupervised learning [291], which takes advantage of large unlabeled datasets, has
proven effective in generating representations for a variety of Machine Learning (ML)
tasks. Recently rebranded as self-supervised learning [107, 82], these techniques train
networks on proxy tasks derived from unlabeled data in a supervised manner. If these
proxy tasks are chosen wisely, they allow the transfer of intermediate representations
to tasks such as object recognition or object detection. The SimCLR framework [59], a
leading contrastive learning method, facilitates End-to-End training of representations
with competitive performance in object recognition, comparable to supervised learning.
Owing to its simplicity and widespread use, we have chosen to adopt this framework for
this study, approaching it through the lens of local learning.

Contributions. We consider the challenge of dividing a DNN trained via self-supervision
into larger amount of stages, while maintaining competitive final performance. Our
contributions are as follows:

1. We identify a dimensional collapse phenomenon caused by local self-supervised
learning, which results in an undesirable information loss.

2. Motivated by an oracle subsampling method and a synthetic experiment, we
propose a simple feature-similarity-based sampling method that prevents this
collapse in local learning settings, allowing to reduce the information degradation
from one local block to another.

3. Our experiments, conducted on the large-scale CIFAR-10 and STL-10 datasets,
validate the effectiveness of our method.



3.1. Introduction 47

4. We perform several ablation experiments on the CIFAR-10 dataset to emphasize
the improvement achieved by our methods, especially over dimensional collapse.

Chapter organization. This chapter is structured as follows: first, we motivate and
then discuss our subsampling strategy in Section 3.2. Next, Section 3.3.1 derives our
numerical performance on image classification datasets, while Sections 3.3.2 and 3.3.3
consists of ablation experiments. Finally, we link this work to our current work on
self-supervised local learning for LLMs.

Our code is available at: https://github.com/fournierlouis/subsampled_loca
l_simclr.

Activations
(forward pass)

Gradients
(backward pass)

DNN Stage
Local projector 
network

Attract
positive examples

Repel 
negative examples

Example removed

Data augmentations

Figure 3.1: Representation of our local contrastive training framework. Following
the SimCLR framework, two data augmented examples from the same image are fed
to the DNN. In contrast to standard end-to-end learning, the DNN is divided into 3
sequential stages with only feed-forward connections. At each stage, a local projector
network receives the output of the stage to compute the local contrastive self-supervised
loss. The pair of examples generated from the same image is a positive example pair,
and all other pairs are negative example pairs. Our subsampling method proposes to
remove some examples from the loss computation depending on their alignment.

https://github.com/ fournierlouis/subsampled_local_simclr.
https://github.com/ fournierlouis/subsampled_local_simclr.


48 CHAPTER 3. Preventing Dimensional Collapse in Contrastive Local Learning

3.2 Method

3.2.1 Framework: Decoupled SimCLR

End-to-End SimCLR A typical SimCLR pipeline consists of a base encoder DNN f
and a small projector head network g. A data augmentation procedure is applied to a
mini-batch of size B, generating 2B augmented data examples. Each data augmented
pair from the same example is considered a positive example, resulting in B pairs
of positive examples. All other possible pairs are considered negative example pairs,
resulting in 2B(B −1) pairs of negative examples. Each of the 2B samples xi is passed
through the encoder to obtain a representation hi = f (xi) and then projected, resulting
in zi = g(hi). Following [59], a similarity score sim(xi ,xl) (here the cosine similarity,
which takes values between -1 and 1) is associated with each pair of samples. With τ as
a temperature parameter, this results in the SimCLR loss function L defined by

L =
1

2B

∑
i

Li , where, Li = − log
exp(sim(zi ,zl+i )/τ)∑2B

l=11l,i exp(sim(zi ,zl)/τ)
, (3.1)

where l+i is the index of the positive example associated with the example i and Li is its
associated loss.

Decoupling SimCLR Following the local learning framework of [26], we consider
a decoupled DNN consisting of J stages. Each stage, a small network f j , propagates
features in a forward pass to the next stage f j+1. However, stage j will not receive
gradients from stage j + 1. For an example xi , we consider intermediate representations
x
j
i = f j(xj−1

i ). The parameters of each stage are updated using the SimCLR framework

with intermediate representations xji . To achieve this, we consider J small projector head

networks gj and intermediate projections z
j
i = gj(xji ). To unlock the stage [155], each

pair f j , gj is updated locally by backpropagation with the following local loss, similar to
Eq. (3.1):

Lj =
1

2B

∑
i

Lji , where, Lji = − log
exp(sim(zji ,z

j
l+i

)/τ)∑2B
l=11l,i exp(sim(zji ,z

j
l )/τ)

, (3.2)

The stage-by-stage training procedure, as it stands, is unable to guide the initial stages
to preserve information that could be crucial for the subsequent stages. To address
this shortcoming, we first propose the implementation of a curriculum learning strat-
egy [127], that relies on the ‘difficulty’ level of a sample. We hypothesize that exposing
a decoupled DNN to easier samples can potentially improve its convergence behavior,
by stabilizing features in the intermediate levels and avoiding the greedy effect of local
learning.
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Table 3.1: Linear evaluation test accuracy with and without using oracle-based sub-
sampling on CIFAR-10 for a DNN trained End-to-End (E2E) and decoupled in J = 16
stages. The accuracy decreases for an E2E model trained with subsampling, while it
substantially increases for J = 16.

Nb of stages J SimCLR + Oracle

1 (E2E) 92.4 91.7
16 85.6 89.1

3.2.2 A motivating example: improving local learning with an oracle

A natural way to incorporate knowledge about the difficulty of examples can be to use an
oracle network, trained End-to-End as a way to measure the similarity between examples.
Easy examples for the oracle network have high similarity for positive examples and
low similarity for negative examples. We can then use this knowledge of difficulty to
modulate the training objective of the decoupled network.

Method More specifically, consider a network f̃ (a ResNet-50 in our case), trained on
the SimCLR loss without decoupling. The final representation learned by the network
for an example xi is z̃i = f̃ (xi). We propose a natural way to improve the learning
objective defined in Eq. (3.2), by considering only examples that could be considered
‘easy’ for the oracle network. Thus, the training goal of the decoupled network will be
easier, since it will only focus on a subsampled set of examples, possibly reducing the
information loss observed in local learning. We propose two binary values β+

{i,l+i }
and

β−{i,l} that indicate whether a positive or negative pair of examples can be considered easy
for the oracle network: if their final representations are close enough for a positive pair,
or far enough for a negative pair. We define two thresholds T +,T −, and then consider the
similarity of a pair of data examples with the cosine similarity of their representations,
which does not depend on depth j

β+
{i,l+i }

≜ 1sim(z̃i ,z̃l+i
)≥T + , β−{i,l} ≜ 1sim(z̃i ,z̃l )≤T − . (3.3)

Thus, for each positive sample pair {i, l+i } and stage f j , we obtain the following loss
function, which depends on the oracle similarity of the pair of data examples:

Lji = −β+
{i,l+i }

log
exp(sim(zji ,z

j
l+i

)/τ)∑2N
l=11l,iβ

−
{i,l} exp(sim(zji ,z

j
l )/τ)

. (3.4)

Results We report in Table 3.1 the accuracy results of this method on CIFAR-10 for
the thresholds T + = 0.7 and T − = 0.3, for J = 1 (End-to-End) or 16. We observe that this
method decreases the accuracy for an End-to-End trained network. However, we see a
stark improvement in the accuracy of a decoupled network, reducing the gap with the



50 CHAPTER 3. Preventing Dimensional Collapse in Contrastive Local Learning

End-to-End network from 6.8% down to 3.3%. This indicates that subsampling methods
can serve as powerful tools to scale up local learning to larger splits. We observe that
selecting negative examples that are considered easy for the oracle can be viewed as a
form of false negative removal [148, 60], which we discuss in the Appendix.

This method is effective for improving decoupled networks, but suffers from a major
flaw. The knowledge of an oracle network is incompatible with the goal of our decoupled
network, which requires only local information to be more biologically plausible. Still,
the information provided by the oracle is very weak. A simple proxy could be to replace
the oracle similarity sim(z̃i , z̃l) by the stagewise representation similarity sim(zji , z

j
l ).

However, directly swapping the training goal leads to poor results, especially when
considering negative examples. On the contrary, we argue that in this case it is more
appropriate to consider negative examples with high stagewise representation similarity,
making the procedure similar to hard negative mining [300]. We motivate this idea with
a simple example showing that dimensional collapse can be remedied by subsampling
examples.

3.2.3 Preventing dimensional collapse in a linear model with subsampling

Linear model framework We consider the framework presented by [160], which
simplifies the contrastive framework to a linear model W . This allows us to derive
several theoretical insights despite the limited setting. We consider a dataset composed
of two views of B data points (xi)i and (x′i)i of dimension D, and x the concatenated
dataset vector of size 2B × D. We write z = Wx the corresponding representation
vector. Then, the dynamics of the weight matrix under gradient descent following the
contrastive InfoNCE loss (which is equivalent to the SimCLR loss with unit temperature
when z is normalized) is, with similarity terms sil = 1

Zi
e−

1
2 |zi−zl |

2
, sii = 1

Zi
e−

1
2 |zi−z

′
i |2 , and

Zi =
∑

l,i e
− 1

2 |zi−zl |
2

+ e−
1
2 |zi−z

′
i |2 :

dW
dt

=
∑
i,l

sil(zi − zl)(xi − xl)T︸                      ︷︷                      ︸
Data distribution term

−
∑
i

(1− sii)(z′i − zi)(x
′
i − xi)

T

︸                             ︷︷                             ︸
Data augmentation distribution term

(3.5)

For fixed values of (sil)il , [160] finds that strong data augmentation leads in collapsed
dimensions in W due to negative eigenvalues in dW

dt caused by the data augmentation
distribution term. Indeed, at convergence, dW

dt = 0, such that the data distribution term
equalizes the data augmentation term. For the sake of simplicity, assume here that
the similarities (sil)il are either equal to 0 or 1. In this case, since two data augmented
samples should lead to the same representation, one has that (sii)i = 1, and we have
directly that both the data distribution and the data augmentation distribution terms
must vanish. Following [160], if data augmentation is applied only to certain features [d+

1 : D], then the highest rank matrix W that allows convergence is proportional to
(
Id 0
0 0

)
,
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and the augmented feature dimensions need to be collapsed to allow convergence.

Subsampling to prevent collapse Now, consider that we restrict the sums in both
terms to consider only positive and negative examples with high similarity. Then, at
equilibrium, we would get:

dW
dt

=
∑

i,l,zi≈zl

sil(zi − zl)(xi − xl)T −
∑
i,zi≈z′i

(1− sii)(z′i − zi)(x
′
i − xi)

T = 0 . (3.6)

This is less restrictive, since e.g. W = ID is an equilibrium point without the need
for collapsed dimensions, while preserving the contrastive nature of the loss. This
restriction of the gradient allows much more flexibility in the representation space,
where sil > 0 and sii < 1. This extreme case showcases that removing gradient terms for
low representation similarity removes the need for collapsing dimensions to converge.
This motivates us to adapt the previous subsampling strategy using oracle knowledge to
a stagewise similarity strategy.
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Figure 3.2: Normalized singular value spectrum of the representations z when learning
with the SimCLR loss and our subsampling strategy Eq. (3.8) on the toy example.
Without subsampling (yellow line), the strongly augmented features produce collapsed
dimensions at convergence, in contrast to the subsampling case (blue and purple lines).

3.2.4 Subsampled Decoupled SimCLR

Method We now adapt the oracle subsampling method to better suit our needs. Instead
of relying on the static similarity of example pairs suggested by the oracle, we exploit the
dynamic nature of the similarities of intermediate stage representations. By selectively
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considering examples with high similarity, we aim to preempt the issue of dimensional
collapse. Following Eq. (3.3), we set a lower threshold T to restrict the examples we
consider to those with sufficiently high cosine similarity. To do this, we introduce

α
j
{i,l} ≜ 1sim(zji ,z

j
l )≥T

. (3.7)

Thus, we obtain the following loss function for each positive pair {i, l} and stage f j :

Lji = −αj
{i,l+i }

log
exp(sim(zji ,z

j
l+i

)/τ)∑2B
l=11l,iα

j
{i,l} exp(sim(zji ,z

j
l )/τ)

. (3.8)

Toy example To understand the refinement of our method, we propose to study it
using the toy model of [160]. In this framework, we sample data following the standard
normal distribution with dimension D = 16, from which two augmented views are
obtained by adding standard normal noise multiplied by an amplitude σ on the last 8
dimensions. We train our method according to Eq. (3.8) with gradient descent. Thus,
the only difference from the gradient dynamics in Eq. (3.5) is our use of normalized
representations. We report in Figure 3.2 the singular values of the covariance matrix
of the representations z with a strong augmentation σ = 1.5. Training with standard
SimCLR (T = −1) produces collapsed dimensions. However, by increasing the threshold
T , we observe a drastic reduction in the collapse of the augmentation dimensions, as
predicted earlier.

Table 3.2: Linear evaluation test accuracy results on CIFAR-10 and STL-10, after
training on both SimCLR and our subsampling method. T = 0 for CIFAR-10 and
T = −0.4 for STL-10. Test accuracies for CIFAR-10 are given with the mean and standard
deviation over 5 trainings. We also report the memory cost of local self-supervised
learning for varying the number of stages J , as well as the maximum computation
required by each stage in multiply-accumulates (MACs).

Datasets CIFAR-10 STL-10

J Method Accuracy MACs Memory Accuracy MACs Memory

1 (E2E) SimCLR 92.1 ± 0.2 1.31 G 13.5 GB 87.6 17.1 G 16.7 GB
+ ours 91.4 ± 0.4 86.7

4 SimCLR 90.0 ± 0.1 349 M 8.7 GB 84.3 4.65 G 9.7 GB
+ ours 89.9 ± 0.3 82.6

8 SimCLR 87.5 ± 0.4 196 M 6.3 GB 80.8 2.63 G 7.0 GB
+ ours 88.4 ± 0.4 79.7

16 SimCLR 85.9 ± 0.3 123 M 5.6 GB 77.8 1.69 G 6.1 GB
+ ours 87.1 ± 0.4 78.8



3.3. Numerical experiments 53

3.3 Numerical experiments

Architecture We consider a ResNet-50 [130] base encoder, which we divide into 4, 8
or 16 decoupled stages. For J = 4,8 the split is adjusted to maintain an equal number
of bottlenecks in each stage. For J = 16, the DNN is split after the bottleneck of each
residual block. The precise split is indicated in the appendix. Each local projector gj is
composed of: a 3×3 convolutional layer (with stride 2 and the same number of channels
as the representation), a batch normalization and ReLU layer, a global average pooling,
then a fully connected layer, a ReLU, and a final fully connected layer with output
dimension 128.

Hyper-parameters and datasets We train the networks on two image classification
datasets: CIFAR-10 [184], STL-10 [66] respectively, which consist, respectively, of 5×104

and 105 (for the unlabeled split) images of size 32×32 and 96×96. Each stage is trained
using either the training objective Eq. (3.8) or Eq. (3.2) for the sake of comparison.
Following standard practice [50], for CIFAR-10 and STL-10, our model is trained with
the Adam optimizer [172] with a learning rate of 10−3 and a weight decay of 10−6 for
1000 epochs, with a mini-batch size of 256. The temperature τ is kept at the default
value of 0.5. We choose the threshold T according to the training accuracy in the linear
evaluation: T = 0 for CIFAR and T = −0.4 for STL-10. The training was done on A100
GPUs and took 12 hours for a CIFAR-10 run on 1 GPU and 4 hours on 16 GPUs for
STL10.

3.3.1 Accuracy on image recognition tasks

Evaluation on image recognition task Finally, we do a linear evaluation of the model
trained. The network is frozen, and the fixed representations are used to train a linear
classifier on the frozen representations at the end of the model on the supervised image
classification task. The linear layer is trained for 200 epochs with a batch size of 256
with the Adam optimizer with a learning rate of 10−3 and weight decay of 10−6 with the
cross-entropy loss. We use the STL-10 5k labeled training samples for training, similarly
to [223].

CIFAR-10 and STL-10 results Table 3.2 reports test accuracies and standard deviations
on standard image datasets, comparing our method with the standard SimCLR loss, for
splits in J = 1,4,8 and 16 stages. As expected, and as previously observed for supervised
settings, as the number of splits increases, the test accuracy degrades, even in the
unsupervised setting. The introduction of the data sampling technique of Eq. (3.8) does
not significantly affect our model when splitting in J = 1 or J = 4 stages, which is logical,
as there is a limited information loss (see Sec. 3.3.2). The accuracy on STL-10 improves
meaningfully only for J = 16. In the case of CIFAR-10, our sampling strategy allows to
improve the accuracy of J = 16 to that of J = 8, which is a significant improvement. We
also show the high parallelization potential of our method, by providing the memory
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Figure 3.3: Normalized spectrum of the intermediate representations (xji )i after each
of the 4 ResNet-50 layers, computed from the covariance matrix of the representations of
the entire CIFAR-10 dataset. Four models are presented, trained End-to-End (K = 1) or
decoupled (K = 16) on CIFAR-10 with the SimCLR loss with or without our subsampling
method. With the classical SimCLR loss, the spectra show a fast decay in later layers,
indicating a dimensionality collapse. Adding our sampling technique systematically
leads to a much higher feature dimensionality, even for End-to-End.

cost of our method as implemented, as well as the maximum stage MACs (computation
time required by the slowest stage among the J), which is a lower bound MACs value with
maximum model parallelism. In particular, our method allows us to achieve an almost
threefold reduction in the memory usage during training without any specific code
optimizations. The memory cost is computed using the maximum memory allocated
by CUDA, with the cuDNN benchmark disabled for consistency, on a single A100 GPU
with a batch size of 256 for CIFAR-10 and 128 for STL-10.

3.3.2 Ablation 1: Analysis of the internal representations.

Dimensional collapse in Contrastive Local Learning We now investigate the extent of
dimensional collapse in the representations generated by different methods. To measure
dimensional collapse, we consider the intermediate representations (xji )i (after mean
pooling and flattening) on CIFAR-10 after training. We then compute the representation
covariance and its singular value decomposition to assess the intrinsic dimensionality of
the feature space. This serves as a linear proxy for assessing information content. If such
a linear assessment can be shown to vary between methods, this is a strong indication



3.3. Numerical experiments 55

0 200 400 600 800 1000
Epoch

97.00%

97.50%

98.00%

98.50%

99.00%

Pe
rc

en
ta

ge
 o

f k
ep

t p
os

iti
ve

 e
xa

m
pl

es

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(a) Ratio of positive examples kept.

0 200 400 600 800 1000
Epoch

25.00%

30.00%

35.00%

40.00%

45.00%

Pe
rc

en
ta

ge
 o

f k
ep

t n
eg

at
iv

e 
ex

am
pl

es

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(b) Ratio of negative examples kept.

Figure 3.4: Ratio of positive and negative examples kept through training for each
stage. The model is trained with J = 16,T = 0 on CIFAR-10. Surprisingly, most positive
examples are retained, indicating few outliers. The proportion of negative examples
retained is much lower and decreases during training and with depth. Our method can
be seen as a form of curriculum learning by depth.

of different overall information capacities. Figure 3.3 shows the singular values of the
covariance obtained from the CIFAR-10 dataset representations of a ResNet-50 trained
in different settings. Without the incorporation of our subsampling method, the internal
representation of both an End-to-End and a decoupled model suffer from progressive
dimensionality collapse. This is consistent with the results of [365], who showed that
their measures of mutual information between the representations and both the labels
and the input decreased with depth.

However, we argue that our method prevents this dimensionality loss. In the same
Figure 3.3, we also present the singular values for two models trained with our method,
for J = 1 and 16. There are no differences in the first ResNet layers. However, there is
a significant increase in dimensionality in later layers, both in the decoupled network
and in the End-to-End network. This indicates that our sampling technique affects both
models. Notably, the dimensionality of the last layer of the decoupled model matches
that of the End-to-End SimCLR-trained model.

In the End-to-End network, there is no loss of information due to decoupling, and
thus the increase in dimensionality due to sampling does not improve accuracy. We
believe that the dimensionality increase due to sampling improves accuracy only in the
decoupled case, since it mitigates the information loss due to decoupling, and we study
this effect using a linear probe experiment.

Linear probes To further investigate the effect of our subsampling, especially with
respect to depth, we compute the linear separability of the intermediate representations
xj with linear probes. This is achieved by computing the linear evaluation as before on
the intermediate representations (after global average pooling) and not only on the final
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Figure 3.5: Linear separability on CIFAR-10 of intermediate representations hk at
different depths, estimated with linear probes. A model trained End-to-End will display
a slowly increasing test accuracy with depth, in contrast to a decoupled model which has
much higher accuracy at low depth before plateauing. Our method shows a consistent
improvement over the original baseline.

one. We report in Figure 3.5 the accuracy of the linear probes after training for three
models: a model trained End-to-End with SimCLR, and a decoupled model (J = 16)
trained with and without subsampling.

We observe similar linear probe accuracy to that obtained in local supervised learn-
ing, with very progressive accuracy for the model trained End-to-End, and high accuracy
in the early stages for the decoupled network before plateauing. However, if the greedy
nature of the local supervised learning explained this phenomenon, it is less clear why
local self-supervised learning shows similar linear probe accuracies. The model trained
with subsampling shows a slightly increasing improvement with depth compared to the
one without subsampling, and similar curves. This confirms that our method improves
intermediate representations. However, we do not get a model closer to an End-to-End
one, as we would observe a decrease in the ‘greedy’ phenomenon, i.e., a decrease in the
accuracy of the early layers.

3.3.3 Ablation 2: Understanding the subsampling strategy

Impact of the sampling during training Having confirmed the improvement due to
thresholding, we now report how sampling is affected during training. We report in
Figure 3.4 the ratio of positive and negative examples kept for the loss computation
at each stage during training, for a model trained on CIFAR-10 with J = 16 and T =
0. Surprisingly, almost all positive examples are kept during training, despite the
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Figure 3.6: Test accuracy on CIFAR-10 depending on the number of decoupled stages
J after training on SimCLR with our subsampling method, by subsampling either
positive or negative examples or both. Subsampling negative examples gives the biggest
improvement, but both are needed to get the best accuracy.

improvement provided by thresholding positive examples. In comparison, a much
smaller ratio of negative examples is retained during training, with as few as a quarter
of examples kept in the final stage at convergence. This is in contrast to the common
belief in contrastive learning that a large number of negative examples are needed.

The number of negative examples retained decreases drastically during training. This
is not surprising, since negative examples are expected to have a negative alignment
when the model converges. Similarly, in both cases, the number of examples kept
decreases with depth. With a difference of almost 10% between the first and the last
stage, there are fewer negative examples to contrast with the positive examples from in
the last stages. Thus, we can consider our model as a form of curriculum learning by
depth, with

Impact of the positive and negative examples To ensure that removing both positive
and negative examples improves accuracy, we propose to train our method by subsam-
pling only positive or negative examples. More precisely, in Eq. (3.8) we add only the
term α

j
{i,l+i }

to consider thresholding positive examples, or the denominator term α
j
{i,l} to

consider thresholding negative examples. We report in Figure 3.6 the accuracy of our
method for varying J by subsampling either positive or negative examples or both. We
report improvement in both cases. However, thresholding all examples provides the
best accuracy as J increases.
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Impact of the threshold value T We also varied the accuracy of our model depending
on the value of the threshold T to study its effect. The accuracy follows a simple
piecewise linear curve in three parts. Between T = −1 (which corresponds to the standard
SimCLR loss) and −0.2, the accuracy is stable because few examples are removed. From
T = −0.2 to 0, we observe an increase in accuracy. Higher thresholds quickly decrease the
accuracy. Thus, there is a trade-off between increasing dimensionality by subsampling
and removing too many examples, which is detrimental to the training. More details are
provided in the Appendix.

3.4 Conclusion

This work has investigated the training of DNNs with self-supervised local learning
methods, a more biologically plausible and parallelizable alternative to backpropagation.
We find that a dimensional collapse partially causes the drop in accuracy known in
local learning with larger splits. By studying a linear model and using an oracle model,
we motivate a simple local feature similarity sampling method that improves on the
original SimCLR loss. We confirm that this method remedies the dimensional collapse
for contrastive learning and reduces the accuracy loss due to decoupling for models
with large splits.

Limitations Despite increasing dimensionality, decoupling still causes a significant
accuracy gap, suggesting that there are other issues caused by local learning. Generaliz-
ing our observations to non-contrastive self-supervised objectives may also be another
interesting direction for future work.
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Future work: Training LLMs with self-supervised local learning

We have observed in this work that with minimal modifications to the training algorithm,
self-supervised local learning can achieve performance close to End-to-End learning
with a limited information loss. Similarly, self-supervised objectives are particularly
efficient for training with large amounts of unlabeled data. Since one of the reasons for
the information loss in local learning is overfitting, where early stages may overfit the
data to spurious features, training on a very large amount of data may be a promising
direction. For this reason, we propose, in a future work, to adapt the local learning
framework to the training of LLMs, which uses self-supervised learning on vast amount
of data. These very deep NNs require a lot of parallelization for their training, and
making their training local may be the key to scaling them further [195].

Figure 3.7: Representation of local learning for minimum memory overhead. This
learning approach is particularly interesting for training large models like LLM. The
dotted lines represent a unloaded stage, with no memory used for activations or param-
eters. A stage is only loaded when the activations reach it for computation. Thus, only
one stage at a time is loaded in memory.

We propose a local training framework for LLMs that can focus on either improving
memory overhead or parallelization. Indeed, one can train LLMs with local losses, as in
Decoupled Greedy Learning [26], by starting the computation of the next stage’s forward
pass as soon as the current stage’s activations are computed. In this framework, two
stages compute in parallel at the same time, one starting its forward pass while the other
is backpropagating. Another approach is to focus less on the parallelization capacities
of local losses and more on the memory overhead of LLM. By computing the backward
pass on the current stage and unloading the parameters of that stage before passing the
activations to the next stage, only a single stage remains in memory for training at any
given time. This idea is particularly interesting for LLMs, since their memory overhead
is a crucial limitation of their training. We show the training of a network in this way in
Figure 3.7. We also find that the Transformers architecture is particularly well suited for
local learning approaches, since the size of activations within the network does not vary.
Thus, the local losses do not require different architectures depending on their depth.
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Chapter4
Can Forward Gradient Match
Backpropagation?

In this chapter, we present our second contribution to the field of local learning. After
having studied how we can regularize effectively local learning by subsampling examples
from the local computations, we now study a intermediate learning framework, that
allows end-to-end feedback while being only update locked. More specifically, we
supplement the Forward Gradient framework with local learning. We show that, despite
their bias, the gradients provided by the local losses can be used as efficient candidate
tangent directions for forward-mode AD.

This chapter led to publication at the ICML 2023 conference (* indicates equal
contribution). This work was done in collaboration with Stéphane Rivaud, with equal
contribution from both. My part of the experiments was more focused on implementing
the basic forward gradient module, the computations in the activation space and the
metrics logging.

Contribution

Louis Fournier*, Stéphane Rivaud*, Eugene Belilovsky, Michael Eickenberg and
Edouard Oyallon. Can Forward Gradient Match Backpropagation?. ICML 2023.

4.1 Introduction

Stochastic Gradient Descent (SGD) [7, 38] using end-to-end backpropagation for gradi-
ent computation is the ubiquitous training method of state-of-the-art DNNs. However,
there are at least two problems with this gradient estimation method. First, it requires
a significant amount of computational resources and memory. In fact, a backpropa-
gation update is performed in two steps: a forward step, which computes activations,
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and a backward step, which computes gradients. Until a gradient is computed at a
given layer, intermediate computations leading to that layer must be stored in memory,
and the computation of the update is blocked. This is referred to as the backward lock
[155], which is also an obstacle to the development of model-parallel asynchronous
methods[26]. Backpropagation also lacks biological plausibility, which is often seen as a
direction towards more scalable learning [296]. Indeed, the backpropagation algorithm
suffers from the weight transport problem [47], which means that the weights of the
above layers must be shared during the backward pass of a given layer. This requires a
significant amount of communication and synchronization, which has not been observed
to be implementable in biological systems [215]. Since biological systems have achieved
learning without these constraints, researchers hope to isolate such principles and use
them to improve the learning of artificial neural networks.

Recent contributions have re-examined the converse procedure of computing Forward
Gradients [21], based on the classical forward mode automatic differentiation [20]. It is
an alternative to the standard backpropagation algorithm, allowing the computation of a
directional derivative (i.e., a scalar product with the gradient, as opposed to the gradient
vector itself) from a forward pass. The gradient computations in forward mode explicitly
use the Jacobian of a given layer through Jacobian-Vector Products but do not require the
storage of intermediate activations or backward passes. In other words, it is backward
unlocked (as described by Jaderberg et al. [155]) in that the computation of the derivative
is finished as soon as the forward pass is finished. This leads to a potential memory
reduction and does not use the biologically implausible weight transport. A Forward
Gradient, as introduced by Baydin et al. [21], corresponds to an unbiased estimate of an
activation or weight gradient (which we will refer to as a Gradient Target) computed
via a random, isotropic, directional derivative, i.e., a projection of the Gradient Target
onto a tangent vector (which we will define as the Gradient Guess). The motivation for
Forward Gradient descent is to approximate End-to-End Gradient descent. However,
this unbiased gradient approximation generally suffers from high variance.

Several approaches [296, 319] have been proposed to reduce the corresponding
variance. Unfortunately, there is often an accuracy gap [319] that is difficult to re-
duce because the Gradient Guess is not aligned with the End-to-End Gradient Target.
Following a different line of thought, Ren et al. [296] proposes to approximate the
gradients computed from Local Loss functions [280, 265, 25] as Gradient Targets. This
is combined with a collection of architectural changes that allow the decomposition of
losses into subgroups within a layer [279]. This reduces the dimensionality and thus
the variance of Forward Gradients. However, these changes result in architectures that
are not widely applicable. Furthermore, the results are still far from competitive with
standard backpropagation.

Following Ren et al. [296], it is also unclear whether using local gradients as Gradient
Targets combined with a Gaussian Gradient Guess is the optimal strategy. In this work,
we propose to investigate different combinations of Gradient Targets and Gradient
Guesses in a way that covers existing work and also explores other possible combinations.
In particular, we investigate whether local gradients, which alone lead to suboptimal
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performance, can be used to compute a reliable Forward Gradient estimate of the end-to-
end gradient. Our goal is to better understand whether the forward mode of automatic
differentiation can lead to the training of competitive models while maintaining the
above benefits.

Gradient (and estimate)
(backward pass)

Activations
(forward pass)

Jacobian-vector
product with Guess

DNN Stage

Local loss

Loss function

Forward Gradient

Forward
Gradient

module

Figure 4.1: Schematic summarizing the best use-case of our algorithm, which approxi-
mates a Global (End-to-End) Target gradient at a stage j with forward mode automatic
differentiation. A Gradient Guess G̃j is provided by the gradient of the local loss aj (red).
The Gradient Target is projected onto the Gradient Guess by Jacobian-vector products
(blue), and we use this estimate to compute the update for the stage j. In Ren et al. [296],
the Guess G̃j is a random vector and aj is the Target loss. More details can be found
Section 4.2

Contributions. Our contributions are as follows:

1. We make explicit the idea that any Gradient Target can be projected onto any
Gradient Guess, and propose to study a wide variety of these combinations.

2. In particular, we propose to use local gradients from auxiliary losses as power-
ful Gradient Guess directions for the computation of directional derivatives in
Forward Gradient mode. We show that this proposal can yield far improved re-
sults compared to naive random directions while maintaining the benefits of the
Forward Gradient mode.

3. To ablate this method, we cover many combinations of possible Gradient Targets
and Guesses for a well-established architecture (ResNet-18) applied to standard
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image classification, using both gradient insertion points, commonly referred
to as activity perturbation and weight perturbation, which indicate whether the
directional derivative is taken in activation space or weight space.

4. Our evaluations show that in the case of Gradient Guesses obtained from super-
vised Local Losses, a consistent positive alignment between the Gradient Targets
and Guesses improves the Forward Gradient estimation and reduces the gap with
end-to-end training.

Chapter organization. This chapter is structured as follows: Section 4.2 describes
Gradient Target approximations with Forward Gradient, using both Random and Local
Gradient Guesses. Then, Section 4.3.1 describes all the details of our experimental
setup. In Section 4.3.2, we show that Forward Gradient can lead to competitive ac-
curacy with end-to-end training, and in Section 4.3.3 that this is due to having a
better estimate of the Global Target than with Random Guesses. However, we show
in Section 4.3.4 that the Local Gradient Guess is still a poor estimate due to different
training dynamics between Local and Global losses. We confirm the consistency of
our findings across model sizes and other datasets in Section 4.3.5. Finally, we link
this work to another contribution on model parallelism that does not suffer from the
gradient alignment discussed but from delayed gradients. Our source code is available
at: github.com/streethagore/ForwardLocalGradient.

4.2 Gradient approximation via Forward Gradient

The objective of this work is to study computationally efficient and accurate estimates
g(θ) ∈ Rd of a Gradient Target ∇f (θ) ∈ Rd of some objective function f : Rd → R, using
Forward Gradients. The main idea is to use a Gradient Guess vector G(θ) ∈ Rd onto
which we project the Gradient Target to obtain an approximation:

g(θ) = ⟨∇f (θ),G(θ)⟩G(θ) ≈ ∇f (θ) . (4.1)

Once G(θ) is provided, g(θ) can be computed efficiently because it can be implemented
as a Forward Gradient. This induces a limited computational overhead compared
to a standard forward pass since evaluating the directional derivative costs about as
much as a forward pass (especially for nonlinearities whose derivatives cost as much
as the function itself). The choice of G thus has a large impact on the quality of the
approximation. Note that while Gradient Descent aims at finding θ∗ ∈ Rd such that
∇f (θ∗) = 0, the stationary points of Eq. (4.1) are given by:

G(θ∗) = 0 or ⟨∇f (θ∗),G(θ∗)⟩ = 0 .

4.2.1 Gradient Guesses

Gradient Guesses come in different flavors of randomness. Hence the term ‘approxima-
tion’ used to describe Eq. (4.1) can take on both probabilistic and deterministic forms.

https://github.com/streethagore/ForwardLocalGradient
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We discuss guesses that are purely random, purely deterministic, and one intermediate
case.

Random Guesses. By drawing G from a zero-mean probability distribution with unit
covariance, we can generate an unbiased estimator of the gradient. We propose to use
either Rademacher variables P(Gi = 1) = P(Gi = −1) = 1

2 as proposed by Belouze [27],
or isotropic Gaussians G ∼ N (0,I), as proposed in Ren et al. [296]. In both cases, g is
an unbiased estimate of ∇f , since we have E[GGT ] = I. However, such estimates have
potentially high variance, leading to large errors in individual gradient estimates and
slow optimization progress.

Local Guesses. To improve the quality of this estimate, we consider deterministic
gradient guesses. We obtain these guesses by computing local update signals from local
losses, each associated with an auxiliary network as in Belilovsky et al. [26] and Nøkland
and Eidnes [265]. This gives access to a gradient ∇a from a small local NN a with
minimal computational effort. Several choices for a are possible, e.g., a CNN, an MLP,
or a linear layer. The intuition behind using local gradients is that they should provide a
better one-shot approximation of ∇f than uncorrelated noise. To obtain the best linear
approximation of ∇f from ∇a, we then use G = ∇a

∥∇a∥ as the projection direction.

NTK Guesses. Conceptually, comparing random and deterministic projection direc-
tions via local auxiliary losses is not straightforward. We include a transitional setting
using random auxiliary networks to test whether the inductive bias of the random net-
work is sufficient for improvement or whether training of the auxiliary is required. To
do this, we reinitialize the Local auxiliary network a introduced above at each iteration
of the algorithm. This corresponds to a Guess obtained from the Neural Tangent Kernel
(NTK, in finite width) of our model [154]. Note that this can be understood as a weaker
version of DFA [264, 19], which we expand on in the Appendix.

4.2.2 Gradient Targets

Global Target. To update any set of weights, the most common gradient target in a
supervised NN setting is the loss gradient of the last layer of our model. This is the
gradient use in standard practice with backpropagation in most DL models. For Forward
Gradients, Baydin et al. [20] uses this gradient as the target, as illustrated in Figure 4.1.
We will study this setting extensively, and will also refer to this Target as the End-to-End
Gradient Target.

Local Target. However, it is also possible to use the gradient of the auxiliary loss of
the current layer as a gradient target to perform fully local learning. Ren et al. [296]
uses such Local Targets in their experiments and obtains their best results with them.
We refer to Local Learning as the case where the Gradient Guess for the Local Target is
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equal to the Local Guess. (As for end-to-end training, this is a special case of Forward
Gradient where the Guess is exactly equal to the Target).

Intermediate Target. One could also obtain gradient targets from auxiliary losses
attached to any intermediate layer of the model. Such a target is likely to correlate better
with the Local Guess while also being closer to the global target, perhaps providing a
middle ground.

4.2.3 Gradient computation and insertion points

The candidate direction for the directional derivative obtained using the Forward Gra-
dient technique can be computed in different spaces, with two natural candidates:
parameters or activations.

To propose an update of the j-th stage fj(xj−1,θj ), where θj describes the parameters
of the j-th stage and xj−1 is the output of the stage fj−1 (x0 is the input of the DNN),
the strategy is to train a model via gradient descent. The output fj(xj ,θj) is fed into a
(target) loss Lj , where Lj can represent a local loss obtained by attaching an auxiliary
network to the current or a subsequent stage, or it can represent the standard loss at the
output of the network. The procedure uses a sample estimate ∇θj

(Lj ◦ fj ) of the gradient

aggregated into a mini-batch B = {x1
j , ...,x

B
j } of data:

∇B(Lj ◦ fj )(θj ) ≜
1
B

B∑
i=1

∇θj
(Lj ◦ fj )(xij−1,θj ) (4.2)

=
1
B

B∑
i=1

∂θj
fj(x

i
j−1,θj )

T∇xjLj(x
i
j ) (4.3)

Weight perturbation. A first natural strategy is to use the so-called weight perturba-
tion of the gradient, which means that the estimate obtained in Eq. (4.2) is replaced
by:

gj =
1
B

〈
∇B(Lj ◦ fj )(θj ),

1
B

B∑
i=1

Gi
j

〉 B∑
i=1

Gi
j (4.4)

where Gi
j is a gradient guess for ∇θj

(Lj ◦ fj )(xij−1,θj ).

Activity perturbation. However, if Gi
j is pure noise, Ren et al. [296] observed that this

estimate has a high variance. In this case, estimating the gradient via activity perturbation
is preferable. In fact, note that the update of Eq. (4.3) can be approximated by:

g̃j =
1
B

B∑
i=1

∂θj
fj(x

i
j−1,θj )

T
〈
G̃i
j ,∇xjLj(x

i
j )
〉
G̃i
j (4.5)



4.3. Numerical experiments 67

where G̃i
j is a guess for ∇xjLj(x

i
j), and which often has a smaller dimension than Gi

j ,
leading to a reduced variance in the case of e.g., pure noise [296].

Computational trade-offs. In Table 4.1, we summarize the unlocking capabilities as
well as the computational trade-offs for the different pairs of Guesses and Targets we
have introduced. As described in Jaderberg et al. [155], standard backpropagation is
backward-locked and requires a global vector-Jacobian product. Forward Gradient,
however, allows backward unlocking with a Global Target and even update unlocking
with a Local Target. As noted in Ren et al. [296], weight perturbation has favorable
memory usage, as activity perturbation requires storing intermediate activations for the
Forward Gradient estimator. Activity perturbation also requires a backpropagation step
in the corresponding stage to compute the gradient used to update the weights.

Table 4.1: Unlocking and computational trade-offs for different Guess and Target
pairs. Here, vJp and Jvp stand for vector-Jacobian product and Jacobian-vector product
respectively. The flag (local) means that the output of the operation (vJp or Jvp) for a
given module is not needed by subsequent modules.

Guess Global Target Local Target

Local Unlocking Backward Update
& NTK Compute vJp (local)+Jvp vJp (local)

Random Unlocking Backward Update
Compute Jvp Jvp (local)

4.3 Numerical experiments

4.3.1 Experimental setup

We now describe how we implemented our models, the training procedure, and the
implementations of Gradient Targets and Guesses to study the accuracy of a given model
under the variations of these parameters.

Models. For this set of experiments, we consider two models that allow us to test
different hypotheses about the scalability of gradient computations in forward mode: a
standard ResNet-18 [130] (divided into 8 stages with local losses) and the same ResNet-
18 without skip-connections, to avoid side-effects when combining this model with
layer-wise local losses (divided into 16 stages with local losses, to obtain a fully layerwise
subdivision of the network, except for the first stage which contains two layers).

Hyperparameters. We considered the CIFAR-10 and ImageNet32 datasets, used with
standard data augmentation. The ImageNet32 dataset is smaller than the full-resolution
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ImageNet dataset, making it more efficient to use during training and testing while
still providing a challenging task for model performance. Chrabaszcz, Loshchilov, and
Hutter [65] has shown that the conclusions drawn from the ImageNet32 dataset are
generally applicable to the full-resolution ImageNet dataset. We followed a standard
training procedure: SGD with a momentum of 0.9 and weight decay of 5× 10−4. For
CIFAR-10, we train the model for 100 epochs, with a learning rate decayed by 0.2
every 30 epochs. For ImageNet32, we also first try a shorter training of 70 epochs,
decaying the learning rate by 0.1 every 20 epochs. The initial learning rate was chosen
among {0.05,0.01,0.005} for CIFAR-10 and {0.1,0.05,0.01,0.005,0.0001} for ImageNet32.
We report the validation accuracy at the last epoch of training using the best training
procedure and learning rate. More details are given in the Appendix.
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Figure 4.2: Local train losses at the end of training at each stage for a ResNet-18 split
into 8 stages, with CNN auxiliary, for different training algorithms. In the Gaussian and
end-to-end cases, the auxiliary training is detached from the main module training and
is used for logging purposes only. With Gaussian Guesses, losses increase with depth.
The Local Target allows better convergence than the Global Target at the first stage but
an even worse convergence for the whole network. With local learning, local losses
converge to local minima.

Local models and losses. We considered 3 types of trainable local auxiliary models:
a CNN, an MLP, and a Linear Layer, designed and developed for use with CIFAR-10,
to add no more than 10% computational overhead (in FLOPS) while leading to good
accuracy. Again, we used a subset of the training data to cross-validate this architecture,
which we then fixed during our experiments. Our local CNN auxiliary model is a
3-layer CNN with ReLU nonlinearities followed by a 2 × 2 adaptive average pooling



4.3. Numerical experiments 69

Table 4.2: Test accuracy of a ResNet-18 using a Global Target, split into 16 local loss
stages, on CIFAR-10 and ImageNet32 for both activity and weight perturbations. Weight
perturbation systematically outperforms activity perturbation with a Local Guess. The
MLP auxiliary provides the best Local Guess in all configurations. We report the mean
and standard deviation over 4 runs for CIFAR-10.

Dataset CIFAR-10 ImageNet32

End-to-End 94.3 ±0.1 53.7

Space Activity Weight Activity Weight

Local, CNN 79.0 ±1.0 88.0 ±0.4 7.3 40.0
Local, MLP 84.7 ±0.3 88.7 ±1.2 21.8 37.4
Local, Linear 46.7 ±2.5 86.1 ±1.4 10.0 23.3

NTK, CNN 37.7 ±0.1 50.1 ±1.0 2.0 3.6
NTK, MLP 50.3 ±0.4 49.7 ±0.6 7.5 3.9
NTK, Linear 49.9 ±1.0 48.3 ±0.7 4.2 3.9

Gaussian 38.9 ±0.9 50.0 ±0.8 4.9 4.9
Rademacher 38.0 ±1.5 49.8 ±0.2 5.5 4.6

and a projection onto the classification space. The MLP is a 3-layer MLP with ReLU
nonlinearities, followed by a projection onto the classification space. The linear auxiliary
network consists of a 2× 2 adaptive average pooling preceded by a batch normalization
module, and followed by a projection onto the classification space as in Belilovsky et al.
[26]. More details on our methodology for cross-validating the hyperparameters can be
found in the Appendix. Each local loss can then be used to obtain Gradient Guesses via
a backpropagation procedure or to serve as a Gradient Target for computing Forward
Gradients.

4.3.2 The gap between backpropagation and Forward Gradient is narrowed
with Local Guesses

Table 4.2 and Table 4.3 report our results for a ResNet-18 split into 8 or 16 stages, on
both CIFAR-10 and ImageNet32. First, we note that the accuracies of Forward Gradient
with a Random Guess as studied in Ren et al. [296] are extremely low. Despite extensive
hyperparameter searches (notably for the learning rate), it proved difficult to achieve
reasonable accuracies for ImageNet32 using random Gradient Guesses. This is consistent
with the expectations of Belouze [27], and suggests that the architectural changes made
in Ren et al. [296] are essential to its success.

Local Guesses reduce the gap with end-to-end training. Table 4.2 and Table 4.3 indi-
cate that Local Guesses systematically outperform the naive Random Guesses strategy, in
some cases by about 40% for CIFAR-10 and 20% for ImageNet32. This is not surprising,
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Table 4.3: Test accuracy of a ResNet-18 using a Global Target, split into 8 local loss
stages, on CIFAR-10 and ImageNet32 for both activation and weight perturbations. Lo-
cal Guesses improve on Random Guesses and NTK Guesses. Activity perturbation only
provides an advantage for Random Guesses, otherwise, weight perturbation performs
better in all CIFAR-10 configurations. We report the mean and standard deviation over
4 runs for CIFAR-10.

Dataset CIFAR-10 ImageNet32

End-to-End 94.5 ±0.2 54.6

Guess Activity Weight Activity Weight

Local, CNN 90.4 ±0.2 92.0 ±0.3 33.1 38.3
Local, MLP 89.2 ±0.2 91.6 ±0.2 38.0 45.8
Local, Linear 65.9 ±6.7 88.9 ±0.3 27.9 34.9

NTK, CNN 55.2 ±0.4 66.8 ±2.6 5.5 8.0
NTK, MLP 61.6 ±0.5 63.1 ±1.1 17.4 15.5
NTK, Linear 61.6 ±0.9 62.6 ±1.0 9.8 15.4

since a pure Gaussian Guess leads to random directions that are not aligned with the
directions important for the classification task. Even NTK Guesses, which are random
but benefit from the inductive bias of the auxiliary network, yield a slight improvement
in most cases.

By reusing the same random network for a full mini-batch, we can obtain a gradient
direction that is less naive than random noise and proving that NTK [154] has a good
inductive bias for this task. We report in Figure 4.3 the train and test losses for Forward
Gradient training with Global Target and several Guesses, showing that only Local
Guesses allow convergence of the global loss.

Weight perturbation outperforms activity perturbation. In the case of supervised
gradient guesses, we find that weight perturbation significantly outperforms activity
perturbation. This shows that the best setup for the setting studied in Ren et al. [296]
may not generalize to standard neural networks.

Training by residual blocks obtains a significantly better accuracy than training
layerwise Comparing the results of Table 4.2 and Table 4.3 indicates that, for the
same pair of algorithms, training by stages of two layers (corresponding to residual
blocks) with one auxiliary per stage systematically outperforms the corresponding
version with one auxiliary per layer. This observation is consistent with the fact that
the layers encapsulated in a given stage are jointly trained in the first case. In contrast,
the layerwise strategy is completely decoupled. The fact that using joint training
systematically improves the accuracy of the method is known from previous work [26,
279, 25]. However, this comes at the cost of not exploiting the full potential of the



4.3. Numerical experiments 71

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

G
lo

ba
l l

os
s

Train loss
Test loss
End-to-end training
Local guess (CNN)
NTK guess (CNN)
Random guess

Figure 4.3: Comparison of train and test losses for end-to-end training (red) and
Forward Gradient with Global Target and Local Guess (blue), NTK Guess (green), and
Random Guess (purple), on CIFAR-10 with a ResNet-18 split into 8 stages. Local and
NTK Guesses are derived from a CNN auxiliary. Random and NTK Guesses fail to
optimize the Global Loss. Local Guesses perform much better, with a consistent gap
with respect to end-to-end throughout training.

computational and memory savings associated with Forward Gradient. For Forward
Gradient methods, we find that Local Guesses with weight perturbation are the Guesses
that minimize the accuracy drop when transitioning from an 8 stages split to a 16 stages
one.

4.3.3 Reliably estimating the Global Target is necessary for Forward Gradi-
ent to succeed

Accuracy degrades in upper layers with Random Guesses. Figure 4.2 shows the
evolution of the separability of representations with depth via the training loss of a
local (CNN) auxiliary for a ResNet-18 split into 8 stages. In the case of end-to-end
training and Random Guesses for Global targets, the auxiliary losses were trained ad
hoc without interacting with the training of the global model. Not surprisingly, the
end-to-end training progressively separates classes, a phenomenon already observed
in Zeiler and Fergus [394], Jacobsen, Smeulders, and Oyallon [153], and Oyallon [277].
Random isotropic Guesses do not follow this trend. On the contrary, the training loss
decreases progressively with depth, both for Global and Local Targets. In comparison,
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Figure 4.4: Train and test local losses (top row) and mean cosine similarity between
Local Guess and Global Target in the activation space (bottom row), for stages 0, 3, and
6 (left, middle, and right columns) during training. The model is a ResNet-18 divided
into 8 stages trained on CIFAR-10. The similarity values are low but consistently positive
and increase with depth as the target gets closer (and less deep). Learning improves
with depth, as expected. As both target and local losses converge to a minimum, their
similarity decreases.

Table 4.4: Test accuracy on CIFAR-10 of each variation of a ResNet-18, using a Local
Target with Gaussian, Rademacher, and Local Guesses, for both activity and weight
perturbations. We report the mean and standard deviation over 4 runs.

8 stages CNN MLP Linear

Local Target 92.0 ±0.2 92.1 ±0.2 89.2 ±0.1

Guesses Activity Weight Activity Weight Activity Weight

Gaussian 41.2 ±1.9 52.1 ±1.5 45.6 ±1.6 53.2 ±0.6 36.9 ±1.9 56.5 ±0.8
Rademacher 39.0 ±1.3 53.0 ±0.7 43.6 ±2.1 53.3 ±0.9 34.6 ±1.9 56.6 ±0.6

16 stages CNN MLP Linear

Local Target 87.7 ±0.1 89.4 ±0.3 86.7 ±0.3

Guesses Activity Weight Activity Weight Activity Weight

Gaussian 23.5 ±2.4 37.5 ±1.6 21.5 ±4.4 39.7 ±0.8 23.8 ±1.6 43.5 ±0.5
Rademacher 22.3 ±1.5 37.8 ±0.5 23.3 ±1.4 41.3 ±1.4 24.1 ±1.3 45.5 ±0.5

Local Guesses with Global Target accuracies improve with depth, as we expect from a
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Figure 4.5: Train and test local losses (top row) and mean cosine similarity between
Local Guess and Global Target in the weight space (bottom row, averaged over the
parameters), for stages 0, 3, and 6 (left, middle, and right columns) during training.
The generalization gap is more consistent during training than with activation gradients.
The cosine similarity is also consistently higher than for activation gradients but falls
more drastically during training.

deep model. Furthermore, Random Guesses with Local Target give worse results than
Random Guesses with Global Target, as reported in Table 4.4. This constitutes a further
difference between this work and Ren et al. [296].

Intermediate Targets perform worse than Global Targets. To bridge the gap between
Global and Local Targets, we proposed an Intermediate Target, the gradient of the Local
loss at stage j+1. The idea is to have a target that is closer to the Gradient Guess than the
Global Target, allowing for easier convergence (since similarity increases with depth) as
well as improving on the use of a Local Target, where subsequent stages do not provide
any feedback. However, despite more consistent alignment between Targets and Guesses
across stages, we observed a consistent decrease in accuracy compared to both Global
and Local Targets, as reported in Table 4.5. Thus, despite a good alignment between
Guess and Target, not using a Global Target penalizes the learning of the network.

4.3.4 Local Guesses do not align with the Global Target

We now examine the difference between the optimization path of the Forward Gradient
and the end-to-end gradient to understand if Forward Gradient can be understood as an
approximation of the Global Target i.e., the End-to-End Gradient Target.
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Table 4.5: Test accuracy on CIFAR-10 of a Resnet-18 using the loss of the stage j + 1
as the Intermediate Target for the stages j, for both activity and weight perturbations.
The model has been split into 8 and 16 stages as in the experiments of Table 4.3 and
Table 4.2. We added the Target (tgt) used for the Random Guesses.

ResNet-18 split 8 stages 16 stages

Gradient Guesses Activity Weight Activity Weight

Local, CNN 91.6 91.6 80.0 87.8
Local, MLP 91.5 91.8 87.6 89.5
Local, Linear 76.3 89.6 59.8 86.9

NTK, CNN 55.7 60.0 33.0 18.4
NTK, MLP 57.4 52.5 40.7 20.1
NTK, Linear 55.3 44.2 32.4 20.3

Gaussian, CNN tgt 45.3 51.5 28.0 47.1
Gaussian, MLP tgt 53.7 53.2 31.4 48.0
Gaussian, Linear tgt 51.4 53.9 42.5 46.4
Rademacher, CNN tgt 43.8 51.6 24.8 47.5
Rademacher, MLP tgt 54.7 52.9 30.4 49.5
Rademacher, Linear tgt 49.0 54.2 43.6 45.6

Local Guesses and Global Targets are weakly aligned. Figures 4.4 and 4.5 show the
evolution of the local train and test losses, and the cosine similarity between Local
Guesses and the Global Target, for a ResNet-18 split into 8 stages. For the cosine
similarity, we report a batch estimate at each iteration given by:

1
B

∑
i∈B

〈
∇xjLj(x

i
j ), G̃

i
j

〉∥∥∥∥∇xjLj(xij )∥∥∥∥∥∥∥∥G̃i
j

∥∥∥∥ . (4.6)

We note that the cosine similarity between the end-to-end gradient and the gradients
obtained from local auxiliaries shows three main tendencies: (a) As the stage index
increases, the alignment is higher (see the y-axis scale on each plot). (b) In most cases,
the convolutional auxiliary shows the strongest correlation and the lowest test loss value.
(c) Finally, although low, the similarity is consistently positive. The first statement
reflects the depth proximity of the auxiliary to the Global Target; the second is likely due
to the convolutional nature of the subsequent network. We further note that MLP and
linear auxiliaries have similarly erratic test loss curves and that most similarity curves
tend to descend towards the end of training. The former may be due to an architectural
misalignment. The latter observation likely indicates that different local minima have
been reached and that the optimization trajectories will drift apart from then on.
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Projecting on the entire Gradient Guess space still does not estimate the Gradient
Target. The low alignment between Local Guesses and Global Targets indicates a poor
approximation. We propose projecting each Global Target on the subspace spanned by
Local Guesses, for each sample to test this hypothesis further. In other words, we replace
the gradient estimate of Eq. (4.5) with the best linear approximation of the Global Target
using (the entire subspace of) Local Guesses. In practice, for a batch of gradients, we
project each Global Target onto the span of the batch of Local Guesses. Our results are
summarized in Table 4.6, and we trained each model using this novel dynamic. The
improvement over projecting onto a single Local Guess is marginal, and the accuracy
is still far from end-to-end training. This means that approximating the Global Target
using Local Guesses is not sufficient to recover the dynamics of backpropagation training.
In general, the task of approximating a Global Target using Gradient Guesses is likely to
be a difficult task [251].

Table 4.6: Test accuracy on CIFAR-10 of a Resnet-18 trained by using the best linear
approximation of the end-to-end gradients by local guesses, with activity perturbation.
We report the mean and standard deviation over 4 runs.

Model Gradient Guess subspace Accuracy

ResNet-18, Local Guess, CNN 92.3 ±0.1
8 stages Local Guess, MLP 89.6 ±0.3

Local Guess, Linear 84.0 ±0.6

ResNet-18, Local Guess, CNN 89.6 ±0.6
16 stages Local Guess, MLP 77.9 ±3.3

Local Guess, Linear 73.4 ±1.8

Alignment between Guess and Target matters. Experimental results show that the
Local Guess does not approximate the Global Target well. Comparing Table 4.4 and
Table 4.6 shows that using the best linear approximation of the Global Target on the
space spanned by the Local Guesses still performs at par or worse than local learning
(i.e., Local Guess on Local Target). Thus, even though the Global Target is generally a
better target than the Local Target in general, the adequation between the Guess and
the Target has a stronger impact than the reweighting of the Guess. However, it is
known that local learning saturates in early layers and does not benefit from the depth
of the model [365], suggesting that global feedback may be necessary to recover the
backpropagation performance. These issues suggest that deriving a good estimate of
the end-to-end gradient is a difficult task that may need to be addressed to achieve
performance on par with standard backpropagation.
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Table 4.7: Test accuracy of a ResNet-18 using a Global Target, on Fashion-MNIST,
CIFAR-100 and Imagenette datasets split into 16 local loss stages, for both activity
and weight perturbations. We report the mean and standard deviation over 4 runs.

Dataset CIFAR-100 Fashion-MNIST Imagenette

End-to-End 74.6 ±0.3 94.1 ±0.2 88.9 ±0.4

Guess Activity Weight Activity Weight Activity Weight

Local, CNN 44.6 ±1.7 58.2 ±0.6 92.5 ±0.3 93.7 ±0.1 71.8 ±1.8 84.2 ±0.6
Local, MLP 59.5 ±0.5 64.3 ±0.4 92.3 ±0.2 93.8 ±0.1 77.3 ±1.3 82.8 ±0.3
Local, Linear 46.1 ±1.1 62.1 ±0.4 73.4 ±1.7 93.4 ±0.2 53.2 ±2.0 82.8 ±0.4

NTK, CNN 15.0 ±0.7 22.9 ±0.3 82.0 ±0.2 88.2 ±0.3 47.0 ±1.0 53.7 ±2.1
NTK, MLP 23.5 ±0.3 23.1 ±0.4 86.8 ±0.6 88.0 ±0.5 56.3 ±0.8 53.3 ±0.9
NTK, Linear 23.9 ±0.5 22.9 ±0.7 83.7 ±0.2 88.8 ±0.3 55.3 ±1.4 51.3 ±0.8

Gaussian 10.0 ±1.2 22.4 ±0.5 79.1 ±0.7 88.3 ±0.3 17.8 ±1.5 47.6 ±1.4
Rademacher 8.7 ±1.1 22.6 ±0.4 79.5 ±0.2 88.3 ±0.5 18.4 ±2.6 47.9 ±1.7

Table 4.8: Test accuracy of a ResNet-18 using a Global Target, on Fashion-MNIST,
CIFAR-100 and Imagenette datasets split into 8 local loss stages, for both activity and
weight perturbations. We report the mean and standard deviation over 4 runs.

Dataset CIFAR-100 Fashion-MNIST Imagenette

End-to-End 75.7 ±0.2 93.9 ±0.1 90.0 ±0.4

Guess Activity Weight Activity Weight Activity Weight

Local, CNN 64.5 ±0.9 67.9 ±0.4 93.7 ±1.3 93.6 ±0.2 84.9 ±0.3 88.0 ±0.1
Local, MLP 67.5 ±0.3 70.0 ±0.3 93.6 ±0.3 94.0 ±0.1 84.9 ±0.4 85.9 ±0.4
Local, Linear 50.0 ±9.8 65.9 ±0.4 87.4 ±1.5 94.0 ±0.1 70.7 ±1.7 86.1 ±0.5

NTK, CNN 29.9 ±0.7 40.3 ±1.5 87.2 ±0.4 91.1 ±0.3 65.9 ±0.7 68.2 ±1.0
NTK, MLP 35.9 ±1.0 36.1 ±0.2 88.3 ±0.3 90.8 ±0.2 69.7 ±1.0 67.9 ±0.7
NTK, Linear 36.4 ±0.4 37.8 ±2.2 88.5 ±0.4 90.8 ±0.3 68.7 ±0.6 68.6 ±0.5

Gaussian 27.5 ±0.5 35.3 ±0.5 87.5 ±0.2 89.5 ±0.3 52.7 ±3.1 64.1 ±1.1
Rademacher 27.5 ±0.4 33.2 ±1.2 87.1 ±0.7 89.7 ±0.2 51.8 ±1.7 63.8 ±0.9

4.3.5 Consistency across model size and datasets

Wide ResNets further show the curse of dimensionality. We study the effect of
parameter sizes on our findings by applying different Target and Guess pairs on Wide
ResNets. WIn Table 4.9, we present the accuracies we obtain for different guesses for a
Global Target with a Wide ResNet-18 for different width factors k (for k = 0.5, 2, and
4, where k = 1 is the standard ResNet-18 we studied earlier) by scaling the number of
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Table 4.9: Test accuracy of a Wide ResNet-18 using a Global Target, split into 16 local
loss stages, on CIFAR-10 for both activity and weight perturbations for different width
factors, i.e., k=0.5, 2 and 4. Table 4.2 refers to the case where k = 1. We report the mean
and standard deviation over 4 runs.

Width factor k 0.5 2 4

End-to-End 93.0 ±0.4 94.9 ±0.0 95.3 ±0.1

Guesses Activity Weight Activity Weight Activity Weight

Local, CNN 63.3 ±1.6 72.4 ±0.6 87.0 ±0.4 85.5 ±0.3 90.6 ±0.2 93.3 ±1.5
Local, MLP 81.5 ±0.5 79.1 ±0.3 86.2 ±0.2 84.1 ±0.2 87.0 ±0.2 91.7 ±0.2
Local, Linear 26.9 ±3.0 78.5 ±0.3 62.7 ±2.8 84.6 ±0.2 62.5 ±4.3 92.3 ±0.3

NTK, CNN 33.8 ±1.3 48.9 ±0.2 41.1 ±0.4 50.6 ±0.3 44.2 ±0.3 51.6 ±0.3
NTK, MLP 48.9 ±1.3 47.7 ±0.4 50.9 ±0.5 50.6 ±0.2 51.8 ±0.2 51.6 ±0.3
NTK, Linear 47.9 ±1.2 47.6 ±1.2 51.4 ±0.4 48.7 ±0.7 52.1 ±0.3 49.3 ±0.7

Random, Gauss. 38.9 ±0.4 49.6 ±0.9 36.2 ±1.4 48.9 ±0.5 29.6 ±2.3 48.7 ±0.5
Random, Radem. 38.8 ±0.1 49.5 ±0.4 35.3 ±0.6 49.0 ±0.7 30.2 ±2.1 49.0 ±0.8

features according to k (for both the model and the auxiliary network). We observe that
Local Guess accuracy improves with width. However, Random Guess accuracy decreases,
confirming that Forward Gradient estimation with random directions deteriorates with
increasing gradient size due to the curse of dimensionality. This in turn suggests that
good directional Guesses should be pursued. We also provide in the Appendix results
for a Local Target.

Our findings extend to other datasets. We also present results for other image classifi-
cation datasets of varying difficulty. We consider the following datasets: Fashion-MNIST,
a more complex surrogate for MNIST, CIFAR-100, the same dataset as CIFAR-10 with
100 labels, and Imagenette, a simpler subset of Imagenet with only 10 labels. We sum-
marize the accuracies for a Global Target in Tables 4.7 and 4.8 and a Local Target in
Table B.1 in App. B.2.1 for a ResNet-18 divided into 8 and 16 stages. We notice the same
trends discussed in this study for CIFAR-10, thus confirming our findings.

4.4 Conclusion

We have extensively studied different Forward Gradient training variants for a ResNet-
18 architecture divided into 8 and 16 stages on the standard object recognition tasks
CIFAR-10 and ImageNet32. In particular, we introduce the use of gradients from locally
supervised auxiliary losses as a better candidate direction for the Target than random
noise. We varied Gradient Targets, Guesses, auxiliary networks, and feedback insertion
points. Gradient Guesses were either Random isotropic directions, NTK gradients, or
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local auxiliary network gradients. We confirmed our findings for other image datasets
and varying model sizes.

We determined several unambiguous trends. Firstly, Gradient Guesses obtained
from Local Guesses outperformed Random Guesses. Second, our study confirms that
consistent estimation of the Global Target should be the main focus of Forward Gradient
algorithms. Third, we conclude that the limitations of our method are due to the limited
alignment between the local loss gradients and end-to-end gradients. Nevertheless, we
found that Local Gradient Guesses reduce the gap with end-to-end training for Forward
Gradient and that subsequent work needs to improve alignment between Guess and
Target to reach end-to-end accuracy.
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Side contribution: delayed gradient approaches with no memory
overhead

In this work, we showed that local learning can significantly improve the Forward
Gradient estimation. However, we also observed that the greedy nature of local learning
makes it incompatible with the gradient dynamics of backpropagation. The gap with
backpropagation can be reduced with better regularization, auxiliary networks or sub-
sampling, as we showed earlier. Nevertheless, some form of feedback connection seems
necessary to solve the problem of alignment between the local and global gradients.
Another way to obtain a faster learning algorithm, despite being backward locked, is to
allow the use of delayed gradients through pipelining. For this reason, we have worked
on improving the current delayed gradient approaches [410, 411]. Despite the linear
speedup such MP approaches provide, they have two main issues. First, they require
delayed gradient stages to learn, which hinders their convergence. Second, to hold the
mini-batch activations as well as the parameters used during the forward pass for the
backward pass, their memory overhead scales quadratically with the number of stages,
compared to linearly for standard backpropagation.

Contribution

Stéphane Rivaud, Louis Fournier, Thomas Pumir, Eugene Belilovsky, Michael
Eickenberg and Edouard Oyallon. PETRA: Parallel End-to-end Training with
Reversible Architectures. Preprint.
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Figure 4.6: Comparison of PETRA with standard backpropagation. PETRA split the
stages of the model and decoupled the forward and backward passes, resulting in a
sixfold increase in parallelization speed here. The backward connections carry the
reconstructed activations.
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In this side work, we introduced a novel MP training framework, PETRA, that offers
the same significant parallelization of delayed gradient approaches while avoiding the
memory overhead of these methods. To achieve this, we decouple the forward and back-
ward passes and use reversible architectures to reconstruct activations for the gradient
computations, without parameter or activation buffers. Despite the use of approximated
and delayed gradients, this method delivers competitive performance compared to
standard backpropagation on standard computer vision datasets. The potential speedup
resulting from training with PETRA compared to backpropagation is shown in Figure
4.6.

After presenting our contributions to the field of local learning in this part, we turn
our attention to distributed approaches, the other side of parallel training in DL.



Part II

Communication-efficient distributed
approaches for DL training





Chapter5
Cyclic Data Parallelism for Efficient
Parallelism of Deep Neural Networks

In this chapter, we present our first contribution to the field of distributed learning.
We find that the standard DP framework suffers from two problems: the total acti-
vation memory peaks at the end of the forward pass simultaneously for all workers,
and gradients require a collective all-reduce operation. We propose an alternative syn-
chronous learning paradigm named Cyclic Data Parallelism. We shift the execution
of the micro-batches from simultaneous to sequential, similar to the micro-batches in
Pipeline Parallelism. We find that this paradigm improves several frameworks such
as MP or ZeRO-DP, in terms of memory overhead or communication balancing. My
contributions for this work were the initial idea, the proposed algorithm, all experiments
and links to other frameworks.

Contribution

Louis Fournier and Edouard Oyallon. Cyclic Data Parallelism for Efficient Paral-
lelism of Deep Neural Networks". Preprint.

5.1 Introduction

Deep learning models have grown significantly in size in recent years, reaching hundreds
of billions of parameters and requiring increasingly expensive training [140]. As the cost
of training these models continues to rise, there is an increasing need for parallelization
strategies. In particular, DP [74, 208] remains the dominant method for training DNNs
at scale. In DP, the model to be trained is first replicated on multiple workers. Then,
during each training step, a mini-batch of data is sliced evenly among the workers in so-
called micro-batches. Each worker then performs a forward and backward propagation

83
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on each micro-batch, and the locally computed gradients are then averaged across
all workers to obtain the gradient with respect to the full mini-batch. The resulting
averaged gradient is used to locally update the models, typically following SGD.

However, DP has significant drawbacks. First, the communication step between
workers is synchronous, as all workers must complete their gradient computations
before communicating, resulting in idle workers waiting for the slowest worker [138].
Second, gradients are communicated globally using an all-reduce operation [116], which
means that the communication step becomes a challenge as the number of workers
increases [51]. Finally, the total memory used by all workers grows linearly with the
number of workers since the model is fully replicated on each worker [289]. This
requirement can be impractical since modern model sizes exceed the memory capacity
of a single device (e.g., a GPU).

In this work, we tackle the memory and communication drawbacks of DP by propos-
ing to change the execution time of workers in DP from simultaneous to sequential. We
refer to this process as Cyclic Data Parallelism (CDP). Our modification of standard DP
aims to balance both the communication costs and the overall memory usage, by relying
heavily on the sequential nature of the execution steps of DNNs during training. More
specifically, CDP reduces the cost of gradient communications in DP from collective
communications at the end of the training step to point-to-point communications bal-
anced over the entire training step. This balances the total memory used by all workers,
at the cost of a small gradient delay. CDP can be combined with standard parallelization
implementations for further improvements.

Contributions. Our contributions are as follows:

1. First, we propose CDP, an alternative to DP that balances gradient communications
and overall memory usage across training, at the cost of computing on some
delayed gradients.

2. We analyze the method by showing that it maintains a low communication and
memory overhead during the computation of a mini-batch and allows a much
more efficient implementation of mini-batch SGD on one or several GPUs.

3. We then particularize the CDP paradigm to state-of-the-art approaches such as
MP and ZeRO-DP [289], showing improvements in all cases.

4. Empirically, we show that the gradient delay of CDP leads to equivalent training
of DNNs compared to DP on the CIFAR-10 and ImageNet datasets.

Chapter organization. This chapter is structured as follows. We first present standard
mini-batch SGD with DP in Section 5.2.1, before introducing our new CDP paradigm
and two possible update rules in Section 5.2.2. We then discuss how CDP improves on
DP for the implementations of DP (on a single or multiple GPUs), MP, and ZeRO-DP
in Section 5.3. Next, in Section 5.4, we present a numerical analysis of the update
rules of CDP over those of DP to train ResNets on CIFAR-10 and ImageNet, and show
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the possible improvement in total memory for a ResNet-50 and a ViT-B/16. Finally,
we link this work to another contribution on distributed learning that also focuses on
overlapping computation and communication.
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Figure 5.1: Timeline of executions for Data Parallelism (DP) and the two versions
of Cyclic Data Parallelism (CDP), for N = 3 workers. (a) DP. The 3 workers start
their forward pass execution simultaneously in DP, and maintain this synchronization
throughout the entire forward-backward pass. (b) CDP-v1. In CDP, the 3 workers
start execution with an equal delay between them (equal to 2 time steps). For CDP-v1
(see Eq. (CDP-v1)), the model parameters are updated with a delay constant equal to
one training step. (c) CDP-v2. This delay is limited in CDP-v2 (see Eq. (CDP-v2)) by
allowing the stages to update and send gradients independently. The communication
scheme, balanced across the training step, is indicated. The overall complexity of a
training step (a forward-backward pass) does not change, but the activation memory
does not peak in CDP as it does in DP.
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5.2 The Cyclic Data Parallelism paradigm

5.2.1 A motivating example: mini-batch SGD with Data Parallelism

Mini-batch SGD via DP. A standard DP strategy applied to a mini-batch SGD step
is to replicate a model over N workers. Each worker is then fed with mini-batch slices,
referred to as micro-batches [146]. At training step t, each replica n ∈ [1,N ] receives a
micro-batch of data leading to a training objective fn parameterized by θt, and computes
its corresponding gradient ∇fn(θt). We assume that the model can be partitioned into
J stages, with J = N the number of workers, and write θt = {θj

t }j∈[1,N ] to emphasize
the dependence in the stage j. Parameter gradients are computed by a forward and
backward pass over the micro-batch. They are averaged over all workers, typically using
an all-reduce operation [51]. Finally, each worker locally updates the parameters θt with
the averaged gradient. With the learning rate γt, the standard update rule [299], which
can be written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θt). (DP)

The execution timeline of DP is illustrated in Fig. 5.1a, where one time step corre-
sponds to the execution of a forward or backward pass of a stage. We assume that the
forward and backward passes of a stage take a similar amount of time for the N workers.
A training step t (which indexes the sequence of the parameters) is thus composed of
2N time steps. There are several inherent problems with the DP strategy applied to
mini-batch SGD. First, the total number of retained activations peaks every 2N time
steps, notably occurring at step 2 in Fig. 5.1a. This peak results from the intermediate
activations that are stored and awaiting release during the backward pass. While this
memory overhead can be mitigated by strategies such as pipelining [146], there exists
an unavoidable waiting barrier every 2N steps to synchronize all gradient computations.
This occurs, for example, between steps 5 and 6 in Fig. 5.1a. Consequently, this barrier
introduces latency and leads to workers idling. Furthermore, this waiting barrier also
leads to a communication overhead, as workers must simultaneously communicate
their local buffers. While this can be solved by a collective all-reduce operation [51],
communication can be an issue in centralized frameworks, such as Federated Learning
[178].

5.2.2 Towards delayed mini-batch SGD with Cyclic Data Parallelism

Algorithmic description. Contrary to the previous DP approach, our main idea is to
break the synchrony between the forward and backward passes of the N micro-batches.
Instead of each step being computed simultaneously, we assume that each micro-batch
computation is delayed by an identical number of time steps (i.e., if one worker processes
one micro-batch, it starts with a delay relative to the previous worker). More specifically,
the computations of ∇fn are delayed by a delay of 2 time steps compared to ∇fn−1 (where
n is taken modulo N , where N is the number of stages and micro-batches like before).
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This results in a cyclic pattern, illustrated in Figures 5.1b and 5.1c. Furthermore, each
stage constantly performs either a forward or a backward pass on a single and distinct
micro-batch: in particular, this implies that the maximum number of activations stored
at a given time step is nearly constant during training, and in this case, smaller compared
to DP. We call this concept Cyclic Data Parallelism (CDP).

Update rules. While the forward and backward passes are fully defined assuming an
available parameter θt, one has to define the corresponding update rule to generate
θt+1, since breaking the synchrony between the backward passes of the micro-batches
makes it impossible to follow Eq. (DP). Similar to [54, 387], at the training step t we
introduce an auxiliary variable {θ̂n,t}i , a buffer that is updated by other concurrent
workers. Formally, our algorithm can be written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θ̂n,t) , (CDP)

θ̂
j
n,t = un,j(θ

j
t ,θ

j
t−1) ,

where un,j(a,b) ∈ {a,b} is a rule on the parameters, that depends on both the micro-batch
n and the stage j. Thus, un,j implicitly depends on the time step of the algorithm but
not on the training step in our paradigm. An alternative that would is possible, and
would easily allow more complex asynchronous or randomized variants. Note that some
rules un,j are not possible due to the delay between workers, preventing for example the
update rule of DP. In particular, we propose two update rules that follow from Eq. (CDP)
with specific rules un,j . They can be considered as the edge cases of the update rule,
with maximum and minimum delay, respectively, with all other rules un,j being an
intermediate between them. First, we use a simultaneous barrier after the N th batch has
finished its computation, which is illustrated in Figure 5.1b with a barrier at the time
step 9. In this specific case, a consistent update consists of the rule un,j(a,b) = b, using
the stored θ̂n,t = θt−1. This results in

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θt−1) . (CDP-v1)

We refer to this update rule as CDP-v1. In the specific case of PP, we recover the
update rule of PipeDream-2BW [258]. We will now discuss another update rule, which
we refer to as CDP-v2, and which is illustrated in Figure 5.1c. We fix the rule un,j so
that after the N th micro-batch has finished computing the gradient of a stage, it directly
transmits the updated stage parameters to be computed on a micro-batch (the order of
communication can be predefined). This gives the rule un,j(a,b) = a if j ≥N −n+ 1, and
b otherwise, reducing the number of delayed parameters compared to CDP-v1. Note
also that we do not need to keep a copy of two parameters, as the parameters in memory
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are always the freshest available. This update is written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θ1
t−1, ...,θ

N−n
t−1 ,θN−n+1

t , ...,θN
t ) . (CDP-v2)

Note that in both cases the gradient communication does not have to be simultaneous,
instead the results can be communicated at intermediate steps, benefiting the overall
communication bandwidth. We propose a possible communication scheme for CDP-v2
in Figure 5.1c. We describe in Alg. 1 the computation and communication done by a
worker for the stage j operating on the n-th micro-batch.

Remark on the convergence. We emphasize that the generic update of Eq. (CDP) can,
in the worst case, be understood as SGD with delayed gradients with a fixed delay of 1.
There is a large literature studying the convergence of delayed first-order methods [247,
334, 388], which guarantees that our convergence rate is almost equal to that of SGD. In
practice, very large DNNs using Transformer or GPT-2 architecture for instance have
been shown to converge similarly with or without a delay of 1 [258, 295, 307, 378, 61,
81].

5.3 Variants of DP, MP and ZeRO-DP with CDP

We now present how CDP reduces the computational overhead of DP (on one or several
GPUs), MP, and ZeRO-DP. A schematic representation of the implementations is pre-
sented in Figure 5.2. We first discuss the theoretical values of the communication and
memory requirements, which are summarized in Table 5.1.

Analytical comparisons. We will refer to ΨP as the memory occupied by the parame-
ters of the entire model (including the optimizer states here). ΨA refers to the memory
occupied by the activations of one data sample in the entire model. In MP, stages
communicate activations at the inputs and outputs of stages. This subset of activations
occupies a memory, which we call Ψ int

A (and thus Ψ int
A ≤ ΨA). From now on, N refers

to the number of stages of the model as well as the number of micro-batches, which
have equal size B. In Table 5.1, we summarize the memory requirements per device, the
communication volume, and the maximum number of communication steps required
between 2 time steps, for DP, MP, PP, and ZeRO-DP with and without CDP. We find the
following improvements with CDP compared to DP. CDP halves the memory required
to train on DP with a single-GPU device. Multi-GPU DP with CDP doesn’t require an
all-reduce operation at the end of the training step but only point-to-point communica-
tions at each time step. This improvement in the number of communications required
between time steps is also found with MP and ZeRO-DP with CDP. CDP allows MP
to halve the number of GPUs needed, thus halving the memory required, as well as
the communication of gradients between GPUs. The number of GPUs can be further
reduced from MP with CDP to PP, which can be seen as a particular implementation of
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Table 5.1: Theoretical cost of the parallelism implementations discussed in Section
5.3. All implementations are improved by using CDP (Cyclic) over DP, in terms of
memory (per GPU or number of GPUs) or communication. Improvements are noted
in bold. The parameter memory of the entire model is noted as ΨP , and the activation
memory of the entire model for a data sample as ΨA, or Ψ int

A for the subset communicated
in MP. N indicates both the number of stages and the number of micro-batches (of size
B). The communication volume is the size of the tensors that need to be communicated.
‘Max com. steps’ is the maximum number of communication steps required between 2
time steps between two workers, which is a minimum of O(log(N )) steps for a collective
operation or a single step for point-to-point communication. The update rule used is
specified. Note that the parameter memory required in Single-GPU DP depends on the
implementation.

Memory per GPU Communication inter-GPU Nb of
Implementation Activations Parameters Volume Max com. steps GPUs Rule
Single-GPU DP NBΨA NΨP 1 (DP)
+ Cyclic N+1

2 BΨA
N+1

2 ΨP 1 (CDP)
Multi-GPU DP BΨA ΨP ΨP O(log(N )) N (DP)
+ Cyclic BΨA ΨP ΨP O(1) N (CDP)
DP with MP BΨA/N ΨP /N ΨP +BΨ int

A O(log(N )) N2 (DP)
+ Cyclic BΨA/N ΨP /N

ΨP
2 +BΨ int

A O(1) N+1
2 N (CDP)

PP BΨA ΨP /N BΨ int
A O(1) N (CDP)

ZeRO-DP BΨA ΨP /N ΨP O(log(N )) N (DP)
+ Cyclic BΨA ΨP /N ΨP O(1) N (CDP)
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a) Single-GPU Data Parallelism
i) Standard

Micro-batches 1,2,3

Worker
Stage memory:

Activations

Parameters

Communications:

Collective

Point-to-point

ii) Cyclic

c) Data + Model Parallelism
i) Standard ii) Cyclic iii) Pipeline

d) ZeRO-DP
i) Standard ii) Cyclic

b) Multi-GPU Data Parallelism
i) Standard ii) Cyclic

Intra-device

Inter-device

Figure 5.2: Comparison between parallelism frameworks with and without using
CDP, for N = 3. A device (e.g., a GPU) is represented by a rectangle, and the different
micro-batches computed are represented by the 3 colors. A model stage requires memory,
for the parameters used for computation and for the retained activations waiting for the
backward pass, indicated by a colored disk and a black circle. Communications are intra
or inter-device (thin or thick arrow), collective or point-to-point (double or single arrow).
(a) Single-GPU DP. This setting corresponds to a high-connectivity device with limited
memory. We observe a memory reduction of half. (b) Multi-GPU DP. Communications
can be drastically reduced when using multiple GPUs with CDP. (c) DP+MP. Both the
number of GPUs required and the communications are reduced compared to a standard
implementation of MP with DP. Only N GPUs are needed in PP, but they require more
activation memory, shown with a thicker circle. (d) ZeRO-DP. The model states need
to be sent or received by only one worker at each time step, instead of the standard
broadcast operation of ZeRO-DP.

CDP. However, this requires the GPUs to be able to store the activations of the entire
mini-batch. More generally, a disadvantage of MP and PP is that they need to communi-
cate activations, a communication volume that scales with the batch size B. We will now
discuss each setting in more depth.
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5.3.1 CDP implementation on a single-GPU device

We first explore the setting of a single-GPU device training with mini-batch SGD, assum-
ing that communication within the GPU is cheap and fast, but memory is limited [63].
We illustrate the training of standard DP on a single-GPU device in Figure 2.a.i. Then,
at the peak of the forward pass, the GPU must retain the activations of the entire model
for N micro-batches, representing the total mini-batch, resulting in a total memory of
activations of about NBΨA. Turning our attention to CDP, depicted in Figure 2.a.ii, we
find that its implementation on a single-GPU device requires about half the memory
compared to standard DP. Indeed, in this approach, each stage of the model processes
one micro-batch at each time step. Consequently, the total memory occupied by ac-
tivations remains nearly constant across time steps, approximately equal to N+1

2 BΨA,
reducing the total memory required for a DP implementation by half. Depending on
the implementation, parameters may be shared on the GPU, resulting in no parameter
memory improvement. The memory improvement is still significant in this case, as
activation memory is generally much larger than parameter memory, peaking at 60GB
for a GPT-2 model in [289], compared to 3GB for the fp16 parameters.

5.3.2 CDP implementation on a multi-GPU device

Here, one GPU processes a single micro-batch, but communication between GPUs may
hinder the overall system efficiency. We consider the case where DP is implemented
on N GPUs that process N micro-batches of data independently, as depicted in Figure
2.b.i.. These GPUs communicate the gradients of the micro-batches with an all-reduce
operation at the end of the training step before proceeding to the next time step. All-
reduce is a collective operation that requires at least O(log(N )) communication steps [51]
in a favorable setting, orO(N ) steps for a bandwidth-optimal ring-based implementation
[278]. CDP on N GPUs, as shown in Figure 2.b.ii., makes better use of GPU-to-GPU
communication bandwidth by breaking the all-reduce operation across the training step
into point-to-point operations between each time step. Indeed, half of the stages compute
a backward pass at each time step, and then send the computed gradient to the next
worker (modulo N ) for the reduce operation. This communication scheme corresponds
to the ring-based all-reduce operation [278], which has an optimal bandwidth usage.

5.3.3 Implementation in a MP paradigm

Now, in MP, a GPU does not hold a full replica of a model but only of a single stage.
During the forward and backward passes, activations and gradients must be commu-
nicated between GPUs holding successive stages. A naive implementation of DP and
MP results in Figure 2.c.i., where the N micro-batches require N2 GPUs to process
each slice of the data and the model. Furthermore, note also that only N GPUs are
busy at a time, so most GPUs are idle, waiting for the next micro-batch of data to pass
through, which is a significant inefficiency of MP. Here, CDP with MP, which we present
in Figure 2.c.ii., once again improves on the DP implementation. In particular, the
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number of GPUs required for CDP is reduced, and we can show that for each stage j,
CDP requires only N − j + 1 GPUs to be shared among the N micro-batches. This leads
to a "pyramidal" shape of the stage structure. Thus in total, only N+1

2 N GPUs are needed
to hold a stage of the model, halving the number compared to DP, as well as the memory
requirements. Compared to DP, a micro-batch doesn’t send the activations of a stage
to the same GPU each time for the computation of the next stage. Instead, a GPU in
the previous time step will have released the activations stored in its memory after a
backward pass. The micro-batch will send the activations to this GPU as its memory is
available for computation. Since the number of devices is smaller in DP than in CDP,
note also that the total number of gradient communications between devices is reduced.
In fact, if a GPU can only able to hold the activation of one micro-batch, the number of
GPUs used, N+1

2 N , is optimal to compute N micro-batches. An in-depth discussion is
proposed in the Appendix of this chapter.

Pipeline Parallelism implementation. If we assume that one GPU can store the
activations of all N micro-batches, then we can further reduce the total number of
devices needed to only N , one per stage. Indeed, this implementation of CDP with MP
on N devices, depicted in Figure 2.c.iii., is equivalent to PP as presented in PipeDream
[259]. If we follow our first update rule Eq. (CDP-v1), CDP follows the same update rule
as PipeDream-2BW [258]. However, our second update rule Eq. (CDP-v2) improves on
this update rule by reducing the gradient delay. PP requires fewer GPUs than MP, but
only if the GPUs can store the activations of the entire mini-batch. This limits its scaling
capacity compared to MP, which is 2 times more GPU efficient. Indeed, for GPUs with
similar memory capacities, MP with CDP requires N+1

2 N GPUs to train a batch of size B.
Meanwhile, PP requires N GPUs to train a batch of size BN , so, combined with DP, N2

GPUs for a batch of size B.

5.3.4 Implementation in a ZeRO-DP paradigm

ZeRO-DP [289] is a training framework that aims to combine the advantages of DP
and MP, which we represent in Figure 2.d.i.. Instead of replicating the entire model on
each of the N GPUs, ZeRO-DP replicates only the model states of a single stage across
the GPUs. The model state (in stage 3 of ZeRO-DP) refers to the model parameters,
gradients, and optimizer states. When the workers execute the forward or backward
propagation through a stage, the model states of that stage are broadcast from the GPU
that stores them to all GPUs. After the computation, the model states are deleted to free
up the memory, so that a GPU only retains the model states of a maximum of two stages.
The communication volume is similar to standard multi-GPU DP, with a maximum
increase of 1.5. Note, however, that as with PP, the memory occupied by the activations
on one GPU increases with N , since all stages of the model must be retained. CDP
improves on ZeRO-DP by eliminating the need for collective communication of the
model states, as shown in Figure 2.d.ii.. Since one stage is computed by a single GPU
at a time step, the model states need only to be held by that GPU, without replication.



5.4. Numerical experiments 93

Then, they only need to be communicated to a single GPU at the next time step. This
reduces the communication overhead at each time step, similar to Multi-GPU DP.
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Figure 5.3: Training loss of a ResNet-50 trained on ImageNet following the learning
rules (DP), (CDP-v1) and (CDP-v2). Values are averaged over a window of 7 epochs for
the sake of readability. The loss of CDP-v1 is significantly higher at the beginning of
training, which is not the case for CDP-v2. As the parameters converge, the effect of
the delay disappears and the three losses show a similar training curve, with a small
advantage for both CDP-v1 and CDP-v2. This confirms that the delay in our update
rules does not affect convergence, even in realistic settings.

5.4 Numerical experiments

Framework. To test our method, we propose to use the standard training pipeline on
the CIFAR-10 [183] and ImageNet [76] datasets, trained on the ResNet-18 and ResNet-50
architectures, split into 4 stages with similar FLOPs. We simulate our delayed gradients
to train with SGD following DP, CDP-v1, and CDP-v2. For ImageNet, following standard
practice, we report the maximum validation accuracy over the last 10 epochs. Contrary
to [387], we did not need any specific tuning of the other hyperparameters for our
update rules. More details are provided in the Appendix. Our source code is available
at: github.com/fournierlouis/Cyclic_Data_Parallelism.

https://github.com/fournierlouis/Cyclic_Data_Parallelism
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Table 5.2: Top-1 test accuracy for the three learning rules (CDP-v1), (CDP-v2) and
(DP) on the (a) CIFAR-10 and (b) ImageNet datasets, by training a ResNet-18 and a
ResNet-50. Our results are stable, as the standard deviation over 5 runs is systematically
less than 0.08. We observe that on CIFAR-10, CDP systematically performs similar or
better than DP, especially CDP-v2. On ImageNet, CDP performs similar to or better
than DP.

(a) Test accuracy on CIFAR-10

Learning Rule
Model (CDP-v1) (CDP-v2) (DP)

ResNet-18 94.1 94.8 94.7
ResNet-50 94.0 94.5 94.5

(b) Test accuracy on ImageNet

Learning Rule
Model (CDP-v1) (CDP-v2) (DP)

ResNet-18 69.9 70.0 70.1
ResNet-50 75.8 75.7 75.4
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Figure 5.4: Activation memory per worker, when training with N workers on Ima-
geNet with an efficient implementation of DP (solid) and a CDP (dashed), on a ResNet-50
and a ViT-B/16. An optimal halving of the parameters is represented in black (’Opti-
mal’). The memory required for a forward-backward pass for a worker is first tracked,
and the parameter memory is removed. The figure is extrapolated by mimicking the
total memory used by N workers training on DP (i.e., simultaneous) or CDP (i.e., cyclic)
and dividing by N . As N increases, the memory required by CDP flattens out to a
value less than that required by DP. This value is close to the theoretical halving for
the ViT-B/16, with 42%. The heterogeneity of the layers of the ResNet reduces the
effectiveness of CDP, reaching only a 30% reduction.

Results. We report in Table 5.2a and Table 5.2b the test accuracy of our models
for the three rules CDP-v1, CDP-v2, and DP, for 5 runs on CIFAR-10 and 3 runs on
ImageNet respectively. The reported variances in our runs are less than 0.08, indicating
that our experiments produce relatively stable results. Both tables show that CDP
leads to similar or better performance compared to DP, which is consistent with the
experimental findings of [258, 295]. For CIFAR-10, CDP-v2 significantly outperforms
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CDP-v1, demonstrating our improvement over PipeDream-2BW’s rule.
We also show in Figure 5.3 the training loss of the three concurrent learning rules

on the ImageNet dataset: we note that the final loss of DP is slightly higher than both
CDP-v1 and CDP-v2, with similar generalization performance, indicating how close
the three methods are from both an optimization and statistical point of view. This is
consistent with the theoretical insights of [247].

Activation memory tracking. In Figure 5.4, we track the memory used during one
forward-backward pass of a ResNet-50 and a ViT-B/16 training on ImageNet. By
subtracting the constant value corresponding to the parameter memory, we obtain the
activation memory. From this memory curve, which clearly shows that the activation
memory peaks at the end of the forward pass, we extrapolate for N = 4, 8, and 32
the activation memory usage per worker (total memory over N homogeneous workers
divided by N ) that an efficient implementation of DP and CDP would use. As expected,
the activation memory used varies less during training with CDP, flattening out as N
increases. Furthermore, the maximum activation memory used by the DP paradigm
is significantly higher than that of CDP. The activation memory ratio we find here
is about 30% for the ResNet-50 and 42% (= 3.9−2.3 GB

3.9 GB ) for the ViT-B/16, close to the
theoretically ideal halving. The ResNet achieves a lower memory improvement due to
the heterogeneity of its layers, which have different activation memory requirements
for the same execution time (as feature size decreases with depth). This is not an issue
for a Transformer-based model because the feature size remains constant over depth.
Although a heterogeneous environment will reduce this improvement, this confirms
that CDP will significantly improve memory usage in real implementations when using
homogeneous stages and workers.

5.5 Conclusion

We introduced Cyclic Data Parallelism (CDP), an alternative framework to Data Paral-
lelism. By executing the forward and backward passes of micro-batches of data cyclically
rather than simultaneously, we balance gradient communication and the total memory
occupied by activations. We particularize CDP in the context of Data, Model, and
Pipeline Parallelism as well as ZeRO-DP, and demonstrate improvements in the total
memory required to store activations or in the number of communication steps required
between time steps during training. In particular, CDP reduces the number of devices
required in MP and reduces the communication delay in ZeRO-DP. Our results are
supported by existing theoretical guarantees in the small delay settings. Finally, our
numerical experiments on ImageNet show that our update rules achieve similar testing
accuracy as standard DP. In future work, we would like to release a highly efficient im-
plementation compatible with cuDNN frameworks, as well as further relax our update
rule to explore the possibility of using asynchronous and random delays.
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Algorithm 1 Worker (i, j) in CDPv2, for a stage j on micro-batch i.

1: Input: Stage replica fj , number of models/stages N , initial parameters θ0
j , training

steps T , dataset D, optimizer OPT.
2: while t < T do
3: #### Forward pass
4: # Propagate the new parameters
5: θj ←Wait and Receive from worker ((i − 1)%N,j) if i , (N + 1− j) else (N,j)
6: Send θj to worker ((i + 1)%N,j)
7: # Receive the activations
8: if j = 1 then
9: xj ← Sample from dataset D

10: else
11: xj ←Wait and Receive from worker (i, j − 1)
12: # Compute the forward pass
13: xj+1← fj(xj ,θj )
14: # Propagate the activations
15: if j < N then
16: Send xj+1 to worker (i, j + 1)
17:

18: #### Backward pass
19: # Receive the gradients
20: if i = 1 then
21: ∆j ← 0
22: else
23: ∆j ←Wait and Receive from worker (i − 1, j)
24: if j = N then
25: δj+1←∇L(xJ )
26: else
27: δj+1←Wait and Receive from worker (i, j + 1)
28: # Compute the backward pass

29: δj ←
∂fj
∂xj

T
δj+1

30: ∆j ← ∆j + 1
N

∂fj
∂θj

T
δj+1

31: # Propagate the gradients or the new parameters
32: if j>1 then
33: Send δj to worker (i, j − 1)
34: if i=N then
35: θj ←OPT(θj ,∆j )
36: Send θj to worker (N + 1− j, j)
37: else
38: Send ∆j to worker (i + 1, j)
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Side contribution: Overlapping communications in distributed
LLM training

In this work, we found that we can improve synchronous data parallelism by balancing
the memory overhead and gradient communication with sequential worker executions,
at the cost of a small gradient delay. This results in a strong solution for learning in
clusters composed of homogeneous devices.

In a side work, we also work on a solution that addresses the case of a cluster com-
posed of heterogeneous workers. By allowing workers to accumulate during several
gradient steps while communicating in parallel, it is possible to have a complete overlap
of communication and computation at the cost of a one-step delay in the gradients.
With this approach, the optimizer state can also be sharded among the workers, as in
ZeRO-DP. Heterogeneous devices are handled by this framework, since each worker will
accumulate more gradients according to its speed. Our method, ACCO (ACcumulate
while you COmmunicate), is empirically confirmed to lead to drastically reduced train-
ing times for LLM compared to standard ZeRO-DP, especially in multi-node settings or
with heterogeneous devices. The training of two workers with ACCO is shown in Figure
5.5. (* indicates equal contribution)

Contribution

Adel Nabli, Louis Fournier*, Pierre Erbacher*, Louis Serrano, Eugene Belilovsky
and Edouard Oyallon. ACCO: Accumulate while you Communicate, Hiding
Communications in Distributed LLM Training. Preprint.
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Figure 5.5: Overview of ACCO with a slow and a fast worker running in parallel.
Communications are completely hidden. The delayed update is compensated by splitting
the update in two steps and using weight prediction. Figure courtesy of Adel Nabli.



98 CHAPTER 5. Cyclic Data Parallelism for Efficient Parallelism

Future work: mitigating gradient delays with learned optimizers Nevertheless, we
found that delay can be an issue for convergence in ACCO and proposed a novel delay
mitigation method. Within the two works presented in this chapter, as well as the
delayed gradient approaches in MP, we find that the use of delayed gradients is a key
issue in the adoption of these methods. Several techniques exist to mitigate the effect
of this delay on convergence, but with limited results and not designed for optimizers
other than SGD.

In future work, we propose that the learned optimizer framework [239, 240, 129]
can be used to meta-learn optimizers specifically for learning approaches that require
delayed gradients, rather than using SGD or Adam. This would reduce the performance
gap between delayed gradient methods and backpropagation. In particular, these
optimizers could outperform traditional delay reduction techniques by using the same
features as these techniques (e.g., the difference between the parameters at the time the
gradient was computed and now).

We are working on making such approaches viable compared to other delay reduction
techniques, through meta-learning optimizers following the framework of [239]. We
can depict meta-learning in Figure 5.6. In the inner task, the models are updated at
each training step using the learned optimizer U , a small neural network that takes as
input the delayed gradient and other possible buffers and features. In the outer task, the
resulting losses from the inner task provide an outer loss value L. The inner task is then
unrolled to obtain the gradient of the outer loss with respect to the learned optimizer
parameters, which are then updated with Adam.

......

Inner
training

Outer
training

Gradient
computation

Parameter
update

Figure 5.6: Representation of meta-learning optimizers for delayed gradient ap-
proaches. Learned optimizers are used in an inner training task that uses a delayed
update rule (in this case, a fixed constant delay). The inner training losses are used to
compute an outer loss value, which is then used to compute a gradient to update the
parameters of the learned optimizer.



Chapter6
WASH: Train your Ensemble with
Communication-Efficient Weight
Shuffling, then Average

In this chapter, we present our second contribution to the field of distributed learning.
After having improved the synchronous distributed approach of DP, where model
replicas are kept equal at each time step, we focus on the opposite idea, ensemble
learning, where model replicas communicate rarely and are kept different. We are
inspired by the distributed methods that train an ensemble of DNNs so that they can
be weight-averaged into a single powerful model. However, these approaches either
regularly collapse the DNNs into a single model, losing the diversity that gives the
population its ensemble performance; or require a communication volume similar to
DP. We propose a novel approach that leads to in a strong weight-averaged model while
drastically reducing the communication volume.

The idea for this method comes from another project. Consider, as discussed in the
previous chapter, a DP and MP framework, where devices hold different replicas of each
stage of the network. During the forward and backward passes, the stages of a DNN
replica communicate activations and gradients. Note, however, that stages correspond-
ing to different replicas of the DNN may also communicate, for the same communication
volume. Then, instead of each model forwarding to the next stage associated with its
replica, one could have a ‘stochastic routing’, where a stage forwards its activations to
any of the replicas of the next stage. As the replicas have to handle activations from all
workers, this will results in a better consensus between the replicas, while requiring no
additional communication. Now, rather than thinking of the activations being routed
randomly at each step, it is strictly equivalent to think of the parameters of each stage as
having been permuted randomly between replicas before the forward pass. In this work,
we focus on this particular view of permuting parameters, to keep disconnected models
in the same loss basin. Part of this view of activations being routed to other devices also

99
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resulted in the idea of CDP from the last chapter.
My contributions in this work were first part of the original stochastic routing idea,

with Adel Nabli. After finding no success of this method for standard distributed
learning, a discussion with Masih Aminbeidokhti led me to investigate this idea with
regard to ensemble training. I then performed all experiments and analysis in this work,
except for the Appendix heatmaps.

Contribution

Louis Fournier, Adel Nabli, Masih Aminbeidokhti, Marco Pedersoli, Eugene
Belilovsky and Edouard Oyallon. Preprint. WASH: Train your Ensemble with
Communication-Efficient Weight Shuffling, then Average. Preprint.

6.1 Introduction

In order to enhance the accuracy of a given class of models, the answers of multiple
instances trained in parallel can be aggregated via model ensembling. This can lead
to significant improvements in modern deep learning models [99], increasing the gen-
eralization ability. However, this comes at the cost of evaluating multiple instances
of a given model during inference. This increases both memory and computational
requirements, resources that can be critical for on-device inference [237]. To solve this
problem, the population of models can be fused into a single model to obtain both the
generalization improvements of ensembling and the inference cost of a single model.
Since independent models can be linearly connectable [102], a simple technique is to
average the weights of the different models to obtain a fused model [376].

However, there are limits to this method. For models that are too dissimilar, the
performance of the averaged model may be no better than chance [151]. To mitigate this,
the ensemble can either use a pre-trained network as a starting point [261] or ensure
that models share part of their optimization path [102]. However, reducing ensemble
diversity too much comes at the expense of performance (see Figure 6 of [99]), revealing
a trade-off between model diversity and weight averagability. Inspired by distributed
training, techniques such as DART [157] and PAPA [161] have been proposed to train a
population of models in parallel on heterogeneous data while communicating to balance
this trade-off. DART, similar to LocalSGD [332], periodically averages all models to
avoid model divergence. PAPA controls the diversity of the models more finely by
pushing them toward the averaged parameters using an Exponential Moving Average
(EMA) like EASGD [398], achieving better performance. In particular, they show that
training a population in this way results in models that generalize better than a single
model trained with the same compute as the entire population, demonstrating the
potential of these distributed approaches. However, existing methods require a regular
computation of the average model using an all-reduce operation, either to periodically
remove any diversity in the population [157] or, in the case of PAPA, to compute an EMA
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1. Train separately 2. WASH! 3. Average the weights

Repeat..

Figure 6.1: Representation of training with WASH. A population of models is being
trained separately. (1) After each training step, (2) a small percentage of the parameters
are permuted between models. (3) At the end of the training, the model weights are
averaged, resulting in a high performance model.

of the average. This results in a high communication cost during the parallel training of
the model population [281], which hampers the scalability of these approaches as the
population size increases [276].

In this work, we propose a novel distributed method to train a population of models
in parallel while keeping their weights within the same basin. It requires a fraction of
the communication cost of PAPA but exhibits greater model diversity during training,
increasing the final averaging accuracy. Our main idea is to shuffle parameters between
models during training, forcing them to learn using the others’ parameters. We refer to
this idea as "parameter shuffling". A permutation is chosen randomly, and the models
will communicate their parameters peer-to-peer according to the permutation. The
use of a permutation is distinct from the notion of weight permutation of [3], which
is within one model. We denote our method, which achieves Weight Averaging using
parameter SHuffling, as WASH, and represent it schematically in Figure 6.1.

Contributions. Our contributions are as follows:

• We propose a novel method for the training of a population of models that can
be weight-averaged, which we call WASH (Weight Averaging using parameter
SHuffling). By shuffling a small number of parameters between models during
training, the resulting population can be weight-averaged into a high-performance
model for a fraction of the communication volume of methods such as PAPA.

• We find that WASH provides state-of-the-art results on image classification tasks,
resulting in models with performance at the level of ensembling methods, while
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requiring only a single network at inference time.

• We provide experiments to better understand the improvement provided by WASH,
in particular how WASH implicitly reduces the distance between models in the
population while preserving diversity.

• We perform different ablations of our method to show the impact of shuffling.

Our source code is available at: github.com/fournierlouis/wash.

Chapter organization. This chapter is structured as follows. We first motivate then
introduce our weight shuffling method in Section 6.2. We then present our experimental
framework and our main results in Section 6.3.1. We study more in-depth why our
shuffling method result in an improvement over previous approaches in Section 6.3.2.
Finally, we propose several ablations in Section 6.3.3 to better understand our shuffling
approach.

6.2 Parameter shuffling in an ensemble for weight averaging

Motivation of our training procedure. We aim to balance the benefits of model ensem-
bling with the computational efficiency of using a single model for inference via weight
averaging. In other words, our objective is to produce a single model resulting from the
ensembling. A set of N model parameters {θn}n≤N ⊂ Rd are trained in parallel on the
same dataset, with different data ordering and possibly different data augmentations
and regularizations. To avoid divergence between the models, PAPA applies an EMA
every T training steps and produces the following update

θ̃n← αθn + (1−α)θ̄ , (6.1)

where θ̄ ≜ 1
N

∑N
n=1θn represents the average of the model weights, also called the

consensus, and α ∈]0,1[ is weighted according to the learning rate. Despite its advantages,
this method has drawbacks, including the need for synchronized global communication
across all models, which can be inefficient, and the potential reduction in model diversity
due to the consensus constraint, which may reduce model expressiveness. Indeed, we
observe that after each update∑

n

∥θ̃n − θ̄∥2 = α2
∑
n

∥θn − θ̄∥2 <
∑
n

∥θn − θ̄∥2 , (6.2)

which shows that the EMA step of methods such as PAPA directly reduces the distance
of the models from the consensus and hinders their diversity.

Proposed method: WASH. To address these challenges, we propose the following
stochastic parameter shuffling step instead of the EMA, defined for each individual
parameter θj

n ∈ R of a model θn = [θj
n]dj=1 by

https://github.com/fournierlouis/wash
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θ̂i
n←

 θi
πi (n) with probability p,

θi
n otherwise,

(6.3)

where πj denotes a random permutation of the indices {1, ...,N }, chosen uniformly
at each iteration for each parameter index j ∈ {1, ...,d}, and independently from the
Bernoulli variable of Eq. (6.3). Notably, this parameter shuffling reduces in expectation
to

E[θ̂n] = (1− p)θn + pθ̄ . (6.4)

Thus, WASH aligns, in expectation, with the EMA of Eq. (6.1) for p = (1 − α). The
expected number of parameters communicated by each model at each step is thus p × d
while for PAPA, each model communicating all of its parameters every T steps, this
amounts to d

T . Thus, p≪ 1
T results in a significantly reduced communication overhead

favorable to WASH. However, the model diversity is higher, because WASH preserves
the consensus distance, as shown by∑

n

∥θ̂n − θ̄∥2 =
∑
n

∑
j

(θ̂j
n − θ̄j )2 =

∑
j

∑
n

(θj
n − θ̄j )2 =

∑
n

∥θn − θ̄∥2 . (6.5)

Still, note that the following optimization step will affect the consensus distance, as we
will see later.

Layer-wise adaptation via WASH. Recognizing that different network layers may
require different levels of adaptation due to their roles and dynamics, we introduce a
layer-specific probability adaptation. Assuming L layers in the network, for each layer l
(where 0 ≤ l < L) we set

pl = p

(
1− l

L− 1

)
, (6.6)

where p is a base probability. In other words, the parameters of the first layer have
a shuffling probability of p, while the parameters of the last layer are never shuffled.
This adaptation ensures that deeper layers, which are typically slower to train and more
sensitive to the input features, undergo fewer permutations than the more generalizable
early layers. This strategy not only preserves the specificity required by the early layers,
but also cuts the overall communication overhead in half.

Full procedure. Algorithm 2 presents the training of a population of N models using
WASH. Starting from the same initialization, our training procedure alternates between
local gradient computation and shuffling communication. At inference, we simply
average the weights of the models to obtain a single model with parameters θ̄. Note that
techniques such as REPAIR [162] or activation alignment [3] could be incorporated to
improve the alignment of the models, but we found them to be unnecessary to achieve
high accuracy and kept our evaluation framework minimal for the sake of simplicity.
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Algorithm 2 Training with WASH

1: Input: Datasets Di , number of models N , initial parameters θ0, training steps T ,
number of layers L, base probability p

2: Initialize parameters (θn)n← θ0 and optimizers opti
3: for t = 1 to T do
4: # Training step
5: for n = 1 to N , in parallel do
6: (xn, yn)←Dn # Sample data
7: θn← optn(xn, yn,θn) # Update the model n
8: # Shuffling step
9: for layer l = 0 to L− 1 do

10: for parameter θj in layer l do
11: With probability p(1− l

L−1 ),
12: πj ← Random permutation

13: (θj
n)n← (θj

πj (n))n # Send and permute the parameter

14: Output: the averaged model 1
N

∑N
n=1θn

6.3 Numerical experiments

Training methods. We present the capabilities of WASH for training a population of
neural networks on standard image classification tasks. As a Baseline, we consider a
population trained separately, with each model working on a different dataset order
and different data augmentations and regularization (if they are used). This is the same
baseline as [161], only starting from the same initialization, but we found that this
change had no significant impact on performance. We also compare WASH to PAPA
[161] on the same tasks (with PAPA however using models with a different initialization),
to show our improvement despite requiring a fraction of the communication cost. We do
not provide comparisons with DART [157] or the variants of PAPA as their performances
are generally inferior [161]. We also propose a variant of WASH called WASH+Opt,
which also permutes the optimizer state associated with the shuffled parameter (in our
case, the momentum of SGD), doubling the communication volume. For simplicity, we
do not permute or recompute the running statistics of the BatchNorm layers.

Communication cost. Training with PAPA requires computing an all-reduce operation
on all of the model parameters every T = 10 training steps. In comparison, WASH
requires, in expectation, a shuffling of p/2 of the model parameters at each training step.
Thus, by keeping a base probability p ≤ 0.2, WASH results in a more communication-
efficient training. In practice, in our experiments, p will be 0.001 or 0.05, ensuring a
reduction in communication volume of 200 or 4.
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Table 6.1: Communication volume and inference costs of four training techniques. The
baseline Ensemble is trained separately, but requires a linearly increasing inference cost.
In our experiments, we set the base probability of WASH and WASH+Opt to 0.001 and
0.05, respectively, when training on CIFAR-10/100 or ImageNet, resulting in a reduction
in communication volume compared to PAPA.

Communication volume
Technique CIFAR-10/100 ImageNet Inference cost

Ensemble 0 0 N
PAPA 1 1 1
WASH 1/200 1/4 1
WASH+Opt 1/100 1/2 1

Evaluation strategy. After training, the resulting population of models obtained can be
evaluated in three different ways. As a baseline, the performance of the population can
be evaluated as an Ensemble, averaging the predictions of the models. The parameters of
the models can be averaged to obtain a single model, which we refer to as Averaged. This
is equivalent to UniformSoup in [376] or AvgSoup in [161] for example. More elaborate
averaging methods have been proposed, such as GreedySoup [376], which averages an
increasing number of models (in order of validation accuracy) until averaging no longer
improves accuracy. We report the accuracy of the Ensemble and Averaged model for all
training techniques, as well as the GreedySoup accuracy of the Baseline. As in [161], we
find that the GreedySoup accuracy corresponds to the accuracy of a single model for the
Baseline and that the Averaged model accuracy outperforms the GreedySoup model for
the other techniques, and thus chose not to report it. We summarize in Table 6.1 the
communication volume and inference costs required to train a separate Ensemble of
models, or to train with PAPA, WASH, or WASH+Opt.

6.3.1 Main experiments

Experimental setup. We showcase the performance of WASH for training neural net-
works on image classification tasks on the CIFAR-10, CIFAR-100 [183], and ImageNet
[76] datasets. We use the same training framework as [161] for a fair comparison. We
train a population of N models for N ∈ {3,5,10}, on the ResNet-18, 50 and VGG-16 archi-
tectures. 2% of the training data is kept as validation for computing the GreedySoup. As
in [161], we consider one framework with heterogeneous models, learning with different
data augmentations and regularizations, and one homogeneous setting with no data
augmentations, where the only difference between the models’ trainings is the dataset
shuffling. Details are presented in the Appendix. The models are trained with SGD
with momentum, a weight decay of 10−4, and a cosine annealing scheduler with initial
and minimum learning rates of 0.1 and 10−4. For CIFAR-10/100, we train over 300
epochs with a batch size of 64, and 90 epochs with a batch size of 256 for ImageNet. For
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Table 6.2: Ensemble and Averaged Model accuracy for a heterogeneous population of
models; trained with different data augmentations and regularizations. We compare
models trained separately (Baseline), with PAPA, or with our method WASH and its
variant WASH+Opt. We also report the GreedySoup accuracy for the Baseline models.
The best Ensemble (black) and Averaged (blue) accuracy are reported in bold. Except on
CIFAR-10, WASH and in particular WASH+Opt provide the best performance for the
final Averaged Model, with performances comparable to the Ensemble of models for a
fraction of the inference cost.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10

VGG-16 3 95.98±.42 10.00±.00 95.26±.05 96.12±.34 96.13±.24 95.89±.23 95.97±.24 95.91±.36 95.85±.27
5 96.28±.40 10.00±.00 95.42±.10 96.24±.17 96.21±.13 96.15±.10 96.20±.10 96.00±.21 96.04±.14
10 96.47±.07 10.00±.00 95.39±.24 96.32±.13 96.31±.13 96.27±.10 96.18±.13 96.14±.08 96.20±.05

ResNet18 3 97.15±.28 10.17±.29 96.62±.38 97.33±.05 97.24±.05 97.21±.19 97.19±.17 97.22±.07 97.25±.14
5 97.33±.08 10.09±.16 96.61±.03 97.35±.12 97.31±.06 97.21±.10 97.25±.12 97.18±.09 97.16±.07
10 97.59±.01 9.26±1.28 96.79±.14 97.39±.13 97.34±.06 97.30±.10 97.28±.04 97.20±.13 97.16±.13

CIFAR-100

VGG-16 3 80.36±.15 1.00±.00 77.92±.22 78.89±.10 78.77±.16 79.10±.88 79.05±.68 79.15±.61 79.15±.41
5 81.32±.56 1.00±.00 77.81±.25 79.51±.38 79.24±.43 79.65±.27 79.39±.21 79.75±.21 79.71±.20
10 82.24±.15 1.00±.00 77.83±.65 79.95±.11 79.64±.13 80.05±.18 79.70±.25 80.03±.11 79.76±.13

ResNet18 3 82.84±.48 1.00±.01 80.06±1.5 81.58±.12 81.53±.13 81.91±.34 81.90±.36 81.99±.06 82.08±.09
5 83.72±.49 1.00±.00 80.72±.52 82.09±.30 82.01±.34 82.16±.42 81.97±.28 82.35±.17 82.17±.15
10 84.18±.20 1.00±.00 80.61±.43 82.32±.09 82.15±.14 82.43±.32 82.31±.38 82.42±.31 82.18±.22

ImageNet

ResNet50 3 76.16±.28 0.10±.00 74.15±.11 75.62±.15 10.32±2.4 74.39±.14 74.34±.18 74.30±.22 74.18±.26
5 76.68±.06 0.10±.00 74.47±.06 75.80±.21 0.13±0.04 74.63±.11 74.59±.07 74.44±.21 74.39±.21

WASH and WASH-Opt we initialize the models with the same parameters and choose p
with cross-validation to be equal to 0.001 or 0.05 when training on CIFAR-10/100 or
ImageNet. We do not require any alignment technique such as REPAIR.

Main results. Table 6.2 and Table 6.3 correspond to the heterogeneous and homoge-
neous settings, respectively. We report the test accuracies as the average of 3 runs for
the Ensemble of models, the Averaged model, and the GreedySoup for the Baseline
(equivalent to the best model). Consistent with the findings of [161], we find that net-
works trained separately have a high Ensemble accuracy, but perform as random when
averaged. On CIFAR-10/100, methods like PAPA and WASH result in lower Ensem-
ble accuracy but almost no difference between the Ensemble and Averaged accuracies.
In general, WASH and WASH+Opt outperform PAPA, even though they require less
communication. On ImageNet, our parallelization procedure results in a slightly lower
Baseline accuracy and we were not able to reproduce PAPA’s baseline, possibly due to a
mistake in their reported hyperparameters. See the Appendix for experiments on Ima-
geNet32x32. The WASH Averaged model achieves high accuracy, like previously. Both
of our methods reduce the gap with the accuracies of the baseline Ensemble, indicating
that WASH hinders less the diversity of the population of models while maintaining
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Table 6.3: Ensemble and Averaged Model accuracy for a homogeneous population
of models. We compare models trained separately (Baseline), with PAPA, or with
our methods WASH and WASH+Opt. The best Ensemble (black) and Averaged (blue)
accuracy are reported in bold. We observe the same results in this setting, with WASH
in particular coming close to the Ensemble performance.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10

VGG-16 3 94.93±.06 10.00±.00 93.60±.41 94.38±.14 94.34±.18 94.41±.23 94.58±.17 94.45±.05 94.47±.02
5 95.29±.05 10.00±.00 93.82±.30 94.55±.12 94.58±.12 94.72±.08 94.70±.17 94.63±.11 94.68±.14
10 95.23±.06 10.00±.00 93.82±.06 94.79±.18 94.78±.20 94.66±.03 94.54±.07 94.71±.07 94.61±.13

ResNet18 3 96.14±.10 10.00±.00 95.42±.27 95.89±.04 95.89±.06 95.77±.12 95.77±.17 95.85±.04 95.87±.10
5 96.19±.16 10.00±.00 95.31±.09 95.99±.08 95.99±.08 95.96±.08 95.98±.05 95.94±.12 95.98±.12
10 96.34±.02 10.00±.00 95.26±.11 96.10±.25 96.11±.24 96.08±.07 96.12±.09 96.07±.07 96.08±.14

CIFAR-100

VGG-16 3 77.63±.24 1.00±.00 73.76±.35 75.10±.11 75.09±.16 76.30±.37 76.04±.58 76.04±.03 75.96±.18
5 78.52±.10 1.00±.00 73.76±.18 75.56±.16 75.55±.14 76.63±.27 76.48±.23 76.64±.15 76.13±.18
10 79.26±.06 1.00±.00 73.99±.26 76.24±.44 76.26±.43 77.06±.12 76.43±.18 76.72±.15 75.94±.26

ResNet18 3 79.54±.17 1.00±.00 76.84±.54 77.83±.26 77.86±.30 78.90±.17 78.76±.25 78.66±.08 78.56±.21
5 80.11±.23 1.00±.00 76.83±.45 77.94±.16 77.92±.19 79.24±.32 79.09±.43 79.32±.19 79.19±.15
10 80.55±.13 1.00±.00 76.80±.41 78.40±.15 78.44±.22 79.65±.17 79.43±.16 79.34±.34 79.19±.45

weight averagability. However, a gap still remains, which may be inherent to the models
being in the same basin. WASH and WASH+Opt have very similar results, with the
simpler WASH being better in the homogeneous case and WASH+Opt being better in
the heterogeneous case.

6.3.2 Why do shuffling parameters help?

In this section, we propose to explain the improvement provided by our parameter
shuffling over previous mechanisms such as BTM, DART or PAPA, which focus on
parameter averaging. First, we show that models trained with WASH have a smaller
distance to consensus than models trained separately. We then argue that, despite this,
WASH is a weak perturbation on the training of the models and that it induces diversity
in the models.

Reducing distance to consensus. To better analyse the diversity of the models trained
with WASH, we propose to report the distance of the models to the consensus (the
averaged model) during training, as a proxy for the diversity metric. [151, 377] showed
that the difference between the Ensemble and the Averaged models depends on the
distance between the models. We present in Figure 6.2 the average distance of the
models to the consensus, for models trained separately, with PAPA, PAPA-all, or with
WASH. PAPA-all is a variant of PAPA that is functionally identical to DART. The idea is
to average the weights every few epochs before allowing the models to diversify again.
We observe that WASH results in a consistently lower distance to consensus than the
baseline, even though it explicitly leaves the distance to consensus unchanged during
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Figure 6.2: Average distance to the consensus (i.e. the averaged model) during training
for a heterogeneous population of 5 models trained on CIFAR-100, either separately,
with PAPA, PAPA-all, or our method WASH. Starting from consensus, the models initially
diverge from each other before converging back again during convergence, mainly due
to weight decay. Models trained with WASH have a smaller distance to consensus than
those trained separately, allowing them to be averaged without loss of performance. By
training with PAPA-all (i.e., averaging to a single model every few epochs), the models
are not able to reach the same diversity as WASH between these averaging steps. Finally,
the EMA of PAPA has a strong pulling effect towards consensus, resulting in a distance
similar to that of PAPA-all. The wiggle in the curve is due to the immediate reduction in
distance caused by the EMA steps.

the shuffling step, and only shuffles a small number of parameters. Thus, the smaller
distance at the end of the training explains why the averaging of the parameters does
not lead to a decrease in performance. In comparison, PAPA-all (i.e. DART) results in
alternating phases where the models diversify before being averaged, and we observe
that the models are not able to reach the diversity of WASH. Similarly, the EMA of PAPA
has a strong pulling effect and results in an average diversity similar to that of PAPA-all.
Thus, we find that models trained with WASH have a higher diversity than models
trained with PAPA or PAPA-all, while being close enough that averaging them does not
cause a loss in performance. More generally, we show in Figure D.1 of the Appendix that
different interpolations of models trained with WASH result in a similar performance,
demonstrating that they all lie in the same loss basin.

Encouraging diversity. WASH can be considered as a weak perturbation of the models:
parameter shuffling affects the models less than parameter averaging or the EMA of
PAPA, since only a few parameters are affected at a time and the consensus distance is
unaffected. Furthermore, parameter shuffling increases the diversity of trajectories seen
by the models. We illustrate this with a toy example where two points are jointly trained
with SGD on a 2D loss function with 2 local minima and 1 global minimum, either



6.3. Numerical experiments 109

0 5 10 15
2

0

2

4

6

8

10

12

14

16
Standard SGD
PAPA
WASH
Start point
End point
Local minimum
Global minimum

Figure 6.3: 2D optimization example. We train 2 points with SGD on a simple loss
function with 2 local and 1 global minima (up and down triangles). The two models
are trained from two different starting points (plus signs). When the points are trained
separately (yellow), they converge to their closest local minimum (yellow circles). When
trained with PAPA (blue), the points reach a consensus but then converge to one of
the local minima (blue circles). When trained with WASH (red), the shuffling (seen
by the horizontal and vertical lines in the trajectory) allows for more diversity in the
optimization path, and the points both reach the global minimum (red circles).

separately, with PAPA, or with WASH. The trajectories corresponding to each method
are shown in Figure 6.3. Training the two points separately causes them to converge to
a separate local minimum (i.e. a different basin). Training with PAPA allows the two
points to reach a consensus, but they converge together to a local minimum. In contrast,
by training with WASH, we show that both points reach the global minimum, as the
shuffling allows for a greater diversity of points to optimize with. We provide more
details in the Appendix.

6.3.3 Ablations

In this section, we present ablations to better understand the effect of the parameter
shuffling, varying the layer-wise probability adaptation, the base probability value, and
the shuffling period.

Layer-wise adaptation variations. For WASH, we found that decreasing probability
with depth gave the best results. We show in Table D.1 of the Appendix the performances
for alternatives where the probability either remains constant or increases with depth.
We find lower performances for both alternatives. In Figure 6.4 we show the distances
of the models to the consensus for all three schedules. More specifically, we report the
distances for different slices of the models’ parameters, showing the effect of shuffling
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Figure 6.4: Average distance to the consensus for different layer-wise adaptations of
WASH, for different slices of the model parameters. Keeping the probability constant
across layers ensures the lowest distance to consensus for the first quarters. Surprisingly,
in the last quarter of parameters, the ‘decreasing probability’ adaptation, despite starting
with a higher distance to consensus, shows a lower distance to consensus later in training;
even though shuffling is less frequent than in the other schedules. The ‘increasing
probability’ adaptation shows how early layers are useful for shuffling.
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Figure 6.5: Ensemble and Averaged accuracy for varying base probability values.
We observe a phase transition as the base probability increases between a phase where
permuting does not improve the averaged model accuracy and a phase where the
ensemble accuracy is equal to the averaged model accuracy. Between the phases, the
ensemble accuracy decreases.

as a function of depth. As predicted, shuffling all layers equally results in the lowest
distance to the consensus, except for the last quarter of parameters. Here, surprisingly,
our base ‘decreasing’ adaptation shows a lower distance to the consensus despite less
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Figure 6.6: Ensemble and Averaged accuracy depending on the starting or ending
epoch of the shuffling. The parameter shuffling is beneficial both at the beginning and
at the end of training. Note that ending early, at epoch 150 out of 300, has less impact
on performance than starting permuting at epoch 150, showing that WASH is more
important early in training.

frequent shuffling. We also observe a particularly strong effect of the shuffling for
the early layers, as the distance in the first quarter is more pronounced between the
‘increasing’ curve and the others.

Base probability variation. We present in Figure 6.5 the Ensemble and Averaged
for different values of p, the base shuffling probability of the first layer. Rather than a
smooth increase in the accuracy of the Averaged model, we observe a phase transition
between a phase where the accuracy of the Averaged model is not improved by the
shuffling and a sudden increase in the accuracy where it reaches the accuracy of the
Ensemble. Just before the transition, the accuracy of the Ensemble decreases, before
increasing again back to its previous performance. The accuracy decreases only slightly
even when the shuffling probability is increased to 1, indicating the resilience of the
models to heavy shuffling.

Shuffling is beneficial at every step. Finally, we propose to show the impact of the
parameter shuffling at different steps of the training by varying the epoch at which the
shuffling either starts or stops. In Figure 6.6, we show that there is no improvement by
having a warmup or slowdown period in parameter shuffling, indicating that all phases
of the training are improved by WASH. Furthermore, stopping parameter shuffling early
results in a much smaller loss of Averaged accuracy compared to starting shuffling late.
In other words, shuffling at the beginning of training before the models start to converge
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is more impactful as the models may still reside in different loss basins.

Conclusion

We proposed a novel distributed training method, WASH, which aims to train a popula-
tion of models in parallel. These models are averaged at the end of training to obtain a
high performance model with accuracies close to the ensemble accuracy for a fraction of
the inference cost. Our method requires a fraction of the communication cost of similarly
performing techniques, while achieving state-of-the-art results for our weight-averaged
models. We show that our novel parameter shuffling does not explicitly reduce the
distance between models while increasing the diversity of optimization paths seen by
the population. Nevertheless, we find that the distance between our models is smaller
than if they were trained separately, allowing them to be averaged at the end of training.
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Chapter7
Conclusion

7.1 Contributions

In this thesis, we investigated parallelizable approaches to DL training that deviate
from the standard paradigm of parallelized mini-batch SGD with backpropagation, and
summarize our contributions in Figure 7.1.

We first focused on model parallel approaches, particularly on local learning.
We studied the local learning framework for training DNNs using contrastive self-

supervised training objectives. We found that such approaches also suffer from informa-
tion collapse, similar to the supervised case. In our case, we showed that this collapse
can be measured by observing the dimensionality of activations in the network. We
also showed, using an oracle model, that a simple subsampling of the examples used
by the local losses is sufficient to greatly reduce this collapse and thus approach the
performance of backpropagation. This idea, motivated by a linear model, led to a simple
and novel method to regularize the local training, by sampling examples depending on
their local feature similarity. We confirmed that this method remedies the dimensional
collapse in contrastive local learning and reduces the accuracy loss due to decoupling,
without requiring external information.

We then extended our interest to a backpropagation alternative that is not local but
requires only one forward pass. This approach was motivated by the contrast between
local learning, a method that provides biased but fast local gradients, and forward-mode
AD, which provides forward gradients, an approximation of the backpropagation gra-
dient with a high variance. We conducted an extensive study of the forward gradient
approach by varying the approximated gradient, which can come from the end-to-end
loss, local losses, or an intermediary; as well as the tangent direction used for computa-
tion, using random isotropic directions, NTK gradients, or local loss gradients. We also
tested a variety of feedback insertion points, image datasets, and model sizes. We found
that the local gradients outperformed all other tangent directions, despite their limited
alignment with the end-to-end gradients. However, by keeping the end-to-end objective
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as the one to be approximated, we found that our approach could reduce the gap with
backpropagation.

We then focused on the other side of parallel training, the distributed approaches.
We introduced a novel synchronous distributed training paradigm for homogeneous

clusters, called Cyclic Data Parallelism (CDP). In the standard Data Parallelism (DP)
approach, the total memory used by the models peaks at the end of the forward pass and
each communicated gradient requires a collective operation at the end of the backward
pass. Compared to DP, we found that we could balance both gradient communication
and the total memory used by activations. Our idea was to change the execution of the
forward and backward passes of the micro-batches of data from simultaneous to cyclic.
CDP can be applied to many complementary frameworks to DP. On a single device,
it can reduce the total memory used by DP. On multiple devices, the most common
distributed framework, it balances the communication during the training step. When
used with the ZeRO-DP framework, our cyclic paradigm allows model states to remain
on only a single device at a time. When added to a model parallel framework, this can
result in a more GPU-efficient method than even pipeline parallelism, reducing the
number of GPUs required. Despite requiring delayed gradients with a delay inferior to
one training step, we find that our novel update rule performs similarly to the learning
rule of standard DP.

At the other end of distributed approaches, we focused on a training framework that
does not approximate parallelized backpropagation, but trains an ensemble of model
replicas separately to promote diversity. We focused on a communication-efficient
method that allows such models to be trained in parallel while keeping them in the
same loss basin. The goal is to balance their diversity, which improves the ensemble
accuracy of the resulting population of models, and their averagability, i.e., whether
they can be averaged into a final higher-performing network. Initially inspired by the
shuffling of activations in a model parallel framework, we found that it is sufficient to
shuffle a very small fraction of parameters between models to keep them averagable. Our
resulting novel distributed approach, called WASH, leads to state-of-the-art performance
for the final model while requiring only a fraction of the communication volume of
similar techniques. Our method does not explicitly reduce the diversity of models, while
encouraging more diverse optimization paths.

7.2 Perspectives

Will DNNs continue growing ?

The motivation for this thesis, the ever-increasing computational requirements for
training DNNs, may change in the coming years depending on several factors. Huang’s
Law, which shows that GPUs and TPUs double their performance every year, is still
the main reason for training deeper networks every year. There may come a point
where this law slows down, making faster computations harder to achieve. Similarly,
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Figure 7.1: Summary of our four contributions. Our first two contributions provide
novel MP approaches related to local learning, either by subsampling contrastive local
losses or by using forward-mode AD to mix local and global feedback. Our last two
contributions provide novel distributed approaches, either for synchronous learning as
in data parallel, or the low-communication ensemble training framework.

improvements in recent models may slow as they reach human-like levels, or as the
amount of training data left to scrap is exhausted [354]. In this case, research will need
to evolve in a direction orthogonal to the one it is currently pursuing, which is to follow
the ‘bitter lesson’, i.e., growing all training components for better performance [340].
Such directions may be models with better world models [199] or access to memory or
agent capacities [402] for example. As models grow into more general roles, another
approach could focus on using local learning to only train separate subnetworks on
specific tasks.

Other alternative learning approaches

We have discussed some other efficient learning approaches in the introduction to this
thesis. Refinements in the datasets used or the use of hardware (such as FlashAtten-
tion [73]) will further improve the training speed of the standard approaches in the
coming years. Possible alternative training schemes, such as using sparsity [139], matrix-
multiplication-free methods [408], or further reduction of weights to just a few bits
[224] will also continue to be explored. However, it is difficult to predict their use,
since consistency and usability are important factors in the adoption of such paradigms.
The current focus of the DL community on possible changes to the learning framework
continues to be on novel model architectures. For example, Mixture of Experts models
reduce inference costs, which is critical as models grow. Most importantly, finding
alternatives to the Transformers architecture remains an important goal. Despite its
success and modularity, the attention mechanism and its quadratic cost become an
obstacle for both training and inference. In particular, the problem of context size has
become an issue in recent years, as many applications require knowledge of information
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very far apart in the data [363]. Thus, it is not clear whether future foundation models
will continue to use its architecture in the future, or whether more efficient alternatives
such as state-space models will surpass it [101]. As it stands, it seems difficult to imagine
a major paradigm shift in the current training framework, as long as refinements and
size increases still provide predictable improvements for the time being. Still, we think
that local learning may have a role to play in the future, as we discuss now.

Local learning

Two of our contributions aimed at reducing the gap with backpropagation, either by
regularizing the local losses, or by using forward gradients to receive a global feed-
back. Despite this, we found that local learning approaches are still outperformed by
backpropagation, which is logical. Joint training of the target objective yields better
results than each layer training auxiliary objectives with no guarantee on the following
representations. However, this may not be a problem in future DL training approaches,
especially in the foundation model era. Minimizing the self-supervised training ob-
jective is arguably a secondary goal in such models. The self-supervised objective is
primarily a way for these models to memorize and predict data, rather than to perform
a precise task such as classification. Indeed, they are several fine-tuning steps after the
initial training of such networks. Thus, the use of novel local losses that could serve a
similar purpose may have no major impact on the resulting trained network. The best
example of this idea remains the brain. It most likely does not follow a rigid training
objective [216], and may also mainly perform inference and learning according to the
neuroscientific principle of free energy [246]. The most interesting idea of a future
possible DNN architecture, though still improbable, might therefore be a decentralized
deep reservoir network composed of many neurons, almost entirely connected with
feed-forward connections and local learning rules [364]. Such an approach would be
more biologically plausible, while being able to perform the task required by foundation
models, which is mainly memory and prediction.

However, the issue of alignment between local and end-to-end gradients cannot be
completely dismissed, if the goal remains to effectively minimize the training objective.
Some regularization approaches can improve this alignment, but to truly approximate
backpropagation, some form of feedback is needed. Several ideas are possible: using
intermittent backpropagation passes to obtain ‘true’ gradients, similar to [155], locally
aligning the gradients between successive stages, meta-learning local training objectives
that align with the end-to-end gradients... However, there will be a trade-off between a
better approximation of the backpropagation gradient and the need for more backward
connections and more computation. If this trade-off becomes too expensive to obtain a
good approximation, it may defeat the purpose of a local learning approach altogether.

Distributed learning

Distributed learning is likely to remain the most ubiquitous and important form of
parallelism in the coming years, especially when combined with other parallelism
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frameworks such as pipeline, sequence, and tensor parallelism. On clusters, works
such as what we proposed in CDP or ACCO will continue to explore trade-offs between
exact mini-batch gradient computation and delayed gradients, communication overlap,
and consensus breaking, especially as the energy cost of communication becomes more
important. More heterogeneous clusters may explore asynchronous learning, which has
seen a resurgence in recent years. This is also likely to be related to the recent interest
in model merging, as methods such as WASH can lead to much better performing
models than synchronous training, while requiring less communication. This may be of
particular interest when computations are performed on large decentralized networks
of heterogeneous devices with very limited communication. Such networks may emerge
as a counterweight to the centralized private clusters that are currently most common
today.
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A.1 Implementation details

Architecture details The model we study is a ResNet-50, consiting of a convolutional
layer, a BatchNorm layer followed by a ReLU activation and a max pooling layer, then
16 Bottleneck blocks divided into 4 stages, a final global average pooling and a fully
connected layer; following Pytorch official implementation at https://github.com/p
ytorch/vision/blob/main/torchvision/models/resnet.py.

Since the datasets we consider have smaller image sizes than the ImageNet dataset,
we propose different first layers before the bottleneck layers, as standard. For the STL-10,
CIFAR-10, and Fashion-MNIST (see Appendix B) datasets, we remove the max pooling
layer. For STL-10, the convolution layer is the same as standard, except that the kernel
size is slightly reduced from 7 to 5. For the other smaller datasets, the convolution layer
has a kernel size of 3 and stride and padding of 1.

Table A.1: Decoupling points of our ResNet-50 architectures depending on the number
of stages J . The network is composed of 4 main Layers, each consisting of 3,4,6 and
2 Bottleneck stages respectively. At each decoupling point, the local training loss
is computed and backpropagated, and the following representations pass through a
StopGrad operator to prevent gradients between stages.

J Decoupling points (after Layer i and Bottleneck j)

4 (2, 1), ((3, 1), (3, 5))
8 (1, 2), ((2, 1), (2, 3)), ((3, 1), (3, 3), (3, 5)), (4, 1)

16 After each Bottleneck

Split details Our model is decoupled at several ‘decoupling points’ where gradient
information is stopped. To be more precise about the location of these decoupling points,
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we refer to Table A.1, where we locate them with the layer (out of 4) and bottleneck
numbers starting from 1. Note also that the auxiliary projector networks used in our
methods are used at each decoupling point before the local loss, but not for the final
layer, which uses the classical 2-layer MLP projector head.

Augmentation details Images are augmented according to the simple augmentation
procedure proposed by SimCLR without Gaussian Blur: a Random Resized Crop to the
necessary image size, a random horizontal flip (with probability 0.5), a random color
jitter (with probability 0.8 and brightness contrast and saturation parameters equal set
to 0.4 and hue to 0.1), and random color dropping (setting to grayscale, with probability
0.2). Test images are not augmented.

A.2 Fashion-MNIST results

To further confirm our findings, we test our method on an additional image classification
dataset, Fashion-MNIST [380], a more complex surrogate for the MNIST dataset. It
consists of 60000 training images of size 28× 28 and 10000 test images, with 10 classes.
Since this dataset is simpler than the ones we use in the paper, we use a ResNet-18
network instead of a ResNet-50 network. The same modifications are applied to the
first layers for CIFAR-10. Since this model is only composed of 8 Basic Blocks, we limit
ourselves to decoupling with J = 8 stages for ResNet-18, after each Basic Block.

We report in Table A.2 our accuracy for J = 1 and 8 on Fashion-MNIST, for T = 0.3
on a ResNet-18. This confirms our previous findings: we see a decrease in improvement
for the end-to-end model, and an increase in accuracy for J = 8.

Table A.2: Linear evaluation test accuracy results on Fashion-MNIST of our method
for J = 1 and 8 for T = 0.3 on a ResNet-18. We observe a similar improvement for this
dataset. Results are shown as the average of 5 runs.

J SimCLR + ours

1 (E2E) 91.3 ± 0.1 90.3 ± 0.2
8 87.2 ± 0.3 88.2 ± 0.3

A.3 Impact of the threshold value T

In Figure A.1 we show the accuracy values obtained by varying the threshold T as
discussed in Section 4.3. We see no particular improvement for threshold values before
T = −0.2, since almost no examples are removed. The improvement is then sudden up
to about T = 0, before the accuracy drops off. Values above T = 0.2 are not plotted, but
accuracy drops even faster, and convergence cannot be achieved if T is too high. It is
unclear why the accuracy peak is so sudden.
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Figure A.1: Test accuracy for varying threshold T after training on SimCLR with J = 16
on CIFAR10. Accuracy peaks around T = 0, showing a trade-off between increasing
dimensionality and removing examples.

A.4 Oracle subsampling as False negative removal

We return to the motivating example of our method studied in Section 3.2. We find that
subsampling examples in the decoupled network by selecting easy examples according
to the oracle significantly reduces the accuracy gap between end-to-end and decoupled
networks. We give here a partial explanation for the improvements, at least for the
negative examples.

The examples that are removed are hard negatives for the converged oracle network,
i.e., with high representation cosine similarity. Due to the nature of unsupervised
learning, negative examples consist of both true negatives (which consist of two examples
with different labels) and false negatives (when the two examples have the same label).
At convergence, a model trained with high accuracy will have high representation
similarity for positive examples, but also for false negative examples. We verify this
by showing in Figure A.2 the distribution of representation similarity of true and false
negative examples for an oracle network.

Thus, removing negative examples with high similarity to the oracle means mainly
removing false negative examples (at least according to a deep unsupervised model).
This explanation allows us to partially understand the improvement caused by removing
easy examples for the oracle, as we only keep valuable negative examples. However, it
still does not explain why this improvement does not occur in non-decoupled networks.
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Figure A.2: Distribution of negative examples pairs similarity according to their oracle
representations cosine similarity. True negatives have different labels while false nega-
tives have the same. The converged oracle model logically gives high similarity mainly
to false negative examples. Removing high similarity negative examples following the
oracle thus can be seen as a form of false negative removal
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B.1 Additional details

B.1.1 ResNet-18 Design

We follow the standard ResNet-18 implementation when decoupling with 8 blocks,
and remove all skip-connections in the 16 blocks case as explained. For all datasets
(except Imagenette, see Section B.2.1), we use the standard modification of the first
layers of the ResNet to accommodate the smaller image size of our datasets: The first
layers are replaced by a convolutional layer with kernel size 3 and stride 1 and no bias,
a BatchNorm layer with affine output, and a ReLU layer (note that we do not have a Max
Pooling layer).

B.1.2 Auxiliary Net Design

The auxiliary networks used to train our model in the experiments are designed to keep
the FLOPS ratio between the auxiliary network and the main module below 10%. We
investigate three architectures: a convolutional neural network (CNN), a multi-layer
perceptron (MLP), and a linear classifier. We evaluate each architecture by using it as a
local loss to train a ResNet-18 split into 8 blocks with the DGL algorithm. Optimisation
is performed by stochastic gradient descent with a momentum of 0.9, a weight decay of
5× 10−4, and a mini-batch size of 256. The initial learning rate is set to 0.1 and decays
by a factor of 0.2 every 30 epochs.

The linear classifier applies batch normalization followed by an adaptive average
pooling which yields an output with spatial resolution 2 × 2. This output is then
flattened into a 1-dimensional tensor, which is then projected onto the classification
space. The MLP architecture first employs an adaptive average pooling yielding an
output with spatial resolution 2×2. This output is then flattened and propagated through
a number ndepth of the fully-connected layer using batch normalization and ReLU
nonlinearity. Finally, the output is then projected onto the classification space. The first
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fully-connected layer outputs a vector with hchan dimension, which parameterizes the
width of the auxiliary net, and this number of channels is kept fixed until the projection
onto the classification space. The number ndepth of fully-connected layers instead
parameterizes the depth of the MLP auxiliary net. Similarly, CNN first employs a 1x1
convolution to obtain a spatial output with hchan, where hchan essentially parameterizes
the width of the architecture. It is followed by a number ndepth of convolutional layers
with kernel 3 × 3 and stride equal to 2. Using strided convolution helps reduce the
computational footprint while maintaining similar accuracies.

We tested ndepth between 1 to 8 to test the effect of the depth. We tested hchan = 64,
128, 256, 512, 1024, 2048, 4096 for the MLP, and hchan = 4, 8, 16, 32, 64 for CNN. The
ResNet-18 was trained on CIFAR-10 using standard data augmentation with the DGL
training procedure for 90 epochs. Among the configurations complying with the 10%
FLOPS ratio constraint, we kept the parameters yielding the best accuracy on CIFAR-10.
This yields hchan = 1024 and 32 for the MLP and CNN respectively, and ndepth = 3 for
both architectures.

B.1.3 Implementation details

Practical implementation In practice, we compute the projection between Guess and
Target in our implementation by computing two backward passes, with both losses. For
activity perturbation, a backward hook is used to first log the Gradient Target, and then
to log the Gradient Guess and compute the projection. We then let the new estimated
activation gradient backpropagate through the model. For weight perturbation, we
store the (batch-wise) weight gradients after both target and guess backpropagation,
and compute weight-wise the projection.

Of course, both implementations are implementable using forward mode automatic
differentiation with modern deep learning libraries. Similarly, we note that for the ex-
periment of Table 4.6, where we project the Target on a batch of Guesses, this projection
is still possible by using k Jacobian-vector products by projecting the Global Target on
the k principal components of the batch of Local Guesses.

Data augmentation The data augmentation procedure we use is a standard Random
Crop with padding 4 and a Random Horizontal Flip (with probability 0.5), plus a
normalization step. Fashion-MNIST do not use any data augmentation.

Learning rates chosen In practice, the learning rate (lr) chosen for CIFAR-10 is 0.005
for Random Guesses (except for the activity-perturbed with a Global Target which has
a lr of 0.01), as well as the 16-blocks Local Linear Guess (activity-perturbed). NTK
Guesses uses a lr of 0.01 in the 16 blocks case (as for the Wide ResNet). With all other
Gradient Guesses, the lr is 0.05.

For the additional CIFAR-100, Fashion-MNIST and Imagenette datasets, end-to-end
learning, local learning and local guesses use a lr of 0.05. CIFAR-100 uses the same lr as
CIFAR-10 for the NTK guesses. Fashion-MNIST uses a lr of 0.01 for activity-perturbed
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NTK guesses and 0.05 for the weight-perturbed ones. Imagenette uses a lr of 0.05 for all
NTK guesses. The Random Guesses have a lr of 0.005.

ImageNet32 proved trickier to optimize. The learning rate and scheduler steps size
chosen for the reported accuracy are: For the End-to-End training, a lr of 0.05 with step
size 20. For the 16 blocks model, local guess activity perturbed have a lr of 0.01 with
step size 30 and weight perturbed a lr of 0.1 with step size 20. The NTK guess have a lr
of 0.005 with step size 30 (except the CNN auxiliary, with lr 0.01). Random guesses have
a step size of 30 with a lr of 0.001 for the activity perturbed and 0.005 for the weight
perturbed. For the 8 blocks model, local guesses have a lr of 0.05 for the CNN auxiliary,
0.01 for the linear auxiliary and the activity-perturbed MLP auxiliary, and 0.1 for the
weight-perturbed MLP auxiliary. Activity-perturbed CNN and Linear auxiliary and the
weight-perturbed MLP auxiliary have a step size of 20, and the other 30. NTK guesses
have a step size of 30 and lr of 0.001 for the CNN auxiliary, and the MLP and Linear
activity-perturbed auxiliaries. The others have a lr of 0.005.

B.2 Additional results

B.2.1 Local Target results

We provide in this subsection the Table results discussed in Section 4.3.5.

Additional datasets We report in Tables B.1 and B.2 the results of different guesses
with a Local Target for the additional datasets Fashion-MNIST, CIFAR-100, and Ima-
genette. The results are consistent with our findings on CIFAR-10 and ImageNet32. We
revert the first layers of the ResNet-18 to its original design with Imagenette since its
image size is bigger than our other datasets.

Wide ResNet We report in Table B.3 the results of different guesses with a Local Target
for a Wide ResNet-18 with width factors k = 0.5,2 and 4. We observe similar tendencies
to the ones observed for the Global Target.

B.2.2 Additional local losses and guesses

Predsim To propose a slightly different supervised loss, we refer to the setup of
Nøkland and Eidnes [265], and more particularly the ‘predsim’ local loss for comparison
with our more simple cross-entropy local losses. We directly adapt the architecture of
the predsim local auxiliary network and loss to our framework, as a Target or Guess.
Using predsim for local learning corresponds to the Local Error Signal framework. We
report the accuracies using the predsim local loss in Table B.5. We find predsim to be
competitive with the deeper local losses we used (for 8 blocks), despite the predictive
auxiliary of predsim being linear. We also note that despite the Global Target loss
being different from the Local Loss in that case (minimizing a supplementary similarity
matching term), the Local Guess method does not seem affected.
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Fixed NTK One can note that the dynamics of cosine similarity when training with
Local Guess and Global Target (see Figure 4.4 and 4.5) are similar to the alignment
behavior of Direct Feedback Alignment (DFA) which can be observed in [294]. We can
thus propose an alternative to our random NTK Guess that is even further inspired by
DFA to produce similar gradient feedback. Rather than reinitializing the local loss at
each batch randomly, we keep a single fixed random local loss throughout training. In
this case, the linear Fixed NTK local guess can be computed with no backpropagation
and seen as close to DFA. We use the Fixed NTK local gradient as a type of Local Guess
for Forward Gradients to estimate the Global Target. We report in Table B.4 the test
accuracy obtained for a Resnet-18 on CIFAR-10, for the three types of auxiliary networks.
Despite the much more limited Gradient Guess space compared to the random NTK,
results are competitive between the two methods. Local learning results also show
strong accuracy despite the auxiliary network being fixed compared to the local learning
we proposed in Table 4.4.

Table B.1: Test accuracy of a ResNet-18 using a Local Target, split into 16 local-loss
blocks, on Fashion-MNIST, CIFAR-100 and Imagenette datasets for both activity and
weight perturbations. We report the mean and standard deviation over 4 runs.

Dataset Model 16 blocks

Local auxiliary CNN MLP Linear

Gradient Guess Activity Weight Activity Weight Activity Weight

Fashion-MNIST Local learning 93.6 ±0.1 94.1 ±0.2 93.4 ±0.1

Gaussian Guess 58.3 ±0.5 85.4 ±0.6 68.1 ±2.6 86.1 ±0.7 67.6 ±1.8 88.3 ±4.8
Radem. Guess 61.6 ±5.5 85.3 ±0.5 66.7 ±1.9 86.2 ±0.5 65.0 ±2.3 87.9 ±0.1

CIFAR-100 Local learning 57.3 ±0.3 64.6 ±0.3 62.5 ±0.2

Gaussian Guess 3.7 ±0.6 10.7 ±0.4 3.3 ±0.8 11.2 ±1.2 3.9 ±0.8 14.3 ±2.7
Radem. Guess 4.4 ±0.3 7.2 ±1.5 3.2 ±0.8 10.4 ±1.1 4.2 ±0.7 12.1 ±0.3

Imagenette Local learning 84.6 ±0.3 82.4 ±0.2 83.2 ±0.6

Gaussian Guess 21.6 ±2.8 36.7 ±1.5 21.0 ±2.9 36.8 ±1.5 25.8 ±2.3 39.0 ±0.8
Radem. Guess 22.8 ±3.2 36.3 ±1.3 20.3 ±2.7 37.6 ±2.5 24.9 ±1.8 40.1 ±0.8

B.2.3 Figures for a ResNet-18 split in 16 blocks

We also provide additional Figures equivalent to the Figures in the main paper but for a
ResNet-18 trained in 16 blocks and without skip connection.
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Table B.2: Test accuracy of a ResNet-18 using a Local Target, split into 8 local-loss
blocks, on Fashion-MNIST, CIFAR-100 and Imagenette datasets for both activity and
weight perturbations. We report the mean and standard deviation over 4 runs.

Dataset Model 8 blocks

Local auxiliary CNN MLP Linear

Gradient Guess Activity Weight Activity Weight Activity Weight

Fashion-MNIST Local learning 94.1 ±0.2 94.4 ±0.2 93.8 ±0.2

Gaussian Guess 85.2 ±1.5 89.0 ±0.4 87.1 ±0.7 88.9 ±0.2 82.8 ±1.4 90.3 ±0.1
Radem. Guess 81.5 ±7.7 89.1 ±0.1 86.4 ±0.8 89.1 ±0.1 82.9 ±1.5 90.3 ±0.1

CIFAR-100 Local learning 67.3 ±0.2 70.3 ±0.5 65.8 ±0.5

Gaussian Guess 15.7 ±1.2 25.3 ±0.4 6.6 ±1.8 24.9 ±0.7 11.8 ±2.1 26.3 ±0.4
Radem. Guess 14.4 ±2.1 24.0 ±0.9 10.7 ±2.0 23.1 ±0.5 4.2 ±0.7 24.4 ±0.3

Imagenette Local learning 88.6 ±0.4 86.0 ±0.3 86.2 ±0.1

Gaussian Guess 39.1 ±4.4 55.6 ±0.8 44.7 ±1.9 55.9 ±0.4 36.5 ±4.7 58.2 ±1.2
Radem. Guess 38.5 ±1.9 55.9 ±0.8 42.3 ±0.8 56.1 ±1.2 37.4 ±3.2 59.0 ±1.1

Table B.3: Test accuracy of a Wide ResNet-18 using a Local Target, split into 16 local-
loss blocks, on CIFAR-10 for both activity and weight perturbations for different width
factors, i.e. k=0.5, 2 and 4. Table 4.4 refers to the case where k = 1. We report the mean
and standard deviation over 4 runs.

Width Local auxiliary CNN MLP Linear

Gradient Guess Activity Weight Activity Weight Activity Weight

0.5 Local learning 81.1 ±0.4 86.9 ±0.4 83.5 ±0.4

Gaussian Guess 21.0 ±2.2 34.1 ±2.3 23.2 ±4.0 37.7 ±0.9 13.1 ±6.3 44.1 ±1.0
Rademacher Guess 21.8 ±3.5 34.4 ±1.8 24.0 ±1.2 38.3 ±0.4 13.0 ±6.4 43.0 ±0.9

2 Local Learning 91.1 ±0.1 90.8 ±0.1 88.5 ±0.1

Gaussian Guess 17.9 ±1.0 40.8 ±1.0 20.5 ±2.1 42.0 ±0.6 24.9 ±7.8 44.3 ±1.1
Rademacher Guess 17.9 ±2.6 41.0 ±0.4 20.3 ±1.4 41.7 ±0.4 23.1 ±2.3 44.0 ±2.6

4 Local learning 93.1 ±0.1 91.7 ±0.3 89.4 ±0.1

Gaussian Guess 18.7 ±2.8 41.8 ±0.5 18.6 ±3.4 43.1 ±0.0 23.2 ±2.1 44.7 ±0.6
Rademacher Guess 17.3 ±3.0 42.3 ±0.4 18.6 ±2.4 42.8 ±0.5 20.7 ±2.9 44.8 ±0.5
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Table B.4: Test accuracy of a ResNet-18 split into 8 or 16 local-loss blocks, using a
Fixed NTK (Fixed randomly parameterized local loss) as a Gradient Guess for the
Global Target.

Model 8 blocks 16 blocks

Gradient Guesses Activity Weight Activity Weight

Fixed NTK, CNN 51.2 57.2 27.5 45.1
Fixed NTK, MLP 52.3 64.6 40.2 45.5
Fixed NTK, Linear 57.7 76.4 36.9 60.5

Table B.5: Test accuracy of a ResNet-18 using a predsim auxiliary loss, on CIFAR-10
for both activity and weight perturbations. The Local learning case corresponds to the
Local Error Signals framework.

Model 8 blocks 16 blocks

Global Target Activity Weight Activity Weight

Local Guess 84.0 89.8 64.8 85.3
NTK Guess 31.8 65.7 11.5 45.5

Local Target Activity Weight Activity Weight

Local learning 89.2 86.8

Gaussian Guess 56.2 37.9 37.3 30.8
Rademacher Guess 55.9 39.4 37.2 30.2
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Figure B.1: Comparison of train and test losses for end-to-end training (red), and
Forward Gradient with Global Target and Local Guess (blue), NTK Guess (green) and
Random Guess (purple), on CIFAR-10 with a ResNet-18 split in 16 blocks. Local Guess
and NTK Guess are derived from a CNN auxiliary.



162 APPENDIX B. Appendix of Chapter 4

0 2 4 6 8 10 12 14
Blocks

0.0

0.5

1.0

1.5

2.0

Lo
ca

l l
os

s

End-to-end Training
Local Training
Local guess & Global target
Random guess & Global target
Random guess & Local target
Train loss
Test loss

Figure B.2: Local train losses at the end of training at each block for a ResNet-18 split
into 16 blocks, with CNN auxiliary, for different training algorithms. In the Gaussian
and End-to-End cases, the auxiliary training is detached from the main module training
and is only for logging purposes.
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Figure B.3: Train and test local losses (top row) and mean cosine similarity between a
Local Guess and Global Target in the activation space (bottom row), for blocks 0, 7, and
14 (left, middle, and right columns) during training. The model is a ResNet-18 divided
into 16 blocks trained on CIFAR-10.
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Figure B.4: Train and test local losses (top row) and mean cosine similarity between a
local guess and global target weight gradients (bottom row, averaged over the param-
eters), for blocks 0, 7, and 14 (left, middle, and right columns) during training. The
generalization gap is more consistent during training than with activation gradients.
The cosine similarity is also consistently higher than activation gradients but falls more
drastically during training. The model is a ResNet-18 divided into 16 blocks trained on
CIFAR-10.



164 APPENDIX B. Appendix of Chapter 4



AppendixC
Appendix of Chapter 5

C.1 Hyperparameters and FLOPs partition

We simulate the partitioning of the models into equal FLOPs stages using the fvcore

library github.com/facebookresearch/fvcore/ to compute the FLOPs count of each
module of the ResNet. For finer partitioning of the linear modules, we separate them
into weight and bias modules by approximating the bias module’s FLOPs as the square
root of the linear module’s FLOPs. For our training, we consider the SGD optimizer
with momentum 0.9 and we simulate our delayed activations for DP, CDP-v1, and
CDP-v2. We train over 100 epochs with batch size 128 and 90 epochs with batch size
256 respectively for CIFAR-10 and ImageNet. We consider an initial learning rate of
0.05 and 0.1, decreasing by a factor of 0.2 and 0.1 at epochs 30, 60, and 90 for CIFAR-10
and ImageNet, respectively. The weight decay is 10−4 for ImageNet and 5×10−4 or 10−3

for CIFAR-10, whether trained on a ResNet-18 or 50. To account for the smaller image
size of CIFAR-10, we remove the first max pooling and reduce the kernel size of the first
convolutional layer to 3 and the stride to 1. We need 8 A100 GPUs for 6 hours for our
training runs on ImageNet.

C.2 Optimality of Model Parallelism with Cyclic Data Paral-
lelism

We extend the discussion on the implementation of MP with CDP, specifically on the
number of GPUs required. First, the following lemma shows the number of time steps
required for a GPU to process one micro-batch.

Lemma C.2.1. A GPU processing one micro-batch for the stage j is occupied (either computing
or awaiting the backward pass while storing activations) for 2(N − j + 1) time steps.

Proof. The final stage requires 2 time steps to compute a forward and a backward pass.
Similarly, each stage takes 2 time steps to compute a forward and a backward pass and
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must also wait for the next stage to finish its execution. Thus, by recurrence, a GPU
computing for the stage j will be occupied (for computation or activation retaining) for
2(N − j + 1) time steps.

We will now show that MP with CDP can be implemented with only N − j + 1 GPUs
per stage j by showing that a GPU will always be available when a micro-batch is
required to perform a forward propagation on the stage j.

Proposition C.2.2. MP with CDP can be implemented with N − j + 1 GPUs for each stage
j ∈ [1,N ].

Proof. Consider a worker n that computed the forward pass at stage j − 1 and requires a
GPU at stage j. The worker n− 1 required a GPU at stage j, 2 time steps earlier. Denote
this GPU, for instance, as the first GPU of stage j. The worker n− 2 required a GPU at
stage j, 4 time steps earlier, the second GPU of stage j. The final GPU at stage j, the
(N − j + 1)th, thus was required by a worker 2(N − j + 1) time steps earlier. Since we
showed in Lemma C.2.1 that a worker occupies a GPU at stage j for 2(N − j + 1) time
steps, this proves that this GPU is now available for worker n to use.

Thus we have shown that MP with CDP requires N − j + 1 GPUs per stage, or when
summing all stages, a total of 1

2 (N + 1)N GPUs. The following result shows that this
number of GPUs is optimal if we consider that a GPU can only hold the activations of
one micro-batch. In other words, if a GPU is occupied either while computing or storing
the activations of a micro-batch.

Proposition C.2.3. If a GPU is occupied when it is either computing or retaining the
activations of a micro-batch, then MP requires a minimum of N (N+1)

2 GPUs to be occupied at
all time steps.

Proof. For one micro-batch, each stage j requires a GPU to be occupied during 2(N−j+1)
time steps (see Lemma C.2.1). Thus, N micro-batches require devices to be occupied
during 2N (N − j + 1) time steps. Since a training step, in which N micro-batches are
processed, takes 2N time steps, a GPU occupied at all time steps will be occupied 2N
time steps. Thus, a stage requires at least 2N (N−j+1)

2N = N − j + 1 devices occupied at all
time steps to process N micro-batches. Summing over all stages gives the result.
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Appendix of Chapter 6

D.1 2D optimization example

The loss function we consider is a highly simplified version of the Ackley function. With
a minimum in (xm, ym) defined by

g(x,y,xm, ym,λ) = exp(−λ
√

0.5((x − xm)2 + (y − ym)2) , (D.1)

the function we consider in our example is

f (x,y) = −10g(x,y,10,10,0.1)− 5g(x,y,8,3,0.3)− 5g(x,y,3,8,0.3) . (D.2)

This function has a 2 local minima at (3,8) and (8,3) and a global minimum at (10,10).
In all three cases, the starting points are (0,5) and (5,0). We compute SGD by first
computing the exact gradient of the function and then adding Gaussian noise to the
gradient. The learning rate is 0.1 and we optimize for 1000 steps. For PAPA, we consider
α = 0.99. For WASH, the shuffling probability is the same for both coordinates and is
equal to 0.01.

Appendix B: Interpolation heatmap

Here, we propose to display a heatmap showing the accuracy of more different interpo-
lations between 5 models trained separately, with WASH, or WASH+Opt. We observe
how models trained with WASH and WASH+Opt converge to the same loss basin, and
that a large number of possible interpolations lead to high accuracy. The heatmaps are
presented in Fig. D.1.
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(a) Accuracy heatmap of the
Baseline. The interpolated
models’ performance is equal
to random ones.
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(b) Accuracy heatmap of
WASH. The accuracy is very
similar for various interpola-
tions.

78 78 79 79 78 77

78 78 78 79 79 78 78 78

79 79 79 79 79 79 78 78

79 79 79 79 79 79 79 79

79 79 79 79 79 79 79 78

78 79 79 79 79 79 79 78 78 77

79 79 79 79 78 79 79 78

79 79 78 78 78 79

77
10

20

30

40

50

60

70

80

(c) Accuracy heatmap of
WASH+Opt. The results are
similar to WASH.

Figure D.1: Accuracy heatmap for different weight interpolations, for models trained
separately, with WASH or WASH+Opt.

Table D.1: Test accuracies of WASH with variants of the shuffling probability per
depth. Trained with a population of 5 models on CIFAR-100 using a ResNet-18. The
results show that permuting the first layers is more important than permuting the later
layers. However, keeping the probability constant across layers does not significantly
reduce the performance of WASH.

Proba. at layer Technique
0 to L-1 Ensemble Averaged GreedySoup Best model Worst model

10−3 ↘ 0 82.22±.38 82.15±.22 81.94± 0.25 80.89±.03 78.80±.77
10−3 → 10−3 82.04±.19 81.94±.15 81.69±.23 80.60±.16 78.67±.89

0 ↗ 10−3 81.75±.35 81.37±.10 81.14±.20 80.08±.40 78.55±.70

D.2 Layer-wise adaptation variants performance

We showcase in Tab.D.1 the performance of the three variants of layer-wise adaptations
of WASH.

D.3 Augmentations and regularization used

For a fair comparison, we follow the same data augmentations and regularisations used
in [161]. We use Mixup (random draw from {0, 0.5, 1.0} for CIFAR-10/100 or from {0,
0.2} for ImageNet), Label Smoothing (random draw from {0, 0.05, 0.1} for CIFAR-10/100
or from {0, 0. 1} for ImageNet), CutMix (randomly drawn from {0, 0.5, 1.0} for CIFAR-
10/100 or from {0, 1.0} for ImageNet), and Random Erasing (randomly drawn from {0,
0.15, 0.35} for CIFAR-10/100 or from {0, 0.35} for ImageNet).

For our experiments, we needed a single A100 GPU for up to 14 hours to train up to
a population of 10 models, and up to 40 hours for a population of 20 models. Similarly,
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we needed 16 A100 GPUs to train a population of 5 models on ImageNet in parallel.

D.4 Additional metrics

Disagreement in function space. To support our use of the distance to consensus
as an accurate metric of diversity in our paper, we also report a more established
metric, the model prediction disagreement, as proposed by [99]. This value corresponds
to the fraction of examples in the validation set where two models disagree on the
prediction. In Fig. D.2, we report the disagreement for models trained on the four
methods considered in this work: the Baseline without communication, PAPA, WASH,
and WASH+Opt. We observe the same ranking in the methods as in the distance to
consensus: the Baseline models have the highest disagreement, followed by our methods,
and PAPA has the lowest. This confirms that WASH produces more diverse models than
PAPA. Note that the Baseline has the highest disagreement, but the models cannot be
successfully averaged.

Expected Calibration Error. In Tab. D.2, we report the ECE for all four methods,
showing that WASH provides better calibrated models than PAPA.
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Figure D.2: Disagreement in function space, for 5 ResNets trained on CIFAR-100 on
heterogeneous data. The mean disagreement value for models with different indices is
reported on top of the heatmaps. WASH has a higher disagreement between the model
predictions (and thus better diversity) than PAPA.

D.5 Additional results

ImageNet32x32. In Tab. D.3, we report the accuracy for the dataset ImageNet32x32,
showing that a lower PAPA EMA frequency compared to what was reported in their
article and code (T = 10), results in a better Averaged performance, reproducing their
results but still resulting in worse results than WASH. We also find similar results by
decreasing the value of the EMA α. This confirms that our replication of PAPA on
ImageNet mainly stems from its hyperparameters, and reinforces our conclusion on the
improvements provided by WASH.
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Method Indv. Ens. Avg.

Baseline 0.377 0.368 0.180
WASH 0.374 0.372 0.376
WASH+Opt 0.374 0.373 0.375
PAPA 0.376 0.376 0.378

Table D.2: Expected Calibration Error (ECE) for all four methods, for 5 ResNets
trained on CIFAR-100 on heterogeneous data. We report the ECE for the individual
models (Indv., averaged for the 5 models), the Ensemble model (Ens.) and the Averaged
(Avg.) one. The ECE is the one obtained for the optimal temperature. Our method has a
lower ECE than WASH in all cases, showing that it is better calibrated. The very low
ECE for the Averaged baseline is due to the fact that the model is close to random.

GreedySoup. In Tab. D.4, we report the accuracy of GreedySoup for WASH, WASH+Opt,
and PAPA, showing that it provides worse accuracy than the Averaged model, in accor-
dance with the findings of PAPA.

REPAIR. In Tab. D.5, we show that the addition of REPAIR further reduces the gap
between WASH and the Baseline ensemble accuracy, demonstrating that further post-
training techniques (like self-distillation or SWA) could further improve our method.

Method Baseline WASH WASH+Opt PAPA (T = 10) T = 9 T = 5

Ensemble 74.95±0.95 67.55±0.22 67.95±0.66 61.01±0.31 61.34±0.19 61.52±0.45
Averaged 0.1±0.0 67.80±0.16 68.22±0.71 1.98±1.54 35.43±13.67 61.05±0.32

Table D.3: Performance on ImageNet32, for all methods on 3 ResNet-50 trained on
heterogeneous data. p = 0.05 like on ImageNet. We find similar results for PAPA.
However, reducing the EMA frequency T allows for a better Averaged accuracy, while
still being heavily under WASH’s performance.
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N Method WASH WASH+Opt PAPA

3 Averaged 81.90±0.19 82.08±0.09 81.53±0.13
GreedySoup 81.73±0.27 81.42±0.55 80.91±0.74

5 Averaged 81.97±0.28 82.17±0.15 82.01±0.34
GreedySoup 81.83±0.26 81.49±0.91 81.67±1.03

10 Averaged 82.31±0.38 82.18±0.22 82.15±0.14
GreedySoup 81.92±0.53 81.99±0.17 81.92±0.22

Table D.4: GreedySoup performances for WASH and its variant and PAPA, for Resnets-
18 trained on CIFAR-100 in the heterogeneous case. GreedySoup is the same method as
Diwa. In the case here where averaging all models provides the best results, GreedySoup
may only keep a subpar subset of weights to average (generally only one).

Method Ens. Avg. +REPAIR

Baseline 83.8 0.01 0.01
WASH 82.7 82.5 82.7
WASH+Opt 82.4 82.5 82.8
PAPA 81.8 81.8 82.3

Table D.5: Effect of REPAIR on the four methods, for 5 ResNets trained on CIFAR-100
on heterogeneous data. We note that REPAIR has no effect on the Baseline models. Our
method’s performance can be improved even closer to the baseline Ensemble by using
post-training methods like REPAIR.
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AppendixE
Résumé étendu de la thèse en français

Cette thèse étudie l’entraînement de réseaux de neurones profonds. Le domaine de
l’apprentissage profond cherche à utiliser des quantités massives de données pour
entraîner des machines appelées réseaux de neurones composées de très nombreux
paramètres, pour qu’elles atteignent une ‘intelligence artificielle’ presque humaine.
Cette idée a permis des avancées majeures dans de nombreux domaines, des jeux de
société [45, 301, 335, 320] jusqu’aux voitures intelligentes [337] et la médecine [32,
164]. De nos jours, les réseaux de neurones profonds modernes comme les "Large
Language Models" (LLM) [271, 351] sont capable de comprendre et générer des types
de données différents, et de passer le test de Turing, se faisant passer pour des inter-
locuteurs humains [352, 314]. Ces larges ‘modèles de fondation’, généralement basés
sur l’architecture Transformers [353], sont de puissants réseaux ayant pour but d’être
applicables pour un très large panel de tâches [37].

Cependant, la taille de ces réseaux et de leurs jeu de données d’entraînements
grandissent rapidement. Le nombre de calculs nécessaire à l’entraînement (les FLOPs)
augmente linéairement avec ces deux tailles [140]. En pratique, ce nombre augmente
exponentiellement, doublant tous les 100 jours avec une augmentation de l’ordre du
million prévu dans les 5 prochaines années [409, 284]. La raison pour cette croissance est
la course à la performance dictée par les lois d’échelle neuronales [140, 44, 5]. Ces lois
statistiques empiriques montrent (et prédisent) que la performance s’améliore suivant
une loi de puissance de la taille du réseau et du jeu de donnée. Il est ainsi estimé que
les besoins computationnels d’entraînements augmentent suivant une loi polynomiale
d’ordre 4, autrement dit, calculs = Ω(performance4). Cela signifie qu’une amélioration
d’ordre 10 de la performance du modèle nécessite 10 000 fois plus de calculs [350].

Cette croissance amène plusieurs problèmes. L’entraînement en apprentissage pro-
fond a une empreinte carbone [123, 40] et hydrique [125, 209] importante. Par exemple,
un modèle BERT [78] nécessite environ une tonne de CO2 pour son entraînement [336].
Cela résulte également en des entraînements plus longs, avec l’exemple du LLM BLOOM
nécessitant un entraînement de 3.5 mois [198]. Enfin, entraîner des réseaux de neu-
rones profonds requiert de large clusters de calculs, composés de nombreux processeurs
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graphiques (GPUs) ou tensoriels (TPUs) inter-connectés [72, 163]. Il en résulte des
coûts matériels et énergétiques croissants [68], limitant la capacité d’entraînement
de large modèles à seulement une poignée d’entreprises, ce qui peut avoir des effets
préjudiciables [100, 145, 371].

Dans cette thèse, nous étudions le processus d’entraînement de ces réseaux de
neurones profonds, pour adresser la croissance des besoins computationnels. Plus
précisément, nous proposons de modifier le paradigme d’entraînement standard qui
est resté relativement inchangé pendant des décennies. Notre recherche a pour but
de trouver de nouveaux algorithmes d’apprentissage plus parallélisables, qui permet-
traient une amélioration de la vitesse d’entraînement, de la gestion de la mémoire et
des communications. Nous nous focalisons particulièrement sur l’entraînement dis-
tribué, où des répliques des modèles sont entraînées sur des appareils différents, et
l’apprentissage local, où les composants des réseaux sont entraînés séparément sans
retour d’information.

Dans la prochaine Section, nous présentons le paradigme d’entraînement standard.
Nous montrerons ensuite que peu de méthodes cherchent à l’améliorer, malgré des
limitations computationnelles. Enfin, nous présenterons le contexte de notre thèse et
nos contributions.

E.1 Le paradigme d’entraînement standard en apprentissage
profond

E.1.1 Entraîner des réseaux par rétropropagation

Les éléments cruciaux de l’apprentissage profond ont été introduits il y a plusieurs
décennies. Les réseaux de neurones étaient déjà introduits dans les années 50 [234, 303],
mais la recherche en apprentissage machine fut limitée par les capacités de calculs de
l’époque, résultant sur ce qui fut appelé les hivers de l’intelligence artificielle (IA) [306].
L’introduction des outils qui allaient devenir le standard de pour l’apprentissage profond
comme l’Algorithme du Gradient Stochastique (AGS) [7, 38] et l’algorithme d’estimation
de gradient nommé rétropropagation [219, 168, 304] ont permis à l’apprentissage pro-
fond d’apparaître comme une solution viable pour l’IA. Mais les vrais développements
pour l’apprentissage profond apparurent aux débuts des années 2010s, notamment par
la popularisation des GPUs comme appareil de calcul puissant pour l’apprentissage
machine [72]. AlexNet [185] fut ainsi le premier réseau de neurones à surpasser les
méthodes traditionnelles de vision par ordinateur pour la classification d’image, ouvrant
la voie à l’ère de l’apprentissage profond. L’entraînement de ces modèles, que nous
présentons maintenant, est resté globalement inchangé depuis une dizaine d’années.

L’objectif est de minimiser un objectif d’entraînement L qui prend en entrée la sortie
d’un réseau de neurones f . Celui-ci est paramétré par une entrée x tiré d’un jeu de
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données et ses paramètres θ. Il en résulte le problème d’optimisation suivant:

argmin
θ

Ex∼DL(f (x,θ)) . (Optimization)

Ce problème est hautement non convexe et est généralement approché par des algo-
rithmes de descente de gradient qui cherchent à trouver un minimum local au problème.
L’AGS utilise un gradient obtenu à partir d’un mini-batch de données (un sous-ensemble
du jeu de données) pour mettre à jour les paramètres du modèle. Le calcul du gradient
en lui-même est l’étape requérant la majorité des calculs pour entraîner le réseau de
neurones. Celle-ci procède en deux phases, une passe ‘avant’ et une passe ‘arrière’.
Durant la passe avant, un mini-batch de données x0 = (x0

0, ...x
0
B) est échantillonné aléa-

toirement. Puis la passe avant débute, où chaque couche du réseau va successivement
calculer des valeurs de sorties - appelées activations - à partir des activations des couches
précédentes. En considérant qu’un réseau est composé de J couches séquentielles fj ,
paramétrées par θj , les activations sont calculées par

x
j+1
i = f j(xji ,θ

j ) , (Passe avant)

La deuxième étape est de calculer le gradient de la fonction de perte L = 1
B
∑

iL(xJi )
par rapport aux paramètres du modèle. La rétropropagation, ou dérivation automatique
en mode indirect, permet d’effectuer ce calcul efficacement, en autant de calculs que
pour la passe avant. Cette méthode repose sur la règle de dérivation en chaîne [348],
en calculant le gradient dans le sens inverse à la passe avant. Notons δji le gradient de
l’activation de la donnée i à la couche j et ∆j le gradient des paramètres de la couche j.
Le gradient de la fonction de perte est δJi = ∇xJiL, et la rétropropagation donne

δ
j
i =

∂L

∂x
j
i

=
∂f j(xji ,θ

j )

∂x
j
i

δ
j+1
i , (Passe arrière)

∆j =
∂L
∂θj

=
1
B

∑
i

∂f j(xji ,θ
j )

∂θj
δ
j+1
i .

Les gradients obtenus sont ensuite utilisés pour mettre à jour les paramètres, suivant
l’AGS ou un autre algorithme d’optimisation stochastique comme Adam [172, 222].

Cette procédure d’entraînement est généralement parallélisée sur plusieurs appareils,
permettant une accélération drastique des calculs.

E.1.2 Parallélisation de l’AGS

Les processeurs utilisé pour les calculs en apprentissage profond sont spécifiquement
conçus pour réaliser des opérations comme la multiplication matricielle en parallèle
à grande échelle [62, 173, 341]. Leur capacités de calculs doublent chaque année en



176 APPENDIX E. Résumé étendu de la thèse en français

réponse à la demande croissante, suivant ce qui a été appelée la loi d’Huang [72].
L’algorithme standard d’entraînement en apprentissage profond est souvent parallélisé
sur ces clusters [74], leur permettant d’atteindre des nombres de calculs par seconde à
l’échelle exaflopique [238].

Il existe deux manières principales de paralléliser la procédure d’entraînement en ap-
prentissage profond. Nous pouvons les catégoriser comme étant soit la parallélisation de
comment le gradient est calculé, ou combien de gradients le sont. Ces premières méthodes
peuvent être désignées comment étant du parallélisme des modèles, parallélisant les
opérations et composants du modèle lui-même. Les deuxièmes sont de l’entraînement
distribué, où les calculs sont parallélisés sur des répliques du modèle.

L’approche la plus commune de l’entraînement distribué est le parallélisme des
données [208]. Le modèle est répliqué sur plusieurs appareils, chacun entraînant sur
un micro-batch de donnée différent, ce qui revient à agrandir la taille du mini-batch.
Après chaque étape d’entraînement, le gradient du micro-batch doit être communiqué et
moyenné entre tous les appareils. Cela assure que les paramètres seront mis à jour avec le
même gradient, et que toutes les répliques aient bien toutes les mêmes paramètres. Dans
cette thèse, le terme d’entraînement distribué réfère à toutes les méthodes entraînant
des répliques de modèles en parallèle, séparés des approches de parallélisme de modèle.
Ce terme peut être utilisé dans d’autres travaux pour désigner toutes les approches
d’entraînement parallèle en général, mais nous faisons ici ce choix pour une séparation
plus claire.

L’autre approche est donc de paralléliser l’estimation de gradient directement. Par
exemple, le parallélisme de tenseurs [316] divise les couches de neurones en sous-
couches qui peuvent être calculées en parallèle. Mais l’idée la plus intéressante est de
diviser le modèle en sa profondeur. Cette approche est naturelle, car les calculs des
passes avant et arrières dans le réseau de neurones sont séquentielles, et donc les calculs
sont effectués couche par couche. L’idée est de diviser le réseau en stages séquentiels
(composés de une ou plusieurs couches), qui peuvent être entrainés en parallèle sur des
appareils différents. Le parallélisme pipeline propose ainsi de diviser l’estimation de
gradient du mini-batch en plusieurs micro-batchs, qui sont calculés en parallèle par
chaque stage [146].

Dans cette Section, nous avons introduit la procédure d’entraînement standard en
apprentissage profond. Elle consiste en l’AGS calculé sur un mini-batch par rétropropa-
gation, qui est parallélisé sur plusieurs appareils par du parallélisme des données ou des
modèles. Nous allons maintenant présenter la difficulté d’accélérer cette procédure, avec
comme objectif de contrer la croissance du nombre de calculs en apprentissage profond.
D’abord, nous présentons les manières d’accélérer l’entraînement de manière autre
que la modification de l’algorithme d’entraînement. Puis, nous montrons les limites
computationnelles de cette algorithme, dues à la rétropropagation et aux techniques de
parallélisation standard.
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E.2 Accélérer l’entraînement en apprentissage profond

E.2.1 Améliorer les autres composantes de l’entraînement

Cette thèse se focalise sur l’amélioration du processus d’entraînement pour l’apprentissage
profond. Le pipeline d’entraînement peut être globalement divisé en quatre composantes
majeures: le matériel, les jeux de données, les architectures de modèles et l’algorithme
d’entraînement lui-même, et chaque composante peut être améliorée pour accélérer
l’entraînement.

Tout d’abord, le matériel de calcul continue d’être amélioré, permettant des calculs
en parallèle toujours plus rapides et permettant de répondre à la demande croissante
de calculs des réseaux modernes. Ce matériel peut également être utilisé plus effi-
cacement. Par exemple, l’apprentissage en précision mixte divise par deux le coût
mémoire pour une perte minimale de précision des calculs [243, 361], et FlashAttention
utilise de la parallélisation et une gestion de la mémoire optimisée pour améliorer le
mécanisme d’attention des Transformers [73]. Les jeux de données sont également une
source potentielle d’amélioration. Ceux-ci sont maintenant massifs, récupérés à partir
d’Internet. Ils peuvent être cependant raffinés pour ne conserver que des exemples de
bonne qualité, réduisant le temps d’entraînement pour des résultats similaires [283]. De
nouvelles architectures peuvent aussi réduire les coûts de mémoire et des calculs. Les
modèles mélanges d’experts [232, 298, 159] ont des couches routeurs qui assignent un
expert en particulier (une partie du réseau) pour le calcul d’une donnée. Cela réduit
le coût en inférence car seule une partie des couches est utilisée. Un autre exemple est
l’utilisation d’architectures alternatives aux Transformers, comme les modèles ‘state-
space’ tel Mamba [407, 10]. Ils évitent l’utilisation de couches d’attention, qui ont des
coûts quadratiques selon la taille de la séquence de données [353]. D’autres approches
proposent d’apprendre des plus petits réseaux au début de l’entraînement pour réduire
le nombre de calculs, avant d’agrandir progressivement leur taille [57, 94].

Enfin, l’algorithme d’entraînement utilisé pour l’optimisation est la dernière com-
posante qui peut être améliorée. L’algorithme stochastique d’optimisation peut être
perfectionné. Par exemple, les méthodes de gradients adaptatifs [172, 222, 126] utilisent
des quantités stockées (comme le moment de l’AGS) pour adapter le gradient. Des
meilleurs choix de taux d’apprentissage pendant l’entraînement [322], ou même des
méthodes s’en passant explicitement [75], permettent de mieux contrôler la magnitude
de la mise à jour des paramètres. Enfin, il est également possible d’aller jusqu’à méta-
apprendre des meilleurs algorithmes d’optimisation pour un apprentissage plus rapide
[239, 240, 129].

Dans cette thèse, nous étudions également l’amélioration de l’algorithme d’entraînement.
Plutôt que considérer l’algorithme d’optimisation stochastique, nous choisissons de mod-
ifier l’algorithme d’entraînement lui-même, du calcul des gradients jusqu’à leur commu-
nication. Pour cela, il est nécessaire de diverger du paradigme standard d’AGS parallélisé.
Nous motivons ce choix en discutant maintenant les limites de la rétropropagation et
des approches parallélisables synchrones que nous avons présenté précédemment, qui
limitent la vitesse d’entraînement.
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E.2.2 Les limites computationelles de la rétropropagation

Nous présentons d’abord les limites de l’algorithme de rétropropagation. Il y a une réelle
disparité entre l’énergie nécessaire utilisée par la rétropropagation [336] et celle utilisée
par le cerveau [16], qui invite à explorer des algorithmes d’entraînements bioinspirés
plus efficaces. La rétropropagation peut aussi être computationellement instable, avec
des gradients pouvant s’évaporer ou exploser si leur magnitude n’est pas contrôlée [150].
Le problème étant non convexe, il y a également le risque de tomber sur un mauvais
minimum local, mais ce problème apparaît rarement en apprentissage profond. La
nécessité de stocker les activations pendant la passe avant pour les utiliser dans le
calcul du gradient de la passe arrière signifie par ailleurs que cet entraînement requiert
beaucoup de mémoire. Cela est un problème, car les appareils comme les GPUs ont une
mémoire limitée, et ne peuvent pas donc stocker les activations d’un mini-batch trop
grand, alors qu’agrandir la taille du mini-batch permet d’accélérer les calculs.

Mais le problème majeur de la rétropropagation est dû aux ‘verrous’ computationnels
comme définis par [155], qui limitent la vitesse d’entrainement des réseaux et leur
capacité de parallélisation. Chaque couche du réseau est verrouillée par l’attente de la
passe arrière, ne pouvant pas effectuer plus de calculs pendant ce temps et devant stocker
des activations. La rétropropagation peut ainsi être appelée ‘verrouillée par l’arrière’. Ce
verrouillage force l’entraînement des couches du réseau à être synchrone et séquentiel.
D’autres algorithmes d’entraînement pourraient relaxer ces verrous pour permettre un
entraînement des couches en parallèle, voir asynchrone. Si un tel algorithme requiert
seulement la fin de la passe avant, il est ‘verrouillé par la mise à jour’. L’étape suivante
serait un algorithme requérant seulement que les couches précédentes finissent de
propager leurs activations, et il serait alors ‘verrouillé par l’avant’.

E.2.3 Les limites des approches parallélisables standard

Nous avons détaillé comment le parallélisme des données et de modèles permettent
de paralléliser les calcul du gradient de mini-batch pour l’AGS. Cependant, ces deux
approches ont des limitations qui ralentissent l’entraînement.

Tout d’abord, l’étape de communication du parallélisme des données peut être un ob-
stacle pour l’entraînement dans les clusters de calculs modernes. Elle requiert d’attendre
que tous les appareils aient fini leurs calculs, et communique un volume de données qui
grandit linéairement avec le nombre de répliques [51]. Pour des grands clusters, cela se
traduit par de l’attente au niveau des appareils de calcul, ralentissant l’entraînement.
Dans les grands clusters, la communication peut être la plus grande source de consom-
mation énergétique [346]. Deuxièmement, les approches de parallélisme des modèles
sont limitées par les verrous computationnels de la rétropropagation. Les approches
pipelines permettent aux stages d’effectuer des calculs en parallèles, mais il restera des
‘bulles’ d’inactivité, car les stages les plus profonds devront attendre de recevoir des
micro-batchs au début de l’étape d’entraînement, et à la fin de l’entraînement pendant
que les premiers stages finissent leur rétropropagation.

Nous avons montré dans cette Section qu’accélérer l’entraînement en apprentissage
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profond est généralement fait en améliorant les autres composantes de l’entraînement
que l’algorithme lui-même. Cependant, l’approche standard reste limitée, par les com-
munications en parallélisme des données et par la rétropropagation en parallélisme des
modèles. Dans cette thèse, nous proposons des approches nouvelles qui divergent de ce
paradigme pour une meilleure parallélisation. Nous proposons dans la Section suivante
de synthétiser le contexte de cette thèse, qui correspond aux approches d’entraînement
distribuées qui limitent les communications entre répliques, cassant leur synchroni-
sation, et les approches de parallélisme des modèles qui utilisent des alternatives à la
rétropropagation pour estimer un gradient.

E.3 Cette thèse: explorer des alternatives à l’AGS parallélisé
synchrone

E.3.1 L’entraînement distribué faible en communications

Des approches distribuées autres que la parallélisme des données proposent de réduire
les communications entre les appareils pour ne pas perdre de temps de calcul. Les
communications sont soient effectuées en parallèle des calculs par des protocoles de
bavardage locaux [114, 257], soient en autorisant plusieurs étapes d’optimisation avant
d’effectuer une communication synchrone [332, 276]. Dans les deux cas, la réduction
du volume de communication se traduit par une perte du consensus entre les mod-
èles répliqués, qui peuvent diverger pendant l’entraînement. Ce problème n’en est
pas forcément un, et il est possible d’utiliser cette divergence pour entraîner en par-
allèle une population de modèles diversifiés. Ils peuvent ensuite être utilisés pour de
l’ensemblisme de modèle, augmentant les capacités de généralisation de ces modèles
[376]. Un ensemble de modèle requiert cependant de disposer de nombreux modèles
à l’inférence. Il est possible de réduire ce coût en moyennant les modèles en un seul
[237], cependant il n’est pas assuré que ses performances soient proches du niveau de
l’ensemble. Pour le permettre, il faut que les poids des réseaux soient proches, ce qui
peut être fait en communiquant pendant l’entraînement [375]. Les approches distribuées
doivent donc faire des compromis entre la synchronie des modèles et la communication.

Dans les Chapitres 3 et 4 de cette thèse, nous nous focalisons sur l’amélioration
des deux approches les plus opposées de l’entraînement distribué. D’un côté est le
parallélisme des données, qui nécessite des communications synchrones à chaque
étape. Comme toutes les répliques de modèles effectuent leur calculs simultanément,
l’utilisation de la mémoire culmine au même moment à la fin de la passe avant, et
communiquent ensemble au même moment à la fin de la passe arrière. Cela crée un
déséquilibre dans l’utilisation de la mémoire et l’organisation des communications,
ce qui peut être néfaste aux implémentations parallèles. Nous nous focaliserons sur
réintroduire un équilibre dans l’utilisation de la mémoire et les communications. De
l’autre côté des approches distribuées est l’entraînement ensembliste, où les modèles
sont encouragés à diverges l’un de l’autre pour améliorer leurs capacités d’ensemble.
Cependant, il faut tout de même contrôler leur distance pendant l’entraînement pour
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qu’il soit possible de les moyenner à la fin de l’entraînement, ce qui peut être néfaste à
leur diversité et nécessiter une grande quantité de communication. Dans les deux cas,
des communications efficaces sont la clef de l’amélioration de l’entraînement distribué.

E.3.2 Le parallélisme des modèles utilisant des alternatives à la rétropropa-
gation

Des approches permettant une estimation du gradient plus efficaces sont souvent
recherchées pour le parallélisme des modèles. La rétropropagation étant au cœur
des limitations de ces approches, il est naturel que beaucoup cherchent des algo-
rithmes d’estimation de gradients alternatifs à celui-ci. Des accélérations sont possibles
pour le parallélisme pipeline, mais nécessitent une plus grande utilisation de mé-
moire ou l’utilisation de gradients retardés, qui affectent la convergence de l’algorithme
d’optimisation [259, 411]. D’autres idées ont également été explorées dans le but de
trouver des algorithmes d’entraînement plus plausibles biologiquement que la rétro-
propagation, c’est à dire plus aptes à être employés par le cerveau [216]. Ces approches
sont souvent déverrouillée par l’arrière, ne nécessitant qu’une passe avant dans le réseau,
comme par exemple les approches de dérivation automatique en mode direct [319, 21,
296]. Une alternative prometteuse est celle proposée par l’apprentissage local [265,
26]. L’idée principale est de ne pas avoir de connexions arrière entre les stages du
modèle. Chaque stage dispose de sa propre fonction de perte locale qu’il utilise pour
son entraînement, et ne fait que propager ses activations pour le prochain stage, sans
attente de gradient en retour. Cette approche permet de paralléliser plus efficacement
les calculs du réseau, cependant ses performances sont en dessous de celles obtenues
en entraînant avec de la rétropropagation [223, 318]. La raison est que les fonctions de
pertes locales entraînent un comportement ‘greedy’ des stages, qui optimisent les activa-
tions non pas pour leur utilisation dans les stages suivants, mais pour leur utilisation
locale. S’ensuit un effondrement de l’information dans le réseau qui n’existe pas avec de
la rétropropagation [365]. Les approches de parallélisme des modèles ont également
des compromis, entre parallélisation et performance.

Dans les Chapitres 5 et 6 de cette thèse, nous proposerons des méthodes de paral-
lélisme des modèles avec une focalisation particulière sur l’apprentissage local. Elles
permettent un bon équilibre entre parallélisation et performance, car chaque stage
conserve les avantages de la rétropropagation tout en pouvant effectuer des calculs en
parallèle. Plusieurs approches ont été proposées pour réduire l’écart de performance
avec la rétropropagation. Par exemple, la régularisation des fonction de pertes locales a
un effet prometteur mais limité dans le cas de l’apprentissage local supervisé [365]. Il
est également possible d’introduire de l’information des dernières couches du réseau
pour améliorer l’apprentissage local, au risque de ramener des verrous computationnels.
Ces deux approches pourraient être une manière de réduire l’écart de performance avec
la rétropropagation, donnant des approches hautement parallélisables sans perte de
performance.
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E.3.3 Questions de recherche

Le but de cette thèse est de proposer des alternatives à l’algorithme standard d’entraînement
en apprentissage profond qui soient plus parallélisables. Des approches proposent de di-
verger de l’AGS parallélisé, mais nécessitent d’être améliorées. Les approches distribuées
doivent soit conserver la synchronie entre les modèles au prix d’une étape couteuse de
communication synchrone, ou la briser par exemple avec l’apprentissage d’ensemble de
modèles, au prix d’un équilibre difficile entre communication et diversité de modèles.
Les approches de parallélisme des modèles sont plus rapides de part leur déverrouillage
par l’avant, mais au prix de performances moindres, et les régularisations existantes
ne sont pas suffisantes. De ces deux axes, deux questions de recherches émergent qui
dirigeront cette thèse et ses contributions.

• Comment pouvons-nous améliorer les approches de parallélisme des modèles
déverrouillées par l’arrière pour atteindre des performances comparables à la
rétropropagation ?

• Comment pouvons-nous améliorer les méthodes d’entraînement synchrones et
ensemblistes par des approches plus faibles en communication ?

E.4 Contributions de cette thèse

Dans cette thèse, nous présentons quatre contributions liées aux approches parallélis-
ables pour l’apprentissage profond, divisées entre les deux axes discutés précédemment
en deux publications chacun.

Tout d’abord, nous travaillons sur les alternatives à la rétropropagation plus suscep-
tibles à la parallélisation, en particulier liées à l’apprentissage local. Nous explorons
des manières de réduire l’effondrement d’information en apprentissage local auto-
supervisé en retirant des exemples des calculs locaux. Nous montrons également que
l’apprentissage local peut améliorer la dérivation automatique en mode direct.

Nous contribuons ensuite à l’entraînement distribué en proposant en proposant
des algorithmes se focalisant sur la communication entre appareils. Nous montrons
que changer l’ordre d’exécution des calculs en parallélisme des données résulte en un
apprentissage synchrone avec une meilleure gestion de la mémoire et des communica-
tions. Nous proposons également une nouvelle méthode d’apprentissage ensembliste
avec un faible volume de communication, qui permet d’obtenir un modèle hautement
performant après moyennage.

E.4.1 Partie I: Approches d’apprentissage local pour l’apprentissage profond

Prévention de l’Effondrement Dimensionnel en Apprentissage Local Contrastif par
Sous-échantillonnage
Louis Fournier, Adeetya Patel, Michael Eickenberg, Edouard Oyallon, Eugene Belilovsky.
Preventing Dimensional Collapse in Contrastive Local Learning with Subsampling. ICML
2023, Workshop on Localized Learning.
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• Nous utilisations des objectifs locaux auto-supervisés pour l’apprentissage local.
Nous montrons un effondrement dimensionnel entre les stages, et qu’il est possible
d’y remédier en sous-échantillonnant certains exemples, soit à l’aide d’un oracle,
soit à l’aide de la similarité des activations au niveau des stages.

• Résumé: Cet article présente une étude des défis associés à l’entraînement efficace
des réseaux de neurones profonds par le biais d’objectifs auto-supervisés, en util-
isant l’apprentissage local comme alternative parallélisable à la rétropropagation
traditionnelle. Dans notre approche, le réseau est segmenté en stages distincts,
chacun mis à jour de manière indépendante via des gradients fournis par de petits
réseaux de neurones auxiliaires locaux. Malgré les avantages évidents en termes
de calcul, une division en trop de stages entraîne souvent une dégradation des
performances, conséquence de la perte d’informations entre les stages. Grâce
à l’analyse d’un exemple synthétique, nous identifions un effondrement dimen-
sionnel au niveau des couches comme l’un des principaux facteurs à l’origine
de ces pertes de performance. Pour y remédier, nous proposons une stratégie
d’échantillonnage nouvelle et simple, basée sur la similarité des activations au
niveau du stage, explicitement conçue pour éviter cet effondrement dimensionnel.
Des expériences approfondies sur les ensembles de données STL-10 et CIFAR-10
confirment l’efficacité de l’approche que nous proposons pour éviter cet effon-
drement, ouvrant ainsi la voie à un entraînement hautement parallélisé des réseaux
DNN auto-supervisés presque couche par couche.

Les Gradients Avant Peuvent-ils Égaler la Rétropropagation?
Louis Fournier*, Stéphane Rivaud*, Eugene Belilovsky, Michael Eickenberg and Edouard
Oyallon. Can Forward Gradient Match Backpropagation?. ICML 2023.

• Nous étudions l’utilisation d’objectifs d’apprentissage locaux pour obtenir des
gradients qui peuvent être utilisés pour la dérivation automatique en mode direct.
Nous démontrons que cela permet aux méthodes de gradients avant d’être utilisés
pour l’apprentissage profond, bien qu’un écart de performance subsiste avec la
rétropropagation, en raison de la différence d’alignement entre les gradients locaux
et les gradients globaux.

• Résumé: Il a récemment été montré que les gradients avant - l’idée d’utiliser des
dérivées directionnelles en mode de dérivation direct - pouvaient être utilisés pour
l’apprentissage des réseaux neuronaux tout en évitant les problèmes générale-
ment associés au calcul du gradient de rétropropagation, tels que les exigences en
matière de verrouillage et de mémorisation. Le coût est l’obligation de deviner
la direction du gradient, ce qui est difficile en haute dimension. Alors que les
solutions actuelles s’appuient sur des moyennes pondérées sur des distributions
isotropes de vecteurs de direction possible, nous proposons de biaiser fortement
nos suppositions de gradient dans des directions qui sont beaucoup plus promet-
teuses, telles que les gradients obtenus à partir de petits réseaux auxiliaires locaux.
Pour un réseau de neurones standard de vision par ordinateur, nous menons
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une étude rigoureuse couvrant systématiquement une variété de combinaisons
de cibles de gradient et de suppositions de gradient, y compris celles présentées
précédemment dans la littérature. Nous constatons que l’utilisation des gradients
obtenus à partir d’une fonction de perte locale comme direction candidate est une
amélioration considérable par rapport au bruit aléatoire pour les méthodes de
gradient avant.

E.4.2 Partie II: Approches d’entraînement distribué faibles en communica-
tions pour l’apprentissage profond

Le Parallélisme Cyclique de Données pour du Parallélisme Efficace de Réseaux de
Neurones Profonds
Louis Fournier and Edouard Oyallon. Cyclic Data Parallelism for Efficient Parallelism of
Deep Neural Networks. Preprint.

• Nous proposons une alternative au cadre standard du parallélisme des données,
en forçant une exécution cyclique plutôt que simultanée des travailleurs. En
équilibrant la mémoire totale occupée par les activations ainsi que la communica-
tion des gradients des stages pendant l’entraînement, nous démontrons qu’une
variété d’implémentations parallèles utilisant le parallélisme des données peut
être améliorée.

• Résumé: L’entraînement de grands réseaux de neurones par l’apprentissage pro-
fond nécessite des techniques de parallélisation pour passer à l’échelle. Dans
les méthodes existantes telles que le parallélisme des données ou ZeRO-DP, des
micro-batchs de données sont traités en parallèle, ce qui crée deux inconvénients:
la mémoire totale requise pour stocker les activations du modèle atteint son max-
imum à la fin de la passe avant, et les gradients doivent être simultanément
moyennés à la fin de l’étape de rétropropagation. Nous proposons le parallélisme
cyclique des données, un nouveau paradigme qui fait passer l’exécution des micro-
batchs de simultanée à séquentielle, avec un délai uniforme entre eux. Au prix
d’un léger retard de gradient, la mémoire totale occupée par les activations est
constante et les communications de gradient sont équilibrées pendant les étapes
d’apprentissage. Associée au parallélisme des modèles, notre technique réduit
le nombre de GPUs nécessaires, en partageant les GPUs entre les micro-batchs.
Dans le cadre de ZeRO-DP, notre technique permet la communication des états du
modèle avec des communications point à point plutôt qu’avec une communication
collective. Nous illustrons la force de notre approche sur les ensembles de données
CIFAR-10 et ImageNet.

Entraînez votre Ensemble avec des Mélanges de Poids Faible en Communications,
puis Moyennez.
Louis Fournier, Adel Nabli, Masih Aminbeidokhti, Marco Pedersoli, Eugene Belilovsky
and Edouard Oyallon. WASH: Train your Ensemble with Communication-Efficient Weight
Shuffling, then Average. Preprint.
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• Nous proposons une nouvelle approche distribuée pour l’entraînement d’ensemble
de réseaux. En mélangeant aléatoirement une très petite fraction des poids, la
population de modèles peut être moyennée en un réseau final très performant
avec un surcoût de communication très faible.

• Résumé: Les performances des réseaux de neurones profonds sont améliorées par
les méthodes ensemblistes, qui font la moyenne des résultats de plusieurs modèles.
Toutefois, cette méthode a un coût accru lors de l’inférence. Les méthodes de
moyennage des poids visent à équilibrer la généralisation de l’ensemble et la vitesse
d’inférence d’un modèle unique en calculant la moyenne des paramètres d’un
ensemble de modèles. Cependant, le moyennage naïf d’un ensemble donne des
résultats médiocres car les modèles convergent vers des bassins de perte différents,
et aligner les modèles pour améliorer les performances de leur moyenne est un
défi. D’autre part, inspirées par l’entraînement distribué, des méthodes comme
DART et PAPA ont été proposées pour entraîner plusieurs modèles en parallèle
de manière à ce qu’ils finissent dans le même bassin, ce qui permet d’obtenir une
bonne performance du modèle moyenné. Cependant, ces méthodes compromettent
la performance de l’ensemble ou exigent une communication importante entre
les modèles pendant l’apprentissage. Dans cet article, nous présentons WASH,
une nouvelle méthode distribuée pour l’entraînement d’ensembles de modèles
en vue du moyennage de leur poids qui permet d’obtenir des performances en
classification d’images à l’état de l’art. WASH maintient les modèles dans le même
bassin en mélangeant aléatoirement un petit pourcentage de leur poids pendant
l’entraînement, ce qui permet d’obtenir des modèles diversifiés et de réduire les
coûts de communication par rapport aux méthodes standard de moyennage des
paramètres.





Parallelizable Training in Deep Learning Through Local and Distributed Approaches

Abstract

Recent breakthroughs in deep learning have been driven by the growth of deep neural net-
works, improving their ability to memorize and generalize. However, this growth requires
ever-increasing computational resources to train these networks. In this thesis, we propose to
improve the standard deep learning training framework, which consists of parallelized mini-
batch SGD with backpropagation. By deviating from it, we can obtain more parallelizable
and faster approaches. First, we study the capabilities of local learning approaches, a more
parallelizable alternative to the backpropagation gradient estimation method. The model is
split into sequential stages connected only by feedforward connections. We find that we can
improve self-supervised local learning by removing certain data samples from the local losses
computation, preventing information collapse. We also show that forward-mode automatic dif-
ferentiation, which computes a directional derivative in a single forward pass, can be improved
by using local gradients as tangent directions. Second, we study distributed approaches to
training deep neural networks, and consider their communication costs in particular. We modify
synchronous data parallelism to balance the overall memory and communication overhead by
shifting worker execution from simultaneous to sequential. Finally, we propose a novel highly
communication-efficient distributed training approach that allows an ensemble of models to be
weight-averaged at the end of training, resulting in a single ensemble-level model.

Keywords: deep learning, neural network, local learning, distributed learning, backpropagation,
data parallelism, model parallelism, forward gradient, ensembling, delayed gradient

Entraînement Parallélisable en Apprentissage Profond par le biais d’Approches Locales et
Distribuées

Résumé

Les récentes avancées dans le domaine de l’apprentissage profond ont été poussées par la
croissance des réseaux de neurones profonds, améliorant leur capacité de mémorisation et
de généralisation. Cependant, cette croissance s’étend aussi aux ressources computationnelles
nécessaires à leur entraînement. Dans cette thèse, nous proposons d’améliorer l’algorithme
d’apprentissage standard qui consiste en de la rétropropagation parallélisée. En s’en écartant,
il est possible d’obtenir des approches plus parallélisables et rapides. Tout d’abord, nous étu-
dions les capacités des approches d’apprentissage local, une alternative plus parallélisable à la
méthode standard d’estimation du gradient par rétropropagation. Le modèle est divisé en stages
séquentiels reliées uniquement par des connexions de type ‘feedforward’. Nous améliorons
l’apprentissage local auto-supervisé en supprimant certains échantillons de données des calculs
locaux, ce qui permet d’éviter un effondrement de l’information. Nous montrons également que
la dérivation automatique en mode direct, qui calcule une dérivée directionnelle en ‘feedforward’,
est améliorée en utilisant les gradients locaux comme directions tangentes. Deuxièmement, nous
étudions les approches distribuées pour l’apprentissage profond, en particulier en tenant compte
de leurs coûts de communication. Nous modifions le parallélisme de données synchrone pour
équilibrer l’utilisation de la mémoire globale et des communications, en passant les calculs de
simultanés à séquentiels. Enfin, nous proposons une nouvelle approche d’apprentissage distribué
nécessitant peu de communications permettant à un ensemble de réseaux d’être moyenné après
entraînement, donnant un modèle très performant au niveau de l’ensemble.

Mots clés : apprentissage profond, réseau de neurones, apprentissage local, apprentissage dis-
tribué, rétropropagation, parallélisme des données, parallélisme des modèles, gradient
avant, ensemblisme, gradient retardé
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