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C’est une bien faible lumière qui nous vient du ciel étoilé. Que serait, pourtant,
la pensée humaine, si nous ne pouvions pas percevoir ces étoiles ?

- Jean Perrin
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Résumé substantiel

Après les années 50, nombreuses sont les découvertes ayant façonné la cosmologie
d’aujourd’hui. Parmi elles, on peut noter la découverte de la matière noire dans les
années 70, puis celle de l’énergie noire en 1998, la compréhension de cette dernière
étant la motivation de ce sujet de thèse. De ces observations résulte le modèle faisant
pour l’instant consensus chez les cosmologistes : ΛCDM.

Afin de tester le modèle ΛCDM, et notamment de contraindre l’énergie noire, plusieurs
sondes existent. L’une d’entre elles est l’effet de lentille gravitationnelle faible. Cet
effet est un résultat direct de la relativité générale : l’espace et le temps sont liés en un
seul ensemble, dit « espace-temps », dont la géométrie se voit distordue en présence
de masse. Du point de vue d’un observateur, les sources d’arrière plan sur la ligne
de visée apparaissent tordues à cause des distorsions de l’espace-temps provoquées
par des objets massifs en avant plan (lentilles), les photons suivant la courbure. Cet
effet peut être très fort et observable directement sur des images (strong lensing),
ou plus faible et nécessitant une détection statistique. C’est ce deuxième régime, le
weak lensing, qui nous intéresse. L’une des mesures du weak lensing est le cosmic
shear, résultat de la distorsion de galaxies d’arrière plan par les structures à grande
échelle. La mesure du cosmic shear permet de cartographier la distribution de toute la
matière (en incluant la matière noire), et étudier cette distribution à plusieurs échelles
de distances permet de de remonter à l’influence de l’énergie noire sur la répartition
de la matière au cours du temps. Une telle analyse se fait en mesurant les fonctions
de corrélations à deux points du cosmic shear dans différentes tranches de redshift
(analyse tomographique), ces fonctions de corrélation étant directement reliées aux
paramètres cosmologiques du modèle ΛCDM. Un historique des découvertes associées
au lensing ainsi que son formalisme mathématique sont développés dans le Chapitre 2.

Ces dernières (et prochaines) années marquent un tournant pour la cosmologie :
la construction de relevés de nouvelle génération tels qu’EUCLID et le Vera Rubin
Observatory (anciennement LSST), cartographiant le ciel avec une couverture et
une profondeur inégalées, ouvre la voie à l’ère de la cosmologie de précision. En
particulier, le Vera Rubin Observatory est le premier télescope au sol conçu pour
mesurer le weak lensing, ce qui en fera sa sonde la plus précise pour contraindre
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Résumé substantiel

les paramètres de l’équation d’état de l’énergie noire. Avec son miroir de 8.4m et
sa caméra de 3200 mégapixels, on attend plusieurs milliards de galaxies observées
à la fin du relevé. Cependant, malgré le design optique innovant et la statistique
sans précédent de LSST, la mesure du shear est sujette à de nombreuses sources
d’effets systématiques. Parmi elles, on retrouve les effets instrumentaux, la turbulence
atmosphérique, les effets de sélection et de détection, la calibration de l’estimateur
du shear ou encore le bruit de grenaille. Tous ces effets sont sources de biais à
la fois multiplicatif et additif dans la mesure du shear, il est donc important de
pouvoir contrôler leur valeur, tout en tenant compte de la statistique attendue du
détecteur. Dans le cas de LSST, l’objectif est d’atteindre une limite de 10−3 sur la
valeur du biais multiplicatif, et 10−4 pour le biais additif. L’ensemble des challenges
autour de la mesure du shear, les sources de biais pouvant affecter sa mesure, ainsi
qu’une description plus détaillée du télescope LSST sont développés dans le Chapitre 3.

Parmi les sources d’effets systématiques dans la mesure du shear, nous avons cité la
méthode d’estimation de ce dernier. De nombreux estimateurs ont vu le jour depuis
les années 90, mais aucun n’a fait l’objet d’un consensus dans la communauté.
Le développement de telles méthodes d’estimations se décline en plusieurs étapes :
d’abord, la mesure des formes des objets observés (dans notre cas l’ellipticité des galax-
ies), puis la calibration de ces formes. Les ellipticités ne permettent pas à elles seules
d’estimer le shear à cause des effets atmosphériques et instrumentaux venant s’ajouter
aux images (décrits à travers la PSF), biaisant ainsi les mesures. Il existe différentes
manières de déterminer les formes des sources : le model fitting, où un modèle de
galaxie est ajusté par comparaison aux observations et minimisation des moindres
carrés, et les méthodes basées sur les seconds moments, où la forme est directement
mesurée sur l’image. Concernant la calibration, les procédures sont également variées,
allant des simulations aux méthodes perturbatives. L’objet principal de cette thèse
est le développement d’une nouvelle méthode d’estimation de shear, comportant des
avantages notables par rapport aux méthodes de pointes déjà existantes. La mesure
de forme se base sur les seconds moments, avantageux comparés au model fitting car
aucune hypothèse n’est faite sur le profil des galaxies. La mesure des seconds moments
renvoie directement à l’ellipticité observée de la galaxie, dite e. La calibration de
cette ellipticité est réalisée par une méthode perturbative où des variations de shear
artificielles sont appliquées aux images. Une autre force de cette méthode réside dans
le fait que ces variations ne sont pas apliquées à l’image originale, mais aux autres
termes de l’estimateur, plus étendus et mieux résolus. À partir des seconds moments
de ces images perturbées sont calculées les dérivées numériques de l’ellipticité par
rapport au shear, permettant de définir le facteur d’auto-calibration R. Les détails
d’implémentation de cette méthode sont développés dans le Chapitre 4.

Ce nouvel estimateur a ensuite été testé sur des simulations - sans bruit -, où nous
avons varié à la fois les profils de galaxies et de PSF, le tout à des ratios de tailles
réalistes. Les profils de galaxies varient entre gaussiennes, profils composites avec
bulbe et disque, et images issues d’un catalogue du télescope Hubble (COSMOS).
Quelques soient les combinaisons, les estimations de shear montrent toujours un biais
multiplicatif de l’ordre de 10−3.
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Les résultats de ces estimations sont disponibles dans le Chapitre 5.

On peut maintenant se poser la question : que se passe-t-il lorsque du bruit est
ajouté dans l’image ? Le bruit de grenaille, causé par la variabilité de la détection
des photons sur un senseur, est source d’effets systématiques dans la mesure de
forme des objets, et donc fatalement dans celle du shear. En effet, la mesure de la
position des objets est bruitée de façon corrélée avec l’ellipticité de la galaxie et le
rapport signal sur bruit (SNR). Toutes les méthodes d’estimations de formes étant
des fonctions non-linéaires de la position, le fait que la mesure de cette dernière soit
bruitée introduit donc un biais (dit noise bias) dans l’estimateur. De nombreuses
méthodes de correction des effets systématiques causés par le bruit ont été proposées
durant les dernières décennies, comportant chacune leurs limitations. La procédure la
plus courante est de calibrer ce biais à l’aide de simulations, qui comporte certains
inconvénients : difficultés à séparer les variables dont le noise bias dépend (formes des
galaxies et SNR), hypothèses limitantes sur les profils choisis pour créer les images, ou
encore le temps de calcul souvent colossal pour réaliser les boucles sur ces simulations
(pour avoir un biais contrôlé à 10−3, il est nécessaire de réaliser des estimations sur
des millions d’événements).
Dans ce contexte, le développement d’une correction du noise bias dépendant unique-
ment des propriétés des images serait très avantageux. La piste explorée dans ce
manuscrit est celle de calculer la prédiction du noise bias de façon analytique à partir
des dérivées secondes de l’expansion de Taylor de l’estimateur de formes des galaxies.
Au delà de ses avantages computationnels, une telle méthode permet également de
s’affranchir de toute hypothèse faite sur les profils des galaxies. En développant cette
méthode, nous avons déterminé une formule analytique de la variance de la mesure de
la position compatible avec la variance numérique calculée à partir de simulations. Il
en est de même pour le biais du flux et de l’ellipticité e des galaxies. Concernant le
facteur d’auto-calibration R, la détermination d’une formule analytique du noise bias
s’avère plus complexe, les seconds moments et le flux étant corrélés après l’introduction
des variations de shear dans l’estimateur pour calculer les dérivées. Le développement
de cette correction analytique et les perspectives envisagées pour son amélioration
sont décrits dans le Chapitre 6.
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Résumé

La découverte de l’accélération de l’expansion de l’Univers en 1998 bou-
leversa notre vision des phénomènes physiques qui gouvernent son évolution.
La cause de cette accélération s’opposant à l’action attendue de la gravité
est nommée « énergie noire » par les cosmologistes, et son origine reste en-
core aujourd’hui indéterminée. Plusieurs sondes cosmologiques permettent de
contraindre l’énergie noire, notamment le cisaillement gravitationnel (cosmic
shear), résultat d’un effet de lentille gravitationnelle faible sur des galaxies
d’arrière plan causé par les structures à grande échelle. Sensible à la fois à
la distribution de matière et à la géométrie de l’Univers, il est possible d’en
faire un outil puissant pour contraindre l’équation d’état de l’énergie noire. La
prochaine décennie marque l’entrée dans l’ère de la cosmologie de précision avec
le développement de relevés de nouvelle génération tels que LSST. Ce télescope
du Vera C. Rubin Observatory est le premier relevé au sol conçu pour les
analyses de lentilles gravitationnelles faibles, notamment grâce à sa caméra de
3200 megapixels et son miroir primaire de 8 mètres, qui permettront d’imager le
ciel avec à la fois une profondeur et une couverture spatiale inégalées. Au bout
de 10 ans, LSST aura observé plusieurs milliards de galaxies, permettant ainsi
de réaliser des mesures cosmologiques sans précédent, particulièrement avec
le cosmic shear qui nécessite une détection statistique sur un grand nombre
de sources. Cependant, la mesure du shear est quelque chose de complexe et
associée à de nombreuses sources de systématiques, parmi lesquelles on retrouve
la calibration de l’estimateur de formes des galaxies, ou le bruit de grenaille dans
les images. En considérant la statistique prévue d’LSST, les différentes sources
d’erreurs systématiques doivent être contrôlées au pour-mille afin d’atteindre
la précision souhaitée sur l’équation d’état de l’énergie noire. C’est dans ce
contexte que s’inscrivent les résultats présentés dans cette thèse. La première
partie de ce travail a été de développer un estimateur non biaisé du cisaillement
gravitationnel directement à partir des images de galaxies. Les avantages de
cette nouvelle méthode sont multiples en comparaison aux méthodes de pointe
comme Metacalibration (aujourd’hui état de l’art dans la mesure du shear sur
des galaxies) : aucune hypothèse n’est faite sur le profil des sources (la mesure
de forme se faisant à partir des seconds moments de la distribution de lumière)
et aucune distorsion n’est appliquée à l’image de la galaxie, permettant à la
fois d’éviter l’introduction de bruit corrélé dans les estimations ainsi que de
réaliser des mesures de shear sur des images sous échantillonnées. La deuxième
partie de ce travail s’articule autour de la correction du noise bias, causé par le
bruit de grenaille dans les images. Le bruit introduisant un biais dans la mesure
de forme, il biaise également les estimations de shear. Les méthodes usuelles
de calibration de ce biais se faisant sur des simulations, elles sont sujettes à
certaines limites, notamment les hypothèses choisies pour la modélisation des
images ou le conséquent temps de calcul nécessaire à la réalisation de boucles
Monte Carlo. Pour contourner ces limitations, nous nous sommes penchés sur
le développement d’une correction analytique du noise bias à travers le calcul
des dérivées du second ordre de l’estimateur de forme. Cette méthode donne
des résultats très satisfaisants sur la correction de l’ellipticité des galaxies, ainsi
que des résultats prometteurs sur la calibration du shear, nécessitant de plus
amples investigations.
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Abstract

The discovery of the accelerating expansion of the universe in 1998 turned
our vision of the physical phenomena governing its evolution on its head. The
cause of this acceleration, which opposes the expected action of gravity, is
called "dark energy" by cosmologists, and its origin remains undetermined to
this day. Several cosmological probes can be used to constrain dark energy,
including cosmic shear, the result of a weak gravitational lensing effect on
background galaxies caused by large-scale structures. Sensitive to both the
matter distribution and the geometry of the Universe, it can be used as a
powerful tool to constrain the equation of state for dark energy. The next
decade marks the dawn of the era of precision cosmology, with the development
of next-generation surveys such as LSST. This telescope at the Vera C. Rubin
Observatory is the first ground-based survey designed for weak gravitational
lensing analyses, thanks in particular to its 3200 megapixel camera and 8-meter
primary mirror, which will image the sky with both unrivalled depth and spatial
coverage. After 10 years, LSST will have observed several billion galaxies,
enabling unprecedented cosmological measurements to be made, particularly
with cosmic shear, which requires statistical detection on a large number of
sources. However, shear measurement is complex and associated with many
sources of systematics, including calibration of the galaxy shape estimator, and
shot noise in the images. Considering LSST’s expected statistics, the various
sources of systematic error need to be controlled to the per mil level in order to
achieve the desired accuracy on the dark energy equation of state. This is the
background to the results presented in this thesis. The first part of this work
was to develop an unbiased estimator of gravitational shear directly from galaxy
images. The advantages of this new method compared with state-of-the-art
methods such as Metacalibration are manifold: no assumptions are made about
the source profile (the shape measurement is based on the second moments of
the light distribution) and no distortion is applied to the galaxy image, making
it possible both to avoid introducing correlated noise into the estimations and
to perform shear measurements on undersampled images. The second part
of this work focuses on the correction of noise bias, caused by shot noise in
the images. Noise introduces a bias in the shape measurement, and therefore
also biases the shear estimations. As the usual methods for calibrating this
bias are based on simulations, they are subject to certain limitations, notably
the assumptions chosen for image modelling or the consequent computation
time required to carry out Monte Carlo loops. To overcome these limitations,
we have turned our attention to developing an analytical correction for noise
bias by calculating the second-order derivatives of the shape estimator. This
method gives very satisfactory results for galaxy ellipticity correction, as well as
promising results for shear calibration, but requires further investigation.
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Preamble

Humans’ questions about their place in the universe and the nature of the cosmos date back to
ancient times. In Mesopotamia, the cosmos was represented as a flat earth resting on primordial
waters, while the sky was solid and supported by mountains. The Egyptians imagined the sky
as the goddess Nut, resting on Geb, god of the Earth. The sun was represented by the god Ra,
crossing the sky by day and the underworld by night.
The concept of a spherical cosmos was first introduced by Pythagoras (6th century BC),
with the Earth (also spherical !) at its center. Subsequently, Aristotle (350 BC) proposed
a geocentric cosmic model in which the celestial bodies are represented by spheres moving
circularly and concentrically around the Earth, itself immobile. The hypothesis of a heliocentric
universe was first formulated by Aristarchus of Samos (280 BC). Still, this theory didn’t gain
ground until much later, in 1543, with Nicolaus Copernicus, who proposed a model including
the Earth and all the planets known at the time. Hybrid models were also proposed at the
same time, such as that of Tycho Brahe who, at the same time as Copernicus, proposed a
model in which the planets revolved around the Sun, and the Sun around the Earth.

In 1609, Johannes Kepler published a new formalism describing the motions of the plan-
ets, which showed that their orbits were no longer circular but elliptical. Kepler also posed the
following paradox (taken up by Heinrich Olbers in 1826): why is the sky black at night ? If the
universe is static, homogeneous and infinite in time and space, our gaze should always rest
on a star (no matter how distant), and the night sky should therefore be extremely luminous.
It was only much later, in the 20th century, that this paradox was answered, when it was
demonstrated that the universe was in fact dynamic and of finite age.

The law of universal gravitation formulated by Isaac Newton in 1687 made it possible to
explain and predict the movements of celestial bodies. Newtonian mechanics held sway for a
long time, until other theories were added at the end of the 19th century: James Maxwell’s
equations for electromagnetic waves suggested that the speed of light depended solely on
the electrical and magnetic properties of the medium in which it propagated, and not on the
reference frame of observation, as was thought at the time with Galilean transformations.
In order to reconcile Maxwell’s calculations with Newtonian mechanics, the hypothesis of
a medium for light propagation was put forward: the ether. An experiment conducted by
Albert Michelson and Edward Morley in 1887 to demonstrate the existence of this ether proved
inconclusive. Hendrik Lorentz and Henri Poincaré subsequently laid the foundations of special
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relativity by publishing calculations explaining the transformations between two observers in
different reference frames. On this basis, Albert Einstein published a paper detailing his vision
of special relativity in 1905: the laws of physics are the same for all inertial observers, the
speed of light is constant in vacuum and independent of reference frame, and the notion of
ether is no longer necessary.
Ten years later, in 1915, Einstein published his theory of general relativity, in which gravitation
is no longer described by a force but by a curvature of space-time in the presence of matter or
energy. This theory complements Newtonian mechanics, which alone cannot explain all the
phenomena observed in the universe, including Mercury’s perihelion advance. At the same
time, he described the universe as finite, static, homogeneous and isotropic. Modern cosmology
is emerging as a separate branch of physics: it is the science that aims to study the origins,
structure and evolution of the universe.

Thereafter, one discovery followed another, starting with the expansion of the universe revealed
by Edwin Hubble’s observations in 1929, demonstrating the relationship between the speed
of “nebulae” and the redshift of their spectra. The nature of these nebulae, and whether or
not they belonged to our galaxy, gave rise to the “Great Debate” of the 1920s, which ended
in 1924 with Hubble’s observations of variable stars and Cepheids within these nebulae. By
measuring the distance of these objects, he was able to prove their extra-galactic nature, thus
advancing our understanding and vision of the universe beyond the Milky Way.
Another major observation came in 1965: the discovery of the Cosmic Microwave Background
by Arno Penzias and Robert Wilson, predicted in 1948 by Ralph Alpher and George Gamow.
The expansion of the universe and the discovery of this cosmological background were among
the observations that led to the development of the Big Bang theory, originally proposed by
George Lemaître in 1927.

Two other major discoveries added to cosmologists’ concerns: dark matter and dark en-
ergy. The former was first introduced by Fritz Zwicky in 1933, following an anomaly observed
in the measurement of the total mass of the Coma cluster. It was then confirmed by other
observations, notably those of Vera Rubin in 1973, showing a “missing mass” in the arms of
spiral galaxies, whose rotational velocity remains constant with distance from the galaxy center
instead of decreasing.
The second followed the observation of the accelerating expansion of the universe in 1998
by Saul Perlmutter, Adam Riess and Brian Schmidt. Even though the expansion had been
discovered 70 years earlier, it was bound to slow down (or even reverse) due to the gravitational
attraction of all bodies in the universe. The contradictory result in 1998 gave rise to the
concept of “dark energy” to represent the phenomenon at the origin of acceleration, opposing
gravity.

Cosmological observations tend to show that dark matter and dark energy represent re-
spectively 25% and 70% of the composition of the universe today, and in either case, their
origin is still undetermined. The result of these discoveries is the cosmological model that is the
community’s consensus so far: the ΛCDM model. This model provides a coherent explanation
for both small and large scale observations in the universe, with just six free parameters. The
theory of general relativity, the expansion of the universe, dark energy and the ΛCDM model
are described in Chapter 1.
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There are several probes for testing the ΛCDM model and constraining dark energy, one
of which is the weak gravitational lensing effect. This effect occurs when massive objects
distort space-time, causing apparent distortion of background sources. Cosmic shear, one of
the measures of weak lensing, enables us to study the distortion of background galaxies by
large-scale structures. This makes it possible to map all matter, and to understand the influence
of dark energy on the evolution of this distribution over time. A history of the discoveries
associated with lensing and its mathematical formalism are developed in Chapter 2.

The arrival of new-generation surveys such as EUCLID and LSST marks a turning point
in cosmology, thanks in particular to their unprecedented statistics. With its 8.4 meter mirror
and 3200 mega-pixel camera, LSST is the first ground-based telescope specifically designed
to measure weak lensing. The detection of several billion galaxies is expected after 10 years.
However, measuring shear with LSST is subject to various systematic effects (instrumental,
atmospheric, selection, etc.), creating multiplicative and additive biases that are crucial to
control at specific thresholds. A more detailed description of the LSST telescope and the
challenges involved in measuring shear are given in Chapter 3.

One source of systematic effects in shear measurement is the shear estimator in itself. Since
the 90s, several estimators have been developed, without any real consensus being reached.
Estimation of shear begins with measurement of object shapes (such as galaxy ellipticity),
followed by calibration to correct for atmospheric and instrumental effects. Galaxy shapes
can be determined by model fitting or by direct measurement on images (second moments).
Calibration also varies from a method to another, often based on simulations or perturbative
processes. This thesis presents a new shear estimation method based on second moments with a
perturbative calibration, detailed in Chapter 4. This new estimator has been tested on noise-free
simulations varying galaxy and atmospheric model profiles, and the results are given in Chapter 5.

Finally, it is important to take into account the impact of noise on shear measurements,
particularly shot noise (caused by the variability of photon detection on a sensor), which
introduces a bias into the measurement of object shapes. This bias is correlated with galaxy
ellipticity and signal-to-noise ratio (SNR). All shear estimators are affected by this bias, and
although several correction methods have been proposed, they have certain limitations (separa-
tion of variables, restrictive assumptions, long computation time). The approach explored in
this thesis proposes to correct noise bias analytically, via the second derivatives of the shear
estimator’s Taylor expansion, without assumptions on galaxy profiles and with computational
advantages. This correction method and promising initial results are developed in Chapter 6.
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1. Cosmology

1.1 General Relativity
To understand our universe, we need a mathematical description of its geometry and
evolution. General Relativity (GR) is a theory that depicts how gravitation affects the
curvature of space-time induced by objects with mass and energy. In this section, we
will define the principle concepts of general relativity that are needed to understand
cosmology.

1.1.1 Metric
In general relativity, we consider that space and time are connected in our universe. It’s
important to note one aspect : desiring to establish a spacetime continuum inherently
implies that the quantities of space and time are given the same physical dimension.
By convention, we opt for the dimension of length for this equivalence. To obtain times
in the usual dimension, we must introduce a conversion factor with the dimensions of
velocity :

c = 2.99792458 × 108m.s−1 (1.1)
This constant c is the speed of light in vacuum.

To describe the local geometry of spacetime, we use the metric tensor, that also
represents the “gravitational potential" in the weak-field approximation :

gµν =



g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33


(1.2)

In the Minkowski metric, i.e. a flat space metric, gµν is defined as follows :

gµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.3)

By imagining the universe as mapped by a grid, the interval between two spacetime
coordinates can be defined as the side of a cell. This infinitesimal line element is called
ds :

ds2 = gµνdxµdx ν

= −c2dt2 + dx⃗2 (1.4)

The Greek indices in these equations run over [0,3], and the Latin ones only over [1,3],
as they represent the spatial counterpart.
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1.1. General Relativity

1.1.2 The equivalence principle
The equivalence principle assumes that inertial and gravitational masses are identical.
In other words, two bodies immersed in the same gravitational field and not subject
to other external forces will fall simultaneously if released simultaneously.
This principle was reformulated by Albert Einstein (Einstein, 1908) within the general
relativity framework, implying that the laws of physics are the same in a constant
gravitational field and a uniformly accelerated frame of reference. This means that an
inertial frame of reference (free fall) cannot be differentiated from a non-gravitational
frame of reference. In GR, this kind of frame of reference must be locally a Minkowski
space.

Numerous tests validating this principle have been conducted since Simon Stevin’s
first experiment in 1586 (involving the release of two lead balls of different masses).
The most recent is the MICROSCOPE satellite mission (Touboul et al., 2022), which
constrained the Eötvös parameter for a pair of test masses made of titanium and
platinum alloys to an unprecedented accuracy of 1.5 × 10−15.

1.1.3 Geodesic
Considering that gravity acts like a space-time deformation and not like a force in
general relativity means that particles are following the shortest path in this curved
space, which is not longer a straight line. This path is called geodesic, and we can
derive its equation following the equivalence principle (Weinberg, 1972).
If we consider a free-fall coordinate system X µ, a free-fall particle does not accelerate
in the vicinity of an event point, and we can locally apply the following equation :

d2X µ

d2X 0 = 0 (1.5)

Using the multidimensional chain rule :

dX µ

dX 0 = dx ν

dX 0
∂X µ

∂x ν
(1.6)

Deriving a second time according to equation 1.5 and multiplying by ∂xλ

∂Xµ on both
sides, we find the geodesic equation :

d2xλ

d2X 0 = − dx ν

dX 0
dxα

dX 0

[
∂2X µ

∂x ν∂xα

∂xλ

∂X µ

]
d2xλ

d2X 0 = −Γλ
να

dx ν

dX 0
dxα

dX 0

(1.7)

where Γλ
να are Christoffel symbols, also called the affine connection coefficients. This

equation is analogous of Newton’s law of motion which describes the motion of
particles in classical mechanics.
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1. Cosmology

1.1.4 Einstein equations
A fundamental concept in general relativity is that the distribution of matter and
energy in spacetime dictates the metric, shaping the geometry of spacetime accordingly.
The metric and the content of the universe are linked through the Einstein equation
(Einstein, 1915) :

Gµν + Λgµν = 8πG
c4 Tµν (1.8)

where the left-hand side of the equation represents the geometry of the universe, and
the right-hand side its energy content.
In this equation :

• Gµν is the Einstein tensor : Gµν = Rµν − 1
2gµνR , where Rµν is the Ricci tensor

and R the Ricci scalar. The Einstein tensor is a non-linear function of gµν and
its derivatives. It describes the curvature of spacetime.

• Λ is the cosmological constant. It did not appear in Einstein’s first calculations,
but was later added with a precise value to match his idea of a static universe.
We can move Λ on either side of the equation : if it appears on the left-hand
side, it is interpreted as a universe’s geometry modification, and therefore to
general relativity ; on the right-hand side, it appears more like a new fluid that
can be interpreted as a "vacuum energy density". More details about Λ are
given in sections 1.3 and 1.5.

• G is the Newton’s gravitational constant.

• Tµν is the stress-energy tensor that represents the mass and energy distribution
in spacetime. It contains density and flux components of both energy and
momentum (see figure 1.1). Because Gµν covariant derivative vanishes, Einstein
Equations imply that ∇muTµν = 0, which is the conservation of energy and
momentum.

Figure 1.1: Components of the stress-energy tensor.
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1.2. The cosmological principle

1.2 The cosmological principle
Even though we observe clustering and the undeniable significance of clumpiness in the
cosmos, we can extend the Copernican principle (postulate that there is no privileged
point of view in the universe) to encompass the entirety of the universe. At large
scales, the universe is homogeneous and isotropic, i.e. its structure and characteristics
remain the same everywhere and from any direction of observation.

1.2.1 Homogeneity

Figure 1.2: The SDSS 3-dimensional galaxies distribution map. At small scales, the galaxy
density of two different zones can be drastically different (red circles), but looking at larger
scales, the density of galaxies is becoming increasingly uniform (black circles). Our galaxy is
located at the center.

Looking at the solar system or galaxy scale, the universe looks heavily inhomoge-
neous. But considering cosmological distances of the hundred of Megaparsec order,
the object distribution becomes more and more uniform at large scales. As shown in
figure 1.2, the galaxy distribution observed by the Sloan Digital Sky Survey (SDSS)
6th-year data release is compatible with the assumption of homogeneity for scales of
R ⩾ 70 h−1Mpc (Sarkar et al., 2009).
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1. Cosmology

1.2.2 Isotropy

Figure 1.3: Different maps taken over the years showing the CMB temperature fluctuations.

For over thirty years, observations of the Cosmic Microwave Background (CMB,
more details in section 1.6.1) by the Cosmic Background Explorer (COBE, Mather
et al. (1990)), the Wilkinson Microwave Anisotropy Probe (WMAP, Spergel et al.
(2007)) and the Planck telescope (Planck Collaboration et al., 2014) have confirmed
that the large-scale structure of the universe remains the same regardless of the
direction of observation. The latest CMB measurement made by Planck showed that
its temperature fluctuation is subject to very small anisotropies, of the order of 10−5

at an angular scale of 0.01 rad (once subtracted the dipole, which is of the order of
10−3).

1.3 A universe in expansion
1.3.1 Redshift

Figure 1.4: Top : redshifted spectrum of a distant galaxy cluster
Bottom : spectrum of the Sun (Credit : Georg Wiora)

6

http://cdsads.u-strasbg.fr/abs/1990ApJ...354L..37M
http://cdsads.u-strasbg.fr/abs/1990ApJ...354L..37M
http://cdsads.u-strasbg.fr/abs/2007ApJS..170..377S
http://cdsads.u-strasbg.fr/abs/2007ApJS..170..377S
http://cdsads.u-strasbg.fr/abs/2014A&A...571A...1P


1.3. A universe in expansion

Luminous objects in the universe like stars or galaxies are emitting electromagnetic
radiation, enabling the determination of their chemical composition by looking at their
absorption spectrum and their emission or absorption lines witnesses their chemical
composition. For a given chemical specie, we expect its absorption (or emission) lines
to be at very specific wavelengths in the spectrum.
When observing some astrophysical object’s spectrum, one can in general detect a
global shift of these absorption lines towards longer (redder) wavelengths, similar to
a Doppler effect, that is called redshift (see figure 1.4). This shift is attributed to
the universe’s expansion, which increases the distance between two points at fixed
coordinates (see figure 1.5). Except at low redshifts, the relation between redshift
and recession velocity differs from the special relativity one. The difference can be
attributed to gravitational effects.

In practice, the observed redshift is not only the result of the universe expansion, but
also to the peculiar motions of galaxies (due to gravitational attraction in clusters,
and more generally the peculiar motions in large-scale structures) (Davis et al., 2011).
Peculiar velocities can introduce systematic errors in the cosmological parameters’
estimation if they are neglected, especially for redshifts ≲ 0.5 (Sugiura, Sugiyama,
and Sasaki, 1999). The observed redshift zobs can be expressed as follows :

(1 + zobs) = (1 + z)(1 + zpec)(1 + zgrav) (1.9)

with z the redshift only due to the universe expansion, zgrav the redshift due to density
fluctuations, and zpec the redshift due to peculiar velocity :

1 + zpec =

√√√√1 + vpec/c
1 − vpec/c

(1.10)

where vpec stands for the peculiar velocity. In the non-relativistic limit, we can approx-
imate zpec ≈ vpec/c .

Knowing the expected wavelengths of the various chemical species from laboratory
measurements, the redshift can be determined as follows :

zobs = λobs − λ0

λ0
(1.11)

where λobs is the observed wavelength and λ0 the expected one.
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1. Cosmology

Figure 1.5: The distance between two objects at fixed positions in spacetime increases
because of universe expansion.

1.3.2 Hubble-Lemaître law

Figure 1.6: Hubble diagram from Hubble (1929)

The relationship between the variation of a Cepheid’s light and its absolute magnitude
(period-luminosity relation) was first demonstrated by Henrietta Leavitt in 1912
(Leavitt and Pickering, 1912). As Cepheids are considered as standard candles, i.e. a
source that has a known luminosity, they provide very accurate distance measurements.
Building upon this initial result, Edwin Hubble was able to deduce a relationship
between galaxy distances (still using Cepheids) and their redshift, now known as
“Hubble-Lemaître’s law” (Lemaître (1927), Hubble (1929)) :

cz = H0d (1.12)

with H0 the Hubble constant, which represents the inverse of a time and is usually
expressed in km.s−1.Mpc−1 and d the distance in Mpc. The left-hand side term of
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1.3. A universe in expansion

this equation can by interpreted as the apparent recession speed of the considered
object.
This relation led to a fundamental conclusion in cosmology : galaxies seem to move
away from each other at a speed proportional to their distance. In other terms, the
universe is expanding.

The value of H0 originally estimated by Hubble in 1929 was 500 km.s−1.Mpc−1

(see figure 1.6). The precision of its measurement evolved down to a value between 50
and 100 km.s−1.Mpc−1 towards the middle of the 20th century, and the most recent
measurements are in agreement at around 70 km.s−1.Mpc−1. Until the end of the
2010s, H0 was always measured directly (using standard candles), but new indirect
measurement methods were developed in the last decade. Today, these two methods
yield different values, giving rise to a cosmological tension :

• Direct measurement with standard candles (Cepheids and supernovas) : H0 =
73.0 ± 1.0 km.s−1.Mpc−1 (Riess et al., 2022)

• Indirect measurement with CMB : H0 = 67.4 ± 0.5 km.s−1.Mpc−1 (Planck
Collaboration et al., 2020)

It is important to note that, despite these two values differing formally by 5σ, the
discrepancy is less than 10%, which is a notable success of the cosmological model
(see section 1.5).

1.3.3 Dark energy
During the 90s, other tracers emerged, notably type Ia supernovas (SNIa, more
details are given in section 1.6.3), which are also standard candles. By studying
SNIa, Saul Perlmutter’s team (Perlmutter et al. (1999)), along with Adam Riess and
Brian Schmidt (Riess et al. (1998), Schmidt et al. (1998)), found that their apparent
magnitude at redshifts around 0.5 was weaker than expected in a matter-dominated
universe, indicating that the universe’s expansion was accelerating rather than slowing
down. This unexpected finding suggested the presence of a mysterious force, later
termed "dark energy", which opposes gravity and drives galaxies apart. Figure 1.7
shows two Hubble diagrams reporting the accelerating universe expansion, and thus
the presence of dark energy.

The nature of dark energy remains undetermined, but several hypotheses are
considered : the cosmological constant Λ introduced in section 1.1.4, a modification
of the (geometrical) left-hand side of the Einstein equation (but only at large scales),
or considering a fluid with the following equation of state (with the pressure p and
density ρ) :

w = p
ρ

(1.13)

that can be interpreted as an addition to the right-hand side of the Einstein equation,
representing the universe’s content. The acceleration of the expansion starts from
w < −1/3, its current value corresponding rather to values of w close to −1.
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1. Cosmology

Figure 1.7: Left : Hubble diagram from Perlmutter and Schmidt (2003)
Right : Hubble diagram from Scolnic et al. (2018)

1.4 The Friedmann Lemaître Robertson Walker
metric

Considering an isotropic and homogeneous universe in expansion, the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric is conventionally used to describe space-
time geometry.

Analogously to equation 1.4, we can define FLRW’s ds :
ds2 = −c2dt2 + a2(t)γijdx idx j (1.14)

or in polar coordinates, usually chosen for its isotropic properties :

ds2 = −c2dt2 + a(t)2
[

dr 2

1 − kr 2 + r 2(dθ2 + sin2 θ dϕ2)
]

(1.15)

The coordinates system (r ,θ,ϕ) is comoving, meaning that the coordinates of an
object in the universe remain constant regardless of the expansion. The scale factor
a(t) denotes either a contraction or expansion of space, suggesting that the distance
between two objects evolves with time. We can deduce the universe’s evolution from
the sign of the scale factor derivative with respect to the cosmic time t :

• ȧ(t) > 0 : expanding universe
• ȧ(t) = 0 : static universe
• ȧ(t) < 0 : contracting universe

We can link the scale factor and the redshift through the following equation :

a(t) = 1
1 + z (1.16)

10

http://cdsads.u-strasbg.fr/abs/2003LNP...598..195P
http://cdsads.u-strasbg.fr/abs/2018ApJ...859..101S


1.4. The Friedmann Lemaître Robertson Walker metric

This means that if we receive today the light emitted by a distant comoving object
with a redshift of z, then the scale factor at the moment when the object initially
emitted this light is a. It assumes that the emitter and receiver are comoving. As
z = 0 at t0, we have a(t0) = a0 = 1. The full proof of this relation can be found p.71
and p.72 of Peacock (1999).

The curvature is described by its factor k. This parameter is what describes the
universe’s geometry. One way of representing the curvature is to consider a triangle :
on a flat surface with no curvature, the sum of the angles is 180°, but it is superior to
180° on a sphere (positive curvature) and inferior on a hyperboloid (negative curvature).
This factor k can take only three different values : +1, 0, and -1 :

• k = 1 : spherical universe
• k = 0 : flat universe
• k = -1 : hyperbolic universe

The expansion rate of the universe, also called the Hubble parameter, can be expressed
as a function of a(t) :

H(t) = ȧ(t)
a(t) (1.17)

Its current value is the Hubble constant, H0, defined earlier in equation 1.12.

Figure 1.8: Universe geometry depending on the curvature value.

11

http://cdsads.u-strasbg.fr/abs/1999coph.book.....P
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1.4.1 Cosmological distances
There are different ways of measuring distances in cosmology, depending on the
observable under consideration.

Comoving distance

The comoving distance corresponds to the separation between two points consid-
ering a comoving coordinates system. By definition of such a system, this distance
does not change with time. Taking the polar coordinates system defined above, the
comoving distance is defined as follows :

χ =
∫ dr√

1 − kr 2
(1.18)

the radial counterpart being the only one depending on k . We then have :

r = Sk(χ) =


sin(χ) if k = −1

sinh(χ) if k = +1

χ if k = 0

Recent measurements of k tend to strongly favor zero curvature (the latest being
DESI Collaboration et al. (2024)). We will thus consider the case where k = 0 in the
next section.
The comoving distance can be computed along the line of sight by integrating H over
the redshift between a source located at a fixed z0 and the observer :

χ(z) = 1
a0

∫ z0

0

cdz
H(z) (1.19)

Angular diameter distance

The angular diameter distance of an object is defined by the ratio between its size D
and its apparent angle θ. It is related to the comoving distance through :

DA = D
θ

= a(t)Sk(χ) = a0Sk(χ)
1 + z (1.20)

Considering a flat universe, it becomes :

DA = 1
1 + z χ(z) (1.21)

Luminosity distance

In a flat space, the flux of a source received by an observer writes :

F = L
4πD2

L
(1.22)
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1.4. The Friedmann Lemaître Robertson Walker metric

where L is the apparent luminosity of the source and DL the distance separating the
source and the observer.
The luminosity distance therefore reads :

DL =
√

L
4πF (1.23)

and can be linked to the comoving distance through :

DL = (1 + z)a0Sk(χ) (1.24)

and to the angular diameter distance via the reciprocal relationship :

DL = (1 + z)2DA (1.25)

At low redshift (z ≪ 1), DL and DA converge to similar values, leading to the
Hubble-Lemaître law defined in 1.3.2 :

DA(z) ≃ DL(z) ≃ cz
H0

(1.26)

1.4.2 Friedmann equations and solutions
Similar to dark energy, we can consider that the universe is made up of perfect fluids
whose equations of state depend on their pressure and density. Assuming an isotropic
and homogeneous universe, p and ρ are only time-dependant, the stress-energy tensor
is now :

Tµν = diag(−ρc2, p, p, p)

We can define two different equations from the Einstein equation and the stress-energy
tensor : ( ȧ

a

)2
= H2(t) = 8πG

3 ρ− kc2

a2(t) + Λc2

3 (1.27)

ä
a = Ḣ(t) + H2(t) = −4πG

3

(
ρ+ 3 p

c2

)
+ Λc2

3 (1.28)

where the first equation 1.27 comes from the temporal (00) component in Gµν and
Tµν , and the second 1.28 from the spatial (ij) components. They are called the
Friedmann equations.

By deriving 1.27 with respect to time, then replacing Ḣ and H2 by their expres-
sions from 1.28, we obtain the energy conservation equation :

ρ̇ = −3H
(
ρ+ p

c2

)
= −3 ȧ

a

(
ρ+ p

c2

) (1.29)

Under the assumption that the universe’s expansion follows an adiabatic process, we
can also find this result through thermodynamics. Considering a perfect gas equation
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of state p = wc2ρ, with w constant, we can simplify equation 1.29 and then integrate
it :

ρ(t) = ρ0

( a
a0

)−3(1+w)
(1.30)

where ρ0 ≡ ρ(t0) and a0 ≡ a(t0). This equation defines the density evolution of the
universe’s components. In flat space, for a single component, the scale factor solution
is :

a(t) ∝ t
2

3(w+1) (1.31)
In the special case where w = −1, the scale factor grows exponentially. Considering
a universe in expansion, we can identify several special cases where the Friedmann
equation can be easily solved, designated by w :

• When w = 0 :

 ρ ∝ a−3 ; p ≃ 0

a ∝ t 2
3

which represents a matter-dominated universe

• When w = 1/3 :

 ρ ∝ a−4 ; p ∝ ρ/3

a ∝ t 1
2

which represents a radiation-dominated universe

• When w = -1 :

 p ∝ −ρ

a ∝ et
√

Λ/3

which represents a dark energy-dominated universe

The universe has gone through these three phases in its history : the radiation era for
z ≳ 3000, when relativistic particles were dominating the energy budget ; the matter
era for 3000 ≳ z ≳ 0.5 with non-relativistic particles whose thermal agitation speed is
negligible compared to c ; and the dark energy era for z ≤ 0.5. For all of these eras,
the scale factor first derivative ȧ(t) was positive, so the universe was always expanding.
However, considering the second derivative ä(t), the expansion was decelerating during
radiation and matter era (ä(t) < 0) and is now accelerating during the dark energy
era (ä(t) > 0).

Using the critical density, defined for a universe with no spatial curvature (k = 0) :

ρc = 3H2
0

8πG
, (1.32)

we can express the current density of the different components as follows :

Ωi = ρi

ρc

Ωk = − kc2

H2
0 a2

0

(1.33)
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1.5. ΛCDM model

The first Friedmann equation 1.27 can be rewritten :

H2(t) = H2
0

[
Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ

]
(1.34)

where index r represents radiation, m matter, k curvature and Λ cosmological constant.
Today, for a(t0) = 1, this expression becomes even simpler :

Ωr + Ωm + Ωk + ΩΛ = 1 (1.35)

The value of Ωi depends on the Hubble constant H . Therefore it is often useful to quote
observational results in terms of ωi = Ωih2 (where h the reduced Hubble constant
h = H0/(100kms−1Mpc−1)), which results in the physical density parameters.

1.5 ΛCDM model

Figure 1.9: Proportions of baryons, dark matter and dark energy today according to Planck

The ΛCDM model is the most widely accepted in cosmology due to its simplicity
in explaining the features of the observable universe. Its denomination comes from
the cosmological constant Λ used to describe dark energy, and CDM for "Cold Dark
Matter", which are the two major components of the universe, representing 95% of its
content today (see figure 1.9).

The baryonic matter depicts every constituent of the atoms found in the uni-
verse (protons, neutrons, electrons), in other words, what we call "ordinary" and
"observable" matter. Baryons are sensitive to both gravitational and electromagnetic
interaction, this is why we can detect and interact with them.

Firstly suggested by Fritz Zwicky in 1933 (Zwicky, 1933) after he observed ex-
cessive galaxy velocities in the Coma cluster, concluding that the dynamical stability
of these structures could not be based solely on their luminous mass, dark matter is
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introduced in the model to account of gravitational effects observed in large-scale
structures (galaxy rotation curves problem (see section 3.1.2.c), gravitational lensing
(see chapter 2)), yet remains unidentified today. The "cold" dark matter stands for
non-baryonic particles, non-relativistic, collisionless (interacts with other particles only
through gravitation) and dissipationless (does not emit photons to lose energy and
cool down). An hypothesis a for baryonic dark matter candidate was formulated by
Paczynski (1986), considering Massive Compact Halo Objects (MACHOs) such as
black holes, neutron stars or white dwarfs. A summary of the experiments used to
test the MACHOs hypothesis is given in Tisserand et al. (2007). This hypothesis has
now been largely abandoned in favor of non-baryonic dark matter candidates such as
WIMPs (Weakly Interactive Massives Particles) and axions (which are stable, neutral,
and very low-mass elementary particles).

Parameter Description Value (according to
Planck 2024)

Ωbh2 The baryon density 0.0223 ± 0.0001

Ωch2 The dark matter density 0.120 ± 0.001

t0 The age of the universe 13.801 ± 0.024 Gyr

ln(1010As) The curvature fluctuation amplitude 3.043 ± 0.014

ns The scalar spectral index. It represents
the slope of ∆2

R . If ns = 1, this means
that density fluctuations have an
identical spectrum on any scale

0.965 ± 0.004

τ The reionization optical depth. The fit
usually concerns e−τ which is the

fraction of CMB photons scattered
between their emission and their

detection.

0.054 ± 0.007

Table 1.1: ΛCDM independent parameters and their numerical values according to Planck
Collaboration et al. (2020).

The ΛCDM model can be described by six free and independent parameters, listed
in table 1.1.
We can define other parameters derived from the six previous ones, such as H0 or σ8,
the latter being the standard deviation of the density fluctuation in an 8 h−1 Mpc
radius sphere. It allows to identify matter inhomogeneities in different parts of the
universe.
This model also includes other parameters set at some assumed values : the total
density ΩT = 1, the equation of state of dark energy w = -1, or the CMB temperature
TCMB = (2.7255 ± 0.0006)K (Fixsen, 2009).
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1.6. Cosmological probes

1.6 Cosmological probes
The ΛCDM model was determined from empirical observations, following the discoveries
of the CMB and the accelerated expansion using Type Ia supernovas. Today, these
probes and others are combined to test and validate (or invalidate) ΛCDM. In this
section, we will introduce several cosmological probes and see how their interesting
complementarity can be used to constrain different cosmological parameters.

1.6.1 Cosmic Microwave Background

Figure 1.10: CMB spectrum taken by the FIRAS instrument (each box is a measure point
with an assumed error of 1%) compared to a black body (solid line). The figure is from
Mather et al. (1990).

Figure 1.11: CMB temperature angular power spectrum (from Planck 2020a)
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1. Cosmology

In its earliest moments, the universe was much hotter and denser than it is today.
Above a certain temperature, protons and electrons are dissociated, forming a hot
plasma. Thanks to expansion, the universe gradually expanded and cooled, until it
reached a temperature of around 3000K, at an age of 380,000 years. At this point,
electrons were able to bind to atomic nuclei (creating atoms), and photons, so far
exchanged only between electrons, were able to be released and circulate in space.
This phenomenon, called recombination, left a visible imprint on the universe, called
the Cosmic Microwave Background (CMB).
Building on Lemaître’s work, Georges Gamow, Ralph Alpher and Robert Herman
published models of the Big Bang and predicted the existence of the CMB (Gamow
(1948), Alpher and Herman (1950)). The first observation of the CMB was made in
1964 by Arno Penzias and Robert Wilson, through an excess temperature measured
by their radio antenna (Penzias and Wilson, 1965). Several successive observation
missions have been carried out to characterize it and measure its anisotropies, in
particular COBE (1992), WMAP (2003), and Planck (2013).

Measuring the CMB temperature anisotropies gives us information about the original
plasma density, the overdensities being linked to the hotter spots in the spectrum.
These density fluctuations provide informations about the current density fluctuations
of large-scale structures.
According to its electromagnetic spectrum taken by the COBE Far Infrared Absolute
Spectrophotometer (FIRAS), we can see that the CMB looks like a perfect black
body (see figure 1.10). CMB temperature was measured using FIRAS data and gives :
TCMB = (2.7255 ± 0.0006)K (Fixsen, 2009).
Observable peaks in the temperature angular power spectrum (figure 1.11) correspond
to acoustic oscillations (see more in section 1.6.2). The position and height of these
peaks tells us about the composition of the universe, and therefore about cosmological
parameters : we can separate Ωmh2, Ωbh2 and As from the peaks’ amplitude, and
their positions also depend on Ωmh2 and Ωbh2 because of the speed of sound.

1.6.2 Baryonic Acoustic Oscillations

Figure 1.12: Schematic representation of Baryon Acoustic Oscillations (Credit : ESA and
the Planck Collaboration)
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Observed peaks in the CMB spectrum (see previous section) reveal the imprint of
acoustic wave propagation in primordial plasma, called "Baryonic Acoustic Oscillations"
(BAO). Although globally homogeneous, this initial plasma is subject to slight variations
in density. In regions of higher density, gravitational forces are stronger, leading to
baryons and photons attraction. Interactions between baryons and photons create an
energy that fights gravitation, and this conflict generates oscillations that propagate as
spherical waves in the plasma. The position of these perturbations was frozen at the
time of recombination, and today we observe these ripples thanks to regions of greater
galaxy and cluster density (see figure 1.12). As these ripples are no longer evolving
other than through the effects of gravitation and expansion, we can use BAO pattern
as a standard ruler to constrain dark matter and dark energy. This characteristic
length corresponds to the comoving sound horizon scale rd at the epoch at which
baryons were released from photons. It is observed as a peak in the spatial correlation
of anisotropies in the CMB temperature, in the positions of galaxies, or more generally,
in the matter density. Considering typical CMB anisotropy amplitude of ∼0.01 rad,
it corresponds to an "excess" of galaxies at at a comoving distance of 150 Mpc, in
other words a 1% excess augmentation in the regions 150 Mpc away from the initial
overdensities

1.6.3 Type Ia supernovas

Figure 1.13: Left : Supernova 1994D in the galaxy NGC 4526 (High-Z Supernova Search
Team/HST/NASA)
Right : Supernova remnant G299 combined X-ray and Infrared images (Chandra Telescope)
X-ray : NASA/CXC/U.Texas/S.Post et al.
Infrared : 2MASS/UMass/IPAC-Caltech/NASA/NSF

A supernova is the explosion of a star at the end of its life, resulting in a sudden
increase in its luminosity. Depending on the progenitor and the type of reaction
leading to the explosion, there are different categories of supernovas, one of which is
known as thermonuclear (or Type Ia) supernova. In this particular case, the system is
usually made of two massive stars, one of them being a white dwarf and the other
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probably a red giant. As the white dwarf has a stronger surface gravity, it progressively
accretes hydrogen and helium from the red giant, which is then heated to form carbon.
The white dwarf’s mass thus increases until it reaches a certain limit (called the
Chandrasekhar mass limit), at which point the electron degeneracy pressure is no
longer sufficient to maintain the star’s gravitational equilibrium, leading to its collapse
and explosion. Other type Ia supernova formation processes have been proposed,
notably systems involving the merging of two white dwarfs. Type Ia supernovas occur
in all types of galaxies, at a rate of 1 or 2 events per millennium, and their apparent
luminosity is several billion times higher than the Sun. The matter blown up after the
star’s explosion produces a remnant, generally in the form of a shell or nebula (see
figure 1.13).
The special feature of SNIa is their characteristic light curve, with a spectrum dominated
successively by elements between oxygen and calcium at the peak, then by nickel,
cobalt, and iron during the decay in brightness. Because we can consider SNIa as a
"standard candle", its luminosity and distance from the observer can be linked through
the following relation :

DL =
√

L
4πF (1.36)

with L the luminosity, F the total flux and DL the luminosity distance (defined in
1.4.1).
Several algorithms have been developed to model the properties of SNIa, SALT2
among others (Guy et al., 2007), which used spectro-photometric information from a
large dataset, including samples from SNLS. Given these parameters, one can develop
a distance estimator to perform cosmological estimations. Today, distances measured
from SNIa exhibit a ∼ 7% precision. The first estimation of w with an uncertainty
around 0.1 was made by Astier et al. (2006), where Ωm and w were measured, and
another notable one having been produced in 2018 by Scolnic et al. (2018), combining
Pan-STARRS and Pantheon SNIa for the cosmological parameters analysis.
A combination of several SNIa datasets using different redshift samples was made
by Betoule et al. (2014), making an intercalibration between the SDSS and SNLS
surveys.

However, the low-z samples currently available contain few SNIa and are subject
to significant instrumental calibration problems, in addition to the intercalibration
required to combine them. A new experiment named ZTF (Zwicky Transient Facility,
Bellm et al. (2019)), an optical time-domain survey with a 47 square-degree field of
view, has collected thousands of SNIa, allowing its catalogs to be used in the future
without the need for cross-calibration between several low-z surveys. Concerning
cosmology, SNIa observations at low redshift are needed to constrain dark energy,
since its effect is most visible in the recent universe. Furthermore, the constraining
power of the Hubble diagram primarily depends on its redshift lever arm.
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1.6.4 Weak Lensing

Figure 1.14: Two regimes of gravitational lensing (galaxy cluster SMACS 0723 from James
Webb Spatial Telescope)

Photons are always following the shorter path (geodesic) between two points in the
universe. If space-time is flat, this geodesic is straight, but when space-time is curved
in the presence of gravitational potential, the geodesic becomes also curved, following
the distortion. If an observer is looking at a source (usually a galaxy) located in the
background of a cluster that lies between them on the line of sight, the galaxy will
appear distorted from the observer’s point of view. This effect of background shapes’
observed distortion is called "gravitational lensing". A full chapter is dedicated to this
subject as it is the main topic of this thesis (see chapter 2).

Gravitational lensing can be divided into two categories : strong and weak lens-
ing (see figure 1.14). Strong lensing is usually caused by very massive structures as
galaxy clusters, where the mapping between the source plane and the image plane is
not one to one, and where one source can produce multiple images. On the other hand,
weak lensing has several regimes of its own that are described right after. They are
both investigated in cosmology to characterize the matter distribution in the universe,
and its evolution with expansion.

Different regimes of weak lensing

Depending on the nature of the lens, the term of weak lensing actually encompasses
several distinct measurements, where the distortion effect can vary in intensity:
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• Galaxy cluster lensing : Background galaxy shapes distortion by a foreground
galaxy cluster. Both strong and weak lensing can be observed in this regime.
The distortion effect can be up to 10%. Galaxy cluster lensing is a useful tool to
count the clusters and determine their mass, as it is sensitive to all the matter
(baryonic and dark matter).

• Galaxy galaxy lensing : Occurs when the background galaxy shapes are dis-
torted by an individual galaxy in the foreground. It can sometimes lead to strong
lensing, but not as often as the galaxy cluster lensing. The shear signal amplitude
depends on the angular distance. Just like cluster lensing, galaxy-galaxy lensing
is a suitable probe to understand quantities related to mass, such as mass density
profiles, mass-to-light ratios and galaxy mass evolution.

• Cosmic shear lensing : Corresponds to the coherent alignment of background
galaxy shapes by large-scale structures. The distortion is very subtle, from 0.1%
to 1% at redshift z ∼ 1. Because of its sensitivity to both matter and expansion,
the cosmic shear is a powerful tool to understand and constrain dark matter and
energy. It is the main focus of this thesis.

1.7 Combining probes : ΛCDM and beyond
Despite the very consistent cosmological constraints achieved using the ΛCDM model,
the nature of dark energy dynamics remains insufficiently examined. Furthermore,
some tensions have arisen within this model, notably the "H0 tension" (see section
1.3.2) and the "σ8 tension". If these tensions cannot be explained by systematic errors,
they will be the sign of new physics beyond ΛCDM.

We can mention two different cosmological models (among others) :

• wCDM : the dark energy is described by a constant equation of state but not
fixed at w = -1 (just like the cosmological constant in ΛCDM)

• w0 waCDM : the dark energy is described by the following equation of state :

w(a) = w0 + wa(1 − a)

with w0 corresponding to its current value and wa to its time dependence through
the scaling factor a. This is a purely phenomenological description aimed at
describing most of the dynamical dark energy models.

As some probes are complementary, it is interesting to combine them for higher-
precision cosmological estimates. This makes it possible to validate or invalidate a
model with greater significance.
Measuring BAO at different redshifts gives us information about the energy content
of the universe (ΩK , Ωm, ΩΛ...), and also the H0rd product. The CMB full spectrum
informs us about all the cosmological parameters (assuming a model), and we can
determine the angular scale of acoustic fluctuations (noted θ∗, directly linked to rd)
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through the position of its first peak. As SNIa are also sensitive to distances, and
thanks to their standard candle quality, they can be used to constrain the expansion
rate, and so the dark energy. With BAO, these are two quantities directly linked to
the geometry of the universe. Measuring rd with BAOs is equivalent to measuring
the SNe luminosity. Both are observed at different redshifts to measure cosmology
through the relationship between distance and cosmological parameters.

Regarding the Ωm and ΩK constraints measurement, combining BAO and CMB
breaks downlifts degeneracies present in each of the two probes (see figure 1.15). This
result - and all the following ones - is from the DESI (Dark Energy Spectroscopic
Instrument) first year of observations analysis (DESI Collaboration et al. (2024), named
D24 after).

Figure 1.15: 68% and 95% marginalized posterior constraints in the Ωm-ΩK plane from
DESI BAO (blue), CMB (orange) and DESI+CMB (green). Credits : Arnaud de Mattia

Concerning dark energy, we can test both wCDM and w0 waCDM models using
combinations of BAO, CMB and SNIa. For wCDM, the combination of all probes give
the following constraint on dark energy equation of state : w = -0.997 ± 0.025 (see
figure 1.16). Note that even if introducing a cosmological constant in the Einstein
equation (ΛCDM) and introducing a dark energy component with a constant equation
of state parameter w=-1 are mathematically equivalent, measuring w=-1 does not
imply that ΛCDM is valid.

When considering a time-varying equation of state for dark energy, the results become
more surprising. The combination of BAO, CMB and SNIa seem to favor solutions
with w0 > −1 and wa < 0 (see figure 1.17), and the tensions with ΛCDM remain at
∼2.5σ for BAO+CMB+PantheonPlus, and rises to ∼3.9σ for BAO+CMB+DESY5.
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However, even if these results suggest a deviation from ΛCDM, it is important to
examine all sources of possible systematic error that could bias the result. In particular,
low-redshift SNIa are important for better constraining dark energy. But Pantheon+
(Brout et al., 2022), Union3 (Rubin et al., 2023) and DESY5 (DES Collaboration et al.,
2024) share mostly the same (few) low-redshift events, whose instrumental calibration
is uncertain. A joint analysis of DESI’s BAO, CMB and high-z SNIa samples combined
with ZTF’s low-z SNIa could provide more robust constraints, as the latter are less
prone to calibration problems.

Figure 1.16: 68% and 95% constraints for Ωm and w in flat wCDM (D24).

Figure 1.17: 68% and 95% marginalized posterior constraints in the w0-wa plane for the
flat w0 waCDM model (D24).
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Finally, as cosmic shear is marginally sensitive to the universe’s geometry but
rather to the matter distribution, it is very convenient to constrain the matter-related
parameters Ωm and σ8. It is usually combined with Planck results which are sensitive
to all the cosmological parameters.
Here we will present cosmological constraints performed with cosmic shear with two
different surveys : The Dark Energy Survey (DES), a wide-area survey using the
Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile, and Hyper
Suprime-Cam (HSC), an extensive astronomical survey using the Subaru Telescope at
the Mauna Kea Observatory in Hawaii.

Figure 1.18: Cosmological constraints from HSC Y3 large-scale 3x2pt combined with HSC
Y3 small-scale 3x2pt (Miyatake et al., 2023), Planck 2018 (Planck Collaboration et al.,
2020), DES Y3 3x2pt (Amon et al., 2022) and KiDS 1000 (Heymans et al., 2021).

It is interesting to compare the results of DES and HSC first and third-year analyses.
The results of cosmological constraints on Ωm, S8 (defined as S8 ≡ σ8(Ωm/0.3)0.5

and usually better constrained than σ8) and w are given in Table 1.2. In both cases,
it is important to note that the observed area in Y3 was more than three times higher
than in Y1 (for instance, the observed area was 136.9 deg2 in HSC Y1 (Mandelbaum
et al., 2018) and 433.48 deg2 in Y3 (Li et al., 2022)). These results show that the
uncertainties associated to Ωm and S8 estimations are similar in Y1 and Y3 for both
analyses. As we would expect the uncertainty to decrease with

√
N , we can therefore

conclude that uncertainties are dominated by systematic effects (and not by statistics).
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Ωm (ΛCDM) S8 (ΛCDM) w (wCDM)

DES Y1 0.260+0.065
−0.037 0.782+0.027

−0.027 −0.95+0.33
−0.39

DES Y3 0.290+0.039
−0.063 0.759+0.023

−0.025 −0.98+0.32
−0.20

HSC Y1 0.332+0.050
−0.096 0.823+0.032

−0.028 /

HSC Y3 0.256+0.056
−0.044 0.769+0.031

−0.034 /

Table 1.2: Cosmological parameters estimations performed in DES Y1 (Troxel et al., 2018),
DES Y3 (Secco et al. (2022), Amon et al. (2022)), HSC Y1 (Hamana et al., 2020) and HSC
Y3 (Sugiyama et al., 2023) at 68% CI. The constraints on Ωm and S8 are done considering
fiducial ΛCDM model, while w is estimated for wCDM.

For the wCDM model (where w is allowed to vary), DES found w = −0.95+0.33
−0.39 in

Y1 and w = −0.98+0.32
−0.20 in Y3 (Abbott et al., 2022). The conclusion is the same as

above, the constraints on w and its uncertainty have not been significantly improved
between Y1 and Y3. The wCDM model was also tested in HSC Y1 analysis, but their
cosmic shear 2PCFs alone did not provide any useful constraints. Moreover, no dark
energy measurements were carried out in the Y3 analysis.
Figure 1.18 shows the constraints on Ωm, σ8 and S8 from the HSC Y3 results.
The prior on the shear bias (see section 3.3.3) is up to 1% in HSC Y1 and Y3, and a
bit more than 1% in DES Y1 and Y3.

Both DES and HSC suffer from shear calibration issues, including PSF modeling
(which represents the response of the imaging system to a point source, see section
3.2), and from photometric redshift uncertainties. Especially in HSC Y3, the two last
redshift bins are left free in the fit (using large priors for their uncertainty) because of
photometric redshift issues. The fitted central value measured from galaxies in those
bins is very different from the expected value, leading to a high uncertainty (∆z ∼ 0.1,
while it is more around 0.01 and 0.02 in DES). Even if calibrations using spectroscopic
redshifts were performed in both of these analyses, some systematics remain.

Even if cosmological constraints with cosmic shear are progressing, they still face
challenges and difficulties, which need to be controlled for next generation surveys
analyses.
Some goals are to be achieved to ensure better constraints with cosmic shear :

• To lower the bias on shear estimation from 1% to 0.1% by improving shape
measurement and calibration algorithms (section 4) and correct bias introduced
by the presence of shot noise in the images (section 6),

• Refine the accuracy of PSF models from 0.3% to 0.1% by taking more account
of physical effects in the PSF modeling (the PIFF package by Jarvis et al. (2021)
could be a solution),

• To achieve a better accuracy in photometric redshifts measurements (lower the
systematic uncertainty to 0.001) through more spectroscopic calibrations.
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1.7. Combining probes : ΛCDM and beyond

In the next two chapters, we will develop the gravitational lensing (and cosmic
shear) formalism, the challenges we face when measuring galaxy shapes, and all the
sources of bias affecting shear estimations.
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2. Gravitational lensing

2.1 Introduction
The first calculation of the deflection of a light ray by the attraction of a celestial body
was done in 1801 (and published in 1804) by Johann Georg von Soldner (Soldner,
1921).

Figure 2.1: Deflection of light rays passing close to a massive body (Johann Georg von
Soldner)

Only using the equivalence principle, Einstein calculated the same value as Soldner
in 1911. He revised however his calculation in 1915 while developing his theory of
general relativity, realizing he missed half of the correct value. The "gravitational lens"
denomination was also introduced by Einstein but in 1936, when he published his work
about light deflection.

Then, the first direct observation of light rays deflection was done a few years later
by Arthur Eddington. To test Einstein’s prediction of general relativity, he decided to
conduct an experiment during the eclipse of May 29th 1919 to observe the deflection
of starlight by the Sun. At the end of the experiment, he found that the observed
cluster (the Hyades cluster, made up of 300 to 400 stars) was offset by 1.75 arcseconds
from its usual position (Eddington, 1919), the value predicted by Einstein for light
rays grazing the surface of sun.
In 1924, Orest Khvolson published an article about gravitational lenses mentioning
the "halo effect" we can observe when the source and the lens are perfectly aligned
along the line of sight from an observer point of view (Chwolson, 1924). This effect is
now known as the Einstein ring.
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Figure 2.2: Photograph taken by Eddington during the 1919’s eclipse

Following Einstein’s work, and after the discovery that the observed "nebulae" were
actually galaxies, Fritz Zwicky was the first to consider the hypothesis that galaxies
could act as gravitational lenses, given their size and mass (Zwicky, 1937).

After another hypothesis formulated independently in 1963 by Klimov, Liebes and
Refsdal that quasars could be a great light source for gravitational lensing (Klimov
(1963), Liebes (1964), Refsdal (1964)), the first object detected thanks to the effect
of gravitational lensing was the "Twin QSO" in 1979. It is a quasar whose image is
doubled by the effect of the foreground galaxy YGKOW G1 gravitational potential
(see figure 2.3). The first observation of an object lensed by a galaxy cluster was
performed by Genevieve Soucail and her team at the Toulouse observatory in 1987
(Soucail et al., 1987). In the picture presented in their article, we can see a blue arc
near the Abell 370 cluster, reminiscent of a gravitational lensing effect (see figure 2.4).
This image represent what is known as a "strong lensing" effect, when the distortion
is visible to the naked eye. However, most of the gravitational lensing effects are
coherent, not visible (very faint) and require statistical detection, that is what we call
the "weak lensing" regime (more details are given in section 2.3).
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Figure 2.3: Twin quasar (two blue images) lensed by YGKOW G1 (yellow spot in the
middle), credit : ESA/Hubble & NASA

Figure 2.4: First lensing observation on a galaxy cluster (Abell 370)
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It will take until the 90s to observe the coherent alignment of background galax-
ies from the Deep CCD Field Surveys centered on foreground clusters, recognized as
the first weak lensing detection (Tyson, 1990). The existence of weak gravitational
shear by large-scale structures (by measuring coherent galaxy distortions) was demon-
strated in the 2000s (Bacon, Refregier, and Ellis (2000), Kaiser, Wilson, and Luppino
(2000), Van Waerbeke et al. (2000), Wittman et al. (2000)).
The weak lensing was more recently studied with several surveys such as KiDS (The
Kilo-Degree Survey, Hildebrandt et al. (2017)), DES (The Dark Energy Survey, Troxel
et al. (2018)) and Subaru (Hamana et al., 2020).

The study of weak lensing will take a new turn with the arrival of data from Euclid
and LSST, next-generation surveys ushering in the era of precision cosmology (more
details about LSST are given in section 3.3.1).

2.2 Light deflection by a gravitational field
In this section, we will describe how light rays behave passing through the gravitational
potential of massive bodies. The deflection of light can be described in many ways,
taking different approximations and assumptions. We will first develop the theory of
light deflection in a general way, then explain the linearization of these equations in
the case of weak lensing, and then finish with a description of cosmic shear.

2.2.1 The deflection angle
According to General Relativity, photons propagate along null geodesics in the universe.
In the perturbed Minkowski metric, the light ray travel time can be expressed as :

t = 1
c

∫
(1 − 2Φ

c2 )dr (2.1)

integrating along the light path in physical coordinates dr . The gravitational potential
Φ is negative because of its normalization chosen such as it vanishes at infinity.
Because a gravitational potential acts like a propagation medium (in the optical sense),
we can define its refraction index :

n = 1 − 2Φ
c2 (2.2)

We can now apply the Fermat’s principle which ensures that a light ray always takes
the path between two points where the optical path τ is minimal :

δτ = δ
∫ B

A

c
ndt = 0 (2.3)

Given these equations, integrating 2.1 along the light path directly leads to the
deflection angle :

α̂ = − 2
c2

∫
∇⊥Φdr (2.4)
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which is the gradient of the potential taken perpendicular to the light path. This is
twice the classical prediction in Newtonian dynamics because there are equal perturba-
tions in both temporal and spatial components in the perturbed Minkowski metric.
This deflection angle depends on the mass distribution of the lens and on the impact
parameter of the source.

Assuming that typical deflection angles are small (the order of the arc second or
less), we can use the Born approximation and take the integration path as a straight
line. Considering a light ray propagating along the z axis and passing a lens with a
mass M with an impact parameter ξ (see figure 2.5), we can integrate the deflection
angle :

α̂ = − 2
c2

∂

∂ξ

∫
dz GM√

ξ2 + z2 = 4GM
ξc2 (2.5)

Figure 2.5: Gravitational lens system from Bartelmann and Schneider (2001)

34

http://cdsads.u-strasbg.fr/abs/2001PhR...340..291B


2.2. Light deflection by a gravitational field

2.2.2 The lens equation
We may now wonder how to rely the true position of a source and its observed position
on the sky. The figure 2.5 shows a gravitational-lens system, where β is the angle
between the source and the optical axis, θ the angle between the optical axis and
the image, η the two-dimensional position of the source and ξ the impact parameter
of the lens. The source and lens plans are perpendicular to the line of sight which
connects the observer and the source.
We have :

DSβ = DSθ − DDSα̂ (2.6)
Note that this equation holds because DS and DDS are angular diameter distances
(defined in 1.4.1), which are defined in a way that the Euclidean intercept theorem
(also known as Thales theorem) remains true in a curved space-time.
We can introduce the reduced deflection angle :

α = DDS

DS
α̂ (2.7)

and then define the lens equation :

β = θ − α (2.8)

We can interpret this equation in the following manner : by satisfying the lens equation,
an observer will see a source with a true position β at angular position θ. If the
lens equation has more than one solution for a fixed β, the lens will produce several
observed images of the source. That last effect occurs in the case of "strong" lensing.

2.2.3 The lensing potential
We assume the thin lens approximation, so all the distances involved in the system
(DD, DS and DDS) are considered far greater than the thickness of the lens. This
assumption holds in real-life conditions : the size of a cluster is typically of the order
of Mpc, while the distances considered between an observer, a source and a lens are
of the order of Gpc.

According to equation 2.4, the reduced deflection angle can be rewritten as a gradient
of a 2D potential :

α = ∇⊥

[
2
c2

DDS

DS

∫
Φdz

]
(2.9)

taking a light ray that propagates parallel along the z axis and integrating over the
lens depth.
It is convenient to introduce quantities as functions of the angular position on the
celestial sphere to describe gravitational lensing, because one actually measures angles
on the sky.
We can replace ∇⊥ by ∇θ thanks to a change of variable :

∇⊥ = D−1
D ∇θ (2.10)
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In the small-angle approximation, the perpendicular separation from the line of sight
is DDθ.
We can then re-express the reduced deflection angle from equation 2.9 to :

α = ∇θΨ (2.11)

where Ψ is the lensing potential :

Ψ = 2
c2

DDS

DDDS

∫
Φdz (2.12)

Most of the imaging properties of gravitational lenses are contained in the lensing
potential.

While considering the cosmic shear regime, we are not anymore in the case of one
thin lens distorting the background galaxy shape. The lensing potential is now caused
by an ensemble of large-scale structures, equations 2.9 and 2.12 should be rewritten
as follows :

α = ∇⊥

[
2
c2

∫ DDS

DS
Φdz

]
(2.13)

Ψ = 2
c2

∫ DDS

DDDS
Φdz (2.14)

as we also integrate the distances over redshift.

The next section introduces in detail the weak lensing formalism, and we will then use
the deflection angle and the potential as defined in equations 2.13 and 2.14.

2.3 Weak lensing
2.3.1 Linearised approximation : the amplification matrix
We can locally linearise the lens mapping when the gravitational potential is weak, i.e.
Φ
c2 ≪ 1.
Given the lensing potential, the lens equation can be rewritten as follows :

β = θ − ∇θΨ (2.15)

and its Taylor expansion gives :
δβ ≃ Aδθ (2.16)

where A is the inverse amplification matrix, a Jacobian matrix that describes the
mapping between the lensed coordinates θ of the image and the unlensed coordinates
β of the source.

Aij = ∂βi

∂θi
= δij − ψij (2.17)

where the potential derivatives are taken at the center of the image.

ψij = ∂2Ψ

∂θi∂θj
(2.18)
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Figure 2.6: Shear and convergence effect on a lensed source.

The physical interpretation of the matrix A can be seen as the linear approximation
of the image distortion introduced by lensing. We can give another definition of A in
terms of the shear components and the convergence κ (an isotropic magnification of
the source) :

A =

1 − κ+ γ1 γ2

γ2 1 − κ− γ1

 (2.19)

where κ and the shear are defined as second derivatives of the potential Ψ :

κ = 1
2(ψ11 + ψ22) (2.20)

γ1 = 1
2(ψ11 − ψ22) (2.21)

γ2 = ψ12 (2.22)
The shear is more generally defined as :

γi = γe2iϕ (2.23)

with γ = γ1 + iγ2 and ϕ being the orientation of the galaxy major axis. An example
of γ1 and γ2 is given in figure 2.7. The distortion applied to an ellipse by the shear
is invariant by a rotation of 180° (or π), making the shear a spin 2 quantity. A
schematization of shear distortion and convergence is given in figure 2.6.

In the weak lensing limit, and especially considering lensing by large-scale struc-
tures (cosmic shear), the distortion applied in images is very weak, and we consider
that we can factor out (1 − κ), as it only affects the size of the source but not the
shape. We can then define another convention for the shear, called the reduced shear :

g = γ

1 − κ
(2.24)

which has the same distortion properties as γ.

37
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The shear is an interesting quantity because it is statistically observable: on av-
erage, galaxies are circular, unless some distortion elongates them locally in a coherent
way. All shear indicators rely on some measure of the apparent galaxy ellipticity. On
the other hand, convergence alters apparent brightness and size, and is in general not
measurable, in particular in the weak lensing regime, because unlensed observables are
unknown. However, convergence and shear fields are related and we now detail the
relation between convergence field and lenses.

Figure 2.7: Ellipticity distortion as a function of γ1 and γ2. Source : Martin Kilbinger
(Kilbinger, 2015)

2.3.2 Convergence
The distortion of light rays due to weak lensing can be expressed through the conver-
gence κ. We can define κ through the divergence of the reduced deflection angle:

κ = 1
2∇θα (2.25)

It is also related to the lensing potential through equation 2.20. Invoking Poisson’s
equation :

∇θ
2ψ = 4πGa2ρδ (2.26)

where δ represents the dimensionless density contrast, which describes local relative
density variations.
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We can calculate the Laplacian of ψ :

∇θα = ∇2
θψ = 2

c2

∫
a2δ

DDDDS

DS
∇⊥ΦdDS

= 8πG
c2

∫ DDDDS

DS
ρdDS

(2.27)

that leads naturally to the convergence :

κ = 4πG
c2

∫
a2δ

DDDDS

DS
ρdDS (2.28)

Note that ρ is not the entire mass density, but its fluctuation around its cosmological
mean value ρ (identical to the critical density 1.32 in case of a flat universe). We
can describe the relation between these two quantities and the density contrast :
ρ = ρ(δ + 1). We can define ρ in terms of the cosmological parameters :

ρ = 3H2
0

8πG
Ωma−3

= ρ0a−3
(2.29)

By inserting 2.29 into the definition of the convergence, we can re-express κ as follows:

κ(z) = 3
2

(
H0

c

)2

Ωm

∫ δ

a
DDDDS

DS
dDS (2.30)

The relation between convergence and density contrast is essential for understanding
structure evolution. In order to get the mean convergence of multiple sources, we
have to average the equation 2.30 over the source galaxy distribution n(z) :

K =
∫ zlim

0
n(z)κ(z)dz (2.31)

where n(z) is obtained with photometric redshifts and zlim is the limiting redshift of
the galaxy sample. It is worth noting that ∫ n(z)dz = 1.

By going into Fourier space, and using the equations 2.20, 2.21 and 2.22, it is
possible to link the shear and convergence statistics :

γ̃1(ℓ) = ℓ2
1 − ℓ2

2
ℓ2 κ̃(ℓ) (2.32)

γ̃2(ℓ) = 2ℓ1ℓ2

ℓ2 κ̃(ℓ) (2.33)

which leads to :
γ̃1

2(ℓ) + γ̃2
2(ℓ) = κ̃2(ℓ) (2.34)

This equation shows the relation between shear and convergence power spectra, which
is essential to link the lensing effect to the cosmological parameters (see section 2.3.4).
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2.3.3 Power spectrum and correlation function
The two-point correlation function (2PCF) of the convergence is given by :

⟨κ(ζ)κ(ζ + θ)⟩ (2.35)

where ζ is the angular position.
Assuming that the convergence complies to the homogeneity and isotropy principles,
the 2PCF is considered invariant under translation and rotation. In Fourier space, the
2PCF is linked to the convergence power spectrum Pκ with :

⟨κ̃(ℓ)κ̃∗(ℓ′) = (2π)2δD(ℓ− ℓ′)Pκ(ℓ) (2.36)

with δD the Dirac delta function and ℓ the 2D wave vector (Fourier conjugate of θ).
The density power spectrum Pδ is given by the square of equation 2.30 in Fourier
space. We can then write Pκ in terms of Pδ :

Pκ(ℓ) = 9
4Ω

2
m

(
H0

c

)4 ∫ zlim

0

q2(z)
a2(z)Pδ (ℓ, z) dz (2.37)

where q is the lensing efficiency function :

q(z) =
∫ zlim

z
n(zD)DD − DS

DD
dzD (2.38)

where zD means that we look at redshifts between the observer and the lens.

We can decompose the shear field into a gradient part (E-mode) and a curl part
(B-mode). At first order, gravitational lensing is only inducing E-mode power, and
detecting B-modes or mixes of E and B-modes is a sign of systematics (note that not
all systematics cause B-modes). These B-modes can be caused by several sources :
higher order terms in relation between shear and reduced shear or shape estimator
(Krause and Hirata, 2010), selection bias (Wyithe, Winn, and Rusin, 2003), intrinsic
alignment (Crittenden et al., 2002) or PSF correction residuals. The last three effects
are described in more details in section 3.3.3.

In order to understand correlations between two sources affected by the same lens,
we need to define the shear two-point correlation function. This quantity gives the
average shear effect between two points as a function of the angular distance between
those two points. It is directly related to the convergence power spectrum through
the integral :

ξ±(θ) = 1
2π

∫
dℓℓJ0/4(ℓθ)Pκ(ℓ) (2.39)

where Jn is the n-th order Bessel function of the first kind.

We saw earlier that the shear is a two component quantity (see equations 2.21 and
2.22), and it is convenient to define them into a tangential and a cross component:
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2.3. Weak lensing

γt = −ℜ(γe−2iϕ)
= −γ1

(2.40)

γ× = −ℑ(γe−2iϕ)
= −γ2

(2.41)

where ϕ represents the resulting elliptical image’s major axis orientation, and the
second equality in each equation represents the special case where ϕ = 0. The
cross-component is obtained by a rotation of +π/4 with respect to the tangential
component.
We can then define three two-point correlators from these new shear components :
⟨γtγt⟩, ⟨γ×γ×⟩ and ⟨γtγ×⟩. Because of the assumption of a parity-symmetric universe,
the shear field is statistically invariant under a mirror transformation, therefore the
⟨γtγ×⟩ term vanishes. Measuring ⟨γtγ×⟩ not consistent with zero is a sign of system-
atic errors.

The two components of the shear 2PCF are defined as :

ξ+(θ) = ⟨γtγt⟩(θ) + ⟨γ×γ×⟩(θ) (2.42)

ξ−(θ) = ⟨γtγt⟩(θ) − ⟨γ×γ×⟩(θ) (2.43)
The shear 2PCF can be estimated using galaxy ellipticities, and is linked to cosmology
through its relation with the convergence power spectrum (see equation 2.39).

2.3.4 Relation between cosmic shear and cosmological
parameters

The shear two-point correlation functions are sensitive to the cosmological parameters
through their relation to the convergence. We see that the distances and the universe’s
matter content are linked in equation 2.28. Because the density contrast δ allows to
describe the matter density fluctuations and their evolution with redshift, it can be
used to predict the rate of structure evolution in general relativity.
Therefore, the relation between the universe’s geometry and its content predicted by
general relativity can be tested using the cosmic shear dual sensitivity to both distance
and matter distribution.
To constrain dark energy through cosmic shear, we need to study the evolution of
observables with redshift. Hence, we need to perform tomographic analyses by mea-
suring the cosmic shear 2PCF at different photometric redshift bins.

Figure 2.8 shows the shear 2PCFs of HSC Y3 shear analysis (Li et al., 2023), where
all the redshift bins’ auto and cross-correlations are included. The cross-correlations
provide information because the distortions applied to the ellipticities of galaxies
located at different z on the line of sight are correlated by the matter located between
the nearest galaxy and us.
We see that these 2PCFs values increase with the redshift, which is expected because
the lensing effect is higher when photons travel through more matter. Small angular
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2. Gravitational lensing

scales are removed because of strong non-linearities in the density contrast evolution,
and the large scales are also removed because significant B-modes were found in ξ±.

Figure 2.8: Shear two-point correlation functions (blue dots) and their best-fit model (black
solid lines) in HSC Y3 analysis, multiplied by the angular separation θ (in arcmin). The θξ+
are displayed in lower left half, and θξ− in upper right half. Auto and cross-correlations are
represented for the four redshift bins (labeled 1-4 on each figure’s upper left corner).

As we are measuring the effect of cosmic shear on background galaxy ellipticities,
it is therefore important to understand their nature and characteristics. The next
chapter is focused on the challenges of shape and shear measurement, and its first
section gives a summarized overview of galaxy properties.
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3. Challenges of shape measurement

3.1 Galaxies

3.1.1 Introduction

A galaxy is a cosmic gravitational system composed of stars, gaz, interstellar dust and
dark matter for the most part. Most of the time, its content revolves around a central
supermassive black hole, the first one directly observed being M87* at the center of
Messier 87 in 2019 (Event Horizon Telescope Collaboration et al., 2019). Then the
supermassive black hole Sagittarius A*, located in the center of our galaxy, the Milky
Way, was observed in 2022 (Akiyama and Event Horizon Telescope Collaboration
(2022), see figure 3.1). This black hole (at least the center of the galaxy, always
more massive than the periphery) represents its center of rotation and sometimes of
symmetry, especially for elliptical galaxies that can be described using isophotes (more
details in section 3.1.3).

Through the effect of gravitation, galaxies can gather in larger structures such as
groups, clusters or superclusters.

Figure 3.1: Supermassive black holes : M87* and Sagittarius A* (Source : ESO).

The first mention of galaxy-like objects was originally formulated by Emmanuel
Kant in 1755 suggesting that nebulae were rotating systems, flattened by gravity and
creating stars. The first observations of galaxies as stellar systems date back to 1914
(Slipher, 1914), but their discovery is generally attributed to Edwin Hubble, thanks to
images taken by the Hooker telescope in the 1920s. He demonstrated that nebulae
previously observed by other telescopes were not in fact objects belonging to the Milky
Way, but are systems located outside of it. He went on to describe their three main
morphological types (see section 3.1.3).
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3.1.2 Properties
3.1.2.a Ellipticity

From an observer’s point of view, the assessment of a galaxy’s degree of roundness
(or sphericity) is what we call its ellipticity. We assume these observed shapes to be
randomly distributed in the Universe, as nothing indicates that galaxies should have a
preferred ellipticity nor orientation. This is actually not exactly true : when galaxies
evolve in the same gravitational environment, it creates a spatial correlation in their
orientation and therefore a correlation in their shape. This effect, inherent in galaxies’
formation and evolution, is called intrinsic alignment. It only correlates galaxies at
small scales, both on the sky and in redshift.

3.1.2.b Color and magnitude

The colors of a galaxy are mainly due to the type of stars it contains. We can also
define the absolute magnitude, which represents the intrinsic luminosity of a celestial
object. A diagram showing the relation between galaxies’ color and luminosity using
the DR7 catalog of the Sloan Digital Sky Survey (SDSS) is given in figure 3.2. Such
a diagram provides information on the distribution of galaxies according to their mass
or age (Gavazzi et al., 2010). The more luminous a galaxy, the greater its mass, and
the redder the older. More generally, the magnitude and color of galaxies depend on
their stage of evolution, and obviously on their redshifts.

Figure 3.2: Color (from bluer to redder) versus absolute magnitude (from fainter to brighter)
relation of all galaxies in the Coma Supercluster coded according to Hubble type : red =
early-type galaxies, blue = disk galaxies, green = bulge galaxies.

45

http://cdsads.u-strasbg.fr/abs/2010A&A...517A..73G


3. Challenges of shape measurement

3.1.2.c Rotation

On the basis of Newtonian mechanics and Keplerian dynamics, we can expect the
mean orbital velocity of an object located at a given distance from the majority of mass
distributions to decrease in inverse proportion to the square root of the orbit radius.
This is also what was expected for the rotation of a galaxy’s arms around its center.
However, observations done at the end of the 1970s using the 21cm hydrogen-line,
among others Morton S. Roberts (Roberts, 1966) and Vera C. Rubin (Rubin, 1983),
have produced different and somewhat surprising results. Instead of decreasing as
a function of the inverse square root of the distance from the center, the rotation
curves shows that the velocity is almost constant as a function of radius (see figure
3.3). These results supported Zwicky’s initial hypothesis about the presence of "extra
mass" in galaxies (Zwicky, 1933), now known as dark matter (see section 1.5).

Figure 3.3: Galaxy (Milky Way) rotation curve

3.1.3 Classification
As introduced in section 3.1.1, Hubble proposed in 1926 a classification of galaxies
into three main categories: elliptical (E), spiral (crossed SB or not S) and irregular
(Hubble, 1926). A revised version of this classification was established in 1959 by
Gérard de Vaucouleurs taking into account more subtle characteristics, and introducing
intermediate galaxy categories (such as lenticular galaxies). The figure 3.4 shows this
classification.
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Figure 3.4: Hubble - de Vaucouleurs galaxy classification

In general, the different types of galaxies present in this classification correspond to
precise characteristics and stages of development :

• Elliptical : contain a rather old population of stars and very little gas or dust.
They usually correspond to the redder and the older galaxies.

Elliptical galaxies’ are characterized by three axes (see figure 3.5), and their
shape can be described using the ratios of their lengths : let us call Lx the length
of an axis (with x = l ,i or s for long, intermediate and short respectively), the
shape is oblate if Ll = Li < Ls , prolate if Ll = Li > Ls and triaxial if Ll ̸= Li
≠ Ls . In this last case, the observed isophotes (lines connecting points of the
same luminous intensity) can appear rotated from their true orientation. This
effect is called "isophote twisting" (see figure 3.5). But in practice, it is not
possible to distinguish if we observe a true or a twisted luminosity profile.

Figure 3.5: Left : Three axis characterizing shapes of elliptical galaxies.
Right : Isophote twisting seen by an observer, in case of triaxial galaxy.
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• Spiral : contain large quantities of gas and dust concentrated in their disc. The
older stars are located in the bulge, whereas the younger are in the arms. The
size of the bulge and the degree of arm curl decreases from type Sa to type Sc.
In barred spiral galaxies, the core is crossed by a bar of stars, at the ends of
which the spiral arms begin. They are commonly younger than elliptical galaxies.
Considering their luminosity profile, even if the bulge often has homothetic
isophotes, it is very less common for the disk, making them hard to model (see
figure 3.6).

Figure 3.6: Isophotal map of spiral galaxy MRK 33 (Cairós et al., 2003)

• Irregular : generally refers to galaxies with an ill-defined shape.

• Lenticular : galaxies with a very large central bulge and a flattened disk with
no spiral arms, and generally with no gas and dust.

As we saw in this section, galaxies have a vast zoology of properties which can make
their modeling very complex. They can be used as shear indicators, but it is prudent
not to make any assumptions about their shape, both because their light distributions
are complex, and because they evolve with redshift. We will see later in section 4.1 how
the shear measurement can be quickly limited by using a model-dependant estimator.
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3.2 Point Spread Function

3.2.1 Introduction
The Point Spread Function (PSF) is defined as the instrumental response of an imaging
system to a point source. In astronomy, when taking images from a ground-based
detector, the PSF is a combination of the system response and the atmospheric
turbulence, the latter being the most important contribution, especially for large
telescopes, even based on sites with good optical conditions.
The effect of PSF is mainly to blur the "above-atmosphere" image of a source, and
the resulting image we have on a detector is the convolution of this above-atmosphere
image with the PSF. For a star, the expected shape is a point, but the resulting shape
in an image is a spot due to the spreading effect of the PSF. The angular size of stars
(typically their full width at half maximum) is the most common measure of image
quality. A visual representation of the PSF impact on a source image is shown in
figure 3.7.

Figure 3.7: Effect of the PSF on an image taken by an optical imaging system.

For astrophysical and cosmological studies, it is important to be able to measure
the PSF profile affecting the images. Especially for weak lensing, a PSF model is
needed for all source galaxies on which the shear distortions are measured. However,
because we don’t know the intrinsic luminosity profile of galaxies (and also because
they are extended on the images), we can’t measure the PSF effect directly from
their shapes. We therefore use the stars present in the field, because measuring their
shapes directly leads to the PSF profile (since stars are point sources in practice). If
there is a sufficient number density of stellar images, it is possible to describe the PSF
variations across the field by a slowly-varying function (as it can vary across the field
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of view). Today, the PSF profiles measured from stars are fairly well reconstructed,
with resolution generally below the pixel size, even at the lowest stellar density found
at high galactic latitudes.

Another important point to note is that PSF also depends on wavelength ("chromatic-
ity"). As it is modeled from stars measured on broadband images, the model reflects
the average Spectral Energy Distribution (SED) of the stars. However, the SEDs of
stars and galaxies are different, so considering that the PSF measured from stars is
the same over a galaxy introduces a color bias. Moreover, the galaxies SED also varies
spatially, since their shapes can seriously differ from one filter to another.
For long exposures ground-based PSFs, the wavelength dependence leads to a seeing
disc (i.e. PSF size) of : αseeing ∝ λ−1/5 (Roddier, 1981). This implies that the seeing
size decreases with higher (redder) wavelengths. On the other hand, for space-based
instruments, the optical system is responsible for most of the PSF size, and they are
commonly described as "diffraction-limited". As a consequence, the PSF chromaticity
is considerably stronger in space than on the ground (and they have opposite trends).
The seeing disk follows a D/λ dependence (Airy disk), with D the aperture diameter
of the telescope.

3.2.2 Atmospheric turbulence
The broadening of shapes in images due to atmospheric turbulence is called seeing.
It is an indicator of the quality of sky visibility, and therefore of image quality. The
common measure of image quality corresponds to the full width at half maximum of
the measured PSF. This effect comes from the variation of the refractive index of
the optical medium in the path of light rays between an astrophysical source and the
ground detector when two parts of air have different temperatures or humidity. It has
multiple effects on images :

• Oscillation : When large amplitude turbulence creates shifts of the object
diffraction pattern.

• Speckle : Occurs in case of high energy turbulence, usually at high altitudes,
and looks like multiple bulbs of light separated by dark interstices. Because it
is very quickly varying, the effect we observe is the averaged speckle distortion
over the entire exposure time.

• Seeing disc : Result of multiple speckle patterns superposition when taking a
long exposure image.

• Flashing : Corresponds to a sudden loss of image definition and details, defocus,
and a brightening in the surrounding diffusion pattern (happens only in very
poor seeing conditions).

A visual representation of these effects is available in figure 3.8.
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The larger the telescope aperture, the more sensitive it will be and affected by
atmospheric turbulence, as it is schematized in figure 3.9.

Figure 3.8: Effect of seeing on a star image (credits : Bruce MacEvoy)

Figure 3.9: Effect of atmospheric turbulence on source light wavefronts
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In summary, atmospheric turbulence has a number of effects on images, including
spreading and smearing of shapes caused by seeing (highest atmospheric layers), and
the lower layers causing displacement of objects. The effects depend on the observation
site, weather conditions, image acquisition time and telescope aperture.

3.2.3 Instrumental effects and anisotropy
Due to imperfections of optical systems, including guiding errors, the PSF can be
anisotropic. This can lead to a PSF ellipticity from 1% to 10%, or more. As it can
change with time, depending on the telescope temperature, focus and guiding, it is
therefore important to process each exposure separately. Moreover, as we have seen in
the previous section 3.2.1, some variations and spatial discontinuities may arise from
instrumental effects (like differences in piston between sensors), so it is sometimes
necessary to process each CCD independently.
One possible way to correct the PSF anisotropy is to convolve the image with a
"circularizing" kernel that contains ellipticity components to compensate for the ones
of the PSF and make it round and isotropic. This has the drawback of degrading the
image quality and correlating neighboring pixels.

3.3 Shear measurement and bias
3.3.1 Vera Rubin Observatory : Legacy Survey of Space and

Time
The Vera Rubin Observatory (previously named Large Synoptic Survey Telescope,
called LSST after) is an optical telescope based on the El Peñón peak of the Cerro
Pachónin mountain in northern Chile. It is named after Vera Rubin, an American
astronomer known for her work on the galaxy rotation problem and the discovery of
dark matter.
The telescope is a Paul Baker type with three mirrors curved and asphericals to limit
optical aberrations (see figure 3.10 left) :

• Primary mirror : 8.4 meter
• Secondary mirror : 3.4 meter
• Tertiary mirror : 5 meter

The camera also holds three lenses, the layout of which is detailed in figure 3.10 right.
With its large field of view of 40 time the apparent surface of the Moon (see figure
3.11), the telescope can image the full southern sky (i.e. 18 000 squared degrees) in
3-4 nights (Jee and Tyson, 2011). During a decade, it will take images every night
in six different optical filters (ugrizy, covering 330 to 1080 nm wavelengths) using a
3200 megapixels camera with a spatial resolution of 0.2 arcsec/pixel.
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Figure 3.10: Vera Rubin Observatory optical design

Figure 3.11: Vera Rubin Observatory field of view

The scientific goals of LSST cover fields ranging from astrophysics to cosmology and
planetary physics, including :

• Mapping the Milky Way, in particular measuring parallaxes beyond the faint
Gaia limit

• Detecting and tracking asteroids in the Kuiper belt, and other small objects in
the solar system
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• Detecting transient astronomical events including supernovae, gamma-ray bursts,
quasar variability and gravitational lensing

• Studying dark matter and dark energy by observing strong and weak gravitational
lensing, baryon acoustic oscillations, and type Ia supernovae

Figure 3.12: LSST image simulation (source : lsst.org)

At the end of the 10-year survey, it is expected that LSST will have observed around
20 billion galaxies. Through its optical design and sensitive camera, it is one of the
first ground-based surveys designed to observe weak lensing. With such statistics,
LSST is one of the surveys bringing observations into the era of precision cosmology.
Figure 3.12 represents an image simulation where three frames with different filters
were combined. This image corresponds to 13x13 arc minutes of sky, which represents
2.6 parts per million of LSST’s ultimate sky coverage (20,000 square degrees).
The expected effective number density of galaxies that can be used for weak lensing
analysis (neff , see section 3.3.2) is around 37 per square arcminute before considering
blending and masking, and drops at ∼ 26 after (Chang et al. (2013), C13). For
comparison, neff is ∼5 in SDSS, and ∼5.6 in DES.

As we can see on the year-10 forecast (see figure 3.13), the most sensitive probe to con-
strain dark energy is the weak lensing, the 3x2pt analysis representing a tomographic
analysis of shear-shear, galaxy-shear and galaxy-galaxy correlations.
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Figure 3.13: LSST forecast for dark energy constraints at Y10 (source : arxiv:1809.01669)

3.3.2 Effective number of galaxies and shear noise
In C13, neff is related to the average shear noise through the equation :

σ̂2
γ = σ2

SN
neff

(3.1)

where the shear noise for each galaxy is defined as :

σ2
γ,i = σ2

SN + σ2
m,i (3.2)

with σSN the shape noise (i.e. the width of the source ellipticity distribution in the
absence of shear), and σm the measurement noise. We can also rely neff and the sky
coverage Ω :

neff = 1
Ω

N∑
i

σ2
SN

σ2
SN + σ2

m,i
(3.3)
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where N is the total number of galaxies used in the weak lensing analysis. For
next-generation surveys, and with an optimal shear measurement method, the shear
dispersion is dominated by the shape noise, according to C13 and Heymans et al.
(2012) (H12). The shear dispersion σγ,i in LSST is expected to be around 0.26
according to C13 (taking σ2

γ,i = σ2
SN), and around 0.275 according to H12 (taking

σ2
γ,i = σ2

SN + σ2
m,i). Setting a cut at SNR = 20 in LSST ensures a small contribution

of the measurement noise in shear analysis.

3.3.3 Shear bias
The cosmic shear measurement is very complex since we try to estimate a very faint
and subtle signal. There are many possible sources of bias that can lead to systematic
errors :

• A poorly calibrated shear estimator
• Atmospheric turbulence (see section 3.2.2)
• Instrumental effects (see section 3.2.3)
• Astrometry
• Finite sampling of images
• Noise
• Selection bias

The usual parametrization used to describe the bias between the observed and true
ellipticity can be expressed as follows (Huterer et al., 2006) :

gobs = (1 + m)g true + c (3.4)

with gobs the observed shear of a source, g true its true shape, m the multiplicative bias
and c the additive bias. The multiplicative bias generally depends on unaccounted-for
galaxy properties and a poor shear calibration, whereas the additive bias results from
measurement bias, especially an insufficient PSF anisotropy correction, which induces
a preferential orientation in the image plane.
Because the expected shear correlation functions depend on cosmological parameters,
a bias on the shear measurement introduces a bias on the cosmological parameters
estimation. Considering LSST statistics, an upper bound for these biases is set :
according to Cropper et al. (2013), the limits we need to achieve on m and c are
respectively 1.5 × 10−3 and 1.3 × 10−4.

Impact of PSF on shear measurement

Since the PSF affects the observed shapes of sources in images, it is crucial to
take it into account when performing shear estimations. The impact of seeing is to
make shapes "rounder", especially for the smallest objects, which dilutes the shear
signal and makes it even harder to detect, given that the effect of cosmic shear on
galaxy shapes only accounts for a few percent of the intrinsic ellipticity. The larger a
source is in the image, the less it is affected by PSF.
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We also saw earlier that the wavelength dependency of PSF can create a color
bias when measuring galaxy shapes. Because the weak lensing signature is achromatic,
its spectral and spatial dependency through the galaxies’ SEDs can introduce a bias in
shear higher-order terms, which is called color gradient bias. In practice, this is small
for ground-based surveys and can be addressed via image simulations.

By assuming that the galaxies’ intrinsic ellipticities are randomly oriented, the cosmic
shear should be the only remaining effect in average shape distortion, considering an
isotropic PSF. However the measured ellipticity evolves linearly with the PSF anisotropy.
The convolution of the image with the PSF in itself introduces a multiplicative bias in
the shear estimation, and a poorly corrected anisotropy can lead to an additive bias in
the sources’ ellipticity, leading to a spurious weak lensing signal. We therefore need a
robust method to determine the PSF profile, and a good correction of the anisotropy.

Astrometry

When repeatedly imaging the same area of the sky, using a common source po-
sition for all images can reduce shear measurement biases, especially for low SNR
sources. This is particularly important for surveys like LSST with short exposure times
(15 sec). Averaging positions over multiple images requires precise mappings between
image coordinate systems. Accurate position estimations are crucial, because if they
are affected by some bias, it can also bias flux or shape measurements, leading to
spatially correlated errors impacting cosmic shear studies.

Atmospheric turbulence significantly contributes to astrometric uncertainty, creat-
ing anisotropic spatial correlations that vary between exposures. When galaxy shape
measurements are performed on co-added images, astrometric residuals affect the
measured shapes and the PSF in a correlated way. Even if the atmosphere distortion
decrease with the inverse square root of the exposure time, it still leaves a spatial
imprint correlated with air displacements, creating a spurious shear signal measured
in the direction of the distortion. In Léget et al. (2021), the shear offset ∂γ in the
astrometric residual direction is defined as :

∂γ ≃ 1
4

(
dx
σg

)2

with dx the position shift and σg the rms angular size of the galaxy. For short
exposures similar to LSST, they found that the astrometrical residuals can lead to a
shear correlation bias as large as the shear signal. In this same article, a correction to
observed astrometric residuals was investigated by using Gaussian process interpolation
with a correlation function (von Karman kernel). This procedure reduces the residuals’
covariances by about one order of magnitude at small angular separations, which
becomes acceptable.
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Selection bias

Selection bias can be summarized as a set of steps that can introduce systematic
errors, from object detection to classification in samples and catalogs.
A bias can be introduced in shear measurement when objects shape matter for entering
the source sample, meaning that some shear values are preferred. This effect can be
related to image pixelization, because the ellipticity estimation is more sensitive to
rotations rather than elongations along the pixels’ directions, according to Pujol et al.
(2020). Furthermore, the PSF can also impact the detection, depending on its own
ellipticity and the objects’ orientations. Some configurations favor or disfavor galaxy
selection. A method to calibrate this bias was developed by Sheldon et al. (2020), and
is called Metadetection.
To get a confident and scientifically robust galaxy catalog, we must apply some cuts
on the detected samples. These cuts can be applied to several properties, such as
the size of the galaxies and the signal-to-noise (SNR) ratio. Some objects can pass
under the SNR threshold because of their orientation. Because these properties can
be directly affected by the shear, they introduce a bias in its estimation.

Model and noise bias

The model chosen to measure the galaxy shapes can also lead to a shear measurement
bias, especially for galaxy-profile-dependent algorithms and the associated assumptions.
The noise present in images is also a factor of multiplicative bias, since it makes the
galaxy shapes apparently more elliptical due to centroid bias. This bias is also critical
for tomographic shear analysis as it increases when the SNR decreases. Because the
redshift is related to SNR (the farther a galaxy, the lower its surface brightness, and
the lower its SNR), a poor noise bias correction causes a redshift-dependent bias
of the shear signal, which can dramatically bias the dark energy equation of state
measurement. These two points are the central questions of this thesis. We propose a
new approach for shape measurement and calibration independent of the galaxy profile
in section 4, and an analytical solution to the noise bias in section 6.
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4.1 A history of previous shear estimation methods

Figure 4.1: Progressive galaxy or star image degradation between space and detector
(credits : pictures are from Bridle et al. (2009)).

Estimating shear in images has been a challenge for cosmologists since the 90s,
the first crucial step being shape measurement. The first step is to find an observable
that acts as a shear indicator. We saw in the last chapter that cosmic shear is acting
like a coordinate system distortion, and that it requires a statistical detection to be
observed. As we are measuring cosmic shear on galaxies, we can use their shapes as
an indicator. Moreover, we saw that galaxy ellipticities are supposed to be randomly
distributed, meaning that the only remaining effect visible on galaxy shapes distortion
after averaging is cosmic shear. For this reason, galaxy ellipticity is commonly used
as a shear indicator. Concerning its measurement procedure, two main approaches
have been explored over the years : model fitting and moment-based methods (both
detailed right after).

However, as we can see on figure 4.1, the resulting image we get from the de-
tector is subject to many effects that will add spurious signal to the galaxy shape.
So in the end, the final shape distortion after averaging is not due to the shear only
anymore, but to its combination with atmosphere dilution, PSF anisotropy, pixelisa-
tion and pixel noise. If not corrected, these different contributions will increase the
multiplicative and additive factors in the shear bias (see section 3.3.3).

Consequently, a calibration step is required to transform a shear indicator into an
estimator. We can divide the calibration into two main issues : shape-to-shear calibra-
tion, and noise bias correction. A full chapter is dedicated to the noise bias and its
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correction. About shape-to-shear calibration, the common issues to all the estimators
are PSF dilution and anisotropy. We will detail later how model fitting suffers also from
model bias, and how moment-based methods can be affected by a poorly calibrated
weight function. Even today, none of the shear estimation methods proposed over the
past 30 years has achieved consensus.

In this chapter, we will first review the historical methods of shape measurement and
calibration, then detail the shear measurement algorithm developed as part of this
thesis and the technical aspects that accompany it.

4.1.1 Model fitting

Figure 4.2: Shape measurement using model fitting

A widely used approach to determining the light distribution of galaxies is model
fitting, which involves defining parametric models of galaxy shape and then fitting
the convolution of the galaxy model and the known PSF to observed data using
frequentist (maximum likelihood estimation, MLE) or Bayesian methods. Using MLE,
a common model is fitted on each image, while each exposure is fitted independently
and posterior probability distributions are combined in the Bayesian one. A comparison
between frequentist or Bayesian approaches was done by Miller et al. (2007).

However, model fitting is subject to serious limitations, starting with model bias.
Indeed, too simplistic or inaccurate models can lead to a bias in the shear estimation
(Bernstein, 2010). The main issue is that the number of parameters to fit increases
quickly with the complexity of the chosen model. For a basic elliptical profile, there are
already six or seven parameters to fit (three for describing the shape through second
moments, two for the position, one for the flux and possibly one to describe the radial
profile), and there is generally not enough information in the images (especially for
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undersampled ones) to perform the fit.
Moreover, the PSF convolved with the image breaks the galaxy profile’s symmetries
(Lewis, 2009), leading for example to a re-weighting of elliptical isophotes after the
convolution. This means that even if we correctly know the PSF profile, we must
have a very accurate galaxy model to avoid bias. A detailed review of model fitting
limitation was published by Voigt and Bridle (2010).

4.1.2 Moments based methods
Another shape estimation method consists in measuring the light distribution second
moments of the image. These (weighted) seconds moments lead directly to the
ellipticity. The introduction of a weight function is mandatory due to the presence of
divergent noise in un-weighted moments. The first method that laid the groundwork
of shear estimations with a moment-based algorithm was proposed by Kaiser, Squires,
and Broadhurst (1995) (KSB), where the quadrupole moments are defined as follows :

Qij =
∫

d2θW (θ)θiθj f (θ) (4.1)

where f (θ) denotes the surface brightness of the object, and angles are measured
relative to the object’s position. The weight function W (θ) is chosen to be Gaussian,
with a scale length proportional to the one of the object. The ellipticity can be then
determined :

e =

(Q11 − Q22)/T

2Q12/T

 (4.2)

with T = Q11 + Q22.
One has to rely on some estimation of the centroid (as for all moments-based methods),
and this estimation impacts the estimator’s performance. The centroid can suffer from
bias caused by the PSF (described in section 4.1.3), and is affected by noise, which
biases the ellipticity (6). We will see in the next section how the PSF correction plays
a key role in the shape measurement.
Also, the choice of the weight function size is important to minimize the noise in
ellipticity measurement. More details on the choice of weight function are given in
section 4.2.1 and appendix B.

Another method using adaptive moments was introduced firstly by Bernstein and
Jarvis (2002) (BJ02), then by Hirata and Seljak (2003), where the weight function is
defined as a Gaussian :

W (x) = exp
(

−1
2(x − x0)T M−1

W (x − x0)
)

(4.3)

with a second moments MW which satisfies :

M ij
W = 2

∫
(x − x0)i(x − x0)jW (x)I(x)d2x∫

W (x)I(x)d2x (4.4)
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Then the ellipticity is defined in the same way as in equation 4.2.

Although adaptive moments better match highly elliptical objects, giving lower uncer-
tainties than the KSB method, this technique is mathematically equivalent to finding
an elliptical Gaussian giving the best least-squares unweighted fit of the galaxy image
(see appendix A for the demonstration), which makes the method sensitive to some of
the biases of model fitting. Thus, objects with an ellipticity higher than ei = 0.5 (limit
beyond which adaptive moments override the KSB) are not very common (BJ02).

4.1.3 Shape calibration
We saw in the section 3.3.3 that whatever the chosen shape estimation method, they
are generally affected by biases, needing additional calibration. Starting from the
ellipticity, which is only a shear indicator, the calibration allows to define a real shear
estimator.

Model fitting

For model fitting methods, the calibration is usually determined thanks to simu-
lations. In Miller et al. (2013), these simulations mimic the properties of real galaxies
in the CFHTLenS (Canada–France–Hawaii Telescope Lensing Survey) data, including
their size distributions, ellipticity, and brightness. They also include realistic noise levels
and PSF variations to accurately represent ground-based observational conditions.
Then, the biases m and c derived from the simulations are used to calibrate the shear
measurements from the real CFHTLenS data.
In Refregier and Amara (2014), the shear calibration is performed using Monte-Carlo
Control Loops (MCCL).
A calibration to the lensfit algorithm was proposed in Fenech Conti et al. (2017)
(for analyzing the KiDS data) by using extensive galaxy simulations carried out with
Galsim (Rowe et al. (2015)), more details about Galsim are given in section 5.1.1)
and performing an iterative calibration. Once the biases are sufficiently minimized and
the calibration process converges, the final bias correction factors are applied to the
observed KiDS shear measurements.

Moments-based methods

Moments-based methods also need calibration. In KSB, the shear is estimated
as follows :

γ = Pshecorr = Psh(eobs − PsmePSF ) (4.5)

where γ is the shear, ecorr and eobs the corrected and observed galaxy ellipticity
respectively, ePSF the PSF ellipticity and Psm and Psh that represents the smear and
shear polarizability tensors. These two tensors describe the ellipticity response to the
PSF and the shear. The PSF correction procedure was done using artificially sheared
and degraded HST telescope data to mimic the effect of seeing.
This method, which has been tried and tested for years, has shown its limits, in-
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cluding the assumption that PSF can be modeled and corrected using its second
moments. Real PSFs can have complex structures that are not well-represented by
simple moment-based models, leading to incomplete or inaccurate corrections. Also,
Psh and Psm are measured from data, and so can be noisy and biased.
Shear estimations performed using KSB are biased from 1% to 5% (Bacon, Refregier,
and Ellis (2000), Van Waerbeke et al. (2000), Heymans et al. (2006), Massey et al.
(2007)), which is at least 10 times higher than the next generation survey’s fixed limit
for the multiplicative bias.

Another source of bias in many estimators is the selection effect, which occurs
when galaxy selection criteria are correlated with the shear signal, or aligned with the
PSF. As introduced in section 3.2.3, PSF anisotropy can lead to a spurious shear signal
because of the preferred orientation introduced in the image. If the PSF is elongated
in a certain direction (e1 > 0), then the galaxies with an opposite ellipticity (e1 < 0)
will appear enlarged after convolution. Their surface brightness will then be lowered,
and the selection will favor objects with e1 > 0, since many selection cuts are linked
to the surface brightness. This effect was originally studied by Kaiser (2000), then by
BJ02, and the proposed solution to the selection bias is to consider a target galaxies
samples where images were previously deconvolved from the PSF, or by "rounding"
the PSF with a convolution kernel.

A noisy centroid measurement may also arise from a PSF stretching, making the
position measurement less accurate along the PSF elongation axis, pushing the image
ellipticity measurement to be biased in the direction of PSF ellipticity. The fainter
a galaxy, the larger the bias. The solution suggested by BJ02 was to calculate an
empirical correction, or to add a noise image to recreate the original isotropic noise
spectrum after a convolution with a rounding kernel.

A simulation-based calibration method was developed in Hoekstra, Viola, and Herbon-
net (2017), where they investigated how slight differences between simulations and
data could increase the multiplicative bias. For instance, they found that the bias is
strongly correlated to the galaxy size, and that this dependency can be controlled by
adjusting the simulation input parameters, or through empirical correction. Moreover,
they shown how the bias is related to the galaxy density, as shear measurement
algorithms are sensitive to neighbors in galaxy images. This effect is not always taken
into account since simulated galaxies are generally alone in their thumbnails. While
encouraging, this article highlights the many challenges associated with simulation-
based calibration, especially considering data from next-generation survey like Euclid.

Finally, methods using perturbative calibration were proposed by Kaiser (2000) and
more recently Sheldon and Huff (2017) (Metacalibration), that have many advantages,
including not relying on galaxy properties priors. The idea is to introduce artificial
shear variations to the image and measure how the estimator responds to these applied
variations. In practice, this calibration method can be used both on model fitting or
weighted moments-based algorithm.
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In Metacalibration, the shear variations (represented by the matrix s here) are
applied to the galaxy image I deconvolved from the PSF and pixel response P :

I(s) = Γ⊛
[
s(P−1 ⊛ I)

]
(4.6)

and reconvolved by a dilated PSF Γ :

Γ(x) = P((1 + 2|γ|)x) (4.7)

where γ is the introduced shear distortion.
This procedure introduces correlated anisotropic noise, which can lead to a systematic
multiplicative bias.

In the next section, we will describe developments towards a new unbiased shear
estimator developed as part of this thesis, where shapes are estimated using second
moments, and a calibration method similar to Metacalibration, with some improvements
to reduce biases and avoid correlated noise.

4.2 Unbiased cosmic shear estimator

4.2.1 Method
4.2.1.a Shape measurement : second moments

Whatever the estimator, the basic principle lies in the fact that the second moments
(and more generally all moments after position) of a galaxy image are altered by shear.
In the continuous limit, the second moments are expressed as follows :

M =
∫
(X − X0)(X − X0)T W (X − X0)I(X − X0)d2X∫

W (X − X0)I(X − X0)d2X (4.8)

with X the image coordinates and X0 the object position (first moment) that we
measure directly into the image, W the weight function and I the image (subtracted
from the background). This image results from the convolution between the initial
image (before entering the atmosphere) of the galaxy I0 and the PSF ψ (Point Spread
Function, see section 3.2). These moments are normalized by the flux of the total
image ∫ WI .

The introduction of a weight function serves to optimize the signal-to-noise ratio.
Without this, the moments are ill-defined (Kaiser, Squires, and Broadhurst, 1995),
as their variance is not bounded and increases with the integration domain. We saw
in section 4.1.2 that choosing the appropriate weight function is crucial to optimize
moments’ noise. According to BJ02, if we consider a round object, the optimal weight
function is a Gaussian matching the size of the galaxy. They also develop why the
Gaussian profile is a good weight function candidate (even considering more complex
galaxy models) especially because of its analytical convenience, its central flatness or
its quick dropping. Another important point we learn from this article is that setting
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a universal weight function is simpler than trying to fit its profile to every galaxy,
especially at low SNR. Following these results, we fix a single weight function that
is approximately the same size as the smallest galaxy images we are going to select.
This choice is indeed important for optimizing the variance of the estimates, but it
is important to remember that the most important source of bias in cosmic shear
analyses remains shape noise.

The second moments formula gives a 2x2 symmetric matrix :

M =

Mxx Mxy

Mxy Myy

 (4.9)

We can then define the unormalized ellipticity estimator e :

e =

e1

e2

 =

Mxx − Myy

2Mxy

 (4.10)

that describes the shape of the galaxy. Another usual definition of ellipticity is to
normalize e1 and e2 by the trace of the second moments matrix Mxx + Myy . In our
case we omit this normalization because it would increase the noise of our measurement.

Equation 4.8 can be rewritten as follows (taking X as X − X0) :

M =
∫

XX T W (X )[I0 ⊛ ψ](X ) d2X (4.11)

then taking ψ−(X ) ≡ ψ(−X ) (thanks to Parseval’s identity and the convolution
theorem 4.13) :

M =
∫

[(XX T W (X )) ⊛ ψ−](X )I0(X ) d2X (4.12)

using : ∫
f (x)[g ⊛ h](x) dx =

∫
[f ⊛ g−](x)h(x) dx (4.13)

4.2.1.b Second moments calibration

The problem we encounter when designing the estimator is that we are trying to
measure the shear on galaxies whose luminosity profiles are unknown, which can
generate a bias. Furthermore, even if we assume that galaxies are randomly oriented,
the ellipticity we have from second moments is not sufficient to measure the shear
because of the PSF contribution. So we need to calibrate this ellipticity, as it was
discussed in section 4.1.3.
Moreover, trying to accurately simulate galaxy profiles is a really non-trivial exercise,
however the insertion of distortion into images is, on the other hand, a much better
controlled practice. We are aiming at defining a shear-sensitive estimator that depends
on as few assumptions as possible (especially any assumption about the galaxy profile)
and see how it responds to the introduction of small variations in this shear. The
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ellipticity calibration will rely on the calculation of a self-calibration matrix, defined in
terms of second moments derivatives with respect to the shear.

The introduction of a shear will transform the image plane and coordinates (from X
to SX to first order) before the transformation by the PSF.
Starting from this, we can use the equation 4.11 to introduce an artificial shear to the
deconvolved original galaxy image I0 :

M(S) =
∫

XX T W (X )[I0(SX ) ⊛ ψ(X )] d2X (4.14)

where S is the 2x2 shear matrix, with det(S) = 1. We can then reconvolve the distorted
galaxy image with the PSF to recover the initial configuration. This is essentially what
is done in Metacalibration, but applying a distortion to the galaxy image introduces
correlated noise. Instead, another solution can be to use equation 4.12 to apply the
shear not to I0, but to the other terms of the estimator (i.e. : [XX T W ] ⊛ ψ) :

M(S) =
∫

[(XX T W (X )) ⊛ ψ−](X )I0(SX ) d2X (4.15)

with ψ−(X ) = ψ(−X ). The equation can be rewritten as follows :

M(S) =
∫

F (S−1X )I0(X ) d2X (4.16)

where
F (X ) = (XX T W (X )) ⊛ ψ−(X ) (4.17)

and in Fourier space :
F̃ (k) = −(∂k∂kW̃ (k))ψ̃∗(k) (4.18)

We have F ( ˜S−1X ) = F̃ (Sk), therefore :

M(S) =
∫

F (Sk)I0(k) dk2

=
∫ F (Sk)

˜ψ∗(k)
˜ψ∗(k)I0(k) dk2

=
∫

G(S, X )[ψ ⊛ I0] d2X

=
∫

G(S, X )I(X ) d2X

(4.19)

where
G(S, X ) ≡

∫ F (Sk)
˜ψ∗(k)

e ikx d2x (4.20)

This manipulation means that no transformation is applied to the initial image I(X ),
as the shear variations will be applied directly to F̃ (k), which is a more extensive and
better resolved function than I0. Furthermore, this function is essentially noise-free,
so transforming it does not introduce a significant anisotropic noise. Applying the
distortion on the original galaxy image would add some correlated noise that can lead
to a systematic multiplicative bias, as we deconvolve and reconvolve the distorted
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4. Shear estimation method

image by the PSF.

Thanks to these derivatives, we can define the self-calibration factor R. It is a
2x2 matrix composed of linear combination of the derivatives of the second moments
with respect to the shear :

R =

 ∂e1
∂g1

∂e2
∂g1

∂e1
∂g2

∂e2
∂g2

 =

∂Mxx
∂g1

− ∂Myy
∂g1

2∂Mxy
∂g1

∂Mxx
∂g2

− ∂Myy
∂g2

2∂Mxy
∂g2

 (4.21)

4.2.1.c Shear estimation

The Taylor expansion of the ellipticity can be written as follows :

e = e|g=0 + g ∂e
∂g |g=0 + ... (4.22)

When averaging over galaxies, the first term vanishes and we can approximate ⟨e⟩ as :

⟨e⟩ = ⟨e|g=0⟩ + ⟨g ∂e
∂g |g=0⟩ + ...

≃ ⟨Rg⟩
(4.23)

Given R, we can then define an estimator of the shear ⟨g⟩ :

⟨g⟩ = ⟨R⟩−1⟨e⟩ (4.24)

In the case of a round galaxy, there is no need to average to estimate shear, and the
equation 4.24 can be expressed as :

g ≃ R−1e (4.25)

The advantage of this method is that calculations are based on second moments,
rather than maximum likelihood (or other model-fitting methods), so we don’t have to
make any assumption about the galaxy profile. Thus, the F function is more extensive
than the object image I0, and so better resolved, it is therefore better to apply shear
distortion on it. Accordingly, this method allows to perform shear estimation on
undersampled images. Distorting the original galaxy image would introduce some
correlated noise due to the deconvolution and reconvolution by the PSF (this is
basically what it is done in Metacalibration).
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4.2. Unbiased cosmic shear estimator

4.2.2 Technical aspects and corrections
4.2.2.a Derivatives practical calculation

To find out how M depends (on average) on shear, we can derive the equation 4.19
with respect to γ.

dM
dγ =

∫ dG(S(γ), X )
dγ I(X ) d2X (4.26)

This expression describes a relationship between shear and second moments, which
involve the same pixels in the image.

For real images, the PSF is empirical and we hence resort to numerical derivatives.
This procedure follows several steps :

• First, we apply the shear matrix to the coordinates system to distort the pixel
grid, following this relation : sx

sy

 = S

x

y

 (4.27)

where :

S = 1√
1 − |g |2

1 + g1 g2

g2 1 − g1

 (4.28)

with g = g1 + ig2
We chose four shear distortion : (g1 = ±ϵ ; g2 = 0) and (g1 = 0 ; g2 = ±ϵ),
with ϵ ten times smaller than the input cosmic shear value applied to the galaxy
(as we expect the shear values to be in the percent range, we choose ϵ = 0.001).

• Once we have distorted the coordinates system, we can interpolate the F func-
tion on the new grid. The interpolation is performed using a bivariate spline
approximation over a rectangular mesh.
Because we have four shear distortions, this procedure leads to four new images.
A visual representation of these two steps is given in figure 4.3.

• Once we have the four distorted images, we can calculate each of their second
moments (noted M1± and M2±) and the derivatives are calculated as follows :

∂M
∂g1

= M1+ − M1−

2ϵ (4.29)

∂M
∂g2

= M2+ − M2−

2ϵ (4.30)

We can also imagine to develop ψ and W on analytical functions to calculate their
analytical derivatives before integration on pixels.
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4. Shear estimation method

Figure 4.3: Schematic visualization of the grid distortion and interpolation of the F function.
The 1+, 1−, 2+, 2− values represent the shear applied on the pixels coordinates, respectively
(g1 = ±ϵ ; g2 = 0), (g1 = 0 ; g2 = ±ϵ)

4.2.2.b Sampling correction

When an image is sampled, this can be translated as a convolution between a continuous
function (here the galaxy profile convolved with the PSF) and a tophat function (which
corresponds to the pixel response).
This image can be expressed as follows :

I(X ) = Ic(X ) ⊛ Π(X ) (4.31)

and therefore, the resulting moments is the sum of the continuous image second
moments and the pixels (or tophat function) second moments.

To calculate the pixel contribution, first define the coordinate system using the
affine transformation (2D) :

X⃗ = J i⃗ + x⃗0

where J is a 2x2 matrix (called Jacobian), i⃗ designates the coordinates in pixel space
and X⃗c is the pixel center.
The pixel’s second moments can be written as follows:

Mpix =
∫

pixel(X⃗ − X⃗c)(X⃗ − X⃗c)T d2X⃗∫
pixel d2X⃗

By changing the integration variable :

(X⃗ − X⃗c) = J (⃗i − i⃗c)
d2X⃗ = |det(J)| d 2⃗i
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4.2. Unbiased cosmic shear estimator

where i⃗c is the center of the pixel in native (pixel) coordinates.

We then have :

Mpix =
∫

pixel(X⃗ − X⃗c)(X⃗ − X⃗c)T d2X⃗∫
pixel d2X⃗

=
|det(J)|

∫
pixel J (⃗i − i⃗c)(⃗i − i⃗c)T JT d 2⃗i
|det(J)|

∫
pixel d 2⃗i

= J
[∫

pixel
(⃗i − i⃗c)(⃗i − i⃗c)T d 2⃗i

]
JT

= JJT/12

It is worth noting that :∫ 1

0
(x − 1/2)2 dx =

∫ 1/2

−1/2
x2 dx = 1

12

The total measured second moments is then :
M = Mc + Mpix

=
∫

XX T I(X ) d2X + JJT

12
(4.32)

In our simulations, J is a very basic Jacobian, including only the scale s of the image :

J =

s 0

0 s

 (4.33)

4.2.2.c Shear and sampling cross-effect bias correction

We introduced in the previous section that sampling add a pixel component to the
total image second moments.
As we calculate the derivatives by distorting the pixels grid and interpolating the
F function on it, we should subtract a distorted pixels second moments to the MS

matrixes (cf 6.21, 6.22). We can rewrite a more general formalism for these second
moments :

M(s, ϵ) ∝ γ + αϵ+ α′ϵ2 + βs2 + β′s4 + δs2ϵ+ δ′s4ϵ (4.34)
where s is the image’s pixel scale (involved in the Jacobian J) and ϵ the shear variation
we introduce to calculate the derivatives. The γ + αϵ + α′ϵ2 term represents the
continuous sheared second moments, βs2 is equivalent to Mpix in equation 4.32,
and the term including δ′ is the cross-effect between shear and sampling after the
grid distortion, that we will call after SSB. At first, we expected the δ term to
be related to this cross effect as well, since we can’t consider it as a theoretical
one because of its scale dependency. However, it turns out that adding it in the
correction introduces a bias, but we can’t remove it from the fit at the risk of calcu-
lating inaccurate values for the other terms. The question remains open as to its origin.
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4. Shear estimation method

The 1
12 factor in equation 4.32 is the value of β for a single image (before any

shear application), but here we have a product between I and W , and depending on
the sizes of these two components, the β factor will change.
For example, in the case where both I and W are Gaussian, we can re-express the
total second moments as :

M−1
tot =

(
MW + JJT

12

)−1

+
(

MI + JJT

12

)−1

(4.35)

using that :
GA = GB · GC ⇔ V −1

A = V −1
B + V −1

C (4.36)
where GX is a Gaussian and VX its associated variance.

If I and W have the same size :

Mtot = MI

2 + JJT

24 (4.37)

To calculate β, β′, δ and δ′, we compute the least-squares solution to equation 4.34.
Since the usual values we use for s and ϵ are respectively 0.2 arcsec/pixel (same pixel
scale as LSST) and ±0.001, we chose a range of [0.1, 0.3] for s and [-0.01, 0.01] for
ϵ, then we run over 15 values to compute the solution.
We then subtract the β, β′ and δ′ terms to recover the real image second moments. In
fact, since the two β and β′ terms are only involved in the Mxx and Myy components,
they cancel each other out because of the subtractions in e and R calculations (see
4.10 and 4.21), but they are needed to check a single second moments value. Thus,
the only term we need to put into the correction to perform a shear estimation is the
last one in equation 4.34.
We see no big impact of the galaxy profile on the parameters estimation, but it is highly
related to the size of the galaxy. We computed the relation between δ′’s estimation
and the second moments of the galaxy for a Gaussian profile, with Gaussians PSF and
W .
Here are the results of the fits :

δ′
xx = 658.26M3

xx − 236.86M2
xx + 27.61Mxx − 1.01 (4.38)

δ′
xy = 131.20M3

xy − 51.32M2
xy + 6.38Mxy − 0.24 (4.39)

Since these fits were performed over round Gaussian galaxies, the fits for δ′
xx and δ′

yy
give the same values. An uncertainty up to 10% is acceptable on these parameters
without compromising the shear estimations.

The estimation of δ′ is also related to the PSF profile, but since this profile is
sufficiently well known (enough to be sampled more finely than the pixel size), it’s
not as problematic as the relation between δ′ and the galaxy which we don’t know
anything about, except the apparent size on the image that we can measure.
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4.3 Conclusion and perspectives
In this chapter, we described the development of a new shear estimation method based
on image second moments to measure the galaxy shape.
We saw that the ellipticity alone, although supposed to be null on average, is not
sufficient to measure the shear, mainly because of seeing dilution and PSF anisotropies.
Also, because we use weighted moments, it is important to choose the weight function
size carefully to avoid introducing an additional bias.
To compensate for sources of bias in the shape measurement, we calibrate the ellipticity
calculated using second moments using a perturbative method that introduces shear
variations into the images. This procedure, which is similar to Metacalibration, has
several notable innovations and advantages :

• All calculations are based on second moments rather than other model fitting
techniques, allowing no assumptions to be made about the galaxy profile.

• The original (deconvolved) galaxy image is not distorted, contrary to Metacali-
bration, which generates correlated anisotropic noise leading to a multiplicative
bias.

• The shear variations are applied on a more extensive and better-resolved function
([XX T W ] ⊛ ψ), which allows shear estimations on under-sampled images.

There are, however, avenues for improvement to be explored. First, we saw in the
previous section that the cross-effect between shear and sampling which introduces a
bias in the distorted second moments is also dependent on the PSF profile. In this
work, we calculated a correction of this bias for a Gaussian PSF profile, which works
pretty well even for other PSF profiles (tests on noise-free simulations are the subject
of the next chapter). We also tried to perform a fit using a Moffat profile for the
PSF, but the resulting coefficients did not properly correct for second moments. This
could mean that an adjusted correction with a more complex PSF profile requires the
addition of its fourth moments (and maybe the fourth moments of the galaxy). We can
imagine calculating tabulated correction values as a function of the PSF size and profile.

Another possible improvement would be to calculate the second moments deriva-
tives analytically. Since we are not applying any distortion to the image, the PSF
can be developed on analytical functions. Good candidates are the quantum har-
monic oscillator eigenfunctions (Bernstein and Jarvis (2002), BJ02), which have many
remarkable properties, including that they are invariant under Fourier Transform (al-
lowing analytical convolutions) and that transformations (rotation, shear etc...) can
be expressed easily as combination of operators. Performing these calculations in
Fourier space would overcome sampling, making it likely that the SSB would disappear.

Finally, a shear estimator cannot be considered complete without a correction al-
gorithm for PSF anisotropies (introduced in 3.2.3). Because these anisotropies will
contribute to the average second moments, it is necessary to compensate them.
One possible way to perform this compensation is to define a weight function in such
a way that the F function (see equation 4.17) is round. Following BJ02, we can use
the shapelets basis functions to characterize objects’ shapes and define the expected
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4. Shear estimation method

response.
These functions have angular symmetries defined by the value of the quantum number
m, which can be defined through the eigenfunction formula :

fn,m(r , θ) ∝ Pn,m(r)e imθ (4.40)

where Pn,m(r) is a polynomial depending on m, n the order of the state (corresponding
to its energy) with −n ≤ m ≤ n (the allowed values are separated by two). States
with m = 0 are azimuthally symmetric, and those with m = ±2 change sign under a
rotation of π/2. By describing the pre-seeing galaxy using a basis function fn,m, we
can define the second moments in the following manner :

M =
∫

XX T W (X )[ψ ⊛ fn,m](X )d2X (4.41)

This formalism allows W to compensate for PSF skewness by ensuring that m = 0

delivers M ∝

1 0

0 1

, m = 2 delivers M ∝

1 0

0 −1

 and m = −2 delivers

M ∝

0 1

1 0

.
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5. Estimations on noise-free simulations

5.1 Simulations
In this section, we will describe how we simulated our galaxy images to perform our
shear estimations. We will test the estimations at different steps, from very basic
simulations on Gaussian and Sersic profiles, to real profiles using the COSMOS catalog.
All the simulated galaxy, PSF and weight function profiles are performed using the
GalSim package, which is described right after in section 5.1.1.

5.1.1 The GalSim package
GalSim (Rowe et al., 2015) is an open-source software for simulating images of astro-
nomical objects with a large variety of profiles, combinations and transformations. Its
development was initiated by GREAT3 (Mandelbaum et al., 2015), a weak lensing
measurement challenge requiring a large number of galaxy simulations. Beyond the
needs of this challenge, it is possible to simulate very realistic galaxies using GalSim
for many other types of projects.

The key features of GalSim are :

• Modularity : It allows users to build simulations by combining various components
such as galaxy models, point spread functions, noise, and more. It also contains
many operations and transformations as convolution, deconvolution, rotation,
shear, shifts etc...

• Flexibility : Users can customize simulations to fit their specific research needs.
For example, a large amount of parameters are available to modify any type of
profile at will (flux, full-width-half-max, centroid offset etc...).

• Accuracy : The toolkit is designed to handle complex galaxy shapes and PSFs
accurately, which is crucial for precise astronomical studies.

GalSim also includes second moments and shear measurement routines, along with
several PSF correction functions. The adaptive moments algorithm described in Hirata
and Seljak (2003) is the method used to measure the observed image moments.
The calculations are performed by matching an elliptical Gaussian weight function
to the object image. The adaptive moments routine’s output gives estimations of
ellipticity, second moments sigma, centroid, and other image parameters, and the
shear estimation routine returns the shear parameters corrected from the PSF and the
PSF shape, among others.

This package is particularly useful for simulating data for large-scale surveys like
LSST and calibrating weak lensing measurements, which requires highly accurate
galaxy shape measurements. The software is open-source and written in C++ with a
Python interface.
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5.1. Simulations

5.1.2 Galaxy and PSF models
To test the robustness of the estimator, and ensure that measurements are independent
of galaxy shape, we have chosen to perform the estimations on different galaxy profiles
and PSF provided by GalSim.

We chose these profiles for the galaxy :

• Gaussian :
I(r) ∝ e− r2

2σ2 (5.1)

The Gaussian profile is interesting as a first approach because the expected
Gaussian-weighted second moments can be calculated analytically.

• Sersic :
I(r) ∝ e(− r

RH
)

1
n (5.2)

where n is the Sersic index RH the half light radius. Sersic’s law is a generalization
of de Vaucouleur’s law, which is only effective for representing elliptical galaxies.
Sersic’s law also includes an efficient representation of spiral galaxies. Its index
n corresponds to the slope of its luminosity curve (i.e. n=4 corresponds to the
de Vaucouleur law, and n=1 to an exponential law).

We have also chosen three different profiles for PSF modelling :

• Gaussian :
I(r) ∝ e− r2

2σ2 (5.3)

• Kolmogorov :
T (k) ∝ e− D(k)

2 (5.4)

defined in Fourier space, where D(k) = 6.8839
(

λk
2πr0

)5/3
, λ is the light wave-

length (in the middle of the bandpass) and r0 the Fried parameter. In our
simulations, we fix the FWHM of the light distribution, which is defined in
GalSim as ∼ 0.976λ/r0. A Kolmogorov profile is frequently used to represent a
long exposure atmospheric PSF.

• Moffat :
I(r) ∝ (1 + ( r

r0
)2)β (5.5)

where r0 is the scale radius, and taking the kurtosis β = 3.5. The FWHM of
the profile is calculated as follows : FWHM = 2r0

√
21/β − 1. This profile is

widely used to model PSFs, as it provides a better representation of the wings’
distribution than a Gaussian or a Lorentzian.

Moffat and Kolmogorov profiles are frequently used to represent the effect of seeing in
the case of ground-based detectors. The surface brightness of different galaxy and
PSF profiles are given in figure 5.1 and 5.2 respectively.
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Figure 5.1: Radial light distribution of different galaxy profiles simulated with GalSim
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Figure 5.2: Radial light distribution of different PSF profiles simulated with GalSim
(logscale). The strills visible in the wings of the profiles are probably numerical artifacts of
the Fourier transform in GalSim.
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Once we decide which profile we want to use, the second important thing is to
consider different size ratio between the galaxy and the PSF to determine the limits
of the estimator. Taking the weighted second moments of the image and the PSF as
a sum over the pixels :

Mimage =
N∑
i ,j

XiX T
j Wi [I0 ⊛ ψ]i

MPSF =
N∑
i ,j

XiX T
j Wiψi

(5.6)

we can define the trace ratio (TR) as follows :

TR = Tr(Mimage)
Tr(MPSF ) (5.7)

This ratio will be the reference for choosing our parameters, especially the fixed W size.
A similar criterion was also defined in Mandelbaum et al. (2018) (M18) and Zuntz
et al. (2018) (Z18) for the Subaru HSC Y1 and DES Y1 shear catalogs respectively.
In M18, their criterion is defined as : R = 1 − MPSF

Mimage
, and their analyses are limited

at R around 0.3 (TR=1.43), meaning that below this value, the shear estimation
will become poor because of the PSF dilution. In Z18, the trace ratio involves the
weighted second moments of the galaxy above atmosphere, and not the one of the
convolved image, with a threshold around 0.5 (TR=1.5).

To test the limits of our estimator, and following the threshold established in M18
and Z18, we choose our profiles’ parameters in order to correspond at certain TR key
values (between 1.25 and 1.8). We decided to set the FWHM of the PSF to a given
value (usually 0.8 arcsec), and then we varied the FWHM of the galaxy to achieve the
desired TR values.
The choice of weight size has been set regarding the un-weighted trace ratio between
the image and the PSF. To do this, we choose the limiting case beyond which estima-
tions are expected to deteriorate, i.e. TR = 1.5. Considering Gaussian galaxies and
PSF, this ratio corresponds to σimage ∼ 1.22σPSF . We therefore choose the weight’s
σ to be 1.25 times higher than the PSF σ (if the PSF’s FWHM = 0.8 arcsec, the
weight’s FWHM = 1 arcsec), as we saw before in section that the optimal weight size
is equivalent to the image size. In the same way as for PSF, this value will be fixed
for all the simulations.

5.1.3 Other parameters
We set the pixel scale of the simulated images to 0.2 arcsec/pixel, which is similar to
the LSST pixel scale.

To mimic real cosmic shear estimation over a sample of galaxies, we apply dif-
ferent intrinsic ellipticities to the chosen galaxy image before averaging. We usually
take random values between -0.3 and 0.3, and we duplicate these values with an
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5. Estimations on noise-free simulations

opposite signs to generate our sample. By following this method, we make sure to have
a null intrinsic ellipticity on average, which cancels the shape noise of simulated samples.

For the simulated cosmic shear, we choose values ten times smaller than the el-
lipticity, usually between -0.03 and 0.03, and we set ϵ at 0.001 (ten times smaller
than the average shear value) to distort the grid and perform the calculation of the
derivatives. A visual representation of the shear distortion applied to a galaxy is shown
in figure 5.3.
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Figure 5.3: Difference between a round galaxy and a sheared galaxy with g1 = 0.05 (left),
g2 = 0.05 (middle) and g1 = g2 = 0.05 (right).

5.2 Shear estimations
On noise-free image simulations, the first tests were carried out on images with Gaus-
sians galaxies, PSF and weight function. Then, a set of tests using more complicated
profiles was performed, using Sersic profiles for the galaxies and Kolmogorov or Moffat
profiles for the PSF. We finally performed a shear estimation on a realistic galaxy
profile from the COSMOS catalog.

5.2.1 Gaussian and Sersic galaxies
The first sanity check we must do is to perform a shear estimation on very basic
profiles, i.e. Gaussian galaxies. The estimations are performed over 40 random shear
values and we average over 20 pairs of random (and opposite) intrinsic ellipticities.
We have varied the galaxy size between σ = 0.24 and σ = 0.4, which corresponds to
TR=1.27 and TR=1.73 respectively.

In all the figures that follow, we show the absolute (top) and relative (bottom)
differences between the input and the estimated shear (as a function of the input
shear), with the associated trace ratio in the figure caption. Figure 5.4 shows the
difference between an estimation performed without any correction for the SSB, and
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an estimation done under the same simulating conditions with the correction developed
in section 4.2.2.c. We see that both g1 and g2 are biased on the left figure compared
to the right one, especially g1 which is much more sensitive to the sampling than g2.
In fact, g1 has an influence on Mxx and Myy , which are also affected by the scale via
the Jacobian (equation 4.33), contrary to Mxy which is linked to g2. This highlights
the particular importance of SSB correction, without which the shear could be biased
by 3 or 4 times more than the limit imposed on the multiplicative bias.

Figure 5.4: Shear estimations performed on Gaussian profiles (galaxy and PSF), with
TR=1.32. For both figures, the upper panel represents the absolute difference between
input and output shear, and the lower one the relative difference.
Top : Estimation performed without any correction for the SSB.
Bottom : Same conditions including the SSB correction.
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Figure 5.5 shows the shear estimation for a Gaussian PSF, figure 5.6 a Kolmogorov
PSF and figure 5.7 a Moffat PSF.

Whatever the trace ratio, both Gaussian galaxies and PSF give very accurate shear
estimations, we always satisfy our multiplicative bias limit under 1 × 10−3. This is not
a surprising result since Gaussian profiles are particularly basic, and also because the
SSB introduced in section 4.2.2.c was corrected using a Gaussian PSF model, so we
benefit from exact calibration. This same correction is used for every PSF profile.
For other PSF models, we have very satisfying results at fairly low trace ratio values,
even if we can’t go as low as for the full Gaussian estimation. This can be easily
explained because the SSB correction does not accurately describe the simulated data
when a non-Gaussian PSF profile is used. This conclusion is reached quite naturally
since at low TR, g1 becomes more biased than g2, which is the parameter most
sensitive to sampling. Nevertheless, all these estimations on Gaussian galaxies are
biased under the per mil level, and to very acceptable TR values.
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Figure 5.5: Shear estimation on elliptical Gaussian galaxies convolved with a Gaussian PSF.
Trace ratio = 1.50.
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Figure 5.6: Shear estimation on elliptical Gaussian galaxies convolved with a Kolmogorov
PSF. Trace ratio = 1.57.
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Figure 5.7: Shear estimation on elliptical Gaussian galaxies convolved with a Moffat PSF.
Trace ratio = 1.47.
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To perform estimations on more complicated and realistic profiles, we choose to
simulate Sersic galaxies. We chose three values for the Sersic index n : 1.0 (exponential
profile), 1.5 and 4.0 (elliptical profile). The exponential profile is usually used to
represent disk galaxies, like spirals. Once again we oriented the galaxy profile using 20
pairs of random intrinsic ellipticities, and we performed the estimations on 40 shear
values.
The conclusion is similar to the one with Gaussian galaxies : we achieve a bias under
10−3 in all the estimations, for every PSF model and at realistic TR values.
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Figure 5.8: Two Sersic profiles simulated with GalSim
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Figure 5.9: Shear estimation on elliptical Sersic galaxies (n=1.0, RH=0.55) convolved with
a Moffat PSF. Trace ratio = 1.57.
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Figure 5.10: Shear estimation on elliptical Sersic galaxies (n=1.5, RH=0.9) convolved with
a Moffat PSF. Trace ratio = 1.66.
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Figure 5.11: Shear estimation on elliptical Sersic galaxies (n=4.0, RH=3.53) convolved
with a Moffat PSF. Trace ratio = 1.63.
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5.2.2 Bulge and disk galaxies

Many galaxies in the universe actually have a composite profile, made of a bulge and
a disk. This configuration is found mostly in spiral galaxies. The bulge is usually
modeled using a Sersic profile (with 0.5 < n < 6), and the disk can be represented
with an Exponential profile. The two most frequently observed bulge profiles are
elliptical (n = 4) and spiral-like (n = 1). We thus chose to look at composite profiles
where bulges’ Sersic index takes these specific values. The bulges and disks half-light
radius are given in arcsec. The chosen PSF profile is a Moffat for all the estimations.

We see that for a roughly equal TR of 1.57 (figure 5.12) and 1.52 (figure 5.13),
the limit of 10−3 for the multiplicative bias is achieved, however, it seems that we can
more easily go to lower TR values for spiral-like bulges. This may come from the fact
that when n = 1, the bulge and the disk have the same profile (Exponential), which is
not the case anymore when n ̸= 1. This hypothesis would need further investigation.
Also, the light is more concentrated in the center than in the wings of the distribution
when n increases, which can make shape (and shear) information harder to measure.
This would explain why the estimation is better for a bulge with n = 1 than n = 4 at
a similar TR value.
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Figure 5.12: Shear estimation on a bulge (n = 1, RH = 0.5) + disk (RH = 0.8) composite
galaxy convolved with a Moffat PSF. Trace ratio = 1.57.
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Figure 5.13: Shear estimation on a bulge (n = 4, RH = 0.8) + disk (RH = 0.8) composite
galaxy convolved with a Moffat PSF. Trace ratio = 1.52.

5.2.3 Realistic galaxy profiles : COSMOS catalog
COSMOS (Scoville et al., 2007) is a multi-wavelength survey that uses data from
a wide range of telescopes, including the Hubble Space Telescope, to map a two-
square-degree area of the sky. The survey covers wavelengths from X-ray to radio and
provides a detailed look at the distribution and properties of galaxies over cosmic time.
Because of its wide range of redshift (from z ∼ 0.5 to z ∼ 6), this catalog provides
galaxies with both common and atypical shapes.
The main goals of this survey were to better constrain the evolution of galaxies,
stars, LSS and AGNs, but also to constrain dark matter through galaxies’ weak
lensing measurement. These images have a number of advantages, in particular
the diversity of profiles and the absence of atmospheric PSF. This sample of galaxy
images is often used to test shear measurement for ground based survey because a
known shear can introduced in the images prior to convolution by the atmospheric PSF.

A sample of COSMOS is implemented in GalSim, with ∼ 56 000 galaxies. To
ensure noise-free shear estimations, we chose images with a flux > 5000. The follow-
ing results were performed on the object n°31085, shown in figure 5.14.

To cancel shape noise in the estimations using COSMOS galaxies, we need to rotate
the galaxy profile in different orientations. Analogously to the random pairs of ellip-
ticities defined before, we create 50 random pairs of angles in radians (each angle is
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5. Estimations on noise-free simulations

associated with its opposite value by adding π/2). We pass the galaxy images into the
interpolation routine of GalSim before applying the rotation transformation, then we
resample the final image after the convolution with the PSF. This procedure can be
carried out without introducing any spurious information into the image at the time of
interpolation, as COSMOS images have a very high sampling rate (0.03 arcsec/pixel),
and the scale used to sample our simulations is 0.2 arcsec/pixel.

Concerning shear estimations, it is difficult to achieve the per mil limit for TR
under 1.6, especially for non-Gaussian PSF (see figures 5.16, 5.17, 5.18). One possible
explanation for this result is that even if the COSMOS images taken by Hubble are
not affected by the atmospherical turbulence (since the telescope is in space), the
images suffer the effects of an instrumental PSF. We can see it in the radial galaxies’
light distribution, where the wings always decrease more slowly than clean GalSim
simulations (see figure 5.15).
The absence of visible values in the center of the graphs is because we remove shears
too close to zero which can sometimes lead to outliers caused by the division in the
relative difference. The reason is twofold : first, we don’t expect to measure shears
very close to zero (because it would take a huge statistic to measure such small values),
and also because the shear bias is to be considered on average over the sample, and
not for every measured galaxy. Thus, we are interested in the average of all absolute
shear differences divided by the mean of the true values, and not by the mean of each
individual ratio, that is why outliers can be removed.

More figures showing shear estimations with all these previous galaxy profiles (Gaussian,
Sersic, composite and COSMOS) are available in appendix C, exploring others profiles
parameters and TR values.
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Figure 5.14: COSMOS galaxy n°31085
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Figure 5.15: Comparison of luminosity profile decay between a COSMOS galaxy and a
profile simulated with GalSim.
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Figure 5.16: Shear estimation on COSMOS galaxy (object n°31085) convolved with a
Gaussian PSF. Trace ratio = 1.56.
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Figure 5.17: Shear estimation on COSMOS galaxy (object n°31085) convolved with a
Kolmogorov PSF. Trace ratio = 1.62.
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Figure 5.18: Shear estimation on COSMOS galaxy (object n°31085) convolved with a
Moffat PSF. Trace ratio = 1.62.
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5.3 Conclusion
In this chapter, we have explored several sets of simulations, from the most basic
models to Hubble Space Telescope images, in order to test shear measurements using
the estimator presented in section 4.2.1. The challenge is to be able to measure an
averaged shear whose relative bias is of the order of 1 × 10−3 or less, for realistic
galaxy to PSF sizes ratios. These tests produced highly satisfactory results, regardless
of the galaxy and PSF profile combination.

We note that in almost all these estimations (without considering the slight residual
bias on g1 for low-TR estimates performed using a Kolmogorov or Moffat PSF profile),
the bias affecting the shear measurement is around 0.5 × 10−3. The fact that this
bias takes similar values regardless of the chosen profiles is probably linked to the
shear formalism that is used, and could be corrected by adding higher-order terms to
the second moments’ derivatives. However, since these estimations fall within the set
limits for the multiplicative bias, we haven’t explored this hypothesis.

Finally, all these tests were performed on noise-free images, which does not cor-
respond to realistic observational conditions. The next step is therefore to achieve the
same results using noisy simulations. Nevertheless, adding noise to images introduces
bias in shape and shear measurements, so the estimation method will need an addi-
tional calibration.
The noise bias and its calibration are the main topics of the next chapter.
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6. Realistic shear estimations : noisy simulations

6.1 Noise bias
In this chapter, we will describe the concept of noise bias, its origins, its impact on
shear measurement and how it was corrected in the previous estimation methods. We
will then introduce a new noise bias correction method developed within this thesis’s
framework, which consists of analytically calculating the second-order terms of the
moments affected by the noise.

6.1.1 Introduction
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Figure 6.1: Galaxy image without noise (left) and after the addition of a noisy image
(right). The noisy image was simulated using a random Gaussian noise (SNR = 60).

As it was briefly introduced in chapter 4.1, data we receive from detectors are
usually affected by noise (see figure 6.1). This noise has two main contributions :

• Shot noise : Caused by the variability of photon detection on a sensor. Its
main contribution is the sky background, including zodiacal or galactic light.
This noise follows a Poisson distribution. Usually, when a distant object image
is taken, like a galaxy, its flux is negligible compared to the background noise,
meaning that the sky background is assumed to be stationary and uncorrelated.
For brighter objects where this approximation is arguable, the noise bias affecting
shear measurements is sufficiently small to keep treating the noise as stationary.
It is however conceivable to modify the calculations that follow in order to
account for the shot noise of the object light on uncorrelated pixels.

• Image noise : Inherent source of noise caused by electronics in the telescope,
including the sensor’s temperature (thermal or Johnson-Nyquist noise) and
stability. It represents the fluctuation affecting the image between acquisition
and recording. This noise is usually characterized by measuring the repeatability
of “empty” images, called biases. It is commonly named readout noise.

The shot noise is the dominant counterpart visible on science images. The image
noise is expected to be a few electrons per pixel (for instance, 4.5 electrons r.m.s
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6.1. Noise bias

are associated to readout noise in the HSC CCDs around -100°C, Miyazaki et al.
(2018)), whereas the sky background commonly reaches a few thousand electrons
after integrating a few minutes on an 8-m telescope. For LSST, it is anticipated that
the background noise will dominate the sky noise in all bands (however marginally in
u band) in 30 s exposures.
All pixels in the image affected by noise are statistically independent. When co-adding
several exposures of the same field, one has to resample input images to the same pixel
grid, which correlates neighboring pixels. Avoiding stacking is therefore preferable to
ensure that pixels remain uncorrelated, which makes the noise bias correction tractable.

When an image is received from a detector, it is first divided by a flat image to
ensure a flat sky background. The flat-field correction is used to remove artifacts
present during image acquisition, due for example to dust in the detector or spatial
variations of the sensor efficiency. These flat-field images are averages of uniform
illuminations, such as the twilight sky or an illuminated screen inside the dome. The
background level is then measured on the empty sky areas visible in the image, and
the average of this measurement is subtracted off the image. Fluctuations of this
background constitute the dominant source of noise in the image, and are usually
approximated by a Gaussian with a null average.
This noise can affect astrophysical measurements in different ways, especially for
images with a low SNR. Noise obviously contributes uncertainties to any measurement
extracted from the image, for example position, flux or shape. For reasons detailed
below, non-linear quantities, such as shape indicators, are usually biased by noise.

6.1.2 Impact on shear measurement

Figure 6.2: Ellipticity bias measured on noisy images, as a function of the ellipticity
parameters e1 and e2.
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"Bias" refers to the difference of some statistics of the data over an (infinite) ensemble
of data realizations and the value of these statistics for noise-free data. Any non-linear
function of the image pixels is in general biased (see R12) : if one expands this
non-linear function in powers of the data, noise contributions to squares (or higher
powers) of the data do not average out.
Whatever the shape estimation method, they are all biased by noise because of un-
avoidable non-linearities in their formalism.

In model fitting, the pixel noise affecting the ellipticity leads to a skewness of the
likelihood, even in the case of a Gaussian or Poissonian noise (Melchior and Viola
(2012), Refregier et al. (2012) (R12), Miller et al. (2013)). This bias is a complex
function of SNR, galaxy size, ellipticity and PSF profile.

Moments-based methods are not safe either, since moments are not linear func-
tions of the (noisy) galaxy centroid. Considering noisy galaxy images, the centroid
uncertainty reflects the galaxy ellipticity. This means that the ellipticity measurement
on a round galaxy is not really affected by the noise bias, because its moments suffer
from equal noise bias, as opposed to a very elongated galaxy (see figure 6.2).

The effect of noise on shape measurement will introduce a multiplicative bias in
the shear estimation (as it was mentioned in section 3.3.3). Even if the shape noise is
the main source of bias in shear measurement, the noise bias needs a specific correction
before performing estimations (while shape noise averages out over a large number of
sources).
According to R12, if we consider galaxies with a given SNR, the noise bias affecting the
different measured parameters (including centroid, flux and ellipticity) scales to first
order as SNR−2. For instance, if a galaxy has a SNR ∼10, the bias is ∼0.01, which is
the same order of magnitude as the shear signal. In the case of LSST, this bias drops
to ∼0.0025 (which is still 25% of the shear signal) since the SNR threshold is set to ∼20.

One obvious way to limit the effect of noise bias would be to only observe galaxies
with higher SNR, but this solution is unrealistic since the faint galaxies (associated to
low SNR values) dominate the brightness distribution.

Noise bias is particularly concerning for measurements that depend on comparing shear
at different redshifts : growth rate of structures and dark energy parameters. Indeed,
since high redshift galaxies are on average much fainter than closer ones, a poorly cor-
rected noise bias translates into a redshift-dependent bias of the estimated shear signal.

In the following section, we describe the methods previously used to reduce and
correct noise bias, for both model fitting and moment-based methods.
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6.1.3 Noise bias calibration

Many noise bias correction methods were developed in the last 30 years, the most
common being calibration with simulations.
This implies the simulation of artificial galaxy images with known properties on which
we add realistic noise. We then apply the same shape measurement algorithm that
is used on real data, and the noise bias calibration is just the difference between the
input and the measured shape. Such procedures were performed in Mandelbaum
et al. (2014) using the GREAT3 image analysis challenge (with a known PSF), and in
Fenech Conti et al. (2017) using the lensfit algorithm on the KiDS data. In this article,
they also developed an empirical calibration function derived from the simulation to
correct the ellipticities of real galaxies. Simulation-based calibration using the KSB
algorithm on Euclid-like images was also performed in Hoekstra, Viola, and Herbonnet
(2017), previously mentioned in section 4.1.3.
The models used for simulated-based calibrations are functions of the SNR and the
galaxy size, and the main challenge when designing such calibrations is to assign the
bias to these two parameters. Considering the lensfit algorithm, the separation of
variables between galaxy size and SNR is quite tedious (Miller et al., 2013).

Bayesian inference for noise bias correction was also implemented in Bernstein and
Armstrong (2014), where priors on galaxies and noise characteristics are incorporated
in the measurement process, then the posterior distribution of galaxy shapes (given
the noisy data) are estimated using Bayesian method. The Bayesian method was also
investigated in Miller et al. (2013), also using lensfit to perform shear analysis on the
CFHTLens data, but this method could not independently correct for noise bias and
required calibration with simulations. The main issue of Bayesian inference is that
they usually work for a specified sample with its own properties, so these corrections
are no longer adequate if the selection function is changed.

Empirical noise bias calibrations using observational data were also explored, especially
in Refregier and Bacon (2003). They decomposed galaxy images into shapelets-basis
function, where the coefficients of the shapelets decomposition describe the shape
and orientation of the galaxy. Noise properties are measured from empty sky regions
on observational data, and used to adjust the coefficients of the shapelets decom-
position. However, this method is not fully analytical since the noise bias is not detailed.

In view of all these methods and their associated limitations, we are exploring the
possibility of developing an analytical noise bias calibration, based solely on the received
galaxy image properties. A very recent work described in Li and Mandelbaum (2023)
and Li et al. (2024) called AnaCal also explores an analytical approach to determine
both the shear response and the noise bias correction. The method builds on the Fourier
Power Function Shapelets (FPFS) technique, combined with an auto-differentiation
(AD) method to calculate the second-order noise bias terms. In Li et al. (2024), the
AD capability of JAX (Schoenholz and Cubuk, 2019) was used to calculate the noise
bias correction, improving the previous results presented in Li and Mandelbaum (2023).
This method has been tested on LSST-like simulations, with significant results in
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terms of limiting multiplicative bias.
Analytical calibration has the dual advantage of not being subject to any assumptions
about galaxy distribution or priors, and would also free us from the time-consuming
Monte-Carlo procedures required for simulations. Particularly for next-generation
surveys, the pour mil limit requires millions of galaxies for each point. The analytical
noise bias calibration developed within this thesis is described in the next sections.

6.2 Analytical prediction of ellipticity noise bias
The noise bias of moment measurements can be traced down to the noise affecting
the used image. However, in the context of several exposures of the same field, one
improves the overall moment measurements by imposing a common position on all
images, using some astrometric solutions. Is is then useful to consider separately the
contribution to the noise bias of moments arising from position uncertainty, from
those related to image pixels, because the position is not necessarily extracted from
the same pixels as the moments. If we have 10 images of the same galaxy, we can
choose to measure the shear on the last one, while the position has been determined
by averaging the centroid measurements done on the other nine. In this case, there
is no covariance between position and image, hence the importance of being able to
separate these two variables. Moments can vary from image to image (because the
PSF varies), while position should not. This more general setting also covers the case
of a single image used to measure both position and moments.

As we measure the galaxy’s position directly on the received - and noisy - image, it
creates a bias in the second moments’ calculation, as it was introduced in 6.1.2. This
position is indeed re-injected into the pixel coordinates and the weight function W
(see formula 4.8). This also introduces a bias in the flux measurement.
In this section, we will evaluate the possibility of establishing a noise bias correction
using analytical formulas from the second order terms of the moments.

6.2.1 Analytical formula of position variance
When the image is affected by the noise, we can describe it as the sum of the original
galaxy image and a noise image (that we call n). We assume that the pixels are
affected by independent noise and that the noise is stationary :

Cov(ni , nj) = δijσ
2

with E [n] = 0.

The first thing we need to calculate is the variance of the position x0, as it’s in-
volved in most of the terms in the global noise bias correction.

The position x0 is estimated by canceling:

f (x0, I) =
∑

(xi − x0)W (xi − x0)Ii (6.1)
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where the sum runs over pixels, I is the image and W the weight function. The same
calculation is done for y0 be replacing (xi − x0) by (yi − y0). We will then continue to
refer at xi and x0 as 2D position vectors including [xi , yi ] and [x0, y0].

In order to evaluate the effect of image noise on the position estimation x0, we
should calculate :

∂x0

∂Ii
= −∂f

∂Ii

[
∂f
∂x0

]−1

(6.2)

where the expression on the right comes from the implicit function theorem.

We assume a Gaussian weight function :

W (x − x0) = e− 1
2 (x−x0)T M−1

W (x−x0) (6.3)
and its derivative with respect to x0 :

dW
dx0

= M−1
W (x − x0)W (x − x0) (6.4)

We have :
∂f
∂Ii

= (xi − x0)Wi (6.5)

∂f
∂x0

= −
∑

WI + M−1
W
∑

(xi − x0)(xi − x0)T WI

= −F1 + M−1
W M∗

PF
(6.6)

with F the flux, i.e. the sum over the pixels of WI , and M∗
P = MP/F (P being the

product between I and W ).
By replacing 6.5 and 6.6 in 6.2, we therefore have :

∂x0

∂Ii
= 1

F [1 − M−1
W MP ]−1(xi − x0)Wi

= K (xi − x0)Wi

(6.7)

with MW the second moment of W and MP the second moment of P.

The noisy second moments can be re-expressed as follows :
M =

∑
(xi − x0 − δx0)(xi − x0 − δx0)T W (xi − x0 − δx0)(Ii + ϵi) (6.8)

where ϵ is the noise image of variance σ2
noise and :

δx0 = ∂x0

∂Ii
ϵi

= K (xi − x0)Wiϵi

(6.9)

We can then express the variance V of x0 :

V = σ(ϵi)2∑ ∂x0

∂Ik
∂xT

0
∂Ik

= σ2
noiseK

∑
(xk − x0)(xk − x0)T W 2

k K
= σ2

noiseKMW 2K

(6.10)
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6. Realistic shear estimations : noisy simulations

with MW 2 the second moments of W 2.

The analytical formula for the position variance is finally :

V = σ2
noiseKMW 2K (6.11)

In order to test the validity of the analytical position variance from equation 6.11,
we compared it with the numerical variance calculated using simulations. Two tests
were performed : comparisons between position variance and SNR, and between
position variance and ellipticity. Numerically, x0 and y0 are determined by minimizing
equation 6.1, the minimization target being 10−4. This value represents a compromise
between calculation time and accepted uncertainty on position variance. As the latter
is measured in arcsec, a limit higher than 10−4 (e.g. 10−3) creates an offset between
the analytical prediction of the variance and the numerical value.

We performed all the tests with an average of N = 104 galaxies for each point,
with Gaussian galaxies, PSF and weight function. The galaxies’ σ is 0.4 arcsec, and
PSF’s σ is 0.34 arcsec (which corresponds to FWHM = 0.8 arcsec). The noise image
added to the noise-free simulation is generated using a normal distribution, with σ
going from 3.0 to 6.0 (which corresponds to SNR∼35 and SNR∼17.5) for the first
test (see figure 6.3). It is fixed to 5.0 for the changing ellipticity tests (see figures 6.4
and 6.5), and the ellipticity parameters are varying between -0.3 and 0.3.
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Figure 6.3: Comparison between the analytical prediction and the numerical measurement
of the position variance as a function of the signal-to-noise ratio. The averaging from the
numerical calculation was done over 104 round galaxies.
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6.2. Analytical prediction of ellipticity noise bias

In figure 6.3, we see, not surprisingly, that position variance (Vx and Vy for the x0
and y0 variances respectively) increases as SNR decreases, with a value of the order of
0.0015 for SNR ∼ 20, which is the limit value set in LSST where most objects are
observed. The residuals (here the absolute difference between the numerical and the
analytical values of the quantity under consideration) are between 0 and 5 × 10−5,
corresponding to differences between 0.05% and 3.2%. The errors for the variances
are calculated as follows : σk = Vk

√
2/N , with Vk corresponding to Vx or Vy .

It is also interesting to see how the variances evolve with the ellipticity, as we saw in
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Figure 6.4: Comparison between the analytical prediction and the numerical measurement
of the position variance as a function of e1 (left) and e2 (right) for SNR = 21.

figure 6.2 that the noise bias increases with ellipticity. We investigated three cases :
e1 varying only, e2 varying only, and e1 and e2 varying simultaneously.
In figure 6.4 left, we see that both Vx and Vy are evolving together with opposite
trends, with Vx low and Vy high for negative values of e1, and vice versa. This result is
fairly logical since the ellipticity is elongated along the y axis when e1 is negative (see
figure 2.7). We see however on the right panel that Vx and Vy are evolving the same
way when e2 is changing. A distortion with respect to e2 makes the galaxy oriented at
±45°, which involves both axis x and y at the same time.

We see that the variance is higher when only e1 is varying (V ∼ 0.0025 for the
extremal ellipticity values) than for e2 (V ∼ 0.0017), probably because the distortion is
equally distributed along x and y in this last case, so the elongations are less important
for both axes than with e1 only.
When e1 only is varying, the residuals are going from 0.1% to 3%, and when e2 only
is varying, the residuals are going from 0.04% to 3.2% both for Vx and Vy .

For the last test where e1 and e2 vary at the same time (see figure 6.5), we see
that the position variance tendency is a combination of the two previous ones, when
only one parameter is changing. The highest values of these variances are reaching
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6. Realistic shear estimations : noisy simulations

∼0.003 for the extremal ellipticity values, and the residuals vary between 0.1% and
3% both for Vx and Vy .
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Figure 6.5: Comparison between the analytical prediction and the numerical measurement
of the position variance as a function of the ellipticity (e1 and e2 varying simultaneously,
with SNR = 21).

6.2.2 Analytical expression of the flux noise bias
Because we are working with normalized second moments, we also need to calculate
the noise bias contribution to the image’s flux. This formula will then be used to
correct the norm of the second moments.

The flux is defined as follows :
F =

∑
k

Wk Ik (6.12)

Once again, we need to calculate both the second derivative with respect to x2
0 and

the second cross-derivative with respect to x0 and I .

For greater clarity, we will use Greek indices to index the coordinate axes, and
the 2-vector (xk − x0) is replaced by x k for brevity. The index k runs over image pixels.

To evaluate the bias, we will need to contract the expressions with the variance
V of x0 and with the covariance between x0 and Ik , named C .
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6.2. Analytical prediction of ellipticity noise bias

We have :

Cov(x0γ, x0δ) = σ2(KM2(W 2)K )γδ ≡ Vγδ

Cov(x0γ, Ik) = σ2Kγρx k
ρ Wk ≡ Cγk

The bias associated to the position x0 only is written :

2B1 = ∂2F
∂x0γx0δ

Vγδ

= Vγδ

∑
k

Wk,γ,δIk

= Vγδ

∑
k

−δϵδM−1
W γϵWk Ik + x k

ϵ M−1
W γϵM−1

W δηx k
η Wk Ik

= Vγδ(−M−1
W γδF + (M−1

W mPM−1
W )γδ)

= −F Tr(M−1
W V ) + Tr(M−1

W mPM−1
W V )

where mP is the un-normalized second moments of WI . We use ∑ij AijBji = Tr(AB).
The cross-derivative term gives :

B2 = ∂2F
∂x0γ Ik

Cγk

= M−1
W γϵ

∑
k

x k
ϵ WkKγρx k

ρ Wk

= M−1
W ϵγKγρM2(W 2)ρϵ

= Tr(M−1
W KM2(W 2))

Finally, the total flux bias is defined as :

BF = B1 + B2 (6.13)

The contributions to B1 and B2 to BF are shown in figure 6.6.

To test the validity of the flux noise bias BF , we will compare it to numerical
bias from simulation, in the manner of the position variance. We averaged over
N = 105 galaxies for each point, with the same random and opposite pairs of intrinsic
ellipticities procedure to cancel the shape noise. The parameters of the simulations
are similar to the ones of the position variance’s tests, i.e. Gaussians galaxies with a σ
= 0.4 and Gaussian PSF with σ = 0.34. The noise image is also generated using a
normal distribution, with σ going from 3.0 to 5.0 (which corresponds to SNR=32 and
SNR=21). For all the following plots, the errors are calculated using : σk =

√
Vk/N ,

where Vk is the variance of the quantity under consideration.
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6. Realistic shear estimations : noisy simulations

Figures 6.7 and 6.8 show on the top panel the difference between the flux measured
on the noisy image and the true flux in blue, the analytical prediction of the noise
bias BF in red, and the residuals on the bottom panel. In figure 6.7, the analytical
prediction was calculated from noise-free simulations, while it was calculated using the
noisy images in figure 6.8, as it should be done in realistic conditions. We see that
there is no big difference between the two approaches.
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Figure 6.6: Contributions of B1 and B2 in the flux noise bias for a round galaxy.
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Figure 6.7: Comparison between the analytical prediction and the numerical measurement
of the image’s flux as a function of the SNR. The noise bias correction was calculated on
the noise-free simulations
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Figure 6.8: Comparison between the analytical prediction and the numerical measurement
of the image’s flux as a function of the SNR. The noise bias correction was calculated on
the noisy simulations

6.2.3 Analytical expression of the second moments noise bias
The second moment is not a linear function of the data, i.e. the image’s pixels, due to
the x0 dependency of the weight function W and reduced coordinates (x −x0)(x −x0)T .
The bias affecting the second moments can be estimated by evaluating the second
derivatives of the moment with respect to the image, considering the dependence of
the position x0 on the image :

mP(I + n) = mP(I) +
∑

k

∂mP

∂Ik
nk + ∂mP

∂x0
δx0

+ 1
2
∑
kl

∂2mP

∂Ik∂Il
nknl +

∑
k

∂2mP

∂Ik∂x0
nkδx0 + 1

2
∂2mP

∂x2
0
δx0δx0

+ ... (6.14)

As we are evaluating the average over an ensemble of realizations, and we assume
the mean of the noise to be zero, the linear terms involved in the second moments
derivative disappear. It is only necessary to calculate the quadratic terms, in other
words ∂2mP/∂x2

0 and ∂2mP/∂Ik∂x0. Because the image is linear, the second derivative
of the moments with respect to I2

k cancels out.
We should keep in mind that higher order terms may contribute a bias, but the next
contribution scales as SNR−4 and is hopefully negligible. If it is not, Monte-Carlo
tests should indicate it clearly, because of the specific SNR dependence.
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6. Realistic shear estimations : noisy simulations

There are 4 factors involved in the definition of the second moments mP :
mP

αβ =
∑

k
x k

αx k
β Wk Ik

where xk − x0 has been replaced by xk . We need to calculate the second derivatives
of these terms, the first three factors depending only on x0 and the last only on I .

We define :
x k

α,β ≡ ∂x k
α/∂x0β

= −δαβ

Wk,γ ≡ ∂Wk/∂x0γ

= M−1
W γϵx k

ϵ Wk

Wk,γ,δ ≡ ∂Wk,γ/∂x0δ

= −M−1
W γϵδϵδWk + M−1

W γϵx k
ϵ Wk,δ

= −M−1
W γϵδϵδWk + M−1

W γϵx k
ϵ M−1

W δηx k
η Wk

We have :
∂2mP

αβ

∂x0γ∂x0δ

= T 12
αβγδ + T 13

αβγδ + T 23
αβγδ + T 33

αβγδ (6.15)

where the upper indices of the T ’s refer to the terms to be derived (xα, xβ, Wk or Ik).

With :
T 12

αβγδ ≡
∑

k
(x k

α,γx k
β,δ + x k

α,δx k
β,γ)Wk Ik

= (δαγδβδ + δαδδβγ)F

T 13
αβγδ ≡

∑
k

(x k
α,γx k

β Wk,δ + x k
α,δx k

β Wk,γ)Ik

= −
∑

k
(δαγx k

β M−1
W δϵx k

ϵ + δαδx k
β M−1

W γϵx k
ϵ )Wk Ik

= −mP
βϵ(M−1

W ϵδδαγ + M−1
W ϵγδαδ)

T 23
αβγδ = T 13

βαγδ

T 33
αβγδ ≡

∑
k

x k
αx k

β Wk,γ,δIk

= −M−1
W γδmP

αβ + M4
αβϵη(WI)M−1

W γϵM−1
W δη

where we define the fourth-order moment of an image:
M4

αβϵη(A) =
∑

k
x k

αx k
β x k

ϵ x k
η Ak
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6.2. Analytical prediction of ellipticity noise bias

For the crossed second derivatives of the moment, we write :
∂2mP

αβ

∂x0γ∂Ik
= T 14

αβγk + T 24
αβγk + T 34

αβγk

with

T 14
αβγk ≡ x k

α,γx k
β Wk = −δαγx k

β Wk

(6.16)
T 24

αβγk = T 14
βαγk

(6.17)
T 34

αβγk ≡ x k
αx k

β Wk,γ = x k
αx k

β x k
ϵ M−1

W ϵγWk

We can now contract these expressions with the variance V and covariance C . By
defining T 12

αβ = T 12
αβγδVγδ, we finally find :

T 12
αβ = 2FVαβ

T 13
αβ = −2(VM−1

W mP)αβ

T 23
αβ = T 13

αβ

T 33
αβ = −mP

αβTr(M−1
W V ) + M4(WI)αβϵη(M−1

W VM−1
W )ϵη

We can clarify the expression :

M4
αβϵη(A)Bϵη =

 M4
x4 (A)Bxx +2M4

x3y
(A)Bxy +M4

x2y2 (A)Byy M4
xy3 Byy +2M4

x2y2 (A)Bxy +M4
x3y

(A)Bxx

M4
xy3 Byy +2M4

x2y2 (A)Bxy +M4
x3y

(A)Bxx M4
y4 (A)Byy +2M4

xy3 (A)Bxy +M4
x2y2 (A)Bxx


Terms involving odd moments are only zero in the case where the image A has no xy
moment or the matrix B matrix is diagonal.

We can now calculate the cross-derivative bias including the covariance C :

T 14
αβ =

∑
k

−δαγx k
β Wkσ

2Kγρx k
ρ Wk

= −σ2MW 2,βρKρα

= −σ2(MW 2K )αβ

T 24
αβ = T 14

αβ

T 34
αβ =

∑
k

x k
αx k

β x k
ϵ M−1

W ϵγWkσ
2Kγρx k

ρ Wk

= σ2M4(W 2)αβϵρ(M−1
W K )ϵρ
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6. Realistic shear estimations : noisy simulations

Note that MW 2 represents the second moments of W 2.
For a well-sampled Gaussian weight, the relationship between the fourth-order moments
and the second-order moments of a Gaussian means that 2T 14 = −T 34 and therefore
the cross-derivative terms do not contribute to the bias.

Finally, the total bias (measured second moments minus true second moments)
is written :

BM = 1
2(T 12 + 2T 13 + T 33) + 2T 14 + T 34 (6.18)

Figures 6.9 and 6.10 shows the prediction for e1 and e2 respectively (i.e. the difference
between Bxx

M and Byy
M and 2Bxy

M ). The predictions were calculated on noise-free images,
with exact positions and second moments. We see that the correction is approximately
null when the galaxy is round (as expected because the more a galaxy is round, the
less it is affected by noise bias, see figure 6.2) and goes up to ∼ 10−2 when the galaxy
is elliptical (which represent ∼ 1% of the un-normalized second moments). The fact
that the noise bias prediction is small compared to the moment value is a good thing,
as it means that prediction calculations on noisy images will also be reliable (given
that the moment bias is also of the order of 1%).
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Figure 6.9: Contributions of all the different terms of the numerator of e1 noise bias for a
round galaxy (left) and an elliptical (e1 = 0.2 ; e2 = -0.3) galaxy (right)
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Figure 6.10: Contributions of all the different terms of the numerator of e2 noise bias for a
round galaxy (left) and an elliptical (e1 = 0.2 ; e2 = -0.3) galaxy (right)
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Figure 6.11: Galaxy profile chosen to test the noise bias predictions on ellipticity.

We can now apply these noise bias predictions to the second moments, in order to
correct the ellipticity. We will first check the efficiency of the correction on the three
parameters of the second moments, i.e. Mxx , Myy and Mxy . The seconds moments
are corrected with the prediction BM , and divided by the measured flux (the sum over
the pixel of IW ) corrected by the prediction BF :

Mc = Mmes − BM

Fmes − BF
(6.19)

We performed the simulations over 105 galaxies for each point, for noisy simulations
going from SNR = 20 to SNR = 34. The Gaussian galaxy model used for the simula-
tions has a σ = 0.4 arcsec, and a fixed intrinsic ellipticity of [e1 = 0.3; e2 = −0.3].
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6. Realistic shear estimations : noisy simulations

Because we want to check the noise bias correction on the ellipticity, we don’t want to
cancel the shape noise anymore, for this reason we chose a single intrinsic ellipticity.
The PSF is still fixed to a Gaussian with σ = 0.34 arcsec.

We see in figures 6.12, 6.13 and 6.14 that the three components of second mo-
ments are satisfactorily corrected from the noise bias. Not surprisingly, the bias
affecting Mxx is greater compared to the other second moments terms, which can be
explained by the chosen galaxy ellipticity. As it can be seen in figure 6.11, the galaxy
is more elongated along the x axis, which explains a bigger bias in this direction. We
also saw earlier that the position variance is increasing with ellipticity.

We can now verify the efficiency of the noise bias correction directly on the el-
lipticity components e1 and e2. As a reminder, e1 = Mxx − Myy and e2 = 2Mxy , with
M normalized by the flux. We see in figure 6.15 and 6.16 that e1 and e2 respectively
are well corrected from the noise bias, which was expected given the satisfactory
results of the second moments.
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Figure 6.12: Difference between the true Mxx and the noisy one in blue, and between the
true Mxx and the corrected one in pink.
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Figure 6.13: Difference between the true Myy and the noisy one in blue, and between the
true Myy and the corrected one in pink.
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Figure 6.14: Difference between the true Mxy and the noisy one in blue, and between the
true Mxy and the corrected one in pink.
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Figure 6.15: First parameter of ellipticity e1 calculated from second
moments measured on noisy images without correction (blue) and corrected
thanks to the analytical noise bias prediction (pink).
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Figure 6.16: Second parameter of ellipticity e2 calculated from second
moments measured on noisy images without correction (blue) and corrected
thanks to the analytical noise bias prediction (pink).
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6.3. Analytical prediction of calibration factor noise bias

6.3 Analytical prediction of calibration factor noise
bias

Now that we’ve corrected ellipticity, we also need to calculate the noise bias correction
for the calibration factor R. This implies calculating the second derivatives of the
distorted moments MS involved in the derivatives (equations 6.21, 6.22).
Because the coordinates system is distorted, we can no longer dissociate the un-
normalized moments and the flux corrections, since they are both affected by the
shear, and so correlated. In the next section, we’ll look at attempts to calculate noise
bias analytically on normalized moments, and the limits we face.

6.3.1 Distorted normalized second moments noise bias
For greater clarity, we recall below the equations involved in the definition of R,
introduced in section 4.2.1:

R =

 ∂e1
∂g1

∂e2
∂g1

∂e1
∂g2

∂e2
∂g2

 =

∂Mxx
∂g1

− ∂Myy
∂g1

2∂Mxy
∂g1

∂Mxx
∂g2

− ∂Myy
∂g2

2∂Mxy
∂g2

 (6.20)

where the second moments’ derivatives with respect to the shear ∂M/∂g are defined
numerically :

∂M
∂g1

= M1+ − M1−

2ϵ (6.21)

∂M
∂g2

= M2+ − M2−

2ϵ (6.22)

In the following, we will often refer to the distorted second moments components
using these notations :

• MS : distorted second moments matrix

• M1+ : distorted second moments matrix with +ϵ applied on g1 in the shear
matrix S (can also be M1−, M2+ or M2−, see equation 4.28 for the expression
of S)

• M1+
xx : first component of the distorted matrix M1+ (can also be MS

xy or MS
yy)

Note that all the second moments involved in R are normalized by the flux.

We can re-write equation 4.21 as a function of MS :

R = 1
2ϵ

R11 R12

R21 R22

 (6.23)
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with :

R11 = (M1+
xx − M1−

xx ) − (M1+
yy − M1−

yy ) (6.24)
R12 = 2(M1+

xy − M1−
xy ) (6.25)

R21 = (M2+
xx − M2−

xx ) − (M2+
yy − M2−

yy ) (6.26)
R22 = 2(M2+

xy − M2−
xy ) (6.27)

In order not to overload the notations, we’ll continue to use the same formalism as
the one introduced in section 6.2.3 to calculate the noise bias : we keep mP to define
the un-normalized second moments.

The bias of the quantity mP/F is evaluated here. This is not trivial because the two
quantities have correlated fluctuations that need to be evaluated. The approach is
the same as for moment and flux, but applied to the mP/F combination. Here too,
we need to calculate the second derivatives with respect to x0 and Ik and contract
them with the corresponding variances or covariances. These second derivatives can
essentially be expressed using what we’ve already seen.

The expression of the second derivative of X with respect to two variables x and y is
written :

∂2(mPF −1)
∂x∂y = ∂2mP

∂x∂y F −1 − 1
F 2

[
∂mP

∂x
∂F
∂y + ∂mP

∂y
∂F
∂x

]

− ∂2F
∂x∂y

mP

F 2 + 2mP

F 3
∂F
∂x

∂F
∂y

(6.28)

This expression must be evaluated for (x ,y) equal to (x0,x0), (x0,Ik) and (Ik ,Ik). Terms
involving second derivatives are calculated above. We only develop the products of
first derivatives here :

∂mP
αβ

∂x0γ

= −2δαγ

∑
k

x k
β Wk Ik + M−1

W γϵ

∑
k

x k
αx k

β x k
ϵ Wk Ik

∂F
∂x0γ

= M−1
W γϵ

∑
k

x k
ϵ Wk Ik

∂mP
αβ

∂Ik
= x k

αx k
β Wk

∂F
∂Ik

= Wk

(6.29)

The first two expressions are practically null : On the one hand, ∑k x kWk Ik = 0 is the
definition of the position x0, and on the other hand, the expression of the 3rd-order
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moment ∑k x kx kx kWk Ik is strictly null for an exactly even galaxy, and very weak in
general.
Among the primary derivative products, we still have :

∂mP
αβ

∂Ik
∂F
∂Ik

= x k
αx k

β W 2
k

∂F
∂Ik

∂F
∂Ik

= W 2
k

(6.30)

After removing all canceling terms, the total bias on mP/F is therefore :

BmF −1 = BM

F − BF mP

F 2 − σ2
noise
F 2 M2

W 2 + σ2
noise
F 3 mP

∑
k

W 2
k (6.31)

where BF and BM are the noise bias analytical predictions for the flux (see equation
6.13) and for the un-normalized second moments (see equation 6.18) respectively.

Figure 6.17: Difference between the true MS and the noisy one in blue/purple, and between
the true MS and the corrected one in pink/orange. The numerator (distorted second
moments) and the denominator (flux) are corrected separately using formulas 6.18 and 6.13.
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Figure 6.17 shows the difference between the true and noisy distorted second
moments (xx in blue and yy in purple), and the difference between the true and the
corrected (xx in pink and yy in orange). In these plots, the second moments’ numerator
and denominator are corrected separately using formula 6.18 for the numerator and
formula 6.13 for the denominator, as it was performed for the ellipticity. We see
that even if the corrected moments components are less biased than the uncorrected
ones, separate predictions for the un-normalized moments and the flux are no longer
sufficient. A residual bias still affects the distorted second moments, especially at low
SNR. For this reason, we use therefore the global correction, taking the moments
already normalized by the flux.

The same analysis but using the global correction (formula 6.31) is shown in fig-
ure 6.18. We can see that prediction on the normalized moments corrects noise bias
very well, unlike the separate predictions seen above.

Figure 6.18: Difference between the true MS and the noisy one in blue/purple, and between
the true MS and the corrected one in pink/orange. The normalized distorted moments are
corrected using equation 6.31. Each point is averaged over 5e5 galaxies.
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However, whatever the chosen convention for the correction (separated or global),
we see that none of them correctly corrects the calibration factor R from the noise bias.
Figure 6.19 shows R calculated from the MS corrected with the separate prediction,
and figure 6.20 R calculated from the MS corrected with the global prediction. We
see no big difference between these two analyses, and more than that, the correction
in both cases is at least three times higher than expected. These results suggest that
most of the biases affecting the MS cancel each other out, but the difference always
includes a bias (and/or is over-corrected), whatever the configuration chosen for the
correction.
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Figure 6.19: Difference between the true R and the noisy one in blue, and between the
true R and the corrected one in pink. The noise bias correction was done using equations
6.18 and 6.13. Each point is averaged over 5e5 galaxies.
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Figure 6.20: Difference between the true R and the noisy one in blue, and between the
true R and the corrected one in pink. The noise bias correction was done using 6.31. Each
point is averaged over 5e5 galaxies.

According to figures 6.19 and 6.20, we see that R12 and R21 are not biased. Figure
6.21 shows the differences between true ∆MS , the noisy ∆MS , and the corrected
∆MS . Here we show only the ∆MS involved in R11 and R22 :

∆∗
xx = M1+

xx − M1−
xx (6.32)

∆∗
yy = M1+

yy − M1−
yy (6.33)

∆∗
xy = M1+

xy − M1−
xy (6.34)

We see that, in addition to M2p
xy − M2m

xy , the two differences involved in R11 are also
biased, one positively and the other negatively. Since we subtract them, these biases
add up instead of canceling each other out, as seen in the corrected R11.

No solution has yet been found to explain this over-correction of the distorted second
moments differences. As suggested in the conclusion of section 4, if we can manage
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to perform the moments’ derivatives with respect to the shear in Fourier space by
developing the PSF on analytical functions, some covariances between flux and mo-
ments due to grid distortion may disappear, facilitating the calculation of noise bias
prediction.

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
SNR

1.0

0.5

0.0

0.5

1.0

M
tr

ue
S

M
* S

×10 5

true
xx

noisy
xx

true
yy

noisy
yy

true
xy

noisy
xy

true
xx

corr
xx

true
yy

corr
yy

true
xy

corr
xy

Figure 6.21: Difference between the true ∆MS and the noisy one in faded colors, and
between the true ∆MS and the corrected one in bright colors. The differences involving
the xx terms are in blue, yy in purple and xy in pink. Each point is averaged over 5 · 105

galaxies.

6.4 Conclusion and perspectives
In this section, we introduced the concept of noise bias, its origins and how it can
affect shape and shear measurements.
The usual simulation-based methods used to correct this bias in shear analysis suffer
from limitations, including dependence on modeling assumptions, difficulty in sep-
arating the main parameters involved in bias (galaxy size and SNR), or significant
computation time.
To address this, we attempted to develop a new noise bias correction method based
on analytically-calculated predictions. This method consists in calculating the second-
order terms of the quantities affected by the noise bias, i.e. the un-normalized second
moments, the flux, and the second moments normalized by the flux. We separate the
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second derivatives with respect to x0 and I , as these two variables can be uncorrelated
in real conditions.

As the error in sources position measurement is causing the noise bias (because
the second moments are quadratic functions of position), we first calculated the
analytical position variance prediction. After comparison with simulations, this formula
appears to accurately represent the variance measured numerically.
We then calculated the predictions for the un-normalized second moments and the flux
in order to correct the ellipticity components. Both flux and moments predictions are
correctly correcting their respective quantity, and so these predictions also successfully
correct the ellipticity. This first result is very satisfying and promising, but it is just
the first ingredient to perform a shear analysis.

We then need to perform the same kind of correction for the calibration factor
R , probably because of the pixel grid distortion that correlates the moments and the
flux. However, the separated flux and moments correction no longer works to predict
the noise bias affecting the distorted second moments involved in R . We therefore used
a global noise bias prediction where the second-order terms were calculated directly on
the normalized moments. But even if this new prediction better corrects the distorted
moments, their differences suffer from a residual bias, or an over-correction. Hence,
the calibration factor is not well corrected from noise bias, and the prediction seems
to be three times too high on R11 and R22.
In addition to the possibility of calculating analytical derivatives with respect to shear,
two areas for improvement are being considered to improve the R noise:

• The first one consists in calculating the real analytical second derivatives (maybe
including higher-order terms that are non-trivial) using a Python software like
JAX (Schoenholz and Cubuk, 2019), which allows to do differentiable physics
simulations with primitive operations compiled on CPU, GPU or TPU.

• The second option is to calculate the predictions using numerical derivatives
(similar to the shear derivatives described in section 4.2.1) by artificially inserting
little position offsets before measuring the moments. The main challenge lies in
finding a clever way to calculate the derivative with respect to the image.

The work on the R noise bias prediction is still a work in progress, but all the work
done on developing this new analytical correction method has given very encouraging
and promising results that are worth exploring further.
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Conclusion

Since cosmic shear was first observed in 2000, it has become a key cosmological probe
and promises to deliver exquisite dark energy constraints. Data from future-generation
surveys like Vera C. Rubin Observatory (LSST) will pave the way for precision cosmol-
ogy, with unprecedented coverage and galaxy density.

However, shear is inferred from coherent distortions of galaxy shapes, and the relation
between galaxy ellipticities and gravitational shear is a serious potential source of bias.
To perform precision cosmology analyses, and according to the statistics of future
surveys like LSST, these biases should be tiny : the maximum multiplicative bias
affecting the shear measurement is about 10−3, and the additive one at 10−4. These
biases can have multiple sources, including a poorly calibrated shear estimator, or the
pixel noise affecting the images.

To address the shear estimation method issue, we developed a shear estimator that
makes no assumption on galaxy shapes, in order to avoid the shortcomings of a
simulation-based shear calibration. We based our method on the galaxy images’
weighted second moments to measure their ellipticities, and then rely on a perturba-
tive procedure to relate these ellipticities to shear, given the local PSF. To perform
such a calibration, the idea is to calculate the numerical derivatives of the second
moments with respect to the shear by introducing shear variations into images. We
reap several benefits from this method : (1), using second moments allows us to make
no assumptions about galaxy profiles, (2) as opposed to the state of the art of shear
measurement Metacalibration, the shear distortion are not applied on the original
galaxy image deconvolved from the PSF (such procedure introduces correlated noise)
but to the other terms of the estimator, i.e. the product of the pixel coordinates and
the weight function convolved with the PSF. This global function is more extended and
better resolved than the original image, allowing shear measurement to be performed
on undersampled images (3).

During the development of this estimator, we noticed a bias in the shear measurement,
especially affecting the first parameter g1. Because we are working on sampled im-
ages, the measured second moments receive a contribution from the image sampling.
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However, we distort the pixel grid in order to introduce the shear variations into the
images that will be used to calculate the numerical derivatives of the second moments.
This coordinate system’s distortion is in fact the source of the observed bias, which
is the result of a cross-effect between shear and sampling. By performing a limited
development of the second moments as a function of shear and sampling, we were
able to isolate the terms responsible for this bias and determine a correction depending
on the galaxy size and PSF profile. One way of improving this method would be to
develop the PSF on a set of eigenfunctions of the harmonic oscillator, in order to
calculate the derivatives analytically in Fourier space. This would probably be a faster
solution, and would perhaps make it possible to get rid of the shear and sampling bias.

We tested this method on different sets of simulations using the GalSim package,
going from very basic galaxy models to realistic profiles from the COSMOS catalog.
The conclusion of all these tests was that the bias affecting the shear estimations was
controlled under the fixed limit of 10−3, for all the tested profiles and with realistic
size ratios values between the galaxy and the PSF. Nevertheless, these estimations
were performed using noise-free simulations, which is another source of bias that we
have to take into account.

Indeed, the pixel noise into the received images is introducing a bias, particularly
for the low-SNR samples (which will dominate the LSST catalog because of their
high redshift and faint surface brightness), and which increases with ellipticity. This
bias comes from the noisy measurement of the galaxy position that we re-inject into
the pixel coordinates of our system, and that we use to center the weight function.
Usually corrected thanks to simulated-based calibrations, these methods suffer from the
hypothesis made to generate the simulations and from heavy Monte Carlo procedure.
Another part of this thesis was to try to develop an analytical correction to this
noise bias by calculating the second order terms of the moments’ Taylor expansion,
which are affected by the noise. We achieved fairly satisfying results for the ellipticity
calibration following this method, by calculating two separate corrections for the
moments and for the flux (by which we normalize the moments). Although this is
sufficient for ellipticity, this no longer works for the calibration factor because of its
dependency on second moments calculated on a distorted pixel grid, which introduced
a correlation between them and the flux. We calculated the noise bias directly on
the normalized second moments, but we didn’t achieved a correction as good as for
the ellipticity. We investigated several hypothesis, including the distortion of some
terms resulting from the cross derivative between the position and the image, but the
results were not conclusive. This method is nonetheless promising, and prospects for
further improvements are envisaged : either calculating the exact derivative maybe
including higher order terms that we neglected using a Python software (like JAX), or
to perform numerical derivatives for the noise bias prediction.

Despite the limitations we have faced and the prospects for improvements, the
work carried out during this thesis is a step forward for future shear analyses on data
from surveys such as LSST, enabling us to make per mil estimations and enter the
era of precision cosmology.
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A

Equivalence between adaptive moments
and model fitting

We mentioned in section 4.1 that adaptive moments are mathematically equivalent to
finding an elliptical Gaussian giving the best least-squares unweighted fit of the galaxy
image. Here we will develop the mathematical proof for this equivalence.

The least-squares are expressed via the χ2 :

χ2 =
∑

p

(
I − fe− 1

2 XT M−1X
)2

(A.1)

where I is the galaxy image, f the flux, X the pixel coordinates (equal to x − x0) and
M the elliptical Gaussian second moments we have to fit. We sum over the pixels p.
The flux is defined as follows :

f =
∑

p
WpIp (A.2)

We define W as :
W (X ) = e− 1

2 XT M−1X (A.3)
To find the best least-squares, we need to minimize ∂χ2/∂M−1 :

∂χ2

∂M−1 = − f
2X T XW (I − fW ) = 0 (A.4)

So we need to find W that satisfies :

x0 = 1
f
∑

p
xWpIp (A.5)

and : ∑
p

X T XWpIp = f
∑

p
X T XW 2

p

M = 2
f
∑

p
X T XWpIp

(A.6)
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A. Equivalence between adaptive moments and model fitting

by posing ∑p X T XW 2
p = M/2 (which is true for a well-sampled image).

This is exactly the same result as the one defined in the adaptive moments method
(see Hirata and Seljak (2003)).

This solution was appreciated for its simplicity and ease of convergence, given rea-
sonable assumptions on flux, centroid and moments values. It converges very quickly
(less than a millisecond) for well-sampled images.
This moments’ measurement method is also the one implemented in Galsim.
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B

Optimal weight function size

In section 4.1.2, we introduced the importance of choosing the optimal weight function
in our second moments formalism. This weight function is introduced to optimize the
measurements at low SNR, avoiding infinite variance from divergent noise.
Here we detail the calculation of the optimal weight function for a round galaxy
without seeing. A slightly different proof is provided in BJ02.

We define the image I as a function of r 2 = x2 + y 2 :

I(x , y) = f (r 2) (B.1)

The shear matrix that defines the distortion applied on a galaxy (in other words to its
coordinates system) is written :

S =

1 + γ1 γ2

γ2 1 − γ1

 (B.2)

where γ1 and γ2 are the cosmic shear parameters. Its derivative with respect to γ1 is
therefore :

dS
dγ1

=

1 0

0 −1

 (B.3)

By defining :

∇I =

∂r 2/∂x

∂r 2/∂y

 f ′(r 2) = 2

x

y

 f ′(r 2) (B.4)

we can then write the derivative of I(S , X ) (the distorted image) with respect to γ1 :

d
dγ1

I(S(γ1), X ) =
(

dS
dγ1

X
)T

.∇I

= 2

x

y


T x

y

 f ′(r 2)

= 2(x2 − y 2)f (r 2)

(B.5)
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B. Optimal weight function size

We define M1 as Mxx − Myy (equivalent to e1) :

M1 =
∫

(x2 − y 2)W (x)I(x)d2X (B.6)

The derivative of M1 with respect to γ1 leads to :

∂M1

∂γ1
= 2

∫
(x2 − y 2)W (x)(x2 − y 2)f ′(x2 + y 2)dxdy (B.7)

Because γ1 is small, we can write the first term of M1’s Taylor expansion :

M1 ≃ ∂M1

∂γ1
γ1

= 2γ1

∫
(x2 − y 2)2W (x)f ′(r 2)dxdy

(B.8)

By posing the variance of I : V (I) = n, we can calculate the variance of M1 :

V (M1) = n
∫

(x2 − y 2)2W 2(x)dx (B.9)

Now we want to maximise M1/σ(M1) with respect to W (with σ(M1) the standard
deviation of M1).
We define :

k1(x) ≡ (x2 − y 2)W (x)
k2(x) ≡ (x2 − y 2)f ′(r 2)

(B.10)

We then have :

M1 ∝
∫

k1k2

V (M1) ∝
∫

k2
1

(B.11)

By invoking the Cauchy-Schwarz inequality, we find :
∫

k1k2 ≤
√∫

k1k2

√∫
k1k2 (B.12)

with equality if k1 ∝ k2.
Thus, the maximum of M1/σ(M1) is reached for W ∝ f ′.

If f (r 2) is a Gaussian, it is proportional to an exponential, and so is f ′(r 2). In
other words, we therefore have : W (r 2) ∝ f (r 2).

We can do the same analysis for M2 (i.e. e2), which is only sensitive to γ2 in
case of a round image. The optimization of M2 with respect to γ2 is obtained in the
same way as above, by replacing the factors (x2 − y 2) by (xy). This leads to the same
conclusion : W ∝ f .
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C

Full noise-free shear estimations

In this appendix, all the shear estimations performed on Gaussian, Sersic, Bulge+Disk
and COSMOS galaxies for different TR values and galaxy profiles parameters are shown.

The conditions are similar to the ones detailed in chapter 5 : the PSF and W
FWHM are fixed at 0.8 and 1.0 arcsec respectively, we look at random shear values
between -0.03 and 0.03, and we average over 20 random (and opposite) pairs of
intrinsic ellipticities from -0.3 to 0.3.

We see that at all TR, the multiplicative bias is limited at 0.5 × 10−3 for the Gaussian
- Gaussian combination (see figure C.1). For Gaussian - Kolmogorov, the limit of
m ≤ 10−3 is reached for TR=1.3 (see figure C.2). Finally, this limit is reached at
TR=1.38 for Gaussian - Moffat (see figure C.3).

For the Sersic profiles, we only performed estimations with a Moffat PSF (which is
the more realistic profile). When the Sersic index is n = 1 (i.e. exponential profile),
we reach m ≤ 10−3 for TR=1.48 (see figure C.4). For n = 1.5, the limit is reached
for TR=1.52 (see figure C.5), and for n = 4 (i.e. de Vaucouleurs profile) TR=1.6
(see figure C.6). Although all estimations made on Sersic profiles are quite acceptable,
the progressive shift of the limit in TR as a function of the Sersic index argues for
implementing a SSB correction that takes PSF profile into account, or performing
analytical derivatives of second moments with respect to the shear in order to free
ourselves from the SSB (and its dependence on the PSF model).

Other composite (bulge+disk) profiles have been tested, with different Sersic in-
dex values and disk half-light radius. We see that for a fixed n for the bulge, the
estimations become better if the disk has a larger RH (see figure C.7). All the estima-
tions were performed with a Gaussian PSF.

Finally, we performed shear estimations on other COSMOS images than the one
shown in 5.2.3. Here we only show estimates with a TR for which the limit on m is
satisfied. We see that once again, m ≤ 10−3 is obtained at TR values around 1.6 (see
figures C.8 and C.9), and we need to go to 1.82 for the last profile (see figure C.10).
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C.1 Gaussian galaxies
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Figure C.1: Gaussian galaxies - Gaussian PSF
TR = [1.27 ; 1.56]
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C.1. Gaussian galaxies
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Figure C.2: Gaussian galaxies - Kolmogorov PSF
TR = [1.27 ; 1.57]
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Figure C.3: Gaussian galaxies - Moffat PSF
TR = [1.28 ; 1.58]
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C.2. Sersic galaxies
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Figure C.4: Sersic (n=1) galaxies - Moffat PSF
TR = [1.25 ; 1.64]
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C. Full noise-free shear estimations
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Figure C.5: Sersic (n=1.5) galaxies - Moffat PSF
TR = [1.3 ; 1.73]
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C.2. Sersic galaxies
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Figure C.6: Sersic (n=4) galaxies - Moffat PSF
TR = [1.34 ; 1.68]
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C. Full noise-free shear estimations

C.3 Bulge + Disk galaxies

0.02 0.01 0.00 0.01 0.02 0.03
1.0

0.5

0.0

0.5

g i
 - 

g i
*

×10 5

g1
g2

0.02 0.01 0.00 0.01 0.02 0.03
gi

0.0

0.2

0.4

0.6

0.8

1.0

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

0.03 0.02 0.01 0.00 0.01 0.02 0.03
2

1

0

1

g i
 - 

g i
*

×10 5

g1
g2

0.03 0.02 0.01 0.00 0.01 0.02 0.03
gi

1

0

1

2

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

0.02 0.01 0.00 0.01 0.02

1

0

1

g i
 - 

g i
*

×10 5

g1
g2

0.02 0.01 0.00 0.01 0.02
gi

1.0

0.5

0.0

0.5

1.0

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

0.03 0.02 0.01 0.00 0.01 0.02

2

1

0

1

2

g i
 - 

g i
*

×10 5

g1
g2

0.03 0.02 0.01 0.00 0.01 0.02
gi

0.0

0.5

1.0

1.5

2.0

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

0.02 0.01 0.00 0.01 0.02 0.03

2

0

2

g i
 - 

g i
*

×10 5

g1
g2

0.02 0.01 0.00 0.01 0.02 0.03
gi

1

0

1

2

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

0.02 0.01 0.00 0.01 0.02 0.03

2

0

2

g i
 - 

g i
*

×10 5

g1
g2

0.02 0.01 0.00 0.01 0.02 0.03
gi

0.0

0.5

1.0

1.5

2.0

g i
 - 

g i
* 

/ g
i

×10 3

g1
g2

Figure C.7: Bulge + disk galaxies - Gaussian PSF
(a). bulge : n = 1, disk : RH = 0.8, TR = 1.57
(b). bulge : n = 2, disk : RH = 0.8, TR = 1.5
(c). bulge : n = 2, disk : RH = 1.6, TR = 1.63
(d). bulge : n = 3, disk : RH = 1.4, TR = 1.55
(e). bulge : n = 4, disk : RH = 1.4, TR = 1.5
(f). bulge : n = 4, disk : RH = 1.6, TR = 1.57
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C.4. Cosmos galaxies

C.4 Cosmos galaxies
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Figure C.8: Left panel : COSMOS galaxy n°24966
Right panel : Estimation with Gaussian PSF (TR=1.57)
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Figure C.9: Left panel : COSMOS galaxy n°18884
Right panel : Estimation with Gaussian PSF (TR=1.62)
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C. Full noise-free shear estimations
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Figure C.10: Left panel : COSMOS galaxy n°25630
Right panel : Estimation with Gaussian PSF (TR=1.82)
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