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Introduction

Recent advances in computer vision and statistical learning, particularly in deep learning, have
fostered research in (anatomical) medical imaging in recent years.1. However, it has been reported
that State-Of-The-Art (SOTA) algorithms from computer vision do not necessarily show the same
performance when employed on natural or medical imaging applications [Dufumier et al., 2021a],
and that a simple supervised pre-training from ImageNet, as largely employed for natural images,
does not necessarily work well on medical tasks [Mustafa et al., 2021, Matsoukas et al., 2022, Raghu
et al., 2019, Konz et al., 2022, Konz and Mazurowski, 2024]. The main reasons that have prevented
a simple and naive transfer between natural and medical imaging applications are:

◦ The important “visual” domain gap between natural and medical images (i.e., a 2D image of
a cat is quite different from a 3D volume of a brain).

◦ The different relevant and irrelevant sources of variation (i.e., geometric factors, like size, scale
or location are usually irrelevant discriminative factors for natural images whereas they can
be very important for medical problems).

◦ The link between pixel intensity and physics (e.g., differently from natural images, intensity
values in X-ray or CT scans have a precise anatomical meaning).

◦ The difference in size between the datasets (e.g., ImageNet [Deng et al., 2009] has more than 14
million images whereas medical imaging datasets have usually around 1-2 thousands images).

◦ The more subtle differences distinguishing clinical groups (i.e., a cat is easy to distinguish
from a car for a human eye, whereas identifying a schizophrenic subject from a brain MRI
scan is difficult even for a radiologist).

◦ The prior knowledge about the information content (i.e., prior medical knowledge can en-
rich and/or accurately describe the information content of a medical image and improve the
downstream task performance. Prior knowledge about natural objects is not usually known
or important for the final downstream task.)

Based on that, I have focused my research efforts on developing AI methods that answer specific
needs and constraints of the medical imaging data (e.g., low-data regime, data biases, physical
specificity, lack of labeling data) leveraging clinical knowledge and (healthy) unlabeled data. From
a methodological perspective, my research has followed three main axes (highlighted in Fig.1):

1. Modeling medical knowledge and anatomy and integrating it into machine learning models.
2. Learning compact, relevant and explanatory representations of anatomical imaging data.
3. Transferring anatomical representations between domains (i.e., different modalities, data-sets,

populations) to increase downstream performance (e.g., segmentation, classification, regres-
sion) or to discover new pathological biomarkers.

1In this manuscript, we will always refer to anatomical imaging modalities, in particular CT and MR scans, if
otherwise stated.
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INTRODUCTION

Figure 1: Schematic view of my main three research axes.

In terms of clinical applications, I have only worked with anatomical data, MRI and CT scans, from
the brain, chest, abdomen and pelvic area. Please note that I also had a collaboration with l’Oreal,
where we worked on makeup synthesis and transfer, and thus with natural images of human faces
[Kips et al., 2020, Kips et al., 2021, Kips et al., 2022a, Kips et al., 2022b]. In the following chapters,
I will present some of my work using brain MRI data based on the three clinical applications I have
worked on the most. In the last part of this manuscript, I will describe perspectives related to new
research directions, novel clinical applications and research valorization of previous works.
The first three chapters will be about:

1. Detection of anatomical signatures predictive of brain disorders in collaboration with Neurospin
(CEA).
In this Chapter, I will present new representation learning methods for the identification
of new anatomical biomarkers prognostic of clinical course of psychiatric disorders, such as
schizophrenia, autism and bipolar disorder, and for parsing their heterogeneity.

2. Glioblastoma atlas estimation in collaboration with MAP5 and St. Anne hospital.
In this Chapter, a new framework for estimating a 3D atlas of glioblastoma using MR brain
images will be presented. To reach such a challenging goal, new methods for segmenting and
registering brain MR images with tumors will be presented.

3. Brain white matter tractogram analysis in collaboration with LIX, ENS Paris-Saclay and St.
Anne hospital.
In this Chapter, I will describe a new multi-scale, geometric representation for fast, robust and
reliable processing, comparison and visualization of white matter tractograms of the brain.
Two new segmentation methods, based on symbolic AI and optimal transport, will also be
presented.
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Chapter 1

Detection of anatomical signatures
predictive of brain disorders

This chapter has been published in [Dufumier et al., 2021b, Dufumier et al., 2021c, Dufumier
et al., 2023, Dufumier et al., 2024, Barbano et al., 2023a, Barbano et al., 2023b, Louiset et al.,
2021, Louiset et al., 2024b, Louiset et al., 2024a, Carton et al., 2024] and is based on the PhD
theses of B. Dufumier and R. Louiset, co-directed with E. Duchesnay (NeuroSpin, CEA), and C.
Barbano, co-directed with M. Grangetto (University of Turin) and I. Bloch (Télécom Paris). Part
of the work presented here has also been produced during the Post-Doc of F. Carton.

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Contrastive Learning - a geometric approach . . . . . . . . . . . . . . . . 12

1.3.2 Contrastive Subgroup Discovery . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Contrastive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1 Context
The physio-pathology of mental and neurodevelopmental disorders, like schizophrenia and autism
spectrum disorders, as well as neurodegenerative diseases, like Alzheimer’s disease, is still poorly
understood. Brain disorders can be complex and highly heterogeneous, showing clinical, biological,
and environmental inter-subjects variations [Wolfers et al., 2018], that make their neurobiological
characterization even more challenging. Furthermore, in most cases, there is currently a lack of
objective quantitative measures to guide the clinician in choosing the right therapeutic treatment.

Finding anatomical patterns characterizing a disease could increase our understanding of its
pathological mechanisms and pave the way towards a personalized medicine for brain disorders.
Machine learning, and in particular deep learning (DL), have the potential to automatically learn
such patterns. Indeed, there is now a consensus on the benefit of DL in addressing many medical
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Chapter 1. Detection of anatomical signatures predictive of brain disorders

imaging tasks, such as object detection and image segmentation. However, its performance in single-
subject predictions, based on neuroanatomical data, has not yet achieved the expected results (i.e.,
AUC ≥ 90) [Dufumier et al., 2021a]. Furthermore, recent studies [Schulz et al., 2020, Peng et al.,
2021, Abrol et al., 2021] yielded contradictory results when comparing DL with Standard Machine
Learning (SML) on top of classical feature extraction [Dufumier et al., 2024].

The emergence of large-scale neuroimaging datasets, like UKBioBank [Bycroft et al., 2018],
HCP [Van Essen et al., 2013], ABIDE [Di Martino et al., 2014] and OpenBHB [Dufumier et al.,
2022], gives a unique opportunity for studying the neuroanatomical signatures of such disorders.
However, these datasets contain mostly healthy subjects and there is still a lack of pathological
imaging data. Indeed, most of the current (and past) neuro-anatomical research works presented
results based on a training set composed of less than 2k pathological imaging data. Furthermore,
the study of neurodegenerative and psychiatric disorders involves the use of various data modalities
to better understand the underlying pathological mechanisms, identify biomarkers, and develop ef-
fective treatments. Besides the “prior” clinical and medical knowledge of the disease, as described
in medical and anatomical books, the most used data modalities include: a) several non-invasive
imaging modality, such as Magnetic Resonance Imaging (MRI), Compued Tomography (CT) scans
or electroencephalography (EEG); b) genetic and omics data (e.g., genomics, transcriptomics, pro-
teomics, and metabolomics); c) cognitive and behavioral assessments and d) digital health recordings
(e.g., smartphone apps, wearable devices, and remote monitoring systems). Only by integrating
data from all these modalities, it would be possible to have an holistic view of the disease and
gain a comprehensive understanding of its underlying mechanisms, which could ultimately lead to
improved diagnosis, treatment, and management strategies [Schulz et al., 2024].

1.2 Challenges
When working with medical data in a “clinical” context, the first challenges comprise: the choice
of the acquisition protocol, data quality assessment, data cleaning, data anonymization and harmo-
nization. All these tasks are usually time-consuming and require large and experienced manpower.

To reach a larger scientific community and foster methodological development, well adapted
to the medical imaging problems, large “research” datasets were made available. Differently from
“clinical” datasets, “research” datasets are usually: anonymized, quality checked, accessible and
quite homogeneous. In the following, we will focus solely on “research” datasets, discussing some
of the most important challenges and research questions that we worked on.

Small pathological datasets

The first challenge concerns the small number of pathological samples. In supervised learning, when
dealing with a small labeled dataset, the most used and well-known solution is supervised Transfer
Learning from ImageNet (or other large vision datasets). However, it has been recently shown
that this strategy is useful, namely features are re-used, only when there is a high visual similarity
between the pre-train and target domain (e.g., low Fréchet inception distance (FID)) [Mustafa et al.,
2021, Neyshabur et al., 2020, Raghu et al., 2019, Matsoukas et al., 2022, Li et al., 2024]. This is
not the case when comparing natural and medical images. Furthermore, many medical images, and
in particular brain MRI scans, are 3D volumes, differently from the 2D images of ImageNet. This
entails a great domain gap between the large labeled datasets used in computer vision and medical
images.

Another approach, usually employed when the labeling procedure is complex, time-consuming
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1.2. Challenges

and/or costly, comprises self-supervised learning (SSL) methods. This class of methods leverages
an annotation-free pretext task to provide a surrogate supervision signal for feature learning. Pre-
text tasks should only use the visual information and context of the images and recent examples
comprise: context prediction [Doersch et al., 2015], generative models [He et al., 2022, Donahue
and Simonyan, 2019], contrastive learning [Chen et al., 2020], teacher/student methods [Grill et al.,
2020], information maximization [Zbontar et al., 2021, Bardes et al., 2022]. Nonetheless, these
methods still need large (unannotated) datasets, which should comprise, to reduce the domain gap,
data similar to the ones in the (labeled) target dataset, namely pathological patients. However, the
large majority of images currently stored in hospitals and clinical laboratories belong to healthy
subjects. Indeed, the largest datasets currently available (e.g., UKBioBank [Bycroft et al., 2018]
and OpenBHB [Dufumier et al., 2022]) mostly contain data of healthy subjects. Furthermore, these
datasets usually comprise one or multiple imaging modalities, as well as clinical data, such as age,
gender and weight. The research challenge thus becomes how to leverage large datasets of healthy
subjects and combine the heterogeneous sources of information (i.e., clinical and imaging data) to
improve the diagnostic and understanding of brain disorders.

Figure 1.1: Example of site effect: a simple clustering on imaging features primarily finds the scanner manufacturers.
MRI volumes from ADNI1a (left) and PPMIb (right) datasets are first pre-processed using MRQy [Sadri et al., 2020]
and then mapped to a 2D space using the t-SNE method [Van der Maaten and Hinton, 2008]. Image taken from
[Kushol et al., 2023].
a. https://adni.loni.usc.edu/ b. https://www.ppmi-info.org/

Data biases - site effect

A second challenge concerns the data biases. In our work, we define data biases as the visual patterns
that correlate with the target task and/or are easy to learn, but are not relevant for the target task.
For instance, the site effect in MRI images refers to systematic variations or discrepancies in feature
distributions across different imaging sites, that arise from differences in equipment, protocols, or
settings , and are not related to a disease (i.e., target task) [Bayer et al., 2022]. When working with
MRI samples in a binary classification problem (healthy Vs patients), these spurious differences can
be visually more accentuated, and thus easy to learn, than the relevant differences between the two
classes (see Fig. 1.1). This can result in a biased model, whose predictions majorly rely on the
bias attributes and not on the true, generalizable, and discriminative features. In addition, it has
been shown that neural networks tend to rely on simple and easy-to-learn patterns to make their

9

https://adni.loni.usc.edu/
https://www.ppmi-info.org/


Chapter 1. Detection of anatomical signatures predictive of brain disorders

decisions [Geirhos et al., 2019, Li et al., 2021c]. This means that a network trained on a dataset
comprising images from a single acquisition site might have a drop in performance when being tested
on images from another acquisition sites, as shown in [Wachinger et al., 2021, Glocker et al., 2019].
Furthermore, most classification networks are based on the minimization of the cross-entropy loss,
which can be affected by biases in the data, as shown in [Alvi et al., 2018, Kim et al., 2019, Sagawa
et al., 2019, Tartaglione et al., 2021, Torralba and Efros, 2011], or suffer from noise and corruption
in the labels [Elsayed et al., 2018, Graf et al., 2021].

Several harmonization methods were proposed for multi-site MRI samples. Two of the most
used techniques are two linear mixed models: Linear Adjusted Regression [Wachinger et al., 2021]
and ComBat [Johnson et al., 2007, Fortin et al., 2018, Bayer et al., 2022, Marzi et al., 2024],which
adds a multiplicative non-linear effect on the residual noise. These models generally require to have
access to all imaging sites during training, which might not always been the case and it prevents
a correct analysis of the generalization error on external sites (i.e., not used during training).
Recently, more advanced learning-based methods have started to emerge, which are usually based
on image-to-image translation (IIT) and/or (unsupervised) domain adaptation (DA) techniques.
First methods proposed to translate images across sites using generative deep learning methods.
These methods are mainly based on paired/“travelling heads” datasets [Zhao et al., 2019, Dewey
et al., 2019]. To avoid learning pairwise mappings between sites, which would require learning
N(N − 1) mappings for N sites, a unified but disentangled representation can be learned across
sites [Zuo et al., 2021, Liu and Yap, 2024]. The representation of each image is decomposed into
anatomical content, invariant across sites, and appearance style (e.g., intensity and contrast), which
depends on the site. Generative methods need large training datasets and are difficult to train and
validate since there is still a lack of metrics that can accurately evaluate the quality of generated
MR images and that are broadly accepted by the medical scientific community.

Other authors have proposed to avoid generating images and directly learn a scanner-invariant
representation, thus having a single network for all sites. Different strategies have been proposed
based, for instance, on variational autoencoders (VAE) [Moyer et al., 2020] and domain adapta-
tion techniques [Dinsdale et al., 2021]. These strategies are always based on a (hidden) implicit
hypothesis to drive the disentanglement between site-invariant anatomical content, which should
be relevant to the downstream task, and the spurious information specific to each site. For in-
stance, the disentanglement can be driven by the reconstruction error [Moyer et al., 2020] or by a
domain classifier [Dinsdale et al., 2021]. In both cases, the optimization loss, network architecture
and training procedure can be difficult to choose and might not be adapted to the subtle imaging
patterns characterizing brain disorders. Furthermore, differently from the previous IIT methods,
these strategies are trained for a specific downstream task and can not be used in a generic context.
Indeed, IIT methods can be employed as pre-processing to transform all images to a specific site
and then run any algorithm (e.g., segmentation, regression, classification) trained on images from
that specific site.

Mental disorders are heterogeneous

In psychiatry, mental disorder diagnoses are typically established through a combination of inter-
views, questionnaires, and observations. These evaluations are designed to ascertain the presence,
severity, frequency, and duration of psychiatric symptoms, which are subsequently linked to spe-
cific mental disorders according to standardized classification systems, such as the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) [American Psychiatric Association and American
Psychiatric Association, 2013] or the International Classification of Diseases (ICD-11) [Harrison
et al., 2021]. Even if these systems are constantly modified to refine the etiology of mental disor-
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1.3. Contributions

ders, they still exhibit significant heterogeneity in their symptoms presentations. This has raised
concerns about the reliability of a nosology only based on the assessment of exterior cognitive,
behavioral, emotional, and physical symptoms [Insel and Quirion, 2005]. There is a need for quan-
titative, consistent and reliable biomarkers based on the anatomy and functioning of the brain that,
together with current behavioral and cognitive assessments, could improve the definition of mental
disorders. In particular, we could better parse their heterogeneity and thus pave the way towards
a more accurate therapeutic strategy.

Existing methods can be divided into two groups, based on their underlying hypothesis about
the pathological heterogeneity: categorical (i.e., subtypes) or continuous (i.e., dimensional). The
former assumes that pathological subtypes form distinct clusters in the feature space, well separated
among them and from the healthy population. The second group of methods assume instead that
there is a continuum between the healthy population and the different subtypes, and it focuses on
estimating the (latent) feature dimensions that better describe the pathological heterogeneity.

Finding consistent and reproducible subtypes within a mental disorder is complex since the most
important anatomical variations within a pathology are shared with the normal, healthy popula-
tion. This means that using a standard clustering algorithm, such as K-means, within pathological
patients might result in clusters that actually reflect the healthy inter-individual heterogeneity,
possibly due to confounds variables, such as age or sex.

When the effect of confounds variables is known, residualization methods may be used [Wachinger
et al., 2021, Fortin et al., 2018, Glocker et al., 2019]. These approaches aim at producing neuro-
anatomical features that are not driven by aging or gender, for example. However, they are usually
based on simplistic assumptions, such as a linear relationship between confounding factors and input
features, and it is usually hard to know all confounding variables a priori. This can thus produce
pathological subtypes that, even if they are based on covariate-adjusted neuroanatomical features,
still exhibit variations shared with healthy subjects, as shown in [Iftimovici, 2021].

Another technique that can be used to parse the anatomical heterogeneity is normative modeling
[Marquand et al., 2016, Marquand et al., 2019]. It first estimates a normative (i.e., reference) model
of the healthy population with respect to pre-selected covariates, and then infer the deviation
indices of the patients for each covariate. These deviation indices (or z-scores) can be further used
as features to analyze the inter-individual heterogeneity not driven by the chosen covariates and
thus identify pathological subtypes. However, as for residualisation methods, normative models are
based on known covariate variables and they can not automatically reduce the dimensionality of
the input data.

Instead than disregarding confounding covariates, that are not necessarily known or available,
pathological heterogeneity can be parsed by contrasting it with the general, healthy population
variability. In the following, we will discuss how this new perspective, combined with the learning
capacity of deep learning, can be adapted for both hypotheses: categorical and continuum.

1.3 Contributions
In this Chapter, our main contributions are:

1. A geometric approach for contrastive learning that can be used in all settings: unsupervised
(i.e., no labels), supervised (i.e., class labels) and weakly-supervised (i.e., weak attributes
or regression). It is well adapted to integrate prior information, such as weak attributes or
representations learned from generative models, and can thus be used to learn a representation
of the healthy population by leveraging both clinical and imaging data.
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Chapter 1. Detection of anatomical signatures predictive of brain disorders

2. Based on the proposed geometric approach, we show why recent contrastive losses (InfoNCE,
SupCon, etc.) can fail when dealing with biased data and derive a new supervised contrastive
loss and debiasing regularization loss, that work well even with extremely biased data.

3. Two Contrastive Subgroup Discovery methods, entitled UCSL and Deep UCSL. By contrasting
controls with patients, we identify subgroups that stem only from the pathological variability
specific to the disease, while disregarding the common variability shared with the controls.

4. Three new Contrastive Analysis methods based on: Variational AutoEncoders (VAE), Gen-
erative Adversarial Network (GAN) and Contrastive Learning.

1.3.1 Contrastive Learning - a geometric approach
Let x ∈ X be an original sample (i.e., anchor), x+

i a similar (positive) sample, x−
j a dissimilar (neg-

ative) sample and P and N the number of positive and negative samples respectively. Contrastive
learning methods look for a parametric mapping function f : X → Sd−1 that maps “semantically”
similar samples close together in the representation space (a (d-1)-sphere) and dissimilar samples
far away from each other. Once pre-trained, f is fixed and its representation is evaluated on a
downstream task, such as classification, through linear evaluation on a test set. In general, positive
samples x+

i can be defined in different ways depending on the problem: using transformations of
x (unsupervised setting) [Chen et al., 2020], samples belonging to the same class as x (supervised)
[Khosla et al., 2020] or with similar image attributes of x (weakly-supervised) [Dufumier et al.,
2021c, Dufumier et al., 2023, Barbano et al., 2023a]. The definition of negative samples x−

j varies
accordingly.

We define s(f(a), f(b)) as a similarity measure (e.g., cosine similarity) between the representation
of two samples a and b. Please note that since ||f(a)||2 = ||f(b)||2 = 1, using a cosine similarity is
equivalent to using a L2-distance (d(f(a), f(b)) = ||f(a) − f(b)||22).
Similarly to [Chopra et al., 2005, Hadsell et al., 2006, Schroff et al., 2015, Sohn, 2016, Wang et al.,
2014, Wang et al., 2019, Weinberger and Saul, 2009, Yu and Tao, 2019], we propose to use an ϵ-
margin metric learning approach, which allows us to better formalize recent contrastive losses, such
as InfoNCE [Chen et al., 2020, Oord et al., 2018], InfoL1O [Poole et al., 2019] and SupCon [Khosla
et al., 2020], and derive new losses that better approximate the mutual information. Probably the
simplest contrastive learning formulation is looking for a mapping function f such that the following
ϵ-condition is always satisfied:

d(f(x), f(x+))︸ ︷︷ ︸
d+

− d(f(x), f(x−
j ))︸ ︷︷ ︸

d−
j

< −ϵ ⇐⇒ s(f(x), f(x−
j ))︸ ︷︷ ︸

s−
j

− s(f(x), f(x+)︸ ︷︷ ︸
s+

≤ −ϵ ∀j (1.1)

where ϵ ≥ 0 is a margin between positive and negative samples and we consider, for now, a single
positive sample x+. If we also considered a single negative sample x−, we would obtain the triplet
contrastive loss, that was initially used in [Weinberger and Saul, 2009, Wang et al., 2014, Schroff
et al., 2015] to extend the pairwise contrastive loss [Chopra et al., 2005, Hadsell et al., 2006].

Derivation of InfoNCE

The constraint of Eq. 1.1 can be transformed in an optimization problem using, as it is common in
contrastive learning, the max operator and its smooth approximation LogSumExp:
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1.3. Contributions

s−
j − s+ ≤ −ϵ ∀j

arg min
f

max(0, {s−
j − s+ + ϵ}j=1,...,N) ≈ arg min

f
− log

(
exp(s+)

exp(s+ − ϵ) +∑
j exp(s−

j )

)
︸ ︷︷ ︸

ϵ−InfoNCE

(1.2)

Please note that another loss could be arg minf
∑N
j=1 max(0, s−

j − s+ + ϵ), which is a lower-bound
of Eq.1.2. When these losses are equal to 0 (i.e., minimized), the conditions s−

j − s+ ≤ −ϵ are
fulfilled ∀j. Furthermore, we can notice that when ϵ = 0, we retrieve the InfoNCE loss, also known
as N-Pair loss [Sohn, 2016], whereas when ϵ → ∞ we obtain the InfoL1O loss. It has been shown
in [Poole et al., 2019] that these two losses are lower and upper bound of the Mutual Information
I(X+, X) respectively:

E
(x,x+)∼p(x,x+)
x−

j ∼p(x−)

log exp s+

exp s+ +∑
j exp s−

j︸ ︷︷ ︸
InfoNCE

 ≤ I(X+, X) ≤ E
(x,x+)∼p(x,x+)
x−

j ∼p(x−)

log exp s+∑
j exp s−

j︸ ︷︷ ︸
InfoL1O

 (1.3)

By changing the value of ϵ ∈ [0,∞), one might find a tighter approximation of I(X+, X) since the
exponential function at the denominator exp(−ϵ) monotonically decreases as ϵ increases.

Inclusion of multiple positives

The inclusion of multiple positive samples (s+
i ) can lead to different formulations. Some of them

can be found in [Barbano et al., 2023b]. One of the simplest is:

s−
j − s+

i ≤ −ϵ ∀i, j∑
i

max(−ϵ, {s−
j − s+

i }j=1,...,N) ≈ −
∑
i

log
(

exp(s+
i )

exp(s+
i − ϵ) +∑

j exp(s−
j )

)
(1.4)

It’s interesting to notice that Eq. 1.4 is similar to Lsup
out , which is one of the two supervised contrastive

losses (SupCon) proposed in [Khosla et al., 2020], but they differ for a sum over the positive samples
at the denominator. The Lsup

out loss, presented as the “most straightforward way to generalize”
the InfoNCE loss, actually contains another non-contrastive constraint on the positive samples:
s+
t − s+

i ≤ 0 ∀i, t1. Fulfilling this condition alone would force all positive samples to collapse
to a single point in the representation space, thus loosing the intra-class variability that could be
important for the downstream task. As shown in Table 1.1, the proposed loss, called ϵ-SupInfoNCE
and presented in Eq. 1.4, outperforms all other losses in a supervised setting. In particular, it
performs better than SupCon (i.e., Lsup

out ). We conjecture that the lack of the non-contrastive term
leads to an increased robustness. Further considerations and results can be found in [Barbano et al.,
2023b].

Debiasing with FairKL

Satisfying the ϵ-condition can generally guarantee good downstream performance. However, it does
not take into account the presence of biases (e.g., data or selection biases). A model could therefore
take its decision based on certain visual features that are correlated with the target downstream

1we call it non-contrastive since it does not take into account negative samples but only positive ones
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Chapter 1. Detection of anatomical signatures predictive of brain disorders

Dataset Network SimCLR Max-Margin SimCLR* CE* SupCon* ϵ-SupInfoNCE*
CIFAR-10 ResNet-50 93.6 92.4 91.74±0.05 94.73±0.18 95.64±0.02 96.14±0.01

CIFAR-100 ResNet-50 70.7 70.5 68.94±0.12 73.43±0.08 75.41±0.19 76.04±0.01

ImageNet-100 ResNet-50 - - 66.14±0.08 82.1±0.59 81.99±0.08 83.3±0.06

Table 1.1: Accuracy on vision datasets. SimCLR and Max-Margin results are taken from [Khosla et al., 2020].
Results denoted with * are (re)implemented with mixed precision due to memory constraints.

(a) (b) (c)

Figure 1.2: In a) we show a visual explanation of ϵ-SupInfoNCE. We aim at increasing the minimal margin ϵ,
between the distance d+ of a positive sample x+ (+ symbol inside and yellow color) from an anchor x and the
distance d− of the closest negative sample x− (− symbol inside and blue color). By increasing the margin, we can
achieve a better separation between positive and negative samples. In b) and c), we show two different scenarios
without margin (b) and with margin (c). Filling colors of datapoints represent different biases. In both b) and c)
the contrastive conditions are fulfilled and thus the loss is minimized (i.e., positives are closer to the anchor than
the negatives). However, we observe that, without imposing a margin, biased clusters might appear containing both
positive and negative samples (b). This issue can be mitigated by increasing the ϵ margin (c).

task but don’t actually characterize it. This means that the same bias features would probably have
a worse performance if transferred to a different dataset (e.g. different acquisition sites or protocol
or image quality). Specifically, in contrastive learning, this can lead to settings where we are still
able to minimize a contrastive loss, but with a biased representation and thus (probably) degraded
classification performance (see explanation in Fig. 1.2).

(a) Anchor x (b) Bias-aligned x+,b (c) Bias-conflicting x+,b′

Figure 1.3: Biased MNIST [Bahng et al., 2020]. A positive bias-aligned sample x+,b is semantically similar (positive)
to the anchor (same digit) but it has also the same bias b (yellow color). A positive bias-conflicting sample shares
the same digit but it has a different bias b′(different color). Here, the color is defined as a data bias since it’s a visual
feature that is correlated with the semantic content related to the target task (digit recognition), but it doesn’t
characterize it.

To formally explain and tackle the bias problem, we employ the notion of bias-aligned sample x·,b

and bias-conflicting sample x·,b′ , as in [Nam et al., 2020]. Using the biased MNIST example [Bahng
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et al., 2020] in Fig.1.3, a bias-aligned sample shares the same bias attribute b (here color) of the
anchor, while a bias-conflicting sample has a different bias attribute b′. Here, we assume that the
bias attributes are either known a priori or that they can be estimated using a bias-capturing model,
such as in [Hong and Yang, 2021].

Given an anchor x, if the bias is “strong” and easy-to-learn, a positive bias-aligned sample x+,b

will probably be closer to the anchor x in the representation space than a positive bias-conflicting
sample (of course, the same reasoning can be applied for the negative samples). This is why, even
in the case in which the ϵ-condition is satisfied and the ϵ-SupInfoNCE is minimized, as in Fig. 1.2c,
we could still be able to distinguish between bias-aligned and bias-conflicting samples. Hence, we
say that there is a bias if we can identify an ordering on the learned representations, such as:

d(f(x), f(x+,b
i ))︸ ︷︷ ︸

d+,b
i

< d(f(x), f(x+,b′

k )︸ ︷︷ ︸
d+,b′

k

≤ d(f(x), f(x−,b
t ))︸ ︷︷ ︸

d−,b
t

−ϵ < d(f(x), f(x−,b′

j ))︸ ︷︷ ︸
d−,b′

j

−ϵ ∀i, k, t, j (1.5)

This represents the worst-case scenario, where the ordering is total (i.e., ∀i, k, t, j). Of course, there
can also be cases in which the bias is not as strong, and the ordering may be partial.
To tackle this issue,we proposed in [Barbano et al., 2023b] the FairKL regularization technique: a
set of debiasing constraints that prevent the use of the bias features within the proposed metric
learning approach.

Ideally, we would enforce the conditions d+,b′

k − d+,b
i = 0 ∀i, k and d−,b′

t − d−,b
j = 0 ∀t, j,

meaning that every positive (resp. negative) bias-conflicting sample should have the same distance
from the anchor as any other positive (resp. negative) bias-aligned sample. However, in practice,
this condition is very strict, as it would enforce uniform distance among all positive (resp. negative)
samples. A more relaxed condition would instead force the distributions of distances, {d·,b′

k } and
{d·,b

i }, to be similar. Here, we propose two new debiasing constraints for both positive and negative
samples using either the first moment (mean) of the distributions or the first two moments (mean
and variance). Using only the average of the distributions, we obtain:

1
Pa

∑
i

d+,b
i − 1

Pc

∑
k

d+,b′

k = 0 ⇐⇒ 1
Pc

∑
k

|s+,b′

k | − 1
Pa

∑
i

|s+,b
i | = 0 (1.6)

where Pa and Pc are the number of positive bias-aligned and bias-conflicting samples, respectively2.
Denoting the first moments with µ+,b = 1

Pa

∑
i d

+,b
i , µ+,b′ = 1

Pc

∑
k d

+,b′

k , and the second moments of
the distance distributions with σ2

+,b = 1
Pa

∑
i(d+,b

i −µ+,b)2, σ2
+,b′ = 1

Pc

∑
k(d+,b′

k −µ+,b−)2, and making
the hypothesis that the distance distributions follow a normal distribution, we can define a new set
of debiasing constraints using, for example, the Kullback–Leibler divergence:

DKL({d+,b
i }||{d+,b′

k }) = 1
2

[
σ2

+,b + (µ+,b − µ+,b′)2

σ2
+,b′

− log
σ2

+,b

σ2
+,b′

− 1
]

= 0 (1.7)

In practice, one could also use another distribution such as the log-normal, the Jeffreys divergence
(DKL(p||q) + DKL(q||p)), or a simplified version, such as the difference of the two statistics (e.g.,
(µ+,b − µ+,b′)2 + (σ+,b − σ+,b′)2). The proposed debiasing constrains can be easily added to any
contrastive loss, using the method of the Lagrange multipliers, as a regularization term RFairKL =
DKL({d+,b

i }||{d+,b′

k }). In our experiments, we used: L = Lϵ−SupInfoNCE + λRFairKL where λ is a
positive trade-off hyperparameter. Results on the Biased MNIST dataset are shown in Table 1.2,
where the proposed strategy outperforms all other state-of-the-art (SOTA) methods. More results
and discussion can be found in [Barbano et al., 2023b].

2The same reasoning can be applied to negative samples (omitted for brevity.)
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Chapter 1. Detection of anatomical signatures predictive of brain disorders

Method 0.999 0.997 0.995 0.99
CE [Hong and Yang, 2021] 11.8±0.7 62.5±2.9 79.5±0.1 90.8±0.3

LNL [Kim et al., 2019] 18.2±1.2 57.2±2.2 72.5±0.9 86.0±0.2

ϵ-SupCon 24.36±3.23 74.35±0.09 84.13±1.31 91.12±0.35

ϵ-SupInfoNCE 33.16±3.57 73.86±0.81 83.65±0.36 91.18±0.49

EnD [Tartaglione et al., 2021] 59.5±2.3 82.70±0.3 94.0±0.6 94.8±0.3

BiasCon+BiasBal* [Hong and Yang, 2021] 30.26±11.08 82.83±4.17 88.20±2.27 95.04±0.86

BiasBal [Hong and Yang, 2021] 76.8±1.6 91.2±0.2 93.9±0.1 96.3±0.2

BiasCon+CE* [Hong and Yang, 2021] 15.06±2.22 90.48±5.26 95.95±0.11 97.67±0.09

CE + FairKL 79.9±4.29 93.86±1.13 94.85±0.55 95.92±0.17

ϵ-SupCon + FairKL 89.45±1.82 95.75±0.16 96.31±0.81 96.72±0.2

ϵ-SupInfoNCE + FairKL 90.51±1.55 96.19±0.23 97.00±0.06 97.86±0.02

Table 1.2: Top-1 accuracy (%) on Biased-MNIST. Reference results from [Hong and Yang, 2021]. Results denoted
with * are re-implemented without color-jittering and bias-conflicting oversampling.

Weakly-supervised setting

When samples have weak attributes, namely supplementary information about the data not defining
a proper class, how can we include them in the previous contrastive framework ?

We first need to distinguish two cases: discrete/categorical weak attributes and continuous ones.
The former can be easily included by modifying the positive and negative sampling procedure. Using
as example the gender weak attribute (Male/Female), one could consider as (possibly) positive
only the samples that have the same gender as the anchor and negative otherwise. However, when
considering continuous weak attributes, the previous losses are not well adapted, as it is not possible
to determine a hard boundary between positive and negative samples. All samples are somehow
positive and negative at the same time.

Given the continuous weak attribute y for the anchor x and yk for a sample xk, one could
threshold the distance d between y and yk at a certain value τ in order to create positive and
negative samples (i.e., k is positive if d(y, yk) < τ). The problem would then be how to choose τ .
Differently, we propose to define a degree of “positiveness” between samples using a kernel function
wk = K(y − yk), where 0 ≤ wk ≤ 1. Our goal is thus to learn a parametric function f : X → Sd
that maps samples with a high degree of positiveness (wk ∼ 1) close in the latent space and samples
with a low degree (wk ∼ 0) far away from each other.
As first approach [Dufumier et al., 2021b], we proposed to consider as “positive” only the samples
that have a degree of positiveness greater than 0, and align them with a strength proportional to
the degree, namely:

wk∑
j wj

(st − sk) ≤ 0 ∀j, k, t ̸= k ∈ A

arg min
f

∑
k

max(0, wk∑
j wj

{st − sk}t=1,...,N
t̸=k

) ≈ Ly−aware = −
∑
k

wk∑
j wj

log
(

exp(sk)∑N
t=1 exp(st)

) (1.8)

where we have normalized the kernel so that the sum over all samples is equal to 1 and we denote
with A the indices of samples in the minibatch distinct from the anchor x. Due to the non-
hard boundary between positive and negative samples, both st and sk are defined over the entire
minibatch. This loss has been used in [Dufumier et al., 2021c, Dufumier et al., 2024] to estimate the
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general variability of healthy subjects, merging the information of both imaging and (weak) clinical
attributes, such as age and sex. This new pre-training step should learn an accurate representation
of the biological and environmental variability of the healthy brain, that can be then used in a
second fine-tuning phase to discover pathological patterns of a brain disease. A visual explanation
of this new paradigm is shown in Fig.1.4.

Figure 1.4: New paradigm for discriminating psychiatric disorders at the subject-level combining imaging and
clinical data. In a pre-training phase, a Deep learning network fθ is trained to learn a low-dimensional embedding
from a large brain imaging dataset of healthy controls, discovering the general variability associated with non-specific
weak attributes, such as age and sex. This pre-training can be performed either with i) self-supervised tasks (e.g.,
contrastive learning [Dufumier et al., 2021c, Chen et al., 2020]) ii) generative modeling (e.g., VAE [Kingma and
Welling, 2014]) or iii) discriminative tasks (e.g., age prediction [Bashyam et al., 2020]). In the second step, the
model is initialized with pre-trained weights θinit = θhc and fine-tuned to discriminate between patients and controls.
Our main hypothesis is that the representation learned during pre-training will allow easier discovery of the specific
variability associated with the pathology of interest (e.g., abnormal cortical atrophy in temporal and pre-fontal
regions for schizophrenia or ASD).

We tested our new loss presented in Eq. 1.8 by only using age as auxiliary information, thus
calling it Age-Aware, and using a Radial Basis Function as kernel K. We also compared it with: 1)
a supervised model without pre-training (Baseline); 2) unsupervised contrastive learning (SimCLR
[Chen et al., 2020]); 3) another self-supervised model for medical imaging based on context-based
restoration (Model Genesis [Zhou et al., 2021b]); 4) Variational AutoEncoder (VAE [Kingma and
Welling, 2014]) considered as SOTA generative model (easier to train than GAN [Goodfellow et al.,
2014] or diffusion models [Nichol and Dhariwal, 2021, Dhariwal and Nichol, 2021, Ho et al., 2020,
Rombach et al., 2022] and obtain an encoder that can be fine-tuned); 5) a discriminative supervised
model trained on age prediction. Results on three mental disorders, schizophrenia (SCZ), Bipolar
Disorder (BD), and Autism Spectrum Disorders (ASD), are shown in Table 1.3. We use both an
internal (same sites as training data) and external (different sites as training data) test sets to
evaluate the performance. The proposed pre-training strategy outperforms all other methods on
the three clinical datasets.
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Importantly, age information is only used during pre-training and it is never used during fine-
tuning. All these models are pre-trained using the healthy subjects of the datasets: OpenBHB
[Dufumier et al., 2022], HCP3, ICBM4 and OASIS35. The final pre-training dataset comprises 9116
3D MRI scans of healthy brains coming from 42 sites and covering the entire life-spectrum in terms
of age (i.e., both young and old subjects), thus promoting heterogeneity in the healthy population
under study. Hyper-parameter values, such as the kernel σ2 and the learning rate, are selected using
a Monte-Carlo Cross-Validatation strategy, where both training and validation sets are stratified
on age, sex and site. More details about the validation strategy, datasets, augmentations and
robustness to hyper-parameters can be found in [Dufumier et al., 2021c, Dufumier et al., 2024].

Task Test Set
Pre-training Strategies

Weakly Self-Supervised Self-Supervised Generative Discriminative
Baseline Age-Aware Model Genesis SimCLR VAE Age Sup.

SCZ vs. HC ↑
Ntrain = 933

Internal (N = 118) 85.27±1.60 85.17±0.37 76.31±1.77 82.31±2.03 82.56±0.68 83.05±1.36
External (N = 133) 75.52±0.12 77.00±0.55 67.40±1.59 75.48±2.54 75.11±1.65 74.36±2.28

BD vs. HC ↑
Ntrain = 832

Internal (N = 107) 76.49±2.16 78.81±2.48 76.25±1.48 72.71±2.06 71.61±0.81 77.21±1.00
External (N = 131) 68.57±4.72 77.06±1.90 65.66±0.90 71.23±3.05 71.70±0.23 73.02±2.66

ASD vs. HC ↑
Ntrain = 1526

Internal (N = 186) 65.74±1.47 66.36±1.14 63.58±4.35 61.92±1.67 59.67±2.04 67.11±1.76
External (N = 207) 62.93±2.40 68.76±1.70 54.95±3.58 61.93±1.93 57.45±0.81 62.07±2.98

Table 1.3: Fine-tuning results. All pre-trained models use a data-set of 9116 3D MRI scans of healthy brains. We
report average AUC(%) for all models and the standard deviation by repeating each experiment three times. Baseline
uses a DenseNet121 backbone optimized in a supervised way. The same backbone is also used for the Contrstive
self-supervised methods.

Decoupled uniformity

The InfoNCE loss, and similarly all previously presented losses, can be divided into two terms:

−s+︸ ︷︷ ︸
aligment

+ log
exp(s+) +

∑
j

exp(s−
j )


︸ ︷︷ ︸
uniformity

, as proposed in [Wang and Isola, 2020, Dufumier et al., 2021b],

where we have used a single positive and batch for simplicity. Using this formulation we can easily
see that positive samples (s+) are both attracted (alignment) and repelled (uniformity) at the same
time. This is called the negative-positive coupling problem, which can be solved by removing the
positive sample at the denominator, as proposed in [Yeh et al., 2022] (equivalent to using an ϵ → ∞
in Eq. 1.2). Another characteristic of the InfoNCE loss is the need for large batch sizes and thus
many negative examples. Indeed, it has been shown that this loss works well only when the batch
size is very large (e.g., > 2048 for ImageNet [Chen et al., 2020]). In an unsupervised setting (i.e.,
no labels), this brings to another issue related to the number of False Negative samples. If the
number of latent classes in the training set is low (for instance 2) and they are balanced (similar
number of samples per class), then the number of false negative will be probably high (2N−2

2 if we
augment once all samples N). Here, a false negative is a sample that is considered as a negative,
but that it actually belongs to same (latent) class as the anchor. To solve both problems, we have
proposed in [Dufumier et al., 2023] a new solution by imposing uniformity only between centroids

3https://www.humanconnectome.org/study/hcp-young-adult
4https://ida.loni.usc.edu/login.jsp
5https://sites.wustl.edu/oasisbrains/
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µi = 1
V

∑V
v=1 f(xvi ), defined as the average representation between several views xvi of the same

image xi. The new loss, that we called Decoupled Uniformity, is defined as:

Lde
unif (f) = log 1

N(N − 1)
∑
i ̸=j

exp
(
−||µi − µj||2

)
(1.9)

where N is the size of the batch, i and j are two different samples of the batch and V the number of
views (same for all samples). From a metric learning point-of-view, minimizing Eq. 1.9 is equivalent
to looking for an encoder f such that the sum of similarities of all views from the same image (s+

i

and s+
j ) are higher than the sum of similarities between views from different samples (s−

ij):

s+
i = ||µi||2 = 1

V 2

∑
v,v′

s(f(xvi ), f(xv′

i ))
︸ ︷︷ ︸

similarities between views of xi

s+
j = ||µj||2 = 1

V 2

∑
v,v′

s(f(xvj ), f(xv′

j ))
︸ ︷︷ ︸

similarities between views of xj

s−
ij = ⟨µi, µj⟩ = 1

V 2

∑
v,v′

s(f(xvi ), f(xv′

j ))
︸ ︷︷ ︸

similarities between views of xi and xj

s+
i + s+

j > 2s−
ij + ϵ ∀i ̸= j

arg min
f

log
exp(−ϵ) +

∑
i ̸=j

exp (−s+
i − s+

j + 2s−
ij)


(1.10)
At limϵ→∞, it results log

(∑
i ̸=j exp (−s+

i − s+
j + 2s−

ij)
)

and by adding the constant term log
(

1
N(N−1)

)
,

we obtain exactly Lde
unif (f). This loss implicitly optimizes alignment between positives through the

maximization of ||µ||2 and thus we do not need to explicitly add an alignment term. Since we apply
it to couple of samples, we solve the False Negative problem. Furthermore, we show in [Dufumier
et al., 2023] that this loss does not suffer from the positive-negative coupling problem. We em-
pirically demonstrate the benefits of our loss in Table 1.4 comparing it with both InfoNCE [Chen
et al., 2020] and DC [Yeh et al., 2022] losses. Furthermore, we show in Table 1.5 that our loss is
less sensitive to batch size than InfoNCE, thanks to its decoupling between positives and negatives.
More results can be found in [Dufumier et al., 2023].

Dataset Network LInfoNCE LDC Lde
unif

CIFAR-10 ResNet18 82.18±0.30 84.87±0.27 85.05±0.37
CIFAR-100 ResNet18 55.11±0.20 58.27±0.34 58.41±0.05

ImageNet100 ResNet50 68.76 73.98 77.18

Table 1.4: Comparison of Decoupled Uniformity with-
out prior with InfoNCE[Chen et al., 2020] and DC[Yeh
et al., 2022] loss. Batch size n = 256. All models are
trained for 400 epochs.

Datasets Loss n = 128 n = 512 n = 1024 n = 2048

CIFAR10 InfoNCE 78.89 79.40 80.02 80.06
Decoupled Unif 82.67 82.12 82.74 82.33

CIFAR100 InfoNCE 49.53 53.46 54.45 55.32
Decoupled Unif 54.61 54.12 55.56 55.20

Table 1.5: Linear evaluation accuracy (%) after training
for 200 epochs with a batch size n, ResNet18 backbone
and latent dimension d = 128.

Similarly to the previously presented y-aware loss (Eq. 1.8), Lde
unif can also integrate prior knowl-

edge, like weak attributes, modeled as scalar or vector values z(x) for each sample x, using a kernel
Kσ. Based on the conditional mean embedding theory [Song et al., 2013], we define:

Definition 1.3.1. (Empirical Kernel Decoupled Uniformity Loss) Let (xi)i∈[1..N ], the N samples
of a batch with their V views xvi and KN = [Kσ(z(xi), z(xj))]i,j∈[1..N ], the Kernel prior matrix,
where Kσ is a standard kernel (e.g., Gaussian or Cosine). We define the new centroid estima-
tor as µ̂j = 1

V

∑V
v=1

∑N
i=1 αi,jf(xvi ) with αi,j = ((Kn + λNIN)−1KN)ij, λ = O(n−1/2) a regular-

ization constant. The empirical Kernel Decoupled Uniformity loss is then: L̂de
unif (f) def=

log 1
n(n−1)

∑
i ̸=j exp(−||µ̂i − µ̂j||2)
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The computational cost added is roughly O(n3) (to compute the inverse matrix of size n × n)
but it remains negligible compared to the back-propagation time using classical stochastic gradient
descent. Importantly, the gradients associated to αi,j are not computed.

Figure 1.5: Visual explanation of the augmentation graph and illustration of the proposed method. Each point is an
original image x. Two points are connected if they can be transformed into the same augmented image, via the chosen
augmentations/transformations. Colors represent semantic (latent, unknown) classes and light disks represent the
support of augmentations for each sample x. From an incomplete augmentation graph (1) where intra-class samples
are not connected, we reconnect them using a kernel defined on prior information. The extended augmentation graph
(3) is the union between the (incomplete) augmentation graph (1) and the kernel graph (2). In (2), the gray disks
indicate the set of points x′ that are close to the anchor (blue star) in the kernel space.

Most recent theories about CL [Wang et al., 2022a, HaoChen et al., 2021] make the hypothesis
that samples from the same semantic class have overlapping augmented views, to provide guarantees
on the downstream task when optimizing InfoNCE [Chen et al., 2020] or Spectral Contrastive
loss [HaoChen et al., 2021]. This assumption, known as intra-class connectivity hypothesis, is very
strong and only relies on the distributions of the augmentations (to create the different views). In
particular, augmentations should not be “too weak”, so that all intra-class samples are connected
among them, and at the same time not “too strong”, to prevent connections between inter-class
samples and thus preserve the semantic information. In [Dufumier et al., 2023], we proved that
we can relax this hypothesis if we can provide a kernel that is “good enough” to relate intra-
class samples not connected by the augmentations (see Fig. 1.5). We show that L̂de

unif can tightly
bound the supervised classification risk by assuming that the extended augmentation graph is class-
connected and not the augmentation graph, as in previous works [Wang et al., 2022a, HaoChen
et al., 2021]. This implies that we do not need optimal augmentations to have tight bounds, as in
previous works, but we just need a “good enough” kernel to reconnect the disconnected intra-class
samples. Furthermore, we don’t require perfect alignment for f nor L-smoothness, as in [Saunshi
et al., 2019]. Please note that the previous y-aware loss, being based on the InfoNCE loss, need
stronger assumptions to have tight bounds on the classification loss, as shown in [Wang et al.,
2022a, HaoChen et al., 2021].

Besides clinical attributes, as for the y-aware loss, we also tested representations of generative
models as prior information. We first show results on natural images from ImageNet100 in Table
1.6, where we leverage the prior representation of the BigBiGAN network [Donahue and Simonyan,
2019] pre-trained on ImageNet. We use it to define a kernel KGAN(xi, xj) = K(z(xi), z(xj)) (with
K a RBF kernel and z(·) the BigBiGAN’s encoder). Results clearly indicate that our method
outperforms all other SOTA methods. Then, we also show results on the bipolar disorder detection
(BD) using the BIOBD dataset [Hozer et al., 2020]. It contains 356 healthy controls (HC) and 306
patients with BD. As before, we use the Open BHB dataset [Dufumier et al., 2021c] for pre-training,
which contains ∼9k 3D images of healthy subjects. As prior representation, we use a pre-trained
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VAE to define KV AE(xi, xj) = K(µ(xi), µ(xj)) where µ(·) is the mean Gaussian distribution of x in
the VAE latent space and K is a standard RBF kernel. In Table 1.7, we show that the proposed
method outperforms previous methods. These results show that generative models can provide
good prior when augmentations are too weak or insufficient to remove easy-to-learn noisy features.
More details and results can be found in [Dufumier et al., 2023]

Model ImageNet100
SimCLR [Chen et al., 2020] 68.76

BYOL [Grill et al., 2020] 72.26
CMC∗ [Tian et al., 2020b] 73.58
DCL∗ [Chuang et al., 2020] 74.6

AlignUnif [Wang and Isola, 2020] 76.3
DC [Yeh et al., 2022] 73.98

SwAV (w/o multi-crop) [Caron et al., 2020] 73.5
BigBiGAN [Donahue and Simonyan, 2019] 72.0

Decoupled Unif 77.18
KGAN Decoupled Unif 78.02

Supervised 82.1±0.59

Table 1.6: Linear evaluation accuracy (%) on Ima-
geNet100 using ResNet50 trained for 400 epochs with
batch size n = 256 for all methods. ∗Results from pa-
per.

Model BD vs HC
SimCLR [Chen et al., 2020] 60.46±1.23
BYOL [Grill et al., 2020] 58.81±0.91
MoCo v2 [He et al., 2020] 59.27±1.50

Model Genesis [Zhou et al., 2021b] 59.94±0.81
VAE [Kingma and Welling, 2014] 52.86±1.24
KV AE Decoupled Unif (ours) 62.19±1.58

Supervised 67.42±0.31

Table 1.7: Linear evaluation AUC scores(%) on BD de-
tection using a 5-fold leave-site-out CV with DenseNet121
as backbone.

Contrastive learning for regression

The previously presented y-aware loss (Eq. 1.8) can also be used for regression tasks. However, one
of its limitation is that, while the numerator aligns xk, in the denominator, the uniformity term (as
defined in [Wang and Isola, 2020]) focuses more on the closest samples in the representation space.
This could be undesirable, as these samples might have a greater degree of positiveness than the
considered xk. To avoid that, we formulate a second loss, called Lthr, which limits the uniformity
term (i.e., denominator) to the samples that are more distant from the anchor than the considered
xk in the kernel space. Omitting the kernel normalization, we obtain:

wk(st − sk) ≤ 0 if wt − wk ≤ 0 ∀k, t ̸= k ∈ A(i)

Lthr = −
∑
k

wk∑
t δwt<wk

wt
log

(
exp(sk)∑

t̸=k δwt<wk
exp(st)

)
(1.11)

Ideally, Lthr avoids repelling samples more similar than xk. However, it still focuses more on the
closest sample “less positive” than xk, i.e. xt s.t wt > wx and wt ≤ wj ∀j ̸= k. In a classification
task, increasing the margin with respect to the closest “negative” sample sounds correct from
a theoretical point of view and we have also shown that this is the case in our experiments (see
previous Table 1.1 and experiments in [Barbano et al., 2023b]). However, it might not be best suited
for (continuous) weak-supervision and regression. For this reason, we propose a third formulation
(Lexp) that takes an opposite approach. Instead of focusing on repelling the closest “less positive”
sample, we increase the repulsion strength of each sample proportionally to its distance from the
anchor in the kernel space, obtaining:

wk[st(1 − wt) − sk] ≤ 0 ∀k, t ̸= k ∈ A(i)

Lexp = − 1∑
twt

∑
k

wk log exp(sk)∑
t̸=k exp(st(1 − wt))

(1.12)
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In the resulting Lexp formulation, the weighting factor 1 − wt acts like a temperature value, by
giving more weight to the samples that are further away from the anchor in the kernel space. Also,
for a proper kernel choice, samples closer than xk will be repelled with very low strength (∼0). We
argue that this approach is more suited for continuous attributes (i.e., regression task), as it enforces
the fact that samples close in the kernel space will be close in the representation space. A visual
explanation of the three losses can be found in Fig.1.6. It’s also interesting to notice that these
losses, differently from the InfoNCE loss, do not asymptotically optimize (global) Alignment and
(global) Uniformity [Wang and Isola, 2020], but a conditional version of them. Indeed, as shown
in [Dufumier et al., 2021b], these losses do not align and repel all samples in the same way, but
proportionally to the kernel value.

(a) y-aware (b) threshold (c) exp

Figure 1.6: Comparison between the proposed contrastive learning losses for continuous weak attributes (weak-
supervision and regression) and their effect on the representations. Samples are aligned (≫ ≪) and repelled (≪≫)
with varying strength (line thickness) based on the continuous label y.

The proposed losses are tested on the OpenBHB Challenge [Dufumier et al., 2022] whose goal
is age prediction (without being biased by the site-effect). The dataset contains 5330 3D brain
T1-w MRI scans of different subjects, from 71 different acquisition sites and pre-processed using
Voxel-Based Morphometry (VBM) [Ashburner and Friston, 2000]. The evaluation is performed
using two private test sets (internal and external). The internal test set contains the same sites as
training, the external contains unseen ones. For every model, we evaluate the mean absolute error
(MAE) and the balanced accuracy (BAcc) for site prediction, training a logistic regression on the
model representations. The final challenge score is computed as Lc = BAcc0.3 · MAEext. Results
are shown in Table 1.8 where the proposed losses, and in particular Lexp, outperform a baseline
model [Dufumier et al., 2022] trained with the L1 loss, and ComBat [Fortin et al., 2018], a site
harmonization algorithm developed for MRIs. More details can be found in [Barbano et al., 2023a].
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Method Model Int. MAE ↓ BAcc ↓ Ext. MAE ↓ Lc ↓

Baseline (ℓ1)
DenseNet 2.55±0.01 8.0±0.9 7.13±0.05 3.34
ResNet-18 2.67±0.05 6.7±0.1 4.18±0.01 1.86
AlexNet 2.72±0.01 8.3±0.2 4.66±0.05 2.21

ComBat
DenseNet 5.92±0.01 2.23±0.06 10.48±0.17 3.38
ResNet-18 4.15±0.01 4.5±0.0 4.76±0.03 1.88
AlexNet 3.37±0.01 6.8±0.3 5.23±0.12 2.33

Lexp

DenseNet 2.85±0.00 5.34±0.06 4.43±0.00 1.84
ResNet-18 2.55±0.00 5.1±0.1 3.76±0.01 1.54
AlexNet 2.77±0.01 5.8±0.1 4.01±0.01 1.71

Ly−aware ResNet-18 2.66±0.00 6.60±0.17 4.10±0.01 1.82
Lthr ResNet-18 2.95±0.01 5.73±0.15 4.10±0.01 1.74

Table 1.8: Final scores on the OpenBHB Challenge leaderboard using a 3D ResNet-18. MAE: Mean Absolute
Error. BAcc: Balanced Accuracy for site prediction. Challenge score: Lc = BAcc0.3 · MAEext.
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1.3.2 Contrastive Subgroup Discovery

In the past decades, unsupervised and self-supervised learning techniques have proven to be partic-
ularly effective at identifying relevant patterns and factors of variation within a dataset. Combined
with powerful Neural Networks (NNs), these methods can produce semantically rich representations
[Chen et al., 2020, He et al., 2020, Zheng et al., 2020]. Notably, unsupervised Deep Clustering (DC)
methods [Caron et al., 2018, Asano et al., 2020, Caron et al., 2020, Li et al., 2021b, Van Gansbeke
et al., 2020] seek to produce a suitable representation space for identifying homogeneous latent
clusters based on the general variability of the entire dataset (i.e., imaging patterns common to all
samples).
With a different perspective, Subgroup Discovery (SD) in medical applications [Atzmueller, 2015,
Klösgen, 1996, Yang et al., 2021] aims at identifying relevant latent subtypes/subgroups that arise
from the pathological variability of the diseased population and not from the irrelevant common
variability that may exist in both healthy subjects (i.e., controls) and diseased patients.

A
g

e

Heatly controls

Patients

Non-specific
clustering

Subtype
discovery

Figure 1.7: Subtype discovery in clinical re-
search.

For instance, in clinical research, it is essential to iden-
tify subtypes of patients with a given disorder (red dots
in Fig. 1.7). However, the general variability that stems
from age or sex, and which is observed in both healthy
controls (grey dots in Fig. 1.7) and patients, will probably
drive the clustering of patients to a non-specific solution
(2nd plot in Fig. 1.7). Instead, subtypes should be de-
fined only by the modes of variation (horizontal arrow
Fig. 1.7) specific to the pathology, thus discarding non-
specific variability and emphasizing more disease-related
differences.

Figure 1.8: Comparison between a Deep Clustering method (Deep
Cluster [Caron et al., 2018]) and one of the proposed Subgroup Dis-
covery method (Deep UCSL) on a subtype discovery task within the
digit 7. We show 2D PCA plots of the representation spaces learnt by
the two methods.

In Fig. 1.8, we use an intuitive
toy example based on the MNIST
dataset to better clarify the differ-
ences between Deep Clustering and
Subtype Discovery. We consider the
digit ”7” as the pathological group
and all the other digits as the healthy
group. Results show how Deep Clus-
ter’s subgroups [Caron et al., 2018]
of the digit “7” are only defined by
the most predominant characteristics
(i.e.: boldness of the digit) common
to all digits. Instead, a Subtype Dis-
covery method, such as the proposed
Deep UCSL, disregards these com-
mon characteristics and uses only the
specific patterns of the digit “7” (i.e.,
the presence of the crossing middle
bar) to define the subgroups.

As already explained in the Intro-
duction, mental disorders are heterogeneous. This motivates the need for new machine-learning
methods to help human experts discover or validate subgroups, while relying on reproducible, data-
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driven, and objective imaging patterns. By contrasting controls with patients, we proposed two
new methods to identify subgroups that stem only from the pathological variability specific to the
disease, while disregarding the common variability shared with the controls. The objectives of both
methods are: a) correctly discover the pathological subgroups, b) encourage healthy samples not to
belong to a pathological subgroup, and c) accurately discriminate each subgroup from the healthy
class. Here, we present Deep Unsupervised Clustering driven by Supervised Learning (Deep UCSL)
[Louiset, 2024], that is an extension of our previous method UCSL, presented in [Louiset et al.,
2021].

Deep Unsupervised Clustering driven by Supervised Learning (Deep UCSL)

Let (X, Y ) = {(xi, yi)}Ni=1 be a labeled dataset composed of N samples. We will restrict to the
binary (e.g., patient/control) classification paradigm, yi ∈ {−1,+1}. We will denote with N+ and
N− (N = N+ +N−) the number of positive and negative samples, respectively. Our objective is to
estimate the latent pseudo-labels6 of subgroups within disease samples (yi = +1). The membership
of each sample i to latent subgroups is modeled via a latent categorical variable ci ∈ C = {1, ..., K},
where K is the number of subgroups. Here, K is assumed to be known. We look for a discriminative
model that maximizes the joint conditional likelihood:

n∑
i=1

log p(yi|xi) =
n∑
i=1

log
K∑
k=1

p(yi, ci = k|xi) (1.13)

To attain the previously described objectives, we need to optimize Eq. 1.13 with respect to both
p(ci|xi, yi) and p(yi|xi, ci). Indeed, we need to identify the subgroups only within the diseased
samples (thus knowing y) and to accurately discriminate the healthy class from each subgroups
(thus knowing c). However, developing the joint conditional likelihood in Eq. 1.13 would result in
either p(ci|xi, yi) or p(yi|xi, ci), but not in both. To solve that, as in UCSL [Louiset et al., 2021],
we introduce a probability distribution Q over the subgroups C, so that ∑K

k=1 Q(ci = k) = 1 ∀i,
and use the Jensen inequality to obtain a tractable, lower bound of Eq. 1.13:

n∑
i=1

log
K∑
k=1

Q(ci = k)p(yi, ci = k|xi)
Q(ci = k) ≥

n∑
i=1

K∑
k=1

Q(ci = k) log
(
p(yi, ci = k|xi)
Q(ci = k)

)
(1.14)

where equality holds when: Q(ci = k) = p(yi,ci=k|xi)∑K

k=1 p(yi,ci=k|xi)
= p(ci = k|xi,yi). Then, Eq. 1.13 can be

rewritten with respect to both p(yi|xi, ci) and Q(ci) (estimated to approximate p(ci|xi, yi)):

n∑
i=1

K∑
k=1

Q(ci = k) log p(yi|xi, ci = k)︸ ︷︷ ︸
Mixture-of-Classifying Experts term

−DKL(Q(c)||p(c|x))︸ ︷︷ ︸
Clustering

Regularization term

(1.15)

Our goal is to learn a single representation space where both the classifying experts p(yi|xi, ci =
k) and the disease subgroup p(ci = k|xi, yi = +1) can be accurately estimated. To this end, we
propose using a deep encoder fθ with parameters θ for feature extraction and two neural networks
with parameters ϕ and ψ for the classifying experts pθ,ϕ(yi|ci = k, xi) and the unsupervised clustering
head pθ,ψ(ci = k|xi), respectively. An overview of the proposed method can be seen in Fig.1.9. To
optimize the proposed cost function (Eq. 1.15), we use an EM algorithm that alternatively:

6we call them latent pseudo-labels, since we assume that subgroups labels are not known at training
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1. estimates Q as p(ci = k|xi, yi) (E-step) at the end of each epoch, freezing the encoder fθ.
Since we assume that only the positive class (yi = +1) contains subgroups, we compute
pθ(ci = k|xi, yi = +1) using a regularized K-means algorithm7, fixing a uniform clustering
probability distribution (i.e., 1

K
) for the healthy samples (yi = −1).

2. estimates p(yi|xi, ci = k) and p(ci = k|xi) batch-wise by maximizing Eq. 1.15 (M-step) at the
beginning of each epoch, freezing Q.

The minimization of the clustering regularization term in the M-step brings to a representa-
tion space more suited for subgroup discovery. Indeed, healthy samples should be encoded in the
representation space as points equidistant from the subgroup centroids, since their membership
probability should be the same for all subgroups (i.e., 1/K). Furthermore, positive samples should
be clustered as in Q(ci), namely as if the ”unsupervised” clustering algorithm was only consider-
ing the pathological/positive variations. This regularization thus promotes a representation space
where the general variability (common to both negative and positive classes) is discarded for the
identification of subgroups.

Figure 1.9: A schematic diagram of Deep UCSL with K = 2 subgroups (red and blue). At each epoch, K-Means
produces subgroup pseudo-labels during the Expectation step (in brown). These pseudo-labels are then used to
weight a classification Mixture-of-Experts (in purple) between the ”healthy” class (digits 0-6, 8-9) and the ”disease”
class (digit 7). Additionally, the pseudo-labels are also used for the clustering regularization (in green), where uniform
pseudo-labels (i.e.: 1

K ) are used to regularize the healthy class distribution, so that healthy samples are equidistant
from all the diseased subgroups. This forces the learnt representation to disregard the general variability, common
to both healthy and diseased samples.

Comparison with UCSL

This mathematical framework is similar to the one of our preliminary work UCSL [Louiset et al.,
2021], but with significant differences.
First, Deep UCSL uses a deep feature encoder, instead of user-defined features, and two neural-
networks for classification and subgroup estimate, instead of linear models.

7any clustering algorithm could be used here. Since the number of subgroups K is assumed to be known, K-means
is a reasonable and simple choice.
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Second, we do not assume that pθ(c|x) = Q(c), as in UCSL, but we force it by explicitly introducing
and minimizing the clustering regularization term KL(Q(c)||pθ,ψ(c|xi)). This guarantees the mono-
tonic convergence of the optimization procedure, which was not the case in UCSL.
Third, since we want to estimate subgroups only within positive/diseased samples, all negative/healthy
samples are assigned a uniform probability for all subgroups. This strategy, also not proposed in
UCSL, encourages the features encoder fθ to produce a representation space where negative samples
do not belong to (positive) subgroups. This new contribution implies that pθ(ci|xi), the estimated
clustering distribution, is not simply extended to all samples regardless their label y, as in UCSL,
but the representation space is estimated so that the unsupervised clustering pθ(ci|xi) gives the
same result as the “supervised” subgroups estimation p(ci = k|yi, xi), namely knowing the label y.
This entails an encoder f and a representation space where the general variability, common to both
positive and negative samples, is discarded and the subtype estimation only depends on the specific
variability of the positive class.

Evaluation

To test the usefulness of the proposed methods, we create a dataset for subgroup identification
comprising 3D brain MRI T1-w images. There are two classes: one of Healthy Controls (HC=686)
and one of patients comprising two Mental Disorders (MD) (i.e., subgroups): 1) patients with
Schizophrenia (SZ=275), from SCHIZCONNECT [Wang et al., 2016a], and 2) patients with Bipolar
Disorder (BD=307), from BIOBD dataset [Sarrazin et al., 2018]. Images are pre-processed with
Voxel-based morphometry (VBM) using CAT12 [Gaser and Dahnke, 2016]. Furthermore, we also
compute 142 features by averaging Gray Matter (GM) values over the Regions-of-Interest (ROIs)
of the Neuromorphometrics atlas. For Deep Learning methods, we use the pre-processed GM-only
images as inputs of a 3D-DenseNet deep encoder, as in [Dufumier et al., 2021c]. For UCSL, we
consider the GM ROIs features. In Table 1.9, we show the subgroup identification capability of
Deep UCSL compared with related works. All evaluation criteria are computed on an independent
TEST set (199 HC, 190 SZ, 116 BP), coming from the BSNIP cohort [Tamminga et al., 2014],
with different acquisition sites. Controls and patients share common (thus irrelevant) sources of
variations (e.g.: age, sex, acquisition site).

Algorithm Subgroup B-ACC Class B-ACC Overall B-ACC
Deep Cluster - v2 [Caron et al., 2018] 0.517±0.010 × ×

PCL [Li et al., 2021b] 0.542±0.030 × ×
SwAV [Caron et al., 2020] 0.522±0.008 × ×

SCAN [Van Gansbeke et al., 2020] 0.509±0.008 × ×
SimCLR [Chen et al., 2020] 0.571±0.017 × ×

BYOL [Grill et al., 2020] 0.508±0.006 × ×
VAE [Kingma and Welling, 2014] + UCSL [Louiset et al., 2021] 0.5348±0.016 0.588±0.013 0.459±0.018

BCE + K-Means 0.507±0.005 0.653±0.025 0.428±0.038
SupCon [Khosla et al., 2020] 0.550±0.014 0.656±0.017 0.458±0.017

GM ROI features [Gaser and Dahnke, 2016] + UCSL 0.590±0.016 0.653±0.012 0.525±0.011
Deep UCSL 0.589±0.011 0.671±0.018 0.543±0.014

CE (upper bound) 0.615±0.007 × ×

Table 1.9: Results on Neuro-psychiatry task (BP/SZ) on an independent TEST set. Top methods are trained on
[SZ+BP] only.

We train all methods using only the class label y (healthy vs disease), but not the subgroup
labels c. Then, to quantitatively evaluate performance, we use a test set where we know both the
class label y and the subgroup label c. About the representation/contrastive learning methods that
do not have a classification head (e.g., Deep Cluster, SimCLR), we test their performance only in
subgroups identification with a K-means algorithm fitted only on target samples (as if they had a
perfect classification head). We use three different metrics:
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1) Class Balanced Accuracy (Class B-ACC): which is the binary Balanced Accuracy between true
labels yj and class predictions p(yj|xj).
2) Subgroup Balanced Accuracy (Subgroup B-ACC): Balanced Accuracy between true subgroups cj
and inferred ones p(cj|xj).
3) Overall B-ACC : takes into account both class and subgroup prediction errors: 1

2
TP

TP+FN + 1
2

TN
TN+FP ,

where TN and FN are the class true and false negatives, namely the number of healthy and disease
samples classified as healthy, respectively. TP is the number of disease samples correctly classified
AND assigned to the right subgroup. FP is the number of healthy samples classified as disease OR
disease samples correctly classified but assigned to the wrong subgroup.

To compare with an upper bound, we train a Deep Neural Network to classify between SZ and
BD in a fully supervised manner with a Binary Cross-Entropy (BCE). Interestingly, it seems that
UCSL’s performance highly depends on the feature extraction step. In particular, when using as
features the latent vectors of a Variational AutoEncoder (VAE) [Kingma and Welling, 2014], the
performance decreases. On the other hand, when using highly specific features obtained from more
than 20 years of research (GM ROI features with age confound effect correction), the performance
is among the best. We argue that Deep UCSL provides an end-to-end subgroup discovery method
that needs no prior knowledge about the feature extraction step and leads to better or similar
performances. More results and details can be found in [Louiset et al., 2021, Louiset, 2024].
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1.3.3 Contrastive Analysis
Differently from Subgroup discovery methods, in this subsection we will not assume the existence
of distinct clusters of patients, but we will focus on estimating the (latent) feature dimensions that
better describe the pathological heterogeneity, implicitly assuming that there might be a continuum
between the healthy population and the different subtypes.

Contrastive Analysis (CA) deals with the discovery of what is common and what is distinctive
(i.e., added or modified) of a target domain, here patients, compared to a background one, healthy
controls. Both the target (patients) and the background (healthy) datasets are supposed to share
uninteresting (healthy) variations. The goal is thus to identify and separate, in an unsupervised
way, the generative factors common to both populations from the ones distinctive (i.e., salient)
only of the target dataset. Here, we present three methods based on 1) Variational AutoEncoders
(VAE), 2) Generative Adversarial Networks (GANs) and 3) Contrastive Learning that have been
proposed in [Louiset et al., 2024a], [Carton et al., 2024], [Louiset et al., 2024b], respectively.

The most recent CA methods are based on the VAE model and they are called Contrastive VAE
(CA-VAE). All these methods share the same general mathematical formulation, which derives from
the standard VAE. However, they all either ignore a term of the proposed loss (e.g., KL loss in [Abid
and Zou, 2019, Ruiz et al., 2019]) or they don’t enforce important assumptions (e.g., independence
between common and salient factors in [Weinberger et al., 2022]), which may lead to sub-optimal
solutions where salient factors are mistaken for common ones (or viceversa). Chronologically, we
have thus first worked on a new CA-VAE method [Louiset et al., 2024a] to overcome such short-
comings. However, all VAE methods, ours included, share a typical downside: a blurry and poor
quality image generation. That is why we have then moved towards a generative model with better
image quality generation: GAN models. We have thus proposed a novel Contrastive method [Car-
ton et al., 2024] which leverages the high-quality synthesis of GANs and the separation power of
InfoGAN [Chen et al., 2016]. To the best of our knowledge, this was the first GAN based method
proposed in the context of Contrastive Analysis. Working with generative models, such as GAN
and VAE, is particularly suitable for generation and image-level manipulations. However, as shown
in [Phuong et al., 2018], VAE and GAN can fail to learn meaningful latent representations, or even
learn trivial representations when the decoder is too powerful [Chen et al., 2017]. Conversely, Con-
trastive Learning (CL) methods have demonstrated outstanding results in many domains producing
representations more robust and expressive than VAEs or GANs. This performance gap might be
explained by the fact that: 1) CL representations are invariant to user-defined transformations, to
which generative models, as VAE, might be highly sensitive, and 2) CL methods implicitly maxi-
mize the Mutual Information (MI) between input data and latent features, whereas VAE maximize
the log-likelihood, which is only a function of the marginal distribution of the input data and not
of the latent representations. This motivated our last contribution [Louiset et al., 2024b], where
we “harmonized” Contrastive Learning and Contrastive Analysis to better separate common from
salient representations.

Contrastive Analysis - Mathematical Framework

Let (X, Y ) = {(xi, yi)}Ni=1 be a data-set of images xi associated with labels yi ∈ {0, 1}, 0 for
background and 1 for target. Both background and target samples are assumed to be i.i.d. from
the same conditional distribution xi ∼ pθ(x|yi, ci, si), that is parameterized by unknown parameters
θ and depends on two latent variables: ci ∈ RL and si ∈ RM . Our objective is to have a generative
model so that: 1- the common latent vectors C = {ci}Ni=1 capture the common generative factors
of variation between the background and target distributions and fully encode the background
samples and 2- the salient latent vectors S = {si}Ni=1 capture the distinct generative factors of
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variation of the target set (i.e., patterns that are only present in the target dataset and not in the
background dataset). The separation between c and s can be considered as a weakly supervised
learning problem, since the only level of supervision is the population-based label yi ∈ {0, 1}. The
user has no knowledge about the common and salient generative factors at training (or test) time.

SepVAE - Contrastive VAE (CA-VAE)

Similarly to previous CA-VAE works [Abid and Zou, 2019, Weinberger et al., 2022, Zou et al., 2022],
we assume the generative process: pθ(x, y, c, s) = pθ(x|c, s, y) pθ(c)pθ(s|y)p(y). Since pθ(c, s|x, y)
is hard to compute in practice, we approximate it using an auxiliary parametric distribution
qϕ(c, s|x, y) and derive the Evidence Lower Bound (ELBO) of the marginal log-likelihood log p(x, y):
− log pθ(x, y) ≤ Ec,s∼qϕc,ϕs (c,s|x,y) log qϕc,ϕs (c,s|x,y)

pθ(x,y,c,s) .
Then, we can develop the lower bound into three terms, a conditional reconstruction term, a

common space prior regularization, and a salient space prior regularization (see Eq.1.16). Here, as
usually done in previous CA-VAE methods, we assume the independence of the auxiliary distribu-
tions (i.e.: qϕc,ϕs(c, s|x, y) = qϕc(c|x)qϕs(s|x, y)) and prior distributions (i.e.: pθ(c, s) = pθ(c)pθ(s)).
Both pθ(x|yi, ci, si) (i.e., single decoder) and qϕc(c|x)qϕs(s|x, y) (i.e., two encoders) are assumed to
follow a Gaussian distribution parametrized by a neural network.
To reinforce the independence assumption between c and s, we introduce a Mutual Information
regularization term KL(q(c, s)||q(c)q(s)). This property is desirable in order to ensure that the
information is well separated between the latent spaces. Theoretically, this term is similar to the
one in [Abid and Zou, 2019]. However, in [Abid and Zou, 2019], the Mutual Information estima-
tion and minimization are done simultaneously 8, which is theoretically wrong since one needs an
independent optimizer, as correctly proposed in [Louiset et al., 2024a].
Differently from previous works, to further reduce the overlap of target and common distributions
on the salient space, we also introduce a salient classification loss defined as Es∼qϕs (s|x,y) log p(y|s).
An illustration of the proposed method, called SepVAE, is shown in Fig.1.10. By combining all
these losses together, we obtain the final loss L:

L = −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y)︸ ︷︷ ︸
a) Conditional Reconstruction

+KL(q(c, s)||q(c)q(s))︸ ︷︷ ︸
e) Mutual Information

− Es∼qϕs (s|x,y) log pθ(y|s)︸ ︷︷ ︸
d) Salient Classification

+KL(qϕc(c|x)||pθ(c))︸ ︷︷ ︸
b) Common Prior

+KL(qϕs(s|x, y)||pθ(s|y))︸ ︷︷ ︸
c) Salient Prior

(1.16)

Conditional reconstruction The reconstruction term is −Ec,s∼qϕc,ϕs (c,s|x,y) log pθ(x|c, s, y). Given
an image x (and a label y), a common and a salient latent vector can be drawn from qϕc,ϕs with the
help of the reparameterization trick. We assume that p(x|c, s, y) ∼ N (dθ([c, ys + (1 − y)s′], I), i.e:
pθ(x|c, s, y) follows a Gaussian distribution parameterized by θ, centered on µx̂ = dθ([c, ys+(1−y)s′])
with identity covariance matrix, and dθ is the decoder and [., .] denotes a concatenation. Therefore,
by developing the reconstruction loss term, we obtain the mean squared error between the input
and the reconstruction: Lrec = ∑N

i=1 ||x − dθ([c, ys + (1 − y)s′])||22. Importantly, as in [Abid and
Zou, 2019], we set the salient latent vectors of background samples to s’ = 0. This choice enables
isolating the background factors of variability in the common space only.

8In [Abid and Zou, 2019], Alg. 1 suggests that the MI estimation and minimization depend on two distinct pa-
rameter updates. However, in their code, a single optimizer is used. Moreover, in Sec. 3, authors write: "discriminator
is trained simultaneously with the encoder and decoder".
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Figure 1.10: Illustration of SepVAE training. Target (y = 1) and background (y = 0) images are encoded with the
same encoders eϕs and eϕc . The first encoder eϕs estimates the salient factors of variation s of the target samples.
Background samples’ salient space is set to an informationless value s′ = 0. The second encoder eϕc

estimates the
common factors c. Images are reconstructed using a single decoder dθ fed with the concatenation of c and s. The
common space c should only capture common factors of variability (shape), while the salient space s should model
target-only factors of variability (color).

Common prior Assuming p(c) ∼ N (0, I) and qϕc(c|x) ∼ N (µϕ(x), σϕ(x, y)), the KL loss has a
closed form solution, as in usual VAE. Here, both µϕ(x) and σϕ(x, y) are the outputs of the encoder
eϕc . This loss is also used in [Abid and Zou, 2019, Weinberger et al., 2022].

Salient prior First, we develop pθ(s) = ∑
y p(y)pθ(s|y), where p(y) follows a Bernoulli distribution

with probability equal to 0.5. This allows us to distinguish the salient priors of background samples
(p(s|y = 0)) and target samples (p(s|y = 1)). Similar to other CA-VAE methods, we assume that
p(s|y = 1) ∼ N (0, I) and , as in [Zou et al., 2022], that p(s|x, y = 0) ∼ N (s′,

√
σpI), with s′ = 0

and √
σp < 1, namely a Gaussian distribution centered on an informationless reference s′ with a

small constant variance σp. We preferred it to a Delta function δ(s = s′) (as in [Weinberger et al.,
2022]) because it eases the computation of the KL divergence (i.e., closed form) and it also means
that we tolerate a small salient variation (e.g., noisy/erroneous diagnosis labels) in the background
samples.

Salient classification The salient prior regularization encourages BG and TG salient factors to
match two different Gaussian distributions centered in s′ = 0, but with different covariance. To
further reduce the overlap of target and common distributions on the salient space, we propose to
minimize a Binary Cross Entropy (BCE) loss to distinguish the target from background samples in
the salient space. Assuming that p(y|s) follows a Bernoulli distribution parameterized by fξ(s), a
2-layers classification Neural Network, we obtain a BCE loss between true labels y and predicted
labels ŷ = fξ(s). This loss is not used in previous works.

Mutual Information To promote independence between c and s, we minimize their mutual in-
formation, defined as the KL divergence between the joint distribution q(c, s) and the product of
their marginals q(c)q(s). As in [Abid and Zou, 2019], we use the density-ratio trick [Kim and Mnih,
2018] but, differently from [Abid and Zou, 2019], we correctly implement it.
More information in [Louiset et al., 2024a].
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Double InfoGAN - Contrastive GAN

In Double InfoGAN, we use a generative model similar to the one proposed for SepVAE but, to
simplify the presentation, we employ a slightly different nomenclature: we call X = {xi} and
Y = {yj} the healthy and patient data-sets of images, respectively. Thus, differently from before,
yj now refers to a target image and not to a binary label.

In [Chen et al., 2016], differently from standard GAN [Goodfellow et al., 2014], authors propose
a new method, called InfoGAN, where they decompose the input noise vector of GANs into two
parts: 1) z, which is considered as a nuisance and incompressible noise and 2) c, which should model
the salient semantic features of the data distribution. The generator of this new model, G(z, c),
takes as input both z and c to generate samples x.

Here, differently from InfoGAN, and similarly to CA-VAE, we change the generative model and
decompose the input of G into: 1) c, which should capture the generative factors common to both
X and Y , and 2) s, that should model the salient factors proper only to Y . As in GAN [Goodfellow
et al., 2014], we introduce a generator G(c, s) to generate both x and y and a discriminator. The
generator G should generate samples that are indistinguishable from the true ones, whereas the
discriminator is divided into two modules. The first (and standard) one D is trained to discriminate
between fake and real samples. The second module C is trained to correctly classify real samples
(i.e., X or Y ). As in InfoGAN, we also use one encoder, divided into two modules, Qc and Qs, to
reconstruct the latent factors c and s. The discriminator, D and C, and the encoder, Qc and Qs,
are parametrized as neural networks, that share all layers but the output one. As for SepVAE, we
set the salient latent vector of healthy samples to a constant value s′ (e.g., s′ = 0), thus enforcing
c to fully encode alone X. Let x = G(c, s = s′) and y = G(c, s) be the generated samples. We
suppose, and force it in practice, that the latent variables c = {z1, ..., zL} and s = {s1, ..., sM} are
independent and follow a factorized distribution: P (c) = ∏L

i=1 P (cz) and P (s) = ∏M
j=1 P (sj), for X

and Y . To correctly estimate both c and s, we minimize:

min
G,Qc,QsC

max
D

wAdvLAdv(G,D) + wClassLcl(G,C) − wInfoLInfo(G,Qc, Qs) + wImLIm(G,Qc, Qs)
(1.17)

In the following, we will describe each term.
Adversarial GAN Loss As in [Goodfellow et al., 2014], G and D are trained together in a

min-max game using the original nonsaturating GAN (NSGAN) formulation:

LAdv(D,G) = wbg

(
−ExR∼P (xR)

[
log(D(xR)

]
− Ez∼Px(c)

[
log(1 − (D(G(c, 0))))

])
+ wt

(
−EyR∼P (yR)[

log(D(yR)
]

− Ec,s∼Py(c,s)
[
log(1 − (D(G(c, s))))

])
(1.18)

where D(I) indicates the probability that I is real or fake and xR ∼ P (xR) and yR ∼ P (yR) are
real images. Furthermore, we choose the same factorized prior distribution P (c) for both X and
Y (i.e., Px(c) = Py(c) = P (c)), namely a Gaussian N (0, 1). We also tested a uniform distribution
U[−1,1] but the results were slightly worse. Instead, about P (s), it should be different between X
and Y . We use a Dirac delta distribution centered at 0 for X (i.e., Px(s) = δ(s = 0)) and we have
tested several distributions for Py(s). Depending on the data and related assumptions, one could
use, for instance, a factorized uniform distribution, U(0,1], or a factorized Gaussian N (0, 1) (ignoring
the samples equal to 0). In our experiments, results were slightly better when using N (0, 1).

Class Loss To make sure that generated images belong to the correct class, we propose to add
a second discriminator module C. It is trained on real images to predict the correct class: X or Y .
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At the same time, G is trained to produce images correctly classified by C. We (arbitrarily) assign
0 (resp. 1) for class X (resp. Y ) and use the binary cross entropy (B). The loss is:

Lcl(C) =ExR∼P (xR)
[
B(C(xR), 0)

]
+ EyR∼P (yR)

[
B(C(yR), 1)

]
Lcl(G) =Ec∼Px(c)[B(C(G(c, 0)), 0)] + Ec,s∼Py(c,s)[B(C(G(c, s)), 1)]

(1.19)

Info Loss Similarly to InfoGAN [Chen et al., 2016], we propose two regularization terms
based on mutual information, I((c, s); y) and I((c, s = s′); x), to encourage informative latent
codes. However, in our case, these two terms are not added to disentangle between informative
and nuisance generative factors, as in InfoGAN [Chen et al., 2016], but to enforce the separation
between common and salient factors. Indeed, the maximization of these two regularity terms should
enforce c to fully encode X and at the same time to be informative for the generation of Y . In
parallel, s should only encode distinctive semantic information of Y . Since c and s are independent
by construction, the mutual information I((c, s); ·) can be decomposed into the sum of the two
mutual information I(c; ·) + I(s; ·). Thus, similarly to InfoGAN, we can retrieve four lower bounds.

I(c; y) ≥ Ec∼Py(c),s∼Py(s),y∼G(c,s) log(Qc(c|y)) +H(c)
I(s; y) ≥ Ec∼Py(c),s∼Py(s),y∼G(c,s) log(Qs(s|y)) +H(s)
I(c; x) ≥ Ec∼Px(c),s∼Px(s),x∼G(c,s) log(Qc(c|x)) +H(c)
I(s; x) ≥ Ec∼Px(c),s∼Px(s),x∼G(c,s) log(Qs(s|x)) +H(s)

(1.20)

As in [Chen et al., 2016, Lin et al., 2020], to promote stability and efficiency, we model the two auxil-
iary distributions, Qc and Qs, as factorized distributions. Beside a factorized Gaussian distribution
with identity covariance, we have also tested a factorized Laplace distribution L(µ, b) with b = 1.
This brings to a l1 reconstruction loss instead of a standard l2, and showed better performance
in practice. To better train Qs, and since we know that s should be equal to 0 for real images of
domain X (i.e., xR ∼ P (xR)), we also add as regularization the lower bound of the mutual infor-
mation I(s; xR). As before, we fix Px(s) = δ(s = 0). The sum of these five lower bounds defines the
LInfo loss:

LInfo(G,Qc, Qs) = wbgEc∼Py(c)
[
wcInfo|(Qc(G(c, 0)) − c| + wsInfo|Qs(G(c, 0)) − 0|

]
+

wtEc,s∼Py(c,s)
[
wcInfo|(Qc(G(c, s)) − c| + wsInfo|Qs(G(c, s)) − s|

]
+ wrealInfoExR∼P (xR)

[
|(Qs(xR)) − 0|

]
(1.21)

Image reconstruction loss Differently from usual GAN models, we also propose to maximize
the log-likelihood log(P (y)) (and log(P (x))) of the generated images based on the proposed model.
Indeed, no likelihood is generally available for optimizing the generator G in a GAN model [Good-
fellow et al., 2014]. However, here, given a real image yR (or xR), we can use the auxiliary encoder
Q = (Qs, Qc) to estimate the latent factors ĉ and ŝ that should generate yR (or xR) and then maxi-
mize (an approximation) of the log-likelihood of the generated images y = G(ĉ, ŝ) (or x = G(ĉ, 0)):

logP (y) ≥ EyR∼P (yR),(c,s)∼Q(c,s|yR) logP (y|c, s,yR) − EyR∼P (yR)KL(Q(c, s|yR)||P (c, s|yR)) (1.22)

We notice that the second term should tend towards 0 during training thanks to the previous
Info Loss.9 We can thus approximate logP (y) by computing only the left term and modeling
P (y|c, s,yR) as a Laplace distribution L(µ, b) with b = 1. We use a Laplace distribution, instead of

9Lower bounds become tight as Q resembles the true P .
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Chapter 1. Detection of anatomical signatures predictive of brain disorders

Figure 1.11: Double InfoGAN. Our model takes two inputs: c (common factors) and s (salient factors). The
generator G produces fake images that, together with the real images, are passed to a discriminator and encoder.
The discriminator has two modules: D for detecting real from fake images, and C for classyfing images in the correct
domain (i.e., X or Y ). The encoder Q has two modules, Qc and Qs, to reconstruct the latent factors (ĉ, ŝ). D, C
and Q share all layers but the last one.

a Gaussian one, since it has been shown, for instance in [Isola et al., 2017], that a l1-loss encourages
sharper and better image reconstructions than a l2-loss. Similar computations can be done for
logP (x). We define LIm(G,Qc, Qs) = logP (x) + logP (y):

LIm(G,Qc, Qs) = wbg E
xR∼P (xR)
ĉ=Qc(xR)

[
|G(ĉ, 0) − xR|

]
+ wt E

yR∼P (yR)
ĉ,ŝ=Q(yR)

[
|G(ĉ, ŝ) − yR|

]
(1.23)

A visual overview of the method is shown in Fig.1.11

SepCLR - Contrastive Representation Learning

As last method, we present SepCLR, where we use the same generative model as before and the
nomenclature of Double InfoGAN (i.e., yj is a patient/target sample).

Differently from the two previous generative models, we propose to reformulate the Contrastive
Analysis problem under the lens of the well-known InfoMax principle [Bell and Sejnowski, 1995,
Hjelm et al., 2019] and to leverage the representation power of Contrastive Learning (CL) to estimate
the MI terms of our newly proposed Contrastive Analysis setting. Since we want the common factors
c to be representative of both datasets, we propose to maximize the mutual information I between c
and both datasets X and Y . Similarly, we propose maximizing the mutual information between the
salient factors s and only the target samples Y . Furthermore, since we want the background samples
x to be fully encoded by c, we enforce the salient factors s of x to be always equal to a constant
value s′ (i.e., no information): xi ∼ pθ(x|ci, si = s′). Mathematically, we do that by minimizing the
Kullback–Leibler divergence DKL between p(s|x) and δ(s′), a Dirac Delta distribution centered at
s′. Eventually, to enforce the separation (i.e., independence) between c and s, we also propose to
use I(c, s) = 0 as a regularization constraint. This choice, differently from simply minimizing the
MI, avoids undesirable results which could bring to a trivial solution, as shown in [Louiset et al.,
2024b], where c and/or s would contain no information. Instead, we propose a new method, called
kernel-based Joint Entropy Maximization (k-JEM), to estimate and maximize their joint entropy
H(c, s), without requiring any assumptions about the form of its pdf nor a neural network-based
approximation. More information can be found in [Louiset et al., 2024b].
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Our objective is to separate and infer the common c and salient s factors given the input data X
and Y . We use two probabilistic encoders, fθc and fθs , parameterised by θc and θs, to approximate
the conditional distributions p(c|·) and p(s|·) respectively. The two encoders are shared between
X and Y . Furthermore, as commonly done in recent representation learning papers, we assume to
have multiple views v of each image x (or y) generated via a stochastic augmentation function t:
v = t(·). By denoting c = fθc(v), s = fθs(v), sx = fθs(t(x)), our goal becomes finding the optimal
parameters θ∗ = {θ∗

c , θ
∗
s} that maximize the following cost function:

arg max
θ

λC(I(x; c) + I(y; c))︸ ︷︷ ︸
Common InfoMax

+ λSI(y; s)︸ ︷︷ ︸
Salient InfoMax

s.t. DKL(sx||δ(s′)) = 0︸ ︷︷ ︸
Information-less hyp.

and I(c, s) = 0︸ ︷︷ ︸
Independence hyp.

(1.24)

We propose to estimate the MI terms, I(x; c), I(y; c) and I(y; s), via a formulation similar to
the alignment and uniformity terms introduced in [Wang and Isola, 2020]. Let fθC

be the common
encoder and c ∼ fθC

(t(.)) be the common representations. The MI I(x; c) (same reasoning is also
valid for the other MI terms) can be decomposed into:

I(x; c) = −Ex∼pxH(c|x)︸ ︷︷ ︸
Alignment

+ H(c)︸ ︷︷ ︸
Entropy

(1.25)

Entropy (Uniformity). As in [Wang and Isola, 2020], the entropy can be computed with a non-
parametric estimator described in [Ahmad and Lin, 1976]. To do so, we compute the approximate
density function p̂(ci) with a Kernel Density Estimator as in [Parzen, 1962, Rosenblatt, 1956],
based on views vj (random augmentation of an image with index j) uniformly sampled from both
the target dataset fθc(t(y)) ∼ p(c|y) and the background dataset fθc(t(x)) ∼ p(c|x). We choose a
von Mises-Fischer kernel with concentration parameter 1

τ
. As in [Wang and Isola, 2020], we optimize

a lower bound of this estimator called −Lunif:

Lunif = log 1
NX +NY

NX+NY∑
i=1

1
NX +NY

NX+NY∑
j=1

exp −||fθC
(vi) − fθC

(vj)||22
2τ + log

√
2πτ︸ ︷︷ ︸

Constant term

(1.26)

Alignment: Differently from [Wang and Isola, 2020], we propose to estimate the conditional
entropy −H(c|x) with a re-substitution entropy estimator. We compute the approximate density
function p̂(ci|xi) with a Kernel Density Estimator based on samples uniformly drawn from the con-
ditional distribution cki ∼ p(c|xi), where cki = fθ(vki ) and vki are K views obtained via the stochastic
process t(.). As for the entropy term, we choose a von Mises-Fischer kernel with concentration pa-
rameter 1

τ
to derive an L2 distance between the views. Our formulation generalizes [Wang and Isola,

2020], as we directly retrieve a multi-view alignment term between K positive views of the same
image and not a single-view alignment as in [Wang and Isola, 2020]. Combining the background
alignment −H(c|x) and the target alignment −H(c|y), we obtain:

Lalign = − 1
NX +NY

NX+NY∑
i=1

log 1
K

K∑
k=1

exp −||fθC
(vi) − fθC

(vki )||22
2τ + log(

√
2πτ)︸ ︷︷ ︸

Constant term

(1.27)

On the relation with I(fθ(v), fθ(v′). Many recent representation learning works ([Chen and He,
2021, Wang and Isola, 2020]) maximize the MI between two views v and v′ of x: I(fθ(v), fθ(v′).
Inspired by the InfoMax principle, we propose instead maximizing I(fθ(v),x). As shown in [Tschan-
nen et al., 2020], by directly applying the data processing inequality, one can demonstrate that
I(fθ(v), fθ(v′) is a lower bound of I(fθ(v),x).

35



Chapter 1. Detection of anatomical signatures predictive of brain disorders

Figure 1.12: SepCLR is trained to identify and separate the salient patterns (color variations) of the target dataset Y
from the common patterns (shape) shared between background X and target dataset Y . Views (transformations t(·))
of both datasets are fed to two different encoders, one for the salient space (fθs

) and one for the common space (fθc
).

In the hyperspherical common space, C, embeddings of views of the same image (from both X and Y ) are aligned,
while embeddings from different images are repelled (max I(c; x) + I(c; y)). This enforces C to represent the shared
patterns (shape). In the salient space S, which is a Euclidean space, in order not to capture background variability
(i.e: shape), background embeddings are aligned onto an information-less null vector s’ (DKL(sx||δ(s′)) = 0).
Furthermore, embeddings of views of the same image (only from Y ) are aligned while embeddings from different
images are pushed away from each other, and they are all repelled from s’ (max I(s; y)). This enforces S to capture
only the salient patterns of Y (color). To limit the information leakage between C and S, their MI is constrained to
be null, i.e: I(c; s = 0).

Evaluation

Schizophrenia Here, we evaluate the performance of our methods in separating healthy from
pathological latent mechanisms that drive neuro-anatomical variability in schizophrenia. The goal
is to capture the pathological factors of variability in the salient space, that should correlate with
clinical scales, such as positive symptoms (SAPS), and negative symptoms (SANS), while isolat-
ing in the common space the patterns related to demographic variables, such as age and sex, or
acquisition sites. For each experiment, we gather T1w anatomical VBM [Ashburner and Friston,
2000] pre-processed images of both schizophrenic patients and healthy controls from the datasets
SCHIZCONNECT-VIP [Wang et al., 2016b] and BSNIP [Tamminga et al., 2014]. We divide them
into 5 TRAIN, VAL splits (0.75, 0.25) and evaluate in a cross-validation scheme the average per-
formance of SOTA CA-VAEs as well as the proposed methods. Results in Tab. 1.10 show that
the salient factors estimated using our methods better predict schizophrenia-specific variables of
interest: SAPS (Scale of Positive Symptoms), SANS (Scale of Negative Symptoms), and diagnosis.
On the other hand, salient features are shown to be poorly predictive of demographic variables: age,
sex, and acquisition site. More details can be found in [Louiset et al., 2024a, Louiset et al., 2024b].

CelebA with accessories To evaluate the generative performance of Double InfoGAN and
SepVAE10, we used the the CelebA with attributes dataset [Liu et al., 2015b], where the target
set (Y ) contains images of celebrities wearing glasses or hats while background images X show no
accessories. In Fig. 1.13 and 1.13, we can see that both methods correctly retrieve the salient factors
(glasses and hats), since these are kept when swapping the salient features (i.e., use ŝy instead than
0 for X and 0 instead than ŝy for Y ). This is also confirmed by quantitative results presented

10we did not use a decoder in SepCLR since it was not the goal of the paper and it decreased the performance
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Age MAE Sex B-ACC Site B-ACC
C ↓ S ↑ C ↑ S ↓ C ↑ S ↓

cVAE 6.43±0.18 7.27±0.25 75.06±3.48 74.99±2.15 65.12±4.06 59.62±5.42
ConVAE 6.40±0.26 7.46±0.18 74.45±1.80 72.72±1.32 60.42±3.67 54.46±2.46
MM-cVAE 6.55±0.18 7.10±0.34 72.80±3.95 72.15±2.47 63.24±1.41 56.69±9.84
SepVAE 6.40±0.13 7.98±0.25 74.19±1.81 72.61±2.19 63.89±2.16 44.10±5.78
SepCLR-k-JEM 6.64±0.21 7.72±0.45 76.5±1.98 70.85±1.89 66.94±5.06 42.40±4.91

SANS MAE SAPS MAE Diagnosis
C ↑ S ↓ C ↑ S ↓ C ↓ S ↑

cVAE 5.89±0.67 4.35±0.26 4.65±0.34 2.98±0.18 60.66±2.63 68.24±5.42
ConVAE 6.17±0.45 3.95±0.28 4.50±0.37 2.76±0.18 61.85±2.60 58.53±4.87
MM-cVAE 6.78±0.54 4.92±0.58 4.52±0.33 3.16±0.05 64.25±2.98 70.94±4.08
SepVAE 7.05±0.67 4.14±0.39 4.79±0.67 2.60±0.27 60.90±1.75 79.15±3.39
SepCLR-k-JEM 9.17±2.49 3.74±0.12 5.54±0.70 2.52±0.16 60.16±1.19 79.90±1.57

Table 1.10: Average performance on the prediction of disorder-specific variables (i.e., SANS, SAPS, and diagnosis)
and common variables (Age, Sex, Site) using the estimated salient S and common C factors of validation images.
MAE=Mean Absolute Error. B-ACC=Balanced Accuracy. Best in bold.

Figure 1.13: Double InfoGAN: image reconstruction and salient feature
swap with the CelebA with accessories dataset, where the target set (Y )
contains images of celebrities wearing glasses or hats while background
images X show no accessories.

Figure 1.14: SepVAE: reconstructions
with CelebA accessories dataset.

in [Carton et al., 2024, Louiset et al., 2024a]. However, the generative quality of Double InfoGAN
is definitely better than the one of SepVAE, as expected. This was also confirmed by quantitative
measures, such as the FID score, presented in [Carton et al., 2024].

1.4 Conclusions and Perspectives
In this Chapter, we presented several methodological contributions whose final goals were 1) identify-
ing anatomical patterns predictive of brain disorders and 2) parsing their heterogeneity to estimate
either distinct subtypes or relevant generative factors. Thanks to a recently proposed geometric
approach for Contrastive Learning, we proposed new losses well adapted to integrate prior clin-
ical information and learn a complete and robust representation of the healthy population. We
showed that, by transferring it to smaller-scale clinical datasets, we can improve the discriminative
performance, and established the new state-of-the-art prediction performance on bipolar disorder
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detection from brain anatomical images (> 78% AUC on both internal and external tests, with 1173
healthy controls and 471 patients). Furthermore, we also improved current state-of-the-art results in
Subtype Detection and Contrastive Analysis, which are two promising frameworks to analyze brain
disorder heterogeneity. Aggregating other modalities (e.g., functional or diffusion MRI, genetics) to
perform representation learning remains an exciting challenge that might be solved with (geometric)
contrastive learning, or other self-supervised methods. It would improve our understanding of brain
disorders and possibly pave the way towards personalized medicine in psychiatry through predictive
models of clinical outcome.

Longitudinal data

The methodological contributions presented in the previous sections were developed for cross-
sectional studies. However, the natural aging of the brain and the neurodevelopmental charac-
teristic of some brain disorders would favor longitudinal analyses. The main reason why most of
the studies in the literature (ours included) focus on a single time point is mainly due to data
availability. Indeed, large datasets with multiple time points are much more costly and difficult to
obtain. Recently, few research longitudinal datasets have emerged, such as UKBiobank [Littlejohns
et al., 2020] and Alzheimer’s Disease Neuroimaging Initiative (ADNI) [Petersen et al., 2010], where
at least two time points are usually available. Adapting the previously presented geometric frame-
work to longitudinal data would be a promising research direction to fully leverage the anatomical
similarity of the same subject through successive time points, similarly to [Zhao et al., 2021, Ouyang
et al., 2022b, Ouyang et al., 2021a, Zeghlache et al., 2023, Sun et al., 2023, Ren et al., 2022]. Fur-
thermore, we could also adapt the presented Contrastive methods, such as SepCLR, to disentangle
the natural anatomical variations due to aging from the pathological ones, as proposed in [Ouyang
et al., 2022a, Zhao et al., 2021, Ouyang et al., 2021b, Ouyang et al., 2023, Zeghlache et al., 2024].
Average anatomical brain representations conditioned on the chronological age, as estimated in this
Chapter, could be used as reference point for the longitudinal analysis.

Debiasing losses for regression

In Table 1.8, we can notice that Lexp shows a better external MAE than the Baseline and ComBat
but it has also a low debiasing capability since the Balanced Accuracy should be equal to random
chance, namely 1/nsites = 1/64 ≈ 1.56. Unfortunately, simply adding the previously presented
FairKL regularization loss does not improve the debiasing capability (BAcc=5.2 with a ResNet-18)
of the Lexp loss, even if it improves the external MAE (3.56) and the challenge score (1.47). Finding
an appropriate debiasing loss for regression is an interesting and important future research direction.

Disentanglement in Contrastive Analysis

Learning disentangled (or factorized) representations in Contrastive Analysis would increase inter-
pretability and thus clinical utility. Most of the recent disentanglement methods [Bengio et al.,
2013, Higgins et al., 2017, Burgess et al., 2017, Kim and Mnih, 2018, Chen et al., 2016, Chen et al.,
2018, Locatello et al., 2020b] assume the existence of independent generative factors that capture
distinct, noticeable and semantically meaningful variations in the datasets. Since unsupervised dis-
entanglement has been shown to be impossible [Locatello et al., 2019], inductive biases, class labels
or weak information is required [Locatello et al., 2020a, Shu et al., 2020]. These methods have
shown good results in toy datasets that have been built with independent factors, such as dSprites
[Matthey et al., 2017]. However, we have shown in [Carton et al., 2024] that disentangling salient
(or common) factors in toy datasets for Contrastive Analysis is much more difficult than in a single
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data-set. Indeed, we proposed a new toy dataset where background X images consisted of 4 MNIST
digits regularly placed in a square, while target Y images had dSprites element added on top of the
same 4 MNIST digits. We adapted the Contrastive Regularizer (CR) module of InfoGAN-CR [Lin
et al., 2020] for our model, obtaining a maximum fvae score of 0.47. For comparison, InfoGAN-
CR achieves a fvae score of 0.88 on the dsprite dataset alone. Furthermore, there is an important
difference between factorized toy datasets, such as dSprites, and real datasets of medical images:
generative factors might be correlated. For instance, it is known that age or sex, thus common fac-
tors, might be correlated with salient factors in certain psychiatric disorders, such as schizophrenia.
Exploring disentanglement regularizations more suited for CA, and in particular when dealing with
unknown correlated factors, like in [Träuble et al., 2021], is left as future work.

Identifiability in Contrasive Analysis

An important question in Contrastive Analysis (CA), is the identifiability of the models. Namely,
under which conditions can the models recover the true latent factors of the underlying data-
generating process. Recent works have shown that non-linear models, VAEs included, are generally
not identifiable. To obtain identifiability, two different solutions have been proposed: 1) either
regularizing [Kivva et al., 2022] the encoder or 2) introducing an auxiliary variable so that the
latent factors are conditionally independent given the auxiliary variable [Hyvarinen et al., 2019,
Khemakhem et al., 2020]. In CA, neither of these solutions may be used 11. Even though all
the proposed methods effectively separate common from salient factors, they do not assure that
all true generative factors have been identified (like all other existing CA methods). This is a
serious limitation of all CA methods that we leave as future work. Inspired by [Wyner, 1975, Huang
and Gamal, 2024], a possible research direction would be adding an information-theoretic loss that
quantifies the common and salient information content so that, under realistic assumptions, the
model could be identifiable. Another interesting direction is given by multi-modal (called also
multi-view) causal representation learning [Yao et al., 2024]. In such works, authors assume that
we have multiple views (modalities) for each sample and different views are functions of only some
of the generative factors. We could leverage these theoretical results by seeing X and Y as different
“views” generated by different factors.

11The dataset label could be considered as an auxiliary variable, but it does not make c and s independent
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Chapter 2

Glioblastoma atlas estimation

This chapter has been published in [François et al., 2021, François et al., 2022, Maillard et al.,
2022, Hu et al., 2020] and is based on the PhD theses of M. Maillard and A. Francois, co-directed
with I. Bloch (Télécom Paris) and J. Glaunès (MAP5), respectively.
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2.1 Clinical context
Glioblastoma (GBM) is a type of aggressive brain cancer that is still considered incurable [Tykocki
and Eltayeb, 2018] and it accounts for more than 60% of all brain tumours in adults [Rock et al.,
2012]. The symptoms include headaches, focal neurologic deficits, confusion, memory loss, personal-
ity changes, or seizures [Alifieris and Trafalis, 2015]. Furthermore, the median overall survival ranges
from 12 to 20 months depending on the study [Lacroix et al., 2001, Stummer et al., 2006, Pallud
et al., 2015]. In the United States, the 5 and 10-year survival rate is estimated to be respectively 5%
and 2.6% [Ostrom et al., 2014]. A common treatment against GBM is the resection of the tumor
followed by radiotherapy and adjuvant therapy [Alifieris and Trafalis, 2015]. Despite this aggressive
treatment, recurrence almost always occurs in proximity to the original lesion (75 to 90 percent of
patients according to [Tykocki and Eltayeb, 2018]). The low survival rate and negative prognosis
have fostered a lot of research for a better understanding of the behavior of this kind of tumor.
Clinical evidence suggests that tumor size, location, and shape could be important factors related
to recurrence and seizures.

Indeed, tumour location is a key parameter in the care of patients with glioblastoma because it
correlates with demographic characteristics, symptoms, surgical management, delivery of subsequent
oncologic treatments, and, ultimately affects the patient’s prognosis. [Roux et al., 2019]. Previous
pathogenesis research has shown that the most frequent location is the cerebral hemispheres. 95%
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of glioblastoma arise in the supratentorial region (upper part), while only a few in the cerebellum,
brainstem and spinal cord [Nakada et al., 2011]. At a macroscopic scale, glioblastomas are quite
heterogeneous in form and irregularly shaped but usually arise in white matter [Nakada et al.,
2011]. It has been shown that depending on the lobe where the tumour arises, symptoms vary. For
example, patients with a glioblastoma located in the temporal lobe often show hearing and visual
problems, while those who have one in the frontal lobe might demonstrate personality change [Hanif
et al., 2017]. Furthermore, the distribution of edema/necrosis leads to different secondary effects
in the patient. For instance, a gradual increase in tumor size and surrounding edema might lead
to a shift in intracranial contents, resulting in headaches. A tumor that resides in the eloquent
cortex brain stem or basal ganglia cannot go through surgery and these patients usually have worse
prognoses [Mrugala, 2013]. Several studies [Bilello et al., 2016, Parisot et al., 2016, Simpson et al.,
1993] saw no difference in survival for different tumour sizes and asses that patients with frontal
lobe tumours survived longer than those with temporal or parietal lobe lesions, concluding that
localisation is a crucial prognosis indicator.

The standard research protocol to detect brain tumors is Magnetic Resonance Imaging (MRI)
[Thust et al., 2018] as it constitutes a non-ionizing and non-invasive method to produce detailed
images of the brain internal structures. Different MRI modalities are usually used as they pro-
vide different contrast between tissues, highlighting specific tumor parts. The commonly acquired
modalities are T1, T1 contrast-enhanced (T1ce), T2, and Flair [Menze and others, 2015]. As seen
in Figure 2.1, the contrast in each modality is different and each one highlights different tumor
regions. For instance, the T1ce image shows the necrotic region and the enhancing tissue, while
the Flair and T2 better reveal the edema. However, acquiring multiple modalities is usually not
possible in a clinical setting due to a limited number of physicians and scanners, and to limit costs
and scan time. Most of the time, only one modality is acquired.

Figure 2.1: Example of the four MRI modalities commonly used to study brain tumors. Last figure presents the
corresponding manual segmentation of the brain glioblastoma. The yellow part is the necrotic tumor, blue is the
tumor core, and red is the edema.

In the following, we will use the notation of the challenge Brats1, where authors have subdivided
the tumor into four types of intra-tumoral structures: 1) Necrosis, 2) Edema, 3) Non-Enhancing
tumor, and 4) Enhancing Tumor (see Fig.2.2 for an exemple and please refer to [Menze and others,
2015] for more information).

2.2 Clinical Goal and Challenges
The goal of this chapter is to propose a method to estimate a 3D atlas of glioblastoma using a
population of MR brain images. In medical imaging, a statistical atlas is usually defined as an aver-

1https://www.med.upenn.edu/cbica/brats/
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Figure 2.2: BraTS annotations. On the left: the whole tumor visible in FLAIR (A), the tumor core visible in T2
(B), the enhancing tumor structures visible in T1c (blue), surrounding the necrotic components of the core (green)
(C). On the right: labels of the tumor structures: edema (yellow), non-enhancing tumor core (red), enhancing tumor
core (blue), necrotic/cystic core (green). Figure taken from [Menze and others, 2015].

age image and a set of deformations of the average. The deformations should model the variability
within the population. Most of the works in the literature focus on the morphological variability,
namely the variations in shape of the anatomical structures. This analysis is relevant for modeling
the healthy anatomical variability, as well as pathological variations that only concern the anatomy
(e.g., atrophy in Alzheimer’s disease) [Gori et al., 2013, Gori et al., 2017, Gori et al., 2015, Ashburner
and Friston, 2011, Joshi et al., 2004]. Furthermore, most of the works proposed in the literature
define the deformations as diffeomorphisms, which are differentiable (smooth and continuous) bi-
jective transformation (one-to-one) with differentiable inverse. The main reason is the anatomical
plausibility of the produced deformations, since they preserve the topology and spatial organization,
namely no intersection, folding or shearing may occur. Such methods include Large Deformation
Diffeomorphic Metric Mapping (LDDMM) [Dupuis et al., 1998, Beg et al., 2005, Vialard et al.,
2011], diffeomorphic B-splines [Rueckert et al., 2006], diffeomorphic Demons [Vercauteren et al.,
2009, Lorenzi et al., 2013], Diffeomorphic Anatomical Registration using Exponentiated Lie algebra
(DARTEL) [Ashburner, 2007] and symmetric image normalization (SyN) [Avants et al., 2008]. Fur-
thermore, diffeomorphic deep learning-based methods have also recently emerged [Detlefsen et al.,
2018, Dalca et al., 2019, Krebs et al., 2019, Mok and Chung, 2020]. The network outputs a vector
field and the scaling-and-squaring algorithm is used [Arsigny et al., 2006] to generate a diffeomor-
phic deformation. Diffeomorphic deep learning methods offer faster registration at inference than
classical methods at the cost of a relatively large training set.

Diffeomorphisms are not enough

However, the presence of tumors induce two sources of variation that can not be taken into account
by diffeomorphisms: topological and appearance changes. The first is due to the presence of tu-
mors, since two subjects may have a different number of tumors at different locations. Appearance
differences are instead due to the infiltration of the tumors causing the edema (see Fig.2.2). This
means that previous methods, mainly based on diffeomorphisms or splines deformations, can not
be used to estimate a 3D atlas of glioblastoma. The deformation models and the definition itself
of statistical atlas need to be revised. Indeed, since the tumor location can vary among subjects,
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standard definitions of average (e.g., geometrical average, Karcher average, etc.) can not be used.

An early approach for the registration of images with a different topology is the cost function
masking (CFM) [Brett et al., 2001, Stefanescu et al., 2004], where the tumor/lesion region is ignored
when evaluating the cost function. This strategy has also been combined with the creation of an
intermediate, cohort-specific template in [Pappas et al., 2021]. However, the CFM method falls
short with large tumors/lesions [Kim et al., 2007]. To cope with that, geometric metamorphosis
[Niethammer et al., 2011] adds a specific deformation to the masked area, but it works only when
the lesion/tumor is present in both source and target images. Additionally, segmentation masks are
required for both images.

In the context of aligning a healthy image with one showing a tumor or a lesion, it has been
proposed to first make both images topologically identical and then perform the registration. A
first approach has been to simulate the growth of the tumor in the healthy image with a biophysical
model [Zacharaki et al., 2009, Gooya et al., 2012, Scheufele et al., 2019], and then register it
onto the pathological scan. This strategy requires user initialization, and extensive computations
to estimate the model parameters, which are specific to a particular kind of tumor. Although a
recent fully-automatic method was introduced in [Scheufele et al., 2021], it is based on a rather
simplistic biophysical growth model. In [Shen et al., 2019], authors use a similar perspective with
a non-biophysical growth model computed simultaneously with the diffeomorphic warping. Despite
being more generic than the previous methods, it still requires user initialization and extensive
computations. An opposite strategy consists in removing the tumor to generate a healthy image.
In [Liu et al., 2015a, Yang et al., 2016, Han et al., 2017, Tang et al., 2019], the pathological
region is removed by synthesizing a quasi-normal image via low-rank approaches. This approach
can effectively recover tumor regions, but at the same time distort or blur the healthy regions.
Furthermore, it is a statistical technique that needs lesions to be homogeneously (and randomly)
distributed across the population [Liu et al., 2015a], which is not the case for all kinds of lesions or
tumors (e.g., brain glioblastoma). With a similar perspective, inpainting techniques on brain MRI
have also been proposed [Sdika and Pelletier, 2009, Almansour et al., 2021]. However, with a strong
mass effect (deformation of healthy tissues surrounding the tumor), the inpainting of a tumor might
not produce realistic results [Almansour et al., 2021].

Concurrently, a mathematical elegant method, called Metamorphosis [Trouvé and Younès, 2005,
Holm et al., 2009, Younes, 2010], has been developed to align images with different shapes and
appearances. It does not assume a one-to-one correspondence between source and target images.
Metamorphosis can be seen as a relaxed version of diffeomorphisms, where small intensity varia-
tions are added to the diffeomorphic flow, therefore allowing for appearance and topological changes.
This model can theoretically align any couple of images since it allows for both iconographic and
morphological changes. However, in particular in medical imaging, interpretability and explicabil-
ity are two important properties for a model to be trustworthy and accepted by clinicians. In our
case, to fulfill these properties, we need to guarantee a proper disentanglement between shape (i.e.
geometric) and appearance (i.e. intensity) transformations. This means that the appearance trans-
formation should only account for the tumor core (topological difference) and infiltration (edema)
but it should not deal with shape changes due to anatomical differences or tumor mass effect. Mor-
phological variations should be taken into account only by the diffeomorphic deformations. This
is critical for correctly interpreting the estimated alignment and for using the computed transfor-
mations in further statistical analysis, such as the atlas construction [Gori et al., 2017]. The main
drawbacks of Metamorphosis are that: 1) it’s computationally cumbersome [François et al., 2021]
and 2) finding the parameters that perfectly disentangle shape and appearance is rather difficult.
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Multi-modal data are not always available

Segmenting the tumor in the MR image can be very important to disentangle shape and appearance
variations and thus build a clinically relevant and accurate 3D atlas of glioblastoma. Multi-modal
segmentation models represent the state-of-the-art technique to detect brain tumors. However,
it is often difficult to obtain multiple modalities in a clinical setting due to a limited number of
physicians and scanners, and to limit costs and scan time. In many cases, especially for patients
with pathologies or in case of emergency, only one modality is acquired. This means that there is
large gap between multi-modal, high-quality research datasets and uni-modal, low-quality clinical
datasets. Since our final goal is to build an atlas using clinical datasets, we have asked ourselves
the following question “Can we leverage multi-modal, high-quality research datasets to improve the
tumor segmentation in uni-modal, low-quality clinical datasets ?”. That is to say, segmenting brain
tumors using only one modality at test time, while multi-modal data are available during training.

Two main strategies have been proposed in the literature to deal with such a problem. The first
one is to train a generative model to synthesize the missing modalities and then perform multi-
modal segmentation. In [van Tulder and de Bruijne, 2015], the authors have shown that using a
synthesized modality helps improving the accuracy of classification of brain tumors. Ben Cohen
et al. [Ben-Cohen et al., 2018] generated PET images from CT scans to reduce the number of
false positives in the detection of malignant lesions in livers. Generating a synthesized modality
has also been shown to improve the quality of the segmentation of white matter hypointensities
[Orbes-Arteaga et al., 2018]. The main drawback of this strategy is that it is computationally
cumbersome, especially when many modalities are missing, since one needs to train one generative
network per missing modality, in addition to a multi-modal segmentation network. Furthermore,
the optimization can be difficult and the choice of the most adapted architecture quite tedious.

The second strategy consists in learning a modality-invariant feature space that encodes the
multi-modal information during training, and that allows for all possible combinations of modalities
during inference. Within this second strategy, Havaei et al. proposed HeMIS [Havaei et al., 2016],
a model that, for each modality, trains a different feature extractor. The first two moments of
the feature maps are then computed and concatenated in the latent space from which a decoder is
trained to predict the segmentation map. Dorent et al. [Dorent et al., 2019], inspired by HeMIS,
adapted the Multi-modal Variational Auto-Encoders (MVAE [Wu and Goodman, 2018]) architecture
to the missing modality case. They proposed U-HVED where they introduced skip-connections by
considering intermediate layers, before each down-sampling step, as a feature map and the modality-
specific latent spaces were assumed to follow a Gaussian distribution. This network outperformed
HeMIS on BraTS 2018 dataset. In [Chen et al., 2019], instead of fusing the layers by computing
mean and variance, the authors learned a mapping function from the multiple feature maps to the
latent space. They claimed that computing the moments to fuse the maps is not satisfactory since
it makes each modality contribute equally to the final result, which is inconsistent with the fact
that each modality highlights different zones. They obtained better results than HeMIS on BraTS
2015 dataset. Similarly, [Zhou et al., 2021a] designed a vector fusion procedure by extracting spatial
and channel attention. This second strategy has good results only when one or two modalities are
missing. However, when only one modality is available, it has worse results than a model trained
on this specific modality. This kind of methods is therefore not suitable for a clinical setting.

2.3 Contributions
Previous works have focused only on the spatial distribution of the tumors by estimating a frequency
distribution map onto a healthy template (e.g. MNI) [Bilello et al., 2016, Parisot et al., 2016, Roux
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et al., 2019]. Here, we make a further step by proposing a new theoretical paradigm to estimate
a statistical atlas of 3D glioblastoma. We plan to first divide the brain into relevant anatomical
regions (e.g. lobes or more precise brain parcellation), so that the location variability of the tumors
is highly reduced in each region and can be considered as “constant”. Then, we propose to estimate
one atlas per region using, for each atlas, only the images with tumors present in the respective
region. As average image, we can use a pre-estimated healthy template, such as the MNI one [Fonov
et al., 2009, Fonov et al., 2011]. In this way, for each region, we can estimate the average shape and
variability of the tumor (i.e. geometric model), and the morphological variations of all surrounding
anatomical structures, due to the mass-effect. Furthermore, by using a well adapted deformation
model (metamorphosis, explained in the next paragraph), we can also estimate how a tumor usually
infiltrates, given a certain anatomical location. This creates an ensemble of atlases, where each
atlas corresponds to an individual anatomical region. From a topological point of view, it’s like
modeling the brain as a manifold divided into individual charts (anatomical regions/parcellations).
To increase reliability and reduce the dependence on the chosen parcellation, one should also force
the smoothness of the transition functions between charts. This means that the transformations
estimated in one region should be related to the transformations estimated in the adjacent regions,
so that there would be a smooth transition of the variations due to the mass-effect and tumor
infiltration between regions.

Such an atlas could improve our understanding of the pathophysiology of glioblastoma and
thus be used for surgical and chemotherapeutic planning or to better understand the association
between glioblastoma and refractory epileptic seizures [Pallud et al., 2013]. Furthermore, we could
also include into our analysis white matter fiber bundles obtained from tractography and segmented
with the algorithm presented in Chapter 3. This could be used to test the hypothesis that tumors
tend to predominantly grow along the white matter [Esmaeili et al., 2018].
This new theoretical definition of atlas requires a deformation model that can take into account not
only the morphological changes but also the appearance and topological variations. As previously
explained, metamorphosis is a good candidate. However, its original implementation is rather
complicated and computationally cumbersome and the shape/appearance disentanglement can be
tricky. To this end, we have proposed two new implementations and regularization strategies,
published in [François et al., 2021, François et al., 2022, Maillard et al., 2022].

As last point, we would like our method to be generic and compatible with a clinical context,
where a single MRI modality (T1w or T1ce) is usually acquired.

In the following Sections, we will describe our methodological contributions to estimate an atlas
of glioblastoma using clinical 3D MR images. In particular, we will present:

1. A new framework, called KD-Net, to transfer knowledge from a multi-modal segmentation
network (Teacher) to a mono-modal one (Student) [Hu et al., 2020]. The student network
produces a precise segmentation of all tumor areas taking as input only images from a single
modality. This method can thus be used in a clinical setting, leveraging the rich datasets and
computational resources available in research laboratories.

2. Two implementations of the Metamorphosis image registration method based on a new semi-
Lagrangian scheme [François et al., 2021]. The first uses classical numerical integration
schemes [François et al., 2022] while the second employs a deep learning architecture (i.e.,
ResNet) [Maillard et al., 2022]. Both methods leverage the KD-Net segmentation method to
correctly disentangling appearance and morphological variations.
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2.3.1 KD-Net

In [Hu et al., 2020], differently from previous methods, we proposed a new strategy that consists in
distilling the knowledge of a trained multi-modal teacher network into a uni-modal student model.
It is based on the concept of generalized knowledge distillation [Lopez-Paz et al., 2016], which is a
combination of distillation [Hinton et al., 2015] and privileged information [Vapnik and Izmailov,
2015], where one uses distillation to extract useful knowledge from the privileged information of
the Teacher [Lopez-Paz et al., 2016]. This method has originally been designed for classification
problems to make a small network (Student) learn from an ensemble of networks or from a large
network (Teacher). It has also been applied to image segmentation in [Liu et al., 2019, Xie et al.,
2018], but always to “compress” the Teacher model information, since the same input modalities
have been used for the Teacher network and the Student network.

To the best of our knowledge, we proposed in [Hu et al., 2020] the first method that adapted the
concept of generalized knowledge distillation to guide the learning of a mono-modal segmentation
network using a multi-modal teacher network. It was the first work based on generalized knowledge
distillation where Student and Teacher networks learned from different input modalities. Teacher
and Student have the same architecture (i.e. same number of parameters) but the Teacher can
learn from multiple input modalities (additional information), whereas the Student from only one.
The proposed framework is based on two encoder-decoder networks, which have demonstrated to
work well in image segmentation [Isensee et al., 2021], one for the Student and one for the Teacher.
Importantly, the proposed framework is generic since it can work for any architecture of the encoders
and decoders. Each encoder summarizes its input space to a latent representation that captures
important information for the segmentation. Since the Teacher and the Student process different
inputs but aim at extracting the same information, we make the assumption that their first layers
should be different, whereas the last layers and especially the latent representations (i.e. bottleneck)
should be similar. By forcing the latent space of the Student to resemble the one of the Teacher, we
make the hypothesis that the Student should learn from the additional information of the Teacher.
The proposed method, called KD-Net, is illustrated in Figure 2.3.

We first train the Teacher, using only the reference segmentation as target. Then, we train the
Student using three different losses: the knowledge distillation term (KD loss), the dissimilarity
between the latent spaces (KL loss), and the reference segmentation loss (GT loss, a combination of
cross-entropy and Dice loss). Note that the weights of the Teacher are frozen during the training of
the Student and the error of the Student is not back-propagated to the Teacher. The first two terms
allow the Student to learn from the Teacher by using the soft prediction of the latter as target (KD
loss) and by forcing the encoded information (i.e. bottleneck) of the Student to be similar to the
one of the Teacher (i.e., we minimize the Kullback-Leibler (KL) divergence between the teacher and
student’s bottlenecks). The last GT loss makes the predicted segmentation of the Student similar
to the reference segmentation.

At first, in [Hu et al., 2020], we evaluated the performance of the proposed framework on the
publicly available dataset from the BraTS 2018 Challenge [Menze and others, 2015], which contains
285 patients. We compared it to the baseline nnU-Net and to two other models, U-HVED [Dorent
et al., 2019] and HeMIS [Havaei et al., 2016], using only T1ce as input. Our method outperformed
all other methods in the segmentation of all three tumor components. We also provided an ablation
study showing that both the KL and KD loss functions improved the results with respect to the
baseline model, especially for the enhanced tumor and tumor core.

However, when applying our method on a larger dataset (BraTS 2021, N = 1251), we found
that KD-Net did not significantly improve the results compared to the baseline. We also tried two
other knowledge-transfer strategies that have been proposed in the literature: Attention Transfer
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Figure 2.3: Illustration of the proposed framework. Both Teacher and Student have the same architecture adapted
from nnUNet [Isensee et al., 2021]. First, the Teacher is trained using only the reference segmentation (GT loss).
Then, the student network is trained using all proposed losses: KL loss, KD loss and GT loss.

(Att) [Zagoruyko and Komodakis, 2017, Qin et al., 2021, Cho and Kang, 2022] and Contrastive
Distillation (CT) [Chen et al., 2022]. Results are shown in Table 2.1, where we vary the training set
size while keeping fixed the test set across all experiments (178 patients). It is interesting to notice
that the T1ce modality highlights the enhancing tumor and the necrotic tumor core, therefore the
baseline reaches comparable results with the teacher for ET and TC but has a significantly lower
WT score. Thus, we are primarily interested in improving the results for the WT label. Here, our
framework KD-Net corresponds to the model trained with the KD+KL loss.

Our results indicate that the teacher-student framework is beneficial only when little data is
available, see Table 2.1, and it mainly helps students to segment small structures (whole tumor or
tumor parts), see Fig.2.4. In the following section, to compute the segmentation masks employed as
regularization for the metamorphic image registration model, we will employ a mono-modal U-Net
architecture trained on BraTS 2021 with no teacher supervision.

It’s interesting to notice that BraTS is an exceptional dataset that required the collaboration
of multiple international institutions and the manual annotation of more than 50 experts. Not
all anatomical regions and pathologies benefited from such attention. For instance, in myocardial
pathology segmentation, the only publicly available multi-modal dataset contains only 45 annotated
subjects [Li et al., 2023]. For this type of applications, where only a small database of annotated
images is available, the current teacher-student knowledge distillation approach should be beneficial.

More details can be found in [Maillard, 2023].
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Table 2.1: Dice score and Hausdorff distance for the models trained on six training sets, N = 834, 417, 208 from
BraTS2021 and N = 190, 95, 47 from BraTS 2018. Bold indicates the best score. The symbol ∗ (respectively †)
indicates that the improvement (respectively deterioration) with respect to the baseline is statistically significant (p
< 0.05). The statistical significance of the differences with the baseline are evaluated with a paired t-test.

Training
set Model

Dice Hausdorff
ET TC WT ET TC WT

N=834

Teacher 87.61 89.95 91.44 6.05 5.63 9.27
Baseline 86.96 89.68 77.86 6.9 6.1 13.51
Att 87.39 90.19 77.77 6.18 5.49 11.48*

KL 86.75 89.84 77.43 7.33 5.75 11.51*

KL + KD 86.81 90.06 77.58 6.48 5.37* 12.89
KD 87.33 90.1 77.93 6.26 5.76 12.28*

CT 87.08 89.92 76.3† 6.63 5.57 12.59*

CT + KD 86.63 90.11 76.37† 6.86 5.89 13.42

N=417

Teacher 86.9 89.31 90.5 7.87 7.16 11.54
Baseline 86.02 88.8 76.77 7.13 6.42 12.79
Att 86.47 89.42 77.68* 7.11 6.39 12.66
KL 86.5 89.5 77.29 7.03 6.31 13.9†

KL + KD 86.44 89.48 75.85† 6.72 6.74 12.75
KD 85.02† 87.84† 75.74† 8.21† 8.31† 13.87†

CT 85.83 88.59 75.44† 6.8 6.37 12.98
CT + KD 85.9 89.06 75.23† 7.6 7.3† 13.47†

N=208

Teacher 84.85 86.88 89.23 9.06 7.9 11.1
Baseline 84.67 87.45 74.1 8.25 7.64 13.3
Att 85.12 87.8 77.09* 8.14 6.6* 12.76
KL 83.6† 86.48† 74.77 8.8 7.17 12.57*

KL + KD 84.05 87.51 76.41* 8.78 6.74* 13.6
KD 85.1 87.96 75.88* 7.67 7.1 13.25
CT 84.64 87.54 76.17* 8.15 6.94* 12.96
CT + KD 85.25 88.3 76.78* 7.59 6.29* 12.78

N=190

Teacher 82.88 85.19 83.69 8.73 7.58 15.4
Baseline 82.77 85.68 71.05 8.25 7.4 14.08
Att 82.59 85.43 73.68* 7.84 7.31 13.48
KL 83.32 86.38 74.86* 7.52 6.69* 12.28*

KL + KD 82.48 86.42 74.19* 7.76 6.69* 12.95*

KD 83.15 87.2* 73.14* 7.29* 6.34* 13.19*

CT 83.2 85.47 68.51† 9.2† 8.33† 13.52
CT + KD 82.66 85.27 73.39* 9.05 8.15† 13.87

N=95

Teacher 79.92 83.83 82.14 12.46 9.69 14.06
Baseline 78.8 82.6 70.0 10.89 9.27 13.8
Att 79.53 84.35* 72.15* 9.2* 7.74* 12.26*

KL 79.37 83.75∗ 70.42 8.41* 7.94* 12.46*

KL + KD 79.75* 82.2 73.24* 9.57* 9.55 13.28
KD 79.0 82.76 72.21* 9.89* 9.22 13.73
CT 79.75* 82.21 70.09 10.45 9.6 12.96*

CT + KD 79.19 82.59 70.32 9.52* 9.25 13.66

N=47

Teacher 76.08 77.66 77.25 13.9 14.43 13.88
Baseline 75.36 75.98 64.35 15.96 15.56 16.73
Att 74.66 78.6* 66.49* 12.62* 11.3* 13.81*

KL 74.22 76.72 66.88* 12.88* 11.38* 15.51*

KL + KD 75.69 78.25* 68.09* 12.89* 11.49* 14.16*

KD 76.44 78.76* 70.04* 13.06* 11.65* 14.65*

CT 71.74† 74.83 64.15 15.36 14.52 15.95
CT + KD 73.1† 76.35 67.52* 12.24* 11.68* 14.24*
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Improvement (or deterioration) of the Dice score of the three tumors labels (ET first row, TC second
row and WT third row) with respect to the baseline when using KDNet. The results are sorted by the size of the
label (i.e., size of the tumor part). For each tumor label, the improvement/deterioration is in the top row while the
tumor size is in the bottom row. The x-axis represents the index of the test subject. Figures (a), (c) and (e) show
the model trained with 47 subjects. Figures (b), (d) and (f) the one trained with 834 subjects. Please note that
when the size is very small (few voxels), even one mislabeled voxel can drastically change the Dice score.
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2.3.2 Metamorphic Image registration
Let Ω ⊂ Rd be a bounded domain, with d ∈ {2, 3}. Let V be a Reproducible Kernel Hilbert space
(RKHS) with kernel K of vector fields with support Ω and T times continuously differentiable, where
T ∈ N∗. Let I and J be the source (moving) and target (fixed) gray-scale images, both defined
on Ω. We suppose that both are square-integrable and differentiable. As discussed before, when
using images with varying topology, diffeomorphic deformations, such as LDDMM [Dupuis et al.,
1998], may not correctly align them. Indeed, since there are different components in the images, one
cannot compute a one-to-one correspondence between the images. For such cases, Metamorphosis
[Trouvé and Younès, 2005] has been developed. The model joins diffeomorphic deformations with
additive and infinitesimal intensity changes so that it can perfectly align images with morphological,
topological, and appearance differences. Similarly to [Trouvé and Younès, 2005], the evolution of
the image I at time t ∈ [0, 1] is defined:

∂It
∂t

= vt · It + µ2zt = −⟨∇It, vt⟩ + µ2zt s.t. I0 = I and I1 = J and µ ∈ R (2.1)

where vt · It implies that It is deformed by an infinitesimal, smooth vector field vt ∈ V , producing
a flow of diffeomorphisms ϕt in t ∈ [0, 1] as in LDDMM, and zt : Ω → R is the additive part
corresponding to the infinitesimal intensity variation (called the residual image or momentum).
The hyperparameter µ2 ∈ R+ balances the intensity and geometric changes.

The goal of Metamorphosis is to compute the minimal geodesic path by minimizing the energy
of the transformation,

∫ 1
0 ||vt||2V + ρ2||zt||22dt, under the condition in Eq. 2.1. As shown in [Trouvé

and Younès, 2005, Holm et al., 2009, Younes, 2010], by computing the Euler-Lagrange equations,
one obtains the following geodesic equations for Metamorphosis:

vt = −ρ2

µ2Kσ ∗ (zt∇It)

∂tzt = −∇ · (ztvt)
∂tIt = −⟨∇It, vt⟩ + µ2zt

(2.2a)

(2.2b)
(2.2c)

where ∇ · (zv) = div(zv) is the divergence of the field v times z at each pixel and ||vt||2V =
⟨Kσ ∗ (zt∇It), zt∇It⟩ = ⟨vt, Lvt⟩, where, as for LDDMM, Kσ is a (usually Gaussian) kernel. By
setting ρ = µ and letting µ → 0, one recovers the geodesic equations for LDDMM [Dupuis et al.,
1998].

From this system of equations, we can notice that vt is completely defined by zt and It. Since I0
is given, the only unknowns are the zt. The momentum zt has therefore a double role. It represents
the additive intensity variation and it is also the parameter of the deformation. This eases the
computation but at the same time it makes the disentanglement between geometry and intensity
variations more difficult.

Finding a perfect alignment that verifies I1 = J is not always desirable, due to potential noise
or artifacts. Thus, as it’s commonly done in the literature, we cast the metamorphic registration as
an inexact matching problem, minimizing the cost function:

E = 1
2 ||I1 − J ||22 + λ[

∫ 1

0
||vt||2V + ρ2||zt||22dt] (2.3)

where the first term is the classical L2 data term (please note that other data terms could be used
as well) and the second term, weighted by λ, is the total energy of the transformation, which can
be seen as a regularization.
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Geodesic Shooting

We can first notice that, by following the geodesic paths, the energies (i.e., squared norms over time)
are conserved and thus one can actually optimize only the initial norms in Eq.2.3. Furthermore,
Eq.2.2b makes z0 the only parameter of the entire system. This means that the boundary value prob-
lem can be reduced to an initial value problem, and thus one can use the shooting method to solve
it [Stoer and Bulirsch, 2002]. Shooting methods were proposed and used for LDDMM [Beg et al.,
2005, Vialard et al., 2011, Miller et al., 2006, Ashburner and Friston, 2011]. However, to the best of
our knowledge, the only shooting method proposed in the literature for image Metamorphosis is the
one in [Richardson and Younes, 2016]. It is based on a Lagrangian frame of reference and therefore
it is not well suited for large images showing complicated deformations, as it could be the case
when registering healthy templates to patients with large tumors. Eulerian schemes are the most
natural candidate for flow integration over an image. However, they are notoriously numerically un-
stable and very slow since they need a large number of time steps (Courant–Friedrichs–Lewy(CFL)
condition) or interpolations between grid points (e.g., Runge-Kutta methods).

As a solution, in [François et al., 2021], we proposed the first semi-Lagrangian scheme for Meta-
morphosis. Practically, we compute the deformation of a grid corresponding to a small displacement
Id − δt vt, and then interpolate the values of the image It on the grid. This can be summarized by
It+δt ≈ It ◦ (Id − δt vt). Semi-Lagrangian schemes are stable and don’t need many iterations.

Using the Pytorch framework, we proposed the first two Python-based implementations of Meta-
morphic image registration: an optimization-based one2 and a learning-based one3. In the former,
thanks to the automatic differentiation of Pytorch, we bypassed the extensive and delicate work of
deriving the backward adjoint equations and proposed different optimization methods. We call this
implementation Meta.

In the latter, similarly to [Krebs et al., 2019, Dalca et al., 2019], we use a UNet [Ronneberger
et al., 2015], taking I and J as input, to estimate z0. We also add an inverse-consistency term to
further reinforce the diffeomorphic property of the deformation. Interestingly, although the model is
primarily meant to be used in a learning context, it is possible to use it on a single pair of images and
optimize its parameters by repetitively minimizing the cost. We call this method MetaMorph-G.

More information can be found in [François et al., 2021, Maillard, 2023].

MetaMorph-R - Resnet integration

With a different perspective, we also propose to directly estimate all zt. Inspired by [Amor
et al., 2023, Rousseau et al., 2020], we propose to use a residual neural network (ResNet) to
find the solution of the system of differential Equations 2.2. We take advantage of the similar-
ity between ResNets and the numerical solutions of ODEs using Euler’s method (given an ini-
tial value). Indeed, the numerical integration of Equation 2.2b, using discrete time steps t, is:
zt+1 = zt − δ∇ · (ztvt) for t ∈ 0, .., T − 1, where T is the number of steps and δ is the integration
step equal to 1

T
. By replacing the divergence operator with a neural network, we obtain a ResNet:

zt+1 = zt − δfθt(zt, It, J), where fθt is a convolutional neural network with parameters θt.
The benefit of using a neural network is that Metamorphosis can be applied in a learning context

rather than just in an optimization scheme. For that reason, the source and target images are also
given as input to fθt . The network is built as a sequence of T convolutional blocks fθt . At each
time step t, zt+1 is computed using the previous Eq.. Subsequently, vt+1 is calculated directly
with Eq. 2.2a and one determines It+1 by applying the geometric transformation induced by vt and

2https://github.com/PietroGori/Demeter_metamorphosis
3https://github.com/PietroGori/MetaMorph
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adding the residuals zt as in Eq. 2.2c. The architecture of the model is detailed in Fig. 2.5. The
parameters of this model are optimized by minimizing the same data and regularization terms as
before. Furthermore, we can also add an inverse-consistency term. We call this implementation
MetaMorph-R.

(a) Overall design of the neural network.

(b) Composition of a residual block. zt, It and J are concatenated before the convolution. The output of the block is added to zt to
form zt+1. The numbers on the blue layers are the number of channels of the output tensor.

Figure 2.5: The residual network is composed of T residual blocks. All residual blocks have the same architecture.

Local regularization

The main problem with Metamorphosis is that it is hard to control the disentanglement between
shape and appearance changes. For instance, a trivial solution would be to set the overall geometrical
deformation function to the identity (no geometrical change) and the overall appearance deformation
map to J − I0. In that case, the L2 distance between the deformed image and J would be 0 but
it would not be a satisfactory result since homologous structures should be matched using only
geometric deformations whereas appearance and topological changes (i.e., new components) should
be taken into account by the intensity modifications. The disentanglement can be controlled by
tuning the hyper-parameters µ and λ. However, finding the right ones is a difficult task and they are
different for each setting. If they are not correctly chosen, the appearance map could, for instance,
modify the shape of the image, thus distorting the results and their interpretations.

To this end, we propose to restrict the intensity modifications (i.e. z) only to the regions showing
a topological or appearance difference between the source and target images. Here, we do that by
multiplying z by a (pre-computed) mask m of the region where the topological/appearance changes
occur (a tumor for instance). Equation 2.2c then becomes: ∂tIt = vt · It + µ2mtzt, with m0(x) = 1
if x is a voxel in the selected region and 0 otherwise. Since the region varies along t with the source
image, the mask must follow the deformation generated by the velocity fields. Consequently, the
mask is not fixed but it follows the equation: ∂tmt = vt · mt. The transformation of the image is
then: ∂tIt = vt · It + µ2mtzt. Using this equation and ||√mtzt||22 as regularization term for zt, we
obtain the same geodesic Eq. 2.2a and 2.2b, as shown in [François et al., 2022].
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Evaluation on BraTS 2021

For evaluation, we use as before the BraTS 2021 dataset comprising MR brain images with tumors
of 1251 subjects. The experiments are only conducted using the T1-w modality. We register the
scans on the healthy sri24 template [Rohlfing et al., 2010]. As preprocessing, we perform histogram
matching on every scan, with the template as target image, and crop the volumes to the size of
192 × 192 × 144 voxels. We randomly pick 34 MR T1-w from the dataset to form a test set. We use
the segmentation of the tumor as mask for local regularization. To evaluate the registration, we use
the L2 distance between the entire source and target images and the L2 distance only outside the
mask (i.e., w/o tumor). Additionally, we manually segment the ventricles of all 34 test images and
warp them with the computed deformation to measure the overlap with the (already segmented)
ventricles of the target image (i.e., sri24 template) using the Dice score.

We compare our implementations with rigid registration (Rigid), symmetric normalization (SyN)
[Avants et al., 2008], and voxelmorph (VM) [Balakrishnan et al., 2019] to show that one-to-one
methods are not adapted in this context. Additionally, we compare them with their cost masking
versions (Rigid-CFM, SyN-CFM, VM-CFM). For VM-CFM, since it is a learning-based method,
source images are masked with the tumor segmentation during both training and test.

From Table 2.2, we can notice that our implementations of Metamorphosis, Meta and MetaMorph-
R, outperform all other methods both in terms of Dice and L2 distances.

Fig. 2.6 shows the visual comparison for three different subjects (rows) of MetaMorph, Voxel-
morph, and SyN-CFM. On all three patients, our model better aligns the ventricles and it generates
rather realistic healthy images, although some edges of the tumor mask can be spotted due to a
sudden intensity change between healthy and masked regions.

Furthermore, as demonstrated in Fig. 2.7, the introduction of the local regularization (i.e.,
segmentation mask m) makes the disentanglement between shape and appearance transformations
easier. Indeed, for different values of the hyper-parameters λ and µ, the results without masking
are more variable. For a low value of µ, the intensity transformation is non-existent whereas the
shape deformation is too small to properly align the images. For higher values, the appearance
transformation modifies the shape of the images, namely it changes the topology of healthy tissues.
Similar behavior occurs when changing λ. On the other hand, the masked method obtains better
and less varying results for the various hyper-parameter combinations.

More results can be found in [Maillard et al., 2022, Maillard, 2023].

Limitations

The main limitations of our work are the computational time and memory. Indeed, on the one
hand the optimization based method needs around 15-20 minutes per registration (depending on
the size of the images) while the deep learning based method needs several hours for training but
less than a second at inference time. On the other hand, the optimization based method needs less
than 8GB of memory (thus fitting most of the GPU cards) while the deep learning based method
requires 30 GB of VRAM for training, which only a few GPUs verify. Thus, the choice between the
two methods mainly depends on the computational resources (and time) at disposal.

Another limitation is the fact that the momentum zt has a double role: it models the additive
intensity variation and it parameterizes the entire transformation. This simplifies modeling and
computation but it makes the analysis of the results more complex. Furthermore, using a mask
m to restrict the intensity variation makes sense but why should we restrict the spatial area of
the deformation parameters? Even if we did not observe a degradation in performance of the
diffeomorphic matching when using a mask, we believe that a model that separates the intensity
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Method Dice L2 L2 w/o tumor |Jϕ| < 0
Rigid 43.9(12.3) 8.1(1.0) 7.4(0.9) 0(0)
SyN 55.7(12.9) 5.5(1.0) 4.9(0.8) 0(0)
VM 65.5(7.2) 4.4(0.8) 3.3(0.6) 4427(1821)

Rigid-CFM 43.9(12.3) 8.1(1.1) 7.5(0.9) 0(0)
SyN-CFM 56.4(12.8) 5.5(1.0) 4.9(0.9) 0(0)
VM-CFM 61.5(8.1) 4.9(1.0) 3.4(0.6) 3423 1733)

Meta [François et al., 2022] 70.3(5.3) 4.2(0.6) 3.9(0.6) 0 (0)
MetaMorph-G [Maillard, 2023] 65.32(6.25) 5.1(0.7) 4.9(0.7) 283(666)

MetaMorph-R [Maillard et al., 2022] 69.2(6.7) 3.4(0.57) 3.1(0.55) 366(594)

Table 2.2: Results on BraTS 2021. Classical registration methods are compared with their cost function masking
version and our methods. The “Dice” column provides the Dice scores between the segmentation of the ventricles in
both images after registration. L2 is the L2 distance between the deformed and target image. L2 w/o tumor excludes
the tumor region when computing the L2 distance. |Jϕ| < 0 measures the number of folds in the image. Bold and
italic numbers indicate the first and second best scores. The L2 scores are divided by 104 for better readability.

Figure 2.6: Results on three test subjects (each row is a subject) from the BraTS 2021 dataset using: MetaMorph-R
(total transformation and deformation only), Voxelmorph (VM), and symmetric normalization with cost function
masking (SyN-CFM). Red lines delineate the ventricles of the target image superposed on the deformed source image.

variation from the deformation parameters would be more interpretable. Indeed, the values of z are
not easy to interpret due to its dual effect.

2.4 Conclusions and Perspectives
In this Chapter, we have presented new methods for 1- transferring knowledge from a multi-modal
segmentation network to a uni-modal one and 2- registering images with morphological, appearance
and topological differences. These algorithms represent two important steps for our final goal, which
is the estimate of a 3D atlas of glioblastoma using uni-modal clinical images.

Our main conclusions are that knowledge distillation, and more in general existing techniques
for transferring knowledge, are useful only in a low data regime. However, as soon as the dataset
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Figure 2.7: Deformation and total transformation for the masked and non-masked versions of MetaMorph-R
with 3 values of µ (first two rows) and λ (last two rows). When µ is varying, λ = 3e-6 and when λ is varying
µ = 0.04. Red arrow indicates the tumor, blue arrow shows the ventricle that is incorrectly aligned without masking
(manual segmentation in blue), yellow arrows show healthy tissues that are incorrectly modified by the appearance
transformation without masking.

is big enough, directly learning a uni-modal segmentation network is as accurate as leveraging the
multi-modal Teacher knowledge, but more efficient.

About the metamorphic image registration methods, we showed that our new implementations,
based on a semi-Lagrangian scheme, are more stable and accurate than current image registration
methods, when aligning images with different topology and appearance. Furthermore, the use of a
regularization mask eases the disentanglement between morphological and appearance changes, thus
increasing the clinical usefulness of our method and making it well adapted for atlas construction.
Finally, the method is not specific to a certain imaging modality or anatomical location. We used it
on T1 and T1ce MRI scans of the brain, but it could also be used with other modalities, such as CT
or PET, and with pathological images of other anatomical areas, such as the abdomen [La Barbera
et al., 2022, La Barbera et al., 2021].

Knowledge Distillation in the large data regime

Our results show that current methods for distilling and transferring knowledge between student
and teacher networks are not useful in the large data regime. We believe that this is probably
due to the fact that current Teacher-Student methods do not actually transfer or distill knowledge,
but they “simply” help the student to focus on the information present in its input modality. If
the information is not present in the imaging modality, the student can not learn it. This kind of
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methods thus helps the student only when the number of training data is too low for the student
to correctly learns alone.

To overcome that, we believe that the student should also be helped by generating the missing
knowledge. However, this should not happen in the pixel space, which would require large data-sets
and powerful generative models, but probably more in the feature space. Indeed, we would not
need to generate the entire image of the missing modality, but just the missing information useful
to the student. This would avoid learning how to generate redundant or irrelevant information in
the pixel space. Recent self-supervised methods, like [Assran et al., 2023] , have employed a similar
strategy, showing impressive results.

Metamorphic image registration with multiple modalities

One limitation of our metamorphic image registration method is that it does not apply to multi-
modal data. Indeed, it has been conceived for a clinical context, where a single modality is usually
available. However, the framework could be extended to multimodal data by considering the image
It as a function from Ω ⊂ Rd to RC , with C being the number of modalities. Furthermore,
appearance changes should be specific to each modality (i.e. different z for each modality) but the
shape deformation should be the same across modalities (i.e. same v for every modality). Thus, one
could set zt : Ω → RC , and a single velocity-fields vt, as before. With this formulation, we would
have that, for each modality c, the deformation of image Ict is induced by the common velocity field
vt and the intensity transformation is specific to that modality with zct . A first (simple) model has
been proposed in the PhD thesis of M. Maillard [Maillard, 2023].

Leveraging bio-physical tumor growth models

The metamorphic image registration methods proposed in this Chapter are not based on a bio-
physical tumor growth model, to mimic the growth of a tumor into a healthy image, but on a
rather simplistic model. Indeed, the evolution of the tumor mask, used as regularization term to
disentangle morphological from appearance variations, is not estimated via a bio-physical model
but by simply registering the segmentation mask towards a (infinitesimal) small ball positioned in
the center of the tumor (which should represent the starting point of the tumor). This is a sim-
ple and effective solution which produces a good (final) alignment but its evolution (flow between
t = 0 to t = 1) is not biologically relevant and thus clinically interpretable. Theoretically, one
should consider how the tumor evolves in the brain, considering the different tissues (e.g., white
and gray matter), brain location and tumor-specific parameters. This could be done using bio-
physical models of tumor growth, that usually comprise a system of complex Partial Differential
Equations (PDE) [Gooya et al., 2012, Scheufele et al., 2019, Mang et al., 2020]. However, their
solution is slow, computationally heavy, and needs several imaging modalities to estimate all the
tumor-specific parameters. Furthermore, some methods, like GLISTR [Gooya et al., 2012], also
need manual inputs from the user (e.g., starting point of the tumor). Adding a bio-physical growth
model into our framework, to drive the evolution of the mask, for instance, could thus improve the
clinical relevance and interpretability. However, it would 1) require more computational resources,
2) to have access to the tissue segmentation of the whole brain and, possibly, 3) to several imaging
modalities.
An interesting research direction could be combining ensemble inversion schemes, as in [Subrama-
nian et al., 2023], with deep learning frameworks, as in [Pati et al., 2021], to learn how to (quickly)
infer the most important tumor parameters from a single imaging modality. These parameters could
then be used to estimate a biologically-relevant evolution of the regularization mask.
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Figure 2.8: Frequentist atlas of glioblastoma showing
the tumor frequency at each brain location using 392
training subjects. Figure from [Roux et al., 2019].

Figure 2.9: Example of a 3D atlas of glioblastoma. At
each voxel or anatomical area, one could analyze the aver-
age and main variations of the tumor parts (core, oedema,
etc.)

Towards a probabilistic 3D atlas

In [Roux et al., 2019], we presented a frequentist atlas (see Fig.2.8) showing the tumor frequency
on the (healthy) MNI template. This atlas was obtained by first aligning 392 T1-MR volumes
of subjects with glioblastoma onto the MNI template and then computing, at each voxel, the
probability of tumor presence. We used the cost-function masking method of [Andersen et al., 2010]
and it would be interesting to re-estimate it using our metamorphic image registration methods.
This should provide more accurate and anatomically relevant alignments avoiding, for instance, an
estimated presence of tumor in the ventricles, which is clinically impossible.
Furthermore, as previously explained, our final goal would be to estimate an actual 3D statistical
atlas, modeled as a combination of local atlases. Preliminary results, estimating one atlas per lobe,
can be seen in Fig.2.9, where we computed the average and main variations of the different tumor
parts (core and edema) at each voxel.
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Chapter 3

Brain white matter tractogram analysis

This chapter has been published in [Mercier et al., 2018, Delmonte et al., 2019, Feydy et al.,
2019a] and is based on: 1) the PhD thesis of C. Mercier, co-directed with with I. Bloch, J.M.
Thiery and D. Rohmer, 2) the Master theses of A. Del Monte and A. Di Girolamo, and 3) the
post-doc of P. Roussillon.
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3.1 Context
Tractography from diffusion MRI is currently the only technique able to non-invasively explore the
white matter architecture of the brain. It results in a tractogram, which is a set of 3D polylines
(i.e., lists of ordered 3D points), usually called streamlines, which are estimates of the trajectories of
large groups of nerves (axons). Indeed, current diffusion MR machines have a spatial resolution in
the millimeter (mm) scale, and therefore it’s not possible to perfectly reconstruct each axon, whose
diameter is typically in the micrometer (µm) scale. This means that reconstructed streamlines
might approximate more than 105 axons in each voxel [Saliani et al., 2017]. Nevertheless, even with
such low reconstruction resolution, tractography has proven to be an invaluable tool for clinicians
and researchers. It is nowadays used on a daily basis by neurosurgeons for pre-operative planning
and during surgical operations [Jeurissen et al., 2019]. It also offers important information for
studying pathological processes in neurological and psychiatric diseases [Ciccarelli et al., 2008] and
aging [Davis et al., 2009].

When visualized, a whole-brain tractogram, namely the estimate of all the nerve streamlines in
the white matter of the brain, might seem a highly intricate and complex wiring system, where it’s
difficult to recognize specific bundles and a well-structured organization (see Fig.3.1 for an exemple).
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Figure 3.1: Example of whole-brain tractogram visualization using streamlines (left) or tubes (right).

However, thanks to numerous postmortem studies [Dejerine, 1895, Klingler and Gloor, 1960, Glick-
stein, 2006, Nieuwenhuys et al., 2015, Yendiki et al., 2022], the white matter architecture of the
brain has been deciphered into a set of biologically plausible pathways (also called fasciculi or tracts)
[Schmahmann and Pandya, 2006, Schmahmann and Pandya, 2007, Catani et al., 2002, Wakana
et al., 2004], that have helped understanding the functional expression of the cerebral activity.
Tractogram segmentation can thus be defined as the subdivision of whole-brain tractograms into
anatomically relevant and reproducible tracts with well-known structural and diffusion properties.

3.2 Challenges
Recent tractography methods may produce whole-brain tractograms composed of millions of stream-
lines [Tournier et al., 2011]. This can complicate their visualization and interpretation, thus limiting
the aforementioned clinical applications. Furthermore, the considerable number of streamlines can
make computationally intractable processes such as segmentation [Delmonte et al., 2019], non-
linear registration [Gori et al., 2018] or atlas construction [Gori et al., 2016], which are important
for research purposes. The presence of spurious streamlines (outliers) and the high inter-subject
variability are two other challenges that can make the analysis of tractograms even more com-
plicated. Lastly, the anatomical definition of a tract, as documented in the postmortem studies
[Ebeling and von Cramon, 1992, Sarubbo et al., 2013], is usually qualitative, since it is based on
spatial relationships, such as “anterior to” or “close to”, that are difficult to model in a quantitative
and accurate way.

Tractograms are redundant

A whole-brain tractogram is usually redundant since many streamlines might have a similar trajec-
tory and connectivity. For this reason, several authors have proposed new geometric representations
and visualization techniques to simplify tractograms. One of the most popular approaches consists
in grouping similar streamlines into clusters [Gori et al., 2016, Garyfallidis et al., 2012, Guevara
et al., 2011, Maddah et al., 2007, Zhang et al., 2008], which are then approximated with one repre-
sentative streamline, usually called prototype [Garyfallidis et al., 2012, Guevara et al., 2011], that
represents the average trajectory of the streamlines of the clusters. Prototypes can be computed as
the mode [Zvitia et al., 2010] or mean[Garyfallidis et al., 2012] of the streamlines, if there is a point-
correspondence, or according to a streamline dissimilarity measure [O’Donnell et al., 2009, Guevara
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et al., 2011]. Representative streamlines are mainly used to ease the interpretation and visualisation
of a bundle and to reduce the memory footprint and computational time for segmentation, shape
analysis and registration.

Other authors have also proposed to represent the spatial extent of the clusters using an encom-
passing geometry (i.e., isosurfaces) [Maddah et al., 2007]. These methods are usually controlled by
one parameter, e.g. a threshold [Zhang et al., 2003], thus presenting only one level of resolution at
a time and some important spatial information, such as the number of streamlines or the spatial
extent (i.e. the volume) of the cluster, might be lost in the process. Furthermore, isosurface repre-
sentations can only be used for tubular-shaped bundles that can be modeled as convex envelopes.
Other bundles, such as the corpus callosum and the rostral part of the corticospinal tract, have
a different topology and they are defined as sheet-like bundles. In [Maddah et al., 2011], authors
proposed to represent those bundles as 3D surface meshes whereas in [Yushkevich et al., 2008] it was
suggested to use deformable medial models (cm-reps). In both cases, the medial surface represen-
tations are employed only for visualisation and clustering and to provide statistics about diffusion
coefficients. A different representation, which can be employed for any kind of bundle, is the tract
probability map [Hua et al., 2008, Bürgel et al., 2006, Wassermann et al., 2010]. It indicates the
probability of a voxel to belong to a given bundle. This method is very concise but it is not based on
a geometrical primitive and it has been used for visualisation, interpretation and clustering. A last
example is the sparse representation based on the matching pursuit algorithm for currents presented
in [Durrleman et al., 2011]. In the framework of currents [Vaillant and Glaunès, 2005], a bundle is
considered as a single mathematical object composed of disconnected oriented points which model
the local orientation of the streamlines. The approximation presented in [Durrleman et al., 2011]
represents a bundle with a sparse set of oriented points. This representation is very concise but it
has the drawback to accurately approximate only the areas of the bundle characterized by a high
density of streamlines, like the central mass of the bundle. Thus, the small fascicles may not be
well approximated.

Tractograms are difficult to segment

The anatomical definition of a white matter tract is vague and not always consistent across studies
and clinicians [Bullock et al., 2022]. This is why the segmentation of whole brain tractograms is a
difficult and not well posed problem.

The most common technique for identifying a tract is the virtual dissection technique, where an
expert manually delineates Regions of Interest (ROIs) and select (or exclude) the streamlines that
pass through them [Wakana et al., 2007]. This method is tedious, time-consuming and not easily
reproducible, especially for tracts with convoluted trajectories [Zhang et al., 2010].

A second class of methods consists of machine or deep learning strategies that use either the
geometry of the streamlines [Zhang et al., 2019, Dumais et al., 2023] or their voxel-wise principal
directions [Wasserthal et al., 2018]. These methods require large, annotated data-sets, are hardly
explainable, and are prone to data biases, such as the site-effect [Bayer et al., 2022], due to specific
protocols or scanners.

A third technique is based on the transfer of manually segmented ROIs from one (or multiple)
training images or atlases to test subjects via image-based non-linear deformations [Zhang et al.,
2010]. The resulting segmentation highly depends on the quality of the registration, which might not
be accurate when training and test images do not share the same anatomical topology (e.g. due to
a tumor or illness). To this end, streamline-based registration methods have been shown to be more
robust to topological differences (e.g., presence of tumors) [Guevara et al., 2012, Garyfallidis et al.,
2018, Sharmin et al., 2018, O’Donnell et al., 2016]. However, these methods usually need a pre-
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processing steps where streamlines are clustered to simplify the tractogram so that the registration
becomes computationally feasible [Gori et al., 2016, Garyfallidis et al., 2012, Guevara et al., 2011,
Maddah et al., 2007, Siless et al., 2018, O’Donnell and Westin, 2007, Chen et al., 2023]. Furthermore,
the resulting segmentation highly depends on several user-tuned hyperparameters (e.g. size or
number of clusters, kernel size).

All previous methods do not take into account the intrinsic vagueness of the definitions of the
tracts. Indeed, differently from other anatomical structures, such as bones or organs, it is almost
impossible to clearly delineate the boundaries and contours of white matter tracts.

That is why, with a different perspective, few recent methods have tried to directly model
the “qualitative” anatomical spatial relations defining the white matter tracts. For instance, in
[Wassermann et al., 2016], authors proposed a query language (WMQL) to mathematically model
simple spatial relationships and logical operations used to define the white matter tracts of the
brain. This method is fast and easy to use but it is based on simple binary relations and bounding
boxes that can not correctly segment small and convoluted tracts and can produce tracts of different
size and shapes across subjects.

3.3 Contributions
Here, we present three original contributions to tackle the aforementioned challenges:

1. A new parsimonious and multi-resolution geometric representation for tractograms, called
Neural Meta Tracts [Mercier et al., 2018]

2. Two fast and scalable methods to automatically segment tractograms, one based on symbolic
AI [Delmonte et al., 2019] and one on optimal transport [Feydy et al., 2019a].

3.3.1 Neural Meta Tracts
In [Mercier et al., 2018], taking inspiration from error-driven surface mesh simplification [Garland
and Heckbert, 1997], we propose a progressive merging strategy for grouping streamlines into gen-
eralized cylinders (see Fig.3.2 for a visual explanation of the entire pipeline). The proposed method
reduces the redundancy of the tractogram, producing a multi-resolution structure, which is orga-
nized into a nested hierarchy of levels of detail. Every fusion of streamlines (or cylinders) represents
a new level of resolution. Once the entire multi-resolution representation is computed, it is possible
for the user to navigate through different levels of detail in a continuous fashion and in real-time,
while maintaining the overall structure of the original tractogram. Furthermore, we also propose
an efficient implementation based on a Delaunay tetrahedralization which makes it possible to use
our method on large tractograms containing millions of streamlines. In this way, we can determine
adequate candidates for merging in a very efficient way and using any distance/similarity measure
between streamlines. Differently from previous methods, we do not focus on single resolution ap-
proximations (i.e. clustering and prototypes), but propose a multi-resolution representation based
on progressive merging, that preserves the overall structure of the tractogram and whose continuous
levels of resolution can be traversed in real-time (see a comparison with QuickBundles [Garyfallidis
et al., 2012], a well-known approximation algorithm for brain white matter tractograms based on
prototypes, in Fig.3.3). From a technical point of view, our two main contributions are: 1) a
multi-resolution representation for tractograms based on a progressive decimation algorithm; and
2) a combinatorial strategy based on a Delaunay tetrahedralization to make it computationally
tractable.
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Figure 3.2: Multi-resolution pipeline: a) original bundle tractogram, here the thalamocortical one, b) connections
created by the Delaunay tetrahedralization based on the extremities of the streamlines, c) the similarity is computed
for each streamline, taking into account only the neighbors found in step b), d) couples of closest streamlines
are progressively merged into generalized cylinders, e) the final multi-resolution representation makes it possible
to navigate through the different levels of detail in real-time. The percentage refers to the fraction of employed
generalized cylinders compared to the original number of streamlines. Color code depends on the orientation of the
streamline: red for left-right, blue for inferior-superior and green for anteroposterior.

Visualizing groups of similar streamlines as single generalized cylinders and being able to easily
change the level of resolution may be very useful for clinicians. For instance, it can help neuro-
surgeons better understand the organization of the white matter and identify relevant anatomical
tracts (i.e., manual segmentation) which should not be severed during the operation, thus reducing
post-operative complications and improving the clinical outcome.

In the next section, we will make a step forward proposing an interactive segmentation method
that combines the proposed multi-resolution geometric representation with a symbolic AI method,
that models the qualitative and vague anatomical definitions of the tracts. This will result in an
explainable and trustworthy segmentation method where all streamlines will have a (normalized)
membership score for each anatomical tract summarizing all qualitative descriptions.

3.3.2 White Matter Segmentation
Here, we present two methods to segment whole-brain tractograms, one based on symbolic AI
[Delmonte et al., 2019] and one based on optimal transport [Feydy et al., 2019a]. Both methods
take advantage of the anatomical knowledge about white matter tracts.

The first symbolic AI method leverages logic and fuzzy sets to directly model the anatomical
relations defining a tract. This is probably the “rawest” form of clinical knowledge since it is what
medical doctors learn and it should not be biased by inter-subject variability. However, anatomical
definitions are usually vague and qualitative and not always complete, namely it might be hard in
some anatomical regions to precisely describe the tract with spatial relations.

Another way of modeling clinical knowledge is the use of manual segmentation. Manual masks
do not only reflect the clinical knowledge from the books (as modeled by the previous method)
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Figure 3.3: a) Thalamocortical bundle with 19,782 streamlines, b) reduced to 275 prototypes with QuickBun-
dles [Garyfallidis et al., 2012] (Threshold=7mm), c), d) and e) reduced to 6925, 1422 and 275 cylinders with our
method.

but they also contain the rater’s knowledge and experience, which might “fill the gap” when the
definitions are not clear or complete. This might thus be beneficial, when the rater is experienced,
since it might add relevant information not clearly expressed in the books, but at the same time it
might also be detrimental if the rater’s experience is low or if two raters disagree. The inter-rater
variability , as the intra-rater variability, can thus introduce a bias (and errors) in the manual
segmentation.

Nevertheless, manual segmentation is probably the most used way of modeling clinical knowledge
(and experience). The second method, based on optimal transport, leverages expert knowledge, in
the form of a labeled atlas, that is then mapped to a subject tractogram. In this way, one obtains
the probability of belonging to a certain tract, segmented in the atlas, for each streamline of the
subject tractogram.

An important similarity between the two methods is the fact that they both produce a soft
segmentation and not an hard one, namely they produce for each streamline a membership score or
probability to belonging to a certain tract. This is quite important since it means that streamlines
that are in between two tracts or at the border will have a high probability score for both tracts
and they will not be assigned to just one of them.

Furthermore, both methods are fast, can be used with full whole-brain tractograms and are based
on few and easy-to-tune hyper-parameters, making them reliable and trustworthy to clinicians.

Symbolic AI - Fuzzy set

As first segmentation method, we propose to directly model qualitative anatomical definitions, as in
WMQL [Wassermann et al., 2016], but within the richer framework of first order modal logic. We
also propose to associate it with fuzzy semantics [Bloch, 2005], in order to cope with the intrinsic
imprecision of anatomical descriptions and of spatial relations. Furthermore, fuzzy representations
[Bloch and Ralescu, 2023] inherently solve the semantic gap, establishing links between abstract
clinical concepts/definitions and spatial image information. The general idea is to define for each
point in the space the degree to which it satisfies a given relation with respect to a reference object
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(i.e. an anatomical structure).
Leveraging the efficient approach based on fuzzy dilation proposed in [Bloch, 1999], we can

model the directions anterior, posterior, superior, inferior, right and left as well as the relations
“lateral” and “medial”, which are commonly used in the neuro-anatomical literature. For these two
last relations, we use as reference the mid-sagittal plane which is automatically detected using the
method described in [Tuzikov et al., 2003]. Furthermore, a white matter tract is usually described as
a logic combination of several relations, using operators such as AND and OR. The proposed fuzzy
models of spatial relations are combined using fuzzy AND (using t-norms) and fuzzy OR (using
t-conorms). Here, we use the minimum for AND and the maximum for OR, computed voxel-wise. A
membership value µ∗ describing the degree of satisfaction of the combined relations is computed for
every point P in the space (i.e. every voxel). Then, a fuzzy score FS is assigned to each streamline
of the tractogram by computing the weighted average of the membership values µ∗ of the voxels the
streamline passes through. Weights are computed as the proportion of the length of the streamline
within each voxel.
In addition to the relative directions, we also model another common anatomical definition about
the location of the tract terminations (e.g. “streamlines terminate in temporal lobe”). Let f be
one of the endpoints of a streamline and M the region of the ending area, we define the degree
of rightness as: EP = minm∈M exp − ||f−m||22

λ2 , where λ is a fixed parameter. When the definition
involves only one region, f is the endpoint closer to M . Otherwise, when using two ending areas,
the streamline orientation is the one minimizing the sum of the distances between the ending points
and the regions (each extremity being linked to a different region).
Eventually, all qualitative relations describing a tract are combined together in a conjunctive way,
ACS = FS × EP, resulting into a single, quantitative membership score called “Anatomical Coher-
ence Score” (ACS), which is assigned to every streamline of the tractogram.

Figure 3.4: Fuzzy spaces in 3D modeling the relation inferior(Putamen) and anterior(Amygdala). Both spaces
have been thresholded and visualized as cones.

Interpreting or choosing a threshold value for ACS might be quite hard when working with
tractograms composed of millions of streamlines. This is particularly the case for applications
demanding a high accuracy like surgical planning. To this end, exploiting the previously presented
simplification method [Mercier et al., 2018], we progressively group the most similar streamlines
into generalized cylinders with elliptical basis, producing a nested hierarchy of resolution levels,
where every level of detail corresponds to the fusion of two streamlines (or cylinders).

Here, we propose to compare streamlines using an extension of the computational model of
Weighted Currents (WCext) [Gori et al., 2016]. Two streamlines are considered similar, and thus
merged together, only if their trajectories are alike, their endpoints are close to each other and their
ACS values are similar. We also propose an automatic stopping criterion for the multi-resolution
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to prevent oversimplification (e.g. a single cylinder). We use the inner product in the Weighted
Currents space to compute angles between streamlines and cylinder center-lines. Two cylinder-
s/streamlines are not merged together if they are almost orthogonal (angle > 89◦). Streamlines
that were never merged in the whole process are then considered outliers and discarded. The pro-
posed technique simplifies the geometric representation, preserving at the same time the overall
structure of the original tractogram (i.e. shape, connectivity and ACS).

We also provide a GUI where the user can navigate in real-time through different levels of
detail and at the same time select only the streamlines/cylinders with an ACS value above a user-
defined threshold. This can help clinicians to better understand the structure of the tracts and for
surgery preparation. Visual examples at different resolutions and ACS thresholds for the Uncinate
Fasciculus (UF) and Inferior Fronto-Occipital Fasciculus (IFOF) can be found in Fig. 3.5 and Fig.
3.6.

Fuzzy definitions are implemented in Python and the computational time is about 10-15s per def-
inition. The source code is publicly available at https://github.com/PietroGori/FuzzyTracts.
Based on both imaging and dissection studies [Wakana et al., 2007, Sarubbo et al., 2013, Ebeling
and von Cramon, 1992, Catani and Thiebautdeschotten, 2008] and with the help of an experienced
neurosurgeon, we defined and modeled 12 white matter tracts. The definitions and modeling of the
UF and IFOF can be found in [Delmonte et al., 2019], while for the 10 other tracts, they can be
found in the Master’s thesis of A. Di Girolamo [Di Girolamo, 2019].
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Figure 3.5: Segmentation of IFOF and UF bundles of three subjects using three different thresholds for the ACS
(0.5, 0.65, 0.7 for the IFOF and 0.7, 0.85, 0.9 for the UF respectively). Results are shown on the MNI152 T1w image.
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Figure 3.6: IFOF and UF bundles visualized at three different resolution levels and segmented with two different
ACS thresholds (0.4, 0.57 for the IFOF and 0.6, 0.81 for the UF respectively).
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Optimal Transport

As second method, we have presented in [Feydy et al., 2019a] an efficient, fast and scalable algorithm
that solves the regularised (entropic) Optimal Transport problem for transferring the labels of a la-
beled atlas to a subject tractogram. By leveraging an efficient, GPU-based and multi-resolution im-
plementation, we are able to directly segment a whole brain tractogram without any pre-processing
or clustering. The entire algorithm only depends on two meaningful hyperparameters, the blur
and reach scales, that define the minimum and maximum distances at which two streamlines are
compared. Intuitively, blur is the resolution of the finest details that we try to capture, while reach
acts as an upper bound on the distance that points may travel to meet their targets – instead of
seeing them as outliers. On top of label transfer, we also propose to estimate a probabilistic atlas,
as a Wasserstein barycenter, of a population of tracts modeled as track density maps [Wassermann
et al., 2010], where each map contains, for every voxel in the space, the probability that a specific
track (e.g. IFOF) passes through.

Optimal Transport (OT) looks for a transportation plan between two probability distributions, α
and β, that minimizes a cost metric under marginal constraints, ensuring a full covering of the input
data. When working with discrete data, as streamlines or track density maps, the distributions are
encoded as weighted sums of Dirac: α = ∑N

i=1 αi δxi
and β = ∑M

j=1 βj δyj
with weights αi, βj ⩾ 0

and samples’ locations xi, yj ∈ X = RD. In most applications, the feature space X is the ambient
space R3 endowed with the standard Euclidean metric. This is the case, for instance, when using
track density maps where αi and βj are the probabilities associated to the voxel locations xi and
yj, respectively. Meanwhile, when using streamline tractograms, a usual strategy is to resample
each streamline to the same number of points P. In this case, the feature space X becomes RP×3

and xi, yj are the N and M streamlines that constitute the source and target tractograms with
uniform weights αi = 1

N and βj = 1
M , respectively. Each streamline, modeled as a polyline, is thus

embedded into a feature vector by simply concatenating its points. Distances can be computed
using the standard Euclidean L2 norm – normalized by 1/

√
P – and we alleviate the problem of

streamline orientation by augmenting our tractograms with the mirror flips of all streamlines. This
corresponds to the simplest of all encodings for unoriented curves.

Based on previous works on Optimal Transport[Chizat et al., 2018, Peyré et al., 2019, Cuturi,
2013, Feydy and Trouvé, 2018, Feydy et al., 2019b], we consider a generalization of the original
Kantorovitch formulation where α and β don’t have the same total mass or may contain outliers,
which is typically the case when working with streamline bundles, and propose to minimize the
unbiased Sinkhorn divergence, which defines a positive, definite and convex loss function, as shown
in [Feydy et al., 2019b]. Furthermore, to tend towards the O(n log(n)) complexity of multiscale
methods, we use a coarse subsampling of the xi’s and yj’s in the first few iterations. Here, we use a
simple K-means algorithm to group together similar locations and use only their average during the
first iterations (instead than all locations), but other strategies could be employed. In this way, when
moving from this coarse subsampling to the full resolution, we can prune out useless computations
and thus speed-up the entire algorithm. By heavily relying on the KeOps library [Feydy et al.,
2020], we proposed the first GPU implementation of a multiscale OT solver. It provides a x1,000
speed-up when compared to simple PyTorch GPU implementations of the Sinkhorn loop [Cuturi,
2013], while keeping a linear (instead of quadratic) memory footprint. It is freely available on the
PyPi repository (pip install geomloss) and at www.kernel-operations.io/geomloss.

In Fig.3.7, we show how OT plans can be used to transport labels from a streamline atlas to a
subject tractogram. This method takes into account the whole organization of the bundles – unlike
standard nearest neighbours or clustering algorithms –, detects outliers and is not hampered by
streamline crossings, differently from standard registration algorithms (e.g., LDDMM). In Fig.3.8,
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we show the second application of the proposed method, where we use Sinkhorn divergences to
estimate a geometric average of track density maps, which can be seen as a soft atlas. More details
can be found in [Feydy et al., 2019a].

Figure 3.7: Label transfer between the segmented atlas (in the middle) and the subject tractograms. Top: some
clusters of the atlas (in orange) with their respective segmentations (in light blue) of one random subject. Detected
outliers are on the right (dark blue). Bottom: worst and best segmentation of the left IFOF, among the five tested
subjects, compared to a manual segmentation.

3.4 Conclusions, Limitations and Perspectives

In this Chapter, we have presented two multi-scale methods to model, simplify and segment white
matter tractograms. They are fast, interpretable and explainable. Furthermore, they depend on
few hyper-parameters that can be easily tuned by the user based on the resolution of the image,
and the anatomy of the tracts under analysis. Another important characteristic of the proposed
methods is the fact that they are “soft” and not “hard”, namely they provide a membership score or
probability for each streamline and not a one-hot encoding. We believe that this is quite important
since it implicitly encodes the uncertainty of the algorithm. If the algorithm gives to a streamline
a 50% score between two tracts, it probably means that the streamline is at the border between
them or that it’s in an area not well defined, and thus uncertain, by the definitions of the tracts.
Furthermore, knowing that there is still a poor inter- and intra-user reproducibility for the manual
segmentation of white matter tractograms [Zhang et al., 2010] makes us believe that looking for a
clear, one-hot encoding segmentation does not make much sense.

70



3.4. Conclusions, Limitations and Perspectives

Figure 3.8: Probabilistic atlas of the left IFOF from 5 track density maps (in red). Top row: the densities of the
five subjects, shown with their T1-wMRI. Bottom row: three views of the obtained atlas, alongside the T1-wMRI of
one subject.

Limitation

The preliminary results shown in this Chapter are promising but we still lack a quantitative analysis
and comparison with other state-of-the-art methods on a large clinical data-set. Unfortunately, these
works were developed during the Covid-19 pandemic, which limited the time and availability of our
clinical partners from St. Anne hospital.

Do we need Deep Learning?

Interestingly, the proposed methods do not use deep learning architectures. This makes them more
interpretable, explainable and they do not need a large, labeled data-set for training. Furthermore,
while deep learning methods provide fast segmentations, their results can still be unsatisfactory, as
shown in [Bertò et al., 2021], and are not robust to variations in bundle sizes, tracking methods and
data quality. This is mainly because there is still a lack of large, open, annotated, and multi-site
datasets with several tractograms for each subject obtained with different tractography algorithms.
This prevents a rigorous analysis of the generalizability and reliability of the existing methods on
external (i.e., out-of-distribution) test sets. Furthermore, many works use different techniques to
generate the reference segmentations and there is still no consensus on the best metric to validate
the results [Joshi et al., 2024].

To fill that gap, some recent works have (finally) released their annotations and datasets, such
as TractSeg [Wasserthal et al., 2018] and TractoInferno [Poulin et al., 2022]. This has set a very
good example for the community and gave the opportunity to more researchers to came up with
interesting solutions by using, for instance, self-supervised learning on un-annotated datasets [Chen
et al., 2023, Xue et al., 2023, Joshi et al., 2024, Ghazi et al., 2023]. However, the number of available
data is still not comparable with computer vision datasets (e.g., ImageNet), where the tasks and
validation metrics are usually well defined and accepted by the community. We believe that an
interesting research direction could be using an hybrid AI algorithm by merging deep learning
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segmentation methods with symbolic AI (fuzzy sets and logic). The latter would give a coarse
(fuzzy) prior segmentation, based on prior anatomical definitions, which would be refined by the
learning capacity of deep neural networks.
Instead than directly modeling the prior knowledge using symbolic AI, another interesting research
direction would be to leverage pre-trained language models, like BERT [Devlin et al., 2019] or
GPT4 [OpenAI, 2023], to directly encode the qualitative anatomical definitions. Vision-language
pre-training has been recently used in the medical domain [Tiu et al., 2022, Lu et al., 2024, Wu
et al., 2023, You et al., 2023, Boecking et al., 2022, Huang et al., 2021], in particular to leverage
clinical (e.g., radiology or pathology) reports as weak, but free and available, annotations. However,
in our case, we would not have paired vision-language data, namely reports describing the semantic
contents of images, and therefore this strategy could not be used. Differently, we could, for instance,
compare the representations of the language encoder, modeling the anatomical definitions, with the
ones given by a chatbot (using a similar language model as before) describing the segmentation
results. The divergence between the prior anatomical definitions and the semantic description of
the chatbot could be used as (weak) supervision signal to correct the results of the segmentation
network.

Extending to pelvic nerves

Nerve imaging from diffusion MRI and reconstruction using tractography are mainly applied to the
brain and the central nervous system. However, there is a need to plan complex surgical interventions
in the pelvic region, where nerve damage can cause significant complications, like genito-urinary
dysfunctions. Currently, no licensed softwares nor research works propose an automatic solution
for modeling and segmenting the pelvic nerves. Furthermore, to the best of our knowledge, there
is no labeled dataset or atlas freely available, which hampers the use of learning strategies (e.g.,
deep learning) or transferring algorithms (e.g., optimal transport). That is why we believe that an
interesting perspective would be to use the proposed fuzzy-based segmentation method for pelvic
nerves segmentation. A preliminary work (based on manual segmentation) has shown great promise
[Muller et al., 2019].

New questions could be addressed to better adapt our model to the definitions of the pelvic
nerves. For instance: 1) How to adapt and extend existing definitions of spatial relations to the
case of very elongated structures (like some organs and bones in the pelvic region)? 2) How to
account for portions of streamlines satisfying a relation in a gradual manner? 3) How to account
for the shape of organs in the definition of spatial relations? 4) How to combine the degrees of
satisfaction of relations along fibers into a value representing to which degree a fiber is part of a
given nerve tract, and derive a decision on nerve recognition from it?

Statistical Shape Analysis

In the previous section, we have proposed a method, based on optimal transport, to compute a
probabilistic atlas (estimated as a Wasserstein barycenter, see Fig. 3.8) of white matter tracts rep-
resented as track density maps. Another interesting perspective would be to leverage the proposed
multi-resolution geometric representation to statistically analyze the extracted tracts. Tracts could
be compared using transformations applied first at a coarse level, and then refined using higher
levels. This methodology has proven to enforce robustness in similar applications from Computer
Graphics [Hoppe, 1996, Lee et al., 1999, Manson and Schaefer, 2011]. In medical imaging, deforma-
tions are usually defined as diffeomorphisms since they preserve the anatomical organization of the
brain. However, they only consider the morphology of the structures, completely ignoring possible

72



3.4. Conclusions, Limitations and Perspectives

functional signals mapped onto them. Indeed, each streamline “carries” an important quantity of
information that goes beyond its trajectory through the voxels of the MR image. It connects two
different areas of the brain (i.e., anatomical connectivty) and one can map voxel-wise functional
signals onto it, such as: brain activity time series (e.g., MEG, fMRI), metabolic imaging data (e.g.,
PET, MR spectroscopy) or quantities describing the microstructure of the brain (e.g., Fractional
Anisotropy). Geometry, connectivity and functional signals have been shown to be crucial in the
characterization of the pathophysiological processes underlying a condition (i.e., tumor) or a disease
[Horsfield and Jones, 2002, Smith, 2016].

To this end, following recent works about cascades of diffeomorphisms [Gori et al., 2015], meta-
morphoses [Charlier et al., 2017, François et al., 2021, François et al., 2022, Maillard et al., 2022]
and functional maps [Ovsjanikov et al., 2012, Li et al., 2022], we could investigate a fast and reli-
able deformation scheme for the proposed multi-resolution representation in order to combine the
statistical analysis of shape and functional signals into a single and unifying framework.

As data-term losses, we could also leverage our previous work on robust losses [Roussillon et al.,
2019] for white matter tracts, where we used a robust Lp-RKHS norm:

A(Q,Q′) =
n∑
i=1

min
j=1,...,m

(
||qi − q′

j||2V
)p/2

(3.1)

where the norm ||·||V could be the one of varifold [Charon et al., 2020], Q = {qi, i = 1, . . . , n} and
Q′ = {q′

j, : j = 1, . . . ,m} are two tracts and qi and q′
j are two streamlines of Q and Q′ respectively.

In [Roussillon et al., 2019], we have shown that usual metrics for streamlines, such as the L2 or
Varifold/Currents [Charon et al., 2020] metrics, suffer from the so-called “shrinking phenomenon”.
This happens when one wants to compute the distance between two streamlines that are far away
from each other, with respect to the used norm. Indeed, the L2 distance or varifold distance is
defined as: ||q − q′||2V = ||q||2V + ||q′||2V − 2⟨q, q′⟩V . If the inner product ⟨q, q′⟩V is very small, then
the optimization process will concentrate on minimizing the norm of the source streamline ||q||2V ,
since the norm of the target streamline ||q′||2V is constant. This makes the streamline curl up/shrink
as it can be seen in Fig. 3.9. By using the proposed robust Lp −RKHS metric, we can avoid this
phenomenon.

Furthermore, it would also be interesting to extend this robust metric to functional and geometric
data, similarly to weighted/functional currents [Charon and Trouvé, 2014, Gori et al., 2016].

Eventually, once defined the transformations, we could also automatically estimate the average
(and its associated variability) of the tracts using the atlas construction strategy [Gori et al., 2017].
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Chapter 3. Brain white matter tractogram analysis

Figure 3.9: Diffeomorphic matching from three curves (blue) to two curves (orange) with a data attachment term
using varifolds (first row) and with a robust varifolds distance (second row, Eq. 3.1 with p = 0.1). In the first row,
the grid shows that the deformation is strongly distorted by the outlier curve (bottom blue curve). In the second
row, the outlier is not taken into account during registration, without any pre-processing or new hyper-parameter.
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Conclusions and perspectives

In this manuscript, I have summarized the majority of the research I have conducted since arriving at
Télécom Paris in 2017. I could accomplish all these works thanks to collaborations with colleagues
from IPParis (LTCI and LIX), hospitals (St Anne and Necker), other laboratories (NeuroSpin,
MAP5, Uni. Trento, Uni. Torino) and companies (Guerbet, Incepto, Philips). In particular, I had
the pleasure to work with 10 Master students, 13 PhD students and 2 post-docs.

During the last 7,5 years, I have worked on new symbolic and learning AI methods, related
to fuzzy logic, knowledge distillation, contrastive learning, transfer learning, image registration,
and image-to-image translation, for 1- modeling prior medical knowledge and anatomy, 2- learning
relevant representations of anatomical imaging data and 3- transferring representations between
domains. All methods were developed taking into account specific constraints of the medical imaging
data (e.g., dataset size, biases, physics, etc.) and the needs of a precise clinical application.

The presented manuscript was structured into three chapters. Each chapter discussed one of the
three main applications I have worked on, along with their respective perspectives. In the following,
I will introduce other projects I have started, focusing on their clinical significance, challenges, and
research prospects.

Towards multi-modal foundation models for medicine
Recent medical datasets contain data from multiple and heterogeneous sources of information (im-
ages, genetic, multi-omic, clinical, etc.) to obtain a complete and holistic view about the health
of patients with the hope to identify more discriminative, and probably multi-modal, pathological
biomarkers. This calls for new self-supervised multi-modal methods, since most of these datasets
contain healthy or unlabeled data. Eventually, these methods could be used to create general med-
ical foundation models for carrying out diverse downstream tasks using little or no task-specific
labeled data [Moor et al., 2023]. In computer vision, many methods have already been proposed,
for instance well adapted to videos, text or 3D rendering (e.g., CLIP [Radford et al., 2021] or
[Alayrac et al., 2020, Yuan et al., 2021]). In medical imaging, most methods focused on datasets
with paired images and reports, such as GLoRIA [Huang et al., 2021], Con VIRT [Zhang et al.,
2022b], CheXzero [Tiu et al., 2022], MedClip [Wang et al., 2022b] or combine several imaging modal-
ities for a single downstrem task, such as segmentation [Ma et al., 2024] or registration [Pielawski
et al., 2020]. Other methods have also been proposed for combining images and genetics, such as
ContIG [Taleb et al., 2022]. Even if many methods have been recently published, see [Zong et al.,
2023, Qiu et al., 2023] for an exhaustive list, all these multi-modal/foundation methods either use
(or slightly adapt) existing self-supervised methods (e.g., SimCLR, DINO), that have not been con-
ceived for multi-modal data, or are developed for a specific task, such as segmentation [Ma et al.,
2024], report creation [Yang et al., 2024], clustering [Lin et al., 2021, Trosten et al., 2021, Xu et al.,
2022]. Only few, recent works, such as [Tian et al., 2020a, Federici et al., 2020, Liu et al., 2021, Ke
et al., 2023, Liang et al., 2023], propose new methods or approaches for merging and organizing

75



Conclusions and perspectives

multi-modal information into common and task-relevant factors.
I believe that many future biomarkers will be multi-modal and that, even if medical images will
play an important role, they will need to be combined with other data. An interesting research
direction will thus be studying how to leverage and adapt the proposed geometric framework for a
truly self-supervised multi-modal method, that could be employed in several clinical applications,
like brain disorder detection. This avenue will open up several interesting questions that we plan
to work on in the coming years, such as: how to merge heterogeneous sources of information (e.g.,
early-, middle-, late- fusion, architecture) ? How to use unpaired data or tackle missing modality ?
How common information between two modalities should be defined ? Should we create task-specific
models or more generic ones ? and many others.

A new clinical application: Histopathology
In collaboration with the St. Joseph hospital, I have recently started working on a new clinical
application: Whole Slide histopathology Image (WSI) analysis [Gurcan et al., 2009]. In particular,
we have started a project whose goal is the development of an innovative multimodal deep learning
method that, by combining histological images with clinical/biological data, should improve the di-
agnostic accuracy of the Sjögren’s syndrome (SjS) [Liao et al., 2022], a rare disorder of the immune
system, by identifying new interpretable biomarkers.
The gigapixel size of WSIs, which can easily reach billions of pixels, makes their manual analysis
very time-consuming and presents significant challenges for conventional Deep Learning (DL) meth-
ods, as they are not designed to support such large images [Cheplygina et al., 2019, Srinidhi et al.,
2021]. To address that, a simple approach involves dividing the WSI into smaller patches that DL
methods can easily handle [Hou et al., 2016, Wei et al., 2019]. However, patch-level annotations
are rarely available and, as in our case, one usually uses (weak) slide-level labels. Multiple-Instance
Learning (MIL) methods, coupled with Deep Learning Feature Extraction (FE), have thus emerged
as the most prominent solution in the field of WSI classification, where FE avoids the costly and
experience-based feature engineering part, while MIL eliminates the need for patch-level (or pixel-
level) annotations [Tschuchnig et al., 2022, Qu et al., 2022]. Under MIL formulation, each WSI is
treated as a “bag” containing multiple instances in the form of patches, which are embedded with
Convolutional Neural Network (CNN) or Vision Transformer (ViT) backbones. The bag is labeled
positive (i.e., diseased) if at least one of its patches is positive, or negative if all patches are negatives
[Campanella et al., 2019, Ilse et al., 2018]. In general, the existing methodologies follow a two-step
pipeline: 1) feature extraction (FE) from individual patches, and 2) MIL aggregation through a
pooling operation to predict the slide label [Li et al., 2018, Lu et al., 2021, Li et al., 2021a, Shao
et al., 2021, Zhang et al., 2022a, Guan et al., 2022]. The first step is usually performed by lever-
aging existing self-supervised learning methods, such as DINO [Caron et al., 2021], MOCO-v3 [He
et al., 2020] or Barlow Twins [Zbontar et al., 2021]. In the second step, MIL aggregation methods
can be categorized into two groups: instance-based and embedding-based methods. Instance-based
methods use an instance-level classifier, which predicts a score for each patch, and then a simple
pooling operator (usually average or max) to make the final prediction for the entire slide. These
methods are highly interpretable, easily explainable and with very few parameters. However, they
highly depend on the quality of the features extracted during the first step. To increase reliability,
researchers proposed to aggregate features instead than scores, moving the classification head after
the pooling. These are called embedding-based methods whose pooling mechanisms, usually based
on attention or self-attention, are more complex (more parameters) than instance-based ones [Ilse
et al., 2018, Lu et al., 2021, Shao et al., 2021, Li et al., 2021a]. On the one hand, this means
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that the model has a greater capability of learning how to correctly aggregate the features and
thus might have a greater prediction power. On the other hand, interpretability and explainability
can decrease1 and at the same time computational complexity and overfitting might increase (i.e.,
number of needed training samples increases).
Many interesting research questions, in particular related to the proposed SjS project, will be ad-
dressed. Concerning the first FE step of the pipeline, almost no self-supervised methods has been
specifically conceived for histological images. Most of the proposed methods, such as the latest
Foundation model UNI [Chen et al., 2024], use existing methods (e.g., Dino-v2) that have been
proposed for natural images. Very few works explored specific solutions for histological images
and, most of them, as in [Kang et al., 2023], only explore new data augmentation tailored for
histopathology images (e.g., stain changes). An interesting research direction will thus be propos-
ing new self-supervised methods specifically tailored for histopathology images. These methods
should mimic the decision mechanism of pathologists by leveraging the pyramidal nature (multiple
magnifications) of the images, accounting for their variations (and biases) in stain, anatomical loca-
tion and cell size, and using complementary information from clinical and biological data. Related
to that, we will also investigate whether the existing available histopathological imaging datasets,
which mostly come from The Cancer Genome Atlas (TCGA) initiative and thus describe cancerous
tissue, are also useful for non-cancerous, rare diseases, such as SjS.
About the second step, our preliminary results [Mammadov et al., 2024] show that simple instance-
based MIL methods, when combined with robust self-supervised feature extractors, are on par or
even outperform complex embedding-based methods in WSI classification. This indicates that our
future efforts should be focused on developing simple, yet relevant and discriminative, MIL methods
that will leverage the previously described (new) self-supervised methods. This will produce robust,
highly interpretable and explainable algorithms, whose results will thus be more trustworthy and
accepted by physicians (and regulators).

Going from a clinical research project to a Start-Up
Personalized medicine in surgery is based on the development of 3D, precise and patient-specific
models of the anatomical structures and pathologies, like tumors or malformations. These indi-
vidual models are of uttermost importance for pre-operative planning and per-operative guidance.
They are usually built from segmentations obtained via deep learning methods trained on structural
medical images, such as MRI or CT scans. These methods are highly developed and perform well
when the training datasets are large and the anatomical structures present a low heterogeneity in
size and pose with high-contrast and clear boundaries. This is usually the case for dense structures,
like bones, in adults. However, there are still challenging segmentation tasks, like in pediatrics or
in the abdomen and pelvis, where deep learning algorithms may fail.
Since 2017, when I joined Télécom Paris, we have proposed, through collaborations with the Necker
hospital and companies (Philips, Incepto and Guerbet), several solutions for improving the seg-
mentation of abdominal and pelvic structures. In particular, we have worked on pediatric segmen-
tation (kidney, renal tumor [La Barbera et al., 2021], renal tubular structures [La Barbera et al.,
2022, La Barbera et al., 2023] and pelvic vessels [Virzì et al., 2018, Virzì et al., 2020]), pancreas
[Vétil et al., 2022] and prostate cancer segmentation [Ruppli et al., 2023]. Part of these works have
produced two patents [Delmonte et al., 2023, Vétil et al., 2024] and some of them have been gath-
ered into a software that can, almost automatically, segment all pelvic anatomical structures (e.g.
bones, organs, vessels), tumors and malformations and even some pelvic nerves. These segmenta-

1even though attention and self-attention mechanisms can be exploited in that regard.
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tions are then used to produce a 3D, anatomical digital twin of the patient’s pelvis which is currently
used at the Necker hospital for pre-operative planning and per-operative guidance in daily clinical
practice (Prototype TRL4). Indeed, there was an urgent need for a solution helping the surgeons,
since there is currently no licensed software nor research work proposing an automatic solution for
modeling and segmenting all pelvic structure, including the nerves. The initial user feedback was
very positive, indicating an easy-to-use solution, highly useful in practice. Furthermore, a market
research concluded that many other surgeons, from various domains, expressed a high interest in
our software. Indeed, we received many requests of collaborations (e.g., urethral, maxillofacial,
gynecological surgery) with their own specificity in terms of data, protocol and difficulties. This
motivated us to step out of the researcher’s comfort zone and move towards the market. We have
thus assembled a great team of 8 people and we are currently in the process of creating a Start-Up.
This opens up several challenges and opportunities, from both a research and business point of
view, with, as final goal, the creation of a 3D, automatic, accurate and patient-specific digital twin
of the entire human body, including nerves and vessels 2.

2this is probably more of a dream than a goal, but apparently you need to make investors dream in order to
secure funding...
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