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Summary

The Brain is a hugely complex environment. Billions of neurons stacked
in numerous different interconnected areas. Each area is its own universe
of different cellular types connecting between and within neuronal classes.
Individual neurons are complex to understand alone.

Populations of neurons generate electrical waves when they synchronise.
Distinct frequencies have been identified in the brain for specific popula-
tions. But, more importantly, in a desynchronised state a population is
simply a combination of multiple frequencies. This raises the question of
how populations of neurons integrate the information present from all of
these frequencies? We could draw a parallel with radio waves; using a tuned
receiver we can tune into one singular frequency to listen to what is noise
when taken as a whole. Can information be transmitted in this manner
through the brain?

Neurons themselves act as integrators; they combine the multiple synaptic
inputs and produce action potentials as output. We can then imagine the
population of neurons as a population of spiking units. As a population
the neurons can be more responsive to specific frequencies. Populations of
neurons could then encode or store information on the basis of their preferred
frequencies.

Moreover, neurons do have preferred frequencies. They sometimes exhibit
what is called membrane (subthreshold) resonance that can amplify inputs
for a certain frequency range. How this impacts the output firing is still
rather unclear. A neuron’s output can also be sensitive to the input’s fre-
quency. This is called firing resonance. How the two resonances interact
with each other will be the starting point of this work. The goal of the
study was to build a simple and mechanistic model of the Purkinje cell to
which we would compare the experimental results cell by cell.

The framework of the project was to have as much specific information on ev-
ery cell, in the most precise manner, in order to build our models respecting
inter-cellular variability. For each experiment, short voltage-steps transient
responses were probed as well as the impedance at different voltages. These
two experiments were the basis to fit (transients) and test (impedance) the
sub-threshold dynamics of our model cells. We chose to start with a passive
three compartment model to account for the massive dendritic arborisation
of the Purkinje cell.

The spike triggering was implemented with an exponential integrate and
fire mechanism (EIF) to which was added a time dependent potassium after
hyperpolarisation (AHP) current.

It appeared that probing the firing profile of the cells in a precise and re-
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producible manner was not an easy task. Preliminary results emphasised
that struggle. We implemented a “firing rate clamp” in order to stabilise
the firing responses, and designed a “comb” frequency profile protocol with
simultaneous low-noise probing of 50 frequencies.

Interestingly, the impendance measurements revealed several imperfections
in the amplifier’s high frequency responses in voltage-clamp and current-
clamp. The overall findings revealed a strong high-frequency firing reso-
nance in the Purkinje cells that could not be reproduced by our simple model
despite a very satisfactory cell-to-cell comparison of the sub-threshold be-
haviour. The addition of a potassium after hyperpolarising current to an
EIF spike mechanism made it possible to extrapolate the impact of the ac-
tion potential to the passive dendritic compartments. This gave potential
additional explanations for the high-frequency firing rate of the Purkinje
cells.

This accurate model will make possible some extensive research of possible
mechanisms with the model as a tool. Additionally experiments were done
on another cellular type, neocortical Pyramidal cells. Fitting the model’s
structure to these cells will provide an challenging test of the model’s ro-
bustness.
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Part I

Introduction
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1 Membrane Resonance

1.1 Impedance

1.1.1 The neuron as an electrical circuit

The neuron’s enclosure is a bi-lipidic membrane filled with ionic channels.
As the membrane is impermeable to ions, their concentration can differ
from the outside to the inside of the cell. Ions are electrically charged,
therefore those concentration differences, accompanied with organic anions
“trapped” inside the cell, creates a voltage difference across the membrane
that we call abusively: membrane potential (Vm). By definition Vm is
the difference between the potentials of the inside and the outside of the
cell. The main ions to take into consideration are Na+, K+, Cl-. The
flow of ions across the membrane is then controlled by the combination of
concentration and electrical gradients. This is represented by the Nernst
Equation that describes each ion’s equilibrium (sometimes called reversal or
Nernst) potential:

Eion =
RT

zF
ln

[ion]out
[ion]in

R is the gas constant (1.98 cal/°K*mol), F the Faraday constant (96.480
C/mol), T the absolute temperature (°K) and z the ion’s valence.

A last, and crucial, component is needed to complete the picture: the per-
meability of each ionic species (Pi). Permeability represents the capacity
of the membrane to let a specific ion through. It is set by the type of the
neuron’s channels , their number and opening states. This was added to the
Nernst equation, to give the more specific Goldman-Hodgkin-Katz (GHK)
equation of the membrane potential:

Vm =
RT

F
ln
PK [K+]out + PNa[Na

+]out + PCl[Cl
−]in

PK [K+]in + PNa[Na+]in + PCl[Cl−]out

Pi is dimensionless, it is a number between 0 and 1.

One can transpose those biological features into electronic equivalents by
treating the membrane as a capacitor (Cm), the equilibrium potentials as
the electromotive force (Ei) and permeability as conductance (Gi), which is
the inverse of the resistance (Ri = 1/Gi). As the channels are within the
membrane the conductances are positioned in parallel to the capacitance
(Figure 1a). With Thévenin’s theorem it can be simplified into a parallel
RC circuit. This rather simple circuit is enough to exhibit and understand
a great variety of a neuron’s passive behaviours.
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(a) Parallel conductance model with Thévenin’s simplification.

(b) Compartimental model.

Figure 1:
Neuron equivalent circuits

R for resistance, g for conductance, C for capacitance and E for
electromotive force. Rj stands for junction resistance between com-
partments. From Barbour, 2018.

The membrane capacitance (Cm), represents the size of the cell but not the
shape, so sometimes it can be necessary to add complexity to the circuit and
add compartments (Figure 1b). Neurons are generally composed of a soma,
where the nucleus is, and dendrites departing from it with a vast diversity
of length, ramifications and shapes. This will be important when trying to
understand impedance and spiking resonance in such extensively ramified
cells as the Purkinje or Pyramidal cells. A capacitor takes time to charge
and discharge. Thus, any inward or outward current will affect the potential
with a certain delay due to this time of charge. This time is quantified by
the membrane (or circuit) time constant:
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Im = Cm
dVm
dt

+
Vm
Rm

Vm = ImRm − τm
dVm
dt

with:

τm = RmCm =
Cm

Gm

τm is expressed in seconds, Rm is the membrane resistance (Ω), Gm the
membrane conductance (S) and Cm the capacitance (C).

1.1.2 Definition

One intuitive way of thinking of a neuron as an electric circuit is to analyse
it with respect to time. One usually represents membrane voltage as: Vm(t).
Before introducing the notion of impedance it can be interesting to change
perspective and switch from time to frequency domain.

The idea is to look at the voltage not as a time dependent variable but as
the sum of an infinite number of sine waves of different frequency, amplitude
and phase shift. This is the Fourier transform principle, therefore we say
that we have moved to the frequency domain. For each wanted frequency
you can then find an amplitude and phase shift from the voltage and current
trace. Impedance is a more general form of resistance, it can be used in the
frequency domain:

Z(f) =
V (f)

I(f)

Impedance is the generalization of resistance

The Fast Fourier Transform (FFT) is an algorithm that transforms a signal
reversibly (iFFT) into the frequency domain, it will be used extensively
through the manuscript. The ratio of amplitudes (|Z|) and the difference
between phase shifts (arg(Z)) are embedded in the notion of impedance.
For this reason a complex representation is usually more convenient:

Z = |Z|ejθ = R+ jX

|Z| is the magnitude, θ = arg(Z) , R the resistance, X the Reactance and j
the square root of −1.

The use of the term impedance can sometimes be confusing and refers to
the magnitude, the resistance or the reactance (Figure 2).
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Figure 2:
Complex representation of impedance

Im y axis is the imaginary part where the Re x axis is the real one.

1.1.3 Neuronal impedance

We need to understand that investigating the impedance of a cell can have a
great variety of meanings. As it is the general relation between the current
and voltage, it could be seen as the neuron’s transfer function. Depending on
the type of experiment and most importantly the interpretation, impedance
embeds all the changes in the neuron’s electrical behaviour. By building
more and more accurate circuits, comparing and fitting mathematical cal-
culation to the data, it has proven itself to be a powerful tool. This has
consolidated the idea that the neuron could be modelled as an electrical
circuit.

In 1928 Kenneth S. Cole examined the impedance of the sea urchin Arbacia
Punctulata’s eggs (Figure 3) to separate changes due to the membrane ca-
pacitance, the cytoplasm and the membrane resistance during fertilisation
and early development (Cole, 1928). The same year Lawrence R. Blinks,
based on work on the seaweed Laminaria (Osterhout, 1922) and his own,
deduced from the impedance that: “The observed resistance change [to in-
jury] is really a change in permeability of protoplasm to ions” (Blinks, 1928).
Using impedance has played a major role in the understanding of membrane
permeability to ions ever since. Ten years later, Cole and Howard J. Curtis
examined the impedance changes during an action potential in the green
algae Nitella (Cole & Curtis, 1938) and in the Giant squid axon (Cole &
Curtis, 1939). They interpreted a transient change in the membrane’s con-
ductance during the spike. The same year Hodgkin and Huxley recorded
this first intracellular action potential with the help of a glass micro-pipette
(Hodgkin & Huxley, 1939). This major breakthrough permitted an access
to the difference between the inside and the outside of the axon, whereas all
the previous measurements were purely extracellular.
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Figure 3:
Impedances of sea water Arbacia egg’s suspensions

Impedance (Z) in arbitrary units) versus log frequency (n, cycles per
second). (A-D) show different types of typical impedance profiles.
From Cole, 1928.

In 1949 Cole and Marmont developed the voltage clamp technique (Mar-
mont, 1949). With two pipettes and the use of a feedback amplifier they
were able to control the membrane voltage at a defined value, and record
the current necessary to “clamp” the cell. The ability to control voltage was
used in the following years by Hodgkin and Huxley to develop experiments
in order to dissect the changes in potassium and sodium conductances es-
pecially their time and voltage dependence (Hodgkin et al., 1952). These
major breakthroughs led to their famous “ionic hypothesis” of the action
potential (Hodgkin & Huxley, 1952). Their experiments did not involve any
frequency analysis yet they were dissecting the ionic basis of the membrane
impedance with respect to time, voltage and temperature.

In 1960, Wilfrid Rall reviewed different kinds of experiments of applied cur-
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rents to the motoneuron in order to extract the soma time constant and a
dendritic to soma conductance ratio. He conceptualised an experiment, and
gave the theoretical response (Figure 4):

“Essentially, the experiment would consist in applying a sinusoidal current
across the soma membrane, at several different frequencies, and recording
the oscillatory electrotonic potential that is developed across the soma mem-
brane” (Rall, 1960).

Figure 4:
Impedance simulations

“Theoretical relation between phase shift and frequency when a si-
nusoidal current is applied across the soma membrane, for [conduc-
tance] ϱ = 0, 2.5, 10, 25, 50, 100, and ∞. Zero phase angle implies a
whole neuron impedance that is effectively a pure resistance; the 90°
value corresponds to effectively pure capacitance. The ωτ scale can
be used for any τ [membrane time constant] value, the frequencies
at the top of the figure apply when τ is 4 msec.” From Rall, 1960

This was experimented in the cat spinal motoneuron by Nelson and Lux,
1970. It is interesting to point out the main focus on the phase angle to
extract information from the system. As for the previous impedance work,
done on the nerve, emphasis was put on the phase angle. As it gives an
idea of whether the impedance is more resistive or capacitive, the two being
orthogonal to one another.
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Sabah and Leibovic, 1969, then Mauro et al., 1970, investigate an intrigu-
ing propriety of the giant squid axon’s membrane. When injecting short
and small pulses of currents into the axon, not enough to trigger an ac-
tion potential, one can see some oscillation in the voltage response. As this
phenomenon occurs under the action potential threshold, it is called sub-
threshold behaviour. On the impedance amplitude profile recorded from
Mauro you can see a “bump” around 100 Hz (Figure 5). This “bump” rep-
resents the fact that for the frequencies centred around it, the membrane
has a greater response than for the other frequencies. We say that the mem-
brane has a preference range of frequency at which it resonates. This type
of representation of the impedance is what we are nowadays most used to ;
especially with this range of frequencies from 0 to 1 KHz.

Figure 5:
Impedance amplitude profile of the Giant Squid axon

“Small-signal response of squid axon to variable frequency alternat-
ing current (”constant current” source). Note resonance and the
dependence of resonant frequency on temperature. The values along
the ordinate are given by the ratio of the peak voltage to the peak
current for a 2 cm length of axon.” From Mauro et al., 1970.

A few years later, in 1974, Rita Guttman injected Gaussian white noise
generated current into the giant squid axon and got similar results (Guttman
et al., 1974). She also was able to reproduce those results from a simulation
based on the Hodgkin and Huxley model (Hodgkin & Huxley, 1952) (Figure
6). one can see a resonance around 200Hz. White noise is a signal in
which all frequencies are represented with equal power. All the frequencies
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are probed at the same intensity and simultaneously. This technique was
used several times for similar purpose (French & DiCaprio, 1975; Jahnsen
& Karnup, 1994; Moore et al., 1988). Although white noise analysis can be
a very powerful tool to assess neuron’s properties, it has only been used a
few times to asses the impedance profile.

Figure 6:
Impedance profile simulations of the Giant Squid axon

“Power spectrum calculated from the linearized Hodgkin-Huxley
equations. The solid curve shows standard conditions, tempera-
ture 6.3°C, leakage 0.3 mmho/cm2. The dashed curves show effect
of increased leakage to twice and five times nominal value.” From
Guttman et al., 1974. On the y axis, unit is unknown.

In 1984 Gimbarzevsky introduced two major new aspects into the experi-
mental procedure (Gimbarzevsky et al., 1984). He introduced the “ZAP”
function, for Impedance(Z) Amplitude Profile, and used the Fast Fourier
Transform (FFT) algorithm on the data. The “ZAP” function consists of
a continuous function where the frequency on a sinusoid increases mono-
tonically in time. Different to noise where the frequencies are all combined
together, the “ZAP” function permits the probing of all frequencies inde-
pendently from one another. As noted by Hutcheon, it is also visually in-
formative. Without any data transformation, one can see approximately at
which frequency range resonance occurs (Hutcheon & Yarom, 2000).

Work on the squid peripheral nerve (axon) unveiled the two voltage depen-
dent conductances involved in the generation of the action potential. Then
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from work in the spinal motoneurones, it was assumed they had similar prop-
erties. In the same idea neurons from the central nervous system were seen
as ’Platonic’ as Rodolfo Llinas called them. Neurons were seen as simple
threshold entities and the complexity was to come from the network (R. R.
Llinás, 1988). But more and more diverse voltage-gated conductances were
found with a great variety of behaviour ; with the idea that single neurons
from the central nervous (CNS) system could have more intrinsic integration
properties than expected.

With the advent of the patch clamp, invented by Sakmann and Neher, 1984,
in conjunction with in vitro brain slicing techniques, it became easier to
target neurons from the CNS of small mammals such as guinea pigs, rats
and mice. Seeing oscillation at the network level, especially in the thalamus
and the inferior olive, raised even more interest on sub-threshold oscillation
and resonance (R. R. Llinás, 1988). Impedance profiles where resonance was
seen were then recorded from NG-108 cultured cells (5-50Hz) (Moore et al.,
1988), thalamic neurons (3-5Hz) (Puil et al., 1994), neocortical neurons (2-
10Hz) (Gutfreund et al., 1995; Hutcheon et al., 1996) (Figure 7). Resonances
are systematically voltage dependent, and the main goal of those studies was
to dissect which conductances were involved.
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(a) Thalamic neurons from guinea Pigs.
From Puil et al., 1994.

(b) Neocortical neurons from guinea
Pig. From Gutfreund et al., 1995.

(c) Cultured neuronal NG-108 cells.
a,b,c respectivly -80mV,-60mV,-40mV.

From Moore et al., 1988.

(d) Neocortical regular neurons from
juvenile rats. From Hutcheon et al.,

1996.

Figure 7:
Mammalian neurons’ sub-threshold resonance

A collection of reported sub-threshold membrane resonance in mam-
malian neurons. When reported the impedance’s voltage dependency
is reported. in (a) and (d) the dashed vertical line shows the reso-
nant frequency.
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1.2 Mechanisms of membrane resonance

1.2.1 Passive components

First, we need to look at the impedance profile of a simple parallel RC circuit
(Figure 8). It acts as a low pass filter with a given cutoff frequency:

fc =
1

2πτm

In other words, the higher the input signal’s frequency, above fc, the smaller
the amplitude of the output signal.

The conductance involved is assumed to be constant over time and voltage.
The only impact on the membrane’s current is through the voltage differ-
ence towards the reversal potential, it only changes the driving force. The
resulting current is usually called the leak current. At this stage the system
is linear:

Im(Vm) = gleak(Vm − Eleak)

Where (Vm − Eleak) is the driving force and Eleak is the reversal potential
of the leak channels ; which can also be assimilated to the resting membrane
potential.

Figure 8:
Impedance of a RC circuit

Adapted from Hutcheon and Yarom, 2000.

The simplest form of probing approximately the passive properties is to
apply a short voltage step. This is now a standard protocol done in almost all
patch-clamp recordings, because it also gives information about the electrode
resistance. When analysed in the time domain the step can be dissected in
three periods (Figure 9).
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Figure 9:
The voltage clamp circuit

Vc is the command voltage, Rf the op amp feedback resistance in-
sures the Vp = Vc. Vout the recorded voltage is then proportional to
the pipette current Ip. Re is the electrode resistance. When a volt-
age transient is applied at Vc the injected current can be separated
in three phases. At the initial phase I0, infinite current would be
drawn by Cm and only Re restricts the applied current. Then Cm

charges exponentially and as Re << Rm, τ can be simplified. At the
equilibrium Cm draws no current and we can deduce Rm. Cp is the
pipette capacitance, whose compensation is not treated here. From
Barbour, 2018.
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1.2.2 Active components

For some conductances the relation between Vm and the current is not lin-
ear. They are called “active” in contrast with the “passive” linear conduc-
tances. Hodgkin and Huxley were the first to build a mathematical model
for voltage-gated channels that accounted for both voltage and time depen-
dence (Hodgkin & Huxley, 1952). Their description is based on a “gate
model” where the probability of opening of the channel is governed by one
or several independent gating particles. A particle’s probability of being in
the active state y is described as follows (Johnston & Wu, 1994):

y(t, Vm) = y0 −
[(
y0 − y∞(Vm)

)(
1− e−t/τy(Vm)

)]

y∞(Vm) =
αy(Vm)

αy(Vm) + βy(Vm)

τy(Vm) =
1

αy(Vm) + βy(Vm)

Where αy(Vm) and βy(Vm) are the rate coefficients for the transitions to the
active and inactive states, respectively:

αy(Vm) = α0e
δzFVm/RT

βy(Vm) = β0e
−(1−δ)zFVm/RT

R is the gas constant, F the Faraday constant, T the absolute temperature
and z the ion valence.
δ is a factor (0-1) of asymmetry of the voltage energy barrier between the
cell’s membrane.

We then have the following conductance of the ion selective channel:

gion = Yion(t, Vm)ḡion

Yion(t, Vm) =
[
yion(t, Vm)

]P

Where ḡion is the maximum conductance and P is the number of independent
gating particles involved in the process.

One can appreciate that by inverting the active and inactive states the
equations can correspond to an activation (opening) or deactivation (closing)
of the channel. The two processes can be combined within the same general
probability description:
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Y (t, Vm) = yact(t, Vm)Pactydeact(t, Vm)Pdeact

Hodgkin and Huxley’s model had a sodium and a potassium conductance
fitted to the squid axon action potential. The model reproduced the action
potential astonishingly well (see 2.1.1). Since then more and more voltage-
gated channels were discovered among neurons. To date, the gated model
has proven to be general and robust to describe channel behaviour. Voltage-
gated channels display various phenotypes in terms of ionic selectivity, volt-
age threshold and activation/inactivation kinetics. Each type of neuron
will have its own signature and compartmentalisation (dendrites, soma) of
voltage-gated channels. How a channel impacts the cell’s impedance and
could potentially create resonance is beautifully explained by Hutcheon and
Yarom “rules of thumb” for creating a subthreshold resonance (Hutcheon &
Yarom, 2000) (Figure 11):

1. Passive components are low pass filters governed by the time constant
(τleak) resulting from the parallel leak conductance.

2. A current that is activated by a voltage change and which will coun-
teract (rectify) the voltage change. This will act as a high pass filter
(Figure 10).

3. The active current time constant must be longer than τleak. So that
it creates a band pass filter.

Figure 10:
Slow rectifying current as high pass filter

From Hutcheon and Yarom, 2000.

Therefore, with those rules, resonance arises from a band pass filter that
diminishes the impedance around its boundaries. There are two major slowly
activated rectifying currents known to be involved in membrane resonance:

• The outwardly rectifying potassium (K) current: IK . Activated by
depolarisation. With a reversal around - 90 mV (Hille, 2001)

• The hyperpolarisation (h) activated current Ih. Inwardly rectifying
partially non-selective cationic current.
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Figure 11:
How to create a resonance

The combination of the passive low pass filtering and active high pass
filters governed by voltage-gated channels. Adapted from Hutcheon
and Yarom, 2000.

A partially non-selective cationic current means that the channels are per-
meable to mainly Na+, K+ but with a slight difference in selectivity that
brings the reversal potential to around -40 mV (Roth & Häusser, 2001).
Another way of understanding how conductances can impact the resonance,
is looking at the activation curve along the membrane voltage with respect
to their reversal potential (Figure 13).

We understand that resonance is based upon the interplay between the
neuron’s passive properties and its voltage-gated channels ; thus the fre-
quency and amplitude of a resonance is voltage dependent. One can imagine
that almost any neuron can exhibit some resonance in a particular context
(Richardson et al., 2003).

1.2.3 Resonance and oscillation

Some neurons exhibit intrinsic (pace-making) membrane oscillation, this
phenomenon can arise when an amplifying current interacts with a resonant
one. When the reversal potential of a channel corresponds to its voltage
at which it is fully activated, voltage fluctuations will be enhanced thus
amplified (Figure 13). The following are the channels best known to be
suitable for amplifying resonance:
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Figure 12:
Amplified resonance

Adapted from Hutcheon and Yarom, 2000.

• Persistent Na+ channels (INaP ). With a reversal around + 55mV
(Richardson et al., 2003)

• Current mediated by NMDA activate channels (INMDA). There relief
of Mg2+ block activates them only when the membrane is depolarised,
and its reversal is around 0 mV (cationic).

• The dihydropyridine-sensitive high-threshold Ca2+ (IL). With a re-
versal around + 50mV (Hille, 2001)

The presence of an amplifying current does not necessarily mean that the
neuron’s membrane potential will oscillate. For example, neurons from the
somatosensory cortex of rats have Ih and INaP and some neurons of the
frontal cortex of guinea pigs, IK and INaP (Hutcheon & Yarom, 2000).
Neither of them show oscillations, but they do have amplified resonance at
low frequencies (Figure 12).

Neurons from the inferior olive (R. Llinás & Yarom, 1986) and thalamo-
cortical neurons (Puil et al., 1994) exhibit pace-making membrane oscilla-
tion. One channel is mainly responsible for this:

• Low-threshold Ca2+ channels (IT ). It has an inactivation process that
produces resonance and an activation one that amplifies it. Combined
in one channel, at the right membrane voltage (‘window current’) the
two processes create self sustained oscillation around 5Hz. With a
reversal around + 50mV (Hille, 2001)

We can now say that neurons show various ways of integrating external infor-
mation in the frequency domain. This integration depends on the membrane
voltage and the types of current involved. We have seen how the input of
a cell changes its membrane voltage. Nevertheless, neurons mainly commu-
nicate through the generation of action potential. Thus, the key question
now is to understand how membrane potential resonance interacts with the
firing output of neurons, especially in the frequency domain.
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(a) Activated by depolarisation.

(b) Activated by hyperpolarisation.

Figure 13:
Voltage-gated channels’ activation profiles

y∞ as a function of voltage for channels activated by depolarisation
a) or hyperpolarisation b). Arrows represent the reversal potential.
Filled triangles are placed where the channel would produce rectify-
ing currents and then resonance if it combined the activation profile
and the reversal potential. The open triangles are placed where am-
plification would occur. Adapted from Hutcheon and Yarom, 2000.
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2 Firing Resonance

2.1 The Neuron’s output

2.1.1 The Action Potential

Neurons can communicate to each other in various ways:

• Synaptic communication. A presynaptic action potential triggers the
release of neurotransmitters that will activate postsynaptic receptors
with different time scales:

– At a fast scale (∼ 1 ms) channels will open changing the local
membrane conductance and affecting its voltage.

– At slower timescales, spillover (Szapiro & Barbour, 2007) and
metabotropic receptor can also affect signalling, including by
modulating plasticity.

• Non synaptic communication. Electrically, via gap junctions or in an
ephaptic manner. Chemically via neuromodulation (volume transmis-
sion).

However, the present study will be restricted to fast synaptic communica-
tion, and especially the high-frequency components.

Figure 14:
Hodgkin and Huxley’s action potential numerical solution.
Components of membrane conductance (g) during propagated ac-
tion potential. The membrane voltage is referred to the intracellular
resting potential (as opposed to the modern convention Vin − Vout).
From Hodgkin and Huxley, 1952.

The action potential is considered the “unit” of communication between neu-
rons. The generation of an action potential is based on a voltage-dependent

21



auto-regenerative process. At a certain depolarised voltage threshold, fast-
activating sodium channels will open, depolarise even more the membrane,
and so on. This creates a sharp onset. Those channels are also fast to inacti-
vate, accompanied by the slower activation of potassium channels triggered
by the depolarisation (delayed rectifier) induced by the sodium channels.
Both of those processes will hyperpolarise the membrane and end the action
potential with an overshoot, the after-hyperpolarisation (AHP) (Figure 14).
This was discovered and described by Hodgkin and Huxley as follow:

IAP (Vm, t) = gK(Vm(t)− EK) + gNa(Vm(t)− ENa)

gK(t, Vm) = ḡKn
4(t, Vm)

gNa(t, Vm) = ḡNam
3(t, Vm)h(t, Vm)

Where m and n are activation probability and h inactivation as described
above in 1.2.2, for fitted values see (Hodgkin & Huxley, 1952)

2.1.2 Models of a spiking neuron

To have a general equation describing a spiking one compartment neuron,
Hodgkin and Huxley combined the passive properties, capacitance and leak,
with the conductances involved in the action potential:

Cm
dVm
dt

= −Ileak − INa − IK

Ileak = gleak(Vm − Eleak)

INa = gNa(Vm − ENa)

IK = gK(Vm − EK)

This was the first conductance-based model. The denomination conductance-
based concerns any models that explicitly incorporate channel conductances
rather than voltage-independent voltage or current changes; the large volt-
age excursions occurring during the action potential would render the voltage-
independent approximations quite inaccurate. Other conductances than
sodium and potassium can be added to such models, especially to give a
more accurate description of the membrane sub-threshold dynamics. Their
parameters can also be changed to fit more accurately some neuronal spikes,
for example the Wang and Buzsáki model (WB) is fitted for fast-spiking in-
terneurons (Wang & Buzsáki, 1996).

Conductance-based models are good representations of neurons. However,
especially if we want the neurons to connect to each other in networks, the
analytical solutions to the system become complicated to elucidate.
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The idea of a simple “integrate and fire” (IF) neuron was introduced long
before Hodgkin & Huxley, by Lapicque, 1907. It consists of:

• A simple one compartment passive neuron, parallel RC circuit.

• An arbitrary voltage threshold at which an action potential is gener-
ated.

• A reset voltage after the action potential.

It is a very simple yet powerful model and accurate for many applications
(Abbott, 1999). As the only conductance in the model is the one due to the
leak current, the model is called the “leaky integrate and fire” (LIF). The
membrane voltage is then described as follow:

Cm
dVm
dt

= −gleak(Vm − Eleak)

An interesting addition was made to the LIF by Fourcaud-Trocmé et al.,
2003. In order to keep the simplicity of the LIF, but gain some complexity on
the generation of the action potential, an exponential component mimicking
the onset and generation of the action potential was added. The model is
then called the “exponential integrate and fire” (EIF):

Cm
dVm
dt

= −gleak(Vm − Eleak) + ψ(Vm)

ψ(Vm) = gleak∆T exp

(
Vm − VT

∆T

)

Where VT is the action potential threshold and ∆T the “slope factor” con-
trolling the sharpness of the spike.

The exponential part simplifies the fast activation of the sodium channels.
When the exponential makes the voltage too depolarised, the calculation is
arbitrarily stopped and reset at a fixed voltage like in the LIF (Figure 15).

2.2 Fast Population encoding

2.2.1 Synaptic noise and filtering

We have seen that the passive components of a cell’s membrane act as a
low-pass filter on external inputs, governed by the membrane time constant.
The intuition would be that the output firing rate would follow this low pass
filtering from the membrane. The question addressed here is to understand
how external input are translated in terms of firing.
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Figure 15:
Simulation of LIF, EIF, QIF and the WB neuron.

For the same input, the LIF is early and the QIF late compared to
the EIF and the WB (Wang and Buzsáki model) which have similar
spike times. QIF is for Quadratic IF. From Fourcaud-Trocmé et al.,
2003.

We may need to clarify here what “translated into firing” means. The
general “experimental” procedure that will be explored is somehow similar
to the concept of impedance. The probed system is a neuron that is firing
tonically at a fixed rate. A periodic current, ususally a sine wave at given
frequencies, is injected into a neuron to perturb its firing. We can see the
parallel made with impedance, in the same way we are looking for a “transfer
function” from input to firing response in the frequency domain. The goal
here is to compare the amplitudes and phases between the input and output
firing, and attribute any filtering or resonance effects to the neurons.

Another important point needs to be discussed. Having a neuron’s response
to a periodic input can be understood as the mean response of the cell to
one cycle, or as the response of an identical population of this neuron to
one cycle of the input. This gives the information on how fast a population
can transmit episodic information. On the other hand, it also answers the
question of how the single neuron is synchronised to the periodic input,
which is commonly called phase-locking.

Using the LIF as a model, with a finite size population, there is an effec-
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tive low-pass filter due to the membrane time constant (Knight, 1972). If
the homogenous population is “large” enough and in the best case infinite,
then the output firing renders the input current with no filtering (Gerstner,
2000). Of course such a population is not biologically plausible. However, in
a reduced size population, transfer of information of high frequencies can be
improved by adding white noise to the input, making the population’s firing
heterogeneous (Gerstner, 2000; Knight, 1972). In a perhaps more intuitive
way, if the firing rate of each neuron is different, the chance to have neu-
rons near threshold is higher and the speed of response also becomes higher
(Gerstner, 2000).

In the absence of noise, the neuron’s frequency response is “polluted” by its
firing rate frequency and harmonics. Adding perturbations also reduces the
population firing rate resonance and its harmonics.

Figure 16:
Firing rate and noise effects on LIF frequency response.

r1(ω) and ϕ(ω) are respectively the amplitude and phase of the firing
rates’s Fourier transform. Solid lines are analytical predictions for
each firing rate (10 and 50 Hz). σ is the amplitude of the noise.
τs = 0. Amplitude is normalised over r1(0.1Hz). From Brunel et
al., 2001.
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Fourcaud-Trocmé and Brunel detailed these results raising an interesting
problem: the white noise is not representative of the noise a neuron receives
in vivo. The noise is filtered by the decay time of the postsynaptic channels
(Brunel et al., 2001; Fourcaud & Brunel, 2002). They defined noise in the
following manner:

τs
dInoise
dt

= η(t)− Inoise

Where τs represent the decay time constant of channels, η(t) is a Gaussian
white noise variable in which σ controls the amplitude

Figure 17:
Noise’s τs effects on LIF frequency response.

r1(ω) and ϕ(ω) are respectively the amplitude and phase of the firing
rates’s Fourier transform. The different lines represent different τs.
r0 is the firing rate. Amplitude is normalised over r1(0.1Hz). From
Brunel et al., 2001.

With the more realistic noise, the signal gets filtered at rather low frequen-
cies. We can see in Figure 16 the clear peak of resonance to the firing
rate with low noise (σ = 1mV) that is smoothed out when the noise is
greater (σ = 5mV). The firing rate seems also to shift the cutoff frequency
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to higher levels (Figure 16 and Figure 18A). However, the time constant τs
has tremendous effects on the transfer of information. Indeed, in Figure 17
we clearly see that elevating the decay time constant restores transfer of in-
formation. Those time decays can be related to the realistic time constants
of posynaptic channels (Fourcaud & Brunel, 2002):

• GABAA: 5-10 ms

• NMDA: 50-100 ms

Once again in certain conditions is it possible for a neuron to transfer the
input without any filtering up to high frequencies, but counter-intuitively
by raising the decay time of the synaptic noise.

Fourcaud-Trocmé and Brunel continued investigating fluctuating inputs by
building the exponential IF (EIF), and examining its responses (Fourcaud-
Trocmé et al., 2003). The EIF has a similar frequency response compared to
a conductance based model, which is a low cutoff frequency (Figure 18). One
major variable of the EIF is ∆T which governs the sharpness of the spike
initiation. On Figure 18 we can appreciate the effect of ∆T on the cutoff
frequency combined with the noise filtering. The smaller ∆T the sharper
the spike will be and the greater the cutoff frequency, when the “slow” noise
is present. Being more realistic but simpler to analyse and implement than
a conductance based model, the EIF is seems to be a promising model.

2.2.2 Experimental frequency responses

Köndgen et al., 2008, investigated this idea in neocortical neurons. They
used small signal perturbation to assess the linear regime of the neurons.
Using an Ornstein-Uhlenbeck stochastic process to generate noise with a
zero mean, mimicking synaptic noise, they injected small sinusoid signals
given frequencies from 1 to 1000 Hz while adding the noise. Taking as
a population the combined data of all the neurons, the noise expanded the
information transfer up to 200Hz (Figure 19). This cutoff frequency is higher
than expected by the simulations on the EIF (< 100 Hz). It could suggest
faster rise of the action potential (Naundorf et al., 2005). This study also
tested changing the time correlation in the noise (the τs in Brunel et al.,
2001), and it did not have significant effects on the cutoff frequency.

Tchumatchenko et al., 2011 conducted a similar experiment to Köndgen et
al., 2008. They compared “slow” and “fast” synaptic noise compared to in
vivo data (Figure 20). Changing the noise dynamics had an impact on the
population response, where “faster” noise induced greater filtering. The in
vivo data had a frequency profile in between the two types of noise, showing
that biological synaptic noise could be close to the artificial one. Also, in
the two previous experiments noise was additive meaning it was added to
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the input, inducing changes in the mean input. Studies on multiplicative
noise, inducing changes in the input’s variance, showed that it could push
up almost to 1 kHz the transfer’s bandwidth (Boucsein et al., 2009; Lindner
& Schimansky-Geier, 2001).

2.3 From sub-threshold to firing

2.3.1 From theory

Richardson et al., 2003 established the theoretical basis to understand how
sub-threshold membrane resonances and oscillations could translate to the
firing output of a neuron. They first characterised the sub-threshold be-
haviours (Figure 21) with a simple two-variable model. They combined the
two variable models with an integrate and fire mechanism to generate what
they called a Generalized Integrate and Fire model (GIF). The GIF was
then compared to conductance-based models.

When analysing oscillating-input experiments, two types of firing resonance
are to be differentiated. Assuming the neuron is spiking at a stable pace
(r0 in Figure 22), when the input frequency is the same or a harmonic,
the resulting modulation of firing appears to be enhanced, thus a reso-
nance (Brunel et al., 2001). The second one may be present or not and
results from the possible membrane potential resonance (fR in Figure 22).
If no or low amplitude noise is added to the input, the firing rate resonance
dominates. With strong noise which will result in the neuron firing in an
almost Poisson manner, with unstable firing rate, the resonance from the
sub-threshold regime appears (Figure 22). It is important to distinguish
those two resonances from stochastic resonance which is generated by noise
amplification. Especially for the sub-threshold-linked firing resonance which
“appears” when noise is increased (Richardson et al., 2003).

2.3.2 To experiments

In the enthorinal cortex, two types of cells were investigated, stellate and
pyramidal cells. Stellate cells have a membrane potential resonance, whereas
pyramidal cells do not. Responses to injection of a different kinds of filtered
noise, in the sub and supra threshold regime, showed continuity in the re-
sponses between the two (Engel et al., 2008; Erchova et al., 2004; Haas &
White, 2002).

However, a study from Carandini et al., 1996 showed dissimilarity in a visual
cortex regular-spiking neuron. They exhibit a low-pass filtered impedance
with no resonance, but their firing profile shows amplified responses when
the frequency rises until a cutoff (Figure 23) (Carandini et al., 1996). Similar
results were found in the Oriens-lacunosum moleculare interneurons in the
hippocampus (Kispersky et al., 2012).
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In the striatum, Beatty et al., 2015 investigated four cellular types for their
firing resonance. Three types of interneurons: fast-spiking, low-threshold
spiking and cholinergic. They all showed membrane potential resonance
at different frequency bands. The low-threshold spiking (Figure 24a) and
the cholinergic interneurons had matching frequency preferences between
impedance and firing profiles, whereas the fast spiking had both frequency
preferences but at different bandwidths. The fourth neuronal type tested
was the medial spiny neuron, it had no sub-threshold resonance and showed
clear firing rate resonance (Figure 24b). Although the low-threshold exhibits
sub-threshold resonance in around 20-40 Hz, from Figure 24a it is unclear
what resonance we are looking at. There seems to be a rather clear firing
rate resonance at least for higher firing rates (> 20 Hz).

Broicher et al., 2012 investigated the effects of changes in conductances and
firing rates on the firing frequency profiles of hippocampal CA1 pyramidal
neurons. Interestingly, changing background conductance, via a dynamic
clamp, had opposite effects between sub and supra threshold regimes (Fig-
ure 25). Also elevating the firing rate changed the firing profiles and made
the cells behave as band-pass filters with a higher frequency range than at
low firing rates. Once again, discrepancies between impedance and firing
frequencies profiles were observed. Other work has focused on neocorti-
cal neurons (Brumberg & Gutkin, 2007; Higgs & Spain, 2009) with the
same overall conclusion that the sub-threshold behaviour is not sufficient to
explain the firing resonances. Mechanisms in the spike initiation and after-
hyperpolarisation are interesting paths to explore (Higgs & Spain, 2009),
but no general mechanism has been identified yet.
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Figure 18:
EIF simulation with fluctuating input and noise.

A: effect of the firing rate on the EIF filtering cutoff frequency with
white noise. EIF parameters were fitted to match a fast-spiking
neuron conductance based model (Wang & Buzsáki, 1996). α = 8
mV.
B: Effect of the EIF spike sharpness (∆T ) on the cutoff frequency
for an average firing rate of 24 Hz. α = 8 mV.
From Fourcaud-Trocmé et al., 2003.
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Figure 19:
Fast encoding of cortical neurons to oscillating input.

r1/r0 represents modulation of the firing rate. r0 is the firing rate and
r1 the modulation induced by the oscillating input. Supra-threshold
regime (red) is low amplitude noise where sub-threshold (black) is
high amplitude noise. The power law relationship (r1 ∼ fα) in
the high-frequency response is consistent with Brunel et al., 2001’s
predictions. From Köndgen et al., 2008.

Figure 20:
Synaptic noise in cortical neurons’ firing response.

Frequency response to oscillating input with slow (blue) or fast
(black) synaptic-like noise. In green is in vivo experiments with
no noise added. r is the vector strength quantifying the encoding at
each frequency, normalised here. From Tchumatchenko et al., 2011.
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Figure 21:
Sub-threshold behaviour of a two-variable model.

Representing the different behaviours function of the effective leak
(g1τ1/C) and the coupling between the two variables (gτ1/C). On
the left panel amplitude of the impedance and on the right phase of
the impedance. From Richardson et al., 2003.

Figure 22:
Unveiling of firing resonance with noise in GIF.

Frequency response of a GIF in two configurations: high (blue) and
low (red) amplitude noise. The solid lines are the theoretical pre-
dictions and dots numerical results. the green lines represent an
intermediate noise amplitude. r0 is the firing rate and fR the sub-
threshold resonance frequency. From Richardson et al., 2003.
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(a) Firing response. (b) Membrane response.

Figure 23:
Unmatched firing and impedance responses.

Firing (a) and membrane potential response to pure sinusoidal
(black) or noise (grey). The noise being composed of a combina-
tion of 8 sine waves. Solid line is the phase of the firing profile in
a fit. The dashed lines are the predictions of a RC circuit. From
Carandini et al., 1996.
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(a) Low threshold spiking neuron.

(b) Spiny neuron.

Figure 24:
Frequency response profile of striatal neurons.

Neuronal responses to a barrage of synaptic currents and background
conductances at different firing rates. From Beatty et al., 2015.
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(a) Firing frequency profile.

(b) Impedance amplitude profile.

Figure 25:
Frequency response in CA1 pyramidal cells.

Response to oscillating inputs (cosines) combined with background
conductance noise of either low or high amplitude. The conductances
were simulated via a dynamic clamp. From Broicher et al., 2012.
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3 The Purkinje cell

As a major part of the hindbrain, the cerebellum is mainly known to play
a key role in learning and controlling motor skills, as a relay point between
descending cortical and ascending peripheral sensory information. The ma-
jor input of the cerebellum comes from the mossy fibres conveying all sorts
of information from motor command copies to contextual information and
sensory inputs. Composed of a cortex and deep nuclei, the “simple” cerebel-
lar circuit starts from the mossy fibres converging information onto cortical
granule cells, diverging again onto the Purkinje cells integrating tremendous
amounts of information with over 170, 000 connections each (Napper & Har-
vey, 1988). Purkinje cell axons exit the cortex to contact the deep nuclei,
which are the output of the cerebellum. A second input to the cerebellum
comes from the inferior olive which projects climbing fibres onto the Purk-
inje cells. A remarkable fact is that each Purkinje cell is connected to only
one (rarely two) climbing fibre. The cerebellar cortex is organised in the
three layers (from internal to external):

• The granule cell layer: where the granule cell somata are located.

• The Purkinje cell layer: theit somata aligned in a single cell layer, with
their axons departing across the granular layer toward the nuclei and
theit dendrites ascending into the upper molecular layer.

• The molecular layer: where all the granule cells’ projecting axons or-
ganised in parallel (the parallel fibres) contact Purkinje cell dendrites.
Two types of inhibitory interneurons (basket and stellate cells) are
located in this layer, mainly innevervating Purkinje cells.

The Purkinje cells are usually considered as the integrating cornerstones of
the cerebellar circuit. Especially in the cerebellar learning theories of Marr
(Marr, 1969) and Albus (Albus, 1971) that hypothesised synaptic plasticity
at the granule cell–Purkinje cell synapse. This was eventually confirmed
experimentally by Ito, showing long-term depression at the synapse (Ito et
al., 1982). Purkinje neurons are inhibitory neurons, releasing GABA (γ-
aminobutyric acid). Nearby Purkinje cells tend to synchronize themselves
and converge on nuclear targets with a 40:1 ratio (Person & Raman, 2012).
Their synchrony is still not well understood and could result from their
recurrent connections between them and/or synchronised input from the
parallel fibres (de Solages et al., 2008). De Solage et al also recorded high-
frequency oscillations (∼ 200 Hz) in the Purkinje cell layer and hypothesised
it was a result of their synchrony.

The Purkinje cell is a complex neuron in various ways. First it has one of the
most dense dendritic trees amongst the diverse neurons of the brain (Figure
26). Secondly it exhibits two types of somatic spike, the simple and the
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Figure 26:
The Purkinje cell.

Labelled with intracellular biotin, from an adult rat cerebellar slice.
Picture from Boris Barbour.

complex spike. The simple spike is a standard action potential, whereas the
complex spike is exclusively triggered by the climbing fibre stimulation and
is characterised by a longer duration than the simple spike and its succeeding
wavelets. The Purkinje cells’s dendrites can also support specific calcium
spikes (R. Llinás & Sugimori, 1980b).

The cell exhibits different firing regimes and patterns. Although “in vivo”
recordings over long periods of time have reported an overall highly irregular
firing, “in vitro” recordings of cells can exhibit short periods of regular firing
and bursts (Shin et al., 2007). Also, when depolarised Purkinje cells reach
a plateau and stop firing due to inactivation of sodium channels (R. Llinás
& Sugimori, 1980a). When firing in a regular manner “in vitro”, the cells
are firing at a rather high rate between 20 Hz and more than 100 Hz (Shin
et al., 2007).

The Purkinje cell is a huge integrator cell. Due to its dense dendritic tree,
morphologically accurate models of the cells were designed to understand
passive components (Rapp et al., 1994; Shelton, 1985), and dendritic inte-
gration (De Schutter & Bower, 1994; Roth & Häusser, 2001). The Purkinje
cell also exhibits a great variety of ionic channels in its soma and dendrites
which made De Schutter and Bower, 1994 add up to 10 voltage-gated chan-
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Figure 27:
Purkinje cell two-compartment passive model

Represents a two compartment passive cell with the patch electrode
(ge) in whole-cell mode. From Ostojic et al., 2015

nels in their model in an attempt to have the most exhaustive one. On
the other hand Roth and Häusser, 2001, only added the Ih current as it
significantly affects sub-threshold dynamics, on which they were focusing
their work. As mentioned, the Purkinje cells can fire at a rather high fre-
quency “in vitro”, potentially due to a “resurgent” sodium current (Raman
& Bean, 2001). In order to test this hypothesis, Khaliq et al., 2003 incor-
porated eight ionic currents including this resurgent one, but in cylindrical
mono-compartmental model to reproduce Purkinje cell firing behaviour.

Although complex models can reproduce single-cell responses with great
accuracy, they present a number of limitations. Theoretical solutions are
nearly impossible and understanding mechanisms is facing some kind of
“black box”. Also, these models cannot be implemented in large networks.
The opposite approach may reveal some advantages, starting with a simple
model and adding block by block some complexity. At the passive level, the
Purkinje can be represented as a passive two-compartment model (Llano et
al., 1991) (Figure 27), with the first compartment representing the soma and
proximal dendrites and the second the distal ones. The passive properties
of a two-compartment Purkinje cell, when compared to a morphological
detailed one can be quite similar (Roth & Häusser, 2001).

Investigating the Purkinje’s firing frequency profile, Ostojic et al., 2015,
combined the two compartment model (Figure 27) with an EIF spiking
mechanism. The Purkinje cell exhibits a rather unusual firing frequency
response with an amplification (resonance) of the response in the 100 to 200
Hz range (Figure 28). The single compartment models failed to reproduce
this response where the morphologically detailed one succeeded. But, more
interestingly, a simple two-compartment EIF model with the right combina-
tion of high dendritic and small somatic noise was sufficient to qualitatively
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Figure 28:
Purkinje cell high-frequency firing resonance

Rat Purkinje cell spiking frequency response to oscillating current
inputs. Dashed grey lines are individual cells. Green solid line and
error bars are mean and standard deviation respectively. Amplitude
is normalised on cell’s firing rate. From Ostojic et al., 2015
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Figure 29:
Purkinje cell simulations reproduce firing resonance

Two compartment model cell response to oscillating current inputs
with noise, represented by the drawing in the upper part of the
figure. The mean response of multiple simulations is represented.
Amplitude is normalised on the cell’s firing rate. From Ostojic et
al., 2015

40



reproduce the high-frequency resonance (Figure 29).
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Part II

Results
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4 Preliminary work

4.1 First protocols of resonance

Prior to this project some exploratory experiments were made on Purkinje
cells’ firing responses to short stimuli. Using the model of Ostojic et al., 2015
to reproduce the responses proved to be more challenging than expected.
There was a need for a deeper characterisation of the Purkinje cells. Also,
we changed from rat to mice compared to Ostojic et al., 2015, experiments;
the first step was therefore to reproduce the same experiments and see if the
two animal models had similar responses.

Using the same principle as the resonance experiments, we started prob-
ing the frequency responses of mouse Purkinje cells by putting the cell in
current-clamp mode, where the cell already spikes at a rather steady pace
without the injection of current. In this mode, a series of individual sine
waves with an amplitutde of 10pA at 10 frequencies was injected. The fre-
quencies were arranged in a random manner for each experiment. For each
frequency sweep, individual spike times in one cycle were reported. The
cycle was divided into 25 bins where the number of spikes was summed and
divided by the time step of the bins, depending on each frequency. This
gave a sine of spiking modulation that could be fitted and the amplitude
and phase for each fit gave the frequency profiles in figures 30 and 31.

The first batch of experiments was performed on 12 cells without any phar-
macological channel blockers (Figure 30). The results were similar to Ostojic
et al., 2015. However two main problems appeared with these results:

• The great disparities between the individual responses.

• The prominent firing-rate resonance.

The peak of resonance is more or less centred around the firing rate making
it impossible to disentangle whether the resonance arises from the firing rate
or is an intrisic characteristic of the cell. For this reason, and with the idea
of putting ourselves in the most deterministic situation we could, we chose to
remove synaptic noise by adding NBQX (5µM) and Gabazine (10µM) in the
bath, to block AMPA and GABAA receptors respectively. In order to have
a more precise definition around the apparent resonance we concentrated
the probed frequencies from 20 to 1000 Hz (9 frequencies). The results are
shown in Figure 31.

We can see that when the definition is better, we can dissociate the two
possible resonances. In Figure 31, a peak is associated with the firing rate
but a second one around 200 to 300 Hz emerges. Nevertheless the firing
rate frequency is still too prominent in the results and the second peak
could also be a harmonic of the firing rate. It is also notable that the inter-
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Figure 30:
Frequency profile with synaptic noise

The thin line represents individual cell responses. The solid line is
the mean across the cells (n=12). The filled area around the median
is the median absolute deviation (MAD). The dashed line represents
the median firing rate (100 Hz) of all cells and the surrounding filled
area the MAD (21 Hz). No pharmacology was used in these experi-
ments.

cell variability was not obviously diminished by removing the synaptic noise.
That led to the conclusion that the biggest contamination to the data would
come from the firing rate resonance.

4.2 Firing rate clamp

One way of controlling the firing rate resonance would be to fix the firing
rate of the cell during the experiments. Based on the work of Couto et al.,
2015, we implemented an Arduino combined with a small circuit to compute
the instantaneous firing rate and apply the appropriate amount of current
inline to stabilise the cell at a given firing rate. The detail of this “firing rate
clamp” will be given in the following article. This led to experiments similar
to the one in figures 30 and 31. The overall results was still not satisfactory.
The main problem was that not enough frequencies were probed during the
experiments. Indeed, having the cell fire for more than a few minutes in a
row is the maximum that could be expected from the experiments. For each
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Figure 31:
Frequency profile without synaptic noise

The thin line represents individual cell responses. The solid line is
the mean across the cells (n=11). The filled area around the median
is the median absolute deviation (MAD). The dashed line represents
the median firing rate (106 Hz) of all cells and the surrounding filled
area the MAD (12 Hz). In the middle plot the data is normalised
against each cells firing rate. We can see that the normalisation does
not change the shape of the response. NBQX (5µM) and Gabazine
(10µM) was used in these experiments to remove synaptic noise.
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frequency there was a need for at least 5 seconds of firing in order to gather
enough spikes for an comfortable analysis. We decided to try some other
approaches.

4.3 PRC

Figure 32:
Purkinje cell phase response curve

The thin line represents individual cell responses. The solid line is
the median across the cells surrounded by the MAD (n=4). Solid
lines surrounded by light area represent the median and the MAD
of the data. A minimum of 300 steps was required for each positive
or negative step so that the trace could be revealed.

We wanted to explore the frequency response of the Purkinje cell in the
most deterministic manner we could. Inspired by the work of Couto et al.,
2015, we decided to try to investigate the phase response (PRC) curve of
the cells. The PRC consists of having a stable and frequency-locked system,
here the cell firing at a given rate, and changing the system with small per-
turbations. The perturbations are distributed throughout the overall phase
of the periodic system. The goal is to compute the phase shift produced by
the perturbation depending on its time of arrival during the phase. The per-
turbations were distributed randomly between positive and negative steps to
have an overall current of zero injected into the cell. The inter-perturbation
intervals were not homogenous, to target the full range of phases. As we can
see on Figure 32, the problem of obtaining a reproducible response across
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cells with a clear effect that could be explored by pharmacology and repro-
duced in models was not resolved by the PRC.
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Abstract

The most fundamental operation of a neurone is to trans-
form synaptic input into output spikes. Active conductances
are known to shape the responses of some neurones to inputs,
typically at low and moderate input frequencies. In addition,
a ‘morphological’ mechanism of firing-rate resonance result-
ing from a strong asymmetry of somatic and dendritic com-
partments has been reported in cerebellar Purkinje cells. In
attempting to examine its mechanisms in detail, we encoun-
tered difficulties in performing sufficiently precise measure-
ments of firing responses to test accurate single-cell models.
Here, we describe on the one hand a general approach to con-
structing an accurate cellular model incorporating impedance
and active conductances referred to the somatic compart-
ment, where firing initiates, and on the other hand a measure-
ment design enabling low-noise determination of the spec-
trum of firing modulation. We then compare the measured
firing responses to the constructed model. Our measurements
reveal a very strong high-frequency resonance and that inter-
spike behaviour is controlled by a prolonged AHP. Our mod-
els are unable to account quantitatively for the strength of
the firing response of the Purkinje, suggesting the existence
of an unknown mechanism of high-frequency resonance.
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1 Introduction
The biophysical mechanisms underlying synaptic integration and action po-
tential generation are well understood in principle. However, construct-
ing accurate and efficient firing models remains difficult. Spiking neurone
models range from the single-compartment Leaky Integrate-and-Fire (LIF)
model to detailed and explicit multi-compartment models incorporating
complex voltage-dependent channel mechanisms. The simplest models fail
to capture accurately the properties of synaptic integration and firing re-
sponses, while the huge numbers of parameters of the complex models can
be extraordinarily difficult to determine and to interpret. In attempting to
construct accurate and sufficiently simple models to generate insight into a
remarkable high-frequency resonance in cerebellar Purkinje cells, we were
confronted with an additional difficulty: testing a model precisely requires
accurate characterisation of the firing response, which we were initially un-
able to perform. In this paper we describe the construction of a moderately
simple and accurate firing model as well as the parallel design of a mea-
surement technique able to characterise accurately the firing response of the
neurone.

The transformation of synaptic input into action potentials can be char-
acterised as a linear system by measuring the modulation of firing rate in
response to sinusoidal currents, typically injected at the soma (although gen-
eralisation to dendritic inputs is obviously also of interest). The basic idea
is illustrated in Fig. 1. The presence of certain voltage-dependent conduc-
tances can influence this response spectrum, notably the hyperpolarisation-
activated channel, Ih, T-type calcium channels (Llinás and Yarom 1986; Puil
et al. 1994). These conductances generally generate a resonance in the low-
to medium-frequency portion of the response spectrum (Richardson et al.
2003).

A quite separate resonance mechanism has been described in modelling
firing in a two-compartment model of the cerebellar Purkinje cell (de So-
lages et al. 2008), which led to the prediction of the existence of a firing
resonance at much higher frequencies, around 200Hz. We then verified the
existence of the predicted resonance in measurements in Purkinje cells in
slices (Ostojic et al. 2015). The main mechanism underlying the resonance
was the interaction of any firing mechanism—implying the existence of a
threshold—with a somatic impedance plateau in the 10–1000Hz frequency
range. However, our measurements were too noisy to permit comparison of
single-cell models and measurements. This blocked us from exploring and
corroborating the mechanism in greater detail.

Purkinje cells are continuously active in vivo and this is known to be
an intrinsic property for Purkinje cells in slices; it remains an open ques-
tion whether an excitatory synaptic barrage underlies the firing in vivo. In
slices, if synaptic input is blocked, Purkinje cells fire with a high degree of
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Figure 1: Linear characterisation of firing response. A. Diagram of injec-
tion of sinusoidal currents at different frequencies (top), detection of action
potential times (middle) and construction of stimulus-triggered spike-time
histograms (bottom). B. The data are averaged into a single cycle and the
amplitude and phase of the best-fit sinusoid at the stimulus frequency is
determined. Thus the transfer function from injected current to modulation
of firing rate is determined. Reproduced from Ostojic et al. (2015)

regularity, and inhibitory inputs, likely somatic, appear to drive much of the
instantaneous variation of firing (Häusser and Clark 1997).

Consider an experiment under noise-free conditions probing the firing
response with small sinusoidal current injected at the soma. Stimuli falling
near the frequency of the spontaneous firing or its harmonics will appear
to to generate extremely strong responses, a phenomenon that is sometimes
termed the ‘firing-rate resonance’. Because it is difficult to probe a large
number of input frequencies and because the rate of spontaneous firing nat-
urally drifts, it turns out to be remarkably difficult both to determine an
accurate response spectrum and also to disentangle the firing-rate resonance
from other mechanisms.

One possible solution to the problem of the firing-rate resonance is to in-
troduce sufficient noise (either synaptic or injected) to disrupt the resonance.
We followed this approach previously. This, however, introduces several new
problems. The noise reduces the precision of the desired measurement, can
attenuate the high-frequency (morphological) resonance and, more generally,
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it turns out that the spectrum of the noise shapes the response spectrum
(unpublished simulations, but also apparent from the differential effects of
dendritic and somatic noise in Ostojic et al. (2015)). In short, the addition
of noise both distorts the response spectrum and obscures its measurement.

An alternative approach to characterising neuronal firing responses is the
phase-response curve (PRC), in whose determination brief, small, randomly
timed current pulses are injected and the change in timing of the next spike
determined. A difficulty of the technique is that the time when the following
spike would have occurred is not known precisely, introducing noise into the
measurement. Depending upon the underlying assumptions of the spiking
model, the noise can also intervene in the determination of the time of the
reference spike (Phoka et al. 2010); this problem is particularly acute when
resolving the portion of the PRC just before the spike, as this requires the
use of small probe stimuli, but this is precisely the section of the PRC likely
to give most information about high-frequency responses. In our hands, we
were unable to obtain a precise characterisation using this technique.

Returning to the frequency domain, we considered the classical approach
of injecting broad-spectrum noise. This has the advantage of disrupting the
firing-rate resonance (if sufficiently strong), but still posed problems, namely
that all noise present in the system is also subsumed into the measured re-
sponses and all of the infinitesimal frequencies have vanishingly small am-
plitudes, necessitating additional averaging mechanisms.

We finally arrived at an experimental design in which we simultaneously
injected 50 defined frequencies of sinusoid, i.e. with a comb-like spectrum.
The multiple advantages in terms of precision and interpretation of this
design will be justified below. This technique finally enabled us to make
quantitative comparisons with firing models, which therefore also needed to
be precise.

In order to construct firing model to test our understanding of the firing
response, we used models with a small number of compartments. The soma
(or more precisely the closely connected axon initial segment) are the site of
axon potential initiation, so any effective model must be able to predict its
response to inputs anywhere in the cell. A two-compartment model of the
Purkinje cell (Llano et al. 1991) is already quite effective for reconstituting
the impedance of the the cell as viewed from the soma; we used a three-
compartment model to ensure an accurate representation.

Because the hyperpolarisation-activated conductance Ih is prominent in
Purkinje cells, we augmented the passive model with a linearised Ih model.
We introduced a simplified but accurate representation of the active currents
in the somatic compartment: an exponential integrate-and-fire (EIF) mech-
anism (Fourcaud-Trocmé et al. 2003) in lieu of the sodium current and an
exponential after-hyperpolarisation (AHP) current. The precise compart-
mental model allowed us to define accurate reset conditions after the action
potential.
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Analysis of the reconstituted action potential cycle in our model shows
that the action potential depolarises the dendrites which then in turn tends
to depolarise the soma; however the soma is maintained at a more nega-
tive potential throughout most of the cycle by a slowly decaying potassium
current.

A model incorporating these mechanisms was able to reproduce all of
the features of our precise measurements of the Purkinje cell firing-response
spectrum.

2 Materials and Methods

2.1 Slice preparation, recording and analysis

Adult female C57BL6/J mice were sedated, anæsthetised with Ketamine/Xy-
lazine (100mg/kg, 10mg/kg) and decapitated under profound anæthesia.
The cerebellum was dissected out and blocked for slicing parasagittal slices.
Slices of 300µm were cut on a Campden Instruments 7000 smz vibratome.
Slicing was performed at 34°C (Huang and Uusisaari 2013) in a saline con-
taining 50µM D-APV. The same saline as the extracellular solution during
recording, with SR 10µM and NBQX 5µM.

Two pipette solutions were used. Solution 1 (in mM): 128 K-gluconate,
10 HEPES, 2.2 K2-phosphate, 4 NaCl, 0.5 L-(–)-Malic acid, 0.0008 Ox-
aloacetic acid, 0.18 α-Ketoglutaric acid, 0.2 Pyridoxal 5’-phosphate hydrate,
5 L-Alanine, 0.15 Pyruvic acid, 15 L-Glutamine, 4 L-Asparagine, 0.5 K3-
Citrate, 0.05 CaCl2, 0.1 K3.8EGTA, 1 L-Glutathione, 5 K2-Phosphocreatine,
0.4 Na-GTP, 2.1 Mg-ATP, 1.4 Na-ATP, 0.5 NAD+. The solution was
titrated with 10 NaOH and then KOH to pH 7.3. Finally, water was added
to dilute the solution to 300mOsm. The final solution contained 15.75 Na,
144.2 K, 4.1 Cl, 0.0001 free Ca and 0.4 Mg. Solution 2 (in mM): 130 K-
Gluconate; 0.6 EGTA; 2 MgCl2; 0.2 CaCl2; 10 HEPES; 2 Mg-ATP; 0.3
Na3-GTP, pH 7.3 with KOH (295-300 mOsm). The extracellular solution
contained (in mM): 125 NaCl, 26 NaHCO3, 3.5 KCl, 1.25 NaH2PO4, 1.5
CaCl2, 1.8 MgCl2, 25 D-glucose.

Patch electrodes were pulled from borosilicate glass on a home-made
puller and typically had resistance in the bath of 2.5–4MΩ. To perform
the whole-cell patch-clamp recordings, we used a Molecular Devices Mul-
ticlamp 700B, driven by a National Instruments DAQ interface controlled
by WinWCP software (Dempster 2022). The recording temperature was
maintained at 32°C by a feedback controller. The slice was visualised using
red light and an Altair H164M Hypercam camera. Voltages are reported
without correction for the junction potential; real voltages are expected to
be about 10mV more negative. Complete stimulus protocols were designed
and applied that included different blocks: measurement of the current tran-
sient to voltage steps, series of voltage jumps to characterise Ih, etc. The
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order of the blocks was randomised and within the blocks the order of the
stimuli was also randomised if appropriate. Thus, within a block, the steps
for characterising Ih would be applied in a different order for each cell.

A controller was designed to control Purkinje cell firing rate during
recordings. The algorithm will be described below. It was implemented
on an Arduino Due interfaced with a small custom electronic circuit to
adapt its inputs and outputs to the voltage ranges used by the amplifier and
ADC/DAC converter.

Recordings were analysed using home-written Python scripts.
For measurements analysing the secondary amplifier output, which is

intended as a copy of the command (voltage in voltage clamp, current in
current clamp), we reconstituted the exact times of its samples interleaved
between those of the primary channel. Thus, in a voltage-clamp experiment
in which the two channels were sampled at 50KHz, the analog-to-digital
conversion multiplexes between the two channels, so the current would be
sampled at t = 0, 20µs, 20µs…, while the voltage would be sampled at t =
10, 30µs, 50µs…

For some of the experiments, a minor rounding bug in the acquisition
software caused the analog-to-digital conversion to be sampled with an in-
terval of 19.99µs while the digital-to-analog conversion was sampled at the
intended 20.00µs interval. Where the difference was significant, we inter-
polated one or both of the traces to a common time base. For the analysis
of the current transients in voltage clamp, this error in fact allowed us to
reconstitute a transient oversampled at 0.5–1MHz from 100 repetitions of
the stimulus during which many relative timings of the two channels were
scanned.

Simulations were written in Python and occasionally made use of the
Brian simulation software (Stimberg et al. 2019).

2.2 Amplifier response

2.2.1 Voltage clamp

In order to maximise the precision of our fitting of the cell model we ex-
plored the characteristics of the patch-clamp amplifier. In particular, the
impedance of the cell as viewed from the soma is of critical importance, yet
its time constant in the Purkinje cell can be as short as a few tens of mi-
croseconds, so we felt that some care was required to account for the early
portions of the voltage-clamp response. This is illustrated in Fig. 2, where
it can be seen that the electrode capacitance generates a large current that
can overlap with and deform the upstroke of the cellular response that is
crucial to determining the electrode and somatic properties.

Fig. 3 shows the circuit and signal-processing elements used to model
the amplifier in voltage-clamp mode. The electrode or a test circuit would
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Figure 2: Possible interference of electrode capacitance with the neuronal
response to a voltage step. A. Voltage-step. B. Purkinje cell current response
in a carefully cancelled recording (blue) and the predicted response with no
cancellation of the pipette capacitance (orange).
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be connected as Zcell. Cp is the pipette/parasitic capacitance. The input
voltage Vi is lightly filtered by the “Rise” filter to generate Vc. The central
operational amplifier (opamp) is in the classical current-follower configura-
tion, with parallel high resistance Rf and low capacitance Cf as feedback
elements. We did not employ series-resistance compensation, to simplify
analysis and modelling, but the electrode capacitance cancellation circuitry
was used and is modelled by charge injection across the components of Zc,
driven by a multiple of the command voltage Vc. The output from the opamp
undergoes quite complex processing, with first subtraction of the command
voltage (“Subtraction”) and then high-frequency boost (“Boost”) to reverse
partially the low-pass filtering caused by the Rf ||Cf feedback combination
of the current follower. Finally, an optional 4-pole Bessel filter is applied
before the recorded signal is output.

Various measurements of circuit behaviour with different test configura-
tions were performed, a model was constructed and the unknown parameters
were adjusted manually to reproduce approximately the responses observed.
The modelling was done in the frequency domain using complex impedances.
The manipulations of Fourier transforms involving capacitances often ran
into numerical problems at zero frequency (their impedance is infinite). This
was mitigated by replacing zero with a frequency much below the range of
interest. In some cases, the average signal required a separate calculation
(notably when calculating the steady-state current in the presence of non-
zero reversal potentials). When deconvolutions were performed, we often
filtered ringing using a Gaussian filter with a 10µs standard deviation.

The opamp of the current follower was characterised in detail and was
parameterised by a open-loop gain GA and gain-bandwidth product PA.
The transfer function is

HA(s,G, P ) =
GA

1 + sGA/(2πPA)
, (1)

where G = 106 and P = 2 × 108Hz. The latter value is particularly large
and may indicate an implementation involving a compound opamp: two
opamps in series with the feedback looping from the output of the second
to the input of the first. (To convert these Laplace representations to the
frequency domain it suffices to replace s by iω.) We set Rf = 500MΩ
according the manufacturer’s specification and from our measurements we
estimated cf = 0.3pF.

The transfer function for non-critical amplifiers just included their band-
width (as a time constant), which is equivalent to a low-pass filter,

Ha(s, τ) =
1

1 + sτ
. (2)

A few simple combinations (outlined by the dashed boxes in Fig. 3) will

52



simplify the equations,

ZL =
1

1/Zcell + sCp
, Zc = Rc +

1

sCc
, Zf =

1

1/Rf + sCf
. (3)

The Rise filter was approximated by cascaded amplifiers to generate a
sigmoid response,

Hr(s) = Ha(s, τr)
3, (4)

where τr = 0.8µs.
It is simplest to group the current follower and subsequent subtraction

of Vc together,

Hcs =
Vs
Vc

= HA

(
ZfZc + ZLZc − ZLZf

(HA + 1)ZcZL + ZfZL + ZfZc
− 1

G

)
, (5)

where all H, V , Z and (below) I are functions of s, which has been omitted
for readability. We shall retain this convention below. The high-frequency
boost stage that will be described next amplifies high-frequencies so strongly
that Vc needed to be subtracted with a frequency response matching the sig-
nal pathway, to prevent unpleasant artefacts. It is unclear how and whether
this is implemented in the real amplifier.

The high-frequency boost element was assumed to operate as described
in Sakmann and Neher (2009) with transfer function,

Hb =
sτa + 1

s2τbτa + s(τb + τ0) + 1
, (6)

where τs = 50 ns is the time constant of the boost opamp, τb = RfCf +
1/(2πPA) and τ0 =

√
τaτb.

The transfer function of the 4-pole Bessel output filter was

Ho =
105

(sfb/fc)4 + 10(sfb/fc)3 + 45(sfb/fc)2 + 105sfb/fc + 105
, (7)

where fb = 0.3364 and fc is the corner frequency, which was typically 10 kHz
or 30 kHz for the present recordings.

In summary, the transfer function from external command voltage to
output is thus,

HV C =
Vo
Vi

= HrHcsHbHo. (8)

Below, we use this compound transfer function to generate the predicted
current response of the cell to a voltage step, by taking the Fourier transform
of the step, multiplying by HV C and taking the inverse transform.
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2.2.2 Current clamp

The circuit used to model the current-clamp mode of the amplifier is shown
in Fig. 4. It should be noted that it is different to the voltage-clamp cir-
cuitry. At its centre there is an opamp in the voltage-follower configuration,
with a feedback capacitor providing capacitance neutralisation; we did not
employ bridge-balance so do not model it. The electrode or testing com-
ponents would be connected in the position of Zcell. Current injection is
controlled by a voltage signal Vi (2 nA/V) via injection across a high resis-
tance (RI = 500MΩ). In order to prevent variations of Vp from affecting
the injected current, Vp is added to the command voltage Vc, which is a
filtered (“Input”) version of Vi. In practice, Vp is not directly available and
Va is likely employed, but the practical difference under our conditions is
minor. We shall see below that the injection resistor RI has associated with
it a parallel parasitic capacitance CI through which additional current is
injected at high stimulation frequencies. It turns out that the secondary
amplifier output reporting the current command is further filtered, repre-
sented by the “Copy” transfer function. There is an optional 4-pole Bessel
filter at the output, but even in the bypass configuration with not Bessel
filter there seemed to be quite significant filtering of the signal.

As for the voltage-clamp circuit, we establish a few simplifying combi-
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nations,
ZL =

1

1/Zcell + sCp
, ZI =

1

1/RI + sCI
. (9)

Some of the symbols are recycled from the voltage-clamp circuit, even if in
come cases they represent different components (e.g. Cf ). We make use of
(2) with different parameters.

The currents can be described in the frequency domain. In what follows,
all I, V , H and Z are functions of s.

II =
Vc
ZI

(10)

Ip = sVpCp (11)

If =
sCfVp(2G− 1− sτa)

1 + sτa
, (12)

where τa is the time constant of the voltage follower. By the current balance
at the Vp node,

Ie = II + If − Ip. (13)

The Bessel filter Ho is the same as described in the voltage-clamp section
above. It remains to determine the nature of the “Bypass”, “Input” and
“Copy” filters. To estimate the circuit parameters, we connected an opamp
in the voltage-follower configuration in the place of Zcell. This enabled us
to access a reliable measure of Vp. In this configuration, the only load is an
increased Cp, to which the opamp input capacitance contributes. As shown
in Fig. 5, a step current caused a constantly increasing voltage, as expected
for a capacitive load. The slope of the voltage enabled estimation of the
load Cp. When the voltage slope was extrapolated back to step onset, the
intersect was non-zero. We interpret this as demonstrating the existence of a
parasitic capacitance CI (see Fig. 4) in parallel with the injection resistance
RI . Such capacitances are difficult to eliminate and more complex circuitry
would be required to mitigate it. We estimate CI = 0.27pF. This seems
quite small when Cp may be 5–10 pF and the soma 20 pF. However, because
the injection resistance has a high value, the voltages applied to drive current
through it are also elevated, with the consequence that non-negligible excess
charge can be injected. The effects of this excess will be illustrated in the
Results for the stimuli employed.

We verified that capacitance neutralisation worked as expected. Neu-
tralisation of Cf = 8pF out of Cp = 10pF increased ∼5-fold the slope and
the intercept, as expected. For large voltages, some response nonlinearities
emerged, but these are unlikely to be significant in the ranges studied below.

The voltage changes at step onset were not instantaneous. It was from
their time courses that the various time constants in the system were es-
timated. The fits of the model from which the estimates were drawn are
shown superimposed upon the measurements in Fig. 5.
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Bottom: as described in the text, a voltage-follower opamp allows direct
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in addition to the amplifier output Vb (green, magenta). Measurements were
performed without (blue, green) and with (orange, magenta) neutralisation
of 8 pF. Black lines show extrapolated fits to the linear portions of the Vp
traces. The dashed lines show a global fit, by which the parameters of the
current-clamp circuitry were estimated.

The “Input” filter is given by Ha(s, τi) where τi = 5.2µs. The “Copy”
filter is given by Ha(s, τi)Ha(s, τcopy)

2, where τcopy = 1.3µs. The voltage
follower was estimated to have τa = 1.2µs. The time constant τb of the
“Bypass” filter was 3.3µs.

Although the directly measured Vp voltages are smoothly rising, the Vo
voltages reported by the amplifier display quite significant ringing. The
mechanism underlying this behaviour is unknown.

The transfer function from Vp to Vo is thus

Hpo = Ha(τi)Ha(τb)Ho. (14)

2.3 Model Purkinje cell

We constructed a 3-compartment model of the Purkinje cell (Fig. 6) that
could be connected via an electrode with conductance Ge as Zcell in the
voltage- and current-clamp models described above. The compartments
were in series: soma (s) , proximal dendrites (d) and terminal dendrites
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Figure 6: 3-compartment model of the Purkinje cell, with Ih in each com-
partment. The two dendritic compartments are connected in series.

(t). The simplifying assumption was made that the membrane had uniform
specific capacitance cm = 10−2 Fm−2 and conductance gm, which varied
between cells. The capacitances and conductances of each compartment
were therefore determined by their areas. Each compartment contained an
h conductance; this will be described in the next section.

To calculate the impedance of the model we successively calculate the
admittance Y of each compartment ignoring the effect of those nearer the
amplifier.

Yt(s) = At(gm + gh,t(s) + scm) (15)

Yd(s) = Ad(gm + gh,d(s) + scm) +
Yt(s)Gdt

Yt(s) +Gdt
(16)

Ys(s) = As(gm + gh,s(s) + scm) +
Yd(s)Gsd

Yd(s) +Gsd
(17)

The impedance of the cell is thus Zcell(s) = 1/Ys(s) and this is connected
to the amplifier in series with the electrode conductance Ge.

We fitted current responses to voltage steps over a 30ms time window,
before significant activation of Ih, so we used the model above setting the gh,x
to zero. In this situation the h conductance activated at the holding potential
was considered constant and was included in the membrane conductance.
In the cases when Ih was also fitted, the apparent membrane conductance
was partitioned between the h conductance and the leak conductance.

The above impedance is not correct for the steady-state, where the cur-
rent at a given potential depends upon the reversal potentials of the mem-
brane and h conductances. The steady currents/voltages were therefore
calculated separately according to the method described in the next section.
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2.4 The h conductance

We used the classic one-variable model of Ih.

dh
dt

= α(1− h)− β(h) (18)

α = ae−b(V−V0.5) (19)

β = aec(V−V0.5) (20)

which give
h∞ =

α

α+ β
(21)

τh =
1

α+ β
(22)

We allowed the density of Ih to vary between compartments.
Calculating steady-state voltages within the 3-compartment model is

complicated by the presence of Ih, whose activation depends upon the com-
partmental voltages. We solved for the compartmental voltages (Vx) using a
numerical solver for simultaneous nonlinear equations constructed from the
current balance in each compartment. The h conductances were factored
into a maximum conductance and the h gating variable,

gh,x = gmax
h,x h∞,x, x = s, d, t (23)

and then the following expressions were set to zero and their roots found
using scipy.optimize.fsolve.

Gdt(Vd − Vt)−Atg
max
h,t h∞,t(Vt − Eh)−Atgm(Vt − Er) (24)

Gsd(Vs −Vd)−Gdt(Vd −Vt)−Adg
max
h,d h∞,d(Vd −Eh)−Adgm(Vd −Er) (25)

Ge(Vp − Vs)−Gsd(Vs − Vd)−Asg
max
h,s h∞,s(Vs −Eh)−Asgm(Vs −Er) (26)

In experiments for determining the parameters of the h conductance we
generated model current traces by numerical integration of the following
compartmental differential equations

dVs
dt

= −
Asg

max
h,s hs(V, t)(Vs − Eh) +Ge(Vs − Vp) +Gsd(Vs − Vd) + gmAs(Vs − Er)

cmAs
(27)

dVd
dt

= −
Adg

max
h,d hd(V, t)(Vd − Eh) +Gsd(Vd − Vs) +Gdt(Vd − Vt) + gmAd(Vd − Er)

cmAd
(28)

dVt
dt

= −
Atg

max
h,t ht(V, t)(Vt − Eh) +Gdt(Vt − Vd) + gmAt(Vt − Er)

cmAt
(29)

dhx(V, t)
dt

= α(1− hx)− βhx, x = s, d, t (30)
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The h-conductance was linearised about a compartmental voltage V ∗
x as

follows

δIh,x(s) = gmax
h,x

[
h∞(V ∗

x )−
h′∞(V ∗

x )(Eh − V ∗
x )

1 + τh(V ∗
x )s

]
δVx(s). (31)

2.5 Deconvolution of compartmental voltages and active cur-
rents

With knowledge of the output voltage and the amplifier current-clamp trans-
fer functions, it is a relatively straightforward operation in the frequency
domain to deconvolve the voltage where the electrode is connected to the
amplifier headstage

Vp =
Vo
Hpo

=
Vo

Ha(τi)Ha(τb)Ho
. (32)

Similarly, knowledge of the current command Vi transfer function for the
current pathway can be combined with the information about Vp to calculate
the current injected across the electrode Ie, according to (13) and preceding
equations. Knowledge of the electrode conductance Ge enables calculation
of the somatic voltage Vs by Ohm’s law.

We then determined the compartmental voltages in the presence of Ih.
This was done for average voltages, average currents and average Ih activa-
tion by numerical solution of simultaneous nonlinear equations. This was
described in Section 2.4. With these average voltages, it was possible to
calculate the full impedance of the cell model using the equations beginning
at (15).

The impedance of the cell determines the current expected to flow through
the passive model including Ih. We can thus extract the active current at
the soma Is (see Fig. 6),

Is(s) =
Vs(s)

Zcell(s)
− Ie(s) (33)

(As mentioned above, the steady values required special treatment because
of the non-zero reversal potentials.) Using the compartmental impedance
equations, it was then possible to determine the dynamic voltage in each of
the compartments.

2.6 Feedback control of firing rate

As outlined in the introduction, the interpretation of response spectra is
greatly complicated if the firing rate of the Purkinje cell is poorly defined
and varies. In order to control this variable, much as was done by Couto
et al. (2015), we designed a feedback controller to maintain firing near a
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target frequency. This was constructed using an Arduino Due open-source
micro-controller interfaced to the amplifier output and command input. In
outline, the algorithm was as follows. Spikes were detected and weighted by
a bi-exponential kernel to generate a smooth rate estimate,

r̂ =
∑

i

e−(t−ti)/τ2 − e−(t−ti)/τ1 , ti < t, (34)

where τ1 = 0.1 s and τ2 = 1 s. In practice, the two exponential kernels were
incremented each time a spike was detected and decremented on each cycle
of the controller. The bi-exponential function enabled new spikes to enter
the kernel smoothly instead of causing a discontinuity in the rate estimator.
The estimated firing rate r̂ was compared with the target frequency r0. The
difference drove a proportional+integrating (PI) controller. The feedback
command was,

F (t) = −kP (r̂ − r0)− kI

∫ t

0
(r̂ − r0)dτ, (35)

where, kP and kI weight the proportional and integrating terms of the con-
troller. The importance of the integrating term is that any error will eventu-
ally be eliminated. The feedback command was added to the experimental
stimulus (such as current steps or the mix of sinusoids). A small home-
built electronic circuit ensured matching of the voltage gains and bipolar
ranges of the amplifier/interface to the monopolar range of the Arduino.
The operation of the circuit will be illustrated below.

3 Results

3.1 Amplifier response

We sought to characterise the transfer functions of the patch-clamp amplifier
used in our recordings. This was to ensure the accuracy of subsequent
fitting of models of the Purkinje cell. We examined both voltage-clamp
and current-clamp recording modes, which employ quite different circuits.
We characterised both the command (input) pathway and the recording
(output) pathways. For the output pathways both primary (independent
variable) and secondary (command copy) channels were characterised, the
latter to enable confirmation and in some cases reconstitution of the exact
command. We have not obtained detailed information from the amplifier
manufacturer, so several circuit elements were based upon classical amplifier
circuits (Sakmann and Neher 2009).

The characterisation of the amplifier and the construction of the model
are detailed in the Methods. A few key points are summarised here. Some
effort (perhaps excessive effort) was expended to try to describe accurately
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high-frequency behaviour of the amplifier. We discovered that the secondary
channels used to confirm the command voltage (in voltage-clamp) and cur-
rent (in current-clamp) included filters (even in ‘bypass’ mode) that were
not specified in the amplifier manual. Fitting the voltage-clamp response
precisely proved to be challenging, no doubt reflecting significant complexity
of the underlying circuitry.

In voltage clamp, the fits were not entirely satisfactory. Our model/op-
timisation seemed unable to detect correctly cancelled pipette capacitance,
because the fits generally reported much lower values of Cp and the cancel-
lation capacitance Cc than would be realistic. We interpret this as demon-
strating that the cancellation circuitry works well and assumed that the
often small difference between the two was reflecting the incorrectly can-
celled electrode capacitance (the difference could be positive or negative).

A simpler and more significant issue became apparent while character-
ising the current-clamp circuitry. Current is typically injected into the elec-
trode via a large resistance (500MΩ). However, resistances invariably com-
prise a small parasitic parallel capacitance. Our characterisation showed
that its effect could not be entirely neglected. Although a value of ∼0.3 pF
seems small, quite large voltages are applied across the injection resistance
and thus the excess current cannot always be neglected. We calculated that
a 1 kHz sinusoidal current would be 30% greater than intended, while a very
significant if brief overshoot would be expected for step stimuli. This is illus-
trated in Fig. 4. For the step overshoot, the excess charge is 13% for a 1ms
pulse; this ratio would increase for shorter pulses and decrease for longer
ones. The overshoot is also likely to wreak havoc with any process sensitive
to the derivative of the current. These measurements and predictions apply
for the 500MΩ injection resistance of our amplifier; preliminary measure-
ments with the 5GΩ injection resistance indicated a worse situation, with
the current almost tripling at 1 kHz.

3.2 Passive model

Because action potential initiation occurs in the axon initial segment, whose
voltage closely follows that of the soma until initiation occurs, a central ob-
jective was to construct an accurate model of the impedance of the Purkinje
cell viewed from the soma. The work of Llano et al. (1991) showed that a
two-compartment model, with a small soma and a large dendritic compart-
ment, could provide a very effective description of the passive properties of
the cell when voltage-clamped at the soma. Because adult Purkinje cells
have a more complex morphology than the immature Purkinje cells studied
by Llano et al, the two-compartment model deviated visibly from the cur-
rent responses to voltage steps. In order maximise our description of the
impedance of the Purkinje cell we therefore settled on a three-compartment
model, in which the dendrites are divided into series proximal and distal
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Figure 7: Distortion of current injection in the amplifier. A. Predicted gain
of injected sinusoids relative to the low-frequency plateau. B. Predicted
overshoot for a step stimulus. In both panels, blue shows the ideal response
and green shows that occurring with the parasitic capacitance.

compartments. The cellular model used is shown in Fig. 6. A number of
simplifying assumptions were made regarding the parameter values. In par-
ticular, we assumed that compartmental capacitance and membrane conduc-
tance were proportional to area and the reversal potential of the membrane
conductance was common to all compartments. Each compartment also po-
tentially contained Ih (see next section), with a common reversal potential
and kinetic parameters. The electrode is attached to the soma and carries
a current Ie. Active currents—the sodium and potassium currents underly-
ing the action potential—are considered to be exclusively somatic (the axon
initial segment is assumed to be effectively absorbed into the soma); the
remaining compartments are passive, except for Ih. The sum of these active
currents is Is.

Using the amplifier model described in the Appendix attached to the
neurone model of Fig. 6 without the h conductances through an electrode
with conductance Ge, we fitted the current transient following a small volt-
age step. We used the transfer function of (8), multiplying it with the
Fourier transform of the voltage step and then taking the inverse transform
to obtain the current response. The difference between the predicted and
measure response was minimised to find the best-fit parameters of the cell
(As, Ad, At, Gsd, Gdt, R) and recording (Ge, Cp, Cf ). The cost function
in the minimisation was strongly weighted to ensure a close fit of the onset
of the transient. The weighting function was 1 + 100e−|t−15µs|/500µs, where
t = 0 is the time of the voltage step. The fit was truncated at 30ms before
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Figure 8: Fitting of current responses to voltage steps. A and B. Voltage
steps. C and D. Average (n = 100) current responses (blue) at different
time scales with the fit (orange) for a specimen Purkinje cell. Dashed lines
show a global fit from which the parameters for Ih and the membrane leak
conductance were derived.

before most of the activation of Ih occurred. The fit can be seen on two
time scales in Fig. 8. Because Ih was not included explicitly, the membrane
resistance determined at this stage contained a contribution from the h con-
ductance activated at the holding potential. A sign that the amplifier model
was not exact was that constraining the pipette/parasitic capacitance (Cp)
and the neutralisation capacitance (Cf ) to realistic values slightly degraded
the fit at the onset of the response; the unconstrained version is presented
here (the differences between C − p and Cc remained small, however). The
specific membrane capacitance was assumed to be 10−2 Fm−2. The group
data for all parameter values will be presented below.

3.3 Ih description

Purkinje cells display a prominent h conductance. In a subset of neurones
we performed a series of voltage jumps covering the activation range of
Ih. To the passive model determined above, we added the h conductances
diagrammed in Fig. 6, re-fitted the specific membrane resistance (because
the value determined above was ‘contaminated’ by Ih) and fitted the kinetic
parameters of Ih. We allowed different Ih densities in each compartment as
this improved the fit somewhat without altering greatly the complexity of
simulations employing the Ih model. We also fitted the reversal potentials
of the membrane and h conductances. A single Ih parameter set fitted
simultaneously to activation and deactivation series of of voltage steps is
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Figure 9: Fitting of the h conductance. A. Voltage jumps to probe activation
of Ih. B. Voltage jumps to measure deactivation of Ih. C. Current responses
to the activation jumps. D. Current responses to the deactivation jumps.

illustrated in Fig. 9. The somewhat disappointing quality of the fit is not
untypical.

In a small number of cells (not shown) we applied the Ih inhibitor
ZD7288, although this clearly blocked Ih, the passive cell properties drifted
sufficiently to preclude a simple subtraction strategy for isolating Ih, which
was the reason for performing the more global fit described above.

As a result of these fitting procedures we determined 12 cellular pa-
rameters as well as the electrode resistance and the unneutralised pipette
capacitance. The grouped parameter values are tabulated in Table 1. (It is
recalled that voltages have not been corrected for the junction potential.)
The linearisation of the h conductance making use of these parameters is
described in the Methods; this enabled us to treat the h conductance as
a complex impedance. The grouped data for the parameter values will be
presented below.

3.4 Impedance spectrum

In order to verify the accuracy of the recording, cell and Ih models, we com-
pared their predictions to measurements of current responses to sinusoidal
voltages applied in voltage clamp. An advantage of voltage clamp is that
it allows fine control of the voltage and potentially a closer approach to the

64



firing threshold than would be feasible in current clamp. In addition, the
tight control of voltage should allow much more accurate determination of
the contribution of voltage-dependent conductances, particularly Ih.

A specimen experiment and a comparison between predicted and mea-
sured impedance spectra are shown in Fig. 10. Although the model predic-
tion were able to reproduce the form of the spectrum quite satisfactorily,
with the high-frequency portion clearly requiring inclusion in the model of
the amplifier response and filtering, there often remained visible deviations,
particularly at low frequencies even when Ih was included

3.5 Control of firing rate

The apparent resonance at the firing frequency when firing is regular can
greatly complicate the interpretation of response spectra, especially as it
can drift over time. Inspired by the work of Couto et al. (2015), we decided
to control the firing rate. We implemented a proportional + integrating
controller using an Arduino real-time microcontroller to add a control signal
to the current command (see Methods). The operation of the circuit is
illustrated in Fig. 11 at two firing frequencies. After a period of stabilisation,
this mechanism was usually able to control the firing rate with reasonable
accuracy.

3.6 Firing mechanism

Equipped with a precise model of the amplifier and neurone, we investigated
the the currents underlying the action potential and sought to construct
a simple model capturing the essence of their operation. As diagrammed
in Fig. 6 we assume that the active currents are restricted to the somatic
compartment, without separately modelling the axon initial segment at this
stage.

Using the transfer functions constructed for the amplifier model, we de-
convolved voltage (and command current) recordings to calculate the pre-
cise voltage at the electrode and the current injected across it into the cell.
Knowing the average current and voltage, it was then possible to work back
through the cell to determine all of the voltages.

The deconvolved compartmental voltages and currents are illustrated for
one cell in Fig. 12. The predicted voltage variations in the dendritic com-
partments are relatively small compared to the action potential in the soma
(Fig. 12A). This is expected given the reported absence of back-propagation
of the action potential; our model assumes that the dendrites are passive
(Stuart and Häusser 1994). Simplified models of spiking neurones universally
include a post-spike reset of the somatic potential to a relatively hyperpo-
larised value before releasing synaptic integration. When models include
a dendritic compartment, the question arises of the value of its reset volt-

65



66

Figure 10: Measurement and fit of Purkinje cell impedance in voltage clamp.
A. From top to bottom. Excerpt from sequence of sinusoidal voltage stimuli.
Current response. Gain of the complex impedance from direct measurement
as above (data), and of models constructed from fits of transients and of Ih.
The ‘amp’ model doesn’t include Ih so deviates at low frequency, whereas
the ‘Ih cell’ model with Ih does not include the amplifier response and does
not account for the high-frequency response. Bottom shows the phase as
a function of frequency for the same models. B. From top, average gain
and phase of the complex impedance for (n = 45) cells for data (black) and
predicted from a cell model with Ih but without the amplifier response. The
bottom plots show the paired differences between the measurements and the
models (black) and with random permutations between cells (pink).
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Figure 11: Illustration of feedback control of firing frequency. Two traces
from the same cell. The controller was switched on shortly before the record-
ings shown. The firing rate has been smoothed with Gaussian kernels with
standard deviations of 0.1 s (light blue) and 1 s (black). The frequency sta-
bilises to the targets of 55Hz and 90Hz (dashed black lines). At 10 s a
stimulus was applied, which caused high-frequency variations of the firing
frequency.

age. It seems it must be a hyperpolarising step to avoid runaway positive
feedback of the potential during spiking. However, as can be seen from the
deconvolved voltages, the action potential itself injects a large, depolaris-
ing charge into the dendrites (as it must). As we shall see, this implies
that the net negative charge necessary to ensure stability must be the result
of post-spike processes. Further inspection shows that the dendritic com-
partments are more positive than the soma at all times except during the
depolarised phase of the action potential. This means that the dendrites
tend to depolarise the soma.

The action potential dominates the deconvolved active current in the
soma, peaking at a few tens of nanoampères during the depolarising phase
(Fig. 12C). Large currents are expected, although previous direct measure-
ments with patch-clamp recordings were generally limited by voltage-clamp
limitations caused in particular by the electrode resistance. The biphasic ris-
ing phase (barely visible on the time scale of the figure) presumably reflects
the sequential activation of the sodium current in the axon initial segment
followed by that in the soma.

More surprising to us was the situation following the action potential. Of
course, potassium conductances underlie repolarisation and also the after-
hyperpolarisation. However, the deconvolved traces show quite large repo-
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Figure 12: Deconvolution of average active currents. A and B. Average
spike-triggered voltages of the somatic (blue), proximal dendritic (green)
and distal dendritic (orange) compartments for a Purkinje cell firing at 55Hz
(A) and 90Hz (B). See text for a description of the methods. C and D.
Deduced spike-triggered somatic active current in the same cells at the same
times, inward positive. D and E. Fits of the active current with simplified
sodium (dashed blue) and potassium (dashed green) current models; their
sum (grey) is also plotted.



larising currents that persist far into the interspike interval and, at higher
firing rates, persist until the following spike (Fig. 12E,F). The presence of
this hyperpolarising current, presumably mediated by a potassium conduc-
tance, causes the soma to remain at a potential more negative than the
dendrite throughout most of the interspike interval. The negative somatic
relative voltage is maintained despite the depolarising drive from the den-
drite. This large hyperpolarising current is likely to play a central role in
determining the rate of firing and the firing response more generally.

We sought simple mechanisms to model the active current. For the
sodium current, we tested that employed in ‘exponential integrate-and-fire’
(EIF) models (Fourcaud-Trocmé et al. 2003). This represents the inward
current as a(n instantaneous) function of voltage and is characterised by
two parameters: a threshold voltage and a ‘slope factor’. We represented
this in a form that emphasises the roles of the two parameters:

INa = ke−VT /∆T eV /∆T (36)

where ∆T is the slope factor, VT is the threshold voltage and the factor k
was chosen to be 1 nA, to link the threshold voltage to a current amplitude
observed early in spike initiation. The current is an exponential of the
voltage, with an e-fold increase with each depolarisation by ∆T , typically of
the order of 1mV. This reflects the intrinsic sensitivity of sodium channel
activation to voltage. Written in this way, it is apparent that the notions
of threshold and amplitude are essentially indistinguishable, because they
only influence the prefactor of the exponential. We describe fitting both
parameters below.

Following the action potential, there appear to be at least two compo-
nents of hyperpolarising current. The longest lasting component appeared
to decay exponentially with time: a relatively clean exponential is observed
from about 2.5ms after the action potential. The comparison of active cur-
rents averaged at two different firing rates (55Hz and 90Hz) shows that
the decay of this component is, to a first approximation, time- rather than
voltage-dependent, because the decays at the two frequencies follow very
similar time courses, despite there being an increased rate (nearly double)
of depolarisation at the higher firing frequency. We therefore fitted this
hyperpolarising current with a simple exponential:

IK = AKe
−t/τK (37)

We fitted the sum of these currents Is = INa + IK to the average active
current in the window free of preceding or succeeding spikes. The amplitude
of IK preceding the spike reflected the average of its activation by preceding
spikes with different interspike intervals; this portion was therefore fitted
with an amplitude parameter adjusted to take account of the distribution
of interspike intervals in the average. Specifically, taking the time of the
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averaged spike as 0, the portion with positive time was fitted with (37) while
for the portion with negative time the amplitude parameter was multiplied
by a factor of 〈e−ISI/τK 〉 averaged across all ISIs. The fit and the components
of Is are shown in Fig. 12.

According to these fits, for which the grouped data is shown in Table
1, in a fraction of Purkinje cells the sodium current was only significantly
activated as the action potential initiated. In other cells there appeared to
be a sodium current throughout most of the interspike interval. Whether
this represents a genuine cellular property or a fitting problem is unclear at
this stage. (Because INa is strictly positive, it would be sensitive to imprecise
determination of the zero-current level by an error of the cellular model.)
Nevertheless, the fits were always very close.

The proposed active currents provide an excellent fit to the average spike
waveforms. It is, however, also possible to extract the active somatic cur-
rent and predicted sodium and potassium currents at all times during the
recording. Such analysis is shown in Fig. 13, for the same cell at the two
firing frequencies, during stimulation with a variable current (a mixture of
sinusoids); the current required to maintain the firing rate can be judged
by the average level of the injected current. As a general remark, we would
predict that the sum of the modelled sodium and potassium currents would
be equal to the extracted active current. Although the overall features are
recognisable, the fit is not exact. Furthermore, there was in most cells a
discernible correlation between the injected and active current, which is also
not predicted. We do not have detailed explanations for these deviations
from predictions, except that they are likely to represent an unidentified
inaccuracy (or error) in the model.

The variable stimulus is clearly quite small compared to the potassium
current, until the latter has decayed. At the lower frequency of firing there
is a relatively extended window on average in which the potassium current
has decayed and before the next spike occurs. The variable stimulus is
presumably best able to influence the timing of the action potential during
this window. However, when the firing frequency is increased, the potassium
current does not have the time to decay to low levels before the next spike
occurs, suggesting that the stimulus will have a much smaller window during
which it can influence spike timing.

3.7 Simulations

We constructed a spiking model of the Purkinje cell using a 3-compartment
passive model including Ih and augmented with the exponential potassium
current and EIF-style sodium current at the soma, as described above. The
parameters were tuned for each Purkinje cell according to their individual
fits. The set of differential equations was integrated in time to yield the com-
partment voltages (and compartmental h conductances). A threshold on the
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Parameter Mean SEM Units

Ge 209 5 nS
As 1840 63 µm2

Ad 19100 1470 µm2

At 60800 2300 µm2

Gsd 213 7 S
Gdt 268 19 S
a 3.1 1.6 s−1

b 148 16 V−1

c 136 12 V−1

V1/2 -69 1 mV
gmax
h,s 0.97 0.02 Sm−2

gmax
h,d 0.63 0.10 Sm−2

gmax
h,t 0.39 0.14 Sm−2

Eh -23 1 mV
gm 0.29 0.02 Sm−2

Em -32 2 mV
V̄s -46 6 mV
V̄d -45 5 mV
V̄t -44 5 mV
VT -41 6 mV
∆T 1.9 1.3 mV
AK -1.3 0.9 nA
τK 3.9 0.3 ms

Table 1: Recording, cell, h-conductance and active-current parameters,
mean ± SEM for n = 25 Purkinje cells. V̄x represents the time-averaged
compartmental voltage during firing at 90Hz, which was also the condition
for the determination of the parameters of the active currents.
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Figure 13: Deconvolution of real-time active currents. A and B. Contin-
uous voltages of the somatic (blue), proximal dendritic (green) and distal
dendritic (orange) compartments for a Purkinje cell firing at 55Hz (A) and
90Hz (B). C and D. Deduced somatic active current (orange) in the same
cells at the same times, inward positive. The model sodium (blue) and
potassium (green) currents, as well as their sum (grey) are also plotted. The
injected (electrode) current (Ie) is plotted in magenta; it reflects a command
of a mixture of sinusoidal currents and a current controlling the firing rate.



73

50

45

40

35

V
 (

m
V

)

10 5 0 5 10

t (ms)

400 200 0 200

Ie (exp) (pA)

400

300

200

100

0

100

200

Ie
 (

s
im

) 
(p

A
)

A

B

Figure 14: Firing simulations. A. Comparison of experimentally measured
and deduced voltage traces (solid lines: blue soma, orange proximal den-
drites, green distal dendrites) with model voltages (dashed lines, same colour
code); the flat portions represent the time between spike initiation and volt-
age reset, when no simulation was performed. B. Model electrode current
(blue) necessary to reproduce a 90Hz firing rate plotted against the mea-
sured electrode current at the same 90Hz firing rate, for n = 20 cells and
matching models. Black: linear regression.



somatic voltage was set to define the time of an action potential. When that
threshold was crossed, the time was advanced by 2.5ms, the voltages of the
three compartments were reset and the potassium current initialised. The
reset voltages were determined from the voltages at 2.5ms after the spike
deduced from the average spike waveform as in section 3.6. The soma was
always reset to the same voltage, while dendritic compartments were reset
relative to their values at spike initiation by the amounts determined from
their average time course. Following the reset, the simulation was restarted
and advanced to the next spike. The rather long period between spike ini-
tiation and reset was chosen because of the simple form of the potassium
current after that time point. Even at the higher firing frequencies studied
(90–100Hz), there were only extremely rarely, if ever, interspike intervals
shorter than 2.5ms.

The experimentally deduced and modelled compartmental voltages are
illustrated for a specimen Purkinje cell in Fig. 14, where the freezing of the
simulation and subsequent voltage reset can be seen in the flat portions of
the voltage traces. The qualitative fit of the model and experimental traces
is apparent.

The recordings were carried out under conditions where the firing rate
was controlled. Before performing the simulations, the holding current in
the model was adjusted to ensure a firing rate close to the same frequency.
Although in neither experiment nor modelling was the control of the firing
frequency during stimulation periods wholly precise, it can be seen in the
plot in Fig. 14B that the injected currents were very tightly correlated. This
provides some assurance that the firing model could reproduce the firing
behaviour of the cell, because the parameters were obtained from fits that
did not directly include information about the firing frequency.

3.8 Spiking response spectrum

As explained in the introduction, in preliminary work we had tried several
methods of obtaining a general characterisation of the Purkinje cell firing re-
sponse. All had unsatisfactory signal-to-noise ratios, at least in the context
of a real experiment of limited duration. We designed a method for char-
acterising precisely the firing response spectrum. As for the step responses,
we performed the recordings in the presence of blockers of synaptic currents,
rendering the conditions as deterministic as possible. As above, the firing
frequency was also stabilised by feedback control.

We constructed stimuli by summing 50 sinusoids at frequencies without
common harmonics, this was achieved by approximating a power series of
π. The summed stimulus was sufficiently strong and irregular to disrupt
the ‘firing-rate resonance’ yet the effective orthogonality of the individual
components enabled parallel instead of sequential measurement, offering a
great advantage in precision for a given recording duration. Each component
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Figure 15: Purkinje cell firing responses to mixtures of sinusoidal currents.
A. firing response spectrum (red) to stimuli with a ‘comb’ spectrum. 50
sinusoids were injected simultaneously with the frequencies shown (dashed
vertical lines) and random phases. Their amplitudes were 15 pA and the cell
was firing at 90Hz. The stimuli had a ‘pink’ noise distribution. Between the
stimuli, the background noise was also decomposed (black). B. A similar
experiment in the same cell, but with the sinusoids approximating a white
noise spectrum. C. The phase for each response component for the spectrum
in A. D. Phase for the spectrum in B.

was only sensitive to noise at a sharply defined frequency, further improving
the signal-to-noise ratio. Moreover, the noise amplitudes could be estimated
from the spectrum between stimuli. The ability to sample the spectrum at 50
points as well as the control of the firing frequency facilitated interpretation
of the spectrum. The frequency, amplitude and phase of each component
could be defined separately. We randomised the phases of the summed
sinusoids. We selected frequencies to approximate white (equal density at all
frequencies) and pink (equal density per decade) noise within the 10–1000Hz
band. As above, intrinsic noise was minimised by the application of blockers
of synaptic activity and no additional noise was injected.

The results are illustrated for a ‘pink noise’ stimulus (see Methods) in
Fig. 15, which shows the spectrum of response amplitude. Comparison
of the density at the stimulation frequencies and of the background noise
between the stimulation frequencies demonstrates the exceptional signal-to-
noise ratio offered by this experimental design. The dense sampling and fixed
firing frequency shows that the ‘firing-rate resonance’ is greatly attenuated
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or even absent under the conditions of the figure. There is a flat response
plateau at low frequencies (1–20Hz), with no apparent influence from Ih.
At higher frequencies we can observe a very robust, broad resonance.

Group data are shown in Fig. 16, where the the properties of the re-
sponse spectra are explored. Altering the distribution of frequencies in the
stimulus seemed to have little effect (individual data shown in Fig. 16A, B
and averages compared directly in Fig. 16D. Thus, the spectra overlap quite
closely except for a more prominent ‘firing-rate resonance’ with the white
noise frequency distribution. We speculate that this may be in part due to
a reduced overall power of the stimulus injected into the cell, because higher
frequencies are naturally more strongly filtered by the cellular capacitances.
For a smaller number of cells we applied stimuli with different amplitudes.
Despite the small sample size, consistent behaviour was observed, in that the
peak of the high-frequency resonance was barely affected, increasing much
less than proportionately with stimulus amplitude. A proportional change
with amplitude would be expected for a linear process. The lack of propor-
tionality suggests the presence of some form of saturation. An obvious source
of saturation occurs when the firing rate is depressed to zero—it cannot go
lower. However, it seems unlikely that this could reduce the amplitude of
the modulation even by 50%, since half of every sinusoid would excite be-
yond the baseline firing rate, yet the effect seems stronger. Interesting, at
low frequencies there is a roughly proportional increase of response with
stimulus amplitude. A reduced data set for a white stimulus distribution
(Fig. 16F) gave results that were consistent with the preceding description.

The firing response of the models with parameters tuned to each recorded
Purkinje cell exhibited broadly the same features as the experimental mea-
surements Fig. 17, with a relatively flat spectrum at low frequencies and
amplified response at frequencies around 100Hz. The models were moreover
able to capture some of the dependency of the high-frequency resonance on
the firing frequency. As in the real neurones, the resonance was stronger in
model cells firing at 90Hz than at 55Hz.

However, there were several clear, quantitative differences between the
recordings and models. In particular, at higher frequencies the model is
unable to reproduce the amplitude of the resonance around 100Hz, attaining
roughly only half the gain. There is moreover a prominent biphasic peak-
dip sequence of the model response around the firing frequency, whereas
the firing-frequency resonance is barely observable in the cell and there is
no evidence for a decreased response at frequencies slightly above the firing
frequency. Finally, the cellular response has a profound cut-off at the highest
frequencies; this is largely absent in the model.

In summary, the cell displays a robust high-frequency resonance in its
firing response that is not well captured by the model.
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Figure 16: Exploration of response spectra. A and B. Gain and phase for
group data, for ‘pink’ (A, red) and ‘white’ (B, black) stimulus mixtures (as in
Fig. 15; the controlled firing frequency is indicated by a vertical dot-dashed
line. C. Comparison of the gain and phase spectra for ‘pink’ (‘log’) stimuli
at different firing frequencies (55Hz black and 90Hz red). of measured and
modelled firing response spectra. D. Comparison of the gain and phase
spectra in response to ‘pink’ (red, ‘log’) and ‘white’ (black, ‘lin’) stimuli.
E and F. Effects of stimulus amplitude on the response spectrum for ‘pink’
(‘log’, E) and ‘white’ (‘lin’, F) stimuli. Throughout, spectra are plotted as
median ± MAD.
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4 Discussion

4.1 Precise Purkinje cell model

Preliminary studies of the Purkinje cell firing response had revealed to us
that its measurement could be imprecise and that the phenomenon could
vary between cells. Any deeper investigation of its mechanisms would require
precise measurement and modelling at the single-cell level for unequivocal
interpretation. We aimed to construct accurate models that were of sufficient
simplicity to be constrained by direct measurement and to be sufficiently
mechanistic to offer insight. In parallel, we sought to design our experiments
to maximise measurement precision. Although one can justifiably question
the influence on the results of our amplifier characterisation or fitting of Ih,
that is to some extent a luxury of hindsight: it is quite difficult to make that
judgement without having concrete measurements. Furthermore, one only
needs to combine a few 20% errors to render most quantitative comparisons
impossible to interpret.

We attempted to characterise both voltage-clamp and current-clamp
modes of the amplifier. The voltage-clamp mode was preferred for the cellu-
lar characterisation, and its high-frequency performance is important for ac-
curate measurement of the somatic compartment of the Purkinje cell, which
is key to describing spiking behaviour. Our characterisation of voltage-clamp
mode is work in progress, but it enabled a satisfactory fit to all time scales of
the cellular capacity transient. Unsurprisingly, our investigation confirmed
the challenging and complex design of the voltage-clamp amplifier. One im-
perfection we noted in the voltage-clamp mode was the poor quality (rather
filtered) of the command copy outputs.

The current-clamp mode is a simpler circuit. However, the parasitic ca-
pacitance in parallel with the injection resistance caused a meaningful dis-
tortion of current injection, leading to a 30% increase of current at 1 kHz,
which would easily be confused for a high-frequency amplification of a re-
sponse. In another configuration, which luckily we did not use, the effect
would have been nearly 300%. The capacitances involved are very small,
but their impedance needs to be referred to those of their high-value par-
allel resistances. Furthermore, the applied voltages in the current source
are large, leading to significant charge injection. Although it is not possible
physically to eliminate such capacitors (at least when using resistances to
inject current), it may be possible to insert a carefully tuned low-pass filter
upstream of the resistance to compensate.

The three-compartment model of the Purkinje cell gives an accurate
representation of the impedance of the somatic compartment. Although
representation of dendritic processes is likely to be oversimplified, such a
model does nevertheless offer some mechanistic insight, a feature we have
exploited.
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We carried the same simple-but-mechanistic approach through to de-
scribing the active currents and modelling of spiking, where quite simple
mechanisms could account fully for the average interspike behaviour from
about 2.5ms after the action potential, enabled principled selection of so-
matic and dendritic reset voltages, and thus allowed a simple spiking model
to reproduce faithfully the firing frequency.

After multiple failed approaches we were able to design a measurement
protocol that enabled accurate determination of the firing response spec-
trum. The use of a ‘comb’ stimulus (in the frequency domain) had several
decisive advantages, which we outlined in the Results. These measurements
revealed a striking high-frequency resonance in the Purkinje cell, confirming
previous reports (Ostojic et al. 2015).

Armed with these precise firing response measurements, accurate spik-
ing models and precise firing response measurements, we discovered that
the models could not explain the observations, in particular that the ex-
perimentally observed resonance was markedly stronger than predicted by
the model. Less precise measurement and modelling would have make it
difficult to be confident of this conclusion. We return to possible reasons for
the unexplained resonance.

4.2 Action potential cycle

The accurate model of Purkinje cell somatic impedance we constructed en-
abled us to deduce the active current flowing through it. This in turn yielded
a simple but effective approximation. The classical EIF firing mechanism
accounted for the observed sodium current, although we fitted both of its
parameters rather than just the slope factor. After the action potential, we
found that a single exponential potassium current accounted for a prolonged
hyperpolarising current in the soma. This current behaved to an excellent
approximation as a purely time-dependent current, with a time constant of
about 4ms. This time constant is such that when the Purkinje cell is firing
at low frequencies (e.g. 50Hz), the current decays and a window of height-
ened sensitivity to inputs is opened, any time during which the next spike
could be triggered. At higher frequencies (e.g. 90Hz), however, the current
is always active and spike initiation occurs over the balance of larger cur-
rents, offering only a small window of high sensitivity to inputs. A window of
heightened sensitivity to inputs would be consistent with the conclusion that
the timing of Purkinje cell spikes is influenced by the time of the previous
spike only for a short period; the reported ‘memory time’ would correspond
to the effective duration of the exponential potassium conductance (Blot
et al. 2016).

Two mechanisms could be imagined to underlie the apparent voltage in-
dependence of the potassium current. The first would be a calcium-activated
conductance, the second would involve an approximate voltage insensitivity
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arising from the fact that the range of interspike voltages may be positioned
at the maximum of the time constant–voltage curve.

Purkinje cells varied in the degree to which the deduced sodium current
was active during the interspike interval. In some cells, it was essentially
negligible except shortly before initiation. In others it provided a significant
input throughout much of the interspike interval. This may corroborate the
report by Khaliq et al. (2003) that a resurgent sodium current maintains
Purkinje cell firing.

Because we included dendritic compartments in our model, it offers po-
tential insight into their behaviour during the action potential cycle. Two
initially unexpected observations emerged. Firstly, that the action poten-
tial produced a net depolarisation of the dendrites. This is not surprising
after reflection, because the action potential itself must drive significant
charge into the dendrites, but it does contradict spiking models in which
dendrites are reset to a hyperpolarised voltage after a short refractory pe-
riod. A related observation was that, except briefly during the action po-
tential, the soma was at a more hyperpolarised voltage than the dendrites
throughout the cycle. Because the somatic time constant is very short
(Cs/Gsd ≈ 100µ s), it would normally be expected to relax to the den-
dritic voltage. Continuous current—provided by the potassium current—is
required to maintain the voltage difference.

Although the simple currents we included in the model yielded an excel-
lent fit of the average interspike interval at various firing rates, the real-time
fit during simulation was less exact. Whether this reflects a calculation
error, a model inaccuracy or current noise in the cell is unclear.

4.3 High-frequency resonance

We measured a remarkable high-frequency resonance in the firing response.
When the Purkinje cell was firing at 90Hz, the average ratio between low
and high-frequency responses was greater than 6-fold. It has previously been
shown that at least part of this resonance results from the morphology of
the Purkinje cell—two very distinct somatic and dendritic compartments—
interacting with even the simplest spiking mechanism (basically, a thresh-
old). However, we now show that this is unlikely to be the only mechanism,
because our modelling is unable to recreate several features of the Purkinje
cell response mechanism, including the strength of the resonance.

The measurement and model match at low frequencies, at which, it ap-
pears, Ih plays no role in shaping the frequency response. This is presumably
because the variation in its activation is too slow compared to the action
potential cycle, and also because of the depolarised average voltages. There
is a sharp roll-off of the measured response at high frequencies. It seems
plausible that finite sodium channel activation kinetics, which are absent
from the model, would contribute to this behaviour. A residual resonance
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at the firing frequency is very apparent in the model response but barely
visible in the recordings. It is likely that the firing rate of the real cell varied
somewhat under the influence of membrane current noise, despite the rate
control, and that this would disrupt the firing resonance.

However, there is no obvious mechanism we can suggest to account for
the stronger high-frequency resonance in the recordings. Possible mecha-
nisms to explore are the kinetics of sodium channel activation and inactiva-
tion, and also a possible role for the axon initial segment, which we have for
now simply subsumed into the soma.

4.4 Perspectives

The Purkinje cell population can organise in high-frequency oscillations me-
diated in part by reciprocal inhibitory connections. These must be somatic
to support such high frequencies of oscillation, underlining the relevance of
studying the firing response to somatic input. Clearly the firing resonance
we observe in the same frequency range will amplify the emergence of such
oscillations. Even in the absence of oscillation, the resonance implies a high
sensitivity of the Purkinje cell population to inputs with high-frequency
components. The action potential cycle we have elucidated suggests that
Purkinje cells will have a larger window of input sensitivity when firing at
lower frequencies.

Now that an accurate model has been established, the efficacy and accu-
racy of simplifications can be explored. For instance, are three compart-
ments that much better than two? Modelling based upon the somatic
impedance can easily be adapted to different neuronal morphologies and,
with a degree of approximation, be used to predict the action of more distal
inputs, notably synaptic inputs in the dendrites. An unexamined issue in
this context is how to represent the post-spike reset in neurones that, unlike
the Purkinje cell, support back-propagating action potentials.
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5 General remarks

5.1 A general and cell specific model ?

Our approach is to use transient voltage steps and impedance as tools to
understand the passive properties of the cell, and to identify possible active
components in order to incorporate them in a model. Then the spike trig-
gering (EIF) and AHP currents are fitted to the spike-triggered average of
the same cell. This creates an individual model for each probed cell around
a defined model structure. The idea is that the structure should explain the
intercellular disparities. Usually models are fitted on average data traces
and the inter cellular disparities are treated as biological noise. This is
a challenge experimentally speaking because we needed to incorporate the
impedance and transient protocols for every experiment. This also gives a
more general idea of how each variable can vary from one cell to another.
The fit does not necessarily represent reality but it can give some insights,
especially if the model then reproduces well the cell’s response. Another
question to be considered when taking into account intercellular specificity:
can this variability have an impact on the population response? This can
potentially have even more impact with our type of experiments, where the
frequency response of one cell can be seen as a response of a population of
cells identical to the one we are probing. Essentially, by investigating differ-
ent cells we are also investigating the impact of a different set of variables
on the population response.

The model also aims to be a generalised one. We could then use the model
to investigate dendritic responses or other stimuli. Moreover, as well as
the model, the experimental framework can be extended to any cellular
type. An interesting idea could also be to explore this in a even more
controlled environment. We could imagine a set of cultured neurons from a
morphologically simple type, to which different kinds of channels could be
expressed and test the impact on the firing properties and if the model is
resistant to those changes. The more a model is able to represent cellular
difference the more general and robust it will be.

5.2 Noise

Although noise seems to be a key factor in the firing response, how this
impacts it is still unclear. Without noise, external or internal, neuronal
firing profiles are dominated by their firing rate resonance. Noise reduces
this resonance and unveils other possible profiles. But if there is some other
kind of resonance, does the spectral shape of the noise impact or even shape,
the firing response? Noise can reduce the resonance of the firing rate but
resenons arising from other mechanisms too. That there is noise “in vivo”
is undeniable. This noise could shape or simply be responsible for some
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of the resonance. From simulations (data not shown) we had insight that
such a phenomenon could occur. We were interested in reproducing more
realistically how the noise is represented at the soma. As the majority of
synaptic input comes from the dendrites, we expect the summed noise to
arrive filtered at the soma. In this case the dendrites act as a low-pass fil-
ter. Depending on the cut-off frequency of the filtering, the high-frequency
resonance of the model cells were affected. We tested some experiments
where individual frequency’s currents were injected in the presence of differ-
ent filtered noise, but the noise amplitude needed to suppress the firing rate
resonance was too important and the data was not exploitable. But more
importantly, this was done with the first protocols where the measurement
was not precise enough to see a difference. The idea of changing the dis-
tribution of the frequencies in the “comb” profile experiments was a way of
testing different types of filtering (colours) of the noise. In the logarithmic
scale distribution, more low frequencies were injected, so mimicking low-
pass filtered noise where the linear scale was “white”. Interestingly it did
not affect the overall resonance response other than the logarithmic scale
was more efficient for removing the firing-rate resonance.

Noise is usually represented by the coefficient of variation of the firing defined
by:

CV =
σ

µ

Where σ is the standard deviation and µ the mean

During our experiments we don’t control the cv of each cell. We could
imagine some kind of controller, on the same basis as the firing rate one,
where the cv is estimated online and some white (or coloured ?) noise is
injected at the soma to adjust the firing stability. The cv changes for the
same cell depending on its firing rate: the higher the rate, the lower the
cv. It could be understood by the fact that at lower rates the “perturbation
window” in between spikes is longer. By homogenising the cell cv between
rates, it could be possible to separate an effect from the simple fact that
the cell is firing with some randomness, or a cellular one. The randomness
of firing represents an effect of the population, the more random the more
chance to have a cell near threshold.

5.3 High-frequency resonance

Our experiments confirmed the presence of an astonishingly reproducible
and clear high-frequency resonance among Purkinje cells. The range of
frequencies we probed increased the precision of our measurement compared
to previous work. This improvement and the process of reproducing cell by
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cell the response with a model, revealed the lack of understanding we had
to explain this resonance. This is not completely unsurprising, considering
the fact that we started this project because a previous model was failing
to reproduce rapid responses.

The fitting of the cellular currents showed two interesting, linked features.
The first is that the AHP potassium current stays active longer than ex-
pected and seems to be mainly time dependent. The second that the den-
drites could be highly depolarised after the spike compared to the soma.
This gap leads to a constant depolarising current from the dendrites to the
soma counteracting the hyperpolarising potassium one in the soma. This
could also be a part of the reason Purkinje cells fire intrinsically at rather
high rates. The “charging” of the dendrites after each spike would keep a
constant depolarisation in the soma between them. But this does not ex-
plain any resonance. Previous work (Ostojic et al., 2015) showed that the
morphology, namely the massive dendritic arborisation, was responsible for
that resonance. However, it is clear now that although it does play a role,
it is not sufficient for the general shape nor does it account for its ampli-
tude. We are looking for possible explanations of the sharpness of the spike
initiation, including that the localisation of the spike initiation in the axon
initial segment would play an important role.

It was shown that the Purkinje cell layer exhibits a high-frequency oscillation
(200 Hz) de Solages et al., 2008. This was explained by recurrent inhibitory
connexions between Purkinje cells. The fact that even without any synaptic
input the cells have a sensitivity for this range of frequency also raises the
question of how this oscillation is generated and if it is a epiphenomenon
of the Purkinje cell’s preferred frequencies. It is important to note here
that our experiments injected current in the soma of the cells. Purkinje
cells mainly receive inhibitory inputs to the soma. From our model, we
will mimic different kinds of protocols to understand better the interplay
between inputs from the soma and the dendrites.
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6 Perspectives

6.1 Potassium channels

One of the reasons we sought precise, reproducible measurements, which
gave a clear effect, was to be able to perform pharmacological experiments
and see the potential impact of specific channels on the firing properties.
In previous experiments, prior to my project, short inhibitory pulses were
injected at the Purkinje cell’s soma, giving insight that voltage-gated potas-
sium channel (KV) could have an impact on rapid responses. This was al-
ready a rather counter-intuitive idea; potassium channels are better known
to be involved at slow time scales. Potassium pharmacological blockers were
used on the biphasic step protocol as well as the “comb” frequency profile
protocol. The addition of potassium blocker sometimes resulted in the loss
of the cell’s stability. Also, the firing-rate clamp was calibrated on “control”
cells’ behaviour; for some cells it was not possible to stabilise the cell to the
given frequency. For these reason, the number of comparisons is still too
small.

On biphasic steps, we had to shorten protocols and focus on one firing rate
(100 Hz). Three cells were tested with 4-Aminopyridine (4-AP)(Figure 33).
4-AP is a non-selective KV blocker. Blocking KV channels has a direct
effect on spike shape, it removes the after hyperpolarisation (AHP). Also,
interestingly, the rising phase of the spike is slowed. Although the effect
on the step response is unclear especially with the small number of cells,
a slight reduction of the response could emerge with a greater number of
experiments. Other cells were tested with Tetraethylammonium (TEA), a
non-selective potassium channel blocker, with similar results on biphasic
steps (data not shown).

In a different batch of experiments the same number of cells (n=3) were
tested with 4-AP on the “comb” protocol (Figure 34). The impedance did
not seem to change between the two conditions except for one cell where it
suppressed the low-frequency membrane potential resonance. This is prob-
ably due to a slowly rectifying current as explained in section 1.2.2. On
the firing, it seemed to lower the responses for every frequency for at least
two cells. This could be understood as a shift in the membrane resistance,
except the impedance remained unchanged. If the effects are confirmed, one
explanation could be that the the KV channels implicated in the AHP have
an indirect effect on the spike triggering. Indeed, the triggering of the spike
is dependent on voltage-gated sodium channels. These channels inactivate
quickly (Figure 2.1.1) and stay need the AHP in order to get activated again
for the next spike. We can imagine that removing the AHP by blocking the
KV channels would diminish the pool of sodium channel ready to be acti-
vated on the next spike. This could be potentially a very promising path
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Figure 33:
Purkinje cell biphasic steps with 4-AP

Biphasic steps consist of a direct succession of a 1 ms step current
of 15 pA followed by a similar step of the opposite sign. A. The
peri-stimulus time histograms (PSTH) of the steps for both “first
direction”. B. The spike-triggered average for each condition, the
color code is consistent with (A). Solid lines surrounded by light
area represent the median and the MAD of the data
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to explore where potassium currents could have a greater impact than ex-
pected on the firing properties of neurons, especially in tonic firing cells.
This could be seen in a firing rate dependency of the firing frequency pro-
files when potassium currents are blocked. The greater the firing rate the
less sensitive the spike triggering would be. We already see that in the nor-
malised frequency profiles, the amplitude at low frequencies are not similar.
There is a need for a more in-depth investigation of this phenomenon to a
greater range of firing rates.

This could also be contrasted with a more general finding that there is a low-
frequency membrane resonance in the Purkinje but nothing is to be seen in
the firing. We showed that part of that low-frequency resonance could be ex-
plained by the Ih current, at least partially. One possible explanation is that
when the cell is firing its membrane voltage is depolarised. At such potential
Ih current is almost null so it would need a great amplitude perturbation
to activate the current. Although at a depolarised state the low-frequency
membrane resonance disappears, the impedance is not flat like in the fir-
ing profile. I think that the parallel between the impedance and the firing
frequency profiles can be interesting, and can explain the firing resonance
in some cases, but it does not take into account what happens during the
spike. In my experiments, I tried to probe the impedance at depolarised
states, such as -45 mV, but it would trigger spikes even in voltage clamp.
First of all, the impedance at -70 mV is not necessarily the same at -40 mV,
near the spike threshold. If we wanted to have the impedance around that
threshold we would need to suppress the sodium channel responsible for the
spike. But the missing link is always what is triggered by the spike and that
cannot be rendered by the impedance.

6.2 Pyramidal cells

One of the goals of this project is not only to explain the Purkinje cell but to
seek generalisable mechanisms to explain how firing is modulated in neurons.
We performed experiments of “comb” firing frequency profiles on pyramidal
cells in the deep cortical layers of the sensory cortex, more precisely in the
barrel cortex region (Figure 35).

The cells fire at lower rates than the Purkinje cells and not in a tonic manner
without some external depolarising current added. The low firing rate makes
it quite difficult to say for certain that we can see a resonance different from
the firing rate of the cells. But it seems that a resonance appears after the
firing frequency. And that resonance is then rate dependent because it seems
more diffuse than a firing rate resonance. Although the impedance profiles
(Figure 36) of the cells do not show any resonance, it was shown that a
resonance appears at depolarised states around between 2-10 Hz. Still the
firing resonances we are seeing here are at higher frequencies. These results
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(a) Impedance

(b) Firing profile

Figure 34:
Purkinje cell firing modulation profile with 4-AP

3 cells were probed before (Control) and after the addition of 4-AP
(5µM) to the extracellular medium
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quencies were arrange in a the “log” scale.
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Figure 36:
Pyramidal cell firing and impedance profiles

Solid lines surrounded by light area represent the median and the
MAD of the data. Light lines represent individual cells.

are striking by the way in which it does not correspond to the literature of
neocortical neurons. Indeed the results showed a quasi straight integration
until a cut-off at a rather high frequency. The results we show are closer
to pyramidal cells of the hippocampus (Broicher et al., 2012). The next
step will be to take the model we used for the Purkinje and see if the
pipeline of fitting can work with these cells. But in the Purkinje cells the
action potential does not back-propagate in the dendrites as it does in the
Pyramidal cell. Surely we will have to incorporate such a mechanism.

Purkinje cells are very easy to spot during experiments, but in the cortex it
is sometimes not clear if the cell is pyramidal or stellate and if it is located
in the fourth or the fifth layer and so on. Perhaps a simple model fitting
with voltages steps and impedance could be helpful to differentiate or even
have a more descriptive view of the neocortical cells.
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Personal statement

Experimental considerations

During my PhD I had to build my patch-clamp set-up from scratch. The
initial idea was to build it as a modular set-up where each “modules” can
be upgraded through time. The first step was to build a “human size”
Faraday cage with opening doors on the side to give access to back of the
set-up. It took me A few weeks to draw up the plans, find the right ma-
terial and supplier, before finally constructing it over a weekend with the
help of my father. Secondly, in order to be able to easily add lasers for
possible light stimulations we needed an “open” microscope. I had to set up
a Köhler illumination with a laser beam, some lenses, an open optical tract
and a condenser. The third part was to be able to have a rapid flow (up
to 15ml/min) in the patch chamber, with a constant temperature, during
experiments. With the use of thermistors (resistance sensitive to tempera-
ture) placed in the chamber at the entry and exit point of the extracellular
medium, I am able to monitor the temperature with precision in the bath.
A Peltier device (thermo-electric heat pump) was put in series to the liquid
circulation just before the bath chamber. An arduino collects the thermis-
tors values, computes the bath temperature. Giving a desired temperature it
then computes, the product, integral and derivative of the error and returns
the adequate voltage to apply at the Peltier’s terminals.

Another challenge was that the protocols we wanted to test on cells were
not conventional and we wanted to randomise and automate as much as
possible. I used the Winwcp software from the University of Strathclyde,
because it is open source and was already used in the lab. I was able to
create my own protocols in python and write them in files that could be
read by the software. I am then able to automatically:

• Switch from voltage to current clamp between protocols.

• Incorporate information to send information for the external (arduino)
frequency clamp.

• Arrange intra and inter-protocols features randomly for each cells.

The goal is that as the experimentalist I have the least impact possible
on recordings. The inter-cells recordings are similar and this permits a fully
automated analysis. To arrange the set-up, the protocols and analysis in this
manner was highly time-consuming considering the fact that my personal
knowledge in programming at the start of my PhD was limited. However it
was necessary to remove numbers of possible parasitising variable, but most
importantly have a deeper understanding of how recordings are made and
where it could go wrong.
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The struggle we encountered trying to model the amplifier is also emblematic
of a bigger issue. We realised that what was recorded was not exactly
what was written in the protocols. Also, a number of crucial parameters
from the amplifier controller, like the pipette capacitance or series resistance
compensations are not recorded. But what is inside the amplifiers is not
open source, there is no information on the circuits. We had to use some
kind of reverse engineering with current injections at different levels of the
circuit to try and understand it. The idea that the circuits are known but
we don’t have access is in my sense dangerous for science. I think that the
technology used in research should be openly available. While writing my
thesis I saw the initiative of Linaro et al., 2014, and will investigate how to
incorporate it in my future set-ups. An interesting project would be to build
an open source amplifier combined with a software. That would need to be a
collaborative project in order to homogenise recordings and allow everyone
to profit from technological advances, as should have been the case when
the dynamic clamp was developed (Desai et al., 2017). Also unifying some
basic protocols as the membrane voltage step or impedance measurement
with known amplifier parameters and filters would make inter-laboratories
experiment comparisons with more serenity.

Personal considerations

I come from a rather “classical” biological background. However, with the
help of a few classes at University, I was interested in how physics could
help me have a more systemic understanding of what I was trying to learn.
The combination of biology and physics is interesting; one likes to have a
full description of what can be seen, down to the smallest detail, while the
other seeks a simple solution to explain as much as it can, if not all. We can
see how these views are complementary and antagonist at the same time.
Working at the interface of the two for the past four years as been both exit-
ing and terribly tiring. I still think I lack an enormous amount of knowledge
and more importantly some kind of intuition required to understand physics
concepts, but I think that in a few years I will realise how pushing those
boundaries has expanded my understanding capacities. Models give you
infinite possibilities of exploration; getting out of a brainstorming meeting
over my project with physicist was at the beginning rather overwhelming.
The challenge was then to transcript what was said into possible experi-
ments. I sometimes struggled feeling too far from understanding anything
and neglecting experiments. But combining scientific domains is essential to
understand the complexity of neurons and the brain. The techniques we use
are getting more and more complicated but it is important to understand
the tools we use. It is worth repeating. This takes time, but this is time
well spent.
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MOTS CLÉS

Initiation potentiel d'action Resonance Cellule de Purkinje

RÉSUMÉ

L'opération la plus fondamentale d'un neurone est de transformer une entrée synaptique en une sortie en potentiel d'action. On sait que
des conductances actives façonnent les réponses de certains neurones aux entrées, généralement à des fréquences d'entrée faibles
et modérées. En outre, un mécanisme "morphologique" de résonance du taux d'émission résultant d'une forte asymétrie des comparti-
ments somatiques et dendritiques a été signalé dans les cellules de Purkinje du cervelet. En essayant d'examiner ses mécanismes en
détail, nous avons rencontré des difficultés pour effectuer des mesures suffisamment précises des réponses, pour tester des modèles
mono-cellulaires précis. Ici, nous décrivons d'une part une approche générale pour construire un modèle cellulaire précis incorporant
l'impédance et les conductances actives référées au compartiment somatique, où le potentiel d'action est initié, et d'autre part une con-
ception de mesure permettant la détermination à faible bruit du spectre de modulation. Nous comparons ensuite les réponses mesurées
au modèle construit. Nos mesures révèlent une très forte résonance à haute fréquence et que le comportement inter-pic est contrôlé par
une AHP prolongé. Nos modèles sont incapables de rendre compte quantitativement de la force de la réponse du Purkinje, suggérant
l'existence d'un mécanisme inconnu de résonance à haute fréquence.

ABSTRACT

The most fundamental operation of a neurone is to transform synaptic input into output spikes. Active conductances are known to shape
the responses of some neurones to inputs, typically at low and moderate input frequencies. In addition, a ‘morphological’ mechanism of
firing-rate resonance resulting from a strong asymmetry of somatic and dendritic compartments has been reported in cerebellar Purkinje
cells. In attempting to examine its mechanisms in detail, we encountered difficulties in performing sufficiently precise measurements
of firing responses to test accurate single-cell models. Here, we describe on the one hand a general approach to constructing an
accurate cellular model incorporating impedance and active conductances referred to the somatic compartment, where firing initiates,
and on the other hand a measurement design enabling low-noise determination of the spectrum of firing modulation. We then compare
the measured firing responses to the constructed model. Our measurements reveal a very strong high-frequency resonance and that
interspike behaviour is controlled by a prolonged AHP. Our models are unable to account quantitatively for the strength of the firing
response of the Purkinje, suggesting the existence of an unknown mechanism of high-frequency resonance.
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Spike initiation Resonance Purkinje cell
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