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Résumé : Malgré les progrès continus en mé-
canique numérique du contact, la simulation
d’une structure complexe avec de multiples in-
terfaces de contact frottant nécessite toujours
un coût de calcul élevé en raison de multiples
sources de nonlinéarité : évolution du statut de
contact et de frottement, dissipation par frotte-
ment, grands glissements et grandes déforma-
tions. Cela peut induire des limitations pour les
applications industrielles impliquant des ma-
tériaux architecturés tels que les câbles spira-
lés comportant de nombreux fils en contact,
souvent utilisés en ingénierie offshore, ce qui
a motivé ce travail. Parmi les stratégies alter-
natives pour réduire les coûts de calcul, une
solution attractive consiste à projeter le pro-
blème d’ordre complet sur une base d’ordre
réduit du problème original par diverses tech-
niques de réduction de modèle. Cependant,
leur application aux problèmes de frottement
reste une question ouverte, en particulier pour
les cas impliquant de grandes propagations de
fronts de glissement/adhérence. La stratégie
proposée repose sur le solveur nonlinéaire LA-
TIN (LArge Time INcrement) combiné à une ré-
duction de modèle basée sur la Proper Ge-
neralized Decomposition (PGD). La LATIN pré-
sente un traitement robuste des conditions de
contact et conduit naturellement à une mé-
thodemixte de décomposition de domaine. Par
ailleurs, la formulation spatio-temporelle glo-
bale de la méthode permet d’utiliser la réduc-
tion de modèle basée sur la PGD pendant les
calculs, en créant et en enrichissant à la volée
des bases réduites par sous-domaine afin de
mieux suivre les fronts de glissement et les phé-

nomènes de propagation. L’introduction d’une
stratégie multiéchelle dans le cadre de la LA-
TIN est cohérente avec la physique des pro-
blèmes de contact dans lesquels des phéno-
mènes de longueurs d’onde différentes inter-
agissent : les solutions locales aux interfaces de
contact présentent des effets de gradients éle-
vés avec une longueur d’onde courte par rap-
port à la longueur caractéristique de la struc-
ture. En tirant parti de ce fait, le problème gros-
sier de la stratégie permet de capturer efficace-
ment le comportement du problème à l’échelle
de la structure, en se focalisant ensuite sur la
capture des variations localisées aux interfaces
de contact. Le point crucial de la thèse est que
le modèle réduit doit représenter très fidèle-
ment les informations critiques situées sur les
interfaces de frottement entre les fils, qui sont
cruciales pour l’évaluation de leur durée de vie
en fatigue. L’objectif est de rechercher à maxi-
miser les performances de réduction de mo-
dèle et la vitesse de convergence, tout en ga-
rantissant une évaluation précise des quantités
d’interface. A cette fin, les critères de conver-
gence pour la méthode de résolution nonli-
néaire doivent assurer une bonne convergence
pour les quantités quantités locales de contact.
De plus, une mise à jour appropriée des direc-
tions de recherche de la LATIN permet d’aug-
menter de manière significative la vitesse de
convergence. Enfin, pour les problèmes très ir-
réguliers tels que les problèmes de contact frot-
tant, le contrôle de la qualité et de la taille des
bases PGD construites progressivement le long
des itérations de la LATIN est crucial pour l’effi-
cacité de la méthode.
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Abstract : Despite continuous progress in
computational contact mechanics, simulating a
complex structure withmultiple frictional inter-
faces still requires a large computational cost
due tomultiple sources of nonlinearity : contact
and friction status change, frictional dissipa-
tion, large sliding and finite deformations. This
may induce limitations for industrial cases in-
volving architectured materials such as spiral
strand wire ropes with many wires in contact,
often used in offshore engineering, whichmoti-
vated this work. Among the alternative compu-
tational strategies to reduce calculation costs,
an appealing one is to project the full-order
problem on a reduced-order basis of the origi-
nal problem through various model reduction
techniques. However, their application to fric-
tional problems remains an open question, es-
pecially for cases involving wide propagation
of sliding/sticking fronts. The proposed stra-
tegy relies on the LArge Time INcrement (LA-
TIN) nonlinear solver combined with model re-
duction based on the Proper Generalized De-
composition (PGD). The LATIN presents a ro-
bust treatment of contact conditions and na-
turally leads to a mixed domain decomposi-
tionmethod. In addition, the global space–time
formulation of the method allows PGD-based
model reduction to be used during computa-
tions, creating and enriching on-the-fly redu-
ced bases per substructure to better track sli-
ding fronts and propagative phenomena. The

introduction of a multiscale strategy in the LA-
TIN framework is consistent with the physics
of contact problems, in which phenomena with
different wavelengths interact : local solutions
at contact interfaces presents high gradient ef-
fects with a short wavelength compared to the
characteristic length of the structure. By ta-
king advantage of this, the coarse scale pro-
blem of the strategy enables to capture effi-
ciently the behavior of the problemat the struc-
tural level, focusing then on capturing the lo-
cal contact variations at the contact interfaces.
The crucial point of the thesis is that the re-
duced model has to represent very faithfully
the critical information located on the frictio-
nal interfaces between the wires, crucial for
their fatigue life evaluation. The objective is
to look for maximum reduction performances
and convergence speed, while guaranteeing at
the same time an accurate evaluation of the
interface quantities. For this purpose, conver-
gence criteria for the nonlinear solution me-
thod must assure a good convergence for local
contact quantities. Moreover, a proper upda-
ting of the LATIN search directions can signifi-
cantly increase the convergence speed. Finally,
for highly irregular problems such as frictional
contact problems, controlling the quality and
size of progressively built PGD basis along the
LATIN iterations is crucial for the efficiency of
the method.
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Introduction

In the context of the challenges posed by the energetic transition, the development
of offshore wind power expected over the next few years is considerable: from 6.5 GW
of current installed capacity to a target of 16.5 GW by 2030 [GWEC, 2023]. Among
offshore structures, Floating Offshore Wind Turbines (FOWTs) offer the advantage of
being installable in deeper waters, harnessing more consistent winds, and requiring less
material and simpler installation processes than fixed foundation structures [GWEC,
2023]. The exploitation of FOWTs requires the development of concepts combining
high-power turbines (around 22 MW on average [IEA, 2023]) with suitable mooring
systems for connecting them to the seabed (Figure 1), as well as proper solutions for
connecting them to the grid. Among challenges to be met for these connections, the
control and prediction of mooring lines failure events as well as the optimization of
loads on the power cable systems which are subject to movements of the float and
currents is crucial as the loads are uncertain and highly nonlinear.

Figure 1: Principles of FOWTs with their mooring lines. Image by Josh Bauer, NREL.



Introduction

A FOWT is essentially composed of a wind turbine mounted on a foundation,
which is anchored to the seabed with mooring lines that limit its movements and
rotations. This station keeping role of mooring lines ensures the operational production
of the turbine and preserves the power cables and other wind turbines installed nearby.
Mooring lines can be composed of chains, spiral strand steel wire ropes or, more
recently, synthetic fiber ropes. Despite their large application, chains are at the origin of
many failures, mostly because of out of plane bending and corrosion. Fiber ropes long
term behavior for permanent mooring lines applications is still investigated [Davies
et al., 2008; Sørum et al., 2023] because of their complex nonlinear constitutive law
possibly involving creep phenomena. In this context, spiral strand steel wire ropes
are still providing an interesting well known solution of mooring lines for FOWTs, as
illustrated by their use for the Hywind Tampen wind farm [ArcelorMittal, 2021]. An
example of spiral strand steel wire rope made of steel wires, which is actually coming
from a stay cable bridge but with similar architecture to that of mooring lines, is shown
in Figure 2.

Despite the benefits of floating structures over fixed ones, mooring lines still remain
a weak point: failures in these lines are a significant issue, leading to complex and costly
maintenance and repair operations. Specifically, fatigue failures in the steel cables near
socket ends are common, as these areas are subjected to complex tension and bending
loads from wave motion over time, causing fretting fatigue between the steel wires
[Fontaine et al., 2014]. However, their fatigue life expectancy is not clearly established,
due to an approach based on these days still on empirical laws [Rossi, 2005; Maljaars
and Misiek, 2021]. The mechanical response of the rope is highly dependent on the
frictional contact interactions between the wires, and fatigue is largely determined by
the local frictional contact conditions between two intersecting wires triggering fretting
fatigue [Montalvo et al., 2023]. As these cables can undergo significant bending under
the effect of float movements, geometric nonlinearities must also be taken into account.

Figure 2: 3D view of a finite element model of a steel spiral strand cable of 60.4 mm
diameter [Bussolati, 2019].

Another type of context for which a similar multiscale Finite Element modeling
could also be of value is that of dynamic (i.e., submitted to floating foundation motion
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and wave plus submarine current loading) power cables between floating wind turbines.
Power cables are generally three-phase , with the three conductors being assemblies of
copper or aluminium wires, wound helically around a central wire in a spiral strand
(Figure 3). They are surrounded by a a layer of polymeric insulation and metal foil to
provide complete electrical insulation and hydraulic seal. The assembly is surrounded
by sheaths and layers of metal armouring to take up the mechanical traction.

Figure 3: Example of the cross-section of a dynamic three-phase cable. JDR Cables
systems.

In the literature, most of the work on the design of FOWT spiral strand cables
concerns the optimization of the overall configuration of a cable (sections of different
linear masses and floats), using hydrodynamic simulations with dedicated solvers to
satisfy some limit states (extreme conditions [Poirette et al., 2017] or fatigue [Rentschler
et al., 2019]). At this scale, a homogenized cable model is generally used (see for
example [Leroy et al., 2017] or [Saadat and Durville, 2023]) for spiral cables based on
beam or bar kinematics. The aim of this overall design, for a given environmental state,
is to seek the least-cost configuration while limiting curvature and elongation, and
avoiding compression.

A major limitation of these approaches is that the limit states (maximum permis-
sible thresholds) are based on manufacturers’ empirical knowledge (not necessarily
representative of future floating farm conditions) and/or on experimental tests that
are difficult to extrapolate. Furthermore, these approaches do not distinguish between
limit states for each component of the cable. To remedy this, work has been done to to
propose finite element models simulating the loading on cable components, neverthe-
less still resorting to proper simplifications because of the high computational cost of
the required simulations [Young et al., 2018; Nicholls-Lee et al., 2021].

Proposing a model on a finer scale of description, at the scale of strands, wires or
components of a cable, may be necessary but leads to simulations whose calculation
costs quickly become prohibitive. The complexity stems in particular from the fact
that a cable’s time history of tension and bending results in relative sliding between
its components, driven by contact and friction phenomena. This makes it particularly
difficult to establish design laws based on simplified experimental tests for this type of
conditions (unlike in the case of pure tension). This difficulty is likely to result in failure
rates which exceed the expected limits. Replacing these empirical laws with multiscale
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modelling, enriched by the physics describing the behavior of each component of
the cable is necessary, at least to increase the level of understanding of the essential
mechanisms that need to be taken into account for the design of such structures. A
hydrodynamic calculation on the global scale of the cable can be used to identify critical
traction and bending zones. It is then possible to make use of a local model on a
smaller scale, on the scale of components, strands, and wires for a section of a metric
length cable section. However, a numerical local model able to properly estimate what
happens inside a wire rope subjected to tension and bending, balancing accuracy and
computational costs, still lacks in the industry.

A step forward in this direction was made in [Bussolati, 2019; Bussolati et al., 2019;
Guidault et al., 2019; Bussolati et al., 2020; Guidault et al., 2021], where a finite element
model of this case study has been developed to efficiently simulate the loading on part
of a mooring line of a FOWT for a given sea state (Figure 2). It was shown that, by
assuming small sliding and large rotations between the wires of the rope (modeled by
beams), the proposed model makes it possible to predict the mechanics of the wires
with a reduced computational cost by comparison with a contact and friction algorithm
in large sliding (see also [Guiton et al., 2022] for a comparison of this model to large
sliding ones in reproducing an experimental test).

The goal in [Bussolati, 2019] was to build a tool, represented in the flowchart
in Figure 4, which takes into account tension and bending and predicts the fatigue
damage along each mooring line, considering local stress variations linked to the
contact interactions between the wires. However, the use of this model in an industrial
setting, taking into account the very large number of loading cases representing the
different wind and sea conditions over a period of several years, requires the use of
alternative, efficient and robust numerical strategies. In this perspective, the use of
model reduction techniques to further reduce the computation time of this type of
problem may be an interesting solution.

Over the years, Reduced-Order Models (ROM) have proven themselves as reliable
tools in reducing computational complexity in the context of linear and nonlinear
problems, and consist in constructing a reduced order basis (ROB) in which the partial
differential equations of the problem are projected [Chinesta et al., 2011; Hesthaven
et al., 2016]. These methods allow a saving in computation time of several orders of
magnitude, especially when the dimension of the problem is large, in space, time or
parameters. Nevertheless, the application of model reduction for structural problems
involving a large number of evolving frictional contact interactions and providing
output on contact and friction quantities with ensured accuracy remains a largely open
question [Giacoma et al., 2015; Balajewicz et al., 2016; Fauque et al., 2018; Cardoso et al.,
2018; Benaceur et al., 2020].

ROM methods can be distinguished by the way in which the ROB is constructed. A
first family of techniques, named a posteriori methods, involves a training phase, called
offline phase, where the full-order problem is solved for some particular time instants
or parameter values, generating the so-called snapshots. Snapshots are then used to
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Figure 4: General flowchart of a multiscale approach to compute fatigue damage in
wire ropes [Bussolati, 2019]. In this thesis we will focus on accelerating local model
simulations.

create a ROB on which to project the full-order equations and obtain a reduced-order
model. The most classical way to obtain a ROB from a given set of snapshots is the
Proper Orthogonal Decomposition (POD) [Chatterjee, 2000]. Nevertheless, the quality
of the ROM is strongly affected by the representativeness of the ROB, especially for
highly nonlinear problems. A second family of ROM techniques consists in seeking the
solution of the targeted problem in the span of a consistent ROB progressively built
by a dedicated algorithm during the solving stage. This represents the a priori model
reduction methods, where no offline training phase is required. To this family belongs
the Proper Generalized Decomposition (PGD) [Nouy, 2010; Chinesta et al., 2011].

A predetermined ROB may not easily and efficiently capture non-regular and
propagating multiscale phenomena that occur at contact interfaces: sliding, sticking
and separation zones being difficult to follow. For this reason, an a priori approach
based on the PGD [Nouy, 2010] may represent a more efficient way to tackle frictional
contact problems through a reduced-order model that allows the ROB to be enriched
during computations to account for the evolution of frictional contact conditions.

Furthermore, strand cables present a structured geometry and naturally exhibit a
multiscale behavior. On a macroscale, their behaviour depends on tension and bending
variations associated with environmental loads, generally varying around mean values
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(they are represented by Gaussian processes in offshore dedicated multiphysics soft-
wares like Deeplines WindTM [DeepLines, Principia] or OpenFAST [OpenFAST, NREL]).
This behavior is characterized by a distribution of loads with gradients according to the
layer of wires (e.g., increase of contact pressure from outer layer to the central wire) and
according to the relative location with respect to the bending axis (sliding maximum
at the bending axis and decreasing towards the outer and inner-arc locations). At the
microscale, the behavior depends on the friction phenomena between the wires making
up the cable. A multiscale computational strategy of the DDM type will be therefore
examined in order to further improve performances. We will be interested in particular
in the mixed DDM [Ladevèze and Nouy, 2003; Ladevèze et al., 2007; Ladevèze et al.,
2010] based on the LATIN method [Ladevèze, 1999].

The LATIN presents a robust treatment of contact conditions, sharing similarities
with augmented Lagrangian approaches [Simo and Laursen, 1992], and naturally leads
to a mixed DDM. In addition, the global space-time formulation of the method allows
PGD-based model reduction to be used during computations, creating and adapting
(i.e., adding or retrieving some modes) on-the-fly reduced bases per substructure to
better track sliding fronts and propagative phenomena. The introduction of a multiscale
strategy in the LATIN framework is consistent with the physics of contact problems,
in which phenomena with different wavelengths interact: local solutions at contact
interfaces presents high gradient effects with a short wavelength compared to the char-
acteristic length of the structure [Giacoma et al., 2014; Guidault et al., 2023]. By taking
advantage of this, the coarse scale problem of the strategy enables to capture efficiently
the behavior of the problem at the structural level, focusing then on capturing the local
contact variations at the contact interfaces.

The aim of this thesis is to propose an approach to model reduction appropriate to
this type of problem, reducing computation time as much as possible while faithfully
representing the useful characteristic information. The crucial point of the thesis is
that the reduced model will have to represent very faithfully the critical information
located on the frictional interfaces between the wires because, apart from particular
environmental conditions such as corrosion, the fatigue of strand cables is largely
determined by the fretting fatigue between the wires [Montalvo, 2023; Montalvo et al.,
2023].

The development of model reduction and DDM tools is generally very intrusive
and requires the use of a relatively ªopenº calculation code. Recent developments in
industrial contexts include model reduction based on the LATIN-PGD technique for
nonlinear problems implemented in Simcenter SAMCEF software of Siemens [Scanff
et al., 2022], or the LATIN-based mixed DDM implemented in Code Aster of EDF R&D
[Oumaziz et al., 2017; Oumaziz et al., 2018]. Here, we will work and develop on
SCoFiElDD (Structure Computation with Finite Elements and Domain Decomposition),
an in-house MATLAB code, with the feasibility of the approach that will be illustrated
through 2D semplifications of different layers of a metric segment of anchor cable in
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frictional contact with each other.

To examplify the feasibility of the method, the first step will be to verify the possi-
bility of reducing the solution of a tension and bending calculation on a metric cable
section with the developed model described in [Bussolati, 2019; Bussolati et al., 2019;
Guidault et al., 2019; Bussolati et al., 2020; Guidault et al., 2021], for a given sea state.
For this local calculation on a cable section, the imposed tension and curvature histories
are obtained from a global calculation on a floating wind structure carried out in a
previous work at LMPS in collaboration with IFP Energies nouvelles [Bussolati, 2019].
An a posteriori SVD analysis of the local calculation solution at different time steps will
enable to assess its ability to be reduced. Moreover, the possibility of separating space
and time scales, which can be exploited during the model reduction approach, will be
investigated.

A second step, which constitutes the core of the thesis, will be devoted to devel-
opment of a PGD approach to this model, exploiting the separation in space domain
through DDM. We’ll be looking for maximum reduction performances and convergence
speed, with a multiscale computational strategy of the DDM type adapted to contact,
while guaranteeing at the same time an accurate evaluation of interface quantities.

Within the target application on FOWTs, several scientific challenges arise. First of
all convergence criteria for the nonlinear solution method must assure a good conver-
gence for local contact quantities: a global convergence criterion does not ensure local
convergence of the interface quantities, which are crucial for fretting fatigue life predic-
tion. Moreover, the LATIN convergence rate for contact problems strongly depends
on search directions, and updating search directions is a challenging issue [Sun et al.,
2008]. Another issue concerns the efficient treatment and accurate representation of
the multiscale content for contact interface quantities. Moreover, for highly irregular
problems such as frictional contact problems, controlling the quality and size of pro-
gressively built PGD basis along the LATIN iterations is crucial for the efficiency of the
method.

Manuscript outline

The manuscript is organized in five chapters.

± In Chapter 1, we present a bibliographic study in the fields involved in this
study. We start with a description of FOWTs and the characterization of the main
environmental actions to which they are subjected to, as in fact they represent
the ultimate motivation of the thesis. We then focus on the mechanics of spiral
strand cables, reporting some analytical results available in the literature as well
as the most common computational methods to model them, and their current
limitations. This first part of the literature review is also important to understand
the subsequent Chapter 2, as well as the remaining chapters where we make
use of simplified models inspired by the mechanics of wire ropes. Then we deal
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with frictional contact problems, with the various formulations and numeric
methods commonly adopted to tackle them. Afterwards we give an overview
on model reduction techniques and the main strategis to deal with frictional
contact problems and their current limitations. Finally, we talk about domain
decomposition methods for structural problems.

± In Chapter 2, we perform a preliminary SVD analysis on the results from [Bus-
solati, 2019] on a six-layer strand cable portion subject to oscillating tensile and
bending loads around a preloaded state. It consists of an a posteriori separabil-
ity analysis to check the potential reducibility of this kind of problem and the
suitability to the methods that we will use. The SVD is employed to analyze the
reducibility of the most significant quantities in the model, such as inter-wire slip
and normal and tangential forces between the different layers. The results are
very encouraging as these problems result to display a very good potential for
reducibility.

± In Chapter 3 we introduce the strategy based on the LATIN to solve frictional
contact problems and introduce PGD-based model reduction. Prior to introducing
the strategy, a simple but representative one-dimensional frictional problem,
inspired by the mechanics of a single wire of the spiral strand cable, and its
reference solution are presented, which will later serve as basis for an explanation
of the features of the method. Thereafter, the LATIN method, in its monoscale
DDM version, is introduced and is then applied to the test problem. The strengths
of the method are highlighted, as well as some specific points related to frictional
contact problems that require further improvements. The introduction of PGD in
the LATIN scheme is then detailed and applied to the test problem, with focus on
properly controlling the PGD basis size and quality along the iterations.

± In Chapter 4, we present the multiscale strategy to model reduction for frictional
contact problems. Multiscale aspects are introduced at the interface level by
exploiting a separation of scales between macroquantities and microquantities.
Then the introduction of PGD in the multiscale framework is described. The
most important features of the approach are shown comprehensively on the
one-dimensional frictional benchmark problem, emphasizing the possibility to
create reduced bases of different size between subdomains with the coarse scale
problem of the multiscale strategy which well captures the first structural modes.
Then, its robustness and effectiveness are tested on a layered structure with wide
frictional contact interfaces subjected to more complex loadings, representative
of the considered application. Here we focus on how to exploit the multiscale
strategy to get the maximum reduction in terms of computational cost while
ensuring accurate representation of interface quantities.

± In Chapter 5, we propose some contributions to the strategy concerning some
crucial aspects for the final application, that is the control of the error on the
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interface quantities along the iterations of the LATIN nonlinear solver and the
improvement of the convergence rate for microscopic interface contact quan-
tities, which are driven by the search directions of the LATIN. In particular, a
convergence indicator independent from the search directions is investigated.
The effectiveness of this criterion to stop the LATIN iterations in order to obtain a
solution of desired quality, indipendently from the adopted search direction, is
shown on different frictional contact problems displaying complex and different
contact status conditions. Then, a strategy for updating on-the-fly the search
directions is proposed, taking advantage of the peculiarity of the LATIN solver
to provide a global space-time view of the solution at each iteration, in order to
speed up the convergence of the local microquantities at the interface level.
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Chapter 1

Bibliographic study

This first chapter is devoted to a bibliographical study of the main topics of the thesis. It
starts with a brief introduction to Floating Offshore Wind Turbines and how the different
loads to which they are subject to are characterized. Then, an overview of the mechanics of
wire ropes is given, reporting some important analytical results and the main numerical
techniques used for their modeling. An important part is then devoted to frictional
contact problems and model reduction techniques. The main strategies used to tackle
frictional contact problems are reported, with a short introduction to the LATIN method
and similarities it shares with more classical methods. Regarding model reduction, a
panoramic of a posteriori and a priori techniques is given, followed by some specific cases
for contact problems. Finally, a summary on domain decomposition methods in structural
mechanics is provided, with a brief introduction the mixed strategy based on the LATIN
method.
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Chapter 1. Bibliographic study

1 Floating Offshore Wind Turbines

Floating Offshore Wind Turbines (FOWTs) are special structures consisting of a
turbine, a tower, a floating platform anchored to the seabed with mooring lines, and a
system of power cables to connect them to the grid. The design of a FOWT presents
numerous challenges, as it requires :

± evaluating the impact of sea waves on the floater and the influence of water on
the motion of the mooring lines through hydrodynamic calculations;

± estimating the effects of wind on the turbine and the tower using aerodynamic
calculations;

± implementing control strategies, particularly for blade orientation and generator
torque, to ensure structural safety and optimize energy production;

± solving a highly nonlinear structural dynamics problem.

Additionally, the stochastic nature of environmental loads introduces significant un-
certainties in the analysis outcomes, compounded by other uncertainty sources such
as material properties, model parameters and approximations, and actual installation
configurations [Vorpahl et al., 2013; Bailey et al., 2014].

In Figure 1.1 is shown an example of a global hydrodynamic model of a FOWT struc-
ture consisting of the floater and the mooring lines [Bussolati, 2019]. Such an analysis
requires the characterization of the wave loads and the modeling of the mooring lines,
which are are often represented by simple beam elements, and consequently require a
homogenized constitutive behavior [Cartraud and Messager, 2006; Saadat and Durville,
2023] which is somehow representative of the behavior of a real wire rope.

This type of calculation allows the extraction of tension and curvature histories
on the mooring lines for a given environmental load, going on to determine the most
critical areas. The procedure is repeated for thousands of different most possible
environmental loads, and provides the time series of tension and curvature used as
input to determine the mean expectation of fatigue life endurance of the mooring
lines based only on tension and curvature histories. However, the fatigue life of wire
ropes when subjected to bending is highly influenced by the relative succession of
microsliding that occurs due to frictional phenomena resulting in fretting fatigue,
which requires calculation on a more detailed wire rope model [Raoof, 1992; Montalvo
et al., 2023].

In [Bussolati, 2019], a top-down approach has been followed, i.e., the information of
the global model (tension and curvature) is used as boundary conditions for the local
model. Indeed, it has been seen that the results of the local model do not appreciably
influence the global behavior due to the slenderness of the wire ropes, which justifies
this approach.
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Figure 1.1: Example of a global hydrodynamic computation on a FOWT with the
software DeeplinesTM [Bussolati, 2019]. Note that the rectangular shape is a simplistic
representation of an evolution of the hybrid spar-barge concept presented in [Poirette
et al., 2014]. Different systems exist as illustrated in Figure 1.7.

1.1 Environment characterization

The main mechanical loads on a FOWT at a given site derive from the actions of the
wind on the tower and the turbine and the actions of the sea on the floating structure
and mooring lines (Figure 1.2). These loadings have in fact a random behavior and a
statistical distribution of them can be made so as to have a prediction of the possible
environmental states that can occur during the lifespan of the turbine.

1.1.1 Description of the sea state

The description of the state of the sea consists in measuring the elevation of the
sea surface at a fixed position over time. This leads to a random series of data that in
fact cannot be described by a single periodic wave. In spite of this, it is still possible
to describe the energy state of this data series through a spectrum in the frequency
domain.

A time scale separation in this spectrum can be exploited with a stationary duration
which is generally of 3h (e.g., [Labeyrie, 1990]). Consequently, offshore engineering
distinguishes short-term statistics (i.e., the wave elevation during a given 3h duration)
and long term statistics (i.e., pluriannual). The latter is given by the joint probability of
a small number of parameters of an idealized spectrum function.

The JONSWAP (Joint North Sea Wave Project) spectrum, originally defined for the
North Seas and later adapted for offshore applications, is one of the most widely used
in that context. In such a spectrum, the input parameters are the significant wave
height Hs and the mean zero-crossing period Tz. The significant wave height Hs is
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Figure 1.2: Different sources of loads acting on a FOWT [Hall, 2013].

defined as the mean height of the third highest wave in a sea state, while the mean
zero-crossing period Tz represents the average period between two zero-crossing waves
with positive slope in an irregular sea state, and can be determined directly by the time
series. In the JONSWAP spectrum, a peak-shape parameter γ is usually used and, for a
given spectrum and data Tz and Hs, the peak period Tp of the spectrum, i.e., the period
associated with the highest energy in the spectrum (the spectral peak) can be derived
(Figure 1.3).

To simulate a FOWT during its entire design lifetime (about 20 years for instance to
estimate the fatigue life), long-term wave statistics can be used. A common approach to
describe these statistics consists in making use of Wave Scatter Diagrams (WSD), which
are diagrams that give the discretized joint probability of pairs of Hs and Tp in a two
dimensional matrix for a range of wind speeds (Figure 1.4).

1.1.2 Description of the wind state

For the wind state, similar considerations to the sea state characterization can be
made. Wind speed is generally measured at different height locations of a met mast
and can be represented by a stationary process with a stationary duration of 10 minutes.
The turbulence box is generated from input parameters that are composed of :

± the 10 minutes time-averaged wind speed at a given height;
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Figure 1.3: JONSWAP spectra for Hs = 4m and Tz = 6s with γ = 1 (blue) and γ = 3.3
(red) [Vorpahl et al., 2013]. S is the spectral density, representing the energy distribution
of wave according to the frequency.

Figure 1.4: Wave Scatter Diagram for a Dutch North Sea site and a range of wind speeds
between 9 m/s and 11 m/s [Vorpahl et al., 2013].

± the standard deviation representing the turbulence;

± a vertical profile with either power-law or log-normal function (Figure 1.5);

± parameters of a spectrum like Mann or Kaimal one accounting for the spatial
correlation [Dimitrov et al., 2017; Rinker, 2018].

For long-term statistics, the probability of a given 10 minutes time-averaged wind
speed is usually fitted by a Weibull distribution (Figure 1.6).
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Figure 1.5: Power-law wind speed distribution [Bussolati, 2019].

Figure 1.6: Bar chart of average wind speeds fitted by a Weibull distribution [Vorpahl
et al., 2013].

1.2 The floating structure

The floating structure of FOWTs comprises the floater, the tower and the turbine,
and it is subjected to the effects of waves on the floater and wind on the tower and
turbine. The main design typologies for the floating structures of FOWTs are illustrated
in Figure 1.7. The whole floating structure is often considered as a rigid body, since
deformations in the platform are negligible if compared to its gross motion. Hence, its
degrees of freedom are the six associated to rigid body motions.

From a wind turbine design perspective, using a floating platform instead of a
fixed foundation introduces significant new motions. Among these, pitch of the floater
is the most problematic for a turbine. This pitch can be easily excited by both wave
loading and wind thrust, generating additional bending moments in the tower and
blades, which are two of the most critical structural loads. To limit the bending moments
under extreme loading and optimize electrical production under operational conditions,
control strategies have also been developed [Guillemin et al., 2016].
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(a) Buoyancy-stabilized. (b) Ballast-stabilized. (c) Mooring-stabilized.

Figure 1.7: Possible FOWT designs [Hall, 2013].

1.2.1 Hydrodynamic loads

The main hydrodynamic loadings on a floating platform arise from buoyancy, waves,
and the platform’s own motion in the water. Hydrodynamic loadings are considered as
the superposition of three loading sources, namely hydrostatics, diffraction and radiation.

± Hydrostatic forces arise from the static restoring force resulting from buoyancy
when the platform is displaced from its equilibrium position or orientation along
any of its degrees of freedom. This force can be calculated by determining the
magnitude and centroid of the water volume displaced by the platform.

± Diffraction loads are exerted on the platform by incident waves, often calculated
without considering the platform’s motion. This is commonly known as the
diffraction problem, as it deals with the forces caused by waves diffracting around
the platform. For platforms that are very small relative to the waves wavelength,
the wave excitation forces can be calculated based on the undisturbed wave
kinematics alone due to minimal wave scattering or diffraction.

± Radiation loads on the platform result from its motion in the water, which gen-
erates waves that radiate outward. In an inviscid approximation, the forces that
result from radiation can be split in two components: added mass, which ac-
counts for the mass of water that is accelerated by the floater, and wave-radiation
damping, proportional to the velocity of the floater, whose power is equal to the
power radiated away in the generated waves. These waves influence the pressure
field around the body, impacting its motion.

1.2.2 Mooring system

The mooring lines serve to anchor the floater to the seabed, reducing the loads on
the floating structure by minimizing its motions. This helps to prevent excessive dis-
placements, preserving the power cables, protecting other wind turbines, and ensuring
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suitable operational conditions.

Mooring lines can be made of chains, synthetic cables, or more often wire ropes.
Mooring lines made of wire ropes are usually composed of different segments. Chains
are used in the upper part that connects to the floater to facilitate tensioning, and on
the part that rests on the seabed to resist abrasion. Additional masses are also usually
positioned on each mooring line, to limit the floater movements and keep the lines in
tension.

Mooring lines can generally be classified into two categories, based on their shape:

± tension legs, which are kept in tension by the buoyancy of the floater (Figure 1.7c);

± catenary, which consist of long lines that sit on the seabed before reaching the
anchor thanks to the heavy chains resting on the seafloor (Figure 1.8).

The catenary-shaped mooring lines are usually more adopted. The advantage of
this setup over tension legs is the use of cheaper anchors, as they are subjected to
lower magnitude forces due to the longer length of the mooring lines. Most of the
restoring forces in a catenary system are generated by the weight of the lines themselves.
Moreover, a mooring line is designed in order to have a minimal tension, consequently
each morring line is subjected to complex tension-bending loadings around a preloaded
state.

Figure 1.8: Catenary-shaped system of mooring lines (www.abc-moorings.weebly.com).
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2 Wire ropes

In this section, first a brief introduction to the wire ropes geometry and mechanics
will be presented, with some analytical results to better understand their behavior
under traction and bending loads, which are the ones occurring during the life service
of offshore wind turbines. For more details on this part one can refer to [Bussolati,
2019]. Subsequently, the main wire rope modeling techniques adopted in the literature
are briefly recalled.

2.1 General description

Wire ropes used for offshore wind turbine mooring lines consist of a complex as-
sembly of steel wires. These wires are produced through a wiredrawing process, which
aims to increase the wire’s ultimate tensile strength and reduce its ductility. The par-
ticular manufacturing process also yields residual stresses on the wire, in particular
in such a manner that compression residual stresses are present on the wire surface
in order to contain fatigue cracks during their initiation process [Vannes et al., 1973;
Smallwood, 1990].

Wire ropes can be wrapped together in various configurations (Figure 1.9), resulting
in two main categories of wire ropes: spiral strands (Figure 1.9a) and stranded ropes
(Figure 1.9b). A spiral strand wire rope consists of layers of helical wires wrapped
around a single core wire or a grouped wire core. In contrast, a stranded wire rope
typically has six or eight strands, or groups of wires, helically wrapped around either
an empty core or another single strand. The wires within a strand form double helices,
meaning each wire is a helix around another helix. In the offshore oil industry, spiral
strands are more often used for permanent applications due to their superior resistance
compared to stranded wire ropes, which are typically more used for temporary appli-
cations, such as during the drilling phase. Additionally, spiral strand ropes allow for
easier extrusion of a polymeric sheath over them, providing a barrier to seawater.

The helical shape provides an essential combination of high axial strength and
stiffness with high bending flexibility [de Jong, 2015]. The lay angles (i.e., the angle
the wires of each layer make with their axis of revolution) in a specific wire rope
architecture are selected to minimize the length disparities between wires and, ideally,
to reduce tension-torsion coupling caused by the helical arrangement. Additionally,
spiral strands are engineered to restrict the lateral spacing between wires within the
same layer. The geometric condition of lateral contact in the unloaded configuration is
defined as follows [Knapp, 1979]:

√

1 +
tan2(π

2 −
π
ni
)

cos2αi
=

Ri

ri
, (1.1)
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where ri, Ri, ni and αi are respectively the wire radius, the layer radius, the number of
wires and the lay angle associated to the layer i.

(a) A spiral strand wire rope. (b) A six-strand wire rope.

Figure 1.9: Different typologies of wire ropes. (a): A spiral strand wire rope: it has
layers of wires in circles around a single core wire or a grouped wire core [Judge et al.,
2012]. (b): A six-strand wire rope: it is composed by strands wrapped helically. The
first type is more adopted in offshore industry for permanent applications.

The contact conditions that take place between the wires of wire ropes are crucial
for understanding the fatigue phenomena that occur during their service life. The
contact area acts as a stress concentration zone promoting crack nucleation. Therefore,
the fatigue life prediction with contact decreases by several factors compared to the
endurance limit determined by purely uniaxial tests [Siegert, 1997; Montalvo, 2023;
Montalvo et al., 2023]. Experimental observations confirm in fact that crack initiation
begins at the inter-wire contact zones [Giglio and Manes, 2003].

In a wire rope, two types of inter-wire contacts can be identified, as illustrated in
Figure 1.10:

± line contact: occurs within a given layer between adjacent wires, and between
the wires in the first layer and the central core wire. It can be regarded as the
line contact between parallel cylinders. This type of contact influences the overall
axial, torsional, and free bending stiffness, and the contact area is rectangular
(Figure 1.10a).

± trellis contact: occurs between two adjacent layers, where respective wires cross
at an oblique angle, creating a localized point contact rather than a line contact.
Due to its localized nature, the contact stresses are much higher than those in
line contacts within a layer. Trellis contacts are the most involved in fatigue
phenomena, and the contact area in this case is elliptical (Figure 1.10b).
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(a) Line contact. (b) Point contact.

Figure 1.10: Possible contact configurations between wires in a wire rope [Lalonde et al.,
2017b]. (a): Lateral line contact within layers. (b): Trellis point contact between layers.

2.2 Mechanical behavior

In the literature, analytical models for stranded ropes are limited and typically
address axial loading scenarios (tension and torsion without bending) assuming either
no friction [Xiang et al., 2015] or perfect adhesion [Usabiaga and Pagalday, 2008]. On the
contrary, analytical models for spiral strands are more developed and include bending
effects and finite friction as well. There are in this category two primary approaches:

± semi-continuous models, where each layer is treated as an orthotropic cylinder
[Hobbs and Raoof, 1983; Jolicoeur and Cardou, 1996];

± thin rod models, where individual wires are considered separately [Papailiou, 1995;
Hong et al., 2005].

Here, we consider the second category of models (thin rod models), since they pro-
vide direct insights into the behavior of individual wires, which are easier to interpret
and utilize.

2.2.1 Analytical results: traction

Let us start by considering the behavior of the rope when subjected to traction loads.
Traction loading is crucial for the considered wire ropes application, since they are
required at first instance to bear tension loads. Moreover, wire ropes for mooring appli-
cations are usually pretensioned, so that they always work in tension, as a compression
stress state may lead to buckling phenomena.
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Let us consider an axial force Trope applied to the wire rope. The axial force induces
a uniform elongation εc = ∆L

L on the rope axis and, because of the particular helical
geometry of the rope, torsion phenomena arise which try to ªunwindº the rope and
make the wires rotate by a quantity ∆θ around its central axis:

Trope = (EA)rope
∆L
L

+ Kθ
∆θ

L
= (EA)ropeεc + Kθτc, (1.2)

where (EA)rope represents the axial stiffness of the rope and Kθ the torsional stiff-
ness. The total traction force applied on the wire rope can be considered as uniformly
distributed on each wire:

Nwires

∑
n=1

Sn = Trope, (1.3)

with Sn being the component of the traction force on every wire in the direction of the
rope axis (see Figure 1.11).

Therefore, by assuming the following hypotheses [Papailiou, 1995]:

± the change in the lay angle caused by the tensile load is negligible;

± radial contraction of wires cross sections, arising from Poisson effect and contact
pressure, is neglected;

± the torsion τc of the rope cross section is neglected;

± shear forces acting on the wires are negligible compared with the tensile force;

± the wires are in line contact condition with the layer underneath ( this is true only
for the first layer in contact with the core wire);

we can state that in each layer i of the wire rope, every wire is subjected to the same
tensile force Ti (Figure 1.11) given by

Ti =
Si

cos αi
, (1.4)

with αi being the lay angle of the wires. The transverse component Ui prevents the rope
to unwind.

Since wires in adjacent layers are in contact with each other, a uniformly extended
wire rope will experience no longitudinal slippage, though interwire slippage may
occur within each layer. However, actual contact conditions between layers, such as
trellis contacts, lead to microslips between adjacent layers during tension [Paradis and
Légeron, 2011] which are responsible for the hysteretic behavior observed in tension
tests [Huang and Vinogradov, 1996]. More refined models take into account also the
influence of the radial contraction [Costello, 2012] and the lateral contact [Siegert, 1997].
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Figure 1.11: Decomposition of the external traction force on a single wire [Papailiou,
1995].

2.2.2 Analytical results: bending

Let us consider the case where the rope, in addition to a tensile load, is also submitted
to a uniform bending curvature κc. When bending occurs, one can express the position
of the helical wire at a given section by means of the angle θ in the cross-section of the
rope (Figure 1.12), with θ = 0 and θ = π corresponding to the bending axis, θ = π/2
being the outer arc (top sector), and θ = −π/2 being the inner arc (bottom sector).

Figure 1.12: Wire rope cross-section [Bussolati, 2019].

During bending, two different types of loadings occur on a helical wire: wire elon-
gation and wire bending around its own transverse axis. Concerning wire elongation,
one can distinguish between two limit situations [Papailiou, 1995]:

± when the curvature is sufficiently low, wires are in stick state and the rope be-
haves as a Euler-Bernoulli beam, since sections remain plane in the deformed
configuration;

± once the rope curvature reaches a certain threshold, the helical wires are in
complete slip state.

Since the wires in the wire rope are curved, the equilibrium of the wire implies contact
pressures pi between each wire belonging to layer i and the wires belonging to layer
i− 1 which can be obtained, for example, by considering line contact pressures. By
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performing the equilibrium equation of an infinitesimal wire element (Figure 1.13), one
obtains:

pi =
Ti

ρi
, (1.5)

that is a line contact pressure proportional to the traction force, with ρi being the
curvature radius of the helical geometry of the wire. It should also be noted that the
total pressure acting on the wires of a given layer is the sum of the pressure induced by
all the outer layers, that is to say the normal contact pressure increases from the outer to
the inner layers. Actually, given the geometry of the wire rope, contact between wires
of adjacent layers does not occur along lines but along contact points. In this case, the
expression for the normal contact force at a given contact point is given by [Papailiou,
1995]:

Pi = 2Ti sin αi sin(
∆θi

2
), (1.6)

with ∆θi =
2π
bi

and bi being the number of contact points between layer i and layer i− 1
per lay length. Even in this case, one obtains a contact interaction proportional to the
external traction force.

Figure 1.13: Transversal equilibrium of a curved wire element [Bussolati, 2019]
.

Due to friction, the moment-curvature relation of a wire rope is nonlinear. Initially,
all wires are in stick state and the cross sections remain plane, with the wire rope
following beam kinematics. Under these conditions, the bending stiffness is maximum.
Slippage in a layer starts in the proximity of the neutral axis. The first layer to slip
is the most external one, since the contact pressure involved is the lowest one. For
the internal layers the contribution of the external ones increases the contact pressure
and consequently higher friction forces can take place. By considering the simplified
approach proposed by [Papailiou, 1995], which considers that each layer suddenly slips
when a certain level of curvature is attained, the bending diagram takes therefore a
multilinear shape. The change between the two situations (total sticking/total slip)
affects the bending stiffness of the rope: when the slip state of the wires is triggered,
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the bending stiffness of the rope decreases, as it can be seen in the idealized diagram
of Figure 1.14 for a loading-unloading cycle. A more accurate modeling is proposed
in [Houle-Paradis, 2012], where shear effects and micro-slipping are also taken into
account at the inter-layer wire contact interfaces, as opposed to only considering a
stick-slip system.

Figure 1.14: Moment-curvature diagram for a single layer strand in a loading-unloading
cycle. Due to friction phenomena affecting bending stiffness, the behavior results
hysteretic [Papailiou, 1995].

2.3 Numerical modeling

The analytical models mentioned previously are indeed useful, and for some spe-
cific load cases can give rather accurate results. However, in real case structures, some
adopted hypotheses may be too strong to be considered acceptable. For this reason,
efforts have been made also to characterize the behavior of wire ropes with numerical
models.

Numerical models for wire ropes can be first categorized by the scale at which they
want to model the behavior of the wire ropes. We can distinguish therefore a first
category of models, the global scale models, whose purpose is to predict the global
nonlinear bending-curvature behavior and/or the axial±torsional coupling of the rope,
by appropriately modeling the frictional phenomena which take place at the level of
the individual wires. This is done often by means of computational homogenization
techniques [Geers et al., 2010]. The other category consists in full-scale models, where
the wire rope is modeled at the level of the single wires, whose aim is to accurately
predict local contact phenomena occurring between each wire. The wire modeling in
this case can be distinguished between solid elements and beam elements.
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■ Computational homogenization techniques

The computational homogenization of beam-like structures has been addressed in
several works [Buannic and Cartraud, 2001; Boso et al., 2005; Cartraud and Messager,
2006; Treyssede and Cartraud, 2022; Xing et al., 2022; Saadat and Durville, 2023]. In
the context of cables, in the computational homogenization framework, the spiral
strand as a whole represents the heterogeneous medium to be homogenized. After
homogenization, the spiral strand is represented at the macroscale as a single beam,
and a periodic portion of the spiral strand is the RVE (Figure 1.15). Among others, in
[Ménard and Cartraud, 2021], the asymptotic homogenization approach from [Cartraud
and Messager, 2006] was extended to homogenize contact nonlinearities, being able to
capture the nonlinear bending behaviour stemming from the stick-slip transition. More
recently, [Saadat and Durville, 2023] proposed a mixed stress-strain FE2 homogenization
technique [Feyel and Chaboche, 2000] to identify the nonlinear constitutive behavior
of homogenized beam elements able to reproduce the hysteretic bending response of
spiral strands (Figure 1.14). When dealing with strands with many layers however it is
difficult to identify a periodic RVE if the different layers have different lay angles. For
this reason other approaches consider to model each layer by an orthotropic cylinder
whose mechanical properties are chosen to match the behavior of its corresponding
layer of wires [Jolicoeur and Cardou, 1996].

Figure 1.15: RVE identification in a periodic spiral strand structure [Ménard and
Cartraud, 2021].

■ Solid elements

In [Kmet et al., 2013], the authors make use of Abaqus©/Explicit to model the
wires of a multilayer spiral strand with linear brick elements, with reduced integration
and hourglass control, to predict the three-dimensional stress state in the wires when

30



2. Wire ropes

the rope is bent over a rigid support. The same model is also adopted in [Stanova
et al., 2011] to simulate a pure tension test. Linear brick elements were also used to
determine the evolution of the bending stiffness in a single-layer strand [Zhang and
Ostoja-Starzewski, 2016] (Figure 1.16). In [Judge et al., 2012], the authors used 3D
elasto-plastic finite elements to model a multilayer spiral strand, implemented in the
commercial software LS-DYNA.

The use of such models in circumstances when the loadings are long and complex
is computationally very costly, due to the very high number of degrees of freedom and
the complex contact conditions, which render the simulations not affordable in terms
of computational time. Employing a numerical model that minimizes computational
cost as much as possible is crucial.

Figure 1.16: Solid mesh used in [Zhang and Ostoja-Starzewski, 2016] for the modeling
of a single-layer rope with 7 wires.

■ Beam elements

Given the slender structure of the wires that compose the wire ropes, the kinematics
at the scale of the wires can well be represented a beam elements. Such modeling is
in good agreement with those obtained by solid models as well as with experimental
results [Lalonde et al., 2017a].

Frictionless contact in large sliding between non-parallel beams with circular section
was originally proposed in [Wriggers and Zavarise, 1997], extended to frictional contact
with return mapping in [Zavarise and Wriggers, 2000] and to contact square cross-
section beams in [Litewka and Wriggers, 2002]. Other contributions are distinguished
by their ability to deal with the case of punctual or linear contact between beams, to
take into account non-circular beam sections, to take into account friction or not, and on
the contact detection [Konyukhov and Schweizerhof, 2010; Durville, 2012; Neto et al.,
2016, 2017; Weeger et al., 2017; Meier et al., 2017; Meier et al., 2018].

Regarding specific applications to wire rope modeling, in [Lalonde et al., 2017b] the
authors used ANSYS software to model each wire of a multilayer electrical conductor
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with beam elements, handling contact with edge-to-edge contact elements. The model
was then used to compute the fatigue damage caused by wind-induced vibration (free
bending fatigue) on an electrical conductor made of aluminum and steel wires [Lalonde
et al., 2017a]. Indentation at trellis contact positions was observed and, to better model
this phenomenon, an anisotropic friction law was adopted. Evidence of such phenom-
ena are however not reported for steel wires. Although the calculation cost is reduced
due to the decrease in the size of the problem compared to a solid model, it remains
however prohibitive to conduct fatigue calculations, as the contact detection step in
large sliding still remains expensive.

In [Bussolati, 2019], by taking advantage of the fact that in the operating conditions
to which wire ropes for mooring line applications are subjected to, a small inter-wire slip
is encountered (Figure 1.18), it is proposed to model a six-layer wire rope (Figure 1.17) by
mean of beam elements and with a new beam-to-beam contact element in small sliding
and large rotations and with a penalty formulation [Bussolati et al., 2019; Guidault et al.,
2019; Bussolati et al., 2020; Guidault et al., 2021]. The small sliding conditions enables
to assume that the contact coupling is fixed, therefore no resources are consumed in
the contact search phase, reducing calculation times considerably with respect to a
large sliding beam-to-beam contact algorithm [Guiton et al., 2022]. The model is being
extended to a Lagrange multiplier formulation [Ammar et al., 2023].

Figure 1.17: Finite element model of a
six-layer wire rope [Bussolati, 2019].

Figure 1.18: Interlayer sliding in the
tension-curvature range of interest
[Bussolati, 2019].
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3 Quasi-static frictional contact problems

Contact, from a mechanical perspective, refers to any type of interaction between
separate bodies that come in touch through a contact interface. Boundary value prob-
lems involving contact are critically important in engineering structures, and represent
one of the most difficult nonlinear problems to deal with, mathematically as well as
numerically. The rapid improvement of computer technology and numerical methods
allows today the modeling of complex mechanical contact problems, nevertheless still
most standard finite element softwares struggle to solve contact problems, especially
those involving friction, with robust algorithms. Therefore, developing efficient and
accurate methods for computational contact mechanics remains still a significant chal-
lenge.

Pioneering works on contact mechanics can be traced back to Hertz [Hertz, 1882] on
the solution for frictionless contact between two ellipsoidal bodies. A first mathematical
treatment of the contact problem, without friction, was posed by Signorini [Signorini,
1959], with Fichera’s proof of the existence and uniqueness of the arising variational
inequalities [Fichera, 1963, 1964; Fichera, 1973; Kinderlehrer and Stampacchia, 2000]. A
major breakthrough in this field was represented by [Duvaut, 1972; Duvaut and Lions,
1976], where variational inequalities arising from frictional contact problems and issues
involving large deformations were examined.

Computational contact mechanics problems present several challenges, from geome-
try discretization and contact detection to the numerical implementation of a numerical
algorithm. A wide and detailed overview on the topic can be found in [Wriggers and
Laursen, 2006; Yastrebov, 2011]. Here, we limit ourselves to the algorithmic part, going
briefly to present the most important aspects of a contact problem with friction and the
various strategies that can be used to solve it.

3.1 Frictional contact problem setting

Let us consider two elastic solid bodies ΩE and ΩE′ in possible contact with each
other along the contact interface Γc = ΓE = ΓE′ . The union Ω = ΩE ∪ ΩE′ of the
two bodies is subjected to body forces f

d
acting on Ω with prescribed displacement

boundary conditions Ud on ∂1Ω = ∂1ΩE ∪ ∂1ΩE′ and prescribed tractions Fd on ∂2Ω =
∂2ΩE ∪ ∂2ΩE′ (Figure 1.19). A linear elastic behavior of the materials is assessed (small
perturbations, homogeneous-isotropic linear-elastic material, small slidings) and a
quasi-static regime is assumed.

Let u be the displacement field and σ be the Cauchy stress. The trace of the displace-
ment field u on the contact interfaces ΓE and ΓE′ , namely WE = u|ΓE and WE′ = u|ΓE′
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Ω 𝐸Ω 𝐸´
Г𝐸Г𝐸´𝑛
∂1Ω 𝐸∂1Ω 𝐸´

∂2Ω 𝐸´

∂2Ω 𝐸

Figure 1.19: Frictional contact problem setting between two elastic solid bodies.

can be decomposed along the normal and tangential direction to Γc:

WE = PnWE + PtWE and WE′ = PnWE′ + PtWE′ , (1.7)

with Pn = n⊗ n being the normal projector to the interface, n being the outward normal
of Γc from ΩE to ΩE′ , and Pt = Id − n⊗ n is the tangential projector on the interface.
Similarly, on the contact interface, the body ΩE (resp. ΩE′) is subject to equilibrated
contact forces FE (resp. FE′ ) from the body ΩE′ (resp. ΩE), which can be decomposed
as follows:

FE = PnFE + PtFE and FE′ = PnFE′ + PtFE′ , (1.8)

where PnFE are normal contact forces and PtFE are the tangential frictional forces.
We define gn = n · (WE′ −WE) + g0 the relative normal displacement gap at the

contact interface, with g0 being an initial gap, and ġ
t
= Pt(ẆE′ − ẆE) the relative

sliding velocity at the contact interface. To simplify the notation for the following, we
define Fn = n · FE and Ft = PtFE.

3.2 Unilateral contact conditions

Normal and tangential contact behaviors are ruled by pertinent contact conditions.

3.2.1 Normal contact

Normal contact conditions correspond to the so-called Signorini conditions [Signorini,
1959]. They consist in requiring the two bodies, when in contact, to not penetrate each
other. Moreover, when contact occurs, the normal contact force has to be negative. A
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complementary conditions is then introduced to take into account both the case of
contact and separation:

Definition 1.1 (Signorini conditions). At the contact interface Γc, the following
conditions hold for the normal contact:

± non penetration condition: gn ⩾ 0;

± compressive contact pressure: Fn ⩽ 0;

± complementarity condition: Fngn = 0.

3.2.2 Tangential frictional contact

For the tangential behavior constitutive law, we consider the classical Coulomb’s
friction law [Coulomb, 1821]. In the simplest case, the friction law states that the
tangential stress on the contact interface depends on the normal contact pressure and
its direction is given by the relative sliding, that is:

Ft = Ft(Fn, s). (1.9)

In the previous constitutive definition, s is a unitary vector in the tangential plane of
the contact interface, which determines the direction of relative sliding:

s =





ġ
t

∥ġ
t
∥

, if ∥ġ
t
∥ > 0;

0, if ∥ġ
t
∥ = 0.

(1.10)

The relative motion on the contact interface is bounded by the frictional stress, that is,
there is no relative sliding if the tangential stress is smaller than a threshold:

∥Ft∥ < f |Fn|, (1.11)

with f being the friction coefficient (Figure 1.20a). Once the threshold is reached, the
tangential stress assumes the value f |Fn| and ªflowsº along the direction given by s
(Figure 1.20b):

Ft = f |Fn|
ġ

t
∥ġ

t
∥

. (1.12)

The previous two conditions are complemented by an additional condition distinguish-
ing between sticking and slipping (or sliding) conditions:

∥s∥
∥∥∥∥∥ġt
∥Ft − f |Fn|ġt

∥∥∥∥ = 0. (1.13)

The Coulomb frictional conditions are then summurized as follows:
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Definition 1.2 (Coulomb frictional conditions). At the contact interface Γc, the
following conditions hold for the tangential contact:

± sliding threshold: ∥Ft∥ − f |Fn| ⩽ 0;

± flow rule: ∥ġ
t
∥Ft − f |Fn|ġt

= 0;

± complementarity condition: ∥s∥
∥∥∥∥∥ġt
∥Ft − f |Fn|ġt

∥∥∥∥ = 0.

𝐹𝑡

ሶ𝑔𝑡
𝑓 𝐹𝑛

0
(a) Frictional force threshold.

𝑓 𝐹𝑛
0 ሶ𝑔𝑡-𝑓 𝐹𝑛

𝐹𝑡

(b) Frictional force flow rule.

Figure 1.20: Coulomb frictional law for a given normal pressure Fn. (a): Frictional force
threshold. (b): Frictional force flow rule.

The possible admissible contact states with friction can be represented through the
so-called ªCoulomb’s coneº (Figure 1.21), an open set determined by:

C(Fn) = {∥Ft∥ < f |Fn|}. (1.14)

Any possible contact state fulfilling frictional conditions corresponds to a unique
point either in the interior of the cone:

Ft ∈ C(Fn), (1.15)

or on its closure:
Ft ∈ ∂C(Fn). (1.16)

Any stress state in the interior of Coulomb’s cone does not result in relative tangential
sliding. On the contrary, relative sliding implies that the actual stress state is situated at
the boundary of Coulomb’s cone.

The expressions for adhesion and sliding conditions given by Coulomb’s law are
non-differentiable at the onset of sliding. This can lead to difficulties for conventional
solution techniques. Regularized models have been proposed [Oden and Pires, 1984;
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𝑓 𝐹𝑛
0 𝐹𝑛−𝑓 𝐹𝑛

𝐹𝑡
𝐹𝑛 arctan(𝑓)

Figure 1.21: Coulomb’s cone representation in 2D for a given normal pressure Fn.

Raous, 1999], based on a functional form which yields a smooth transition from stick
to slip conditions (Figure 1.22). Regularization leads to simpler and more robust
numerical implementations, however they may lack in describing accurately the stick-
slip transitions.

ሶ𝑔𝑡
𝐹𝑡

Figure 1.22: Regularization of Coulomb’s friction law [Wriggers and Laursen, 2006]
with functions φi describing the smooth transition from sticking to sliding. Function φ1

corresponds to a square root regularization, φ2 is a hyperbolic tangent regularization
and φ3 is piece-wise linear regularization.

The described formulation of friction phenomena shares strong similarities with
plasticity theory [Curnier, 1984; Wriggers, 1987; Giannakopoulos, 1989; De Saxcé and
Feng, 1998; De Saxcé and Bousshine, 1998]. In the case of frictional contact the flow rule
is non-associated, since there is no irreversible slip in the normal direction. The principle
of maximum dissipation is inapplicable in this case, except when the contact pressure
is constant. A more detailed treatment of the analogies between associated/non-
associated plasticity and friction phenomena can be found in [Michalowski, 1978].

The formulation of elasto-plastic constitutive relations in frictional contact mechan-
ics is driven by two main reasons. The first one is that such a modeling enables to
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regularize and generalize Coulomb’s law, as in general one can assume softening as
well as hardening for the frictional constitutive behavior [Wriggers and Laursen, 2006].
The other one comes from experimental observations on metallic surfaces [Anand,
1993], which suggest the use of elasto-plastic relations splitting the tangential motion
into a elastic or adhesive (stick) part and a plastic or slip part. Another analogy can be
made with variational formulations of linear elastic fracture mechanics [Salvadori and
Carini, 2011].

3.2.3 Strong formulation of the problem

Having defined the normal and tangential contact conditions of the problem, we
can therefore define the formulation of the frictional contact problem:

Problem 1.1 (contact between two elastic bodies). Find the displacement field u
and the Cauchy’s stress field σ satisfying:

± kinematic admissibility:

u ∈ U , with U = {u ∈ H1(Ω) : u|∂1Ω = Ud}; (1.17)

± static admissibility:





σ · n = Fd on ∂2Ω,
σ · n = FE = −FE′ on Γc,
divσ + f

d
= 0 on Ω;

(1.18)

± constitutive relation:
σ = K : ε on Ω, (1.19)

with K being the Hookean tensor and ε = 1
2(∇u +∇uT) the small strain tensor;

± Signorini conditions (Definition 1.1);

± Coulomb’s frictional law (Definition 1.2).

3.2.4 Weak formulation of the problem

In order to define a weak formulation of the contact problem, let U0 be the space
of kinematically admissibile displacements variations to zero in ∂1Ω. We define the
following closed convex subsets of U and U0 for the kinematic admissibility of contact
conditions:

Uad = {u ∈ U : gn ⩾ 0 on Γc}, Uad,0 = {δu ∈ U0 : δgn ⩾ 0 on Γc}. (1.20)
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Let us first consider the frictionless contact problem. The corresponding weak form
is a variational inequality [Duvaut, 1972; Kinderlehrer and Stampacchia, 2000]:

Problem 1.2 (weak form of the frictionless contact problem). Find u ∈ Uad such
that, ∀δu ∈ Uad,0,

∫

Ω
ε(u) : K : ε(δu)dΩ ⩾

∫

Ω
f

d
· δudΩ +

∫

∂2Ω
Fd · δudS. (1.21)

The existence and unicity of the solution of the previous problem are ensured
[Fichera, 1973; Kikuchi and Oden, 1988]. Since in absence of friction, the problem is
purely elastic, it can equivalently be rewritten as a minimization problem for the total
energy Π(u) of the bodies:

Problem 1.3 (weak form as a minimization of energy). Find u ∈ Uad such that,
∀δu ∈ Uad,0,

Π(u) ⩽ Π(u + δu), (1.22)

with

Π(u) =
1
2

∫

Ω
ε(u) : K : ε(u)dV −

∫

Ω
f

d
· udV −

∫

∂2Ω
Fd · udS. (1.23)

In presence of friction, the problem becomes non-conservative and the solution is
path-dependent, for this reason the problem is generally treated by an incremental
approach. Let g

t
= ġ

t
dt be the tangential sliding, the variational formulation of the

contact problem with friction is defined as follows [Duvaut, 1972]:

Problem 1.4 (weak form for the frictional contact problem). Find u ∈ Uad such
that, ∀δu ∈ Uad,0,
∫

Ω
ε(u) : K : ε(δu)dΩ +

∫

Γ•c

f |Fn(u)|∥δg
t
∥dS ⩾

∫

Ω
f

d
· δudΩ +

∫

∂2Ω
Fd · δudS.

(1.24)

with
∫

Γ•c

f |Fn(u)|∥δg
t
∥dS being the virtual work of the frictional contact forces, and Γ•c

being the part of Γc where sliding occurs.

This problem is more complex compared to the frictionless case because of the
non-differentiable contribution of the frictional forces. The existence and uniqueness of
the solution has not been proven except for a regularized form of the problem and a
small frictional coefficient [Duvaut, 1980].
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3.3 Treatment of contact constraints

The introduction of contact conditions, with and without friction, leads to problems
formulated in terms of variational inequalities. The variational inequality is often
transformed, after deleting the contact kinematic conditions and introducing dual
conditions and dual variables, into more standard variational equations, which are
easier to introduce in a finite element framework and do not require totally new
minimization techniques. Among the most popular and widely used methods in contact
mechanics are those inspired from optimization theory: penalty method, Lagrangian
multipliers, or augmented Lagrangian multipliers [Wriggers and Laursen, 2006].

3.3.1 Penalty method

The penalty method is one of the most widely used approaches for constrained
problems. It consists in penalizing the constraint function leading to an unconstrained
problem. Although, in case of contact problems, the non-exact verification of the contact
condition leads to unphysical penetrations between the contacting bodies and elastic
slip even in stick state conditions.

■ Frictionless case

The method consists in considering the contact interface as an elastic structural
interface with positive finite stiffness kn [Kikuchi and Oden, 1988], with contact pressure
defined as a continuous function of the penetration:

Fn(gn) =

{
0, gn > 0;
kngn, gn ⩽ 0.

(1.25)

Therefore, the contact condition is strictly fulfilled for non-negative gaps. However,
according to the relation between contact pressure and the gap function, real contact
appears only for negative gaps, i.e., only if a penetration takes place. With the penalty
method contact forces are computed from the violation of the penetration condition.
The exact solution can be obtained within the limit kn → +∞, however this leads to
ill-conditioning of the involved matrices and compromises must be made affecting the
accuracy of the solution.

■ Frictional case

In the frictional case, the constraint appears only when we are in a stick state, in
fact in that state we have a condition on the relative sliding to be zero. In that case,
an indeterminate tangential reaction force arises to fulfill such a condition. Therefore,
similarly to the normal contact, in the tangential plane a positive finite stiffness kt is
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introduced to penalize the sticking condition:

Ft =





ktgt
, ∥g

t
∥ <

f |Fn|

kt
;

f |Fn|
ġ

t
∥ġ

t
∥

, ∥g
t
∥ ⩾

f |Fn|

kt
.

(1.26)

It is evident therefore that in this case, even in stick conditions, there is some sliding.
This condition is called ªslip-in-stickº condition, and represents an elastic sliding at the
contact interface [Wriggers and Laursen, 2006; Yastrebov, 2011]. From a physical point
of view, the slip-in-stick represents elastic deformations within the contact interface,
and should vanish when the load is removed. There is therefore a direct analogy with
elasto-plastic theory of deformation: the deformation inside the yield surface (the
Coulomb’s cone in case of frictional contact) results in elastic deformation, whereas
reaching the yield surface leads to plastic flow.

3.3.2 Lagrange multipliers method

The most common approach to solve constrained problems is the one based on the
use of the Lagrange multipliers. The contact problem can be replaced by the search
of a stationary point (precisely saddle point) of a specifically constructed Lagrangian
functional.

■ Frictionless case

The Lagrangian is obtained from the energy functional Π(u) to which is added a
term involving dual variables, the Lagrange multipliers λn, which coincide in fact with
the contact forces:

L(u, λn) = Π(u) +
∫

Γc

λngndS. (1.27)

The stationary condition corresponds to the following condition on the variation of the
Lagrangian:

δL(u, λn) = δΠ(u) +
∫

Γc

gnδλn + λnδgndS = 0. (1.28)

The variation of the energy of the system is equivalent to the variational principle of
virtual work, so the last equality can be rewritten in an extended form as:

Problem 1.5 (Lagrangian formulation of the frictionless contact problem). Find
u ∈ U and λn ⩽ 0 such that, ∀δu ∈ U0 and ∀δλn ⩽ 0,
∫

Ω
ε(u) : K : ε(δu)dΩ +

∫

Γc

gnδλn + λnδgndS =
∫

Ω
f

d
· δudΩ +

∫

∂2Ω
Fd · δudS.
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The constraint λn ⩽ 0 has still to be fulfilled, that is why the Lagrange multiplier
method does not convert a minimization problem with inequality constraints to a fully
unconstrained one. For a more rigorous formulation of Lagrange multiplier method for
contact problems the reader is referred to [Kikuchi and Oden, 1988].

■ Frictional case

In the frictional case, a Lagrange multiplier λt is introduced in the tangential direc-
tion to take into account the constraint on the relative sliding, and corresponds to the
frictional reaction force:

ġ
t
= 0, if ∥λt∥ < f |λn|.

When sliding occurs, the tangential stress is simply given by the flow rule:

λt = f |λn|
ġ

t
∥g

t
∥

.

In this case, the variational formulation becomes:

Problem 1.6 (Lagrangian formulation of the frictional contact problem). Find
u ∈ U , λt and λn ⩽ 0 such that, ∀δu ∈ U0, ∀δλt, and ∀δλn ⩽ 0,

∫

Ω
ε(u) : K : ε(δu)dΩ +

∫

Γ∗c

gnδλn + λnδgn + g
t
· δλt + λt · δg

t
dS +

∫

Γ•c

gnδλn + λnδgn + λt · δg
t
dS =

∫

Ω
f

d
· δudΩ +

∫

∂2Ω
Fd · δudS,

where Γ•c and Γ∗c are the parts of Γc where slip and stick conditions occur, respectively.

The Lagrange multipliers method leads to an exact verification of the contact condi-
tions and the contact forces. Although the contact forces (i.e., the Lagrange multipliers)
are introduced as additional unknowns to the problem. It is to be noted that this leads
to an increase of the size of the problem to be solved, especially when multiple contact
interfaces are present.

3.3.3 Augmented Lagrangian formulation

Augmented Lagrangian formulations are a class of algorithms widely used to
solve constrained optimization problems. The formulation consists in the Lagrangian
multipliers formulation augmented by an augmentation (or penalty) term [Fortin
and Glowinski, 2000], and provides an unconstrained minimization problem with a
smooth functional, which is a great advantage from a numerical point of view. The
augmented Lagrangian formulation has been considered extensively within the context

42



3. Quasi-static frictional contact problems

of incompressibility constraints [Glowinski and Le Tallec, 1984], frictionless contact
[Wriggers et al., 1985; Kikuchi and Oden, 1988] and large displacement contact problems
including friction [Alart and Curnier, 1991; Simo and Laursen, 1992; Pietrzak and
Curnier, 1999].

■ Frictionless case

In the frictionless case, the following augmented Lagrange functional is introduced
for the normal contact constraint [Pietrzak and Curnier, 1999]:

ΠAL
n =





∫

Γc

(λngn +
kn

2
g2

n)dS, λ̂n ⩽ 0;

∫

Γc

−
1

2kn
|λn|

2dS, λ̂n > 0.

(1.29)

where the quantity λ̂n = λn + kngn is the augmented Lagrangian multiplier of the problem.
The variation of the previous potential leads to:

δΠAL
n =





∫

Γc

(λ̂nδgn + δλngn)dS, λ̂n ⩽ 0;

∫

Γc

−
1
kn

λnδλndS, λ̂n > 0.

(1.30)

The structure of this functional is such that it holds not only for λn ⩽ 0, but also for
λn > 0 when the contact is open. It represents a mixture of the augmented Lagrangian
formulation with the perturbed Lagrangian method [Oden, 1981; Simo et al., 1985].

■ Frictional case

In the frictional case, an augmented Lagrangian multiplier of frictional forces can be
similarly introduced as λ̂t = λt + ktgt

. The following functional is then defined in the

state of contact (λ̂n ⩽ 0) [Pietrzak and Curnier, 1999]:

ΠAL
t =





∫

Γc

(
λt · gt

+
kt

2
g

t
· g

t

)
dS, ∥λ̂t∥ ⩽ f |λ̂n|;

∫

Γc

−
1

2kt

(
∥λt∥

2 − 2 f λ̂n∥λt∥+ ( f λ̂n)
2)dS, ∥λ̂t∥ > f |λ̂n|.

(1.31)

And, in the case of opening (λ̂n > 0):

ΠAL
t =

∫

Γc

−
1

2kt
∥λt∥

2dS ∀λ̂t. (1.32)
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The variation of the previous functionals in the case of closed contact leads to:

δΠAL
t =





∫

Γc

(λ̂t · δg
t
+ δλt · gt

)dS, ∥λ̂t∥ ⩽ f |λ̂n|;

∫

Γc

(
f |λn|

λ̂t

∥λ̂t∥
· δg

t
−

1
kt

[
λt − f |λn|

λ̂t

∥λ̂t∥

]
· δλt

)
dS, ∥λ̂t∥ > f |λ̂n|.

(1.33)
And, in the case of opening:

δΠAL
t =

∫

Γc

−
1
kt

λt · δλtdS ∀λ̂t. (1.34)

The search for the exact Lagrange multipliers λn and λt is an iterative process
consisting in different augmentation stages. The commonly adopted approach consists
in an Uzawa-like double-loop algorithm where the augmentations are performed in the
outer loop and convergence of the nonlinear problem (with a fixed Lagrange multiplier
given by the outer loop) is reached in the inner loop [Glowinski and Le Tallec, 1984;
Bertsekas, 1988; Simo and Laursen, 1992]. In particular, with the Uzawa algorithm, the
Lagrange multipliers do not count as additional unknowns in the problem (as opposed
to the Lagrange multiplier method), since they are kept constant in the inner loop and
updated in the outer loop. Therefore, the penalty parameters kn and kt do not affect the
conditioning of the problem, nor the accuracy at convergence. This iteration procedure
usually increases the required number of iterations, but yields a very simple and robust
algorithm [Wriggers et al., 1985; Laursen and Simo, 1993; Zavarise et al., 1995].

This formulation combines the strengths of both the classical Lagrange multipliers
and the penalty method, i.e., decreaseas the ill-conditioning of the governing equations,
guarantees the exact satisfaction of the constraints with finite penalties, and especially
guarantees robustness of the problem, that is it generally converges. However, the
augmentation parameters affect the convergence rate of the problem, with optimal
values that depend on the specific problem and are not known a priori [Sun et al.,
2008].

3.3.4 Nitsche method

Another formulation which can be applied to enforce the contact constraints was
derived by Nitsche [Nitsche, 1971; Wriggers and Zavarise, 2008]. See [Becker and
Hansbo, 1999] for its application to domain decomposition with non-matching grids,
to large deformation problems [Mlika et al., 2017; Mlika, 2018], or thermomechanical
contact problems [Seitz et al., 2019].

It is based on a different concept in which, instead of the Lagrange multipliers,
contact forces are computed from the stress field of the bodies. The Nitsche functional
to take into account frictionless contact conditions is the following:

ΠN
n = −

∫

Γc

1
2

(
FE

n + FE′
n
)

gndS +
1
2

∫

Γc

kng2
ndS. (1.35)
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The variation of the Nitsche functional leads to:

δΠN
n = −

∫

Γc

1
2

(
δFE

n + δFE′
n
)

gndS−
1
2

(
FE

n + FE′
n
)
δgndS +

∫

Γc

kngnδgndS. (1.36)

The method consists in expressing the contact forces and their variations in terms of
the displacement field of each body in contact. In the case of linear elasticity they are:

Fj
n = nj · σ(uj) · nj = nj · (K : ε(uj)) · nj,

δFj
n = nj · σ(δuj) · nj = nj · (K : ε(δuj)) · nj,

(1.37)

for j = E, E′.
The Nitsche method yields a formulation which only depends upon the primary

displacement variables and, in contrast to the Lagrange multiplier method, one does
not need to introduce additional variables. Similar considerations can be done for the
frictional stick case. In the nonlinear case the Nitsche method becomes more complex,
since the variations of the tractions depend upon the type of constitutive equations
used to model the solid. They are thus more difficult to compute than the variations of
the Lagrange multipliers.

3.4 Numerical strategies

In this section, we briefly examine some algorithms crucial for handling contact
problems. Generally, we can differentiate between global algorithms, which are re-
quired to determine the correct number of active constraint equations and to solve
the global equilibrium problem, and local algorithms, which are needed to integrate
frictional constitutive equations at the interface.

Regarding local algorithms, an evolution equation for the tangential sliding has to
be solved. Early methods consist in ªtrial-and-errorº algorithms [Curnier et al., 1992],
or based on mathematical programming approach [Klarbring, 1986]. Another interest-
ing method involves recasting the frictional laws in terms of non-associated plasticity
[Fredriksson, 1976; Michalowski, 1978], with the application of return mapping schemes
to frictional problems [Wriggers, 1987; Giannakopoulos, 1989]. This approach enables
the development of algorithmic tangent matrices, necessary for achieving quadratic con-
vergence within Newton-type iterative schemes. However, due to the non-associativity
of the frictional slip, these matrices are non-symmetrical. Similarly, the bi-potential
method [De Saxcé and Feng, 1998] provides a powerful tool to model dissipative consti-
tutive laws (such as Coulomb friction laws) and enables to write the contact conditions
in a compact form and to uncover an implicit normality rule structure. In particular, the
complete contact law can be rewritten as a projection equation onto Coulomb’s cone.
See [Joli and Feng, 2008] for an application of the bi-potential method with Newton
algorithm, or [Feng, 1995; Feng et al., 2003] with Uzawa algorithm.
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The range of global algorithms for constraint optimization is vast. These include
simplex methods, active set strategies, sequential quadratic programming, penalty,
Lagrangian and augmented Lagrangian techniques. Since contact problems result in a
nonlinear system, these techniques are often coupled with a Newton nonlinear solver or
nonlinear Gauss-Seidel method [Jourdan et al., 1998]. However, the non-differentiability
of the contact laws complicates the direct application of Newton methods. This has
inspired the use of generalized and/or non-smooth Newton methods [Curnier and
Alart, 1988; Pang, 1990; Alart and Curnier, 1991; Alart, 1997; Christensen, 2002; Bertails-
Descoubes et al., 2011; Renard, 2013; Seitz et al., 2015].

In a dynamic context, these strategies are still valid but special attention must be
devoted to the choice of time integration schemes in order to guarantee numerical
stability during the resolution of nonlinear problem. The interested reader may refer
to the following papers for more details and pertinent literature review in different
contexts: [Visseq et al., 2013; Li et al., 2018; Di Stasio et al., 2021; Barboteu et al., 2023;
Barboteu et al., 2024].

3.4.1 Partial Dirichlet-Neumann algorithm or status method

The status method is one of the easiest methods to deal with contact conditions and
to implement. The main idea is to replace the geometrical constraints due to normal
and frictional contact by partial Dirichlet-Neumann boundary conditions in an iterative
manner based on the status of the nodes. This method operates at two iterative levels:

± at the lower level, the interface nodes are iteratively updated based on previous
calculations. For instance, if interpenetration is detected, a Dirichlet condition is
imposed to ensure continuity of movement;

± at the global level, mechanical calculations are iteratively updated with the Dirich-
let and Neumann conditions from the previous level.

To handle normal contact conditions, two node statuses are defined: contact or
detachment. For each interface node, a test is performed to check if the status needs
to be maintained or changed. Regarding tangential contact, a test is carried out on the
tangential reaction on these nodes: if the reaction remains within the Coulomb’s cone,
the nodes are considered adherent. If the tangential reaction exceeds the cone, the nodes
are considered to be sliding. In adhesion, complete Dirichlet conditions are imposed to
ensure continuity of displacement at the interface. In the case of sliding; the normal
contact condition is managed by a partial Dirichlet condition along the interface normal,
imposing MPC-type (Multi Point Constraint) conditions [Abel and Shephard, 1979].
Tangential sliding conditions are addressed through a partial Neumann condition,
imposing a reaction at the Coulomb’s cone boundary.

Such a strategy is however very sensitive to contact status switches and may lead to
instabilities. Moreover, the Dirichlet conditions that change with each iteration lead to
continually factorize the stiffness matrix, which can be a costly operation.
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3.4.2 Augmented Lagrangian and Uzawa algorithm

As explained previously, a combination of the penalty and the Lagrange multiplier
methods leads to augmented Lagrangian methods, which try to combine the merits of
both approaches. Here we consider the frictionless problem. A discretized formulation
of the frictionless augmented Lagrangian (1.29) yields:

LAL(u) = Π(u) + Λ
TGc(u) +

kn

2
Gc(u)TGc(u)−

1
2kn

λ
T

λ, (1.38)

where Λ and Gc contain respectively the force contributions and kinematic constraints
related to the nodes in contact, and λ is related to the nodes in opening, which ensures
differentiability of the functional. Its variation with respect to displacements and
Lagrange multipliers yields the nonlinear equation system:

G(u) + Λ
TCc + knCc(u)TGc(u) = 0

Gc(u) = 0

−
1
kn

λ = 0.
(1.39)

In the previous equations, G(u) stems from the linearization of Π(u) and Cc(u)
from the linearization of Gc(u). By employing Newton’s method to solve (1.39), leads
to the following incremental equation system at the state (ui, Λi):


Kt + knCcTCc CcT 0

Cc 0 0
0 0 −1/knId




i





∆u
∆Λ

∆λ





i+1

= −





Ĝ
Gc

−1/knλ





i

, (1.40)

where Ĝ represents the residual of G after linearization.
The previous linear system involves the direct computation of both displacements

and Lagrange multipliers. When the strategy is used in combination with an Uzawa
algorithm, the Lagrange multipliers are supposed fixed, that is only the variation with
respect to the displacements is computed. In such a way, only the equations pertaining
to the displacements are solved, while the Lagrange multipliers are updated in an outer
loop. By performing the variation with respect to the displacements, and keeping fixed
the Lagrange multipliers Λ, we get:

GUA(u, Λ) = G(u) + Λ
T

Gc + knGc(u)TGc(u) = 0. (1.41)

For a known fixed Lagrange multiplier Λ, Newton’s method is used to solve the
nonlinear problem (1.41). This results, after linearization, in the equation system at the
state (ui, Λ): [

Kt(ui, Λ) + knCc(ui)
TCc(ui)

]
∆ui+1 = −Ĝ(ui, Λ). (1.42)

After convergence of the Newton scheme, Lagrange multipliers are update in the outer
loop:

Λk+1 = Λk + kngn(ui+1). (1.43)

The schematic Uzawa strategy is shown in Algorithm 1.
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Algorithm 1: Uzawa algorithm

Initialize: u0 = 0, Λ0 = 0
for k=1,..., convergence do

for i=1,..., convergence do

± solve G(ui, Λk) = 0
± check convergence ∥G(ui)∥ ⩽ TOL

± perform augmentations Λk = Λk−1 + kngn(ui)
± check convergence: ∥gn(ui)∥ ⩽ TOL

3.4.3 LATIN non-incremental method

The strategies presented beforehand implicitly refer to an incremental approach
to solve the frictional contact problem, consisting in making converge the problem
at a given time step tj, knowing the converged solution from the previous time step
tj−1, up to the final time T. A different resolution method consist in making use of a
non-incremental approach. In a non-incremental approach, all time steps are swept at
each iteration and each non-incremental iteration ends on a space-time approximation
of the solution.

The LATIN method, introduced in [Ladevèze, 1999], is a general strategy for dealing
with nonlinear evolution problems and belongs to the family of non-incremental solvers.
The main idea of the LATIN is to separate the difficulties of a given problem. For many
classes of problems this consists in avoiding the simultaneity of the global character of
the problem and its local nonlinear behavior, which leads to a partitioning of the under-
lying equations into two manifolds: one pertaining to the local and possibly nonlinear
equations, while the other one is related to the linear and possibly global equations.
The search for the solution is based on a two search alternating direction algorithm,
which shares similarities with ADMM (Alternating Direction Methods of Multipliers)
methods [Glowinski and Le Tallec, 1989, 1990; Glowinski, 2015]. At each iteration, a
solution on the whole space and time domain of the problem is alternately built in
each of the two manifolds. When applied to frictional contact problems, the LATIN
method separates the internal equations belonging to the substructures from the contact
conditions that occur at the contact interfaces. In addition, the two-search direction
alternate algorithm of the LATIN shares similar features with augmented Lagrangian
formulations combined with Uzawa-like algorithms [Fortin and Glowinski, 2000; Simo
and Laursen, 1992], which makes it a strongly robust strategy for dealing with contact
problems, ensuring an exact satisfaction of contact conditions at convergence.

To briefly explain the strategy, let us go back to Problem 1.1. Let A
[0,T]
d be the

manifold of solutions satisfying kinematic admissibility (1.17), static admissibility (1.18)
and the constitutive relation (1.19) (which here represents a linear elasticity behavior),

48



3. Quasi-static frictional contact problems

and let Γ
[0,T] be the manifold of solutions satisfying Signorini conditions (Definition 1.1)

and Coulomb’s frictional law (Definition 1.2) in all the time domain [0, T]. The LATIN
method for solving Problem 1.1 consists in iterating successively between manifolds

A
[0,T]
d , a phase which is called linear stage, and Γ

[0,T], named local stage, by following
two alternating search direction equations E+ and E− introduced to iterate in a fixed-
point manner between the two manifolds and to close the problem. Starting from an
initial admissible solution s0, at convergence the exact solution sexact is reached at the
intersection between the two manifolds:

s0 =⇒ · · · =⇒ sn ∈ A
[0,T]
d

local stage
=====⇒

E+
ŝn+1/2 ∈ Γ

[0,T] linear stage
======⇒

E−
sn+1 ∈ A

[0,T]
d =⇒ · · · =⇒ sexact

Moreover, the LATIN naturally leads to a mixed DDM strategy [Champaney et al.,
1999; Oumaziz et al., 2017], where interface variables are constituted by the interface dis-
placements (primal unknowns) and contact forces (dual unknowns). The introduction
of a coarse problem (reduced interface problem) to endow the DDM with the scalability
property is also possible [Ladevèze and Dureisseix, 2000; Ladevèze and Nouy, 2003].
However, the most attractive feature of the method lies in its non-incremental nature
in space-time. In such a way, it is possible to make use of on-the-fly model reduction
based on the separation of variables, such as PGD [Nouy, 2010], even for nonlinear
problems [Ladevèze et al., 2010]. The strategy, applied to frictional contact problems,
will be detailed in the second part of this manuscript.
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4 Overview on model reduction and applications to

frictional contact problems

This section deals with model reduction, both a posteriori and a priori strategies.
The main model reduction techniques in the literature are introduced concisely. In
order to be uniform in notation and without losing generality, the techniques are
introduced on an abstract parameter-dependent boundary value problem. Thereafter
are reported the applications of these techniques specifically for contact problems, with
or without friction, highlighting strong and weak points and focusing on the benefits
that a multiscale approach can bring to model reduction of frictional contact problems.

4.1 Introduction to model-order reduction

In the last decades, reduced-order modeling (ROM) techniques have been developed
to reduce computational costs of linear and nonlinear computational problems with
negligible losses in terms of accuracy of the solution. These methods allow for a
simplified representation of the evolution of physical systems employing a very reduced
number of DOFs. They consist in performing the resolution into a reduced subspaces,
or ªreduced-order basisº (ROB), of the original problem such that it captures the most
dominant aspects of the original one, garanteeing, at the same time, an acceptable
accuracy. Among these methods, model reduction methods based on separation of
variables (of space and time, or other parameters) are the most commonly adopted since
they allow for a simplified representation of the field functions and allow to project the
original problem onto a reduced subspace.

A good approximation of the solution of a given problem sought by model-order
reduction can be assumed on the condition that the set of precomputed solutions is
appropriate in the sense that its Kolmogorov n-width converges to zero as n goes to
infinity:

Definition 1.3 (Kolmogorov n-width). Let Z be an Hilbert linear space, X be a subset
of Z, and Zn a generic n-dimensional subspace of Z. The deviation of X from Zn is:

E(X; Zn) = sup
u∈X

inf
vn∈Zn

∥u− vn∥Z. (1.44)

The Kolmogorov n-width of X in Z is defined as:

dn(X; Z) = inf
Zn

E(X; Zn) = inf
Zn

sup
u∈ X

inf
v∈ Zn
∥u− vn∥Z. (1.45)

Basically, the n-width measures the extent to which X may be approximated by a
n-dimensional subspace of Z.
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These classes of methods can be distinguished by the way in which the ROB is
constructed. A first family of techniques, called a-posteriori methods, involves a learning
phase, called off-line stage where the full-order problem is solved for some values
of the parameters, generating the so-called snapshots, which then are used to create
a reduced-order basis to project the equations and obtain a reduced-order model.
The most classical way to obtain a ROB from a given set of snapshots is the Proper
Orthogonal Decomposition (POD). The POD extracts the most relevant modes from
the snapshots, and these modes are then used to create a pertinent ROB. The strong
point of the method consists in the fact that the number of relevant POD modes is much
lower than the scale of the full-order problem, however the quality of the reduced
model is strongly affected by the pertinence of the ROB. Another way to obtain a ROB
is the Reduced Basis method, which improves the procedure for the selection of the
appropriate snapshots.

Another path consists in seeking the solution of the targeted problem in the span of
a consistent ROB, progressively built by dedicated algorithm during the solving stage.
This represents the a-priori model reduction methods, where no off-line learning stage
is required. To this family belongs the Proper Generalized Decomposition (PGD).

In the following, some of these techniques are described and illustrated on an
abstract boundary value problem where, for the sake of generality, the time dependancy
is replaced by a general parameter dependency with respect to a parameter µ.

4.2 Abstract problem

Let us consider a bounded regular domain Ω included in R3 and a parameter
domain D. Let u be a function defined on D with values on a Hilbert space V , solution
of the following parameter-dependent boundary value problem expressed in an abstract
weak sense:

Problem 1.7. ∀µ ∈ D, find u ∈ V such that, ∀v ∈ V ,

a(u, v; µ) = l(v; µ), (1.46)

with l(•; µ) a linear form on V and a(•, •; µ) a continuous symmetric bilinear form on
V .

By performing a semi-discretization in space on an approximated finite-dimensional
space Vn ⊂ V of dimension n, and by identifying v ∈ Vn by a vector v = (v1, ..., vn)T ∈
Rn, the following discretized system has to be solved for every µ ∈ D:

A(µ)u = l(µ). (1.47)

That is, a n× n linear system depending on a parameter µ for which we are interested
to compute the solution, at a computational cost of O(n3). It is easy to understand
how, if n is very large, the solution of Eq.(1.47) for a large number of parameter values
becomes unfeasible.
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For this purpose, model-order reduction techniques aim at reducing the computa-
tional complexity of such kind of problems. In order to analyse the features of these
techniques, let us introduce the following functional space:

L2(D;V) := {u : D 7→ V ;
∫

D
∥u∥2

Vdµ < ∞}, (1.48)

with ∥u∥V being a norm on V . By denoting P = L2(D; R) := L2(D) and identifying
the space L2(D;V) with the tensor product space V ⊗ P , we are interested in finding
u(x; µ) ∈ V ⊗ P solution of the following space-parameter weak boundary value
problem:

Problem 1.8. Find u ∈ V ⊗ P such that, ∀v ∈ V ⊗ P ,

A(u, v) = L(v), (1.49)

with A(u, v) =
∫

D
a(u, v; µ)dµ and L(v) =

∫

D
l(v; µ)dµ.

.

4.3 Proper Orthogonal Decomposition

An introduction to the Proper Orthogonal Decomposition, whose origins date back
to the Eigenvalue Decomposition introduced by Beltrami [Beltrami, 1873] and its gener-
alization, the Singular Value Decomposition (SVD) introduced by Jordan [Jordan, 1874],
can be found in [Chatterjee, 2000].

Let us suppose that the solution u(x; µ) ∈ V ⊗ P of Problem 1.8 is known, the
Proper Orthogonal Decomposition consists in searching for a separated representation
uM of u in space and parameters such it is the optimal one with respect to some
particular norm. The separated representation is in the form:

uM =
M

∑
k=1

Φk(x)λk(µ), (Φk, λk) ∈ V × P , (1.50)

with Φk functions of the space variables, called space modes or space functions, and
λk functions of the parameter, defined as parameter modes or functions. The previous
separated representation is defined as the one which minimizes the distance to the
solution u with respect to a given norm on V ⊗ P , i.e.,

∥u− uM∥
2 = min

{Φk}
M
k=1∈(V)

M

{λk}
M
k=1∈(P)

M

∥u−
M

∑
k=1

Φk(x)λk(µ)∥
2. (1.51)
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A classical choice for the norm consists in introducing a natural norm on V ⊗P defined
by

∥u∥2 =
∫

D
∥u∥2

Vdµ, (1.52)

and, by denoting with ⟨·, ·⟩V the inner product associated with ∥ · ∥V , one can define an
inner product on V ⊗ P associated with ∥ · ∥ as:

⟨⟨u, v⟩⟩ =
∫

D
⟨u, v⟩Vdµ. (1.53)

It can be shown that the inner product ⟨⟨·, ·⟩⟩ holds the following separation property :

⟨⟨Φλ, Φ∗λ∗⟩⟩ = ⟨Φ, Φ∗⟩V ⟨λ, λ∗⟩P , ∀ Φ, Φ∗ ∈ V , ∀ λ, λ∗ ∈ P , (1.54)

with ⟨λ, λ∗⟩P =
∫

D
λλ∗dµ being the natural inner product in L2(D). Under these

circomstances, the POD problem 1.51 is equivalent to finding the M eigenvectors
associated to the M largest eigenvalues of the following eigenproblem:

R(Φ) = σΦ, (1.55)

with R : V 7→ V being a symmetric positive linear operator, called spatial correlation
operator or POD operator, defined as:

⟨R(Φ), Φ∗⟩V = ⟨⟨Φ∗, u⟩V ⟨u, Φ⟩V ⟩P ∀Φ∗. (1.56)

By denoting with {Φk}k⩾1 an orthogonal set of eigenfunctions of R, and by sorting the
eigenpairs (Φk, σk) ∈ V ×R+ in an increasing order of the eigenvalues, i.e., (σ1 ⩾ σ2 ⩾

· · · ⩾ 0), then the optimal orthogonal separated representation uM of order M for u can
be obtained, with

λk(µ) =
⟨Φk, u⟩V
∥Φk∥

2
V

, (1.57)

and the approximation error which verifies:

∥u− uM∥
2 = ∥u∥ −

M

∑
k=1

σk →
M→∞

0. (1.58)

Remark 1.1. The optimal separated representation can be equivalently reformulated as
an eigenproblem on λ, as follows:

G(λ) = σλ, (1.59)

where G represents the complementary POD operator, defined as

⟨G(λ), λ∗⟩P = ⟨⟨λ∗, u⟩P ⟨u, λ⟩P ⟩V , ∀λ∗. (1.60)
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Similarly, from the eigenvectors λk of G, one can find the space functions as:

Φk(x) =
⟨λk, u⟩P
∥λk∥

2
P

. (1.61)

It can be shown that eigenproblems (1.55) and (1.59) are equivalent, that is to say if
(Φk, σk) ∈ V ×R+ is an eigenpair of (1.55), then (λk, σk) ∈ V ×R+, with λk given
by (1.57), is an eigenpair of (1.59) and vice versa.

Remark 1.2. A natural choice for ⟨·, ·⟩V and ⟨·, ·⟩P is the inner product in L2. The
energy norm associated to the bilinear form a is also often used.

4.3.1 A posteriori model reduction through Proper Orthogonal Decomposition

POD is a useful tool for data compression/analysis and reduced-order modeling
in different domains, such as stochastic analysis of experimental or numerical data,
acoustics, image treatment, dynamical systems, CFD, etc. [Chatterjee, 2000; Atwell and
King, 2001; Kerschen et al., 2005; Zimmermann, 2013]. In order to perform classical
POD, an approximation of u has to be known in order to perform the a posteriori
analysis. In a parametrized problem, the usual way to proceed is to choose a sample of
size p of the parameter domain Dp ⊂ D and to solve the full-order problem for all the
parameters in Dp. For each parametric problem solved, through the POD procedure a
reduced-order basis of space functions is extracted and added to a global reduced-order
basis. Then the reduced-order basis is used to project the equations of the full-order
problem onto a reduced subspace.

■ Galerkin projection on a spatial reduced-order basis

Let us suppose that a global reduced-order basis in space {Φk}
M
k=1 has been extracted

by solving the parametric problem for p different parameters in D, that is, a low-
dimensional subspace VM = span{Φk}

M
k=1 ⊂ V has been constructed, with M ⩽ p. A

posteriori model reduction with POD consists in a Galerkin projection of the original
problem onto the low-dimensional subset VM, that is to find uM ∈ VM ⊗P such that,

A(uM, vM) = L(vM), ∀vM ∈ VM ⊗P . (1.62)

Eq. (1.62) consists in a parameter-weak formulation of the following system of M
equations:

M

∑
j=1

a(Φj, Φi; µ)λj(µ) = l(Φi; µ), i ∈ {1, ..., M}, (1.63)
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where the unknows are the parameter functions {λk}
M
k=1. The previous problem can

then be used to solve the problem for different values of the parameter with a reduced
computational cost. In a discretized version, Eq. (1.63) consists in solving the following
linear system: [

Φ
T
MA(µ)ΦM

]
ΛM = Φ

T
Ml(µ), (1.64)

where ΦM = {Φk}1⩽k⩽M represents the collection of the space functions and ΛM =
{λk}1⩽k⩽M the collection of the parameter functions. AM(µ) = Φ

T
MA(µ)ΦM ∈ RM×M

represents the reduced-order discrete operator of the problem, now of size (M×M),
projection of the full operator A onto the reduced-order basis, while lM(µ) = Φ

T
Ml(µ) ∈

RM represents the projection of the linear operator onto the reduced-order basis. Now,
in the reduced subspace, for every parameter one has to solve a M×M linear system,
with M≪ n.

Remark 1.3. If the operator A is parameter-independent or with an affine dependence
on µ, the projection onto the reduced-order basis can be done once and for all in the offline
stage. Instead, when it depends on µ in a non-affine manner, the projection onto the
reduced-order basis has to be computed each time for every parameter where we want
to solve the problems, and it can be computationally costly as it scales with the size of
the original problem n, thus reducing the performances of model-order reduction [Grepl
et al., 2007; Capaldo et al., 2017].

Remark 1.4. Another point of view consists in constructing a low-dimensional subspace
PM = span{λk}

M
k=1 ⊂ P by means of POD applied to the problem for the p different

parameter values, and then looking for the Galerkin approximation uM ∈ V ⊗ PM
defined by:

A(uM, vM) = L(vM), ∀vM ∈ V ⊗ PM. (1.65)

This time, Eq. (1.65) leads to solve a set of M equations for the M space functions
{Φk}

M
k=1. However this approach, for large scale applications, leads to higher com-

putational costs compared to the approach based on projecting onto a basis of space
functions.

■ POD in the discretized format

The application of the POD for model-order reduction of boundary value problems
requires the preliminary computation of a suitable reduced-order basis. This reduced-
order basis can be computed by performing a POD of the solution of the full-order
problem for a sample of p parameter values in Dp ⊂ D. These solutions are called
snapshots of the problem, and can be arranged in a matrix A of size n × p, as in
Figure 1.23.

By making use of an L2 norm on both V and P , applying POD to such an arrange-
ment of vectors u(µi) ∈ Rn leads to solve the following eigenvalue problem for the
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Figure 1.23: Arrangement of the snapshots.

covariance matrix C = ATA in order to find the spatial basis:

CΦi = αiΦi. (1.66)

In this discretized format, and by making use of a proper norm, POD is also equivalently
known as Principal Component Analysis (PCA), Karhunen-Loeve Decomposition
(KLD) or Singular Value Decomposition (SVD) [Wu et al., 2003].

We also give a brief explanation of the SVD, a concept we will need later throughout
the manuscript. The SVD is a factorization of a real or complex rectangular matrix,
introduced first in [Beltrami, 1873] for real matrices, and extended later to complex
matrices in [Eckart and Young, 1936]. The SVD factorization has the following form:

A = VΣU
T, (1.67)

where V is the n× n matrix of the orthonormal space vectors Vk, U is the p× p matrix
of the orthonormal parametric vectors Uk, and Σ is a n × p diagonal matrix whose
non-zero entries min(n, p) are the singular values σk > 0 of the matrix. The singular
values are the square roots of the eigenvalues of the covariance matrix C = ATA.
Singular values are ordered in Σ in a decreasing manner, and their magnitude indicates
the relevance that the respective mode has in representing A. The faster the singular
values decrease, the more A is approximable with a reduced number of modes:

A ≈ AM =
M

∑
k=1

VkσkUT
k . (1.68)

4.4 Reduced Basis Method

For the Galerkin-POD, the quality of the solution obtained in the reduced subspace
is affected by the quality of the computed ROB. In particular, for problems which have
strong variations in boundary conditions or strong dynamic evolutions the number
of necessary snapshots to have a suitable reduced-order basis can increase so much
that the technique becomes unsuitable [Glüsmann and Kreuzer, 2009]. For this reason,
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the Reduced Basis method [Maday, 2006; Rozza et al., 2008; Quarteroni et al., 2015;
Hesthaven et al., 2016] improves the procedure for the selection of the appropriate
snapshots in order to obtain a relevant ROB, although it will not necessarily give a basis
with a smaller dimension.

Similarly to the POD, the Reduced Basis method belongs to the separated variables
model reduction techniques, and the idea behind consists in approximating the solution
u(x; µ) of a parameter-dependent problem by a linear combination of preliminary com-
puted solutions u(x; µi) corresponding to properly chosen parameters that maximize an
a posteriori error estimator [Veroy and Patera, 2005; Rozza, 2011]. The main difference
of the Reduced Basis method with respect to the POD lays in the construction of the
ROB. In the Reduced Basis method the snapshots are constructed at specific parameter
values selected by a greedy algorithm:

µ1 = arg sup
µ∈D

∥u(x; µ)∥V ,

...
µi+1 = arg sup

µ∈D
∥u(x; µ)−Πiu(x; µ)∥V ,

(1.69)

with Πi being an orthonormal projection onto Φi = span{u(x, µk)}, k = 1, ..., i. That
is, a greedy alghoritm that looks for the best M parameters where to evaluate the full
problem.

■ A posteriori model reduction with Reduced Basis method

The procedure to solve Problem 1.8 by the Galerkin Reduced Basis method is similar
to the Galerkin-POD one. During the offline phase, the full-order model is first solved
for some relevant parameter values µi obtained by the greedy algorithm described
previously. These are the snapshots of the solution, and a ROB is obtained simply by
collecting the snapshot solutions Φi = u(x, µi) and performing an orthonormalization
in order to improve the conditioning of the reduced-order problem. The main difference
with POD-based model reduction relies on the fact that, thanks to the greedy algorithm,
the computed snapshots do not need to be compressed in order to extract a relevant
reduced-order basis, instead the snapshots themselves are used as reduced-order basis.

4.5 Proper Generalized Decomposition

Other techniques do not involve preliminary costly simulations in order to construct
a reduced-order basis. They progressively build, by online dedicated algorithms, a
pertinent ROB during the resolution of the same problem.

The Proper Generalized Decomposition (PGD) is a recent model-order reduction
technique that can be intended as a generalization of the POD, that is orthogonality
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between the modes of a compressed representation of a function is not strictly required,
and when it is verified it coincides with the POD. Here we will focus directly on the
application of the PGD to the solution of boundary value problems. PGD is based
on the separation of variables and operates a priori, that is, one looks directly for a
low-dimensional separated representation of the solution of a problem, without going
through the computation of snapshots. Its origins can be traced back to the ªradial
loading approximationº introduced as a feature of the LATIN method to reduce memory
requirements [Ladevèze, 1999]. It has since become a stand-alone technique applicable
to the resolution of various boundary value problems [Nouy, 2010; Chinesta et al., 2011]:
from parametric problems [Chinesta et al., 2010], real-time simulations [Niroomandi
et al., 2013], inverse problems [González et al., 2012] to stochastic problems [Nouy,
2009]. Strict bounds on global error in the PGD context can be found in [Ladevèze and
Chamoin, 2011].

4.5.1 A-priori model reduction through Galerkin-PGD

Here, we introduce the classical definition of PGD based on Galerkin orthogonality
criteria, applied to the parametric abstract Problem 1.8.

■ Progressive PGD

Let us assume that a M − 1 order decomposition uM−1(x; µ) of u in the form of
Eq. (1.50) is already known. One looks for the decomposition of order M by searching
for a new couple (ΦM, λM) ∈ V × P through Galerkin orthogonality with respect to
the test function v = Φ∗MλM + ΦMλ∗M, as follows:

A(uM−1 + ΦMλM, Φ∗MλM + ΦMλ∗M) = L(Φ∗MλM + ΦMλ∗M), ∀(Φ∗M, λ∗M) ∈ V × P .
(1.70)

Given the linearity of operators A and L, ΦM and λM satisfy Eq. (1.70) if and only if
they satisfy the following two problems:

A(uM−1 + ΦMλM, Φ∗MλM) = L(Φ∗MλM), ∀Φ∗M ∈ V , (1.71)

A(uM−1 + ΦMλM, ΦMλ∗M) = L(ΦMλ∗M), ∀λ∗M ∈ P . (1.72)

Eq. (1.71) is an application SM : P 7→ V which maps λM ∈ P into ΦM = SM(λM) ∈
V . Conversely, Eq. (1.72) is an application PM : V 7→ P which maps ΦM ∈ V into λM =
PM(ΦM) ∈ P . The resolution technique of the previous problem can be performed with
a fixed-point type iterative process that alternatively solves ΦM = SM(λM), assuming
known λM (from the previous iteration) and then solves λM = PM(ΦM), as shown
in Algorithm 5. This approach is named progressive Galerkin-PGD, since modes are
computed progressively and added to the separated representation of u until a good
convergence of the solution is obtained.
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Algorithm 2: Progressive Galerkin-PGD: fixed-point scheme

Initialize λM = 1;
while non convergence do

± compute ΦM = SM(λM);
± compute λM = PM(ΦM);
± check convergence;

Set uM = uM−1 + ΦMλM

However, this approach leads to a separated representation that is not always
optimal, that is it may require a large number of modes to obtain a given level of
accuracy.

■ Optimal Galerkin-PGD

A more general approach consists in finding the M spatial functions ΦM = {Φi}1⩽i⩽M
and the M parameter functions ΛM = {λi}1⩽i⩽M simultaneously. Let P : (V)M 7→
(P)M be the application which maps the set of space functions ΦM onto the set of
parameter functions ΛM = P(ΦM), defined by:

A(ΦM ·ΛM, ΦM ·Λ
∗
M) = L(ΦM ·Λ

∗
M), ∀Λ

∗
M ∈ (P)M, (1.73)

with ΦM · ΛM = ∑
M
k=1 Φkλk. Let also S : (P)M 7→ (V)M be instead the application

which maps the set of parameter functions ΛM onto the set of space functions ΦM =
S(ΛM):

A(ΦM ·ΛM, Φ
∗
M ·ΛM) = L(Φ∗M ·ΛM), ∀Φ

∗
M ∈ (V)M. (1.74)

The optimal couple (ΦM, ΛM) is thus the one that satisfies both of the previous equa-
tions, and the computation of this couple can be performed with a fixed-point type
algorithm analogous to the one used in the definition of the progressive-PGD (Algo-
rithm 3). However, this approach leads to algebraic systems M times bigger than the
ones obtained with a progressive search of the decomposition, and thus to prohibitive
calculation costs as soon as the number of PGD functions overpasses a given number,
as also M is not known a priori for a given accuracy.

■ Approximation of the optimal Galerkin-PGD

In the context of parameter-dependent PDEs, the application of the map P is rela-
tively cheap since it corresponds to a set of equations for the scalar parameter modes
obtained with the formulation of the original problem on a reduced-order basis of space
functions. The application of the map S, instead, is more costly since it involves the
solution of a set of coupled parameter-independent PDEs for the vectorial space modes
(formulation of the original problem on a reduced-order basis of parameter functions).
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Algorithm 3: Optimal Galerkin-PGD: fixed-point scheme

Initialize ΛM = I;
while non convergence do

± compute ΦM = S(ΛM);
± compute ΛM = P(ΦM);
± check convergence;

end
Set uM = ΦM ·ΛM

For this reason, the optimal Galerkin PGD strategy, consisting in searching simultane-
ously for the M couples of the decomposition should be avoided. Making use of the
progressive PGD, and introducing a simple additional stage to Algorithm 5, makes it
possible to significantly improve the quality of the progressive PGD. The additional
stage consists in introducing the application of P in order to update the whole set of
parameter functions ΛM after each construction of a new couple of functions (ΦM, λM).
This cheap updating stage for the parameter functions, described in Algorithm 4, can
significantly improve the quality of the progressive PGD decomposition [Nouy, 2010].

Algorithm 4: Parameter function update stage

± perform Algorithm 5 and find ΦM;
± compute ΛM = P(ΦM);
± set uM = ΦM ·ΛM

4.5.2 A-priori model reduction through minimal residual PGD

The PGD strategy based on Galerkin orthogonality is easy to implement but gener-
ally may present convergence issues. Another way for formulating the PGD is to use a
minimum residual formulation, which is generally more robust than Galerkin-PGD in
the sense that monotonous convergence in the residual norm can be proved, although
convergence may be slower [Ladevèze and Nouy, 2003; Nouy, 2010]. The minimal
residual formulation for Problem 1.8 consists in defining the PGD approximation as a
problem of minimization of its residualR(u), defined as follows:

⟨⟨v,R(u)⟩⟩ := L(v)− A(u, v) = ⟨⟨v,L−A(u)⟩⟩, ∀ v ∈ V ⊗ P , (1.75)

with L ∈ V ⊗ P and A : V ⊗ P 7→ V ⊗ P defined by using Riesz representations on
the Hilbert space V ⊗ P . Still a progressive search for the PGD couples is considered,
that is a M− 1 order approximation uM−1 is supposed to be known, and one looks for
a new couple (ΦM, λM) defined as follows:
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Problem 1.9 (progressive minimal residual PGD). Find (ΦM, λM) ∈ V × P such
that,

(ΦM, λM) = arg min
(ΦM,λM)∈V×P

∥R(uM−1 + ΦMλM)∥2. (1.76)

That is to say,

(ΦM, λM) = arg min
(ΦM,λM)∈V×P

1
2
⟨⟨A(ΦMλM),A(ΦMλM)⟩⟩− ⟨⟨R(uM−1),A(ΦMλM)⟩⟩.

(1.77)

Stationarity conditions for Eq. (1.77) lead to the following problem:

∀ (Φ∗M, λ∗M) ∈ V × P ,

⟨A(ΦMλM),A(Φ∗MλM + ΦMλ∗M)⟩ = ⟨R(uM−1),A(Φ
∗
MλM + ΦMλ∗M)⟩. (1.78)

Similarly to the Galerking-PGD, even in this case one has to solve iteratively the
following two problems:

± ΦM = SM(λM) ∈ V defined by:

⟨⟨A(ΦMλM),A(Φ∗MλM)⟩⟩ = ⟨⟨R(uM−1),A(Φ
∗
MλM)⟩⟩, ∀Φ∗M ∈ V ; (1.79)

± λM = PM(ΦM) ∈ P defined by:

⟨⟨A(ΦMλM),A(ΦMλ∗M)⟩⟩ = ⟨⟨R(uM−1),A(ΦMλ∗M)⟩⟩, ∀λ∗M ∈ P . (1.80)

The verification of the previous equations consist in a pseudo-eigenproblem GM(ΦM) =
σMΦM for the operator GM = SM ◦ PM. It can be proven that this method has a mono-
tonic convergence in the residual norm, i.e.,

∥R(uM)∥2 = ∥R(uM−1)∥
2 − σM(ΦM), (1.81)

but the resulting decomposition may present very poor convergence properties with
respect to usual solution norm ∥u− uM∥. A suitable residual norm may improve this
convergence rate, however, the construction of a suitable norm is not straightforward
and the use of optimal norms may induce additional computational issues. The best
approach to use for the construction of the PGD modes depends on the problem we
are willing to solve, and the interested reader can refer to [Nouy, 2010] for a detailed
overview of different approaches for different boundary value problems.
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4.6 Nonlinear problems and hyperreduction

Model-order reduction is particularly suitable for linear problems, in fact when op-
erator a in Problem 1.7 is linear and independent from µ (or with an affine dependency
on µ), its projection onto a reduced basis, as in Eq. (1.63), can be done once and for all
offline and can be then factorized and used for the solution of the problem at different
parameter values. When we have to deal with nonlinear problems, the solution needs
to be coupled with linearization techniques that generate a series of different linear
problems that need to construct a new reduced-order model. This means that one
has to evaluate the nonlinear terms, integrate them over the entire domain and then
project them on the ROB, wit a computational complexity that scales with the size of
the original problem.

In order to exemplify this, let us consider the following nonlinear reference problem:
find u ∈ V ⊗ P such that ∀v ∈ V ⊗ P ,

A(u, v) + G(u, v) = L(v), (1.82)

with G being a nonlinear form on u and v obtained with the integration of a nonlinear
function g(u; µ). The most used technique to solve nonlinear problems is the Newton-
Raphson method, an incremental iterative solver which at every iteration requires
to solve a linear problem. Let us consider a given ROB of space functions ΦM =
{Φi}1⩽i⩽M, we search for an approximate solution uM = ∑ Φiλi, and by considering Φj
as a test function. In the incremental step the following linear system for Λ = {λi}1⩽i⩽M
is obtained [Capaldo et al., 2017]:

∑
i

[
A(Φi, Φj) +

∫

Ω

Φi
∂g
∂u

(u(n); µ)Φj

]
λi = −R(u

(n); µ, Φj), (1.83)

where the residualR now takes into account also the nonlinear term G. The linear term
A(Φi, Φj) does not depend on the current value of the iterated solution u(n) and, if it
does not depend on the parameter µ, it can be computed once and for all, provided that
the ROB does not change. However, the nonlinear term ∂g

∂u (u
(n); µ) and the residual

R(u(n); µ) depend nonlinearly on u(n) and also on µ, and have to be computed at each
iteration anyway.

It can be shown [Capaldo et al., 2017] that the evaluation of the nonlinear terms
in the reduced framework scales with the dimension of the original high-dimensional
problem, and thus represents a bottleneck for the application of model reduction in
nonlinear problems. In order to overcome this obstacle, several approaches have been
proposed, indicated as hyperreduction methods.

For model reduction techniques based on a learning stage (POD-Galerkin or Re-
duced Basis methods for instance), the Empirical Interpolation Method (EIM) is prob-
ably one of the most popular. It has been developed in particular for linear elliptic
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problems with non-affine parameter dependence [Barrault et al., 2004] as well as for
nonlinear elliptic and parabolic problems [Grepl et al., 2007]. It consists in approxi-
mating the nonlinear function g(u; µ) with interpolating functions evaluated at some
ªmagic pointsº computed offline by a greedy selection. Several variants can be found in
the literature, for example the Best Interpolation Point Method [Nguyen and Peraire,
2008] or the Discrete EIM (DEIM) [Chaturantabut and Sorensen, 2010; Tiso and Rixen,
2013]. Another family of techniques for nonlinear problems is the one based on the a
priori Hyper-Reduction [Ryckelynck, 2005]. Reduced Integration Domain (RID) tech-
niques are also used, they consist in selecting few elements of the mesh to perform the
local integration of the nonlinear terms [Fauque et al., 2018].

In [Capaldo et al., 2017], a new approximation technique, called Reference Point
Method (RPM), is proposed in the context of PGD-based model reduction. The RPM is
similar to the EIM, however it does not interpolate the nonlinear function. It is rather an
approximation technique of the integrals involved in the Galerkin projection similarly
to quadrature techniques in classical finite element methods, and is more efficient in
contexts where the ROB changes quite often, as in PGD-based model reduction.

4.7 Model reduction in contact problems

The application of model reduction to contact mechanics problems is challenging,
since a reduced-order basis may not easily and efficiently capture non-regular and
propagating phenomena that occur at the contact interface: sliding, sticking and sepa-
ration zones being difficult to represent. The difficulty associated to efficiently capture
propagating phenomena with a separated format can be exemplified in [Allier et al.,
2015], where a one dimensional transient thermal problem with a moving thermal
load poses major issues to classical PGD approaches. Even though not strictly related
to contact problems, this example is illustrative on how the sliding front of a contact
problem may be diffcult to capture with a reduced-order basis.

Mainly we can distinguish between a posteriori methods, applied on parametric
contact problems where a large amount of contact analyses must be carried out by
varying an appropriate parameter which may be, for example, the coefficient of friction
or the position of a rigid obstacle, and a priori methods, based essentially on the PGD
combined with the LATIN solver.

■ A posteriori methods

With regard to a posteriori methods, in [Balajewicz et al., 2016], the authors consider
a parametric contact problem (body in contact with a parametrized obstacle) without
friction formulated with the method of Lagrange multipliers, and propose a strategy
based on the POD of different snapshots of the problem to build a reduced-order basis
for both the displacement field u and the contact forces λ (i.e., the Lagrange multipliers).
The construction of a ROB for the Lagrange multipliers requires it to be a positive basis.
For this purpose, the authors operate a non-negative matrix factorization (NNMF) of
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the snapshots, which is the positive counterpart of the SVD [Lee and Seung, 1999].
The iterative greedy approach for sampling the parameter domain during the training
of the ROM is equipped with an error indicator of reasonable offline computational
complexity. The computational complexity of the resulting iterative sampling and
ROB construction procedure is dominated, however, by the cost of a high number of
high-dimensional simulations equal to the number of parameter samplings.

In [Benaceur et al., 2020] a similar approach is applied in the context of the Reduced
Basis method for frictionless parametric contact problems with nonlinear constraints
(which can be the case, for example, of a frictionless contact problem in large displace-
ments) combined with the Empirical Interpolation Method to deal with the nonlinear
constraints. The authors construct the ROB for the Lagrange multipliers by means
of a cone-projected greedy algorithm that conserves the non-negativity of the basis.
In [Niakh et al., 2023], a recent extension of the previous work, the authors propose
an algorithm that guarantees inf-sup stability [Brezzi, 1974] of the generated reduced
problem.

Still with the Reduced Basis method, the same authors consider model reduction
for parameterized contact problems (in this case with and without friction) formulated
with Nitsche’s method [Niakh et al., 2024]. The strategy presents considerable benefits
compared to mixed (primal-dual) approaches. In fact, since Nitsche’s method is a primal
method that does not require the introduction of additional Lagrange multipliers, there
is no need to guarantee inf-sup stability. In addition, the need to construct a ROB for
the Lagrange multipliers, which present low reducibility [Kollepara et al., 2023], is
avoided.

In [Fauque et al., 2018], the authors propose an hyperreduction method based
on a reduced integration domain (RID) for frictionless contact problems formulated
with Lagrange multipliers. The potential contact zone is reduced through the reduced
mesh involved in the hyperreduced equations. In contrast to previous work on mixed
formulations, which choose to project the dual variable, i.e., the Lagrange multipliers,
onto a dual ROB, the authors treat the contact forces on the full-order model restricted
to the RID in order to obtain a better quality of the contact forces and contact constraints.
Due to non-projection on a dual ROB, the ROM checks all the contact conditions of the
FOM in the RID.

A similar idea has also been developed in [Ballani et al., 2018], for parametrized
frictional contact problems with augmented Lagrangian formulation. In practice, in
order to be more accurate on the interface contact quantities, the authors exploit a
ªlinear±nonlinear domain decompositionº to develop a hybrid formulation: a Reduced
Basis approximation is performed on the part of the domain associated to linear elastic
behavior (i.e., far from the contact interface), and a full-order model is adopted at the
local nonlinear contact interface. The method is particularly efficient when the contact
interface is really small compared to the whole structure. For numerous and large
contact interfaces, the method loses considerable efficiency.

A different approach, even though it does not necessarly correspond to model-
order reduction, is adopted in [Cardoso et al., 2018]. The authors take advantage
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of similarities between the mechanical fields around the contact edges in cylindrical
contact configurations under fretting conditions and crack tips functions in linear elastic
fracture mechanics. POD modes are used to generate enrichment functions in an X-FEM
(eXtended Finite Element Method [Moës et al., 1999]) environment and to compute the
stiffness matrix which depends on the location of the contact edge.

For general contact problems however, the contact front or the position of sticking/s-
liding front is not known in advance, which makes these techniques not appropriate in
our situation, with this knowledge being not available.

■ A priori LATIN-PGD strategy

The a posteriori methods discussed previously present a significant gain in com-
putational time in the online phase, however the offline phase is still too expensive.
Moreover, the approaches are directed to parameterized problems. In our case we are
dealing with a large variety of possible external loads that are not parameterized but
results from a statistical description of external environmental loads. Taking a subset of
the possible external environmental loads and performing full scale simulations on a
detailed wire rope model remains infeasible. Moreover, such problems present large
sliding fronts propagating across vast frictional contact interfaces. The a posteriori
methods described above do not investigate this class of problems.

However, some interesting points can be made that motivate the use of an a priori
multiscale approach based on DDM. In [Fauque et al., 2018] it is made clear that being
accurate on the frictional contact interface is a challenging task. They propose to
overcome this problem by avoiding creating a reduced basis for the forces (the most
difficult to reduce) but going to represent them at full scale in appropriate parts of the
contact interface. This is a choice that in practice motivates the use of a DDM approach
for model reduction of contact problems. DDM naturally allows different regions of
the body to be separated, freely allowing one to choose where to be most accurate with
the reduced model. Same thing can be said about [Ballani et al., 2018]. Here DDM is
much more obvious. The authors choose to use a reduced model for the ªglobalº part
of the problem, and a full scale approach in the contact interface.

These ideas are completely natural in the LATIN-based DDM approach. LATIN
naturally presents the concept of contact interface in a physically meaningful way. In
addition, the coarse scale problem of the multiscale approach is natural and itself
acts as a coarse reduced model that is able to effectively capture the behavior of areas
ªfar awayº from the contact interfaces. Then, the reduced-order model on the contact
interfaces is created locally on the interfaces themselves, different for each subdomain,
allowing for better accuracy in the contact zones.

Applied to different contexts (viscoelasticity, homogenization, delamination in
composites...etc) [Ladevèze and Nouy, 2003; Nouy and Ladevèze, 2004; Ladevèze
et al., 2007; Ladevèze et al., 2010; Caignot et al., 2010], the multiscale LATIN-based
mixed DDM with PGD makes it possible to take into account also frictional contact
interactions. In previous works, however, rather short frictional cracks had a more
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or less limiting effect on the global scale, surrounded by other material nonlinearities.
It has never been investigate to what extent a multiscale approach, in particular one
based on domain decomposition, may be helpful in efficiently solving frictional contact
problems with a model reduction approach, and what are the benefits of combining a
multiscale strategy with PGD.

A first application of the strategy with PGD specifically to frictional contact problems
can be found in [Giacoma et al., 2015], even though in the monoscale version. The
most critical point to consider for frictional contact problems with PGD is that frictional
problems present a low reducibility, thus a lot of modes are usually required. Moreover,
given the high irregularity of frictional problems, a lot of useless PGD modes may be
generated decreasing the efficiency of the approach. In this direction in [Giacoma et al.,
2016] it is proposed a downsizing algorithm to sort the reduced basis.

As mentioned before, the coarse scale problem of LATIN itself acts as a coarse
reduced model. In this spirit, the same authors in [Giacoma et al., 2014] make use of
the classical LATIN method (monoscale without PGD) and use it in combination with a
multigrid model that acts as a coarse reduced model or coarse scale problem, which
can capture the global behavior of the structure, and later the LATIN method is used to
capture more local effects. At each iteration, the LATIN method is used at the fine scale,
then cheap coarse corrections are computed to enrich the fine-scale solution thanks
to the ROB previously computed. It is, however, still an a posteriori approach, which
does not make use of PGD, but builds the coarse ROB offline through SVD on different
snapshots.

In DDM based on LATIN, however, the introduction of a coarse problem is nat-
ural and does not require the precomputation of snapshots, combined with a strong
mechanical sense.
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5 Domain Decomposition Methods

Domain decomposition methods (DDM) are numerical strategies for the treatment
of large-scale problems which consist in partitioning a given problem into many smaller
sub-problems defined on appropriate subdomains so as to treat their resolution more
efficiently. DDM can be categorized in two classes: approaches with overlapping sub-
domains [Schwarz, 1869] and approaches without overlapping, which are the most
used nowadays thanks also to their easier implementation. Among these methods,
three types of approaches exist: primal methods, dual methods and mixed methods.
For a detailed overview on non-overlapping primal and dual methods one can refer to
[Gosselet and Rey, 2006; Magoules and Rixen, 2007].

Regarding primal and dual methods, two main classes can be distinguished: the
Finite Element Tearing and Interconnecting (FETI) method [Farhat and Roux, 1991;
Farhat et al., 1993; Farhat, 1994] and the Balanced Domain Decomposition method
(BDD) [Le Tallec et al., 1991; Mandel, 1993; Mandel and Brezina, 1996]. The BDD method
consists in choosing the displacement field at the interface between two subdomains
as main unknown (primal approach) while the FETI method consists in working with
the interface force field (dual approach). Originally FETI could not handle floating
substructures, that is substructures without enough Dirichlet boundary conditions,
while the BDD had no such a problem but manifested loss of scalability as the number
of subdomain increases. In order to deal with these problems, the rigid body modes of
the subdomains can be introduced in the resolution stage as a ªcoarse scale problemº
so as to make the primal and dual methods able to handle floating subdomains and
decompositions without loss of scalability. In practice, the coarse problem enables
non-neighboring subdomains to interact without requiring the transmission of data
through intermediate subdomains. It then enables to spread global information on the
whole structure scale giving to DDM a multiscale aspect.

Mixed DDM strategies also include those based on the LATIN method [Ladevèze,
1999]. The mixed nature of the strategy enables one to deal with different interfaces
characterized by complex constitutive behaviors with a single resolution method. When
the LATIN-based mixed DDM is not equipped with a coarse scale problem, we refer to
it as a monoscale DDM [Ladevèze, 1999; Champaney et al., 1999; Oumaziz et al., 2017].
A multiscale version of the LATIN-based mixed DDM, in which a coarse scale problem
is introduced, was firstly described in [Ladevèze et al., 2001].

Here, we will briefly introduce the primal, dual and mixed approaches for domain
decomposition, largely inspired by [Gosselet and Rey, 2006]. Then we will present
some techniques to handle contact problems with DDM.

5.1 Primal and dual approaches

Primal and dual approaches are essentially based based on Schur’s complement
[Schur, 1917; Gosselet and Rey, 2006]. The starting point consists in partitioning a
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given structure Ω into substructures ΩE ⊂ Ω. Each substructure interacts with the
neighboring substructures through static and kinematic interface quantities.

Let us consider, in the discretized case, the linear equilibrium problem for the whole
structure: KU = F. The local equilibrium of each substructure ΩE can be written as:

KEUE = λE + FE, (1.84)

where λE is the interface force acting on ΩE due to the neighboring substructures,
defined on the boundary ∂ΩE, and FE are external forces acting on ΩE. Interface forces
between substructures have to be equilibrated, that is:

∑
E

AEtEλE = 0, (1.85)

and displacements at the interfaces have to be continuous:

∑
E

BEtEUE = 0. (1.86)

In the previous equations tE is a boolean trace operator, AE is an operator accounting
for the sum of interface quantities, and the BE operator accounts for difference at
the interfaces. DDM based on Schur complement consider to solve the problem by
condensing the local problems (1.84) of the subdomains on the interfaces. For this
purpose, if XE is a vector defined on ΩE, we define XE

b = tEXE the trace of XE on ∂ΩE

and XE
i = (Id − tE)XE the restriction of XE on the interior of ΩE.

■ Finite Element Tearing and Interconnecting

As mentioned before the FETI method [Farhat and Roux, 1991; Farhat et al., 1994]
prioritizes the dual quantities λE at the interfaces, and systematically ensures their
equilibrium conditions by considering a single autoequilibrated Lagrange multiplier
at the interface λb = BET

λE. The resolution strategy of the global problem consists
in injecting the local problems (1.84), condensed on the interfaces, into the interface
kinematic admissibility equation (1.86). Concerning the local problems per subdomain
(1.84), they involve only Neumann boundary conditions and therefore they are not
invertible. What is usually done is to resort to a generalized inverse KE+

such that:

∀X ∈ Im(KE), KEKE+
X = X. (1.87)

One can thus solve (1.84):

UE = KE+
(λE + FE) + REαE, (1.88)

where αE represents the rigid body modes of ΩE and RE is the kernel of KE+
, together

with the conditions that λE + FE does not excite the kernel of KE+
:

RET
(λE + FE) = 0. (1.89)
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The local equilibrium of ΩE (1.88) is then condensed on the boundary ∂ΩE by introduc-
ing the dual Schur complement SE

d of ΩE:

UE
b = SE

d λE
b + UE

c + RE
b αE,

with





SE
d = tEKE+

tET

UE
c = tEKE+

FE

RE
b = tERE

(1.90)

The previous condensed equilibrium equations return the interface displacements
at the boundary which have to satisfy the kinematic admissibility (1.86) and auto-
eauilibrium (1.89), and leads to the following global condensed problem to be solved:

(
Sd G

GT 0

)(
λb
α

)
=

(
−F
−e

)

with





Sd = ∑
E

BESdBET

G =

(
... BERE

b ...
)

F = ∑
E

BEUE
c

e =
(

... FE
b BERE

b ...
)

(1.91)

This global problem would require to compute and exchange a lot of local operators
per subdomain, which can be costly. Moreover the system bandwith can be important
since Dual Schur complements are generally full matrices and concern all subdomain
interface degrees of freedom. Making use of a direct solver is consequently not a good
idea and an iterative solver is preferable, such as a preconditioned conjugate gradient
algorithm,.

Knowledge of good preconditioners can speed up the convergence of the algorithm.
The classical preconditioner adopted is S̃−1

d , called the Dirichlet preconditioner, that is
the weighted assembly of the local primal Schur complements SE

p :

S̃−1
d = ∑

E
B̃ESE

p B̃ET
, (1.92)

with B̃E a weighted assembly operator [Rixen and Farhat, 1999]. The admissibility
condition for interface forces can be handled efficiently by a projection operation. The
interface reactions are sought in the form :

λb = λ0 + Pλ∗, with

{
GTλ0 = −e
GP = 0

(1.93)
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These conditions are satisfied by choosing the initialization λ0 and the projector P such
that :

λ0 = −G(GTG)−1e,
P = I−G(GTG)−1GT.

(1.94)

The initialization λ0 is the assembly of a combination of the resultants and moments
of the interface reactions of each substructure in equilibrium with the resultants and
moments of the imposed external loads, which represents the coarse scale problem
for FETI. The part of the solution λ∗ calculated during the iterations of the conjugate
gradient is sought in the complementary space of λ0. Therefore one can identify two
scales: a coarse scale part with a long length of variation of the interface quantities, and
the complementary part with a shorter length of variation which is sought iteratively
during iterations of the conjugate gradient. The projection operation thus ensures the
scalability of the method.
Other versions of the FETI method include:

± FETI-2: the FETI-2 method [Farhat et al., 1998, 1998; Mandel et al., 1999] incor-
porates additional constraints into the coarse problem in order to handle thin
and shell structures, as well as dynamic applications [Farhat et al., 1995], more
efficiently.

± FETI-DP: a dual-primal version of the FETI method [Farhat et al., 2000b; Farhat
et al., 2001; Mandel and Tezaur, 2001; Klawonn and Rheinbach, 2006]. Dirichlet
conditions at the ªcornerº nodes are also taken into account at each iteration of
the conjugate gradient, thus eliminating the need to determining the solution
belonging to the kernel of the Schur complement. The system becomes invertible
and the calculation of the generalized inverse is avoided.

± Hybrid FETI-DP: when a large number of subdomains is present, the coarse
scale problem can become costly. In Hybrid FETI-DP methods [Klawonn and
Rheinbach, 2010; Řıha et al., 2016; Řıha et al., 2017] a three-level approach is used,
with the subdomains grouped into clusters which are used to solve the coarse
problem.

± T-FETI: Total FETI methods treat the Dirichlet boundary conditions using La-
grange multipliers [Dostál et al., 2006; Kozubek et al., 2013].

■ Balancing Domain Decomposition method

The BDD primal method [Mandel, 1993; Le Tallec, 1994] is similar to the dual
method and its efficiency is comparable to that of FETI. BDD consist in enforcing the
displacement continuity at the interfaces and by writing a single interface displacement
vector Ub = AET

UE
b . By renumbering the nodes with interior and boundary quantities,

the local equilibrium of a subdomain (1.84) can be rewritten as:
(

KE
ii KE

ib
KE

bi KE
bb

)(
UE

i
UE

b

)
=

(
FE

i
FE

b + λE

)
(1.95)
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This problem can then be condensed on the boundary thanks to the primal Schur
complement SE

p of the substructure ΩE, such that:

SE
pUE

b = λE + FE
c ,

with

{
SE

p = KE
bb −KE

biK
E−1
ii KE

ib

FE
c = FE

b −KE
biK

E−1
ii FE

i

(1.96)

The global equilibrium problem to be solved therefore becomes:

SpUb = Fc,

with





Sp = ∑
E

AESpAET

Fc = ∑
E

AEFE
c

(1.97)

As with the FETI method, the use of a conjugate gradient to solve the interface
problem requires the use of a good preconditioner and a projector, in order to rapidly
transmit the information with a long variation length during iterations. The introduc-
tion of the projector in the primal domain decomposition method is associated with the
iterative solution of the interface problem using the Neumann preconditioner:

S̃−1
p = ∑

E
ÃESE

d ÃET
, (1.98)

with ÃE a weighted assembly operator. Evaluating S̃−1
p consists in solving Neumann

problems on each substructure. It is then necessary to ensure that the residual rp =
Fc − SpUb is self-balancing, that is:

GT
p rp = 0, with Gp =

(
...ÃERE

b ...
)

. (1.99)

This constraint is classically dealt with by looking for the solution in the form:

Ub = U0 + PU∗b , (1.100)

with
U0 = Gp(GT

p SpGp)−1GT
p Fc,

P = I−Gp(GT
p SpGp)−1GT

p Sp.
(1.101)

It is possible also to include additional kinematic conditions relating to the interface
nodes for the preconditioner: for example, imposing continuity of displacements for the
corner nodes. This leads to the BDDC method, primal version of the FETI-DP [Mandel
and Sousedık, 2007; Mandel et al., 2012].
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5.2 Mixed domain decomposition methods

Mixed domain decomposition methods involve searching for a combination of
displacements and interface forces [Farhat et al., 2000a]. The kinematic and static
admissibility equations are coupled by introducing a new interface variable µE

b =

λE + kEUE
b . The condensed local problem of each substructure becomes:

(
Sp + kE

)
Ub = µE

b + FE
c . (1.102)

In practice, the introduction of kE parameters regularize the local problems for floating
or partially floating substructures, however they also have a strong influence on the
convergence of the method. As it is posed, the interface problem can be solved itera-
tively without preconditioning. Finally, as the local problems are well posed, the coarse
problem required for fast transmission of long-wavelength effects during the iterations
of the iterative solver must be artificially introduced.

■ LATIN-based mixed DDM

The mixed domain decomposition method based on the LATIN method [Lade-
vèze, 1999] decomposes the structure into substructures separated by interfaces, with
substructures and interfaces having their own variables and equations. One of the
originalities of this approach is that the interfaces are endowed with a stronger physical
sense and it is possible to attribute them their own complex constitutive behavior in
terms of both primal and dual variables, thus the mixed nature of the approach.

Unlike the mixed approach described previously, the mixed interface variables arise
naturally when the interface problem is solved using the LATIN solution algorithm.
In the LATIN the condensed system is iteratively solved by an alternating direction
method of multipliers (ADMM), which is similar to Uzawa-like algorithms. This
alternating direction iterative scheme is naturally introduced in the LATIN method.
The LATIN process is described here in a simplified way. In the next chapters the
strategy will be presented rigorously in detail.

We assume that the behavior of the substructures is linear elastic, with nonlinearities
concentrated at the interfaces, and that the discretizations of the substructure and
interface fields are compatible. An iteration of the LATIN algorithm applied to the
solution of the substructured problem consists of two steps:

± A global stage. A stage consisting on solving independent problems per sub-
structure in parallell. To this end, an artificial interface stiffness operator kE is
introduced, linking the primal and dual fields of the interfaces of the substructure
ΩE to those from the previous iteration:

λE
bn
+ kEUE

bn
= λE

bn−1/2
+ kEUE

bn−1/2
. (1.103)
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The condensed local equilibrium problem of each substructure can then be solved
locally by injecting the previous equation in such a way as to eliminate interface
force unknowns:

(
Sp + kE

)
UE

bn
= FE

c + λE
bn−1/2

+ kEUE
bn−1/2

. (1.104)

± A local stage. A stage on the interface fields where the local behavior, possibly
nonlinear, is solved locally on each interface:

bEE′
(
UE

bn−1/2
, UE′

bn−1/2
, λE

bn−1/2
, λE′

bn−1/2

)
= 0, (1.105)

where bEE′ represents the constitutive behavior of the interface between subdo-
mains ΩE and ΩE′ .

The coarse scale problem in the LATIN is obtained by imposing the continuity of
an average of interface fields between adjacent substructures, and by calculating and
assembling an homogenized behavior operator of the substructures in the sense of
these quantities. The averages of the interface fields, called macroscopic quantities, are
the long-variation parts of the solution. The complementary microscopic quantites are
instead related to local variations.

The strategy is very versatile and adapted to many different fields. Structures
with high material heterogeneity [Ladevèze et al., 2001; Loiseau, 2001], for fatigue
cracking calculations with integration of XFEM [Guidault et al., 2007; Guidault et
al., 2008], damage in laminated composites [Violeau, 2007], debonding in laminates
[Kerfriden, 2008; Kerfriden et al., 2009; Saavedra et al., 2012], and more recently for
magnetostatic simulations [Ruda, 2023; Ruda et al., 2024]. Space-time approximations
of the solution can be used to efficiently solve problems posed over a large time interval
and requiring fine temporal discretizations [Ladevèze and Nouy, 2002; Nouy, 2003;
Nouy and Ladevèze, 2004; Passieux, 2008; Passieux et al., 2010]. A third scale (super
macroscale) can be introduced to solve efficiently the coarse scale problem when the
number of subdomains becomes large [Loiseau, 2001; Ladevèze and Nouy, 2002; Nouy,
2003; Kerfriden, 2008; Kerfriden et al., 2009].

5.3 Domain decomposition for contact problems

Domain decomposition strategies can also be applied to efficiently solve large
contact problems. In the case of contact problems, the concept of interface is naturally
present which leads to decomposing the structure so that the decomposition interfaces
coincide with the contact interfaces. In the case of contact interfaces, however, the
continuity of displacements is not verified, which makes primal methods unsuitable
for this purpose. For this reason, dual FETI and mixed LATIN-based approaches are
generally better suited for this type of problems. For an overview on the topic one may
refer to [Dostál et al., 2016].
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A solution to frictionless contact problems based on the FETI method, named FETI-
C, was introduced in [Dureisseix and Farhat, 2001] with scalability properties based
on an active set strategy wherein a coarse contact system was integrated to guide the
iterative prediction of the active contact zone.

In [Avery et al., 2004; Avery and Farhat, 2009] a FETI-DP method is introduced
for solving iteratively frictionless contact problems, named FETI-DPC, featuring a
nonlinear Krylov-type acceleration scheme. Numerical scalablity is achieved with
respect to both the problem size and the number of subdomains.

Several works from Dostál and coworkers [Dostál and Schöberl, 2002; Dostál and
Horák, 2003, 2004, 2004; Dostál et al., 2009; Dostál et al., 2010; Dostál et al., 2012] com-
bine the FETI method with results from bounded constrained quadratic programming
developing optimal algorithms for solving constrained variational inequalities.

In a recent work, [Yin et al., 2024] propose to integrate the FETI method into the
B-differentiable equations (BDEs) method [Pang, 1990] for the analysis of 3D elastic
frictional contact problem with small deformations. The governing equations consisting
of the contact equations, interface continuity equations and equilibrium equations for
each subdomain are formulated with the BDEs.

However, it is not necessary that the contact interfaces coincide with the subdomain
interfaces, they can also be located within the subdomains. In this way, for example, it
is possible also to make use of a primal approach as in [Barboteu et al., 2001], where the
authors partition a structure with multiple contact interfaces by treating the physical
contact interfaces inside the subdomains. The strategy is solved with a Newton-Schur
algorithm, that is at each linearization of a generalized Newton algorithm, the linearized
problem is solved with a primal Schur complement method.

Domain decomposition has also been applied succesfully to non-smooth contact
dynamics [Moreau, 1999], see for example [Visseq et al., 2013] for a FETI-based approach
and [Alart et al., 2012] for combining the advantages of nonlinear Gauss-Seidel solvers
and the LATIN.

Mixed DDM, such as the one based on the LATIN, allows to tackle frictional contact
problemes in an easy and straightforward manner without any ad-hoc modification to
the LATIN algorithm. The conditions of contact with friction are verified in the local
stage in an exact manner through simple contact indicator functions [Champaney, 1996].
The monoscale approach was first introduced to efficiently handle large assemblies with
friction and joints [Champaney, 1996; Champaney et al., 1997; Champaney et al., 1999].
The introduction of multiscale aspects ensures scalability of the method [Ladevèze
et al., 2002]. Recently a non-intrusive version of the LATIN-based DDM for contact
problems has been proposed in the monoscale case [Oumaziz et al., 2017] and in the
multiscale one [Oumaziz et al., 2018].
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Chapter 2

Preliminary reducibility investigation

and scale separability on a cable

section in tension and bending

In this Chapter, we analyze the possibility of reducing the solution of a tension and
bending calculation on a metric cable section with the developed model described in
[Bussolati, 2019] (see also [Bussolati et al., 2019; Guidault et al., 2019; Bussolati et al.,
2020; Guidault et al., 2021]), for a given sea state. For this local calculation the imposed
tension and curvature histories are obtained from a global calculation on a floating wind
structure carried out in a previous work at LMPS in collaboration with IFP Energies
nouvelles. We first go on to investigate how the quantities of interest behave over time, i.e.,
inter-wire slip and normal and tangential contact forces between the different layers of
the cable, as well as how the contact status evolves over time through the different layers.
Then, an a posteriori SVD analysis of the local calculation solution at different time steps
will enable to assess its ability to be reduced. Moreover, the possibility of separating
space and time scales, which can be exploited during the model reduction approach, is
investigated.
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1. Analysis of a six layer wire rope in tension and bending

1 Analysis of a six layer wire rope in tension and bend-

ing

In this section, we first go on to describe the global hydrodynamic model used in
[Bussolati, 2019]. A global hydrodynamic simulation for a given wave elevation time
history has allowed to assess which areas of the mooring lines are the most critical in
terms of traction and curvature. Here, having access to the text files of the local model
results from Abaqus/Standard, we analyze how the different contact quantities and
the contact status evolve over time on the different layers of the wire rope.

1.1 Global hydrodynamic FOWT model

In [Bussolati, 2019], a global model of a FOWT (Figure 2.1) has been adopted to
obtain the mechanical state of a whole mooring line for a particular sea state to which the
FOWT may be subjected to during its lifespan. In particular, an extreme sea state with
a significant wave height Hs = 8.75 m and peak period Tp = 16.5 s (see Section 1.1.1
in Chapter 1 for their definition), represented in Figure 2.2, has been adopted and the
resulting global model has been implemented in the dedicated hydrodynamic software
DeepLinesTM. For a more in-depth analysis one can refer to Chapter 5 in [Bussolati,
2019].

(a) 3D view. (b) Top view.

Figure 2.1: Global scale model representation in DeeplinesTM of the considered FOWT
[Bussolati, 2019]. (a): Side view of the global model. (b): Top view of the global model
representing the mooring lines numbering and their position with respect to the wind
direction.

A generic case study of a cylinder-like shape floater, equipped with a redundant
mooring system of six catenary mooring lines and supporting a downsized version
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Chapter 2. Preliminary reducibility investigation

of the NREL 5 MW wind turbine [Jonkman et al., 2009] to a 3.6 MW wind turbine
has been considered. The considered sea depth is uniform and equal to 100 m. The
mooring lines are catenary-shaped and attached to the floater in three pairs. The pair
of lines are equally spaced from each other and each line has a total length of 572 m.
Each mooring line is composed of three parts, with chains at the extremities and spiral
strand ropes in between (in yellow and green respectively in Figure 2.1a). Wire ropes
are modeled by beam elements, whose formulation takes into account large rotations
and displacements [Fargues, 1995], as well as torsional stiffness and shear deformability.
However, axial, bending and torsional behavior are fully uncoupled, which is not
realistic for wire ropes. Chains have no bending stiffness and have been modeled by
bar elements. An additional mass of 2 tons is distributed on a part of each mooring line
in order to limit the floater movements and to keep the lines in tension [Lopez-Olocco
et al., 2022] (in red in Figure 2.1a). The modeling of contact between mooring line and
seabed is based on a penalty method and no friction is assumed [Fontaine et al., 2002].

From the results of the hydrodynamic computation of the global model in Figure 2.1
subjected to the sea state in Figure 2.2, the position at 79 m from the top along the
mooring line 1 (see Figure 2.1b) was identified as the most critical in terms of bending
stresses. Tension and curvature histories from this position have then been used for a
local wire model computation. For this purpose, a top-down approach was followed,
which means that the results from the global model are not appreciably dependent on
what happens locally on the wire rope. It was shown in fact in [Bussolati, 2019] that a
nonlinear bending behavior in order to account for frictional phenomena (as the one in
Figure 1.14), representative of the wire rope for a given tension, does not present great
influence on the tension and curvature time series at a given critical location. This is
mainly due to the fact that wire ropes are very slender structures with relatively low
bending stiffness, which does not affect the overall behavior of the mooring system
considerably.

1.2 Detailed local cable model

Once the position at s = 79 m along the mooring line 1 has been identified as the
most critical, axial strain εc and curvature κc histories in that position coming from the
global computation (represented in Figure 2.3) have been used as input loadings for a
detailed local model of a portion of the wire rope. One should notice that axial strain
and curvature time histories are in anti-phase and characterized by non-zero initial
values due to a preload of initial tensioning ε0 and an initial curvature κ0. Moreover,
as opposed to the wave elevation history represented in Figure 2.2, which takes place
in a time interval of 1000 s, the first 50 s of the axial strain and curvature histories are
filtered since they are used to set up the initial loadings.

The considered steel wire rope profile of the local model consists in six layers
helically wound around a central core wire. The layers have alternate lay angle
directions and are composed of 5, 11, 17, 23, 29 and 35 wires respectively from the
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1. Analysis of a six layer wire rope in tension and bending

Figure 2.2: Wave elevation used for the global computation in [Bussolati, 2019].

(a) Axial strain εc applied to the local
model. (b) Curvature κc applied to the local model.

Figure 2.3: Loadings used in [Bussolati, 2019] in the local model coming from the global
computation. (a): Axial strain εc. (b): Curvature κc.

inner layer (layer 1) to the outer layer (layer 6), as in Figure 2.4.
In [Bussolati, 2019], each wire has been modeled with beam elements, and a novel

USER element corresponding to beam-to-beam penalty contact formulation, assuming
small sliding but large rotations between the wires, has been proposed and adopted
for the contact interactions between the wires [Bussolati et al., 2020]. The diameter of
the wire rope is 60.4 mm and the model length is set to the longest pitch which is that
of the external layer, i.e., about 580 mm. For the steel, it was assumed a linear elastic
behavior, with Young modulus E = 210 GPa and Poisson ratio ν = 0.3. The friction
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Chapter 2. Preliminary reducibility investigation

Figure 2.4: Finite element model of the six- layer wire rope used in [Bussolati, 2019].

coefficient has been set to 0.12, which is the typical value for steel wire ropes after
the application of grease acting as a lubrificant [Raoof and Hobbs, 1988]. Boundary
conditions simulating the continuity of the wire rope at the end cross-sections were
applied (see [Bussolati et al., 2019] for more details about these particular boundary
conditions).

For fretting fatigue the sliding magnitude has a huge effect on the fatigue life
expectancy of these structures, with an important decrease between 15 µm and 150
µm [Montalvo et al., 2023]. It is therefore important for the reduced model to accurately
represent interface contact quantities.

1.3 Contact quantities analysis

A detailed description of the results coming from the local model is available in
[Bussolati, 2019; Bussolati et al., 2020]. Here, we limit ourselves to a brief description
of the most interesting results for our study. The following results for the contact
quantities are represented by mapping each layer on a rectangular grid along the axial
longitudinal position z on the rope (here between −50 mm and 50 mm with respect to
the centre of the model) and the angular position θ on the cross-section with respect to
the bending axis (as shown in Figure 2.5).

Remark 2.1. The results shown from here onwards were obtained by analyzing the
Abaqus output files made available by [Bussolati, 2019]. The results we show here are
not present in [Bussolati, 2019], but they are the result of an independent study.

An important role in the wire rope’s analysis is played by the contact status between
the different layers, which provides meaningful information on the rope solicitation
levels. Figure 2.6 represents the contact status snapshot for the different layers interfaces
when the minimum curvature occurs. All the contact interfaces remain in sticking
conditions, except for the last one between layers 5 and 6 where a large sliding zone is
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1. Analysis of a six layer wire rope in tension and bending

Top

Bending axis

Bending axis

Bending axis

Bottom

Figure 2.5: Projection of a cable layer into a 2D rectangular grid.

present. Sticking zones are localized in the top and bottom sectors at 90◦ and 270◦

respectively, while sliding propagates from the bending axis, that is 0◦, 180◦ and 360◦

(see Section 2.2 in Chapter 1 and [Papailiou, 1995]). One should notice that the contact
point distributions is increasing from the inner to the outer interfaces. This is both due
to an increase of wire numbers per layer but also to an increase of the helix pitch in the
outermost layers.

In Figure 2.7 is shown the contact status snapshot when the maximum curvature
occurs. Almost total sliding conditions occur in layer interfaces 4-5 and 5-6. A large
sliding zone is also present at interface 3-4 as well as a small amount that occurs more
internally, at interface 2-3. As seen before, sticking zones are localized in the top and
bottom angular sectors, while sliding propagates from the bending axis. In general, one
can say that the most critical layers from the point of view of variable contact con-
ditions are the outermost layers. Indeed, in the outermost layers, the normal contact
forces are lower, as also the bending effects due to curvature are more pronounced.

The contact quantities due to the preloads ε0 and κ0 (normal contact forces, norm
of the tangential contact forces and norm of the inter-wire slip) for interface 3-4 and
interface 4-5 are shown respectively in Figure 2.8 and Figure 2.9. Although the data are
defined only at the pointwise contact points between the wires belonging to different
layers, the discrete data has been interpolated in space variable on the same grid as
the contact status shown before to facilitate the visualization and interpretation of the
results.

With regard to normal contact forces, one can notice that for each layer interface the
results have no significant difference by changing the angular position with respect to
the bending axis. Normal forces display some periodicity along the angular position,
with no particular dependence on the bending axis position. Normal contact forces
also are higher when moving from the external to the internal layers (see Section 2.2
in Chapter 1 and [Papailiou, 1995]), since the external layers exert a pressure on the
internal ones. Tangential contact forces, instead, show a larger dependency with respect
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Figure 2.6: Contact status on the different layer interfaces at the minimum curvature.
The blue cross stands for sticking conditions, the red circle for sliding conditions.

to the angular position due to the different sliding-sticking conditions that occur in the
different angular positions of the section. At higher normal forces correspond higher
tangential forces as well. Regarding the inter-wire slip, as expected from the previous
contact status analysis, the locations where the largest amount of sliding occurs belong
to the bending axis, while the top and bottom sectors (90◦ and 270◦) are the ones with
the highest grip.
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1. Analysis of a six layer wire rope in tension and bending
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Figure 2.7: Contact status on the different layer interfaces at the maximum curvature.
The blue cross stands for sticking, the red circle for sliding conditions.

(a) Normal contact forces.
(b) Tangential contact forces
norm. (c) Inter-wire slip norm.

Figure 2.8: Preload contact quantities for layer interface 3-4. (a): Normal contact forces.
(b): Tangential contact forces norm. (c): Inter-wire slip norm.
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(a) Normal contact forces.
(b) Tangential contact forces
norm. (c) Inter-wire slip norm.

Figure 2.9: Preload contact quantities for layer interface 4-5. (a): Normal contact forces.
(b): Tangential contact forces norm. (c): Inter-wire slip norm.

Figure 2.10 shows the evolution in time of the contact quantities for layer interfaces
4-5 evaluated at the center of the wire axis (z = 0) and at different angular positions,
namely the bending axis, the top angular sector and the bottom one (see Figure 2.5). It
results that the most critical quantities belong to the bending axis angular position. This
applies especially to tangential contact forces and inter-wire slip. One can notice that
tangential contact forces and inter-wire slip at the bending axis exhibit a pronounced
change in behavior around time t ≈ 100 s, when the peak curvature occurs. In particular,
the inter-wire slip reaches a stabilized state after a sudden shift in the sliding. This
shift in the sliding occurs for all the layer interfaces, except for the most internal one
which in fact is always in sticking conditions (Figure 2.6 and Figure 2.7), and presents
an increasing magnitude moving from the internal to the external layers.

2 Singular Value Decomposition on the main results

In this section, SVD is performed to study the reducibility of the contact quantities
involved in the study of wire ropes: normal and tangential contact forces and the
inter-wire slip between wires of adjacent layers (see Section 4.3.1 in Chapter 1 for the
definition of SVD). The relative approximation error committed in approximating the
desired quantities with M modes is defined as:

err =
∥A−AM∥F

∥A∥F
, (2.1)

where ∥ • ∥F stands for the Frobenius norm. The snapshot matrix ANx×Nt collects the
quantities of interest along the Nx spatial positions (depending on the layers) and Nt
load steps (or time steps) of the analysis (Nt = 1401 load steps considered in [Bussolati,
2019]). Finally A

Nx×Nt
M represents the SVD approximation of A with M modes.
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Figure 2.10: Time evolution of contact quantities for layer interface 4-5 (in z = 0) at
specific angular positions. (a): Normal contact forces. (b): Tangential contact forces
norm. (c): Inter-wire slip norm.

In Table 5.2 is shown the number of rows Nx of the snapshot matrix A for the
different layers of the wire rope model and the different quantities that were analyzed.
One should notice that the outer layers, having a higher number of wires as also a
longer helix pitch, present an overall higher number of rows Nx of spatial quantities in
their corresponding snapshot matrix, as it can be seen in Figure 2.6 and Figure 2.7 for
inter-layer contact quantities.

Contact quantities
Layer interface 1-2 Nx = 42
Layer interface 2-3 Nx = 112
Layer interface 3-4 Nx = 195
Layer interface 4-5 Nx = 286
Layer interface 5-6 Nx = 375

Table 2.1: Number of spatial positions where contact quantities are evaluated on the
different layers interfaces.

Tangential contact forces and inter-wire slip between two contacting wires are
defined on the two directions t1 and t2 tangent to the respective wires of adjacent layers
in point contact, as shown in Figure 2.11. Since these directions are not orthogonal to
each other, in order to have a better understanding of the reducibility of the involved
quantities, the reducibility of the norm of the above quantities, which does not depend
on the directions considered, was also analyzed.
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Figure 2.11: Tangential beam directors t1 and t2 for two wires in point contact.

2.1 Layer-by-layer interface reducibility investigation

Figure 2.12 shows the approximation error of the normal contact forces for the
different layer interfaces. With 10 modes, accuracy levels between 10−3 and 10−4 can be
reached for every interface. The error evolution does not show an appreciable difference
by moving from one interface to another. In fact, even though the mean value of the
normal contact forces increases moving from the outer layers to the inner ones, their
variation around this mean value is proportional to the external traction and curvature
and results to be independent from the sticking-sliding conditions that may occur at a
given layer interface.
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(a) Normal contact forces reducibility.
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(b) Normal contact forces reducibiliy: first
modes.

Figure 2.12: Relative approximation error for the normal contact forces between the
wires of adjacent layers. (a): Global reducibility. (b): Detail on the first modes.

Figure 2.13 shows the approximation error for the tangential contact forces between
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2. Singular Value Decomposition on the main results

the different layer interfaces along the two tangential beam directors. For the tangential
contact forces, a wider dependency of the reducibility with respect to the layer interfaces
is observed, if compared to normal contact forces. Inner layers, where a higher value
of the normal contact forces occurs, as well as a lower slip, present better reducibility
compared to the outer ones, where different and more variable sticking and sliding
conditions occur over time, making it more challenging to capture the tangential contact
interactions. Nevertheless, no appreciable difference can be observed for the reducibility
of the tangential contact forces in the two considered beam directors. Compared to
normal contact forces, tangential forces present a more challenging reducibility due
to their highly non-smooth nature depending on the sticking-sliding conditions
that occur in time and space. The error on the tangential forces norm is represented
in Figure 2.14, and the trend remains indistinguishable from those in the respective
tangential beam directors (Figure 2.13).
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(a) Tangential beam director t1.
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(b) Tangential beam director t2.

Figure 2.13: Relative approximation error for the tangential contact forces between the
wires of adjacent layers. (a): Tangential beam director t1. (b): Tangential beam director
t2.

As for tangential contact forces, in Figure 2.15 is represented the approximation
error for the inter-wire slip between the different layers along the two tangential beam
directors. Similarly to tangential contact forces, inner layers present a better reducibility
than the outer ones. This is because of the reasons explained previously: in the external
layer interfaces the contact status conditions are more variable (see Figure 2.6 and
Figure 2.7), and the amount of sliding is higher compared to the internal ones. In
particular, the two outermost layer interfaces display an odd behavior compared to the
other layers. The innermost layers have the error plateauing around the value of 10−5

after about 50 modes. The last two contact interfaces between layers 4-5 and 5-6, on
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(a) Tangential forces norm reducibility.
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(b) Tangential forces norm reducibiliy: first
modes.

Figure 2.14: Relative approximation error for the norm of the tangential contact forces
between the wires of adjacent layers. (a): Global reducibility. (b): Detail on the first
modes.

the other hand, present a first long plateau after a few modes that settles around an
error of 10−3, and then a second plateau that settles on an error of about 10−6. For the
inner layer interfaces, mostly in sticking state, a very low approximation error can be
reached with few modes. However for the two outermost layer interfaces, subjected to
large sliding fronts across the whole layer interface, an accurate representation requires
more modes to accurately track the sliding front, which is critical for fretting fatigue
life expectancy [Montalvo, 2023; Montalvo et al., 2023].

Similarly, no significative difference between the two beam directions can be ap-
preciated. The error for the inter-wire slip norm is represented in Figure 2.16, and the
trend remains indistinguishable from those in the respective tangential beam directors
(Figure 2.15).

2.2 Layer-by-layer space and time modes

Here, some space and time modes for the different interface contact quantities are
analyzed, in order to interpret their previously described behavior.

In Figure 2.17 are represented the first three spatial modes (obtained from the SVD,
thus orthonormalized with respect to each other) for the normal contact forces at layer
interface 4-5 (we choose to show this layer interface because it presents variable contact
conditions and also allows comparison with layer interface 3-4 to analyze the behavior
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(a) Tangential beam director t1.
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(b) Tangential beam director t2.

Figure 2.15: Relative approximation error for the inter-wire slip between the wires of
adjacent layers. (a): Tangential beam director t1. (b): Tangential beam director t2.
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(a) Inter-wire slip norm reducibility.
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(b) Inter-wire slip norm reducibiliy: first
modes.

Figure 2.16: Relative approximation error for the norm of inter-wire slip between the
wires of adjacent layers. (a): Global reducibility. (b): Detail on the first modes.

switch shown in Figure 2.16). The first mode, the most energetic one, displays a similar
behavior to the snapshot shown in Figure 2.9. The second mode, on the other hand,
evidently represents a mode due to the curvature loading as it can be seen by the fact

89



Chapter 2. Preliminary reducibility investigation

that it differs from the upside and downside position with respect to the bending axis.
Subsequent modes bring localized correction.

(a) Space mode 1. (b) Space mode 2. (c) Space mode 3.

Figure 2.17: First three space modes for the normal contact forces between layers 4-5.
(a): Space mode 1. (b): Space mode 2. (c): Space mode 3.

The corresponding first three time modes (orthonormalized) for normal contact
forces between layers 4-5 are shown in Figure 2.18. It can be seen that from the second
mode onward, both spatial and temporal modes exhibit a shape that oscillates around
zero. This turns out to be true for spatial modes, as well as for temporal modes after
the time value of t ≈ 100 s. This fact can reasonably be related to the trend of the wire
rope behavior seen before, which reaches a stabilized state around this time value.
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Figure 2.18: First three time modes for the normal contact forces between layers 4-5. (a):
Time mode 1. (b): Time mode 2. (c): Time mode 3.

Figure 2.19 represents the first three spatial modes for the tangential contact forces
between layers 4-5. If compared to the spatial modes of normal contact forces in
Figure 2.17, one can notice that in this case the modes exhibit a more pronounced
dependence on the position relative to the bending axis. The corresponding time modes
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are shown in Figure 2.20. As for normal contact forces, after the second mode, the
spatial modes oscillate around zero while time modes reach this state after t ≈ 100 s
(see Figure 2.20b and Figure 2.20c).

(a) Space mode 1. (b) Space mode 2. (c) Space mode 3.

Figure 2.19: First three space modes for the tangential contact forces between layers 4-5.
(a): Space mode 1. (b): Space mode 2. (c): Space mode 3.
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Figure 2.20: First three time modes for the tangential contact forces between layers 4-5.
(a): Time mode 1. (b): Time mode 2. (c): Time mode 3.
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The first three spatial modes for the inter-wire slip between layers 4-5 are shown
in Figure 2.21. The first mode captures a global behavior similar to the snapshot in
Figure 2.9 and, as for tangential contact forces, space modes show a remarked depen-
dence on the sliding and sticking zones. The corresponding time modes, represented in
Figure 2.22, display a quite different behavior if compared to the normal and tangential
forces. In fact the first time modes capture the shift in sliding that occurs at t ≈ 100 s,
while the subsequent time modes bring more localized corrections. Even in this case,
from the second time mode and onward, the modes oscillate around zero.

(a) Space mode 1. (b) Space mode 2. (c) Space mode 3.

Figure 2.21: First three space modes for the inter-wire slip between layers 4-5. (a): Space
mode 1. (b): Space mode 2. (c): Space mode 3.
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Figure 2.22: First three time modes for inter-wire slip between layers 4-5. (a): Time
mode 1. (b): Time mode 2. (c): Time mode 3.

Another interesting point to analyze is the shift in the SVD approximation error
behavior of the inter-wire slip between the interfaces of layers 3-4 and below and that
of layers 4-5 and above seen in Figure 2.16.
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In Figure 2.23 are represented two space modes for the inter-wire slip between layers
3-4 located in the plateau zone, and in Figure 2.24 are shown three space modes for the
inter-wire slip between layers 4-5 located in the two different plateau zones. The two
space modes of layers 3-4 in Figure 2.23 result indistinguishable from each other and
show no signs of dependence on sliding and sticking zones, as in fact sliding-sticking
transitions in layers 3-4 are very limited. The plateau modes of layers 4-5 in Figure 2.24
instead show a more peculiar behavior. Space mode 100, which belongs to the the first
plateau, as it can be noticed, brings localized corrections in the angular sections around
the bending axis, where sliding conditions propagate. Space mode 180 belongs in the
transition zone between the two plateaus and, as it can be noticed, the corrections are
localized in the sticking regions, i.e., the top and bottom angular sectors. This trend
continues then until the second plateau as it can be seen from the space mode 250.

(a) Space mode 100. (b) Space mode 150.

Figure 2.23: Plateau space modes for the inter-wire slip between layers 3-4. (a): Space
mode 100. (b): Space mode 150.

(a) Space mode 100. (b) Space mode 180. (c) Space mode 250.

Figure 2.24: Plateau space modes for the inter-wire slip between layers 4-5. (a): Space
mode 100. (b): Space mode 180. (c): Space mode 250.
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This difference in behavior is most likely due to the fact that in the outermost layers
almost complete sliding conditions occur (as shown in Figure 2.7), as opposed to the
inner layers, and in general are subject to more severe sliding-sticking transitions along
time. These transitions arise and propagate in the neighbourhoods of the bending
axis and, since they constitute the major contribution to the amount of sliding, they
represent the areas that are corrected first by the SVD modes. The long first plateau
of layers 4-5 in Figure 2.16 is most likely a zone where the SVD modes seek to correct
the strong discontinuity in sliding that occurs at maximum curvature (see Figure 2.10).
Since this is a sudden discontinuity, and very localized, the error committed in approxi-
mating it decreases very slowly. Once the sliding zones around the bending axis have
come to convergence in the first plateau, the sticking zones of the top and down sectors
with respect to the bending axis are rapidly sent to convergence in the transition zone
between the plateaus.

3 Conclusions

In this Chapter, first of all a brief description of the global and local analyses per-
formed in [Bussolati, 2019] on a fine local model of a FOWT was presented. The global
analysis, performed on DeepLinesTM, consists of an hydrodynamic computation on
an entire FOWT structure equipped with 6 mooring lines under the action of a critical
sea state. Then, after identifying the most critical bending zone in the mooring lines, a
local FEM analysis was performed in [Bussolati, 2019] on a detailed model of a wire
rope portion subjected to the traction and curvature time histories of the critical zone
obtained from the global model.

We investigated and briefly presented the most important results of the local model,
along with an analysis of the contact status complexity between the different layer in-
terfaces. Mainly, sliding conditions occur in the areas around the bending axis, with
mostly sticking conditions in the areas around the top and bottom angular sectors. In
particular, what emerges is that the outermost layers display more critical and complex
frictional contact conditions, subjected to large sliding fronts which can propagate
throughout the whole layer interface. This point is crucial, since it significantly can
affect the convergence and reducibility of the contact problem. Therefore, a robust and
efficient strategy for solving the contact problem is required.

Subsequently, we performed an SVD of the main results obtained from the local
model (normal and tangential contact forces, inter-wire slip) in order to investigate
the reducibility of the particular problem. SVD was performed layer-by-layer, so
as to thoroughly understand how layer dependency affects reducibility. In general,
the analyzed quantities show a good potential for reducibility, mainly due to the
particular loads acting on the structure, which consist of oscillations around a pre-
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loaded state. In particular, the reducibility presents a dependency on the layer, with
the more internal layer presenting better reducibility, as opposed to the outermost
ones [Guidault et al., 2023; Zeka et al., 2023]. Normal contact forces show the best
trend in terms of reducibility, while tangential contact forces result more difficult
to represent in a reduced-order framework, as also display a large dependency on
the layers interface. Regarding inter-wire slip, for the inner layer interfaces, mostly in
sticking state, a very low approximation error can be reached with few modes. However
for the two outermost layer interfaces, subjected to large sliding fronts across the whole
layer interface, an accurate representation requires more modes to accurately track the
sliding front, which is critical for fretting fatigue life expectancy.

Some space and time modes for layers 4-5 were then invesigated and related to the
behavior of the different contact quantities. Space modes display a multiscale nature in
which the first modes capture a macro behavior of different quantities, mainly related to
preload, while the following modes bring more localized corrections due to the variable
loading and local frictional phenomena manily around the bending axis [Guidault et al.,
2023]. The time modes, on the other hand, highlight the shift in behavior that occurs
around t ≈ 100 s following maximum curvature.

This analysis is interesting since it allows to understand how these kind of structures
behave and what are the most critical aspect to take care of for in order to propose a
suitable model reduction strategy. In particular, the results suggest the adoption of a
model reduction strategy that takes into account the structured geometry of layered
cables, as well as the dependency of contact quantities on the different layers and on
the angular position, in order to be more accurate when needed in the most critical
zones.

By following these suggestions, in the second part of this manuscript a pertinent
model reduction strategy appropriate to this type of problem, and coupled with a
robust nonlinear solver, will be introduced.
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A multiscale strategy to
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Chapter 3

LATIN-based mixed DDM to model

reduction for frictional contact

problems

This chapter presents the proposed strategy for dealing with evolutionary frictional contact
problems with model reduction, and represents the first part of the article [Zeka et al.,
2024a]. The proposed strategy relies on the LATIN nonlinear solver combined with a
priori model reduction based on the PGD. The chapter begins with the analysis of a
simple frictional contact benchmark problem, intended as a simplified representation of
the mechanics of a wire within a rope. This problem will then serve as a benchmark to test
the features and limitations of the proposed strategy. Thereafter the LATIN method for
frictional contact problems via domain decomposition is presented in detail. Finally, the
introduction of PGD in the LATIN scheme is discussed, focusing on the control of quality
and size of the reduced base along the iterations of the nonlinear solver.
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1. Preliminary results on a simple 1D problem

1 Preliminary results on a simple 1D problem

In this section, before introducing the adopted strategy to model-order reduction
for frictional contact problems, is investigated the reducibility of the displacements, ve-
locities and frictional forces of a one-dimensional frictional contact benchmark problem
[Zeka et al., 2022]. The problem consists of a clamped bar subjected to a time-dependent
traction loading Fd(t) on the free side. The bar is in contact with a frictional interface
along its entire length by means of a normal pressure p(t) acting on it (Figure 3.1a). In
practice, it is assumed that the bar is always in contact with the frictional surface due to
the pressure p considered to be constant.

contact 

interface

force BCs displacement BCs

𝐹𝑑
𝑝

𝑥
(a) Sketch of the problem.
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(b) Time evolution for Fd.

Figure 3.1: 1D benchmark problem. (a): Graphical representation of the problem. (b):
External traction force time evolution.

The considered benchmark problem can be seen as representative of the mechanics
of a single steel wire from a part of a mooring line composed of a wire rope (Figure 3.2,
see also Figure 1.13 in Chapter 1).

Figure 3.2: A wire from the external layer in contact with the internal layer [Bussolati,
2019]. Note that the inner wires are replaced by an homogenized beam of equivalent
axial stiffness.
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In fact the rope is subjected to external loadings from the sea state and, because of
the helical geometry of the rope, traction and bending phenomena cause pressure loads
between the different layers of wires which slide with respect to each other resulting in
frictional contact phenomena.

Concerning the traction force acting on the bar, two different load cases are consid-
ered (represented in Figure 3.1b). Both of them start from a preloading stage where
the value of 1000 N is reached. The load case 1 consists in fully unloading the bar after
the preloading, while the load case 2 consists in performing some small-amplitude
oscillations around this preloaded state. The first load case should put us in a more
critical condition, since one has to deal in fact with a larger propagation of sliding front
which is more challenging to track with respect to the second load case. The parameters
adopted for the problem are shown in Table 3.1. The problem, after a finite element
discretization in space and time, has been solved with the LATIN method (of which
the details will be given in the next section of this chapter). Continuous linear shape
functions have been used for substructure displacement field and piecewise constant
shape functions for interface quantities (see Appendix B on the discretization of subdo-
main and interface quantities). A converged solution (high number of iterations) was
taken as a reference solution and analyzed in the following section. Obviously, any
more conventional nonlinear solver could have been used for this purpose.

Parameters of the 1D problem
Young modulus, E 210 GPa
bar cross section, S 3.14 mm2

bar length, L 1 m
number of DOFs, Nx 50
number of time steps, Nt 100
time interval, [0, T] [0, 1 s]
friction coefficient, f 0.3
pressure load, p 5000 N/m

Table 3.1: Used parameters for the benchmark problem.

1.1 Analysis of the solution

1.1.1 Load case 1: large propagation of sliding front

In Figure 3.3, Figure 3.4 and Figure 3.5 are shown, respectively, some snapshots
of the reference solution of the problem for the displacement, velocity and frictional
contact forces distributions for the load case 1. In dark gray is highlighted the areas
where sliding occurs, while in the white areas there are sticking conditions. From
Figure 3.3 and Figure 3.4 one can notice that the sliding front propagates as the traction
force increases, from t = 0 s to t = 0.5 s during the preloading stage. A portion of the
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bar, the one closer to the clamped end (x/L = 0), remains always in sticking conditions.
During the unloading part another sliding front propagates from the free end of the bar
(x/L = 1) until the traction force becomes zero. At the end, because of the presence of
friction, the bar does not get back to its original undeformed position but remains in a
sticking deformed state. Figure 3.5, displaying some snapshots of the frictional contact
forces, is in agreement with what has been said about displacements and velocities. In
the sticking zone, near the clamped end, the frictional forces are zero, whereas in the
sliding zone, during loading, they are equal in absolute value to the Coulomb friction
threshold f p = 1500 N. In the unloading phase, a new sliding front propagates located
in the zone where the friction forces change sign.

Figure 3.3: Displacement snapshots at time t = 0 s, t = 0.5 s and t = 1 s for load case 1.

Figure 3.4: Velocity snapshots at time t = 0 s, t = 0.5 s and t = 1 s for load case 1.

After obtaining the reference solution for displacements, velocities and frictional
forces, an a posteriori SVD analysis can be performed to exemplify the reducibility of
the space-time solution (see Section 4.3.1 in Chapter 1 for the definition of SVD). A
few space modes for frictional forces are given in Figure 3.6, and the corresponding
time modes are shown in Figure 3.7. First modes depict a generally global scale of the
solution. One can see that the space modes clearly separate the sticking zone (in white)
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Figure 3.5: Frictional forces snapshots at time t = 0 s, t = 0.5 s and t = 1 s for load case
1.

from the ones where sliding occurs (light gray for sticking-sliding transition and dark
gray for mainly sliding). Subsequent space modes still emphasize this distinction as
also bring localized corrections to the sliding zones. Similar considerations can be made
for the time modes. The first time mode depicts a global proportionality to the external
traction loading, while subsequent modes bring localized corrections at specific time
instants.

Figure 3.6: SVD space modes 1, 3 and 7 of the frictional contact forces for load case 1.

1.1.2 Load case 2: small variations of sliding front

Regarding load case 2, the main differences lie in the second part of the loading, the
first being the same. As it can be seen from Figure 3.8, where some snapshots of the
contact forces in the second part of the loading are shown, the sliding region due to
the oscillating load is extremely localized in the neighborhood part where the load is
applied. The sliding front presents a much smaller propagation amplitude compared to
load case 1. By looking at some spatial modes in Figure 3.9, this is reflected in a larger
localization of modes in the region where local sliding occurs.
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Figure 3.7: SVD time modes 1, 3 and 7 of the frictional contact forces for load case 1.

Figure 3.8: Frictional forces snapshots at time t = 0 s, t = 0.5 s and t = 1 s for load case
2.

Figure 3.9: SVD space modes 1, 3 and 7 of the frictional contact forces for load case 2.
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1.2 Reducibility of the contact quantities

In Figure 3.10 is shown the SVD relative approximation error

err =
∥A−Ap∥F

∥A∥F
(3.1)

between the original field and a truncated SVD of order p for displacements, velocities
and frictional forces for the two considered load cases in Figure 3.1b. The snapshot
matrix ANx×Nt collects the quantities of interest along the Nx spatial positions and Nt
time steps, with Ap which represents the SVD approximation of A with p modes, and
∥ • ∥F stands for the Frobenius norm.

In both cases, displacements present a better reducibility compared to frictional
contact forces and velocities. Frictional contact forces, due to their highly non-smooth
nature, present a very low reducibility, in agreement with similar results in [Giacoma
et al., 2015; Guidault et al., 2023] as well as in Chapter 2. For the first load case
(Figure 3.10a), the reducibility for frictional forces is quite critical. Being a propagation
problem with a large sliding front, frictional forces need a large basis to reach a good
accuracy (relative approximation error (3.1) below 10−4). For the second load case the
reducibility of the problem strongly improves, especially for frictional forces, as in fact
the small-amplitude oscillations cause smaller variations in contact conditions.
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(b) SVD of load case 2.

Figure 3.10: Relative approximation error (3.1) of the contact quantites of the 1D
problem in Figure 3.1 for the two different load cases.

In particular, the two load cases we have considered create comparable contact
and reducibility conditions to the outermost layers of the cable section analyzed in
Chapter 2 where the front propagates over the whole layer interface (load case 1), and
the innermost layers whose front remains located around the bending axis (load case 2).
Propagation problems are known for their low reducibility and capturing their behavior
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with a ROB is challenging, even for ROBs enriched on-the-fly as in PGD [Allier et al.,
2015; Nouy, 2010]. Clearly, for particular applications where one deals with loads such
how the second load case, or problems where the contact interface is small relatively to
the overall structure of the problem and/or a few contact interfaces are present, this
can help to start with a good potential reducibility.

As seen in the above example and in Chapter 2, when wide contact interfaces are
present, different regions subjected to different sticking and sliding conditions can be
encountered (but also open/closed contact conditions). This suggests the separation of
these different regions a priori and the application of the model reduction strategy
separately, ideally in each zone, through a DDM approach. Therefore, the different
potential reducibility of the different subregions is exploited and the computational time
can further be improved thanks to the parallelization given by the DDM. Another aspect
to consider is the presence of multiscale aspects in the solution of contact problems. As
highlighted in [Giacoma et al., 2015], global modes on a structural level and localized
modes on the contact interfaces are present and the introduction of multiscale aspects
may effectively improve the handling of similar problems.

In the following, we will put ourselves in the condition of the first load case, consid-
ered as more critical since it is less reducible due to important sliding front propagation,
and we will analyze how the proposed approach behaves in the case of a problem with
low reducibility.
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2 LATIN-based monoscale DDM for frictional contact

problems

Incremental methods for solving a nonlinear problem (e.g., Newton-Raphson, quasi-
Newton, modified Newton methods) consist in making converge the problem at a given
time instant t, knowing the converged solution from the previous time instant t− ∆t,
up to the final time T. On the contrary, in non-incremental methods, all time steps
are swept at each iteration and each non-incremental iteration ends on a space-time
approximation of the solution. The LATIN method, introduced in [Ladevèze, 1985;
Ladevèze, 1999], is a general strategy for dealing with nonlinear evolution problems
and belongs to the family of non-incremental solvers.

The LATIN, as firstly introduced, is based on three principles:

± Principle P1. Partitioning of the underlying equations into two manifolds:
a manifold Γ

[0,T] pertaining to the local and possibly nonlinear equations,

and a manifold A
[0,T]
d related to the linear and possibly global equations.

± Principle P2. Search for the solution based on a two search alternating
direction algorithm, which shares similarities with ADMM (Alternating
Direction Methods of Multipliers) methods [Glowinski and Le Tallec, 1989,
1990; Glowinski, 2015]. At each iteration, a solution on the whole space and
time domain of the problem is alternately built in each of the two manifolds
in a fixed-point like manner.

± Principle P3. Use of an adapted representation of the iterate in reduced or
compact form, such as a representation in separate space and time variables
through PGD. This third point is not mandatory in the strategy, however for
large scale evolution problems with a high number of time steps it is crucial
for for solution/iterate storage issues and the efficiency of the method.

A non-exhaustive list of applications of the strategy includes small-strain elasto-
plasticity and visco-plasticity [Boisse, 1987; Cognard, 1989; Relun et al., 2013], geometric
nonlinearities due to large displacements [Boucard, 1996], cyclic damage computation
[Bhattacharyya et al., 2018a; Bhattacharyya et al., 2018b] and more recently also stochas-
tic problems [Zheng et al., 2024]. Multi-physics problems can also be tackled by the
LATIN strategy [Dureisseix et al., 2003; Néron, 2004; Wurtzer et al., 2024] by separating
the different physics from each other in order to simplify the resolution of the problem.
For a recent overview on the different applications of the LATIN method one may refer
to [Scanff et al., 2021].
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The LATIN, in particular, allows for an efficient treatment of DDM, where subdo-
mains and interfaces are considered separately. The subdomain/interface distinction
makes it easy to introduce specific interface behaviors, such as interplies for composites
[Kerfriden et al., 2009; Saavedra et al., 2012] or contact for assemblies [Champaney
et al., 1999].

Initially introduced in the monoscale version without any coarse scale problem, the
first works on the multiscale version (in space) can be traced back to [Ladevèze and
Dureisseix, 2000; Ladevèze et al., 2001; Loiseau, 2001], with also the introduction of
a third super macroscale to efficiently solve the coarse scale problem [Loiseau, 2001].
An extension of the multiscale approach in time was performed in [Ladevèze and
Nouy, 2003; Nouy, 2003] in the context of highly heterogeneous structures, where a
new formulation of the coarse scale problem with a Lagrange multiplier is introduced
as well as PGD in the multiscale approach [Nouy and Ladevèze, 2004]. Subsequent
works on the LATIN-based multiscale DDM strategy mainly refer to this framework,
with applications in different fields, as explained in Section 5.2 of Chapter 1

Among other things, the LATIN is also a robust solver for frictional contact
problems. When applied to frictional contact problems, the LATIN method separates
the internal equations belonging to the substructures from the contact conditions that
occur at the contact interfaces. For this reason, it naturally leads to a mixed DDM where
interface variables are constituted by the interface displacements or velocities (primal
unknowns) and contact forces (dual unknowns). In addition, the two-search direction
alternate algorithm of the LATIN shares similar features with augmented Lagrangian
formulations combined with Uzawa-like algorithms [Fortin and Glowinski, 2000; Simo
and Laursen, 1992], which makes it a strongly robust strategy for dealing with frictional
contact problems ensuring an exact satisfaction of contact conditions at convergence.

Applications of the LATIN method specifically for frictional contact problems can be
found in [Champaney et al., 1999; Ribeaucourt et al., 2007; Pierres et al., 2010; Oumaziz
et al., 2017; Cardoso et al., 2018; Cardoso, 2019] for the monoscale strategy, or in [Lade-
vèze et al., 2002; Oumaziz, 2017; Oumaziz et al., 2018] for the multiscale one. Recent
works on frictional contact problems couple the LATIN solver with cutFEM [Claus
and Kerfriden, 2018] (Cut Finite Element Method [Hansbo and Hansbo, 2002]) or IGA
[Lapina et al., 2024](IsoGeometric Analysis [Hughes et al., 2005]).

The LATIN strategy with PGD makes it possible to take into account also frictional
contact interactions. However, in previous works, rather short frictional cracks had a
more or less limiting effect on the global scale, surrounded by other material nonlin-
earities. A first application of the strategy with PGD specifically to frictional contact
problems can be found in [Giacoma et al., 2015], even though without coarse scale
problem. The most critical point to consider for frictional contact problems with PGD is
that frictional problems present a low reducibility, consequently a large number of PGD
modes is usually required to represent the solution. Moreover, given the high irregular-
ity of frictional problems, a lot of useless PGD modes may be generated throughout
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the iterations of the solution strategy decreasing the efficiency of the approach. To
avoid such limitations, [Giacoma et al., 2015; Giacoma et al., 2016] proposed a sorting
and downsizing algorithm to efficiently sort the reduced basis throughout the LATIN
iterations.

In fact, the strategy with PGD has not extensively been considered in the case of
frictional contact problems with large and multiple contact interfaces, where the contact
conditions have an important effect at the global scale. We are interested to investigate
to what extent a multiscale approach, in particular one based on DDM, may be helpful
in efficiently solving frictional contact problems with a model reduction approach and
what are the benefits and limits of combining a multiscale strategy with PGD [Zeka
et al., 2024a; Zeka et al., 2024d; Zeka et al., 2024b, 2024c].

2.1 The reference problem: partitioning into substructures and

interfaces

We consider, assuming small perturbations and isothermal quasi-static state, the
equilibrium of a linear elastic structure occupying the space domain Ω on the time
interval [0, T] being studied (Figure 3.11). The structure being subjected to body forces
f

d
and imposed loads Fd on a part ∂2Ω of the boundary ∂Ω and, on the complementary

part ∂1Ω, displacements Ud are prescribed. Internal or external frictional contact
interfaces are present and designated with Γc. All quantities marked ªdº are known
data.

Ω 𝑓𝑑
𝐹𝑑

𝑈𝑑
Г𝑐

∂2Ω∂1Ω

Figure 3.11: Reference structure problem being considered.

The basic idea of the mixed DDM strategy consists in describing the structure as
an assembly of simple components: substructures and interfaces [Ladevèze, 1999],
where each substructure has its own variables and equations.
A substructure ΩE, with E ∈ E and E being the set of substructures (Figure 3.12), is
subjected to the action of its environment, that is the set of neighboring substructures
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of ΩE, defined by a force field FE and a displacement field WE acting on its boundary
∂ΩE (Figure 3.13).

Concerning the neighboring substructures of ΩE, since we will not make distinc-
tion between internal interfaces and external interfaces corresponding to boundary
conditions, we can consider in these cases that the structure is linked to a structure
ΩE1 whose boundary contains ∂1Ω and a structure ΩE2 whose boundary contains ∂2Ω.
We can then introduce the set VE = {E′ ∈ {E, E1, E2} | mes(∂ΩE ∩ ∂ΩE′) ̸= 0} of the
neighboring substructures of ΩE in a broader sense.

Ω 𝐸

Ω 𝐸´
Г𝐸𝐸´

Г𝐸´´´𝐸1

Г𝐸´´𝐸2

Ω 𝐸´´´

Ω 𝐸´´

Ω

Figure 3.12: Decomposition of a structure in substructures and interfaces.

2.1.1 Admissibility for variables on a substructure

The displacement and the Cauchy stress fields within a substructure ΩE are denoted

with uE and σE, and they belong respectively to spaces U [0,T]
E and S [0,T]

E defined on ΩE.
Here, a space □[0,T] with superscript [0, T] designates the space of functions defined
on [0, T] which take values in □. An interface ΓEE′ between two substructures ΩE and
ΩE′ transfers both the displacement and the force fields (WEE′ , WE′E) and (FEE′ , FE′E)

restricted to ΓEE′ , which belong respectively to spaces W [0,T]
EE′ and F [0,T]

EE′ defined on
ΓEE′ . The previous spaces, extended to the set of neighboring interfaces of ΩE, result in

spacesW [0,T]
E and F [0,T]

E :

W
[0,T]
E = ∏

E′∈VE

W
[0,T]
EE′ and F

[0,T]
E = ∏

E′∈VE

F
[0,T]
EE′ . (3.2)

Extended to all substructures, this partitioning leads to the definition of the spaces

W [0,T] and F [0,T]. We denote with E
[0,T]
E = U

[0,T]
E ×W

[0,T]
E and F

[0,T]
E = S

[0,T]
E ×F

[0,T]
E ,

as well as S
[0,T]
E = E

[0,T]
E × F

[0,T]
E . Therefore, one can define the admissibility of a
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solution sE = (uE, WE, σE, FE) ∈ S
[0,T]
E which completely describes the state within a

substructure:

Definition 3.1 (E-admissibility). A solution sE = (uE, WE, σE, FE) ∈ S
[0,T]
E is said

to be E-admissible, that is sE ∈ S
[0,T]
E,ad, if it verifies:

± the kinematic admissibility: (uE, WE) ∈ E
[0,T]
E,ad

∣∣ ∃uE ∈ U
[0,T]
E such that uE|∂ΩE

=
WE,

± the static admissibility: (σE, FE) ∈ F
[0,T]
E,ad

∣∣ ∀(u∗, W∗) ∈ E
[0,T]
E,ad,

∫

ΩE×[0,T]
σE : ε(u∗)dΩdt =

∫

ΩE×[0,T]
f

d
· u∗dΩdt +

∫

∂ΩE×[0,T]
FE ·W

∗dSdt,

± the constitutive relation: σE = K : ε(uE), with K being the Hookean tensor and
ε(uE) the small strain tensor.

2.1.2 Interface behavior

An interface ΓEE′ between two substructures ΩE and ΩE′ is driven by a constitutive
law between the force fields (FEE′ , FE′E) and the displacement fields (WEE′ , WE′E)
restricted on ΓEE′ . To lighten the notation, in the following when we refer to the force
and displacement fields restricted on ΓEE′ we refer to them simply as (FE, FE′) and
(WE, WE′) as in Figure 3.13.

The constitutive behavior at the different interfaces depends on the type of interface
behavior which is to be modeled, and is expressed as a constitutive law which can be
formally written as:

bEE′(FE, WE, FE′ , WE′) = 0, ∀(x, t) ∈ ΓEE′ × [0, T]. (3.3)

The interface constitutive behavior operator bEE′ describes in an abstract form the
mechanical behavior of the interface. For example, for a perfect interface this condition
corresponds to the continuity of the displacements across the interface, WE −WE′ =
0, and the equilibrium of the interface forces FE + FE′ = 0. Boundary conditions
in displacements and forces are also taken into account through a specific interface
behavior (interfaces ΓE′′′E1

and ΓE′′E2
in Figure 3.12 respectively).

2.1.3 Reformulation of the reference problem

The reference problem in Figure 3.11, after the partitioning in substructures and
interfaces, can be reformulated as follows:
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Ω 𝐸 Ω 𝐸´
Г𝐸𝐸´𝐹𝐸 𝐹𝐸´

𝑊𝐸´𝑊𝐸
Figure 3.13: Forces and displacements acting on an interface ΓEE′ .

Problem 3.1 (reference substructured problem). Find sexact = {sE}E∈E, with sE =

(uE, WE, σE, FE) ∈ S
[0,T]
E , verifying:

± the E-admissibility of sE, ∀E ∈ E, that is sE ∈ S
[0,T]
E,ad (Definition 3.1);

± the constitutive behavior of the interfaces (3.3).

Note that two types of formulations for the primal unknowns can be found in
the literature: the formulation in velocity and the formulation in displacement. The
velocity formulation is usually adopted in the context of material nonlinearities, where
constitutive relations are expressed in a rate formulation (see [Nouy and Ladevèze, 2004;
Passieux et al., 2010]), while the displacement formulation is usually more adopted
in the context of linear elastic behaviour of the substructures [Giacoma et al., 2015;
Cardoso et al., 2018; Cardoso, 2019], as in the case discussed herein.

2.2 Some examples of interface behaviors

The behaviors described here are written locally at each point of an interface ΓEE′ ,
E ∈ E, E′ ∈ VE.

■ Boundary conditions

Boundary conditions can be taken into account through a specific interface behavior:

WE = Ud on ΓE,E1 = ∂ΩE ∩ ∂1Ω,
FE = Fd on ΓE,E2 = ∂ΩE ∩ ∂2Ω.

(3.4)
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■ Perfect interfaces

For a perfect interface ΓEE′ , displacement continuity and interface force equilibrium
have to be verified:

WE −WE′ = 0,
FE + FE′ = 0.

(3.5)

■ Frictional contact interfaces

At a contact interface ΓEE′ between substructure ΩE and ΩE′ , Signorini non penetra-
tion conditions for the normal contact and Coulomb’s law for the tangential frictional
behavior have to be satisfied, as well as the interface force equilibrium.

For the normal contact, the following conditions have to be verified (see Definition 1.1):

± non-penetration condition: n · (WE′ −WE) + g0 ≥ 0 ;

± compressive contact force: n · FE ≤ 0;

± complementarity condition: (n · (WE′ −WE) + g0)(n · FE) = 0.

with g0 being the initial normal gap and n the outward normal from E to E′.

For the tangential contact instead, the following conditions hold (see Definition 1.2):

± sticking: ∥PtFE∥ < f |n · FE| and Pt(ẆE′ − ẆE) = 0;

± sliding: ∥PtFE∥ = f |n · FE| and Pt(ẆE′ − ẆE) = ρPtFE, with ρ ⩾ 0.

with f being the friction coefficient and Pt = Id − n⊗ n the tangential projector on the
interface.

2.3 LATIN-based iterative solver

With reference to the substructured Problem 3.1, let us denote with A
[0,T]
d the man-

ifold of linear elastic solutions s satisfying the E-admissibility (Definition 3.1), and
refer with Γ

[0,T] to the manifold of solutions ŝ satisfying the constitutive behavior at
the interfaces (3.3). The LATIN method for solving Problem 3.1 consists in iterating

successively between manifold A
[0,T]
d , a phase which is called linear stage, and Γ

[0,T],
named local stage, by following two alternating search directions E+ and E− introduced
to iterate in a fixed-point manner between the two manifolds and to close the problem

(see Figure 3.14). Starting from an initial admissible solution s0 ∈ A
[0,T]
d , at convergence

the exact solution sexact ∈ A
[0,T]
d ∩ Γ

[0,T] is reached at the intersection between the two
manifolds:
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s0 =⇒ · · · =⇒ sn ∈ A
[0,T]
d

local stage
=====⇒

E+
ŝn+1/2 ∈ Γ

[0,T] linear stage
======⇒

E−
sn+1 ∈ A

[0,T]
d

︸ ︷︷ ︸
iteration n+1

=⇒ · · · =⇒ sexact

𝐬𝑛𝐬𝑛+1𝐬exact

ො𝐬𝑛+12 𝐄+𝐄−
Г[0,𝑇]

𝐀𝑑[0,𝑇]

Figure 3.14: Abstract schematic representation of an iteration of the LATIN.

We stress the fact that the linear and the local stages involve problems solved over
the entire space-time domain, as detailed in the following.

Remark 3.1. An "incremental" version of the LATIN, in which the loop over the
LATIN iterations and loop over the time instants are switched, can be adopted when an
accurate computation of some propagating front is required at each time instant becuse it
largely influences the solutions at next time instants, as for example delamination fronts
[Kerfriden et al., 2009] or fatigue crack propagation fronts [Ribeaucourt et al., 2007].
However in such a way the ability to make use of separated representations in space and
time is lost, as well as the informations that can be drawn from a complete space-time
view of the solution.

2.3.1 The local stage

The local stage at the current iteration n + 1 consists in finding ŝn+1/2 ∈ Γ
[0,T], given

sn ∈ A
[0,T]
d from the previous iteration, by following the ascent search direction E+. For

each interface ΓEE′ the following conditions must be verified, with the subscripts n and
n + 1/2 omitted to simplify the notations:

Problem 3.2 (local stage). Find ŝ = {ŝE}E∈E ∈ Γ
[0,T] verifying, ∀x ∈ ΓEE′ and

∀t ∈ [0, T],

± the interface constitutive behavior: bEE′(ŴE, ŴE′ , F̂E, F̂E′) = 0;
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± the search direction E+:

{
F̂E − FE − k+(ŴE −WE) = 0
F̂E′ − FE′ − k+(ŴE′ −WE′) = 0

2.3.2 The linear stage

Given the solution ŝn+1/2 ∈ Γ
[0,T] from the local stage, the linear stage at the current

iteration n + 1 consists in finding sn+1 ∈ A
[0,T]
d following the descent search direction E−:

Problem 3.3 (linear stage). Find s = {sE}E∈E ∈ A
[0,T]
d verifying, ∀x ∈ ΩE and

∀t ∈ [0, T],

± the E-admissibility of sE: sE ∈ S
[0,T]
E ;

± the search direction E− : FE − F̂E + k−(WE − ŴE) = 0.

Taking into account E-admissibility and the search direction E−, the following linear
problem has to be solved at the linear stage for each substructure ΩE in the whole
space-time domain:

Problem 3.4. Find (uE, WE) ∈ E
[0,T]
E,ad such that, ∀(u∗, W∗) ∈ E

[0,T]
E,ad,

∫

ΩE×[0,T]
ε(uE) : K : ε(u∗)dΩdt +

∫

∂ΩE×[0,T]
k−WE ·W

∗dSdt =

∫

ΩE×[0,T]
f

d|ΩE
· u∗dΩdt +

∫

∂ΩE×[0,T]
(F̂E + k−ŴE) ·W

∗dSdt,

with FE = F̂E + k−(ŴE −WE).

The solution of the linear stage problem associated with substructure ΩE depends
solely on the known quantities f

d|ΩE
and ŝE on its boundary ∂ΩE. If K and k− are

symmetric positive definite, the Problem 3.4 has a unique solution [Ladevèze, 1999].
The linear stage problems defined on the different substructures ΩE are independent
and are therefore parallelizable.
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2.3.3 On the search directions

In the local stage and linear stage, k+ and k− are called search direction operators
(or simply search directions). Usually k+ = k− = k is adopted and k is taken as k = kId
[Ladevèze, 1999], with k called search direction parameter.
The search direction parameter k is homogeneous to a stiffness and analogous to the
augmentation parameter in an augmented Lagrangian formulation. By looking at
Problem 3.4, k acts as stiffness penalizing the displacements on the boundary of a
substructure, as represented in Figure 3.15. Mathematically k acts as a Robin condition
on the linear problem on the substructures, which makes the problem well posed as
there are no substructure rigid body modes to handle. Physically, it represents a sort of
a stiffness related to the surroundings of a substructure.

Ω 𝐸

𝑊𝐸

𝐹𝐸
𝑊𝐸𝒌−

𝑓𝑑𝒌−

𝒌−
𝒌−

Figure 3.15: Representation of the linear problem on a substructure with the ªspring
distributionº k− on the boundary.

Ideally, in linear elasticity and for perfect interfaces, the search direction parameter
k would be associated to the first eigenvalue of the primal Schur complement of the
stiffness matrix of all the other subdomains condensed on the subdomain boundary.
Such value is not affordable in practice to compute and yet with such a choice one would
loose the locality of the substructure problems, so simple local low-cost approximations
are adopted for the search direction parameter k. Close-to-optimal values for k for
perfect interfaces in the monoscale case are commonly given by [Ladevèze, 1999;
Champaney, 1996; Champaney et al., 1999]:

k =
E

LΩ

, (3.6)

where E is the Young modulus and LΩ is a characteristic length of the whole structure.
The concept of optimality in the sense of the search direction operator in the LATIN
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strategy concerns the convergence rate of the strategy itself, but not the results at
convergence, hence the robustness of the LATIN method. However it is crucial to
remind that this close-to-optimal value is good, in general, only for perfect interfaces,
and it is taken k = kId meaning that the same stiffness is adopted in the three directions,
which is the simplest choice (normal to the interface and the two tangential directions).

For frictional contact interfaces this reference choice is good in theory only in
presence of sticking conditions, so that the behavior of the contact interface is similar to
a perfect interface. When opening of the contact occurs ideally one should have k = 0
for the contact interface: in fact when one of the interfaces in Figure 3.15 is an open
contact interface, the ªspring distributionº k on it should allow the interface to open
freely. Similarly, when an interface is subjected to a large sliding front, the stiffness in
the tangential directions should be lower than the stiffness in the normal direction to
allow the interfaces to slide more easily. Nevertheless, for a given problem it is not
known a priori where and when there will be sliding and opening conditions, so that in
practice the value E/LΩ is adopted also for frictional contact interfaces. The LATIN will
converge regardless, however if there is a large number of contact interfaces in opening,
and/or large sliding fronts are present, this can severely affect the convergence rate. A
simple method to improve from this point of view may be to adopt a different search
direction between normal and tangential direction to a contact interface [Ribeaucourt
et al., 2007; Pierres et al., 2010; Giacoma et al., 2014, 2015]:

k = knPn + ktPt. (3.7)

In problems where large sliding fronts are expected, choosing kt < kn may benefit the
convergence rate.

Remark 3.2. Nothing prevents one to make use of a different search direction for each
side of an interface ΓEE′ , that is a kE and a kE′ . Such a choice might be for example
beneficial in presence of interfaces between elastically dissimilar subdomains.

2.4 Local stage for different interface behaviors

■ Displacement boundary conditions
For a displacement Ud imposed on ΓE,1 = ∂ΩE ∩ ∂1Ω, taking into account the search

direction, the following conditions have to be imposed:
{

ŴE = Ud

F̂E = FE + k+(ŴE −WE)
(3.8)
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■ Force boundary conditions
For an imposed force Fd on ΓE,2 = ∂ΩE ∩ ∂2Ω, taking into account the search

direction, the following conditions have to be imposed:
{

F̂E = Fd

ŴE = WE + k+(F̂E − FE)
(3.9)

Remark 3.3. This way of dealing with boundary conditions in the LATIN is not
mandatory. It is frequently used in order to not make distinctions between subdomains at
boundaries, subdomains at contact interfaces or subdomains with just perfect interfaces
and to treat everything in a unified way. One could however apply directly boundary
conditions on the subdomains without passing through boundary interfaces, which would
make the values of the applied boundary conditions exact at each iteration. One way to
enforce this in the classical LATIN treatment of boundary conditions is to heavily penalize
the search direction at boundary interfaces with a penalty α, with for example α = 103

for displacement boundary conditions or α = 10−3 for force boundary conditions. The
choice of α has an effect mainly on the initialization, not really on the convergence rate in
practice. This comes from the fact that boundary conditions are taken into account in the
penalty sense at the first iteration and rapidly converge through the LATIN iterations.

■ Perfect interfaces
For a perfect interface ΓEE′ , displacement continuity ŴE = ŴE′ and force equilib-

rium F̂E + F̂E′ = 0 have to be verified. By taking into account the search directions, the
following explicit expressions are obtained:





ŴE = 1
2

(
WE + WE′ − k+−1

(FE + FE′)
)

F̂E = FE + k+(ŴE −WE)

ŴE′ = ŴE

F̂E′ = −F̂E

(3.10)

■ Frictional contact interfaces
For frictional contact interfaces, here small displacements are assumed, which

greatly simplifies contact pairing as well as the integration of the frictional contact
conditions.

In the local stage for frictional contact interfaces we have to find forces and dis-
placements verifying a behavior that is unknown a priori. A classic method consists in
assuming a certain contact status (opening or closed contact, sticking or sliding), make
a predictive calculation based on these assumptions and then possibly correct it.

The contact conditions are predicted by means of proper contact indicators for the
normal and tangential status, with the latter expressed here in form of displacement
increments as in [Giacoma et al., 2015; Cardoso, 2019]. Normal contact indicator Cn,
and tangential sliding indicator Ct for a contact interface ΓEE′ at space position x and
time instant t are defined as follows:
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Cn(x, t) :=
1
2

(
k+n

[
n · (ŴE′ − ŴE) + g0

]
− n · (F̂E′ − F̂E)

)
;

Ct(x, t) :=
1
2

(
k+t Pt

[
δŴE′ − δŴE

]
−Pt(F̂E′ − F̂E)

)
;

(3.11)

where we make use of the notation δ□ = □(t)−□(t− δt) for the increment of tan-
gential gap between two consecutive time instants. We have introduced the contact
indicators distinguishing between normal and tangential search direction (3.7) to be
more general.

The contact indicators are defined on unknown quantities of the current local stage,
and, by making use of the ascent search directions E+, they can be equivalently written
in terms of known quantities of the previous linear stage:

Cn(x, t) =
1
2

(
k+n

[
n · (WE′ −WE) + g0

]
− n · (FE′ − FE)

)

Ct(x, t) =
1
2

(
k+t Pt

[
WE′(t)− ŴE′(t− δt)−

[
WE(t)− ŴE(t− δt)

]]
−Pt(FE′ − FE)

)

In particular it should be noted that the evaluation of the tangential contact indicator
at time instant t requires to know the solution of the local stage at time instant t− δt.
For this reason, the local stage has to be solved incrementally along the time instants.
Once the contact indicators has been evaluated, contact forces F̂E and F̂E′ are updated
accordingly, as shown in Table 3.2. Subsequently, interface displacements are found
explicitly with the search direction equations:

ŴE = WE + k+−1
(F̂E − FE) and ŴE′ = WE′ + k+−1

(F̂E′ − FE′) (3.12)

The verification of contact conditions in the local stage of the LATIN is therefore
straightforward and completely explicit, and it does not require to solve a local non-
linear problem. See Appendix A for more details about the local stage for frictional
contact interface with a displacement increment formulation.
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Normal contact

■ open contact: Cn > 0 ■ closed contact: Cn ⩽ 0

F̂E = F̂E′ = 0 F̂E · n = −F̂E′ · n = Cn

Tangential contact: if Cn ⩽ 0

■ sticking: ∥Ct∥ < f |n · F̂E| ■ sliding: ∥Ct∥ ⩾ f |n · F̂E|

Pt F̂E = −Pt F̂E′ = Ct Pt F̂E = −Pt F̂E′ = − f Cn Ct/∥Ct∥

Table 3.2: Resolution of the local stage for a frictional contact interface.

2.5 Initialization and control of the convergence

The iterative LATIN algorithm is initialized with an admissible solution s0 ∈ A
[0,T]
d .

A classical choice is the solution obtained assuming ŝ = 0 in Problem 3.4, that is, for
each substructure:

Problem 3.5 (initialization). Find (u0,E, W0,E) ∈ E
[0,T]
E,ad such that, ∀(u∗, W∗) ∈

E
[0,T]
E,ad,

∫

ΩE×[0,T]
ε(u0,E) : K : ε(u∗)dΩdt +

∫

∂ΩE×[0,T]
k−W0,E ·W

∗dSdt =

∫

ΩE×[0,T]
f

d|ΩE
· u∗dΩdt,

with F0,E = −k−W0,E.

For the monoscale strategy, when the search directions are coniugate k+ = k−, and
in presence of perfect interfaces or contact interfaces without friction, the quantity
(sn+1 + sn)/2 converges to sexact [Ladevèze, 1999]. In order to make sn converge to
sexact, as also to ensure practical convergence for other types of interface behaviors such
as frictional contact interfaces, a relaxation step is required after the linear stage, which
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is classical for fixed-point like algorithms:

sn+1 ← µsn+1 + (1− µ)sn, (3.13)

where µ ∈]0, 1] is the relaxation parameter, generally taken to be 0.8 for a large variety
of problems [Ladevèze, 1999].

In order to check the convergence of the LATIN algorithm, one can build LATIN con-
vergence indicators based on the distance between two consecutive solutions belonging
to each of the two manifolds. The usual convergence indicator adopted, introduced in
[Ladevèze, 1999], is the LATIN indicator:

η =

√
∑E ∥sE − ŝE∥

2

1
2 ∑E(∥sE∥2 + ∥ŝE∥2)

, with ∥sE∥
2 =

∫

∂ΩE×[0,T]
(k−W2

E + k−
−1F2

E)dSdt. (3.14)

The LATIN indicator η (schematically represented in Figure 3.16) characterizes the
global distance (i.e., in space and time) between the solution of the linear stage and the
one belonging to the local stage for both displacements and interface forces along the
search directions, and is evaluated accounting for the whole set of interfaces. When the
solution converges to sexact, the two consecutive iterates merge and the indicator tends
to zero.

𝐬𝑛𝐬𝑛+1𝐬exact

ො𝐬𝑛+12 Г[0,𝑇]
𝐀𝑑[0,𝑇]η

η𝑟𝑒𝑓
Figure 3.16: Schematic representation of the LATIN indicator η and reference error ηre f .

If the exact solution sexact of the problem is available, one can compare the evolution
of the LATIN indicator η with reference solutions errors ηre f (see Figure 3.16) in terms
of interface displacements or interface forces, defined as follows:

ηW =

√
∑E ∥WE −WE,exact∥

2
2

∑E ∥WE,exact∥
2
2

and ηF =

√
∑E ∥FE − FE,exact∥

2
2

∑E ∥FE,exact∥
2
2

, (3.15)

with ∥□∥2
2 =

∫

∂ΩE×[0,T]
□2dSdt.

122



2. LATIN-based monoscale DDM for frictional contact problems

The LATIN indicator (3.14) gives an evaluation of the convergence of the problem
in a global manner in space and time for all the possible domains and interfaces. It is
clear that such a global convergence indicator does not guarantee that the solution has
locally converged in space and time. For this reason, one could be also interested in
looking for the error at a specific time value t by means of a LATIN time indicator ηt:

ηt =

√√√√ ∑E ∥sE(t)− ŝE(t)∥2
∂ΩE

1
2 ∑E(∥sE(t)∥2

∂ΩE
+ ∥ŝE(t)∥2

∂ΩE
)

, (3.16)

with ∥sE(t)∥2
∂ΩE

=
∫

∂ΩE

(k−W2
E(t) + k−

−1FE(t)
2)dS.

A more strict norm for the LATIN indicator η (3.14) could be used, as for example
a sup-norm over all the space-time domain [Ribeaucourt et al., 2007; Giacoma et al.,
2015]. However, the previous error indicators are dependent on the search direction k,
and therefore, if k varies, for a given value of the error the solution may be significantly
different. This point is crucial for contact problems where an accurate computation
of local contact quantities is required, and it will be discussed and investigated in
Chapter 5.

2.6 Application on the 1D test problem

In this section, the monoscale LATIN method presented previously will be applied
to the one-dimensional test problem described in Section 1, to highlight strengths of
the method and critical points. The benchmark test of Figure 3.1a will be adopted,
with the loadcase 1 of Figure 3.1b and the parameters of Table 3.1. Continuous linear
shape functions are used for substructure displacement field and piecewise constant
shape functions for interface quantities [Ladevèze et al., 2002] (see Appendix B on the
discretization of subdomain and interface quantities). We start with the case where
only one substructure ΩE = Ω, coincident with the space domain, is considered. A
reference search direction parameter k = k0 = ES/L is chosen.

To emphasize the peculiarity of the LATIN to solve the nonlinear problem in a
non-incremental manner, the solution obtained for the frictional contact forces, in space
and time, along different iterations of the LATIN is shown in Figure 3.17. Already from
the first iterations, the algorithm produces a global space-time view of the problem,
which is subsequently refined locally along the iterations.

Figure 3.18a shows the evolution of the LATIN indicator η (3.14) along the iterations,
compared with the reference errors ηW and ηF (3.15). Displacements and interface forces
have roughly the same convergence rate, although, for a fixed number of iterations, the
interface forces result less accurate than the displacements, and more critical to make
converge. The LATIN indicator, which blends displacements and forces through the
search direction k, presents approximately the same rate of convergence as ηW and
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Chapter 3. LATIN-based model reduction for frictional contact problems

Figure 3.17: Space-time distribution of frictional forces along some LATIN iterations
and reference solution.

ηF, and an accuracy for a fixed number of iterations that lies in between the two. In
Figure 3.18b is shown the LATIN time indicator ηt (3.16) along the time interval at
different iterations. As expected, the error on the different time steps is not uniform.

As mentioned previously, the value of the parameter k that one makes use of in
the LATIN algorithm affects the convergence rate of the problem, but not the result at
convergence, which renders the method strongly robust for whatever complex loading
and any number of frictional contact interfaces. The results in Figure 3.19a show
how different values of k affect the convergence rate of the algorithm. The optimal
search direction parameter k for frictional contact problems, which guarantees the best
convergence rate, is not known a priori since it depends on the particular problem.

It is crucial also to evaluate the influence of the search direction parameter k on the
quality of a converged solution. In Figure 3.19b is shown a snapshot of the frictional
forces distribution at time t = 0.5 s of the problem solved with three different values of
the search direction parameter, k = k0 = ES/L, k = 0.1 k0 and k = 10 k0, until reaching
a LATIN convergence indicator threshold of η0 = 10−3.

A good convergence indicator should provide solutions of comparable quality what-
ever the value of the search direction adopted, for a fixed value of the convergence
threshold. In this case one can notice that for a given convergence threshold η0, the
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Figure 3.18: LATIN convergence and error indicators.
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Figure 3.19: Influence of the search direction parameter k.

solutions provided for different values of the search directions are quite different. In
particular, the error concerns mostly the accurate identification of the sticking-sliding
transition zones.

A monostructure case of the problem was considered in previous results. The
LATIN, however, naturally leads to a monoscale domain decomposition method. Let
us consider how the solution of the original problem, with load case 1, behaves by
partitioning it into substructures, as in Figure 3.20. To each substructure is assigned
the same spatial discretization of Table 3.1. For this numerical scalability study, the
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Chapter 3. LATIN-based model reduction for frictional contact problems

ratio h/H is kept constant and equal to 1/50, where h is the element size and H the
substructure size. Each substructure is linked to the neigbouring ones through perfect
interfaces. Note that by using piecewise constant shape functions for the contact
interface quantities, no multiple constraint problem arises at nodes where perfect
interfaces are introduced.

contact 

interface

perfect 

interface

force BCs displacement BCs

𝐹𝑑
𝑝

𝑥 1 2 3 4 5

Figure 3.20: Substructured 1D problem into 5 substructures, with respective numbering.

Figure 3.21a shows, in the case of 10 substructures, the frictional forces distribution
at time t = 0.5 s along some iterations of the LATIN. The monoscale nature of the
approach allows the exchange of information only between neighboring substructures.
In the first iteration, only the substructure directly subject to the external load (load
case 1 here) sees the effect of the loading. The influence of the external load is then
slowly propagated to the remaining substructures iteration after iteration, which causes
a decrease of the convergence rate with the number of substructures (Figure 3.21b).
This domain decomposition strategy is clearly not numerically scalable.
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Figure 3.21: Monoscale LATIN-DDM applied to the substructured 1D problem repre-
sented in Figure 3.20.

3 Solving linear stage problems with PGD

The linear stage of the LATIN algorithm, as described in Section 2, consists in
solving independently, for each substructure ΩE, a linear problem on the whole space-
time domain. For this reason, it is suitable for model-order reduction based on the
separation of variables. In particular, a priori model reduction based on the PGD [Nouy,
2010] can be introduced in the linear stage of the LATIN method in order to speed up
the computations [Ladevèze, 1999; Ladevèze and Nouy, 2003; Ladevèze et al., 2010].

3.1 Linear stage with corrections

First of all, starting from the initial linear elastic solution s0 given by Problem 3.5,
let us write the solution sn+1 at the current iteration as a correction with respect to the
previous iteration solution, that is

sn+1 = sn + ∆s. (3.17)

Given the linearity of the equations pertaining to the manifold A
[0,T]
d , the E-admissibility

conditions can be equivalently written, for each substructure ΩE, in terms of corrections:
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Chapter 3. LATIN-based model reduction for frictional contact problems

Definition 3.2 (E-admissibility to zero). ∆sE = (∆uE, ∆WE, ∆σE, ∆FE) ∈ S
[0,T]
E

is said to be E-admissibile to zero, that is ∆sE ∈ S
[0,T]
E,ad,0, if it verifies:

± the kinematic admissibility to zero: (∆uE, ∆WE) ∈ E
[0,T]
E,ad,0

∣∣ ∃∆uE ∈ U
[0,T]
E such

that ∆uE|∂ΩE
= ∆WE,

± the static admissibility to zero: (∆σE, ∆FE) ∈ F
[0,T]
E,ad,0

∣∣ ∀(u∗, W∗) ∈ E
[0,T]
E,ad,0,

∫

ΩE×[0,T]
∆σE : ε(u∗)dΩdt =

∫

∂ΩE×[0,T]
∆FE ·W

∗dSdt,

± the constitutive relation: ∆σE = K : ε(∆uE).

Similarly, the search direction equation E− at the current iteration n + 1 can be
equivalently written as

∆FE + k−∆WE − δE = 0, (3.18)

with the quantity
δE = F̂E + k−ŴE − (FE,n + k−WE,n), (3.19)

that we will call search direction residual, known at the current iteration, and which
depends on the previous local and linear stage.

By taking into account kinematic and static admissibility to zero and the constitutive
relation, the equivalent problem in terms of corrections to be solved at the linear stage
is the following linear problem:

Problem 3.6 (linear stage with corrections). Find (∆uE, ∆WE) ∈ E
[0,T]
E,ad such that,

∀(u∗, W∗) ∈ E
[0,T]
E,ad,

∫

ΩE×[0,T]
ε(∆uE) : K : ε(u∗)dΩdt =

∫

∂ΩE×[0,T]
∆FE ·W

∗dSdt,

with ∆FE + k−∆WE − δE = 0.

Since the search direction is a parameter of the strategy and an exact verification
of it is not mandatory for the convergence of the strategy, one can think of solving the
previous problem by seeking an admissible solution that verifies the search direction
only in weak sense, as follows:
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3. Solving linear stage problems with PGD

Problem 3.7 (minimization of the error in search direction). Find (∆uE, ∆WE) ∈

E
[0,T]
E,ad such that, ∀(u∗, W∗) ∈ E

[0,T]
E,ad,

∫

ΩE×[0,T]
ε(∆uE) : K : ε(u∗)dΩdt =

∫

∂ΩE×[0,T]
∆FE ·W

∗dSdt,

with (∆WE, ∆FE) = arg min
(∆WE,∆FE)∈S

[0,T]
E,ad,0

∥∆FE + k−∆WE − δE∥
2
2.

3.2 Separated representation of the unknowns during the linear

stage

A progressive construction of space-time functions for PGD is classicaly used [Nouy,
2010], and consists in looking for a separated representation solution of Problem 3.7 for
the corrections of forces and displacements, that is:

∆uE = zE(x)λE(t) on ΩE × [0, T];

∆WE = ZE(x)λE(t) on ∂ΩE × [0, T];

∆FE = GE(x)ψE(t) on ∂ΩE × [0, T];

(3.20)

where λE, ψE ∈ J = L2
[0,T] and time functions of ∆uE and ∆WE are taken equal for

kinematic admissibility.

By injecting the separated representations (3.20) in Problem 3.7, and by making

use of trial functions u∗ = z∗EλE + zEλ∗E and W∗ = Z∗EλE + ZEλ∗E belonging to E
[0,T]
E,ad,0,

one obtains the following two conditions to be satisfied in order for the separated
representations (3.20) to be admissible:

∀λ∗E ∈ J ,

∫

[0,T]
λEλ∗Edt

∫

ΩE

ε(zE) : K : ε(zE)dΩ =
∫

[0,T]
ψEλ∗Edt

∫

∂ΩE

GE · ZEdS; (3.21)

∀(z∗E, Z∗E) ∈ EE,ad,0,

∫

ΩE

ε(zE) : K : ε(z∗E)dΩ

∫

[0,T]
λ2

Edt =
∫

∂ΩE

GE · Z
∗
EdS

∫

[0,T]
λEψEdt. (3.22)
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In Eq. (3.22), the space EE,ad,0 is the space of kinematic admissibility to zero for functions
not depending on time, such as space modes zE, ZE and GE. Similarly, in the following,
SE,ad,0 will indicate the E-admissibility to zero for space modes (see Definition 3.2).

From Eq. (3.21) the arbitrary of λ∗E enables one to say that, up to a multiplicative
constant,

∀t ∈ [0, T], ψE(t) = λE(t). (3.23)

On the other hand, from Eq. (3.22), the following admissibility condition between space
modes of forces and displacements holds:

∀(z∗E, Z∗E) ∈ EE,ad,0,
∫

ΩE

ε(zE) : K : ε(z∗E)dΩ =
∫

∂ΩE

GE · Z
∗
EdS. (3.24)

The two conditions (3.23) and (3.24) have to be satisfied by the time and space modes
of the separated representation of the current linear stage in order for it to belong to

the admissible space A
[0,T]
d of the LATIN algorithm. However, with such an admissible

separated representation, the search direction equation (3.18), which can be rewritten
as (GE + k−ZE)λE − δE = 0, cannot be strictly verified since δE is not in a separated
format.

3.3 Finding a new pair of modes

The admissibility conditions (3.23) and (3.24) guarantee that the separated represen-

tation lies in the admissible space A
[0,T]
d . However, the search direction can be verified

only in a weak sense. Since the search direction is a parameter of the strategy, it does not
need to be verified accurately, but sufficiently nevertheless, for the strategy to converge:

Problem 3.8 (enrichment stage). Find (ZE, GE) ∈ SE,ad,0 and λE ∈ J minimizing
the error in search direction

(ZE, GE, λE) = arg min
(GE,ZE,λE)∈SE,ad,0×J

∥(GE + k−ZE)λE − δE∥
2
2. (3.25)

In order to solve the above defined problem, an auxiliary mixed space mode, defined
on the boundary ∂ΩE, is introduced [Giacoma et al., 2015]:

LE := GE + k−ZE. (3.26)

Subsequently, the minimization Problem 3.8 is solved for LE and λE with a fixed point
iterative strategy, shown in Algorithm 5, where we arbitrarily choose to normalize
space modes. The first step consists in computing LE knowing λE from the previous
iteration. Then, the second step consists in updating λE knowing LE from the first
step. After few iterations (two or three are usually enough), LE and λE are no more
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3. Solving linear stage problems with PGD

significantly updated and the process is stopped [Nouy, 2010]. Then, by making use
of admissibility condition (3.24) one can retrieve the admissible zE, ZE and GE space
modes from LE.

Algorithm 5: Enrichment stage: new pair of PGD modes
■ initialization: λE(t) = 1
for n = 1 to nmax do

± compute space mode: LE =
∫

[0,T]
δEλE dt

/ ∫

[0,T]
λ2

E dt

± compute time mode: λE =
∫

∂ΩE

δE · LE dS
/ ∫

∂ΩE

L2
E dS

± normalize space mode: LE ← LE/∥LE∥
± amplify time mode: λE ← λE∥LE∥

Therefore δE is approximated as

δE = F̂E + k−ŴE − (F0,E + k−W0,E +
p+1

∑
k=1

LE,kλE,k) (3.27)

and solution fields, which are admissible, can be written in a separated representation
as:

uE = u0,E + ∑
p+1
k=1 zE,kλE,k;

WE = W0,E + ∑
p+1
k=1 ZE,kλE,k;

FE = F0,E + ∑
p+1
k=1 GE,kλE,k,

(3.28)

with p + 1 being the current PGD basis size after the enrichment stage.

The minimization in Problem 3.8, since the substructure is linear and search direc-
tions only concern interface quantities, is defined in space on the substructure boundary.
When generating new modes the most costly part concerns the generation of space
modes due to the admissibility condition (3.24) which requires the resolution of a
problem in space of the size of the substructure. For this reason, prior to adding a new
pair of modes in the enrichment stage, if a given basis of p modes {LE,k, λE,k}

p
k=1 is

available a preliminary updating of time modes can be performed by keeping fixed
the space modes, as shown in Problem 3.9. The updating stage consists in a cheap
projection onto the current PGD basis and, since space modes are fixed (i.e., they are
already admissible), there is no need to verify admissibility condition for the p space
modes.
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Problem 3.9 (preliminary updating stage). Find ∆λE,k ∈ J , k = 1, . . . , p minimiz-
ing the error in search direction

{∆λE,k}
p
k=1 = arg min

∆λE,k∈J
∥∑

p
k=1 LE,kλE,k − δE∥

2
2, (3.29)

and subsequently update time modes {λE,k}
p
k=1 ← {λE,k}

p
k=1 + {∆λE,k}

p
k=1.

The updating stage largely improves the quality of the PGD representation [Nouy,
2010]. After the updating stage, if the quality of the representation is not satisfactory,
one proceeds to add a new pair (or more) of modes. This step is crucial. In fact for a
better efficiency of the method it is necessary to create the minimum amount of modes
and to avoid the creation of redundant and unnecessary ones.

Remark 3.4. Since nonlinearities are confined only to interfaces, search directions have
been introduced only for interface quantities, resulting into a simple interface residual
minimization for the generation of a new mode. For more general nonlinear problems
where nonlinearities can also occur within the substructures, search directions have to be
introduced for quantities defined on both interfaces and substructures resulting into a
more involved formulation. For material nonlinearities interested readers can refer to
[Nouy, 2003; Nouy and Ladevèze, 2004; Passieux et al., 2010].

3.4 Controlling the size and quality of the PGD basis

A generally adopted enrichment criterion (e.g., in [Giacoma et al., 2015]) used to
decide whether to add or not a new pair of modes is the one based on the LATIN
indicator stagnation. Given the LATIN indicator η at the previous iteration, and η̃
after the updating stage (Problem 3.9), a new pair of modes is added if the following
stagnation criterion is satisfied:

θ =
η − η̃

η
< θ0. (3.30)

However, this indicator is poorly suited for frictional contact problems. In fact, as
shown in Figure 3.19a, the convergence rate of the LATIN is mainly driven by the
search direction k. Since in the presented formulation admissibility is exactly verified
and only the search direction is approximated (see Problem 3.8), after a certain point
adding new modes will not improve the convergence rate, which is driven by k, and
new useless modes would be consistently added.

A more appropriate criterion is naturally based on the definition of the separated
representation itself, according to Problem 3.8. In fact, what one approximates is the
quantity δE at every iteration (see Eq. (3.25)). For this reason, it is natural to choose
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a criterion based on the accuracy of the approximated search direction [Nouy and
Ladevèze, 2004]:

ξ =
∥δE − δ̃E∥2

∥δE∥2
> ξ0, (3.31)

where δ̃E = F̂E + k−ŴE − (F0,E + k−W0,E + ∑
p
k=1 LE,k(λE,k + ∆λE,k) is the approxima-

tion of the search direction after the updating stage by keeping constant the space basis
{LE,k}

p
k=1.

In both cases, a threshold of 0.1 is commonly adopted. In the θ-criterion (3.30), this
corresponds to a decrease of the LATIN indicator by a factor less than 10%, while, in
the ξ-criterion (3.31), it corresponds to an approximation of the search direction with a
relative error more than 10%.

A reasonable enrichment criterion is crucial for the PGD basis not to grow uncontrol-
lably in size, loosing effectiveness of the method. For highly non-regular phenomena
like frictional contact problems it is challenging to create progressively a ROB of the
smallest size possible to ensure a given accuracy, that is to be close to the SVD basis
of the final solution. The progressively found PGD modes may be highly redundant
even when performing the updating stage and the basis size may increase in size with
modes which add little to no contribution to the representation accuracy.

This problem may be reduced for example by performing a Gram±Schmidt orthonor-
malization for the space modes each time a new couple is found with the enrichment
stage and then deciding whether or not to accept the new couple based on the residual
norm of the spatial mode after the orthonormalization process. However, even after
orthonormalization of space modes, redundancy may still occur on time modes and this
approach was proven uneffective to control the basis size in PGD contexts [Alameddin
et al., 2019].

A different approach that can be adopted is to perform a full SVD computation
of the solution after each enrichment step and taking the most significant modes as
basis for the next iteration. Less expansive methods could make use of SVD updating
techniques [Bunch and Nielsen, 1978; Brand, 2006] or randomized SVD [Alameddin
et al., 2019]. However these methods aim at computing precisely the SVD of the
solution throughout the iterations of the LATIN with an effort which may be not
worthwhile knowing that the solution may be far from convergence. In [Giacoma et al.,
2015], in the context of frictional contact problems with monoscale LATIN, an iterative
downsizing algorithm has been proposed to decrease the size of the LATIN-PGD basis
throughout the iterations while maintaining the quality of the solution. At convergence
the algorithm is equivalent to an SVD, however, since it is not required to compute
exactly the SVD, few iterations (1 or 2) of the algorithm at each LATIN iteration are
sufficient for the purpose. For more details one can refer to [Giacoma et al., 2015] and
[Giacoma et al., 2016].

133



Chapter 3. LATIN-based model reduction for frictional contact problems

3.5 Application on the 1D test problem

Here, the LATIN-PGD strategy is applied to the resolution of the benchmark prob-
lem illustrated Figure 3.1a, with the loadcase 1 of Figure 3.1b and the parameters of
Table 3.1. The monostructure case ΩE = Ω is considered. The goal is to study deeply
the PGD only.

First, the LATIN-PGD algorithm with the θ enrichment criterion (3.30), with θ0 = 0.1,
is considered. A first strategy consists in adding a new pair of modes any time the en-
richment criterion (3.30) is satisfied after the updating stage (LATIN-PGD(θ)), without
making use of sorting algorithms for the PGD basis. A second strategy consists in per-
forming also a Gram±Schmidt orthonormalization of the space modes any time a new
pair of modes is added (LATIN-PGD(θ)+GS), and a third one consists in performing
an additional downsizing stage (see Appendix D) for the PGD basis at each LATIN
iteration (LATIN-PGD(θ)+D). In the LATIN-PGD(θ)+D strategy, a single iteration of
the downsizing algorithm presented in [Giacoma et al., 2015] is performed at each
LATIN iteration, and a threshold ϵ = 10−4 is chosen for the mode rejection.

The different strategies investigated throughout the manuscript and their properties
are reported in Table 3.3. We consider to add at most one pair of modes after the
updating stage. In fact, more pairs of modes can be added at each LATIN iteration,
however adding more modes leads to increase the PGD basis with unnecessary modes
when far from convergence.

LATIN-PGD strategies
Strategy ROB enrich-

ment criterion
ROB sorting al-
gorithm

Comments

full LATIN - - no PGD
LATIN-PGD(θ) θ-criterion (3.30) - no ROB sorting algo-

rithm
LATIN-PGD(θ)+GS θ-criterion (3.30) Gram±Schmidt only space modes are

sorted
LATIN-PGD(θ)+D θ-criterion (3.30) downsizing

(Appendix D)
low-cost SVD algo-
rithm [Giacoma et al.,
2015]

LATIN-PGD(ξ) ξ-criterion
(3.31)

- no ROB sorting algo-
rithm

LATIN-PGD(ξ)+D ξ-criterion
(3.31)

downsizing
(Appendix D)

low-cost SVD algo-
rithm [Giacoma et al.,
2015]

Table 3.3: Different LATIN-PGD strategies investigated throughout the manuscript.
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Figure 3.22a shows the evolution of the PGD basis size along the LATIN iterations by
making use of the three different strategies described previously. Regarding the LATIN-
PGD(θ), the basis size largerly exceeds the original size of the problem (considering
the problem size in space variable, a maximum of 50 modes is required for an exact
evaluation of the quantities, see Figure 3.10a). Given the particular behavior of the
LATIN convergence indicator, with a high rate in the first iterations (almost independent
from the search direction parameter k) and a lower rate in the subsequent iterations
(controlled by the value of k), the θ-criterion generates less modes in the first part and
more modes in the second one. However, since the convergence rate in this second
part is driven by the search direction parameter k, most of the generated modes will be
useless.

The curve in Figure 3.22a of the LATIN-PGD(θ)+D confirms the previous hypothesis
on the useless modes generated. In fact, the downsizing algorithm does not reduce
the size of the basis in the first part of the LATIN iterations, while, after a certain point
(approximately after iteration 40, where the LATIN indicator curve changes slope),
most of the newly added modes are rejected. The final size of the downsized basis lays
between 30 and 40 modes, which is the size required for the contact quantites to be
accurately represented (see Figure 3.10a). Finally, the LATIN-PGD(θ)+GS shows to be
uneffective to control the basis size, as it just limits the basis size not to exceed the size
of the problem.
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Figure 3.22: Convergence curves and PGD basis analysis for the LATIN-PGD(θ) strate-
gies.

Figure 3.22b shows the behaviour of the LATIN indicator for the full LATIN (i.e.,
without PGD) and the different LATIN-PGD(θ) strategies. The high slope initial con-
vergence is oscillating and not well captured, while the second part of the curve, where
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a new mode is generated almost systematically, is more uniform and tends to the
full LATIN curve. The convergence curves of the different LATIN-PGD(θ) strategies
described are in practice coincident, since the goal of ROB sorting methods is to control
the size of the progressively built PGD basis without losing appreciable accuracy.

The relevance of the PGD basis along the LATIN iterations with the LATIN-PGD(θ)+D
can be easily visualized by making use of the Modal Assurance Criterion (MAC) dia-
grams [Pastor et al., 2012] between the PGD modes and the SVD modes. Shortly, given
two sets of vectors of the same dimension {Xi}

p
i=1 and {Yj}

p
j=1, the MAC matrix M is

defined as:

Mij =
|XT

i Yj|
2

∥Xi∥2∥Yj∥2 ∈ [0, 1]. (3.32)

Mij measures the correlation between mode Xi and mode Yj. Mij = 1 means that the
modes are collinear, that is highly correlated, otherwise Mij = 0 means that the modes
are orthogonal, that is highly uncorrelated.

Here the purpose is to evaluate along the iterations of the LATIN how the algorithm
is capable of approximating the SVD. To do this, at every LATIN iteration n a full
SVD of the linear stage solution Wn for the displacements, Fn for frictional forces
and Fn + k(−)Wn for the mixed quantity is computed and compared respectively
to downsized PGD modes for displacements {ZE,k}, contact forces {GE,k} and the
auxiliary mixed modes {LE,k} (see Eq. (3.26) for auxiliary mode definition) by making
use of the MAC criterion definition (3.32).

Figure 3.23 displays the MAC diagram for the auxiliary mixed modes, and in
Figure 3.24 and Figure 3.25 are displayed the MAC diagrams of displacement and
frictional forces modes (that we recall are obtained with a post-processing knowing
{LE,k} from the admissibility condition of Eq. (3.24)). The downsizing algorithm,
applied to the auxiliary mixed modes {LE,k}, provides along the iterations a quasi-
optimal basis correlated to the SVD (as shown in [Giacoma et al., 2015]). The resultant
correlation for space modes {ZE,k} and {GE,k} is still good but not as accurate as for
{LE,k}.

Nevertheless, the PGD strategy is based on the approximation of the search direc-
tion through space modes {LE,k}, from which the admissible space modes {ZE,k} and
{GE,k} are obtained through the solution of a problem in space at the substructure
level. Although applying downsizing to the {LE,k} basis is cheap, after the process, to
compute the downsized space basis {ZE,k} and{GE,k} of displacements and frictional
forces, Eq. (3.24) must be solved again for all the basis and this step may be expensive.
It is therefore clear that the most important thing is to choose a relevant enrichment
criterion, and a proper strategy, which enable to generate relevant modes and reduce
the generation of redundant and useless ones.

Let us consider now the LATIN-PGD(ξ) strategy by making use of the ξ criterion
(3.31), with ξ0 = 0.1 and without resorting to orthonormalization or downsizing.
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Figure 3.23: MAC diagrams for auxiliary space modes {LE,k} along the iterations of the
LATIN method.
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Figure 3.24: MAC diagrams for displacement space modes {ZE,k} along the iterations
of the LATIN method.
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Figure 3.25: MAC diagrams for contact force space modes {GE,k} along the iterations
of the LATIN method.

Figure 3.26a shows the LATIN-PGD(ξ) strategy convergence indicator and basis size
along the LATIN iterations. In this case, the evolution of the PGD basis along the
iterations is different from the LATIN-PGD(θ). More modes are created in the first
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iterations, where the LATIN convergence indicator rate is higher and there is a large
variation in the solution from one iteration to another. Afterwards, the contact quantities
converge locally slowly and for several LATIN iterations there is no need to enrich the
ROB. The LATIN indicator behaves accordingly: a perfect match in the first part of the
convergence curve with respect to the full LATIN indicator, and a very good match in
the second part. Remarkably, the size of the PGD basis remains limited, and the final
size is in the range of the one obtained previously by means of the LATIN-PGD(θ)+D
strategy, which corresponds to the range in which the contact forces are accurately
approximated (Figure 3.10a).

The progressively built PGD basis, in this case, is not correlated with the SVD, as
it can be seen from Figure 3.26b for the auxiliary mixed modes {LE,k}. However, it
can be noticed that the very first modes have a good correspondence with the first
structural modes of the SVD, while subsequent ones, more related to local corrections,
are more dispersed and harder to capture optimally. This is because, in the analyzed
case, a monostructure case ΩE = Ω was considered and, as seen in Section 1, higher-
order modes carry localized corrections in different areas of the structure according to
sticking/sliding conditions.

As suggested in [Giacoma et al., 2015], a multiscale strategy may be useful in this
context, with the coarse/macroscale problem quickly capturing the solution at the
global scale, and the model-order reduction technique (here PGD) then being able to
capture microscopic/local variations in the solution more effectively.
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Figure 3.26: Convergence curve and PGD basis analysis for the LATIN-PGD(ξ) strategy.
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4. Conclusions

4 Conclusions

The chapter started with the analysis of a one-dimensional frictional benchmark
problem in Section 1. Although significantly much simpler than the real application
envisaged, the problem allowed to draw significative insights about the approaches to
be used to tackle such problems. The space and time modes of the reference solution of
the tested problem showed some similarities with the SVD of a real test case analyzed
in Chapter 2, in particular for the space modes that present distinctions between the
sticking and sliding zones. For this reason, a domain decomposition method that sepa-
rates sticking and sliding zones can be efficient in our case. The reducibility confirms
that for the target application, consisting in small oscillations around a preloaded state,
there is good potential for reducibility since contact conditions do not vary significantly.
From this simplified case the lower reducibility of frictional contact forces compared to
displacements obtained from the wire rope results in Chapter 2 has also been recovered.

The need to solve frictional contact problems through a reduced model accurately
enough for a fatigue analysis led us to consider the LATIN nonlinear solver due to its
robustness and flexibility.

The LATIN solver is described in Section 2. When applied to frictional contact
problems the LATIN shares similarities with augmented Lagrangian methods, this
allows for an accurate computation of contact quantities and a general robustness of the
method, i.e., it generally converges to the solution although the speed of convergence
depends on the choice of search directions.

The main features of the LATIN method were analyzed through the one-dimensional
benchmark contact problem, by selecting a severe load case with long propagation of
sticking/sliding front, intended to represent a simplified model of a wire of the wire
rope under tension and bending. The fundamental property of LATIN to generate a
complete space-time solution at each iteration was highlighted, as well as the impor-
tance of the search direction parameter. It has been pointed out that the convergence
rate of the problem depends on the search direction, and finding an optimal search
direction for evolutionary frictional contact problems is challenging. The search di-
rection also influences the value of the usually adopted LATIN convergence indicator.
The global space-time nature of LATIN makes it difficult to accurately control locally
the error, as errors can propagate in time, highlighting the importance of a proper
convergence indicator when an accurate identification of sliding fronts is required.

In addition, the LATIN allows for a simple treatment of domain decomposition
even in the presence of friction contact interfaces. It was shown that the ªmonoscaleº
treatment of domain decomposition allows an exchange of information only between
neighboring subdomains, reducing the efficiency of the method and its scalability
according to the number of subdomains. This clearly shows the need to introduce a
coarse scale problem in the monoscale strategy, as presented in the next Chapter 4.

Finally, given the peculiarity of LATIN to generate solutions in the entire space
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Chapter 3. LATIN-based model reduction for frictional contact problems

and time domain, the introduction of model reduction based on the PGD is natural
in the LATIN scheme and was discussed in Section 3. In this context it is important
to ensure that the progressively built PGD basis does not grow uncontrollably in
size, otherwise a general loss of efficiency of the method is expected. For this reason
a particular attention was put on the generation of new modes and the control of the
quality and size of the basis. It has been emphasized that the PGD does not drive the
convergence rate in the LATIN, as it is mainly by the search direction k. Therefore,
to control the quality and size of the PGD basis, the choice of a proper enrichment
criterion is crucial. Additional ROB sorting algorithms can be used, and among these
the downsizing algorithm is particularly effective in controlling the quality and size
of the reduced basis creating along the iterations of the LATIN a reduced basis close
to the SVD. However, their cost can be non-negligible, especially when dealing with
larger problems and numerous subdomains, as we will see in the next Chapter 4.

The next chapter will discuss a multiscale strategy to model reduction for friction
contact problems and its benefits to the different points and limits highlighted in this
chapter, that is the loss of scalability when making use of substructuring, the need to
control the size of the basis size while still being accurate locally, and the separation of
scales at the structural level and the local level of the interfaces.
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Chapter 4

A multiscale strategy to model-order

reduction for frictional contact

problems

This chapter presents the multiscale strategy to model reduction for frictional contact
problems, and represents the second part of the article [Zeka et al., 2024a]. Multiscale
aspects are introduced in the LATIN framework at the interface level, where a separation
of scales between macroquantities and microquantities is operated. This scale separation
is intended to put in place a fine description in the frictional contact areas of interest
while maintaining a coarser description in the rest of the structure. Thereafter the
introduction of PGD in the multiscale framework is described. The coarse scale problem
of the multiscale strategy allows to efficiently capture the mechanical behavior at the
scale of the structure, then focusing on capturing local contact variations at contact
interfaces with local reduced-order bases. The most important features of the approach are
shown comprehensively on a 1D benchmark problem introduced in Chapter 3. Then, its
robustness and effectiveness are tested on a two-dimensional layered structure with wide
frictional contact interfaces with multiple complex loadings.
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1. Introduction of a multiscale strategy at the level of the interfaces

Multiscale methods in mechanics are often based on the resolution of a coarse scale
problem on the structure obtained by homogenizing in some manner the underlying
microstructure or by means of preconditioning techniques. In this manner the overall
behavior of the structure is represented by a reduced number of degrees of freedom
and, to represent details at lower scale, local refinements are necessary.

Most multiscale strategies involve the principle of homogenization on Represen-
tative Volume Elements (RVE), with a mathematical framework given by the theory
of asymptotic homogenization [Sánchez-Palencia, 1980]. Extensions have been also
developed in the context of nonlinear problems [Suquet, 1987; Ponte Castañeda, 1996].
One of the most used among these techniques is the concurrent multiscale FE2 [Feyel
and Chaboche, 2000], which has recently gained attention thanks to the acceleration
possibilities offered by modern data-driven techniques [Masi and Stefanou, 2022; Rocha
et al., 2023].

The described homogenization techniques allow to operate a transition from the
microscale to the macroscale from studies at the microscopic scale of the RVE. What
we are interested to consists instead in superimposing to the solution of a macroscopic
problem a local refinement on the interested zones. Among others one can cite the
Arlequin method [Ben Dhia, 1998], the hierarchical Dirichlet projection method [Zohdi
et al., 1996; Oden et al., 1999] or multigrid methods [Brandt, 1981].

The domain decomposition methods described in Chapter 1 equipped with a dedi-
cated coarse scale problem also belong to this class of techniques. In primal and dual
approaches, a coarse scale solution due to rigid body modes of the subdomains is
computed as initialization, and the remaining micropart is sought iteratively through a
projected algorithm which ensures that the micropart remains orthogonal to the rigid
modes.

In the mixed DDM based on the LATIN the philosophy is a bit different, as the
multiscale aspects are introduced at the interface level and not at subdomain level.
The coarse scale problem is here built from a reduced set of macroquantities at the
interfaces and the construction of a homogenized operator per subdomain. The LATIN
macroquantities are endowed with a strong mechanical sense according to de Saint-
Venant’s principle, as their information is sufficient to express the interaction with
sufficiently distant subdomains.

1 Introduction of a multiscale strategy at the level of

the interfaces

In this section, the main features of the multiscale strategy of the mixed DDM
based on the LATIN are recalled. For further details the interested reader can refer to
[Ladevèze et al., 2002; Ladevèze and Nouy, 2003; Ladevèze et al., 2007].
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1.1 Definition of the macroquantities

The multiscale strategy is introduced in space at the interface level, in contrast
with most of the multiscale approaches. The interface unknowns (interface displace-
ments and forces) are additively split, prior to any discretization, into

s = sM + sm, (4.1)

with sM being the set of macroscopic quantities (or macroquantities) and sm the comple-
mentary set of microscopic ones (or microquantities). The definition of the macroscale is
independent of the underlying discretization and is defined by the characteristic length
of the interfaces, which is a priori greater than the discretization on the microscale.

Let us consider an interface ΓEE′ . One may freely choose the spaces F [0,T],M
EE′ and

W
[0,T],M
EE′ in which the macroforces and macrodisplacements are sought, provided that

the work bilinear form

⟨W, F⟩ 7→
∫

ΓEE′×[0,T]
F ·WdSdt (4.2)

in macroquantities is non-degenerate [Ladevèze and Nouy, 2003]:

Proposition 4.1.

{
FM ∈ F

[0,T],M
EE′ ,

∫

ΓEE′×[0,T]
FM ·WM∗dSdt = 0, ∀WM∗ ∈ W

[0,T],M
EE′

}
= {0}

{
WM ∈ W

[0,T],M
EE′ ,

∫

ΓEE′×[0,T]
WM · FM∗dSdt = 0, ∀FM∗ ∈ F

[0,T],M
EE′

}
= {0}

In practice Proposition 4.1 requires the spaces W [0,T],M
EE′ and F [0,T],M

EE′ to be of the
same size. The definition of the macroquantities in the LATIN framework follows
a strongly physically sound approach: the macroquantities are averages in space
of interface forces and displacements. More specifically, they are determined as the
best approximations in the sense of the work bilinear form (4.2) on the interface and
thanks to Proposition 4.1 they are uniquely defined:
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Definition 4.1 (macroquantities). The macroquantities (WM, FM) ∈

W
[0,T],M
EE′ × F

[0,T],M
EE′ of (W, F) ∈ W [0,T]

EE′ × F
[0,T]
EE′ are defined by the following

expressions:

WM ∈ W
[0,T],M
EE′ ,

∫

ΓEE′×[0,T]
(WM −W) · FM∗dSdt = 0, ∀FM∗ ∈ F

[0,T],M
EE′ ,

FM ∈ F
[0,T],M
EE′ ,

∫

ΓEE′×[0,T]
(FM − F) ·WM∗dSdt = 0, ∀WM∗ ∈ W

[0,T],M
EE′ .

The microquantities are therefore given by:

Definition 4.2 (microquantities). The microquantities (Wm, Fm) ∈

W
[0,T],m
EE′ ×F

[0,T],m
EE′ of (W, F) ∈ W [0,T]

EE′ ×F
[0,T]
EE′ are given by:

Wm = W −WM and Fm = F− FM,

and they are consequently uncoupled in the following energetic sense:
∫

ΓEE′×[0,T]
F ·WdSdt =

∫

ΓEE′×[0,T]
FM ·WMdSdt +

∫

ΓEE′×[0,T]
Fm ·WmdSdt. (4.3)

We can define the spaces F [0,T],M
E = ∏E′∈VE

F
[0,T],M
EE′ andW [0,T],M

E = ∏E′∈VE
W

[0,T],M
EE′

extended to the set of neighboring interfaces of ΩE, as well as spaces F [0,T],M and
W [0,T],M extended to the set of all subdomains. A similar consideration for the micro-
quantities leads to spaces F [0,T],m

E ,W [0,T],m
E , F [0,T],m andW [0,T],m.

1.2 Choice of the macrospace

As seen in Section 2.6 of Chapter 3, the domain decomposition method based on
the LATIN without a coarse scale problem is not scalable since the information is only
transmitted between neighboring subdomains. To ensure extensibility in the multiscale

approach it is necessary that the macrospaceW [0,T],M
E contains at least the rigid body

modes of the boundary ∂ΩE and that F [0,T],M
E contains at least the resultants in forces

and moments of the loading acting on ∂ΩE [Ladevèze and Dureisseix, 2000; Ladevèze
et al., 2001; Loiseau, 2001].

After these considerations, let us denote with {eM
i (x)}i=1,...,nM a spatial basis on ΓEE′

of size nM for the macrospacesW [0,T],M
EE′ and F [0,T],M

EE′ , considered to be identical. We
can therefore write:
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WM = PM
ΓEE′

(W) =
nM

∑
i=1

(W, eM
i ) eM

i (x);

FM = PM
ΓEE′

(F) =
nM

∑
i=1

(F, eM
i ) eM

i (x).

(4.4)

The macroprojector PM
ΓEE′

of an interface ΓEE′ extracts the rigid body modes of ΓEE′

as well as the resultant in force and the moments, duals of such kinematics, of the
loading acting on ΓEE′ . In practice, in order for the macrobasis to capture at least the
rigid body kinematics of an interface, a minimum size nM = 6 for the macrobasis is
required in 3D (nM = 3 in 2D). Considering only a rigid body kinematics as macro-scale
at the interface level however represents a very poor macroscopic information. What is
usually done is to enrich the kinematics of the macrobasis, for example by considering
the interface as a deformable body instead of a simple rigid body.

In practice one classically chooses for FM and WM affine functions in space
variable over ΓEE′ . A classical choice of affine macrobasis functions {eM

i (x)}i=1,...4 is
represented in Figure 4.1 for a 2D straight interface, it contains the rigid body motions
of the interface (two translations and rotation) and the linear elongation of the interface
[Ladevèze and Dureisseix, 2000; Ladevèze et al., 2001]. These quantities are mean
values with regard to space and enable to represent in particular interface rigid body
modes and resultants and moments at the interfaces.

Remark 4.1. An affine macrobasis is usually sufficient for the macroquantities to provide
useful information when near-to-interface heterogeneity is low. However, in the presence
of strong heterogeneity mismatch between subdomains or crack-type interfaces, such
a choice may not optimal. One may consider adding higher order components to the
macrobasis or resort to a more efficient "spectrum motivated" macrobasis [Oumaziz et al.,
2021] in the first case or a discontinuous macrobasis in the second case [Guidault et al.,
2008].

1.3 Admissibility of macroquantities

The key feature of the multiscale strategy is that the equilibrium conditions at
the interfaces are required to be verified a priori in a macrosense [Ladevèze et al.,
2001; Ladevèze and Nouy, 2003]. The macroforces must be balanced at the interfaces,
including the interfaces with boundary conditions. This choice is suitable for contact
interfaces with or without friction, as balance of interface forces must be verified for
every type of interface behavior. The corresponding space is designated by F [0,T],M

ad
and represents the admissibility of FM:
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F
[0,T],M
ad :=

{
FM ∈ F [0,T],M | ∀E ∈ E, ∀E′ ∈ VE, FM

E + FM
E′ = 0

}
. (4.5)

𝑒1𝑀(𝑥) 𝑒2𝑀(𝑥)
𝑒3𝑀(𝑥) 𝑒4𝑀(𝑥)

Figure 4.1: Affine macrobasis {eM
i (x)}i=1,...,4 (nM = 4) for an interface ΓEE′ .

2 The multiscale strategy within the LATIN framework

With reference to the substructured Problem 3.1, the partial verification of the
transmission conditions a priori at the interfaces (4.5) leads now to the following
partitioning in the LATIN framework:

± the E-admissibility of sE, ∀E ∈ E : sE ∈ S
[0,T]
E,ad (Definition 3.1)

A
[0,T]
d :

± the admissibility of FM : FM ∈ F
[0,T],M
ad (4.5)

Γ
[0,T]: ± the constitutive behavior of the interfaces (3.3)

The local stage remains unchanged from the one described in Problem 3.2 of Chap-
ter 3. One has to solve a local problem in space for the whole set of interfaces based on
known quantities coming from the linear stage. Conversely, in the linear stage, now
the a priori balance of the macroforces (4.5) must be also verified. The descent search
direction E− under a strong form like in Problem 3.3 is not more valid, since FE for each
subdomain has to be admissible. These equations for each subdomain are consequently
not independent. We therefore write the descent search direction under a weak form
under the constraints that the macroforces have to be admissible:
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∀F∗ ∈ F [0,T],m ∪ F
[0,T],M
ad ,

∑
E∈E

∫

∂ΩE×[0,T]
k−
−1{

(FE − F̂E) + (WE − ŴE)
}
· F∗EdSdt = 0. (4.6)

The constraint (4.5) is enforced at each interface ΓEE′ through a Lagrange multiplier

W̃
M
EE′ ∈ W

[0,T],M
EE′ . By following [Nouy, 2003], the Lagrange multiplier is then localized

at the level of the subdomain, i.e., W̃
M
E ∈ W

[0,T],M
E , under the constraint that it is

continuous at the interfaces. Therefore the condition (4.6) can be rewritten as follows:

∀F∗ ∈ F [0,T],

∑
E∈E

∫

∂ΩE×[0,T]
{k−

−1
(FE − F̂E) + (WE − ŴE)} · F

∗
EdSdt =

∑
E∈E

∫

∂ΩE×[0,T]
W̃

M
E · F

∗
EdSdt, (4.7)

∀W̃M∗ ∈ W
[0,T],M
ad,0 ,

∑
E∈E

∫

∂ΩE×[0,T]
W̃M∗

E · FEdSdt = ∑
E∈E

∫

∂ΩE∩∂2Ω×[0,T]
W̃M∗

E · FddSdt. (4.8)

The Lagrange multipliers W̃
M

= {W̃
M
E }E∈E belong to the space W

[0,T],M
ad,0 of

macrodisplacements which are continuous at the interfaces and equal to zero on ∂1Ω.
In the previous equations, (4.7) represents a modified search direction at the interfaces
taking into account the admissibility of macroforces, and (4.8) corresponds to the weak
form of the macroforce admissibility.

The admissibility of the macroforces (4.8) (or coarse scale problem, macroproblem or
reduced interface problem), ensures the propagation of global information throughout
the whole set of substructures across the interfaces. The linear stage of the LATIN can
then be reformulated as follows:

Problem 4.1 (modified linear stage). Find s = {sE}E∈E ∈ A
[0,T]
d verifying, ∀x ∈

ΩE and ∀t ∈ [0, T],

± the E-admissibility of sE: sE ∈ SE,ad;

± the modified search direction (4.7);

± the coarse scale problem (4.8).
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2. The multiscale strategy within the LATIN framework

2.1 Microproblem on a substructure

Taking into account the E-admissibility and the modified search direction (4.7), the
following linear problem, called microproblem, has now to be solved for each substruc-
ture independently:

Problem 4.2 (microproblem on a substructure). Find (uE, WE) ∈ E
[0,T]
E,ad such that,

∀(u∗, W∗) ∈ E
[0,T]
E,ad,

∫

ΩE×[0,T]
ε(uE) : K : ε(u∗)dΩdt +

∫

∂ΩE×[0,T]
k−WE ·W

∗dSdt =

∫

ΩE×[0,T]
f

d|ΩE
· u∗dΩdt +

∫

∂ΩE×[0,T]
(F̂E + k−ŴE + k−W̃

M
E ) ·W∗dSdt,

with FE = F̂E + k−(ŴE −WE + W̃
M
E ).

The solution of Problem 4.2, associated with substructure ΩE, depends only on the

known quantities f
d|ΩE

, ŝE and the unknown Lagrange multiplier W̃
M
E over ∂ΩE. Since

the problem is linear, the following proposition holds:

Proposition 4.2. If K and k are symmetric and positive definite, then Problem 4.2,
defined over ΩE and its boundary ∂ΩE, has a unique solution such that

FM
E = LF

E
(
W̃

M
E
)
+ F̂M

E,d, (4.9)

where W̃
M
E ∈ W

[0,T],M
E and F̂M

E,d depends on f
d|ΩE

and ŝE.

LF
E is a linear operator from W

[0,T],M
E onto F

[0,T],M
E . It can be interpreted as a

homogenized behavior operator over substructure ΩE which ensures the coupling
between the microscale and the macroscale. LF

E is in practice evaluated by solving a

set of microproblems for a set of loading cases where we take for W̃
M
E the elements of

the basis ofW [0,T],M
E , with f

d|ΩE
and ŝE set to zero [Nouy, 2003; Cremonesi et al., 2013].

If k− is constant (and since K is the constant Hookean operator for linear elasticity),
LF

E can be precomputed once and for all before starting the iterative process. Since

W̃
M
E depends on only a few interface kinematic parameters, the calculation of LF

E is
obtained at relatively low cost [Ladevèze and Nouy, 2003; Nouy, 2003]. If the Lagrange

multiplier W̃
M
E is known , the full solution sE can be retrieved. That is to say there exists

a localization operator Ls
E fromW [0,T],M

E onto S
[0,T]
E such that:
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Chapter 4. A multiscale strategy to model-order reduction

sE = Ls
E
(
W̃

M
E
)
+ ŝE,d, (4.10)

with ŝE,d which depends on f
d|ΩE

and ŝE.

2.2 The macroproblem over Ω

The Lagrange multiplier W̃
M

=
{

W̃
M
E
}

E∈E
is found by solving a macroproblem (or

coarse scale problem) over all the set of interfaces. The weak form of the static admis-
sibility of macroforces (4.8) and the relation (4.9) lead to the following displacement

formulation of the macroproblem in terms of the Lagrange multiplier W̃
M

:

Problem 4.3 (macroproblem). Find W̃
M

=
{

W̃
M
E
}

E∈E
∈ W

[0,T],M
ad,0 which verifies,

∀W̃M∗ ∈ W
[0,T],M
ad,0 ,

∑
E∈E

∫

∂ΩE×[0,T]
W̃M∗

E · (L
F
E
(
W̃

M
E
)
+ F̂M

E,d)dSdt = ∑
E∈E

∫

∂ΩE∪∂2Ω×[0,T]
W̃M∗

E · FddSdt.

(4.11)
The problem has a unique solution if mes(∂1Ω) ̸= 0 [Nouy, 2003].

The Lagrange multiplier W̃
M

given by the macroproblem is equal to zero at
convergence of the LATIN algorithm when the balance of interface forces is verified.
In practice, it tends to zero quickly in the first iterations where the macroquantities

are rapidly converged. The macroproblem has a size in space of ∑i=1...nΓ
n(i)

M , with

nΓ being the total number of interfaces and n(i)
M being the number of macroscopic

kinematic unknowns (translations, rotations, extensions) for the interface i. Such
kinematics belong to specific classes of continua with affine microstructure [Cosserat
and Cosserat, 1909; Eringen, 1966; Mariano, 2002].

Remark 4.2. The macroscale has been introduced only for the space variable, while no
macroscale was considered for time variable. When the strategy is multiscale only in
space the macroproblem must be solved at each time interval of the fine time partition.
When the macroproblem becomes very large this step can become prohibitive in the case
of evolution problems with a lot of time steps. Introducing a macroscale in time may then
be necessary [Ladevèze and Nouy, 2003], and possibly model-order reduction to solve the
macroproblem [Cremonesi et al., 2013].

Remark 4.3. In cases where a large number of interfaces is present and/or the size
of the macrobasis is large the macroproblem can become expensive. In this case the
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2. The multiscale strategy within the LATIN framework

introduction of a third scale (super macroscale) can be beneficial to solve the macroproblem
[Loiseau, 2001; Ladevèze and Nouy, 2003; Kerfriden et al., 2009]. In [Loiseau, 2001;
Ladevèze and Nouy, 2003] the macroproblem is approximated by introducing a third
scale macrokinematics on on several third scale macrocells, with the third scale problem
which has a smaller size related to the number of macrocells. In [Kerfriden et al., 2009] a
BDD solver is used to solve the macroproblem, which has the structure of a primal DDM
approach with local homogenized operator per subdomain which plays the role of primal
Schur complement of a subdomain. These homogenized operators are gathered/assembled
in clusters in order to propose a third scale partitioning.

2.3 Search directions in the multiscale strategy

In the monoscale case, in the context of elastostatics with perfect interfaces, as
explained in Chapter 3, the interpretation of k−, linking interface forces FE to interface
displacements WE on ∂ΩE, is that it corresponds to the stiffness of the complement
of ΩE condensed on ∂ΩE (or Schur complement of Ω \ΩE). Calculating this optimal
operator is costly and in practice, for a homogeneous structure, it is taken k− = k+ =

E
LΩ

Id, with E being the Young modulus and LΩ being a characteristic length of the
structure Ω [Champaney, 1996; Champaney et al., 1999].

In [Violeau, 2003] it has been interpreted and optimized the role of the interface
search direction parameter k−, still in the context of elastostatics with perfect interfaces,
but in the multiscale case. In the multiscale strategy, since the macrospace contains the
resultants and moments of interface forces, by virtue of the de Saint-Venant principle, it
was shown that k− can be calculated by considering only a part of the complementary
of ΩE over a distance of the order of the diameter of ΩE. Moreover, a rough estimate of
this operator approximated by a scalar corresponding to its largest eigenvalue is often
sufficient. In practice for each interface it is taken k− = k+ = E

LΓ
Id as a quasi-optimal

value, with LΓ being a characteristic length of the interface.
In the context of evolution problems however, such as for example frictional contact

problems, the optimization of this parameter has not yet been addressed. In this case in
fact the continuity of displacements at interfaces is not verified, and for problems with
opening interfaces or interfaces subjected to wide sliding fronts this reference values
may be far from optimal. This point will be investigated in the next Chapter 5.

2.4 The final algorithm

The final algorithm of the LATIN-based multiscale DDM is shown in Algorithm 6. It
is an extension of the strategy presented in Chapter 3 for the monoscale case. After the
local stage (Problem 3.2), local stage quantities ŝ are used as boundary loadings to solve
a problem at the substructure scale. This is called microproblem 1, coincident with the
linear stage problem to be solved in the monoscale case (Problem 3.4). In the multiscale
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Chapter 4. A multiscale strategy to model-order reduction

approach, after solving microproblem 1 for each substructure, the macrocomponent of
the interface forces F̂M

E,d are extracted and used to solve the macroproblem (Problem 4.3)

and to find the Lagrange multiplier W̃
M
E of each subdomain, which is used as boundary

loading to solve the microproblem 2. Thus, the linear stage solution is the sum of the
solutions of microproblem 1 and microproblem 2.

The resolution of microproblems and the macroproblem at each iteration only
involves a reasonable computational cost since the factorization of the linear operator
of the microproblems and the assembled homogenized operator can be precomputed
before starting the algorithm, especially if these operators are constant.

2.5 Resolution of microproblems with PGD

The introduction of PGD in the multiscale approach to solve the two microproblems
is entirely analogous to what was presented in Section 3 of Chapter 3 for the monoscale
case. Starting from an admissible initial solution s0 (Problem 3.5), the current iteration
solution can be expressed as a correction with respect to the previous one: sn+1 =
sn + ∆s. Therefore each microproblem of the multiscale strategy can be expressed in
terms of corrections as in Problem 3.6, as well as the search directions, with

δE,1 = F̂E + k−ŴE − (FE,n + kWE,n) (4.12)

for microproblem 1, and

δE,2 = k−W̃
M
E (4.13)

for microproblem 2. The two microproblems share the same PGD basis and the pro-
cedure is analogous as the one described in Section 3 of Chapter 3, with the only
difference that now it is applied to two microproblems.

In microproblem 1, an updating of the time modes is operated with Problem 3.9
with the given space modes being fixed and, if the ξ enrichment criterion (3.31) is not
satisfied, a new pair of modes is added with Algorithm 5. Once the first microprob-
lem is solved for each substructure, the macroforces are extracted and the Lagrange

multipliers W̃
M

= {W̃
M
E }E∈E are found through the resolution of the macroproblem

(Problem 4.3). Then, one proceeds to solve microproblem 2 by updating the current
time modes and eventually adding a new pair of modes if the enrichment criterion is
not satisfied.

At the start of the multiscale strategy convergence is mainly driven by the macro-
quantities, which converge rapidly in the first iterations. Therefore it is reasonable to
require the macroquantities to be sufficiently well approximated in the early stages of
the iterative process in order to take full advantage of the multiscale strategy. We recall

that each microproblem 2 has as a loading the Lagrange multiplier W̃
M
E on the boundary

∂ΩE, and that W̃
M
E belongs to a finite-dimensional space of small size. Therefore, a
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2. The multiscale strategy within the LATIN framework

Algorithm 6: Multiscale LATIN-DDM
■ Preliminary computations
for each substructure ΩE do

± compute homogenized operator LF
E and initialize s0,E (Problem 3.5)

■ LATIN iterations
for n = 1 to nmax do

■ Local stage: find ŝn+1/2 ∈ Γ
[0,T]

for each interface ΓEE′ do

± solve interface Problem 3.2 to find ŝE = (ŴE, F̂E) (see 2.4)

■ Linear stage: find sn+1 ∈ A
[0,T]
d

■ Microproblem 1
for each substructure ΩE do

± find (ûE,d, ŴE,d) ∈ E
[0,T]
E,ad such that, ∀(u∗, W∗) ∈ E

[0,T]
E,ad,

∫

ΩE×[0,T]
ε(ûE,d) : K : ε(u∗)dΩdt +

∫

∂ΩE×[0,T]
k−ŴE,d ·W

∗dSdt =
∫

ΩE×[0,T]
f

d|ΩE
· u∗dΩdt +

∫

∂ΩE×[0,T]
(F̂E + k−ŴE) ·W

∗dSdt

± find F̂E,d with search direction E−: F̂E,d − F̂E + k−(ŴE,d − ŴE) = 0
± compute macroforces F̂M

E,d

if multiscale then
■ Macroproblem:

± find W̃
M

= {W̃
M
E }E∈E ∈ W

[0,T],M
ad,0 such that, ∀W̃M∗ ∈ W

[0,T],M
ad,0 ,

∑
E∈E

∫

∂ΩE×[0,T]
W̃M∗

E · (L
F
E(W̃

M
E )+ F̂M

E,d)dSdt = ∑
E∈E

∫

∂ΩE∪∂2Ω×[0,T]
W̃M∗

E · F
M
d dSdt

■ Microproblem 2
for each substructure ΩE do

± find (ũE, W̃E) ∈ E
[0,T]
E,ad such that, ∀(u∗, W∗) ∈ E

[0,T]
E,ad,

∫

ΩE×[0,T]
ε(ũE) : K : ε(u∗)dΩdt +

∫

∂ΩE×[0,T]
k−W̃E ·W

∗dSdt =
∫

∂ΩE×[0,T]
k−W̃

M
E ·W

∗dSdt

± find F̃E with search direction E−: F̃E + k−(W̃E − W̃
M
E ) = 0

± apply relaxation: sn+1 ← µsn+1 + (1− µ)sn
± compute error indicator η (3.14)
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Chapter 4. A multiscale strategy to model-order reduction

small finite number of modes is sufficient to precisely solve microproblem 2 over all
the iterations. For this reason it is reasonable to require a bit more strict enrichment cri-
terion threshold ξ0,2 for microproblem 2 (e.g., ξ0,2 = 0.01), and a bit coarser enrichment
criterion threshold for microproblem 1 (e.g., ξ0,1 = 0.1). Consequently, at the beginning
of the iterations, the algorithm tends to generate systematically more modes arising
from microproblem 2, so that macroquantities converge quickly and accurately. There-
after, once a sufficient basis has been formed for the macroquantities, in the following
iterations most of the generated modes will be generated from microproblem 1, which
converges more slowly and brings more localized corrections.

3 Application to the 1D benchmark problem

The multiscale strategy is applied here to the 1D test problem with load case 1 of
Figure 3.1. Substructured cases are considered, as in Figure 3.20, with each substructure
assigned the same spatial discretization of Table 3.1.

In Figure 4.2 is shown, for different number of substructures, the behavior of the
LATIN indicator η in the monoscale version and in the multiscale one, without resorting
to PGD. The multiscale approach allows for a considerable convergence gain in the
first iterations, where macroquantities are rapidly converged. Subsequently, contact
quantities are converged to the local microlevel. In this second stage the monoscale
and multiscale approach exhibit roughly the same convergence rate since both of
them are making converge the quantities at the microlevel, and the convergence rate
at the microlevel is mainly driven by the search direction k.
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Figure 4.2: Monoscale and multiscale LATIN convergence indicator for different num-
ber of substructures.

To highlight the effect of the multiscale strategy on the solution of the problem,
in Figure 4.3 is shown, in the case of 10 substructures, the solution for the frictional
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3. Application to the 1D benchmark problem

forces after 10 iterations of the LATIN method for the monoscale approach and the
multiscale one, compared to the reference solution at time t = 0.5 s (Figure 4.3a) and
t = 1 s (Figure 4.3b). Already after few iterations, the multiscale approach succeeds
in capturing the global behavior of the problem. Subsequently, further iterations are
needed to make converge the microquantities, especially at the sticking-sliding discon-
tinuity zones which need accurate local refinements. The monoscale approach, on the
other hand, turns out to be far from the reference solution, with the loading boundary
condition still not fully propagated along all the substructures.
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(a) Frictional forces at time t = 0.5 s.
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(b) Frictional forces at time t = 1 s.

Figure 4.3: Frictional forces distribution after 10 iterations of the full LATIN (without
PGD) for the monoscale and the multiscale approach.

The effect of the introduction of the PGD in the multiscale approach is shown in
Figure 4.4. By making use of DDM one is able to create local reduced bases per
substructure and enrich the basis in the areas with more complex contact conditions,
as exemplified in Figure 3.6. In Figure 4.4a, in the case of 5 substructures, is shown the
evolution of the PGD basis size for different substructures. An enrichment threshold
ξ0,1 = 0.1 for microproblem 1, and ξ0,2 = 0.01 for microproblem 2 was adopted as
explained in Section 2.5. Different substructures require a different number of modes.
For substructure 1, constantly under sticking conditions, the macrobasis is sufficient to
capture the solution. Subsequent substructures, on the other hand, require more modes
based on the complexity of the sticking-sliding conditions. What is important to remark
is that the PGD basis remains in fact limited in size and, in addition, the MAC diagram
in Figure 4.4b shows that the first structural modes are roughly well captured by the
macroproblem.
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Figure 4.4: Convergence curve and PGD basis analysis for the multiscale LATIN-PGD(ξ)
strategy.

4 Application to a layered structure with wide contact

interfaces

4.1 Problem setting

In this section, the multiscale strategy is applied to the two-dimensional quasistatic
frictional contact problem depicted in Figure 4.5 [Zeka et al., 2024a]. The problem
consists of a group of three clamped beams subjected to a constant external pressure p
and to time-dependent oscillating traction and shear (which causes bending) loads in
correspondence of the free side. Each beam is decomposed internally into 6 substruc-
tures, and they are in contact with each other through frictional contact interfaces. The
external pressure is constant and equal to 100 MPa, while the external loads evolution
in time is represented in Figure 4.6. The parameters of the problem are reported in
Table 4.1. Plain strain assumptions are considered, and 8-node quadrilateral elements
(QUA8) are adopted for the discretization of the substructures. For the discretization
of interface quantities, on the other hand, piecewise constant elements are adopted
while satisfying the LBB condition [Ladevèze et al., 2002], with compatible spatial
discretizations (see Appendix B).

The test case can be seen as representative of the mechanics of multilayer spiral
strand cables, subjected to oscillating traction and bending loads around a preload
[Bussolati et al., 2020], with the simplification of neglecting non linear geometry due to
bending. We remind that for fretting fatigue the sliding magnitude has a huge effect
on the fatigue life expectancy of these structures, with an important decrease around
15 µm, and then transition between partial sliding in the contact vicinity and large
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Figure 4.5: Representation of substructures and interfaces, with numbering of the
substructures and highlight of the contact interface Γc.
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Figure 4.6: Time evolution of prescribed external forces. Highlight of time instants A
(t = 0.5 s) and B (t = 1.5 s).

sliding (wear and increase of life duration) around 150 µm [Montalvo et al., 2023]. It is
therefore important to accurately compute information located at the interface level.
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Parameters of the 2D problem
Young modulus, E 130 000 MPa
Poisson ratio, ν 0.2
structure size Lx, Ly 180 mm, 90 mm
number of elements per substructure 20× 20 QUA8
number of DOFs per substructure, Nx 2562
number of time steps, Nt 1000
time interval, [0, T] [0, 10 s]
friction coefficient, f 0.3
pressure load, p 100 MPa

Table 4.1: Parameters for the two-dimensional problem.

4.2 Analysis of the solution

The reference solution is here obtained with the full multiscale LATIN method, with
a chosen reference search direction k− = k+ = k = E

LΓ
Id, with LΓ being the length of

an interface, and for a LATIN convergence indicator threshold of η0 = 1.5 · 10−5.

In Figure 4.7 is shown the trend of the tangential frictional forces and their macro-
scopic part at time instant A (t = 0.5 s) along the contact interface Γc highlighted in
Figure 4.5, which goes along the entire length of the structure. As it can be seen, the
affine macroscopic part roughly captures the trend of forces on each interface.

0 30 60 90 120 150 180

x [mm]

0

5

10

15

20

fr
ic

ti
o
n
 f
o
rc

e
 [
M

P
a
]

t=0.5 s

F

FM

Figure 4.7: Spatial distribution of the frictional forces and their macropart along Γc at
time instant A.
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4. Application to a layered structure with wide contact interfaces

In Figure 4.8 is shown the relative sliding along Γc, at time instants A (t = 0.5 s)
and B (t = 1.5 s). In A, where minimum bending occurs, almost the entire structure
results in a sticking state. The sliding is confined near the clamped boundary, between
substructures 1 and 7. In B, corresponding to maximum bending, on the other hand,
the whole contact interface turns out to be in a sliding state. In this case, the sliding
front propagates through the substructures.
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(a) Sliding at time instant A.
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Figure 4.8: Relative sliding along the contact interface Γc at time instants A and B.

Discontinuity fronts propagating through all the substructures can affect the rele-
vance of the coarse scale problem [Kerfriden et al., 2009] and slow down the conver-
gence rate. The evolution of the LATIN indicator in Figure 4.12, shows that there is in
fact an initial gain in convergence, where boundary conditions and macroquantities
are propagated throughout the whole structure. However, thereafter the convergence
rate turns out to be comparable to the monoscale one. Since the macroproblem is
based on the balance of macroforces, in a problem where a large sliding/discontinuity
front propagates through the substructures, the macroproblem after a certain point
brings few contribution on the solution of the contact problem locally, and iterating
more is necessary (see also [Kerfriden et al., 2009; Saavedra et al., 2012] for the case of
propagating delamination fronts).

The convergence state of the contact quantities coming from the linear and local
stage (normal and tangential forces and displacements) along the iterations of the
multiscale full LATIN, at the contact interface Γc,1−7 between substructures 1 and 7, is
shown in Figure 4.10 for the time instant A of the loading. After 100 iterations, and a
LATIN indicator value of η = 4 · 10−4, the structure results are far from convergence.
Regarding contact forces, the quantities coming from the local stage appear to have
already identified the sticking and sliding zones. This means that the contact status,
thanks to the multiscale approach, has converged quickly. As it can be seen in the next
iterations, 500 (η = 8 · 10−5) and 1000 (η = 1.5 · 10−5), the forces from the local stage
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Figure 4.9: LATIN indicator of the multiscale approach compared to the monoscale one
for the 2D problem.

identify roughly the same sticking-sliding transition zones. However, the tangential
forces of the linear stage turn out to converge very slowly toward this threshold of
sticking-sliding. In contrast, the normal forces result to converge more rapidly. This
fact may be due to the choice of search direction parameter k. Tangential contact and
normal contact should require different stiffness [Ribeaucourt et al., 2007], especially
when wide sliding fronts happen in the tangential direction. In the case of normal
contact, under closed gap conditions, the stiffness can be considered as the one of
perfect interfaces. In the case of tangential contact, on the other hand, more prone to
slippage, the contact stiffness should be lowered. As a result, convergence can be very
slow in specific areas where large sliding fronts occur. This point will be investigated
in the next Chapter 5.

4.3 Introduction of PGD

The introduction of PGD is performed at the substructure level, with the enrich-
ment criterion of Eq. (3.31) which takes into account the approximation on the search
direction.

Figure 4.11 shows the evolution of the LATIN indicator in the multiscale full LATIN
case with the LATIN-PGD(ξ) strategy involving different enrichment thresholds. A
very strict enrichment threshold of ξ0,1 = ξ0,2 = 10−4 for both microproblems leads
the LATIN-PGD(ξ) convergence curve to coincide with the full LATIN curve, since at
each iteration the search direction is approximated with very good accuracy. A very
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Figure 4.10: Convergence state of normal (in red) and tangential (in black) forces and
displacements at time instant A for interface Γc,1−7 through the LATIN iterations.
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coarse enrichment threshold, such as ξ0,1 = ξ0,2 = 0.5 on both microproblems, on
the other hand, leads the solution to stagnate and risk diverging. The initial part of
the curve is not properly approximated, which leads to affect the convergence in the
rest of the iterations. By making use of a different enrichment threshold for the two
microproblems, as explained in Section 2.5, that is, a bit more strict for microproblem
2 (ξ0,2 = 0.01), and a bit coarser for microproblem 1 (ξ0,1 = 0.1), leads to a good
approximation of the problem. In fact, it is not important to correctly approximate
the search direction at each iteration, as it is useless when the algorithm is still far
from convergence. The important thing is to approximate the problem sufficiently to
stay close to the convergence given by the full LATIN (which, in fact, is the best that
can be done with a given search direction k), while trying to generate as few modes as
possible.
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Figure 4.11: LATIN convergence indicator of full LATIN and LATIN-PGD(ξ).

In Figure 4.12 is shown the evolution of the PGD basis size along the LATIN
iterations in two different substructures for two choices of the enrichment threshold,
that is ξ0,1 = ξ0,2 = 10−4 and ξ0,1 = 0.1, ξ0,2 = 0.01. The considered substructures are
substructure 7 and substructure 12. The former is located in the clamped zone, and
presents boundary effects that make the contact conditions more difficult to capture.

Both choices systematically generate two pairs of modes, one from each microprob-
lem, in the first iterations, where the slope of the LATIN curve is higher. Thereafter, in
the case with ξ0,1 = ξ0,2 = 10−4, only one pair of modes, coming from microproblem 1,
is generated systematically at each iteration for both substructures. As exemplified in
Section 2.5, we observe that the PGD basis needs to be enriched more frequently for
microproblem 1 than for microproblem 2 after few first iterations, so does the choice
of ξ0,1 = 0.1 and ξ0,2 = 0.01, thus reducing the size of the final basis.
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Figure 4.12: PGD basis size along the iterations for the LATIN-PG(ξ) strategy.

The accuracy of the contact quantities for the two enrichment threshold choices
described above are shown in Figure 4.13 for the contact forces along interface Γc,1−7
at time instant A. When the search direction is well approximated, as in the case of
ξ0,1 = ξ0,2 = 10−4, the solution coincides in practice with the full LATIN solution
at each iteration, and a large number of modes is required. In the other case, the
approximation becomes better as one approaches the converged solution where the
two strategies are indistinguishable. Nevertheless, the difference in the size of the PGD
basis built by the two strategies per substructure, as it can be seen from Figure 4.12, is
of a factor of 4.

4.4 Analysis of the computational cost

It is also crucial to quantify the gain in computational time that adopting PGD brings
to the LATIN algorithm, based on the choices of the enrichment criterion threshold and
possible algorithms to control the size and quality of the progressively built PGD basis.
We remind that the PGD separated representation in the LATIN acts only in the linear
stage, while the local stage remains unchanged with or without PGD and is solved with
the interface quantities in full field format. Therefore gain in computational time with
PGD can only be achieved in the linear stage.

The average computational time (over 100 iterations) of the linear stage of the
LATIN-PGD(ξ) and LATIN-PGD(ξ)+D strategies (see Table 3.3), with the two choices
of enrichment criteria described previously, is shown in Figure 4.14. Concerning
the LATIN-PGD(ξ), undoubtedly a criterion that creates fewer PGD modes is less
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at iteration 100.
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(b) Linear stage normal and tangential forces
at iteration 500.

Figure 4.13: Linear stage normal and tangential forces at time instant A for interface
Γc,1−7 for the LATIN-PGD(ξ) strategy at two different number of iterations.

expensive, and saves up to 40% of the time in this case. Compared with the full LATIN,
the LATIN-PGD(ξ) allows a gain of a factor larger than 10.
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Figure 4.14: Computational cost of the linear stage of the LATIN-PGD(ξ), LATIN-
PGD(ξ)+D and full LATIN.

In the LATIN-PGD(ξ)+D strategy with ξ0,1 = ξ0,2 = 10−4, which leads to the gener-
ation of a large number of modes (see Figure 4.12), the downsizing stage turns out to
be very expensive, with the cost associated with the satisfaction of the admissibility
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4. Application to a layered structure with wide contact interfaces

condition (3.24) for the separated representation of interface quantities each time the
downsizing stage is applied. Its overall computational cost becomes therefore com-
parable with the cost of the full LATIN, leading to a very low gain in computational
time. Instead, when in the LATIN-PGD(ξ)+D a more appropriate threshold is chosen
(ξ0,1 = 0.1 and ξ0,2 = 0.01), performing downsizing becomes less costly, as less modes
are generated, yet still the cost is non-negligible. Note that in this cost comparison, all
the different strategies produce almost the same LATIN convergence curve, and we
can reasonably think that the accuracy of the solution is consequently similar.

The influence of a downsizing stage on the size of the PGD reduced basis is shown
in Figure 4.15, where the evolution of the size of the total basis for substructures 7 to
12 of the central beam of Figure 4.5 is plotted. In the LATIN-PGD(ξ) strategy with
ξ0,1 = ξ0,2 = 10−4, the size of the progressively built reduced basis is remarkably
large. In this case, downsizing significantly reduces the size by sorting and taking
out unnecessary modes, however, at a non-negligible computational cost. In the case
of LATIN-PGD(ξ) with ξ0,1 = 0.1 and ξ0,2 = 0.01, instead, the redundancy of the
progressively found modes is minimal, and the effect and the need of of the downsizing
stage can be said to be negligible on the final size of the basis.
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5 Conclusions

In this chapter we have described in detail the space multiscale strategy based
on the LATIN-based mixed DDM. The strategy involves a separation of scales at the
interfaces, with macroquantities representing an average in space of the interface quan-
tities capable of capturing the resulting effect of loads sufficiently far away (based on
the de Saint-Venants’s principle) and ensuring a coarse propagation at the structural
level of the effect of external loads and the evolving frictional contact conditions.
The introduction of a multiscale strategy is particularly relevant since it is consistent
with the physics of contact problems, in which phenomena with different wavelengths
interact. Local solutions at contact interfaces presents high gradient effects with a short
wavelength compared to the characteristic length of the structure. PGD-based model
reduction is naturally introduced in the multiscale strategy, creating and enriching
on-the-fly reduced bases per substructure to better represent localized evolving contact
conditions. The coarse scale problem of the strategy enables to capture efficiently the
behavior of the problem at the structural level, focusing then on capturing the local
contact variations at the contact interfaces with an evolving PGD basis.

The most important features and benefits of such a strategy to model reduction
for frictional contact problems have been presented on the 1D benchmark problem
introduced in Chapter 3:

± the multiscale approach allows for a considerable convergence gain in the first
iterations, where macroquantities are rapidly converged. Subsequently, contact
quantities are converged to the local microlevel;

± the use of DDM enables one to create local reduced bases per substructure and
enrich the basis in the areas with more complex contact conditions;

± the first structural modes of each substructure are roughly well captured by the
macroproblem.

The strategy was then tested on a 2D problem with large frictional contact interfaces
subjected to multiple multidirectional loads oscillating in time, in order to generate
complex contact conditions and wide sliding fronts. In the analyzed 2D problem it
was shown how, for a given accuracy, in order to achieve the best efficiency in terms
of computational cost reduction it is required to create as few PGD modes as possible.
Therefore, the choice of the PGD basis enrichment criterion is crucial. By exploiting the
fact that the coarse scale problem brings advantages especially in the first iterations of
the LATIN, it is suggested to:

± systematically enrich in the first iterations the ROB due to macroquantities, so as
to form a relevant basis for the macroquantities for the rest of the iterations;

± select a more precautionary enrichment criterion threshold for the microquantites,
whose convergence is much slower especially in problems with large sliding
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fronts across multiple substructures, so as to not add unnecessarily modes when
far from convergence.

The sorting and downsizing algoritm proposed in [Giacoma et al., 2015] has been
adapted and extended here in the multiscale and DDM version of the LATIN. The
algorithm controls the PGD basis size and creates a close-to-optimal basis throughout
the computations. However, its computational cost, due to the need to guarantee ad-
missibility between the modes of displacements and forces each time it is applied, may
not be negligible, especially when using an inappropriate ROB enrichment criterion
which leads to add many modes. It was shown that, by making use of the previous
suggestions, the need for downsizing can be avoided thanks to the multiscale aspects
and the DDM, since the two microproblems already reflect corrections from different
scales. In such a way, an important gain in computational time with respect to the full
LATIN solver is achieved, and a ROB of controlled size and good quality is progres-
sively created. Modes due to the macroproblem capture the low frequency modes of
each subdomain, while those from the microquantities capture progressively modes
that carry more local and refined corrections.

Finally, in the analyzed 2D problem, the large contact interfaces subjected to sliding
along the whole set of substructures affect the solution at the global level over the
whole structure, and the coarse scale problem, after an initial convergence gain, reduces
its effect and at the microlevel still many iterations are needed. At the microlevel the
convergence rate is mainly driven by the search direction k. A more pertinent choice
of the search direction could allow for an improved convergence at the microlevel,
however the optimality of the search direction for time-dependent frictional problems
with evolving contact conditions is a challenging issue. Another issue highlighted is
the difficulty of the classical LATIN indicator in predicting a good convergence of
interface quantities at the microscopic level.

The next chapter will cover these issues by proposing a more reliable convergence in-
dicator suited to frictional contact problems and a strategy to improve the convergence
rate based on the updating of the search directions.
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Chapter 5

Control and improvement of the

convergence of interface

microquantities

In this final chapter, some contributions to the control and improvement of the LATIN
convergence for frictional contact problems are proposed. The first part deals with the
control of the convergence and quality of the interface contact quantities through the
LATIN iterations. The definition of a proper convergence indicator is crucial to ensure
the good quality of the solution, especially in a global space-time approach such as LATIN
where it is challenging to accurately control the error. In particular, a good convergence
indicator should guarantee a level of accuracy in line with a given stopping threshold and
should not be dependent on the adopted search direction parameters. Such a convergence
indicator is crucial for the second part of the chapter, where a strategy is introduced for
the on-the-fly updating of search directions along the LATIN iterations based on the
contact status in space and time, in order to improve the convergence rate of the interface
quantities.
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1. Control of the convergence of interface quantities

In this chapter we are going to investigate two crucial points for solving frictional
contact problems with the LATIN solver, which are:

± the proposition of a relevant convergence indicator in order to stop the solution
at a desired quality;

± the improvement of the LATIN convergence rate by appropriate search directions.

Both are crucial to the proposed multiscale model reduction strategy, as the goal is to
accurately represent interface contact quantities while seeking maximum computational
gain and efficiency.

1 Control of the convergence of interface quantities

Convergence and error control in contact problems with friction is of fundamental
importance to ensure a desired quality of contact quantities. In general, simulating
contact problems that involve friction necessitates the use of iterative methods and
spatial discretization via finite elements. It is then crucial to estimate the errors that
result from the numerical approximation and the convergence of the resolution strategy.

For linear problems, the available approaches to estimate some a posteriori errors
are numerous, for an overview one may refer to [Ladevèze and Pelle, 2001]:

± approaches based on the constitutive relation error (CRE) [Ladevèze et al., 1991;
Ladevèze, 1992];

± approaches based on the residual of the equilibrium equations [Babuvška and
Rheinboldt, 1978];

± approaches involving the smoothing of finite element stresses [Zienkiewicz and
Zhu, 1987; Boroomand and Zienkiewicz, 1998].

Regarding nonlinear problems, in particular contact problems, the literature is less
vast. In the context of contact without friction, a CRE method has been proposed
in [Coorevits et al., 1999, 2000], and extended to static frictional contact problems in
[Louf et al., 2003]. In this work the authors make use of the bipotential method to
formulate the constitutive relation on the contact interface, leading to a straightforward
construction of an error in constitutive relation estimator for this kind of problems.
For time-dependent problems, the CRE constitutive relation error has been adopted in
[Ladevèze and Moës, 1998] to measure the quality of finite element analyses of plastic
and viscoplastic structures described by internal variables [Coleman and Gurtin, 1967].

The problem of an appropriate error control is also found in domain decomposition
methods. In this case, in addition to the discretization error, it is necessary to account
for errors due to the non-verification of continuity and equilibrium at the interfaces
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between the different subdomains along the iterations (see for example [Rey, 2015; Rey
et al., 2014] in the case of FETI and BBD approach without contact).

Concerning the LATIN strategy, the strongly non-standard nature of the approach
(iterative non-incremental mixed strategy in space and time with two alternating search
directions) makes it difficult in general to adopt usual methods for error estimation.
The admissibility conditions at the interfaces being not verified (force equilibrium or
displacement continuity) for a mixed DDM, especially with frictional contact interfaces,
makes it difficult to built error indicators with garanteed bounds at a reasonable cost in
the DDM framework.

Error control in the sense of verification is not the issue here, but rather when to stop
the iterative process of the solution strategy in order to have converged contact quan-
tities with a reasonable level of accuracy. Also, from a more pragmatic point of view,
one might ask whether it is possible to correlate the level of the strategy convergence
indicator with a good quality error level, even if this error level is not guaranteed. The
classical LATIN convergence indicator η (3.14) measures the distance in space and time

along the search direction between two consecutive solutions belonging to A
[0,T]
d and

Γ
[0,T] respectively, as shown in Figure 5.1. This indicator is cheap to compute, however

its major drawback is that it depends on the search direction parameter k, even when a
strict sup norm is used for the LATIN indicator as in [Ribeaucourt et al., 2007; Giacoma
et al., 2015]. The reached level of error is therefore highly dependent on the search
directions, which makes it difficult to interpret and in general not a reliable tool for
controlling the quality along the iterations when good accuracy of interface quantities
is needed.

A more reliable convergence indicator has been proposed in [Passieux, 2008] based
in some way on the error in constitutive relation at the interfaces, which does not depend
explicitly on the search direction parameter k. A similar indicator was adopted in
[Kerfriden, 2008] to quantify the error on cohesive interfaces. However, the robustness
and reliability of the CRE convergence indicator introduced in [Passieux, 2008] for
frictional contact problems deserved to be studied in greater depth for the purposes
of our study. In this section, we will present the CRE indicator by proposing some
modifications in order to make it more robust to different possible scenarios, and by
testing the indicator’s ability to well represent the interface quantities error for several
problems with different complex contact conditions.

1.1 Convergence indicator based on the interface constitutive

relation error

In the LATIN context, the goal of a convergence indicator is to quantify the distance
between one manifold and the solution in the other manifold. The classical LATIN
indicator is obtained by measuring the distance between A

[0,T]
d and a solution ŝ of Γ

[0,T].
Starting from the proposal in [Passieux, 2008], what can be done is to measure the

172



1. Control of the convergence of interface quantities
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𝐀𝑑[0,𝑇]η

η𝑟𝑒𝑓
Figure 5.1: Representation of the classical LATIN convergence indicator η and reference
error indicator ηre f .

distance between Γ
[0,T] and a solution s of A

[0,T]
d (see Figure 5.2). Consequently, there

is the need to quantify how s ∈ A
[0,T]
d does not verify the constitutive behavior of the

interfaces.

𝐬𝑛𝐬𝑛+1𝐬exact

ො𝐬𝑛+12 Г[0,𝑇]
𝐀𝑑[0,𝑇]ν

Figure 5.2: Graphical representation of the CRE indicator ν proposed in [Passieux, 2008].

It represents the distance between manifold Γ
[0,T] and a solution belonging to A

[0,T]
d .

Based on the constitutive behavior, formally defined by the equation bEE′ = 0,
which needs to be verified for each interface at convergence, it is possible to quantify
a convergence indicator for the quantities coming from the linear stage taking into
account their non-verification of the interface constitutive behavior.

Let us consider that there are Nb different types of interface behaviors bi = 0, for
i = 1 . . . Nb, with each i type of interface (displacement boundary condition, force
boundary conditions, perfect interface, frictional contact interface...) that needs to
satisfy m conditions bij = 0, for j = 1 . . . m. Let Γi be the set of interfaces sharing the
same behavior bi = 0, the error in constitutive relation ν is defined as follows:
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ν2 =
Nb

∑
i=1

m

∑
j=1

ν2
ij, with ν2

ij =

∑
Γ∈Γi

∫

Γ×[0,T]
b2

ijdSdt

1
2 ∑

Γ∈Γi

∫

Γ×[0,T]
b̃2

ijdSdt
. (5.1)

The search direction k is not explicitly involved in this indicator, and the terms bij

and b̃ij are evaluated on the different possible interface behaviors as follows:

■ Perfect interfaces: i = 1, m = 2

b11 = WE −WE′ b̃11 = WE + WE′

b12 = FE + FE′ b̃12 = FE − FE′

■ Frictional contact interfaces: i = 2, m = 4.

Based on the values of the contact indicators Cn and Ct from the previous local
stage:

± opening: Cn > 0
b21 = FE b̃21 = FE

± sticking contact: Cn ⩽ 0 and ∥Ct∥ < f |Cn|

b21 = FE + FE′ b̃21 = FE − FE′

b22 = n ·WE′ − n ·WE b̃22 = n ·WE′ + n ·WE
b23 = PtδWE′ − PtδWE b̃23 = PtδWE′ + PtδWE

± sliding contact: Cn ⩽ 0 and ∥Ct∥ ⩾ f |Cn|

b21 = FE + FE′ b̃21 = FE − FE′

b22 = n ·WE′ − n ·WE b̃22 = n ·WE′ + n ·WE
b24 = ∥PtFE∥ − f |n · FE| b̃24 = ∥PtFE∥+ f |n · FE|

■ Displacement boundary conditions: i = 3, m = 1

b31 = WE −Ud b̃31 = WE + Ud

■ Force boundary conditions: i = 4, m = 1

b41 = FE − Fd b̃41 = FE + Fd
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Remark 5.1. For the term b23 arising from the non-verification of the tangential sticking
conditions, since we make use of a displacement formulation, the condition is expressed in
terms of the tangential displacement increment PtδW = Pt[W(t)−W(t− δt)] between
two consecutive time instants, contrary to [Passieux, 2008] where it is expressed in
terms of tangential velocities.

Remark 5.2. When material nonlinearities are also present within each subdomain,
the CRE indicator can be additively decomposed into a subdomain component and an
interface component: ν2 = ν2

Ω + ν2
Γ [Passieux, 2008]. However, for linear elastic

subdomain behaviors, Hooke’s law σE = K : εE is exactly verified for a solution

s ∈ A
[0,T]
d .

1.2 Limitations and modifications

As originally proposed in [Passieux, 2008], this indicator presents problems when
dealing with null boundary conditions Ud = 0 (Fd = 0). In fact, in this case the terms
b31 and b̃31 (b41 and b̃41) coincide and lead the error to stagnate on 1. Similarly, when
all contact interfaces are open, the contributions b21 and b̃21 coincide for all the contact
interfaces leading the error to stagnate to 1.

To represent this problem we consider the 2D problem depicted in Figure 5.3 to-
gether with its reference solution on the right. It consists of a structure with multiple
frictional cracks clamped at the bottom and subjected to a traction loading at the top of
50 MPa. The other boundary conditions are set traction free.

Parameters of the 2D problem
Young modulus, E 130 000 MPa
Poisson ratio 0.2
structure size Lx, Ly 90 mm, 90 mm
number of elements per substructure 6× 6 QUA8
friction coefficient, f 1

Table 5.1: Parameters of the problem in Figure 5.3.

From the reference solution in Figure 5.3 it can be noticed that all contact interfaces
are open. The evolution of the CRE indicator ν (5.1) and the LATIN indicator (3.14)
along the LATIN iterations is shown in Figure 5.4a. As it can be seen, the indicator
based on the constitutive relation error ν turns out to be stagnating on the value of 1,
not allowing a reliable computation of the error.

To overcome these issues, we propose to aggregate the cases of boundary condition
interfaces in displacement and forces among the cases of perfect interfaces, as also
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𝟓𝟎𝑴𝑷𝒂
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Figure 5.3: 2D test case with opening of frictional cracks.

suggested in [Passieux, 2008]. Moreover, since interface force equilibrium must be
verified for any type of interface (as also is verified in a macrosense in the multiscale
strategy), we propose to verify all force equilibrium conditions together in the perfect
interfaces contributions, as well as the contact interfaces in opening. In this manner
both of the described problems vanish, that is null boundary conditions and opening
of all contact interfaces. In Figure 5.4b is shown how with these modifications the
convergence indicator ν does not have present problems of stagnation.
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(a) CRE convergence indicator ν before modifi-
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(b) CRE convergence indicator ν after modifi-
cations.

Figure 5.4: Evolution of the indicators η and ν for the problem in Figure 5.3.
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1. Control of the convergence of interface quantities

Remark 5.3. The CRE convergence indicator is still evaluated globally in space and
time for all the interfaces, as the LATIN indicator, and thus their computational costs are
comparable. There could be situations when a localized error in space and time on a given
interface may be larger than the rest of the structure, and this localized error may not be
easily captured by the CRE indicator. In this case, more stringent norms could be used,
such as a sup norm in space and time used in [Ribeaucourt et al., 2007] for the LATIN
indicator. Another alternative could be to propose a "local version" of ν [Kerfriden, 2008;
Passieux, 2008], which consists in searching for the interface with the worst verification
of the interface constitutive behavior, that is to say the highest contribution to the CRE
convergence indicator:

ν = max
i∈[1,Nb]

max
Γ∈Γi

m

∑
j=1

∫

Γ×[0,T]
b2

ijdSdt

∑
Γ∈Γi

∫

Γ×[0,T]
b̃2

ijdSdt
.

However, such choices may be too strict and could lead to a very large number of iterations
to reach a given threshold ν0.

1.3 Corroboration of the CRE convergence indicator

We go on here to corroborate the previously introduced CRE convergence indi-
cator with the appropriate modifications. We consider several test cases containing
different numbers of contact interfaces under different contact conditions (closed con-
tact, sticking-sliding and opening) and different loading situations in order to get an
overview as wide as possible on how the convergence indicator behaves. For each
test case the convergence indicator is compared with the classical LATIN indicator
(Eq. (3.14) in Section 2.5 of Chapter 3) and the reference solution errors in displacements
and forces (Eq. (3.15) in Section 2.5 of Chapter 3). For each test case, the reference
solution has been obtained with the multiscale LATIN method without PGD by making
use of a constant reference search direction for all the interfaces k = k0 = E

LΓ
Id and a

LATIN indicator threshold η0 = 10−6. Finally, for each test case we vary the value of
the search direction for the contact interfaces, considering the cases k = k0, k = 0.1 k0
and k = 10 k0 respectively.

■ Open contacts in traction

The first test case is the one described in the previous section in Figure 5.3, where
all contact interfaces are in opening.

The evolution of the different convergence indicators for the case with k = k0 = E
LΓ

Id
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Chapter 5. Control and improvement of the convergence

is shown in Figure 5.5. The convergence indicator based on the error in the constitutive
relation ν performs better than the LATIN indicator, presenting a trend closer to the
reference errors by one order of magnitude.
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Figure 5.5: Evolution of the indicators η and ν for the problem in Figure 5.3 with k = k0.

Figure 5.6 shows the trends of the convergence indicators for the cases k = 0.1 k0
(Figure 5.6a) and k = 10 k0 (Figure 5.6b). In the case k = 0.1 k0 the problem converges
faster, just as in the case k = 10 k0 convergence is very slow. The error in constitutive
relation ν manages to account for this very well, resulting in both cases closer to the
trend of the reference errors. The LATIN indicator, on the other hand, especially in the
case k = 10 k0 is several orders of magnitude far from the reference errors, making it
inappropriate to estimate the error in contact quantities.
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(a) k = 0.1 k0.
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(b) k = 10 k0.

Figure 5.6: Evolution of the indicators η and ν for the problem in Figure 5.3.
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1. Control of the convergence of interface quantities

■ Open and closed contacts in compression and bending

Similarly to the previous case, we consider here the same structure but now in
compression and in bending at the top, as shown in Figure 5.7, with the rest of the
boundary set traction-free. The contact interfaces in the compression zone (left-bottom)
are closed, whereas those in the traction zone (right-bottom) are open, as it can be seen
from the reference solution on the right in Figure 5.7.

𝟓𝟎𝐌𝐏𝐚

perfect 

interface

contact 

interface
force BCs displacement 

BCs

𝑦 𝑥

𝟓𝟎𝐌𝐏𝐚

Figure 5.7: Structure with frictional cracks in compression and bending.

Figure 5.8 shows the trends of the different convergence indicators for the considered
cases k = k0 (Figure 5.8b), k = 0.1 k0 (Figure 5.8a) and k = 10 k0 (Figure 5.8c). In
all three cases the CRE convergence indicator performs very well, with the trend of
convergence of the reference errors being very well represented. The LATIN indicator,
on the other hand, in all three cases results to be not representative of the actual error
committed along the iterations.

■ Structure with a crack under mixed mode loading

Let us consider here the structure in Figure 5.9, presenting a contact interface over
four-fifths of its length, clamped at the bottom and subjected to a pressure load of
100 MPa and a tensile load Fx and shear load Fy which vary linearly from zero to a
maximum value of 100 MPa and 25 MPa respectively over a 10 s interval discretized
in 100 time steps. The contact interfaces have a friction coefficient f = 0.3. The rest
of the boundary is set traction-free. The structure has dimensions Lx = 50 mm and
Ly = 20 mm, with each subdomain discretized with 15× 15 QUA8 elements, the Young
modulus is 130 000 MPa and the Poisson ratio is 0.2.

Figure 5.10 shows the reference solution to this problem obtained with a LATIN
indicator threshold of η0 = 10−6, showing the three possible scenarios of adhesion,
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(c) k = 10 k0

Figure 5.8: Evolution of the indicators η and ν for the problem in Figure 5.7.

sliding and contact opening on the contact interfaces.
Figure 5.11 shows the trend of the different convergence indicators as k varies for the

contact interfaces, with k = k0 (Figure 5.11b), k = 0.1 k0 (Figure 5.11a) and k = 10 k0
(Figure 5.11c). In all three cases, the CRE convergence indicator performs better than
the LATIN indicator and well represents the convergence trend of the reference error
indicators.

In particular, it appears that at the contact interface Γ2−7 between substructures 2
and 7 the contact gap is always closed, while in the other contact interfaces the opening
front propagates in time with the external loading. Looking in more detail at the fric-
tional contact conditions over time on the different contact interfaces, Figure 5.12 shows,
for contact interfaces Γ2−7 and Γ4−9, the evolution of the sliding front (Figure 5.12a)
and the opening front (Figure 5.12b), respectively for the converged solution. As it can
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Figure 5.9: 2D structure with a crack under mixed mode loading with numbering of
subdomains and prescribed forces.

(a) Reference solution at t = 0 s. (b) Reference solution at t = 5 s.

(c) Reference solution at t = 10 s.

Figure 5.10: Reference solution at different time instants. (a): t = 0 s. (b): t = 5 s. (c):
t = 10 s.

be noticed, in this particular test problem the sliding and opening propagation fronts
are wide, and it is crucial for a good convergence indicator to well represent these fronts.
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Figure 5.11: Evolution of the convergence and error indicators for the problem in
Figure 5.9. (a): For k = 0.1 k0. (b): For k = k0. (c): For k = 10 k0.

In order to assess the ability of the convergence indicators to accurately capture
the various sticking and opening fronts, in Figure 5.13, Figure 5.14 and Figure 5.15
are shown the portraits of the sliding and opening fronts of interfaces Γ2−7 and Γ4−9
represented by the LATIN indicator η and the CRE indicator ν for the 3 different values
of k considered previously.

In practice, for the three considered different values of k, the LATIN algorithm was
stopped once the threshold value η0 = 10−3 for the LATIN indicator, and the threshold
value ν0 = 10−2 for the CRE indicator was reached. A good convergence indicator, for
different values of k used in the LATIN strategy, should be able to reproduce solutions
of comparable accuracy when using the same stopping threshold, and therefore also
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1. Control of the convergence of interface quantities

reproduce contact fronts of similar appearance.
As it can be seen from the figures, the proposed CRE indicator behaves very well in

this aspect, with the solutions presenting highly similar sliding and opening fronts in
line with the reference solution. The LATIN indicator, on the other hand, makes the
solution converge to more variable sliding and opening fronts, especially for higher
values of k in this case.

It is clear that when the search direction is not optimal and one makes use of a
more reliable convergence indicator, this will require a larger number of iterations to
reach a given accuracy. This can be clearly seen from Table 5.2, where are compared
the number of iterations required to reach a given accuracy for the considered cases
with the LATIN indicator and the CRE indicator. However, one will be almost certain
that the solution obtained will have a quality comparable to the value of the chosen
convergence threshold. This aspect with the classic LATIN indicator is not always
guaranteed for frictional contact problems, especially when large fronts of sliding and
opening are present.
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(a) Sticking/sliding front on Γ2−7.
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Figure 5.12: Contact status evolution over time for contact interfaces Γ2−7 and Γ4−9 at
convergence. (a): sticking/sliding status of Γ2−7. (b): contact/opening status of Γ4−9.

Search direction Iterations to convergence
η0 = 10−3 ν0 = 10−2

k = 0.1 k0 20 36
k = k0 66 61
k = 10 k0 201 459

Table 5.2: Number of LATIN iterations to reach a given convergence threshold for η
and ν with different values of the search direction prameter k.
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(c) Sliding front for Γ2−7 with ν0 = 10−2.
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(d) Opening front for Γ4−9 with ν0 = 10−2.

Figure 5.13: Contact front evolution on interfaces Γ2−7 and Γ4−9 for the solution ob-
tained with k = k0. (a) and (b): convergence threshold η0 = 10−3. (c) and (d):
convergence threshold ν0 = 10−2.
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(b) Opening front for Γ4−9 with η0 = 10−3.
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(c) Sliding front for Γ2−7 with ν0 = 10−2.
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Figure 5.14: Contact front evolution on interfaces Γ2−7 and Γ4−9 for the solution ob-
tained with k = 10 k0. (a) and (b): convergence threshold η0 = 10−3. (c) and (d):
convergence threshold ν0 = 10−2.
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(c) Sliding front for Γ2−7 with ν0 = 10−2.
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Figure 5.15: Contact front evolution on interfaces Γ2−7 and Γ4−9 for the solution ob-
tained with k = 0.1 k0. (a) and (b): convergence threshold η0 = 10−3. (c) and (d):
convergence threshold ν0 = 10−2.
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2. Improvement of the convergence of interface quantities

2 Improvement of the convergence of interface quanti-

ties

As mentioned extensively throughout this manuscript, the convergence rate of
the LATIN is largely determined by the value of the search direction parameters
k. This is not surprising since the strategy with which the LATIN method imposes
contact constraints, as well as in general all constraints for other types of interfaces,
can be traced back to augmented Lagrangian methods in which k plays the role of the
augmentation parameter. In the multiscale strategy, in the case of perfect interfaces, it
can be shown that the optimal search direction corresponds to a sort of a ªmicrostiffnessº
of the influence of the immediately neighbouring subdomains on a given subdomain
[Violeau, 2003]. However, the computation of this optimal value for each subdomain
can be costly, and in practice one often takes, for homogeneous subdomains, the value
k = E

LΓ
Id, with LΓ being a charachteristic length of the interface Γ, which can be

considered as a close-to-optimal choice for perfect interfaces.
In the case of frictional contact interfaces, a priori optimal values are difficult to

determine, since the optimality depends strongly on the contact conditions evolving in
space and time and depending on the external loading conditions. Since the contact
conditions that occur in space and time for a given problem along the various frictional
contact interfaces are not known a priori, it is in fact not possible to give an optimum
value to each contact interface. However, the peculiar feature of the LATIN to provide
a complete space-time view of the contact status at each iteration allows to have an
idea of how the contact conditions evolve already from the very first iterations, and
consequently to perform an on-the-fly updating on the search direction to improve
convergence rate.

It is well known that augmented Lagrangian methods present a convergence rate
which depends on the augmentation factor, and it is generally difficult to select opti-
mally a priori. Various methods to improve the performance of the augmentations are
discussed in standard texts on constrained minimization [Luenberger and Ye, 1984;
Bertsekas, 1988]. However, the described methods are general and not particularly
relevant to contact problems, as shown in [Zavarise and Wriggers, 1999].

The work of [Zavarise and Wriggers, 1999] actually represents the first attempt to
improve the performances of the augmentations in augmented Lagrangian strategies
for (frictionless) contact problems with a "Lagrangian prediction method". Another
attempt is the "adapted augmented Lagrangian method" from [Bussetta et al., 2012]
applied to frictional problems.

± Lagrangian prediction method
In [Zavarise and Wriggers, 1999] the approach does not involve an optimized
choice of the augmentation parameter, but is rather based on a prediction of the
contact forces based on datasets of previously converged states. The approach,
in order to work, requires some iterations and augmentations with the standard
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augmentation method using a reference augmentation parameter. Then, when
a sufficient dataset has been constructed, it is used in a sort of "data-driven"
approach to predict contact forces without the need for augmentations. To im-
prove the stability of the method the authors show that in predicting the contact
force at a given point it is also necessary to take into account the contact status
of neighbouring points, introducing a kind of smoothing of the contact status
variability.

± Adapted augmented Lagrangian method
The adapted augmented Lagrangian method [Bussetta et al., 2012], similar to
adapted penalty methods [Chamoret et al., 2004], is based on the augmented
Lagrangian method equipped with an adaptation of the normal and tangential
augmentation parameters. The resolution of the frictional contact problem is
the same as for the augmented Lagrangian: the augmentation of the Lagrange
multipliers is performed after the convergence of the Newton±Raphson algorithm.
However, the values of the augmentation coefficients are updated during the
computations.
The adaptation of the normal augmentation parameter kn is performed by con-
sidering three cases: at the current iteration i, either the sign of the gap changes
(gi × gi−1 < 0), or the absolute value of the gap is more important than a pre-
scribed limit (|gi| > gmax), or the absolute value of the gap is less than the
maximal limit (|gi| < gmax). For the last case, the normal penalty coefficient
remains unchanged. For the first case, when gi × gi−1 is negative, the normal
penalty coefficient is adapted so that the absolute value of the gap decreases
without changing the sign of the gap. For the second case, when |gi| is greater
than gmax, the adaptation of kn will increase the absolute value of the augmented
contribution of the normal stress without changing the sign of the gap. Similar
considerations are made for the tangential behavior.

Regarding specifically the LATIN method, an attempt at performing an update of the
search direction parameters in the case of frictionless open-closed contacts can be found
in [Saavedra et al., 2012], in the context of an ªincrementalº LATIN method. The authors
for a given interface opening, starting from the reference search direction k+ = k− = k0,
update the search direction after a few iterations by placing k+ = k− = 0 in the whole
open contact interface. In that case a contact interface was declared open (respectively
closed) if all its integration points have been detected as open (respectively closed) at
the local stage. However the large discontinuity between two iterations in the value of
the search direction leads the convergence trend to instabilities. Attempts were made
also to carry out an independent update on each point of the contact interface, however
instabilities during the iterations were systematically encountered due to oscillations
of the contact status.
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2. Improvement of the convergence of interface quantities

2.1 On the relevance of contact conditions on convergence rate

As discussed previously, the reference value k0 = E
LΓ

Id for the search direction pa-
rameter usually adopted in the LATIN strategy is a good candidate when dealing with
perfect interfaces. However, in the case of frictional contact problems, depending on
the contact conditions that may occur in a given problem due to the external loadings,
this reference value may be far from a good choice leading the strategy to a very poor
convergence rate. We show an example of this in the following for two test cases.

2.1.1 Contact in opening and closing

Here we consider the test case in Figure 5.3. This time, we consider not only the case
of the structure loaded with a traction load of 50 MPa, but also the case when the same
loading acts in compression. In practice, we consider two cases with loads of opposite
direction and make use of the reference value k0 = E

LΓ
Id for both perfect and contact

interfaces. In linear elasticity with only perfect interfaces, the direction of the loading
does not affect the LATIN convergence rate. The reference solutions of the problem in
the two cases are shown in Figure 5.16a for the traction case and Figure 5.16b for the
compression case. In the traction case all contact interfaces are open, in the compression
case they result closed and the structure behaves similarly to an uncracked one.
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Figure 5.16: Structure with frictional cracks. (a): In traction. (b): In compression.

The convergences of the two problems through the LATIN iterations are shown
in Figure 5.17 with both the LATIN indicator η and the CRE indicator ν. As it can be
clearly seen, the convergence of the problem in compression (Figure 5.17b) is several
orders of magnitude better than the one in traction (Figure 5.17a). In particular, in
the compression case it can be seen that the LATIN indicator and the CRE indicator
are really close. In fact, when the cracks are closed they behave in practice as perfect
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interfaces and the reference value k0 ensures a good convergence rate for perfect
interfaces. Instead, when they are open, ideally the interface stiffness should be set
to zero, or at least a lower value with respect to the case in contact. In the opening
case the LATIN indicator results far from the CRE indicator by more than one order of
magnitude.
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(a) Structure in traction.
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(b) Structure in compression.

Figure 5.17: LATIN indicator η and CRE indicator ν for the problem in Figure 5.3 with
reference search direction k0 = E

LΓ
I. (a): Traction case. (b): Compression case.

2.1.2 Layered structure with wide sliding propagation front

Here we consider the problem in Figure 4.5 in Section 4 of Chapter 4. This problem
presents large contact interfaces subjected to large sliding propagation fronts over
time in the tangential direction to the interface, while in the normal direction the
contact always remains closed. Therefore reducing the search direction parameter in
the tangential direction kt (see (3.7) in Section 2.3.3 of Chapter 3) brings benefits as
allows sliding to propagate more easily. This can be seen from Figure 5.18, where the
cases with kt = k0 (Figure 5.18b) and kt = 0.1 k0 are compared.

From these two examples it is clear that the best search direction for frictional
contat problems depends on the contact conditions that occur over time at the different
interfaces. What we want to propose here is, starting from a reference value k0, to
update the search direction parameters for the different contact interfaces based on
the contact status of the interfaces themselves (in space and time) along the LATIN
iterations.
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Figure 5.18: LATIN indicator η and CRE indicator ν for the problem in Figure 4.5. (a):
kt = k0. (b): kt = 0.1k0.

2.2 A strategy based on the contact status indicators

As seen previously, the reference value for the search direction parameter at inter-
faces k0 = E

LΓ
Id is not a good value in the case of opening interfaces and interfaces

subject to a large sliding fronts. In the case of interfaces in opening, reducing the
contact stiffness significantly increases convergence. Ideally, the contact stiffness in
opening should be zero, but this can lead to instabilities in the iterative strategy. Similar
considerations can be made for interfaces where the contact gap is closed and there is
a large sliding front. In this case, the reduction of the tangential value of the stiffness
allows the interfaces to "slide more easily".

These considerations can be taken into account thanks to the contact indicators Cn
and Ct used in the resolution of the local stage of the LATIN, the definition of which
we report again:

Cn(x, t) =
1
2

(
k+n

[
n · (ŴE′ − ŴE) + g0

]
− n · (F̂E′ − F̂E)

)

Ct(x, t) =
1
2

(
k+t Pt

[
δŴE′ − δŴE

]
−Pt(F̂E′ − F̂E)

) (5.2)

We show now that the indicators are proportional to the tendency of the contact to be
closed/open or in sticking/sliding conditions at a specific space-time position (x, t).

± opening: Cn(x, t) > 0
In this case F̂E = F̂E′ = 0, and thus we obtain Cn(x, t) = 1

2 k+n
(
n · (ŴE′ − ŴE) +
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g0
)
. With g0 being constant, this means that the tendency to separate at position

(x, t) is proportional to Cn(x, t).

± closed contact: Cn(x, t) ⩽ 0
In this case n · (ŴE′ − ŴE) + g0 = 0, and thus we obtain Cn(x, t) = F̂E · n.
Therefore the contact pressure results proportional to Cn(x, t), that is to say the
tendency to have contact at position (x, t) is proportional to Cn(x, t).

± sliding contact: Cn(x, t) ⩽ 0 and ∥Ct(x, t)∥ − f |n · F̂E| ⩾ 0
In this case we have Pt F̂E = −Pt F̂E′ = f |n · F̂E|Ct/∥Ct∥, and therefore we

obtain Ct(x, t) = k+t
2 Pt

(
δŴE′ − δŴE

)
+ f |n · F̂E|Ct/∥Ct∥. Consequently, the

tendency to slide at (x, t) is proportional to ∥Ct(x, t)∥ − f |n · F̂E|.

± sticking contact: Cn(x, t) ⩽ 0 and ∥Ct(x, t)∥ − f |n · F̂E| < 0
In this case we have Pt

(
δŴE′ − δŴE

)
= 0, and therefore we obtain Ct(x, t) =

Pt F̂E. It is clear that, the closer Ct(x, t) is to the sliding threshold, the closer
is the contact status to incipient sliding. On the contrary, the more far is
Ct(x, t) with respect to the sliding threshold, the more the contact status is
far from sliding. Consequently, the tendency to stick at (x, t) is proportional
to ∥Ct(x, t)∥ − f |n · F̂E|.

Therefore, we have identified two scalar indicators in space and time, one for the
normal contact and the other for the tangential contact, namely

N (x, t) := Cn(x, t) and T (x, t) := ∥Ct(x, t)∥ − f |n · F̂E| (5.3)

which inform us on the contact status tendency of a contact point at space position x
and at time t. Consequently, one can think of the following strategy to update search
direction parameters k+ = k− = k, in the normal and tangential direction, starting
from the reference value k0:

Definition 5.1 (search directions update). For a contact interface ΓEE′ , the search
direction k is updated in the following manner:

± opening: N (x, t) > 0

kn(x, t) = kt(x, t) = k0

(
1− αn

N (x, t)
max
(x,t)
N (x, t)

)
; (5.4)

± closed contact: N (x, t) ⩽ 0

kn(x, t) = k0

(
1 + βn

N (x, t)
min
(x,t)
N (x, t)

)
; (5.5)

192



2. Improvement of the convergence of interface quantities

± sliding contact: N (x, t) ⩽ 0 and T (x, t) ⩾ 0

kt(x, t) = k0

(
1− αt

T (x, t)
max
(x,t)
T (x, t)

)
; (5.6)

± sticking contact: N (x, t) ⩽ 0 and T (x, t) < 0

kt(x, t) = k0

(
1 + βt

T (x, t)
min
(x,t)
T (x, t)

)
; (5.7)

with αn, αt ∈ [0, 1] and βn, βt ⩾ 0.

In practice, the idea is to update k proportionally to the value of the contact indi-
cators. In the normal contact case, for a given contact interface ΓEE′ , when N is close
to zero (either positive or negative) we are basically in a condition where the contact
status is not very certain and subject to possible switches from positive to negative
around zero and vice versa. Therefore, it makes sense to require that when the status is
uncertain to leave the search direction unchanged, or at least change it very slightly.
For this reason when N ≈ 0 in Eq. (5.4) and Eq. (5.5) we have k ≈ k0. Conversely,
when N increases in absolute value, considering what shown previously about N
indicating the tendency to separate or have closed contact, the larger N is in absolute
value, the more certain we are that separation or contact will occur. In particular, in the
maximum value of N is where it will be more certain that there is opening contact, as
well as in the minimum value (in negative) of N is where it will be more certain that
there will be closed contact. Under these conditions the search direction is changed
the most, and from Eq. (5.4) and Eq. (5.5) it becomes respectively kn = kt = k0(1− αn)
and kn = k0(1 + βn). For all points, in space and time, with intermediate contact
conditions between these two extreme vaalues k varies in an affine manner between k0
and respectively k0(1− αn) and k0(1 + βn). The same considerations for the tangential
contact.

As for the choice of the coefficients α and β, they should be chosen according to the
maximum and minimum value of k to be obtained after the update.

2.3 Consequences of a search direction in space and time

In the LATIN method, search directions are usually defined a priori and are con-
stant for each interface in space and time. This makes it possible to precompute the
linear operators of the linear stage of the LATIN for each subdomain and to assemble
the homogenized operator, as well as to factorize them so as to be faster during the
resolution.

However, let us now consider the strategy of updating search directions described
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above. Let us imagine that at a certain LATIN iteration we update the search directions,
both ascent and descent ones, i.e.,

k+ = k− = k(x, t). (5.8)

This situation involves however certain complications:

± If at a certain LATIN iteration we update the search direction on a given contact
interface ΓEE′ , this involves recomputing the stiffness matrix of the subdomains
which share that contact interface, as well as recomputing the homogenized
operator. And this is expensive. Moreover in this case, since k(x, t) would depend
on both space and time, It would be not possible to exploit a separation of variables
in the integration which would increase even more the cost of computations.

± If PGD is used in the linear stage, since the residual in search direction δE depends
on k−, if at a certain iteration k− changes this may lead to a sudden variation of
the residual δE, reducing the relevance of the ROB previously created, and may
change in general the reducibility of the problem.

For the first problem one could for example make use of a separated representation
in space and time, i.e., k(x, t) = kx(x)kt(t), obtained by taking for example the first
SVD modes of k(x, t). One should expect that since contact indicators N (x, t) and
T (x, t) are quite smooth, k(x, t) should present a good reducibility. This could be used
to integrate the stiffness matrix more cheaply by exploiting separation of variables
during integration. Another approach might be for example to make use of RPM
hyperreduction [Capaldo et al., 2017] to integrate the linear operators in space and time.
However, this would still require a non-negligible computational cost, especially when
numerous contact interfaces are present. And yet the problem with PGD would still
remain.

In order to deal with these problems, one can think of updating only the ascent
search direction k+, leaving unchanged k− which is used by all operators of the linear
stage. The ascent k+ search direction is only adopted locally in the local stage for
each interface and therefore, by varying it, it does not alter the linear stage resolution.
However, one should expect that such an update, in terms of convergence improvement,
would be less efficient than updating both search directions. Nevertheless, being the
local stage completely local in space and time, the adoption of a local search direction
in space and time for the local stage is completely cost-free and not expensive, and it
may still bring benefits.

One last issue remains when to update and how many times. It is clear that if
both k+ and k− are updated, this update should be done carefully and as few times
as possible due to the considerations made previously. If one updates only k+ instead
the update is cost-free, ideally one could update at each iteration. Since the proposed
update of the search directions is based on the contact indicators, it is reasonable to
propose to update the search directions when the contact indicators have converged
in some sense. One can define for exaple, for each contact interface ΓEE′ , a relative
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contact status convergence indicator In for the normal contact status and It for the
tangential contact status between two consecutive LATIN iterations n and n− 1, as
follows:

In =
∥Nn −Nn−1∥ΓEE′×[0,T]

∥Nn−1∥ΓEE′×[0,T]
, It =

∥Tn − Tn−1∥ΓEE′×[0,T]

∥Tn−1∥ΓEE′×[0,T]
, (5.9)

and to update when both In and It are less than a threshold I0.

2.4 Application to the 1D benchmark problem

Here we go on to test the updating strategy previously described by considering the
one-dimensional benchmark problem of Figure 3.1a described in Section 1 of Chapter 3,
with the load case 1 of Figure 3.1b. The parameters used for the problem are the same
as in Table 3.1. The case without DDM and PGD in the monoscale version is considered,
with a reference search direction parameter (in the tangential direction) k0 = ES/L. In
Figure 5.19 is shown the trend of the reference error indicators ηW , ηF and the CRE
indicator ν for the considered problem.
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Figure 5.19: Convergence indicators ηW , ηF and ν for the problem in Figure 3.1a.

■ Updating k
+ = k

−

Here the updating strategy is tested by updating both ascent and descent search
directions k+ and k−. We consider a convergence threshold for the (tangential) contact
status I0 = 10−2 and αt = βt = 0.9 . We start by considering to update only once when
the threshold is reached.

In Figure 5.20 is shown the evolution of the reference error indicators for displace-
ments ηW (Figure 5.20a) and forces ηF (Figure 5.20b), as well as the evolution of the CRE
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indicator ν (Figure 5.20c) along the LATIN iterations with and without update. It can
be clearly seen the moment when the update is performed, with the errors that show an
immediate reduction in the next iterations after the update and a gain in convergence
rate.

In Figure 5.21 is shown, at the iteration when the updating takes place, the space-
time view of the tangential contact indicator T (x, t) = ∥Ct(x, t)∥ − f |n · F̂E| (Fig-
ure 5.21a) and the resulting tangential search direction parameter in space and time
k(x, t) compared with k0 (Figure 5.21b) . The evolution of k(x, t) follows, as per defini-
tion, the evolution of the contact status T (x, t). Where the contact status T (x, t) ≈ 0,
the corresponding k(x, t) is close to k0. The modifications with respect to k0 are higher
in correspondence to the maximum and minimum values of T (x, t). In between these
values k(x, t) varies smoothly following the tendency to slide or stick.

An important question concerns when to perform the updating, which depends
on the given value of the contact status convergence threshold I0. With a high value
for I0 the updating tends to occur earlier in the iterations, while a low value tends to
delay the updating over the iterations. In Figure 5.22 is shown the evolution of the
reference error ηF for three different thresholds I0 = 10−1, I0 = 10−2 and I0 = 10−3. It
results that updating too late brings less benefits, since with a very low threshold many
iterations with k0 are needed before updating. It results preferable to update sooner.
In fact the updating is proportional to the contact indicator, and even from the first
iterations we get a rough idea of when and where different contact status conditions
will occur. The locations where the contact conditions are uncertain (i.e., in T (x, t) ≈ 0)
do not represent an issue since in that case k does not change significantly to affect the
uncertain status in that space-time location. The change in the parameter k is smooth
and even updating early should not pose convergence issues. A coarse contact status
convergence criterium (e.g., 10% of relative error) should be sufficient for the purpose.

Another question concerns how often to perform the updating of the search direction.
From the definition of the updating of k, that is an affine function of the contact status,
it can reasonably be said that updating more times brings less benefits compared to
the first time the update is performed. In fact in the first update there is a drastic
change from k0, constant in space and time, to k(x, t) which follows the contact status
trend and varies between k0(1 + βt) and k0(1− αt). If the search direction is updated a
second time, k would still be varying between k0(1 + βt) and k0(1− αt) following the
contact status trend, but space-time locations where k changes significantly between
the two updates will be more localized and it will bring less significant contribution
to the convergence gain. One could also think of updating at each iteration, since the
variation of k in the update is smooth it should not pose any particular difficulties even
in the first iterations where the contact status has not fully converged. In Figure 5.23
is shown the evolution of ηF with constant k0 and by updating once or twice with an
updating threshold of 10−2 and by updating at each iterations. The convergence gain
from the second update results to be negligible from the first update. By updating at
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(a) Displacement reference error ηW .
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(b) Force reference error ηF.
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(c) CRE indicator ν.

Figure 5.20: Evolution of the indicators ηW , ηF and ν for the problem in Figure 3.1a
with constant search direction k0 and with updating at a threshold I0 = 10−2.

each iteration we have a gain in the beginning, however at the end the obtained gain is
in practice the same as updating once or twice when the contact status has converged.

■ Updating only k
+

The analysis performed previously considered updating both search directions
k+ = k−. However, updating k− brings some non-trivial consequences and additional
computational costs which could nullify the benefits of an update. A good compromise
is to update only the ascent search direction k+ used in the local stage, leaving k−

unchanged. The local stage is in fact local in space and time and a similar choice for k+

is consistent with this. One expects however that the convergence gain would be lower
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(a) Tangential contact status T (x, t) in space
and time.

(b) Updated search direction k(x, t) in space
and time compared to k0.

Figure 5.21: Tangential contact status and search direction at updating. (a): Tangential
contact status T (x, t). (b): Updated search direction k(x, t).
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Figure 5.22: Force reference error ηF with constant k0 and with updating at different
thresholds: I0 = 10−1, I0 = 10−2 and I0 = 10−3.

than in the case where both k+ = k− are updated. This is shown in Figure 5.24, where is
depicted the evolution of the CRE indicator ν is in case when both k+ = k− are updated,
and in case when only k+ is updated, with an update threshold I0 = 10−2. Notice
however that in the case when only k+ was updated, it was necessary to reduce the
relaxation parameter to µ = 0.5 to make the strategy converge. Therefore in Figure 5.24
are shown the convergence curves for a relaxation parameter µ = 0.5.

As expected, the convergence gain in the case of only updating k+ is lower than in
the other case. However, the computational cost of the update in this case is completely
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Figure 5.23: Force reference error ηF with constant k0 and with updating once and twice
with I0 = 10−2 and by updating at each iteration.
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Figure 5.24: CRE indicator ν in the cases of updating both k+ = k− and updating only
k− with a threshold I0 = 10−2 and relaxation parameter µ = 0.5.

negligible, being operated locally on the contact interfaces, and still brings improvement
to the convergence of contact quantities. Note also that all the considerations made
previously about when to update, how many times to perform the update and on the
time-space view of k(x, t) are equally valid even in the case where only k+ is updated.
However, compared to the strategy where both k+ = k− are updated, in this case the
amount we can change k from k0 is more limited due to convergence issues. We will
come back on this point in the next section when the strategy of updating k+ is applied
to different two-dimensional frictional problems.
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2.5 Application to 2D frictional contact problems

As noticed previously, the relaxation parameter puts a limitation on the choice of
possible variations of the search direction k+ from k0. In practice, with a relaxation
parameter of µ = 0.8 usually adopted, for all the different problems considered, the
choice of αn, αt and βn, βt resulted limited in the range of [0, 1

3 ] in order to avoid
divergence of the iterative strategy. Reducing the relaxation parameter to µ = 0.5
widens the range to [0, 2

3 ]. This inevitably leads to less possible gain in convergence.
In Figure 5.25 is shown, for the problem with multiple opening frictional cracks of
Figure 5.3, the evolution of the CRE indicator by updating at I0 = 0.1 with relaxation
coefficient µ = 0.8 and µ = 0.5 adopting the maximum possible values αn = 1

3 in the
first case and αn = 2

3 in the second case.

As it can be noticed there is a gain, but it remains limited by the range of the possible
variation of k+ from k0. We also found that for all the problems considered here the
updating of search directions due to βn and βt was practically irrelevant under these
conditions. This led us to reformulate the updating strategy as follows:

Definition 5.2 (modified search directions update). For a contact interface ΓEE′ , the
search direction parameter k+ is updated in the following manner:

± opening: N (x, t) > 0

k+n (x, t) = k+t (x, t) = k0
(
1− αn

)
; (5.10)

± sliding contact: N (x, t) ⩽ 0 and T (x, t) ⩾ 0

k+t (x, t) = k0
(
1− αt

)
; (5.11)

with αn, αt ⩽ 1 whose maximim value depends on µ.

In fact, since the choice of αn and αt is limited, it is not necessary to perform a smooth
updating of the search directions proportional to the value of the contact indicators,
but one can sharply decrease the value of k+ at the points in space and time where
opening or sliding is detected. The new updating strategy represents a simplification of
the original in Definition 5.1 due to the considerations made previously. In practice the
limited range of variation of k+, and the fact that k− = k0 is held constant in the linear
stage, pose no problems in performing more drastic updating even in areas where
the contact state switches between iterations. We go on now to test the new updating
strategy of Definition 5.2 compared to the old one of Definition 5.1 for different test
cases.
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Figure 5.25: CRE indicator with updating of k+ for the problem in Figure 5.3 with two
different relaxation parameters µ.

■ Open contacts in traction

In Figure 5.26 is shown the effect of the new updating strategy for k+ of Defini-
tion 5.2 compared with the old one. The updating for both strategies was performed
once when a threshold I0 = 0.1 was reached for the contact status, choosing αn = 1/3
in the case with µ = 0.8 and αn = 2/3 in the case with µ = 0.5.
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(a) µ = 0.8.
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Figure 5.26: New and old updating strategy tested on the problem in Figure 5.3.

The new strategy allows maximizing the possible gain in the limited range of choice
of αn. In the case µ = 0.5, the maximum possible value adoptable for αn being higher,

201



Chapter 5. Control and improvement of the convergence

there is a larger gain compared to the strategy without updating. However, the lower
relaxation coefficient µ dampens this gain and in practice in all cases it has turned out
that the gain in the updating for both µ = 0.8 and µ = 0.5 was comparable.

It was also noticed for all the considered test cases that updating, even if done from
the first iterations, brings contribution only after the macroquantities have converged,
unlike the previous 1D monoscale case where upgrading from the first iterations still
brought contribution. In practice, as expected, the strategy of updating only influences
the local convergence rate of the microquantities, which is driven by k. In the first
iterations the convergence rate is instead driven by the macroproblem.

■ Open and closed contacts in compression and bending

The new updating strategy is applied here to the problem in Figure 5.7, with multiple
frictional cracks subjected to bending and compression, which causes the cracks to close
on one side and open on the other. The updating strategy was considered with µ = 0.8
and αn = αt = 1

3 , by updating once when I0 = 0.1 was reached. As it can be seen
from Figure 5.27, similarly to the previous case updating improves the convergence
rate of microquantities after the macroquantities have converged. Again, no significant
difference was noticed when updating multiple times.
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Figure 5.27: Updating strategy for the problem in Figure 5.7.

■ Structure with a crack under mixed mode loading

The same strategy was also applied in the case of the structure with a crack under
mixed mode loading in Figure 5.9. The same conclusions as the previous cases hold, as
it can be seen from Figure 5.28, with an improvement of the convergence rate of micro-
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quantities. Even in this case no significant differences was found by updating different
times, with the strategy being robust and showing no signs of possible divergence.
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Figure 5.28: Updating strategy for the problem in Figure 5.9.

■ Layered structure with large sliding front propagation

Let us now consider the updating strategy for the type of problems we are most
interested in, such as the layered structure presented in Figure 4.5 in Section 4 of
Chapter 4.

In Figure 5.29 is shown the trend of the CRE indicator with and without updat-
ing. The CRE indicator for this problem results somewhat different from the other
problems, with a slow convergence rate at the beginning and a higher convergence
rate subsequently. This can be explained by the fact that external loads acting on the
structure are oscillating around a considerable preload, and that the friction conditions
are evolutionary and therefore dependent on the conditions that are established in
the preload. In this case, therefore, in the first initial part at low convergence rate is
established since the state of preload is not yet converged, which largely affects the
convergence of the rest of the oscillations around it. When more or less the preload
state has converged, the rate of convergence of the oscillating part is faster. In the initial
part, in addition to the preload, the macroquantities are also made converge. Thus, as
we can see, the updating mainly affects the second part, in which oscillating contact
microquantities are to be converged locally accurately in space and time. The obtained
gain is interesting, considering that the updating strategy is complete cost-free. As it
can also be noticed, updating several times after the first updating does not bring any
significant benefits. However being totally cost-free one can also think of updating
several times without any divergence problems of the contact status or the iterative
algorithm.
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Figure 5.29: Updating strategy for the problem in Figure 4.5.

In Figure 5.30 is shown the tangential contact status over time (white for sliding
and black for sticking) for the contact interface Γ1,7 between substructures 1 and 7, at
the moment of the first update (Figure 5.30a), and at convergence (Figure 5.30b). As it
can be seen, at the moment when the update is performed, the contact status is roughly
well captured, however the sliding front propagation is not accurately detected. The
accurate capture of the sliding front concerns local microquantities, which are driven
by k. It is in this stage that the update strategy brings contributions by improving the
local convergence rate of the sliding front.

We are also especially interested in the effect that this update can have on solving
microproblems with PGD. As mentioned above, changing k+ does not alter the way
we solve the linear stage, which depends on k−. Therefore, using the PGD with the
updating strategy does not bring any additional issues. In Figure 5.31 is shown the
evolution of the PGD basis for substructures 7 and 12 (the same ones considered in
Section 4 of the Chapter 4) along the LATIN iterations with and without the updating
strategy. It can be noticed that in the first part driven by the macroproblem, the
two strategies coincide and generate the same modes. In the second part, where
microquantities are made converge, modes are slowly generated along the LATIN
iterations. In the updating strategy it is noticed that there are slightly more modes
generated, in fact the convergence rate with the updating is higher and to take this into
account the strategy needs to generate modes more frequently. However, the difference
is negligible after in comparison to the gain in convergence rate.
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2. Improvement of the convergence of interface quantities
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Figure 5.30: Tangential contact status (white for sliding and black for sticking) in space
and time for interface Γ1,7. (a): at first update. (b): at convergence.
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Figure 5.31: PGD basis with and without update.
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Chapter 5. Control and improvement of the convergence

3 Conclusions

In this last chapter we have dealt with two crucial points for the effectiveness of the
multiscale strategy of model reduction for frictional contact problems.

The first one concerned the definition of an appropriate convergence indicator for
the iterative strategy in order to stop iterations at a desired level of accuracy. Starting
from the definition of a convergence indicator based on the error in constitutive relation
at the interfaces introduced in [Passieux, 2008], we have proposed some modifications
to make it more robust to different scenarios with different contact states. The indicator
has in all cases proved to be a reliable convergence indicator, performing much better
than the classical LATIN indicator especially when the search direction changes.

In the second part we have dealt with improving the convergence of interface
contact quantities at the microscopic level. The latter are dependent solely on the
search directions employed in the LATIN method. If the multiscale strategy brings
benefits and a gain in convergence in the first iteration by making converge macroscopic
quantities, it does not bring benefits at a later point when an accurate convergence
of microscopic quantities is necessary. For this case we have introduced a strategy of
updating the search directions based on the contact status.

An initial idea was to update both the k+ = k− = k(x, t) in space and time in a
smooth manner following the value of the contact indicators. However, the introduction
of a search direction dependent on space and time in the linear stage involves several
complications that may nullify the benefits of an eventual update. Therefore we
considered the idea of updating only the ascent search direction k+ used in the local
stage. We have noticed in this case that the maximum value that we can make vary k
from the reference value k0 is limited and depends on the relaxation parameter. This led
us to change the initial strategy by proposing a more sharp variation to k+ in space and
time so as to maximize the possible gain in convergence. The strategy is completely
cost-free and requires only the evaluation of contact indicators, which are available
from the local stage. We tested the strategy in several test cases with different loads
and different contact states in space-time and the strategy was robust, leading to an
interesting gain in convergence rate of microquanties.

In particular the strategy has proved to be particularly effective for the type of prob-
lem we are interested in, that is, layered structures with wide sliding contact interfaces.
The strategy, in the long run allows a gain of an order of magnitude in the accurate
computation of interface quantities. In particular, the adoption of PGD in the updating
strategy does not involve any problems as the linear stage remains unchanged. The
introduction of multiscale aspects to capture the behavior at the level of the whole struc-
ture, the introduction of PGD to speed up computations at the substructure level and
the updating strategy to improve convergence rate at microscopic level at interfaces are
therefore a robust, we could say three-level (the structure, substructures and interfaces)
strategy to handle such kind of problems.
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Conclusions

The context of this work concerned the simulation of the loading on a part of a
mooring line of a floating offshore wind turbine in order to accurately predict its fatigue
life. Due to their peculiar architecture, tension and bending loadings induce complex
frictional phenomena between the wires that make up the mooring lines which may
induce fretting fatigue damage. A direct finite element analysis of the wire mechanics
in order to predict fatigue life is computationally costly since such kind of problem
involves simulating the complex evolution of contact and friction conditions between
the wires of the wire rope. Progress in this regard has been made in [Bussolati, 2019]
by proposing a less expensive contact algorithm suitable for this type of applications.
In this thesis we have been interested in a different but complementary point of view,
that is the investigation of the feasibility of model reduction methods, but also domain
decomposition methods, to efficiently deal with the multiscale content of a nonlinear
problem with large and multiple frictional contact interfaces.

We report here on the investigations, results and proposals made through the
various chapters.

± Chapter 1 of this thesis work consisted of a bibliographical study on the main top-
ics involved. The chapter started with a short focused study on floating offshore
wind turbines and their characterization and design, as in fact they represent
the ultimate motivation of the thesis. Then we have described the mechanics of
spiral strand steel wire ropes which make up their mooring lines, but their geom-
etry and mechanics are also common to power cables or overhead conductors.
We have briefly presented some analytical models capable of predicting their
main mechanical properties, as well as the most common computational methods.
Most of them aim to predict the behavior of spiral strands at a macroscopic level
by homogenizing in some way the local interactions between the wires which
make up the cables. In this work, however, the aim was to have an accurate
representation of the actions between the wires. In this regard numerical models
which represent single wires with beam elements guarantee an accurate repre-
sentation of the contact quantities with a lower computational cost compared to
finer models. However, the computational costs of a fatigue analysis on a cable
section with different layers subject to complex loads varying over a long period
of time are prohibitive for industrial use when general purpose beam-to-beam
contact interactions are considered. In this direction small sliding beam-to-beam
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contact well represents the mechanics and considerably reduces computational
costs. These first two sections of Chapter 1 were also crucial to understand the
subsequent Chapter 2, as well as the remaining chapters where simplified models
inspired by these mechanics are tested.

An overview of computational contact mechanics and the main numerical strate-
gies was then offered in order to contextualize the way the LATIN treats frictional
contact. Similarities and differences of the LATIN with respect to more standard
methods were highlighted, in particular concerning the augmented Lagrangian
nature of the LATIN and the resolution scheme which shares similarities with
alternating direction of mutipliers methods and Uzawa algorithms.

The next part was devoted to model reduction, another fundamental aspect of
the thesis. The usual differentiation between a posteriori and a priori methods
was followed. The classical a posteriori techniques such as POD and Reduced
Basis have been introduced, with then particular attention being paid to PGD.
The main applications of these techniques have thus been seen in terms of contact
mechanics, with or without friction. In particular, it was highlighted that most of
the available a posteriori techniques deal with problems for the most parameter-
dependent and where the offline part of the strategy is particularly costly. We
then emphasized how some of the properties of the LATIN-PGD method, such
as the coarse scale problem acting as a very coarse reduced model and then
the possibility of enriching locally in the contact zones, can significantly help to
handle such kind of problems.

Finally, domain decomposition methods such as the classical primal and dual
approaches were shortly reported. The main difference with a mixed approach
such as the one based on the LATIN were highlighted, with the latter in particular
which allows a simpler and more general way to deal with frictional contact
interfaces as well as other complex interface behaviors.

± An important part for the motivation of this work was represented by Chapter 2,
where we went on to analyze the evolution of the contact quantities of the target
problem and investigate their actual reducibility potential. In particular, we went
on to analyze the contact status over time between the different layers, noticing
how the contact conditions are particularly critical in the outermost layers where
large sliding fronts occur throughout the whole layer interface.

We investigated the potential reducibility in an interesting layer-by-layer view.
It has been shown that the complexity of the contact conditions occurring in the
various layers strongly influences the reductibility. As a natural consequence, the
outermost layers, with more variable contact conditions, have been found to be
more critical in terms of reducibility, especially in relation to the reducibility of
frictional contact forces. It was investigated also how the various space modes
behave, with an accentuated tendency of the modes to bring corrections in the
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areas where more complex conditions occur, as for example the angular position
of the bending axis from which the sliding initiates and propagates.

In general, the target problem presents a good potential reducibility. This fact
is due to the particular loads they are subjected to: in fact, such structures are
preloaded and subject to small oscillating loads around this preload. This reduces
the formation of strong discontinuity/sliding fronts and reduces their amplitude,
especially in the inner layers.

± In Chapter 3 we introduced the strategy based on the LATIN to solve the frictional
contact problem and introduce PGD-based model reduction. To do this, the
main features of the strategy were first presented when applied to frictional
contact problems on a 1D benchmark problem inspired by the mechanics of a
single wire of the spiral strand cable. We highlighted the great influence that the
external loading has on the problem reducibility and sliding front propagation. In
particular, the limit loads we have considered (respectively load case 1 involving
significant sliding front propagations, and load case 2 with small variations in
sliding fronts) create comparable contact and reducibility conditions respectively
to the outermost layers of the cable section analyzed in Chapter 2 where the front
propagates over the whole layer interface, and the innermost layers whose front
remains located around the bending axis.

We therefore considered the load case 1, and the application of the strategy on
the 1D problem allowed to highlight some issues for this type of problems which
have not been extensively investigated previously, and for which we made some
contributions in Chapter 5. In particular concerning the error control in the
iterative solver to accurately capture sticking/sliding discontinuity fronts (as also
closed/open contact gaps) and the improvement of convergence through the
search directions.

PGD was then introduced in the LATIN strategy. In order to obtain maximum
performance in terms of calculation time, the enrichment of the PGD basis is
a crucial aspect to accomplish this task. Considering that the addition of new
modes is the most costly part of the approach, an optimized choice from this
point of view requires first of all to understand what drives the convergence rate
of the LATIN. The convergence of microscopic quantities at interfaces is driven
by the search direction prameter k, so that even when making use of PGD the
convergence rate remains bounded by that of the choice of k, and the addition of
new modes at some point does not create benefits from this point of view. As a
consequence it is essential to choose an appropriate enrichment criterion, such as
the one in error of search direction, so as to avoid the creation of too many modes
especially when far from convergence.

We also considered techniques for sorting the reduced basis such as orthonormal-
ization (of space modes) or a downsizing iterative algorithm that progressively
creates a basis close to SVD [Giacoma et al., 2015]. In this case, in the 1D ex-
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ample, we did not analyze the cost of the different strategies since the problem
is computationally very inexpensive, but only their ability to contain the basis
size and control its quality. We have seen that the orthonormalization of space
modes is not sufficient to limit and reduce the size of the reduced basis, while
downsizing, which in fact operates a double orthogonalization between space
modes and time modes, results more effective. However we also showed how
the downsizing algorithm, by sorting and projecting the whole basis every time
it is applied, requires to re-check the admissibility condition between the space
modes, which can be expensive.

± In Chapter 4 we introduced the multiscale strategy in space based on a separation
of scales at interfaces, as well as the introduction of PGD in this case. The crucial
aspect first highlighted is the fact that in the strategy the macroscopic quantities
tend to converge rapidly in the first iterations of the LATIN iterative solver. There-
fore we suggested to enrich the PGD basis due to macroquantities more frequently
in the first iterations so as to quickly capture macroscale contributions and to
form a relevant basis for the subsequent iterations, then capture the microscale
contributions along the iterations. Applied to the 1D problem we showed that
it is possible to create reduced bases of different size according to the contact
conditions that are established in the various subdomains, with the first modes
which well represent the first structural modes of subdomains.

Then a 2D contact problem with friction between three slender bodies subjected
to compression, traction and bending alternating over time, representative of
the considered application was considered. It was shown that the large sliding
front across the different subdomains significantly reduced the convergence rate.
The PGD basis behavior follows from what was said above, that is that the
basis necessary for macroscopic quantities is created in the first iterations and
is sufficient for the remaining ones, instead the basis for microscopic quantities
needs to be enriched more along the iterations due to the slower convergence of
microquantities. The higher complexity compared to the 1D case has also allowed
an analysis of the cost of the LATIN strategy without PGD and with PGD with
different sorting techniques. It was shown how the efficiency of PGD depends
first of all on the enrichment criterion, as the process of adding a new couple
of modes is expensive both at the moment of creation as also when the sorting
algorithm operates.

± In the final Chapter 5, we have proposed some contributions to the control
and improvement of the convergence of interface contact quantities with the
LATIN strategy. This point is answering the request to control the accuracy on
contact kinematics and forces as input of fretting fatigue laws for the mooring
line application [Montalvo et al., 2023].

Starting from the definition of a convergence indicator based on the error in
constitutive relation at the interfaces introduced in [Passieux, 2008], we have
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proposed some modifications to make it more robust to different scenarios with
different contact states. The indicator has in all cases proved to be a reliable
convergence indicator, performing much better than the classic LATIN indicator
especially when the search direction changes. Subsequently we have dealt with
improving the convergence rate of interface contact quantities at the microscopic
level, which are driven by the search direction parameter k. The idea was to
introduce for each contact interface a search direction dependent on space and
time k(x, t) by updating during the LATIN iterations with respect to the reference
value k0 based on the contact status. However, the introduction of such search
direction k−(x, t) in the linear stage involves several complications that may
nullify the benefits of an eventual update. Therefore we considered the idea of
updating only the ascent search direction k+ adopted in the local stage. However,
due to convergence conditions, the maximum value that we can make vary k from
the reference value k0 along the iterations is limited and depends on the relaxation
parameter. Nevertheless, even with these limitations, the strategy resulted robust,
leading to an interesting gain in convergence rate of microquanties for several
test cases with different loads and different contact states in space and time, while
being completely cost-free.
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Perspectives

This work can be considered as a first feasibility investigation toward the use of
model reduction and domain decomposition methods for an accurate computation of
structural problems involving large contact interfaces with large sliding/propagating
fronts in time. The strategy has not yet been tested on 3D cases, but this remains the
objective under the following perspectives:

± An initial short-term perspective on the motivations of this work concerns the
investigations of Chapter 2. The analysis shows that there is a good reducibility
potential for the contact quantities of a cable section in tension and bending. It is
important however to also show if with a reduced representation of the contact
quantities one obtains comparable result to those with full field quantities when
applying a fatigue criterion such as Dang Van criterion [Dang Van, 1999], as
discussed in the final section of [Bussolati, 2019].

± A medium to short term perspective concerns the separated representation of
the interface fields involved in the LATIN method. When making use of PGD,
a separate representation of the interface quantities is used only in the linear
stage of the strategy. In the local stage, however, the contact quantities must be
expressed again in full format. Furthermore, when dealing with a large number
of frictional contact interfaces and a large number time steps, the local stage
can become expensive considering that to solve the local tangential frictional
problem one has to proceed incrementally over time. To address this issue one
may think of resorting to hyperreduction, in particular hyperreduction for PGD
based on the Reference Point Method (RPM) [Capaldo et al., 2017]. Different
questions arise, first of all how to choose reference points in space and time so as
to ensure accurate computation of the local contact problem, and how to distribute
these reference points among the various interfaces, deciding where and when to
enrich. Adaptive selection of these points during the iterations requires the use of
a relevant error indicator, computed at a reasonable cost.

± Longer term perspectives are to continue this work, always in the framework of
small deformations and sliding at the contacts between wires, but with finite rota-
tions induced by significant cable bending, towards a real 3D application to such
structures. This would need to revisit the application of the LATIN method and
the PGD for beam elements in small displacements and large rotations [Boucard,
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1996]. First applications in geometrical nonlinear problems have been proposed
in the Siemens SAMCEF code [Scanff et al., 2022], with which LMPS has estab-
lished a strong partnership. It would be interesting to extend the results of this
work to IFPEN’s target application. More generally, the question of developing
these advanced calculation strategies in an effective and recognized research or
commercial calculation code is of strategic importance in engineering. Adapting
these methods to these development environments in a pragmatic way, without
degrading the efficiency and quality of the strategy’s results, undoubtedly raises
interesting scientific questions.

± Other aspects of interest concern:

± Choosing appropriate search directions for such slender structures modelled
by beam finite elements. For slender structures in which one direction
is proponderant over the others, optimal search directions require further
optimization [Saavedra et al., 2012].

± Investigate the effect of the choice of the partitioning in subdomains (layer
per layer, section per section...) on the strategy performances. A good
partitioning of these type of structures should try to respect its geometric
structure as much as possible, in order to take maximum benefit from the
different reducibility of the different layer interfaces, as swhown in Chapter 2.
In particular a good partitioning should allow also the possibility to share the
reduced basis between different subdomains with similar contact conditions,
in order to maximize the efficiency of the ROM-DDM strategy.

± An adapted representation of the multiple complex loadings. Loading histo-
ries associated with the different sea states undergone by the mooring system
of a FOWT being very complex and multiple, another interesting aspect can
be the exploitation of model reduction techniques [Rodriguez-Iturra et al.,
2021] in order to provide a ªcompressedº and ªadaptedº representation of
these loading data to the proposed ROM-DDM resolution strategy, and to
drastically reduce the costs of the simulation of the fatigue life of a mooring
line.
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Appendix A

Local stage for frictional contact

interfaces

Here, only the displacement formulation is presented, where search directions are
formulated with a force-displacement relation and the frictional contact law is inte-
grated in sliding displacement increments. For the velocity formualtion one can refer
to [Nouy, 2003; Passieux, 2008].

Interface contact quantities defined by the local stage iterate denoted by ŝ ∈ Γ
[0,T]

have to verify the following relations in addition to search directions (on both sides of
the interface ΓEE′):

± action-reaction principle: F̂E + F̂E′ = 0,

± non penetration: gn = n ·
(

ŴE′ − ŴE

)
+ g0 ≥ 0 and n · F̂E ⩽ 0,

± complementarity relation: gn

(
n · F̂E

)
= 0,

± Coulomb’s law:

± sticking: ∥Pt F̂E∥ < f |n · F̂E| and ġ
t
= Pt

( ̂̇WE′ −
̂̇WE

)
= 0,

± sliding: ġ
t
̸= 0, ∥Pt F̂E∥ = f |n · F̂E| and ġ

t
· Pt F̂E ⩾ 0, with Pt F̂E ∧ ġ

t
= 0.

where f is the friction coefficient. The outward normal from ΩE to ΩE′ at the current
point of ΓEE′ is denoted by n. Pn = n⊗n is the projector on the normal, and Pt = Id−Pn
is the associated orthogonal tangential projector. The time derivative of a quantity □ is
classically denoted by □̇. The initial normal gap g0 can be either positive or negative (if
a tightening has to be modeled for instance).

By considering the general case where search direction parameters k+
E and k+

E′ are

different for each side of the interface, and by denoting with h = k+
E
−1 and h′ = k+

E′
−1,
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Appendix A. Local stage for frictional contact interfaces

the two search directions defined on both sides of interface ΓEE′ are given by:

h
(

F̂E − FE

)
−

(
ŴE −WE

)
= 0 (A.1)

h’
(

F̂E′ − FE′

)
−

(
ŴE′ −WE′

)
= 0 (A.2)

By substracting these two equations with each other, projecting on the normal n and
adding the initial gap g0 on the both sides of the resulting equation, one obtains the
definition of scalar quantity Cn as follows:

(
hn + h′n

)
Cn =

(
ŴE′ − ŴE

)
· n +

(
hn + h′n

) (
F̂E · n

)
+ g0 (A.3)

= gn +
(
hn + h′n

)
F̂E · n (A.4)

= (WE′ −WE) · n +
(
hn FE − h′n FE′

)
· n + g0 (A.5)

where the decomposition k = hnPn + htPt and the action-reaction principle F̂E + F̂E′ =
0 have been used.

Similarly, by projecting onto the tangential plan, it leads to:

Pt

(
ŴE′ − ŴE

)
+

(
ht + h′t

)
Pt

(
F̂E

)
= Pt (WE′ −WE) + Pt

(
ht FE − h′t FE′

)

By introducing the displacement increment δŴE = ŴE(t)− ŴE(t− δt) and subtracting

the value of the tangential displacement jump g
t
(t− δt) = Pt

(
ŴE′(t− δt)− ŴE(t− δt)

)

at the previous time instant on the both sides of the previous equation, one obtains the
definition of the vectorial quantity Ct:

(
ht + h′t

)
Ct = Pt

(
δŴE′ − δŴE

)
+

(
ht + h′t

)
Pt

(
F̂E

)
(A.6)

= δg
t
+

(
ht + h′t

)
Pt

(
F̂E

)
(A.7)

= Pt (WE′ −WE) + Pt
(
ht FE − h′t FE′

)
− g

t
(t− δt) (A.8)

Proposition A.1. Let us consider the previously defined indicators:

Cn =
(
hn + h′n

)−1
[

gn +
(
hn + h′n

)
F̂E · n

]

Ct =
(
ht + h′t

)−1
[
δg

t
+

(
ht + h′t

)
Pt

(
F̂E

)]

■ Cn > 0 ⇐⇒ separation occurs and: F̂E = −F̂E′ = 0

■ Cn ⩽ 0 ⇐⇒ contact occurs and: F̂E · n = −F̂E′ · n = Cn
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■ ∥Ct∥ < f |Cn| ⇐⇒ sticking occurs and:

Pt

(
F̂E

)
= −Pt

(
F̂E′

)
= Ct

■ ∥Ct∥ ≥ f |Cn| ⇐⇒ sliding occurs and:

Pt

(
F̂E

)
= −Pt

(
F̂E′

)
= f |Cn|

Ct

∥Ct∥

± Interface forces are therefore fully defined as follows:

F̂E = −F̂E′ =
(

F̂E · n
)

n + Pt

(
F̂E

)
= Cn n + Pt

(
F̂E

)

± Interface displacement can be finally deduced:

ŴE = WE + h
(

F̂E − FE

)

ŴE′ = WE′ + h′
(

F̂E′ − FE′

)

with h = hnPn + htPt and h = h′nPn + h′tPt.

■ Proof:

± If contact occurs, gn = 0, F̂n = F̂E · n ⩽ 0. Consequently, Cn = F̂n ⩽ 0. Conversely,
if Cn ⩽ 0, then contact occurs. In fact let us suppose that Cn ⩽ 0 implies separation,
in this case gn > 0 and F̂n = 0, which would imply Cn > 0. Therefore Cn ⩽ 0 if
and only if contact occurs.

± If separation occurs, gn > 0, F̂n = 0. Consequently, Cn = (hn + h′n)
−1 gn > 0 since

hn + h′n > 0. Conversely, if Cn > 0 then separation occurs. In fact let us suppose
that Cn > 0 implies contact, from what shown previously this is a contraddiction,
therefore Cn > 0 if and only if separation occurs.

± If sticking occurs, δg
t
= 0 and ∥F̂t∥ < f |F̂n| = f |Cn| (since contact occurs),

with F̂t = Pt

(
F̂E

)
. Consequently, Ct = F̂t and ∥F̂t∥ = ∥Ct∥ < f |F̂n| = f |Cn|.

Conversely, if ∥Ct∥ < f |Cn|, then sticking occurs. In fact, let us write:

∥Ct∥
2 =

(
ht + h′t

)−2
∥δg

t
∥2 + 2

(
ht + h′t

)−1
δg

t
· F̂t + ∥F̂t∥

2 (A.9)

When sliding occurs, ∥δg
t
∥2

> 0, δg
t
· F̂t ⩾ 0 and ∥F̂t∥ = f |Cn|, which would

imply ∥Ct∥ ⩾ f |Cn|. Therefore ∥Ct∥ < f |Cn| if and only if sticking occurs.
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± If sliding occurs, δg
t
̸= 0 and ∥F̂t∥ = f |F̂n| = f |Cn| (since contact occurs) and

δg
t
· F̂t ⩾ 0. From (A.9) it follows that ∥Ct∥ ⩾ f |Cn|. Moreover if ∥Ct∥ ⩾ f |Cn|,

still from (A.9) it implies that sliding occurs and therefore ∥Ct∥ ⩾ f |Cn| if and
only if sliding occurs. From the condition δg

t
· F̂t ⩾ 0 and in order to satisfy the

condition Pt F̂E ∧ δg
t
= 0 required from the Coulomb’s law, the simplest choice is

to take F̂t = ρδg
t
, with a scalar ρ ⩾ 0. In this case Ct results collinear with δg

t
and

one has F̂t = f |Cn|
Ct

∥Ct∥
. Note that the condition Pt F̂E ∧ δg

t
= 0 is not strictly

required and other choices are possible [Zmitrowicz, 1989]).

Note that the local stage is evaluated at every point of the interface and for every
time step at each iteration of the LATIN method. A loop over the time steps is required.
Note that the tangential force and sliding direction Ct/∥Ct∥ are explicitly determined
by the tangential contact indicator Ct. This indicator depends on the previous iteration
generated by the global step that verifies the equilibrium of each subdomain and
the quantity g

t
that depends on the solution calculated for the previous time step.

Consequently, the tangential contact indicator Ct must be determined incrementally,
knowing the solution at the previous time step.

The displacement formulation for frictional contact has been used in [Champaney,
1996; Champaney et al., 1999; Ladevèze et al., 2002; Nouy, 2003] in the case of monotonic
loadings (term g

t
is ignored in Ct), with an incremental version of the LATIN method

(LATIN solver is used at each time step, no global loop over the whole time steps at
each LATIN iteration) in [Boucard et al., 2007, 2009] and with the standard approach in
[Giacoma et al., 2014, 2015; Cardoso, 2019].
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On the discretization of subdomain

and interface quantities

Problems on substructures and interfaces are classically solved numerically using
standard finite element discretization. Thus, the subdomain displacement field uE
usually belongs to UE,h, that is the space of piecewise linear functions in ΩE. Concerning
the discretization of the interface quantities, a priori the interface forces FE belong to
H−1/2(∂ΩE) and they are not necessarily continuous. A natural choice is to take forFE,h
the space of piecewise continuous functions at the interface. In practice also the interface
displacements WE are selected in the same spaceWE,h = FE,h of constant piecewise
functions. However such a classical discretization of the interface and subdomain
quantities does not verify the ªinf-supº stability conditions associated with mixed
formulations [Fortin and Brezzi, 1991] and may generate spurious oscillating modes
leading to numerical instabilities [Ladevèze et al., 2002; Nouy, 2003]. Ways to avoid
this problem include the refinement of the substructure’s mesh (ªh-versionº) or the
use of a higher degree of approximation p for UE,h (ªp-versionº) near the boundary, as
illustrated in Figure B.1. Other approaches involve boundary bubble functions [Brezzi
and Marini, 2001].

Note that when we make use of a different discretization for subdomain displace-
ments uE ∈ UE,h and interface displacements WE ∈ WE,h, the admissibility of uE at the
boundary ∂ΩE has to be verified in a weak sense:

∀F∗ ∈ FE,h,
∫

∂ΩE

F∗ · (uE −WE)dS = 0. (B.1)

In this work we make use of 8-node order 2 (p=2) serendipity quadratic elements
in the subdomain for UE,h (QUA8) and piecewise constant interpolation for interface
quantities (m=0) so that in the boundary ∂ΩE the p-version is satisfied. Note that we
could also make use of the h-version by choosing order 1 finite elements (QUA4) within
the subdomain and partitioning in triangles the elements located on the boundary (see
h-version in Figure B.1).
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Appendix B. On the discretization of subdomain and interface quantities

Figure B.1: Modification of the classical approximations of the interface forces (FE ap-
proximation of order m) and local displacements along the boundary of a substructure
(FE approximation of order p): h-version and p-version [Ladevèze et al., 2002].
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Appendix C

Some properties of the homogenized

operator

1 Reminder

The microproblem introduced in Problem 4.2, defined on a substructure ΩE, can be
equivalently written in a dual force formulation as [Nouy, 2003]:

Problem C.1 (microproblem on a substructure: dual formulation). Find

(σE, FE) ∈ F
[0,T]
E,ad such that, ∀(σ∗, F∗) ∈ F

[0,T]
E,ad,0,

∫

ΩE×[0,T]
σE : K−1 : σ∗dΩdt +

∫

∂ΩE×[0,T]
h−FE · F

∗dSdt =

∫

∂ΩE×[0,T]

(
h− F̂E + ŴE + W̃

M
E
)
· F∗dSdt,

with h− = k−
−1

.

From the linearity of the previous problem, the following homogenized (linear)
operator has been defined:

FM
E = LF

E
(
W̃

M
E
)
+ F̂M

E,d, (C.1)

with W̃
M
E ∈ W

[0,T],M
E and F̂M

E,d which depends only on f
d|ΩE

and ŝE. We remind also

that, knowing the Lagrange multiplier W̃
M
E , it is possible to solve the microproblem on

ΩE and to determine sE = (WE, FE) knowing ŝE.
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There exists also a localization operator Ls
E fromW [0,T],M

E to S
[0,T]
E,ad such that:

sE = Ls
E(W̃

M
E
)
+ ŝE,d,

with ŝE,d which depends on ŝE and f
d|ΩE

.

2 Properties of the homogenized operator

At the linear stage, the distribution FM
E on the boundary ∂ΩE is in equilibrium with

f
d|ΩE

, and it belongs to the space:

F
[0,T],M
E,ad =

{
FM

E ∈ F
[0,T],M | ∀αE ∈ R

[0,T]
E ,

∫

∂ΩE×[0,T]
FM

E · αEdSdt =
∫

ΩE×[0,T]
f

d
· αEdΩdt

}
,

where R[0,T]
E =

{
αE ∈ U

[0,T]
E | εE(αE) = 0

}
represents the space of the infinitesimal

rigid body modes of ΩE. We also designate with F
[0,T],M
E,ad,0 the corresponding space for

homogeneous conditions.

■ Proof: The solution of the microproblem necessarily verifies:

∀αE ∈ R
[0,T]
E ,

∫

∂ΩE×[0,T]
FM

E · αEdSdt =
∫

ΩE×[0,T]
f

d
· αEdΩdt.

By definition of the macrospaces, it also results thatRW,[0,T]
E ⊂ W

[0,T],M
E , withRW,[0,T]

E

being the trace of the displacements ofR[0,T]
E on the boundary ∂ΩE. The micro-macro

uncoupling property (4.3) enables to write:

∀αE ∈ R
[0,T],

∫

∂ΩE×[0,T]
FE · αEdSdt =

∫

∂ΩE×[0,T]
FM

E · αEdSdt,

which terminates the proof.

Proposition C.1. The operator LF
E:

± has its image on F
[0,T],M
E,ad ,

± is indefinite and its kernel isRW,[0,T]
E ,

± is a bijection between the quotient space W
M,[0,T]
E = W

[0,T],M
E /RW,[0,T]

E and

F
[0,T],M
E,ad,0 ,

± is positive with respect to the work bilinear form on the boundary ∂ΩE.
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2. Properties of the homogenized operator

■ Proof: Let sE = Ls
E

(
W̃

M
E
)
, we have therefore sE ∈ S

[0,T]
E,ad,0 which verifies the search

direction:

∀F∗ ∈ F [0,T]
E ,

∫

∂ΩE×[0,T]

(
h−FE + WE − W̃

M
E
)
· F∗dSdt = 0. (C.2)

sE is solution of the following variational problem: find (σE, FE) ∈ F
[0,T]
E,ad which verify,

∀(σ∗, F∗) ∈ F
[0,T]
E,ad,0,

∫

ΩE×[0,T]
σE : K−1 : σ

∗dΩdt +
∫

∂ΩE×[0,T]
h−FE · F

∗dSdt =
∫

∂ΩE×[0,T]
W̃

M
E · F

∗dSdt.

By injecting sE as a virtual field in this formulation and taking into account the micro-
macro uncoupling property, we have:

∫

∂ΩE×[0,T]

(
W̃

M
E

)
· FEdSdt =

∫

∂ΩE×[0,T]

(
W̃

M
E

)
· LF

E(W̃
M
E )dSdt.

Since K and h− are positive definite, as a consequence it results that LF
E is positive.

Moreover, if LF
E(W̃

M
E ) = 0, then σE = FE = 0. The constitutive relation σE = K : εE

implies εE = 0, that is to say WE ∈ R
W,[0,T]
E . The search direction (C.2) gives WE = W̃

M
E ,

and consequently W̃
M
E ∈ R

W,[0,T]
E . Therefore we have Ker(LF

E) = R
W,[0,T]
E . LF

E defining

an injection ofW
M,[0,T]
E overF

[0,T],M
E,ad,0 , spaces of the same finite dimension, it also realizes

a bijection betweenW
M,[0,T]
E and F

[0,T],M
E,ad,0 .
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Appendix D

Downsizing stage

Algorithm 7: Downsizing stage

for each substructure ΩE do
■ Input:
± current basis of size p: {LE,k, λE,k}

p
k=1

± relative amplitude cut-off: ϵ
■ Output:
± downsized basis of size q ⩽ p: {LE,m, λE,m}

q
m=1

■ Downsizing algorithm [Giacoma et al., 2015]:
for n = 1 to nmax do

± sort modes such that ∥λE,1∥[0,T] ⩾ · · · ⩾ ∥λE,p∥[0,T]

for i = p down to 2 do
for j = 1 to i− 1 do

± project time mode: α = ⟨λE,j, λE,i⟩[0,T]/⟨λE,j, λE,j⟩[0,T]
± update corresponding space mode: LE,j ← LE,j + αLE,i
± substract projected component: λE,i ← λE,i − αλE,j
± project space mode: β = ⟨LE,j, LE,i⟩∂ΩE

/⟨LE,j, LE,j⟩∂ΩE

± update corresponding time mode: λE,j ← λE,j + βλE,j
± substract projected component: LE,i ← LE,i − βLE,j
± normalize LE,j ← LE,j/∥LE,j∥∂ΩE

and update
λE,j ← λE,j∥LE,j∥∂ΩE

± normalize LE,i ← LE,i/∥LE,i∥∂ΩE
and update λE,i ← λE,i∥LE,i∥∂ΩE

for i = p down to 1 do
if ∥λE,i∥[0,T] < ϵ∥λE,1∥[0,T] then

± eliminate LE,i and λE,i
± decrease basis size: p← p− 1

± set q = p
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Extended abstract in french

Dans le contexte des défis posés par la transition énergétique, le développement
de l’éolien offshore attendu au cours des prochaines années est considérable: de 6,5
GW de capacité installée actuelle à un objectif de 16,5 GW d’ici 2030 [GWEC, 2023].
Parmi les structures offshore, les éoliennes offshore flottantes (Floating Offshore Wind
Turbine, FOWT) présentent l’avantage de pouvoir être installées dans des eaux plus
profondes, de capter des vents plus constants et de nécessiter moins de matériel et
des processus d’installation plus simples que les structures à fondations fixes [GWEC,
2023]. L’exploitation des FOWT nécessite le développement de concepts combinant
des turbines de forte puissance (environ 22 MW en moyenne [IEA, 2023]) avec des
systèmes d’ancrage adaptés pour les connecter au fond marin, ainsi que des solutions
adaptées pour les connecter au réseau. Parmi les défis à relever pour ces connexions,
le contrôle et la prédiction des événements de rupture des lignes d’ancrage ainsi
que l’optimisation des chargements sur les systèmes de câbles électriques qui sont
soumis aux mouvements du flotteur et aux courants sont cruciaux car les charges sont
incertaines et fortement non linéaires.

Une FOWT est essentiellement composée d’une éolienne montée sur une fondation,
qui est ancrée au fond marin par des lignes d’ancrage qui limitent ses mouvements et
ses rotations. Ce rôle de maintien en position des lignes d’amarrage assure la produc-
tion opérationnelle de l’éolienne et préserve les câbles électriques et autres éoliennes
installées à proximité. Les lignes d’amarrage peuvent être composées de chaînes, de
câbles spiralés monotoron en acier ou, plus récemment, de câbles en fibres synthétiques.
Malgré leur large application, les chaînes sont à l’origine de nombreuses défaillances,
principalement en raison de flexion hors plan et de corrosion. Le comportement à long
terme des câbles en fibres pour les applications de lignes d’ancrage permanentes est
toujours étudié [Davies et al., 2008; Sørum et al., 2023] en raison de leur comportement
non linéaire complexe impliquant éventuellement des phénomènes de fluage. Dans
ce contexte, les câbles spiralés monotoron en acier constituent toujours une solution
intéressante et courante de lignes d’ancrage pour les FOWT, comme l’illustre leur
utilisation pour le parc éolien Hywind Tampen [ArcelorMittal, 2021].

Malgré les avantages des structures flottantes par rapport aux structures fixes, les
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lignes d’ancrage restent un point faible: les défaillances de ces lignes sont un problème
important, entraînant des opérations de maintenance et de réparation complexes et
coûteuses. En particulier, les défaillances par fatigue des câbles d’acier près des ex-
trémités des embases sont courantes, car ces zones sont soumises à des chargements
complexes de tension et de flexion dues au mouvement des vagues au fil du temps,
provoquant une fatigue de frottement entre les fils d’acier [Fontaine et al., 2014]. Cepen-
dant, leur espérance de vie en fatigue n’est pas clairement établie, en raison d’une
approche basée encore aujourd’hui sur des lois empiriques [Rossi, 2005; Maljaars and
Misiek, 2021]. La réponse mécanique du câble dépend fortement des interactions de
contact par frottement entre les fils, et la fatigue est en grande partie déterminée par les
conditions de contact par frottement locales entre deux fils qui se croisent provoquant
des phénomènes de fretting fatigue [Montalvo et al., 2023]. Comme ces câbles peuvent
subir une flexion importante sous l’effet des mouvements du flotteur, les nonlinéarités
géométriques doivent également être prises en compte.

Un autre contexte pour lequel une modélisation par éléments finis multi-échelle
similaire pourrait également être utile est celui des câbles électriques dynamiques (c’est-
à-dire soumis au mouvement des fondations flottantes et aux sollicitations dues aux
vagues et aux courants marins) entre les éoliennes flottantes. Les câbles électriques sont
généralement triphasés, les trois conducteurs étant des assemblages de fils de cuivre
ou d’aluminium, enroulés en hélice autour d’un fil central en toron spiralé. Ils sont
entourés d’une couche d’isolant polymère et d’une feuille métallique pour assurer une
isolation électrique complète et une étanchéité hydraulique. L’ensemble est entouré de
gaines et de couches d’armures métalliques pour reprendre les sollicitations de traction
mécanique.

Dans la littérature, la plupart des travaux sur la conception de câbles spiralés mono-
toron pour les FOWT concernent l’optimisation de la configuration globale d’un câble
(sections de masses linéaires différentes et flotteurs), en utilisant des simulations hydro-
dynamiques avec des solveurs dédiés pour satisfaire certains états limites (conditions
extrêmes [Poirette et al., 2017] ou fatigue [Rentschler et al., 2019]). A cette échelle, un
modèle de câble homogénéisé est généralement utilisé (voir par exemple [Leroy et al.,
2017] ou [Saadat and Durville, 2023]) pour les câbles spiralés basés sur une cinématique
de poutre ou de barre. L’objectif de cette conception globale, pour un état environ-
nemental donné, est de rechercher la configuration la moins coûteuse tout en limitant
la courbure et l’allongement, et en évitant la compression.

Une limitation majeure de ces approches est que les états limites (seuils maximaux
admissibles) sont basés sur les connaissances empiriques des constructeurs (pas for-
cément représentatives des conditions futures de ferme flottante) et/ou sur des essais
expérimentaux difficilement extrapolables. De plus, ces approches ne distinguent pas
les états limites pour chaque composant du câble. Pour y remédier, des travaux ont
été menés pour proposer des modèles éléments finis simulant le chargement sur les
composants du câble, en ayant néanmoins recours à des simplifications appropriées en
raison du coût de calcul élevé des simulations requises [Young et al., 2018; Nicholls-Lee
et al., 2021].
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Proposer un modèle à une échelle de description plus fine, à l’échelle des torons,
des fils ou des composants d’un câble, peut être nécessaire mais conduit à des simula-
tions dont les coûts de calcul deviennent rapidement prohibitifs. La complexité vient
notamment du fait que les historiques de tension et de flexion d’un câble se traduit
par des glissements relatifs entre ses composants, entraînés par des phénomènes de
contact et de frottement. Il est donc particulièrement difficile d’établir des règles de
conception basées sur des tests expérimentaux simplifiés pour ce type de conditions
(contrairement au cas de la tension pure). Cette difficulté est susceptible d’entraîner des
taux de défaillance dépassant les limites attendues. Remplacer ces lois empiriques par
une modélisation multi-échelle, enrichie par la physique décrivant le comportement
de chaque composant du câble, est nécessaire, au moins pour accroitre le niveau de
compréhension des mécanismes essentiels à prendre en compte pour la conception
de telles structures. Un calcul hydrodynamique à l’échelle globale du câble permet
d’identifier les zones critiques de traction et de flexion. Il est alors possible d’exploiter
un modèle local à plus petite échelle, à l’échelle des composants, torons et fils pour
une section d’un câble de longueur métrique. Cependant, un modèle numérique local
capable d’estimer correctement ce qui se passe à l’intérieur d’un câble soumis à la
tension et à la flexion, dans un compromis entre précision et coût de calcul, fait encore
défaut dans l’industrie.

Une avancée dans cette direction a été réalisée dans [Bussolati, 2019; Bussolati et al.,
2019; Guidault et al., 2019; Bussolati et al., 2020; Guidault et al., 2021], où un modèle
par éléments finis de cette étude de cas a été développé pour simuler efficacement
le chargement sur une partie d’une ligne d’ancrage d’une FOWT pour un état de
mer donné. Il a été montré qu’en supposant de petits glissements mais de grandes
rotations entre les fils du câble (modélisés par des éléments poutre), le modèle proposé
permettait de prédire la mécanique des fils avec un coût de calcul réduit par rapport à
un algorithme de contact et de frottement en grands glissements (voir aussi [Guiton
et al., 2022] pour une comparaison de ce modèle à ceux en grands glissements et leur
corrélation avec des résultats expérimentaux).

L’objectif de [Bussolati, 2019] était de proposer un outil qui prenne en compte
la tension et la flexion et prédise les dommages de fatigue le long de chaque ligne
d’ancrage, en considérant les variations de contraintes locales liées aux interactions de
contact entre les fils. Cependant, l’utilisation de ce modèle dans un cadre industriel,
prenant en compte le très grand nombre de cas de chargement représentant les différents
états de vent et de mer sur une période de plusieurs années, nécessite l’utilisation
de stratégies numériques alternatives, efficaces et robustes. Dans cette perspective,
l’utilisation de techniques de réduction de modèles pour réduire encore le temps de
calcul de ce type de problème peut être une solution intéressante.

Au fil des années, les modèles d’ordre réduit (Reduced Order Model, ROM) se sont
révélés être des outils fiables pour réduire la complexité de calcul dans le contexte de
problèmes linéaires et non linéaires, et consistent à construire une base d’ordre réduit
(Reduced Order Basis, ROB) dans laquelle sont projetées les équations aux dérivées
partielles du problème [Chinesta et al., 2011; Hesthaven et al., 2016]. Ces méthodes
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permettent un gain de temps de calcul de plusieurs ordres de grandeur, notamment
lorsque la dimension du problème est grande, en espace, en temps ou en paramètres.
Néanmoins, l’application de la réduction de modèle pour des problèmes de structure
impliquant un grand nombre d’interactions de contact par frottement évolutives et
fournissant en sortie des quantités de contact et de frottement avec une précision
garantie reste une question largement ouverte [Giacoma et al., 2015; Balajewicz et al.,
2016; Fauque et al., 2018; Cardoso et al., 2018; Benaceur et al., 2020].

Les méthodes ROM se distinguent par la manière dont la ROB est construite. Une
première famille de techniques, appelées méthodes a posteriori, implique une phase
d’apprentissage, dite phase offline, où le problème d’ordre complet est résolu pour
certains instants de temps ou valeurs de paramètres particuliers, générant ce que l’on
appelle des snapshots. Les snapshots sont ensuite utilisés pour créer une ROB sur laquelle
projeter les équations d’ordre complet et obtenir un modèle d’ordre réduit. La manière
la plus classique d’obtenir une ROB à partir d’un ensemble donné de snapshots est la
Proper Orthogonal Decomposition (POD) [Chatterjee, 2000]. Néanmoins, la qualité de la
ROM est fortement affectée par la représentativité de la ROB, en particulier pour les
problèmes fortement non linéaires. Une deuxième famille de techniques ROM consiste
à rechercher la solution du problème ciblé dans l’espace d’une ROB cohérente construite
progressivement par un algorithme dédié lors de la phase de résolution. Cela représente
les méthodes de réduction de modèle a priori, où aucune phase d’apprentissage offline
n’est requise. A cette famille appartient la Proper Generalized Decomposition (PGD) [Nouy,
2010; Chinesta et al., 2011].

Une ROB prédéterminée ne permet pas de capturer facilement et efficacement les
phénomènes multi-échelles non réguliers et propagatifs qui se produisent aux interfaces
de contact : les zones de glissement, d’adhérence et de séparation étant difficiles à
suivre. Pour cette raison, une approche a priori basée sur la PGD [Nouy, 2010] peut
représenter un moyen plus efficace de traiter les problèmes de contact par frottement
grâce à un modèle d’ordre réduit qui permet d’enrichir la décomposition généralisée
propre au cours du calcul pour tenir compte de l’évolution des conditions de contact
par frottement.

De plus, les câbles toronnés présentent une géométrie structurée et présentent
naturellement un comportement multi-échelle. A l’échelle macroscopique, leur com-
portement dépend des variations de tension et de flexion associées aux chargements
environnementaux, variant généralement autour de valeurs moyennes (elles sont
représentées par des processus gaussiens dans des logiciels multiphysiques dédiés à
l’offshore comme Deeplines WindTM [DeepLines, Principia] ou OpenFAST [OpenFAST,
NREL]). Ce comportement est caractérisé par une distribution des efforts avec des
gradients selon la couche de fils (par exemple, augmentation de la pression de contact
de la couche externe au fil central) et selon la position relative par rapport à l’axe
de flexion (glissement maximal au niveau de l’axe de flexion et décroissant vers les
positions d’arc externe et interne). A l’échelle microscopique, le comportement dépend
des phénomènes de frottement entre les fils composant le câble. Une stratégie de
calcul multi-échelle de type décomposition de domaine (Domain Decomposition Method,
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DDM) est donc examinée afin d’améliorer encore les performances. On s’intéresse en
particulier à la DDM mixte [Ladevèze and Nouy, 2003; Ladevèze et al., 2007; Ladevèze
et al., 2010] basée sur la méthode LATIN [Ladevèze, 1999].

La méthode LATIN présente un traitement robuste des conditions de contact,
partageant des similitudes avec les approches de type lagrangien augmenté [Simo
and Laursen, 1992], et conduit naturellement à une DDM mixte. De plus, la formulation
globale de la méthode en espace-temps permet d’utiliser la réduction de modèle basée
sur la PGD pendant les calculs, en créant et en adaptant (c’est-à-dire en ajoutant ou
en récupérant certains modes) des bases réduites par sous-structure à la volée pour
mieux suivre les fronts de glissement et les phénomènes propagatifs. L’introduction
d’une stratégie multi-échelle dans le cadre de la LATIN est cohérente avec la physique
des problèmes de contact, dans laquelle des phénomènes de différentes longueurs
d’onde interagissent : les solutions locales aux interfaces de contact présentent des
effets de gradient élevés avec une longueur d’onde courte par rapport à la longueur
caractéristique de la structure [Giacoma et al., 2014; Guidault et al., 2023]. En tirant
parti de ce constat, le problème grossier de la DDM permet de capturer efficacement le
comportement du problème au niveau de la structure, en se concentrant ensuite sur la
capture des variations de contact locales aux interfaces de contact.

L’objectif de cette thèse est de proposer une approche de réduction de modèle
adaptée à ce type de problème, réduisant au maximum le temps de calcul tout en
représentant fidèlement les informations caractéristiques utiles. Le point crucial de
la thèse est que le modèle réduit devra représenter très fidèlement les informations
critiques situées sur les interfaces de frottement entre les fils car, en dehors de conditions
environnementales particulières comme la corrosion, la fatigue des câbles toronés est
largement déterminée par le phénomène de fretting fatigue entre les fils [Montalvo, 2023;
Montalvo et al., 2023].

Le développement d’outils de réduction de modèle et de DDM est généralement
très intrusif et nécessite l’utilisation d’un code de calcul relativement "ouvert". Les
développements récents dans les contextes industriels incluent la réduction de modèles
basée sur la technique LATIN-PGD pour les problèmes non linéaires implémentée
dans le logiciel Simcenter SAMCEF de Siemens [Scanff et al., 2022], ou la DDM mixte
basée sur la méthode LATIN implémentée dans Code_Aster d’EDF R&D [Oumaziz
et al., 2017; Oumaziz et al., 2018]. Ici, nous travaillons et développons dans SCoFiElDD
(Structure Computation by Finite Elements and Domain Decomposition), un code MATLAB
interne, afin d’illustrer la faisabilité de l’approche à travers des exemples simplifiés 2D
représentatifs de différentes couches de fils d’un segment de câble d’ancrage en contact
frottant les unes avec les autres.

Pour illustrer la faisabilité de la méthode, la première étape consiste à vérifier la
possibilité de réduire la solution d’un calcul de tension et de flexion sur une section de
câble de longueur métrique avec le modèle développé et décrit dans [Bussolati, 2019;
Bussolati et al., 2019; Guidault et al., 2019; Bussolati et al., 2020; Guidault et al., 2021],
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pour un état de mer donné. Pour ce calcul local sur une section de câble, les historiques
de tension et de courbure imposés sont obtenus à partir d’un calcul global sur une
structure éolienne flottante réalisé dans un précédent travail au LMPS en collaboration
avec IFP Energies Nouvelles [Bussolati, 2019]. Une analyse SVD a posteriori de la
solution de calcul locale à différents pas de temps permet d’évaluer sa capacité à être
réduite. De plus, la possibilité de séparer les échelles spatiales et temporelles, qui
peuvent être exploitées lors de l’approche de réduction du modèle, est étudiée.

Une deuxième étape, qui constitue le cœur de la thèse, est consacrée au développe-
ment d’une approche PGD de ce modèle, exploitant la séparation dans le domaine
spatial par DDM. On recherche des performances de réduction et une vitesse de con-
vergence maximales, avec une stratégie de calcul multi-échelle de type DDM adaptée
au contact, tout en garantissant une évaluation précise des quantités d’interface.

Dans le cadre de l’application visée sur les FOWT, plusieurs défis scientifiques se
posent. Tout d’abord, les critères de convergence pour la méthode de résolution non
linéaire doivent assurer une bonne convergence pour les quantités de contact locales
: un critère de convergence global n’assure pas la convergence locale des quantités
d’interface, qui sont cruciales pour la prédiction de la durée de vie en fretting fatigue.
De plus, le taux de convergence de la méthode LATIN pour les problèmes de contact
dépend fortement des directions de recherche, et la mise à jour des directions de
recherche est un problème difficile [Sun et al., 2008]. Un autre problème concerne
le traitement efficace et la représentation précise du contenu multi-échelle pour les
quantités d’interface de contact. De plus, pour les problèmes très irréguliers tels que
les problèmes de contact par frottement, le contrôle de la qualité et de la taille de la
base réduite construite progressivement par PGD au fil des itérations LATIN est crucial
pour l’efficacité de la méthode.

Plan du manuscrit

Le manuscrit est organisé en cinq chapitres.

± Chapitre 1. Le travail de ce premier chapitre consiste en une étude bibliographique
sur les principaux thèmes abordés dans la thèse. Le chapitre commence par une
courte étude ciblée sur les éoliennes offshore flottantes, leur caractérisation et
leur conception, car elles représentent en fait la motivation ultime de la thèse.
Ensuite, nous décrivons la mécanique des câbles spiralés monotoron en acier qui
composent leurs lignes d’ancrage. Leur géométrie et leur mécanique sont égale-
ment communes aux câbles électriques ou aux conducteurs électriques aériens.
Nous présentons brièvement quelques modèles analytiques capables de prédire
leurs principales propriétés mécaniques, ainsi que les méthodes de calcul les
plus courantes. La plupart d’entre eux visent à prédire le comportement des
câbles à un niveau macroscopique en homogénéisant d’une certaine manière les
interactions locales entre les fils qui les composent. Dans ce travail, cependant,
l’objectif est d’avoir une représentation précise des actions entre les fils. À cet
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égard, les modèles numériques qui représentent des fils simples avec des éléments
de poutre garantissent une représentation précise des quantités de contact avec
un coût de calcul inférieur par rapport aux modèles plus fins. Cependant, les
coûts de calcul d’une analyse de fatigue sur une section de câble à différentes
couches soumise à des chargements complexes variant sur une longue période
de temps sont prohibitifs pour une utilisation industrielle lorsque des formula-
tions classiques de contact poutre-poutre sont considérées. A ce titre, un modèle
exploitant l’hypothèse de petits glissements au contact poutre-poutre permet
de bien représenter la mécanique d’un câble spiralé et réduit considérablement
les coûts de calcul. Ces deux premières sections du chapitre 1 sont également
cruciales pour comprendre le chapitre 2 suivant, ainsi que les chapitres restants
où des modèles simplifiés inspirés de ces mécaniques sont testés.

Un aperçu de la mécanique de contact numérique et des principales stratégies
associées est ensuite proposée afin de contextualiser la manière dont la méthode
LATIN traite le contact frottant. Les similitudes et différences de la méthode
LATIN par rapport aux méthodes plus standards ont été mises en évidence, no-
tamment concernant les liens qu’elle partage avec une formulation du contact de
type lagrangien augmenté, les méthodes de direction alternée de multiplicateurs
et les algorithmes de type Uzawa.

La partie suivante est consacrée à la réduction de modèle, autre aspect fondamen-
tal de la thèse. La différenciation habituelle entre méthodes a posteriori et a priori
est adoptée. Les techniques classiques a posteriori telles que la POD et la méthode
de base réduite sont introduites, avec ensuite une attention particulière portée à
la PGD. Les principales applications de ces techniques sont ainsi vues en termes
de mécanique de contact, avec ou sans frottement. En particulier, il est souligné
que la plupart des techniques a posteriori disponibles traitent de l’analyse de prob-
lèmes paramétrés et pour lesquels la partie offline est particulièrement coûteuse.
Nous soulignons ensuite comment certaines propriétés de la DDM basée sur la
LATIN-PGD, comme celles du problème réduit d’interface agissant comme un
modèle réduit très grossier ainsi que la possibilité d’enrichir localement la base
réduite dans les zones de contact, peuvent aider de manière significative à traiter
ce type de problèmes.

Enfin, des méthodes de décomposition de domaine telles que les approches clas-
siques primales et duales sont brièvement présentées. Les principales différences
avec une approche mixte telle que celle basée sur la méthode LATIN sont mises
en évidence, cette dernière en particulier permettant une manière plus simple et
plus générale de traiter les interfaces de contact par frottement ainsi que d’autres
comportements complexes d’interface.
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± Chapitre 2. Une partie importante de la motivation de ce travail est développée
dans le chapitre 2, où nous analysons l’évolution des quantités de contact du
problème cible et étudions leur potentiel de réductibilité. En particulier, nous
analysons l’état de contact au cours du temps entre les différentes couches, en
remarquant comment les conditions de contact sont particulièrement critiques
dans les couches les plus externes où de grands fronts de glissement se produisent.

Nous étudions la réductibilité potentielle dans une analyse intéressante couche
par couche. Il est montré que la complexité des conditions de contact se pro-
duisant dans les différentes couches influence fortement la réductibilité. En
conséquence, les couches les plus externes, avec des conditions de contact plus
variables, s’avèrent être plus critiques en termes de réductibilité, en particulier
par rapport à la réductibilité des forces de contact de frottement. Nous étudions
également le comportement des différents modes spatiaux, avec une tendance
accentuée des modes à apporter des corrections dans les zones où des conditions
plus complexes se produisent, comme par exemple à la position angulaire de l’axe
de flexion à partir duquel le glissement s’initie et se propage. Globalement, le
problème cible présente une bonne réductibilité potentielle. Ce fait est dû aux
chargements particuliers auxquels les câbles d’ancrage sont soumis : en effet, ces
structures sont préchargées et soumises à de petites charges oscillantes autour de
cet état. Cela réduit la formation de fortes discontinuités/fronts de glissement et
réduit leur amplitude de variations, notamment dans les couches internes.

± Chapitre 3. Dans le chapitre 3, nous présentons la stratégie basée sur la méthode
LATIN pour résoudre le problème de contact par frottement et introduisons la
réduction de modèle basée sur PGD. Pour ce faire, les principales caractéristiques
de la stratégie sont d’abord présentées lorsqu’elle est appliquée aux problèmes de
contact par frottement sur un problème de référence 1D inspiré de la mécanique
d’un seul fil du câble spiralé. Nous mettons en évidence la grande influence
que le chargement externe a sur la réductibilité du problème et la propagation
du front de glissement. En particulier, les charges limites que nous considérons
(respectivement le cas de charge 1 impliquant des propagations de front de
glissement importantes, et le cas de charge 2 avec de faibles variations des fronts
de glissement) créent des conditions de contact et de réductibilité comparables
respectivement aux couches les plus externes de la section de câble analysée au
chapitre 2 où le front se propage sur toute la couche, et aux couches les plus
internes dont le front reste situé autour de l’axe de flexion.

Nous considérons le cas de charge 1, et l’application de la stratégie sur le problème
1D permet de mettre en évidence certains problèmes pour ce type d’analyse qui
n’ont pas été étudiés de manière approfondie auparavant, et pour lesquels nous
apportons quelques contributions dans le Chapitre 5. En particulier, on s’intéresse
au contrôle d’erreur dans le solveur itératif pour capturer avec précision les fronts
de glissement/adhérence (ainsi que le saut de déplacement normal en contact ou
séparation) et l’amélioration de la convergence grâce à une mise à jour adaptée
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des directions de recherche.

Le PGD est ensuite introduite dans la méthode LATIN. Afin d’obtenir des per-
formances maximales en termes de temps de calcul, l’enrichissement de la base
PGD est un aspect crucial pour accomplir cette tâche. Considérant que l’ajout de
nouveaux modes est la partie la plus coûteuse de l’approche, un choix optimisé
de ce point de vue nécessite tout d’abord de comprendre ce qui pilote le taux
de convergence du LATIN. La convergence des quantités microscopiques aux
interfaces est pilotée par le paramètre de direction de recherche k, de sorte que
même en utilisant la PGD le taux de convergence reste piloté par celui du choix de
k, et l’ajout de nouveaux modes à un moment donné ne crée pas d’avantages de
gain de ce point de vue. Il est donc essentiel de choisir un critère d’enrichissement
approprié, tel que celui de l’erreur de direction de recherche, afin d’éviter de créer
trop de modes surtout lorsque le calcul est loin de la convergence.

Nous considérons également des techniques de tri de la base réduite telles que
l’orthonormalisation (des modes spatiaux) ou un algorithme itératif de downsizing
qui crée progressivement une base proche de celle obtenue par SVD [Giacoma
et al., 2015]. Dans ce cas, dans l’exemple 1D, nous n’analysons pas le coût des
différentes stratégies puisque le problème est très peu coûteux en calcul, mais
seulement leur capacité à contenir la taille de la base et à contrôler sa qualité.
Nous constatons que l’orthonormalisation des modes spatiaux n’est pas suffisante
pour limiter et réduire la taille de la base réduite, alors que le l’algorithme de
downsizing [Giacoma et al., 2015], qui opère en fait une double orthogonalisation
entre les modes spatiaux et les modes temporels, s’avère plus efficace. Cependant,
nous montrons également comment l’algorithme de downsizing, en triant et en
projetant toute la base à chaque fois qu’il est appliqué, nécessite de revérifier la
condition d’admissibilité entre les modes spatiaux, ce qui peut être coûteux.

± Chapitre 4. Dans le chapitre 4, nous introduisons la DDM multi-échelle en espace
basée sur une séparation des échelles aux interfaces, ainsi que l’introduction de
la PGD dans ce cas. L’aspect crucial mis en évidence en premier lieu est le fait
que dans la stratégie, les quantités macroscopiques ont tendance à converger rapi-
dement dans les premières itérations du solveur itératif LATIN. Par conséquent,
nous suggérons d’enrichir la base PGD due aux macroquantités plus fréquem-
ment dans les premières itérations afin de capturer rapidement les contributions à
l’échelle macro et de former une base pertinente pour les itérations suivantes, puis
de capturer les contributions à l’échelle micro au cours des itérations. Appliqué
au problème 1D, nous montrons qu’il est possible de créer des bases réduites par
sous-domaine de différentes tailles selon les conditions de contact qui s’établissent
dans les différents sous-domaines, avec les premiers modes qui représentent bien
les premiers modes structurels des sous-domaines.

Ensuite, un problème de contact 2D avec frottement entre trois corps élancés
soumis à une compression, une traction et une flexion alternées au cours du
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temps, représentatif de l’application considérée, est considéré. Il est montré
qu’une propagation importante du front de glissement à travers les différents
sous-domaines réduisait considérablement le taux de convergence. Le comporte-
ment de la base PGD découle de ce qui a été dit ci-dessus, c’est-à-dire que la
base nécessaire pour représenter les quantités macroscopiques est créée dans les
premières itérations et est suffisante pour les itérations suivantes. En revanche, la
partie de la base pour représenter les quantités microscopiques doit être enrichie
davantage au fil des itérations en raison de la convergence plus lente des micro-
quantités. La complexité plus élevée par rapport au cas 1D permet également une
analyse du coût de la stratégie LATIN sans PGD et avec PGD avec différentes
techniques de tri des bases réduites par sous-domaine. Il est montré comment
l’efficacité de la PGD dépend tout d’abord du critère d’enrichissement, car le pro-
cessus d’ajout d’un nouveau couple de modes est coûteux aussi bien au moment
de la création que lorsqu’un algorithme de tri est utilisé.

± Chapitre 5. Dans le dernier chapitre 5, nous proposons quelques contributions au
contrôle et à l’amélioration de la convergence des quantités de contact d’interface
avec la stratégie LATIN. Ce point répond à la demande de contrôle de la précision
sur la cinématique de contact et les forces utilisées comme entrées des lois de
fatigue de frottement pour l’application de la ligne d’ancrage [Montalvo et al.,
2023]. À partir de la définition d’un indicateur de convergence basé sur l’erreur de
relation de comportement aux interfaces introduit dans [Passieux, 2008], nous pro-
posons quelques modifications pour le rendre plus robuste à différents scénarios
impliquant différents états de contact. L’indicateur s’avère dans tous les cas être
un indicateur de convergence fiable, bien plus performant que l’indicateur de con-
vergence LATIN classique notamment lorsque la direction de recherche change.
Par la suite, nous nous attachons à améliorer le taux de convergence des quantités
de contact d’interface au niveau microscopique, qui sont pilotées par le paramètre
de direction de recherche k. L’idée est d’introduire pour chaque interface de con-
tact une direction de recherche dépendant de l’espace et du temps k(x, t) basée
sur le statut de contact et mise à jour pendant les itérations LATIN en partant
d’une valeur de référence k0 classiquement utilisée pour une interface parfaite.
Cependant, l’introduction d’une telle direction de recherche k−(x, t) à l’étape
linéaire implique plusieurs complications qui peuvent limiter les avantages d’une
éventuelle mise à jour. Par conséquent, nous envisageons l’idée de mettre à jour
uniquement la direction de recherche ascendante k+ de l’étape locale. Cependant,
en raison des conditions de convergence, la valeur maximale dont on peut faire
varier k par rapport à la valeur de référence k0 au cours des itérations est limitée
et dépend de la valeur du paramètre de relaxation. Néanmoins, même avec ces
limitations, la stratégie s’avère être robuste, conduisant à un gain intéressant en
taux de convergence des microquantités pour les différents cas de test étudiés
impliquant différents chargements et différents états de contact en espace et en
temps, et ce pour un coût de calcul très modeste.
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