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Résumé: Les magnétars sont des jeunes étoiles à
neutrons isolées qui arborent les champs magné-
tiques les plus intenses observés dans l’Univers
(1014-1015 G). Leur dissipation est à l’origine
d’un large éventail d’émissions à hautes énergies.
Associés à une rotation rapide, les magnétars
peuvent être le moteur central d’explosions plus
énergétiques que les supernovae à effondrement
de cœur classiques, telles que les hypernovae
et les supernovae superlumineuses. L’origine
du champ magnétique des magnétars est encore
une question ouverte, mais qui est cruciale pour
comprendre les observations qui leur sont as-
sociées. L’amplification du champ magnétique
par effet dynamo dans la proto-étoile à neu-
trons (PNS) est un mécanisme prometteur pour
générer des champs magnétiques extrêmes dans
les progéniteurs arborant un cœur en rotation
rapide. Cependant, il est encore incertain que la
fraction de ces progéniteurs soit suffisante pour
expliquer l’ensemble de la population des mag-
nétars. En outre, l’observation de rémanents de
supernovae associés à des magnétars indique que
les magnétars se forment majoritairement dans
des supernovae standards, avec des périodes de
rotation initiales de la PNS plus lente que 5ms.

L’objectif principal de cette thèse est alors
d’étudier un scénario de formation des magné-
tars alternatif impliquant un progéniteur en ro-
tation lente. Ici, la rotation de la PNS n’est
plus déterminée par celle du progéniteur, mais
par l’accrétion du fallback, soit la matière ini-
tialement éjectée lors de l’explosion et restée liée
gravitationnellement à la PNS qui finit par re-
tomber sur la PNS. Le cisaillement déclenche
une dynamo dite de Tayler-Spruit, alors que
les autres mécanismes dynamos — entretenus
par l’instabilité magnétorotationnelle ou la con-
vection — ne peuvent se développer dans cette
configuration. En établissant un modèle semi-
analytique de ce scénario, nous montrons que
des champs magnétiques aussi intenses que celui
des magnétars peuvent être générés pour une
PNS accélérée jusqu’à des périodes de rotation
de ≲ 28ms. Cette première étude démontre

donc la pertinence de notre scénario pour for-
mer des magnétars dans des supernovae avec des
énergies standards et extrêmes.

Néanmoins, l’existence de la dynamo de
Tayler-Spruit est restée longtemps controver-
sée et les modélisations analytiques — établies
par Spruit (2002) et Fuller et al. (2019) — re-
posent sur des hypothèses physiques non-testées.
C’est pourquoi nous avons réalisé des simu-
lations numériques 3D d’un modèle simplifié
d’intérieur de PNS pour étudier ce mécanisme
dynamo. En plus de démontrer pour la première
fois l’existence de la dynamo de Tayler-Spruit
dans une configuration où la rotation croît avec
le rayon, ces simulations mettent en évidence
une richesse de comportements dynamiques et
de branches dynamos, associées à différentes
géométries du champ magnétique, qui n’étaient
pas prédites par les modèles analytiques. Nous
trouvons aussi que la branche produisant les
champs magnétiques les plus forts valident glob-
alement les prédictions de Fuller et al. (2019).

En appliquant l’étude numérique de la dy-
namo à notre scénario, nous montrons que des
dipôles magnétiques de l’ordre de ceux des mag-
nétars classiques sont générés pour des périodes
de rotation de ≲ 6ms. Notre scénario peut
donc expliquer la formation des magnétars dans
des explosions extrêmes, mais cette nouvelle
contrainte est proche de la limite pour former
des magnétars dans des supernovae standards,
révélant une tension entre notre scénario et les
observations. Les simulations montrent aussi
que les champs magnétiques formés pour des ro-
tations plus lentes concordent avec les observa-
tions de magnétars possédant des dipôles mag-
nétiques plus faibles (≲ 4×1013 G) tout en arbo-
rant une composante non-dipolaire ∼ 100 plus
intenses. Ce dernier résultat est soutenu par la
première étude numérique — menée en collabo-
ration avec A. Igoshev — de l’évolution à long
terme d’un champ magnétique généré par la dy-
namo de Tayler-Spruit dans une croûte d’étoile
à neutrons.
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Abstract: Magnetars are young isolated neutron
stars harbouring the strongest magnetic fields
observed in the Universe (1014-1015 G). Their
dissipation powers a wide range of high-energy
emissions. Associated with a fast rotation, mag-
netars may be the central engine of explosions
which are more energetic than classical core-
collapse supernovae, such as hypernovae and su-
perluminous supernovae. The origin of magne-
tar magnetic fields remains an open question,
but it is crucial to understand the luminous
phenomena they are associated with. Magnetic
field amplification through dynamo action in the
proto-neutron star (PNS) is a promising mech-
anism to generate ultra-strong magnetic fields
in a progenitor harbouring a fast-rotating core.
However, it is still unclear whether the frac-
tion of these progenitors is sufficient to explain
the entire magnetar population. Besides, the
observation of supernova remnants associated
with magnetars indicates that magnetars mostly
form in standard supernovae, with initial PNS
rotation periods slower than 5ms.

The main objective of this thesis is then
to investigate an alternative magnetar forma-
tion scenario involving a slow-rotating progen-
itor. Here, the PNS rotation is not determined
by that of the progenitor but by the accretion
of fallback, which is the matter initially ejected
by the SN explosion that remains gravitation-
ally bound to the compact remnant and even-
tually falls back onto its surface. The induced
shear triggers the so-called Tayler-Spruit dy-
namo, while other dynamo processes — driven
by the magnetorotational instability and convec-
tion — are disfavoured in this configuration. Us-
ing a semi-analytical modelling of the scenario,
we show that magnetic fields as strong as in
magnetars can be generated for a PNS spun

up to rotation periods of ≲ 28ms. This first
study demonstrates the relevance of our scenario
to form magnetars in supernovae with standard
and extreme energies.

Nevertheless, the existence of the Tayler-
Spruit dynamo has remained controversial and
its analytical models — provided by Spruit
(2002) et Fuller et al. (2019) — rely on untested
physical assumptions. For these reasons, we per-
formed 3D numerical simulations of a simplified
PNS interior to investigate this dynamo mecha-
nism. Beyond demonstrating for the first time
the existence of the Tayler-Spruit dynamo in a
configuration with a rotation increasing with the
radius, these simulations show a richness of dy-
namical behaviours and dynamo branches asso-
ciated with different magnetic field geometries,
which were not predicted by analytical models.
We also find that the branch generating the
strongest magnetic fields is in global agreement
with the predictions of Fuller et al. (2019).

By applying the numerical study to our sce-
nario, we show that magnetic dipoles of typical
magnetars are generated for rotation periods of
≲ 6ms. Therefore, our scenario can explain mag-
netar formation in extreme explosions, but this
new constraint is close to the limit for magnetar
formation in standard supernovae, revealing a
tension between our scenario and observations.
The simulations also show that magnetic fields
formed for slower rotations are consistent with
the observations of magnetars displaying weaker
magnetic dipoles (≲ 4×1013 G) while harbouring
a ∼ 100 stronger non-dipolar component. This
last result is supported by the first numerical in-
vestigation — led in collaboration with A. Igo-
shev — of the long-term evolution of a magnetic
field generated by the Tayler-Spruit dynamo in
a neutron star crust.
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Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you
know, everyone you ever heard of, every human being who ever was, lived out their lives. The
aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic
doctrines, every hunter and forager, every hero and coward, every creator and destroyer of
civilization, every king and peasant, every young couple in love, every mother and father, hopeful
child, inventor and explorer, every teacher of morals, every corrupt politician, every “superstar,”
every “supreme leader,” every saint and sinner in the history of our species lived there-on a mote
of dust suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the
inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other
corner, how frequent their misunderstandings, how eager they are to kill one another, how
fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so
that, in glory and triumph, they could become the momentary masters of a fraction of a dot.

Our posturings, our imagined self-importance, the delusion that we have some privileged
position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in
the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help
will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near
future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment
the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There is
perhaps no better demonstration of the folly of human conceits than this distant image of our
tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to
preserve and cherish the pale blue dot, the only home we’ve ever known.

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space
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General introduction

Étendez vous sur le sol, la nuit, loin des lumières. Fermez les yeux.
Après quelques minutes, ouvrez les sur la voûte étoilée...Vous aurez le vertige.
Collé à la surface de votre vaisseau spatial, vous vous sentirez dans l’espace.

Goûtez en longuement l’ivresse.Hubert Reeves, Patience dans l’azur. L’évolution cosmique

The Universe, through its elusive richness, has never ceased to spur the curiosity of as-trophysicists, amateur astronomers, and anybody who takes the time to wander intothe beauty of a clear night sky. The coupled progress in fundamental sciences and technol-ogy has allowed for a significant advancement in the observation and comprehension of theimmense diversity of astrophysical objects from planets to galaxy clusters. Especially, thetheoretical speculations made by Landau (1932) and Baade & Zwicky (1934) and the discov-ery of the radio signal originally named Little Green Men-1— because the extreme regularityof the signal could be a sign of extraterrestrial intelligence — by Jocelyn Bell (Hewish et al.,1968) paved the way for the study of strange objects, called neutron stars (NSs). These starsof about twenty-five kilometres in diameter are more massive than the Sun, which makesthem extremely dense objects. Indeed, a teaspoon of matter from a NS would be at least asheavy as 200,000 Eiffel Towers!There is now a consensus that NSs are formed during the explosion of stars of at leasteight solar masses, which are called core-collapse supernovae (CCSNe). These explosionshappen when the iron core of the progenitor star reaches a critical mass above which it col-lapses under the gravitational force. The collapse stops when the central object reaches thenuclear density of 4×1014 gcm−3 due to the strong nuclear force repulsion between the neu-trons. The newly born proto-neutron star (PNS) is formed. The matter that is still collapsingforms a stalling accretion shock around the compact object. The schock is heated by theabsorption of neutrinos. The induced gain of energy makes the shock grow until it reachesthe stellar outer layers tomake the whole star explode. This formation scenario is confirmedby the observation of NSs found in the centre of the remnant expelled from the progenitorstar (example of the Crab nebula in Fig 1). These explosions can be easily observed in othergalaxies because it is more luminous than the entire host galaxy, i.e. as luminous as tensof billions of Suns. One to three supernovae per century are expected to occur in the MilkyWay, but the last one observed in our Galaxy is SN 1604 by Johannes Kepler in 1604. This canbe explained by the fact that the observations are impeded by the Milky Way plane.The multiplication of observations with terrestrial observatories in the radio domain (e.g.Arecibo, Green Bank Telescope, LOFAR, MeerKAT) and space telescopes in the X-ray (e.g.ROSAT, Chandra X-ray observatory, XMM-Newton, NuSTAR, NICER) and γ- ray domains (e.g.Fermi, Integral) showed a very rich variety of electromagnetic events associated with NSs,which shows a real a NS zoo (a zoo in which they can not be exploited of course). The major-ity of NSs are named radio pulsars because they emit a periodic radio signal like a lighthousefrom their magnetic poles. The exact mechanism behind this emission is still debated, but
1



2 GENERAL INTRODUCTION

Figure 1— Top: Crab nebula observed by JWST (Credit: NASA, ESA, CSA, STScI, Tea Temim (PrincetonUniversity)). Down: Crab pulsar signal in different wavelengths (Abdo et al., 2010).



3
we know it is due to the spin-down of the NS by a strong magnetic dipole of 1011 −1013 G atthe surface, which, if misaligned with the rotation axis, produces the observed regular pul-sation (as seen in the plot of Fig. 1). Some pulsars evolve in binary systems, in which theycan acquire fast rotation periods of a few milliseconds due to the accretion of matter froma companion star. Several X-ray emissions can also be associated with NSs: (i) thermal emis-sion from young and hot NS called central compact objects (CCOs) near the centre of somesupernova remnants, (ii) emission due to accretion aroundNSs called accreting X-ray pulsars,and (iii) purely thermal emission from the surface of radio-quiet NSs called X-ray dim isolatedNSs (XDINS), which are located close to the Earth (≲ 500pc).During this thesis, we focused on another type of NS called magnetars. These objectsemit a wide variety of high-energy signals and gather two classes of NSs: the Soft GammaRepeaters (SGRs) and the Anomalous X-ray Pulsars (AXPs). Their signals are too energetic tobe caused by the mechanisms that were previously mentioned. They are actually producedby the dissipation of strong magnetic fields, which explains the name “magnetar” (Duncan& Thompson, 1992). By measuring the rotation period and its associated period derivative,we can infer that their surface magnetic dipole ranges between 1014 −1015 G, which is about
100 times stronger than in typical pulsars. This makes magnetars the astrophysical objectsharbouring the strongest magnetic fields in the Universe! These magnetic fields may be therelic of the progenitor iron coremagnetic field, or generated during the PNS stage, i.e. withina few seconds after the collapse of the progenitor core. In combination with a rotation pe-riod of a few milliseconds, the proto-magnetar may be the central engine of explosions thatare more energetic than typical CCSNe. While the typical CCSNe have a kinetic energy of
∼ 1051 erg and a luminous energy of 1049 erg, the kinetic energy of extreme explosions suchas hypernovae is ∼ 1052 erg and the luminous energy of superluminous supernovae (SLSNe)is 1051 erg. The mechanism behind these events may be the injection of rotational energy inthe ejecta after its extraction by the strong magnetic fields. This constitutes the millisecondmagnetar model, which is often used to interpret the light curves of these explosions. Thus,magnetars are a crucial research topic in high-energy astrophysics. Two central astrophysicalquestions emerge from the observation of magnetars:
(i) Why do some NSs harbour stronger magnetic fields than others?

(ii) Which mechanisms can form such strong magnetic fields?

A first type of formation scenario invokes the conservation of magnetic flux during corecollapse to amplify the magnetic field. In these “pre-collapse” scenarios, the population ofpulsars and magnetars would therefore be explained by the diversity of iron core magneticfields in massive stars (Ferrario & Wickramasinghe, 2006). Another type of scenario, how-ever, suggests that the magnetic fields are generated by dynamo action in the early PNSstage (Thompson & Duncan, 1993). The cases of the convective dynamo and the magnetoro-tational instability (MRI)-driven dynamo have been studied numerically (e.g. Raynaud et al.,2020, 2022, Reboul-Salze et al., 2021, 2022) and have been shown to produce very strongmagnetic fields in fast rotating PNSs. In these “post-collapse” scenarios, the dichotomy be-tween pulsars and magnetars originates from the capacity of the PNS interior to trigger anefficient dynamo action. However, these types of scenarios rely on their respective assump-tions of strongly magnetised (∼ 1010 −1011 G) and fast rotating progenitor iron core (rotationperiod Pcore ∼ 10−60s), which are still poorly constrained by observations and stellar evolu-tion models. This leads to the central question of this thesis:
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(iii) Can magnetars form from weakly magnetised and slow-rotating progenitors?

To investigate this problem, we propose a newmagnetar formation scenario involving thematter falling back onto the PNS after the explosion and another dynamomechanism calledthe Tayler-Spruit dynamo. The initial PNS is supposed to be weakly magnetised and slowlyrotating. About ∼ 10s after the explosion, a part of the SN fallback is asymmetrically accretedonto the PNS surface, which spins its rotation up to periods P ≲ 10ms. This phase createsdifferential rotation in the PNS interior with the surface rotating faster than the core. Whileother dynamo mechanisms are disfavored, we argue that the differential rotation triggersthe development of the Tayler-Spruit dynamo to amplify and finally maintain magnetar-likemagnetic fields. Similarly to the MRI-driven dynamo, the Tayler-Spruit dynamo is driven bylarge-scale differential rotation in a stable stratified flow and an instability of the toroidalmagnetic field, called Tayler instability. This mechanism is often invoked to efficiently trans-port angular momentum in stellar radiative zones. Finally, the dynamo amplifies and finallymaintains magnetar-like magnetic fields. The specific questions stemming from this newscenario structure this manuscript after the introductive Part I (Chaps. 1–4):
• Can the Tayler-Spruit dynamo form strong enough magnetic fields? If yes, is the
amplification fast enough and in which range of fallback accreted mass? Can
this scenario be applied to BNS mergers? In Chap 5, we develop a semi-analyticalmodel of our new magnetar formation scenario and demonstrate that magnetars canbe formed for accreted fallbackmasses higher than one-hundredth of solarmass. How-ever, this model relies on several assumptions on the non-linear processes underlyingthe dynamo action.

• Can we find the Tayler-Spruit dynamo in numerical simulations? If yes, how is it
impacted by different fluid properties? Andwhat is themagnetic field geometry?The numerical part of this work consists of several investigations of the Tayler-Spruitdynamo in three-dimensional spherical numerical simulations. The two first chaptersprovide some of the first numerical investigations on the Tayler-Spruit dynamo. Weexplore the impact of the large-scale shear (Chap. 6) and of the thermal stratification(Chap. 7). These studies led to the discovery of bistability between two distinct Tayler-Spruit dynamos which differ by the intensity and the geometry of their magnetic field.We called them the hemispherical and the dipolar Tayler-Spruit dynamo branches. Thelatter is shown to be promising to form magnetars. Finally, we analyse the growth ofthe magnetic field from a mean-field point of view and model the rich variety of theTayler-Spruit dynamo behaviours as a two-mode dynamical system (Chap. 8). Whilethe dynamo is shown to produce magnetar-like magnetic fields, we must investigatewhether these fields remain strong enough to produce the observed magnetar X-rayactivity after 103 −106 yr.

• How does this newly formedmagnetic field evolve in the cooling PNS/NS? Canwe
reproduce the observational characteristics of magnetars? In Chap 9, we presenta recent work done in collaboration with Andrei Igoshev in which we numerically inves-tigate the relaxation of a Tayler-Spruit dynamo-generated magnetic field in a realisticNS structure. This evolution study is the first to use a dynamo-generated magneticconfiguration as an initial condition and demonstrates that the ‘dipolar’ Tayler-Spruitdynamo can explain the formation of magnetars harbouring a weak magnetic dipole.
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This investigation is crucial to understand magnetar formation since we make the linkfor the first time between the PNS and magnetars.



I

Scientific problem
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The observation of magnetars
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We are all in the gutter, but some of us are looking at the stars.Oscar Wilde, Lady Windermere’s Fan

Magnetars are neutron stars (NS) harbouring the strongest magnetic fields in the Uni-verse, whose dissipation powers some of the most luminous events of the Milky Way.In combination with amillisecond rotation, newly formedmagnetars are suspected to be thecentral engine of the most extreme extragalactic phenomena. The central role of magnetarsin the field of high-energy astrophysics makes it a crucial object to investigate. We will startby introducing the historical context behind the observation of magnetar (Sect. 1.1). Then,wewill situatemagnetars among thewhole population of Galactic NSs (Sect. 7.3), and explainhow they could power extragalactic luminous events (Sect. 1.3).
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1.1. HISTORICAL CONTEXT 9
1.1 . Historical context

1.1.1 . An unusual γ-ray burst source
The observation of the NSs called magnetars is historically bound to the emergence ofspatial high-energy astronomy in the 70’s. Indeed, the first reported emission of NS laterunderstood as a magnetar was observed among several γ-ray bursts (GRBs), which are ex-tremely energetic explosive, very luminous, and prompt events detected in the γ-ray spectraldomain. These events are usually associated with cataclysmic such as themerger of two NSsor a black hole and a NS, and a very energetic explosion of a massive star, called a supernova(SN). However, some sources produce several short bursts. The first repetitive source wasdetected in the direction of the Large Magellanic Cloud (LMC) by the Konus detectors aboardthe Venera 11 and Venera 12 spacecrafts (Mazets et al., 1979a,c).

Figure 1.1 — Time structure of the bursts in theenergy range 50−150keV. (a) 5 March 1979, Venera12; (b) 5 March 1979, Venera 11; (c) 6 March 1979,Venera 12; (d) 6 March 1979, Venera 11. Dashedline indicates background count rate. Points be-fore t0 show previous history of the bursts. Figure
adapted from Mazets et al. (1979a).

The observed light curves, i.e. the timeevolution of the number of photons de-tected per time unit, are displayed in Fig. 1.1,and show two bursts detected on the 5(curves a and b) and 6 (curves c and d)March 1979, respectively. In addition to therepetitive character, the observed 8s peri-odic pulsations in the tail of the two first lightcurves and the association to the SN rem-nant N49 (confirmed by Cline et al., 1982)strongly suggest the NS nature of the source.The 8s-pulsations are interpreted as a NS ro-tation period of 8s, which is much longerthan typical pulsar periods of 0.1− 1s. Thespectra associated with the bursts, i.e. thesignal intensity as a function of the photonenergy, are similar to those associated withsome NSs emitting in the X-ray domain andare “softer” than those associatedwith GRBs,i.e. the detected photons have a lower en-ergy. This source (and others) will then benamed Soft Gamma Repeaters (SGR).
Following the observation of this source,now labelled SGR 0526–661, another sourcesharing similar characteristics, now referredas SGR 1900+14, is reported (Mazets et al.,1979b, 1981), whose rotation period of 5.2sis notmeasured before the new observationof bursts by XMM-Newton (Mereghetti et al.,2006). The existence of this new class of NSis accepted after the detection of a third source, SGR 1806–20 (Laros et al., 1986), which

1Themurky names used to identify NSs consist of an abbreviation, which can be the NS class for instance (orsomething more mysterious), and the numbers represent the equatorial celestial coordinates in the referenceframe J2000.
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Figure 1.2 — Light curves of the two bursts emitted by the AXP 1E 1048.1–5937. Figure adapted
from Gavriil et al. (2002).

produced ∼ 100 bursts between the 13th August 1978 and the 27th June 1986, with a peakactivity around 1983-1984 (Laros et al., 1987). Since then, 18 SGRs have been observed.
1.1.2 . The magnetar model

The first interpretation of these bursts implies a NS accreting material from a stellar com-panion in a binary system (Mazets et al., 1979a,c). However, this interpretation is stronglyquestionable for two reasons: (i) the source SGR 0526–66 has a proper velocity of 1200±
300kms−1 (Duncan & Thompson, 1992, Rothschild et al., 1994), which is very unlikely for atight binary system, and (ii) the luminosity needed to power the radio emission of the nebulaassociated with SGR 1806–20, G10.0–0.3 (Kulkarni et al., 1994, Corbel & Eikenberry, 2004),would cause an outward pressure stopping the accretion. As an alternative scenario, Dun-can & Thompson (1992) (and also Paczynski, 1992) proposed the magnetar model, in whichthe bursts are due to the dissipation of very strong magnetic fields in the NS. While Duncan& Thompson (1992) focus on the origin of these extreme magnetic fields (this question isthoroughly discussed in Chap. 2), Thompson & Duncan (1995, 1996) describe in detail thisdissipation mechanism: (i) strong internal magnetic fields cause stresses in the NS crust un-til it cracks, which (ii) causes the injection of an Aflvén wave into the magnetosphere. (iii) Ifthe magnetic field is weak enough at the injection radius, the magnetic field lines open andrelease the plasma initially trapped in the magnetosphere. This is the released luminousenergy from this event which constitutes the burst in the γ-ray domain. This modelling as astrongly magnetised NS is supported by the inference of the rotation period and age of SGR0526–66, thanks to its associated SN remnant (Shull, 1983), which suggests a strong spun-down due to a strong magnetic dipole. The first precise measures of the SGR spin-down ratemade by Kouveliotou et al. (1998, 1999) further confirm the strongmagnetic field hypothesis.

1.1.3 . Link with Anomalous X-ray Pulsars
During the same period, some pulsars showing peculiar emissions in the X-ray domain,named Anomalous X-ray Pulsars (AXPs) by van Paradijs et al. (1995), were observed. The first
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Figure 1.3 — Number of discovered magnetars from 1979 to 2014. Figure from Olausen & Kaspi
(2014).

source of this kind is 1E 2258+586 (Gregory & Fahlman, 1980), which is associated with theSN remnant CTB 109. This source shows a 7s rotation period (Dib & Kaspi, 2014) and a softX-ray spectrum, which reminds the properties of SGR 0526–66 (as noticed by Thompson &Duncan, 1993, Corbet et al., 1995). Three additional AXPs were reported a few years later: 1E1841–045 (Kriss et al., 1985), 1E 1048.1–5937 (Seward et al., 1986), and 4U 0142+614 (Hellier,1994, Israel et al., 1994). While AXPs were first interpreted as a new class of binary systemscomposed of aNS and a low-mass stellar companion, called Low-Mass X-ray Binaries, Thomp-son & Duncan (1996) explicitly suggest that AXPs and SGRs are strongly related due to theirobservational properties, which can also be explained by the magnetar model. This link isobservationally confirmed a few years later after the observation of a SGR-activity from twoAXPs (Gavriil et al., 2002, Kaspi et al., 2003), which explains why both SGRs and AXPs are nowcommonly referred to as magnetars.

1.2 . Galactic magnetars

Thanks to new spatial high-energy observatories such as the Rossi X-ray Timing Explorer(1995–2012), XMM-Newton (1999–end of 2025), Chandra (1999–), Swift (2004–), and FermiGamma-Ray Telescope (2008–), many other magnetar-activities were detected. According tothe McGill Online Magnetar Catalog (Olausen & Kaspi, 2014), which gathers the propertiesof the observed magnetars, 30 magnetars were discovered until 2020. To those we mustadd the newly discovered SGRs with Swift: SGR J1830–0.645 (Page et al., 2020, Gogus et al.,2020, Younes et al., 2020) and Swift J1555.2–5402 (Coti Zelati et al., 2021, Israel et al., 2021).Besides, the most recent candidate is the unusual GLEAM-X J162759.5-523504.3, which was



12 CHAPTER 1. THE OBSERVATION OF MAGNETARS

detected in the radio domain with the rotation period of 1091s (Hurley-Walker et al., 2022)2.This number is tiny compared to the total number of observed NS, which is currently ∼ 3200.However, magnetars are young NSs (see Sect. 1.2.1) and population studies tend to showthat 10 to 40% of NS were born as magnetars (Gill & Heyl, 2007, Beniamini et al., 2019). Asshown in Fig. 1.3, the number of discovered magnetars increased faster after 2004, whichcorresponds to the commissioning of the Swift observatory. Let us hope for this trend tocontinue, somore relevant statistics can be produced onmagnetars to better constrain theirproperties.
1.2.1 . A drop in an ocean of neutron stars

As the historical frame is now set, we must situate magnetars among the rich neutronstar zoology. Observed NS can be roughly classified according to their rotation P and spin-down rates Ṗ . Hence, the NS population is usually displayed in a diagram representing Ṗ asa function of P , called the P −Ṗ diagram. An (almost) up-to-date P −Ṗ diagram from Olausen& Kaspi (2014) is illustrated in Fig. 1.4. In this same plot, are presented:
Grey/blue Radio pulsars, which are the most commonly observed neutron stars. Their emissionsin the radio domain are driven by the extraction of rotational energy by a magneticdipole. As this emission originates from themagnetic poles, themisalignment betweenthe dipole and rotation axes causes the observed pulsating signal. Most pulsars showa rotation period of P ∼ 0.1−1s and a spin-down rate of Ṗ ∼ 10−16−10−13 ss−1. Note thatsome of these radio pulsars are found to be transient.
Light grey Radio pulsars in binary systems, whose rotations are extremely fast compared to typicalpulsars. They are thought to be spun up to P ≲ 10ms with a very low spin-down rate of

Ṗ ∼ 10−20 ss−1 due to the accretion of material from their companion star.
Yellow X-ray (dim) Isolated Neutron Stars (XINS), which are NS close enough to the Earth sotheir surface thermal emission can be observed in the X-ray domain. These NSs consti-tute the so-called ‘Magnificent Seven’. Interestingly, no radio emission from XINS hasbeen detected so far and is not associated with any SN remnant. Compared to radiopulsars, they show slower rotation periods of P ∼ 2−10s.

Red Magnetars, whose rotation periods and their associated derivatives are the largest,both ranging between P ∼ 2−12s and Ṗ ∼ 10−13 −10−9 ss−1.
Among the diversity of NS classes, we must mention Central Compact Objects (CCOs), whichare not plotted in this P −Ṗ diagram. This class gathers a dozen objects emitting in X-ray thatare detected in the centre of several nebulae. This name was first used by Pavlov et al. (2000)and suggests that the nature of CCOs was uncertain due to the lack of detection in otherwavelength domains. Themeasure of P and Ṗ wasmeasured for three of them because theyfinally produced a radio pulsar-like emission (Zavlin et al., 2000, Gotthelf et al., 2005, Gotthelf& Halpern, 2009) confirming their NS nature. Those three CCOs show typical radio pulsar
P ∼ 0.1−0.4,s but weaker rotation braking Ṗ ∼ 10−18 −10−17 ss−1. Moreover, CCO 1E 161348–5055 was found to showmagnetar-like emission 36 years after its discovery (Rea et al., 2016).

2Despite no detection of anymagnetar-like activity, GLEAM-X J162759.5-523504.3 is more luminous than themaximumdipole spin-down luminosity expected for a radio pulsar. This suggests another emissionmechanism,which could be powered by strong magnetic fields as in magnetars.
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Figure 1.4 — NS P − Ṗ diagram, which represents the NS spin-down rate as a function of the NSrotation period. The characteristic ages and the magnetic dipole strengths are indicated by the diag-onal dotted and dashed lines, respectively. The different classes of NSs are distinguished by differentcolours. Figure adapted from Olausen & Kaspi (2014).
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Figure 1.5 — Spatial distribution of the Galactic NS positions in the Galactic plane (left) and as afunction of the Galactic latitude (right). The inset in the plot on the right is a zoom-in close to theorigin so that the distribution of magnetars can be clearly seen. The colours are the same as thoseused in the P − Ṗ diagram (Fig. 1.4). Figures adapted from Olausen & Kaspi (2014).

Besides, this magnetar is quite unusual because of its 6.7 hour rotation period (De Luca et al.,2006).From the measure of P and Ṗ , several quantities can be inferred. First, assuming that therotation is braked due to the extraction of rotational energy by a surface magnetic dipole inthe vacuum, we can infer the strength of the dipole using the relation
Bdip sinα=

√
3I c3

8π2R6
PṖ ∼ 1.7×1014

(
P

5s

)1/2 (
Ṗ

10−11 ss−1

)1/2

G, (1.1)
with theNSmoment of inertia I ∼ 1.6×1045 gcm2, the light speed c , and theNS radiusR = 12km.The inclination angle is often set to α=π/2rad, so that Bdip is the minimum magnetic dipole.We therefore infer that magnetars harbour extreme magnetic dipoles of Bdip ∼ 1014 −1015 G(except for the so-called low-magnetic field magnetars, which we will discuss in Sect. 1.2.3).This is ∼ 100 stronger than in typical radio pulsars. This magnetic field is plotted in the P − Ṗdiagram in Fig. 1.4 (dotted grey lines).Second, the luminosity emitted due to the dipole spin-down

LSD ≡ 4π2I Ṗ/P 3 ∼ 5×1033
(

Ṗ

10−11 ss−1

)(
P

5s

)−3

ergs−1 . (1.2)
This value is∼ 100 smaller than theusual AXPquiescent X-ray luminosity of LX ∼ 1035 ergs−1 (Kou-veliotou, 1999), which confirms that they are not driven by rotation like radio pulsars. Notethat this luminosity can also be as low as LX ∼ 1030 ergs−1 in some SGRs. This makes the rangeof possible magnetar LX very broad and constitutes an important question to understandmagnetar evolution.Finally, a characteristic age τNS ≡ P/(2Ṗ ) can be defined by assuming that . This age tendsto overestimate the real age of the NS, which can be measured thanks to the associated SN
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remnant. Therefore, the strong spin-down rates and large rotation periods of magnetarsshow that magnetars must be young NSs with characteristic ages of τNS ∼ 103 −105 yr. Theyouth of magnetars is also supported by two other arguments. First, 11 (and potentially 12)out of the 32 magnetars are associated with SN remnants, which is a much larger fractionthan for the whole population of NSs (133 out ∼ 3000, Igoshev et al., 2022). This associationis an indication of youth because the remnant lifetime (i.e. the time for the remnant gasto reach the density of the interstellar medium) is ∼ 106 yr (Bamba & Williams, 2022) andthe NS did not have the time to move away from the nebula despite the possible strongkick induced by the SN explosion (see Sect. 2.1.2). Note that the kinetic energy of these SNremnants is similar to those associated with other NSs (Vink & Kuiper, 2006, Martin et al.,2014, Zhou et al., 2019). This has consequences on magnetar formation scenarios, whichwe will discuss in the next chapter (Chap. 2). Second, by looking at NS positions in the MilkyWay illustrated in Fig. 1.5, we see that their Galactic latitude (i.e. the angle between the linepassing through the Earth and the Galactic centre, and the line passing through the Earthand the observed object) remains below 5◦. Magnetars are therefore confined close to theGalactic plane. Moreover, as the typical magnetar proper motion (regarding those for whicha velocity measure could be done) is similar to pulsars (∼ 100−300kms−1, Helfand et al., 2007,Deller et al., 2012, Tendulkar et al., 2012, 2013), a magnetar only needs 1−3×105 yr to covertheir typical height above the Galactic plane of 30 pc. We must however remain cautiousabout this argument as the statistics are still poor. Note that the magnetar distribution inthe Galactic plane (plot on the left in Fig. 1.5) shows that magnetars are not detected muchbehind the Galactic centre. The same is true for all NSs indicating a clear observational biasagainst NS further than ∼ 15kpc from the Earth.

1.2.2 . A rich diversity of emissions
The study of magnetar general characteristics detailed in the previous section has beeneased by the wide variety of luminous events emitted by magnetars. They cover a largerange of wavelengths, from γ-ray to the radio domain, and luminosities from ∼ 1030 ergs−1 inquiescence phase to ∼ 1047 ergs−1 for the brightest emitted flare. This fosters detailed studyof the physics behind magnetar magnetic fields in order to explain this richness of luminousevents.

Short chaotic bursts The most common luminous manifestation of magnetars is theirX-ray short bursts. Their distribution over time is chaotic, with some magnetars producingbursts during a short time before entering a ‘dormant’ phase for several years. This is thecase for the first observedmagnetar SGR 0526-66, which produced the two very energetic de-tected bursts in 1979 before becoming silent, though it showed AXP behaviour two decadeslater (Kulkarni et al., 2003). Other magnetars such as SGR 1806–20, which wementioned ear-lier, are very active and can produce hundreds or even thousands of bursts during monthsor years. A typical case of very active magnetar is SGR J1550–5418 (or historically 1E 1547.0–5408, Lamb & Markert, 1981), which emitted 286 bursts during a single week between 22and 29 January 2009 (van der Horst et al., 2012).Fig. 1.6 displays bursts detected in the hard X-ray domain (energy between 20−200keV orfrequency between 4.8×109−4.8×1010 GHz) by Mereghetti et al. (2020) and produced by thetypical magnetar SGR 1935+2154, which has a rotation period of P = 3.2s and a surface mag-netic dipole of Bdip = 2.2×1014 G (Israel et al., 2016). As in Fig. 1.1, the five plots represent the
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number of detected photons per time unit, which is equivalent to a luminosity, as a functionof the observation time. Burst C is single-peaked, which is the most common form of burstlight curves with usually a rise phase shorter than the decay phase. But burst signals can bemore complexwith twopeaks (bursts D) or even three (bursts F, G, and I). These bursts last be-tween 0.11 s (burst C) and 0.75s (burst G), which is close to the typical burst duration of 0.1s formagnetars. Their X-ray peak luminosities are measured between 1039 and 1041 ergs−1, whichis themiddle of the large luminosity range spanned bymagnetars 1036–1043 ergs−1. The exactmechanism of magnetar short bursts is still an open question but must be related to crustalstresses induced by the strong internal magnetic fields (see e.g. the model of Lander, 2023).Interestingly, some short bursts come with tails (decay phases) far longer than the promptemission (peaked phase), ranging from a few to thousands of seconds. These tails were ob-served for several magnetars such as the previously mentioned SGR 1900+14 (Lenters et al.,2003), SGR 1806–20 (Göǧüş et al., 2011), and SGR J1550–5418 (Muş et al., 2015) and remindthe shape of giant flare light curves, which we will present later in this section.
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Figure 1.6 — X-ray light curves of some burstsemitted by the magnetar SGR 1935+2154in the
0.5−10keV energy domain. The time on the x-axisis in seconds. Figure adapted from Mereghetti et al.
(2020).

Outbursts During an active period, themagnetar can enter an outburst phase, inwhich the detected X-ray flux, i.e. the lumi-nosity per surface unit, suddenly increases.These phases are particularly prone to theemision of short bursts (e.g. van der Horstet al., 2012, Younes et al., 2017), eventhough it not always the case (e.g. Gavriilet al., 2002). SGR 1935+2154 entered fouroutburst phases between 2014 and 2016,whose associated X-ray flux is plotted inFig. 1.7. Compared to the decay phasewhichis seen to last 10−100days, the flux increaseis very sudden and can reach 6−7 times theflux in the quiescent state, which is displayedby the black dashed line in Fig. 1.7. This in-crease is actually pretty small compared toother magnetar outbursts which can reach
∼ 2000 (Coti Zelati et al., 2018). Such anevent is therefore ideal to discover magne-tars whose quiescent X-ray luminosity is tooweak to be detected (usually ≲ 1033 ergs−1).Thesemagnetars are called transientmagne-tars, in opposition to permanentmagnetars.

The enhanced luminosity in outburstphases eases the extraction of the pulsedsignal from which the magnetar rotation pe-riod and its derivative are measured. Themethod behind the measures is the phase-
coherent timing, which is used for every pul-sating NS. It roughly consists in measuringthe arrival time of each pulse at the detectorduring a certain period which can be severalyears and fitting a spin-down model fromwhich we infer the rotational properties (seee.g. Hobbs et al., 2006, Edwards et al., 2006).Such a method was applied to the observa-tion of SGR 1935+2154, whose pulse profileduring the 2014 outburst is shown in Fig. 1.8 for different energy intervals in the X-ray do-main. SGR 1935+2154 pulse is quite sinusoidal without any sign of variation (Israel et al.,2016), which contrasts with the wide variety of profiles frommagnetars which can even varyduring an outburst (see e.g. Fig. 2 of Mereghetti et al., 2015, for 1E 2259+586). These profilevariations combined with a potential short outburst lifetime make however the measure-ments of P and Ṗ more difficult.

Still, the rotational properties are usually measured with high precision as values as weakas 10−21 ss−1 can be inferred for Ṗ . It is therefore possible to notice the sudden period vari-
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Figure 1.7 — X-ray flux emission during the four outburst phases of SGR 1935+2154 between 2014and 2016. One must be careful with the units of the flux, which are actually in ergs−1 cm−2 and not in
10−12 ergs−1 cm−2. Figure adapted from Younes et al. (2017).

ations ∆P , from magnetar (and also young pulsar) pulsed signal, with ∆P/P ∼ 10−9 − 10−5.These spin-ups, called glitches, were first observed in the pulsar PSR 0833–45, more com-monly called Vela pulsar (Reichley &Downs, 1969) and are particularly frequent inmagnetarscompared to other NS classes. This phenomenon is expected to be related to the superfluidnature of the NS core (e.g. Anderson & Itoh, 1975, Ruderman, 1976, Haskell & Melatos, 2015,Layek & Yadav, 2020, Layek et al., 2023, Bagchi et al., 2024), and often coincides with out-burst phases for magnetars. A following recovery phase of at least a fraction of the initialrotation speed is generally reported and is very strong in magnetars, such that it recovers atleast its initial rotation period and even spins down (e.g. Kaspi et al., 2003, Livingstone et al.,2010, Gavriil et al., 2011). Surprisingly, the opposite phenoma, called anti-glitches, is onlyobserved in magnetars (Woods et al., 1999, Archibald et al., 2013, Şaşmaz Muş et al., 2014),with ∆P/P ∼ 10−7. However, their origin is still unclear andmay be related tomagnetosphericphenomena or an over-recovery from a glitch.
Giant flares Among the thousands of detected bursts produced by Galactic magnetars,three of them especially stand out by their extreme energies. The sources are actually thethree first observed magnetars: SGR 0526–66 (Mazets et al., 1979a,c, Evans et al., 1980),SGR 1900+14 (Hurley et al., 1999), and SGR 1806–20 (Hurley et al., 2005, Mereghetti et al.,2005, Gotz et al., 2006), whose γ-ray peaked energies range between 1044 and 1047 ergs−1.These events are therefore 1−1000 times more luminous than the combined luminosity ofthe whole Galatic star population. The release of magnetic energy from unstable twistedmagnetic field lines in the corona due to large-scale and deep crustal failures could explainthese extreme events, which is similar to solar coronal mass ejection (see e.g. Lyutikov, 2006,Lander, 2023). As these failures are themselves caused by strong magnetic field-inducedstresses, these events could give information about the evolution of the strong internal mag-netic field. The light curves of the two most recent events are plotted in Fig. 1.9. Like some
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bursts, the signal consists of a prompt emission and a tail, which lasts 0.2 s and several min-utes, respectively. Like the less energetic burst of SGR 0526–66 in Fig. 1.1, the tail (also calledthe afterglow) shows oscillations whose period corresponds to the magnetar rotation period.

Figure 1.8 — Intensity of the pulsed signal de-tected during the 2014 outburst of SGR 1935+2154for different X-ray domain energies. Red lines rep-resent the best fit of the signal by assuming amodelwith two sinusoids Figure adapted from Israel
et al. (2016).

Other oscillations can be found by look-ing at the spectrogram of the signal, i.e.the intensity or power in the time-frequencyplane. They are called Quasi-Periodic Oscilla-
tions (QPOs) and were found in the two lat-ter giant flares. Israel et al. (2005b) report arobust QPO of ∼ 92.5Hz between 170s and
220s after the flare onset of SGR 1806–20,and potentially two other QPOs at ∼ 18Hzand ∼ 30Hz in the same interval. In theflare afterglow of SGR 1900+14, Strohmayer& Watts (2005) find a QPO at ∼ 84Hz in a
∼ 0.5s interval ∼ 63s after the flare onset.By focusing on the rotational phase associ-ated with the 84Hz-QPO, at least other os-cillations are detected with frequencies of
53.5 Hz and 155.1 Hz. These QPOs are tran-sient and so are present in specific rota-tional phases. QPOs were also found in theburst of themagnetar SGR J1550–5418 (Hup-penkothen et al., 2014). This variety of QPOmodes could be caused by magneto-elasticoscillations in the NS with strong enoughmagnetic fields. These oscillations weremodelled by Gabler et al. (2016, 2018) (seealso Bretz et al., 2021), which can provide theaverage magnetic strength in a magnetar in-terior. According to this model, SGR 1806–20 has a very strong magnetic fields of ∼ 2×1015 G,which is 10 times stronger than its surface magnetic dipole inferred from its spin-down.

Finally, giant flares are most energetic in the soft γ-ray domain and can therefore besimilar to short γ-ray bursts (GRBs) but less energetic, as for the 1979 event from SGR 0526–66. As most GRBs are extragalactic sources, some of them are interpreted as extragalacticmagnetars (Ofek et al., 2008, Hurley et al., 2010, Svinkin et al., 2021, Mereghetti et al., 2024).Most of the candidates are proposed with lukewarm confidence because it is hard to excludemore energetic events located farther than expected. However, Mereghetti et al. (2024) showstrong confidence in the latter detection because of the similarity with the 2004 giant flarefrom 1806–20.
Lower-energy emission While magnetars are mostly observed in the γ-ray and X-ray do-main, counterparts in the optical and infrared domains were detected for six (potentially 11)magnetars (see the McGill Catalog Olausen & Kaspi, 2014). Only three of them have shownoptical pulsations, whose profiles are similar to those observed in X-ray: 4U 0142+61 (Kern
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Figure 1.9 — Light curves of the giant flares produced on 27 Decembre 2004 by SGR 1806–20 (left)and on 27 August 1998 by SGR 1900+14 (right). Figures adapted from Hurley et al. (2005) and Hurley
et al. (1999), respectively.

& Martin, 2002, Dhillon et al., 2005), 1E 1048.1–5937 (Dhillon et al., 2009), SGR 0501+4516(Dhillon et al., 2011). Infrared counterparts are also seen to be correlated (Tam et al., 2004,Rea et al., 2004, Israel et al., 2005a) or not (Durant & van Kerkwijk, 2006, Testa et al., 2008,Wang et al., 2008, Tam et al., 2008) to X-ray activity phases. While an infrared/X-ray correla-tion could betray the presence of a dust disk around the magnetar (Tam et al., 2004, Kaplanet al., 2009), the absence of correlation challenges this interpretation and rather supports amagnetospheric origin (Wang et al., 2008).
Sevenmagnetars (including the recently discovered transient GLEAM-X J16275) producedtransient bursts or radio pulsations (Camilo et al., 2006, 2007, Levin et al., 2010, Eatough et al.,2013, Shannon & Johnston, 2013, Lynch et al., 2015, CHIME/FRB Collaboration et al., 2020,Hurley-Walker et al., 2022). We focus first on radio pulsating sources since it concerns six outof the radio magnetars and come back to the only source of radio bursts in Sect. 1.3.1. Anexample of radio emission from magnetar SGR J1745–2900 is displayed in Fig. 1.10. Thesepulses remind a lot of radio pulsars but their profile changes on time scales of minutes todays. Other several common properties emerge from the different radio observations (Reaet al., 2012b): (i) the transient radio pulses appear with a time delay after X-ray outburst on-set, during its decay, (ii) the radio and X-fluxes decay at the same time. Despite some differ-ences with pulses from radio pulsars, Rea et al. (2012b) proposed that themechanism is alsopowered by rotational energy. The fact that radio magnetars share the common property ofhaving a lower X-ray quiescent luminosity than their dipole spin-down luminosity supportsthis idea. Indeed, this suggests that the internal magnetic fields are not strong enough toproduce powerful currents in the twisted magnetosphere that can disrupt the radio emis-sion mechanism. This scenario explains well why the radio emission is only observed duringthe outburst decay. An implication is that radio magnetars must emit radio pulses in theirquiescent state. As none of these radio pulses were detected in this state, they may not beintense enough to be detected.
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1.2.3 . Magnetars with low-magnetic dipoles

Magnetars were (and are still) commonly defined as neutron stars harbouring magneticdipoles ≳ 1014 G or stronger than the critical electron magnetic field of 4.4× 1013 G. How-ever, the observation of the transient magnetar SGR 0418+5729 (Rea et al., 2010) madethis definition obsolete as its measured magnetic dipole is Bdip ∼ 6× 1012 G, which is ∼ 17times weaker than expected for a typical magnetar. Since then, two other magnetars werereported as low-magnetic field magnetars: Swift J1818.0–1607 (Rea et al., 2012a, Scholz et al.,2012) and 3XMM J185246.6+003317 (Rea et al., 2014), whose dipoles are Bdip ∼ 1.4×1013 G and
Bdip ≲ 4.1×1013 G, respectively. If we consider Bdip ∼ 1014 G as the lower limit for classical mag-netars, wemay also consider CXOU J164710.2–455216 (An et al., 2013) and 1E 2259+586 (Dib& Kaspi, 2014) as low-magnetic field magnetars as their magnetic fields are Bdip ≲ 6.6×1013 Gand Bdip ∼ 5.9× 1013 G, respectively. The discovery of low-magnetic field magnetars is veryimportant because they provide observational proof that magnetar activity does not rely onthe surface magnetic dipole measured via the magnetic spin-down model. This will haveconsequences on the investigations of the magnetar formation problem (see Chap. 9).

Figure 1.10 — Radio pulseprofiles at different rotationalphase of SGR J1745–2900. Fig-
ure adapted from Lynch et al.
(2015).

Interestingly, absorption lines (illustrated in Fig. 1.11) weredetected in the spectral evolution of two magnetars only: SGR0418+5729 and Swift J1822.3–1606, which harbour the weak-est magnetic dipoles. Similar features were already observedin the emission of some pulsars (e.g. Truemper et al., 1978, Big-nami et al., 2003, Kargaltsev et al., 2012). These lines have beeninterpreted as cyclotron absorption (by either proton or elec-tron) lines. The energy of these lines EB are therefore relatedto the magnetic field B intensity
EB ∼ 9.3

(me

m

)(
B

1012 G

)
keV, (1.3)

for a NS with a mass and radius of 1.4M⊙ and 12km, respec-tively. me is the electronic mass and m is the particle mass(electronic or protonic mass in our case). On the one hand, ifthe absorber is an electron, the magnetic field near the NS sur-face should be B ∼ 1012 G with EB ∼ 10keV, which is contradic-tory because below themeasured value of themagnetic dipoleof B < Bdip ∼ 6×1012 G. On the other hand, if the absorber is aproton, we infer B ∼ 2×1014−1015 G and B ∼ 6×1014−2.5×1015 Gfor the SGR 0148+5729 and Swift J1822.3–1606, respectively.This demonstrates the existence of small-scale magnetic fields,and thus non-dipolar magnetic components with strengths
30−170 times stronger Bdip. The form of the line in the spec-tra can be explained as the manifestation of small-scale mag-netic field arcs at the NS surface. This result is crucial becauseit confirms that strong (small-scale or not) non-dipolar mag-netic fields are sufficient to produce magnetar activity. This re-sult is in line with the observation of modulations in the lightcurve of somemagnetars that can be interpreted as precessionmotions caused by stronger toroidal internal magnetic fieldsreaching ∼ 1016 G (Makishima et al., 2014, 2016, 2019, 2021).
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Figure 1.11 — Two X-ray spectra of magnetars SGR 0418+5729 (left) and SWIFT J1822.3–1606 (right).The solid red lines follow the absorption line (left) and the red dashed lines constrain the regionsshowing an absorption line (right). Figures adapted from Tiengo et al. (2013) and Rodríguez Castillo et al.
(2016), respectively.

1.2.4 . Stellar progenitors
While most observations focus on the magnetar properties, a few attempt to infer theproperties of the progenitor star, especially its mass. These investagations focus on magne-tars associated to star clusters or wind bubble produced by the progenitor. They show thatmagnetars are formed in massive stars with a wide range of initial masses. For instance, thecoincidence of the AXP 1E 1048.1–5937 with a wind bubble suggests that its massive progen-itor had a mass around 30−40M⊙(Gaensler et al., 2005). The study of clusters associated tomagnetars show that the magnetars SGR 1806–20 and CXOU J164710.2–455216 stem froma progenitor with an initial mass of ∼ 48−55M⊙ (Muno et al., 2006, Bibby et al., 2008, Clarket al., 2008) while the progenitor of SGR 1990+14 had a mass of ∼ 17M⊙ (Davies et al., 2009).

1.3 . Magnetars as engine of the most extreme astrophysical events

In the previous section, we have seen that magnetars are the source of a variety of veryenergetic events from short bursts and outbursts to Galactic and potentially extragalacticgiant flares. The magnetic field strength and geometry of magnetars are the key ingredientsbehind these emissions. In this section, we will show that even more energetic events couldinvolve magnetars and their magnetic fields as their powerful engine.
1.3.1 . Fast Radio Bursts

General picture Fast RadioBursts (FRBs) aremillisecond (or even shorter) very bright burstsin the radio spectral domain, mostly between the frequencies 400−800Hz and around 1.4×
103 Hz, i.e. in the energy band 1.7−5.8×10−6 eV. Beforemoving further, wemust mention thatthe notion of luminosity (which can be seen, we recall, as an energy, or a number of photons,per unit of time) is usually replaced by the notion of flux density in radio astronomy. Thisquantity measures an energy per unit of time, surface, and frequency, which is equivalent toa luminosity per unit of surface and frequency and a luminosity flux per unit of frequency.Its associated unit is the Jansky, noted Jy = 1×10−23 ergs−1 cm−2 Hz−1 in CGS units. Moreover,
distances d are estimated via the combination of the dispersionmeasure DM ≡ ∫ d

0 ne d s, whichrepresent the integral of the electronic density ne along the line of sight, and electro-densitymodels for different media (Cordes & Lazio, 2002, Yao et al., 2017). We use the term disper-
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Figure 1.12 — Superposition of FRB 200428 (orange line) and SGR 1935+2154 (grey line) burst lightcurves (top) and their location in the right ascension-declination plane. Figures adapted fromMereghetti
et al. (2020) and Bochenek et al. (2020), respectively.
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sion because photons with higher frequencies arrive before those with lower frequenciesdue to the signal propagation in the ionised interstellar medium.Compared to γ-ray bursts, the study of FRBs is very recent, as the first FRB was foundby Lorimer et al. (2007) in archive radio data from 2001. The peak flux density reaches
Speak ≳ 30Jy and the dispersion measure is DM = 375pccm−3. The former is one order ofmagnitude greater than the brightness of typical pulsars, and the latter indicates that thesource is extragalactic, which stresses the great brightness of these bursts. Four other FRBswere reported six years later, confirming the extragalactic and bright character of the FRBsources (Thornton et al., 2013). By taking into account the large distance of the extragalac-tic sources, we can infer that FRBs are ∼ 1010 more luminous than typical pulsars. Around2019, the number of reported FRBs was ∼ 60 (Petroff et al., 2019) but skyrocketed to ∼ 600since the commissioning of the Canadian Hydrogen Intensity Mapping Experiment Fast Ra-dio Burst project (CHIME/FRB) (CHIME/FRB Collaboration et al., 2021). Cordes & Chatterjee(2019) suggest that the detection rate for FRBs with Speak > 1Jy should be 103−104 sky−1 day−1

in the absence of selection and observational bias. This rate is very large compared to otherastrophysical transients.These osbervation of FRBs highlighted a rich variety of FRBs. First, bursts have a widediversity of profiles and duration from 0.1 ms to ∼ 1s (Petroff et al., 2022). Second, the pop-ulation of FRBs can be separated between repeating and non-repeating FRBs. 50 repeatingsources have been reported so far (Chime/Frb Collaboration et al., 2023). Despite period-ictiy being found in two sources (CHIME/FRB Collaboration et al., 2020), the appearance ofFRB activity for the same source is chaotic. Likewise, the time distribution of bursts in oneFRB event seems generally stochastic in spite of the presence of sub-bursts periodicity inone source (Chime/Frb Collaboration et al., 2022). Microsecond and even nanosecond sub-bursts substructures were also observed in some repeating sources (e.g. Nimmo et al., 2022,Snelders et al., 2023). The FRB population is listed on the website https://www.frbcat.organd see the reviews Petroff et al. (2019, 2022) for a complete treatment of this topic.
FRB emission mechanism(s) A wide variety of models (∼ 50 listed in the wiki https://
frbtheorycat.org) have been proposed to explain the FRB emission mechanism(s), includ-ing exotic models invoking alien light sails (Lingam & Loeb, 2017) and the decay of cosmicstring cusps (Brandenberger et al., 2017). Apart from these models, they can be roughlysorted into two families: cataclysmic and repeating models. The former usually invokes com-pact object mergers (e.g. Totani, 2013, Kashiyama et al., 2013, Mingarelli et al., 2015), or NScollapse (Zhang, 2014, Fuller & Ott, 2015, Most et al., 2018). However, the existence of repeat-ing FRBs rules out cataclysmic origins for at least a fraction of FRBs. The two main repeatingmodels in which a magnetar is involved are magnetar-driven synchrotron maser (‘far-away’model, e.g. Metzger et al., 2019, Margalit et al., 2020) and magnetospheric process-drivencoherent emission (‘close-in’ model, e.g. Kumar & Bošnjak, 2020, Lyubarsky, 2020, Lu et al.,2020).In the former model, the magnetar releases a millisecond ultra-relativistic ejecta shellwhich collides with a mildly relativistic magnetized ionised shell, which were released follow-ing a previousmajor flare. The shell decelerates due to both reverse and forward shocks, thelatter of which produces the observed coherent radio emission (i.e. the FRB) through the syn-chrotron maser mechanism. The forward shock also heats electrons powering (incoherent)synchrotron γ-ray/X-ray emission, similar to a GRB afterglow. Assuming that these powerful

https://www.frbcat.org
https://frbtheorycat.org
https://frbtheorycat.org
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flares are expected to occur more frequently in young magnetars, this model suggests thattoo young or too oldmagnetars can become FRB quiet. Indeed, if the time between the flaresis too short, the emission is trapped as the medium is too dense, and old magnetars are toolittle active to produce energetic flares.The latter model invokes an initial disturbance produced by a release of energy (e.g. aburst or outburst) that spreads across the NS surface. This causes secondary perturbationsin the magnetosphere in the form of Alfvén waves. As Alfvén waves propagate along mag-netic field lines, they reach longer distances from NS surface near the magnetic poles wherethe plasma density drops. In this region, the perturbation-induced currents strongly acceler-ate charged particles, which emits one or several powerful coherent radio bursts. An impor-tant point that we can draw from both models is their prediction of magnetar high-energyemissions, such as bursts or giant flares, along with the FRB.
FRB 200428 from SGR 1935+2154 In 2020, CHIME/FRB Collaboration et al. (2020), Boch-enek et al. (2020), and Mereghetti et al. (2020) report for the first time the emission of a FRBfrom a Galactic magnetar SGR 19835+2154. The concerned FRB 200428 is composed of twocomponents and is very bright with a peak at Speak ∼ 110−150kJy (CHIME/FRB Collaborationet al., 2020). The dispersion measure DM ∼ 332.7pccm−3 and the position in the Galacticplane indicate that the source is not extragalactic. Note that this short distance implies thatthe FRB intrinsic luminosity is actually one or two order of magnitudes below those of typicalextragalactic FRBs. Moreover, Fig. 1.12 shows that the two first peak of the SGR 1935+2154 X-ray burst coincide with both components of FRB 200428 and that the source location of FRB200428 is only 0.3◦ from the position of SGR 1935+2154. The link between both signals istherefore robust enough to consider SGR 1935+2154 as their source, and thus confirms theconnection between FRBs and magnetars. The typical character of SGR 1935+2154 makesthe observation of future FRBs from the other magnetars likely.Both repeating FRB models predict a connection between the radio and X-ray bursts, butthe close time coincidence of the signals favors close-in models. Moreover, the maser modelpredicts a decrease of the frequency with time, as the shock decelerates, which is not ob-served. However, FRB 200428 is not representative of the diverse population of FRBs anddoes not exclude the other proposed FRB models.

1.3.2 . Extreme explosions
Hypernovae Some SN explosions harbour ∼ 10 times more energetic ejecta than typicalSNe, i.e. kinetic energy of ∼ 1052 erg. These explosions are called hypernovae. As magnetars,their observation is strongly related to GRBs. The distribution of GRB duration is bi-modal(i.e. with two peaks), which supports the dichotomy between short and long GRBs, with themean durations 0.2 s and 30s, respectively. This bimodality suggests different astrophysicalevents. While short GRBs are thought to result from binary NS-NS or black hole (BH)-NSmergers (see Sect.. 2.2.3), long GRBs and hypernovae are likely to be the product of the corecollapse of a massive star. Long GRBs are extragalactic and the most energetic events of theUniverse. As giant flares, their signal consists of a prompt and afterglow emission. A fractionof the latter shows a plateau phase, which suggests a late injection of energy by a centralengine (e.g. Zhang et al., 2006, Nousek et al., 2006, O’Brien et al., 2006).The first link between hypernovae and long GRBs was proposed after the observation ofSN 1998bw. Its light curve is displayed in Fig. 1.13, from which we note that SN 1998bw is
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Figure 1.13 — Light curves of the hypernovae SN 1998bw, along with those of SN 1994I and SN1997ef. Figures adapted from Iwamoto et al. (1998).
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Figure 1.14 — Ligth curves of eight SNe, of which three are SLSNe. The luminosity is measuredby the absolute magnitude, which decreases for greater luminosities. Figures adapted from Gal-Yam
(2012).

∼ 10 times more luminous than the two other displayed typical SNe SN 1994I and SN 1997ef,which is explained by the radioactive decay of an unusually high mass of ejected nickel 56Ni.The iron FeII emision lines in the spectrum of SN 1998bw are broader than that of typicalSNe, which indicates large ejecta velocities and so large explosion kinetic energy. The latteris as large as ∼ 2−5×1052 erg, which is more than 10 times larger that of typical SNe (Wang& Wheeler, 1998, Iwamoto et al., 1998, Galama et al., 1998). In addition to the absence ofhydrogen and helium in the spectrum, the width of the FeII lines explains why hypernovaeare also referred to as SN Ic Broad-Lined (BL).The late appearance of the oxygen OI emission lines also show that the ejecta must bedivided into a fast and a slow component, which both correspond to a FeII-rich bipolar and a
OI-rich equatorial flow, respectively. The former components suggest the existence of a jet,which could be the source of fast energy injection to explain the high mass of ejected nickel
56Ni. This jet may also be related to the GRB. To produce the GRB, a part of the jet must be
ultra-relativistic with a Lorentz factor γ ≡

(p
1− v2/c2

)−1 ∼ 100, which corresponds to a flow
velocity of v ∼ 0.995c. Also, the ejecta energymust be larger than the energy radiated in γ-ray,expected to be ∼ 1051 erg in long GRBs (Bloom et al., 2003). However, many SNe have beenidentified as hypernovae (e.g. Taddia et al., 2019) but not all of them are associated with aGRB (e.g. Berger et al., 2002, Pignata et al., 2011, Milisavljevic et al., 2015). This confirms thatthe presence of a relativistic jet is not sufficient to produce a long GRB.
Superluminous supernovae In the family of extreme SNe, hypernovae are accompaniedby superluminous supernovae (SLSNe), which are SNe with typical kinetic energy but are
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Figure 1.15— Light curve of the ultra-long GRB 111209 (blue dots) on which amillisecondmagnetarmodel is overplotted (red solid line). Figures adapted from Gompertz & Fruchter (2017).

10−100 more luminous. These luminous explosions were first noticed by Richardson et al.(2002) and the new class of SLSNe was confirmed after several observations of SNe with apeak luminosity > 7× 1043 ergs−1. Another condition to consider an explosion as a SLSN isthat this luminosity must be exceeded during at least 48 h. The light curves of three SLSNeare illustrated in Fig. 1.14 along with five typical SNe. The luminosity of SLSNe evolves moreslowly than most SNe, with an increase lasting ∼ 50days and a decrease of several hundredsof days. Most SLSN (∼ 90%) do not show the presence of hydrogen in their spectrum, whichclassifies them as SLSN–I (see the classification of SNe in Sect. 2.1.2), but show the sameglobal properties as the others, referred to as SLSN–II.
1.3.3 . Millisecond magnetar model

Hypernovae and SLSNe are too energetic to be explained by the classical neutrino-drivencore-collapse SNe model (see Sect. 2.1), in which most of the gravitational energy reservoir(Egrav ∼ 1053 erg) is radiated in neutrinos (Eν ∼ Egrav) while only ∼ 10−2Egrav is converted intokinetic energy and ∼ 10−4Egrav is radiated in light. Other physical mechanisms must be pro-posed, in which a large enough fraction of the gravitational energy reservoir is convertedinto kinetic energy and light.The fast rotation of the newly formed proto-neutron star (PNS) could provide this en-ergy (e.g. Wheeler et al., 2000, Mazzali et al., 2014, Margalit et al., 2018, Metzger et al., 2018).The rotational energy is roughly approximated by
Erot ≡ 1

2
IΩ2 ∼ 3.2×1052

(
P

1ms

)−2

erg, (1.4)
with a moment of inertia I = 1.6×1045 gcm2. This energy reservoir is therefore larger than
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Figure 1.16 — Light curves of the SLSNe PTF10hgi (left, red dots) and SN2011ke (right, blue dots),on which the best fit of the millisecond magnetar model is overplotted (black solid lines). The blackdashed is the fit of a 56Ni decay model. Figures adapted from Inserra et al. (2013).

the energies of the extreme explosions. The angular momentum can stem from either therotation of the progenitor star core or a fast spin-up from fast and massive enough fallbackaccretion (Barrère et al., 2022). To inject this energy into the ejecta, the NS must harbourstrong large-scale magnetic fields, often simplified as an axial dipole, which will extract theNS rotational energy. A NS with Bdip ∼ 1014 −1016 G and P = 1ms, will produce a very largespin-down luminosity of Ldip ∼ 6×1045 −6×1049 ergs−1. The only neutron stars that harboursuch strong magnetic fields are magnetars. Therefore, fast-rotating newly formed magne-tars are great candidates to drive these extreme explosions and constitute the millisecond
magnetar model. Although extreme explosions account for only 1% of CCSNe, compared tomagnetars, which constitute approximately 10% of young NSs, they are nonetheless crucialfor understanding the formation of a fraction of the magnetar population.
Application to hypernovae The formation of jets can be explained by strong magneticfields. Indeed, differential rotation in themagnetar will shear the strong dipole into a toroidalmagnetic field, which will concentrate the flow towards the magnetic poles due to strongmagnetic pressure. The jet will propagate through the other star layers to produce themag-
netorotational explosion. This energy must be injected within a timescale < 1s (Barnes et al.,2018). Magnetars with Bdip ≳ 1016 G could inject the energy fast through magnetic dipolespin-down only (Suwa & Tominaga, 2015). The presence of a disk penetrating the PNS mag-netosphere could enable the efficient transfer of the PNS angular momentum to the disk(propeller regime). This would enhance the magnetar spin-down such that a weaker dipolarmagnetic field of Bdip ∼ 2× 1015 G would be enough (Metzger et al., 2018). The millisecondscenario could also explain why some hypernovae are not associated with a GRB, as somerotation velocities and magnetic field strength may not produce a jet with enough kinetic en-ergy to produce theGRB, but strong enough to drive the energetic explosion. However, someuncertainties remain on the jet stability and the magnetic field amplification process. Still, asshown in Fig. 1.15, millisecondmagnetar models reproduce very well the light curves of long
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GRBs and easily explain the appearance of a plateau phase in the afterglow (e.g. Nomotoet al., 2011, Metzger et al., 2015, Cano et al., 2016, Gompertz & Fruchter, 2017, Margalit et al.,2018, Lin et al., 2020).
Application to superluminous supernovae The millisecond magnetar model could alsoexplain SLSNe if the energy injection ismade at later times. This implies the energy extractionby themagnetic fields to be slower, which can be done forweakermagnetic fieldsBdip ∼ 1014−
1015 G (e.g. Woosley, 2010, Kasen & Bildsten, 2010, Nicholl et al., 2013, Margalit et al., 2018,Lin et al., 2021). Millisecond magnetar models for SLSNe usually use three free parameters:the magnetic dipole strength, the magnetar rotation period, and themass of the ejecta. Bestfits of two SLSNe light curves are displayed in Fig. 1.16 and show that millisecond magnetarmodels reproduce, again, very well the observations, for magnetars withmillisecond periodsand a few×1014 G magnetic fields.
Alternatives Overall, the boundary between hypernovae and SLSNe is not clear as theycould be explained by a magnetorotational explosion driven by a millisecond magnetar. Fu-ture observationswill hopefully find hybrid extreme SNewhich could bridge the gap betweenSLSNe and hypernovae. Still, other mechanisms have been proposed to explain one or bothextreme events. A popular mechanism is the collapsar model (Woosley, 1993), in which arotating massive star quickly collapses into a BH. The angular momentum allows the sustain-ment of an accretion disc around the BH, whose strongmagnetic fields extract the rotationalenergy to produce the bipolar jet and equatorial winds. The main difference with the mil-lisecond magnetar is therefore the central engine but both models invoke the extraction ofrotational energy by a strong magnetic field. However, the collapsar model requires moreangular momentum to maintain a Keplerian disc and the millisecond magnetar provides aconsistent mechanism to explain the plateau in the afterglow of some long GRBs. An inter-mediate scenario mentions a supermassive magnetar that is maintained by its rotation ina first instance and then collapses into a BH after its strong spin-down (Dessart et al., 2012,Obergaulinger & Aloy, 2017).To produce a SLSN, pair-instability SNe of ≳ 60M⊙ massive stars (see Sect. 2.1.2) wasalso invoked but reproduce the spectra of only few SLSNe (Dessart et al., 2012, Kozyrevaet al., 2014, Tolstov et al., 2017). Finally, the SN luminosity could be enhanced thanks to theinteraction of the shock with the circumstellar medium, but the proposed models struggleto explain SLSN spectra (Gal-Yam, 2019).

1.4 . Conlusion: magnetars as key objects of high-energy astrophysics

In this chapter, we discussed the observation of magnetars and explained their impor-tance in the context of Galactic and extragalactic high-energy astrophysics. This conclusionsection aims at summarising the diversity of observational constraints characterising mag-netars.
• The detection of a pulsed signal from a magnetar provide precise measures of the NSrotation period P and spin-dow rate Ṗ . Among the NS population, magnetars show the
longest rotationperiodsP ∼ 2−12 s and the strongest spin-down Ṗ ∼ 10−13 −10−9s.s−1.
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• This strong rotation braking suggests that magnetars are young NSs with a charac-teristic age of 103 −105 yr, which can be considered as an upper limit of their real age.This is also supported by the fact that magnetars are mostly located in the Galacticplane and the observation of SN remnants with which ∼ 1/3 of magnetars are associ-ated. Population syntheses estimate that magnetars represent ∼ 10−40% of the youngNS population.
• Assuming that the rotation is braked by a rotating surface magnetic dipole in the vac-uum, we infer that most magnetars harbour magnetic dipoles of Bdip ∼ 1014 −1015 G,which is∼ 100 times stronger than that of typical pulsars. A fewmagnetars shownonethe-less weak magnetic dipoles Bdip ∼ 6×1012 −4.1×1013 G, which implies that strong mag-netic dipoles are not necessary to produce magnetar-like luminous activity.
• The presence of stronger non-dipolar magnetic fields is confirmed by the observa-tion of absorption lines in the X-ray spectrum of twomagnetars. If they are interpretedas proton cyclotron absorption lines, they indicate the presence of ∼ 2× 1014 − 1015 Gsmall-scale magnetic fields at the magnetar surface, which is ∼ 100 times stronger thantheir spin-down dipole. Since these magnetars are low-magnetic field magnetars, thisdiscovery shows that magnetars must harbour a strong total magnetic field despite aweak magnetic dipole. Moreover, the interpretation of modulations in the pulsed sig-nal of some magnetars as precession movements suggests the presence of ∼ 1016 Ginternal toroidal magnetic fields.
• The strong magnetic fields of magnetars constitute the energy reservoir of their
wide variety of high-energy emissions unlike pulsars whose emission stems fromthe extraction of rotational energy. These emissions can reach peak luminosities from
1039 −1041 ergs−1 for short bursts to 1044 −1047 ergs−1 for giant flares. The detection ofquasi periodic oscillations in the light curve of two giant flares could inform us aboutthe dynamics in the NS interior.

• The investigations of star clusters andwind bubbles associatedwithmagnetars indicatethat the progenitor stars of magnetars cover a wide range of masses from ∼ 17M⊙ to
∼ 55M⊙.

• A fast rotating magnetar may be the central engine of extreme explosions such ashypernovae/longGRBs and SLSNe. Using amillisecondmagnetarmodel, the light curveof some long GRBs (SLSNe) can be interpreted as the result of an explosion driven bymagnetars with a magnetic dipole of ∼ 1015 −1016 G (few×1014 G) and a rotation periodof ∼ 1ms (few×ms).
The magnetic field of magnetars is thus the key ingredient to explain the variety of lumi-nous events we described in this chapter. In the following chapter, we will therefore addressthe raising question of the origin of these magnetic fields and detail the physics of the explo-sion mechanisms and magnetic field amplification.
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In order to explain the diverse events related to magnetars, investigating their formationis crucial. To this end, we will begin by briefly introducing how the progenitor stars formand evolve until their explosion, whose mechanism will be detailed (Sect. 2.1). We will focuson the classical neutrino-driven supernovae as it is the event from which Galactic magnetarare expected to originate, although we briefly discuss themagnerotational mechanism after-wards. Then, we will review the different mechanisms that could lead to the formation of amagnetar (Sect. 2.2). Finally, we will question the various scenarios to vindicate the need toinvestigate the new mechanism that is central in this thesis: the Tayler-Spruit dynamo in aproto-neutron star spun up by supernovae fallback (Sect. 2.3).

2.1 . Core-collapse supernovae

2.1.1 . Star formation and evolution
Interstellar medium Stars are vast balls of hot plasmas, i.e. ionised gas. They are allformed in the interstellarmedium, which constitutes the space between stars in theGalaxy. Thisspace is predominantly composed of neutral/ionised gas and dust grains, which are partic-ules composedof oneor several largemolecules. The complexity of the interstellarmedium ischaracterised by its multiphase character, which translates into the co-existence of gases indifferent equilibrium states:

32
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Figure 2.1 — Temperature in the molecular cloud as a function of its density during the formationof the proto-star. Figures adapted from Bhandare et al. (2020).

• The hot ionised medium consists of hot gas with a temperature of T ∼ 3.2×105 K and asmall particule density of n ∼ 4×10−3 cm−3. The large temperature is due to collisionsof the medium with the shocks of SN explosions.
• HII regions are former molecular clouds in which stellar formation has occurred. Thehydrogen is ionised by the ultraviolet emission from massive stars.
• The warm neutral medium is composed of hydrogen atoms with a temperature of T ∼

5×103 K and a particular density of n ∼ 0.6cm−3.
• The cold neutral medium harbours a cold temperature of T ∼ 102 K compared to theothermedia but ismuch denser (n ∼ 30cm−3). This density protects their internal regioncomposed of hydrogen molecules from ultraviolet emissions.
• Molecular clouds are the densest regions (n ∼ 103 −104 cm−3 corresponding to a massdensities around ρ ∼ 10−21 −10−20 gcm−3) and are the place in which stars form.

A star is born The interstellar medium is prone to constant compressions and heatingprocesses caused by a combination of turbulence, gravitation, magnetic fields, stellar emis-sions, SNe, etc. Beyond changing the equilibrium state of the medium, these processes candestabilise the densemolecular clouds and trigger stellar formation. The cloud is considered
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unstable when it reaches the so-called Jean mass, which reads
MJ = π

6

(
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π

G

)3/2 1p
ρ

, (2.1)
where cs , G , and ρ, are the sound speed in the cloud, the gravitational constant, and clouddensity, respectively. The consecutive stages of the proto-star formation are describedby Lar-son (1969) and are illustrated in Fig. 2.1. The stages are characterised by an adiabatic index γ,which is the ratio between the heat capacities at constant volume and pressure.

(i) The cloud enters the first contraction phase. While the compression heats the gas, thethermal emission of dust grains cools it such that the process is isothermal and γ= 0.
(ii) The first contraction stops when themediumbecomes optically thick at ρ = 10−13 gcm−3.The thermal emission of dust grains can no longer leave the newly formed first Larson

core. Therefore the contraction phase becomes adiabatic (γ= 5/3). After reaching 100K,molecule rotational modes are excited, which decrease the adiabatic index to γ= 7/5.
(iii) As the temperature reaches 2−3×103 K, the hydrogen molecules dissociate, which con-sume much more energy, so the adiabatic index drops to γ∼ 1.1 and the gas enters asecond collapse phase.
(iv) Finally, at a density of ρ ∼ 10−3 gcm−3, all the molecules are dissociated. This stagemarks the formation of the second Larson core. The contraction is adiabatic again andcontinues until reaching temperatures T ≳ 106 K when the nuclear reactions start toproduce helium in the internal regions.

The core thus forms the new proto-star. The remaining matter surrounds the proto-star byforming a protoplanetary disk, which is accreted and altered by the proto-star emission untilits disappearance.
Main sequence The newly formed star enters the main sequence phase, into which it willstay most of its life. The long-term stability of stars relies on the compensation betweenthe gravitation, which tends to collapse the star, and the pressure produced by the nuclearreactions occurring in the stellar core, which tends to expand the star. The reaction occurringin the main sequence stellar core forms helium atoms from 4 hydrogen atoms

4 1H −−−→ 4He. (2.2)
However, this reaction can occur via different reaction chains/cycles: while the helium isformed via the proton-proton (PP) chain in the core of low-mass stars (M∗ ≲ 1.1M⊙), thecarbon-nitrogen-oxygen (CNO) cycle is active in the core of more massive stars (M∗ ≳ 1.1M⊙).The effect of different chains influences the structure of the star as low-mass stars havea radiative core, while more massive stars develop a convective core. The main sequencephase timescale is around the time for the star to consume 10 % of the hydrogen, which canbe formulated by

τnuc = 0.1
χM∗c2

L∗
, (2.3)
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Figure 2.2 — Scheme of the stellar evolution in the Hertzsprung-Russell diagram, which representsthe star luminosities as a function of their effective temperature. The dashed and dotted lines il-lustrate the path of the low-/intermediate-mass stars (M∗ É 8M⊙) and massive stars (M∗ Ê 8M⊙), re-spectively. Note that solar units are noted with the index •s instead of the usual •⊙. Figures adapted
from Bugnet (2020).
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where χ is the yield of the nuclear reaction and L∗ is the star luminosity. Therefore, thelifetime of a star depends on its mass and luminosity. If we assume the common mass-luminosity relation (
L∗
L⊙

)
∼

(
M∗
M⊙

)4

, (2.4)
low-mass stars live longer than intermediate-mass or massive stars. For instance, the mainsequence phase of a Sun-like star (M∗ ∼ 1M⊙) lasts ∼ 10Gyr, which is 1000 times longer thanfor a 10 M⊙ star. This phase is visible as a diagonal from low to large effective tempera-tures1 and surface luminosities in the so-called Hertzsprung-Russell (HR) diagram, which isillustrated in Fig. 2.2.
End of life of low-/intermediate-mass stars Once the whole hydrogen is consumed inthe burning region, i.e. where the nuclear reactions take place, stars with masses 0.6M⊙ É
M∗ É 8M⊙ brutally contract to reach a new equilibrium state. The hydrogen is burnt in a layeraround the core forming a burning shell. The star enters a short sub-giant phase in which theeffective temperature drops due to the expansion of the envelope (external layers), whichlets the thermal energy leave the star. The temperature drop is compensated by the increaseof the stellar radius such that the luminosity L∗ ∝ r 2∗T 4∗ remains constant.The star leaves this state and follows the red giant branch when the helium core reachesthe Schönberg-Chandrasekhar limit (MHe ∼ 0.1M∗, Schönberg&Chandrasekhar, 1942), abovewhich the helium core contracts. The gas in the core of low-mass stars (0.6M⊙ É M∗ É 2M⊙)becomes too dense for the thermal pressure to compensate the gravitation. The free elec-trons occupy all the lowest energy levels and create a degeneracy pressure such that thePauli exclusion principle (i.e. fermions can not occupy the same quantum state) remains re-spected. The matter therefore becomes degenerate. In the case of intermediate-mass stars(2M⊙ É M∗ É 8M⊙), the gas is not dense enough in the core to become degenerate, so it col-lapses brutally. During this phase, the superficial layers are much less gravitationally boundto the star due to the envelope expansion and so can be expelled by the stellar wind.When the core reaches the temperature of T ∼ 108 K, the helium is burnt to producecarbon atoms 12C and oxygen 16O atoms (and also beryllium atoms 8Be but it is very unstable).The exact three-step reaction chain, called triple-α, reads

2He+ 2He −−−→ 8Be, (2.5)
8Be+ 2He −−−→ 12C+2γ , (2.6)
12C+ 2He −−−→ 16O+γ , (2.7)

where γ denotes a γ-ray photon. The heliumburning causes an increase of the tempereaturein the stellar core. While the core of intermediate-mass stars can expand to find a new equi-librium, the core of low-mass stars can not expand due to its degenerate state (the pressuredegeneracy depends very little on the temperature). The temperature therefore increasesdramatically and the triple-α reactions run away as its power strongly depends on the tem-perature (∝ T 40). This causes a large region to burn helium in a the same short time period(a few seconds), which releases a large amount of energy. This sudden event conistutes
1The term ‘effective’ indicates that the temperature is measured in the star black body spectrum. The mainsequence star place in this diagonal depends on its mass.
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Figure 2.3 — Array describing the fate of massive stars as a function of the mass of their heliumcore.

the so-called helium flash and stops when the temperature becomes high enough for thethermal pressure to exceed the degeneracy pressure, eliminating the degeneracy. Once thehelium is entirely consumed, most of the envelope has been blown by stellar winds to formthe planetary nebula and the remaining external layers contract onto the inert degeneratecarbon-oxygen core, forming a white dwarf.
2.1.2 . Supernova explosion mechanism

Fate of massive stars For massive stars (M∗ Ê 8M⊙), the evolution slightly differs as sug-gested by the HR diagram (Fig. 2.2). Their core is already massive enough to ignite heliumburning before reaching the degeneracy critical density (as intermediate-mass stars). Unlikelower-mass stars, they are massive enough to produce new contraction episodes and ignitenew nuclear reactions. These successive ignitions result in an onion-structured star, withinwhich each burning shells form heavier elements as we go deeper into its interior.The evolution and explosionmechanism of themassive star depends on itsmass. The dif-ferent end-of-life scenarios can therefore be classified according to the star Zero-Age-Main-Sequence mass (ZAMS) mass MZAMS, i.e. the mass of the star when it enters the main se-quence phase. However, the mass of the star changes along its evolution depending on itsproperties such as the metallicity and the rotation, which makes the estimation of its massduring the late stages uncertain for a specific value of MZAMS. Instead, we will use the heliumcore mass at the onset of the 4He burning phase, noted MHe. Its value is more robust to pre-dict how the star will end its life since no helium is expected to be expelled from the star fromthe helium burning phase to the explosion. The different explosions are summarised withrespect to MHe in Fig. 2.3. We also display an approximation of the corresponding MZAMS.
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É 3 M⊙ In this mass range, the successive ignitions stop after the burning of the oxygen 16Oin the core of the lightest of the massive star. As the burning stops, the following con-traction does not result in the burning of new elements but in a degenerated core.Neon 20Ne and magnesium 24Mg nuclei capture the free electrons, which lowers thedegeneracy pressure. The unstable degenerate core ends up collapsing and the starexplodes like in classical neutrino-driven CCSNe (Hillebrandt et al., 1984). This shortrange of masses translates into very few candidates of this kind of SNe, called electron-
capture supernovae (ECSNe)(Hosseinzadeh et al., 2018, Hiramatsu et al., 2021, Valerinet al., 2022). The remaining compact object is expected to be a NS due to the low massof the progenitor core.

3−40 M⊙ For this range of masses, the helium core is large enough to burn new elements untilthe production of iron 56Fe. These stars explode through the standard neutrino-drivenCCSN mechanism, which will be explained in detail later.
40−65 M⊙ For helium cores between ∼ 40 and 65M⊙, the temperature reaches≳ 7×108 K after theburning of 16C. With such temperatures, a large quantity of γ-ray photons are energeticenough to be converted into electron-positron pairs. This lowers the radiative pressureand destabilises the star core (Fowler &Hoyle, 1964, Barkat et al., 1967, Rakavy& Shaviv,1967). The induced collapse causes the brutal ignition of 16O burning and ejects largemasses from the envelop of the star. Several similar episodes can happen until the for-mation of the iron core. As in typical SN explosions, the core collapses and the outerregions of the star are blasted by the expanding shock front. This type of explosionis called pulsational (or pulsating) pair-instability supernovae (PPISNe). The compact rem-nant of PPISNe is expected to be a BH due to the high progenitor mass but a massiveNS could be maintained for fast enough rotations (Rahman et al., 2022).

65−130 M⊙ When the helium core reaches a mass MHe ≳ 65M⊙, the nature of the SNe changes. Asin the previous case, a pair-instability occurs after 14C burning, but here the onset of
16O burning is so energetic that the whole star blows up, leaving no remaining coreor compact object. Thus, these disruptive explosions called pair-instability supernovae
(PISN) leave a gap in the mass distribution of BHs between ∼ 60M⊙ and ∼ 130M⊙.

≳ 130 M⊙ Finally, the massive stars exceeding roughly ∼ 300M⊙ end up collapsing into a BH witha mass of ≳ 130M⊙, without any explosion.
Note that some of the values of MHe used to define these intervals remain approximative,especially both lower and upper limits of PISNe. Indeed, the core rotation, which dependson the treatment of angular momentum transport, or uncertainties on the nuclear reactionrate can significantly change these limits by several tens of solar masses (Renzo et al., 2020,Marchant & Moriya, 2020, Woosley & Heger, 2021).
Standard explosion mechanism As mentionned in the previous chapter (Chap. 1), ∼ 1/3of magnetars are associated to SN remnants whose kinetic energy is consistent with thatof classical CCSNe. Therefore, most magnetars are formed in these explosions. Hence, wefocus on the classical CCSNmechanism, which is also themost common sort of SNe observedin the Universe. The different stages of the mechanism illustrated in the scheme of Fig. 2.4will structure the following description of the mechanism.
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Figure 2.4— Scheme of the standard core-collapse supernova mechanism with the evolution of thestratification in the PNS interior. The arrows illustrate the fluidmotion, among which the circling onesrepresent the convective motions. The green oscillating curves represent the neutrino emission. Inthe SASI development phase, the blue swirls and the wavy red arrows represent the acoustic waveand vorticity perturbations, respectively.
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t− few days The last burning phase occurring in the massive star core is the burning of silicon 28Siinto iron 56Fe. The iron 56Fe is one of the elements with the strongest nuclear bindingenergy, which is the difference between the mass of the whole atom nucleus and thesum of the mass of each nucleon contained in this same nucleus. This implies that theburning of 56Fe into heavier elements consumes more energy than it releases, whichruns counter to the principle of minimum energy. Therefore, the iron accumulates inthe core and the 28Si burning reservoir wanes in a timescale of 5 to 20 days. Since thecore does not release nuclear energy, it contracts due to gravity. The iron core becomesdegenerate, which favours the inverse β decay reaction
p+e− −−−→ n+νe , (2.8)

where p , e−, n and νe are the symbols of the proton, electron, neutron, and electronicneutrino, respectively. The latter is a very light elementary particle that interacts sparselywith matter but is essential in the CCSN process. Due to this reaction, the fraction ofneutrons in the core increases with the direct consequence of lowering the mass limitabove which the electron degeneracy pressure can no longer compensate for gravity.This mass is the so-called Chandrasekhar mass limit, which reads
MCh = 1.45

(
Ye

0.5

)2

M⊙ , (2.9)
where Ye is the electron fraction, i.e. the difference between the number of electronsand positrons per baryon.

t−0.2 s Once this limit is reached, the iron corewith a radius of∼ 1500km collapseswithin∼ 0.2sand reaches at its centre extreme densities and temperature of ρ ∼ 1014 gcm−3 and
T ∼ 1011 K, respectively. Under such conditions, the atom nuclei disintegrate and thecore becomes a dense and hot soup of nucleons which constitutes the proto-neutronstar (PNS). The adiabatic index is also strongly stiffed, from the index of a relativisticdegenerate object γ = 4/3 to γ ∼ 2− 4, depending on the used equation of state (e.g.Haensel & Zdunik, 2007, Koliogiannis & Moustakidis, 2019, Routray et al., 2024). At thisstage, the strong interaction force of nucleons stops the collapse when the PNS radius(usually defined by the radius at which the density is ρ = 1011 gcm−3) reaches ∼ 80km.This causes the formation of the shock at the radius of ∼ 10km, where the collapsebecomes supersonic. This stage is the so-called core bounce, which is usually used asthe reference time t = 0s in the study of CCSNe.

t= 0 s Although the shock radius keeps growing, a large part of the gravitational energy isconsumed by the neutrino emission by inverse β decay (Eq. (2.9)) and by the photodis-sociation of 56Fe

56Fe+γ−−−→ 13 4He+4n, (2.10)
4He+γ−−−→ 2p+2n, (2.11)

while the infalling matter goes through the shock. The bounce alone is thus insufficientto expand the shock at distances larger than ∼ 70km from the PNS. During this stalled
shock phase, the shock is stationnary and thematter surrounding the stellar core keeps
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collapsing reaching supersonic velocities around one tenth of the speed of light in vac-uum until it reaches the shock front.
The energy gained by the absorption of electronic and anti-electronic neutrinos emittedby the cooling PNS

νe +n −−−→ e−+p, (2.12)
νe +p −−−→ e++n (2.13)

is the key ingredient of the shock revival (Bethe & Wilson, 1985). ∼ 4− 10% of theemitted neutrinos is absorbed by the matter in the zone between the shock and thePNS. The region in which the absorption rate is larger (lower) than the emission rateis called the gain (cooling) region. While the cooling region is near the PNS surface, thegain region is localised near the shock. The radius that defines the boundary betweenboth regions is called the gain radius (black dotted circle in Fig. 2.4).
The neutrino heating in the vicinity of the shock increases the thermal pressure, whichmakes the shock grow. The infalling matter crossing the shock must therefore be ad-vected slowly enough to be heated before reaching the cooling region. A criterionfor the shock revival is thus to have an advective timescale larger than the heatingtimescale (e.g. Burrows & Goshy, 1993, Janka, 2001). However, the first 1D numericalsimulations of CCSN failed to satisfy this criterion and so to produce a purely radialexplosion by implementing neutrino heating only. This indicates the necessity of multi-dimensional ingredients such as instabilities to obtain amore efficient neutrino heatingand so decrease this heating timescale.

t+0.2 s It is now fairly consensual that (magneto)hydrodynamical instabilities play a crucial toenhance the neutrino heating. On the one hand, the standing accretion shock instability
(SASI) (Blondin et al., 2003) is a very promising candidate as it was proven to help toproduce explosions in 3D CCSN numerical simulations (e.g. Takiwaki et al., 2021). TheSASI consists of an advective-acoustic cycle, in which the perturbed PNS outer bound-ary emits acoustic waves towards the shock front that injects vorticity perturbationsin returning towards the PNS (Foglizzo et al., 2007). Since this cycle necessitates thepresence of an accretion shock and a dense central core, SASI can appear in other as-trophysical contexts such as stellar formation (Ahmad et al., 2023). On the other hand,
a convective instability can occur in regions with a strong enough negative entropy gra-dient to overcome the stabilising effect of the electron fraction profile. Many investiga-tions aim at understanding the influence several parameters such as the rotation onthe dynamics (e.g. Yamasaki & Foglizzo, 2008, Blondin et al., 2017, Kazeroni et al., 2017,2018, Summa et al., 2018, Andresen et al., 2019, Glas et al., 2019, Walk et al., 2023) andthe interaction between the SASI and convection (Buellet et al., 2023).
The motion caused by these instabilities create asymmetries in the front shock shape.This causes some areas to spend enough time in the gain region to be heated, whichmakes the gain region expand in these areas. The amount of absorbed energy in-creases and the shock thus grows asymetrically.
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t≳ few×10−1 s The shock finally reaches the regions beyond the iron core and propagates at a typicalvelocity of ∼ 3×103 kms−1 (Kjær et al., 2010). In red-supergiant star with a typical radiusof 108 km, the shock thus needs a bit more than 9 hours to reach the most external lay-ers of the star, which the observed electromagnetic signal of the SNe. Meanwhile, thenascent PNS contracts until reaching a final radius around 12−13km. This contractionphase influences the PNS internal structure, in which a convective layer develops andexpands, almost reaching the PNS surface a few seconds after its formation. When thecontraction is over, the convective region disappears as the entropy profile becomesless steep. After 10 s, the PNS finally reaches its fully stably stratified structure. Notethat the PNS can also collapse into a BH if the accretion of matter makes it reach theTolman–Oppenheimer–Volkoff (TOV) mass limit.
Now that we described the main stages of the classical neutrino-driven SN explosion, itis interesting to look at the energy budget of the explosion. This type of explosion is calledgravitational because the energy resevoir of the explosion is the gravitation. A total gravi-tational energy of Egrav ∼ 3×1053 erg is liberated during the explosion. The majority of thisenergy (∼ 99%) ends up into neutrino radiation that goes through the star without interact-ing with the matter. While a small fraction of neutrinos is absorbed, its energy is convertedinto kinetic energy (Ekin ∼ 1051 erg) and thermal energy. Then, a bit less than 10 % of thegravitational energy is also converted into rotational energy in the core (Erot ∼ 1052 erg), afraction of which is radiated in gravitational waves (GWs) due to the asymmetry of the shock(EGW ∼ 1046 −1050 erg). Finally, once the shock reaches the star surface, the quasi-adiabaticexpansion of the stellar envelope converts its thermal energy into electromagnetic radiation(Erad ∼ 1049 erg).Multi-messenger astronomy provide observational constrains to test the neutrino-drivenCCSN mechanism. On the one hand, the majority of neutrinos can leave the star withoutinteracting with the stellar matter. Their detection by current (e.g. Super-Kamiokande, Ice-Cube) and future (e.g. DUNE, JUNO, KM3NeT) detectors will allow us to probe the first phasesof the explosions. The observed delay between the reception of neutrinos and SN mustmatch the theoretical predictions, which can validate the global scenario or not. To this date,only the observation of the SN 1987A was completed by the detection of neutrinos (Hirataet al., 1987, Bionta et al., 1987). The observed neutrinos arrived to the detectors 3 hoursbefore the electromagnetic signal, which supports the neutrino-driven mechanism and con-firm the presence of a PNS. On the other hand, the different instabilities are expected tobe detectable through the emission of GWs. The CCSNe numerical simulations show thatthe GW signal is dominated by the PNS oscillations at frequencies ≳ 400Hz and the SASI at

∼ 100Hz (e.g. Radice et al., 2019, Mezzacappa et al., 2020, Andresen et al., 2021). For slow ro-tations, these signals could be observed by the current detectors if the source is at a Galacticdistance ∼ 10kpc. Future detectors such as the Einstein Telescope and Cosmic Explorer willenlarge this distance and play a crucial role in the study of CCSNe.
Magnetorotational explosion mechanism As discussed in Sect 1.3.2, a strong magneticfield combinedwith a fast rotation influences significantly the explosionmechanism. A strongmagnetic dipole of ∼ 1014 −1015 G can efficiently extract the energy of the newly formed PNSto inject it into the ejecta in the form of kinetic energy. This mechanism allow to inject morekinetic energy into the ejecta than in the neutrino-driven mechanism. Magnetorotational ex-plosions are therefore good candidates to explain the observation of extreme explosions and
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have been investigated using axisymmetric (i.e. no variations in the azimuthal direction) (e.g.Burrows et al., 2007, Dessart et al., 2008, Takiwaki et al., 2009, Bugli et al., 2020) and three-dimensional (3D) general relativistic numerical simulations (e.g. Mösta et al., 2014, Kurodaet al., 2020, Obergaulinger & Aloy, 2020, 2021, 2022, Bugli et al., 2021, 2023).

Figure 2.5 — Snapshot of a magnetorota-tional explosion with an initial strong mag-netic dipole 410 ms after the onset. The isosur-faces show the entropy of the ejecta. Figures
adapted from Bugli et al. (2021).

Although they do not reproduce the large ki-netic energies of hypernovae, they can repro-duce the formation of bipolar jets, which allowsthe study of its stability and its ability to drive theexplosion. They strongly influence the explosiondynamics and produce gravitational waves. Inparticular, Bugli et al. (2020, 2021, 2023) investi-gated the impact of the initial magnetic field ge-ometry on the ejecta dynamics. They show thatthe aligned dipole is the best magnetic geometryto form a stable jet and launch powerful explo-sions. Figure 2.5 illustrates the jet formation ina simulated magnetorotational explosion. Thissnapshot is taken at 410ms after the explosiononset and the ejecta already has a vertical sizeof 2.36×104 km, which shows how fast the jet islaunched. The equatorial dipole and quadrupolegeometries produce jets quickly prone to non-axisymmetric instabilities but do not prevent theonset of the magnetorotational explosion (seealso Mösta et al., 2014).The presence of strong asymmetry in the ex-plosion produces GWs, whose signature is con-strained is some numerical simulations Bugliet al. (2023). Their amplitude is stronger in theabsence of any magnetic field due to the pres-ence of a hydrodynamic instability (called lowT/|W|) butmagnetic models only showweak GWemission. Overall, numerical simulations of mag-netorotational explosions are essential investiga-tion tools as they provide a better understandingof the explosion physical mechanism and predic-tions for the future multi-messenger observations.
Classification of supernovae Despite the lack ofmulti-messenger observations, SNe havebeen thoroughly investigated since their first historical observations between during the IInd

and IVth century, which were interpreted as ‘guest stars’. Thanks to modern telescopes, theobservation of extragalactic SN is now very common, which compensates for the lowGalacticSN rate of 2−3 per century. For instance, 19859 SNewere detected in 20232 and the detectionrate has been ∼ 2×104 yr−1 since 2019. The future Vera Rubin observatory is even expectedto multiply the number of detections by 100! The amount of SN observations provides a SN
2https://www.rochesterastronomy.org/sn2023/snstats.html

https://www.rochesterastronomy.org/sn2023/snstats.html
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Figure 2.6 — SN classification according to their spectral properties.

classification depending on their observational and especially their spectral properties. Themost common SN families are summed up in Fig 2.6. The distinction is made between SNewithout andwith hydrogen absorption lines, which are referred to as the type I and type II SNe,respectively. The former is also divided into three classes: type Ia with no traces of silicon,
type Ib with the presence of silicon and helium lines, and type Ic which show traces of siliconbut no helium lines. As mentioned in Sect. 1.3.2, the exceptional hypernovae and SLSNe aremostly type Ic SNe but a few SLSNe can be type II SNe.The observations suggest that type Ia SNe have a different nature from the other SNe.First, they are interestingly observed in every type of galaxy, while the other SNe are observedin late-type (i.e. spiral) galaxies only. Their presence in late-type galaxies is not surprisingsince massive stars do not form in early-type (i.e. elliptical) galaxies and do not have longenough lifetimes to stay stable until the late phases of their host galaxy. Second, the absenceof silicon is not expected for a CCSNe as this element is produced around the massive stariron core. These SNe are the product of runaway nuclear reactions in a white dwarf heatedby the accretion of matter from a binary companion. These explosions, called thermonuclear
supernovae, completely disrupt the white dwarf. Themechanism of this type of explosion willnot be detailed here as the topic is beyond the scope of this thesis.

2.1.3 . Supernova fallback
The initial rotation period of most NSs is around 10−100ms (e.g. Popov & Turolla, 2012,Igoshev et al., 2022) but its origin remains unclear. While it intuitively stems from the angu-lar momentum of the progenitor iron core and so depends on the transport mechanismsin the star (e.g. Heger et al., 2005, Ott et al., 2006, Ma & Fuller, 2019, Fuller & Lu, 2022), thePNS rotationmay be influenced by hydrodynamic instabilities following the core bounce (e.g.Blondin & Mezzacappa, 2007, Guilet & Fernández, 2014, Kazeroni et al., 2016, 2017). How-ever, recent 3D CCSN numerical simulations suggest that the initial NS period is determinedby the asymmetric accretion of matter that is initially ejected during explosion but remainsgravitationally bound to the PNS, and so eventually falls back onto the PNS (Powell & Müller,
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Figure 2.7 — Fallback properties as functions of the time after the core bounce for a set of 3D CCSNmodels of single-star progenitors. Mfb and Ṁfb are the time-integrated fallback mass and accretionrate (the dashed line displays the asymptotic scaling∼ t−5/3), JNS is the NS angularmomentum, assum-ing that all fallback matter with its angular momentum gets accreted by the compact object. Figures
adapted from Janka et al. (2022).
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2020, Chan et al., 2020, Stockinger et al., 2020, Janka et al., 2022). In addition to the initialNS period, the study of fallback accretion is also motivated by the problem of the spin-kickalignment, i.e. the alignment of the NS rotation axis with that of the kick velocity, which isobserved in several pulsars (e.g. Romani & Ng, 2003, Ng et al., 2007, Yao et al., 2021). Jankaet al. (2022) argues that this alignment is due to the asymmetric fallback accretion connectedto the displacement of the NS (which is challenged by Müller, 2023).
Exemples of fallback andNS angularmomentum JNS evolution from 3D CCSN simulationsof Janka et al. (2022) are displayed in Fig. 2.7, from which we can draw several observations:
• 5−10s after the core bounce, we observe a steep increase of theNS angularmomentumfrom JNS ∼ 1046 gcm2 s−1 to JNS ∼ 1047 − 1049 gcm2 s−1, which corresponds to a spin-upfrom a rotation period of P = 2πINS/JNS ∼ 1s to P ∼ 0.001−0.1s. This coincides with asudden increase of the fallback mass up to Mfb ∼ 10−3 −10−1 M⊙. Note that the valuesof P may be overestimated because the NS is expected to move from the centre of theexplosion due to the kick induced by the explosion while the NS remains in the centreof the integration domain in 3D CCSN simulations.
• After ∼ 10s, the mass-fallback rate Ṁfb follows the asymptotic scaling-law t−5/3, whichis predicted for spherical accretion (Chevalier, 1989).
• Roughly 10−103 s after the bounce, the backward propagation of a reverse shock am-plifies the fallback accretion, which translates into a local peak in the evolution of Ṁfb.
In addition, the specific angularmomentumof the fallbackmatter can reach the Keplerianspecific angular momentum

jkep ∼ 1.5×1016
(

MNS

1.4M⊙

)1/2 ( rNS

12km

)1/2
cm2 s−1 , (2.14)

which suggests that a fallback disk can form around the PNS. The interaction between thePNS magnetic dipole and the disc may strongly spin down the PNS in a propeller regime,which may explain the observation of ultra-long-period pulsars and magnetars (Chap. 9, Be-niamini et al., 2020, Ronchi et al., 2022) and the light curve of luminous and extreme SNe (e.g.Dexter & Kasen, 2013, Metzger et al., 2018, Lin et al., 2020, 2021). Thus, these simulationsdemonstrate that fallback accretion is a key ingredient in determining the birth NS rotationperiod and may play an important for magnetar formation.

2.2 . The origin of magnetar magnetic fields

While the global picture of the CCSN explosions is well understood, the formation of theultra-strongmagnetic fields observed in magnetars remains an open question. The differentscenarios can be sorted in two families: pre-collapse (Sect. 2.2.1) and post-collapse scenarios(Sect. 2.2.2). While the former relies onmagnetic flux conservation of a magnetised iron coreduring its collapse, the latter argues that themagnetic field is amplified in the PNS by dynamoaction.
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2.2.1 . Pre-collapse scenarios: magnetic flux conservation

Fossil field hypothesis In this scenario, the iron core magnetic fields are expected to bestrong enough to be amplified up to 1014−1015 G due tomagnetic flux conservation during thecore collapse. An order of magnitude for the necessary magnetic field BFe can be calculatedby assuming a constant magnetic flux
ΦB ∼ BFer 2

Fe ∼ BNSr 2
NS ∼ cst . (2.15)

Thus,
BFe ∼ BNS

(
rNS

rFe

)2
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)−2
G. (2.16)

This scenario, also called fossil field hypothesis, is supported by the measure of the mag-netic field at the surface of some massive stars, which is nonetheless different from BFe.The strength of these magnetic fields is inferred from the observation of the Zeeman effect,which translates into the split of emission lines (see the reviews Donati & Landstreet, 2009,Reiners, 2012). Recent surveys such as MiMeS and BOB found that ∼ 10% of massive starsharbour strong surface magnetic fields of ∼ 102 −103 G (Grunhut et al., 2017, Schöller et al.,2017, Sikora et al., 2019), which usually have simple geometry as they are well modelled by atilted dipole (Kochukhov et al., 2019). The fraction of magnetised massive stars is thereforesimilar to the fraction of NS born as magnetars. Therefore, magnetic massive stars are as-sumed to be the progenitor of magnetars, while non-magnetic stars may be the progenitorof pulsars. Moreover, the magnetic flux in magnetic stars
ΦB (r = r∗) ∼ 4.9×1026
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Gcm2 , (2.17)
which is icomparable to the flux in magnetars

ΦB (r = rNS) ∼ 1.4×1026
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Finally, the recent observation of a Wolf-Rayet (WR) star, i.e. a massive star which ejects agreat part of its mass by the expulsion of its outer layers, with a 4.3×104 G surface magneticfield falls into the line (Shenar et al., 2023) as the NS magnetic field resulting from magneticflux conservation is
BNS ∼ BWR

(
rWR
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∼ 1.1×1014
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Although these observations support this scenario, the magnetic flux conservation con-cerns the magnetised iron core only because the rest of the star does not have time to col-lapse before its ejection by the front shock. The extrapolation used to infer the neutronstar magnetic field from the measures at the surface of a massive star is thus strongly ques-tionable. Using BFe is therefore more relevant for the magnetic flux argument, but BFe isnot constrained by the observations despite the significant progress made by asteroseis-mology (Prat et al., 2020). Furthermore, population synthesis does not provide a definitiveanswer regarding whether the fossil field hypothesis can account for the populations of bothpulsars and magnetars (Ferrario & Wickramasinghe, 2006, Makarenko et al., 2021). This sug-gests that a fraction of Galactic magnetarsmay not be the product of a fossil field. Finally, the
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massive star strong dipole (and the induced stellar winds) spins down the star (Meynet et al.,2011, Potter et al., 2012, Keszthelyi et al., 2020, 2021) as shown by observations (Shultz et al.,2018, 2019b,a). Thus, this scenario does not account for fast-rotating magnetars, which aresuspected to be the central engine of the most extreme explosions (see Sect. 1.3.2).
Fossil field If magnetars stem from strongly magnetised massive stars, we may wonderwhat the origin of stellar coremagnetic fields is. First, themagnetic field ofmassive starsmayalso be a fossil field. Assuming a roughly spherical molecular cloud with a realistic magneticfield of 4×10−6 G (a valuemeasured by Ching et al., 2022) and a typical density of n ∼ 103 cm−3,the magnetic Jean length is about LJ ∼ 1pc (Mestel, 2001), which is the typical size of a molec-ular cloud. Using magnetic flux conservation, we can estimate an average magnetic field of
∼ 7×107 G for a 10R⊙ star formed by the collapse of the cloud. Despite the underlying roughapproximations, themagnetic fields of a star are not unlikely to stem from themagnetic fieldof the progenitor molecular.
Dynamo in the progenitor star Second, the non-linear coupling between a turbulent flowmotion and a magnetic field called dynamo action, could amplify the magnetic field in differ-ent regions of stars during their main sequence or late stages. On the hand, the stellar coreand the burning shells are unstable to convection during the main sequence phase and thelate evolution stages, respectively. According to 3D numerical simulations, this instabilitycan lead to a convective dynamo producing magnetic fields of ∼ 105 G in the core duringmain sequence (Augustson et al., 2016) and of ∼ 1010 G in the burning shells during the latestages (Varma & Müller, 2023, Leidi et al., 2023). On the other hand, the stably stratifiedzones in large-scale shearing flows are also prone to dynamo action, which are driven byMHD instability such as the magnetorational instability (MRI) (e.g. Jouve et al., 2015, 2020,Meduri et al., 2024) or the Tayler instability (e.g. Spruit, 2002, Fuller et al., 2019). These dy-namos could produce the surface magnetic fields of main sequence magnetised massivestars but also contribute to the magnetic field amplification during the late stages of the star.The generatedmagnetic fields would contribute to the chemical element mixing and angularmomentum transport, which significantly influence the stellar evolution up to the explosionmechanism and the remaining compact object properties (e.g. Wheeler et al., 2015, Griffithset al., 2022, Fuller & Lu, 2022).
Main sequence star merger Third, these magnetised massive stars could be the productof twomain-sequencemassive starmergers. The observations ofmassive stars demonstratethat most of them evolve in binary systems (Sana et al., 2012), which suggests that someof them must end up merging. Moreover, the recent observations of the massive star HD148937 show that it is probably the product of a star merger (Frost et al., 2024). While thetwo stars merge, numerical simulations have shown that the magnetic field is amplified byMHD instabilities, which could be the MRI, even though magnetised shear instabilities suchas the Kelvin-Helmotz instability may also play a role in this amplification (Schneider et al.,2019). Assuming R∗ = 5R⊙ and magnetic flux conservation, the resulting magnetic field atthe surface is ∼ 9×103 G, which is consistent with observations. The magnetic flux is ΦB =
4×1028 Gcm2 in the innermost 1.5 M⊙ of the merger remnant. This flux would imply a verystrong magnetic field around BNS ∼ 3× 1016 G in the magnetar. However, the question ofthe magnetic relaxation to the expected tilted dipole and star spin-down remains unclear as
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Figure 2.8 — Radial profiles of the PNS density (a), entropy (b), temperature (c), electron fraction (d)at different evolution times. The grey bands indicate the regions unstable to convection accordingto the Ledoux criterion. The data were provided by 1D CCSN simulations of PNS evolution from thecode of Pascal (2021), Pascal et al. (2022). The EoS used is RG(SLY4) (Chabanat et al., 1998, Gulminelli& Raduta, 2015, Raduta & Gulminelli, 2019a).

three-dimensional numerical simulations are required (Schneider et al., 2020). Besides, themagnetic flux vary significantly in the star since ΦB = 3.5×1023 Gcm2 at the mass coordinate
16.9 M⊙, which is lower than at 1.5 M⊙. This challenges the usual extrapolation used to inferthe BNS from the measure of the star surface magnetic field.

Magnetic field stability Once the magnetic field in the star is formed, the field is eithermaintained by dynamo action or decays due to the resistivity. The latter case raises the ques-tion of themagnetic field geometry as it is expected to reach a stable configuration. This prob-lem applies to several astrophysical questions, such as the main sequence star mergers wehave just mentioned and the magnetic field evolution of white dwarves and NSs. Analyticalstudies demonstrated that purely poloidal (Markey & Tayler, 1973, Wright, 1973, Flowers &Ruderman, 1977) and purely toroidal (Tayler, 1973, Goossens & Tayler, 1980, Goossens et al.,1981) magnetic fields are unstable. This indicates that stable configurations must consist
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of both components. Duez & Mathis (2010), Duez et al. (2010) analytically derived a familyof stable configurations in barotropic equilibrium (i.e. parallel density and pressure gradi-ents), which are also stable in numerical simulations including stable stratification. In thestable configuration of their simulation, the toroidal magnetic energy represents ∼ 95% ofthe total magnetic energy corresponding to a ratio of the toroidal to the poloidal magneticenergies ET/EP ∼ 18. Other numerical simulations investigations suggest a minimum ratio
ET/EP ≳ 0.25 (Braithwaite, 2006, 2008, 2009, Akgün et al., 2013, Becerra et al., 2022b). Themaximumof ET/EP depends on the stratification and the ratio of the gravitational to the totalmagnetic energy (Becerra et al., 2022a).

Stable stratification is also a key ingredient to reach stability, as confirmed by numericalsimulations in which no stable configuration is found for a constant entropy profile (Mitchellet al., 2015, Becerra et al., 2022a,b). However, numerical simulations including the effectof rotation of this stability and implementing initial magnetic geometries stemming from asaturated dynamo state are sorely lacking.
2.2.2 . Post-collapse scenarios: dynamo action in the proto-neutron star

Alternatively, a promising mechanism to produce strong magnetic fields is the dynamoaction in the newly born PNS interior, hence the name ‘post-collapse-scenarios’. Here, wewill only focus on three dynamo process: the convective dynamo, the magnetorotationalinstbility (MRI)-driven dynamo, and the Tayler instability-driven dynamo (also called Tayler-Spruit dynamo). A general introduction to the rich problem of the dynamo in astrophysicswill be given in the next chapter (more precisely in Sect. 3.2). A dynamo was first invokedby Duncan & Thompson (1992) to explain the strong magnetic field of magnetars. Sincethen, 3D numerical simulations brought crucial results in this direction for different dynamomechanisms and strongly motivate the investigations undertaken during the preparation ofthis thesis.
Proto-neutron star structure In order to identify which regions are potentially prone to aspecific dynamo process and when, we must look at how the PNS internal structure evolves.1D CCSN numerical simulations provide the evolution of the PNS thermodynamical proper-ties in the radial direction (see e.g. Hüdepohl, 2014, Pascal, 2021, Pascal et al., 2022), whichdepend on the implemented PNS equation of state (EoS). Compared to 2D and 3D CCSNsimulations, these 1D simulations have the advantage to focus on the evolution of the PNSwithout having to resolve the evolution of the ejecta. The lower numerical cost allows to runmore models and integrate several seconds of the PNS evolution.

To identify which region of the PNS is stable to convection, we use the Ledoux stabilitycriterion, which reads
CL ≡ ∂Sρ

∣∣
P,Ye

dr S + ∂Yeρ
∣∣
P,S dr Ye < 0, (2.20)

where P , S, and ρ, are the pressure, entropy, and density, respectively. dr is the derivativein the radial direction. Since ∂Sρ and ∂Yeρ are usually negative, this criterion indicates thatnegative entropy and electron fraction gradients convectively destabilise the fluid. The per-turbation of a stably stratified region (CL < 0) produces gravity waves characterised by the
Brunt-Väisälä frequency

N 2 = g

ρ
CL , (2.21)
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Figure 2.9 — Evolution of the PNS radius (green line) and map of the Brunt-Väsälä frequency. Thestably stratified regions are indicated by N < 0 (blue). The origin of the time axis corresponds tothe core bounce. The data were produced by 1D CCSN simulations of PNS evolution from the codeof Pascal (2021), Pascal et al. (2022). The EoS used is RG(SLY4) (Chabanat et al., 1998, Gulminelli &Raduta, 2015, Raduta & Gulminelli, 2019a).

where g =−∂rΦ is the local gravitational acceleration with Φ the PNS gravitational potential.The stability criterion can therefore be rewritten as N 2 > 0. In the following, we choose todefine the Brunt-Väisälä frequency like in Hüdepohl (2014)
N ≡ sign(CL)

√
−g

ρ
|CL| , (2.22)

so that N < 0 (N > 0) for stably stratified (convectively unstable) regions.As an example, Fig. 2.8 shows the evolution of the PNS density, entropy, temperature andelectron fraction from a model run with the code of Pascal (2021), Pascal et al. (2022). Wefind the appearance of the convective zone (green band) and its evolution as described inSect. 2.1.2. This zone corresponds to the region with N > 0 in Fig. 2.9. We observe that theconvective zone spreads into the inner part of the PNS after ∼ 4s until its disappearance at
≳ 10s. Note that the values of N in the convective zone are artificially high because 1D sim-ulations can not take into account the flattening of the unstable gradient by the convection.We also notice that the PNS reaches its final radius (∼ 13km) ∼ 10s after the core bounce.
Convective dynamo The existence of a convective zone during ∼ 5s can be enough toproduce a dynamo thanks to the convective motions and the rotation. This type of dynamodrives the magnetic fields of several astrophysical objects such as planets and stars, like the
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Earth and the Sun. Numerical simulations have shown the existence of convective dynamoswith a wide variety of geometries and dynamics. The convective dynamos are usually sortedas a function of their magnetic field topology, which can harbour either a dominant axialdipole (dipolar dynamo) or not (multipolar dynamo) (e.g. Gastine & Wicht, 2012, Schrinneret al., 2014, Raynaud et al., 2015, Zaire et al., 2022, Pinçon et al., 2024). The appearance of oneof the geometries depends mostly on the rotation, the density gradient, and the magneticdiffusivity (also called resistivity).The first numerical simulations of a convective dynamo in a PNS were performed by Ray-naud et al. (2020). They modelled the convective zone of a PNS 0.2 s after the core bounceand obtained different convective dynamos. In the time series shown in Fig. 2.10 of a PNSrotating with a period of P = 2.1ms, the magnetic field (red and orange lines) exponentiallygrows until reaching a first plateau. Themagnetic strength is already strongwith a rootmeansquare (rms) magnetic dipole of ∼ 1014 G. A secondary growth amplifies the magnetic fielduntil the dipole reaches ∼ 1015 s. Therefore, two saturated states are reached: a weak and a
strong branch. The geometry of both the flow andmagnetic field change between these solu-tions. While in the weak branch, the magnetic field does not show any dominant large-scalecomponent, a large-scale 1016 G–toroidal magnetic emerges in the strong dynamo. The sat-urated states in both branches are independent of the intial magnetic field, which indicatesthe presence of a supercritical bifurcation.The saturatedmagnetic field in the strong branch is in a super-equipartition state, i.e. theratio of the magnetic to the kinetic energy densities EB/EK > 1. Figure 2.11 shows that thisratio in this branch scales like

EB/EK ∝ Ro−1 , (2.23)
where Ro ≡ u/(dΩ) with u the convective velocity, d the width of the convective zone, and Ωthe angular velocity. This scaling demonstrates that the super-equipartition state is charac-terised by the balance between the Lorentz force created by the strong magnetic fields andthe Coriolis force due to the fast rotation (Augustson et al., 2016). This balance is called the
magnetostrophic equilibrium. From Eq. (2.23), a scaling for the magnetic flux can be inferred

ΦB ∼ r 2
NSB ∝ (M 2

NSrNSΦo j 3)1/6 , (2.24)
where Φo and j are the heat flux at the outer sphere and the specific angular momentum ofthe PNS. Thus, the magnetic field scales as

B ∝
(

M 2
NSΦo

r 8
NS

)1/6

Ω1/2 . (2.25)
Masada et al. (2022) also investigated numerically the PNS convection but using different PNSevolution models and at different PNS evolution stages. They also find a dynamo solutionbut whose saturated state is always in a turbulent regime, i.e. EB/EK < 1. Therefore, they onlyfind the weak dynamo branch and not find the strong branch discovered by Raynaud et al.(2020).A second study by Raynaud et al. (2022) also investigates the dynamo in a 5 s–old PNSand the induced GW signal. While the magnetic field mitigates the GW amplitude in theweak dynamo regime (slow rotation), the GW amplitude steeply increases with rotation inthe strong dynamo regime (fast rotation), whatever the PNS age:

hfast ∝ hslowRo−4/3 ∝Ω8/5 , (2.26)
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Figure 2.10 — Numerical simulations of the convective dynamo in a fast rotating PNS (P = 2.1ms).Top: Figures A and B are three-dimensional snapshots of the ‘weak’ and ‘strong’ dynamo branches.Green/violet lines, red/blue isosurfaces, and colours on the inner sphere are the magnetic field lines,radial velocity, and entropy, respectively. Bottom: Time series (in physical and resistive units) of the ki-netic (blue), magnetic (red), and magnetic dipole (orange) energy densities. Inset: meridional slices ofthe azimuthal magnetic field in the weak and strong branches, respectively. Figures adapted from Ray-
naud et al. (2020).
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Figure 2.11 — Ratio of the magnetic to the kinetic energy densities as a function of the inverseRossby number, which is equivalent to the rotation rate of the outer sphere. The solid grey line is thebest-fit scaling EB/EK = 0.5Ro−1. The rotation period is also plotted in the green banner on the top ofthe plot. fOhm is the ratio of ohmic to total dissipation Figures adapted from Raynaud et al. (2020)

where hfast (hslow) is the GW amplitude in the fast (slow) rotation regime. The strain spec-trogram and the characteristic strain spectrum for the same convective dynamo case with
P = 2.1ms are plotted in Fig. 2.12. During the growth of themagnetic field (blue curve), severalpeaks emerge in the characteristic strain spectrum, which are interpreted as inertial modes.These waves are linked to the Coriolis force, which acts as a restoring force. When the strongsaturated state is reached, these peaks disappear but a mode at low frequencies (∼ 10Hz)appears in the spectrogram. This mode is caused the strong toroidal magnetic field, whichmakes it a direct GW signature of the dynamo.Although the convective dynamo is a promising mechanism to generate magnetar-likemagnetic fields, the convective layer is always located below a stably stratified layer. Themagnetic field lines must be lifted to the surface to explain the different astrophysical eventsrelated to magnetars. Thus, the dynamics of the stably stratified zone, including its interac-tion with the convective layer, must be investigated.
MRI-driven dynamo Dynamo action can also develop in stably stratified zones in the pres-ence of differential rotation. Indeed, these regions are prone to MHD instabilities which cangenerate large-scalemagnetic fields via a non-linear process. The latter will be winded by thedifferential rotation to feed the MHD instability. This looping process can amplify the mag-netic field until saturation due to diffusivities created by the instability-induced turbulence.This type of dynamo was reported in numerical simulations for several MHD instabilities,such as the magnetic buoyancy (Cline et al., 2003), the Tayler instability (Petitdemange et al.,2023, Barrère et al., 2023), and the MRI (Rincon et al., 2007).
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Figure 2.12 — GW signature of the convective dynamo with a rotation period of P = 2.1ms. Left:GW spectrogram du signal upon which the following characteristic frequencies are overplotted: therotation frequency frot, the convective turnover frequency fturn, and the Alfvén frequency fA. Right:GW characteristic strain for different phases of the dynamo: linear growth (blue), weak dynamo sat-uration (orange), strong dynamo saturation (green). Grey lines denote the sensibility of several GWobservatories. Figures adapted from Raynaud et al. (2022)

The latter develops in differentially rotating stably stratified regions with an angular fre-quency that decreases with the radius, i.e. the shear rate q ≡ r /ΩdrΩ < 0. In the ideal casewithout any diffusivity and viscosity, the flow satisfying q < 0 is unstable to the MRI whateverthe magnetic field strength. Therefore, differentially rotating flows which are hydrodynami-cally stable according to the Rayleigh criterion q É 2 becomes unstable in the presence of amagnetic field. The growth rate of the instability reads σ= qΩ/2 and so does not depend onthe magnetic field neither. The instability can be seen as an oscillatory deformation of initallarge-scale vertical magnetic field lines. Therefore, during the growth, the MRI modes formhorizontal layers alternating the sign of the generated horizontal magnetic. These layers arecalled the channel modes, whose wavelength is proportional to the magnetic field.
Differentially rotating flows with q < 0 are common in astrophysics, which explains whythe MRI was invoked in the context of accretion disks (e.g. Hawley et al., 1996, Fromang et al.,2007, Lesur & Ogilvie, 2008, Riols et al., 2013, Held et al., 2024) and stellar radiative zones (e.g.Wheeler et al., 2015, Jouve et al., 2015, 2020, Griffiths et al., 2022, Meduri et al., 2024). Butthis configuration naturally appears during the core collapse and the PNS contraction, whichmakes the MRI-driven dynamo another promising mechanism to produce strong magneticfields in the PNS stably stratified zone, as first suggested by Akiyama et al. (2003).
The first numerical simulations aimed at modelling local regions of the nascent PNS. Themost commonl setup is the shearing box in which themodelled regionmust be small enoughto consider a differential rotation ∆Ω≪Ω. However, the box must be big enough to resolvethe typical length scale of the turbulent flow and magnetic field, so that periodic boundaryconditions can be applied. Local simulations using this set-up (or a shearing-disc set-up,Obergaulinger et al., 2009) show that a strong magnetic field reaching ∼ 1014 − 1015 G canbe maintained in the regime of millisecond rotation periods (Masada et al., 2012). The firstsimulation of MRI in a global setup also show that the dynamo produces a large-toroidal



56 CHAPTER 2. THE QUESTION OF MAGNETAR FORMATION

Figure 2.13 — Numerical simulations of MRI-driven dynamo in a fast rotating PNS (P ∼ 1ms). Left:Three-dimensional snapshot of the magnetic field intensity. Right: Time series of the total magneticenergy (black), the total magnetic dipole energy (blue), and the magnetic axial dipole energy (green).
Figures adapted from Reboul-Salze et al. (2021).

magnetic-field of 1015 −1016 G in the same rotation regime, which is consistent with the for-mation of a magnetar (Mösta et al., 2015).
Reboul-Salze et al. (2021) also produced global models of MRI-driven dynamos in a spher-ical unstratified PNS rotating with a period of P ∼ 1ms. Despite a dominant small-scale ge-ometry (see snapshot in Fig. 2.13), this study demonstrates that the dynamo can produce a

120◦-tilted magnetic dipole of ∼ 1014 G, which represent ∼ 5% of the total magnetic field (seetime series in Fig. 2.13). In a follow-up, Reboul-Salze et al. (2022) investigated the impact of arealistic density profile of the stably stratified outer region of a 0.2 s–old PNS. The magneticdipole is still mostly equatorial but with a strength of ∼ 6×1012 G, which is ∼ 17 times weakerthan in the unstratifiedmodel. Usingmagnetic flux conservation, the dipole reach∼ 7×1013 Gat the end of the PNS contraction, which is in the low range of the classical magnetar dipoles.However, the magnetic field in now dominated by an axisymmetric toroidal magnetic fieldof ∼ 1.4×1014 G, which should be sufficient to produce magnetar-like acitivty. Besides, theaxisymmetric magnetic field harbour an oscillatory behavior that is well described by a αΩmechanism (see Sect. 3.2.5 for a detailed introduction to this kind of mechanism).
The impact of other ingredients specific to PNS physics has been investigated in otherstudies:
• The neutrinos interact with the PNS matter, which is optically thick until a few secondsafter its formation. In a very fast rotating and young PNSwith a radius of 40 km, the neu-trino can prevent the development of the MRI in the inner region if the initial magneticfield is ≲ 1012 G (Guilet et al., 2015). Between 20 and 30 km, the neutrinos act as a dragforce or a viscosity that can slow down the growth of the MRI modes and so impact thesaturated strength of the large-scale magnetic fields. However, the neutrinos do notinfluence the MHD in the PNS outer region.
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Figure 2.14 — Local simulations of the MRI-driven dynamo in the high-Pm regime. Left: Snapshotsof the y-component (equivalent to the azimuthal direction in spherical coordinates) of the velocityand magnetic fields. Right: Time and spatial average of the magnetic energy in the saturated state asa function of the magnetic Prandtl number Pm and for different values of the Reynolds number Re.
Figures adapted from Guilet et al. (2022).

• Second, the thermal stratification due to entropy gradient significantly influences theMRI. Guilet &Müller (2015) report that stronger stratifications decrease theMRI growthrate, while the magnetic energy increases. This suggests that stratification delay thedevelopment of secondary instabilities that saturate the instability. In the global sim-ulations of (Reboul-Salze et al., 2022), the MRI modes are killed at the equator where
N /Ω is the larger.

• Finally, the question of the low-resistivity regime is critical for PNS as the resistivityis ∼ 1011 −1013 times smaller than the neutrino viscosity (Thompson & Duncan, 1993,Barrère et al., 2023). This regime (as any astrophysical regime) is unreachable by cur-rent numerical simulations but may significantly impact the dynamo mechanism (seeSect 3.2) and so the MRI-driven dynamo. New numerical studies in a shearing box set-up are optimistic as the magnetic energy increases with Pm at moderate values of Pmand plateaus at large Pm (Guilet et al., 2022, Held & Mamatsashvili, 2022). These tworegimes are illustrated by the right plot in Fig. 2.14. At large Pm, the viscous and re-sistive scales are clearly seperated. This can be seen in the snapshots the velocity andmagnetic fields at Pm = 256 in the same figure since the typical length scale of the mag-netic field is far smaller than that of the velocity field.
2.2.3 . Alternative scenarios

After introducing the main magnetar formation scenarios, we briefly mention two alter-native mechanisms:
• Binary NS mergers can result in the formation of very massive millisecond magnetars,whose magnetic field could explain the plateau phase in the X-ray emission of someshort gamma-ray bursts (Metzger et al., 2008, Lü & Zhang, 2014, Gompertz et al., 2014).This magnetic field could be the product of the MRI-driven dynamo as it would de-velop in similar physical conditions as in a PNS (Guilet et al., 2017). Heavy numericalsimulations of relativistic MHD demonstrated that the MRI contributes to amplify the
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magnetic field of the compact remnant up to ∼ 1016 − 1017 G (see App. C.3.5 and e.g.Kiuchi et al., 2024). As in the millisecond magnetar model for hypernovae/long GRBsand SLSNe, the extreme generated magnetic dipole efficiently spins down the magne-tar to power the explosion ejecta. If the magnetar mass excceeds the TOV mass limit,the strong spin-down can cause its collapse into a BH since the rotation may not befast enough to balance the gravity. This collapse can be observed as a sudden dropin the light curve during the afterglow emission. Nonetheless, the merger rate is veryweak (∼ 3×10−14 R−3
MW yr−1, with RRW the Milky Way disc radius) and so the majority ofmagnetars are not the result of a binary NS merger.

• Finally, the tricky problem of dynamo action in the low-resistivity regimemotivated thestudy of a new dynamo mechanism which could amplify the magnetic field at laterstages of the PNS evolution. This stage must be late enough for the PNS to be opticallythin to neutrinos, i.e. the high neutrino viscosity vanishes. Therefore, Pm becomeslower (but still large as calculated in the Supplementary Materials of Chap 6), whichcould ease the development of large-scale magnetic fields. Lander (2021) suggests thatthe precession motion of the PNS could produce a dynamo ∼ 100s after the PNS forma-tion. However, this scenario is still preliminary and deserves further investigations.

2.3 . The necessity of a new scenario

To recap, the pre-collapse scenario is an intuitive way to explain the formation of mag-netars, but the magnetic field of the progenitor core needs to be strong and to survive thefull stellar evolution (Spruit, 2008). Moreover, it may be difficult for this scenario to explainthe population of both pulsars and magnetars (Makarenko et al., 2021). Also, numerical sim-ulations suggest that the efficiency of both convective and MRI-driven dynamos increasesfor faster PNS rotation (Raynaud et al., 2020, 2022, Reboul-Salze et al., 2021, 2022), whichmakes them good candidates to explain the central engine of extreme explosions. However,it may be more challenging for them to explain magnetar formation in standard SNe, whichrequires slower initial rotation of the PNS. Indeed, the observed SN remnants associatedwithGalactic magnetars have an ordinary kinetic explosion energy (Vink & Kuiper, 2006, Martinet al., 2014, Zhou et al., 2019). This suggests that most Galactic magnetars are formed instandard SNe, which is consistent with the fact that extreme explosions represent about 1 %of all SNe, whereas magnetars constitute at least 10 % of the whole Galactic young neutron-star population (Kouveliotou et al., 1994, Gill & Heyl, 2007, Beniamini et al., 2019). Under theassumption that all the rotational energy of the PNS is injected into the kinetic energy of theexplosion, the kinetic energy of the proto-magnetar must not exceed the standard kineticenergy of a SN explosion of 1051 erg, which translates into a constraint on its initial rotationperiod of ≳ 5ms (Vink & Kuiper, 2006).
All things considered, the aforementioned scenarios require that the progenitor core beeither strongly magnetised or fast rotating. It remains uncertain whether one of these con-ditions is met in a sufficient number of progenitors. We therefore present the first investiga-tion of a new scenario wherein magnetars form from a slowly rotating, weakly magnetisedprogenitor. We consider the situation in which a newly formed PNS is spun up by the mat-ter initially ejected by the SN explosion that remains gravitationally bound to the compactremnant and eventually falls back onto its surface. As the accretion is asymmetric, recent
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numerical simulations suggest that the fallback can bring a significant amount of angularmomentum to the PNS surface (Chan et al., 2020, Stockinger et al., 2020, Janka et al., 2022).We investigate the possibility that a magnetar may form due to the dynamo action triggeredby the spin-up from this fallback accretion. In this scenario, the MRI is expected to be stablebecause the PNS surface rotates faster than the core. Convection is also stable because thePNS is fully stably stratified at the start of the fallback, i.e. roughly ∼ 5−10s after the corebounce (Stockinger et al., 2020, Janka et al., 2022). We suggest that themagnetic field is ampli-fied by another dynamo mechanism: the so-called Tayler-Spruit dynamo, which is driven bythe Tayler instability. This dynamo is usually invoked for magnetic field amplification in thecontext of stellar interior physics, especially because of its suspected implications for angu-lar momentum transport and the magnetic desert in Ap/Bp stars (e.g. Rüdiger & Kitchatinov,2010, Szklarski & Arlt, 2013, Bonanno & Guarnieri, 2017, Guerrero et al., 2019, Ma & Fuller,2019, Bonanno et al., 2020, Jouve et al., 2020). However, this dynamo process has never beenstudied in the framework of magnetar formation.
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As briefly mentioned in the previous chapter, the Tayler-Spruit dynamo is a crucial mecha-nism to understand angular momentum transport in stellar interiors and could producethe magnetic fields of magnetars. This dynamo mechanism is central to this thesis, which iswhy we devote a chapter to its modelling. We will start by presenting the general frameworkof the astrophysical fluid dynamics modelling and describe the mathematical formalism ofthe magnetohydrodynamics (MHD) approach (section 3.1). Then, we will introduce the richand complex dynamo problem (section 3.2). Finally, we will describe the Tayler instabilityand its capacity to sustain a dynamo (section 3.3). Note that we will take into account neitherthe relativistic effects nor the quantum effects in this chapter and that the equations will bewritten using the cgs units convention.
60
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3.1 . Magnetohydrodynamics (MHD) theory

3.1.1 . Modelling of astrophysical plasmas
Most of the matter in the Universe is in a plasma state, i.e. a gas mostly composed ofelectrons and ions. The motion of these charged particles allows the plasma to conduct elec-tricity and so harbour a magnetic field. The electromagnetic field also produces feedback bymodifying themotion of the particles, whichmakes the electromagnetic field an integral com-ponent of the plasma. This coupling between the charged particles and the electromagneticfield tends to generate two complementary tendencies: on the one hand, a disorganisedbehaviour due to thermal agitation, on the other hand, an ordered tendency due to electro-magnetic feedback. The plasma dynamics is therefore intrinsically strongly non-linear. Thepropagation of perturbations in the plasma is also complex because it implies both colli-sions or sound waves and electromagnetic waves. Plasma physics is thus located betweenstatistical mechanics (description of a large number of particles) and electromagnetism. The

mechanical part of the plasma dynamics is governed by the equation
mdt v = q(E+ 1

c
v×B) , (3.1)

where E, B, and v are the respective electric, magnetic, and velocity fields. m, q and c arethe mass and the charge of the particle and the speed of light in vacuum, respectively. The
electromagnetic part is governed byMaxwell’s equations, which reads in their local form (withCGS convention)

∇ ·E = 4πρ (Poisson’s equation) , (3.2)
∇ ·B = 0 (Solenoidal condition) , (3.3)
∇×E =−1

c
∂t B (Faraday’s law) , (3.4)

∇×B = 1

c
(4πJ+∂t E) (Ampere’s equation) , (3.5)

where ρ and J ≡ ρv are the respective charge density and electric current.Depending on their number density n and temperature T , astrophysical plamas show awide phenomenological diversity from the solar wind (n ∼ 3−10cm−3, T ∼ 104 −106 K at 1 AU)to neutron stars (NSs, n ∼ 1037 cm−3, T ∼ 106−1011 K depending on their age). However, everyplasma is considered as quasi-neutral from a macroscopic point of view, i.e. on large spatialscales. These scales must be large enough to consider that every charge interacts continu-ously with a large number of neighbouring particles, which creates a long-range Coulombforce. Also, any deviation from this quasi-neutral state is compensated quickly due to thestrong electrostatic forces in the plasma. We can therefore define characteristic length andtime scales above which every plasma respects the quasi-neutrality. First, the Debye length
λD ≡

√
kBT

4πnq2
, (3.6)

where kB is the Boltzmann constant. The Debye length can be seen as the limit below whichthe electron “motion” is driven by thermal agitation (deviation from neutrality) and abovewhich the electrostatic force damps this agitation. Since particles with opposite charges at-tract each other, they tend to create an accumulation of opposite charges around them at
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a distance ∼ λD. This fluctuation in charge density screens the electric fields, in the sensethat the electric (or Coulomb) potential decreases exponentially and becomes negligible atlengths greater than λD (Debye &Hückel, 1923). Second, the plasma (or Langmuir) frequency
ωpe ≡

√
4πne e2

me
, (3.7)

where ne , me and e are the electron density, the mass of the electron and the elementarycharge, respectively. 2π/ωpe can be seen as the timescale for the electrostatic force to restorethe neutrality of the plasma.From these two characteristic scales, we define the criteria which underlie the descrip-tions of plasmas:
(i) The typical scale of the system L must be larger than the Debye length:

L/λD ≫ 1.
(ii) The number of particles in a sphere of radius λD (Debye sphere) must be large (plasmaapproximation):

nλ3
D ≫ 1.

(iii) The quasi-neutrality imposes similar densities of positive and negative charges:
ne =∑

αnα, where α represent the different species of ions.
(iv) The collision frequency between electrons and the neutral particles of the plasma fcmust not be too large:

2π fc <ωpe .
We can add that the distance betweenparticlesmust be larger than the thermal deBrogliewavelength (for relativistic electrons)

λB ≡ hc

(8π)1/3kBT
< n−1/3 , (3.8)

(h is the Planck constant) to consider the plasma as classical, as opposed to a quantumplasma.According to this criterion, the interior of a proto-neutron star (PNS) can either be a classicalor a quantum plasma depending on its temperature and so its age. The minimum tempera-ture for a classical PNS interior is
Tc = hc

(8π)1/3kB
n1/3 ∼ 1010

( n

1037 cm−3

)1/3
K (3.9)

Below Tc , quantum effects can appear in PNSs such as neutron superfluidity and protonsuperconuctivity for temperatures. However, 1D core-collapse supernovae (CCSNe) simula-tions show that temperatures above 1010 K are maintained in the PNS even ∼ 15s after thecore bounce, when the fallback accretion starts (e.g. Pons et al., 1999, Roberts, 2012, Hüde-pohl, 2014, Roberts & Reddy, 2017). In the context of our new magnetar formation scenario,the PNS interior is therefore a classical plasma.A criterion can also be defined to consider a plasma as relativistic:
kBTe > me c2 , (3.10)
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i.e. Te ≳ 6×109 K. This temperature is easily reached in PNSs where the temperature exceeds
1010 K.Finally, we define the plasma coupling parameter as the ratio between the electrostaticinteraction and the thermal energy

Γ≡ q2

kB T n−1/3
. (3.11)

From this parameter, we infer the Landau length rL ≡ q2/(kBT ). Therefore, depending on thedistance between particles d ∼ n−1/3, the plasma can either be in a kinetic (Γ> 1,d > rL) or ina correlated (Γ< 1,d < rL) regime. The PNS interior interior is strongly correlated with
Γ∼ 8×10−14

(
T

5×1010 K

)−1 ( n

1037 cm−3

)−1/3
≪ 1. (3.12)

To conclude this short introduction to plasma theory, wewill see the different approachesto understanding the strong non-linear dynamics of astrophysical plasmas:
Corpuscular approach The so-called theory of orbits consists in studying themotion ofsingle particles evolving in a fixed electromagnetic background field. Though this approachmay appear simple, the main difficulty remains in the non-linear equations of motion, espe-cially with complex electromagnetic field configurations. This theory describes precisely themotion of particles in plasmas with low densities where the effect of neighbouring particlesis small compared to the background field. The astrophysical applications are therefore thesolar corona, the cosmic rays, or the Van Allen belts.
Statistical approach In this approach, called the kinetic theory, the focus is on largegroups of N particles in a 6× N -dimensional space. The evolution of the system is there-fore described as one point in the 6×N -dimensional state space, instead of N points in theusual 6-dimensional phase space of positions and velocities. Since describing the coupledevolution of each particle is difficult and costly for large values of N , the system is not usu-ally described by a single point in the state space but as a density of states of the system,which is a probability density function. This density of states contains all the information ofthe plasma, and its evolution is described by the Liouville equation. However, we usuallylook at the evolution of reduced probability densities which represent the probability of find-ing a particle in a subset of the state space. We must therefore solve a set of N equations,called the BBGKY hierarchy. This system allows approximations and truncations, which leadto different well-known equations: the Vlasov equation, the Boltzmann equation, and theFokker-Planck equation. Though we lose the discernability of particles, this approach pro-vides a macroscopic description of the plasma.
Fluid approach This approach assumes a non relativistic plasma in which each speciesis in local thermodynamical equilibrium, i.e. the distribution of these species is determinedby collisions only (Maxwellian distribution). Therefore, macroscopic quantities can be de-fined such as the density, the (mean) velocity, temperature, and the pressure by averagingthe distribution. The plasma is thus composed of several fluids, which interact with an elec-tromagnetic field. This field is reduced to the magnetic field because the electric field is usu-ally strongly reduced due to the screening phenomenamentioned earlier. In the limit of long
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timescales λ≫ω−1
pe , the plasma can be seen as a single conducting fluid and themacroscopicquantities are therefore those of ions because the electrons are far lighter. This approach iscalled the MHD theory.

Which approach for proto-neutron stars? While introducing the description of plas-mas, we have seen that the hot PNS interior can be considered as a classical plasma contain-ing relativistic electrons. The strong correlation of the PNS interior allows us to use a fluidapproach. The treatment of relativistic electrons would require a bi-fluid approach. How-ever, in such extreme densities and temperature, the collisions are fast enough to describethe different species in the PNS with the same thermodynamical quantities and so as onesingle plasma. That is why we use the MHD approximation in this thesis work to model thedynamics of the PNs interior (except in Chap. 9) .
3.1.2 . Resistive MHD set of equations

The five equations governing plasma dynamics in theMHD approximation are amix of hy-drodynamic equations andMaxwell equations. The first equation illustrates the conservation
of mass (continuity equation):

∂tρ+∇ · (ρv) = 0, (3.13)
where ρ is the fluid density. The second equation is the solenoidal condition Eq. (3.3), which re-flects the non-existence of magnetic monopoles and the nullity of the magnetic flux througha closed surface. The third equation describes the conservation of momentum (equation of
motion or Navier-Stokes equation), which reads in a rotating frame

ρ (∂t v+v ·∇v+2Ω×v) =−∇p +ρg+ J×B

c
+∇ ·σ , (3.14)

whereΩ is the angular frequency of the rotating frame, g the gravitational acceleration, and pa modified pressure which includes the centrifugal force. This formulation clearly shows therespective forces applied to the fluid: the Coriolis force, the pressure of the fluid, the gravita-tional force, the Lorentz force, and the force due to viscous frictions, respectively. Note thatthe electric force was neglected in the non-relativistic Lorentz force because of the screeningeffect mentioned earlier. Thios force can be rewritten using Eq. (3.5)
J×B

c
= 1

4π
(∇×B)×B =∇

(
B 2

8π

)
+ 1

4π
(B ·∇)B , (3.15)

where we also neglected the current displacement term ∂t E/c by invoking the long timescaleapproximation of MHD theory. The first and second terms are the magnetic pressure andthe magnetic tension, respectively. In the viscous friction term, the Cauchy stress tensor σ isgiven by:
σi j = 2νρ

[
1

2

(
∂x j vi +∂xi v j

)
− 1

3
δi j∇ ·v

]
∼ νρ∂x j vi , (3.16)

with ν the kinematic viscosity and δi j is the Kronecker symbol. The fourth equation is the
induction equation, which represents the evolution of the magnetic field. Using Eq. (3.4), itreads

∂t B =−c∇×E . (3.17)
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In order to derive an expression for the electric field E, we subtract the equation of motionof the electrons from the one of ions. We finally obtain the generalised Ohm’s law

E =−v×B

c
+ η

c
J+ J×B

ne ec
− (J×B)×B

γρiρe
−∇ ·Pe

ne ec
+ me

ne e2
∂t J , (3.18)

where e is the (absolute value of the) charge of the electron and γ is the collision couplingconstant between ions and electrons. η is the resistivity (or magnetic diffusivity), which reads
η= 2×10−5

(
ρ

4×1014 gcm−3

)−1/3 (
Ye

0.2

)−1/3

cm2 s−1 , (3.19)
for relativistic and degenerated electrons (Thompson & Duncan, 1993), where Ye is the elec-tron fraction. The different terms of Eq. (3.18) represent:

(i) the electromotive force, in which the electric field is generated by the motion of elec-trons,
(ii) the resistivity caused by collisions between electrons and other species,
(iii) the Hall effect, which creates an electric field due to the drift between electrons andions,
(iv) the ambipolar diffusion, which generates an electric field due to a drift betweenprotonsand neutral particles,
(v) the electronic pressure,
(vi) the contribution of the electron inertia to the electric current.

In cold NSs, the Hall effect is important in the crust, while the ambipolar diffusion is themaindiffusion process in theNS core. However, the large frequency of collisions between particlesin hot PNSs allows to neglect these effects, and also the electronic pressure and the inertialterms. Therefore, (except in Chap. 9) we will only keep the first two terms of Ohm’s law andso limit our theoretical framework to the so-called resistive MHD. We can now rewrite theinduction equation
∂t B =∇× (v×B)+η∆B , (3.20)

where we assumed an homogeneous resisvity η. Note that if the resistivity is neglected (theequivalent of infinite electric conductivity) and so is the viscosity, we refer to the so-calledideal MHD. The fifth equation is the energy (or heat) equation, which formulates the evolutionof the entropy, noted s:
ρT (∂t s +v ·∇s) =∇ · (k∇T )+Φν+η (∇×B)2

4π
+ϵ , (3.21)

where kis the thermal conductivity. In the following, k will be considered homogenous. Thisallow us to use the thermal diffusivity κ ≡ k/(ρ0cp ), with ρ0 and cp , the mean density andspecific heat capacity at constant pressure, respectively. Φν is the viscous heating, whichreads
Φν ≡ 2ρ

[
1

4

∑
i

∑
j

(∂x j vi +∂xi v j )2 − 1

3
∇ ·v

]
. (3.22)
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The two last terms are the Ohmic heating and source terms, respectively. Finally, we mustadd an equation of state (EoS) to close the system of equations. One can use a simple relationdescribing the variations of density due to temperature and pressure:
1

ρ
dρ =−αT dT +βp d p , (3.23)

where
αT ≡− 1

ρ
∂Tρ|p (3.24)

and
βp ≡ 1

ρ
∂pρ|T (3.25)

are the thermal expansions and the compressibility, respectively. Note that we can add theimpact of the electron fraction, which would require the addition of another equation similarto Eq. (3.21) to take into account its evolution. The electron fraction is a very important quan-tity in the context of NS physics as seen in the previous chapter (Sect. 2.2.2). The questionof the EoS is still a very active research topic. Hundreds of EoS have been developped1 (e.g.Lattimer & Swesty, 1991, Shen et al., 2011, Gulminelli & Raduta, 2015, Raduta & Gulminelli,2019b) for hot and cold NS matter, which can even include exotic matter such as hyperonsor quarks (e.g. Otto et al., 2020). The observations of NSs in the X-ray domain with NICER arecrucial to constrain the relation between the NS radius and mass and so to find a realisticEoS and understand the NS structure.
3.1.3 . Conservation laws in ideal MHD

Similarly to hydrodynamics, there exist conserved quantites in the framework of idealMHD. First, the magnetic flux ΦB ≡ ∫
ΣB ·dS evolves as

dtΦB =
∫
Σ
∂t B ·dS+

∮
∂Σ

B · (v×dl) , (3.26)
where Σ is a surface with a contour noted ∂Σ which follows the fluid motion. dS and dl arethe respective associated infinitesimal elements of the surface Σ and contour ∂Σ. Using theideal induction equation

∂t B =∇× (v×B) (3.27)
and the right vector calculus identity, we have

dtΦB =
∫
Σ
∇× (v×B) ·dS−

∮
∂Σ

(v×B) ·dl . (3.28)
Finally, we use Stokes’ theorem and obtain

dtΦB =
∫
Σ
∇× (v×B) ·dS−∇× (v×B) ·dS = 0. (3.29)

Thus, the magnetic flux is conserved.From this first conservation law, we can infer that the motion of an element of the fluidsurface crossing a magnetic field line follows the advection of the field line. Conversely, the
1Many of the EoS are listed with their tables in open access on the website https://compose.obspm.fr.

https://compose.obspm.fr
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magnetic field line can only follow the evolving element of the fluid surface. The magneticfield line is therefore “frozen” in the fluid. This can also be demonstrated analytically. Indeed,the induction equation can be rewritten

∂t B+v ·∇B = B ·∇v− (∇ ·v)B . (3.30)
Using the continuity equation (3.13), the previous equation can be rewritten

∂t

(
B

ρ

)
+v ·∇

(
B

ρ

)
=

(
B

ρ
·∇

)
v . (3.31)

Let δl be an infinitesimal segment advected by the flow. The velocity variation between bothends of the segment is δv = δl ·∇v. Therefore, the evolution of δl reads
∂tδl+v ·∇δl = (δl ·∇)v . (3.32)

Thus, B/ρ and δl have the same transport equation and are advected and distorted the sameway. The conservation of the magnetic flux and the freezing of the magnetic field lines con-stitute Alfvén’s theorem.Second, the magnetic helicity in a volume V is defined as
Hm ≡

∫
V

A ·BdV , (3.33)
with A the magnetic vector potential B =∇×A. Qualitatively, magnetic helicity measures theknottedness of the magnetic field within the volume V . Since

∂t A =−c(E+∇Φe ) = v×B− c∇Φe , (3.34)
where Φe is the electric potential and using the ideal induction equation (Eq. (3.27)), we have

∂t (A ·B) = (v×B) ·B− c∇Φe ·B+A ·∇× (v×B) , (3.35)
which can be rearranged in the following explicitly conservative local evolution equation for
A ·B:

∂t (A ·B)+∇ · [Φe B+A× (v×B)] = 0. (3.36)
Thus, the magnetic helicity is conserved. This law formulates the conservation of magneticlinkages in the absence of resistivity or magnetic reconnection.

3.1.4 . MHD waves and instabilities
MHDwaves The presence of themagnetic field in the hydrodynamic equations addsmorecomplexity to the fluid dynamics. In the case of waves, the magnetic pressure and tensionin the Lorentz force can act as restoring forces and so produce new kinds of waves. As areminder, in a rotating hydrodynamic fluid, the pressure, the Coriolis force, and the gravita-tional force can produce the sound, inertial, and gravity waves, respectively.To demonstrate the existence of these MHD waves (and instabilities), we will use theperturbative method, which consists in decomposing the fields and scalar quantities in anaveraged and a perturbed component: F = F0+δF andQ =Q0+δQ with |δF|≪ |F0| and δQ ≪Q.This method will allow us to linearise the MHD equations, i.e. eliminate the non-linear terms,which greatly simplifies the equations to solve.
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In the cartesian frame (ex ,ey ,ez ), let us consider a non-rotating isothermal fluid with a uni-formmagnetic field B0 = B0ez . The small perturbations of a field F and a scalar quantityQ areexpressed in the following form δF ∝ δQ ∝ exp[i (ωt −k ·x)] where ω and k are the pulsationand the wave number, respectively. Assuming a fluid initially at rest with constant pressureand density ρ0, the perturbed ideal MHD equations read
∂tδρ =−ρ0∇ ·δv , (3.37)

ρ0∂tδv = (∇×δB)×B0

4π
− c2

s ∇δρ , (3.38)
∂tδB =∇× (δv×B0) , (3.39)

where cs ≡
√
∂ρp|s is the sound speed in the fluid. The perturbed density and magnetic field

can be written
δρ = k ·δv

ω
, (3.40)

δB = (k ·δv)B0 − (k ·B0)δv

ω
. (3.41)

Assuming that the perturbation propagates in the xz-plane and definingφ the angle between
B0 and k, the perturbed equation of motion (3.38) in which we incorporated the expressionof δρ and δB (Eqs. 3.40 and 3.41) readω2 − (v2

A + c2
s )k2 0 −c2

s k2 cosφ
0 ω2 − v2

Ak2 0
−c2

s k2 cosφ 0 ω2 − c2
s k2

δvx

δvy

δvz

= 0, (3.42)

where k ≡ |k| is the norm of the wave number and vA ≡ |B0|/
√

4πρ0 is the Alfvén velocity. Bycalculating the determinant of the matrix, we obtain the following dispersion relation
(ω2 − v2

Ak2)(ω4 −ω2(v2
A + c2

s )k2 + v2
Ac2

s k4 cos2φ) = 0, (3.43)
Therefore, we have a first new kind of wave ω2 = v2

Ak2, which is called the Alfvén wave. Thiswave is transversal (i.e. field perturbations are perpendicular to k and B0) and is due tomagnetic tension. The other waves are described by the eigenmodes
ω2
± = 1

2

(
(v2

A + c2
s )k2 ±

√
(v2

A + c2
s )2k4 −4v2

Ac2
s k2 cos2φ

)
, (3.44)

where ω+ and ω− are the fast and slow magnetosonic modes, respectively. First, for φ = 0(transversal wave), ω+ = ±vAk and ω− = ±csk are the Alfvén and sonic modes, respectively.
Second, for the φ = π/2 (longitudinal waves), ω+ = ±

√
v2

A + c2
s k is the fastest magnetosonic

mode with a speed of csm ≡
√

v2
A + c2

s and the slowmode does not propagate/oscillate ω− = 0.
The three eigenmodes can be illustrated in a phase diagram as in Fig. 3.1.
MHD instabilities: case of theMRI Conductive fluids are also prone to new instabilities inthe presence of a magnetic field, such as the Tayler instability (Tayler, 1973) and the MRI (Bal-bus & Hawley, 1991). The latter, which was mentioned in the previous chapter in the con-text of magnetar formation (Chap. 2), is the most famous example because it shows that a
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Figure 3.1 — Phase diagram of the three magnetosonic modes.
weakmagnetic field can destabilise a hydrodynamically stable fluid in differential rotation. Todemonstrate the existence of such instability, let us consider a fluid in the cylindrical frame(es ,ez ,eφ) with a constant density ρ0 and an initial azimuthal velocity vφ,0 = sΩ(s)eφ. The rota-tion profile is assumed to depend only on the cylindrical radius Ω(s) =Ω0s−q , where

q ≡ dln s lnΩ (3.45)
is the shear rate. The fluid is considered to be in hydrostatic equilibrium, i.e. −∇p +ρg = 0and we introduce a uniform magnetic field B0 = B0ez . We only consider perturbations alongthe z-axis δF ∝ δQ ∝ exp[i (ωt −kz z)], which implies that δvz and δBz are uniform accordingto the continuity equation and the solenoidal condition. We therefore impose δvz = 0 andintegrate δBz in B0. The linearised equations of ideal MHD now read

∂t v =−δv ·∇vφ,0 −2Ω(s)ez ×δv+ 1

4πρ0
(∇×δB)×B0 , (3.46)

∂t B =∇× (vφ,0 ×δB−B0 ×δv) . (3.47)
After some algebra and incorporating the perturbedmagnetic field in the equation ofmotion,the latter read (

ω2 − v2
Ak2

z 2iωΩ0

−iΩ0
(
(2−q)ω+qv2

Ak2
z /ω

)
ω2 − v2

Ak2
z

)(
δvs

δvφ

)
= 0. (3.48)

The determinant of the matrix gives the following dispersion relation
ω4 −ω2(v2

Ak2
z + κ̄2)+ v2

Ak2
z (v2

Ak2
z −2qΩ2

0) = 0, (3.49)
where κ̄2 ≡ 2(2 − q)Ω2

0 is the epicyclic frequency. We see that for the hydrodynamic case(vA = 0), the relation becomes ω2 = κ̄2 and we find the Rayleigh criterion because the fluid
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is stable for q ≤ 2. In the magnetic case, the stability criterion becomes k2
z v2

A −2qΩ2 ≥ 0 andthe critical wave number below which the fluid is MRI-unstable is k2
c = 2qΩ2

0/v2
A. Thus, theMRI develops if the rotation rate decreases with the cylindrical radius s. We also notice thatany magnetic field strength destabilises the fluid if any values of kz are permitted (infinitedomain). Diffusivities introduce a minimum magnetic field strength, while a finite domainimplies a maximum one. The growth rate of the MRI most unstable mode is

σ=− Im(ω) = qΩ0/2, (3.50)
and so does not depend on the magnetic field strength. Note that the influence of the mag-netic field strength on the MRI appears when we consider non-ideal MHD, i.e. when ν ̸= 0,
η ̸= 0, or κ ̸= 0.

3.2 . Dynamo theories

The following section introduces the rich field of dynamo theory and has been inspiredby the review of Rincon (2019). Tobias (2021) is also a very nice review of the topic.
3.2.1 . Astrophysical dynamos

The picture provided by the MHD theory of plasma modelling suggests that the flows of(turbulent) fluidsmay amplify and self-sustain their ownmagnetic fields. The questions of thegrowth and the saturation of the magnetic fields, constitute the so-called dynamo problem.This problem is central in astrophysics to explain the extremely rich variety ofmagnetic fieldsobserved in the Universe. This includes scales as large as galactic clusters (hot intraclustermedium, galaxies, interstellar medium) to stellar and planetary scales (stars, compact ob-jects, planets) whose magnetic field span a wide range of strengths from 10−6 to 1015 G. Oncosmological scales (typically intracluster medium, Megaparsec scale), the magnetic fieldsare more difficult to measure precisely but are expected to be between 10−16 G and 10−9 G.The bond between the dynamo theory and astrophysics is also historic since this problemwas first invoked by Larmor (1919) to explain the magnetic field measured arount the solarsunspots. Most observed astrophysical dynamos can be sorted in the following categories:
• the origin of cosmic magnetic fields (Kulsrud & Zweibel, 2008);
• the galactic helical dynamo, which may be driven by supernova (SN)-induced turbu-lence (Brandenburg, 2015, Subramanian, 2019);
• the dynamosdrivenby rotating convection, which is applied to stellar convective zones (seereviews by Käpylä et al., 2023, Charbonneau & Sokoloff, 2023), Earth outer core (see re-view by Landeau et al., 2022), white dwarf stars (Isern et al., 2017), and PNSs (Duncan& Thompson, 1992, Raynaud et al., 2020, 2022, Masada et al., 2022);
• the subcritical dynamos driven bymagnetohydrodynamical (MHD) instabilities in shearflows, which could operate in stably stratified media, such as accretion disks (e.g. Haw-ley et al., 1996, Rincon et al., 2008, Lesur & Ogilvie, 2008) and stellar radiative zones (e.g.Spruit, 2002, Cline et al., 2003).
However, the dynamo problem seems pretty complex, especially due to the first strongconstraints which constitute the anti-dynamo theorems of Cowling (1933) and Zeldovich &
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Figure 3.2 — Schematic illustrating the stretch-twist-fold model of Văinshtĕin & Zel’dovich (1972)
(inspired from Văinshtĕin & Zel’dovich (1972) and Rincon (2019)). The red lines illustrate the magneticfield lines.

Ruzmaikin (1956). They indicate that self-exciting fluids must have three-dimensional andnon-axisymmetric geometries (see Sect. 3.2.2 for the demonstrations). It already suggeststhat 3D turbulence plays a crucial role in dynamo theory, as noticed by the first studies onmagnetic field amplification using a statistical approach (Batchelor, 1950, Schlüter & Bier-mann, 1950).The second hurdle involves the dimensionless parameters that influence the fluid dynam-ics and so the dynamo mechanism:
(i) The kinematic and magnetic Reynolds numbers Re ≡ v0l0/ν and Rm ≡ v0l0/η, with v0and l0 the typical fluctuation velocity and lengthscale in the fluid, respectively. Theymeasure the ratio of the inertia to the viscous effects and the ratio of the inductive tothe resistive effects, respectively. Most astrophysical objects are in a turbulent statewith Re ≫ 1 and Rm ≫ 1 (e.g. Rm ∼ 106 and Rm ∼ 1017 in hot PNSs). However, thishigh-Rm regime is poorly understood. Indeed, in this regime, turbulence is expectedto quickly amplify small-scalemagnetic fields andmay prevent the growth of large-scalemagnetic fields.
(ii) The magnetic Prandtl number Pm ≡ ν/η= Rm/Re helps to dinstinguish different MHDregimes. At large Pm ≫ 1, the magnetic field is dissipated at smaller scales than theturbulent flow. This regime is found in dense and hot astrophysical objects such ashot PNSs (Pm ∼ 1013), intracluster or warm interstellar medium. At small Pm ≪ 1, theturbulence is still active at the resistive scales. Many astrophysical objects sustaining amagnetic field are in this regime such as stars (Pm ∼ 10−2 – Pm ∼ 10−6) and the Earth’score (Pm ∼ 10−5). Intuitively, this low-Pm regimemay not favor dynamo action becausethe turbulent flow contributes to the diffusion of the magnetic field at all scales larger
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than the resisitive scale. However, some complications can also occur at large values of
Pm caused by stochastic magnetic field reconnection (Jafari et al., 2018, Lander, 2021)or a ‘reversed dynamo’ effect (Brandenburg & Rempel, 2019).

Thus, astrophysical objects can sustain a dynamo in extremely different regimes, which areout of reach for our analytical and numerical models. A hope resides in the possibility ofestablishing asymptotic models to give a trend of the dynamics in these regimes. For in-stance, some numerical simulations were pushed to Pm ∼ 256 in Guilet et al. (2022) for theMRI-driven dynamo, which may catch a glimpse of this asymptotic regime.
The third obstacle is that the growth rate of the dynamomust become independent ofRmin the high-Rm regime to be relevant for astrophysical objects. This kind of dynamo is called

fast because it is opposed to slow dynamos, which evolve on ohmic timescales τOhm = l 2
0 /ηand whose growth rate tends to 0 in the high-Rm regime. The former is clearly relevant inthe high-Rm regime and so for astrophysics. Besides introducing this concept, Văinshtĕin& Zel’dovich (1972) also propose a simple fast dynamo mechanism, which is illustrated inFig. 3.2. It consists in reproducing an initial torus magnetic tube by stretching, twisting, andfolding it so that its intern magnetic field increases by a factor of 2 at each cycle. Note thatfor merging the two connected torus, the resistivity must be non-zero, so the magnetic fieldis not exactly amplified by 2. However, for Rm →+∞, the growth rate tends toward ln2 perturnover time, i.e. per time to complete the cycle. Finn & Ott (1988) show that the presenceof a turbulent flow is necessary for these fast dynamo to occur.

The fourth crucial difficulty is that the observed astrophysical magnetic fields are presentat every length scale of the astrophysical objects: from the object length scale to the dis-sipative scales. This multiscale aspect of the dynamo problem is not surprising due to thestrong nonlinearity of conducting fluid dynamics. The generation of small-scale magneticfields, i.e. small compared to the typical fluid length scale, was first analytically investigatedin the Kazantsev’s model (Kazantsev, 1968), which can be extended to take into accountthe non-linear regime of the dynamo. A phenomenological approach was also introducedby Moffatt & Saffman (1964) and Zel’dovich et al. (1984). The important question arisingfrom the small-scale dynamo problem is therefore the generation of large-scale magneticfields from small-scale turbulent flows. This problem is thus central in this thesis to explainmagnetar formation. It is well accepted that rotation and large-scale differential rotation playa crucial role in astrophysical large-scale dynamos. The phenomenological model of Parker(1955) is a pioneering work in this field and is sketched in Fig. 3.3. This model is the first tointroduce a mechanism to generate a large-scale poloidal magnetic field from a large-scaletoroidal component, which is now called α-effect (see Sects. 3.2.4–3.2.5 for a more detaileddiscussion). The classical mathematical approach is the mean-field dynamo theory (Steen-beck et al., 1966, Moffatt, 1970, Vǎinshtěin, 1970). Despite some limitations, this approach isstill widely used, especially as a numerical analysis tool, as we will see for the specific case ofthe Tayler-Spruit dynamo in Chap. 8. Though being far from reaching realistic astrophysicalparameters, the large-scale dynamo problem is now often investigated in larger and largernumerical simulations to better grasp the non-linear nature of the dynamoprocesses. Finally,the use of quasi-linear appoaches (e.g. Lesur & Ogilvie, 2008) and dynamic system theorytools (e.g. Berhanu et al., 2007, Pétrélis et al., 2009, Gissinger, 2010, Herault et al., 2011, Riolset al., 2013) helps understand the rich variety of dynamical behaviours of different dynamoprocesses.
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Figure 3.3 — Schematic of Parker’s model where poloidal and toroidal magnetic fields are coupledvia the differential rotation and the helical turbulence (inspired from Rincon (2019)). The red linesillustrate the magnetic field lines and Ω is the rotation axis. The inset figure displays the twist ofa magnetic flux tube (red lines) by the helical flow (black line), which creates a large-scale electriccurrent (blue arrow). Due to magnetic helicity conservation, the magnetic field lines in the tube arealso twisted (red lines), which generates small-scale currents.
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3.2.2 . Anti-dynamo theorems
This section aims at demonstrating that neither axisymmetric fields nor planar motioncan sustain a dynamo. (Cowling (1933) and Zeldovich & Ruzmaikin (1956) theorems, respec-tively) Note that other similar anti-dynamo theorems exist for magnetic fields of the form

B(x, y, t) or purely toroidal magnetic fields. All of these theorems suggest that the flow andthe magnetic field must have a complex enough structure for a source term to appear in theinduction equation and for a dynamo to occur.
Cowling’s theorem Let us decompose an axisymmetric magnetic field into a poloidal anda toroidal component in the spherical frame (er ,eθ,eφ):

B = Bpol +Btor =∇×χeφ+ψeφ , (3.51)
where r sinθχ is a poloidal flux-function and ψ/(r sinθ) the toroidal magnetic field. We alsoconsider a velocity field with a large-scale differential rotation

v = vpol + r sinθΩ0eφ . (3.52)
By injecting them in the resistive induction equation (3.20) and “uncurling” it for the poloidalcomponent (as in Moffatt & Dormy, 2019, Chap. 3), we have

∂tχ+ 1

r sinθ
(vpol ·∇)(r sinθχ) = η

(
∆− 1

r 2 sin2θ

)
χ , (3.53)

∂tψ+ r sinθ(vpol ·∇)
( ψ

r sinθ

)
= r sinθ(Bpol ·∇)Ω0 +η

(
∆− 1

r 2 sin2θ

)
ψ . (3.54)

The induction equation for the poloidal component (3.53) shows an advection term on itsleft-hand side and a diffusion term on its right-hand side but no source term to produce apoloidal magnetic field. Therefore, Bpol must decay. The induction equation for the toroidalcomponent (3.54) has however a source term r sinθ(Bpol ·∇)Ω0, which is called the Ω-effectand formulates the winding of the poloidal field. Since Bpol decays, this effect tends to disap-pear. Thus, both components are doomed to decay and no dynamo action can occur.
Zel’dovich’s theorem Now, let us suppose a two-dimensional flow, which is equivalent tosupposing an arbitrary direction defined by a unit vector u such that u ·v = 0. This impliesthat the component of the magnetic field following this direction must decay

∂t (B ·u)+v ·∇(B ·u) = η∆(B ·u) . (3.55)
For the sake of simplicity, we will consider a cartesian frame (ex ,ey ,ez ) and assume that u = ez .Since Bz is damped, B = (Bx ,By ) is two-dimensional and its components can be written

Bx = ∂yφ+∂xϕ , (3.56)
By =−∂xφ+∂yϕ , (3.57)

where φ and ϕ are the solenoidal and potential functions, respectively. Using the solenoidalcondition (Eq. (3.3)), we obtain
∂2

xϕ+∂2
yϕ=−∂zBz . (3.58)

As Bz is damped, ϕ is expected to be damped too, after a long enough time. Therefore,
B = (∂yφ,−∂xφ) =∇2D ×φez , with∇2D ≡ (∂x ,∂y ). This form is similar to the expression of thepoloidal component used in the previous demonstration, therefore φ follows the same kindof equation as χ (Eq. (3.53)). Thus, φ also decays and the magnetic field can not be sustained.
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3.2.3 . Different regimes

An important distinction must be emphasized between two dynamo theories: the kine-
matic and dynamical dynamo theories, where the former is a (great) simplifaction of the latter.The kinematic approach is relevant in fluids with negligiblemagnetic energy compared to thekinetic energy of the flow. In this context, the back-reaction of the magnetic field on the flowvia the Lorentz force can be ignored. This translates into the use of an imposed velocityfield v that is independent of the magnetic field B in the induction equation (3.20), whichsimplifies greatly the problem. Therefore, investigating the kinematic dynamo problem con-sists in finding the types of velocity profiles leading to an exponential growth of B, which canbe initially infinitesimal. These dynamos are characterised by a critical magnetic Reynoldsnumber Rmc above which the imposed flow can stretch the magnetic field lines enough toovercome the resistivity. A classical kinematic theory is themean-field dynamo theory, whichwill be described in Sect. 3.2.5.

The dynamical description of the dynamo process must solve the full set of nonlinearMHD equations (Eqs. (3.13)–(3.21)) or its approximations (see Sect. 4.2) including the backre-action of the Lorentz force on the flow. In this problem, the non-linear saturation of the dy-namomust be described. This problem is therefore relevant for astrophysical objects, whichharbour usually magnetic fields in their saturated regime. For instance, the back-reactionof the generated magnetic field can balance the growth of the dynamo and so saturate themagnetic field. A plot of the strength of this saturatedmagnetic field as a function of one areseveral parameters constitutes a bifurcation diagram. In the simple case of the saturationof a kinematic dynamo due to the Lorentz force, the bifurcation diagram is similar to theplot on the left in Fig. 3.4. For Rm < Rmc , the dynamo action is not excited by the flow, thesolution is hydrodynamic. For Rm > Rmc , the magnetic field is amplified exponentially andsaturates due to the feedback on the flow. This transition from the non-dynamo solution tothe saturated dynamo is called the supercritical bifurcation. However, the Lorentz force cantrigger a second kinf of destabilisation and so produce more complex dynamics. This kind ofdynamics translates into a subcritical bifurcation, which is illustrated by the plot on the rightin Fig. 3.4. As in the previous example, an initially weak magnetic field is not amplified for
Rm < Rmc . But for Rm > Rmc this initially weak magnetic field is amplified via a non-lineargrowth due to the Lorentz force until saturation. If the resulting saturated magnetic field isused as an initial condition, the dynamo solution can be maintained until a turning point at
Rmt < Rm < Rmc , which betrays the presence of a hysteresis. Muchmore complex dynamicscan also appear with e.g. bistability between several dynamo solutions, i.e. the presence ofa pair of non-linear dynamos that exists for a common range of Rm (or other parameters).This rich variety of dynamics has been observed in numerical studies of several dynamossuch as the convective dynamo (e.g. Gissinger et al., 2012, Raynaud & Tobias, 2016, Dormyet al., 2018, Zaire et al., 2022), and MHD instability-driven dynamos in shear flows: the MRI-driven dynamo (e.g. Rincon et al., 2007, Herault et al., 2011, Riols et al., 2013, Riols, 2014),and the Tayler-Spruit dynamo (Petitdemange et al., 2023, Daniel et al., 2023, Barrère et al.,2023, 2024a,b), as we will discuss in this thesis.

3.2.4 . Parker’s phenomenological model

Despite the complexity of the dynamo problem, phenomenological models are intuitiveways to identify mechanisms, which may overcome the difficulties we discussed earlier. Ahistorical example is of phenomenological model proposed by Parker (1955). Parker’s mech-
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Figure 3.4 — Examples of bifurcation diagrams for a supercritical (left) and a subcritical (right) tran-sition (inspired by Dormy (2011, Fig. 1)). Rmc and Rmt are the critical Rm and the turning point, respec-tively. The red lines describe the approximate trajectories of a system from different initial conditions.Dotted and solid lines represent the unstable and stable branches of the birfurcation.

anism involves both poloidal and toroidal components of the magnetic field. Qualitatively,these components represent the field in the direction following the small ring and the largecircular ring of a torus, respectively. Parker’s mechanism starts with a large-scale poloidalmagnetic field, which is sheared into a large-scale toroidal magnetic field2. The main objec-tive of Parker (1955) is to propose a mechanism to generate a poloidal field from a toroidalfield using the helicity of the flow. The helical velocity twists themagnetic flux tube to create aloop and therefore a poloidal component. As illustrated in the inset of Fig. 3.3, we emphasizethat during the twist, the magnetic helicity is still conserved as the created “large-scale” mag-netic helicity by the loop is compensated by the “small-scale” helicity generated by the twistof themagnetic field lines in the tube. Assuming that most of the swirls rotate in the same di-rection, all the loops tend to form a large-scale poloidal magnetic field, which completes theloop. Note that if the helical velocity swirls in the appropriate direction, it is possible to pro-duce poloidal magnetic field lines anti-parallel to the initial one, which therefore creates anoscillatory dynamo. This simplemodel can thus be applied to the solar and stellar convectivezones and is the first to invoke the helicity of the flow to generate a poloidal magnetic field.This mechanism is now known as the α-effect (Steenbeck et al., 1966). Nevertheless, thismodel and especially the use of α-effect faces a potentially important issue in the high-Rmregime. Indeed, the small-scale magnetic fields produce a significant feedback on the heli-cal flow and alter strongly the growth of the large-scale magnetic fields, which becomes veryslow (Mininni et al., 2005, Brandenburg, 2005, Subramanian & Brandenburg, 2014, Bhat et al.,2016, e.g.). This can be interpreted as a catastrophic α-quenching due to the conservation ofmagnetic helicity (e.g. Gruzinov & Diamond, 1994, Cattaneo & Hughes, 1996, Brandenburg,2001)3.
3.2.5 . Mean field approach

2The winding of a poloidal field (orΩ-effect) was already known before thismodel (e.g. Cowling, 1933, Bullard& Gellman, 1954).3The catastrophic α-quenching is still strongly debated (e.g. Field & Blackman, 2002, Hughes, 2018)
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The mean-field dynamo theory is a statistical theory that aims at describing analyticallythe growth of themagnetic field in large-scale dynamos (Steenbeck et al., 1966,Moffatt, 1970,Vǎinshtěin, 1970). The mathematics behind this approach has beenmassively studied and isstill widely used. In this section, we will introduce the main aspects of the theory, so see theclassical textbooks byMoffatt (1978) (and its new editionMoffatt &Dormy (2019)) and Krause& Raedler (1980), and the following recent reviews Hughes (2018), Brandenburg (2018) fordetailed and complete presentations.The main tenet behind the mean-field approach is the scale separation of the velocityand magnetic fields into a “large-scale” and a “small-scale” component, which represent therms mean-field and the fluctuation varying around it, respectively. This mean-field can beaveraged quantity in time, on a number of realisations, or on one or several space dimen-sions depending on the investigated system. In this thesis, we will average the fields alongthe longitudinal direction eφ, so that the mean field and the fluctuations are the axisymmet-ric and non-axisymmetric parts of the field, respectively. Nonetheless, whatever the averageused, it must commute with the space and time derivatives and the integration operators,and satisfy the Reynolds rules

F +H = F +H , (3.59)
F H = F H , (3.60)

where • is the average operator, and F and H are arbitrary functions of space and time. Inthe following, we will note the velocity and magnetic fields
v = v+v′ , (3.61)
B = B+B′ , (3.62)

where v′ = B′ = 0, by definition. Note that the fluctuations are different from the perturba-tions we used to derive the properties of MHD waves and the MRI in Sect. 3.1.4 because thefluctuations can be arbitrarily large compared to the mean field.Let us now average the induction equation (3.20),
∂t B =∇×

(
v×B+v′×B′

)
+η∆B . (3.63)

The first term on the right-hand side of the equation contains both the advection and thestretching (the equivalent of theΩ-effect in differentially rotating flows) of the magnetic fieldby the large-scale velocity field. The second term called the mean electromotive force (EMF)
E ≡ v′×B′ is crucial for the dynamomechanism in the mean-field approach. This term drivesthe dynamo and is a formulation of the statistical cross-correlation between the fluctuationsof both velocity andmagnetic fields whichwere anticipated in Parker’smodel (see Sect. 3.2.4).To find an expression of the EMF, it is sensible to derive the induction equation for the fluc-tuating magnetic field. For that, we subtract the mean induction equation (3.63) to the fullinduction equation (3.20),

∂t B′ =∇× [
(v′×B)+ (v×B′)+ (v′×B′−E)

]+η∆B′ . (3.64)
First, the term v′×B formulates the induction of B′ due to the shearing and tangling of themean magnetic field by the small-scale velocity field. This term is important to have a mean-field dynamo action. Second, the term v×B′ describes the advection of B′ by the large-scale
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flow. This term is usually considered as subdominant in this approach. Third, (v′×B′−E) isoften referred to as the “pain in the neck” term and must be coped with by introducing newassumptions because of its quadratic character in fluctuations.If v does not depend on B (kinematic approach), Eq. (3.64) becomes a linear relation be-tween B′ and B. Therefore, E can be expanded as
(v′×B′)i = ai j B j +bi j k∂k B j +o(ci j kl∂l∂k B j ) , (3.65)

where the expansion is stopped at the second order because the spatial derivative is slow.For astrophysical fluids, the EMF is usuallywrittenwith vectors and tensors to separate clearlythe different symmetries (Krause & Raedler, 1980)
(v′×B′)i =αi j B j + (γ×B)i −βi j (∇×B) j − [δ× (∇×B)]i −

κi j k

2
(∂ j B k +∂k B j ) . (3.66)

The vectors and tensors are defined as a function of the previous tensors a and b

αi j = 1

2
(ai j +a j i ) , (3.67)

γi =−1

2
εi j k a j k , (3.68)

βi j = 1

4
(εi kl b j kl +ε j kl bi kl ) , (3.69)

δi = 1

4
(b j j i −b j i j ) , (3.70)

κi j k =−1

2
(bi j k +bi k j ) . (3.71)

where εi j k is the Levi-Civita tensor. It can be useful to consider the symmetries in a givenflow to determine which of the coefficients are supposed to be zero or not. First, the tensorscan only be constructions of the Kronecker symbol δi j and εi j k in isotropic flows, so δ and
κ vanish. Second, since α, δ, and κ are pseudo-vectors/tensors, they must vanish in parity-invariant flows. Finally, the homogeneity of the flow cancels the effect of γ and the tensorsare independent of space.In the common case of pseudo-isotropic homogeneous flows (e.g. parity broken by a he-lical flow), only the constant αi j =αδi j and βi j =βδi j remain non-zero. The mean inductionequation (3.63) becomes

∂t B =∇× (
v×B+αB

)+ (η+β)∆B . (3.72)
Here, the term α∇× B drives the mean-field dynamo via the so-called α-effect, which isstrongly related to the kinetic and magnetic helicities. The β coefficient acts here as a turbu-lent diffusivity produced by the dynamo, which can compensate the growth of the dynamo.If we add aΩ-effect and ignore the produced anisotropy, there exist three dynamo solutionswhich produce an exponential growth of the magnetic field. These mean-field dynamos areillustrated in Fig. 3.5. They differ as to the way of generating the mean toroidal magneticfield, which is whether via the α-effect (α2 dynamo), theΩ-effect (αΩ dynamo), or both at thesame time (α2Ω dynamo).In astrophysical objects, the fluids are more complex with no real symmetries in the flow.In the framework of this thesis, the fluid we consider is always anisotropic because of therotation and the large-scale shear. Therefore many additional effects occur. First of all, the
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Figure 3.5 — Scheme of the α2, αΩ, and α2Ω dynamo loops.

non-diagonal terms of the α tensor must be non-zero if the flow symmetry is broken. Theseterms participate in the large-scale transport of the magnetic field. An additional effect re-lated to the vector γ, called turbulent pumping, also contributes to the large-scale transportin inhomogeneous flows.
Second, the (not physically intuitive) Rädler (Rädler, 1969a,b) and shear-current effects (Ro-gachevskii & Kleeorin, 2003) contribute to the induction in the presence of rotation and large-scale shear. They involve the coefficients δ ≡ δΩΩ and δ ≡ δW ∇× v, respectively. The for-mer effect survives as long the system rotates whatever the properties of the conductingfluid (e.g. Moffatt & Proctor, 1982). In rotating flows with broken equatorial symmetry (i.e.non-parity-invariant), both α and Rädler effects must coexist, but the latter seems to be sub-dominant (Käpylä et al., 2009), which could be due to the slow spatial derivative in∇×B.
The mean-field approach is very useful because it can provide simplified equations todescribe the growth of large-scale magnetic fields. A first application of the theory is thederivation of low-dimensional non-linear models, which use the same idea of separating themean field from the fluctuations. They usually involve coupled non-linear time evolutionequations of large-scale magnetic field modes with different equatorial symmetries (oftencalled dipole and quadrupole modes) to describe the dynamics at the vicinity of the dynamothreshold (e.g. Ravelet et al., 2008, Gallet & Pétrélis, 2009, Gissinger, 2010, to describe thedynamos in the VKS experiment). Such kind of models are also applied to supercritical dy-namos that are far from the threshold (high-Rm regime) for stellar convection (e.g. Jennings& Weiss, 1991, Tobias, 1996, Weiss, 2005).
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A second application is the use of the mean-field theory as an analysis tool for numericalsimulations. This kind of analysis aims at extracting the dynamo vectors and tensors we de-scribed in this section (Eqs. (7.22)–(3.71)) to capture which terms of the electromotive forcedominate the growth of the magnetic field. There exist several methods for the extraction:e.g. method using correlations between E and derivatives of B (as done by Reboul-Salzeet al., 2022), the singular value decomposition (Racine et al., 2011, Simard et al., 2016), thetest-field method (Schrinner et al., 2005, Brandenburg, 2005, Schrinner et al., 2007), and themost recent IROS method (Bendre et al., 2023). The extracted tensors can also be comparedto their analytical expressions, which can be calculated via the first-order smoothing ap-proximation (FOSA) (Moffatt, 1978), the third-order eddy-damped quasi-normal Markovian(EDQNM) (Orszag, 1970, Pouquet et al., 1976), or the third-order τ-approximation (MTA) (Vain-shtein & Kichatinov, 1983) closure schemes. Still, this exercise is very complex and can benumerically costly for sophisticated methods such as the test-field.
While the mean-field approach has brought a lot of interesting results, we must keep inmind its limitations (Cattaneo & Hughes, 1996, Hughes & Cattaneo, 2008, Tobias et al., 2011,Tobias, 2021). First, the basic mean-field theory is kinematic, so it can not capture the non-linear saturation and the dynamics of the saturated state. The attempts to saturate themean-field dynamos suggest that the magnetic helicity participates in the saturation process. Thismay cause catastrophic α-quenching as observed numerically, though the numerical simula-tions never reached the asymptotic Rm regime. Second, the kinematic approach assumes anEMF driven by a non-magnetic turbulent flow whereas the Lorenz force drives the turbulentflow in the case of dynamos driven byMHD instabilities. In this case, the relation between theEMF and the large-scalemagnetic fields is certainly non-linear, i.e. themean-field decomposi-tion of Eq. (3.65) is not valid. Third, the small-scale MHD turbulence can not be ignored in thehigh-Rm regime. This implies that a solution to the large-scale dynamo problem must startfrom a small-scale turbulent saturated state, which is not taken into account by the mean-field theory. Finally, isolating the different contributions in the electromotive force must notmake us forget neither that all these effects are certainly acting at the same time in realisticflows, nor the strong non-linear and 3D nature of the dynamo problem.

3.3 . The Tayler-Spruit dynamo

3.3.1 . The Tayler instability

After stating the generalities about plasma description and introducing the specific prob-lem of dynamo action, we focus our attention on the dynamo mechanism that is central inthis thesis: the Tayler-Spruit dynamo. This mechanism is driven by a large-scale shear flowand an MHD instability called the Tayler instability. The discovery of this instability was firstmade analytically by Tayler (1973) by investigating the stability of a purely toroidal magneticfield B = Bφeφ. For that purpose, Tayler (1973) used the energy principle of Bernstein et al.(1958), which predicts that the adiabatic stability of an ideally conducting, non-rotating, andincompressible fluid (i.e. η = 0) depends on the sign of the variation of a potential energy
δW produced by a perturbation. If there exists a perturbation such that δW < 0, the systemis unstable. Therefore the strategy consists in finding the necessary and sufficient criteriafor this condition to be satisfied. By supposing a field configuration separable in r and θin a stably stratified fluid, Goossens (1980) found the following analytical expression of the
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(geometrical) criteria for instability in spherical coordinates (r ,θ,φ)

cm=0 ≡
B 2
φ

2πr 2 sin2θ

(
cos2θ− sinθcosθ∂θ logBφ

)< 0, (3.73)
for axisymmetric perturbations, and

cm ̸=0 ≡
B 2
φ

4πr 2 sin2θ

(
m2 −2cos2θ−2sinθcosθ∂θ logBφ

)< 0, (3.74)
for non-axisymmetric perturbations. These criteria give the regions in which the geometry of
Bφ makes the fluid Tayler unstable, which works whatever the strength of Bφ. The absenceof radial derivatives is due to the seration of the magnetic field in two radial- and latitudinal-dependent functions. In the general case, the radial structure can influence the stability.These criteria show that the instability is most likely to occur near the polar axis. Goossens(1980) also showed that the perturbations with a non-axysimmetric mode |m| = 1 is the onlyperturbation to trigger an instability for all values of l . The Tayler instability is therefore akink-type instability. Note that no differential rotation is needed to destabilise Bφ, unlike theMRI. A current inducing Bφ is the only ingredient necessary, whichmakes the Tayler instabilitya current-driven instability.

However, many ingredients are expected to stabilise the fluid such as the rotation and thediffusivity. To take these effects into account, we use a perturbative method as in Sect. 3.1.4for the MRI, which will give explicitely the growth rate and the wavelength of the unstablemodes. The following reasoning is similar to what was done in Zahn et al. (2007) and Ma& Fuller (2019). The viscosity is neglected, while the thermal and magnetic diffusivities areincluded. In the spherical frame (er ,eθ,eφ), we assume a pertubation of the form
δQ ∝ exp

[
i (kr r + lθ+mφ−ωt )

]
, (3.75)

with l and m the spherical harmonic degree and order (see Sect. 4.3.3) and kr the radialwavenumber. We assume a strong buoyancy force such that the kr r is large compared to
l/r and m/r (WKB approximation see Gough, 2007, for an introduction). We also use theBoussinesq approximation (see Chap. 4). Since the thermal diffusion κ is expected to be largeat the length scale of the instability, we suppose the fluid to be barotropic, i.e. the densitydepends on the pressure only. This equivalent to ignoring the baroclinic term (∇ρ×∇p).Finally, the Tayler instability develops on an azimuthal background field of the form

B0 = B0 f (θ)eφ , (3.76)
where f is an arbitrary function of the colatitude θ. We neglect the radial dependency ofthe background field to simplify the calculation. After (a very long week-end doing) a lot ofcalculations, we obtain a 6th-order dispersion relation inω (see App. A for the full expression).

For rotation angular frequencies larger than the Alfvén frequency Ω≫ ωA ≡ B0/
√

4πρr 2,we expect the growth rate of the Tayler instability to be γTI ≡ω2
A/Ω. So we define the quanti-
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ties
α≡ω Ω

ω2
A

, (3.77)
H ≡ ηΩ

ω2
A

, (3.78)
K ≡ κΩ

ω2
A

, (3.79)
n2 ≡

(
l

kr r

)2 N 2
µ

ω2
A

, (3.80)
where Nν is the chemical composition component of the Brunt-Väisälä frequency N . In thelimit of κ→∞, the dispersion relation reduces to a 2nd-order relation

m2 [
m2αF (θ)+n2(α+ i Hk2

r )
]−α[

2(α+ i Hk2
r )cosθ+mG(θ)

]2 = 0. (3.81)
with the functions

F (θ) ≡
(

f (θ)

sinθ

)2

, (3.82)
G(θ) ≡

(
( f (θ)sinθ)′ f (θ)

sin2θ

)
, (3.83)

and the derivative along θ noted •′. We set α purely real, so we can seperate Eq. (A.79) intothe real and imaginary parts, respectively:
m2(m2F (θ)+n2)− (2αcosθ+mG(θ))2 +4H 2k4

r cos2θ = 0, (3.84)
m2n2 −4(2αcosθ+mG(θ))cosθα . (3.85)

By solving the reduced dispersion relation (A.79), we can show that the fluid is Tayler unstablefor
m2 F (θ)

G(θ)2
< 1. (3.86)

Thus for a toroidal magnetic field resulting from the shearing of a magnetic dipole, i.e. f (θ) =
cosθ sinθ, we find that |m| = 1 is the only unstable mode, which develops near the poles
θ ∈ [0,π/5]∪ [4π/5,π]. Since γTI ≡ω2

A/Ω, the rotation stabilises the fluid.A minimum magnetic strength can be derived by reasoning on the Tayler mode radiallength scales (Spruit, 1999). The strong stable stratification (i.e. N ≫Ω) implies almost hor-izontal displacements; i.e. lh/(kr r ) ≪ 1, where lh is Tayler mode horizontal length scale, i.e.in the directions θ and φ. The work against stable stratification of an unstable displacementwith an amplitude ξ reads 1/2 l 2/(kr r )2N 2ξ2. For the instability to occur, this work must besmaller than the energy gained by the magnetic field due to the displacement 1/2ω2
Aξ

2. Thisleads to a minimum radial length scale
lTI ≡ kr r < l

ωA

N
∼ r

ωA

N
, (3.87)
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where r is the typical length of the system (the radius in the case of a fluid in a sphericalconfiguration like in stars or planets). Also, in a resistive fluid, lTI can not be smaller than theresistive scale, at which the magnetic field is dissipated, i.e.

l 2
TI > ηγ−1

TI ∼ η Ω
ω2

A

. (3.88)
These two constraints on lTI, thus impose aminimum strength on the toroidal magnetic field,noted Bφ

Bφ >
√

4πρr 2Ω

(
N

Ω

)1/2 ( η

r 2Ω

)1/4 (3.89)
Note that the viscosity must also participate in the stabilisation, but we will rather describeits impact qualitatively in Chap. 5.The Tayler instability has also been studied further analytically, numerically, and experi-mentally, mainly in the context of cylindrical Taylor-Couette flows (e.g. Rüdiger & Kitchatinov,2010, Rüdiger & Schultz, 2010, Seilmayer et al., 2012, Kirillov et al., 2014, Rüdiger et al., 2018)and stellar radiative zones (e.g. Szklarski & Arlt, 2013, Bonanno & Guarnieri, 2017, Guerreroet al., 2019, Bonanno et al., 2020). The recent numerical simulations in a cylindrical (Ji et al.,2023) and in spherical geometries (our simulations in App. B) confirm the presence of a dom-inating m = 1 unstable mode growing with the expecting rate ω2

A/Ω. In the regime ωA >Ω, thegrowth rate seems to follow another scaling law γTI ∝ω4.5
A /Ω2 (Ji et al., 2023).Some of these studies also showed the proximity between theMRI and the Tayler instabil-ity, despite their different nature, which canmake them difficult to differentiate in numericalsimulations. For instance, Jouve et al. (2020) reported a m = 1 unstable mode in a numericalsimulation of a stably stratified fluid with an initial spherical (i.e. only radial-dependent) ro-tation profile. In their setup, the rotation decreases with the radius, which makes the fluidprone to both the MRI of a toroidal magnetic field (azimuthal-MRI, noted AMRI for short) andthe Tayler instability. While the m = 1 mode is usually characteristic of Tayler instability, thedispersion relation of Acheson & Gibbons (1978) for MHD instabilities which includes viscos-ity and diffusivities indicates that a MRI-type instability with a dominant m = 1 mode can alsodevelop for large thermal diffusivities. Moreover, the modes are located where the shear ismaximum, whereas the Tayler modes are rather located where the latitudinal gradient of Bφis strong according to the criterion Eq. (3.74). Therefore, Jouve et al. (2020) concluded thatthe instability in their simulation is the AMRI and not the Tayler instability. Kirillov et al. (2014)investigated this boundary between the AMRI and the Tayler instability. They show that theinstability domains of both instabilities in the parameter space can overlap, which confirmsthat both instabilities are difficult to distinguish. However, regions in which the cylindricalradial gradient of Bφ is positive are prone the Tayler instability only, whereas regions withstrong negative gradients are prone to AMRI.

3.3.2 . Dynamo driven by the Tayler instability
The major question stemming from the previous section is whether the Tayler instabilitycan sustain dynamo action in a shear flow like the MRI and the magnetic buoyancy. This is-sue is furthermore crucial in astrophysical stably stratified fluids, especially stellar radiativezones. Indeed, the advent of the helioseismology and the asteroseismology provided newinformation about the interior of the Sun and stars, and especially the rotation. This research
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field consists in measuring oscillations at the star surface, which are the signature of pres-sure and gravity waves (the so-called p- and g-modes) propagating in the star interior (seee.g. Ballot, 2004, Bugnet, 2020). Recent asteroseismicmeasurements brought several resultson the rotation profile in radiative zones and they all show that cores rotate slower than pre-dicted by stellar evolution models. The Sun’s radiative zone is in quasi-rigid rotation (Eggen-berger et al., 2005, Howe, 2009, Gough, 2015, Eggenberger et al., 2019a, 2022) and the knownangular momentum transport (AMT) mechanism can not explain the spin rate of sub-/red gi-ants (e.g. Cantiello et al., 2014, Belkacem et al., 2015a,b, Fuller et al., 2015, Spada et al., 2016,Ouazzani et al., 2019, Eggenberger et al., 2019c, den Hartogh et al., 2020, Moyano et al., 2024,and many others). This abundant literature demonstrates the importance of the AMT prob-lem since the 2000’s.

Figure 3.6 — Scheme of Tayler-Spruit dynamo loop as theorised by Spruit (2002) and Fuller et al.(2019). Br , Bφ are the large-scale radial and azimuthal magnetic fields, and δBr , δB⊥ represent theperturbed radial and horizontal components of the magnetic field, respectively. Eφ is the azimuthalcomponent of the electromotive force.
Magnetic fields are suspected to play a crucial role in the AMT. Spruit (2002) is the first topropose that a dynamo mechanism driven by the Tayler instability could transport AM effi-ciently. As illustrated in Fig. 3.6, the mechanism of Spruit (2002) starts with an initial poloidal(or radial) magnetic field Br which is sheared into a toroidal (or azimuthal) magnetic field Bφby the differential rotation. Once Bφ reaches the critical strength in Eq. (3.89), the Tayler in-stability develops and produces a new Br . This newly generated Br can be sheared again toclose the dynamo. The magnetic field is therefore amplified until the turbulent dissipationof Bφ compensates its growth due to the shearing. Using a reasoning in order of magnitudes(detailed in Chap. 5), Spruit (2002) derives saturated values for Br and Bφ, and also the pro-duced AMT characterised by the Maxwell torque T ∼ Br Bφ. Though appealing, this reasoningfaces criticism (Denissenkov & Pinsonneault, 2007, Zahn et al., 2007, Fuller et al., 2019):
(i) The large-scale azimuthal field Bφ is quasi-constant on length scales around lTI. So,the displacements produced by the Tayler instability may not mix the large-scale fieldlines by reconnecting them. Therefore, the dissipation of the large-scale Bφ may beoverestimated. Moreover, the ratio Br /Bφ may not be the same for axisymmetric and
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non-axisymmetric magnetic fields as the stable stratificationmay not act the same wayon the radial Tayler modes and axisymmetric Br .

(ii) The Tayler instability dominant mode is non-axisymmetric (m = 1). Therefore, its shear-ing generates a mostly non-axisymmetric azimuthal field Bφ.

Figure 3.7 — Top: Rotation profile in the Sun as measured by helioseismology and simulated viaa stellar evolution code including the Tayler-Spruit dynamo (modified plot from Eggenberger et al.(2019a)). Bottom: Core and surface rotation in sub- and red giant stars asmeasured by asteroseismol-ogy and simulated by stellar evolution codes including different parametrisation of the Tayler-Spruitdynamo. (modified plot from Eggenberger et al. (2022)).
These critics motivated the revised mechanism derived by Fuller et al. (2019). This modelovercomes the critics by seperating axisymmetric Br , Bφ and non-axisymmetric δBr , δB⊥magnetic fields. Bφ is now amplified by the shear of a Br generated by a non-linear induction,i.e. the azimuthal electromotive force Eφ. Fuller et al. (2019) also derive different turbulentdissipation rates for the Tayler modes δBr , δB⊥ and the axisymmetric magnetic fields Br , Bφ.The saturated Br and Bφ therefore differ from the derivation of Spruit (2002), and are found
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to be stronger (see Chap. 5). Thus, themodelling of Fuller et al. (2019) providesmore efficientAMT than Spruit (2002).The prescriptions of both Spruit (2002) and Fuller et al. (2019) have been implemented inone-dimensional (1D) stellar evolution codes, such as MESA (Paxton et al., 2011, 2013, 2015,2018, 2019, Jermyn et al., 2023) and GENEC (Eggenberger et al., 2008). For the Sun, thesemodels show that the prescription of Spruit (2002) explains well the rotation profile of thesolar radiative zone (Eggenberger et al., 2019a, 2022). However, the revised model of Fulleret al. (2019) provided such efficient AMT that the rotation profile is flat, which is not consistentwith the measures of g-modes, as seen in the top plot of Fig. 3.7. For sub- and red giants,the original mechanism does not provide enough AMT to explain the rotation of these starsunlike the revised Tayler-Spruit model, which fits well the measurements in red giants (seethe bottom plot of Fig. 3.7). However, the latter can not explain the rotation of both sub- andred giants (Fuller et al., 2019, Eggenberger et al., 2019c), which suggests that different AMTmechanismsmust be occurring during the sub-giant phase (Eggenberger et al., 2019b). Notethat, the Tayler-Spruit dynamo could also be involved in the mixing of chemical elements instellar interiors but is found to be ineffective, unlike other MHD instabilities like the MRI.

Figure 3.8 — Left: Bifurcation diagram representing the magnetic energy (characterised by the El-sasser numberΛ) as a function of the input differential rotation notedRo (adapted fromPetitdemangeet al. (2023)). Right: Meridional slices of the azimuthal Bφ and the radial Br magnetic fields (adapted
from Petitdemange et al. (2024)).

While the inclusion of the Tayler-Spruit dynamo has made significant progress in theAMT problem, this dynamo mechanism was for a long time elusive in numerical simulations.Braithwaite (2006) claims the presence of this dynamo in numerical simulations in cylindri-cal geometry, but it is not clear whether the Tayler instability is present in these simulationsinstead of kinematic small-scale dynamo. Moreover, the numerical simulations of Zahn et al.(2007) in spherical geometry do not show any sign of dynamo action even though they ob-serve the Tayler instability. The different results between these two numerical studies mayreside in the setups: the latter uses perfect conducting boundary conditions whereas theformer imposes the magnetic field to be normal to the boundary. Furthermore, Braithwaite(2006) uses a volumetric forcing to force differential rotation whereas the differetial rotationcan spread out of the integration domain in the simulation of Zahn et al. (2007). This can sig-nificantly influence the possibility to produce a dynamo. More recent numerical simulationsin spherical geometry and using a volumetric forcing for differential rotation also captured
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the development of the Tayler instability but no dynamo action was reported (Meduri et al.,2024).In the past year, newnumerical simulations by Petitdemange et al. (2023) found a dynamosharing many properties with the Tayler-Spruit dynamo. These simulations were performedin a spherical Taylor-Couette setup, i.e. the fluid evolves between an inner and outer sphereon which we impose a constant rotation rate, noted Ωi and Ωo , respectively. This investiga-tion was conducted in the context of stellar radiative zones, and so Ωi <Ωo . The differentialrotation is characterised by the dimensionless number Ro = 1−Ωo/Ωi . This configuration issimilar to the setupwewill use in Chap. 6. Petitdemange et al. (2023) show that the simulateddynamo is strongly subcritical as displayed in the left plot of Fig. 3.8. Indeed, this bifurcationdiagram has many resemblances with the plot of the subcritical bifurcation in Fig. 3.4. For
Ro < 0.78, an initially weak magnetic is not amplified and tends to a hydrodynamic solution.However, for Ro > 0.78, the weak magnetic field is amplified exponentially due to a kinematicdynamo driven by a shear instability. When Bφ reaches the critical strength of the Tayler in-stability, a secondary non-linear growth amplifies the magnetic field, which saturates abovethe saturation strength of the kinematic dynamo. By starting the simulations from strongmagnetic fields in their saturated states, the dynamo can be maintained to Ro smaller thanboth critical Ro of the kinematic dynamo and of the shear instability as indicated by the redarrows. A second important result is that the saturated magnetic field fits very well the ana-lytical prescriptions of Spruit (2002) as confirmed by the following studies (Daniel et al., 2023,Petitdemange et al., 2024). The meridional slices in Fig. 3.8 show that the Tayler modes arelocated around the equator close the inner sphere, which is not the expected location bythe geometrical criterion of Goossens & Tayler (1980) (Eqs. (3.73)-(3.74)). However, the re-sults of Kirillov et al. (2014) we have discussed in the previous section show that the Taylerinstability can also develop in regions with positive radial gradients of the axisymmetric Bφ.However, wewill see that our simulations, withΩi <Ωo , show a richer dynamics and quite dif-ferent results. A detailed comparison between their simulations and ours will be discussedin Chap. 7.
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The study of astrophysical objects involves an immense set of complex physical processesin interaction. In order to attempt to (at most partially) take them into account and toovercome the limits of the analytical approach, numerical simulations are key tools in astro-physics. Astrophysical conducting fluid dynamics does not escape the rule since it is neces-sary to capture fully their non-linear nature. To produce the numerical models presentedin this manuscript, we used the pseudo-spectral code MagIC (except in Chap. 9). First, webriefly describe the setup of MagIC in Sect. 4.1. Then, in Sect. 4.2, we derive the differentapproximations of the MHD equations solved by the code. In Sect. 4.3, we present the for-malism to project the equations in the spectral space. Finally, we introduce the numerical
88
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methods used to integrate the equations in Sect. 4.4. This chapter is inspired by the on-line documentation of MagIC (https://magic-sph.github.io/index.html, https://github.
com/magic-sph) and a course given by Thomas Gastine in July 2017. Note that each chapterof the manuscript involving numerical simulations (Chaps. B–8, 9) includes a section that re-calls the specific methods used to carry out the associated study. Note that, in the following,we will use the notation dx ≡ d/d x and ∂x ≡ ∂/∂x to express the derivative of a quantity withrespect to x.

4.1 . Numerical setup

MagIC simulates the evolution of an electrically conducting fluid enclosed between tworotating spheres. This configuration is adapted to model the MHD phenomena that occursin different astrophysical objects, such as planets, stars, or proto-neutron stars. Note thatthe inner sphere can also be removed to simulate other astrophysical systems such as theEarth core before the crystalization of the inner core. The figure 4.1 shows different axisdefining the spherical frame (er ,eθ,eφ) in which MagIC solves the equations, the rotation axis
Ω in the polar direction ez , and different length scales: ri and ro the radii of the inner andouter spheres, respectively, and the sphere width d ≡ ro − ri . We also define the dimension-less parameter called the aspect ratio χ ≡ ri /ro . In the following, we also note Ωi and Ωothe angular rotation frequencies of the inner and outer spheres, respectively. As MagIC usesa spherical geometry, the equations of this chapter will only be written in the spherical co-ordinates (radius r , colatitude θ, longitude φ). The components of a vector F will be noted
(Fr ,Fθ ,Fφ) ≡ (F ·er ,F ·eθ ,F ·eφ).

Figure 4.1 — Scheme of the numerical domain in which the fluid evolves.

https://magic-sph.github.io/index.html
https://github.com/magic-sph
https://github.com/magic-sph
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4.2 . Approximations of the resistive MHD equations

Solving the full resistive MHD equations (3.13)–(3.23) is numerically costly, especially be-cause of the presence of sound waves. Indeed, if the sound waves are much faster thanthe rest of the fluid, the timestep necessary to resolve the sound wave propagation willbe much smaller than the timestep necessary to capture the global dynamics. For this rea-son, the MagIC code solves MHD equations using two approximations called Boussinesq andanelastic. Both filter out sound waves and so can be applied for fluids with typical veloci-ties v negligible compared to the fluid sound speed cs , i.e. in the low Mach number regime
M a ≡ v/cs ≪ 1. These approximations are especially adapted for flows driven by buoyancy,i.e. stably-stratified and convective flows.

4.2.1 . Boussinesq approximation
According to Rayleigh (1916), the Boussinesq approximation was first used by Boussinesq(1903), though a similar approximation was also invoked by Oberbeck (1879). The idea be-hind the approximation is to neglect all density fluctuations in the fluid equations except inthe buoyancy term, where this fluctuation is multiplied by gravity. Historically, the Boussi-nesq approximation was derived for fluids whose density perturbations depend on the tem-perature perturbations only. This simplifies the EoS (3.23), which becomes

ρ = ρ0(1−αT (T −T0)) = ρ0(1−αT∆T ) , (4.1)
where ρ0 and T0 are the mean density and temperature. The entropy and the temperatureare now equivalent quantities, ignoring a multiplication factor. Indeed, the variation of en-tropy, which reads

dS = ∂T S|p dT +∂p S|T d p = cp

T0
dT − αT

ρ0
d p , (4.2)

where cp is the specific heat capacity at constant pressure, becomes
T0d s = cp dT . (4.3)

However, in proto-neutron stars (PNSs) the electron fraction Ye also play an importantrole in the buoyancy force (see Sect. 2.2.2). To take into account the effect of Ye , we definethe buoyancy variable
Θ≡ −g0

N 2

r

r0

δρ

ρ0
, (4.4)

where the amplitude of the gravitation acceleration g0 is defined via the expression g =
−g0r /roer and N is the Brunt-Väisälä frequency (Eq. 2.22) and assume that both T and Yehave equal diffusivities, which are gathered in the usual thermal diffusivity κ.The resistive first-order MHD equations for a Boussisnesq PNS interior are now rewritten

∇ ·v = 0, (4.5)
∇ ·B = 0, (4.6)

ρ0 (∂t v+v ·∇v+2Ω×v) =−∇δp −ρ0N 2Θer + 1

4π
(∇×B)×B+ρ0ν∆v , (4.7)

∂t B =∇× (v×B)+η∆B , (4.8)
∂tΘ+v ·∇Θ= κ∆Θ , (4.9)
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where δp is the temperature and non-hydrostatic pressure. We notice that the energy equa-tion becomes the classical heat equation in which we removed the viscous heating and theJoule effect, and replaced the temperature by the buoyancy variable. The MagIC code solvesdimensionless equations based on the following choice of units:

• Time is in units of viscous time t → (d 2/ν)t , which can be changed in the current versionof MagIC.
• Length is in units of shell thickness r → r d .
• The buoyancy variable is in units of the buoyancy variable gap between the shells Θ→

(Θo −Θi )Θ.
• Magnetic field is substitued by B →√

4πρ0ηΩoB .
Eqs. (4.7)-(4.9) become,

∂t v+v ·∇v+ 2

E
ez ×v =−∇δp + Ra

Pr
Θer + 1

E Pm
(∇×B)×B+∆v , (4.10)

∂t B =∇× (v×B)+ 1

Pm
∆B , (4.11)

∂tΘ+v ·∇Θ= 1

Pr
∆Θ , (4.12)

where we define the following dimensionless numbers:
• the Ekman number E ≡ ν/(d 2Ωo),
• the Rayleigh number Ra ≡ N 2d 4/(νκ),
• the thermal Prandtl number Pr ≡ ν/κ,
• and themagnetic Prandtl number Pm ≡ ν/η.

The Ekman number represents the ratio of the viscous force to the Coriolis force and theRayleigh number formulates the ratio of the thermal transport timescale through diffusiveprocesses to the transport timescale by convection.
4.2.2 . Anelastic approximation

Unlike theBoussinesq approximation, the anelastic approximation includes a non-constantdensity profile and filters out the soundwaves at the same time. This approach consists in as-suming that the flow and the magnetic field only produce small disturbances of a thermody-namical reference (or background) state. A thermodynamical quantityQ is denotedQ =Q0+δQ.The point is to solve the MHD equations at the first order of the small parameter
ϵ∼ δρ

ρ0
∼ δT

T0
∼ δp

p0
∼ ... ≪ 1. (4.13)

The reference state is assumed to be stationary and in hydrostatic equilibrium, i.e.
∇p0 =−ρ0g0er , (4.14)
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and only depends on the radius in spherical geometry. For a convective fluid, we expectthe background to be isentropic because of mixing due to the convective cells. However, ina stably stratified fluid, the entropy is not homogeneous. We express the density and thetemperature gradients as a function of the entropy and the pressure gradients
∇T0

T0
= 1

T0
∂sT |p∇S0 + 1

T0
∂p T |s∇p0 = 1

cp
∇S0 − αT

cp
g0 , (4.15)

∇ρ0

ρ0
= 1

ρ0
∂sρ|p∇S0 + 1

ρ0
∂pρ|s∇p0 =−αT

cp
T0∇S0 +βpρ0g0 . (4.16)

For the sake of simplicity, the effect of the electron fraction Ye on the buoyancy is taken intoaccount by defining an effective entropy gradient∇Seff such that
∂ρ

∂S

∣∣∣∣
p,Ye

dS

dr
+ ∂ρ

∂Ye

∣∣∣∣
p,S

dYe

dr
= ∂ρ

∂Seff

∣∣∣∣
p,Ye

dSeff

dr
. (4.17)

In the following, we avoid the notation with the index •eff to make the mathematical expres-sions a bit less cumbersome.For an adiabatic system (i.e. ∇S0 = 0), both density and temperature gradients are char-acterised by the dissipation and the compressibility numbers, which are defined by
Di = αT d

cp
g0 , (4.18)

Co =βp dρ0g0 , (4.19)
respectively. These parameters can be determined by the input reference state. Note thatwe find the Boussisnesq approximation for Di , Co → 0. To derive the anelastic continuityequation, we decompose Eq. (3.13)

∂tρ0 +∂tδρ+∇ · (ρ0v)+∇ · (δρv) = 0. (4.20)
The first is zero because the reference state is stationary and ∇ · (δρv) ≪∇ · (ρ0v) because
δρ≪ ρ0. We then assume that the variation timescale of the density is similar to the time-sacled associated to v and that the typical length of density gradient is not not “too small”such that we can compare the two remaining terms:

[∂tδρ]

[∇ · (ρ0v)]
∼ [∂tδρ]

[v ·∇ρ0]
∼ δρ

ρ0
∼ ϵ . (4.21)

Therefore, the anelastic continuity equation reads
∇ · (ρ0v) = 0. (4.22)

Thus, the sound waves are filtered out. Before writing the other equations, we must intro-duce the reduced pressure δp/ρ0. This new term stems from the so-called LBR formalism,in which the buoyancy is written
δρ

ρ0
g0 =−αT T0

cp
δSg0 − δp

ρ2
0

∇ρ0 . (4.23)
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Parameter Earth’s core Giant planets Sun PNS (with neutrino viscosity)
E 10−15 10−18 10−15 10−10 −10−8

Ra 1027 1030 1024 5×1011

Pr 0.1 0.1 10−6 5×10−5

Pm 10−6 10−7 10−3 1011

Table 4.1 — Values of MagIC input dimensionless parameters for different astrophysical objects.

This formalism is named after Lantz (1992) and Braginsky & Roberts (1995) and allows theuse of the entropy instead of the temperature. It is therefore not necessary to calculatepressure, density and temperature variations. Indeed, by using the same reasoning to derivethe anelastic continuity equation (Eq. (4.22)) and injecting Eq. (4.23) in the equation ofmotion(Eq. (3.14)), we obtain
∇ · (ρ0v) = 0, (4.24)

∇ ·B = 0, (4.25)
∂t v+v ·∇v+2Ω×v =−∇

(
δp

ρ0

)
− αT T0

cp
δSg+ 1

4πρ0
(∇×B)×B+ 1

ρ0
∇ ·σ , (4.26)

∂t B =∇× (
v×B−η(r )∇×B

)
, (4.27)

ρ0T0 (∂tδS +v ·∇δS) =∇ · (κ(r )ρ0T0∇δS)+Φν+η(r )
(∇×B)2

4π
. (4.28)

Moreover, the energy is conserved in this formulation, which is not the case for all formu-lations (e.g. anelastic Navier-Stokes approaches), especially in stably stratified fluids (Brownet al., 2012). Note that we make an additional assumption to derive the entropy equation(Eq. (4.28)) because the term∇ · (κ∇T0) should appear while expanding the equation of en-ergy (Eq. (3.21)). This term formulates the temperature diffusion and is very small in astro-physical objects because their Ra is very large (see Table 4.1) compared to the critical Racfor the onset of convection (Rac ∼ 103). However, these regimes cannot be reached in cur-rent numerical simulations, in which the diffusivities are over-estimated. The temperaturediffusion will therefore act as a heat source or sink that could drive or hinder the convectionto develop. This motivates the assumption of a dominating entropy diffusion in turbulentflows so that κ is an estimation of the turbulent diffusivity. The entropy is scaled in units ofentropy contrast between the spheres S → (So −Si )S. The dimensionless version of anelasticequations thus reads
∇ · (ρ0v) = 0, (4.29)

∇ ·B = 0, (4.30)
∂t v+v ·∇v+ 2

E
ez ×v =−∇

(
δp

ρ0

)
− Ra

Pr
δSg0er + 1

PmEρ0
(∇×B)×B+ 1

ρ0
∇ ·σ , (4.31)

∂t B =∇× (v×B)− 1

Pm
∇× (

η(r )∇×B
)

, (4.32)
ρ0T0 (∂tδS +v ·∇δS) = 1

Pr
∇ · (κ(r )ρ0T0∇δS)+ Pr Di

Ra
Φν+ Pr Di

Pm2 E Ra
η(r )(∇×B)2 . (4.33)
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4.2.3 . Validity of the approximations for the modelling of a proto-neutron star
In PNSs, the use of the MHD approximations is globally relevant. First, the PNS fluid vand Alfvén vA velocities are

v ≲ rNSΩ∼ 7.5×108
(

Ω

200πrads−1

)
cms−1 , (4.34)

vA = B√
4πρ0

∼ 1.4×107
(

B

1015 G

)(
ρ0

4×1014 gcm−3

)−1/2

cms−1 . (4.35)
They are smaller than the sound speed cs ∼ 1010 cms−1 (Guilet et al., 2015), which suggeststhat the sound waves should be filtered out in the simulations. Second, the density pertur-bations associated to the buoyancy force are smaller than the mean density

δρ

ρ0
= ΘN 2

g
≲ 0.12

(
N

103 s−1

)2 ( g

1013 cms−2

)−1
, (4.36)

where we assumeΘ≲ rNS. The only condition that is not satisfied for the use of these approx-imations is the static reference state. Indeed, it evolves within the timescale of the secondin PNSs, which is shorter than the usual total simulated time (several tens of seconds for thelongest simulations).Since the Tayler-Spruit dynamo is poorly known in numerical simulations, we choose toimplement the simplest modelling of the PNS to investigate the dynamo in more and morecomplex setups progressively. Therefore, the Boussinesq approximation in used in the differ-ent numerical studies of this thesis (Chaps. 6-8). The future simulations will use the anelasticapproximation to implement a more realistic reference state and investigate the impact ofdensity stratification.

4.3 . Spectral representation

4.3.1 . Why using spectral methods?
Spectral methods consist in expanding the variables in terms of global (mostly nonzeroover the whole domain) and usually orthogonal polynomials. These expansions enable thederivation of equations for the coefficients of these polynomials and to have analytical ex-pressions for the derivatives. This makes themethod very rapid to converge to the solutions,especially smooth (i.e. highly differentiable) ones. These methods can therefore provideaccurate solutions quickly with a reasonable number of points. Moreover, the numericaldissipation is very weak with this approach and allow us to use explicit diffusivities.However, it is more challenging for thesemethods to treat less continuous functions com-pared to othermethods such as finite difference/element/volumemethods. Moreover, spec-tral methods are limited to simple geometries from boxes to spheres.For the problem of the MHD in a PNS, the geometry is simple since the PNS is sphericaleven for fast rotations (frequencies up to ∼500 Hz). The solutions for the velocity and mag-netic field components are expected to be smooth because the flow is subsonic. Spectralmethods are therefore well suited to solve this problem. In MagIC, the latitudinal and theazimuthal directions are expanded in spherical harmonics and the radial direction in Cheby-shev polynomials. The former is well suited for spherical geometries and the latter enable
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better treatment of the dynamics close to the boundaries, which are particularly prone tounder-resolution.The MagIC code is pseudo-spectral because the non-linear terms and the Coriolis force(because it involves a cross-product) are first evaluated in the physical space before beingexpanded in the spectral space. This treatment can be numerically costly due to the back-and-forth transformations between the physical and the spectral space, but computationalefficiency is gained thanks to the resulting decoupling of the spherical harmonics modes,whose calculation can be parallelised.

4.3.2 . Poloidal/Toroidal decomposition
In the MagIC code, the vectors which satisfy the solenoidal condition (i.e. divergence-free)are decomposed in a poloidal and toroidal part, which is called theMie representation. For theanelastic equation, the two solenoidal vectors are

ρ0v =∇× (∇×W er )+∇×Z er , (4.37)
B =∇× (∇×ber )+∇×a j er , (4.38)

where W and Z (b and a j ) are the poloidal and toroidal potentials for the mass flux (themagnetic field), respectively. These potentials can be extracted by projecting the field and itscurl in the radial direction:
∆Hb =−B ·er , (4.39)

∆Ha j =−(∇×B) ·er , (4.40)
where ∆H is the horizontal Laplacian operator:

∆H ≡ 1

r 2 sinθ
∂θ (sinθ∂θ)+ 1

r 2 sin2θ
∂2
φ . (4.41)

The vector expressed as a function of its potentials therefore reads
B =−∆Hber +

(
1

r
∂r∂θb + 1

r sinθ
∂φa j

)
eθ+

(
1

r sinθ
∂r∂φb + 1

r
∂θa j

)
eφ , (4.42)

which can be rewritten
B =−∆H(ber )+∇H∂r b +∇H ×a j er , (4.43)

using the horizontal divergence operator
∇H ≡ 1

r sinθ
∂θ sinθeθ+

1

r sinθ
∂φeφ . (4.44)

The curl of a vector can also be written in a simple form
∇×B =−∆H(a j er )+∇H∂r a j +∇H ×∆Ha j er . (4.45)

4.3.3 . Spherical harmonics
As the geometry of the integration domain is spherical, it is sensible to expand the poten-tials using the spherical harmonic functions for the colatitude θ and longitude φ

Y m
l (θ,φ) ≡

√
2l +1

4π

(l −|m|)!

(l +|m|)!
P m

l (cosθ)e i mφ , (4.46)
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Y m
l (θ,φ) m = 0 m =±1 m =±2

l = 0
p

1/(4π) Not defined Not defined
l = 1

p
3/(4π)cosθ ∓p3/(8π)sinθe±iφ Not defined

l = 2
p

5/(16π)(3cos2θ−1) ∓p15/(8π)cosθ sinθe±iφ p
15/(32π)sin2θe±2iφ

Table 4.2 — Analytical expressions of the spherical harmonic functions for l ∈ [0,2].

Figure 4.2 — Real part of the spherical harmonic functions Y m
ℓ

for ℓ ∈ [0,4] and m ∈ [−ℓ,ℓ].
where l ≥ 0 and m ∈ [−l , l ] are the spherical harmonic degree and order,

clm ≡
√

2l +1

4π

(l −|m|)!

(l +|m|)!
(4.47)

is the normalisation factor, and P m
l is a Legendre polynomial

P m
l (x) = (−1)m(1−x2)m/2

[
d m

x
1

2l l !

(
dx(x2 −1)l

)]
. (4.48)

The expression of clm can vary depending the normalisation used, which is∫ 2π

0

∫ π

0
Y m

l (θ,φ)Y m′
l ′ (θ,φ)sinθdθdφ= δl l ′δ

mm′ (4.49)
in MagIC, with δi j = δi j the Kronecker symbol, which equates 1 for i = j and 0 otherwise.The functions Y m

l are the eigenfunctions of both operators L2 ≡−r 2∆H and Lz ≡−i (r×∇)·
ez

L2Y m
l = l (l +1)Y m

l , (4.50)
LzY m

l = mY m
l . (4.51)
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Note that it is simple to switch from Y m

l to Y −m
l thanks to the relation

Y −m
l = (−1)mY m∗

l (4.52)
where the exponent symbol •∗ represents the conjugate complex. This property can be no-ticed from the analytical formulation of the first Y m

l that is written in Table 4.2. As Y m
l are afunction of θ and φ, they can be plotted on spheres as illustrated in Fig. 4.2.As an example, the spherical harmonic representation of the magnetic poloidal potential,truncated at lmax, as done in the code, reads

b(r,θ,φ) =
lmax∑
l=0

l∑
m=−l

blm(r )Y m
l (θ,φ) , (4.53)

where
blm(r ) = 1

π

∫ π

0
bm(r,θ)P m

l (cosθ)sinθdθ , (4.54)
and

bm(r,θ) = 1

2π

∫ 2π

0
b(r,θ,φ)e−i mφdφ . (4.55)

In practice, Eqs. 4.53 and 4.55 formulate the transformation from the spherical (r ,θ,φ) tothe spectral space (r ,l ,m) and inverse transformation, respectively. MagIC employs a Fast-Fourier Transform (FFT) and uses the Gauss-Legendre quadrature in the longitudinal andlatitudinal directions to evaluate Eq. (4.55). Pre-stored values of the Legendre polynomialscombined with an inverse FFT provide a solution for Eq. (4.53). This requires the use of atleast nφ = 2lmax +1 longitudinal points to evenly cover the whole space in φ and the numberof latitudinal points is usually nθ = nφ/2 to have a isotropic spherical grid.
4.3.4 . Chebyshev polynomials

Now that the horizontal expansion is ‘spectralised’, the sameprocess is done for the radialexpansion, but using the Chebyshev polynomials (of the first kind)
Cn(cosθ) = cos(nθ) . (4.56)

which can be approximated by
Cn(x) ∼ cos(n arccos x) , (4.57)

for a variable x ∈ [−1,1] and a degree n ∈ N. The analytical expressions of the first Cn arewritten in Table 4.3.These polynomials are solutions of the following ordinary differential equation (ODE)
(1−x2)y ′′−x y ′+n2 y = 0, (4.58)

where the symbol •′ formulates the derivative with respect to x and their literal expressioncan be written using the Rodrigues formula
Cn(x) = 1

2nn!

(
d n

xn (x2 −1)n)
. (4.59)
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n Cn(x)

n = 0 1
n = 1 x
n = 2 2x2 −1
n = 3 4x3 −3x
n = 4 8x4 −8x2 +1
n = 5 16x5 −20x3 +5x

Table 4.3 — Analytical expressions of six first Chebyshev polynomials Cn .

A nice property of the Chebyshev polynomials is their recurrence relation, which reads
C0(x) = 1, (4.60)
C1(x) = x , (4.61)

Cn+1(x) = 2xCn(x)−Cn−1(x) . (4.62)
In practice, the radial representation of the poloidal magnetic potential, truncated at degree
N , reads

bl m(r ) =
N∑

n=0
blmnCn(r ) , (4.63)

with
blmn = 2−δn0

π

∫ 1

−1

blm(r (x))p
1−x2

Cn(r (x))d x . (4.64)
x is then linearly mapped onto the radius range [ri ,ro] via the relation

x(r ) = 2
r − ri

ro − ri
−1. (4.65)

In MagIC, the radial grid points are non-linearly mapped
xk = cos

(
π

k −1

nr −1

)
, (4.66)

for k ∈ [1,nr ], with nr the number of grid points in the radial direction, so that the Chebyshevpolynomials reads
Cnk ≡Cn(xk ) = cos

(
π

n(k −1)

nr −1

)
. (4.67)

With this mapping, the density of grid points is larger next to the boundaries. This allows abetter resolution close to the shells, where we expect thermal and viscous boundary layers.Note that the radial direction can be treated with a finite difference method in MagIC. In oursimulations, we use the Chebyshev expansion because of the advantages of the spectralexpansion discussed in Sect. 4.3.1.
4.3.5 . Exemple of spectral equation

As the mathematical tools to project the potentials in the spectral space, let us derive anexample of spectral equation, such as the evolution of the poloidal magnetic potential ∂t b
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via the induction equation (Eq. (4.11)) with a constant resisivity η. We focus on the radialcomponent of Eq. (4.11). First, the time derivative reads

∂t Br =−∆H∂t b , (4.68)
where we used Eq. (4.39). To expand Eq. (4.68) in spherical harmonics, we use the relationEq. (4.50) and obtain

∂t Br =
lmax∑
l=0

l∑
m=−l

l (l +1)

r 2
∂t blmY m

l . (4.69)
Second, the radial resistive term can be rewritten in spherical coordinates

1

Pm
∆B ·er = 1

Pm

(
1

r 2
∂2

r (r 2Br )+∆HBr

)
. (4.70)

So its expansion in spherical harmonics reads
1

Pm
∆B ·er = 1

Pm

(
− 1

r 2
∂2

r (r 2∆Hb)−∆H(∆Hb)

)
= 1

Pm

lmax∑
l=0

l∑
m=−l

l (l +1)

r 2

(
∂2

r blm − l (l +1)

r 2
bl m

)
Y m

l .
(4.71)

Let us multiply by Y m∗
l and expand in Chebyshev polynomials the new version of the radialinduction equation:

l (l +1)

r 2

[(
∂t + 1

Pm

l (l +1)

r 2

)
Cn − 1

Pm
C ′′

n

]
bl mn =

∫ π

0

∫ 2π

0
[(∇× (v×B)) ·er ]Y m∗

l sinθdθdφ . (4.72)
Since the term [∇× (v×B)] ·er is non-linear, the horizontal component of v×B is calculatedin the physical space

Fθ ≡ (v×B) ·eθ = vφBr − vr Bφ , (4.73)
Fφ ≡ (v×B) ·eφ = vr Bθ− vθBr , (4.74)

so
[∇× (v×B)] ·er = 1

r sinθ

(
∂θ(sinθFθ−∂φFφ)

)
. (4.75)

Both components are then expanded in spherical harmonicsFθ(θ,φ), Fφ(θ,φ) −→Fθ,lm , Fφ,lm .Their θ- and φ-derivatives are calculated using recurrence relations:
Nlm ≡

∫ π

0

∫ 2π

0
[(∇× (v×B)) ·er ]Y m∗

l sinθdθdφ

= (l +1)clmFφ, l−1,m − l cl+1,mFφ, l+1,m − i mFθ, l ,m .
(4.76)

The final expression for the evolution of the magnetic poloidal potential
l (l +1)

r 2

[(
∂t + 1

Pm

l (l +1)

r 2

)
Cn − 1

Pm
C ′′

n

]
blmn =Nlm (4.77)

The procedure to transform the equation in the spectral space is the same for the otherpotentials, the entropy and the pressure1. The non-linear terms, such as v×B, and theCoriolisforce are first treated on the physical grid before being projected in the spectral space.
1All the spectral equations are available on https://magic-sph.github.io/numerics.html#

spectral-equations.

https://magic-sph.github.io/numerics.html#spectral-equations
https://magic-sph.github.io/numerics.html#spectral-equations
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4.3.6 . Boundary conditions
The approximated MHD equations are solved on a finite grid, so we must impose bound-ary conditions solve the system. As the equations are formulated in the spectral space, theusual boundary equations can be replaced by expressions in the Chebyshev representationevaluated at the grid points ri and ro . In the following, we apply the summation conventionfor the radial modes n, for the sake of simplicity and clarity.Tomimic the accretion of fallback onto the PNS surface, we impose rigid (or no-slip) bound-ary conditions on the outer sphere, where the horizontal velocities are zero except for therotation:

vθ(ro) = 0, (4.78)
vφ(ro) = roΩo , (4.79)

with ro and Ωo the radius and the angular frequency of the outer sphere. The PNS surface isalso impenetrable (vr (ro) = 0). This translates into the Chebyshev representation
CnWlmn = 0, (4.80)
C ′

nWlmn = 0, (4.81)
Cn Zlmn = 0. (4.82)

We apply the same mechanical conditions on the inner sphere. The are no astrophysicalreasons for the choice of the condition on the inner sphere because it does not exist in areal PNS. However, imposing an angular frequency on the inner sphere enables a forcing ofdifferential rotation. The configuration in which angular frequencies are imposed on bothspherical spheres is called spherical Couette.The magnetic field is formed in the PNS interior but penetrates the surface. Therefore,we impose an external magnetic field that is the extension of the internal field. This ex-ternal field is described by the potential Φ such that B = −∇Φ and ∆Φ = 0 at the surface(r = ro). This condition corresponds to the magnetic field in the vacuum, hence the name
vaccum (or insulating) boundary condition. We also apply this condition to the inner sphere(r = ri ). It can be written in terms of Chebyshev polynomials

Cn a j , lmn = 0, (4.83)[
C ′

n(ri )− l +1

r
Cn(ri )

]
blmn = 0, (4.84)[

C ′
n(ro)+ l

r
Cn(ro)

]
blmn = 0. (4.85)

For the thermal boundary conditions, we fix constant temperatures/buoyancy variableson both boundaries.

4.4 . Numerical methods

4.4.1 . Time integration
To calculate the evolution of the potentials, we must discretise time {ti }i∈[0,n], and usea numerical scheme to evaluate the potentials at the next time step. A lot of time-stepping
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schemes have been developed, starting from the most simple scheme, the so-called Eulermethod. These methods are sorted between explicit and implicitmethods. While the formerevaluates the state of the system at a later time ti+1 = ti +∆t using the state at the currenttime ti , the latter must solve an equation involving both the current and later state. Let Ψthe state of the system, an explicit scheme evaluates

Ψ(ti+1) = f (Ψ(ti )) (4.86)
and an implicit scheme solves the equation

g (Ψ(ti+1),Ψ(ti )) = 0 (4.87)
to find Ψ(ti+1), where f and g are arbitrary functions. Explicit methods are usually easier toimplement but are not stable for solving every equation unless the time-step∆t is sufficientlysmall or the diffusivities are large enough. To solve them, we must use one of the existingimplicit schemes, which are theoretically stable. Still, since implicit schemes must solve anequation to find the later state of the system, the equation can be computationally costly tosolve. In practice, these methods involve the inversion of a matrix which can be very large.This issue is present in the case of spectral MHD equations because the non-linear termscouple every spherical harmonicmode. Moreover, the Coriolis force couplesWlmn with Zlmn ,and also couples (l ,m,n)–modes with (l−1,m,n)– and (l+1,m,n)–modes, whichmakes it costlyto solve with an implicit scheme. This fosters the development ofmixed implicit/explicit (IMEX)
schemes.In the general case, differential equations can be written

y0 = y(t0) , (4.88)
∂t y =I (y, t )+X (y, t ) , (4.89)

whereI andX are the terms treated implicitely and explicitely, respectively. The IMEXmeth-ods implemented in MagIC are classified into two families: IMEX multistep and IMEX Runge-
Kutta multistage schemes. The former calculates yi+1 ≡ y(ti+1) using a combination of k pre-vious steps. This translates into

yi+1 −
k∑

j=1
a j y(i+1)− j =∆t

[
wI

0 I
k∑

j=1

(
wI

j I(i+1)− j +wX
j X(i+1)− j

)]
, (4.90)

where we noteIi ≡I (yi , ti ) andXi ≡X (yi , ti ). a ∈R j , wI ∈R j , and wX ∈R j contain weightingfactors, which are specific to the chosen IMEXmultistep scheme. For the widely used second-order Crank-Nicholson (implicit)/Adam-Bashfort (explicit) (CNAB2) (Ascher et al., 1995), a =
(1,0), wI = (1/2,1/2), and wX = (3/2,−1/2). In MagIC, 7 IMEX multistep schemes are currentlyimplemented (see Table. 4.4), among which third– and fourth–order schemes.Before presenting the IMEX multistage schemes, we recall the principle of explicit andimplicit Runge–Kutta (RK)methods to introduce themnemonic tool called the Butcher tableau.This family of methods can be generalised by the equation of the form

yi+1 − yi =∆t
s∑

j=1
b j k j , (4.91)
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Acronym Order Reference
CNAB2 2 Ascher et al. (1995)MODCNAB 2 Ascher et al. (1995)CNLF 2 Johansson & Kreiss (1963)SBDF2 2 Ascher et al. (1995)SBDF3 3 Ascher et al. (1995)TVB33 3 Cockburn et al. (1989)SBDF4 4 Ascher et al. (1995)

Table 4.4 — IMEX multistep schemes implemented in MagIC with their associated order.

with
k j = f

(
ti + c j∆t , yi +∆t

s∑
l=1

a j l kl

)
, i ∈ [1, s] (4.92)

where s is the number of stages, A ≡ [a j l ] ∈ Rs×s is the Runge-Kutta matrix, f = ∂t y is an arbi-trary function, b ∈Rs and c ∈R j contain theweights and nodes of the RK schemes, respectively.These different quantities are displayed in a Butcher tableau
c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s... ... ... . . . ...
cs as1 as2 . . . ass

b1 b2 . . . bs

, (4.93)

which can be reduced to
c A

b

. (4.94)

For instance, the Butcher tableau for the forward and backward Euler methods, the so-calledRK4 read, respectively
0

1,
,

1 1
1

, (4.95)
and

0
1/3 1/3
2/3 −1/3 1

1 0 0 1
1/6 1/3 1/3 1/6

. (4.96)

As explicit methods evaluate the next step using only the previous one, the different stages
ki can only involve the previous stages {k j } j<i in the explicit RK schemes. Therefore, thematrix A must be lower triangular with a zero diagonal. Note also that an explicit RK schemeis consistent if and only if

s∑
i=1

bi = 1. (4.97)
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Another commonly applied condition reads

j−1∑
l=1

a j l = cl , (4.98)
with j ∈ [2, s], even though it says nothing about the scheme consistency.Both implicit and explicit RK schemes are used in IMEXmultistage schemes, for theI and
X terms, respectively. 18 of these schemes are implemented in MagIC and are listed in Ta-ble. 4.5 The schemeweused for our numerical simulations is the third-order BPR353 (Boscarino

Acronym s Order Reference
ARS222 3 2 Ascher et al. (1997)ARS232 3 2 Ascher et al. (1997)ARS233 3 2 Ascher et al. (1997)ARS343 4 3 Ascher et al. (1997)ARS433 5 3 Ascher et al. (1997)LZ232 3 2 Liu & Zou (2006)LZ453 5 3 Liu & Zou (2006)KC343 4 3 Kennedy & Carpenter (2003)KC564 6 4 Kennedy & Carpenter (2003)KC674 7 4 Kennedy & Carpenter (2003)KC785 8 5 Kennedy & Carpenter (2003)PC2 3 3 Jameson et al. (1981)CB3 4 3 Cavaglieri & Bewley (2015)CK232 3 3 Carpenter et al. (2005)MARS343 4 3 Boscarino (2007)
BPR353 5 3 Boscarino et al. (2013)DBM453 5 3 Vogl et al. (2019)BHR553 6 3 Boscarino (2009)

Table 4.5— IMEXmultistage schemes implemented in MagICwith their associated number of stages
s.
et al., 2013). Its associated Butcher tableaux for the implicit and explicit RK schemes read

0 0
1 1/2 1/2

2/3 5/18 −1/9 1/2
1 1/2 0 0 1/2
1 1/4 0 3/4 1/2 1/2

1/4 0 3/4 −1/2 1/2

,

0
1 1/2

2/3 4/9 2/9
1 1/4 0 3/4
1 1/4 0 3/4 0

1/4 0 3/4 0 0

, (4.99)

which we note
cI AI

bI

,
cX AX

bX

, (4.100)
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respectively. Note that the scheme is of type CK (which stands for Carpenter and Kennedy(Kennedy & Carpenter, 2003)) because a11 = 0 and the submatrix Ā≡ [a j l ] j ,l∈[2,s] ∈R(s−1)×(s−1)

is invertible for both AI and AX . Type CK schemes permit the construction of higher orderIMEX Runge-Kutta schemes. If we come back to the initial problem (Eqs. (4.88)–(4.89)), foreach stage j ∈ [1, s] the scheme must solve the equation
(I −∆t aI

j j I )y j = yi +∆t
j−1∑
p=1

[
aI

j pI (ti + cp∆t , yp )+aX
j pX (ti + cp∆t , yp )

]
, (4.101)

with I the identity matrix. Once y j is evaluated, the final equation to advance from ti to ti+1is
yi+1 = yi +∆t

s∑
j=1

[
bI

j I (ti + c j∆t , y j )+bX
j X (ti + c j∆t , y j )

]
. (4.102)

As an example, we can apply the BPR353 scheme equations to the evolution of the poloidalmagnetic potential bl mn (Eq. (4.77)). Since the following expressions are quite complex, werecall the signification of the indexes: l and m are the spherical harmonic degree and order,
n is the degree of the Chebyshev polynomial, and k is the index of a grid point in the radialdirection. The evolution equation is

Tkn [blmn(t +∆t )−blmn(t )] =∆t
5∑

j=1
aI

5 j Gknblmn(t + c j∆t )

+∆t
5∑

j=1
aX

5 j Nklm(t + c j∆t ) ,

(4.103)

with
(Tkn −aI

j j Gkn)bl mn(t + c j∆t ) =Tknblmn(t )+∆t
j−1∑
p=1

aI
j pGpnblmn(t + cp∆t )

+∆t
j−1∑
p=1

aX
j pNklm(t + cp∆t ) ,

(4.104)

and
Tkn ≡ l (l +1)

r 2
k

Cn(rk )

∆t
, (4.105)

is the matrix that converts bl mn to Br (rk , l ,m),
Gkn ≡ l (l +1)

r 2
k

1

Pm

(
C ′′

n (rk )− l (l +1)

r 2
k

Cn(rk )

)
(4.106)

is thematrix formulating themagnetic diffusion termof the induction equation, andNklm(t ) ≡
Nl m(t ,rk ) is the non-linear term of the induction equation.Finally, the choice of the time-step ∆t is driven by the Courant-Friedrichs-Lewy (CFL) con-
dition (Courant et al., 1928), which indicates that ∆t must be smaller than the time for theAlfvén wave or the fluid to cover the distance between two grid points:

∆t =C ×min(∆tr ,∆tH,∆tA) , (4.107)
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with

∆tr ≤ min

[
δr

|vr |
]

, (4.108)
∆tH ≤ min

√√√√ r 2

lmax(lmax +1)(v2
θ
+ v2

φ)

 , (4.109)
∆tA ≤ min

[
δxA

|vA|
]

, (4.110)
whereC ≤ 1 is a constant to adjust the criterion, δr , and δxA are the typical radial length scalefor advection and the magnetic field typical length scale, respectively. The explicit treatmentof the Coriolis force imposes another condition

∆t ≤ 0.1

Ωo
, (4.111)

which can be restrictive in the regime of fast rotations. Note that if the sound waves werenot filtered out, there would be another criterion associated with the time for a sound waveto cover the distance between two grid points. Since the sound speed is much larger thanthe fluid and Alfvén velocities, the CFL condition would strongly reduce the timestep.
4.4.2 . Structure of the code and parallelisation

All the ingredients have now been introduced to numerically model the evolution of aBoussinesq or anelastic MHD fluid in a spherical configuration. These ingredients constitutedifferent steps of the MagIC code, whose structure is illustrated in Fig. 4.3. Before the compu-tation of the simulation, there is an initialisation phase, which consists in preparing the initialnecessary elements of the run. It starts with the reading of the input files, which containse.g. the parameter values, the initial configuration of the fluid, the output parameters, etc.Then, MagIC calculates several constants such as the different volumes and the mass, andinitialises the radial and horizontal functions and operators.The “work” phase, is divided into two parts. During the first part, called radialLoop in
MagIC, the spectral quantities are transformed to the physical grid (θ,φ), so the non-linearterms can be calculated. This stage is opportune to create the output in the physical grid,such as movies and graphic files containing the fields at each grid point. Additional quan-tities are calculated: the courant condition, helicity, horizontal velocities, viscous heating,etc. Finally, the quantities are transformed back to the spectral space (l ,m). The secondpart called LMLoop in MagIC, consists in updating the potentials and other thermodynamicalquantities using the time-stepping scheme. During this stage, spectral outputs are createdsuch as the time-series, the spectra and the checkpoint file. The latter is very useful to start arun using the state of the fluid calculated in another simulation. Finally, the necessary arraysand radial derivatives are calculated for the potential next step.Such simulations can be very costly in time, especially for simulations of fluids with com-plex dynamics. This kind of numerical code is therefore heavily parallelised, i.e. the calcu-lations are distributed among several processors. MagIC runs on central processing units(CPUs) only because the code adaption for graphics processing units (GPUs) is not completeyet. Our simulations use in general 640 CPUs simultaneously. Although this number is smallcompared to more massive simulations, our simulations require the use of a (small) fraction
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of large supercomputers which are constituted of 100−1000 nodes containing 10−100 CPUseach, and so 104 −106 processors in total.

Figure 4.3 — Strucutre of the code MagIC (figure origi-nating from a class of T. Gastine).

In practice, we must use the appro-priate interfaces to create communica-tion between the processors and dis-tribute the different tasks. The mostcommon interfaces are Open Multi-
processing (OpenMP) and Message Pass-
ing Interface (MPI). The main differencebetween them is that the former usesthe concept of shared memory, unlikethe latter. Sharing memory can be veryuseful, but this implies additional com-munications between the processorsto avoid conflicts and so more numer-ical cost. Therefore, combining bothOpenMP and MPI is important to buildanoptimised code. In practice, OpenMPis often used for parallelism within thenode and MPI to parallelism betweennodes. For an optimal use of MagIC,MPI is also used for the communica-tion within the node. In the structure of
MagIC the combination of OpenMP andMPI is implemented as follows:

OpenMP In the radialLoop part, OpenMPcan be used for the calculation ofnon-linear terms and the spheri-cal harmonics transform. It is alsoused over the (l ,m)–modes.
MPI In the radialLoop (LMLoop) part,the radial levels (the spherical

(l ,m)–modes) can be treated inde-pendently, which besides explainsthe name of each part. r and (l ,m) are therefore distributed over MPI ranks in the ap-propriate parts.
4.4.3 . Resolution check

While a simulation is running, it is always safer to check whether it is resolved. If the sim-ulation has a far too low resolution, the run crashes quickly. However, it may sometimescontinue if the time-stepping scheme is stable enough. Therefore, we must look at the out-puts to check the resolution. The first diagnostic is to look at the graphic fields directly, inwhich the obvious signature of under-resolution is the formation of small-scale structures,called aliases. These structures can be seen in the left meridional slice in Fig. 4.4. The secondoutputs to check are the energy spectra. From them, we can infer whether the energy is well
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Figure 4.4 — Two meridional slices of the latitudinal magnetic field Bθ for an unresolved (left) andresolved (right) Tayler instability in its saturated state.

dissipated at small scales. The simulation is said to be unresolved when there are less thantwo orders of magnitude in energy between the injection and the dissipation scale. We seein the top spectra of Fig. 4.5 that the core-mantle boundaries (CMB) is clearly under-resolved.The resolution is less clear for the poloidal and toroidal fields. However, it does not mean wemust ignore the simulation because the volume-averaged quantities may actually be right.This suggests that running costly simulations can be avoided, depending on which quantitieswe wish to look at. Finally, it is also possible to check the conservation of power budget andthe heat flux.
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Figure 4.5 — Two spectra of the magnetic energy for an unresolved (top) and resolved (bottom)Tayler instability in its saturated state.
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Figure 5.1 — Schematic representation of the different stages of our magnetar formation scenario.The dashed line encloses the region of the fallback (orange arrows). Red and white lines representthe magnetic field lines and fluid motions, respectively. Ω and Eφ stand for the angular rotationfrequency and the azimuthal component of the electromotive force, respectively. Bφ and Br are theaxisymmetric azimuthal and radial magnetic field, and δB⊥ is the non-axisymmetric perpendicularmagnetic field.

the article published in Astronomy & Astrophysics (Barrère et al., 2022) and was written incollaboration with Jérôme Guilet, Alexis Reboul-Salze, Raphaël Raynaud, and Hans-ThomasJanka. This study also led to the preparation of an article about the application of this modelin binary neutron star mergers. This article was written by Alexis-Reboul-Salze in collabora-tion with me, Kenta Kiuchi, Raphaël Raynaud, Jérôme Guilet, Sho Fujiyabashi, and MasaruShibata and will be submitted to Astronomy & Astrophysics.

5.1 . Mathematical modelling of the scenario

We start by describing the impact of the SN fallback on the PNS rotation (the differentialrotation) and the magnetic field (the shearing of the radial field and the exponential growthof the Tayler instability). Finally, we present the mathematical formalism for the non-linearstages, that is, the saturation mechanism of the dynamo as modelled by Spruit (2002) andFuller et al. (2019), which we complete by a description of the generation of the radial mag-netic field through non-linear induction. For the computation of the time evolution, we onlyimplement the description based on the work of Fuller et al. (2019); but in Sect. 5.2 we com-pare both models regarding the predictions of the saturated magnetic field.
5.1.1 . Fallback accretion

Our scenario starts a few seconds after the core bounce when a fraction of the fallbackmatter gets accreted onto the PNS surface. This matter is initially ejected during the explo-sion but stays gravitationally bound to the PNS, and so begins to be asymmetrically accreted
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(Chan et al., 2020). This fallback matter is thought to have a large angular momentum, whichcan even reach themagnitude of the Keplerian angularmomentum (Janka et al., 2022). There-fore, the spin of the PNS is strongly affected and the surface rotation can be accelerated upto millisecond periods. In our scenario, the core of the progenitor is assumed to be slowlyrotating. Thus, the PNS surface spins faster than the PNS interior, which creates differentialrotation.To model the accretion onto the PNS surface, we use the asymptotic scaling for the massaccretion rate Ṁacc ∝ t−5/3 from Chevalier (1989). As the accretion mass rate must be finiteat the beginning of this accretion regime, we define a start time t0 such that

Ṁacc = A

(t + t0)5/3
, (5.1)

where A is a constant. Then, the accreted mass during this regime is
Macc =

∫ ∞

0

A

(t + t0)5/3
d t . (5.2)

As Macc is constant, we have A = 2
3 t 2/3

0 Macc and so the accretion mass rate is

Ṁacc = 2

3
Macc

t 2/3
0

(t + t0)5/3
. (5.3)

From the fallback matter, only a fraction with angular momentum as large as the Keple-rian limit at most will be accreted by the PNS, as discussed by Janka et al. (2022). Therefore,the relation between the average angular rotation frequency of the PNS and the mass accre-tion rate is
Ω̇= jkep

I
Ṁacc , (5.4)

where I stands for the PNS moment of inertia and jkep ≡ p
GMPNSr is the specific Keplerianangular momentum at the PNS surface. As the PNS mass changes little and the contractionof the PNS is almost over at the times considered for the fallback accretion, we assume Ito be constant. As supposed in Fuller et al. (2019), the angular momentum is transportedfaster latitudinally than radially due to stratification, meaning that the differential rotation isshellular, that is Ω is constant on spherical shells.As the accretion process spins up only the outer part of the PNS but not its inner core,the shear rate q ≡ r∂r lnΩ is also expected to evolve. To describe this effect, we use theapproximate expression

r∂rΩ∼Ω−Ω(r = 0), (5.5)
where Ω and Ω(r = 0) are the average and central angular rotation frequencies, respectively.Assuming that the rotation frequency at the centre of the PNS is unchanged by the accre-tion process (it will change only due to angular momentum transport processes described inSect. 5.3.1), we infer the time derivative of the shear rate as

q̇ ∼ Ω̇

Ω
(1−q). (5.6)
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5.1.2 . Shearing and Tayler instability growth
The differential rotation generated by the fallback will shear the radial component of thelarge-scale radial magnetic field Br into the azimuthal field Bφ as follows

∂t Bφ = qΩBr . (5.7)
Therefore, we can define a growth rate1 for Bφ:

σshear ≡ qΩ
Br

Bφ
. (5.8)

As Bφ grows, it becomes Tayler unstable. To depict the linear growth of the instability, wemake the following assumptions. First, the stratified medium of the PNS interior is charac-terised by the Brunt-Väisälä frequency (Hüdepohl, 2014):
N ≡

√
−g

ρ

(
∂ρ

∂S

∣∣∣∣
P,Ye

dS

dr
+ ∂ρ

∂Ye

∣∣∣∣
P,S

dYe

dr

)
∼ 4×103 s−1 , (5.9)

where g , ρ, Ye , and S are the gravitational acceleration, the PNS mean density, the electronfraction, and the entropy, respectively. In the remainder of this paper, we use the fiducialvalue N = 4× 103 s−1 based on the results of the 1D core-collapse supernova (CCSN) simu-lations from Hüdepohl (2014, Chap. 5). The Brunt-Väisälä frequency is almost uniform inmost of the PNS except near the surface where it peaks at ∼ 104 s−1. Hüdepohl (2014) made acomparison between two different equations of state (EOS): Shen (Shen et al., 1998a,b, 2011)and LS220 (Lattimer & Swesty, 1991), and found that the choice of the EOSmainly affects thelocalisation and duration of the convection but not the value of the Brunt-Väisälä frequencyin the stably stratified region. Second, the main background azimuthal field is Bφ, which isassociated with the Alfvén frequency:
ωA ≡ Bφ√

4πρr 2
≃ 11.6

(
Bφ

1015 G

)
s−1 , (5.10)

for r = 12km and ρ = 4.1× 1014 gcm−3. Finally, the frequencies characterising the PNS areordered such that
N ≫Ω≫ωA . (5.11)

Thedevelopment of the Tayler instability is triggered after reaching the critical strength (Spruit,1999, 2002, Zahn et al., 2007)
Bφ > Bφ,c ∼Ω

(
N

Ω

)1/2 ( η

r 2Ω

)1/4 √
4πρr 2

≃ 2.5×1012
(

Ω

200πrads−1

)1/4

G,

(5.12)

where η ∼ 10−4 cm2 s−1 (Thompson & Duncan, 1993) is the magnetic diffusivity. The fastest-growing perturbations are the m = 1 modes with an associated rate of (Ma & Fuller, 2019)
σTI ∼

ω2
A

Ω
≃ 0.21

(
Bφ

1015 G

)2 (
Ω

200πrads−1

)−1

s−1 . (5.13)
1We note that this growth rate and the others defined below are rather instantaneous growth rates becausethey depend on the magnetic field.
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As the PNS interior is strongly stratified, we can determine a maximum radial length scalefor the instability

lr ∼ ωA

N
l⊥ , (5.14)

where the horizontal length scale is approximated by l⊥ ∼ r .
5.1.3 . Spruit’s picture of the dynamo

Spruit (2002) proposes that the energy in the azimuthal large-scale field Bφ cascades tosmall scale, that is the form of the non-linear magnetic energy dissipation is
Ėmag ∼ γturb|Bφ|2 , (5.15)

where γturb is the turbulent damping rate. To determine this rate, Spruit (2002) argues thatthe saturation of the instability occurs when the turbulent velocity field generates a suffi-ciently large effective turbulent diffusivity to balance the growth rate of the instability, thatis
γturb ∼ ηe

l 2
r
∼σTI , (5.16)

where ηe is an effective turbulent diffusivity.The solenoidal character of the perturbed magnetic field implies Br /lr ∼ Bφ/l⊥, whichleads to
Br ∼ ωA

N
Bφ , (5.17)

using the relation between length scales of the instability given by Eq. (5.14). As the azimuthalmagnetic field Bφ is generated via the shear of the radial magnetic field Br , the dynamo isexpected to saturate when the shear (Eq. 5.8) balances the turbulent damping (Eq. 5.16).Thus, the amplitudes of the magnetic field components saturate at
B sat
φ,S ∼

√
4πρr 2q

Ω2

N
, (5.18)

B sat
r,S ∼

√
4πρr 2q2Ω

4

N 3
. (5.19)

This description of the dynamo mechanism has been criticised for two reasons: First of all,if the large-scale component of Bφ remains constant on larger length scales than lr , the dis-placements produced by the instability are not expected to mix the large-scale field lines todamp Bφ through reconnection. Therefore, the damping rate estimated in Eq. (5.16) is over-estimated for the large-scale components of the azimuthal field Bφ (see Fuller et al., 2019).Secondly, as m = 1 modes are dominant, the radial magnetic field Br produced by the in-stability is non-axisymmetric, and therefore its shear generates a mostly non-axisymmetricazimuthal field Bφ. Hence, the axisymmetric component of the fields Br and Bφ may not berelated by Eq. (5.17) (see Zahn et al., 2007).
5.1.4 . A revised model of the dynamo

This section presents a description of the dynamo that completes the model proposedby Fuller et al. (2019) in the sense that we consider the time evolution of the magnetic field.A clear distinction is nowmade between the ‘axisymmetric’ components Bφ, Br , and the ‘non-axisymmetric’ perturbed components δB⊥, δBr , which become the ones connected by thesolenoidal condition
δBr ∼ ωA

N
δB⊥ . (5.20)
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To overcome the previously raised difficulties, Fuller et al. (2019) argue that the energy in theperturbed field δB dissipates to small scales and find that the damping rate is
γcas ∼ δvA

r
, (5.21)

where δvA ≡ δB⊥/
√

4πρ is the perturbed Alfvén velocity. Thus, equating the instability growthrate (Eq. 5.13) and the damping rate (Eq. 5.21) gives the saturation strength of the perturbedfield δB⊥ for a given strength of azimuthal field Bφ,
δB⊥ ∼ ωA

Ω
Bφ . (5.22)

When the instability is saturated, the non-linear magnetic energy dissipation is then
Ėmag ∼ γcas|δB|2 ∼ δvA

r
|δB⊥|2 . (5.23)

As the azimuthal field Bφ is the dominant magnetic component, Ėmag ∼ Bφ∂t Bφ. Hence, adamping rate can be defined for the axisymmetric components Bφ and Br :
γdiss ≡

Ėmag

B 2
φ

. (5.24)
As the previous expression of the magnetic energy (Eq. 5.23) is only valid when the instabilitysaturates, we use the expression

Ėmag ∼
ω2

A

Ω
|δB⊥|2 , (5.25)

which is valid in both the saturated and non-saturated states. Therefore, the damping ratedefined in Eq. (5.24) becomes
γdiss ∼

ω2
A

Ω

(
δB⊥
Bφ

)2

. (5.26)
To close the dynamo loop, the Tayler instability must generate the axisymmetric radial mag-netic field Br (α-effect), which will be sheared again (Ω-effect). In the framework of the meanfield theory, the induction equation reads

∂t 〈B0〉 =∇× (〈v〉×〈B0〉+E)−η∆〈B0〉 , (5.27)
in which we ignore the resistive term. Considering the average symbol 〈·〉 as an azimuthalaverage, we note 〈B0〉 = B0 in order to remain consistent with our notation of the axisymmet-ric magnetic field. The electromotive force E ≡ 〈δv×δB0〉 is the important non-linear quantityresponsible for the generation of the axisymmetric radial field Br . In spherical coordinates,the radial component of Eq. (5.27) is

∂t Br = 1

r sinθ

[
∂θ(sinθEφ)−∂φEθ

]
. (5.28)

As Br is axisymmetric, Eθ can be ignored. By definition, the azimuthal component of electro-motive force is
Eφ = δvrδBθ−δvθδBr . (5.29)
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Supposing an incompressible perturbed velocity field and using Eq. (5.20), we write

δvr

δv⊥
∼ δBr

δB⊥
∼ ωA

N
, (5.30)

and so the azimuthal electromotive force reads
Eφ ∼ δvθδBr ∼ δvrδBθ ∼ δvrδB⊥ , (5.31)

where we assume that the two terms on the right-hand side of Eq. (5.29) do not cancel. Theproduction of the radial field Br can be approximated by
∂t Br ∼

Eφ
r

∼ δvrδB⊥
r

. (5.32)
We must note that this expression differs from Eq.(29) in Fuller et al. (2019), which appearsto contain a typo. As in Fuller et al. (2019) andMa& Fuller (2019), we expect magnetostrophicbalance δv⊥ ∼ δvAωA/Ω, which leads to

δvr ∼
ω2

A

NΩ
δvA . (5.33)

Thus,
∂t Br ∼

Eφ
r

∼ ω2
A

NΩ

δB 2
⊥√

4πρr 2
, (5.34)

and we can define a growth rate for Br

σNL ≡ 1√
4πρr 2

ω2
A

NΩ

δB 2
⊥

Br
. (5.35)

The radial field Br will saturate when its non-linear growth rate (Eq. 5.35) is balanced by theturbulent dissipation (Eq. 5.26). This way, we find the relation between the axisymmetricfields
Br ∼ ωA

N
Bφ , (5.36)

using Eq. (5.22). We note that this relation is similar to Eq. (5.17) fromSpruit (2002), whichwasderived for the non-axisymmetric components only. Fuller et al. (2019) also established thesame relation arguing that the Tayler instability cannot operate when the magnetic tensionforces become larger than the magnetic pressure forces leading to the instability.The azimuthal magnetic field saturates when the shear rate (Eq. 5.8) balances the dis-sipation rate (Eq. 5.26). Thus, using the relations between the magnetic field components(Eqs. 5.22 and 5.36), we find the magnetic field strengths in the saturated regime derived inFuller et al. (2019):
B sat
φ,F ∼

√
4πρr 2Ω

(
qΩ

N

)1/3

, (5.37)
δB sat

⊥,F ∼
√

4πρr 2Ω

(
qΩ

N

)2/3

, (5.38)
B sat

r,F ∼
√

4πρr 2Ω

(
q2Ω5

N 5

)1/3

. (5.39)
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Finally, the angular momentum is redistributed in the PNS through Maxwell stresses as-sociated with an effective angular momentum diffusivity (Spruit, 2002, Fuller et al., 2019):
νAM = Br Bφ

4πρqΩ
, (5.40)

which affects the shear parameter at the rate
γAM ≡ νAM

r 2
. (5.41)

5.1.5 . Governing evolution equations
Now that the main equations involved in our scenario have been brought out, we canwrite the evolution equations for the rotation properties and the magnetic field. The evo-lution of PNS angular rotation frequency is driven by the fallback accretion rate (Eq. 5.3) asdescribed by Eq. (5.4). Hence,

Ω̇= 2

3
∆Ω

t 2/3
0

(t + t0)5/3
, (5.42)

where ∆Ω=Ωfin−Ωinit = Macc jkep/I . As previously mentioned, the shear rate is also expectedto decrease due to angular momentum transport (Eq. 5.41) such that
q̇ = Ω̇

Ω
(1−q)−γAMq = 2

3

∆Ω

Ω

t 2/3
0

(t + t0)5/3
− Br Bφ

4πρΩr 2
. (5.43)

Combining the different growth and damping rates given by Eqs. (5.8), (5.13), (5.21), (5.26),and (5.35), we find that the magnetic field evolution is governed by the following equations:
∂t Bφ = (

σshear −γdiss
)

Bφ = qΩBr −
ω2

A

Ω

δB 2
⊥

Bφ
, (5.44)

∂tδB⊥ = (
σTI −γcas

)
δB⊥ = ω2

A

Ω
δB⊥− δvA

r
δB⊥ , (5.45)

∂t Br =
(
σNL −γdiss

)
Br =

ω2
A

NΩ

δB 2
⊥√

4πρr 2
− ω2

A

Ω

(
δB⊥
Bφ

)2

Br . (5.46)
Equations (5.42)–(5.46) are solved for a typical PNS of 5-10 s in age using the odeint func-tion from the Python package SciPy. The PNS mass and radius are MPNS = 1.5M⊙ and r =

12km, and so the average density is ρ = 4.1×1014 gcm−3. The moment of inertia is estimatedusing Eq. (12) from Lattimer & Schutz (2005):
I = 0.237MPNSr 2

[
1+4.2

(
MPNS

M⊙
1km

r

)
+90

(
MPNS

M⊙
1km

r

)4]
≃ 1.6×1045 gcm2 .

(5.47)
The PNS core is assumed to be initially in solid-body rotation (i.e. q = 0) and slowly ro-tating with an angular rotation frequency Ωinit = 2πrads−1 (i.e. an initial rotation period

Pinit ≡ 2π/Ωinit = 1s). We note that the results of the time integration weakly depend on theseparameters as long as Pinit ≳ 40ms. The parameters of the fallback are chosen to be con-sistent with the simulations of Janka et al. (2022), with a starting time at t0 = 7s. The initialmagnetic field components Br , Bφ, and δB⊥ are initialised at a strength of 1012 G, which is thetypical magnetic field amplitude of regular neutron stars.
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Figure 5.2 — Time evolution of the differ-ent components of the magnetic field (top),the dimensionless shear rate, and the angu-lar rotation frequency (bottom) for an accretedmass Macc = 3.2×10−2 M⊙ corresponding to anasymptotic rotation period Pfin = 10ms. Thedifferent stages of the dynamo process arehighlighted by the schematics at the top andtheir associated timescales by the double ar-rows. Their ends are illustrated by the dottedvertical lines: winding (black), linear develop-ment of the Tayler instability (dark blue), andthe whole dynamo loop (red). The horizontaldashed lines (blue, orange, and green) show re-spectively the saturation intensities B sat
φ,F,δB sat

⊥,F,and B sat
r,F (Eqs. 5.37–5.39) evaluated at the timeof saturation. The dashed violet horizontal linerepresents the asymptotic angular rotation fre-quency Ωfin.

5.2 . Results

We proceed with a twofold presentation of our model outputs: First we present the timeevolution, in which we derive analytical predictions for the timescales of the different phasesof the scenario and compare them to the integrated evolution. We then present the satu-rated regime where we focus on the magnetic field intensities reached via the Tayler-Spruitdynamo and provide an ‘upper’ limit of PNS rotation period (i.e. a ‘lower’ limit of fallbackmass) to form magnetars.
5.2.1 . Time evolution of the magnetic field

The time series for an asymptotic rotation period Pfin ≡ 2π/Ωfin = 10msdisplayed in Fig. 5.2can be split into several phases, which are illustrated by the schematics at the top of thefigure:
(i) Bφ is strongly amplified for ∼ 4s due to the winding of Br while the other componentsstay constant. As the mass-accretion rate is higher in this phase, strong increases inthe shear rate and the rotation rate are also noted.
(ii) The Tayler instability develops and amplifies δB⊥ for ∼ 8s.
(iii) The axisymmetric radial field Br is generated allowing the dynamo action to occur for

∼ 5s. The azimuthal magnetic field saturates at ∼ 17s, which corresponds to ∼ 24s afterthe core bounce.
(iv) The angular momentum transport by the magnetic field, which was negligible during
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the first ∼ 16s, becomes significant as the magnetic field saturates. This stage is dis-cussed in Sect. 5.3.1.
The evolution of the magnetic field is shown until the whole angular momentum is trans-ported, (i.e. when the shear rate reaches q = 0) at t ∼ 17.5s. Further evolution is not consid-ered because our set of equations does not intend to describe either the relaxation phase ofthe magnetic field to a stable geometric configuration or the dynamics with very low shearwhere one would expect the Tayler-Spruit dynamo to stop or to act intermittently (Fuller &Lu, 2022).The different vertical lines in Fig. 5.3 show that the above phases occur at different timesfor different accreted masses. To better quantify the dependence on this parameter, wederive analytical estimates of the corresponding characteristic timescales τshear, τTI, and τdyn(see Fig. 5.2). First, the shearing phase begins when the fallback matter starts to be accretedon the PNS surface and finishes when the azimuthal magnetic field Bφ is strong enough tomake the Tayler instability grow as fast as Bφ, that is when the growth rate of the instability(Eq. 5.13) is equal to the winding rate (Eq. 5.8). Thus, the Alfvén frequency associated withthe intensity of the azimuthal magnetic field at the end of this phase is

ωA ∼ωA,TI ≡
(
qΩ2ωr,0

)1/3
, (5.48)

where ωr,0 ≡ Br (t = 0)/
√

4πρr 2. Therefore, a characteristic timescale for the shearing stagecan be defined as the inverse of the winding growth rate (Eq. 5.13) evaluated at ωA =ωA,TI:
τshear ≡σ−1

shear ∼
ωA,TI

qΩωr,0
= (

q2ω2
r,0Ω

)−1/3
. (5.49)

Second, as the azimuthal field becomes unstable, the Tayler instability grows exponen-tially until the perturbed field reaches the saturation intensity of Eq. (5.22). The perturbedfield at saturation can be approximated by
δB⊥(t = tsat) ∼ δB⊥(t = τshear)exp[σTI(tsat −τshear)] , (5.50)

and so a characteristic timescale for this stage can be defined as
τTI ≡ tsat −τshear ∼σ−1

TI ln

[
δB⊥(t = tsat)

δB⊥(t = τshear)

]
. (5.51)

Using Eq. (5.22), we have
δB⊥(t = tsat) ∼ ωA(t = tsat)

Ω
Bφ(t = tsat) . (5.52)

In order to obtain a simple estimate, wemake the rough approximations that δB⊥(t = τshear) ∼
δB⊥(t = 0) and Bφ(t = τshear) ∼ Bφ(t = tsat), which leads to

τTI ∼ Ω

ω2
A,TI

ln

(
ω2

A,TIr

ΩδvA,0

)
, (5.53)

where δvA,0 ≡ δvA(t = 0).
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Figure 5.3 — Same as Fig. 5.2 but for total accreted masses of Macc = {0.54, 0.8, 1.6, 6.4}×10−2 M⊙(corresponding to Pfin = {60, 40, 20, 5}ms, respectively).
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Third, when the perturbed field reaches a sufficient amplitude, the axisymmetric radialfield is amplified through non-linear induction, thus closing the dynamo loop. This phaseends when themagnetic field saturates at the intensities given by Eqs. (5.37)–(5.39). Likewise,we estimate the critical strength of the azimuthal field Bφ,dyn above which the dynamo loopis triggered by equating the growth rate of the radial field Br (Eq. 5.35) and the winding rate(Eq. 5.8). We obtain the Alfvén frequency associated with Bφ,dyn

ωA,dyn ≡ (
qNΩ4ω2

r,0

)1/7
, (5.54)

making use of Eq. (5.22). We define the dynamo characteristic timescale as
τdyn ≡

(
Bφ

∂2
t Bφ

)1/2

. (5.55)
The time derivative of the radial magnetic field is

∂t Br ∼
ω2

AδvA

NΩr
δB⊥ ∼ ω3

AδvA

NΩ2r
Bφ ∼ ω5

A

NΩ3
Bφ , (5.56)

using Eq. (5.22). Therefore,
∂2

t Bφ ∼ qΩ∂t Br ∼
qω5

A

NΩ2
Bφ , (5.57)

where q and Ω are assumed to be constant during this phase. Thus, the dynamo character-istic timescale can be approximated as
τdyn ≡

(
Bφ

∂2
t Bφ

)1/2

∼ Ω

ω2
A,dyn

(
N

qωA,dyn

)1/2

. (5.58)
For the case Pfin = 10ms, we have τshear ≃ 2.3s, τTI ≃ 8.5s, and τdyn ≃ 5s, which are similarto the timescales illustrated by the dotted vertical lines in Fig. 5.2. The same observation canbe made for Pfin ≤ 30ms in Fig. 5.3. However, for Pfin = 40ms (Macc = 0.008M⊙) and Pfin = 60ms(Macc = 0.0054M⊙), the dynamo loop phase lasts respectively ∼ 30s and ∼ 20s (see Fig. 5.3),which is longer than the analytical predictions of τdyn ≃ 11s and τdyn ≃ 9.2s. This is due tothe presence of a significant stage that is not included in the expression of τdyn where thegrowth of Bφ slows down before saturation.The three characteristic timescales defined by Eqs. (5.49), (5.53), and (5.58) are plotted asa function of the fallback mass in Fig. 5.4 in addition to the characteristic timescale for thewhole amplification process, which is defined as

τtot ≡ τshear +τTI +τdyn . (5.59)
The vertical red dashed line represents the lower limit of fallback mass to form typical mag-netars, which is estimated in Sect. 5.2.2 (corresponding to an asymptotic rotation period
Pfin ≲ 30ms). In the regime relevant to magnetar formation, the analytical and numericalestimates of the duration of the whole amplification process are in reasonable agreement,namely τtot ≲ 30s. In this regime, the phase which takes more time is the development of theTayler instability. For Pfin ≳ 30ms, the comparison between the time at which Bφ saturatesand τtot shows a significant difference, which is the consequence of the discrepancy notedabove between the analytical estimate and numerical solution for τdyn.
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Figure 5.4 — Different characteristic timescales as a function of the accreted mass: winding (black),Tayler instability (dark blue), and dynamo (red). The green line represents the sum of the threetimescales. The shear rate is set at q = 1. The green crosses represent the entire amplification timeobtained by integrating Eqs. (5.37)–(5.39). The red vertical line shows the lower limit of the accretedmass to form a magnetar with a radial field stronger than BQ ≡ me c2/eħ≃ 4.4×1013 G using the predic-tions of Fuller et al. (2019).

5.2.2 . Magnetic field in the saturated regime
We now focus on the maximum magnetic field obtained at the end of the amplificationphase. In the following discussion, this saturatedmagnetic field will be considered as a proxyfor the magnetar’s magnetic field and its ‘radial’ component will be considered a proxy forthe ‘dipolar’ component of the magnetic field. A more precise prediction would require adescription of the relaxation towards a stable equilibrium, which is left for future studies.In the top panel of Figs. 5.2 and 5.3, we see that the saturation intensities are close totheir associated horizontal dashed lines, which illustrate the predictions of Eqs. (5.37)–(5.39)for values of the shear rate q and the angular rotation frequency Ω reached at the time ofmagnetic field saturation. Therefore, these equations can be used to estimate the intensityof the saturated magnetic field. However, the angular frequency at τtot is still lower than itsasymptotic value represented by the violet dashed line in the bottom panel. We estimate

Ω(t = τtot) analytically by integrating Eq. (5.42)
Ω(t = τtot) =Ωfin −

(
t0

τtot + t0

)2/3

(Ωfin −Ωinit) . (5.60)
Assuming that the timescales for the dynamo are roughly the same for the two models, thatis, that of Fuller et al. (2019) and that of Spruit (2002), we also evaluate the expressions ofthe saturated magnetic field derived by Spruit (2002) (Eqs. 5.18 and 7.20) at Ω(t = τtot). Wesee in Fig. 5.5 that our analytical estimates of the saturated fields (solid lines) are close tothe numerical values at the peak of the solutions of Eqs. (5.44)–(5.46) (plus symbols). Thesmall difference that appears for shorter rotation periods is due to the angular momentumtransport, as discussed in see Sect. 5.3.1.
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Figure 5.5 — Predicted intensities for the saturated components of the magnetic field as a functionof the accreted mass using the formalisms of Fuller et al. (2019) (Eqs. (5.37)–(5.39); solid lines) andSpruit (2002) (Eqs. (5.18)–(7.20); dash-dot lines). The shear rate is set at q = 1. These intensities arecompared to the magnetic field reached at maximum intensity (blue and green plus signs) and at
q = 0 (blue and green cross signs) by integrating Eqs. (5.42)–(5.46) for several fallback masses. Greyareas represent the estimated range of the dipolar magnetic field strength from regularly observedmagnetars (dark grey) and from the three detected low-field Galactic magnetars (light grey). Thevertical lines show the lower limit on the fallback mass (upper limit on the rotation period) neededto form a magnetar with a radial field stronger than BQ ≃ 4.4×1013 G for the prediction of Fuller et al.(2019) (dashed red) and Spruit (2002) (dotted red).

Using the maximummagnetic field as a proxy for the magnetar’s magnetic field may leadto an overestimation because a fraction of the magnetic energy can be dissipated during therelaxation to a stable magnetic configuration. Although our model is unable to describe thisrelaxation process, we can get an idea of the robustness of our proxy by comparing to themagnetic field intensity at the time when q = 0. Figure 5.5 shows that this other proxy (crosssigns) is smaller by between ∼ 10% and ∼ 50% but follows the same trends as the maximummagnetic field. Such a moderate difference would not change our main conclusions andsuggests that the maximummagnetic field is a meaningful proxy for the final magnetic field.
In Fig. 5.5, the observed range of dipolarmagnetic field formagnetars is fixed between thequantum electron critical field BQ ≡ me c2/eħ≃ 4.4×1013 G and Bdip ∼ 2×1015 G, the dipole fieldof the ‘most magnetised’ magnetar SGR 1806-20 (Olausen & Kaspi, 2014). We find that theradial magnetic fields B sat

r,F and B sat
r,S fall in this range for accreted masses Macc ≳ 1.1×10−2 M⊙and Macc ≳ 4×10−2 M⊙ (i.e. asymptotic rotation periods Pfin ≲ 28ms and Pfin ≲ 8ms), respec-tively. This confirms that magnetar-like magnetic fields can be formed over a wide range ofaccreted masses. The analytical predictions also show that, in the regime relevant for mag-netar formation, the azimuthal component Bφ ≳ 4×1015 G for both saturation mechanisms,which is significantly stronger than the radial component.

For lower accreted masses spinning-up the PNS to periods ranging from 28 to 64ms (be-tween 8 and 14ms for the predictions of Spruit (2002)), our scenario may produce radial mag-
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netic fieldsBr as strong as the dipolar fields diagnosed in low-fieldmagnetars (Rea et al., 2010,2012a, 2014). Moreover, the strength of the associated azimuthal field is Bφ ∼ (1−3)×1015 G,which can be related to the non-dipolar magnetic field needed to produce the outbursts andchaotic bursts observed inmagnetars (Thompson & Duncan, 1995). This azimuthal magneticfield may also be the source of the proton cyclotron absorption lines observed in two low-field magnetars by Tiengo et al. (2013) and Rodríguez Castillo et al. (2016). Thus, our modelprovides a possible explanation of low-field magnetar formation. It is an alternative to theinitial interpretation proposed by Rea et al. (2010), which invokes ≳ 1Myr ‘old’ (or ‘worn-out’)magnetars whose initial strong dipolar field of ∼ few×1014 G has decayed due to Ohmic andHall processes. This diffusion could be enhanced by the presence of a strong initial toroidalfield ≳ 1016 G (Turolla et al., 2011).As Eqs. (5.37)–(5.39) give orders ofmagnitude, Fuller et al. (2019) parameterised themwitha prefactor denotedα. We usedα∼ 1 as obtained by Fuller et al. (2019) for evolved stars in thesubgiant and red giant branches by calibrating α on asteroseismic measurements. However,Eggenberger et al. (2019c) find α∼ 0.5 for subgiant stars on the one hand, and α∼ 1.5 for redgiant stars on the other. Also, Fuller & Lu (2022) argue that α ∼ 0.25 if intermittent dynamoaction is considered in radiative zones with insufficient shear to trigger a sustained dynamo.This smaller prefactor would imply a larger limit of accreted mass of ∼ 2× 10−2 M⊙ (i.e. arotation period of ∼ 15ms).

5.3 . Discussion

5.3.1 . Angular momentum transport
In the previous section, we focused on themagnetic field amplification anddid not discussthe angular momentum transport due to the Tayler-Spruit dynamo. Our analytical estimateof the saturated magnetic field is based on the assumption that the differential rotation isnot erased before the end of the amplification. Indeed, Figs. 5.2 and 5.3 show that the an-gular momentum transport due to Maxwell stresses starts to be significant around the timeof magnetic field saturation and that most of the angular momentum transport occurs after-wards. This can be explained by comparing the characteristic timescales of the dynamo loopphase τdyn (Eq. 5.58) with those of angular momentum transport. These can be estimated atsaturation using the expression of B sat

φ,F (Eq. 5.37) as
τAM ≡ γ−1

AM = r 2

νAM
∼

(
N

Ω

)2

Ω−1 , (5.61)
and

τdyn =
(

N

qω

)4/3

Ω−1 . (5.62)
The ratio of these two timescales is

τdyn

τAM
∼

(
Ω

q2N

)2/3

∼ 0.3

(
P

10ms

)−2/3

. (5.63)
For all values of the accreted mass and corresponding rotation period considered in this pa-per, the angular momentum transport is therefore longer than the dynamo timescale. Thisexplains why most of the angular momentum takes place after the dynamo saturation and
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justifies a posteriori our analytical estimate of the saturated magnetic field. At fast rotationperiods of a few milliseconds, the two timescales are nonetheless close to each other; as aconsequence, the angularmomentum transport before saturation is not negligible, which ex-plains the moderate discrepancy between our analytical estimate of the saturated magneticfield and the numerical results for short rotation periods (Fig. 5.5).On the other hand, angular momentum transport due to the neutrino viscosity can beneglected because its typical timescale is much longer than the evolution timescales consid-ered:
τn ≡ r 2

νn
≳ 3×104 s , (5.64)

where the neutrino viscosity νn is estimated with the approximate analytical expression ofKeil et al. (1996) and Guilet & Müller (2015):
νn ∼ 3×108

(
ρ

1014 gcm−3

)−2 (
T

5MeV

)2

cm2 s−1. (5.65)
5.3.2 . Neutrinos

We demonstrate above that angular momentum transport by either the magnetic fieldor the neutrino viscosity does not significantly impact our results. However, the neutrino fluxcoming from the accretion is also expected to extract a fraction of the angular momentumof the PNS (Janka, 2004, Bollig et al., 2021). To investigate whether it does not jeopardisethe model, we use the following reasoning. As fallback is assumed to start several secondsafter bounce in our model, one may assume that most of the angular momentum extractionby neutrino emission at these late times originate from fallback accretion rather than PNScooling. Most of the fallback mass is likely to have a specific angular momentum j0 whichexceeds the Keplerian value at the PNS surface. It will therefore assemble into an accretiondisk, settling at a radius rk where jkep(rk) = j0. Its gravitational binding energy Ebind will be atmost all converted into neutrino radiation, that is per baryon with a rest mass mB:
∆Eν≲ Ebind(rk) ∼ GMPNSmB

rk
, (5.66)

where we assume that the disk mass is small compared to the PNSmass. The correspondingspecific angular momentum loss is
∆ jν≲

∆Eν
mBc2

jkep(rk) ∼ RS

2rk
jkep(rk) , (5.67)

where RS ≡ 2GMPNS/c2 is the PNS Schwarzchild radius. ∆ jν is maximal at the PNS surface (i.e.when rk = r ), which implies
∆ jν≲ 0.185 jkep(r ) , (5.68)

for the same parameters of a typical PNS introduced in Sect. 5.1.5. Therefore, the extractionof angular momentum by neutrino radiation is very inefficient.
5.3.3 . Impact of the viscosity on the Tayler instability

In the reasoning developed above, we do not take into account the effects due to viscousprocesses, which might be important because they could be much larger than the effects ofthe resistivity in PNSs. Therefore, here we aim to address the question of their impact on
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the development of the Tayler instability. To the best of our knowledge, no analytical studyof the Tayler instability has included the impact of viscosity. Hence, we use an approximatereasoning similar to that of Spruit (2002), which is based on a comparison of the instabilitygrowth timescale with the viscous damping timescale. This provides the following instabilitycriterion:

σ−1
TI ∼ Ω

ω2
A

≲ l 2
r

ν
, (5.69)

with ν being the kinematic viscosity. Using the constraint on the radial length scale lr due tothe stratification (Eq. 5.14), we infer an instability criterion on the azimuthal magnetic field
Bφ as a function of the viscosity:

Bφ > Bφ,c ∼Ω
(

N

Ω

)1/2 ( ν

r 2Ω

)1/4
. (5.70)

This equation is similar to Eq. (5.12) but with the magnetic diffusivity substituted by theviscosity. To obtain an order of magnitude of this critical value, we must determine a valueof the viscosity which is relevant for our scenario. As the fallback accretion occurs secondsto minutes after the PNS formation, the PNS has cooled down to temperatures ≲ 1.1×1011 Kin the core and≲ 5×1010 K in the outer region (≲ 10MeV and≲ 5MeV, respectively; Hüdepohl,2014). The neutrino mean free path can be approximated by (Thompson & Duncan, 1993,Eq. 11):
ln ∼ 4×104

(
ρ

1014 gcm−3

)−1/3 (
T

5MeV

)−3 (
f (Yp )

1

)
cm, (5.71)

where f (Yp ) is function of the proton fraction close to unity. This length is larger than themaximum radial length scale (Eq. 5.14):
lr ∼ 4×103

(
Bφ

1015 G

)
cm. (5.72)

Therefore, neutrinos do not provide any relevant viscosity at the Tayler instability lengthscales and we must consider instead a microscopic viscosity such as the shear viscosity dueto neutron–neutron scattering (Cutler & Lindblom, 1987, Eq. 14):
νs ∼ 3×10−2

(
ρ

1014 gcm−3

)5/4 (
T

5MeV

)−2

cm2 s−1 . (5.73)
The associated critical magnetic field is therefore

Bφ,c ≃ 1013
( νs

3×10−2 cm2 s−1

)1/4
(

Ω

200πrads−1

)1/4

G, (5.74)
which is four times stronger than the critical magnetic field inferred from the criterion ofSpruit (2002) (Eq. 5.12). However, this new critical magnetic field is still much weaker thanthe characteristic azimuthal magnetic field separating the winding phase from the phase inwhich the Tayler instability develops (when the growth rate of the Tayler instability reachesthe winding rate (Eq. 5.48))

Bφ =ωA,TI

√
4πρr 2 ∼ 1.3×1015

(
Ω

200πrads−1

)2/3 (
Br

1012 G

)1/3

. (5.75)
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As a consequence, the viscosity is not expected to prevent the Tayler instability from growingand should not have a significant impact on our results. However, we note that our argumentis approximate and would need to be upgraded through a linear analysis of the Tayler insta-bility including the viscous processes.
5.3.4 . Superfluidity and superconductivity

A last potential obstacle for our model may emerge from the crust formation and the su-perfluidity and superconductivity in the core, which occur during the cooling of the PNS. Theouter crust is expected to start freezing a fewminutes after the PNS formation and the innercrust forms far later, between 1 and 100 yr after formation (Aguilera et al., 2008). Therefore,no part of the crust is formed during the time interval involved in our scenario.The potential early appearance of superfluid neutrons or even superconductive protonsin the PNS core at temperatures below 108 − 1010 K is worth discussing because the MHDapproximation would not be sufficiently realistic and a multi-fluid approach would be morerelevant (Glampedakis et al., 2011, Sinha & Sedrakian, 2015). However, the 1D models ofPNS cooling show higher temperatures than 1010 K in the PNS even after 15 s (e.g. Pons et al.,1999, Roberts, 2012, Hüdepohl, 2014, Roberts & Reddy, 2017). Moreover, Gusakov & Kantor(2013) and Glampedakis & Jones (2014) brought forward a critical perturbed magnetic fieldstrength above which superfluidity of neutrons dies out. Therefore, the MHD approximationis still valid for describing the PNS internal dynamics during the first 40 s following the corebounce.

5.4 . Conclusions

In this paper, we propose a new scenario for magnetar formation, in which the Tayler-Spruit dynamo amplifies the large-scale magnetic field of a PNS spun up by SN fallback ac-cretion. We develop a one-zone model describing the evolution of the magnetic field aver-aged over a PNS subject to fallback accretion. The equations describing the time evolutionare solved numerically and compared successfully with analytical estimates of the final mag-netic field and of the duration of each stage of the amplification process. Predictions forthe different components of the magnetic field are therefore obtained as a function of theaccreted mass for the two proposed saturation models of the Tayler-Spruit dynamo (Spruit,2002, Fuller et al., 2019). Our main conclusions can be summarised as follows:
• Radial magnetic fields spanning the full range of the magnetar dipole intensity can beformed for accreted masses compatible with the results of recent SN simulations. Ourmodel predicts the formation of magnetar-like magnetic fields for accreted masses

Macc ≳ 1.1×10−2 M⊙ for the saturationmodel of Fuller et al. (2019) and Macc ≳ 4×10−2 M⊙for the saturation model of Spruit (2002). This corresponds to neutron star final rota-tion periods Pfin ≲ 28ms and Pfin ≲ 8ms, respectively.
• The azimuthal component of the magnetic field is predicted to be in the range 1015 −

1016 G, which is stronger than the radial component by a factor of 10 to 100.
• In the regime relevant for magnetar formation, the magnetic field amplification lastsbetween 15 and 30s. On such a timescale, the MHD equations assumed in the descrip-tion of the Tayler-Spruit dynamo are expected to be valid. Furthermore, we have not
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identified any other process capable of interfering with the Tayler-Spruit dynamo bytransporting angular momentum on a comparable or shorter timescale.

Our results therefore predict that magnetars can indeed be formed in our new scenario.Magnetar formation is possible at sufficiently long rotation periods to be compatible withthe lower limit of 5ms inferred from regular SN remnants associated with magnetars. Withthe saturation model of Fuller et al. (2019), the full range of magnetar fields can be obtainedwithin this constraint, even those that exhibit a strong dipolarmagnetic field Bdip ∼ 1015 G. Onthe other hand, with the saturation model proposed by Spruit (2002), only the lower end ofthemagnetar fields can be obtained with Pfin < 5ms, while dipolar magnetic fields≳ 2×1014 Gneed faster rotation periods.An important prediction of our scenario is the very intense toroidal magnetic field, whichlies between 3×1015 and 3×1016 G for parameters corresponding to radial magnetic fieldsin the magnetar range. These values are compatible with the interpretation of the X-ray fluxmodulations observed in three magnetars as free precession driven by an intense toroidalmagnetic field (Makishima et al., 2014, 2016, 2019, 2021).The intense toroidal magnetic field predicted in our scenario also provides interestingperspectives fromwhich to explain the formation of low-fieldmagnetars. For radialmagneticfields in the range of the dipolar magnetic field deduced for these objects (Rea et al., 2010,2012a, 2013, 2014), our model predicts a toroidal magnetic field intensity of ∼ 1−3×1015 G.Such non-dipolarmagnetic fields are strong enough to be the energy source of themagnetar-like emission from these objects and to explain the variable absorption lines interpretedas proton cyclotron lines (Tiengo et al., 2013, Rodríguez Castillo et al., 2016). We thereforesuggest that some of the low-field magnetars may be born with low dipolar magnetic fields,rather than evolve to this state as assumed in the ‘worn-out’ magnetar scenario.A question arising from our study is the location of the magnetic field in the PNS, whichcannot be captured by our one-zone model. As the shear due to fallback accretion is ex-pected to be strongest in the outer region of the PNS, one may expect the magnetic field tobe preferentially located in these outer layers. Such a concentration of the magnetic fieldnear the surface would have interesting consequences for its long-term evolution becausethe magnetic field may be confined in the crust without significant magnetic flux threadingthe superconductive core. The long-term evolution of such a crust-confined magnetic fieldconfiguration has been thoroughly investigated by numerical simulations (e.g. Viganò et al.,2013, Gourgouliatos et al., 2016, Pons & Viganò, 2019). By contrast, if the magnetic fieldis also present in deeper regions, its evolution in the superconductive core and the transi-tion layer with the crust must be taken into account. A few papers studied this evolution innumerical simulations (e.g. Henriksson & Wasserman, 2013, Lander, 2013, Ciolfi & Rezzolla,2013) but these lead to a slower magnetic field evolution that is incompatible with magnetarobservations (Elfritz et al., 2016). These results would favour initial crust-confined magneticfields but need to be confirmed inmore realistic 3D simulations of themagneto-thermal evo-lution in the whole neutron star. We also note that the localisation of the magnetic field inour magnetar formation scenario should be studied in more detail. On the one hand, thestratification increases by a factor of ∼ 2.5 close to the PNS surface, which might weakenthe magnetic field and confine it closer to the surface. On the other hand, the shear can beexpected to become significant in the bulk of the PNS after angular momentum has beenpartly redistributed by the Tayler-Spruit dynamo. Some of the magnetic field may also betransported to deeper regions via the Tayler instability or during the relaxation to a stable
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equilibrium.
Another relevant question is the geometry of the magnetic field amplified by the Tayler-Spruit dynamo. One should keep in mind that our comparison to magnetars relies on theassumption that the generated radial field Br is mostly dipolar. Although the real geome-try of the poloidal magnetic field generated by the Tayler-Spruit dynamo is not known, it islikely to be partly non-dipolar, meaning that the large-scale dipolar magnetic field is a frac-tion of the radial field Br . Therefore, corresponding predictions should be refined by study-ing dedicated multi-dimensional models. In Petitdemange et al. (2023), a dynamo similar tothe Tayler-Spruit dynamo has been found through numerical simulations in a configurationwhere the surface rotates slower than the core, which is therefore different to the case ofspun-up PNS. Moreover, the observed magnetars are cooled-down neutron stars with a sta-ble configuration of magnetic field. Hence, the study of the magnetic field relaxation from aturbulent saturated state to a stable configuration is important to estimate a more realisticintensity of the dipolar poloidal field. Thus, numerical simulations will be essential to furtherstudy of the evolution of the magnetic field geometry in our framework.
A salient feature of our fallback scenario is that it decouples magnetar formation fromrapid progenitor rotation and from strong magnetisation of the pre-collapse stars. Rapidprogenitor rotation is necessary for magnetar formation by the convective dynamo, whichrequires initial NS spin periods of ≲ 10ms (Raynaud et al., 2022), and by the magnetorota-tional instability (Reboul-Salze et al., 2021, 2022). Strong magnetisation of the pre-collapsestar on the other hand is a crucial aspect in the fossil field scenario or the stellar mergerscenario (Schneider et al., 2019). Instead of requiring fast rotation or strongmagnetic field inthe progenitor core, our scenario predictsmagnetar formationwhen fallback deposits a suffi-cient amount of angularmomentumon the PNS surface. With the angularmomentumof themass accreted by the NS being limited by the Keplerian value, magnetars are formed for ac-creted masses of more than ∼ 1.1×10−2 M⊙ (case of Fuller et al., 2019) and ∼ 4×10−2 M⊙ (caseof Spruit, 2002) in our scenario. The fallback mass should be several times larger than theaccreted mass, because angular momentum loss must be expected to lead to mass loss dur-ing the accretion process. Therefore, fallback masses of more than a few 10−2 M⊙ to 10−1 M⊙seem to be needed. Based on 1Dmodels of neutrino-driven core-collapse SN explosions, thisindicates a preference for single stars with zero-age-main-sequence (ZAMS) masses aboveabout ∼ 18M⊙ (Sukhbold et al., 2016) and helium stars (hydrogen-stripped stars in binaries)with ZAMS masses above 30− 40M⊙ (depending on details of the mass-loss evolution); al-though the compactness differences between the single-star models of Sukhbold &Woosley(2014) compared to those of Sukhbold et al. (2018) as well as 3D explosion effects (whichincrease the fallback mass; Janka et al., 2022) may shift these ZAMS masses to lower values.This would be consistentwith the observations constrainingmagnetar progenitors tomasseshigher than 30M⊙ (Gaensler et al., 2005, Bibby et al., 2008, Clark et al., 2008) and also withthe case of themagnetar SGR1900+14, whose progenitor mass was estimated to be 17±2M⊙(Davies et al., 2009).
While ourmodel avoids the uncertainty of the progenitor core rotation andmagnetic field,it implies coping with the uncertainties on the fallback process. A precise modeling of thefallback depends on such challenging questions as how a long-lasting post-explosion phasewhere downflows to the PNS coexist with outflows of neutrino-heatedmatter transitions intothe fallback accretion as discussed by Janka et al. (2022); the complex dynamical processesthat determine the fraction of fallback matter that gets accreted by the PNS from a fallback
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disk; and the efficiency of the accretion to spin-up the PNS. Our scenario should thereforebe explored in more depth by more realistic fallback models.

Following its saturation, the PNS magnetic field may interact with the newly formed diskof fallback matter and is strong enough to influence the fallback accretion mechanism. Wedid not model this interaction because our study was focused on the phase of magneticfield amplification. Nevertheless, this could strongly influence the rotation of the newly bornmagnetar. The evolution of the PNS-fallback disk system depends on three characteristicradii (Metzger et al., 2018, Beniamini et al., 2020, Lin et al., 2020, Ronchi et al., 2022): (i) themagnetospheric radius rm, which is the radius at which thematter is blocked by themagneticbarrier, (ii) the corotation radius rc where the matter has the same rotation frequency as thePNS, and (iii) the light cylinder radius rlc, which is the ratio of light speed to the PNS rotationfrequency. The strongmagnetic field repels themagnetosphere behind the corotation radius(i.e. rc < rm) which stops the accretion and so the PNS spin-up. If the fallback accretionrate of the disk is large enough, the inner part of the disk penetrates the light cylinder (i.e.
rlc > rm) and opens up a part of the magnetic field lines. The PNS-fallback disk system entersthe so-called propeller regime and the PNS angular momentum is transported towards thedisk via the magnetic dipole torque. This mechanism is thought to extract the PNS angularmomentum very efficiently; for instance Beniamini et al. (2020) even predict magnetars spundown to rotation periods of∼ 106 s after∼ 103 yr. For this reason, this scenario is often invokedto explain the ultra-long-periodmagnetars such as 1E 1613 (e.g. De Luca et al., 2006, Li, 2007,Rea et al., 2016) or the recently observed GLEAM-X J162759.5-523504.3 (Ronchi et al., 2022),which have rotation periods of∼ 2.4×104 s and∼ 1.1×103 s, respectively. It would be interestingto include such a spin-down model in our magnetar formation scenario in order to obtain aprediction of the rotation period at later times.

Finally, the PNS-fallback disk system has also been invoked to explain the light curve ofluminous and extreme SNe of types Ib/c (e.g. Dexter & Kasen, 2013, Metzger et al., 2018,Lin et al., 2021). We may also expect our scenario to produce these types of explosionsdepending on the amount of accreted mass during the dynamo process. First, PNSs thathave accreted ∼ 2−3×10−2 M⊙ of fallback matter before the magnetic field saturation haverotation periods of around 10− 20ms, which are too slow to produce extreme explosions.According to our scenario, their typical magnetic field is of 1−5×1014 G, which would leadto regular luminous SNe Ib/c. Their light curve would be dominated by the PNS spin-downluminosity instead of the 56Ni decay luminosity (Ertl et al., 2020, Afsariardchi et al., 2021).Second, for fallback masses spinning up the PNSs to millisecond rotation periods, the mag-netic field saturates a few 10s after the core bounce at Br ≳ 5×1014 G. The rotational energycan be kept for later times and be slowly extracted to irradiate its environment, which mightlead to superluminous SNe I (Woosley, 2010, Kasen & Bildsten, 2010, Bersten et al., 2016,Margalit et al., 2018, Lin et al., 2020, 2021). Finally, to produce extreme explosions such ashypernovae, which have approximately ten times larger kinetic energies and much higher
56Ni yields than the vast majority of CCSNe, an energy injection within a timescale of ≲ 1s isrequired (Barnes et al., 2018) to explain the large masses of 56Ni≳ 0.2M⊙ inferred from theirlight curves (e.g. Woosley & Bloom, 2006, Drout et al., 2011, Nomoto et al., 2011). For rota-tion periods of ≲ 1ms, which correspond to rotational energies of ≳ 3×1052 erg, our modelprovides a radial magnetic field of Br ≳ 2.6×1016 G, which may be enough to inject the energyquickly through magnetic dipole spin-down only (Suwa & Tominaga, 2015). The presenceof a propeller regime would enhance the PNS spin-down such that a weaker dipolar mag-
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netic field of ∼ 2×1015 G would also produce a hypernova (Metzger et al., 2018) but througha propeller-powered explosion. Therefore, our magnetic-field-amplification scenario by PNSaccretion or fallback accretion may be of relevance to a wide variety of magnetar-poweredphenomena in different types of SN events.
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6.1 . Numerical setup

We3Ddirect numerical simulations of a stably stratified andelectrically conductingBoussi-nesq fluid with the pseudo-spectral code MagIC (Wicht, 2002, Gastine & Wicht, 2012, Scha-effer, 2013). The fluid has a constant density ρ = 3.8× 1014 gcm−3 (which corresponds to a
133
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proto-neutron star mass of M = 1.4M⊙) and evolves between two concentric spheres of ra-dius ri = 3km and ro = 12km, rotating at the angular frequencies Ωi and Ωo = 2π×100rads−1,respectively. The imposed differential rotation is characterized by the Rossby number Ro ≡
1−Ωi /Ωo > 0, which is varied between 0.125 and 1.2. This spherical Taylor-Couette config-uration with positive shear prevents the development of the MRI and allows us to studythe system in a statistically steady state. We impose no-slip and insulating boundary con-ditions at the inner and outer spheres. In all the simulations, we keep fixed the other di-mensionless control parameters: the shell aspect ratio χ ≡ ri /ro = 0.25, the thermal andmagnetic Prandtl numbers Pr ≡ ν/κ = 0.1 and Pm ≡ ν/η = 1, respectively, the Ekman num-ber E ≡ ν/(d 2Ωo) = 10−5, and the ratio of the Brunt-Väisälä to the outer angular frequency
N /Ωo = 0.1. The coefficients ν, κ, η, and d ≡ ro − ri are respectively the kinematic viscos-ity, the thermal diffusivity, the resistivity, and the shell width. As discussed in Sect. 1.3. inthe Supplemental Materials, the values of the dimensionless parameters are chosen for nu-merical convenience because realistic parameters of proto-neutron star interiors are out ofreach with the current computing power. The magnetic energy is measured by the Elsassernumber Λ ≡ B 2

rms/(4πρηΩo). The simulations are initialized either from a nearby saturatedstate, or with a weak (Λ = 10−4) or a strong (Λ = 10) toroidal axisymmetric field with a givenequatorial symmetry ; it can be either dipolar (i.e. equatorially symmetric1 with l = 2,m = 0)or quadrupolar (i.e. anti-symmetric with l = 1,m = 0). We define a turbulent resistive time
τ̄η =

(
πro/ℓ̄

)2
/η ∼ 0.2d 2/η, where ℓ̄ = 10 is the typical value of the average harmonic degreeof the time-averaged magnetic energy spectrum. In the following, we will term a solution

metastablewhen a steady state is sustained for a time interval∆t > 0.3τ̄η,and stable for∆t Ê τ̄η(up to 5.7τ̄η for the simulation at Ro = 0.2).

6.2 . Results

6.2.1 . Bifurcation diagram
We find in our set of simulations several dynamo branches represented by differentcolours in the bifurcation diagram shown in Fig. 7.1. When the differential rotation is low,the flow can not amplify a weak magnetic field (black crosses), but when Ro > Roc

W ∼ 0.62, themagnetic field grows exponentially to reach ametastable or a stable saturated dynamo state(black dots). This kinematic dynamo is driven by an hydrodynamic instability of the Stewart-son layer whose threshold is Roc
hyd ∼ 0.175 (dashed vertical black line), which is in agreement

with Hollerbach (2003). When Ro ≳ 0.8, the kinematic growth is followed by a non-lineargrowth and the system transitions directly to another branch with a larger magnetic energy(green circles). Restarting from a nearby saturated solution or a strong toroidal field withquadrupolar symmetry (mauve dashed arrows), we find that the stability of this branch ex-tends to Rossby number as low as Roc
H ∼ 0.37 < Roc

W, which indicates that this dynamo issubcritical. By starting from a strong toroidal field with dipolar symmetry, we observe thatthis subcritical branch is in bistability with another one which presents even stronger satu-rated magnetic fields Brms ∈
[
4×1014,1.1×1015

]G (red circles). This branch is also subcriticalsince it can be maintained for Rossby numbers as low as Ro > Roc
D ∼ 0.19.Moreover, the two subcritical branches do not only differ by their magnetic field strengthbut also by their equatorial symmetry, as seen in the 3D snapshots and the surface maps

1For the choice of these definitions, see Gubbins & Zhang (1993).
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Figure 6.1 — Left: Bifurcation diagram of the time and volume averaged Elsasser number (and rootmean square magnetic field) versus the Rossby number. Distinct dynamo branches are represented:dipolar (red), quadrupolar (mauve), hemispherical (green), and kinematic (black) whose respectivethresholds are Roc
D ∼ 0.19, Roc

Q ∼ 0.7, Roc
H ∼ 0.37, and Roc

W ∼ 0.62. The hydrodynamic instability istriggered for Roc
hyd > 0.177. Dark green circles are stationary hemispherical dynamos and light green

ones display parity modulations. Black crosses indicate failed dynamos, empty circles metastablesolutions. Arrows attached to circles indicate the initial condition of the associated simulation. Theblack half empty circle specifies that the solution was found to be metastable in a simulation andstable in another. The error bars indicate the standard deviation. Right: snapshots of the magneticfield lines and surface radial fields associated with the different main dynamo branches at Ro = 0.75:dipolar (top), hemispherical (middle), and kinematic (bottom).

of the magnetic field in Fig. 7.1. Indeed, the magnetic field shows a dipolar symmetry onthe stronger dynamo branch, whereas it is hemispherical on the weaker one. The latter canbe interpreted as the superposition of modes with opposite equatorial symmetry (Gallet &Pétrélis, 2009), which is consistentwith the fact that we do findquadrupolar solutions (mauvecircles in Fig. 7.1). These are only metastable for Ro > Roc
Q ∼ 0.7 and transition to a stabledipolar or hemispherical solution. Finally, we note that the hemispherical dynamos with

Ro ≳ 0.8 (light green circles in Figs 7.1 and 6.2) display parity modulations (i.e. the solutionevolves between hemispherical, dipole, and quadrupole symmetric states). This behaviour isreminiscent of the so-called Type 1 modulation identified in other dynamo setups (Knoblochet al., 1998, Raynaud & Tobias, 2016) and likely results from the coupling of modes withopposite parity as the equatorial symmetry breaking of the flow increases at larger Rossbynumbers.
6.2.2 . Energy balance

The difference between the three dynamo branches is also clear in Fig. 6.2, where wesee that the hemispherical branch saturates below the equipartition, with an energy ratioincreasing with Ro from ∼ 0.014 up to ∼ 0.56. By contrast, the dynamos of the dipolar branchare in a super-equipartition state (Eb/Ek > 1) and follow themagnetostrophic scaling Eb/Ek ∝
Ro−1 characteristic of the Coriolis-Lorenz force balance (Roberts & Soward, 1972, Dormy,2016, Aubert et al., 2017, Dormy et al., 2018, Augustson et al., 2019, Seshasayanan & Gallet,
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Figure 6.2— Time-averaged ratio of themagnetic energy to the kinetic energy densities as a functionof the Rossby number. The error bars indicate the standard deviation.

2019, Raynaud et al., 2020, Schwaiger et al., 2019). This is also confirmed by force balancespectra shown in Fig. S1 in the Supplemental Materials.
6.2.3 . Two Tayler instability-driven dynamos

Both subcritical dynamos showmagnetic fields concentrated along the rotation axis, whichdiffers significantly from the subcritical solutions found with a negative shear by (Petitde-mange et al., 2023) ; this is also strikingly different from the magnetic field generated on theequatorial plane by the kinematic dynamo (see 3D snapshots of Fig. 7.1). This suggests thatthe dipolar and hemispherical dynamos are driven by a different mechanism. We argue thatthey are driven by the Tayler instability according to the following arguments. First, the ax-isymmetric toroidal magnetic component is clearly dominant since it contains 53−88% of thetotal magnetic energy. Second, the simulations show a poloidal magnetic field with a dom-inant m = 1 mode (see Supplemental Materials Figs S2 and S3), which is the most unstablemode of the Tayler instability (Zahn et al., 2007, Ma & Fuller, 2019). In the azimuthal cut ofthe magnetic field component Bs in Fig. 6.3, the Tayler mode also appears clearly close tothe poles, where it is expected to develop for a toroidal field generated by the shearing of apoloidal field (see Supplemental Materials Fig. S4). This is also consistent with the 3D snap-shots of the dipolar and hemispherical branches in Fig. 7.1 where the toroidal magnetic fieldseems prone to a kink instability.Third, as in Petitdemange et al. (2023), the system bifurcates from the kinematic to thehemispherical branch in the vicinity of the threshold of the Tayler instability (Spruit, 1999,2002)
Λc
φ ≡

B c
φ

2

4πρηΩo
∼ χ

1−χ
N

Ωo

√
Pr

E
∼ 3.3. (6.1)

Indeed, if we focus on the stable and metastable kinematic solutions found at Ro = 0.75, wesee in Fig. 6.4 that the local maximum of the toroidal axisymmetric field is in both cases



6.2. RESULTS 137

Figure 6.3 — Snapshots of the azimuthal slices of the angular velocity (left) and the magnetic fieldalong the cylindrical radius s ≡ r sinθ (right) of the dipolar dynamo at Ro = 0.75.

close to the critical value above which it is expected to become unstable. The bifurcationfrom the kinematic toward the hemispherical branch that is observed for the metastablesolution appears hence as the result of turbulent fluctuations departing far enough abovethe threshold of the Tayler instability.
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Figure 6.4 — Time series ofthe maximum along the cylin-drical radius s of the axisym-metric toroidal magnetic energymeasured locally at z = 0.45ro ,for stable (black) and metastable(green) kinematic dynamos at
Ro = 0.75. The dashed red lineindicates the analytical thresholdof the Tayler instability (equa-tion 6.1). Dark lines show a run-ning average and dotted greenlines around t ∼ 20s indicatemiss-ing data.

6.2.4 . Magnetic field scaling laws
Finally, we compare our numerical results to the theoretical predictions regarding thesaturation of the Tayler-Spruit dynamo. Note that these predictions assume the scale separa-

tionωA ≪Ωo ≪ N , where theAlfvén frequency is definedbyωA ≡ Bφ/
√

4πρr 2
o ∼ 12.1

(
Bφ/1015 G

)
Hz.Our numerical models assume N /Ωo = 0.1 to limit the computational costs, whereas for a typ-



138 CHAPTER 6. TAYLER-SPRUIT DYNAMO: IMPACT OF THE DIFFERENTIAL ROTATION

ical PNS spun up by fallback to a period of 1−10 ms we expect N /Ωo ∼ 1−10. On the otherhand, the achievedmagnetic field follows the right scale separation with ωA/Ωo ≲ 0.02, whichis expected to determine the saturation mechanism of the Tayler instability (Ji et al., 2023).Figure 6.5 displays the axisymmetric toroidal and poloidal magnetic fields (top), the dipolefield (middle) and theMaxwell torque (bottom) as a function of an effective shear rate q mea-sured locally in the saturated state of the dynamo (see Supplemental Materials Fig. 6.10). Forthe dipolar branch (red), we find that the power laws B m=0
tor ∝ q0.36±0.05 and B m=0

pol ∝ q0.62±0.07

fit the saturated magnetic field, while we find BsBφ ∝ q1.0±0.02 or B m=0
s B m=0

φ ∝ q1.1±0.04, de-
pending on whether we take into account non-axisymmetric contributions to compute theMaxwell torque TM. The scaling exponents are thus in good agreement with the theoreticalpredictions of Fuller et al. (2019) B m=0

tor ∝ q1/3, B m=0
pol ∝ q2/3 and TM ∝ q (red dotted lines in

Fig. 6.5). Contrary to their prediction, however, our torque is not dominated by the axisym-metric magnetic field, which may be related to their assumption of a stronger stratification.Interestingly, the hemispherical branch (green) does not follow the same scalings: for q ≥ 0.2,we find B m=0
tor ∝ q2.1±0.31 and B m=0

pol ∝ q2.0±0.28 for the magnetic field, and BsBφ ∝ q2.7±0.40 or
B m=0

s B m=0
φ ∝ q3.8±0.70 for the Maxwell torque. These results globally support Spruit’s predic-

tions (Spruit, 2002) B m=0
tor ∝ q , B m=0

pol ∝ q2 and TM ∝ q3 (green dotted lines)2. If we focus on the
dipole field, we find the following power laws: Bdip ∝ q0.66±0.03 and Bdip ∝ q1.1±0.4, for the dipo-lar and hemispherical branches, respectively. The dipole field on the strong branch thereforefollows the same scaling as the axisymmetric poloidal field and is only ∼ 33% weaker.

6.3 . Conclusions

To conclude, we show that the Tayler-Spruit dynamoalso exists in the presence of positiveshear. We demonstrate for the first time the existence of two subcritical branches of this dy-namo with distinct equatorial symmetries, dipolar and hemispherical. Moreover, the formerfollows Fuller’s theoretical predictions, while the latter is in overall agreement with Spruit’smodel. Compared to the study of Petitdemange et al. (2023) that use a negative shear, ourresults present a similar dynamical structure, with a bifurcation diagram characterized by abistability between kinematic and subcritical dynamo solutions. The magnetic field of theirTayler-Spruit dynamo is, however, different since it is characterized by a smaller scale struc-ture localized near the inner boundary in the equatorial plane, and induces a torque scalingaccording to Spruit’s prediction. Our study shows a magnetic field geometry concentratednear the pole in agreement with the expectation of the Tayler-Spruit dynamo and a morecomplex physics, with the existence of two different branches that can not be captured by asingle scaling law. Extended parameter studies will be needed to further assess the impact ofthe resistivity and the stratification on this dynamo instability and better constrain its astro-physical implications. Our results are of particular importance for stellar evolution modelsby confirming the existence of the Tayler-Spruit dynamo and by deepening our physical un-derstanding of its complex dynamics. They also give strong support to the new magnetarformation scenario proposed by Barrère et al. (2022), which relies on the development ofa Tayler-instability driven dynamo in the presence of a positive shear. We validate the as-
2In the case of the toroidal magnetic field, the power law index from the fit is in slight tension with thetheoretical prediction. However, this tension is not very significant: it is driven mainly by a single data pointand disappears if we change the threshold from q > 0.2 to q > 0.25 to exclude the model Ro0.5as with q = 0.2.
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Figure 6.5 — Root mean square(RMS) toroidal and poloidal axisym-metric magnetic fields (top), RMS mag-netic dipole (middle), and RMS mag-netic torque (bottom) as a functionof the time-averaged shear rate mea-sured in the steady state, for the dipo-lar (red) and hemispherical (green) dy-namo branches. Dotted lines showsthe best fits obtainedwith Fuller’s (red)and Spruit’s (green) theoretical scalinglaws, respectively.

sumption that the magnetic dipole is a significant fraction of the poloidal magnetic field andfollows the same scaling. Extrapolating our results for the dipolar branch to q ∼ 1 as expectedin Barrère et al. (2022), we obtain a magnetic dipole intensity of ∼ 3.2×1014 G and an evenstronger axisymmetric toroidal field of ∼ 2.1×1015 G. These orders of magnitude are similarto those found in Barrère et al. (2022) for the same rotation period of Po ≡ 2π/Ωo = 10ms, andfall right in the magnetar range (Olausen & Kaspi, 2014).

6.4 . Additional content

In these section, we present inmore details our setup and provide further analyses of thedynamo simulations (force balance, time-averaged spectra, instability criterion, shear rate).
6.4.1 . Set up

Governing equations Wemodel the proto-neutron star differential rotation as a spherical,stably stratified Couette flow. In the reference frame rotating with the surface at the angular
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velocity Ωo =Ωoez , the Boussinesq MHD equations read
∇ ·v = 0, (6.2)
D t v =− 1

ρ
∇p ′−2Ωoez ×v+αg T ′er + 1

4πρ
(∇×B)×B+ν∆v , (6.3)

D t T ′ = κ∆T ′ , (6.4)
∂t B =∇× (u×B)+η∆B , (6.5)

∇ ·B = 0, (6.6)
where v is the velocity field, B is the magnetic field, p ′ is the pressure perturbation, T ′ is thesuper-adiabatic temperature, ρ is the uniform density, g = gor /ro is the gravitation field, and
α≡ ρ−1(∂Tρ)p is the thermal expansion coefficient. ez and er are the unit vectors of the axialand the spherical radial directions, respectively. We apply no-slip, electrically insulating, andfixed temperature boundary conditions on both shells. In the above equations, we assumethat the viscosity ν, the thermal diffusivity κ and themagnetic diffusivity η are constant. Apartfrom the magnetic diffusivity which relates to the electrical conductivity of electrons, thephysical interpretation of the other transport coefficients can lead to different estimates,depending on whether neutrinos are considered or not to be the main source of diffusiveprocesses.
Transport coefficients In ourmagnetar formation scenario, the fallback occurs seconds tominutes after the PNS formation. As discussed in Barrère et al. (2022, Sect. 4.3.), at this stageof the PNS evolution, the diffusive processes are either microscopic or driven by neutrinosdepending on whether the length scale l considered is smaller or larger than the neutrinomean free path (Thompson & Duncan, 1993, Eq. 11)

ln ∼ 4×104
(

ρ

1014 gcm−3

)−1/3 (
T

5MeV

)−3

cm. (6.7)
If the length scale satisfies l > ln , then the viscosity and the thermal diffusivity are drivenby neutrinos. Using the scalings of Guilet & Müller (2015, Eq. 10) and Thompson & Duncan(1993, Eq. 7), we obtain the following orders of magnitude

νn ∼ 2×106
(

ρ

4×1014 gcm−3

)−2 (
T

5MeV

)2

cm2 s−1 , (6.8)
κn ∼ 4×1010

(
ρ

4×1014 gcm−3

)−2/3 (
T

5MeV

)−1

cm2 s−1 . (6.9)
If the length scale satisfies l < ln , it is relevant to use amicroscopic viscosity such as the shearviscosity due to neutron-neutron scattering (Cutler & Lindblom, 1987, Eq. 14)

νs ∼ 0.2

(
ρ

4×1014 gcm−3

)5/4 (
T

5MeV

)−2

cm2 s−1 . (6.10)
To determine the thermal diffusivity, we use the calculation of Lee (1950, Eqs. 48–54) fordegenerate relativistic electrons
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κs = λ

ρcp
= 8π2cT

3ρcp

(
3π2ρYe

mp

)1/3 (
kB

e

)2 1

4πα lnΛ
, (6.11)

where λ is the thermal conductivity, cp is the specific heat at constant pressure, Ye is theelectron fraction, and c is the speed of light in the vacuum. The constants kB , e, mp , and α≡
e2/(ħc) are theBoltzman constant, the electric charge, the protonmass, and the fine structureconstant, respectively, and lnΛ ∼ 1 is the Coulomb logarithm. By using the formula of thespecific heat for noninteracting gas of semidegenerate nucleons of Thompson & Duncan(1993)

ρcp =
(π

3

)2/3
(

kB

ħ
)2 [

f (Ye )
]−1

ρ1/3m2/3
p T , (6.12)

where f (Ye ) ≡ [
(1−Ye )1/3 +Y 1/3

e

]−1, Eq. (6.11) simplifies in
κs = 2π

c

mpα lnΛ

(ħ
e

)2 [
f (Ye )

]
Y 1/3

e (6.13)
∼ 30

(
Ye

0.2

)1/3

cm2 s−1 . (6.14)
Assuming that theWiedemann-Franz law computed by Kelly (1973, Eq. 15) for degenerate,relativistic electrons holds, the thermal diffusivuty κs and magnetic diffusivity η are relatedby

κs = 10π3

3

T

ρcp

(
kB

e

)2 c2

4πη
. (6.15)

Therefore, the magnetic diffusitivity scales like
η= 2×10−5

(
ρ

4×1014 gcm−3

)−1/3 (
Ye

0.2

)−1/3

cm2 s−1 . (6.16)
Parameter regime The above calculations enable us to estimate the different dimension-less numbers characterising the PNS fluid interior at evolution stage we are interested in. Forthe thermal and magnetic Prandtl numbers, we have

Pr ≡ ν

κ
∼

{
5×10−5 with ν= νn ,κ= κn

7×10−3 with ν= νs ,κ= κs
, (6.17)

and
Pm ≡ ν

η
∼

{
1011 with ν= νn

104 with ν= νs
. (6.18)

The Ekman number can be estimated as:
E ≡ ν

r 2Ω
∼

{
2×10−9 with ν= νn

2×10−16 with ν= νs
, (6.19)

with r = 12km and Ω= 200πrads−1. Finally, the stratification of the PNS interior can be char-acterised by the Brunt-Väisälä frequency
N ≡

√
−g

ρ

(
∂ρ

∂S

∣∣∣∣
P,Ye

dS

dr
+ ∂ρ

∂Ye

∣∣∣∣
P,S

dYe

dr

)
∼ 4×103 s−1 , (6.20)
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where S is the entropy. The above order of magnitude for N is based on the 1D core-collapsesupernova simulations from Hüdepohl (2014, Chap. 5).In all cases, these parameters are far beyond the reach of any modern supercomputer.To limit the computational time needed to complete our parameter study, we consideredthe following values Pr = 0.1, Pm = 1, E = 10−5 and N /Ωo = 0.1. We leave for future work thestudy of the dependence on the diffusivity coefficients and strength of stratification.
Numerical methods To satisfy the solenoidal conditions (7.1) and (7.5), the velocity andmagnetic fields are decomposed in poloidal and toroidal components (Mie representation),

ρu =∇× (∇×W er )+∇×Z er , (6.21)
B =∇× (∇×ber )+∇×a j er , (6.22)

where W and Z (b and a j ) are the poloidal and toroidal potentials for the velocity (magnetic)field. Thewhole systemof equations is then solved in spherical coordinates by expanding thescalar potentials in Chebyshev polynomials in the radial direction, and in spherical harmonicfunctions in the angular directions. We refer the reader to the MagIC online documentation3for an exhaustive presentation of the numerical techniques (see also Wicht, 2002, Gastine &Wicht, 2012, Schaeffer, 2013).
Output parameters We first characterize our models by computing the time average ofthe kinetic andmagnetic energy densities (after filtering out any initial transient). The latter isexpressed in terms of the Elsasser numberΛ≡ B 2

rms/(4πρηΩo) and used to compute differentrms estimates of the magnetic field. In addition to the total field, we distinguish the poloidaland toroidal fields based on the Mie representation (Sect. 7.1.2), while the dipole field refersto the l = 1 poloidal component.
6.4.2 . Supplemental outputs

Force balance Fig. 6.6 shows a spectrum of the rms forces in the saturated state of the twoTayler-Spruit dynamo branches, following the formalism of Aubert et al. (2017), Schwaigeret al. (2019). The dipolar dynamo saturates due to a balance between the Lorentz force (redline) and the ageostrophic Coriolis force (dashed green line) at all scales (spectrum on theleft in Fig. 6.6). This confirms the magnetostrophic balance we deduced from Fig. 2 in theLetter. For the hemispherical dynamo, the same balance is found at small scales (ℓ ≳ 20),but at large scales the inertial force is strong enough to be in balance with the ageostrophicCoriolis force and the Lorentz force.
Time-averaged spectra A wide range of modes ℓ are present in the typical spectra of adipolar Tayler-Spruit dynamo of Fig. 6.7. The magnetic spectrum shows the presence of asignificant large-scale axisymmetric poloidal field. The even (odd) degrees ℓ dominate inthe poloidal (toroidal) axisymmetric magnetic spectra, which confirms the dipolar equatorialsymmetry at large scales.Thenon-axisymmetricmodes triggereddiffer depending onwhether the dynamo is Tayler-instability driven, as seen in Figures 6.7 and 6.8. As expected for the Tayler-Spruit dynamo,

3https://magic-sph.github.io

https://magic-sph.github.io
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Figure 6.6 — Time-averaged rms force spectra for the dipolar (left) and hemispherical (right) dy-namos at Ro = 0.75. The rms forces are averaged over the whole computational domain withoutexcluding boundary layers.

Figure 6.7— Time averaged kinetic (top) andmagnetic (bottom) energy density spectra of the dipolarTayler-Spruit dynamo at Ro = 0.75.
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Figure 6.8 — Time averaged m-spectra of the magnetic energy density for the hemispherical Tayler-Spruit dynamo at Ro = 0.85 (left) and the kinematic dynamo at Ro = 0.75 (right).

the dominatingmode is the axisymmetric toroidalmagnetic field, butwe also observe a domi-nantm = 1mode in the poloidalmagnetic energy, which is a signature of the Tayler instability.By contrast, we see that a wider range of ordersm ∈ [1,5] are present in the poloidalmagneticenergy of the kinematic dynamo.
Geometrical criterion for Tayler instability Tayler (1973) showed that any axisymmetrictoroidal field is unstable to adiabatic perturbations in ideal MHD (i.e. ν = η = 0) in a non-rotating stratified fluid and worked out the necessary and sufficient conditions for magneticinstability (now referred to as Tayler instability). In spherical coordinates, they read (Goossens,1980)

cm=0 ≡
B 2
φ

2πr 2 sin2θ

(
cos2θ− sinθcosθ∂θ logBφ

)< 0, (6.23)
for axisymmetric perturbations, and

cm ̸=0 ≡
B 2
φ

4πr 2 sin2θ

(
m2 −2cos2θ−2sinθcosθ∂θ logBφ

)< 0, (6.24)
for non-axisymmetric perturbations. Since the m = 1 mode is the most unstable (which isconsistent with our simulations), we display in Fig. 6.9 the sign of the cm=1 coefficient super-imposed with the magnetic field for a dipolar and an hemispherical dynamo. We see thatin both cases the perturbed magnetic mainly develops inside the tangent cylinder, whichglobally matches with the areas that are expected to be unstable to the Tayler instability(cm=1 < 0). This is therefore an additional indication of the presence of the Tayler instabilityin our simulations.
Measure of the shear rate The differential rotation is characterized by a dimensionlessshear rate q = r∂r lnΩ. We define an effective shear rate based on the time average of therotation profile in the saturated state. Since it is approximately cylindrical (see Fig. 3), wemeasure Ω locally at a given height z = 0.45ro and consider its variation as a function of
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Figure 6.9— Snapshots of themeridional slices of Bs in the runs Ro0.75w and Ro0.75s. The hatchedareas correspond to the regions where the fluid is stable to m = 1 perturbations (cm=1 > 0).

the cylindrical radius s (see Fig. 6.10). This allows us to avoid the Ekman layers, which formaround the inner shell. In most of the simulations, the shear is found in a broad region cen-tred on the tangent cylinder, especially in s ∈ [0.1,0.5]ro . We therefore measure the averageslope of the profile in this interval (see Fig. 6.10):
q ≡ logΩ(s = 0.5ro)− logΩ(s = 0.1ro)

log0.5ro − log0.1ro
(6.25)

6.4.3 . List of models
Tables 6.1 and 6.2 summarize the key parameters of the simulations carried out in thisstudy.
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Figure 6.10 — Rotation profile Ω(s) at z = 0.45ro in the simulation Ro0.75s. The green region s ∈
[0.1,0.5]ro is the zone where we measure the effective shear rate q (slope of the blue dashed line). Inthis example, q ∼ 0.06. The vertical red line indicates the position of the tangent cylinder.
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The first numerical simulations of the Tayler-Spruit demonstrated the capacity of the Tayler-Spruit dynamo to produce magnetar-like magnetic fields with a dominant axisymmet-ric toroidal component. While we varied the forcing for the differential rotation, we keptthe ratio of the Brunt-Väisälä frequency to the outer angular rotation frequency constant at
N /Ωo = 0.1. However, the measure of N in one-dimensional core-collapse supernova simula-tions suggests that this ratio can span a wide range of values N /Ωo ∈ [0.1,10]. In this chapter,we therefore investigate the impact of higher values of N /Ωo on the dipolar branch of theTayler-Spruit dynamo, which is themost relevant for magnetars. The following text has beenprepared in collaboration with Jérôme Guilet, Raphaël Raynaud, and Alexis Reboul-Salze forsubmission in Astronomy & Astrophysics.

7.1 . Numerical setup

7.1.1 . Governing equations
As in Barrère et al. (2023), we model the PNS interior as a stably stratified and electricallyconducting fluid. We also adopt the Boussinesq approximation and consider a fluid with aconstant density ρ = 3.8×1014 gcm−3, which corresponds to a PNS with a radius of ro = 12kmand a mass of M = 1.4M⊙. The fluid evolves in a spherical Taylor-Couette configuration, i.e.between two concentric spheres of radius ri = 3km and ro which rotates with the respectiverates Ωi = 2π×25rads−1 and Ωo = 2π×100rads−1. In the reference frame rotating with thesurface at the angular velocity Ωo =Ωoez , the Boussinesq MHD equations read

∇·v = 0, (7.1)
D t v =− 1

ρ
∇p ′−2Ωoez ×v−N 2Θer + 1

4πρ
(∇×B)×B+ν∆v , (7.2)

D tΘ= κ∆Θ , (7.3)
∂t B =∇× (u×B)+η∆B , (7.4)
∇·B = 0, (7.5)

where B is the magnetic field, v is the velocity field, p ′ is the non-hydrostatic pressure, ρis the mean density of the PNS, g = gor /ro is the gravitation field, and α ≡ ρ−1(∂Tρ)p is thethermal expansion coefficient. ez and er are the unit vectors of the axial and the sphericalradial directions, respectively. θ is the buoyancy variable defined by
Θ≡− g

N 2

ρ′

ρ
, (7.6)

where ρ′ is the density perturbation due to the combined effect of the electron fraction andentropy perturbations and
N ≡

√
−g

ρ

(
∂ρ

∂S

∣∣∣∣
P,Ye

dS

dr
+ ∂ρ

∂Ye

∣∣∣∣
P,S

dYe

dr

)
, (7.7)

is the Brunt-Väisälä frequency with the electron fraction Ye , and the entropy S, respectively.In the above equations, we assume that the magnetic diffusivity η, the kinematic viscos-ity ν, and the “thermal” diffusivity κ are constant. We also assume that the thermal and
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Figure 7.1 — Viscous Elsasser number (and root mean square magnetic field) as a function of theratio of the Brunt-Väisälä frequency to the rotation rate at the outer sphere. Filled and emptymarkersrepresent self-sustained and transient dynamos, respectively. The black dashed vertical line and ar-row indicate the zone in which the fluid is hydrodynamically unstable. The inset represents a 3D plotof the radial velocity (violet and green isosurfaces are the positive and negative values, respectively)and the radial magnetic field (red and blue isosurfaces are the positive and negative values, respec-tively) in a run at Pm = 2 and N /Ωo = 2. The grey arrow points to the run location in the diagram.

lepton number diffusivities are equal, which allows us to describe the buoyancy associatedwith both entropy and lepton number gradients with the use of a single buoyancy variable θ(Guilet et al., 2015).
Apart from themagnetic diffusivity which relates to the electrical conductivity of electrons,the physical interpretation of the other transport coefficients can lead to different estimates,depending on whether neutrinos are considered or not to be the main source of diffusiveprocesses (see Sect. 1.3 of the supplementary materials in Barrère et al., 2023).
Finally, we apply no-slip, electrically insulating, and fixed buoyancy variable boundaryconditions on both shells.

7.1.2 . Numerical methods

We use the open source pseudo-spectral code MagIC1 (Wicht, 2002, Gastine & Wicht,2012, Schaeffer, 2013) to integrate Eqs. (7.1)–(7.5) in 3D spherical geometry. To satisfy thesolenoidal conditions (7.1) and (7.5), the velocity and magnetic fields are decomposed inpoloidal and toroidal components (Mie representation),
ρu =∇× (∇×W er )+∇×Z er , (7.8)

B =∇× (∇×ber )+∇×a j er , (7.9)
1Commit 2266201a5 on https://github.com/magic-sph/magic

https://github.com/magic-sph/magic
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where W and Z (b and a j ) are the poloidal and toroidal potentials for the velocity (magnetic)field. Thewhole systemof equations is then solved in spherical coordinates by expanding thescalar potentials in Chebyshev polynomials in the radial direction, and spherical harmonicfunctions in the angular directions. The time-stepping scheme used is the implicit/explicitRunge-Kutta BPR353 (Boscarino et al., 2013). We refer the reader to the MagIC online docu-mentation2 for an exhaustive presentation of the numerical techniques.

7.1.3 . Input parameters
The resistivity is controlled by themagnetic Prandtl number Pm ≡ ν/η. Though its realisticvalue in PNSs (Pm ∼ 1011, Barrère et al., 2023) can not be reached by numerical simulations,we stay in the regime Pm Ê 1 aswe impose Pm ∈ [1,4]. We keep fixed the other dimensionlesscontrol parameters: the shell aspect ratio χ ≡ ri /ro = 0.25 and width d ≡ ro − ri , the Ekmannumber E ≡ ν/(d 2Ωo) = 10−5, the thermal Prandtl numbers Pr ≡ ν/κ = 0.1, and the Rossbynumber Ro ≡ 1−Ωi /Ωo = 0.75, which controls the imposed differential rotation.
The imposed stable stratification is characterizedby theBrunt-Väisälä frequencyN (Eq. (7.7)).In our parameter study, the ratio N /Ωo is varied between 0.1 and 10 and so covers the PNSregime. In practice, this ratio is related to the Rayleigh number Ra ≡−(N /Ω)2Pr /E 2, which isnegative in the regime of stable stratification.
The resolution is fixed at (nr ,nθ,nφ) = (257,256,512) for all the runs. A few simulationswere rerun with a higher resolution of (nr ,nθ,nφ) = (481,512,1024) but showed no significantchange compared to runs with the usual resolution (see Appendix).
The simulations are initialized either from a nearby saturated state or a strong (Bφ =

3.4×1014 G) toroidal axisymmetric field with a dipolar equatorial symmetry, i.e. equatorially
symmetric3 with l = 2,m = 0. We define a turbulent resistive time τ̄η = (

πro/ℓ̄
)2

/η ∼ 0.2d 2/η,where ℓ̄= 10 is the typical value of the average harmonic degree of the time-averaged mag-netic energy spectrum. In the following, we will term a solution ‘transient’ when a steadystate is sustained for a time interval ∆t > 0.3τ̄η, and ‘stable’ for ∆t Ê τ̄η.We start with the run named ‘Ro0.75s’ from Barrère et al. (2023), where the stratificationis N /Ωo = 0.1. The saturated state of this dynamo is used to initialise the next simulation witha stronger stratification. The whole set of simulations is initiated similarly using the nearbysaturated state of a less stratified run. With this procedure, N /Ωo is increased gradually inorder to study the evolution of the dynamo branch.
7.1.4 . Output parameters

We first characterize our models by computing the time average of the kinetic and mag-netic energy densities (after filtering out any initial transient). The latter is expressed in termsof the viscous Elsasser number Λν ≡Λ/Pm = B 2
rms/(4πρνΩo) and used to compute differentroot-mean-square (RMS) estimates of the magnetic field. In addition to the total field, we dis-tinguish the poloidal and toroidal fields based on the Mie representation (Sect. 7.1.2), whilethe dipole field refers to the l = 1 poloidal component.

7.2 . Results

2https://magic-sph.github.io3For the choice of these definitions, see Gubbins & Zhang (1993).

https://magic-sph.github.io
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Figure 7.2 — Meridional slices of the angular frequency and the non-axisymmetric radial velocity(left and right slices respectively) for different values of N /Ωo . Ω and vm ̸=0
r are scaled by Ωo and dΩo ,respectively.
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The following sections gather the different results we obtain from the set of numericalsimulations listed in appendix 7.6.2. We first describe the global dynamics of the dipolarTayler-Spruit dynamo in the parameter space in Sect. 7.2.1. Then, we analyse the influenceof stratification on the modes of Tayler instability and on the generated axisymmetric mag-netic fields in their saturated state in Sect. 7.2.3 and Sect. 7.2.4, respectively. We also presentthe angularmomentum transport by both Reynolds andMaxwell stresses due to the dynamoand compare the efficiencies of mixing and angular momentum transport in Sect. 7.2.5. Fi-nally, we examine a new intermittent behaviour of the Tayler-Spruit dynamo at N /Ωo ≥ 2,which is observed for the first time (see Sect. 7.2.6).

7.2.1 . Subcritical dynamo sustained at PNS-like stratifications
Fig. 7.1 shows that a self-sustained Tayler-Spruit dynamo can bemaintained up to N /Ωo =

1 for Pm = 1. For stronger stratifications, we have to increase Pm (i.e. decrease the resistivity)to maintain the dynamo. For Pm = 4, the stationary state is self-sustained up to N /Ωo = 4and we obtained transient states up to N /Ωo = 10. The self-sustained dynamo is thereforepresent above the threshold for the fluid to be hydrodynamically stable at N /Ωo ∼ 1.5. Thisconfirms the subcritical nature of the Tayler-Spruit dynamo, which was already observed inprevious studies (Petitdemange et al., 2023, Barrère et al., 2023). We did not simulate fluidsat greater Pm values for reasons of numerical costs. Given the trend with Pm observed inour simulations as well as theoretical expectations on the Tayler instability threshold, wewould expect the Tayler-Spruit dynamo to exist at still higher values of N /Ω for the highervalues of Pm relevant to a PNS.
7.2.2 . Impact on the differential rotation

The meridional slices of the angular rotation frequency Ω illustrate the impact of stablestratification on the rotation profile: we see that the shear concentrates closer to the innersphere and increases with N /Ωo . At the same time, the rotation profile smoothly transitsfrom a quasi-cylindrical to a spherical geometry, which is an effect already observed in stablystratified flows. Analytical and numerical studies of these flows (e.g. Barcilon & Pedlosky,1967a,b,c, Gaurat et al., 2015, Philidet et al., 2020) indicate that this transition is controlledby the dimensionless parameter Q ≡ Pr (N /Ωo)2, which varies between 10−3 and 10 in ourset of runs. The change in the flow geometry is therefore explained by a transition from acase where neither the rotation nor the buoyancy dominate (E 2/3 < Q < 1) to a buoyancy-dominated flow (Q ≫ 1).
7.2.3 . Impact on the Tayler modes

As seen in Fig. 7.3, the unstable magnetic modes are located close to the poles wherethe latitudinal gradient of Bφ is positive, which is a first indication of the presence of Taylermodes. To confirm this statement, we use the geometrical criterion of Goossens & Tayler(1980) for the stability of m = 1-modes,
B 2
φ

(
1−2cos2θ

)− sinθcosθ
∂B 2

φ

∂θ
> 0. (7.10)

The stability regions displayed by the hatched zones in Fig. 7.3match very well regions wherethe unstable modes are absent. This confirms that the Tayler instability is clearly identifiable,no matter the values of N /Ωo .
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Figure 7.3 — Meridional slices of the axisymmetric azimuthal and the s = r sinθ-component of themagnetic field (respective left and right slices) for increasing values of N /Ωo . The magnetic field is
scaled by √

4πρd 2Ω2
o . The hatched regions represent Tayler-stable zones defined by the geometricalcriterion of Goossens & Tayler (1980) (see Supplementary Materials in Barrère et al. (2023)).
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Moreover, the impact of stratification on the mode structure is striking. The stable strati-fication tends to stabilise displacements in the radial direction, as we can see looking at thenon-axisymmetric radial velocity vm ̸=0

r field in Fig. 7.2. As a consequence, the radial lengthscale of the instability strongly decreases for increasing values of N /Ωo . This feature is notsurprising because Spruit (1999) already constrained themodemaximum radial length scale
lTI < lmax, N ≡ r

ωA

N
, (7.11)

where ωA ≡ B m=0
φ /

√
4πρr 2 is the Alfvén frequency. Note that a lower limit due to resistivity is

also predicted
l 2

TI > l 2
min ≡ ηΩo

ω2
A

. (7.12)
The length scales measured in our models are compared to these constraints in Fig. 7.4.Since thermal diffusion can mitigate the effect of stratification, we also define an effectiveBrunt-Väisälä frequency

Neff ≡ N
√
η/κ= N

p
Pr /Pm (7.13)

and so
lmax, Neff ≡ r

ωA

Neff
(7.14)

to take this effect into account (Spruit, 2002). The Tayler modes in our simulations havelength scales ranging from ro/4 = 3km at N /Ωo = 0.1 to ro/80 = 0.15km at N /Ωo = 10. This im-plies that the Tayler-Spruit dynamo requires higher and higher resolutions at greater stratifi-cations to be resolved. The measured lTI follows very well the upper limit lmax, Neff (red pointsin Fig. 7.4), but is around one order of magnitude larger than lmax, N . This demonstrates theimportance of including themitigation of the stratification by diffusion. Theminimum lengthscale lmin (Eq. (7.12)) is almost equal to lTI from N /Ωo = 0.5 to N /Ω= 4, which indicates thatwe are close to the instability threshold. For N /Ωo Ê 6, however, lmin ∼ 2lmax, Neff ∼ 2− 3lTI.The fluid is therefore stable, which is consistent with the transient state we find in our sim-ulations. Thus, the analytical limits for the Tayler modes to develop are validated by ournumerical simulations and suggest that the Tayler-Spruit dynamo could be maintained for
N /Ωo ∈ [6,10] with Pm ≳ 16−36.In addition to the decrease of lTI, the Tayler instability modes are strongly affected byhigh values of N /Ωo . The time and volume averaged spectrum of the magnetic energy inFig. 7.5 show that the energy of the large-scale (l = 1− 10) non-axisymmetric modes (solidlines) drop by two orders of magnitude between N /Ω= 0.25 and at N /Ω= 2 compared to theenergy of the dominant axisymmetric toroidal component (blue dotted line). This differenceis represented more quantitatively by comparing the total non-axisymmetric magnetic field
B m ̸=0

tot to B m=0
φ in Fig. 7.6. The ratio drops from ∼ 1 to ∼ 2× 10−3 and follows a power law

B m ̸=0
tot /B m=0

φ ∝ Neff/Ω
−1.8±0.1
o . Fuller et al. (2019) analytically derived that the ratio between the

magnetic field generated by the Tayler instability (noted δB⊥ ∼ B m ̸=0
tot ) and B m=0

φ followsωA/Ωo .
SinceωA ∝ Neff/Ω

−1/3
o (Fuller et al., 2019, and our Sect. 7.2.4), our simulations therefore do notmatch the analytical prediction. Fuller et al. (2019) derived the ratio by equating the Taylerinstability growth rate and a turbulent damping rate ω2

A/Ωo ∼ δvA/r , where δvA ≡ δB⊥/
√

4πρ.As the growth rate of the Tayler instability is robust (Zahn et al., 2007, Ma & Fuller, 2019) andwell verified in numerical simulations (Ji et al., 2023), our study then questions the predictionof the turbulent damping rate.
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Figure 7.4 — Length scale of the Tayler instability mode measured in the simulations (black stars)as a function of N /Ωo . The theoretical lower (lmin in blue) and upper boundaries of the length scaleare also plotted using the classical (lmax, N in orange) and the effective (lmax, Neff in red) Brunt-Väisäläfrequencies. Filled and empty markers represent self-sustained and transient dynamos, respectively.

7.2.4 . Magnetic field saturation

As in Barrère et al. (2023), we confront the saturated large-scale magnetic fields in oursimulations to the analytical predictions. To this end, we first measure the impact of thestratification on the local shear rate q , which influences themagnetic field saturation. Indeed,the rotation profiles of Fig. 7.2 show that the shear concentrates closer to the inner sphereand increases with N /Ωo . The quantification of this effect is described in Appendix 7.6.1.These larger values of q explain the increase of the magnetic energy with N /Ωo observed inFig. 7.1.
In order to study the relation of the magnetic field components with Neff/Ωo while takinginto account the variation of q , we use the analytical prescriptions derived by Fuller et al.(2019):

B m=0
tor ∼

√
4πρr 2

oΩo

(
qΩo

Neff

)1/3

, (7.15)
B m=0

pol , Bdip ∼
√

4πρr 2
oΩo

(
q2Ω5

o

N 5
eff

)1/3

. (7.16)

The exponents of q are all the more robust as they are confirmed by numerical simula-tions (Barrère et al., 2023). We define dimensionless magnetic field components compen-
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Figure 7.5 — Time and volume averaged spectra of the magnetic energy for the parameters Pm =
1, N /Ωo = 0.25 (top) and Pm = 2, N /Ωo = 2 (bottom). The magnetic energy is normalized by the energyof the dominant (ℓ= 2,m = 0)-mode of the toroidal component.
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Figure 7.6 — Ratio of the RMS non-axisymmetric magnetic field to the RMS axisymmetric toroidalmagnetic field. The dotted line shows the best fit for a power law of Neff/Ωo . Filled and emptymarkersrepresent self-sustained and transient dynamos, respectively.

sated for the effect of the shear in the following way:
B m=0

tor −→ B m=0
tor√

4πρr 2
oΩ

2
o q1/3

(7.17)

B m=0
pol , Bdip −→

B m=0
pol√

4πρr 2
oΩ

2
o q2/3

,
Bdip√

4πρr 2
oΩ

2
o q2/3

. (7.18)

These compensated dimensionless components are plotted in Fig. 7.7as a function of
Neff/Ωo . The theoretical scaling laws (dotted black lines) qualitatively match our data. Sincethe point at Neff/Ωo = 3×10−2 diverges from the scalings due to the weaker effect of stablestratification, we exclude it while calculating the best fits. We obtain the following power-laws B m=0

tor ∝ (Neff/Ωo)−0.11±0.05, B m=0
pol ∝ (Neff/Ωo)−1.1±0.2, and Bdip ∝ (Neff/Ωo)−1.5±0.1. While

B m=0
tor and B m=0

pol follow power-laws slightly less steep than predicted in Eqs. (7.15) and (7.16),
Bdip is in good agreement with Eq. (7.16).This agreement with the theory is also found for the ratio B m=0

r /B m=0
φ ∼ ωA/Neff (Spruit,2002, Fuller et al., 2019) as seen in Fig. 7.8. Our data is fitted by the power law B m=0

pol /B m=0
tor ∝

(ωA/Neff)
0.93±0.18, which is very close to the prediction. On the other hand, the ratio of themagnetic dipole to the axisymmetric toroidal field follows a somewhat steeper scaling law

Bdip/B m=0
tor ∝ (ωA/Neff)

1.3±0.1.
7.2.5 . Angular momentum transport and mixing

The angular momentum transport due to the large-scale magnetic field and turbulencein our simulations is also consistent with the theory of Fuller et al. (2019), as shown in Fig. 7.9.For the Maxwell torque TM, we find BsBφ∝ (Neff/Ωo)−1.8±0.1 and B m=0
s B m=0

φ ∝ (Neff/Ωo)−1.6±0.1

depending on whether we take the non-axisymmetric components into account in TM. Note
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Figure 7.7— RMS toroidal and poloidal axisymmetricmagnetic fields (top), and RMSmagnetic dipole(bottom) compensated with the measured shear rate as a function of the ratio between the effectiveBrunt-Väisälä frequency to the rotation rate at the outer sphere Neff/Ωo . The magnetic field is ren-dered dimensionless and compensated for the effect of the shear using Eqs. (7.17) and (7.18). Dottedlines show the best fits of the data with Fuller’s theoretical scaling laws (Eqs. (7.15) and (7.16)) withina multiplying factor. Filled and empty markers represent self-sustained and transient dynamos, re-spectively.



160 CHAPTER 7. TAYLER-SPRUIT DYNAMO: IMPACT OF THE STRATIFICATION

Figure 7.8— Ratio between the RMS axisymmetric poloidal (top) and the RMS dipolar (bottom) mag-netic fields to the axisymmetric toroidal magnetic field. Dotted lines show the best fits of the data withFuller’s theoretical scaling law Br /Bφ ∼ωA/Neff within a multiplying factor. Filled and empty markersrepresent self-sustained and transient dynamos, respectively.
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Figure 7.9 — RMS Maxwell (top) and Reynolds (bottom) torques compensated with the measuredshear rate as a function of the ratio between the effective Brunt-Väisälä frequency to the rotation rateat the outer sphere. Dotted lines shows the best fits obtained with Fuller’s theoretical scaling laws.Filled and empty markers represent self-sustained and transient dynamos, respectively.
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that the torque is more and more dominated by the axisymmetric magnetic fields as Neff/Ωoincreases. This dominance was assumed by Fuller et al. (2019) and can be expected giventhe results of Sect. 7.2.3. The Reynolds torque values are more dispersed as a functionof the stratification, but fit the power laws vm ̸=0
r vm ̸=0

φ ∝ (Neff/Ωo)−3.5±0.2 and vm ̸=0
r vm ̸=0

φ ∝
(Neff/Ωo)−3.4±0.2. Despite some scattering at high values of Neff/Ωo in the points correspond-ing to transient dynamos, our data therefore follows well the analytical predictions TM ∝
(Neff/Ωo)−2 and TR ∝ (Neff/Ωo)−10/3 (dotted lines in Figs. 7.9). Moreover, we find TM ∼ 102 −
103TR, so the magnetic field is much more efficient than turbulence at transporting angularmomentum.The mixing processes are also a crucial question in astrophysics, especially in stars. TheTayler-Spruit dynamo is expected to produce a very limited mixing efficiency compared tothe angular momentum transport (Spruit, 2002, Fuller et al., 2019). To measure this effectin our simulations, we define the effective angular momentum transport diffusivity νAM ≡
TM/(ρqΩo) and roughly approximate the effective mixing diffusivity as νmix ≡ q−5/3vm ̸=0lTI,
with the rms turbulent velocity vm ̸=0 ≡

√
E m ̸=0

kin /(2ρ) calculated from themeannon-axisymmetric
energy E m ̸=0

kin . We divide by the power law q5/3 in the expression of νmix to take into accountthe variation of q like in Figs 7.7 and 7.9.The ratio νmix/νAM is plotted in Fig.7.10 and shows that our data is in fair agreementwith the scaling νmix/νAM ∝ Neff/Ωo
−5/3 of Fuller et al. (2019). The power law νmix/νAM ∝

Neff/Ωo
−1.2±0.2 best fits our data, which is mildly less steep than predicted. Moreover, oursimulations also confirm that νmix/νAM ∼ 10−6 −10−3 ≪ 1 for Tayler-Spruit dynamo. The useof passive scalars evolving in the velocity field in our simulations could help measure moreprecisely νmix even though the approximation we used is satisfactory as a first analysis.Table 7.1 sums up the comparisons we have done between our data and the differentscalings derived by Fuller et al. (2019). Our results thus consolidate the validity of Fulleret al. (2019)’s formalism for the saturation of large-scalemagnetic fields and angularmomen-tum transport. Besides, our simulations are not compatible with the analytical prescriptionsof Spruit (2002), which read

B m=0
tor ∼

√
4πρr 2

oΩo

(
qΩo

Neff

)
(7.19)

B m=0
pol , Bdip ∼

√
4πρr 2

oΩo

(
q2Ω3

o

N 3
eff

)
(7.20)

TM ∼ r 2
oΩ

2
o q3

(
Ωo

Neff

)4

. (7.21)
While our simulations support the scaling law of Fuller et al. (2019), we can also constrainthe dimensionless normalisation factor, (noted α in Fuller et al. (2019)), that parametrisesthe saturated strength of the axisymmetric toroidal magnetic field

B m=0
tor√

4πρr 2
o

=αΩo

(
qΩo

Neff

)1/3

. (7.22)

We infer the value of α by fitting our data by the theoretical scaling law. The measures arelisted in the last column of Table 7.1 and we find a mean value of α∼ 10−2. This value is small
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Figure 7.10 — Ratio of the effective mixing diffusivity νmix to the effective angular momentum diffu-sivity νAM as a function of Neff/Ωo . Filled and empty markers represent self-sustained and transientdynamos, respectively.

Table 7.1— Table that sums up the theoretical andmeasured scaling laws of the different quantitiesdiscussed in Sects. 7.2.4 and 7.2.5, and the dimensionless normalisation factorαdefinedby Fuller et al.(2019) (see Eq. 7.22)
.Quantity (dimensionless) Fuller et al. (2019)’s scaling law Best fit exponent α

B m ̸=0
tot /B m ̸=0

tor ωA/Ωo (Neff/Ωo)−0.18±0.1

B m=0
tor /(

√
4πρr 2

oΩ
2
o q1/3) α(Neff/Ωo)−1/3 (Neff/Ωo)−0.11±0.05 0.017±0.001

B m=0
pol /(

√
4πρr 2

oΩ
2
o q2/3) α2(Neff/Ωo)−5/3 (Neff/Ωo)−1.1±0.2 0.009±0.002

Bdip/(
√

4πρr 2
oΩ

2
o q2/3) α2(Neff/Ωo)−5/3 (Neff/Ωo)−1.5±0.1 0.007±0.001

B m=0
pol /B m=0

tor ωA/Neff (ωA/Neff)
0.93±0.2 —

Bdip/B m=0
tor ωA/Neff (ωA/Neff)

1.3±0.1 —
BsBφ/(4πρr 2

oΩ
2
o q) α3(Neff/Ωo)−2 (Neff/Ωo)−1.8±0.1 0.016±0.004

B m=0
s B m=0

φ /(4πρr 2
oΩ

2
o q) α3(Neff/Ωo)−2 (Neff/Ωo)−1.6±0.1 0.01±0.004

vm ̸=0
r vm ̸=0

φ /(r 2
oΩ

2
o q5/3) (Neff/Ωo)−10/3 (Neff/Ωo)−3.5±0.2 —

vm ̸=0
s vm ̸=0

φ /(r 2
oΩ

2
o q5/3) (Neff/Ωo)−10/3 (Neff/Ωo)−3.4±0.2 —

νmix/νAM (Neff/Ωo)−5/3 (Neff/Ωo)−1.2±0.2 —



164 CHAPTER 7. TAYLER-SPRUIT DYNAMO: IMPACT OF THE STRATIFICATION

compared to those inferred by adjusting α in 1D stellar evolution models to the asteroseis-mic observations of sub-/red giants, which is ∼ 0.25−1 (Fuller et al., 2019, Fuller & Lu, 2022,Eggenberger et al., 2019c). Either way, our numerical simulations provide a more physicallymotivated value of α that could be implemented in 1D stellar evolution codes including theTayler-Spruit dynamo to transport angular momentum.
7.2.6 . Intermittency

When N /Ωo ≥ 2, we find that the Tayler-Spruit dynamodisplays an intermittent behaviour,which is clearly visible in the time series of Fig. 7.11 where the non-axisymmetric magneticenergy drops and increases cyclically by two orders of magnitude. This corresponds to theloss and growth of the Tayler instability. The same cycle also occurs for the axisymmetric
Br and Bθ, which illustrates the loss of the dynamo. Those two cycles show a very shortlag of ∼ 2.4s. We then notice that the oscillations of the axisymmetric toroidal and poloidalmagnetic energies are in antiphase. This is also observed in the butterfly diagrams in which
Bφ decreases locally, and so in the volume average when Br is the strongest. These cyclescan be interpreted qualitatively as follows:

(i) B m=0
φ is close but above the critical strength for the Tayler instability derived by com-

bining Eqs. (7.14) and (7.12)
B m=0
φ,c ≡

√
4πρr 2

oΩo

(
Neff

Ωo

)1/2 (
η

r 2
oΩo

)1/4 (7.23)
and the dynamo is acting to generate B m=0

r ;
(ii) B m=0

φ decreases slightly below the critical strength due to turbulent dissipation, which
kills the Tayler instability and so the dynamo loop ;

(iii) the axisymmetric poloidal magnetic energy drops and the axisymmetric toroidal com-ponent increases because of the winding and the lack of turbulent dissipation ;
(iv) B m=0

φ exceeds the critical strength and the dynamo is active again.
An intermittent Tayler-Spruit dynamo was already proposed by Fuller & Lu (2022) to explainthe angular momentum transport in stellar stellar radiative regions with a low shear.Quantitatively, we find B m=0

φ,c ∼ 1.4−2.1×1015 G for the models with N /Ωo ∈ [2,10], which is
very close to the maximum values B m=0

φ ∼ 2.5−3×1015 G measured in the same models. The
proximity to the instability threshold supports our interpretation. To characterise the timeevolution of the intermittency, we measure its duty cycle αcyc, i.e. the ratio of the time whenthe dynamo is active to the period of the cycle. We find that it varies between 0.38 and 0.66,with a tendency to decrease with N /Ωo as seen in Fig. 7.12. The same trend is observed forthe period of these cycles Pcyc, which ranges between 3s and 30s. This is consistent with thefact that we get closer to the dynamo threshold.

7.3 . Application to magnetar formation

The previous analyses support the formalism of Fuller et al. (2019), which was used tomodel our magnetar formation scenario in Barrère et al. (2022). To compare our numerical
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Figure 7.11 — Top: Time series of the magnetic energy. Bottom: Butterfly diagram showing thelatitudinal structure time evolution of different axisymmetric magnetic field components averagedbetween the radii r = 5 and r = 6km. The magnetic energy was converted to physical units by fixing
N = 10−3 s−1
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Figure 7.12 — Period of the cycle Pcyc (top) and the duty cycle αcyc (bottom) of the intermittentdynamo as a function of the input N /Ωo . Filled and empty markers represent self-sustained andtransient dynamos, respectively.

simulations to this model, the magnetic field is converted into physical units by fixing thefollowing parameters to typical values in PNSs: the PNS radius ro = 12km, mass M = 1.4M⊙that corresponds to a constant PNS density of ρ ∼ 4.1× 1014 gcm−3, and Brunt-Väisälä fre-quency N = 1kHz. We therefore obtain the magnetic field strength of B m=0
tor , B m=0

pol and Bdip asa function of the angular frequency of the outer sphere, which is displayed in Fig. 7.13.The red markers correspond to the magnetic field measured in the simulations, whilethe blue markers correspond to the values extrapolated to q = 1. This plot is similar to Fig. 5in Barrère et al. (2022), except that we define, here, a low-field magnetar as a magnetar with
B m=0

tor Ê 1014 G but Bdip < 4.4×1013 G. Since considering the changes of q is equivalent to set
q = 1, we can compare our numerical results to Barrère et al. (2022). As shown in the previoussections, the magnetic field follows well Fuller et al. (2019)’s scaling law for Ωo . However, thesaturatedmagnetic field in our simulations is ∼ 17 times weaker than in themodel in Barrèreet al. (2022), which shifts the upper limit of rotation period to form magnetar-like magneticfields to P ∼ 6ms. This new limit corresponds to a lower accreted fallback mass limit of ∼
5×10−2 M⊙, which is still consistent with recent supernova simulations (see the discussion inBarrère et al., 2022).For rotation periods longer than 6ms, the magnetic dipole is too weak for a classical mag-netar but the Tayler-Spruit dynamo still produces strong total magnetic fields above 1014 G.The observations of absorption lines in the X-ray spectra of low-fieldmagnetars (Tiengo et al.,2013, Rodríguez Castillo et al., 2016) and 3D numerical simulations of magnetic field long-term evolution in NSs (Igoshev et al., 2021) suggest that this is enough to produce magnetar-like luminous activity.
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7.4 . Discussion

Here, we discuss the simplifications we used for the modelling of the PNS interior evo-lution: the mechanism to force the differential rotation (Sect. 7.4.1) and the Boussinesq ap-proximation (Sect. 7.4.2). In Sect. 7.4.3, we finally compare our results on the Tayler-Spruitdynamo (Barrère et al., 2023, this article) and the Tayler-Spruit dynamo obtained in othernumerical simulations (Petitdemange et al., 2023, Daniel et al., 2023, Petitdemange et al.,2024).
7.4.1 . Forcing of the differential rotation

To force the differential rotation, we chose to use a spherical Taylor-Couette configura-tion, in which a constant rotation rate is imposed on both inner and outer spheres. In thissetup, the rotation profile is free to evolve as the angular momentum is transported by tur-bulence and large-scale magnetic fields. The imposed rotation of the outer sphere roughlymimics the maintenance of the surface rotation due to fallback accretion, once the PNS sur-face is already spun up significantly. However, the rotation profile evolution does not de-scribe the beginning of the accretion during which the surface is spun up and the differentialrotation, first concentrated close to the surface, is transported in the PNS interior.Maintaining the rotation on both spheres allows us to inject energy into the flow and tryto control the shear rate. As noticed in Sect. 7.2.4 and quantified in App. 7.6.1, the stablestratification however significantly changes the shear rate. This complicates the measure ofthe respective scaling exponents with N /Ωo and q independently. In addition, we observein Fig. 7.2 that most of the shear is concentrated closer and closer to the inner sphere. Asconfirmedby our simulations, this restricts significantly the domain inwhich the Tayler-Spruitdynamo can operate and participate to make the dynamo more difficult to sustain. Thus, toinvestigate stronger stratification regimes, it will be necessary to change the forcing methodand perhaps opt for a volumetric forcing as used for instance by Meduri et al. (2024).
7.4.2 . Validity of the Boussinesq approximation

To model the PNS interior, we used the Boussinesq approximation, which reduces thenumerical cost and allows us to produce a few tens of models to better understand thephysics of the Tayler-Spruit dynamo. Despite the importance of the density gradient, thisapproximation is easonable in the case of PNS interior:
(i) The sound speed is close to the speed of light cs ∼ 1010 cms−1 (Hüdepohl, 2014, Pascal,2021, private communication), so vA/cs ≲ vφ/cs ≲ 10−2, where va ≡ roωA and vφ are thetypical Alfvén and azimuthal speeds.
(ii) The density perturbation associated to the buoyancy term is small compared to the PNSmean density: δρ/ρ = θN 2/g ≲ 9×10−2, with N = 103 s−1, g ∼ GM/ro ∼ 1.3×1013 cms−2,and θ≲ ro is the buoyancy variable (Eq. 7.6).

The impact of density gradient on the Tayler-Spruit dynamo has never been investigatedso far in numerical simulations. Therefore, future work should consider more realistic PNSdensity profiles.
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Figure 7.13 — Magnetic strength of the axisymmetric toroidal B m=0
tor (pentagons) and poloidal B m=0

pol(squares) components (upper panel), as well as that of themagnetic dipole Bdip (triangles, lower panel)as a function of the angular frequency of the outer sphere, which represents the PNS surface. Thered markers correspond to the magnetic field measured in the simulations, while the blue markerscorrespond to the values extrapolated to q = 1. The dotted lines are the best power-law fit of thedata. The dark and light grey regions represent the range of magnetic field for classical magnetars(Bdip Ê 4.4×1013 G) and low-field magnetars (B m=0
tor Ê 1014 G). The black dashed line and arrow illustratethe rotation period below which the dynamo can form classical magnetar-like magnetic fields. Filledand empty markers represent self-sustained and transient dynamos, respectively.
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7.4.3 . Comparison with other numerical models

In the literature, only a few other studies investigate numerically the Tayler-Spruit dy-namo (Petitdemange et al., 2023, Petitdemange et al., 2024, Daniel et al., 2023). The maindifference between our setup and theirs is the opposite shear, i.e. in their setup the innerboundary rotates faster than the outer one. As in our studies, they find a subcritical bifurca-tion at the Tayler instability threshold to a self-sustained state with a dominant axisymmetrictoroidal magnetic field. However, many differences can be noticed:
• The generated magnetic structure in their simulations has a smaller scale and is local-ized near the inner sphere in the equatorial plane. The impact of stable stratificationon the length scale of these modes may deserve a deeper analysis. It is still unclearwhy this configuration is stable for one sign of the shear and not the other.
• As in Barrère et al. (2023), a hemispherical dynamo solution is also found by Petitde-mange et al. (2024) as they move from a laminar dynamo solution to the strong Tayler-Spruit dynamo by increasing N /Ωo . However, they do not find bistability between thehemispherical and the strong solutions as in Barrère et al. (2023).
• While the dipolar and hemispherical dynamos we found in Barrère et al. (2023) are ingood agreement with the predictions of Fuller et al. (2019) and Spruit (2002), respec-tively, all their models, including those of the hemispherical solution, are in agreementwith the analytical model of Spruit (2002).

Therefore, the few numerical studies of the Tayler-Spruit dynamo indicate amuchmore com-plex physics than anticipated analytically, with the existence of a wide variety of dynamo solu-tions. So far, only Daniel et al. (2023) propose a non-linear model of the subcritical transitionto the Tayler-Spruit dynamo of Petitdemange et al. (2023). In order to include the other so-lutions we discovered, we must further investigate the dynamics of the dynamo using toolsfrom dynamic system theory.

7.5 . Conclusions

7.5.1 . Summary
Following our previous study Barrère et al. (2023), we performed numerical simulationsof the dipolar Tayler-Spruit dynamo to investigate how it behaves in the stratification regimeof PNSs. We first show that a self-sustained dynamo ismaintained in this regime for N /Ωo É 4.With increasing N /Ωo , on the one hand, the Tayler modes have reduced radial length scalesas expected theoretically, but their energy decreases faster than predicted by Fuller et al.(2019), which may indicate an underestimation of the turbulent dissipation. On the otherhand, the large-scale magnetic fields generated by the dynamo are in good agreement withthe analytical work of Fuller et al. (2019).The overall agreement is also observed for both Maxwell and Reynolds torques, the for-mer of which dominates the angular momentum transport. By measuring an approximatemixing diffusivity, we also determined the efficiency of the mixing process due to the Tayler-Spruit dynamo and found that mixing is far less efficient than the angular momentum trans-port, as predicted theoretically. We also constrained for the first time the dimensionlessnormalisation factor α ∼ 10−2, which is much weaker than expected to explain the rotation



170 CHAPTER 7. TAYLER-SPRUIT DYNAMO: IMPACT OF THE STRATIFICATION

rate of sub-/red giant cores. Finally, our simulations demonstrate for the first time that theTayler-Spruit dynamo can become intermittent as the saturated B m=0
φ is close to the Tayler

instability threshold.
To conclude the investigation, we applied our numerical results to the magnetar forma-tion scenario of Barrère et al. (2022). While our data follow the theoretical scaling law, thelower limit of the angular frequency to form classical magnetar-like dipoles is larger thanderived in Barrère et al. (2022) with a period of ∼ 6ms. This rotation period correspondsto an accreted fallback mass of ∼ 5× 10−2 M⊙, which is still reasonable according to CCSNsimulations (e.g. Sukhbold et al., 2016, 2018, Chan et al., 2020, Janka et al., 2022).

7.5.2 . Long-term evolution of the magnetic field
After ∼ 100s, the fallback accretion becomes too weak to maintain the differential rota-tion in the PNS. The newly formed strong large-scale magnetic fields transport the angularmomentum efficiently, which damps the differential rotation and the dynamo will eventuallystop. Themagnetic field is expected to enter a relaxation phase inwhich its structure changesto reach a stable configuration. The exact shape of thismagnetic field is still an open questionand, more generally, the magnetic relaxation problem in astrophysics remains debated (e.g.Braithwaite, 2006, Duez & Mathis, 2010, Duez et al., 2010, Akgün et al., 2013, Becerra et al.,2022a,b). It is howeverwell acknowledged that themagnetic configuration is complex,mixingboth large-scale poloidal and toroidal components. Thus, 3D numerical simulations includ-ing rotation and thermal/density stratifications are required to investigate this stage of thePNS evolution.
On longer timescales of∼ 1−100kyr, the remaining strong toroidalmagnetic fields locatedin the NS crust are prone to Hall diffusion and instability (Rheinhardt & Geppert, 2002), whichmodifies their structures and so can influence the magnetar emission. The strong magneticfield-induced stresses could also cause failures or plastic deformations, which are suspectedto explain the origin ofmagnetar bursts (e.g. Thompson &Duncan, 1995, Perna & Pons, 2011,Lander et al., 2015, Lander & Gourgouliatos, 2019). It is therefore crucial to run 3D numeri-cal simulations of magnetic field evolution in a NS structure using dynamo-generated initialmagnetic configuration to better constrain these properties. Further investigations couldalso include the relaxation of the dynamo-generated magnetic field to a stable configurationbefore the PNS becomes a cooled stable NS.

7.5.3 . Interaction with a remaining fallback disc
The magnetic dipole generated by the dipolar Tayler-Spruit dynamo may not be strongenough to spin themagnetar down to the observed 8−12s via themagnetic spin-downmech-anism. A good alternative would be the propeller mechanism (e.g. Gompertz et al., 2014,Beniamini et al., 2019, Lin et al., 2021, Ronchi et al., 2022). This operates when the magneto-sphere is large enough to interact with the remaining fallback disc, i.e. when the Alfvén radiusis larger than the corotation radius. In the propeller regime, the inner disk matter is acceler-ated to super-Keplerian velocity, which produces an outflow and so an angular momentumtransfer from the magnetar to the disc. If this mechanism operates in some magnetars, themagnetic dipole which is inferred from the values of the NS rotation period and its associ-ated derivative will be overestimated. It thus fosters numerical studies of the fallback matterin 3D simulations of core-collapse SNe and investigations on the evolution of the potentialremaining disc. This will help constrain which progenitors are the best candidates to form
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magnetars via our fallback scenario.

7.5.4 . Implications for stellar physics
Our findings are also of importance for the study of stellar radiative zones. Indeed, thescaling laws and the dimensionless normalisation factor α derived from our simulationscould be implemented in 1D stellar evolution codes. Evolution models using the prescrip-tions of Fuller et al. (2019) have already been computed for sub-giant/red giant stars butwith larger values of α∼ 0.25−1. These studies find a strong flattening of the rotation profileand conclude that the prescribed Tayler-Spruit dynamo can not explain both rotation profilesof sub-giant and red giant stars (Eggenberger et al., 2019c), which suggests that different an-gular momentum transport mechanisms occur during these two phases (Eggenberger et al.,2019b). The future asteroseismic measurements of the magnetic fields in stellar interiorswith PLATO will be crucial to clarify the question of the transport mechanisms. Though thefirst measurements of magnetic fields in some red giant cores suggest a strong fossil field (Liet al., 2022, 2023, Deheuvels et al., 2023), it will be essential to infer the asteroseismic signa-ture of magnetic fields generated by the simulated Tayler-Spruit dynamos for the future ob-servations. Evolution models including MHD instabilities effects were also performed in thecase of massive stars to constrain the rotation rate of the remaining PNS or black hole (Grif-fiths et al., 2022, Fuller & Lu, 2022). They suggest that the angular momentum transportby MHD instabilities is significant in every stage of the massive star evolution. This stressesthe importance of performing 3D anelastic simulations with realistic background profilesof radiative zones at different evolution stages to better constrain the angular momentumtransport and infer more robust rotation rates of stellar cores.

7.6 . Appendix

7.6.1 . Measure of the shear rate
The differential rotation is characterized by a dimensionless shear rate q = r∂r lnΩ. Wedefine an effective shear rate based on the time average of the radial rotation profile in thesaturated state at the colatitude of θ = π/8rad. We measure an average slope in the rangeof radii where half of the Tayler mode energy (approximated by the latitudinal magneticenergy EBθ ) is concentrated around its maximum. We chose this particular method becausethis range of radii is the region where the dynamo occurs. The measures are displayed inFig. 7.14 (red plot) along with other measures made with different methods. Whatever themethod used, we see that all the measures follow the same trend with an increase of q ∝ Nuntil N /Ωo = 4 after which the values of q stay almost constant.

7.6.2 . List of models
Tables 7.2–7.4 summarize the key parameters and output quantities of the simulationscarried out in this study.
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Figure 7.14— Shear rates q measured locally in the simulations as a function of N /Ωo . The differentcolours represent distinct methods to measure q : slope in the rotation profile between 3.2 and 4km(pink), q at the maximum of B m=0
φ and Bθ (green and orange, respectively), and slope in the range ofradii where half of the Tayler mode energy (approximated by the latitudinal magnetic energy EBθ

) isconcentrated around its maximum (red).
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Table 7.2 — Overview of the stable (or failed) dynamo solutions. All the simulations have the sameaspect ratioχ= 0.25, Ekmannumber E = 10−5, Rossby numberRo = 0.75, thermal andmagnetic Prandtlnumbers Pr = 0.1 and Pm = 1, and the same resolution (nr ,nθ,nφ) = (256,256,512). Note that the runnamed Ro0.75s is the same as in Barrère et al. (2023). This table displays the input parameter of theruns.
Name Pm N /Ωo Neff/Ωo Λi

Ro0.75s 1 0.1 0.03 10Pm1Pr0.1NO0.25 1 0.25 0.08 Λ(Ro0.75s)Pm1Pr0.1NO0.5 1 0.5 0.16 Λ(Ro0.75s)Pm1Pr0.1NO1 1 1 0.32 Λ(Pm1Pr0.1NO0.5)Pm2Pr0.1NO2 2 2 0.45 Λ(Pm1Pr0.1NO1)Pm2Pr0.1NO4 2 4 0.89 Λ(Pm2Pr0.1NO2)Pm2Pr0.1NO8 2 8 1.79 Λ(Pm2Pr0.1NO4)Pm4Pr0.1NO4 4 4 0.63 Λ(Pm2Pr0.1NO4)Pm4Pr0.1NO6 4 6 0.95 Λ(Pm4Pr0.1NO4)Pm4Pr0.1NO8 4 8 1.26 Λ(Pm2Pr0.1NO8)Pm4Pr0.1NO10 4 10 1.58 Λ(Pm2Pr0.1NO10)
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In the previous chapter, we looked at the impact of stable stratification on the dipolar Tayler-Spruit dynamo. Here, we study the same effect on the hemispherical Tayler-Spruit dy-namo. This chapter focuses on the dynamics of the dynamo and not on the magnetic fieldstrength like in the previous chapters, which are applied more specifically to the context ofmagnetar formation. The following text is being prepared for submission in Physical Review
Fluids in collaboration with Alexis Reboul-Salze, Jérôme Guilet, Raphaël Raynaud, and BasileGallet.

8.1 . Introduction

Magnetic fields are ubiquitous inmost astrophysical objects fromneutron stars to cosmicscales, including stars, accretion disks and planets. They span awide range of strengths, from
10−6 in hot intracluster medium (Carilli & Taylor, 2002, Bonafede et al., 2010) to 1015 G (Kaspi& Beloborodov, 2017) in magnetars. The question of their amplification and sustainment isvery tough due to its strong non-linear nature and is still actively investigated (see e.g. the re-views (Brandenburg & Subramanian, 2005, Kulsrud & Zweibel, 2008, Federrath, 2016, Rincon,2019, Tobias, 2021)). Most observed astrophysical dynamos can be sorted in the followingcategories: (i) the galactic helical dynamo, which may be driven by supernova (SN)-inducedturbulence (Brandenburg, 2015, Subramanian, 2019), (ii) the dynamos driven by rotatingconvection, which is applied to stellar convective zones (Käpylä et al., 2023, Charbonneau& Sokoloff, 2023), Earth outer core (Landeau et al., 2022), and white dwarf stars (Isern et al.,2017), and (iii) the subcritical dynamos driven bymagnetohydrodynamical (MHD) instabilitiesin shear flows, which could operate in stably stratifiedmedia, such as accretion disks (Hawley

175
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Figure 8.1 — Viscous Elsasser number (and root mean square magnetic field) as a function of theratio of the Brunt-Väisälä frequency to the rotation rate at the outer sphere. Filled and empty mark-ers represent self-sustained and transient dynamos, respectively. The black dashed vertical line andarrow indicate the zone in which the fluid is hydrodynamically unstable. The orange arrows illustratein which direction we extended both dipolar/stationary and hemispherical branches reported by Bar-rère et al. (2023) at N /Ωo = 0.1 and Ro = 0.75. The different colours represent different saturatedstates of the Tayler-Spruit dynamo: the stationary (red), hemispherical (green), and reversing (blue)states.

et al., 1996, Rincon et al., 2007, Lesur & Ogilvie, 2008) and solar/stellar radiative zones (Spruit,2002, Cline et al., 2003, Vasil et al., 2024).The dynamo problem is all the more difficult as astrophysical magnetic fields show arich variety of geometries such as the ancient Martian hemispherical magnetic field (Acunaet al., 1999, Langlais et al., 2004). The magnetic fields can also harbour complex tempo-ral dynamics like the chaotic reversals and excursions of terrestrial magnetic field (Korte &Mandea, 2019) or the solar periodic reversals (Hathaway, 2010). Similar dynamics were alsoobserved in the Von Karman Sodium (VKS) experiment, which consists in generating a self-sustained magnetic field in a turbulent von Karman swirling flow of liquid sodium forcedby two counter-rotating bladed disks (Monchaux et al., 2007, Berhanu et al., 2007, Raveletet al., 2008, Monchaux et al., 2009). Numerical simulations constitute an important tool tostudy these magnetic states and the transition between them. Several numerical modelsof rotating, convection-driven dynamo manage to reproduce hemispherical (Stanley et al.,2008, Amit et al., 2011, Dietrich & Wicht, 2013, Landeau et al., 2017) and oscillatory magneticfields (Raynaud& Tobias, 2016, Strugarek et al., 2017, 2018). Rich dynamics are also observedin numerical simulations of the magnetorotational instability (MRI)-driven dynamos in stablystratified shear flows (Herault et al., 2011, Riols et al., 2013, 2017, Reboul-Salze et al., 2022).Here, we focus on the Tayler-Spruit dynamo, which is — similarly to the MRI-driven dy-namo — a subcritical dynamo driven by an MHD instability called the Tayler instability. Thisinstability feeds offa toroidal field in a stably stratifiedmediumdue to the presence of an elec-tric current along the axis of symmetry (Tayler, 1973, Goossens et al., 1981). The produced
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electromotive force can generate a large-scale poloidal magnetic field that will be sheared tostrengthen the toroidal component and thus close a dynamo loop (Spruit, 2002, Denissenkov& Pinsonneault, 2007, Zahn et al., 2007, Fuller et al., 2019). Despite a lack of numerical evi-dence, their analytical prescriptions were widely implemented in 1D stellar evolution codesand showpromising results to explain helio/asteroseismic observations (Cantiello et al., 2014,Eggenberger et al., 2019c,a, den Hartogh et al., 2020, Griffiths et al., 2022, Eggenberger et al.,2022, Fuller & Lu, 2022). This mechanism is also promising to form magnetar-like magneticfields (1014 −1015 G) in proto-neutron stars spun up by supernova fallback accretion (Barrèreet al., 2022). While the Tayler-Spruit dynamo was identified for the first time in numericalsimulations very recently (Petitdemange et al., 2023), we demonstrated the existence of twoTayler-Spruit dynamos in bistability that harbour distinct magnetic field geometry: equatori-ally symmetric and hemispherical (Barrère et al., 2023, 2024b).

In this article, we report the existence of a reversing Tayler-Spruit dynamo. This echoesthe behaviour we shortly mentioned in our first numerical study (Barrère et al., 2023) forstrong differential rotation forcing. We argue that this rich diversity of dynamo states resultsfrom the equatorial symmetry breaking of the flow. This drives the interaction between twoaxisymmetric unstable dynamo modes with a dipolar and a quadrupolar geometry. Whilethis type of model explains well the dynamics observed in the VKS experiment (Gallet &Pétrélis, 2009, Gissinger, 2010) and thedynamics of the Earth and Sunmagnetic field (Knobloch& Landsberg, 1996, Pétrélis et al., 2009, Gissinger et al., 2012), we show for the first time thatit also accounts for the dynamics of the Tayler-Spruit dynamo.
Note that the numerical methods are the same in the previous chapter (Chap. 7). Theonly differences are that the stable stratification is varied in the range N /Ωo ∈ [0.1,1].

8.2 . Results

8.2.1 . A diversity of dynamical regimes

The different saturated states found in our numerical simulations and their associatedaverage magnetic energy density in terms of Λν are gathered in the bifurcation diagram inFig. 8.1. We report the existence of three distinct Tayler-Spruit dynamo states, which are rep-resented by different colours. Starting from the saturated state of the run ‘Ro0.75s’ from Bar-rère et al. (2023) at N /Ωo = 0.1, we obtain the red branch, which shows the strongest mag-netic fields. This is the extension for larger N /Ωo of the ‘dipolar’ branch found in Barrèreet al. (2023) and has been thoroughly studied in a previous study (Barrère et al., 2024b). Thisstate is characterised by a predominant axisymmetric toroidal component (l = 2,m = 0) thatremains stationary. This dynamo has been maintained in a self-sustained state to N /Ωo = 4and in a transient state to N /Ωo = 10. Note that self-sustained states for N /Ωo > 4 are ex-pected to be reached by decreasing the resistivity (Barrère et al., 2024b). To avoid confusingthe dipolar branch with the dipolar mode that we will define in Sect. 8.2.2, we will refer tothis dynamo state as the stationary state.
Restarting from the saturated hemispherical dynamo of the run ‘Ro0.75w’, we find thatthe hemispherical state can be maintained up to N /Ωo = 0.15. For N /Ωo Ê 0.175 the magneticfield can successively enter several saturated states in the same time series. A typical exam-ple is the time series at N /Ωo = 0.2. The associated time series of the latitudinal profile of theaxisymmetric toroidal magnetic field B m=0

φ (called butterfly diagram) and of the symmetric
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Figure 8.2 — Top and middle: Meridional slices and butterfly diagram of the axisymmetric toroidalfield B m=0
φ averaged between the radii r = 5km and r = 6km. Bottom: Time series of the symmetric

(E sym
B ,tor, orange) and anti-symmetric (E asym

B ,tor , red) components of the toroidal magnetic energy for therun at N /Ωo = 0.2. The different lines on top/bottom of the plots have colours corresponding to thedifferent saturated states as in Fig. 8.1.
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(anti-symmetric) magnetic energy E sym

B ,tor (E asym
B ,tor ) are displayed in Fig. 8.2. The initial magneticfield in this run is the hemispherical state of the run at N /Ω= 0.15, which is maintained until

t = 4s. This state is characterised by the concentration of magnetic field in one hemisphere.This is consistent with the butterfly diagram and the first meridional slice (top and middlepanels of Figure 8.2), in which the northern hemisphere contains 50−75% of the magneticenergy. The time series shows that E sym
B ,tor ∼ E asym

B ,tor , which is consistent with the interpretationof the hemispherical geometry as the result of the superposition of modes with oppositeequatorial symmetry (Gallet & Pétrélis, 2009).Between t = 4s and t = 10s, the dynamo enters a first reversing state. In the secondmeridional slice and the butterfly diagram, we see that a large-scale B m=0
φ form in the south-

ern hemisphere, which then migrates towards the opposite hemisphere. During this migra-tion, B m=0
φ reverses, i.e. a large-scale B m=0

φ with the opposite sign forms in the southern
atmosphere (third meridional slice). The reversals translate into oscillations of E sym

B ,tor and
E asym

B ,tor . The change of symmetry is due to the migration of a patch of B m=0
φ through the

equator (E sym
B ,tor < E asym

B ,tor ) and the formation a patch with the opposite sign in one hemisphere
(E sym

B ,tor > E asym
B ,tor ). These modulations were already observed by Barrère et al. (2023) in theregime of strong forcing of differential rotation (Ro ≳ 0.8). The reversals are mostly periodicand the period tends to increase with N /Ωo .Finally, the magnetic field enters the stationary state we mentioned. The predominanceof the (l = 2,m = 0)-magnetic field is clear in the fourth meridional slice and the butterflydiagram between t = 10s and t = 13s. This translates into a large E sym

B ,tor ∼ 10E asym
B ,tor . While thestationary state is maintained in most simulations (Barrère et al., 2023, 2024b), the dynamoreverts back to the reversing state, and then the hemispherical state at t Ê 13s. Note that thehemispherical state can switch from one hemisphere to another as seen at the end of thissimulation.For N /Ωo Ê 0.25, no hemispherical state can bemaintained, even transiently. The dynamoeither oscillates between the reversing and the stationary states, or remains in the station-ary state. Although our simulations are not long enough to capture more than 4 transitionsbetween two states, these transitions do not seem to occur periodically. Moreover, the dy-namics significantly depend on the initial conditions for the magnetic field, which suggests achaotic transition between these states (Riols et al., 2013). After N /Ωo > 1, the dynamo is lostat Pm = 1 since the resistivity becomes too large for the fluid to remain Tayler unstable (Bar-rère et al., 2024b). However, this complex dynamics does not reappear for Pm > 1, and onlythe stationary branch can be maintained.

8.2.2 . Two-modes modelling
Our numerical simulations of the Tayler-Spruit dynamo cover the features of dynamosfound in the VKS experiment. Low-dimensionalmodels show that the different states arewellexplained by the interaction between two large-scale dynamo modes with opposite equato-rial symmetries, called dipolar (equatorially symmetric field) and quadrupolar (equatoriallyanti-symmetric field) modes (Pétrélis et al., 2009, Gallet & Pétrélis, 2009, Gissinger, 2010).Gallet & Pétrélis (2009) provide a model in which the equatorial symmetry breaking of theflow drives this interaction. This results in the generation of both hemispherical and revers-ing dynamos, depending on the imposed symmetry breaking.In order to verifywhether this interpretation fits our numerical simulations, we extract thedipolar/quadrupolar modes and the symmetry breaking of the flow. To this end, we expand
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Figure 8.3 — Time evolution of several quantities of the run at N /Ωo = 0.25. (a): Butterfly diagram of
B m=0
φ . (b): Time evolution of the symmetry breaking the flow ∆Ekin,H (dashed blue and solid green forthe raw and smoothedmeasures) and themagnetic field∆Emag,H (dashed orange and solid red for theraw and smoothed measures). (c) Trajectory the dynamo in the phase space dipole–quadrupole. Thevalues of the modes are normalised by the maximum value of the dipolar or the quadrupolar modes.The curve is coloured by the symmetric breaking of the flow∆Ekin,H. The red crosses indicate the fixedpoint location. They are estimated by looking at the local minimum of the velocity in the phase space.(d): 3D plot the phase space along the vertical axis representing ∆Ekin,H. The colour represents thevalue of the normalised dipole mode. The grey plane illustrates the plane at ∆Ekin,H = 0 and the greenarrows indicate the direction of the trajectory.

B m=0
φ into spherical harmonics. The dominant equatorially symmetric and anti-symmetric

components are the respective l = 2 and l = 1 modes in most of simulations. Therefore, wedefine the dipolar and the quadrupolar modes as the l = 2 and l = 1 modes of B m=0
φ , noted

a j (l = 2,m = 0) and a j (l = 1,m = 0), respectively. To quantify the symmetry breaking, wedefine the parameter
∆Ekin,H ≡ Ekin,N −Ekin,S

Ekin,N +Ekin,S
, (8.1)

which measures the difference between the total kinetic energy in the northern Ekin,N andthe southern Ekin,S hemispheres. Therefore, the flow symmetry is broken when Ekin,H ̸= 0.Fig. 8.3 shows the evolution of the dipolar/quadrupolar modes and the equatorial sym-metry breaking of the flow ∆Ekin,H for a run at N /Ωo = 0.25. The butterfly diagram (panel (a))of B m=0
φ and the time series of ∆Ekin,H (green curve in the panel (b)) show that the dynamo

switches between several states that match with different values of the symmetry breaking:
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(i) Until t = 6s, ∆Ekin,H ∼−0.5 while the dynamo is in a reversing state;
(ii) The symmetry breaking then increases and tends toward∆Ekin,H = 0, which correspondsto the transition to the first stationary state between t = 6s and t = 10s;
(iii) ∆Ekin,H becomes positive and peaks at ∆Ekin,H ∼ 0.35 when t = 10s, which matches thebeginning of the magnetic field reversal;
(iv) Finally, ∆Ekin,H decreases and the magnetic field completes its reversal. The dynamo ismaintained in a stationary state and ∆Ekin,H ∼ 0.1 stalls.

Therefore, ∆Ekin,H is strongly related to the dynamics of the dynamo.While the flow symmetry breaking may drive the dynamics of the dynamo, the generatedmagnetic field acts back onto the flow. To observe this effect, we define a parameter similarto ∆Ekin,H to measure the symmetry breaking of the magnetic field
∆Emag,H ≡ Emag,N −Emag,S

Emag,N +Emag,S
. (8.2)

The evolution of this parameter is plotted as the red curve in Fig. 8.3, panel (b). We observethat ∆Ekin,H and ∆Emag,H are in anti-phase. This shows that the magnetic field in one hemi-sphere lowers the energy kinetic energy in the same hemisphere, i.e. the dynamo action inone hemisphere transfers the kinetic energy into magnetic energy. Therefore, the magneticfield also influences the equatorial symmetry of the flow, which explains the non-constantvalue of ∆Ekin,H. This differs from the VKS experiment, in which the symmetry breaking iscontrolled by the imposed frequencies on the rotating impellers.A correlation with ∆Ekin,H is also found in the phase space dipole–quadrupole. The tra-jectory of the magnetic field in this 2D phase space is shown in panel (c) of Fig. 8.3 with acolour map illustrating the value of ∆Ekin,H. During the reversing phase, the magnetic fieldmoves along a limit cycle with ∆Ekin,H ∼ 0.5. When ∆Ekin,H tends toward 0, the magnetic fieldthen diverges toward a first fixed point (red cross at (−0.07,0.84)) where the magnetic fielddynamics slows. As ∆Ekin,H increases the magnetic field reverses and so moves toward thecycle. As soon as it reaches the cycle, ∆Ekin,H decreases and the magnetic field diverges to-ward the same fixed point but with an opposite sign (red cross at (0.07,−0.84). After that, themagnetic field moves around the fixed point and ∆Ekin,H remains quasi-constant. The sametrajectory is also visible in a 3D plot of the phase space with ∆Ekin,H as a vertical axis (panel(d)). The trajectory is consistent with the presence of a saddle-node bifurcation as modelledby Pétrélis et al. (2009): when∆Ekin,H = 0, the dipole–quadrupole space contains two unstableand stable fixed points with opposite signs. In our case, the stable mode is the dipolar modebecause the stable fixed points are located near the axis a j (l = 1,m = 0) = 0. As the equatorialsymmetry of the flow is broken (∆Ekin,H ̸= 0), the (dipolar) stable and (quadrupolar) unstablefixed points with the same sign are closer and closer. Once they collide, the fixed points dis-appear and themagnetic field follows a limit cycle. Cyclic structures emerging of saddle-nodebifurcation were also observed in shearing-box simulations of the non-linear magnetorota-tional (MRI)-driven dynamo (Herault et al., 2011, Riols et al., 2013, 2017). These cycles areunstable, which explains the difficulty of capturing them in our numerical simulations andthe necessity of Newton’s method to converge them.
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Figure 8.4— 3D bifurcation diagrams of the dipole–quadrupole phase spaces of several simulationsas a function of the Rossby number Ro (left) and ratio N /Ωo (right). The simulations on the left plotwere studied in Barrère et al. (2023). The red and green curves represent the stationary and thehemispherical branches, respectively. The black vertical axis is the origin of the phase space a j (l =
1,m = 0) = a j (l = 2,m = 0) = 0. The dashed (solid) lines indicate that the branch is stable (unstable).

This interpretation also provides a good explanation for the other structures found in thephase space for other simulations in which the magnetic field oscillates between the station-ary and the reversing states, i.e. when N /Ωo ∈ [0.25,1]. For simulations in which the magneticfield can also explore to the hemispherical state (N /Ωo ∈ [0.175,0.2]), the model of Gallet &Pétrélis (2009) also predicts that the flow symmetry breaking can also result in the localisa-tion of themagnetic field in one hemisphere. This is consistent with our simulations since thehemispherical phases correspond to |∆Ekin,H| ∼ 0.25−0.5. It remains however unclear howto determine in our simulations why the symmetry breaking results in the localisation of themagnetic field instead of reversals. The absence of a hemispherical state for N /Ωo Ê 0.25indicates that stable stratification plays a role in preventing the magnetic field from reachingthis state.The trajectory of several simulations is gathered in Fig. 8.4, which displays the 3D bifur-cation diagram of the dipole–quadrupole space as a function of the different parameters wevaried: N /Ωo (in this study) and Ro (in Barrère et al. (2023)). In the latter, we observe thatthe dynamics are also more and more complex as Ro increases. In these simulations, ourinterpretation still works and is besides intuitive, as large values of Ro are prone to produceturbulence contributing to breaking the flow equatorial symmetry.

8.3 . Conclusions

To conclude, we have reported for the first time the existence of complex dynamics ofthe Tayler-Spruit dynamo involving three dynamo states:
(i) the stationary state that is characterised by an axisymmetric toroidal magnetic field
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with an equatorial symmetry,

(ii) the hemispherical state, in which themagnetic field is concentrated in one hemisphere,
(iii) the reversing state.

We have demonstrated that the dynamics of the Tayler-Spruit dynamo can result from thenon-linear coupling of two unstable modes with opposite equatorial symmetries. This in-teraction is driven by the equatorial symmetry of the flow ∆Ekin,H, which causes the tran-sition from a stationary state (|∆Ekin,H| = 0−0.1) to a hemispherical or a reversing dynamo(|∆Ekin,H| = 0.25−0.5). The transition is consistent with the disappearance of the stationarystate through a saddle-node bifurcation. Future simulations with longer integration timeswill help characterise the transition quantitatively. Thus, the results of this study confirm theimportance of the breaking of the flow’s equatorial symmetry in themagnetic field dynamics.One may wonder whether the dynamo can be described as a mean-field dynamo (α2,
αΩ, α2Ω, or shear current-driven dynamo). An α effect can not be ruled out since the ki-netic helicity is not negligible in our simulations. The extraction of the mean-field dynamotensors α and β using several methods (correlations between the electromotive force andderivatives of the axisymmetric magnetic field (as done by Reboul-Salze et al., 2022), the sin-gular value decomposition (Racine et al., 2011, Simard et al., 2016), and themost recent IROSmethod (Bendre et al., 2023)) suggests that both the diagonal α and non-diagonal β coeffi-cient may contribute equally to the electromotive force, but this is not clear for every nu-merical model. Further analysis will help clarify which mean-field mechanism generates thelarge-scale magnetic fields. However, the relation between the electromotive force and theaxisymmetric magnetic field is rather non-linear, unlike what is assumed in the mean-fieldtheory. Moreover, subcritical non-linear dynamos in the vicinity of the dynamo thresholddo not usually reduce to standard mean-field dynamos (Cline et al., 2003, Davies & Hughes,2011, Riols et al., 2013).This rich dynamics observed for Pm = 1 does not appear for larger Pm in our simulations.In the context of themagnetar formation, our results, therefore, suggest that this rich dynam-ics does not appear in proto-neutron stars where Pm ∼ 104−1011 depending on the dominantviscous process (Supplementart Materials of Barrère et al., 2023). Unlike in our simulations,the inner layers usually rotate faster than the outer layers in stellar radiative zones. Since nosuch dynamics were reported in numerical simulations with the stellar differential rotation,it is still unclear whether these dynamics can appear in these regions.



9
From proto-neutron star dynamo to magnetars

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.5 Data and materials availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

While the previous studies of the fallback scenario focused on the formation of the mag-netic field during the proto-neutron star stage, understanding the evolution of thismagnetic field on timescales of 1−1000kyr is essential to predict the NS emission and com-pare it to magnetar light curves. In this chapter, we summarise a study carried out with An-drei Igoshev in which we investigate the long-term evolution of a magnetic field generatedby the Tayler-Spruit dynamo in the crust of a cold neutron star (NS). We also study the impli-cation for the induced X-ray emission. The following text is inspired by an article submittedto Nature Astronomy that was written by Andrei Igoshev in collaboration with me, RaphaëlRaynaud, Jérôme Guilet, Toby Wood, and Rainer Hollerbach (App. C.3.4).

9.1 . Introduction

Twomain categories of studies investigate the magnetic field evolution in magnetars. Onthe one hand, different dynamo mechanisms have been numerically investigated to explainthe formation of the strongest magnetic fields, including proto-neutron star (PNS) convec-tion (Thompson & Duncan, 1993, Raynaud et al., 2020, 2022, Masada et al., 2022, White et al.,2022), magnetorotational instability (Reboul-Salze et al., 2021, 2022), and more recently theTayler–Spruit dynamo (Barrère et al., 2022, 2023, 2024b). These studies focus on the mag-netic field dynamics in the PNS between ∼ 0.2− 30s after the core bounce. On the otherhand, the numerical simulations of the coupled evolution of the magnetic fields and thetemperature in a cold NS structure aim at better interpreting the observed light curve ofmagnetars (e.g. Igoshev et al., 2021, De Grandis et al., 2021, Dehman et al., 2023). These twofamilies of simulations showmany differences. First, the simulatedNS structure between thePNS stage and the cold NS is very different. While the PNS interior is usually modelled as amagnetohydrodynamical fluid, the cold NS is composed of twomain layers: the crust and the
184
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core. The former consists of a lattice of ions in which relativistic electrons move and the lat-ter is composed of superfluid neutrons and superconductive protons. Themagneto-thermalevolution is usually simulated in the crust only (e.g. Viganò et al., 2013, Gourgouliatos et al.,2016, Pons & Viganò, 2019) because the core composition is not well understood and diffi-cult to model (Ciolfi & Rezzolla, 2013, Henriksson & Wasserman, 2013, Lander, 2013, Elfritzet al., 2016, Castillo et al., 2020, Viganò et al., 2021). Therefore, PNS and cold NS simulationssolve very different equations. Second, the dynamo simulations capture a few seconds ofthe PNS evolution, while the magneto-thermal evolution models cover timescales between
1 kyr and 1 Myr. This is related to the magnetic field dynamics which is in a turbulent stateduring the first seconds but eventually stabilises and decays on longer-time scales once theNS structure is cooled and stable.Magneto-thermal models have usually considered idealised, large-scale magnetic fieldsfor the initial condition of their simulations. Although some previous studies have consid-eredmore complex field structures, as expected from PNS evolution (De Grandis et al., 2022,Dehman et al., 2023), no direct implementation of an initial magnetic field stemming froma saturated dynamo state have been done to this day. Yet, this link between PNS dynamosand the magneto-thermal evolution is essential to understand the formation and the evo-lution of magnetars. While this would provide more physically justified initial conditions inmagneto-thermal simulations, this link will enable the first connection between PNS dynamomodels and the observations. To this end, we ivestigate the magneto-thermal evolution of amagnetic field configuration in the saturated state of the dipolar Tayler-Spruit dynamo (run
Ro0.75s in Chap. 6) using a modified version of the pseudo-spectral code PARODY (Dormy,1997, Aubert et al., 2008).

9.2 . Methods

The specific numericalmethods used in PARODY for themagneto-thermal evolution are de-tailed in the submitted version of the article (App. C.3.4). Here, we focus on how we adaptedthemagnetic field configuration from our simulation to the integration domain representingthe NS crust in PARODY, where the ratios between the radius of the inner to that of the outersphere are χPNS = 0.25 and χNS = 0.9, respectively. The method consists of extracting thepoloidal b and the a j magnetic potentials in the top 10 % of the dynamo simulation. Then,we represent the new magnetic potentials as a polynomial expansion of the radius r withthe form
bP(r ), aP

j (r ) = c0 + c1r + c2r 2 + c3r 3 + c4r 4

r
, (9.1)

and we fit it to the extracted b and a j , while respecting several conditions. First, we requirethe numerical fits to exactly coincide with the extracted potentials at the following points:
r1 = 0.93ro and r2 = 0.96ro . Second, we impose the vacuum boundary condition (Eqs. (4.83)-(4.85)) at the surface and the ‘no-currents’ boundary condition at the core-crust interface(r = 0.9ro), i.e.

b(0.9ro) = 0, (9.2)
∂r a j (0.9ro) = 0. (9.3)

Note that the equations for the boundary conditions presented in Sect. 4.3.6 are not exactlythe same as those in the submitted article (Supplementary Materials in App. C.3.4), because
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Figure 9.1 — Surface temperature distribution and external magnetic field structure at age 200 kyr.
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the MagIC and PARODY codes use different conventions to define the potentials. The equationsremain equivalent. Third, we also require our fit for the poloidal potential bP(ro) to coincidewith b(ro) at the surface. These conditions form a system of equations that we solve to deter-mine the values of the coefficients c1, c2, c3, and c4. The potentials bP(r ) and aP

j (r ) are then
implemented as initial conditions in the PARODY code.

9.3 . Results

The magneto-thermal evolution of the NS crust is integrated over a timescale of 1 Myrand is formulated as electron-MHD. Focusing on the magnetic field, the surface magneticdipole increases by a factor of only three during the simulation, reaching a maximum valueof 1.5×1012 G. This value is weak compared to classical magnetars (≳ 1014 G) and is more con-sistent with the magnetars harbouring low magnetic dipoles. Similarly, the quadrupole com-ponent of the poloidal magnetic field remains relatively small (maximumof around 6×1012 G)compared to internal magnetic fields, which are 2 to 3 orders of magnitude larger. Figure 9.1shows the three-dimensionalmagnetic field lines and the temperaturemap at theNS surface,after 200kyr of evolution. We observe that the magnetic field harbours a complex topologyfeaturing individual arches elongated in the north-south direction. The local field strength atthe footpoints of these arches reaches 1014 G, which is ∼ 100 times stronger than the surfacemagnetic dipole. Small-scale magnetic fields remain dominant at all times from the begin-ning of the evolution until 1 Myr (see Supplementary Materials in App. C.3.4, Sect. 4). Thesemagnetic arcs are consistent with the observation of absorption lines in the X-ray spectra oftwo magnetars with weak magnetic dipoles: SGR 0418+5729 (Tiengo et al., 2013) and SwiftJ1822.3–1606 (Rodríguez Castillo et al., 2016).
These small-scale surfacemagnetic field could also explain the observed light curve of low-magnetic field magnetars via magnetospheric heating. Indeed, the penetration of twistedmagnetic field lines could locally form ∼ 1km-hot spots at the surface. The presence of thesehot spots ∼ 6 times hotter thanmaximum the bulk temperature aroundmagnetic footpoints(white spots in Fig. 9.1) explains relatively well the light curves of SGR 0418+5729 and SwiftJ1822.3–1606 (see Supplementary Materials in App. C.3.4, Sect. 5).
Apart from the pulsed X-ray light curve, magnetars are also characterised by the emissionof magnetic field-powered energetic bursts. They are thought to be produced through crustfailures or crust plastic deformation (e.g. Thompson & Duncan, 1995, Lander et al., 2015,Lander & Gourgouliatos, 2019). Figure 9.2 displays the surface and inner crustal magneticfields, which can reach 1014−1015 G. Using themodel for crust-yielding of (Lander & Gourgou-liatos, 2019) (see Supplementary Materials in App. C.3.4, Sect. 6), we infer the average depthof crust failure regions, which coincide with the regions of the strongest internal magneticfields (bluemap in Fig. 9.2). The potentially released energy from these regions is (Thompson& Duncan, 1995)

Eout = 4×1040 erg

(
l

1 km

)2 ( |B |
1015 G

)2

∼ 2×1039 erg , (9.4)
where l ∼ 1km is the typical size of the failing region. Eout can be considered as an upper limitof the possible released energy becausewemapped all the regions that could fail by a certainage and so may overestimate the failure depth. Eout is therefore consistent with the burstenergies of the low-magnetic fieldmagnetars SGR J0418+5729 (van der Horst et al., 2010) and
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Figure 9.2 — Surface and inner crust magnetic field developed by 200 kyr. Crust-yielding regions areshown in white and blue colours.

CXOU J164710.2–455216 (Muno et al., 2007), which are ∼ 100 smaller. This demonstrates thecapacity of the dynamo-generated magnetic field to cause magnetar burst activity.While we covered the impact of the magnetic field on the magnetar luminous activity, wemust address the question of magnetar slow rotations. It is all the more necessary becausea magnetar with a surface magnetic dipole around 1012 G and a rotation period of P = 10mscan not spin down the magnetar to their typical rotation periods of P ∼ 2−12s in a timescaleof 1 Myr. The interaction between the magnetar and the remaining fallback disk, however,can lead to a strong spin-down when the system enters the so-called propeller regime. Thisphase occurs when a part of the disk penetrates the magnetosphere, which enables theextraction of the angular momentum from the magnetar toward the disk. Using the formal-ism of (Ronchi et al., 2022), we modelled the evolution of magnetar with a magnetic dipole
BNS = 1012 G and a fallback disk with an initial mass of Md,0 = 0.01M⊙, which corresponds toan inital accretion rate of Ṁ0 = 6.6×1029 gs−1. After 200kyr, we obtain the rotation period of
SI 8.5s. Therefore, the fallback disk can spin down to typical rotation periods for classical andlow-magnetic dipole magnetars (P ∼ 8−11s) in a reasonable timescale. Moreover, the spin-down rate Ṗ = 8.5×10−13 ss−1 at this same time, which implies a spin-down magnetic dipoleof Bdip = 3.8×1013 G according to the magnetic spin-down formula (Eq. (1.1)). This indicatesthat the magnetic dipole inferred from the formula may be overestimated if the magnetarhas been spun down through the propeller regime.
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9.4 . Conclusions

To conclude, the present numerical study is the first to investigate the magneto-thermalevolution of a magnetic field configuration stemming from a dynamo saturated state. Thissimulation show that a magnetic field generated by the Tayler-Spruit dynamo can reproducemany characterics of magnetars with a lowmagnetic dipole: their lowmagnetic dipole, X-raylight curve, bursts, and rotation periods. This suggests that our fallback scenario is promisingto explain a fraction of the magnetar population.Our scenario is also a good alternative to the ‘worn-out’ magnetar model, which suggeststhat magnetars with low magnetic dipoles are old magnetars born with a strong dipole of
∼ 1014 G (Rea et al., 2012a). However, this model is challenged by our numerical simulationbecause we do not observe any significant decay of the dipole within a times scale of 1Myr.Thus, this work consolidate the idea of a PNS dynamo origin for magnetars and opensnew perspectives for testing these dynamos. We suggest that different dynamos leave theirunique imprint on magnetic field configurations, thus allowing to identify different magneticamplification processes using the magneto-thermal properties of young isolated neutronstars. While we suggest that the formation of low-magnetic dipole magnetars is linked to theTayler-Spruit dynamo, the formation of classical magnetars as well as the internal structureof their magnetic fields remains an open question.

9.5 . Data and materials availability

For the PNS simulation, we used the MagIC code (commit 2266201a5), which is opensource at https://github.com/magic-sph/magic. Themagnetar spin-downwas calculatedwiththeGRB code (commit 84788793), also publicly available at https://github.com/rraynaud/GRBs.The results of magneto-thermal simulations can be shared under reasonable request.



General conclusion

Summary of the thesis work

This thesis aims at providing a better understanding of the formation of magnetars. Theseyoung neutron stars (NSs) power a wide variety of high-energy emissions due to the dis-sipation of their ultra-strong magnetic fields (1014 −1015 G). Understanding the formation oftheir magnetic is critical to explain these observations. This problem is still actively debatedand constitutes the central question of this thesis. To address this question, we have fo-cused on the magnetic field amplification by dynamo action in a newly born proto-neutronstar (PNS). Numerical simulations demonstrated that dynamos driven by convection andmagnetorotational instability can form magnetar-like magnetic fields in the presence of fastrotations stemming from fast-rotating progenitor cores. While these dynamo mechanismsare good candidates for magnetars formed in extreme explosions, it is more challengingfor them to explain the entire magnetar population due to the uncertainty on the fraction offast-rotating progenitor cores. Moreover, the observation of supernova remnants associatedwith magnetars demonstrates that most magnetars are formed in classical core-collapse su-pernovae like most NSs, which require slower PNS rotations compared to extreme explo-sions. Indeed, assuming that all the rotational energy of the PNS is injected into the kineticenergy of the ejecta, which can not exceed that of typical supernovae (∼1051 erg), the PNSinitial rotation period can not exceed ∼5 ms (Vink & Kuiper, 2006).Our line of attack to tackle these uncertainties has been to investigate a new scenario formagnetar formation in which themagnetic field is amplified by the Tayler-Spruit dynamo in aPNS spun up by fallback accretion. With this scenario, we overcome the twomain limitationsof the previous candidate processes, since the PNS can harbour an initial low magnetic fieldand has a rotation that is not determined by that of the progenitor.In the first instance (Chap. 5), we have built a semi-analytical model that consists of non-linear equations that extend the mathematical formalism of Fuller et al. (2019) that does notcapture the time evolution of the magnetic field. The equations describe the coupled timeevolution of the PNS rotational properties and magnetic field components. We observe thatthe magnetic field evolution consists of three phases: (i) the amplification of the azimuthalmagnetic field via the winding of the radial magnetic field, (ii) the former component be-comes Tayler unstable which produces a non-axisymmetric perturbed magnetic field, and(iii) the electromotive force due to the instability generates a poloidal field, which closes thedynamo loop. In this work, we derived for the first time a growth rate for the Tayler-Spruitdynamo (not to be confused with the growth of the Tayler instability). After deriving thedifferent characteristic timescales of the magnetic field growth, we finally show that the am-plification lasts 15−30s. Solutions of the equations show that the radial magnetic field canreach magnetar-like strengths (Br Ê 4.4×1013 G) for accreted fallback masses Ê 1.1×10−2 M⊙,which corresponds to a PNS rotation period of 28ms. We have also found that the azimuthalmagnetic field is always 10−100 stronger than the radial component, which is consistent with
190
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the observational trends (Tiengo et al., 2013, Rodríguez Castillo et al., 2016, Makishima et al.,2019). Thus, this first investigation suggests that magnetars can originate from slow-rotatingprogenitors for accreted masses compatible with recent supernova simulations and result-ing in plausible initial rotation periods of the PNS. This first work was published in Astronomy
& Astrophysics (article in App. C.3.1) and led to an application of this model to the formationof magnetars in binary NS mergers which will be submitted to the same journal soon (draftin App. C.3.5, in collaboration with Alexis Reboul-Salze).The main drawbacks of the semi-analytical approach are that it relies on strong assump-tions to simplify the non-linear aspects of the dynamics and that it does not inform us aboutthe three-dimensional geometry of the magnetic field. Moreover, the Tayler-Spruit dynamoremained elusive in numerical simulations. To address these points, we performed a set of
∼ 50 numerical simulations using MagIC to investigate the impact of the differential rotation(Chap. 6) and stable stratification (Chaps. 7 and 8) on the Tayler-Spruit dynamo. The PNSinterior is modelled as a stably stratified fluid in the Boussinesq approximation. To mimicthe forcing of differential rotation due to fallback, we imposed rotation rates on the bound-aries such that the outer sphere rotates faster than the inner one (positive shear). Thesesimulations have provided the following fruitful results:

• We reported for the time the existence of the Tayler-Spruit dynamo in the presenceof positive shear (Petitdemange et al., 2023, claimed the presence of the Tayler-Spruitdynamo in a setup with a negative shear). The dynamo produces a magnetic field dom-inated by its axisymmetric toroidal component.
• We identified for the first time the existence of three different behaviours of the Tayler-Spruit dynamo: (i) a steady l = 2-axisymmetric toroidal magnetic field (that we call dipo-lar state), (ii) a hemispherical magnetic field and (iii) a reversing magnetic field. Weinterpret this rich dynamics as the result of the non-linear coupling between two ax-isymmetric unstable modes with opposite equatorial symmetry. Their interaction isdriven by the equatorial symmetry breaking of the flow (Chap. 8).
• The hemispherical Tayler-Spruit dynamo is in global agreement with the analytical pre-scriptions derived by Spruit (2002) regarding the variation of the shear rate. Increasingthe stable stratification makes this dynamo solution branch off toward the reversingand/or steady state.
• The steady/dipolar Tayler-Spruit dynamo follows the theoretical scaling laws of Fulleret al. (2019)within a dimensionless renormalisation factorα∼ 0.01, i.e. we finda toroidalmagnetic field around 100 weaker than expected by Fuller et al.’s model. This dynamocan be maintained in a self-sustained (transient) state to stable stratification up to

N /Ωo = 4 (N /Ωo = 10) with Pm = 4.
• When the scaling laws are applied to a typical PNS,wedetermine that classicalmagnetar-like magnetic fields (i.e. Bdip Ê 4.4×1013 G) can be generated for rotation periods≲ 6ms,which corresponds to a minimum accreted fallback mass of ∼ 5× 10−2 M⊙. Rotationperiods ≲ 60ms are sufficient to produce 1014 G-total magnetic fields, which may besufficient to produce magnetar-like luminous activity despite the low magnetic dipole.

This numerical investigation led to three articles: the study about the impact of the shearrate was published inMonthly Notices of the Royal Astronomical Society: Letters (published ver-
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sion in App. C.3.2)) and two articles about the impact of the stable stratification and the dy-namical behaviour of the Tayler-Spruit dynamowill be submitted to Astronomy & Astrophysics(submitted version in App. C.3.3)) and Physical Review Fluids, respectively.Though our work supports our magnetar formation scenario, the question of the evolu-tion of the generated magnetic fields from several seconds to their observed age between
1−100kyr remains open. In collaboration with Andrei Igoshev, we thereupon implementeda snapshot of the magnetic field configuration in the dynamo-saturated state as an initialcondition of a modified version of code PARODY that models the magneto-thermal evolutionof a NS crust. While the surface magnetic dipole is weak for a classical magnetar, the non-dipolar magnetic fields are strong enough to produce magnetar bursts via crust failure andcan reproduce the light curve of some magnetars with low magnetic dipoles. We have alsoargued that the disk formed by the fallback matter can interact with the magnetic dipole tostrongly spin down the NS via a propeller regime. After modelling the NS-disk interaction, wefind that the NS reaches rotation periods of ∼ 10s after ∼ 1.7×105 yr. This collaborative work(Chap. 9) is the first to link the PNS dynamo to the observation of magnetars and led to thesubmission of an article to Nature Astronomy (submitted version in App. C.3.4)).

Limitations

In this work, we have shown that the Tayler-Spruit dynamo can producemagnetic dipolesas strong as observed in magnetars but also strong large-scale toroidal magnetic fields thatcan reach 1016 G (Chaps. 6 and 7). However, our numerical simulations also indicate that theregime of magnetar-like magnetic fields is reached for rotation periods P ≲ 6ms (Chap. 7),whereas our semi-analytical model has been more optimistic with a lower limit at P ∼ 28ms(Chap. 5). The former value is close to the constrain P ≲ 5ms that is derived from the observa-tion of supernovae remnants associated to magnetars. While this questions the relevance ofour scenario to formmagnetars born in typical supernovae, we argue that themagnetic fieldin our simulations may underestimate the strength of the magnetic field that would form ina realistic PNS.
• The Prandtl number in our simulations (Pm = 1) is small compared to that of PNSs,which is Pm ∼ 1011 (Pm ∼ 104) for a viscosity dominated by neutrinos (if the shear vis-cosity dominates) ∼ 10s after the core bounce. While the reduction of the magneticreconnection speed may hinder the development of large-scale dynamos in the high-

Pm regime (Jafari et al., 2018, Lander, 2021), numerical simulations of the magnetoro-tational instability (MRI)-driven dynamo at Pm ∈ [8,256] show that the magnetic energycontained in the largest scales increaseswith Pm. This indicates the presence of a large-scale dynamo at high-Pm (Guilet et al., 2022). Although these simulations are still farfrom the PNS regime, Guilet et al. (2022) also report the presence of a regime Pm ≳ 100consistent with a plateau. This suggests the existence of an asymptotic regime in whichthe magnetic energy becomes independent of Pm.
• The effect of stable stratification may also be reduced in the PNS due to a strong ther-mal diffusivity, which is assumed to be equal to the diffusivity associated to the electronfraction. Tomeasure this effect, we can define an effective Brunt-Väisälä frequency likein Chap. 7: Neff ≡ N

√
η/κ= N

p
Pr /Pm. For a 10 s-old PNS, Neff = 2.2×10−8 N with a neu-trino viscosity (Neff = 8×10−4 N with a shear viscosity), which indicates that the effect of
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stable stratification is strongly diminished. Although the regime of very low Neff/Ωo wasnot explored numerically, our work suggests that the magnetic field should increase.

Another limitation of our model is related to the forcing of the differential rotation. Wehave seen that imposing the angular rotation frequency on both boundaries usually leadsto a concentration of the shear near the inner sphere. An alternative forcing would be to im-plement a volumetric body force in the momentum equation, which imposes a backgroundrotation profile. This volumetric forcing was already used to study MHD instabilities and dy-namos in stellar radiative zones (e.g. Meduri et al., 2024) and may address the downsides ofour forcing. This could especially enable better control of the shear in the integration domainand the exploration of regimes with stronger differential rotation.Numerical simulations of the Tayler-Spruit dynamo were only performed in simplifiedmodels of PNS with a constant density profile, unlike the convective (Raynaud et al., 2020,2022) andMRI-driven (Reboul-Salze et al., 2022) dynamos. As a direct extension of this thesiswork, the Tayler-Spruit dynamomust be investigated with a more realistic density profile. Tothis end, two different approaches are possible: using thermodynamical profiles of a ∼ 10s-old PNS resulting from 1D CCSN simulations as background reference states, or implement-ing polytropic profiles with a polytropic index n = 1, i.e. an adiabatic index of γ= 1+1/n ∼ 2.The former approach has the advantage of involving a realistic density profile and was usedby the previous dynamo studies in PNSs (Raynaud et al., 2020, 2022, Reboul-Salze et al., 2022).The latter approach enables to increase progressively the polytropic index and so the densitystratification to study the behaviour of the dynamo. These methods are complementary asusing polytropic profiles can be a first step before implementing realistic profiles.To date, the MagIC code solves the approximated MHD equations using static referencestates. Although the anelastic approximation provides robust results for the study of convec-tion and MRI-driven dynamos, the PNS thermodynamical profiles vary on timescales shorterthan the total integrated time in our dynamo simulations. Therefore, a first improvementwould be to implement dynamical reference states in MagIC. While this would certainly influ-ence the amplification of the magnetic field, dynamical reference states are crucial to modelthe relaxation of the magnetic field from a turbulent saturated state toward a stable configu-ration. The implementation of several other physical ingredients would enable themodellingofmore realistic PNSs including for instance relativistic corrections or a (simplified) treatmentof neutrinos. Exploring more extreme parameter regimes and implementing finer PNS mod-els imply heavier numerical simulations. Porting MagIC on Graphic Processing Units (GPUs)could improve significantly the code efficiency. However, the porting requires a lot of devel-opment and the adapted version of MagIC for GPUs is not ready yet.

Comparison to other scenarios

Let us unfocus from the dynamo mechanisms to the magnetar formation scenarios. Thescenarios involving a fossil field or a convective/MRI-driven dynamo in a fast-rotating PNSduring the supernova explosion were quickly invoked to explain the population of magne-tars (Duncan & Thompson, 1992, Akiyama et al., 2003, Ferrario & Wickramasinghe, 2006).Among the formation scenarios, our fallback scenario is therefore very new. With respect tothe observational constraint of the initial rotation period of the PNS, it remains more chal-lenging for the dynamo scenarios, including our fallback scenario, to explain the formation
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of magnetars in typical supernovae compared to the fossil field scenario. However, this sce-nario remains poorly constrained and further investigations on themagnetic field ofmassivestar cores are sorely needed.The different scenarios may also be complementary in the sense that each of them couldform a more or less large fraction of the magnetar population. This position is supportedby our collaborative work linking Tayler-Spruit dynamo in a PNS to magnetars. Indeed, thisstudy shows that the Tayler-Spruit dynamo is a good candidate to explain the formation ofmagnetars with low-magnetic dipoles. By extension, this result suggests that each scenariocould leave distinct signatures on magnetic field configurations, enabling the identificationof different magnetic field amplification processes through the analysis of magneto-thermalproperties in young isolated NSs.The future investigations aiming at identifying these signatures should proceed in twosteps: (i) identifying the stable configuration of themagnetic field once relaxed fromadynamo-saturated state in realistic PNS thermodynamical profiles, (ii) implementing this configurationas an initial condition of the numerical simulations modelling the magnetic field evolution ina cold NS structure. These investigations would extend our first work in which the relaxationphase is missing and could be applied to the other dynamo mechanisms. A direct applica-tion to the fossil field scenario would be difficult since the magnetic field configuration in theprogenitor iron core remains unknown. Future asteroseismic observations and numericalmodelling of the late stages of massive stars should significantly contribute to the study ofthe fossil field scenario.

Observational perspectives

The identification of dynamo/fossil-field signatures in the observation ofmagnetars bringsus to reflect upon the future of magnetar observations and the implications for my thesiswork. The recent and future observatories that will inform us about the geometry of magne-tar magnetic fields are X-ray spatial telescopes with a polarimeter aboard. The most recentof these telescopes is the Imaging X-ray Polarimetry Explorer (IXPE), which was launched atthe end of 2021. IXPE measures the polarisation of X-ray photons emitted by an astrophysi-cal object, i.e. the oscillation of the electric field in electromagnetic waves. Due to the strongsurface magnetic fields, the X-ray light from magnetars is expected to be strongly polarised,i.e. most of the detected photons have the same polarisation. IXPE observed four magne-tars (see the review Taverna & Turolla, 2024) and confirmed that fractions up to ∼ 80% ofthe light is polarised (Zane et al., 2023). The observation of a variation in this fraction for themagnetar 1E 2259+586 was interpreted as the result of a magnetic field loop at the NS sur-face (Heyl et al., 2024), which is consistent with the interpretation of X-ray absorption linesin the emission of two magnetars (Tiengo et al., 2013, Rodríguez Castillo et al., 2016) andour work with Andrei Igoshev (Chap. 9). A similar telescope, the X-ray Polarimeter Satellite(XPoSat) was launched at the beginning of 2024, but no study of magnetar emissions withXPoSat has been published yet. Other X-ray observatories are expected to be launched dur-ing the next decade such as HEX-P, eXPE, and ATHENA (which does not have a polarimeter).Futuremissionsmore focused on γ-ray bursts (GRBs) will also provide crucial informationabout magnetars but as a central engine of these events. The Space-based multi-band astro-nomical Variable Objects Monitor (SVOM) mission will be (or was) launched in June 2024 andwill help characterise the events related to millisecond magnetars forming in either binary
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NS mergers or hypernovae very soon. This fosters the study of the Tayler-Spruit dynamo inthis context. Thework donewith Alexis Reboul-Salze (App. C.3.5) is the first step to evaluatingthe relevance of studying the Tayler-Spruit dynamo in the context of binary NS mergers. Fu-ture numerical simulation of either the dynamo or the whole merger process should clarifythe importance of the Tayler-Spruit dynamo in this event. Likewise, the Tayler-Spruit dynamocould provide the necessary energy injection in the case of hypernovae leading to a long GRB.The study of the impact of stable stratification (Chap. 7) showed that themagnetic dipole andthe axisymmetric toroidal magnetic fields can reach ∼ 3×1015 G and ∼ 1016 G for a rotationperiod of∼ 1ms. This could be enough to produce a GRB if themagnetar-fallback disk systemis in a propeller regime (Metzger et al., 2018).The Tayler-Spruit dynamomay also influence the gravitational wave (GW) signal from theclassical/extreme explosion. Raynaud et al. (2022) find that the strong axisymmetric toroidalmagnetic field is accompanied by the growth of the GW amplitude in the low-frequencies (∼
10Hz). Therefore, the dominant axisymmetric toroidal mode generated by the Tayler-Spruitdynamo could also influence the frequency of the GW signal. If the turbulentmagnetic field isstrong enough to deform the PNS surface and trigger the emission of GW, this low-frequencyGW could be detected by future GW detectors such as the Einstein Telescope and CosmicExplorer for explosions close to the Earth (∼ 10kpc). The signal from the convective and theTayler-Spruit dynamo could produce similar signatures. However, the time arrival of the GWsignal compared to that of the first detected neutrinos would differentiate them since thefallback accretion and so the Tayler-Spruit dynamo occurs after the PNS convection (∼ 10safter the core bounce).Since the fallback accretion emits neutrinos (Janka, 2004, Fryer, 2009, Bollig et al., 2021),the accretion phase could be constrained by the detection of a signature in the neutrinosignal. Recent numerical simulations show that higher mass accretion rates produce higherneutrino luminosities and higher neutrinomean energies (Akaho et al., 2024). The associatedevent rates for the detectors Super-K and DUNE are around 10−100s−1, which is significantlylarger than for a cooling PNSwithout accretion. Therefore, an increase of neutrino luminositycould be observed when the fallback starts ∼ 10s after the core bounce. Akaho et al. (2024)also suggest that the detection of high-energy neutrinos (≳ 30MeV) may be the evidencefor fallback accretion. Current and future modelling of the neutrino emission by the fallbackshould help constrain the fallback accretion rate in future detections of supernova neutrinos.Thus, neutrinos may also provide observational constraints for our scenario.

Extension of the scenario

While this thesis is focused on the PNS stage and also addresses the long-term evolutionof the NS, our work could be extended to the study of the magnetic fields in the progenitorstars. As mentioned in Sect. 3.3, asteroseismic measurements of the rotation profile in redgiants revealed that the core rotates much more slowly than predicted by stellar evolutionmodels (e.g. Mosser et al., 2012, Deheuvels et al., 2015, Gehan et al., 2018). By extrapolation,the core of massive stars (M > 8M⊙) is also expected to spin down, leading to slow-rotatingcompact remnants. The knowledge of the rotation rate of the core is crucial to predicting theproperties of the resulting compact remnant and understanding the diversity of supernovaexplosions. Recent studies (e.g. Griffiths et al., 2022, Fuller & Lu, 2022) provide predictions ofthe compact object spin by using 1D stellar evolution codes which take into account the AM
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transport due to magnetic fields generated by the Tayler-Spruit or MRI-driven dynamo. Be-sides, these studies show thatmagnetic field-driven AM transport is important inmost of theevolution phases of massive stars. The main limitation of these studies is that they rely onthe derived analytical prescriptions for the Tayler-Spruit dynamo (and MRI). The scaling lawsmeasured in our simulations (Chap. 7) could be implemented in the evolution codes to runfuture evolution models. Another approach would consist in performing 3D numerical simu-lations of the Tayler-Spruit dynamowith realistic thermodynamical profiles of radiative zonesextracted from the evolution models at different evolution stages. This approach would pro-vide more robust measures of the angular momentum transport during the massive starevolution. Moreover, a better inclusion of the effect of the magnetic fields would providemore realistic progenitors for 3D core-collapse supernova simulations.Following the evolution of the progenitor until its explosion, a remaining disregardedaspect in the work of the thesis is the fallback accretion. We have relied on the results of 3Dcore-collapse supernova simulations (Chan et al., 2020, Stockinger et al., 2020, Janka et al.,2022, Coleman & Burrows, 2022). A systematic study of the fallback in these simulations fora wide range of progenitor masses would constrain the properties of the progenitors thatwill form amagnetar through our fallback scenario. These results would be compared to theobservations of a few magnetars associated with a stellar cluster or a bubble nebula fromwhich a progenitor mass has been inferred (Gaensler et al., 2005, Muno et al., 2006, Bibbyet al., 2008, Clark et al., 2008, Davies et al., 2009).
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This appendix gathers my notes of the calculations I have done to derive the propertiesof the Tayler instability. The calculations turned out to be very complex and took sometime to be checked several times.

A.1 . Summary of Ma & Fuller 2019 calculation

A.1.1 . Hypotheses
The calculation of linear Tayler modes from Ma & Fuller (2019) is similar to Zahn et al.(2007) but in spherical geometry, so valid for all values of colatitudes θ. All perturbations δQread

δQ ∝ exp
{
i (kr r + lθ+mφ−ωt )

}
, (A.1)

with short radial length scales (kr r ≫ l ,m) due to strong stratification. They also make anincompressible approximation and ignore the baroclinic terms because large κ at lTI. Finally,the Tayler instability develops on an azimuthal background field of the form
B0 = B0 sinθeφ . (A.2)
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A.1.2 . Fluid equations
Energy equation

Due to large κ, the energy equation reduces to
−g

δρ

ρ
=−

(
N 2

t

(
1+ iκk2

r

ω

)
+N 2

µ

)
ξr , (A.3)

where g , ρ, Nt , Nν are the gravitational constant, the density, the thermal and chemical com-position components of the Brunt-Väisälä frequency, respectively. ξr is the radial componentof the displacement vector ξ.
Perturbed induction equation

The perturbed induction equation in the MHD limit reads
−ω∆B =∇× (−iωξ×B0)−ηk2

r∆B . (A.4)
Assuming the incompressible character∇ ·ξ= 0 and a strong stratification, i.e. negligible ξrterms, the perturbed magnetic field reads

δB ∼
(
1+ iηk2

r

ω

)−1
i mB0

r
ξ . (A.5)

Continuity equation

In the incompressible case, the continuity equation reads
krξr + l

r
ξθ+

m

r sinθ
ξφ = 0. (A.6)

Lorentz force

Now, one can express the Lorentz force defined by
L = 1

4πρ
[(∇×δB)×B0 + (∇×B0)×δB] . (A.7)

After a few pages of calculations, it reads

Lr =
(
1+ iηk2

r

ω

)−1

mω2
A

(
kr r sinθξφ− i sinθξφ−mξr

)
, (A.8)

Lθ =
(
1+ iηk2

r

ω

)−1

mω2
A

(
l sinθξφ−mξθ−2i cosθξφ

)
, (A.9)

Lφ =
(
1+ iηk2

r

ω

)−1

mω2
A

(
2i cosθξθ+ i sinθξφ

)
. (A.10)
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Perturbed motion equation

The perturbed equation of motion defined by
∇δP

ρ
−ω2ξ+ g

δρ

ρ
−2iωΩez ×ξ−L = 0 (A.11)

now reads
i kr

δP

ρ
+
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−ω2 +mω2
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)−1

+N 2
t
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+N 2
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ξr
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r
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+ i mω2
A

(
1+ iηk2

r

ω

)−1

+2iωΩsinθ
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(A.12)
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+
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(A.13)
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r sinθ
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(
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(A.14)

A.1.3 . Dispersion relation
Here are some definitions:

ξ0 ≡ δP

ρ
+ i r sinθmω2

A

(
1+ iηk2

r

ω

)−1

, (A.15)
A ≡−ω2 +m2ω2

A

(
1+ iηk2

r

ω

)−1

, (A.16)
B ≡ 2i cosθmω2

A

(
1+ iηk2

r

ω

)−1

+2i cosθωΩ , (A.17)
C ≡ i sinθmω2

A

(
1+ iηk2

r

ω

)−1

+2i sinθωΩ , (A.18)
D ≡ N 2

t

(
1+ iκk2

r

ω

)−1

+N 2
µ . (A.19)

The dispersion relation therefore reads[(
l

r

)2

+
( m

r sinθ

)2
]

A(A+D)+k2
r (A2 +B 2)−kr

l

r
BC = 0. (A.20)
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With D ≫ A and kr r ≫ l , it now reads
A2 +B 2 +

(
l

kr r

)2

D = A2 +B 2 + AD̄ = 0. (A.21)
Let us use the following dimensionless quantities:

ω̄=ω/ωA , (A.22)
Ω̄=Ω/ωA , (A.23)
k = κkr /ωA , (A.24)
h = ηkr /ωA , (A.25)

At = l 2N 2
t /(kr rωA)2 , (A.26)

Aµ = l 2N 2
µ/(kr rωA)2 . (A.27)

The final form of the dispersion relation is this hideous thing:
{ ω̄6 − [4Ω̄2 cos2θ+ At + Aµ+2m2 +2hk +h2]ω̄4

− [8mΩ̄]ω̄3

+ [m2(At + Aµ)+m2 −4m2 cos2θ+2hk(4Ω̄2 cos2θ+ Aµ+m2)+h2(4Ω̄2 cos2θ+ At + Aµ)]ω̄2

+ [8mhkΩ̄cos2θ]ω̄

−hkm2Aµ }

+i { [2h +k]ω̄5

− [k(4Ω̄2 cos2θ+ Aµ+2m2)+2h(4Ω̄2 cos2θ+ At + Aµ+m2)+h2k]ω̄4

− [8m(k +h)Ω̄cos2θ]ω̄2

+ [k(m2 Aµ+m2 −4m2 cos2θ)+hm2(At + Aµ) = h2k(4Ω̄2 cos2θ+ Aµ)]ω̄ }

= 0.
(A.28)

A.2 . Generalisation for a general B0(θ)

A.2.1 . Hypotheses
We use the same hypotheses as Ma & Fuller (2019) but now we assume a more generalbackground magnetic field B0 = B0 f (θ)eφ.

A.2.2 . Fluid equations
Induction equation

The energy equation does not change but the induction equation does:(
1+ iηk2

r

ω

)
δB =∇× (

ξ×B0 f (θ)eφ
)

=∇× (
B0 f (θ)ξθer −B0 f (θ)ξr eθ

)
= i m

r sinθ
B0 f (θ)ξ−

(
B0 f (θ)ξr

r
+ B0 f ′(θ)ξθ

r

)
eφ .

(A.29)

This expression is more complicated than in Ma & Fuller (2019), where the two last terms areignored.



A.2. GENERALISATION FOR A GENERAL B0(θ) 203
Lorentz force

We recall the expression of the Lorentz force
L = 1

4πρ
[(∇×δB)×B0 + (∇×B0)×δB] . (A.30)

Since the calculation is complex, let us go step by step:
∇×δB =

(
1+ iηk2

r

ω

)−1

×
{

i m∇×
(

B0 f (θ)

r sinθ
ξ

)
−∇×

(
B0 f (θ)ξr

r
eφ

)
−∇×

(
B0 f ′(θ)ξθ

r
eφ

)} (A.31)

(i)

i m∇×
(

B0 f (θ)

r sinθ
ξ

)
= B0

[(
i m

r 2 sinθ
f ′(θ)− ml

r 2 sinθ
f (θ)

)
ξφ+ m2

r 2 sin2θ
f (θ)ξθ

]
er

+B0

[
− m2

r 2 sin2θ
f (θ)ξr + mkr

r sinθ
f (θ)ξφ

]
eθ

+B0

[(
− i m

r 2 sinθ
f ′(θ)+ ml

r 2 sinθ
f (θ)+ i m cotθ

r 2
f (θ)

)
ξr − mkr

r sinθ
f (θ)ξθ

]
eφ ,

(A.32)

(ii)

−∇×
(

B0 f (θ)ξr

r
eφ

)
=−B0

[
i l

r 2
f ′(θ)+ 1

r 2
f ′′(θ)+ cotθ

r 2
f ′(θ)

]
ξθer

+B0
i kr

r
f ′(θ)ξθeθ ,

(A.33)

(iii)

−∇×
(

B0 f ′(θ)ξθ
r

eφ

)
=−B0

[
i l

r 2
f (θ)+ cotθ

r 2
f (θ)+ 1

r 2
f ′(θ)

]
ξr er +B0

i kr

r
f (θ)ξr eθ . (A.34)

Therefore,
∇×δB =

(
1+ iηk2

r

ω

)−1

B0

×
{[

−
(

i l

r 2
f (θ)+ cotθ

r 2
f (θ)+ 1

r 2
f ′(θ)

)
ξr

−
(

i l

r 2
f ′(θ)+ 1

r 2
f ′′(θ)+ cotθ

r 2
f ′(θ)− m2

r 2 sin2θ
f (θ)

)
ξθ

+
(

i m

r 2 sinθ
f ′(θ)− ml

r 2 sinθ
f (θ)

)
ξφ

]
er

+
[(

i kr

r
f (θ)− m2

r 2 sin2θ
f (θ)

)
ξr + i kr

r
f ′(θ)ξθ+

mkr

r sinθ
f (θ)ξφ

]
eθ

+
[(
− i m

r 2 sinθ
f ′(θ)+ ml

r 2 sinθ
f (θ)+ i m cotθ

r 2
f (θ)

)
ξr − mkr

r sinθ
f (θ)ξθ

]
eφ

}
.

(A.35)
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The first term of the Lorentz force is then
(∇×δB)×B0 =

(
1+ iηk2

r

ω

)−1

B 2
0

×
{[(

i kr

r
f (θ)2 − m2

r 2 sin2θ
f (θ)2

)
ξr + i kr

r
f ′(θ) f (θ)ξθ+

mkr

r sinθ
f (θ)2ξφ

]
er

+
[(

i l

r 2
f (θ)2 + cotθ

r 2
f (θ)2 + 1

r 2
f ′(θ) f (θ)

)
ξr

+
(

i l

r 2
f ′(θ) f (θ)+ 1

r 2
f ′′(θ) f (θ)+ cotθ

r 2
f ′(θ) f (θ)− m2

r 2 sin2θ
f (θ)2

)
ξθ

−
(

i m

r 2 sinθ
f ′(θ) f (θ)− ml

r 2 sinθ
f (θ)2

)
ξφ

]
eθ

}
.

(A.36)

Let us calculate the second term (step by step):
∇×B0 = B0

{
1

r sinθ
( f (θ)sinθ)′er − 1

r
f (θ)eθ

}
, (A.37)

and so
(∇×B0)×δB =

(
1+ iηk2

r

ω

)−1

B 2
0

×
{[

1

r 2
f (θ)2ξr + 1

r 2
f ′(θ) f (θ)ξθ−

i m

r 2 sinθ
f (θ)2ξφ

]
er

+
[

1

r 2 sinθ
( f (θ)sinθ)′ f (θ)ξr + 1

r 2 sinθ
( f (θ)sinθ)′ f ′(θ)ξθ−

i m

r 2 sin2θ
( f (θ)sinθ)′ f (θ)ξφ

]
eθ

+
[

i m

r 2 sinθ
f (θ)2ξr + i m

r 2 sin2θ
( f (θ)sinθ)′ f (θ)ξθ

]
eφ

}
.

(A.38)
The Lorentz force now reads1

Lr =
(
1+ iηk2

r

ω

)−1

ω2
A

{(
− m2

sin2θ
f (θ)2 + (1+ i kr r ) f (θ)2

)
ξr

+ (1+ i kr r ) f ′(θ) f (θ)ξθ

+
(

mkr r

sinθ
f (θ)2 − i m

sinθ
f (θ)2

)
ξφ

}
,

(A.39)

Lθ =
(
1+ iηk2

r

ω

)−1

ω2
A

{(
i l f (θ)2 +cotθ f (θ)2 + f ′(θ) f (θ)+ 1

sinθ
( f (θ)sinθ)′ f (θ)

)
ξr

+
(
i l f ′(θ) f (θ)+ f ′′(θ) f (θ)+cotθ f ′(θ) f (θ)+ 1

sinθ
( f (θ)sinθ)′ f ′(θ)− m2

sin2θ
f (θ)2

)
ξθ

+
(
− i m

sinθ
f ′(θ) f (θ)+ ml

sinθ
f (θ)2 − i m

sin2θ
( f (θ)sinθ)′ f (θ)

)
ξφ

}
,

(A.40)

1Colors represent terms which are not in the derivation of Ma & Fuller (2019): red, blue, and green for theadditional terms multiplied by ξr , ξθ , and ξφ, respectively.
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Lφ = i m

sinθ
f (θ)2ξr + i m

sin2θ
( f (θ)sinθ)′ f (θ)ξθ . (A.41)

We can now derive the equation of motion
∇δP

ρ
−ω2ξ+ g

δρ

ρ
−2iωΩez ×ξ−L = 0, (A.42)

i kr
δP

ρ
+

[
−ω2 +N 2

t

(
1+ iκk2

r

ω

)−1

+N 2
µ+

(
1+ iηk2

r

ω

)−1

ω2
A

(
m2

sin2θ
f (θ)2 − (1+ i kr r ) f (θ)2

)]
ξr

−
(
1+ iηk2

r

ω

)−1

ω2
A(1+ i kr r ) f ′(θ) f (θ)ξθ

+
[(

1+ iηk2
r

ω

)−1

ω2
A

(
i m

sinθ
f (θ)2 − mkr r

sinθ
f (θ)2

)
+2iωΩsinθ

]
ξφ

= 0,
(A.43)

i l

r

δP

ρ
−

(
1+ iηk2

r

ω

)−1

ω2
A

[
i l f (θ)2 +cotθ f (θ)2 + f ′(θ) f (θ)+ ( f (θ)sinθ)′ f (θ)

sinθ

]
ξr

−
[
ω2 +

(
1+ iηk2

r

ω

)−1

ω2
A

(
i l f (θ)( f ′(θ)+ f ′′(θ)+cotθ f ′(θ))+ ( f (θ)sinθ)′ f ′(θ)

sinθ
− m2

sin2θ
f (θ)2

)]
ξθ

+
[(

1+ iηk2
r

ω

)−1

ω2
A

(
i m

sinθ
f ′(θ) f (θ)− ml

sinθ
f (θ)2 + i m

sin2θ
( f (θ)sinθ)′ f (θ)

)
+2iωΩcosθ

]
ξφ

= 0,
(A.44)

i m

r sinθ

δP

ρ
−

[(
1+ iηk2

r

ω

)−1

ω2
A

i m

sinθ
f (θ)2 +2iωΩsinθ

]
ξr

−
[(

1+ iηk2
r

ω

)−1

ω2
A

i m

sin2θ
( f (θ)sinθ)′ f (θ)+2iωΩsinθ

]
ξθ

−ω2ξφ

= 0.

(A.45)

As in Ma & Fuller (2019), we can define the similar terms
ξ0 ≡ δP

ρ
+ i mrω2

A

(
1+ iηk2

r

ω

)−1
f (θ)2

sinθ
, (A.46)

A ≡−ω2 +m2ω2
A

(
1+ iηk2

r

ω

)−1
f (θ)2

sin2θ
, (A.47)
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B ≡ i mω2
A

(
1+ iηk2

r

ω

)−1
( f (θ)sinθ)′ f (θ)

sin2θ
+2iωΩcosθ , (A.48)

C ≡ i mω2
A

(
1+ iηk2

r

ω

)−1
f (θ)2

sinθ
+2iωΩsinθ , (A.49)

D ≡ N 2
t

(
1+ iκk2

r

ω

)−1

+N 2
µ . (A.50)

But we need to define more terms because of the more complex induction equation:
E ≡ (1+kr r )ω2

A

(
1+ iηk2

r

ω

)−1

f (θ)2 , (A.51)

F ≡ω2
A

(
1+ iηk2

r

ω

)−1 (
i l f (θ)2 +cotθ f (θ)2 + f ′(θ) f (θ)+ ( f (θ)sinθ)′ f (θ)

sinθ

)
, (A.52)

G ≡ (1+kr r )ω2
A

(
1+ iηk2

r

ω

)−1

f ′(θ) f (θ) , (A.53)
H ≡ω2

A

(
1+ iηk2

r

ω

)−1 (
i l f ′(θ) f (θ)+cotθ f ′(θ) f (θ)+ f ′′(θ) f (θ)+ ( f (θ)sinθ)′ f ′(θ)

sinθ

)
, (A.54)

I ≡ i mω2
A

(
1+ iηk2

r

ω

)−1
f ′(θ) f (θ)

sinθ
. (A.55)

We can use these terms to express the continuity and motion equations
krξr + l

r
ξθ+

m

r sinθ
ξφ = 0, (A.56)

i l

r
ξ0 −Fξr + (A−H)ξθ+ (B + I )ξφ = 0, (A.57)

i m

r sinθ
ξ0 −Cξr −Bξθ+ Aξφ = 0, (A.58)

i krξ0 + (A+D −E)ξr −Gξθ+Cξφ = 0. (A.59)
A.2.3 . Dispersion relation

The dispersion relation is given by the determinant of the linear equations, i.e.∣∣∣∣∣∣∣∣∣
0 kr

l
r

m
r sinθ

i l
r −F A−H B + I

i m
r sinθ −C −B A
i kr A+D −E −G C

∣∣∣∣∣∣∣∣∣
= kr

[
i l

r
(BC − AG)+ (A−H)

(
i m

r sinθ
C − i kr A

)
+ (B + I )

(
i m

r sinθ
G − i kr B

)]
+ l

r

[
− i l

r

(
C 2 + A(A+D −E)

)+F

(
i m

r sinθ
C − i kr A

)
+ (B + I )

(
i m

r sinθ
(A+D −E)+ i kr C

)]
− m

r sinθ

[
i l

r
(CG +B(A+D −E))+F

(
− i m

r sinθ
G + i kr B

)
+ (A−H)

(
i m

r sinθ
(A+D −E)+ i kr C

)]
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= 0 (A.60)

Since this dispersion relation makes me cry, we will use the same approximation as in Ma &Fuller (2019):

δB ∼ i m

r sinθ
B0 f (θ)ξ , (A.61)

which is equivalent to assume E = F =G = H = I = 0. We therefore have to deal with the samesimplified dispersion relation
A2 +B 2 + AD̄ = 0, (A.62)

and we can use the same dimensionless variables (which are also those used in Zahn et al.(2007)). Once again, let us go step by step. We first divide by ω4
A:

A2 ∝ ω̄4 +m4
(
1+ i h

ω̄

)−2 (
f (θ)

sinθ

)4

−2ω̄2m2
(
1+ i h

ω̄

)−1 (
f (θ)

sinθ

)2

, (A.63)
B 2 ∝−m2

(
1+ i h

ω̄

)−2 [
( f (θ)sinθ)′ f (θ)

sin2θ

]2

−4ω̄2Ω̄2 cos2θ−4mω̄Ω̄cosθ

(
1+ i h

ω̄

)−1 ( f (θ)sinθ)′ f (θ)

sin2θ
,

(A.64)
AD̄ ∝−ω̄2 At

(
1+ i k

ω̄

)−1

− ω̄2 Aµ+m2 At

(
1+ i h

ω̄

)−1 (
1+ i k

ω̄

)−1 (
f (θ)

sinθ

)2

+m2 Aµ

(
1+ i h

ω̄

)−1 (
f (θ)

sinθ

)2

.

(A.65)

Now, we multiply by (
1+ i h

ω̄

)2 (
1+ i k

ω̄

):

A2 ∝ω̄4
(
1+ i h

ω̄

)2 (
1+ i k

ω̄

)
+m4

(
1+ i k

ω̄

)(
f (θ)

sinθ

)4

−2ω̄2m2
(
1+ i h

ω̄

)(
1+ i k

ω̄

)(
f (θ)

sinθ

)2

, (A.66)
B 2 ∝−m2

(
1+ i k

ω̄

)[
( f (θ)sinθ)′ f (θ)

sin2θ

]2

−4ω̄2Ω̄2 cos2θ

(
1+ i h

ω̄

)2 (
1+ i k

ω̄

)
(A.67)

−4mω̄Ω̄cosθ

(
1+ i h

ω̄

)(
1+ i k

ω̄

)
( f (θ)sinθ)′ f (θ)

sin2θ
, (A.68)

AD̄ ∝− ω̄2 At

(
1+ i h

ω̄

)2

− ω̄2 Aµ+m2 At

(
1+ i h

ω̄

)(
f (θ)

sinθ

)2 (A.69)
+m2 Aµ

(
1+ i h

ω̄

)(
1+ i k

ω̄

)(
f (θ)

sinθ

)2

. (A.70)
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Then, we multiply by ω̄2:
A2 ∝(ω̄2 + i hω̄)2(ω̄2 + i kω̄)+m4(ω̄2 + i kω̄)

(
f (θ)

sinθ

)4

−2m2(ω̄2 + i hω̄)(ω̄2 + i kω̄)

(
f (θ)

sinθ

)2

∝ω̄6 + (i k +2i h)ω̄5 −
(
h2 +2hk +2m2

(
f (θ)

sinθ

)2)
ω̄4 −

(
i kh2 +2i m2(h +k)

(
f (θ)

sinθ

)2)
ω̄3

+
(
m4

(
f (θ)

sinθ

)4

+2m2hk

(
f (θ)

sinθ

)2)
ω̄2 + i m4k

(
f (θ)

sinθ

)2

ω̄ ,

B 2 ∝−m2(ω̄2 + i kω̄)

[
( f (θ)sinθ)′ f (θ)

sin2θ

]2

−4Ω̄2 cos2θ(ω̄+ i h)2(ω̄2 + i kω̄)

−4mΩ̄cosθ(ω̄+ i h)(ω̄2 + i kω̄)
( f (θ)sinθ)′ f (θ)

sin2θ
,

∝4Ω̄cosθω̄4 +
(
8i hΩ̄2 cos2θ+4i kΩ̄2 cos2θ−4mΩ̄cosθ

( f (θ)sinθ)′ f (θ)

sin2θ

)
ω̄3

−
(

m2
(

( f (θ)sinθ)′ f (θ)

sin2θ

)2

+8hkΩ̄2 cos2θ+4h2Ω̄2 cos2θ+4i mΩ̄cosθ(h +k)
( f (θ)sinθ)′ f (θ)

sin2θ

)
ω̄2

−
(
−m2i k

(
( f (θ)sinθ)′ f (θ)

sin2θ

)2

+4i h2kΩ̄2 cos2θ+4mhkΩ̄cosθ
( f (θ)sinθ)′ f (θ)

sin2θ

)
ω̄ ,

AD̄ ∝− At (ω̄2 + i hω̄)2 − Aµ(ω̄+ i h)2(ω̄2 + i hω̄)+m2 At (ω̄2 + i hω̄)

(
f (θ)

sinθ

)2

+m2 Aµ(ω̄+ i h)(ω̄+ i k)

(
f (θ)

sinθ

)2

∝− (At + Aµ)ω̄4 − (
2i h At + i Aµ(2h +k)

)
ω̄3 +

(
h2 At +2hk Aµ+h2 Aµ+m2(At + Aµ)

(
f (θ)

sinθ

)2)
ω̄2

+
(
i h2k Aµ+ i m2h At

(
f (θ)

sinθ

)2

+ i m2(h +k)Aµ

(
f (θ)

sinθ

)2)
ω̄−m2hk Aµ

(
f (θ)

sinθ

)2

.

Finally, we have the final expression of this foul and demonic dispersion relation:{
ω̄6 − [

2m2F (θ)+h2 +2hk + At + Aµ+4Ω̄2 cos2θ
]
ω̄4

− [4mΩ̄cosθG(θ)ω̄]3

+ [
m4F (θ)2 +m2(At + Aµ)F (θ)−m2G(θ)2

+2hk
(
m2F (θ)+ Aµ+4Ω̄2 cos2θ

)+h2 (
At + Aµ+4Ω̄2 cos2θ

)]
ω̄2

+4mhkΩ̄cosθG(θ)ω̄

−m2hk AµF (θ)2}
+ i

{
[2h +k]ω̄5 − [

k
(
2m2F (θ)+4Ω̄2 cos2θ+ Aµ

)+2h
(
m2F (θ)+4Ω̄2 cos2θ+ At + Aµ

)+h2k
]
ω̄3

−4m(h +k)Ω̄cosθG(θ)ω̄2

+ [
k

(
m4F (θ)2 −m2G(θ)2 +m2 AµF (θ)

)
+m2h(At + Aµ)F (θ)+h2k(4Ω̄2 cos2θ+ Aµ)

]
ω̄

}
= 0,

(A.71)
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with the functions

F (θ) ≡
(

f (θ)

sinθ

)2

, (A.72)
G(θ) ≡

(
( f (θ)sinθ)′ f (θ)

sin2θ

)
, (A.73)

which are defined for the sake of clarity. The equation is very similar to what Ma & Fuller(2019) obtained when f (θ) = sinθ but I highlighted the three terms which differ: 8mΩ̄ −→
8mΩ̄cos2θ and m2 −→ m4 (two terms). After checking their calculation, it seems these differ-ences may be typos in their article. Since this dispersion relation is already very complex, Iwill calculate the relation with the other terms of the induction equation in a more or lessdistant future, if necessary.

A.2.4 . Unstable modes
This complex expression can be rewritten after some algebra[

ω(ω+ iηk2
r )−m2ω2

AF (θ)
]×[

ω− m2ωA

ω+ iηk2
r

F (θ)−
(

l

kr r

)2 Nt

ω+ iκk2
r
−

(
l

kr r

)2 Nµ

ω

]
− [

mω2
AG(θ)+2Ωcosθ(ω+ iηk2

r )
]×[

mω2
A

ω+ iηk2
r

G(θ)+2Ωcosθ

]
= 0.

(A.74)

Since we expect the the growth rate of the Tayler instability forΩ≫ωA to be ω2
A/Ω, we definethe quantities

ω≡αω
2
A

Ω
, (A.75)

H ≡ ηΩ

ω2
A

, (A.76)
K ≡ κΩ

ω2
A

, (A.77)
n2 ≡

(
l

kr r

)2 N 2
µ

ω2
A

. (A.78)
In the limit of κ→∞, the dispersion relation simplifies into

m2 [
m2αF (θ)+n2(α+ i Hk2

r )
]−α[

2(α+ i Hk2
r )cosθ+mG(θ)

]2 = 0. (A.79)
We set α purely real, so we can seperate Eq. (A.79) into the real and imaginary parts, respec-tively:

m2(m2F (θ)+n2)− (2αcosθ+mG(θ))2 +4H 2k4
r cos2θ = 0, (A.80)

m2n2 −4(2αcosθ+mG(θ))cosθα . (A.81)
We solve the imaginary part (Eq. (A.81))

α= mF (θ)

4cosθ

−1±
√

1+ 2n2

G(θ)2

 , (A.82)
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and substitute the expression in the real part (Eq. (A.80))

2m4F (θ)−m2G(θ)2

1±
√

1+ 2n2

G(θ)2

+m2n2 +8cos2θH 2k4
r = 0. (A.83)

To have a real solution, the following relation must be satisfied

2m4F (θ)+m2n2 < m2G(θ)2

1±
√

1+ 2n2

G(θ)2

 (A.84)
which can be rewritten

2m2

G(θ)
F (θ) <− t 4

2
+1±

√
1+ t 2

2
. (A.85)

The right-hand side is maximum when t → 0, thus
m2 F (θ)

G(θ)2
< 1. (A.86)

We can easily see that for a toroidal magnetic field generated by the shear of a magneticdipole, i.e. f (θ) = cosθ sinθ, we find that |m| = 1 is the only unstable mode, which developsnear the poles θ ∈ [0,π/5]∪ [4π/5,π].
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This appendix presents numerical simulations of the Tayler instability in solid body rotation.We compared the numerical results with the analytical model’s predictions (Sects. B.2.1and B.2.2). This comparison is particularly motivated by the fact that the predictions of Ma &Fuller (2019) regarding nonlinear saturation are based solely on physical arguments requir-ing validation through numerical simulations. Finally, in subsequent numerical simulations,we look at the clarge-scale radial magnetic field generated by the instability (Sect. B.2.3). Wereport the existence of an electromotive forcewhich generates a strong large-scale (l = 3,m =
0)–poloidal magnetic field in most of the runs. Despite the need for a finer analysis, this firstnumerical investigation is worth describing in this manuscript as it provides interesting newpreliminary results and connects our analytical model (Chap 5) to the numerical simulationsof the Tayler-Spruit dynamo (Chaps 6–8).

B.1 . Initial conditions

For the detailed description of the numerical methods, see the introductive chapter 4. Inall runs the fluid is in solid body rotation, i.e. we imposeΩo =Ωi . While the realistic magneticPrandtl number in PNSs ranges between Pm ∼ 104 −1011 depending on whether the PNS isstill optically thick to neutrinos (Barrère et al., 2023), we choose Pm = 1 in the following simu-lations as the astrophysical asymptotic regime is not reachable with the current computingpower. We also choose Pr = 10−3, which is close to the astrophysical regime.
The explored parameter space is (B0, Bcrit, η), with B0 the intial average magnetic field
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Figure B.1 — Location of the runs showing a Tayler stable (squares) and Tayler unstable (stars) fluidin the parameter space (B0, Bcrit, η).
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is the theoretical critical toroidal magnetic strength above which the fluid becomes Taylerunstable, with the effective Brunt-Väisälä frequency Neff ≡ N

√
η/κ = 316s−1. As Neff is keptconstant, varying Bcrit is equivalent to changing the PNS angular velocityΩo . In practice, this isequivalent to varying the dimensionless parameters λ is the dimensionless initial amplitudeof the magneyic field, the Rayleigh number, and the Ekman number.We choose an initial magnetic field that is purely toroidal and axisymmetric with a config-uration (l = 2,m = 0) because this geometry is a product of the winding of an axial magneticdipole. The profile of the magnetic field reads
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To destabilise the fluid, we also impose an initial weak random perturbation |δv|≪ roΩo .In our simulations, we infer the values of Bφ, Br , and δB⊥ via the respective axisymmetrictoroidal, axisymmetric poloidal and non-axisymmetric components of the magnetic energy
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Figure B.2 — Time series of the non-axisymmetric poloidal (orange), axisymmetric poloidal (green),and axisymmetric toroidal (blue) components of the magnetic energy density. The black dashed lineillustrates the expected saturation level of the Tayler modes total magnetic energy (Eq. 5.22 acccord-ing to Fuller et al. (2019)).

density. Therefore, they are root mean square magnetic field strengths. Using the total ortoroidal non-axisymmetric component for δB⊥ does not significantly change the followingscaling laws we find. These strengths are measured at the saturation time of the instability,which is when the non-axisymmetric poloidal magnetic field peaks. The growth and dissipa-tion rates were measured by fitting a power law on the non-axisymmetric poloidal compo-nent in the linear phase and on the axisymmetric toroidal component during the saturationphase, i.e. after the non-axisymmetric poloidal magnetic field peaked.

B.2 . Results

B.2.1 . Linear phase
In the evolution of magnetic energy (displayed in Fig. B.2), we distinguish several phases.First, we observe a peak in the first milliseconds of the simulations. This peak is a transientphenomenon due to the initial disturbance of the velocity field. This short phase quicklymakes room for the expected exponential growth phase for the Tayler instability. Then, weobserve the exponential growth and saturation of the perturbed non-axisymmetric compo-nent. This component saturates at an intensity on the order of that predicted by Fuller et al.



214 APPENDIX B. NUMERICAL SIMULATIONS OF THE TAYLER INSTABILITY

Figure B.3 — Snapshots of the 3D magnetic field lines and meridional slices of the latitudinal mag-netic field during the growth (left) and saturated (right) stages of the Tayler instability. These plotsclearly show the kink shape of the Tayler instability along the polar axis.

(2019) (Eq. (5.22)), although slightly lower by a factor ∼ 2. Finally, we can observe the genera-tion of an axisymmetric poloidal component and the dissipation of the axisymmetric toroidalfield due to non-linear effects.
We focus on the development of the observed non-axisymmetric instability. As shown inthe left snapshot of Fig. B.3, the instability develops at the poles and is absent at the equator.The mode seems to be mostly m = 1, which is characteristic of the Tayler Instability. This isconsistent with the spectra which indicate the presence of a dominant m = 1 mode in thepoloidal energy. As expected, the dominant mode of the magnetic field is the axisymmetrictoroidal component (see Fig. B.2).
It is interesting to verify whether the predicted growth rate (Eq. (5.13)) is in agreementwith the simulations. These comparisons are grouped in Fig. B.4, and we notice that there isa subset of simulations with large B0/Bcrit in which the growth rate is larger than predicted.Since the analytical growth rate is an order ofmagnitude, one possible explanation is that theactual growth rate passes through these points and not those closer to the stability threshold.Indeed, the closer we get to this threshold, the more the validity of the predictions can bequestioned. This point remains to be further explored because there is still a factor of 10between these points and the prediction.
To conclude the analysis of linear growth, we also compared the stability criterion forthe toroidal magnetic field (Eq. (5.12)) with the stability threshold found in our simulations.For this, the values of B0 and η were fixed, and only the value of Bcrit varied by changingthe rotation frequency. An interval where this threshold is located can thus be deduced.However, we noticed later that the calculation of the parameter λ in the code showed someissues, resulting in different values of the initial magnetic fields for the same value of λ andexplaining the varying B0 in the parameter space. Still, this does not prevent measuring a
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FigureB.4—Measured growth rate of the Tayler instability as a function of the theoretical prediction.The colour map indicates the distance to the theoretical instability threshold.

mean threshold of ∼ 3.25Bcrit, which is of the same order of magnitude as the theoreticalvalue.
B.2.2 . Non-linear saturated phase

Once turbulent dissipation becomes significant, the Tayler instability saturates (right inFig B.3), and the axisymmetric toroidal component is diffused more efficiently. As the ana-lytical predictions of Fuller et al. (2019) rely on strong assumptions to simplify the non-linearproblem of turbulent diffusion, our simulations are useful to test whether these hypothe-ses are justified. In the left plot of Fig. B.5, we first compare our simulations to the ratiobetween the perturbed field generated by the Tayler instability δB⊥ and the axisymmetrictoroidal field Bφ (Eq. (5.22)). The simulations show the same relation within a factor ∼ 0.4,thus globally agreeing with this prediction.
For the relation between the two axisymmetric components Br and Bφ (Eq. (5.36)), ourmeasurements (right of Fig. B.5) show a global agreement with the theory for B0/Bcrit. Thevalues of Br /Bφ are below ωA/Neff by a factor 4−10, which remains reasonable.
Finally, the last comparison iswith the turbulent dissipation rate ofBφ predictedby Eq. (5.26)(left of Fig. B.6). We find a very significant discrepancy (about a factor of 100) from the pre-diction for simulations closest to the stability threshold. Notably, even the slope does notseem to follow that of the prediction. This discrepancy is not as pronounced in the plot onthe right, where the comparison is made with the dissipation rate where Eq. (5.22) is satis-fied. However, it is the simulations farthest from the stability threshold that no longer followFuller et al.’s prediction. An interesting point to note is that, despite these differences, ourmeasurements are closer to Spruit’s prediction than to Fuller et al.’s (grey dashed lines in



216 APPENDIX B. NUMERICAL SIMULATIONS OF THE TAYLER INSTABILITY

Figure B.5 — Left: Ratio of the perturbed magnetic field produced by the Tayler instability δB⊥ tothe azimuthal component Bφ as a function of the theoretical prediction derived by Fuller et al. (2019).Right: Same as on the left but for the rotation between both axisymmetric radial Br and azimuthal Bφmagnetic fields. The colour map indicates the distance to the theoretical instability threshold.

Fig. B.6).The results on the non-linear phase confirm Fuller et al.’s prediction on the saturation of
δB⊥, but do not align well with their other predictions. Since these predictions were madeless rigorously than those on the linear development of the instability, this discrepancy withthe simulations is less surprising. Nevertheless, a study with simulations further from thestability threshold is necessary to conclude on the validity of Fuller et al.’s predictions. Thestudy of the impact of stable stratification on the whole dynamo loop in Chap. 7 will providemore robust new results on the saturation of the dynamo.

B.2.3 . Generated radial magnetic field
Studying the structure of the axisymmetric radial magnetic field Br generated is of par-ticular interest because we don’t have any analytical predictions for it and this could informon the geometry of the toroidal field resulting from the winding. To analyse its multipolarstructure, a decomposition into latitudinal mode l has been done using the formula

Br (r,θ) =
lmax∑
l=0

gl ,0(r )P 0
l (cosθ) , (B.5)

where P 0
l is the Legendre polynomial at the order l and

gl ,0(r ) = 1

π

∫ 1

−1
Br (r,θ)P 0

l (cosθ)d cosθ . (B.6)
This diagnostic could be performed on magnetic fields that have evolved over a longenough time to begin observing a dominant mode. Table B.1 gathers the simulations inwhich this diagnostic has been carried out. The simulations form two sets: one with multi-polar Br fields l = 3 (right in Fig. B.7) and the other with mainly dipolar fields (left in Fig. B.7).
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Figure B.6—Measured turbulent dissipation of Bφ as a function of the theoretical prediction derivedby Fuller et al. (2019) (black dashed line) and Spruit (2002) (grey dashed line). The colourmap indicatesthe distance to the theoretical instability threshold.

Figure B.7 — Meridional slices of the axisymmetric radial magnetic field after the turbulent dissi-pation for two runs. The left and right slices of Br display a magnetic dipole (l = 1) and a magneticquadrupole (l = 3), respectively.
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We notice that the transition frommultipolar to dipolar fields occurs when B0/Bcrit ∼ 6. Sincedissipation of small scales is faster, it is likely that the l = 3 mode has not dissipated enoughby the end of the simulations where B0/Bcrit É 6 for the l = 1 mode to dominate. To supportthis explanation, it would be necessary to determine the dominant mode just after the endof turbulent dissipation.
B0 [1016 G] Bcrit [1016 G] η [cm2 s−1] l

1.26 2.1 4.24×109 3
1.00 2.1 4.24×109 3

1.54 2.32 6.36×109 3
1.26 2.32 6.36×109 3

2.04 1.9 8.48×109 1
1.71 1.95 8.48×109 1
1.69 2.1 8.48×109 1
1.65 2.1 8.48×109 3
1.56 2.25 8.48×109 3
1.38 2.5 8.48×109 3
1.13 2.76 8.48×109 3

Table B.1 — Predominant l -modes measured for several sets of input parameters.

B.3 . Conclusions

Although this piece of work is preliminary, we can draw some conclusions. The numericalsimulations are in global agreement with the analytical predictions about the linear growthphase of the Tayler instability. Additionally, the simulations allowed testing of the analyt-ical predictions on the non-linear phase, which remained more uncertain. The predictionof the saturation of the non-axisymmetric magnetic field is confirmed, while significant dif-ferences emerge with those concerning the saturation of the axisymmetric radial magneticfield and the turbulent dissipation of the toroidal field. Furthermore, the analysis of the radialmagnetic field structure showed that it can tend towards either a quadrupolar/multipolar ordipolar field. Nonetheless, we remain limited by the resolution, which keeps us far fromthe extreme conditions of magnetars, particularly regarding resistivity. This implies that themagnetic field in proto-magnetars must be far from the threshold of the Tayler instability, i.e.
Bφ/Bcrit ≫ 1. This fosters further analysis and new simulations tending towards this regime.Since the end of my internship, a similar study was carried out by Ji et al. (2023) but ina cylindrical configuration. They also find a good agreement with the analytical scalings forthe linear phase. However, when the usual scale separation ωA ≪ Ωo ≪ N is not satisfiedanymore, i.e. ωA ∼Ωo , the growth rate scales with ω4.5

A /Ω2
o . As the value ωA in our simulationswith the larger B0/Bcrit also tends toward Ωo , this may explain the sudden increase of σgrowthweobserved atB0/Bcrit ≳ 6 (Fig. B.4). Then, they suggest that the subsequent saturation of theTayler instability is caused by secondary shear instabilities, which are not expected to occurfor stronger stratifications. While these secondary instabilities must impact the dissipation
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rate of themagnetic field, they find a dissipationmuch slower than predicted by Spruit (2002),and so than in our simulations. Finally, an amplification of the axisymmetric poloidal field isalso observed, indicating the existence of an electromotive force that may drive a dynamo.As we showed that the Tayler instability can generate an axisymmetric poloidal field,adding differential rotation is crucial to close the theoretical dynamo loop. To this end, apossibility is to impose different rotation rates onto both spherical boundaries, i.e. Ωo ̸=Ωi .This configuration is called the spherical Couette configuration and will be used in the fol-lowing chapters of this thesis (Chaps. 6–8), in which we find the numerical evidence of theTayler-Spruit dynamo(s) for Ωo >Ωi . The forcing on the outer sphere would be the result ofthe fallback accretion.

B.4 . List of models

Table B.2 sums up the input parameters of the numerical simulations carried out in theinvestigation of the Tayler instability.
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Name η [cm2 s−1] P [ms] Bcrit [1015 G] B0 [1015 G] Tayler unstable ?
TS0nu2.12B2.1O4 2.12×109 5 2.3 2.1 NO
TS0nu2.12B3.37O3 2.12×109 6.67 1.95 3.37 NO
TS0nu2.12B4.12O2 2.12×109 10 1.8 4.12 YES
TS0nu2.12B7.5O2 2.12×109 10 1.8 7.5 YES
TS0nu2.12B8.55O2 2.12×109 10 1.8 8.55 YES
TS0nu2.12B5.4O1.3 2.12×109 15 1.6 5.4 YES
TS0nu4.24B6.1O4 4.24×109 5 2.5 6.1 NO
TS0nu4.24B7.7O3 4.24×109 6.67 2.32 7.7 YES
TS0nu4.24B2.5O2 4.24×109 10 2.1 2.5 NO
TS0nu4.24B3.75O2 4.24×109 10 2.1 3.75 NO
TS0nu4.24B5.0O2 4.24×109 10 2.1 5.0 NO
TS0nu4.24B7.5O2 4.24×109 10 2.1 7.5 YES
TS0nu4.24B10.0O2 4.24×109 10 2.1 10.0 YES
TS0nu4.24B12.6O2 4.24×109 10 2.1 12.6 YES
TS0nu6.36B12.6O2 6.36×109 10 2.32 12.6 YES
TS0nu6.36B15.4O2 6.36×109 10 2.32 15.4 YES
TS0nu8.48B9.1O4 8.48×109 5 2.1 9.1 NO
TS0nu8.48B11.3O3 8.48×109 6.67 2.76 11.3 YES
TS0nu8.48B13.8O2 8.48×109 10 2.5 13.8 YES
TS0nu8.48B15.6O1.3 8.48×109 15 2.25 15.6 YES
TS0nu8.48B16.5O1 8.48×109 20 2.1 16.5 YES
TS0nu8.48B16.9O0.85 8.48×109 23.5 2.02 16.9 YES
TS0nu8.48B17.1O0.75 8.48×109 26.7 1.95 17.1 YES
TS0nu8.48B20.4O0.66 8.48×109 30 1.9 20.4 YES
Table B.2 — List of models and their input parameters: the resistivity η, the rotation period of bothshells P , the corresponding critical intensity for the Tayler instability Bcrit, and the initial intensity ofthe magnetic field B0. We also mention whether the fluid is Tayler unstable in the last column.
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ABSTRACT

Magnetars are isolated young neutron stars characterised by the most intense magnetic fields known in the Universe, which power a
wide variety of high-energy emissions from giant flares to fast radio bursts. The origin of their magnetic field is still a challenging
question. In situ magnetic field amplification by dynamo action could potentially generate ultra-strong magnetic fields in fast-rotating
progenitors. However, it is unclear whether the fraction of progenitors harbouring fast core rotation is sufficient to explain the entire
magnetar population. To address this point, we propose a new scenario for magnetar formation involving a slowly rotating progenitor,
in which a slow-rotating proto-neutron star is spun up by the supernova fallback. We argue that this can trigger the development of
the Tayler-Spruit dynamo while other dynamo processes are disfavoured. Using the findings of previous studies of this dynamo and
simulation results characterising the supernova fallback, we derive equations modelling the coupled evolution of the proto-neutron star
rotation and magnetic field. Their time integration for different accreted masses is successfully compared with analytical estimates of
the amplification timescales and saturation value of the magnetic field. We find that the magnetic field is amplified within 20−40 s after
the core bounce, and that the radial magnetic field saturates at intensities between ∼1013 and 1015 G, therefore spanning the full range
of a magnetar’s dipolar magnetic fields. The toroidal magnetic field is predicted to be a factor of 10–100 times stronger, lying between
∼1015 and 3 × 1016 G. We also compare the saturation mechanisms proposed respectively by H.C. Spruit and J. Fuller, showing that
magnetar-like magnetic fields can be generated for a neutron star spun up to rotation periods of .8 ms and .28 ms, corresponding to
accreted masses of &4 × 10−2 M� and &1.1 × 10−2 M�, respectively. Therefore, our results suggest that magnetars can be formed from
slow-rotating progenitors for accreted masses compatible with recent supernova simulations and leading to plausible initial rotation
periods of the proto-neutron star.

Key words. stars: magnetars – supernovae: general – magnetohydrodynamics (MHD) – dynamo

1. Introduction

Magnetars represent two classes of isolated young neutron stars
whose emission is powered by their ultrastrong magnetic field:
anomalous X-ray pulsars and soft gamma repeaters. They fea-
ture a large spectrum of activity from short bursts (Gotz et al.
2006; Coti Zelati et al. 2018, 2021) to giant flares (Evans et al.
1980; Hurley et al. 1999, 2005; Svinkin et al. 2021), whose
signal contains quasi-periodic oscillations (Israel et al. 2005;
Strohmayer & Watts 2005; Gabler et al. 2018; Roberts et al.
2021). Moreover, a Galactic magnetar has recently been asso-
ciated with a fast radio burst (FRB; Bochenek et al. 2020;
CHIME/FRB Collaboration et al. 2020), which validates the
capability of magnetar scenarios to explain at least a fraction of
FRBs.

The pulsed X-ray activity of magnetars shows that they are
characterised by a slow rotation period of 2−12 s and a fast spin-
down. Under the assumption of a magnetic dipole spin-down,
magnetars are therefore constrained to exhibit strong dipolar sur-
face magnetic fields ranging from 1014 to 1015 G (Kouveliotou
1999; Kaspi & Beloborodov 2017), which are two orders of
magnitude larger than in regular neutron stars. Furthermore, sev-
eral lines of evidence suggest the presence of a non-dipolar mag-
netic field stronger than the dipolar component. Indeed, absorp-

tion lines have been detected in the X-ray spectra of two magne-
tars: SGR 0418+5729 (Tiengo et al. 2013) and SWIFT J1882.3-
1606 (Rodríguez Castillo et al. 2016). If these lines are inter-
preted as proton cyclotron lines, they are respectively the sig-
nature of non-dipolar magnetic fields of ∼2 × 1014−1015 G and
∼6 × 1014−2.5 × 1015 G, which are stronger than their respective
dipolar components by a factor of ∼30−170 (Rea et al. 2010,
2012). Another sign of strong non-dipolar magnetic fields is the
detection of a phase modulation in the hard-X-ray emission of a
few magnetars. This may be explained by precession movements
due to an internal toroidal magnetic field reaching a strength of
∼1016 G (Makishima et al. 2014, 2016, 2019, 2021).

Proto-magnetars may be the central engine of extreme
events if they are born rotating with a period of a few mil-
liseconds. Indeed, their large-scale magnetic field can extract
a large amount of rotational energy, which may create jets
and lead to magnetorotational explosions (Burrows et al.
2007; Dessart et al. 2008; Takiwaki et al. 2009; Kuroda et al.
2020; Bugli et al. 2020, 2021; Obergaulinger & Aloy 2020,
2021, 2022). This process may explain hypernovae that are
associated with long gamma-ray bursts (Duncan & Thompson
1992; Zhang & Mészáros 2001; Woosley & Bloom 2006;
Drout et al. 2011; Nomoto et al. 2011; Gompertz & Fruchter
2017; Metzger et al. 2011, 2018). Moreover, their spin-down
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luminosity is invoked as a source of delayed energy injection
to explain superluminous supernovae (SNe; Woosley 2010;
Kasen & Bildsten 2010; Dessart et al. 2012; Inserra et al. 2013;
Nicholl et al. 2013). Finally, millisecond magnetars, which may
be formed in binary neutron star mergers, could also provide
an explanation for the plateau phase in the X-ray emission of
some short gamma-ray bursts (Metzger et al. 2008; Lü & Zhang
2014; Gompertz et al. 2014).

The central question to understand magnetar formation is
the origin of their ultra-strong magnetic field. One type of sce-
nario invokes magnetic flux conservation during the collapse
of magnetised progenitors (Ferrario & Wickramasinghe 2006;
Hu & Lou 2009). The magnetic field of these progenitors can
originate from either a fossil field (Braithwaite & Spruit 2004,
2017) or dynamo action during main sequence star mergers
(Schneider et al. 2019, 2020). While the surface magnetic field
is constrained by observations (Petit et al. 2019), the magnetic
field intensity in the iron core remains unknown, which makes
this scenario uncertain. Another class of formation scenarios
is the in situ amplification of the magnetic field by a dynamo
process after the core collapse, especially at early stages of
the proto-magnetar evolution. Two mechanisms have been stud-
ied so far: the convective dynamo (Thompson & Duncan 1993;
Raynaud et al. 2020, 2022; Masada et al. 2022; White et al.
2022) and the magnetorotational instability (MRI)-driven
dynamo (e.g. Obergaulinger et al. 2009; Mösta et al. 2014;
Guilet & Müller 2015; Reboul-Salze et al. 2021a,b). The effi-
ciency of these two dynamo mechanisms in the physical con-
ditions relevant to a proto-neutron star (PNS) is still uncertain,
in particular because the regime of very high magnetic Prandtl
numbers (i.e. the ratio of viscosity to magnetic diffusivity) has
not yet been thoroughly explored (Guilet et al. 2022; Lander
2021). Numerical simulations suggest that the efficiency of both
dynamos increases for faster PNS rotation (Raynaud et al. 2020,
2022; Reboul-Salze et al. 2021a,b), which makes them good
candidates to explain the central engine of extreme explosions.
However, it may be more challenging for them to explain mag-
netar formation in standard SNe, which requires slower initial
rotation of the PNS. Indeed, the observed SN remnants asso-
ciated with Galactic magnetars have an ordinary kinetic explo-
sion energy (Vink & Kuiper 2006; Martin et al. 2014; Zhou et al.
2019). This suggests that most Galactic magnetars are formed
in standard SNe, which is consistent with the fact that extreme
explosions represent about 1% of all SNe whereas magnetars
constitute at least 10% of the whole Galactic young neutron-
star population (Kouveliotou et al. 1994; Gill & Heyl 2007;
Beniamini et al. 2019). Under the assumption that all the rota-
tional energy of the PNS is injected into the kinetic energy of
the explosion, the kinetic energy of the proto-magnetar must not
exceed the standard kinetic energy of a SN explosion of 1051 erg,
which translates into a constraint on its initial rotation period of
&5 ms (Vink & Kuiper 2006).

All things considered, the aforementioned scenarios require
that the progenitor core be either strongly magnetised or fast
rotating. It remains uncertain as to whether one of these condi-
tions is met in a sufficient number of progenitors. This article
presents our investigation of a new scenario wherein magne-
tars form from a slowly rotating, weakly magnetised progeni-
tor. We consider the situation in which a newly formed PNS
is spun up by the matter initially ejected by the SN explo-
sion that remains gravitationally bound to the compact rem-
nant and eventually falls back onto its surface. As the accre-
tion is asymmetric, recent numerical simulations suggest that
the fallback can bring a significant amount of angular momen-

tum to the PNS surface (Chan et al. 2020; Stockinger et al. 2020;
Janka et al. 2022). We investigate the possibility that a magne-
tar may form due to the dynamo action triggered by the spin
up from this fallback accretion. In this scenario, the MRI is
expected to be stable because the PNS surface rotates faster
than the core. The fallback starts roughly ∼5−10 s after the core
bounce (Stockinger et al. 2020; Janka et al. 2022), which may be
too late for the development of a convective dynamo. Instead,
we suggest that the magnetic field is amplified by another
dynamo mechanism: the so-called Tayler-Spruit dynamo, which
is driven by the Tayler instability. This instability feeds off a
toroidal field in a stably stratified medium due to the presence
of an electric current along the axis of symmetry (Tayler 1973;
Pitts & Tayler 1985). Spruit (2002) proposed a first model of
a dynamo driven by the Tayler instability in a differentially
rotating stably stratified region. This model has received crit-
icism from several authors (see Denissenkov & Pinsonneault
2007; Zahn et al. 2007), which has been addressed in the alter-
native description proposed by Fuller et al. (2019). The Tayler-
Spruit dynamo has long been elusive in numerical simula-
tions, but recent numerical simulations provide the first numer-
ical evidence for its existence (Petitdemange et al. 2022). This
dynamo is usually invoked for magnetic field amplification in
the context of stellar interior physics, especially because of
its suspected implications for angular momentum transport and
the magnetic desert in Ap/Bp stars (e.g. Rüdiger & Kitchatinov
2010; Szklarski & Arlt 2013; Bonanno & Guarnieri 2017;
Guerrero et al. 2019; Ma & Fuller 2019; Bonanno et al. 2020;
Jouve et al. 2020). However, this dynamo process has never been
studied in the framework of magnetar formation.

In the following, Sect. 2 presents the scenario in more detail
and the formalism used by our model. We describe our results in
Sect. 3 and discuss them in Sect. 4. Finally, we draw conclusions
in Sect. 5.

2. Mathematical modelling of the scenario

To study our scenario, we built a one-zone model consisting in
‘average’ time evolution equations that capture the main stages
sketched in Fig. 1. We start by describing the impact of the SN
fallback on the PNS rotation (the differential rotation) and the
magnetic field (the shearing of the radial field and the expo-
nential growth of the Tayler instability). Finally, we present the
mathematical formalism for the non-linear stages, that is, the sat-
uration mechanism of the dynamo as modelled by Spruit (2002)
and Fuller et al. (2019), which we complete by a description of
the generation of the radial magnetic field through non-linear
induction. For the computation of the time evolution, we only
implement the description based on the work of Fuller et al.
(2019); but in Sect. 3 we compare both models regarding the
predictions of the saturated magnetic field.

2.1. Fallback accretion

Our scenario starts a few seconds after the core bounce when a
fraction of the fallback matter gets accreted onto the PNS sur-
face. This matter is initially ejected during the explosion but
stays gravitationally bound to the PNS, and so begins to be
asymmetrically accreted (Chan et al. 2020). This fallback mat-
ter is thought to have a large angular momentum, which can
even reach the magnitude of the Keplerian angular momentum
(Janka et al. 2022). Therefore, the spin of the PNS is strongly
affected and the surface rotation can be accelerated up to mil-
lisecond periods. In our scenario, the core of the progenitor is
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Fig. 1. Schematic representation of the different stages of our magnetar formation scenario. The dashed line encloses the region of the fallback
(orange arrows). Red and white lines represent the magnetic field lines and fluid motions, respectively. Ω and Eφ stand for the angular rotation
frequency and the azimuthal component of the electromotive force, respectively. Bφ and Br are the axisymmetric azimuthal and radial magnetic
fields, and δB⊥ is the non-axisymmetric perpendicular magnetic field.

assumed to be slowly rotating. Thus, the PNS surface spins faster
than the PNS interior, which creates differential rotation.

To model the accretion onto the PNS surface, we use the
asymptotic scaling for the mass accretion rate Ṁacc ∝ t−5/3 from
Chevalier (1989). As the accretion mass rate must be finite at the
beginning of this accretion regime, we define a start time t0 such
that

Ṁacc =
A

(t + t0)5/3 , (1)

where A is a constant. Then, the accreted mass during this regime
is

Macc =

∫ ∞

0

A
(t + t0)5/3 dt. (2)

As Macc is constant, we have A = 2
3 t2/3

0 Macc and so the accretion
mass rate is

Ṁacc =
2
3

Macc
t2/3
0

(t + t0)5/3 . (3)

From the fallback matter, only a fraction with angular
momentum as large as the Keplerian limit at most will be
accreted by the PNS, as discussed by Janka et al. (2022). There-
fore, the relation between the average angular rotation frequency
of the PNS and the mass accretion rate is

Ω̇ =
jkep

I
Ṁacc, (4)

where I stands for the PNS moment of inertia and
jkep ≡

√
GMPNSr is the specific Keplerian angular momentum

at the PNS surface. As the PNS mass changes little and the con-
traction of the PNS is almost over at the times considered for the
fallback accretion, we assume I to be constant. As supposed in

Fuller et al. (2019), the angular momentum is transported faster
latitudinally than radially due to stratification, meaning that the
differential rotation is shellular, that is Ω is constant on spherical
shells.

As the accretion process spins up only the outer part of the
PNS but not its inner core, the shear rate q ≡ r∂r ln Ω is also
expected to evolve. To describe this effect, we use the approxi-
mate expression

r∂rΩ ∼ Ω −Ω(r = 0), (5)

where Ω and Ω(r = 0) are the average and central angular
rotation frequency, respectively. Assuming that the rotation fre-
quency at the centre of the PNS is unchanged by the accretion
process (it will change only due to angular momentum transport
processes described in Sect. 4.1), we infer the time derivative of
the shear rate as

q̇ ∼ Ω̇

Ω
(1 − q). (6)

2.2. Shearing and Tayler instability growth

The differential rotation generated by the fallback will shear the
radial component of the large-scale radial magnetic field Br into
the azimuthal field Bφ as follows

∂tBφ = qΩBr. (7)

Therefore, we can define a growth rate1 for Bφ:

σshear ≡ qΩ
Br

Bφ
. (8)

1 We note that this growth rate and the others defined below are rather
instantaneous growth rates because they depend on the magnetic field.
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As Bφ grows, it becomes Tayler unstable. To depict the linear
growth of the instability, we make the following assumptions.
First, the stratified medium of the PNS interior is characterised
by the Brunt-Väisälä frequency (Hüdepohl 2014):

N ≡
√
−g
ρ

(
∂ρ

∂S

∣∣∣∣∣
P,Ye

dS
dr

+
∂ρ

∂Ye

∣∣∣∣∣
P,S

dYe

dr

)
∼ 4 × 103 s−1, (9)

where g, ρ, Ye, and S are the gravitational acceleration, the PNS
mean density, the electron fraction, and the entropy, respectively.
In the remainder of this paper, we use the fiducial value N =
4 × 103 s−1 based on the results of the 1D core-collapse super-
nova (CCSN) simulations from Hüdepohl (2014, Chap. 5). The
Brunt-Väisälä frequency is almost uniform in most of the PNS
except near the surface where it peaks at ∼104 s−1. Hüdepohl
(2014) made a comparison between two different equations
of state (EOS): Shen (Shen et al. 1998a,b, 2011) and LS220
(Lattimer & Swesty 1991), and found that the choice of the EOS
mainly affects the localisation and duration of the convection but
not the value of the Brunt-Väisälä frequency in the stably strati-
fied region. Second, the main background azimuthal field is Bφ,
which is associated with the Alfvén frequency:

ωA ≡
Bφ√
4πρr2

' 11.6
(

Bφ
1015 G

)
s−1, (10)

for r = 12 km and ρ = 4.1 × 1014 g cm−3. Finally, the frequencies
characterising the PNS are ordered such that

N � Ω � ωA. (11)

The development of the Tayler instability is triggered after reach-
ing the critical strength (Spruit 1999, 2002; Zahn et al. 2007)

Bφ > Bφ,c ∼ Ω

(N
Ω

)1/2 (
η

r2Ω

)1/4 √
4πρr2

' 2.5 × 1012
(

Ω

200π rad s−1

)1/4

G, (12)

where η ∼ 10−4 cm2 s−1 (Thompson & Duncan 1993) is the mag-
netic diffusivity. The fastest-growing perturbations are the m = 1
modes with an associated rate of (Ma & Fuller 2019)

σTI ∼
ω2

A

Ω
' 0.21

(
Bφ

1015 G

)2 (
Ω

200π rad s−1

)−1

s−1. (13)

As the PNS interior is strongly stratified, we can determine a
maximum radial length scale for the instability

lr ∼ ωA

N
l⊥, (14)

where the horizontal length scale is approximated by l⊥ ∼ r.

2.3. Spruit’s picture of the dynamo

Spruit (2002) proposes that the energy in the azimuthal large-
scale field Bφ cascades to small scale, that is the form of the
non-linear magnetic energy dissipation is

Ėmag ∼ γturb|Bφ|2, (15)

where γturb is the turbulent damping rate. To determine this rate,
Spruit (2002) argues that the saturation of the instability occurs
when the turbulent velocity field generates a sufficiently large

effective turbulent diffusivity to balance the growth rate of the
instability, that is

γturb ∼ ηe

l2r
∼ σTI, (16)

where ηe is an effective turbulent diffusivity.
The solenoidal character of the perturbed magnetic field

implies Br/lr ∼ Bφ/l⊥, which leads to

Br ∼ ωA

N
Bφ, (17)

using the relation between length scales of the instability given
by Eq. (14). As the azimuthal magnetic field Bφ is generated via
the shear of the radial magnetic field Br, the dynamo is expected
to saturate when the shear (Eq. (8)) balances the turbulent damp-
ing (Eq. (16)). Thus, the amplitudes of the magnetic field com-
ponents saturate at

Bsat
φ,S ∼

√
4πρr2q

Ω2

N
, (18)

Bsat
r,S ∼

√
4πρr2q2 Ω4

N3 . (19)

This description of the dynamo mechanism has been criticised
for two reasons: First of all, if the large-scale component of Bφ
remains constant on larger length scales than lr, the displace-
ments produced by the instability are not expected to mix the
large-scale field lines to damp Bφ through reconnection. There-
fore, the damping rate estimated in Eq. (16) is overestimated
for the large-scale components of the azimuthal field Bφ (see
Fuller et al. 2019). Secondly, as m = 1 modes are dominant,
the radial magnetic field Br produced by the instability is non-
axisymmetric, and therefore its shear generates a mostly non-
axisymmetric azimuthal field Bφ. Hence, the axisymmetric com-
ponent of the fields Br and Bφ may not be related by Eq. (17)
(see Zahn et al. 2007).

2.4. A revised model of the dynamo

This section presents a description of the dynamo that completes
the model proposed by Fuller et al. (2019) in the sense that we
consider the time evolution of the magnetic field. A clear dis-
tinction is now made between the ‘axisymmetric’ components
Bφ, Br, and the ‘non-axisymmetric’ perturbed components δB⊥,
δBr, which become the ones connected by the solenoidal condi-
tion

δBr ∼ ωA

N
δB⊥. (20)

To overcome the previously raised difficulties, Fuller et al.
(2019) argue that the energy in the perturbed field δB dissipates
to small scales and find that the damping rate is

γcas ∼ δvA

r
, (21)

where δvA ≡ δB⊥/
√

4πρ is the perturbed Alfvén velocity. Thus,
equating the instability growth rate (Eq. (13)) and the damping
rate (Eq. (21)) gives the saturation strength of the perturbed field
δB⊥ for a given strength of azimuthal field Bφ,

δB⊥ ∼ ωA

Ω
Bφ. (22)
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When the instability is saturated, the non-linear magnetic energy
dissipation is then

Ėmag ∼ γcas|δB|2 ∼ δvA

r
|δB⊥|2 . (23)

As the azimuthal field Bφ is the dominant magnetic component,
Ėmag ∼ Bφ∂tBφ. Hence, a damping rate can be defined for the
axisymmetric components Bφ and Br:

γdiss ≡
Ėmag

B2
φ

. (24)

As the previous expression of the magnetic energy (Eq. (23)) is
only valid when the instability saturates, we use the expression

Ėmag ∼
ω2

A

Ω
|δB⊥|2, (25)

which is valid in both the saturated and non-saturated states.
Therefore, the damping rate defined in Eq. (24) becomes

γdiss ∼
ω2

A

Ω

(
δB⊥
Bφ

)2

. (26)

To close the dynamo loop, the Tayler instability must generate
the axisymmetric radial magnetic field Br (α-effect), which will
be sheared again (Ω-effect). In the framework of the mean field
theory, the induction equation reads

∂t〈B〉 = ∇ × (〈u〉 × 〈B〉 + E) − η∆〈B〉, (27)

in which we ignore the resistive term. Considering the aver-
age symbol 〈·〉 as an azimuthal average, we note 〈B〉 = B in
order to remain consistent with our notation of the axisymmet-
ric magnetic field. The electromotive force E ≡ 〈δu ∧ δB〉 is the
important non-linear quantity responsible for the generation of
the axisymmetric radial field Br. In spherical coordinates, the
radial component of Eq. (27) is

∂tBr =
1

r sin θ

[
∂θ(sin θ Eφ) − ∂φEθ

]
. (28)

As Br is axisymmetric, Eθ can be ignored. By definition, the
azimuthal component of electromotive force is

Eφ = δvrδBθ − δvθδBr. (29)

Supposing an incompressible perturbed velocity field and using
Eq. (20), we write

δvr

δv⊥
∼ δBr

δB⊥
∼ ωA

N
, (30)

and so the azimuthal electromotive force reads

Eφ ∼ δvθδBr ∼ δvrδBθ ∼ δvrδB⊥, (31)

where we assume that the two terms on the right-hand side of
Eq. (29) do not cancel. The production of the radial field Br can
be approximated by

∂tBr ∼
Eφ

r
∼ δvrδB⊥

r
. (32)

We must note that this expression differs from Eq. (29) in
Fuller et al. (2019), which appears to contain a typo. As in

Fuller et al. (2019) and Ma & Fuller (2019), we expect magne-
tostrophic balance δv⊥ ∼ δvAωA/Ω, which leads to

δvr ∼
ω2

A

NΩ
δvA. (33)

Thus,

∂tBr ∼
Eφ

r
∼ ω2

A

NΩ

δB2
⊥√

4πρr2
, (34)

and we can define a growth rate for Br

σNL ≡ 1√
4πρr2

ω2
A

NΩ

δB2
⊥

Br
. (35)

The radial field Br will saturate when its non-linear growth rate
(Eq. (35)) is balanced by the turbulent dissipation (Eq. (26)).
This way, we find the relation between the axisymmetric fields

Br ∼ ωA

N
Bφ, (36)

using Eq. (22). We note that this relation is similar to Eq. (17)
from Spruit (2002), which was derived for the non-axisymmetric
components only. Fuller et al. (2019) also established the same
relation arguing that the Tayler instability cannot operate when
the magnetic tension forces become larger than the magnetic
pressure forces leading to the instability.

The azimuthal magnetic field saturates when the shear rate
(Eq. (8)) balances the dissipation rate (Eq. (26)). Thus, using the
relations between the magnetic field components (Eqs. (22) and
(36)), we find the magnetic field strengths in the saturated regime
derived in Fuller et al. (2019):

Bsat
φ,F ∼

√
4πρr2Ω

(
qΩ

N

)1/3

, (37)

δBsat
⊥,F ∼

√
4πρr2Ω

(
qΩ

N

)2/3

, (38)

Bsat
r,F ∼

√
4πρr2Ω

(
q2Ω5

N5

)1/3

. (39)

Finally, the angular momentum is redistributed in the PNS
through Maxwell stresses associated with an effective angular
momentum diffusivity (Spruit 2002; Fuller et al. 2019):

νAM =
BrBφ

4πρqΩ
, (40)

which affects the shear parameter at the rate

γAM ≡ νAM

r2 . (41)

2.5. Governing evolution equations

Now that the main equations involved in our scenario have been
brought out, we can write the evolution equations for the rotation
properties and the magnetic field. The evolution of PNS angu-
lar rotation frequency is driven by the fallback accretion rate
(Eq. (3)) as described by Eq. (4). Hence,

Ω̇ =
2
3

∆Ω
t2/3
0

(t + t0)5/3 , (42)
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where ∆Ω = Ωfin −Ωinit = Macc jkep/I. As previously mentioned,
the shear rate is also expected to decrease due to angular momen-
tum transport (Eq. (41)) such that

q̇ =
Ω̇

Ω
(1 − q) − γAMq =

2
3

∆Ω

Ω

t2/3
0

(t + t0)5/3 −
BrBφ

4πρΩr2 . (43)

Combining the different growth and damping rates given by
Eqs. (8), (13), (21), (26), and (35), we find that the magnetic
field evolution is governed by the following equations:

∂tBφ = (σshear − γdiss) Bφ = qΩBr −
ω2

A

Ω

δB2
⊥

Bφ
, (44)

∂tδB⊥ = (σTI − γcas) δB⊥ =
ω2

A

Ω
δB⊥ − δvA

r
δB⊥, (45)

∂tBr = (σNL − γdiss) Br =
ω2

A

NΩ

δB2
⊥√

4πρr2
− ω

2
A

Ω

(
δB⊥
Bφ

)2

Br. (46)

Equations (42)–(46) are solved for a typical PNS of 5–10 s
in age using the odeint function from the Python package SciPy.
The PNS mass and radius are MPNS = 1.5 M� and r = 12 km,
and so the average density is ρ = 4.1 × 1014 g cm−3. The moment
of inertia is estimated using Eq. (12) from Lattimer & Schutz
(2005):

I = 0.237MPNSr2
[
1 + 4.2

(
MPNS

M�
1 km

r

)
+90

(
MPNS

M�
1 km

r

)4

' 1.6 × 1045 g cm2. (47)

The PNS core is assumed to be initially in solid-body rota-
tion (i.e. q = 0) and slowly rotating with an angular rotation
frequency Ωinit = 2π rad s−1 (i.e. an initial rotation period Pinit ≡
2π/Ωinit = 1 s). We note that the results of the time integration
weakly depend on these parameters as long as Pinit & 40 ms. The
parameters of the fallback are chosen to be consistent with the
simulations of Janka et al. (2022), with a starting time at t0 = 7 s.
The initial magnetic field components Br, Bφ, and δB⊥ are ini-
tialised at a strength of 1012 G, which is the typical magnetic
field amplitude of regular neutron stars.

3. Results

We proceed with a twofold presentation of our model outputs:
First we present the time evolution, in which we derive analyt-
ical predictions for the timescales of the different phases of the
scenario and compare them to the integrated evolution. We then
present the saturated regime where we focus on the magnetic
field intensities reached via the Tayler-Spruit dynamo and pro-
vide an ‘upper’ limit of PNS rotation period (i.e. a ‘lower’ limit
of fallback mass) to form magnetars.

3.1. Time evolution of the magnetic field

The time series for an asymptotic rotation period Pfin ≡
2π/Ωfin = 10 ms displayed in Fig. 2 can be split into several
phases, which are illustrated by the schematics at the top of the
figure:
(i) Bφ is strongly amplified for ∼4 s due to the winding of Br

while the other components stay constant. As the mass-
accretion rate is higher in this phase, strong increases in the
shear rate and the rotation rate are also noted.

(ii) The Tayler instability develops and amplifies δB⊥ for ∼8 s.

Fig. 2. Time evolution of the different components of the magnetic field
(top), the dimensionless shear rate, and the angular rotation frequency
(bottom) for an accreted mass Macc = 3.2 × 10−2 M� corresponding
to an asymptotic rotation period Pfin = 10 ms. The different stages of
the dynamo process are highlighted by the schematics at the top and
their associated timescales by the double arrows. Their ends are illus-
trated by the dotted vertical lines: winding (black), linear development
of the Tayler instability (dark blue), and the whole dynamo loop (red).
The horizontal dashed lines (blue, orange, and green) show respectively
the saturation intensities Bsat

φ,F, δBsat
⊥,F, and Bsat

r,F (Eqs. 37–39) evaluated at
the time of saturation. The dashed violet horizontal line represents the
asymptotic angular rotation frequency Ωfin.

(iii) The axisymmetric radial field Br is generated allowing the
dynamo action to occur for ∼5 s. The azimuthal magnetic
field saturates at ∼17 s, which corresponds to ∼24 s after the
core bounce.

(iv) The angular momentum transport by the magnetic field,
which was negligible during the first ∼16 s, becomes signif-
icant as the magnetic field saturates. This stage is discussed
in Sect. 4.1.

The evolution of the magnetic field is shown until the whole
angular momentum is transported, (i.e. when the shear rate
reaches q = 0) at t ∼ 17.5 s. Further evolution is not considered
because our set of equations does not intend to describe either the
relaxation phase of the magnetic field to a stable geometric con-
figuration or the dynamics with very low shear where one would
expect the Tayler-Spruit dynamo to stop or to act intermittently
(Fuller & Lu 2022).

The different vertical lines in Fig. 3 show that the above
phases occur at different times for different accreted masses. To
better quantify the dependence on this parameter, we derive ana-
lytical estimates of the corresponding characteristic timescales
τshear, τTI, and τdyn (see Fig. 2). First, the shearing phase begins
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Fig. 3. Same as Fig. 2 but for total accreted masses of Macc = {0.54, 0.8, 1.6, 6.4}×10−2 M� (corresponding to Pfin = {60, 40, 20, 5}ms, respectively).

when the fallback matter starts to be accreted on the PNS sur-
face and finishes when the azimuthal magnetic field Bφ is strong
enough to make the Tayler instability grow as fast as Bφ, that is
when the growth rate of the instability (Eq. (13)) is equal to the
winding rate (Eq. (8)). Thus, the Alfvén frequency associated
with the intensity of the azimuthal magnetic field at the end of
this phase is

ωA ∼ ωA,TI ≡
(
qΩ2ωr,0

)1/3
, (48)

where ωr,0 ≡ Br(t = 0)/
√

4πρr2. Therefore, a characteristic
timescale for the shearing stage can be defined as the inverse
of the winding growth rate (Eq. (13)) evaluated at ωA = ωA,TI:

τshear ≡ σ−1
shear ∼

ωA,TI

qΩωr,0
=

(
q2ω2

r,0Ω
)−1/3

. (49)

Second, as the azimuthal field becomes unstable, the Tayler
instability grows exponentially until the perturbed field reaches

the saturation intensity of Eq. (22). The perturbed field at satura-
tion can be approximated by

δB⊥(t = tsat) ∼ δB⊥(t = τshear) exp [σTI(tsat − τshear)] , (50)

and so a characteristic timescale for this stage can be defined as

τTI ≡ tsat − τshear ∼ σ−1
TI ln

[
δB⊥(t = tsat)
δB⊥(t = τshear)

]
. (51)

Using Eq. (22), we have

δB⊥(t = tsat) ∼ ωA(t = tsat)
Ω

Bφ(t = tsat). (52)

In order to obtain a simple estimate, we make the rough approx-
imations that δB⊥(t = τshear) ∼ δB⊥(t = 0) and Bφ(t = τshear) ∼
Bφ(t = tsat), which leads to

τTI ∼ Ω

ω2
A,TI

ln


ω2

A,TIr

ΩδvA,0

 , (53)
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where δvA,0 ≡ δvA(t = 0).
Third, when the perturbed field reaches a sufficient ampli-

tude, the axisymmetric radial field is amplified through non-
linear induction, thus closing the dynamo loop. This phase ends
when the magnetic field saturates at the intensities given by
Eqs. (37)–(39). Likewise, we estimate the critical strength of the
azimuthal field Bφ,dyn above which the dynamo loop is triggered
by equating the growth rate of the radial field Br (Eq. (35)) and
the winding rate (Eq. (8)). We obtain the Alfvén frequency asso-
ciated with Bφ,dyn

ωA,dyn ≡
(
qNΩ4ω2

r,0

)1/7
, (54)

making use of Eq. (22). We define the dynamo characteristic
timescale as

τdyn ≡
(

Bφ
∂2

t Bφ

)1/2

. (55)

The time derivative of the radial magnetic field is

∂tBr ∼
ω2

AδvA

NΩr
δB⊥ ∼

ω3
AδvA

NΩ2r
Bφ ∼

ω5
A

NΩ3 Bφ, (56)

using Eq. (22). Therefore,

∂2
t Bφ ∼ qΩ∂tBr ∼

qω5
A

NΩ2 Bφ, (57)

where q and Ω are assumed to be constant during this phase.
Thus, the dynamo characteristic timescale can be approximated
as

τdyn ≡
(

Bφ
∂2

t Bφ

)1/2

∼ Ω

ω2
A,dyn

(
N

qωA,dyn

)1/2

. (58)

For the case Pfin = 10 ms, we have τshear ' 2.3 s, τTI ' 8.5 s,
and τdyn ' 5 s, which are similar to the timescales illustrated by
the dotted vertical lines in Fig. 2. The same observation can be
made for Pfin ≤ 30 ms in Fig. 3. However, for Pfin = 40 ms
(Macc = 0.008 M�) and Pfin = 60 ms (Macc = 0.0054 M�),
the dynamo loop phase lasts respectively ∼30 s and ∼20 s (see
Fig. 3), which is longer than the analytical predictions of τdyn '
11 s and τdyn ' 9.2 s. This is due to the presence of a signifi-
cant stage that is not included in the expression of τdyn where the
growth of Bφ slows down before saturation.

The three characteristic timescales defined by Eqs. (49), (53),
and (58) are plotted as a function of the fallback mass in Fig. 4
in addition to the characteristic timescale for the whole amplifi-
cation process, which is defined as

τtot ≡ τshear + τTI + τdyn. (59)

The vertical red dashed line represents the lower limit of fallback
mass to form typical magnetars, which is estimated in Sect. 3.2
(corresponding to an asymptotic rotation period Pfin . 30 ms).
In the regime relevant to magnetar formation, the analytical and
numerical estimates of the duration of the whole amplification
process are in reasonable agreement, namely τtot . 30 s. In this
regime, the phase which takes more time is the development of
the Tayler instability. For Pfin & 30 ms, the comparison between
the time at which Bφ saturates and τtot shows a significant differ-
ence, which is the consequence of the discrepancy noted above
between the analytical estimate and numerical solution for τdyn.

Fig. 4. Different characteristic timescales as a function of the accreted
mass: winding (black), Tayler instability (dark blue), and dynamo (red).
The green line represents the sum of the three timescales. The shear rate
is set at q = 1. The green crosses represent the entire amplification time
obtained by integrating Eqs. (37)–(39). The red vertical line shows the
lower limit of the accreted mass to form a magnetar with a radial field
stronger than BQ ≡ mec2/e~ ' 4.4 × 1013 G using the predictions of
Fuller et al. (2019).

3.2. Magnetic field in the saturated regime

We now focus on the maximum magnetic field obtained at the
end of the amplification phase. In the following discussion, this
saturated magnetic field will be considered as a proxy for the
magnetar’s magnetic field and its ‘radial’ component will be
considered a proxy for the ‘dipolar’ component of the magnetic
field. A more precise prediction would require a description of
the relaxation towards a stable equilibrium, which is left for
future studies.

In the top panel of Figs. 2 and 3, we see that the saturation
intensities are close to their associated horizontal dashed lines,
which illustrate the predictions of Eqs. (37)–(39) for values of
the shear rate q and the angular rotation frequency Ω reached at
the time of magnetic field saturation. Therefore, these equations
can be used to estimate the intensity of the saturated magnetic
field. However, the angular frequency at τtot is still lower than
its asymptotic value represented by the violet dashed line in the
bottom panel. We estimate Ω(t = τtot) analytically by integrating
Eq. (42)

Ω(t = τtot) = Ωfin −
(

t0
τtot + t0

)2/3

(Ωfin −Ωinit). (60)

Assuming that the timescales for the dynamo are roughly the
same for the two models, that is, that of Fuller et al. (2019) and
that of Spruit (2002), we also evaluate the expressions of the
saturated magnetic field derived by Spruit (2002; Eqs. (18) and
(19)) at Ω(t = τtot).

We see in Fig. 5 that our analytical estimates of the satu-
rated fields (solid lines) are close to the numerical values at the
peak of the solutions of Eqs. (44)–(46) (plus symbols). The small
difference that appears for shorter rotation periods is due to the
angular momentum transport, as discussed in see Sect. 4.1.

Using the maximum magnetic field as a proxy for the mag-
netar’s magnetic field may lead to an overestimation because
a fraction of the magnetic energy can be dissipated during
the relaxation to a stable magnetic configuration. Although our
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Fig. 5. Predicted intensities for the saturated components of the mag-
netic field as a function of the accreted mass using the formalisms
of Fuller et al. (2019; Eqs. (37)–(39); solid lines) and Spruit (2002;
Eqs. (18)–(19); dash-dot lines). The shear rate is set at q = 1. These
intensities are compared to the magnetic field reached at maximum
intensity (blue and green plus signs) and at q = 0 (blue and green
cross signs) by integrating Eqs. (42)–(46) for several fallback masses.
Grey areas represent the estimated range of the dipolar magnetic field
strength from regularly observed magnetars (dark grey) and from the
three detected low-field Galactic magnetars (light grey). The vertical
lines show the lower limit on the fallback mass (upper limit on the rota-
tion period) needed to form a magnetar with a radial field stronger than
BQ ' 4.4 × 1013 G for the prediction of Fuller et al. (2019; dashed red)
and Spruit (2002; dotted red).

model is unable to describe this relaxation process, we can get
an idea of the robustness of our proxy by comparing to the mag-
netic field intensity at the time when q = 0. Figure 5 shows that
this other proxy (cross signs) is smaller by between ∼10% and
∼50% but follows the same trends as the maximum magnetic
field. Such a moderate difference would not change our main
conclusions and suggests that the maximum magnetic field is a
meaningful proxy for the final magnetic field.

In Fig. 5, the observed range of dipolar magnetic field for
magnetars is fixed between the quantum electron critical field
BQ ≡ mec2/e~ ' 4.4 × 1013 G and Bdip ∼ 2 × 1015 G, the
dipole field of the ‘most magnetised’ magnetar SGR 1806-20
(Olausen & Kaspi 2014). We find that the radial magnetic fields
Bsat

r,F and Bsat
r,S fall in this range for accreted masses Macc &

1.1 × 10−2 M� and Macc & 4 × 10−2 M� (i.e. asymptotic rota-
tion periods Pfin . 28 ms and Pfin . 8 ms), respectively. This
confirms that magnetar-like magnetic fields can be formed over
a wide range of accreted masses. The analytical predictions
also show that, in the regime relevant for magnetar formation,
the azimuthal component Bφ & 4 × 1015 G for both satura-
tion mechanisms, which is significantly stronger than the radial
component.

For lower accreted masses spinning-up the PNS to periods
ranging from 28 to 64 ms (between 8 and 14 ms for the predic-
tions of Spruit 2002), our scenario may produce radial magnetic
fields Br as strong as the dipolar fields diagnosed in low-field
magnetars (Rea et al. 2010, 2012, 2014). Moreover, the strength
of the associated azimuthal field is Bφ ∼ (1 − 3) × 1015 G,
which can be related to the non-dipolar magnetic field needed
to produce the outbursts and chaotic bursts observed in mag-
netars (Thompson & Duncan 1995). This azimuthal magnetic
field may also be the source of the proton cyclotron absorp-

tion lines observed in two low-field magnetars by Tiengo et al.
(2013) and Rodríguez Castillo et al. (2016). Thus, our model
provides a possible explanation of low-field magnetar forma-
tion. It is an alternative to the initial interpretation proposed by
Rea et al. (2010), which invokes &1 Myr ‘old’ (or ‘worn-out’)
magnetars whose initial strong dipolar field of ∼few × 1014 G
has decayed due to Ohmic and Hall processes. This diffusion
could be enhanced by the presence of a strong initial toroidal
field &1016 G (Turolla et al. 2011).

As Eqs. (37)–(39) give orders of magnitude, Fuller et al.
(2019) parameterised them with a prefactor denoted α. We used
α ∼ 1 as obtained by Fuller et al. (2019) for evolved stars in
the subgiant and red giant branches by calibrating α on astero-
seismic measurements. However, Eggenberger et al. (2019) find
α ∼ 0.5 for subgiant stars on the one hand, and α ∼ 1.5 for
red giant stars on the other. Also, Fuller & Lu (2022) argue that
α ∼ 0.25 if intermittent dynamo action is considered in radiative
zones with insufficient shear to trigger a sustained dynamo. This
smaller prefactor would imply a larger limit of accreted mass of
∼2 × 10−2 M� (i.e. a rotation period of ∼15 ms).

4. Discussion

4.1. Angular momentum transport

In the previous section, we focused on the magnetic field ampli-
fication and did not discuss the angular momentum transport due
to the Tayler-Spruit dynamo. Our analytical estimate of the sat-
urated magnetic field is based on the assumption that the differ-
ential rotation is not erased before the end of the amplification.
Indeed, Figs. 2 and 3 show that the angular momentum trans-
port due to Maxwell stresses starts to be significant around the
time of magnetic field saturation and that most of the angular
momentum transport occurs afterwards. This can be explained
by comparing the characteristic timescales of the dynamo loop
phase τdyn (Eq. (58)) with those of angular momentum transport.
These can be estimated at saturation using the expression of Bsat

φ,F
(Eq. (37)) as

τAM ≡ γ−1
AM =

r2

νAM
∼

(N
Ω

)2

Ω−1, (61)

and

τdyn =

(
N
qω

)4/3

Ω−1. (62)

The ratio of these two timescales is

τdyn

τAM
∼

(
Ω

q2N

)2/3

∼ 0.3
( P
10 ms

)−2/3

. (63)

For all values of the accreted mass and corresponding rotation
period considered in this paper, the angular momentum trans-
port is therefore longer than the dynamo timescale. This explains
why most of the angular momentum takes place after the dynamo
saturation and justifies a posteriori our analytical estimate of the
saturated magnetic field. At fast rotation periods of a few mil-
liseconds, the two timescales are nonetheless close to each other;
as a consequence, the angular momentum transport before satu-
ration is not negligible, which explains the moderate discrepancy
between our analytical estimate of the saturated magnetic field
and the numerical results for short rotation periods (Fig. 5).
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On the other hand, angular momentum transport due to the
neutrino viscosity can be neglected because its typical timescale
is much longer than the evolution timescales considered:

τn ≡ r2

νn
& 3 × 104 s, (64)

where the neutrino viscosity νn is estimated with the
approximate analytical expression of Keil et al. (1996) and
Guilet & Müller (2015):

νn ∼ 3 × 108
(

ρ

1014 g cm−3

)−2 ( T
5 MeV

)2

cm2 s−1. (65)

4.2. Neutrinos

We demonstrate above that angular momentum transport by
either the magnetic field or the neutrino viscosity does not sig-
nificantly impact our results. However, the neutrino flux coming
from the accretion is also expected to extract a fraction of the
angular momentum of the PNS (Janka et al. 2004; Bollig et al.
2021). To investigate whether it does not jeopardise the model,
we use the following reasoning. As fallback is assumed to start
several seconds after bounce in our model, one may assume that
most of the angular momentum extraction by neutrino emission
at these late times originate from fallback accretion rather than
PNS cooling. Most of the fallback mass is likely to have a spe-
cific angular momentum j0 which exceeds the Keplerian value
at the PNS surface. It will therefore assemble into an accretion
disk, settling at a radius rk where jkep(rk) = j0. Its gravitational
binding energy Ebind will be at most all converted into neutrino
radiation, that is per baryon with a rest mass mB:

∆Eν . Ebind(rk) ∼ GMPNSmB

rk
, (66)

where we assume that the disk mass is small compared to the
PNS mass. The corresponding specific angular momentum loss
is

∆ jν .
∆Eν

mBc2 jkep(rk) ∼ RS

2rk
jkep(rk), (67)

where RS ≡ 2GMPNS/c2 is the PNS Schwarzchild radius. ∆ jν is
maximal at the PNS surface (i.e. when rk = r), which implies

∆ jν . 0.185 jkep(r), (68)

for the same parameters of a typical PNS introduced in Sect. 2.5.
Therefore, the extraction of angular momentum by neutrino radi-
ation is very inefficient.

4.3. Impact of the viscosity on the Tayler instability

In the reasoning developed above, we do not take into account
the effects due to viscous processes, which might be important
because they could be much larger than the effects of the resis-
tivity in PNSs. Therefore, here we aim to address the question of
their impact on the development of the Tayler instability. To the
best of our knowledge, no analytical study of the Tayler insta-
bility has included the impact of viscosity. Hence, we use an
approximate reasoning similar to that of Spruit (2002), which
is based on a comparison of the instability growth timescale
with the viscous damping timescale. This provides the follow-
ing instability criterion:

σ−1
TI ∼

Ω

ω2
A

.
l2r
ν
, (69)

with ν being the kinematic viscosity. Using the constraint on the
radial length scale lr due to the stratification (Eq. (14)), we infer
an instability criterion on the azimuthal magnetic field Bφ as a
function of the viscosity:

Bφ > Bφ,c ∼ Ω

(N
Ω

)1/2 (
ν

r2Ω

)1/4
. (70)

This equation is similar to Eq. (12) but with the magnetic
diffusivity substituted by the viscosity. To obtain an order of
magnitude of this critical value, we must determine a value of
the viscosity which is relevant for our scenario. As the fallback
accretion occurs seconds to minutes after the PNS formation,
the PNS has cooled down to temperatures .1.1 × 1011 K in the
core and .5 × 1010 K in the outer region (.10 MeV and .5 MeV,
respectively; Hüdepohl 2014). The neutrino mean free path can
be approximated by (Thompson & Duncan 1993; Eq. (11)):

ln ∼ 4 × 104
(

ρ

1014 g cm−3

)−1/3 ( T
5 MeV

)−3 (
f (Yp)

1

)
cm, (71)

where f (Yp) is function of the proton fraction close to unity. This
length is larger than the maximum radial length scale (Eq. (14)):

lr ∼ 4 × 103
(

Bφ
1015 G

)
cm. (72)

Therefore, neutrinos do not provide any relevant viscosity at the
Tayler instability length scales and we must consider instead a
microscopic viscosity such as the shear viscosity due to neutron–
neutron scattering (Cutler & Lindblom 1987, Eq. (14)):

νs ∼ 3 × 10−2
(

ρ

1014 g cm−3

)5/4 ( T
5 MeV

)−2

cm2 s−1. (73)

The associated critical magnetic field is therefore

Bφ,c ' 1013
(

νs

3 × 10−2 cm2 s−1

)1/4
(

Ω

200π rad s−1

)1/4

G, (74)

which is four times stronger than the critical magnetic field
inferred from the criterion of Spruit (2002) (Eq. (12)). How-
ever, this new critical magnetic field is still much weaker than
the characteristic azimuthal magnetic field separating the wind-
ing phase from the phase in which the Tayler instability develops
(when the growth rate of the Tayler instability reaches the wind-
ing rate; Eq. (48))

Bφ = ωA,TI

√
4πρr2 ∼ 1.3 × 1015

(
Ω

200π rad s−1

)2/3 ( Br

1012 G

)1/3

.

(75)

As a consequence, the viscosity is not expected to prevent the
Tayler instability from growing and should not have a significant
impact on our results. However, we note that our argument is
approximate and would need to be upgraded through a linear
analysis of the Tayler instability including the viscous processes.

4.4. Superfluidity and superconductivity

A last potential obstacle for our model may emerge from the
crust formation and the superfluidity and superconductivity in
the core, which occur during the cooling of the PNS. The outer
crust is expected to start freezing a few minutes after the PNS

A79, page 10 of 14



P. Barrère et al.: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback

formation and the inner crust forms far later, between 1 and
100 yr after formation (Aguilera et al. 2008). Therefore, no part
of the crust is formed during the time interval involved in our
scenario.

The potential early appearance of superfluid neutrons or
even superconductive protons in the PNS core at tempera-
tures below 108−1010 K is worth discussing because the MHD
approximation would not be sufficiently realistic and a multi-
fluid approach would be more relevant (Glampedakis et al. 2011;
Sinha & Sedrakian 2015). However, the 1D models of PNS cool-
ing show higher temperatures than 1010 K in the PNS even
after 15 s (e.g. Pons et al. 1999; Roberts 2012; Hüdepohl 2014;
Roberts et al. 2017). Moreover, Gusakov & Kantor (2013) and
Glampedakis & Jones (2014) brought forward a critical per-
turbed magnetic field strength above which superfluidity of neu-
trons dies out. Therefore, the MHD approximation is still valid
for describing the PNS internal dynamics during the first 40 s
following the core bounce.

5. Conclusions

In this paper, we propose a new scenario for magnetar forma-
tion, in which the Tayler-Spruit dynamo amplifies the large-scale
magnetic field of a PNS spun up by SN fallback accretion. We
develop a one-zone model describing the evolution of the mag-
netic field averaged over a PNS subject to fallback accretion.
The equations describing the time evolution are solved numer-
ically and compared successfully with analytical estimates of
the final magnetic field and of the duration of each stage of
the amplification process. Predictions for the different compo-
nents of the magnetic field are therefore obtained as a function
of the accreted mass for the two proposed saturation models of
the Tayler-Spruit dynamo (Spruit 2002; Fuller et al. 2019). Our
main conclusions can be summarised as follows:

– Radial magnetic fields spanning the full range of the magne-
tar dipole intensity can be formed for accreted masses com-
patible with the results of recent SN simulations. Our model
predicts the formation of magnetar-like magnetic fields for
accreted masses Macc & 1.1 × 10−2 M� for the saturation
model of Fuller et al. (2019) and Macc & 4 × 10−2 M� for the
saturation model of Spruit (2002). This corresponds to neu-
tron star final rotation periods Pfin . 28 ms and Pfin . 8 ms,
respectively.

– The azimuthal component of the magnetic field is predicted
to be in the range 1015−1016 G, which is stronger than the
radial component by a factor of 10–100.

– In the regime relevant for magnetar formation, the magnetic
field amplification lasts between 15 and 30 s. On such a
timescale, the MHD equations assumed in the description
of the Tayler-Spruit dynamo are expected to be valid. Fur-
thermore, we have not identified any other process capable
of interfering with the Tayler-Spruit dynamo by transporting
angular momentum on a comparable or shorter timescale.

Our results therefore predict that magnetars can indeed be
formed in our new scenario. Magnetar formation is possible at
sufficiently long rotation periods to be compatible with the lower
limit of 5 ms inferred from regular SN remnants associated with
magnetars. With the saturation model of Fuller et al. (2019), the
full range of magnetar fields can be obtained within this con-
straint, even those that exhibit a strong dipolar magnetic field
Bdip ∼ 1015 G. On the other hand, with the saturation model pro-
posed by Spruit (2002), only the lower end of the magnetar fields
can be obtained with Pfin < 5 ms, while dipolar magnetic fields
&2 × 1014 G need faster rotation periods.

An important prediction of our scenario is the very intense
toroidal magnetic field, which lies between 3 × 1015 and
3 × 1016 G for parameters corresponding to radial magnetic
fields in the magnetar range. These values are compatible with
the interpretation of the X-ray flux modulations observed in three
magnetars as free precession driven by an intense toroidal mag-
netic field (Makishima et al. 2014, 2016, 2019, 2021).

The intense toroidal magnetic field predicted in our scenario
also provides interesting perspectives from which to explain
the formation of low-field magnetars. For radial magnetic fields
in the range of the dipolar magnetic field deduced for these
objects (Rea et al. 2010, 2012, 2013, 2014), our model predicts
a toroidal magnetic field intensity of ∼1−3 × 1015 G. Such non-
dipolar magnetic fields are strong enough to be the energy source
of the magnetar-like emission from these objects and to explain
the variable absorption lines interpreted as proton cyclotron lines
(Tiengo et al. 2013; Rodríguez Castillo et al. 2016). We there-
fore suggest that some of the low-field magnetars may be born
with low dipolar magnetic fields, rather than evolve to this state
as assumed in the ‘worn-out’ magnetar scenario.

A question arising from our study is the location of the mag-
netic field in the PNS, which cannot be captured by our one-
zone model. As the shear due to fallback accretion is expected
to be strongest in the outer region of the PNS, one may expect
the magnetic field to be preferentially located in these outer lay-
ers. Such a concentration of the magnetic field near the surface
would have interesting consequences for its long-term evolu-
tion because the magnetic field may be confined in the crust
without significant magnetic flux threading the superconductive
core. The long-term evolution of such a crust-confined mag-
netic field configuration has been thoroughly investigated by
numerical simulations (e.g. Viganò 2013; Gourgouliatos et al.
2016; Pons & Viganò 2019). By contrast, if the magnetic field
is also present in deeper regions, its evolution in the supercon-
ductive core and the transition layer with the crust must be taken
into account. A few papers studied this evolution in numer-
ical simulations (e.g. Henriksson & Wasserman 2013; Lander
2013; Ciolfi & Rezzolla 2013) but these lead to a slower mag-
netic field evolution that is incompatible with magnetar obser-
vations (Elfritz et al. 2016). These results would favour initial
crust-confined magnetic fields but need to be confirmed in more
realistic 3D simulations of the magneto-thermal evolution in the
whole neutron star. We also note that the localisation of the mag-
netic field in our magnetar formation scenario should be studied
in more detail. On the one hand, the stratification increases by a
factor of ∼2.5 close to the PNS surface, which might weaken the
magnetic field and confine it closer to the surface. On the other
hand, the shear can be expected to become significant in the bulk
of the PNS after angular momentum has been partly redistributed
by the Tayler-Spruit dynamo. Some of the magnetic field may
also be transported to deeper regions via the Tayler instability or
during the relaxation to a stable equilibrium.

Another relevant question is the geometry of the mag-
netic field amplified by the Tayler-Spruit dynamo. One should
keep in mind that our comparison to magnetars relies on the
assumption that the generated radial field Br is mostly dipolar.
Although the real geometry of the poloidal magnetic field gen-
erated by the Tayler-Spruit dynamo is not known, it is likely
to be partly non-dipolar, meaning that the large-scale dipolar
magnetic field is a fraction of the radial field Br. Therefore,
corresponding predictions should be refined by studying dedi-
cated multi-dimensional models. In Petitdemange et al. (2022),
a dynamo similar to the Tayler-Spruit dynamo has been found
through numerical simulations in a configuration where the
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surface rotates slower than the core, which is therefore differ-
ent to the case of spun-up PNS. Moreover, the observed magne-
tars are cooled-down neutron stars with a stable configuration of
magnetic field. Hence, the study of the magnetic field relaxation
from a turbulent saturated state to a stable configuration is impor-
tant to estimate a more realistic intensity of the dipolar poloidal
field. Thus, numerical simulations will be essential to further
study of the evolution of the magnetic field geometry in our
framework.

A salient feature of our fallback scenario is that it decou-
ples magnetar formation from rapid progenitor rotation and from
strong magnetisation of the pre-collapse stars. Rapid progeni-
tor rotation is necessary for magnetar formation by the convec-
tive dynamo, which requires initial NS spin periods of .10 ms
(Raynaud et al. 2022), and by the magnetorotational instability
(Reboul-Salze et al. 2021a,b). Strong magnetisation of the pre-
collapse star on the other hand is a crucial aspect in the fos-
sil field scenario or the stellar merger scenario (Schneider et al.
2019). Instead of requiring fast rotation or strong magnetic
field in the progenitor core, our scenario predicts magnetar for-
mation when fallback deposits a sufficient amount of angular
momentum on the PNS surface. With the angular momentum
of the mass accreted by the NS being limited by the Keplerian
value, magnetars are formed for accreted masses of more than
∼1.1 × 10−2 M� (case of Fuller et al. 2019) and ∼4 × 10−2 M�
(case of Spruit 2002) in our scenario. The fallback mass should
be several times larger than the accreted mass, because angular
momentum loss must be expected to lead to mass loss during
the accretion process. Therefore, fallback masses of more than a
few 10−2 M� to 10−1 M� seem to be needed. Based on 1D mod-
els of neutrino-driven core-collapse SN explosions, this indi-
cates a preference for single stars with zero-age-main-sequence
(ZAMS) masses above about ∼18 M� (Sukhbold et al. 2016) and
helium stars (hydrogen-stripped stars in binaries) with ZAMS
masses above 30−40 M� (depending on details of the mass-loss
evolution); although the compactness differences between the
single-star models of Sukhbold & Woosley (2014) compared to
those of Sukhbold et al. (2018) as well as 3D explosion effects
(which increase the fallback mass; Janka et al. 2022) may shift
these ZAMS masses to lower values. This would be consis-
tent with the observations constraining magnetar progenitors
to masses higher than 30 M� (Gaensler et al. 2005; Bibby et al.
2008; Clark et al. 2008) and also with the case of the magne-
tar SGR1900+14, whose progenitor mass was estimated to be
17 ± 2 M� (Davies et al. 2009).

While our model avoids the uncertainty of the progenitor
core rotation and magnetic field, it implies coping with the
uncertainties on the fallback process. A precise modelling of the
fallback depends on such challenging questions as how a long-
lasting post-explosion phase where downflows to the PNS coex-
ist with outflows of neutrino-heated matter transitions into the
fallback accretion as discussed by Janka et al. (2022); the com-
plex dynamical processes that determine the fraction of fallback
matter that gets accreted by the PNS from a fallback disk; and
the efficiency of the accretion to spin-up the PNS. Our scenario
should therefore be explored in more depth by more realistic fall-
back models.

Following its saturation, the PNS magnetic field may inter-
act with the newly formed disk of fallback matter and is strong
enough to influence the fallback accretion mechanism. We did
not model this interaction because our study was focused on
the phase of magnetic field amplification. Nevertheless, this
could strongly influence the rotation of the newly born magne-
tar. The evolution of the PNS-fallback disk system depends on

three characteristic radii (Metzger et al. 2018; Beniamini et al.
2020; Lin et al. 2020; Ronchi et al. 2022): (i) the magneto-
spheric radius rm, which is the radius at which the matter is
blocked by the magnetic barrier, (ii) the corotation radius rc
where the matter has the same rotation frequency as the PNS,
and (iii) the light cylinder radius rlc, which is the ratio of light
speed to the PNS rotation frequency. The strong magnetic field
repels the magnetosphere behind the corotation radius (i.e. rc <
rm) which stops the accretion and so the PNS spin-up. If the
fallback accretion rate of the disk is large enough, the inner
part of the disk penetrates the light cylinder (i.e. rlc > rm)
and opens up a part of the magnetic field lines. The PNS-
fallback disk system enters the so-called propeller regime and
the PNS angular momentum is transported towards the disk
via the magnetic dipole torque. This mechanism is thought to
extract the PNS angular momentum very efficiently; for instance
Beniamini et al. (2020) even predict magnetars spun down to
rotation periods of ∼106 s after ∼103 yr. For this reason, this sce-
nario is often invoked to explain the ultra-long-period magnetars
such as 1E 1613 (e.g. De Luca et al. 2006; Li 2007; Rea et al.
2016) or the recently observed GLEAM-X J162759.5-523504.3
(Ronchi et al. 2022), which have respective rotation periods of
∼2.4 × 104 s and ∼1.1 × 103 s. It would be interesting to include
such a spin-down model in our magnetar formation scenario in
order to obtain a prediction of the rotation period at later times.

Finally, the PNS-fallback disk system has also been invoked
to explain the light curve of luminous and extreme SNe of types
Ib/c (e.g. Dexter & Kasen 2013; Metzger et al. 2018; Lin et al.
2021). We may also expect our scenario to produce these
types of explosions depending on the amount of accreted mass
during the dynamo process. First, PNSs that have accreted
∼2−3 × 10−2 M� of fallback matter before the magnetic field
saturation have rotation periods of around 10−20 ms, which are
too slow to produce extreme explosions. According to our sce-
nario, their typical magnetic field is of 1−5 × 1014 G, which
would lead to regular luminous SNe Ib/c. Their light curve
would be dominated by the PNS spin-down luminosity instead
of the 56Ni decay luminosity (Ertl et al. 2020; Afsariardchi et al.
2021). Second, for fallback masses spinning up the PNSs
to millisecond rotation periods, the magnetic field saturates
a few 10 s after the core bounce at Br & 5 × 1014 G. The
rotational energy can be kept for later times and be slowly
extracted to irradiate its environment, which might lead to
superluminous SNe I (Woosley 2010; Kasen & Bildsten 2010;
Bersten et al. 2016; Margalit et al. 2018; Lin et al. 2020, 2021).
Finally, to produce extreme explosions such as hypernovae,
which have approximately ten times larger kinetic energies and
much higher 56Ni yields than the vast majority of CCSNe,
an energy injection within a timescale of .1 s is required
(Barnes et al. 2018) to explain the large masses of 56Ni &
0.2 M� inferred from their light curves (e.g. Woosley & Bloom
2006; Drout et al. 2011; Nomoto et al. 2011). For rotation peri-
ods of .1 ms, which correspond to rotational energies of
&3 × 1052 erg, our model provides a radial magnetic field of Br &
2.6 × 1016 G, which may be enough to inject the energy quickly
through magnetic dipole spin-down only (Suwa & Tominaga
2015). The presence of a propeller regime would enhance the
PNS spin-down such that a weaker dipolar magnetic field of
∼2 × 1015 G would also produce a hypernova (Metzger et al.
2018) but through a propeller-powered explosion. Therefore,
our magnetic-field-amplification scenario by PNS accretion
or fallback accretion may be of relevance to a wide vari-
ety of magnetar-powered phenomena in different types of SN
events.
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A B S T R A C T 

The Tayler–Spruit dynamo is one of the most promising mechanisms proposed to explain angular momentum transport during 

stellar evolution. Its development in proto-neutron stars spun-up by supernova fallback has also been put forward as a scenario to 

explain the formation of very magnetized neutron stars called magnetars. Using three-dimensional direct numerical simulations, 
we model the proto-neutron star interior as a stably stratified spherical Couette flow with the outer sphere that rotates faster 
than the inner one. We report the existence of two subcritical dynamo branches driven by the Tayler instability. They differ 
by their equatorial symmetry (dipolar or hemispherical) and the magnetic field scaling, which is in agreement with different 
theoretical predictions (by Fuller and Spruit, respectively). The magnetic dipole of the dipolar branch is found to reach intensities 
compatible with observational constraints on magnetars. 

Key words: instabilities – magnetic fields – MHD – stars: magnetars – supernovae: general. 

1  I N T RO D U C T I O N  

Magnetars are a class of neutron stars that exhibit magnetic fields 
whose dipolar component reaches 10 14 –10 15 G, which makes them 

the strongest fields observed in the Universe. Their dissipation are 
thought to power a wide variety of emissions like giant flares (Evans 
et al. 1980 ; Hurley et al. 1999 , 2005 ; Svinkin et al. 2021 ), fast radio 
bursts (Bochenek et al. 2020 ; CHIME/FRB Collaboration 2020 ), 
and short chaotic X-ray bursts (Gotz et al. 2006 ; Coti Zelati et al. 
2018 , 2021 ). Combined with a millisecond rotation, they may pro- 
duce magnetorotational explosions, which are more energetic than 
standard superno vae e xplosions (Burrows et al. 2007 ; Dessart et al. 
2008 ; Takiw aki, Kotak e & Sato 2009 ; Bugli et al. 2020 , 2023 ; Kuroda 
et al. 2020 ; Obergaulinger & Aloy 2020 , 2021 , 2022 ; Bugli, Guilet & 

Obergaulinger 2021 ). The origin of these magnetic fields is therefore 
a crucial question to understand magnetars and their association to 
e xtreme ev ents such as gamma-ray bursts or fast radio bursts. Two 
classes of scenarios can be distinguished for magnetar formation: 
(i) the merger of a neutron star binary, which may explain the 
plateau phase and the extended emission in X-ray sources associated 
with short gamma-ray bursts (Metzger, Quataert & Thompson 2008 ; 
Gompertz, O’Brien & Wynn 2014 ; L ̈u & Zhang 2014 ). These events 
are interesting for their multimessenger signature but are expected to 
be too rare to be the main formation channel of Galactic magnetars, 
(ii) the core-collapse of a massive star, which is confirmed by 
the observation of Galactic magnetars associated with supernova 
remnants (Vink & Kuiper 2006 ; Martin et al. 2014 ; Zhou et al. 
2019 ). In the latter case, the amplification of the magnetic field may 
be due either to the magnetic flux conservation during the collapse 

� E-mail: paul.barrere@cea.fr (PB); jerome.guilet@cea.fr (JG); 
raphael.raynaud@cea.fr (RR); alexis.reboul-salze@aei.mpg.de (AR-S) 

of the iron core of the progenitor star (Ferrario & Wickramasinghe 
2006 ; Hu & Lou 2009 ; Schneider et al. 2020 ) or to a dynamo action 
in the newly born proto-magnetar. Indeed, two dynamo mechanisms 
have already been studied by numerical simulations: the convective 
dynamo (Thompson & Duncan 1993 ; Raynaud et al. 2020 ; Masada, 
Takiwaki & Kotake 2022 ; Raynaud, Cerd ́a-Dur ́an & Guilet 2022 ; 
White et al. 2022 ) and the magnetorotational instability (MRI)-driven 
dynamo (Obergaulinger et al. 2009 ; M ̈osta et al. 2014 ; Reboul- 
Salze et al. 2021 ; Guilet et al. 2022 ; Reboul-Salze et al. 2022 ). 
The y hav e been shown to produce magnetar-like magnetic fields 
for millisecond rotation periods of the proto-magnetar, especially 
for periods P � 10 ms for the conv ectiv e dynamo (Raynaud et al. 
2020 ; Raynaud et al. 2022 ). These scenarios rely on the hypothesis 
that the rotation of the proto-magnetar is determined by the rotation 
of the progenitor core. Ho we ver, it is still uncertain whether there 
are enough fast-rotating progenitor cores to form all the observed 
magnetars in the Milky Way, which represent ∼10 –40 per cent of the 
Galactic neutron star population (Kouveliotou et al. 1994 ; Woods & 

Thompson 2006 ; Gill & Heyl 2007 ; Beniamini et al. 2019 ). 
In Barr ̀ere et al. ( 2022 ), we developed a new magnetar formation 

scenario in which the rapid rotation rate of the proto-magnetar is 
not determined by the progenitor core but by the ejected matter that 
remains gravitationally bound to the proto-magnetar and eventually 
falls back on the proto-magnetar surface ∼5 –10 s after the core- 
collapse. Since the accretion is asymmetric, the fallback matter 
transfers a significant amount of angular momentum to the surface 
(Chan, M ̈uller & Heger 2020 ; Janka, Wongwathanarat & Kramer 
2022 ), which makes the surface rotate faster than the core. In Barr ̀ere 
et al. ( 2022 ), we argue that this spin-up triggers the amplification 
of the magnetic field through the Tayler–Spruit dynamo mechanism. 
This dynamo mechanism can be described as a loop: (i) a poloidal 
magnetic field is sheared into a toroidal one ( �-effect), (ii) the 
toroidal field becomes Tayler unstable after reaching a critical value 
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(Tayler 1973 ; Pitts & Tayler 1985 ), and (iii) the Tayler instability 
regenerates a poloidal field (Fuller, Piro & Jermyn 2019 ; Skoutnev, 
Squire & Bhattacharjee 2022 ; Ji, Fuller & Lecoanet 2023 ). 

The Tayler–Spruit dynamo was first modelled by Spruit ( 2002 ) to 
explain the angular momentum transport in stellar radiative zones. 
Fuller et al. ( 2019 ) provided a revised description, which tackles the 
previous critics of Spruit’s model (see Denissenkov & Pinsonneault 
2007 ; Zahn, Brun & Mathis 2007 ). A main difference between both 
descriptions resides in the saturation mechanism of the dynamo. 
Spruit ( 2002 ) supposes that magnetic energy in the large-scale 
magnetic field is damped via a turbulent cascade at a rate equal to the 
growth rate of the Tayler instability, whereas Fuller et al. ( 2019 ) rather 
expect the magnetic energy to cascade from the scale of the instability 
(and not the large-scale magnetic field) to small scales. This yields 
distinct magnetic energy damping rates and so different scalings for 
the saturated magnetic field. Their analytical results are now often 
included in stellar evolution codes (see e.g. Eggenberger, Maeder & 

Meynet 2005 ; Cantiello et al. 2014 ; Eggenberger, Buldgen & Salmon 
2019a ; Eggenberger et al. 2019b ; Bonanno, Guerrero & Del Sordo 
2020 ; den Hartogh, Eggenberger & Deheuvels 2020 ; Griffiths et al. 
2022 ). Though this dynamo has long been debated in direct numerical 
simulations (Braithwaite 2006 ; Zahn et al. 2007 ), Petitdemange, 
Marcotte & Gissinger ( 2023 ) recently reported a dynamo solution 
sharing many characteristics with the Tayler–Spruit model. Their 
numerical simulations modelled a stellar radiative zone, where the 
shear is ne gativ e, that is, the rotation rate decreases in the radial 
direction. In this Letter, we demonstrate that the Tayler instability 
can sustain different dynamo branches in the presence of positive 
shear, which gives strong support to the magnetar formation scenario 
of Barr ̀ere et al. ( 2022 ). 

2  N U M E R I C A L  SETUP  

We perform three-dimensional (3D) direct numerical simulations 
of a stably stratified and electrically conducting Boussinesq fluid 
with the pseudo-spectral code MAGIC (Wicht 2002 ; Gastine & 

Wicht 2012 ; Schaeffer 2013 ). The fluid has a constant density ρ = 

3.8 × 10 14 g cm 

−3 (which corresponds to a proto-neutron star mass of 
M = 1 . 4 M �) and evolves between two concentric spheres of radius 
r i = 3 km and r o = 12 km, rotating at the angular frequencies �i 

and �o = 2 π × 100 rad s −1 , respectively. The imposed differential 
rotation is characterized by the Rossby number Ro ≡ 1 − �i / �o 

> 0, which is varied between 0.125 and 1.2. This spherical Taylor–
Couette configuration with positive shear prevents the development 
of the MRI and allows us to study the system in a statistically steady 
state. We impose no-slip and insulating boundary conditions at the 
inner and outer spheres. In all the simulations, we keep fixed the other 
dimensionless control parameters: the shell aspect ratio χ ≡ r i / r o = 

0.25, the thermal and magnetic Prandtl numbers Pr ≡ ν/ κ = 0.1 and 
Pm ≡ ν/ η = 1, respectively, the Ekman number E ≡ ν/( d 2 �o ) = 10 −5 , 
and the ratio of the Brunt–V ̈ais ̈al ̈a to the outer angular frequency 
N / �o = 0.1. The coefficients ν, κ , η, and d ≡ r o − r i are respectively 
the kinematic viscosity, the thermal dif fusi vity, the resisti vity, and 
the shell width. As discussed in section 1.3 in the Supplemental 
Materials, the values of the dimensionless parameters are chosen 
for numerical convenience because realistic parameters of proto- 
neutron star interiors are out of reach with the current computing 
power. The magnetic energy is measured by the Elsasser number 

 ≡ B 

2 
rms / (4 πρη�o ). The simulations are initialized either from a 

nearby saturated state, or with a weak ( 
 = 10 −4 ) or a strong ( 
 = 

10) toroidal axisymmetric field with a given equatorial symmetry; it 

can be either dipolar (i.e. equatorially symmetric 1 with l = 2, m = 0) 
or quadrupolar (i.e. antisymmetric with l = 1, m = 0). We define a 
turbulent resistive time τ̄η = 

(
πr o / ̄� 

)2 
/η ∼ 0 . 2 d 2 /η, where �̄ = 10 

is the typical value of the average harmonic degree of the time- 
averaged magnetic energy spectrum. In the following, we will term 

a solution metastable when a steady state is sustained for a time 
interval t > 0 . 3 ̄τη,and stable for t � τ̄η (up to 5 . 7 ̄τη for the 
simulation at Ro = 0.2). 

3  RESULTS  

We find in our set of simulations several dynamo branches rep- 
resented by different colours in the bifurcation diagram shown in 
Fig. 1 . When the differential rotation is low, the flow can not amplify 
a weak magnetic field (black crosses), but when R o > R o c W 

∼ 0 . 62, 
the magnetic field grows exponentially to reach a metastable or a 
stable saturated dynamo state (black dots). This kinematic dynamo is 
driven by an hydrodynamic instability of the Stewartson layer whose 
threshold is Ro c hyd ∼ 0 . 175 (dashed vertical black line), which is in 
agreement with Hollerbach ( 2003 ). When Ro � 0.8, the kinematic 
gro wth is follo wed by a non-linear gro wth and the system transitions 
directly to another branch with a larger magnetic energy (green 
circles). Restarting from a nearby saturated solution or a strong 
toroidal field with quadrupolar symmetry (mauve dashed arrows), 
we find that the stability of this branch extends to Rossby number 
as low as Ro c H ∼ 0 . 37 < Ro c W 

, which indicates that this dynamo 
is subcritical. By starting from a strong toroidal field with dipolar 
symmetry, we observe that this subcritical branch is in bistability 
with another one which presents even stronger saturated magnetic 
fields B rms ∈ 

[
4 × 10 14 , 1 . 1 × 10 15 

]
G (red circles). This branch is 

also subcritical since it can be maintained for Rossby numbers as 
low as R o > R o c D ∼ 0 . 19. Moreo v er, the two subcritical branches 
do not only differ by their magnetic field strength but also by 
their equatorial symmetry, as seen in the 3D snapshots and the 
surface maps of the magnetic field in Fig. 1 . Indeed, the magnetic 
field shows a dipolar symmetry on the stronger dynamo branch, 
whereas it is hemispherical on the weaker one. The latter can be 
interpreted as the superposition of modes with opposite equatorial 
symmetry (Gallet & P ́etr ́elis 2009 ), which is consistent with the fact 
that we do find quadrupolar solutions (mauve circles in Fig. 1 ). 
These are only metastable for R o > R o c Q ∼ 0 . 7 and transition 
to a stable dipolar or hemispherical solution. Finally, we note that 
the hemispherical dynamos with Ro � 0.8 (light green circles in 
Figs 1 and 2 ) display parity modulations (i.e. the solution evolves 
between hemispherical, dipole, and quadrupole symmetric states). 
This behaviour is reminiscent of the so-called Type 1 modulation 
identified in other dynamo set-ups (Knobloch, Tobias & Weiss 1998 ; 
Raynaud & Tobias 2016 ) and likely results from the coupling of 
modes with opposite parity as the equatorial symmetry breaking of 
the flow increases at larger Rossby numbers. 

The difference between the three dynamo branches is also clear 
in Fig. 2 , where we see that the hemispherical branch saturates 
below the equipartition, with an energy ratio increasing with Ro 
from ∼0.014 up to ∼0.56. By contrast, the dynamos of the dipolar 
branch are in a superequipartition state ( E b / E k > 1) and follow the 
magnetostrophic scaling E b / E k ∝ Ro −1 characteristic of the Coriolis–
Lorenz force balance (Roberts & Soward 1972 ; Dormy 2016 ; Aubert, 
Gastine & Fournier 2017 ; Dormy, Oruba & Petitdemange 2018 ; 
Augustson, Brun & Toomre 2019 ; Schwaiger, Gastine & Aubert 

1 For the choice of these definitions, see Gubbins & Zhang ( 1993 ). 
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Figure 1. Left: Bifurcation diagram of the time and volume averaged Elsasser number (and root mean square magnetic field) versus the Rossby number. 
Distinct dynamo branches are represented: dipolar (red), quadrupolar (mauve), hemispherical (green), and kinematic (black) whose respective thresholds 
are R o c D ∼ 0 . 19, R o c Q ∼ 0 . 7, R o c H ∼ 0 . 37, and R o c W 

∼ 0 . 62. The hydrodynamic instability is triggered for Ro c hyd > 0 . 177. Dark green circles are stationary 
hemispherical dynamos and light green ones display parity modulations. Black crosses indicate failed dynamos, empty circles metastable solutions. Arrows 
attached to circles indicate the initial condition of the associated simulation. The black half empty circle specifies that the solution was found to be metastable in 
a simulation and stable in another. The error bars indicate the standard deviation. Right: snapshots of the magnetic field lines and surface radial fields associated 
to the different main dynamo branches at Ro = 0.75: dipolar (top), hemispherical (middle), and kinematic (bottom). 

Figure 2. Time-averaged ratio of the magnetic energy to the kinetic energy 
densities as a function of the Rossby number. The error bars indicate the 
standard deviation. 

2019 ; Seshasayanan & Gallet 2019 ; Raynaud et al. 2020 ). This is 
also confirmed by force balance spectra shown in fig. S1 in the 
Supplemental Materials. 

Both subcritical dynamos show magnetic fields concentrated along 
the rotation axis, which differs significantly from the subcritical 
solutions found with a ne gativ e shear by (Petitdemange et al. 2023 ); 
this is also strikingly different from the magnetic field generated on 
the equatorial plane by the kinematic dynamo (see 3D snapshots of 
Fig. 1 ). This suggests that the dipolar and hemispherical dynamos 
are driven by a different mechanism. We argue that they are driven by 
the Tayler instability according to the following arguments. First, the 
axisymmetric toroidal magnetic component is clearly dominant since 
it contains 53 –88 per cent of the total magnetic energy. Second, the 
simulations show a poloidal magnetic field with a dominant m = 1 

Figure 3. Snapshots of the azimuthal slices of the angular velocity (left) and 
the magnetic field along the cylindrical radius s ≡ r sin θ (right) of the dipolar 
dynamo at Ro = 0.75. 

mode (see Supplemental Materials figs S2 and S3), which is the most 
unstable mode of the Tayler instability (Zahn et al. 2007 ; Ma & Fuller 
2019 ). In the azimuthal cut of the magnetic field component B s in 
Fig. 3 , the Tayler mode also appears clearly close to the poles, where 
it is expected to develop for a toroidal field generated by the shearing 
of a poloidal field (see Supplemental Materials fig. S4). This is also 
consistent with the 3D snapshots of the dipolar and hemispherical 
branches in Fig. 1 where the toroidal magnetic field seems prone to 
a kink instability. Third, as in Petitdemange et al. ( 2023 ), the system 

bifurcates from the kinematic to the hemispherical branch in the 
vicinity of the threshold of the Tayler instability (Spruit 1999 , 2002 ) 


 

c 
φ ≡ B 

c 
φ

2 

4 πρη�o 
∼ χ

1 − χ

N 

�o 

√ 

P r 

E 

∼ 3 . 3 . (1) 
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Figure 4. Time series of the maximum along the cylindrical radius s of 
the axisymmetric toroidal magnetic energy measured locally at z = 0.45 r o , 
for stable (black) and metastable (green) kinematic dynamos at Ro = 0.75. 
The dashed red line indicates the analytical threshold of the Tayler instability 
(equation 1 ). Dark lines show a running average and dotted green lines around 
t ∼ 20 s indicate missing data. 

Indeed, if we focus on the stable and metastable kinematic solutions 
found at Ro = 0.75, we see in Fig. 4 that the local maximum of 
the toroidal axisymmetric field is in both cases close to the critical 
value abo v e which it is e xpected to become unstable. The bifurcation 
from the kinematic toward the hemispherical branch that is observed 
for the metastable solution appears hence as the result of turbulent 
fluctuations departing far enough abo v e the threshold of the Tayler 
instability. 

Finally, we compare our numerical results to the theoretical 
predictions regarding the saturation of the Tayler–Spruit dynamo. 
Note that these predictions assume the scale separation ω A � �o �
N , where the Alfv ́en frequency is defined by ω A ≡ B φ/ 

√ 

4 πρr 2 o ∼
12 . 1 

(
B φ/ 10 15 G 

)
Hz . Our numerical models assume N / �o = 0.1 to 

limit the computational costs, whereas for a typical PNS spun-up 
by fallback to a period of 1–10 ms we expect N / �o ∼ 1–10. On 
the other hand, the achieved magnetic field follows the right scale 
separation with ω A / �o � 0.02, which is expected to determine the 
saturation mechanism of the Tayler instability (Ji et al. 2023 ). Fig. 
5 displays the axisymmetric toroidal and poloidal magnetic fields 
(top), the dipole field (middle) and the Maxwell torque (bottom) as a 
function of an ef fecti ve shear rate q measured locally in the saturated 
state of the dynamo (see Supplemental Materials fig. S5). For the 
dipolar branch (red), we find that the power laws B 

m = 0 
tor ∝ q 0 . 36 ± 0 . 05 

and B 

m = 0 
pol ∝ q 0 . 62 ± 0 . 07 fit the saturated magnetic field, while we 

find B s B φ ∝ q 1.0 ± 0.02 or B 

m = 0 
s B 

m = 0 
φ ∝ q 1 . 1 ± 0 . 04 , depending on 

whether we take into account non-axisymmetric contributions to 
compute the Maxwell torque T M 

. The scaling exponents are thus 
in good agreement with the theoretical predictions of Fuller et al. 
( 2019 ) B 

m = 0 
tor ∝ q 1 / 3 , B 

m = 0 
pol ∝ q 2 / 3 , and T M 

∝ q (red dotted lines 
in Fig. 5 ). Contrary to their prediction, ho we ver, our torque is not 
dominated by the axisymmetric magnetic field, which may be related 
to their assumption of a stronger stratification. Interestingly, the 
hemispherical branch (green) does not follow the same scalings: 
for q ≥ 0.2, we find B 

m = 0 
tor ∝ q 2 . 1 ± 0 . 31 and B 

m = 0 
pol ∝ q 2 . 0 ± 0 . 28 for 

the magnetic field, and B s B φ ∝ q 2.7 ± 0.40 or B 

m = 0 
s B 

m = 0 
φ ∝ q 3 . 8 ± 0 . 70 

for the Maxwell torque. These results globally support Spruit’s 
predictions (Spruit 2002 ) B 

m = 0 
tor ∝ q , B 

m = 0 
pol ∝ q 2 , and T M 

∝ q 3 (green 

Figure 5. Root mean square (RMS) toroidal and poloidal axisymmetric 
magnetic fields (top), RMS magnetic dipole (middle), and RMS magnetic 
torque (bottom) as a function of the time-averaged shear rate measured in 
the steady state, for the dipolar (red) and hemispherical (green) dynamo 
branches. Dotted lines shows the best fits obtained with Fuller’s (red) and 
Spruit’s (green) theoretical scaling laws, respectively. 

dotted lines) 2 . If we focus on the dipole field, we find the following 
power laws: B dip ∝ q 0.66 ± 0.03 and B dip ∝ q 1.1 ± 0.4 , for the dipolar 
and hemispherical branches, respectively. The dipole field on the 
strong branch therefore follows the same scaling as the axisymmetric 
poloidal field and is only ∼33 per cent weaker. 

4  C O N C L U S I O N S  

To conclude, we show that the Tayler–Spruit dynamo also exists in 
the presence of positive shear. We demonstrate for the first time the 
existence of two subcritical branches of this dynamo with distinct 
equatorial symmetries, dipolar, and hemispherical. Moreo v er, the 
former follows Fuller’s theoretical predictions, while the latter is 
in o v erall agreement with Spruit’s model. Compared to the study 
of Petitdemange et al. ( 2023 ) that use a ne gativ e shear, our results 
present a similar dynamical structure, with a bifurcation diagram 

characterized by a bistability between kinematic and subcritical 
dynamo solutions. The magnetic field of their Tayler–Spruit dynamo 

2 In the case of the toroidal magnetic field, the power-law index from the fit 
is in slight tension with the theoretical prediction. Ho we ver, this tension is 
not very significant: it is driven mainly by a single data point and disappears 
if we change the threshold from q > 0.2 to q > 0.25 to exclude the model 
Ro0.5as with q = 0.2. 
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is, ho we ver, dif ferent since it is characterized by a smaller scale 
structure localized near the inner boundary in the equatorial plane, 
and induces a torque scaling according to Spruit’s prediction. Our 
study shows a magnetic field geometry concentrated near the pole in 
agreement with the expectation of the Tayler–Spruit dynamo and a 
more complex physics, with the existence of two different branches 
that can not be captured by a single scaling law. Extended parameter 
studies will be needed to further assess the impact of the resistivity 
and the stratification on this dynamo instability and better constrain 
its astrophysical implications. 

Our results are of particular importance for stellar evolution 
models by confirming the existence of the Tayler–Spruit dynamo and 
by deepening our physical understanding of its complex dynamics. 
The y also giv e strong support to the new magnetar formation scenario 
proposed by Barr ̀ere et al. ( 2022 ), which relies on the development of 
a Tayler-instability driven dynamo in the presence of a positive shear. 
We validate the assumption that the magnetic dipole is a significant 
fraction of the poloidal magnetic field and follows the same scaling. 
Extrapolating our results for the dipolar branch to q ∼ 1 as expected 
in Barr ̀ere et al. ( 2022 ), we obtain a magnetic dipole intensity of 
∼3.2 × 10 14 G and an even stronger axisymmetric toroidal field of 
∼2.1 × 10 15 G. These orders of magnitude are similar to those found 
in Barr ̀ere et al. ( 2022 ) for the same rotation period of P o ≡ 2 π / �o = 

10 ms, and fall right in the magnetar range (Olausen & Kaspi 2014 ). 
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ABSTRACT

The formation of highly magnetized young neutron stars, called magnetars, is still a strongly debated question. A promising scenario
invokes the amplification of the magnetic field by the Tayler-Spruit dynamo in a proto-neutron star (PNS) spun up by fallback. Barrère
et al. (2023) supports this scenario by demonstrating that this dynamo can generate magnetar-like magnetic fields in stably stratified
Boussinesq models of a PNS interior. To further investigate the Tayler-Spruit dynamo, we perform 3D-MHD numerical simulations
with the MagIC code varying the ratio between the Brunt-Väisälä frequency and the rotation rate. We first demonstrate that a self-
sustained dynamo process can be maintained for a Brunt-Väisälä frequency about 4 times higher than the angular rotation frequency.
The generated magnetic fields and angular momentum transport follow the analytical scaling laws of Fuller et al. (2019), which
confirms our previous results. We also report for the first time the existence of an intermittent Tayler-Spruit dynamo. For a typical
PNS Brunt-Väisälä frequency of 103 s−1, the axisymmetric toroidal and dipolar magnetic fields range between 1.2× 1015 − 2× 1016 G
and 1.4 × 1013 − 3 × 1015 G, for rotation periods between of 1− 10 ms. Thus, our results provide numerical evidence that our scenario
can explain the formation of magnetars. As the Tayler-Spruit dynamo is often invoked for the angular momentum transport in stellar
radiative zones, our results are also of particular importance in this field and we provide a calibration of the Fuller et al.’s prescription
based on our simulations, with a dimensionless normalisation factor of the order of 10−2.

Key words. stars: magnetic fields – stars: magnetars – supernovae: general – magnetohydrodynamics (MHD) – dynamo – methods:
numerical

1. Introduction

Soft gamma repeaters and anomalous X-ray pulsars are two
classes of neutron stars (NSs) that exhibit a wide variety of
high-energy emissions from short chaotic bursts during outbursts
phases (e.g. Gotz et al. 2006; Younes et al. 2017; Coti Zelati et al.
2018, 2021) to giant flares (Evans et al. 1980; Hurley et al. 1999,
2005; Svinkin et al. 2021), which are the brightest events ob-
served in the Milky Way. These neutron stars are called magne-
tars because their emissions have been shown to be powered by
the dissipation of their ultra-strong magnetic fields (Kouveliotou
et al. 1994). Indeed, these emissions show that they rotate with
periods of 2−12 s and have stronger rotation braking than typical
NSs (e.g. Rea et al. 2012; Olausen & Kaspi 2014). If the spin-
down is due to the extraction of rotational energy by a magnetic
dipole, we can infer that most magnetars exhibit a surface mag-
netic dipole of 1014 − 1015 G, which are the strongest known in
the Universe. Three magnetars, however, display weaker mag-
netic dipoles of 6 × 1012 − 4 × 1013 G (Rea et al. 2010, 2012,
2013, 2014) but absorption lines detected in the X-ray spectra
of two of these magnetars suggest the presence of stronger non-
dipolar magnetic fields of 2 × 1014 − 2 × 1015 G (Tiengo et al.
2013; Rodríguez Castillo et al. 2016). These ‘low-field’ magne-
tars therefore demonstrate that an ultra-strong surface magnetic

⋆ e-mail: paul.barrere@cea.fr

dipole is not necessary for a neutron star to produce magnetar-
like emission.

Magnetars are also suspected to be the central engine of ex-
treme events. In combination with a millisecond rotation period,
magnetars in their proto-neutron star (PNS) stage may power
magnetorotational supernova (SN) explosions which are more
energetic than typical neutrino-driven SNe (e.g. Burrows et al.
2007; Dessart et al. 2008; Takiwaki et al. 2009; Kuroda et al.
2020; Bugli et al. 2020, 2021, 2023; Obergaulinger & Aloy
2020, 2021, 2022). The formation of a millisecond magnetar is a
popular scenario to explain super-luminous SNe (Woosley 2010;
Kasen & Bildsten 2010; Dessart et al. 2012; Inserra et al. 2013;
Nicholl et al. 2013) and hypernovae, of which the latter are asso-
ciated to long gamma-ray bursts (GRBs ; Duncan & Thompson
1992; Zhang & Mészáros 2001; Woosley & Bloom 2006; Drout
et al. 2011; Nomoto et al. 2011; Gompertz & Fruchter 2017;
Metzger et al. 2011, 2018). In the case of binary NS mergers,
the NS remnant may be a magnetar whose magnetic fields power
the plateau phase observed in short GRBs afterglows (e.g. Lü &
Zhang 2014; Gompertz et al. 2014; Kiuchi et al. 2024).

Recently, the observation of the fast radio burst
FRB 200428 was associated to X-ray bursts of the magne-
tar SGR 1935+2154 (Bochenek et al. 2020; CHIME/FRB
Collaboration et al. 2020; Mereghetti et al. 2020; Zhu et al.
2023; Tsuzuki et al. 2024), which supports magnetar-powered
emission scenarios to explain at least a fraction of FRBs.
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In order to better understand these phenomena, it is thus es-
sential to investigate the question of magnetar formation and es-
pecially the origin of their ultra-strong magnetic fields. The asso-
ciation of a few magnetars with SN remnants suggests that they
are born during core-collapse SNe (Vink & Kuiper 2006; Mar-
tin et al. 2014; Zhou et al. 2019). The magnetic fields could be
amplified during the core-collapse due to the magnetic flux con-
servation (Ferrario & Wickramasinghe 2006; Hu & Lou 2009;
Schneider et al. 2019; Shenar et al. 2023). However, the mag-
netic field of the iron core of the progenitor star is not con-
strained by observations and it is uncertain whether this sce-
nario can explain the whole magnetar population (Makarenko
et al. 2021). A second type of scenario invokes a dynamo action
in the newly formed PNS to generate strong large-scale mag-
netic fields. Three mechanisms have been studied: the convec-
tive dynamo (Thompson & Duncan 1993; Raynaud et al. 2020,
2022; Masada et al. 2022; White et al. 2022), the magnetoro-
tational instability (MRI)-driven dynamo (Obergaulinger et al.
2009; Mösta et al. 2014; Rembiasz et al. 2017; Reboul-Salze
et al. 2021, 2022; Guilet et al. 2022), and the Tayler-Spruit dy-
namo (Barrère et al. 2022, 2023).

The two former dynamos have been shown to form
magnetar-like magnetic fields in the case of fast rotation. In
the framework of the millisecond magnetar model, these mech-
anisms are therefore promising to explain the formation of
the central engine extreme explosions. Nevertheless, two un-
certainties remain. First, SN remnants associated with magne-
tars show typical explosion energy of ∼ 1051 erg. This implies
that most magnetars were born in standard core-collapse super-
novae (CCSNe), which require slower rotation periods of at least
5 ms (Vink & Kuiper 2006). Second, the rotation is assumed to
stem from a fast-rotating progenitor core. It is unclear whether
there is a large enough fraction of these progenitors to explain
the entire magnetar population.

To address these points, we developed in Barrère et al. (2022)
a new formation scenario in which the PNS rotation is deter-
mined by the fallback, which is the matter that is initially ejected
by the SN explosion before eventually falling back onto the PNS.
3D CCSNe numerical simulations show that the fallback accre-
tion can significantly spin up the PNS surface (Chan et al. 2020;
Stockinger et al. 2020; Janka et al. 2022). We argued that the dif-
ferential rotation caused by this spin-up triggers the development
of the Tayler-Spruit dynamo. This dynamo mechanism is driven
by the combination of the differential rotation and the Tayler in-
stability, which is an instability triggered by perturbations of a
purely toroidal magnetic field (Tayler 1973; Goossens & Tayler
1980; Goossens et al. 1981). Studies in stellar evolution (such
as Eggenberger et al. 2005; Cantiello et al. 2014; Eggenberger
et al. 2019a,b; den Hartogh et al. 2020; Griffiths et al. 2022) often
rely on this mechanism to explain the strong angular momentum
transport (AMT) inferred via asteroseismology in sub-giant/red
giant stars (e.g. Mosser et al. 2012; Deheuvels et al. 2014, 2015;
Gehan et al. 2018). As our model in Barrère et al. (2022), these
works use analytical prescriptions to model the AMT produced
by the large-scale magnetic fields in stellar radiative zones. Two
distinct analytical models of the Tayler-Spruit dynamo are used:
the original model of Spruit (2002) and the revised one of Fuller
et al. (2019), which tackles previous criticism of the original
model. The prescriptions, however, can not take into account
the strong non-linearity behind the dynamo mechanism, which
impels numerical investigations of its 3D complex dynamics to
better characterize its effects in both astrophysical contexts.

Petitdemange et al. (2023); Petitdemange et al. (2024);
Daniel et al. (2023) performed 3D direct numerical simulations

of dynamo action in a stably-stratified Couette flow in the con-
text of stellar radiative layers and so with a differential rotation
in which the inner core rotates faster than the outer layer. They
argued that the dynamo was driven by the Tayler instability and
found scaling laws in agreement with the prescriptions of Spruit
(2002). In our numerical study Barrère et al. (2023), the setup is
different with an outer sphere rotating faster than the core, which
is relevant to our magnetar formation scenario. We demonstrated
the existence of more complex dynamics with two Tayler-Spruit
dynamo branches, which have distinct magnetic field strengths
and geometries: the weaker branch shows a hemispherical field
while the strongest one displays a dipolar symmetry, i.e. the
magnetic field is equatorially symmetric. Furthermore, the for-
mer follows the analytical scaling of Spruit (2002), while the
latter is in agreement with the predictions of Fuller et al. (2019).
Lastly, the dipolar dynamo could reach axisymmetric toroidal
and dipole magnetic fields up to ∼ 2×1015 G and ∼ 3×1014 G, re-
spectively. Although such intensities seem relevant to form mag-
netars, these models considered only a fixed ratio of the Brunt-
Väisälä to the surface angular frequency N/Ωo = 0.1, whereas it
is expected to cover the range N/Ωo ∈ [0.1, 10] in real PNSs.

Therefore, this article aims at investigating the impact of
N/Ωo on the dipolar Tayler-Spruit dynamo discovered in Barrère
et al. (2023). The study of the hemispherical dynamo will lead to
another paper more focused on the complex physics behind the
Tayler-Spruit dynamos. In the following, Sect. 2 describes the
governing equations and the numerical setup of our simulations.
We present the results in Sect. 3, which will be applied to the
question of magnetar formation in Sect. 4. Finally, we discuss
the results and conclude in Sect. 5 and Sect. 6, respectively.

2. Numerical setup

2.1. Governing equations

As in Barrère et al. (2023), we model the PNS interior as a sta-
bly stratified and electrically conducting fluid. We also adopt
the Boussinesq approximation and consider a fluid with a con-
stant density ρ = 3.8 × 1014 g cm−3, which corresponds to a
PNS with a radius of ro = 12 km and a mass of M = 1.4 M⊙.
The fluid evolves in a spherical Taylor-Couette configuration,
i.e. between two concentric spheres of radius ri = 3 km and ro
which rotates with the respective rates Ωi = 2π × 25 rad s−1 and
Ωo = 2π × 100 rad s−1. In the reference frame rotating with the
surface at the angular velocityΩo = Ωoez, the Boussinesq MHD
equations read

∇ · v = 0 , (1)

Dtv = −1
ρ
∇p′ − 2Ωoez × v − N2Θer +

1
4πρ

(∇ × B) × B + ν∆v ,

(2)
DtΘ = κ∆Θ , (3)
∂tB = ∇ × (u × B) + η∆B , (4)
∇ · B = 0 , (5)

where B is the magnetic field, v is the velocity field, p′ is the
non-hydrostatic pressure, ρ is the mean density of the PNS,
g = gor/ro is the gravitation field, and α ≡ ρ−1(∂Tρ)p is the
thermal expansion coefficient. ez and er are the unit vectors of
the axial and the spherical radial directions, respectively. θ is the
buoyancy variable defined by

Θ ≡ − g
N2

ρ′

ρ
, (6)
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Fig. 1. Viscous Elsasser number (and root mean square magnetic field) as a function of the ratio of the Brunt-Väisälä frequency to the rotation
rate at the outer sphere. Filled and empty markers represent self-sustained and transient dynamos, respectively. The black dashed vertical line and
arrow indicate the zone in which the fluid is hydrodynamically unstable. The inset represents a 3D plot of the radial velocity (violet and green
isosurfaces are the positive and negative values, respectively) and the radial magnetic field (red and blue isosurfaces are the positive and negative
values, respectively) in a run at Pm = 2 and N/Ωo = 2. The grey arrow points to the run location in the diagram.

where ρ′ is the density perturbation due to the combined effect
of the electron fraction and entropy perturbations and

N ≡
√
−g
ρ

(
∂ρ

∂S

∣∣∣∣∣
P,Ye

dS
dr
+
∂ρ

∂Ye

∣∣∣∣∣
P,S

dYe

dr

)
, (7)

is the Brunt-Väisälä frequency with the electron fraction Ye, and
the entropy S , respectively.

In the above equations, we assume that the magnetic diffu-
sivity η, the kinematic viscosity ν, and the “thermal” diffusivity κ
are constant. We also assume that the thermal and lepton number
diffusivities are equal, which allows us to describe the buoyancy
associated with both entropy and lepton number gradients with
the use of a single buoyancy variable θ (Guilet et al. 2015).

Apart from the magnetic diffusivity which relates to the elec-
trical conductivity of electrons, the physical interpretation of the
other transport coefficients can lead to different estimates, de-
pending on whether neutrinos are considered or not to be the
main source of diffusive processes (see Sect. 1.3 of the supple-
mentary materials in Barrère et al. 2023).

Finally, we apply no-slip, electrically insulating, and fixed
buoyancy variable boundary conditions on both shells.

2.2. Numerical methods

We use the open source pseudo-spectral code MagIC1 (Wicht
2002; Gastine & Wicht 2012; Schaeffer 2013) to integrate
Eqs. (1)–(5) in 3D spherical geometry. To satisfy the solenoidal
conditions (1) and (5), the velocity and magnetic fields are de-
composed in poloidal and toroidal components (Mie representa-
tion),

ρu = ∇ × (∇ ×Wer) + ∇ × Zer , (8)
B = ∇ × (∇ × ber) + ∇ × a jer , (9)

1 Commit 2266201a5 on https://github.com/magic-sph/magic

where W and Z (b and a j) are the poloidal and toroidal poten-
tials for the velocity (magnetic) field. The whole system of equa-
tions is then solved in spherical coordinates by expanding the
scalar potentials in Chebyshev polynomials in the radial direc-
tion, and spherical harmonic functions in the angular directions.
The time-stepping scheme used is the implicit/explicit Runge-
Kutta BPR353 (Boscarino et al. 2013). We refer the reader to the
MagIC online documentation2 for an exhaustive presentation of
the numerical techniques.

2.3. Input parameters

The resistivity is controlled by the magnetic Prandtl number
Pm ≡ ν/η. Though its realistic value in PNSs (Pm ∼ 1011, Bar-
rère et al. 2023) can not be reached by numerical simulations,
we stay in the regime Pm ⩾ 1 as we impose Pm ∈ [1, 4]. We
keep fixed the other dimensionless control parameters: the shell
aspect ratio χ ≡ ri/ro = 0.25 and width d ≡ ro − ri, the Ek-
man number E ≡ ν/(d2Ωo) = 10−5, the thermal Prandtl numbers
Pr ≡ ν/κ = 0.1, and the Rossby number Ro ≡ 1−Ωi/Ωo = 0.75,
which controls the imposed differential rotation.

The imposed stable stratification is characterized by the
Brunt-Väisälä frequency N (Eq. (7)). In our parameter study, the
ratio N/Ωo is varied between 0.1 and 10 and so covers the PNS
regime. In practice, this ratio is related to the Rayleigh number
Ra ≡ −(N/Ω)2Pr/E2, which is negative in the regime of stable
stratification.

The resolution is fixed at (nr, nθ, nϕ) = (257, 256, 512) for
all the runs. A few simulations were rerun with a higher reso-
lution of (nr, nθ, nϕ) = (481, 512, 1024) but showed no signifi-
cant change compared to runs with the usual resolution (see Ap-
pendix).

The simulations are initialized either from a nearby saturated
state or a strong (Bϕ = 3.4 × 1014 G) toroidal axisymmetric field

2 https://magic-sph.github.io
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with a dipolar equatorial symmetry, i.e. equatorially symmetric3

with l = 2,m = 0. We define a turbulent resistive time τ̄η =(
πro/ℓ̄

)2
/η ∼ 0.2d2/η, where ℓ̄ = 10 is the typical value of the

average harmonic degree of the time-averaged magnetic energy
spectrum. In the following, we will term a solution ‘transient’
when a steady state is sustained for a time interval ∆t > 0.3τ̄η,
and ‘stable’ for ∆t ⩾ τ̄η.

We start with the run named ‘Ro0.75s’ from Barrère et al.
(2023), where the stratification is N/Ωo = 0.1. The saturated
state of this dynamo is used to initialise the next simulation with
a stronger stratification. The whole set of simulations is initi-
ated similarly using the nearby saturated state of a less stratified
run. With this procedure, N/Ωo is increased gradually in order
to study the evolution of the dynamo branch.

2.4. Output parameters

We first characterize our models by computing the time aver-
age of the kinetic and magnetic energy densities (after filtering
out any initial transient). The latter is expressed in terms of the
viscous Elsasser number Λν ≡ Λ/Pm = B2

rms/(4πρνΩo) and
used to compute different root-mean-square (RMS) estimates of
the magnetic field. In addition to the total field, we distinguish
the poloidal and toroidal fields based on the Mie representation
(Sect. 2.2), while the dipole field refers to the l = 1 poloidal
component.

3. Results

The following sections gather the different results we obtain
from the set of numerical simulations listed in appendix B. We
first describe the global dynamics of the dipolar Tayler-Spruit
dynamo in the parameter space in Sect. 3.1. Then, we analyse
the influence of stratification on the modes of Tayler instabil-
ity and on the generated axisymmetric magnetic fields in their
saturated state in Sect. 3.3 and Sect. 3.4, respectively. We also
present the angular momentum transport by both Reynolds and
Maxwell stresses due to the dynamo and compare the efficiencies
of mixing and angular momentum transport in Sect. 3.5. Finally,
we examine a new intermittent behaviour of the Tayler-Spruit
dynamo at N/Ωo ≥ 2, which is observed for the first time (see
Sect. 3.6).

3.1. Subcritical dynamo sustained at PNS-like stratifications

Fig. 1 shows that a self-sustained Tayler-Spruit dynamo can be
maintained up to N/Ωo = 1 for Pm = 1. For stronger stratifi-
cations, we have to increase Pm (i.e. decrease the resistivity) to
maintain the dynamo. For Pm = 4, the stationary state is self-
sustained up to N/Ωo = 4 and we obtained transient states up
to N/Ωo = 10. The self-sustained dynamo is therefore present
above the threshold for the fluid to be hydrodynamically sta-
ble at N/Ωo ∼ 1.5. This confirms the subcritical nature of the
Tayler-Spruit dynamo, which was already observed in previous
studies (Petitdemange et al. 2023; Barrère et al. 2023). We did
not simulate fluids at greater Pm values for reasons of numerical
costs. Given the trend with Pm observed in our simulations as
well as theoretical expectations on the Tayler instability thresh-
old, we would expect the Tayler-Spruit dynamo to exist at still
higher values of N/Ω for the higher values of Pm relevant to a
PNS.
3 For the choice of these definitions, see Gubbins & Zhang (1993).

3.2. Impact on the differential rotation

The meridional slices of the angular rotation frequency Ω illus-
trate the impact of stable stratification on the rotation profile:
we see that the shear concentrates closer to the inner sphere
and increases with N/Ωo. At the same time, the rotation profile
smoothly transits from a quasi-cylindrical to a spherical geome-
try, which is an effect already observed in stably stratified flows.
Analytical and numerical studies of these flows (e.g. Barcilon
& Pedlosky 1967a,b,c; Gaurat et al. 2015; Philidet et al. 2020)
indicate that this transition is controlled by the dimensionless pa-
rameter Q ≡ Pr(N/Ωo)2, which varies between 10−3 and 10 in
our set of runs. The change in the flow geometry is therefore ex-
plained by a transition from a case where neither the rotation nor
the buoyancy dominate (E2/3 < Q < 1) to a buoyancy-dominated
flow (Q ≫ 1).

3.3. Impact on the Tayler modes

As seen in Fig. 3, the unstable magnetic modes are located close
to the poles where the latitudinal gradient of Bϕ is positive, which
is a first indication of the presence of Tayler modes. To confirm
this statement, we use the geometrical criterion of Goossens &
Tayler (1980) for the stability of m = 1-modes,

B2
ϕ

(
1 − 2 cos2 θ

)
− sin θ cos θ

∂B2
ϕ

∂θ
> 0 . (10)

The stability regions displayed by the hatched zones in Fig. 3
match very well regions where the unstable modes are absent.
This confirms that the Tayler instability is clearly identifiable,
no matter the values of N/Ωo.

Moreover, the impact of stratification on the mode structure
is striking. The stable stratification tends to stabilise displace-
ments in the radial direction, as we can see looking at the non-
axisymmetric radial velocity vm,0

r field in Fig. 2. As a conse-
quence, the radial length scale of the instability strongly de-
creases for increasing values of N/Ωo. This feature is not surpris-
ing because Spruit (1999) already constrained the mode maxi-
mum radial length scale

lTI < lmax,N ≡ r
ωA

N
, (11)

where ωA ≡ Bm=0
ϕ /

√
4πρr2 is the Alfvén frequency. Note that a

lower limit due to resistivity is also predicted

l2TI > l2min ≡
ηΩo

ω2
A

. (12)

The length scales measured in our models are compared to these
constraints in Fig. 4. Since thermal diffusion can mitigate the
effect of stratification, we also define an effective Brunt-Väisälä
frequency

Neff ≡ N
√
η/κ = N

√
Pr/Pm (13)

and so

lmax,Neff ≡ r
ωA

Neff
(14)

to take this effect into account (Spruit 2002). The Tayler modes
in our simulations have length scales ranging from ro/4 = 3 km
at N/Ωo = 0.1 to ro/80 = 0.15 km at N/Ωo = 10. This im-
plies that the Tayler-Spruit dynamo requires higher and higher
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Fig. 2. Meridional slices of the angular frequency and the non-axisymmetric radial velocity (left and right slices respectively) for different values
of N/Ωo. Ω and vm,0

r are scaled by Ωo and dΩo, respectively.

resolutions at greater stratifications to be resolved. The mea-
sured lTI follows very well the upper limit lmax,Neff (red points in
Fig. 4), but is around one order of magnitude larger than lmax,N .
This demonstrates the importance of including the mitigation of
the stratification by diffusion. The minimum length scale lmin
(Eq. (12)) is almost equal to lTI from N/Ωo = 0.5 to N/Ω = 4,
which indicates that we are close to the instability threshold. For
N/Ωo ⩾ 6, however, lmin ∼ 2lmax,Neff ∼ 2 − 3lTI. The fluid is
therefore stable, which is consistent with the transient state we
find in our simulations. Thus, the analytical limits for the Tayler
modes to develop are validated by our numerical simulations and
suggest that the Tayler-Spruit dynamo could be maintained for
N/Ωo ∈ [6, 10] with Pm ≳ 16 − 36.

In addition to the decrease of lTI, the Tayler instability modes
are strongly affected by high values of N/Ωo. The time and vol-
ume averaged spectrum of the magnetic energy in Fig. 5 show
that the energy of the large-scale (l = 1 − 10) non-axisymmetric
modes (solid lines) drop by two orders of magnitude between
N/Ω = 0.25 and at N/Ω = 2 compared to the energy of the
dominant axisymmetric toroidal component (blue dotted line).
This difference is represented more quantitatively by comparing
the total non-axisymmetric magnetic field Bm,0

tot to Bm=0
ϕ in Fig. 6.

The ratio drops from ∼ 1 to ∼ 2 × 10−3 and follows a power law
Bm,0

tot /B
m=0
ϕ ∝ Neff/Ω

−1.8±0.1
o . Fuller et al. (2019) analytically de-

rived that the ratio between the magnetic field generated by the
Tayler instability (noted δB⊥ ∼ Bm,0

tot ) and Bm=0
ϕ follows ωA/Ωo.

Since ωA ∝ Neff/Ω
−1/3
o (Fuller et al. 2019, and our Sect. 3.4),

our simulations therefore do not match the analytical prediction.
Fuller et al. (2019) derived the ratio by equating the Tayler insta-
bility growth rate and a turbulent damping rate ω2

A/Ωo ∼ δvA/r,
where δvA ≡ δB⊥/

√
4πρ. As the growth rate of the Tayler insta-

bility is robust (Zahn et al. 2007; Ma & Fuller 2019) and well
verified in numerical simulations (Ji et al. 2023), our study then
questions the prediction of the turbulent damping rate.

3.4. Magnetic field saturation

As in Barrère et al. (2023), we confront the saturated large-scale
magnetic fields in our simulations to the analytical predictions.
To this end, we first measure the impact of the stratification on
the local shear rate q, which influences the magnetic field satu-
ration. Indeed, the rotation profiles of Fig. 2 show that the shear
concentrates closer to the inner sphere and increases with N/Ωo.
The quantification of this effect is described in Appendix A.
These larger values of q explain the increase of the magnetic
energy with N/Ωo observed in Fig. 1.
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Fig. 3. Meridional slices of the axisymmetric azimuthal and the s = r sin θ-component of the magnetic field (respective left and right slices)
for increasing values of N/Ωo. The magnetic field is scaled by

√
4πρd2Ω2

o. The hatched regions represent Tayler-stable zones defined by the
geometrical criterion of Goossens & Tayler (1980) (see Supplementary Materials in Barrère et al. (2023)).

In order to study the relation of the magnetic field compo-
nents with Neff/Ωo while taking into account the variation of
q, we use the analytical prescriptions derived by Fuller et al.
(2019):

Bm=0
tor ∼

√
4πρr2

oΩo

(
qΩo

Neff

)1/3

, (15)

Bm=0
pol , Bdip ∼

√
4πρr2

oΩo


q2Ω5

o

N5
eff


1/3

. (16)

The exponents of q are all the more robust as they are confirmed
by numerical simulations (Barrère et al. 2023). We define dimen-
sionless magnetic field components compensated for the effect
of the shear in the following way:

Bm=0
tor −→

Bm=0
tor√

4πρr2
oΩ

2
oq1/3

(17)

Bm=0
pol , Bdip −→

Bm=0
pol√

4πρr2
oΩ

2
oq2/3

,
Bdip√

4πρr2
oΩ

2
oq2/3

. (18)

These compensated dimensionless components are plot-
ted in Fig. 7as a function of Neff/Ωo. The theoretical scaling
laws (dotted black lines) qualitatively match our data. Since

the point at Neff/Ωo = 3 × 10−2 diverges from the scalings
due to the weaker effect of stable stratification, we exclude it
while calculating the best fits. We obtain the following power-
laws Bm=0

tor ∝ (Neff/Ωo)−0.11±0.05, Bm=0
pol ∝ (Neff/Ωo)−1.1±0.2, and

Bdip ∝ (Neff/Ωo)−1.5±0.1. While Bm=0
tor and Bm=0

pol follow power-
laws slightly less steep than predicted in Eqs. (15) and (16), Bdip
is in good agreement with Eq. (16).

This agreement with the theory is also found for the ratio
Bm=0

r /Bm=0
ϕ ∼ ωA/Neff (Spruit 2002; Fuller et al. 2019) as seen

in Fig. 8. Our data is fitted by the power law Bm=0
pol /B

m=0
tor ∝

(ωA/Neff)0.93±0.18, which is very close to the prediction. On the
other hand, the ratio of the magnetic dipole to the axisym-
metric toroidal field follows a somewhat steeper scaling law
Bdip/Bm=0

tor ∝ (ωA/Neff)1.3±0.1.

3.5. Angular momentum transport and mixing

The angular momentum transport due to the large-scale mag-
netic field and turbulence in our simulations is also consistent
with the theory of Fuller et al. (2019), as shown in Fig. 9. For
the Maxwell torque TM, we find BsBϕ ∝ (Neff/Ωo)−1.8±0.1 and
Bm=0

s Bm=0
ϕ ∝ (Neff/Ωo)−1.6±0.1 depending on whether we take the

non-axisymmetric components into account in TM. Note that the
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Fig. 4. Length scale of the Tayler instability mode measured in the sim-
ulations (black stars) as a function of N/Ωo. The theoretical lower (lmin
in blue) and upper boundaries of the length scale are also plotted using
the classical (lmax,N in orange) and the effective (lmax,Neff in red) Brunt-
Väisälä frequencies. Filled and empty markers represent self-sustained
and transient dynamos, respectively.

torque is more and more dominated by the axisymmetric mag-
netic fields as Neff/Ωo increases. This dominance was assumed
by Fuller et al. (2019) and can be expected given the results of
Sect. 3.3. The Reynolds torque values are more dispersed as a
function of the stratification, but fit the power laws vm,0

r vm,0
ϕ ∝

(Neff/Ωo)−3.5±0.2 and vm,0
r vm,0

ϕ ∝ (Neff/Ωo)−3.4±0.2. Despite some
scattering at high values of Neff/Ωo in the points corresponding
to transient dynamos, our data therefore follows well the ana-
lytical predictions TM ∝ (Neff/Ωo)−2 and TR ∝ (Neff/Ωo)−10/3

(dotted lines in Figs. 9). Moreover, we find TM ∼ 102 − 103TR,
so the magnetic field is much more efficient than turbulence at
transporting angular momentum.

The mixing processes are also a crucial question in astro-
physics, especially in stars. The Tayler-Spruit dynamo is ex-
pected to produce a very limited mixing efficiency compared
to the angular momentum transport (Spruit 2002; Fuller et al.
2019). To measure this effect in our simulations, we define
the effective angular momentum transport diffusivity νAM ≡
TM/(ρqΩo) and roughly approximate the effective mixing dif-
fusivity as νmix ≡ q−5/3vm,0lTI, with the rms turbulent ve-

locity vm,0 ≡
√

Em,0
kin /(2ρ) calculated from the mean non-

axisymmetric energy Em,0
kin . We divide by the power law q5/3 in

the expression of νmix to take into account the variation of q like
in Figs 7 and 9.

The ratio νmix/νAM is plotted in Fig.10 and shows that our
data is in fair agreement with the scaling νmix/νAM ∝ Neff/Ωo

−5/3

of Fuller et al. (2019). The power law νmix/νAM ∝ Neff/Ωo
−1.2±0.2

best fits our data, which is mildly less steep than predicted.
Moreover, our simulations also confirm that νmix/νAM ∼ 10−6 −
10−3 ≪ 1 for Tayler-Spruit dynamo. The use of passive scalars
evolving in the velocity field in our simulations could help mea-
sure more precisely νmix even though the approximation we used
is satisfactory as a first analysis.

Table 1 sums up the comparisons we have done between our
data and the different scalings derived by Fuller et al. (2019).
Our results thus consolidate the validity of Fuller et al. (2019)’s
formalism for the saturation of large-scale magnetic fields and
angular momentum transport. Besides, our simulations are not

Fig. 5. Time and volume averaged spectra of the magnetic energy for
the parameters Pm = 1,N/Ωo = 0.25 (top) and Pm = 2,N/Ωo = 2 (bot-
tom). The magnetic energy is normalized by the energy of the dominant
(ℓ = 2,m = 0)-mode of the toroidal component.

compatible with the analytical prescriptions of Spruit (2002),
which read

Bm=0
tor ∼

√
4πρr2

oΩo

(
qΩo

Neff

)
(19)

Bm=0
pol , Bdip ∼

√
4πρr2

oΩo


q2Ω3

o

N3
eff

 (20)

TM ∼ r2
oΩ

2
oq3

(
Ωo

Neff

)4

. (21)

While our simulations support the scaling law of Fuller et al.
(2019), we can also constrain the dimensionless normalisation
factor, (noted α in Fuller et al. (2019)), that parametrises the sat-
urated strength of the axisymmetric toroidal magnetic field

Bm=0
tor√

4πρr2
o

= αΩo

(
qΩo

Neff

)1/3

. (22)

We infer the value of α by fitting our data by the theoretical scal-
ing law. The measures are listed in the last column of Table 1 and
we find a mean value of α ∼ 10−2. This value is small compared
to those inferred by adjusting α in 1D stellar evolution mod-
els to the asteroseismic observations of sub-/red giants, which
is ∼ 0.25 − 1 (Fuller et al. 2019; Fuller & Lu 2022; Eggenberger
et al. 2019b). Either way, our numerical simulations provide a
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Table 1. Table that sums up the theoretical and measured scaling laws of the different quantities discussed in Sects. 3.4 and 3.5, and the dimen-
sionless normalisation factor α defined by Fuller et al. (2019) (see Eq. 22)

.

Quantity (dimensionless) Fuller et al. (2019)’s scaling law Best fit exponent α

Bm,0
tot /B

m,0
tor ωA/Ωo (Neff/Ωo)−0.18±0.1

Bm=0
tor /(

√
4πρr2

oΩ
2
oq1/3) α(Neff/Ωo)−1/3 (Neff/Ωo)−0.11±0.05 0.017 ± 0.001

Bm=0
pol /(

√
4πρr2

oΩ
2
oq2/3) α2(Neff/Ωo)−5/3 (Neff/Ωo)−1.1±0.2 0.009 ± 0.002

Bdip/(
√

4πρr2
oΩ

2
oq2/3) α2(Neff/Ωo)−5/3 (Neff/Ωo)−1.5±0.1 0.007 ± 0.001

Bm=0
pol /B

m=0
tor ωA/Neff (ωA/Neff)0.93±0.2 —

Bdip/Bm=0
tor ωA/Neff (ωA/Neff)1.3±0.1 —

BsBϕ/(4πρr2
oΩ

2
oq) α3(Neff/Ωo)−2 (Neff/Ωo)−1.8±0.1 0.016 ± 0.004

Bm=0
s Bm=0

ϕ /(4πρr
2
oΩ

2
oq) α3(Neff/Ωo)−2 (Neff/Ωo)−1.6±0.1 0.01 ± 0.004

vm,0
r vm,0

ϕ /(r
2
oΩ

2
oq5/3) (Neff/Ωo)−10/3 (Neff/Ωo)−3.5±0.2 —

vm,0
s vm,0

ϕ /(r
2
oΩ

2
oq5/3) (Neff/Ωo)−10/3 (Neff/Ωo)−3.4±0.2 —

νmix/νAM (Neff/Ωo)−5/3 (Neff/Ωo)−1.2±0.2 —

Fig. 6. Ratio of the RMS non-axisymmetric magnetic field to the RMS
axisymmetric toroidal magnetic field. The dotted line shows the best fit
for a power law of Neff/Ωo. Filled and empty markers represent self-
sustained and transient dynamos, respectively.

more physically motivated value of α that could be implemented
in 1D stellar evolution codes including the Tayler-Spruit dynamo
to transport angular momentum.

3.6. Intermittency

When N/Ωo ≥ 2, we find that the Tayler-Spruit dynamo dis-
plays an intermittent behaviour, which is clearly visible in the
time series of Fig. 11 where the non-axisymmetric magnetic en-
ergy drops and increases cyclically by two orders of magnitude.
This corresponds to the loss and growth of the Tayler instabil-
ity. The same cycle also occurs for the axisymmetric Br and Bθ,
which illustrates the loss of the dynamo. Those two cycles show
a very short lag of ∼ 2.4 s. We then notice that the oscillations
of the axisymmetric toroidal and poloidal magnetic energies are
in antiphase. This is also observed in the butterfly diagrams in
which Bϕ decreases locally, and so in the volume average when

Fig. 7. RMS toroidal and poloidal axisymmetric magnetic fields (top),
and RMS magnetic dipole (bottom) compensated with the measured
shear rate as a function of the ratio between the effective Brunt-Väisälä
frequency to the rotation rate at the outer sphere Neff/Ωo. The magnetic
field is rendered dimensionless and compensated for the effect of the
shear using Eqs. (17) and (18). Dotted lines show the best fits of the
data with Fuller’s theoretical scaling laws (Eqs. (15) and (16)) within
a multiplying factor. Filled and empty markers represent self-sustained
and transient dynamos, respectively.
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Fig. 8. Ratio between the RMS axisymmetric poloidal (top) and the
RMS dipolar (bottom) magnetic fields to the axisymmetric toroidal
magnetic field. Dotted lines show the best fits of the data with Fuller’s
theoretical scaling law Br/Bϕ ∼ ωA/Neff within a multiplying factor.
Filled and empty markers represent self-sustained and transient dy-
namos, respectively.

Br is the strongest. These cycles can be interpreted qualitatively
as follows:

(i) Bm=0
ϕ is close but above the critical strength for the Tayler

instability derived by combining Eqs. (14) and (12)

Bm=0
ϕ,c ≡

√
4πρr2

oΩo

(
Neff

Ωo

)1/2 (
η

r2
oΩo

)1/4

(23)

and the dynamo is acting to generate Bm=0
r ;

(ii) Bm=0
ϕ decreases slightly below the critical strength due to tur-

bulent dissipation, which kills the Tayler instability and so
the dynamo loop ;

(iii) the axisymmetric poloidal magnetic energy drops and the
axisymmetric toroidal component increases because of the
winding and the lack of turbulent dissipation ;

(iv) Bm=0
ϕ exceeds the critical strength and the dynamo is active

again.

An intermittent Tayler-Spruit dynamo was already proposed
by Fuller & Lu (2022) to explain the angular momentum trans-
port in stellar stellar radiative regions with a low shear.

Quantitatively, we find Bm=0
ϕ,c ∼ 1.4 − 2.1 × 1015 G for the

models with N/Ωo ∈ [2, 10], which is very close to the max-
imum values Bm=0

ϕ ∼ 2.5 − 3 × 1015 G measured in the same

Fig. 9. RMS Maxwell (top) and Reynolds (bottom) torques compen-
sated with the measured shear rate as a function of the ratio between
the effective Brunt-Väisälä frequency to the rotation rate at the outer
sphere. Dotted lines shows the best fits obtained with Fuller’s theoreti-
cal scaling laws. Filled and empty markers represent self-sustained and
transient dynamos, respectively.

models. The proximity to the instability threshold supports our
interpretation. To characterise the time evolution of the intermit-
tency, we measure its duty cycle αcyc, i.e. the ratio of the time
when the dynamo is active to the period of the cycle. We find
that it varies between 0.38 and 0.66, with a tendency to decrease
with N/Ωo as seen in Fig. 12. The same trend is observed for the
period of these cycles Pcyc, which ranges between 3 s and 30 s.
This is consistent with the fact that we get closer to the dynamo
threshold.

4. Application to magnetar formation

The previous analyses support the formalism of Fuller et al.
(2019), which was used to model our magnetar formation sce-
nario in Barrère et al. (2022). To compare our numerical simu-
lations to this model, the magnetic field is converted into physi-
cal units by fixing the following parameters to typical values in
PNSs: the PNS radius ro = 12 km, mass M = 1.4 M⊙ that cor-
responds to a constant PNS density of ρ ∼ 4.1 × 1014 g cm−3,
and Brunt-Väisälä frequency N = 1 kHz. We therefore obtain
the magnetic field strength of Bm=0

tor , Bm=0
pol and Bdip as a function

of the angular frequency of the outer sphere, which is displayed
in Fig. 13.

The red markers correspond to the magnetic field measured
in the simulations, while the blue markers correspond to the val-
ues extrapolated to q = 1. This plot is similar to Fig. 5 in Barrère
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Fig. 10. Ratio of the effective mixing diffusivity νmix to the effective
angular momentum diffusivity νAM as a function of Neff/Ωo. Filled and
empty markers represent self-sustained and transient dynamos, respec-
tively.

Fig. 11. Top: Time series of the magnetic energy. Bottom: Butterfly
diagram showing the latitudinal structure time evolution of different ax-
isymmetric magnetic field components averaged between the radii r = 5
and r = 6 km. The magnetic energy was converted to physical units by
fixing N = 10−3 s−1

Fig. 12. Period of the cycle Pcyc (top) and the duty cycle αcyc (bottom)
of the intermittent dynamo as a function of the input N/Ωo. Filled and
empty markers represent self-sustained and transient dynamos, respec-
tively.

et al. (2022), except that we define, here, a low-field magnetar
as a magnetar with Bm=0

tor ⩾ 1014 G but Bdip < 4.4 × 1013 G.
Since considering the changes of q is equivalent to set q = 1,
we can compare our numerical results to Barrère et al. (2022).
As shown in the previous sections, the magnetic field follows
well Fuller et al. (2019)’s scaling law for Ωo. However, the sat-
urated magnetic field in our simulations is ∼ 17 times weaker
than in the model in Barrère et al. (2022), which shifts the upper
limit of rotation period to form magnetar-like magnetic fields to
P ∼ 6 ms. This new limit corresponds to a lower accreted fall-
back mass limit of ∼ 5 × 10−2 M⊙, which is still consistent with
recent supernova simulations (see the discussion in Barrère et al.
2022).

For rotation periods longer than 6 ms, the magnetic dipole is
too weak for a classical magnetar but the Tayler-Spruit dynamo
still produces strong total magnetic fields above 1014 G. The ob-
servations of absorption lines in the X-ray spectra of low-field
magnetars (Tiengo et al. 2013; Rodríguez Castillo et al. 2016)
and 3D numerical simulations of magnetic field long-term evo-
lution in NSs (Igoshev et al. 2021) suggest that this is enough to
produce magnetar-like luminous activity.

5. Discussion

Here, we discuss the simplifications we used for the modelling
of the PNS interior evolution: the mechanism to force the dif-
ferential rotation (Sect. 5.1) and the Boussinesq approxima-
tion (Sect. 5.2). In Sect. 5.3, we finally compare our results on
the Tayler-Spruit dynamo (Barrère et al. 2023, this article) and
the Tayler-Spruit dynamo obtained in other numerical simula-
tions (Petitdemange et al. 2023; Daniel et al. 2023; Petitdemange
et al. 2024).

5.1. Forcing of the differential rotation

To force the differential rotation, we chose to use a spherical
Taylor-Couette configuration, in which a constant rotation rate
is imposed on both inner and outer spheres. In this setup, the
rotation profile is free to evolve as the angular momentum is
transported by turbulence and large-scale magnetic fields. The
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Fig. 13. Magnetic strength of the axisymmetric toroidal Bm=0
tor (pen-

tagons) and poloidal Bm=0
pol (squares) components (upper panel), as well

as that of the magnetic dipole Bdip (triangles, lower panel) as a function
of the angular frequency of the outer sphere, which represents the PNS
surface. The red markers correspond to the magnetic field measured in
the simulations, while the blue markers correspond to the values extrap-
olated to q = 1. The dotted lines are the best power-law fit of the data.
The dark and light grey regions represent the range of magnetic field
for classical magnetars (Bdip ⩾ 4.4 × 1013 G) and low-field magnetars
(Bm=0

tor ⩾ 1014 G). The black dashed line and arrow illustrate the rota-
tion period below which the dynamo can form classical magnetar-like
magnetic fields. Filled and empty markers represent self-sustained and
transient dynamos, respectively.

imposed rotation of the outer sphere roughly mimics the main-
tenance of the surface rotation due to fallback accretion, once
the PNS surface is already spun up significantly. However, the
rotation profile evolution does not describe the beginning of the
accretion during which the surface is spun up and the differential
rotation, first concentrated close to the surface, is transported in
the PNS interior.

Maintaining the rotation on both spheres allows us to inject
energy into the flow and try to control the shear rate. As noticed
in Sect. 3.4 and quantified in App. A, the stable stratification
however significantly changes the shear rate. This complicates
the measure of the respective scaling exponents with N/Ωo and
q independently. In addition, we observe in Fig. 2 that most of
the shear is concentrated closer and closer to the inner sphere.
As confirmed by our simulations, this restricts significantly the
domain in which the Tayler-Spruit dynamo can operate and par-
ticipate to make the dynamo more difficult to sustain. Thus, to
investigate stronger stratification regimes, it will be necessary

to change the forcing method and perhaps opt for a volumetric
forcing as used for instance by Meduri et al. (2024).

5.2. Validity of the Boussinesq approximation

To model the PNS interior, we used the Boussinesq approxima-
tion, which reduces the numerical cost and allows us to produce a
few tens of models to better understand the physics of the Tayler-
Spruit dynamo. Despite the importance of the density gradient,
this approximation is reasonable in the case of PNS interior:

(i) The sound speed is close to the speed of light cs ∼
1010 cm s−1 (Hüdepohl 2014; Pascal 2021, private commu-
nication), so vA/cs ≲ vϕ/cs ≲ 10−2, where va ≡ roωA and vϕ
are the typical Alfvén and azimuthal speeds.

(ii) The density perturbation associated to the buoyancy term is
small compared to the PNS mean density: δρ/ρ = θN2/g ≲
9 × 10−2, with N = 103 s−1, g ∼ GM/ro ∼ 1.3 × 1013 cm s−2,
and θ ≲ ro is the buoyancy variable (Eq. 6).

The impact of density gradient on the Tayler-Spruit dynamo has
never been investigated so far in numerical simulations. There-
fore, future work should consider more realistic PNS density
profiles.

5.3. Comparison with other numerical models

In the literature, only a few other studies investigate numeri-
cally the Tayler-Spruit dynamo (Petitdemange et al. 2023; Pe-
titdemange et al. 2024; Daniel et al. 2023). The main difference
between our setup and theirs is the opposite shear, i.e. in their
setup the inner boundary rotates faster than the outer one. As
in our studies, they find a subcritical bifurcation at the Tayler
instability threshold to a self-sustained state with a dominant ax-
isymmetric toroidal magnetic field. However, many differences
can be noticed:

– The generated magnetic structure in their simulations has a
smaller scale and is localized near the inner sphere in the
equatorial plane. The impact of stable stratification on the
length scale of these modes may deserve a deeper analysis.
It is still unclear why this configuration is stable for one sign
of the shear and not the other.

– As in Barrère et al. (2023), a hemispherical dynamo so-
lution is also found by Petitdemange et al. (2024) as they
move from a laminar dynamo solution to the strong Tayler-
Spruit dynamo by increasing N/Ωo. However, they do not
find bistability between the hemispherical and the strong so-
lutions as in Barrère et al. (2023).

– While the dipolar and hemispherical dynamos we found
in Barrère et al. (2023) are in good agreement with the pre-
dictions of Fuller et al. (2019) and Spruit (2002), respec-
tively, all their models, including those of the hemispherical
solution, are in agreement with the analytical model of Spruit
(2002).

Therefore, the few numerical studies of the Tayler-Spruit dy-
namo indicate a much more complex physics than anticipated
analytically, with the existence of a wide variety of dynamo so-
lutions. So far, only Daniel et al. (2023) propose a non-linear
model of the subcritical transition to the Tayler-Spruit dynamo
of Petitdemange et al. (2023). In order to include the other so-
lutions we discovered, we must further investigate the dynamics
of the dynamo using tools from dynamic system theory.
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6. Conclusions

6.1. Summary

Following our previous study Barrère et al. (2023), we per-
formed numerical simulations of the dipolar Tayler-Spruit dy-
namo to investigate how it behaves in the stratification regime
of PNSs. We first show that a self-sustained dynamo is main-
tained in this regime for N/Ωo ⩽ 4. With increasing N/Ωo, on
the one hand, the Tayler modes have reduced radial length scales
as expected theoretically, but their energy decreases faster than
predicted by Fuller et al. (2019), which may indicate an under-
estimation of the turbulent dissipation. On the other hand, the
large-scale magnetic fields generated by the dynamo are in good
agreement with the analytical work of Fuller et al. (2019).

The overall agreement is also observed for both Maxwell and
Reynolds torques, the former of which dominates the angular
momentum transport. By measuring an approximate mixing dif-
fusivity, we also determined the efficiency of the mixing process
due to the Tayler-Spruit dynamo and found that mixing is far
less efficient than the angular momentum transport, as predicted
theoretically. We also constrained for the first time the dimen-
sionless normalisation factor α ∼ 10−2, which is much weaker
than expected to explain the rotation rate of sub-/red giant cores.
Finally, our simulations demonstrate for the first time that the
Tayler-Spruit dynamo can become intermittent as the saturated
Bm=0
ϕ is close to the Tayler instability threshold.

To conclude the investigation, we applied our numerical re-
sults to the magnetar formation scenario of Barrère et al. (2022).
While our data follow the theoretical scaling law, the lower limit
of the angular frequency to form classical magnetar-like dipoles
is larger than derived in Barrère et al. (2022) with a period of
∼ 6 ms. This rotation period corresponds to an accreted fallback
mass of ∼ 5 × 10−2 M⊙, which is still reasonable according to
CCSN simulations (e.g. Sukhbold et al. 2016, 2018; Chan et al.
2020; Janka et al. 2022).

6.2. Long-term evolution of the magnetic field

After ∼ 100 s, the fallback accretion becomes too weak to main-
tain the differential rotation in the PNS. The newly formed strong
large-scale magnetic fields transport the angular momentum ef-
ficiently, which damps the differential rotation and the dynamo
will eventually stop. The magnetic field is expected to enter a
relaxation phase in which its structure changes to reach a sta-
ble configuration. The exact shape of this magnetic field is still
an open question and, more generally, the magnetic relaxation
problem in astrophysics remains debated (e.g. Braithwaite 2006;
Duez & Mathis 2010; Duez et al. 2010; Akgün et al. 2013;
Becerra et al. 2022a,b). It is however well acknowledged that
the magnetic configuration is complex, mixing both large-scale
poloidal and toroidal components. Thus, 3D numerical simula-
tions including rotation and thermal/density stratifications are re-
quired to investigate this stage of the PNS evolution.

On longer timescales of ∼ 1 − 100 kyr, the remaining strong
toroidal magnetic fields located in the NS crust are prone to Hall
diffusion and instability (Rheinhardt & Geppert 2002), which
modifies their structures and so can influence the magnetar emis-
sion. The strong magnetic field-induced stresses could also cause
failures or plastic deformations, which are suspected to explain
the origin of magnetar bursts (e.g. Thompson & Duncan 1995;
Perna & Pons 2011; Lander et al. 2015; Lander & Gourgouliatos
2019). It is therefore crucial to run 3D numerical simulations
of magnetic field evolution in a NS structure using dynamo-

generated initial magnetic configuration to better constrain these
properties. Further investigations could also include the relax-
ation of the dynamo-generated magnetic field to a stable config-
uration before the PNS becomes a cooled stable NS.

6.3. Interaction with a remaining fallback disc

The magnetic dipole generated by the dipolar Tayler-Spruit dy-
namo may not be strong enough to spin the magnetar down to
the observed 8− 12 s via the magnetic spin-down mechanism. A
good alternative would be the propeller mechanism (e.g. Gom-
pertz et al. 2014; Beniamini et al. 2019; Lin et al. 2021; Ronchi
et al. 2022). This operates when the magnetosphere is large
enough to interact with the remaining fallback disc, i.e. when the
Alfvén radius is larger than the corotation radius. In the propeller
regime, the inner disk matter is accelerated to super-Keplerian
velocity, which produces an outflow and so an angular momen-
tum transfer from the magnetar to the disc. If this mechanism
operates in some magnetars, the magnetic dipole which is in-
ferred from the values of the NS rotation period and its associ-
ated derivative will be overestimated. It thus fosters numerical
studies of the fallback matter in 3D simulations of core-collapse
SNe and investigations on the evolution of the potential remain-
ing disc. This will help constrain which progenitors are the best
candidates to form magnetars via our fallback scenario.

6.4. Implications for stellar physics

Our findings are also of importance for the study of stellar radia-
tive zones. Indeed, the scaling laws and the dimensionless nor-
malisation factor α derived from our simulations could be im-
plemented in 1D stellar evolution codes. Evolution models us-
ing the prescriptions of Fuller et al. (2019) have already been
computed for sub-giant/red giant stars but with larger values of
α ∼ 0.25 − 1. These studies find a strong flattening of the ro-
tation profile and conclude that the prescribed Tayler-Spruit dy-
namo can not explain both rotation profiles of sub-giant and red
giant stars (Eggenberger et al. 2019b), which suggests that dif-
ferent angular momentum transport mechanisms occur during
these two phases (Eggenberger et al. 2019a). The future astero-
seismic measurements of the magnetic fields in stellar interiors
with PLATO will be crucial to clarify the question of the trans-
port mechanisms. Though the first measurements of magnetic
fields in some red giant cores suggest a strong fossil field (Li
et al. 2022, 2023; Deheuvels et al. 2023), it will be essential to
infer the asteroseismic signature of magnetic fields generated by
the simulated Tayler-Spruit dynamos for the future observations.
Evolution models including MHD instabilities effects were also
performed in the case of massive stars to constrain the rotation
rate of the remaining PNS or black hole (Griffiths et al. 2022;
Fuller & Lu 2022). They suggest that the angular momentum
transport by MHD instabilities is significant in every stage of the
massive star evolution. This stresses the importance of perform-
ing 3D anelastic simulations with realistic background profiles
of radiative zones at different evolution stages to better constrain
the angular momentum transport and infer more robust rotation
rates of stellar cores.
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Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Deheuvels, S., Li, G., Ballot, J., & Lignières, F. 2023, A&A, 670, L16
den Hartogh, J. W., Eggenberger, P., & Deheuvels, S. 2020, A&A, 634, L16
Dessart, L., Burrows, A., Livne, E., & Ott, C. D. 2008, ApJ, 673, L43
Dessart, L., Hillier, D. J., Waldman, R., Livne, E., & Blondin, S. 2012, MNRAS,

426, L76
Drout, M. R., Soderberg, A. M., Gal-Yam, A., et al. 2011, ApJ, 741, 97
Duez, V., Braithwaite, J., & Mathis, S. 2010, ApJ, 724, L34
Duez, V. & Mathis, S. 2010, A&A, 517, A58
Duncan, R. C. & Thompson, C. 1992, ApJ, 392, L9
Eggenberger, P., Deheuvels, S., Miglio, A., et al. 2019a, A&A, 621, A66
Eggenberger, P., den Hartogh, J. W., Buldgen, G., et al. 2019b, A&A, 631, L6
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9
Evans, W. D., Klebesadel, R. W., Laros, J. G., et al. 1980, ApJ, 237, L7
Ferrario, L. & Wickramasinghe, D. 2006, MNRAS, 367, 1323
Fuller, J. & Lu, W. 2022, MNRAS, 511, 3951
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
Gastine, T. & Wicht, J. 2012, Icarus, 219, 428
Gaurat, M., Jouve, L., Lignières, F., & Gastine, T. 2015, A&A, 580, A103
Gehan, C., Mosser, B., Michel, E., Samadi, R., & Kallinger, T. 2018, A&A, 616,

A24
Gompertz, B. & Fruchter, A. 2017, ApJ, 839, 49
Gompertz, B. P., O’Brien, P. T., & Wynn, G. A. 2014, MNRAS, 438, 240
Goossens, M., Biront, D., & Tayler, R. J. 1981, Astrophys. Space Sci., 75, 521
Goossens, M. & Tayler, R. J. 1980, MNRAS, 193, 833
Gotz, D., Israel, G. L., Mereghetti, S., et al. 2006, The Astronomer’s Telegram,

953, 1
Griffiths, A., Eggenberger, P., Meynet, G., Moyano, F., & Aloy, M.-Á. 2022,

A&A, 665, A147
Gubbins, D. & Zhang, K. 1993, Physics of the Earth and Planetary Interiors, 75,

225
Guilet, J., Müller, E., & Janka, H.-T. 2015, MNRAS, 447, 3992
Guilet, J., Reboul-Salze, A., Raynaud, R., Bugli, M., & Gallet, B. 2022, MN-

RAS, 516, 4346
Hu, R.-Y. & Lou, Y.-Q. 2009, MNRAS, 396, 878
Hüdepohl, L. 2014, PhD thesis, Technical University of Munich, Germany
Hurley, K., Boggs, S. E., Smith, D. M., et al. 2005, Nature, 434, 1098
Hurley, K., Cline, T., Mazets, E., et al. 1999, Nature, 397, 41
Igoshev, A. P., Hollerbach, R., Wood, T., & Gourgouliatos, K. N. 2021, Nature

Astronomy, 5, 145

Inserra, C., Smartt, S. J., Jerkstrand, A., et al. 2013, ApJ, 770, 128
Janka, H.-T., Wongwathanarat, A., & Kramer, M. 2022, ApJ, 926, 9
Ji, S., Fuller, J., & Lecoanet, D. 2023, MNRAS, 521, 5372
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245
Kiuchi, K., Reboul-Salze, A., Shibata, M., & Sekiguchi, Y. 2024, Nature Astron-

omy, 8, 298
Kouveliotou, C., Fishman, G. J., Meegan, C. A., et al. 1994, Nature, 368, 125
Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020, ApJ, 896, 102
Lander, S. K., Andersson, N., Antonopoulou, D., & Watts, A. L. 2015, MNRAS,

449, 2047
Lander, S. K. & Gourgouliatos, K. N. 2019, MNRAS, 486, 4130
Li, G., Deheuvels, S., Ballot, J., & Lignières, F. 2022, Nature, 610, 43
Li, G., Deheuvels, S., Li, T., Ballot, J., & Lignières, F. 2023, A&A, 680, A26
Lin, W., Wang, X., Wang, L., & Dai, Z. 2021, ApJ, 914, L2
Lü, H.-J. & Zhang, B. 2014, ApJ, 785, 74
Ma, L. & Fuller, J. 2019, MNRAS, 488, 4338
Makarenko, E. I., Igoshev, A. P., & Kholtygin, A. F. 2021, MNRAS, 504, 5813
Martin, J., Rea, N., Torres, D. F., & Papitto, A. 2014, MNRAS, 444, 2910
Masada, Y., Takiwaki, T., & Kotake, K. 2022, ApJ, 924, 75
Meduri, D. G., Jouve, L., & Lignières, F. 2024, A&A, 683, A12
Mereghetti, S., Savchenko, V., Ferrigno, C., et al. 2020, ApJ, 898, L29
Metzger, B. D., Beniamini, P., & Giannios, D. 2018, ApJ, 857, 95
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E.

2011, MNRAS, 413, 2031
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10
Mösta, P., Richers, S., Ott, C. D., et al. 2014, ApJ, 785, L29
Nicholl, M., Smartt, S. J., Jerkstrand, A., et al. 2013, Nature, 502, 346
Nomoto, K., Maeda, K., Tanaka, M., & Suzuki, T. 2011, Astrophys. Science Sci.,

336, 129
Obergaulinger, M. & Aloy, M. Á. 2020, MNRAS, 492, 4613
Obergaulinger, M. & Aloy, M. Á. 2021, MNRAS, 503, 4942
Obergaulinger, M. & Aloy, M. Á. 2022, MNRAS, 512, 2489
Obergaulinger, M., Cerdá-Durán, P., Müller, E., & Aloy, M. A. 2009, A&A, 498,

241
Olausen, S. A. & Kaspi, V. M. 2014, ApJS, 212, 6
Pascal, A. 2021, Theses, Université Paris sciences et lettres
Perna, R. & Pons, J. A. 2011, ApJ, 727, L51
Petitdemange, L., Marcotte, F., & Gissinger, C. 2023, Science, 379, 300
Petitdemange, L., Marcotte, F., Gissinger, C., & Daniel, F. 2024, A&A, 681, A75
Philidet, J., Gissinger, C., Lignières, F., & Petitdemange, L. 2020, Geophysical

and Astrophysical Fluid Dynamics, 114, 336
Raynaud, R., Cerdá-Durán, P., & Guilet, J. 2022, MNRAS, 509, 3410
Raynaud, R., Guilet, J., Janka, H.-T., & Gastine, T. 2020, Sci. Adv., 6, eaay2732
Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944
Rea, N., Israel, G. L., Esposito, P., et al. 2012, ApJ, 754, 27
Rea, N., Israel, G. L., Pons, J. A., et al. 2013, ApJ, 770, 65
Rea, N., Viganò, D., Israel, G. L., Pons, J. A., & Torres, D. F. 2014, ApJ, 781,

L17
Reboul-Salze, A., Guilet, J., Raynaud, R., & Bugli, M. 2021, A&A, 645, A109
Reboul-Salze, A., Guilet, J., Raynaud, R., & Bugli, M. 2022, A&A, 667, A94
Rembiasz, T., Obergaulinger, M., Cerdá-Durán, P., Aloy, M.-Á., & Müller, E.

2017, ApJS, 230, 18
Rheinhardt, M. & Geppert, U. 2002, Phys. Rev. Lett., 88, 101103
Rodríguez Castillo, G. A., Israel, G. L., Tiengo, A., et al. 2016, MNRAS, 456,

4145
Ronchi, M., Rea, N., Graber, V., & Hurley-Walker, N. 2022, ApJ, 934, 184
Schaeffer, N. 2013, Geochemistry, Geophysics, Geosystems, 14, 751
Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., et al. 2019, Nature, 574,

211
Shenar, T., Wade, G. A., Marchant, P., et al. 2023, Science, 381, 761
Spruit, H. C. 1999, A&A, 349, 189
Spruit, H. C. 2002, A&A, 381, 923
Stockinger, G., Janka, H. T., Kresse, D., et al. 2020, MNRAS, 496, 2039
Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. 2016, ApJ,

821, 38
Sukhbold, T., Woosley, S. E., & Heger, A. 2018, ApJ, 860, 93
Svinkin, D., Frederiks, D., Hurley, K., et al. 2021, Nature, 589, 211
Takiwaki, T., Kotake, K., & Sato, K. 2009, ApJ, 691, 1360
Tayler, R. J. 1973, MNRAS, 161, 365
Thompson, C. & Duncan, R. C. 1993, ApJ, 408, 194
Thompson, C. & Duncan, R. C. 1995, MNRAS, 275, 255
Tiengo, A., Esposito, P., Mereghetti, S., et al. 2013, Nature, 500, 312
Tsuzuki, Y., Totani, T., Hu, C.-P., & Enoto, T. 2024, MNRAS, 530, 1885
Vink, J. & Kuiper, L. 2006, MNRAS, 370, L14
White, C. J., Burrows, A., Coleman, M. S. B., & Vartanyan, D. 2022, ApJ, 926,

111
Wicht, J. 2002, Physics of the Earth and Planetary Interiors, 132, 281
Woosley, S. E. 2010, ApJ, 719, L204
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507
Younes, G., Kouveliotou, C., Jaodand, A., et al. 2017, ApJ, 847, 85
Zahn, J. P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145
Zhang, B. & Mészáros, P. 2001, ApJ, 552, L35
Zhou, P., Vink, J., Safi-Harb, S., & Miceli, M. 2019, A&A, 629, A51
Zhu, W., Xu, H., Zhou, D., et al. 2023, Science Advances, 9, eadf6198

Article number, page 13 of 15



A&A proofs: manuscript no. output

Appendix A: Measure of the shear rate

The differential rotation is characterized by a dimensionless shear rate q = r∂rlnΩ. We define an effective shear rate based on the
time average of the radial rotation profile in the saturated state at the colatitude of θ = π/8 rad. We measure an average slope in the
range of radii where half of the Tayler mode energy (approximated by the latitudinal magnetic energy EBθ ) is concentrated around
its maximum. We chose this particular method because this range of radii is the region where the dynamo occurs. The measures are
displayed in Fig. A.1 (red plot) along with other measures made with different methods. Whatever the method used, we see that all
the measures follow the same trend with an increase of q ∝ N until N/Ωo = 4 after which the values of q stay almost constant.

Fig. A.1. Shear rates q measured locally in the simulations as a function of N/Ωo. The different colours represent distinct methods to measure q:
slope in the rotation profile between 3.2 and 4 km (pink), q at the maximum of Bm=0

ϕ and Bθ (green and orange, respectively), and slope in the range
of radii where half of the Tayler mode energy (approximated by the latitudinal magnetic energy EBθ ) is concentrated around its maximum (red).

Appendix B: List of models

Tables B.1–B.3 summarize the key parameters and output quantities of the simulations carried out in this study.

Table B.1. Overview of the stable (or failed) dynamo solutions. All the simulations have the same aspect ratio χ = 0.25, Ekman number E = 10−5,
Rossby number Ro = 0.75, thermal and magnetic Prandtl numbers Pr = 0.1 and Pm = 1, and the same resolution (nr, nθ, nϕ) = (256, 256, 512).
Note that the run named Ro0.75s is the same as in Barrère et al. (2023). This table displays the input parameter of the runs.

Name Pm N/Ωo Neff/Ωo Λi

Ro0.75s 1 0.1 0.03 10
Pm1Pr0.1NO0.25 1 0.25 0.08 Λ(Ro0.75s)
Pm1Pr0.1NO0.5 1 0.5 0.16 Λ(Ro0.75s)
Pm1Pr0.1NO1 1 1 0.32 Λ(Pm1Pr0.1NO0.5)
Pm2Pr0.1NO2 2 2 0.45 Λ(Pm1Pr0.1NO1)
Pm2Pr0.1NO4 2 4 0.89 Λ(Pm2Pr0.1NO2)
Pm2Pr0.1NO8 2 8 1.79 Λ(Pm2Pr0.1NO4)
Pm4Pr0.1NO4 4 4 0.63 Λ(Pm2Pr0.1NO4)
Pm4Pr0.1NO6 4 6 0.95 Λ(Pm4Pr0.1NO4)
Pm4Pr0.1NO8 4 8 1.26 Λ(Pm2Pr0.1NO8)
Pm4Pr0.1NO10 4 10 1.58 Λ(Pm2Pr0.1NO10)
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Table B.2. Same as Table B.1 but this table displays measured values in the simulations used to produce the plots of the paper.

Name q Λ Bm=0
tor Bm=0

pol Bdip Bm,0
tot vm,0

tot[
10−3

√
4πρd2Ωo

] [
10−3

√
4πρd2Ωo

] [
10−3

√
4πρd2Ωo

] [
10−3

√
4πρd2Ωo

]
[10−4dΩo]

Ro0.75s 0.06 51.85 21 1.7 1.2 9.3 35
Pm1Pr0.1NO0.25 0.17 69.03 24 1.8 1.4 9.7 34
Pm1Pr0.1NO0.5 0.35 74.71 26 2.0 0.87 6.6 36
Pm1Pr0.1NO1 0.69 99.44 31 0.64 0.36 2.6 19
Pm2Pr0.1NO2 2.37 251.25 36 0.82 0.31 1.1 6.0
Pm2Pr0.1NO4 2.57 332.08 41 0.49 0.18 0.61 3.5
Pm2Pr0.1NO8 2.54 531.21 52 0.18 0.10 0.59 3.4
Pm4Pr0.1NO4 2.57 478.89 35 0.46 0.077 0.36 1.6
Pm4Pr0.1NO6 2.59 495.22 35 0.31 0.077 0.31 1.8
Pm4Pr0.1NO8 2.54 714.16 42 0.31 0.077 0.28 1.6
Pm4Pr0.1NO10 3.74 862.86 47 0.15 0.051 0.2 1.1

Table B.3. Following of Table B.2.

Name BsBϕ/4π Bm=0
s Bm=0

ϕ /4π vm,0
r vm,0

ϕ /4π vm,0
s vm,0

ϕ /4π lTI Pcyc αcyc

[10−6 × 4πρd2Ω2
o] [10−6 × 4πρd2Ω2

o] [10−8 × ρd2Ω2
o] [10−8 × ρd2Ω2

o] [km] [s−1]
Ro0.75s 15 2.9 52 76 2.8 – –
Pm1Pr0.1NO0.25 9.1 2.4 56 89 2.5 – –
Pm1Pr0.1NO0.5 5.7 1.8 58 110 1.5 – –
Pm1Pr0.1NO1 3.0 0.84 18 35 0.8 – –
Pm2Pr0.1NO2 2.2 1.7 2.8 10 0.6 27 0.66
Pm2Pr0.1NO4 1.5 1.4 7 4.4 0.4 12 0.59
Pm2Pr0.1NO8 1.7 1.0 0.52 5.3 0.2 13 0.38
Pm4Pr0.1NO4 0.45 0.63 0.16 0.61 0.4 3 0.62
Pm4Pr0.1NO6 0.53 0.67 0.17 0.94 0.3 16 0.5
Pm4Pr0.1NO8 0.65 0.75 0.12 0.77 0.2 10 0.47
Pm4Pr0.1NO10 0.50 0.52 0.066 0.46 0.15 6 0.57
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Abstract

Low-field magnetars have dipolar magnetic fields that are 10-100 times weaker
than the threshold, B ≳ 1014 G, used to define classical magnetars, yet they
produce similar X-ray bursts and outbursts. Using the first direct numerical simu-
lations of magneto-thermal evolution starting from a dynamo-generated magnetic
field, we show that the low-field magnetars can be produced as a result of a
Tayler–Spruit dynamo inside the proto-neutron star. We find that these sim-
ulations naturally explain key characteristics of low-field magnetars: (1) weak
(≲ 1013 G) dipolar magnetic fields, (2) strong small-scale fields, and (3) mag-
netically induced crustal failures producing X-ray bursts. These findings suggest
two distinct formation channels for classical and low-field magnetars, potentially
linked to different dynamo mechanisms.

Keywords: neutron stars, dynamo, magnetars, X-ray

Magnetars play a special role in modern high-energy astrophysics. They were suggested
as central engines for superluminous supernovae [1, 2] and ultra-long γ–ray bursts [3].
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They produce at least a fraction of mysterious Fast Radio Bursts [4, 5]. While Galactic
magnetars are scarce due to their short life — with 30 known magnetars, compared
with 3500 radio pulsars based on ATNF catalogue v.2.1.11 [6] — it is estimated that
around 10% of all neutron stars (NSs) undergo a magnetar stage at some point in
their evolution [7].

The standard magnetar model explains quiescent X-ray emission, spin period,
bursts, outbursts and giant flares observed from Anomalous X-ray Pulsars (AXP) and
Soft Gamma Repeaters (SGR) by assuming that these NSs have strong dipolar mag-
netic fields ≳ 1014 G [8, 9]. However, a significant fraction of magnetars (5 out of 30
known objects) in fact have dipolar magnetic fields well below 1014 G and were there-
fore named low-field magnetars [10–14]. It has been suggested that low-field magnetars
are old neutron stars primarily powered by crust-confined toroidal magnetic fields
with strength ≈ 1014 G [11, 15]. Rea et al. [12] suggested that low-field magnetars
were born with both poloidal and toroidal magnetic fields > 1014 G, but the poloidal
component decayed by a factor of six in ≈ 500 kyr. Phase-resolved X-ray observations
show that in two cases low-field magnetars host small-scale magnetic fields which are
10-100 times stronger than their dipolar fields [16, 17].

The origin of magnetar magnetic fields is a subject of debate [18]. Different dynamo
mechanisms have been proposed to explain the formation of the strongest magnetic
fields, including proto-neutron star convection [8, 19–22], magnetorotational instability
[23, 24], and more recently the Tayler–Spruit dynamo [25–27]. The Tayler–Spruit
dynamo is a particularly promising mechanism for generating magnetars’ magnetic
fields in cases when the progenitor core is slowly rotating and the proto-NS is spun up
by fallback accretion [26]. In cases of rotation periods slower than ten milliseconds, a
normal core-collapse supernova is expected to occur, in agreement with observational
constraints for the majority of magnetars [28, 29]. After the first minute, the proto-
NS cools down, its crust solidifies and the remnant becomes a NS. After this time,
the initially complicated crustal magnetic field slowly relaxes due to Ohmic decay and
Hall evolution on a timescale of 105–106 years [30, 31].

Previous simulations of magneto-thermal evolution have assumed idealised initial
conditions rather than magnetic configurations generated by a specific dynamo mech-
anism. However, the study of more realistic initial conditions is of key importance in
order to obtain realistic predictions of magnetar properties. Indeed, Hall evolution has
been shown to preserve certain aspects of the initial conditions [32, 33]. Hence, the
observational properties of magnetars, and low-field magnetars in particular, should
contain information about the proto-NS magnetic field.

Evolution of neutron star magnetic field

The proto-NS dynamo and NS crust stages are modelled separately because of their
very different timescales and physical conditions. While the dynamo is formulated as a
magnetohydrodynamics (MHD) problem for a stably stratified fluid with shear caused
by fallback accretion over a timescale of a few tens of seconds, the magneto-thermal

1http://www.atnf.csiro.au/research/pulsar/psrcat
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Fig. 1 Magnetic field lines at the beginning of our NS magneto-thermal simulation.

evolution of the NS crust occurs on a much longer timescale of 1 Myr and is formulated
as electron-MHD.

The initial condition for our NS simulation is a magnetic field configuration cor-
responding to a Tayler-Spruit dynamo branch recently discovered in direct numerical
simulations and characterised by a dipolar symmetry (i.e. equatorially symmetric) [27].
The initial core temperature is assumed to be 108 K. This magnetic field is obtained
using the 3D spherical MHD code MagIC [34–36] for rotation frequencies of the respec-
tive outer and inner spheres Ωo = 4Ωi = 628 rad s−1 (see Methods Section 1 for a more
detailed description). The magnetic field is predominantly toroidal and reaches values
up to 3×1015 G inside the volume, but the field at the outer boundary is much weaker.
Assuming a scenario in which the core magnetic field is expelled to a crust-confined
configuration, we extract the magnetic field in the top 10% of the simulation volume
and adapt it to our code to model crust-confined NS magneto-thermal evolution (see
Methods Section 2, 3). Figure 1 shows the initial configuration of the magnetic field
inside the NS crust. We then use the PARODY code [37–39] to integrate the coupled
magnetic induction and thermal diffusion equations for 1 Myr before analyzing the
NS magnetic characteristics (see Methods Section 4).

Figure 2 shows the dipolar and quadrupolar poloidal magnetic field intensities,
which are the only components that could contribute significantly to electromagnetic
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Fig. 2 Evolution of surface dipole (blue solid line) and quadrupole (orange dashed line) magnetic
fields.

spin-down. The surface dipolar magnetic field increases by a factor of only three during
the first Myr, reaching a maximum a value of 1.5 × 1012 G, and the quadrupole
component remains similarly small, with a maximum of around 6 × 1012 G. These
values are 2 to 3 orders of magnitude smaller than the internal magnetic field strength
in the crust. Figure 3 shows a complex surface magnetic field topology featuring
individual arches elongated in the north-south direction. The local field strength at the
footpoints of these arches reaches 1014 G, 100 times stronger than the dipolar magnetic
field. Small-scale magnetic fields remain dominant at all times from the beginning of
the evolution until 1 Myr (see Methods Section Figure 6). Our numerical simulation
therefore successfully reproduces two crucial properties of low-field magnetars: (1)
weak dipolar magnetic field, and (2) presence of very strong (50-100 times stronger)
small-scale magnetic fields, similar to those found in SGR 0418+5729 [16] and Swift
J1882.3-1606 [17].

Surface temperatures and hot spots

The X-ray observations of low-field magnetars are consistent with thermal emission
from isolated hot spots with sizes ≤ 1 km [40] and black body temperatures reaching

4



Fig. 3 Surface temperature distribution and external magnetic field structure at age 200 kyr.

Tbb = 0.12 – 0.6 keV. The bulk NS emission is not detected with typical upper limits
< 1031 erg/s. SGR 0418+5729 has a pulsed fraction of 62± 10 % in the [0.3-1.2] keV
range [40]. CXOU J164710.2-455216 and Swift J1822.3-1606 have quiescent pulsed
fractions 80± 3 % and 38± 3 % in the [0.5,10] keV range respectively [41]. The upper
limit on the bulk thermal emission indicates that low-field magnetars are at least
≈ 200 kyr old because the bulk X-ray emission drops below 1031 erg/s after 200 kyr
[42] for strongly magnetised NSs (with internal field strengths ∼ 1015 G).

Strong magnetic fields could create large surface temperature variations, as can
be seen in Figure 3 (and Methods Section Figure 8). We see variations of an order of
magnitude between the hottest (T ≈ 4.8×105 K) and coldest (T ≈ 4.3×104 K) regions.
These variations could cause up to 20 % pulsed fraction but would stay undetectable
because of the low bulk X-ray luminosity 1031 erg/s and small effective black body
temperature Tbb = 0.028 keV.

We suggest that the observational properties of low-field magnetars can be
explained by magnetospheric heating on the small-scale magnetic arches visible in
Figure 3. The twisted magnetic field lines penetrate the NS surface through some of
these individual footpoints heating surface and forming hot spots. The size of indi-
vidual footpoints is a fraction of a kilometre, thus emission generated from these
footpoints would have properties of emission seen from low-field magnetars, i.e. very
high temperature and small emission area.

Spots are heated by the strongest radial electric currents, which coincide with the
strongest radial magnetic fields because J⃗ ∝ ∇⃗ × B⃗ = µB⃗ according to the force-free
condition in the magnetosphere [43]. Here we assume that only footpoints with radial
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magnetic field |Br| > 7× 1013 G are heated. Under this assumption, it is possible to
form up to 10 independent hot spots (see Figure 3) which, if heated to 3 × 106 K,
produce luminosity 2 × 1032 erg/s and emission area with radius ≈ 0.9 km. The
lightcurve is sine-like with a pulsed fraction reaching 92% for a favourable orientation
even without beaming, in agreement with X-ray observations of low-field magnetars
(see Methods Section Figures 9 and 10). If we increase the critical |Br| to larger values
then we obtain fewer hot spots with smaller areas, and if we decrease the critical |Br|
then the heated area is increased. If the X-ray thermal emission is indeed generated
close to the footpoints of these arches, the arches themselves provide natural sites
where Compton scattering occurs and absorption features are formed.

Magnetar bursts

In order to assess whether this magnetic field configuration can power the X-ray activ-
ity characteristic of magnetars, we examine the magnetic stresses inside the crust.
Bursts and outbursts of magnetars are indeed thought to be caused by crust failure
or plastic deformation due to the magnetic stresses [9, 44, 45]. We apply the Lander
& Gourgouliatos model [45] and compare the crustal magnetic stresses with the von
Mises criterion for crust-yielding (see Methods Section 6). In order to obtain a con-
servative estimate, the crust is assumed to have completely relaxed only after 2 kyr.
Figure 4 shows the average depth of crust failure regions developed at the age of
200 kyr. All the failing regions are located close to the original north and south mag-
netic poles, coinciding with the regions of strongest magnetic field generated by the
proto-NS dynamo. The crust failure regions are much larger in the northern than in
the southern hemisphere, due to the properties of the initial magnetic field. This is
very different from earlier simulations with simple dipolar initial conditions [46], in
which the crust failure occurred around the original magnetic equator.

In order to check further if the magnetar behaviour could continue at timescales
comparable to 100 kyr, we made an additional analysis. We assumed that all the
stresses were relaxed in the crust after 100 kyr (which is then used as the reference

field B⃗0 in Methods Section equation 42), and we compute the magnetic stresses after
200 kyr. Even in this case, the stresses in some crust locations are above the yielding
value.

The electromagnetic energy that can potentially be released in such a crustal failure
is [9]

Eout = 4× 1040 erg

(
l

1 km

)2( |B|
1015 G

)2

≈ 2× 1039 erg , (1)

where l ∼ 1 km is the typical size of the failing region and |B| ∼ 2 × 1014 G (see
Figure 4). This value is actually well above the typical burst energy ∼ 1037 erg of two
low-field magnetars: SGR J0418+5729 [10] and CXOU J164710.2-455216 [47]. Our
modelling provides an upper limit on the extent of crust failure because it maps all
the regions which could fail by a certain age. The real size of individual crust failures
could be significantly smaller, thus explaining the energy difference between our model
and individual bursts observed from magnetars.
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Fig. 4 Surface and inner crust magnetic field developed by 200 kyr. Crust yielding regions are shown
in white and blue colours.

Spin periods

By electromagnetic braking alone, neutron stars with dipolar fields of a few times
1012 G cannot reach the spin periods of 8-11 s typical for low-field magnetars on a
timescale of 1 Myr. However, it is essential to also take accretion into account, since
the Tayler–Spruit dynamo can only develop if the proto-NS accretes fallback material,
and this accretion will continue even after the NS is formed. Using the formalism
by Ronchi et al. [48] to model torques from the fallback disk, we naturally obtained
periods of 8-11 s after 170 kyr for NSs with dipolar magnetic field similar to our
simulations (see Figure 5). More details about these calculations are summarised in
Methods Section 7.

Most of the spin-down occurs during the propeller stage when the NS decelerates
due to the interaction of its magnetosphere with the fallback disk (see Methods Section
Figure 11). After 200 kyr, this propeller phase has spun the NS down to a rotation
period of P = 8.5 s and a period derivative Ṗ = 8.5 × 10−13 s s−1. According to
the standard magnetic dipole spin-down formula, the inferred surface magnetic dipole
should then be Bdip ≈ 3.8 × 1013 G, which overestimates the true surface magnetic
dipole in our simulation by a factor of ∼ 40. This inferred value of Bdip is comparable
to Swift J1822.3-1606 (1.4× 1013 G) and below the upper limit measured for CXOU
J164710.2-455216 (< 6.6×1013 G) as well as 3XMM J185246.6+003317 (< 4×1013 G).

The apparent magnetic field estimated using instantaneous period and period
derivative might be smaller if the disk is partially depleted and provides less torque.
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Fig. 5 Time evolution of the spin period P and its time derivative Ṗ until 10 Myr with small
variations of the initial mass accretion rate Ṁ and dipolar magnetic field BNS. The red and grey
dashed lines represent the constant dipolar magnetic field lines calculated from the magnetic dipole
spin-down formula for 1012 G and 1013 G, respectively. The green area covers the zone in which
the magnetar could end up if the accretion disk is (partially) depleted (for the fiducial parameters
BNS = 1012 G, Md,0 = 0.01 M⊙). The red dotted arrow indicates how the PṖ evolution would
behave if the disk is completely depleted.

Depending on the exact amount of material left in the disk, the period derivative Ṗ
could range from ≈ 10−15 (electromagnetic spin-down only) to ≈ 10−12 (non-depleted
disk; green area in Figure 5). All low-field magnetars with a measured period derivative
fall within this area.

Impact and future work

Previous magneto-thermal simulations have considered idealised, large-scale magnetic
fields [15, 49]. Some of these simulations can be made more similar to low-field magne-
tars by assuming a magnetar-strength dipolar magnetic field which is then dissipated
by an increased crust resistivity [12] 2. Moreover, these simulations stay highly axi-
ally symmetric because of the symmetries of the initial conditions. Although some
previous studies have considered more complicated field structures, as expected from
proto-NS evolution [50, 51], our study is the first to directly implement the field from
a self-consistent dynamo simulation. The crucial properties of our new magnetic field
configuration are that this field is predominantly toroidal and is initially localised near
the polar regions of the crust. As a consequence, we find that crustal fractures are
most likely to occur in these regions.

2See e.g. model C0-0-tor with 50% of toroidal magnetic field and initial dipolar magnetic fields of 1014 G
in [15].
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One important advance of this work is understanding that the evolution towards
large-scale fields is very limited, with the dipole only growing by a factor of two,
contrary to earlier suggestions [18]. In our simulation, the magnetic energy contained
in the deep crustal fields, including the toroidal component, is significantly larger than
the field which can be estimated from surface dipolar values. We find only a moderate
increase of the dipolar component, on a timescale of ∼ 105 years.

In comparison to the model suggested by Rea et al. [12] with an initial dipolar
field as strong as 1.5 × 1014 G, the dipolar magnetic field stays very low, ∼ 1012 G,
and does not decay significantly in our simulations.

Our results also suggest an important connection between low-field magnetars and
recently discovered long-period radio pulsars, such as PSR J0901-4046 [52]. If the
neutron star continues to operate in the propeller phase, it will ultimately reach periods
comparable to 75 s by 10 Myr (Figure 5). The external magnetic field configuration
remains complex, with large open field-line curvature near the NS surface facilitating
radio pulsar operation. Thus, pulsar radio emission could occur if the disk is depleted.

Mahlmann et al. [53] performed numerical simulations for X-ray outbursts with
energies up to 1043 erg produced by a twisted magnetar magnetosphere. In our sim-
ulations, we see the development of individual magnetic arcs and the evolution of
their footpoints. Thus, our results can be used as the initial magnetic field for future
relativistic magnetosphere simulations.

Our work opens new perspectives for testing extreme dynamos operating in proto-
neutron stars. We suggest that different dynamos leave their unique imprint on
magnetic field configurations, thus allowing to identify different magnetic amplifica-
tion processes using the magneto-thermal properties of young isolated neutron stars.
While we suggest that the formation of low-field magnetars is linked to the Tayler–
Spruit dynamo, the formation of classical magnetars as well as the internal structure
of their magnetic fields remains an open question.
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[20] Raynaud, R., Cerdá-Durán, P. & Guilet, J. Gravitational wave signature of proto-
neutron star convection: I. MHD numerical simulations. MNRAS 509, 3410–3426
(2022).

10



[21] Masada, Y., Takiwaki, T. & Kotake, K. Convection and Dynamo in Newly Born
Neutron Stars. ApJ 924, 75 (2022).

[22] White, C. J., Burrows, A., Coleman, M. S. B. & Vartanyan, D. On the Origin of
Pulsar and Magnetar Magnetic Fields. ApJ 926, 111 (2022).

[23] Reboul-Salze, A., Guilet, J., Raynaud, R. & Bugli, M. A global model of the
magnetorotational instability in protoneutron stars. A&A 645, A109 (2021).

[24] Reboul-Salze, A., Guilet, J., Raynaud, R. & Bugli, M. MRI-driven αΩ dynamos
in protoneutron stars. A&A 667, A94 (2022).

[25] Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar
interior. A&A 381, 923–932 (2002).

[26] Barrère, P., Guilet, J., Reboul-Salze, A., Raynaud, R. & Janka, H. T. A new
scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star
spun up by fallback. A&A 668, A79 (2022).

[27] Barrère, P., Guilet, J., Raynaud, R. & Reboul-Salze, A. Numerical simulations
of the Tayler-Spruit dynamo in proto-magnetars. MNRAS 526, L88–L93 (2023).

[28] Vink, J. & Kuiper, L. Supernova remnant energetics and magnetars: no evidence
in favour of millisecond proto-neutron stars. MNRAS 370, L14–L18 (2006).

[29] Martin, J., Rea, N., Torres, D. F. & Papitto, A. Comparing supernova remnants
around strongly magnetized and canonical pulsars. MNRAS 444, 2910–2924
(2014).

[30] Goldreich, P. & Reisenegger, A. Magnetic Field Decay in Isolated Neutron Stars.
ApJ 395, 250 (1992).

[31] Igoshev, A. P., Popov, S. B. & Hollerbach, R. Evolution of Neutron Star Magnetic
Fields. Universe 7, 351 (2021).
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For the proto-NS simulation, we used the MagIC code (commit 2266201a5), which
is open source at https://github.com/magic-sph/magic. The magnetar spin-down
was calculated with the GRB code (commit 84788793), also publicly available at
https://github.com/rraynaud/GRBs. The results of magneto-thermal simulations can
be shared under reasonable request.

Methods section

1 Simulation of the proto-neutron star dynamo

We simulate a proto-NS with a mass of 1.4 M⊙ and a radius RNS = 12 km. Its
interior is modelled as a stably stratified fluid enclosed between two spherical shells.
To control the differential rotation, we impose constant rotation frequencies on both
shells (spherical Taylor-Couette configuration), with the outer shell rotating faster
than the inner shell to be consistent with the fallback formation scenario. We solve
the Boussinesq MHD equations by using the pseudo-spectral code MagIC. In this code,
the different lengths r, the time t, the temperature T , and the magnetic field B are
scaled as follows:

r → rd, t → (d2/ν)t, T → (To − Ti)T, B →
√

4πρηΩoB , (2)

with the gap between the two spheres d = ro − ri = 9km, the kinematic viscosity
ν = 3.5 × 109 cm2 s−1, the temperatures of the outer To and inner Ti spheres, the
constant density ρ = 4.1× 1014 g cm−3, the resistivity η = 3.5× 109 cm2 s−1, and the
rotation rate of the outer sphere Ωo = 628 rad s−1. So, the dimensionless equations
solved by MagIC read

∇⃗ · v⃗ = 0 , (3)

∇⃗ · B⃗ = 0 , (4)

Dv⃗

Dt
+

2

E
e⃗z × v⃗ = −∇⃗p′ +

Ra

Pr
T e⃗r +

1

E Pm
(∇⃗ × B⃗)× B⃗ +∆v⃗ , (5)

DT

Dt
=

1

Pr
∆T , (6)

∂B⃗

∂t
= ∇⃗ × (u⃗× B⃗) +

1

Pm
∆B⃗ , (7)

where v⃗ and B⃗ are the velocity and magnetic fields, and p′ is the non-hydrostatic
pressure. D/Dt ≡ ∂/∂t+ v⃗ · ∇⃗ is the Lagrangian derivative. E, Ra, Pr, and Pm are
dimensionless numbers, which depend on the fluid properties. The Ekman number E
is defined as the ratio of the rotation period to the viscous timescale

E =
ν

d2Ωo
= 10−5 . (8)
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The thermal and magnetic Prandtl numbers are defined by

Pr =
ν

κ
= 0.1 and Pm =

ν

η
= 1 , (9)

where κ = 3.5× 1010 cm2 s−1 is the thermal diffusivity. Finally, the Rayleigh number
Ra measures the ratio between the timescales of thermal transport by diffusion to the
thermal transport by convection,

Ra =

(
N

Ωo

)2
Pr

E2
, (10)

where

N ≡

√√√√−g0
ρ

(
∂ρ

∂S

∣∣∣∣
P,Ye

dS

dr
+

∂ρ

∂Ye

∣∣∣∣
P,S

dYe

dr

)
= 68.2 s−1 (11)

is the Brunt-Väisälä frequency. The gravitational acceleration is assumed purely radial
g⃗ = g0r/r0e⃗r. Ye, and S are the electron fraction, and the entropy, respectively.

The resolution used is (nr, nθ, nϕ) = (257, 256, 512). For more information on the
numerical methods, see the supplementary materials of [27].

2 Conversion between MagIC and PARODY codes

The poloidal-toroidal decompositions and thus the magnetic potentials are defined
differently in the MagIC and PARODY codes. Specifically,

B⃗ = ∇⃗ × ∇⃗ × (bMpole⃗r) + ∇⃗ × (bMtore⃗r) , (12)

B⃗ = ∇⃗ × ∇⃗ × (bPpolre⃗r) + ∇⃗ × (bPtorre⃗r) , (13)

where the superscript M / P refers to MagIC / PARODY, respectively.
Moreover, the codes use different normalisation factors Clm for the spherical har-

monics Y m
l (θ, ϕ). The spherical harmonics are normalised as the following in the

PARODY code

CP
lm =

√
(2− δm,0)(2l + 1)

(l −m)!

(l +m)!
, (14)

while the normalisation in the MagIC code reads

CM
lm =

1

1 + δm,0

√
(2l + 1)

4π

(l −m)!

(l +m)!
, (15)

where δm,0 is the Kronecker delta, so δm,0 = 1 if m = 0 and it is 0 otherwise.
Thus, for the radial magnetic field, we have

Br =
l(l + 1)

r2m
blm,M
pol (rm)C

M
lm Y m

l (θ, ϕ) =
l(l + 1)

rp
blm,P
pol (rp)C

P
lm Y m

l (θ, ϕ) . (16)
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Doing this comparison for each (l,m) separately we thus obtain

blm,P
pol (rpol) = blm,M

pol (rm)
rp
r2m

CM
lm

CP
lm

. (17)

Expanding and simplifying this expression we obtain two different equations for
axisymmetric and non-axisymmetric poloidal potentials

bl0,Ppol (rp) =
bl0,Mpol (rm)√

4π

rp
r2m

for m = 0 , (18)

blm,P
pol (rp) =

blm,M
pol (rm)√

2π
for m ̸= 0 . (19)

Similarly, we can proceed with the θ-component of the magnetic field computed
using only the toroidal potential

Bθ =
CM

lm

rm sin θ
blm,M
tor (rm)

∂Y m
l (θ, ϕ)

∂ϕ
=

CP
lm

sin θ
blm,P
tor (rp)

∂Y m
l (θ, ϕ)

∂ϕ
. (20)

Thus, the normalisation is

blm,P
tor (rp) = blm,M

tor (rm)
CM

lm

CP
lm

1

rm
, (21)

which simplifies to

bl0,Ptor (rp) =
bl0,Mtor (rm)√

4π

1

rm
for m = 0 , (22)

blm,P
tor (rp) =

blm,M
tor (rm)√

2π

1

rm
for m ̸= 0 . (23)

In this work, we preserve the angular structure obtained in dynamo simulations
at the surface and in the middle of the crust up to Lmax = 30, which corresponds to
surface structures of ≈ 1 km. Analysis of the dynamo simulations reveal that larger-
scale structures do indeed dominate the magnetic field. Smaller scale structures are
generated during the first kyr via the Hall cascade, see Figure 6.

3 Crust-confined magnetic field configurations

In addition to the technical details in the previous section, the proto-NS dynamo setup
and the magneto-thermal crust evolution setup differ in their geometry, having aspect
ratios χpNS = 0.25 and χNS = 0.9, respectively. Thus, in order to create a magnetic
field configuration which is similar to proto-NS results but is also crust-confined, we
should extract only the top 10% of the proto-NS simulation.

16



100 101 102
10 6

10 5

10 4

10 3

10 2

10 1

100

101

E(
)

7/3

2

0.2

0.4

0.6

0.8

Age (Myr)

Fig. 6 Evolution of the magnetic energy spectra over 1 Myr.

Our approach for importing the results of the dynamo simulations is to require all
components of the magnetic field to be exactly the same at certain points within the
crust. We consider the poloidal and toroidal potentials for each individual spherical
harmonic, and require both these potentials to exactly coincide with our numerical
fits at the following points: r1 = 0.93 and r2 = 0.96. We require our fit for the
poloidal potential to coincide at the surface. We also require our poloidal and toroidal
potentials to satisfy the potential boundary condition at the surface and the ‘no-
currents’ boundary condition at the core-crust interface.

Similarly to recent work [49] we represent the radial part of the poloidal and
toroidal potentials as a polynomial expansion

blm(r) =
a0 + a1r + a2r

2 + a3r
2 + a4r

4

r
. (24)

Overall, all conditions for the radial part of the poloidal potential can be written as

bp(1) = βp(1.0) ,
bp(0.96) = βp(0.96) ,
bp(0.93) = βp(0.93) ,
bp(rc) = 0 ,

∂bp
∂r (1) +

(l+1)
r bp(1) = 0 .

(25)

Here βp(r) are coefficients of the spectral expansion for poloidal magnetic field
extracted from the proto-NS MagIC simulations. These conditions are individually
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satisfied for each l and m, and translate into the following system of linear equations

a0 + a1 + a2 + a3 + a4 = βp(1.0) ,
(a0 + a1r1 + a2r

2
1 + a3r

3
1 + a4r

4
1)/r1 = βp(r1) ,

(a0 + a1r2 + a2r
2
2 + a3r

3
2 + a4r

4
2)/r2 = βp(r2) ,

a0 + a1rc + a2r
2
c + a3r

3
c + a4r

4
c = 0 ,

a0l + (l + 1)a1 + (l + 2)a2 + (l + 3)a3 + (l + 4)a4 = 0 .

(26)

For the toroidal potential we use the following conditions

bt(1) = 0 ,
bt(0.96) = βt(0.96) ,
bt(0.93) = βt(0.93) ,
∂ [rbt(rc)] /∂r = 0 .

(27)

Similarly, βt(r) here are the coefficients of the spectral expansion for the toroidal mag-
netic field extracted from the proto-NS simulations. These conditions then translate
into the linear system

a0 + a1 + a2 + a3 = 0 ,
(a0 + a1r1 + a2r

2
1 + a3r

3
1)/r1 = βt(r1) ,

(a0 + a1r2 + a2r
2
2 + a3r

3
2)/r2 = βt(r2) ,

a1 + 2a2rc + 3a3r
2
c = 0 .

(28)

4 Simulation of neutron star magneto-thermal
evolution

The pseudo-spectral code PARODY [37] was modified to solve the following system of

dimensionless partial differential equations for magnetic field B⃗ and temperature T :

∂B⃗

∂t
= Ha ∇⃗ ×

[
1

µ3
B⃗ × (∇⃗ × B⃗)

]
− ∇⃗ ×

[
1

µ2
∇⃗ × B⃗

]
+ Se∇

[
1

µ

]
× ∇⃗T 2 , (29)

µ2

Ro

∂T 2

∂t
= ∇⃗ ·

[
µ2χ̂ · ∇⃗T 2

]
+

Pe

Se

|∇⃗ × B⃗|2
µ2

+ Peµ
[
∇⃗ × B⃗

]
· ∇⃗
[
T 2

µ2

]
, (30)

where the first equation is the magnetic induction equation and the second is the
thermal diffusion equation. The terms on the right-hand side of the first equation
correspond to the Hall effect, Ohmic decay and the Biermann battery effect. The
terms on the right-hand side of the second equation correspond to anisotropic thermal
diffusion, Ohmic heating and entropy carried by electrons. The derivation of the above
equations is summarised in [54]. The same code was also used to compute the evolution
of off-centred dipole configurations [49].
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The electron chemical potential varies within the crust as

µ(r) = µ0

[
1 +

(1− r/RNS)

0.0463

]4/3
. (31)

The tensor χ̂ describing the anisotropy of the heat transport is written as:

χ̂ =
δij +HaBiBj/µ

2 −Ha ϵijkBk/µ

1 + Ha2 |B⃗|2/µ2
, (32)

where δij is the Kronecker symbol and ϵijk is the Levi-Civita symbol.
The dimensionless Hall (Ha), Seebeck (Se), Péclet (Pe) and Roberts (Ro) param-

eters depend on the chosen scales for the magnetic field and temperature, which we
take to be B0 = 1014 G and T0 = 1.0× 108 K. The Hall number is defined by

Ha = cτ0
eB0

µ0
≈ 49.1 , (33)

where e is the electron charge, c is the speed of light, τ0 = 9.9 × 1019 s is the elec-
tron scattering relaxation time [55] and µ0 = 2.9 × 10−5 erg is the electron chemical
potential at the top of the crust. The Seebeck number is defined by

Se = 2π3k2BT
2
0 n0e

cτ0
µ0B0

≈ 0.052 , (34)

where kB is the Boltzmann constant and n0 = 2.603 × 1034 cm−3 is the electron
number density at the top of the crust. Finally, the Péclet and Roberts numbers are

Pe =
3

4π

B0

en0cτ0
≈ 6.44× 10−5 , (35)

and

Ro =
3

4π3

µ2
0

kBT0

1

c2τ20

1

e2n0
≈ 3580 . (36)

In order to ensure the solenoidality of the magnetic field B⃗, we write the magnetic
field as a sum of poloidal and toroidal parts

B⃗ = ∇⃗ × ∇⃗ × (bpolr⃗) + ∇⃗ × (btorr⃗) . (37)

The scalar potentials bpol and btor are expanded in spherical harmonics. We model the
core as a perfect conductor, which implies the following inner boundary conditions at
r = 0.9

bpol = 0 and
d(rbtor)

dr
= 0 . (38)
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Fig. 7 The surface radial magnetic field after 200 kyr of evolution.

We model the region outside the NS as a vacuum, which implies the following outer
boundary conditions at r = 1

dblmpol
dr

+
l + 1

r
blmpol = 0 and btor = 0 , (39)

where blmpol is the coefficient of degree l and orderm in the spherical harmonic expansion
of the poloidal potential bpol.

The temperature is fixed to its initial value at the core–crust boundary (see
more details about modelling cooling at the end of the section). The outer boundary
condition for the temperature is

−µ2r⃗ · χ̂ · ∇⃗(T 2) =
1

5

RNS

cτ0
SePe (Ts/T0)

4 , (40)

where the (dimensional) surface temperature Ts is related to the crustal temperature
Tb as: [

Ts

106 K

]2
=

[
Tb

108 K

]
, (41)

using simplified relation [56].
The numerical resolution is nr = 96 grid points in the radial direction and spherical

harmonic degrees up to lmax = 128. We show the surface radial magnetic field as well
as the surface temperature at age 200 kyr in Figures 7 and 8. We show the evolution
of magnetic energy spectra in Figure 6.

To take into account the NS cooling, we restart calculations at 200 kyr changing
the core temperature to 106 K. We run calculations for 1 kyr to allow the simulation
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Fig. 8 The surface temperature after 200 kyr of evolution assuming a NS core temperature 106 K.
No magnetospheric hot spots are shown.

low-field magnetar χ i ∆Φ C-stat
(rad) (rad) (rad)

SGR 0418+5729 0.6984 1.264 5.616 6.8
CXOU J164710.2-455216 0.7518 1.085 5.555 29.9
Swift J1822.3-1606 0.0519 0.636 5.625 16.5
3XMM J185246.6+003317 1.093 1.637 5.330 34.7

Table 1 Possible rotational orientation for low-field magnetars
assuming that their X-ray lightcurves are produced by hot spots.

to relax, i.e. crust temperatures stop evolving on short timescales, creating a stable
surface thermal pattern.

5 Properties of thermal emission

We use the open source code Magpies3 to model X-ray thermal lightcurves. We show
these results in Figure 9. The maximum pulsed fraction reaches 93 % for the most
favourable orientation of the rotational axis with respect to the original dipole axis.

Similarly to [15] we try to fit the soft X-ray lightcurve in the range 0.3-2 keV. We
show the results in Figure 10. We summarise the obliquity angle as well as inclination
angles in Table 1. While SGR 0418+5729 and Swift J1822.3-1606 are fitted relatively
well, the two remaining magnetars have more features in the lightcurves.

3https://github.com/ignotur/magpies

21



0

1

2

F/
F m

ea
n

= 30

0.5

1.0

1.5

F/
F m

ea
n

= 60

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Phase

0.75

1.00

1.25

F/
F m

ea
n

= 90

Fig. 9 Soft X-ray lightcurves for the surface thermal map combined with the magnetospheric hot
spots. Each panel corresponds to a different obliquity angle χ. The three curves correspond to different
inclination angles: black dotted lines are for i = 30◦, blue solid lines are for i = 60◦, and red dashed
lines are for i = 90◦.

6 Crust failure

We use here a model developed by [45] based on earlier work by [44]. Essentially, we
use the von Mises criterion for crust-yielding following Eq. (14) of [45]:

τel ≤
1

4π

√
1

3
B⃗4

0 +
1

3
B⃗4 +

1

3
B⃗2

0B⃗
2 − (B⃗ · B⃗0)2 . (42)

Here B⃗0 is the relaxed (initial) state of the magnetic field, which we assume to coincide

with our first simulation snapshot at 2 kyr. τel is the scalar yield stress. The field B⃗ is
computed at 200 kyr. We compute the critical strain following the procedure by [45]
with a correction (private communication by Sam Lander)

ρ̃ = 99.6

(
1− Rcc

Rnd

)2

(1−R)2 + 0.004 , (43)

where R is computed as:

R =
r −Rcc

Rnd −Rcc
, (44)
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Fig. 10 Observed soft X-ray lightcurves in the range of 0.3-2 keV for low-field magnetars in the
quiescent state and the best fits (solid blue line). It is assumed that emission is produced by hot spots
formed at the places with radial magnetic field exceeding 7× 1013 G.

where Rcc = 0.9 is the location of the crust-core interface and Rnd = 1 is the location
of the neutron-drip point. Thus, our critical strain varies from ≈ 8× 1026 g cm−1 s−2

close to the neutron-drip boundary to 4.6×1029 g cm−1 s−2 at the core-crust boundary.
Following our normalisation, the stress caused by Lorentz forces (right-hand side of
equation 42) is multiplied by a numerical factor (1014 G)2. This von Mises criterion is
written assuming that failure occurs in the form of shearing motion [45].

7 Accretion driven spin-down

To explain the NS spin-down to the regime of low-field magnetars, we invoke the
propeller mechanism due to the interaction between the NS magnetic field and the
remaining fallback disk. The evolution of the NS-fallback depends on the three dif-
ferent radii: (i) the light cylinder radius, (ii) the magnetospheric radius, and (iii) the
corotation radius, which are defined by the respective expressions

rlc =
c

ΩNS
, (45)

rmag = µ4/7(GMNS)
−1/7Ṁ−2/7 , (46)
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rcor =

(
GMNS

Ω2
NS

)1/3

. (47)

Here c is the speed of light, and G is the gravitational constant. MNS and ΩNS are
the NS mass and rotation rate; µ = BNSR

3
NS is its magnetic dipole moment. Ṁ is the

accretion rate4.
If the disk penetrates the magnetosphere (rlc > rmag), it can either spin up the

NS by accreting matter if rcor > rmag, or spin down the NS in a propeller phase if
rcor < rmag. In this propeller phase, the magnetic field accelerates the inner disk to
super-Keplerian speeds, which produces a centrifugal outflow. Angular momentum is
therefore transported from the NS toward the disk, which can efficiently spin down
the NS.

The modelling of the NS-fallback evolution we use is strongly inspired by [57]
except for the mass accretion rate, which reads [48]

Ṁ(t) = Ṁ0

(
1 +

t

tν

)−1.2

, (48)

where tν ∼ 30 s is the viscous timescale and Ṁ0 = Md,0/tν ∼ 6.5 × 1029 g s−1 is
the initial accretion rate, and Md,0 = 0.01M⊙ is the initial fallback disk mass. The
torques exerted on the NS by the accretion disk are given by

Nacc =





(
1−

(
rmag

rcor

)3/2)√
GMNSRNSṀ2 if rmag > RNS ,

(
1−

(
ΩNS

ΩK

)3/2)√
GMNSRNSṀ2 if rmag < RNS ,

(49)

where ΩK =
√

GMNS/R3
NS is the Keplerian angular velocity. The dipole spins the NS

down as follows

Ndip = −2

3

µ2Ω3
NS

c3

(
rlc
rmag

)3

. (50)

Therefore the NS angular velocity evolves as

INSΩ̇NS = Nacc +Ndip , (51)

where INS = 1.45× 1045 g cm2 is the NS moment of inertia. Figure 11 shows the time
series of the characteristic radii and NS rotation period that result from the solution
of equation (51) for BNS = 1012 G, Md,0 = 0.01 M⊙, and an initial rotation period of
10 ms. We clearly find that the NS is strongly spun down during the propeller phase
and reaches the period range of the observed low-field magnetars at ∼ 170 kyr. This
timescale varies up to ∼ 550 kyr for BNS = 5 × 1011 G. Figure 11 shows the period
and period derivative evolution.

4Strictly speaking, Ṁ is the material loss rate from the accretion disk. In the propeller regime this
quantity remains positive even though the material is not accreted onto the neutron star.

24



Fig. 11 Time evolution of the characteristic radii (top) and the NS rotation period (bottom) for
BNS = 1012 G, Md,0 = 0.01 M⊙, and an initial rotation period of 10 ms. The NS is spun up during
the accretion regime (blue region) and strongly spun down in the propeller phase (orange region).
The hatched region in the bottom figure represents the range of rotation periods observed in low-field
magnetars.
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ABSTRACT

Context. In binary neutron star mergers, the remnant can be stabilized by differential rotation before it collapses into a black hole.
Therefore, the angular momentum transport mechanisms are important to predict the lifetime of the hypermassive neutron star. One
such mechanism is the Tayler-Spruit dynamo, and recent simulations have shown that it could grow in the context of the proto-neutron
star.
Aims. We aim to examine whether hypermassive neutron stars with high neutrino viscosity could be unstable to the Tayler-Spruit
dynamo and how magnetic fields would evolve.
Methods. With a one-zone model based on a 3D GRMHD simulation, we investigate the time evolution of the magnetic fields
generated by the dynamo. We also analyze the dynamics of the 3D GRMHD simulation to see whether the dynamo is present.
Results. We find that the Tayler-Spruit dynamo can increase the toroidal magnetic field to ≥ 1017 G and the dipole to amplitudes
≥ 1016 G. The dynamo’s growth timescale depends on the initial large-scale magnetic field right after the merger. In the case of a
long-lived hypermassive neutron star, an initial magnetic field of ≥ 1012 G would be enough to grow in its lifetime. However, we show
that the resolution of current GRMHD simulations is not enough to resolve the Tayler-Spruit dynamo due to the high dissipation at
small scales.
Conclusions. Overall, we find that the Tayler-Spruit dynamo could occur in hypermassive neutron stars and shorten its lifetime, which
would have consequences on multi-messenger observations.

Key words.

1. Introduction

The association of GW170817 and GRB 170817A confirmed
that binary neutron star mergers are the progenitors of some short
gamma-ray bursts (Abbott et al. 2017). The nature of the remnant
of GW170817 is quite uncertain, and many different parameters
can impact the time before its collapse into a black hole. De-
pending on the hot and dense matter equation of state and the
masses of the neutron star, different fates await the remnant after
the merger: it can promptly collapse into a black hole, it can also
form a hypermassive neutron star, i.e. a neutron star that is sta-
bilized by differential rotation while having a mass higher than
the limit mass of a cold non-rotating neutron star MTOV . This
remnant can either collapse into a black hole when the angular
momentum is transported or be stabilized by the solid body ro-
tation, increasing the limit mass by around ∼ 20%. In this stage,
the remnant is called a supramassive neutron star and can col-
lapse after losing its rotation by magnetic dipole spin-down on
the timescale of minutes, hours or longer and even remain as a
stable neutron star if the mass of the remnant is lower than MTOV .

After the merger of two neutron stars, the remaining object
can significantly affect the electromagnetic counterparts due to
various factors. These factors include powerful neutrino lumi-
nosity, strong magnetic fields (≥ 1015 G), and rotational energy
reservoirs of around 1053 erg. Several studies have examined
the impact of these factors on post-merger events (Metzger et al.

2008; Bucciantini et al. 2012; Giacomazzo & Perna 2013; Gao
et al. 2013; Metzger & Piro 2014; Gompertz et al. 2014; Sarin
et al. 2022). Magnetic fields, along with fast rotation, play a crit-
ical role in the merger of neutron stars as they can extract rota-
tional energy and serve as a source of energy for relativistic out-
flows from the merger remnant (Combi & Siegel 2023; Kiuchi
et al. 2024). Therefore, understanding the evolution of the mag-
netic field and the rotation profile of the hypermassive neutron
star is crucial in predicting future multi-messenger observations.

During the first few milliseconds after the merger, the mag-
netic field of the hypermassive neutron star is amplified by the
Kelvin-Helmholtz instability due to the shear layer at the sur-
face where the two neutron stars enter into contact. This leads to
a strong and small-scale magnetic field. Another mechanism is
necessary to get a large-scale magnetic field that could drive an
outflow. Two different mechanisms could play this role in differ-
ent regions of the hypermassive neutron star. Indeed, the remnant
from the binary neutron star (BNS) merger has a rotation profile
with an angular velocity that increases with radius until 10 km
and then decreases afterwards (Kastaun et al. 2016, 2017; Ciolfi
et al. 2017, 2019). This rotation profile is, therefore, unstable
to the magnetorotational instability after 10 km, and it has been
studied in the long-lived remnant case. Notably, it was shown
that it could drive a luminous relativistic outflow (Ciolfi 2020;
Combi & Siegel 2023; Kiuchi et al. 2024). However, the differ-
ential rotation in the core before 10 km, which makes it stable to
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the MRI, has never been studied, and this region could be unsta-
ble to the Tayler-Spruit dynamo, driven by the Tayler instability.

The Tayler Instability is a type of magnetic instability in
flows of electrically conductive and stably stratified fluids where
a strong azimuthal magnetic field can become unstable, causing
disruptions due to the Lorentz forces that arise from the interac-
tion of currents along the axis of symmetry and magnetic fields
(Tayler 1973; Pitts & Tayler 1985). The first model of a dynamo
driven by the Tayler instability was proposed by Spruit (2002)
to happen in stably stratified and differentially rotating regions.
Fuller et al. (2019) have proposed an alternative description to
address a few criticisms received by this model (see Denissenkov
& Pinsonneault 2007; Zahn et al. 2007). Numerical simulations
have been unable to capture the Tayler-Spruit dynamo for a long
time. However, recent numerical simulations have finally pro-
vided numerical evidence that this dynamo exists (Petitdemange
et al. 2023; Barrère et al. 2023; Petitdemange et al. 2024). In
the study of the interior physics of stars, the dynamo is often
used to explain magnetic field amplification, which could impact
angular momentum transport and lead to the magnetic desert
in Ap/Bp stars (Rüdiger & Kitchatinov 2010; Szklarski & Arlt
2013; Bonanno & Guarnieri 2017; Ma & Fuller 2019; Bonanno
et al. 2020; Jouve et al. 2020). This dynamo process has been
recently studied in the context of magnetar formation, providing
a new scenario with no initial fast rotation needed (Barrère et al.
2022, 2023).

The Tayler-Spruit has been proposed to transport the angu-
lar momentum of the hypermassive neutron star, which would
lead it to collapse into a black hole (Margalit et al. 2022). This
study estimated the angular momentum transport timescale due
to the transport by the theoretical saturated magnetic fields from
scalings. However, the neutrino viscosity could make the TS dy-
namo stable, or it could require a longer time to grow towards
the saturated magnetic field strength than the lifetime of the hy-
permassive neutron star.

Therefore, this paper aims to study whether the conditions
in binary neutron star mergers could allow the Tayler-Spruit dy-
namo to grow and impact the explosion. In particular, this study
applies a similar one-zone model to (Barrère et al. 2022) in the
framework of binary neutron star merger. The paper is organized
as follows: In section 2, we describe how we model the hyper-
massive neutron star and the equations for a one-zone model of
the Tayler-Spruit dynamo. The results of the one-zone models
are presented section 3, while we compare the results of the
model to the recent super-high resolution GRMHD simulation
in section 4. Lastly, the validity of our assumptions is discussed
in section 5, and we conclude in section 6.

2. A one-zone model of the Tayler-Spruit dynamo in
the HMNS

2.1. Modelling of the hypermassive neutron star

For our hypermassive neutron model, we use the data from a 3D
GRMHD simulation with a stiff equation of state, DD2, where
the remnant lasts for longer than 150 ms (Paper I). To check
whether the Tayler-Spruit (TS) dynamo is relevant for this hy-
permassive neutron star (HMNS), we look at the rotation pro-
file of the HMNS (Figure 1) at different times. The remnant has
a cylindrical rotation profile that shows a large region in posi-
tive differential rotation from R = 5 km and R = 10 km, where
the Tayler-Spruit (TS) dynamo could grow. Note that this rota-
tion profile is found to be typical of hypermassive neutron stars
in many different simulations (Kastaun et al. 2016, 2017; Ciolfi

et al. 2017, 2019). In the following, we use the radius r = 7 km
as a typical radius for our thermodynamical quantities. At this
radius, we have Ω = 5468 s−1 and a shear rate of q = 1.12.
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Fig. 1. Azimuthal averaged rotation profile of the remnant as a function
of the cylindrical radius, at different times t and vertical position z.

The TS dynamo requires to be convectively stable for its
growth. Therefore, we test whether the core of the binary neutron
star remnant is convectively stable. For that, we use the relativis-
tic Ledoux criterion, given by

CL =
∂ρ(1 + ϵ)
∂r

− 1
c2

s

∂P
∂r
, (1)

where ρ, ϵ, cs, P are the density, internal energy, sound speed
and pressure in the remnant. We find that the HMNS is indeed
stably stratified, and we use the General Relativistic formula for
the Brunt-Väisälä (BV) frequency N derived in Müller et al.
(2013):

N2 ≡ −c2 αCL

ρhϕ4

∂α

∂r
, (2)

where α, h, ϕ are the lapse function, the specific enthalpy and
the conformal factor. This formula comes from the hydrostatic
equilibrium written as G = c2∇ lnα. Since our hypermassive
neutron star is rapidly rotating, we prefer to use this definition
of hydrostatic equilibrium instead of the one with the pressure
gradient for our background. With this formula, we find typical
values of N = 3690 s−1 at a radius of RT I = 7 km for the Brunt-
Väisälä frequency. The density is equal to ρ = 3.7 × 1014 g cm3.

We note that in this context, we cannot assume that the rota-
tion rate Ω is much lower than the Brunt-Väisälä frequency, and
we assume only that ωA ≪ Ω,N for section 3. Note that this
hypothesis may no longer be valid when we analyze the core dy-
namics in the GRMHD simulation, as the toroidal magnetic field
can be winded to higher values.

2.2. Standard Tayler-Spruit picture

As in Fuller et al. (2019); Barrère et al. (2022), we decompose
the velocity and magnetic field components into axisymmetric
components noted as Bi or ui and non-axisymmetric components
noted as δBi and δui. For the evolution of the angular velocity,
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we consider that the initial value decreases due to the magnetic
torque. It gives

Ω̇ = −R2
T I BrBϕ

I
(3)

where I is the moment of inertia of the inner zone below 10 km.
The angular momentum is transported by the Maxwell stress ten-
sor and is evolved by

q̇ = −γAMq = − BrBϕ
4πρΩR2

T I

. (4)

The difference between the HMNS model and the PNS model
of Barrère et al. (2022) is the geometry: the rotation profile in an
HMNS is cylindrical while spherical for a late PNS with fallback
accretion. We, therefore use Br to designate the cylindrical radial
field in our study. The derivation of the equations is almost the
same except for the equation of Br. Indeed, in cylindrical coor-
dinates, the growth of the Br due to the toroidal component of
the electromotive force Eϕ is given by

∂Br

∂t
= −∂Eϕ

∂z
∼ Eϕ

Lz
, (5)

where Lz is the vertical wavelength of the Tayler instability. We
retrieve the same formula as previous studies in spherical geom-
etry if we assume Lz ∼ RT I , which we will do for the sake of
simplicity.
The magnetic field evolution is therefore governed by the fol-
lowing equations (Barrère et al. 2022)

∂tBϕ = (σshear − γdiss) Bϕ = qΩBr −
ω2

A

Ω

δB2
⊥

Bϕ
, (6)

∂tδB⊥ = (σTI − γcas) δB⊥ =
ω2

A

Ω
δB⊥ − δvA

RT IδB⊥
, (7)

∂tBr = (σNL − γdiss) Br =
ω2

A

NΩ
δB2
⊥√

4πρR2
T I

− ω
2
A

Ω

(
δB⊥
Bϕ

)2

Br , (8)

where ωA, δvA are respectively the Alfvén frequency of the
toroidal magnetic field Bϕ and the Alfvén speed of the non-
axisymmetric component δB⊥.

2.3. Diffusive impact on the Tayler-Spruit dynamo

In a hypermassive neutron star, the impact of the neutrinos on
the momentum equation can be modelled as a strong viscosity
for scales larger than the neutrino mean free path. By taking into
account the degeneracy of neutrinos in the core of the HMNS,
the viscosity can be estimated by the formula (Margalit et al.
2022)

νdeg = 1.2 × 1010
(

ρ

1014g cm−3

) ( Yν
0.1

)
(9)

In the case of our model, this gives a viscosity of ν = 2.3 ×
109 cm2 s−1 at r = 7 km for our model. This would lead to mag-
netic Prandtl number of

Pm ≡ ν
η
= 1.8 × 1014,

where η is assumed to be the resistivity due to electron-proton
scattering (Thompson & Duncan 1993). The thermal diffusion

due to neutrinos is higher than viscosity and the thermal Prandtl
number Pr is found to be

Pr ≡ ν
κ
= 10−3 − 10−2

(Raynaud et al. 2020; Reboul-Salze et al. 2022).
We check the assumptions that could change in the formal-

ism of Fuller et al. (2019): a magnetostrophic balance (Coriolis-
Lorentz force balance) is assumed to derive the equations. Still,
a dense balance could also be possible due to neutrinos. To com-
pare the Coriolis force and the viscous force, a local Ekman
number can be defined as

E =
νk2

TI

Ω
, (10)

where kTI is the wavenumber of the displacements due to the
Tayler instability. The minimum of this wavenumber has been
estimated by Spruit (2002) as

kTI >
N

RT IωA
(11)

We also want to have a growth rate of the Tayler Instability that
is faster than the viscous timescale, which limits the maximum
wavenumber to be smaller than

k2
TI <

ω2
A

Ων
(12)

To satisfy both limits, the magnetic field must be stronger than
the critical magnetic field

Bcrit = (4πρRT I N)
1
2 (νΩ)

1
4 ∼ 7.9 × 1015G, (13)

This high critical strength for our model means that the shear
must amplify the magnetic field before the Tayler instability can
increase the small-scale magnetic field.
We note that this critical magnetic field is a conservative estimate
as the recent study of Skoutnev & Beloborodov (2024) show that
, in the case of a large cylindrical gradient of the toroidal field,
( corresponding to the geometric criterion of Goossens & Tayler
(1980)) the criterion depending on diffusivities is

wA

2Ω
≫

( N
2Ω

)1/2 
ηk2
θ

2Ω


1/4

min(1,
(
η

κ

)1/4
) ≈ 2.15 × 10−9. (14)

This gives a lower limit for the magnetic field of Bϕ,crit > 1.1 ×
109 G, which is easily verified with winding of the magnetic field
and therefore we keep the viscous criterion to be sure.

The Ekman number for this magnetic field value is E ∼
1.6 × 10−6, and we can safely assume the magnetostrophic bal-
ance. For both wavenumber limits, we can estimate the range
of magnetic fields where viscosity will dominate over Coriolis
force, i.e. E > 1, by

B < Bmin, visc =
√

4πρN
√
ν

Ω
≈ 1.7 × 1014G, (15)

B > Bmax, visc =

√
4πρR2

T IΩ ≈ 3.5 × 1017 G. (16)

Therefore, the magnetostrophic balance can be assumed for
both the Tayler instability and dynamo phases but not neces-
sarily for the beginning of time evolution. However, the mag-
netic field strength is amplified to superior values than Bmin, visc
by the winding, for which the magnetostrophic balance can
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also be assumed. We assume a viscous-Lorentz force balance
when the magnetic field is stronger than the maximum value.
When E > 1, the viscous-Lorentz balance can be written as
δv⊥ ∼ δvAωA/(νk2

TI). To obtain this balance from the magne-
tostrophic balance, δv⊥ ∼ δvAωA/Ω. The magnetostrophic bal-
ance is used to derive the non-linear growth rate of the TS dy-
namo, and the balance needs to be divided by the Ekman number
E with the viscous-Lorentz. The TI wavelength kTI is assumed
to be equal to kcrit for all the evolution.

In order to take into account the impact of the viscosity in the
evolution equations, we modify equation 7 to include the cases
where the hypermassive neutron star is stable to the Tayler In-
stability and modify equation 8 when E > 1. First, the equation
7 becomes then

∂tδB⊥ = (σTI − γcas) δB⊥ = BTI
ω2

A

Ω
δB⊥ − δvA

RT I
δB⊥ , (17)

where

BTI =

{
0 if B < Bcrit or Br/Bϕ > ωA/N
1 otherwise.

(18)

The second condition is to keep the divergence-free property of
the axisymmetric field Bϕ due to the solenoidal condition of the
perturbed magnetic field δB. For equation 8, the growth rate of
Br is divided by E if E > 1, which gives

∂tBr = (σNL − γdiss) Br =
ω2

A

NΩ
δB2
⊥

max(1, E)
√

4πρR2
T I

− ω
2
A

Ω

(
δB⊥
Bϕ

)2

Br , (19)

3. Results of the one-zone model

3.1. A fiducial case
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Fig. 2. Time evolution of the magnetic field for a typical hypermassive
neutron star with thermodynamic quantities taken t − tmerger = 30 ms at
a radius of RT I = 7 km and an initial magnetic field of B0 = 1013 G.

For the first case, we assume the initial large-scale magnetic
field to be Br,0 = 1013 G. Figure 2 shows the time evolution of
the magnetic field, the shear rate and the angular velocity. As

in Barrère et al. (2022), the evolution can be divided into three
phases: the winding phase, the Tayler instability phase and the
dynamo phase. In the first phase, the shear amplifies the toroidal
magnetic field. The winding phase lasts for around 150 millisec-
onds. When the toroidal magnetic field is stronger than the criti-
cal magnetic field Bcrit, the non-axisymmetric magnetic field δB⊥
grows due to the Tayler instability. The duration of this phase is
around 250 milliseconds. When δB⊥ becomes strong enough for
the non-linear induction to be relevant, the dynamo is entirely
in action and increases all the magnetic field components for
80 milliseconds. The dynamo stops when the angular momen-
tum is transported, and the HMNS core is in solid body rota-
tion. At saturation, the toroidal, radial and perturbed magnetic
fields are equal to Bsat

ϕ = 1.79 × 1017 G, Bsat
r = 8.0 × 1016 G,

δBsat
⊥ = 1.11 × 1017 G.
We compare the saturation values of the axisymmetric field

Br, Bϕ obtained by the model to the estimated saturated mag-
netic field from the following formulas (Spruit 2002; Fuller et al.
2019)

Bsat
F,ϕ =

√
4πρR2

T IΩ

(
qΩ
N

)1/3

≈ 2.8 × 1017 G, (20)

BF,sat
r =

√
4πρR2

T IΩ

(
q2Ω5

N5

)1/3

≈ ×3.3 × 1017 G, (21)

δBF,sat
⊥ =

√
4πρR2

T IΩ

(
qΩ
N

)2/3

≈ 3.0 × 1017 G, (22)

BS ,sat
ϕ =

√
4πρR2

T Iq
(
Ω2

N

)
≈, 1.76 × 1017 G (23)

BS ,sat
r =

√
4πρR2

T Iq
2
(
Ω4

N3

)
≈ 2.1 × 1017 G. (24)

These values differ from the results of our models because
some of the model’s hypotheses are not valid before reaching
the predicted saturated values. Indeed, both Fuller’s and Spruit’s
predictions give wA > Ω,N with our values. These values are not
reached anyway as the differential rotation is quenched before.

With this initial magnetic field, the TS-dynamo could gener-
ate an intense dipole and an even stronger toroidal magnetic field
when the long-lived remnant of the neutron star mergers survives
for longer than 0.5 s.

3.2. The impact of the initial magnetic dipole

For binary neutron star mergers, the duration of the dynamo is
quite essential as the remnant may collapse into a black hole
(BH). We vary the initial magnetic field strength to study its
impact on the dynamo. Figure 3 shows the time evolution for
different initial magnetic fields Br,0. While the maximum mag-
netic field is similar in all the cases, the time to reach the sat-
urated decreases with the increase of the initial magnetic field.
For Br,0 = 1014 G, the dynamo saturates in 110 ms. At the same
time, it takes 2.4 s for Br,0 = 1012 G and 125 s for Br,0 = 1010 G.

To estimate realistically the initial dipole, the magnetic field
in the core of the hypermassive neutron star results from the am-
plification by the Kelvin-Helmholtz (KH) happening at the early
times of the merger. Due to this instability, the large-scale ini-
tial magnetic field could be amplified from the initial dipole of
the neutron star and potentially be stronger than Br,0 = 1013 G.
Therefore, the TS dynamo could saturate in less than 500 mil-
liseconds.

Article number, page 4 of 10



A. Reboul-Salze, K. Kiuchi, P. Barrere, R. Raynaud, J. Guilet and M. Shibata: TS dynamo in BNS remnant

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

1013

1014

1015

1016

1017

M
ag

ne
tic

 fi
el

d 
[G

]

B
B

Br

0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

1012

1013

1014

1015

1016

1017

M
ag

ne
tic

 fi
el

d 
[G

]

B
B

Br

0 20 40 60 80 100 120
Time [s]

1010

1011

1012

1013

1014

1015

1016

1017

M
ag

ne
tic

 fi
el

d 
[G

]

B
B

Br

124 125 126 127 128

1013

1017

Fig. 3. Time evolution of the magnetic field (Same as figure 2 for dif-
ferent initial magnetic dipole Br,0 with Br,0 = 1014 G (top), Br,0 = 1012

G (middle) and Br,0 = 1010 G (bottom).

To complete this picture, we can estimate the timescale for
each phase of the dynamo process as in Barrère et al. (2022).
The first phase is the winding phase, where the toroidal field is
amplified until either it becomes strong enough for the Tayler
instability to grow as fast as Bϕ (Barrère et al. 2022) or that it
becomes strong enough to reach the critical magnetic field for
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Fig. 4. Timescale of the different phases of the TS dynamo depending
on the initial magnetic fields. The points are measured from the one-
zone model, while the lines are from the analytical estimates.

the instability to start with the high viscosity. The formula for
the winding time is therefore

twinding =
max(ωA,TI, ωA,crit)

qΩωr,0
= max

(
q2ω2

r,0Ω)−1/3,
ωA,crit

qΩωr,0

)
.

(25)

At the end of this phase, the toroidal magnetic field is equal
to

Bϕ(twinding) = qΩ twindingBr,0 (26)

For the Tayler Instability phase, we use the same scaling
(equation 51 in (Barrère et al. 2022)), but we consider that
Bϕ(twinding) is from the formula above and write the correspond-
ing Alfven frequency wA,winding, which gives

τT I ∼ Ω

(wA,winding)2 ln


w2

A,winding

Ω δvA,0

 , (27)

where δA,0 = δvA(t = 0).
For the dynamo phase, we use the same formula as Barrère

et al. (2022)

τdyn =

(
Bϕ
∂2

t Bϕ

)1/2

=
Ω

w2
A,dyn

(
N

qwA,dyn

)1/2

(28)

We compare these timescale estimates to the one measured
in the one-zone model in Figure 4 and find a good agreement.
The estimated total dynamo time is a bit higher than the model
results, but it shows that the TS dynamo is able to grow in a
few seconds as long as the initial magnetic field is higher than
1012 G. This Figure shows that the shear time dominates the to-
tal time for initial magnetic fields lower than 1012 G. In this case,
a higher rotation or shear rate would linearly decrease the total
dynamo time. For higher initial magnetic fields, the Tayler Insta-
bility phase dominates the total time and depends strongly on its
growth rate.
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4. Comparison with a 3D GRMHD simulation

In the previous section, we showed that the TS dynamo is able to
grow and should be seen in simulations as almost all GRMHD
simulations start with a dipole higher than 1015 G. In this section,
we analyze the data of a long-lived scenario in 3D ideal GRMHD
simulations to find the Tayler-Spruit dynamo. Therefore, we fo-
cus on analyzing the core of the binary neutron star remnant for
radii lower than 10 km. The numerical techniques and the study
of the other regions of these simulations are detailed in Kiuchi
et al. (2024).

4.1. Dynamics of the GRMHD simulation
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Fig. 5. Time evolution of the magnetic field for the one-zone model
(top) with a resistivity of η = 1012cm2s−1 and for the GRMHD simula-
tion (bottom).

The 3D neutrino radiation GRMHD simulation of a sym-
metric binary case, with masses of 1.35-1.35 M⊙ and a "hard"
equation of state DD2 results in a hypermassive neutron star that
survives for timescales >O(1) s. The rotation profile at the equa-
torial plane in the hypermassive neutron star shows a positive
differential rotation until 10 km (Figure 1). This leads to the
winding of the poloidal magnetic field in the core of the rem-
nant. Figure 5 compares the time evolution of the simulation and
the one-zone model. The one-zone model amplifies the magnetic

field to its saturation values in 20 ms, while for the GRMHD sim-
ulation, the magnetic field decreases for more than 60 ms and
overall stays constant from its initial value. This shows that no
dynamo processes occur in the simulation’s HMNS core.

To understand why there is no dynamo, we look at a snapshot
of simulation in a plane at z = 2 km at t− tmerger = 30 ms (Figure
6). The toroidal magnetic field is indeed amplified to a maximum
value of 4 × 1017 G (Left panel of Figure 6). This magnetic field
is larger than the critical magnetic field for a strong viscosity, so
according to this criterion, the simulation should be unstable to
the Tayler Instability.

Another criterion is the solenoidal criterion that assumes
that the ratio of the poloidal magnetic field over the toroidal
field is larger than the Alfvén frequency divided by the Brunt-
Väisälä frequency, which means BrN/BϕωA < 1. This criterion
is verified as the radial magnetic Br, dominated by the non-
axisymmetric component (middle panel of Figure 6), is much
lower than the toroidal one Bϕ, while the frequencies are of the
same order of magnitude. The non-axisymmetric component of
the radial magnetic field is not due to the Tayler Instability as
its main mode is an m = 2 mode, and the geometry corresponds
well to the velocity field in the plane (right panel of Figure 6).
The origin of this m=2 mode is well known and comes from the
initial geometry and mass ratio of the binary. It is very commonly
seen in the post-merger phase of many GR simulations (Topol-
ski et al. 2024). Figure 6 shows that the velocity field is not a
purely m = 2 mode as the initial m = 2 mode can also degrade
as a m = 1 mode, but it is different from the m = 1 mode from
Tayler Instability. Indeed, the m = 2 and degraded m = 1 modes
gives the radial magnetic field exactly the same geometry as the
toroidal field, which shows its origin as the displacement due to
the m = 1 and m = 2 modes of the velocity field. In any case,
these modes amplify the magnetic field to a lower strength than
the ones in the one-zone model and are expected to dissipate af-
ter a hundred milliseconds after the merger as the gravitational
wave luminosity decreases (Radice & Bernuzzi 2023). It might
therefore cause a delay in the appearance of the Tayler-Spruit
dynamo, but it does not explain why it should not appear later in
the simulation.

To be unstable to the Tayler instability, the geometry of the
magnetic field is also important, as the size of the magnetic field
can limit the wavelength. To estimate what is the maximal wave-
length available, we used the geometrical criterion for a wave
from Goossens & Tayler (1980)

B2
ϕ

4πR2
T I sin θ

(
m2 − 2 cos2 θ − 2 sin θ cos θ ∂θ log Bϕ

)
< 0 (29)

Figure 7 shows the normalized value of this criterion, and we
can see that the magnetic field should indeed be unstable to the
Tayler instability, but the size of the unstable domain is actually
around ≈ 1 km.

Positive differential rotation can stabilize the Tayler Instabil-
ity, as shown by Kiuchi et al. (2011), but the toroidal magnetic
field is decreasing vertically in the north hemisphere in the un-
stable region (Figure 7), which makes it unstable (see equation
27 of Kiuchi et al. (2011)). From a geometric criterion, the core
of the remnant at t − tmerger = 30 ms should be unstable to the
Tayler Instability with a fast-growing rate of σTI wA.

4.2. Numerical dissipation analysis

The absence of the Tayler instability in this 3D simulation could
be due to the wavelength of the Tayler instability being lower

Article number, page 6 of 10



A. Reboul-Salze, K. Kiuchi, P. Barrere, R. Raynaud, J. Guilet and M. Shibata: TS dynamo in BNS remnant

Fig. 6. Snapshot of the toroidal magnetic field (top), radial magnetic
field (bottom) and radial velocity in the core of the hypermassive neu-
tron star at t − tmerger = 30 ms at z = 2km

.

than the grid resolution or that the numerical resistivity/viscosity
reduces the growth rate of the instability. We, therefore, try to es-
timate the wavelength of the Tayler instability for the simulation.
From the instability criterion, the wavelength λcrit at which the
Tayler Instability should occur is

λcrit =
2πRT IωA,crit

N
= 2πRT I

(
Ω

N

)1/2 (
ν

R2Ω

)1/4
. (30)

Therefore, this depends on the numerical resistivity/viscosity
inside the simulation. We try to estimate the numerical resistiv-
ity/viscosity to solve this issue. We use the fitting formula de-
rived for Eulerian MHD codes in Rembiasz et al. (2017):

ν⋆ = R∆x
ν VL

(
∆x
L

)r

, . (31)

whereV,L are the characteristic speed and length of the system
and R∆x

ν , r are fitting parameters. We use the fitting parameters
for the HLLD solver with the fourth-order Runge Kutta method,
as it is the same Riemann Solver used in our GRMHD simula-
tions. We use the fast magnetosonic speed for the characteristic
velocity as found in the studyV = max(vA, cs) ≈ cs ≈ 1.2×1010
cm s−1 for the characteristic speed. Since the numerical resistiv-
ity depends on the resolution and on the scale we are consid-
ering, i.e. λcrit, by combining equations 30 and 31, we have to
solve the equation

λ
r+3
r−1
crit = 2πRT I

(
Ω

N

)1/2 
R∆x
ν Vδxr

R2
T IΩ


1/4

, (32)

which with δx = 100 m, r = 4.95 and RTI∆x
ν = 42 gives

λcrit = 2 km at a RT I = 7 km. In the case where the geometry
does not constrain the wavelength, the Tayler Instability would
be resolved well by a hundred-meter resolution.

Fig. 7. Snapshot of the axisymmetric toroidal magnetic field in the core
of the hypermassive neutron star at t − tmerger = 30 ms at z = 2 km. The
grey contours correspond to the regions stable to the Tayler Instability
according to the geometric criterion (Equation 29).

Bϕ,crit =

√
4πρR2

T Ik
2
T Iη (33)

However, the unstable region of the magnetic field is limited
to ≈ 1 km, and we have, therefore, to limit the wavelength of the
Tayler instability. To check the impact of the dissipation of this 1
km wavelength, we solve the local dispersion relation of Ache-
son & Gibbons (1978) with all three dissipation mechanisms
equal to each other, ν = η = κ. We also assume the magnetic field
to be increasing with radii and decreasing vertically and take the
other quantities the same as the simulation (see Appendix 7 for
more details). We find a good agreement for the growth rate with
σT I ≈ ωA in the case of low dissipation and for the theoretical
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dissipation limit given by ωA = k2
T Iη (Figure 8). We note that

for a realistic neutrino viscosity νHMNS = 2.3 × 109 cm2 s−1, the
growth rate is unchanged for the ideal MHD case. We can then
safely use the dissipation limit to compute the critical magnetic
field for numerical viscosity/resistivity.

Figure 9 shows the critical magnetic field for the numerical
viscosity/resistivity in the code depending on the length scale
below 1 km for different resolutions. The magnetic field is close
to the critical magnetic field with a 100-meter resolution, which
may explain why the simulation is stable to Tayler instability at
this resolution.
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Fig. 8. Growth rate of the Tayler instability depending on the dissipation
strength with ν = η = κ. The red line shows the theoretical growth rate
in the regime of Ω ≪ ωA, and the dashed line is the stabilizing limit
given by k2

T Iη = ωA.
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Fig. 9. Critical magnetic field Bϕ,crit (equation 33) in the numerical sim-
ulation depending on the wavelength of the Tayler instability for sev-
eral resolutions. The black line corresponds to the magnetic field in the
GRMHD simulation.

5. Discussion

5.1. Comparison with Boussinesq simulations

Using 3D numerical Boussinesq simulations (i.e. with a con-
stant density profile), Barrère et al. (2023) demonstrated the exis-
tence of two subcritical Tayler-Spruit dynamos (i.e. driven by the
Tayler instability) with a positive shear. Both display magnetic
fields differing by their intensity and geometry: hemispherical
and dipolar (i.e. equatorially symmetric). The dipolar solution
shows the strongest magnetic fields and follows the scalings pre-
dicted by Fuller et al. (2019) for the shear rate q: Bm=0

tor ∝ q1/3

and Bm=0
pol ∼ Bdip ∝ q2/3. Also, their models are less stratified

than the core remnant in the GRMHD simulation with a ratio of
the Brunt-Väisälä frequency to the rotation rate of N/Ω = 0.1.

Although the Tayler-Spruit dynamo does not have a signa-
ture in the GRMHD simulation, we can provide a proxy for the
magnetic field intensity that would be expected if it were oper-
ating. Indeed, we first performed a Boussinesq simulation with
N/Ωo = 0.5, which is close to the stratification measured in the
core remnant from the GRMHD simulation. Second, we use the
dimensionless parameters to scale the magnetic field to a case
corresponding to a hypermassive neutron star, even though the
parameters chosen in the study correspond to the scenario for su-
pernova fallback. We take the parameters at t−tmerger = 30 ms: (i)
a radius of our domain of D = 10 km, (ii) with an inner rotation
of Ωi = 3000 rad s−1 and outer rotation of Ωo = 8000 rad s−1.
Since E = ν

D2Ωo
= 10−5 in the Boussinesq simulation, the vis-

cosity is therefore ν = 3.9 × 1010 cm2 s−1, which shows that the
dynamo can operate even at high viscosity. Finally, by assuming
that the scaling found at N/Ωo = 0.1 is still valid at N/Ωo = 0.5,
we extrapolate the resulting magnetic intensities to q = 1, which
is the minimum shear rate measured in the 10 km-radius core of
the GRMHD simulation. We eventually find magnetic fields that
reach Bm=0

tor = 2×1016 G, Bm=0
pol = 5×1015 G and Bdip = 3×1015 G.

Although they are ∼ 5 times lower than the one-zone model as
already found by (Barrère et al. 2023), the Tayler-Spruit dynamo
can, therefore, produce very strong magnetic fields, which are
expected for a magnetar remaining from a BNS merger.

5.2. MRI-driven dynamo vs TS dynamo

As it is argued in (Margalit et al. 2022), the TS dynamo could be
relevant for the transport of angular momentum when the differ-
ential rotation is decreasing with radius. However, depending on
the Brunt-Väisälä frequency, this region would be unstable to the
MRI, which has a much faster growth rate than the TS dynamo
in the fast-rotating case. So, the MRI is expected to saturate first,
and the Tayler instability would not impact this region. To con-
firm this picture, we compute the growth rate of both dynamos
in the equatorial plane at r = 20km with a magnetic field of
B0 = 1014 G as it is found after the Kelvin-Helmholtz instability.
It gives

σMRI =
qΩ
2
≈ 2600s−1 σTS =

w2
A

Ω
≪ σMRI, (34)

due to wA ≪ Ω. Interactions from the turbulence developed by
the MRI and the TS dynamo would occur at the radius where the
differential rotation changes sign, making this transition region
difficult to study.
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5.3. Angular momentum transport and spin-down time

The angular momentum transport timescale due to the Tayler-
Spruit corresponds to the time it takes to saturate in this study.
Indeed, the dynamo stops when there is no differential rotation.
This could be pretty fast or slow depending on the initial mag-
netic field. One interesting feature is that due to the positive dif-
ferential rotation, the angular momentum would be transported
inwards rather than outwards.

The spin-down time depends on how we consider the gener-
ated magnetic field inside the remnant. We first consider that the
magnetic field stays buried in the core of the hypermassive neu-
tron star, then it would act as a torque and slows the core down
with equation 3. By taking the saturated values, the core would
slow down with a rate of

γsd,core ≡ Ω̇
Ω
= −R2

T I BrBϕ
IΩ

≈ 1.94 × 10−3s−1 (35)

We can also assume that the obtained dipole becomes the dipole
at the surface of the supramassive neutron star without matter
outside. Then, the dipole formula gives the following spin-down
rate of

γsd,dipole ≡ Ω̇
Ω
= −B2

r R6
T IΩ

2

6c3I
≈ 0.21s−1 (36)

Therefore, this spin-down would be faster and slow the remnant
down to the scale of seconds. The remnant’s rotational energy
would also be emitted in electromagnetic waves. These results
depend on the reconfiguration of the magnetic field once the TS
dynamo is saturated; this must be further studied for hypermas-
sive neutron stars.

6. Conclusions

We have investigated the Taler-Spruit dynamo in the context of
neutron star mergers. Following (Barrère et al. 2022), we de-
veloped a one-zone model of the TS dynamo for hypermassive
neutron stars with realistic estimates from 3D GRMHD simula-
tions.

We found that the TS dynamo could develop in the core of
hypermassive neutron stars due to its positive differential rota-
tion. Due to the impact of neutrino viscosity, the toroidal mag-
netic field must be amplified to higher values than 7.6 × 1015 G
by the winding in order to be Tayler-unstable.

The magnetic field’s evolution can be divided into three
phases: the winding phase, the Tayler instability phase and the
non-linear growth until saturation is reached when the differen-
tial rotation has been transported outward by the Maxwell stress.
The magnetic field generated by the dynamo saturates at a very
high intensity of 1.8 × 1017 G and 8 × 1016 G for the magnetic
dipole.

The saturated magnetic field strength does not depend on
the initial magnetic field, but the time it takes to reach satura-
tion does. Indeed, the initial magnetic dipole determines the time
needed for the saturation of the dynamo, which can range from
100 milliseconds for a magnetic dipole of 1014 G or 2.4 sec-
onds for a magnetic dipole of 1012 G, which is the order of the
HMNS lifetime in the long-lived case, O(1s). In the first case,
the transport of angular momentum by the TS dynamo would
lead to a faster collapse to a black hole or a faster spin down of
the remnant. This shows that the Tayler-Spruit dynamo would
be important in the case of a long-lived neutron star remnant as
long as the initial magnetic field dipole is higher than 1012 G.

However, these results depend on whether the TS dynamo
grows fast enough and, therefore, on the resulting magnetic
dipole after the Kelvin-Helmholtz instability. Therefore, a study
using realistic initial magnetic fields in neutron stars and with a
converged growth of the Kelvin-Helmholtz is needed. The value
of the magnetic dipole needs to be confirmed by 3D numerical
simulation with a background stratification corresponding to a
hypermassive neutron star. This is left to a further study with
also the question of the interaction of the MRI instability that
operates after 10 km and the Tayler-Spruit dynamo.

The TS dynamo operating in a neutron star remnant could
have significant consequences for astrophysical observations.
First, the angular momentum transport would happen when the
dynamo saturates and would collapse if the remnant is more
massive than the limit of neutron stars in solid body rotation.
Otherwise, it would lead to a supramassive neutron star with a
high magnetic field, a proto-magnetar. In the case of the satu-
rated dipole we obtain becomes the surface dipole, the remnant
would emit its rotational energy and slow down by magnetic
braking. With the dipole we found, the luminosity would be very
bright and last a short time. For example, we consider a supra-
massive neutron star of 2.4 solar masses with a millisecond pe-
riod. We assume flux conservation from the saturated radial field
at RT I = 7 km to the surface magnetic dipole at Rsur f ace = 14
km. This gives a magnetic dipole of 2 × 1016 G and a dipole
luminosity of

Ldip =
B2R6

sur f aceΩ
4

6c3 ≈ 1.16 × 1052 erg s−1

This luminosity would decrease fast, on the order of several sec-
onds, and when the rotational energy of the remnant is emitted,
the remnant would most likely collapse to a black hole or form a
stable magnetar. The huge amount of energy emitted would also
impact the kilonova.

In addition, having motions due to the Tayler-Spruit dynamo
in the neutron star remnant may lead to some emission in grav-
itational waves for a close event. Using Fuller’s formalism, we
try estimate the amplitude of the velocity perturbations due to
TS dynamo with the formula

δvr,sat = δvA,sat
ω2

A,sat

NΩ
≈ 4.5 × 109 cm s−1 . (37)

For the sake of simplicity, we estimate the strain by using the or-
der of magnitude derived from the quadrupole formula (Kokko-
tas 2002)

h ≈ G
c4

εEturb

DGW
,

where ε is the efficiency to convert the turbulent energy to grav-
itational waves that we assume to be low ε ≈ 5%. The kinetic
energy is computed, assuming that this velocity is constant in
the region from 5 to 10 km and oscillates at the Brunt-Väisälä
frequency N. A distance of 1 Mpc would then give a strain of
h ≈ 2 × 10−24 cm, which would potentially be detectable by the
future generation of gravitational detectors.

Investigating the Tayler-Spruit dynamo in binary neutron star
merger is therefore important to better understand future multi-
messenger observations.
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Appendix

7. Linear study of Tayler instability

We solve Acheson’s dispersion relation by using Python (Ache-
son & Gibbons 1978). We first use symPy to calculate the poly-
nomial coefficients from the relation and then solve the roots of
the polynomial numerically. We tested that we recover the dis-
persion relation in the non-rotating ideal case and the rotating
one also as in Kiuchi et al. (2011). We are able to recover the
theoretical growth rate in the two opposite limits ωA ≪ Ω and
Ω ≪ ωA. The code used to solve the linear dispersion relation is
publicly available at the following address https://github.
com/alexisreboulsalze/AchesonLinSolve/tree/main.
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ABSTRACT

The Sun is a magnetic star, and the only spatio-temporally resolved astrophysical system displaying turbulent magnetohydrodynamic
thermal convection. This makes it a privileged object of study to understand fluid turbulence in extreme regimes and its interactions
with magnetic fields. Global analyses of high-resolution solar observations provided by the NASA Solar Dynamics Observatory
(SDO) can shed light on the physical processes underlying large-scale emergent phenomena such as the solar dynamo cycle. Combin-
ing a Coherent Structure Tracking reconstruction of photospheric flows, based on photometric data, and a statistical analysis of virtual
passive tracers trajectories advected by these flows, we characterise one of the most important such processes, turbulent diffusion,
over an unprecedentedly long monitoring period of six consecutive days of a significant fraction of the solar disc. We first confirm,
and provide a new global view of the emergence of a remarkable dynamical pattern of Lagrangian Coherent Structures tiling the entire
surface. These structures act as transport barriers on the time and spatial scale of supergranulation and, by transiently accumulating
particles and magnetic fields, appear to regulate large-scale turbulent surface diffusion. We then further statistically characterise the
turbulent transport regime using two different methods, and obtain an effective horizontal turbulent diffusivity D = 2− 3× 108 m2 s−1

on the longest timescales considered. This estimate is consistent with the transport coefficients required in large-scale mean-field
solar dynamo models, and is in broad agreement with the results of global simulations. Beyond the solar dynamo, our analysis may
have implications for understanding the structural connections between solar-surface, coronal and solar-wind dynamics, and it also
provides valuable lessons to characterise turbulent transport in other, unresolved turbulent astrophysical systems.

Key words. Sun: photosphere – Convection – Turbulence – Magnetic fields – Dynamo

1. Introduction

1.1. Context and motivation

Thermal convection is one of the most common fluid transport
processes encountered in astrophysics, and the Sun and its pho-
tosphere provide us with a unique observationally well-resolved
example of such (magnetohydrodynamic, MHD) turbulence in
highly nonlinear regimes. Indeed, dynamical MHD phenomena
on the Sun are now continuously monitored with temporal and
spatial resolutions of the order of seconds and hundred kilome-
ters respectively, which are truly astonishing small numbers by
astronomical standards. As such, the Sun is a special place to
study nonlinear thermal and MHD transport processes, and to
understand how they can affect the structure and evolution of
many astrophysical systems that can not be resolved by observa-
tions, or emulated in laboratory experiments.

While some aspects of solar (MHD) convection, such as
solar granulation, are well understood (Nordlund et al. 2009),
we still lack definitive answers to many important questions
such as how thermal turbulence in the Sun organises on large
scales, how it interacts with and amplifies magnetic fields at both
large and small-scales, how it transports quantities such as an-
gular momentum or magnetic flux (Miesch 2005; Hathaway &
Rightmire-Upton 2012; Charbonneau 2014; Brun & Browning
2017; Rincon & Rieutord 2018). One limitation is that despite
much progress in helioseismology, we do not (yet) have time and

space-resolved determinations of internal multiscale convective
dynamics in the solar convection zone (Gizon et al. 2010; Hana-
soge et al. 2012; Švanda 2012; Duvall & Hanasoge 2013; Duvall
et al. 2014; DeGrave & Jackiewicz 2015; Hanasoge et al. 2016;
Greer et al. 2015; Toomre & Thompson 2015). Photospheric ob-
servations still allow for the most direct characterisation of solar
convection and are therefore most helpful to put observational
constraints on dynamical transport processes, such as turbulent
diffusion, which are key to understand emergent dynamical phe-
nomena such as the large-scale dynamo cycle. Given the interfa-
cial nature of the photosphere, understanding magnetic transport
there is also critical to understand the energetics and magnetic
dynamics of the corona (e.g. Amari et al. 2015), and the near-
Sun structure of the solar wind recently uncovered by the Parker
Solar Probe (Bale et al. 2019; Kasper et al. 2019). Finally, char-
acterising large-scale solar dynamical processes in detail could
provide useful insights into many unresolved similar astrophys-
ical (MHD) turbulent processes (e.g. accretion, star formation,
cosmic ray diffusion, galactic and extragalactic magnetogenesis)
that can not be modelled in full detail due to their extreme non-
linearity and multiscale essence.

1.2. Solar-surface velocity measurements and their use

The most direct observational inference of multiscale photo-
spheric flows is via measurements of Doppler-projected veloc-
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ities (Leighton et al. 1962; Rincon & Rieutord 2018). Even a
simple visual inspection of Doppler images clearly reveals the
pattern of supergranulation flow “cells” (Hart 1954). The trade-
mark signature of the supergranulation flow is a power excess
around ℓ ∼ 120 − 130 (35 Megameters (Mm)) in the spher-
ical harmonics power spectrum of global maps of Doppler-
projected velocities obtained either with the MDI instrument
aboard SOHO (Hathaway et al. 2000) or with the HMI instru-
ment aboard SDO (Williams et al. 2014; Hathaway et al. 2015).
Dopplergrams can be complemented by other observational in-
ference techniques, such as Local Correlation Tracking (LCT,
November & Simon 1988) or Coherent Structure Tracking (CST,
Rieutord et al. 2007), to reconstruct the horizontal components
of the velocity field. Both techniques require photometric data
with high spatio-temporal resolution to resolve small-scale struc-
tures and motions and are a bit demanding computationally. In
particular, the CST, which we use in this paper, requires tracking
the motions of a large statistical ensemble of small-scale inten-
sity structures (granules) advected by larger-scale flows (Rieu-
tord et al. 2001). For this reason, they have for a long time
mostly been applied to limited field-of-views, obtained from ei-
ther ground-based (November & Simon 1988; November 1989;
Roudier et al. 1999; Rieutord et al. 2001, 2008), or space-based
observatories such as TRACE and Hinode (Simon & Shine 2004;
Roudier et al. 2009; Rieutord et al. 2010), although local correla-
tion tracking has also been applied to larger patches of MDI data
(Shine et al. (2000); Švanda et al. (2007), see Fig. 22 of Nordlund
et al. (2009)). However, the availability of highly-resolved full-
disc photometric and Doppler data, as now routinely delivered
by SDO/HMI, and improved numerical data processing capac-
ities, have opened the 24 h/24 h possibility to infer multiscale
flows at the photospheric level from local to fully global scales.

A combined CST/Doppler analysis of full-disc photometric
SDO/HMI data allowing reconstruction of the three components
of the velocity field was first attempted by Roudier et al. (2012,
2013). LCT was also applied by Langfellner et al. (2015) to
180× 180 Mm2 patches of SDO/HMI images in order to charac-
terise averaged properties of supergranules. A marked improve-
ment on these techniques was introduced by Rincon et al. (2017),
hereafter R17, which made it possible to produce accurate full-
disc maps (up to 60◦ from the disc centre) of the Eulerian hori-
zontal and radial flow components at spatial scales larger than
2.5 Mm, with a time cadence of 0.5 h. With this data, R17
could notably calculate the full spherical harmonics kinetic en-
ergy spectrum of the radial, poloidal, and toroidal components
of the photospheric velocity field over a wide range of horizon-
tal scales. These global measurements separating different flow
components notably inspired a new theoretical anisotropic tur-
bulence phenomenology of large-scale photospheric convection.
They can also serve as a consistency check for numerical simu-
lations, and were shown by Rincon & Rieutord (2018) to com-
pare well with global simulations of solar convection (Hotta et al.
2014). An alternative technique for the determination of the full
surface velocity field over the solar disc based on Doppler data
only was recently introduced by Kashyap & Hanasoge (2021).

1.3. Objectives and approach taken in this study

The aim of this work is to further exploit the possibilities of-
fered by the application of the CST to the full-disc, continu-
ous SDO/HMI data stream, to characterise the large-scale trans-
port and turbulent diffusion properties of photospheric flows. Be-
cause the technique does not give us access to the vertical depen-

dence of flows, the analysis is necessarily limited to horizontal
transport, which is nevertheless dominant at the scales consid-
ered as a result of the strong flow anisotropy (R17). In R17, a
24 h sequence of full-disc SDO/HMI data was used, which was
sufficient to calculate simple statistical quantities such as kinetic
energy spectra. In this paper though, we aim at probing large-
scale transport on timescales longer than the 24-48 h correla-
tion time of supergranules, the most energetic dynamical surface
structures, and therefore use a significantly longer, uninterrupted
six-day sequence. Characterising the dynamics on such a long
timescale creates new challenges, such as following regions of
interest over a substantial fraction of the solar rotation period,
and it is also limited by the lack of precision of the velocity-field
deprojection near the solar limb. For this reason, a week is about
the maximum continuous integration time achievable with our
procedure, but it nevertheless provides us with an unprecedented,
statistically-rich turbulent Eulerian velocity-field dataset.

To characterise turbulent transport, we simulate and statisti-
cally analyse the Lagrangian dynamics of passive particles vir-
tually distributed over the surface and advected by the inferred,
time-evolving Eulerian horizontal velocity field. This, first of
all, enables us to derive global maps of Finite Time Lyapunov
Exponents (FTLEs), introduced in a solar-surface physics con-
text a few years ago by Yeates et al. (2012), see also Chian
et al. (2014). Besides some quantitative insights into the intrin-
sic chaoticity of solar surface flows, such an analysis enables
us to globally map for the first time a network of so-called La-
grangian Coherent Structures (LCS), which are the loci of tran-
sient accumulation or rarefaction of tracers. Using passive tracer
statistics, we then further probe the transport regime of the flow
up to timescales of a week, and derive an associated large-scale
turbulent diffusion coefficient at the photospheric level.

This study bears similarities, and shares some diagnostics
with a more common approach to transport in solar physics,
based on the direct tracking of magnetic elements in magne-
tograms. However, due to the ephemeral nature, and occasional
cancellation of magnetic elements, the latter approach has tradi-
tionally been limited to short-time (a few tens of hours at best)
intra-supergranule transport, i.e. network formation (Schrijver
et al. 1996; Berger et al. 1998; Hagenaar et al. 1999; Utz et al.
2010; Manso Sainz et al. 2011; Abramenko et al. 2011; Orozco
Suárez et al. 2012; Giannattasio et al. 2013, 2014; Jafarzadeh
et al. 2014; Yang et al. 2015, see Bellot Rubio & Orozco Suárez
(2019) for a recent review). A notable exception is Iida (2016),
who extended this type of analysis to five consecutive days, al-
beit with very noisy statistics on the longest times probed. While
more indirect, our approach offers a way to bypass such lim-
itations, as virtual passive tracers can be introduced numeri-
cally with arbitrary resolution, and followed with more preci-
sion, ease, better statistics and for significantly longer times than
magnetic elements. Based on a comparison of tracer concentra-
tions and trajectories with HMI magnetograms, we will argue
that the transport properties thus obtained are representative of
those of the weak (< 100 G), essentially passive, magnetic fields
at the surface of the quiet Sun.

Section 2 introduces the observation and velocity datasets,
and Sect. 3 the tools of fluid flow analysis applied to the data.
Section 4 presents a Lagrangian flow analysis using FTLEs and
LCS, and a comparison between the latter and the magnetic net-
work. Sect. 5 provides a phenomenological and quantitative sta-
tistical characterisation of turbulent transport and estimates hori-
zontal turbulent coefficient using two different methods. The im-
plications of our work for the broader understanding of large-
scale dynamics and turbulent transport are discussed in Sect. 6.
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2. Data processing

The data used for this study has already been presented in
Roudier et al. (2023) (hereafter R23), and the reduction proce-
dures have been described in R17 and R23. We restate the main
information here for the sake of completeness, outlining the dif-
ferences with R23 where necessary.

2.1. The data

Our analysis is based on six days of uninterrupted high-
resolution white-light intensity and Doppler observations of the
entire solar disc by the HMI instrument aboard the SDO satel-
lite (Scherrer et al. 2012; Schou et al. 2012). The data was ob-
tained from 26 November (00:00:00 UTC) to 1 December 2018
(23:59:15 UTC),

2.2. Image corrections and derotation

Different procedures, detailed in App. A of R17, were first ap-
plied to the images to correct for misalignment, change in size of
the solar disc, and the limbshift effect. In a second step, we ad-
justed the differential rotation profile from the raw Doppler data
averaged over one day of observation, and used the resulting ro-
tational velocity signal to derotate all images so as to work in
a reference frame corotating with the Sun. This way, any given
image pixel after derotation corresponds to a fixed physical loca-
tion on the solar surface. For the derotation procedure, we used
the rotation profile derived by R23,

Ω(λ) = A + B sin2 λ +C sin4 λ, (1)

where λ = here denotes the latitude, A = 2.864 × 10−6 rad s−1,
B = −5.214 × 10−7 rad s−1, and C = −2.891 × 10−7 rad s−1. This
corresponds to a velocity of 1.9934 km s−1 (14.1781°per day) at
the equator.

Derotation was applied to the white light intensity data, cor-
recting the mean differential rotation of the Sun to bring back
longitudes related to the solar surface at the same locations for
each time deviation from the origin of the first HMI image. The
reference time for the CST code was taken at 00:00 UTC, 29
November 2018, the middle of our sequence (see code manual1).
Accordingly, derotation was applied on 26 to 28 November from
the left to the right (east to west) and on 29 November to 1 de-
cember from the right to the left (west to east).

2.3. Derivation of the Eulerian photospheric velocity field
projected in the CCD plane

We subsequently used the Coherent Structure Tracking (CST) al-
gorithm to derive the projection (ux, uy) in the CCD plane of the
corotating photospheric Eulerian velocity field on scales larger
than 2.5 Mm, tracking ensembles of granules advected by hori-
zontal flows. These are the only components of the flow needed
for the Lagrangian tracer analyses performed in this paper (for
a reconstruction of the full (ur, uθ, uφ) velocity field in spherical
coordinates, see R17).

By means of the derotation procedure, the corotating so-
lar disc areas under consideration effectively remain centered,
throughout the analysis, on an effective corotating reference disc
centre (chosen as the actual disc centre in the middle time of
the full sequence). This enables us to compute Lagrangian tracer

1 https://idoc.ias.u-psud.fr/system/files/user_guide_
annex_version1.2_26mars2021.pdf

trajectories over the chosen area using the in-CCD-plane (ux, uy)
velocity field. We explain how this is done in Appendix.

2.4. Masking and apodising

The determination of velocity fields close to the limb with the
CST is more noisy and of lesser quality due to projection and
resolution effects. Therefore, we finally apodised the velocity
maps obtained with the procedures described above to focus on a
limited corotating zone of the surface sufficiently far away from
the limb, so that reliable velocity field data could be exploited
continuously for several days.

In the following, we present results using circular apodising
windows of different angular openings with respect to the disc
centre. The rule of thumb here is that the larger the window, the
shorter the time over which our Lagrangian tracer analyses can
be conducted, as larger regions spend less time in full visibility
on the side of the Sun visible to SDO, and sufficiently far away
from the limb. We conducted some test analyses to determine
which apodising window worked best to track flows reliably over
the largest timescale possible, and converged to a circular apo-
dising window of 23.5◦ opening with respect to the disc centre
for the longest six-day Lagrangian tracer analysis presented in
Sects. 4-5.

Considering the limitations of the CST to infer flows close to
the limb, this masking strategy is the only reasonable course of
action to ensure that all successive corotating velocity field data
snapshots used to calculate Lagrangian trajectories are equally
reliable. Of course, this limits the available corotating fraction
of the solar disc used, compared to the full-disc raw intensity
observations of SDO, and also explains why our analyses are
limited to six days at most, rather than twelve-thirteen days if
we were able to infer flows in a given corotating region reliably
from the time that region becomes visible on one side of the limb
to the time it disappears on the other side.

2.5. The final data product

The final data product, used in the following, is a sequence of
288 velocity-field maps of a single corotating physical area of
the solar surface, tracked over six days, with a temporal reso-
lution of 30 min and spatial resolution of 2.5 Mm. The angu-
lar opening of the minimum 23.5◦ apodising window used in
the paper corresponds to an arc of 574 Mm at the surface, but
larger fields of views were also exploited over shorter periods
(see Sect. 4). This minimal 23.5◦ apodised field of view still con-
tains the equivalent of ∼ 350 supergranules of 30 Mm diameter,
that is 50 times more than the Hinode field of view. Besides,
the continuous monitoring by SDO from space enables contin-
uous tracking and transport of structures and tracers on much
longer timescales (up to six days) than possible with ground-
based instruments with comparably wide field of views, such as
the CALAS camera used at Pic du Midi for a similar purpose a
few years ago, which at best only provided continuous monitor-
ing over 7.5 h of a 290× 216 Mm2 field of view containing ∼ 70
supergranules (Rieutord et al. 2008).

Overall, the extents of our field of views and continous mon-
itoring periods ensure that a robust, and unprecedented statisti-
cal analysis of turbulent transport on temporal and spatial scales
much larger than those of individual supergranules can be car-
ried out with the data.
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3. Flow analysis techniques

3.1. Lagrangian analysis of solar surface flows

3.1.1. Finite-time Lyapunov exponents (FTLEs)

The calculation of FTLEs provides a convenient mathematical
way of characterising the chaoticity of dynamical systems, and
in fluid dynamics to investigate the dynamical Lagrangian prop-
erties and organization of a flow. In particular, a flow exhibiting
Lagrangian chaos (i.e. exponential divergence of the trajectories
of initially close fluid particles) is characterised by the fact that at
least one of its Lyapunov exponents is positive. To be more pre-
cise, for complex flows, the value of Lyapunov exponents usu-
ally depends on the spatial location and time, so instead of a sin-
gle number, we compute a scalar field of Lyapunov exponents,
which itself evolves dynamically in time. Computing a field of
FTLEs for a given fluid flow requires to integrate the trajectories
of passive Lagrangian tracers in the flow for a target time T . The
principles of this kind of calculation are extensively documented
in the literature (see e.g. Haller 2001; Shadden et al. 2005; Green
et al. 2007; Lekien & Coulliette 2007; Lekien & Ross 2010) and
are summarised in Appendix A. Our own implementation is very
much based on that described by Lekien & Ross (2010).

The main specificities of the problem at hand are that it has a
global spherical, non-Euclidean geometry, and that we only have
access to the flow on a single spherical surface. The latter implies
that we can not compute the three FTLE scalar fields of the full
3D photospheric flow. However it is still possible to compute two
FTLE scalar fields associated with the horizontal flow on the sur-
face1. Indeed, as shown by Lekien & Ross (2010), FTLEs for a
2D flow on a smooth non-Euclidean surface such as a sphere can
be indirectly inferred from the projection in a 2D plane (in our
case, the plane of the sky/CCD) of the Lagrangian tracers trajec-
tories using a mapping (described in App. A.3). This is fortunate,
because the projected trajectories are easier to compute than the
actual trajectories on a spherical surface, provided that the pro-
jection of the velocity field in the projection plane is known. This
is the case in our problem: the projection of the photospheric ve-
locity field in the (x, y) plane of the satellite CCD is precisely
what the CST algorithm computes.

Our implementation of the FTLE computation algorithm in a
2D plane, including the integration of Lagrangian tracers trajec-
tories described in App. A.1, and subsequent FTLE calculation
described in App. A.2, was validated using the chaotic double-
gyre analytical flow benchmark (Shadden et al. 2005; Brunton
& Rowley 2010). Coming back to the solar problem, we also
found that the differences between the 2D plane results and the
full spherical analysis always remained relatively small. This is
mostly because the limb regions, where projection effects be-
come very important and the surface velocity field itself can
not be determined accurately, were mostly ignored throughout
the analysis. The spherical and cartesian algorithms give almost
identical results close to disc centre.

3.1.2. Imaging Lagrangian coherent structures

Lagrangian coherent structures (LCS) are simply defined as the
ridges of a FTLE field σT (x), and as such follow directly from
the computation of FTLEs (Shadden et al. 2005). In 2D, they

1 The two FTLEs of the flow on the surface are probably close to two of
the three FTLEs of the full 3D flow, because the photospheric velocity
field at the large scales considered in this paper is strongly anisotropic
with respect to the radial direction (R17).

are most easily understood as one-dimensional invariant man-
ifolds acting as transport barriers (although this is not strictly
true, see the above paper for a more accurate description), from
which particles either diverge (repulsive LCS), or to which they
accumulate (attractive LCS). For a given flow, attractive LCS
can be imaged using a (positive) FTLE field calculated from the
backward-in-time integration of tracers trajectories in that flow
(since maximal divergence for negative times implies maximal
convergence for positive times), while repulsive LCS are imaged
based on the (positive) FTLE field calculated from forward-in-
time trajectories. We use both in what follows.

4. FTLEs and Lagrangian Coherent Structures

In this Section, we describe global full-disc maps of Finite Time
Lyapunov Exponents associated with large-scale solar surface
convection flows, and further document their main properties.

4.1. Global and local FTLEs and LCS maps

As an introduction, we first present in Fig. 1 the global distribu-
tion of 24 h-negative time FTLEs of solar surface flows (in in-
verse hour units) derived from photospheric velocity field maps
obtained on 29 November, 2018, using the technique described
in Sect. 3 and in Appendix. This visualization reveals an (hori-
zontally) isotropic tiling of the entire surface by structures/cells
delimited by FTLE maxima, of size comparable to that of super-
granules. As explained earlier, the use of negative-time FTLEs
outlines a network of convergent/attractive (for positive times)
spatial loci of passive tracers advected by the flow which, on this
timescale, correspond to supergranule boundaries.

This network can be further highlighted by looking at the
ridges of the FTLE field, or by emphasizing the maxima of the
field using an appropriate colormap. This results in maps of La-
grangian Coherent Structures (LCS) acting as a complex net-
work of transport barriers on the timescale of consideration. In
Fig. 2, we show such global maps for FTLE fields computed
backward-in-time over different integration times, up to six days.
This is, to the best of our knowledge, the first calculation of this
type over such long integration times and large areas. The struc-
tures are remarkably long-lived, and simple visual inspection re-
veals their tendency to moderately expand in size as a function
of time. We characterise this effect quantitatively in Sect. 4.3.

4.2. LCS and the distribution of magnetic fields

Figures 3-4 show zooms of such maps on a region of 122 ×
122 Mm2 (10◦ × 10◦) at the (derotated) disc centre, overimposed
with SDO/HMI magnetograms. These zoomed maps do not only
enable us to better appreciate the mesmerizing structure of these
patterns, they also show how much their fine-scale structure cor-
relates with the magnetic network at the surface. As discussed
by Yeates et al. (2012), on timescales of the order of the super-
granulation timescale, LCS should be associated with regions of
magnetic field accumulations. This is exactly what we observe
here too: small-scale photospheric magnetic field concentrations
appear to correlate extremely well with LCS derived from pas-
sive tracers. The results above (Figs. 1-2) therefore offer a strik-
ing new global-scale perspective on this phenomenon. Finally,
Figs. 3-4 show the trajectories of a few selected tracers with re-
markable excursions on the timescales of consideration. We will
discuss these in more detail in Sect. 5 in connection with mag-
netic dynamics and transport.
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Fig. 1. Global distribution of 24 h, backwards-in-time FTLE of solar surface flows (in inverse hour units) computed using photospheric velocity
field maps of 29 November, 2018, up to 60◦ from the disc centre. The green circle corresponds to a typical 30 Mm supergranule diameter.

4.3. Spectrum, scales and strength of the FTLE field

To be more quantitative, for any FTLE map such as shown in
Fig. 1, we compute a typical peak scale of the distribution of
FTLEs, corresponding to the wavelength of the LCS/transport
barriers, as the integral scale of the FTLE field. To do this,
we simply treat each FTLE field as a scalar field σT (θ, φ) over
the sphere apodised by the visibility window, take its harmonic
transform, compute the associated spherical harmonics spectrum
Eσ(ℓ,T ), and calculate the integral scale of the field, defined as

Lσ(T ) =

∑

ℓ>50

2πR⊙
ℓ

Eσ(ℓ,T )

∑

ℓ>50

Eσ(ℓ,T )
. (2)

This formula simply weighs each scale by its corresponding en-
ergetic spectral content, providing a weighted mean giving more
weight to the scales at which the distribution of σT contains the
most energy. The lower bound in the sum avoids contamination
by the large-scale energetic content of the apodising window,
with which the true field is convoluted in spectral space. The nu-

merical technique used for the spectral harmonic decomposition
of our data fields over apodised fields of views is described in de-
tail in R17, where ample use of it was made to characterise the
structure and scale of the turbulent flow itself. Here, we simply
apply the same tool to FTLE fields.

Fig. 5 shows the spherical harmonics spectra Eσ(ℓ,T ) of
FTLE fields for different target integration times, shown ear-
lier in Fig. 2. As LCS form and evolve, their energy content
and peak scale shifts towards larger scales, and the spectrum be-
comes steeper. By T = 24 h, the slope of the spectrum becomes
stationary at intermediate scales, but the peak scale continues to
increase monotonically on larger times.

The corresponding evolution of Lσ is shown in Fig. 6 as a
function of the target time of integration of passive tracers. As
this time increases, Lσ increases from 16 Mm at T = 6 h to
21 Mm at T = 72 h, and subsequently saturates. Thus, LCS,
while acting as transport barriers, are "not set in stone" in this
kind of time-dependent flow unconstrained by horizontal bound-
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Fig. 2. From left to right and top to bottom: global solar-disc maps of attractive Lagrangian coherent structures imaged as ridges of maxima of
the backwards-in-time FTLE field, for different integration times of 1, 2, 3 and 6 days respectively. Increasingly small apodising windows are
used for longer time integrations (from 60◦ opening for T = 24 h to 23.5◦ opening for T = 144 h) to avoid contamination by imprecise velocity
measurements at the limb (see discussion in Sect. 2).

aries2. Instead, they themselves appear to be highly dynamical
structures that change in time as the flow evolves.

Figure 6 also shows how the r.m.s. value of the FTLE field
σT evolves with the integration time. This quantity indicates how
particles diverge as a function of time. A fast initial divergence
over a timescale of a few hours is initially observed (σrms ∼
0.025 h−1, with peak values σmax ∼ 0.14 h−1 for T = 24 h cor-
responding to a shortest divergence timescale of just 8 h, see
Fig. 1). This shorter timescale roughly corresponds to the time
it takes for tracers to be swept by supergranulation-scale flows
from a supergranulation cell centre to its periphery. On longer
timescales, however, particles tend to get trapped/blocked in the
LCS transport barriers associated with supergranule boundaries.
As a result, the rate of relative divergence of their trajectories

2 In marine dynamics for instance, LCS can be laminar patterns whose
geometry is shaped by coastal/bay topography, and they can be ex-
tremely stable over time, leading for example to accumulation of pollu-
tants in particular areas, see e.g. Lekien et al. (2005).

significantly decreases, as visible in Fig. 6, and appears to satu-
rate at σrms ∼ 0.015 h−1.

Using the long-time asymptoting values reached by Lσ and
σrms in Fig. 6, we can infer a first rough dimensional turbulent
diffusion coefficient estimate, namely

Dσ =
σrmsL2

σ

4
≃ 400 km2 s−1 = 4 × 108 m2 s−1 . (3)

While this simple result should be treated with caution and
should only be seen as an order of magnitude estimate, we
point out that it provides an interesting connection between LCS,
FTLEs and large-scale transport, which we study more quantita-
tively in the next section.

5. Statistical characterisation of turbulent transport

The previous section aimed at providing a phenomenological
perspective on large-scale transport in the quiet photosphere, and
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Fig. 3. Left: line-of-sight magnetic field Bz over the central 23.5◦ region, imaged with SDO/HMI 12 h after the beginning of the observation.
Right: zoomed-in centre-disc region of 10◦ × 10◦ (frame in left plot) showing attractive LCS calculated for 12 h negative integration time (ridges
of the negative-time FTLE field, red colormap), superimposed with passive tracer locations after 12 h positive integration time (black dots), and
corresponding local Bz magnetograms (green/purple colormap). The coloured markers and lines tag 12 h (positive time) trajectories of a few
selected tracers, see discussion in Sect. 5 and Fig. 7 below (visualization continued for longer times in Fig. 4).

it notably enabled us to pinpoint a global network of Lagrangian
coherent structures associated with supergranulation-scale con-
vection as a key physical pattern regulating horizontal turbulent
diffusion in this convective fluid system. We now proceed to
analyse the horizontal transport process on timescales of up to
six days from a more classical statistical perspective, and subse-
quently attempt to interpret the results through the phenomenol-
ogy outlined previously.

5.1. Statistics of tracer trajectories

To quantify turbulent transport, we focus on the central 23.5◦
region, whose velocity field can be reliably inferred throughout
our 144 h sequence. We calculate the trajectories of 1024×1024
tracers initially placed on a cartesian grid at the centre of this
region, with a resolution of 135 km. We first calculate the en-
semble average (denoted by brackets) of the squared distance
d2

i, j(T ) = |xi, j(T ) − xi, j(0)|2 travelled by each (i, j) tracer initially
placed on this cartesian grid, as a function of the integration time.
On general grounds, we expect

⟨d2⟩(T ) = cT γ , (4)

with γ = 1 corresponding to a random walk diffusion regime,
γ > 1 to an anomalous superdiffusion regime, and γ < 1 to an
anomalous subdiffusion regime. Using power-law fits to Eq. (4),
we can then calculate a horizontal 2D-turbulence diffusion coef-
ficient using a formula frequently used in the solar physics con-
text (Monin & Yaglom 1971, see e.g. Hagenaar et al. (1999);
Abramenko et al. (2011)),

D =
1
4

d ⟨d2⟩
d T

=
γ c
4

T γ−1 . (5)

Note that this transport coefficient usually bears a residual de-
pendence on T if γ , 1, and that this expression also motivates a
posteriori the specific expression used in Eq. (3) to estimate tur-
bulent diffusion on the basis of the characteristic rate of tracers
divergence and spatial scales obtained from our FTLE analysis.

We plot ⟨d2⟩(T ) and D for our collection of advected tracers
in Fig. 7. We obtain a reasonable power-law fit with γ = 1.09 for
intermediate times comparable to τSG = 48 h, the typical corre-
lation time of supergranulation. This corresponds to an almost-
diffusive behaviour with a turbulent diffusion coefficient in the
range D = 200 − 300 km2 s−1 (inset). A histogram of the distri-
bution of distances travelled by tracers (Fig. 8) further illustrates
the spread in distances travelled as a function of time, consistent
with a diffusive process.

On the longest times probed though, we find in Fig. 7 a
slight increase in transport (γ = 1.57), corresponding to an en-
hanced diffusion coefficient D ≃ 400 km2 s−1. To understand
the origins of this trend, we isolated a collection of tracers with
larger-than-average excursions d from their initial positions. We
overplot d(T ) for ten of these tracers in the figure using thin
color lines and symbols, and further trace their trajectories at
the solar surface in Figs. 3-4. A careful examination of these
figures reveals that most of these tracers experience secondary
transport kicks at a time between 24 h and 72 h comparable to
τSG. These kicks appear to be associated with the regeneration
of the supergranulation flow and the emergence of new "explo-
sive granules" (Roudier et al. 2016) that structure supergranules,
leading to a transient, more ballistic-like energetic superdiffu-
sive behaviour. Since the average statistical trend at the largest
times probed here is dominated by the small collection of trac-
ers in this "non-thermal" tail of the distribution shown in Fig. 8,
we argue, consistent with the standard picture of a random walk,
that such individual kicks are simply random-walk events associ-
ated with the regeneration of the supergranulation flow, and that
the accumulation of such events on timescales much larger than
τSG would likely result on long times in an average diffusive-
like behaviour. Accordingly, we conjecture that the statistics of
⟨d2⟩ should eventually settle in such a large-scale turbulent diffu-
sion regime if we could track tracers trajectories for even longer
times than we did here to reach a better timescale separation
with the typical correlation time of the flow. Despite our best
efforts to maximize the consecutive time of observation, reach-
ing this regime unfortunately currently remains impossible, due
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Fig. 4. Continuation of Fig. 3. From top left to bottom right: zoomed-in region (frame in Fig. 3, left) showing attractive LCS calculated for
successive negative tracer integration times (red colormap), superimposed with passive tracer locations (black dots) and corresponding local Bz
magnetograms (same green/purple colormap as in Fig. 3) at corresponding positive integration times. As mentioned in Sect. 3, tracers accumulate
in attractive LCS. Throughout the sequence, LCS and tracer concentrations correlate well with the magnetic network and bright points, respectively.
The coloured markers and lines tag (positive-time) trajectories of a few selected tracers: large symbols mark the initial position and current position
for the time of integration of each plot, and small symbols the position for every intermediate 24 h (see discussion in Sect. 5 and Fig. 7).
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Fig. 6. Change as a function of the FTLE target integration time of
the r.m.s. value and integral scale of FTLE distributions, derived from
spherical harmonics spectra using Eq. (2). The dashed vertical line
shows τSG = 48 h, the typical correlation time of supergranulation.

to the observing limitations stressed in the Introduction and in
Sect. 2.4.

With respect to this point, close examination of Figs. 3-4
also reveals that some magnetic concentrations at the surface
are subject to the exact same dynamics as these outlier tracers.
For instance, an intense violet magnetic concentration located at
(2◦E, 2.3◦S ) at T = 96 h gets pushed further south in exactly the
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Fig. 7. Ensemble-averaged ⟨d2⟩ of the quadratic distance travelled by
tracers as a function of time (full dark red line), power law fits (lighter
red and cream lines), and (inset) corresponding diffusion coefficients as
determined by Eq. (5). The thin coloured lines with markers every 24 h
show the history of d2 for individual tracers with larger-than-average
excursions on long times. The surface trajectories of these tracers are
shown with the same markers and colours in Figs. 3-4.
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Fig. 8. Time evolution of the histogram distribution of distances trav-
elled by tracers. The tracers showcased by markers in Figs. 3-4 and
Fig. 7 all belong to the tail of the distribution at T = 144 h.

same way as the tracers tagged with red and cyan triangles be-
tween T = 96 h and T = 120 h, at which time the position of the
two tracers almost coincides with that of the magnetic element.
The same remark applies at T = 120 h to the green magnetic
concentration located at (0.5◦W, 2.2◦N), and to the tracer tagged
by a yellow pentagon. This provides further confirmation that the
dynamics of tracers and magnetic fields are strongly correlated,
and that both are subject to the same kind of average transport
and individual transport events/kicks.
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5.2. Ink spot experiment

To complement the previous results, and in the spirit of ap-
proaching the problem from a large-scale statistical point of
view, we finally present a slightly different characterisation of
transport by photospheric flows. The idea is to mimic a classi-
cal ink spot molecular diffusion experiment in the lab, whereby
a circular ink spot is carefully released in water, and its radius
subsequently expands diffusively. To do this, we delimit a cir-
cular patch of tracers in the initially cartesian grid of tracers (as
in Sect. 4, we use a large tracers grid covering the entire solar
surface here). We then measure the evolution of their average
squared distance from the centre of the spot, i.e.

R2
spot(T ) =

1
N

∑

i, j ∈ spot

(
xi, j(T ) − xspot,c

)2
+

(
yi, j(T ) − yspot,c

)2
, (6)

where (xc, yc) are the central coordinates of the spot on the CCD
grid and N is the number of tracers initially within a radius R0 of
the spot centre. For a diffusive process, a spot of initial radius R0
will diffuse on a timescale τD = R2

0/D, where D is the diffusion
coefficient. For the experiment to be meaningful, we should pick
R0 small enough that τD is smaller than, or at most of the order
of the observation period, but also large enough that the circular
spot itself encompasses at least one typical flow structure, i.e.
a supergranule. Indeed, a very large spot would barely start to
diffuse on the available time of observation, while a very small
one would not feel the statistical effect of turbulent kicks and
would also not contain enough tracers to construct a meaning-
ful statistics. In what follows, we chose R0 = 28.7 Mm, which
corresponds to an angle with respect to the Sun centre of 2.35◦,
one-tenth of the opening of the apodising window used for the
continuous six-day observation. Based on our earlier estimate for
D, such a spot should diffuse on a typical timescale of a month,
so we expect to be able to measure the beginning of the diffusion
process using our six-day sequence.

A spot of initially this size contains ∼ 1380 tracers for our
grid of tracers and it samples the flow of only a handful of in-
dependent supergranules giving relatively noisy results. To im-
prove the statistics, we therefore replicate the measurement in
Eq. (6) for as many spots as possible, packing the 23.5◦ observa-
tion window with non-overlapping circular spots whose centres
are contained initially within an opening 21.15◦ = 23.5◦ − 2.35◦
angle from the solar disc centre. For the chosen R0, this gives us
a statistics of 60 spots from which we can calculate R2

spot, a spot-
ensemble average of R2

spot. Because the diffusion process takes a
few hours to develop, we parameterise the evolution as

R2
spot(T ) = R2

spot(0) (1 + cT γ) . (7)

In Fig. 9, we plot R2
spot/R

2
spot(0) − 1 as a function of the inte-

gration time of tracers, and a corresponding power law fit of the
evolution for times longer than 24 h. While the observed statis-
tics is neither an exact power law, nor exactly diffusive, diffusion
still appears to be a very reasonable first approximation overall,
and the scaling exponent γ = 1.15 is very similar to γ = 1.09
obtained with the first method used in Sect. 5.1. As in Fig. 7,
we also observe that transport is slightly enhanced on late times,
for the same reasons. Figure 10 further shows the histogram dis-
tribution, as a function of time, of the distance of all the tracers
considered in the analysis from their relative spot centre. The
results illustrate the diffusion-like spread of the averaged spot.

Using this analysis, we can now estimate a large-scale dif-
fusion coefficient from the power law fit in Fig. 9. For consis-
tency and comparison with the method used in Sect. 5.1, we

104 105

Integration time T (s)

10−2

10−1

100

R
2 sp

ot
(t

)/
R

2 sp
ot

(0
)−

1

Power law, γ =1.15

104 105T (s)
102

103

D
sp

ot

( km
2

s−
1)

Fig. 9. Time evolution of the ensemble-average normalised radius of
circular spots of tracers (full dark red line, see Eq. (7)), and correspon-
donding power-law fit.
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Fig. 10. Time evolution of the histogram distribution of distances trav-
elled by tracers initially enclosed within circular spots of tracers of ra-
dius 30 000 km, with respect to their relative spot centres. Together with
Fig. 9, the plot highlights the turbulent diffusive spread of tracers.

use again Eq. (5) for this purpose, applied here to R2
spot/R

2
0 − 1

instead of ⟨d2⟩. The results, shown in the inset of Fig. 9, give
Dspot ≃ 200 km2 s−1 for T = 48 h, consistent with the value ob-
tained by the first method in Sect. 5.1.

6. Conclusions and discussion

6.1. Main conclusions

In this paper, we have studied large-scale transport by convec-
tion flows in the solar photosphere from an observational per-
spective, using a Lagrangian passive tracer modelling approach
to characterise turbulent diffusion and the formation of dynami-
cal structures and patterns affecting this transport process.

In Sect. 4, we applied Finite Time Lyapunov Exponents
(FTLEs) and Lagrangian Coherence Structure (LCS) analysis
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techniques to large field of views covering a significant fraction
of the solar disc, for unprecedented continuous periods of tracer
tracking of up to six days. The large-scale maps we obtained re-
veal a clear and robust emergent dynamical LCS pattern tiling
the solar surface isotropically at supergranulation scales. These
results provide a new global perspective, rooted in observational
data, of the dynamical interplay between order and chaos at the
solar surface. In particular, by transiently accumulating particles
and magnetic fields, Lagrangian coherent structures appear to
regulate large-scale turbulent surface diffusion in the quiet Sun
on long timescales. We also found that characterising their asso-
ciated basic statistical properties (space and time scales) is suffi-
cient to provide a correct preliminary dimensional order of mag-
nitude estimate of the large-scale turbulent diffusivity.

A more quantitative statistical analysis of large-scale diffu-
sion was presented in Sect. 5 using two different methods: a di-
rect statistical analysis of tracers trajectories, which notably al-
lowed us to pinpoint the role of "large-scale" flow kicks in driv-
ing the transport on long timescales, and an analog to an ink
spot molecular diffusion laboratory experiment. Both analyses
point to an effective horizontal turbulent diffusivity coefficient
D = 2 − 3 × 108 m2 s−1 on the longest timescales of six days
probed. We argued that an analysis on even longer times (much
larger than the correlation timescale of supergranulation) would
be desirable to make the convergence to an asymptotic, long-
time statistical diffusion regime more apparent, but that such an
analysis can not be easily conducted currently considering ob-
servational constraints.

6.2. Comparison with previous work

The passive tracers advection analysis presented in this pa-
per bears some similarities with a previous analysis of this
kind conducted by Roudier et al. (2009) on Hinode data on
a 48 h timescale. The authors derived a diffusion coefficient
D ≃ 430 km2 s−1, broadly consistent with, but on the higher
end of our own estimates. It is possible that the timescale they
probed was not long enough to obtain a converged long-time dif-
fusion coefficient, with the statistics being dominated by shorter-
time, superdiffusive ballistic advection within supergranules.
The present analysis, conducted on times larger than the typical
supergranulation lifetime τSG and on significantly larger fields of
views, offers a significant statistical improvement in this respect.

Our results can also be compared with solar studies involv-
ing the tracking of magnetic elements. We argued that mag-
netic transport is overall well captured by the dynamics of vir-
tual passive tracers/corks. The main benefits of the latter, we
recall, is that they can be integrated for longer times, provide
better statistics and do not suffer from the issue of cancella-
tion/merging effects (see e.g. Iida 2016, for a discussion). As
mentioned in the introduction, all studies of this kind so far have
focused on smaller fields of views and smaller timescales than
the present study. Where the timescales of these studies over-
lap with ours, we find good agreement with our results. For in-
stance, Hagenaar et al. (1999) derived D = 200 − 250 km2 s−1

for magnetic tracking times in the 19 − 45 h range; Giannatta-
sio et al. (2013, 2014) report a slightly hyperdiffusive regime
with D = 100 − 400 km2 s−1 on supergranulation scales for a
few hours. Most other observational solar magnetic turbulent
diffusion studies in the literature (e.g. Berger et al. 1998; Utz
et al. 2010; Abramenko et al. 2011; Manso Sainz et al. 2011;
Jafarzadeh et al. 2014; Yang et al. 2015; Agrawal et al. 2018)
have been focused on intra-supergranular /internetwork transport
on significantly smaller times (103 − 105 s) and spatial scales

of a few megameters at most (see Schrijver et al. (1996); Bel-
lot Rubio & Orozco Suárez (2019) for reviews). They typically
obtain diffusion coefficients smaller than 100 km2 s−1 that likely
correspond to transport by shorter-lived, smaller-scale structures
like granules or explosive granules, with only a minor effect
of weaker, but much longer-lived supergranulation-scale flows
on such short timescales. These studies therefore differ in both
scales, scope, goal and spirit from our study, which preferentially
targets effective large-scale transport on times comparable to,
or larger than the typical supergranulation lifetime τSG = 48 h,
which we believe is the appropriate limit to gauge the turbulent
diffusion relevant to the large-scale solar dynamo problem.

6.3. Implications for solar dynamo modelling

Our long-time observational estimates of turbulent diffusivity,
D ≃ 2−3×108 m2 s−1 obtained in Sect. 5, may be used to pin, at
the solar photosphere, the profiles of horizontal turbulent mag-
netic diffusivity used for instance in mean-field models of the so-
lar dynamo (Hazra et al. 2023). If our results hold, some existing
models might slightly underestimate this mode of transport (e.g.
Rempel 2006, who used 108 m2 s−1 at the surface), while oth-
ers use a turbulent diffusivity value entirely consistent with our
observational estimate (e.g. D ≃ 2.5 × 108 m2 s−1 in Cameron
et al. (2010)). On the other hand, some older flux-transport kine-
matic dynamo models (Sheeley 1992, 2005, see Schrijver et al.
(1996) for a discussion) seemed to require a significantly larger
turbulent diffusion coefficient, up to D ≃ 6 × 108 m2 s−1, to pro-
duce sensible solar dynamo results. Such a large value is not con-
sistent with even our upper-limit, enhanced transport estimates,
D ≃ 4 × 108 m2 s−1, obtained on the longest times probed, and
associated with transiently re-accelerated "tail particles" (see in-
set of Fig. 7 and related discussion in Sect. 5). To be sustained
on asymptotically long-times, such a large coefficient would re-
quire a significant transport regime change on longer timescales
than the six days probed here. Such a dynamical effect is hard to
envision at the surface at least, considering that our study already
encompasses the main effects of supergranulation-scale convec-
tion, the most energetic large-scale flow structure contributing to
turbulent transport at the surface.

Further mean-field solar dynamo modelling work by
Lemerle et al. (2015) (see their Fig. 8), highlighted in a recent re-
view on surface flux transport by Yeates et al. (2023), found a de-
generacy between turbulent diffusivity and meridional flow am-
plitude parameters on the results of flux-transport dynamo mod-
els, which may somehow help to solve this problem. We believe
that the multi-pronged statistical characterisation of the hori-
zontal turbulent diffusivity at the photosphere developed in the
present paper is sufficiently robust to help lift this degeneracy:
our result, D ≃ 2 − 3 × 108 m2 s−1, is very close to the turbulent
diffusivity value associated with the maximum fitness contours
obtained by Lemerle et al. (2015) in the turbulent diffusivity-
meridional flow amplitude plane.

Finally, we note that transport coefficients derived from
global numerical simulations of solar MHD convection also
seem consistent with our observational estimates (e.g. Fig. 11 of
Simard et al. (2016) for the βφφ transport coefficient correspond-
ing to our observational measurement of the horizontal diffusiv-
ity), although they might still slightly underestimate the vigour
of the convection at supergranulation scales, and the associated
diffusivity.
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6.4. Connection with the solar magnetic network,
atmosphere and solar wind

It is tempting to conjecture that the prominent global emergent
dynamical pattern tiling the surface of the Sun, singled out in this
work and best illustrated by Fig. 1, plays a major role in structur-
ing the magnetic interactions between the interior, or at least the
subsurface layers of the Sun driving the small-scale surface dy-
namo, its atmosphere, and possibly also the solar wind. The pos-
sible connection of the LCS loci of photospheric magnetic field
accumulation with coronal heating has already been pointed out
by Yeates et al. (2012). Our new global characterisation reveals
the conspicuity, robustness and full extent of this dynamical LCS
pattern over the whole solar disc, reinforcing this hypothesis. In
this respect, our analysis may also provide new insights into the
origin and mechanisms underlying a possible connection, sug-
gested by Fargette et al. (2021), between supergranulation and
solar wind magnetic switchbacks encountered by the Parker So-
lar Probe (Kasper et al. 2019; Bale et al. 2019).

6.5. A new "experimental" measurement of turbulent
transport

Moving on to a more fundamental complex physics and fluid-
dynamical perspective, we note that turbulent diffusion effects
have been observed in various experimental MHD flows, such as
the Perm, Wisconsin and VKS dynamo experiments (Frick et al.
2010; Rahbarnia et al. 2012; Miralles et al. 2013), all at relatively
large kinetic Reynolds numbers Re = O(106) but rather small
magnetic Reynolds numbers (Rm < 100) not representative of
astrophysical regimes such as encountered in planets, stars and
galaxies. By using "the Sun as a fluid dynamics lab", our results
offer a new, and possibly unique "experimental", in situ caracter-
isation of the emergence on times comparable to, or longer than
a typical flow correlation time, of turbulent diffusion in stochas-
tic flows with both large kinetic and magnetic Reynolds numbers
(Re = O(1010), Rm = O(104) at the solar surface).

6.6. The pitfalls of mixing-length arguments

Looking at the results from a broader perspective than just the
solar context to benefit from the insights of the study of an astro-
physical system resolved in both space and time, it is also an in-
teresting exercise to ask why the value of the turbulent diffusivity
we obtained is what it is in this system. If the transport is indeed
dominated by supergranulation-scale flows, naïvely (by a mixing
length argument) one could have expected a transport coefficient
of the order of a fraction (typically 1/4 in 2D) of RSGVSG, i.e.

D =
1
4

RSGVSG =
1
4

R2
SG

τNL,SG
= 1.5 × 109 m2 s−1 , (8)

where we have used RSG ≃ 1.5 × 104 km, and VSG ≃ 0.4 km s−1

(Rincon & Rieutord 2018), and we have introduced the nonlinear
turnover time at the supergranulation scale τNL,SG = RSG/VSG ≃
8 h, which is the sweeping time for a passive tracer to be ad-
vected from the centre to the boundary of a supergranule cell.
This mixing-length estimate is an order of magnitude higher
than our experimental-observational determination. Why is it
so ? The reason lies in that we have naïvely used, in the ex-
pression above, the turnover time of the flow τNL,SG, instead
of its correlation time, τSG, which is closer to 48 h. If we re-
peat the calculation in Eq. (8) with this time instead, we find
D = 2.6 × 108 m2 s−1, which is now remarkably consistent with
our detailed statistical analysis.

The reason why the correlation time of the flow is the rel-
evant quantity to use in a mixing length estimate here is be-
cause tracers remain stuck at the boundary of supergranules for
a time of the order of τSG after they have been advected there
on the much shorter τNL,SG time. Hence, their effective "random
walk" velocity is not VSG = 0.4 km s−1, but the much smaller
VSG × (τNL,SG/τSG) ≃ 70 m s−1. This simple, yet subtle differ-
ence finds its roots in the very structure of the flow.

The conclusion of this phenomenological argument is there-
fore that the structure of a turbulent flow matters a lot when it
comes to correctly estimating the magnitude of large-scale turbu-
lent transport. In the example at hand, we showed that the global
surface network of transport barriers and LCS at supergranula-
tion scales, vividly illustrated in Fig. 1, plays a key role in the
regulation of the effective large-scale transport. We believe that
this conclusion pertains to many if not all astrophysical flows,
and therefore call for caution with back-of-the-envelope esti-
mates of turbulent transport coefficients based on dimensional
arguments, for instance because the correlation time of the flow
can significantly differ from its turnover time. In the case of solar
surface convection, large-scale structures at the injection scale
persist for quite a long time, so that the Strouhal number of the
flow, St = τcorr/τNL, is of the order of 5-6, with significant con-
sequences for the effective turbulent diffusivity.

6.7. Perspectives

The focus of this paper has deliberately been restricted to a sub-
set of all physical solar dynamical transport and large-scale or-
ganisation phenomena to which the techniques developed in this
work may be applied at global scales. Further investigations of
this kind, of possible rotational effects, latitudinal dependences
of turbulent diffusivity, global-scale convection (Hathaway et al.
2013; Ballot & Roudier 2024), meridional circulation (Roudier
et al. 2018), and of the statistical implications of magnetic flux
emergence and further transport at the photosphere (Hathaway
& Rightmire-Upton 2012) for the energetics of the upper solar
layers (Yeates et al. 2012), would undoubtedly prove very in-
structive too, and are left for future work.

More broadly, as exemplified by the discussion above, the
study of the extreme fluid dynamical system that is the Sun, with
the unique benefits in astrophysics of a large spatial and tempo-
ral resolution, can still teach us valuable lessons for the future
modelling of unresolved astrophysical systems, such as stars or
accretion discs, where turbulent flows driven by different hydro-
dynamic or MHD instabilities also likely play a key role in the
overall dynamical and energetic regulation of the system.
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Appendix A: Computation of Finite-Time Lyapunov
exponents

A.1. Computation of Lagrangian tracers trajectories

The trajectories of Lagrangian tracers (“corks”) in the (x, y)
plane are determined as follows: a cartesian grid of tracers
is initially generated in the plane. The time history of the
(x, y) projection of the photospheric velocity field u(xi, y j) =
(ux(xi, y j), uy(xi, y j)), determined via the CST algorithm every
30 min, is then used to integrate their position in that plane for
a target time T ranging from several hours to several days, by
means of numerical integration of an advection equation imple-
mented through the python function odeint. The integrator in-
ternally sets an adaptative timestep shorter than the time between
successive velocity snapshots. At each such timestep, the veloc-
ity field at the exact current location of each tracer is interpolated
using the running snapshot of the velocity field on the cartesian
grid, thanks to the python function RectBivariateSpline.
Note that using the same velocity field snapshot during 30 min
intervals is a reasonable assumption, given that the smallest spa-
tial scales of the photospheric flow inferred via the CST are of
the order of 2.5 Mm, and their timescale is of the order of 30 min
to 1 hour. Note also that the resolution of the tracers grid on
which a FTLE field is to be computed can be finer than the flow
itself. Using a high-resolution grid of tracers is in fact essential
to identify Lagrangian coherent structures and accurately com-
pute invariant manifolds and transport barriers even when the
flow is large-scale (Lekien et al. 2005). For global maps, we used
a cartesian grid of up to 1024 × 1024 tracers encapsulating the
full solar disc. This maximal resolution corresponds to an initial
spacing between tracers of the order of 1.5 Mm close to the disc
centre. The precision of the integration of the tracers trajectories,
specified to the numerical integrator, is of the order of 0.3 Mm
(in Sect. 5 we also used a much finer local grid of 1024 × 1024
tracers encompassing 10◦ × 10◦ only). The collection of trajec-
tories integrated in the CCD plane then serves as a basis for the
computation of FTLE on the sphere, as explained below.

A.2. FTLE in a 2D plane

The Lagrangian trajectory x(t) = (x(t), y(t)) of a passive tracer in
a 2D plane fluid flow u(x, t) is determined by its initial position
x(t = 0) = x0 and the differential equation of motion

ẋ(t) = u(x(t), t). (A.1)

Introducing the flow map for a target integration time T

ϕT : R2 → R2

x0 7→ x(T, x0) , (A.2)

and its Jacobian dϕT /dx0, we form the Cauchy-Green deforma-
tion tensor

∆(x0) =
(

dϕT

dx0

)T (
dϕT

dx0

)
. (A.3)

The FTLE σT (x0) of the flow at x0 is given by

σT (x0) =
ln
√
λmax(∆(x0))

T
, (A.4)

where λmax is the largest eigenvalue of ∆(x0).
In practice, the matrix representation J of dϕT /dx0 is esti-

mated at each interior point (xi, y j) of the cartesian grid on which

the tracers are placed at t = 0, using a centered finite differ-
ence formula. Using the short-hand notation xi, j(t) ≡ x(t, x0 =
(xi, y j)), we have

J(xi, y j) =



xi+1, j(T ) − xi−1, j(T )
xi+1, j(0) − xi−1, j(0)

xi, j+1(T ) − xi, j−1(T )
xi, j+1(0) − xi, j−1(0)

yi+1, j(T ) − yi−1, j(T )
xi+1, j(0) − xi−1, j(0)

yi, j+1(T ) − yi, j−1(T )
xi, j+1(0) − xi, j−1(0)


,

(A.5)
from which ∆ = JTJ follows. The FTLE field σT (xi, y j) is finally
obtained via Eq. (A.4) by diagonalizing ∆ at each grid point.

A.3. Mapping to the sphere

The FTLE of the flow on the sphere is inferred using basically
the same algorithm presented above, except that a mapping be-
tween the real separations between the tracers and the projected
ones in the plane of the sky/satellite CCD must be introduced.
The theoretical formalism is described in Lekien & Ross (2010),
as well as an example of application on the sphere. The formu-
lae needed to compute FTLEs on the sphere for our particular
problem are given below.

To perform the mapping, we introduce the out-of-plane dis-
tance z between a point on the solar surface and the plane parallel
to the CCD plane and passing through the centre of the Sun,

z =
√

R2
⊙ − (x2 + y2) , (A.6)

where R⊙ is a fiducial photospheric solar radius. The transforma-
tion between the solar disc D⊙ and spherical solar surface mani-
foldM is then given by the diffeomorphism

β−1 : D⊙ →M

(x, y) 7→


x
y

z =
√

R2
⊙ − (x2 + y2)

 .
(A.7)

Using these definitions, the FTLE field on the sphere is obtained
along the exact same lines as in Appendix A.2, except that a
more general form of the deformation tensor accounting for the
projection effects must be used, namely

∆(x0) = J̃(x0)T J̃(x0) , (A.8)
with
J̃(x0) = R (x(T, x0)) J(x0) R (x0)−1 . (A.9)
J is the Jacobian matrix in the projection plane, computed at each
grid point via Eq. (A.5) using the projected tracers trajectories.
R(x) is a coordinate-dependent upper-triangular matrix obtained
by QR decomposition of the derivative of β−1. Its explicit ex-
pression for our particular problem is

R(x) =



√

1 +
x2

z2

xy(
z
√

R2
⊙ − y2

)

0
R⊙√

R2
⊙ − y2



. (A.10)

Note that since the particles move on the sphere between t = 0
and the target time t = T , the projection effects at T are different
from those at the initial time. This explains why R is evaluated
at the final position x(T ) on the left of J in Eq. (A.9) and at the
initial position x(0) on its right.
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Synthèse en français

Les magnétars regroupent deux classes de jeunes étoiles à neutrons isolées dont l’émissionen rayon X et γ est alimentée par la diffusion de leurs champs magnétiques extrêmes.Leur large panel d’émissions va des sursauts courts (e.g. Gotz et al., 2006, Coti Zelati et al.,2018) aux éruptions géantes (Evans et al., 1980, Hurley et al., 1999, 2005, Svinkin et al., 2021,Mereghetti et al., 2024) — communément appelées giant flares—en passant par des phasescaractérisées par une augmentation brutale du flux lumineux, appelées outbursts. Cela lesdifférencie des pulsars dont l’émission tire son énergie de la rotation de l’étoile à neutron parle dipôle magnétique. De plus, les magnétars sont aussi à l’origine de certains sursauts radiorapides (CHIME/FRB Collaboration et al., 2020, Bochenek et al., 2020, Mereghetti et al., 2020).Leur activité permet de mesurer leur période de rotation et le ralentissement de celle-ci, quise sont respectivement de 2–12 s et 10−12–10−9 ss−1. En supposant que ce ralentissementsoit dû à l’extraction d’énergie rotationnelle par un dipôle magnétique, il est possible de dé-duire que ce dernier est de 1014–1015 G pour les magnétars, ce qui est environ 100 fois plusintense que celui d’un pulsar typique. Certains magnétars — dits low-fieldmagnétars — pos-sèdent néanmoins des dipôles entre 6×1012 et 3×1013 G, démontrant qu’un fort dipôle n’estpas nécessaire pour reproduire l’émission à haute énergie des magnétars classiques (Reaet al., 2010, 2012a, 2014). L’observation de raies d’absorptions proton cyclotron venant desdeux magnétars à faible dipôle suggère cependant la présence d’un champ magnétiquenon-dipolaire d’environ 30− 170 fois plus fort que le dipôle (Tiengo et al., 2013, RodríguezCastillo et al., 2016). La prédominance d’une composante non-dipolaire est confortée parl’interprétation de modulations observées dans les courbes de lumière de certains magné-tars comme des mouvements de précessions dues à une composante toroïdal d’environ
1016 G (Makishima et al., 2014, 2016, 2019, 2021).Les magnétars et les étoiles à neutrons en général, sont le produit de l’effondrement ducœur d’une étoile massive — ayant au moins huit fois la masse du Soleil — lors de son ex-plosion en supernova gravitationnelle. En effet, à la fin de leur vie, ces étoiles forment uncœur composé principalement de fer qui finit par s’effondrer à cause de la force de gravité,une fois qu’il atteint la masse de Chandrasekhar. Le cœur stellaire passe d’un rayon d’unmillier de kilomètres à un peu moins d’une centaine de kilomètres en environ un centièmede seconde, formant une proto-étoile à neutrons avec une densité extrême de l’ordre de
1014 gcm−3. Dans ces conditions, les atomes de fer se dissocient et les protons deviennentdes neutrons par capture électronique. Cette dernière réaction produit une très large quan-tité de neutrinos dont une fraction est absorbée par la matière formant un choc d’accrétionautour de l’objet compact. Dans le cas des supernovæ standards, le chauffage de la matièredû à l’absorption des neutrinos — et renforcé par des instabilités hydrodynamiques commela convection et la Standing Accretion Schock Instability (e.g. Blondin et al., 2003, Foglizzo et al.,2007, Yamasaki & Foglizzo, 2008, Kazeroni et al., 2017, 2018, Walk et al., 2023, Buellet et al.,2023) — permet d’augmenter le rayon choc. Une fois sorti du cœur de l’étoile, le choc souf-fle les couches externes de l’étoile, constituant l’explosion en supernova. La proto-étoile àneutron continue de refroidir et de se contracter jusqu’à atteindre un rayon d’environ 12 km
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et former une étoile à neutrons.

En présence d’une rotation rapide avec une période de quelques millisecondes, les mag-nétars pourraient aussi être le moteur central d’explosions plus énergétiques et lumineusesque les explosions classiques par émission de neutrinos comme les hypernovæ — qui sontparfois associées à des sursauts γ longs—et les supernovæsuperlumineuses. Le dipôlemag-nétique extrême d’un jeune magnétar pourrait efficacement extraire l’énergie rotationnellepour l’injecter dans l’éjecta de l’explosion. Si cette injection d’énergie est tardive, elle permetd’expliquer la courbe de lumière des supernovæ superlumineuses (e.g.Woosley, 2010, Kasen& Bildsten, 2010, Nicholl et al., 2013, Inserra et al., 2013, Margalit et al., 2018, Lin et al., 2021).Pour les hypernovæ, les modèles de magnétars milliseconde reproduit fidèlement la courbede lumière rémanente de certains sursauts γ longs (e.g. Nomoto et al., 2011, Metzger et al.,2015, Cano et al., 2016, Gompertz & Fruchter, 2017, Margalit et al., 2018, Lin et al., 2020). Enoutre, le cisaillement de dipôle magnétique en champs magnétique toroïdal peut expliquerla formation de jets qui se propagerait à travers les couches externes de l’étoile, provoquantune explosion dite magnétorotationnelle (e.g. Burrows et al., 2007, Dessart et al., 2008, Taki-waki et al., 2009, Kuroda et al., 2020, Bugli et al., 2020, 2021, 2023, Obergaulinger & Aloy,2020, 2021, 2022). Ce type d’explosion est un bon candidat pour expliquer les sursauts γlong associé aux hypernovæ (e.g. Duncan & Thompson, 1992, Woosley & Bloom, 2006, Droutet al., 2011, Nomoto et al., 2011, Gompertz & Fruchter, 2017, Metzger et al., 2018). Enfin, cesmagnétars milliseconde peuvent être le résultat d’une fusion de deux étoiles à neutrons, cequi expliquerait la phase de plateau observée dans la courbe de lumière de certains sursauts
γ courts (Metzger et al., 2008, Lü & Zhang, 2014, Gompertz et al., 2014).

Les magnétars sont alors des objets astrophysiques fondamentaux du ciel transitoire.L’origine de leur champmagnétique extrêmeest alors cruciale pour expliquer les phénomènesmentionnés plus tôt. Cette question reste ouverte, mais plusieurs pistes sont envisagées.Tout d’abord, un scénario suggère que ces champs magnétiques proviennent de celui ducœur de l’étoile progénitrice qui a été amplifié par conservation du flux magnétique lors del’effondrement du cœur (Ferrario & Wickramasinghe, 2006). Le champ magnétique initialpeut avoir été généré par effet dynamo dans les zones internes de l’étoile — soit durant sonévolution (Augustson et al., 2016, Varma & Müller, 2023, Leidi et al., 2023), soit lors la fu-sion de deux étoiles massives (Schneider et al., 2019, 2020) — ou peut provenir d’un champfossile (Braithwaite & Spruit, 2004, 2017). Néanmoins, aucune contrainte observationnellen’existe sur le champ magnétique du cœur de fer, ce qui rend ce scénario incertain.
Une autre classe de scénarios arguent que le champmagnétique est amplifié par effet dy-namo dans la proto-étoile à neutrons nouvellement formée. Avant le travail de cette thèse,deux dynamos ont été étudiées à travers des simulations numériques tridimensionnelles: les dynamos entretenues par les instabilités convective (Thompson & Duncan, 1993, Ray-naud et al., 2020, 2022, White et al., 2022, Masada et al., 2022) et magnétorotationnelle (e.g.Mösta et al., 2015, Guilet & Müller, 2015, Guilet et al., 2022, Reboul-Salze et al., 2021, 2022).Ces simulations numériques montrent que ces effets peuvent générer des champs magné-tiques de l’ordre de ceux des magnétars dans le cas de rotations rapides de la proto-étoile àneutrons. Ces scénarios permettent donc d’expliquer la formation des magnétars dans lesexplosions extrêmes. Cependant, la rotation de la proto-étoile à neutrons est supposée venirde celle de l’étoile progénitrice. Or, il est incertain s’il y a assez de l’étoile en rotation rapidepour former l’entière population des magnétars via ces dynamos. En outre, les explosionsstandards exigent des rotations plus lentes (au moins 5 ms, Vink & Kuiper, 2006) comme dé-
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montré par la mesure de l’énergie cinétique de rémanents de supernovæ associées à desmagnétars (Vink & Kuiper, 2006, Martin et al., 2014, Zhou et al., 2019). Cela indique aussique les magnétars se forment avec une période de rotation initiale d’au moins 5 ms et sontissus d’explosions standards. Enfin, la fraction de supernovæ extrêmes est d’environ 1 %, cequi est plus petit que la fraction 10 % estimée pour les magnétars parmi les jeunes étoiles àneutrons (Kouveliotou et al., 1994, Gill & Heyl, 2007, Beniamini et al., 2019).
Pour surmonter ces incertitudes, il est donc nécessaire d’établir un scénario de forma-tion des magnétars incluant des proto-étoiles à neutrons avec un champ magnétique faibleet les étoiles progénitrices avec une rotation lente. Dans cette thèse, nous investiguons unnouveau scénario de formation pour lesmagnétars. Dans celui-ci, la rotation est déterminéepar l’accrétion asymétrie de matière initialement éjectée, mais restée gravitationnellementliée à la proto-étoile à neutrons finissant par retomber vers l’objet compacte environ 10 saprès l’explosion (comme observé dans les simulations tridimensionnelles de Chan et al.,2020, Stockinger et al., 2020, Janka et al., 2022). L’accélération de la surface de la proto-étoileà neutrons génère une rotation différentielle favorisant le développement de la dynamo deTayler-Spruit, ce qui amplifie le champmagnétique. Cette dernière se développe dans les ré-gions stablement stratifiées et est entretenue par une instabilité de la composante toroïdaledu champmagnétique appelée instabilité de Tayler (Tayler, 1973, Goossens et al., 1981). Lesmodélisations analytiques de cet effet dynamo (Spruit, 2002, Fuller et al., 2019) fournissentdes prédictions sur l’intensité du champ magnétique et du transport de moment cinétiquedans l’état saturé de la dynamo. Celles-ci sont largement utilisées dans les codes unidimen-sionnels d’évolution stellaire (e.g. Eggenberger et al., 2019a,c, 2022, den Hartogh et al., 2020,Moyano et al., 2024). L’existence de cette dynamo est, néanmoins, restée longtemps con-troversée, car jamais clairement identifiée dans des simulations numériques directes. Il fautattendre les récentes simulations produites par Petitdemange et al. (2023) pour démontrerl’existence de la dynamo de Tayler-Spruit.
Dans unpremier temps, nous avons établi unmodèle semi-analytique capturant l’évolutiontemporelle de la rotation de la surface et du cisaillement dans la proto-étoile à neutrons dusau fallback. En étendant le formalisme de (Fuller et al., 2019) pour la dynamode Tayler-Spruit,nous modélisons aussi l’évolution du champmagnétique. Cela permet d’établir si la dynamopeut produire des champsmagnétiques de l’ordre de celui des magnétars. La résolution deséquations composant le modèle montre qu’un magnétar classique (dipôle magnétique plusfort que 4.4×1013 G) peut être formé pour des masses de fallback accrétées supérieures à

1.1×10−2 M⊙, ce qui correspond à une période de rotation inférieure à 28ms. Cette péri-ode maximale est en accord avec la période minimale de 5 ms mesurée par Vink & Kuiper(2006) pour des magnétars formés dans des supernovæ standards. En outre, le champmag-nétique est dominé par la composante azimutale, ce qui est en accord avec les indicationsde la présence d’un fort champ non-dipolaire prédominant dans les magnétars.
Les résultats de ce modèle, détaillés dans Barrère et al. (2022), sont très prometteurs,mais reposent néanmoins sur des fortes approximations pour outrepasser la forte non-linéarité dumécanismedynamo. Deplus, lemodèle est une zone et nedonnepas d’informationsur la géométrie du champ magnétique généré. Une seconde partie de ce travail de thèseconsiste alors à investiguer la dynamodeTayler-Spruit enutilisant des simulations numériquesdirectes tridimensionnelles. Pour cela, nous avons recours au codepseudo-spectral MagIC (Wicht,2002, Gastine &Wicht, 2012), qui résout les équations de lamagnétohydrodynamique (MHD)en géométrie sphérique dans l’approximation Boussinesq — et anélastique, mais nous ne
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l’utilisons pas dans cette thèse. Le fluide est confiné dans une configuration de Couettesphérique pour produire de la rotation différentielle, c’est-à-dire que des rotations solidesde différentes fréquences sont imposées sur les sphères internes et externes. Nous pré-cisons que la sphère externe tourne plus rapidement que l’interne pour rester cohérentavec notre nouveau scénario. Dans cette thèse, nous avons principalement mesuré l’impactdu cisaillement et de la stratification stable sur la dynamo de Tayler-Spruit. Cette grandeétude numérique est constituée de trois articles — dont un publié (Barrère et al., 2023), unsoumis (Barrère et al., 2024b), et un en cours d’écriture (Barrère et al., 2024a) — a permis demettre en évidence plusieurs résultats de premier plan :

• Nous démontrons l’existence de cette dynamo dans cette configuration et confirmons
son caractère sous-critique.

• Nous reportons pour la première fois trois comportements dynamiques différentsde la dynamo : stationnaire avec un champ magnétique symétrique/dipolaire par rap-port à l’équateur, hémisphérique, et avec un champ magnétique montrant des ren-versements. Cette riche dynamique est semblable à celle observée dans l’expérience
Von Karman Sodium. Elle peut être interprétée comme l’interaction de deux modesgrandes échelles avec des symétries équatoriales opposées dictée par la brisure de lasymétrie équatoriale de l’écoulement.

• La branche stationnaire/dipolaire de la dynamo de Tayler-Spruit est en accord global
avec les lois d’échelles établies par (Fuller et al., 2019) mais avec un facteur de
normalisation d’environ 0.01, c’est-à-dire que le champ magnétique toroidal axisym-métrique — qui prédomine — est 100 fois plus faible que prédit analytiquement.

• Cette même branche produit les champs magnétiques les plus forts et est donc la pluspertinente pour expliquer la formation des magnétars. Le résultat précédent implique,cependant, qu’il faut une période de rotation maximale de 6ms pour former leschamps magnétiques d’un magnétar classique. Cette limite est proche de la périodeminimale de 5 ms évoquée plus tôt. Néanmoins, la dynamo génère des champsmagné-tiques supérieurs à 1014 G pour des périodes plus petites que 60 ms, ce qui pourrait êtresuffisant pour produire l’activité à haute énergie des magnétars comme le démontrel’existence des magnétars à faible dipôle magnétique.
Enfin, les magnétars observés sont des étoiles à neutrons froides. Pour compléter notreétude, nous investiguons l’évolution à long terme d’un champ magnétique généré par la dy-namo de Tayler-Spruit. Ce travail a été fait en collaboration avec le chercheur Andrei Igoshevqui a produit les simulations tridimensionnelles de l’évolution magnéto-thermique sur 1 Madans une croûte d’étoile à neutrons froide avec une version modifiée du code PARODY. Notreétude démontre que le champ magnétique généré par la dynamo de Tayler-Spruit peut re-

produire les caractéristiques principales d’un magnétar à faible dipôle magnétique:
• Un dipôle à la surface de l’ordre de 1012 G et un champ magnétique toroïdal de grandeéchelle de 1015 G.
• Fractures de la croûte provoquée par un champ magnétique local intense qui pourraitêtre à l’origine des sursauts courts en rayons X.
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• Raies d’absorption proton cyclotron dans le spectre en rayons X dues à la présenced’arcs magnétiques de 1014 G à la surface.
• Points chauds locaux à la surface aux pieds de ces arcs magnétiques pouvant repro-duire les courbes de lumières d’un magnétar.
• Période de rotation ralentie jusqu’au valeurs typiques de 8–11 s grâce à l’interactionentre le magnétar et le disque composé du fallback dans le régime dit propeller.

Ce travail fait, ainsi, pour la première fois le lien entre l’effet dynamo dans les proto-étoilesà neutrons et les magnétars et ouvre la voie vers l’étude des signatures de chaque scénariode formation sur les observables associées aux magnétars.Pour conclure, ce travail de thèse montre que notre nouveau scénario est prometteurpour expliquer la formation d’au moins une fraction des magnétars et est une avancée im-portante dans l’étude de ces objets astrophysiques. Lamise en évidence de la riche physiquederrière la dynamo de Tayler-Spruit a aussi des implications importantes dans le cadre de laphysique stellaire et de l’étude des dynamos astrophysiques en général.
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Pour clôturer ce manuscrit, je tiens à mentionner que ce travail de thèse s’est fait en parallèle
d’un engagement dans les luttes politiques qui m’a permis d’affiner ma compréhension du

monde qui m’entoure, et aussi de murir politiquement et en tant que personne.

Ainsi, je voudrais remercier toutes les personnes qui militent pour construire une société
anti-sexiste, anti-fasciste, anti-coloniale, anti-impérialiste, anti-validiste, anti-capitaliste,

anti-raciste, écologique et libertaire.

Que crèvent les fascismes, les autoritarismes, les impérialismes, et toutes les structures de
pouvoir, leurs dispositifs de maintien de l’ordre et leurs frontières.

Que vivent la lutte et la société libertaire.
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